131486 120

NEVILLE LAND COMPANY 1900 Grant Building Pittsburgh, Pennsylvania 152194

November 22, 19344

VIA FACSIMILE AND FIRST CLASS MAIL

Mr. Abraham Ferdas Superfund Office Associate Division Director U.S. EPA/Region III 3HW02 841 Chestnut Building Philadelphia, PA 19107-4431

Re: Ohio River Park Site

Dear Mr. Ferdas:

This will confirm that your letter to Mr. blaxter dated Nonember 18, 1994 accurately reflects the agreement reached with respect to Neville Lond Company's recent dispute relating to EPA's action on the DERA. Accordingly, NEG with dates its, current Request for Dispute Resolution.

Please note, however, that as of this date NLC has still not received the final Human Risk Assessment from Region III. Our records reflect that Region III is preparing a "supplement" to the HRA. To facilitate completion of the tasks remaining to be done under AOC it is important that a final Link (with a ccustal risk repdency analysis) be completed.

Very truly yours,

Marian F. Dietrich Vice President, Neville Land Coropany

AR302432

cc: H. Vaughan Blaxter, III Thomas C. Reed Robert Davis Eric Johnson Romuald A. Roman Jeffrey A. Pike Gwen E. Pospisil

W:\VAL\FERDAS.LTR

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 841 Chestnut Building Philadelphia, Pennsylvania 19107-4431

November 18, 1994

Sterne .

VIA TELEFAX AND FIRST CLASS MAIL

H. Vaughan Blaxter, III President Neville Land Company 19th Floor, Grant Building Pittsburgh, Pennsylvania 15219

Re: Ohio River Park Site -- Neville Land Company ("NLC") Dispute Concerning the Draft Ecological Risk Assessment ("DERA") Submitted by NLC Under the Administrative Order by Consent for Remedial Investigation/Peasibility Study as Amended by the First Amendment ("AOC"), Docket No. III-74-DC

Dear Mr. Blaxter:

This will confirm that NLC and the United States Environmental Protection Agency, Region III ("EPA") have agreed to resolve the above dispute as follows:

1. EPA acknowledges that it remains NLC's position that: (a) the DERA submitted to EPA by NLC in July of 1994 was "in accordance" with the terms of the AOC in this matter and should therefore have been approved; and (b) it is inappropriate to quantify ecological risk in the manner set forth in EPA's Data Interpretation and Ecological Risk Assessment ("Data Interpretation"), a copy of which is attached hereto.

2. NLC acknowledges that it remains EPA's position that: (a) the DERA was not fully prepared in accordance with the terms of the AOC in this matter and that only Sections 1.0 - 3.0thereof have been formally approved by EPA; (b) it is appropriate to quantify ecological risk in the manner set forth in EPA's Data Interpretation; and (c) EPA's Data Interpretation and Sections 1.0 - 3.0 of the DERA together constitute the EPA-approved Ecological Risk Assessment for the Ohio River Park Site.

3. With respect to these issues EPA and NLC "agree to disagree," with the understanding that the rights of each party to have the merits of these disputes resolved in another forum, at the appropriate time, are fully reserved.

4. Although EPA has approved only Sections 1.0 - 3.0 of the DERA, it is also agreed that the entire DERA as submitted shall become a part of the Administrative Record ("AR") and, as appropriate, can be considered in this matter.

H. Vaughan Blaxter, III November 18, 1994 Page 2

5. EPA's Data Interpretation to be included in the AR is attached hereto.

If the foregoing accurately sets forth our agreement, please forward to my attention a letter withdrawing NLC's current Request for Dispute Resolution.

Sincerely,

 $g = 2 + \frac{1}{2}$

Abraham Ferdas Superfund Office Associate Division Director

Attachment

cc: Thomas C. Reed, Esquire Robert Davis (3HW13) Eric Johnson (3HW13) Romuald Roman (3HW23) Jeffrey Pike (3HW23) Gwen E. Pospisil (3RC23)

AR302434

Ohio River Park Site

and the second

U.S. Environmental Protection Agency Region III

> Data Interpretation And Ecological Risk Assessment

Introduction

The objective of this project was to prepare a screening level ecological risk assessment for the Ohio River Park Site, Neville Township, Pennsylvania. The following discussion summarizes EPA's interpretation of the site data and of the ecological risk posed by contaminants at the Ohio River Park site. The ecological risk assessment for the project will be the first three chapters of the July 1994 Ecological Risk Assessment report ("July 1994 ERA") prepared by ENSR, on behalf of Neville Land Company, and the following discussion prepared by EPA.

The data in the Remedial Investigation (RI) and in the first three chapters of the July 1994 ERA indicate that all media (except air) at the site show some level of risk due to site contaminants.

EPA Region III determines quantitative estimates of cumulative risk by adding the Ecological Effects Quotients (EEQ) of all contaminants with an EEQ greater than one. The values are added according to the formula shown here:

Where

R = Total Risk r = risk of individual contaminants

For example, the calculations for cumulative risk in the surface water, main channel involves the following:

 $R = EEQ^{Hg} + EEQ^{Cu(+2)} + EEQ^{Cr(as VI)}$

 $R = r^1 + r^2 + r^3 + r^3$

R = 55.83 + 8.38 + 1.10

R = 65.31

Those calculations that show a result higher than one (1) are considered to demonstrate a potential risk. Values higher than ten (10) are considered to represent moderately high potential risk, and those above one hundred (100) are considered to represent extreme potential risk. Risk to the guild and community level of a habitat is estimated by adding the EEQs. The concept here views the habitat as a whole with the potential for risks from contaminants impacting all organisms. It differs fundamentally from the way additive effects are calculated in

human health risk assessment. In ecological risk assessment, it is assumed that impacts are either evenly severe to all members of the community or devastating impacts to a few species and fatally destructive to the community, ultimately.

Ecological Risk Assessment

The following discussions are arranged according to the media as presented in Chapter 3 of the July 1994 ERA.

A. Surface Water (Main Channel)

Mercury has been identified at high levels in the surface water of the main channel of the Ohio River. It is possible that some of this contaminant comes from the site, as Table B-1, Appendix B, of the July 1994 ERA fails to indicate any mercury reported from the background samples. Two other contaminants also show EEQ levels above one and are considered to be of possible concern. These are copper and chromium (VI), neither of which is included in Table B-1, and are likely to arise from the site as well.

All three of these contaminants carry ecological implications and should be viewed as potentially harmful to the ecosystem of the Ohio River. Their effects on the river are expected to be chronic and long-term.

Mercury has an EEQ of over 55; copper(+2) has an EEQ of 8.38 and total chromium (as VI) has an EEQ of 1.10.

The cumulative risk for surface water in the main channel equals 6.531E+1. This level of potential ecological risk is considered to be serious.

B. Surface Water (Back Channel)

Two contaminants appear to have many implications for ecological impacts: chromium (VI) and copper (2). The EEQ values are 1.51 and 1.43, respectively, and the additive value is 2.94. It is likely that the site is a source of these contaminants, as the levels reported are significantly above background (see Table 3.2 of the July 1994 ERA). These levels of potential ecological risk are considered to be of possible long-term risk to ecological receptors:

C. Sediment (Main Channel)

Many contaminants listed in Table 3.3 not only show concentrations above criteria levels, but several are elevated above background. The contaminants above background with EEQs above 1 are: arsenic, chromium, copper, mercury, lead, nickel, zinc, 4,4'-DDD, alpha chlordane, PCBs, dieldrin, endrin, gamma chlordane, benzo(a)anthracene, 2-methylnaphthalene, and fluorene. In addition, several others are considered to be of ecological significance, but had no EEQ calculations could be performed due to a lack of information. These are: barium, cobalt, cyanide, manganese, selenium, vanadium, 2,4,5-T, 2,4,5-TP, 2,4-D, several arochlor congenors, endrin aldehyde, and endrin ketone.

Summing the calculations shows an EEQ of 781. This level of potential ecological risk is considered to be serious. From a conservative perspective, this number is actually very low due to the presence of several contaminants which have not been included in the cumulative risk calculations. The biological implications of these contaminants cannot be ignored in judging risk potential. These are cyanide, selenium, 2,4,5-T, 2,4,5-TP, 2,4-D, many PCB congenors, and breakdown products of endrin. The site may be a likely source of contamination of the sediments in the main channel.

D. Sediment (Back Channel)

All of the discussions above on the sediments in the main channel also apply to sediments in the back channel. The additive EEQ calculation is 1305 and every contaminant identified and appearing in Table 3.4 of the July 1994 ERA is above levels identified at the background stations, indicating a potential level of ecological risk which is considered serious. Again, the site is a likely source of contamination of the sediments in the back channel.

E. Soil

As with the sediments in the back channel, most of the contaminants in the soils are found at levels above background concentrations. Although only six of these contaminants have EEQ's over 1, the result was a total EEQ of 42.7. This shows a high potential for risk.

Many other contaminants were not included in the calculation of soil EEQs, but many have serious biological implications. Examples are cyanide, thallium, vanadium, 2,4,6-trichlorophenol, 2,4-dichlorophenol, naphthalene, phenol, 2,4,5-T, 2,4,5-TP, 2,4-D, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha BHC, alpha chlordane, several as well as total PCBs, beta & delta BHCs, dioxin, dieldrin, 3 endosulfan formulations and endrin.

F. Groundwater

Statements made above regarding soils and sediments apply to the groundwater situation as well. The cumulative potential risk value is 549, which places it in the serious category of risk. Groundwater is crucial in the risk assessment because it is

a pathway by which contamination reaches the river.

Here, too, several contaminants of ecological concern were left out of the EEQ calculations in the July 1994 ERA. These were 2,4-dimethylphenol, 2-methylphenol, 4-methylphenol, di-nbutylphthalate, di-n-octylphthalate, 2,4,5-T, 2,4,5-TP, 2,4-D, 4,4'-DDE, alpha BCH, 1,1,1-trichlorothane, 1,1,2-trichloroethane, 2-butanone, acetone, benzene, bromoform, carbon disulfide, chloroethane, methylene chloride, and toluene. This is due mainly to a lack of AWQC chronic toxicity values. Some of these are economic poisons (pesticides) for which chronic toxicity values have been developed for other media; therefore, they are known toxicants for which chronic numbers could be developed from literature sources. Still others (e.g., phthalate esters) have generic toxicity numbers which were not used in any calculations, because of the fact that the numbers are generally applied to all members of the chemical group in question. The levels above background, however, are indications that the groundwater is a likely secondary source and pathway of contamination to the river.

Summary and Conclusions

Risk calculations for all media (except air) have been carried out in ENSR's July 1994 ERA and they show potential for risk from many site related contaminants. Cumulative risk assessment calculations were carried out on those contaminants for the media where the EEQ exceeds one. The calculations were based upon those contaminants for which ENSR developed EEQs, but did not include all contaminants where levels exceeded background.

Even with this limited data base, it is clear that a potential for ecological risk exists in all media sampled. It can also be concluded that the potential risk is associated with contaminants that come from the site, as the background ratios show (see Tables 3.1 through 3.6 of the July 1994 ERA). In many cases, the ratios are elevated above background by many orders of magnitude, indicating that the site is a source of contamination to the Ohio River in the vicinity of Neville Island (see Table 3.6 of the July 1994 ERA). Contaminants from the site likely have contributed and likely can be expected to continue to contribute to the degraded condition of the river, and the levels reported by ENSR indicate a potential for risk.

Neville Land Company

Pittsburgh, Pennsylvania

Ecological Risk Assessment for the Ohio River Site, Neville Township, PA

ENSR Consulting and Engineering

July 1994 Document Number 4920-003-906

CONTENTS

•			
	1.0	INT	RODUCTION
		1.1	Objectives
		1.2	Site Location and Usage 1-2
,		1.3	Conceptual Site Model 1-2
		1.4	Areas of Potential Ecological Concern
		1.5	Technical Approach
. •	•		1.5.1 Screening Level Evaluation to Identify Compounds of Potential
		•	Concern
2	· .		1.5.2 Secondary Level Risk Evaluation
• • •			1.5.3 Site-Specific Risk Evaluation
	· · ·	1.6	Interpretation
. /		1.7	*Report Organization
	•		
	2.0	CON	ICEPTUAL SITE MODEL FOR THE OHIO RIVER SITE
• •		2.1	Ecosystem Characterization
			2.1.1 Physical Setting
		•	2.1.2 Bedrock Geology 2-4
•		· ,	2.1.3 Soil Geology
			2.1.4 Land Use at ORS and in the Vicinity
			2.1.5 Important Aquatic and Terrestrial Habitats
· .	· · · ·		2.1.6 Aquatic Habitats
	•		2.1.7 Terrestrial Habitats
	•	2:2	Potential Exposure Pathways *
		2.3	Conceptual Site Model Summary 2-12
	•	·	
	3.0	SCF	EENING LEVEL RISK EVALUATION
		3.1	
			3.1.1 Main Channel Surface Water
			3.1.2 Back Channel Surface Water 3-6
• • •		3.2	Screening Level Risk Evaluation of CPCs in Sediments
	-		3.2.1 Main Channel Sediments
			3.2.2 Back Channel Sediments
	· . •	3.3	Screening Level Risk Evaluation of CPCs in Surface Soil
•		3.4	Screening Level Risk Evaluation of CPCs in Groundwater
· ·		3.5	Consideration of CPCs Identified in the Screening Level Risk Evaluation 3-16
•		-,	

i

CONTENTS (Cont'd)

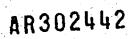
		3.5.1 Heavy Metals	3-16
		3.5.2 Earth Metals 3	3-17
		3.5.3 Herbicides/Pesticides 3	3-17
	· •	3.5.4 Polychlorinated Biphenyls	3-17
•		3.5.5 Polynuclear Aromatic Hydrocarbons	3-18
		3.5.6 Chlorinated Compounds	3-18
· •		3.5.7 Semi-Volatile and Volatile Organic Compounds (SVOCs/VOCs 3	3-19
•	-	3.5.8 Phenols	3-19
	3.6	Summary of Screening Level Risk Assessment	3-19
		3.6.1 Surface Water 3	3-20
-	•	3.6.1.1 Main Channel Surface Water	3-20 ·
	•	3.6.1.2 Back Channel Surface Water	3-20
•		3.6.2 Sediments	3-20
1 A		3.6.2.1 Main Channel Sediments	3-21
	•	3.6.2.2 Back Channel Sediments	3-21
•	· · ·	3.6.3 Surface Soil	3-21
	1.0	3.6.4 Groundwater	3-21
4.0	SEC	CONDARY LEVEL RISK EVALUATION	4-1
	4.1	Secondary Level Risk Evaluation of COCs in Surface Water	4-3
	4 .	4.1.1 Main Channel Surface Water	4-3
•		4.1.2 Back Channel Surface Water	4-6
	4.2	Secondary Level Risk Evaluation of ÇOCs in Sediments	4-6
		4.2.1 Main Channel Sediments	4-9
	н 1. т. н	4.2.2 Back Channel Sediments	4-9
ан сайта. Алтория с	4.3	Secondary Level Risk Evaluation of COCs in Surface Soil	4-10
	4.4	Secondary Level Risk Evaluation of COCs in Groundwater	4-13
•	4.5	Characterization of Potential Environmental Risk	4-13
	4.6	Uncertainty Analysis	4-16
	4.7		4-18
	•	4.7.1 Surface Water	4-18
	•		
. *	•	4.7.2 Sediments	4-18
		4.7.3 Soils	4-18 4-19
			4-18 4-19

ij

AR302441

July, 1994

ENSR


CONTENTS (Cont'd)

ENSR

July, 1994

5.0	SITE	-SPECIFIC RISK EVALUATION	5-1
à chuire	5.1	Site-specific Risk Evaluation of COCs in Surface Water	5-3
•	5.2	Site-specific Risk Evaluation of COCs in Sediments	5-3
	. •	5.2.1 Main Channel Sediment	5-6
		5.2.2 Back Channel Sediment	
	5.3	Site-specific Risk Evaluation of COCs in the Surface Soil	5-7
	5.4	Site-specific Risk Evaluation of COCs in the Groundwater	5-7
•		5.4.1 Evaluation of Relevant Monitoring Wells	
· .		5.4.2 Groundwater Site-Specific COC Selection	5-10
· · · · ·	5.5	Evaluation of Exposure Pathways	
•	5.6	Characterization of Potential Environmental Risks	5-13
		5.6.1 Aquatic Risk Analysis	
•	·. · ·	5.6.1.1 Surface Water	
		5.6.1.2 Sediments	
•	•	5.6.2 Riparian and Terrestrial Risk Analysis	
	5.7	Uncertainty Analysis	
÷	5.8	Summary	
· .		5.8.1 Aquatic Summary	
- 		5.8.2 Terrestrial Summary	5-26
6.0		IPARISON BETWEEN SECONDARY LEVEL AND SITE-SPECIFIC RISK	
	•	ESSMENTS	
	6.1	Surface Water	
•		6.1.1 Selection of COCs Following Evaluations	
		6.1.2 Comparison of the Results Following Risk Assessments	
· · ·		6.1.3 Discussion	
-	6.2	Sediments	
14 1		6.2.1 Main Channel Sediments	
	•	6.2.1.1 Selection of COCs Following Evaluations	
•	, ·	6.2.1.2 Comparison of Results Following Risk Assessments	
		6.2.1.3 Discussion	
	·	6.2.2 Back Channel Sediments	
		6.2.2.1 Selection of COCs Following Evaluations	
		6.2.2.2 Comparison of Results Following Risk Assessments	
	•• •	6.2.2.3 Discussion	6-6

iii

CONTENTS (Cont'd)

•	6.3	Soils
		6.3.1 Selection of COCs Following Evaluations
-	•	6.3.2 Comparison of the Results Following Risk Assessments
		6.3.3 Discussion
•	6.4	Groundwater
		6.4.1 Selection of COCs Following Evaluations
		6.4.2 Comparison of the Results Following Risk Assessments
		6.4.3 Discussion 6-10
	6.5	Summary 6-11
	•	
7.0	CON	ICLUSIONS
	7.1	Surface Water
· .	7.2	Sediments
, .	7.3	Surface Soil
	7.4	Groundwater
	7.5	Discussion
	7.6	Summary
о Л	DEE	ERENCES
8.0	REF	ENENGED

APPENDICES

A	SITE	SUMMARY	DATA	TAB	LES

- B BACKGROUND SUMMARY DATA TABLES
- C THREATENED AND ENDANGERED SPECIES
- D REFERENCE SOIL CONCENTRATIONS
- E RISK CHARACTERIZATION PARAMETERS
- F AQUATIC AND TERRESTRIAL ECOLOGICAL RISK CHARACTERIZATION
- G REFERENCES FOR APPENDICES

R:\PUBS\PROJECTS\4920003\906.\$1

iv.

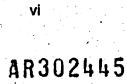
LIST OF TABLES

1-1	Overview of Evaluation and Selection of Site-Related Chemicals of Potential
	Concern
3-1	Screening Level Evaluation, Surface Water Screening, Main Channel
3-2	Screening Level Evaluation, Surface Water Screening, Back Channel
3-3	Screening Level Evaluation, Sediment Screening, Main Channel 3-9
3-4	Screening Level Evaluation, Sediment Screening, Back Channel
3-5	Screening Level Evaluation, Surface Soil Screening
3-6	Screening Level Evaluation, Groundwater Screening
4-1	Secondary Level Risk Evaluation, Surface Water Screening, Main Channel 4-4
4-2	Secondary Level Risk Evaluation, Surface Water Screening, Back Channel 4-5
4-3	Secondary Level Risk Evaluation, Sediment Screening, Main Channel 4-7
4-4	Secondary Level Risk Evaluation, Sediment Screening, Back Channel 4-8
4-5	Secondary Level Risk Assessment, Surface Soil Screening
4-6	Secondary Level Risk Assessment, Groundwater Screening
5-1	Site-Specific Evaluation, Sediment Screening, Main Channel
5-2	Site-Specific Evaluation, Sediment Screening, Back Channel 5-5
5-3	Site-Specific Risk Assessment, Surface Soil Screening 5-8
5-4	Site-Specific Risk Assessment, Groundwater Screening
5-5	Site-Specific COCs for ORS Identified by Medium 5-14
5-6	Ecological Risk Assessment, Surface Water Evaluation, Main Channel 5-18
5-7	Ecological Risk Assessment, Sediment Evaluation, Main Channel 5-20
5-8	Ecological Risk Assessment, Sediment Evaluation, Back Channel

v

AR302444

R:\PUBS\PROJECTSW920003\906.S1



LIST OF FIGURES

1-1	Flow Diagram of Ecological Risk Evaluation
2-1 :	Area of Investigation
2-2	Approximate Location of Surface Features at the Ohio River Site
2-3	Approximate Cross-Section Across the Ohio River Back Channel 2-8
2-4	Location and Types of Terrestrial Ecological Habitats Present
2-5	Monitoring Well Locations
3-1	Flow Diagram of Screening Level Risk Evaluation
4-1	Flow Diagram of Secondary Level Risk Evaluation
5-1	Flow Diagram of Site-Specific Risk Evaluation 5-2
4-1	Flow Diagram of Secondary Level Risk Evaluation

R:\PUBS\PROJECTS\4920003\906.S1

11

1.0 INTRODUCTION

ENSP

July, 1994

The Ohio River Site (ORS) in Neville Township, Pennsylvania is included on the National Priority List and, pursuant to the Administrative Order on Consent between the United States Environmental Protection Agency (U.S. EPA) Region 3 and Neville Land Company (owner of the ORS) dated October 16, 1991, a Remedial Investigation/Feasibility Study (RI/FS) has been undertaken. As part of the RI/FS process and under agreement with U.S. EPA Region 3, ENSR has conducted an ecological risk assessment for the Ohio River Site for the Neville Land Company. The remainder of this introduction describes some of the components of the ecological risk assessment and presents an overview of the approach to ecological risk assessment followed for the ORS. The introduction concludes with a description of the organization of the report.

1.1 Dijectives

R:\PUBS\PROJECTS\4920003\906.S1

The purpose of an ecological risk assessment is to evaluate the likelihood of potential adverse ecological and biological effects of site-related environmental stressors on receptors and areas of potential concern at the site. The probability and magnitude of potential effects are dependent upon the site-specific stressors (i.e., compounds of concern), the extent of elevated compound concentrations, the existence of complete exposure pathways, and the biological receptors present at the site. As for a human health risk assessment, the object is to determine any incremental effects resulting from conditions of the site, not necessarily the total effects due to the site in combination with any naturally elevated stressors in the area (the "background").

Ecological risk assessments necessarily involve multiple receptor species, rather than a single species as is the case for human health risk assessments. In addition, the effects of environmental exposure to contaminants is much less understood for most non-human species. The combination of these two factors makes the application of the established procedures for human health risk assessment (the so-called "human health paradigm") difficult in the ecological context and alternative procedures must be followed.

Although formal guidance for evaluating potential ecological impacts from a site has not been presented in the <u>Risk Assessment Guidance for Superfund Sites Volume II.</u> <u>Environmental</u> <u>Evaluation Manual</u> (RAGS) (U.S. EPA, 1989c), the U.S. EPA RAGS document provided an overall framework for evaluating environmental effects. More recent efforts by the U.S. EPA have resulted in the <u>Framework for Ecological Risk Assessment</u> (U.S. EPA, 1992) and related documents. These documents, while not regulations nor U.S. EPA guidance, provided an interim procedure for the continuing effort to develop guidelines for ecological risk assessment. Specific

:1-1

environmental evaluation methods were provided in other documents including: <u>Review of</u> <u>Ecological Risk Assessment Methods</u> (U.S. EPA, 1988); <u>Ecological Assessment of Hazardous</u> <u>Waste Sites: A Field and Laboratory Reference</u> (U.S. EPA, 1989a); and <u>User's Manual for</u> <u>Ecological Risk Assessment</u> (ORNL, 1986). Using the interim guidance and the methods presented in the evaluation documents, a logical, consistent, and technically sound approach can be followed when performing ecological risk assessments.

ENSR

July, 1994

For the ORS, the primary objective of the risk assessment was to determine the relative risk of the site by comparing site concentrations to appropriate criteria and literature-derived values. The results of the risk characterization were interpreted to provide statements of the level of potential risk associated with site-related stressors. Also in Appendix F, a quantitative evaluation of potential effects to specific ecological receptors is presented.

1.2 Site Location and Usage

The ORS consists of approximately 32 acres in Neville Township, Pennsylvania, located on the western tip of Neville Island in the Ohio River approximately 10 miles downstream of Pittsburgh. The site is surrounded by the Ohio River (main and back channel) to the north, south, and west and by Neville Township (Neville Island) to the east.

Historically, the ORS was used primarily for agricultural purposes from the last century until the 1940s. From the mid-1930s through the mid-1950s, a portion of the site was used to landfill municipal wastes including domestic refuse and construction debris from Neville Island residences. From 1952 through the mid-1960s, the ORS was used for the disposal of industrial wastes, much of which originated from the industrial interests located at the eastern end of Neville Island.

Construction of the Ohio River Park was initiated in August 1977 and grading, construction, and landscaping was completed in early 1979. The park was never opened to the public and most structural components were dismantled during 1980. Currently, the ORS is not in use, and the landscaping and infrastructure are not being maintained.

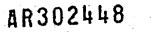
1.3 Conceptual Site Model

A discussion of the characteristics of the site and surrounding area is provided as a conceptual site model (CSM) in Section 2.0 of this report. The CSM identifies the various ecological habitats found on the site and identifies potential exposure pathways relevant to the areas of potential ecological concern at the ORS.

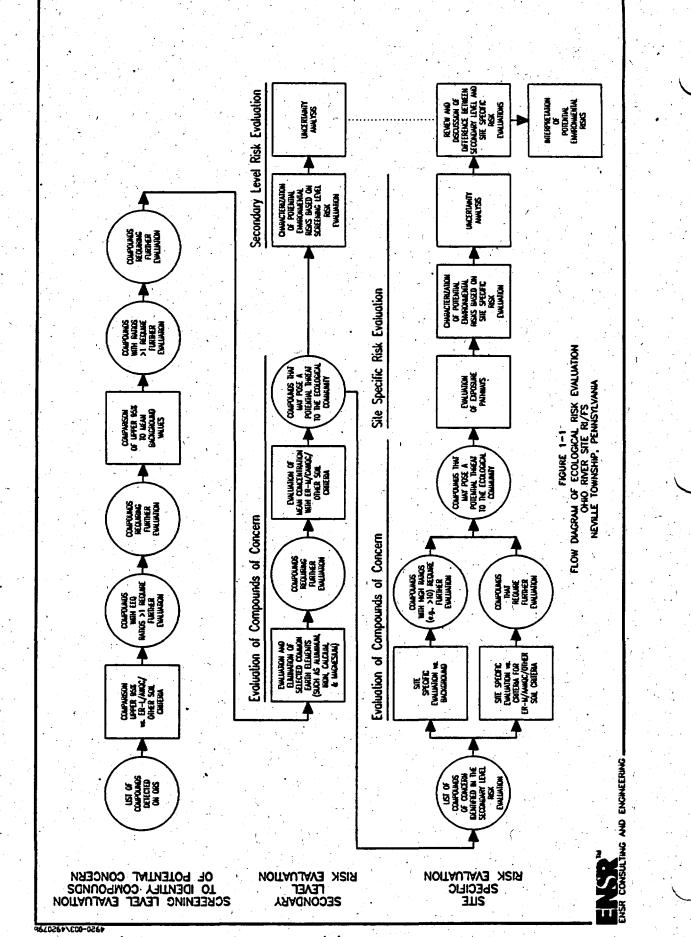
1-2

1.4 Areas of Potential Ecological Concern

Areas of potential ecological concern are defined as areas in which potential effects of the ORS are expected to be greatest through direct or indirect exposures. The areas are also homogeneous subunits of the site and surrounding area which have similar ecological characteristics and are believed to receive similar exposures from the site. In the case of the ORS, the areas of potential ecological concern include both aquatic and terrestrial resources. The aquatic resources in the vicinity of the ORS consist of the Ohio River main channel and the smaller channel (or back channel) located to the south of Neville Island. The important potential aquatic habitats in these areas include the deep water sections and shallower littoral areas of the main and back channels of the Ohio River adjacent to the ORS. The terrestrial resources include habitats located on the ORS. The important terrestrial habitats include the upland area in the southern half of the site, the terrestrial woodland, and the riparian/flood plain habitats which exist at the shoreline around the periphery of the ORS.


1.5 Technical Approach

R:\PUBS\PROJECTS\4920003\906.S1


The approach followed to conduct the ecological risk assessment for the ORS is outlined in the form of a flow chart in Figure 1-1. The flow chart depicts three successive evaluations, or screenings: a screening level evaluation to identify compounds of potential concern, a secondary level risk evaluation, and a site-specific risk evaluation. The first of these evaluations, the screening level, strictly follows the procedures requested by U.S. EPA Region 3 and relies upon conservative assumptions for site concentrations and the extremely protective benchmarks for comparison. For these reasons, the results of this level do not reduce significantly the very large list of constituents identified at the site to a more focused list that can be used to direct management decisions.

Accordingly, the secondary level evaluation considers other methods of characterizing site concentrations, other benchmarks, additional consideration of the chemical-specific potential for adverse ecological effects, and best professional judgement. Taken together, these additional steps reduce the number of compounds under consideration to those constituents that have the most potential for ecological risks due to the site. The site-specific risk evaluation continues this process, incorporating consideration of site-specific criteria, specific exposure pathways, and relative magnitude of site concentrations to focus on only those compounds at the site that are more likely to create such risks as may be present. This stepwise process allows users of this risk assessment to consider the level of evaluation that is most useful for specific management decisions.

1-3

()

AR302449

1-4

The specific activities associated with each of these levels of evaluation are shown in Table 1-1 and discussed in more detail in the following sections.

1.5.1 Screening Level Evaluation to Identify Compounds of Potential Concern

13.

Compounds of potential concern (CPCs) were conceptually identified based on historical knowledge about their possible presence at the ORS, the results of the RI, their potential to pose an environmental risk, and the availability of sufficient toxicological and biological data to perform a quantitative evaluation of potential ecological risk.

Based on site usage and previous investigations (ENSR, 1993; 1994), CPCs were determined to likely include metals, polycyclic aromatic hydrocarbons (PAHs), and other organic compounds such as volatile organic compounds (VOCs) and pesticides/herbicides. Identification of preliminary CPCs followed the steps outlined below and incorporate U.S. EPA Region 3 staff suggestions for an initial, conservative evaluation. The screening level evaluation is based upon a minimum of information and uses conservative criteria. The purpose of this screening level evaluation is to identify the suite of compounds which are to be evaluated further for their potential ecological effects. A complete discussion of the compound evaluation process is also provided in Section 3.0.

To generate a list of screening level CPCs for the site, all concentrations of compounds detected in surface water, sediments, surface soil, and groundwater were compared with conservative environmental criteria. Examples of the environmental benchmarks and the applicable medium included Federal Ambient Water Quality Criteria (AWQC) for surface and groundwater, NOAA Effects Range-Low guidance values (ER-Ls) for sediments, and suggested criteria provided by U.S. EPA Region 3 staff for soils. The upper 95% confidence limit for the levels of each compound detected in a medium investigated at the site was compared to the appropriate benchmark, and compounds present in concentrations exceeding the benchmark were retained for further investigation. The next step in this preliminary analysis was a comparison of the magnitude of site concentrations relative to reference background concentrations. Again, only compounds for which site concentrations exceeded background concentrations were retained for further analysis.

The screening level risk evaluation provided a strictly conservative assessment of the potential risk associated with site-related CPCs. This conservatism includes the use of the upper 95% confidence limit as the comparison value, use of criteria such as the chronic AWQCs which assume constant exposure for aquatic organisms, and the use of AWQCs for evaluating groundwater quality without application of a mixing model. Because of the conservative approach adopted for this evaluation, few compounds identified at the site were excluded and the results of the screening level evaluation may be viewed as an extremely conservative assessment of

1-5

AR302450

Table 1-1

Overview of Evaluation and Selection of Site-Related Chemicals of Potential Concern

Medium	Screening Level Evaluation (Section 3.0)	Secondary Level Evaluation (Section 4.0)	Site-Specific Evaluation (Section 5.0)
Surface Water (Main and Back Channels)	 95th UCL vs. chronic AWQC 95th UCL vs. background 	 Mean vs. chronic AWQC Mean vs. background Evaluate common elements 	 No additional evaluation
Sediments (Main and Back Channels)	 95th UCL vs. ER-L values 95th UCL vs. background 	 Mean vs. ER-M Mean vs. background Evaluate common elements 	 Mean vs. EP-derived SQC Relative enrichment Best professional judgement
Soi	95th UCL vs. EPA (3) values 95th UCL vs. background	 Mean vs. EPA (3) values Mean vs. background Evaluate common elements 	 Relative enrichment Frequency of detection Best professional judgement
Groundwater	 95th UCL vs. chronic AWQC 95th UCL vs. background 	 Mean vs. chronic AWQC Mean vs. background Evaluate common elements 	 Back channel groundwater wells vs. chronic AWQC Best professional judgement
Results of Evaluation	 Conservative criteria identify universe of potential CPCs Allows consideration of worst-case scenario 	 Application of additional, less-stringent criteria to identify more likely CPCs Allows removal of unlikely CPCs (e.g., earth elements) 	 Fine-tunes selection of CPCs by utilizing site characteristics Best professional judgement is invoked

647466TB.DFM, 4920-003-906

July 13, 1904

1-6

ecological risks at the site. The screening level CPCs identified by the primary evaluation were evaluated in terms of their potential to result in adverse ecological effects, but the large number of compounds retained at this stage of the assessment made further interpretation impossible.

1.5.2 Secondary Level Risk Evaluation

The screening level CPCs identified by the screening level risk evaluation were further considered in the secondary level risk evaluation. In this stage of the risk assessment process, ubiquitous earth and essential nutrients were eliminated from further consideration in the risk assessment, as were CPCs at or below national average levels for particular media. Remaining CPCs were compared to other available criteria. In addition, the magnitude of site concentrations relative to reference background concentrations was re-examined. The secondary level compounds of concern (COCs) identified by the secondary level were evaluated in a manner analogous to that used for the screening evaluation; however, because the assessment was targeted toward more clearly defined COCs, it was possible to conduct the evaluation in more detail.

The secondary level risk evaluation continued with the identification and evaluation of relevant exposure pathways, placed into the context of the conceptual site model. The ratio of estimated receptor dose to acceptable dose determined the chemical-specific potential risk. If the ratio was less than or equal to one, it was concluded that no adverse effects were likely to occur. If the ratio was greater than one, further evaluation was necessary. The evaluation was concluded with a discussion of the uncertainty associated with the secondary level analysis.

1.5.3 Site-Specific Risk Evaluation

The final stage of the procedure followed for the ORS ecological risk assessment involved a sitespecific risk evaluation. Because the number of secondary COCs that were considered in the secondary level risk evaluation was still quite high, it was difficult in that portion of the assessment to focus on the subset of identified contaminants most responsible for risk. Accordingly, the sitespecific evaluation used a more rigorous procedure to narrow and focus the list of COCs.

In this evaluation, compounds were compared to applicable site-specific criteria (e.g., site-specific sediment quality criteria) or exposure pathways (e.g., potentially contaminated groundwater entering the back channel). Best professional judgement was used to evaluate compounds lacking applicable criteria for comparison.

Compounds identified in the site-specific evaluation were selected as the site-specific COCs. In this type of semi-quantitative assessment, knowledge of acceptable levels of exposure was necessary in order to estimate potential adverse risks for the semi-quantitative assessment.

1-7

Chemical-specific levels or doses (i.e., daily intakes) were derived from literature sources and are described in Appendix E.

The results of the exposure assessment were combined with the results of the ecological effects characterization to characterize potential environmental risk. This evaluation presents a more central tendency risk evaluation and is more realistic. The results of the site-specific risk assessment (semi-quantitative approach) are presented in Section 5.0. Because of the limitations associated with the risk assessment process, an uncertainty assessment section was also provided.

1.6 Interpretation

The results of the risk characterization were evaluated to provide an overall risk assessment. The evaluation considered the initial set of CPCs identified by the screening level risk evaluation. The results of the secondary level risk evaluation and site-specific risk assessment were compared and differences discussed. Both the magnitude and potential severity of potential ecological risk were considered. The results and interpretation are presented in Sections 6.0 and 7.0.

1.7 Report Organization

This ecological risk assessment report is organized as follows. Section 1.0 presents a brief overview of the site and provides a summary of the approach followed to conduct the risk assessment. Section 2.0 presents the site background for the ORS and surrounding area. Section 3.0 describes in more detail the processes used to identify CPCs. Section 3.0 also contains the results of the screening level risk evaluation and discussion of extremely conservative potential risks. Section 4.0 describes the secondary level risk evaluation and Section 5.0 details the site-specific risk assessment. Comparison of the results of the secondary and site-specific risk evaluation is provided in Section 6.0. Finally, Section 7.0 contains the summary and interpretations. The details and supporting documentation for the site-specific risk assessment using representative (surrogate) species are included in Appendix F.

1-8

R:\PUBS\PROJECTS\4920003\906.S1

ENS

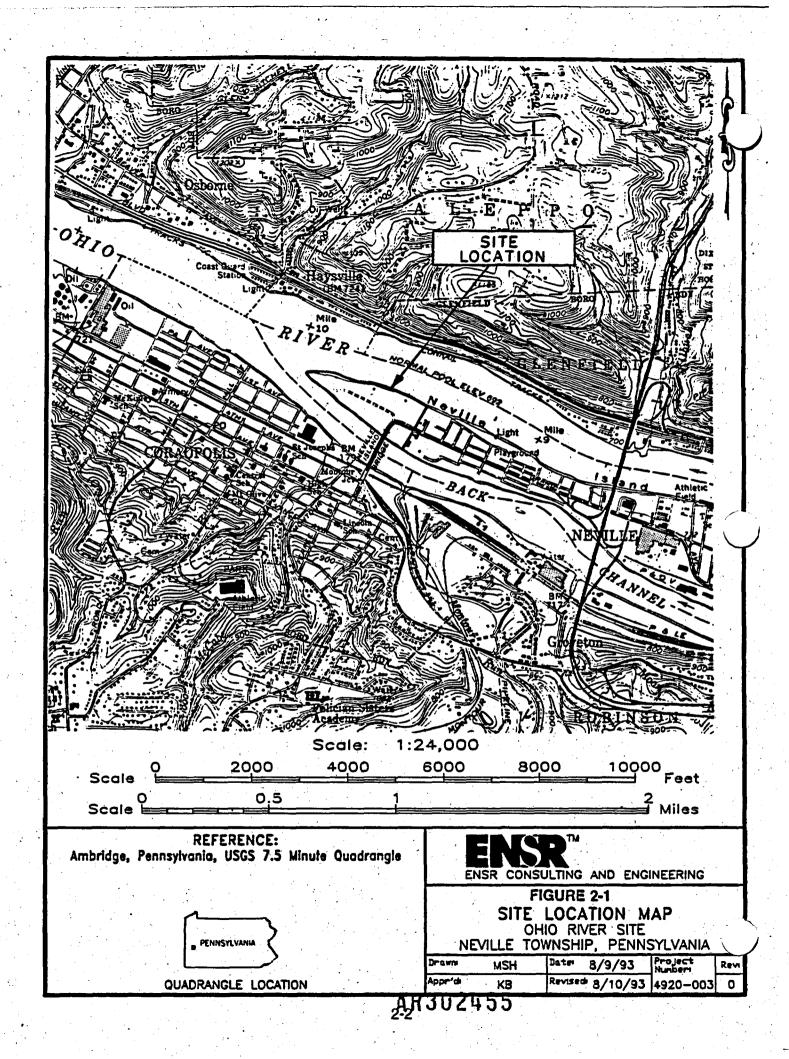
2.0 CONCEPTUAL SITE MODEL FOR THE OHIO RIVER SITE

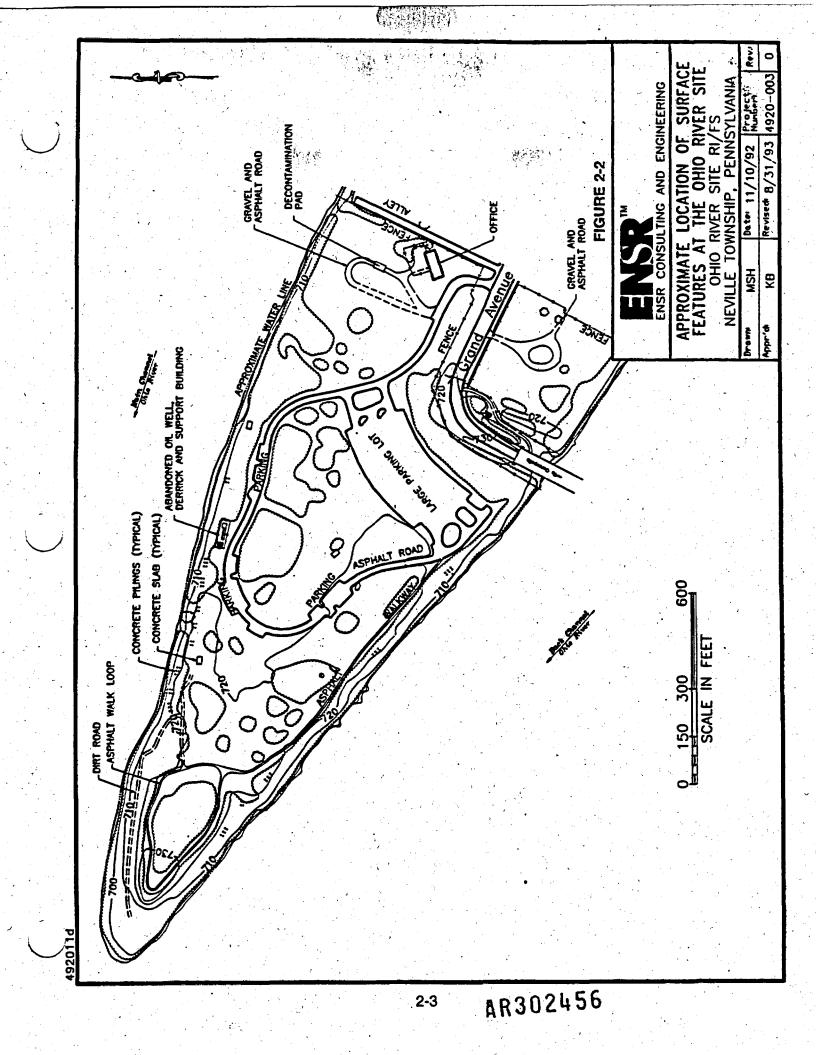
To evaluate the potential ecological impacts of the Ohio River Site, it is necessary to consider the physical features of the site, the physical and chemical properties of the CPCs and the biological components of the ecosystem. This process is formalized in the development of a conceptual site model (CSM). The CSM contains a set of working assumptions based on habitats and species present within potentially affected ecosystems and is used to identify potential exposure pathways and compounds of potential concern. The CSM may also be used to provide the rationale behind the selection of species having the highest potential exposures to CPCs and, thus, are assumed to have the highest potential risk. At the same time, the CSM facilitates rapid elimination of compounds that pose little potential risk due to their physicochemical properties or relatively small potential exposures.

The elements of the CSM for the ORS provided in this section are as follows: a brief overview of the physical and geologic setting of the site (Sections 2.1.1-2.1.3); a description of site land use (Section 2.1.4); the important potentially affected habitats (Sections 2.1.5-2.1.7); identification of important exposure pathways (Section 2.2); and a summary of the CSM (Section 2.3).

2.1 Ecosystem Characterization

This section will provide the necessary background information about the physical (Section 2.1.1) and biological (Section 2.1.2) characteristics of the ORS which will be used to identify habitats and receptors for further evaluation.


2.1.1 Physical Setting


R:\PUBS\PROJECTS\4920003\906.S2

The ORS is located in Neville Township, Allegheny County, Pennsylvania, at a latitude of 40° 31' N. and a longitude of 80° 09' W (U.S.G.S, Ambridge, PA 7.5 Minute Quadrangle). It consists of approximately 32 acres on the western tip of Neville Island in the Ohio River, and is situated approximately 10 miles downstream of downtown Pittsburgh. It is surrounded by the Ohio River (main and back channel) to the north, south, and west, and by Neville Township to the east (Figure 2-1).

Topographically, the ORS is relatively flat with the exception of a slight mound on the western tip of the island and steep slopes along the Ohio River (Figure 2-2). In addition, the slope along the river is interrupted by a terrace, typically 20 feet wide, on the western end of the island. At the northwestern tip of the island, a gentle slope exists extending from the Ohio River to the mound.

2-1

ENSR '

July, 1994

The ORS is approximately 27 feet higher in elevation than the Ohio River normal pool elevation in the Dashields Pool (located between the downstream Dashields Dam and the upstream Emsworth Dam).

2.1.2 Bedrock Geology

The ORS is located within the Allegheny Plateau section of the Appalachian Plateaus Physiographical Province. The geological structure of the region is characterized by gentle, parallel, northeast-southwest trending folds. The bedrock in the region is Pennsylvania Age, Connemaugh Group. The Connemaugh Group is composed of the Glenshaw and Casselman Formations. These two formations consist primarily of shale and sandstone. The Glenshaw Formation (lower) and the Casselman Formation (upper) are separated by the Ames Limestone in Western Pennsylvania. Thin limestone and coal beds are also present in the Connemaugh Group.

2.1.3 Soil Geology

Neville Island is a detached portion of a dissected river terrace that was deposited by the ancestral Ohio River. The terrace is partially submerged by impoundments on the Ohio River. Remnants of the terrace flank both sides of the Ohio River at approximately the same elevation as Neville Island (Adamoan et al., 1949).

Unconsolidated sediments overlie the bedrock in the stream valleys. These unconsolidated sediments are generally 60 feet thick along the Ohio River in the vicinity of the ORS and only a few feet thick along the ridges. The upper portion of the unconsolidated sediments consists of Quaternary fluvial clay, silt and sand that was recently deposited. The lower portion of the unconsolidated sediments consists of sand and gravel with some silt and clay that was deposited by glacial meltwaters during the Pleistocene interglacial stages. The alluvial deposits are approximately 25 feet thick and the glacio-fluvial deposits are generally 35 feet thick.

The top soil at the ORS, as characterized by the U.S. Department of Agriculture, Soil Conservation Service, is urban land. Urban land typically consists of nearly level land on flood plains. It occurs where the land has been altered by construction and filling or is obscured by structures such that the original soils cannot be identified (U.S.D.A., 1981). The apparent causes of this disturbance at the ORS include both historical land use (agricultural and industrial operations) and the more recent grading of surface material for potential park operation.

2-4

AR302457

2.1.4 Land Use at ORS and in the Vicinity

 $\sum_{i=1}^{n}$

The ORS is located on the western tip of Neville Island. The land immediately adjacent to the site to the east consists of urban residential and commercial properties. The eastern half of Neville Island (approximately 2 miles east of the ORS) is occupied by petrochemical facilities, coal coking facilities and abandoned steel facilities. The area immediately surrounding the ORS to the north, west, and south is dominated by the main and back channels of the Ohio River. Upstream of the site, areas along the Ohio River consist of urban, industrial and commercial development.

 ~ 1

Residential, commercial, and industrial properties exist in the vicinity of the ORS. South of the Ohio River is the community of Coraopolis. Downtown Coraopolis is primarily composed of commercial businesses with interspersed residential areas. The areas to the south, west, and east of downtown Coraopolis are primarily mixed residential and commercial areas with undeveloped areas interspersed due to steep topography.

The communities of Sewickley, Osborne, and Haysville are located north of the Ohio River and the ORS. The land in those communities adjacent to the Ohio River contains residences, industry, and transportation corridors (i.e., rail lines and State Route 65). The area directly north of State Route 65 is sparsely populated, primarily due to steep topography.

Historically, the ORS was used primarily for agricultural purposes from the last century until the 1940s. From the mid-1930s through the mid-1950s, a portion of the site was used to landfill municipal wastes including domestic trash and construction debris from Neville Island residences. U.S. Navy barracks were constructed on the eastern portion of the ORS. These barracks were located to the north and east of the Coraopolis Bridge, but were demolished and removed from the site during the 1960s. The area of the site containing the U.S. Navy barracks was not used as part of the municipal landfill and does not contain waste disposal areas. From 1952 through the 1960s, the ORS was used for the disposal of industrial wastes, much of which originated from the industrial interests located at the eastern end of Neville Island.

Construction of the Ohio River Park was initiated in August 1977 and grading, construction, and landscaping were completed in early 1979. The park never opened to the public and most structural components were dismantled during 1980. Currently, the ORS is not in use, and the landscaping and infrastructure are not being maintained.

The ORS has been used for industrial purposes since the 1940s except for the U.S. Navy. barracks that were located on the eastern most portion of the site. The ORS is currently zoned "special". This zoning classification indicates that there are conditions placed on uses of the ORS. Typically, special zoning classifications are used for public parks, public parking, etc. Any

2-5

R:\PUBS\PROJECTS\4920003\906.S2

AR302458

future development of the ORS must be approved by the Neville Township Zoning Hearing Board. The Neville Land Company (NLC) has no intentions to transfer ownership and control for residential purposes.

2.1.5 Important Aquatic and Terrestrial Habitats

Important habitats were identified at the Ohio River Site and within the vicinity of Neville Island. Important habitats are areas in which potential effects of the ORS are expected be greatest through direct or indirect exposures. For example, an important habitat could either be directly affected by compounds of potential concern in groundwater discharge from the ORS or alternatively provide food or shelter for species exposed to compounds from the ORS. Important habitats were selected for evaluating the potential impacts of the ORS through consideration of proximity to the ORS, potential exposure pathways of compounds from the ORS, and the potential sensitivity of that habitat's biological community to disturbance. Identification of habitats and vegetation species in the vicinity of the ORS was based on aerial photographs, resource maps and other environmental information, supplemented by observations and sampling results from a field reconnaissance.

The aquatic resources in the vicinity of the ORS consist of the Ohio River main channel ("Ohio River") and the smaller channel (or "back channel") located to the south of Neville Island. The terrestrial resources include habitats located on the ORS. The important potential aquatic habitats include the deep water sections and shallower littoral areas of the back and main channels of the Ohio River adjacent to the ORS. The important potential terrestrial habitats include the upland area in the southern half of the site and the riparian/flood plain habitat which exists at the shoreline around the periphery of the ORS. These habitats and the associated plant and animal communities are described in detail below.

2.1.6 Aquatic Habitats

The ORS is located on the western tip of Neville Island, bordered by the Ohio River. South of the ORS is the back channel of the Ohio River and north of the ORS is the main channel of the Ohio River. The Ohio River was selected as an important habitat due to the proximity of the ORS, the potential discharge of compounds to the river via groundwater, the potential migration of sediments from the ORS via stormwater runoff, and the potential sensitivity of the aquatic organisms found in the Ohio River.

The main channel of the Ohio River at the ORS between River Mile 9 and 10 is a fairly straight stretch which ranges from 1,000 to 1,200 feet wide. Depth in the main navigational channel is approximately 15-20 feet with a normal pool elevation of 692 feet above mean sea level (MSL).

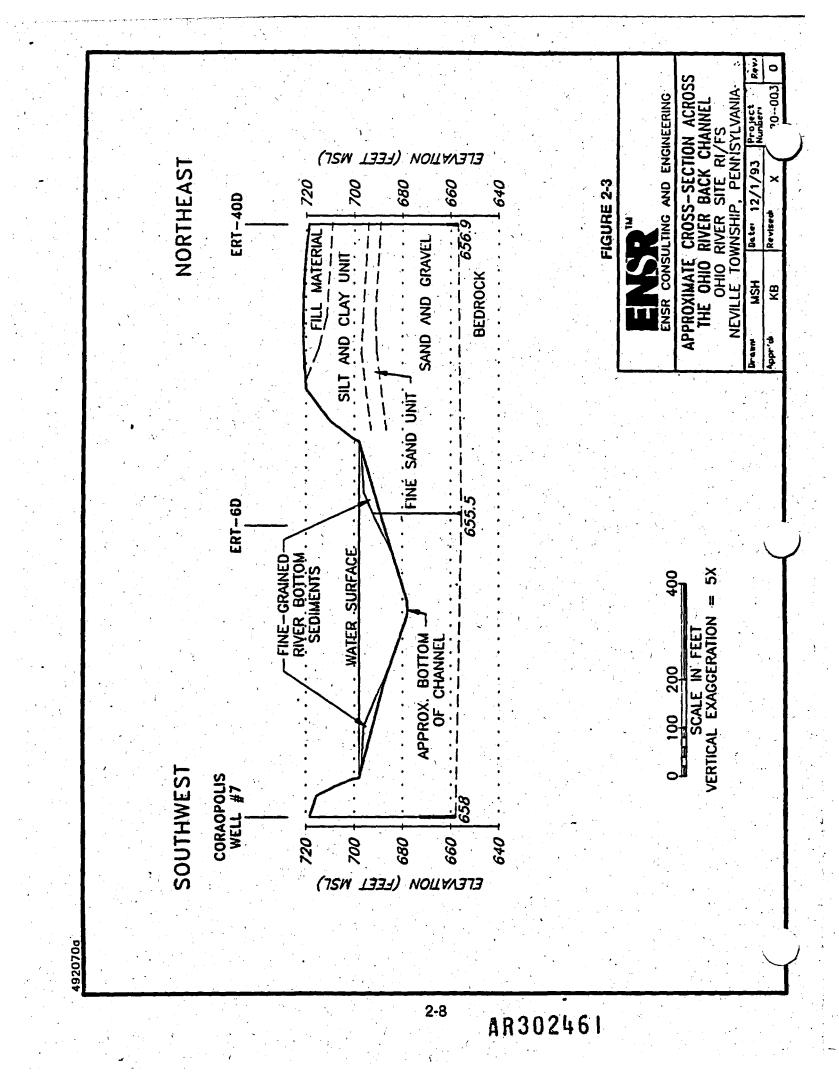
2-6

R:\PUBS\PROJECTS\4920003\906.S2

July, 1994

The back channel in the vicinity of the ORS is approximately 600-700 feet wide and has an estimated maximum depth of about 20 feet at the center of the navigational channel. An approximate cross-section of the back channel is given in Figure 2-3. The cross-section identifies areas of fine-grained river bottom sediments located in the back channel adjacent to the ORS.

The Emsworth back channel dam is located approximately 2.8 miles upstream of the ORS and the Emsworth main channel dam and locks are approximately 3.3 miles upstream of the ORS. The Emsworth dams maintain a normal pool elevation of 710 feet above mean sea level (MSL) upstream of the dam. The Dashields lock and dam is located approximately 3.2 miles downstream of the ORS. The Dashields dam maintains a normal pool elevation of 692 feet (MSL) between it and the Emsworth dam.


Flow in the Ohio River, as measured at the nearby Sewickley U.S.G.S. gaging station, varies significantly depending primarily on precipitation. The maximum flow rate of 465,000 cubic feet per second (cfs) was recorded in 1936 and the minimum flow rate of 2,100 cfs in 1957. The mean discharge for the Ohio River in 1991 was 27,880 cfs at Dashields Dam (U.S.G.S., 1992). Generally, approximately 90 percent of the flow occurs in the main channel of the Ohio River; however, the relative percentage of flow is dependent upon the overall flow in the Ohio River. During periods of high water, much more flow occurs in the Ohio River back channel, while during periods of low water, most flow occurs in the Ohio River main channel (U.S. COE, 1993).

The Ohio River drains a large portion of the Allegheny Plateau in Pennsylvania. Erosion and sedimentation rates are relatively high and the majority of this soil loss has been ascribed to mining activities throughout the basin (U.S.G.S., 1985). Due to the urbanization and the location of communities along the river, the basin experiences a significant amount of flood damage (U.S.G.S., 1985).

The Ohio River is navigable and commodities such as chemicals, coal, coke, sand, gravel and other materials are routinely transported on the river by barges. Because of commercial traffic, the Ohio River is periodically dredged to maintain navigable waterways for barge traffic and to recover sand and gravel. Major water users are self-supplied industries (42%) and thermoelectric power generation (50%) [U.S.G.S., 1985]. Upstream of the site, areas along the Ohio River have been developed for a wide variety of industry (such as steel, chemical, power, manufacturing, etc.). The river has received industrial, municipal, mining and commercial waste discharges for over 100 years. The Ohio River is also used for boating and swimming during the warm months and fishing year round.

2-7

AR302460

2.1.7 Terrestrial Habitats

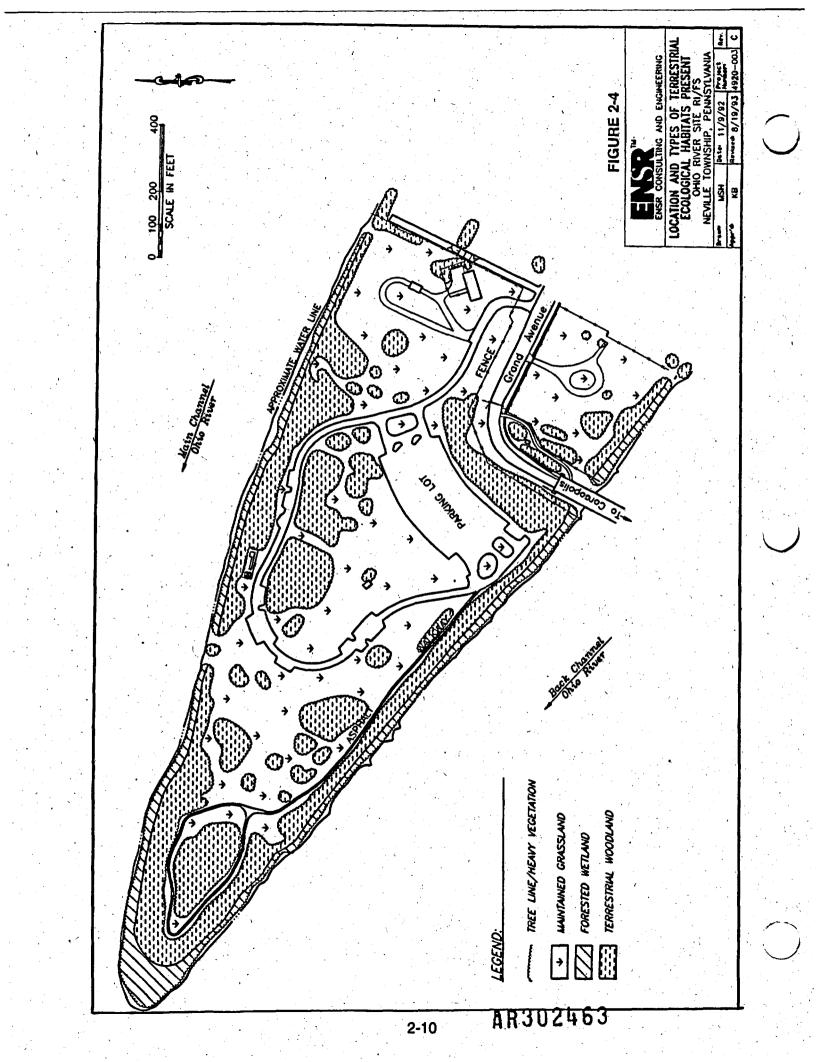
Terrestrial habitats at ORS selected for further evaluation were identified. Habitat classification was based primarily on the existing vegetation. It was assumed that vegetation present at ORS would be the basis for species presence/absence due to the availability of suitable shelter and food. During October 1992, a terrestrial habitat analysis was conducted on Operational Unit 1 (OU-1) at the ORS. The purpose of the analysis was to characterize existing habitats by vegetation and to identify site fauna.

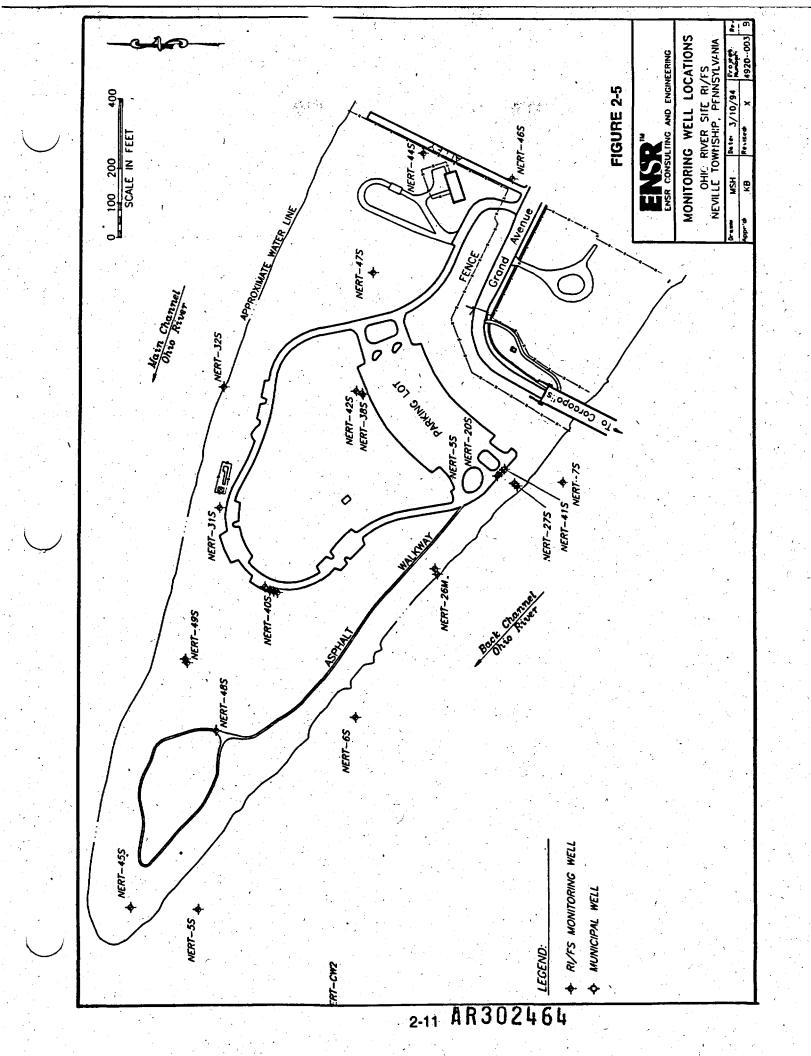
. g. 1

Three types of terrestrial habitats were identified at the ORS: (1) riparian zone woodlands - consisting of a narrow forested riparian strip adjacent to the shoreline, (2) terrestrial woodlands - consisting of upland forest areas dominated by deciduous hardwood tree species, and (3) maintained grassland - consisting of various grass and shrub species. The habitats are identified in Figure 2-4 and descriptions of the terrestrial habitats are given below.

2.2 Potential Exposure Pathways

R:\PUBS\PROJECTS\4920003\906.S2


Exposure pathways describe the process by which compounds are released to various environmental media and to what extent these compounds may contact with species present on the ORS. Exposure pathways are identified based upon fate and transport models, from concentration data, and the magnitude, duration, and frequency of potential exposures.


The initial screening of potentially important exposure pathways considered the physical characteristics of the ORS. Potential exposure pathways were identified for the aquatic and terrestrial habitats of interest. Groundwater discharge to the Ohio River was identified as a potential exposure pathway. Location of monitoring wells in the back channel of the Ohio River are shown in Figure 2-5.

The aquatic ecosystem provides habitat for many species that spend their entire life cycle in the Ohio River, although only a portion of their life cycle may be spent near the ORS. The exposure pathways for the aquatic risk assessment are exposures to CPCs in the surface water and the sediments. Biota may contact compounds via uptake from water in the water column, through sediment or porewater, or transfer through the food chain. The potential effects, if any, of the CPCs can be evaluated by comparing the observed or predicted concentrations of compounds of concern to established Ambient Water Quality Criteria (AWQCs) which are assumed to be protective for potential exposure through all pathways.

The initial set of exposure pathways identified for the terrestrial risk assessment include consumption of surface water, consumption of flesh (fish, amphibians, worms), consumption of

2-9

plant material, inadvertent ingestion (soil, sediments), and dermal exposure (soil, sediments, surface water). The inhalation pathway was neither directly quantifiable nor likely to be an important pathway. This conclusion was based on (1) no volatile organic compounds (VOCs) were compounds of concern in this medium, (2) only two SVOCs (naphthalene, 2-methylnaphthalene) were detected in air quality samples during an air monitoring program (ENSR, 1993), and (3) lack of appropriate air quality ecological benchmarks. Inhalation was, therefore, not considered in the terrestrial risk assessment pathways.

In the case of the terrestrial ecosystem, the potential exposures of mammals and birds are usually evaluated because of their body size, preferred food types, and/or position in the trophic food chain. Smaller animals are evaluated because their large daily food intake relative to body weight makes them more sensitive to the potential effects of compounds of concern than large animals which have a lower food intake relative to body weight. Because of the potential bioaccumulation of some of the potential CPCs, consumption of fish and amphibians may be an important pathway of exposure, as would consumption of small mammals exposed to elevated site soil concentrations.

The critical exposure pathways can be further clarified following identification of the COCs and the species present. An example evaluation of the dermal exposure pathway is presented below. The nature of the compounds of potential concern affects the degree of potential exposure. For example, a compound which does not easily pass through biological membranes, (e.g., a heavy metal or a large molecular weight organic compound) is unlikely to be important in the dermal exposure pathway. Even for compounds which are absorbed through biomembranes, the level of exposure is mediated by the relative amount of exposed skin. For example, a muskrat is covered by a bilayer pelt, of which the inner layer remains dry, and effectively prevents transfer of the compound. It is only through the area of exposed skin, conservatively estimated for muskrats at 10% (Hayssen; personal communication, 1992) by which transfer can occur. Thus, consideration of the dermal exposure pathway is affected by the compound and species of concern. Similar considerations may also be appropriate for other exposure pathways.

2.3 Conceptual Site Model Summary

The conceptual site model provides an overview of the geographic setting, geology and physical factors which influence local ecological resources. The ecosystems surrounding the ORS contain important aquatic, riparian, and terrestrial habitats. Species that are likely to be found there were identified based on site visits and/or available published information (see Appendix F for details). Following the habitat characterization and identification of associated flora and fauna, the potential exposure pathways were identified. These pathways range from simple (aquatic) to complex (terrestrial). This information provides the environmental context for subsequent risk evaluation.

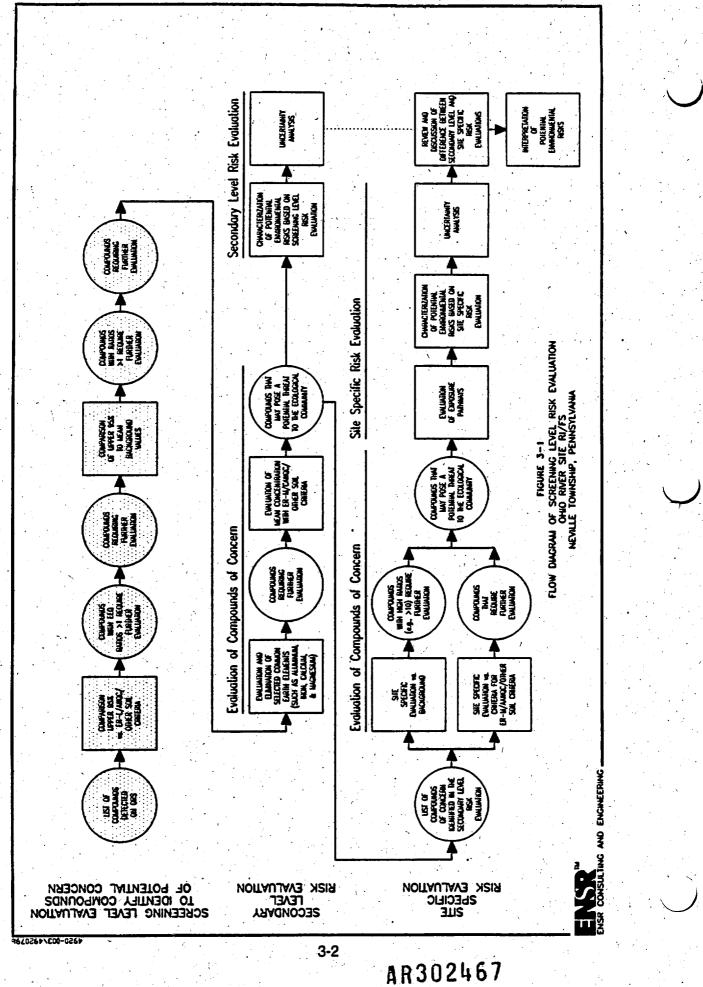
2-12

AR302465

3.0 SCREENING LEVEL RISK EVALUATION

338-F

As part of the approach suggested by U.S. EPA Region 3, an initial, conservative evaluation was performed to identify all compounds of potential concern. This evaluation allows the risk assessor to consider the extremely conservative scenario and largest possible pool of stressors. Further evaluation is necessary to assess the reasonableness of concern associated with compounds identified in the initial, conservative evaluation. This further evaluation is required to refine the CPCs to a point where sufficiently realistic risk information can be communicated to the site risk manager to allow the weighing of feasibility options and to support risk management decisions.


In the screening level risk evaluation, all compounds detected in the various site media were compared to conservative criteria to develop a preliminary list of CPCs. CPCs can be identified based on historical knowledge about their possible presence at the ORS, their documented presence (based on RI study), their potential to pose an environmental risk, and the availability of relevant ecotoxicological benchmarks. An outline of the activities undertaken at this evaluation stage is shown in Figure 3-1.

The screening level CPCs for the aquatic and terrestrial risk assessments were selected from a list of all compounds detected at the site during the RI. The screening level CPC list contains a number of organic and inorganic compounds associated with wastes present on the ORS and is based on the results of the Remedial Investigation (ENSR, 1993), as well as earlier information.

Analyses of compounds were made in four media: surface water, sediments, surface soil, and groundwater. As part of the approach suggested by U.S. EPA Region 3, surface water and sediment samples from the main channel and the back channel were evaluated separately. For many compounds, no values exceeded the detection limits at any sampling station for all sampling rounds in a particular medium. The compounds that were not detected were excluded from further consideration in that particular medium. Conversely, any compound which exceeded the detection limit for a single sample was further evaluated. The resulting lists of compounds by environmental medium are presented in Appendix A. These tables also contain the minimum detected value, the maximum detected value, the arithmetic and geometric mean concentrations, the upper 95% confidence limit, and the frequency of detection limit for the purpose of calculating these statistics. Following a protocol suggested by U.S. EPA Region 3 staff (with which NLC and ENSR disagree), the higher value of two duplicate samples was used as the

3-1

AR302466

July, 1994

representative value and proxy values for non-detects (i.e., ½ detection limits) were included regardless of whether they exceeded the maximum detected value.

For the screening level evaluation, the detected screening level CPCs were compared to national criteria or U.S. EPA Region 3 regionally-endorsed environmental benchmarks, where available. Examples of the environmental benchmarks and the applicable medium included the federal Ambient Water Quality Criteria (AWQC) for the protection of freshwater aquatic life for surface waters and benthic organism, and the guidance Effects Range-Low (ER-L) values for sediments, developed as part of National Oceanic and Atmospheric Administration's (NOAA) National Status and Trends Program (Long and Morgan, 1990; Long and MacDonald, 1992). An environmental effects quotient (EEQ) was calculated as the ratio of the comparison value concentration divided by the conservative environmental benchmark. All compounds that exceeded the conservative environmental benchmarks (i.e., EEQs greater than 1.0) were retained in the risk assessment for further evaluation.

Compounds that do not have an appropriate environmental benchmark (i.e., AWQC or ER-L) were compared to background concentrations. Compounds that were present at concentrations greater than background levels were retained in the risk assessment for further evaluation. Compounds that were below the environmental benchmark were eliminated from further consideration regardless of the results of the background comparison.

The following sections discuss the selection of screening level CPCs for each of the media evaluated. Section 3.1 presents the evaluation of screening level CPCs for surface water, and Section 3.2 presents the evaluation of screening level CPCs in sediments. Section 3.3 identifies the screening level CPCs in surface soils, and Section 3.4 identifies the screening level CPCs in groundwater at the ORS. Compounds identified during this preliminary screening process will be evaluated further in later sections of the ecological risk assessment. An overview of the entire evaluation process is given in Figure 3-1.

3.1 Screening Level Risk Evaluation of CPCs in Surface Water

R:\PUBS\PROJECTS\4920003\906.S3

To identify CPCs in both the main and back channel surface water, detected compounds were compared to relevant criteria. The list of screening level CPCs that were detected in the main channel and in the back channel surface water is presented in Tables 3-1 and 3-2, respectively. The lower value of the 95% upper confidence limit on the arithmetic mean (95% UCL) or the maximum detected concentration, if the calculated 95% UCL exceeded the maximum, was used as the comparison value in this preliminary evaluation.

3-3 ×

Table 3.1 Screening Level Evaluation Surface Water Screening, Main Channel Ohio River Site, Neville Island Ecological Risk Assessment

Compound	Comparison Value (ug/L)	Stat. Origin of Comp. Value	Chronio Freshwater AWQC (ug/L)	BKGD Value (ug/L) (1)	Environ. Effects Quotient (unitless)	Ratio of Comp. to BKGD Value (unitless)	Result of Screen (*=include in next screen)
Aluminum		95th UCL	87	270	3.70	1.19,	•
Barium		95th UCL		- 41		1.00	
Calcium		Maximum		20900		1.21	•
Total Chromium (as III) (2)		95th UCL	145	[4]	0.08	3.03	
Total Chromium (as VI)	121	95th UCL	11	[4]	1.10	3.03	
Copper (2)	67	95th UCL	8	[3]	8.38	22.33	•
non		95th UCL	1000	697	0.88	1.28	
Vagnesium		Maximum		5310		1.24	1 - 1 - 1 - 1 - 1
Vanganese		95th UCL		-221		1.10	• • • •
Viercury		95th UCL	0.012	[0.1]	55.83	8.70	
Potassium	1793.9	95th UCL		1490		1.20	•
Socium	14300	Maximum	그는 그는 말을	10000		1.43	
Zinc (2)	29.5	95th UCL	74	39	0.40	0.75	i .
Bis(2-ethylhexyl)phthalate	ND			[5]			
Di-N-butyiphthalata	ND			[5]			
Gamma-Chlordana	ND			[0.025]			
2, 4,5-T		Maximum		[0.05]		1.00	
2,4,5-TP		Maximum		[0.05]		1.00	
2,4-0		95th UCL		[0.5]		1.00	
Acetone	ND ND	·	$h_{12} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right)$	· [5]			

ENSR

July, 1994

NOTES:

(1) Values in brackets represent one half the SQL where no detects were reported.
 (2) Criteria are hardness dependent. Value presented is for a minimum measured hardness of 65 mg/L.

Table 3-1

13-Jul-94

R:\PUBS\PROJECTS\4920003\906.S3

Jüly, 1994

Table 3.2Screening Level EvaluationSurface Water Screening, Back ChannelOhio River Site, Neville IslandEcological Risk Assessment

Compound	Comparison Value (ug/L)	Stat. Origin of Comp. Value	Chronic Freshwater AWQC (ug/L)	BKGD Value (ug/L) (1)	Environ. Effects Quotient (unitless)	Ratio of Comp. to BKGD Value (unitless)	Result of Screen (*=include in next screen)
Aluminum	314	Maximum	87	199	3.61	1.58	1.
Barium	40	Maximum		39		1.03	
Calcium	25862	95th UCL	(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	25800		1.00	
Total Chromium (as III) (2)	16.6	95th UCL	145	[4]	0.11	4.15	
Total Chromium (as VI)	16.6	95th UCL	1.19	[4]	1.51	4.15	
Copper (2)	and the second	95th UCL	B .	្រា	1.43	3.80	
Iron		95th UCL	1000	628	0.79	1.26	1
Magnesium	6615.4	95th UCL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6610		1.00	
Manganese	203.4	95th UCL	* • • • •	· 194		1.05	•
Mercury	ND		0.012	[0.1]	0.00	0.00	
Potassium	1580	Maximum	경험 소송 문	1700		0.93	
Sodium	13800	Maximum		13800		1.00	
Zinc (2)	24	Maximum	73.5	15	0.33	1.60	
Bis (2-ethylhexyl) phthalate	ND			2			
Di-N-butyiphthalate	5	Maximum		[5]	1 · ·	1.00	
Gamma-Chiordane	0.025	Maximum		[0.025]		1.00	
2,4,5-T	0.05	Maximum		[0.05]		1.00	
2,4,5-TP		Maximum		[0.05]		1.00	
2,4-D	0.5	95th UCL		[0.5]		1.00	
Acetone	ND			[5]			

NOTES:

(1) Values in brackets represent one half the SQL where no detects were reported.
 (2) Oriteria are hardness dependent. Value presented is for a minimum measured hardness of 65 mg/L.

Table 3-2

13-Jul-94

July, 1994

The initial screening of these CPCs was performed against chronic ambient water quality criteria (AWQCs) developed by the U.S. EPA (U.S. EPA, 1991). The ratio of compound concentration to the chronic AWQC was calculated for compounds detected in the main and back channels. When the EEQ is less than or equal to 1.0, the comparison value concentration observed in the surface water is less than the chronic AWQC for that compound, and the compound was not evaluated further. Compounds with an EEQ greater than 1.0 were retained for further evaluation. EEQs were rounded off to the nearest tenth (i.e., 0.1) to simplify interpretation.

In addition, a background surface water sample was collected in both the main channel and the back channel. Concentrations of potential site-related compounds in surface water were compared to the concentrations of compounds detected in an upstream background sample. If the resulting ratio was less than or equal to 1.0, the compound was not selected as a screening level CPC. If the ratio was greater than 1.0, the compound was retained for further evaluation.

3.1.1 Main Channel Surface Water

As shown in Table 3-1, the EEQ was greater than 1.0 for aluminum, chromium (VI), copper, and mercury in the main channel surface water samples. Because concentrations of these compounds in main channel surface water were greater than chronic AWQCs, these compounds were retained in the risk assessment for further evaluation. Chromium (III), iron, and zinc were present at concentrations below the AWQC and were eliminated from further consideration.

Screening level CPCs were then screened against background concentrations to determine whether the concentrations observed were comparable to levels found in the Ohio River upstream of the ORS. Calcium, magnesium, manganese, potassium, and sodium were present in the main channel surface water at concentrations greater than the background concentrations. These compounds were retained in the risk assessment for further analysis. Barium, iron, zinc, 2,4,5-T, 2,4,5-TP, and 2,4-D were detected at essentially the same concentrations in surface water samples collected in the main channel adjacent to the ORS as in the background surface water sample. These compounds were eliminated from further consideration. All screening level CPCs in the main channel surface water retained in the risk assessment for further evaluation are identified in Table 3-1 with an asterisk.

3.1.2 Back Channel Surface Water

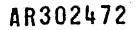
R:\PUBS\PROJECTS\4920003\908.S:

As shown in Table 3-2, the comparison value concentrations of aluminum, chromium (VI), and copper detected in back channel surface water were greater than the chronic AWQC. These compounds were thus retained for further evaluation. Chromium (III), iron, and zinc were present at concentrations below the AWQC and were thus eliminated from further consideration.

3-6

July, 1994

Manganese and gamma-chlordane were present in back channel surface water at concentrations greater than background levels. These compounds were thus retained in the risk assessment for further evaluation. Barium, calcium, magnesium, potassium, sodium, di-n-butylphthalate, 2,4,5-T, 2,4,5-TP, and 2,4-D were present in back channel surface water at concentrations similar to background concentrations and were thus eliminated from further consideration in the risk assessment. All screening level CPCs in the back channel surface water retained in the risk assessment for further evaluation are identified in Table 3-2 with an asterisk.


3.2 Screening Level Risk Evaluation of CPCs in Sediments

Sediment samples were evaluated separately in the main and back channels. The screening 'level evaluation of CPCs in sediment was performed against the guidance concentrations (ER-L values) for sediments developed as part of NOAA's National Status and Trends Program (Long and Morgan, 1990; Long and MacDonald, 1992). The ER-L values represent the lower tenth percentile of the data where effects were observed and provide an estimate of where effects are first likely to be detected.

Two points regarding the source of the ER-Ls need to be considered in using these values. First, these values were derived primarily from marine locations (especially values provided by Long and MacDonald (1992)). Some freshwater data are included and these data suggest that the threshold at which biological effects were first observed is higher in freshwater than the ER-L indicates, depending on the compound. The second point is that these values were derived somewhat arbitrarily to assess data collected as part of the National Status and Trends Program. They are applicable as screening tools; however, they do not carry the regulatory authority of AWQCs.

The ratio of sediment compound concentration to the ER-L is provided for the main channel and the back channel. When the EEQ was less than or equal to 1.0, the sediment comparison value concentration was less than the ER-L, and the compound was not evaluated further. Compounds with an EEQ greater than 1.0 were retained for further analysis.

In addition, a background sediment sample was collected in both the main channel and the back channel. Concentrations of potential site-related compounds in sediment were compared to the concentration detected in an upstream background sample. If the resulting ratio of sediment compound concentration to background sample compound concentration was less than or equal to 1.0, the compound was eliminated as a screening level CPC. If the ratio was greater than 1.0, the compound was retained for further evaluation.

July, 1994

3.2.1 Main Channel Sediments

As shown in Table 3-3, the EEQ was greater than 1.0 for the following compounds: arsenic, chromium, copper, lead, mercury, nickel, zinc, 4,4'-DDD, alpha-chlordane, PCBs, dieldrin, endrin, gamma-chlordane, 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, and total PAH. These results indicate that concentrations of these compounds in sediments were higher than ER-Ls. Therefore, these compounds were retained in the risk assessment for further evaluation.

Comparison of compound concentrations in main channel sediment to background levels is also provided in Table 3-3. As shown, sediment concentrations for the following compounds exceed background levels: aluminum, barium, calcium, cobalt, cyanide, iron, magnesium, manganese, potassium, selenium, vanadium, 2,4,5-T, 2,4,5-TP, 2,4-D, endrin aldehyde, and endrin ketone. Because these concentrations exceeded background concentrations, they were retained in the risk assessment for further analysis. Benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, dibenzofuran, and indeno(1,2,3-cd)pyrene were detected at concentrations below background levels and were thus eliminated from further consideration. All screening level CPCs in the main channel sediment retained in the risk assessment for further evaluation are identified in Table 3-3 with an asterisk.

3.2.2 Back Channel Sediments

R:\PUBS\PROJECTS\4920003\906.S3

As shown in Table 3-4, the EEQ was greater than 1.0 for the following compounds: arsenic, chromium, copper, lead, mercury, nickel, zinc, 4,4'-DDD, alpha-chlordane, PCBs, dieldrin, endrin, gamma-chlordane, 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, and total PAH. These results indicate that concentrations of these compounds in sediments were higher than ER-Ls. Therefore, these compounds were retained in the risk assessment for further evaluation.

Based on comparison to the background values, aluminum, barium, beryllium, calcium, cobalt, cyanide, iron, magnesium, manganese, potassium, selenium, vanadium, 2,4,5-T, 2,4,5-TP, 2,4-D, endrin ketone, lindane, bis(2-ethylhexyl)phthalate, carbazole, di-n-octylphthalate, and dibenzofuran were retained for further evaluation. The following compounds were eliminated based on background ratios: 2-butanone, acetone, and carbon disulfide. All CPCs in the back channel sediment retained in the risk assessment for further evaluation are identified in Table 3-4 with an asterisk.

3-8

Table 3.3 Screening Level Evaluation Sediment Screening, Main Channel Ohio River Site, Neville Island Ecological Risk Assessment

Compound	Comparison Value (ug/kg)	Stat. Origin of Comp. Value	ER-L (1) (ug/kg)	BKGD Value (2) (ug/kg)	Environ. Effects Quotient (unitless)	Ratio et Comp. to BKGD Value (unitless)	Results of Screen (* = include in next screen)
Aluminum	2.21E+07	95th UCL	•	1.23E+07	5 a.e.	1.79	\
Arsenic	1.94E+04	95th UCL	6.20E+03	1.80E+04	2.36	1.08	•
Sarium	3.01E+05	95th UCL	1. S.	1.89E+05		1.59	•
Beryllium	3.32E+03	95th LICL		R			
Celcium: Calculus State	6.95E+07	95th UCL	승규는 소식	3.45E+07		2.01	an an Print State
fotal Chromium	9.60E+04	95th UCL	8.10E+04	2.50E+04	1.19	3.84	
Cobalt	3.91E+04	95th UCL		2.40E+04		. 1.63	•
Copper	1.48E+05	95th UCL	3.40E+04	4.40E+04	4.35	3.36	•
Xyanide	2.23E+04	95th UCL		5.30E+03	and a second second	4.22	•
non	1.06E+08	95th UCL		6.13E+07		1.72	
bea		95th UCL	4.67E+04	5.70E+04	4.27	3.50	
lagnesium lancanese	5.24E+06 3.82E+06	95th UCL 95th UCL	2005 da 600 d	4.71E+05	9-325 & C.2	4.11	
Alinganese	6.54E+02	95th UCL	1.50E+02	2.25E+06		1.70	
vickal	6.54E+02	95th UCL	2.09E+04	[60] 4.40E+04	4.35	10.91	
otessium	2.06E+06	SSIN UCL	LUSETU	7.98E+05	13.4	2.00	
Selenium	1.56E+03	95th UCL		[250]		6.22	
Socium	7.19E+05	Maximum	*209°	R R			
fanadium	2.60E+04	Maximum	na c'a sin in chia	1.40E+04	1949-18 20 S (S (S (S	2.00	•
linc	3.44E+06	95th UCL	1.50E+05	2.46E+05	22.94	13.99	•
4.5-T	2.10E+02	95th UCL		1.10E+01		19.09	• 1
4.5-IP	2.10E+01	95th LICL	See a Color	1.20E+00		17.50	a state a state
4-D	2.10E+02	95th UCL	S 8 8 8 4 4 4	1.25E+01		16.83	· · · · · · · · · · · · · · · · · · ·
CCG-**	5.89E+00	95th UCL	2.002+00	[1.65]	2.95	3.57	
lipha-chlordane	9.44E+00	95th UCL	8.00E-01	8.50E-01	18.68	11.11	•
vocior-1242	5.88E+01	95th UCL		[16.5]		3.56	•
roclor-1248	5.84E+01	95th UCL		1.40E+01		4.17	•
rocior-1254		95th UCL		2.60E+01	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	11.20	
vocior-1260		95th UCL		[16.5]		4.30	
iotal PCBs		95ch UCL	227E+01	4.00E+01	13.59-	7.71	188 8 († 44
Xeldrin	5.69E+00	95th UCL	2.00E-02	[1.65]	294.50	3.57	• •
ndrin	5.89E+00	95th UCL	2.00E-02	[1.65]	294.50	- 3.57	• •
ndrin Aldehyde	5.89E+00	95th UCL		1.65E+00		3.57	
ndrin Ketone	5.69E+00	95th UCL		[1.65]		3.45	
Samma-BHC (Lindane)	ND			[0.85]	2362		
Samma-chlordane	9.06E+00	95th UCL	5.00E-01	(0.8 5]	18.12	10.66	8 20 3 - C - S
Butanone	ND			[6]			
	ND ND			[6]			
Carbon Disulfide - Methylnaphthalene	NU 1.49E+03	95th LICL	7.00E+01	[6] 	2124	0.71	en an
-memyinaphinalene		9501 UCL 9501 UCL	1.60E+01	[2100]	21.24	- U/I	
vienaphonene Vnihracene	7.36E+02	95th UCL	8.53E+01	[2100] 2.10E+03	8.62	0.35	
ienzo(a)anthracene	2.82E+03	95th UCL	2.61E+02	6.40E+03	10.82	L 0.44	ndiner a≣ls sees ●
enzo(a)pyrene	2.35E+03	95th LICL	4.30E+02	5.50E+03	5.48	0.43	•
Senzo(b)fluoranthene	2.70E+03	95th UCL	4.000702	6.50E+03		0.42	•
ienzo(g.h.)perviene	1.39E+03	95h UCL	eta da sec	2.30E+03	2000 S. S. S.	13.0	2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
lenzolidfluoranthene	8.53E+02	95th LICL		1.00E+03		0.28	
is(2-ethylhexyl)phthalate	ND			121001			
arbazole	ND			[2100]			
hrysene	1.49E+03	95th UCL	3.64E+02	5.70E+03	3.89	0.25	•
i-n-butytphthalate	ND			[2100]	1 - A - A - A - A - A - A - A - A - A -		
i-n-octylphthalate	ND			[2100]		k kongosi kai	
ibenz(a,N)anthracene	1.22E+03	95th UCL	6.34E+01	[2100]	19.24	0.58	
Ibenzofuran	1.51E+03		<u> Constant</u>	[2100]		0.72	t alge di
luoranthene		Maximum	6.00E+02	1.20E+04	7.00	0.35	1
Juorane	1.20E+03		1.90E+01	6.00E+02	63.17-	2.00	•
ndeno(1,2,3-cd)pyrene		95th UCL	la si	2.30E+03		0.65	le sur la sur
laphthalene	1.27E+03		1.60E+02	[2100]	7.94	0.61	
henanthrene		95th UCL	2.40E+02	5.602+03	12.24	0.51	
Рутеле	3.66E+03	95th UCL	6.65E+02	8.20E+03	8.51	0.40	polat r iĝe
Iotal FAH	2.63E+04	95th UCL	4.02E+03	6.14E+04	6.55	0.43	

<u>r.</u> i

12

Notes: (1) ER-L values are from Long and MacDonald (1992) except for 4,4'DDD, chlordanes, dieldrin, and endrin which are from Long and Morgan (1990). (2) Values in brackets represent one half the SOL where no detects were reported. R^{*} indicates that the data are unusable based on guality control measures.

MAIN-SED.WQ1 Version 2.1

R:\PUBS\PROJECTS\4920003\906.S3

AR302474

Table 3.4 Screening Level Evaluation Sediment Screening, Back Channel Ohio River Site, Neville Island Ecological Risk Assessment

			an na ƙwaleyar	and the second	Environ	Ratio of	Resulta of
	Comparison	Stat. Origin		BKGD	Effects	Comp. to	Screen
1월 1888년 1월 14일 <u>- 1</u> 8일 - 18일 - 18g	Vature	of State	ER-L (1)	Value (2)	Quotient	BKGD Value	
Compound	(ug/kg)	Comp. Value	(ug/kg)	(ug/kg)	(unitiess)	(unitiess)	next screen)
Aluminum	1.55E+07	95th LICL	1 × 1	1.08E+07		1.44	•
Arsenia	1.52E+04	95th UCL	8.20E+03	7.60E+03	1.85	2.00	f •
Barium	1.74E+05	95th UCL		1.56E+05		1.11	•
Beryllium	2.00E+03	Maximum		1.10E+03		1.82	• 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10
Calcium	1.362+07	Maximum		4.13E+06		3.29	
Total Chromium	1.03E+05	Maximum	8.10E+04	1.70E+04	1.27	6.08	
Cobait	5.07E+04	95th UCL		1.702+04		2.98	•
Copper Cvanide	1.57E+05 9.16E+03	950h UCL -	3.40E+04	3.30E+04	4.62	4.78	
iron - Salah - S	9.162+03	95th UCL Maximum	and sector for the sec	[360]		25.44	1
Lead	1.21E+05	Maximum	4.67E+04	3.73E+07 4.00E+04	2.59	4.85	
Magnesium	2.70E+08	Madmuna	4.0/ ETU4	2.092+08	239	1.29	
Manganese	2.38E+06	95th UCL	000000000000000000000000000000000000000	7.60E+05	né sel distric	3.13	के देखें के दिन के दिन
Mercury	2.902+02	Maximum	1.50E+02	[70]	1.93	4.14	
Nickal	8.30E+04	Maximum	2.09E+04	2.70E+04	3.97	3.07	•
Potassium	1.52E+06	95th UCL	1	1.16E+06		29 1. 31	
Selenkum	3.84E+03	95th UCL		[290]		12.58	
Sodium	ND	$\mathcal{T} \to \mathcal{T}$		R R R	Birge (
Vanadium	2.30E+04	Maximum		1.90E+04		1.21	•
Zine	4.02E+05	S20h UCL	1.50E+05	1.01E+05	2.58	3.98	• .
2.4.5-1	2.88E+02	95th UCL	1	1.45E+01	L	19.88	•
2,4,5-TP	2.50E+01	Maximum	9.59E+03	1.45E+01	E Contra	1.72	•
2.4D	2.00E+02	Maximum		1.45E+01	r 🤹	1.38	
44-000	2.45E+00	Maximum	2.00E+00	[2.3]	1.23	1.07	
Alpha-chiordane	1.77E+00	95th UCL	5.00E-01	3.20E-01	3.54	5.53	
Arocior-1242 Arocior-1248	3.92E+01 ND	95th UCL		23		1.70	1 .
Arocior-1248 Arocior-1254	ND	ing sang sa	a server and	[23] [23]	the suscession	a se progra	a na san ing sa
Arocion-1250	6.92E+01	95th UCL		4.10E+01		1.69	
Total PCBs	1.02E+02	Mandmura	2.27E+01	A 10E+01	4.47	2.48	
Dieldria	2.70E+00	Madmum	2.00E-02	2.80E+00	135.00	0.96	and the second
Endria	3.25E+00	Maximum	2.00E-02	[2.3]	162.50	1.41	•
Endrin Aldehvde	ND			12.3	1		
Endria Katone	3:30E+00	Maximum	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23	1000-20 0 2-3	8 8 1.43	terr≭€k bez
Gamma-BHC (Lindane)	1.70E+00	Madmum		11.21		1.42	
Bamma-chlordane	3.20E+00	95th UCL	1.00E-01	1.30E+00	8.40	2.48	ting to a
2-Butanone	8.05E+02	95th UCL		[900]		0.89	1. Contraction 1. Con
Acetone	8.52E+02	95th UCL		[900]		0.95	
Carbon Disuifide	7.98E+02	950h UCL	L	[900]	1	0.89	
2 Methylnaphthalene		950h UCL	7.00E+01	[240]	72.51	21.15	
Acenaphthene	4.75E+03	95th UCL	1.60E+01	[240]	298.99	19.80	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Anthracene	5.29E+03	950 UCL	8.53E+01	240	62.02	22.04	n and the state and the
Benzo(a)anthracene	1.05E+04	950h UCL 950h UCL	2.51E+03 4.30E+03	2.50E+02 1.70E+02	4.04	42.19	
Benzo(a)pyrene Benzo(b)fluoranthene	6.47E+03 9.68E+03	950 UCL	4.302+03	2.402+02	1,51	40.32	
Benzo(o,h.)perviene	4.33E+03	95th UCL	ST 127 CM	1.20E+02	eseitana a	38.07	
Benzolofiuoranthene	3.50E+03	Maximum	e da ama	6.90E+01	1	79.71	
Bis(2-ethy/hexy))phthalate	4.26E+04	95th LICE	11 M M M M M	1.10E+02		387.17	
Carbazola	4.77E+03	95th UCL		[240]		19.58	
Chrysene	7.64E+03	95th UCL	3.84E+02	1.30E+02	19.91	58.80	
Di-n-butyiphthalate	ND	· · ·		8.80E+01			1. · · ·
Di-n-octylphthalate	2.50E+03	Maximum		[240]	1 4.2 S - S - S - S - S - S - S - S - S - S	10.53	
Dibenz(a,h)anthracene	3.06E+03		6.34E+01	[240]	79.59	21.10	
Dibenzoluras	4.90E+03		Rei de Ca	[240]		20.41	
Fluoranthene	1.91E+04		6.00E+02	2.70E+02	31.79	70.55	
Fluorane	5.08E+03		1.908+01	[240]	267.25	21.10	
Indeno(1,2,3-cd)pyrene	4.78E+03			1.00E+02	le in a serie	47.79	
Naphthalene	4.86E+03		1.60E+02	[240]	30.34	20.25	
Phenanthrene	1.37E+04		240E+02		57.25	80.82	
Pyrane 🔅 🔅 🖾 🖾 🔅		95th UCL	8.65E+02				
Total PAH	1.04E+05	95th UCL	4.02E+03	1.78E+03	25.95	58.65	11 J. T. T. T.

Notes:

(1) ER-L values are from Long and MacDonald (1992) except for 4,4'DDD, chlordanes, dieldrin, and endrin which are from Long and Morgan (1990).
 (2) Values in brackets represent one half the SOL where no detects were reported.
 "R" indicates that the data are unusable based on quality control measures.

RACK-SED.WQ1 Version 2.1

R:\PUBS\PROJECTS\4920003\906.S3

July, 1994

ENSR

3.3 Screening Level Risk Evaluation of CPCs in Surface Soil

Compounds in surface soils at the ORS are presented in Table 3-5. No surface soil screening criteria analogous to the AWQCs for surface water or the ER-Ls for sediments are currently available. U.S. EPA Region 3 provided a suggested set of soil criteria for selected compounds, mostly inorganic. Use of these soil criteria by ENSR for this evaluation does not constitute an agreement as to the correctness of such an application. As in the case of the surface water and sediment screening, the ratio of the compound concentration detected on-site to the estimated criteria value is the EEQ. If the EEQ was greater than 1.0, the compound was retained for further evaluation.

As shown in Table 3-5, the EEQ was greater than 1.0 for the following compounds: arsenic, copper, lead, manganese, mercury, and zinc. Therefore, these compounds were retained in the risk assessment for further evaluation. The EEQ for barium, chromium, cobalt, nickel, and aldrin were below 1.0. These compounds were thus eliminated from further consideration in the risk assessment.

The screening level evaluation for CPCs in surface soils was also performed against background concentrations. Data from one background sampling location were obtained and used in this initial screening effort. Based on the background comparison concentrations, all compounds were retained for further evaluation in the risk assessment, with the exception of the following compounds: sodium, 1,1,1-trichloroethane, 1,1-dichloroethene, 4-methyl-2-pentanone, carbon disulfide, chloro-benzene, ethylbenzene, and tetrachloroethene. These compounds were not considered further in the ecological risk assessment. Due to a lack of a background reference sample, 2,3,7,8-TCDD was included for further evaluation. All screening level CPCs in surface soil retained in the risk assessment for further evaluation are identified in Table 3-5 with an asterisk.

3.4 Screening Level Risk Evaluation of CPCs in Groundwater

The list of compounds detected in groundwater is presented in Table 3-6. As a conservative measure, this primary evaluation assumes that aquatic organisms will have direct contact with groundwater. The initial screening of these CPCs was performed against chronic AWQCs developed by the U.S. EPA. When the maximum or 95% UCL concentration detected in the groundwater was less than the chronic AWQC for that compound, the compound was excluded from this assessment. A comparison to background concentrations was also performed for the compounds that do not have chronic AWQC information available.

3-11

ENSR

Table 3.5 Screening Level Evaluation Surface Soil Screening Ohio River Site, Neville Island Ecological Risk Assessment

· · · · · · · · · · · · · · · · · · ·	Comparison Value (mg/kg)	Stat. Origin of Comp. Value	Criteria Value (1) (mg/kg)	BKGD Value (2) (mg/kg)	Environ. Effects Quotient (unitless)	Ratio of Comp. to BKGD Value (unitless)	Results of Screen (* = include in next screen)
Compound	1 (<u>mg/kg)</u>	Comp. value	(mg/kg)	(mg/kg)	(unitess)	(Unitess)	next screen)
Aluminum	15133.241	95th UCL		13100	54 A.	1.15	•
Arsenic	12.595	95th UCL	10	8.3	1.26	1.52	•
Barium	213.270	95th UCL	300	130	0.71	1.64	
Beryllium	1.698	95th UCL		[0.125]		13.57	•
Calcium	46739.316	95th UCL	and the second second	2160		21.64	•
Chromium (total)	25.137	95th UCL	30	15	0.84	1.57	· • •
Cobait	13.176	95th UCL	25	- 15	0.53	0.88	
Copper	76.208	95th UCL	70	20	1.09	3.81	•
Cyanide	20.949	95th UCL .		[0.315]		68.50	•
iron		95th UCL		30900		1.22	•
Lead		95th UCL	50	36	1.68	2.34	•
Magnesium		95th UCL		1920		1.98	
Manganese		95th UCL	600	1080	3.20	1.78	
Mercury	0.942	95th UCL	0.03	[0.065]	31.41	14.50	
Nickel		95th UCL	80	21	0.34	1.28	
Potassium Selenium	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95th UCL		1260 [0.255]		1.17 2.59	
Silver		95th UCL 95th UCL		[0.255]		1.18	
Socium		95th UCL		[0.03]	er en	1,19:	
Thallum	0.828	95th UCL		[0.5]		1.68	
Vanadium	42.904	95th UCL	·	21		2.04	•
Zine		95th UCL	54		4.03-	2.62	1
2,4,6-Trichlorophanol	0.570	95th UCL		[0.210]		2.71	
2.4-Dichiorophenol		95th UCL		[0.210]		4.93	•
Naphthalene	28.125	95th UCL	n de seu de Ara I. La	[0.210]	no tra l'incluion de la companya. E	133.93	•
Phenol	0.704	95th UCL	•	[0.210]		3.35	•
2,4,5-T	0.336	95th UCL	· · ·	0.0125		26.88	•
2,4,5-TP		95th UCL	an ar an	0.0125		28.18	in an
2.4-D	1.177	95th UCL		0.125		9.42	
4.4°-DDD		95th UCL		[0.00205]		10.83	
4.4'-DDE	0.007	95th UCL	•	[0.00205]		3.41	•
4.4'DDT	0.062	95th UCL	1. A.	[0.00205]		30.05	• •
Alpha-BHC		95th UCL		[0.00105]		87.24	• •
Aldrin	0.038	95th UCL	0.3	[0.00105]	0.13-	- 38.10	
Alpha-chlordane	0.048	95th UCL		[0.00105]		45.43	1942 - 1 1 (1947)
Arochlor-1242	0.068	95th UCL		[0.0205]		3.22	al de 🕈
Arochior-1254	0.075	95th UCL	· · · ·	[0.0205]	·	3.64	■ 100 (100)
Arochlor-1260	0.145	95th UCL	•	0.027		5.39	•
Total PCB's	0.268	95th UCL		0.027		9.85	•
Beta-BHC	0.153	95th UCL		[0.00105]		145.43	•
Delta-BHC		95th UCL		[0.00105]		38.48	•
2,3,7,8-TCDD		95th UCL	방송에는 문화했다.				
Dieldrin		95th UCL	4.4 A	[0.00205]	. · · · · · · · · · · · · · · · · · · ·	14.54	
Endosulfan I		95th UCL		[0.00105]	1 . 1 · · ·	4.38	
Endosulfan II		95th UCL	and the second	[0.00205]	Sec. 18.	5.46	
Endosulfan Sulfate		95th UCL		[0.00205]		5.17	
Endrin		95th UCL		[0.00205]		3.27	
Endrin Aldehyde		95th UCL		[0.00205]	A Area a Carlo	6.15	
Endrin Ketone		95th UCL		[0.00205]	· · ·	258.00	l .
Gamma-BHC (Lindane)		95th UCL	l e	[0.00105]	1	256.00	
Gamma-chlordane		95th UCL		0.00038	here and	240.39	
Heptachlor	and the second	95th UCL		[0.00105]		7.90	1
Heptachlor Epodde		95th UCL		[0.00105]		7.28	
Methoxychlor (continued)	0.076	95th UCL		1 10.0103	<u></u>	1	

(continued) R:\PUBS\PROJECTS\4920003\906.S3

3-12

AR302477

Table 3.5Screening Level EvaluationSurface Soil ScreeningOhio River Site, Neville IslandEcological Risk Assessment

Compound	Comparison Value (mg/kg)	Stat. Origin of Comp. Value	Criteria Value (1) (mg/kg)	BKGD Value (2) (mg/kg)	Environ. Effects Quotient (unitiess)	Ratio of Comp. to BKGD Value (unitless)	Results of Screen (* = include in next screen)
Toxaphene	0.293	95th UCL		[0.105]		2.79	•
1,1,1-Trichloroethane	0.006	95th UCL 🔌		[0.0065]		0.98	
1,1-Dichloroethene	0.005	Maximum		[0.0065]		0.77	
1,2-Dichloroethene (T)	0.007	95th UCL		0.004		1.63	•
4-Methyl-2-Pentanone	0.007	95th UCL		[0.0065]		1.00	
Acetone	0.007	95th UCL		[0.0065]		1.08	
Benzene		95th UCL		[0.0065]	in the second	1.26	• • ·
Carbon Disuffide	0.004	Maximum		10.00651		. 0.62] .
Chlorobenzene	0.004	Maximum		[0.0065]		0.62	
Chloroform		95th UCL		[0.0065]		1.05	10 - 10 - 10 - 10
Ethylbenzene		95th UCL		[0.0065]		1.02	
Methylene Chloride		95th UCL		10.00651		1.18	•
Tetrachloroethene		95th UCL	a a daet di se	[0.0065]	a sa provinsi di Colo	0.92	
Toluene		95th UCL	-	0.004		2.28	• • • · · ·
Trichloroethene		95th UCL	and the second second	10.00651		1.45	•
2-Methylnaphthalene		95th UCL	a she she a	[0.210]		11.52	
Acenaphthene		95th UCL		[0.210]		6.59	•
Acenaphthylene		95th UCL		[0.210]		1.95	
Anthracene	[15] J. M. LAN, "The second se Second second sec	95th UCL		[0.210]	na in the second	15.62	•
Benzo(a)anthracene		95th UCL		0.17	1 1	43.31	
Benzo(a)pyrene		95th UCL		0.066		89.57	•
Benzo(b)fluoranthene		95th UCL		0.15		64.25	•
Benzo(g,h,i)perviene		95th UCL		0.076		53.41	
Benzo(k)fluoranthene		95th UCL		[0.210]		16.35	l •
Bis(2-ethylhexyl) phthalate	8.007	95th UCL	i se prime e de la companya de la co	[0.210]	i de la companya	38.13	l •
	1.158	95th UCL		[0.210]		5.51	•
Chrysene	6.384	95th UCL		0.075	· ·	85.12	•
Di-n-buty/phthalate	0.180	95th UCL		0.063	ser os serve	2.86	
Di-n-octy/phthalate	ND	BOUIDGL		[0.210]		0.00	1
Dibenz(a,h)anthracene		95th UCL		10.210		5.95	
Diethylphthalate	0.681	95th UCL	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	[0.210]		3.24	
Dibenzoluran	1.998	95th UCL		[0.210]		9.51	
Fluoranthene	15.317	95th UCL	n de de la	0.2		76.59	
Fluorene		95th UCL		10:2101	and the second	6.95	· · · ·
Hexachlorobutadiene		95th UCL		[0.210]		7.91	
		95th UCL		0.06		73.32	
Indeno(1,2,3-cd)pyrene			safia a si sa	0.08		156.18	
Phenanthrene		95th UCL	1	0.08	1 a.e. 14	65.55	
Pyrene Table Return		95th UCL			1	96.49	
Total PAH	101.027	95th UCL		1.047	I '	80.49	-

创机

NOTES:

(1) Soil criteria suggested by U.S. EPA Region III staff.
 (2) Values in brackets represent one half the SQL where no detects were reported.

SOIL-WQ1 Version 2.1 27-June-94

R:\PUBS\PROJECTS\4920003\906.S3

AR302478

Table 3.8Screening Level EvaluationGroundwater ScreeningOhio River Site, Neville IslandEcological Risk Assessment

	Comparison		Chronic Freshwater	Mean BKGD	Environ. Effects	Ratio of Comp. to	Results of Screen
	Value	of	AWQC	Value (3)	Quotient	BKGD Value	(*=include i
Compound	<u>(ug/L)</u>	Comp. Value	(ug/L)	(ug/L)	(unitless)	(unitiess)	next screen)
Numinum	36921.1	95th UCL	87	96900	424,380	0.38	•
Antimony (1)	21.8	95th UCL	30	28.65	0.720	0.75	
vsenic (4)	9.21	95th UCL	190	7.55	0.048	1.22	
Barium	822.7	95th UCL		1278.5	N N	0.64	
Beryllium (1)		95th UCL	5.3	6.5	0.643	0.52	l s s
Cadmium (2)		95th UCL	0.8	[1.5] (a)	14.125-	- 7.53	11 - 1 4 -
Calcium	264022.3	95th UCL		56900		4.64	•
Fotal Chromium (as III) (2)	52	95th UCL	145	165.5	0.359	0.31	
Total Chromium (as VI)	52	95th UCL	11	165.5	4.727	0.31	• • • ·
Cobalt	81.8	95th UCL		97.3	7.161	0.84	
Copper (2)		95th UCL	8	169	16.500	0.78	
Joppar (2) Cyanid e		95th UCL	5.2	[2.5] (a)	6.385-	- 13.28	
		95th UCL	1000	218500	128.641	0.59	
ron Lead (2)	128641.4	95th UCL		56.9	128.641	0.73	
		95th UCL	1.8	33000	22.944		
Magnesium				8350		1.93	
Manganese	35588	95th UCL		0.65	<u></u>	4.26 0.37	
lercury	0.24	95th UCL	0.012		20.000		
Vickel (2)	138	95th UCL	110	200.5	1.238	0.68	E 19 10 -
otassium	7304.9	95th UCL		12735		0.57	
Selenium	3.5	95th UCL	5		0.700		
Silver (2)	5.7	95th UCL	1.9		3.000-	-	•
Sodium	126598.8	95th UCL		21900		5.78	•
Thailium (1)	. 1.9	95th UCL	40		0.048		1
/anacium	58	95th UCL		168.2		0.34	
line (2)	7623.4	95th UCL	74	519	103.019-	4.69	• • • •
2,4,6-Trichlorophenol (1)	13127.4	95th UCL	970	[5.0]	13.533-	2625.48	•
2,4-Dichlorophenol (1)	2616.5	95th UCL	365	[5.0]	7.168-	- 523.30	•
4-Dimethylphenol	1775.8	95th UCL		[5.0]		355.16	Negari an de se al
-Chiorophenoi (1) (3)	658.8	95th UCL	2000	[5.0]	0.328	131.38	
-Methylphenol	A 100.001 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	95th UCL		[5.0]		949.68	1 .
2-Nitrophenol (1)	1562.4	95th UCL	150	[5.0]	10.416	- 312.48	•
-Methylphenol	6350,1	95th UCL		[5.0]		1270.02	•
Bis(2-ethylhexyl)phthalate (1)	1562.4	95th UCL	360	[5.0]	4.340-	- 312.48	•
Di-n-buty/phthalate		95th UCL		67		23.32	•
Di-n-octylphthalate		95th UCL		[5.0]		312.44	•
Naphthalene (1)	1562.3	95th UCL	620	[5.0]	2.520-	312.48	•
Phenol (1)	6158.5	95th UCL	2560	[5.0]	2.408	1231.70	•
		95th UCL	2.00	[0.05]	2700	2.40	•
24,5-T	0.21	95th UCL		[0.05]		4.20	•
2,4,5-TP					ua 🗽	168.80	
2,4D		95th UCL		[0.05] (a) [0.05]		3.60	•
1,4'-DDE (1)		95th UCL		[0.025]		3.60	
Npha-BHC (1)		95th UCL	0 0010		04 777	3.60	1 <u>1</u>
Xeldrin	1 1	95th UCL	0.0019	[0.05]	94.737		1
Indosulfan II		95th UCL	0.058	[0.05]	3.214-	3.60	1 .
Endrin Aldehyde (3)		95th UCL	0.0023	[0.05]	78.261	- 3.60	1 .
1,1,1-Trichloroethane		95th UCL		[5.0] (a)	tin talih ing ma	43.44	
1,1,2-Trichloroethane (1)		95th UCL		[5.0] (a)		43.58	1 •
,2-Dichloroethane (1)		95th UCL	20000	[5.0] (a)	0.011-	43.18	Ł
1,2-Dichloroethene (T) (1)	217.8	95th UCL		[5.0] (a)	· ·	43.58	I *
2-Butanone	223.4	95th UCL	· · ·	[5.0] (a)	1	44.68	1 .
Acetone		95th UCL		[5.0] (a)		48.10	1

R:\PUBS\PROJECTS\4920003\906.S3

3-14

July, 1994

AR302479

ENSR

Table 3.6 Screening Level Evaluation Groundwater Screening Ohio River Site, Neville Island Ecological Risk Assessment

Compound	Comparison Value (ug/L)	Stat. Origin of Comp. Value	Chronic Freshwater AWQC (ug/L)	Mean BKGD Value (3) (ug/L)	Environ. Effects Quotient (unitless)	Ratio of Comp. to BKGD Value (unitiess)	Results of Screen (*=include in next screen)
Benzene (1)	2172	95th UCL		[5.0] (a)		434.40	
Bromoform	1820.9	95th UCL		[5.0] (a)		364.18	1
Carbon Disulfide	223.3	95th UCL		[5.0] (a)		44.66	•
Chlorobenzene (3)	217.8	95th UCL	50	[5.0] (a)-	- 4.356	43.56	•
Chioroethane	218.1	95th UCL		[5.0] (a)		43.62	1 (j. 🕈 👘
Methylene Chloride	217.7-	95th UCL		[5.0] (a)		43.54	
Tetrachioroethene (1)	217.7	95th UCL	840	[5.0] (a)	0.259	43.54	
Toluene (1)	217.6	95th UCL		[5.0] (a)		43.52	• • · ·
Trichloroethene (1)	217.9	95th UCL	21900	[5.0] (a)	0.0099	43.58	tere di se l

100

1110

NOTES:

(1) insufficient data to develop criteria. Value presented is the LOAEL.

(2) Criteria are hardness dependent. Value presented is for a minimum measured hardness of 65 mg/L.
 (3) Values in brackets represent one-half the SQL where no detects were reported.

i.

1 h

(4) Criterion for Arsenic (III).
(a) Background concentration represents the minimum value.
GW.WQ1 Version 2.1

13-Jul-94

R:\PUBS\PROJECTS\4920003\906.S3

July, 1994

As shown in Table 3-6, the EEQ was greater than 1.0 for the following compounds: aluminum, cadmium, chromium VI, copper, cyanide, iron, lead, mercury, nickel, silver, zinc, 2,4,6-trichlorophenol, 2,4-dichlorophenol, 2-nitrophenol, bis(2-ethylhexyl)phthalate, naphthalene, phenol, dieldrin, endosulfan II, endrin aldehyde, and chlorobenzene. Therefore, these compounds were retained for further evaluation. Antimony, arsenic, beryllium, chromium III, selenium, thallium, 2-chlorophenol, 1,2-dichloroethane, tetrachloroethene, and trichloroethene were present at concentrations below the chronic AWQC. These compounds were thus eliminated from further consideration.

The following compounds exceeded the comparison to background screen: calcium, magnesium, manganese, sodium, 2,4-dimethylphenol, 2-methylphenol, 4-methylphenol, di-n-butylphthalate, din-octylphthalate, 2,4,5-T, 2,4,5-TP, 2,4-D, 4,4'-DDE, alpha-BHC, 1,1,1-trichloroethane, 1,1,2trichloroethane, 1,2-trichloroethene, 2-butanone, acetone, benzene, bromoform, carbon disulfide, chloroethane, methylene chloride, and toluene. Therefore, these compounds are retained in the risk assessment for further analysis. Barium, cobalt, potassium, and vanadium were present at concentrations below background levels and were thus eliminated from further consideration.

3.5 Consideration of CPCs Identified in the Screening Level Risk Evaluation

The screening level risk evaluation provides a long list of CPCs. The selection of these compounds is prompted by exceedance of conservative environmental criteria or, for compounds lacking criteria, by exceedance of background concentrations. A general discussion of the potential adverse effects associated with the classes of screening level CPCs under consideration is provided below.

3.5.1 Heavy Metals

Heavy metals are widespread in occurrence; however, they usually are found only in trace amounts in non-industrialized areas. Heavy metals include those with a defined nutritional role (e.g., copper, zinc) and those with no biological requirement (e.g., cadmium, mercury). Adverse developmental effects have been observed in both aquatic and terrestrial organisms.

Heavy metals were detected in surface waters, sediments, unsaturated soils, and in the groundwater at the ORS (ENSR, 1994). The heavy metals identified as potential concern in the various media at the ORS are arsenic, barium, beryllium, chromium, copper, cyanide, lead, manganese, mercury, nickel, selenium, silver, thallium, vanadium, and zinc.

Most heavy metals affect the reproductive success of fish and are bioconcentrated to varying degrees. The toxicity of some metals in water varies with the ambient hardness. Some of the

3-16

heavy metals such as barium and lead behave in a manner similar to calcium. Accumulation has also been observed in the gills and scales of fish. The metals lead and barium have been observed to replace calcium in metabolic pathways. Thus, heavy metals have been observed to accumulate in the bones and organs of both fish and terrestrial animals. Adverse neurological effects due to metals such as lead and mercury have also been observed in terrestrial animals. Heavy metals also have been observed to adversely impact the development and growth of both aquatic and terrestrial plants.

3.5.2 Earth Metals

Earth metals constitute large proportions of solid media such as soils and sediments. They occur naturally in high concentrations due to their representation in mineral and geologic formations. Insufficient information is available on the toxicity of the earth metals to make any observations on their adverse effects. However, due to naturally occurring high levels, they are generally regarded as non-toxic.

Earth metals were detected in all media at the ORS (ENSR, 1994). Earth metals which were identified as screening level CPCs included aluminum, calcium, magnesium, potassium, sodium, cobalt, and iron.

3.5.3 Herbicides/Pesticides

Herbicides are complex organic compounds that can affect the central nervous system. Generally, they appear to be of low toxicity. They are mobile in the environment and readily migrate in soils and water.

Pesticides are complex organic compounds that are generally designed to act on the central nervous system, respiratory system, and/or circulatory system. Pesticides are generally lipophilic compounds and bioconcentration may be possible.

Herbicides and pesticides identified as screening level CPCs by the screening level risk evaluation included chlordane, alpha-BHC, beta-BHC, delta-BHC, gamma-BHC, DDT and DDT byproducts, dieldrin, endrin and endrin byproducts, endosulfan I, endosulfan II, endosulfan sulfate, heptachlor, heptachlor epoxide, and methoxychlor.

3.5.4 Polychlorinated Biphenyls

Polychlorinated biphenyls (PCBs) are highly lipophilic compounds that are relatively immobile in the environment. Due to their lipophilic nature, they tend to bioconcentrate in fish and animal

July, 1994

tissues. Acute toxicity tests have demonstrated that PCB exposure may lead to weight loss, ataxia and diarrhea in rats. Subacute oral toxicity tests have shown PCBs induce enlargement of the liver, atrophy of the spleen and hepatic porphyria. Mink involved in subacute oral toxicity testing have shown an unusually high sensitivity to PCBs. Rats used in chronic oral toxicity testing have shown an increase in liver weight and adverse reproductive effects. PCBs have also been demonstrated to accumulate in body fat. Severe skin lesions have also been observed in dermal toxicity studies using rabbits. In fish, the effects of PCBs have been found to be cumulative and toxicity decreases with level of chlorination. The growth and development of young fish is adversely affected by PCBs.

Total PCBs and mixtures of PCB congeners (e.g., Aroclor 1242, 1248, 1254, 1260) were identified as potential (candidate) compounds of concern.

3.5.5 **Polynuclear Aromatic Hydrocarbons**

Polynuclear aromatic hydrocarbons (PAHs) are a diverse group of organic compounds that are widespread in urban environments. High molecular weight PAHs (i.e., molecular weight greater than 300) are a group of compounds that bind strongly to soils and sediment. Low molecular weight PAHs may be mobile in the environment. PAHs are metabolized rapidly in the body and therefore do not tend to bioconcentrate. Under laboratory conditions, adverse biological effects associated with PAH exposure include decreased survival, growth, and metabolism, and tumor formation.

At the ORS, a large number of PAHs were identified as potential (candidate) compounds of concern. They included: 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, indeno(1,2,3-c,d)pyrene, acenaphthylene, hexachlorobutadiene, phenanthrene, pyrene.

3.5.6 Chlorinated Compounds

Pathological changes in the liver have been observed in rats exposed, via the inhalation route, to chlorinated compounds. Avian embryos exposed to chlorinated compounds have demonstrated embryotoxicity, growth defects and morphological anomalies. No evidence of tetragenicity has been demonstrated in mammals.

The chlorinated compounds trichloroethene, 1,2-dichloroethene, 1,1,2-trichloroethane, 1,1,1trichloroethane, and chloroethane were identified as potential (candidate) compounds of concern.

R:\PUBS\PROJECTS\4920003\906.S3

3.5.7 Semi-Volatile and Volatile Organic Compounds (SVOCs/VOCs)

Semi-volatile and volatile organic compounds (SVOCs and VOCs) are compounds which are widely used in industrial processes. SVOCs and VOCs cause a reduction in hatching and fry and tadpole survival, in fish and tadpoles, respectively. Also, in plants, a reduction in the number of seeds germinating has been observed. At very high levels, SVOCs and VOCs have been observed in birds to produce abnormalities in body weight and egg production.

ENSR

At the ORS, the SVOCs and VOCs which were identified as potential (candidate) compounds of concern are: bis(2-ethylhexyl)phthalate, carbazole, di-n-butylphthalate, di-n-octylphthalate, dibenzofuran, toxaphene, acetone, benzene, chloroform, methylene chloride, toluene, diethylphthalate, 2-butanone, bromoform, carbon disulfide, chlorobenzene, and toluene.

3.5.8 Phenols

Members of the phenol family of compounds appear to be widespread environmental contaminants. Aquatic organisms are most vulnerable to phenols in the reproductive and juvenile stages. In terrestrial organisms adverse effects on growth rates, liver and renal function, immune function and fetal development have been observed.

The following compounds of the phenol family were identified as potential (candidate) compounds of concern: phenol, 2,4,6-trichlorophenol, 2,4-dichlorophenol, 2,4-dimethylphenol, 2-nitrophenol, and 4-methylphenol.

3.6 Summary of Screening Level Risk Assessment

A preliminary risk assessment was made based on the results of the screening level risk evaluation (Tables 3-1 through 3-6). Risk assessments were made for surface waters (Section 3.6.1), sediments (Section 3.6.2), soil (Section 3.6.3), and groundwater (Section 3.6.4). Environmental risk was established by calculation of an EEQ, based on comparison of compound concentrations to nationally-recognized criteria such as the AWQCs or ER-L sediment guidance values. These criteria were supplemented with a few soil criteria suggested by U.S. EPA Region 3. CPCs were also selected due to compound concentrations greater than background levels, but no ecological risk estimate was possible from this comparison.

To interpret the significance of these EEQ values, it is useful to classify the values into those associated with low and high potential environmental risks. Guidance from U.S. EPA (U.S. EPA, 1988) indicates the hazard quotient values less than 10 are considered indicative of possible environmental risk, while quotients greater than 10 are considered indicative of probable

3-19

R:\PUBS\PROJECTS\4920003\906.S3

environmental risk. This is consistent with U.S. EPA Region 3 environmental risk assessment guidance (U.S. EPA Region 3, undated).

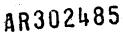
Due to the stringent nature of the screening level risk evaluation (i.e., conservative criteria site application and inclusion of all compounds above background value), most media had a large number of CPCs. Quantitative risk assessment of these CPCs, including earth elements and many compounds for which no ecotoxicological criteria were available, would be unlikely to effectively characterize the potential ecological risk. At this stage, it is helpful to identify CPCs of probable and possible concern, however, to start focusing on those compounds which are more likely to contribute to potential ecological risks as may be present. Therefore, no further risk assessment was made beyond this identification.

3.6.1 Surface Water

A preliminary risk assessment was made for surface water based on the results of the screening level risk evaluation (Tables 3-1, 3-2). Section 3.6.1.1 considers potential risks identified in the surface water of the main channel of the Ohio River, and Section 3.6.1.2 assesses potential risks identified in the back channel.

3.6.1.1 Main Channel Surface Water

The results of the screening level evaluation of the surface water in the main channel indicated that mercury was of probable concern; aluminum, chromium (VI), and copper were of possible concern; and calcium, magnesium, manganese, potassium, and sodium were unassessed. No further risk assessment was made.


3.6.1.2 Back Channel Surface Water

The results of the screening level evaluation of the surface water in the back channel indicated no CPCs of probable concern; aluminum, chromium (VI), and copper were of possible concern. No further risk assessment was made.

3.6.2 Sediments

A preliminary risk assessment was made for sediments based on the results of the screening level risk evaluation (Tables 3-3, 3-4). Section 3.6.2.1 describes potential risks identified in the sediments of the main channel of the Ohio River, and Section 3.6.2.2 assesses potential risks identified in the sediments of the back channel.

R:\PUBS\PROJECTS\4920003\906.S3

July; 1994

July, 1994

AR302486

3.6.2.1 Main Channel Sediments

The results of the screening level risk evaluation indicated that 12 CPCs were of probable concern, 14 CPCs were of possible concern, and 21 CPCs were unassessed (i.e., neither AWQC nor ER-L values were available). The CPCs of probable concern included zinc, alpha-chlordane, total PCBs, dieldrin, endrin, gamma-chlordane, 2-methylnaphthalene, acenaphthene, ben-zo(a)anthracene, dibenz(a,h)anthracene, fluorene, and phenanthrene. The CPCs of possible concern included arsenic, total chromium, copper, lead, mercury, nickel, 4.4'-DDD, anthracene, benzo(a)pyrene, chrysene, fluoranthene, naphthalene, pyrene, and total PAHs. No further risk assessment was made.

3.6.2.2 Back Channel Sediments

The results of the screening level risk evaluation indicated that 13 CPCs were of probable concern, 13 CPCs were of possible concern, and 28 CPCs were unassessed (i.e., no available criteria). The CPCs of probable concern included dieldrin, endrin, 2-methylnaphthalene, acenaphthene, anthracene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, and total PAHs. The CPCs of possible concern included arsenic, total chromium, copper, lead, mercury, nickel, zinc, 4,4-DDD, alpha-chlordane, total PCBs, gamma-chlordane, benzo(a)anthracene, and benzo(a)pyrene. No further risk assessment was made.

3.6.3 Surface Soil

A preliminary risk assessment was made for the surface soil based on the results of the screening level risk evaluation (Table 3-5). The results indicate that mercury was of probable concern; arsenic, copper, lead, manganese, and zinc were of possible concern; and there were 72 CPCs for which applicable soil criteria were not available. No further risk assessment was made.

3.6.4 Groundwater

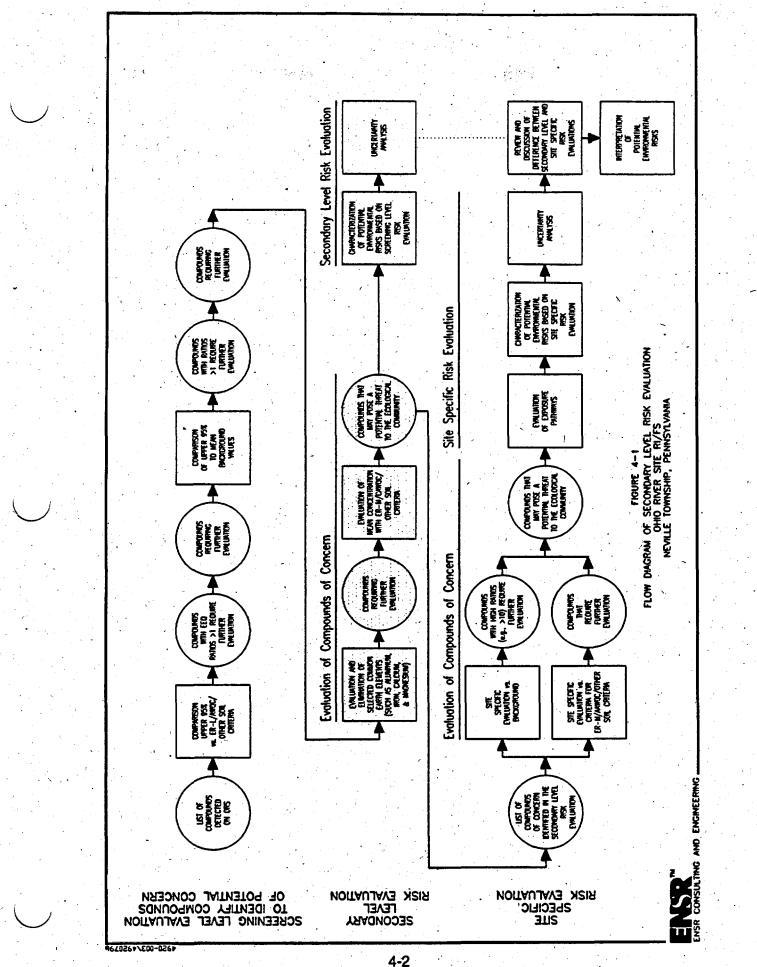
R:\PUBS\PROJECTS\4920003\906.S3

A preliminary risk assessment was made for groundwater based on the results of the screening level risk evaluation (Table 3-6). The results indicate that 11 CPCs were of probable concern, 10 CPCs were of possible concern, and there were 24 CPCs for which no AWQC were available for comparison. The CPCs of probable concern included aluminum, cadmium, copper, iron, lead, mercury, zinc, 2,4-trichlorophenol, 2-nitrophenol, dieldrin, and endrin aldehyde. The CPCs of possible concern included chromium (VI), cyanide, nickel, silver, 2,4-dichlorophenol, bis(2-ethylhexyl)phthalate, naphthalene, phenol, and endosulfan II. No further risk assessment was made.

3-21

July, 1994

4.0 SECONDARY LEVEL RISK EVALUATION


In this section of the risk assessment, all CPCs which were identified in the screening level risk evaluation (Section 3.0) are further evaluated. This evaluation further considers the nature and concentrations of the screening level CPCs as a means to evaluate the reasonableness of their inclusion as COCs. Secondary level COCs which are identified in this evaluation are further considered in the Site-Specific Risk Evaluation (Section 5.0). An outline of the activities undertaken at this evaluation stage are shown in Figure 4-1.

As part of the secondary level risk evaluation, common, ubiquitous constituents were removed from further consideration as secondary level COCs in all media (i.e., water, sediments, soil, groundwater). In addition, lesser earth constituents were compared to the average background soil concentrations for eastern United States (ATSDR, 1992). If average values for the site were comparable to average values for the eastern U.S., those elements were removed from further evaluation. This comparison was reserved for elements for which no appropriate criteria (e.g., AWQC, ER-L) were available. This application assumes that when the site average value is comparable to the national average the probability of ecological risk is low. This approach allows evaluation of elements which have been identified as screening level CPCs solely on their enrichment relative to background levels. It should be noted that a high background ratio (i.e., site value/background value) is not, in itself, an index of potential ecotoxicological risk.

As part of the secondary level evaluation, the arithmetic mean of the screening level CPCs was compared to available environmental benchmarks. The arithmetic mean was selected as a comparative value for the secondary level evaluation based on the assumption that biota integrate the effects of site concentrations through movements with and between habitats associated with feeding, shelter, mating activities, migration, etc. The environmental benchmarks and the applicable medium included the federal AWQC for surface and groundwater, the Effects Range-Medium values (ER-M) for sediments, and the suggested U.S. EPA Region 3 soil criteria.

All compounds that exceeded the appropriate environmental benchmarks were retained in the risk assessment for further evaluation. Compounds that were below the environmental benchmark were evaluated further as to the quantitative level of the EEQ. Compounds that did not have an appropriate environmental benchmark were compared to background concentrations. Compounds that were present at concentrations greater than background levels were retained in the risk assessment for further evaluation.

4AR302487

AR302488

.

July, 1994

From the results of the secondary level risk assessment, a preliminary qualitative estimate of potential ecological concerns was made. This assessment includes consideration of potential exposure pathway, risk characterization, and uncertainty analysis. The results of this assessment will identify areas of potential ecological risk with approximation of the level of potential concern. The results of this assessment will be compared to the results of the site-specific risk assessment. This comparison and accompanying discussion are in Section 6.0.

The following sections discuss the selection of secondary level COCs for each of the media evaluated. Section 4.1 presents the selection of secondary level COCs for surface water, and Section 4.2 presents the selection of secondary level COCs in sediments. Section 4.3 identifies the secondary level COCs in surface soils, and Section 4.4 identifies the secondary level COCs in groundwater at the ORS. A preliminary qualitative risk assessment is performed in Section 4.5. The limitations and uncertainties encountered with this assessment are discussed in Section 4.6, and a summary of the results are presented in Section 4.7. Compounds identified during the secondary level evaluation as COCs were evaluated further in the site-specific risk evaluation (Section 5.0).

4.1 Secondary Level Risk Evaluation of COCs in Surface Water

To evaluate secondary level COCs in both the main and back channel surface water, the arithmetic mean of the screening level CPCs identified by the screening level risk evaluation were compared to relevant criteria. The list of COCs in the main and back channel surface water that were evaluated are presented in Tables 4-1 and 4-2, respectively.

The mean values were compared with the chronic AWQCs developed by the U.S. EPA. As in the screening level risk evaluation, when the environmental effects quotient is less than or equal to 1.0, the mean concentration observed in the surface water is less than or equal to the chronic AWQC for that compound, and the compound is not evaluated further, while compounds with an EEQ greater than 1.0 (rounded values) are retained for further analysis.

In addition, the ratio of the background channel surface water to surface water was considered. If the resulting ratio was less than or equal to 1.0, the compound was not selected as a COC. If the ratio was greater than 1.0, the compound was retained for further evaluation.

4.1.1 Main Channel Surface Water

As shown in Table 4-1, the EEQ was greater than 1.0 for copper and mercury in the main channel surface water samples. These compounds were retained for further analysis in the risk assessment. Chromium (IV) was present at concentrations below the AQWC and was eliminated

1:\PUBS\PROJECTS\4920003\906.S4

July, 1994

 Table 4-1
 Secondary Level Risk Evaluation

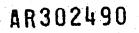
 Surface Water Screening, Main Channel
 Ohio River Site, Neville Island

 Ecological Risk Assessment
 Ecological Risk Assessment

Compound	Comparison Value (ug/L)	Stat. Origin of Comp. Value	Chronic Freshwater AWQC (ug/L)	BKGD Value (ug/L) (1)	Environ. Effects Quotient (unitiess)	Ratio of Comp. to BKGD Value (unitiess)	Further evaluation? (Yes/No)
Aluminum	206.2	Arith.Mean	87	270	2.37	0.76	No (3)
Calcium	23040	Arith.Mean		20900	1. E	1.10	No (4)
Total Chromium (VI)	7.4	Arith.Mean	11	[4]	0.67	1.85	No
Copper (2)	32.8	Arith.Mean	8	[3]	4.10	10.93	Yes
Magnesium	5918	Arith.Mean		5310		1.11	No (3)
Manganese	201.6	Arith.Mean		221	·	0.91	No
Mercury	0.35	Arith.Mean	0.012	[0.1]	29.17	3.50	Yes
Potassium	1604	Arith.Mean		1490		1.08	No (3)
Sodium	12242	Arith.Mean		10000		1.22	No (3)

a Paris and

NOTES:


Values in brackets represent one half the standard quantitation limit where no detects were reported.
 Oriteria are hardness dependent. Value presented is for a minimum measured hardness of 65 mg/L.

(3) Eliminated from screening process based on ubiquity and abundance in the environment as an earth element.
 (4) Eliminated from screening process based on biological significance as a nutrient.

MAINSW2.WQ1 Version 4.0

13-Jul-94

R:\PUBS\PROJECTS\4920003\906.S4

4-4

ENSE

Table 4-2 Secondary Level Risk Evaluation Surface Water Screening, Back Channel Ohio River Site, Neville Island Ecological Risk Assessment

Compound	Comparison Value (ug/ī.)	Stat. Origin of Comp. Value	Chronic Freshwater AWQC (ug/L)	BKGD Value (ug/L) (1)	Environ. Effects Quotient (unitless)	Ratio of Comp. to BKGD Value (unitless)	Further evaluation? (Yes/No)
Aluminum Total Chromium (as VI) Copper (2)	7.75	Arith. Mean Arith. Mean Arith. Mean	87 - 11. 8	199 [4] [3]	2.59 0.70 0.69	1.13 1.94 1.83	No (3) No No
Manganese	188.75	Arith. Mean		- 194		0.96	No

NOTES:

Values in brackets represent one half the standard quantitation limit where no detects were reported.
 Criteria are hardness dependent. Value presented is for a minimum measured hardness of 65 mg/L.
 Eliminated from screening process based on ubiquity and abundance in the environment as an earth element.
 BACK-SW2.WQ1 Version 4.0

13-Jul-94

July, 1994

from further consideration. Aluminum, calcium, magnesium, potassium, and sodium are common earth elements and were eliminated on that basis. Manganese was present in the main channel surface water at concentrations less than the background concentration and thus eliminated from further consideration.

Thus, following application of the secondary level evaluation, copper and mercury were retained in the risk assessment for further analysis.

4.1.2 Back Channel Surface Water

As shown in Table 4-2, there were no EEQ values greater than 1.0 in back channel surface water samples, except for aluminum. Accordingly, chromium (VI) and copper were removed from further analysis. Aluminum was eliminated as a common earth element. Manganese was present in the back channel surface water at concentrations less than the background concentration and was eliminated from further evaluation.

Thus, following application of the screening level evaluation, no COCs were identified in the back channel surface water.

4.2 Secondary Level Risk Evaluation of COCs in Sediments

R:\PUBS\PROJECTS\4920003\906.54

Sediment samples were evaluated separately in the main and back channels. The common earth elements were removed as part of the evaluation. The secondary level evaluation also compared mean values of secondary COCs in the sediment against the NOAA ER-M guidance values (Long and MacDonald, 1992; Long and Morgan, 1990). The ER-M values represent the median of sediment concentrations where biological effects were detected and provide an estimate of concentrations where biological effects are likely to be observed (Long and Morgan, 1990).

The ratio of mean channel sediment concentrations to the ER-M is shown as the EEQ in Tables 4-3 and 4-4, respectively, for the main and back channels. If the EEQ was less than or equal to 1.0, the secondary COC was considered further. In cases where the conservative ER-L value is exceeded but the ER-M value is not, the potential for ecological risk is difficult to quantitatively assess (Long and Morgan, 1990). No guidance is provided to assess the potential incremental risk associated with values which exceed the conservative ER-L value, but which are fractions of the ER-M value. Typically, the relative location of the concentration of the COC between the ER-L and ER-M value is considered when assessing a COC's potential for ecological effects.

Professional judgement was used to select a value between the ER-L and ER-M value which, if exceeded, indicated a more likely COC. For this evaluation, a value of 1/4 the ER-M

4-6

Table 4-3

Secondary Level Risk Evaluation Sediment Screening, Main Channel Ohio River Site, Neville Island Ecological Risk Assessment

· · · · · · · · · · · · · · · · · · ·					Environ.	Ratio of	r	_
and the second	Comparison	Stat. Origin	1 . · · ·	BKGD	Effects	Comp. to	Further	
•	Value	of	ER-M (1)	Value (2)	Quotient	BKGD Value	Evaluation?	,
Compound	(ug/kg)	Comp. Value	(ug/kg)	(ug/kg)	(unitiess)	(unitiess)	(Yes/No)	
Aluminum	1.91E+07	Arith Mean		1.23E+07		1.55	No	(3)
Arsenic	1.49E+04	Arith Mean	7.00E+04	1.80E+04	0.21	0.83	No	(5)
Barium	2.19E+05	Arith Mean		1.89E+05		1.16	Yes	. (-/
Beryllium	2.98E+03	Arith Mean		8			No	(3)
Calcium	3.06E+07	Arith Mean		3.45E+07	· .	0.89	No	(4)
Total Chromium	8.68E+04	Arith Mean	3.70E+05	2.50E+04	0.18	2.57	No	(5)
Cobalt	2.86E+04	Arith Mean		2.40E+04		1,19	Yes	(-/
Copper	1.02E+05	Arith.Mean	2.70E+05	4.40E+04	0.38	2.31	Yes	· •
Cyanide	1.25E+04	Arith Mean		5.30E+03		2.35	Yes	
	8.83E+07	Arith Mean		6.13E+07		1.44	No	(3)
Lead	1.67E+05	Arith Mean	2.23E+05	5.70E+04	0.75	2.92	Yes	(0)
Magnesium	3.49E+06	Arith Mean	2.2.05 TUJ	4.71E+08	0.13	0.74	No	(3)
	2.35E+08	Arith.Mean		2.25E+08	Constant and	1.04	No	(0)
Manganese		Arith.Mean	7.10E+02		0.62	7.33	Yea	(3)
Mercury	4.40E+02	Arith Mean	5.16E+04	[60] 4.40E+04	1.19		Yes	. 4
Nickel	6.14E+04		3.102+04		1.19	1.40		
Potassium	1.80E+06	Arith Mean		7.98E+05		2.26	No	(3)
Selenium	9.00E+02	Arith Mean		[250]		3.60	Yes	
Sodium	3.40E+05	Arith.Mean		R			No	(3)
Vanadium	2.33E+04	Arith.Mean		1.40E+04	l	1.65	Yes	
Zine	1.45E+06	Arith.Mean	4.10E+05	2.46E+05	3.54	5.90	Yei	
2,4,5T	8.40E+01	Arith.Mean		1.10E+01	1.15	7.64	Yes	
2,4,5-TP	1.72E+01	Arith Mean		1.20E+00		14.33	Yes	
2,4-0	1.72E+02	Arith.Mean		1.25E+01		13.78	Yes	
4,4'-000	3.36E+00	Arith Mean	200E+01	[1.65]	0.17	2.04	No	(5)
Alpha-chlordane	4.52E+00	Arith.Mean	8.00E+00	8.50E-01	0.75	5.32	Yes	
Arocior-1242	3.34E+01	Arith Mean		[16.5]		2.02	Yes	
Arocior-1248	3.08E+01	Arith.Mean	1	1.40E+01		2.20	Yes	
Arocior-1254	1.33E+02	Arith Mean		2.60E+01	1	5.12	Yes	
Arocior-1260	4.23E+01	Arith Mean		[16.5]		2.58	Yes	
Total PCBs	1.66E+02	Arith.Mean	1.80E+02	4.00E+01	0.92	4,15	Yes.	•
Dieldrin	3.36E+00	Arith Mean	8.00E+00	[1.65]	0.42	2.04	Yes	
Endria	3.36E+00	Arith Mean	4.50E+01	[1.65]	0.07	2.04	No	(5)
Endrin Aldehyde	3.36E+00	Arith.Mean		1.65E+00		2.04	Yes	
Endrin Ketone	2.87E+00	Arith Mean		[1.65]		1.74	Yes	•
Gamma-chlordane	4.17E+00	Arith Mean	6.00E+00	[0.85]	0.70	<u>(</u> . 4.91)	Yes	· · · .
2-Methylnaphthalene	8.54E+02	Arith Mean	6.70E+02	[2100]	1.27	0.41	Yes	
Acenaphthene	7.75E+02	Arith.Mean	5.00E+02	[2100]	1.55	0.37	Yes	Г., н., н., н., н., н., н., н., н., н., н
Anthracene	5.18E+02	Arith.Mean	1.10E+03	2.10E+03	0.47,	0.25	Yes	
Benzo(a)anthracene	1.70E+03	Arith.Mean	1.60E+03	8.40E+03	1.06	0.27	Yes	
Benzo(a)pyrene	1.39E+03	Arith. Mean	1.60E+03	5.50E+03	0.87	0.25	Yes 1	
Chrysene	1.02E+03	Arith Mean	2.80E+03	5.70E+03	0.37	0.18	Yes	•
Dibenz(a,h)anthracene	7.51E+02	Arith.Mean	2.60E+02	[2100]	2.89	0.38	Yes	
Fluoranthene	2.87E+03	Arith. Mean	5.10E+03	1.20E+04	0.56	0.24	Yes	
Fluorene	7.61E+02	Arith Mean	5.40E+02	8.00E+02	1.41	1.27	Yes	
Naphthalene	7.15E+02	Arith Mean	2.10E+03	[2100]	0.34	0.34	Yes	
Phenanthrana	1.78E+03	Arith Mean	1.50E+03	5.80E+03	1.19	0.31	Yes	
Viene	2.43E+03	Arith Mean	2.60E+03	9.20E+03	0.93	0.25	Yes	
Total PAH	1.76E+04	Arith Mean	4.48E+04	8.14E+04	0.39	0.29	Yes	
Notes:	1.406704	1 - HILLINGER	4.4061.04	1		L	r , , , , , , , , , , , , , , , , , , ,	,

Notes:

(1) ER-M values are from Long and MacDonald (1992) except for 4,4'DDD, chlordanes, dieldrin, and endrin which are from Long and Morgan (1990). The ER-M value for chlordane was used for alpha- and gamma-chlordane. (2) Values in brackets represent one half the standard quantitation limit where no detects were reported. "R" indicates that the data

are unusable based on quality control measures.

(3) Eliminated from screening process based on ubiquity and abundance in the environment as an earth element.

(4) Eliminated from screening process based on biological significance as a nutrient.

(5) Eliminated from screening process based on EEQ <0.25.

(6) Eliminated from screening process based on BOGD ratio <1.0. MAIN-SED2.WQ1 Version 3.0

13-Jul-94

R:\PUBS\PROJECTS\4920003\906.54

4-7

AR302493

Table 4-4

Secondary Level Risk Evaluation Sediment Screening, Back Channel Ohio River Site, Neville Island Ecological Risk Assessment

	-		· · · · · · · · · · · · · · · · · · ·		Environ,	Ratio of		
	Comparison	Stat. Origin		BKGD	Effects	Comp. to	Further	
	Value		ER-M (1)	Value (2)	Quotient	BKGD Value	Evaluation?	
Compound	(ug/kg)	Comp. Value	(ug/kg)	(ug/kg)	(unitiess)	(unitiess)	(Yes/No)	
Aluminum	1.16E+07		(09/109/		(unucos)			
Aruminum	1.16E+07	Arith. Mean Arith. Mean	7.00E+04	1.082+07		1.07	No	(3)
Barium	and the second	Anth. Mean Arith. Mean	7.002+04	7.60E+03	0.17	1.58	No	(5)
	1.41E+05 1.08E+03	Anth. Mean		1.56E+05		0.90	No	(6)
Beryllium Calcium		Anith, Mean		1.10E+03			No	(6)
Calcium Total Chromium	8.87E+06	Anin, Mean Arith, Mean	3.70E+05	4.13E+06		2.15	No	(4)
Cobalt	6.70E+04	Arith, Mean	3.702403	1.70E+04	0.18	3.94 1.99	No	(5)
	3.38E+04	Arith, Mean	2.70E+05	1.70E+04	0.38	3.08	Yes	
Copper	1.02E+05 4.78E+03	Arith, Mean	2.700400	3.30E+04	0.38	13.26	Yes	
Cyanide Iron		Arith, Mean		[360]		13.20	Yes	-
Lead	1.18E+08 9.55E+04	Anth, Mean	2.23E+05	3.73E+07 4.00E+04	0.43	2.39		(3)
		Anth. Mean	2235+03	4.002+04 2.09E+06	. 0.43	0.93	Yes No	
Magnesium	1.95E+06	Arith. Mean	Provide States	7.60E+05		2.54		(3)
Manganese		Arith. Mean	7.10E+02		0.30	3.00	Yes	
Mercury	2.10E+02		5.16E+04	[70]		2.71		
Nickel	7.33E+04	Arith. Mean	0.102404	2.70E+04	1.42	0.93	Yes	
Potassium	1.07E+06	Arith, Mean Arith, Mean		1.16E+06		0.93 5.04	No Yes	(3)
Selenium	1.46E+03	Ann. Mean		[290]	•	0.04		·
Sodium	ND			R			No	(3)
Vanadium	2.30E+04	Arith. Mean		1.90E+04		1.21	Yes	
Zinc	3.60E+05	Arith. Mean	4.10E+05	1.01E+05	88.0	3.56	Yes	
2,4,5-T	9.66E+01	Arith. Mean		1.45E+01		6.66	Yes	
2,4,5-TP	1.58E+01	Arith. Mean		1.45E+01		1.09	to es Yes	i
2,4-D	1.33E+02	Arith. Mean		1.45E+02		0.91	No	(6)
4,4'-DDD	1.89E+00	Arith: Mean	2.00E+01	[2.3]	0.09	0.82	No	(5)
Alpha-chlordane	1.15E+00	Arith. Mean	6.00E+00	3.20E-01	0.19	3.59	No	(5)
Aroclor-1242	3.18E+01	Arith, Mean	,	[23]	1	1.38	Yes	
Aroclor-1260	4.56E+01	Arith, Mean	•	4.10E+01		1.11	Yes	
Total PCBs	7.74E+01	Artth. Mean	1.80E+02	4.10E+01	0.43	1.89	Yes	
Dieldrin	2.21E+00	Arith. Mean	8.00E+00	2.80E+00	0.28	0.79	Yes	
Endrin	2.54E+00	Arth. Mean	4.50E+01	[2.3]	0.06	1.10	No	(5)
Endrin Ketone	- 2.63E+00 -	Arith. Mean		[2.3]	1.0	1.14	Yes	
Gamma-BHC (Lindane)	1.31E+00	Arith. Mean		[1.2]		1.09	Yes	
Gamma-chlordane	2.01E+00	Arith. Mean	6.00E+00	1.30E+00	0.34	1.55	Yes	
2-Methylnaphthalene	2.19E+03	Arith. Mean	6.70E+02	[240]	3.27	9.13	Yes	
Acenaphthene	1.84E+03	Arith. Mean	5.00E+02	[240]	3.68	7.67	Yes	
Anthracene	2.53E+03	Arith. Mean	1.10E+03	[240]	2.30	10.54	Yes	
Benzo(a)anthracene	5.03E+03	Arith, Mean	1.60E+03	2.50E+02	3.14	20.10	Yes	
Benzo(a)pyrene	3.15E+03	Arth. Mean	1.60E+03	1.70E+02	1,97	18.53	Yes	
Benzo(b)fluoranthene	4.63E+03	Artth. Mean		2.40E+02	1. No. 1	19.27	Yes	
Benzo(g,h,i)perylene	2.11E+03	Arith. Mean		1.20E+02		17.60	Yes	
Benzo(k)fluoranthene	3.21E+03	Arith. Mean	e e e e e	6.90E+01	1996 - D	46.45	Yes	
Bis(2-ethylhexyl)phthalate	1.48E+04	Artth, Mean		1.10E+02		134.16	Yes	
Carbazole	2.04E+03	Arith. Mean		[240]		8.51	Yes	
Chrysene	3.50E+03	Arith. Mean	2.80E+03	1.30E+02	1.25	26.92	Yes	
Di-n-octylphthalate	1.78E+03	Artth. Mean		[240]		7.40	Yes	
Dibenz(a,h)anthracene	2.27E+03	Arith. Mean	2.60E+02	[240]	8.73	9.46	Yes	
Dibenzofuran	2.20E+03	Arth. Mean		[240]	1	9,15	Yes :	· .
Fluoranthene	8.23E+03	Arith. Mean	5.10E+03	2.70E+02	1.61	30.46	Yes	
Fluorene	2.19E+03	Arith. Mean	5.40E+02	[240]	4.05	9.10	Yes	
indeno(1,2,3-cd)pyrene	2.38E+03	Arith. Mean	la de la composición	1.00E+02	1.1.1.1.1.1.1	23.75	Yes	÷ .
Naphthalene	2.12E+03	Arith. Mean	2.10E+03	[240]	1.01	8.82	Yes	
Phenanthrene	5.45E+03	Anth. Mean	1.50E+03	1.70E+02	3.63	32.06	Yes	
Pyrene	7.20E+03	Arith. Mean	2.60E+03	2.60E+02	2.77	27.69	Yes	
Total PAH	4.69E+04	Arith. Mean	-4.48E+04	1.78E+03	1.05	26.37	· Yes	•

.+#

¥ ? 51

Notes:

(1) ER-M values are from Long and MacDonald (1992) except for 4,4"DDD, chlordanes, dieldrin, and endrin which are from Long and Morgan (1990). The ER-M value for chlordane was used for alpha- and gamma-chlordane.

(2) Values in brackets represent one half the standard quantitation limit where no detects were reported. "R" indicates that the data are unusable based on quality control measures.

4-8

AR302494

(3) Eliminated from screening process based on ubiquity and abundance in the environment as an earth element.

(4) Eliminated from screening process based on biological significance as a nutrient.
 (5) Eliminated from screening process based on EEQ <0.25.

(6) Eliminated from screening process based on BDGD ratio <1.0. R:VUES:PROJECTS:4920003:906.S4

July, 1994

ENSR

concentration was used as the criterion for identifying likely potential risks, such that secondary level COCs with an EEQ less than or equal to 0.25 were removed from further evaluation, while secondary COCs which exceeded this value were retained for further evaluation. This value is an empirical factor which approximates 2 times the ER-L value for most COCs. A value of 2 times the ER-L value has previously been recommended as an appropriate criterion for soils by U.S. EPA Region 3 staff. The application of a similar criterion to sediments (the media from which the ER-L/ER-M guidance values were taken) is consistent with that recommendation and appropriate.

4.2.1 Main Channel Sediments

Elements in the main channel sediments identified as earth constituents and/or comparable to site background levels which were removed from further consideration (see Table 4-3) included aluminum, calcium, iron, magnesium, manganese, potassium, and sodium. Beryllium was removed because it did not have an environmental benchmark, nor could it be evaluated against background because the background sample was rejected in quality assurance (QA) review.

The EEQ was less than 0.25 for arsenic, total chromium, 4,4'-DDD, and endrin. Accordingly, these were removed from further evaluation. Comparison of mean concentrations of organic compounds in main channel sediment to background levels did not lead to the removal of other secondary level COCs.

Thus, the secondary level risk evaluation identified the following COCs: barium, copper, cyanide, lead, mercury, nickel, selenium, vanadium, zinc, 2,4,5-T, 2,4,5-TP, 2,4-D, alpha-chlordane, PCBs, dieldrin, endrin aldehyde, endrin ketone, gamma-chlordane, 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, and total PAHs. All secondary level COCs in the main channel sediment retained in the risk assessment for further evaluation are identified in Table 4-3.

4.2.2 Back Channel Sediments

Elements in the back channel sediments identified as earth constituents and/or comparable to site background levels which were removed from further consideration (see Table 4-4) included aluminum, barium, beryllium, calcium, iron, magnesium, potassium, and sodium.

The EEQ was less than 0.25 for arsenic, total chromium, 4,4'DDD, and endrin. These compounds were removed from further evaluation. Comparison of mean concentrations of organic compounds in main channel sediment to background levels led to the removal of 2,4-D.

4-9

R:\PUBS\PROJECTS\4920003\906.S4

July, 1994

Thus the secondary level risk evaluation identified the following COCs for the back channel: cobalt, copper, cyanide, lead, manganese, mercury, nickel, selenium, vanadium, zinc, 2,4,5-T, 2,4,5-TP, alpha-chlordane, PCBs, dieldrin, endrin ketone, gamma-BHC, gamma-chlordane, 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, carbazole, chrysene, di-n-octylphthalate, dibenz(a,h)anthracene, dibenzofuran, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, pyrene, and total PAH. All secondary level COCs in the main channel sediment retained in the risk assessment for further evaluation are identified in Table 4-4.

4.3 Secondary Level Risk Evaluation of COCs in Surface Soil

The secondary level risk evaluation of the surface soil from the ORS considered the nature and extent of the screening level CPCs. Common earth elements were removed as part of the evaluation. Mean concentrations of compounds in surface soils at the ORS were compared to the surrogate soil criteria suggested by U.S. EPA Region 3 (Davis, 1994) and listed in Table 4-5. For certain elements for which no criteria were identified by U.S. EPA Region 3 (i.e., beryllium, selenium, thallium, vanadium) the mean soil concentration was compared to the mean and range of soil concentrations found in the eastern United States (USGS data reported in ATSDR, 1992) (see Appendix D).

As shown in Table 4-5, aluminum, iron, magnesium, potassium, and sodium were removed as earth elements or, as in the case of calcium, as a nutrient. In addition, comparison with the mean concentration and range found in the eastern United States Indicated that beryllium, selenium, thallium, and vanadium were comparable to these national soil concentrations. Beryllium had a mean site concentration of 1.29 mg/kg, as compared to the national mean of 0.85 mg/kg and a range of less than 1 to 7 mg/kg (ATSDR, 1992). Selenium had a mean site concentration of 0.49 mg/kg, as compared to the national mean of 0.45 mg/kg and a range of less than 0.1 to 3.9 mg/kg (ATSDR, 1992). Thallium had a mean site concentration of 0.72 mg/kg, as compared to the national mean of 8.6 mg/kg and a range of 2.2 to 23 mg/kg (ATSDR, 1992). Vanadium had a mean site concentration of 52 mg/kg and a range of less than 5.2 to 900 mg/kg (ATSDR, 1992). Based on these comparisons, these elements were removed from further evaluation.

Application of the mean site concentration against the soil criteria suggested by U.S. EPA Region 3 indicated that only copper had an EEQ that was less than or equal to 1.0. Copper was eliminated from further consideration in the soil risk assessment.

4-10

AR302496

Table 4-5 Secondary Level Risk Assessment Surface Soil Screening Ohio River Site, Neville Island Ecological Risk Assessment

	Comparison	Stat. Origin	Criteria	BKGD	Environ. Effects	Ratio of Comp. to	Further
	Value	of	Value (1)	Value (2)	Quotient	BKGD Value	Evaluation?
Compound	(mg/kg)	Comp. Value	(mg/kg)	(mg/kg)	(unitiess)	(unitiess)	(Yes/No)
luminum	13795.75	Arith.Mean		13100		1.05	
rsenic		Arith Mean	10	8.3	1.07	1.05	No (Yes
eryllium	1.29	Arith Mean		[0.125]		10.31	No (
alcium	36205.03	Arith Mean		2160		18.76	
Copper	55.39	Arith Mean	70	2100	0.79	2.77	No (No (
Vanide .	13.09	Arith Mean		[0.315]	0.78	41.54	Yes
		Arith Mean		30900			
on ead	34406.06				1.35	1.11	No (Yes
	67.70	Arith.Mean	50	36	1.35	1.88	
lagnesium	3267.61	Arith.Mean		1920		1.70	No (
langanese	1602.64	Arith.Mean	600	1080	2.67	1.48	Yes
lercury	0.52	Arith.Mean	0.03	[0.065]	17.38	8.02	Yes
otassium	1358.58	Arith.Mean		1260		1.08	No (
lelenium	0.49	Arith.Mean	1.	[0.255]	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1.91	No (
Silver	0.68	Arith.Mean		[0.65]		1,05	No (
lodium	290.79	Arith.Mean					No (
hallium		Arith.Mean		[0.5]		1.43	No (
anadium		Arith.Mean		21		1.38	No (
line	166.64	Arith.Mean	54	83	3.09	2.01`	Yes .
,4,6-Trichlorophenol	0.479	Arith.Mean		[0.210]		2.28	Yes
4-Dichlorophenol	0.815	Arith.Mean		[0.210]		3.88	Yes
laphthalene		Arith.Mean		[0.210]		58.24	Yes
henot	0.577	Arith.Mean		[0.210]		2.75	Yes
,4, 5-T	0.194	Arith.Mean		0.0125		15.50	Yes
4,5-TP	0.148	Arith Mean		0.0125		11.70	Yes
4-D	0.693	Arith.Mean	1.1.1	0.125		5.54	Yes
4'-DDD	0.0122	Arith.Mean		[0.00205]	÷	- 5.95	Yes
4'-DDE	0.0057	Arith.Mean	· ·	[0.00205]		2.78	Yes
A'DDT	0.0403	Arith Mean		10.002051		19.68	Yes
lipha-BHC	0.0509	Arith Mean		[0.00105]		48.48	Yes
lipha-chlordana	0.0252	Arith Mean		[0.00105]		24.00	Yes
rochlor-1242	0.0546	Arith Mean		[0.0205]		2.68	Yes
rochlor-1254	0.0625	Arith.Mean		[0.0205]		3.05	Yes
Viochior-1260	0.1085	Arith Mean		0.027		4.02	Yes
otal PCB's	0.2200	Arith Mean		0.027		8.15	Yes
Ista-BHC	0.0656	Arith Mean		[0.00105]		62.48	Yes
elta-BHC		Arith Mean		[0.00105]	1	17.71	Yes
.3.7.8-TCDD	5.88E-08	Arith Mean		Toronioal		1	Yes
)ieldrin		Arith.Mean		[0.00205]		9.22	Yes
	0.0189	Arith Mean		[0.00205]		3.43	Yes
indosulfan I			an an tha an th			4.05	Yes
ndosultan 1		Arith Mean		[0.00205]		3.90	Yes
ndosulfan Sulfate		Arith Mean		[0.00205]	i y ta wi		Yes
ndrin		Arith.Mean		[0.00205]		2.73	
ndrin Aldehyde		Arith.Mean	1 · · ·	[0.00205]	•	1.32	Yes
ndrin Ketone		Arith.Mean	and the second second	[0.00205]		4.29	Yes
iamma-BHC (Lindane)		Arith.Mean	e da se sta	[0.00105]		139.43	Yes
iamma-chlordane		Arith Mean		0.00036		122.22	Yes
leptachlor		Arith Mean		[0.00105]		13.90	Yes
leptachior Epoxide		Arith.Mean		[0.00105]		5.52	Yes
lethoxychlor	0.0483	Arith Mean		[0.0105]	 	4.60	Yes
oxaphene		Arith.Mean	1	[0.105]	I	2.24	Yes
,2-Dichloroethene (T)	0.0063	Arith.Mean	1 ¹ .	0.004	1 . T.	1.58	: Yes
-Methyl-2-Pentanone		Arith.Mean		[0.0063]	1	0.97	No

R:\PU8S\PROJECTS\4920003\906.S4

4-11

July, 1994

Table 4-5 Secondary Level Risk Assessment Surface Soil Screening Ohio River Site, Neville Island Ecological Risk Assessment

Compound	Comparison Value (mg/kg)	Stat. Origin of Comp. Value	Criteria Value (1) (mg/kg)	BKGD Value (2) (mg/kg)	Environ. Effects Quotient (unitless)	Ratic of Comp. to BKGD Value (unitiess)	Further Evaluation? (Yes/No)
Acetone	0.0065	Arith.Mean		[0.0065]		1.00	No (5)
Benzene	0.0072	Arith.Mean		[0.0065]		Sec. 1.11	See Yes
Chloroform	0.0063	Arith.Mean		[0.0065]		0.97	No (5)
Ethylbenzene	0.0060	Arith.Mean	•	[0.0065]		0.92	No (5)
Methylene Chloride	0.0070	Arith.Mean	•	[0.0065]		1.08	Yes
Toluene	0.0075	Arith.Mean		0.004		1.88	Yes
Trichloroethene	0.0080	Arith.Mean		[0.0065]		1.23	Yes
2-Methylnaphthalene	1.705	Arith Mean		[0.210]		8.12	Yes
Acenaphthene	1.083	Arith.Mean		· [0.210]		5.16	Yes
Acenaphthylene	0.353	Arith.Mean		[0.210]		1.68	Yes
Anthracene	2.231	Arith.Mean		[0.210]	1 - A.	10.62	Yes
Benzo(a)anthracene	5.256	Arith Mean		0.17	1	30.92	Yes
Banzo(a)pyrene	4.270	Arith Mean		0.065		64.70	Yes
Benzo(b)fluoranthene	6.794	Arith Mean		0.15		45.29	Yes
Benzo(g,h,i)perviene	2.870	Artth Mean		0.076		57.76	Yes
Benzo(k)fluoranthene	2.402	Arith.Mean		[0.210]		11.44	Yes
Bis(2-ethylhexyl)phthalate	4.423	Arith.Mean		[0.210]		21.05	Yes
Carbazola		Arith Mean	•	[0.210]		4.36	Yes
Chrysene		Artth Mean		0.075	8	59.73	Yes
Di-n-butyiphthalate	0.180	Artth Mean		0.063		2.86	Yes
Dibenz(a,h)anthracene	1.004	Arith.Mean		[0.210]		4.78	Yes
Diethylphthalate	0.558	Arith Mean		[0.210]		2.66	Yes
Dibenzofuran		Arith.Mean		[0.210]		6.82	Yes
Fluoranthene		Arith Mean		0.2		50.94	Yes
Fluorene		Artth.Mean	a an taon an	[0.210]	la tara s	5.38	Yes
Hexachlorobutadiena		Artth.Mean		[0.210]		6.28	Yes
Indeno(1,2,3-cd) pyrene		Arith.Mean		0.06		52.20	Yes
Phenanthrene	7.518	Arith.Mean		0.08		93.98	Yes
Pyrene	7.644	Artth.Mean		0,17		44.97	Yes
Total PAH	72.27			1.047		69.03	Yes

NOTES:

(1) Soil criteria suggested by U.S. EPA Region III staff.

(2) Values in brackets represent one half the standard quantitation limit where no detects were reported.

14

(3) Eliminated from screening process based on ubiquity and abundance in the environment as an earth element.

(4) Eliminated from screening process based on biological significance as a nutrient.

(5) Eliminated from screening process based on BKGD ratio <1.0.

(6) Eliminated from screening process based on comparison to average U.S. soil concentrations. SOIL2-WQ1 Version 3.0

13-Jul-94

July, 1994

The secondary level evaluation for COCs in surface soils also considered the mean site concentrations against background concentrations. Based on the background comparison, the following compounds were removed from further evaluation: 4-methyl-2-pentatone, acetone, chloroform, and ethylbenzene. Silver had a background ratio of 1.05 which, when combined with its low frequency of detection (1/33), was sufficiently low to remove it from the list of secondary level COCs. These compounds were not considered further in the ecological risk assessment, All secondary level COCs in surface soil retained in the risk assessment for further evaluation are identified in Table 4-5.

4.4 Secondary Level Risk Evaluation of COCs in Groundwater

The results of the secondary level risk evaluation of the COCs detected in groundwater are presented in Table 4-6. Common earth elements typically found dissolved in groundwater were removed as part of the evaluation. Mean groundwater concentrations of these secondary level COCs were compared to chronic AWQCs developed by the U.S. EPA. A comparison of mean groundwater concentrations to background concentrations was also performed for the compounds which did not have chronic AWQC information available.

As shown in Table 4-6, aluminum, calcium, iron, magnesium, and sodium were removed as earth elements or as a nutrient. The EEQ was greater than 1.0 for all CPCs which had an environmental criterion. Barium, cobalt and nickel were present at concentrations below background levels and were thus eliminated from further consideration.

The secondary level risk evaluation identified the following compounds as COCs: cadmium, chromium VI, copper, cyanide, lead, manganese, mercury, silver, zinc, 2,4,6-trichlorophenol, 2,4-dichlorophenol, 2,4-dimethylphenol, 2-methylphenol, 2-nitrophenol, bis(2-ethylhexyl)phthalate, 4-methylphenol, di-n-butylphthalate, di-n-octylphthalate, naphthalene, phenol, 2,4,5-T, 2,4,5-TP, 2,4-D, 4,4'-DDE, alpha-BHC, dieldrin, endosulfan II, endrin aldehyde, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,2-dichloroethene, 2-butanone, acetone, benzene, bromoform, carbon disulfide, chlorobenzene, chloroethane, methylene chloride, and toluene. Therefore, these compounds are retained in the risk assessment for further analysis. All secondary level COCs which were retained for further evaluation are shown in Table 4-6.

4.5 Characterization of Potential Environmental Risk

R:\PUBS\PROJECTS\4920003\906.S4

The secondary level risk evaluation provides a preliminary, qualitative estimate of potential environmental risk due to the presence of COCs at the ORS. Environmental risk was established by calculation of an EEQ, based on comparison of compound concentrations to nationally-

ENSR

Table 4-6

Secondary Level Risk Assessment

Groundwater Screening Ohio River Site, Neville Island

Ecological Risk Assessment

	T		Chronic	Mean	Environ.	Ratio of	ſ <u></u>	
	Comparison	Stat. Origin	Freshwater	BKGD	Effects	Comp. to	Further	
	Value	of of	AWQC	Value (3)	Quotient	BKGD Value	Evaluated?	, i. i
Compound	(ug/L)	Comp. Value	(ug/L)	(ug/L)	(unitiess)	(unitiess)	Yes/No	· .
Aluminum		Arith.Mean	87	96900	324.727	0.29	No	(5)
Barium		Arith.Mean	1	1278.5		0.50	No	(4)
Cadmium (2)		Arith.Mean	1.1	[1.5] (a)	5.891	4.32	Yes	
Calcium		Arith.Mean		56900		4.01	No	(6)
Total Chromium (as VI)	B	Arith.Mean	11	165.5	3.682	0.24	Yes	
Cobalt	н — — — — — — — — — — — — — — — — — — —	Arith.Mean	1	97.3		0.66	No	(4)
Copper (2)		Arith.Mean	12	169	7.142	0.51	Yes	
Cyanide		Arith.Mean	5.2	[2.5] (a)	4.385	9.12	Yes	
Iron		Arith.Mean	1000	218500	102.697	0.47	No	(5)
Lead (2)		Arith.Mean	3.2	56.8	8.6 56	0.49	Yes	
Magnesium		Arith.Mean	\mathbf{F}	33000		1 .6 8	No.	(5)
Manganese		Arith.Mean	[1, 2, 2, 2, 2, 2]	8350	[A : 1 (A) 10	3.33	Yes	· •
Mercury	·····.	Arith.Mean	0.012	0.65	15.833	0.29	Yes	
Nickel	103.47	Arith.Mean	110	200.5	0.941	0.52	No	(4)
Silver (2)	4.57	Arith.Mean	0.12	· · · ·	38.083		Yes	
Sodium	99235.4	Artth.Mean	Γ is a set of I	21900	1	4.53	No	(5)
Zinc (2)	3088.8	Arith.Mean	110	519	28.080	5.95	Yes	
2,4,6-Trichlorophenol (1)	7092.5	Arith.Mean	970	[5.0]	7.312	1418.50	Yes	
2,4-Dichlorophenol (1)	1447.2	Arith Mean	365	[5.0]	3.965	289.44	Yes	•
2,4-Dimethylphenol	1019.2	Arith.Mean	1 7	[5.0]		203.84	Yes	· •
2-Methylphenol		Arith.Mean	1	[5.0]		522.62	Yes	
2-Nitrophenol (1)		Artth.Mean	150	[5.0]	5.756	172.68	Yes	
4-Methylohenol		Arith.Mean	1975) (B. J	15.01		699,66	Yes	• • •
Bis(2-ethylhexyl)phthalate (1		Artth.Mean	360	[5.0]	2.399	172.70	Yes	
Di-n-butylphthalate		Artth Mean	1	67		12.89	Yes	•
Di-n-octylohthalate		Arith.Mean	Lite tanda	[5.0]		172.66	Yes	
Naphthalene (1)		Arith.Mean	620	[5.0]	1.393	172.68	Yes	
Phenol (1)		Arith Mean	2560	[5.0]	1.301	665.86	Yes	
2.4.5-T		Artih.Mean	1. Second	[0.05]		1.80	Yes	la jak
2.4.5-TP		Artin Mean	r - 1992 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	[0.05]	[]	3.00	Yes	
2,4-D	4 A 100 March 2010 Col.	Artth.Mean		[0.05] (a)		78.20	Yes	
4,4'-DDE (1)		Artth.Mean	and a constraint of the	[0.05]	Colorador de la company	3.00	Yes	•
Alpha-BHC (1)		Arith.Mean	1	[0.025]		2.80	Yes	- 10 - 10
Dieldrin		Arith.Mean	0.0019	[0.05]	78.947	3.00	Yes	
Endosulfan II		Arith.Mean	0.056	[0.05]	2.500	2.80	Yes	÷.,
Endrin Aldehyde (3)		Arith.Mean	0.0023	[0.05]	60.870	2.80	Yes	
1,1,1-Trichloroethane		Artth Mean		[5.0] (a)		25.30	Yes	
1,1,2-Trichloroethane (1)		Arith.Mean	1	[5.0] (a)		25.42	Yes	
1.2-Dichloroethene (T) (1)		Arith.Mean	i	[5.0] (a)		25.42	Yes	
2-Butanone		Arith.Mean	1	[5.0] (a)		26.08	Yes	
Acetone		Artin Mean	ka sa	[5.0] (a)		27.54	Yes	
Benzene (1)		Arith.Mean	1	[5.0] (a)		214.94	Yes	
Bromoform		Artth.Mean	유민이지 않을	[5.0] (a)		194.92	Yes	
Carbon Disulfide		Arith.Mean	P osta na se	[5.0] (a)		26.06	Yes	
Chlorobenzene (3)	127.1	Arith.Mean	50		2.542	25.42	Yes	
		Anth.Mean		[5.0] (a)	E.UTC	25.48	Yes	•
Chloroethane		Ann.Mean Artth.Mean	la per gran gr	[5.0] (a)	Later server	25.40	Yes	
Methylene Chioride				[5.0] (a)		25.38	Yes	
Toluene (1)	126.9	Arith.Mean	L	[5.0] (a)	<u> </u>	20.00	163	

NOTES:

Insufficient data to develop criteria. Value presented is the LOAEL.
 Criteria are hardness dependent. Value presented is for a minimum measured hardness of 65 mg/L.

(3) Values in brackets represent one-half the standard quantitation limit where no detects were reported.

(4) Eliminated from screening process based on BKGD ratio <1.0.

(5) Eliminated from screening process based on ubiquity and abundance in the environment as an earth element.

4-14_

AR302500

(6) Eliminated from screening process based on biological significance as a nutrient.

(a) Background concentration represents the minimum value.

recognized criteria such as the AWQCs or ER-L/ER-M sediment guidance values. These criteria were supplemented with a few soil criteria suggested by U.S. EPA Region 3.

ENSR

July, 1994

To interpret the significance of these EEQ values, it is useful to classify the values into those associated with low and high potential environmental risks. Guidance from U.S. EPA (U.S. EPA, 1988) indicates the hazard quotient values less than 10 are considered indicative of possible environmental risk, while quotients greater than 10 are considered indicative of probable environmental risk. This is consistent with U.S. EPA Region 3 environmental risk assessment guidance.

For the purposes of this characterization, EEQs based on conservative criteria (e.g., chronic AWQCs, U.S. EPA Region 3 criteria) for CPCs in surface water, soil, and groundwater were considered indicative of possible environmental risks if they were less than 10 and were considered of probable environmental risk if they are greater than 10. This system had to be adjusted slightly with regard to sediments compared to ER-M. In this case EEQs were considered indicative of possible environmental risks if they were less than or equal to 1.0 and were considered probable environmental risk if they were greater than 10. Based on this classification system, potentially problematic compounds were identified in each of the relevant media.

For surface water in the main channel, the EEQ for mercury was indicative of probable risk, while the copper EEQ indicated possible environmental risk (Table 4-1). The high EEQ value for mercury reflects the environmental concern due to the bioaccumulative properties of this compound. Mercury was detected in 2 of 5 samples in the main channel and the mean mercury level is 3.5 times background. Copper was detected in 3 of 5 samples from the main channel and the mean copper level was approximately 11 times background.

No environmental risks were predicted for surface water in the back channel due to no identified secondary level COCs (Table 4-2).

For sediments in the main channel, there were 8 compounds with EEQs indicative of probable risk, while 14 compounds has EEQs which indicated possible environmental risk (Table 4-3). The CPCs with EEQs which indicated probable environmental concern included two metals (nickel, zinc) and six PAHs (2-methylnaphthalene, acenaphthene, benzo(a)anthracene, dibenz(a,h)-anthracene, fluorene, and phenanthrene. The secondary level COCs with EEQs which indicated possible environmental concerns included copper, lead, mercury, alpha-chlordane, gamma-chlordane, total PCBs, dieldrin, anthracene, benzo(a)pyrene, chrysene, fluoranthene, naphthalene, pyrene, and total PAHs. There were 14 compounds which had neither an AWQC nor an ER-M value available to evaluate the potential environmental risk.

4-15

AR302501

July, 1994

AR302502

For sediments in the back channel, there were 14 compounds with EEQs indicative of probable risk, while 7 compounds has EEQs which indicated possible environmental risk (Table 4-4). The secondary level COCs with EEQs which indicated higher environmental concern included a metal (nickel) and thirteen PAH (2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene, and total PAHs. The secondary level COCs with EEQs which indicated possible environmental concerns included copper, lead, mercury, zinc, gamma-chlordane, total PCBs, and dieldrin. There were 20 compounds which had neither an AWQC nor an ER-M value available to evaluate the potential environmental risk.

Assessment of the risk potential for secondary level COCs in the site soils indicates that only one COC was identified as being of probable risk (mercury) and four secondary level COCs were identified as being of possible risk (arsenic, lead, manganese, and zinc). This short list is indicative of the general lack of acceptable soil criteria which can be used to estimate ecological risk (Table 4-5). There were 61 compounds for which no ecotoxicological criteria were available to evaluate their potential environmental risk.

Groundwater COCs were identified by comparison of groundwater mean values to chronic AWQCs. Based on this conservative comparison, there were five compounds with EEQs indicative of probable risk, while 12 compounds had EEQs which indicated possible environmental risk (Table 4-6). The secondary level COCs with EEQs which indicated probable environmental concern included mercury, silver, zinc, dieldrin, and endrin aldehyde. The secondary level COCs with EEQs which indicated possible environmental concerns included cadmium, copper, cyanide, lead, 2,4,6-trichlorophenol, 2,4-dichlorophenol, 2-nitrophenol, bis(2-ethylhexyl)phthalate, naphthalene, phenol, endosulfan II, and chlorobenzene. There were 22 compounds for which no ecological criteria were available to evaluate the potential environmental risk.

4.6 Uncertainty Analysis

The secondary level risk evaluation provides a preliminary estimate of potential environmental risk. It is necessary to consider the limitations and uncertainty which accompany this estimate. These limitations include the site sampling effort, data availability, site characteristics, and other factors. The uncertainty portion includes the applicability of many of the assumptions which underlie ecological risk assessment, the available ecotoxicological database, extrapolation of risk to populations and communities, etc. These limitations and assumptions are discussed below.

A considerable amount of effort was expended in characterizing the ORS and its environment (ENSR, 1994) including descriptions of the habitats of interest and biota. However, some

4-16

July, 1994

AR302503

limitations in data collection and sampling effort can be considered. For the purposes of the secondary level risk evaluation, these limitations include:

- the number of water and sediment samples taken in the main channel and back channel was limited;
- the number of background reference samples taken for all media was limited to those agreed to by U.S. EPA Region 3; and
- information on the sediment quality in locations upstream from the ORS are limited to those collected during the RI.

There are a number of assumptions that can lead to uncertainty in an ecological risk assessment. Due to the preliminary nature of the secondary level risk evaluation, many of these assumptions are conservative and protective. Some of the major sources of uncertainty that are associated with the secondary level risk evaluation include:

- the AWQCs used to assess water quality may be underprotective or overprotective of the actual species living in the Ohio River in the vicinity of the ORS. The AWQC also assume continuous exposure to biota which is not realistic for transitory fish species;
- the AWQCs do not take into account the bioavailability of the various compounds (e.g., no water-effects ratio is used) (U.S. EPA, 1994);
- the use of ER-Ls and ER-Ms are inherently conservative as the underlying data distribution is biased toward data from marine sediments and biota, which may be more sensitive than freshwater biota;
- the origin of the secondary level COCs in the surface water and sediments can not be determined reliably due to the common nature of the COCs and the large number of potential sources, both present and historical;
- the lack of available soil criteria prevents effective screening and assessment of potential ecological risk for many soil secondary level COCs;
- background reference samples may not be representative of the local conditions;
- secondary level COC concentrations in groundwater may not be predictive of the potential water quality of the eventual discharge; and

no site-specific factors are taken into account such that potential mitigating factors (e.g., organic carbon content) are considered.

These limitations and uncertainties must be considered when assessing the confidence associated with statements of potential ecological risk.

4.7 Summary

Based on the results of the secondary level risk evaluation and risk characterization, a qualitative assessment of potential environmental risk was made. This assessment identified secondary level COCs whose EEQs indicated that they could represent possible risk (low level of concern) or probable risk (moderate to high level of concern). The findings of the secondary level risk evaluation are discussed below for each medium.

4.7.1 Surface Water

The surface water evaluation indicates probable concern with mercury and possible concern with copper in the main channel. Mercury is of potential greater concern due to its bioaccumulative properties and possible transfer via the food chain. There were no secondary level COCs identified in the back channel surface water.

4.7.2 Sediments

The results of the secondary level risk evaluation indicate concern (based on the number of exceedances of ER-M values) regarding potential ecological effects due to the presence of heavy metals and PAHs in the sediments in the main channel. The presence of these compounds could potentially affect aquatic organisms, particularly aquatic benthic communities which are less mobile than fish species. To further evaluate the potential environmental risks, comparison of sediments to appropriate site-specific sediment criteria and upstream background values is recommended.

Interestingly, one of the highest concerns in the main channel sediments was associated with dibenz(a,h)anthracene (2.89 times ER-M value). Careful inspection of the sediment data indicates that this high EEQ is somewhat misleading. Dibenz(a,h)anthracene was detected in two samples in the main channel (including one duplicate but not the other) which were, respectively, above and below the ER-M. In this case, the influence of inclusion of non-detects with 1/2 SQL greater than the maximum detect is evident. Similarly, there is a single zinc datum from NSD-2 (located upstream of outfall #1) of 5,170 μ g/l. This value is greater by an order of magnitude than the average of the rest of the samples and has considerable influence on the EEQ calculation.

Inspection of the list of secondary level COCs for the main and back channel sediments shows that they share most of the identified COCs. Based on higher EEQs, it appears that the concentrations of PAH in the back channel pose a greater potential environmental risk. Accordingly, the secondary level risk evaluation indicated a moderate to high level of concern regarding potential ecological effects in the sediments of the back channel. As noted above, the presence of these compounds could potentially affect aquatic benthic communities. To further evaluate the potential environmental risks, comparison of sediments to appropriate site-specific sediment criteria and upstream background values is recommended.

4.7.3 Soils

The secondary level risk evaluation initially indicates a low level of concern regarding environmental risks associated with ORS soils. However, this finding is based on assessment of just a few soil components, as the great majority of soil secondary level COCs have no criteria to evaluate their potential ecological effect. Due to a lack of soil criteria it is difficult to characterize the ORS as to its potential for adverse ecological effects without considering the site-specific risk assessment of representative (surrogate) species, which is presented in Appendix F.

4.7.4 Groundwater

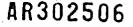
The secondary level risk evaluation indicated that groundwater contains a large number of COCs that could potentially be of risk to aquatic communities in the Ohio River. However, this groundwater is not immediately in contact with aquatic communities and reasonable scenarios for groundwater discharge would result in decreased COC concentrations. Therefore, it is judged that the results of the secondary level risk evaluation overestimate potential risk.

To evaluate the potential ecological risk, it is necessary to postulate an exposure pathway scenario which allows migration, discharge, and dilution of the groundwater with the Ohio River and to account for the scenario through modeled concentrations or by use of adjacent wells in the hypothetical path of groundwater discharge. Therefore, a site-specific risk assessment of groundwater by comparison of back channel water quality to appropriate criteria is recommended.

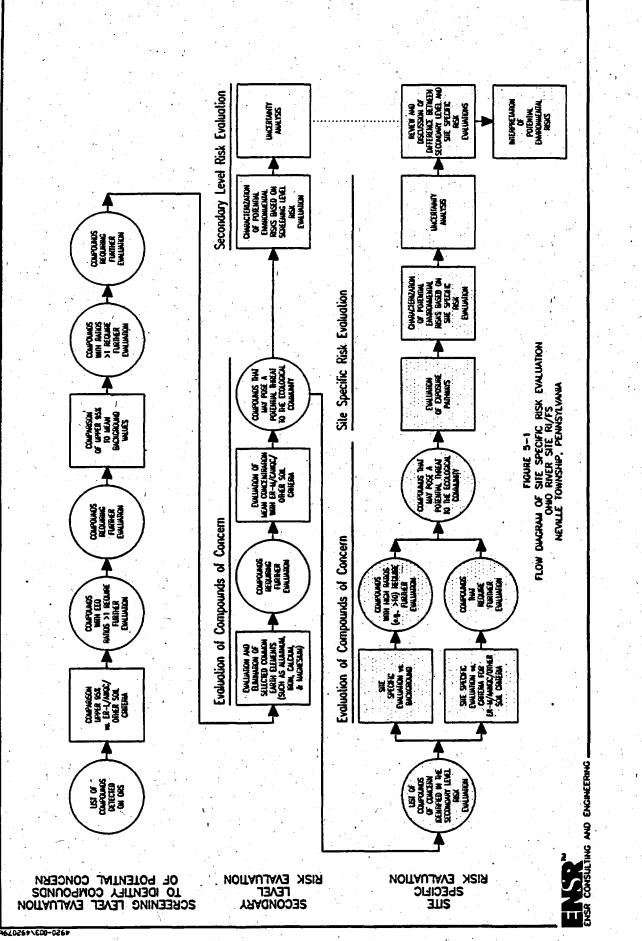
R:\PUBS\PROJECTS\4920003\906.S4

5.0 SITE-SPECIFIC RISK EVALUATION

In this section of the risk assessment, all compounds which were identified in the secondary level risk evaluation (Section 4.0) are further evaluated. This evaluation incorporates site-specific information on the secondary level COCs to select the list of site-specific COCs. Site-specific COCs which are identified in this evaluation are incorporated into a site-specific risk assessment using the semi-quantitative approach (Section 5.6). An outline of the activities undertaken at this evaluation stage are shown in Figure 5-1.


As part of the evaluation, site-specific information was used to further evaluate the COCs which emerged from the secondary level risk evaluation. Site-specific sediment benchmark criteria were developed using the equilibrium partitioning approach (U.S. EPA, 1993a) and channel-specific sediment organic carbon content. Groundwater was evaluated based on a site-specific exposure pathway assuming discharge of groundwater to the back channel.

Finally, best professional judgement was exercised in selecting constituents. Relative enrichment and frequency of detection were used to evaluate compounds. This approach allowed evaluation of candidate COCs for which there were no AWQC or ER-L/ER-M values to use as benchmarks of potential ecological risk. As noted previously, a high background ratio is not a direct indicator of potential ecotoxicological risk.


As a measure of the relative enrichment of a COC, the ratio of the comparison value to the background reference value was reconsidered. All compounds whose concentration did not exceed 10 times the background concentrations were removed from further consideration. The value of 10 times background level was chosen as a reasonable measure for selecting compound concentrations clearly above background levels. It represents a best professional judgement as to how to evaluate compounds which are moderately elevated on-site and which experience suggests will have a negligible effect on cumulative potential risk.

The following sections discuss the selection of site-specific COCs for each of the media evaluated. Section 5.1 presents the selection of the site-specific COCs for surface water, and Section 5.2 presents the selection of the site-specific COCs in sediments. Section 5.3 identifies the site-specific COCs in surface soils and Section 5.4 identifies the site-specific COCs in groundwater at the ORS. Compounds identified during the site-specific risk evaluation as site-specific COCs were evaluated further in the site-specific risk assessment (Section 5.6 and Appendix F). The site-specific risk assessment was used to quantify the potential ecological risk associated with site-specific COCs.

R:\PUBS\PROJECTS\4920003\906.S5

July, 1994

AR302507

5-2

5.1 Site-specific Risk Evaluation of COCs in Surface Water

No additional site-specific information was available for evaluation of the surface water. The use of site-specific hardness to derive site-specific water quality criteria was previously incorporated into the screening level risk evaluation as most conservative approach (at the request of U.S. EPA Region 3). The COCs identified by the secondary level risk evaluation (Section 4.0) were selected as the site-specific COCs for surface water. Therefore copper and mercury were identified as site-specific COCs for the main channel surface water. No site-specific COCs were identified for the back channel.

5.2 Site-specific Risk Evaluation of COCs in Sediments

Sediment compounds were evaluated separately for the main and back channels, which differ in sediment characteristics. U.S. EPA Draft Sediment Quality Criteria for the Protection of Aquatic Life were used for assessing dieldrin, acenaphthene, fluoranthene and phenanthrene (U.S. EPA, 1993b; 1993c; 1993e; 1993f). For other nonionic organic compounds, sediment benchmark values were calculated using the equilibrium partitioning approach presented in "Technical Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the Protection of Benthic Organisms by Using Equilibrium Partitioning" (U.S. EPA, 1993a).

The approved use of derived sediment criteria for nonionic organic compounds in sediments at a Superfund site has been established elsewhere (WDNR, 1990; 1992). For example, sediment quality criteria were developed and approved for the Little Menomonee River/Moss-American Superfund Site (WDNR, 1990) and for the Sheboygon River and Harbor Superfund Site (WDNR, 1992).

Sediment benchmark values were based on the available aquatic toxicity literature, the organic carbon partition coefficient, and the fraction organic carbon. The fraction organic carbon was calculated from data presented in the RI (ENSR, 1994). The average organic carbon content of main channel sediments was 2.0% and that for back channel sediments was 2.5%. The sediment quality criteria and calculated benchmark values are shown in Table 5-1 and 5-2. Due to the differences in organic carbon fractions, the criteria will differ slightly between main and back channels.

Compounds whose comparison value (95% UCL or maximum value, whichever was lower) exceeded the site-specific sediment quality criteria or benchmark values were included in the list of site-specific COCs. Sediment benchmark values were not derived for the metals since the equilibrium partitioning approach is not appropriate.

5-3

AR302508

July, 1994

 Table 5.1
 Site-Specific Evaluation

 Sediment Screening, Main Channel
 Ohio River Site, Neville Island

 Ecological Risk Assessment
 Ecological Risk Assessment

			Site-Specific	Environ.	include
	Comparison	Stat. Origin	Sed. Quality	Effecta	in in
	Value	of	Criteria	Quotient	Risk
Compound	(ug/kg)	Comp. Value	(ug/kg)	(unitiess)	Assessment?
Barlum	2.19E+05	Arith. Mean	NA		No (1)
Cobalt	2.86E+04	Arith. Mean	NA		No (1)
Copper	1.02E+05	Arith. Mean	NA NA		Yes
Cyanide	1.25E+04	Arith. Mean	NA	$\gamma \sim \gamma \sim \gamma$	No (1)
Lead	1.67E+05	Arith. Mean	NA		Yes
Mercury	4.40E+02	Arith. Mean	NA		Yes
Nickel	6.14E+04	Arith, Mean	NA	-	Yes
Selenium	9.00E+02	Arith. Mean	NA	· .	No (1)
Vanadium -	2.33E+04	Arith. Mean	NA		No (1)
Zinc	1,45E+08	Arith. Mean	NA	84. jan 1939	Yes
2,4,5-T	8.40E+01	Arith. Mean	2.20E+04	3.83E-03	No (2)
2,4,5-TP	1.72E+01	Arith. Mean	7.68E+03	2.24E-03	No (2)
2.4-D	1.72E+02	Arith. Mean	1.29E+04	1.33E-02	No (2)
Alpha-chlordane	4.52E+00	Arith. Mean	1.20E+01	3.75E-01	No (2)
Aroclor-1242	3.34E+01	Arith. Mean	1.48E+02	2.25E-01	No (2)
Aroclor-1248	3.08E+01	Arith. Mean	1.48E+02	2.08E-01	No (2)
Aroclor-1254	1.33E+02	Arith. Mean	1.48E+02	8.96E-01	No (2)
Aroclor-1260	4.23E+01	Arith. Mean	1.48E+02	2.85E-01	No (2)
Total PCBs	1.66E+02	Arith. Mean	1.48E+02	1.12E+00	Yes
Dieldrin	3.36E+00	Arith. Mean	2.20E+02	1.53E-02	No (2)
Endrin Aldehyde	3.36E+00	Arith. Mean	8.40E+01	4.00E-02	No (2)
Endrin Ketone	2.87E+00	Arith. Mean	8.40E+01	3.42E-02	No (2)
Gamma-chlordane	4.17E+00	Arith. Mean	1.20E+01	3.46E-01	No (2)
2-Methylnaphthalene	8.54E+02	Arith. Mean	7.69E+03	1.11E-01	No (2)+
Acenaphthene	7.75E+02	Arith. Mean	2.60E+03	2.98E-01	No (2)
Anthracene	5.18E+02	Arith. Mean	3.56E+03	1.46E-01	No (2)
Benzo(a)anthracene	1.70E+03	Arith, Mean	2.76E+03	8.16E-01	No (2)
Benzo(a)pyrene	1.39E+03	Arith. Mean	1.32E+05	1.05E-02	No (2)
Chrysene	1.02E+03	Arith. Mean	4.00E+08	2.55E-04	No (2)
Dibenz(a,h)anthracena	7.51E+02	Arith. Mean	8.60E+07	1.14E-05	No (2)
Fluoranthene	2.87E+03	Arith. Mean	1.24E+04	2.31E-01	No (2)
Fluorene	7.61E+02	Arith. Mean	1.46E+05	5.21E-03	No (2)
Naphthalene	7.15E+02	Arith. Mean	1.51E+03	4.73E-01	No (2)
Phenanthrene	1.78E+03	Arith, Mean	3.60E+03	4.94E-01	No (2)
Pyrene	2.43E+03	Arith, Mean	9.88E+03	2.46E-01	No (2)
Total PAHs	1.76E+04	Arith. Mean	2.48E+03	7.10E+00	Yes

5-4

AR302509

Notes:

(1) Eliminated from screening process based on BKGD ratio < 10.0
 (2) Eliminated from screening process based on EEQ < 1.0.

R:\risk\share\ors-rpt\sheets\tab5-1

18-Jul-94

ŝ

Table 5.2Site-Specific EvaluationSediment Screening, Back ChannelOhio River Site, Neville Island Ecological Risk Assessment

	Comparison	Stat. Origin	Site-Specific	Environ. Effects	include in
		. •	Sed. Quality		
	Value	of	Criteria	Quotient	Flisk
Compound	(ug/kg)	Comp. Value	(ug/kg)	(unitiess)	Assessment
Cobalt	3.38E+04	Arith. Mean	NA		No (1)
Copper	1.02E+05	Arith. Mean	NA		Yes
Dyanide	4.78E+03	Arith. Mean	NA	•	Yes
ead	9.55E+04	Arith. Mean	NA		Yes
Manganese	1,93E+06	Arith. Mean	NA		No (1)
Mercury	2.10E+02	Arith. Mean	NA		Yes
Nickel	7.33E+04	Arith. Mean	NA		Yes
Selenium	1.46E+03	Arith. Mean	NA S		No (1)
/enadium	2.30E+04	Arith. Mean	NA		No (1)
Zinc	3.60E+05	Artth. Mean	NA		Yes
2,4,5-T	9.66E+01	Artth: Mean	2.75E+04	3.52E-03	No (2)
2,4,5-TP	1.58E+01	Arith. Mean	9.59E+03	1.65E-03	No (2)
Aroclor-1242	3.18E+01	Arith. Mean	1.86E+02	1.71E-01	No (2)
Aroclor-1260	4.56E+01	Arith. Mean	1.86E+02	2.46E-01	No (2)
Total PCBs	7.74E+01	Arith. Mean	1.86E+02	4.17E-01	No (2)
Dieldrin	2.21E+00	Arith. Mean	2.75E+02	8.04E-03	No (2)
Endrin Ketone	2.63E+00	Arith. Mean	1.05E+02	2.50E-02	No (2)
Bamma-BHC (Lindane)	1.31E+00	Arith. Mean	2.16E+00	7.63E-01	No (2)
Bamma-chlordane	2.01E+00	Arith. Mean	1.51E+01	1.34E-01	No (2)
2-Methylnaphthalene	2.19E+03	Arith. Mean	9.61E+03	2.28E-01	No (2)
cenaphthene	1.84E+03	Arith. Mean	3.25E+03	5.66E-01	No (2)
Anthracene	2.53E+03	Artth. Mean	4.45E+03	5.69E-01	No (2)
Benzo(a)anthracene	5.03E+03	Artth, Mean	3.45E+03	1.46E+00	Yes
Benzo(a)pyrene	3.15E+03	Arith, Mean	1.65E+05	1.91E-02	No (2)
Benzo(b)fluoranthene	4.63E+03	Arith. Mean	5.50E+05	8.42E-03	No (2)
Benzo(a,h,i)perviene	2.11E+03	Arith, Mean	1.79E+05	1.18E-02	No (2)
Benzo(k)fluoranthene	3.21E+03	Arith, Mean	1.60E+06	2.01E-03	No 2
Bis (2-ethylhexyl) phthelate	1.48E+04	Arith Mean	2.72E+06	5.44E-03	No (2)
Carbazole	2.04E+03	Arith. Mean	NA	an a	No (3)
Chrysene	3.50E+03	Arith, Mean	5.00E+06	7.00E-04	No (2)
Di-n-octylphthalate	1.78E+03	Artth. Mean	NA		No (3)
Dibenz(a,h)anthracene	2.27E+03	Arith, Mean	8.25E+07	2.75E-05	No (2)
Dibenzofuran	2.20E+03	Arith. Mean	NA		Yes
Fluoranthene	8.23E+03	Arith, Mean	1.55E+04	5.31E-01	No (2)
Fluorane	2.19E+03	Arith. Mean	1.83E+05	1.20E-02	No (2)
ndeno(1,2,3-cd)pyrene	2.38E+03	Arith. Mean	5.20E+05	4.58E-03	No (2)
Naphthalene	2.12E+03	Arith. Mean	1.89E+03	1.12E+00	Yes
henanthrene	5.45E+03	Arith, Mean	4.50E+03	1.21E+00	Yes
Pyrene	7.20E+03	Arith. Mean	1.24E+04	5.83E-01	No (2)
Total PAHs	4.69E+04	Arith, Mean	3.10E+03	1.51E+01	Yes

Notes:

Eliminated from screening process based on BKGD ratio < 10.0.
 Eliminated from screening process based on EEQ < 1.0.
 Eliminated from screening process based on single detection.

R:\risk\share\ors-rpt\sheets\tab5-2

18-Jul-94

R:\PUBS\PROJECTSW920003\906.S5

July, 1994

Compounds for which no sediment criteria or values were available where examined with regard to their relative degree of enrichment and frequency of detection; a criterion of 10 times background was used to distinguish compounds which were considered relatively enriched. In addition, compounds which were only detected at low frequencies (e.g., only one detection in both main and back channel sediments) were eliminated.

5.2.1 Main Channel Sediment

Table 5-1 provides a comparison of the sediment compound concentrations to the sediment criteria or benchmark values. Compounds which had an EEQ greater than 1.0 included total PCBs and total PAHs.

Based on the consideration of relative enrichment, barium, cobalt, cyanide, selenium, and vanadium were eliminated from the list of site-specific sediment COCs.

Thus, the site-specific risk evaluation identified the following site-specific sediment COCs: copper, lead, mercury, nickel, zinc, total PCBs, and total PAHs. All site-specific COCs in the main channel sediments retained for inclusion in the site-specific risk assessment are identified in Table 5-1.

5.2.2 Back Channel Sediment

Table 5-2 provides a comparison of the sediment compound concentrations to the sediment criteria or benchmark values. Compounds which had an EEQ greater than 1.0 included benzo(a)anthracene, naphthalene, phenanthrene, pyrene, and total PAHs.

Based on consideration of relative enrichment, cobalt, manganese, selenium, and vanadium were eliminated from the list of site-specific sediment COCs. Based on a low frequency of detection (1 detected value), carbazole and di-n-octylphthalate were removed from the list of site-specific sediment COCs.

Thus, the site-specific risk evaluation identified the following site-specific sediment COCs: copper, cyanide, lead, mercury, nickel, zinc, benzo(a)anthracene, dibenzofuran, naphthalene, phenanthrene, and total PAHs. All site-specific COCs in the back channel sediments retained for inclusion in the site-specific risk assessment are identified in Table 5-2.

5-6

July. 1994

5.3 Site-specific Risk Evaluation of COCs in the Surface Soil

Table 5-3 provides a comparison of the mean compound concentrations in soils to the soil criteria provided by U.S. EPA Region 3 and background values. All compounds which exceeded soil criteria were included in the list of site-specific soil COCs. Best professional judgement was used to evaluate the reasonableness of inclusion as site-specific COCs of the remaining soil compounds. Relative enrichment and frequency of detection were used to eliminate compounds from the list of site-specific soil COCs.

Based on low relative enrichments, the following compounds were eliminated: 2,4,6-trichlorophenol, 2,4-dichlorophenol, 2,4-D, 4,4-DDD, 4,4'-DDE, Aroclor -1242, -1254, -1260, total PCBs, dieldrin, endosulfan II, endrin, endrin aldehyde, endrin ketone, heptachlor epoxide 1,2dichloroethene, benzene, methylene chloride, toluene, trichloroethene, 2-methylnaphthalene, acenaphthene, carbazole, dibenz(a,h)anthracene, dibenzofuran, and fluorene.

Compounds which were detected once or twice in the soil samples or whose frequency of detection was less than or equal to approximately 5% were removed from consideration as soil CPCs. This application is consistent with similar treatment of low frequency detected compounds for human health assessment at Superfund sites (U.S. EPA, 1989b). The compounds removed due to a low frequency of detection included phenol, endosulfan I, methoxychlor, toxaphene, acenaphthylene, di-n-butylphthalate, diethylphthalate, and hexachlorobutadiene.

Thus the site-specific risk evaluation identified the following site-specific soil COCs: arsenic, cyanide, lead, manganese, mercury, zinc, naphthalene, 2,4,5,T, 2,4,5-TP, 4'4-DDT, alpha-BHC, alpha-chlordane, beta-BHC, delta-BHC, 2,3,7,8-TCDD, lindane, gamma-chlordane, heptachlor, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, chrysene, dibenzofuran, fluoranthene, indeno-(1,2,3,c,d)pyrene, phenanthrene, pyrene, and total PAHs. All site-specific COCs in surface soil retained for the site-specific risk assessment are identified in Table 5-3.

5.4 Site-specific Risk Evaluation of COCs in the Groundwater

Evaluation of the site-specific risk of COCs detected in groundwater used consideration of sitespecific exposure pathways. One possible approach for evaluation of the candidate COCs would be the modeling of the groundwater discharge (assuming the maximum concentrations of compounds in groundwater) into a fraction of the flow volume typically found in the back channel of the Ohio River. This approach is sufficient to address the potential effects to free-swimming aquatic organisms; however, it would not identify potential effects to benthic organisms.

5-7

AR302512

Table 5-3 Site-specific Risk Assessment Surface Soil Screening Ohio River Site, Neville Island Ecological Risk Assessment

	Companies	Stat. Origin	Criteria	BKGD	Environ.	Ratio of	Further
	Comparison	Stat. Origin			Effects	Comp. to	
Company	Value	Comp. Value	Value (1)	Value (2)	Quotient (unitiess)	BKGD Value (unitiess)	Evaluation?
Compound	(mg/kg)			(mg/kg)		·····	(Yes/No)
Arsenic	10.71	Arith.Mean	10	8.3	1.07	1.29	Yes
Cyanide	13.09	Arith.Mean		[0.315]		41.54	Yes
Lead	67.70	Arith.Mean	50	36	1.35	1.88	Yes
Manganese	1602.64	Arith.Mean	600	1080	2.67	1.48	Yes
Mercury	0.52	Arith Mean	0.03	[0.065]	17.38	8.02	Yes
Zine	166.54	Arith.Mean	54	53	3.09	2.01	Yes
2,4,5-Trichlorophenol	0.4793	Arith.Mean		[0.210]	•	2.28	No (4)
2,4-Dichlorophenol	0.8154	Arith Mean	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	[0.210]	1. Star 1.	3.88	No (4)
Naphthalene	12.2299	Arith.Mean	an a	[0.210]		58.24	Yes
Phenoi	0.5774	Arith Mean		[0.210]		2.75	No (3)
2,4,5-T	0.1938	Arith.Mean		0.0125		15.50	Yes
2,4,5-TP	0.1462	Arith.Mean		0.0125		11.70	Yes
2,4-D	0.6927	Arith.Mean		0.125	l. the	5.54	No (4)
4,4'-DDD	0.0122	Arith.Mean		[0.00205]		5.95	No (4)
4,4'-DDE	0.0057	Arith.Mean		[0.00205]		2.78	No (4)
4,4'DDT	0.0403	Arith Mean		[0.00205]	the second sec	19.65	Yes
Alpha-BHC	0.0509	Arith Mean		[0.00105]		48.48	Yes
Alpha-chlordane	0.0252	Arith Mean		[0.00105]		24.00	Yes
Arochlor-1242	0.0546	Arith Mean		[0.0205]	}	2.65	No (4)
Arochlor-1254	0.0625	Arith.Mean	1	[0.0205]		3.05	NO (4)
Arochlor-1260	0.1085	Arith.Mean		0.027		4.02	No (4)
Total PCB's	0.2200	Arith.Mean		0.027		8,15	No (4)
Beta-BHC	0.0658	Arith.Mean		[0.00105]		62:48	Yes
Deita-BHC	0.0186	Arith Mean		[0.00105]		17.71	Yes
2,3,7,8-TCDD	6.88E-08	Arith.Mean				·	Yes
Dieldrin	0.0189	Arith.Mean	1	[0.00205]		9.22	No (4)
Endosultan I	0.0035	Arith Mean	l	[0.00105]	att i standar i se	3.43	No (3)
Endosulfan II	0.0083	Arith Mean		[0.00205]		4.05	No (4)
Endosulfan Sulfate	0.0080	Arith.Mean		[0.00205]		3.90	No (4)
Endrin	0.0056	Arith.Mean	2 - S 124	[0.00205]		2.73	No (4)
Endrin Aldehyde	0.0027	Arith.Mean		[0.00205]		1.32	No (4)
Endrin Ketone	0.0088	Arith Mean		. [0.00205]		4.29	No (4)
Gamma-BHC (Lindane)	0.1464	Arith Mean		[0.00105]		139.43	Yes
Gamma-chlordane	0.0440	Arith.Mean		0.00036		122.22	Yes
Heptachlor	0.0146	Arith.Mean		[0.00105]		13.90	Yes
Heptachlor Epoxide	0.0058	Arith.Mean		[0.00105]	自治中をつき	5.52	No (4)
Methoxychior	0.0483	Arith.Mean		[0.0105]	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	4.60	No (3)
Toxaphene	0.2355	Arith.Mean		[0.105]		2.24	No (3)
1,2-Dichloroethene (T)	0.0063	Arith.Mean		0.004		1.58	No (4)
Benzene	0.0072	Arith.Mean		[0.0065]		1.11	No (4)
Methylene Chloride		Arith.Mean		[0.0065]		1.08	No . (4)
Toluene	0.0075	Arith.Mean		0.004		1.88	No (4)
Trichloroethene	0.0080	Arith.Mean		[0.0065]		1.23	No (4)
2-Methylnaphthalene	1.7053	Arith.Mean	•	[0.210]	1	8.12	No (4)
Acenaphthene	1.0826	Arith.Mean		[0.210]		5.16	No (4)
Acenaphthylene	5 C	Arith.Mean		[0.210]		1.68	No (3)
Anthracene		Arith.Mean	l de la Carlo de Mai	[0.210]		10.62	Yes
Benzo(a)anthracene	-	Arith.Mean	1. · · · ·	0.17	li i sta 👳	30.92	Yes
Benzo(a)pyrene	4.2703	Arith.Mean	1	0.066		64.70	Yes
Benzo(b)fluoranthene		Arith.Mean	1	0.15	1	45.29	Yes
Benzo(g,h,i)perylens	2.8697	Arith.Mean		0.076		37.75	Yes
Benzo(k)fluoranthene	2:4018/	Arith.Mean	L	[0.210]		11,44	Yes
Bis(2-sthylhexyl)phthalate	4.4231	Arith.Mean		[0.210]		21.08	Yes
Carbazole	0.9155	Arith Mean		[0.210]	1	4.38	No (4)

R:\PUBS\PROJECTS\4920003\906.S5

5-8

AR302513

July, 1994

Table 5-3 Site-specific Risk Assessment Surface Soil Screening Ohio River Site, Neville Island Ecological Risk Assessment

Compound	Comparison Value (mg/kg)	Stat. Origin of Comp. Value	Criteria Value (1) (mg/kg)	BKGD Value (2) (mg/kg)	Environ, Effects Quotient (unitless)	Ratic of Comp. to BKGD Value (unitless)	Further Evaluation? (Yes/No)
Chrysene		Arith.Mean		0.075		59.73	Yes
Di-n-butylphthalate	0.1800	Arith.Mean		0.063		2.86	No (3)
Dibenz(a,h)anthracene	1.0036	Arith.Mean		[0.210]		4.78	No (4)
Diethylphthalate	D.5584	Arith.Mean		[0.210]		2.66	No (3)
Dibenzofuran	1.4324	Arith.Mean		[0.210]		6.82	No (4)
Fluoranthene	10.1877	Arith,Mean		0.2		50.94	Yes
Fluorene	1.1299	Arith.Mean		[0.210]		5.38	No (4)
Hexachlorobutadiene	1.3195	Arith.Mean		[0.210]	1. A	6.28	No (3)
Indeno(1,2,3-cd)pyrene	3.1321	Arith.Mean		0.06		52.20	Yes
Phenanthrane	7.5184	Arith Mean		0.08		93.98	Yes
Pyrene Total PAH		Arith.Mean Arith.Mean		0.17 1.047		44.97 69.03	Yes Yes

s i F

把干

NOTES:

(1) Soil criteria suggested by U.S. EPA Region'3 staff.

(2) Values in brackets represent 1/2 the standard quantitation limit where no detects were reported.

(3) Eliminated from screening process based on frequency of detection (approx. <5%).

15

(4) Eliminated from final list of CPCs based on BKGD ratio <10.0.

SOIL3-WQ1 Version 1.2

18-Jul-94

R:\PUBS\PROJECTS\4920003\906.55

5-9

July, 1994

Alternatively, the concentrations of the candidate COCs detected in wells located within the back channel of the Ohio River can be used to estimate the maximum concentrations to which benthic organisms might be potentially be exposed. This method of evaluating the groundwater has been indicated to be more acceptable to U.S. EPA Region 3. The latter method is discussed further in the following section.

5.4.1 Evaluation of Relevant Monitoring Wells

Site-specific evaluation of potential ecological risk due to groundwater exposure used the concentrations found within wells located in the back channel to characterize potential risks that aquatic biota might incur from groundwater discharge. Wells NERT-5 (M,D), NERT-6 (M,D), and NERT-7 (D) are located in the back channel of the Ohio River (Figure 2-5). Data from these wells are presented in Appendix Table A-5 and are used in this comparison. Compounds not detected in any sample from any of the wells are excluded from this assessment. The 95% UCL or the maximum observed compound concentration, whichever was lower, was compared with the chronic AWQC. Compounds present at concentrations that do not exceed the chronic AWQC were eliminated from further evaluation. Compounds eliminated from further evaluation include chromium and copper.

5.4.2 Groundwater Site-Specific COC Selection

As the final step in the site-specific COC selection process, a compound-specific evaluation of each of the remaining candidate COCs was performed. Groundwater quality from back channel wells is discussed below. The selection process results are shown in Table 5-4.

Acetone was detected at low levels in two samples and 2-butanone was detected in one sample from the wells located in the back channel of the Ohio River. During the data validation process, it was revealed that the continuing calibration for acetone and 2-butanone was outside acceptable QA/QC limits (greater than 50% difference from the initial calibration). Acetone and 2-butanone (two common laboratory contaminants) were therefore eliminated from further consideration in the risk assessment.

Chloroethane was detected in one sample from a back channel well. Because this compound was detected only once at a very low concentration, it was not considered to be a significant site-related compound and was eliminated from further consideration in the risk assessment.

2,4-Dimethylphenol was also detected in one of the groundwater samples. The maximum concentration (15 μ g/L) was much lower than the acute LOEL (2120 μ g/L); therefore, 2,4-dimethylphenol was excluded from this assessment.

5-10

Table 5-4

Site-specific Risk Assessment Groundwater Screening Ohio River Site, Neville Island Ecological Risk Assessment

Compound	Comparison Value (ug/L)	Stat. Origin of Comp. Value	Chronic Freshwater AWQC (ug/L)	Mean BKGD Value (3) (ug/L)	Environ. Effects Quotient (unitiess)	Ratio of Comp. to BKGD Value (unitiess)	Further Evaluated? Yes/No
Cadmium (2)	ND	Comp. Faue	1.1	[1.5] (a)	(0100033)	(CARUOSS)	No
Total Chromium (as VI)	6.1	Upper 95%	11	165.5	0.550	0.04	No
Copper (2)	4.0	Upper 95%	12	169	0.330	0.02	No
Oyanide	24.2	Upper 95%	5.2	[2.5] (a)	4.652	9.68	No
Lead (2)	ND		3.2	56.8			No
Manganese	19885	Artth, Mean	N I N	8350			No
Mercury	ND		0.012	0.65	itali ya s		No
Silver (2)	7.41	Upper 95%	0.12		61.750		No
Zinc (2)	129.0	Upper 95%	110	519	1.172	0.25	No
2.4.6-Trichlorophenol (1)	ND		970	[5.0]			No
2,4-Dichlorophenol (1)	ND		365	[5.0]			No
2,4-Dimethylphenol	8.5	Upper 95%		[5.0]		1.70	No
2-Methylphenol	3.0	Maximum		[5.0]	ansa a dan sa da	0.60	No
2-Nitrophenol (1)	ND		150	[5.0]			No
4-Methylphenol	7.6	Upper 95%		[5.0]		1.53	No
Bis (2-ethylhexyl) phthalate (1)	ND		360	[5.0]	an start		No
Di-n-butylohthalate	ND			67			No
Di-n-octylohthalate	ND	옷 안 문 것 같은		[5.0]			No
Naphthelene (1)	ND	un ener di Generi di Li.	620	[5.0]			No
Phenol (1)	ND		2560	[5.0]			No
2.4.5-T	ND	1. A.		[0.05]			No
2.4.5-TP	ND			[0.05]			No
2,4-D	ND			[0.05] (a)			No
4,4'-DDE (1)	ND			[0.05]			No
Alpha-BHC (1)	ND			[0.025]			No
Dieldrin	ND	•	0.0019	[0.05]			No
Endosulfan II	ND		0.056	[0.05]			No
Endrin Aldehyde (3)	ND		0.0023	[0.05]			No
1,1,1-Trichloroethane	ND			[5.0] (a)			No
1,1,2-Trichloroethane (1)	ND ND			[5.0] (a)			No
1,2-Dichloroethene (T) (1)	ND			[5.0] (a)			No
2-Butanone	7.5	Upper 95%		(5.0) (a)	P	-1.50	No
Acetone	14.5	Upper 95%		[5.0] (a)		2.90	No
Benzene (1)	17.9	Upper 95%		[5.0] (a)		3.58	No
Bromoform	ND			[5.0] (a)			No
Carbon Disulfide	ND			[5.0] (a)			No
Chlorobenzene (3)	ND		50	[5.0] (a)		1	No
Chloroethane	16.0	Upper 95%		[5.0] (a)		3.20	No
Methylene Chloride	ND			[5.0] (a)	1. 2.	1	No
Toluene (1)	ND			[5.0] (a)	· · · · · · · · · · · · · · · · · · ·		No

4

10

NOTES:

Insufficient data to develop criteria. Value presented is the LOAEL.
 Criteria are hardness dependent. Value presented is for a minimum measured hardness of 65 mg/L.

(3) Values in brackets represent one-half the SQL where no detects were reported. R:\risk\share\ors-rpt\sheets\tab5-4

18-Jul-94

R:\PUBS\PROJECTS\4920003\906.S5

2-Methylphenol was not observed above the method detection limit in any of the groundwater samples from back channel wells. An estimated value of 3.0 μ g/L was reported for one of the wells. No toxicity data were found for 2-methylphenol; however, the estimated value was much lower than the acute LOEL (2120 μ g/L) reported for 2,4-dimethylphenol, and 2-methylphenol was excluded from this assessment based on its presumed similar toxicity.

ENSR

July, 1994

4-Methylphenol was not observed above the method detection limit in any of the groundwater samples from these wells. An estimated value of 10 μ g/L was reported for one of the wells under the back channel of the Ohio River. No toxicity data were found for 4-methylphenol, but the estimated value was much lower than the acute LOEL (2120 μ g/L) reported for 2,4-dimethylphenol, and 4-methylphenol was excluded from this assessment based on its presumed similar toxicity.

Manganese was detected in the back channel wells at concentrations above background. No AWQC value is available for manganese. Toxicity information from the AQUIRE database indicates LC 50s for fish, ranging from 2,000,000 μ g/l to 75,000 μ g/l (Schweiger, 1957). A NOEL value of 15,000 μ g/l has been established for a crustacean (Schweiger, 1957). The average manganese concentrations was 19,885 μ g/l. Manganese in the groundwater is likely to be less soluble under oxidizing conditions (i.e., in surface water), and dilution will occur as the groundwater is discharged into the river. Based on these considerations, manganese was eliminated from further consideration.

Cyanide was detected in the deep sample from one of the wells located in the back channel (i.e., NERT-5 screened approximately 23 feet below the river bed) but not in the other five wells. The mean concentration of cyanide was 13.4 μ g/L. U.S. EPA (1985a) concluded from the data presented in the AWQC document that invertebrate species were less sensitive to cyanide than vertebrate species. Chronic life cycle toxicity tests were reported (U.S. EPA, 1985a) for isopods (34.06 μ g/L) and amphipods (18.33 μ g/L). Only one out of nine data points (from a deep well) exceeded these values. The concentration of cyanide from the mid-depth screen of that well was below the lower toxicity value. Six out of nine data points were below the lower life cycle toxicity test will be observed in benthic organisms at these concentrations. Moreover, the depth of elevated cyanide levels (i.e., 23 ft.) is many feet below the expected zone of typical benthic organisms. Cyanide was, therefore, eliminated from further consideration in the risk assessment.

Silver was detected in one groundwater sample. The maximum concentration of silver (14.8 μ g/L) was greater than the acute and chronic AWQCs for silver. The maximum concentration of silver was observed at the deep-depth screen from one well (NERT-6). In another round of sampling

5-12

AR302517

from the same well and the same depth, silver was not detected at the method detection limit of $4 \mu g/l$. Groundwater samples taken from shallower depths in the same well were also below the detection limit for silver. Silver was not detected in any of the other samples taken from these wells; therefore, silver was excluded from this assessment.

Zinc was detected in three of the groundwater samples from back channel wells. Even though the environmental effects quotient was slightly greater than 1 (i.e., 1.17), zinc was eliminated from further consideration in this risk assessment because mean background concentrations were much greater than the 95% UCL back channel well concentrations (519 μ g/L in background well versus 129 μ g/L in back channel wells).

Benzene was detected in one groundwater sample. The maximum concentration of benzene (44 μ g/L) was much lower than the acute LOEL (5300 μ g/L), and benzene was excluded from this assessment.

Based on the conservative evaluation presented above, none of the compounds evaluated above were included as site-specific COCs for groundwater in the ecological risk assessment.

5.5 Evaluation of Exposure Pathways

The site-specific level risk evaluation provides a list of COCs for surface water (both main and back channels), for sediments (both main and back channel), and soil (Table 5-5). The general relevant exposure pathways are described in Section 2.2. Exposure pathways which were relevant to specific representative species are fully described in Appendix F.

5.6 Characterization of Potential Environmental Risks

This section discusses the potential for adverse ecological effects for those compounds that were selected as site-specific COCs from the site-specific risk assessment. The site-specific COCs evaluated in the surface waters and sediments of the Ohio River are discussed in Section 5.6.1 and the site-specific COCs to which terrestrial receptors might be exposed are discussed in Section 5.6.2.

5.6.1 Aquatic Risk Analysis

The potential for ecological risks to occur in the surface water and sediments of the Ohio River was assessed for site-specific COCs. The surface water and sediment compounds were selected using compound concentrations, relevant criteria or guidelines, and toxicity benchmarks as described in Sections 3.0 and 4.0. Using this approach, all of the CPCs were analyzed for the

R:\PUBS\PROJECTS\4920003\906.S5

TABLE 5-5

Site-Specific COCs for ORS Identified By Medium

			Surface	e Water	Sedir	nents	
	Compound	Surface Soil	Main Channel	Back Channel ¹	Main Channel	Back Channel	Ground- water ²
METALS	Arsenic	•					
	Copper		•		•	•	
	Cyanide	•				•	
	Lead	•			•		
	Manganese	•					
	Mercury	•	•		•	•	1.1
	Nickel		i -	•	•	•	
	Zinc	•			•	•	
HERBICIDES	2,4,5-T	•					
	2,4,5-TP	•		·			
PESTICIDES/PCBs	4,4'-DDT	,					
	Alpha-BHC	•					
	Total PCBs				•		
•	Beta BHC	•			•		
	Delta BHC	. •	-				
	Gamma-BHC (Lindane)	•				•	
	Alpha Chlordane	•			•		
	Gamma-Chlordane	•			•		
	Heptachlor	•			· · ·		

TABLE 5-5

Site-Specific COCs for ORS Identified By Medium

			Surface	e Water	Sedir	nents	
	Compound	Surface Soll	Main Channei	Back Channel ¹	Main Channel	, Back Channel	Ground- water ²
SVOCs	Anthracene						
	Benzo(a)Anthracene	•	•			•	
	Benzo(a)Pyrene	•	•				
	Benzo(b)Fluoranthene	•					
	Benzo(k)Fluoranthene	•			•		
	Benzo(g,h,l)Perylene	•					
	Bis(2-Ethylhexyl)Phthalate	•					(
SVOCs Cont.	Chrysene	•				and a second sec	
	Dibenzofuran		•			•	
	Fluoranthene	•					
	Indeno(1,2,3-cd)Pyrene	•					
	Naphthalene	•	•			•	
•	Phenanthrene					•	
	Рутепе	•					
	Total PAH	•			tar 🌒 e a e		
DIOXIN	2,3,7,8-TCDD				-		

547466TB.DFM, 4920-003-906

5-15

July, 1994

screening level risk evaluation, and only those compounds which exceeded the first screening criteria were further evaluated in the secondary level risk evaluation. The results of the site-specific assessment approach to the aquatic risk analysis are described below.

5.6.1.1 Surface Water

The potential for ecological risks to occur in the surface water of the back channel of the Ohio River was assessed using the following approach. The toxicity quotient method (U.S. EPA, 1988) was used in the surface water level analyses to identify the potential for ecological risks in the surface water environment. A toxicity quotient is calculated by dividing an estimated environmental concentration of a compound by a compound-specific benchmark concentration. The estimated environmental concentration was the measured surface water concentration. The toxicity concentration may be a criteria value or a species-specific value determined from the literature. The equation used to derive the toxicity quotient is shown below.

Toxicity quotient (unitless) = estimated environmental concentration (µg/I) + toxicity benchmark concentration (µg/I)

The toxicity concentrations used in the site-specific aquatic risk analysis were AWQCs or surface water toxicity benchmarks for freshwater chronic exposure. It was conservatively assumed that aquatic species inhabiting the back channel of the Ohio River will be chronically exposed to the mean compound concentrations in the surface water.

The toxicity quotient was interpreted as the likelihood that an environmental concentration of a compound may cause adverse ecological effects. The calculated toxicity quotients were evaluated according to U.S. EPA guidance (U.S. EPA, 1988) which states that an environmental compound concentration generating a toxicity quotient of less than 0.1 is considered to be of "no concern," a toxicity quotient calculated between 0.1 and 10 is interpreted as of "possible concern," and a concentration producing a toxicity quotient greater than 10 is expressed as of "probable concern." Further, U.S. EPA Region 3 guidance indicates quotients greater than 1.0 indicate potential risk, quotients higher than 10 are considered of moderately high risk, and those above 100 are considered of extreme risk.

Section 3.1 provides a conservative screening level risk evaluation of CPCs in surface waters. Most of the compounds were either below AWQCs or not different from background values and were excluded from this assessment. Copper and mercury were retained and further evaluated in an additional analysis. Mercury was only detected in two of the main channel surface water samples and none of the back channel samples.

5-16

AR302521

The results of the screening level risk evaluation indicated a high toxicity quotient for mercury and copper. This conservative screening applied the chronic AWQC, derived to be protective of many sensitive species, including many coldwater species such as trout or salmon.

The Ohio River is a warmwater resource. Therefore, as a secondary analysis, coldwater species were excluded from the data used to derive the chronic toxicity benchmark. This application is part of the approach used in producing a site-specific water quality criteria. The surface water chronic toxicity benchmark represents the lowest reported chronic toxicity value of the available toxicity data for the lifestages of species that are known to or are likely to inhabit the surface water environment of the Ohio River near the ORS. Application of the surface water chronic toxicity benchmarks provides a comparison which is more representative of the biota in the Ohio River than is the AWQC which is designed to protect a large set of geographically-diverse species, some of which may not occur in the Ohio River.

The results of this analysis for copper and mercury are presented in Table 5-6. The upper 95% UCL of the compound concentrations measured in the surface water were compared with the surface water chronic toxicity benchmarks derived from the literature. The 95% UCL of mercury data was calculated from all of the data for mercury. Eleven measurements were made for mercury. Nine of these eleven data points were non-detects at a sample detection limit of 0.2 μ g/l.

As shown in Table 5-6, both the fish receptor and the sediment invertebrate toxicity quotients for copper exceed 0.1. Both of the calculated ratios are at the low to moderate end of the range classified by U.S. EPA as of "possible concern" (U.S. EPA, 1988). Both of the toxicity quotients calculated for mercury were near or below 0.1. These ratios are classified by U.S. EPA as being of "no concern" (U.S. EPA, 1988). This analysis shows no potential for adverse effects to aquatic receptors from mercury and very low potential for adverse effects to aquatic receptors from copper.

5.6.1.2 Sediments

R:\PUBS\PROJECTS\4920003\906.S5

The potential for ecological risks to occur in the sediments of the main and back channels of the Ohio River due to compounds potentially originating from the ORS was also assessed. Guidance sediment values developed for the NOAA National Status and Trends Program (Long and Morgan, 1990; Long and MacDonald, 1992) were used to evaluate the potential for ecological risks to occur in the sediment habitat of the Ohio River. A screening level risk evaluation was conducted using the ER-L values presented in NOAA Technical Memorandum NOS OMA 52 (Long and Morgan, 1990) and in Long and MacDonald (1992).

5-17

	ent face orate aty ent Ref.	2.01E+00 3 1.75E-02 4		•	
	Invert Sediment ator Sub-surface p Invertebrate Anmark Toxicity (/) Quotient	1.63E+01 2.01 2.00E+01 1.7			
	Sub-surface Invert Surface Water r Chronio Toxicity Benchmark Value (ug/l)				
	Fish Receptor Toxicity Ref. Quotient	1 1.13E+00 2 6.60E-02	GC document AWGC document 2 document	RN:01	
tin and the second s	Fish Receptor Surtace Water Chronic Toxicity Benchmark Value (ug/i) Re	2.90E+01 1 5.30E+00 2	ilic AWOC document. chemical-specific AW om chemical-specific / hemical-specific AWOC		
LIATION, MAIN CHANNE LLE TOWNSHIP ESSMENT	FI Surtace Si Water Si Maan Toxi Conc. (ugii)	3.28E+01 3.50E-01	Notes: 1 = chronic value for bluegill from chemical-specific AWOC document. 2 = chronic value for dipteran midge larvee from chemical-specific AWOC document. 3 = chronic value for largemouth bass embryo from chemical-specific AWOC document. 4 = acute value for dipteran midge larvee from chemical-specific AWOC document.	18-Jui-94	
TABLE 5-6 SURFACE WATER EVALUATION, MAIN CHANNEL OHIO RIVER SITE, NEVILLE TOWNSHIP ECOLOGICAL RISK ASSESSMENT	COMPOUND	COPPER MERCURY	Notes: 1 = chronic value for bluegill from chamical-specific AWOC document. 2 = chronic value for dipteran midge larvae from chemical-specific AWOC document 3 = chronic value for largemouth bass embryo from chemical-specific AWOC document. 4 = acute value for dipteran midge larvae from chemical-specific AWOC document.	5-6/vers.1	•

R:\PUBS\PROJECTS\4920003\908.S5

5-18

AR302523

ENSR

July, 1994

Based on the screening level risk evaluation, many CPCs were either above the ER-L values or greater than background concentrations (Table 3-3). The identified candidate CPCs were further evaluated in the secondary level risk evaluation.

¥ 🖡

The arithmetic means of the measured sediment concentrations were compared against the available NOAA ER-Ms (Tables 4-3 and 4-4) for compounds that exceeded the screening criteria described in Section 3.2. The results of the comparisons led to the selection of secondary level COCs for the main and back channel sediments. In addition, site-specific sediment benchmarks were derived and compared to mean concentrations (Tables 5-1 and 5-2).

Table 5-7 shows the site-specific sediment COCs for the main channel. The table compares the sediment mean concentration to ER-L/ER-M values for the metals, or to site-specific sediment criteria/benchmarks for other site-specific COCs. The following site-specific COCs were identified as of possible concem: copper, lead, mercury, nickel, zinc, total PCBs, and total PAHs. Of these, copper, lead, mercury, total PCBs and total PAHs exceed their ER-L values but not their ER-M values. According to the NOAA guidance for the interpretation of the ER-L/ER-M comparison, because some of the ER-L values were exceeded; however, none of the ER-M values were exceeded, it is concluded that the potential for adverse biological effects from these compounds in the Ohio River is low.

Both nickel and zinc exceed the respective ER-M values and thus show greater potential for possible adverse ecological effect. As noted earlier, the zinc value is affected by the unusually high zinc content in one sample (NSD-2). Nickel is more evenly distributed in the sediment.

Table 5-8 shows the list of site-specific sediment COCs for the back channel. The following sitespecific COCs were identified as of possible concern: copper, lead, mercury, and zinc. These compounds exceeded their ER-L values but not their ER-M values which indicates that the potential for adverse ecological effects from these compounds is low.

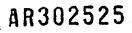
Sediment compounds in the back channel exceeding the ER-M values are nickel, benzo(a)anthracene, naphthalene, phenanthrene and total PAHs. It should be noted that the sitespecific sediment quality criteria are greater than the ER-M. For example, phenanthrene has a sediment quality criterion of 4500 μ g/kg, while the corresponding ER-M is 1500 μ g/kg. Inspection of the toxicity quotient derived for the ER-Ls and site-specific sediment criteria or benchmark values indicate that most of the toxicity quotients are near the mid-range of quotients associated with "possible concern" status. Only total PAH is indicated as being of probable concern.

5-19

AR302524

July, 1994

TABLE 5-7 SEDIMENT EVALUATION, MAIN CHANNEL OHIO RIVER SITE, NEVILLE TOWNSHIP ECOLOGICAL RISK ASSESSMENT


		Sediment				
COMPOUND	Sediment Mean Conc. (ug/kg)	Benchmark (ug/kg)	ື	Toxicity Quotient	ER-M (1 (ug/kg)) Toxicity Quotlent
COPPER	1.02E+05	3.40E+04	•.	3.00E+00	2.70E+05	3.78E-01
LEAD	1.67E+05	4.67E+04	-	3.58E+00	2.23E+05	7.49E-01
MERCURY	4.40E+02	1.50E+02		2.93E+00	7.10E+02	6.20E-01
NICKEL	6.14E+04	2.09E+04	• .	2.94E+00	5.16E+04	1.19E+00
ZINC	1.45E+06	1.50E+05		9.67E+00	4.10E+05	3.54E+00
TOTAL PCBs	1.66E+02	1.48E+02	(2)	1.12E+00	1.80E+02	9.22E-01
TOTAL PAHs	1.76E+04	2.48E+03	(2)	7.10E+00	4.48E+04	3.93E-01

(1) ER-L and ER-M values are taken from Long and Morgan, 1990; Long and MacDonald, 1992. (2) Derived site-specific criteria or benchmark.

5-7/vers. 1

R:\PUBS\PROJECTS\4920003\906.S5

18-Jul-94

5-20

TABLE 5-8 SEDIMENT EVALUATION, BACK CHANNEL OHIO RIVER SITE, NEVILLE TOWNSHIP ECOLOGICAL RISK ASSESSMENT

CYANIDE(3) 4.78E+03 NA - NA <th></th> <th></th> <th>ER-L or Sediment</th> <th></th> <th></th> <th></th>			ER-L or Sediment			
COPPER 1.02E+05 3.40E+04 3.00E+00 2.70E+05 3.78E-01 CYANIDE(3) 4.78E+03 NA NA NA NA LEAD 9.55E+04 4.67E+04 2.04E+00 2.23E+05 4.28E-01 MERCURY 2.10E+02 1.50E+02 1.40E+00 7.10E+02 2.96E-01 NICKEL 7.33E+04 2.09E+04 3.51E+00 5.16E+04 1.42E+00 ZINC 3.60E+05 1.50E+05 2.40E+00 4.10E+05 8.78E-01 BENZO(A)ANTHRACENE 5.03E+03 3.45E+03 (2) 1.46E+00 1.60E+03 3.14E+00 DIBENZOFURAN(3) 2.20E+03 NA NA NA NA NA NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.12E+00 2.10E+03 1.01E+02 PHENANTHRENE 5.45E+03 4.50E+03 (2) 1.21E+00 1.50E+03 3.63E+00	001100					
CYANIDE(3) 4.78E+03 NA NA NA NA LEAD 9.55E+04 4.67E+04 2.04E+00 2.23E+05 4.28E-01 MERCURY 2.10E+02 1.50E+02 1.40E+00 7.10E+02 2.96E-01 NICKEL 7.33E+04 2.09E+04 3.51E+00 5.16E+04 1.42E+00 ZINC 3.60E+05 1.50E+05 2.40E+00 4.10E+05 8.78E-01 BENZO(A)ANTHRACENE 5.03E+03 3.45E+03 (2) 1.46E+00 1.60E+03 3.14E+00 DIBENZOFURAN(3) 2.20E+03 NA NA NA - NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.21E+00 2.10E+03 1.01E+00 PHENANTHRENE 5.45E+03 4.50E+03 (2) 1.21E+00 1.50E+03 3.63E+00	COMPOUND	Conc. (ug/kg)	(ug/kg)	Quotient	(ug/kg)	Quotient
LEAD 9.55E+04 4.67E+04 2.04E+00 2.23E+05 4.28E-01 MERCURY 2.10E+02 1.50E+02 1.40E+00 7.10E+02 2.96E-01 NICKEL 7.33E+04 2.09E+04 3.51E+00 5.16E+04 1.42E+00 ZINC 3.60E+05 1.50E+05 2.40E+00 4.10E+05 8.78E-01 BENZO(A)ANTHRACENE 5.03E+03 3.45E+03 (2) 1.46E+00 1.60E+03 3.14E+00 DIBENZOFURAN(3) 2.20E+03 NA - NA - NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.21E+00 2.10E+03 3.63E+00	COPPER	1.02E+05	3.40E+04	3.00E+00	2.70E+05	3.78E-01
MERCURY 2.10E+02 1.50E+02 1.40E+00 7.10E+02 2.96E-01 NICKEL 7.33E+04 2.09E+04 3.51E+00 5.16E+04 1.42E+00 ZINC 3.60E+05 1.50E+05 2.40E+00 4.10E+05 8.78E-01 BENZO(A)ANTHRACENE 5.03E+03 3.45E+03 (2) 1.46E+00 1.60E+03 3.14E+00 DIBENZOFURAN(3) 2.20E+03 NA NA NA - NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.21E+00 1.50E+03 3.63E+00	CYANIDE(3)	4.78E+03	NA	•	NA	•
NICKEL 7.33E+04 2.09E+04 3.51E+00 5.16E+04 1.42E+00 ZINC 3.60E+05 1.50E+05 2.40E+00 4.10E+05 8.78E-01 BENZO(A)ANTHRACENE 5.03E+03 3.45E+03 (2) 1.46E+00 1.60E+03 3.14E+00 DIBENZOFURAN(3) 2.20E+03 NA NA NA - NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.21E+00 1.50E+03 3.63E+00	LEAD	9.55E+04	4.67E+04	2.04E+00	2.23E+05	4.28E-01
ZINC 3.60E+05 1.50E+05 2.40E+00 4.10E+05 8.78E-01 BENZO(A)ANTHRACENE 5.03E+03 3.45E+03 (2) 1.46E+00 1.60E+03 3.14E+00 DIBENZOFURAN(3) 2.20E+03 NA NA NA - NA NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.12E+00 2.10E+03 1.01E+00 PHENANTHRENE 5.45E+03 4.50E+03 (2) 1.21E+00 1.50E+03 3.63E+00	MERCURY	2.10E+02	1.50E+02	1.40E+00	7.10E+02	2.96E-01
BENZO(A)ANTHRACENE 5.03E+03 3.45E+03 (2) 1.46E+00 1.60E+03 3.14E+00 DIBENZOFURAN(3) 2.20E+03 NA NA NA NA NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.12E+00 2.10E+03 1.01E+00 PHENANTHRENE 5.45E+03 4.50E+03 (2) 1.21E+00 1.50E+03 3.63E+00	NICKEL	7.33E+04	2.09E+04	3.51E+00	5.16E+04	1.42E+00
DIBENZOFURAN(3) 2.20E+03 NA NA NAPHTHALENE 2.12E+03 1.89E+03 (2) 1.12E+00 2.10E+03 1.01E+00 PHENANTHRENE 5.45E+03 4.50E+03 (2) 1.21E+00 1.50E+03 3.63E+00	ZINC	3.60E+05	1.50E+05	2.40E+00	4.10E+05	8.78E-01
NAPHTHALENE2.12E+031.89E+03(2)1.12E+002.10E+031.01E+00PHENANTHRENE5.45E+034.50E+03(2)1.21E+001.50E+033.63E+00	BENZO(A)ANTHRACENE	5.03E+03	3.45E+03 (2)	1.46E+00	1.60E+03	3.14E+00
PHENANTHRENE 5.45E+03 4.50E+03 (2) 1.21E+00 1.50E+03 3.63E+00	DIBENZOFURAN(3)	2.20E+03	NA	•	NA	•
	NAPHTHALENE	2.12E+03	1.89E+03 (2)	1.12E+00	2.10E+03	1.01E+00
TOTAL PAHs 4.69E+04 3.10E+03 (2) 1.51E+01 4.48E+04 1.05E+00	PHENANTHRENE	5.45E+03	4.50E+03 (2)	1.21E+00	1.50E+03	3.63E+00
	TOTAL PAHs	4.69E+04	3.10E+03 (2)	1.51E+01	4.48E+04	1.05E+00

(1) ER-L and ER-M values are taken from Long and Morgan, 1990; Long and MacDonald, 1992.

(2) Derived site-specific sediment criteria or benchmark.

(3) Appropriate sediment benchmark values could not be derived.

5-8/vers.1

18-Jul-94

5.6.2 Riparian and Terrestrial Risk Analysis

In addition to the qualitative secondary assessment, a semi-quantitative assessment was considered appropriate to further evaluate potential adverse ecological effects to species present in the riparian and terrestrial habitats on the ORS. A semi-quantitative approach can be useful in estimating the magnitude of potential risk to individual species determined to be representative of conditions at the ORS.

The criteria for selecting candidate species are representative of important taxonomic groups. within the aquatic and terrestrial habitats of interest at the ORS and include:

- tropical level and biological function;
- likely of documented presence at the ORS;
- likelihood of potential exposure;
- availability of appropriate toxicity data; and
- biological and cultural significance.

Representative species are those which best represent a major taxonomic group within the vicinity of the ORS or, because of their functional biology, have relatively high potential for exposure to the compounds assessed. Based on these guidelines, a small rodent (an eastern mole), and a large mammal (a raccoon) can be selected as representative of major taxonomic/functional groups potentially exposed to CPCs for a terrestrial semi-quantitative risk assessment. Although a semi-quantitative risk assessment is not presented in the text (at the request of the U.S. EPA), the results of the semi-quantitative risk assessment is presented in Appendix F.

The semi-quantitative risk assessment was performed for two mammalian species representative of those typical of the terrestrial and riparian ecosystems present at the ORS (i.e., the eastern mole and the raccoon). A description of the semi-quantitative risk assessment was necessary for an adequate evaluation of potential risks to animals in these ecosystems and to provide the following:

- a means of assessment of risks to terrestrial biota due to soil compounds, in an absence of available soil criteria;
- a means of assessment of risk to terrestrial biota due to potential exposure through the water and sediment pathways; and
- to provide a relative context for assessment of potential ecological risks in both aquatic and terrestrial areas of concern.

AR302527

July, 1994

The descriptions, assumptions, and findings of the semi-quantitative risk assessments are presented in Appendix F.

5.7 Uncertainty Analysis

R:\PUBS\PROJECTS\4920003\906.S5

A number of assumptions that can lead to uncertainty are made in the assessment of the potential for adverse ecological impacts. Some of the limitations and uncertainties have already been identified for the secondary level evaluation (Section 4.7). Some of the sources of uncertainty in the ecological risk assessment are common to both the aquatic and terrestrial assessments, while some are specific to either the aquatic or terrestrial assessments. The assumptions made in the ecological risk assessment were chosen to be conservative and protective. The overall effects of combining several of these conservative assumptions is to greatly overestimate the potential for adverse ecological effects. A qualitative discussion of the major sources of uncertainty associated with the site-specific ecological risk assessment is presented below.

The aquatic risk assessment used toxicity values based on chronic effects to analyze the potential for ecological risk. Chronic toxicity values were used as benchmarks because it was assumed that surface water and sediment-dwelling species would experience continuous, chronic exposure. Exposure in the aquatic environment is likely to be continuous for benthic invertebrate species in the river sediments of the back channel directly adjacent to the ORS. However, fish species are generally transitory and are more likely to move up and down the river. Thus, the assumption of chronic exposure may be realistic for the sediment species; however, it is relatively conservative for the surface water species.

The assumption that site-specific COC concentrations detected in the Ohio River surface water and sediment are strictly attributable to the ORS overestimates the potential risk of the ORS to ecological receptors. Areas along the Ohio River upstream and downstream of the ORS have been developed for industrial use (e.g., steel, petrochemical, and coal coking production) for over 100 years. Further, the Ohio River has received and continues to receive wastewater discharges from industrial, commercial, municipal and mining effluents. In addition, there have been occasional catastrophic releases of compounds which are similar to site-specific COCs identified on the ORS (e.g., the No. 2 fuel oil release to the Monongahela River and subsequently Ohio River in the mid-1980s). Thus, the origin of the site-specific COCs in the water and sediments cannot be established with any confidence. The general historical impact of the Ohio River is further supported by the issuance of a fish consumption advisory by the PADER for channel catfish and carp due to PCBs and chlordane present in the lower Allegheny, lower Monongahela and Ohio Rivers upstream of the ORS.

5-23

A source of uncertainty in the application of the toxicity quotient method is the source of the toxicity data used in deriving the benchmark concentrations. The lowest data points among the available toxicity data were conservatively selected as the benchmark concentrations. The lowest data point observed in the laboratory, however, may not be representative of the actual toxicity that might occur in the environment. In establishing water quality criteria, for example, the U.S. EPA follows extensive guidelines in which toxicity data are screened so that questionable values are rejected, and geometric means are calculated to represent species mean acute and chronic values. Using the lowest reported toxicity data point as a benchmark concentration, as was done in this assessment, is a very conservative approach, especially when there is a wide range in reported toxicity values for the relevant species. Differential species sensitivity to the compounds may result in these benchmarks being underestimates or, more likely, overestimates of potential acute and chronic toxicity for many aquatic organisms.

Another source of uncertainty exists in the prediction of the bioavailability of compounds from measured concentrations in the different media. For example, if the compound is bound to sediment or soil, it may not be bioavailable to the receptor; and the total concentration measured in the sediment or soil may be an overestimate of the amount of compound to which the receptor is actually exposed. Certain physical and chemical characteristics of the aquatic ecosystem will affect the bioavailability and the toxicity of compounds. Some of these factors will vary depending on the season of the year. Temperature, pH, sorption, dissolved oxygen, organic carbon content, and hardness are some of the parameters that will affect the toxicity and bioavailability of a compound. By choosing the lowest toxicity benchmark, it is likely that potential risks will be significantly overestimated.

Chemical interaction is another area of uncertainty. Evidence exists that when organisms are exposed to combinations of two or three compounds, the effects are not always additive. Depending upon the duration of exposure, type of response, and the specific combination of compounds, the toxicity observed may be synergistic (i.e., greater than would have been expected if the effect of the individual compounds were simply additive) or the observed toxicity may be less than expected or antagonistic (Suter, 1993). Direct testing of mixtures of compounds or complex modeling must be conducted to predict whether effects will be additive, antagonistic, or synergistic. Available evidence indicates that in complex mixtures of compounds in riverine environments, the effects of individual compounds are less than additive (Di Toro et al., 1991). Thus, the effect of the whole mixture may be less, perhaps substantially less, than the effect predicted by evaluating each compound individually. By applying conservative assumptions in this ecological risk assessment, the results are conservative, and are expected to be protective even in the event of synergistic effects.

5-24

R:\PUBS\PROJECTS\4920003\906.S5

AR302529

July, 1994

AR302530

Extrapolation of the potential for community, population, or ecosystem effects from the examination of one or more representative species is a major source of uncertainty for both the aquatic and terrestrial analyses. The underlying assumption is that potential effects on one representative species are consistent with the effects on similar species and representative of the potential for effects on the particular ecosystem being investigated. For example, for the aquatic risk assessment, the lowest toxicity values for indigenous species that were found in the literature were chosen to represent the potential for compound effects on the aquatic ecosystem. The selection of representative species as indicators of the ecosystem is one source of uncertainty in the risk assessment.

It is difficult to predict how an adverse effect on an individual organism might affect the ecosystem as a whole. If effects were found to occur on an individual, it does not necessarily mean that the population, community, or ecosystem will be similarly affected. Even if one subset of the ecosystem is impacted at the Ohio River Site, it may not be a perceptible impact to the overall ecosystem (e.g., loss of selected benthos along the back channel river bank may not affect entire benthos or ecosystem functions dependent on benthos). Data reported in U.S. EPA (1989d) indicate that, for aquatic ecosystems, use of acute toxicity information for a representative species may adequately define the compound concentrations that might be expected to cause adverse effects at the ecosystem level. If this is the case, the analysis of surface water risks based on chronic toxicity data for the aquatic indicator species is likely to be overly conservative for use in evaluating the potential effects to the aquatic ecosystem.

5.8 Summary

R:\PUBS\PROJECTS\4920003\906.S5

This section will present the conclusions of the ecological assessment of the ORS for aquatic receptors (5.8.1) and for terrestrial receptors (5.8.2).

5.8.1 Aquatic Summary

The aforementioned analyses evaluated the potential impacts of concentrations of site-specific COCs to different media and representative receptors. With respect to the surface water in the main channel of the Ohio River, compounds evaluated for potential impacts were copper and mercury. Concentrations of copper in surface water were above the benchmark concentration for fish and invertebrates. Concentrations of mercury were below the benchmark values for both aquatic receptors.

No site-specific COCs were identified in the back channel surface water.

July, 1994

For the main channel sediments, copper, lead, mercury, total PCBs and total PAHs are of possible concern; however, their levels are indicative of a low potential for adverse ecological effects (Table 5-7). Nickel and zinc are of greater concern and are at levels approaching probable concern for potential adverse effects to the aquatic benthic environment.

For the back channel sediments, copper, lead, mercury and zinc have been identified as of possible concern. Nickel, benzo(a)anthracene, naphthalene, and phenanthrene exceed the ER-Ms and are of greater concern. Total PAHs in the back channel sediments were identified at levels indicative of probable adverse ecological risks. Dibenzofuran and cyanide were not evaluated due to a lack of appropriate sediment criteria.

It should be noted that because of the highly disturbed and industrialized nature of the Ohio River, these potential effects may be caused by a number of sources other than the ORS. For example, concentrations of copper in sediments may in fact result from deposition of particulates from sources upstream of the ORS or PAH concentrations in the sediment may have resulted from historical upstream discharges.

5.8.2 Terrestrial Summary

R:\PUBS\PROJECTS\4920003\906.S5

It should be noted that the site was used for commercial/industrial purposes for over 40 years and that the existing terrestrial system has reestablished itself on disturbed land.

The appearance of the existing vegetation is only one indicator of ecological effects. Soil criteria or ecotoxicological benchmarks provide another measure of potential adverse effects. Due to the lack of applicable soil criteria (i.e., ecotoxicological benchmarks), potential risks due to site-specific soil COCs are very difficult to estimate. One alternative method of estimating potential risks is through a semi-quantitative risk assessment, a method which is also recognized by U.S. EPA Region 3 guidance. A semi-quantitative risk assessment was conducted to provide a more quantitative basis for assigning potential ecological risk. The results of this assessment are presented in Appendix F.

5-26

6.0 COMPARISON BETWEEN SECONDARY LEVEL AND SITE-SPECIFIC RISK ASSESSMENTS

The secondary level evaluation provides a preliminary qualitative estimate of potential ecological risks associated with the COCs (Section 4.0). It examines the potential risks associated with the secondary level COCs which are not screened out by application of generic, site-independent factors. The site-specific risk assessment provides a more focused and detailed examination of the risks by incorporating available site information (Section 5.0). It is useful to compare the results of the two assessments as a means of evaluating the effect that application of site-specific information has on refining the estimated level of the potential risks at the ORS. This indicates how the characteristics and setting of the ORS affect estimates of potential risk to ecological receptors located on-site and in the vicinity. This also aids in the final interpretation of potential risk and the conclusions presented in Section 7.0.

The results of the two evaluations and potential risks associated with COCs are compared for each medium and potential reasons for the differences discussed. The evaluations are presented in the following sections: for surface water, Section 6.1; for sediments, Section 6.2; for soil, Section 6.3; and for groundwater, Section 6.4.

6.1 Surface Water

R:\PUBS\PROJECTS\4920003\906.S6

The comparison of the results of the two assessments of surface water was conducted by examining the selection of the COCs following the secondary level and site-specific evaluations (Section 6.1.1), comparing the results of the secondary level and site-specific risk assessments (Section 6.1.2), and discussing the differences (Section 6.1.3).

6.1.1 Selection of COCs Following Evaluations

There are no differences between the COCs selected in surface water during the secondary level evaluation (Table 4-1) and site-specific risk evaluation. Mercury and copper were selected as COCs in the main channel and there were no COCs identified in the back channel (Table 4-2).

Site-specific information (i.e., hardness) had previously been applied during the screening level risk evaluation (as suggested by U.S. EPA Region 3 staff). Additional site-specific information which could be considered if available would be the water-effects ratio, which would adjust the criteria to reflect the ambient water quality conditions in the Ohio River with respect to the fraction

6-1

July, 1994

of total to dissolved fractions, the influence of dissolved organic compounds as chelating agents, etc (U.S.EPA, 1994).

6.1.2 Comparison of the Results Following Risk Assessments

The secondary level risk assessment indicated mercury at levels of probable environmental risk and copper at levels of possible risk, based on the EEQ. The site-specific risk assessment also indicates that chronic AWQCs are exceeded, but considered the potential impact to local benthic communities to be less than predicted by the AWQCs, based on comparison of mercury and copper levels to ecotoxicological benchmarks considered appropriate for the warmwater fishery found in the Ohio River at the ORS (Table 5-6).

Based on the site-specific risk assessment, it was concluded that neither copper or mercury would be likely to pose an adverse environmental risk. Further, the probability that the ORS is responsible for the elevated levels of these metals in the main and back channels of the Ohio River is considered extremely low.

6.1.3 Discussion

The finding of elevated mercury and copper in the main channel of the Ohio River is not unexpected, given the high level of industry, commercial, urban, and mining activities in the watershed and located immediately upstream. The contribution of the ORS to the level of copper and mercury can not be determined, but appears to negligible for the following reasons. The transport pathway of copper and mercury from the ORS to the Ohio River would presumably be via direct runoff, desorption from sediments, or groundwater discharge. Each of these is addressed below.

Given the size of the ORS, the quantitative hydrologic contribution of either direct runoff or groundwater to the flow volume of the Ohio River is minuscule and COC concentrations would be diluted below detection limits. Further, there is no pattern to the detections or concentrations in the main channel which is indicative of the ORS as a point source for these metals. Levels of these metals were below environmental concern in the back channel, which presumably would receive a larger proportional contribution (due to the lower flow volume of the back channel) than the main channel.

Mercury and copper are found in the sediments in the main channel and back channel, but the source of these metals in the sediments could potentially be due to hundreds of discharges and activities found in the Ohio River watershed. Desorption of these materials into the water column for copper and mercury will likely be slight. Finally, there was no mercury detected in the back

6-2

ENSR

channel monitoring wells which indicates the mercury transport through groundwater discharge is negligible. Overall, these factors indicate that the ORS does not pose a significant risk to the surface water quality in the Ohio River.

6.2 Sediments

The differences between the secondary level risk assessment and the site-specific risk assessment were examined separately for the main and back channel sediments. The main channel sediments are discussed in Section 6.2.1 and the back channel sediments in Section 6.2.2.

6.2.1 Main Channel Sediments

The comparison of the results of the two assessments of the main channel sediments was conducted by examining the selection of the COCs following the secondary level and site-specific evaluations (Section 6.2.1.1), comparing the results of the secondary level and site-specific risk assessments (Section 6.2.1.2), and discussing the differences (Section 6.2.1.3).

6.2.1.1 Selection of COCs Following Evaluations

There were 36 COCs selected during the screening level evaluation, including 14 for which no AWQC or ER-M values were available (Table 4-3). Application of site-specific sediment quality criteria or sediment benchmarks and consideration of relative enrichment reduced this number to 7 COCs (Table 5-1). A total of 24 COCs were eliminated based on concentrations below the site-specific sediment criteria and the other 5 were removed due to consideration of relative enrichment. Clearly, the distinguishing factor between the two lists of COCs was the application of site-specific sediment criteria or benchmarks.

6.2.1.2 Comparison of Results Following Risk Assessments

The secondary level risk assessment indicated that 8 COCs were of probable concern, 14 were of possible concern, and 14 were unassessed (i.e., no AWQC or ER-M values were available). The secondary level COCs of probable concern included nickel, zinc, 2-methylnaphthalene, acenaphthene, benzo(a)anthracene, dibenz(a,h)anthracene, fluorene, and fluoranthene. The 14 secondary level COCs identified as of possible ecological concern were metals, chlordanes, and. PAHs (Table 4-3). In contrast, the site-specific risk assessment of the main channel sediment COCs indicated that nickel and zinc were of probable concern, and copper, lead, mercury, total PCBs, and total PAHs were of possible concern (Table 5-7).

6-3

R:\PUBS\PROJECTS\4920003\906.56

July, 1994

July, 1994

The two risk assessments generally agree with the contaminants of greatest concern - namely nickel, zinc, and total PAHs. The reduction of individual PAH are due to the application of site-specific criteria or sediment benchmarks, adjusted for the channel-specific organic carbon content. These results may reflect the inherent differences between the NOAA sediment guidance values (i.e., ER-Ls/ER-Ms and sediment quality criteria) and the equilibrium partitioning based site-specific sediment benchmarks.

6.2.1.3 Discussion

It has been noted earlier that the ER-L/ER-M guidance values represent simple statistical parameters associated with data distributions of potential impacted benthic communities, particularly marine invertebrates. For example, sediment guidance values developed by Long and MacDonald are based on data derived only from estuarine and marine environments and freshwater data were excluded (Long and MacDonald, 1992). Since many compounds are more toxic to marine organisms than freshwater organisms, these values tend to be conservative and may overestimate potential ecological risk to freshwater benthic communities.

On the other hand, sediment quality criteria (SQC) are developed analogous to the development of ambient water quality criteria through direct toxicological testing of freshwater aquatic organisms. It is possible to use the relationship between the ER-L values and the three recentlyissued sediment quality criteria for acenaphthene, fluoranthene, and phenanthrene (U.S. EPA 1993b; 1993e; 1993f) to illustrate the differences between the ER-L and SQC approaches. At 1% total organic carbon, a conservative value for the ORS sediments, the freshwater SQC values for acenaphthene (1,300 μ g/kg), fluoranthene (6,200 μ g/kg), and phenanthrene (1,800 μ g/kg) are 10.3 times, 81 times, and 7.5 times higher than the corresponding ER-Ls for these compounds. In fact, all of the freshwater SQC exceed the ER-M values as well. It appears from this relationship that an exceedance of the ER-L is not necessarily an indication of potential harmful effects and the slight exceedances are unlikely to result in harmful effects on aquatic organisms.

The origin of the PAHs in the sediments of the main channel was not determined. Most of the reported PAHs were detected at levels below the upstream reference site (see Table 3-3). This suggests that the potential source of the PAHs is not directly linked to the ORS or, at least, it is very difficult to assess the contribution of ORS to the COC level in the main channel sediments.

Finally, the potential influence of the treatment of non-detected value as 1/2 SQL even when they exceed the report maximum (following the request of U.S. EPA Region 3) has already been discussed (see Section 4.7) as indicated by the example of dibenz(a,h)anthracene. The potential influence of this data reduction protocol was not evaluated for all parameters.

6-4

AR302535

6.2.2 Back Channel Sediments

The comparison of the results of the two assessments of the back channel sediments was conducted by examining the selection of the COCs following the secondary level and site-specific evaluations (Section 6.2.2.1), comparing the results of the secondary level and site-specific risk assessments (Section 6.2.2.2), and discussing the differences (Section 6.2.2.3).

6.2.2.1 Selection of COCs Following Evaluations

There were 41 COCs selected during the screening level evaluation, including 20 for which no AWQC or ER-M values were available (Table 4-4). Application of site-specific sediment quality criteria or sediment benchmarks and consideration of relative enrichment reduced this number to 11 COCs (Table 5-2). A total of 24 COCs were eliminated based on concentrations below the site-specific sediment criteria, 4 were removed due to consideration of relative enrichment, and 2 were eliminated based on having a single detection. Again, as was the case with the main channel sediments, the key factor in identifying site-specific COCs was the application of site-specific sediment criteria or benchmarks.

6.2.2.2 Comparison of Results Following Risk Assessments

The secondary level risk assessment indicated that 14 COCs were of probable concern, 7 were of possible concern, and 20 were unassessed (i.e., no criteria). The secondary level COCs of probable concern included nickel, 2-methylnaphthalene, acenaphthene, anthracene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, naphthalene, phenanthrene, pyrene and total PAHs. The 7 COCs identified as of possible ecological concern were metals, chlordanes, dieldrin and PCBs (Table 4-4). In contrast, the site-specific risk assessment of the back channel sediment COCs indicated that nickel, benzo(a)anthracene, naphthalene, phenanthrene, and total PAHs were of probable ecological concern (Table 5-8). Copper, lead, mercury, and zinc were of possible concern, while dibenzofuran and cyanide were not evaluated due to lack of ecotoxicological data to derive sediment quality criteria.

The two risk assessments identify similar contaminants of greatest concern - namely nickel and several individual and total PAHs. The higher toxicity quotients associated with the back channel sediments is indicative of the higher PAH levels that are found there than in the main channel.

6-5

July, 1994

6.2.2.3 Discussion

The results between the secondary level risk assessment and site-specific risk assessment are qualitatively similar. Nickel is of probable concern in both the main and back channel sediments. The source of the nickel does not appear to be due to simple migration of soil from the ORS because higher concentrations of nickel were found in the sediment than those found in the surface soils. The 95% UCL for soil nickel (26.9 mg/kg) was below the minimum sediment value. It is possible that upstream sources have contributed to the elevated levels of nickel in the sediments of both channels.

The disparity between the interpretation of sediment quality through comparison to NOAA guidance values vs. SQC/sediment benchmarks has already been discussed in Section 6.2.1.3. It would be expected that, due to the higher organic carbon content, the back channel sediments would accumulate a greater level of nonionic organic compounds than would the main channel, even under the same surface water quality regime. The higher organic carbon content found in the back channel is also consistent as an area of greater deposition for finer-grained materials than would the main channel.

6.3 Soils

The comparison of the results of the two assessments of soil was conducted by examining the selection of the COCs following the secondary level and site-specific evaluations (Section 6.3.1), comparing the results of the secondary level and site-specific risk assessments (Section 6.3.2), and discussing the differences (Section 6.3.3).

6.3.1 Selection of COCs Following Evaluations

There were 66 surface soils COCs selected during the secondary level evaluation, including 61 for which no ecotoxicological benchmarks (i.e., U.S. EPA Region 3 suggested soil criteria) were available (Table 4-5). Consideration of relative enrichment and detection frequency reduced this number to 31 COCs (Table 5-3). A total of 25 COCs were eliminated based on consideration of relative enrichment, and 6 were eliminated based on have a low detection frequency. A low detection frequency was defined as a frequency of detection less than or equal to approximately 5 percent. For the ORS soils, this meant that a compound detected only once or twice in the surface soil samples was eliminated. This evaluation of the frequency of detection is similar to the approach suggested for human health assessment of Superfund sites (U.S. EPA, 1989c). The key selection factor was the application of a relative enrichment criterion (i.e., soil compound concentration 10 times greater than background concentration) for selection of site-specific soil COCs.

R:\PUBS\PROJECTS\4920003\906.S6

6.3.2 Comparison of the Results Following Risk Assessments

The results of the secondary level risk assessment indicated that mercury was of probable concern and that arsenic, lead, manganese, and zinc were of possible concern, with the vast majority of the soil compounds unassessed due to a lack of soil criteria. Preliminary assessment of potential ecological risk was not merited due to the large number of unevaluated compounds. As a means to evaluate the potential effect of the soil compounds, the site-specific risk assessment using representative (surrogate) species was conducted. Due to the different potential pathways, eastern mole and raccoon were selected to evaluate potential risks associated with exposure to the soil pathways (see appendix F for details).

The chronic adverse health effect estimates for terrestrial species were calculated in a manner parallel to the calculation of human hazard indices. The exposure dose is divided by the appropriate dose-response value to derive a hazard quotient. The level of ecological concern assigned to the noncarcinogenic hazard quotient is defined by the criteria established by the U.S. EPA (1988). Conclusions are expressed as of "no concern" if the ratio is less than or equal to 0.1; "possible concern" if the ratio falls between 0.1 and 10; and "probable concern" if the ratio is greater than 10. Hazard estimates for each animal species evaluated are presented in Tables 5-9 and 5-10, and summarized below. A more detailed discussion and analysis of the results of the semi-quantitative risk assessment are presented in Appendix F.

Evaluation of the eastern mole as the representative species found that lead was of probable ecological risk and that arsenic, manganese, methylmercury, zinc, 2,3,7,8-TCDD, and total PAHs were of possible concern. A number of site-specific COCs were identified as of possible concern, but had toxicity quotients above 0.1 but below 1.0. Due to the level of the toxicity quotients, these were considered of very low concern. These included cyanide, inorganic mercury, benzo(a)-anthracene, benzo(a)pyrene, chrysene, fluoranthene, and pyrene.

All other site-specific soil COCs had hazard quotients which were below 0.1, and were considered of no concern. Since the eastern mole is potentially more highly exposed to these compounds and is used as an indicator for other terrestrial mammalian species in the area, the analysis indicates no potential adverse effect exists in those species from those compounds either.

The raccoon risk assessment indicated fewer compounds of concern than that for the eastern mole. Compounds of possible concern included copper, lead, manganese, mercury, zinc, 2,3,7,8-TCDD, and total PAHs. No compounds of probable concern were identified.

R:\PUBS\PROJECTS\4920003\906.S6

6.3.3 Discussion

R:\PUBS\PROJECTS\4920003\906,S6

In the case of surface soil compounds, other than a few metals, sufficient ecotoxicological information was not available to perform a preliminary risk assessment. The general lack of meaningful soil criteria for secondary level soil COCs limits the utility of any pronouncements of risk at this level. Unlike human health assessment, where soil limits have been determined by a number of regulatory agencies (e.g. PADER), soil limits based on ecological considerations are few in number and not systematically derived.

ENSR

July, 1994

During earlier conversations, U.S. EPA Region 3 staff suggested using 2 times the ER-L limit as a possible soil criteria (R. Davis, pers. comm. to W. Alsop, dated February 9, 1994). After careful consideration, this suggested approach was not used. It was considered that extrapolation of guidance values for sediments to soil was not appropriate due to the unevaluated and fundamental differences in soil chemistry and physical conditions (e.g. saturated, anaerobic vs. dry, aerobic) between the two solid matrices. This leaves little alternative but to consider additional means such as the semi-quantitative assessment (recognized by U.S. EPA Region 3 guidance) with representative ecological receptor.

A closer look at the surface soil COCs of probable and possible concern identified in the sitespecific risk assessment using eastern mole examined the risk associated with individual pathways. The majority of the risk identified with the site-specific COCs of probable and possible concern is associated with the consumption of earthworms and incidental ingestion of soil. The moles were assumed to spend their entire lifetime on the ORS, an assumption which results in a hazard quotient for a highly exposed organism.

The mammalian receptors used in the semi-quantitative assessment were assumed to spend their entire lives exposed to concentrations of the site-specific COCs. This assumption is likely to overestimate exposure because it does not address degradation of the compounds, nor movement of the representative species in and out of the area. For example, it was assumed that raccoons would obtain all their food from the ORS rather than foraging in the residential areas adjacent to the ORS. Similarly, conservative exposure assumptions were also made that would be likely to overestimate risk. The assessment also assumed that raccoons will consume twenty-five percent of their daily diet by feeding on fish or amphibians in the back channel of the Ohio River for each year of their lives. Although fish move freely within the river system, the assessment assumed that some fish would inhabit the stretch of the river near the ORS and would not move outside of this area. It is unlikely that fish will remain solely in this stretch of the river and that the fish tissue concentrations will be as high as predicted using conservative BCF values which do not address biological uptake, metabolism, or depuration. It is also unlikely,

6-8

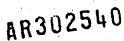
ENR

because of the freezing of the shallower areas of the back channel that the raccoon will be able to obtain this portion of its diet from this limited stretch of the river during the winter months.

The dose-response values used for the terrestrial species were extrapolated from data on similar species because no direct dose-response information was available for the mole or raccoon. The extrapolation from laboratory species involved conservative assumptions; thus, it is likely that the dose-response values chosen will result in overestimates of the potential for adverse effects.

For the terrestrial assessment, the selection of these receptors overestimates potential ecosystem effects. The receptors were chosen based on their potentially higher exposures, resulting from trophic level (raccoon) or limited home range (mole). Thus, it is assumed that if these representative species are minimally affected, the potential for ecosystem-level effects are also unlikely. The effect of these assumptions is to overestimate the potential for adverse ecological effects to other species.

The compounds of highest concern are 2,3,7,8-TCDD and lead. The majority of risk associated with 2,3,7,8-TCDD is due to a single soil sample, while lead is more evenly distributed over this site. Comparison of ORS soil levels to the average and range of soil concentrations found in the eastern United States indicated that arsenic, lead, manganese, and zinc were higher than average; however, they are well within the range observed elsewhere in the region (ATSDR, 1992).


The risk associated with methylmercury is probably an overestimate of potential ecological risk, since a value of 10% mercury was used to estimate the amount of organic mercury levels in surface soils. Typical sediment values are 0.01 to 10% (EPRI, 1987) and aerobic surface soils would be expected to have even less (due to reduced methylcarbon under aerobic conditions).

6.4 Groundwater

The comparison of the results of the two assessments of groundwater was conducted by examining the selection of the COCs following the secondary level and site-specific evaluations (Section 6.4.1), comparing the results of the secondary level and site-specific risk assessments (Section 6.4.2), and discussing the differences (Section 6.4.3).

6-9

R:\PUBS\PROJECTS\4920003\906.86

July, 1994

6.4.1 Selection of COCs Following Evaluations

There were 40 groundwater COCs selected during the secondary level evaluation, including 22 for which no ecotoxicological benchmarks were available (Table 4-6). A site-specific exposure pathway - groundwater discharge to the back channel - as indicated by the water quality in the back channel wells was the basis for eliminating all groundwater COCs (Table 5-4).

It was assumed that concentrations in the three back channel wells were indicative of groundwater quality that might be discharged to the back channel of the Ohio River. This was a conservative assumption because it assumed no mixing would occur before potential exposure to the biota. It was also assumed that if groundwater discharge to the back channel was of no concern, then groundwater discharge to the main channel was also of no concern, since the flow volume in the main channel is much greater. Inspection of the groundwater data indicated that only 11 site-specific COCs were measured and the rest were not detected. The data for the 11 site-specific COCs were carefully inspected and the site-specific COCs were determined to be of no concern due to concentrations below the chronic AWQCs or available ecotoxicological benchmarks, low detection frequencies, and/or concentrations below background concentrations. The individual site-specific COCs and reasons for their removal from further evaluation are discussed in Section 5.4.2.

6.4.2 Comparison of the Results Following Risk Assessments

The results of the secondary level risk assessment indicated that mercury, silver, zinc, dieldrin, and endrin aldehyde were of probable concern and that cadmium, total chromium, copper, cyanide, lead, 2,4,6-trichlorophenol, 2,4-dichlorophenol, 2-nitrophenol, bis(2-ethylhexyl)phthalate, naphthalene, phenol, endosulfan II, and carbon disulfide were of possible concern. The site-specific risk assessment found no COCs of probable or possible concern based on concentrations in the back channel wells. All of the site-specific COCs were non-detects except silver, zinc, total chromium, copper, and cyanide. Silver and cyanide were found rarely and only in deep wells, chromium and copper were at levels below AWQCs, and zinc was below background concentrations (Section 5.4.2).

6.4.3 Discussion

R:\PUBS\PROJECTS\4920003\906.56

The distinct difference between the findings of the secondary level risk assessment and the sitespecific risk assessment is due to the application of a reasonable, qualitative fate and transport scenario to groundwater concentrations at the ORS. Briefly, the scenario reasoned that if groundwater was to be of potential ecological risk to biota it would require groundwater flow to a discharge point in the Ohio River. By making use of the available data from the back channel

ENSR

wells, it was shown that groundwater quality, as it was nearing the potential discharge point was not of ecological concern. It should be noted that this conclusion is independent of application of any mixing model that would account for the dilution of the groundwater, with the numericallydominant river flow volume in the back channel.

6.5 Summary

R:\PUBS\PROJECTS\4920003\906.S6

Comparisons of the results of the secondary level and site-specific risk assessment for the. various media at ORS show general agreement for surface water and sediment; however, they arrive at different conclusions of potential risk for the soil and groundwater assessments. The major reasons for the differences are (1) application of a semi-quantitative risk assessment using representative (surrogate) species for assessing soil conditions at ORS, and (2) application of a site-specific groundwater exposure pathway through the back channel wells. Application of sitespecific information helps to refine the list of site-specific COCs and provide a more accurate portrayal of potential ecological risk at ORS.

6-11

7.0 CONCLUSIONS

A series of risk evaluations and assessments were made to identify COCs at the ORS and to provide an estimate of the potential for adverse ecological effects associated with levels of these COCs. The evaluations included screening level, secondary level, and site-specific risk evaluations. Estimates of potential risk were based on comparisons to ecotoxicological benchmarks, to background concentrations, and by application of best professional judgement. The major conclusions of the ecological risk assessment were based on all of the information from the conceptual site model, screening level evaluation, secondary level evaluation, as well as the results of the site-specific risk assessment.

7.1 Surface Water

The major findings of the ecological risk assessment of COCs in the main and back channel surface water of the Ohio River are:

- copper and mercury were identified as site-specific COCs for the main channel surface water, but application of ecological benchmarks appropriate to the local biota indicate that neither COC is likely to pose an adverse environmental risk;
- no COCs were identified in the surface water of the back channel of the Ohio River; and
- it was concluded that the ORS does not pose a potential adverse ecological risk to the aquatic biota in the surface waters of the Ohio River.

7.2 Sediments

The major findings of the ecological risk assessment of the COCs in the sediments of the main and back channels of the Ohio River are:

- nickel, zinc, and total PAHs were of probable ecological concern in the main channel sediments, and copper, lead, mercury, and total PCBs were of possible ecological concern;
- nickel, benzo(a)anthracene, naphthalene, phenanthrene, and total PAHs were of probable ecological concern in the back channel sediments, and copper, lead, mercury, and zinc were of possible ecological concern;

R:\PUBS\PROJECTS\4920003\906.S7

- it was concluded that the sediments in the main and back channels of the Ohio River pose a low to moderate potential adverse ecological risk to the aquatic benthic communities residing there; and
- the origin of the COCs in the sediments is not certain due to the large number of potential sources upstream of ORS.

7.3 Surface Soil

The major findings of the ecological risk assessments for the surface soil at the ORS are:

- both screening level and secondary level evaluations indicate a larger number or COCs including many metals, herbicidal pesticides, PCBs, PAHs, and volatile/semi-volatile organic compounds;
- direct comparison of soil compound concentration to ecotoxicological criteria was not possible due to a general lack of soil criteria;
- therefore, a semi-quantitative risk assessment using eastern mole and raccoon as representative species was used to provide an estimate of potential ecological risks due to soil;
- risk assessment of the eastern mole indicated that lead, 2,3,7,8-TCDD, and total PAHs were of probable ecological concern, and arsenic, manganese, mercury, zinc, and several individual PAHs were of possible ecological concern;
- risk assessment of the raccoon indicated copper, lead, manganese, mercury, 2,3,7,8-TCDD, and total PAHs to be of possible ecological concern;
- application of site-specific information about the site distributions of the COCs and comparison to ranges of naturally occurring soil concentrations mitigated the level of concern for some COCs; and
- it was concluded that the ORS surface soils pose a low potential adverse ecological risk to the terrestrial species residing there.

7.4 Groundwater

The major findings of the ecological risk assessment for the groundwater at the ORS are:

ecological risk assessment of COCs in groundwater was limited by uncertainty regarding their effective concentrations at the point of exposure to aquatic biota;

Real Real

ENSR

July, 1994

- a groundwater pathway scenario using groundwater quality from back channel monitoring wells was used to provide an estimate of the potential ecological risk;
- application of the groundwater pathway scenario, and back channel well water quality data indicate no COCs in the groundwater potentially discharging to the river; and
- it was concluded that groundwater at the ORS does not pose a potential for adverse ecological risk to the aquatic biota in the Ohio River.

7.5 Discussion

R:\PUBS\PROJECTS\4920003\906.S7

The potential ecological effects were also assessed by examining the distribution of organisms caught in previous studies in the Ohio River (as discussed in Section 2.1.7) and did not indicate major differences in species between the Dashields and Emsworth Pools in the Ohio River. However, uncertainty associated with sampling locations prevents direct correlation of the findings to the potential effects to the benthic community posed by the ORS.

It is worth considering that the finding of no major differences between the two adjacent pools does not mean that the river is unaffected by anthropogenic activities. The Ohio River watershed is a large basin which drains many land uses, including agricultural, industrial, municipal and residential. It is impossible to completely differentiate the influence that these upstream activities have on the surface water and sediment quality around Neville Island and the Ohio River Site.

Likewise, it is impossible to eliminate the natural level of physical and biological disturbance inherent to the flow dynamics of the Ohio River, which leads to variable rates of erosion, deposition and changes in habitat suitability. These physical disturbances range from barge traffic to dredging operations to maintain the channels in both the Ohio River main and back channels. These two factors, the upstream land use and the river's dynamics, need to be considered when evaluating possible stresses that are acting on the organisms in the back channel of the Ohio River.

7-3

Another consideration is the potential cumulative effects of the toxicity posed by individual compounds. The toxicity quotient method does not account for the possibility of additive or synergistic effects of multiple compounds in the aquatic environment. According to U.S. EPA guidance, toxicity quotients cannot be added but rather must be ranked relative to one another (U.S. EPA, 1988). Addition of toxicity quotients would be inappropriate because the benchmarks upon which the toxicity quotients are based represent a variety of different species and a variety of different toxicity endpoints. Recent research conducted on the Naugatuck River in Connecticut demonstrated that the observed toxicity in that river system was less than the additive toxicity of the individual compound concentrations discharged to the river by industrial and sewage treatment plant sources (Di Toro et al., 1991). Although potential additive effects would occur because the individual toxicity quotients are comparatively low or negligible.

7.6 Summary

An ecological risk assessment of the ORS has been conducted to estimate the potential ecological risk posed by COCs in the various media at ORS. The risk assessment includes a conservative screening level evaluation which identified CPCs. These CPCs were further evaluated through a secondary level evaluation and, finally, through a site-specific evaluation which incorporated knowledge of site characteristics, specific exposure pathways, the magnitude of the COCs, and best professional judgement to provide a quantitative measure of the potential ecological risk.

The results of the ecological risk assessment, incorporating both aquatic and terrestrial risk analyses, indicate that the surface water and groundwater do not pose a potential adverse ecological risk to the Ohio River. Surface soil at the ORS was judged to pose a low potential ecological risk to terrestrial receptors. Sediments in the main and back channels pose low and low to moderate ecological risks, respectively.

The conclusions of the ecological risk assessment are subject to the normal limitations and uncertainties associated with data collection and the underlying assumptions necessary to conduct an assessment. The ecological risk assessment provides estimates of potential ecological risk at various levels of site specificity. These estimates can be used to support risk management decisions related to these ecological communities at the ORS.

7-4

8.0 REFERENCES

Adamoan, J.H. 1949. Groundwater Resources of the Valley-fill Deposits of Allegheny County, Pennsylvania. Pennsylvania Geologic Survey.

- ATSDR (Agency for Toxic Substances and Disease Registry). 1992. Public Health Assessment Guidance Manual. PB92-147164. ATSDR, Atlanta, GA.
- Davis, R. 1994. Personal communication. Letter from Robert Davis (U.S. EPA Region III) to William Alsop (ENSR) dated February 9, 1994.
- Di Toro, D.M., J.A. Hallden, J.L. Plafkin. 1991. Modeling <u>Cerriodaphnia</u> Toxicity in the Naugatuck River II. Copper, Hardness, and Effluent Interactions. Env. Tox. and Chem. 10:261-274.
- ENSR. 1993. Draft Remedial Investigation Report for the Ohio River Site, Neville Township, Pennsylvania. ENSR Consulting and Engineering. Document No. 4920-003-500.
- ENSR. 1994. Final Remediation Investigation Report for the Ohio River Site, Neville Township, Pennsylvania. ENSR Consulting and Engineering. Document No. 4920-003-500.
- EPRI. (Electric Power Research Institute). 1987. Report Summary: Measurement of Bioavailable Mercury Species in Fresh Water and Sediments. EPRI EA-5197s. Palo Alto, CA.
- Hayssen, V. 1993. Personal communication. March 11, 1993. Mammalogy expert. Ph.D. Biologist. Dept. of Biology, Smith College, North Hampton, MA.
- Long, E.R. and MacDonald, D.D. 1992. Sediment Classification Methods Compendium. 14:1-18. U.S. EPA Doc. No. EPA 023-R-92-006. Office of Water, Washington, D.C.
- Long, E.R. and L.G. Morgan. 1990. The Potential for Biological Effects of Sediment-sorbed Contaminants Tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. Office of Oceanography and Marine Assessment: Seattle, WA.

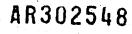
AR302547

July, 1994

Oak Ridge National Laboratory (ORNL). 1986. User's Manual For Ecological Risk Assessment. Document No. ORNL-6251. Office of Research and Development. U.S. EPA, Washington, D.C.

ENSK

July, 1994


Schweiger, G. 1957. The Toxic Action of Heavy Metal Salts on Fish and Organisms on Which Fish Feed. Arch. Fisheries. 8:54-78.

Suter, G.B. 1993. Ecological Risk Assessment. G.B. Suter (ed) Lewis Publishers: Chelsea, MI.

- U.S. COE (U.S. Army Corps of Engineers). 1980. Final EIS: Ohio River Navigation Project Operation and Maintenance.
- U.S. COE (U.S. Army Corps of Engineers). 1993. James Kosky. Personal Communication to K. Battyanyi, August 16, 1993.

U.S.D.A. 1981. Soil Survey of Allegheny County, PA. Soil Conservation Service.

- U.S. EPA. 1985a. Ambient Water Quality Criteria for Cadmium 1984. Document No. PB85-227031. U.S. EPA, Washington, D.C.
- U.S. EPA. 1985b. Ambient Water Quality Criteria for Copper 1984. Document No. PB-85-227023. U.S. EPA, Washington, D.C.
- U.S. EPA. 1985c. Ambient Water Quality Criteria for Mercury 1984. Document No. PB-85-227452. U.S. EPA, Washington, D.C.
- U.S. EPA. 1988. Review of Ecological Risk Assessment Methods. EPA Doc. No. EPA/230-10-88-041. Office of Policy Planning and Evaluation, Washington, D.C.
- U.S. EPA. 1989a. Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference. EPA/600/3-89/013. Office of Solid Waste and Emergency Response: Corvallis, OR.
- U.S. EPA. 1989b. Risk Assessment Guidance for Superfund. Volume I. Human Health Evaluation Manual (Part A). Interim Final. Document No. EPA/540/1-89/002. U.S. EPA, Washington, D.C.

- U.S. EPA. 1989c. Risk Assessment Guidance for Superfund. Volume II. Environmental Evaluation Manual. Interim Final. EPA/540/1-89/001. Office of Emergency and Remedial Response, Washington, D.C.
- U.S. EPA. 1989d. Site Investigation of Ohio River Park, Neville Island, Allegheny County, Pennsylvania. Prepared by Pennsylvania Dept. Environmental Resources.
- U.S. EPA. 1991. Quality Criteria for Water. Report No. EPA 440/5-86-001. U.S. EPA, Washington, D.C.
- U.S. EPA. 1992. Framework for Ecological Risk Assessment. Risk Assessment Forum. EPA Document No. EPA/630/R-92/001. U.S. EPA, Washington, D.C.
- U.S. EPA. 1993a. Technical Basis for Deriving Sediment Quality Criteria for Nonionic Organic Contaminants for the Protection of Benthic Organisms by Using Equilibrium Partitioning. EPA Report No. EPA-822-R-93-011. Office of Water, Washington, D.C.
- U.S. EPA. 1993b. Sediment Quality Criteria for the Protection of Benthic Organisms: Acenaphthene. U.S. EPA Report No. EPA-822-R-93 013. Office of Science and Technology, Washington, D.C.
- U.S. EPA. 1993c. Sediment Quality Criteria for the Protection of Benthic Organisms: Dieldrin. U.S. EPA Report No. EPA-822-R-93 015. Office of Science and Technology, Washington, D.C.
- U.S. EPA. 1993d. Sediment Quality Criteria for the Protection of Benthic Organisms: Endrin. U.S. EPA Report No. EPA-822-R-93 016. Office of Science and Technology, Washington, D.C.
- U.S. EPA. 1993e. Sediment Quality Criteria for the Protection of Benthic Organisms: Fluoranthene. U.S. EPA Report No. EPA-822-R-93 012. Office of Science and Technology, Washington, D.C.
- U.S. EPA. 1993f. Sediment Quality Criteria for the Protection of Benthic Organisms: Phenanthrene. EPA Report No. EPA-822-R-93-014. Office of Science and Technology: Washington, D.C.

8-3

AR302549

- U.S. EPA. 1994. Interim Guidance on the Determination and Use of Water-Effect Ratios for Metals. Office of Science and Technology. EPA Doc. No. EPA 823/8-94/001. U.S. Environmental Protection Agency. Washington, D.C.
- U.S. EPA Region 3. Undated. Environmental Risk Assessment Guidelines. EPA 3 Superfund Technical Support Section. 8 pg.
- U.S.G.S. 1979. Ambridge, PA. 7.5 Minute Quadrangle.
- U.S.G.S. 1985. National Water Summary, 1985. Hydrologic Events and Surface Water Resources. USGS Water-Supply Paper 2300. U.S.G.S., Washington, D.C.
- U.S.G.S. 1992. Water Resources Data, Pennsylvania Water Year 1991. U.S. Dept. of the Interior. PA-91-3. Harrisburg, PA.
- WDNR (Wisconsin Department of Natural Resources), 1990. Letter to Mark Giesfeldt. File Ref.
 3200. Development of Sediment Quality Criteria for the Little Menomonee River/Moss
 American Superfund Site.
- WDNR (Wisconsin Department of Natural Resources). 1992. Letter to Mark Giesfeldt. File Ref. 3200. Sheboygan River and Harbor Superfund Site: Sediment Quality Criteria for Polycyclic Aromatic Hydrocarbons (PAHs) and Need for Additional Data Collection.

CONFOUND		HINIMM DETECT (UG/L)	HAXIMUM DETECT (UG/L_)	ARITM. HEAN (UG/L)	GEOMETRIC MEAN (UG/L)	UPPER 95% CONF. LIMIT (UG/L)	FREQUENCY OF	
ALUMIMUM		42.50	903.00	246.01	8.3	458.14	ş	6 .6
ANTIMONY		22.30	82.50	20.92	15.78	35.41	2:	6 6
ARSENIC	•	2.10	8.30	3.47	2.30	5.16		
BARIUM		27.00	217.00	94.95	70.35	144.93	8	3:
CALCIUM		25500.00	501000.00	232855.56	137686.45	354671.87		
CHROMIUM	1	11.80	11.80	3.91	3.32	6.03	ť	
COBALT		8.8	34.00	9.30	6.32	15.91	.	5 ° 6
COPPER .		7.10	7.10	3.01	2.81	3.96	÷	¢ 6
CYANIDE	•	62.61	22.20	13.04	6.19	24.19	m	- - - - - - - - - - -
ITON		22.00	424000.00	101610.17	5466.10	210549.45	ü) 6 . 6
MAGNESIUM		3820.00	190000-00	72227.78	31954.54	118671.13	ő	6
MANGANESE		3.60	86300.00	19885.29	697.22	42673.81		6 8
NICKEL	•	18.40	27.20	to.79	8.40	16.14	ñ	- 12 - 16 - 16
POTASSIUM	•	1870-00	7020.00	4218.89	3393.74	5676.95	ö	- 6
sitver		6.71	R.1	4.24	3.07	1.41	.	ۍ ک
MILLOS	•	16700.00	882000-00	228711.11	80881.78	444184.89	ö	6 6
THALLTUM		1.00	1.00	2.67	1.70 2.1	6.41	-	6 6
21MC		11.10	217 M	01 CX	; ;	AC H	P	

Printed: 06/30/94

/

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

AR302551

NEVILLE TOUNSHIP, PA S FOR DETECTED COMPOUNDS S CROUNDUATER

	-	S	ŝ	
	ū	ELS	긆	
	ITE		3	
	3	STAT	E	
~	Ű	S	3	č
2	RIVER	ARY	3	TANK
ABLE	0	Ş	×	
.₹	E	33	ž	
	0	51		

COMPOUND		MINIMUM DETECT (UG/L)	MAXIMUM DETECT (UG/L)	ARITH. NEAN (UG/L)	GEONETRIC NEAN (UG/L)	95% CONF. LINIT (UG/L)	FREQUENCY OF
ALUNIMUM		42.50	903.00	246.01	83.79	458.16	6: 9: 9
ANTIMONY	· · · · ·	22.30	82.50	20.92	15.78	35.41	2: 9: 9
ARSENIC	• • •	2.10	8.30	3.47	2.30	5.16	4: 9: 9
BARIUN		27.00	217.00	56.95	70.35	144.93	8: 8: 8
calcium	· · ·	25500.00	501000-00	232855.56	137686.45	354671.87	9: 9: 9
CHRONILUN	•	11.80	11.80	3.91	3.32	6.05	1: 8: 8
COBALT		20.20	34.00	6.30	6.32	15.91	2: 9: 9
COPPER	•	7.10	7.10	3.01	2.81	3.96	1: 9: 9
CVANIDE	• • •	19.70	55.20	13.04	6.19	24.19	3: 9: 9
IRON	•	52.00	424000.00	101610.17	5466.10	210549.45	8: 9: 9
MAGNESIUM		3820.00	190000,00	72227.78	31954.54	118671.13	9: 9: 9
MANGANESE	•	3.60	86300.00	19885.29	697.22	42673.81	8: 9: 9
NICKEL	•	18.40	27.20	10.79	8.40	16.16	3: 9: 9
POTASSIUM		1870.00	7020.00	4218.89	3593.74	5676.95	9: 9: 9
silver	•	17.70	17.70	4.24	3.07	1.41	1: 9: 9
ND1005	•	16700.00	882000.00	228711.11	80881.78	444184.89	9: 9: 9
THALLIUM ·		1.00	1.00	2.67	1.70	17.7	1: 9: 9
ZINC		15.10	217.00	62.19	10.11	128.96	3: 7: 7

 Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.
 Not calculated. Printed: 06/30/94

AR302552

A7 - BACK CHANNEL GROUNDWATER

R:\PUBS\PROJECTS\4920003\906.COV

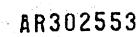


TABLE A.6 OHIO RIVER SITE - KEVILLE TOUNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS ALL SAMPLES COMBINED GROUNDWATER ALL SAMPLES COMBINED GROUNDWATER

	•			•	• • •			
contround	· · · · · · · · · · · · · · · · · · ·	MINIHUM DETECT (UG/L)		MAXIMUM DETECT (UG/L)	ARITH. MEAN (UG/L)	GEOMETRIC MEAN (UG/L)	UPPER 95% CONF. LIMIT (UG/L)	FREQUENCY OF DETECTION
2,4,6-TRICHLOROPHENOL			- 8	210000.00	7092.46	14.91	13127.35	13: 71: 71
2,4-DICHLOROPHENOL			1.00	3600.00	1447.18	12.36	36 2616.52	14: 71: 71
2,4-DIMETHYLPHENOL			1.00	19000.00	1019.22	11.64	64 1775.80	16: 71: 71
2-CHLOROPHENOL		• ' • •	17.00	6700-00	388.13	10.72	72 656.79	6: 71: 71
2-HETWYLPHENOL	· · ·		1.00	58000.00	2613.08	10.69	69 4748-43	16: 71: 71
2-NITROPHENOL	• •		1.00	20000-00	B63.43	11.32	32 1562.35	1: 71: 71
4-HETHYLPHENOL	•		2.00	76000.00	3498.30	11.60	60 6350.12	21: 71: 71
BIS(2-ETHYLNEXYL)PHTHALATE	•		1.0	20000,00	863.48	11.09	09 1562-40	8: 71: 71
D1-N-BUTYLPHTHALATE		•	1.00	2000.00	863.43	11.32	32 1562.35	1: 71: 71
DI-N-OCTYLPHTHALATE		<	1.00	20000-00	863.29	10.99	99 1562.22	4: 71: 71
NAPHTHALENE			1.00	2000.00	B63.39	11.18	18 1562.31	2: 71: 71
PHENOL		•	3.00	85000.00	3329.30	12.95	95 6158.46	11: 71: 71
TOTAL NON-CARCINOGENIC PAN	•	1	1.00	2.00	1.50	•	1.41 4.66	2: 2: 2
TOTAL PAN	 ~	•	1.00	2-00	1.50	-	1.41 4.66	2: 2: 2

1. Frequency of Detection = Mumber detected : Mumber used to calculate statistics : Mumber of sampling points. MC: Not calculated.

it. Chaire

Printed: 06/30/94

TABLE A-6 ONIO RIVER SITE - NEVILLE TOUNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS ALL SAMPLES COMBINED GROUNDWATER

COMPOUND		MINIMUN DETECT (UG/L)	MAX1MUM DETECT (UG/L)	ARIŢH. NEAN (UG/L)	GEOHETRIC MEAN (UG/L)	UPPER 95% CONF. LIMIT (UG/L)	FREQUENCY OF DETECTION
1,1,1-TRICHLOROETHAME		1.90	2500.00	126.49	5.2	217.21	3: 79: 73
1, 1, 2-TRICHLOROETHAME		8.00	2500.00	127.10	8.83	217.81	2: 79: 79
1,2-DICHLORDETHANE	· •	0.68	38 2500.00	125.22	8.77	215.90	3: 79: 79
1,2-DICHLOROETHENE (1)		9.4	2500.00	127.05	9.07	217.76	1: 79: 79
2-BUTANONE	•	7.00	2500.00	130.38	27.6	223.38	2: 77: 77
ACETONE		00 -9	2500.00	137.69	11.97	230.54	9: 77: 77
BENZENE		3.0	5000.00	1074.73	10.68	2171.96	13: 79: 79
BRONOFORM	•	4. 00	29000-00	974.59	12.53	1820.92	12: 79: 79
CARBON DISULFIDE	•	00-7	2500.00	130.31	9.61	223.30	2: 77: 77
CHLOROBENZENE		10.00	0 2500.00	127.06	8.83	217.77	1: 79: 79
CHLOROETHAME		00.85	2500.00	127.42	8.98	218.11	1: 70: 70
NETHYLENE CHLORIDE		0.65	5 2500.00	127.01	8.89	217.72	1: 79: 79
TETRACHLOROETNENE	•	1.20	200.00	127.01	8.92	217.72	1: 79: 79
TOLUENE		3.00	2500.00	126.92	8.63	217.64	62 : 62 : 7
TR I CHLOROETKENE	•	0.27	27 2500.00	127.15	8.93	217.85	3: 79: 79
							•
		•••	•	•			

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. WC: Not calculated.

Printed: 06/30/94

Ç 4 FREQUENCY OF DETECTION 5: 69: 69 1: 69: 69 11: 69: 69 0.12 0.21 8.44 UPPER 95% CONF. LIMIT (UG/L) Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.
 Not calculated. 0.03 **۵.**۵ 0.06 GEOHETRIC MEAN (UG/L) • 6.0 0.15 3.91 ARITH. MEAN (UG/L) 8. 1.50 190.00 MAXIMUM DETECT (UG/L) 1.20 0.60 0.11 MINIMUM DETECT (UG/L) ONIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DEFECTED COMPOUNDS ALL SAMPLES COMBINED GROUNDWATER MERBICIDES Printed: 06/30/94 TABLE A-6 2,4,5-TP COMPOUND 2,4,5-1 2.4-0 A-35 AR302556

OHIO RIVER SITE - MEVILLE TOMNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS ALL SAMPLES COMBINED GROUNDWATER PESTICIDES AND PCBS	HIP, PA COMPOUNDS R	*. • * * •		•	· · · ·			
CONPOLIND		MINIMUM DETECT (UG/L)	MAXIMUM DETEC7 (UG/L)	ARITH. MEAN (UG/L)	GEOMETRIC MEAN (UG/L)		UPPER 95% CONF. LINIT (UG/L)	FREQUENCY OF
4,4*-DDE		0.01		ō	0.15	0.08	0.18	1: 69: 69
ALPHA-BHC DIELDRIM	•	0.01 0.01	0.29	o' o'	0.07 0.15	0.08 0.08	0.09 0.18	1: 69: 69 1: 69: 69
ENDOSULFAN II		0.01	0.60	•	0.14	0.08	0.18	3: 69: 69
ENDRIN ALDENYOE		ö .	3 .	ċ	0.14	0.07	0.18	8: 69: 69

^{A-36} AR302557 Frequency of Detection ≈ Number detected : Number used to calculate statistics : Number of sampling points.
 Not calculated.

Printed: 06/30/94

TABLE A-6

FREQUENCY OF DETECTION 69 8 1: 20: 20 31: 67: 67 57: 67: 67 8 ŝ **61: 63: 63** 21: 69: 69 45: 69: 69 69: 69: 69 12: 69: 69 57: 69: 69 13: 67: 67 S S 65: 69: 69 28: 66: 66 69: 69: 69 67: 69: 69 11: 69: ŝ 69: 69: 45: 69: 48: 69: 32: 68: 26: 63811.03 0.24 3.52 5.67 11.33 52.03 136.03 21.57 9.21 822.71 2.2 55588.02 7304.90 36921.09 3.41 264022.26 81.81 132.01 28641.40 41.28 UPPER 95% CONF. LIMIT (UG/L) 29308.66 29308.66 6312.49 2905.48 17461.94 0.12 33.30 1.7 3.23 15.16 3.89 1.16 2.49 14.47 22.99 22.43 2.9 7.61 5270.37 222.73 GEOMETRIC MEAN (UG/L) 99-6259 2.60 65.67 55418.99 27791.63 0.19 4.57 62.7 6.48 27.66 103.47 18.28 64.10 641.41 2:52 40.51 22.80 02696.69 28251.23 228207.25 ARITH. MEAN (UG/L) 335.00 62.20 3820.00 943.00 20100-00 10.00 33.90 229000.00 91.80 30.70 203-00 202.00 402.00 1890.00 510.00 9.1 504000.00 55000.00 190000.00 187000.00 33.00 2.10 23500.00 320.00 10.0 21.00 18.30 1.50 5.80 5.60 6.10 7.10 5.10 10.40 8 3820.00 3.60 0.22 13.90 3.50 MINIMUM DETECT CUG/L) CHIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS ALL SAMPLES COMBINED GROUNDUATER INORGANICS BERYLLIUM HAGNESIUM POTASSIUN MANGANESE COMPOUND NUMINUM VNOWITH SELENIUM ARSENIC CHROMIUM CYANIDE CALCIUM HERCURY CADMIUN NICKEL SILVER BARIUM COPPER COBALT LEAD ē

AR302558

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. MC: Not calculated.

Printed: 06/30/94

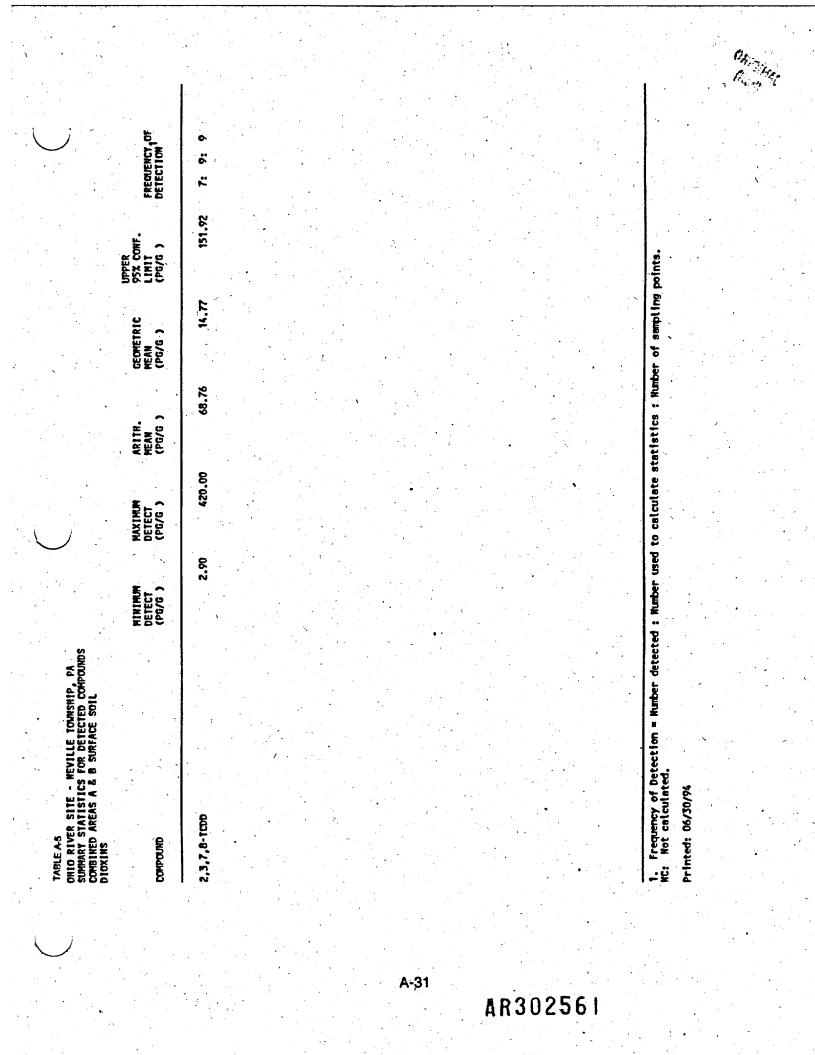
Training .

TABLE 48 OHIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS ALL SAMPLES COMBINED GROUNDUATER INORGANICS

FREQUENCY OF DETECTION	69: 69: 69	4: 69: 69	32: 66: 66	49: 67: 67	
UPPER 95% CONF. LIMIT (UG/L)	126598.57	1.85	58.04	7623.35	
GEOMETRIC MEAN (UG/L)	29308.66	1.09	9.59	104.71	
ARITH. NEAN (UG/L_)	99235.36	1.53	44.55	3088.77	· · · ·
MAXIMUN DETECT (UG/L)	882000-00	7.50	238.00	185000.00	
MINIMUM DETECT (UG/L)	4980-00	1.00	2.00	06.4	
		•			
					•
COMPOUND	MUICOS	THALLIUM	VANADIUM	ZINC	

a-34 AR302559 1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 06/30/94



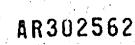
A6 - COMBINED AREA GROUNDWATER

R:\PUBS\PROJECTS\4920003\906.COV

A-32

July, 1994

1			
		~	۰.
•	<u>-</u>		
		80	
		e	
	~	5	
•	ھ	₽	
		÷	
	۵.	8	
	Ξ	0	-
•	E	~	Ξ
	ž	Ľ۵	Б
	2	=	
	TOWNSHI	ш	23
		Ŧ	ž
	, mi	Ĕ	*
	VILLE		5
1.1	Ξ	¥	6
	2	2	US . B
	E	_	•
		9	-
· .		2	æ
1. E	144	TATISTICS	
	-	2	9
	SITE	Ξ	REAS
		~	ē
		5	<
- 40	IVE	IRY SI	INED /
E A 5	-	>	Ψ.
- m	~	ž	ž
	-	-	-


	۲	Ē		
•	Ξ	U	2	
	LE TOWNSHIP	£	201	
	R	Ξ		
	F	Ē	₫	
	щ	DET	2	
	E	Þ	5	
1.	5	g	ŝ	
	Ĩ	ē.	ē	
	-	STICS	A & B' SURI	. *
		Ξ	<	
· ·	#	5	6 2	
	SITE	ITATI:	REA	ŝ
	-	≤	¥	Ξ
-	Ē	Ś	2	Ē
₹	1	≻	Ē	5
щ	-	ž	Ξ	8
TABLE A-5	2	Ŧ	£	SENIVOL
\$	DHIO RIVER	I	8	Ξų.
	-		_	

SETT VULAT I LES	. `			•		•				· · · · · · · ·
comoting				MINIMUM DETECT (UG/KG)	5.0	MAXIMUM DETECT (UG/KG)	ARITN. MEAN (UG/XG)	GEOMETRIC MEAN (UG/KG)	95% CONF. LIMIT (UG/KG)	FREQUENCY OF
HEXACHLOROBUTAD I ENE					5200.00	5200-00	1319.53	877.46	1661.02	1: 32: 34
INDENO(1,2,3-CD)PYRENE				•	130.00	19000,00	3132.06	1330.61	4398.86	26: 34: 34
NAPHTHALENE		1 			53.00	34000.00	12229.94	1	28125.13	26: 35: 35
PHENANTHRENE					69.00	10000.00	7518.35	2239.87	12494.17	29: 34: 34
PHENOL	•	· · · .		•	1200.00	1200.00	577.38	485.26	703.66	1: 21: 34
PYRENE				•	20.02	63000.00		2789.04	11143.10	31: 34: 34
TOTAL CARCINOGENIC PAN		• •	•		1229.00	144900.00	27277.76	12443.28	37400.04	34: 34: 34

9089.91 37400.04 67599.50 101027.05 3355.92 17865.03 31242.38 12443.28 6761.50 27277.76 72274.37 36109.00 353000.00 453200.00 144900.00 393.44 1924.00 3153.00 1229-00 TOTAL NON-CARCINOGENIC PAH TOTAL CARCINOGENIC PAN TOTAL B(A)P-JE TOTAL PAN

35: 35: 3 35: 35: 3

34: 34: 34

A-29

Frequency of Detection = Mumber detected : Mumber used to calculate statistics : Mumber of sampling points. MC: Hot calculated.

Printed: 06/30/94

IT GAT

TABLE 4-5 OHIO RIVER SITE - NEVILLE TOUNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS COMBINED AREAS A & B SURFACE SOIL VOLATTLES

1,1-1 1.1 0 6.10 6.10 6.33 2: 34: 35 1,1-1 1,1-01CMLORGETMME 5.00 5.00 5.00 5.00 5.00 5.10 6.3 2: 34: 35 1,2-DICMLORGETMEME 1 5.00 5.00 5.00 5.00 5.00 5.00 5.10 6.33 1: 32: 33: 35 1,2-DICMLORGETMEME 1 0.00 10.00 10.00 6.30 6.21 6.47 1: 34: 35 4-WETMIT-2-PENIXADME 10.00 10.00 6.30 6.23 6.41 7.04 1: 35: 35 ACETONE 10.00 10.00 6.30 6.53 6.41 7.04 1: 35: 35 ACETONE 10.00 12.00 4.00 4.00 4.00 4.00 1: 35: 35 ACETONE 10.00 12.00 4.00 4.00 4.00 4.00 1: 35: 35 CHABOON DISTATEME 1.00 12.00 4.00 4.00 4.00 4.00 5.00 5.00 5.00 5.01 <th>COMPOUND</th> <th>••</th> <th>ΧOΥ</th> <th>MINIMAN Detect (UG/KG)</th> <th>MAXIMUM DETECT (UG/KG)</th> <th>ARITH. MEAN (UG/KG)</th> <th>GEOMETRIC MEAN (UG/KG)</th> <th>95% CONF. LINIT (UG/KG)</th> <th>FREQUENCY OF DETECTION</th>	COMPOUND	••	ΧOΥ	MINIMAN Detect (UG/KG)	MAXIMUM DETECT (UG/KG)	ARITH. MEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	95% CONF. LINIT (UG/KG)	FREQUENCY OF DETECTION
(1) 5.00 5.00 5.00 5.00 5.00 5.00 6.21 6.41 7.9 16.00 16.00 16.00 6.39 6.26 6.53 11 16.00 16.00 16.00 6.30 6.26 6.53 11 16.00 16.00 16.00 6.30 6.26 8.26 6.41 7.04 11 16.00 16.00 6.30 6.54 6.41 7.04 11 </td <td>1, 1, 1-TRICHLOROETHANE</td> <td></td> <td></td> <td>9 9</td> <td></td> <td></td> <td>6.10</td> <td>6.38</td> <td></td>	1, 1, 1-TRICHLOROETHANE			9 9			6.10	6.38	
(1) 5.00 9.00 6.25 6.21 6.47 3 16.00 10.00 10.00 16.00 6.00 6.25 6.41 7.04 1 16.00 16.00 16.00 16.00 6.00 6.01 7.04 1 16.00 16.00 16.00 16.00 6.00 6.01 7.04 1 1 1.00 22.00 7.18 6.67 8.24 6 1 1 4.00 4.00 4.00 4.00 4.00 10 1 1 3.00 12.00 5.20 5.20 5.20 5.20 5.20 10 3.00 14.00 6.03 5.60 6.04 6.04 6.00 10 3.00 14.00 5.60 5.60 5.20 5.20 5.20 10 3.00 3.00 5.60 5.60 5.60 10 10 3.00 3.00 5.00 3.00 4.00 10 10 10 10 10 10 10 10 10	, 1-DICHLOROETHENE		ו	8 . 2		•	2.00	2	=
10.00 10.00 6.30 6.26 6.53 11 16.00 16.00 6.34 7.04 11 16.00 16.00 6.34 6.41 7.04 12 16.00 16.00 6.34 6.67 8.24 6 1.00 1.00 22.00 7.18 6.67 8.24 6 1.00 4.00 4.00 4.00 4.00 11 12 3.00 11.00 6.03 5.00 6.04 6.89 12 3.00 14.00 6.03 5.60 6.55 9.09 19 3.00 7.00 5.60 5.50 5.50 5.50 19 3.00 7.00 5.64 5.50 5.50 19 19 3.00 3.00 3.00 3.00 3.00 80 7.02 9.39 22 3.00 3.00 8.04 7.02 9.39 22 7.02 9.39 23	Z-DICHLOROETHENE (T)		1 .	9.2	· · ·		6.21	6.47	R.
16.00 16.00 6.54 6.41 7.04 1: 4.00 22.00 7.18 6.67 8.24 6: 4.00 4.00 4.00 4.00 4.00 4.00 8.24 6: 5.00 4.00 4.00 4.00 4.00 4.00 4.00 8.24 6.8 1: 7.00 5.00 12.00 6.29 6.04 6.80 12: 6.56 9: 5.00 14.00 6.03 5.80 6.61 7.69 10: 5.00 14.00 6.03 5.80 6.56 9: 5.00 7.00 5.64 5.50 5.96 10: 5.00 7.00 5.64 5.50 5.96 10: 5.00 7.00 5.64 5.50 5.96 10: 5.00 5.64 5.53 6.42 9.09 19: 5.00 5.94 10: 5.94 10: 19: 10: 5.00 5.04 10: 5.94 19: 19: 19: 19:	-NETHYL+2-PENTANONE		•	10.01		· · . . ·	6.26	6.53	32:
4.00 22.00 7.18 6.67 8.24 6 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 3.00 12.00 5.20 6.04 6.80 12: 3.00 14.00 6.03 5.20 6.61 7.60 10: 3.00 7.00 5.26 5.50 10: 7.60 19: 3.00 7.00 5.64 5.50 5.50 10: 3.00 7.00 5.64 5.50 10: 7.65 19: 3.00 7.00 5.64 5.50 10: 7.65 19: 3.00 5.64 5.64 10: 7.65 19: 10: 3.00 5.30 7.53 6.42 9.00 19: 19:4 22:72 34: 3.00 3.00 3.00 3.00 9.30 9.30 22:72 34:	ETONE	•	•	16.0			6.41	7.04	3
4.00 4.00	SWZENE			4	•		6.67	8.24	ž
4.00 4.00	URBON DISULFIDE			4.9	•		4.00	3	1: 1: 35
3.00 12.00 6.29 6.06 6.80 12.9 3.00 14.00 6.03 5.80 6.56 9: 3.00 14.00 6.97 6.61 7.69 10: 3.00 7.00 5.97 6.61 7.69 10: 3.00 7.00 5.54 5.50 5.96 10: 15.00 29.00 7.53 6.42 9.09 19: 3.00 3.00 20.63 19:46 22.72 34: 3.00 23.00 20.63 19:46 22.72 34: 3.00 23.00 8.04 7.02 9.39 22.72 34:	ILOROBENZENE			8.4		· · ·	00.4	Ŵ	
3.00 14.00 6.03 5.80 6.56 9: 3.00 14.00 6.97 6.61 7.69 10: 3.00 7.00 5.64 5.50 5.96 10: 3.00 7.00 5.64 5.50 5.96 10: 15.00 29.00 7.53 6.42 9.09 19: 3.00 3.00 3.00 3.00 3.00 40: 22.72 34: 3.00 22.00 8.04 7.02 9.39 22: 32: 9.39	LOROFORM	•	•	9.2 2		•	6.0	6.80	12: 34: 35
3.00 14.00 6.97 6.61 7.69 10: 3.00 7.00 5.64 5.50 5.96 10: 3.00 29.00 7.53 6.42 9.09 19: 15.00 53.00 20.63 19:44 22.17 34: 3.00 3.00 3.00 3.00 40: 7.02 9.39 3.00 20.03 8.04 7.02 9.39 22: 34:	HYLBENZEKE		•	9.2 2		-	5.80	6.56	ä
DETHENE 5.00 7.00 5.64 5.50 5.96 10: 5.00 29.00 7.53 6.42 9.09 19: 15.00 53.00 20.43 19:44 22.72 34: 15.00 53.00 3.00 3.00 3.00 8.04 7.02 9.39 16.00 53.00 20.43 19:44 22.77 34: 16.01 3.00 3.00 3.00 8.04 7.02 9.39 22:	THYLENE CHLORIDE			9.2 1			6.61	7.69	10: 33: 35
5.00 29.00 7.53 6.42 9.09 19.4 15.00 53.00 53.00 20.43 19.44 22.72 34: KES 3.00 3.00 3.00 3.00 3.00 3.00 22.02 9.09 19:	ETRACHLOROETHENE	•	•	5.9	•		5.50	5.96	10: 33: 34
15.00 53.00 20.43 19.44 22.72 34: 45 3.00 3.00 3.00 3.00 WC 1: 146WE 3.00 22.00 8.04 7.02 9.39 22:	ALUENE			9.2		1.53	6.42	60.6	33:
3.00 3.00 3.00 3.00 3.00 1: 1: 3.00 22.00 8.04 7.02 9.39 22: 34:	JTAL BTEX	•		15.0	. `	•	77-61-	27.22	34: 34: 34
3.00 22.00 8.04 7.02 9.39 22: 34:	STAL KYLEKES			<u>а</u> . 2	·		3.00	3	-
	RICHLOROETHENE	••••••	•	B. M		! .	7.02	9.39	3
	•	• .	•		•	•	;		

Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.
 Not calculated.

Printed: 06/30/94

AR302563

	4.60 240.00 14.62 3.94 0.58 47.00 5.80 3.03 0.98 590.00 48.34 24.61
POXIDE 0.58 47.00 5.60 3.03 8.29 1 0.98 590.00 48.34 24.61 76.17 50.00 720.00 215.51 156.47 266.30 3 500.00 500.00 235.56 185.24 292.65	0.58 47.00 5.80 3.03 0.98 590.00 48.34 24.61
0.98 590.00 48.34 24.61 76.17 50.00 720.00 215.51 156.47 266.30 3 500.00 500.00 235.58 185.24 292.65	0.98 590.00 48.34 24.61
50.00 720.00 215.51 156.47 266.30 3 500.00 500.00 235.58 185.24 292.65	•
500.00 500.00 235.58 185.24 292.65	720.00 215.51 156.47
	500.00 235.58 185.24

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated. Printed: 06/30/94

TABLE A.S OHIO RIVER SITE - MEVILLE TOLNISHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS COMBINED AREAS A & B SURFACE SOIL SEMIVOLATILES

NILVIAN NULVIAN NULVIAN NULVIAN NULVIAN EXECUT EX	COMBINED AREAS A & B SURFACE SOIL SEMIVOLATILES	RFACE SOIL	•	`	• • •	•	•			• • •	
Mol. 260.00 970.00 479.32 421.31 560.92 120.00 2000.00 615.40 500.56 1034.60 120.00 1000.00 175.29 531.10 240.65 140.00 1900.00 173.51 3200.9 240.55 200.00 520.00 333.21 3220.9 240.55 200.00 3500.00 2231.16 935.63 320.9 140.00 3500.00 2231.16 935.63 320.9 140.00 3500.00 2751.29 1687.36 5911.62 140.00 3500.00 6773.68 246.35 556.76 140.00 2000.00 2750.29 1687.36 591.62 MI 140.00 2000.00 276.23 556.76 MI 310.00 270.29 1687.36 591.62 MI 400.00 270.26 177.01 405.76 MI 310.00 210.00 210.02 540.62 636.76 MI 3100.00 <th>COMPOUND</th> <th></th> <th></th> <th>MININ DETEC (UG/K</th> <th>3-0</th> <th>MAXIMIM DETECT (UG/KQ)</th> <th>ARITH. Mean (Ug/Kg)</th> <th>GEOMETRIC MEAN (UG/KG)</th> <th>UPPER 95% COMF. LIMIT (UG/KG)</th> <th>FREQUENCY OF DETECTION</th> <th></th>	COMPOUND			MININ DETEC (UG/K	3-0	MAXIMIM DETECT (UG/KQ)	ARITH. Mean (Ug/Kg)	GEOMETRIC MEAN (UG/KG)	UPPER 95% COMF. LIMIT (UG/KG)	FREQUENCY OF DETECTION	
120.00 2000.00 615.40 500.56 103.40 140.00 13000.00 1705.27 833.10 2416.63 160.00 4900.00 1082.58 713.49 1383.80 230.00 520.00 333.21 332.02 240.72 200.00 520.00 233.11 935.63 2280.99 200.00 5200.00 2231.18 935.63 2280.99 100.00 5500.00 525.74 214.52 755.30 100.00 2000.00 525.74 214.52 755.30 100.00 2000.00 6793.68 245.57 555.74 100.00 2000.00 6793.68 245.57 555.74 100.00 2000.00 6793.68 245.57 555.74 100.00 2000.00 6793.68 245.57 555.74 100.00 2000.00 2001.62 100.16 605.64 100.00 2000.00 2401.62 100.16 605.64 100.00 200.00 242	2,4,6-TRICHLOROPHENOL				260.00	00.079	479.32	421.31	569.92	6: 22: 34	
WOMINALENE (40,00 13000.00 1705.29 813.10 248.6.5 KEK (40,00 6900.00 1333.21 342.02 499.75 KILENE 520,00 520.00 353.21 342.02 409.75 KILENE 520,00 520.00 353.21 342.02 409.75 KILENE 240.00 1000.00 2251.18 935.63 3280.99 MILLENE 100.00 255.74 2214.52 7553.30 MILLENENE 130.00 4200.20 4270.29 1657.36 5911.62 MILLENENE 130.00 2000.00 5255.74 2214.52 7553.30 MILLENENE 130.00 2000.00 4270.26 1171.03 4554.76 MILLENENE 140.00 2000.00 2360.76 1171.03 4554.66 MILLENENE 140.00 2000.00 240.62 1100.15 666.98 MILLENENE 140.00 200.00 240.62 1101.015 665.66 MILLENENE 100.00	2,4-DICHLOROPHENOL	•	ł	•	120.00	2000-00	815.40	590.56	1034.60	ŝ	•
KENE (60.00 (900.00 1082.58 713.49 1383.80 NTLENE 520.00 520.00 353.21 133.21 138.202 409.72 ME 240.00 520.00 520.00 525.74 274.52 7553.30 MINEAGENE 140.00 35000.00 5555.74 274.52 7553.30 VIENE 130.00 25000.00 5555.74 274.52 7553.30 VIENE 140.00 35000.00 5555.74 274.52 7553.30 VIDORANTINENE 130.00 20000.00 2550.71 1171.03 605.46 LUDORANTINENE 140.00 20000.00 2569.71 1171.03 605.46 KULVENTUPHINALATE 140.00 2000.00 2601.62 1057.47 664.46 1457.41 MINULANTE 120.00 1000.00 2401.62 1400.15 8006.98 MINULANTE 120.00 1300.00 2401.62 1457.41 247.41 MINULANTE 180.00 1000.00 1400.00	2-NETHYLNAPHTHALENE			•	140.00	13000.00	1705.29	833.10	2418.63	35:	
MILLENE 520.00 520.00 520.00 520.00 520.00 520.00 520.00 520.00 520.00 5231.18 935.63 5280.99 MILLENE 140.00 35000.00 5235.74 2214.52 7553.30 MILLENE 130.00 35000.00 5235.74 2214.52 7553.30 PYRENE 130.00 25000.00 5200.00 5201.62 2214.52 7553.30 PYRENE 130.00 25000.00 5200.00 5206.70 4270.28 7553.30 MILLENE 130.00 20000.00 2200.162 6773.68 2429.33 5911.62 MILLENE 140.00 20000.00 2401.42 1177.03 4056.46 MILLENE/LIDHINLATE 140.00 71000.00 2401.42 1177.03 4059.46 MILLENE/LIDHINLATE 180.00 1300.00 4477.82 1643.46 4059.46 MILLENE/LIDHINLATE 180.00 180.00 180.00 180.00 1607.47 604.90 1157.71 MILLENE/LIDHINLAT	ACENAPHTHENE				160.00	00.0044	1082.58	713.49	1383.60		
ME 240.00 18000.00 2231.18 935.63 3280.90 MINUACENE 140.00 35000.00 5255.74 2214.52 7553.30 VRENE 130.00 25000.00 5255.74 2214.52 7553.30 VRENE 130.00 25000.00 5255.74 2214.52 7553.30 VRENE 130.00 25000.00 6773.68 2479.35 5911.62 FLUORANTINENE 130.00 2000.00 2569.71 1171.03 6050.46 FLUORANTINENE 130.00 2000.00 2401.62 1229.17 3434.41 FLUORANTINENE 140.00 2000.00 2401.62 1229.17 3434.41 FLUORANTINENE 140.00 140.00 140.00 4423.46 1437.71 WILNEXTLIPHIMLATE 130.00 140.00 140.00 140.00 140.00 1477.82 1433.46 FLUORANTINENE 130.00 140.00 140.00 140.00 1477.82 1434.71 FLUORANTINE 180.00 1800.00	ACENAPHTHYLENE		•	· · ·	520.00	520.00	353.21	332.02	22.001		
MIHAACENE (40.00 35000.00 5255.74 2214.52 7353.30 PYRENE 130.00 25000.00 6773.68 1687.38 5911.62 PYRENE 130.00 25000.00 6773.68 2420.34 9636.76 FLUDOAMINENE 130.00 20000.00 2869.771 1171.03 4059.48 FLUDOAMINENE 140.00 20000.00 2869.771 1171.03 4059.48 FLUDOAMINENE 140.00 20000.00 2849.771 1171.03 4059.48 FLUDOAMINENE 140.00 20000.00 2401.62 1229.17 3434.41 FLUDOAMINENE 140.00 2100.00 2403.62 1557.17 3434.41 MULINEXTLIPHINALATE 120.00 3100.00 4479.62 1644.15 1557.17 MULINEXTLIPHINALATE 180.00 356.00 160.00 180.00 1557.17 3434.41 MULINEXTLIPHINALATE 180.00 180.00 180.00 180.00 180.00 1877.12 MULINEXTLIPHINALATE 180.00	ANTHRACENE		· •	•	240.00	16000-00	2231.18	935.63	3280.99	27: 34: 34	
PYRENE 130.00 25000.00 4270.29 1687.38 5911.62 FLUORANTHENE 130.00 42000.00 6793.68 2429.34 9636.76 FLUORANTHENE 130.00 2000.00 2869.71 1171.03 4059.48 FLUORANTHENE 140.00 2000.00 2869.71 1171.03 4059.48 FLUORANTHENE 140.00 2000.00 2601.62 1229.17 3434.41 FLUORANTHENE 140.00 7000.00 2401.62 1229.17 3434.41 FLUORANTHENE 140.00 7000.00 2401.62 1229.17 3434.41 FLUORANTHENE 180.00 71000.00 4477.82 1643.16 6364.15 FLUORANTHENE 180.00 180.00 180.00 180.00 1643.16 6364.15 FLUORANTHENE 180.00 180.00 180.00 180.00 180.00 1643.16 6364.15 FLUORANTHENE 180.00 180.00 180.00 180.00 180.00 180.00 180.43 1845.45 1844.	BENZO(A)ANTHRACEME	•	•	i. D	140.00	35000.00	5255.74	2214.52	7363.30		
ILUOGAMITIKIK 130.00 42000.00 6793.68 2429.34 9636.76 N,1)PERYLENK 140.00 20000.00 2869.71 1171.03 4059.48 N,1)PERYLENK 340.00 20000.00 2869.71 1171.03 4059.48 N/1)PERYLENK 340.00 20000.00 2401.42 1229.17 3434.41 N/LIKEXYL)PHTIMLATE 340.00 71000.00 2401.42 1229.17 3434.45 N/LIKEXYL)PHTIMLATE 180.00 3100.00 4473.02 1643.16 6384.15 N/LIKEXYL)PHTIMLATE 180.00 160.00 160.00 160.00 NC N/LIKEXYL)PHTIMLATE 180.00 160.00 160.00 160.00 NC LINITIAACEUE 180.00 160.00 160.00 160.00 NC LINITIAACEUE 180.00 160.00 163.259 709.30 1249.46 JAMITHIAACEUE 72.00 1100.00 1432.35 705.30 1297.54 MINLATE 150.00 1100.00 1432.35 705.30 1297.54 JAMITHIAACEUE 72.00 1100.00 1432.35 705.30 1297.54 MINLATE 150.00 1100.00 1432.35 774.53 631.73 MAN <td>BENZO(A)PYRENE</td> <td></td> <td></td> <td></td> <td>130.00</td> <td>25000.00</td> <td>4270.29</td> <td>1687.38</td> <td>5911.62</td> <td>34:</td> <td></td>	BENZO(A)PYRENE				130.00	25000.00	4270.29	1687.38	5911.62	34:	
N,1)PERVLENE 140.00 20000.00 2669.71 1171.03 4059.48 FLUDRAMITIKINE 340.00 20000.00 2401.62 1220.17 343.41 NILHEXYL)PHTIMALATE 340.00 71000.00 2401.62 1220.17 343.41 NILHEXYL)PHTIMALATE 180.00 71000.00 2401.62 1220.17 343.41 E 120.00 3100.00 4423.09 1100.15 8006.98 NILHEXYL)PHTIMALATE 120.00 3100.00 4479.82 1843.16 638.45 R 89.00 3600.00 180.00 180.00 160.00 160.00 NINAITIALATE 180.00 180.00 180.00 180.00 160.00 NINAITIAL 180.00 180.00 180.00 160.00 160.00 NINAITIAL 180.00 180.00 180.00 160.00 1709.25 NIMALATE 150.00 11000.00 1532.35 705.36 1997.54 NIMALATE 720.00 1100.00 558.42 476.53 681.05 MINULATE 720.00 1100.00 558.42 476.56 1997.54 NIMALATE 720.00 1100.00 558.42 476.56 1997.54 NEME 700<	BENZO(B) FLUORANTHENE			•	130.00	42000.00	6793.68	2429.34	9636.76		
FLUCRANTHENE 340.00 20000.00 2401.62 1220.17 3434.41 NYLHEXYL)PHTMALATE 180.00 71000.00 4423.09 1100.15 8006.98 BYLHEXYL)PHTMALATE 120.00 3100.00 915.47 644.90 1157.71 E 120.00 3100.00 4477.82 1843.16 6384.15 VLPHTMALATE 180.00 180.00 1800.00 4477.82 1843.16 6384.15 VLPHTMALATE 180.00 180.00 1800.00 1800.00 1800.00 1600.00 1600.00 157.71 VLPHTMALATE 180.00 1800.00 1800.00 1843.16 6384.15 VLPHTMALATE 180.00 1800.00 1800.00 1843.16 6384.15 VLPHTMALATE 1800.00 1800.00 1600.00 1600.00 1003.59 709.30 MULATE 150.00 1100.00 558.42 474.53 681.05 HEME 720.00 1100.00 1120.43 774.53 15317.32 HEME 720.00 1100.00 1120.00 1129.45 15317.32 <td>BENZO(G, H, 1)PERYLENE</td> <td></td> <td></td> <td>• .</td> <td>140.00</td> <td>2000.00</td> <td>2869.71</td> <td>1171.03</td> <td>4059.48</td> <td></td> <td></td>	BENZO(G, H, 1)PERYLENE			• .	140.00	2000.00	2869.71	1171.03	4059.48		
WILHEXYL)PHTIMALATE 180.00 71000.00 4423.09 1100.15 8006.98 E 120.00 3100.00 915.47 664.90 157.71 E 120.00 3100.00 915.47 644.90 157.71 R 890.00 34000.00 4479.82 1843.16 6384.15 YLPHIMALATE 890.00 180.00 4479.82 1843.16 6384.15 YLPHIMALATE 1800.00 1800.00 4479.82 1843.16 6324.15 YLPHIMALATE 210.00 1800.00 1800.00 1800.00 1005.59 709.30 VLPHIMALATE 210.00 1500.00 11000.00 1432.35 785.76 1997.54 Multate 750.00 1100.00 558.42 474.53 681.05 MitMLATE 72.00 97000.00 1432.35 785.76 1997.54 HEME 72.00 97000.00 1129.485 706.81 1559.20	BENZO(K) FLUORANTHENE				340.00	2000.00	2401.62	1229.17	3434.41	27: 34: 34	
E 120.00 3100.00 915.47 604.90 1157.71 NUPHINALATE 89.00 3400.00 4479.82 1843.16 6384.15 NUPHINALATE 180.00 180.00 180.00 180.00 180.00 160.00 NUMINACENE 210.00 3600.00 180.00 180.00 180.00 180.00 100.55 709.30 1249.46 JIAMINACENE 210.00 3600.00 11000.00 1432.35 785.76 1997.54 NIMLATE 150.00 11000.00 1432.35 785.76 1997.54 NIMLATE 72.00 97000.00 1432.35 785.76 1997.54 NIMLATE 72.00 97000.00 1402.03 558.42 474.53 681.05 NEWE 72.00 97000.00 1102.03 706.81 1597.80	BIS(2-ETHYLHEXYL)PHTHAL	ATE	. •		180.00	71000.00	44.23.09	1100.15	8006.98	16: 34: 34	
NCPHTIMALATE 89.00 34000.00 4477.82 1843.16 6384.15 VLPHTIMALATE 180.00 180.00 180.00 180.00 NC ,HIAMTHRACENE 210.00 3600.00 180.00 180.00 NC ,HIAMTHRACENE 210.00 3600.00 1003.59 709.30 1249.46 ,HIAMTHRACENE 210.00 3600.00 1103.59 709.30 1249.46 ,HIMATE 150.00 11000.00 1432.35 785.76 1907.54 HIMALATE 150.00 1100.00 558.42 474.53 681.05 HENE 72.00 97000.00 10187.71 3331.18 15317.32	CARBAZOLE	•	•		120.00	3100.00	915.47	604.90	1157.71	32:	
180.00 180.00 180.00 180.00 180.00 180.00 NC 210.00 3600.00 1003.59 709.30 1249.46 150.00 11000.00 1432.35 785.76 1997.54 150.00 1100.00 558.42 474.53 681.05 72.00 97000.00 1129.85 706.81 15317.32	CHRYSENE		· · ·		89.00	34000.00	4479.82	1843.16	6384.15	20: 37: 37	
210.00 3600.00 1003.59 709.30 1249.46 150.00 11000.00 1432.35 785.76 1907.54 150.00 1100.00 558.42 474.53 681.05 72.00 97000.00 10187.71 3331.18 15317.32 120.00 4500.00 1129.85 706.81 1459.80	DI-N-BUTYLPHTHALATE		•	н 1. т	180.00	180.00	180.00	180.00	Ŵ		
150.00 11000.00 1432.35 785.76 1907.54 150.00 1100.00 558.42 474.53 681.05 72.00 97000.00 10187.71 3331.18 15317.32 120.00 4500.00 1129.85 706.81 1459.80	DIBENZ(A, H)ANTHRACENE	•	, , ,		210.00	3600.00	1003.59	709.30	1249.46	ä	
150.00 1100.00 558.42 474.53 681.05 72.00 97000.00 10187.71 3331.18 15317.32 120.00 4500.00 1129.85 706.81 1459.80	DIBENZOFURAN	•			150.00	11000.00	1432.35	785.76	1997.54	្តង្ក	
72.00 97000.00 10187.71 3331.18 15317.32 120.00 4500.00 1129.85 706.81 1459.80	DIETHYLPHTMALATE			•	150.00	1100.00	558.42	474.53	681.05	19:	
120.00 4500.00 1129.85 706.81 1459.80	FLUORANT NENE				22.00	97000.00	10187.71	3331.18	15317.32	32: 34: 34	· *
	FLUORENE	•			120.00	4500.00	1129.85	706.81	1459.80	17: 34: 34	

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 06/30/94

A-28 AR302565

	r10F			
	FREQUENCY OF	31: 35: 35 25: 31: 31 34: 35: 35		
· · · · · · · · · · · · · · · · · · ·				
	4F.	336.04 352.17 1177.45		•
•	UPPER 95% CONF. LIMIT (UG/KG)			
		2 2 2		
	GEOMETRIC MEAN (UG/KG)	32.66 12.87 191.06		
	GEOM MEAN (UG/I		an <mark>d</mark> ia dia kaominina dia mampina dia kaominina di Ny INSEE dia kaominina dia ka	
	1	193.81 146.18 692.74		
•	ARITH. MEAN (UG/KG)	64 44 66 64 66		
	MEA	e de la composition de Composition de la composition de la comp	artista Artista Artista	
		2900.00 3900.00 10000.00		
	HAXIMUM DETECT (UG/KG)	52 36 39 100 31 50		
	255	000		
· · · · · · · · · · · · · · · · · · ·	E.C	1.20 1.20 12.00	na da la constanta da la 19 de La constanta da la constanta da	
	MINIMUM DETECT (UG/KG)			
· · · · · · · · · · · · · · · · · · ·				•
A A				
MSNIP SOIL				
LE TOU DETECT RFACE		•		
HEVIL FOR				
ITE - ISTIC: AS A I			in the second	30/94
L5 IVER S C STAT DES	Ê	<u>e</u> .	frequency of Detection = Number used to celevilate statistics : Number of simplifing points.	1: 06/
TABLE A5 OHLO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DEFECTED COMPOUNDS COMBINED AREAS A & B SURFACE SOIL MERBICIDES	COMPGUND	2,4,5-T 2,4,5-TP 2,4-D		Printed: 06/30/94
- 555£	5	NNN	la de la constante de la const La constante de la constante de	Ē
	-			

A-25 AR302566

• :	PA	COMPOUNDS	•	
	NEVILLE TOWNSHIP, I	Ā	SOIL	
	LLE 101	DETECI	2 B SURFACE SOIL	
	-	CS FOR	5. 8 1	
•	SITE	ATISTI	REAS A	
TABLE A-5	DHIO RIVER SITE -	SUMMARY STATISTICS FOR DETECTED	COMBINED AREAS A & B	
÷P	ð	ಡ	2	

COMPONID	-	MINIMUM DETECT (UG/KG)	MAXIMUM DETECT (UG/KG)	ARITH. MEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	uppek 95% couf. LINIT (UG/KG)	FREQUENCY OF
000		0.55	5 210.00	12.23	16"7	22.17	4: 34: 34
4,4'-DDE		0.33	17.00	5.74	3.75	7.04	6: 33: 34
4,4001	× • •	0.86	16 360.00	40.28	40.6	61.57	18: 34: 34
ALDRIN	•	0.71	1 260.00	23.22	5.38	37.86	19: 34: 34
ALPHA-BHC		0.45	5 830.00	50.92	7.59	91.61	18: 34: 34
ALPHA-CHLORDANE		0.27	1 450.00	2.2	3.68	11.13	23: 34: 34
AROCLOR-1242		13.00	110.00	54.57	41.48	66.02	3: 30: 34
AROCLOR-1254	•	11:00	0 140-00	62.55	47.14	01.17	4: 32: 34
AROCLOR-1260		25.00	500-00	108.50	61.66	145.38	7: 34: 34
BETA-BKC	•	2.50	1800.00	65.62	4:38	152.67	7: 34: 34
DELTA-BHC	•	0.60	410-00	18.58	3.80	38.27	13: 34: 34
DIELDRIN		27.0	140.00	18.91	5.82	29.78	13: 34: 34
ENDOSULFAN J		17.00	0 17.00	3.63	2.54	4.57	1: 34: 34
ENDOSULFAN 11		0.48	a 54.00	8.29	ć. ,	11.20	8: 34: 34
ENDOSULFAN SULFATE	•	2.40	00 48.00	7.90	5.14	10.58	4: 34: 34
ENDRIN	· · ·	1.80	12.00	2.60	4.31	6.73	4: 32: 34
ENDRIN ALDENYDE		2.00	6.20	2.66	2.48	3.15	2: 19: 34
ENDRIN KETONE	•	0.27	24.00	8.75	4.51	12.64	6: 34: 34
GAMA-BHC (LINDANE)	· · · · · · · · · · · · · · · · · · ·	0.87	2100.00	146.41	3.6	268.82	17: 34: 34
GAMA-CHLORDANE		75.0	7 900.00	44.02	10.4	88.74	21: 34: 34

Frequency of Date MC: Not calculated.
 Printed: 06/30/94

A-26

TAHLE AD DUIO RIVER SITE - NEVILLE Summary Statistics for de Combined Areas A & B Surf Inorganics	VEVILLE TOUNSHIP, PA FOR DETECTED COMPOUNDS B SURFACE SOIL						
corpound		HINIMUM DETECT (MG/KG)	HAXIMUM DETECT (MG/KÅ)	ARITH. MEAN (MG/KG)	GEOMETRIC MEAN (MG/KG)	UPPER 95% CONF. LIMIT (MG/KG)	FREQUENCY OF DETECTION
ALUMINUM		7410.00	27100.00	13795.76	13131.67	15133.24	33: 33: 33
ARSENIC		2.30	43.00	10.71	9.56	12.60	33: 33: 33
BARIUM		24.00	345.00	193.30	177.40	213.27	33: 33: 33
BERYLLIUM		0.64	5.10	1.29	0.81	2.1	19: 24: 24
CALCIUM		60.00	128000.00	36205.03	17526.39	46739.32	33: 33: 33
CHROMIUM	•	8.50	26.00	21.85	19.52	25.14	33: 33: 33
COBALT		2.60	36.00	11.21	9.30	13.18	32: 33: 33
COPPER		13.00	390.00	55.39	33.85	76.21	33: 33: 33
CYANIDE		0.67	114.00	13.09	3.32	20.95	25: 31: 31
Itrovi		16300.00	67300.00	34406.06	32850.11	37672.22	33: 33: 33
LEAD	•	13.00	201.102	67.70	52.25	84.20	33: 33: 33
HAGHESIUM		381.00	8330.00	3267.61	2797.13	3796.34	33: 33: 33
MANGANE SE	· · ·	193.00	6600.00	1602.64	1353.90	1918.64	33: 33: 33
MERCURY		0.15	8.60	0.52	0.19	0.94	19: 33: 33
NICKEL	•	7.30	67.00	23.46	21.23	26.91	33: 33: 33
POTASSIUM		520.00	2260.00	1358.58	1293.23	1476.38	33: 33: 33
selenium		1.30	2.50	0.49	0.33	0.66	4: 33: 33
SILVER	•	2.40	2.40	0.68	0.65	0.77	1: 33: 33
scolum		82.00	528.00	2200.79	258.66	356.45	14: 14: 14
THALLIUM		0.56	1.60	0.72	0.64	0.83	13: 33: 33

MC: Not calculated. Printed: 06/30/94 و:

AR302568

21.18
12. 10.12 13. 10.12 14.
28.23 28.91 2.12 2.12 2.13 2.13 2.13 2.13 2.13 2.1
10.00 235.00 235.00 166.64 122.28 10.00 955.00 166.64 122.28 10.00 rued to calculate atatistics : Nurber of sampling points.
238.00 555.00 Cullate stat
208 201 201 201 201 201 201 201 201 201 201
00.01 00.00 01 01
Frequency of Detection = kumber detected kot calculated.
mcy of alculation of Solar S
VAMADIUM ZINC 1. Frequency of 1 HC: Not calculat Printed: 06/30/94
A-24
AR302569

0

A5 - SURFACE SOILS

R:\PUBS\PROJECTS\4920003\906.COV

.....

.

AR302570

A-22

July, 1994

		. .	•	· · .		1			1. 1.		
			, ¹	s							
	۴.,	. <u>-</u>						÷.			
										1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
	71C										· · · · ·
	ENC 110	4 4	4	8							
	FREMENCY 10F DETECTION	4:	4 · ·								
	1 0						· .	••••	λ.		
		5 -	m	0	•	:	•	2			•
		6 0		0 .				e Les 1994	•		
		43689.85 9077.01	60661.43	104338.00			· · ·				•
	UPPER 95% CONF. LIMIT (UG/KG)	4	ୖୖୖ		• •	•		· .	· ·		
•	5635			$\sim 10^{-1}$	•	.		. •			
			•			•		•			
		15481.55 3441.30	17915.59	33462.65		' 		•.		•	
		19 19	516					· · · ·	• • •	·	
	XG XG	1 2 7	17	R ; ;			· ·	1. P			
	GEOHETRIC MEAN (UG/KG)	11				4 - S - S					
					•			$x \in [1, \infty]$			
		20587.50	26325.00	46912.50							
		587	22	912			•				1
	ARITH. MEAN (UG/KG)	8 3	20	4				· ·.			·· ·
					-			•			
	~~~					•			ан. С. 1	·	
		49700.00 10201.70	69800.00	119500.00		•					
		2 2	S.	8		•	·	-			
•		101	5	5	• 1					•.	
	MAXIMUM DETECT (UG/KG)	1. 1. 1. 1.		•				en de la composition Al composition de la c			
	100	1			1	$(X_{1}, \dots, K_{n})$				•	
		8 8	8	8						•	
		7820.00	9040-00	16860.00							•
	MINIMUN DETECT (UG/KG)	2 2	8	16							•
	UG/ETE										•
	EDU			÷.,		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	· · · ·	at an			
60 60		· .		•	·			•		•	•
25 C										•	
	•		•								
<b>₽</b> 8		·		•		•					
TED			· ·	el ser	·						
	N		2 2	. ' '		·			۲		
L C			- <b>2</b>	· ·	-7-					· . · ·	
No.		HA	NIC						<b>.</b> .		
	• 	2	BGE	٠.		1		•			
103 103		22.							•••	ć	<u>.</u>
	· · ·	Per la					· · · ·	. • • • • •		•	•
STA	-	le l	E F	<b>N</b>				с. 			• .
A LA CLA		12 1	ii ž	E -				•		1	
TABLE A4 CHID RIVER SITE - MEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHANNEL SEDIMENT SEMIVOLATILES	COMPOUND	TOTAL CARCINOGENIC PAH	TOTAL BLATP-IE TOTAL NON-CARCINOGENIC PAN	TOTAL PAN		- 11 •		•	1.1		1
2 BBBB	8	18	5 F	Ĭ	÷ .				- 192 - 192		
1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (											

1. Frequency of Detection = Mumber detected : Mumber used to calculate statistics : Mumber of sampling points. NC: Not calculated. Printed: 06/30/94

C.

TABLE A4 CHIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHMMEL SEDIMENT VOLATILES

COMPOUND	•	MINIMUN DETECT (UG/KG)	NAXIMUN DETECT (UG/KG)	ARITH. MEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	95% CONF. LINIT (UG/KG)	FREQUENCY OF DETECTION	
2-BUTANONE		45.00	920.00	273.25	78.32	805.37	2: 4: 4	
ACETONE		180.00	950.00	370.00	155.28	851.74	2: 4: 4	
CARBON DISULFIDE	•	2.00	950.00	243.25	24.83	797.58	1: 4: 4	

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 06/30/94

TABLE A.4 DHIO RIVER SITE - MEVILLE TOWNSHIP, PA SUMMARY STATISTICS,FOR DETECTED COMPOUNDS BACK CHANNEL SEDIMENT PESTICIDES AND PCBS	۲ ۲					-		
Correction	HINIMAN DETECT (UG/KG)	MAXIMUM DETECT (UG/KG)	ARITH. MEAN (UG/KG)	GEONETRIC MEAN (UG/KG)	UPPER 95% CONF. LIMIT (UG/KG)	FREGU	FREAUENCY OF	•
000-17'	1.30	2.45	1.89	1.81	2.62	ň		
ALPHA-CHLORDANE	0.53	1.80	1.15	1.05	1.7	ň	4 4	
AROCLOR-1242	40.00	40.00	31.75	31.28	39.23	÷	4	•
AROCLOR-1260	35.00	20.00	45.63	42.23	69.23	ň	<b>A</b> : <b>A</b>	•••••
DIELDRIN	1.50	2.70	2.21	2.16	2.82	ñ	4.14	•
EWRIN	0.64	3.2	2.54	2.12	4.02	<b>;;</b>	¥.	÷.,
ENDRIN KETONE	1.3	3.2	2.63	2.55	3.46	:	4: 4	2
GAMMA-BHC (LINDANE)	0.67	1.65	1.31	1.23	1.65	#	Å:	
GAMMA-CHLORDANE	1.60	3.50	2.01	1.86	3.20	<b></b>	4: 4	
torial PcBs	49.00	101.50	77.38	74.82	103.12	÷		•
	•			•			•	

Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.
 NC: Not calculated.
 Printed: 06/30/94

Charles Charles

TABLE A-4 OHIO RIVER SITE - MEVILLE TOUNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHANNEL SEDIMENT SEMIVOLATILES	LE TOUNSHIP, PA DETECTED COMPOUNDS			· · · · · · · · · · · · · · · · · · ·		
CONFOCURID		MINIMUM Detect (UG/KG)	MAXIMUM DETECT (UG/KG)	ARITH. NEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	
2-METHYLNAPHTHALENE ACEMAPHTHENE		290.00	5500.00	2190.00 1840.00	1112.97 906.92	

CONFOLIAID		MINIMUM DETECT (UG/KG)	MAXIMUM DETECT (UG/KG)	ARITH. MEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	UPPER 95% CONF. LIMIT (UG/KG)	FREQUENCY OF
2-KETHYLMAPKTHALENE		290.00	5500.00	2190.00	1112.97	5075.55	2: 4: 4
ACENAPHTHENE	•	250.00	5500.00	1840.00	906.92	4751.94	3: 4: 4
ANTHRACENE	•	430-00	5500.00	2530.00	1623.43	5290.26	3: 4: 4
BENZO(A)ANTHRACENE	•	2100.00	12000.00	5025.00	3641.30	10548.60	4: 4: 4
BENZO(A)PYRENE		1100.00	7300.00	3150.00	2417.00	6474.18	4: 4: 4
BENZO(B) FLUORAMTHENE		1700.00	11000.00	4625.00	3531.76	9677.45	4: 4: 4
DENZO(G, H, I )PERYLENE		750.00	00"0047	2112.50	1638.24	4328.35	4:4:4
BENZO(K) FLUORANTHENE		920-00	5500.00	3205.00	2330.53	6189.72	3: 4: 4
BIS(2-ETHYLHEXYL)PHTHALATE		330.00	5000.00	14757.50	3821.08	42588.82	4:4:4
CARBAZOLE		770.00	5500.00	2042.50	1361.98	£7.177	1: 4: 4
CHRYSENE		1100.00	8700.00	3500.00	2511.69	107.1191	4: 4: 4
DI-W-OCTYLPHTHALATE		2600.00	2600.00	1775.00	1530.88	2932.22	1: 4: 4
DIBENZ(A, H)ANTHRACENE		330.00	5500.00	2270.00	1323.40	5064.84	1: 4: 4
DIBENZOFURAN		230.00	5500.00	2195.00	1298.88	4897.82	2: 4: 4
FLUORANTNENE		2800.00	22000.00	8225.00	5589.00	19075.36	4 24 29
FLUORENE	•	220.00	5500.00	2185.00	1072.14	5077.84	3: .4: 4
INDENO(1,2,5-CD)PYRENE	, , , ,	00.009	2400.00	2375.00	1878.10	4779.16	4:4:4
KAPHTKALENE	•	400-00	5500.00	2117.50	1321.44	4860.51	3: 4: 4
PHENANTHRENE	•	1500.00	16000.00	5450.00	323.71	13739.39	4: 4: 4
PTRENE	•	2400.00	18000.00	7200.00	5192.68	15773.13	42 42 4

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 06/30/94

AR302574

NITICAL         RATION RETECT         RATION RETECT         REAL         District         REAL         District         District	BACK CHANNEL SEDIMENT INORGANICS	•				UPPER	
11575.00         11259.26         1559.26         1559.26         15           16.00         12.00         11.00         15.19         4:           16.00         140.50         136.33         173.70         4:.91           2.00         1.05         0.56         6.90         1:           2.00         1.05         0.56         6.90         1:           13600.00         6870.00         6870.00         7859.21         1459.07         4:           13600.00         6870.00         6870.00         6870.00         61.45         106.39         4:           13600.00         6870.00         67.00         7859.21         14539.07         4:           103.00         67.00         60.48         106.39         4:         4:           103.00         101.50         31.85         31.85         50.70         4:           101.00         67.10         31.85         31.85         50.70         4:           1100.00         110.55         31.85         30.16         4:           1100.00         191.20         91.65         0.25         0.27         517.05           110.00         100.21         122.15         122.15	CONPOUND	MINIMUM DETECT (MG/KG)	MAXIMUM DETECT (MG/KG)	ARITH. MEAN (MG/KG)	GEOMETRIC MEAN (MG/KG)	95% CONF. LIMIT (MG/KG)	FREQUENCY OF
10.00       16.00       12.00       11.00       11.00       15.19       4:         107.00       174.00       100.50       136.33       173.70       4:         2.00       2.00       1.05       0.50       136.07       4:         2.00       13600.00       6870.00       6870.00       6870.00       697.00       4:459.07       4:         27.00       13500.00       6870.00       67.00       60.48       104.39       4:         23.00       33.75       31.48       90.46       104.39       4:         23.00       177.00       4.77       31.35       91.6       4:         2470.00       103.00       411.50       91.56       4:       4:         23.00       177.00       4.77       31.35       91.6       4:         24.00.01       10.00       4.77       31.35       91.6       4:         20.01       10.00       4.77       31.35       91.6       4:         11.00       11.50       95.50       91.55       11.551.56       4:         11.00       11.55       92.50       92.23       122.61       4:         11.00       4.72       173.50 <t< td=""><td>MONITAL</td><td>9530.00</td><td>16600.00</td><td>11575.00</td><td>11259.84</td><td>15539.64</td><td></td></t<>	MONITAL	9530.00	16600.00	11575.00	11259.84	15539.64	
Intr.00 $17.00$ $140.50$ $136.33$ $173.70$ $14$ Z.00       Z.00       Z.00       1.00 $0.56$ $6.90$ $1$ Z.00       Z.00       13500.00 $6670.0$ $1369.07$ $4499.07$ $4149.07$ $4149.07$ Z.00       135.00 $135.00$ $135.00$ $13.06$ $69.48$ $104.39$ $41$ Z.00       135.00 $170.00$ $57.00$ $51.60$ $17.00$ $41.57$ $50.70$ $41$ Z.00       170.00 $170.00$ $170.00$ $51.61$ $91.6$ $41.67$ $50.70$ $41.67$ Z.00 $170.00$ $170.00$ $170.00$ $170.00$ $51.61$ $41.67$ $51.61$ $41.67$ $51.61$ $41.67$ R $1220.00$ $2700.00$ $1930.00$ $1991.20$ $271.06$ $41.7$ $41.76$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ $41.61.66$ <		10-00	16.00	12.00	11.80	15.19	4: 4: 4
2.00     2.00     1.08     0.56     6.90     1       4.20.00     13600.00     8870.00     8870.00     7559.21     1459.07     4       27.00     103.00     103.00     61.00     61.00     61.45     6.90     1       27.00     103.00     103.00     103.00     103.00     103.00     61.26     5.00     104.39       27.00     103.00     101.50     81.05     81.05     81.05     81.05     9.46       27.00     101.00     1.1.8     31.85     31.85     9.46     45       20.00     101.00     11.00     11.00     9.45     152.02     45       20.00     101.00     11.85     31.85     9.46     45       21.00     1220.00     11000.00     1118.50     93.45     122.66       11.00     11.00     11.00     91.25     122.66     45       11.00     11.220.00     121.00     102.23     122.66     45       11.00     11.12     122.10     1122.02     1122.06     46       11.00     11.00     11.00     101.21     122.10     1122.16       11.00     11.00     11.00     11.01     1122.15     1122.16       11.01 <td< td=""><td></td><td>107.00</td><td>174.00</td><td>140-50</td><td>138.33</td><td>173.70</td><td>4: 4: 4</td></td<>		107.00	174.00	140-50	138.33	173.70	4: 4: 4
4420.00       13600.00       8970.00       755.21       14459.07       4:         27.00       103.00       67.00       60.48       104.39       4:         27.00       103.00       55.00       103.00       57.00       57.00       50.70         23.00       170.00       55.00       170.00       51.66       51.66       51.66         23.00       10.00       10.00       4:       4:       4:       4:         23.00       10.00       10.00       110.50       9.16       4:       4:         23.01       10.20       10.20       121.00       51.61       4:       4:         41.00       61.00       110.00       110.55       1122.01       4:       4:         65.00       121.00       2700.00       195.50       122.61       4:       4:         65.00       121.00       121.00       122.61       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4:       4: <td></td> <td>2-00</td> <td>2.00</td> <td>1.03</td> <td>0.56</td> <td>6.9</td> <td>·</td>		2-00	2.00	1.03	0.56	6.9	·
27.00       13.00       67.00       60.48       104.39       4:         23.00       55.00       55.00       53.17       31.84       50.70       4:         23.01       170.00       170.00       111.50       9.16       4:         2.00       101.00       4.77       3.55       9.16       4:         2.00       101.00       4.77       3.55       9.16       4:         2.00       101.00       111.50       9.15       157.02       4:         2.00       101.00       110.50       9.15       172.61       4:         45.00       121.00       57.50       175.26       4:       4:         65.00       121.00       57.50       1930.00       1901.20       2.376.76       4:         1220.00       1220.00       1930.00       1901.20       172.61       4:       4:         65.00       0.22       0.21       0.21       0.21       0.31       5:         1.00       1.00       1.460.00       0.230.00       1991.20       172.45       67.18       4:         1.00       1.00       0.21       0.21       0.21       0.21       5.         1.00		4420-00	13600.00	8870.00	12.926	14459.07	4
23.00       55.00       55.00       31.64       50.70       4         65.00       170.00       40.150       94.57       157.02       4         2.00       170.00       4.78       3.65       9.16       4         2.00       170.00       4.78       3.65       9.16       4         2.00       170.00       118.50.00       106599.61       152483.13       4         65.00       121.00       95.50       93.23       1222.61       4         1220.00       2700.00       1985.00       1982.35       2701.96       4         1220.00       2700.00       1993.00       1993.00       1991.20       2376.76       4         1220.00       0.290.00       1993.00       1991.20       2376.76       4       4         1220.00       1220.00       123.00       1933.00       1991.20       2376.76       4         1220.01       0.290.00       1993.00       1991.20       2.376.76       4       4         10.01       1400.00       13.00       13.00       13.00       4       4         10.01       1.013.50       1.46       0.21       0.23.00       13.00       4       4 <td></td> <td>20.00</td> <td>103.00</td> <td>67.00</td> <td>60.48</td> <td>104.39</td> <td>4: 4: 4</td>		20.00	103.00	67.00	60.48	104.39	4: 4: 4
65.00       170.00       101.50       94.57       157.02       4:         2.00       10.00       10.00       4.78       3.63       9.16       4:         2.01       10.00       101.00       11650.00       1065990.61       182483.13       4:         65.00       121.00       721.00       121.00       95.50       93.23       122.61       4:         1220.00       121.00       721.00       121.00       95.50       93.23       122.61       4:         1220.00       121.00       121.00       121.00       121.00       121.00       121.00       121.00       122.23       122.61       4:         1220.00       1220.00       12390.00       19930.00       1991.20       2376.76       4:         1460.00       0.220       0.21       0.20       0.21       0.21       131.61       4:         1460.00       1630.00       173.25       173.25       173.25       173.25       554.21       56.00         19.00       1.00       1.46       0.61.61       0.61.61       53.60       56.61       53.00       53.60       56.61       53.60       54.61       54.61       54.61       54.61       54.61       54.61<		23.00	52°00	33.75		50.70	4: 4: 4
2.00       10.00       4.78       3.63       9.16       4:         45800.00       191000.00       118450.00       1065990.81       182463.13       4:         65.00       121.00       95.50       93.23       122.61       4:         1220.00       2700.00       1945.00       1965.36       2701.96       4:         1220.00       2700.00       1945.00       1991.20       2376.76       4:         1220.00       2700.00       1930.00       1991.20       2376.76       4:         1466.00       6.20       0.21       0.21       0.21       2376.76       4:         1466.00       1630.00       1073.50       1073.50       1991.20       2376.76       4:         1       0.20       0.21       1.46       0.830.00       1073.50       1027.51       4:         1       1.00       4.20       1.46       0.81       3.64       2:       4:         1       23.00       23.00       23.00       23.00       23.00       1057.51       4:       1:         1       1.00       23.00       23.00       23.00       23.00       1:       2:       4:       2:         1		65.00	170.00	101.50	94.57	157.02	4: 4: 4
48800.00       11000.00       116450.00       106590.41       122,61       4:         65.00       121.00       95.50       95.25       923.23       122.61       4:         1220.00       2700.00       1945.00       1945.00       1952.16       4:         1220.00       2700.00       1945.00       1952.16       4:         1220.00       2390.00       1930.00       1991.20       2376.76       4:         1460.00       2390.00       1930.00       1991.20       2376.76       4:         1460.00       0.220       0.21       0.200       2376.76       4:         1460.00       1460.00       1530.00       1931.00       1931.20       2375.76       5:         11.00       15.20       0.220       0.21       0.220       0.31       3:       4:         11.00       15.23.00       135.50       1073.50       1073.55       4:       1:       4:         11.00       400.00       23.00       23.00       23.00       1:       3.64       2:         11.01       23.00       23.00       23.00       23.00       23.00       3.64       2:         11.01.05       400.00       23.00		5.00	10.00	4.78	3.63	9.16	4: 4: 4
M       23.00       121.00       95.50       93.23       122.61       4:         N       1220.00       2700.00       1945.00       1962.36       2701.96       4:         1       1460.00       2399.00       19930.00       1991.20       2376.76       4:         0       20       0.29       0.21       0.20       1930.00       1991.20       2376.76       4:         0       20       0.20       0.21       0.21       0.21       0.21       2376.76       4:         1       0.20       0.22       0.21       0.21       0.21       0.31       3:         1       1.00       15.00       13.65       17.25       172.45       172.18       4:         1       1.00       4.20       1073.50       1073.50       1029.51       1:       3.64       2:         1       1.00       4.20       1.46       0.61       3.64       2:       1:         327.00       407.55       359.50       358.21       401.65       4:       1:		48800.00	181000-00	118450.00	106990.81	182483.13	4: 4: A
H       1220.00       2700.00       1945.00       1862.36       2701.96       4:         1       1460.00       2390.00       1930.00       1901.20       2376.76       4:         0       20       0.29       0.21       0.20       1930.00       1901.20       2376.76       4:         0       0.20       0.20       0.21       0.21       0.21       0.31       3:         0       0.20       0.20       0.21       0.21       0.21       0.31       3:         56.00       83.00       73.25       72.45       87.18       4:         819.00       1630.00       1073.50       1029.51       1523.59       4:         1.00       4.20       1.46       0.81       3.64       2:         23.00       23.00       23.00       23.00       358.21       401.65       4:		65.00	121.00	93.50	3.23	122.61	4: 4: 4
1460.00       2390.00       1930.00       1901.20       2376.76       4         0.20       0.21       0.20       0.21       0.31       3         56.00       63.00       173.25       72.45       87.18       4         1       56.00       63.00       1073.50       1029.51       1523.59       4         1       1.00       4.20       1.46       0.81       3.64       2         1       1.00       23.00       23.00       23.00       23.00       23.00       1.46       0.81       3.64       2         1       1.00       23.00       23.00       23.00       23.00       3.64       2       1         327.00       409.00       359.50       358.21       401.65       4       1	Stestum	1220.00	2700.00	1945.00	1862.36	2701.96	4: 4: 4
0.20     0.20     0.21     0.20     0.31     3:       56.00     55.00     63.00     73.25     72.45     87.18     4:       819.00     1630.00     1073.50     1023.51     1523.59     4:       1.00     4.20     1.46     0.81     3.64     2:       23.00     23.00     23.00     23.00     87.13     4:       23.00     23.00     23.00     23.00     87.23     4:       1.00     359.20     358.21     401.65     4:	VGANESE	1460.00	2390.00	1930.00	1901.20	2376.76	4: 4: 4
Im     56.00     63.00     63.00     73.25     72.45     87.18     4:       Im     819.00     1630.00     1073.50     1029.51     1523.59     4:       Im     1.00     4.20     1.46     0.81     3.64     2:       Im     23.00     23.00     23.00     23.00     23.00     87.16     401.65       Im     327.00     5300     359.50     358.21     401.65     4:	toiry	0.20	0.29	0.21	0.20	0.31	3: 4: 4
IUN     819.00     1630.00     1073.50     1029.51     1523.59     4:       IUN     1.00     4.20     1.46     0.81     3.64     2:       IUN     23.00     23.00     23.00     23.00     85.20     7:     601.65     4:		26.00	63.00	13.25	72.45	87.18	4: 4: 4
11um 1.00 4.20 1.46 0.81 3.64 2: 23.00 23.00 23.00 23.00 mc 1: 327.00 409.00 339.50 358.21 401.65 4:	ISSSIM	819.00	1630.00	1073.50	1029.51	1523.59	4: 4: 4
11H 23.00 23.00 23.00 KC 1: 327.00 409.00 359.50 358.21 401.65 4:		1.00	4.20	1.46	0.81	3.64	2: 4: 4
327.00 409.00 359.50 41		80-122	80.52	23.00	23.00		1: 1: 1
		327.00	409.00	359.50	358.21	401.65	

¢

Printed: 06/30/94

Correction of the correction o

AR302575

TABLE 44 OMIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHANNEL SEDIMENT MERBICIDES

	•		•			1 10050		• .
CONFOCIND		HINIMUN DETECT (UG/KG)	NAXIMUN DETECT (UG/KG)	ARITH. MEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	95% CONF. LINIT (UG/KG)	FREQUENCY OF DETECTION	•
2,4,5-1		1.50	340.00	96.63	22.47	287.88	3: 4: 4	
2,4,5-1P		1.50	25.00	15.75	10.55	27.66	3: 4: 4	•
2,4-0		15.50	200.00	-132.63	93.59	227.74	2: 4: 4	

A-17

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 06/30/94



A4 - BACK CHANNEL SEDIMENTS



to, Nagri FREQUENCY OF DETECTION ŝ ÷ 5 26348.77 UPPER 95% CONF. LIMIT (UG/KG) 1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated. 15534.41 GEOMETRIC MEAN (UG/KG) 17592.00 ARITH. HEAN (UG/KG) 30910-00 MAX1MUM DETECT (UG/KG) 6650.00 MINIMUM DETECT (UG/KG) TABLE A.3 OHIO RIVER SITE - NEVILLE TOUNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS MAIN CHANNEL SEDIMENT SEMIVOLATILES Printed: 06/30/94 TOTAL PAH COMPOUND A-14 AR302578

COMPOUND	MINIMU DETECT (UG/XQ)	¥15	MAXIRUM DETECT (UG/KG)	ARITH. MEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	UPPER 95% CONF. / LIMIT (UG/KG)	FRECOLENCY OF
000-+++		2.55	8.00	3.36	2.77	5.89	1: 5: 5
ALPHA-CHLORDANE	(	0.82	12.00	4.52	2.33	9.44	5: 5: 5
AROCLOR-1242		24.50	80.00	33.40	27.50	28.73	1: 5: 5
AROCLOR-1248	• • • • •	9.10	80.00	30.82	22.27	58.43	2: 5: 5
AROCLOR - 1254		13.00	380.00	133.00	54.44	291.07	3: 5: 5
AROCLOR-1260		69.00	80.00	42.30	33.83	71.02	1: 5: 5
DIELDRIN		2.55	8.00	3.36	2.77	5.89	1: 5: 5
ENDRIN		2.55	8.00	3.36	2.77	5.89	1: 5: 5
ENDRIN ALDENTDE		1.65	8.00	3.36	2.77	5.89	2: 5: 5
ENDRIN KETONE	•	0.52	8.00	2.87	1.96	5.69	1: 5: 5
GAMMA - CHLORDANE		1.9	13.00	4.17	2.38	<b>6.</b> 06	2: 5: 5
total PCBs	· · · ·	38.60	380.00	166.12	112.38	308.41	5: 5: 5

1. Frequency of Detection = Mumber detected : Mumber used to calculate statistics : Mumber of sampling points. MC: Not calculated. Printed: 06/30/94

Chilling Respire

A-12

TABLE A.3 OHIO RIVER SITE - MEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS MAIN CHANNEL SEDIMENT SEMIVOLATILES

COMPOUND		MINIMUM DETECT (UG/KG)	NAXIMUN DETECT (UG/KG)	ARITH. NEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	95% COMF. 1 LINIT (UG/KG)	FREQUENCY OF DETECTION	ENCY O	4
2-NETHYLMADHTHALENE		240.00	1600.00	854.00	649.10	1486.58	~		
ACENAPHTNENE	<b>.</b> .	435.00	1600.00	175.00	683.61	1233.43	ÿ		
ANTHRACENE	•	230.00	810.00	518.00	474.16	735.57	;	5.	
BENZO(A)ANTURACENE	· ·	240.00	3500.00	1698.00	1369.62	2823.94	÷,		
BENZO(A)PYRENE	•	290.00	3000.00	1368.00	1075.96	2354.94	2	5	
BENZO(B)FLUORANTKENE		70.00	3300.00	1738.00	1475.16	2700.58	<b>.</b>	5	• •
GENZO(G, H, 1)PERYLENE		190.00	1800.00	830.00	662.19	1391.93	Ţ	3	
BENZO(K)FLLUORANTHEME	· · ·	370.00	1000.00	606.00	566.28	852.48	<b>;</b>	- 12 - 12	
CHRYSENE .	•	270.00	1600.00	1022.00	880.15	1494.68		5	
D1BENZ(A, N)ANTHRACENE		435.00	1600.00	751.00	656.27	1219.61	3	5	
DIBENZOFURAN	•	435.00	1600.00	955.00	813.38	1508.44	<b>#</b>	5	
FLLORANTHENE	•	830.00	4200-00	2866.00	2467.51	4240.20	5	5	
FLUORENE	•	435.00	1550.00	761.00	675.05	1200.30	3	5:	•
INDENO(1,2,3-CD)PYRENE	•	200-00	1900.00	00.100	723.37	1492.70		1	
NAPHTHALENE	•	170.00	1600.00	715.00	534.87	1270.73	4	· 57.	
PHENAN THRENE		390.00	3600.00	1778.00	1403.01	2937.51	3	5	
PYRENE	•	640.00	4000.00	2428.00	2052.50	3664.16		5	
TOTAL CARCINOGENIC PAH		2670.00	14830.00	7637.00	6610.52	11914.93	5	. <u>1</u>	•
TOTAL B(A)P-TE	· .	857.67	4411.60	2110.08	1794.86	2440.40	2	25	
TOTAL NON-CARCINOGENIC PAH		3980.00	16080.00	00.2260	8870.58	14605.88	2	5.	

Printed: 06/30/94

A-13

UNDER STIFE - MEVILLE TOWNSH OMIO RIVER SITE - MEVILLE TOWNSH SUMMARY STATISTICS FOR DETECTED MAIN CHANNEL SEDIMENT INORGANICS	ED COMPOUNDS		J					
GNIDOLIDO		MINIMOM DETECT (MG/KG)	MAX1MUN DETECT (MG/XG)	ARITN. MEAN (MG/KG)	GEOMETRIC MEAN (MG/XG)	UPPER 95% CONF. LIMIT (MG/KG)	FREQUENCY OF DETECTION	I ION JO
ALUMINUM		16100-00	22400.00	19120.00	18923.79	22055.20	ŝ	100 <b>10</b> 0
ARSENIC		9.50	20.02	14.90	14.29	19.35	ň	
BARIUM		157.00	370.00	219.00	208.51	300.63	5	5: 5
BERYLLIUM	· · ·	<b>2.</b> 2	3.60	2.98	2.96	3.32	ň	5
calcium	•	3720.00	99800.00	30612.00	14475.21	69486.20	3	2:
CHROMIUM		24.00	00-16	66.80	29.71	96.03	2:	<b>.</b>
COBALT	•	18.00	45.00	28.60	26.97	39.10	ŝ	1
COPPER	•	23.00	169.00	101.80	92.36	147.97	5	- <b>1</b> 0
CYANIDE		<b>8-80</b>	00-62	12.47	7.26	22.35	*	ю. З
IKON		58900.00	107000-00	88340.00	86640.49	105561.31	ŝ	
revo		134.00	214.00	166.60	163.80	199.58	2:	2:2
MAGNESTUM		2420.00	6750.00	3486.00	3204.84	5239.73		10
MANGANESE		1210.00	4900.00	2346.00	2023.20	3815.70		10 10
MERCURY	. *	0.45	0.67	0.44	0.34	0.65	4:	5.
NICKEL		32.00	98.00	61.40	56.28	87.79	ŝ	្លះ
Potassium	•	1490.00	2200-00	1804.00	1788.47	2059.27	<b>.</b>	5: 5
SELENIUM		0.73	1.80	0.0	0.67	1.56	ň	5
sobium		360.00	719-00	539.50	508.76	1672.66	2:	2: 2
VAHAD [UH	:	00-21	28-00	2.2	22.88	28.63	4:	41 42

1. Frequency of Detection = Mumber detected : Number used to calculate statistics : Mumber of sampling points. MC: Not calculated.

Chilling Messi

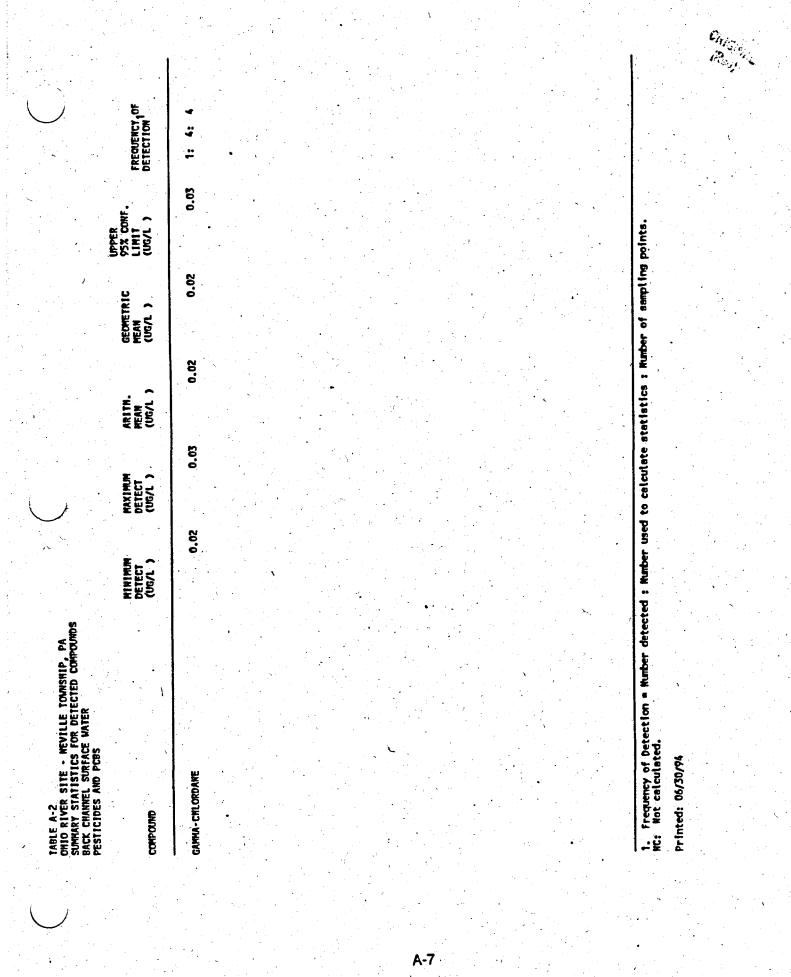
Printed: 06/30/94

TABLE A.3 CHIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS MAIN CHANNEL SEDIMENT MERBICIDES

2,4,5-T 22.00 320.00 84.00 40.49 209.97 3: 5: 5 2,4,5-TP 13.00 22.00 17.20 16.81 21.04 1: 5: 5 2,4-D 130.00 220.00 172.00 168.10 210.38 1: 5: 5	CONFIGUND			MINIMUM DETECT (UG/KG)	MAXIMUM Defect (Ug/Kg)	ARITH. MEAN (UG/KG)	GEONETRIC MEAN (UG/KG)	UPPER 95X CONF. LINIT (UG/KG)	FREQUENCY OF DETECTION	
17.00         22.00         17.20         16.81           130.00         220.00         172.00         168.10	1-5-4	, î A		22.00	320.00	00.48	67.07	209.97	•	
130.00 220.00 172.00 168.10	41-2'5'		•	13.00	22,00	17.20	16.81	21.04	1: 5: 5	
	0-7"			130.00	220.00	172.00	168.10	210.38	1: 5: 5	· .

1

A-11 AR302582 -


1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 06/30/94



**A3 - MAIN CHANNEL SEDIMENTS** 

R:\PUBS\PROJECTS\v920003\906.COV



TABLE A-2 COMPOUND SUMARY STITSTICS FOR DEFECTED COMPOUNDS SUMARY STITSTICS FOR DEFECTED COMPOUNDS SURVOLATILES DI-M-BUTYLPHIMALATE DI-M-BUTYLPHIMALATE DI-M-BUTYLPHIMALATE DI-M-BUTYLPHIMALATE The BUTYLPHIMALATE DI-M-BUTYLPHIMALATE DI-M-BUTYLPHIMALATE The BUTYLPHIMALATE DI-M-BUTYLPHIMALATE The BUTYLPHIMALATE DI-M-BUTYLPHIMALATE The BUTYLPHIMALATE The BUTYLPHIMALATE The BUTYLPHIMALATE DI-M-BUTYLPHIMALATE The BUTYLPHIMALATE The BUTTYLPHIMALATE THE BUTYLPHIMALATE THE B
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

AR302585

A-8

FREQUENCY OF DETECTION ÿ ÷ ÷ ÷ ÷ ÿ ï ÷ ÿ .... .. .. ..... 6615.42 11.38 788.40 203.43 1564.51 24.15 314.04 39.96 25861.99 16.57 3963.42 UPPER 95% CONF. LIMIT (UG/L ) 11451.52 215.66 38.99 22634.33 5.91 4.33 621.05 5796.02 186.35 1464.96 21.94 GEOMETRIC MEAN (UG/L ) 22.00 22.23 39.00 К.2 5.50 631.25 5825.00 186.75 1467.50 11590.00 22750.00 ARITH. MEAN (UG/L ) 314.00 40.00 19.00 13.00 <u>803</u>.00 6660.00 204.00 1580.00 13800.00 24.00 26000.00 MAXIMUM DETECT (UG/L ) 134.00 13.00 5050.00 00.0363 20-00 38.00 19.00 519.00 170.00 1350.00 19600.00 MINIMUN DETECT (UG/L ) OHIO RIVER SITE - NEVILLE TOWNSHIP, PA Summary Statistics for defected compounds Back channel surface water Inorganics MANGANESE TABLE A-2 MAGNESIUM POTASSIUM CONPOUND CHROMIUM ALUMINUM CALCIUM BARIUM MALOOS COPPER ZINC NON I

Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.
 Not calculated.

Printed: 06/30/94

Chicing in

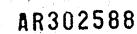
5.

A-5 AR302586

TABLE A-2 Ohio River Site - Neville Tounship, Pa Summary Statistics for detected compounds Back Channel Surface Water Herbicides

· · ·				
		· ·		•
105	· 4	4	4	•
ENC!	3	41	4:	• • • •
FREQUENCY OF	. =	#	÷	•
			·	5 m.
•	0.0	0.05	0.50	
CONF.				
UPPER 95X CONF. LINIT (UG/L )				•
	0.05	0.05	0.50	
ETRI L)		•	•	•
GEOMETRIC MEAN (UG/L)				•
			2	
	0.0	0.05	0.5	
÷ 2		•		* ¹
ARITH. VEAN (UG/L )	1	•		-
	5	10	•	
	0.05	0.05	0.50	•
HILL C		, L		•
MAXIMUM Detect (UG/L )				· ·
	5	<b>.</b>	ò	•
· · ·	0.05	0.05	0.50	
HINIMUM DETECT (UG/L )				х * н 
MINI DETE CUG/	<b>]</b>			
	· .	÷		1.
• •	<b>`</b> }	•		
· ·	•			· · ·
· · .	1 · · ·			
			•	
•	1.1			
•				
		•		
	1-2'?'	4,5-TP	•	
	2,4,	2.4.	2.4-D	-
-				

Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.
 Not calculated.


Printed: 06/30/94



A2 - BACK CHANNEL SURFACE WATER

۰.

R:\PUBS\PROJECTS\4920003\906.COV



A-4

÷



Derection         Maintend	D         HNIMM DEFECT         MATTIM TOTAL         MATTIM TOTAL         REPARTIAL TOTAL         TOTAL           M         TOTAL         TOTAL         TOTAL         TOTAL         TOTAL         TOTAL           M         TIT.D         AGA.M         ZGA.M         TEL.A         ZGIAL         TAL           M         TIT.D         AGA.M         ZGA.M         TEL.A         ZGIAL         TAL           TAGM         TAGM         TAGM         AGA.M         ZGA.M         TAL         TAL           M         TAGM         TAGM         ZGA.M         ZGA.M         TAL         ZGA.M         TAL           M         TAGM         TAGM         TAGM         ZGA.M         ZGA.M         ZGA.M         ZGA.M         ZGA.M         ZGA.M         ZGA.M         ZGA.M         ZGA.M         ZCA.M         ZCA.M         ZCA.M         ZCA.M         ZCA.M         ZGA.M         ZGA.M         ZGA.M         ZCA.M	D         HUNINAL UDIAL         MANIMAL EVERT UDIAL         MANIMAL UDIAL         MANIMAL	D         NIMIMM         MXMMM         MXIMM         MX	MNNMM EFFET         MNNM EFFET         MNNM E	SUMMARY STATISTICS FOR DETECTED COMPOUNDS SUMMARY STATISTICS FOR DETECTED COMPOUNDS MAIN CHANNEL SURFACE WATER INORGANICS
11     11     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     10     <	III.00       466.00       205.20       182.46       321.66       5       5         III.00       456.00       239.00       39.00       35.95       12.18       5       5         III.00       17.00       2500.00       239.00       235.31       26214.39       5       5         III.00       17.00       72.00       274.00       2570.00       274.00       237.31       251.13       5       5         III.00       10.00       17.00       72.00       15.34       67.01       3       5       5         III.0       400.00       1000.00       201.50       17.40       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       <	III.00       466.00       206.20       182.46       31.6       51       51         IIV00.00       2500.00       296.00       233.8       41.25       51       51         IIV00.00       2500.00       296.00       233.8       12.15       21       51       51         IIV00.00       2500.00       2500.00       250.00       25.20       12.15       21       51       51         IIV00.00       55.00       7.40       52.37       27.30       27.40       31.5       51       51         IIV       10.00       17.00       35.00       37.40       35.30       670.40       51       51       51         IIV       430.00       135.00       285.00       31.60       317.00       317.00       317.00       315.00       317.00       317.00       317.00       317.00       31.00       31.00       31.00       31.00       31.00       31.00       31.00       31.00       31.00       31.00       31.60       31.6       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51 <t< th=""><th>M     111.00     406.00     206.28       M     37.00     42.00     29.00       M     117400.00     27.00     27.40       N     10.00     17.00     32.60       N     21.00     17.00     37.00       N     408.00     197.00     37.00       N     408.00     1970.00     608.60       UN     433.00     5370.00     5913.00       SE     337.00     5370.00     501.60       N     433.00     5370.00     504.60       N     433.00     5370.00     504.60       N     433.00     5370.00     504.60       N     132.00     1330.00     1406.00       SE     0.64     0.77     0.35       N     1320.00     14300.00     24.20       N     1440.00</th><th>111.00     4.06.00     206.20     182.48     321.66       37.00     420.00     23500.00     23500.00     2321.25     321.45       17.00     17.00     5500.00     235.00     12.45     321.45       21.00     17.00     17.00     230.00.00     235.16     37.01       21.00     17.00     17.00     27.00     27.01     32.50     12.15       21.00     170.00     17.00     37.00     57.01     57.01       4430.00     6370.00     5370.00     5710.00     579.50     57.51       1330.00     1900.00     243.00     214.60     197.76     242.76       1330.00     1900.00     12242.00     197.76     242.76     1773.51       7210.00     1300.00     12242.00     197.76     24.76     7.91       7210.00     1300.00     24.20     23.44     29.45     29.45       79.01     1900.00     24.20     23.44     29.45     29.45       70.01     1900.00     24.20     23.44     29.46     29.45</th><th></th></t<>	M     111.00     406.00     206.28       M     37.00     42.00     29.00       M     117400.00     27.00     27.40       N     10.00     17.00     32.60       N     21.00     17.00     37.00       N     408.00     197.00     37.00       N     408.00     1970.00     608.60       UN     433.00     5370.00     5913.00       SE     337.00     5370.00     501.60       N     433.00     5370.00     504.60       N     433.00     5370.00     504.60       N     433.00     5370.00     504.60       N     132.00     1330.00     1406.00       SE     0.64     0.77     0.35       N     1320.00     14300.00     24.20       N     1440.00	111.00     4.06.00     206.20     182.48     321.66       37.00     420.00     23500.00     23500.00     2321.25     321.45       17.00     17.00     5500.00     235.00     12.45     321.45       21.00     17.00     17.00     230.00.00     235.16     37.01       21.00     17.00     17.00     27.00     27.01     32.50     12.15       21.00     170.00     17.00     37.00     57.01     57.01       4430.00     6370.00     5370.00     5710.00     579.50     57.51       1330.00     1900.00     243.00     214.60     197.76     242.76       1330.00     1900.00     12242.00     197.76     242.76     1773.51       7210.00     1300.00     12242.00     197.76     24.76     7.91       7210.00     1300.00     24.20     23.44     29.45     29.45       79.01     1900.00     24.20     23.44     29.45     29.45       70.01     1900.00     24.20     23.44     29.46     29.45	
33.4       41.4       35.60       39.00       33.4       41.4         11       11       11       11       11       11       11       11         12       12       12       12       12       12       12       12       12         12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12	17.00       42.00       39.00       39.0       41.24       51       51         11.00       15.00       2560.00       2560.00       2661.15       22       51       51       51         11.00       15.00       17.00       2500.00       27.00       37.00       52.31       263.15       56.11       31       51       51         11.00       17.00       17.00       17.00       27.00       37.00       35.15       67.01       31       31       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       <	37.00 $42.00$ $39.00$ $39.00$ $39.0$ $41.24$ $51.5$ $1760.00$ $2570.00$ $2560.00$ $2570.00$ $2266.00$ $2261.37$ $2251.37$ $2251.37$ $2251.37$ $2251.37$ $2251.37$ $2255.35$ $12.15$ $22.56$ $12.15$ $22.56$ $12.15$ $22.56$ $13.2.34$ $51.5$ $51.5$ $52.55$ $52.57$ $52.57$ $52.57$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.57.36$ $52.52.36$ $52.52.36$ $52.52.36$ $52.52.36$ $52.52.36$ $52.52.36$ $52.52.36$ $52.52.36$ $159.36$ $52.52.36$ $159.36$ $52.52.36$ $159.36$ $52.52.36$ $159.36$ $52.52.36$ $159.36$ $52.52.6$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ $52.56$ <td>37.00       42.00       39.00         1       10.00       35.00       2900.00         1       21.00       87.00       37.80         21.00       87.00       37.80       7.40         21.00       87.00       37.80       7.40         21.00       87.00       570.00       37.80         21.00       133.00       570.00       5913.00         35       133.00       537.00       501.00         35       133.00       537.00       501.00         35       133.00       133.00       51.00         35       133.00       133.00       132.00         35       133.00       1330.00       122.42.00         35       1330.00       14500.00       122.42.00         36       1330.00       14500.00       122.42.00         36       1330.00       14500.00       122.42.00         36       1330.00       31.00       24.20         37       132.00       31.00       24.20         36       131.00       31.00       24.20         37       131.00       31.00       24.20         36       140.00       140.00       24.00&lt;</td> <td>37.00     42.00     39.00     39.4     41.24       17400.00     5550.00     25500.00     2550.00     221.30     2.15       10.00     15.00     17.00     32.00     6.2.8     12.15       21.00     17.00     37.00     570.00     2.2.8     5.2.15       400.00     1700.00     1700.00     570.00     566.15     873.05       433.00     677.00     231.60     1707.05     222.74       137.00     1370.00     1507.00     1593.05     6196.06       137.00     1370.00     1500.00     1593.05     1753.95       710.00     14300.00     14500.00     1593.05     1753.95       7210.00     1500.00     1500.00     1593.05     1753.95       7210.00     1500.00     1500.00     1593.05     222.74       7210.00     1500.00     1500.00     1593.05     1753.95       7210.00     1500.00     1500.00     23.64     29.65       750.00     11095.05     11095.05     11095.05       750.00     11095.05     23.64     29.64       750.00     11095.05     23.64     29.64       750.00     11095.05     23.64     29.64       750.00     11095.05     23.64&lt;</td> <td></td>	37.00       42.00       39.00         1       10.00       35.00       2900.00         1       21.00       87.00       37.80         21.00       87.00       37.80       7.40         21.00       87.00       37.80       7.40         21.00       87.00       570.00       37.80         21.00       133.00       570.00       5913.00         35       133.00       537.00       501.00         35       133.00       537.00       501.00         35       133.00       133.00       51.00         35       133.00       133.00       132.00         35       133.00       1330.00       122.42.00         35       1330.00       14500.00       122.42.00         36       1330.00       14500.00       122.42.00         36       1330.00       14500.00       122.42.00         36       1330.00       31.00       24.20         37       132.00       31.00       24.20         36       131.00       31.00       24.20         37       131.00       31.00       24.20         36       140.00       140.00       24.00<	37.00     42.00     39.00     39.4     41.24       17400.00     5550.00     25500.00     2550.00     221.30     2.15       10.00     15.00     17.00     32.00     6.2.8     12.15       21.00     17.00     37.00     570.00     2.2.8     5.2.15       400.00     1700.00     1700.00     570.00     566.15     873.05       433.00     677.00     231.60     1707.05     222.74       137.00     1370.00     1507.00     1593.05     6196.06       137.00     1370.00     1500.00     1593.05     1753.95       710.00     14300.00     14500.00     1593.05     1753.95       7210.00     1500.00     1500.00     1593.05     1753.95       7210.00     1500.00     1500.00     1593.05     222.74       7210.00     1500.00     1500.00     1593.05     1753.95       7210.00     1500.00     1500.00     23.64     29.65       750.00     11095.05     11095.05     11095.05       750.00     11095.05     23.64     29.64       750.00     11095.05     23.64     29.64       750.00     11095.05     23.64     29.64       750.00     11095.05     23.64<	
17.00       2300.00       2306.00       2306.00       2306.00       2306.00       2304.00       5.26       17.10       5.25       17.00       5.26       17.10       5.25       17.10       5.26       17.11       2.2       2.2       1.2       2.2       2.2       1.2       2.2       2.2       1.2       1.2       2.1       2.1       0.0       0.0       3.2.60       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16       366.16 <td< td=""><td>17400.00       2500.00       2060.00       2283.78       26214.89       5       5         M       10.00       15.00       15.00       27.40       5.26       12.15       2       5         CH       21.00       15.00       17.40       5.26       17.35       5       5       5         CH       400.00       15.00       15.00       5916.00       566.15       870.26       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       <th< td=""><td>1100.00         2500.00         2906.00         2621.78         2621.69         5         5           11         10.00         15.00         7.40         6.26         12.15         2         5           11         10.00         17.00         17.00         17.00         57.00         35.00         15.01         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5</td><td>17400.00     25200.00     23040.00       10.00     15.00     7.40       21.00     87.00     97.50       400.00     4430.00     608.60       400.00     4330.00     5918.00       58     0.45     0.77     0.35       133.00     233.00     1330.00     1500.00     243.00       14     1330.00     1530.00     1500.00     243.00       14     1330.00     1530.00     15242.00       14     1330.00     1330.00     12242.00       14     7210.00     131.00     24.20       14     7210.00     131.00     24.20       15     0.55     1400.00     12242.00       16     0.64     0.77     0.35.00       17     1320.00     131.00     24.20       18     750.00     131.00     24.20       19.00     100.00     12242.00     12242.00       10     24.20     131.00     24.20       11     24.20     131.00     24.20       12     10.05     10.05     10.05       13.00     13.00     10.05     10.05       14     10.05     10.05     10.05</td><td>17400.00       23300.00       23940.00       2332.78       26214.59         10.00       15.00       15.00       15.00       15.40       6.26       12.15         21.00       17.00       15.00       32.80       15.45       670.01         400.00       0790.00       693.66       566.15       876.25       670.66         1330.00       5370.00       5370.00       593.92       670.66       174.55       270.46         1330.00       233.00       233.00       233.00       233.00       197.56       1773.53       242.74       56.73         1320.00       1320.00       13300.00       1264.00       1599.45       1773.53       1773.53         710.00       13100.00       12242.00       11999.45       23.64       29.45       27.64       29.45         19.00       1310.00       12242.00       11999.42       23.64       29.45       24.64       29.45         19.00       1320.00       1232.00       1299.42       29.45       29.45       29.45         19.00       1200.00       21.00       21.60       21.64       29.45       29.45       29.45         10.06       31.00       21.00       24.27       24</td><td></td></th<></td></td<>	17400.00       2500.00       2060.00       2283.78       26214.89       5       5         M       10.00       15.00       15.00       27.40       5.26       12.15       2       5         CH       21.00       15.00       17.40       5.26       17.35       5       5       5         CH       400.00       15.00       15.00       5916.00       566.15       870.26       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 <th< td=""><td>1100.00         2500.00         2906.00         2621.78         2621.69         5         5           11         10.00         15.00         7.40         6.26         12.15         2         5           11         10.00         17.00         17.00         17.00         57.00         35.00         15.01         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5</td><td>17400.00     25200.00     23040.00       10.00     15.00     7.40       21.00     87.00     97.50       400.00     4430.00     608.60       400.00     4330.00     5918.00       58     0.45     0.77     0.35       133.00     233.00     1330.00     1500.00     243.00       14     1330.00     1530.00     1500.00     243.00       14     1330.00     1530.00     15242.00       14     1330.00     1330.00     12242.00       14     7210.00     131.00     24.20       14     7210.00     131.00     24.20       15     0.55     1400.00     12242.00       16     0.64     0.77     0.35.00       17     1320.00     131.00     24.20       18     750.00     131.00     24.20       19.00     100.00     12242.00     12242.00       10     24.20     131.00     24.20       11     24.20     131.00     24.20       12     10.05     10.05     10.05       13.00     13.00     10.05     10.05       14     10.05     10.05     10.05</td><td>17400.00       23300.00       23940.00       2332.78       26214.59         10.00       15.00       15.00       15.00       15.40       6.26       12.15         21.00       17.00       15.00       32.80       15.45       670.01         400.00       0790.00       693.66       566.15       876.25       670.66         1330.00       5370.00       5370.00       593.92       670.66       174.55       270.46         1330.00       233.00       233.00       233.00       233.00       197.56       1773.53       242.74       56.73         1320.00       1320.00       13300.00       1264.00       1599.45       1773.53       1773.53         710.00       13100.00       12242.00       11999.45       23.64       29.45       27.64       29.45         19.00       1310.00       12242.00       11999.42       23.64       29.45       24.64       29.45         19.00       1320.00       1232.00       1299.42       29.45       29.45       29.45         19.00       1200.00       21.00       21.60       21.64       29.45       29.45       29.45         10.06       31.00       21.00       24.27       24</td><td></td></th<>	1100.00         2500.00         2906.00         2621.78         2621.69         5         5           11         10.00         15.00         7.40         6.26         12.15         2         5           11         10.00         17.00         17.00         17.00         57.00         35.00         15.01         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5	17400.00     25200.00     23040.00       10.00     15.00     7.40       21.00     87.00     97.50       400.00     4430.00     608.60       400.00     4330.00     5918.00       58     0.45     0.77     0.35       133.00     233.00     1330.00     1500.00     243.00       14     1330.00     1530.00     1500.00     243.00       14     1330.00     1530.00     15242.00       14     1330.00     1330.00     12242.00       14     7210.00     131.00     24.20       14     7210.00     131.00     24.20       15     0.55     1400.00     12242.00       16     0.64     0.77     0.35.00       17     1320.00     131.00     24.20       18     750.00     131.00     24.20       19.00     100.00     12242.00     12242.00       10     24.20     131.00     24.20       11     24.20     131.00     24.20       12     10.05     10.05     10.05       13.00     13.00     10.05     10.05       14     10.05     10.05     10.05	17400.00       23300.00       23940.00       2332.78       26214.59         10.00       15.00       15.00       15.00       15.40       6.26       12.15         21.00       17.00       15.00       32.80       15.45       670.01         400.00       0790.00       693.66       566.15       876.25       670.66         1330.00       5370.00       5370.00       593.92       670.66       174.55       270.46         1330.00       233.00       233.00       233.00       233.00       197.56       1773.53       242.74       56.73         1320.00       1320.00       13300.00       1264.00       1599.45       1773.53       1773.53         710.00       13100.00       12242.00       11999.45       23.64       29.45       27.64       29.45         19.00       1310.00       12242.00       11999.42       23.64       29.45       24.64       29.45         19.00       1320.00       1232.00       1299.42       29.45       29.45       29.45         19.00       1200.00       21.00       21.60       21.64       29.45       29.45       29.45         10.06       31.00       21.00       24.27       24	
M       10.00       15.00       7.40       6.26       17.51       15.2         Z1.00       27.00       32.50       15.2       17.51       15.2       17.51         M       10.01       7.00       17.50       32.50       15.2       17.51         M       11.50       15.51       15.51       15.51       15.51       15.51         M       10.01       168.60       568.15       15.61       15.51       15.51         M       10.01       168.60       570.00       150.00       15.51       15.51       15.51         11.52       11.52       11.51       0.55       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51       15.51	M       (0.00       (5.00       7.40       6.26       (2.13)       23       54         21.00 $77.00$ $37.00$ $59.45$ $67.01$ $33$ $54$ UN $430.00$ $670.00$ $670.00$ $590.15$ $870.20$ $557.00$ $5570.00$ $593.00$ $593.20$ $677.26$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ $51$ <td>M         10.00         15.00         7.40         6.26         12.45         21.01         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.52         11.55         21.51         21.54         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.65         21.64         21.51         21.64         21.65         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64</td> <td>M         10.00         15.00         7.40           21.00         87.00         37.60         37.60           10         430.00         6570.00         5918.00           132.00         133.00         231.60         501.60           133.00         133.00         1370.00         1604.00           137.00         1370.00         1500.00         1604.00           137.00         1370.00         1370.00         1224.00           137.00         1370.00         131.00         24.20           10.0         71.00         31.00         24.20           10.0         71.00         31.00         24.20           10.0         71.00         31.00         24.20           10.0         31.00         12.00         12.00           10.00         10.00         31.00         24.20           10.00         10.00         31.00         24.20           11.00         10.00         31.00         24.20           10.00         10.00         31.00         31.00           10.00         10.00         31.00         24.20           10.00         0.00         31.00         24.20           10.00</td> <td>10.00       15.00       7.40       6.26       12.15         21.00       87.00       37.00       15.26       67.01         400.00       000.00       603.60       56.15       873.2         430.00       5770.00       5770.00       595.72       6749.69         135.00       5770.00       5770.00       197.76       242.7         0.64       0.64       0.79       0.57       0.67         1370.00       1370.00       1500.00       1664.00       197.76       242.7         710.00       1370.00       1500.00       1599.45       1773.55       1773.55         7210.00       1370.00       1500.00       1564.00       11599.42       25.4       27.4         70.00       31.00       24.20       23.4       27.4       27.4       27.4         70.01       11999.02       24.20       23.4       27.4       27.4       27.4         70.01       1310.00       24.20       23.4       27.4       27.4       27.4       27.4         70.01       1499.01       24.70       24.4       27.64       27.4       27.4       27.4       27.4       27.4       27.4       27.4       27.4       <td< td=""><td></td></td<></td>	M         10.00         15.00         7.40         6.26         12.45         21.01         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.51         21.52         11.55         21.51         21.54         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.51         21.64         21.65         21.64         21.51         21.64         21.65         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64         21.64	M         10.00         15.00         7.40           21.00         87.00         37.60         37.60           10         430.00         6570.00         5918.00           132.00         133.00         231.60         501.60           133.00         133.00         1370.00         1604.00           137.00         1370.00         1500.00         1604.00           137.00         1370.00         1370.00         1224.00           137.00         1370.00         131.00         24.20           10.0         71.00         31.00         24.20           10.0         71.00         31.00         24.20           10.0         71.00         31.00         24.20           10.0         31.00         12.00         12.00           10.00         10.00         31.00         24.20           10.00         10.00         31.00         24.20           11.00         10.00         31.00         24.20           10.00         10.00         31.00         31.00           10.00         10.00         31.00         24.20           10.00         0.00         31.00         24.20           10.00	10.00       15.00       7.40       6.26       12.15         21.00       87.00       37.00       15.26       67.01         400.00       000.00       603.60       56.15       873.2         430.00       5770.00       5770.00       595.72       6749.69         135.00       5770.00       5770.00       197.76       242.7         0.64       0.64       0.79       0.57       0.67         1370.00       1370.00       1500.00       1664.00       197.76       242.7         710.00       1370.00       1500.00       1599.45       1773.55       1773.55         7210.00       1370.00       1500.00       1564.00       11599.42       25.4       27.4         70.00       31.00       24.20       23.4       27.4       27.4       27.4         70.01       11999.02       24.20       23.4       27.4       27.4       27.4         70.01       1310.00       24.20       23.4       27.4       27.4       27.4       27.4         70.01       1499.01       24.70       24.4       27.64       27.4       27.4       27.4       27.4       27.4       27.4       27.4       27.4 <td< td=""><td></td></td<>	
Z1.00       T.00	21.00       87.00       32.60       15.31       67.01       31.51         UN       430.00       1090.00       5970.00       5971.00       565.15       878.29       51       51       51         SE       133.00       5370.00       5971.00       5971.00       5991.00       5559.22       6779.48       51       51       51         SE       0.54       0.73       0.75       0.75       0.22       0.67       22       51       51       51         W       1320.00       1500.00       1604.00       1604.00       1553.65       242.74       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51	21.00       87.00       32.60 $5.2.61$ $51.21$ $67.01$ $31.21$ $51.21$ $51.21$ $51.21$ $51.22$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$ $51.21$	21.00       87.00       32.60         UN       4430.00       6570.00       679.60         5570.00       5570.00       5770.00       571.60         5570.00       5570.00       531.00       201.60         1330.00       1330.00       1330.00       12242.00         131.00       7210.00       14300.00       24.20         1320.00       1320.00       13300.00       24.20         1320.00       13300.00       12242.00       24.20         101       7210.00       31.00       24.20         102       13300.00       12440.00       24.20         102       1300.00       12424.00       24.20         11300.00       14.000.00       24.20       24.20         11300.00       14.000.00       24.20       24.20         11300.00       14.000.00       24.20       24.20         1100.00       14.000.00       24.20       24.20         1100.00       14.000.00       24.20       24.20         1100.00       14.000.00       24.20       24.20         1100.00       14.000.00       24.20       24.20         1100.00       14.000       24.20       24.20 <td>21.00       67.00       32.80       15.24       67.01         400.00       1090.00       603.60       566.15       878.25         430.00       6570.00       5918.00       5859.25       6789.66         153.00       2570.00       5570.00       5579.05       578.23         1330.00       1900.00       1604.00       1977.76       242.74         1330.00       14300.00       1604.00       1595.55       1793.53         7210.00       14300.00       12242.00       11993.02       1793.55         79.00       31.00       24.20       23.64       29.62         79.00       31.00       24.20       23.64       29.62</td> <td></td>	21.00       67.00       32.80       15.24       67.01         400.00       1090.00       603.60       566.15       878.25         430.00       6570.00       5918.00       5859.25       6789.66         153.00       2570.00       5570.00       5579.05       578.23         1330.00       1900.00       1604.00       1977.76       242.74         1330.00       14300.00       1604.00       1595.55       1793.53         7210.00       14300.00       12242.00       11993.02       1793.55         79.00       31.00       24.20       23.64       29.62         79.00       31.00       24.20       23.64       29.62	
WIL       400.00       400.00       570.00       557.15       515.20       557.92       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51	400.00       1090.00       603.40       564.15       673.26       51       51         55       433.00       537.00       537.00       539.92       6749.66       51       51         55       133.00       233.00       233.00       233.00       197.76       242.74       51       51         55       0.48       0.79       0.35       0.22       0.67       21       51       51         1320.00       1320.00       1530.00       1004.00       1535.65       1793.93       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       <	400.00         1000.00         6570.00         5570.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         5551.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00         1757.00 <th< td=""><td>UN       400.00       100.00       577.00       5918.00         SE       133.00       577.00       5918.00       201.60         SE       133.00       243.00       201.60       1606.00         IH       1370.00       1370.00       1400.00       1606.00         1370.00       1370.00       1400.00       1606.00       24.20         IH       7210.00       1400.00       141.00       24.20         100       71.00       71.00       24.20       24.20         1100       24.20       19.00       31.00       24.20         124.20       19.00       31.00       24.20       24.20         100       7       100       24.20       24.20         11.00       14.00       14.00       24.20       24.20         11.00       100       100       21.00       24.20         11.00       100       100       21.00       24.20         124.20       14.00       24.20       24.20       24.20         124.20       14.00       24.20       24.20       24.20         124.20       100       24.20       24.20       24.20         124.20       100.2</td><td>400.00         1000.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5242.00         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         <th< td=""><td></td></th<></td></th<>	UN       400.00       100.00       577.00       5918.00         SE       133.00       577.00       5918.00       201.60         SE       133.00       243.00       201.60       1606.00         IH       1370.00       1370.00       1400.00       1606.00         1370.00       1370.00       1400.00       1606.00       24.20         IH       7210.00       1400.00       141.00       24.20         100       71.00       71.00       24.20       24.20         1100       24.20       19.00       31.00       24.20         124.20       19.00       31.00       24.20       24.20         100       7       100       24.20       24.20         11.00       14.00       14.00       24.20       24.20         11.00       100       100       21.00       24.20         11.00       100       100       21.00       24.20         124.20       14.00       24.20       24.20       24.20         124.20       14.00       24.20       24.20       24.20         124.20       100       24.20       24.20       24.20         124.20       100.2	400.00         1000.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5570.00         5242.00         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50         1773.50 <th< td=""><td></td></th<>	
101       5339.32       6740.00       5370.00       5339.32       6740.68       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54       54	UNI       4430.00       6370.00       5918.00       5939.92       6149.66       51       51         SE       153.00       243.00       201.60       197.76       242.74       51       51         W       133.00       243.00       201.90       201.60       197.76       242.74       51       51         W       1320.00       1380.00       1604.00       1593.65       1773.93       51       51         Z10.00       1320.00       1380.00       1204.00       1599.02       1793.93       51       51         Z10.00       14300.00       1244.00       1299.00       24.60       21.66       24.66       51       51         Remotion       1320.00       24.20       1399.00       24.20       1999.00       24.46       24.66       24.66       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51 </td <td>UNI       4430.00       5570.00       579.00       579.00       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.35       777.76       242.74       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51</td> <td>UM     4430.00     5570.00     5978.00       SE     153.00     243.00     201.60       11320.00     1800.00     1606.00       1210.00     1370.00     1500.00       1320.00     14300.00     12222.00       24.20     14300.00     12222.00       24.20     14300.00     12222.00       24.20     14300.00     121.00       24.20     14300.00     121.00       24.20     14300.00     121.00       24.20     14300.00     121.00       24.20     14300.00     14400.00       24.20     1400.00     1440.00       24.20     1400.00     1440.00       24.20     1400.00     1440.00</td> <td>4439.00       6570.00       5779.00       5918.00       5939.92       6749.66         153.00       243.00       201.60       197.76       242.74         0.44       0.77       0.25       0.22       0.67         1320.00       1800.00       1800.00       1809.02       1793.63         7210.00       14300.00       12242.00       11999.02       14990.18         19.00       31.00       24.20       23.64       29.82         19.00       31.00       24.20       23.64       29.82         19.00       31.00       24.20       23.64       29.82</td> <td></td>	UNI       4430.00       5570.00       579.00       579.00       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.30       579.35       777.76       242.74       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51	UM     4430.00     5570.00     5978.00       SE     153.00     243.00     201.60       11320.00     1800.00     1606.00       1210.00     1370.00     1500.00       1320.00     14300.00     12222.00       24.20     14300.00     12222.00       24.20     14300.00     12222.00       24.20     14300.00     121.00       24.20     14300.00     121.00       24.20     14300.00     121.00       24.20     14300.00     121.00       24.20     14300.00     14400.00       24.20     1400.00     1440.00       24.20     1400.00     1440.00       24.20     1400.00     1440.00	4439.00       6570.00       5779.00       5918.00       5939.92       6749.66         153.00       243.00       201.60       197.76       242.74         0.44       0.77       0.25       0.22       0.67         1320.00       1800.00       1800.00       1809.02       1793.63         7210.00       14300.00       12242.00       11999.02       14990.18         19.00       31.00       24.20       23.64       29.82         19.00       31.00       24.20       23.64       29.82         19.00       31.00       24.20       23.64       29.82	
352       153.00       231.60       171.60       232.74       51       51         11       0.64       0.75       0.15       0.61       23       51         112       0.64       0.75       0.155       0.26       23       51         112       0.64       0.79       0.55       0.26       23       51       51         120       1200.00       1604.00       1599.05       11999.02       11999.02       14990.18       51       51       51         170.00       12242.00       11999.02       14300.06       12242.00       11999.02       14990.18       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51	35.00       23.00       231.00       197.76       222.74       5:       5:         0.44       0.79       0.55       0.22       0.67       2:       5:       5:         UN       1320.00       1800.00       1604.00       1593.65       1793.93       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5: <t< td=""><td>SEE       133.00       243.00       201.60       197.76       242.74       51       51         UN       1370.00       1900.00       1604.00       1933.65       11733.93       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51</td></t<> <td>155.00       243.00       241.00       271.00         141       1320.00       1500.00       1606.00         7210.00       131.00       12242.00         7210.00       31.00       31.00       24.20         7210.01       131.00       31.00       24.20         7210.02       11.00       31.00       24.20         7210.03       131.00       24.20       24.20         7210.04       11.00       31.00       24.20         7210.05       11.00       31.00       24.20         7210.05       11.00       11.00       24.20         7210.05       11.00       11.00       24.20         7210.04       11.00       11.00       24.20         7210.04       11.00       11.00       24.20         7210.05       11.00       11.00       11.00         7210.04       11.00       11.00       11.00</td> <td>133.00       243.00       243.00       243.00       243.00       243.00       243.00       1500.00       1504.00       1509.05       1773.53         1320.00       1320.00       1300.00       1604.00       1509.05       14990.16         7210.00       1330.00       1359.00       13593.05       14990.16         7210.00       1330.00       1232.00       13593.05       14990.16         19.00       31.00       24.20       23.64       29.62         *       24.20       24.20       23.64       29.62         *       *       *       24.20       24.64       29.62         *       *       *       *       24.20       23.64       29.62         *       *       *       *       24.20       24.64       29.62         *       *       *       *       24.20       23.64       29.63         *       *       *       *       24.20       23.64       29.63         *       *       *       *       *       24.64       29.64         *       *       *       *       *       24.64       29.64         *       *       *</td> <td></td>	SEE       133.00       243.00       201.60       197.76       242.74       51       51         UN       1370.00       1900.00       1604.00       1933.65       11733.93       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51       51	155.00       243.00       241.00       271.00         141       1320.00       1500.00       1606.00         7210.00       131.00       12242.00         7210.00       31.00       31.00       24.20         7210.01       131.00       31.00       24.20         7210.02       11.00       31.00       24.20         7210.03       131.00       24.20       24.20         7210.04       11.00       31.00       24.20         7210.05       11.00       31.00       24.20         7210.05       11.00       11.00       24.20         7210.05       11.00       11.00       24.20         7210.04       11.00       11.00       24.20         7210.04       11.00       11.00       24.20         7210.05       11.00       11.00       11.00         7210.04       11.00       11.00       11.00	133.00       243.00       243.00       243.00       243.00       243.00       243.00       1500.00       1504.00       1509.05       1773.53         1320.00       1320.00       1300.00       1604.00       1509.05       14990.16         7210.00       1330.00       1359.00       13593.05       14990.16         7210.00       1330.00       1232.00       13593.05       14990.16         19.00       31.00       24.20       23.64       29.62         *       24.20       24.20       23.64       29.62         *       *       *       24.20       24.64       29.62         *       *       *       *       24.20       23.64       29.62         *       *       *       *       24.20       24.64       29.62         *       *       *       *       24.20       23.64       29.63         *       *       *       *       24.20       23.64       29.63         *       *       *       *       *       24.64       29.64         *       *       *       *       *       24.64       29.64         *       *       *	
0.44       0.79       0.355       0.22       0.67       25       5         1320.00       1300.00       1500.00       1593.65       1793.05       5       5       5         710.00       1370.00       12242.00       11999.02       14990.18       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5	0.44       0.79       0.35       0.22       0.67       2: 5;         1120.00       1800.00       1604.00       1593.65       1793.93       5: 5;         7210.00       14300.00       1604.00       1393.65       1793.93       5: 5;         19.00       14300.00       14300.00       12262.00       1393.02       1490.18       5: 5;         19.00       31.00       24.20       23.64       29.62       23.64       29.62         19.00       31.00       24.20       23.64       29.62       5: 5;       5;         19.00       31.00       24.20       23.64       29.62       5: 5;       5;         19.00       31.00       24.20       24.20       23.64       29.62       5: 5;       5;         10.01       24.20       24.20       24.20       24.64       24.64       24.64       24.20       24.64       24.64       24.64       24.64       24.64       24.65       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5;       5	0.44       0.79       0.55       0.22       0.67       2:       5:       5:         11370.00       1370.00       1370.00       1370.00       1579.05       1779.03       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:	UH     1320.00     1930.00     1504.00       7210.00     1370.00     12242.00       7210.00     31.00     24.20       79.00     31.00     24.20       79.00     10.00     10.00       70.01     12242.00       70.02     11.00     24.20       70.03     11.00     24.20       70.04     11.00     24.20       70.05     11.00     11.00       70.04     11.00     11.00       70.05     11.00     11.00	0.44     0.79     0.35     0.22     0.67       1320.00     1800.00     1800.00     1809.00     1899.02       7210.00     13100     7242.00     11999.02       790.16     72.00     31.00     24.20     23.64       790.16     74.20     24.20     23.64     29.22       8     Wubber detected : Murber used to calculate statistics : Murber of sampling points.	
IS       IS <td< td=""><td>UN       1320.00       1320.00       1600.00       1533.65       1793.53       5       5         7210.00       14300.00       14300.00       12242.00       11599.02       16990.16       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5<!--</td--><td>UM       1320.00       1930.00       1606.00       1533.65       1733.63       5: 5:         7210.00       14300.00       12322.00       1859.02       1859.02       1859.02       5: 5:         100       24.20       24.20       24.64       20.65       2: 5:       5: 5:         1100       24.20       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:       5:         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       &lt;</td><td>UN       1320.00       1300.00       1224.20         7210.00       7210.00       131.00       24.20         19.00       31.00       24.20       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       10.00       19.00       24.20         Intervention       10.00       10.00       10.00         Intervention       10.00       <td< td=""><td>1320.00       1500.00       1500.00       1509.00       1509.00       1509.02         7210.00       14500.00       15242.00       11593.02       14990.16         19.00       31.00       21.20       23.64       29.63         19.00       31.00       24.20       23.64       29.03         19.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.63         11.00       21.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.64       29.64         11.00       24.20       24.20       23.64       29.64       29.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       2</td><td></td></td<></td></td></td<>	UN       1320.00       1320.00       1600.00       1533.65       1793.53       5       5         7210.00       14300.00       14300.00       12242.00       11599.02       16990.16       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 </td <td>UM       1320.00       1930.00       1606.00       1533.65       1733.63       5: 5:         7210.00       14300.00       12322.00       1859.02       1859.02       1859.02       5: 5:         100       24.20       24.20       24.64       20.65       2: 5:       5: 5:         1100       24.20       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:       5:         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       &lt;</td> <td>UN       1320.00       1300.00       1224.20         7210.00       7210.00       131.00       24.20         19.00       31.00       24.20       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       10.00       19.00       24.20         Intervention       10.00       10.00       10.00         Intervention       10.00       <td< td=""><td>1320.00       1500.00       1500.00       1509.00       1509.00       1509.02         7210.00       14500.00       15242.00       11593.02       14990.16         19.00       31.00       21.20       23.64       29.63         19.00       31.00       24.20       23.64       29.03         19.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.63         11.00       21.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.64       29.64         11.00       24.20       24.20       23.64       29.64       29.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       2</td><td></td></td<></td>	UM       1320.00       1930.00       1606.00       1533.65       1733.63       5: 5:         7210.00       14300.00       12322.00       1859.02       1859.02       1859.02       5: 5:         100       24.20       24.20       24.64       20.65       2: 5:       5: 5:         1100       24.20       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:       5:         1100       24.20       2: 4.20       2: 4.20       2: 4.20       2: 4.20       2: 5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       5:       <	UN       1320.00       1300.00       1224.20         7210.00       7210.00       131.00       24.20         19.00       31.00       24.20       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       19.00       31.00       24.20         Intervention       10.00       19.00       24.20         Intervention       10.00       10.00       10.00         Intervention       10.00 <td< td=""><td>1320.00       1500.00       1500.00       1509.00       1509.00       1509.02         7210.00       14500.00       15242.00       11593.02       14990.16         19.00       31.00       21.20       23.64       29.63         19.00       31.00       24.20       23.64       29.03         19.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.63         11.00       21.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.64       29.64         11.00       24.20       24.20       23.64       29.64       29.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       2</td><td></td></td<>	1320.00       1500.00       1500.00       1509.00       1509.00       1509.02         7210.00       14500.00       15242.00       11593.02       14990.16         19.00       31.00       21.20       23.64       29.63         19.00       31.00       24.20       23.64       29.03         19.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.63         11.00       21.00       31.00       24.20       23.64       29.63         10.00       31.00       24.20       23.64       29.64       29.64         11.00       24.20       24.20       23.64       29.64       29.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       24.20       24.20       24.64         11.00       24.20       24.20       2	
	7242.00 13300.00 12242.00 11893.02 14990.18 5: 5: 19.00 31.00 24.20 23.64 29.22 5: 5: 23.64 29.22 5: 5: 7. 20.00 24.20 23.64 20.22 5: 5: 7. 00 24.20 24.20 23.64 20.22 5: 5: 7. 00 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 2	7242.00 1393.02 1499.00 12242.00 1393.02 1499.02 1499.03 1393.02 14990.16 5: 5: 19.00 31.00 24.20 23.64 29.82 5: 5: 23.64 29.82 5: 5: 23.64 29.82 5: 5: 24.80 10 24.80 10 10 10 10 10 10 10 10 10 10 10 10 10	7210.00 14300.00 1224.20 19.00 31.00 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20	7210.00 14390.00 12242.00 11899.02 14990.18 19.00 31.00 24.20 22.64 29.82 23.64 29.03 1.00 24.20 23.64 29.62 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20 24.20	
	19.00 24.20 24.20 24.20 24.20 24.20 24.20 24.20 tet of sampling points. Number of sampling points. Number detected : Number used to calculate statistics : Number of sampling points. ted: 06/30/94	11.00 24.20 22.64 24.20 51.5 24.60 24.20 24.60 24.20 25.64 24.20 14.00 24.20 24.60 24.20 25.64 24.20 25.64 24.20 25.64 24.20 25.64 24.20 25.64 24.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20 25.20	19.00 31.00 24.20 Frequency of Detection = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	1.00     24.20       2.64     24.20       2.64     24.20       2.64     27.64       2.64     27.64       2.64     100       2.64     100       2.64     100       2.64     100       2.64     100	
	Frequency of Detection = Munber used to calculate statistics : Number of Not calculated.	Frequency of Detection = Number used to calculate statistics : Number of Not calculated. ted: 06/30/794	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated.	* Number detected : Number of	
	Frequency of Detection = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Munber detected : Munber used to calculate statistics : Munber of Not calculated. ted: 06/30/94	Frequency of Detection = Number used to calculate statistics : Number of Not calculated.	<ul> <li>Munber detected : Number used to calculate statistics : Number of</li> </ul>	
	Frequency of Detection = Number detected = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number used to calculate statistics : Number of Not calculated.	Frequency of Detection = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	* hunder detected : hunder of	
	Frequency of Detection = Number detected ; Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected = Number used to calculate statistics = Number of Not calculated. ted: 06/30/94	<b>*</b> Runber detected <b>:</b> Runber of	
	Frequency of Detection = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected = Number used to calculate statistics = Number of Not calculated.	Frequency of Detection = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	<ul> <li>Munber detected : Number used to calculate statistics : Number of</li> </ul>	•
	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected = Number used to calculate statistics = Number of Not calculated.	Frequency of Detection = Mumber detected : Mumber used to calculate statistics : Mumber of Not calculated. ted: 06/30/94	<ul> <li>Munber detected : Munber of</li> <li>Batistics : Munber of</li> </ul>	
	Frequency of Detection = Number detected = Number used to calculate statistics = Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected : Number used to calculated. Not calculated. ted: 06/30/94	Runber detected : Runber of Autor detected : Runber of	
	Frequency of Detection = Number detected = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected = Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	<ul> <li>Munber detected : Number used to calculate statistics : Number of</li> </ul>	•
	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	<ul> <li>Rumber detected : Rumber used to calculate statistics : Rumber of</li> </ul>	
	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Munber detected : Munber used to calculate statistics : Munber of Not calculated. Hot calculated. ted: 06/30/94	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	<ul> <li>Murber detected : Nurber used to calculate statistics : Nurber of</li> </ul>	· · ·
	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Frequency of Detection = Number detected : Number used to calculate statistics : Number of Not calculated. ted: 06/30/94	Munber detected : Number used to calculate statistics : Number of interesting in the statistics is not interesting in the statistics is not interesting in the statistics is not interesting in the statistic interesting in the statistic interesting is not interesting in the statistic interesting in the statistic interesting is not interesting in the statistic interesting in the statistic interesting in the statistic interesting in the statistic interesting	
					calculated.
					+4 /nc /on
Printed: 06/30/94					
Printed: 06/30/94					

. .

> A-2 AR302589

TABLE A1 CHIO RIVER SITE - NEVILLE TOMNSHIP, PA Summary Statistics for detected compounds Maim cummel surface vater Herbicides

FREQUENCY 1 OF DETECTION in 10 ŝ 5 ŝ ŝ ;; ;; 4 0.50 0,05 0.05 UPPER 95X CONF. LINIT (UG/L ) 0.50 0.05 0.05 GEOMETRIC MEAN (UG/L ) 0.05 0.50 0.05 ARITH. MEAN (UG/L ) 0.05 0.05 0.50 MAXIMUM DETECT (UG/L ) 0.50 0.05 0.05 MINIMUN DETECT (UG/L ) 2,4,5-TP COMPOUND 2,4,5-1 2,4-D

.: *

•

Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.
 Not calculated.

Printed: 06/30/94



### A1 - MAIN CHANNEL SURFACE WATER

R:\PUBS\PROJECTSW920003\906.COV

AR302591

A-1

July, 1994



#### **APPENDIX A - SITE SUMMARY DATA TABLES**

- A1 MAIN CHANNEL SURFACE WATER
- A2 BACK CHANNEL SURFACE WATER
- A3 MAIN CHANNEL SEDIMENTS
- A4 BACK CHANNEL SEDIMENTS
- A5 SURFACE SOILS

.

.

- A6 COMBINED AREA GROUNDWATER
- A7 BACK CHANNEL GROUNDWATER

AR302592

R:\PUBS\PROJECTS\4920003\906.COV

нем нем нем нем нем нем (UG/L ) (UG/L ) (UG/L ) (UG/L ) 5.63 6.60 6.60 6.60 6.60 6.61 7 9.00 2.22 6.55 24.35	Detect (upt.)         Detect (upt.)         Detect (	Offeren Cuord 1         Derfer Cuord 1         Derfer Cuord 1         Derfer Cuord 1         Derfer Cuord 1         Derfer 1	OFFERT         DEFERT         DEFERT<		ECT	MAYIMM	ADITH	GENNETRIC	UPPER 95% CONF.		
10.00     10.00     10.00     11.00       5.01     31.00     31.00     9.17       5.01     9.13     9.22     6.17       33.00     9.22     6.17     15.99       33.00     9.22     6.17     15.99       20.00     92.00     25.36     5.13       20.00     25.36     24.36     11.99       20.00     25.36     24.36     11.99	10.00         10.00         6.11         5.63         7.46         1.9           6.00         8.73         6.00         9.99         6.60         17.59         11         9           8.00         9.22         6.17         5.93         17.59         11         9           38.00         9.22         6.17         5.93         11         9         9           28.00         9.25.6         24.00         9.22         6.17         9         9           28.00         9.25.6         24.36         24.36         9.25.6         11         9         9           20.00         99.00         26.56         24.36         25.43         9         9           20.01         29.00         20.50         29.50         24.56         14         9         9           20.02         20.00         29.50         24.36         14         9         9           20.03         50.00         20.50         24.36         14         9         9           20.04         20.50         24.36         24.36         24.36         14         9         9           20.04         20.50         24.36         24.36	10.00       10.00       6.11       5.63       7.46       19         6.00       8.70       8.73       6.60       17.59       19       19         44.00       9.87       6.63       17.59       19       19         28.00       33.00       9.22       6.17       15.59       19       19         28.00       39.00       26.56       24.36       17.59       19       19         20.00       39.00       26.56       24.36       19       19       19         20.00       39.00       26.56       24.36       19       19       19         21.00       39.00       26.56       24.36       35.14       9       19         21.01       20.00       39.00       26.56       24.36       35.14       9       9         21.01       21.01       21.01       21.01       21.01       21.01       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.00       20.0	10.00       10.00       6.11       5.83       7.46       1: 9:         6.00       33.00       9.99       6.88       17.19       1: 9:         8.40       9.40       9.99       6.88       17.19       1: 9:         8.00       33.00       33.00       9.45       5.35       1: 9:       9: 9:         8.00       33.00       33.00       26.56       24.35       5.35.14       9: 9:         20.00       39.00       26.56       24.35       24.35       35.14       9: 9:         20.00       39.00       26.56       24.35       24.35       35.14       9: 9:         20.00       39.00       26.56       24.35       24.35       35.14       9: 9:         20.00       30.01       26.56       24.35       24.35       35.14       9: 9:         20.01       20.02       39.00       26.56       24.35       25.35       1: 9: 9:       9: 9:         20.02       30.01       26.56       24.35       24.36       24.35       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9:       9: 9: </th <th>2-BUTANONE ACETONE</th> <th>( 1</th> <th>DETECT (UG/L )</th> <th>MEAN (UG/L )</th> <th>MEAN (UG/L )</th> <th>( 1/90)</th> <th>FREQUENCY OF DETECTION</th> <th>•</th>	2-BUTANONE ACETONE	( 1	DETECT (UG/L )	MEAN (UG/L )	MEAN (UG/L )	( 1/90)	FREQUENCY OF DETECTION	•
<b>6.</b> 0 <b>6.</b> 10 <b>7.</b> 13 <b>7.</b> 19 <b>7.</b> 19	6.00       3.00       3.10       6.13       6.13       11.05       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9       11.9	6.00       3.00       3.10       6.13       6.13       11.05       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11 </td <td>6.00       33.00       9.75       6.85       17.50       19.         44.00       9.87       6.85       17.70       19.       9.         20.00       33.00       33.00       5.55       6.77       15.97       19.         20.00       33.00       35.00       35.00       26.56       24.35       19.       9.         20.00       39.00       26.56       24.35       24.35       35.4       9.       9.         20.01       39.00       26.56       24.35       24.35       35.4       9.       9.         20.02       39.00       26.56       24.35       24.35       35.14       9.       9.         35.14       9.9       39.00       26.56       24.35       35.14       9.       9.         35.14       9.9       39.00       26.56       24.35       35.14       9.       9.         35.14       9.9       39.00       26.56       24.35       35.14       9.       9.       9.       9.         36.14       9.9       9.0       9.       9.0       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.&lt;</td> <td>ACETONE</td> <td>10.00</td> <td>10.00</td> <td>6.11</td> <td>5.83</td> <td>7.48</td> <td>ö</td> <td></td>	6.00       33.00       9.75       6.85       17.50       19.         44.00       9.87       6.85       17.70       19.       9.         20.00       33.00       33.00       5.55       6.77       15.97       19.         20.00       33.00       35.00       35.00       26.56       24.35       19.       9.         20.00       39.00       26.56       24.35       24.35       35.4       9.       9.         20.01       39.00       26.56       24.35       24.35       35.4       9.       9.         20.02       39.00       26.56       24.35       24.35       35.14       9.       9.         35.14       9.9       39.00       26.56       24.35       35.14       9.       9.         35.14       9.9       39.00       26.56       24.35       35.14       9.       9.         35.14       9.9       39.00       26.56       24.35       35.14       9.       9.       9.       9.         36.14       9.9       9.0       9.       9.0       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.<	ACETONE	10.00	10.00	6.11	5.83	7.48	ö	
4.10 4.10 33.00 9.25 20.00 33.14 9.25 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5	Rf       44.00       9.59       6.63       17.09       1: 9:         33.00       33.00       9.50       33.00       9.53.0       1: 9:         20.00       35.00       26.55       26.35       5.35.14       9: 9:       9:         20.00       25.56       26.55       26.35       26.35.14       9:       9:       9:         20.00       25.56       26.55       26.35       26.35.6       25.35.14       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:       9:	Rf       44.00       9.59       6.83       17.09       18       9         33.00       33.00       33.00       33.00       33.00       5.55       24.36       15.97       11       9         20.00       59.00       26.56       24.36       25.35       24.35       35.14       9       9       9         20.01       59.00       26.56       24.36       25.35       24.36       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35       55.35	Rf       44.00       9.19       6.13       17.09       11       9.         35.00       33.00       9.22       6.17       15.99       11       9.         20.00       53.00       53.00       52.56       21.67       15.99       11       9.         21.00       53.00       52.56       51.56       51.56       51.57       19.       9.         22.00       53.00       52.56       51.56       51.56       51.56       51.97       19.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.       9.<		6.00	33.00	8.73	6.80	14.50	2: 9:	
3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	83.00       922       6.77       1599       11       9.         20.00       26.56       24.36       3514       9.9       9.         20.01       26.56       24.36       3514       9.9       9.         20.02       26.56       24.36       3514       9.9       9.9         20.03       26.56       24.36       3514       9.9       9.9         20.04       26.56       24.36       26.56       24.36       9.9       9.9         20.05       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56       26.56	Rf       33.00       33.00       9.22       6.77       15.99       11       91         20.00       20.00       20.00       26.56       24.36       24.36       33.14       91       91         20.01       20.00       20.00       26.56       24.36       25.35       24.36       91       91         20.01       20.01       20.00       26.56       24.36       25.35       24.36       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91       91	Rf     33.00     33.00     9.22     6.71     15.99     11     91       20.00     59.00     26.56     24.36     24.36     35.14     91     91       20.01     20.00     26.56     24.36     24.36     25.56     25.56       20.01     20.00     26.56     24.36     25.56     25.14     91     91       21.01     20.01     20.00     26.56     24.36     25.56     25.14     91     91	BENZEWE	44.00	44.00	69.6	<b>6.8</b>	17.89		
20.00 S.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 35.16 3	20.00 26.56 24.36 35.14 9: 9: 00 20 20 20 20 20 20 20 20 20 20 20 20 2	20.00 39.00 26.56 24.36 35.14 9: 9: 20.00 Boundary States and Sta	26.56 24.35 35.14 9: 9: 2000 26.56 24.36 35.14 9: 9: 2010 2010 2010 2010 2010 2010 2010 2010	CMLOROETHANE	38.00	38.00	9.22	6.7	15.99		•
	frequency of Detection = Munder Used to Calculate statistics	Frequency of Detection = Number detected ; Number used to calculate statistics	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.	TOTAL BTEX	20-00	29.00	26.56	2 <b>4.</b> 36	35.14	ë	
	frequency of Detection = Number used to calculate statistics	Frequency of Detection = Murber detected : Murber detected : Aurber used to calculate statistics	Frequency of Detection = Munber used to calculate statistics Not calculated.					••			
	Frequency of Detection = Number detected : Number ved to celevitete	Frequency of Detection = Number detected : Number used to calculate statistics	Frequency of Detection = Runber detected : Runber used to calculate statistics Not calculated.		1.		•	•		-	
	frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.							•	
	Frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Number detected : Number used to calculate statistics	Frequency of Detection = Number detected : Number used to calculate statistics								
	Frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Murber detected : Murber used to calculate statistics	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.				•		• •	•	
	frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Munber used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics					,		- ·	
	Frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Murber detected : Murber used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics				•		:		•
	frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Munber detected : Munber used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.		-			· · · · · · · · · · · · · · · · · · ·	•		:
	Frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Munber detected : Munber used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.			/		•			•
	Frequency of Detection = Mumber detected : Mumber used to calculate statistics	Frequency of Detection = Munber detected : Munber used to calculate statistics Not calculated.	Frequency of Detection = Munber detected : Munber used to calculate statistics Not calculated.					•			
	Frequency of Detection = Mumber detected : Mumber used to calculate statistics	Frequency of Detection = Munber detected : Munber used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.				•		· · · · ·		
	Frequency of Detection = Mumber detected : Mumber used to calculate statistics	Frequency of Detection = Munber detected : Munber used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.			•				•	
	Frequency of Detection = Mumber detected : Mumber used to calculate statistics	Frequency of Detection = Mumber detected : Mumber used to calculate statistics Wot calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.				•	•		•	
	Frequency of Detection = Mumber detected : Mumber used to calculate statistics	Frequency of Detection = Mumber detected : Mumber used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.			••••		•			•
	Frequency of Detection = Mumber detected : Mumber used to calculate statistics	Frequency of Detection = Mumber detected : Mumber used to calculate statistics Wot calculated.	Frequency of Detection = Mumber detected : Mumber used to calculate statistics Wot calculated.					•		-	
	Frequency of Detection = Munber detected : Munber used to calculate statistics	Frequency of Detection = Munber detected : Munber used to calculate statistics Not calculated.	Frequency of Detection = Mumber detected : Mumber used to calculate statistics Mot calculated.		•		•	•	-		·
	Frequency of Detection = Number detected : Number used to calculate statistics	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated.	Frequency of Detection = Number detected : Number used to calculate statistics Not calculated. Mod: DAJADAOA				•			•	-

AR302593

A-44

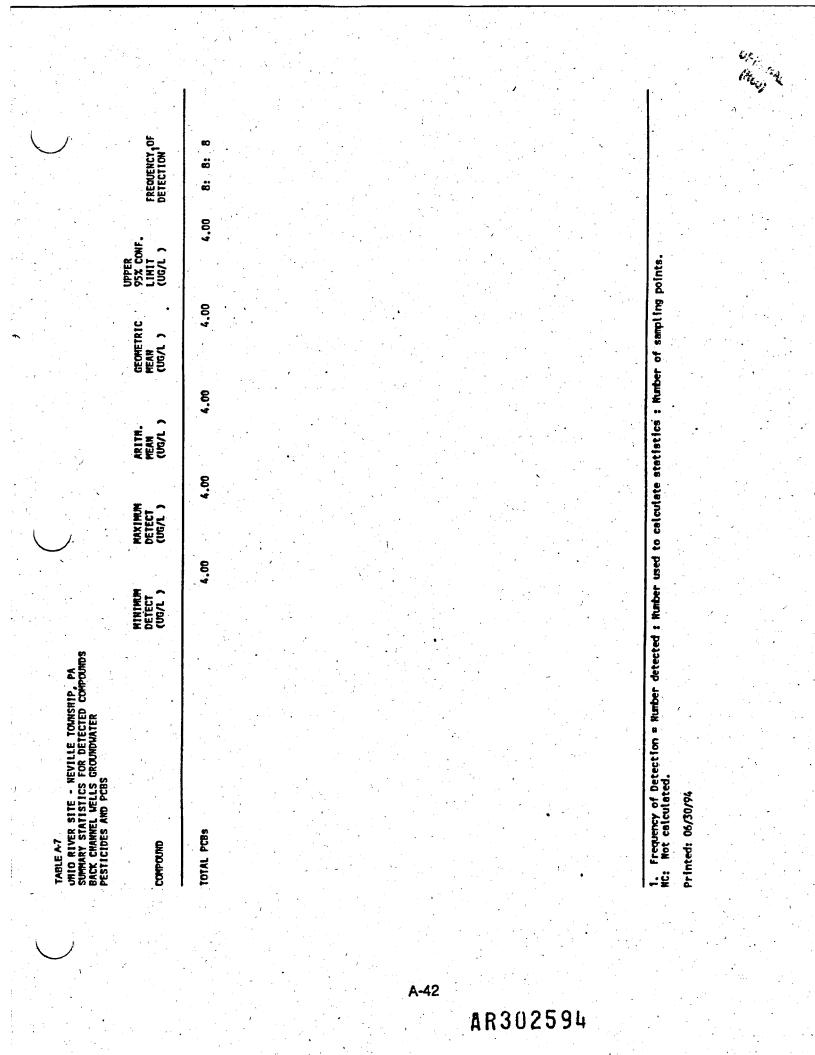



TABLE A-7 OHIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED CONPOUNDS BACK CHANNEL WELLS GROUNDLATER SEMIVOLATILES

SEMIVOLATILES	•	-	•					
COMPORTIND		MINIMM DETECT (UG/L )	MAXIMUN DETECT (UG/L )	ARITH. MEAN (UG/L )	GEOMETRIC MEAN (UG/L )	UPPER 95% CONF. LIMIT (UG/L )	FREQUENCY OF	
2,4-DIMETHYLPHENOL		1.00		5.95	8.4	8.48	5: 10: 10	
2-METHYLPHENOL		1.00	3.00	3.95	3.36	5.03	4: 10: 10	
4-METHYLPHENOL		3.00	12.00	5.95	5.42	7.63	5: 10: 10	

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 06/30/94



#### APPENDIX B - BACKGROUND SUMMARY DATA TABLES

- **B1 MAIN CHANNEL SURFACE WATER**
- **B2 BACK CHANNEL SURFACE WATER**
- B3 MAIN CHANNEL SEDIMENTS
- B4 BACK CHANNEL SEDIMENTS
- B5 SURFACE SOILS
- B6 COMBINED AREA GROUNDWATER
- B7 BACK CHANNEL GROUNDWATER

AR3U2596

R:\PUBS\PROJECTS\4920003\906.COV



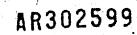
#### **B1 - MAIN CHANNEL SURFACE WATER**

R:\PUBS\PROJECTSW920003\906.COV

.

TABLE B-1 OHIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS MAIN CHAWNEL BACKGROUND SURFACE WATER INORGANICS

DETECT         HEAN         HEAN         HEAN           0.00         270.00         270.00         270.00           1.00         41.00         41.00         41.00           0.00         20900.00         20900.00         20900.00           7.00         697.00         697.00         697.00           0.00         5310.00         5310.00         5310.00           1.00         5310.00         5310.00         5310.00           9.00         1490.00         1490.00         1490.00           0.00         19000.00         1490.00         1490.00           9.00         39.00         39.00         39.00		MULINIM	HAX I MIN	ARITM.	GEOMETRIC	UPPER 95% CONF.		
Z70.00     Z70.00     Z70.00     Z70.00     Z70.00       41.00     41.00     41.00     41.00     41.00       20900.00     Z0900.00     Z0900.00     Z0900.00       20900.00     Z0900.00     Z0900.00     Z0900.00       5310.00     5310.00     5310.00     5310.00       221.00     521.00     221.00     221.00       1490.00     1490.00     1490.00     1490.00       19000.00     19000.00     39.00     39.00	COMPOUND	DETECT (UG/L )	DETECT (UG/L )	MEAN (UG/L )	MEAN (UG/L )	( 1/90)	FREQUENCY	5
41.00 41.00 41.00 41.00 41.00 41.00 41.00 20900.00 20900.00 20900.00 20900.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 53100.00 53100.00 53100.00 53100.00 53100.00 53100.00 53100.00 53100.00 5310.00 53100.00 53100.00 53100.00 53100.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310.00 5310	ALUMINUM	270.00	270.00	270.00	270.00	£	<b>;</b>	
20900.00       20900.00       20900.00       20900.00         697.00       697.00       697.00       697.00         5310.00       5310.00       5310.00       5310.00         221.00       221.00       221.00       221.00         1490.00       1490.00       1490.00       1490.00         39.00       39.00       39.00       39.00	BARIUM	41.00	41.00	41.00	41.00	ž	<b>1</b>	
697.00     697.00     697.00     697.00       5310.00     5310.00     5310.00     5310.00       221.00     221.00     221.00     221.00       1490.00     1490.00     1490.00     1490.00       1490.00     1490.00     1490.00     1490.00       39.00     39.00     39.00     39.00     39.00	CALCIUM	20900-00	20900.00	20900.00	•	ž	1: 1:	-
5310.00     5310.00     5310.00     5310.00       221.00     221.00     221.00     221.00       1490.00     1490.00     1490.00     1490.00       19000.00     1490.00     1490.00     1490.00       39.00     39.00     39.00     39.00     39.00		697.00	697.00	00.79		2	1: 1:	-
221.00     221.00     221.00     221.00       1490.00     1490.00     1490.00     1490.00       10000.00     1490.00     1490.00       39.00     39.00     39.00	MAGNESTUM	5310.00	5310.00	5310.00	5310.00		# #	-
1490.00 1490.00 1490.00 1490.00 1490.00 1490.00 10000.00 10000.00 10000.00 39.00 39.00 39.00	MANGANESE	221.00	221.00	221.00	221.00	E E	1. 1.	-
10000.00 10000.00 10000.00 10000.00 39.00 39.00	Potassium	1490.00	1490.00	1490.00	00.0611	۲	1: 1:	
39.00 39.00 39.00	WIIIOOS	10000.00	10000.00	10000.00	10000.00	•	, <b>1</b> , <b>1</b> ,	-
	ZINC	39.00	39.00	39.00	39.00		t: 1:	-
		· · · · · · · · · · · · · · · · · · ·		•	•	•	•	

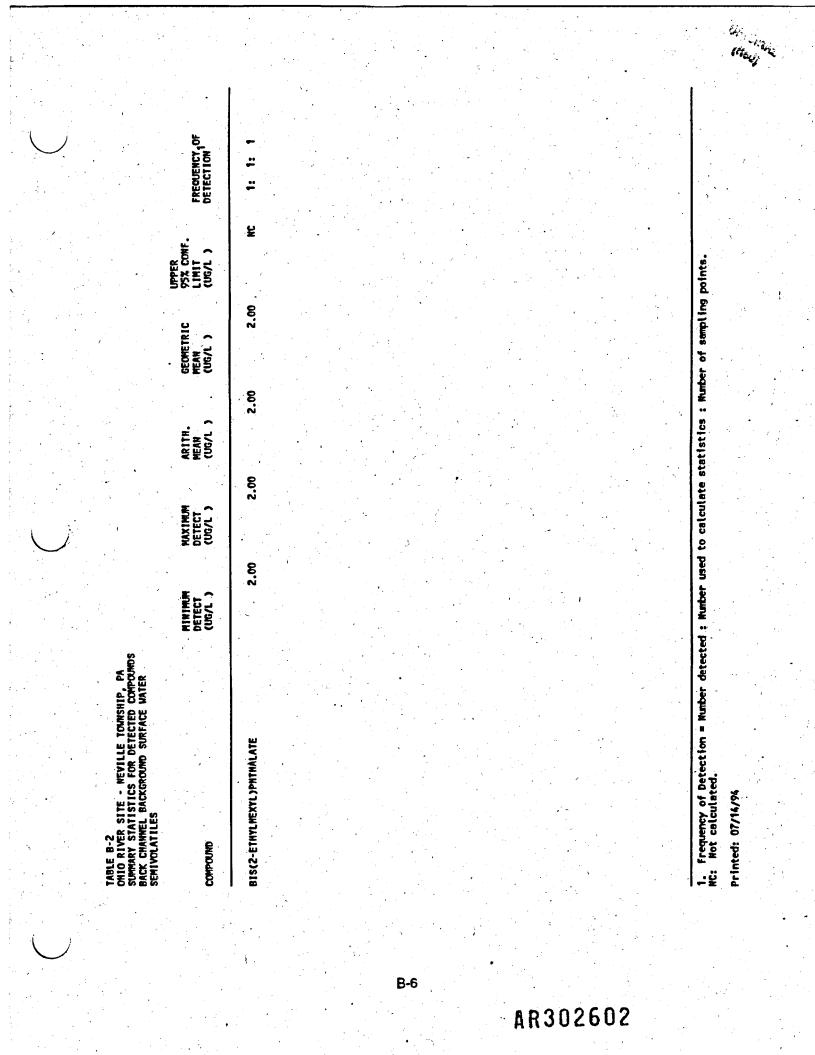

1. Frequency of Detection = Mumber detected ; Mumber used to calculate statistics : Mumber of sampling points. MC: Not calculated.

Printed: 07/14/94



,

## **B2 - BACK CHANNEL SURFACE WATER**




SUTTART SIAILSTICS FOR DESCRIPTIONS INDREMIES BACKGROUND SURFACE WATER	MINIMUM	MAX I MUM DETECT	AR I TH. MEAN	GEOMETRIC MEAN	UPPER 95% CONF.	FREQUENCY OF	
	( 1/90)	( 1/90)	( 1/9/1	( 1/50)	( 1/90)	DETECTION	
	199.00	199.00	199.00	199.00	2	1: 1: 1	• ·
	39.00	39.00	39.00	39,00		1: 1: 1	
	23800.00	25800.00	25600.00	25800.00	•	••••••••••••••••••••••••••••••••••••••	· ·
	628.00 4410 M	628.00 A410 M	00.858 Min mi	628.00 KAIN M	¥ 1		· · ·
	194.00	194.00	194.00	194.00		• . <b>-</b> .	
	1700.00	1700.00	-	1700.00	<b>N</b>	1 1 1	,
•	13800-00	13800.00	13800.00	13800.00	2	1: 1: 1	
	15.00	15.00	15.00	15.00	Ŷ	1: 1: 1	
	· · ·			•	• • • •	· · · · ·	•
	· · · ·		•	•		•	
		•				•	÷.,
					•		. 1.
	,						
	•					•	-
	•			•.		•	
	*		•	•			
	· · ·			•			
						•	•
			•	•			

AR302600

0.05       0.05       0.05       0.05         0.15       0.05       0.05       0.05       0.05         0.50       0.50       0.50       0.50       0.50       0.51         0.15       0.50       0.50       0.50       0.50       0.55       0.55         0.15       0.50       0.50       0.50       0.50       0.50       0.55       0.55         0.15       0.50       0.50       0.50       0.50       0.50       0.50       0.55         0.16       0.50       0.50       0.50       0.50       0.50       0.50       0.55         0.17       0.16       0.50       0.50       0.50       0.50       0.50       0.50         0.17       0.16       0.50       0.50       0.50       0.50       0.50       0.50         0.17       0.16       0.16       0.50       0.50       0.50       0.50       0.50         0.17       0.16       0.16       0.50       0.50       0.50       0.50       0.50         0.17       0.16       0.16       0.16       0.16       0.16       0.16       0.16         1.18       0.16       0.16       0.16
Number detected : Number used to calculate statistics : Number of

^{b-5} AR302601





• •

#### **B3 - MAIN CHANNEL SEDIMENTS**

Ξ,

R:\PUBS\PROJECTS\4920003\906.COV

B-7

July, 1994

 $\bigcirc$ 

TABLE B-3 OMIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS MAIN CHANNEL BACKGROUND SEDIMENT INORGANICS

FREQUENCY OF **# ...** # ÷ # UPPER 95% CONF. LIMIT (MG/KG) 4710.00 57.00 2250.00 44.00 798.00 14.00 18.00 189.00 8 24.00 44.00 5.30 34,500.00 61300.00 246.00 12300.00 GEOMETRIC MEAN (MG/KG) 5.30 57.00 4710.00 2250.00 44.00 798.00 246.00 18.00 189.00 23.00 24.00 44.00 14.00 61300.00 12300.00 34500.00 ARITH. MEAN (MG/KG) 4710.00 2250.00 18.00 189.00 8.2 24.00 1.8 5.30 57.00 44.00 798.00 14.00 246.00 12300.00 34500.00 61300.00 MAX1MUM DETECT (MG/KG) 34500.00 2250.00 18.00 159.00 23.0 24.00 5.30 57.00 4710.00 44.00 14.00 246.00 44.00 798.00 61300.00 12300.00 MINIMUM DETECT (MG/KG) MAGNESIUM MANGANESE POTASSIUM COMPOUND ALUMINUM CHRONIUM VANADIUM CVANIDE ARSENIC COBALT . CALCIUM BARIUM COPPER NI CKEL LEAD ZINC **NONI** 

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 07/14/94

24.5-17       11.00       11.00       11.00       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1       11.1

ALPHA-CHLORDANE AFOCLOR-1243 AFOCLOR-1243 AFOCLOR-1243 AFOCLOR-1243 AFOCLOR-1243 1-1.05 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.65 1-1.5		GEOMETRIC MEAN (UG/KG)	UPPER 95% CONF. LIMIT (UG/KG)	FREQUENCY OF
	0.65	.65	ž	1 1
8; 8; 6; 7; 8;		14.00	ž	
Ş. 8 -	Ň	26.00	2	1: 1: 1
8		1.65	2	1: 1:
	•			
	•		, . , .	<b>4</b> -
	, , , ,		•	
	• • •			
			,	
		•		•
	statistics . Wind		minte	- - 
<ol> <li>Frequency of Detection = Number detected : Number used to calculate NC: Not calculated.</li> </ol>			•emiod	· ·
Printed: 07/14/94		•••••		•

B-10 AR302606

TABLE B-3 OHIO RIVER SITE - NEVILLE TOUNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS MAIN CHANNEL BACKGROUND SEDIMENT SEMIVOLATILES

CONPOUND	ZQ	ALM IN UN	NAXIMUM DETECT	ARITH.	CCANCEDIF	UPPER 95% CONF.	•	· · .
ANTHRACENE		UEIECI (UG/KG)	(UG/KG)	HEAN (UG/KG)	NEAN (UG/KG)	LIMIT (UG/KG)	FREQUENCY OF DETECTION	
		2100.00	2100.00	2100.00	2100.00	ÿ	1: 1: 1	
DEM 20 ( A ) ANI INVULENC		6400.00	6400.00	64.00.00	00-0079	ÿ	1: 1: 1	-
BENZO(A)PYREME	• • •	5500.00	5500.00	5500.00	5500.00		1: 1: 1	
BENZO(B)FLUORANTHENE	-	6500.00	6500.00	6500.00	6500.00		1: 1: 1	
BENZO(G, H, I)PERYLENE		2300.00	2300.00	2300.00	2300.00	2	1: 1: 1	
BENZOCK) FLUORANTHENE	•••	3000.00	3000-00	3000.00	3000-00		1: 1: 1	
CHRYSENE	•	5700.00	5700.00	5700.00	5700.00	3	1: 1: 1	÷.,
FLUORANTHEME		12000.00	12000.00	12000.00	12000.00	3	1. 1. 1.	•
FLUORENE		600.00	600.009	600.009	00-009	ÿ	1: 1: 1	r é
INDENO(1,2,3-CD)PYRENE		2300.00	2300.00	2300.00	2300.00	ÿ	1: 1: 1	
PHEMANTHREME		5800.00	5800.00	5800.00	5800.00	3	1: 1: 1	
PVREME		9200.00	9200.00	9200.00	9200-00		1: 1: 1	
TOTAL CARCINOGENIC PAN		29400.00	29400.00	29400.00	29400-00	3	1: 1: 1	
TOTAL B(A)P-TE	•	7055.70	7055.70	7055.70	7055.70		1: 1: 1	
TOTAL NON-CARCINOGENIC PAH	.,•	32000.00	32000.00	32000.00	32000.00	Э <b>н</b>	1: 1: 1	
TOTAL PAN		61400-00	61400.00	61400.00	61400.00	2	1: 1: 1	

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sempling points. NC: Not calculated. Printed: 07/14/94

B-11 AR302607



**B4 - BACK CHANNEL SEDIMENTS** 





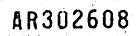





TABLE B-4 OHIO RIVER SITE - MEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHANNEL BACKGROUND SEDIMENT INORGANICS

FREQUENCY OF ÷ ÷ **.**... ÷ # <u>...</u> ÷ <u>...</u> •• <u>...</u> ... •• •• .... ... •• e's <u>..</u> 보 멅 ¥ ¥ ¥ 분 뛽 ¥ ¥ ę ¥ ¥ ¥ ¥ ¥ ¥ UPPER 95% CONF. LIMIT (HG/KG) 7.60 1.10 2090.00 760.00 27.00 1160.00 19.00 156.00 4130.00 17.00 17.00 33.00 37300.00 40.00 101.00 0800.00 GEOMETRIC MEAN (MG/KG) 33.00 37300.00 40.00 2090.00 760.00 27.00 1160.00 19.00 101.00 7.60 1.10 4130.00 17.00 17.00 156.00 10800.00 ARITH. MEAN (MG/KG) 760.00 10800.00 4130.00 37300.00 2090.00 7.60 156.00 1.10 17.00 17.00 33.00 40.00 27.00 1160.00 19.00 101.00 MAXIMUM DETECT (MG/KG) 33.00 37300.00( 10800-00 4130.00 7.60 156.00 1.10 17.00 17.00 40.00 2090.00 760.00 27.00 1160.00 19.00 101.00 HINIMGN DETECT (MG/KG) MAGNESIUM POTASSIUM MANGANESE BERYLLIUM VANAD [UM COMPOUND ALUMINUM ARSENIC CHROMIUM CALCIUM BARIUM NICKEL COBALT COPPER LEAD ZINC IRON

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 07/14/94

-	•••			ر.		•	
783	MINIMUM DETECT (UG/KG)	MAXIM <b>IM</b> DETECT (UQ/KG)	ARITH. NEAN (UG/KG)	GEOMETRIC NEAN (UG/KG)	UPPER 95% couf. LIMIT (UG/KG)	FREQUENCY 1 OF DETECTION	
	14.50 14.50 145.00	14.50 14.50	14.50 14.50 145.00	14.50 145.00	333	  	
	j					1	
							•
		1					
	•	· · ·	•				
Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points.	Number used t	to calculate st	atistics : Num	ber of sampling	points.		
Printed: 07/14/94							

AR302610

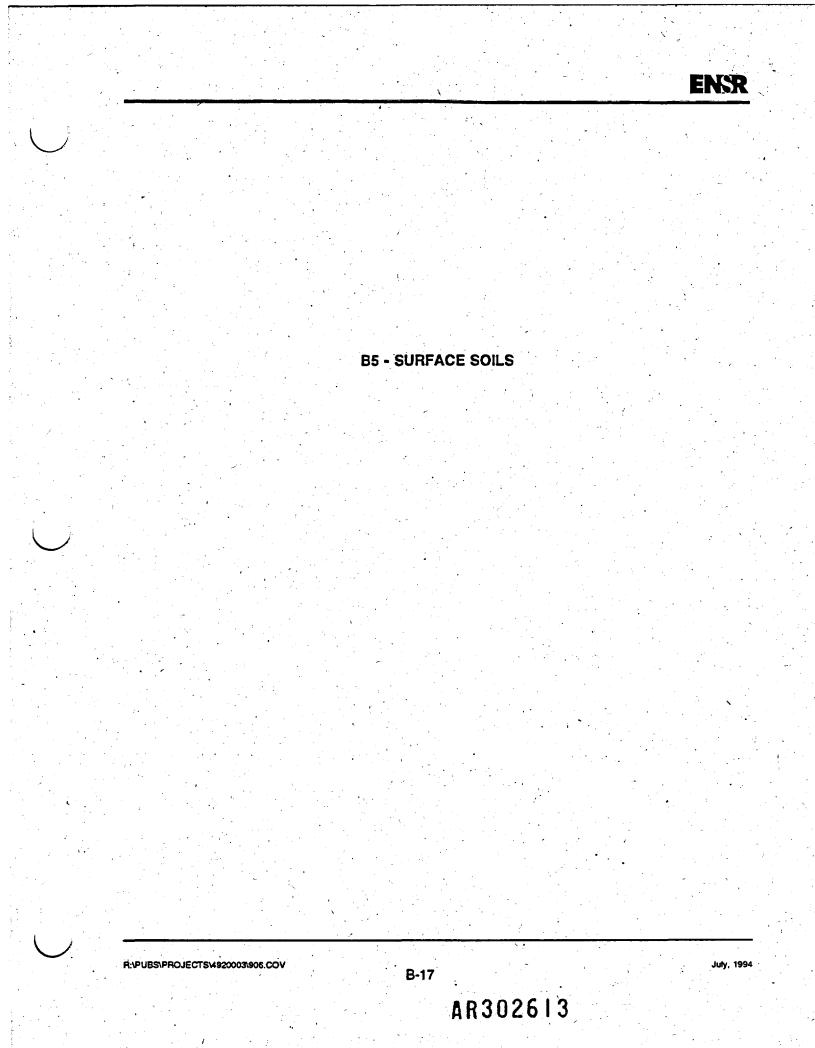
TABLE B-4 CHIO RIVER SITE - HEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHANNEL BACKGROUND SEDIMENT PESTICIDES AND PCBS

ALDRIN ALPRIN ALPHA-CHLORDANE ALPHA-CHLORDANE AROCLOR-1260 DIELDRIN DIELDRIN COTAL PCBs ALDRO AROCLOR-1260 AL.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.00 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A1.10 A	COMPOUND	•	MINIMUM DETECT (UG/KG)	MAXIMUM DETECT (UG/KG)	ARITH. MEAN (UG/KG)		GEOMETRIC MEAN (UG/KG)	UPPER 95% CONF. LIMIT (UG/KG)	FRECUENCY OF	
WE       0.32       0.32       0.32       0.32       NC       1:         41.00       41.00       41.00       41.00       11.00       NC       1:         2.80       2.80       2.80       2.80       2.80       1:30       NC       1:         1.30       1.30       1.30       1.30       1.30       1.30       NC       1:         ME       41.00       41.00       41.00       1.30       1.30       NC       1:	ALDRIN		0.45		.45	0.45	0.4		1:1:1	
ME 41.00 41.00 41.00 41.00 HC 1: 2.80 2.80 2.80 2.80 HC 1: 1.30 1.30 1.30 HC 1: 41.00 HC 1:130 HC 1: 1.30 KC 1	ALPHA-CHLORDANE	•	0.32		• *	0.32	й <b>.</b> О	- - - -	1: 1: 1	
2.80 2.80 KC 1: LORDANE 1.30 1.30 1.30 1.30 KC 1: 41.00 41.00 K1.00 KC 1:	Aroclor-1260		41.00	•	•	<b>61.</b> 00	41.0	UN NC	1: 1: 1	•
RDANE 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30	DIELDRIN		2.60		· · ·	2.80	<b>5.8</b>		1: 1: 1	
41.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1.00 × 1	GANNA-CHLORDANE		1.30			1.30	<b>.</b> .	· · · ·		
	TOTAL PCBs		41.00		8	1.00	41.0		1: 1: 1	
			1	•		•				•,

4

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 07/14/94


TABLE B-4 OHIO RIVER SITE - NEVILLE TOMNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHANNEL BACKGROUND SEDIMENT SEMIVOLATILES

FREQUENCY 10F -. ** .... 呈 2 봋 닐 물 멅 3 呈 乌 乌 ¥ UPPER 95% CONF. LIMIT (UG/KG) 229.82 820.00 250.00 170.00 240.00 120.00 69.00 110.00 130.00 88.00 270.00 100.00 170.00 260.00 959.00 1779.00 GEOMETRIC MEAN (UG/KG) 100.001 170.00 959.00 250.00 170.00 240.00 120.00 69.00 110.00 130.00 88.00 270.00 260.00 229.82 820.00 00.6771 ARITH. NEAN (UG/KG) 250.00 170.00 240.00 120.00 69.00 110.00 130.00 88.00 Z70.00 100.00 170.00 260.00 959.00 229.82 820.00 1779.00 MAXIMUM DETECT (UG/KG) 120.00 69.00 110.00 130.00 88.00 270.00 100.00 170.00 260-00 959.00 820.00 00.021 250.00 170.00 240.00 229.82 MINIMUN DETECT (UG/KG) BIS(2-ETHYLNEXYL)PHTHALATE TOTAL NON-CARCINGGENIC PAH INDENO(1,2,3-CD)PYRENE TOTAL CARCINGGENIC PAN BENZO(B)FLUORANTHENE BENZO(G, H, I)PERYLENE BENZO(K) FLUORANTHENE DI-N-BUTYLPHTHALATE BENZO(A)ANTHRACENE BENZO(A)PYRENE IOTAL B(A)P-TE FLUORANTHENE PHENANTHRENE COMPOUND TOTAL - PAH CHRYSENE PYRENE

Printed: 07/14/94

Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

B-16



FREQUENCY OF ÷ # # # ÷ **...** Ë ÷ <u>___</u> • •• <u>...</u> ... ñ ñ ž Ę Ë 呈 멅 ç ç UPPER 95% CONF. LIMIT (MG/KG) 1920.00 2160_00 20-00 8.30 130.00 16.00 15.00 13100.00 36.00 30900-00 GEOMETRIC MEAN (MG/KG) 8.30 36.00 130.00 2160.00 16.00 15.00 20.00 1920.00 13100.00 30900.00 ARITH. MEAN (MG/KG) 8.30 2160.00 15.00 20.00 130.00 16.00 50900.00 36.00 1920.00 13100.00 MAXIMUM DETECT (MG/KG) 8.30 20.00 130.00 16.00 15.00 30900-00 36.00 1920.00 13100.00 2160.00 MINIMUM DETECT (MG/KG) TABLE B-5 OHIO RIVER SITE - NEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACKGROUND SAMPLES SURFACE SOIL INORGANICS MAGNESIUM ALUMINUM COMPOUND ARSENIC CHROMIUM CALCIUM BARIUM COBALT COPPER - GAO RON

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. MC: Not calculated.

Printed: 07/14/94

AR302614

MANGANESE

B-18

NICKEL

POTASSIUM

VANADIUM

ZINC

÷

**#**. **#** 

#

1080.00 21.00 1260.00

21.00 21.00 1260.00 21.00 83.00

1060.00 21.00

1080.00

21.00 1260.00 21.00 83.00

-

ម្ព

83.00

222

21.00

260.00 21.00 83.00

TABLE B-5 OHIO RIVER SITE - NEVILLE TOLAISHIP, PA SUMMARY STATISTICS FOR DETECTED CONPOUNDS BACKGROUND SAMPLES SURFACE SOIL MERBICIDES

	1		
· · ·			
5	· -	-	-
ENCY	=	#	÷
FREQUENCY OF	<b>=</b>	Ë	-
3			• *
	3	R	呈
upper 95% cour. Limit (UG/KG)			•
3825			
J	12.50	12.50	125.00
GEOMETRIC MEAN (UG/KG)			12
E A B	ľ		•
	12.50	12.50	125.00
<b>.</b> 9	12	12	125
ARITH. MEAN (UG/KG)			
	3	20	8
<b>.</b>	12.50	12.50	125.00
MAXIMUH DETECT (UG/KG)			
100			,
	12.50	12.50	125.00
NINIMUN DETECT (UG/KG)			
N N N N N N N N N N N N N N N N N N N	. '		
•			
		÷	• •
			•
		ł	
9			
	1-5"	1-5'5	<b>4</b> -5
8	้ผู้	Ň	2

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated. Printed: 07/14/94

B-19 AR302615

AROCL CR-1260 GANNA-CHLORDANE TOTAL PB 27.00	27.00 27.00 27.00 27.00 27.00 27.00	80 % % % % %	
		8	<b>:</b> 
1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sempling points.	elculate statistics : Numbe	er of sempling points.	
NC: Not calculated. Printed: 07/14/94			

TABLE B-5 OHIO RIVER SITE - MEVILLE TOUNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS SAMMARY SAMPLES SURFACE SOIL SEMINAL ATH FS

SEMIVOLATILES	•	•		:	•	2		•			
CONPOUND		ł	NINIMUN DETECT (UG/KG)	• • • • •	MAXIMUM- DETECT (UG/KG)	ARITH. HEAN (UG/KG)	GEOMETRIC MEAN (UG/KG)	UPPER 95% CONF. LIMIT (UG/KG)	FREG	FREQUENCY 10F	5
BENZO(A)ANTHRACENE			12	170.00	170.00	170.00	170.00	NC .	ï	-	
BENZO(A)PYRENE	• •	• 	v	90 <b>-</b> 95	66.00	66.00	66.00	2		÷	
BENZO(B)FLUORANTHENE	•	•	1	50.00	150.00	150.00	150.00	¥C	Ë	-	-
BENZO(G, H, I)PERYLENE	•		~	76.00	76.00	76.00	76.00	NC.	<b></b>		
CHRYSENE	•			8.2	75.00	75.00	75.00	2	÷	=	
DI-N-BUTYLPHTHALATE	· .			53.00	63.00	63.00	63.00	ÿ		÷	
FLUORANTHENE	•		3	200.00	200.00	200.00	200.00	ÿ	÷	<b></b>	<u>_</u>
INDENO(1,2,3-CD)PYRENE		•. . •		50°00	60.09	60.00	60.09		÷	1.	
PHEMANTHRENE				80.00	80.00	80.00		R	Ë	, <b>~</b> ,	
PYREME	· · ·		8	170.00	170.00	170.00	•	2	-	-	
TOTAL CARCINOGENIC PAN			S	521.00	521.00	521.00	521.00	Ж	<b>-</b>	<b></b>	
TOTAL B(A)P-TE	•	· ·	3	104.08	104.08	104.08	104.08		<b></b>	<b></b>	_
TOTAL NON-CARCINOGENIC PAN	•	· .	22	526.00	526.00	526.00	526.00	3	. #	<b></b>	_
TOTAL PAN	•	•	Ĩ	1047.00	1047.00	1047.00	1047.00		<b>;</b>	÷	_
			•	<i>.</i> .	•	•	•	•		•	•

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sumpling points. NC: Not calculated.

Printed: 07/14/94

B-21

TABLE B-5 DMID RIVER SITE - REVILLE TOWNSHIP, PA BSUMMARY SIATISISTICS FOR DETECTED COMPOUNDS SUMMARY SIATISISTICS FOR DETECTED COMPOUND BACKGROUND SAMPLES SURFACE SOIL 1,2-DICHLOROETHENE (1) 1,2-DICHLOROETHENE (1) 1,2-DICHLOROETHENE (1) 1,2-DICHLOROETHENE (1) 1,2-DICHLOROETHENE (1)
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

AR302618

1



. • .

.

## **B6 - COMBINED AREA GROUNDWATER**

July, 1994

TABLE B-6 CHIO RIVER SITE - MEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DEFECTED COMPOUNDS BACKGROUND SAMPLES GROUNDVATER IMORGANICS

FREQUENCY OF Ň ្ពុ Ň Ň ä ň Ň ÷... å ä ň 2 ä 68358.40 602.60 95.89 33.12 7.13 572.73 57.53 582.50 32716.81 1813.37 303.77 604.67 2,42 331149.40 58896.60 726777.00 23794.20 4066.13 26976.30 UPPER 95% CONF. LIMIT (UG/L) 6.37 32521.38 12335.44 21897.95 153.49 476.80 89516.48 26.60 6.50 91.64 154.27 56.90 7811.53 0.59 191.15 1199.85 56868.27 152.41 203130.50 GEOMETRIC MEAN (UG/L ) 21900.00 12735.00 96900.00 8350.00 200.50 168.20 7.55 165.50 169.00 56.90 0.65 519.00 28.65 1278.50 6.50 56900.00 97.30 218500.00 33000.00 ARITH. MEAN (UG/L ) 237.00 00 722 261.00 15900.00 6.60 58800.00 230.00 57.00 0.93 39.30 11.60 1720.00 130.00 238.00 38600.00 22200.00 134000.00 299000.00 11300-00 MAXIMUM DETECT (UG/L ) 9570.00 5400.00 07.66 314.00 11.60 64.60 56.80 140.00 59800.00 15.00 637.00 6.40 101.00 100.00 27400.00 0.37 21600.00 55000.00 38000.00 MINIMUM DETECT (UG/L ) MANGANESE NICKEL POTASSIUM BERYLLIUM MAGNESIUM COMPOUND CALCIUM CHROMIUM VANADIUM ALUMINUM COBALT ANTIMONY ARSENIC MERCURY SCO LUM BARIUM COPPER LEAD ZINC No

B-24

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

Printed: 07/14/94



## **B7 - BACK CHANNEL GROUNDWATER**



R:\PUBS\PROJECTS\4920003\906.COV

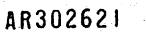





TABLE B-7 OHIO RIVER SITE - MEVILLE TOWNSHIP, PA SUMMARY STATISTICS FOR DETECTED COMPOUNDS BACK CHANNEL VELLS GROUNDVATER INORGANICS

FREQUENCY OF DETECTION ň ö ő ŝ ÷ ÿ ö ö ö ÷ ň ö <u>..</u> ö 5.16 3.96 458.14 35.41 144.93 24.19 7.41 128.96 6.0 -15.91 16.14 12.4 354671.87 210549.45 118671.13 42673.81 5676.95 44184.89 UPPER 95% CONF. LIMIT (UG/L ) 19.11 6.32 2.81 6.19 8.40 8.3 15.78 2.30 70.35 5466.10 31954.54 697.22 3.07 80881.78 2 3.32 3593.74 137686.45 GEOMETRIC MEAN (UG/L) 9.30 246.01 3.01 13.04 4.24 62.19 20.92 3.47 26.95 3.91 10.79 2.67 232855.56 01610.17 72227.78 19885.29 4218.89 228711.11 ARITH. MEAN (UG/L ) 86300.00 7.10 55.20 7020.00 217.00 903.00 82.50 8.30 27.20 17.70 1.8 217.00 34.00 190000.00 501000.00 11.80 424000.00 582000.00 MAXIMUM DETECT (UG/L ) 25500.00 2.10 11.80 7.10 42.50 22.30 27.00 20.20 19.2 52.00 3.60 18.40 1870.00 16700-00 1.0 15.10 5820.00 17.70 NINIMUN DETECT (UG/L ) AGNESIUM MANGANESE POTASSIUM CHROMIUM THALLIUM COMPOUND MUMIMUN **WITIMONY** ARSENIC CALCIUM CYANIDE BARIUM NUL OOS COBALT SILVER COPPER NICKEL ZINC Đ

B-26

Printed: 07/14/94

1. Frequency of Detection = Number detected : Number used to calculate statistics : Number of sampling points. NC: Not calculated.

2.4-cinterint/Pleada       1.00       15.00       5.55       4.42       8.46       51 10: 10         2.4-cinterint/Pleada       3.00       3.00       3.00       3.00       3.00       5.63       5.10: 10         4-erint/Pleada       3.00       1.00       3.00       12.00       5.63       5.13: 10: 10         4-erint/Pleada       3.00       12.00       5.63       5.42       8.46: 10         4-erint/Pleada       3.00       12.00       5.63       5.43       5.10: 10         4-erint/Pleada       3.00       12.00       5.63       5.44       5.42       5.40         4-erint/Pleada       3.00       12.00       5.63       5.43       5.40: 10       10: 10         4-erint/Pleada       4.00       5.64       4.00       5.64       5.44       5.44         4-erint/Pleada       4.00       5.44       5.44       5.44       5.44       5.44         4-erint/Pleada       4.00       2.00       2.00       5.45       5.42       5.44       10         4-erint/Pleada       5.44       5.44       5.44       5.44       5.44       5.44       5.44       5.44         4-erint/Pleada       5.44       5.44 <td< th=""><th>of Detection = Number detected</th><th>ARITH- GEOMETRIC HEAN NEAN (UG/L ) (UG/L )</th><th>LPPER 95% COMF. LIMIT (UG/L)</th><th>FREQUENCY OF</th></td<>	of Detection = Number detected	ARITH- GEOMETRIC HEAN NEAN (UG/L ) (UG/L )	LPPER 95% COMF. LIMIT (UG/L)	FREQUENCY OF
<b>16. B i t t t t t t t t t t</b>	of Detection = Number detected	5.95 5.95 5.95		5: 10: 4: 10: 5: 10:
dd brieftion = Mundber det to cateulate statistics : Mundber det	ed. Final State			N N
d. Batection a Number detected : kumber used to calculate statistics : kumber of	ed. Final State			
Kurber of Kurber used to calculate statistics : kurber of	ed. * Kumber detected			
Petection = Number detected : Number used to calculate statistics : Number of	Petection = Number detected			
betection = Number detected : Number used to calculate statistics : Number of	Detection = Number detected			
Detection = Number detected : Number used to calculate statistics : Number of	Detection = Number detected			
ed. Betection = Number detected : Number of ed.	Detection = Number detected			
Detection = Number detected : Number used to calculate statistics : Number of ed.	betection = Number detected			
Detection = Number detected : Number used to calculate statistics : Number of ed.	betection = Number detected ed.			
ted: 07/14/94	ted: 07/14/94	tics : Number of	sampling points.	
				•



COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES P.O. BOX 8552 Harrisburg, PA 17105-8552 December 16, 1993

717/787=3444

- F.Ji

Bureau of Forestry

Mr. Kenneth Battanyi ENER Consulting and Engineering 1001 Liberty Avenue Pittsburgh, PA 15222

Dear Mr. Battanyi:

Re: PNDI Review of Neville Taland and adjacent Ohio River Area, Allegheny County, Pennsylvania.

Your request of December 9, to review an area of the Ohio River including Neville Island for the presence of natural resources of special concern was processed using the Pennsylvania Natural Diversity Inventory (FNDI) ⁴ ~ stion system.

Hoxostoma C: e, the River Redhorse, was found in this reach of the Ohio Rive future listing by ennsylvania Fish and Boat Commission. In addition, specimen lists of the Carnegie Huseum show that several freshwater mussel species of special concern were collected in this area before 1919 but the continued presence of these bivalves at this location has not been recently confirmed. These species are listed in a separate enclosure.

Legal authority for management of fish and aquatic organisms resides with the Pennsylvania Fish and Boat Commission (PFBC). Please contact Andy Shiels of the PFBC at 814/359-5113 for recommendations concerning any measures necessary to protect aquatic biological resources at this location.

PNDI is a site specific information system which describes significant natural resources of Pennsylvania. FNDI includes data descriptive of plant and animal species of special concern, exemplary natural communities and unique geological features. This response represents the most up-to-date summary of the PNDI data files.

C-5

to) m

ax seme DALL S PHURS 61946 **LACK** AXE 60 ei t

AR302624

An Equal Opportunity/Affirmative Action Employer

Recycled Paper

Kenneth Battanyi

e.

December 16, 1993

Please phone our office if you have any questions regarding this response or the PNDI information system.

2

Sincerely,

Edward T. Dix Botanist Forest Advisory Services

Enclosure

cc: Andy Shiels, PFBC Gregory Grabowicz, PGC Charles Bior, PNDI-West Charles Kulp, USFWS John Arway, PFBC

## FEDERALLY LISTED SPECIES THAT NO LONGER OCCUR (OR MAY NO LONGER OCCUR*) IN PENNSYLVANIA

COMMON NAME	SCIENTIFIC NAME	STATUS**	FORMER DISTRIBUTION
MAMMALS			
Delmarva Peninsula fox squirrel	Sciurus niger cinereus	E	mature forests of southeastern PA (Delaware and Chester Co.)
Eastern cougar	Felis concolor couguar	E	state-wide
Grey wolf	Canis lupus	E	state-wide
MOLLUSKS			
Dwarf wedge mussel*	Alasmidonta heterodon	E	Delaware River drainage
Fanshell*	Cyprogenia stegaria	Ε	Ohio River drainage
Orange pimpleback*	Plethobasus Striatus	E	Ohio River drainage
Pink mucket pearly mussel*	Lampsilis abrupta	Ε	Ohio River drainage
Ring pink mussel*	Obovaria retusa	E	Ohio River drainage
Rough pigtoe*	Pleurobema plenum	E	Ohio River drainage
INSECTS			
American burying beetle	Nicrophorus americanus	Ē	state-wide
Kamer blue butterfly	Lycaeides melissa samuelis	E	pine barrens, oak savannas (wild lupine habitat) (Wayne Co.)
Northeastern beach tiger beetle	Cicindela dorsalis dorsalis	T,	along large rivers in southeastern PA
PLANTS			
Eastern prairie fringed orchid	Platanthera leucophaea	Т	wet prairies, bogs (Crawford Co.)
Sensitive joint-vetch	Aeschynomene virginica	T	freshwater tidal marshes of Delawar river (Delaware and Philadelphia Co.)
Virginia spiraea	Spiraea virginiana	т	along Youghiogheny River (Fayette Co.)
Smooth coneflower	Echinacea laevigata	E	serpentine barrens (Lancaster Co.)

Remnant populations of some of these species (indicated with an *) may still occur in Pennsylvania, however, there have been no confirmed sightings of these species for over 70 years.

AR302626

E = Endangered, T = Threatened

The following is a <u>partial</u> list of additional species that no longer occur in Pennsylvania: moose, bison, lynx, wolverine, passenger pigeon, Bachman's sparrow, common tern, lark sparrow, tiger salamander, mud sunfish, longiaw cisco, lake whitefish, butterfly mussel, precious underwing moth, American barberry, small white lady's-slipper, etc. etc.

C-3

#### FEDERALLY LISTED SPECIES IN PENNSYLVANIA DISTRIBUTION STATUS' COMMON NAME SCIENTIFIC NAME FISHES Ē Delaware River and other Atlantic coastal Acipenser brevirostrum Shortnose sturgeon" waters REPTILES & AMPHIBIANS None BIRDS Baid eagle Haliaeetus leucocephalus Ē Entire state. Recent nesting in Butler, Crawford, Dauphin, Lancaster, Pike, Tioga, York Counties Peregrine falcon (American) Falco peregrinus anatum Ë Entire state. Recent nesting in and around Philadelphia and Pittsburgh Peregrine falcon (Arctic) Faico pareorinus tundrius T Entire state-migratory E Presque Isle-no current nesting Piping plover Charadrius melodus MAMMALS Indiana bat Ē Entire state Mvotis sodalis MOLLUSKS E French Creek and Alleoheny River Clubshell mussel Pleuroberna clava watersheds; Clarion, Crawford, Erie, Forest. Mercer and Venanco Counties E French Creek and Allegheny River Northern riffleshell Epioblasma torulosa watersheds: Crawford, Erie, Forest, rangiana Venango and Warren Counties PLANTS Current - Blair, Centre, Clinton, E Northeastern bulrush Scirpus ancistrochaetus Cumberland, Dauphin, Franklin, Huntingdon,

E = Endangered, T = Threatened

Small-whorled pogonia

7

Shortnose sturgeon is under the jurisdiction of the National Marine Fisheries Service

Isotria medeoloides

PREPARED BY THE U.S. FISH AND WILDLIFE SERVICE 315 S. ALLEN ST., SUITE 322, STATE COLLEGE, PA 16801

AR302627

E

Lackawanna, Lehigh, Monroe, and Union Counties. Historic - Northampton County Current - Centre and Venango Counties.

Historic - Berks, Chester, Greene, Monroe, Montgomery, Philadelphia Counties



# United States Department of the Interior



FISH AND WILDLIFF SERVICE Suite 322 315 South Allen Street State College, Pennsylvania 16801

November 30, 1993

Mr. Kenneth Battyanyi RI Task Manager ENSR Consulting and Engineering Liberty Center, 9th Floor 1001 Liberty Avenue Pittsburgh, PA 15222

Dear Mr. Battyanyi:

This responds to your letter of November 29, 1993 requesting information about reverally listed or proposed endangered and threatened species within the area affected by the completion of a remedial investigation report on the Ohio River Superfund site located in Allegheny County, Pennsylvania.

Except for occasional transient species, no federally listed or proposed threatened or endangered species under our jurisdiction are known to exist in the project impact area. Therefore, no Biological Assessment or further Section 7 consumation under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) is required with the Fish and Wildlife Service. Should project plans change, or if additional information on listed or proposed species becomes available, this determination may be reconsidered. A compilation of federally listed endangered and threatened species in Pennsylvania is enclosed for your information.

This response relates only to endangered or threatened species under our jurisdiction based on an office review of the proposed project's location. No field inspection of the project area has been conducted by this office. Consequently, this letter is not to be construed as addressing other Service concerns under the Fish and Wildlife Coordination Act or other legislation.

### Federal Candidate and State-listed Species

Candidate species are species under consideration by the Service for possible inclusion on the Federal List of Endangered and Threatened Wildlife and Plants. Because many of these species are known to have suffered population declines, the Service encourages federal agencies and other planners to consider candidate species when planning and implementing their projects.

The Pennsylvania Natural Diversity Inventory (PNDI) is maintained by the Pennsylvania Department of Environmental Resources, The Nature Conservancy and the Western Pennsylvania Conservancy. The Pennsylvania Fish and Wildlife Database is maintained by the Pennsylvania Game Commission. These databases contain the most up-to-date information about candidate and State-listed species in Pennsylvania. Requests for a PNDI review for the presence of candidate and State-listed species, as well as other natural resources of special concern, should be directed to:

C-1

Pennsylvania Department of Environmental Resources Bureau of Forestry Division of Forest Advisory Services 400 Market Street (MSSOB), 3rd Floor P.O. Box 8552 Harrisburg, PA 17105-8552

Requests for a review of the Pennsylvania Fish and Wildlife Database should be directed to:

Pennsylvania Game Commission Bureau of Land Management Division of Wildlife Data Base 2001 Elmerton Avenue Harrisburg, PA 17110-9797

Should the data search reveal the presence of any candidate species on the site, the Service should be contacted to ensure that these species are not adversely affected by project activities.

Requests for information regarding State-listed endangered or threatened species should be directed to the Pennsylvania Game Commission (birds and mammals), the Pennsylvania Fish and Boat Commission (fish, reptiles, and amphibians), and the Pennsylvania Department of Environmental Resources (plants).

Please contact Philip Edmunds of my staff at 814-234-4090 if you have any questions or require further assistance regarding endangered, threatened, or candidate appends.

C-2

AR302629

Sincerely,

Phails 7

Charles J. Kulp Supervisor

Enclosure



March, 1994

## APPENDIX C - THREATENED AND ENDANGERED SPECIES

R:\PUBS\PROJECTS\4920003\456.COV

### Pennsylvania Fish and Wildlife Data Base LIST B: Potential Endangered, Threatened, and Special Concern Species (Includes Accidental and Migrant Species) ** Ohio River Site - Neville Island ** Allegheny County 05 JAN 1994

Note: The purpose of the following list is to identify endangered, threatened, and special concern species which may potentially occur within a designated area. This list includes species which may exist on your project area as well as migrating and accidental species. This information is based on records of these animals inhabiting specific habitat types within Allegheny County.

Status	• • • • • • • • • • • •		 • • • • • • •	No. of
		•		Species Listed
PA / Fed E PA Endange	red			2 5
Fed Endang PA Threate Candidate	ned			3 6 26
	ies Listed:			42

AR302631

C-11

	,	
Pennsyl LIST B: Potential Endar	vania Fish and Wildlife Data ngered, Threatened, and Spec	Base ial Concern Species
(Include:	s Accidental and Migrant Spec	cies)
	D River Site - Neville Island Allegheny County	
	05 JAN 1994	<b>`</b>
Common Name	. Scientific Name	. Status
Eagle, Bald	Haliaeetus leucocephalus	PA / Fed Endangered
Falcon, Peregrine	Falco peregrinus	PA / Fed Endangered
Massasauga	Sistrurus catenatus	PA Endangered
Snake, Kirtland's Osprey	Clonophis kirtlandii Pandion haliaetus	PA Endangered PA Endangered
Cwl, Short-eared	Asio flammeus	PA Endangered
Tern, Black	Chlidonias niger	PA Endangered
Mussel, Pink Mucket Pearly	Lampsilis abrupta	Fed Endangered
Pigtoe, Rough Pimpleback, Orange	Pleurobema plenum Plethobasus striatus	Fed Endangered Fed Endangered
Ohio	Ichthyomyzon bdellium	PA Threatened
Snake, Rough Green Bittern, American	Opheodrys aestivus Botaurus lentiginosus	PA Threatened PA Threatened
Egret, Great	Casmerodius albus egretta	
Flycatcher, Yellow-bellied	Empidonax flaviventris	PA Threatened
Sandpiper, Upland	Bartramia longicauda	PA Threatened
••••••••••••••••••••••••••••••••••••••		
Harrier, Northern Owl, Common Barn	Circus cyaneus Tyto alba	Candidate - At Risk Candidate - At Risk
Snipe, Common	Gallinago gallinago	Candidate - At Risk
Sparrow, Henslow's	Ammodramus henslowii	Candidate - At Risk
•		
Coot, American	Fulica americana	Candidate - Rare
Goshawk, Northern Grebe, Pied-billed	Accipiter gentilis Podilymbus podiceps	Candidate - Rare Candidate - Rare
Grosbeak, Blue	Guiraca caerulea	Candidate - Rare
Tanager, Summer	Piranga rubra	Candidate - Rare
Teal, Green-winged Thrush, Swainson's	Anas crecca Catharus ustulatus	Candidate - Rare Candidate - Rare
Bat, Silver-haired	Lasionycteris noctivagans	Candidate - Rare
Debubling North and	Colinus mindiaianus	Candidate - Undeterm
Bobwhite, Northern Crossbill, Red	Colinus virginianus Loxia curvirostra	Candidate - Undeterm
	C-12 AR302	DJC
	na sente de la construir de la Construir de la construir de la	