R-585-5-6-9 SITE INSPECTION OF OCCIDENTAL CHEMICAL PREPARED UNDER

TDD NOS. F3-8509-06/F3-8611-13 **EPA NO. PA-588** CONTRACT NO. 68-01-7346

FOR THE

HAZARDOUS SITE CONTROL DIVISION U.S. ENVIRONMENTAL PROTECTION AGENCY

NOVEMBER 17, 1986

NUS CORPORATION SUPERFUND DIVISION

SUBMITTED BY

REVIEWED BY

APPROVED BY

ENVIRON. ENGINEER

WILLIAM WENTWORTH ASSISTANT MANAGER

GARTH GLENN MANAGER, FIT III

ARI00500

TABLE OF CONTENTS

SECTION		PAGE
1.0 1.1 1.2 1.3	INTRODUCTION AUTHORIZATION SCOPE OF WORK SUMMARY	1-1 1-1 1-1 1-1
2.0 2.1 2.2 2.3 2.4 2.5 2.6	THE SITE LOCATION SITE LAYOUT OWNERSHIP HISTORY SITE USE HISTORY PERMIT AND REGULATORY ACTION HISTORY REMEDIAL ACTION TO DATE	2-1 2-1 2-1 2-2 2-3 2-5 2-5
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	ENVIRONMENTAL SETTING WATER SUPPLY SURFACE WATERS GEOLOGY AND SOILS GROUNDWATERS CLIMATE AND METEOROLOGY LAND USE POPULATION DISTRIBUTION CRITICAL ENVIRONMENTS REFERENCES	3-1 3-2 3-2 3-3 3-4 3-5 3-5 3-5 3-6
4.0	WASTE TYPES AND QUANTITIES	4-1
5.0 5.1 5.2 5.2.1 5.2.2 5.3 5.4 5.5 5.6	FIELD TRIP REPORT SUMMARY PERSONS CONTACTED PRIOR TO FIELD TRIP AT THE SITE SAMPLE LOG SITE OBSERVATIONS PHOTOGRAPH LOG EPA SITE INSPECTION FORM	5-1 5-1 5-2 5-2 5-2 5-3 5-4
6.0 6.1 6.2 6.2.1 6.2.2 6.2.1 6.2.2	LABORATORY DATA SAMPLE DATA SUMMARY QUALITY ASSURANCE REVIEW ORGANIC (4992) INORGANIC (4992) ORGANIC (5053) INORGANIC (5053)	6-1 6-1 6-2 6-2 6-6 6-9 6-11
7.0 7.1 7.2 7.3	TOXICOLOGICAL EVALUATION SUMMARY SUPPORT DATA RISK CHARACTERIZATION	7-1 7-1 7-2 7-6

APPENDICES			
Α	1.0 C	OPY OF TDD	A-1
В	1.1 SI 1.2 SI 1.3 SA	IAPS AND SKETCHES ITE LOCATION MAP ITE SKETCH AMPLE LOCATION MAP HOTOGRAPH LOCATION MAP	B-1
С		UALITY ASSURANCE SUPPORT DOCUMENTATION	C-1
D	1.0 L	ABORATORY DATA SHEETS	D-1
E		RELIMINARY ASSESSMENT, PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES (1980)	E-1
F	1.0 C	DN-SITE WELL LOGS	F-1
G	1.1 W 1.2 T	WATER SUPPLY INFORMATION WATER SUPPLY MAP TELECONS WITH POTTSTOWN BOROUGH WATER WORKS CHESTER COUNTY WATER SYSTEMS INVENTORY (1985) WATER SERVICE PLAN, MONTGOMERY COUNTY, PENNSYLVANIA (1979)	G-1

SECTION 1

1.0 INTRODUCTION

1.1 Authorization

NUS Corporation performed this work under Environmental Protection Agency Contract No. 68-01-7346. This specific report was prepared in accordance with Technical Directive Document Nos. F3-8509-06/F3-8611-13 for the Occidental Chemical Corporation site located in Lower Pottsgrove Township, Montgomery County, Pennsylvania.

1.2 Scope of Work

NUS FIT III was tasked to conduct a site inspection with sampling of the subject site.

1.3 Summary

The Occidental Chemical Corporation site (formerly owned by the Firestone Tire and Rubber Company (FTR)) is situated within a meander loop of the Schuylkill River adjacent to the southeast borough boundary of the city of Pottstown, Pennsylvania. The 250-acre plant occupies an entire meander loop and is therefore bordered on three sides by the river. The disposal site consists of an inactive 17-acre landfill, 4 inactive, unlined seepage lagoons, and 2 active, lined lagoons. The entire disposal site was constructed within the 100-year flood plain.

The inactive landfill was begun as an open dump by the original owner and operator, the Jacob's Aircraft and Engine Company (JAEC). JAEC manufactured aircraft engines at this location from 1942 until 1945. During this period, JAEC dumped the cutting oils and metal filings generated from their operation at the inactive landfill site.

In 1945, FTR purchased the property and began operations as a tire manufacturing facility and a chemical plant, producing polyvinyl chloride (PVC). FTR operated the now inactive landfill from 1945 until 1970 as an open dump, disposing of tires, rubber, refinery wastes, pigments, zinc oxide, sulfur dioxide scrubber wastes, and polyvinyl chloride (PVC) sludge resins. In 1970, the open dump was converted to a landfill operation. According to the preliminary assessment prepared by Mr. Thomas Sheehan, of the Pennsylvania Department of Environmental Resources (PA DER), the landfill received an average of 33 tons per day of refuse, including 4.6 tons per day of scrap PVC resins (see appendix E). During this period, the seepage lagoons received the plant effluent. The solids which settled out, primarily PVC sludge, were periodically dredged from the seepage lagoons and disposed of in the landfill.

In 1974, the use of the four unlined seepage lagoons was halted by the Pennsylvania Department of Environmental Resources Bureau of Water Quality Management. The two lined lagoons were then constructed to receive and pretreat the plant effluent. This effluent was then discharged to the Pottstown Sanitary System for complete treatment.

The volume of materials being landfilled by FTR in 1971 prompted the company to seek permission to expand the landfill. The state of Pennsylvania informed the company that some type of leachate control system would be necessary prior to approval of the new landfill. FTR determined that it would be impractical to line the existing landfill and more expensive to line the proposed landfill than to manipulate groundwater flow in the area as a means of leachate control. Therefore, FTR hired Martin and Martin, Incorporated to conduct a detailed hydrogeologic study at the site. This study included the drilling of 4 deep wells into bedrock and 22 monitoring wells adjacent to the 2 landfills and the 6 lagoons (see appendix B, figure 2, and appendix F).

The results of their hydrogeologic study indicated a recharge connection between the shallow aquifer and the bedrock aquifer. In addition, on-site monitoring wells showed the presence of iron (185 ppm). The continuous pumping of the nine on-site process water wells succeeded in producing a cone of depression which controls the migration of contaminants into the deep aquifer and the Schuylkill River. Therefore, the initiation of a groundwater recovery system to control the migration of contaminants was accomplished by pumping the nine process water wells used during production. Approval for the expansion of the landfill was granted in 1973. Monitoring well nos. 5, 6, 7, and 8 are sampled quarterly. The available well logs for monitoring well nos. 1 to 26, and process water well nos. 1 to 10, can be found in appendix F.

During the summer of 1980, FTR closed the tire manufacturing portion of the facility and, in December of that same year, sold the entire plant to Hooker Chemical, Incorporated. Shortly, thereafter, Hooker Chemical, Incorporated became, in name only, the Occidental Chemical Corporation. Since 1980, Occidental Chemical has continued to manufacture PVC, utilizing the same procedures and techniques used by FTR.

In July 1984, a trichloroethylene (TCE) spill occurred in the vicinity of process water well no. 8. High levels of TCE were detected in well no. 8, with a plume extending toward process water well nos. 5 and 10. Occidental Chemical excavated the contaminated soil and now periodically tests these three wells.

In 1985, Occidental Chemical proceeded to close the inactive landfill. The closure plan, designed by Betz, Converse, and Murdock, Incorporated, was approved by PA DER and was underway at the time of the FIT site inspection.

Contain rants

Lintain rants

Lintai

The site inspection, conducted between September 26, 1985 and October 3, 1985, concentrated on the potential contamination of groundwater in the vicinity of the site. The major contaminants detected include vinyl chloride, trichloroethene, and trans-1,2-dichloroethene. The analytical results and quality assurance review of samples collected during this investigation can be found in section 6.0. The toxicological evaluation of the potential impact on human health and the environment is presented in section 7.0 of this report.

SECTION 2

2.0 THE SITE

2.1 Location

The Occidental Chemical Corporation facility is located within a meander loop of the Schuylkill River approximately 2,000 feet southeast of the borough boundary of Pottstown, Pennsylvania. The site itself is situated behind and to the south of the plant, on the flood plain of the Schuylkill River. The site location can be seen more accurately on the United States Geological Survey (U.S.G.S.) 7.5 minute series, Phoenixville and Pottstown, Pennsylvania quandrangle maps (see appendix B, figure 1). The site coordinates are 40° 13′ 34″ north latitude and 75° 36′ 14″ west longitude.

2.2 Site Layout

The Occidental Chemical Corporation site consists of an old, 17-acre, inactive landfill; a new, 7-acre active landfill; 4 inactive, unlined seepage lagoons; and 2 active, lined lagoons. All are constructed on top of the flood plain of the Schuylkill River. The layout of these features of the site are depicted in appendix B, figure 2.

The inactive landfill, which includes a sulfite dump area, lies to the south of the plant. This landfill is approximately 1,700 feet long and ranges from 350 to 650 feet wide. The landfill rises 30 feet above the flood plain.

The active landfill lies to the east of the inactive landfill and is much smaller in size. The active landfill area, including the sedimentation pond, is approximately 1,000 feet long and 300 feet wide. The current fill rises 30 feet above the flood plain, yet covers only 1/3 of the available acreage.

The four inactive, unlined seepage lagoons lie adjacent to and northeast of the active landfill. The inactive lagoons cover a total area of approximately 3 acres (370 feet square), with each lagoon measuring an estimated 150 feet per side. A five-foot high dike surrounds the lagoons and separates them from one another. These lagoons, when in use, operated in series, with the northernmost lagoon receiving the plant effluent. When the first lagoon reached its holding capacity, an overflow swale, which breached the dike, discharged the effluent in a clockwise direction to the second lagoon. In a similar fashion, the second lagoon discharged to the third and the third to the fourth. The fourth lagoon was a closed basin that received effluent only when the preceeding lagoons reached capacity. The overflow swales maintained a two-foot freeboard, allowing the time necessary for solids to settle out and the aqueous portion of the effluent to seep through the bottom of the lagoons.

The two lined lagoons cover approximately three acres and lie adjacent to and north of the seepage lagoons. The active lagoons are 160 feet wide and 350 feet long and are lined with an impermeable rubber liner. A free board of two feet (minimum) is maintained in these lagoons.

The Occidental Chemical Corporation currently maintains 25 monitoring wells and 9 process wells at the Pottstown plant. The monitoring wells have been located, predominantly, on the flood plain between the disposal sites and the Schuylkill River. The process wells have been more appropriately located near plant operations. The disposal sites lie within 300 feet of the Schuylkill River. The 100-year frequency flood raises the river stage to the point where it floods the bottom of the landfill. This phenomenon has occurred several times in recent years (see appendix B, figures 1 and 2, and appendix F).

2.3 Ownership History

The Occidental Chemical Corporation site was originally owned and operated in 1942 by JAEC. JAEC operated a machine shop for the production of aircraft engines. Various cutting oils and metal filings were generated from this process. These waste materials were dumped into the now inactive landfill.

In 1945, FTR purchased the property and began operations as a tire manufacturing plant and a chemical plant. The plant produced plastic resins and tires (i.e., PVC). In December 1980, FTR, having closed the tire manufacturing plant six months earlier, sold the entire facility to Hooker Chemical, Incorporated. Soon thereafter, Hooker Chemical, Incorporated changed their name to Occidental Chemical Corporation, the name by which it is known today. The Occidental Chemical Corporation continues to own and operate the Pottstown facility to date.

2.4 Site Use History

The Occidental Chemical Corporation facility at Pottstown was originally used by JAEC for the production of aircraft engines. During this period (1942 until 1945), JAEC dumped cutting oils and metal filings at the old landfill site.

In 1945, FTR purchased the property and operated a tire manufacturing plant and a chemical plant that produced plastic resins (i.e., PVC). FTR landfilled tires, rubber, refinery wastes, pigments, zinc oxide, sulfur dioxide scrubber wastes, and PVC sludge resins. According to the preliminary assessment prepared for this site by Mr. Thomas Sheehan, of PA DER, an average of 33 tons of refuse were landfilled per day. The majority of this waste was factory trash and paper (see appendix E).

However, approximately 4.6 tons per day of PVC scrap resins were also deposited in the landfill. In addition, the PVC sludge, which accumulated in the four inactive lagoons, was periodically dredged and disposed of in the landfill. From 1945 until 1970, the old landfill site was operated as an open dump. In 1970, it was converted to a landfill operation. In 1973, FTR received permission to landfill sulfur dioxide, scrubber wastes, and fly ash at this site. In 1974, the PA DER Bureau of Water Quality Management ordered the use of the four unlined lagoons to be discontinued. The two lined lagoons were constructed during this same year.

Due to the volume of waste materials being landfilled, FTR sought permission to expand their landfill in 1971. The state of Pennsylvania informed the company that some type of a leachate control system would be necessary for the entire site prior to approval of the new landfill. FTR determined that it would be impractical to line the existing landfill and more expensive to line the proposed landfill than to manipulate groundwater flow in the area as a means to leachate control. Therefore, FTR hired Martin and Martin, Incorporated to conduct a detailed hydrogeologic study at the site. This study resulted in the initiation of a groundwater recovery system, via the pumping of the nine process water wells. Approval for the expansion of the landfill was granted in 1973 by PA DER and an additional seven acres were put into use, with the stipulation that the process water wells be pumped indefinitely.

In December 1980, six months following the closure of the tire manufacturing plant, FTR sold the facility to Occidental Chemical Corporation (formerly Hooker Chemical, Incorporated). Occidental Chemical continues to operate only the PVC manufacturing portion of the facility. The solids in the effluent are filtered out, mixed with fly ash, and disposed of in the active landfill. The resulting effluent receives some modest aeration and pretreatment and is discharged into the borough sanitary system for complete treatment. The company of Betz, Converse, and Murdock designed a closure plan for the inactive landfill. The plan has been approved by PA DER and is nearing completion at this time (see section 2.6).

The Occidental Chemical Corporation experienced a TCE spill (quantity unknown) in July 1984, in the vicinity of process water well no. 8. High levels of TCE were observed in well no. 8; the plume extended toward process water well nos. 5 and 10. Occidental Chemical Corporation agreed to drill corings, excavate the contaminated soil, pump well nos. 5, 8, and 10, and test the wells periodically. The company is phasing out the use of TCE at this facility.

Occidental Chemical Corporation continues to pump their process wells, as stipulated by PA DER in their approval of the new landfill. In light of the TCE spill and the resulting plume, process well nos. 5, 8, and 10 are dedicated to continuous pumping. The remaining process wells are pumped on a rotating basis. At any given time, one well is down for services or repairs.

2.5 Permit and Regulatory Action History

According to the PA DER preliminary assessment, the Occidental Chemical Corporation operates under two permits. NPDES permit no. PA 0010944 was granted for the effluent outfall to the borough sanitary sewer. Pennsylvania Solid Waste Permit No. 300001 was granted for the on-site industrial landfill.

To date, no known regulatory action has been taken against the Occidental Chemical Corporation site. Apparently, all regulatory requests made by PA DER have been complied with.

2.6 Remedial Action To Date

In 1974, FTR sought to expand their on-site landfill. The state of Pennsylvania informed the company that some type of a leachate control system would be necessary prior to approval of the new landfill. FTR determined that it would be impractical to line the existing landfill and more expensive to line the proposed landfill than to manipulate groundwater flow in the area as a means to leachate control. Therefore, FTR hired Martin and Martin, Incorporated to conduct a detailed hydrogeologic study at the site. This study resulted in the initiation of a groundwater recovery system. The study included the drilling of 4 deep wells into bedrock and 22 monitoring wells adjacent to the 2 landfills and the 6 lagoons.

The results of the hydrogeologic study indicated a recharge connection between the shallow aquifer and the bedrock aquifer. In addition, on-site monitoring wells showed the presence of iron (185 ppm). The continuous pumping of the nine on-site process water wells succeeded in producing a cone of depression, which prevents the migration of contaminants into the deep aquifer and the Schuylkill River. Well nos. 5, 6, 7, and 8 are sampled quarterly for pH, akalinity, iron, sulfates, total chlorides, biological oxygen demand (BOD) 5 day, and chemical oxygen demand (COD). The available well logs for monitoring well nos. 1 through 25 and process water well nos. 1 through 10 can be found in appendix F. Monitoring well nos. 14 and 24 are presently inoperable. These wells are to be redrilled and a new well, no. 27, will be installed near the old landfill.

Betz, Converse, and Murdock designed a closure plan for the inactive landfill. The plan was approved by PA DER and, in 1985, the old landfill was completely closed out. This closure plan involved the regrading of side slopes, complete coverage with puncture-resistant fabric, complete coverage with an impermeable butyl rubber cover, two feet of cover material, one foot of top soil, and seed. In addition, erosion control barriers have been installed along the entire perimeter of both the active and inactive landfills.

The Occidental Chemical Corporation experienced a TCE spill in July 1984, in the vicinity of process water well no. 8. High levels of TCE were observed in well no. 8; the plume extended toward process water well nos. 5 and 10. Occidental Chemical Corporation agreed to drill corings, excavate the contaminated soil, pump well nos. 5, 8, and 10, and test the wells periodically. The company is phasing out the use of TCE at this facility.

SECTION 3

3.0 ENVIRONMENTAL SETTING

3.1 Water Supply

There are two municipal water supply systems located within three miles of the Occidental Chemical Corporation site. They are the Pottstown Borough Water Works and the Citizen's Home Utility Water Company.

The Pottstown Borough Water Works draws its water from the Schuylkill River via three surface water intakes located near the town of Stowe, Pennsylvania. These intakes lie approximately five miles upstream from the site. This system supplies water to an estimated 10,000 customers within a service area which includes the towns of Pottstown, Glasgow, Stowe, South Pottstown, Pottstown Landing, Kenilworth, Sanatoga, and the Occidental Chemical plant itself (see appendix G), 1,2,3

The Citizen's Home Utility Water Company utilizes four sources for their water supply. This system draws water from three wells and a surface water intake to supply water to the towns of Spring City and Royersford, Pennsylvania. One of these sources, a well, is located between Parker Ford and Pennhurst, Pennsylvania, 2.7 miles southwest of the site. The remaining three sources lie outside the three-mile radius. Water from the well is mixed with water from all other sources and distributed throughout the system. The Citizen's Home Utility Water Company system serves 7,632 persons who reside outside the 3-mile radius of the Occidental Chemical Corporation site.4

The balance of the three-mile radius utilizes private wells. The number of people using private wells is estimated to be 6,890 persons. 1,4 The nearest well is 1,100 feet west of the site. 5

3.2 Surface Waters

The Occidental Chemical Corporation site is situated within a meander loop on the 100-year flood plain of the Schuylkill River. The disposal sites lie an estimated 300 feet from the river at its closest point. The Schuylkill River, utilized for both a drinking water source and a recreational resource, flows in a southeastwardly direction through the city of Philadelphia, Pennsylvania, eventually converging with the Delaware River. There are no surface water intakes for municipal drinking water supplies within three miles of the site. 1,4

3.3 Geology and Soils

Lying within the Triassic Lowlands Physiographic Province, the Occidental Chemical site (including the lagoon and landfill area) is constructed within flood plain alluvial deposits. Beneath this cover of consolidated material, sedimentary formations of the Newark Group, specifically the Brunswick and Stockton Formations, are mapped.

The Brunswick Formation has been mapped as the bedrock type located beneath the site. Composed of fine-grained rocks, including reddish-brown shale, siltstone, and mudstone, thin beds of green and brown shale may be encountered locally. Near the base of the formation, a tough, thick-bedded red argillite is found, interbedded with the dark gray argillite of the Lockatong Formation. The total thickness of the Brunswick is estimated to be 16,000 feet near Pottstown, Pennsylvania. 5,6,7

Due to the mode of deposition, lateral changes in lithology take place within the formation; lithologies of the Brunswick have been emplaced in a series of overlapping and lens-shaped beds, which are discontinuous in all directions. However, individual lenses may extend for several thousand feet along strike. Bedding generally possesses an approximate dip of 20 degrees to the north and northwest. 5,6

Joint—systems have been developed in many of the beds within the Brunswick Formation. These orientations have been identified; all are nearly vertical. An average distance of six inches between joints is reported. Two interbeds of the Lockatong Formation traverse the plant site. Lying stratigraphically below the Brunswick, the Lockatong consists of a medium to dark gray argillite (very dense shale and mud stone) interbedded with thin beds of gray to black shale, siltstone, and mud stone. Bedding is principally massive within the formation, dipping an average of 20 degrees to the northwest. Fractures that exist in the Lockatong are narrower and more widely spaced than those found in the Brunswick. 5,6

Overlying the above formations is a cover of alluvium generated by the Schuylkill River. Consisting of thin layers of silt, sand, and gravel, these sediments are reported to be up to 25 feet thick on site.⁷

Soil series identified on site included two types of "Made Land" (MeB and Mb) and the Rowland silt loam (Ru). Test pits on site indicate that the minimum thickness of the soil, to horizons containing 60 percent or more coarse fragments, is 120 inches. Percolation rates, as reported in the <u>Soil Survey of Montgomery County, Pennsylvania</u>, are indicated as variable for those areas indicated as Made Land and range from 4.44 x 10⁻⁴ to 4.44 x 10⁻³ centimeters per second (.63 to 6.3 inches per hour) for the Rauland silt loam.⁷

3.4 Groundwaters

The numerous monitoring and pumping (process) wells located on site have allowed for an understanding of the local groundwater regime. As a result of pump testing, two distinct, yet interdependent, hydrogeologic settings are better understood.^{7,8}

Within the alluvial deposits, the primary porosity and permeability inherent to these unconsolidated sediments allow for free movement and storage of groundwater. Within this material, water-table levels tend to correlate closely with river stage; little hydraulic gradient exists here and shallow flow is towards the river. 7,8

In contrast, the primary porosity found in the bedrock aquifer is small. Groundwater flow and storage occurs largely via secondary porosity features (joints, fractures, etc.) and along bedding plane surfaces. The nearly verticle joint planes, which cross each other at various angles, are the most important openings for groundwater movement and storage. While the average distance between joints in most sets is about six inches, the number and width of the joints does differ from bed to bed in the Brunswick. As such, some beds will yield more water to wells than others. The situation is similar in the Lockatong, yet here the fractures are narrower and more widely spaced. 6,7,8

Four monitoring wells have been drilled into the bedrock aquifer, in order to evaluate the response of the flow system located there to pumpage of the well field. In addition, numerous shallow wells monitor conditions in the upper alluvial flow system. Hydrologic studies involving pump testing indicate that, not only can the bedrock flow system be affected by pumping, but responses by several of the alluvial observation wells was noted as well. While most of the shallow monitoring wells respond to precipitation and river stage, pump testing indicates a limited flow system. In general, the alluvial deposits act as a recharge source for the underlying bedrock aquifer. 7,8

Interconnection between the two is also noted as a result of the deep aquifer's response to river stage. It is reported that this response is carried out via the alluvial deposits but may also result from a direct connection through bedrock outcrop in the river bed.^{7,8}

3.5 Climate and Meteorology

The Occidental Chemical Corporation site experiences prevailing westerly winds which produce a humid-continental type of climate. The temperature ranges between winter and summer are relatively wide. Variations in temperature from day to day are common due to weather systems, which alternately bring in warm air from the south and cold air from the north.

The summer months (June through October) are generally hot and humid; a maximum temperature of 90°F can be expected on an average of 25 days. The average monthly temperature throughout the year ranges from 32°F in January to 77°F in July, with an average annual temperature of 57°F.

The average annual total precipitation is slightly more than 42 inches and is generally well distributed throughout the year. The average net precipitation for the year is approximately 14 inches. The difference in the normal amounts of precipitation between the wettest month (August) and the driest month (October) is about two inches. 10

3.6 Land Use

Land use in the immediate vicinity of the Occidental Chemical Corporation site ranges in use from urban to rural/agricultural. The city of Pottstown lies immediately to the north and west of the site and maintains a typical mixture of urban, commercial, and industrial land use.

Numerous industries and small businesses are established along the banks of the Schuylkill River, which bisects the target area in a northwest-southeast direction. The balance of the three-mile radius is rural in nature, with a modest degree of agricultural land use. 1

3.7 Population Distribution

The target area within 3 miles of the subject site has an estimated 31,720 residents. The largest population center is the city of Pottstown, which had a population of 22,729 in 1980.¹¹ The site is situated adjacent to the southeast borough boundary of Pottstown. Several other small towns and villages are disbursed throughout the target area. They include Pottstown Landing, Parker Ford, Kenilworth, and Sanatoga, with populations that vary from 250 persons to 800 persons, respectively. The population within a 1-, 2-, and 3-mile radius is 1,551, 13,247, and 31,720 persons, respectively.¹

3.8 Critical Environments

According to the United States Fish and Wildlife Service, no critical habitats or endangered species are known to exist within a three-mile radius of the subject site. 12

3.9 References

 United States Geological Survey. Pottstown, Phoenixville, Sassmansville, and Boyertown, Pennsylvania Quadrangles, 7.5 Minute Series. <u>Map of Flood</u> <u>Prone Areas</u>. Photorevised 1968. (See appendix G; three-mile radius added by NUS Corporation.)

- 2. Chester County Planning Commission. Chester County Water Systems Inventory. Pottstown and Phoenixville, Pennsylvania, Quadrangle Maps, 7.5 Minute Series. 1984. (See appendix G.)
- Montgomery County Planning Commission. Water Service Plan. An element of the Montgomery County comprehensive plan. 1979. (See appendix G.)
- 4 NUS Corporation, FIT III. Hazard ranking system for Occidental Chemical Corporation. TDD No. F3-8602-31, April 30, 1986.
- 5. Newport, Thomas G., Commonwealth of Pennsylvania Department of Environmental Resources. Groundwater Resources of Montgomery County, Pennsylvania. Water Resources Report 29, 1971.
- 6. Longwill, Stanley M., and Charles R. Wood, Commonwealth of Pennsylvania Department of Internal Affairs. Ground-Water Resources of the Brunswick Formation in Montgomery and Berks Counties, Pennsylvania. Geologic Survey Bulletin W22, 1965.
- 7. Martin and Martin, Incorporated and Todd Giddings and Associates. Report to PA DER on Hydrogeology of the Existing Landfill, Proposed Landfill, and Sludge Lagoons. The Firestone Tire and Rubber Company, Pottstown, Pennsylvania, 19464. September 1979, revised October 1975.

- 8. Martin and Martin, Incorporated and Todd Giddings and Associates.

 Groundwater Module Phase II, Firestone Landfill. The Firestone Tire and Rubber Company, Lower Pottsgrove Township, Montgomery County. November 1976.
- McGreevy, Laurence J., and Ronald A. Sloto, United States Geological Survey. Groundwater Resources of Chester County, Pennsylvania. Open File Report, 1977.
- 10. United States Department of Agriculture, Soil Conservation Service. <u>Soil</u>
 <u>Survey for Montgomery County</u>. April 1967.
- 11. Rand McNally and Company. <u>Commercial Reference Map and Guide for Pennsylvania</u>. 1983.
- 12. Kulp, Charles, J., United States Fish and Wildlife Service, to Garth Glenn, NUS FIT III. Correspondence. April 21, 1986.

SECTION 4

4.0 WASTE TYPES AND QUANTITIES

The Occidental Chemical Corporation site was begun under the ownership of JAEC. JAEC operated a machine shop for the production of aircraft engines from 1942 until 1945. During this time, they disposed of cutting oils and metal filings at the old landfill site.

In 1945, FTR purchased the property and operated a tire manufacturing plant and a chemical plant. The plant produced plastic resins (i.e., PVC). FTR landfilled tires, rubber, refinery wastes, pigments, zinc oxide, sulfur dioxide, scrubber wastes, and PVC sludge resins. According to the preliminary assessment prepared for this site by Mr. Thomas Sheehan, of PA DER, an average of 33 tons of refuse were landfilled per day. The majority of this waste was factory trash and paper. Included within this quantity of waste were approximately 4.6 tons per day, or 67,200 tons over the 40-year operational life of the landfill, of PVC sludge resin disposed of in the on-site landfill.

In addition, the PVC sludge, which accumulated in the four inactive lagoons, was periodically dredged and disposed of in the landfill. In 1973, FTR received permission to landfill sulfur dioxide, scrubber wastes, and fly ash at this site. In 1974, the PA DER Bureau of Water Quality Management ordered the use of the four unlined lagoons to be discontinued. The two lined lagoons were constructed during this same year. The solids are filtered off the effluent and disposed of in the on-site landfill. The effluent is modestly pretreated and discharged to the borough sanitary system for complete treatment.

The Occidental Chemical Corporation experienced a TCE spill (quantity unknown) in July 1984, in the vicinity of process water well no. 8. High levels of TCE were observed in well no. 8; the plume extended toward process water well nos. 5 and 10. Occidental Chemical Corporation agreed to drill corings, excavate the contaminated soil, pump well nos. 5, 8, and 10, and test them periodically. The company is phasing out the use of TCE at this facility.

SECTION 5

5.0 FIELD TRIP REPORT

5.1 Summary

NUS FIT III staff members Richard Callahan, Thomas Pearce, Scott Renneisen, Robert Howell, and David Side conducted a site inspection of the subject site on Thursday, September 26, 1985. Access for the site inspection was granted by Mr. Joseph King, of the Occidental Chemical Corporation. FIT III had difficulty in obtaining samples from the selected monitoring wells because of the regional drought situation (i.e., the low river stage). This difficulty extended the site inspection into a second day of sampling. Heavy rains and severe winds on Friday, September 27, 1985 postponed the work to the following week. The second day of sampling was rescheduled for Thursday, October 3, 1985. Both sampling days were overcast, with light to moderate precipitation and a temperature of approximately 45°F. Alterations to the approved sampling plan include the following:

- o Of the seven shallow monitoring wells selected for sampling, monitoring well nos. 5, 7, 8, 19, and 24 were dry and well nos. 13, 17, 21, and 26 were sounded and found to be dry as well. Monitoring well nos. 15 and 18 were damaged in such a way that would not permit sampling. Thus, only two shallow monitoring wells were sampled, instead of the seven that were originally planned.
- o Monitoring well no. 25 was sampled in lieu of well no. 5.
- o The dedicated pump for process well no. 5 was out of service, which prevented FIT III from collecting a sample.
- o The sedimentation pond for the active landfill was dry; therefore, no aqueous sample was collected.
- o The old landfill was totally involved in the implementation of the approved closure plan, which involved two feet of cover graded in appropriate slopes, total coverage with a puncture-resistant fabric, total coverage with a butyl rubber liner, and total coverage with topsoil and seed. In addition, erosion-control barriers had been installed along the entire perimeter of both the active and inactive landfills. Therefore, no areas of ponded water were present along the toe of the landfill, which would permit sampling 00526

o A background soil sample was not collected due to the lack of a compatible soil type which would offer an acceptable means of comparison. In this case, a compatible background soil sample would have been from an unaffected, unaltered portion of the flood plain, located near the site. Such an area did not exist.

5.2 Persons Contacted

5.2.1 Prior to Field Trip

Joseph King Manager, Environmental Compliance Occidental Chemical Corporation Armand Hammer Boulevard Pottstown, PA 19464 (215) 327-6400

Arthur Schmeck Environmental Engineer Occidental Chemical Corporation Armand Hammer Boulevard Pottstown, PA 19464 (215) 327-6400

5.2.2 At The Site

Joseph King Manager, Environmental Compliance Occidental Chemical Corporation Armand Hammer Boulevard Pottstown, PA 19464 (215) 327-6400

Arthur Schmeck Environmental Engineer Occidental Chemical Corp. Armand Hammer Boulevard Pottstown, PA 19464 (215) 327-6400 Luke Lukowiac Occidental Chemical Corp. Armand Hammer Boulevard Pottstown, PA 19464 (215) 327-6400

Thomas Sheehan Solid Waste Specialist PA DER Armand Hammer Boulevard Pottstown, PA 19464 (215) 327-6400

Luke Lukowiac
Occidental Chemical Corp.
Armand Hammer Boulevard
Pottstown, PA 19464
(215) 327-6400

PAW 25	MCD-011 MLW 25 - FILTER A B (0)6/85 1200 — MCD-021 MLW 25 - FILTER A B (0)6/85 1200 — MCD-034 MLW 6 - FILTER A B 7/14/85 1350 — MCD-034 MLW 6 - FILTER A B 7/14/85 1350 — MCD-034 RW 1 - FILTER A B 7/14/85 1200 — MCD-034 RW 2 - FILTER A B 7/14/85 1200 — MCD-034 RW 2 - FILTER A B 7/14/85 1200 — MCD-034 RW 2 - FILTER A B 7/14/85 1200 — MCD-034 RW 2 - FILTER A B 7/14/85 1200 — MCD-034 RW 2 - FILTER A B 7/14/85 1200 — MCD-034 RW 2 - FILTER A B 7/14/85 1200 — MCD-034 RW 4 - FILTER A B 7/14/85 1200 — MCD-034 RW 4 - FILTER A B 7/14/85 1300 — MCD-035 S L L S DL 7/14/85 1300 —	TRA TRA	PORTS	SAMPLING LOCATION	PHASE	SAMPLE DESCRIPTION	DATE	TIME	ЬĦ	COMMENTS/OBSERVATIONS	OKGANIC/ LABORATORY
MW 25 - FILTER A Q 10/3/55 (1200 MW 6 - FILTER A Q 1/4/55 (1350 MW 6 - FILTER A Q 1/4/55 (1350 SMW2 A Q 1/4/55 (1350 SMW2 - FILTER A Q 1/4/55 (1350 RW 1 A Q 1/4/55 (1300 RW 1 - FILTER A Q 1/4/55 (1300 RW 2 - FILTER A Q 1/4/55 (1300 RW 2 - FILTER A Q 1/4/55 (1300 RW 2 - FILTER A Q 1/4/55 (1300 RW 4 - FILTER A Q 1/4/55 (1300 RW 4 - FILTER A Q 1/4/55 (1300 RW 4 - FILTER A Q 1/4/55 (1500 RW 4 - FILTER A Q 1/4/55 (1500 RW 4 - FILTER A Q 1/4/55 (1500 SEO POND 50L 1/4/55 (1500 SEO POND 50L 1/4/55 (1500 PW 10 A Q 1/4/55 (1500 PW 10<	MW 25 - FILTER A B 10/3/85 1200 10/3/85 1350 10/3/85 1350 10/3/85 1350 10/3/85 1350 10/3/85 1350 10/3/85 1350 10/3/85 1350 10/3/85 1350 10/3/85 1350 10/3/85 1340 10/3/85		_	Z Z	A		10/3/85	(200	1		NUS PITISBURC CHEMTECH
MW 6 - FILTER AQ 9/26/85 1350 SMW2 AQ 7/26/85 1350 SMW2 - FILTER AQ 7/26/85 1200 RW 1 AQ 7/26/85 1200 RW 2 AQ 7/26/85 1200 RW 2 AQ 7/26/85 1200 RW 2 AQ 7/26/85 1300 RW 3 AQ 7/26/85 1300 RW 3 AQ 7/26/85 1300 RW 4 AQ 7/26/85 1300 RW 4 AQ 7/26/85 1300 RW 4 FLV 78 AQ RW 4 7/26/85 1300 AQ 7/26/85 1500 PW 4 7/26/85 1500 AQ 7/26/85 1500 PW 4 7/26/85 1500 AQ 7/26/85 1500 PW 4 7/26/85 1500 AQ 7/26/85 1500 A 7/26/85 1500	MW 6		7/	25-	AB	٠	58/8/01	1200	1		CHEMTECH
Mw 6 - FILTER AQ 1/26/85 1350 - SM w 2 - FILTER AQ 1/26/85 1005 - Rw 1 - FILTER AQ 1/26/85 1200 - Rw 2 - FILTER AQ 1/26/85 1340 - Rw 2 - FILTER AQ 1/26/85 1340 - Rw 2 - FILTER AQ 1/26/85 1340 - Rw 3 - FILTER AQ 1/26/85 1340 - Rw 4 - FILTER AQ 1/26/85 1340 - Rw 5 - FILTER AQ 1/26/85 1340 - Rw 8 - FILTER AQ 1/26/85 1/260 - Rw 8 - FILTER AQ 1/26/85 1/260 - Rw 8 - FILTER AQ 1/26/85 1/260 - Rw 9 - FILTER AQ 1/26/85 1/260 - Frank AQ 1/26/85	AWW 6 - FILTER AQ 1/26/85 1350 SMWZ AQ 1/26/85 1005 RW 1 - FILTER AQ 1/26/85 1000 RW 2 - FILTER AQ 1/26/85 1200 RW 2 - FILTER AQ 1/26/85 1340 RW 2 - FILTER AQ 1/26/85 1340 RW 3 - FILTER AQ 1/26/85 1340 RW 3 - FILTER AQ 1/26/85 1340 RW 4 - FILTER AQ 1/26/85 1340 RW 4 - FILTER AQ 1/26/85 1345 RW 4 - FILTER AQ 1/26/85 1345 PW 10 AQ 1/26/85 1300 BLAME AQ 1/26/85 1300 BLAME AQ 1/26/85 1300 BLAME AQ 1/26/85 1300 BLAME AQ 1/26/85 1300	70 MCD-0	1/3	9	AQ		9/2 6 /85	1350	1		6SFT CAL. ANTL.
SAMUZ AQ 1/26/85 (1005 - 1005) SMUZ-FILTER AQ 1/26/85 (1005 - 1005) RW I AQ 1/26/85 (1200 - 1005) RW I AQ 1/26/85 (1340 - 1005) RW Z AQ 1/26/85 (1340 - 1005) S L A A P L AQ A P L A A A A A B L A A B L A A B L A A B L A A B L A	SMW2	MCD-0	61	- 9	AQ		28/976/6	(350)	}		CAL. ANAL.
RW 1 AQ 7/26/85 1200 - CALA RW 1 AQ 7/26/85 1200 - CALA RW 2 FILTER AQ 7/26/85 1200 - CALA RW 2 FILTER AQ 7/26/85 1340 - CALA RW 2 FILTER AQ 10/3/85 1200 - CALA RW 3 FU 3 10/3/85 1200 - CALA RW 4 FILTER AQ 10/3/85 1200 - CALA RW 4 FILTER AQ 10/3/85 1200 - CALA RW 4 FILTER AQ 10/3/85 1200 - CALA SED POND SOL 10/4/85 1500 - CALA SED POND SOL 10/5/85 1500 - CALA SED POND SOL 10/5/85 1500 - CALA SED POND SOL 10/5/85 1500 - CALA SED POND AQ 10/5/85 1500 - CALA SED POND AQ 10/5/85 1300 - CALA SED POND <td< td=""><td>RW 1 - FILTER AR 7/26/85 1005 - CALA RW 2 - FILTER AR 7/26/85 1200 - CALA RW 2 - FILTER AR 7/26/85 1300 - CALA RW 2 - FILTER AR 7/26/85 1300 - CAL RW 3 - FILTER AR 7/26/85 1300 - CAL RW 4 - FILTER AR 7/26/85 1300 - CAL RW 4 - FILTER AR 7/26/85 1300 - CAL RW 4 - FILTER AR 7/26/85 1300 - CAL PW 8 AR 7/26/85 1500 - CAL PW 10 SOL 7/26/85 1500 - CAL PW 10 AR 7/26/85 1300 - CAL PW 10 AR 7/26/85 1300 - CAL PW 10 <t< td=""><td></td><td>SZ</td><td></td><td>AQ</td><td></td><td>7/26/95</td><td>(005</td><td>1</td><td></td><td>GSRE CAL. ANAL.</td></t<></td></td<>	RW 1 - FILTER AR 7/26/85 1005 - CALA RW 2 - FILTER AR 7/26/85 1200 - CALA RW 2 - FILTER AR 7/26/85 1300 - CALA RW 2 - FILTER AR 7/26/85 1300 - CAL RW 3 - FILTER AR 7/26/85 1300 - CAL RW 4 - FILTER AR 7/26/85 1300 - CAL RW 4 - FILTER AR 7/26/85 1300 - CAL RW 4 - FILTER AR 7/26/85 1300 - CAL PW 8 AR 7/26/85 1500 - CAL PW 10 SOL 7/26/85 1500 - CAL PW 10 AR 7/26/85 1300 - CAL PW 10 AR 7/26/85 1300 - CAL PW 10 <t< td=""><td></td><td>SZ</td><td></td><td>AQ</td><td></td><td>7/26/95</td><td>(005</td><td>1</td><td></td><td>GSRE CAL. ANAL.</td></t<>		SZ		AQ		7/26/95	(005	1		GSRE CAL. ANAL.
pw 1 AQ 7/26/85 1200 - CALA pw 1-Picted AQ 7/26/85 1200 - CALA pw 2 AQ 7/26/85 1200 - CALA pw 3 AQ 7/26/85 1340 - CALA pw 3 AQ 10/3/85 1200 - CALA pw 3 AQ 10/3/85 1200 - CALA pw 3 AQ 10/3/85 1200 - CALA pw 4 AQ 10/3/85 1200 - CALA pw 4 AQ 10/3/85 1200 - CALA pw 4 AQ 10/3/85 1500 - CALA pw 7 AQ 10/3/85 1500 - CALA pw 8 AQ 10/3/85 1500 - CALA pw 8 AQ 10/3/85 1300 - CALA pw 8 AQ 10/3/85 1300 - CALA pw 10 AQ 10/3/85 1300 - CALA	RW I AQ 9/26/85 1200 CALM RW Z AQ 7/26/85 1200 CALM RW Z AQ 7/26/85 1340 CALM RW Z AQ 10/3/85 1340 CALM RW Z AQ 10/3/85 1200 CALM RW Z AQ 10/3/85 1300 CALM RW Z AQ AQ AQ RW Z AQ AQ AQ	MCD-02	7,	SMW2-FILTER	AQ	•	7/26/85	300/	١		CAL. ANAL
PW 1 - FILTER AQ 7/24/85 1200 - CALM RW 2 AQ 7/24/85 1340 - CAL PW 3 AQ 10/3/85 1340 - CAL PW 3 AQ 10/3/85 1200 - CAL PW 4 AQ 10/3/85 1200 - CAL SEO POND SOL 9/24/85 1805 - CAL SC 2 SDL 9/24/85 1805 - CAL PW 8 AQ 10/3/85 1805 - CAL PW 10 AQ A A PW 10 A A A PW 10 <td>RW 2 AQ 7/26/85 1300 CALA RW 2 AQ 7/26/85 1340 CALA RW 2 AQ 7/26/85 1340 CAL RW 3 AQ 10/3/85 1200 CAL RW 3 AQ 10/3/85 1200 CAL RW 4 AQ 10/3/85 1200 CAL RW 4 AQ 1/46/85 1200 CAL SED POWD SOL 1/46/85 1500 CAL SED POWD SOL 1/46/85 1500 CAL SED POWD SOL 1/46/85 1500 CAL AB AQ 1/46/85 1500 CAL AB AQ 1/46/85 1500 CAL AB AQ 1/46/85 1300 CAL BLAW AQ 1/46/85 1300 CAL CAL CAL CAL CAL CAL CAL CAL CAL</td> <td>77 MCD-0</td> <td>7.7</td> <td>RW 1</td> <td>₽ b</td> <td></td> <td>9/20/85</td> <td>1200</td> <td>ı</td> <td></td> <td>CAC. ANAC.</td>	RW 2 AQ 7/26/85 1300 CALA RW 2 AQ 7/26/85 1340 CALA RW 2 AQ 7/26/85 1340 CAL RW 3 AQ 10/3/85 1200 CAL RW 3 AQ 10/3/85 1200 CAL RW 4 AQ 10/3/85 1200 CAL RW 4 AQ 1/46/85 1200 CAL SED POWD SOL 1/46/85 1500 CAL SED POWD SOL 1/46/85 1500 CAL SED POWD SOL 1/46/85 1500 CAL AB AQ 1/46/85 1500 CAL AB AQ 1/46/85 1500 CAL AB AQ 1/46/85 1300 CAL BLAW AQ 1/46/85 1300 CAL CAL CAL CAL CAL CAL CAL CAL CAL	77 MCD-0	7.7	RW 1	₽ b		9/20/85	1200	ı		CAC. ANAC.
RW 2 AQ 1/26/85 1340 - CAL. RW 2 FILTER AQ 1/26/85 1340 - CAL. PW 3 AQ 10/3/85 1200 - CAL. PW 3 AQ 10/3/85 1200 - CAL. PW 4 AQ 10/3/85 1200 - CAL. PW 4 FILTER AQ 1/26/85 1545 - CAL. SED POWD SOL 9/26/85 1590 - CAL. SED POWD SOL 9/26/85 1590 - CAL. PW 8 AQ 9/26/85 1590 - CAL. PW 10 AQ 9/26/85 1590 - CAL. PW 10 AQ 10/3/85 1590 - CAL. PW 10 AQ 10/3/85 1300 - CAL. PANNE AQ AQ AQ	RW2 AQ 7/26/85 1340 CAL. RW2 - FILTEZ AQ 7/26/85 1340 CAL. PW3 AQ 10/3/85 1200 CAL. PW 3 - FILTEZ AQ 10/3/85 1200 CAL. PW 4 - FILTEZ AQ 4/26/85 1200 CAL. SEO POND SOL 7/26/85 1500 CAL. SEO POND AQ 10/3/85 1300 CAL. SEO POND AQ 10/3/85 1300 CAL. SEO POND AQ 10/3/85 1330 CAL. SEO POND AQ 10/3/85 1330 CAL. SEO POND AQ 10/3/85 1330 CAL.	- MCD-03	**	- 1	AQ		7/26/85	1200	l		CALANAL.
PLUS - FILTER AR AR 9/156/85 1340 - CAH. PLUS - FILTER AR AR 10/3/85 1200 - CHEM. PLUS - FILTER AR AR 1/16/85 1545 - CAL. PLUS - FILTER AR AR 1/16/85 1545 - CAL. SED POND SOL 9/16/85 1550 - CAL. S L 2 SDL 9/16/85 1350 - CAL. PW 10 AR 10/3/85 1330 - CAL. PW 10 AR 10/3/85 1330 - CAL. BLANK AR 10/46/85 1330 - CAL.	RW2 — FILTER AQ 9/64/85 1340 -		67	RW Z	AQ		28/90/6	1340	1		CAR. AMAL
pw 3 AQ 10/3/85 1200 - CHEA pw 3 - FILTER AQ 10/3/85 1200 - CHEA pw 4 - FILTER AQ 9/16/85 1545 - CAL. 2 SEQ POND SOL 9/16/85 1595 - CAL. 2 SL 2 SDL 9/16/85 1500 - CAL. 2 SL 2 SDL 9/16/85 1500 - CAL. 8 Pw 8 AQ 10/3/85 1300 - CAL. Pw 10 AQ 10/3/85 1330 - CAL. BLANK AQ 10/3/85 1330 - CAL. BLANK AQ 10/3/85 1330 - CAL.	μω 3 ΑQ 10/3/85 1200 - (1150) (1150) μω 3 - ΡΙ ΓΤΕΚ ΑQ (10/3/85 1200 - (1150) (1150) μω 4 ΑQ 4/26/85 1500 - (1150) (1150) κω 4 ΓΕ ΓΤΕΚ ΑQ 1/26/85 1500 - (1150) Σ 5 L 2 5 DL 4/26/85 1500 - (125) Σ 5 L 2 5 DL 4/26/85 1500 - (125) Σ 5 L 2 5 DL 4/26/85 1500 - (125) Σ 5 L 2 5 DL 4/26/85 1500 - (125) Σ 5 L 2 5 DL 6 CAL. (126/85 130) (126/85 130) Σ 5 L 2 5 DL 6 CAL. (126) (126) (126) Σ 5 L 2 5 DL 6 CAL. (126) (126) (126) (126) Σ 6 DL	mc0-0	26	7 - 7	AQ			1340	ı		
RW 4 AQ 10/18/85 1200 - CAL. RW 4 AQ 9/16/85 1545 - CAL. RW 4 FILTER AQ 9/16/85 1545 - CAL. SEO POND SOL 9/16/85 1550 - CAL. SC 2L SDL 9/16/85 1550 - CAL. SC 2L SDL 9/16/85 1500 - CAL. PW 10 AQ 10/16/85 1300 - CAL. PW 10 AQ 10/16/85 1300 - CAL. BLANK AQ 10/16/165 1330 - CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL. CAL.<	EW 3 - FILTER AQ 10/3/gr 1200 - CHEA FW 4 AQ 4/26/gr 1345 - CAL. EW 4 - FILTER AQ 7/10/gr 1545 - CAL. SED POND 50L 4/26/gr 1440 - CAL. S L 2 5DL 4/26/gr 16/5 - CAL. S L 2 5DL 7/20/gr 16/5 - CAL. PW 10 AQ 10/3/gr 1330 - CAL. PW 8 AQ 10/3/gr 1330 - CHEA. BLANK AQ 1/26/gr 1330 - CHEA. PLANK AQ 1/26/gr 1330 - CHEA. CAL. CAL. CAL. CAL. CAL. CAL		3.1	. 1	AQ		10/3/85	0021	1		NUS. PITTS. CHEMTECH
LW 4 AQ AQ A/46/85 1545 - CAL. RW4 - FILTER AQ 7/46/85 1545 - CAL. SEO POND SOL 1/46/85 1550 - CAL. SL 2L SDL 1/26/85 1655 - CAL. S L 2L SDL 1/26/85 1830 - CAL. PW 10 AQ AQ - CAL. CAL. CAL. A A A A A CAL. A A A A A CAL. A A A A A	FW 4		7	٦	AQ.		10/3/85	1200	ŀ		CHEMTECH
AWH - FILTER ARQ 9/10/65 1545 - G4L ASED POND SOL 9/10/65 1550 - GAL OSL 2L 2. 2L - GAL PW 10 ARQ 9/10/65 1550 - GAL - GAL PW 10 ARQ 10/3/85 1330 - GAL PW 10 ARQ 10/3/85 1330 - GAL GART CAL	X RW4 - FILTER AQ 9/16/65 1545 - CAL. X SEO POND SOL 9/16/65 1550 - CAL. X SL L SOL 9/16/65 1550 - CAL. X SL L SDL 9/16/65 16/5 - CAL. CAL. X PW B AQ 10/3/85 1300 - CAL. CAL. X PW B AQ 10/3/85 1330 - CAL. CAL. X PW B AQ 11/46/65 1330 - CAL. CAL. X A A A A CAL. CAL. CAL.		<u> </u>	fw 4	AQ		4/24/85	5451	١		CAL. AMAL.
25 SEO POND SOL 196/85 1950 - CAL, 106/85 1950 - CA	25 SL 2 SDL 9/16/85 1550 - 658E 9/16/85 1550 - 658E 9/16/85 1550 - 658E 9/16/85 1550 - 646. 9/16/85 1550 - 646. 10/3/85 1350 - 646. 10/3/85 1350 - 646. 10/3/85 1350 - 646. 11/46/85 1330 - 646. 11/46/85 1330 - 646. 11/46/85 1330 - 646. 11/46/85 1330 - 646.	MCD-03		RWY - FILTER	AQ		7/20/85	5451	١		CAL. AWAL.
2 SL 2 SDL 9/26/85 1550 - CAL, P. CAL, CAL, CAL, CAL, CAL, CAL, CAL, CAL,	2 SL 2 SDL 9/26/85 1550 - CAL, OSRI 2 SL 2 SDL 9/26/85 1615 - CAL, OR. 10/3/85 1300 - CAL, OR. 10/3/85 1300 - CAL, OR. 10/3/85 1300 - CAL, OR. 10/3/85 1330 - CAL, OR. 10/3/8				708		786/95	0241	t		CAC ANTL.
8 PW 8 AQ 10/3/85 1300 - CAL. 8 PW 10 AQ 10/3/85 1300 - CHEN CHEN CHEN CHEN CHEN CHEN CHEN CHEN	25 SL 2 SDL 8 PW 8 AQ PW 10 PW 10 AQ BLANK BLANK PW 10 PW 2 PROCESS WATER WELL CALL			1 75	705		9/26/85	1550	١		CAL. ANAL.
8 PW 8 AQ 10/3/85 1300 - CHEM CHEM 10/3/85 1330 - CHEM CHEM CHEM CHEM CHEM CHEM CHEM CHEM	8 PW 8 AQ 10/3/85 1300 - CHEA CHEA BLANK ADS. 10/3/85 1330 - CHEA CHEA CHEA CHEA 1330 - CHEA CAL.	ST. M.CD-O.			705		9/20/85	1615	١		GSKI CAL ANAL
PW10 AQ 10/3/85 1330 - CHEM CAL.	PW 10 RQ 10/3/85 1330 - CHEM BLANK ARCESS WATER WELL CAL.	6 mc8-6.			AQ		10/3/85	1300	١		NUS. PITTS CHEM.TECH.
BLANK AQ (1340 - 1330 - CAL.	BLANK BLC -SHALLOW PW = PROCESS WATER WELL	7 7 30 -65		PW10	ନ୍ଦ		10/3/85	(330	\		LHEM. TECH.
	DRING WELL - SHALLOW PW = PROCESS WATEL	59-83 16	15	BLANK	AQ		7/26/95	1330	١		CAL. ANAL.

ROCK W. SEEPACE

GOON CONTORING WELL

507	
SAMPLE LOG	
AMP	
Ś	
5.3	

PHASE SAMPLE DESCRIPTION	DATE	TIME	£	COMMENTS/OBSERVATIONS	LABORATORY
AQ	28/00/6	(330			CSRE CAC. ANAC
205	78/92/6	(300			GSRI CAL. ANAL.
SoL	58/92/6	1440			GSRF CAL. MMAL.
AQ /	10/3/85	1530			NUS. PITTS CHEM TECH
AQ .	-58/2/01	1530			CHEM TECH.
•		-			•
	,				
•			·	·	
		·			
	•				
-					

-- f ~

Site Name OCCIDENTAL

5.4 Site Observations

 A background HNU reading of 0.6 ppm was recorded. No HNU readings above background levels were registered anywhere on site.

- o The old landfill was in the process of being properly closed. This closure involved the placement of a puncture-resistant barrier, an impermeable butyl rubber liner, two feet of cover, topsoil, and grass seed.
- o The material in the new landfill was primarily black.
- o A sedimentation pond was observed adjacent to the east end of the new landfill. This pond was dry during the site inspection.
- o The area between the site and the river consisted of a damp, wooded creek bottom (i.e., the flood plain of the Schuylkill River).
- o The four abandoned lagoons were readily visible and covered with vegetation.

F3-8509-06/F3-8611-13

≎EPA	PART 1 - SITE LOCATION AND INSPECTION INFORMATION						
N. SITE NAME AND LOCA	ATION						
O1 SITE NAME (Legal, common, or	descriptive name of site)		02 STREE	T, ROUTE NO., OR SP	ECIFIC LOCATION IDENTIFIER		
Occidental Che	emical Corporation	n			nmer Boulevard		
03 CITY			04 STATE		06 COUNTY	O7COUNTY 98 CONS	
Pottstown			PA	19464	Montgomery	091 PA05	
OP COORDINATES O LATITUDE 40 13' 34". N	_75 0 LONGITUOE _75 36' 14" .W	10 TYPE OF OWNERSH \(\bar{\Delta} \) A. PRIVATE \(\bar{\Delta} \) F. OTHER =			C. STATE C D COUNTY		
III. INSPECTION INFORM 01 DATE OF INSPECTION							
9/26/85 - 10/3/85	02 SITE STATUS D ACTIVE D INACTIVE		942 NNING YEA		ous to datenknown		
04 AGENCY PERFORMING INSP	PECTION (Check of that essity)			A ENOMO TEXA			
C A. EPA S B. EPA CONTRACTOR NUS COrporation C. MUNICIPAL D. MUNICIPAL CONTRACTOR (Name of firm) C G. OTHER (Seeciful							
05 CHIEF INSPECTOR		of title	of firm) (Seecity)				
	llahan	Environme	ontol	Engineer	NUS	215)687-9510	
Richard C. Callah an		10 TITLE	cittai	mignicei	11 ORGANIZATION	12 TELEPHONE NO	
Thomas Pearce	Environm	ențal '	Technician	NUS	(215)687-9510		
Scott Renneise	Geologist	Geologist			@15)6 <mark>87-9510</mark>		
Robert Howell		Environm	Environmental Technician			215,687-9510	
David Side		Geologist			NUS	215,687-9510	
				()			
13 SITE REPRESENTATIVES INT	TERVIEWED	Manager Envirn 15ADORESS Occide		idental Chemica	16 TELEPHONE NO		
Joseph King		Compliance Armand Hamm			215 327-6400		
		Environ. Pottstown, PA 1					
Arthur Schmed	k	Engineer	1			(215) 327-6400	
Luke Lukowiac	;	Environ. Engineer		11		215,327-6400	
		- Bugmeer				()	
						()	
				····		()	
17 ACCESS GAINED BY	18 TIME OF INSPECTION	19 WEATHER COND	ITIONS				
(Check one) X PERMISSION WARRANT	8:30 - 5:00	Overcast,	light	precipitatio	on, 45 – 50°F.		
IV. INFORMATION AVAIL	able from						
01 CONTACT		02 OF (Agency/Organi	zahon)			03 TELEPHONE NO	
Laura Boornaz		EPA		•		(215, 597-9800	
04 PERSON RESPONSIBLE FO	R SITE INSPECTION FORM	05 AGENCY	06 ORG	SANIZATION	07 TELEPHONE NO.	08 DATE	
Richard C. Ca	llahan	EPA		NUS	(215) 687-9510	5 / 6 / 86 MONTH DAY YEAR	

\$EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION 01 STATE | 02 SITE NUMBER PA 588

PART 2" WASTE INFORME TION							
II. WASTES	TATES, QUANTITIES, AN	D CHARACTER	STICS				
XA SOLID R POWDE XC SLUDGE	TATES (Check of the society) E SLURRY R. FINES X F LIQUID G GAS		TY AT SITE	O3 WASTE CHARACTI	ERISTICS (Check of MA) and E SOLUTION SIVE	ILE _ I HIGHLY V	VE
		XXXXXXXX	over 40	X D PERSIS			ATIBLE
_ D OTHER	(Specify:	%0.X05X05X096 -	years	Unknow	vn	_ m no ne	-CICABLE
M. WASTET	YPE						
CATEGORY	SUSSTANCE N	AME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS		
SLU	SLUDGE		67,200	tons	PyC sludge	/resin waste a	nd
OLW	OILY WASTE				associated v	wastes over fo	rty years
SOL	SOLVENTS				of operation	nal life	
PSD	PESTICIDES						
occ	OTHER ORGANIC CH	HEMICALS					
ЮС	INORGANIC CHEMIC	ALS				•	
ACD	ACIDS						
BAS	BASES						
MES	HEAVY METALS						
IV. HAZARDOUS SUBSTANCES See Appendix for most trequently case GAS Numbers)							
01 CATEGORY	02 SUBSTANCE N	AME	03 CAS NUMBER	04 STORAGE DIS	POSAL METHOD	05 CONCENTRATION	OR MEASURE OF
	trichloroethene		79-01-6	spill and seepage lagoon 18,000 _ mg/			mg/kg
	trans-1,2-dichlo	roethene	156-59-2	landfill and seepagelagoon 5.5 x 10 5 mg/l			mg/kg
vinyl chloride (PVC)		75-01-4	landfill and seepage lagoon 4.2 x			mg/kg	
	chromium		7440-47-3	landfill		7.0	mg/kg
							0, 0
	,						
V. FEEDSTO	ICKS I See Appendix for CAS Murie	ers; N/A				<u>. </u>	1
CATEGORY			02 CAS NUMBER	CATEGORY	O1 FEEDSTO	OCK NAME	02 CAS NUMBER
FDS				FDS			
FDS				FDS			
FDS			†	FDS			
FDS				FDS			
VI. SOURCE	S OF INFORMATION .CA	specific references: e g	state files, sample analysis	/000°TS)	· · · · · · · · · · · · · · · · · · ·		

NUS FIT III site inspections dated September 26, 1985 and October 3, 1985 PA DER 1980 preliminary assessment.

----C 512 2 4

SEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDEN	PERCATION
OL STATE PA	02 SITE NUMBER

PART 3 - DESCRIPTION O	F HAZARDOUS CONDITIONS AND INCID	ENTS -	
IL HAZARDOUS CONDITIONS AND INCIDENTS			
oi D a GROUNDWATER CONTAMINATION 14,52 CONTAMINATION 14,52 Sample results from NUS FIT III site show contamination of groundwater and chromium. Population potential site F3-8602-31 and section 3.1 of the state of	e inspections of September 26, with poly vinyl chloride TCE, lly affected could be as high a	trans-1,2-dichl	oroethene
01 © 8. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: <u>unknown</u> Potential - not identified	02 □ OBSERVED (DATE:	D POTENTIAL	C ALLEGED
01 C CONTAMINATION OF AIR 03 POPULATION POTENTIALLY AFFECTED: Not expected	02 ☐ OBSERVED (DATE) DI POTENTIAL	□ ALLEGED
01 D. FIRE/EXPLOSIVE CONDITIONS 03 POPULATION POTENTIALLY AFFECTED: N/A	02 GOSSERVED (DATE) DOTENTIAL	□ ALLEGED
oi D E. DIRECT CONTACT 03 POPULATION POTENTIALLY AFFECTED: Site is located on a meander loop of guard station.	02 © OBSERVED (DATE:	nce to the prop	ت منتقوق علم علم المنتقوة الم
on S. F. Contamnation of son. 03 AREA POTENTIALLY AFFECTED: Sample results from NUS FTF III site contamination (see 3, II-A above) of plain and unlined - soil contamination	the disposal areas which are b		
01 MG. DRINKING WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED: Not identified by sampling. The pot	02 OBSERVED (DATE:) — <mark>X РОТЕМПАL</mark> nking water sup	D ALLEGED
01 □ H. WORKER EXPOSURE/INJURY 03 WORKERS POTENTIALLY AFFECTED: Not expected	02 - OBSERVED (DATE:) POTENTIAL	C ALLEGED
01 © I. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED: Not expected	02 GOSSERVED (DATE:) D POTENTIAL	□ ALLEGED

ŞEPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

	FICATION
PATE	OS SELE HINNBEN

PART 3 - DESCRIPTION OF HA	ZARDOUS CONDITIONS AND INCIDENT	s FA	200
II. HAZARDOUS CONDITIONS AND INCIDENTS (Continued)			
01 🗆 J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION	02 🗆 OBSERVED (DATE:)	D POTENTIAL	☐ ALLEGED
Not expected			
01 K. DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION (Include name(s) of species)	02 OBSERVED (DATE:)	□ POTENTIAL	C ALLEGED
Not expected			
01 . CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 GOBSERVED (DATE:)	☐ POTENTIAL	C ALLEGED
Unknown			
01 💥 M. UNSTABLE CONTAINMENT OF WASTES [Sade Rundf-Stending squids Leaking drums: 03 POPULATION POTENTIALLY AFFECTED:	02 GOBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	⊠ POTENTIAL	C ALLEGED
NA - A portion of the site has received the rest. The site is unlined.	d full closure while berms and	runoff barrie	ers surfound
Q1 G N. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	02 GOBSERVED (DATE)	D POTENTIAL	C ALLEGED
N/A			•
01 O CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs 04 NARRATIVE DESCRIPTION	02 G OBSERVED (DATE:)	T POTENTIAL	C ALLEGED
N/A			
01 C P. ILLEGAL/UNAUTHORIZED DUMPING 04 NARRATIVE DESCRIPTION	02 G OBSERVED (DATE)	☐ POTENTIAL	□ ALLEGED
N/A			
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLE	GED HAZAROS	***************************************	
None			
M. TOTAL POPULATION POTENTIALLY AFFECTED: DOTEN	itially 14.522 via groundwater		
IV. COMMENTS	to be a second of the second o		
The old, inactive landfill has been covrubber cover, 2 feet of earthen cover		e resistant co	ver, a butyl
V. SOURCES OF INFORMATION (Cre specific references, e.g. state fies	samare analysis reports:		
NUS FIT III site inspections of Septem	ber 26, 1985 and October 3, 1	985	,

O FDA				S WASTE SITE		L IDENTIFICATION
⊕EPA	_	HTE INS				01 STATE 02 SITE NUMBER PA 588
	PART 4 - PERMIT	AND DES	SCRIP	TIVE INFORMAT	TON	
N. PERMIT INFORMATION		Tana				
01 TYPE OF PERMIT ISSUED (Cheek of that apply)	02 PERMIT NUMBER	03 DATE IS	SUED	04 EXPIRATION DATE	05 COMMENTS	
A. NPDES	PA 0010944	unkn	own			_
🗆 8. UIC						_ Fax *
Ø C. AIR	unknown	unkno	wn			
D. RCRA		T				
□ E. RCRA INTERIM STATUS						
☐ F. SPCC PLAN						
MG. STATE SHOW Solid waste	300001	unkno	own	unknown	Industria	ıl landfill
H. LOCAL (Sancely)						
1. OTHER (Specify)						
□ J. NONE						·
M. SITE DESCRIPTION	<u> </u>				<u> </u>	
01 STORAGE/DISPOSAL (Check an (her apply) 02	AMOUNT 03 UNIT OF	MEASURE	04 TR	EATMENT (Check of their	100 (y)	05 OTHER
XO A. SURFACE IMPOUNDMENT	unknown		ПА	INCENERATION		
1 8. PILES				UNDERGROUND INJ	ECTION	C A. BUILDINGS ON SITE
☐ C. DRUMS, ABOVE GROUND			□ C.	CHEMICAL/PHYSIC	AL.	Plant adjacent to
D. TANK, ABOVE GROUND				BIOLOGICAL		site.
☐ E. TANK, BELOW GROUND ▼E F. LANDFILL	40. tons per mont	h of		WASTE OIL PROCES		OB AREA OF SITE
G. LANOFARM	PVC resin			SOLVENT RECOVER OTHER RECYCLING		30 (Acres)
☐ H. OPEN DUMP				OTHER		of a 250 acre prope
☐ I. OTHER		.		None	early)	
None	•					
IV. CONTAINMENT						
01 CONTAINMENT OF WASTES (Check are)	Moderate to po					
A. ADEQUATE, SECURE	X B. MODERATE	Ø, iN	ADECL	IATE, POOR	D. INSECI	URE, UNSOUND, DANGEROUS
02 DESCRIPTION OF DRUMS, DIKING, LINERS, BA	AAIERS, ETC.				-	· ·
Old landfill - is unlined bu	it now covered w	rith an	imp	ermeable co	ver	
Seepage lagoons and new			_			
New lagoons are lined.						
V. ACCESSIBILITY						
01 WASTE EASILY ACCESSIBLE: YES 02 COMMENTS	ĎΝΟ					
			. <u>.</u>			
VI. SOURCES OF INFORMATION (CA) 40000						
NUS FIT III site inspection PA DER preliminary asset		26, 198	85 aı	nd October 3	3, 1985	,
				•		

EPA FORM 2070-13 (7-81

O FDA		POTE	NTIAL HAZAR		SITE		ENTIFICATION ATE 102 SITE NUMBER
⊕EPA		PART 5-WATER	SITE INSPECT DEMOGRAPHA		NMENTAL DATA	PA	
IL DRINKING WATER	SUPPLY						
Q1 TYPE OF DRINKING SUP (Check as applicable)		ı 3 miles	SUTATE SO			03	DISTANCE TO SITE
	BURFACE	WELL	ENDANGERE		MONITORED	1.	
COMMUNITY NON-COMMUNITY	A. [] C. []	8. (X. 0. (X.	A. 🖸 D. 🖸	8. C) E. C)	c. ox F.□ unkn	Aun 8	1,100 feet
M. GROUNDWATER		- 21			unni	SPATE	
01 GMOUNDWATER USE IN	VICINITY (Cheek	inej		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
☐ A. ONLY BOURCE FO	DRINHING NO	E) B. DRINKING (Other sources avails, COMMERCIAL, IN (No other water source)	DUSTRIAL, INNIGATION	(Linted ad	ICIAL, INDUSTRIAL, INFIG er seurces sveleblej	ATION	C) D. NOT USED, UNUSEABLE
Wells within 3	miles of	site _{14,522}	-	03 DISTANCE TO N	EAREST FRINKING WATE	WELL_	.100 feet mest
04 DEPTH TO GROUNDWAT	TER	OS DIRECTION OF GRO	OUNDWATER FLOW	OS DEPTH TO AQUI OF CONCERN	FER 07 POTENTIAL Y	€LLD	08 SOLE SOURCE AQUIFER
-5.8	(ft)	SO	uth	5.8	unknowr	(3 bq)	XQ YES G NO
00 DESCRIPTION OF WELL	3 (Including usoage,	dapth, and location relative to	population and buildings)	<u> </u>			
Nearest wells 9 process wa				eep - 120 f	eet into bedro	ck an	d 21 shallow) and
10 RECHARGE AREA			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11 DISCHARGE AR			• • • • • • • • • • • • • • • • • • •
ONO COMMENTS	3						flows radially Pertually no gradie
IV. SURFACE WATER				1.01	Torce to the r		citually no gradic
01 SURFACE WATER USE	Check one) v.v.			•			
A. RESERVOIR, RIDRINKING WAT	VV 1 T CREATION	B. IRRIGATIO	PIVER USED IN, ECONOMICALLY NT RESOURCES		on and industrial industrial		D. NOT CURRENTLY USED
02 AFFECTED/POTENTIAL	LY AFFECTED B	ODIES OF WATER					
NAME:					AFFECTE	D	DISTANCE TO SITE
Schuylkill Ri	ver					-	300 feet MX
							(mi)
V. DEMOGRAPHIC AI	ID BOOKET	VINEORMATION					(11)
01 TOTAL POPULATION W		THEOMATION			02 DISTANCE TO NE	AEST PO	PULATION
ONE (1) MILE OF SITE	E 17	WO (2) MILES OF SITE B. 13,247	C	3) MILES OF SITE			o Pottstown neara a st well
NO. OF PERSONS 03 NUMBER OF BUILDINGS	WITHIN TWO IZ		· · · · · · · · · · · · · · · · · · ·		MEAREST OFF-SITE BUILD	NG.	<u></u>
Approximatel	•				1,100 f	eet	X
05 POPULATION WITHIN V	CINITY OF SITE	(Previde nerrative description (of nature of population within	vicinity of acc. o g., rural			
Population w	ithin 1 n		ersons rural	. Densely	oopulated to t		rthwest, the site

SEPA	n 4 - 2 ·		TION REPORT		01 8	TATE 02 SITE NUMBER
		r 5 - Water, Demograph	IIC, AND ENVIRO	NMEN I AL DA	(1A	
VI. ENVIRONMENTAL INFOR						
		•	[™] C. 10 ⁻⁴ – 10 ⁻³ om	/sec D.D.GRE	ATER THAN	10 ⁻³ cm/sec
	RMEABLE en 10 ⁻⁶ envised)	D 8. RELATIVELY IMPERMEAS	BLE OC. RELATIVE	Y PERMEABLE		PERMEABLE man 10 ⁻² cm sec)
03 DEPTH TO BEDROCK	04 DEFTH	OF CONTAMINATED SOIL ZONE	05 SOIL pi	•		
86(m)		unknown (m)	unkn	own		
06 NET PRECIPITATION	07 ONE YE	NT 24 HOUR RAINFALL	OB SLOPE SITE SLOPE	DIRECTION OF	SITE SI COS	TERRAIN AVERAGE SLO
14(in)	_	2.6 (in)	4.3	south	G. 2 GCOFE	2.6
09 FLOGO POTENTIAL		10	. 	L		<u> </u>
SITE IS IN 100 YEAR	LOODPLAIN	N/A SITE IS ON BARR	HER ISLAND, COASTA	L HIGH HAZARO	AREA, RIVER	WINE FLOODWAY
11 DISTANCE TO WETLANDS IS acres	N/	A OTHER	12 DISTANCE TO CRE	N/A	rdergared species	 (mi)
A(mi	B	(mi)	ENDANGER	D SPECIES:		
13 LAND USE IN VICINITY	·					
DISTANCE TO:		·				•
COMMERCIAL/INDUS	TRIAL	RESIDENTIAL AREAS: NATIO FORESTS, OR WILDLI		PRIME /	AGINICULTU NG LAND	ARALLANDS AGLAND
	· · · -	nearest ho	me			

4 DESCRIPTION OF SITE IN RELATION TO SURROUNDING TOPOGRAPHY

300 feats)

The site is situated on a meander loop of the Schuylkill River. The top of the landfill rises to the elevation of the plant (30 feet above the flood plain). Off-site terrain consists of gently rolling hills.

1,100 feet

VIL SOURCES OF INFORMATION (Cate aspected references, e.g., state time, sample analysis, reserve

NUS FIT III site inspection of September 26, 1985 and October 3, 1985

EPA FORM 2070-13 (7-81)

unknown p. 2,000 feet (mi)

\$EPA			OTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT ART 6 - SAMPLE AND FIELD INFORMATION	O PRATE 03	
IL SAMPLES TAKE	EN .				
SAMPLE TYPE		01 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO		O3 ESTIMATED DATE RESULTS AVAILABLE
GROUNDWATER		9	Organic - Gulf South Research Inst	itute: 9/26/	5 1/17/86
SURFACE WATER	l				1711700
WASTE		3	Inorganic - CAL analytical 9/26/85 NUS Pittsburgh 10/3/85 Chemtech GSRT- 9/26/85 CAl analytical 9/26/	10/3/85 85	1/17/86
AIR			NUS Pittsburgh 10/3/85, Chemtech		
RUNOFF					
3PILL					
90%.					•
VEGETATION					
OTHER					
M. FIELD MEASUR	EMENTS TA	KEN			
01 TYPE		02 COMMENTS			
HNU		Background	0.6 parts per million No readings abo	ove backgro	und
Mini-alert		No readings	above background		
	•				
IV. PHOTOGRAPH	S AND MAPS	;			
01 TYPEX☐ GROUP	NO T AERIAL		OZ IN CUSTODY OF NUS Corporation report		
03 MAPS ① YES □ NO	04 LOCATION NUS	of maps Corporation	report		
	ATA COLLE	CTED (Provide narrative de:	· ICrahani		
None					
VI. SOURCES OF	INFORMATIC	N (Cre apacific references.	g state ires, sample analysis, reports)		
NUS FIT III	Site Ins	pectionsof Se	otember 26, 1985 and October 3, 1985		- · · · · -
	,	-	· · · · · · · · · · · · · · · · · · ·		4

&EPA	P	SITE INSP	ZARDOUS WASTE SITE ECTION REPORT NER INFORMATION	OLATATE OF	CATION SITE NUMBER 588
L CURRENT OWNER(S)			PARENT COMPANY (Waspielow)		
1 NAME	k	2 D+8 NUMBER	OS NAME		D+8 NUMBER
Occidental Chemical Corp	1		N/A	·-	
3 STREET ADDRESS (P.O. Box, RFD #, etc.)		04 SIC CODE	10 STREET ADDRESS (P.O. Box. AFD F, etc.)	•	11 SIC COD€
Armand Hammer BLVD					
sarv p	STATE	77 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
Pottstown	PA	19464	1		
1 NAME		22 D+8 NUMBER	08 NAME		09 0+8 NUMBER
N/A	- 1		N/A		
S STREET ADDRESS (P.O. Bos., AFD #. etc.)		04 SIC CODE	10 STREET ADDRESS (P.O. Bast, RFD P. Hic.)		11 SIC CODE
S CITY O	6 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
	1		Į.	1 1	
OI NAME		02 D+8 NUMBER	OS NAME		09 0+8 NUMBER
Ν/Δ	ŀ		37/.		
3 STREET ADDRESS (P. O. Box, AFD F. etc.)		04 SIC CODE	10 STHEET ADDRESS (P.O. Box, MFO P. onc.)		11SIC COD€
					Į
в слу р	6 STATE	7 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE
	1				
1 NAME	- 1	02 D+B NUMBER	OR NAME		090+8 NUMBER
27/4	[N/A		
N/A D3 STREET ADDRESS (P.O. Box AFD P. BIC.)		04 SIC CODE	10 STREET ADDRESS (P.O. Box, AFD P. etc.)		IT I SIC CODE
s cary	6 STATE	07 ZIP COD€	12 CTY	113 STATE	14 ZIP CODE
	7				
M SPENIONE OWNERS			nr Bras SV Overstein		
N. PREVIOUS OWNER(S) (List myst recent hirst)		2 D+8 NUMBER	IV. REALTY OWNER(S) IN ADDRESSME HAS		02 D+8 NUMBER
	ľ		N/A		
Hooker Chemical STREET ADDRESS (P. O. BOST, RFD P. BOST,		04 SIC CODE	03 STREET ADDRESS (P.O. Box. RFD #, sec.)		04 SIC CODE
Armand Hammer BLVD	STATE	7 ZP CO06	05 CITY	OS STATE	07 ZIP CODE
	PA	19464	-		
Pottstown I		2 D+8 NUMBER	01 NAME		02 D+8 NUMBER
N/A	ŀ		N/A		
3 STREET ADDRESS (P O. Box. AFD P. otc.)		04 SIC CODE	03 STREET ADDRESS (P.O. Best, RFD #. etc.)	l	04 SIC CODE
s City O	STATE	7 ZIP COOE	OS CITY	06 STATE	O7 ZIP CODE
	[
1 NAME		02 D+B NUMBER	O1 NAME		02 D+8 NUMBER
N/A	ł		N/A	į	
3 STREET ADDRESS (P.O. Box. AFD #, etc.)	1	04 SIC COO€	03 STREET ADDRESS (P O Box. RFD F. orc.)		04 SIC CODE
		J			1
SCITY [0	STATE	07 ZIP COOE	05 City	06 STATE	07 ZIP CODE
					-
/. SOURCES OF INFORMATION (Cite specific in		A SINCE PROPERTY AND ADDRESS OF THE PARTY AND			
, sounces of infunktion (ca wise)					
NIIS FIT III sita inspecti	iona o	f Santamber	26 1005 and Oatstan a 1	100	
PA DER preliminary As	20115 0	r september	26, 1985 and October 3, 1	. 760	
TA DAN DICHIIIII V AS	ってつりまけ	CIIL TAOU			

⊕EPA			SITE INSPE	ARDOUS WASTE SITE ECTION REPORT ATOR INFORMATION	L IDENTIFE 01 STATE 02 PA	CATION SITE NUMBER 588
L CURRENT OPERATO	OR (Provide & attorners too			OPERATOR'S PARENT COMP	ANY (Fappleshie)	
NAME		ľ	02 D+8 NUMBER	10 NAME		11 D+8 NUMBER
Occidental Ch	emical Corp			N/A		
			04 SIC CODE	12 STREET ADDRESS (P.O. Box, MFD #, a	HC.)	13 SIC CODE
Armand Hamn	ner BLVD	IOS STATE!	O7 ZIP CODE	14 City		
		1		14 GIY	IOSIAIE	16 ZIP CODE
Pottstown YEARS OF OPERATION	OR NAME OF OWNER	PA	19464			
1980 - present					•	
						
II. PREVIOUS OPERAT	OR(S) (List most recent for		y if different from owner) 02 D+8 NUMBER	PREVIOUS OPERATORS' PAR	RENT COMPANIES (#	anericable)
Firestone Tir	e and Rubbe	1		N/A		TT DY DINGMISE!
				12 STREET ADDRESS (P.O. Box, MFD e.	esc.)	13 SIC COD€
Firestone BL	VD. (Armand	Hamn	ner BLVD)		•	
SCITY			07 ZIP COOE	14 GTY	15 STATE	16 ZIP CO0€
Pottstown		PA	19464			
S YEARS OF OPERATION	00 NAME OF OWNER	CUPING THE	PERIOD			
1945-1980 ·	Same					
I NAME			02 D+8 NUMBER	10 NAME		11 D+B NUMBER
Jacobs Aircra	aft and Engir	ie Cor	npany	N/A		
3 STREET ADDRESS (P.O. 84	e, NFD #. esc.)	· · · · · ·	04 SIC CODE	12 STREET ADDRESS (P.O. Box. AFD #.	eld.)	13 SIC COOE
Firestone BL	VD					
S CITY			07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE
Pottstown		PA	19464			
8 YEARS OF OPERATION	09 NAME OF OWNER	DURING THE	8 PENICO			
1 NAME			02 D+S NUMBER	10 NAME		11 D+B NUMBER
N/A			104 SIC CODE	N/A 12 STREET ADDRESS (P.O. Box, RFD e, a		Ita SKC CODE
3 STREET ADDRESS (P.O. 80	a, MFD #, sec.)		W SC CODE	12 STREET ADDRESS (P.O. Box, APD F.	erc.)	13 32 0002
5 CITY		IOS STATE!	07 ZIP CODE	14 CITY	115 67476	16 ZIP CODE
Juli			or air code	1-4-1	1331AIE	16 ZIP CODE
6 YEARS OF OPERATION	00 NAME OF OWNER	DURING THE	S PERIOD			
IV. SOURCES OF INFO	EMATION					
						<u> </u>
NUS FIT III s	ite inspectio	n of Se	eptember 26	, 1985 and October 3, 1	.985	
PA DER prel	iminony car-	aam	+ 1000			
ty new bler	immary asse	ssmen	r 1990		•	
					•	
_						
					*	

02 D+8 NUMBER 04 SIC CODE 19464 02 D+8 NUMBER 04 SIC CODE 07 ZIP CODE	01 NAME N/A 03 STREET ADDRESS (P.O. Box. AFD P. MC.) 05 CITY		02 D+8 NUMBER
04 SIC CODE 19464 02 D+8 NUMBER 04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)		
04 SIC CODE 19464 02 D+8 NUMBER 04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)	[
04 SIC CODE 19464 02 D+8 NUMBER 04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)	[
07 ZIP CODE 19464 02 D+8 NUMBER 04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)	[
19464 02 D+8 NUMBER 04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)	[
19464 02 D+8 NUMBER 04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)	[
02 D+8 NUMBER 04 SIG CODE 07 ZIP CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)	ļ	
04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)		
04 SIC CODE	N/A 03 STREET ADDRESS (P.O. Box. RFD P. osc.)		
07 ZIP CODE	03 STREET ADDRESS (P.O. Box, RFD P, Mc.)		04 SIC CODE
07 ZIP CODE			04 SIC CODE
07 ZIP CODE			J 44 000 000 000 000 000 000 000 000 000
	05 CITY		8
	05 CITY		
02 0+6 NUMBER	1	OS STATE	7 ZIP CODE
02 D+6 NUMBER			
	01 NAME		2 D+8 NUMBER
	NT/A		
04 SIC CODE	O3 STREET ADDRESS (P.O. Sus. NFD P. osc.)		04 SIC CODE
	,		
07.770.0005		los erarel	1 22 2005
UI ZIP COOL	USCIT	N-31712	" ZP COUE
			-
02 D+8 NUMBER	01 NAME	10	2 0+8 NUMBER
	N/A	1	
104 SIC CODE			04 SIC CODE
AT THE COOPE		los exavel	37 7/8 COOE
UI ZIP CODE	05 41 7	0031212	77 EF 000E
02 D+8 NUMBER	01 NAME	ľ	2 D+8 NUMBER
	NT / A		
04 SIC CODE	03 STREET ADDRESS (P O. Box, AFD P, orc.)		04 SIC CODE
			- [
07 ZIP CODE	05 CITY	OS STATE	O7 ZIP CODE
		1 1	
<u></u>		L	
	04 SIC CODE 07 ZIP CODE 04 SIC CODE 04 SIC CODE 07 ZIP CODE	02 D+8 NUMBER 01 NAME N/A 04 SIC CODE 03 STREET ADDRESS (P.O. Box. AFD P. etc.) 07 ZIP CODE 05 CITY 02 D+8 NUMBER 01 NAME N_/A 04 SIC CODE 03 STREET ADDRESS (P.O. Box. AFD P. etc.) 07 ZIP CODE 05 CITY	02 D+8 NUMBER

|--|

⊕EPA	POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES	L IDENTIFICATION 01 STATE 02 SITE NUMBER PA 588
IL PAST RESPONSE ACTIVITIES		
01 () A. WATER SUPPLY CLOSED 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 D B. TEMPORARY WATER SUPPLY PR	OVIDED 02 DATE	03 AGENCY
N/A		
01 C. PERMANENT WATER SUPPLY PR 04 DESCRIPTION	NOVIDED 02 DATE	03 AGENCY
N/A 01 CVD. SPILLED MATERIAL REMOVED	02 DATE7/84	03 AGENCY by company
04 DESCRIPTION A TCE spill near process wel		WASSET
01 & E. CONTAMINATED SOIL REMOVED		03 AGENCY by company
O4 DESCRIPTION A TCE spill near process wel		03 ASS(01
01 D F. WASTE REPACKAGED	02 DATE	03 AGENCY
04 DESCRIPTION N/A		
01 G. WASTE DISPOSED ELSEWHERE 04 DESCRIPTION	02 DATE	03 AGENCY
N/A		
01 () H. ON SITE BURIAL 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 🗆 I. IN SITU CHEMICAL TREATMENT 04 DESCRIPTION N/A	02 DATE	O3 AGENCY
01 🗆 J. IN SITU BIOLÓGICAL TREATMENT 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 (I) K. IN SITU PHYSICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY
N/A		
01 L ENCAPSULATION 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 (I) M. EMERGENCY WASTE TREATMEN 04 DESCRIPTION	02 DATE	O3 AGENCY
N/A 01 N. CUTOFF WALLS 04 DESCRIPTION	02 DATE	03 AGENCY
N/A		
04 DESCRIPTION	WATER DIVERSION 02 DATE	03 AGENCY
N / ∆ 01 □ P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION	02 DATE	03 AGENCY
N/A		_
01 (O. SUBSUPFACE CUTOFF WALL 04 DESCRIPTION	02 DATE	03 AGENCY
N/A		

	SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES		01 STATE 02 SITE NAMEEN
PAST RESPONSE ACTIVITIES (Community)			
01 P. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			~
01 CXS. CAPPING/COVERING 04 DESCRIPTION	02 DATE _October 1985	03 AGENCY	by company
• • • • • • • • • • • • • • • • • • • •	ld landfill was under way during site		
01 T. BULK TANKAGE REPAIRED	OZ DATE		
04 DESCRIPTION N/A			
01 DU. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	O2 DATE	03 AGENCY	<u> </u>
N/A	, ·		
01 U. BOTTOM SEALED	02 DATE	03 AGENCY	
04 DESCRIPTION			
N/A 01 C W. GAS CONTROL	02 DATE	00 4051/01	•
04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 C X. FIRE CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY	
N7 / A			
N/A 01 □ Y. LEACHATE TREATMENT	G2 DATE	03 AGENCY	·
04 DESCRIPTION			
01 D Z. AREA EVACUATED	O2 DATE	02 ACENCY	<u> </u>
04 DESCRIPTION	V2 54.12	OJ AGENO	——————————————————————————————————————
N/A			
01 ☐ 1. ACCESS TO SITE RESTRICTED 04 DESCRIPTION	02 DATE	03 AGENCY	1
N/A			
01 2. POPULATION RELOCATED 04 DESCRIPTION	02 DATE	03 AGENCY	<u></u>
N/A			
01 3. OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	02 DATE	03 AGENCY	<u> </u>
O4 DESCRIPTION			
None			
			•

NUS FIT III site inspections of Septmeber 26, 1985 and October 3, 1985 PA DER Preliminary Assessment 1980

EPA FORM 2070-13 (7-81)

\$EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

L IDENTIFICATION

01 STATE 02 SITE NUMBER
PA 588

IL ENFORCEMENT INFORMATION

01 PAST REGULATORY/ENFORCEMENT ACTION @ YES \$\frac{1}{2}\$ NO

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

None

III. SOURCES OF INFORMATION (Cite apocific references: e.g.: state files, sample analysis reports)

NUS FIT III site inspections of September 26, 1985 and October 3, 1985 PA DER preliminary assessment 1980

SECTION 6

6.0 LABORATORY DATA

6.1 Sample Data Summary

GLOSSARY

Data Summary Footnotes

In the data summary which follows, data qualifier code letters are associated with these definitions:

- This concentration reported by laboratory, but evidence to doubt presence of compound/element (may or may not be present).
- J Approximate value; detected below limit of accurate quantitation.
- Value is greater than or equal to the instrument detection limit, but less than the contract required reporting limit.
- UF The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- F The associated numerical value is an estimated quantity because quality control criteria were not met. (See Quality Assurance Review for specifics as to magnitude or direction of variability or bias.)
- R Quality Control indicates that data are unusable (compounds may or may not be present). Resampling and/or reanalysis is necessary for verification.
- N Evidence for presence of material is presumptive (tentative identification).

. . . .

F3-8506-21 TDD Number EPA Number

SAMPLE DATA SUMMARY TARGET COMPOUNDS

[] Inorganic M Organic

sire Name Occidental Chemical Date of Sample

Compounds Detected

TH 500 1	s repor	ted as dry			204		,		Pr
-			71.	•	43 2 C	ري (<u>ک</u>	\	メング
Sample Sample Description	Pass	Units	7 7 7 5 7 5 2 7 5 2 5 7 5 2 5 7 5 2 5 7 5 2 5 5 5 5	76e 4	1 3 6 8 8 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ص ماران م	John John John John John John John John	2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	A STATE Remarks
12270 Manitoring	AQ	7/6m	W.70	-		-			
CC276 Sulfitz Monitoring	40	760			3.53	3.15			
C277 Rock Well	Ø	49/L 3.95	95 150 14.9	φ ^ε	8.4	3.9 1 1.9	Ι.	0.9	J-C
2278 Rock Well	AQ	Mg/r							
12280 Rock well	AQ	762							
1028) Sediment	Sed	gy/kg	OH)		lj č o	الم 000 ال	J 180	24,000	Medium BNA de Pesticide D.L.s
1283 Seepage	Sed	1. 3/kg 4. 23	18,000 24,000	3,600	5.5×15	F,000	13,000 1.0x18	66,000 33,000	Medium BMA. VOA, a Pest D.Cs
1284 Seepage#2	Sed	149 5,400	too 5,400 11,000		F 1.0×15	[g _{,000}	F,600 950		Medium BNA, VOR, a Rest D.L.s
C291 Blank	Aa	N Brr	9.9						
X292 Blank	So(84/8m	Not Analyzed	1 1	per SMO I	Instructions	ons		
:C294 DUPLICATE OF SCALINGAT	Sed	mg/kg	110 22	8	520	980 J	1 05		Medium BNAd Pesticide D.L.S
A									
2				:					
ON TENNESS OF STATE AND ASSESSMENT OF STATE ASSESSMENT OF STATE AND ASSESSMENT OF STATE ASSESSMENT OF STATE AND ASSESSMENT OF STATE ASSESSMENT OF STAT					7				

O'Denotes results of questionable qualitative significance based upon quality assurance review of data.

Note: 5 agueous samples under a different case #. QA. for these 5 were performed by CRL.

AR 100547

TDD Number EPA Number

sice Name Occidental Chemical

	۵		
		Compounds Detected	
		spunodus	
SO	o paric	ď	'
OMPOUN	D Inorg		
TARGET COMPOUNDS	Organic Directanic		//
5 —	E)		-
-8611-13			7
E3-8506-21 /F.3-8611-13	DA-588		inle results renouted as
E3			Plan

No.
Sample Sample Description Phase Units 15 15 15 15 15 15 15 15 15 15 15 15 15
1/6m DA
CC276 Suffre Manitoring A.Q. Lugh
CC277 ROCK Well AQ 49/6 13
CC278 Rock Well 40 Mg/ 18
CC280 Reck Well AQ 49/L 3.50
CC281 Pond Sediment Sed 41,000, 93,000 93,000
CC283 Seepage Sed 49/kg 28,000 1004, 4 Pest D. Ls
12284 Secpage 2 Sed 149/kg 89,000 BNA, Lagoon #2 Sed 149/kg 89,000
(C-291 Blank AQ 49/2 4.31
CC292 Blank Sof 49/kg Not Analyzed Per SMO Instructions
CC294 Bond sediment Sed 49/kg 72,000 84,000 12,000
A1
40. O for a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

Greeners results of questionable qualitative significance based upon quality assurance review of data.

A Note: 5 aqueous samples under a different cure # 3 A

Note: 5 aqueous samples under a different cuse #. QA for these 5 were performed by CRL.

Site Name Occidental Chemical Date of Sample 10 3 / 8 5 SAMPLE DATA SUMMARY TARGET COMPOUNDS 🗌 Inorganic Organic TDD Number F3-8509-06 /=3-86//-/3
EPA Number EPA Number

Remarks Chrothal here 9.45 Compounds Detected 2.5 5 1.13 2.8 5 345/470 00 C HPP. 184 E MANS ILS. ILS. INCHES AND THE PAGE AND THE 1500 190 2 X VICTOR 730 250 0.53 349 Ulot Shisolds Chlorida 3 05 05 5 P130/45 89005 Kun 10/8/ DA 9/6 18/8/ DA! 1801 DF 10/ DA Units AQ Phase Sample Description and Location . U2 4 W 16271 field blank (VV) 10 RN 160 3 126387 CC 279 Sample Number 986 23 69833 AR 0054 9

i į

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

SAMPLE DATA SUMMARY TARGET COMPOUNDS F3-8506-21/F3-8611-13

K Inorganic 🗌 Organic

OCCIDENTAL CHEMICAL 58/12/6 Date of Sample Site Name

PA-688

TDD Number EPA Number CASE

4992

Compounds Detected

Sample Sample Description Phase Units	Streens Assertion	Ulmonius Calcius	1011 150ddo	Remarks
170001 MW 6 AQ UG/L 89580	1463 4.5	121 881 00861	114 141900 21.8 28270	
MCDOH MW 6 FILTER AQ UG/L 205	[35][O.4]	06001	[[532]]	
MED 025 SULFITE MW AB UC/L 128400 15.9	4 4151 (8.8	\$6730 173 215	1966 233200 346 59700 CF	59700 of the cuit he verified
MCD 026 SULFITE MW AW UG/L 205	[[[] [58] 00299	3 \$ 36\$ 23900	
MCB 027 ROCK WELL 1 AQ UC/L	295	[21] [1] 02164	01081 05124 45	
MCDOZE ROCK WELL AQ UCIL	[144]	04004	1588 [8020	
moory ROCK WELL AQ UC/L 238	. 504	46450 [[4]	198000 For.3 13310	
100 030 ROCK WELL AQ UC/L	[481]	11790	(27) (13460	
AGO ON ROCK WELL AU UG/L 2004	426 [0.8] 5.1	27 72 03082	86 4.30 8422	
40034 Rock WELL AQ UCK	[(8]	71460	[64] [73]	
CD035 SEDIMENTATION SOL MUKC 6149 24,0	1,0 [1,6]	F6929 19 FF 7]	20 [6580 [17.4 [1018]	
10 27 SEEPALE SOL MG/KG 4880		סך ננודו	[[[-433]]	
CO 038 LACOUN 2 SOL MUKE 7174		18461 54	[159] 928 [[165]]	
CO ES BLAWK AQ UC/L				

TE: Trans a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

👌 Denotes results of questionable qualitative significance based upon quality assurance revi

SALPLE DATA SUMMARY TARGET COMPOUNDS 30 Number F3-8506-21/F3-8611-13

M. Increasing Octganic

Site Na ve OCC 1DF NIAL CHEMICAL

3812716 Date of Sample

4992

25A Number

Compounds Detected CASE

100	
Sample Sample Description Phase Units A A A C C C	Sells Silve Soll File File All Challes Remarks
MCO 013 MW 6 AQ UG/L 8168 0.3 179 [3948]	7429 . 151.6 549
MOONY AW 6 PILTER AQ UL/L 200	7000 28 位
MED 025 SULFITE MW AW UG/L 10010 4.0 422 1058	44160 225.3 1005
MCO WG SULFITER AW OC/L 3753 . 48 [3704]	な bh
MCO 027 ROCK WELL 1 AQ UC/L 1473 47 [1299]	22410 84
med 028 Rack WELL AQ UG/L 1183 [[278]	23080 [[15] \$\times
med oug Rock WFLL AW UL/L 659 49	6763 [24.8] 50
MODE 2- FILTER AR ULL 24 [717]	
mco 033 Rock WELL AQ UL/L 6036 0.2 80	[3,19] 22630 [23.5] 228
ROCK WELL AW WELL 250 [100]	23740
medas septementrion sol myles 249 0.6 [175]	[862] 40.2 61 67
MESS SEEPHEE 4 SUL MG/KG 69 0.6 [1240]	[411] [3.8] 109 49
MESTON SFEPRICE SOLMU/FU 90 [1687]	[862]
MCE 655 BLAWK AQ UL/L	
AR 100551 and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report. AR 100551.	the Analytical Quality Assurance section of this report. review of data.

SAMPLE DATA SUMMARY TARGET CONPOUNDS

K Investatio 🛮 Organic

Site Name OCCIDENTAL CHEMICAL

58/12/6 Date of Sample

Compounds Detected

4992

124 Number

TO Number F3-8506-21 163-8611-13

CASE

	Remark											
	Sougery			[894]								
	hon hon			F62.4								
	leddo?	[44]		5 4269								
	110705			[10] 2:								
	(I) ONE ON ON			23 F								
wall	Yres Yres	[637]		Fyoss								
Wnj	III. ISB			[1.4]								
L	ANIA SALANIA			F184 [[1.								
Auo	Anosik Juseik			127	·							
iana	inul ^k			65								
as dry	Units /	1/20	MG/KG	MG/KG 7165								
eported	Fhase	AB	SOLA	SOL M								
Solid sample results reported as dry weight.	Sample Description and Location	BLANK-FILTER	ボ	SEDIMENTATION SOL POND-DUPLICATE SOL								
d sample ght.												
Solid sa weight.	Sample Number	MC 382	MCL 386	MCC 394				A	10	05	52	

AOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

of questionable qualitative significance based upon quality assurance re

of data.

Sie Na ve OCCIDENTAL CHEMICAL BOTTLE BLANK Remarks (\$). \$1000 102012d Date of Sample 7/27/85 9 *DIUBAS ¥ 311/2 [8] 3] 77 MUIDBUBA 46.0 Compounds Detected U.Z Theillum Unipos [419] [1.5] [405] SALPLE DATA SURMARY TARGET COMPOUNDS [585] KInce ganic tanills. Selentum Organic Whise Sold [[128 [82] 13 to JA Mercury 0.7 Panganese Se F3-8506-21/1-3-8611-13 237 POND - DUPLICAL S OL ME/KG Solid sample results reported as dry AQ VE/L 50L MM/KL Units PA-588 Phase SEDIMENTATION MC 382 BLANK - FILTER Sample Description and Location BLANK 4992 TOD Number IFA Number weight. Sample Number CASIE MCC 386 MCC 394

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

Ħ.

Ormores results of questionable qualitative significance based upon quality assurance review of data.

+-Audusir unt reasined

SAMPLE DATA SUMMARY TARGET COMPOUNDS

TARGET COMPOUNDS

Organic II inorganic

TDD Number F3-8507-06 1F3-8611-13

EPA Number

Site Name County Charical
Date of Sample 12 3 - 3

Compounds Detected Compounds Detected	Property of the last	1 40 Links 3096	8/2 / A.D. Light [167]	W 3 AO 40/4 [199] [89] 426.99 1/620 1/620	10 mg H 1179153 40 3505 34 38m5 525 330 470 32500 154 72 mg	AC	3 40 mg/4 975 5600 5000	10 40 44 1/33 611X 13 · 125 232X	144 Lind (144)					
	Sample Sample Description Number and Location	Old Filtyrod AC		1 Filling AO	1 1		140	1 1	Pow wo	A.C.	00	55		

of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report. NOTE: For a ry

. O Denote: ts of questionable qualitative significance based upon quality assurance

the Analytical Qua

F3 - 950 9: 06 / F3 - 861/-13

TDO Number EPA Number

TARGEI COMPOUNDS

Organic II Inorganic

Inorganic

Site Name Criston to Control

-

Remarks 25.125 CXANIBE WN ARNEY 12.22 13.7 3 [01] SO [6/] 131 Ş 713 **Compounds Detected** 340 1239 J [35] 5 C J. (25/ MA ROS 1850 15000 10337 6835 1500 VISATIS Lunin Marie りご (P) [(40.7] 1,31100 1953 50.77 166.7 1777 73 to N [34] 0/6 Remoder 353NWENDY 193 10 Mil 31610 do 1916 1448 Ay 401 3530 481 73 1/0.1 As Well April Old Now OF F.12.108 11/1/ 100 My 11 Plase Sample Description and Location 7. 12NS 1.1.5.1 Plink. Sample 232 MED MCD 6214 6:00 Din Cesi VICA 200 Arc d 1 || || || AR | 00 5 5 5 524 031 110

NOTE: For a review of this data and non-target, tentatively identified compounds, please see the Analytical Quality Assurance section of this report.

6.2 Quality Assurance Review

6.2.1 Organic Data: Lab Case 4992

6.2.1.1 Introduction

The findings offered in this report are based upon a general review of organic analytical data for 10 samples. Four medium-level sediment samples and 6 low-level aqueous samples were analyzed by a single contract laboratory. In particular, blank analysis results, surrogate and matrix spike results, duplicate analysis results, calibrations, target compound matching quality, and tentatively identified compounds were examined in detail. In addition, 5 aqueous samples for this site are addressed in a separate Quality Assurance Review prepared by EPA Region III Central Regional Laboratory under Case 5053.

6.2.1.2 Qualifiers

It is recommended that this data package be utilized only with the following qualifier statements:

o All positive results for methylene chloride, acetone, and di-n-butyl phthalate are questionable.

The aforementioned results were designated questionable because there is evidence to doubt the presence of these compounds at concentrations less than or similar to the levels reported. However, with certain exceptions listed below, it can be assumed that concentrations significantly greater than the levels reported cannot be present.

o All positive VOA results for samples CC283 and CC284 should be considered estimated. In addition, the actual detection limits for other VOA compounds in these samples may be slightly higher than reported. This is particularly true for chlorobenzene.

- o All positive VOA results for samples CC281 and CC294 should be considered estimated. In addition, the results for benzoic acid in sample CC281, di-n-octyl phthalate in sample CC294, and butylbenzyl phthalate in both samples should be considered estimated.
- o The laboratory did not report the presence of vinyl chloride in sample CC277. Further information was requested which has confirmed the presence of this compound at an estimated concentration of 3.9 ug/l. This result has been incorporated into the sample data summary.

Partieile 0

- The actual detection limts for alpha-BHC, beta-BHC, delta-BHC, gamma-BHC, heptachlor, and aldrin may be substantially higher than reported (at least 10 times) for sample CC277.
- o The reported detection limits for 2-butanone and bromodichloromethane are unreliable and may be substantially higher than reported for all samples.
- o The reported detection limits for 4-chloroaniline and benzidine are unreliable and may be substantially higher than reported for samples CC278, CC280, CC281, and CC294.
- o The reported detection limits for 4-chloroaniline and 3-nitroaniline are unreliable and may be substantially higher than reported for samples CC283 and CC284.

6.2.1.3 <u>Findings</u>

o Field and/or laboratory blank analysis revealed methylene chloride, acetone, and di-n-butyl phthalate at sufficient concentrations to question all positive results for these compounds. In addition, the laboratory noted that insufficient quantity of field blank CC292 was received to perform complete analysis. Per instructions from SMO, analysis of this blank was canceled.

- o Low surrogate and matrix spike recoveries were reported of all 3 VOA surrogate compounds and 4 out of the 5 VOA matrix spike compounds in samples CC283 and CC284. The laboratory noted that these solid samples partially dissolved into solution during the methanol extraction procedure. Recovery losses due to matrix absorption probably accounts for the observed low recoveries. As a result, all positive VOA results for these samples were flagged as estimated and the actual detection limits for other VOA compounds may be higher than reported.
- o High VOA surrogate recoveries for the compound dg-toluene in samples CC281 and CC294 are attributable to low internal standard responses from the third internal standard. Erratic area responses from both the second and third internal standards may have affected the quantitative accuracy for trichloroethene, toluene, and benzene in these samples. Further supporting evidence is the fact that very high and erratic recoveries were noted for trichloroethene, benzene, and toluene in the matrix spike and matrix spike duplicate of sample MCC281. Furthermore, additional VOA and BNA results for this field duplicate were flagged as estimated because poor precision was noted.
- o Examination of the VOA chromatogram revealed a low-level result for vinyl chloride in sample CC297, but it was not reported. The laboratory has sent the spectrum and a single ion chromatogram which has confirmed this identification.
- o Examination of the pesticide chromatogram of sample CC277 revealed a very large interfering peak for the first 5 to 6 minutes. This is the region in the chromatogram that all BHC pesticides, heptachlor, and aldrin would elute if they were present. The laboratory diluted by a factor of 10 and reanalyzed the extract. This dilution was somewhat successful in eliminating the interfering peak, but the reported detection limits for the aforementioned pesticides were not adjusted for this dilution.

o Poor relative response factors (below 0.05) were noted for 2-butanone, bromodichloromethane, 4-chloroaniline, 3-nitroaniline, and benzidine in the continuing calibration standards associated with the aforementioned samples.

o Tentatively identified compounds which are not suspected artifacts/contaminants are listed in the support documentation appendix. In particular, Caprolactam^R (hexahydro-2H-azepin-2-one) was detected in several of the aqueous samples.

6.2.1.4 Summary

The attached Quality Assurance Review has identified the aforementioned areas of concern. The text of this report has been formatted to address only those problem areas which affect the application of the data to the subject investigation. Documenta on of these problems and also any observed areas of contractual noncompliar, e are included in the attached Support Documentation appendix to this report.

Report prepared by Rock J. Vitale (215) 687-9510

6.2.2 Inorganic Data: Lab Case 4992

6.2.2.1 Introduction

The findings offered in this report are based on a general review of all available inorganic laboratory data, blank analysis results, matrix spike, laboratory and field duplicate results, calibration data, quantitation of results, and ICP interference results. In addition, 5 aqueous samples for this site are addressed in a separate Quality Assurance Review prepared by EPA Region III Central Regional Laboratory under Case 5053.

6.2.2.2 Qualifiers

It is recommended that this data package be utilized only with the following qualifier statements:

o The results which are qualitatively questionable are listed below:

Constituents	Samples with Questionable Results
aluminum	MCD014, MCB026, and MCD029
copper	MCD026, MCD037, and MCD038
iron	MCD014, MCD026, MCD030, and MCD034
lead	MCD013 and MCD033
potassium	All positive sample results
silver	MCD033
sodium	All positive solid sample results
zinc	MCD014, MCD028, MCD030, MDC034, and MCD038

The aforementioned results were designated questionable because there is evidence to doubt the presence of these constituents at concentrations less than or similar to the levels reported. However, with certain exceptions listed below, it can be assumed that concentrations substantially greater than the levels reported cannot be present.

o The positive result for lead in sample MCD025 cannot be verified as is normally possible with other analytes analyzed by ICP.

o The positive results may be slightly higher than reported for calcium and zinc and substantially higher than reported for barium in field duplicates MCD035 and MCC394.

- o The reported concentrations of cobalt, iron, and lead in field duplicates MCD035 and MCC394 should be considered estimated.
- o The reported concentration of lead in sample MCD029 should be considered estimated.
- o The actual detection limits for selenium in samples MCD026, MCD028, MCD030, and MCD034 may be slightly higher than reported. (In addition, it should be noted that higher detection limits have been reported for selenium for samples MCD013, MCD025, MCD027, MCD029, and MCD033.)

6.2.2.3 Findings

- o Field and/or laboratory blank analysis revealed the presence of aluminum, copper, iron, lead, potassium, silver, sodium, and zinc at sufficient concentrations to question the aforementioned sample results for these constituents.
- o The ICP interference mixture which the laboratory analyzes to monitor spectral effects did not contain lead. As a result, the absence of these effects on the quantitation of lead in sample MCD025 cannot be ruled out.
- o The laboratory has reported an "E" next to results for barium, calcium, and zinc in all solid samples. This footnote indicates that an interference was present in the quantitation of these analytes as demonstrated by a serial dilution performed on sample MCD035. After this dilution, a 16 percent higher concentration was obtained for zinc, 20 percent higher for calcium, and 500 percent higher for barium. This interference may only be applicable to this sample and its corresponding field duplicate since these samples appear to be fairly unique in their chemical and physical characteristics.

o Analysis of field duplicates MCD035 and MCC394 revealed poor precision for cobalt, iron, and lead. In particular, the coelation coefficient was below acceptable criteria for the quantitation of lead in sample MCC394 (method of standard additions).

- o Lead was quantitated by the method of standard additions for sample MCD029. However, the coelation coefficient was markedly below criteria.
- o Poor post-digestion spike recoveries were reported for selenium in samples MCD026, MCD028, MCD030, and MCD034. However, it should be pointed out that these recoveries were between 40 and 60 percent. Although these recoveries are contractually acceptable, the reported detection limits may still be affected. (In addition, poor post-digestion spike recoveries (less than 40 percent) were obtained for selenium and necessitated dilution and a 5-fold adjustment in detection limits for samples MCD013, MCD025, MCD027, MCD092, and MCD033.)
- o The laboratory chose field blank MCB655 for matrix spiking purposes. The use of a field blank for this purpose does not give a good indication of matrix effects encountered with environmental samples. In addition, it is contractually unacceptable.

6.2.2.4 <u>Summary</u>

The attached Quality Assurance Review has identified the aforementioned areas of concern. The text of this report has been formatted to address only those problem areas which affect the application of the data to the subject investigation. Documentation of these problems and also any observed areas of contractual noncompliance are included in the attached Support Documentation appendix to this report.

Report prepared by Rock J. Vitale 100 Date: November 17, 198 (215) 687-9510

Site Name: Occidental Chemical

TDD No: F3-8509-06

6.2 Quality Assurance Review

6.2.1 Organic Data: Lab Case 5053

6.2.1.1 Introduction

The findings offered in this report are based upon a general review of sample data, blank analyses results, surrogate and matrix spike results, target compound matching quality, and tentatively identified compound results for 5 aqueous samples analyzed by one laboratory.

The attached data summary contains only compounds which were reported as detected in at least one sample. The complete list of compounds analyzed for, their results, and associated detection limits are located as an Appendix.

The data summary contains the following qualifier codes:

- U The material was analyzed for, but was not detected. The associated numerical value is the estimated sample quantitation limit.
- J The associated numerical value is an estimated quantity because quality control criteria were not met.

6.2.1.2 Qualifiers

It is recommended that this data package be utilized only with the following qualifier statements:

° The following results have been qualified as not detected due to blank contamination:

<u>Compound</u> <u>Samples Affected</u>

methylene chloride CC279, CC286

- Oetection limits for the ABN compounds in sample CC269 may be higher than stated by the laboratory.
- The actual detection limit for pentachlorophenol in sample CC271 may be higher than the reported value.
- o The low levels of phthalates detected may be artifacts of common lab contamination.

6.2.1.3 Findings

- ° For sample CC269, none of the three acid surrogates were detected and one B/N surrogate recovery was outside the lower detection limit during the initial analysis. Reanalysis (completed 2 weeks later) had one acid surrogate outside the lower acceptance limit.
- The method of reextraction and calculation for the ABN fraction of sample and CC269 doubled the B/N surrogate recoveries. No negative data impact occurred; actual detection limits for B/N compounds would be lower than the reported values.
- Both matrix spikes of sample CC271 failed to detect pentachlorophenol under proper instrument conditions. A matrix interference may be present.
- Methylene chloride was detected in the lab blank at a sufficient quantity to question the reported values in samples CC279 and CC286. (Note: The high value reported in sample CC286 is due to a dilution factor. The amount detected is less than 10x the reagent blank value.)

6.2.1.4 <u>Summary</u>

This Quality Assurance Review has identified the following areas of concern: possible matrix interference for pentachlorophenol in sample CC271, poor surrogate recoveries in two samples and slight lab contamination with methylene chloride.

Please see the accompanying support documentation appendices for specifics on this Quality Assurance Review.

Report prepared by Diana Pickens Stana Jofichens Date: 12/20/85
(301) 224-2470, FTS 922-3752

Site Name: Occidental Chemical

TDD No.: F3-8509-06

6.2.2 Inorganic Data Lab Case 5053

6.2.2.1 Introduction

The findings offered in this report are based upon a review of all available sample data, blank results, matrix spike and duplicate analysis results, ICP interference QC, calibration data, and quality assurance documentation.

6.2.2.2 Oualifiers

It is recommended that this data package be utilized only with the following qualifier statements:

• The results which may be qualitative y questionable are listed below:

Constituent	Samples With Juestionable Results
Iron	MCD 651
Zinc	MCD 032

- The aforementioned results were designed questionable since there is evidence to doubt the presence of these constituents at any concentration less than or equal to the levels reported. However, it can be assumed that concentrations significantly greated than the levels reported for these samples cannot be present.
- The reported results for tin in sample MCD 015 may not accurately reflect the average concentration for this constituent.
- Actual detection limits for iron, potassium, silver, thallium, and tin may be biased slightly higher than reported. Reported results for iron, potassium, silver and tin may be biased slightly low.
- Elevated detection limits were reported for aluminum, antimony, beryllium, cadmium, chromium, cobalt, copper, nickel, s lver, tin, and vanadium in sample MCD 031.
- Reported results for tin in samples MCD 032, MCD 650, and MCD 651 may not accurately reflect the true concentration for this constituent.

6.2.2.3 Findings

- ° Field blank analysis revealed the presence of iron and zinc at concentrations significant enough to question the aforementioned results.
- $^{\circ}$ Duplicate analysis of MCD 015 revealed poor precision for tin (117% RPD).
- ° Low matrix spike recovery was reported for iron (64%), potassium (70%), silver (58%), thallium (62)%, and tin (59%).
- Sample MCD 031 was analyzed at a 5 x dilution thus effectively raising the detection limits of the aforementioned constituents by a factor of 5.
- Percent recovery of the analytical furnace spike for tin in sample MCD 016 was less than 40% and the sample was not diluted and reanalyzed. Percent recovery of the analytical furnace spike for tin in samples MCD 650 and MCD 651 were >40% and <85%. These samples should have been analyzed by MSA.</p>

6.2.2.4 Summary

This Quality Assurance Review has identified the following areas of concern: poor furnace QC analysis and poor matrix spike recovery.

Please see the accompanying support documentation appendix for specifics on this Quality Assurance Review.

Report prepared by Steve L. Markham: Stive J. Markham Date: 12-19-85
(301) 224-2740, FTS 922-3752

SECTION 7

7.0 TOXICOLOGICAL EVALUATION

7.1 Summary

No human health hazards are evident at this time. However, the potential for public health endangerment may exist. Results of the limited sampling survey conducted at the Occidental Chemical Company property indicate a continued potential for further degradation of groundwater by the known human carcinogen vinyl chloride and related chlorohydrocarbons. Vinyl chloride was detected at a concentration of 420,000 mg/kg in a sediment sample collected from one unlined seepage lagoon. Other solvent compounds were detected at high concentrations in this as well as another unlined seepage lagoon sediment sample and a pond sediment. The lagoons and pond are enclosed within earthen berms to limit surface runoff. The site, however, is situated on a 100-year flood plain, and a surface water intake for a public water supply is located 3.1 miles downstream.

Two aquifers underlie the site, which are interconnected. Contamination of the deeper bedrock aquifer is confirmed by the identification of trichloroethene (TCE) at 1,500 ug/l in a process well sample, and low levels of vinyl chloride, benzene, and trans-1,2-dichloroethene in several bedrock monitoring wells. Only 2 out of 22 shallow monitoring wells (alluvial aquifer) were sampled due to damage or extremely low water-table levels resulting from seasonal drought conditions. These two samples revealed no measurable levels of organic contaminants.

The major concern with regard to the present extent of groundwater contamination and continued infiltration of carcinogenic pollutants is their possible migration to private home wells. The closest home well is located within several hundred feet of the site, and numerous domestic wells are situated across the Schuylkill River to the south. The compounds of concern are sufficiently mobile in the geohydrosphere to readily migrate with groundwater flow. At this site, this is largely determined by the efficacy of the process well pumping program, in progress, to contain the affected groundwater.

Surifice line

The groundwater recovery program has been in continuous effect since the early 1970s; disposal of PVC resin wastes has occurred since 1945. Because many of the carcinogenic chlorinated aliphatic hydrocarbons can be very persistent in groundwater, the possibility of past migration (before 1971) via the bedrock aquifer should also be considered. The possibility of vinyl chloride, TCE, or other contamination of home wells (e.g., along Route 724 and Old Schuylkill Road) cannot be completely dismissed.

In spite of the high levels of vinyl chloride detected in lagoon sediments, inhalation hazards appear to be minimal since no HNU readings above background were noted. Analyses for inorganics showed unremarkable concentrations in all samples examined.

7.2 Support Data

7.2.1 Hydrogeology of the Site

Documentation and additional details concerning the history, site characteristics, geohydrology, and target populations can be found in the Hazard Ranking System model for Occidental Chemical Company (TDD No. F3-8602-31), a preliminary assessment prepared by PA DER (see appendix E), and a 1976 report prepared by consultants (Martin and Martin, Incorporated) to Occidental Chemical Company. 13

7.2.2 Identification of Hazardous Substances

Several toxic solvent compounds were detected at this site. Those that represent the potential for causing greatest risk of harm are those that are carcinogenic, exhibit a high mobility in groundwater regimens, and are also present at high concentrations. 1,2 Thus, compounds such as toluene, which is not carcinogenic and relatively non-toxic, or bis(2-ethylhexyl) phthalate, which is practically immobile, pose inconsequential risks relative to other contaminants. trans-1,2-Dichlorethene was found at high concentrations but is classified in EPA's Group D ranking (not classified as carcinogen; inadequate evidence of carcinogenicity in animal studies).³ The potential hazards associated with this site are, accordingly, posed by vinyl chloride and trichloroethene. Both are found at high concentrations, both are classified as known or probable human carcinogens, both were found in the bedrock aquifer as well as the seepage lagoon material, and both are very mobile in the geohydrosphere. It may also be noted that trichloroethene can undergo substantial degradation over time (t1/2 of 2.5 years)4 to yield trans-1,2dichloroethene which also degrades over time (anaerobically in groundwater) to form vinyl chloride.5

7.2.3 Mobility of Vinyl Choride and Trichloroethene

The potential for organic compounds to infiltrate into and migrate with flowing groundwater is defined by a mobility index. This parameter is related to the compound's water solubility, vapor pressure, and the extent to which the chemical partitions (adsorbs and desorbs) between soil or sediment and a water phase (K_{OC}) . The mobility index for vinyl chloride is calculated to be 5.54, and for trichloroethene it is 2.71.6,7 Mobility indexes of five or greater are considered extremely mobile, while those greater than zero are very mobile.*

extremely insbile>

^{*}PCB-1260, which is very immobile, has a mobility index of -12.0. Mobility index is defined as follows: MI = log (water solubility x vapor pressure)

Another manner of expressing migration or infiltration potential is through retardation. This factor relates the water flow (linear sorption and desorption) relative to water flow (e.g., percolation or infiltration velocity)

The retardation factor is defined as:8

$$R = 1 + \frac{d \text{ Koc foc}}{O}$$

Where:

Koc = water - organic carbon partition coefficient

foc = fraction of organic carbon in soil

d = bulk density of the soil

O = volumetric water content of soil (porosity)

For purposes of illustration, if typical values are assumed: i.e., that the bulk density of soil at the Occidental Chemical site is 1.7 g cc, the average organic carbon content of the soil is 1 percent, and the water content of soil is 40 pecent, the rate of infiltration (migration) of vinyl chloride and trichloroethene can be calculated. For vinyl chloride with a log Koc of 0.91:

$$R_V = 1 + \frac{(1.5)(10^{0.91})(0.01)}{(0.4)} = 1.35$$

For TCE (with a log Koc of 2.1), the retardation factor is 6.35.7 That is, the rate of infiltration of trichloroethene in an unsaturated zone from the surface is 6.35 times slower than the rate of infiltrating water, and only 1.35 times slower for vinyl chloride.

Since the net precipitation is estimated as 14 inches per year (section 3.5), which is equivalent to 0.0032 feet per day, it can be estimated that a plume of vinyl choride will infiltrate the unsaturated zone at a rate of 0.0043 feet per day (once it has been leached out of high carbon PVC resins).

7.2.4 Toxicity and Carcinogenic Potency

Vinyl chloride has been demonstrated to produce cancer in humans and several species of animals. In humans, exposure to vinyl chloride is associated with angiosarcoma of the liver.³ The chloroethene compound is mutagenic but not teratogenic.⁹ It is classified in EPA's Group A categorization (i.e., sufficient evidence from epidemiological studies). The upper 95 percent bound carcinogenic potency is 2.3 for each mg/kg/day unit.⁹ Thus, at a concentration of 0.001 mg in drinking water and assuming ingestion of 2 liters per day for 70 years by a 70-kg (154) adult, the risk of cancer would be 7 x 10-5 (about 1 in 15,000). A concentration of only 0.015 ug/l in drinking water would represent a one in a million excess lifetime cancer risk.³

Recently, EPA proposed the following health advisories for vinyl chloride in drinking water: 2,600 ug/l for both 1 and 10 days; and for longer term, 13 and 46 ug/l for the child and adult, respectively. Of A final Recommended Maximum Contaminant Level (RMCL) of zero has been promulgated. An RMCL is a nonenforceable health goal. A Maximum Contaminant Level (MCL) of 1 ug/l has been proposed. An MCL is an enforceable standard for public water supplies, based on economic, social, feasibility, and health considerations.

Trichloroethene, like vinyl chloride, exhibits DNA binding in short-term test systems and is mutagenic but not teratogenic. TCE has produced liver tumors in mice. Based upon EPA guidelines, EPA's Risk Assessment Forum classified TCE in Group B2 (sufficient animal evidence of carcinogenicity and inadequate human evidence). The International Agency for Research on Cancer (IARC) has concluded that the animal evidence is limited at this time. 12 The evidence for EPA's Category I ranking for TCE is weaker than for the other chemicals in this group. 3

The carcinogenic potency (upper 95 percent confidence limit) for TCE has recently been updated by EPA's Carcinogen Assessment Group and the unit risk is 0.013 for each mg/kg/day. Thus, at a concentration of 0.001 mg/l (i.e., 1 ug/l) in drinking water and assuming daily ingestion of 2 liters by a 70-kg adult, the added risk of developing cancer over a lifetime is estimated to be about 4 x 10^{-7} (4 in 10,000,000). A concentration of 2.6 ug/l represents the concentration in drinking water corresponding to a 10^{-6} (one in a million) cancer risk (assuming drinking two liters per day is the sole source of exposure).3,11

Earlier, in 1980, EPA specified Suggested No-Adverse-Response Levels (SNARLS) of 2,020 ug/l for 1-day and 200 ug/l for 10-day exposures to TCE in drinking water. A noncarcinogenic Adjusted Acceptable Daily Intake (AADI) of 260 ug/l for TCE was suggested by EPA, 11 and later proposed in recent health advisories where only a drinking water exposure level (DWEL) of 260 ug/l was specified. 10

The final RMCL promulgated for TCE in public water supplies is zero. The proposed MCL is $5~\text{ug/l.}^3$ The World Health Organization has set a tentative guideline of $30~\text{ug/l.}^{12}$

7.3 Risk Characterization

According to a 1980 preliminary assessment report prepared by the Pennsylvania Department of Environmental Resources (PA DER) (see appendix E), the groundwater recovery pumping has generated a cone of depression and reversed the natural flow of groundwater. The effect reportedly has been the successful containment of contaminated groundwater. It may be noted, as a point of interest, that one of the dedicated process well pumps was out of service at the time of the site inspection.

LIST OF SOURCES

- ICAIR, Life Systems, Incorporated. 1985. Endangerment Assessment Handbook. United States Environmental Protection Agency, Office of Waste Programs Enforcement, Washington, D.C. Contract No. 68-01-7037.
- ICF Incorporated. 1985. Superfund public health assessment manual. Draft.
 Washington, D.C.: United States Environmental Protection Agency,
 Office of Emergency and Remedial Response. Contract No. 68-016872.
- Federal Register, 1985. National Primary Drinking Water Regulations: Volatile Synthetic Organic Chemical, Final Rule and Proposed Rule. Federal Register. Vol. 50, No. 219, Wednesday, November 13, 1985. Rules and Regulations.
- 4. World Health Organization, 1985. Trichloroethylene: Environmental Health Criteria 50. United Nations Environmental Programme, Geneva.
- 5. Cline, P.V., and D.R. Vista, 1984. Migration and degradation patterns of volatile organic compounds in: Management of Uncontrolled Hazardous Waste Sites, Fifth National Conference, Washington, D.C. pp. 217-220.
- 6. Ford, K.L., and P. Gurba. 1984. Methods of determining relative contaminant mobilities and migration pathways using physical-chemical data. The Fifth National Conference on Management of Uncontrolled Hazardous Waste Sites. November 1984, pp. 210-212.
- 7. Lyman, W.J., W.F. Reehl, and D.H. Rosenblatt. 1982. Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds. McGraw-Hill, Incorporated, New York.

- 8. Enfield, C.G., Carsel, R.F., Cohon, S.F., Phan, T., and Walters, P.M. 1982.

 Approximating pollutant transport to groundwater. Groundwater

 20:711-722.
- 9. United States Environmental Protection Agency. 1984. Health Effects
 Assessment for Vinyl Chloride. Office of Emergency and Remedial
 Response, Environmental Criteria and Assessment Office, Cincinnate,
 Ohio. Draft.
- 10. United States Environmental Protection Agency. 1986. FY 85 Health Advisories. Health Advisory Program-Assistance Directory. Office of Drinking Water, Washington, D.C.
- 11. Federal Register, 1984. National Primary Drinking Water Regulations:
 Volatile Synthetic Organic Chemicals; Proposed Rulemaking. Part V,
 40 CFR Part 141. Federal Register, Vol. 49, No. 114, Tuesday, June 12,
 1984. Proposed Rules.
- 12. World Health Organization, 1984. Guidelines for Drinking Water Quality, Vol. 1, Recommendations. WHO Publications, Geneva.
- 13. Martin and Martin, Incorporated. 1976. Groundwater module phase II, Firestone Landfill. The Firestone Tire and Rubber Company, Lower Pottsgrove Township, Montgomery County.

Release of vinyl chloride and other contaminants prior to the inception of the process well pumping program may have resulted in degradation of area groundwater that is beyond pumping well influence. As discussed above, vinyl chloride and trichloroethene are very mobile in groundwater regimens. Contamination of the bedrock aquifer is evident, and the continued contamination from the unlined surface lagoons is probable. The carcinogenic potency and weight of carcinogenic evidence render vinyl chloride (and its precursor, TCE) a major pollutant of concern in the environment. Whether a public health hazard currently exists or may potentially exist cannot be ascertained at this time: neither can the possibility be ruled out. An area-wide screening of home wells for VOAs may be one way to provide the necessary information to further characterize this situation.

Prepared by:

Kenneth Symms, Ph.D., Toxicologist

Date: November 17, 1986

APPENDIX A

1. COST CENTER:				2. NO. :
		/FIT ZONE CONTRACT DIRECTIVE DOCUMENT (TDD	,	F3-8509-06
ACCOUNT NO.:	, continue	DIVIENTAL POOCHER (100	,	
3. PRIORITY:	4. ESTIMATE OF TECHNICAL HOURS:	5. EPA SITE ID:	6. COMPLETION DA	TE: 7. REFERENCE INFO.:
HIGH	180	PA-588	3 wks. after Q	QA YES NO
X MEDIUM	4A. ESTIMATE OF SUBCONTRACT COST:	5A. EPA SITE NAME:		ATTACHED
☐ row	SUBCONTRACT COST.	Occidental Chemica	I	PICK UP
		ower Pittsgrove Tw	P., PA	
8. GENERAL TASK DESCRI	PTION: Perform a site	inspection of the subje	ect site.	
				Lacingon
	1.) Review background			10. INTERIM DEADLINES:
<u> </u>	ate and local agencies fo	·		
	o te performed accordin		g plan submitted	<u>i</u> unier <u>TDD F3-850</u> 6-2
	lab analysis. Arrange fo			-
	and off site inspection			
	hip samples according to			
	d submit field trip repor			
	uality Assurance Review			1 /
	d submit report, include			need of HRS.
10.) All work or 11. DESIRED REPORT FOR	n this project to be perfo M: FORMAL REPORT			RMAL BRIEFING
OTHER (SPECIFY):				
12. COMMENTS:				
	State Code 042	County Code	091	
13. AUTHORIZING RPO:	Marold G ISIGNATUR	- Byen		14. DATE: 10 01 85
15. RECEIVED BY:	ACCEPTED ACC	EFTED WITH EXCEPTIONS	REJECTED	16. DATE:
	(CONTRACTOR RPM	SIGNATURE)		19011

Sheet 1 Sheet 2 White - FITL Copy Canary - DPO Copy Sheet 3 Sheet 4 Pink – Contracting Officer's Copy (Washington, D. C.) Goldenrod – Project Officer's Copy (Washington, D. C.) APPENDIX B

SAMPLE LOCATION MAP OCCIDENTAL CHEMICAL CORP. SITE, POTTSTOWN, PA. (NO SCALE)

SITE SKETCH OCCIDENTAL CHEMICAL CORP. SITE, POTTSTOWN, PA.

(NO SCALE)

SAMPLE LOCATION MAP

OCCIDENTAL CHEMICAL CORP. SITE, POTTSTOWN, PA.

(NO SCALE)

PHOTO LOCATION MAP

OCCIDENTAL CHEMICAL CORP. SITE, POTTSTOWN, PA.

(NO SCALE)

APPENDIX C

EPA SITE	NO.:	
REGION:	F.T III	۰

QUALITY ASSURANCE REVIEW OF ORGANIC ANALYSIS LAB DATA PACKAGE

Case No.: 4992	Àρι	nlicable Samo	le No's.: <u>CC 270</u>	cc276	CC277
Contract No.: 68-01-6	A .		280 CC281 C	•	
Contract Laboratory: <u>GSR</u>		, , , , , , , , , , , , , , , , , , ,	192, CC 294.		Taraba Mandandan
Applicable IFB No.: WA 84		,			
Reviewer: Rock T. Vitals					
	6				
The organic analytical data for summarized in the following ta	this case has bee	en reviewed.	The quality assur	ance evalua	tion is
Reviewer's Evaluation*	<u> </u>	Fracti	on		
	VOLATILES	ACIDS	BASE/ NEUTRALS	PCB/ PEST.	TCDD
Acceptable				 	
Acceptable with exception(s)	V#1, #2, #3, #4, #5	V#4-0c	/#1.#4	V#6.#1	Not
Questionable	V = 1,00	V -7 1		1 1 1 1 1 1	Analyzad
Unacceptable					The state of
* Definitions of the evaluation	score categories	are listed on a	next page.		X
 DATA COMPLETENESS BLANK ANALYSIS RESU SURROGATE SPIKE RES MATRIX SPIKE RESULTS DUPLICATE ANALYSIS I C EVALUATION OF CONFI QUANTITATIVE CALCUIT 	ULTS S RESULTS RMATIONS LATIONS	TEN CHR DFT STAI CAL HOL	GET COMPOUND TATIVELY IDENTE OMATOGRAPHIC PP AND BFB SPEC NDARDS IBRATION CHECK DING TIMES	IFIED COME SENSITIVIT CTRUM TUN	POUNDS 'Y CHECKS IE RESULTS
Data review forms are att		the review it	ems indicated abov	ve.	
* No errors noted, no form a	ttached.				
Spot Check performed.	, Λ				
Comments: #1 Case peo	. (1.		latin		
	matery gribe		1		
#3/ Cease for	surrogate of				
#4/ Maure p		, (1	60-ccc violatio		
	Tuferences results a CC 184-6		notic internal	2 ptomola	doneas
	teides in MS	amss mo	ne ontrede est		Twendus.
#7 Largerite	ference in first	tomin of no	iturechiomi ralyin pesu	logramof,	2016 CC277

DATA EVALUATION SCORE CATEGORIES

ACCEPTABLE: Data is within established control limits, or the data which is outside established control limits does not affect the validity of the analytical results.

ACCEPTABLE WITH EXCEPTION(S): Data is not completely within established control limits. The deficiences are identified and specific data is still valid, given certain qualifications which are listed below.

QUESTIONABLE: Data is not within established control limits.

The deficiences bring the validity of the entire data set into question. However, the data validity is neither proved nor disproved by the available information.

<u>UNACCEPTABLE</u>: Data is not within established control limits.

The deficiences imply the results are not meaningful.

DA'														
OMPLE	TENESS	CONC./MATRIX	4/AQ	· · ·				4/30	mezz	10 × 10	10/A-C	40/500		
	TRAFFIC	REPORT #CC2	10	76	77	48	80	81	83	84	91	94		
RACTION	LAB 1.D.	# VONT	01	07	12	17	21	26	30	32	36	42		
VOA :	BUN DAT	TE/TIME	V-											
===	₹					 								
		COMPOUND TAB.	V-											
		COMPOUND D.L.	V-										•	
}	} 	COMPOUND TAB.	V-											
		ATE RECOVERY	V -											
		EN TABULATION	HR											
	1	HROMATOGRAMS	~											
		CMPD. QUAN. LIST	7											
	I	CMPD. SPECTRA												 i
	1	D. CMPD. Q.L.	V-											 ł
		MPD.LIB. SRCH.	<u>~</u>										-	ļ
		ENS. CHECKS	V -											 1
}	1	PP TUNE DATA	V											
	I.S AREA	S CHARTS	NB											
	I.S. REL.	RESP. FORM	N/R											
	1	ITS.: CALIB. CHK.	- ا									<u> </u>		
	RF & AM	TS.: 3-PT CALIB.	<u></u>											
	Chromat	agrams: Callb.Chk.	V-											 1
	Chromat	ograms: 3-Pt. Calib.	\ \ \	<u> </u>										
	LINEARI	TY:3-PT.CALIB	<u>ر</u>							<u> </u>				
	RF COM	PARISON	س ا											
	SAMPLE	/FIELD BLANK									/			
	METHOD	/INSTR. BLANK												
	LAB DU	PLICATE			1			1						
	FIELD D	UP/REP						14				VW/81		
	MAT. SP	K./M. STD.			1			1		V				ĺ
	COMMEN	ITS:					•							•
														 ,
										···· -	7			
														•

ARIO0587

ſ	DAT	Α												
	COMPLET	ENESS	CONC./MATRIX	40/AD					mex.	med	me.	4/40	messol	
		TRAFFIC	REPORT # CC2	70	71	77	18	80	81	83	84	91	94	
	FRACTION	LAB 1.0.	* VONT	01	0,3	12	17	21	26	30	32	36	42	
	BNA :	RUN DAT	F/TIME	/									×	
'			COMPOUND TAB.	\ <u>\</u>	. 8. *	-		ς		j.				
			COMPOUND D.L.	-										
			COMPOUND TAB.	V -										
			ATE RECOVERY	_										
			EN TABULATION	NIR										
l			HROMATOGRAMS	2 1										
			CMPD. QUAN. LIST	<u></u>										
			CMPD. SPECTRA	V -										
		TENT. I.D.	. CMPD. Q.L.	V-										
	[TENT. CN	APD: LIB. SRCH.	7										
١		CHRO./SI	ENS, CHECKS	/-										
-			PP TUNE DATA	1										
		I.S AREAS	S CHARTS	N/R									\	
		I.S. REL.	RESP. FORM	HIR-										
		RF & AM	TS.: CALIB. CHK.	\ <u>\</u>										
		RF & AMT	TS.: 3-PT CALIB.	V -										
		Chromato	ograms: Calib.Chk.											
		Chromato	grams: 3-Pt. Calib.	7 -										
		LINEARIT	TY:3-PT.CALIS	V -										
		RF COMP	ARISON	1-										
		SAMPLE	FIELD BLANK											
j		METHOD,	/INSTR. BLANK											
		LAB DUP	PLICATE			✓			✓					
		FIELD DU	IP/REP											
		MAT. SPK	C./M. STD.			V			/					
	PEST. :	PESTICIO	E TABULATION	1										
		PEST. D.	L. TABULATION	V-										
		PESTICIO	DE CHRO.	V -										
			DE STD. CHRO.	V-										
			DE STO. 1.D.	V-										
			UMM CONF.		Positiv	<u> </u>								
			CONFIRMATION	Ha.										
			DE DUPLICATE	 		V			V					
			DE SPIKE						/					
			DE BLANK											
			SUMMARY	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>										
	.		ARITY CHK.	<u> </u>										
			AD. CHK.	1										
		L DRC	RT SHIFT											

KEY TO DATA COMPLETENESS FORM

Abbreviation Used on Form Description of Checklist Item

Conc./Matrix Concentration category submitted in analysis request (low, med, hi); and matrix (sol., aq.)

Fraction Fill in acid, base/neutral, acid/base/neutral, or volatiles analysis

Run Date/Time Instrument run date (to be used for correlating calibration)

Target Cmpd. Tab. Tabulated results for target compounds

Target Cmpd. D.L. Detection limits for target compounds (actual/level indicated by screen

Tent. LD. Cmpd. Tab. Tabulated results for tentatively identified compounds

Surr. Rec. Surrogate recoveries results

GC Screen Tab. Tabulated GC screen results indicating required level of followup

GC/MS Chromatograms Chromatograms of GC/MS analysis runs

Target Cmpd. Quan. List
Target compounds quantitation list, showing areas, ret. times
Target Cmpd. Spectra
Enhanced and unenhanced spectra of target compound hits
Tent. LD. Cmpd. Q.L.
Quantitation list for tentatively identified compounds

Tent. Cmpd. Lib. Srch. Spectra and library match spectra of tentatively identified compounds

Chro./Sens. Checks EICP's and R.R.F.'s for chromatographic sensitivity checks

BFB/DFTPP Tune Data Spectra intensity lists, and criteria comparison forms for BFB, DFTPP

I.S. Areas Charts Internal standards area control charts and description of remedial action

I.S. Rei. Resp. Form Internal standards relative response listings for each sample run

RF and amts.: Calib. Chk. Tabulated response factors and amount injected for all cmpds. in calibration check
RF and amts.: 3-Pt. Calib. Tabulated response factors and amount injected for all cmpds. in 3-point calibration

Chromatograms: Calib. Chk. Chromatograms for calibration check standard

Chromatograms: 3-Pt. Calib. Chromatograms for 3-point multilevel calibration standards.

Linearity: 3-Pt. Calib.

Tabulated correlation coefficient or relative standard deviation for calibration RF Comparison

Tabulated comparison of calibration Response Factor with check standard Sample/Field Blank

Equipment rinse or reagent water blank shipped with samples from field

Method/Instr. Blank Method or instrument blank which is prepared at lab
Lab Duplicate Sample which was split by lab for duplicate analysis
Field Dup/Rep Sample which was split or collected twice in the field
Mat. Spk./M. Std. Matrix spike or method standard (blind, or done by lab)

Pest. Tab. Tabulated results for pesticides

Pest. D.L. Tab. Tabulated detection limits for pesticides
Pest. Chro. Chromatograms for pesticide screening

2nd Col. Conf. Confirmation of pesticide results by using a second GC column and temperature

GC/MS Conf. Confirmation of pesticide results by GC/MS analysis

Pest. Dup., Spk. Blk. Pesticide duplicate, spike, and blank
Pest. Std. Chro. Chromatogram of pesticide standard
Pest. Std. LD. Pesticide standard identification form
TCDD 2,3,7,8-tetrachlorodibenzodioxin

TCDD Tab., D.L., EICP, Blk. TCDD tabulated results, detection limits, extracted ion current profile, blank

KEY TO SYMBOLS USED IN DATA COMPLETENESS TABLE

Meaning	Symbol	Meaning
Data item present	I	Incomplete data item
Data item not applicable or not required	NC	Data item not clearly explained
Data item within established control limits		(units of conc., etc)
Data item outside established control limits	* or [number]	See footnote
Missing item	xx/xx/xx xx:xx	Date/Time of run (calibration, etc.)
	Data item present Data item not applicable or not required Data item within established control limits Data item outside established control limits	Data item present Data item present Data item not applicable or not required Data item within established control limits Data item outside established control limits * or [number]

Messina

BLANK ANALYSIS RESULTS FOR TARGET COMPOUNDS

				, 11500E1	
FRACTION	TYPE CON	CMATRIX	SAMPLE #	SOURCE OF H2O	
YDA	field/	im/10	CC 291	Nus	Mec/2 (6.6 40/45) #1 Acetoria (7.2 29 4/10) #2
BNA	field/	(m/10	cc241	NUS	Di-n-butyl prtholate (4.3ug 1c/10) 41
PEST	field/	m 14a	cc241	NUS	N.D.
VOR	method	1/w/A0	VB100 185B	GSRI	mec/2 (21 mg/c / 5) \$1 Acetone (11.3 mg/ 10) \$2
BNA	methol	/w 40	SVNTW BLK	SSRI	N.D
PEST	method	V/cm/AQ		GSRI	NID
KOA	metho	d/w/by	VB106 285A	GSRI	N.P
, V6A	method	/w/sol	VB 100 2858	GSRI	mecl2 (5.5 ug/kg /5) #2
√DA	hold/10	w /sel	JB100 385A	GSRI	Acetone (14 us/kg/10)#2 MeC/2 (33 wd/K/10)#1
VOA	meth/m	ed/sef	18100 385B	GSRI	Acetone (5900) W/18/500)#1
BNA	meth/n	ned/saf		GSRI	N.0
PENT	meth/	med/st		GSRI	N.D
NOA	meth/n	ned/82	VB100 485A	GSRI	mec/, (1142 uplke/500)#2 Acetone (980 uply/500)#2
					7.3

LABORATORY REPORTED FIELD BLANK DATA IS COMPARED WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN THE SAMPLE ANALYTICAL DATA SUMMARY. TENTATIVELY IDENTIFIED COMPOUNDS IN BLANKS ARE LISTED ON A SEPARATE FOR COMMENTS:

RESULT INFERRED FROM QUANTITATION LIST, DIAGNOSTICS, CHROMATOGRAM AND/OR SPECTRA.
Solid field blk not analyzed per SMO instructions

BLANK ANALYSIS RESULTS FOR TENTATIVELY IDENTIFIED COMPOUNDS

ALL TENTATIVELY IDENTIFIED COMPOUNDS FOUND IN BLANK ANALYSES ARE LISTED BELOW:

SAMPLE					_	A ES SCORE		MATED ITRATION	COMPOUND NAME	COMMENTS
CC291	V04	368					5.0	Hexans		
	BNA	578					6.6	Trichlora -	1-000000	
		765					6.6	2-2-2-2-2	Propere	
		765					0.0	- Propen	1-propene 141-cyclohexan	<u> </u>
B . 1/ 1/ 1	1/10	3/-0					4/0	HELANE		
BLKUI	VOH	368	-				7.8	SUMASII	y-1-propere	
	BNH	579					3.9	Trickley	v-1-propere	
		765					3.5	2-proper	141-Eyclohexan	<u>r</u>
							L			
										
					-	 -	 			
				 			<u> </u>			
			<u> </u>		<u> </u>					
									· · · · · · · · · · · · · · · · · · ·	
				· ·					•	
										
						 				
			 	 	 	 	 			
			 			<u> </u>				
			<u> </u>	 		_				
			ļ		<u> </u>		ļ			
					<u> </u>	<u> </u>	·			
			 	 		 				
			 		 	 	1			
			 	 						
			<u> </u>	ļ				· · · · · · · · · · · · · · · · · · ·		
				<u> </u>	<u> </u>		}			
			<u> </u>		<u> </u>	<u> </u>				
						<u> </u>	<u> </u>	·		
		 	 	 	 	 	 	· · · · · · · · · · · · · · · · · · ·		
		 	┼	 	 	 	 			
		 	┼─	 	├		 			
			 	-		 	 			
			 	<u> </u>		<u> </u>	<u> </u>			
		L	<u> </u>	<u> </u>	<u> </u>					
		l				 	 			
			T	 	 	 	 			
		 	 	 	 	 	 			
			 	 	-	-	 			
		 	 		 	 	 		EN LOADS	
	L	1	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		ARIO059	

RCENT RECOVERY SUMMARY Soil SURHOGATE

4662

Low		- Medium	9	Contract Laboratory Gulf	boratory _		South Reserach Institute	h Institu		Contract No. 68	68-01-6959	
		VOL	VOLATILE		1 1 1	1 1 1 1	† 	A TAILOULINES				
SMO TRAFFIC NO.	TOLUENE-DB	:	1.2 DICHLORO- ETHANE-D4	NITRO- BENZENE-DA	S-FLUORO-	TERPHENYL-		Total Communication of the Com				PESTICIDE-
	(30-160)	(20-140)	(30-140)	(20-140)	(20-140)	(20-130)		···	PHENOL-05	2-FLUORO-	2.4.6 TRIBROMO- PHENOL	DIBUTYL - CHLORENDATE
	238 *	1 63	87	AN				1	(20-140)	(20-140)	(10-140)	(20-130)
		7	28	-	2 -	- AK			N. J. R.	אַע	ZIK.	ML
CC ASIMS	271 K	00	43							-	-	-
C5 251 450	41% *	53	16									
CC 281R	* 1-01	11 100	8.8									
CC 294R	140	E. 74	70	-				1	# 2	PHam		
BLANK 3	601	401	93									
BLANK Y	111	103	6.8	+								
				*	>	>			7	>	+	2
												,
		,										
					-							
						-						
_												
VALUES ARE OUTSIDE OF CONTRACT REQUIRED QC	RE OUTSIDI	E OF CONTR	ACT REQUIR	ED QC LIMITS	TS	Voletiless		U	1,5			
* * ADVISORY LIMITS ONLY	LIMITS ONL	\)	Semi-V		O SE O	8	-; outside of QC limits	limits	
•	(Aller)					Pesticides	• 6911	NE sut of	1 4	- Foutside of QC limits	limits	
Comments	d mat	Comments: " maturil effect was		pluerred	145 20 7		7 6		ō ;	- ; outside of QC limits	limits	
11.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	1,4 Jifluor benzene	ne de-ch1			Sans love		-	m which	in which the recovery of	. 1	IS. 2 cm(I	75-3
e e	1		The Tree In	Case henres	*					•	The servicion To	a see
		74	+	אופטונלי	MANAGE	197.22 01	1.00	0 6	261 Tol. ett. 105 in 0.294	, C 294	NAT WORK	
		1	I were compounds were	45 WKL	- 9 vant	quantifor Political	- Srigo	the Isl	74 IS3-	ですったり	74.	0/0
					-		•	l	1	いっとろう	10.04	8/84

Case No.	. 4992	6	ŏ	Contract Lab	oratory G	ulf South	Laboratory Gulf South Research Institute		Contract No.	68-01-645A	7,
Low		Medium	7								
		VOLA	- VOLATILE]		1 1 1		SEMI-VOLATRE	ATRE			F.PESTICIDE-
OWS.	TOLUENE-DB	97.0	1,2 DICHLORG- ETHANE-D4	MITRO - BENZENE - DS	2-FLUORO- BIPHENYL	TERPHENYL- 014		PHENOL-DS	2-FLUORO-	2,4.6 TRIBROMO-	DIBUTYL - CHLORENDATE
¥0.	(30-160)	(90-160)	(00-1-05)	(20-140)	(20-140)	(20-150)		(50-140)	(20-140)	(10-140)	(20-130)
186-281	NR	NR	NR	65	77	63		85	53	35	134
20-281 MS				48	48			45	47	25	¥ 1.81
C-281MSD	>	>	>	29	67	3 9		09	29	79	7 * 981
C 57-73	59	7.	53 [1]	29	83	103		77	75	26	75
n-283ms	62	63	53	NR	NR	NR		NR	NK	NR	NR
CC-292 MSD	57	15	52	->	4	4		7	4	4	NR
N. 284		25	5/[1]	6.9	h٤	83		09	67	89	107
11000	1153MR	# SUNA	Mast UK	53	h9	09		45	97	52	135
121 Marse 5	000	96	82	78	86	96		85	48	86	6.5
Ai Mich	9.0	10.3	16	NR	אע	NR		NR	NR	NR	MA
2000	-										
* VALUES	ARF OUTSI	A VALUES ARE OUTSIDE OF CONTRACT REQUIRED OC LIMITS	RACT REOL	JIRED OC LI	MITS	Volatiles:	o	out of 18.	.; outside of QC limits	C limits	
#ADVISOR	A WOUNTEDWILL AND STORE A	} } }				Semi	tiles:	. out of 42;	42; outside of QC limits	C limits	
5000		į				Pesticides:	7	out of 2	; outside of QC limits	C limits	
	E	•				ı	-				

DRM II

10/84

Comments:

[2] Hut retending for DBC do not

[2] Hall Meternetzen

"AT" SI" 10C TE HC" IT P" CO" TY " MI" TY

7697 : X997

Case No. -

_ Contract No. 68-01-6959 Contract Laboratory Gulf South Research Institute

1-10000 160-101 160-101 170-1000 170-1010 160-1010 170-1010 160-1010 170-10	VOLATILE
11	MITAD -
25 35 35 36 37 37 37 37 37 37 37 37 37 37	(41-120)
35 36 37 38 39 31 31 31 32 34 34 35 36 37 37 37 38 38 39 30 31 31 32 34 35 36 37 37 37 38 38 39 30 31 31 32 34 35 36 37 37 38 38 38 38 39 30 31 31 32 33 34 35 36 37 37 38 38 38 38 38 38 38 39 39 30 30 31 31 32 33 34 35 36 37 37 38 38 38 38 38 38 38 38 38 38	8
20 37 37 37 37 37 37 37 37 37 37 37 37 37	22-
41	75
25 St	44
25 85 85 86 86 86 86 86 86 86 86 86 86 86 86 86	S
25 34 34 56 56 56 56 56 56 56 56 56 56 56 56 56	5%
26 54 79 56 50 C 54 79 50 C 54 79 50 C 50	38
2	53
	33
	ME

* VALUES ARE CUTSIDE OF CONTRACT REQUIRED QC LIMITS ** ADVISORY LIMITS ONLY

Volatiles: O out of 30; outside of QC limits
Semi-Volatiles: O out of 34; outside of QC limits
Pesticides: Out of 4; outside of QC limits

Comments:

:8:

ב וועטעו

AR100594

SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

APD & RECOVERY 68-01- 1,957 60-133 59-172 31-137 41.126 17-109 46-127 59.139 62-137 66.142 38-107 29-135 35-142 28.104 25.102 26-103 11.114 35-130 26.90 24 22 23 19 36 86 33 20 33 2 20 47 47 27 47 5 21 3 Contract No. __ 45k 35* RPD 34* à 45 88 C 45179 21618 92950 92143 116 345 204596 147313 127317 CONC. MSD 179518 14868 11168 3036 6123 16395 8138 Syant Contractor Gulf South Research Inst. 260 2/0 484 REC. たのしから 15-147 CONC. 23.216 13504 76756 1387 48.62 18665 70636 85654 135319 THE Y とと 9526 ナシに 250 966 177.19 131916 SAMPLE RESULT 180.00 Medium Level_ 0 0 9 ٥ C JEST 12654 CONC. SPIKE ADDED (vg/Kg) ASSESSION CONTROL 1,2,4-Trichlorobenzene 1-00-50-34-80 1200 N-Nitrosodi-n-Propylamine 4-Chloro-3-Methylphenol 1,4-Dichlorobenzene Di-n-Butylphthalate 1.1-Dicholorethene Pentachlorophenol 2,4 Dinitrotoluene Trichloroethene 2-Chlorophenol Chlorobenzene 464.5 Acenaphthene 4-Nitrophenol COMPOUND Heptachlor Toluene Benzene Lindane Phenol Pyrene SAMPLE NO. SAMPLE NO. SAMPLE NO. EXT 22 FRACTION 12-28 15-281 Low Level CASS No. SMO PEST SMO VOA ACID SMO SMO **8**/**S**

*ASTERISKED VALUES ARE OUTSIDE OC LIMITS.

4,4'.DDT

182-22

Endrin

Dieldrin

SAMPLE NO.

Aldrin

outside QC limits outside QC limits outside QC limits outside OC limits with Out of 10 ACID C out of 10 PEST O out of 12 VOAs B/N RECOVERY: Morothene and the tolura. AND ARKEMENTER OF outside QC limits outside QC limits outside QC limits outside QC limits 2 401 20 - out of out of out of out of Comments: 1646 0 ACID C VOAs B/N PEST RPD:

arometics plykty portradaly allerollen

howy chlywatel officerth a

Toll benzene - estimates - D.L.

a dela ta

14.CE

merry

44 124

4000

Mosams m

entions logue was

CC 283

mini

mother

34-132

43 38 45

42.139

0

31-134

29 3

1800

1900 1300 2400

3000

530

260

2400 2400

5 ŝ

Ξ

SOIL MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Contract No. 68-01-6454	
Contractor Gulf South Research Inst. Contract No. 68	Medium Level
Case No. 4992	Low Level

COMPOUND	CONC. SPIKE	SAMPLE	CONC.	%	UNC	¥		Ľ	* 0.1.10
	ADDED (ug/Kg)	RESULT	MS	REC	MSD	RËC	RP0	APD	HECOVERY
1,1-Dicholorethene	316	0	33.7	107	3.13	811	3	22	50.177
chloroethene	-	3994 [1]	4342	20	1503	12.7	(50.03
Chlorobenzene		0	201	13	12 - 22	25	¥ () (02-13/
Toluene		I'N C'I	07.11	2,511 %	777	1000		7	60-133
Benzene	7		73.7	7 7 7	4 6	¥ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	137	5/2	59-139
1,2,4-Trichlorobenzene	AQ	Ø.₹	A	4	۲ ج	4 4	8	7 8	66-142
Acenaphthene	-	-	7	/ -	₹	2	7	2	38-107
2,4 Dinitrotoluene		-		+	1	+	+	2	31.137
Di-n-Butylohthalate		-		1	1			4	28-89
Pyrene		-	1	+	1	+		47	29-135
odi.p. Propylamin			+	1	1	1		36	35.142
1 4.Dichlorohanzana				+	1	-		38	41-126
Dontachlorophood				-	1			27	28-104
Phase		1	1	1	-			47	17-109
2.Chlorophecol								32	26-90
Aloro 2 Mathulatore								20	25-102
A Nitter Land						,	_	33	26-103
T-IVIII ODIJETIOI	*	*	*	7	7	1		20	11.114
Lindane			•	•				50	46-127
Aldria								31	35-130
Dialdrin				3				43	34-132
Fodrio								38	31-134
44,001					/			45	42-139
100					-	/	7	20	23-134

*ASTERISKED VALUES ARE OUTSIDE QC LIMITS.

outside QC limits	outside QC limits	outside QC limits	outside QC limits	of trichloroet
ر لا			PEST WA out of wh.;	Comments: Leage amounts

outside QC limits samale PEST NA out of MA sem and secondary for 1046 tiluen

outside QC limits outside QC limits outside QC limits

VOAs S out of 10 B/N WA out of LAB;

RECOVERY:

- TCE, TOL, when zeno by throthe Surregater entirms begin matrix spikes as prevented for

FORM III

WATER MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

68-01- 6959 Contractor Gulf South Research Inst. Contract No. X664 Case No. _

2	FRACTION	COMPOUND	CONC. SPIKE	E SAMPLE	CONC.	*8 0 0 1	CONC.	%. 2. 3.	RPD	Ode	HIMITS *
Trichloroethene		1 1-Dichloroethene	2.5	╫	5.6	//3	13	701	10,		61 146
Chlorobenzene	V CW	Trichloroethene		ħ	45	2.3	50	26	=	14	71-120
Toluene	SAMPI E NO	Chlorobenzene		0	44	8.8	51	701	15*	13	75-130
Benzene ✓ JC. FS 52 100 13 ¥ 1.2.4-Trichlorobenzene 5O O 3∓ 5¥ 38 5µ 4 Acenaphthene 43 8½ 40 8O ∓ 2.4 Dinitrotoluene 46 9% 4¥ 5% 4 Pyrene 51 102 45 9% 4 N.Nitroso-Di-Propylamine 3 46 34 47 4 N.Nitroso-Di-Propylamine 3 34 47 4 Permandicular Scholoroble mol 10 73 34 47 4 Phenol 13 34 47 4 4 4 Phenol 10 70 43 40 4 4 10 4-Chloro-Brenol 1 40 90 40 60 40 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Toluene		7	۲ ۶	%	54	801	/ છ	13	76-125
Acenaphthene Acenaphthene 2.4 Dinitrotoluene 2.4 Dinitrotoluene 2.4 Dinitrotoluene 2.4 Dinitrotoluene Din-Butylphthalate Nitroso-Din-Propylamine 1.4 Dichlorobenzene 1.4 Dichlorobenzene 1.4 Dichlorobenzene 1.4 Dichlorobenzene 1.5 Dinitroso-Din-Propylamine 1.6 Dichlorobenzene 1.6 Dichlorobenzene 1.7 Dichlorobenzene 1.8 Dichlorobenzene 1.9 Dichlorobenzene 1.0 Dichlorobenzene 1.0 Dichlorobenzene 1.1 Dichlorobenzene 1.2 Dichlorobenzene 1.3 St. 44 St. 7 Dichlorobenzene 1.4 Dichlorobenzene 1.5 Dichlorobenzene 1.6 Dichlorobenzene 1.7 Dichlorobenzene 1.8 Dichlorobenzene 1.9 Dichlorobenzene 1.0 Dichlorobenzene	1117	Benzene	Λ	70	46	6.3	5.3	00/	13. X	11	76-127
Acenaphthene 43 \$U 40 \$O 7 2.4 Dinitrotoluene 1.4 Dishiphthalate 46 92 44 \$S 4 Pyrene 51 102 44 \$S 4 Pyrene 36 72 49 4 4 N-Nitroso-Din-Propylamine 36 72 44 \$S 4 <td></td> <td>1,2,4-Trichlorobenzene</td> <td>50</td> <td>0</td> <td>4.6</td> <td>₽:5</td> <td>38</td> <td>56</td> <td>h</td> <td>28</td> <td>39-98</td>		1,2,4-Trichlorobenzene	50	0	4.6	₽:5	38	56	h	28	39-98
2.4 Dinitrotoluene 44 92 44 ≤8 4 Din-Butylphthalate 45 90 44 ≤8 2 Pyrene 36 42 44 ≤8 4 N-Nitroso-Din-Propylamine 46 32 46 34 47 4 1.4-Dichlorobenzene 4 33 46 34 47 4 Phenol 10 73 73 73 52 57 47 47 47 Phenol 4-Chlorophenol 5 5 5 50 60 40 47 10 4-Nitrophenol 4-Nitrophenol 4 40 90 90 90 40	N/8	Acenaphthene	_	_	43	7.8	40	80	7	31	46-118
Di-n-Butylphthalate ψ5 9U 4¼ ♥ % № ₩ № ₩ № № ₩ </td <td>SWO</td> <td>2,4 Dinitrotoluene</td> <td></td> <td></td> <td>7,5</td> <td>26</td> <td>44</td> <td>88</td> <td>4</td> <td>38</td> <td>24.96</td>	SWO	2,4 Dinitrotoluene			7,5	26	44	88	4	38	24.96
Pyrene S1 102 49 98 4 N-Nitroso-Din-Propylamine 32 34 68 6 1,4-Dichlorobenzene 1/0 33 46 34 47 47 Pentachlorophenol 1/0 33 46 34 47 47 47 Phenol 1/0 39 39 60 60 60 60 47 10 2-Chlorophenol 3/1 39 40 40 40 60 40	SAMPLE NO.				45	90	ph	8:5	7	40	11.117
N-Nitroso-Din-Propylamine 1.4-Dichlorobenzene 1.		Pyrene			15	201	49	,36	1 1	(31)	26.127
1,4-Dichlorobenzene	700	N-Nitroso-Di-n-Propylamine			36	ret.	34	30	9	38	41-116
Pentachlorophenol (CO 73 73 €% 6% AO Phenol 3-4 79 79 70 € 13 2-Chlorophenol 6-0 60 60 60 60 4-Nitrophenol 7 7 7 7 60 6	77	1,4-Dichlorobenzene	À		23	15€	34	44	中	28	36-97
Phenol 39 30 30\$ (3 2-Chlorophenol \$.5 \$.5 \$.6 \$.0 \$.0 4-Chloro-3-Methylphenol \$.6	W.J.V	Pentachlorophenol	00)		13.	43	83	88,	30 l	09	9.103
2-Chlorophenol	SWO SWO	Phenol			6t	49	90	408	(3	42	12-89
4.Chloro-3.Methylphenol (4.Chloro-3.Methylphenol (4.Chloro-3.Methylphe	CM PI IS NO	2-Chlorophenol			હેર્સ)3	カも	76	<i>a)</i>	40	27.123
4-Nitrophenol 4 39 40 60 43 Lindane X 4 40<	Some the No.	4-Chloro-3-Methylphenol			0.5	90	96	96	9	42	23.97
Lindane X Heptachlor D Aldrin X Dieldrin Endrin 4,4*DDT X	1.12 271	4-Nitrophenol	/*	ケー	39	39	00	6.0	Łħ	90	10.80
Heptachlor Aldrin X Aldrin Aldrin Addin Endrin 4,4'-DDT Addin	1									15	56-123
Aldrin X O Z Dieldrin Endrin 4,4.20DT	resi	Heptachlor				4				20	40-131
Dieldrin Endrin 4,4.0DT	Ows					O	7			22	40-120
Endrin 4,4'-DDT	SAMPLE NO.	Dieldrin								18	52-126
4,4'DDT	446	Endrin						/		21	56-121
	55-477	4,4′.DDT								-27	38-127

ASTERISKED VALUES ARE OUTSIDE OC LIMITS.

outside QC limits outside QC limits outside QC limits outside QC limits PEST WA out of MA 2 Jo mo out of _out of_ VOA 2 ACID C B/N RPD:

outside QC limits outside QC limits VOAs O out of 16 B/N O out of 14 ACID_Lout off RECOVERY:

outside QC limits outside QC limits PEST NA out of WA

MATRIX EFFELTS AND SAMPLE DILVITOR

Due Go

MATRIX SPINES COULD NOT BE DETECTIVED

1/85 the unspiked saurle there is a large interferan been recovered on an undul AN-BHCS, heptechlor a althin 411 Engle peak perticides which elute betwee 5mins/may be substantially could have So endria, DDT. Dieldrin since lab has not raised the diffs of Desticide analysis w True, on the undil Comments: PESTICIOE this only in the Sine

AR 100597

Duplicate/Triplicate A	naly	sis (of Non-	Mat	rixS	Spiked (Ind	igen	ous) Co	mpound	ds	
Outliers are tabul						ypes of	<u>mu</u>	1tipl	e analys	es:		
			4 CC2	94								
(2) Un-spiked laborator												
(3) Matrix spike duplicat												
spiked (indigenous	٤ (compo	ounds. (Spik	e re	coveries	are	eva	uated or	1 a sepa	rate	form)
Analytical F	rac	tion.							tabulation			
							100		ivalent Re			Terence
1/00			Soli	1	-#-	aqueous			olid	aque	:ous	
VOA			-		╫				25%			
BNA			-						<u>35%</u>			
PEST			_!!		H		1	70	Positives			
	I -		ONCEN	TR	AT:	LONS				relativ	د اج	187
	Ac		s No. 1			is No.2	And	lysi	s No.3	deviati	M E	<u> </u>
COMPOUND	SĄ	MPLE D•	CONC.	SAM	PLE D.	CONC.	SAM		CONC.	relative standar deviative percent difference	•\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	footnotes
MeCh	_	281	140		294		ماد)		244	49/2	#1,#2
Acetone		<u> </u>	ND			220				200%		#2,#
trans-1,2-Chene			1,100			520				72%		#2
TCE			4.000			980				122岁	H	#2
benzene			16			40				200%	H	12
Toluene			180			65				94%	\vdash	#2
henzoicAcid			24.000			ND				200%	П	#2
butul benzyl phth			27000			72,000				91%		#2
his(22H)pythalats			93.000			84,000				10%		#/
di-n-acty/ phtholats		r	GN		1	12,000				2006	1	#2_
	<u> </u>											
COMMENTS: #1 With #2 Poor #3 One	<u>in</u>	au	cop tale	4	ri	Tena	,					
#2 Poor	p	ec	ion(C	ONS	ide	red es	tini	ate	<u>sq),</u>			, .
#3 One	<u>'0'</u>	- 601	t valu	م ب	qu	estione	d	due	D blk	. Cont	am	<u>ination</u>
		···										
									······································			
			,							BRI	Ûĺ) 5 9 8

!

PAGE I TENTATIVELY IDENTIFIED COMPOUND SAMPLE RESULTS

ALL TENTATIVE IDENTIFICATIONS OF CONFIDENT MATCHING QUALITY, WHICH AREN'T SUSPECTED ARTIFACTS/CONTAMINANTS, ARE LISTED BELOW:

SAMPLE	FRACTION	SCAN #(S)		SPEC ATCH	NDIC		CONCENTRATION COMPOUND COMMENTS
CC270	VOA						N.D
	BNA	1471					6.7 ug/L Unknown.
							Onenably.
C276	VOA ·	•					N. D
1	BNA	868	Fit	922	2,5	995	1100 ugic Hexabydo - 2H. Azepin - 2. one (Caprolacta
		967		146	,0,	1 10	
1	t	1480					6.2 ugk Unknown contains oxygen
		7-100					14 ugic Unknown Contains oxygen anitrogen
C277	YOA		+				N.D.
4217	BNA	ଟ୍ଟ3	FT	995	Pur	923	
	DNI+	967	11-1	112	707	7/5	120 mg/c Caprolactum (see above)
			- A	000	2	011	19 ugic Unknown contains oxygen.
		1330	F. 1	989	<u> </u>	971	1500 ugic Sulfur (58)
		1479					5.1 ug/c Unknown
<u> </u>	<u> </u>	1685	┼				4.3 ug/c Unknown.
22025		<u> </u>	┼				
CC278	YOA		1	000	3.4		N.D
	BUA	851	FIT	993	PUR	915	82 ugic Caprolactan:
4	<u> </u>	1485					6.5 igic Unknown.
			<u> </u>				
(280	VOA						ビン
	BHA	847				878	5.2 ugle Caprolactum
<u> </u>	1	1318	FIT	999	Por	979	610 Mg.c Sulfux (58)
		<u> </u>	<u> </u>				J
C281	YOA	288	FIT	1941	Pur	588	220 ug 'kg hydrocarbon \$ 2-methyl-1-pentene
	V	336	FIT	955	Pur	896	140 ug/cc 2,3-dimethyl-butane.
	BNA	1051	FT	928	Pur	840	330, 000 up N. Bis (2-methy/propy/) ester-2-butanoic acid
		1258	RI	994	Par		
		1366	FIT	1996	Por	843	130,000 upla midrocurbon & cyclohexadecane
V		H23	FIT			854	
- J			1				31,000 uging Docosane.
C283	VOA-						N.D.
	BNA	438	F.T	995	Puc	782	53,000 uglk 4-ethenyl-cyclohexENE
	1	472					Ethylbenzone-VOAPPI
		506	1				Styrenz - VOA-AD.
		995	FT	991	D	860	93.00015 1-decunol.
							370,000 Lalk Bis (2-methylomogy) ester-2-butanoineil
		1066	F.F	905	7.,,	925	63,000 up the Dibutylaster 2-butenedioic kid
		1127	Fur	992	12.	8/2	120 mounted hardown chan & Litera de an aut
	 	1741	E-	901	0.0	254	120,000 ugike hydrocarbon \$ 1-tetradecanol.
		1201	I.T	0 00	Rive	21.1	41 commerce have do or a single de de
		135/-	F.T	995	P	95,	1,500,000 ugiky hydrocarbon \$ Cyclohexadecan.
	 	1412	TE-F	401	Pos	9/1	82,000 up le hydrocarbon 3 dorosone.
<u> </u>	<u>~</u>	1114	10	Luc	100	CICLO	
CC284	VOA	286	+	-	-	 	3300 uslke Unknown AR 100 599
1	BNA	439	ET	002	P	252	3300 WIEL ON ENGLIN
	UNA	523	12-	170	2	200	150,000 tell 4-ethenyl-cyclohexene.
				1 (1-7-	10	1 T. I CA	1 W/1 //AF/, J_1W/
		833					92,000 valle 2-phonoxy-1-propanal.
		953 959 995	FIT	928	Per	888	140,000 vally 2-phenoxy-1-propanol. 140,000 vally N,N-dipentyl-1-pentamine

TENTATIVELY IDENTIFIED COMPOUND SAMPLE RESULTS

ALL TENTATIVE IDENTIFICATIONS OF CONFIDENT MATCHING QUALITY, WHICH AREN'T SUSPECTED ARTIFACTS/CONTAMINANTS, ARE LISTED BELOW:

SAMPLE #	FRACTION	SCAN #(S)	M TYPE	SPEC ATCH SCORE	INDIC	A ES SCORE	ESTIMATED COMPOUND COMMENTS CONCENTRATION NAME
C284	BNA	1245	FIT	993	Por	849	840,000 malks 1-hexadecens
(cont)		1354	KT	996	Pur	846	1200,000 un les cuals hexadecone
1	·	1411	F.T	983	Puc	715	150,000 us lkg 2,3,7-trimethy/-decane.
		1248		1.3.4			56,000 us 140 UNKNOWN.
		1739					
<u> </u>	<u> </u>	1743		<u> </u>			56,000 ug 119 Unknown.
1.04.00	1/00	460	- 1	0=.	3	-00	
-C2941	VOA	288	11	951	12	776	220 uping 2-methyl-1-pentens
	<u> </u>	335	F.T	916	Pur	862	190 1/18 2,3-dimethyl-butage
	BNA	257					TCE - found in VOA as PP.
)	1007	FIT	989	Pur	791	18, oppusite 1-decens.
		(05)	FIT	968	P	810	270,000 us 14 Bis (2-methylisopropyl)-2-butendioici
		1061	F-1	933	Pur	673	27.000 with Fatty acid's Decanois Acid.
		1139					17,000 tok Hydrocarbon & cyclododecar
		1258	F. 7	901-	2.0	86-1	250,000 Walk cyclohexaderune.
		1366	FLT	905	201	841 -	
<u> </u>	<u> </u>	1424	FIT	442	PUT	017	26,000 walf docosons
	•						, , , , , , , , , , , , , , , , , , ,
			<u> </u>				
			_		·		
			-				
			<u> </u>				
							
			 		-		
			 				
		<u> </u>	 	-	<u> </u>		
		<u> </u>	<u> </u>				
		ļ					·
		ļ	<u> </u>	<u> </u>			
		<u> </u>					
		 					
		 	-		-		
		 	-		<u> </u>		
			ļ .		<u> </u>		
				ļ			
			<u> </u>				
	 		1	l			8R L 0 0 6 0 0

REA %		,
RT	AREA	AREA %
0.49 1.29 1.68 2.79 3.39 4.07 9.06 10.94 12.75 15.16 19.50 23.62	949000 96120 35310 10190 643800 580400 644800 1529000 1228000 130900 11100000 354000	10.725 1.086 0.399 0.115 7.276 6.560 7.287 17.280 13.879 0.148 12.545 4.001 0.423
26.19	1617000	18.275

DIL FACTOR: 1.0000 E+ 0

- 1 No mention of this anywhere
- 3 Reviewer has examined all chromatograms with widen 12T Wildows - No positives
- 3) Clearly demonstrates a method problem

See PAGE 3 for labs RT windows

PAGEO

AR 100601

PART NO. HP-5080-8735

FRINTED IN USA.

THE SMITH CH

HP RUN # 27	OCT/07/85
ID:2	BOTTLE 27
AREA %	

TIME 23:06:32

RT	AREA	AREA %
0.49	1259000	14.032
1.28	96140	1.072
1.44	58400	0.651
2.34	12200	0.136
2.77	634800	7.075
3.37	566900	6.318
4.05	627000	6.988
9.03	1482000	16.517
10.91	1199000	13.363
15.12	1091000	12.159
19.41	337800	3.765
23.55	36220	0.404

1572000

17.520

3 out the 6 out of RT window Page 27

DIL FACTOR: 1.0000 E+ 0

26.12

PESTICIDE/PCB STANDARDS SUMMARY

Case Number: 4992

Contract Number: 68-01-6959

Laboratory: Gulf South Research Institute GC Column: 1.5% SP-2250/1.95% GC Instrument ID: 2

Analysis: Quant. Conf. (Circle One)

11.52

11.40 - 11.64

	Date of	Analysis: OCT 7	85	Date of Anal	lysis: OCT	7 85	Date of Ar	nalysis: O	CT 8 85	
	Time of	Analysis:		Time of Anal	lysis:		Time of Ar	nalysis:		
	PEST	MIX A: 1014		PEST MIX A	3: 220	1	PEST MIX	(A: 0	430	
	PEST	MIX B: 1047		PEST MIX E	3: 223	4	PEST MI)	(B: 0	503	
		RT	Calib		Calib	*		Calib	*	
Compound	RT	Window	Factor	RT	Factor	Diff.	RT	Factor	Diff.	_
Alpha-BHC	2.20	2.18 - 2.22	20967	2.20	20983	0.1	2.20	19357	-7.7	
Beta-BHC	3.08	3.05 - 3.11	8 98 0	3.08	9443	5.2	3.07	8149	-13.7	
Delta-BHC	3.58	3.54 - 3.61	30463	3.58	30980	1.7	3.57	30008	-3.1	
Gamma-BHC	2.75	2.72 - 2.77	48902	2.75	50451	3.2	2.74	43412	-14.0	
Heptachlor	3.35	3.31 - 3.38	41268	3.35	42850	3.8	3.33	36601	-14.6	
Aldrin	4.04	3.98 - 4.06	41020	4.02	44616	8.8	4.00	40846	-8.4	
Heptachlor Epoxide	5. 90	5.84 - 5.96	40463	5.91	43467	7.4	5.88	38926	-10.4	
Endosulfan I	7.38	7.30 - 7.45	30695	7.39	32020	4.3	7.36	28259	-11.7	
Dieldrin	8. 94	8.84 - 9.02	48471	8.95	50779	4.8	8. 90	45910	-9.6	
4. 41 -DDE	8.29	8.20 - 8.37	35989	8.31	38801	7.8	8.25	35722	-7.9	
Endrin	10.81	10.68 - 10.90	23050	10.81	30795	6. 1	10.75	277 59	-9.9	
Endosulfan II	12.95	12.80 - 13.06	49412	12 . 96	49559	0.3	12.88	48069	-3.0	
4. 4* -DDD	12.50	12.36 - 12.61	30165	12.51	31992	6-1	12.44	28149	-12.0	
Endrin Aldehyde	16.81	16.61 - 16.94	28451	16.81	29449	3.5	16.70	25057	-14.9	4
Endosulfan Sulfate	20.29	20.07 - 20.47	16318	20.33	17351	6.3	20.19	14783	-14.8	
4.41-DDT	14.98	14.81 - 15.11	25661	14.99	27387	6.7	14.90	23137	-15.5	T
Methoxychlor	27.78	27.44 - 28.00	13137	27.78	13455	2.4	27.60	11893	-11.6	
Endrin Ketone	27.32	27.00 ~ 27.55	3902	27.30	3760	-3.6	27.21	3309	-12.0	
Chlordane	6.52	6.45 - 6.59								
Toxaphene	15.79	15.63 - 15.95								
Aroclor-1015	3.28	3.25 - 3.31								
Aroclor-1221	2.04	2.02 - 2.06								
Aroclor-1232	3.27	3.24 - 3.30								
Aroclor-1242	3, 25	3.22 - 3.28					-			
Aroclor-1248	3.27	3.24 - 3.30								
Aroclor-1254	9.06	8.97 - 9.15								

Reviewed: R.M Date: 10-09-1985

Aroclor-1260

INITIAL CALIBRATION DATA - SEHIVOLATILE HSL COMPOUNDS

CASE NO. 4992 CONTRACT NO. 68-01-6959

CONTRACT LAB: GSRI INSTRUMENT IDENTIFIER: FINN-01

CALIBRATION DATE: 09/30/85 MINIMUM MEAN RF FOR SPCC IS 0.05

MAXIMUM %RSD FOR CCC IS 30%

	COMPOUND	vskazovse RF 20NG	rufisser RF 50NG	vsuasdes D RF DO NG	456930850 RF 120 NG 150 cm	45493485B RF 146NG 200 cm	MEAN RF	XRSD
CQ10	CHLOROMETHANE**	Q. 457	0.442	Q. 404	0.502	0. 494	0. 460	7. 7
CO15	BROMOMETHANE	0. 239	0. 208	0. 194	0. 190	C. 188	0. 204 🗸	9. 3
CO50	VINYL CHLORIDE*	0. 365	0. 297	0. 282	Q. 3Q3 ⁻	0.305	0.311	9. 1
C025	CHLOROETHANE	0.169	0.129	0. 147	0.155	0.175	0.155	10 4
C030	METHYLENE CHLORIDE	0. 487	0.244	0. 242	0. 255	0.218	0. 289/	34. 3 girsho
C035	ACETONE	1.172	0.739	0.642	0.745	0. 659	0. 792	24.6
C040	CARBON DISULFIDE	4. 789	3. 925	4. 451	4. 956	4. 782	4. 581	7. 9
C045	1,1-DICHLOROETHENE*	1.412	1.237	1.324	1.460	1.423	1.371	5. 8
CQ50	1.1-DICHLORDETHANE**	3. 880	3. 280	3. 752	3.811	3. 808	3.706/	5. 8
CQ55	TRANS-1, 2-DICHLOROETHE	E1. 910	1.634	1.849	1.895	1.872	1.836	5. 6
C060	CHLOROFORM*	3. 143	2. 621	2. 985	3.012	3.020	2. 956	5 . 9
C045	1,2-DICHLOROETHANE	0. 271	Q. 210	0. 255	0. 248	0.246	0. 246	8. Ç
C110	2-BUTANONE	0.042	0.034	0.032	0. 035	0.036	0.036	J 9. 4
C115	1, 1, 1-TRICHLOROETHANE	Q. 375	0. 327	0. 363	0.395	0. 391	0.370	6.6
C120	CARBON TETRACHLORIDE	0. 267	0. 239	0. 260	0. 285	0. 278	0. 266 /	5. 9
C125	VINYL ACETATE	0. 349	0. 253	0. 757	1.172	1.367	0. 780	56. 2-WQ
C130	BROMODICHLOROMETHANE	0.032	0.030	0. 937	0.039	0.037	0. 035	7.6
C140	1,2-DICHLOROPROPANE*	Q. 587	0.482	0. 547	0. 567	0. 5 5 9	0.549	6. 5
C145	TRANS-1, 3-DICHLOROPROR	°Q. 597	0.483	0. 569	0.615	0. 623	Q. 577	8. 7
C150	TRICHLOROETHENE	0.364	0. 322	0.316	0. 333	0. 331	0. 333/	4. 🕏
C155	DIBROMOCHLOROMETHANE	0.317	0. 240	0. 299	0.316	0.316	0.302/	7. 1
160	1, 1, 2-TRICHLORDETHANE	0. 337	0. 276	0. 297	0.302	0. 297	0. 302/	6.5
Z 165	BENZENE	1.184	0. 959	1.070	1.083	1.060	1.071	6. 6
C170	CIS-1, 3-DICHLOROPROPE	VO. 461	0.405	0. 455	0. 501	0. 498	0.464	7. 5
C175	2-CHLOROETHYLVINYL ET		1.108	0. 087	1. 273	1.323	0. 783/	46. 3-WR
C180	BROMOFORM**	0. 204	C. 168	0.194	0. 212	0. 202	0. 196 2	
C210	2-HEXANONE	0.830	0.809	0. 731	0. 991	0. 950	0.862	11. Q
C215	4-METHYL-2-PENTANONE	0.092	0.079	0. 085	0.100	Q. 094	0.090/	7. 🕏
C550	TETRACHLOROETHENE	0.347	0. 287	0. 314	0. 335	Q. 331	0.323🗸	6.4
C135	1, 1, 2, 2-TETRACHLORDET		Q. 456	0. 577	0. 633	0. 638	0. 580	11.3
C230	TOLUENE*	Q. 856	0.671	0.718	Q. 742	0. 731	0.743	8. 2
C235	CHLOROBENZENE**	1.017	0. 809	0. 860	0. 900	0. 855	0. 888 /	7.9
C240	ETHYLBENZENE*	0. 439	0. 365	0. 385	Q. 407	Q. 387	0. 397	6. 2
C245	STYRENE	Q. 9 <u>04</u>	0.714	0. 771	o. 822	0. 825	0.807/	7.8
C250	O % P XYLENE (MIXED)	0. 511	0.400	0. 434	Q. 453	0. 449	0.449/	8.0
C250	M-XYLENÉ	0.553	0. 434	Q. 480	0. 460	Q. 479	0.481/	8. 1

LOQ-Effectrale genet of quantitetien pot ness esailly detection funts [I] D.L 2-butanone à bromodichlero puettane unrelieble - No sphanauti [2] Contract veolutem RF should be >0.250

Fam VI

CALIBRATION CHECK - SEMIVOLATILE HSL COMPOUNDS CASE NO. 4992 CONTRACT LAB: GSRI CONTRACT NO. 68-01-6959 INSTRUMENT IDENTIFIER: FINN-01 -300/ 8/02 25/b CALIBRATION DATE: 09/30/85 25% for comment contractuel to requirements STANDARD FILE: VS100185A DATE: 10/01/85 TIME:, 13:36 MAXIMUM % D FOR CCC IS \$0_ MEAN RF(0) RF(I) COMPOUND 0.492 6.890 C010 CHLOROMETHANE** 0.460 CO15 BROMOMETHANE 0.204 0.271 33. 152-409 CO20 . VINYL CHLORIDE* 0.373 (20, 235) 0.311 CO25 · CHLORGETHANE 0.186/ 0.15520.172 15.930/ 020 METHYLENE CHLORIDE 0.2870.335/ 29. 936- All positives quartioned C035 0.792 ACETONE 1.029 CO40 4.581 5.289 CARBON DISULFIDE 15. 447/ CO45 1.371 14. 232 1, 1-DICHLORGETHENE* 1.566 4. 303 🗸 16.100/ C050 1,1-DICHLOROETHANE**/ 3.706 CO55 · TRANS-1, 2-DICHLORDETHE 1.836 12. 281/ 2.062 0600 CHLOROFORM* 2. 956 3.453 16.811 C045 1,2-DICHLOROETHANE 0.246 0. 289 17. 584/ 23. 719- DIL C110 2-BUTANONE 0.036(0.045)0.430 / 1, 1, 1-TRICHLOROETHANE 0.370 16. 231/ C120 CARBON TETRACHLORIDE 0.266 0.316/ 18. 935 1.299 66.496-LOQ C125 VINYL ACETATE 0.780 **Q.** 041) 15. 806_ DIL C130 - BROMODICHLOROMETHANE 0.035 1,2-DICHLOROPROPANE* 13. 413 V C140 0. 549 0.622TRANS-1.3-DICHLOROPROP 10,002 C145 0.577 0. 635 C150 TRICHLORDETHENE 0. 333 0.3618. 381 C155 0.302 0.36219.874 DIBROMOCHLOROMETHANE C160 1, 1, 2-TRICHLORDETHANE 0.302 0. 353 17.051 15.184 C165 BENZENE 1.071 1.234 0.555 19.513 C170 CIS-1, 3-DICHLOROPROPEN 0.464 C175 0. 983 1,204 22.484 2-CHLOROETHYLVINYL ETH 18. 544 FSPCC Violation C180 Q. 233) BROMOFORM** 0.196C210 1.026. 18. 990 **2-HEXANGNE** 0. 862 26.698-10Q 0-114 4-METHYL-2-PENTANONE C215 0. 090 C220 TETRACHLOROETHENE 0. 323 0.356 🗸 10.421 0.718 C135 1, 1, 2, 2-TETRACHLOROETH 0. 580 23.831 C530 TOLUENE* 0.823 🗸 10:712 / 0. 743 CHLORDBENZENE** √ 1.004 13. 049 V C235 0.888 12. 739² Q. 447 🗸 C240 ETHYLBENZENE* .. 0.397 16. 410 V 0.940 C245 STYRENE 0.807 O & P XYLENE (MIXED) 0.481 7.100 C250 0.449 M-XYLENE 0.545 13. 288 C250 0.481 fieldbl ce291/acc277 - Dil innebendle in 2-butanone de bromodichloropherhave 1 SPCC violation

Fam-VIL

CALIBRATION CHECK - - SEMIVOLATILE HSL COMPOUNDS

CASE NO. 4992 CONTRACT LAB: GSRI CONTRACT NO. 68-01-6959 INSTRUMENT IDENTIFIER: FINN-01

CALIBRATION DATE: 09/30/85 STANDARD FILE: VS100285A

DATE: 10/02/85 TIME: 8:39

AXIMUM % D FOR CCC IS 20

CO10 CHLOROMETHANE**
CO20 VINYL CHLORIDE**
CO25 CHLOROETHANE CO30 METHYLENE CHLORIDE CO30 METHYLENE CHLORIDE CO30 METHYLENE CHLORIDE CO30 METHYLENE MACRO MACRO CO30 METHYLENE MACRO CO30 METHYLENE MACRO CO30 METHYLENE MACRO
CO30 METHYLENE CHLORIDE
CO40 CARBON DISULFIDE 4.581 4.916 7.307 CO45 1,1-DICHLORGETHANE* 1.371 1.409 2.773 CO50 1,1-DICHLORGETHANE** 3.706 3.748 1.127 CO55 TRANS-1,2-DICHLORGETHE 1.836 1.872 1.965 CO60 CHLORGFORM* 2.956 3.118 5.470 CO65 1,2-DICHLORGETHANE 0.246 0.265 7.504 C110 2-BUTANONE 0.036 0.34 -5.740 D. C110 2-BUTANONE 0.370 0.396 7.022 C120 CARBON TETRACHLORIDE 0.266 0.292 9.660 C125 VINYL ACETATE 0.780 1.172 50.263 COC C125 VINYL ACETATE 0.780 1.172 50.263 COC C130 BROMODICHLOROMETHANE 0.035 0.532 0.502 C140 1,2-DICHLOROPROPANE* 0.549 0.552 0.502 C145 TRANS-1,3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLORGETHENE 0.302 0.315 4.458 0.324 -2.799 55 DIBROMOCHLOROMETHANE 0.302 0.315 4.458 0.1,1,2-TRICHLOROETHANE 0.302 0.315 4.458 0.370 0
CO40 CARBON DISULFIDE 4.581 4.916 7.307 CO45 1,1-DICHLORGETHANE* 1.371 1.409 2.773 CO50 1,1-DICHLORGETHANE** 3.706 3.748 1.127 CO55 TRANS-1,2-DICHLORGETHE 1.836 1.872 1.965 CO60 CHLORGFORM* 2.956 3.118 5.470 CO65 1,2-DICHLORGETHANE 0.246 0.265 7.504 C110 2-BUTANONE 0.036 0.34 -5.740 D. C110 2-BUTANONE 0.370 0.396 7.022 C120 CARBON TETRACHLORIDE 0.266 0.292 9.660 C125 VINYL ACETATE 0.780 1.172 50.263 COC C125 VINYL ACETATE 0.780 1.172 50.263 COC C130 BROMODICHLOROMETHANE 0.035 0.532 0.502 C140 1,2-DICHLOROPROPANE* 0.549 0.552 0.502 C145 TRANS-1,3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLORGETHENE 0.302 0.315 4.458 0.324 -2.799 55 DIBROMOCHLOROMETHANE 0.302 0.315 4.458 0.1,1,2-TRICHLOROETHANE 0.302 0.315 4.458 0.370 0
C045
CO50 1.1-DICHLORGETHANE** 3.706 3.748 1.127 CO55 TRANS-1.2-DICHLORGETHE 1.836 1.872 1.965 CO60 CHLORGETHANE 2.956 3.118 5.470 CO65 1.2-DICHLORGETHANE 0.246 0.265 7.504 C110 2-BUTANONE 0.036 0.34 -5.740 0.10 C115 1.1.1-TRICHLORGETHANE 0.370 0.396 7.022 C120 CARBON TETRACHLORIDE 0.266 0.292 9.660 C125 VINYL ACETATE 0.780 1.172 50.263 0.00 C130 BROMODICHLORGMETHANE 0.035 0.037 6.607 0.1 C140 1.2-DICHLORGPROPANE* 0.549 0.552 0.502 C145 TRANS-1.3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLORGETHENE 0.333 0.324 -2.799 C150 TRICHLORGETHANE 0.302 0.315 4.458 C170 C15-1.3-DICHLORGETHANE 0.302 0.315 4.458 C170 C15-1.3-DICHLOROPROP 0.464 0.475 2.446 C170 C15-1.3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLORGETHYLVINYL ETH 0.983 1.162 18.156 C160 BROMOFORM** 0.196 0.200 2.232 SPCC Violation 0.201 2-HEXANONE 0.862 0.916 6.235 C210 2-HEXANONE 0.862 0.916 6.235 C220 TETRACHLORGETHENE 0.323 0.330 2.330
CO55 TRANS-1, 2-DICHLOROETHE 1. 836 1. 872 1. 965 CO60 CHLOROFORM* 2. 956 3. 118 5. 470 CO65 1, 2-DICHLOROETHANE 0. 246 0. 265 7. 504 C110 2-BUTANONE 0. 036 034 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
C060 CHLOROFORM* C065 1,2-DICHLOROETHANE C110 2-BUTANONE C115 1,1,1-TRICHLOROETHANE C120 CARBON TETRACHLORIDE C130 BROMODICHLOROMETHANE C140 1,2-DICHLOROPROPANE* C140 1,2-DICHLOROPROPANE* C140 1,2-DICHLOROPROPANE* C150 TRICHLOROETHANE C165 BENZENE C170 CIS-1,3-DICHLOROPROP C170 CIS-1,3-DICHL
C065 1,2-DICHLOROETHANE 0.246 0.265 7.504 C110 2-BUTANONE 0.036 8.034 -5.740 0.1 C115 1,1,1-TRICHLOROETHANE 0.370 0.396 7.022 C120 CARBON TETRACHLORIDE 0.266 0.292 9.660 C125 VINYL ACETATE 0.780 1.172 50.265 0.0 C130 BROMODICHLOROMETHANE 0.035 0.37 6.607 0.1 C140 1,2-DICHLOROPROPANE* 0.549 0.552 0.502 C145 TRANS-1,3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLOROETHENE 0.333 0.324 -2.799 55 DIBROMOCHLOROMETHANE 0.302 0.315 4.458 60 1,1,2-TRICHLOROETHANE 0.302 0.304 0.575 C165 BENZENE 1.071 1.090 1.740 C170 CIS-1,3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLOROETHYLVINYL ETH 0.783 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-MEXANONE 0.862 0.716 6.235 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C110 2-BUTANONE
C115 1,1,1-TRICHLORDETHANE 0.370 0.376 7.022 C120 CARBON TETRACHLORIDE 0.266 0.292 9.660 C125 VINYL ACETATE 0.780 1.172 50.265 C130 BROMODICHLOROMETHANE 0.035 0.037 6.607—D.L C140 1,2-DICHLOROPROPANE* 0.549 0.552 0.502 C145 TRANS-1,3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLOROETHANE 0.333 0.324 -2.799 55 DIBROMOCHLOROMETHANE 0.302 0.315 4.458 60 1,1,2-TRICHLOROETHANE 0.302 0.304 0.575 C165 BENZENE 1.071 1.090 1.740 C170 CIS-1,3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-HEXANONE 0.862 0.916 6.235 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C120 CARBON TETRACHLORIDE 0. 266 0. 292 7. 660 C125 VINYL ACETATE 0. 780 1. 172 50. 265 CO C130 BROMODICHLOROMETHANE 0. 035 0. 037 6. 607 - D.L C140 1,2-DICHLOROPROPANE* 0. 549 0. 552 0. 502 C145 TRANS-1,3-DICHLOROPROP 0. 577 0. 583 1. 005 C150 TRICHLOROETHENE 0. 333 0. 324 -2. 799 55 DIBROMOCHLOROMETHANE 0. 302 0. 315 4. 458 60 1,1,2-TRICHLOROETHANE 0. 302 0. 304 0. 575 C165 BENZENE 1. 071 1. 090 1. 740 C170 CIS-1,3-DICHLOROPROPEN 0. 464 0. 475 2. 448 C175 2-CHLOROETHYLVINYL ETH 0. 983 1. 162 18. 156 C180 BROMOFORM** 0. 196 0. 200 2. 232 - SPCC Violation . C210 2-HEXANONE 0. 862 0. 916 6. 235 C220 TETRACHLOROETHENE 0. 323 0. 330 2. 330
C125 VINYL ACETATE 0.780 1.172 50.265 COC C130 BROMODICHLOROMETHANE 0.035 0.037 6.607—D.L C140 1.2-DICHLOROPROPANE* 0.549 0.552 0.502 C145 TRANS-1.3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLOROETHENE 0.333 0.324 -2.799 C150 TRICHLOROMETHANE 0.302 0.315 4.458 0.575 DIBROMOCHLOROMETHANE 0.302 0.304 0.575 C165 BENZENE 1.071 1.090 1.740 C170 CIS-1.3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation C210 2-HEXANONE 0.862 0.916 6.235 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C130 BROMODICHLOROMETHANE 0.035 0.037 6.607 D.L C140 1,2-DICHLOROPROPANE* 0.549 0.552 0.502 C145 TRANS-1,3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLOROETHENE 0.333 0.324 -2.799 55 DIBROMOCHLOROMETHANE 0.302 0.315 4.458 60 1,1,2-TRICHLOROETHANE 0.302 0.304 0.575 C165 BENZENE 1.071 1.090 1.740 C170 CIS-1,3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-HEXANONE 0.862 0.916 6.235 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C140 1,2-DICHLOROPROPANE* 0.549 0.552 0.502 C145 TRANS-1,3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLOROETHENE 0.333 0.324 -2.799 C150 TRICHLOROETHENE 0.302 0.315 4.458 C150 TRICHLOROETHANE 0.302 0.304 0.575 C160 BENZENE 1.071 1.090 1.740 C170 CIS-1,3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLOROETHYLVINYL ETH 0.783 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 5 PCC Violation C210 2-HEXANONE 0.862 0.716 6.235 C220 TETRACHLOROETHENE 0.323 0.330 2.330 C220 TETRACHLOROETHENE 0.323 0.330 2.330 C330 C3
C145 TRANS-1,3-DICHLOROPROP 0.577 0.583 1.005 C150 TRICHLOROETHENE 0.333 0.324 -2.799 55 DIBROMOCHLOROMETHANE 0.302 0.315 4.458 60 1,1,2-TRICHLOROETHANE 0.302 0.304 0.575 C165 BENZENE 1.071 1.090 1.740 C170 CIS-1,3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 5PCC Violation . C210 2-HEXANONE 0.862 0.916 6.235 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C150 TRICHLORDETHENE 0.333 0.324 -2.799/ 55 DIBROMOCHLOROMETHANE 0.302 0.315 4.458/ 60 1.1.2-TRICHLOROETHANE 0.302 0.304 0.575/ C165 BENZENE 1.071 1.090 1.740/ C170 CIS-1.3-DICHLOROPROPEN 0.464 0.475 2.446/ C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156/ C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-HEXANONE 0.862 0.916 6.235/ C220 TETRACHLOROETHENE 0.323 0.330 2.330/
DIBROMOCHLOROMETHANE 0.302 0.315 4.458 60 1.1.2-TRICHLOROETHANE 0.302 0.304 0.575 C165 BENZENE 1.071 1.090 1.740 C170 CIS-1.3-DICHLOROPROPEN 0.464 0.475 2.448 C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-HEXANONE 0.862 0.916 6.235 C215 4-METHYL-2-PENTANONE 0.090 0.080 -10.693 C220 TETRACHLOROETHENE 0.323 0.330 2.330
1.1,2-TRICHLORDETHANE 0.302 0.304 0.575 C165 BENZENE 1.071 1.090 1.740 C170 CIS-1,3-DICHLOROPROPEN 0.464 0.475 2.446 C175 2-CHLOROETHYLVINYL ETH 0.783 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-HEXANONE 0.862 0.716 6.235 C215 4-METHYL-2-PENTANONE 0.090 0.080 -10.693 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C165 BENZENE 1.071 1.090 1.740 C170 CIS-1,3-DICHLOROPROPEN 0.464 0.475 2.448 C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-HEXANONE 0.862 0.916 6.235 C215 4-METHYL-2-PENTANONE 0.090 0.080 -10.693 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C170 CIS-1, 3-DICHLOROPROPEN 0. 464 0. 475 2. 448 C175 2-CHLOROETHYLVINYL ETH 0. 783 1. 162 18. 156 C180 BROMOFORM** 0. 176 0. 200 2. 232 SPCC Violation . C210 2-HEXANONE 0. 862 0. 716 6. 235 C220 TETRACHLOROETHENE 0. 323 0. 330 2. 330 C230 C330
C175 2-CHLOROETHYLVINYL ETH 0.983 1.162 18.156 C180 BROMOFORM** 0.196 0.200 2.232 SPCC Violation . C210 2-HEXANONE 0.862 0.916 6.235 C215 4-METHYL-2-PENTANONE 0.090 0.080 -10.693 C220 TETRACHLOROETHENE 0.323 0.330 2.330
C180 BROMOFORM** C210 2-HEXANDNE C215 4-METHYL-2-PENTANONE C220 TETRACHLORDETHENE C323 0.330 C324 SPCC Violation C325 2.232 SPCC Violation C326 0.716 C327 0.330 C328 2.330
C210 2-HEXANDNE 0.862 0.916 6.235 C215 4-METHYL-2-PENTANDNE 0.090 0.080 -10.693 C220 TETRACHLORDETHENE 0.323 0.330 2.330
C215 4-METHYL-2-PENTANONE 0.090 0080 -10.693/ C220 TETRACHLORGETHENE 0.323 0.330 2.330/
C220 TETRACHLORDETHENE 0.323 0.330 2.330/
C135 1,1,2,2-TETRACHLORDETH 0.580 0.577 -0.393/
0.743 0.742 -0.187
C235 CHLOROBENZENE** 0.888 0.903 1.588
C240 ETHYLBENZENE* 0.397 0.397 -0.008/
C245 STYRENE 0.807 0.767 -4.979/
C250 D & P XYLENE (MIXED) 0.449 0.423 -5.775
C250 M-XYLENE 0.481 0.474 -1.552

1) D.L unreliable for 2-butanere abromodichteropnethane in CC270, 276, 276 de Bromoform SPCC Violation < 0.250 278 de 278 × 280

CALIBRATION CHECK - SEMIVOLATILE HSL COMPOUNDS

CASE NO. 4992

CONTRACT LAB: GSRI

CONTRACT NO. 68-01-6959 INSTRUMENT IDENTIFIER: FINN-01

CALIBRATION DATE: 09/30/85 STANDARD FILE: VS100285B

DATE: 10/02/85 TIME: 15:02

MAXIMUM % D FOR CCC IS 20

	COMPOUND	MEAN RF(I)	RF(0)	% D	•
C015 C015 C025 C025 C025 C025 C025 C025 C025 C02	CHLOROMETHANE** BROMOMETHANE VINYL CHLORIDE* CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE* 1,1-DICHLOROETHANE** TRANS-1,2-DICHLOROETHE CHLOROFORM* 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE VINYL ACETATE	RF(I) 0.460 0.204 0.311 0.155 0.792 4.3706 4.3706 4.3706 4.3706 6.370 6.370 6.370 6.377 6.332 6.377 6.332 6.377 6.332 6.371 6.444 6.783 6.377 6.332 6.371 6.444 6.783 6.371 6.783	0. 605 0. 259 0. 379 0. 159 0. 236 0. 707 4. 583 1. 365 3. 745 1. 825 3. 091 0. 390 0. 291 1. 073 0. 535 0. 324 0. 312 0. 399 1. 800 0. 299 1. 900 0. 299 1. 900 0. 299 1. 900 0. 399 0. 399	31. 505-LOX 27. 127-LOX 28. 549-COX 2. 759-18. 196-10. 731-10. 053-10. 040-10. 051-	c violation also cc283 d C C28 estimated 2 butanone
C240 C245 C250 C250	ETHYLBENZENE* STYRENE O & P XYLENE (MIXED) M-XYLENE	0. 397 0. 807 0. 449 0. 481	0. 400 0. 784 0. 440 0. 463	0. 772 -2. 846 -2. 023 / -3. 674 /	
			-		

D.L 2-botanone a bromoduellorophedlem purelide in CC281, CC294, (2) Vinglelloude in CC283d CC284 estimated - No reron next day 3) ISPCC Violation, I CCCV colation with acceptable %D (not commented on.)

Form VII

CASE NO. 4992 am

CONTRACT LAB: GSRI

CONTRACT NO. 68-01-6959 INSTRUMENT IDENTIFIER: FINN-01

CALIBRATION DATE: 09/30/85 STANDARD FILE: VS100385A

DATE: 10/03/85 TIME: 9:30

AXIMUM % D FOR CCC IS 20

ı 1	COMPOUND	MEAN RF(I)	RF(0)	% D	
CO10	CHLOROMETHANE**	0. 460	0. 350	-23. 816	
CO15	BROMOMETHANE	0. 204	Q. 174	-14. 420	
C020	VINYL CHLORIDE*	0. 311	Q. 336	8. 149 OK	
CO25	CHLORGETHANE	0. 155	0.112	(X)\X	1 - A.A.A
C030	METHYLENE CHLORIDE	0. 289	0. 165	-42.684-60B	- All positions question All postwer question
CO35	ACETONE	0. 792	O. 587	-25.876- <i>Lo</i> d	All your mer quester
CQ40	CARBON DISULFIDE	4. 581	4. 888	6.713/	o o
CO45	1,1-DICHLOROETHENE*	1.371	1.354	-1.221/	
CO50	1.1-DICHLOROETHANE**	3. 706	3. 699	-0.180	
COSS	TRANS-1, 2-DICHLORGETHE	1.836	2.031	10.630/	
C040	CHLOROFORM*	2. 956	3. 032	2. 558	
CO65	1,2-DICHLOROETHANE	0. 246	0. 250	1. 477	
C110	2-BUTANONE	0. 036	0.028	-21.241-DL	
C115	1, 1, 1-TRICHLOROETHANE	0. 370	0. 376	1.454	
C120	CARBON TETRACHLORIDE	0. 266	0. 282	6.076	•
C125	VINYL ACETATE	0. 780	1.228	57. 471-100	l .
C130	BROMODICHLOROMETHANE	0. 035	0.038	8.414—DL	•
C140	1,2-DICHLOROPROPANE*	0. 549	0. 524	-4. 435V	
	TRANS-1, 3-DICHLOROPROP		0.553	-4. 187V	
	TRICHLOROETHENE	0. 333	0. 311	-6. 735	
	DIBROMOCHLOROMETHANE	0.302	Q. 2 7 Q	-3.774//	
	1, 1, 2-TRICHLOROETHANE	0. 302	0. 281	-6. 903	
	BENZENE	1.071	1.015	-5. 268	
	CIS-1, 3-DICHLOROPROPEN	0.464	0.450	-2. 952	_
	2-CHLOROETHYLVINYL ETH	0. 983	1.332	35 523	٠, ١, ١
C180	BROMOFORM**	0. 196	0.196	0.045-SP	ic violation
C210	2-HEXANONE	0. 862	1. 152	33. 579-40Q	
	4-METHYL-2-PENTANONE	0.090	0078	-12.962/	
	TETRACHLOROETHENE	0. 323	0.312	-3. 169	·
C135	1, 1, 2, 2-TETRACHLOROETH	0. 580	0. 545	-5. 992	
	TOLUENE*	0.743	0. 690	-7. 188/	
	CHLOROBENZENE**	0. 888	0. 908	2. 231	
	ETHYLBENZENE*	0.397	0. 387	-2. 542	
	STYRENE	0.807	0. 781	-3. 241	
C250	O & P XYLENE (MIXED)	0.449	0. 436	-3. 043	•
C250	M-XYLENE	0. 481	0. 455	-5. 331/	
	• • • • • • • • • • • • • • • • • • • •		•		

1 D.L 2-butanine d'bromodichloromethane CC281, CC294, CC284, Z83 unreliable aid may be pulistatually higher than reputed

Fam VII

CASE NO. CONTRACT LAB: GSRI CONTRACT NO. 68-01-6959 INSTRUMENT IDENTIFIER: FINN-01

CALIBRATION DATE: 09/30/85 STANDARD FILE: VS100485A

DATE: 10/04/85 TIME: 8:44

MAXIMUM % D FOR CCC IS 20

•	COMPOUND	MEAN RF(I)	RF(0)	% D
CO10	CHLOROMETHANE**	0. 460	Q. 394V	-14. 267
CQ15	BROMOMETHANE	0. 204	0.1647	-19. 274
0020	VINYL CHLORIDE*	0.311	0. 287	-7. 486 V
CO25	CHLOROETHANE	0. 155	0. 111	-28. 221-WQ
0030	METHYLENE CHLORIDE	0. 289	0.214	-26.081- <i>UO</i> Q
C035	ACETONE	0. 792	0 . 683	-13.700
C040	CARBON DISULFIDE	4. 581	4. 657	1. 653
CO45	1.1-DICHLOROETHENE*	1.371	1. 378	1:938 /
CO50	1,1-DICHLOROETHANE**	3.706	3. 757	1.381
CO55 '	TRANS-1, 2-DICHLORGETHE	1.836	1. 936	5. 436
C060	CHLOROFORM*	2. 756	3. 178	7. 496
C045	1.2-DICHLOROETHANE	0. 246	0.258	4. 960
C110	2-BUTANONE	0. 036	0.033	-9.061一DL、
C115	1, 1, 1-TRICHLOROETHANE	0. 370	0.408	10. 265~
C120	CARBON TETRACHLORIDE	0. 266	Q. 289	8. 577
C125	VINYL ACETATE	0. 780	1 <u>. 17</u> 0	49.967-10Q
C130	BROMODICHLOROMETHANE	0. Q35	0.038	7.896—DL
C140	1,2-DICHLOROPROPANE*	0. 549	° 0. 532	-3.039~
C145	TRANS-1,3-DICHLOROPROP	0. 577	0. 567	-1.699
C150		0. 333	O. 322	-3. 238/
C155	DIBROMOCHLOROMETHANE	0. 302	0. 323	6. 979
C160	1, 1, 2-TRICHLORDETHANE	0. 302	0.312	3. 357/
C165	BENZENE	1.071	1.098	2. 539/
C170	CIS-1,3-DICHLOROPROPEN	Q. 464	O. 499	7. 623
C175	2-CHLOROETHYLVINYL ETH	0. 983	1.408	43. 263 PCC
C180	BROMOFORM**	0. 196	0.205	4. 375
C210	2-HEXANONE	0. 862	1.375	59. 416 COQ
C215	4-METHYL-2-PENTANONE	0. 090	0088	-1. 462
C220	TETRACHLOROETHENE	0. 323	0. 342	6. 115
C135	1, 1, 2, 2-TETRACHLORDETH	0. 580	0. 626	7. 950V
C230	TOLUENE*	0. 743	Q. 764	2. 765
C235	CHLOROBENZENE**	0. 288	0. 931	4. 830
C240	ETHYLBENZENE*	0. 397	Q. 408	2. 881
C245	STYRENE	0. 807	0. 793	-1.713
C250	0 & P XYLENE (MIXED)	0. 449	0. 437	-2.860/ _/
C250	M-XYLENE	0. 481	0. 459	-4. 673 V

No actual sple runthinday (just MS+MSD) SPCC Violation

4992 CASE NO.

CONTRACT LAB: GSRI

CONTRACT NO. 68-01-6959

INSTRUMENT IDENTIFIER: FINN-02

CALIBRATION DATE: 10/03/85

STANDARD FILE: SS100485A

DATE: 10/04/85 TIME: 15:27

MAXIMUM % D FOR CCC IS 20

		MEAN	25/21		•
	CUMPTIOND	RF(I)	RF(U)	% D	
05150 05150 0531	COMPOUND N-NITROSODIMETHYLAMINE PHENOL ANILINE BIS(2 CHLOROETHYL)ETHE 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,4-DICHLOROBENZENE BENZYL ALCOHOL 1,2-DICHLOROBENZENE 2-METHYLPHENOL BIS(2-CHLOROISOPROPYL) 4-METHYLPHENOL N-NITROSO-DI-N-PROPYLA HEXACHLOROETHANE NITROBENZENE ISOPHORONE 2-NITROPHENOL* 2,4-DIMETHYLPHENOL BENZOIC ACID BIS(2-CHLOROETHOXY)MET 2,4-DICHLOROPHENOL* 1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE* 4-CHLORO-3-METHYLPHENO	MEAN RF(1) O. 476 1. 318 1. 307 1. 273 1. 442 1. 531 O. 839 1. 215 1. 501 1. 371 O. 238 O. 307 O. 296 O. 296 O. 208 O. 208 O. 212 O. 270 O. 27	RF(0) 0. 697 1. 507 0. 195 1. 381 1. 309 1. 498 1. 583 0. 751 1. 465 1. 162 1. 577 1. 3360 0. 229 0. 566 0. 337 0. 622 0. 220 0. 298 0. 226 0. 298 0. 438 0. 301 0. 326 0. 987 0. 040 0. 160 0. 269	3. 010 -4. 043 -85. 172 5. 657 2. 826 3. 419 -10. 392 -4. 348 5. 059 -2. 762 -4. 348 5. 059 -3. 939 2. 992 9. 631 3. 860 -3. 647 10. 272 7. 368 3. 223 5. 852 -80. 942 -80. 942 -80. 281	1-609
C470 C510	2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADI	0. 564 0. 283	0. 567 0. 315	0. 635	
C515	2, 4, 6-TRICHLOROPHENOL*	0. 283 0. 401	0. 315 0. 423	11035 5. 404	
C520	2, 4, 5-TRICHLOROPHENOL	0. 347	0. 390	12. 305	
C525	2-CHLORONAPHTHALENE	1.161	1.198	3. 1991	
C530	2-NITROANILINE	0. 427	0. 354	-16. 924 V	
C535	DIMETHYL PHTHALATE	1.264	1.314	3. 927 V	
C540	ACENAPHTHYLENE	1.721	1. 509	-12.305/ -33.518 -CE	20
C545	3-NITROANILINE	0.158	0. 105		
C550	ACENAPTHENE*	1.128	1.172	3. 916	
C555 C560	2,4-DINITROPHENOL	0.189	0.212	12. 183	
C565	4-NITROPHENOL** DIBENZOFURAN	0.089	0. 102	13.611/	\checkmark
	DIDENSE VICAN	1. 589	1. 710	7.634/火	•
				ſ	

D.L 4-chlorsantine unreliable in CC278, CC291, CC280 CC294, CC281

CASE NO. 4992

CONTRACT LAB: GSRI

CONTRACT NO. 68-01-6959

INSTRUMENT IDENTIFIER: FINN-02

CALIBRATION DATE: 10/03/85 STANDARD FILE: SS100485A

DATE: 10/04/85

TIME: 15:27

MAXIMUM % D FOR CCC IS 20

		MEAN			•
	COMPOUND	RF(I)	RF(0)	% D	
C570	2,4-DINITROTOLUENE	0. 410	0.411	0.369	
C575	2,6-DINITROTOLUENE	0. 338	0. 337	-0.078	
C580	DIETHYL PHTHALATE	1.209	1. 278	5. 651	
C585	4-CHLOROPHENYL PHENYL	0. 595	0. 643	8. 020//	
C590	FLUORENE	1.331	1.457	9. 458	
C595	4-NITROANILINE	0.197	0.141	-27. 997-100	
C610	4,6-DINITRO-2-METHYLPH	0. 126	0.139	0 707	16.1.000
C615	N-NITROSODIPHENYLAMINE	0.410	0. 237	£42. 140 606	2 CCC Violation
C625	4-BROMOPHENYL PHENYL E	0. 194	0.210	8. 210	
C630	HEXACHLOROBENZENE	0. 232	0. 275	18. 152	
C635	PENTACHLOROPHENOL*	0. 136	0. 165	20. 951	
C640	PHENANTHRENE	1.007	1.024	1.649	
C645	ANTHRACENE	0. 897	0. 905	0. 944	
C650	DI-N-BUTYL PHTHALATE	1.110	1.126	1.415	
C655	FLUORANTHENE*	0. 928	1.009	8. 672	2052
C710	BENZIDINE	0. 066	0.034	-48. 956 Still	181,66:
C715	PYRENE	1.608	1.355	-15.683/	
C720	BUTYL BENZYL PHTHALATE	0. 782	0. 663	-15. 234 /	
C725	3.3'-DICHLOROBENZIDINE	0.308	0. 309	0.129	
C730	BENZO(A)ANTHRACENE	1.223	1. 189	-2. 787	
C735	BIS(2-ETHYLHEXYL)PHTHA	1.083	0. 939	-13. 293 ^	
C740	CHRYSENE	1. 135	1.092	-3. 834 / _{>}	
C760	DI-N-OCTYL PHTHALATE*	3. 182	2. 646	-16. 843	
C765	BENZO(B)FLUORANTHENE	1. 994	1.834	- 8. 004 ∕	
C770	BENZO(K)FLUORANTHENE	1.897	1. 935	2. 034ン	
C775	BENZO(A)PYRENE*	1.729	1. 657	-4. 134/	
C780	INDENO(1,2,3-CD)PYRENE	1.493	1.430	-4. 206	
C785	DIBENZO(A, H) ANTHRACENE	1. 367	1. 329	-2.829	
C790	BENZO(G, H, I)PERYLENE	1. 344	1: 325	-1.434/	

CASE NO. 4992

CONTRACT LAB: GSRI

CONTRACT NO. 68-01-6959

CALIBRATION DATE: 10/03/85

INSTRUMENT IDENTIFIER: FINN-02

STANDARD FILE: SS100785A

DATE: 10/07/85 TIME: 11:33

MAXIMUM % D FOR CCC IS 20

	COMPOUND	MEAN RF(I)	RF(O)	% D
C3150505050505050505050505050505050505050	COMPOUND N-NITROSODIMETHYLAMINE PHENOL ANILINE BIS(2 CHLOROETHYL)ETHE 2-CHLOROPHENOL 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE BENZYL ALCOHOL 1,2-DICHLOROBENZENE 2-METHYLPHENOL BIS(2-CHLOROISOPROPYL) 4-METHYLPHENOL N-NITROSO-DI-N-PROPYLA HEXACHLOROETHANE NITROBENZENE 1SOPHORONE 2-NITROPHENOL* 2,4-DIMETHYLPHENOL BENZOIC ACID BIS(2-CHLOROETHOXY)MET 2,4-DICHLOROPHENOL* 1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLOROANILINE HEXACHLOROBUTADIENE* 4-CHLORO-3-METHYLPHENO 2-METHYLNAPHTHALENE HEXACHLOROCYCLOPENTADI 2,4,6-TRICHLOROPHENOL* 2,4,5-TRICHLOROPHENOL* 2-CHLORONAPHTHALENE 2-NITROANILINE	RF(I) 0. 676 1. 570 1. 318 1. 307 1. 273 1. 442 1. 531 0. 839 1. 426 1. 501 1. 371 0. 238 0. 549 0. 307 0. 599 0. 228 0. 292 0. 292 0. 292 0. 292 0. 292 0. 212 0. 138 0. 270 0. 564 0. 283 0. 401 0. 347 1. 161	0. 692 1. 577 0. 463 1. 306 1. 279 1. 477 0. 775 1. 464 1. 560 0. 326 0. 562 0. 618 0. 224 0. 224 0. 224 0. 227 0. 224 0. 259 0. 326 0. 326 0. 326 0. 327 0.	2. 364 0. 422 -64. 856 -0. 056 0. 427 2. 095 3. 028 -7. 554 2. 445 -4. 210 3. 115 -5. 204 2. 301 7. 457 3. 121 -8. 445 -4. 004 7. 403 4. 742 2. 479 5. 268 6. 788 -7. 553 15. 323 -7. 553 15. 323 -7. 3818 -7. 553 15. 323 -7. 436 11. 122 0. 385 20. 174 4. 436
C535 C540 C545 C550 C555	DIMETHYL PHTHALATE ACENAPHTHYLENE 3-NITROANILINE ACENAPTHENE* 2,4-DINITROPHENOL	0. 427 1. 264 1. 721 0. 158 1. 128 0. 189	0.417 1.328 1.792 0.025 1.184 0.203	-2. 296 5. 027 4. 148 -84. 101 - D L 4. 936 7. 308
C560 C565	4-NITROPHENOL** DIBENZOFURAN	0. 089 1. 589	0.132 1.743	47. 419 - 10 Q 9. 711

D. Currelieble 4-chloroandine +3-nitroandine CC 283 d CC 284

CASE NO. 4992

CONTRACT LAB: GSRI

CONTRACT NO. 68-01-6959

INSTRUMENT IDENTIFIER: FINN-02

CALIBRATION DATE: 10/03/85

STANDARD FILE: SS100785A

DATE: 10/07/85 TIME: 11:33 MAXIMUM % D FOR CCC IS 20

MEAN COMPOUND RF(I) RF(O) % D C570 2,4-DINITROTOLUENE 0.410 0.430/ 4. 917 C575 0.338 0.342/ 1.432/ 2.6-DINITROTOLUENE C580 1.209 1.277/ DIETHYL PHTHALATE 5. 609 C585 0.595 0.637/4-CHLOROPHENYL PHENYL 7.021/ C590 1.331 1. 446 FLUORENE 8.671 C595 0. 229/ 16. 393 / 4-NITROANILINE 0.197 C610 4, 6-DINITRO-2-METHYLPH 0.126 0.120 -4.697 1. 329 CCC Viblation C615 N-NITROSODIPHENYLAMINE 0.410 0.301 C625 4-BROMOPHENYL PHENYL E 0.194 0.197 C630 HEXACHLOROBENZENE 0.232 0. 261 12.455 34.657 CCC Violation C635 PENTACHLOROPHENOL* 0.136 0.183 C640 1.007 -1.479 < PHENANTHRENE 0.992 / C645 0.897 ANTHRACENE Q. 923 ~ 2.882~ 5. 239 (C650 DI-N-BUTYL PHTHALATE 1.110 1.168 C655 FLUORANTHENE* 0. 928 1.059 ~ 14.065 C710 BENZIDINE 0.066 0.050~ -24. 212 C715 PYRENE 1.608 1.425/ -11.356~ C720 BUTYL BENZYL PHTHALATE 0.782 0.677/ -13.3550.308 0.346 C725 3,3'-DICHLOROBENZIDINE 12. 191 C730 1.223 1.191 BENZO(A)ANTHRACENE -2.564C735 BIS(2-ETHYLHEXYL)PHTHA 0.956/ 1.083 -11.699~ 1.111 C740 CHRYSENE 1.135 -2.144 C740 DI-N-OCTYL PHTHALATE* 2.841 / -10.731 3.182 2.032 C765 BENZO(B)FLUORANTHENE 1.994 1. 900 1.897 C770 BENZO(K)FLUORANTHENE 1.773 < -6. 526 C775 BENZO(A)PYRENE* 1.729 1.652/ -4. 427 · 2.139/ C780 INDENO(1, 2, 3-CD)PYRENE 1.493 1.525 / 1. 421 _ C785 DIBENZO(A, H) ANTHRACENE 1.367 3.945 < C790 BENZO(G, H, I)PERYLENE r. 412 _ 1.344 5.062

January 17, 1986

Mr. Rock Vitale NUS Corporation 992 Old Eagle School Road Suite 196 Wayne, Pennsylvania 19087

Subject: EPA Contract No. 68-01-6959

GSRI Project No. 3280-3008

Case No. 4992

Dear Mr. Vitale:

At your request, we have reviewed data for vinyl chloride in sample CC-277 from case 4992. GC/MS data are enclosed.

As you can see, vinyl chloride appears to be present, but barely above the noise level.

If you have further questions, please call us.

Very truly yours,

Richard R. Whitney, Ph.D. Senior Research Chemist

RRW/vmv Enclosures

cc: Linda Boynton, EPA Sample Management Office Patricia Krantz, EPA Region III Data Audit Staff, EPA Las Vegas

RECEIVED

NUS CORPORATION region III SENT TO____

		٦.	
Sample	Number	1	C
CC-270		Ī	

ORGANICS ANALYSIS DATA SHEET

(Page 1)

	· ·	• *	•
Laboratory Name:	GSRI	Case No:	4992 -
Lab Sample ID No:	VONTO1	QC Report No:	148
Sample Matrix:	WATER	Contract No:	68-01-6959
Data Release Autho	orized By:	Date Sample Re	eceived: 09/28/85
		·	

VOLATILE COMPOUNDS

Concentration:	LOW
Date Extracted/Prepared:	10/02/85
Date Analyzed:	10/02/85
Conc/Dil Factor:	1. pH 4.44
Percent Moisture: (Not D	ecanted) A/A

CAS Number	-	UG/L_	CAS Number		UG/L
74-87-3	Chloromethane	10. U	79-34-5	1,1,2,2-Tetrachloroethane	5.00
74-83-9	Bromomethane	10. U	78-87-5	1,2-Dichloropropane	5.00
75-01-4	Vinyl Chloride	10. U	10061-02-6	•	5.00
75-00-3	Chloroethane	10. U	79-01-6	Trichloroethene	5.00
75-09-2	Methylene Chloride	8.7	124-48-1	Dibromochloromethane	5.00
67-64-1	Acetone	10. U	79-00-5	1,1,2-Trichloroethane	5.00
75-15-0	Carbon Disulfide	5.00	71-43-2	Benzene	5.00
-35-4	1,1-Dichloroethene	5.00	10061-01-5	cis-1,3-Dichloropropene .	5.04
3-34-3	1,1-Dichloroethane	5.00	110-75-8	2-Chloroethylvinylether .	10. U
156-60-5	Trans-1,2-Dichloroethene .	5.00	75-25-2	Bromoform	5.00
57-66-3	Chloroform	5.04	591-78-6	2-Hexanone	10. U
107-06-2	1,2-Dichloroethane	5.00	108-10-1	4-Methyl-2-Pentanone	10. U
78-93-3	2-Butanone	10. U	127-18-4	Tetrachloroethene	5.00
71-55-6	1,1,1-Trichloroethane	5.00	108-88-3	Toluene	5.00
56-23-5	Carbon Tetrachloride	5.00	108-90-7	Chlorobenzene	5.00
108-05-4	Vinyl Acetate	10. U	100-41-4	Ethylbenzene	5.00
75-27-4	Bromodichloromethane	5.00 /	100-42-5	Styrene	5.00
			•	Total Xylenes	5.00

U - Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

See page 1A for complete definitions of the data reporting qualifiers.

Form I

Laboratory Name: <u>G S R I</u>
Case No: 4992

| Sample Number | CC-270

ORGANICS ANALYSIS DATA SHEET (Page 2)

SEMIVOLATILE COMPOUNDS

Concentration: LO Date Extracted/Prepared: 09 Date Analyzed: 10 Conc/Dil Factor: Percent Moisture: (Decanted	/30/85 /03/85 1.		Separato	nup Yes <u>X</u> No ry Funnel Extraction <u></u> Yes us Liquid-Liquid Extraction	X Yes
CAS Number	UG/	L	CAS Number		UG/L
62-75-9 N-Nitrosodimethy			208-96-8	Acenaphthylene	10. U
108-95-2 Phenol			99-09-2	3-Nitroaniline	50. U
62-53-3 Aniline			83-32-9	Acenaphthene	10. U
111-44-4 bis(2-Chloroethy			51-28-5	2.4-Dinitrophenol	50. U
95-57-8 2-Chlorophenol .			100-02-7	4-Nitrophenol	50. U
541-73-1 1,3-Dichlorobenz			132-64-9	Dibenzofuran	10. U
106-46-7 1,4-Dichlorobenz			121-14-2	2,4-Dinitrotoluene	10. U
100-51-6 Benzyl Alcohol .			606-20-2	2,6-Dinitrotoluene	10. U
95-50-1 1,2-Dichlorobenz		Ū	84-66-2	Diethylphthalate	10. U
95-48-7 2-Methylphenol .			7005-72-3	4-Chlorophenyl-phenylether	10. U
39638-32-9 bis(2-Chloroisop			86-73-7	Fluorene	10. U
106-44-5 4-Methylphenol .			100-01-6	4-Nitroaniline	50. U
621-64-7 N-Nitroso-Di-n-P	ropylamine 10.		534-52-1	4,6-Dinitro-2-Methylphenol	50. U
67-72-1 Hexachloroethane	10.	U	84-30-6	N-Nitrosodiphenylamine (1)	10. U
98-95-3 Nitrobenzene			101-55-3	4-Bromophenyl-phenylether	10. U
78-59-1 Isophorone			118-74-1	Hexachlorobenzene	10. U
88-75-5 2-Nitrophenol .		U	87-86-5	Pentachlorophenol	50. U
105-67-9 2,4-Dimethylphen	ol 10.	IJ	85-01-8	Phenanthrene	10. U
65-85-0 Benzoic Acid		U	120-12-7	Anthracene	10. U
111-91-1 bis(2-Chloroetho	xy)Methane 10.	U	84-74-2	Di-n-Butylphthalate	10. U
120-83-2 2,4-Dichlorophen		ប	206-44-0	Fluoranthene	10. U
120-82-1 1,2,4-Trichlorob	enzene 10.	U	92-87-5	Benzidine	50. U
91-20-3 Naphthalene		U	129-00-0	Pyrene	10. U
106-47-8 4-Chloroaniline	10.	U	85-68-7	Butylbenzylphthalate	10. U
87-68-3 Hexachlorobutadi		U	91-94-1	3,3'-Dichlorobenzidine	20. U
59-50-7 4-Chloro-3-Methy	lphenol . 10.	U	56-55-3	Benzo(a)Anthracene	10. U
91-57-6 2-Methylnaphthal	ene 10.	IJ	117-81-7	bis(2-Ethylhexyl)Phthalate	10. U
77-47-4 Hexachlorocyclop	entadiene 10.	U	218-01-9	Chrysene	10. U
88-06-2 2,4,6-Trichlorop		Ü	117-84-0	Di-n-Octyl Phthalate	10. U
95-95-4 2,4,5-Trichlorop		U	205-99-2	Benzo(b)Fluoranthene	10. U
91-58-7 2-Chloronaphthal	ene 10.	U	207-08-9	Benzo(k)Fluoranthene	10. U
88-74-4 2-Nitroaniline .	50.	ប	50-32-8	Benzo(a)Pyrene	10. U
131-11-3 Dimethyl Phthala	ite 10.	U	193-39-5	Indeno(1,2,3-cd)Pyrene	10. U
			53-70-3	Dibenz(a,h)Anthracene	10. U
			191-24-2	Benzo(g,h,i)Perylene	10. U

LABORATORY: Gulf South Research Institute ! Sample Number ! CASE NUMBER: 4992 ! CC-270 !

ORGANICS ANALYSIS DATA SHEET (PAGE 3) Pesticides/PCBs

Concentration: Low
Date Extracted: SEP 30 85
Date Analyzed: OCT 07 85
Dilution Factor: 1

CAS		Conc.
Number	Pesticide/PCB	uG/L
319-84-6	Alpha-BHC	0.050 U
319-85-7	Beta-BHC	0.050 U
319-86-8	Delta-BHC	0.050 U
58-89-9	Gamma-BHC (Lindame)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Heptachlor Epoxide	0.050 U
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4. 4' -DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0.10 U
72-54-8	4. 4' -DDD	0.10 U
7421-93-4	Endrin Aldehyde	0.10 U
1031-07-8	Endosulfan Sulfate	0.10 U
50-29-3	4. 4' -DDT	0.10 U
72-43-5	Methoxychlor	0.50 U
53494-70-5	Endrin Ketone	0.10 U
57-74-9	Chlordane	o.50 U
8001-35-2	Toxaphene	1.0 U
12674-11-2	Aroclor-1016	0.50 U
11104-28-2	Aroclor-1221	0.50 U
11141-16-5	Aroelor-1232	0.50 U
53469-21-9	Araclor-1242	o.50 U
12672-29-6	Aroclor-1248	0.50 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

V₅ = Volume of Water Extracted (ML)

W_S = Weight of Sample Extraced (g)

Vt = Volume of Total Extract (uL)

Vi = Volume of Extract Injected (uL)

 V_{S} 1000 W_{S} NA V_{t} 10000 V_{i} 2.55

aboratory Name:	<u>Gulf</u>	South	Research	Institute
-----------------	-------------	-------	----------	-----------

Case No: 4992

Sample Number

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/l or ug/kg)
1.110-54.3	Lexane	UOA	369	4.95.B
2. NA	1- Parone Thick as	SV	579	6~5JB
3. 214-42-3	Cicloterane, 2-Propered	5 V	765	83JB
4. NA	not Shorthal I a	51.	1471	6.75
5.				
6.				
7				
8				
9				
10				
11				
12				<u> </u>
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25 26				
27			<u> </u>	
28				
29				
30				

| Sample Number | | CC-276 |

ORGANICS ANALYSIS DATA SHEET

(Page 1)

..ab Sample ID No: VONTO7

Sample Matrix: WATER

Data Release Authorized By:

Case No: 4992

QC Report No: 148

Contract No: 68-01-6959

Date Sample Received: 09/28/85

VOLATILE COMPOUNDS

Concentration: LOW

Date Extracted/Prepared: 10/02/85

Date Analyzed: 10/02/85

Conc/Dil Factor: 1.

Percent Moisture: (Not Decanted)

<u> AS Number</u> UG/L CAS Number UG/L 10. U 4-87-3 Chloromethane 79-34-5 1,1,2,2-Tetrachloroethane 5.00 /4-83-9 Bromomethane 10. U 78-87-5 1,2-Dichloropropane . . . 5.00 Vinyl Chloride 75-01-4 10. U 10061-02-6 Trans-1,3-Dichloroproene . 5.00 Chloroethane 10. U 5-00-3 79-01-6 Trichloroethene 3.71 5-09-2 Methylene Chloride . . . 5.00 124-48-1 Dibromochloromethane . . . 5.00 1,1,2-Trichloroethane . . 67-64-1 10. U 79-00-5 5.00 -15-0 Carbon Disulfide 5.08 71-43-2 Benzene 5.00 35-4 1,1-Dichloroethene 5.00 10061-01-5 cis-1,3-Dichloropropene 5.00 34-3 5.00 110-75-8 1,1-Dichloroethane 2-Chloroethylvinylether 10. U 156-60-5 3.5J 75-25-2 Trans-1,2-Dichloroethene . 5.00 Bromoform 7-66-3 5.00 591-78-6 2-Hexanone 10. U .07-06-2 1.2-Dichloroethane 5.00 108-10-1 4-Methyl-2-Pentanone . . . 10. U 78-93-3 127-18-4 10. U Tetrachloroethene • 5.00 1-55-6 1,1,1-Trichloroethane . . 5.0U 108-88-3 Toluene 5.00 5.00 Chlorobenzene 1-23-5 Carbon Tetrachloride . . . 108-90-7 5.00 108-05-4 Vinyl Acetate 10. U 100-41-4 Ethylbenzene 5.00 Styrene 75-27-4 Bromodichloromethane . . . 5.00 100-42-5 5.00 Total Xylenes 5.00

- J Reported value is less than the detection limit.
- U Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

See page 1A for complete definitions of the data reporting qualifiers.

Form I

Labor	atory	Name:	6	S	R	I		 	
Case	No:		499	12					

Sample Number CC-276

ORGANICS ANALYSIS DATA SHEET (Page 2)

SEMIVOLATILE COMPOUNDS

Date Analy: Conc/Dil F	cted/Prepared: 09/30/85 zed: 10/03/85		Separato	nup Yes X No ry Funnel Extraction Yes us Liquid-Liquid Extraction	<u>X</u> Yes
CAS Number		UG/L	CAS Number		UG/L
62-75-9	N-Nitrosodimethylamine	10. U	208-96-8	Acenaphthylene	10. U
108-95-2	Phenol	10. U	99-09-2	3-Nitroaniline	50. U
62-53-3	Aniline	10. U	83-32-9	Acenaphthene	10. U
111-44-4	bis(2-Chloroethyl)Ether .	10. U	51-28-5	2,4-Dinitrophenol	50. U
95-57-8	2-Chlorophenol	10. U	100-02-7	4-Nitrophenol	50. U
541-73-1	1,3-Dichlorobenzene	10. U	132-64-9	Dibenzofuran	10. U
106-46-7	1,4-Dichlorobenzene	10. U	121-14-2	2,4-Dinitrotoluene	10. U
100-51-6	Benzyl Alcohol	10. U	606-20-2	2,6-Dinitrotoluene	10. U
95-50-1	1,2-Dichlorobenzene	10. U	84-66-2	Diethylphthalate	10. U 🚄
95-48-7	2-Methylphenol	10. U	7005-72-3	4-Chlorophenyl-phenylether	10. U
39638-32-9	bis(2-Chloroisopropyl)Ether	10. U	86-73-7	Fluorene	10. U
106-44-5	4-Methylphenol	10. U	100-01-6	4-Nitroaniline	50. U
621-64-7	N-Nitroso-Di-n-Propylamine	10. U	534-52-1	4,6-Dinitro-2-Methylphenol	50. U
67-72-1	Hexachloroethane	10. U	86-30-6	N-Nitrosodiphenylamine (1)	10. U
98-95-3	Nitrobenzene	10. U	101-55-3	4-Bromophenyl-phenylether	10. U
78-59-1	Isophorone	10. U	118-74-1	Hexachlorobenzene	10. U
88-75-5	2-Nitrophenol	10. U	87-86-5	Pentachlorophenol	50. U
105-67-9	2,4-Dimethylphenol	10. U	85-01-8	Phenanthrene	10. U
65-85-0	Benzoic Acid	50. U	120-12-7	Anthracene	10. U
111-91-1	bis(2-Chloroethoxy)Methane	10. U	84-74-2	Di-n-Butylphthalate	10. U
120-83-2	2,4-Dichlorophenol	10. U	206-44-0	Fluoranthene	10. U
120-82-1	1,2,4-Trichlorobenzene	10. U	72-87-5	Benzidine	50. U
91-20-3	Naphthalene	10. U	129-00-0	Pyrene	10. U
106-47-8	4-Chloroaniline	10. U	85-68-7	Butylbenzylphthalate	10. U
87-68-3	Hexachlorobutadiene	10. U	91-94-1	3,3'-Dichlorobenzidine	20. U
59-50-7	4-Chloro-3-Methylphenol .	10. U	56-55-3	Benzo(a) Anthracene	10. U
91-57-6	2-Methylnaphthalene	10. U	117-81-7	bis(2-Ethylhexyl)Phthalate	10. U
77-47-4	Hexachlorocyclopentadiene	10. U	218-01-9	Chrysene	10. U
88-06-2	2,4,6-Trichlorophenol	10. U	117-84-0	Di-n-Octyl Phthalate	10. U
95-95-4	2,4,5-Trichlorophenol	50. U	205-99-2	Benzo(b)Fluoranthene	10. U
91-58-7	2-Chloronaphthalene	10. U	207-08-9	Benzo(k)Fluoranthene	10. U
88-74-4	2-Nitroaniline	50. U	50-32-8	Benzo(a)Pyrene	10. U
131-11-3	Dimethyl Phthalate	10. U	193-39-5	Indeno(1,2,3-cd)Pyrene	10. U
	·		53-70-3	Dibenz(a,h)Anthracene	10. U
			191-24-2	Benza(g,h,i)Perylene	10. U

LABORATORY: Gulf South Research Institute | Sample Number | CASE NUMBER: 4992 | CC-276 |

ORGANICS ANALYSIS DATA SHEET (PAGE 3) Pesticides/PCBs

Concentration: Low
Date Extracted: SEP 30 85
Date Analyzed: OCT 07 85

Dilution Factor: 1

CAS		Conc.
Number	Pesticide/PCB	uG/L
319-84-6	Alpha-BHC	0.050 U
319-85-7	Beta-BHC	0.050 U
319-86-8	Delta-BHC	0.050 U
58-89-9	Gamma-BHC (Lindane)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Heptachlor Epoxide	o.o50 U
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4. 4' -DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0.10 U
72-54-8	4. 4' -DDD	0.10 U
7421-93-4	Endrin Aldehyde	0.10 U
1031-07-8	Endosulfan Sulfate	0.10 U
50-29-3	4.4'-DDT	0.10 U
72-43-5	Methoxychlor	0.50 U
53494-70-5	Endrin Ketone	0.10 U
57-74-9	Chlordane	0.50 U
8001-35-2	Toxaphene	1.0 U
12674-11-2	Aroclor-1016	0.50 U
11104-28-2	Aroclor-1221	o.50 u
11141-16-5	Aroclor-1232	0.50 U
53469-21-9	Aroclor-1242	0.50 8
12672-29-6	Aroclor-1248	0.50 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

V = = Volume of Water Extracted (mL)

W= = Weight of Sample Extraced (g)

Vt = Volume of Total Extract (uL)

V_i = Volume of Extract Injected (uL)

Vs 1000 Ws NA Vt 10000 Vi 2.55

Laboratory Name:	Gulf	South	Research	Institute
------------------	------	-------	----------	-----------

Case No: 4992

Sample Number

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number		Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/l or ug/kg)		
1.110	0-54-3	Heyane	UOA	369	6.2 J.B		
2.10	5-60-2	2H - Azerin - 2-One, Herahydra	SV	368	Loo Ž		
3	NA	not Startilized	SV	9676my	6.25		
4	NA	not thematil is	SV.	1480	142		
5.				1			
6							
7							
8		`.					
9					¢.		
10	·						
11							
12	1						
13	t t						
14			<u> </u>				
15							
16							
17							
18							
19							
20							
21							
22							
23							
24	Y Company		ļ				
25							
26							
28							
29			 				
3 0			<u></u>	<u> </u>			

Sample	Number
CC-277	

ORGANICS ANALYSIS DATA SHEET

(Page 1)

.aboratory Name: <u>G S R I</u>	Case No:
Lab Sample ID No: VONT12	QC Report No:
Sample Matrix: WATER	Contract No:
)ata Release Authorized By:	Date Sample R

Case No: 4992

QC Report No: 148

Contract No: 68-01-6959

Date Sample Received: 09/28/85

VOLATILE COMPOUNDS

 Concentration:
 LOW

 Date Extracted/Prepared:
 10/01/85

 Date Analyzed:
 10/01/85

 Conc/Dil Factor:
 1. pH 6.34

 Percent Moisture:
 (Not Decanted)

CAS Number		UG/L	CAS Number		UG/L
74-87-3	Chloromethane	10. U	79-34-5	1,1,2,2-Tetrachloroethane	5.00
74-83-9	Bromomethane	10. U	78-87-5	1,2-Dichloropropane	5.00
75-01-4	Vinyl Chloride	10. U	10061-02-6	Trans-1,3-Dichloroproene .	5.0U
15-00-3	Chloroethane	10. U	79-01-6	Trichloroethene	3.9J
/5-09-2	Methylene Chloride	10. B	124-48-1	Dibromochloromethane	5.00
67-64-1	Acetone	7.93	79-00-5	1,1,2-Trichloroethane	5.00
75-15-0	Carbon Disulfide	5.00	71-43-2	Benzene	1.9J
75-35-4	1,1-Dichloroethene	5.00	10061-01-5	cis-1,3-Dichloropropene .	5.00
75-34-3	1,1-Dichloroethane	5.00	110-75-8	2-Chloroethylvinylether .	10. U
156-60-5	Trans-1,2-Dichloroethene .	8.4	75-25-2	Bromoform	5.00
17-66-3	Chloroform	5.00	591-78-6	2-Hexanone	10. U
107-06-2	1,2-Dichloroethane	5.00	108-10-1	4-Methyl-2-Pentanone	10. U
78-93-3	2-Butanone	10. U	127-18-4	Tetrachloroethene	5.00
11-55-6	1,1,1-Trichloroethane	5.00	108-88-3	Toluene	5.00
.6-23-5	Carbon Tetrachloride	5.00	108-90-7	Chlorobenzene	5.0U
108-05-4	Vinyl Acetate	10. U	100-41-4	Ethylbenzene	5.00
75-27-4	Bromodichloromethane	5.0U	100-42-5	Styrene	5.00
				Total Xylenes	5.00

- B Compound was detected in the QC blank.
- J Reported value is less than the detection limit.
- U Compound analyzed for but not detected. The reported value is the minimum attainable detection limit for the sample.

See page 1A for complete definitions of the data reporting qualifiers.

Form I

oratory	Name:	6	S	R	I		 		
se No:		499	12						

| Sample Number | | CC-277

ORGANICS ANALYSIS DATA SHEET (Page 2)

SEMIVOLATILE COMPOUNDS

Date Extracted/Prepared: 09/30/85 10/03/	Concentration: LOW			GPC Cleanup Yes <u>X</u> No					
As Number									
AS Number									
No.	•								
Number									
108-95-2									
108-95-2	48 Number		UG/L	CAS Number		UG/L			
108-95-2	62-75-9	N-Nitrosodimethylamine	10. U	208-96-8	Acenaphthylene	10. U			
11-44-4 bis(2-Chlorogethyl)Ether	108-95-2	Phenol	10. U	99-09-2	3-Nitroaniline	50. U			
95-57-8	2-53-3	Aniline	10. U	83-32-9	Acenaphthene	10. U			
-41-73-1 1,3-Dichlorobenzene . 10. U 132-64-9 Dibenzofuran 10. U 0-44-7 1,4-Dichlorobenzene . 10. U 121-14-2 2,4-Dinitrotoluene 10. U 100-51-6 Benzyl Alcohol 10. U 84-66-2 Diethylphthalate 10. U 705-72-3 4-Chlorophenyl-phenylether 10. U 705-72-3 4-Chlorophenyl-phenylether 10. U 705-72-3 4-Dinitrotoluene	.11-44-4	bis(2-Chloroethyl)Ether .	10. U	51-28-5	2,4-Dinitrophenol	50. U			
06-46-7	95-57-8	2-Chlorophenol	10. U	100-02-7	4-Nitrophenol	50. U			
100-51-6	-41-73-1	1,3-Dichlorobenzene	10. U	132-64-9	Dibenzofuran	10. U			
## 1,2-Dichlorobenzene 10. U	06-46-7	1,4-Dichlorobenzene	10. U	121-14-2	2,4-Dinitrotoluene	10. U			
## 1,2-Dichlorobenzene 10. U 84-66-2 Diethylphthalate 10. U 48-7 2-Methylphenol	100-51-6		10. U	606-20-2		10. U			
## 7 2-Methylphenol 10. U 7005-72-3 4-Chlorophenyl-phenylether 10. U 838-32-9 bis(2-Chloroisopropyl)Ether 10. U 86-73-7 Fluorene	50-1	1,2-Dichlorobenzene	10. U	84-66-2		10. U			
106-44-5	48-7	2-Methylphenol	10. U	7005-72-3	4-Chlorophenyl-phenylether	10. U			
106-44-5	38-32-9	bis(2-Chloroisopropyl)Ether	10. U	86-73-7	Fluorene	10. U			
21-64-7			10. U	100-01-6		50. U			
7-72-1 Hexachloroethane	21-64-7		10. U	534-52-1	4,6-Dinitro-2-Methylphenol	50. U			
98-95-3 Nitrobenzene			10. U	86-30-6		10. U			
78-59-1 Isophorone	98-95-3		10. U	101-55-3		10. U			
3-75-5	78-59-1		10. U	118-74-1		10. U			
105-67-9 2,4-Dimethylphenol		•	10. U	87-86-5	Pentachlorophenol	50. U			
65-85-0 Benzoic Acid				85-01-8		10. U			
11-91-1 bis(2-Chloroethoxy)Methane 10. U 84-74-2 Di-n-Butylphthalate 10. U 20-83-2 2,4-Dichlorophenol 10. U 206-44-0 Fluoranthene			50. U	120-12-7	Anthracene	10. U			
20-83-2 2,4-Dichlorophenol			10. U	84-74-2		10. U			
120-82-1 1,2,4-Trichlorobenzene . 10. U 92-87-5 Benzidine	20-83-2		10. U	206-44-0		10. U			
36-47-8 4-Chloroaniline	120-82-1		10. U	92-87-5	Benzidine	50. U			
36-47-8 4-Chloroaniline	°1-20-3	• •	10. U	129-00-0		10. U			
59-50-7 4-Chloro-3-Methylphenol 10. U 56-55-3 Benzo(a) Anthracene 10. U 1-57-6 2-Methylnaphthalene 10. U 117-81-7 bis(2-Ethylhexyl)Phthalate 13. 7-47-4 Hexachlorocyclopentadiene 10. U 218-01-9 Chrysene	06-47-8	4-Chloroaniline	10. U	85-68-7		10. U			
1-57-6 2-Methylnaphthalene 10. U 117-81-7 bis(2-Ethylhexyl)Phthalate 13. 7-47-4 Hexachlorocyclopentadiene 10. U 218-01-9 Chrysene 10. U 88-06-2 2,4,6-Trichlorophenol 10. U 117-84-0 Di-n-Octyl Phthalate 10. U 15-95-4 2,4,5-Trichlorophenol 50. U 205-99-2 Benzo(b)Fluoranthene 10. U 1-58-7 2-Chloronaphthalene 10. U 207-08-9 Benzo(k)Fluoranthene 10. U 88-74-4 2-Nitroaniline	u7-68- 3	Hexachlorobutadiene	10. U	91-94-1	3,3'-Dichlorobenzidine	20. U			
1-57-6 2-Methylnaphthalene 10. U 117-81-7 bis(2-Ethylhexyl)Phthalate 13. 7-47-4 Hexachlorocyclopentadiene 10. U 218-01-9 Chrysene 10. U 88-06-2 2,4,6-Trichlorophenol 10. U 117-84-0 Di-n-Octyl Phthalate 10. U 15-95-4 2,4,5-Trichlorophenol 50. U 205-99-2 Benzo(b)Fluoranthene 10. U 1-58-7 2-Chloronaphthalene 10. U 207-08-9 Benzo(k)Fluoranthene 10. U 88-74-4 2-Nitroaniline	59-50-7	4-Chloro-3-Methylphenol .	10. U	56-55-3	Benzo(a)Anthracene	10. ប			
7-47-4 Hexachlorocyclopentadiene 10. U 218-01-9 Chrysene	1-57-6	· · ·	10. U	117-81-7	bis(2-Ethylhexyl)Phthalate	13.			
88-06-2 2,4,6-Trichlorophenol . 10. U 117-84-0 Di-n-Octyl Phthalate 10. U 15-95-4 2,4,5-Trichlorophenol	7-47-4		10. U	218-01-9	Chrysene	10. U			
75-95-4 2,4,5-Trichlorophenol . 50. U 205-99-2 Benzo(b)Fluoranthene 10. U 1-58-7 2-Chloronaphthalene 10. U 207-08-9 Benzo(k)Fluoranthene 10. U 88-74-4 2-Nitroaniline 50. U 50-32-8 Benzo(a)Pyrene 10. U 131-11-3 Dimethyl Phthalate 6.0J 193-39-5 Indeno(1,2,3-cd)Pyrene 10. U 53-70-3 Dibenz(a,h)Anthracene 10. U	88-06-2	• • • • • • • • • • • • • • • • • • • •	10. U	117-84-0		10. Մ			
1-58-7 2-Chloronaphthalene 10. U 207-08-9 Benzo(k)Fluoranthene 10. U 88-74-4 2-Nitroaniline 50. U 50-32-8 Benzo(a)Pyrene 10. U 131-11-3 Dimethyl Phthalate 4.0J 193-39-5 Indeno(1,2,3-cd)Pyrene 10. U 53-70-3 Dibenz(a,h)Anthracene 10. U				205-99-2		10. U			
88-74-4 2-Nitroaniline 50. U 50-32-8 Benzo(a)Pyrene 10. U 131-11-3 Dimethyl Phthalate 6.0J 193-39-5 Indeno(1,2,3-cd)Pyrene 10. U 53-70-3 Dibenz(a,h)Anthracene 10. U	1-58-7		10. U	207-08-9	Benzo(k)Fluoranthene	10. U			
131-11-3 Dimethyl Phthalate 6.0J 193-39-5 Indeno(1,2,3-cd)Pyrene 10. U 53-70-3 Dibenz(a,h)Anthracene 10. U				50-32-8	Benzo(a)Pyrene	10. U			
53-70-3 Dibenz(a,h)Anthracene 10. U				193-39-5		10. U			
	_ _ · _	,		53-70-3		10. U			
				191-24-2	Benzo(g,h,i)Perylene	10. U			

LABORATORY: Gulf South Research Institute | Sample Number | CASE NUMBER: 4992 | CC-277 |

ORGANICS ANALYSIS DATA SHEET (PAGE 3) Pesticides/PCBs

Concentration: Low
Date Extracted: SEP 30 85
Date Analyzed: OCT 07 85
Dilution Factor: 1

	Conc.
Pesticide/PCB	uG/L
Alpha-BHC	0.050 U
Beta-BHC	0.050 U
Delta-BHC	0.050 U
Gamma-BHC (Lindane)	0.050 U
Heptachlor	0.050 U
Aldrin	0.050 U
Heptachlor Epoxide	0.050 U
Endosulfan I	0.050 U
Dieldrin	0.10 U
4. 4' -DDE	0.10 U
Endrin	0.10 U
Endosulfan II	0.10 U
4. 4' -DDD	0.10 U
Endrin Aldehyde	0.10 U
Endosulfan Sulfate	0.10 U
4. 4' -DDT	0.10 U
Methoxychlor	0.50 U
Endrin Ketone	0.10 U
Chlordane	0.50 U
Toxaphene	1.0 U
Aroclor-1016	0.50 U
Aroclor-1221	0.50 U
Aroclor-1232	0.50 U
Aroclor-1242	o.50 U
Araclor-1248	0.50 U
Aroclor-1254	1.0 U
Aroclor-1260	1.0 U
	Alpha-BHC Beta-BHC Delta-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4.4'-DDE Endrin Endosulfan II 4.4'-DDD Endrin Aldehyde Endosulfan Sulfate 4.4'-DDT Methoxychlor Endrin Ketone Chlordane Toxaphene Aroclor-1016 Aroclor-1221 Aroclor-1242 Aroclor-1254

Vs = Volume of Water Extracted (mL)

Ws = Weight of Sample Extraced (g)

Vt = Volume of Total Extract (uL)

Vi = Volume of Extract Injected (uL)

 V_{5} 1000 W_{5} NA V_{t} 10000 V_{i} 2.55

Laboratory Name:	Gulf	South	Research	<u>Instit</u> ute
Case No:	49	92		

Sample Number	
CC-271	

Organics Analysis Data Sheet (Page 4)

Tentatively Identified Compounds

CAS Number	Compound Name	Fraction	RT or Scan Number	Estimated Concentration (ug/lor ug/kg)
1.110-54-3	Devane	UNA	369	12 STATES
2.105-60-2	2H-Agenin - 2-One, Hexalundas	51	853	1205
3. NA	mat Withilia	.SV	967	195
4.10544-50-0		SV.	1230	1500 J
5. <u>NA</u>	not Identified	27	1479	5.12
6. <u>NA</u>	not the stilled	SV	1685	4.35
7.				
8				
9				
10		· ·		
11		•		
12				
13				_
14				
15				
16				
17				
18				
19				
20				
21				- 11 -
23				
24				
25				
26				
27				\
28				
29				
30				

CASE 5053

ORGANIC SUPPORT POCUMENTATION

NOT SUPPLIED BY

CRL

DATA VALIDATION SUMMARY--ORGANIC

	_	FYI	· / AC	TION	REQUIRED		
	Date 12/13/85						
	Case No. 5053	SAS No. ST	te Name Occid	enta	1 Chemica	.1	
	Contract Lab NUS	P.H. Liza b Co	ntract No. 68	- 01	7011	·	
	SMO Sample Nos. CC	169 (637) (6)70	1. CC286, C	2 3 4 2	7		
	one sample nose Zo	201, 22211, 2221	, cc 200, c.	- 20			•
	Paudauan	· / 05 Doo	idea #FF Bb.				
	Reviewer Diana P.	ckens of Reg	ion 🕕 Pho	ne e	rs 922-375	<u> 3-</u>	
		•			01 224-27	40	^
		Summ	ary of Samples	by I	Matrix		
	_						_
		Soil/solid	Aqueous		Other		,
	No. @ low level		5				
	No. @ med level			مبسده بالشدا			1
	No. @ high level						
							4
			1 Accortable	1 1		l IInna	
	ATT1 50		Acceptable		n-critical	unac	ceptable*
	ATILES			ט ן	eviations*		
	GC/MS tuningBFB			1			
	Initial Calibration		/	miss	ina deliverables		
3)	Continuing Calibration	on					
4)	Surrogate Recovery		/	1			
	Matrix Spikes			 			
	Reagent Blanks			 			······································
	Analysed within hold	ing times		+			
,,	Analysed Within hold	ing cimes					
~=	MT VOLETTIES		Ļ	1		(
	MI-VOLATILES			1		1	
	GC/MS tuningDFTPP		/	1			
	Initial Calibration		<i>J</i>	missi	na deliverables		
10)	Continuing Calibrati	on					
11)	Surrogate Recovery			1		*	
12)	Matrix Spikes						
131	Reagent Blanks			+			
141	Extacted/analysed wi	thin holding times	V **	-} -			
17,	Excacted/analysed wi	citti notatny cimes	V + T				
DE	STICIDES		}	1		1	
			1	1		l	
12)	Instrument Performan	ce	/	↓			
	Initial Calibration					<u> </u>	
17)	Continuing Calibrati	on		<u> </u>		1	
18)	Surrogate Recovery						
19)	Matrix Spikes						
	Reagent Blanks						
	Extracted/analysed w	ithin holding times					
,				+			
OVE	RALL CASE		}	1		1	
	Identification of ta	nant compounds		I			
		rget compounds	-	 			
23)	Data Completeness		<u> </u>		V **	L	
REV	IEWER'S COMMENTS:						
	* Isample reextr	that arranding to	non-standard		acedu mes	No date	a impact.
	•		,,	۳,	, ,		
	Resolution underw	ay thru DPO.					
1	# * Reextractions comp		times excited				
	THE INCESTANCE IONS COMP	, J					
	+ + initial calibratio	n raw data omitte	d from initial	1 30	bmission		
	THE PROPERTY CANDED	-					
					A D	100	ፍጓተ
					лц	1 4 4	U U I

PROJECT NAME: Occiden TDD NO: F3-8506-21	tal Chenuc	<u>.Q</u> -	EPA SITE N REGION:	0.: F, TIL
	QUAL INORGANI	ITY ASSURANCE RE C ANALYTICAL DAT	VIEW OF TA PACKAGE	
Case No.: 4992		Ä	Applicable Sample No's	:
Contract No.: 68-61-	6810		MCD013,MCD014	
Contract Laboratory: Cal		0	thru a including	
Applicable IFB No.: Sou			mcB 655, mc8;	
Reviewer: KOCKT. V	talo			
Review Date:	17/8/0			
The inorganic analytical data summarized in the following		has been reviewed.	The quality assurance e	evaluation is
Reviewer's Evaluation*		Fraction		
	TASK I ICP or AA METALS	TASK II FURNACE AA METALS	TASK II COLD VAPOR AA MERCURY	TASK III CYANIDE
Acceptable			V#4	J#4.
Acceptable with exception(s	VH, #2, #4	V#1, #2, #3, #4		
Questi ona ble		 		
Unacceptable				
* Definitions of the evaluati	on score categ	ories are listed on ne	xt page.	<u> </u>
This evaluation was based up	on an analysis	of the review items i	indicated below:	
DATA COMPLETENES	SS	INITIAL CA	LIBRATION VERIFICA	TION
BLANK ANALYSIS RE	SULTS	CONTINUIN	IG CALIBRATION VER	IFICATION
MATRIX SPIKE RESUL	.TS	INTERFERE	NCE QC RESULTS	
DUPLICATE ANALYSI	S RESULTS	≠ ● DETECTION	N LIMITS RESULTS	•
STANDARD ADDITION	NS RESULTS		NT SENSITIVITY REPO	RTS
† • QUANTITATIVE CALC	CULATIONS	# OHOLDING T	TIMES	
Data review forms are a	attached for ea	ach of the review item	ns indicated above.	
+No errors noted, no form	n attached.			
Spot Check performed.				
Comments: #1 Please 1	ee blank	aglinis docum	vertation.	
#2/leanet	se labor	a Leld duple	icato aralysis	
#3/learl	Lee matri	Sonthe icer	rericis	
#4/ The d	Leld blan	Weren lised	In matrix Al	checa
#5 non le	ulto wer	cobtained line	Oserial Selection	In CA BAOTU
#10: Cant w	info ova	Attatue duc	curay of Ph i	R mcton25.
	VIII		70	

ATA				-		•										
ETENESS	CONC./ MATRIX	40/AQ									450	40/		-5	40/100	-
IR	AFFIC + MC	1		MX	J>2(λ ₂ 27	סבמר	3.020	D030			1/				
-	18 1.0. # P29	27		28	_		25	30	24		25	17		D038		
		2 1	0	• 0			ω	ع ن	27	27	40	J.F	/8	19	26	
	ANK											•		/		
	PLICATE													((√	<u> </u>
	IKE	4.													V	_
OR AA	N DATA	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\														_
·· -																
 	8. D.L.'s	1														
<u> </u>	AR INTER. QC	<i>V</i>														
	STR. SENS.	V														_
	W DATA	1													=	
ACE	8. RESULTS	7														
	B. D.L.'s	Y														
_	FORM															
	TR. SENS.	V V														-
	W DATA	V														
VAPOR	B. RESULTS	. , ,													1	<u> </u>
	8. O.L.'s	1/														
QA	FORM															
INS	STR. SENS.														,	
111: RA	W DATA	1	N/R	/	4/0	~	N/R		N/2	/	1/2					\supset
DE TA	8. RESULTS	1	7	/	1	V	11		1	V	1				·-	
TA	8. D.L.'s	V		V		V		V				V				-5
QA	FORM.	V		1/	•	V		1	11	,/		V				7
INS	TR. SENS.	V	V	/	V		1/	1	V	1	4	レ				->
RA	W DATA															
IPY): TA	& RESULTS															
TA	8. D.L.'s															
QA	FORM															
INS	STR. SENS.				\leq											
R RA	W DATA															
TA	B. RUSULTS]	ightharpoons							
S	8. D.L.'s]						
	FORM										<u> </u>		\Rightarrow	\		
ins	STR. SENS.									لــــِــا						
	STR. SENS.	AB	Ma	tr	17	17.50	17 Spile	17. Spile dd	1x spike adupe	1x spike aduped A	1x spike aduped A Fi	1x spike aduped A Fiel	1x spike aduped A Field &	1x spike aduped A Field Wala	1x spike aduped A Field Want	1x spike aduped A Field Want

LAB Matrix spike aduped A field Want :

AR100633

DATA COMPLETENES:	s conc/	141	101	+		-	-	 	+		<u> </u>	-	 	-		<u> </u>
	MATRIX	AR	2 /50	-7		<u> </u>										
	TRAFFIC # MC		2 (386													
	LAB 1.0. # P29	20	15	16												
	BLANK	V	7	1												
	DUPLICATE	T	†	1/1	V635	 	 	 	 		 	-				
}	SPIKE	T	+	1	1				1							-
TASK I:	RAW DATA	-/	#		 	 	—	 	 							-
ICAP OR AA	TAB. RESULTS	1	+-		-	<u> </u>		T	1							
	TAB. D.L.'s	1	#	+->				1	1				 			
•	QA FORM	1/	1						1							1
1	ICAR INTER. QC	1	#	 	-				T							
	INSTR. SENS.	1	1					1								\vdash
TASK II:	RAW DATA	V-		<u> </u>				Π		·						
FURNACE AA:	TAB. RESULTS	1.1.	 		E											T
	TAB. D.L.'s	1/	 													
1	QA FORM	1./-]=													1
	INSTR. SENS.	V	\equiv												E	
	RAW DATA	V														T
~~.	TAB. RESULTS	1/	Ŧ		E											
MERCURY	TAB. D.L.'s	I'm														T
1	QA FORM	1/														
	INSTR. SENS.	7	<u> </u>		E											Γ
	RAW DATA	MN	LV	1												
CYANIDE	TAB. RESULTS	口	V	1											<u> </u>	
1	TAB.D.L.'s		V	1/												
1	QA FORM.		V	1/												
	INSTR. SENS.	J	V	V												
CONTRACT	RAW DATA		I													
(SPECIFY):	TAB-RESULTS															
1	TAB. O.L.'s	F	厂													
1	qa form			<u> </u>												
	INSTR. SENS.															
	RAW DATA	匚														
(SPECIFY);	TAB. RUSULTS															L
	TAB. D.L.'s	L														Ĺ
	OA FORM	L														L
	INSTR. SENS.	1		1	1			_	1		_	1	!	-	1	K

DATA EVALUATION SCORE CATEGORIES

ACCEPTABLE: Data is within established control limits, or the data which is outside established control limits does not affect the validity of the analytical results.

ACCEPTABLE WITH EXCEPTION(S): Data is not completely within established control limits. The deficiences are identified and specific data is still valid, given certain qualifications which are listed below.

QUESTIONABLE: Data is not within established control limits.

The deficiences bring the validity of the entire data set into question. However, the data validity is neither proved nor disproved by the available information.

<u>UNACCEPTABLE</u>: Data is not within established control limits.

The deficiences imply the results are not meaningful.

BLANK ANALYSIS RESULTS CONTAMINANTS (CONCENTRATION / DETECTION LIMIT TYPE CONC MATRIX SAMPLE # SOURCE OF H20 TASK An (3ug ~(10) #1/ (1494/1/200)AZ K (18564, 1500) 142 All field/m/sul P2915 800 4 (45150 HV NUS 44,7 we (of 100) #4 All filtered/w/Aa P2920 NUS 41/2015/ field/w/AQ P2926 All cap/w/40 CCB Cal Anol. Fe Laboratory reported field blank data is compared with the sample data in a tabulation form within SAMPLE ANALYTICAL DATA SUMMARY. COMMENTS: (I) RESULT REPORTED BY LABORATORY AND CONFIRMED BY REVIEWER. (2) RESULT INFERRED FROM RAW DATA Letered sangle results

AR 100636

BLANK ANALYSIS RESULTS

BLANK ANALYSIS RESULTS									
TASK	TYPE CONC MATE	IX SAMPLE #	SOURCE OF H20	CONTAMINANTS (CONCENTRATION / DETECTION LIMI					
Au	initial/IN/AQ	ICB	Cal Anal	N.D.					
All.	Cont/Low/AE	2 CCB	Cal Anal.	Ag (2,3 ug 1/10) #2 A! (149 ut //200) #2 Fez (75 ug n/800) #2 K (1200 ug n/5000) #1					
All	PreP/IN Mé	PreP,	Calif Nal.	A((149 y) /200) 12 Cu (3 y) / 50 H2 15/7.5 Fe (10 y) (100) 12					
.All	Cal/ lw/Ac	CCB	Cal AND.	Al (149 ng /200)#2					
All	cont/cal/m/A	Q CCB	Caltwal:	141 (20549/100)#2 1025/512.5 Fe (101340/100)#2					
AU	PreP/1 m/qu	Prep,	CalAnal.	Al (204,3 mg/200) HZ Fr (10 mg/2/100) HZ Pb (3,7 mg/5) H 18,5/9,3					
All	Picp/cm/80	PreP2	CA1 Awal.	Ag (1.3 y//10) 1/2 At (148 y//100) 1/2 K (2100 us / 5000) 1/2 1/50/5250 Na (820 us / 500) 1/2 4/00/2050 Zn (7.0 us / / 10) 1/2					
SAMPLE AN COMMENT (1) RI	NALYTICAL DATA S	ummary. Y Laboratory		WITH THE SAMPLE DATA IN A TABULATION FORM WITH					

AR 100637

FORM V QC REPT NUMBER: 4992 SPIKE SAMPLE RECOVERY

LAS NAME: CALIF. ANAL. LABS.

CASE NO.: 4992 EPA SAMPLE #:MCB655 LAB SAMPLE #:P2926

DATE: 10/23/85 MATRIX: LOW WATER UNITS: UG/L

COMPOUNDS METALS:	CONTROL LIMIT % R	SPIKED SAMPLE RESULT (SSR)	SAMPLE RESULT (SR)	SPIKED ADDED (SA)	% R
ELEMENTSMETH 1, ALUMINIUM 2. ANTIMONY	.P 75 TO 125	1963 565.1	0	2000 600	98 94
3. ARSENIC 4. BARIUM 5. BERYLLIUM 6. CADMIUM 7. CALCIUM 8. CHROMIUM 9. COBALT	.P 75 TO 125 .P 75 TO 125	20.8 1826 46.8 53.6 90730 176.7 437	0 0 0 0 0	20 2000 50 50 100000 200 500	104 91 94 107 91 88 87
10.COPPER 11.IRON		230.8 926.6	0	250 1000 500	92 93
12.LEAD 13.MAGNESIUM 14.MANGANESE 15.MERCURY 16.NICKEL 17.POTASSIUM	.P 75 TO 125 .P 75 TO 125 CV 75 TO 125 .P 75 TO 125	26.3 43650 171 1 360.2 46550	0 0 0 0	20 50000 200 1 400 50000	132R 87 86 100 90 93
18.SELENIUM 19.SILVER 20.SODIUM 21.THALLIUM 22.TIN 23.VANADIUM 24.ZINC 25.CYANIDE	.P 75 TO 125 .P 75 TO 125 .F 75 TO 125 .P 75 TO 125 .P 75 TO 125 .P 75 TO 125	12.6 40.2 95470 46.9 357.2 441 194 88.3	000000	10 50 100000 50 400 500 200	126R 80 95 94 89- 88 97 88

COMMENTS:

This is a feld blk. This contractually unacceptable. The chain of the soustody was examed a this payle has been designated a field blk to the lab.

FORM V QC REPT NUMBER: 4992 SPIKE SAMPLE RECOVERY

LAE NAME: CALIF. ANAL. LABS.

CASE NO.: 4992 EPA SAMPLE #:MCC394 LAB SAMPLE #: P2916

DATE: 10/23/85 MATRIX: LOW SOIL

UNITS:	UG/L
--------	------

COMPOUNDS METALS:	CONTROL LIMIT % R	SPIKED SAMPLE RESULT (SSR)	SAMPLE RESULT (SR)	SPIKED ADDED (SA)	* R
ELEMENTSMETHOL 1. ALUMINIUM 2. ANTIMONY	P 75 TO 125	N/R 450.8	N/R 0	600	75 🗸
3. ARSENIC 4. BARIUM 5. BERYLLIUM 6. CADMIUM 7. CALCIUM 8. CHROMIUM 9. COBALT 10. COPPER	P 75 TO 125 P 75 TO 125	61.6 2123 51 59.1 N/R 220.6 469.9 271 N/R	29.5 238.7 0 0 N/R 30.1 0 32.8 N/R	40 2000 50 50 200 500 250	80 94 102 118 95 94 95
12.LEAD 13.MAGNESIUM 14.MANGANESE 15.MERCURYC 16.NICKEL 17.POTASSIUM	P 75 TO 125 P 75 TO 125 V 75 TO 125 P 75 TO 125	54.9 N/R 779.7 1.8 479.4 N/R	81.1 N/R 308.4 0.95 0 N/R	20 500 1 500	OR [\] 94 85 96
18 SELENIUM 19 SILVER 20 SODIUM 21 THALLIUM 22 TIN 23 VANADIUM 24 ZINC 25 CYANIDE	P 75 TO 125 P 75 TO 125 F 75 TO 125 P 75 TO 125 P 75 TO 125 P 75 TO 125	8.5 49 N/R 43.1 457.4 523.8 609.1 99.5	0 0 N/R 0 0 59.8 94.1	10 50 50 500 500 500	85 98 86 91 93 103 100

COMMENTS:

II A preasur problem-not accuracy using dry value - 77% recovery is obtain - addressed as an estrate for precis

FORM VI QC REPORT NUMBER: 4992 DUPLICATE SAMPLE RECOVERY

LAB NAME: CALIF. ANAL. LABS.

CASE NO.: 4992

EPA SAMPLE NO.:MCB655

LAB SAMPLE NO.:P2926

DATE: 10/23/85 UNITS: UG/L

MATRIX: LOW WATER

COMPOUNDS METALS:	CONTROL LIMIT .	SAMPLE(S) DUPLICATE	S(D)	RPD
ELEMENTSMETHOD 1. ALUMINIUMP 2. ANTIMONYP		0	0	NC NC
3.ARSENICF 4. BARIUMP 5. BERYLLIUMP 5. CADMIUMP 7. CALCIUMP 8. CHROMIUMP 9. COBALTP 10.COPPERP		0 0 0 0 0 0	0 0 0 0 0 0 0	NC NC NC NC NC NC NC
12.LEADF 13.MAGNESIUMP 14.MANGANESEP 15.MERCURYCV 16.NICKELP 17.POTASSIUMP		0 0 0 0 0	0 0 0 0	NC NC NC NC
18 SELENIUMF 19 SILVERP 20 SODIUMP 21 THALLIUMF 22 TINP 23 VANADIUMP 24 ZINCP		0 0 0 0 0	0 0 0 0 0 0 0	NC NC NC NC NC NC

COMMENTS:

foldblk-unacceptable

FM VI QC REPT NUMBER: 4992 DUPLICATE SAMPLE RECOVERY

LAB NAME: CALIF. ANAL. LABS.

CASE NO.: 4992

EPA SAMPLE NO.:MCC394 LAB SAMPLE NO.:P2916

DATE: 10/23/85 MATRIX: LOW SOIL

UNITS:

UG/L

COMPOUNDS METALS:	CONTROL SAMPLE(S)	DUPLICATES (D)	RPD
ELEMENTSMETHOD 1. ALUMINIUMP 2. ANTIMONYP	9315		NC ,
3 ARSENIC. F 4 BARIUM. P 5 BERYLLIUM. P 6 CADMIUM. P 7 CALCIUM. P 8 CHROMIUM. P 9 COBALT. P 10 COPPER. P 11 IRON. P	29.5 238.7 5246 30.1 32.8	248.1 0 5.5 5 5218 27.4 0 3	NC NC NC NC 1 9 NC 2
12.LEADF 13.MAGNESIUMP 14.MANGANESEP 15.MERCURYCV 16.NICKELP 17.POTASSIUMP	308.4 0.95	39.6 0 312.7 0.8 0	69* [2] NC 1 17 NC NC
18.SELENIUMF 19.SILVERP 20.SODIUMP 21.THALLIUMF 22.TINP 23.VANADIUMP 24.ZINCP 25.CYANIDEC	59.8 94.1	0 0 0 0 0 0 63 4 92.1	NC NC NC NC S 2 NC

COMMENTS:

[] foundating cd in MCC394 - but not commented since the orig-ND-athe field dup-ND
[2] Ph extended - poor lah precision

. , ,								ite form.	
		ll .	Outline	Coite	in CE.	+ 4.1 400	<u>/</u>	\	
		Outlier Criteria (for tabulation purpo Relative standard deviation Equivalent Relative Ren					lative fleccont	poses only)	
		Solid aqueous			solid	aqueous			
						#30%			
						7 2			
	C	ONCEN	TRAT	[ONS			relative standard deviation relative pensane difference	Committees footbales	
		s No. 1		is Na.2		is No.3	relative	<u> </u>	
ONSTITUENT	Sample I.D.		SAMPLE I.D.		Sample	CONC.	different different	3 45	
Juminum	MC1035		mcc394	7165		<u> </u>	134	- 1	
usenic		24		22.7			6%	#1	
oarcin		176		184		<u> </u>	5%	#[,#	
Denglum		1,9		1.6			17/2	世(
Calcuni		6929		4035			532	#2	
climum.		19		23			197e	#(
cobalt.		7	<u> </u>	10			354	业	
copper.		20		23	:		14%	#1	
hin		6580		9269		-	342	#3,	
lead.		17.4		62.4 968		+	113%	4	
manganere		1098 249		237		+	5%	# }	
				0.70		-	15%	1	
mercury		0.60		1758		1	1040	#1	
potanum podun		862		919	<u> </u>		6,4%	41	
Vanadim		40.2		46			134	#1	
Zinc		61		72			17%	#1	
		- V					1.1/0		

FORM II QC Report No.: 4992

INITIAL AND CONTINUING CALIBRATION VERIFICATION

LAB NAME: Cal Labs CASE NO.: SOW NO.: 784

DATE:10/11/85 Units: ug/l

COMPOUNDS	INIT 1	INIT	INIT CONT 2		CONT	CONT	CONT
METALSMETHODS	CALI	CALI	CALI CALI				CALI
4	TRUE	FOUND	% R TRUE	FOUND	% R	FOUND	% R
1. ALUMINUMP			10000	10030	100	10010	
2. ANTIMONYP	10000		10000	9678	97	9689	97
3. ARSENICP 4. BARIUMP	10000		10000		93	9285	93
4. BARIUMP	1000		1000	939		924	92
5. BERYLLIUMP	200		200	194	97	192	96
6. CADMIUMP	1000		1000	1027	103	1019	102
7. CALCIUMP			40000		95	37360	
8. CHROMIUMP	1000		1000			936	
9. COBALTP				928		921	
10. COPPERP	1000		1000	976		961	
11. IRONP			10000	9565		9434	
12. LEADP			1000	919		900	
13. MAGNESIUMP			40000			37500-	
14. MANGANESEP	1000		1000	918	92	905	91
15, MERCURYCV	3		3				
16. NICKELP			1000	941	94	914	91
17. POTASSIUMP	40000		40000	39160	98	39810	100
18. SELENIUMP	10000		10000	9267	93	9319	93
19. SILVERP			100	96	96	98	98
20. SODIUMP	40000		40000	40340		39480	
21. THALLIUMP	10000		10000	9821	98	9728	97
22. TINP	10000		10000	9450	95	9341	93
23. VANADIUMP	1000		1000	957	96	946	95
24. ZINCP	1000		1000	916	92	918	92
OTHER:						•	
CYANIDEC							

Initial Calibration Source: EPA, SPEX AND OTHERS
Continuing Calibration Source: EPA, SPEX AND OTHERS
Control Limits: Mercury and Tin 80-120; All other compounds 90-110

Indicate Analytical Method Used: P-ICP/Flame AA; F-Furnace

gel acceptable

4992

3

FORM II QC Report No.: 4992

INITIAL AND CONTINUING CALIBRATION VERIFICATION

LAB NAME: Cal Labs CASE NO.: SOW NO.: 784 DATE: 10/11/85

Units: ug/l

COMPOUNDS	INIT 1			CONT 2	CONT	CONT	CONT	CONT
METALSMETHODS	CALI	CALI	CALI		CALI	CALI	CALI	CALI
4	TRUE	FOUND	% R	TRUE	FOUND	% R	FOUND	% R
1. ALUMINUMP	10000	10260	103	10000	10030	100	9895	99
2. ANTIMONYP	10000	10150	102	10000	9754	98	9450	95
3. ARSENICP	10000	10430	104	10000	9641	96	9246	92
4. BARIUMP	1000	982	98	1000	956	96	927	93
5. BERYLLIUMP		210	105	200	198	99	193	97
6. CADMIUMP		1063	106	1000	1044	104	1013	101
7. CALCIUMP		40290	101	40000	38440	96	37600	94
8. CHROMIUMP	1000	1008	101	1000	960	96	941	94
9. COBALTP	1000	993	99	1000	938	94	916	92
10. COPPERP	1000	999	100	1000	992	99	965	97
11. IRONP		10080	101	10000	9679		9447	94
12. LEADP	1000	971	97	1000	924	92	910	91
13. MAGNESIUMP	40000	39340	98	40000	38970	97	37810	95
14. MANGANESEP		977	98		936		911	91
15. MERCURYCV	_			3				
16. NICKELP	1000	990	99	1000	952	95	922	92
17. POTASSIUMP	40000	38510	96	40000	39150		39220	
18. SELENIUMP	10000	10140	101	10000	9421	94	9062	91
19. SILVERP	100	100	100	100	96	96	97	97
20. SODIUMP		39680	99	40000	41430	104	39890	100
21. THALLIUMP		9948		10000	9959	100	9710	97
22. TINP		11420		10000	10000	100	9317	93
							953	
OTHER:							•	
CYANIDEC								
23. VANADIUMP 24. ZINCP OTHER:	1000 1000	1013	101	1000	972 920	97		95 90

Initial Calibration Source: EPA, SPEX AND OTHERS
Continuing Calibration Source: EPA, SPEX AND OTHERS
Control Limits: Mercury and Tin 80-120; All other compounds 90-110
Indicate Analytical Method Used: P-ICP/Flame AA; F-Furnace

All acceptable

Form VIII Q.C. Report No. STANDARD AUDITION RESULTS

الما	NATE	CAL L	185		=	ise no. <u>499</u>		
PATE		10-1	8-85		U	ITS <u>ng/</u>	l.	
			D AND	1 ADD	2 ADU	QQA E	FINAL	
San	pla	Element	ABS.	CON./ABS	CUN./ABS.1		CON.2	F
6 Y3 Hec	394	pl	.086	1.123	20/.161	30/.183	81.15	1.99
	0029	Pb	.101	10/.127	20/.140	30/.149	67.3.1	
1								
						·		
				•				Π
1								ī
1			•					ī
}								
1								
1								T
l								+
1 cquares				<u> </u>				十
, ! 								十
i					<u> </u>			十
. j								十
· !								-
ļ !						, , , , , , , , , , , , , , , , , , , ,	 	十
l								十
					 			- -
1								┿

¹ CON is the concentration added, ABS. is the instrument readout in absorbance or concentration.

2 Concentration as determined by MSA

2"r" is the correlation coefficient.

5 INCE Correct outside criteries.

⁻ correlation coefficient is outside of control window of 0.995.

FORM IV QC Report No .:

LAB NAME: Cal Labs

DATE:10/11/85

ICP INTERFERENCE CHECK SAMPLE

Case No.:

4992 4992

Check Sample ID: X-84 QASL-UNLV

Check Sample Source: EPA

Units: ug/1

COMPOUN METALS:		CONTROL	LIMITS	1.		INIT	IAL	FIN	AL	
MELALO.	•				TRUE 2	OBSERVED	* R	OBSERVED		% R
I. ATI	MINUM	P			448000	448400	100	424500		95
	IMONY	-								
	ENIC									
	RIUM				464	489	105	457		98
	XYLLIUM				412	460	112	415		101
6, CAI	MIUM	P			840	893	106	853		102
7. CAI	CIUM	P			445000	506700	114	457100		103
8. CHI	ROMIUM	P			705	697	99	639		91
9 COI	BALT	P			549	542	99	503		92
	PPER				553	487	88	463		84
11. IRC	ON	₽			422000	396300	94	379600		90
	AD	₽				970		902		
L3. MAG	NESIUM	P			425000	438400	103	412900	•	97
	IGANESE				617	622	101	573		93
	CURYC									
	KEL				890	884	99	829		93
	TASSIUM									
	ENIUM									
	VER									4
	OIUM					275		345		
	LLIUM									
					E00	E ^ 3				0.1
	NADIUM				508	501	99	464		91
	1 C	r			874	890	102	853		98
OTHER:										

[?] True value of EPA ICP Interference Check Sample or contractor standard. L Mean value based on N=5

Phin MCD025 Count very since Pb was guantitated by ICP. Attribulable noted >85pph was found by GF.

Form VII

Q.C. Report No. 4992

INSTRUMENT DETECTION LIMITS AND

LABORATORY CONTROL SAMPLE

LAB NAME	CAL LABS	CASE NO. 4992
DATE	10-11-85	LCS UNITS Ug/L mg/kg
4	•	(Circle One)

	Required Detection	Instrumen	t Detection	1]
Gompound	Limits (CRDL)-ug/1	Limits (IDL)-ug/1	Lab Con	ntrol Sam	ple
		ICP/AA	Furnace	True	Found	ZR
metals:						
l. Aluminum	200	187.		10000	9811	98
2. Antimony	60	23		10000	9450	951
3. Arsenic	10	32	4.3	10000	9259	93
4. Barium	200	11.		1000	919	92
5. Beryllium	5	0.40		200	192	96
6. Cadmium	5	4.8		1000	1009	101
7. Calcium	5000	298		40000	37630	94
8. Chromium	10	2.4		1660	933	93
9. Cobalt	50	4.0		1000	907	91
10. Copper	25	2.6		1000	956	.96
11. Tron	100	8.0		10000	9448	94
12. Lead	5	41	3.2	1000	884	83
13. Magnesium	5000	197		40000	37850	95
14. Manganese	15	1:1		1000	74904F	
15. Mercury	0.2		0.07			
16. Nickel	40	24		1000	928	931
17. Potassium	5000	542		40000	39/20	98
18. Selenium	5	66	2.1	10000	9231	92
19. Silver	10	2.1		100	99.2	99
20. Sodium	5000	367		40000	39970	100
21. Thallium	10	56	3.2	10000	9674	97
22, Tin	40	60		10000	9343	93
23. Vanadium	50	3.1	,	1000	940	94
24. Zinc	. 20	2.6		1000	893	89
Other:						
Cyanide	10		ARIO	1	1-20	DIX.

Case No.: 5053 Applicable Sample Nots: Contract No.: 5053 Applicable Sample Nots: Contract Laboratory: 6550 Applicable IFB No.: 6550 Applicable IF	EPA SITE NO.: REGION: III		tal Chemical	PROJECT NAME: Occident TDD NO: F3-8-59-1
Contract Laboratorys Contract Laboratory Contrac	RANCE REVIEW OF TICAL DATA PACKAGE	ITY ASSURANCE RE IC ANALYTICAL DAT	QUAL INORGAN	
Contract Laboratorys Contract Laboratory Contrac	Applicable Sample No's.:			Case No.: 5053
Applicable IFB No.: Reviewer: See Linchion Review Date: 12-6-85 The inorganic analytical data for this case has been reviewed. The quality assurance evaluation is immarized in the following table: Reviewer's Evaluation* Fraction TASK II TASK III TASK III COLD VAPOR AA METALS METALS METALS METALS METALS METALS METALS METALS METALS cceptable Acceptable with exception(s) uestionable Definitions of the evaluation score categories are listed on next page. This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS BLANK ANALYSIS RESULTS DUPLICATE ANALYSIS RESULTS DUPLICATE ANALYSIS RESULTS STANDARD ADDITIONS RESULTS DUPLICATE ANALYSIS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 25-11-11-11-11-11-11-11-11-11-11-11-11-11				Contract No.:
Applicable IFB No.: Reviewer: Stee Literation Review Date: 12-6-85 The inorganic analytical data for this case has been reviewed. The quality assurance evaluation is immarized in the following table: Reviewer's Evaluation* Fraction TASK II ICP or AA	MED015, NICO 31 MED 50 NOTO 1		, tech	Contract Laboratory:
The increase analytical data for this case has been reviewed. The quality assurance evaluation is immarized in the following table: Reviewer's Evaluation*		•		Applicable IFB No.:
The increase analytical data for this case has been reviewed. The quality assurance evaluation is immarized in the following table: Reviewer's Evaluation*			akton	Reviewer: 5-leve L. 11's
Reviewer's Evaluation* TASK I ICP or AA METALS CCEPTABLE CCALBRATION VERIFICATION CONTINUING CALIBRATION VERIFICATION CONTINUING CALI				
TASK I ICP or AA METALS FURNACE AA METALS COLD VAPOR AA METALS CYANIDE cceptable Acceptable with exception(s) uestionable Definitions of the evaluation score categories are listed on next page. This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS BLANK ANALYSIS RESULTS MATRIX SPIKE RESULTS DUPLICATE ANALYSIS RESULTS DUPLICATE ANALYSIS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Continuing Calibration Verification instrument sensitivity reports Instrument sensitivity reports Task III COLD VAPOR AA MERCURY TASK III TASK III TASK III TASK I				:ummarized in the following
ICP or AA METALS FURNACE AA MERCURY Coeptable Acceptable with exception(s) Unacceptable Definitions of the evaluation score categories are listed on next page. This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS DATA COMPLETENESS INITIAL CALIBRATION VERIFICATION MATRIX SPIKE RESULTS DUPLICATE ANALYSIS RESULTS DUPLICATE ANALYSIS RESULTS DUPLICATE ANALYSIS RESULTS STANDARD ADDITIONS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 18-11-11-11-11-11-11-11-11-11-11-11-11-1			TASK	CONCRETE SERVICES
Acceptable with exception(s) uestionable Unacceptable Definitions of the evaluation score categories are listed on next page. This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS INITIAL CALIBRATION VERIFICATION BLANK ANALYSIS RESULTS CONTINUING CALIBRATION VERIFICATION MATRIX SPIKE RESULTS INTERFERENCE QC RESULTS DETECTION LIMITS RESULTS STANDARD ADDITIONS RESULTS INSTRUMENT SENSITIVITY REPORTS Pata review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 25-12-12-12-12-12-12-12-12-12-12-12-12-12-	ACE AA COLD VAPOR AA CYANIDE	FURNACE AA	ICP or AA	
Unacceptable Definitions of the evaluation score categories are listed on next page. This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS INITIAL CALIBRATION VERIFICATION BLANK ANALYSIS RESULTS CONTINUING CALIBRATION VERIFICATION MATRIX SPIKE RESULTS INTERFERENCE QC RESULTS DUPLICATE ANALYSIS RESULTS STANDARD ADDITIONS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 25-12-12-12-12-12-12-12-12-12-12-12-12-12-				
Unacceptable Definitions of the evaluation score categories are listed on next page. This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS INITIAL CALIBRATION VERIFICATION BLANK ANALYSIS RESULTS CONTINUING CALIBRATION VERIFICATION MATRIX SPIKE RESULTS INTERFERENCE QC RESULTS DUPLICATE ANALYSIS RESULTS STANDARD ADDITIONS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 25-12-12-12-12-12-12-12-12-12-12-12-12-12-			s 👸	Acceptable with exception(s
Unacceptable Definitions of the evaluation score categories are listed on next page. This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS INITIAL CALIBRATION VERIFICATION BLANK ANALYSIS RESULTS CONTINUING CALIBRATION VERIFICATION MATRIX SPIKE RESULTS INTERFERENCE QC RESULTS DUPLICATE ANALYSIS RESULTS STANDARD ADDITIONS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. mments: 28-12-12-12-12-12-12-12-12-12-12-12-12-12-		5.		
This evaluation was based upon an analysis of the review items indicated below: DATA COMPLETENESS BLANK ANALYSIS RESULTS MATRIX SPIKE RESULTS DUPLICATE ANALYSIS RESULTS STANDARD ADDITIONS RESULTS DATA COMPLETENESS INITIAL CALIBRATION VERIFICATION CONTINUING CALIBRATION VERIFICATION INTERFERENCE QC RESULTS DETECTION LIMITS RESULTS INSTRUMENT SENSITIVITY REPORTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 25-12-12-12-12-12-12-12-12-12-12-12-12-12-		3		Unacceptable
● DATA COMPLETENESS ● BLANK ANALYSIS RESULTS ● MATRIX SPIKE RESULTS ● DUPLICATE ANALYSIS RESULTS ● STANDARD ADDITIONS RESULTS ● QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. FNo errors noted, no form attached. ● Spot Check performed. Comments: 25-12-12-14-14-14-14-14-14-14-14-14-14-14-14-14-	listed on next page.	gories are listed on ne	ion score cate	Definitions of the evaluat
 BLANK ANALYSIS RESULTS MATRIX SPIKE RESULTS DUPLICATE ANALYSIS RESULTS STANDARD ADDITIONS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Continuing Calibration verification Interference QC RESULTS Detection Limits Results Instrument sensitivity Reports Post Check performed. The review items indicated above. Spot Check performed. Continuing Calibration verification Interference QC RESULTS Detection Limits Results Instrument sensitivity Reports Post Check performed. The review items indicated above. 	view items indicated below:	s of the review items	pon an analysi	This evaluation was based u
 MATRIX SPIKE RESULTS DUPLICATE ANALYSIS RESULTS DETECTION LIMITS RESULTS STANDARD ADDITIONS RESULTS DISTRUMENT SENSITIVITY REPORTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: TExtonial and the province of the review items indicated above. 				_
● DUPLICATE ANALYSIS RESULTS ● STANDARD ADDITIONS RESULTS ● QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. FNo errors noted, no form attached. Spot Check performed. Comments: 25-12-12-12-12-12-12-12-12-12-12-12-12-12-		I		
STANDARD ADDITIONS RESULTS QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 25-1/2 analysis and the comments are comments and the comments are comments and the comments and the comments and the comments and the comments are comments and the comments and the comments are comments and the comments and the comments and the comments are comments and the comments and the comments and the comments are comments and the comments and the comments and the comments	-	<u> </u>		<u> </u>
QUANTITATIVE CALCULATIONS Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 25-12-12-12-12-12-12-12-12-12-12-12-12-12-	DETECTION LIMITS RESULTS	DETECTION		
Data review forms are attached for each of the review items indicated above. No errors noted, no form attached. Spot Check performed. Comments: 28-12-12-12-12-12-12-12-12-12-12-12-12-12-	INSTRUMENT SENSITIVITY REPORTS	INSTRUME!		
FNo errors noted, no form attached. Spot Check performed. Comments: 2 F 1/2 - 1			CULATIONS	QUANTITATIVE CAL
Spot Check performed. C mments: 18-1/2 (1/2) = 1/2 = 5 = 1/2 This is avalysis of 1/4)	review items indicated above.	ach of the review iter		•
C mments: 18-1/2 ovalysis of time				_)
3 A12 analysis a= -111)				•
- 3 Not x sp is to come in 1100 polycomy & silver,			sis = -(1)	JA: -12 onalys
	Company both Silver	100 polastingsil	ر مهد مافتاره م	_ 3 Not x 5; 0'1
		/		·

DATA EVALUATION SCORE CATEGORIES

ACCEPTABLE: Data is within established control limits, or the data which is outside established control limits does not affect the validity of the analytical results.

ACCEPTABLE WITH EXCEPTION(S): Data is not completely within established control limits. The deficiences are identified and specific data is still valid, given certain qualifications which are listed below.

QUESTIONABLE: Data is not within established control limits.

The deficiences bring the validity of the entire data set into question. However, the data validity is neither proved nor disproved by the available information.

<u>UNACCEPTABLE</u>: Data is not within established control limits.

The deficiences imply the results are not meaningful.

BLANK ANALYSIS RESULTS

TASK	TYPE CONC MATRIX	SAMPLE #	SOURCE OF H20	CONTAMINANTS (CONCENTRATION / DETECTION LIMIT
INOR.				Fe=113mdl
	Circul 100	MCD	NUS	P6:5 22/1
I,T,T	FIELD/L /AQ FILLER	016		Sm = [29] 15/2
	tilkredi			ZN=18 wolf
		RICA		Fe = 95wis
工工工	FIED/H/AQ	1	HUS	-in :25-25 .
,	1	515		2n=2,5000
T 1. A			1.7	
INOR.	CAB PREPILIPA	}	Cranb K	1
I,Z,W	CHO PREPILIFY			
	-	•		
		[ļ	
			ł	
		ļ		
		ł		
SAMPLE AI	NALYTICAL DATA SUM	IMARY.		WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN
	ESULT INFERRED FRO		John mmed	
(2) K	EGGET MEENNED FRO	W NAT VALA	· 	
BASI	ED UPON THE ABOVE	LISTED CO	NAMINALIT LE	YELS THE FULLOWING DATTA POINTS MAY BE
	_		. `	110 100000113 11111 1 21111 1 11111
	QUESTIONABLE (5X RULE	MPPLIED):	
	<u> </u>	- <u></u>		
>	. ' / -/ CES			
				
				ADIONSSO

LAB Duplicate Analysis Results

The applicable duplicate pairs are:

sample no.	MCDOIS			
Field duplicate				
Lab duplicate				
sample level	t			
sample matrix	A2			
TASK	エエア			

The relative percent difference (RPD) for each parameter group was evaluated. The duplicate analysis RPD acceptance criteria should be:

•	<u>maximum acceptable</u>
MATRIX	Percent Difference
Aq	± 20 %
SOL	± 40%

we RPD's exceeding the maximum acceptable percent difference were:

		•		Compari	son
MATRIX	Compound	Actual RPD	Sample	conc.	conc.
<u> </u>	Tin	11'7	11/21-	ن ت خ	9;
		•			
				<u> </u>	
·				<u> </u>	
				•	
	,-				

C	mments: _		
		ARIO	1651

FIELD . Duplicate Analysis Results

The applicable duplicate pairs are:

sample no.				
Field duplicate	-			
Lab duplicate	y /			
sample level	$ \wedge$ $/$			
sample matrix	/ }			
TASK		/		

The relative percent difference (RPD) for each parameter group was evaluated. The duplicate analysis RPD acceptance criteria should be:

	<u>maximum acceptable</u>
MATRIX	Percent Difference
AQ	± 20%
SOL.	± 40%

The RPD's exceeding the maximum acceptable percent difference were:

		·	Comparison
MATRIX	Compound	Actual RPD	
-			
*			
t .			
		·	_

Comments:									
	 Ļ	}_	1	0	0	5	5	2	

MATRIX SPIKE RECOVERIES

	· · · · · · · · · · · · · · · · · · ·						
Sample No.	MC0650	·					
Field Spike							
Lab Spike	1		·····				
Matrix	12						
Conc. Level	4						
Method Std.							
TASK	工, 正, 正						
All matrix spik IFB WA8 -A Exception(s):	e recoveries we , Exhibit E, Tai	re within the ole 2.	established	control ran	ges specifie Yes		No
•	Accepted	Actual	Sample	Crg.	Spike	Spike	
Parameter A	Range (%)	% Rec.	Number	Result	Added	Result	Units
Ac Ye K	75-125	1 52	MID ESD	6.41	1	₹	1-2-5 18
7-	95-125	164	mc1550		1000	1350	will
<i>K</i>	75-125	70	mc (5 - 7	(1777)	5000	5.,-5-	11
<u></u>	25-125	62	1.16.55		• \	Ş ?	1
<u> </u>	75.185	57	m=0550	E23	300	130	wij
	· · · · ·		<u> </u>				<u> </u>
			<u> </u>				
•							
							<u> </u>
						·	
				<u> </u>	<u> </u>		_
					·		
	· .						
		•					<u> </u>
Comments:							
						•	

STANDARD ADDITION RESULTS

on all s	ration indicates a stand spiked samples for param limits: Yes No_	eters havin			
tandard	parameters having poor additions were also pe owing conditions were m	rformed on et:	all other	samples where	
(1)	The sample matrix was s which was spiked; and	imilar to t	the matrix	of the sample	
	The parameters in quest			_	s.
•			Yes No_	BY CONTEACT	
with the The resu atrix a	meters with poor spike type of standard additults for these parameter re also listed below:	ion performs in other	ed(none, 1	, 2, or 3 point)	
sample	description of matrix	parameter	recovery	type of std. ad	d.
		·	·		
		-			
		14			
	·			_	
				·	
ments:					
	·				
		•			

AR100654

Initial Calibration Verification and Continuing Calibration Verification

Calibrations and ver	4	ll within the o	control limits	specified in	•
	:	·			Yes 🖊 N
Outliers are listed be				. • • • • • • • • • • •	
•	Acceptable	Calibration	% of		٠,
Parameter	Range (%)	Identifier	True Value	Comments	
					•
•					
			:		
					
			i		
ocumentation indic	ates interference			ore and after every te	
ocumentation indicinates Run nterference QC resu	AT START and	F.WISH OF :	SHIPT AS RE	ied in	7
nterference QC resu	AT START and	F.WISH OF :	SHIPT AS RE	EQUIPED BY CONTRAC	7
exceptions: Run nterference QC resu	AT START and Its were all with	in the control	limits specif	ied in	
nterference QC resu	AT START and Its were all with	F.WISH OF :	limits specif	ied in	7
nterference QC resu	AT START and Its were all with	in the control	limits specif	ied in	7
nterference QC resulting indication indications:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7
nterference QC resulting indication indications:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7
nterference QC resurce ptions:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7
nterference QC resulting indication indications:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7
nterference QC resulting indication indications:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7
nterference QC resulting indication indications:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7
nterference QC resurce ptions:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7
nterference QC resurce ptions:	AT START and Its were all with Acceptable	in the control Calibration	limits specifuides	ied in	7

Detection Limits Results

Detection limits were reported for all samples analyzed: Yes	No
Exceptions:	
•	•
	•
Detection limits were less than or equal to the required detection	,
specified in Yes	No V
Exceptions: wood and a 5x divinu	311
Exceptions: mc0021 and end of of Sx dilations. Mon- sited complex have sx detailed invitable	TeA.
A) Sh, ke, Ct, Co, Co, Co, A is So, Va	
	•
	`
Instrument Sensitivity Reports	
Instrument sensitivity reports were documented for all parameters:	
Yes	No
	-
Comments:	
•	
Other Remarks Concerning this Case:	
	chack
There are currently no established control ranges for ICP interference	
standards. However, although not a contractual requirement, 85% -	
here as a tentative guideline for evaluation. Outliers of this tent	
control range, if any, are tabulated on the bottom of the preceeding	y paye.
	IRIN0658

QUANTITATIVE CALCULATIONS

CALCULATION	ERRORS AND	CORRECTED	RESULTS A	RE LIST	ED BELOW	<i>i</i> :	
				·····			
	·		·				
						·	
						•	
		* 1					
			7				
	•						
		-		<u> </u>			
						······································	
التقايينيانيواليوالي							
واجانشها الدوالة في في والي من				·			
			······································		·····		
					·		
·				· · · · · · · · · · · · · · · · · · ·			
							
							
··· <u>·</u> ·········					· · · · · · · · · · · · · · · · · · ·	. <u></u>	
					······································		
							
			·····		, <u></u>		
····							

DATA	•			-											
COMPLETENES	SS CONC./ MATRIX	442	-/A.2	4/12	1/10	-/AQ	1/40	-/12	-//2						
	TRAFFIC REPORT #			McQ 23a			1.c0							i	
	LAB I.D. #	551-	551- 02					55/- 57							
FIELD QC	BLANK		1/			1						• .			
	DUPLICATE	T^-				<u> </u>									
	SPIKE														
TASK I:	RAW DATA	/							>						
ICAP OR AA:	TAB. RESULTS	/							->						
	TAB. D.L.'s	1							\rightarrow						
	QA FORM	1	-				-		>						
	ICAP INTER. QC	1	-				-		->	-					
	INSTR. SENS.														
TASK II: FURNACE	RAW DATA	1							\longrightarrow						
AA:	TAB. RESULTS	_							$\qquad \longrightarrow \qquad$						
METALS	TAB. D.L.'s	1							\rightarrow						
	QA FORM	1							\rightarrow						
	INSTR. SENS.														
TASK II:	RAW DATA	V			<u> </u>				\rightarrow						
COLD VAPOR	TAB. RESULTS	1							-						
MERCURY	TAB. D.L.'s	·							>		·				
	QA FORM										٠				
	INSTR. SENS.														
TASK III: CYANIDE	RAW DATA				1				}		·				
CYANIDE	TAB. RESULTS								$ \!\!-\!\!\!-\!\!\!>$						
	TAB.D.L.'s				·				\rightarrow				<u> </u>		
	QA FORM.							<u> </u>	}						
	INSTR. SENS.														
OTHER (SPECIFY):	RAW DATA														
(Or Edir 17.	TAB. RESULTS														
	TAB. D.L.'s														
	QA FORM														
	INSTR. SENS.														
OTHER	RAW DATA														
(SPECIFY);	TAB. RUSULTS														
,	TAB. D.L.'s														
	QA FORM														
	INSTR. SENS.										1	T			

AR100658
BRIUIBSR