111736

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY Region III 841 Chestnut Building Philadelphia, PA 19107

SUBJECT: Record of Decision - Transmittal Memo Date: September 11, 1989

- From: Stephen R. Wassersug, Director Hazardous Waste Management Division (3HW00)
 - To: Edwin B. Erickson Regional Administrator

Attached is a Record of Decision for the Havertown PCP Superfund Site. The decision outlines all necessary remedial actions which must be performed in order to be protective of the public health and the environment. I recommend that you sign the attached document.

AR300966

DECLARATION FOR THE RECORD OF DECISION

Site Name and Location

Havertown PCP Site (the site), Haverford Township, Delaware County, Pennsylvania

Statement of Basis and Purpose

This decision document presents the selected interim remedial actions addressing onsite soils, staged waste materials, and the storm sewer effluent at the catch basin in Naylors Run, a creek that drains the site area. These remedial actions were developed in accordance with the Comprehensive Environmental Response, Compensation Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986 and to the extent practicable, the National Contingency Plan. The attached index identifies the items that comprise the administrative record upon which the selection of the remedial actions are based. The Commonwealth of Pennsylvania has concurred on the selected remedies.

Description of Selected Remedy

The selected Remedial Action Alternatives (RAA) address the threats posed by the onsite soils, storm sewer effluent and drummed waste. These actions are described below. EPA will assume the site-lead for the Remedial Design and Remedial Action (RD/RA) for this Record of Decision.

<u>Onsite Soils</u>

The selected remedy for the onsite soils is the "No Action" alternative. This alternative achieves remedial action objectives because the potential threat to the public's health associated with the continued entrainment of contaminated dust and infiltration of contaminants into the environment poses no significant risk.

The next operable unit will address any potential impact of the soils on groundwater at the site. The chosen remedy in this Record of Decision will not interfere with any future remedial action.

<u>Oil/Water separator for storm sewer effluent</u>

The selected alternative for remediation of the storm drain effluent to Naylors Run is the installation and operation of an optimum, oil/water separator. Such separators, which are 00067 commercially available, are used in petroleum distribution and transportation facilities and in a variety of other industrial and military operations. The oil/water separator complies with ARARs and provides overall, long-term protection to humans.

Staged Waste Materials

The recommended alternative for cleaning up the contaminated waste staged onsite is landfilling and offsite treatment of the aqueous waste. Offsite treatment and disposal of the waste was selected because it can be easily implemented, will not be affected by the lack of available working space, and will not impact the surrounding population or environment.

Summary of Risk and Rationale for Selection of Alternatives

The human health risk in terms of the maximum potential increased risk of contracting cancer from a 70-year lifetime exposure through inhalation or ingestion was calculated for each potentially carcinogenic chemical. The results, expressed in terms of risk per million people exposed, are as follows:

1. Inhalation of entrained particulates containing chromium VI, arsenic, and other metals from onsite soils and of VOCs emanating from the site by persons off site:

		DISTANCE	FROM THE S	SITE	
	500 ft	1000 ft	1320 ft	2000 ft	2640 ft
Cancer risk (per million)	5.8	2.9	2.2	1.45	1.1

These values are considered to be higher than the actual risk because the analytical results for total chromium were used as if they were 100% hexavalent chromium. While the hexavalent chromium salt is a known human carcinogen through the inhalation route, sampling performed in July, 1989 did not identify the presence of hexavalent chromium in onsite soils.

- Inhalation of benzene and other VOCs at the nearest residences (two within 75 m or 250 ft) to the catch basin 5.5 (per million)
- 3. Ingestion of onsite soils: 8 (per million) This value is considered to be higher than the actual risk because the analytical results for total arsenic were used as if they were 100% trivalent arsenic, the most carcinogenic species.
 AR300968

- 4. Ingestion of liquids from the underflow dam: 2 (per million)
- 5. The total risk from all sources for a person living within 500 ft of the site and within 250 ft of the underflow dam and ingesting the onsite soils and sediments, the sediments under Naylors Run, and the liquids in the underflow dam is not cumulative, however for multiple exposures to different media a slightly higher risk may be possible.

The "No Action" alternative for onsite soils, the oil/water separator for storm effluent at the catch basin, and offsite treatment and disposal of the staged waste were selected because they meet established remedial action objectives with regard to human health and the environment. The components of these alternatives are well demonstrated and represent both a reliable and a cost effective method for remediating site conditions.

Declaration

The remedy selected to address the onsite soils is protective of human health and the environment, attains acceptable levels of exposure for this remedial action and is cost effective.

The remedy selected for the effluent in the catch basin is also protective of the public's health and the environment, attains Federal and State requirements that are applicable, relevant and appropriate, satisfies the reduction of toxicity, mobility, or volume requirement, and is both easily implemented and cost effective.

The remedy selected for the staged waste materials is protective of human health and the environment, attains Federal and State requirements that are applicable, relevant and appropriate, reduces potential mobility and toxicity to other media, is easily implemented and has a higher degree of public acceptance than the onsite treatment option.

Edwin B. Erickson Regional Administrator Region III AR300969

HAVERTOWN PCP SITE Record of Decision

U.S. EPA Region III

Haverford Township, Delaware County, Pennsylvania

SITE DESCRIPTION

The Havertown PCP site consists of approximately 12 to 15 acres roughly delineated by Lawrence Road and Rittenhouse Circle to the south, the former Penn Central Railroad tracks to the north, and the fence between NWP and Continental Motors to the west. There is no distinct boundary to the east.

The investigation of the Havertown PCP site was performed by the Commonwealth of Pennsylvania. In June 1987, the State started a Remedial Investigation and Feasibility Study (RI/FS) to identify and define the hydrogeologic characteristics and extent of contamination at the site. The RI/FS identified appropriate corrective action to address actual or potential environmental and public health threats. Based upon a review of the Feasibility Study, a Record of Decision (ROD) recommends appropriate remedial actions. The site is located in Havertown, Haverford Township, Delaware County, in southeastern Pennsylvania. The site is located approximately 10 miles west of Philadelphia (Figure 1) and is surrounded by a mixture of commercial establishments, industrial companies, parks, schools, and private homes.

The investigated area consists of a wood-treatment facility operated by the National Wood Preservers site (NWP); the Philadelphia Chewing Gum Company (PCG) manufacturing plant adjacent to the wood-treatment facility: Naylors Run, a creek that drains the area; and neighboring residential and commercial properties (Figure 2).

NWP, the source of the contamination, is the focus of the investigation. Structures on the property include a sheet metal building with aboveground chemical storage tanks situated on a 2-acre property just north of the intersection of Eagle and Lawrence roads and the large PCG bubble gum production building.

The entire Havertown PCP site is drained by Naylors Run, a creek that flows in a southeasterly direction from the site. For the most part, surface runoff across the NWP site enters artificial drainage channels before discharging into Naylors Run? On the NWP property a significant amount of water accumulates in-

the area of the pedestrian gate near Continental Motors and in the vicinity of NWP's main gate near Eagle Road. Under storm event conditions, the large amount of sheet flow that occurs on NWP property in the area of the main gate empties into the drainage ditch bordering the north edge of the property. The eventual fate of this runoff is Naylors Run. Naylors Run flows through natural channels, concrete-lined channels, and a variety of pipes before entering Cobbs Creek near East Lansdowne, approximately 4 miles southeast of the site. Cobbs Creek joins Darby Creek, which flows through the Tinicum National Environment Center before entering the Delaware River.

Site History

The NWP site was first developed as a railroad storage yard and later became a lumberyard. In 1947 the wood-preserving facility was constructed and operated by Mr. Samuel T. Jacoby. In 1963 the existing facility was purchased by the Harris Goldstein family.

In 1962, the Pennsylvania State Department of Health became aware of contaminants in Naylors Run, and linked the source of contamination to National Wood Preservers waste disposal practices. Mr. Jacoby was brought to trial by the Commonwealth of Pennsylvania in 1964, for the disposal activities that occurred at the Site. He was found not guilty.

The majority of the activities resulting in pollution to the water bearing strata (aquifer) beneath the site occurred during the years of 1947 to 1963. Approximately 1 million gallons of spent wood preservatives is believed to have been dumped into a 26-foot deep well on property adjacent to the site which was leased from Clifford Rogers to Shell Oil Company. This disposal event appears to be the major source of contamination to Naylors Run.

In 1972 the Pennsylvania Department of Environmental. Resources (PADER) identified contaminated groundwater discharging from a storm sewer into Naylors Run. PADER ordered NWP, Philadelphia Chewing Gum Company (who owns the property downgradient from NWP), Shell Oil Company (who leased adjacent property from Clifford Rogers), and Mr. Clifford Rogers (owner of property leased to NWP) to clean up Naylors Run, since they occupy land where contaminated groundwater exists. The above parties appealed to the State Environmental Hearing Board, and later to the Commonwealth Court of Pennsylvania. The court sustained Philadelphia Chewing Gum and Shell Oil Company's appeals and ordered the cleanup to be executed by NWP and Mr. Implementation and maintenance of the cleanup actions by Rogers. NWP and Mr. Rogers were inadequate however, and failed to address all of the environmental concerns both onsite and off. AKJUU

山戸業 えい 市議 単

In response to a request from DER in 1976, the United States Environmental Protection Agency (USEPA) initiated cleanup activities under Section 311 of the Clean Water Act. Cleanup activities occurred in two phases. The first phase established containment operations at Naylors Run. Filter fences were installed to remove PCP contaminated oil from the surface water. These fences were located just downstream from the outfall of the 24-inch storm sewer pipe and a 12-inch sanitary sewer pipe. The second phase was carried out by the Emergency Response Team from the USEPA. Groundwater collection and treatment, and cement grouting of the two sewer pipes was attempted. The sanitary sewer was sealed; however, contaminated groundwater still discharges into Naylors Run from the 24-inch storm sewer pipe.

In 1982, the USEPA ended containment operations in Naylors Run, when National Wood Preservers agreed to maintain in-stream treatment measures pursuant to a consent agreement with EPA. Subsequent inspections, however, revealed NWP was not properly maintaining the filter fences.

Because of continuing releases of PCP-contaminated oil into Naylors Run, in 1988, EPA's Emergency Response Team installed a catch basin in Naylors Run to trap the discharge from the storm pipe. EPA still maintains the catch basin.

The Havertown PCP Site was listed on the National Priorities List by the USEPA in December, 1982. Subsequently, DER signed an agreement with EPA to conduct a RI/FS at the site.

The NWP facility has not changed significantly since its construction and today consists of a single metal-sheeted building, which contains the wood-treatment equipment, and several chemical storage tanks located immediately northwest of the building. The production facility is surrounded by a dirtcovered storage yard in which untreated and treated wood are stored. The entire NWP facility is enclosed by a chain-link fence. In 1963-1964 the Goldsteins had made some basic chemical containment and chemical recycling modifications to the facility at the request of the Pennsylvania Department of Environmental Resources (PADER).

NWP custom-treats wood as requested by clients, who supply the materials to be treated. Wood preservation is carried out to prevent decay or insect infestation of woods used for construction purposes where the wood will be constantly exposed to the environment. The type of wood treated at this facility is determined by the client, who supplies the material precut and dried, so that, other than loading, treating, unloading, and storing wood, essentially no other tasks are performed at this facility. The entire operation at this facility is presently manned by two employees.

Two wood-treating processes have been used at this facility: the "empty cell pressure treatment process" and the "non-pressure treatment dip treatment." The facility has three pressure treatment cylinders; two inside the building and one outside. Pressure-treated wood was air dried on drip tracks located on dirt areas around the perimeter of the site. Wood that was dipped into treatment solutions was similarly dried and handled. This activity would account for the presence of PCP and heavy metals in both onsite and drainage area soils. According to the Remedial Investigation performed by PADER in 1988, at least six wood-treatment chemical solutions have been used at the NWP facility since its construction. From 1947 to 1977-1978 three chemicals were used: pentachlorophenol (PCP) in P-9 Type A oil (diesel fuel), PCP in P-9 Type C oil (mineral oils), and fluorochrome arsenate phenol (FCAP) in water solution. PCP in oil (both types) was used in both the pressure treatment and the dip treatment processes. FCAP was used only in the pressure treatment process.

Chlorinated copper arsenate (CCA) in a 0.4 or 0.6% water solution, first used at the facility in the mid-1970s, eventually replaced PCP and FCAP during 1977-1978. Other chemicals used onsite since the 1970s include chromated zinc chloride (CZC, a fire retardant) and tributyl tin oxide (TBTO, an antifouling compound). All three water-soluble chemicals were used in the pressure treatment process.

The primary contaminants of concern at the site are the result of wood-treatment operations at NWP. These are PCP, chlorinated dioxins and dibenzofurans (typical low-level contaminants in the manufacture of PCP), fuel oil and mineral spirits components, heavy metals, certain volatile organic compounds, and phenols. A complete list of the detected contaminants is presented in Tables 1 thru 6. All these materials are primary constituents or impurities of the various wood-treatment solutions used at NWP since operation began in 1947.

Enforcement History

Between 1947 and 1963, National Wood Preservers, Inc. disposed of waste liquids (primarily oil contaminated by pentachlorophenol) by injection into a well which drained into groundwater beneath the NWP plant. Citizen complaints resulted in DER involvement. In 1973, DER ordered NWP (and other owners and occupiers of land located between the NWP plant and Naylors Run) to abate the pollution. All parties appealed, and seven years of litigation ensued, in which DER ultimately prevailed against NWP, but not against the other owners and occupiers.

In 1976, EPA commenced containment operations funded under Section 311 of the Clean Water Act. These operations ware300975

. *: 4

COMPARISON OF MEASURED CONCENTRATIONS TO APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

GROUND WATER (ROUND 1)

Pollutants	EPA RATING/ CATEGORY	MIN	MAX	REP.	VALUES	MCL*	MCLG	Priority
CARCINOGENIC	- 		ug/l	ug/l	ug/	1	ug/l	ug/l
ARSENIC BENZO (A) PYRENE BENZO (A) ANTHRACENE 2,3,7,8-TCDD EQUIVALEN BETA BHC TRICHLOROETHYLENE BENZENE CHLOROETHYLENE (VINYL- CHLORIDE)	A B2 B2 B2 C B2 A A A		BDL BDL 6.68 BDL BDL BDL BDL BDL	7.9 3.4 19 x10 ⁻⁴ 18 86 20 9.4	BDL BDL BDL 6.68x BDL (BDL	(2.3) (20) (20) 10 ⁻⁴ 0.05) 15 5 (5)	50 5	0 2
BIS (2-ETHYLHEXYL) PHTHA	LATE B2		BDL	7.8	BDL	(20)		
ZINC COPPER ETHYLBENZENE LEAD TRANS-1,2-DICHLOROETHY DICHLOROMETHANE (METHY CHLORIDE)	8 5 4 10 YLENE 5 YLENE 10		28 2.9 BDL BDL BDL 1.2	581 14 340 3.1 52 62	- 1	61 7 44 1 13 10	50	20
PENTACHLOROPHENOL	E		BDL	13000) 24	00		

- * Maximum contaminant levels as per the National Primary Drinking Water Standards.
- ** Maximum contaminant level goals as per the National Primary Drinking Water Standards. Proposed MCL's under the Safe Drinking Water Act as amended June 19, 1986 Federal Register 46902, Nov. 13, 1985.
- ug/1 identifies a unit of measure equivalent to 1 part of a contaminant for every 1 billion parts of medium.

COMPARISON OF MEASURED CONCENTRATIONS TO APPLICABLE OR RELEVANT AND APPROPRIATE REQUIREMENTS

GROUND WATER - ROUND 2

CHEMICAL	MIN	MAX R	EP. VALUE	MCL	MCLG
	خت خد حد جو جو			ug/l	ug/l
CARCINOGENIC					
ARSENIC	BDL(1.5)	23 -4	2	50	
2,3,7,8-TCDD EQUIVALENTS	7	.84x10	7.84x10		_
TRICHLOROETHYLENE	BDL (5)	1700	98		0
1,1-DICHLOROETHYLENE	BDL (5)	21	3	F :	
BENZENE	BDT (2)	320	30	5	0
I, 2-DICHLOROEITANE		37	2		U
CHLOROETHYLENE	BDL (0.1)	46	3	2	
NON-CARCINOGENIC					
NICKEL	BDL (39)	55	BDL (39)		
1,2-DICHLOROETHYLENE (TOTAL)	BDL (5)	720	48		
ZINC	8	253	. 52	-	
CADMIUM	BDL (5)	5.6	BDL (5)	10	
MERCURY	BDL (0.2)	0.39	BDL (0.2)	2	
LEAD	BDL (1.5)	8.5	1		2.0
ETHYLBENZENE	BDL (5)	160	11		
TOLUENE	BDL (5)	47	7		
PENTACHLOROPHENOL	BDL (100)	4100	1047		

COMPARISON OF MEASURED CONCENTRATIONS WITH ARARS SURFACE WATER BELOW OUTFALL

SURFACE WATER (BELOW SS OUTLET) MCLG MAX REP. VALUE MCL MIN CHEMICAL ___ ____ _ _ _ _ _ _ _ _ ---___ ug/l ug/l CARCINOGENIC ug/l ug/l _ _ _ _ _ _ _
 BDL (10)
 70
 18

 BDL (5)
 16
 5
 5 BENZENE TRICHLOROETHYLENE BDL (5) 1.54×10^{-7} 1.54×10^{-7} 2,3,7,8-TCDD EQUIVALENTS NON-CARCINOGENIC ------.... 180 . 98 503 ZINC . .8.8 11 PER 9 2.2 5.2 3 50 20 LAD BDL (5) 9.1 BDL (5) 7.8 1.7 3.6 2 TRANS-1, 2-DICHLOROETHYLENE 2 TOLUENE DICHLOROMETHANE (METHYLENE 3 CHLORIDE) PENTACHLOROPHENOL BDL (20) 660 296

• -----

·

.

ONSITE SOIL CONCENTRATIONS

2	SOIL	
CHEMICAL	MAX	REP VALUE
CARCINOGENIC	ug/kg	ug/kg
BENZO (A) PYRENE ARSENIC BENZO (A) ANTHRACENE CHLORDANE BETA BHC 2,3,7,8-TCDD EQUIVALENTS BIS (2-ETHYLHEXYL) PHTHALATE BENZENE CHLOROFORM	7200 6850 10000 1300 1300 0.0176 34000 38 2.7	1658 731 3927 371 140 0.00266 5251 3 0
TETRACHLOROETHYLENE TRICHLOROETHYLENE DIELDRIN BENZO(K) FLUORANTHENE NON-CARCINOGENIC	10 3.7 BDL (18) 19000	2 0 BDL (18) 4995
COPPER	9790	835

COFFER	3730	000
ZINC	13000	2111
NICKEL	.55	21
CADMIUM	44	4
LEAD	108	50
MERCURY	1.8	1
ETHYLBENZENE	490	39
TOLUENE	390	
DICHLOROMETHANE	91	24
1,2-DICHLOROETHYLENE (TOTAL)	0	0
PENTACHLOROPHENOL	4500000	446613

* Arsenic values are for total arsenic and were assumed under a worst-case scenario to be 100% trivalent.

SEDIMENT CONCENTRATIONS

	S (BEI	EDIMENTS OW OUTFALL)	DRAINAGE DITCH
CHEMICAL	MIN	MAX	SED-10
CARCINOGENIC			
BENZO(A) PYRENE BENZO(A) ANTHRACENE DIELDRIN ARSENIC BIS(2-ETHYLHEXYL) PHTHALATE CHLOROFORM 2,3,7,8-TCDD EQUIVALENTS BENZENE	340 380 BDL (11) 2.5 210 BDL (6.3) BDL (6.3)	14000 15000 57 6.5 2100 2.1 0.000047 1.5	950 340 BDL (46) 1050 1900 1.7 0.006577 BDL (7.2)
NON-CARCINOGENIC BENZO(A) PYRENE LEAD ARSENIC NICKEL COPPER ZINC CADMIUM MERCURY BENZENE DICHLOROMETHANE	340 16 2.5 7.8 34 86 BDL (1.1) BDL (.11) BDL (6.3) 12	14000 401 6.5 18 88 231 2.3 0.13 1.5 110	950 231 1050 16 437 3510 11 1.5 BDL (7.2) 20

AIR CONCENTRATIONS

AIR (ROUND 2 of 3)

ACGIH^{*} PA AIR VALUES

STANDARDS CHEMICAL.

	MIN	MAX	REP. VALUE		
CARCINOGENS	ng/cu.m	ng/cu.m	ng/cu.m	ng/cu.m	ng/cu.m
CHROMIUM VI	5.19	13.5	8	120	8.33
BENZENE	2500	4800	3400	31200	12500
ARSENIC	_6.47	8.63	1	24	24
BERYLLIUM		10.4	6	10	10
CHLOROFORM	BDL (87)	300	118	31200	4350
TETRACHLOROETHYLENE	850	1500	1288	1560000	
NICKEL	7.54	17.3	12	240	240
CADMIUM	0.19	2.2	1	120	55.6
TRICHLOROETHYLENE	BDL (87)	400	100	1560000	76900
BIS (2-ETHYLEXYL) PHTHALATE	BDL (27)	100	27		
NON-CARCINOGENS					
	2500	4800	3400	31200	12500
VILTIM	0.52	10.4	5400	10	10
ZINC	20114	42047	25966		
NICKEI.	7 54	17 3	12	240	240
ANTTMONY	7 48	11 5	10	1200	1200
TOLIENE	12000	32000	19750		1200
ARSENIC	6.47	8.63	15750	24	24
COPPER	16 5	164	91		21
STLVER	1.87	5.18	4	· · ·	
DICHLOROMETHANE	72000	90689	80774	3120000	
CADMTIM	0.91	2.2	1	120	55 6
FTHVLBENZENE	2200	5200	4200		55.0
CHOMIUM VI	5 10	13 5	4200	120	8 33
	10.2	13.7	10	1500	1500
	050	1500	1200	1560000	1000
ΤΕΙΚΑΟΠΙΟΚΟΕΙΠΙΕΕΝΕ ΝΤΡΠΟΥΙ Ουπυλιλησ	000	110	E2	T200000	120000
OLIODODENIENE		110	23 23 107		T20000
	(87) בתם		(א) בעם (אז) (א)		
1, 1, 1-TRICHLOROETHANE	RDT (8/)		BDT (8/)		.
MERCURY	BDL(.41)		BDL(.41)	240	240

* American Conference of Government Industrial Health Note: ** Hexavalent chromium values are for total chromium and were assumed under a worst-case scenario to be 100% hexavalent.

ng/cu.m is a unit of measure equivalent to 1 nanogram of contaminant for every cubic meter of air. every cubic meter of air.

administered by the Coast Guard. As a result of negotiations following receipt of a CERCLA notice letter dated December 18, 1981, NWP assumed responsibility for operation and maintenance of the containment operations in Naylors Run as of February 1, 1982. In December of 1982, the Havertown PCP Site was placed on the NPL. Subsequent inspections throughout 1984, made by DER and EPA, found many deficiencies with the containment operations. After negotiations, an Administrative Order was executed on October 10 ,1984 between NWP and EPA which required NWP to perform various abatement activities. These activities involved the adequate operation and periodic maintenance of the filter fences on Naylors Run. During this period DER and subsequently EPA initiated the RI/FS. The RI/FS was concluded August 1989 by On August 23, 1989, EPA sent a special notice letter to NWP DER. to determine its interest in participating in the RD/RA for this remedial action. On September 6, 1989, EPA received a written response from NWP. It declined to participate.

Analytical Data

The July, 1989 Focused Feasibility Study prepared for the Pennsylvania Department of Environmental Resources (PADER) by Lawler, Matusky and Skelly Engineers, Pearl River, New York addressed three areas of concern: onsite soils, contaminated waste in tanks and drums stored on National Wood Preserver's property, and water and air releases at Naylors Run. Groundwater was not addressed in this study, but will be addressed in a later investigation.

Soil sampling at the NWP plant site revealed concentrations of fuel oil and PCP widely distributed across the site. Other base neutral acids (BNAs), metals, dioxins, and dibenzofurans were also identified. Soils in the tank area (Figure 3) had the highest detected levels of metals, BNAs (including PCPs), oil and grease, dioxins, and dibenzofurans. Because benzene was detected in onsite soils in the low part per billion range, onsite conditions are not considered to be responsible for air samples collected around the perimeter of the site which show benzene exceeding Pennsylvania's air standards. Benzene, a constituent of gasoline, is a common contaminant around gas stations, several of which are located near the site.

The chemicals detected in surface water samples included PCP, naphthalene, benzene, toluene, xylene, and phenanthrene. Concentrations of these chemicals were not detected in surface water samples, where the floating oil believed to be associated with the NWP facility was not present. The concentrations of pesticides and PCBs were below detection levels in all surface water samples. The toxicity equivalent factors (TEF) for total tetra- through octa-chlorinated dibenzodioxins and dibenzofurans in all surface water samples were less than 1 parts per trillion 982 (0.033 to 0.164 ppt). Toxicity equivalent factors are

coefficiently assigned to isomers of dioxin and dibenzofurans and are based upon the toxicity of the most hazardous isomers. Contamination in the samples collected above the storm sewer outlet consists mainly of various heavy metals. The presence of arsenic, zinc, and copper may be associated with NWP because these metals are used in the wood-treatment process at the site.

Analytical results show that the sediments generally have higher levels of contaminants than the surface water. Several BNAs were found at elevated levels in all sediment samples. Total BNAs ranged from 221,000 to 6500 parts per billion (ug/kg) in Naylors Run. PCP levels in samples collected below the outfall decreased from 2300 ug/kg at SED-4 (Figure 4) to 120 ug/kg at SED-1 downstream. The highest level of PCP in sediment was 8700 ug/kg at SED-10. Total concentrations of metals were higher in the sediments than in surface water samples. Chromium, a wood preservative, was found at 40 ug/kg. No PCBs, dioxins, or dibenzofurans were found above detection limits.

There are five holding tanks of contaminated water generated during monitoring well construction and over 100 drums of waste materials in a storage area northeast of the NWP building. The two 2500-gal tanks and three 500-gal tanks onsite contain contaminated water. The oil and grease concentrations in the water are less than 5 parts per million (mg/l). PCP concentration is high, about 11,000 ug/l. Toluene (up to 12 ug/l) and trichloroethene (2 ug/l) were also found in the tank water. Additional material was subsequently added to the tanks by PADER; however, no new sampling was performed.

Some of the 55-gallon drums were generated by PADER as a result of the remedial investigation (i.e., used protective clothing, soils, and various site debris). No analysis was performed on the contents of these drums. The majority of the 55-gallon drums were placed onsite by EPA, and typically contain PCP contaminated oil, absorbents, and soiled protected clothing from EPA's maintenance of the offsite catch basin.

Analysis for dioxin and an acid extractable/phenolic fraction was performed on the oil discharged at the catch basin in September, 1988. Some dioxin isomers were detected in the parts per trillion range, but no 2,3,7,8-tetrachlorodibenzo-pdioxin (most toxic dioxin isomer) was identified. Naphthalene, 1,1,4-dichlorobenzene, acenaphthene, and phenanthrene were also found in trace amounts, but pentachlorophenol was detected at 2,951 ppm.

Risk Assessment

An evaluation of the contaminants present in each medium of the Havertown PCP site was prepared by Greeley-Polhemus Group, Inc. (June, 1989) for PADER. It addresses onsite soils and air 84

groundwater, Naylors Run surface water, sediments in Naylors Run, and sediments in an onsite drainage ditch. The chemicals were ranked in accordance with their toxicity-concentration (TC) values. These values were summed for all media to obtain an indicator score (IS), and the chemicals were ordered in accordance with their IS values. Carcinogens were ranked separately from noncarcinogens. Six indicator chemicals were selected: arsenic, benzene, benzo(a)anthracene, benzo(a)pyrene, chromium VI, and 2,3,7,8-TCDD equivalents.

The arsenic and chromium probably come from the chromated copper arsenate used in the wood-preserving operations. The benzene, benzo(a)anthracene, and benzo(a)pyrene probably are contaminants in the PCP.

In addition to these indicator chemicals, all other chemicals detected onsite and in the area that could potentially cause human health effects were evaluated. These included PCP, several metals (antimony, beryllium, copper, lead, mercury, nickel, silver, and zinc), several volatile organic compounds (VOCs) (chloroform, chloroethylene, dichloromethane, dichloroethylene, tetrachloroethylene, and trichloroethylene), a phthalate, and three pesticides (chlordane, lindane, and dieldrin) that may have been used on site.

Based upon a review of all probable exposure pathways and the proximity of target organisms to the contaminants, the human health risk in terms of the maximum potential increased risk of contracting cancer from inhalation or ingestion was calculated for each potentially carcinogenic chemical. The results, expressed in terms of risk per million people exposed, are incremental, meaning that any increase in cancer cases would be in addition to the normal 250,000 cancers cases expected for every 1,000,000 people in the area, even if no contaminants were present at the site. The risk values are as follows:

1. Inhalation of entrained particulates containing chromium VI, arsenic, and other metals from onsite soils and of VOCs emanating from the site by persons off site:

		DISTANCE	FROM THE	SITE	
	500 ft	1000 ft	1320 ft	2000 ft	2640 ft
Cancer risk (per million)	5.8	2.9	2.2	1.45	1.1

These values are considered to be higher than the actual risk because the analytical results for total chromium were used as if they were 100% hexavalent chromium. While the hexavalent chromium salt is a known human carcinogen through the inhalation AR300986 route, sampling performed in July, 1989 did not identify the presence of hexavalent chromium in onsite soils.

- 2. Inhalation of benzene and other VOCs at the nearest residences (two within 75 m or 250 ft) to the catch basin: 5.5 (per million)
- 3. Ingestion of onsite soils: 8 (per million) This value is considered to be higher than the actual risk because the analytical results for total arsenic were used as if they were 100% trivalent arsenic.
- Ingestion of sediments from Naylors Run: 7 (per million). This value is probably higher, since samples were collected prior to the construction of the catch basin on Naylors Run.
- Ingestion of sediments from the onsite drainage ditch:
 1 (per million)
- Ingestion of liquids from the underflow dam: 2 (per million)
- 7. The total risk from all sources for a person living within 500 ft of the site and within 250 ft of the underflow dam and ingesting the onsite soils and sediments, the sediments under Naylors Run, and the liquids in the underflow dam is not cumulative; however, for multiple exposures to different media a slightly higher risk than would be calculated by adding together the risks stated above may be possible.

It should also be noted that none of the noncarcinogens or the noncarcinogenic effects were calculated to be such that the Acceptable Daily Intake (ADI) for any chemical was exceeded for any identified exposure. ADI's are the amounts of contaminants that a body can consume on a daily basis without experiencing any ill-effects. These values are contained in EPA's Integrated Risk Information System (IRIS) computer database.

Remedial Action Objectives

Remedial action objectives were broken down into three areas of concern; onsite soils, catch basin in Naylors Run, and staged waste materials.

Onsite Soils:

o The remediation objective for the contaminated soils onsite is to prevent wind entrainment of and access to 87 the contaminants in excess of safe levels; and 300987

8

 Although the risk was later found to be acceptable, alternatives were evaluated and are presented in Table #7.

Catch Basin in Naylors Run:

- Reduce PCP oil discharge to Naylors Run to less than 5 mg/l. Since the highest PCP level found in the floating oil was 2,951 mg/l, the highest PCP level expected in the water if the objective is reached would be approximately 17 ug/l PCP; and
- Reduce the concentration of benzene and other VOCs by 17%.
- o These actions will bring the potential exposure risk to the public and the environment from the storm sewer effluent to within EPA's acceptable risk range.

Drummed Waste Materials:

 The remediation objective for the contaminated waste is to dispose of all materials in a safe and approved method.

Sediments:

In 1987, before installation of the catch basin, sediment samples were collected from nine locations in Naylors Run. The samples were found to be contaminated with arsenic, chromium VI, benzo(a)anthracene, benzo(a)pyrene, PCP, and dioxins. Based on these data and the limited analyses of samples collected in 1988, the sediments are judged to present a potential health risk. Remediation alternatives for the sediments are not addressed here because no data exist after the installation of the catch basin by EPA in 1988. Potential health risk due to the public's exposure to sediments from Naylors Run will be assessed in a second operable unit.

GENERAL RESPONSE ACTIONS

The following is a comprehensive list of general response actions which were screened to identify the remedial action alternatives which best address the contamination concerns for each of the following; onsite soils, Naylors Run storm sewer effluent, and staged waste material.

I. CONTAMINATED SOILS

A. Excavation With Off-Site Disposal

AR300988

9

- 1. Excavation
 - a. Grading
 - b. Backfill
 - c. Revegetation or paving
 - d. Retaining walls
- 2. Landfill Disposal
- 3. Incineration
- B. Excavation With Onsite Containment
 - 1. Sorbents
 - 2. Stabilization
 - 3. Encapsulation
- C. Excavation With Onsite Treatment
 - 1. Biodegradation
 - 2. Soil aeration
 - 3. Solvent extraction
 - 4. Chemical dechlorination
 - 5. UV-ozonation
 - 6. Oxidation
 - 7. UV-PHOTOLYSIS
 - 8. Incineration
 - 9. Acid extraction
- D. In Situ Containment of Soil
 - 1. Capping
 - a. Multi-media (gravel, clay, sand, soil)
 - b. Asphalt
 - c. Concrete
- E. In Situ Treatment
 - 1. Vitrification

- 2. Chemical dechlorination
- 3. Bioreclamation
- 4. Solvent flushing
- 5. Vacuum well

II. CATCH BASIN

- A. Surface Water and Oil Control
 - 1. Cover
 - 2. Gas collection
 - 3. Upstream sedimentation basin
 - 4. Physical treatment (separation)
- B. Surface Water and Air Treatment
 - 1. Biological treatment
 - 2. Neutralization
 - 3. Precipitation
 - 4. Oxidation
 - 5. Hydrolysis
 - 6. Reduction
 - 7. Chemical dechlorination
 - 8. UV and ozonation
 - 9. Activated carbon water treatment
 - 10. Air/stream stripping
 - 11. Activated carbon air treatment

III. STAGED WASTE MATERIALS

- A. Soils, Debris, and Oils
 - 1. Landfill
 - 2. Incineration
 - 3. Chemical dechlorination

- B. Aqueous Wastes (Handled Individually or Composited)
 - 1. Liquid incineration
 - 2. Landfill
 - 3. Chemical dechlorination
 - 4. Carbon adsorption

Based upon the limitations of existing technologies, the existence of a viable onsite business concern and the requirement of a permanent treatment remedy, all appropriate technologies are discussed below.

Description of Alternatives

The alternatives selected were determined to be both appropriate responses to conditions at the site and protective of the public health and welfare, and the environment. They were developed by combining feasible and applicable technologies based on their potential application within specified remediation scenarios. The alternatives are developed separately for each area of concern (contaminated soil on the NWP site, liquids at the catch basin in Naylors Run, and contaminated waste from tanks and drums).

The alternatives are further evaluated using the nine criteria specified in Section 121 of CERCLA. These are protectiveness of human health and the environment, compliance with all applicable, relevant and appropriate requirements (ARARs); reduction of toxicity, mobility, or volume; State acceptance; community acceptance; short-term effectiveness, longterm effectiveness, implementability, and cost.

Tables 7, 8, and 9 refer to a review of the suitable alternatives for onsite soils, Naylors Run storm sewer effluent, and staged waste materials based upon the nine criteria listed above.

EPA's Selected Remedies/Statutory Determinations

EPA's preferred alternatives for remediation of the Havertown PCP site are alternative #1 for soil, #3 for surface water, and #2 for the disposal of the onsite drums and tanks.

No-Action alternative for onsite soils

The No-Action alternative (#1) for soil achieves the remedial action objectives because the potential thread of the public's health associated with contaminated dust and infiltration of contaminants into the environment poses no

	Environmenta	Worker protection	Community protection	<u>Short-Term</u> Effectivenes	CRITERIA	IN	
	al No change from existing condi- tions.	No risk to workers.	Risk to community not increased by remedy implemen- tation.	20	ALTERNATIVE 1 NO ACTION	DIVIDUAL EVALUATION OF	
·	Cap installation may temporarily impact air quality.	Protection requir- ed against dermal contact and inhal- ation of contamin- ated dust during cap construction.	Temporary increase in dust production through cap instal- lation. Contamina- ted soils remain undisturbed.		ALTERNATIVE 2 CAP SOIL WITH CONCRETE	TABLE 7.1 FINAL ALTERNATIVES -	
	Cap installation may temporarily impact air quality.	Protection requir- ed against dermal contact and inhal- ation of contamin- ated dust during cap construction.	Temporary increase in dust production through cap instal- lation. Contamina- ted soils remain undisturbed.		ALTERNATIVE 3 CAP SOIL WITH ASPHALT	CONTAMINATED SOIL ON	
Ł	Excavation may temporarily impact air quality.	Protection requir- ed against dermal contact and inhal- ation of contamin- ated dust during excavation and transportation.	Temporary increase in dust production through excavation and soil transpor- tation.		ALTERNATION 4 EXCAVATION WITH LANDFILL DISPOSAL	NWP SITE 00992	

TABLE 7.2

300993

L	NDIVIDUAL EVALUATION OF	FINAL ALTERNATIVES -	- CONTAMINATED SOIL O	N NWP SITE CO
CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 CAP SOIL WITH CONCRETE	ALTERNATIVE 3 CAP SOIL WITH ASPHALT	ALTERNATIVE 4 EXCAVATION WITH LANDFILL DISPOSAL
Time until action is complete	Not applicable.	Cap installed in three months.	Cap installed in two months.	Excavation complete in one year (75 trucks/week, 12 yd ³ /truck); back- fill with clean fill, grading com- plete after an additional two months.
<u>Compliance</u> <u>ARARs</u>	With			
Chemical- specific ARARs	Not applicable.	Would meet Penn- sylvania air standards at the site boundary.	Would meet Penn- sylvania air standards at the site boundary.	Would meet Penn- sylvania air stand- ards at the site boundary.
Location- specific ARARs	Not applicable. There are no location-specific ARARs.	Not relevant. There are no location-specific ARARs.	Not relevant. There are no location-specific ARARs.	Not relevant. There are no location- specific ARARs.

i 🐮 🖉 🗄

.

营、

		140DE 1.3		99
INDIV	IDUAL EVALUATION OF	FINAL ALTERNATIVES -	- CONTAMINATED SOIL O	N NWP SITE R300
CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 CAP SOIL WITH CONCRETE	ALTERNATIVE 3 CAP SOIL WITH ASPHALT	ALTERNATIVE 4 EXCAVATION WITH LANDFILL DISPOSAL
Action- specific ARARs	Not applicable.	Would not meet RCRA landfill closure require- ment (40 CFR 264.228, 40 CFR 264.310).	Would not meet RCRA landfill closure require- ment (40 CFR 264.228, 40 CFR 264.310).	Would meet RCRA clean closure and land disposal requirement (40 CFR 264.111, 40 CFR 268.31).
Other criteria and guidance	Within EPA's acceptable cancer risk range of 10' to 10'4.	Within EPA's acceptable cancer risk range of 10 ⁻⁷ to 10 ⁻⁴ .	Within EPA's acceptable cancer risk range of 10 ⁻⁷ to 10 ⁻⁴ .	Within EPA's acceptable cancer risk range of 10 ⁻⁷ to 10 ⁻⁴ .
Overall Protect	ion			
Human health protection	Some reduction in access to risk through fence repair.	Cap reduces direct contact risk and soil ingestion risk to less than 1 X 10 ⁻⁶ .	Cap reduces direct contact risk and soil ingestion risk to less than 1 X 10 ⁻⁶ .	Excavation and off- site landfill reduce direct con- tact/soil ingestion to less than 1 X 10 ⁻⁶ .
Environmental protection	Contaminants remain on site.	Contaminant move- ment is reduced by use of cap.	Contaminant move- ment is reduced by use of cap.	Contaminant source is removed by use of excavation and landfill,

TABLE 7.3

94

Statutory mobility, or toxicity, Amount destroyed or treated process used for treatment preference treatment remaining after ity of residuals Type and quanttreatment Irreversible volume Reduction of Treatment Treatment or Volume Through Toxicity, Mobility, <u>Reduction of</u> CRITERIA TABLE 7.4 Does not satisfy. ALTERNATIVE 1 NO ACTION None. None. None. None. None. Does not satisfy. water mobility reduced by Air and groundcapping. None. None. None. None. ALTERNATIVE WITH CONCRETE CAP SOIL ຸ Does not satisfy. water mobility ALTERNATIVE 3 capping. reduced by Air and ground-WITH ASPHALT CAP SOIL None. None. None. None. Does not satisfy. soil removed. All contaminated reduced on site. taminated soil and volume of con-Toxicity, mobility, LANDFILL DISPOSAL EXCAVATION WITH None. ALTERNATEYE 4 None. None. 3

Need for 5- year review	Adequacy and reliability of controls	Magnitude of residual risk	Long-Term Effec ness and Perman	CRITERIA	INDIV
Review would be performed to ensure that protection of human health and the environment is maintained.	No controls over remaining contami- nation.	Source has not been removed. Existing risk could potentially mitigate over time.	<u>tive-</u> ence	ALTERNATIVE 1 NO ACTION	IDUAL EVALUATION OF
Review would be required since contaminated soil remains on site.	The cap controls contaminated soil. The cap is effec- tive and reliable with minimal maintenance. Cap will withstand truck traffic.	Risk eliminated as long as cap is maintained. Because source is only contained, inherent hazard of waste remains.		ALTERNATIVE 2 CAP SOIL WITH CONCRETE	TABLE 7.5 FINAL ALTERNATIVES -
Review would be required since contaminated soil remains on site,	The cap controls contaminated soil. The cap is effec- tive and reliable only if regularly maintained. Cap cannot withstand constant truck traffic.	Risk eliminated as long as cap is maintained. Because source is only contained, inherent hazard of waste remains.		ALTERNATIVE 3 CAP SOIL WITH ASPHALT	· CONTAMINATED SOIL O
Not applicable. Contaminated soil would not be on site.	Excavation and off- site landfill are adequate and reli- able to control contaminated soil.	Source has been removed; risk will no longer exist.		ALTERNATIVE 4 EXCAVATION WITH LANDFILL DISPOSAL	AR300996

Ability to monitor effectiveness	Ease of doing more action	Ability to construct and operate	Implementabili	CRITERIA	INDI	
Monitoring would further document existing condi- tion.	If monitoring indicates more action is nec- essary, may need to go through the FS/ROD process again.	No construction or operation.	ĘΥ	ALTERNATIVE 1 NO ACTION	VIDUAL EVALUATION OF	
Inspection and monitoring would detect failure before significant exposure occurs.	Simple to extend capping.	Simple to con- struct. Would require about 2150 yd ³ of reinforced con- crete and 1620 yd ³ of gravel.		ALTERNATIVE 2 CAP SOIL WITH CONCRETE	FINAL ALTERNATIVES -	TABLE 7.6
Inspection and monitoring would detect failure before significant exposure occurs.	Simple to extend capping.	Simple to con- struct. Would require about 1350 yd ³ of asphalt and 1620 yd ³ of gravel.		ALTERNATIVE 3 CAP SOIL WITH ASPHALT	· CONTAMINATED SOIL O	
Not applicable.	Can handle varying volumes.	<pre>simple to con- struct. Would require backfilling of about 45,200 yd of soil.</pre>	-	ALTERNATIVE 4 EXCAVATION WITH LANDFILL DISPOSAL	N NWP SITE ()	0997

		TABLE 7.7		998
INDIVIDU	AL EVALUATION OF	FINAL ALTERNATIVES -	CONTAMINATED SOIL OF	R 300
AL' CRITERIA I	TERNATIVE 1 NO ACTION	ALTERNATIVE 2 CAP SOIL WITH CONCRETE	ALTERNATIVE 3 CAP SOIL WITH ASPHALT	ALTERNATIVE 4 EXCAVATION WITH LANDFILL DISPOSAL
Ability to obtain approv- als and coor- dinate with other agencies	No approval necessary.	No approval necessary.	No approval necessary.	Need a permit for hauling contamina- ted soil; need approval for land- fill disposal.
Availability of service and capacities	No services or capacities required.	Only basic con- struction services needed.	Only basic con- struction services needed.	Limited landfill availability.
Availability of equipment specialists, and materials	None required.	No special equip- ment, materials, or specialists required. Cap materials avail- able within 20 miles.	No special equip- ment, materials, or specialists required. Cap materials avail- able with 20 miles.	Need licensed drivers.
Availability of technology	None required.	Cap technology readily available.	Cap technology readily available.	Not applicable.
Cost				
Capital cost	\$18,800	\$668,900	\$344,100	\$19,144,000
Annual O&M cost (with monitoring)	\$65,000	\$55,000	\$65,000	\$281,400
Present worth cost	\$335,000	\$1,288,100	\$1,075,900	\$19,425,400

<u>Acceptabili</u> by State	CRITERIA	L	
<u>ity</u> Moderate	ALTERNATIVE J NO ACTION	LNDIVIDUAL EVALUATI	
Moc	L ALJ WIJ	LON OF FINAL	
lerate	PERNATIVE 2 PAP SOIL PH CONCRETE	ALTERNATIVES	TABLE 7.8
Moderate	ALTERNATIVE 3 CAP SOIL WITH ASPHALT	- Contaminated Soi	
Moderate	ALTERNATIVE 4 EXCAVATION WITH LANDFILL DISPOSAL	L ON NWP SITE O	0999

۷

#= 2

Public Acceptance Moderate

Moderate

Moderate

Moderate

.

INDIVIDUA	L EVALUATION OF FINAL ALTE	RNATIVES - LIQUID EFFLUENT CO	NTROL AT CATCH BAGAN
CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 PRESENT SYSTEM FOR LIQUID CONTROL	ALTERNATIVE 30 OPTIMUM OIL/WATER SEPARATOR
<u>Short-Term</u> Effectiveness			
Community protection	Risk to community not increased by remedy implementation.	Risk to community not in- creased by remedy imple- mentation.	Temporary disturbance of storm sewer discharge during installation of separator.
Worker protection	No significant risk to workers.	Protection required against VOCs inhalation and dermal contact during maintenance of filter fence.	Protection required against VOCs inhalation and dermal contact dur- ing servicing of oil/- water separator.
Environmental impact	Continued impact from existing conditions.	Continued impact to air quality.	Temporary increase in stream turbidity during construction.
Time until action is complete	Not applicable.	Currently in place.	Two months.
<u>Compliance</u> With ARARs			
Chemical- specific ARARs	Not applicable.	Does not meet Pennsylvania air standards past the site boundary. Would meet NPDES requirements at the site boundary.	Would meet Pennsylvania air standards past the site boundary. Would meet NPDES requirements at the site boundary.

TABLE 8.1

TABLE 8.2

,

INDIVIDUAL EVALUATION OF FINAL ALTERNATIVES - LIQUID EFFLUENT CONTROL AT CATCH BASA

CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 PRESENT SYSTEM FOR LIQUID CONTROL	ALTERNATIVE 3 CO OPTIMUM OIL/WATER SEPARATOR
Location-specific ARARs	Not applicable.	Not applicable.	Oil/water separator in 100-year flood zone.
Action-specific ARARs	Not applicable.	Would not meet NPDES requirements.	May meet NPDES require- ments for oil and grease.
Other criteria and guidance	Not applicable.	Would allow inhalation of contaminated air exceeding 1 x 10 ⁻⁶ risk. Would reduce ingestion of surface water exceeding 1 x 10 ⁻⁶ risk.	Protects against inges- tion of surface water and inhalation of con- taminated air exceeding 1 x 10 ⁻⁶ risk.
Overall Protection			
Human health protection			
- Air inhalation	No reduction in risk.	No significant reduction in risk.	Can reduce air inhala- tion risk to less than 1 x 10 ⁻⁶ .
- Surface water ingestion	No reduction in risk.	Does not reduce surface water ingestion risk to less than 1 x 10^{-6} .	Can reduce surface water ingestion to less than 1×10^{-6} .

ť.

		TABLE 8.3	2
INDIVIDUAL I	EVALUATION OF FINAL ALTER	NATIVES - LIQUID EFFLUENT CON	TROL AT CATCH BASS
CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 PRESENT SYSTEM FOR LIQUID CONTROL	ALTERNATIVE 3 3 OPTIMUM OIL/WATER SEPARATOR
Environmental c protection t R	ontinued VOCs emission o air and contaminated il discharge to Naylors un.	Continued VOCs emmission to air and reduced contamina- ted oil discharge to Naylors Run.	VOCs emmission and con- taminated oil discharge are mitigated by use of optimum oil/water separator.
Reduction of Toxicity, Mobilit or Volume Through Treatment	· ¥.		
Treatment process used	None.	Existing catch basin and filter fence.	Optimum Oil/water separation.
Amount destroyed or treated	None.	Treat less than 1.3 gpd oil.	Treat 1.3-8 gpd oil. 90% VOCs in the vapor removed.
Reduction of toxicity, mobility, or volume	None.	Toxicity of surface water reduced in the vicinity of catch basin.	Toxicity of air and surface water reduced in the vicinity of catch basin.
Irreversible treatment	None.	Present oil recovery system is reversible.	Oil/water separation is reversible.

TABI
E
œ
• •

TABLE 8.4 CO. INDIVIDUAL EVALUATION OF FINAL ALTERNATIVES - LIQUID EFFLUENT CONTROL AT CATCH BABIN

CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 PRESENT SYSTEM FOR LIQUID CONTROL	ALTERNATIVE OPTIMUM OIL/WATER SEPARATOR
Type and quant- ity of residual remaining after treatment	No residual remaining.	Residual oily absorbent materials; approximately four barrels per month.	Liquid oil residue; less than four barrels per month.
Statutory pref- erence for treatment	Does not satisfy.	Satisfies.	Satisfies.
Long-Term Effectiveness and Permanence			
Magnitude of residual risk			
- Air inhala- tion	Source has not been re- moved; existing risk will remain.	Source has not been re- moved; existing risk would remain.	Risk eliminated through air containment within separator.
- Surface water ingestion	Source has not been re- moved; existing risk will remain.	Risk reduced through inspection and mainten- ance of existing catch basin.	Risk eliminated through optimum oil/water separator.

		TABLE 8.5	4
INDIVIDUAJ	L EVALUATION OF FINAL ALTEF	RNATIVES - LIQUID EFFLUENT CON	NTROL AT CATCH BASIN
CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 PRESENT SYSTEM FOR LIQUID CONTROL	ALTERNATIVE 373 OPTIMUM OIL/WATER SEPARATOR 47
Adequacy and reliability of control	No controls over remain- ing contamination, No reliability.	Present system can reduce contaminated oil discharge, but is not reliable. No control of air contamina- tion.	The alternative is ade- quate and reliable to control contaminated oil and air.
Need for 5-yr review	Review would be required to assess impact of discharge.	Review would be required to ensure that minimal protection of human health and the environment is maintained.	Review would be required to ensure that adequate protection of human health and the environ- ment is maintained.
<u>Implementabilit</u>	X		
Ability to construct and operate	No construction or operation.	Simple to maintain filter fence.	Installation will re- quire excavation of soil and rock near catch basin; operation is routine.
Ease of doing more action if needed	Not applicable.	If monitoring indicates more action is necessary, may need to go through the FS/ROD process again.	Can treat 200 gpm. If volumes exceed maximum separator capacity due to severe storms, they must bypass separator.
Ability to monitor	Monitoring would better define extent of contamination.	Monitoring would determine effectiveness of treatment.	Monitoring would deter- mine effectiveness of treatment.

TABLE 8.6

INDIVIDUAL EVALUATION OF FINAL ALTERNATIVES - LIQUID EFFLUENT CONTROL AT CATCH BASIN

CRITERIA	ALTERNATIVE 1 NO ACTION	ALTERNATIVE 2 PRESENT SYSTEM FOR LIQUID CONTROL	ALTERNATIVE 3CO OPTIMUM OIL/WATOR
Ability of obtain approvals and coordinate with other agencies	No approval necessary.	No approval necessary.	No permit required, how ever, EPA must attempt to meet standards for construction and opera- tion of separator.
Availability of services and capacities	No services or capac- ities required.	Need continued sorbent boom maintenance.	Oil/water separator maintenance services available from commer- cial sources. Oil to be hauled by licensed carrier to permitted disposal facility.
Availability of equipment, spec- ialists, and materials	None required.	Present system is current- ly maintained; no special equipment, etc., required.	Oil/water separator ser vice requires pump, barrels - readily available.
Availability of technologies	None required.	None required.	Oil/water separation technology well develog ed and available.

TABLE 8.7

INDIVIDUAL EVALUATION OF FINAL ALTERNATIVES - LIQUID EFFLUENT CONTROL AT CATCH BASIN

CRITERIA

ALTERNATIVE NO ACTION

Ч

ALTERNATIVE 2 PRESENT SYSTEM FOR

O ALTERNATIVE 37 OPTIMUM OIL/WAT配

SEPARATOR

LIQUID CONTROL

06

cost Cost cost (with monitoring) Acceptability Annual O&M Capital cost by State Present worth \$275,000 \$20,000 \$50,000 Low Moderate \$556,600 \$45,000 \$50,000 \$158,500 \$665,100 \$45,000 High

<u>Public</u> Acceptance

Low

Low

High

TABLE 9.1

CRITERIA		INDIVIDUAL EVALUATION	
AND OILY DE CARBON ADSORI OF AQUEOUS 1	ALTERNATIVI LANDFILL OF	OF FINAL ALTERNATIVES	TABLE
BRIS, PTION O WASTE O	E 1 SOIL	- CONTAMINATED WAST	9.1
AND OILY DEBRIS, FFSITE TREATMENT OF AQUEOUS WASTE	ALTERNATIVE 2 LANDFILL OF SOIL	E FROM TANKS AND	
	AR30		7

Short - Term Effectiveness

Community protection	Temporary increase in dust production through loading and transportation of soil and debris.	Temporary increase in dust production through loading and transportation of soil and debris.
Worker protection	Protection required against dermal contact and inhalation of contaminated waste during loading, transportation, and treatment.	Protection required against dermal contact and inhalation of contaminated waste during loading, transportation, and treatment.
Environmental impact	Loading, transportation, and treatment may temporarily impact air quality.	Loading, transportation, and treatment may temporarily impact air quality.
Time until action is complete	Offsite landfill of soil and debris and carbon adsorption of aqueous waste may be completed in two months.	Offsite landfill of soil and debris and bulk transfer of liquids may be completed in two months.
Compliance With ARARs		
Chemical-specific ARARs	Would meet Pennsylvania air standards at the site boundary.	Would meet Pennsylvania air standards at the site boundary.

	TABLE 9.2	08
INDIVIDUAL EVALUATION OF :	FINAL ALTERNATIVES - CONTAMINATED	WASTE FROM TANKS AND DRUMS
	ALTERNATIVE 1 LANDFILL OF SOIL AND OILY DEBRIS.	ALTERNATIVE 2 CT LANDFILL OF SOIL AND OILY DEBRIS,
CRITERIA	CARBON ADSORPTION OF AQUEOUS WASTE	OFFSITE TREATMENT OF AQUEOUS WASTE
Location-specific ARARs	Not relevant. There are no location-specific ARARs.	Not relevant. There are no location-specific ARARs.
Action-specific ARARs	Would meet RCRA clean closure and land disposal requirements (40 CFR 264.111, 40 CFR 268.31).	Would meet RCRA clean closure and land disposal requirements (40 CFR 264.111, 40 CFR 268.31).
Other criteria and guidance	Protects against inhalation of contaminated air to less than 1 x 10 ⁻⁶ risk.	Protects against inhalation of contaminated air to less than 1 x 10 ⁻⁶ risk.
Overall Protection		
Human health protection	Eliminates potential for ingestion, inhalation.	Eliminates potential for ingestion, inhalation.
Environmental protection	Potential contaminant release to environment eliminated.	Potential contaminant release to environment eliminated.

•

TABLE 9.3

INDIVIDUAL EVALUATION OF FINAL ALTERNATIVES - CONTAMINATED WASTE FROM TANKS AND DRUMS ALTERNATIVE 1 LANDFILL OF SOIL ALTERNATIVE 2 CONTAMINATED ALTERNATIVE

Statutory preference for treatment	Type and quantity of residuals remaining after treatment	Irreversible treatment	Reduction of toxicity, mobility, or volume	Amount destroyed or treated	Treatment process used	<u>Reduction of Toxicity,</u> <u>Mobility, or Volume</u> <u>Through Treatment</u>	CRITERIA
Satisfies.	Metals and chlorinated com- pounds are residual in the waste. Carbon requires regeneration or disposal.	Carbon adsorption with regen- eration of carbon is irre- versible.	Toxicity of contaminated water reduced.	99.9% PCP in the aqueous waste removed by carbon adsorption.	Carbon adsorption of water		ALTERNATIVE 1 LANDFILL OF SOIL AND OILY DEBRIS, CARBON ADSORPTION OF AQUEOUS WASTE
Satisfies.	Metals and chlorinated com- pounds are residual in the waste. Carbon requires regeneration or disposal.	Carbon adsorption with regen- eration of carbon is irre- versible.	Toxicity of contaminated water reduced.	99.9% PCP in the aqueous waste removed by carbon adsorption.	Offsite treatment (possibly carbon adsorption)	:	ALTERNATIVE 2 CC I LANDFILL OF SOIL CC I AND OILY DEBRIS, OFFSITE TREATMENT OF AQUEOUS WASTE

.

set p ⊭

		-
	TABLE 9.4	0
INDIVIDUAL EVALUATION OF F	INAL ALTERNATIVES - CONTAMINATED	WASTE FROM TANKS AND DRUMS
	ALTERNATIVE 1 LANDFILL OF SOIL AND OILY DEBRIS, CARBON ADSORPTION	ALTERNATIVE 2 CC LANDFILL OF SOIL CC AND OILY DEBRIS, Offsite TREATMENT
Long-Term Effectiveness and Permanence		
Magnitude of residual risk	Risk eliminated through off- site land-fill and carbon adsorption.	Risk eliminated through off- site land-fill and treatment.
Adequacy and reliability of control	Actions are adequate and reliable to control contamin- ated waste.	Actions are adequate and reliable to control contamina- ted waste.
Need for 5-yr review	Not applicable.	Not applicable.
<u>Implementability</u>		
Ability to construct and operate	Carbon adsorption requires some operation.	No operation required.
Ease of doing more action if needed	Carbon adsorption can handle varying aqueous/waste volumes or concentrations of contam- inants.	Offsite treatment facility will have flexibility to treat waste as required.
Ability to monitor effectiveness	Visual inspection adequate to ensure removal. Carbon adsorp- tion effluent will be monitored.	Visual inspection adequate to ensure removal.

-
h
-
ы
-
Ξ
[7]
so.
-
•
•
UT.
- ·

•

INDIVIDUAL EVALUATION OF FINAL ALTERNATIVES - CONTAMINATED WASTE FROM TANKS AND DRUMS AR30

CRITERIA	ALTERNATIVE 1 LANDFILL OF SOIL AND OILY DEBRIS, CARBON ADSORPTION OF AQUEOUS WASTE	ALTERNATIVE 2 CC 1 LANDFILL OF SOIL AND OILY DEBRIS, OFFSITE TREATMENT OF AQUEOUS WASTE
Ability to obtain approvals and coordinate with other agencies	Need a permit for hauling the waste and an approval for landfill disposal. May need NPDES discharge permit for carbon adsorption process.	Need a permit for hauling the waste and an approval for landfill disposal.
Availability of service and capacities	Need carbon adsorption ser- vices. Limited approved landfill site availability.	Limited approved landfill site availability. Treatment facil- ity available nearby.
Availability of equipment, specialists, and materials	Needs operator to install and operate carbon adsorp- tion. Need licensed drivers.	Need licensed drivers. Need bulk liquid handling trucks.
Availability of technology	Carbon adsorption is conven- tional technology.	Treatment facilities are available.

,

** * *

•

2

INDIVIDUAL EVALUATION OF FINAL ALTERNATIVES - CONTAMINATED WASTE FROM TANKS AND DRUMS

LANDFILL OF SOIL AND OILY DEBRIS, CARBON ADSORPTION OF AQUEOUS WASTE ALTERNATIVE 1 ALTERNATIVE 2 CALLANDFILL OF SOIL AND OILY DEBRIS, OFFSITE TREATMENT OF AQUEOUS WASTE

Cost

CRITERIA

Capital cost	\$153,000	\$161,200
Continue first year annual O&M cost	0	0
Present worth cost	\$153,000	\$161,200
Acceptability by State	Moderate	Moderate
Public Acceptance	Moderate	Moderate

significant risk to human health. Any potential impact from the soil on groundwater will be addressed in the next operable unit.

Because of the location and size of the site (2 acres) in the middle of a commercial/industrial area, surrounded by a residential community, no wildlife is expected to be impacted by the continuance of present site conditions. No wetlands, parks, critical habitats or habitats of endangered species are within close proximity to the site, and based on sediment and surface water data, runoff from the site exerts a negligible effect on Naylors Run.

Even though compliance with the provisions of Section 121 of SARA regarding the degree of cleanup is not triggered by the No Action alternative, it is appropriate to demonstrate that this alternative is protective of human health and the environment.

The chosen alternative meets current ACGIH, NIOSH and Pennsylvania Air Standards for all contaminants which originated from the site. While no legislated quantitative cleanup levels for hazardous wastes in soils exists, the risk assessment determines the degree of cleanup necessary. Since risks at the site for the different media are within EPA's acceptable range of 10⁻⁷ to 10⁻⁴ for an incremental cancer risk, the requirements of the No Action alternative is protective of the public's health.

Since there is minimal remedial construction, capital and O&M costs are low (Table 10) and monitoring costs are moderate.

The no action alternative complies with all appropriate criteria for selection as the remedial response for onsite soil contamination.

Because the selected remedy provides for a security fence around the site perimeter and an ongoing business currently occupies the site, it is unlikely that children will be found frequently playing on the property. Therefore, the possibility of onsite soil ingestion by the public is not considered a probable event.

The No Action alternative for onsite soils is protective of both human health and the environment. All potential pathways from direct contact were examined in order to make this determination.

A 5-year program for soil monitoring will be implemented and results will be reviewed yearly. A determination will then be made by EPA concerning the appropriateness of taking further actions. Upon completion of this program, EPA will determine if additional sampling or remedial action are necessary.

AR301013

Oil/Water separator for storm sewer effluent

NO ACTION - CONTAMINATED SOIL ON NWP SITE

Α.	CAPITAL COSTS				
	1. Fencing	\$	15,000		
	2. Contingency (25%) of construction costs		3,800	- · · ·	
	Total Capital Costs	• • •	••••	\$ 18,800	
в.	CONTINUING O&M COST				
	1. Monitoring	\$	65,000 1	lyr	
	Present worth (8% for 5 yéars)		\$316,200	
c.	PRESENT WORTH	• • •		\$335,000	

The recommended alternative for remediation of the storm drain effluent to Naylors Run is the installation and operation of an oil/water separator (Alternative 3). Such separators, which are commercially available, are used in petroleum distribution and transportation facilities and in a variety of other industrial and military operations. Of the three alternatives, only the oil/water separator complies with ARARs and provides overall, long-term protection to humans (Table #11). The unit is expected to remain in place for 30-years, however a periodic review of site conditions may alter this time-frame. Discharge criteria was previously discussed in the Remedial Action Objectives section of this ROD.

Installation of a carbon adsorption air treatment unit is not considered necessary since the oil/water separator is a closed vessel with only a small vent from which VOCs could be released. Also, since the existing risk due to inhalation of organics from the catch basin at the two residences nearest to the basin is based on limited empirical data, the following additional actions are to be conducted in the area of the catch basin:

- Measurement of flow volumes from the stormwater pipe draining the NWP site area and in Naylors Run
- Air sampling for VOCs near the catch basin
- Perform a one time water and oil sampling program within the catch basin for PCP, VOCs and other contaminants of concern to update the historical sampling data
- Perform yearly monitoring of sediments, water, and biota to determine current site conditions and the need for further remedial actions

Landfill and offsite treatment for staged waste materials

The recommended alternative for cleaning up the contaminated waste staged on site is alternative #2 - landfill of soil and oily debris and offsite treatment of aqueous waste (Table #12). While the two alternatives evaluated are similar, offsite treatment of the liquid waste is recommended for two reasons:

- It can be implemented more readily; a carbon adsorption unit does not have to be brought on site, effluent testing is not required, and compliance with NPDES standards is not needed.
- o Offsite treatment will not require discharging of effluent (albeit treated) to Naylors Run 477301015 therefore will be more acceptable to the community.

OPTIMUM OIL/WATER SEPARATOR -LIQUID EFFLUENT CONTROL AT NAYLORS RUN CATCH BASIN

Α.	CAPITA	L COSTS		
	1.	Initial monitoring of sediments, water, and biota	-	\$ 50,000
	2.	Oil/water separator, including installation		35,000
	з.	Health and safety		2,000
	4.	Predesign data acquisition		25,000
	5.	Engineering and design (25% of Nos. 2-4)		15,500
	6.	Legal and administrative (20% of Nos. 2-4)		12,400
	7.	Contingency (25% of Nos. 2-4)		<u>15,500</u>
	Tota	l Capital Costs		\$155,400
в.	CONT	INUING O&M COST		
	1.	O&M of oil/water separator	\$	30,000/yr
	2.	Monitoring of water and sediments		15,000/yr
	Tota	1 O&M	\$ <u>_</u>	45,000/yr
	Pres	ent worth (8% for 30 years)		\$506,600
c.	PRES	ENT WORTH		\$662,000

LANDFILL OF SOIL AND OILY DEBRIS AND OFFSITE TREATMENT OF WATER FROM CONTAMINATED WASTE IN TANKS AND DRUMS

A. CAPITAL COSTS

	1.	Sampling, analysis, and labeling of soil and oily debris (200 drums)	\$ 30,000
	2.	Offsite disposal (landfill) of soil and oily debris	35,000
	3.	Sampling and analysis of aqueous waste	5,000
	4.	Offsite hauling and treating of aqueous waste (6000 gal @ \$4/gal)	24,000
	5.	Health and safety	10,000
	6.	Engineering and design (10%)	10,400
	7.	Legal and administrative (20%)	20,800
	8.	Contingency (25%)	26,000
		Total capital costs	161,200
в.	CONT	INUING O&M COST	0

C. PRESENT WORTH

\$161,200

The State has concurred with these selected remedies.

Applicable, Relevant and Appropriate Requirements (ARARs)

The remedial action alternatives selected for two of the three problem areas of concern (the catch basin and the onsite staged materials) must meet or exceed all applicable, relevant and appropriate requirements (ARARs) unless a waiver provided by CERCLA Section 121(d)(4) is invoked.

Remedial action alternatives for the catch basin are not intended as final remedial actions for the site. ARARs are waived (CERCLA Section 121(d)(4)(A)) for this portion because it is only part of a total remedial action alternative to be developed in an upcoming operable unit. Offsite disposal requirements for generated wastes from the catch basin and existing onsite staged material will comply with all RCRA transport and disposal regulations.

As described in Section 121 of SARA, no review of ARARs is to be made when the No-Action Alternative is selected as in the case of onsite soils.

Community Relations

EPA considers public participation in the decision-making process associated with site remediations to be vital. Consequently, the Agency makes site-related documents available to the public at a particular location in the community. For this Site, the information repository is the:

> Haverford Township Building 2325 Darby Road Havertown, PA 19083-2251

Since this was a State-lead site, the State was required to announce the availability of the FS Report and to provide a public comment period. The comment period for the Havertown PCP Site began on August 25, 1989, and extended until September 25, 1989.

A responsiveness summary is provided in Appendix A.

Comments, inquiries, and requests for additional information may also be made by contacting the following EPA/PADER representatives:

Ms. Nanci Sinclair (3PA00) Community Relations Coordinator (215) 597-4164 Mr. Nick DiNardo (3HW22) Regional Project Manager (215) 597-8541

US EPA 841 Chestnut Street Philadelphia, PA 19107

Thomas Leaver PA Dept. of Environmental Resources P. O. Box 2063 Harrisburg, PA 17120 (717) 783-7816

Appendix "A"

Responsiveness Summary

On August 25, 1989, the Delaware County Times ran an EPA advertisement announcing the preferred cleanup alternatives for the Havertown PCP Superfund Site. The comment period extended from August 25, 1989 to September 25, 1989 and, was announced in this ad.

Throughout the Superfund process, EPA and PADER have never received written comments from Havertown residents regarding the site. No comments were received during the past comment period.

Appendix B

Description of Work at the Havertown PCP site

A summary of the major work to be completed under this Remedial Action, as outlined in the September 30, 1989 ROD.

The major components of the selected remedy include:

- Installation of an oil/water separator into the existing catch basin in Naylor's Run.
- Offsite treatment and disposal of all staged waste materials on National Wood Preservers property.

The selected remedies are the first phase of two for remediation of this site and will be consistent with the final remedy.