62465

PHASE 2 REPORT - REVIEW COPY FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2C-A LOW RESOLUTION SEDIMENT CORING REPORT ADDENDUM TO THE DATA EVALUATION AND INTERPRETATION REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

JULY 1998

For

U.S. Environmental Protection Agency Region II and U.S. Army Corps of Engineers Kansas City District

Volume 2C-A Book 2 of 2

TAMS CONSULTANTS, Inc.

Gradient Corporation

TETRA TECH, INC.

PHASE 2 REPORT - REVIEW COPY FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2C-A LOW RESOLUTION SEDIMENT CORING REPORT ADDENDUM TO THE DATA EVALUATION AND INTERPRETATION REPORT HUDSON RIVER PCBs REASSESSMENT RI/FS

1

JULY 1998

For

U.S. Environmental Protection Agency Region II and U.S. Army Corps of Engineers Kansas City District

> Volume 2C-A Book 2 of 2

TAMS CONSULTANTS, Inc.

Gradient Corporation

TETRA TECH, INC.

Table of Contents

CONTENTS

Volume 2C-A (Book 2 of 2)

LIST OF TABLES

- 2-1 Summary of Low Resolution Sediment Core Collection Program
- 2-2 Sediment Core Segment Summary
- 2-3 Summary of Low Resolution Sediment Core Analytical Results
- 2-4 Comparison of Sediment Types for Complete and Incomplete Low Resolution Cores
- 3-1 Parameters Obtained for the Low Resolution Sediment Coring Program
- 3-2 Summary Statistics for Total PCBs, ΔMW , and MDPR
- 3-3 Regression Coefficients (r) for Correlations Among Laser Grain-Size Distribution Parameters
- 3-4 Regression Coefficients (r) for Correlations Among Total PCBs, ΔMW, MDPR, and Laser Grain-Size Distribution Parameters
- 3-5 Regression Coefficients (r) for Correlations Among Total PCBs, ΔMW, MDPR, and ASTM Grain-Size Distribution Parameters
- 3-6 Regression Coefficients (r) for Correlations Among Total PCBs, Δ MW, MDPR, Chemical, and Radionuclide Parameters
- 3-7 Regression Coefficients (r) for Correlations Among Total PCBs, ΔMW, MDPR, and Bulk Sediment Properties for all Sediments and Shallow Sediments
- 3-8 Regression Coefficients (r) for Correlations Among Length-weighted average Total PCB, Total PCB Mass/Unit Area and Several Important Ancillary Parameters
- 4-1 Assessment of Core Profiles in the TI Pool
- 4-2 Summary Data for *Hot Spots* Surveyed by the Low Resolution Coring Program
- 4-3 Assignment Classifications for 1976-1978 Samples for Solid Specific Weight Based on the Low Resolution Coring Results
- 4-4 Assignment of Grain-Size Distribution Bins for Determination of Principal Fraction for 1977 NYSDEC Samples
- 4-5 Assignment of Principal Sediment Fraction Based on 1977 NYSDEC Visual Sediment Classifications
- 4-6 Shapiro-Wilk Statistics for 1976-1978 and 1994 Hudson River Sediment Samples Below the TI Dam

CONTENTS

Volume 2C-A (Book 2 of 2)

- 4-7 Estimates of Mean Values for PCB Mass per Unit Area and Length-Weighted Average for Sediments Below the TI Dam
- 4-8 Comparison of MPI (1992) and Low Resolution Inventory Estimates for Dredge Locations
- 4-9 Characterization of the 1976-1978 and 1994 Sediment Sample Types
- 4-10 Assessment of the Studied Hot Spot Areas Below the TI Dam
- 4-11 Comparison of Historical and 1994 PCB Inventories for Hot Spots Below the TI Dam
- 4-12 Summary of 1994 Hot Spot Inventories Below the TI Dam
- 4-13 Estimates of PCB Concentration in Shallow, Near-Shore Sediments

LIST OF FIGURES

- 2-1 Distance Between 1984 and 1994 Sediment Sample Locations
- 2-2 Distribution of Core Segments Depths
- 2-3 Low Resolution Sediment Core Preparation
- 2-4 Distribution of Total PCB Concentrations in Low Resolution Sediment Core Samples
- 2-5 Example Regressions for Low Resolution Sediment Core Field Split Pairs
- 2-6 Precision in Total PCB Concentration for Low Resolution Core Field Splits
- 2-7 High Resolution Sediment Core Profiles in the Upper Hudson: Examples of the Coincidence of ¹³⁷Cs and PCBs Over Time
- 2-8 Classification of Shallow Sediment Samples Comparison of Visual Inspection and Laser Grain-Size Analytical Technique
- 2-9 Classification of Sediment Samples Comparison of Visual Inspection and ASTM Grain-Size Analytical Techniques
- 2-10 Classification of Sediment Samples Comparison of Grain-Size Analytical Techniques (ASTM and Laser Methods)
- 3-1 Molar Dechlorination Product Ratio vs Fractional Difference In Mean Molecular Weight Relative to Aroclor 1242 for All Low Resolution Sediment Core Results
- 3-2 Total PCB Concentration vs Molar Dechlorination Product Ratio and Fractional Difference In Mean Molecular Weight Relative to Aroclor 1242
- 3-3 Total PCB Concentration vs MDPR and ΔMW Showing Cores With and Without ¹³⁷Cs Present
- 3-4 Congener Pattern Comparison Between Upper and Lower Segments on Potentially Cross-Contaminated Cores

TAMS

, A

in the

CONTENTS

Volume 2C-A (Book 2 of 2)

- 3-5 Congener Pattern Comparison Between Upper and Lower Segments on Cores without Cross-Contamination
- 3-6 Comparison of Low Resolution Core and High Resolution Core Subsampling Processes
- 3-7 Sample Points Excluded as a Result of the Selection Criteria
- 3-8 Examination of the Relationship of MDPR and ΔMW to Total PCBs for Selected Low Resolution Sediment Core Results
- 3-9 Comparison of Low Resolution Core and High Resolution Core Regressions for MDPR and $\Delta MW vs$ Total PCBs
- 3-10 Comparison of the Low Resolution Core and High Resolution Core Slicing Techniques on Measured Sample Values for High Resolution Core 19
- 3-11 Comparison of the Low Resolution Core and High Resolution Core Slicing Techniques on Measured Sample Values for High Resolution Core 21
- 3-12 Comparison of Calculated Results for High Resolution Cores with the Low Resolution Core Regression Lines for ΔMW and MDPR vs Total PCBs
- 3-13 Total PCBs Grouped by Bulk Density
- 3-14 Total PCBs Grouped by Percent Solids
- 3-15 Total PCBs Grouped by Solid Specific Weight
- 3-16 Total PCBs Grouped by Particle Density
- 3-17a ΔMW and MDPR Grouped by Bulk Density for All Sediment Segments
- 3-17b ΔMW and MDPR Grouped by Bulk Density for Shallow Sediment Segments
- 3-18 Total PCBs Grouped by Geologist's Classification
- 3-19 Total PCBs Grouped by Silt Fraction in Shallow Sediments
- 3-20 Total PCBs Grouped by Median ϕ (Phi) in Shallow Sediments
- 3-21 Total PCBs Grouped by Total Organic Carbon
- 3-22 Total PCB Concentration and Mass per Unit Area Grouped by ⁷Be
- 3-23 Total PCBs Grouped by ¹³⁷Cesium for Shallow Sediments
- 3-24 Δ MW and MDPR Grouped by ¹³⁷Cs in Shallow Sediments
- 3-25 Comparison of the Mean DN Value for 10-ft and 50-ft Circles
- 3-26 Three Dimensional Correlation Plot of Digital Number vs Grain-Size Distribution Parameters: Comparison Between Confirmatory and Low Resolution Core Samples
- 3-27 Classification of Sediment Samples Comparison of Visual and Analytical Techniques to the Interpretation of the Side-Scan Sonar Images

CONTENTS

Volume 2C-A (Book 2 of 2)

- 3-28 Acoustic Signal Mean (DN50) Based on 50-ft Circles Grouped by Laser Analysis Principal Fraction
- 3-29 Comparison of the Regression Lines for the Confirmatory and Low Resolution Core Results against the DN50 for the 500 kHz Side-Scan Sonar Images
- 3-30 Comparison of 500 kHz Acoustic Signal (DN50) and Low Resolution Core PCB Levels in Shallow Sediments
- 3-31 Comparison of 500 kHz Acoustic Signal (DN50) and Low Resolution Core PCB Mass/Area
- 4-1 Typical Low Resolution Core Profiles for the TI Pool and Their Classification
- 4-2 High Resolution Core 19 from the TI Pool
- 4-3 Core Locations Exhibiting Sediment Scour
- 4-4 Comparison Between 1984 and 1994 MPA for Total PCBs Showing Core Classifications
- 4-5 Relationship Between 1984 and 1994 Sediment Inventories (MPA) for Total PCBs and Trichloro and Higher Homologues
- 4-6 Relationship Between the 1984 \sum Tri+ Mass Per Unit Area (MPA₃₊) and the Change in Sediment PCB Inventory for the TI Pool
- 4-7 1984 Trichloro and Higher Homologues as MPA vs Mass Difference and Mole Difference Relative to 1994 - Log Scale
- 4-8 Determination of the Molecular Weight of the Trichloro and Higher Homologues ($\Sigma Tri+$) at the Time of Deposition
- 4-9 Distribution of Mass Difference (g/m²) and Mole Difference (mole/m²) between 1984 and 1994
- 4-10 Distribution of the Percent Change in PCB Molar Inventory ($Delta_M$)
- 4-11 Change in (Moles/m²) by 1984 Σ Tri + PCB Inventory
- 4-12 Change in Mass per Unit Area (MPA) by 1984 Σ Tri+ PCB Inventory
- 4-13 Percent Change in PCB Molar Inventory (Delta_M) by 1984 Σ Tri + PCB Inventory
- 4-14 Percent Mass Change (Delta $_{PCB}$) by 1984 $\sum Tri + PCB$ Inventory
- 4-15 Statistical Analysis of $Delta_M$ as a Function of 1984 Sediment $\sum Tri +$ Inventory and NYSDEC Sample Type
- 4-16 Implications of the Inventory Change Analysis for the 1984 TI Pool Inventory
- 4-17 Relationship Between Total PCB Concentration and Solid Specific Weight for Low Resolution Core Samples

CONTENTS

Volume 2C-A (Book 2 of 2)

- 4-18 Comparison of 1977-1978 Sediment Classifications and Interpretationof the Side-Scan Sonar Images
- 4-19 Distribution of Length-Weighted Core Averages in 1976-1978 NYSDEC Survey and Low Resolution Sediment Core Samples
- 4-20 Distribution of MPA in 1976-1978 NYSDEC Survey and Low Resolution Sediment Core Samples
- 4-21 Comparison of Geometric Mean PCB MPA and Length-Weighted Core Averages from the 1976-1978 NYSDEC and Low Resolution Core Surveys in Dredge Locations
- 4-22 Comparison of Geometric Mean PCB MPA and Length-Weighted Core Averages from the 1976-1978 NYSDEC and Low Resolution Core Surveys in *Hot Spots*
- 4-23 Relationhips Between 0-4", 0-12" and Entire Core PCB Concentrations
- 4-24 Core Profiles in Areas of Continuous Deposition
- 4-25 Typical 1994 Sediment Core Profiles from Hot Spot 28
- 4-26 Typical 1994 Sediment Core Profiles from Hot Spots 25 and 35

LIST OF PLATES

- 1-1 Hudson River Drainage Basin and Site Location Map
- 2-1 Low Resolution Sediment Coring Locations in the Upper Hudson River
- 3-1 Key to Location of Plates 3-2 Through 3-20
- 3-2 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 14
- 3-3 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster
 13
- 3-4 Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 12, 15, and 17
- 3-5 Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 10 and 11
- 3-6 Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 8 and 9

300369

CONTENTS

Volume 2C-A (Book 2 of 2)

- 3-7 Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 6 and 7
- 3-8 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 19
- 3-9 Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters
 4, 5, and 18
- 3-10 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 3
- 3-11 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 1 and 2
- 3-12 Determination of the DN50 Values for the Low Resolution Coring Locations in *Hot Spot* 25
- 3-13 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 25
- 3-14 Determination of the DN50 Values for the Low Resolution Coring Locations in *Hot Spot* 28
- 3-15 Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot
 28
- 3-16 Determination of the DN50 Values for the Low Resolution Coring Locations in *Hot Spot* 31
- 3-17 Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot
 31
- 3-18 Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot
 34
- 3-19 Determination of the DN50 Values for the Low Resolution Coring Locations in *Hot Spots* 34 and 35
- 3-20 Determination of the DN50 Values for the Low Resolution Coring Locations in *Hot Spots* 34 and 35
- 4-1 Key to Locations of Plates 4-2 Through 4-9
- 4-2 Comparison Between 1984 and 1994 Coring Results in Thompson Island Pool
- to
- 4-9
- 4-10 Key to Locations of Plates 4-11 Through 4-19

300370

vi

TAMS

÷ ž

- 3

CONTENTS

Volume 2C-A (Book 2 of 2)

- 4-11 Changes in Inventory in the Thompson Island Pool 1984 vs 1994
- to

1 . I . .

- 4-19
- 4-20 Low Resolution Coring and 1984 NYSDEC Sampling Results in the Thompson Island Pool: Change in Sediment Inventory for Trichloro to Decachlorohomologues
- 4-21 Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 25
- 4-22 Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 28
- 4-23 Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 31
- 4-24 Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spots 34 and 35
- 4-25 Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 37
- 4-26 Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 39
- 4-27 Low Resolution Coring and 1976-78 NYSDEC Sampling Results In TAMS' Location 41 and 42
- 4-28 Low Resolution Coring and 1976-78 NYSDEC Sampling Results In TAMS' Location 43 and 44
- 4-29 Key to Locations of Plates 4-21 Through 4-28

Tables

TAMS

Ć

TABLES

11111

.....

				PCB	Total
	No. of	Cores per	Total No. of	Samples per	Analytical
Location/Type	Zones	Zone	Cores	Core	Samples ²
A. Thompson Island Pool					
Resampling 1984 NYSDEC Locations	15	3-6	60	1-3	136
Near-shore Locations	4	1-5	16	1-3	36
B. Below Thompson Island Dam ³					
Hot Spot 25 (RM 187)	1	10	10	1-3	26
Hot Spot 28 (RM 186)	1	13	13	1-3	32
Hot Spot 31 (RM 185)	1	10	10	1-3	25
Hot Spot 34 (RM 184)	1	13	13	1-3	19
Hot Spot 35 (RM 184)	1	5	5	1-3	9
Hot Spot 37 (RM 166)	1	15	15	1-3	21
Hot Spot 39 (RM 164)	1	15	15	1-3	38
Near-shore/exploratory	4	3-4	13	1-3	29
Total	30		170		371

Table 2-1 Summary of Low Resolution Sediment Core Collection Program

Hudson River Database Release 3.5

Notes:

River Mile (RM) locations are approximate.

1. A zone is defined for this program as a cluster of samples from an area typically less than 2,100 feet at its widest point.

2. Analytical parameters include PCB congeners; TC/TN; and grain size distribution analysis, total organic carbon and radionuclides, but all analytes were not determined for every sample.

3. Hot spot location numbering after Tofflemire and Quinn (1979); Hot spot locations shown on Plate 2-1.

Summary of Low Resolution Sediment Core Analytical Results

Page 1 of 2

.

Analyte	Count	Mean	Median	Range of Values ²	No. of Nondetect Results	Cores with Maximum PCB Concentration in	Cores with Unknown Maximum PCB Commutation ^b	Samples with Fraction as Primary
Radionuclides (pC'i/kg)				runge of vulues		layer	Concentration	Scument Class
Be Ton Slice (0-1 inch)	169	1.164	966	ND-3.577	50			
¹³ Cs Top Slice (0-1 inch)	169	846	715	44-8,710	0			
¹³ Cs Bottom Segment in Thompon Island Pool ³	75	627	278	76-3931	61			
10 Cs Bottom Segment Below Thompon Island Dam	94	823	318	20-5650	58			
¹³⁷ Cs Bottom Segment all cores ³	169	768	301	ND-5,650	119			
(Total PCB (ppm)								
By Location								
Thompson Island Pool (76 Cores)	172	78	15	0.0-1.127	0			
Below Thompson Island Dam (94 Cores)	199	83	15	0.0-1,352	<u>0</u>			
All Locations	371	81	15	0.0-1,352	0			
By Layer								
Top Segment (Surface)	170	95	23	0.4-1352	0	1041	22	
Second Segment	128	89	16	0.0-1045	0	30`	10	
Third Segment	73	33	2	0.0-589	0	0"	-4	
Total Organic Carbon (%)	27	5	6	0.2-11	0 (1 Reject)			
Total Kjeldahl Nitrogen (ppm)	27	1,640	1,370	187-4420	0			
C/N Ratio	27	39	40	11.2-81.7	0 (1 Reject)			
Grain-Size Distribution (%) - Laser								
Shallow segment								
Clay	170	6.0	5.7	0.4-26				0
Silt	170	51.9	58.4	3.8-80				119
Fine Sand	170	28.8	27.4	0.1-67				31
Medium Sand	170	9.3	3.3	0.0-50				15
Coarse Sand	170	1.6	0.0	0.0-26				0
Gravel	170	2.5	0.0	0.0-38		······		5

Judson River Database Release 3.5

LAMS

Tal. 2-2 Sediment Core Segment Summary

Core Summary Number of Segments Number of Cores Depth of Core m Core Collected (mches) Range Median 2 42 12 6-16 3 55 19 16-23 4 73 30 23-54

Core Segment Summary

				Segment ¹ (inc	Thickness hes)		1 ower Depth of Segment (inches)							
	Number of Segments	2 Segme	nt Cores ²	3 Segme	nt Cores	4 Segment Cores		2 Segment Cores ²		3 Segment Cores		41 aye	r Cores	
Segment	Collected	Median	Range	Median	Range	Median	Range	Median	Range	Median	Range	Median	Range	
Top Segment (Shallow) ¹	170		5-13	9	7-11	10	7-17	9	5-13	9	7-11	10	7-17	
Second Segment	128			7	5-10	9	6-17			16	13-20	18	14-34	
Third Segment Radionuclide	73 169	3	2-3	3	1-4	9 3	5-17 1-7	12	7-16	19	16-23	27 30	20-51 23-54	

Hudson River Database Release 3.5

Notes:

1. All cores included at least one segment for PCB analysis and a second segment for radionuclide analysis except for core LR-02C Radionuclide analysis was always done on the bottommost segment.

2. Core LR-02C had only one slice which was analyzed for PCB and is included in this total. No radionuclide data were obtained

3. Top segment extends down from the sediment/water interface

LAMS

1 . I was a line of the second s

Table 2-3Summary of Low Resolution Sediment Core Analytical ResultsPage 2 of 2

Analyte Grain-Size Distribution (%) - ASTM	Count	Mean	Median	Range of Values ²	No. of Nondetect Results	Cores with Maximum PCB Concentration in layer	Cores with Unknown Maximum PCB Concentration ⁸	Samples with Fraction as Primary Sediment Class
(various depths)								
Fines (silt and clay)	143	45.8	42.9	5-98				77
Fine Sand	143	32.0	27.8	0.6-87				47
Medium Sand	143	15.4	8.0	0.3-70				22
Coarse Sand	143	3.8	1.4	0.0-20				
Gravel	143	3.0	0.3	0.0-34				2
Visual Interpretation - Primary Classification								
Clay/Organics	8							
Silt	199							
Fine Sand	67							
Medium Sand	1							
Coarser Sand	90							Ì
Fine-Medium Gravel	3							
Unclassified	3							
Bulk Density (g/cc)	678	1.6	1.5	1-2.8				

Hudson River Database Release 3.5

Notes

1 Count represents unique samples and excludes duplicates

2 Values reported as 0.0 represent low level detections less than 0.05

- 3 One sample (LR-02C) was not analyzed for radionuclides
- 4 Excludes the 21 two segment cores (1 PCB 1 ¹⁰Cs) where ¹⁰Cs was detected in the bottom segment and core 1.11-02C which was not analysed for radionuclides
- 5 Excludes the 10 three segment cores (2 PCB, $1^{(2)}$ Cs) where ${}^{(2)}$ Cs was detected in the bottom segment
- 6 Excludes all four segment cores (3 PCB, 130Cs) because 30Cs was detected in the bottom segment
- 7 Bulk density values less than 1 and greater than 3 were excluded as unreasonable results. A total of 709 bulk density measurements were made

8 Cores with unknown maxima are defined as incomplete cores (i.e., ¹⁷⁷Cs present in bottom segment) that also have their highest PCB levels in the segment

immediately above the bottommost (i.e., radionuclide) segment. Because of the history of PCB release to the Hudson, it cannot be assured that these cores have captured the peak PCB concentrations at their respective locations. See text for further discussion. LAMS

-		
-		
•		

Table 2-4
Comparison of Sediment Types for Complete and Incomplete Low Resolution Cores

					Prir	nary Geologist's Classification							
						No.	of Sample:	s					
Location Type ¹ (No. of Cores)	No. of Slices	Median Depth of Lower Boundary (inches)	No. of Cores with Maximum PCB Concentration in layer ²	Clay/ Organics	Silt	Fine Sand	Coarser	Fine- Medium Gravel	Unclassified				
Thompson Island Pool		•							onenasineu				
Complete Cores (61)													
Top Segment (Shallow)	61	9	50	1	31	15	13		I				
Second Segment	55	16	11	ł	18	16	19		1				
Third Segment	28	24.5	0	1	9	7	10		1				
Entire Core		22											
Incomplete Cores (15)													
Top Segment (Shallow)	15	8	2		8	4	3						
Second Segment	9	16	2	1	4	2	2						
Third Segment	4	25.5	0		1	1	1	1					
Entire Core		17											
Below Thompson Island Dam													
Complete Cores (58)													
Top Segment (Shallow)	58	9	45	3	35	6	13	1					
Second Segment	44	18	13		29	4	10	1					
Third Segment	31	31	0		18	3	10						
Entire Core		24											
Incomplete Cores (36)				1									
Top Segment (Shallow)	36	9	7	1	24	6	5						
Second Segment	20	17.5	4		12	3	5						
Third Segment	10	36	0		10								
Entire Core	:	17											

Notes

1 Complete Core - no ¹³⁷Cs present in bottommost segment

Incomplete Core - ¹³⁷Cs present in bottommost segment

TAMS

Table 3-1
Parameters Obtained For The Low Resolution Sediment Coring Program

Analyte Lype	Parameter	Analyses or Results Per Sample	No. of Samples Analysed ¹	Units
PCB	Congener (BZ#) Homologue (Sum of appropriate congeners) Total PCB (Sum of 126 Congeners)	126 used -145 reported 10 1	371 371 371	не ке не ке не ке
	AMW (Calculated from congener data) MDPR (Calculated from congener data)	1	371 371	на ка На ка
Chemical	Fotal Organic Carbon (TOC) Fotal Kjeldahl Nitrogen (TKN) C'N ratio (Calculated from TOC& TKN) -	1 	26 27 26	°odry wt ppm by mass dry wt unitless (molar ratio)
Radionuclide	¹⁵⁷ Cs - surface - bottom Be - surface	 	169 170 169	pCr kg pCr kg pCr kg
Sediment Bulk Properties	Bulk density Percent solids Solids specific weight - (Calculated from bulk density and percent solids) Particle density - (Calculated from bulk density and percent solids)	 	671 541 541 541	ц сс ч., д сс д сс
Sediment Grain-Size Distribution	Combined Sieve and Laser Particle Analysis (Laser) Shallow Sediments only Major Soil Classifications Median diameter phi distribution D(10) - D(90) mm Sorting and Skewness Combined Sieve and Hydrometer Analysis (ASTM) Various Depths Major soil classifications Sorting Bins Geologist's Visual Inspection Major Soil Classifications	6 1 26 12 2 6 9 1	170 170 170 170 170 143 143 541	⁹ ⊕ mass phi of mm ⁹ ⊕ mass mm unitless ⁹ ⊕ mass ⁹ ⊕ mass

Note (1) Total excludes rejected analyses

.

300378

(

	AMW	MDPR	Total PCBs (mg/kg)	Estimated Mass Loss by Dechlorination ²
All Core Segments > 0.1 mg/kg				
Min	-1.488	0.040	0.106	NA
Max	0.208	0.984	1,352	24.6° o
Median	0.100	0.553	19.0	11.8%
Geometric Mean	0.101	0.551	15.3	12.0° o
No. of Samples = 347				
Selected Core Segments ¹				
Min	-0.106	0.04	0.354	NA
Max	0.195	0.921	1352	23.10° o
Median	0.098	0.542	30.8	11.6° o
Geometric Mean	0.101	0.544	31.8	12.0° o
No of Samples = 229				

Table 3-2 Summary Statistics for Total PCBs, ΔMW , and MDPR

Notes:

. .

r

مدر

 ~ 1

- -

сą.

1. These cores were selected so as to minimize the inclusion of cross-contaminated core segments in the data set. See text for discussion.

2. Estimated mass loss represents dechlorination mass loss only. Mass loss estimate is based on change in molecular weight (AMW).

Table 3-3Regression Coefficients (r) for Correlation Among
Laser Grain-Size Distribution Parameters

Parameter	Clay %	Silt %	Fine Sand %	Medium Sand %	Coarse Sand %	Gravel %	d(10)	d(15)	d(20)	d(30)	d(40)	d(50)	d(60)	d(70)	d(80)	d(85)	d(90)	d(99)	Sorting	Phi -2	Phi -1.5	Phi -1	Phi -0.5	Phi 0
Clay %	1.00	0.59	-0.69	-0.44	-0.11	-0.11	-0.53	-0.53	-0.53	-0.53	-0.51	-0.49	-0.46	-0.47	-0.58	-0.69	-0.79	-0.63	0.75	-0.11	-0.11	-0.11	-0.11	-0.39
Silt %	0.59	1.00	-0.87	-0.80	-0.21	-0.21	-0.88	-0.90	-0.91	-0.91	-0.89	-0.86	-0.80	-0.76	-0.77	-0.80	-0.82	-0.30	0.96	-0.21	-0.21	-0.21	-0.21	-0.72
Fine Sand %	-0.69	-0.87	1.00	0.44	0.08	0.08	0.58	0.61	0.63	0.64	0.62	0.58	0.53	0.52	0.65	0.74	0.80	0.31	-0.83	0.08	0.08	0.08	0.08	0.33
Medium Sand %	-0.44	-0.80	0.44	1.00	0.29	0.29	0.96	0.96	0.95	0.94	0.94	0.91	0.87	0.82	0.69	0.65	0.64	0.33	-0.85	0.29	0.29	0.29	0.29	0.97
Coarse Sand %	-0.11	-0.21	0.08	0.29	1.00	1.00	0.37	0.37	0.36	0.29	0.29	0.30	0.29	0.34	0.32	0.28	0.23	0.13	-0.24	1.00	1.00	1.00	1.00	0.44
Gravel %	-0.11	-0.21	0.08	0.29	1.00	1.00	0.37	0.37	0.36	0.29	0.29	0.30	0.29	0.34	0.32	0.28	0.23	0.13	-0.24	1.00	1.00	1.00	1.00	0.44
d(10)	-0.53	-0.88	0.58	0.96	0.37	0.37	1.00	0.99	0.97	0.94	0.92	0.88	0.82	0.78	0.72	0.71	0.71	0.35	-0.92	0.37	0.37	0.37	0.37	0.93
d(15)	-0.53	-0.90	0.61	0.96	0.37	0.37	0.99	1.00	0.99	0.97	0.95	0.91	0.85	0.81	0.73	0.72	0.72	0.34	-0.93	0.37	0.37	0.37	0.37	0.92
d(20)	-0.53	-0.91	0.63	0.95	0.36	0.36	0.97	0.99	1.00	0.99	0.97	0.93	0.87	0.82	0.74	0.72	0.73	0.35	-0.93	0.36	0.36	0.36	0.36	0.90
d(30)	-0.53	-0.91	0.64	0.94	0.29	0.29	0.94	0.97	0.99	1.00	0.99	0.95	0.89	0.83	0.75	0.73	0.74	0.35	-0.93	0.29	0.29	0.29	0.29	0.87
d(40)	-0.51	-0.89	0.62	0.94	0.29	0.29	0.92	0.95	0.97	0.99	1.00	0.98	0.92	0.86	0.77	0.74	0.75	0.36	-0.91	0.29	0.29	0.29	0.29	0.87
d(50)	-0.49	-0.86	0.58	0.91	0.30	0.30	0.88	0.91	0.93	0.95	0.98	1.00	0.98	0.93	0.81	0.76	0.75	0.36	-0.88	0.30	0.30	0.30	0.30	0.87
d(60)	-0.46	-0.80	0.53	0.87	0.29	0.29	0.82	0.85	0.87	0.89	0.92	0.98	1.00	0.97	0.83	0.77	0.74	0.34	-0.82	0.29	0.29	0.29	0.29	0.85
d(70)	-0.47	-0.76	0.52	0.82	0.34	0.34	0.78	0.81	0.82	0.83	0.86	0.93	0.97	1.00	0.90	0.83	0.77	0.37	-0.79	0.34	0.34	0.34	0.34	0.82
d(80)	-0.58	-0.77	0.65	0.69	0.32	0.32	0.72	0.73	0.74	0.75	0.77	0.81	0.83	0.90	1.00	0.97	0.90	0.47	-0.80	0.32	0.32	0.32	0.32	0.69
d(85)	-0.69	-0.80	0.74	0.65	0.28	0.28	0.71	0.72	0.72	0.73	0.74	0.76	0.77	0.83	0.97	1.00	0.97	0.52	-0.84	0.28	0.28	0.28	0.28	0.63
d(90)	-0.79	-0.82	0.80	0.64	0.23	0.23	0.71	0.72	0.73	0.74	0.75	0.75	0.74	0.77	0.90	0.97	1.00	0.59	-0.88	0.23	0.23	0.23	0.23	0.60
d(99)	-0.63	-0.30	0.31	0.33	0.13	0.13	0.35	0.34	0.35	0.35	0.36	0.36	0.34	0.37	0.47	0.52	0.59	1.00	-0.44	0.13	0.13	0.13	0.13	0.32
Sorting	0.75	0.96	-0.83	-0.85	-0.24	-0.24	-0.92	-0.93	-0.93	-0.93	-0.91	-0.88	-0.82	-0.79	-0.80	-0.84	-0.88	-0.44	1.00	-0.24	-0.24	-0.24	-0.24	-0.78
Phi -2	-0.11	-0.21	0.08	0.29	1.00	1.00	0.37	0.37	0.36	0.29	0.29	0.30	0.29	0.34	0.32	0.28	0.23	0.13	-0.24	1.00	1.00	1.00	1.00	0.44
Phi -1.5	-0.11	-0.21	0.08	0.29	1.00	1.00	0.37	0.37	0.36	0.29	0.29	0.30	0.29	0.34	0.32	0.28	0.23	0.13	-0.24	1.00	1.00	1.00	1.00	0.44
Phi - 1	-0.11	-0.21	0.08	0.29	1.00	1.00	0.37	0.37	0.36	0.29	0.29	0.30	0.29	0.34	0.32	0.28	0.23	0.13	-0.24	1.00	1.00	1.00	1.00	0.44
Phi -0.5	-0.11	-0.21	0.08	0.29	1.00	1.00	0.37	0.37	0.30	0.29	0.29	0.30	0.29	0.54	0.52	0.28	0.23	0.15	-0.24	0.44	1.00	0.44	1.00	1.00
Phi 0	-0.39	-0.72	0.33	0.97	0.44	0.44	0.93	0.92	0.90	0.87	0.87	0.07	0.85	0.02	0.09	0.05	0.00	0.32	-0.78	0.44	0.44	0.44	0.44	0.00
Phi 0.5	-0.39	-0.73	0.34	0.98	0.29	0.29	0.95	0.92	0.90	0.00	0.00	0.00	0.80	0.83	0.00	0.03	0.00	0.32	-0.79	0.25	0.25	0.25	0.25	0.97
Phi I	-0.43	-0.79	0.42	0.17	0.25	0.23	0.90	0.90	-0.10	0.93	0.93	-0.21	-0.20	-0.22	-0.28	-0.32	-0.30	-0.92	0.27	-0.08	-0.08	-0.08	-0.08	-0.18
Phi 1.5	0.57	0.11	-0.13	-0.17	-0.06	0.14	0.18	-0.17	0.13	0.20	0.21	0.75	0.68	0.63	0.66	0.70	0.73	0.35	-0.88	0.14	0.14	0.14	0.14	0.56
Phi 2 5	-0.57	-0.91	0.04	0.08	0.14	0.07	0.70	0.51	0.65	0.67	0.59	0.55	0.49	0.47	0.58	0.65	0.71	0.33	-0.78	0.07	0.07	0.07	0.07	0.31
Phi 2	-0.00	-0.04	0.55	-0.14	-0.01	-0.01	0.03	0.04	0.05	0.07	0.06	0.07	0.07	0.12	0.31	0.42	0.46	0.05	-0.32	-0.01	-0.01	-0.01	-0.01	-0.16
Phi 3 5	-0.35	-0.40	0.56	-0.30	-0.04	-0.04	-0.15	-0.15	-0.14	-0.13	-0.13	-0.11	-0.09	-0.03	0.17	0.29	0.33	-0.07	-0.14	-0.04	-0.04	-0.04	-0.04	-0.29
Phi 4	-0.02	0.66	-0.34	-0.71	-0.19	-0.19	-0.70	-0.73	-0.73	-0.73	-0.70	-0.66	-0.59	-0.52	-0.38	-0.31	-0.28	0.04	0.56	-0.19	-0.19	-0.19	-0.19	-0.64
Phi 4.5	0.15	0.83	-0.57	-0.77	-0.20	-0.20	-0.79	-0.82	-0.84	-0.84	-0.82	-0.78	-0.72	-0.65	-0.56	-0.52	-0.49	-0.16	0.73	-0.20	-0.20	-0.20	-0.20	-0.69
Phi 5	0.31	0.93	-0.74	-0.77	-0.20	-0.20	-0.82	-0.84	-0.85	-0.86	-0.84	-0.80	-0.74	-0.70	-0.66	-0.64	-0.64	-0.19	0.83	-0.20	-0.20	-0.20	-0.20	-0.68
Phi 5.5	0.46	0.97	-0.84	-0.75	-0.20	-0.20	-0.82	-0.85	-0.86	-0.87	-0.85	-0.82	-0.77	-0.73	-0.73	-0.74 [·]	-0.75	-0.21	0.89	-0.20	-0.20	-0.20	-0.20	-0.67
phi 6	0.59	0.96	-0.88	-0.73	-0.19	-0.19	-0.82	-0.83	-0.84	-0.84	-0.82	-0.80	-0.75	-0.72	-0.74	-0.77	-0.80	-0.31	0.92	-0.19	-0.19	-0.19	-0.19	-0.65
Phi 6.5	0.60	0.89	-0.79	-0.72	-0.24	-0.24	-0.79	-0.81	-0.82	-0.83	-0.81	-0.80	-0.75	-0.75	-0.78	-0.80	-0.82	-0.42	0.89	-0.24	-0.24	-0.24	-0.24	-0.66
Phi 7	0.86	0.82	-0.87	-0.58	-0.15	-0.15	-0.68	-0.69	-0.69	-0.69	-0.68	-0.66	-0.62	-0.61	-0.71	-0.80	-0.87	-0.34	0.89	-0.15	-0.15	-0.15	-0.15	-0.51
Phi 7.5	0.92	0.75	-0.83	-0.52	-0.13	-0.13	-0.63	-0.63	-0.63	-0.63	-0.61	-0.59	-0.55	-0.55	-0.66	-0.76	-0.84	-0.37	0.85	-0.13	-0.13	'-0.13	-0.13	-0.46
Phi 8	0.94	0.70	-0.80	-0.49	-0.11	-0.11	-0.60	-0.60	-0.60	-0.59	-0.57	-0.55	-0.51	-0.51	-0.62	-0.73	-0.82	-0.38	0.82	-0.11	-0.11	-0.11	-0.11	-0.43
Phi 8.5	0.97	0.67	-0.77	-0.47	-0.11	-0.11	-0.58	-0.57	-0.57	-0.57	-0.55	-0.52	-0.49	-0.49	-0.61	-0.72	-0.81	-0.47	0.80	-0.11	-0.11	-0.11	-0.11	-0.41
Phi 9	0.97	0.43	-0.56	-0.33	-0.08	-0.08	-0.41	-0.41	-0.41	-0.41	-0.39	-0.38	-0.35	-0.36	-0.47	-0.57	-0.67	-0.66	0.62	-0.08	-0.08	-0.08	-0.08	-0.30
Phi 9.5	0.75	0.17	-0.26	-0.20	-0.08	-0.08	-0.23	-0.22	-0.23	-0.24	-0.24	-0.24	-0.23	-0.24	-0.32	-0.38	-0.47	-0.88	0.37	-0.08	-0.08	-0.08	-0.08	-0.19
Phi 10	0.42	-0.02	-0.03	-0.06	-0.08	-0.08	-0.06	-0.06	-0.07	-0.08	-0.08	-0.09	-0.08	-0.11	-0.19	-0.21	-0.25	-0.86	0.12	-0.08	-0.08	-0.08	-0.08	-0.08
Phi 10.5	-0.46	-0.85	0.54	0.95	0.16	0.16	0.92	0.94	0.95	0.95	0.93	0.88	0.81	0.73	0.63	0.61	0.63	0.31	-0.87	0.16	0.16	0.16	0.16	0.84
Skewness	-0.40	-0.75	0.69	0.54	0.16	0.16	0.54	0.61	0.67	0.74	0.77	0.79	0.78	0.76	0.75	0.74	0.72	0.20	-0.69	0.16	0.16	0.16	0.16	0.48
Sorting	-0.43	-0.79	0.58	0.77	0.16	0.16	0.85	0.83	0.80	0.75	0.69	0.61	0.52	0.45	0.39	0.40	0.44	0.06		0.16	0.16	0.16	0.16	0.69

.

Hudson River Database Release 3.5 Notes:

(

(

(

1. Table represents 133 shallow sediment samples from 133 low resolution coring sites

TAMS

Table 3-3Regression Coefficients (r) for Correlation AmongLaser Grain-Size Distribution Parameters

	DI : O C		Dbi 1.6		Dh: 2.5	Dh: 2	Dh; 2.5	Dhi A	Dhi 4 5	Dhi 5	Dh; 5 5	nhi 6	Phi 6 5		Phi 7.5	Phi 8	Phi 8 5	Phi Q	Phi 95	Phi 10	Phi 10.5	Skewness	Sorting
Parameter	Phi 0.5	Pm 1	Pni 1.3	rni 2	Pm 2.5	0.42	rm 3.3	Fill 4	FIII 4.3	0.21	0.46	0.50	0.60	0.86	002	0.94	0 07	0.97	0.75	0.42	-0.46	-0.40	-0.43
Clay %	-0.39	-0.43	0.57	-0.57	-0.00	-0.45	-0.33	-0.02	0.15	0.31	0.40	0.59	0.00	0.80	0.32	0.70	0.57	0.27	0.75	-0.02	-0.85	-0.75	-0.79
Silt %	-0.73	-0.79	0.11	-0.91	-0.84	-0.40	-0.20	0.00	0.65	-0.74	-0.97	-0.88	-0.79	-0.87	-0.83	-0.80	-0.77	-0.56	-0.26	-0.03	0.54	0.69	0.58
Fine Sand %	0.34	0.42	-0.15	0.64	0.93	0.75	0.30	-0.34	-0.37	0.77	-0.04	-0.00	-0.72	-0.57	-0.52	-0.49	-0.77	-0.33	-0.20	-0.06	0.95	0.54	0.77
Medium Sand %	0.98	1.00	-0.17	0.06	0.42	-0.14	-0.30	-0.71	0.20	-0.77	-0.75	-0.19	-0.24	-0.15	-0.13	-0.11	-0.11	-0.08	-0.08	-0.08	0.16	0.16	0.16
Coarse Sand %	0.29	0.25	-0.08	0.14	0.07	-0.01	-0.04	-0.19	-0.20	-0.20	-0.20	-0.12	-0.24	-0.15	-0.13	-0.11	-0.11	-0.08	-0.08	-0.08	0.16	0.16	0.16
Gravel %	0.29	0.23	-0.08	0.14	0.07	-0.01	-0.04	-0.19	-0.20	-0.20	-0.20	-0.82	-0.79	-0.68	-0.63	-0.60	-0.58	-0.41	-0.23	-0.06	0.92	0.54	0.85
d(10)	0.93	0.96	-0.18	0.76	0.57	0.03	-0.15	-0.70	-0.79	-0.82	-0.82	-0.82	-0.81	-0.69	-0.63	-0.60	-0.57	-0.41	-0.22	-0.06	0.94	0.61	0.83
d(15)	0.92	0.96	-0.17	0.01	0.59	0.04	-0.15	-0.73	-0.82	-0.85	-0.85	-0.84	-0.82	-0.69	-0.63	-0.60	-0.57	-0.41	-0.23	-0.07	0.95	0.67	0.80
d(20)	0.90	0.94	-0.19	0.05	0.01	0.05	-0.14	-0.73	-0.84	-0.05	-0.87	-0.84	-0.83	-0.69	-0.63	-0.59	-0.57	-0.41	-0.24	-0.08	0.95	0.74	0.75
d(30)	0.88	0.93	-0.20	0.04	0.02	0.07	-0.13	-0.75	-0.87	-0.00	-0.85	-0.82	-0.81	-0.68	-0.61	-0.57	-0.55	-0.39	-0.24	-0.08	0.93	0.77	0.69
d(40)	0.88	0.93	-0.21	0.01	0.59	0.00	-0.15	-0.70	-0.78	-0.80	-0.82	-0.80	-0.80	-0.66	-0.59	-0.55	-0.52	-0.38	-0.24	-0.09	0.88	0.79	0.61
d(50)	0.86	0.91	-0.21	0.75	0.55	0.07	-0.09	-0.59	-0.72	-0.74	-0.77	-0.75	-0.75	-0.62	-0.55	-0.51	-0.49	-0.35	-0.23	-0.08	0.81	0.78	0.52
d(00)	0.80	0.87	0.20	0.63	0.47	0.12	-0.03	-0.52	-0.65	-0.70	-0.73	-0.72	-0.75	-0.61	-0.55	-0.51	-0.49	-0.36	-0.24	-0.11	0.73	0.76	0.45
d(70)	0.65	0.82	-0.22	0.65	0.58	0.31	0.02	-0.38	-0.56	-0.66	-0.73	-0.74	-0.78	-0.71	-0.66	-0.62	-0.61	-0.47	-0.32	-0.19	0.63	0.75	0.39
u(80)	0.08	0.09	-0.20	0.00	0.50	0.42	0.29	-0.31	-0.52	-0.64	-0.74	-0.77	-0.80	-0.80	-0.76	-0.73	-0.72	-0.57	-0.38	-0.21	0.61	0.74	0.40
	0.05	0.04	-0.32	0.73	0.05	0.46	0.33	-0.28	-0.49	-0.64	-0.75	-0.80	-0.82	-0.87	-0.84	-0.82	-0.81	-0.67	-0.47	-0.25	0.63	0.72	0.44
d(90)	0.32	0.05	-0.92	0.35	0.33	0.05	-0.07	0.04	-0.16	-0.19	-0.21	-0.31	-0.42	-0.34	-0.37	-0.38	-0.47	-0.66	-0.88	-0.86	0.31	0.20	0.06
Sorting	-0.79	-0.84	0.27	-0.88	-0.78	-0.32	-0.14	0.56	0.73	0.83	0.89	0.92	0.89	0.89	0.85	0.82	0.80	0.62	0.37	0.12	-0.87	-0.69	-0.78
Phi -2	0.29	0.25	-0.08	0.14	0.07	-0.01	-0.04	-0.19	-0.20	-0.20	-0.20	-0.19	-0.24	-0.15	-0.13	-0.11	-0.11	-0.08	-0.08	-0.08	0.16	0.16	0.16
Phi -1.5	0.29	0.25	-0.08	0.14	0.07	-0.01	-0.04	-0.19	-0.20	-0.20	-0.20	-0.19	-0.24	-0.15	-0.13	-0.11	-0.11	-0.08	-0.08	-0.08	0.16	0.16	0.16
Phi -1	0.29	0.25	-0.08	0.14	0.07	-0.01	-0.04	-0.19	-0.20	-0.20	-0.20	-0.19	-0.24	-0.15	-0.13	-0.11	-0.11	-0.08	-0.08	-0.08	0.16	0.16	0.16
Phi -0.5	0.29	0.25	-0.08	0.14	0.07	-0.01	-0.04	-0.19	-0.20	-0.20	-0.20	-0.19	-0.24	-0.15	-0.13	-0.11	-0.11	-0.08	-0.08	-0.08	0.16	0.16	0.16
Phi 0	0.99	0.97	-0.18	0.56	0.31	-0.16	-0.29	-0.64	-0.69	-0.68	-0.67	-0.65	-0.66	-0.51	-0.46	-0.43	-0.41	-0.30	-0.19	-0.08	0.84	0.48	0.69
Phi 0.5	1.00	0.98	-0.17	0.57	0.32	-0.17	-0.31	-0.65	-0.70	-0.69	-0.68	-0.66	-0.66	-0.52	-0.47	-0.44	-0.42	-0.30	-0.19	-0.07	0.87	0.49	0.70
Phi 1	0.98	1.00	-0.17	0.67	0.41	-0.14	-0.30	-0.71	-0.77	-0.76	-0.74	-0.72	-0.71	-0.57	-0.52	-0.48	-0.46	-0.33	-0.20	-0.06	0.94	0.54	0.76
Phi 1.5	-0.17	-0.17	1.00	-0.17	-0.17	0.00	0.10	-0.18	0.00	0.02	0.03	0.13	0.19	0.21	0.26	0.27	0.36	0.63	0.95	0.95	-0.16	-0.07	0.07
Phi 2	0.57	0.67	-0.17	1.00	0.89	0.28	0.05	-0.69	-0.80	-0.84	-0.86	-0.86	-0.79	-0.74	-0.69	-0.65	-0.63	-0.44	-0.23	-0.06	0.79	0.65	0.73
Phi 2.5	0.32	0.41	-0.17	0.89	1.00	0.61	0.38	-0.46	-0.64	-0.75	-0.80	-0.84	-0.74	-0.76	-0.71	-0.68	-0.67	-0.47	-0.24	-0.08	0.53	0.60	0.59
Phi 3	-0.17	-0.14	0.00	0.28	0.61	1.00	0.92	0.16	-0.08	-0.30	-0.43	-0.46	-0.39	-0.56	-0.55	-0.53	-0.50	-0.35	-0.10	0.07	-0.08	0.43	0.08
Phi 3.5	-0.31	-0.30	0.10	0.05	0.38	0.92	1.00	0.40	0.18	-0.08	-0.24	-0.29	-0.20	-0.47	-0.46	-0.46	-0.42	-0.28	-0.01	0.15	-0.26	0.27	-0.07
Phi 4	-0.65	-0.71	-0.18	-0.69	-0.46	0.16	0.40	1.00	0.90	0.76	0.66	0.52	0.46	0.24	0.14	0.10	0.06	-0.13	-0.22	-0.23	-0.75	-0.41	-0.08
Phi 4.5	-0.70	-0.77	0.00	-0.80	-0.64	-0.08	0.18	0.90	1.00	0.93	0.85	0.75	0.67	0.41	0.30	0.25	0.22	0.02	-0.06	-0.06	-0.82	-0.62	-0.70
Phi 5	-0.69	-0.76	0.02	-0.84	-0.75	-0.30	-0.08	0.76	0.93	1.00	0.96	0.88	0.78	0.39	0.49	0.43	0.39	0.15	0.00	-0.08	-0.81	-0.09	-0.75
Phi 5.5	-0.68	-0.74	0.03	-0.86	-0.80	-0.43	-0.24	0.66	0.85	0.96	1.00	0.94	0.82	0.75	0.65	0.60	0.55	0.28	0.05	-0.08	-0.80	-0.70	-0.74
phi 6	-0.66	-0.72	0.13	-0.86	-0.84	-0.46	-0.29	0.52	0.75	0.88	0.94	1.00	0.88	0.82	0.74	0.70	0.67	0.43	0.19	0.03	-0.77	-0.71	-0.75
Phi 6.5	-0.66	-0.71	0.19	-0.79	-0.74	-0.39	-0.20	0.46	0.67	0.78	0.82	0.88	0.72	0.73	0.70	0.67	0.04	0.50	0.20	0.09	-0.75	-0.73	-0.04
Phi 7	-0.52	-0.57	0.21	-0.74	-0.76	-0.56	-0.47	0.24	0.41	0.59	0.75	0.82	0.73	1.00	0.98	0.96	0.93	0.75	0.37	0.05	-0.01	-0.02	-0.01
Phi 7.5	-0.47	-0.52	0.26	-0.69	-0.71	-0.55	-0.46	0.14	0.30	0.49	0.65	0.74	0.70	0.98	1.00	1.00	0.98	0.85	0.45	0.09	-0.55	-0.55	-0.57
Phi 8	-0.44	-0.48	0.27	-0.65	-0.68	-0.53	-0.46	0.10	0.25	0.43	0.60	0.70	0.67	0.90	0.99	1.00	0.99	0.80	0.46	0.11	-0.52	-0.49	-0.55
Phi 8.5	-0.42	-0.46	0.36	-0.63	-0.67	-0.50	-0.42	0.06	0.22	0.39	0.22		0.04	0.93	0.98	0.99	1.00	1.00	0.30	0.20	0.30	-0.45	-0.32
Phi 9	-0.30	-0.33	0.63	-0.44	-0.47	-0.35	-0.28	-0.13	0.02	0.15	0.28	0,43	0.50	0.73	0.83	08.0	0.90	1.00	1.00	0.49	-0.33	-0.27	-0.32
Phi 9.5	-0.19	-0.20	0.95	-0.23	-0.24	-0.10	-0.01	-0.22	-0.06	0.00	0.05	0.19	0.28	0.37	0.45	0.48	0.00	0.82	1.00	0.00	0.19	-0.10	-0.03
Phi 10	-0.07	-0.06	0.95	-0.06	-0.08	0.07	0.15	-0.23	-0.06	-0.08	-0.08	0.03	0.09	0.05	0.09	0.11	0.20	0.49	0.68	1.00	1 00	0.03	0.15
Phi 10.5	0.87	0.94	-0.16	0.79	0.53	-0.08	-0.26	-0.75	-0.82	-0.81	-0.80	-0.//	-0.75	-0.01	-0.55	-0.52	-0.30	-0.55	-0.19	-0.04	1.00	1.00	0.01
Skewness	0.49	0.54	-0.07	0.65	0.60	0.43	0.27	-0.41	-0.62	-0.69	-0.70		-0./3	-0.62	-0.55	-0.49	-0.45	-0.27	-0.10	0.03	0.58	1.00	0.20
Sorting	0.70	0.76	0.07	0.73	0.59	0.08	1	-0.68	-0.70	-0.75	-0.74	-0.75	-0.64		-0.57	-0.55	-0.52	-0.32	-0.03	0.15	U.81	0.20	1.00

.

.

Hudson River Database Release 3.5 Notes:

.

(

(

(

1. Table represents 133 shallow sediment samples from 133 low resolution coring sites

Table 3-4

Regression Coefficients (r) for Correlations Among Total PCBs, ΔMW, MDPR, and Laser Grain-Size Distribution Parameters

Parameter	Log (Total PCB)	MDPR	ΔΜΨ	No. of
	mø/ko			Samples
Clay %	0.19	0.23	0.17	149
Silt %	0.35	0.25	0.26	149
Fine Sand %	0.33	0.33	0.14	147
Madium Sond %	-0.23	-0.19	-0.14	149
Cooree Sond	-0.30	-0.34	-0.25	149
Coarse Sand	-0.24	-0.24	-0.18	149
Uravel %	-0.21	-0.17	-0.14	149
Mean Phi	0.35	0.37	0.29	155
Skewness	-0.40	-0.38	-0.30	155
Sorting	-0.32	-0.33	-0.26	155
Phi -0.5	-0.27	-0.24	-0.20	136
Phi - I	-0.27	-0.23	-0.19	136
Phi -1.5	-0.27	-0.24	-0.20	136
Phi -2	-0.27	-0.24	-0.20	136
Phi 0	-0.35	-0.37	-0.31	136
Phi 0.5	-0.30	-0.35	-0.29	136
Phi 1	-0.34	-0.37	-0.30	136
Phi 1.5	-0.39	-0.37	-0.30	136
Phi 10	0.10	0.00	-0.02	136
Phi 10.5	0.01	-0.08	-0.10	136
Phi 2	-0.31	-0.27	-0.21	136
Phi 2.5	-0.19	-0.16 .	-0.12	136
Phi 3	0.09	0.10	0.08	136
Phi 3.5	0.14	0.16	0.12	136
Phi 4	0.34	0.36	0.28	136
Phi 4.5	0.41	0.38	0.30	136
Phi 5	0.47	0.43	0.35	136
Phi 5.5	0.44	0.40	0.33	136
Phi 6	0.43	0.36	0.30	136
Phi 6.5	0.42	0.38	0.31	136
Phi 7	0.31	0.31	0.26	136
Phi 7.5	0.30	0.31	0.26	136
Phi 8	0.26	0.27	0.23	136
Phi 8.5	0.25	0.24	0.20	136
Phi 9	0.18	0.17	0.14	136
Phi 9.5	0.10	0.03	0.01	136
d(10)	-0.19	-0.26	-0.20	147
d(15)	-0.27	-0.34	-0.26	147
d(20)	-0.30	-0.35	-0.28	147
d(30)	-0.33	-0.36	-0.29	147
d(40)	-0.34	-0.36	-0.29	147
d(50)	-0.31	-0.34	-0.27	147
d(60)	-0.28	1 21	_0.24	147
d(00)	-0.20	-0.31	_0.23	147
	-0.23	-0.27	-0.22	147
u(00)	-0.17	-0.20	-0.10	
d(83) .	-0.16	-0.18	-0.14	14/
	-0.18	-0.19	-0.15	
(d(99)	-0.10	-0.10	-0.08	147

Hudson River Database Release 3.5

े ्र

Table 3-5

Regression Coefficients (r) for Correlations Among Total PCBs, ΔMW, MDPR, and ASTM Grain-Size Distribution Parameters

Parameter	Log (Total PCB) mg/kg	MDPR	ΔМ₩	No. of Samples
Fines %	0.21	0.19	0.17	130
Fine Sand %	-0.07	-0.03	-0.02	130
Coarse Sand	-0.23	-0.23	-0.23	130
Medium Sand %	-0.14	-0.20	-0.18	130
Gravel %	-0.18	-0.08	-0.09	130
<0.075 mm	0.22	0.16	0.13	122
>0.075 mm	0.07	0.04	0.01	122
>0.15 mm	-0.21	-0.12	-0.09	122
>0.425 mm	-0.04	-0.10	-0.08	122
>1.0 mm	-0.11	-0.15	-0.13	122
>1.4 mm	-0.11	-0.14	-0.11	122
>2.0 mm	-0.16	-0.15	-0.13	122
>4.0 mm	-0.20	-0.11	-0.09	122
>4.75 mm	-0.14	0.00	0.02	122

Hudson River Database Release 3.5

,) |

.

Table 3-6 Regression Coefficients (r) for Correlations Among Total PCBs, **\DeltaMW, MDPR, Chemical, and Radionuclide Parameters**

Individual Samples:

.,

Parameter	Log(Total PCB) mg/kg	MDPR (Shallow Segment)	۵MW (Shallow Segment)	No. of Samples
Total Kjeldahl Nitrogen	0.376	-0.1691	-0.1898	24
Total Organic Carbon	0.3964	0.0541	0.0394	24
C/N	0.2929	0.3604	0.355	24
Hudson River Database Release 3 5	<u> </u>			- <u></u>

Hudson River Database Release 3.5

Shallow Sediments Only:

Parameter	Log(Total PCB) mg/kg	MDPR (Shallow Segment)	۵MW (Shallow Segment)	No. of Samples
Be Surficial Sediment	0.0825	0.0825	0.0965	169
¹³ Cs Surficial Sediment	0.4508	0.3408	0.3117	162
¹³⁷ Cs Bottom Slice	-0.1183	-0.2005	-0.17	158
Hudson River Database Release 3.5				TAMS

Hudson River Database Release 3.5

Complete Core Averages:

Parameter	Log(Mass/Area) g/m^2	MDPR (Core Length-Weighted Average)	∆MW (Core Length-Weighted Average)	No. of Samples
Be Surficial Sediment	0.1483	0.1401	0.1491	169
¹³ Cs Surficial Sediment	0.2827	0.2905	0.2586	162
¹³⁷ Cs Bottom Slice	0.1159	0.0164	0.0386	169

Hudson River Database Release 3.5

Table 3-7

Regression Coefficients (r) for Correlations Among Total PCBs, Δ MW, MDPR, and Bulk Sediment Properties for all Sediments and Shallow Sediments

Parameter	Log (Total PCB)	MDPR	7WM.	No. of
	mg/kg			Samples
All Sediment Segments				
Bulk Density	-0 4957	-0 2879	-0.2652	344
Percent Solids	-0 5835	-0 341	-0.2923	350
Solid Specific Weight	-0 5447	-0 3407	-0 2997	353
Particle Density	-0 1889	-0.001	-0 0155	335
Shallow Sediment Segments				
Bulk Density	-0.5557	-0.3997	-0 3467	158
Percent Solids	-0 6547	-0.5443	-0.4749	163
Solid Specific Weight	-0 5992	-0.4877	-0.4244	158
Particle Density	-0 2645	-0.0232	-0.045	153

Hudson River Database Release 3.5

....

Table 3-8

Regression Coefficients (r) for Correlations Among Length-Weighted Average Total PCB, Total PCB Mass/Unit Area and Several Important Ancillary Parameters

Variable	Log of Core Length- Weighted Average PCB (mg/kg)	No. of Samples	Log of MPA (g/m ²)	No. of Samples
¹³⁷ Cs Shallow Segment	0.41	166	0.31	166
Silt % (Laser)	0.54	165	0.48	165
Bulk Density			-0.48	156
Percent Solids	-0.72	164	-0.60	165

Hudson River Database Release 3.5

<u>الا</u>

Assessment of Core Profiles in the TI Pool¹

Inventory Decrease	Inventory Increase	No Change	Undiscerned	No 1984 Data for Comparison
Inventory Decrease 01A 01B 02A 02B 02C 03A ⁴ 03C 04A ⁴ 04B 05B 06A 06B 06C 07A 07D	Inventory Increase 01D 04D 05A ² 05C ² 05D ² 07C 08A 08C ² 08E 09C 10C 11A 12D	No Change 01C 03B 04C 08B 09A 12A 12B 12E 13A ³ 14C 14D 15B 17A	Undiscerned 08D ^s 10A	No 1984 Data for Comparison 16A 16B 16C 16E 17C 17D 17E 18B 18C 18D 18E 19A
07B 07D 09B 09D ⁴ 09E 09F 10B ⁴ 10D ⁴ 11B ⁴ 11C ⁴ 12C ⁴ 13B ³ 14A 14B 17B 18A	13C ⁻² 16D ² 15A ² 15C ² 15D ²			

Notes

1. Core profiles are provided in Appendix C.

2. Gains very large (2x or higher).

3. 1984 PCB profile based on screening analysis only.

4. Evidence for sediment scour present.

5. Appears consistent with inventory decrease.

300387

Summary Data for Hot Spots Surveyed by the Low Resolution Coring Program¹

Hot Spot	Area	Mean Core PCB Concentration	PCB Quantity
	(ft ²)	(mg/kg)	(lbs)
25	300,000	100	2,440
28	1,026,800	109	9,090
31	194,300	516	8,150
34	955,800	159	12,350
35	245,400	105	2,090
37	1,239,700	116	11.680
39	284,000	161	3,720

Note:

1. Estimates by Malcolm Pirnie (1979) as reported in Tofflemire and Quinn (1979).

Assignment Classifications for 1976 - 1978 Samples for Solid Specific Weight Based on the Low Resolution Coring Results

PCB Concentration Range ¹ 1976-1978 Length-Weighted Average (mg/kg)	Assigned Solid Specific Weight (g/cc)
320 ≤ Total PCB	0.51
$100 \le \text{Total PCB} < 320$	0.70
$32 \leq \text{Total PCB} < 100$	0.79
$10 \le \text{Total PCB} < 32$	1.03
$3.2 \leq \text{Total PCB} < 10$	1.15
$0.32 \leq \text{Total PCB} < 3.2$	1.20
Total PCB < 0.32	1.37

Note:

1. PCB concentrations are binned on a logarithmic scale.

Assignment of Grain-Size Distribution Bins for Determination of Principal Fraction for 1977 NYSDEC Samples

Phi or Sediment Class ¹	Principal Fraction
Clay	Clay
Silt	Silt
4	Fine Sand
3	Fine Sand
2	Fine Sand
1	Medium Sand
0	Medium Sand
-1	Coarse Sand

Note:

~ 1

4.14

....

أود رو

1. From Normandeau, 1977.

Assignment of Principal Sediment Fraction Based on 1977 NYSDEC Visual Sediment Classifications

Visual Classification Code	NYSDEC Texture ²	Principal Fraction
(1st Digit)		
0	Clay	Clay
1	Silt	Silt
2	Muck	Muck
3	Muck and W. C. ³	Muck
4	Fine Sand	Fine Sand
5	Fine Sand and W. C.	Fine Sand
6	Sand	Medium Sand
7	Sand and W. C.	Medium Sand
8	Coarse Sand	Coarse Sand
9	Coarse Sand and W. C.	Coarse Sand

Notes:

1. As reported in electronic file (Bopp, 1990)

2. Based on Tofflemire & Quinn (1979).

3. W. C. is assumed to be wood chips.

Data Set'	· · · · · · · · · · · · · · · ·	Shapiro Wilk	Probability of a Log
		W Statistic	Normal Distribution ²
Length Weighted Averages (LWA) (0-12")	NYSDEC 1976-1978 Survey	0.980	0.490
	Low Resolution Core Study		
	Hot Spots Only	0.985	0.860
	All Points Below the TI Dam	0.978	0.440
Mass/Area (MPA)	NYSDEC 1976-1978 Survey	0.971	0.150
	Low Resolution Core Study		
	Hot Spots Only	0.976	0.470
	All Points Below the TI Dam	0.971	0.180

Shapiro-Wilk Statistics for 1976-1978 and 1994 Hudson River Sediment Samples Below the TI Dam

Hudson River Database Release 3.5

Notes:

. .

....

....

1. All data are log-transformed.

2. Likelihood of normality is rejected when probability ≤ 0.05 .

Estimates of Mean Values for PCB Mass per Unit Area and Length-Weighted Average for Sediments Below the TI Dam

Mean Value Statistics for PCB Mass per Unit Area
--

		1976-	1978'		1994'						
		(0 to 1	2 in.)			(Entire	Core)				
				Standard			Standard				
		Simple	Unbiased	Error on		Simple	Unbiased	Error on			
Hot Spot	Geometric	Arithmetic	Arithmetic	Unbiased	Geometric	Arithmetic	Arithmetic	Unbiased			
	Mean	Mean	Mean ²	Mean	Mean	Mean	Mean ²	Mean			
	C _G	C,	C'4	σ'_{A}	C _G	C _A	C'A	$\sigma'_{\rm A}$			
<u> </u>	(g/m^2)	(g/m ²)	(g/m^2)	(g/m^{2})	(g/m ²)	(g/m^2)	(g/m²)	(g/m^2)			
25	17	26	24	9	11	24	24	н			
28	12	17	18	4	91	142	193	86			
31	42	54	55	23	7	11	12	6			
34	11	18	19	5	3	10	9	5			
35	13	16	16	4	15	18	18	6			
37	11	15	16	5	3	5	6	2			
39	10	13	12	2	11	22	39	20			
1823	4	6	7	4	8	8	8	4			

Hudson River Database Release 3.5

, , ,

TAMS

Mean Value Statistics for PCB Length-Weighted Average Concentration (0 to 12 inches)

		1976-	1978 ¹		1994 ¹					
Hot Spot	Simple Geometric Arithmetic Mean Mean		Unbiased Error o Arithmetic Unbiase Mean ² Mean		Geometric Mean	Simple Arithmetic Mean	Unbiased Arithmetic Mean ²	Standard Error on Unbiased Mean σ'		
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
25	73	147	132	61	32	87	93	52		
28	46	73	79	19	224	395	470	208		
31	224	319	337	168	22	41	44	25		
34	43	81	89	25	11	31	31	17		
35	52	68	71	19	64	98	94	45		
37	42	66	75	25	13	24	27	12		
39	40	55	52	11	14	30	36	16		
1821	12	18	24	13	24	24	24	· ⁴		

Hudson River Database Release 1.5

Notes

- 1 . See text for discussion on the creation of the individual sample values for MPA and length-weighted average (LWA).
- 2 This value was calculated using a minium variance, unbiased estimator for the arithmetic mean as given in Gilbert (1987).
- 3. Number refers to dredge location 182. (MPI, 1992). No hot spot-number was assigned to this area.
- 4 Values were ommitted as a result of not having enough sample points.

LAMS

			No. of S Locati	ample ions	Sediment Invo		ventories	994	Inventory Change⁴	Original M Inventory 1 1976-	PI (1992) Estimates ⁷ 1978
Hot Spot	Dredge Location	Area (m²)	1976- 1978	1994	MPA ^{1,3} (g/m ²)	Inventory (kg)	MPA ²³ (g/m ²)	Inventory (kg)		MPA (g/m²)	Inventory (kg)
25	153	23,131	7	9	24.1	557	24.5	566	None	44.7	1,033
28	160	105,522	27	10	17.5	1850	193.2	20,386	Gain	21.6	2,275
31	167	15,038	4	5	55.4	834	12.1	182	Loss	97.3	1,463
34	172 173 174 175	11,606 8,713 21,205 36,062	3 3 6 6	1 1 2 2	19.4 19.4 19.4 19.4	225 169 411 699	9.3 9.3 9.3 9.3	108 81 197 336		4.9 16.7 16.6 33.1	56 145 351 1,193
	176	24,374			19.4	472		$\frac{227}{050}$		32.7	797
	Total	101,959	28	9	1	1,970		950	Loss		2,542
35	177	22,892	11	4	16.2	371	17.8	408	None	20.7	473
37	202	136,008	15	11	16.4	2230	5.5	749	Loss ⁵	20.8	2,825
39	207	11,168	2	4	12.4	138	39.0	435		13.7	153
	210	94,526	13	10	12.4	1172	39.0	3.686		17.3	1,633
	Total	105,694	15	14		1,311		4,121	None		1,786
	182*	15,281	6	2	7.2	110	7.6	116.6	None	5.4	83
Total of S Ar	Surveyed eas	525,525	113	64		9,239		27,478			12,480

 Table 4-8

 Comparison of MPI (1992) and Low Resolution Inventory Estimates for Dredge Locations

Hudson River Database Release 3.5

Notes

1 1978 MPA -(Average concentration reported in MPI, 1992 mg/kg)*(solid specific weight determined from Figure 4 2-1)

(12 inches)(2 54cm/in)*(1kg/1000g)*(1g/1000mg)*(10*cm²/m²)

2 The 1994 MPA is for the full core using the measured density for each sample

3 MPA represents the minimum variance unbiased estimator of the mean for the associated samples (Gilbert, 1987)

4 Change is denoted when the MPA geometric means are statistically different at a 95% confidence level

5 See text for discussion of this hot spot.

6 Dredge location 182 as designated by MPI (1992)

7 As originally reported in MPI (1992)

(

	Table 4-9
Characterization of the 1976	1978 and 1994 Sediment Sample Types

. .

- -

	19	76-1978	····	1994								
Hotspot	No. of Sample Locations	No. of Cores	No. of Grabs	No. of Sample Locations	No. of Complete Cores	No. of Cores Nearly Complete by PCB Profile	No. of Incomplete Cores with Falling ¹¹⁷ Cs	No. of Incomplete Cores with Rising ¹³⁷ Cs				
25	7	3	4	9	9							
28	27	8	19	10	8	2	1	I				
31	4	I	3	5	5							
34	28	4	24	9	3	ł	6					
35	1 11	6	5	4	2	2	2					
37	13	7	6	11	5	1	5	1				
39'	15	9	6	14	6	3	3	5				
DL 182	6	4	2	2	1		1					

Hudson River Database Release 3.5

Note

1 The large number of incomplete cores with rising ¹¹⁷Cs at this hotspot indicate that a potentially substantial PCB inventory may exist at depth

TAMS

1

		1	1		f	
	1 '	1	Change in	/	Estimated	
	1	1	Shallow	1994	Inventory	
	MPI Dredge	Change in	Sediment	Inventory	Loss(-) or	:
Hot Spot	Location	Inventory	Concentration	Depth	Gain (+)	Interpretation
110.00		(MPA)	(LWA) ¹	(inches) ²	(kg)	incipieution .
	<u> </u> /				<u>`````````````````````````````````</u>	
25	153	None	None	12.2	0	Inventory relatively constant. Little burial or scour
28	160	+ 11x	+ 6x	21.2	18,536	Inventory appears to have increased substantially with some peak concentrations at depth, suggesting burial with less contaminated (but not clean) sediments. However, this gain may result from an inaccurate The increase in shallow concentrations suggests mass loss to water column, possibly via scour.
31	167	- 5x	- 8x	10.4	-652	Decrease in inventory and shallow sediment concentration plus shallow inventory depth indicates loss to water column, posssibly via scour
34	172, 173, 174, 175, 176	- 2x	- 3x	11.2	-1,026	Decrease in inventory and shallow sediment concentration plus shallow inventory depth indicates loss to water column, posssibly via scour
35	177	None	None	130	0	Inventory relatively constant Little burial or scour.
37	202	- 3x	- 3x	11.5	-1,481	Decrease in inventory and shallow sediment concentration plus shallow inventory depth indicates loss to water column, posssibly via scour.
39	207, 210	None	- 1.4x	21.9 ³	2,8104	Potential increase in inventory plus decline in shallow sediment concentration indicates burial by less contaminated (but not clean) sediment.
	182	None	None	23.8	0	Dredge location inventory relatively constant. Little burial or scour. However, near-shore locations outside dredge boundary indicate burial with less contaminated sediment.
Net Change					18,187	Evidence for PCB loss from the sediment is found in three of eight study areas. A fourth exhibits evidence for inventory gain and sediment scour. A fifth exhibits a likely inventory increase while the remaining three appear unchanged (neither loss nor burial).

 Table 4-10

 Assessment of the Studied Hot Spot Areas Below the TI Dam

Notes

- 1 Change in inventory or concentration is calculated as the ratio of the larger value over the smaller value. Negative values indicate decline from 1976-1978 to 1994. Positive values indicate increase from 1976-1978 to 1994. Changes are only denoted for statistically significant differences between 1976-1978 and 1994 based on an analysis of the log-transformed data. The magnitude of the change is based on the minimum variance, unbiased estimate of the arithmetic mean.
- 2 Inventory depth represents the average of all cores within the hot spot. It is calculated from the depth at which underlying sediment PCB concentrations are less than 25 percent of the peak concentration in a core.

3 This hot spot was characterized with a large number of incomplete cores with rising ¹¹⁷Cs and PCB levels with increasing depth. As a result, the inventory depth estimate must be considered only a lower bound estimate. It is likely that the actual depth of the 1994 PCB inventory is substantially deeper.

TAMS

4 Although the difference between 1994 and 1976-1978 was not statistically significant, the gain in inventory is still considered to be real based on the large number of incomplete cores. It is likely that the value given represents a lower bound on the actual sediment inventory gain.

Comparison of Historical and 1994 PCB Inventories for *Hot Spots* Below the TI Dam Page 1 of 2

Estimates b	y Malcom Pir	<u>nie, 1979¹</u>				La	w Resolution C	ore Estimate
Hot Spot	Агеа	Mean Core PCB Concentration	PCB Quantity	PCB Quantity SSW ⁶ Revised PCB Quantity		мра	PCB Quantity	Delta. ⁹
	(m ²)	(mg/kg)	(kg)	(g/cc)	(kg)	(g/m ²)	(kg)	
25	27,900	100	1,107	0.70	775	24.5	682	-12%
28	95,400	109	4,123	0.70	2,886	193.2	18,431	539%
31	18,100	516	3,697	0.51	1,885	12.1	219	-88%
34	88,800	159	5,602	0.70	3,921	9.3	827	-79%
35	22,800	105	948	0.70	664	17.8	407	-39%
37	115,200	116	5,298	0.70	3,709	5.5	634	-83%
39	26,400	161	1,687	0.70	1,181	39.0	1,029	-13%

Estimates by Tofflemire and Quinn, 1979⁵

(

Low Resolution Core Estimate

Hot Spot	Area	Mean Core PCB Concentration	PCB Quantity	SS₩ ⁶	Revised PCB Quantity	MP	PCB Quantity	Delta ⁹
	(m ²)	(mg/kg)	(kg)	(g/cc)	(kg)	(g/m	²) (kg)	
25	18,900	103	928	0.70	649	24.5	462	-29%
28	94,900	163	7,360	0.70	5,152	193.2	18,334	256%
31^2	12,800	163	995	0.70	696	12.1	155	-78%
34	109,400	163	8,492	0.70	5,944	9.3	1,019	-83%
35 ³	29,900	70	886	0.79	700	17.8	533	-24%
37	139,400	108	5,358	0.70	3,751	5.5	768	-80%
39 ⁴				L				
Low Resolution Core Estimate

Table 4-11

Comparison of Historical and 1994 PCB Inventories for Hot Spots Below the TI Dam Page 2 of 2

Estimates by Malcom Pirnie, 1992					Low Resolution Core Estim			ore Estimate	
Hot Spot	Area	Mean Core PCB Concentration	PCB Quantity	SS₩ ⁶	Revised PCB Quantity		МРА	PCB Quantity	Delta, ⁹
	(m ²)	(mg/kg)	(kg)	(g/cc)	(kg)		(g/m ²)	(kg)	
25	23,100	132	1,033	0.70	725		24.5	565	-22%
28	105,500	79	2,275	0.79	1,788		193.2	20,382	1040%
31	15,000	337	1,463	0.51	746		12.1	181	-76%
34	102,000	89	2,542	0.79	1,998		9.3	950	-52%
35	22,900	71	473	0.79	372		17.8	408	10%
37	136,000	75	2,825	0.79	2,220		5.5	749	-66%
39	105,700	52	1,786	0.79	1,404		39.0	4,122	194%

Phase 2-Derived Estimates from MPI (1992) Data⁸

Hot Spot	Area	Mean PCB Mass per Unit Area (MPA)	PCB Quantity		МРА	PCB Quantity	Delta; ⁹
_	(m ²)	(mg/kg)	(kg)	 	(g/m ²)	(kg)	
25	23,100	24	557		24.5	565	1%
28	105,500	18	1,850		193.2	20,382	1002%
31	15,000	55	834	in de la companya de La companya de la comp Participa de la companya de la companya de la companya	12.1	181	-78%
34	102,000	19	1,976		9.3	950	-52%
35	22,900	16	371		17.8	408	10%
37	136,000	16	2,230		5.5	749	-66%
39	105,700	12	1,311	e de la factoria República de la companya de la companya República de la companya de la companya de la companya de la companya de República de la companya de la comp República de la companya de la companya República de la companya de la comp República de la companya	39.0	4,122	214%

Hudson River Database Release 3.5

Notes:

- 1. Estimates by Malcolm Pirnie, 1979 as reported in Tofflemire and Quinn (1979).
- 2. Hot Spot 31 assigned to NAI treansect 6-55-57 as reported in Tofflemire and Quinn (1979).
- 3. Hot Spot 35 assigned to NAI treansect 5-90 as reported in Tofflemire and Quinn (1979).
- 4. Hot Spot 39 was not identified in Tofflemire and Quinn (1979).
- 5. Table 14 from Tofflemire and Quinn (1979).
- 6. Assigned based on average PCB concentration from Table 4.2-2.
- 7. Estimate of PCB quantity from Malcolm Pirnie, 1979. SSW assignment based on the minimum variance unbiased estimator of the mean PCB concentration.
- 8. Derivation shown on Table 4.2-7.
- 9. Delta_i = 100%x(Original Inventory -1994 Inventory)/Original Inventory

TAMS

ω 0039 ω

Table 4-12 Summary of 1994 Hot Spot Inventories Below the TI Dam Low Resolution Coring Results

Hot Spot	Area ²	PCB Quantity			
	(m ²)	(metric tons)			
25	23,100	0.57			
28	105,500	20.4			
31	15,000	0.18			
34	102,000	0.95			
35	22,900	0.41			
37	136,000	0.75			
39	105,700	4.12			
DL 182 ³	15,300	0.12			
Total metric tons = 27.5					
Hudson River Database Release 3.5 TAN					

Hudson River Database Release 3.5

Notes:

-

أميد

· • • •

1. Hot Spot number designations as defined in Tofflemire and Quinn (1979).

- 2. Hot Spot areas are based on associated dredge location areas as defined in MPI (1992).
- 3. Dredge location 182 as defined in MPI (1992).

 $\frac{1}{2} + \frac{1}{2} + \frac{1}$

Table 4-13

Estimates of PCB Concentration in Shallow, Near-Shore Sediments

	Low Resolution Near- Shore Clusters ¹	Low Resolution Fine Sediment Cores ^{1,2}	1984 Fine Sediment Samples ^{1,2,6}	Original 1984 Shallow Sediment Estimate
Number of Samples	11	19	100	
Minimum	10	0.4	0	
Maximum	281	281	778	
Geometric Mean	46	19	13	
Arithmetic Mean	68	45	52	
MVUE ³	68	68	75	
95% UCL⁴ on Arithmetic Mean	151	264	135	66 ^s

Concentrations in mg/kg.

Notes:

(

- 1. Sampling locations within 50 ft of shoreline. Shoreline based on Normandeau, 1976.
- 2. Sediment classification as fine sediment assigned based on side-scan sonar results.
- 3. Minimum Variance Unbiased Estimator of the arithmetic mean is given by:

Where:

 χ = MVUE of the arithmetic mean

y = Mean natural logarithm of the data

 S_{2}^{2} = Variance of the natural logarithms of the data

- 4. Upper Confidence Limit
- 5. Cited from Phase I Report, Interim Characerization And Evaluation (TAMS/Gradient 1991)
- 6. Zero values were set to 0.5 mg/kg for calculation of log-based statistics.

 $(y + s_y^2/2)$

 $\chi = e$

Figures

TAMS

Figure 2-1 Distance Between 1984 and 1994 Sediment Sample Locations

(

Source: FAMS/Gradient Database, Release 3.5

Figure 2-2 **Distribution of Core Segments Depths**

Source: TAMS/Gradient Database, Release 3.5

....

TAMS

1 1 1

All Core Segments

Shallow Sediment

Source: TAMS/Gradient Database, Release 3.5

Figure 2-5 Example Regressions for Low Resolution Sediment Core Field Split Pairs

ار ا ا

Figure 2-6 Precision in Total PCB Concentration for Low Resolution Core Field Splits

Examples of the Coincidence of ¹³⁷Cs and PCBs Over Time

Source: TAMS/Gradient Database, Release 3.5

TAMS

Figure 2-8 Classification of Shallow Sediment Samples Comparison of Visual Inspection and Laser Grain-Size Analytical Technique

Source: TAMS/Gradient Database, Release 3.5

36

Figure 2-9

Classification of Sediment Samples Comparison of Visual Inspection and ASTM Grain-Size Analytical Techniques TAMS

Figure 2-10 Classification of Sediment Samples Comparison of Grain-Size Analytical Techniques (ASTM and Laser Methods)

Molar Dechlorination Product Ratio vs Fractional Difference in Mean Molecular Weight Relative to Aroclor 1242 for All Low Resolution Sediment Core Results

Source: TAMS/Gradient Database, Release 3.5

Figure 3-2 **Total PCB Concentration vs Molar Dechlorination Product Ratio and Fractional Difference om Mean Molecular Weight Relative to Aroclor 1242**

Source: TAMS/Gradient Database, Release 3.5

.

Figure 3-3 Total PCB Concentration vs MDPR and \triangle MW Showing Cores with and without ¹³⁷Cs Present

TAMS

Figure 3-4 Congener Pattern Comparison Between Upper and Lower Segments on Potentially Cross-Contaminated Cores

300416

Figure 3-5 Congener Pattern Comparison Between Upper and Lower Segments on Cores without Cross-Contamination

.

- .

Figure 3-6 Comparison of the Low Resolution Core and High Resolution Core Subsampling Processes

.1

Figure 3-7 Sample Points Excluded as a Result of the Selection Criteria

Figure 3-8 Examination of the Relationship of MDPR and △MW to Total PCBs for Selected Low Resolution Sediment Core Results

Figure 3-9 Comparison of Low Resolution Core and High Resolution Core Regressions for MDPR and △MW vs Total PCBs

Source: TAMS Gradient Database, Release 3.5

-

300421

TAMS

Figure 3-10 Comparison of the Low Resolution Core and High Resolution Core Slicing Techniques on Measured Sample Values for High Resolution Core 19

Source: TAMS/Gradient Database, Release 3.5

Figure 3-11

300422

Comparison of the Low Resolution Core and High Resolution Core Slicing Techniques on Measured Sample Values for High Resolution Core 21

-

Comparison of Calculated Results for High Resolution Cores with the Low Resolution Core Regression Lines for ΔMW and MDPR vs Total PCBs

Source: TAMS Gradient Database, Release 3.5

Figure 3-13 Total PCBs Grouped by Bulk Density

Figure 3-14 Total PCBs Grouped by Percent Solids

<u>کر</u> ا

۔ محمد ا

> Figure 3-15 Total PCBs Grouped by Solid Specific Weight

Source: TAMS Gradient Database, Release 3.5.

.

Figure 3-16 Total PCBs Grouped by Particle Density

TAMS

Ase 3.5 ΔMW and MDPR Grouped by Bulk Density for All Sediment Segments

AMW and MDPR Grouped by Bulk Density for Shallow Sediment Segments

Figure 3-18 Total PCBs Grouped by Geologist's Classification

- -----

Figure 3-19 Total PCBs Grouped by Silt Fraction in Shallow Sediments TAMS

Source: TAMS Gradient Database, Release 3.5

Figure 3-20300432Total PCBs Grouped by Mean ϕ (Phi) in Shallow Sediments

Source: EAMS Gradient Database, Release 3.5

Figure 3-21 300433 Total PCBs Grouped by Total Organic Carbon

Figure 3-22 Total PCB Concentration and Mass per Unit Area Grouped by ⁷Be

AMW and MDPR Grouped by¹³⁷Cs in Shallow Sediments

(

Figure 3-25 Comparison of the Mean DN Value for 10-ft and 50-ft Circles

Source TAMS/Gradient Database, Release 3.5


~~~~

Classification of Sediment Samples Comparison of Visual and Analytical Techniques to the Interpretation of the Side-Scan Sonar Images



---

~ ``

Figure 3-28 Acoustic Signal Mean (DN50) Based on 50-ft Circles Grouped by Laser Analysis Principal Fraction



.

.

2

Source: TAMS/Gradient Database, Release 3.5

(

Figure 3-29

Comparison of the Regression Lines for the Confirmatory and Low Resolution Core Results against the DN50 for the 500 kHz Side-Scan Sonar Images



Source: TAMS/Gradient Database, Release 3.5

....

Figure 3-30 Comparison of 500 kHz Acoustic Signal (DN50) and Low Resolution Core PCB Levels in Shallow Sediments



....

Figure 3-31 Comparison of 500 kHz Acoustic Signal (DN50) and Low Resolution Core PCB Mass/Area





्रा

Figure 4-1 Typical Low Resolution Core Profiles for the TI Pool and Their Classification

Total <sup>137</sup>Cs (pCi/kg) 1 10<sup>4</sup> 4000 2000 6000 8000 0 0 €€ ó 1991 á o 10 20 Depth (inches) <del><</del>1963 30 -1954 40 50 Core 19 (RM 188.5) 60 500 1000 2500 0 1500 2000 Total PCBs (mg/kg) Legend: <sup>137</sup>Cs 0, **PCBs** 



Figure 4-2 High Resolution Core 19 from the TI Pool

300445





Figure 4-3 Core Locations Exhibiting Sediment Scour



Source: TAMS/Gradient Database, Release 3.5

Figure 4-4 Comparison Between 1984 and 1994 MPA for Total PCBs Showing Core Classications



Source: TAMS/Gradient Database, Release 3.5

Ĵ

Figure 4-5 Relationship Between 1984 and 1994 Sediment Inventories (MPA) for Total PCBs and Trichloro and Higher Homologues



Source: TAMS/Gradient Database, Release 3.5

Ĵ

Figure 4-6 Relationship Between the 1984  $\Sigma$ Tri+ Mass Per Unit Area (MPA<sub>3+</sub>) and the Change in Sediment PCB Inventory for the TI Pool

TAMS



đ

Figure 4-7 1984 Trichloro and Higher Homologues as MPA vs Mass Difference and Mole Difference Relative to 1994 - Log Scale



TAMS



Source: TAMS/Gradient Database, Release 3.5

Figure 4-8 Determination of the Molecular Weight of the Trichloro and Higher Homologues (∑Tri+) at the Time of Deposition



: . . .

· 1



Distribution of Mass Difference (g/m<sup>2</sup>) and Mole Difference (mole/m<sup>2</sup>) between 1984 and 1994

300452



Figure 4-10 Distribution of the Percent Change in PCB Molar Inventory (Delta<sub>M</sub>)



Figure 4-11 Change in (Moles/m<sup>2</sup>) by 1984 ∑Tri+ PCB Inventory



Figure 4-12 Change in Mass per Unit Area (MPA) by 1984 ∑Tri+ PCB Inventory



## Figure 4-13 Percent Change in PCB Molar Inventory (Delta<sub>M</sub>) by 1984 ∑Tri + PCB Inventory



Figure 4-14 Percent Mass Change (Delta<sub>PCB</sub>) by 1984 ∑Tri+ PCB Inventory



Figure 4-15 Statistical Analysis of Delta<sub>M</sub> as a Function of 1984 Sediment ∑Tri+ Inventory and NYSDEC Sample Type



Source: TAMS/Gradient Database, Release 3.5

Figure 4-16 Implications of the Inventory Change Analysis for the 1984 TI Pool Inventory



• • •

. . ,J

> Figure 4-17 Relationship Between Total PCB Concentration and Solid Specific Weight for Low Resolution Core Samples



Notes: 1) 1977-1978 data represents all NYSDEC sampling points between the TI Dam and Lock 5. Sediment texture data were obtained from NYSDEC (NYSDEC, 1990) and Normandeau (1977).

Source: TAMS/Gradient Database, Release 3.5

Figure 4-18 Comparison of 1977-1978 Sediment Classifications and Interpretation of the Side-Scan Sonar Images











e: TAMS/Gradient Database, Release 3.5

-

300464

Figure 4-21 Comparison of Geometric Mean PCB MPA and Length-Weighted Core Averages from the 1976-1978 NYSDEC and Low Resolution Core Surveys in Dredge Locations



Source: TAMS/Gradient Database, Release 3.5

TAMS

## Figure 4-22

Comparison of Geometric Mean PCB MPA and Length-Weighted Core Averages from the 1976-1978 NYSDEC and Low Resolution Core Surveys in Hot Spots



300466

Source: TAMS/Gradient Database, Release 3.5



Figure 4-24 Core Profiles in Areas of Continuous Deposition





Figure 4-25 Typical 1994 Sediment Core Profiles from Hot Spot 28



Figure 4-26 Typical 1994 Sediment Core Profiles from Hot Spots 25 and 35
## Plates





Plate 2-1 Low Resolution Coring Locations in Upper Hudson

Hudson River PCB Reassessment RI/FS Phase2: Further Site Characterization and Analysis Volume 2C-A: Low Resolution Sediment Coring Report

### EPA REGION II SCANNING TRACKING SHEET

DOC ID # <u>62465</u>

DOC TITLE/SUBJECT: PLATE 3-1 HUDSON RIVER PCB UPDATES #2 KEY TO LOCATIONS OF PLATES 3-2 THROUGH 3-20

THIS DOCUMENT IS OVERSIZED AND CAN BE LOCATED IN THE ADMINISTRATIVE RECORD FILE AT THE

SUPERFUND RECORDS CENTER 290 BROADWAY, 18<sup>TH</sup> FLOOR NEW YORK, NY 10007



Plate 3-2 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 14



Plate 3-3 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 13



Plate 3-4

Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 12, 15, and 17



Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 10 and 11



Hudson River Database Release 3.5

TAMS

Plate 3-6 Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 8 and 9



Plate 3-7

Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 6 and 7



Plate 3-8 Determination of the DN50 Values for the Low Resolution Coring Locations in Cluster 19



Plate 3-9 Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 4, 5 and 18







Plate 3-11

0

Determination of the DN50 Values for the Low Resolution Coring Locations in Clusters 1 and 2



Plate 3-12 Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot 25



Plate 3-13

Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot 25





- Fine = Fine or finer sediments NC = Schlinger
- NC = Sediment type estimated, not covered by side scan sonar

Plate 3-14

200 Feet

100

Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot 28





Hudson River Database Release 3.5

Plate 3-15 Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot 28



Plate 3-16

Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot 31



Hudson River Database Release 3.5

Plate 3-17

Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot 31



Plate 3-18 Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spot 34



Plate 3-19

Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spots 34 and 35



Plate 3-20

Determination of the DN50 Values for the Low Resolution Coring Locations in Hot Spots 34 and 35

|                                                      | PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PRI-SC<br>PR |  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Legend:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 1994 Low Resolution Core Location                    | Shoreline based on Normandeau, 1977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| NYSDEC 1984 Core Location                            | Interpretation of the Side Scan Sonar by R. Flood (1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| VYSDEC 1984 Grab Location                            | Mounds = Underwater sediment mounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Length Weighted Average                              | (historical dredge spoils?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| PCB Concentration (mg/Kg)                            | Rocky = Exposed bedrock or rocky sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| NOTE: All values are rounded to the nearest integer. | Fine = Fine or finer sediments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Marker Scale:                                        | NC = Sediment type estimated,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1 g/m^2                                              | not covered by side scan sonar<br>100 0 100 200 Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |





Hudson River Database Release 3.5



Hudson River Database Release 3.5



RM 190 FINE-NC Griffin Island 2 34 1 5 Legend: 1994 Low Resolution Core Location Shoreline based on Normandeau, 1977 Interpretation of the Side Scan Sonar by R. Flood (1993) NYSDEC 1984 Core Location Sedimentological Boundaries (113) NYSDEC 1984 Grab Location Mounds = Underwater sediment mounds 1984 1994 (historical dredge spoils?) Length Weighted Average PCB Concentration (mg/Kg) 4 4 Rocky = Exposed bedrock or rocky sediment Mass/Area (g/m^2) Coarse = Coarse or coarser sediments NOTE: All values are rounded to the nearest integer. Fine = Fine or finer sediments Marker Scale: NC = Sediment type estimated, 1 g/m^2 not covered by side scan sonar 200 g/m^ 100 100 200 Feet

Hudson River Database Release 3.5

TAMS

Plate 4-6 Comparison Between 1984 and 1994 Coring Results in Thompson Island Pool



Plate 4-7 Comparison Between 1984 and 1994 Coring Results in Thompson Island Pool







#### Plate 4-11 Changes in Inventory in the Thompson Island Pool 1984 vs. 1994



#### Plate 4-12 Changes in Inventory in the Thompson Island Pool 1984 vs. 1994



1. Hot Spot locations were digitized from NYSDEC's "PCB Reclamation Project" Drawings (December 1985) 2. % Change is calculated as follows: [(Mass/Area1994 - Mass/Area1984)/ Mass/Area 1984 ] \*100%

Hudson River Database Release 3.5

#### Plate 4-13 Changes in Inventory in the Thompson Island Pool 1984 vs. 1994



#### Plate 4-14 Changes in Inventory in the Thompson Island Pool 1984 vs. 1994



## Plate 4-15

Changes in Inventory in the Thompson Island Pool 1984 vs. 1994




# Plate 4-17 Changes in Inventory in the Thompson Island Pool 1984 vs. 1994



## Plate 4-18 Changes in Inventory in the Thompson Island Pool 1984 vs. 1994



## Plate 4-19 Changes in Inventory in the Thompson Island Pool 1984 vs. 1994



| Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lagand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |
| Legend.         • %change       Location of 1994 core. Symbol proportional to absolute mass LOSS relative to 1984.         • %change       Location of 1994 core. Symbol proportional to absolute mass GAIN relative to 1984.         • %change       Location of 1994 core. Symbol proportional to absolute mass GAIN relative to 1984.         • %change       Location of 1994 core. Symbol proportional to absolute mass GAIN relative to 1984.         • %change       Location of 1994 core. Symbol proportional to absolute mass GAIN relative to 1984.         • %change       Location of 1994 core. Symbol proportional to absolute mass GAIN relative to 1984.         • %change       Location of 1994 core. Symbol proportional to absolute mass GAIN relative to 1984.         • %change       Mass Difference (g/m <sup>2</sup> )         0 - 2.8       28 - 9.0       9.0 - 28         LOSS       • 0       • 0         • 0       • 0       • 0         • 0       • 0       • 0 | 500       0       500       1000       1500       2000       Feet         Motes:       1. Hot Spot locations were digitized from NYSDEC's "PCB Reclamation Project" Drawings (December         2. %Change is calculated as follows: [(1994 Moles/Area - 1984 Moles/Area)/ 1984 Moles/Area] * 100%         3. Mass difference is calculated as follows: (1994 Moles/Area - 1984 Moles/Area) * 281 g/mole |
| GAIN • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                         |

Low Resolution Coring and 1984 NYSDEC Sampling Results in the Thompson Island Pool:

Change in Sediment Inventory for Trichloro to Decachlorohomologues Exclusive of Dechlorination



Plate 4-21

# Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 25



| ▼<br>NYSDE(<br>×                                                                                                                                                                                                                                                           | <ul> <li>weighted average PCB concentration (mg/kg) for 0-12" interval (underlined).</li> <li>Be-7 not detected in 0-1 inch interval.</li> <li>Low resolution sediment core showing length weighted average PCB concentration (mg/kg) for 0-12" interval (underlined).</li> <li>Be-7 detected in 0-1 inch interval.</li> <li>C 1976-78 Sediment Survey:</li> <li>Sediment Grab: estimated 0' - 12' interval with mean PCB concentration (mg/kg).</li> <li>Sediment Core: 0' - 12' interval with length weighted average PCB concentration (mg/kg).</li> </ul> |     | <ul> <li>Rock or Rocky Sediment</li> <li>Coarse or Coarser Sediment</li> <li>Fine or Finer Sediment</li> <li>Mounds (Dredge Spoils?)</li> <li>TAMS Shoreline</li> <li>/// Proposed NYSDEC dredging location (MPI, 1992)</li> </ul> |   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 500                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500 | 1000 Feet                                                                                                                                                                                                                          | - |  |
| Notes:<br>1. Length-weighted average PCB concentrations for core sites exclude slices which are <10% of the overlying layer.<br>2. PCB concentration values are rounded to the nearest integer.<br>3. PCB concentration values for 1976-78 sediment survey from MPI, 1992. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                                                                                                                                                                                                                    |   |  |

Plate 4-22

Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 28

TAMS



Plate 4-23

Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 31



Plate 4-24

Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spots 34 and 35





Plate 4-26

Low Resolution Coring and 1976-78 NYSDEC Sampling Results Near Hot Spot 39



(

(

Plate 4-27

Low Resolution Coring and 1976-78 NYSDEC Sampling Results In TAMS' Location 41 and 42

# Low resolution sediment core showing length weighted average PCB concentration (mg/kg) for 0-12" interval (underlined). Be-7 detected in 0-1 inch interval. Sediment Grab: estimated 0' - 12' interval with Sediment Core: 0' - 12' interval with length weighted average PCB concentration (mg/kg). 1000 Feet

TAMS



(

Plate 4-28 Low Resolution Coring and 1976-78 NYSDEC Sampling Results In TAMS' Location 43 and 44

TAMS

### 300520

JC 2/98 points-IJ-



Plate 4-29 Key to Locations of Plates 4-21 Through 4-28

TAMS