Consumption of Freshwater Fish by Maine Anglers and Related Issues

Natalie Harrington
Russell Keenan

September 21, 1995

A Division of McLaren/Hart $_{\text {Environmental Engineering }}{ }^{\circledR}$

1990 Maine Angler Survey

\square Fish consumption is a primary exposure pathway to biologically accumulate chemicals in waterbodies
\square Survey designed to fill data gap in support of AWQC process for TCDD in Maine

- purpose was to estimate fish consumption rates
- focus on recreational anglers
- determine fish consumption rates specific to rivers and streams

Freshwater Fish Consumption in Maine

\square No commercial sources
\square Only sport-caught fish available
\square Anglers likely to have highest consumption rates ${ }_{24}$.
\square Sources of fish

- self-caught
- provided by other anglers in household
- provided by other anglers outside of household

Maine Angler Survey

Implementation Methodology
\square Pulled 2,953 fishing licenses from Maine DIF\&W
\square Pretested survey using 50 individuals
\square Mailed advance letter to sample of 2,500 anglers

- Mailed follow-up "thankyou/reminder" postcard one week later
\square Mailed follow-up survey to 1,111 nonrespondents
$\square 69 \%$ response for all deliverable surveys

Response Summary for Maine Angler Survey

Completed interviews
Fished in 1989-1990
Did not fish but consumed Maine fish
Neither fished nor consumed Maine fish* 243
1,251
118

Pretest sample
Undeliverable
No Response
Extra Sample
Initial Sample Size
*dropped from analysis
1612

50
235
653
403
2,953
s

Analysis of Consumption by Individual Anglers for Self-Caught River Fish

Individual 1

Species 1	Number of fish creeled for consumption	x	Weight of fish based on average length reported	X	Edible Portion	$=\begin{gathered} \text { Total Mass } \\ \text { Species } 1 \end{gathered}$
Species 2	Number of fish creeled for consumption	x	Weight of fish based on average length reported	X	Edible Portion	$=\begin{gathered} \text { Total Mass } \\ \text { Species } 2 \end{gathered}$
Species N	Number of fish creeled for consumption	X	Weight of fish based on average length reported	X	Edible Portion	$=\begin{gathered} \text { Total Mass } \\ \text { Species N } \end{gathered}$

Total Consumption of Freshwater Fish by Individual Anglers

\(\left.$$
\begin{array}{|c}\text { Total } \\
\text { Mass } \\
\text { From Ice } \\
\text { Fishing }\end{array}
$$\right]+\left[$$
\begin{array}{c}\text { Total } \\
\text { Mass } \\
\text { From } \\
\text { Standing } \\
\text { Water }\end{array}
$$\right]+\left[\begin{array}{c}Total

Mass

From

Flowing

Water\end{array}\right]+\)| Total
 Mass From
 Other
 Household
 Sources |
| :---: |$+$| Total
 Mass
 From Non-
 Household
 Sources |
| :---: |$+$| Total
 Mass
 From
 Future
 Trips |
| :---: |

Number of Freshwater Fish Consumers in Angler's Household

= Fish Consumption Rate

Analysis of Fish Consumption Rates for Anglers Fishing All Waters in Maine

Consuming
All Anglers Anglers Only

Number of Individuals	1,369	1,053
Median (50th percentile)	1.1	2.0
66th percentile	2.6	4.0
75th percentile	4.2	5.8
Arithmetic Mean	5.0	6.4
Percentile at the Mean	79	77
90th percentile	11	13
95th percentile	21	26

Analysis of Fish Consumption Rates for Anglers Fishing All Rivers and Streams

River Anglers Anglers Only
Number of Individuals
Median (50th percentile)
66th percentile
75th percentile
Arithmetic Mean
Percentile at the Mean
90th percentile
95th percentile

741	464
0.19	0.99
0.71	1.8
1.3	2.5
1.9	3.7
82	81
3.7	6.1
7.2	12

Consuming

Frequency Distribution of Freshwater Fish Consumption by Maine Anglers (Rivers and Streams--Consuming Anglers)

Source: ChemRisk, 1992
Fish Consumption Rate (g/day)

Other Findings

$\square 39 \%$ of fish caught were eaten

- 7% of the anglers ate 93% of the fish caught and eaten from Maine rivers

ㅁ 55\% of river anglers ate no freshwater fish from rivers
\square Median rates of fish consumption were not significantly different ($\mathrm{p} \leq 0.05$) between age groups, income level, or ethnic groups

Issues from May Meeting

\square Recall bias
\square Nonresponse bias
\square Suppression due to bans or pollution concerns
\square Preferred species
degitbiar

Recall Bias

\square Recreational fishing and catch rates overestimated by recall surveys of 6-months to 1-year (Westat, 1989 for U.S. Fish and Wildlife Service)
\square Longer recall periods led to overestimates in survey of Michigan anglers (West et al., 1989)
\square 12-month recall period may lead to overestimates of fish consumption rates by at least 10% (Connelly and Brown, 1995)

Nonresponse Bias

\square Not evaluated in Maine Angler Survey
\square High response rate makes nonresponse less of a problem for Maine Angler Survey
\square Accounting for nonresponse bias would result in lower estimates of intake

- Response rates positively correlated with salience of issue to respondent (Haberlein and Baumgartner, 1978)
- Other recreational surveys indicate that nonrespondents have lower participation rates (Brown and Wilkins, 1978; Connelly et al., 1990, 1992; West et al., 1989, 1991)

Suppression of Angling and Consumption

\square Only 200 of 37,000 possible miles of Maine rivers, streams, and brooks have history of

\square Survey identified 27 locationss at potentially impacted waters out of 748 total locations
\square No individual angler chose only impacted locations as top 5 spots
\square Advisories in Maine led to substitution not suppression

Species Preferences Comparison

Species	1990 ME Angler Survey*	1990-91 NY Angler Survey
Trout	1	1
White Perch	2	5
Bass	3	2
Bullhead/Catfish	9	3

*Based on consumption from rivers and streams

Factors Influencing Selection of Fish Consumption Rates for Risk Assessment

\square Targeted populations
\square Targeted waterbodies
\square Regional considerations
\square Measurement methodology

Sources for Fish Consumption Rates for Northeastern Freshwater Anglers

Mean Consumption Rates (g/day)
 All waters Rivers and Streams

Study

NYSDEC/Connelly et al., 1990	28*	-
Ebert et al., 1993	6.4	3.7
Ebert et al., 1995	-	2.6
Connelly and Brown, 1995 bead ane naq2	$-4.5 * *, 9.4^{* *}$	-

*All sources of fish comnervial, aten bonglt, ustrunct
**Based on meal size estimate of $227 \mathrm{~g}=$ approx. 8 oz .

NYSDEC/Connelly et al., 1990

- 1988 recall survey of NY anglers
\square Designed to measure effectiveness of fish consumption advisories
- 12-month recall period
\square Fish consumption rates not restricted to sport-caught fish

Hudson River Sloop Clearwater, 1993

- 1991, 1992 intercept survey of shore-based Hudson River anglers excluad butangerr, annul emplane
- Intended to assess awareness of and compliance with fish consumption advisories
\square Survey not designed to represent entire population of Hudson River anglers
\square Raw data may provide anecdotal information useful for risk assessment

Ebert et al., 1993

$\square 1.990$ recall survey of Maine freshwater anglers including 1989 ice fishing season
\square Designed to measure fish consumption by waterbody type
\square 12-month recall period
\square Fish consumption rates available specifically for rivers and streams

Ebert et al., 1995

- 1984-1986 intercept survey of Housatonic River (CT) anglers
\square Fish consumption information extracted from survey with fisheries management focus
\square Fish consumption rates for single river
- Subject to sampling bias

Connelly and Brown, 1995

\square Paired 1991 recall and 1992 diary surveys of Lake Ontario anglers
\square Designed to compare methodologies to assess magnitude and direction of bias

- days fished
- fish consumption
- angling expenditures
\square Established that 12-month recall period leads to overestimates
- days fished (44-45\%)
- fish consumption rates (at least 10%)
- angling expenditures not overestimated

Demographics for Freshwater Anglers in Northeastern U.S.

\square Age
\square Income
\square Ethnicity

Percent of Respondents

Income Group Distribution Comparison

Income Group Distribution Comparison

Intercept Survey Bias

\square Critical for evaluating creel surveys
\square Published article
\square Affects Sloop Clearwater and Ebert et al., 1995

A Hypothetical Example

Consider a town having 3,000 anglers tilat fall into two groups:

High Group: 10\% eat 30 fish/yr and fish 50 times/yr Typical Group: 90% eat 1 fish/yr and fish 2 times/yr
All fishing is done at one location on a local river

Estimating Average Intake Rates Using Population and Creel Surveys

Population Survey

Average intake of anglers living in the town

10% eat $30 \mathrm{fish} / \mathrm{yr}$	$=3.0 \mathrm{fish} / \mathrm{yr}$
90% eat $1 \mathrm{fish} / \mathrm{yr}$	$=0.9 \mathrm{fish} / \mathrm{yr}$
Average yearly intake	$=3.9$ fish/yr

Creel Survey

Average fish intake of anglers at the river

The Population of Anglers at the River

High Group
3,000 anglers $\times 10 \% \times 50$ trips/yr $=15,000$ angler-trips/yr
Typical Group
3,000 anglers $\times 90 \% \times 2$ trips $/ \mathrm{yr}=\frac{5,400 \text { angler-trips } / \mathrm{yr}}{20,400 \text { angler trips/yr }}$

Average Number of Anglers Present at the River on a Given Day
$\frac{20,400 \text { angler trips/yr }}{365 \text { days/yr }}=56$ anglers present on any given day

Distribution of Anglers at the River

High Angler Group

$$
\frac{15,000 \text { angler trips } / \mathrm{yr}}{365 \text { days } / \mathrm{yr}}=41 \text { angler trips } / \mathrm{day}=73 \%
$$

Typical Angler Group

$$
\frac{5,400 \text { angler trips } / \mathrm{yr}}{365 \text { days/yr }}=15 \text { angler trips } / \text { day }=27 \%
$$

The high angler group makes up 73\% of anglers surveyed at the river but only 10% of the total population

Average Intake of Anglers at the River

73% ate $30 \mathrm{fish} / \mathrm{yr}=$ 27% ate $1 \mathrm{fish} / \mathrm{yr}=$	22.0 $\mathrm{fish} / \mathrm{yr}$ fish $/ \mathrm{yr}$
Average intake rate for the total angler population	$32.3 \mathrm{fish} / \mathrm{yr}$

The creel survey overestimates intake rates for the total population by a factor of 5.7

* EFA- erplani the diffenem

This survey is about your frestwater fishing experiences in Malne. Your name was selected because you purchased a Maine resident fishing license in 1989.

1. About how old were you when you took your first freshwater fishing trip in Maine? (FILL IN BLANK)
$2-75$ years old the first time I ever fished in Maine
$99 \quad$ Missing
2. How would you describe your fishing ablity? (CIRCLE ONE NUMBER)
3. Did you go freshwater fishing in Maine in 1983? (CIRCLE ONE NUMBER)

1	No
2	Yes
9	Missing

4. Did you go fishing in Maine during either the 1989-1990 ice fishing season or during the 1990 openwater fishing seasons? (CIRCLE ONE NUMBER)

5. What was the most important reason why you did not go fishing during the $1989-1990$ ice fishing season or the 1990 open-water seasons? (CIRCLE ONE NUMBER)

1 Health problems
2 Too busy with other activities
3 I lost my interest in fishing
4 Other (please describe: See List \#i)

- Missing
- Not applicable

If you didn't fish during the 1989-1990 ice fishing season or make any 1990 open-water fishing trips, please skip to Question 25.
6. We would tike to know more about the factors or site characteristics that are important in choosing the location where you fish. Please incleate how important each factor or site characteristic, listed below is to you. (CIRCLE ONE NUMBER FOR EACH CATEGORY)

Q6_1	Easy access from a road	1	2	3	9	0

In the next section, we would like to leam about your 1989-1990 ice fishing trips. If you cannot recall the exact details, please answer with your best estimates.
7. Did you take any ice fishing trips in Maine during the $1989-1990$ ice fishing season? (CIRCLE ONE NUMBER)

1 No \longrightarrow Skip to Ouestion 12
2 Yes
9 Missing

- Not applicable

8. During the $1989-1990$ ice fishing season, on how many different days did you spand part or all of the day ice fishing? (FILL IN BLANK)

1-208 days fisthed during the 1989-1990 ice fishing season
999 Missing

- Not applicable

9. During your $1989-1990$ ice fisting trips, on average, how many hours per day did you spend ice fisting? (FILL IN BLANK)

1-20 hours per day ice fishing
99 Missing

- Not applicable

10. Did you catch any fish during your 1989-1990 ice fishing trips? (CIRCLE ONE NUMBER)

1 NO— \longrightarrow Skip to Question 12
2 Yes
9 Missing

- Not applicable

The previous section asked about the fish you caught during the $1920-1990$ ice fishing season. This section asks about the fish you caught during the 1990 open-water fishing season. If you cannot recall the exact details, please answer with your best estimates.
12. Have you made any open-water fishing trips in Maine during 1990?
1 No
2 Yes
9 Missing to Question 25
Not applicable
13. Have you taken any open-water fishing trips during 1990 to any ponds or lakes in Maine? (CIRCLE ONE NUMBER)
1 No
2 Yes
9 Missing

- Not applicable

14. During 1990, on how many different days did you spend part or all of the day open-water fishing on ponds or lakes in Maine? (FILL IN BLANK)

1-155 different days fished on ponds or lakes in Maine
999 Missing

- Not applicable

15. During your 1990 open-water fishing trips, on average, how many hours per day did you spend fisting on ponds or lakes in Maine? (FILL IN BLANK)

1-22 hours per day fishing on ponds or lakes in Maine
$99 \quad$ Missing
Not applicable
16. On your 1900 open-water fishing trips, how did you usually fish when you fished on ponds or lakes in Maine? (CIRCLE ONE NUMBER)

1	From the shore or bank only	
2	From a boat or can	e only
3	From both the shore or bank and a boat or canoe	
4	Other (please desc	
	ID	Response
	439	From my dock and in a small fishing boat
	1064	Either from a canoe or from shore
	1222	Chest waders
	1299	On lake from wharf
	1639	Wading brooks and rivers
	2350	Wading
9	Missing Not applicable	

17. Did you take any 1990 open-water fishing trips on any streams or rivers in Maine? (CIRCLE ONE NUABER)

1 No -- \quad Skip to Question 21
2 Yes
9 Missing

- Not applicable

18. During 1990, on how many different days did you spend part or all of the day open-water fishing on streams or rivers in Maine? (FILL IN BLANK)

1-180 different days fished on streams or rivers in Maine 999 Missing

- Not applicable .

19. During your 1990 open-water fishing trips, on average, how many hours per day did you spend fishing on streams or rivers in Maine? (FILL IN BLANK)

1-20 hours per day fisting on streams or rivers in Maine
99 Missing

- Not applicable

20. On your 1990 open-water fishing trips, how did you usually fish when you fished on streams or rivers in Maine? (CIPCLE ONE NUMBER)
1 From the shore or bank only
2 From a boat or canoe only
3 From both the shore or bank and a boat or canoe
4 Wading
9 Missing

- Not applicable

21. During your 1990 open-water fishing trips in Maine, which freshwater bodies did you fish most frequently? (FILI IN BLANKS)

Name of Water Body	Type of Water Body (flowing or standing)	Nearest Town or City	Number of Days Fished There	Distance trom Home
Q21A 1	Q21B 1	Q21C 1	Q21D 1	Q21E 1 miles
Q21A 2	Q21B-2	Q210-2	Q210-2	Q21E 2 miles
Q21A 3	Q21B-3	Q215-3	Q21D ${ }^{-3}$	Q21E 3 miles
Q21A-4	Q218-4	Q21C-4	Q210-4	Q21E 4 miles
Q21A-5	Q21B ${ }^{-5}$	Q210-5	Q21D ${ }^{-5}$	Q21E 5 miles
Please see list \#2	1 Flowing 2 Standing 9 Missing - Not applicab	Please see list \#3	99 Missing - Not applica	999 Missing - Not applic

22. Did you catch any fish during your 1990 open-water fishing trips? (CIRCLE ONE NUMBER)

23. This question asks about the number of fish you caught during your 1990 open-water fishing trips, and what happened to these fish. If you didn't catch a particular type of fish on your 1990 openwater fisting trips, just leave that line blank. (FILL \mathbb{N} BLANKS)

How Many Did
You Catch?

For Columns Q23A_1 to Q23D_15: 999 Missing - Not applicable

Landlocked Salmon	Q23A_1	Q23B_1	Q23C_1	Q23D_1
Atlantic Salmon	Q23A_2 \longrightarrow	Q23B_2	Q23C_2	Q23D_2
Togue (Lake Trout)	Q23A_3 \longrightarrow	Q23B_3	Q23C_3	Q23D_3
Brook Trout	Q23A_4 -->	Q23B_4	Q23C_4	Q23D_4
Brown Trout	Q23A_5 \longrightarrow	Q23B_5	Q23C_5	Q23D_5
Yellow Perch	Q23A_6 \longrightarrow	Q23B_6	Q23C_6	Q23D_5
White Perch	Q23A_7 \longrightarrow	Q23B_7	Q23C_7	Q23D_7
Bass (small mouth and large mouth)	Q23A_8 ${ }^{\text {P }}$	Q23E_8	Q23C_8	Q23D_8
Pickeret	Q23A_9 \longrightarrow	Q23B_9	Q23C_9	Q23D_9
Lake Whiteish	Q23A_10 -->	Q238_10	Q23C_10	Q23D_10
Hornpout (Catrish and Bullheads) ${ }^{-1}$	Q23A_11 -->	Q23B_11	Q23C_11	Q23D_11
Bottom Fish (Suckers, Carp, and Sturgeon)	Q23A_12 \longrightarrow	Q23B_12	Q23C_12	Q23D_12
Chub	Q23A_13 -	Q23B_13	Q23C_13	Q23D_13
Smelt	Q23A_14 \longrightarrow	Q23B_14	Q23C_14	Q23D_14
Other	Q23A_15 $->$	Q23B_15	Q23C_15	Q23D_15

24. In the last question you indicated how many of the fish that you caught were eaten by you and/or other household members. Of the fish reported as eaten in Question 23, how many were from flowing waters (streams and rivers) and how many were from standing waters (such as ponds or lakes)? (FILL N BLANKS)

Botlom Fish (Suckers, Carp. and Sturgeon)

Chub
Smelt
Other

Q24A_12 $->$ Q24B_12 in.
Q24A_13 $->$ Q24B_13 in.
Q24A_14 - Q24B_14in.
Q24A_15 \rightarrow Q24B_15 in.

For Columns Q24A_1 to Q24D_15: Number eaten
999 Missing

- Not applicab

from flowing

 watersAverage length
(steams, rivers) of these fish
Humber eaten

- Not applicable
Landocked Salmon
Atlantic Salmon
Togue (Lake Trout)
Brook Trout
Brown Trout
Yellow Perch
White Perch
Bass (small mouth and
large mouth)

Pickerel
Lake Whitefish
Q24A $1 \rightarrow$ Q24B_1 in.
Q24A_2 \rightarrow Q24B_2 in.
Q24A_3 \rightarrow Q24B_3 in.
Q24A_4 \rightarrow Q24B_4 \ln
Q24A_5 - Q24B_5 in.
Q24A_6 \rightarrow Q24B_6 in.
Q24A_7 \rightarrow Q24B_7 in.

Q24A_8 ---> Q24B_8 in.
Q24A_9 Q Q24B_9 in.
Q24A_10 \rightarrow Q24B_10 in.

Q24A_11 \rightarrow Q24B_11 in.
Q24C_11 — Q24D_11 $^{\mathrm{in} .}$
Q24C_1 — Q24D_1 in.
Q24C_2 \rightarrow Q24D_2 in.
Q24C_3 \rightarrow Q24D_3 in.
Q24C_4 —— Q24D_4 in.
Q24C_5 —— Q24D_5 in.
Q24C_6 \rightarrow Q24D_6in.
Q24C_7 \rightarrow Q24D_7 in.
Q24C_8 \rightarrow Q24D_ 8 in .
Q24C_9 - Q24D_9 in.
Q24C_10 \rightarrow Q24D_10 in.
Hompout (Catish and Bullheao's)

Q24C_12 — Q24D_12 in.
Q24C_13 \rightarrow Q24D_13 in.
Q24C_14 — Q24D_ $^{14} \mathrm{in}$.
Q24C_15 \rightarrow Q24D_15 in.
fromstanding Average waters length (lakes, ponds) of these fish
25. Do you plan to take any open-water fishing trips in Maine in the remainder of 1990? (CIRCLE ONE NUMBER)

1 No 2 Yes___ On how many more days in 1990 will you spend part or all of the day fishing on open-waters in Maine? (FILL NN BLANK)

9 Missing
Q25A
0
1-99 more days in 1990
999 Missing

- Not applicable

In the last two sections we asked about the fish you personally caught in Maine in 1990. This next section asks about the frestwater fish caught in Maine during the open-water or loe fishing seasons in 1990 by other household members.
26. Did any members of your househod besides yourself make any open-water fishing trips during 1990 or ice fishing trips during the $1989-1990$ lce fishing season in Maine? (CIRCLE ONE NUMBER)

> 1 No \quad Skip to Question 30
> 2 Yes
> 9 Missing
27. Besides yourself, how many other members of your household have been freshwater fishing in Maine during either the 1990 open-water or the 1989-1990 ice fishing season? (FILL IN BLANK)
1-22 Other household member(s)
99
Not applicable
28. Did you or anyone in your household eat the fish caught by these other household members during either the $1989-1990$ ice fisting season or the 1990 open-water seasons? (CIRCLE ONE NUAFBER)

1 No \rightarrow Skip to Question 30
2 Yes
9 Missing

- Not applicable

29. Approximetely how many of the fish caught by other members of your househoid in Maine during either the 1989-1990 ice fisting season or the 1990 open-water seasons were eaten by you and/or members of your househoid? (FILL IN BLANKS)

For Columns Q29A_1 to Q29B_1:
998 Don't know Average
999 Missing
Number Length

- Not applicable Eaten \rightarrow of These Fish

Landlocked Salmon	Q29A_1	Q29B_1 in.
Attantic Salmon	Q29A_2	Q29B_2 in .
Togue (Lake Trout)	Q29A 3	Q29B_3 in.
Brook Trout	O29A 4	Q29B_4in.
Brown Trout	Q29A_5	Q29B_5 in.
Yellow Perch	Q29A 6	Q293_6 in.
White Perch	Q29A 7	Q29B_7 in.
Bass (small mouti and large mouth)	Q29A_8	Q298_8 in.
Pickerel	Q29A_9	Q29B_9 in.
Lake Whitefish	Q29A_10	Q29B_70 in.
Hormpout (Catish and Sullheads)	Q29A_11	Q29B_11 in.
BoHom Fish (Suckers, Carp, and Sturgeon)	Q29A_12	Q29B_12 in.
Chub	Q29A_13	Q29B_13 in.
Smelt	Q29A_14	Q29B_14 in.
Other	Q29A_15	Q29B_15 in.

30. Since December 1989, have you or someone in your household eaten any freshwater fish trat were caught in Maine by people outside of your household? (Do not include fish purchased at a store or fish market.) (CIRCLE ONE NUMBER)
31. Approximately tow many fish caught by non-househodd members in Maine since December 1989 were eaten by you and/or members of your househodd? (FILL IN BLANKS)

For Columns Q31A_1 to Q31B_15:
998 Don't know

$\underset{\text { Number }}{\text { Eaten }} \longrightarrow$| Average
 Length |
| :---: |
| Of |

Landlocked Salmon	Q31A_1	Q318_1 ln .
Atlantic Salmon	Q31A 2	Q31B_2 in.
Togue (Lake Trout)	Q31A_3	Q318_3 in.
Brook Trout	Q31A_4	Q31B_4 in.
Brown Trout	Q31A_5	Q31B_5 in.
Yellow Perch	Q31A_6	Q31B_6 in.
Write Perch	Q31A_7	Q31B_7 in.
Bass (small mouth and large mouth)	Q31A_8	Q31B_8 in.
Pickere!	Q31A_9	Q318_9 in.
Lake Whitefish	Q31A_10	Q31B_10 in.
Hornpout (Catish and Bullheads)	Q31A_11	Q318_11 in.
Botiom Fish (Suckers, Carp, and Sturgeon)	Q31A_12	Q313_12 in.
Chub	Q31A_13	Q31B_13 in.
Smelt	Q31A_14	Q313_14 in.
Other	Q31A_15	Q31B_15 in.

32. Below, please describe the age and sex of each household member and indicate whether they eat freshwater fish caught in Maine (whether caught by you, another household member, or nonhousehold member). (FILL IN BLANK)

Does This Person Eat Frestiwater Fish

Yourself	Q32A_1	Q32B_1
Member 1	Q32A-2	Q32 ${ }^{-1} 2$
Member 2	Q32A-3	Q32B-3
Member 3	Q32A-4	Q32 ${ }^{-1} 4$
Member 4	Q32A-5	Q32 ${ }^{-5}$
Member 5	Q32A-6	Q32B-6]
	99 Missing	1 Male 2 Female 9 Missing - Not applicable

Age of Person 99 Missing

Sex of Person
(CIRCLE ONE ANSWER)

Caught in Maine?
(CIFCLE ONE ANSWER)

Q32C 1
Q32C-2
Q32C_3
Q32C-4 Q32C-5 Q32C_6

1 No
2 Yes
9 Missing

- Not applicable

There are many ways in which people prepare frestwater fish they catch. We would like to find out how you prepare freshwater fish from Maine caught by you, another household member or non-household members.
33. What three types of freshwater fish from Maine (whether caught by you, someone etse in your household, or a non-household member) do you eat most often and how do you usually cook them? (FILL IN SPECIES OF FISH IN BLANKS BELOW AND ANSWER EACH QUESTION)

> Species 1: Q33A (See List 4)
> Species 2: Q33B
> (See List 4)
> Species 3: Q33C (See List 4)

Do you fillet these fish before cooking them?
Do you cook these fish with the skin on?

Q33A_1	Q33B_1	Q33C_1
Q33A_2	Q33B_2	Q33C_2
Q33A_3	Q33B_3	Q33C_3
Q33A_4	Q33B_4	Q33C_4
1 No 2 Yes 9 Missing - Not applicable	1 No 2 Yes 9 Missing - Not applicable	1 No 2 Yes 9 Missing - Not applicable

About how many of these fish do you eat fresh (not frozen, smoked or canned)? PWRITE ONE NUMBER FROM BELOW)

Q33A_5	Q33B_5	Q33C_5
	1 All (100\%)	
	2 Most (57-99\%)	
	3 About thalf (34-65\%)	
	4 Some (7 - 33\%)	
	5 None (0\%)	
	9 Missing - Not applicab	

How do you usually serve these fisth? WRRITE ONE NUMBER FROM BELOW IN BLANK FOR EACH SPECIES OF FISH) Q33A_6 Q33B_6 Q33C_6

1 Raw
2 Baked
3 Broiled/grilled
4 Fried
5 Poached
6 Boiled
7 Soup/stew/chowder
9 Missing

- Not applicable

34. What do you usually do with fish leflover from a meal? (CIRCLE ONE NUMBER)

1 Never have lettover fish
2 Save leftovers to eat later
3 Throw leftovers away
4 Give to pets
9 Missing
35. Do you and/or other household members ever eat freshwater fish (whether fresh or frozen) purchased from a store or fish market? (CIRCLE ONE NUMBER)
$\begin{array}{ll}1 & \text { No } \\ 2 & \text { Yes } \\ 9 & \text { Missing }\end{array}$
36. About how many meals of freshwater fish purchased from a store or fish market does your household have in a month? (FILL IN BLANK)

1-15 freshwater fish meals per month
$99 \quad$ Missing
$\begin{aligned} & \text { Not applicable }\end{aligned}$
37. What is the average serving size of the freshwater fish at these meals per individual? (FILL IN BLANK)

1-48 Dunces of festiwater fish per individual
99 Missing

- Not applicable

Some people have raised health concerns about water quality in public waterways. We would like to learn about any concerns you might have about the areas you fish.
38. Are you aware of any official fish consumption adivisories concerning tish caught in Maine? (CIRCLE ONE NUMBER)
1 No
2 Yes
9 Missing
39. The following are some statements about fish consumption advisories in Maine. For each statement, indicate whether each statement is true, false, or if you don't know. Don't worty it these questions seem hard; very few peopie know all of the answers. (CIRCLE ONE NUABER FOR EACH STATEMENTI
True False Kon't Missing Applicable

Q39A_1

Q39B_2

Q39C_3

Q39D_4

Q39E 5

The existing fish consumption advisories apply only to fish caught in lakes and ponds $\quad 1 \quad 2 \quad 3 \quad 9$

Only some rivers in Maine are the subject of fish consumption advisories

The fish consumption advisories recommend that no one eat any fist caught in locations covered by the advisory

The fish consumption advisories cover only certain species

The fish consumption advisories cover all sizes of fish

239
40. During 1990, did you ever fish at locations covered by an official fish consumption advisory? (CIRCLE ONE NUMBER)
1 No
2 Yes
3 Don't Know Skip to Question 44
9 Missing

- Not applicable

41. Do fish consumption advisories affect whether you keep the fish caught at locations covered by fish consumption advisories? (CIRCLE ONE NUMBER)

Q41
1 No
2 Yes \quad —How do they affect whether you keep the fish you catch?
(CIRCLE ALL THAT APPLY)
9 Missing

- Not applicable

Q41A 1 I keep no fish
Q41B 2 I keep fewer fish
Q41C 3 l keep only the smaller fish
Q41D 4 I keep only certain species
Q41E 5 Other (please describe: See List \#5)
For Q41A - Q41E:

- Not circled

1 Circled
9 Missing

- Not applicable

42. Do fish consumption advisories affect whether you eat the fish caught at locations covered by fish consumption advisories? (CIRCLE ONE NUMBER)

1 No
2 Yes ——How do they affect whether you eat the fish you catch? (CIRCLE ALL THAT APPLY)
9 Missing

- Not applicable

Q42A 1 I don't eat any of the fish
Q428 2 l eat only the smaller fish
Q42C 3 leat only certain species
Q42D 4 Other (please describe: See List \#6)
For Q42A - Q42D:
0 Not circled
1 Circled 9 Missing

- Not applicable

43. Do fish consumption advisories affect how you prepare and serve the fish caught at locations covered by a fish consumption advisory? (CIRCLE ONE NUMBER)

1 No
2 Yes———>How do they affect how you prepare and serve the fish?
(CIRCLE ALL THAT APPLY)
9 Missing

- Not applicable

Q43A 1 I only broil or grill these fish
Q43B 21 trim and discard any dark flesh
Q43C 3 ltrim off all tat
Q43D 41 trim off the lateral line
Q43E 5 Other (please describe: See List \#7)
For Q43A - Q43E:
0 Not circled
1 Circled
9 Missing

- Not applicable

44. Suppose conditions were difierent so that there were no fish consumption advisories in Maine. Would you have fished any additional bodies of water during the 1989-1990 ice fisting season or 1990 oper-4-ater seasons? (CIRCLE ONE NUMBER)

1 No
2 Yes—— Which bodies of water? (FILL IN BLANKS)
9 Missing
- Not applicable
Q44A Please See List \#2

Q4AB
Q44C

In this last section of the survey, we would like to leam more about your background and your current household characteristics. You can be assured that all your answers will be kept confidential. This information will only be used to report comparisons among groups of people. We will never icentify individuals or households with these responses.
45. Which of the following best describes your current employment situation? (CIRCLE ONE NUMBER)

1 Work full-ime (40 hours per week or more)
2 Work part-time (less than 40 hours per week) or semi-retired
3 Work seasonally (work only part of the year)
4 Unemployed
5 Fully retired
6 Full-time student
7 Homemaker
8 Other (please describe: See List \#8)
9 Missing
46. What is the highest level of education you have completed? (CIRCLE ONE NUMBER)
0 Did not answer question
1 Less than sif grade
2 Eighth grade graduate
3 Some high school
4 High school graduate
5 Some trade or technical school
6 Trade or technical school graduate
7 Some college
8 Bachelor's degree
9
47. What is your ethnic background? (CIRCLE ONE NUMBER)

1 White, Non-Hispanic———	Are you of Scandinavian, French-Canadian, italian,
	Irish, or some other ancestry? (CIRCLE ONE
	NUMBER)

Q47A 1 Scandinavian ancestry
2 French-Canadian ancestry
3 italian ancestry
4 Irish ancestry
5 Other
9 Missing

- Not applicable

2 Hispanic
3 Native American
4 Asian/Pacific Islander
5 Black
6 Other
9 Missing
43. What was your total househoid income before taxes in 1989? (CIRCLE ONE NUMBER)

1	Under $\$ 10,000$	6	$\$ 50,000$ to $\$ 59,999$
2	$\$ 10,000$ to $\$ 19,999$	7	$\$ 60,000$ to $\$ 59,999$
3	$\$ 20,000$ to $\$ 29,999$	8	$\$ 70,000$ to $\$ 79,999$
4	$\$ 30,000$ to $\$ 39,999$	9	$\$ 80,000$ to $\$ 100,000$
5	$\$ 40,000$ to $\$ 49,999$	10	Over $\$ 100,000$
		89	Missing

Do you have any comments?

Comments

$0=$ No Answer
$1=$ Answer

Type Type of license the respondent applied to receive
Address Adoress of respondents residence
City City of respondents residence
State State of respondents residence
Zip Zip code of respondents residence
Sex Sex of respondent
Legalres Legal residence of respondent
MiresuH Mail resutt
$1=$ Completed mail survey
Midate Date HBRS received the survey

Summary Statistics for 1990 Maine Angler Survey Data					
Population of Interest	All Anglers	Consuming Anglers	All Angiers	River/Stream Anglers	Consuming Anglers
Waterbody Type	All Wafers	All Waters	Rivers/Streams	Rivers/Streams	Rivers/Streams
Variable in analysls files	(RPFTALL)	(CRPFTALL)	(FPFFOHFL)	(RARSCONS)	(CRFOHFL)
Median (g/day)	1.1	2.0	0	0.19	0.99
Mean (g/day)	4.9	6.4	1.2	1.9	3.7
Standard Deviation (g/day)	14	16	6.9	7.5	12
Qualitying Respondents (N)	1369	1053	1369	741	464
Percentiles (g/day)					
Minimum	0	0.023	0	0	0.001
5	0	0.17	0	0	0.11
10	0	0.30	0	0	0.17
15	0	0.41	0	0	0.23
20	0	0.57	0	0	0.28
25	0.10	0.72	0	0	0.35
30	0.27	0.92	0	0	0.46
35	0.43	1.1	0	0	0.59
40	0.64	1.4	0	0	0.71
45	0.87	1.7	0	0.068	0.83
Median	1.1	2.0	0	0.19	0.99
55	1.4	2.5	0	0.32	1.2
60	1.9	3.0	0	0.46	1.4
65	2.5	3.8	0	0.69	1.7
70	3.1	4.5	0.18	0.90	2.1
75	4.2	5.8	0.37	1.3	2.5
80	5.5	7.3	0.73	1.7	3.2
85	7.5	9.8	1.3	2.4	4.3
90	11	13	2.1	3.9	6.1
95	21	26	4.4	6.3	12
99	63	73	22	30	49
Maximum	217	217	118	117	118

Command Sequence for Reading and Analyzing the 1990 Maine Angler Survey Data

The attached pages include a command sequence written by ChemRisk to read and analyze the Maine Angler Survey data as provided by HBRS, Inc. The command sequence was written in SYSTAT's DATA programming language, which is similar to BASIC. As a help in interpreting the command sequence, comments have been added to the various subroutines. These comments, italicized and included in braces (i.e., \{Comments\}), are designed to help the reader understand (1) the purpose of the subroutines and (2) the physical definition of the variables created.

This command sequence, if submitted to SYSTAT's DATA module without the interpretive comments, would calculate the basic results of the survey analysis: the fish consumption distributions summarized in Table 3 of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers." The initial file MEFISH.DAT contains the raw survey data. MEFISH.DAT is a fixed-format ASCII file containing data for 175 variables provided by HBRS.

The command sequence is divided into several subroutines which produce interim files between MEFISH.DAT and TAB3SUMM, the file containing the variables of interest for summarizing the basic mail survey results. Subroutines and interim files were used (1) to divide the sequence into functional chunks that SYSTAT could process without memory constraints and (2) to provide a framework for restarting the analysis from an interim file in the event of a loss of electrical power or another problem.
(SUBROUTINE 1. This subroutine reads in the variables needed to calculate the freshwater fish consumption rates and saves them in the SYSTAT file TAB3READ. The LRECL command tells DATA to accept character strings up to 999 characters in length. The first section of the INPUT command names the variables SYSTAT is reading in. Variable names follow those from the annotated survey instrument. The second section of the INPUT command defines for DATA where the variables' values are located in the fixed-format text file "MEFISH.DAT." Positions for variables within MEFISH.DAT are obtained from the template.]

GET "MEFISH.DAT"
SAVE TAB3READ
LRECL=999

```
INPUT (ID1,Q4, Q8, Q11D(1), Q11E(1),
Q11D(2), Q11E(2), Q11D(3), Q11E(3),
Q11D(4), Q11E(4), Q11D(5),Q11E(5),
Q11D(6), Q11E(6),Q11D(7), Q11E(7),
Q11D(8), Q11E(8), Q11D(9), Q11E(9),
Q11D(10), Q11E(10), Q11D(11), Q11E(11),
Q11D(12), Q11E(12), Q11D(13),
Q11E(13), Q11D(14), Q11E(14), Q11D(15),
Q11E(15), Q14, Q17, Q18, Q24A(1), Q24B(1),
Q24C(1), Q24D(1), Q24A(2), Q24B(2), Q24C(2),
Q24D(2), Q24A(3), Q24B(3), Q24C(3), Q24D(3),
Q24A(4), Q24B(4), Q24C(4),Q24D(4),
Q24A(5), Q24B(5), Q24C(5), Q24D(5), Q24A(6),
Q24B(6), Q24C(6), Q24D(6),
Q24A(7), Q24B(7),Q24C(7), Q24D(7), Q24A(8),
Q24B(8), Q24C(8), Q24D(8), Q24A(9),
Q24B(9), Q24C(9),Q24D(9), Q24A(10),Q24B(10),
Q24C(10), Q24D(10), Q24A(11),
Q24B(11), Q24C(11), Q24D(11), Q24A(12),
Q24B(12), Q24C(12), Q24D(12),
Q24A(13), Q24B(13), Q24C(13), Q24D(13),
Q24A(14), Q24B(14), Q24C(14),
Q24D(14), Q24A(15), Q24B(15), Q24C(15), Q24D(15),
Q25, Q25A, Q29A(1),
Q29B(1), Q29A(2), Q29B(2), Q29A(3), Q29B(3),
Q29A(4), Q29B(4), Q29A(5), Q29B(5),
Q29A(6), Q29B(6), Q29A(7), Q29B(7),
Q29A(8), Q29B(8), Q29A(9), Q29B(9),
Q29A(10), Q29B(10), Q29A(11), Q29B(11),
Q29A(12), Q29B(12), Q29A(13),
```


Command Sequence for ChemRisk/HBRS 1990 Maine Angler Survey Data Analysis

Page 3

Q29B(13), Q29A(14),Q29B(14), Q29A(15), Q29B(15),
Q31A(1), Q31B(1), Q31A(2),
Q31B(2), Q31A(3), Q31B(3), Q31A(4),
Q31B(4), Q31A(5), Q31B(5), Q31A(6),
Q31B(6), Q31A(7), Q31B(7), Q31A(8),
Q31B(8), Q31A(9), Q31B(9), Q31A(10),
Q31B(10), Q31A(11), Q31B(11), Q31A(12),
Q31B(12), Q31A(13), Q31B(13),
Q31A(14), Q31B(14), Q31A(15), Q31B(15),
Q32A(1), Q32C(1), Q32A(2), Q32C(2),
Q32A(3), Q32C(3), Q32A(4), Q32C(4), Q32A(5),
Q32C(5), Q32A(6), Q32C(6), Q45, Q46, Q47,
Q47A, Q48),
(\#4, \#1, \#3, \#3, \#2,
\#3, \#2, \#3, \#2, \#3, \#2,
\#3, \#2, \#3, \#2,
\#3, \#2, \#3, \#2,
\#3, \#2, \#3, \#2,
\#3, \#2, \#3, \#2,
\#3, \#2, \#3, \#2,
\#3, \#2, \#3, \#1, \#3,
30*\#3, \#2, 29*\#3, \#1, \#3, 30*\#3,
30*\#3, \#2, \#1, \#2,
\#1, \#2, \#1, \#2, \#1, \#2,
\#1, \#2, \#1, 4*\#1, \#2)
RUN

Command Sequence for ChemRisk/HBRS 1990 Maine Angler Survey Data Analysis Page 4
\{SUBROUTINE 2. This subroutine recodes variable values to zero where respondents either did not answer the question (coded as "999" by HBRS) or the question was not applicable (coded as "." by HBRS). In formulating the analysis plan, it was decided that recoding to zero was the best way to handle incomplete or non-applicable data on fish quantity or length. The purpose of this recoding is to permit calculation of the fish consumption estimates for each respondent. Using "999" would yield a falsely high result; using "." would result in a missing value for the consumption estimate, because in DATA operations on missing values yield missing values.

In the instance that a respondent reported a non-zero number of fish consumed, but did not report the length of the fish consumed, the median length of the particular species for the particular fishing method was assigned as the length of the consumed fish. For example, if a respondent reported that he/she consumed 20 smelt (species \#14) from ice fishing, but did not indicate the length of these fish, the median length of smelt caught by ice fishing, 6 inches, was assigned as the length of the 20 smelt for this respondent.

The CODE statements perform the reassignment of missing or non-applicable responses to zero. The DIM statement creates subscripted variables. The 15 subscripted IMEDLEN variables are assigned the median non-zero lengths of the fifteen species caught by ice fishing. These median lengths were determined by analyzing frequency tables for the raw survey data. At the end of the subroutine, the IMEDLEN variables are removed from the file using the DROP command since they are not needed in later subroutines.]

USE TAB3READ

SAVE CODE1
CODE Q14 / 999=0 . $=0$
CODE Q18 / 999 $=0 .=0$
CODE Q8 / $999=0 .=0$
CODE Q11D(1), Q11D(2), Q11D(3), Q11D(4), Q11D(5), Q11D(6), Q11D(7), Q11D(8), Q11D(9), Q11D(10), Q11D(11), Q11D(12), Q11D(13), Q11D(14), Q11D(15) /999 $00 .=0$

CODE Q11E(1), Q11E(2), Q11E(3), Q11E(4), Q11E(5), Q11E(6), Q11E(7), Q11E(8), Q11E(9), Q11E(10), Q11E(11), Q11E(12), Q11E(13), Q11E(14), Q11E(15)/99=0. $=0$

DIM IMEDLEN(15)

LET MMEDLEN $(1)=17.5$
LET IMEDLEN(2)=19
LET IMEDLEN(3) $=\mathbf{2 0}$

Command Sequence for ChemRisk/HBRS 1990 Maine Angler Survey Data Analysis

Page 5

LET IMEDLEN(4)=12
LET IMEDLEN(5)=17
LET MMEDLEN(6)=8
$\operatorname{LET} \operatorname{IMEDLEN}(7)=10$
LET IMEDLEN(8)=14
LET IMEDLEN(9)=16
LET IMEDLEN(10)=16
LET IMEDLEN(11)=12
LET IMEDLEN(12)=15
LET IMEDLEN(13) $=8$
$\operatorname{LET} \operatorname{IMEDLEN}(14)=6$
$\operatorname{LET} \operatorname{IMEDLEN}(15)=18$

FOR I=1 TO 15

$\operatorname{IF} \mathrm{Q} 11 \mathrm{D}(\mathrm{I})<0$ AND $\mathrm{Q} 11 \mathrm{E}(\mathrm{I})=0$ THEN LET Q11E(I) $=$ IMEDLEN(I)

DROP IMEDLEN(1), IMEDLEN(2), IMEDLEN(3), IMEDLEN(4), IMEDLEN(5), IMEDLEN(6), IMEDLEN(7), IMEDLEN(8),
MMEDLEN(9), MMEDLEN(10), MMEDLEN(11), MMEDLEN(12), IMEDLEN(13), MMEDLEN(14), IMEDLEN(15)

RUN

Command Sequence for ChemRisk/HBRS 1990 Maine Angler Survey Data Analysis

 Page 6> (SUBROUTINE 3. More recoding and assigning lengths. The 15 subscripted RMEDLEN variables are assigned the median non-zero lengths of the fifteen s, caught from flowing water (i.e., rivers and streams). See comment for Subrout USE CODE1 SAVE CODE2 CODE Q24A(1), Q24A(2), Q24A(3), Q24A(4), Q24A(5), Q24A(6), Q24A(7), Q24A(8), Q24A(9), Q24A(10), Q24A(11), Q24A(12), Q24A(13), Q24A(14), Q24A(15)/999=0 .=0 CODE Q24B(1), Q24B(2), Q24B(3), Q24B(4), Q24B(5), Q24B(6), Q24B(7), Q24B(8), Q24B(9), Q24B(10), Q24B(11), Q24B(12), Q24B(13), Q24B(14), Q24B(15)/999=0. $=0$ CODE Q24C(1), Q24C(2), Q24C(3), Q24C(4), Q24C(5), Q24C(6), Q24C(7), Q24C(8), Q24C(9), Q24C(10), Q24C(11), Q24C(12), Q24C(13), Q24C(14), Q24C(15)/999=0 $=099=0$ RMEDLEN variables are assigned the median non-zero lengths of the fifteen species caught from flowing water (i.e., rivers and streams). See comment for Subroutine 2.)

DIM RMEDLEN(15)
LET RMEDLEN(1)=18
LET RMEDLEN(2) $=22$
LET RMEDLEN(3)=13
LET RMEDLEN(4)=9
LET RMEDLEN(5)=12
LET RMEDLEN(6) $=8.5$
LET RMEDLEN(7)=9
LET RMEDLEN(8) $=14$
LET RMEDLEN(9)=17
LET RMEDLEN $(10)=16$
LET RMEDLEN(11)=9
LET RMEDLEN(12)=10
LET RMEDLEN(13) $=6.5$
LET RMEDLEN(14)=5
LET RMEDLEN(15)=19
FOR I=1 TO 15
IF $\mathrm{Q} 24 \mathrm{~A}(\mathrm{I}) \propto 0$ AND $\mathrm{Q} 24 \mathrm{~B}(\mathrm{I})=0$ THEN LET $\mathrm{Q} 24 \mathrm{~B}(\mathrm{I})=$ RMEDLEN (I)

Command Sequence for ChemRisk/HBRS Mail Survey Analysis

 Page 7DROP RMEDLEN(1), RMEDLEN(2), RMEDLEN(3), RMEDLEN(4), RMEDLEN(5),RMEDLEN(6), RMEDLEN(7), RMEDLEN(8), RMEDLEN(9), RMEDLEN(10), RMEDLEN(11), RMEDLEN(12), RMEDLEN(13), RMEDLEN(14), RMEDLEN(15)

RUN

\{SUBROUTINE 4. More recoding and assigning lengths. The 15 subscripted LMEDLEN variables are assigned the median non-zero lengths of the fifteen species caught from standing water (i.e., lakes and ponds). The 15 subscripted HMEDLEN variables are assigned the median non-zero lengths of the fifteen species obtained from other household sources. See comment for Subroutine 2.]

USE CODE2

SAVE CODE3
CODE Q24D(1), Q24D(2), Q24D(3), Q24D(4), Q24D(5), Q24D(6), Q24D(7), Q24D(8), Q24D(9), Q24D(10), Q24D(11), Q24D(12), Q24D(13), Q24D(14), Q24D(15)/999=0. $=0$

DIM LMEDLEN(15)
LET LMEDLEN $(1)=18$
LET LMEDLEN(2) $=18$
LET LMEDLEN(3) $=20$
LET LMEDLEN(4) $=10$
LET LMEDLEN(5)=14
LET LMEDLEN(6)=8
LET LMEDLEN(7)=9
LET LMEDLEN(8)=14
LET LMEDLEN(9)=17.5
LET LMEDLEN (10) $=11$
LET LMEDLEN(11)=10
LET LMEDLEN(12)=13
LET LMEDLEN(13)=6
LET LMEDLEN(14)=5
LET LMEDLEN(15)=24
FOR I=1 TO 15
IF Q24C(I) <0 AND Q24D(I) $=0$ THEN LET Q24D(I) $=$ LMEDLEN (I)
DROP LMEDLEN(1), LMEDLEN(2), LMEDLEN(3), LMEDLEN(4), LMEDLEN(5),LMEDLEN(6), LMEDLEN(7), LMEDLEN(8), LMEDLEN(9), LMEDLEN(10), LMEDLEN(11), LMEDLEN(12), LMEDLEN(13), LMEDLEN(14), LMEDLEN(15)

CODE Q29A(1), Q29A(2),
Q29A(3), Q29A(4), Q29A(5), Q29A(6), Q29A(7), Q29A(8),
Q29A(9), Q29A(10), Q29A(11), Q29A(12),
Q29A(13), Q29A(14), Q29A(15) /999=0 998 $=0 .=0$

Command Sequence for ChemRisk/HBRS Mail Survey Analysis

 Page 9```
CODE Q29B(1), Q29B(2),
 Q29B(3), Q29B(4),Q29B(5),
 Q29B(6), Q29B(7), Q29B(8),
 Q29B(9), Q29B(10), Q29B(11), Q29B(12),
 Q29B(13), Q29B(14), Q29B(15), / 999=0 998=0 .=0
DIM HMEDLEN(15)
LET HMEDLEN(1)=17
LET HMEDLEN(2)=24.5
LET HMEDLEN(3)=20
LET HMEDLEN(4)=9
LET HMEDLEN(5)=14
LET HMEDLEN(6)=10
LET HMEDLEN(7)=9
LET HMEDLEN(8)=14
LET HMEDLEN(9)=16
LET HMEDLEN(10)=12
LET HMEDLEN(11)=10
LET HMEDLEN(12)=14
LET HMEDLEN(13)=6
LET HMEDLEN(14)=6
LET HMEDLEN(15)=19.5
FOR I=1 TO 15
IF Q29A(I) \(\propto 0\) AND Q29B(I) \(=0\) THEN LET Q29B(I) \(=\) HMEDLEN(I)
DROP HMEDLEN(1), HMEDLEN(2), HMEDLEN(3), HMEDLEN(4), HMEDLEN(5), HMEDLEN(6), HMEDLEN(7), HMEDLEN(8), HMEDLEN(9), HMEDLEN(10), HMEDLEN(11), HMEDLEN(12), HMEDLEN(13), HMEDLEN(14), HMEDLEN(15)
```

RUN

## Command Sequence for ChemRisk/HBRS Mail Survey Analysis

(SUBROUTINE 5. More recoding and assigning lengths. The 15 subscripted OMEDLEN variables are assigned the median non-zero lengths of the fifteen species obtained from other out-of-household sources. See comment for Subroutine 2.)

## USE CODE3

SAVE CODELAST

```
CODE Q31A(1), Q31A(2),
 Q31A(3), Q31A(4),Q31A(5),
 Q31A(6), Q31A(7), Q31A(8),
 Q31A(9), Q31A(10), Q31A(11), Q31A(12),
 Q31A(13), Q31A(14), Q31A(15)/999=0 998=0 . =0
CODE Q31B(1), Q31B(2),
 Q31B(3), Q31B(4),Q31B(5),
 Q31B(6), Q31B(7), Q31B(8),
 Q31B(9), Q31B(10), Q31B(11), Q31B(12),
 Q31B(13), Q31B(14), Q31B(15) / 999=0 998=0 .=0
```

CODE Q32A(1) Q32A(2) Q32A(3) Q32A(4) Q32A(5) Q32A(6) / 99=0
DIM OMEDLEN(15)
LET OMEDLEN $(1)=17$
LET OMEDLEN(2)=24.5
LET OMEDLEN(3) $=20$
LET OMEDLEN(4)=9
LET OMEDLEN(5) $=14$
LET $\operatorname{OMEDLEN}(6)=10$
LET OMEDLEN(7)=9
LET OMEDLEN(8)=14
LET OMEDLEN(9)=16
LET OMEDLEN $(10)=12$
LET OMEDLEN(11)=10
LET OMEDLEN(12)=14
LET OMEDLEN(13)=6
LET OMEDLEN(14)=6
LET OMEDLEN(15)=19.5
FOR I=1 TO 15
IF Q31A $(\mathrm{I}) \propto 0$ AND Q31B $(\mathrm{I})=0$ THEN LET $\mathrm{Q} 31 \mathrm{~B}(\mathrm{I})=$ OMEDLEN $(\mathrm{I})$

# DROP OMEDLEN(1), OMEDLEN(2), OMEDLEN(3), OMEDLEN(4), OMEDLEN(5), OMEDLEN(6), OMEDLEN(7), OMEDLEN(8), OMEDLEN(9), OMEDLEN(10), OMEDLEN(11), OMEDLEN(12), OMEDLEN(13), OMEDLEN(14), OMEDLEN(15) 

RUN
\{SUBROUTINE 6. This subroutine "trims" the file CODELAST to yield the population of interest, defined as those respondents who fished in 1989-90 (from Q4) or who consumed fish from Maine sources caught by other members of their household (from Q29A(1-15)) or provided by others outside their household (from Q31A(1-15)). Persons were assumed to have fished in 1989-90 if they did not answer "No" to Q4.]

## USE CODELAST

SAVE TAB3TRIM
IF $\mathrm{Q} 4<2$ AND $\operatorname{SUM}(\mathrm{Q} 29 \mathrm{~A}(1-15))=0$ AND $\operatorname{SUM}(\mathrm{Q} 31 \mathrm{~A}(1-15))=0$ THEN DELETE

## RUN

\{SUBROUTINE 7. This subroutine establishes 33 variables: FAMSIZE, SLPE(1-15), CNST(1-15), EDP(1-15), ICEGRMS(1-15), REPICGRM, and RPICCONS. At the end of the subroutine, 42 variables are dropped to conserve disk space because they are not needed by future subroutines.

FAMSIZE: The total number of individuals in a respondent's household (from Q32A) who consume freshwater fish from Maine sources (from Q32C).

SLPE(1-15): The slope in the length-mass relationship for the species number indicated by the subscript. Values for SLPE(1-15) come from Appendix $G$ of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers."

CNST(1-15): The constant in the length-mass relationship for the species number indicated by the subscript. Values for CNST(1-15) come from Appendix $G$ of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers."

EDP(1-15): The edible portion of whole fish mass for the species number indicated by the subscript. Units are g edible/g whole fish. Discussion of the choice of edible portion fractions for each species is given on page 11 of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers."

ICEGRMS(1-15): For the species number indicated by the subscript, the edible mass in grams obtained from ice fishing for the entire household for the one-year ( 365 day) period covered by the survey (1989-90 ice and 1990 open-water fishing seasons). The LOG function in DATA is the natural logarithm. The conversion 25.4 mm inch is also used in the equation.

REPICGRM: The reported total edible mass in grams of all fish species consumed from ice fishing sources by the entire household for the period covered by the survey.

RPICCONS: The per-day rate of freshwater fish consumption from ice fishing sources

## Command Sequence for ChemRisk/HBRS Mail Survey Analysis

for fish-consuming individuals in the respondent's household; units are g edible/personday. Uses only consumption information reported by the respondent.)

USE TAB3TRIM
SAVE TEMPA
LET FAMSIZE $=0$
FOR $P=1$ TO 6
IF $\mathrm{Q} 32 \mathrm{~A}(\mathrm{P})>0$ AND $\mathrm{Q} 32 \mathrm{C}(\mathrm{P})>=2$ THEN LET FAMSIZE=FAMSIZE +1
NEXT
DIM SLPE(15)
LET SLPE (1)=3.035
LET SLPE (2)=3.0
LET SLPE(3)=3.306
LET SLPE(4)=3.022
LET SLPE(5)=3.037
LET SLPE(6)=2.390
LET SLPE( ${ }^{7}$ )=3.177
LET SLPE (8)=2.606
LET SLPE (9)=3.098
LET SLPE(10)=3.241
LET SLPE(11)=3.065
LET SLPE (12)=3.223
LET SLPE(13)=2.98
LET SLPE(14)=3.40
LET SLPE(15)=3.01
DIM CNST(15)
LET CNST(1)=-5.145
LET CNST(2)=-5.038
LET CNST(3) $=-5.879$
LET CNST(4) $=-5.054$
LET CNST(5) $=-5.096$
LET CNST(6) $=-3.519$
LET CNST(7) $=-5.273$
LET CNST(8)=-3.844
LET CNST(9)=-5.491
LET CNST(10)=-5.677
LET CNST(11)=-5.061
LET CNST(12)=-5.395
LET CNST(13) $=-3.972$
LET CNST(14)=-6.2
$\operatorname{LET} \operatorname{CNST}(15)=-4.69$

## DIM EDP(15)

LET $\operatorname{EDP}(1)=0.4$
LET EDP(2) $=0.4$
$\operatorname{LET} \operatorname{EDP}(3)=0.3$
$\operatorname{LET} \operatorname{EDP}(4)=0.3$
$\operatorname{LET} \operatorname{EDP}(5)=0.3$
$\operatorname{LET} \operatorname{EDP}(6)=0.3$
$\operatorname{LET} \operatorname{EDP}(7)=0.3$
LET EDP(8)=0.3
$\operatorname{LET} \operatorname{EDP}(9)=0.3$
LET EDP(10) $=0.3$
$\operatorname{LET} \operatorname{EDP}(11)=0.3$
LET $\operatorname{EDP}(12)=0.3$
$\operatorname{LET} \operatorname{EDP}(13)=0.3$
$\operatorname{LETEDP}(14)=0.78$
$\operatorname{LET} \operatorname{EDP}(15)=0.3$

DIM ICEGRMS(15)
FOR Q=1 TO 15
IF Q11D(Q)>0 THEN LET,
$\operatorname{ICEGRMS}(\mathrm{Q})=\mathrm{Q} 11 \mathrm{D}(\mathrm{Q})^{*} 10^{\wedge}\left(\mathrm{SLPE}(\mathrm{Q})^{*} \operatorname{LOG}(\mathrm{Q} 11 \mathrm{E}(\mathrm{Q}) * 25.4) / \mathrm{LOG}(10)\right.$,
$+\mathrm{CNST}(\mathrm{Q}))^{*} \mathrm{EDP}(\mathrm{Q})$
$\operatorname{IF} \mathrm{Q} 11 \mathrm{D}(\mathrm{Q})=0$ THEN LET ICEGRMS(Q)=0
NEXT

LET REPICGRM=SUM(ICEGRMS(1-15))
LET RPICCONS $=0$
IF FAMSIZE>0 THEN LET RPICCONS=REPICGRM/FAMSIZE/365
DROP Q11E(1), Q11E(2), Q11E(3), Q11E(4),
Q11E(5), Q11E(6), Q11E(7), Q11E(8),
Q11E(9), Q11E(10), Q11E(11), Q11E(12),
Q11E(13), Q11E(14), Q11E(15),
Q11D(1), Q11D(2), Q11D(3), Q11D(4),
Q11D(5), Q11D(6), Q11D(7), Q11D(8),
Q11D(9), Q11D(10), Q11D(11), Q11D(12),
Q11D(13), Q11D(14), Q11D(15),
Q32A(1), Q32A(2), Q32A(3), Q32A(4),
Q32A(5), Q32A(6), Q32C(1), Q32C(2),
Q32C(3), Q32C(4), Q32C(5), Q32C(6)

## RUN

\{SUBROUTINE 8. This subroutine establishes 17 variables: PNDGRMS(1-15), REPPDGRM, and RPPDCONS. At the end of the subroutine, 30 variables are dropped because they are not needed by future subroutines.

PNDGRMS(1-15): For the species number indicated by the subscript, the edible mass in grams obtained from standing water sources for the entire household for the one-year ( 365 day) period covered by the survey (1989-90 ice and 1990 open-water fishing seasons).

REPPDGRM: The reported total edible mass in grams of all fish species consumed from standing water sources by the entire household for the period covered by the survey.

RPPDCONS: The per-day rate of freshwater fish consumption from standing water sources for fish-consuming individuals in the respondent's household; units are $g$ edible/person-day. Uses only consumption infor vation reported by the respondent.)

USE TEMPA<br>SAVE TEMPB

DIM PNDGRMS(15)
FOR Q=1 TO 15
IF $\mathrm{Q} 24 \mathrm{C}(\mathrm{Q})>0$ THEN LET, PNDGRMS $(\mathrm{Q})=\mathrm{Q} 24 \mathrm{C}(\mathrm{Q})^{*} 0^{\wedge}(\operatorname{SLPE}(\mathrm{Q}) * \operatorname{LOG}(\mathrm{Q} 24 \mathrm{D}(\mathrm{Q}) * 25.4) / \mathrm{LOG}(10)$, +CNST(Q))*EDP(Q)
IF $\mathrm{Q} 24 \mathrm{C}(\mathrm{Q})=0$ THEN LET PNDGRMS $(\mathrm{Q})=0$
NEXT

## LET REPPDGRM=SUM(PNDGRMS(1-15))

## LET RPPDCONS=0 <br> IF FAMSIZE $>0$ THEN LET RPPDCONS=REPPDGRM/FAMSIZE/365

> DROP Q24C(1), Q24C(2), Q24C(3), Q24C(4), Q24C(5), Q24C(6), Q24C(7), Q24C(8), Q24C(9), Q24C(10), Q24C(11), Q24C(12), Q24C(13), Q24C(14), Q24C(15), Q24D(1), Q24D(2), Q24D(3), Q24D(4), Q24D(5), Q24D(6), Q24D(7), Q24D(8),
> Q24D(9), Q24D(10), Q24D(11), Q24D(12), Q24D(13), Q24D(14), Q24D(15)

RUN
\{SUBROUTINE 9. This subroutine establishes 17 variables: FLOGRAM(1-15), REPFLGRM, and RPFLCONS. At the end of the subroutine, 30 variables are dropped because they are not needed by future subroutines.

FLOGRAM(1-15): For the species number indicated by the subscript, the edible mass in grams obtained from flowing water sources for the entire household for the one-year ( 365 day) period covered by the survey (1989-90 ice and 1990 open-water fishing seasons).

REPFLGRM: The reported total edible mass in grams of all fish species consumed from flowing water sources by the entire household for the period covered by the survey.

RPFLCONS: The per-day rate of freshwater fish consumption from flowing water sources for fish-consuming individuals in the respondent's household; units are $g$ edible/person-day. Uses only consumption information reported by the respondent.]

## USE TEMPB

SAVE TEMPC
DIM FLOGRAM (15)
FOR R=1 TO 15
IF $\mathrm{Q} 24 \mathrm{~A}(\mathrm{R})>0$ THEN LET,
FLOGRAM $(\mathrm{R})=\mathrm{Q} 24 \mathrm{~A}(\mathrm{R}) * 10^{\wedge}(\mathrm{SLPE}(\mathrm{R}) * \operatorname{LOG}(\mathrm{Q} 24 \mathrm{~B}(\mathrm{R}) * 25.4) / \mathrm{LOG}(10)$,
$+\mathrm{CNST}(\mathrm{R})$ ) ${ }^{\text {EDP }}(\mathrm{R})$
IF $\mathrm{Q} 24 \mathrm{~A}(\mathrm{R})=0$ THEN LET FLOGRAM(R) $=0$
NEXT

## LET REPFLGRM=SUM(FLOGRAM(1-15))

## LET RPFLCONS $=0$ <br> IF FAMSIZE $>0$ THEN LET RPFLCONS=REPFLGRM/FAMSIZE/365

DROP Q24A(1), Q24A(2), Q24A(3), Q24A(4), Q24A(5), Q24A(6), Q24A(7), Q24A(8),
Q24A(9), Q24A(10), Q24A(11), Q24A(12),
Q24A(13), Q24A(14), Q24A(15),
Q24B(1), Q24B(2), Q24B(3), Q24B(4),
Q24B(5), Q24B(6), Q24B(7), Q24B(8),
Q24B(9), Q24B(10), Q24B(11), Q24B(12),
Q24B(13), Q24B(14), Q24B(15)
RUN
[SUBROUTINE 10. This subroutine establishes 32 variables: HOUGRAM(1-15), OUTGRAM(1-15), REPOTHGM, and RPOHCONS. At the end of the subroutine, 105 variables are dropped because they are not needed by future subroutines.

HOUGRAM(1-15): For the species number indicated by the subscript, the edible mass in grams obtained from other within-household sources for the entire household for the one-year ( 365 day) period covered by the survey (1989-90 ice and 1990 open-water fishing seasons).

OUTGRAM(1-15): For the species number indicated by the subscript, the edible mass in grams obtained from out-of-household sources for the entire household for the period covered by the survey.

REPOTHGM: The reported total edible mass in grams of all fish species consumed from other within- and out-of-household sources by the entire household for the period covered by the survey.

RPOHCONS: The per-day rate of freshwater fish consumption from other within- and out-of-household sources for fish-consuming individuals in the respondent's household; units are g edible/person-day. Uses only consumption information reported by the respondent.)

## USE TEMPC

SAVE TEMPD
DIM HOUGRAM(15)
FOR R=1 TO 15
IF Q29A(R)>0 THEN LET,
HOUGRAM $(\mathrm{R})=\mathrm{Q} 29 \mathrm{~A}(\mathrm{R}) * 10^{\wedge}(\mathrm{SLPE}(\mathrm{R}) * \operatorname{LOG}(\mathrm{Q} 29 \mathrm{~B}(\mathrm{R}) * 25.4) / \mathrm{LOG}(10)$,
+CNST(R))*EDP(R)
IF $\mathrm{Q} 29 \mathrm{~A}(\mathrm{R})=0$ THEN LET HOUGRAM(R) $=0$
NEXT
DIM OUTGRAM(15)
FOR R=1 TO 15
IF $\mathrm{Q} 31 \mathrm{~A}(\mathrm{R})>0$ THEN LET,
OUTGRAM(R)=Q31A(R)*10^(SLPE(R)*LOG(Q31B(R)*25.4)/LOG(10),
$+\operatorname{CNST}(\mathrm{R}))^{*} \operatorname{EDP}(\mathrm{R})$
IF $\mathrm{Q} 31 \mathrm{~A}(\mathrm{R})=0$ THEN LET OUTGRAM(R) $=0$
NEXT
LET REPOTHGM=SUM(HOUGRAM(1-15))+SUM(OUTGRAM(1-15))
LET RPOHCONS $=0$

## IF FAMSIZE $>0$ THEN LET RPOHCONS=REPOTHGM/FAMSIZE/365

```
DROP Q29A(1), Q29A(2), Q29A(3), Q29A(4),
 Q29A(5), Q29A(6), Q29A(7), Q29A(8),
 Q29A(9), Q29A(10), Q29A(11), Q29A(12),
 Q29A(13), Q29A(14), Q29A(15)
DROP Q31A(1), Q31A(2), Q31A(3), Q31A(4),
 Q31A(5), Q31A(6), Q31A(7), Q31A(8),
 Q31A(9), Q31A(10), Q31A(11), Q31A(12),
 Q31A(13), Q31A(14), Q31A(15)
DROP Q29B(1), Q29B(2), Q29B(3), Q29B(4),
 Q29B(5), Q29B(6), Q29B(7), Q29B(8),
 Q29B(9), Q29B(10), Q29B(11), Q29B(12),
 Q29B(13), Q29B(14), Q29B(15)
DROP Q31B(1), Q31B(2), Q31B(3), Q31B(4),
 Q31B(5), Q31B(6), Q31B(7), Q31B(8),
 Q31B(9), Q31B(10), Q31B(11), Q31B(12),
 Q31B(13), Q31B(14), Q31B(15)
DROP CNST(1), CNST(2), CNST(3),
 CNST(4), CNST(5), CNST(6),
 CNST(7), CNST(8), CNST(9),
 CNST(10), CNST(11), CNST(12),
 CNST(13), CNST(14), CNST(15)
DROP SLPE(1), SLPE(2), SLPE(3),
 SLPE(4), SLPE(5), SLPE(6),
 SLPE(7), SLPE(8), SLPE(9),
 SLPE(10), SLPE(11), SLPE(12),
 SLPE(13), SLPE(14), SLPE(15)
DROP EDP(1), EDP(2), EDP(3),
 EDP(4), EDP(5), EDP(6),
 EDP(7), EDP(8), EDP(9),
 EDP(10), EDP(11), EDP(12),
 EDP(13), EDP(14), EDP(15)
```


## RUN

(SUBROUTINE 11. This subroutine establishes 13 variables: FLOTOISF, OTHSRCFL, FUTTRIPS, RPALTRIP, FTALCONS, FLTOALTP, FTFLCONS, RPFTALL, LRPFTALL, CRPFTALL, RPFTOHFL, LRFOHFL,CRFOHFL, and RARSCONS.

FLOTOISF: The ratio of reported consumption from flowing water sources to total reported consumption from ice, standing water, and flowing water sources.

OTHSRCFL: The portion of reported consumption from other within- and out-ofhousehold sources attributed to flowing water sources. Units: g ediblefperson-day. Calculation uses FLOTOISF ratio.

FUTTRIPS: The number of future fishing trips a respondent reported were planned for after the survey was returned.

RPALTRIP: The total number of fishing trips to ice fishing locations (from Q8), standing water (from Q14), and flowing water (from Q18) that a respondent reported were taken during the period covered by the survey. In the event of missing or notapplicable responses, the number of each type of trip was recoded to zero.

FTALCONS: An estimate of fish consumption rate from all Maine sources for future planned fishing trips. Based on the ratio of future to reported trips (FUTTRIPS/RPALTRIP) to reported consumption from ice, standing water, and flowing water sources.

FLTOALTP: The ratio of fishing trips reported to flowing water (from Q18) to the total number of fishing trips reported (RPALTRIP).

FTFLCONS: An estimate of fish consumption rate from all Maine sources for future planned fishing trips. Based on the ratio of reported trips to reported consumption (FTALCONS) and the ratio of reported flowing water trips to all reported trips (FLTOALTP).

RPFTALL: The sum of reported and estimated future fish consumption rates for all Maine sources. Units: g edible/person-day. This is the variable whose distribution is summarized in the "All Waters, All Anglers" column of Table 3 of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers."

LRPFTALL: Natural log of RPFTALL. If RPFTALL equals $0, L R P F T A L L$ is set to missing.

CRPFTALL: The sum of reported and estimated future fish consumption rates for all Maine sources for those repsondents whose households consume some fish. Equals RPFTALL if RPFTALL is greater than 0. Otherwise, is set to missing. This is the variable whose distribution is summarized in the "All Waters, Consuming Anglers"
column of Table 3 of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers."

RPFTOHFL: The sum of reported and estimated future fish consumption rates for Maine flowing water sources. Units: $g$ edible/person-day. This is the variable whose distribution is summarized in the "Rivers and Streams, All Anglers" column of Table 3 of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers."

LRFOHFL: Natural log of RPFTOHFL If RPFTOHFL equals 0, LRFOHFL is set to missing.

CRFOHFL: The sum of reported and estimated future fish consumption rates for Maine flowing water sources for those repsondents whose households consume some fish. Equals RPFTOHFL if RPFTOHFL is greater than 0 . Otherwise, is set to missing. This is the variable whose distribution is summarized in the "Rivers and Streams, Consuming Anglers" column of Table 3 of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers."

RARSCONS: The sum of reported and estimated future fish consumption rates for Maine flowing water sources for those repsondents who fished on rivers and/or streams. Equals RPFTOHFL if RPFTOHFL is greater than 0 and person responded "Yes" to Q17. Otherwise, is set to missing. This is the variable whose distribution is summarized in the "Rivers and Streams, River Anglers" column of Table 3 of the ChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by Maine Anglers.")

USE TEMPD
SAVE TEMPE

## LET FLOTOISF=0

IF (RPICCONS+RPPDCONS+RPFLCONS) $>0$ THEN, LET FLOTOISF=RPFLCONS/(RPICCONS+RPPDCONS+RPFLCONS)

## LET OTHSRCFL=FLOTOISF*RPOHCONS

## LET FUTTRIPS=0 <br> IF Q25=2 AND Q25A<999 THEN LET FUTTRIPS=Q25A

LET RPALTRIP=Q8+Q14+Q18
LET FTALCONS $=0$
IF RPALTRIP $>0$ THEN,
LET FTALCONS=(FUTTRIPS/RPALTRIP)*(RPICCONS+RPPDCONS+RPFLCONS)
Command Sequence for ChemRisk/HBRS Mail Survey AnalysisPage 21
LET FLTOALTP=0
IF RPALTRIP $>0$ THEN LET FLTOALTP=Q18/RPALTRIP
LET FTFLCONS=FTALCONS*FLTOALTP
LET RPFTALL=RPICCONS+RPPDCONS+RPFLCONS+RPOHCONS+FTALCONS
LET LRPFTALL=LOG(RPFTALL)
LET CRPFTALL=EXP(LRPFTALL)
LET RPFTOHFL=RPFLCONS+FTFLCONS+OTHSRCFL
LET LRFOHFL=LOG(RPFTOHFL)
LET CRFOHFL=EXP(LRFOHFL)
IF Q17=2 THEN LET RARSCONS=RPFTOHFL
RUN
(SUBROUTINE 12. This subroutine saves to the file TAB3SUMM demographicvariables and those variables whose distributions are summarized in Table 3 of theChemRisk/HBRS July 24, 1992 report "Consumption of Freshwater Fish by MaineAnglers."
The command sequence execution ends after this subroutine. Calculation of summarystatistics, preparation of graphics, and other analyses of the survey data are left to othercommand sequences.]
USE TEMPE (RPFTALL, CRPFTALL, RPFTOHFL, RARSCONS, CRFOHFL,Q45, Q46, Q47, Q47A, Q48)
SAVE TAB3SUMM
RUN
QUIT

Tomplate for File MEFISH.DAT Data from 1990 Maine Angler Survey

| Variable | Total Characters | Start Position | End Position |
| :---: | :---: | :---: | :---: |
| ID1 | 4 | 1 | 4 |
| Q4 | 1 | 5 | 5 |
| Q8 | 3 | 6 | 8 |
| Q11D_1 | 3 | 9 | 11 |
| Q11E_1 | 2 | 12 | 13 |
| Q11D_2 | 3 | 14 | 16 |
| Q11E_2 | 2 | 17 | 18 |
| Q11D_3 | 3 | 19 | 21 |
| Q11E_3 | 2 | 22 | 23 |
| Q110_4 | 3 | 24 | 26 |
| Q11E_4 | 2 | 27 | 28 |
| Q11D_5 | 3 | 29 | 31 |
| Q11E_5 | 2 | 32 | 33 |
| Q11D_6 | 3 | 34 | 36 |
| Q11E_6 | 2 | 37 | 38 |
| Q11D_7 | 3 | 39 | 41 |
| Q11E_7 | 2 | 42 | 43 |
| Q11D_8 | 3 | 44 | 46 |
| Q11E_8 | 2 | 47 | 48 |
| Q11D_9 | 3 | 49 | 51 |
| Q11E 9 | 2 | 52 | 53 |
| Q11D_10 | 3 | 54 | 56 |
| Q11E_10 | 2 | 57 | 58 |
| Q11D_11 | 3 | 59 | 61 |
| Q11E. 11 | 2 | 62 | 63 |
| Q11D_12 | 3 | 64 | 66 |
| Q11E_12 | 2 | 67 | 68 |
| Q11D_13 | 3 | 69 | 71 |
| Q11E_13 | 2 | 72 | 73 |
| Q11D_14 | 3 | 74 | 76 |
| Q11E_14 | 2 | 77 | 78 |
| Q11D_15 | 3 | 79 | 81 |
| Q11E_15 | 2 | 82 | 83 |
| Q14 | 3 | 84 | 86 |
| 017 | 1 | 87 | 87 |
| Q18 | 3 | 88 | 90 |
| Q24A_1 | 3 | 91 | 93 |
| Q24B_1 | 3 | 94 | 96 |
| Q24C_1 | 3 | 97 | 99 |
| Q24D_1 | 3 | 100 | 102 |
| Q24A_2 | 3 | 103 | 105 |
| Q24B_2 | 3 | 106 | 108 |
| Q24C_2 | 3 | 109 | 111 |
| Q24D_2 | 3 | 112 | 114 |
| Q24A 3 | 3 | 115 | 117 |
| Q24B_3 | 3 | 118 | 120 |
| Q24C_3 | 3 | 121 | 123 |

## Template for File MEFISH.DAT

Data from 1990 Maine Angler Survey

| Variable | Total Characters | Start Position | End Position |
| :---: | :---: | :---: | :---: |
| Q24D_3 | 3 | 124 | 126 |
| Q24A_4 | 3 | 127 | 129 |
| Q24B_4 | 3 | 130 | 132 |
| Q24C_4 | 3 | 133 | 135 |
| Q24D_4 | 3 | 136 | 138 |
| Q24A_5 | 3 | 139 | 141 |
| Q24B_5 | 3 | 142 | 144 |
| Q24C_5 | 3 | 145 | 147 |
| Q24D_5 | 3 | 148 | 150 |
| Q24A_6 | 3 | 151 | 153 |
| Q24B_6 | 3 | 154 | 156 |
| Q24C_6 | 3 | 157 | 159 |
| Q24D_6 | 3 | 160 | 162 |
| Q24A_7 | 3 | 163 | 165 |
| Q24B_7 | 3 | 166 | 168 |
| Q24C_7 | 3 | 169 | 171 |
| Q24D_7 | 3 | 172 | 174 |
| Q24A_8 | 3 | 175 | 177 |
| Q24B_8 | 3 | 178 | 180 |
| Q24C_8 | 2 | 181 | 182 |
| Q24D_8 | 3 | 183 | 185 |
| Q24A_9 | 3 | 186 | 188 |
| Q24B_9 | 3 | 189 | 191 |
| Q24C_9 | 3 | 192 | 194 |
| Q24D_9 | 3 | 195 | 197 |
| Q24A_10 | 3 | 198 | 200 |
| Q24B_10 | 3 | 201 | 203 |
| Q24C_10 | 3 | 204 | 206 |
| Q24D_10 | 3 | 207 | 209 |
| Q24A_11 | 3 | 210 | 212 |
| Q24B_11 | 3 | 213 | 215 |
| Q24C_11 | 3 | 216 | 218 |
| Q24D_11 | 3 | 219 | 221 |
| Q24A 12 | 3 | 222 | 224 |
| Q24B_12 | 3 | 225 | 227 |
| Q24C_12 | 3 | 228 | 230 |
| Q24D_12 | 3 | 231 | 233 |
| Q24A_13 | 3 | 234 | 236 |
| Q24B_13 | 3 | 237 | 239 |
| Q24C_13 | 3 | 240 | 242 |
| Q24D_13 | 3 | 243 | 245 |
| Q24A-14 | 3 | 246 | 248 |
| Q24B_14 | 3 | 249 | 251 |
| Q24C_14 | 3 | 252 | 254 |
| Q24D_14 | 3 | 255 | 257 |
| Q24A_15 | 3 | 258 | 260 |
| Q24B_15 | 3 | 261 | 263 |

Template for File MEFISH.DAT
Data from 1990 Maine Angler Survey

| Variable | Total Characters | Start Position | End Position |
| :---: | :---: | :---: | :---: |
| Q24C_15 | 3 | 264 | 266 |
| Q24D_15 | 3 | 267 | 269 |
| Q25 | 1 | 270 | 270 |
| Q25A | 3 | 271 | 273 |
| Q29A 1 | 3 | 274 | 276 |
| Q29B_1 | 3 | 277 | 279 |
| Q29A-2 | 3 | 280 | 282 |
| Q29B_2 | 3 | 283 | 285 |
| Q29A 3 | 3 | 286 | 288 |
| Q29B_3 | 3 | 289 | 291 |
| Q29A_4 | 3 | 292 | 294 |
| Q29B_4 | 3 | 295 | 297 |
| Q29A_5 | 3 | 298 | 300 |
| Q29B_5 | 3 | 301 | 303 |
| Q29A 6 | 3 | 304 | 306 |
| Q29B_6 | 3 | 307 | 309 |
| Q29A_7 | 3 | 310 | 312 |
| Q29B_7 | 3 | 313 | 315 |
| Q29A_8 | 3 | 316 | 318 |
| Q29B_8 | 3 | 319 | 321 |
| Q29A 9 | 3 | 322 | 324 |
| Q29B_9 | 3 | 325 | 327 |
| Q29A-10 | 3 | 328 | 330 |
| Q29B_10 | 3 | 331 | 333 |
| Q29A 11 | 3 | 334 | 336 |
| Q29B_11 | 3 | 337 | 339 |
| Q29A_12 | 3 | 340 | 342 |
| Q29B_12 | 3 | 343 | 345 |
| Q29A_13 | 3 | 346 | 348 |
| Q29B_13 | 3 | 349 | 351 |
| Q29A_14 | 3 | 352 | 354 |
| Q29B_14 | 3 | 355 | 357 |
| Q29A_15 | 3 | 358 | 360 |
| Q29B_15 | 3 | 361 | 363 |
| Q31A_1 | 3 | 364 | 366 |
| Q31B_1 | 3 | 367 | 369 |
| Q31A_2 | 3 | 370 | 372 |
| Q31B_2 | 3 | 373 | 375 |
| Q31A 3 | 3 | 376 | 378 |
| Q31B_3 | 3 | 379 | 381 |
| Q31A_4 | 3 | 382 | 384 |
| Q31B_4 | 3 | 385 | 387 |
| Q31A_5 | 3 | 388 | 390 |
| Q31B 5 | 3 | 391 | 393 |
| Q31A 6 | 3 | 394 | 396 |
| Q31B_6 | 3 | 397 | 399 |
| Q31A_ 7 | 3 | 400 | 402 |

Page 3 of 4

Template for File MEFISH.DAT
Data from 1990 Maine Angler Survey

| Variable | Total Characters | Start Position | End Position |
| :--- | :---: | :---: | :---: |
| Q31B_7 | 3 | 403 | 405 |
| Q31A_8 | 3 | 406 | 408 |
| Q31B_8 | 3 | 409 | 411 |
| Q31A_9 | 3 | 412 | 414 |
| Q31B_9 | 3 | 415 | 417 |
| Q31A_10 | 3 | 418 | 420 |
| Q31B_10 | 3 | 421 | 423 |
| Q31A_11 | 3 | 424 | 426 |
| Q31B_11 | 3 | 427 | 429 |
| Q31A_12 | 3 | 430 | 432 |
| Q31B_12 | 3 | 433 | 435 |
| Q31A_13 | 3 | 436 | 438 |
| Q31B_13 | 3 | 439 | 441 |
| Q31A_14 | 3 | 442 | 444 |
| Q31B_14 | 3 | 445 | 447 |
| Q31A_15 | 3 | 448 | 450 |
| Q31B_15 | 3 | 451 | 453 |
| Q32A_1 | 2 | 454 | 455 |
| Q32C_1 | 1 | 456 | 456 |
| Q32A_2 | 2 | 457 | 458 |
| Q32C_2 | 1 | 459 | 459 |
| Q32A_3 | 2 | 460 | 461 |
| Q32C_3 | 1 | 462 | 462 |
| Q32A_4 | 2 | 463 | 464 |
| Q32C_4 | 1 | 465 | 465 |
| Q32A_5 | 2 | 466 | 467 |
| Q32C_5 | 1 | 468 | 468 |
| Q32A_6 | 2 | 469 | 470 |
| Q32C_6 | 1 | 471 | 471 |
| Q45 | 1 | 472 | 472 |
| Q46 | 1 | 473 | 473 |
| Q47 | 1 | 474 | 474 |
| Q47A | 1 | 475 | 475 |
| Q48 | 2 | 476 | 477 |
|  |  |  |  |

