Intended for

General Electric Company/SI Group, Inc.

Document type

Final Report

Date

March 2021

2020 ANNUAL GROUNDWATER MONITORING REPORT

DEWEY LOEFFEL LANDFILL
SUPERFUND SITE
CERCLA INDEX NO. 02-2012-2005
NASSAU, NEW YORK

2020 ANNUAL GROUNDWATER MONITORING REPORT DEWEY LOEFFEL LANDFILL SUPERFUND SITE CERCLA INDEX NO. 02-2012-2005 NASSAU, NEW YORK

Project no. **71541**

Recipient General Electric Company/SI Group, Inc.

Document type Final Report

Version [1]

Date March 31, 2021

Prepared by Amy Spooner-Stevens, P.G.; Robert Hornung, P.G.

Checked by Jesse Vollick, P.G.; Paul Hare, P.G., C.P.G.

Approved by **Doug Crawford, P.E.**

Ramboll

94 New Karner Road

Suite 106

Albany, NY 12203

USA

T 518-724-7272 F 518-869-2945 https://ramboll.com

CONTENTS

1.	Introduction	1
2.	Remedial System Operations	2
2.1	Leachate Collection System	2
2.2	Groundwater Extraction System	3
3.	Groundwater Elevations	7
3.1	Semi-Annual Water Level Measurements	8
3.2	Quarterly Fluid Monitoring	8
4.	Groundwater Monitoring	9
4.1	General	9
4.2	Groundwater Sampling	10
4.3	Data Quality Review	11
4.4	Groundwater Quality	11
4.4.1	Volatile Organic Compound Analyses	12
4.4.2	1,4-Dioxane Analyses	17
4.5	Extraction Well Water Quality	17
4.5.1	Volatile Organic Compound Analyses	18
4.5.2	1,4-Dioxane Analyses	18
4.5.3	Mann-Kendall Trend Analyses for Volatile Organic Compounds and	
	1,4-Dioxane	19
4.5.4	Semi-Volatile Organic Compound Analyses	20
4.5.5	PCB Analyses	20
4.6	Leachate Collection System Monitoring Results	20
4.7	Residential Well Monitoring	20
4.7.1	Volatile Organic Compound Analyses	21
4.7.2	1,4-Dioxane Analyses	23
4.7.3	Mann-Kendall Trend Analyses for Volatile Organic Compounds and	
	1,4-Dioxane	23
5.	Conclusions	24
6.	References	27

i

TABLES

- 2-1 Annual Volume Removed from Leachate Collection and Groundwater Extraction Systems
- 2-2 Cumulative Volume Removed from Leachate Collection and Groundwater Extraction Systems
- 2-3 Annual Mass of VOCs Removed from Leachate Collection System
- 2-4 Cumulative Mass of VOCs Removed from Leachate Collection System
- 2-5 Annual Mass of VOCs Removed from Individual Extraction Wells
- 2-6 Cumulative Mass of VOCs Removed from Individual Extraction Wells
- 2-7 Annual Mass of VOCs Removed from Groundwater Extraction System in 2020
- 2-8 Cumulative Mass of VOCs Removed from Groundwater Extraction System Through 2020
- 3-1 Water Level Measurements June 15, 2020
- 3-2 Water Level Measurements November 9, 2020
- 4-1 Spring 2020 Groundwater Sampling
- 4-2 Fall 2020 Groundwater Sampling
- 4-3 Summary of Spring 2020 Field Parameter Results
- 4-4 Summary of Fall 2020 Field Parameter Results
- 4-5 VOCs Detected in Spring 2020 Groundwater Samples
- 4-6 1,4-Dioxane Detected in Spring 2020 Groundwater Samples
- 4-7 VOCs Detected in Fall 2020 Groundwater Samples
- 4-8 1,4-Dioxane Detected in Fall 2020 Groundwater Samples
- 4-9 Summary of Extraction Well Sample Results
- 4-10 Summary of Mann-Kendall Analysis in Extraction Wells EW-1 Through EW-8
- 4-11 Residential Well Summary
- 4-12 VOCs and 1,4-Dioxane in Residential Wells with POU Treatment Systems
- 4-13 Summary of Mann-Kendall Analysis in Residential Wells with Point-of-Use Treatment Systems (NYSDOH Wells 1, 23, 24D and 25)

FIGURES

- 1-1 Site Map
- 2-1 Annual Volume Removed from Leachate Collection System
- 2-2 Cumulative Volume Removed from Leachate Collection System
- 2-3 Annual Mass of VOCs Removed from Leachate Collection System
- 2-4 Cumulative Mass of VOCs Removed from Leachate Collection System
- 2-5 Annual Volume Removed from Groundwater Extraction System
- 2-6 Cumulative Volume Removed from Groundwater Extraction System
- 2-7 Annual Mass of VOCs Removed from Groundwater Extraction System
- 2-8 Cumulative Mass of VOCs Removed from Groundwater Extraction System
- 4-1 Concentrations of VOCs at Monitoring Well OMW-101
- 4-2 Concentrations of VOCs at Monitoring Well OMW-107
- 4-3 Concentrations of VOCs at Monitoring Well OMW-102
- 4-4 Concentrations of VOCs at Monitoring Well OMW-201
- 4-5 Concentrations of VOCs at Monitoring Well OMW-215

FIGURES - CONTINUED

4-6	Concentrations of VOCs at Monitoring Well OMW-213
4-7	Concentrations of VOCs at Monitoring Well OMW-205
4-8	Concentrations of VOCs at Monitoring Well OMW-219
4-9	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-3A
4-10	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-3B
4-11	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-3C
4-12	Concentrations of VOCs at Monitoring Well OMW-216
4-13	Concentrations of VOCs at Monitoring Well OMW-221
4-14	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-1A
4-15	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-1B
4-16	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-1C
4-17	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-2A
4-18	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-2B
4-19	Concentrations of VOCs at Multi-Level Monitoring Well Port EPA-2C
4-20	Concentrations of VOCs at Monitoring Well OMW-214
4-21	Concentrations of 1,4-Dioxane at Monitoring Wells OMW-102, OMW-201, OMW-205,
	OMW-215, OMW-216 and OMW-219
4-22	Concentrations of 1,4-Dioxane at Multi-Level Monitoring Wells EPA-1, EPA-2, EPA-3,
	EPA-4 and EPA-5
4-23	Concentrations of VOCs in Extraction Well EW-1
4-24	Concentrations of VOCs in Extraction Well EW-2
4-25	Concentrations of VOCs in Extraction Well EW-3
4-26	Concentrations of VOCs in Extraction Well EW-4
4-27	Concentrations of VOCs in Extraction Well EW-5
4-28	Concentrations of VOCs in Extraction Well EW-6
4-29	Concentrations of VOCs in Extraction Well EW-7
4-30	Concentrations of VOCs in Extraction Well EW-8
4-31	Concentrations of VOCs in Leachate Collection Tank
4-32	Concentrations of 1,4-Dioxane in Extraction Wells EW-1 Through EW-8 and Leachate
	Collection Tank
4-33	Concentrations of VOCs at NYSDOH Well 1
4-34	Concentrations of VOCs at NYSDOH Well 23
4-35	Concentrations of VOCs at NYSDOH Well 24S
4-36	Concentrations of VOCs at NYSDOH Well 24D

Concentrations of VOCs at NYSDOH Well 25

4-38 Concentrations of 1,4-Dioxane at NYSDOH Wells 1, 3, 23, 24S, 24D and 25

4-37

APPENDICES

Ą	Quarterly Fluid Level Measurements
В	Historical Groundwater Data
С	Groundwater Monitoring Forms
C.1	Spring 2020 Low-Flow Sampling Forms
C.2	Spring 2020 Groundwater Sample Chain-of-Custody Forms
C.3	Fall 2020 Low-Flow Sampling Forms
C.4	Fall 2020 Groundwater Sample Chain-of-Custody Forms
D	Data Quality Evaluation
Ε	2020 Groundwater Sampling Laboratory Result Forms
E.1	Spring 2020 Laboratory Result Forms
E.2	Fall 2020 Laboratory Result Forms
F	2020 Extraction Well Laboratory Result Forms

1. INTRODUCTION

The Dewey Loeffel Landfill (Landfill) is located at 350 Mead Road in the Town of Nassau, Rensselaer County, New York. The Landfill is listed on the New York State Registry of Inactive Hazardous Waste Disposal Sites as a Class 2 Site (Site No. 442006). The New York State Department of Environmental Conservation (NYSDEC) referred the Dewey Loeffel Landfill to the United States Environmental Protection Agency (USEPA) and issued a letter supporting its placement on the National Priorities List (NPL). USEPA proposed the Dewey Loeffel Landfill Superfund Site (Site) for inclusion on the NPL on March 4, 2010, and the Site was subsequently added to the NPL on March 10, 2011. A more detailed summary of the Site background is included in the Site Characterization Summary Report Addendum (SCSR Addendum) (O'Brien & Gere Engineers, Inc. [OBG], 2019).

Monitoring of groundwater outside the Landfill has been performed on a semi-annual basis since October 1998. The sampling through the Spring 2013 event was performed in accordance with a NYSDEC-approved work plan (GeoTrans, Inc. [GeoTrans], 2008, 2009, as revised). Beginning with the Fall 2013 sampling event, the groundwater monitoring has been performed by OBG, now known as Ramboll Americas Engineering Solutions, Inc. (Ramboll), in accordance with the Design Report/Implementation Plan (DR/IP) prepared by Arcadis of New York, Inc. (ARCADIS U.S., Inc. [Arcadis], 2017, as revised). The DR/IP was submitted to USEPA pursuant to the Administrative Settlement Agreement and Order on Consent for Removal Action (CERCLA Index No. 02-2012-2005) (Removal Order) executed by USEPA, the General Electric Company (GE) and SI Group, Inc. (SI Group). GE and SI Group are referred to collectively herein as Respondents.

The Groundwater Monitoring Plan (GWMP) included as Attachment B of Appendix J of the approved DR/IP was revised and submitted to USEPA on April 28, 2017; USEPA approval of the revised GWMP was received on May 2, 2017. Pursuant to the approved GWMP, groundwater monitoring activities for the 2020 sampling events are summarized in this annual report. As mentioned in Section 4.1 below, the Spring and Fall 2020 groundwater sampling events were performed in conjunction with supplemental groundwater sampling at select monitoring wells and Flexible Liner Underground Technologies (FLUTe™) multi-level monitoring well ports at the request of USEPA during a February 12, 2020 meeting with the Respondents. The supplemental groundwater sampling was performed under the Remedial Investigation/Feasibility Study (RI/FS) Work Plan (OBG, 2015b) for the Landfill and Groundwater portions of the Site and pursuant to approved sampling plans submitted to the USEPA on April 30 and May 13, 2020; USEPA approval was received on May 6 and November 11, 2020. The laboratory results of the supplemental groundwater sampling will be summarized in the revised SCSR Addendum.

In addition to the semi-annual sampling of groundwater monitoring wells pursuant to the approved GWMP, samples were collected by Arcadis in August 2020 from the eight existing extraction wells (designated EW-1 through EW-8). Sampling of the leachate collection tank (LCT) was not performed in 2020 due to the lack of significant leachate entering the leachate collection system (as discussed in Section 2.1 below). Samples were also collected by Arcadis in 2020 from the residential wells equipped with point of use (POU) treatment systems and from select residential wells without POU treatment systems. The results of the extraction well and residential supply well sampling performed by Arcadis in 2020 are also summarized herein.

2. REMEDIAL SYSTEM OPERATIONS

2.1 Leachate Collection System

As part of the design of the Landfill, a leachate collection system was installed in the northwest corner of the containment system, as shown in Figure 1-1. The system collects and removes leachate to keep the water/leachate level inside the containment system lower than the base of the clay cap. The system includes three sloped, interconnected, gravel-filled trenches with approximately 400 feet of 4-inch perforated Schedule 80 polyvinyl chloride (PVC) drain pipe. The drain pipes are connected to an 8,000-gallon underground fiberglass tank. The tank invert is located approximately 19 feet below the top of the cap at the drain pipe connection location, with a design elevation of 626.5 feet referenced to the National Geodetic Vertical Datum of 1929. The system is designed so that leachate will flow into the tank whenever the hydraulic head in the drain pipes exceed the tank inlet elevation and the leachate level in the tank is below the invert elevation of the pipes where they enter the tank (Ecology & Environment, Inc. [E&E], 1992).

NYSDEC was responsible for operation, monitoring and maintenance (OM&M) of the leachate collection system from the time the system was installed until October 31, 2011, when USEPA assumed responsibility for operating the system. On August 1, 2012, the Respondents assumed responsibility for removing the leachate from the LCT. Extracted leachate was transported off-site for treatment prior to start-up of the treatment system in December 2013. Beginning in December 2013, leachate was treated through the newly constructed treatment system (see Section 2.2 for discussion of the treatment system).

Summaries of the annual and cumulative leachate removal volumes are presented in Tables 2-1 and 2-2, and Figures 2-1 and 2-2, respectively. Leachate removal began in 1991, and has since continued, except for 1994 when no leachate was removed. In 2020, approximately 1,790 gallons of leachate were removed from the LCT,¹ bringing the cumulative total volume of leachate removed from the LCT to approximately 6,984,640 gallons.

Approximately 38 leachate samples were collected from the LCT for volatile organic compound (VOC) analysis from 1985 through March 2016. The results of these samples and the volume of leachate removed have been used to estimate the mass of VOCs removed from the Landfill. The annual and cumulative mass removed has been estimated and is reported herein for the nine dominant VOCs detected at the Site, namely BTEX compounds (i.e., benzene, toluene, ethylbenzene, m&p-xylenes and o-xylene), chlorinated volatile organic compounds (CVOCs) (i.e., trichloroethene [TCE], cis-1,2-dichloroethene [cDCE] and vinyl chloride) and chlorobenzene. Due to the relatively low concentrations of the remaining VOCs detected in samples from the LCT, they are not included in this evaluation.

The results of the VOC mass removal estimates for the LCT on an annual and cumulative basis are provided on Tables 2-3 and 2-4, respectively, in pounds and also as a percentage of the total mass removed. Figures 2-3 and 2-4 represent the mass of BTEX, CVOCs and chlorobenzene removed on an annual and cumulative basis, respectively. As expected, VOC removal rates vary from year to year as the volume of leachate removed also varies from year to year.

¹ The leachate in the LCT was last sampled in March 2016. Due to lower water levels within the Landfill, a very small amount of leachate continues to flow into the leachate collection system. The 1,790 gallons of leachate pumped into the treatment system in 2020 were due to manual operation for equipment maintenance.

Approximately 0.04 pounds of VOCs were removed in 2020. Very little VOC mass was removed in 2020 because the water level elevation in the Landfill was below the invert elevation of the drain pipes and LCT inlet throughout the year, as discussed above. As of the end of December 2020, a total of approximately 3,379 pounds of VOCs have been removed from the containment system through use of the leachate collection system.

As shown on Table 2-4, BTEX compounds are the dominant VOCs in the leachate and account for 83 percent (%) of the VOC mass removed. Toluene accounts for approximately 49%, while benzene accounts for approximately 28%. Chlorobenzene accounts for approximately 12% and the other BTEX compounds and CVOCs account for the remaining 11%.

2.2 Groundwater Extraction System

NYSDEC issued a Record of Decision (ROD) and associated Responsiveness Summary on January 3, 2001. The remedial alternative selected was "Disposal Site Hydraulic Containment with Downgradient Groundwater Recovery and Treatment". One of the elements outlined in the ROD was the installation and operation of groundwater extraction wells along the centerline of the bedrock VOC plume south of the Landfill. NYSDEC subsequently designed and installed a groundwater extraction system consisting of three bedrock extraction wells (designated EW-1, EW-2 and EW-3) located south of the containment system. A brief summary of each well is provided below.

Extraction well EW-3, located closest to the Landfill, is approximately 400 feet from the cut-off wall. This well was originally known as DB-11A and was installed in July 2005 as part of the predesign investigation (PDI) performed by NYSDEC. EW-3 was subsequently converted into an extraction well in accordance with design documents prepared for NYSDEC by Dvirka & Bartilucci Consulting Engineers (D&B). The well is 4 inches in diameter, 260 feet deep and is open to the bedrock from 45 feet to 260 feet below ground surface (bgs).

Extraction well EW-2 is located approximately 750 feet south of the cut-off wall and was installed by Precision Environmental Services, Inc. in August 2007 under contract to NYSDEC. The well is 9-7/8 inches in diameter, 240 feet deep, is open to the bedrock from 77.5 feet to 240 feet bgs and is sleeved with 6-inch diameter well screen and riser pipe.

Extraction well EW-1 is approximately 1,150 feet south of the cut-off wall. This well was originally known as DB-9B and was installed in July 2005 as part of the PDI performed by NYSDEC. EW-1 was converted into an extraction well in accordance with design documents prepared for NYSDEC by D&B. The well is 4 inches in diameter, 200.4 feet deep and is open to the bedrock from 68 feet to 200.4 feet bgs.

Beginning in late March 2008 and through 2010, NYSDEC extracted groundwater from EW-1, EW-2 and EW-3 on a seasonal basis, operating during the Spring, Summer and Fall months. Operation of the groundwater extraction system by NYSDEC did not resume after the Fall 2010 shutdown until July 2011. USEPA took over operation of the groundwater extraction system from NYSDEC on October 31, 2011 and winterized the system to allow for year-round operation. Pursuant to the Removal Order, the Respondents assumed responsibility for continued operation of the leachate and groundwater extraction systems on August 1, 2012. Leachate and extracted

groundwater were transported off-site prior to start-up of the treatment system in December 2013.

On December 11, 2013, the groundwater from the three existing extraction wells and leachate from the LCT was directed to the treatment system. On December 17, 2013, Arcadis initiated treatment system start-up activities as outlined in the USEPA-approved Start-Up Plan (Appendix H of the DR/IP). The discharge from the treatment system was initially directed to temporary storage tanks for subsequent sampling and analysis and was discharged to the Valatie Kill following approval from USEPA based on the analytical results. On December 2, 2014, and with USEPA approval, direct discharge began from the treatment system to the Valatie Kill.

Pursuant to the Removal Order, OBG installed five new extraction wells (designated EW-4 through EW-8) in October and November 2014. The locations of all eight bedrock extraction wells are shown on Figure 1-1. Information pertaining to the design and installation of EW-4 through EW-8 is provided in the Appendix F Summary Report (OBG, 2015). Extraction wells EW-4, EW-6 and EW-7 were installed closest to the Landfill to approximately 200 feet in depth. Extraction wells EW-5 and EW-8 were installed farther southwest to approximately 250 feet in depth. The five new extraction wells were brought into operation between July and November 2015 in accordance with Appendix H of the DR/IP.

Summaries of the annual volumes of groundwater extracted from each of the eight extraction wells (EW-1 through EW-8) are presented on Table 2-1 and Figure 2-5, while the cumulative volumes of groundwater extracted from the eight wells are presented on Table 2-2 and Figure 2-6. Approximately 2,498,200 gallons of groundwater were pumped from the extraction wells in 2020. Approximately 22,142,500 gallons of groundwater have been extracted and transported off-site or treated and discharged from the treatment system since operation of the first three extraction wells began in March 2008. The effective pumping rates in 2020 for EW-1, EW-2, EW-3, EW-4, EW-5, EW-6, EW-7 and EW-8 were approximately 0.6, 1.1, 0.8, 0.4, 0.4, 0.4, 0.4 and 0.4 gallons per minute (gpm), respectively.

During operation of the groundwater extraction system, samples have historically been collected from the eight extraction wells on a quarterly basis for laboratory analysis for VOCs and 1,4-dioxane; other parameters were also collected quarterly and/or annually in accordance with Appendix J of the DR/IP. In 2020, the frequency of extraction well sample collection was reduced from quarterly to annually in accordance with Table 1 of Appendix J of the DR/IP. The results of the VOC analyses and the groundwater withdrawal estimates for each extraction well have been used to estimate the mass of VOCs removed from each extraction well. Similar to the mass removal calculations for the leachate from the LCT, the mass removal calculations for the groundwater extraction system have been estimated and reported for the nine dominant VOCs detected in the groundwater samples, namely BTEX compounds, CVOCs and chlorobenzene. Due to the relatively low concentrations of the remaining VOCs detected in groundwater, they are not included in this evaluation.

The results of the VOC mass removal estimates for each of the groundwater extraction wells on an annual and cumulative basis are provided on Tables 2-5 and 2-6, respectively, in pounds and also as a percent of the total mass. Figures 2-7 and 2-8 present the annual and cumulative mass of BTEX, CVOCs and chlorobenzene removed for each year the groundwater extraction system

has been in operation. Tables 2-7 and 2-8 present a summary of the mass of VOCs removed by the groundwater extraction system on an annual and cumulative basis, respectively, in pounds and also as a percent of the total mass. As anticipated, the mass of VOCs removed varies from year to year in response to variation in the volume of groundwater extracted. Approximately 925 pounds of VOCs were removed from the extraction wells in 2020, bringing the total mass of VOCs removed from the extraction wells to approximately 7,540 pounds.

As shown on Figure 2-7, the introduction of the five new extraction wells has resulted in a greater proportion of BTEX and chlorobenzene in the total VOC removal by the groundwater extraction system. Of the mass of VOCs removed from the extraction wells in 2020, approximately 70% was BTEX and 6% was chlorobenzene, with CVOCs accounting for the remaining 24%. In contrast, from March 2008 (when operation of the initial extraction wells began) through 2014 (before the new extraction wells were put into operation), BTEX and chlorobenzene accounted for approximately 44% and 4%, respectively, of the VOCs removed; CVOCs accounted for approximately 52% of the VOCs removed through 2014.

As shown on Table 2-7, CVOCs were the dominant VOCs removed from extraction wells EW-1 and EW-2 in 2020, followed by BTEX and chlorobenzene. TCE is the primary VOC in both EW-1 and EW-2. These two extraction wells have similar chemical signatures with an average of 83% CVOCs, 15% BTEX and 2% chlorobenzene. Unlike EW-1 and EW-2, BTEX are the primary VOCs in EW-4 through EW-6, followed by CVOCs and chlorobenzene. Further, cDCE is the predominant CVOC in these three extraction wells, rather than TCE. Extraction wells EW-4 through EW-6 have similar chemical signatures with an average of 82% BTEX, 10% CVOCs and 8% chlorobenzene. Extraction wells EW-4 and EW-5 have a higher proportion of BTEX than extraction well EW-6; also, EW-4 and EW-6 have higher concentrations of CVOCs, followed by chlorobenzene, while extraction well EW-5 has similar concentrations of CVOCs and chlorobenzene. Extraction wells EW-3, EW-7 and EW-8 have an even higher proportion of BTEX, with an average of 92%. EW-3, EW-7 and EW-8 have higher concentrations of chlorobenzene, followed by CVOCs, with averages of 6% and 2%, respectively.

As shown on Table 2-8, EW-2 accounts for the highest percentage of cumulative mass removed by the extraction wells, at approximately 35% of the total mass removed, due to its long period of operation (versus the five new extraction wells) and its higher flow rate (versus EW-1 and EW-3). The cumulative mass of VOCs removed from extraction well EW-2 since its operation began in late March 2008 through December 2020 is approximately 2,647 pounds. As shown on Table 2-8, the extraction wells with the second and third highest cumulative mass removed are EW-6 and EW-7, with approximately 1,895 pounds and 1,152 pounds removed, respectively; EW-6 and EW-7 represent 25% and 15%, respectively, of the cumulative mass removed from the groundwater extraction system.

The mass of VOCs removed from the five remaining extraction wells account for the remaining 25% of the cumulative mass removed by the groundwater extraction system. As shown on Table 2-8, extraction wells EW-4 and EW-3 have the fourth and fifth highest cumulative mass removed, with approximately 761 and 506 pounds (or 10% and 7%), respectively, of the cumulative mass removed from the groundwater extraction system. Extraction wells EW-1, EW-5 and EW-8 have removed the least cumulative mass, at approximately 310, 253 and 13 pounds (or 4%, 3% and <1%), respectively, of the total cumulative mass removed. This is primarily due to the lower

concentrations in these three extraction wells, which are located farther from the Landfill than the other five extraction wells (i.e., EW-5 and EW-8 are located downgradient from EW-4 and EW-7, respectively, and EW-1 is located downgradient from EW-2).

3. GROUNDWATER ELEVATIONS

A conceptual site model (CSM) of the hydrogeologic system at the Landfill and in the area of the bedrock VOC plume has been developed based on information obtained during various investigations performed at the Site. The CSM presented in the SCSR Addendum was updated based on comments provided by USEPA during the February 12, 2020 meeting with Respondents and was included as part of the Treatability Testing Work Plan (TTWP) (Ramboll, 2020). As discussed in the TTWP, the CSM includes two hydrogeologic units: the overburden materials and the bedrock unit. The bedrock hydrogeologic unit at the Site has historically been divided into shallow bedrock and deep bedrock based on the completion depths of the monitoring wells installed during the various investigations. The shallow bedrock has included the more weathered portion of the Nassau Formation and seems to comprise the upper 100 feet of the bedrock, the uppermost portion of which occasionally includes clay from the in-place weathering of the bedrock. The deep bedrock has included all the bedrock below the shallow bedrock. While there appears to be no geologic basis to distinguish between the shallow and deep bedrock units, there does appear to be hydraulic differences. As discussed in the SCSR Addendum, bedrock permeability generally decreases below a depth of 225 feet.

As discussed in the TTWP, overburden groundwater at the Landfill changed after construction of the containment system in 1984, and more recently as a result of the groundwater extraction system south of the Landfill. When the containment system was constructed in 1984, there was a "pivot" in the water table with a decline in the eastern portion (creating or augmenting outward and downward hydraulic gradients). However, over the past few years, the water table has dropped below the base of the clay cap due to both the low-permeability and thickness of the cap materials and the effects of the groundwater extraction system south of the Landfill. Due to the water table decline, a vadose zone now exists under the clay cap that was not initially present.

Prior to groundwater extraction, the water table at the Landfill was within the clay cap. The groundwater extraction system has caused a decrease in bedrock water levels, which has caused a decrease in overburden water levels, particularly within and outside the western half of the containment system. The presence of a dense till layer beneath the overburden throughout the western and middle portions of the containment system limits the amount of vertical groundwater flow between the overburden and bedrock where the dense till is present due to its low vertical permeability. This dense till layer is very thin or absent in the eastern portion of the containment system, which, coupled with the potential for groundwater in the eastern portion to no longer flow inward and upward, suggests less groundwater enters the containment system in the eastern portion of the Landfill, and thus there is less groundwater flow from east to west toward the leachate collection system.

Outside the containment system, overburden groundwater flow is directed laterally towards natural streams, wetlands and manmade surface features (e.g., drainage ditches). There is also a downward component of flow from the overburden hydrogeologic unit into the underlying bedrock hydrogeologic unit owing to the natural downward hydraulic gradient.

As discussed in the SCSR Addendum, bedrock groundwater flow under isotropic conditions (i.e., where aquifer properties are the same regardless of the direction of measurement) would be to the west in the area near the Landfill, and to the west-southwest in the area south of the Landfill.

However, based on the distribution of VOCs in bedrock groundwater, anisotropic conditions, which often occur in bedrock due to fractures, faults and folds in the bedrock, appear to dominate, resulting in groundwater flow to the south and south-southwest.

3.1 Semi-Annual Water Level Measurements

In accordance with the approved GWMP, water level measurements were obtained from 24 monitoring wells outside the Landfill and five multi-level monitoring wells (EPA-1, EPA-2, EPA-3, EPA-4 and EPA-5)² on June 15 and November 9, 2020 and are presented in Tables 3-1 and 3-2, respectively.³ Both rounds of semi-annual water level measurements were obtained under pumping conditions.

3.2 Quarterly Fluid Monitoring

In accordance with Section 2.2.2 of the Pump and Truck Work Plan (Arcadis, 2012), fluid level measurements (i.e., groundwater and/or light non-aqueous phase liquid [LNAPL], where present) were obtained from 48 monitoring wells located inside the perimeter fence of the Landfill on a quarterly basis.⁴ Fluid level measurements were obtained on March 5, June 15, August 24, and November 9, 2020 and are presented in Appendix A.

² Bedrock boreholes EPA-1 through EPA-5 were completed into multi-level monitoring wells in July 2017 by installing FLUTe™ multi-level monitoring systems, per the USEPA-approved Appendix G Summary Report (OBG, 2015a).

³ Monitoring wells OMW-204, OMW-214 and OMW-219 were recompleted in May 2017 and OMW-204 was also deepened.

⁴ Although not a requirement of the Pump and Truck Work Plan, fluid level measurements were also obtained on August 24 and November 9, 2020 from several of the monitoring wells installed during the RI inside the containment system. This additional work was performed in conjunction with preparation of the TTWP. The fluid level measurements from the additional monitoring wells are also provided in Appendix A for completeness.

4. GROUNDWATER MONITORING

4.1 General

Routine groundwater sampling was performed by Ramboll on a semi-annual basis in 2020. The first event was performed from June 16 through 23, 2020, while the second event was performed from November 10 through 18, 2020; both events were performed in conjunction with supplemental groundwater sampling at select monitoring wells and FLUTeTM multi-level monitoring ports that was performed at the request of USEPA during a February 12, 2020 meeting with the Respondents. The semi-annual sampling activities are discussed further in Section 4.2. The data generated as part of the supplemental groundwater sampling in Spring 2020 were reported in the August 2020 Monthly Progress Report (MPR), and will be discussed in the revised SCSR Addendum.⁵ Tables 4-1 and 4-2 detail which monitoring wells were sampled during the routine Spring and Fall 2020 groundwater sampling events and which analyses were performed on those samples. The final field parameters measured at each monitoring well during the Spring and Fall 2020 sampling events are summarized in Tables 4-3 and 4-4, respectively.

Groundwater samples were analyzed for VOCs using USEPA SW-846 Method 8260C and 1,4-dioxane using USEPA SW-846 Method 8270D selected ion monitoring (SIM) for both sampling events. The results for VOCs and 1,4-dioxane sampled as part of the approved GWMP are discussed in this report; the results of the additional analyses collected at the request of the USEPA will be summarized in the revised SCSR Addendum. Eurofins Lancaster Laboratories Environmental, LLC (ELLE) of Lancaster, Pennsylvania and Eurofins TestAmerica in Edison, New Jersey⁶ performed the analyses on the groundwater samples collected during the Spring 2020 sampling event. ELLE performed the analyses on the groundwater samples collected during the Fall 2020 sampling event.

Upon receipt of the groundwater quality data, a data quality review was performed and is summarized in Section 4.3 and Appendix D. The groundwater quality data are discussed in Section 4.4. The detected constituents for the groundwater samples are summarized in Tables 4-5 through 4-8. The constituents detected through time at the monitoring wells and FLUTeTM multi-level monitoring well ports are summarized in Appendix B. The field sampling forms and chain-of-custody forms are provided in Appendices C.1 through C.4. Laboratory reporting sheets for the Spring and Fall 2020 sampling event are provided in Appendix E.1 and E.2, respectively.

Extraction wells EW-1 through EW-8 were sampled on August 26, 2020. The sampling event was conducted by Arcadis and is discussed in Section 4.5. Table 4-9 summarizes the analytical results of the samples collected in 2020 from the eight extraction wells, and Table 4-10 summarizes the results of a Mann-Kendall trend analysis on four years of quarterly analytical results (16 sampling events spanning 2016 through 2019). The laboratory reporting sheets are provided in Appendix F.

⁵ In addition, at the request of USEPA, additional groundwater samples were collected during the Fall 2020 sampling event for compound-specific stable isotope analysis (CSIA). The additional CSIA was performed by Microbial Insights, Inc. of Knoxville, Tennessee, and the results were reported in the February 2020 MPR and will be discussed in the revised SCSR Addendum.

⁶ Select samples collected during the Spring 2020 groundwater sampling event were analyzed by Eurofins TestAmerica in Edison, New Jersey in addition to ELLE in Lancaster, Pennsylvania due to analytical instrument malfunctions and the subsequent reduction and analysis capacity.

As discussed in Section 2.1 above, samples were not collected from the leachate collection system in 2020 due to low water levels in the Landfill in 2020. A brief discussion of historical sampling results is presented in Section 4.6.

Arcadis also collected samples on a quarterly basis in 2020 from the residential POU treatment systems using the sampling procedures presented in Attachment A of Appendix J of the DR/IP. As approved by USEPA, the sampling frequency for New York State Department of Health (NYSDOH) Well 1 was changed from quarterly to semi-annually in 2020 due to the very low water usage at that residence. The results for the treatment system influent samples (i.e., the discharge from the residential well pumps) are discussed in Section 4.7. Table 4-12 summarizes the results of the influent samples for the residential POU treatment systems, and Table 4-13 summarizes the results of a Mann-Kendall trend analysis on four years of quarterly analytical results (16 sampling events spanning 2016 through 2019).

4.2 Groundwater Sampling

Monitoring wells and multi-level monitoring well ports included in the GWMP were sampled from June 16 through 23, 2020, and from November 10 through 18, 2020 in accordance with Appendix B of the Quality Assurance Project Plan (QAPP) (OBG, 2015). Monitoring wells were sampled using low-flow sampling methods, with the exceptions of OMW-221 (which is an artesian well) and EPA-1 through EPA-5 (which are FLUTeTM multi-level monitoring wells). OMW-221 was purged of one well volume and then sampled using low-flow sampling methods, while the monitoring intervals in EPA-1 through EPA-5 were sampled conventionally (i.e., purging of well volumes). During low-flow purging, field parameters, including temperature, pH, specific conductance, oxidation-reduction potential (ORP), dissolved oxygen (DO) and turbidity were measured and recorded at three to five-minute intervals using a flow-through cell. During conventional purging, field parameters were measured and recorded after each well volume was purged from each port in EPA-1 through EPA-5 by submersing the water quality sonde in a cup of purge water. Purging was concluded when the low-flow field parameters stabilized for three consecutive readings as follows:

- pH within ± 0.1 standard units (SU)
- Specific conductivity within ± 3%
- ORP within ± 10 millivolts (mV)
- DO and turbidity within ± 10%.

Purging for the FLUTe[™] multi-level monitoring wells was completed following removal of four purge strokes from each of the individual ports regardless of field parameter stabilization.

Summaries of the final field parameters recorded for each monitoring well and FLUTeTM multi-level monitoring well port are provided in Tables 4-3 and 4-4 for the Spring and Fall 2020 events, respectively, while field sampling sheets are provided in Appendices C.1 and C.3.

After purging was concluded, the flow-through cell was disconnected and groundwater samples were collected in laboratory-provided sample containers. Samples were preserved in coolers containing wet ice and were transported under chain-of-custody to the laboratory for analysis. Copies of the chain-of-custody forms are provided in Appendices C.2 and C.4.

4.3 Data Quality Review

A data quality review was performed on the 2020 groundwater data for VOCs and 1,4-dioxane and is provided in Appendix D. The analytical data from the semi-annual groundwater sampling events are summarized in a detects-only tabular format in Tables 4-5 through 4-8, while the analytical result forms for the Spring and Fall 2020 sampling events are presented in Appendices E.1 and E.2, respectively.

During the Spring and Fall 2020 data quality reviews, the VOC and 1,4-dioxane data were assessed to verify that the measurement was conducted in accordance with the quality assurance criteria specified for that measurement. Data usability was established and documented using the following data qualifiers:

"J" Indicates that the detected concentration should be considered an estimated value. The decision to add the "J" qualifier is based on the quantitative criteria contained in data validation guidelines. The identity of the analyte is not brought into question. However, the "J" qualifier results in a loss of confidence in the accuracy of the detected concentration, and, therefore is presented as an estimated value. The "J" qualifier is also applied to concentrations detected above the method detection limit, but below the Practical Quantitation Limit.

For the semi-annual groundwater sampling events performed in 2020, 100% of the data collected under the groundwater monitoring program are considered usable for qualitative and quantitative purposes. Less than 0.5% of the Spring and Fall 2020 data were qualified.

4.4 Groundwater Quality

As shown on Tables 4-1 and 4-2, groundwater samples were collected from up to 25 monitoring wells and FLUTeTM multi-level monitoring well ports during the semi-annual sampling events and analyzed for VOCs and 1,4-dioxane. As mentioned above, select monitoring wells and FLUTeTM multi-level monitoring well ports were sampled for VOCs and 1,4-dioxane during the Spring and Fall 2020 sampling events at the request of USEPA. The groundwater quality discussion below focuses on the parameters collected under the approved GWMP (i.e., VOCs and 1,4-dioxane in the wells included in the routine semi-annual and annual sampling program). A discussion of the results of the additional analyses performed in accordance with the RI/FS Work Plan will be provided in the revised SCSR Addendum.

Five monitoring wells included in the groundwater monitoring program could not be sampled during the Spring and/or Fall 2020 groundwater sampling events. Overburden monitoring wells OMW-101 and OMW-211 (located outside the Landfill along the middle and southern portions of the southwestern edge of the cut-off wall, respectively) were dry at the time of sampling, as they have been for the past five and nine years, respectively. Bedrock monitoring wells OMW-204 (located outside the Landfill along the southern portion of the southwestern edge of the cut-off wall) and OMW-213 (located outside the Landfill in the vicinity of extraction wells EW-3 and EW-5 and paired with OMW-219) had minimal water to collect low-flow samples or were dry at the time of sampling, as they have been for the past six and five years, respectively. The shallow bedrock port in FLUTeTM multi-level monitoring well EPA-3 (EPA-3A) was also dry at the time of sampling, as it has been for the past two years. FLUTeTM multi-level monitoring well EPA-3 is located southwest of the Landfill and west of OMW-202, OMW-213, OMW-215 and OMW-219.

4.4.1 Volatile Organic Compound Analyses

The detected VOCs for the Spring and Fall 2020 groundwater sampling events are summarized on Tables 4-5 and 4-7, respectively.

Trend graphs showing the historical concentrations of BTEX, CVOCs and chlorobenzene in overburden monitoring wells OMW-101 and OMW-107 are presented on Figures 4-1 and 4-2, respectively. As discussed above, monitoring well OMW-101 was dry at the time of sampling so no sample was collected in 2020. However, as shown on Figure 4-1, BTEX, CVOCs and chlorobenzene were not detected in OMW-101 in the past 16 years with two exceptions; benzene and chlorobenzene were detected at concentrations below 5 micrograms per liter (µg/L) in 2014. Monitoring well OMW-107, located north of Mead Road along the western portion of the northern edge of the Landfill, is sampled biennially and was not sampled in 2020. However, as shown on Figure 4-2, chlorobenzene has been consistently detected during the past eight years at concentrations well below the Class GA standard of 5 µg/L in monitoring well OMW-107. Benzene has been historically detected in this monitoring well four times in the past 28 years, but until 2019, had not been detected since 1995. The three historical benzene detections were above the Class GA standard of 1 µg/L, while the 2019 detection was well below the Class GA standard at an estimated concentration of 0.2 µg/L. Toluene has not been historically detected in this monitoring well over the past 28 years; however, it was detected in 2019 at an estimated concentration of 0.6 µg/L, which is well below the Class GA standard of 5 µg/L.

The discussion below focuses on bedrock groundwater quality and is broken into three sections: BTEX; CVOCs; and chlorobenzene. The following monitoring wells did not have detected concentrations of BTEX, CVOCs or chlorobenzene in 2020, which is consistent with recent and/or historical results:

- Monitoring well OMW-218, located outside the Landfill at the middle of the southwestern edge of the cut-off wall
- Monitoring well OMW-103, located immediately south of the Landfill⁷
- FLUTe[™] multi-level monitoring well EPA-5, located southeast of the Landfill to the east of extraction well EW-1
- Monitoring wells OMW-222 and OMW-223, located along Central Nassau Road.

The monitoring wells listed above are not included in the following discussion, and trend graphs are not provided.

Dot plots showing the maximum concentrations of BTEX, CVOCs and chlorobenzene in monitoring wells, extraction wells and residential supply wells around the Landfill are not included in this report but will be provided in the revised SCSR Addendum.

BTEX

BTEX was primarily detected in bedrock wells to the south and southwest of the Landfill. The highest concentrations of BTEX were detected near the edge of the Landfill with decreasing concentrations to the south and southwest. The maximum concentration of BTEX detected was

⁷ Toluene was detected in monitoring well OMW-103 in groundwater samples collected in Fall 2016 and Fall 2017 at concentrations of 7.6 μg/L and 300 μg/L, respectively. Prior to 2017, toluene had not been detected in this monitoring well since 1996. Toluene was not detected in groundwater samples collected in 2020.

 $16,270~\mu g/L$ in OMW-201, a shallow bedrock well located outside the Landfill near the middle of the southwestern edge of the cut-off wall. The majority of the BTEX detected in 2020 was benzene, as discussed below.

As shown on Figures 4-3 through 4-5, benzene has consistently been detected in shallow bedrock monitoring wells OMW-102 and OMW-201 and in deep bedrock monitoring well OMW-215, which are located outside the Landfill near the middle or along the southern portion of the southwestern edge of the cut-off wall. Of the nine dominant VOCs in Site groundwater, benzene is the primary VOC detected in these three monitoring wells. In 2020, detected concentrations of benzene were consistent with historical results in OMW-102, OMW-201 and OMW-215. Benzene was consistently detected between approximately 10,000 μ g/L and 50,000 μ g/L in monitoring well OMW-201, except for the Fall 2012 sampling event. Benzene was consistently detected in OMW-102 since sampling began in 1992 and concentrations are between approximately 5 μ g/L to approximately 10,000 μ g/L. Benzene was consistently detected at concentrations one to two orders of magnitude lower in deep bedrock monitoring well OMW-215, which is farther from the Landfill than both OMW-102 and OMW-201. Concentrations of benzene at OMW-215 have also decreased from 1,660 μ g/L in 2008 (when the three original extraction wells were placed into operation) to 79 μ g/L in 2020, which represents a decrease of two orders of magnitude.

Benzene was detected in shallow bedrock monitoring well OMW-202 for the sixth consecutive year but had previously not been detected since 2004. OMW-202 is located along the southern portion of the southwestern edge of the cut-off wall and is paired with deep bedrock monitoring well OMW-215. The benzene detections at OMW-202 also coincide with a change in water level elevations following the start-up of extraction wells EW-4 through EW-8 in mid to late 2015.

As shown on Figures 4-6 through 4-8, benzene has also been consistently detected in shallow bedrock monitoring wells OMW-213⁸ and OMW-205, and in deep bedrock monitoring well OMW-219⁹, which are located south of the Landfill in the vicinity of extraction wells EW-3 and EW-5. Benzene has consistently been detected at concentrations one to two orders of magnitude higher in deep bedrock monitoring well OMW-219 than in OMW-205 and OMW-213.

Concentrations of benzene decrease as the distance from the Landfill increases. Benzene was detected in 2020 in each of the monitoring intervals (i.e., ports) at FLUTeTM multi-level monitoring wells EPA-1 through EPA-3 at concentrations two to four orders of magnitude lower than concentrations detected in the vicinity of the Landfill. Benzene and other BTEX compounds are the primary VOCs detected in the three ports in FLUTeTM multi-level monitoring well EPA-3¹⁰ (as shown on Figures 4-9 through 4-11), but are not the primary VOCs detected in multi-level monitoring wells EPA-1 and EPA-2. EPA-3 is located southwest of the Landfill and west of OMW-202, OMW-213, OMW-215 and OMW-219, while EPA-1 is located south of the Landfill in the vicinity of extraction well EW-1 and EPA-2 is located south of the Landfill on the north side of Central Nassau Road.

⁸ Monitoring well OMW-213 was dry at the time of sampling (and has been since Fall 2015), so no samples were collected in 2020.

⁹ Monitoring well OMW-219 could not be sampled from Fall 2012 through Fall 2016 because the well was damaged. The monitoring well was recompleted in May 2017 prior to the Spring 2017 sampling event. Monitoring well OMW-219 was not sampled during the Fall 2018 sampling event because the water level drawdown due to the nearby extraction wells lowered the water level below the intake of the pump. The dedicated pump at OMW-219 was re-constructed during the Spring 2019 sampling event to account for the lower water level.

¹⁰ The shallow bedrock port of FLUTe[™] multi-level monitoring well EPA-3 (EPA-3A) was dry at the time of sampling during both the Spring and Fall 2020 groundwater sampling events, so no samples were collected from this port in 2020.

Benzene was not detected in FLUTeTM multi-level monitoring well EPA-4, which is located southwest of FLUTeTM multi-level monitoring well EPA-1, much farther from the Landfill.

As shown on Figure 4-4, toluene, ethylbenzene, m&p-xylenes and o-xylene have been consistently detected in monitoring well OMW-201. As shown on Figure 4-5, toluene has been consistently detected in deep bedrock monitoring well OMW-215, while m&p-xylenes were detected in 2014 (the first detection in eight years) but have not been detected since 2014. Ethylbenzene has been detected sporadically in monitoring wells OMW-102 and OMW-215 as shown on Figures 4-3 and 4-5, respectively. Xylenes have not been detected in wells OMW-102 and OMW-215 within the past 18 and six years, respectively. ¹¹

Toluene was detected in each of the ports at FLUTeTM multi-level monitoring wells EPA-1 and EPA-3 during the Spring and Fall 2020 sampling events and EPA-4B during the Fall 2020 sampling event. Toluene was not detected in the shallow bedrock port at EPA-4 (EPA-4A) during the Fall 2020 sampling event. Toluene was also not detected in FLUTeTM multi-level monitoring well EPA-2 during the Spring and Fall 2020 sampling events. Detected concentrations ranged from an estimated 0.48 μg/L in the deep bedrock port of EPA-3 (EPA-3B) to 3.7 μg/L in the deep bedrock port of EPA-4 (EPA-4B) during the Fall 2020 sampling event. Although toluene has been consistently detected at FLUTeTM multi-level monitoring well EPA-4, its isolated detections at decreasing concentrations without other Site-related VOCs (e.g., benzene, TCE) are anomalous. ¹² Concentrations of toluene detected at FLUTeTM multi-level monitoring wells EPA-1 and EPA-3 during the Spring and Fall 2020 sampling events and EPA-4B in the Fall 2020 sampling event were all below the Class GA standard of 5 μg/L. Ethylbenzene, m&p-xylenes and o-xylene were not detected in the FLUTeTM multi-level monitoring wells in 2020.

Consistent with recent results, monitoring wells OMW-214 and OMW-221 did not have detected concentrations of BTEX in 2020. Monitoring well OMW-214 is located south of the Landfill and east of extraction well EW-2, while monitoring well OMW-221 is located to the south of Central Nassau Road.

Chlorinated VOCs

CVOCs were primarily detected in bedrock wells to the south of the Landfill. The highest concentration of CVOCs was detected in the shallow bedrock port of FLUTe^TM multi-level monitoring well EPA-1 (EPA-1A) at a concentration of approximately 2,121 μ g/L. The CVOCs detected south of the Landfill generally consist of TCE and cDCE, with sporadic detections of vinyl chloride, as discussed below.

As shown on Figure 4-6, TCE and cDCE were consistently detected in the past nine years in monitoring well OMW-213, 13 with TCE concentrations exceeding cDCE concentrations; vinyl chloride was detected sporadically. Conversely, as shown in Figure 4-7, cDCE was consistently detected in monitoring well OMW-205; vinyl chloride has also been consistently detected since

 $^{^{11}}$ m&p- and o-Xylenes have also not been detected in OMW-213 within the past 22 years.

¹² Multi-level monitoring wells EPA-1 through EPA-5 use the Water FLUTe™ system to line the borehole while creating sample ports at specific depth intervals. Based on information from the vendor, FLUTe™ liners can leach toluene for up to three months. Refer to "Water FLUTe™ FAQs" at https://www.flut.com/faqs. The results of additional sampling at these multi-level monitoring wells should confirm or refute the persistence of toluene in multi-level monitoring well EPA-4.

¹³ Monitoring well OMW-213 was dry at the time of sampling (and has been since Fall 2015), so no samples were collected in 2020.

2012. TCE was detected sporadically, at concentrations below the vinyl chloride concentrations. These two shallow bedrock wells are located south of the Landfill to the west and east of extraction well EW-3, respectively. As shown on Figure 4-8, TCE, cDCE and vinyl chloride were detected in monitoring well OMW-219, the deep bedrock well paired with OMW-213; detected concentrations of cDCE were greater than concentrations of TCE and vinyl chloride. CVOCs had not been detected in OMW-219 since 2007, but have been detected at similar concentrations since the deep bedrock monitoring well was recompleted. Vinyl chloride was detected twice (once in 2013 and once in 2015) in shallow bedrock monitoring well OMW-201 at concentrations below 5 μ g/L; these are the only detected concentrations of vinyl chloride in this monitoring well. cDCE was also detected in monitoring well OMW-201 in Fall 2013 (the first time in eight years) but has not been detected again since Fall 2013. This shallow bedrock monitoring well is located outside the Landfill near the middle of the southwestern edge of the cut-off wall.

CVOCs were also detected in two deep bedrock wells south of the Landfill. As shown on Figure 4-12, TCE and cDCE were consistently detected at similar concentrations (below the Class GA standard of 5 μ g/L for the past 22 years) in monitoring well OMW-216, located east of extraction well EW-2. In monitoring well OMW-221, located south of Central Nassau Road and north of Valley Stream, TCE has been detected at concentrations below 10 μ g/L since 2011, as shown on Figure 4-13. cDCE has been detected sporadically over the past several years at approximately an order of magnitude lower than TCE in monitoring well OMW-221. In 2020, CVOCs were detected at concentrations consistent with historical results in OMW-216 and OMW-221.

As mentioned above, CVOCs were detected at a concentration of approximately 2,121 μg/L in the shallow bedrock port at FLUTeTM multi-level monitoring well EPA-1 (EPA-1A), located south of the Landfill in the vicinity of extraction well EW-1. CVOCs were also detected in the two deeper bedrock ports (EPA-1B and EPA-1C) at this FLUTeTM multi-level monitoring well, at concentrations the same order of magnitude. As shown on Figures 4-14 through 4-16, TCE was originally the primary CVOC detected in FLUTeTM multi-level monitoring well EPA-1 and continues to be the primary CVOC in EPA-1A, while cDCE is now dominant in EPA-1B and EPA-1C. Vinyl chloride was detected consistently at concentrations one to three orders of magnitude lower than TCE and cDCE.

CVOCs were detected in multi-level monitoring well EPA-2 at concentrations ranging from 6.9 μ g/L to approximately 196 μ g/L, with the highest CVOC concentration in the deep bedrock port (EPA-2C). As shown on Figures 4-17 through 4-19, cDCE is the primary CVOC detected in the shallow bedrock port (EPA-2A), while TCE is the primary CVOC detected in the deeper bedrock ports (EPA-2B and EPA-2C). Vinyl chloride was not detected in shallow and deep bedrock ports EPA-2A and EPA-2B but was detected in EPA-2C at estimated concentrations of 0.28 μ g/L and 0.20 μ g/L during the Spring and Fall 2020 sampling events, respectively. FLUTeTM multi-level monitoring well EPA-2 is located south of the Landfill, on the north side of Central Nassau Road.

CVOCs were detected in the deeper bedrock ports of FLUTeTM multi-level monitoring well EPA-3 (EPA-3B and EPA-3C) at a maximum estimated concentration of 1.5 μ g/L, as shown on Figures 4-

¹⁴ Monitoring well OMW-219 could not be sampled from Fall 2012 through Fall 2016 because the well was damaged. The monitoring well was recompleted in May 2017 prior to the Spring 2017 sampling event. Monitoring well OMW-219 was not sampled during the Fall 2018 sampling event because the water level drawdown due to the nearby extraction wells lowered the water level below the intake of the pump. The dedicated pump at OMW-219 was re-constructed during the Spring 2019 sampling event to account for the lower water level.

10 and 4-11, respectively. CVOCs have not been detected in the shallow bedrock port of EPA-3 (EPA-3A). ¹⁵ Multi-level monitoring well EPA-3 is located southwest of the Landfill and west of OMW-202, OMW-213, OMW-215 and OMW-219.

Monitoring wells OMW-102, OMW-201 and OMW-215, located to the west and southwest of the Landfill, did not have detected concentrations of CVOCs in 2020, which is consistent with recent results. In addition, CVOCs were not detected in the shallow or deep bedrock at FLUTe[™] multi-level monitoring well EPA-4; FLUTe[™] multi-level monitoring well EPA-4 is located southwest of FLUTe[™] multi-level monitoring well EPA-1.

Chlorobenzene

Chlorobenzene was primarily detected in bedrock groundwater to the west and south of the Landfill, with concentrations decreasing as the distance from the Landfill increases. Although chlorobenzene was detected in a similar group of wells as BTEX and CVOCs, chlorobenzene concentrations are typically lower than those of BTEX and CVOCs.

In monitoring wells located to the southwest of the Landfill (i.e., OMW-102, OMW-201, OMW-215, OMW-213¹⁶ and OMW-219; ¹⁷ see Figures 4-3 through 4-6 and Figure 4-8), chlorobenzene was not the primary detected VOC. However, chlorobenzene was the primary detected VOC in monitoring wells located to the immediate south of the Landfill (i.e., OMW-205, OMW-216 and, historically, OMW-214; see Figures 4-7, 4-12 and 4-20). Chlorobenzene has been detected consistently in the eight wells listed above, except for OMW-214 (which was non-detect in 2017 and Spring 2018), as well as to the southwest and south of the Landfill, and concentrations have shown little variability. Concentrations of chlorobenzene are higher in the shallow bedrock (e.g., in monitoring well OMW-205), with detected concentrations one order of magnitude higher than in the deeper portions of the bedrock (e.g., in monitoring well OMW-216), where chlorobenzene is detected at or below the Class GA standard of 5 μ g/L.

Chlorobenzene has been consistently detected in FLUTeTM multi-level monitoring well EPA-1, as shown on Figures 4-14 through 4-16, with the highest concentrations (below 15 μg/L) in the shallow bedrock port (EPA-1A). Chlorobenzene has also been consistently detected at concentrations below 2 μg/L (and below the Class GA standard of 5 μg/L) in the deepest bedrock port in FLUTeTM multi-level monitoring well EPA-2 (EPA-2C), as shown on Figure 4-19. FLUTeTM multi-level monitoring well EPA-1 is located south of the Landfill in the vicinity of extraction well EW-1, while FLUTeTM multi-level monitoring well EPA-2 is located south of the Landfill on the north side of Central Nassau Road.

Consistent with historical results, monitoring well OMW-221, located to the south, did not have detectable concentrations of chlorobenzene in 2020. In addition, chlorobenzene was not detected in the two upper bedrock ports at FLUTeTM multi-level monitoring well EPA-2 (i.e., EPA-2A and EPA-2B) and in FLUTeTM multi-level monitoring well EPA-4. Chlorobenzene was detected in 2020

¹⁵ The shallow bedrock port of FLUTe™ multi-level monitoring well EPA-3 (EPA-3A) was dry at the time of sampling during the Spring and Fall 2020 groundwater sampling events, so no samples were collected from this port in 2020.

¹⁶ Monitoring well OMW-213 was dry at the time of sampling (and has been since fall of 2015), so no samples were collected in 2020.

¹⁷ Monitoring well OMW-219 could not be sampled from Fall 2012 through Fall 2016 because the well was damaged. The monitoring well was recompleted in May 2017 prior to the Spring 2017 sampling event. Monitoring well OMW-219 was not sampled during the Fall 2018 sampling event because the water level drawdown due to the nearby extraction wells lowered the water level below the intake of the pump. The dedicated pump at OMW-219 was re-constructed during the Spring 2019 sampling event to account for the lower water level.

in monitoring well OMW-202 and in FLUTeTM multi-level monitoring well EPA-3 (EPA-3B and EPA-3C). ¹⁸ OMW-202 is located along the southern portion of the southwestern edge of the cut-off wall and is paired with deep bedrock monitoring well OMW-215. FLUTeTM multi-level monitoring well EPA-3 is located southwest of the Landfill and west of OMW-202, OMW-213, OMW-215 and OMW-219, while FLUTeTM multi-level monitoring well EPA-4 is located southwest of EPA-1.

4.4.2 1,4-Dioxane Analyses

Groundwater samples were collected and analyzed for 1,4-dioxane from four bedrock monitoring wells under the approved GWMP during the Spring 2020 groundwater sampling event. Select monitoring wells and FLUTeTM multi-level monitoring ports were also sampled during the Spring 2020 groundwater sampling event for 1,4-dioxane analyses at the request of USEPA under the RI/FS Work Plan. During the Fall 2020 sampling event, 1,4-dioxane was sampled from 19 bedrock monitoring wells and FLUTeTM multi-level monitoring well ports pursuant to the GWMP.

The 1,4-dioxane concentrations detected during the Spring and Fall 2020 groundwater sampling events are summarized on Tables 4-6 and 4-8, respectively. 19 1,4-Dioxane was detected at concentrations ranging from 0.32 μ g/L at FLUTeTM deep bedrock port EPA-2C (located along Central Nassau Road) to 750 μ g/L at monitoring well OMW-201 (a shallow bedrock well located outside the Landfill near the middle of the southwestern edge of the cut-off wall).

1,4-Dioxane is primarily detected in bedrock groundwater to the immediate west and south of the Landfill. As shown on Figures 4-21 and 4-22, the 1,4-dioxane concentrations detected in monitoring well and FLUTeTM multi-level monitoring well samples collected during the Spring and Fall 2020 groundwater sampling events under the approved GWMP are generally consistent with concentrations detected previously.

4.5 Extraction Well Water Quality

Groundwater samples were collected by Arcadis from the eight existing extraction wells (EW-1 through EW-8) on August 26, 2020. Per Table 1 in Appendix J of the DR/IP, the annual samples collected from the eight extraction wells were analyzed for VOCs using USEPA SW-846 Method 8260C, semi-volatile organic compounds (SVOCs) using USEPA SW-846 Method 8270D, 1,4-dioxane using USEPA SW-846 Method 8270D SIM, polychlorinated biphenyls (PCBs) using USEPA SW-846 Method 8082A and Target Analyte List (TAL) metals using USEPA SW-846 Method 6010C. A blind duplicate sample was collected from EW-8.

Arcadis submitted the samples to Pace Analytical Services, Inc. (Pace). Pace's Melville, New York laboratory analyzed the samples collected for VOCs, SVOCs, and TAL metals, while Pace's Greensburg, Pennsylvania laboratory analyzed the samples collected for PCBs. Pace subcontracted the sample analyses of 1,4-dioxane to ALS Environmental (ALS) in Rochester, New York.

The results of the 2020 extraction well sampling event are summarized on Table 4-9.

¹⁸ The shallow bedrock port of FLUTe[™] multi-level monitoring well EPA-3 (EPA-3A) was dry at the time of sampling during the Spring and Fall 2020 groundwater sampling events, so no samples were collected from this port in 2020.

¹⁹ Table 4-6 includes the 1,4-dioxane results from the four monitoring wells that were sampled pursuant to the approved GWMP. The results for the additional monitoring wells and FLUTe[™] multi-level monitoring ports sampled for 1,4-dioxane during the Spring 2020 sampling event at the request of USEPA under the RI/FS Work Plan were included in the August 2020 MPR and will be summarized in the revised SCSR Addendum.

4.5.1 Volatile Organic Compound Analyses

Trend graphs showing the concentrations of BTEX, CVOCs, and chlorobenzene in extraction wells EW-1 through EW-8 are provided in Figures 4-23 through 4-30.

As shown on Figures 4-23 through 4-30, BTEX compounds dominate in extraction wells EW-3 through EW-8. Benzene and toluene are the primary BTEX compounds detected in extraction wells EW-3, EW-4, EW-5, EW-6 and EW-7, while benzene is the primary BTEX compound detected in extraction well EW-8. Conversely, as shown on Figures 4-23 and 4-24, CVOCs are dominant in extraction wells EW-1 and EW-2.

The maximum concentrations of BTEX, CVOCs and chlorobenzene are generally higher in the extraction wells than they are in most other wells, excluding the monitoring wells located along the southwestern edge of the Landfill. Among the extraction wells, the total VOC concentrations in EW-4, EW-6 and EW-7 are generally higher than those in the other extraction wells (due primarily to elevated concentrations of BTEX compounds); these three extraction wells are located closest to the Landfill. The total VOC concentration in EW-2 is also elevated (due primarily to TCE); EW-2 is located to the south of and farther from the Landfill.

As shown on Figure 4-23, there are downward concentration trends in EW-1 since pumping began in 2008; EW-1 is the extraction well located farthest from the Landfill. As shown in Figures 4-24 and 4-25, concentrations in EW-2 and EW-3 have remained relatively consistent since pumping began in 2008, with a notable decrease in EW-3 beginning in 2016 (after the five new extraction wells were placed into operation in July through November 2015). Concentrations in four of the five newer extraction wells (EW-4 through EW-7) have remained relatively consistent since they were placed into operation, as shown in Figures 4-26 through 4-29, while concentrations appear to now be trending downward in extraction well EW-8 (Figure 4-30), which is located farther from the Landfill than extraction wells EW-4 through EW-7.

4.5.2 1,4-Dioxane Analyses

A trend graph showing the concentrations of 1,4-dioxane in extraction wells EW-1 through EW-8 is provided in Figure 4-32. As shown on Figure 4-32 and Table 4-9, the eight extraction wells were sampled for 1,4-dioxane annually in 2020. 1,4-Dioxane concentrations detected in the extraction wells ranged from 6.5 μ g/L in extraction well EW-1 (located farthest from the Landfill) to 1,200 μ g/L in extraction well EW-7 (the westernmost of the three extraction wells located closest to the Landfill).

Concentrations of 1,4-dioxane detected in the extraction wells in 2020 were generally consistent with historical results. As shown on Figure 4-32, the detected concentrations in EW-4, EW-5, EW-6 and EW-7 are generally higher than those in the other four extraction wells. This is primarily due to their proximity to the Landfill. However, there is also an east-west difference. For example, extraction wells EW-4, EW-6 and EW-7 are all located a similar distance from the Landfill, but the 1,4-dioxane concentrations in EW-4 are almost an order of magnitude lower than in EW-6 and EW-7, which are both located farther west than EW-4.

4.5.3 Mann-Kendall Trend Analyses for Volatile Organic Compounds and 1,4-Dioxane A Mann-Kendall trend analysis was performed on the quarterly BTEX, CVOC, chlorobenzene and 1,4-dioxane results (a total of 10 constituents) collected from EW-1 through EW-8 over a four-year period (2016 through 2019), and the statistical results are summarized on Table 4-10. To provide meaningful statistical results, trends were identified using a 95% confidence interval. Insufficient detections prevented Mann-Kendall trend analysis for one constituent in extraction well EW-7 (i.e., TCE) and several constituents in extraction well EW-1 (ethylbenzene, m&p-xylenes, o-xylene and VC) and EW-8 (ethylbenzene, m&p-xylenes, o-xylene, TCE, cDCE and VC).

Extraction well EW-1 is located farthest from the Landfill. As shown on Table 4-10, six of the 10 constituents (benzene, toluene, TCE, cDCE, chlorobenzene and 1,4-dioxane) showed a statistically significant decreasing trend. As discussed above, Mann-Kendall trend analysis could not be performed for the remaining constituents (ethylbenzene, m&p-xylenes, o-xylene and VC) due to insufficient detections.

Extraction well EW-2 is located closer to the Landfill than EW-1, but farther away from the Landfill than the other six extraction wells. Four constituents showed a statistically significant decreasing trend in EW-2 (benzene, toluene, cDCE and 1,4-dioxane), and VC showed a statistically significant increasing trend. The other five constituents showed no statistically significant trend (i.e., they were stable over the four-year period).

Extraction wells EW-3, EW-5 and EW-8 are located closer to the Landfill than EW-2, but farther away from the Landfill than EW-4, EW-6 and EW-7. Five of the 10 constituents showed a statistically significant decreasing trend in EW-3 (benzene, TCE, cDCE, VC and 1,4-dioxane), three constituents showed a statistically significant increasing trend (ethylbenzene, m&p-xylenes and o-xylene) and two constituents showed no statistically significant trend (chlorobenzene and toluene). In EW-5, two of the 10 constituents showed a statistically significant decreasing trend (benzene and TCE), seven constituents showed a statistically significant increasing trend, and one constituent showed no statistically significant trend (cDCE). Four of the 10 constituents in EW-8 showed a statistically significant decreasing trend (benzene, chlorobenzene, toluene and 1,4-dioxane); the other six constituents did not have enough detections to perform Mann-Kendall trend analysis.

Extraction wells EW-4, EW-6 and EW-7 are closest to the Landfill and, as expected, show statistically significant decreasing trends for fewer constituents and statistically significant increasing trends for more constituents. In EW-4, two of the 10 constituents showed a statistically significant decreasing trend (benzene and TCE), seven constituents showed a statistically significant increasing trend, and one constituent showed no statistically significant trend (VC). Two of the 10 constituents showed a statistically significant decreasing trend in EW-6 (benzene and TCE), five constituents showed a statistically significant increasing trend, and three constituents showed no statistically significant trend (chlorobenzene, cDCE and VC). In EW-7, three of the 10 constituents showed a statistically significant decreasing trend (benzene, cDCE and VC); six of the constituents showed no statistically significant trend, no constituents showed a statistically significant increasing trend, and one constituent did not have enough detections to perform Mann-Kendall trend analysis (TCE).

4.5.4 Semi-Volatile Organic Compound Analyses

As shown on Table 4-9, the eight extraction wells (EW-1 through EW-8) were sampled for SVOCs in August 2020. SVOCs were not detected in extraction wells EW-1 or EW-8. 2,4-Dimethylphenol, 2-methylphenol and 3&4-methylphenol were detected in extraction wells EW-2 through EW-7 with one exception; 2-methylphenol was not detected in extraction well EW-7. Additionally, phenol was detected in extraction wells EW-2, EW-4 and EW-6. The highest concentrations of SVOCs were 3&4-methylphenol and phenol, which were detected at 2,540 μ g/L and 989 μ g/L, respectively, in extraction well EW-6 (one of the three extraction wells located closest to the Landfill). Naphthalene and pentachlorophenol were also detected at 9.5 μ g/L and 16.5 μ g/L, respectively, in EW-2. All other SVOCs were not detected.

4.5.5 PCB Analyses

As shown on Table 4-9, and consistent with prior data, PCBs were not detected in the samples collected from the eight extraction wells in 2020.

4.6 Leachate Collection System Monitoring Results

The leachate in the LCT was not sampled in 2020.²⁰ As discussed in Section 2.1, water levels in the Landfill remained low in 2020, which resulted in the collection of only 1,790 gallons of leachate.²¹

For historical reference, a trend graph showing the concentrations of BTEX, CVOCs and chlorobenzene in the leachate is provided in Figure 4-31, and a trend graph showing the concentrations of 1,4-dioxane in the leachate is provided in Figure 4-32.

4.7 Residential Well Monitoring

Residential well monitoring in the vicinity of the Landfill has been performed periodically since November 1979 and was initially performed by the Rensselaer County Department of Health (RCDOH) and subsequently NYSDOH. Under the residential well monitoring program, selected residential wells were, and continue to be, sampled on a periodic basis by Arcadis. The residential wells with POU treatment systems are sampled quarterly, except for NYSDOH well 1 which was switched to semi-annually in 2020 due to the very low water usage; bottled water is also provided. The sampling frequency for the other residential wells depends on direction and distance from the Landfill, with those downgradient (i.e., south) of the Landfill monitored more frequently than those located farther away and in other directions. Currently, a total of 28 residential wells (23 wells without POU treatment systems and five wells with POU treatment systems), are included in the monitoring program. The residential wells without POU treatment systems consist of the 20 residential wells that were included in the monitoring program that was being implemented under the oversight of NYSDEC, and three additional wells that were installed at new residences in 2012, 2014 and 2016; these three newer residential wells have been designated as NYSDOH wells 32, 33 and 34, respectively. Table 4-11 summarizes the residential wells, with and without POU treatment systems, that were sampled in 2020.

The properties currently being provided with bottled water are shown on Table 4-11. Each of these properties has a bottled water dispenser that the property owner(s) selected for their

²⁰ The leachate was last sampled in March 2016.

²¹ Due to lower water levels within the Landfill, a very small amount of leachate continues to flow into the leachate collection system. The 1,790 gallons of leachate pumped into the treatment system in 2020 were due to manual operation for equipment maintenance.

particular needs. Per current procedures, at least once per month the property owners are provided with a new supply of bottled water and the empty bottles are removed. The bottled water is currently provided by Culligan of Troy, New York.

Table 4-11 shows the sample collection dates and sample analyses in 2020 for the five residential wells (located on four properties) with POU treatment systems and the residential wells without POU treatment systems. Two residential wells scheduled to be sampled on a semi-annual basis (NYSDOH wells 16 and 18) were not sampled in 2020 due to COVID-19 concerns expressed by the owners. Two additional wells scheduled to be sampled on a semi-annual basis (NYSDOH wells 17 and 20) were not sampled in 2020 because the properties were unoccupied and the water was shut off at the time of sampling. Three additional wells, originally scheduled to be sampled in 2019 as part of the biennial sampling event (NYSDOH wells 6, 12 and 13) were instead sampled in 2020 because the properties were unoccupied and the water was shut off during the biennial event in 2019.

Residential well samples were submitted by Arcadis under chain-of-custody to Pace in Greensburg, Pennsylvania, which subcontracted the VOC analyses to ALS in Middletown Pennsylvania. The 1,4-dioxane analyses were subcontracted to ALS in Rochester, New York. VOCs were analyzed by USEPA Method 524.2, while 1,4-dioxane was analyzed by USEPA SW-846 Method 8270D SIM.

The results from the 2020 sampling of the residential wells with POU treatment systems are summarized in Table 4-12. Trend graphs of VOC concentrations for these five wells are presented in Figures 4-33 through 4-37; graphs are presented in both a linear and a semi-logarithmic scale. The laboratory results of the residential wells without POU treatment systems, while discussed briefly below, are not included in this report. Results are submitted to the property owners and are also submitted to NYSDOH, USEPA and NYSDEC.

4.7.1 Volatile Organic Compound Analyses

Consistent with historical results, BTEX, CVOCs and chlorobenzene were not detected in the residential wells located on Mead Road to the west of the Landfill. Also, BTEX, CVOCs and chlorobenzene were not detected in the residential wells located along Central Nassau Road to the east of FLUTeTM multi-level monitoring well EPA-5 (with the exception of an estimated detection of toluene at 0.16 μ g/L in NYSDOH well 26) or to the west of the intersection of Central Nassau and Curtis Hill Roads (with the exception of an estimated detection of toluene at 0.15 μ g/L in NYSDOH well 21).

As shown on Table 4-12 and Figure 4-33, toluene and chlorobenzene were the only VOCs of the nine dominant VOCs at the Site detected in NYSDOH well 1 during the 2020 sampling events, at maximum concentrations of 0.14 μ g/L (estimated) and 0.55 μ g/L, respectively. The detections were below the state drinking water standard of 5 μ g/L for toluene and chlorobenzene. As shown in Figure 4-33 for NYSDOH well 1, sampling of this well was initiated in August 1988 and, with the exception of a detection of methylene chloride (recognized as a common laboratory contaminant) and 1,2-dichloroethane (1,2-DCA), both at a concentration of 1 μ g/L, no VOCs were detected in this well until October 1995 when benzene was detected at 2.6 μ g/L. The concentrations of VOCs, primarily benzene and chlorobenzene, increased through the late 1990s and then began a steady decline, with a significant drop in the concentration of chlorobenzene in

2008. Benzene was not detected in NYSDOH well 1 in 2020, but toluene was detected for the first time since 2008, albeit at a low concentration. Benzene, toluene, and chlorobenzene concentrations have been consistently at or below their state drinking water standards since 2012.

Figures 4-34 through 4-37 present concentration trend graphs for the four residential wells with POU treatment systems located on three properties south of the Landfill along Central Nassau Road. As shown in Figure 4-34 for NYSDOH well 23, sampling of this well was initiated in January 1993 and no VOCs were detected until June 2001. Between June 2001 and August 2004, TCE was the only VOC detected, at concentrations ranging from 0.6 to 11 μ g/L. Since 2004, the VOCs have consisted primarily of TCE, benzene and cDCE. TCE has generally been detected at concentrations above the state drinking water standard of 5 μ g/L, although it has only been detected above the state drinking water standard twice in the past eight quarters. Benzene and cDCE have both been typically below their state drinking water standards of 5 μ g/L and over the last three years, benzene has been below the state drinking water standard except for one detection in 2018. As mentioned above, TCE exceeded the state drinking water standard during the second quarter 2019 sampling event and during the first quarter 2020 sampling event with a maximum concentration of 22 μ g/L in 2019. Benzene and cDCE (detected only during the first quarter event) were below their state drinking water standards, with maximum concentrations of 0.52 μ g/L and 0.61 μ g/L, respectively.

As shown in Figures 4-35 and 4-36 for NYSDOH wells 24S and 24D, detected VOC concentrations, including TCE, benzene, cDCE, chlorobenzene, toluene and vinyl chloride, have varied over time for both wells. Historically, concentrations were higher in the shallower well than in the deeper well. When operation of NYSDOH well 24S was discontinued in 1999, the concentrations in NYSDOH well 24D began to increase. The installation and testing of monitoring and extraction wells in the mid-2000s also appears to have negatively influenced the VOC concentrations in NYSDOH wells 24S and 24D, with upward concentration spikes, perhaps by connecting fractures that were not previously connected. However, concentrations have generally remained steady or slightly declined since groundwater extraction began in March 2008. TCE, cDCE and benzene were consistently detected above their state drinking water standards of 5 μ g/L in both NYSDOH wells 24S and 24D. Chlorobenzene concentrations in NYSDOH well 24D hover around the state drinking water standard of 5 μ g/L, while chlorobenzene concentrations in NYSDOH well 24S have been consistently below the state drinking water standard since 2010.

As shown in Figure 4-37 for NYSDOH well 25, detected VOC concentrations, including TCE, cDCE and benzene, had historically been relatively low prior to 2004. However, as described above for NYSDOH wells 24S and 24D, the installation and testing of monitoring and extraction wells in the mid-2000s appears to have negatively influenced the VOC concentrations in NYSDOH well 25, with upward concentration spikes, perhaps by connecting fractures that were not previously connected. Concentrations generally declined since the extraction of groundwater began in March 2008. The maximum TCE concentration detected in 2020 was 3.2 μ g/L, which is below the state drinking water standard of 5 μ g/L. Historically, TCE detections have been above the state drinking water standard of 5 μ g/L, but have decreased since 2015 to concentrations near 5 μ g/L. Benzene and cDCE have been detected below their state drinking water standards of 5 μ g/L since 2011, with one exception in the second quarter of 2014. Benzene and cDCE were not detected in NYSDOH well 25 in 2020.

4.7.2 1,4-Dioxane Analyses

In 2020, the residential wells located at the four properties with POU treatment systems had detections of 1,4-dioxane at concentrations ranging from an estimated 0.031 μ g/L to 0.57 μ g/L. There is currently no federal drinking water standard for 1,4-dioxane, but NYSDOH promulgated a Maximum Contaminant Level (MCL) of 1 μ g/L for 1,4-dioxane on August 26, 2020. Consistent with historical results, the highest concentrations of 1,4-dioxane in these wells during 2020 were in NYSDOH well 1, located north of the Landfill. The maximum concentration of 1,4-dioxane in the other four wells with POU treatment systems was 0.081 μ g/L. As shown on Figure 4-38, the 1,4-dioxane concentrations detected in the five wells with POU treatment systems in 2020 are generally consistent with historical results but appear to be slowly trending downward.

NYSDOH well 3, located on Mead Road west of the Landfill, had detections of 1,4-dioxane at concentrations of 1.3 and 0.88 μ g/L in May and November 2020, respectively. The former was the first results from NYSDOH well 3 that was higher than the newly adopted MCL of 1 μ g/L. Consistent with historical results, no Site-related VOCs were detected in this well in 2020. Although not equipped with a POU treatment system, this residence is supplied with bottled water.

1,4-Dioxane was also detected in 2020 at very low concentrations in six other residential wells without POU treatment systems (i.e., NYSDOH wells 6, 19, 21, 22, 29 and 32), with a maximum concentration of 0.16 μ g/L. Similar to NYSDOH well 3, no BTEX, CVOCs or chlorobenzene were detected in these six residential wells, with one exception; toluene was detected at an estimated concentration of 0.15 μ g/L in NYSDOH well 21).

4.7.3 Mann-Kendall Trend Analyses for Volatile Organic Compounds and 1,4-Dioxane A Mann-Kendall trend analysis was performed on the quarterly BTEX, CVOC, and chlorobenzene results (nine of the 10 key constituents) and the semi-annual 1,4-dioxane results collected from four of the five residential wells with POU treatment systems²² over a four-year period (2016 through 2019),²³ and the statistical results are summarized on Table 4-13. To provide meaningful statistical results, trends were identified using a 95% confidence interval. Insufficient detections prevented Mann-Kendall trend analysis for some constituents in each of the four wells.

For the four residential wells evaluated (NYSDOH wells 1, 23, 24D and 25), no constituents showed a statistically significant increasing trend over the four-year period (2016 through 2019). One constituent in one well showed a statistically significant decreasing trend over the four-year period, that being TCE in NYSDOH well 24D. In each of the four wells evaluated, three or four of the 10 constituents (including nine VOCs and 1,4-dioxane) showed no statistically significant trend in each of the results (i.e., they were stable over the four-year period). Additionally, five, six or seven of the 10 constituents had insufficient detections to perform the Mann-Kendall trend analysis.

²² The data for NYSDOH well 24S were not evaluated using Mann-Kendall trend analysis because this well is not currently in use and was not consistently sampled throughout the four-year period.

²³ For 1,4-dioxane, eight results were available during the four-year period for Mann-Kendall trend analysis. Sixteen results were available for the VOCs.

5. CONCLUSIONS

Leachate has been removed from the LCT at the Landfill since 1991, except for 1994, when no leachate was removed. Before December 2013, the leachate was transported off-site for treatment and disposal. Since then, the leachate has been treated on-site. Due to low water levels within the Landfill, only 1,790 gallons of leachate were removed from the LCT in 2020 (all from manual operation for equipment maintenance), bringing the total volume of leachate removed from the LCT from 1991 through December 2020 to approximately 6,984,640 gallons. As of the end of December 2020, a total of approximately 3,379 pounds of VOCs have been removed from the containment system through use of the leachate collection system. In 2020, approximately 0.04 pounds of VOCs were removed from the containment system through use of the leachate collection system. As shown in Figure 4-31, VOC concentrations in the LCT have remained relatively consistent since sample collection and analysis began in 1985, except for significant decreases in 1994 and in March 2016 (when the last leachate sample was collected). Although the leachate collection system is being maintained, the collection of additional leachate in 2021 is unlikely due to continued low water levels inside the Landfill in response to groundwater withdrawal from the eight extraction wells.

The three original extraction wells (EW-1, EW-2 and EW-3) were in operation on a seasonal basis (operating during the Spring, Summer and Fall months) from late March 2008 through 2010. The extraction system was winterized by USEPA to allow for year-round operation after October 2011. Five new extraction wells (EW-4 through EW-8) were placed into operation in July through November 2015. Approximately 2,498,200 gallons of groundwater were pumped from the eight extraction wells in 2020, and approximately 22,142,500 gallons of groundwater have been extracted from 2008 through December 2020. Approximately 925 pounds of VOCs were removed from the extraction wells in 2020, bringing the total mass of VOCs removed from the extraction wells to approximately 7,540 pounds.

Of the eight extraction wells, EW-1 (located farthest from the Landfill) shows downward concentration trends. The results of Mann-Kendall trend analysis using the data from a four-year period (2016 through 2019) shows a statistically significant decreasing trend for six of 10 of the key constituents (including 1,4-dioxane). Downward concentration trends are also evident at EW-2, which is the extraction well located second farthest away from the Landfill. Mann-Kendall trend analysis for EW-2 shows a statistically significant decreasing trend for four of the 10 key constituents (including 1,4-dioxane), and no statistically significant trend for four of the remaining five constituents (i.e., they were stable over the four-year period). As expected, the three extraction wells located closest to the Landfill (EW-4, EW-6 and EW-7) do not have as many constituents with statistically significant decreasing trends. EW-4 and EW-5 both show statistically significant decreasing trends for benzene and TCE; the other eight key constituents either show statistically significant increasing trends or no statistically significant trends. Although located close to the Landfill, EW-7 showed statistically significant decreasing trends for three of the 10 constituents (benzene, cDCE and VC), no constituents with statistically significant increasing trends, six constituents with no statistically significant trend (i.e., they were stable over the four-year period) and one constituent with insufficient detections to perform the Mann-Kendall trend analysis (TCE). EW-7 is located farther west than EW-4 and EW-6. Extraction wells EW-3, EW-5 and EW-8 are on the so-called "second line", farther away from the Landfill than EW-4, EW-6 and EW-7, but closer than EW-2. Extraction well EW-8 is located farthest west

(downgradient from EW-7) and has four of the 10 key constituents with statistically significant decreasing trends (benzene, chlorobenzene, toluene and 1,4-dioxane); the other six constituents had insufficient detections during the four-year period to perform the Mann-Kendall trend analysis. Results of the Mann-Kendall trend analysis for EW-3 and EW-5 showed a mix, with more statistically decreasing than increasing trends in EW-3 and more statistically significant increasing than decreasing trends in EW-5.

In summary, the trend analysis for the extraction wells shows that three of the extraction wells have two of the 10 key constituents that show a statistically significant decreasing trend (EW-4, EW-5 and EW-6), and more constituents show a statistically significant decreasing trend in the other five extraction wells. EW-8 is the extraction well located farthest from the Landfill and shows a statistically significant decreasing trend at four of the 10 key constituents.

Operation of the groundwater extraction and treatment system will continue in 2021. Annual groundwater samples for VOCs, SVOCs, 1,4-dioxane, PCBs and TAL metals will be collected from each of the eight extraction wells as outlined in Table 1 of Appendix J of the DR/IP.

VOCs and 1,4-dioxane decrease to the south with distance from the Landfill but continue to be detected in the four residential wells (on three properties) with POU treatment systems along Central Nassau Road (NYSDOH wells 23, 24S, 24D and 25). The VOC concentrations in NYSDOH well 25 have declined since extraction of groundwater began in March 2008, and the VOC concentrations in NYSDOH well 25 were less than the state drinking water standards during all four sampling events in 2020. The concentrations of VOCs in the residential well located immediately north of the Landfill (NYSDOH well 1) were again below the state drinking water standards (for the twelfth consecutive year, since mid-2008). The VOC concentrations in NYSDOH well 23 were below the state drinking water standards during three of the four sampling events in 2020. The concentrations of VOCs are still significantly above the state drinking water standards for NYSDOH well 24D, but Mann-Kendall trend analysis shows that the concentration of TCE, the dominant constituent, is decreasing. Although 1,4-dioxane was detected in each of the residential wells with POU treatment systems during 2020, its concentrations were well below the newly adopted MCL of 1 μ g/L.

With two exceptions, BTEX, CVOCs, or chlorobenzene were not detected in any of the 14 residential wells without POU treatment systems that were sampled in 2020. The two exceptions were NYSDOH wells 21 and 26, which each had estimated detections of toluene well below the state drinking water standard of 5 μ g/L (i.e., at concentrations of 0.15 and 0.16 μ g/L, respectively). 1,4-Dioxane was detected in seven residential wells without POU treatment systems in 2020: one located along Mead Road to the west of the Landfill, one located along Nassau-Averill Park Road, one located on Central Nassau Road east of FLUTeTM multi-level monitoring well EPA-5, and the other four located along Central Nassau Road south of the Landfill. The 1,4-dioxane detections in six of these wells were below the 1 μ g/L MCL that was promulgated by NYSDOH in August 2020. As in prior years, the concentration of 1,4-dioxane was higher in NYSDOH well 3, with a detection at 1.3 μ g/L in May 2020 and a detection of 0.88 μ g/L in November 2020. Although no BTEX, CVOCs, or chlorobenzene has been detected in NYSDOH well 3, bottled water is provided.

The POU treatment systems at these four properties will continue to be maintained in 2021. Bottled water is provided to each of the four properties with POU treatment systems (NYSDOH wells 1, 23, 24S, 24D and 25). Bottled water is also provided to several properties without POU treatment systems sampled semi-annually (NYSDOH wells 3, 16, 17, 18, 19, 20, 21, 22 and 32). Quarterly or semi-annual monitoring for VOCs and 1,4-dioxane will continue at each of the four properties with POU treatment systems in 2021. In accordance with Attachment A of Appendix J of the DR/IP, monitoring for VOCs and 1,4-dioxane will also continue in 2021 for the residential wells without POU treatment systems.

As confirmed by the Spring and Fall 2020 groundwater results, there are two different VOC chemical signatures in the bedrock groundwater at the Site. One is BTEX rich, with chlorobenzene and CVOCs as secondary compounds; this signature is typically found to the southwest of the Landfill and is similar to the VOCs that were found in leachate from the LCT. 1,4-Dioxane is also associated with this signature. The other signature is CVOC rich, with BTEX (specifically benzene) and chlorobenzene as secondary compounds; this signature is typically found to the south of the Landfill and extends farthest to the south.

Based on the results of the Spring and Fall 2020 groundwater sampling events, along with the results from the extraction well and POU treatment system sampling, the following conclusions can be made with respect to groundwater quality, all of which are consistent with prior annual reports:

- Concentrations of BTEX, chlorobenzene and 1,4-dioxane in bedrock groundwater outside the Landfill are highest along the southwestern edge of the Landfill, with concentrations decreasing to the south
- Concentrations of chlorobenzene are generally less than the concentrations of BTEX and CVOCs, with the exception of overburden groundwater north, northwest, west and immediately east of the Landfill and bedrock immediately south of the Landfill
- Similar to the historical results, PCBs were not detected in the individual extraction well samples in 2020.

In accordance with the approved GWMP (i.e., Attachment B of Appendix J of the DR/IP), semi-annual groundwater monitoring activities will continue to be performed in 2021. Specifically, semi-annual groundwater elevation monitoring will be performed at 24 monitoring wells located outside of the Landfill's perimeter fence and at the FLUTeTM multi-level monitoring wells EPA-1 through EPA-5. In addition, semi-annual groundwater sampling and analysis for VOCs and 1,4-dioxane, and the biennial sampling of phenolic compounds at select monitoring wells, will also be performed in 2021.

6. REFERENCES

- ARCADIS of New York, Inc., 2012. *Pump and Truck Work Plan*. Prepared for Respondents, Albany, New York. Revised July 25, 2012.
- ARCADIS of New York, Inc., 2013. *Quality Assurance Project Plan.* Prepared for Respondents, Albany, New York. Revised December 17, 2013. Amended March 17, 2015 and February 26, 2017.
- ARCADIS of New York, Inc., 2014. *Design Report/Implementation Plan*, Dewey Loeffel Landfill Superfund Site. Prepared for Respondents, Albany, New York. Revised December 18, 2014 and April 28, 2017.
- Dvirka and Bartilucci Consulting Engineers, 2006. *Pre-Design Investigation Report, Dewey Loeffel Site, Operable Unit 2, Town of Nassau, Rensselaer County, New York. Site Registry No.* 4-42-006. *Work Assignment No. D003600-32*. Prepared for New York State Department of Environmental Conservation. March 2006.
- Ecology and Environment Engineering, Inc., 1992. Report of Evaluation of On-Site Leachate
 System Task 2, Dewey Loeffel Site, Site Number 4-42-006 Town of Nassau, Rensselaer
 County, New York, W.A. Number: D002665-2. Prepared for New York State Department
 of Environmental Conservation, Albany, New York. February 1992.
- GeoTrans, Inc., 2008. *Loeffel Environs Groundwater Monitoring Plan*. Prepared for General Electric Company, Albany, New York. April 8, 2008.
- GeoTrans, Inc., 2009. *Loeffel Environs Groundwater Monitoring Plan Addendum*. Prepared for General Electric Company, Albany, New York. October 2, 2009.
- O'Brien & Gere Engineers, Inc., 2014. *Quality Assurance Project Plan.* Prepared for Respondents, Albany, New York. Revised September 11, 2015.
- O'Brien & Gere Engineers, Inc., 2015. *Appendix F Summary Report*. Prepared for Respondents, Albany, New York. June 22, 2015.
- O'Brien & Gere Engineers, Inc., 2015a. *Appendix G Summary Report*. Prepared for Respondents, Albany, New York. February 27, 2015.
- O'Brien & Gere Engineers, Inc., 2015b. *Remedial Investigation/Feasibility Study Work Plan Landfill and Groundwater*. Prepared for Respondents, Albany, New York. Revised September 4, 2018.
- O'Brien & Gere Engineers, Inc., 2019. 2018 Annual Groundwater Monitoring Report. Prepared for Respondents, Albany, New York. March 28, 2019.

- O'Brien & Gere Engineers, Inc., 2019. *Site Characterization Summary Report Addendum*. Prepared for Respondents, Albany, New York. January 31, 2019.
- Ramboll, 2020. *Treatability Testing Work Plan.* Prepared for Respondents, Albany, New York. October 30, 2020.

TABLES

Table 2-1
Annual Volume Removed From Leachate Collection and
Groundwater Extraction Systems
Dewey Loeffel Landfill Superfund Site
Nassau, New York

Year	Leachate		EW-	EW-1		EW-2		EW-3		EW-4		EW-5		EW-6		EW-7		EW-8	
	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Calculated Total Gallons
1991	39,540	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	39,540
1992	160,000	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	160,000
1993	120,000	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	120,000
1994	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1995	125,000	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	125,000
1996	230,000	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	230,000
1997	272,804	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	272,804
1998	347,969	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	347,969
1999	419,500	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	419,500
2000	440,030	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	440,030
2001	350,116	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	350,116
2002	407,312	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	407,312
2003	375,919	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	375,919
2004	292,518	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	292,518
2005	185,000	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	185,000
2006	460,000	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	460,000
2007	339,700	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	339,700
2008	500,490	71	6,876	1	192,759	27	6,876	1	0	0	0	0	0	0	0	0	0	0	707,001
2009	417,455	33	211,709	17	423,418	33	211,709	17	0	0	0	0	0	0	0	0	0	0	1,264,291
2010	342,848	24	268,845	19	537,691	38	268,845	19	0	0	0	0	0	0	0	0	0	0	1,418,229
2011	356,657	32	198,641	18	361,915	32	198,641	18	0	0	0	0	0	0	0	0	0	0	1,115,854
2012	223,546	13	394,790	22	787,277	44	377,150	21	0	0	0	0	0	0	0	0	0	0	1,782,763
2013	249,572	14	438,941	25	666,947	38	388,645	22	0	0	0	0	0	0	0	0	0	0	1,744,104
2014	158,160	19	169,025	20	299,041	35	217,854	26	0	0	0	0	0	0	0	0	0	0	844,080
2015	158,440	7	426,590	19	694,200	30	575,400	25	56,410	2	126,000	6	69,570	3	52,180	2	130,090	6	2,288,880
2016	6,010	0	362,430	12	637,490	21	518,940	17	287,080	10	301,980	10	282,100	10	284,630	10	286,310	10	2,966,970
2017	450	0	335,050	12	567,200	21	398,070	15	276,530	10	277,770	10	276,800	10	274,820	10	277,140	10	2,683,830
2018	1,680	0	325,720	12	571,260	22	407,160	15	266,050	10	269,780	10	266,770	10	269,830	10	267,950	10	2,646,200
2019	2,130	0	305,450	12	570,040	22	391,660	15	267,390	10	265,780	10	267,190	10	265,380	10	264,470	10	2,599,490
2020	1,790	0	290,070	12	567,070	23	331,080	13	263,840	11	261,200	10	263,380	11	261,950	10	259,630	10	2,500,010

Notes:

- 1. "%" designates percent of the calculated total volume removed.
- 2. The leachate was last sampled in March 2016. Due to lower water levels within the Landfill, a very small amount of leachate continues to flow into the leachate collection system.

Table 2-2
Cumulative Volume Removed From Leachate
Collection and Groundwater Extraction Systems
Dewey Loeffel Landfill Superfund Site
Nassau, New York

	Leachat	e	EW-1		EW-2		EW-3		EW-4		EW-5		EW-6		EW-7		EW-8		- Calculated
Year	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Gallons	%	Total Gallons
1991	39,540	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	39,540
1992	199,540	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	199,540
1993	319,540	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	319,540
1994	319,540	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	319,540
1995	444,540	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	444,540
1996	674,540	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	674,540
1997	947,344	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	947,344
1998	1,295,313	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,295,313
1999	1,714,813	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,714,813
2000	2,154,843	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,154,843
2001	2,504,959	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,504,959
2002	2,912,271	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,912,271
2003	3,288,190	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3,288,190
2004	3,580,708	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3,580,708
2005	3,765,708	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3,765,708
2006	4,225,708	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4,225,708
2007	4,565,408	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4,565,408
2008	5,065,898	96	6,876	0.1	192,759	4	6,876	0.1	0	0	0	0	0	0	0	0	0	0	5,272,409
2009	5,483,353	84	218,585	3	616,177	9	218,585	3	0	0	0	0	0	0	0	0	0	0	6,536,700
2010	5,826,201	73	487,430	6	1,153,867	15	487,430	6	0	0	0	0	0	0	0	0	0	0	7,954,929
2011	6,182,858	68	686,071	8	1,515,782	17	686,071	8	0	0	0	0	0	0	0	0	0	0	9,070,783
2012	6,406,404	59	1,080,862	10	2,303,059	21	1,063,222	10	0	0	0	0	0	0	0	0	0	0	10,853,546
2013	6,655,976	53	1,519,802	12	2,970,006	24	1,451,866	12	0	0	0	0	0	0	0	0	0	0	12,597,650
2014	6,814,136	51	1,688,827	13	3,269,047	24	1,669,720	12	0	0	0	0	0	0	0	0	0	0	13,441,730
2015	6,972,576	44	2,115,417	13	3,963,247	25	2,245,120	14	56,410	0.4	126,000	0.8	69,570	0.4	52,180	0.3	130,090	0.8	15,730,610
2016	6,978,586	37	2,477,847	13	4,600,737	25	2,764,060	15	343,490	2	427,980	2	351,670	2	336,810	2	416,400	2	18,697,580
2017	6,979,036	33	2,812,897	13	5,167,937	24	3,162,130	15	620,020	3	705,750	3	628,470	3	611,630	3	693,540	3	21,381,410
2018	6,980,716	29	3,138,617	13	5,739,197	24	3,569,290	15	886,070	4	975,530	4	895,240	4	881,460	4	961,490	4	24,027,610
2019	6,982,846	26	3,444,067	13	6,309,237	24	3,960,950	15	1,153,460	4	1,241,310	5	1,162,430	4	1,146,840	4	1,225,960	5	26,627,100
2020	6,984,636	24	3,734,137	13	6,876,307	24	4,292,030	15	1,417,300	5	1,502,510	5	1,425,810	5	1,408,790	5	1,485,590	5	29,127,110

- 1. "%" designates percent of the calculated total volume removed.
- 2. The leachate was last sampled in March 2016. Due to lower water levels within the Landfill, a very small amount of leachate continues to flow into the leachate collection system.

Table 2-3

Annual Mass of VOCs Removed from Leachate Collection System

Dewey Loeffel Landfill Superfund Site

Nassau, New York

				Nine D	ominant Constituent	s				Total Mas	s of BTEX	Total Mass	of CVOCs	 Calculated
Year	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	TCE	cDCE	VC	Chlorobenzene	lbs	%	lbs	%	Total Mass
1991	3.93	4.91	0.00	0.00	0.74	0.00	0.00	0.00	1.03	9.57	90.32	0.00	0.00	10.60
1992	12.52	16.95	0.06	0.00	2.26	0.00	0.00	0.00	3.80	31.80	89.32	0.00	0.00	35.60
1993	10.77	22.86	0.13	0.00	2.27	0.00	0.00	0.00	3.23	36.03	91.77	0.00	0.00	39.26
1994	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00
1995	6.55	5.17	0.27	0.00	0.95	0.00	0.03	0.01	1.89	12.94	87.02	0.04	0.25	14.87
1996	14.83	14.52	0.45	0.00	2.31	0.00	0.05	0.06	4.78	32.12	86.80	0.10	0.28	37.00
1997	18.47	18.96	0.17	0.00	2.97	0.00	0.02	0.10	6.23	40.56	86.45	0.12	0.26	46.92
1998	26.69	29.51	0.07	0.00	4.37	0.00	0.01	0.18	9.22	60.64	86.56	0.19	0.27	70.05
1999	36.83	43.86	0.03	0.00	6.15	0.00	0.01	0.31	13.03	86.87	86.68	0.32	0.32	100.22
2000	44.14	56.62	0.01	0.00	7.51	0.00	0.00	0.48	15.99	108.28	86.80	0.48	0.38	124.74
2001	39.98	55.24	0.00	0.00	6.94	0.00	0.00	0.54	14.82	102.15	86.92	0.54	0.46	117.52
2002	52.30	77.85	0.00	0.00	9.25	0.00	0.00	0.90	19.86	139.40	87.04	0.90	0.56	160.16
2003	55.68	89.26	0.00	0.00	10.04	0.00	0.00	1.20	21.64	154.98	87.15	1.20	0.68	177.82
2004	49.43	85.35	0.00	0.00	9.09	0.00	0.00	1.35	19.67	143.86	87.25	1.35	0.82	164.88
2005	33.65	62.41	0.00	0.00	6.20	0.00	0.00	1.21	13.54	102.26	87.40	1.21	1.03	117.00
2006	84.83	168.26	0.00	0.00	15.08	0.00	0.51	4.36	33.60	268.18	87.45	4.88	1.59	306.65
2007	63.16	127.48	0.00	0.00	10.84	0.00	13.38	4.63	24.46	201.48	82.59	18.00	7.38	243.95
2008	94.93	172.37	0.00	0.00	15.92	0.00	25.01	7.46	35.92	283.22	80.55	32.47	9.23	351.60
2009	73.65	155.37	0.00	0.00	14.10	0.00	22.08	0.03	34.91	243.12	81.00	22.11	7.37	300.14
2010	54.05	116.23	0.00	0.00	12.13	0.00	18.39	0.00	27.62	182.42	79.86	18.39	8.05	228.43
2011	62.74	130.30	0.00	0.00	12.66	0.00	23.70	0.01	32.69	205.70	78.48	23.70	9.04	262.10
2012	33.62	68.52	0.91	0.82	7.82	0.00	15.00	2.08	18.31	111.69	75.94	17.08	11.61	147.08
2013	38.68	69.58	2.33	3.13	9.23	0.00	22.58	6.16	20.33	122.94	71.48	28.74	16.71	172.01
2014	19.91	31.49	0.69	1.25	2.08	0.00	4.57	2.07	11.41	55.43	75.44	6.64	9.03	73.47
2015	20.84	33.51	0.85	0.80	3.63	0.01	4.58	2.41	10.09	59.63	77.71	7.01	9.13	76.73
2016	0.11	0.18	0.01	0.01	0.02	0.00	0.02	0.01	0.11	0.34	69.82	0.03	6.63	0.48
2017	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	61.51	0.001	5.16	0.01
2018	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	61.51	0.002	5.16	0.04
2019	0.01	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	61.51	0.003	5.16	0.05
2020	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	61.51	0.002	5.16	0.04

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- 3. "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- $5.\ "CVOCs"\ designates\ trichloroethene\ (TCE),\ cis-1,2-dichloroethene\ (cDCE),\ and\ vinyl\ chloride\ (VC).$
- 6. "%" designates percent of the calculated total mass.
- $\label{eq:constituents} \textbf{7. Calculated total mass designates the sum of the nine dominant constituents.}$
- 8. The leachate was last sampled in March 2016. Due to lower water levels within the Landfill,

a very small amount of mass continues to be produced from the leachate collection system.

Table 2-4

Cumulative Mass of VOCs Removed from Leachate Collection System

Dewey Loeffel Landfill Superfund Site

Nassau, New York

				Nine D	ominant Constituen	ts				Total Mass of BTEX Total Mass of CVOCs		Calculated		
Year	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	TCE	cDCE	vc	Chlorobenzene	lbs	%	lbs	%	Total Mass
1991	3.93	4.91	0.00	0.00	0.74	0.00	0.00	0.00	1.03	9.57	90.32	0.00	0.00	10.60
1992	16.45	21.86	0.06	0.00	3.00	0.00	0.00	0.00	4.83	41.37	89.55	0.00	0.00	46.20
1993	27.22	44.72	0.20	0.00	5.26	0.00	0.00	0.00	8.06	77.40	90.57	0.00	0.00	85.46
1994	27.22	44.72	0.20	0.00	5.26	0.00	0.00	0.00	8.06	77.40	90.57	0.00	0.00	85.46
1995	33.77	49.89	0.47	0.00	6.21	0.00	0.03	0.01	9.96	90.34	90.04	0.04	0.04	100.33
1996	48.61	64.41	0.92	0.00	8.52	0.00	0.08	0.06	14.74	122.46	89.17	0.14	0.10	137.33
1997	67.08	83.37	1.08	0.00	11.49	0.00	0.10	0.16	20.97	163.02	88.48	0.26	0.14	184.25
1998	93.77	112.87	1.15	0.00	15.86	0.00	0.11	0.34	30.19	223.66	87.95	0.45	0.18	254.31
1999	130.60	156.73	1.18	0.00	22.01	0.00	0.12	0.66	43.23	310.52	87.59	0.77	0.22	354.52
2000	174.74	213.35	1.18	0.00	29.53	0.00	0.12	1.13	59.21	418.80	87.38	1.25	0.26	479.27
2001	214.72	268.59	1.19	0.00	36.46	0.00	0.12	1.68	74.04	520.95	87.29	1.80	0.30	596.79
2002	267.02	346.43	1.19	0.00	45.72	0.00	0.12	2.57	93.90	660.36	87.24	2.69	0.36	756.94
2003	322.70	435.69	1.19	0.00	55.76	0.00	0.12	3.78	115.54	815.33	87.22	3.90	0.42	934.77
2004	372.12	521.04	1.19	0.00	64.85	0.00	0.12	5.13	135.21	959.20	87.23	5.25	0.48	1099.65
2005	405.77	583.45	1.19	0.00	71.04	0.00	0.12	6.33	148.74	1061.46	87.24	6.45	0.53	1216.66
2006	490.61	751.72	1.19	0.00	86.13	0.00	0.64	10.69	182.34	1329.63	87.29	11.33	0.74	1523.31
2007	553.77	879.20	1.19	0.00	96.96	0.00	14.01	15.32	206.80	1531.12	86.64	29.33	1.66	1767.25
2008	648.70	1051.56	1.19	0.00	112.89	0.00	39.02	22.78	242.72	1814.34	85.63	61.80	2.92	2118.86
2009	722.35	1206.93	1.19	0.00	126.99	0.00	61.10	22.81	277.63	2057.46	85.05	83.91	3.47	2419.00
2010	776.40	1323.16	1.19	0.00	139.12	0.00	79.49	22.81	305.25	2239.88	84.61	102.30	3.86	2647.43
2011	839.15	1453.46	1.19	0.00	151.78	0.00	103.19	22.82	337.94	2445.58	84.05	126.00	4.33	2909.52
2012	872.76	1521.98	2.10	0.82	159.60	0.00	118.19	24.89	356.24	2557.27	83.66	143.09	4.68	3056.60
2013	911.44	1591.56	4.43	3.95	168.83	0.00	140.77	31.05	376.57	2680.21	83.01	171.82	5.32	3228.61
2014	931.36	1623.05	5.12	5.19	170.91	0.00	145.34	33.12	387.98	2735.64	82.85	178.46	5.40	3302.08
2015	952.20	1656.56	5.97	5.99	174.54	0.01	149.92	35.53	398.08	2795.27	82.73	185.47	5.49	3378.81
2016	952.30	1656.74	5.98	6.00	174.57	0.02	149.94	35.54	398.19	2795.60	82.73	185.50	5.49	3379.29
2017	952.31	1656.74	5.98	6.00	174.57	0.02	149.94	35.54	398.19	2795.61	82.73	185.50	5.49	3379.30
2018	952.31	1656.76	5.98	6.01	174.57	0.02	149.94	35.55	398.21	2795.63	82.73	185.50	5.49	3379.34
2019	952.32	1656.77	5.99	6.01	174.57	0.02	149.94	35.55	398.22	2795.66	82.73	185.51	5.49	3379.39
2020	952.33	1656.79	5.99	6.01	174.58	0.02	149.94	35.55	398.24	2795.69	82.73	185.51	5.49	3379.44

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- 3. "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- $5.\ "CVOCs"\ designates\ trichloroethene\ (TCE),\ cis-1,2-dichloroethene\ (cDCE),\ and\ vinyl\ chloride\ (VC).$
- 6. "%" designates percent of the calculated total mass.
- 7. Calculated total mass designates the sum of the nine dominant constituents.
- 8. The leachate was last sampled in March 2016. Due to lower water levels within the Landfill,

a very small amount of mass continues to be produced from the leachate collection system.

Table 2-5

Annual Mass of VOCs Removed from Individual Extraction Wells

Dewey Loeffel Landfill Superfund Site

Nassau, New York

				Nir	ne Dominant Constit	uents				Total Mas	s of BTEX	Total Mass	of CVOCs	Calculated
Year	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	TCE	cDCE	vc	Chlorobenzene	Ibs	%	lbs	%	Total Mass
							EW-1							
2008	0.18	0.20	0.00	0.00	0.00	1.81	0.11	0.00	0.00	0.37	16.31	1.92	83.69	2.29
2009	6.03	7.10	0.00	0.00	0.00	49.57	2.56	0.00	1.04	13.12	19.79	52.13	78.63	66.30
2010	2.54	0.41	0.00	0.00	0.00	27.11	1.19	0.00	0.00	2.94	9.42	28.30	90.58	31.24
2011	1.27	0.00	0.00	0.00	0.00	14.57	0.84	0.00	0.00	1.28	7.65	15.40	92.34	16.68
2012	2.33	0.33	0.01	0.00	0.01	26.00	1.71	0.01	0.07	2.69	8.83	27.72	90.94	30.48
2013	2.35	0.41	0.00	0.00	0.00	26.58	1.83	0.00	0.21	2.76	8.80	28.41	90.53	31.38
2014	0.77	0.52	0.03	0.04	0.02	7.55	0.70	0.01	0.20	1.39	14.10	8.26	83.87	9.85
2015	2.30	1.41	0.05	0.06	0.06	24.16	1.96	0.04	0.41	3.87	12.70	26.16	85.94	30.45
2016	1.81	0.67	0.00	0.00	0.00	21.33	1.81	0.00	0.34	2.47	9.53	23.15	89.15	25.97
2017	1.52	0.52	0.00	0.00	0.00	17.68	1.48	0.00	0.31	2.04	9.48	19.17	89.09	21.51
2018	1.18	0.19	0.00	0.00	0.00	14.68	1.29	0.00	0.25	1.38	7.86	15.98	90.70	17.62
2019	0.88	0.08	0.00	0.00	0.00	10.29	1.03	0.03	0.20	0.97	7.73	11.35	90.65	12.52
2020	0.92	0.16	0.01	0.01	0.01	11.00	1.11	0.06	0.22	1.11	8.22	12.17	90.17	13.50
							EW-2							
2008	7.32	7.19	0.00	0.00	0.00	60.14	2.63	0.00	0.06	14.51	18.76	62.77	81.17	77.34
2009	19.71	23.23	0.00	0.00	0.00	75.77	8.74	0.00	2.36	42.94	33.08	84.51	65.10	129.81
2010	15.75	17.65	0.00	0.00	0.00	138.73	9.35	0.00	0.00	33.41	18.41	148.08	81.59	181.49
2011	11.39	13.76	0.00	0.00	0.01	100.51	8.09	0.00	0.01	25.17	18.81	108.61	81.18	133.78
2012	26.34	33.08	0.23	0.07	1.42	217.01	22.02	0.17	3.15	61.15	20.15	239.20	78.82	303.50
2013	23.04	30.30	0.05	0.06	1.02	201.33	21.81	0.00	0.40	54.48	19.59	223.15	80.26	278.03
2014	7.27	10.51	0.31	0.68	0.48	52.16	8.53	0.17	2.21	19.24	23.38	60.86	73.93	82.32
2015	23.23	38.47	1.45	1.77	3.11	168.66	30.92	1.46	6.37	68.02	24.69	201.04	72.99	275.43
2016	24.23	41.37	1.48	1.76	3.09	181.34	34.11	1.92	6.36	71.93	24.33	217.37	73.52	295.66
2017	21.32	36.28	1.71	1.95	3.46	158.81	29.58	1.80	6.54	64.73	24.76	190.19	72.74	261.46
2018	18.13	29.12	1.58	1.73	2.71	154.02	23.84	2.07	5.78	53.28	22.29	179.93	75.29	238.98
2019	15.35	23.25	1.52	1.52	1.77	133.38	19.96	2.77	5.48	43.41	21.18	156.11	76.15	205.00
2020	14.85	19.20	1.35	1.34	2.25	117.48	19.62	2.90	4.88	38.99	21.21	140.00	76.14	183.87
							EW-3							
2008	0.66	0.33	0.00	0.00	0.02	0.07	0.09	0.05	0.10	1.01	76.52	0.21	15.86	1.31
2009	16.18	7.46	0.00	0.00	0.04	1.93	1.87	0.00	2.49	23.67	79.02	3.80	12.68	29.96
2010	17.52	12.65	0.00	0.00	0.69	1.62	1.86	0.00	2.59	30.86	83.55	3.49	9.44	36.94
2011	13.49	10.84	0.00	0.00	0.58	1.03	1.42	0.00	1.97	24.92	84.93	2.45	8.36	29.34
2012	27.01	22.61	0.06	0.02	1.20	1.74	2.81	0.28	4.03	50.90	85.19	4.83	8.08	59.75
2013	32.33	30.04	0.02	0.03	1.19	1.87	3.33	0.62	5.08	63.60	85.37	5.82	7.81	74.50
2014	19.52	20.09	0.17	0.75	0.59	1.01	2.69	0.58	3.62	41.12	83.88	4.28	8.74	49.03
2015	47.80	42.49	0.58	0.71	2.18	2.65	7.36	1.71	7.76	93.76	82.80	11.72	10.35	113.24
2016	13.11	12.99	0.16	0.18	0.57	0.50	0.78	0.21	1.99	27.01	88.57	1.50	4.90	30.50
2017	8.05	10.83	0.14	0.17	0.50	0.29	0.43	0.14	1.42	19.69	89.64	0.85	3.88	21.97
2018	7.18	13.03	0.18	0.20	0.65	0.32	0.34	0.08	1.49	21.25	90.51	0.74	3.16	23.48
2019	5.58	11.95	0.16	0.19	0.59	0.25	0.24	0.01	1.30	18.47	91.10	0.51	2.49	20.28
2020	4.06	9.72	0.13	0.16	0.47	0.19	0.19	0.04	0.96	14.55	91.29	0.42	2.66	15.94

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- 3. "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- 5. "CVOCs" designates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC).
- 6. "%" designates percent of the calculated total mass.
- 7. Calculated total mass designates the sum of the nine dominant constituents.

Table 2-5

Annual Mass of VOCs Removed from Individual Extraction Wells

Dewey Loeffel Landfill Superfund Site

Nassau, New York

				Nir	ne Dominant Constitu	uents				Total Mas	s of BTEX	Total Mass	of CVOCs	Calculated
Year	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	TCE	cDCE	vc	Chlorobenzene	lbs	%	lbs	%	Total Mass
							EW-4							
2015	13.24	11.58	0.20	0.23	0.75	0.67	2.85	0.65	2.19	26.01	80.32	4.18	12.90	32.38
2016	45.17	54.90	0.84	0.95	3.24	2.66	12.05	1.79	9.45	105.11	80.20	16.50	12.59	131.05
2017	42.29	71.36	1.19	1.41	4.62	1.90	14.25	1.66	11.33	120.87	80.57	17.81	11.87	150.01
2018	36.75	72.11	1.20	1.36	4.67	0.97	14.01	1.33	10.63	116.09	81.16	16.32	11.41	143.03
2019	34.76	82.22	1.45	1.64	5.83	0.57	14.39	1.57	11.82	125.90	81.62	16.53	10.72	154.25
2020	31.84	83.52	1.38	1.66	5.66	0.45	13.98	1.34	10.54	124.05	82.50	15.78	10.49	150.37
							EW-5							
2015	19.46	7.44	0.11	0.17	0.46	0.82	5.46	0.70	3.50	27.65	72.54	6.97	18.29	38.12
2016	19.83	9.22	0.10	0.12	0.49	0.49	3.41	0.51	2.99	29.75	80.06	4.42	11.90	37.16
2017	16.02	13.64	0.20	0.23	0.70	0.28	2.75	0.48	3.13	30.79	82.27	3.51	9.37	37.42
2018	15.14	18.64	0.28	0.31	0.97	0.20	2.52	0.54	3.52	35.34	83.90	3.26	7.74	42.12
2019	14.53	21.21	0.33	0.38	1.19	0.15	2.65	0.75	3.95	37.65	83.38	3.55	7.86	45.15
2020	15.52	27.54	0.39	0.47	1.48	0.13	2.88	0.77	4.24	45.40	84.99	3.78	7.08	53.42
							EW-6							
2015	27.89	29.54	0.50	0.55	1.91	0.19	8.55	2.47	5.94	60.39	77.87	11.22	14.46	77.55
2016	114.81	148.06	2.28	2.62	9.03	1.64	47.23	9.01	28.06	276.80	76.31	57.89	15.96	362.74
2017	120.01	175.59	3.11	3.58	12.00	1.48	54.49	8.77	35.92	314.29	75.74	64.74	15.60	414.95
2018	94.44	159.15	2.75	3.15	10.65	0.53	42.37	7.02	31.23	270.14	76.90	49.92	14.21	351.29
2019	84.39	181.05	3.28	3.65	13.20	0.00	38.20	8.35	34.22	285.57	77.95	46.55	12.71	366.34
2020	76.13	157.71	2.75	3.22	10.90	0.15	36.69	5.82	28.57	250.70	77.87	42.66	13.25	321.94
							EW-7							
2015	11.97	12.14	0.20	0.23	0.74	0.00	1.74	1.06	2.34	25.27	83.08	2.80	9.21	30.41
2016	72.94	109.07	1.67	1.79	6.16	0.00	19.87	7.62	18.58	191.63	80.62	27.49	11.56	237.70
2017	64.25	133.42	2.04	2.28	7.81	0.00	18.45	8.94	19.84	209.81	81.63	27.38	10.65	257.03
2018	55.83	135.07	2.07	2.27	7.85	0.00	10.45	7.47	18.32	203.10	84.86	17.92	7.49	239.35
2019	46.20	122.18	1.83	2.00	7.14	0.00	3.23	4.79	15.86	179.34	88.25	8.02	3.95	203.22
2020	44.16	113.32	1.55	1.88	6.35	0.00	1.32	2.49	13.54	167.26	90.60	3.81	2.06	184.60
							EW-8							
2015	1.84	0.27	0.00	0.00	0.02	0.00	0.00	0.00	0.11	2.14	94.82	0.01	0.49	2.26
2016	3.12	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.16	3.22	95.34	0.001	0.02	3.38
2017	2.26	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.14	2.30	94.12	0.003	0.12	2.44
2018	1.73	0.04	0.00	0.00	0.00	0.00	0.01	0.00	0.11	1.77	93.96	0.008	0.44	1.89
2019	1.44	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.09	1.46	93.96	0.002	0.13	1.55
2020	1.44	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.09	1.45	93.66	0.008	0.51	1.55

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- 3. "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- 5. "CVOCs" designates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC).
- 6. "%" designates percent of the calculated total mass.
- 7. Calculated total mass designates the sum of the nine dominant constituents.

Table 2-6
Cumulative Mass of VOCs Removed from Individual Extraction Wells
Dewey Loeffel Landfill Superfund Site
Nassau, New York

				Nir	ne Dominant Constit	uents				Total Mas	s of BTEX	Total Mass	of CVOCs	Calculated
Year	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	TCE	cDCE	vc	Chlorobenzene	Ibs	%	lbs	%	Total Mass
							EW-1							
2008	0.18	0.20	0.00	0.00	0.00	1.81	0.11	0.00	0.00	0.37	16.31	1.92	83.69	2.29
2009	6.20	7.29	0.00	0.00	0.00	51.38	2.67	0.00	1.04	13.50	19.68	54.05	78.80	68.59
2010	8.74	7.70	0.00	0.00	0.00	78.49	3.86	0.00	1.04	16.44	16.47	82.35	82.49	99.83
2011	10.02	7.70	0.00	0.00	0.00	93.05	4.70	0.00	1.04	17.72	15.21	97.75	83.90	116.51
2012	12.35	8.03	0.01	0.00	0.02	119.05	6.41	0.02	1.11	20.41	13.88	125.47	85.36	146.99
2013	14.70	8.44	0.01	0.00	0.02	145.63	8.24	0.02	1.32	23.17	12.99	153.88	86.27	178.38
2014	15.47	8.97	0.04	0.05	0.04	153.18	8.94	0.03	1.52	24.56	13.05	162.14	86.14	188.23
2015	17.77	10.37	0.09	0.11	0.09	177.34	10.89	0.07	1.94	28.43	13.00	188.31	86.11	218.67
2016	19.58	11.04	0.09	0.11	0.09	198.68	12.71	0.07	2.28	30.90	12.63	211.45	86.44	244.64
2017	21.09	11.56	0.09	0.11	0.09	216.36	14.19	0.07	2.59	32.94	12.38	230.62	86.65	266.15
2018	22.27	11.75	0.09	0.11	0.09	231.04	15.48	0.08	2.84	34.33	12.10	246.60	86.90	283.77
2019	23.15	11.84	0.09	0.12	0.10	241.33	16.52	0.11	3.05	35.29	11.91	257.95	87.06	296.29
2020	24.07	12.00	0.10	0.13	0.10	252.33	17.62	0.16	3.26	36.40	11.75	270.12	87.20	309.79
							EW-2							
2008	7.32	7.19	0.00	0.00	0.00	60.14	2.63	0.00	0.06	14.51	18.76	62.77	81.17	77.34
2009	27.02	30.43	0.00	0.00	0.00	135.91	11.38	0.00	2.41	57.45	27.73	147.29	71.10	207.15
2010	42.78	48.08	0.00	0.00	0.00	274.63	20.73	0.00	2.41	90.86	23.38	295.37	76.00	388.64
2011	54.17	61.84	0.00	0.00	0.01	375.15	28.82	0.00	2.42	116.02	22.21	403.97	77.33	522.42
2012	80.51	94.92	0.24	0.07	1.43	592.16	50.84	0.18	5.57	177.17	21.45	643.18	77.87	825.91
2013	103.55	125.22	0.29	0.14	2.45	793.49	72.66	0.18	5.97	231.65	20.98	866.33	78.48	1103.95
2014	110.82	135.72	0.59	0.82	2.93	845.66	81.18	0.35	8.18	250.89	21.15	927.19	78.16	1186.27
2015	134.05	174.19	2.04	2.59	6.04	1014.31	112.11	1.82	14.55	318.91	21.82	1128.23	77.19	1461.69
2016	158.28	215.56	3.52	4.35	9.13	1195.65	146.21	3.74	20.92	390.83	22.24	1345.61	76.57	1757.36
2017	179.60	251.84	5.23	6.30	12.59	1354.47	175.80	5.54	27.46	455.56	22.57	1535.80	76.07	2018.82
2018	197.73	280.96	6.82	8.03	15.30	1508.49	199.64	7.60	33.23	508.84	22.54	1715.73	75.99	2257.80
2019	213.07	304.21	8.34	9.55	17.07	1641.87	219.60	10.37	38.71	552.25	22.42	1871.84	76.00	2462.80
2020	227.92	323.42	9.69	10.89	19.32	1759.35	239.22	13.27	43.59	591.24	22.34	2011.84	76.01	2646.67
							EW-3							
2008	0.66	0.33	0.00	0.00	0.02	0.07	0.09	0.05	0.10	1.01	76.52	0.21	15.86	1.31
2009	16.84	7.79	0.00	0.00	0.06	2.00	1.96	0.05	2.59	24.68	78.91	4.01	12.81	31.28
2010	34.36	20.43	0.00	0.00	0.75	3.62	3.83	0.05	5.18	55.54	81.42	7.49	10.99	68.21
2011	47.85	31.28	0.00	0.00	1.33	4.65	5.25	0.05	7.15	80.46	82.48	9.95	10.20	97.55
2012	74.86	53.89	0.06	0.02	2.53	6.39	8.05	0.33	11.17	131.36	83.51	14.77	9.39	157.30
2013	107.19	83.93	0.08	0.04	3.72	8.26	11.39	0.95	16.25	194.96	84.11	20.59	8.88	231.80
2014	126.71	104.02	0.25	0.79	4.31	9.27	14.07	1.53	19.87	236.09	84.07	24.87	8.86	280.83
2015	174.51	146.52	0.84	1.50	6.48	11.92	21.44	3.23	27.63	329.85	83.70	36.59	9.29	394.07
2016	187.62	159.51	1.00	1.68	7.05	12.42	22.22	3.44	29.62	356.86	84.05	38.09	8.97	424.57
2017	195.67	170.34	1.14	1.85	7.55	12.71	22.65	3.58	31.04	376.55	84.33	38.94	8.72	446.53
2018	202.85	183.37	1.32	2.05	8.21	13.03	22.99	3.66	32.53	397.80	84.64	39.68	8.44	470.01
2019	208.43	195.32	1.48	2.24	8.80	13.28	23.24	3.67	33.83	416.27	84.90	40.19	8.20	490.29
2020	212.50	205.03	1.61	2.41	9.27	13.47	23.42	3.71	34.79	430.82	85.10	40.61	8.02	506.23

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- 3. "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- 5. "CVOCs" designates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC).
- 6. "%" designates percent of the calculated total mass.
- 7. Calculated total mass designates the sum of the nine dominant constituents.

Table 2-6
Cumulative Mass of VOCs Removed from Individual Extraction Wells
Dewey Loeffel Landfill Superfund Site
Nassau, New York

				Nin	e Dominant Constit	uents				Total Mass of BTEX Total Mass of CVOCs		of CVOCs	Calculated	
Year	Benzene	Toluene	Ethylbenzene	o-Xylene	m,p-Xylenes	TCE	cDCE	vc	Chlorobenzene	lbs	%	lbs	%	Total Mass
							EW-4							
2015	13.24	11.58	0.20	0.23	0.75	0.67	2.85	0.65	2.19	26.01	80.32	4.18	12.90	32.38
2016	58.42	66.49	1.04	1.19	3.98	3.33	14.90	2.44	11.64	131.11	80.23	20.67	12.65	163.43
2017	100.71	137.84	2.23	2.60	8.61	5.23	29.15	4.10	22.98	251.98	80.39	38.48	12.28	313.44
2018	137.46	209.95	3.42	3.96	13.27	6.20	43.16	5.43	33.60	368.07	80.63	54.80	12.01	456.47
2019	172.22	292.16	4.87	5.61	19.10	6.77	57.55	7.01	45.42	493.97	80.88	71.33	11.68	610.72
2020	204.06	375.69	6.25	7.26	24.76	7.23	71.53	8.35	55.97	618.02	81.20	87.11	11.45	761.10
							EW-5							
2015	19.46	7.44	0.11	0.17	0.46	0.82	5.46	0.70	3.50	27.65	72.54	6.97	18.29	38.12
2016	39.30	16.67	0.21	0.28	0.95	1.31	8.87	1.21	6.49	57.40	76.25	11.39	15.13	75.28
2017	55.31	30.30	0.41	0.52	1.65	1.59	11.62	1.69	9.61	88.19	78.25	14.90	13.22	112.71
2018	70.45	48.94	0.69	0.83	2.62	1.79	14.14	2.23	13.14	123.53	79.79	18.16	11.73	154.83
2019	84.99	70.15	1.02	1.21	3.81	1.93	16.80	2.98	17.09	161.18	80.60	21.71	10.85	199.98
2020	100.51	97.69	1.41	1.67	5.29	2.06	19.68	3.75	21.33	206.58	81.52	25.49	10.06	253.40
							EW-6							
2015	27.89	29.54	0.50	0.55	1.91	0.19	8.55	2.47	5.94	60.39	77.87	11.22	14.46	77.55
2016	142.70	177.60	2.78	3.17	10.94	1.83	55.78	11.49	34.00	337.19	76.58	69.10	15.69	440.29
2017	262.71	353.19	5.88	6.76	22.95	3.31	110.27	20.26	69.92	651.48	76.18	133.84	15.65	855.24
2018	357.15	512.34	8.63	9.90	33.60	3.84	152.64	27.28	101.15	921.62	76.39	183.76	15.23	1206.53
2019	441.54	693.39	11.91	13.55	46.79	3.85	190.84	35.63	135.37	1207.19	76.75	230.31	14.64	1572.88
2020	517.67	851.10	14.66	16.77	57.69	3.99	227.53	41.45	163.94	1457.90	76.94	272.97	14.41	1894.81
							EW-7							
2015	11.97	12.14	0.20	0.23	0.74	0.00	1.74	1.06	2.34	25.27	83.08	2.80	9.21	30.41
2016	84.91	121.21	1.87	2.01	6.90	0.00	21.61	8.67	20.92	216.90	80.90	30.29	11.30	268.11
2017	149.16	254.63	3.91	4.30	14.71	0.00	40.06	17.61	40.76	426.71	81.26	57.67	10.98	525.14
2018	204.99	389.71	5.98	6.57	22.56	0.00	50.51	25.08	59.09	629.81	82.38	75.59	9.89	764.49
2019	251.19	511.88	7.81	8.57	29.70	0.00	53.74	29.87	74.94	809.15	83.62	83.61	8.64	967.71
2020	295.34	625.20	9.36	10.45	36.05	0.00	55.06	32.36	88.48	976.41	84.73	87.43	7.59	1152.31
							EW-8							
2015	1.84	0.27	0.00	0.00	0.02	0.00	0.00	0.00	0.11	2.14	94.82	0.01	0.49	2.26
2016	4.97	0.37	0.00	0.00	0.02	0.00	0.01	0.00	0.26	5.36	95.13	0.01	0.21	5.63
2017	7.23	0.40	0.00	0.00	0.02	0.00	0.01	0.00	0.40	7.66	94.83	0.01	0.18	8.08
2018	8.96	0.44	0.01	0.00	0.02	0.01	0.01	0.00	0.51	9.43	94.66	0.02	0.23	9.96
2019	10.40	0.45	0.01	0.00	0.02	0.01	0.02	0.00	0.60	10.89	94.57	0.02	0.22	11.51
2020	11.85	0.46	0.01	0.00	0.02	0.01	0.02	0.00	0.69	12.34	94.46	0.03	0.25	13.07

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- 5. "CVOCs" designates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC).
- 6. "%" designates percent of the calculated total mass.
- 7. Calculated total mass designates the sum of the nine dominant constituents.

Table 2-7 Annual Mass of VOCs Removed from Groundwater Extraction System in 2020 Dewey Loeffel Landfill Superfund Site Nassau, New York

	Total Mass	s of BTEX	Total Mass	of CVOCs	Total Mass of (Chlorobenzene	Calculated Tota
Well	Ibs	%	lbs	%	lbs	%	Mass
EW-1	1.11	8.22	12.17	90.17	0.22	1.62	13.50
EW-2	38.99	21.21	140.00	76.14	4.88	2.65	183.87
EW-3	14.55	91.29	0.42	2.66	0.96	6.05	15.94
EW-4	124.05	82.50	15.78	10.49	10.54	7.01	150.37
EW-5	45.40	84.99	3.78	7.08	4.24	7.93	53.42
EW-6	250.70	77.87	42.66	13.25	28.57	8.87	321.94
EW-7	167.26	90.60	3.81	2.06	13.54	7.33	184.60
EW-8	1.45	93.66	0.008	0.51	0.09	5.83	1.55
						Total:	925.19

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- 3. "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- 5. "CVOCs" designates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC).
- 6. "%" designates percent of the calculated total mass.
- 7. Calculated total mass designates the sum of the nine dominant constituents.

Table 2-8 Cumulative Mass of VOCs Removed from Groundwater Extraction System Through 2020 Dewey Loeffel Landfill Superfund Site Nassau, New York

	Total Mass	s of BTEX	Total Mass	of CVOCs	Total Mass of C	hlorobenzene	- Calculated Total
Well	Ibs	%	lbs	%	lbs	%	Mass
EW-1	36.40	11.75	270.12	87.20	3.26	1.05	309.79
EW-2	591.24	22.34	2011.84	76.01	43.59	1.65	2646.67
EW-3	430.82	85.10	40.61	8.02	34.79	6.87	506.23
EW-4	618.02	81.20	87.11	11.45	55.97	7.35	761.10
EW-5	206.58	81.52	25.49	10.06	21.33	8.42	253.40
EW-6	1457.90	76.94	272.97	14.41	163.94	8.65	1894.81
EW-7	976.41	84.73	87.43	7.59	88.48	7.68	1152.31
EW-8	12.34	94.46	0.03	0.25	0.69	5.29	13.07
						Total:	7537.37

- 1. Mass reported in pounds (lbs).
- 2. For non-detects, zero is used.
- 3. "VOCs" designates volatile organic compounds.
- 4. "BTEX" designates benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- 5. "CVOCs" designates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC).
- 6. "%" designates percent of the calculated total mass.
- 7. Calculated total mass designates the sum of the nine dominant constituents.
- 8. Extraction wells EW-1 through EW-3 have been operating since 2008. Extraction wells EW-4 through EW-8 have been operating since 2015.

Table 3-1
Water Level Measurements - June 15, 2020
Dewey Loeffel Landfill Superfund Site
Nassau, New York

Well ID	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation
OMW-101	Overburden	639.59	638.0	Dry	NA
OMW-102	Bedrock	639.14	636.5	64.62	574.52
OMW-103	Bedrock	643.76	642.3	9.81	633.95
OMW-107	Overburden	625.51	623.2	4.87	620.64
OMW-108	Bedrock	625.08	623.2	37.37	587.71
OMW-201	Bedrock	639.17	636.9	63.97	575.20
OMW-202	Bedrock	656.23	654.4	93.27	562.96
OMW-204	Bedrock	648.41	648.0	85.22	563.19
OMW-205	Bedrock	650.98	650.2	32.09	618.89
OMW-206	Bedrock	618.01	615.9	29.74	588.27
OMW-211	Overburden	650.40	649.3	Dry	NA
OMW-212	Bedrock	654.99	652.6	69.98	585.01
OMW-213	Bedrock	668.04	665.9	Dry	NA
OMW-214	Bedrock	655.57	654.8	41.92	613.65
OMW-215	Bedrock	657.05	654.8	89.60	567.45
OMW-216	Bedrock	658.15	656.7	49.65	608.50
OMW-218	Bedrock	654.18	651.5	68.05	586.13
OMW-219	Bedrock	665.57	664.1	105.90	559.67
OMW-220	Bedrock	636.34	634.1	48.92	587.42
OMW-221*	Bedrock	592.25	591.1	7.00	599.25
OMW-222	Bedrock	599.65	597.7	34.90	564.75
OMW-223	Bedrock	595.21	593.1	13.27	581.94
OPZ-207	Bedrock	648.60	647.4	65.25	583.35
OPZ-217	Bedrock	665.63	663.8	18.75	646.88
EPA-1A	Bedrock	669.79	667.1	85.41	584.38
EPA-1B	Bedrock	669.79	667.1	89.95	579.84
EPA-1C	Bedrock	669.79	667.1	89.98	579.81
EPA-2A	Bedrock	621.23	618.4	16.78	604.45
EPA-2B	Bedrock	621.24	618.4	16.89	604.35
EPA-2C	Bedrock	621.24	618.4	22.33	598.91
EPA-3A	Bedrock	688.72	685.4	Dry	NA
EPA-3B	Bedrock	688.72	685.4	108.12	580.60
EPA-3C	Bedrock	688.73	685.4	104.29	584.44
EPA-4A	Bedrock	690.53	688.1	104.75	585.78
EPA-4B	Bedrock	690.60	688.1	103.49	587.11
EPA-5A	Bedrock	628.86	625.3	7.10	621.76
EPA-5B	Bedrock	628.88	625.3	10.18	618.70

- 1. Elevations are in feet referenced to North American Vertical Datum of 1988.
- 2. Depth to water provided in feet below measuring point, except for OMW-221 which is reported in feet above measuring point.
- 3. "NA" designates not applicable.
- 4. OMW-204, OMW-214, and OMW-219 were recompleted in May 2017 and OMW-204 was deepened.
- 5. "*" indicates well is artesian.
- 6. EPA-1 through EPA-5 are deep open bedrock boreholes that were converted to water FLUTes in July 2017.

Table 3-2
Water Level Measurements - November 9, 2020
Dewey Loeffel Landfill Superfund Site
Nassau, New York

Well ID	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation
OMW-101	Overburden	639.59	638.0	Dry	NA
OMW-102	Bedrock	639.14	636.5	64.76	574.38
OMW-103	Bedrock	643.76	642.3	9.15	634.61
OMW-107	Overburden	625.51	623.2	4.93	620.58
OMW-108	Bedrock	625.08	623.2	37.70	587.38
OMW-201	Bedrock	639.17	636.9	63.61	575.56
OMW-202	Bedrock	656.23	654.4	97.52	558.71
OMW-204	Bedrock	648.41	648.0	84.98	563.43
OMW-205	Bedrock	650.98	650.2	32.32	618.66
OMW-206	Bedrock	618.01	615.9	30.13	587.88
OMW-211	Overburden	650.40	649.3	Dry	NA
OMW-212	Bedrock	654.99	652.6	70.29	584.70
OMW-213	Bedrock	668.04	665.9	Dry	NA
OMW-214	Bedrock	655.57	654.8	41.70	613.87
OMW-215	Bedrock	657.05	654.8	90.79	566.26
OMW-216	Bedrock	658.15	656.7	50.16	607.99
OMW-218	Bedrock	654.18	651.5	69.55	584.63
OMW-219	Bedrock	665.57	664.1	107.77	557.80
OMW-220	Bedrock	636.34	634.1	48.84	587.50
OMW-221*	Bedrock	592.25	591.1	7.08	599.33
OMW-222	Bedrock	599.65	597.7	34.05	565.60
OMW-223	Bedrock	595.21	593.1	12.85	582.36
OPZ-207	Bedrock	648.60	647.4	65.49	583.11
OPZ-217	Bedrock	665.63	663.8	25.66	639.97
EPA-1A	Bedrock	669.79	667.1	84.66	585.13
EPA-1B	Bedrock	669.79	667.1	89.75	580.04
EPA-1C	Bedrock	669.79	667.1	90.62	579.17
EPA-2A	Bedrock	621.23	618.4	16.85	604.38
EPA-2B	Bedrock	621.24	618.4	17.07	604.17
EPA-2C	Bedrock	621.24	618.4	22.94	598.30
EPA-3A	Bedrock	688.72	685.4	Dry	NA
EPA-3B	Bedrock	688.72	685.4	108.39	580.33
EPA-3C	Bedrock	688.73	685.4	104.54	584.19
EPA-4A	Bedrock	690.53	688.1	104.40	586.13
EPA-4B	Bedrock	690.60	688.1	103.44	587.16
EPA-5A	Bedrock	628.86	625.3	7.40	621.46
EPA-5B	Bedrock	628.88	625.3	10.74	618.14

- 1. Elevations are in feet referenced to North American Vertical Datum of 1988.
- 2. Depth to water provided in feet below measuring point, except for OMW-221 which is reported in feet above measuring point.
- 3. "NA" designates not applicable.
- 4. OMW-204, OMW-214, and OMW-219 were recompleted in May 2017 and OMW-204 was deepened.
- 5. "*" indicates well is artesian.
- 6. EPA-1 through EPA-5 are deep open bedrock boreholes that were converted to water FLUTes in July 2017.

Table 4-1 Spring 2020 Groundwater Sampling Dewey Loeffel Landfill Superfund Site Nassau, New York

W II 75	VOCs	1,4-Dioxane
Well ID	(USEPA 8260C)	(USEPA 8270D SIM)
EPA-1A	Х	
EPA-1B	X	
EPA-1C	X	
EPA-2A	X	
EPA-2B	x	
EPA-2C	x	
EPA-3A	X ^A	
EPA-3B	X	
EPA-3C	x	
OMW-102	x	X
OMW-201	X ^B	XB
OMW-204	X ^A	
OMW-205	x	X
OMW-211	X ^A	
OMW-213	X ^A	
OMW-215	x	X
OMW-219	X	

- 1. "VOCs" designates volatile organic compounds.
- 2. "USEPA" designates United States Environmental Protection Agency.
- 3. "SIM" designates selected ion monitoring.
- 4. $\ensuremath{^{\text{"A"}}}$ designates the well was dry. A sample was not collected.
- 5. $\ensuremath{^{\text{"B"}}}\xspace$ designates a blind duplicate was collected at this monitoring location.
- 6. Matrix spike/matrix spike duplicate (MS/MSD) sample pairs were collected from two multi-level monitoring well ports sampled at the request of USEPA under the Remedial Investigation/Feasibility Study Work Plan; MS/MSD sample pairs were not collected from monitoring wells or monitoring well ports sampled under the Groundwater Monitoring Plan. See Appendix D for further detail.

Table 4-2 Fall 2020 Groundwater Sampling Dewey Loeffel Landfill Superfund Site Nassau, New York

Well ID	VOCs	1,4-Dioxane
Well 1D	(USEPA 8260C)	(USEPA 8270D SIM)
EPA-1A	X	X
EPA-1B	X	X
EPA-1C	X	X
EPA-2A	X	X
EPA-2B	X	X
EPA-2C	X	X
EPA-3A	X ^A	X ^A
EPA-3B	X	X
EPA-3C	X	X
EPA-4A	X ^c	Xc
EPA-4B	X	X
EPA-5A	X ^c	X
EPA-5B	X	X
OMW-101	X ^A	
OMW-102	X ^B	X ^B
OMW-103	X	
OMW-201	X	X
OMW-202	X ^B	
OMW-204	X ^A	
OMW-205	X	X
OMW-211	X ^A	
OMW-213	X ^A	
OMW-214	X	X
OMW-215	X	X
OMW-216	X	Х
OMW-218	X	
OMW-219	X	Х
OMW-221	X	
OMW-222	X	
OMW-223	X	

- 1. "VOCs" designates volatile organic compounds.
- 2. "USEPA" designates United States Environmental Protection Agency.
- 3. "SIM" designates selected ion monitoring.
- 4. $^{"A"}$ designates the well was dry. A sample was not collected.
- 5. $\ensuremath{^{\text{"B"}}}$ designates a blind duplicate was collected at this sample location.
- 6. "C" designates a matrix spike/matrix spike duplicate was collected at this sample location.

Table 4-3
Summary of Spring 2020 Field Parameter Results
Dewey Loeffel Landfill Superfund Site
Nassau, New York

Well	Date Sampled	Temperature (°C)	pH (standard units)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
EPA-1A	19-Jun-20	14.80	8.92	450.8	-61.4	2.19	0.31
EPA-1B	19-Jun-20	15.40	8.22	354.2	-63.1	1.79	0.14
EPA-1C	19-Jun-20	14.10	8.28	334.4	-67.8	1.67	0.21
EPA-2A	18-Jun-20	13.50	8.00	385.6	-113.7	1.94	0.19
EPA-2B	18-Jun-20	13.60	8.08	418.7	-51.2	1.27	1.17
EPA-2C	18-Jun-20	17.10	8.13	384.4	-94.2	1.22	0.98
EPA-3A	NA	NM	NM	NM	NM	NM	NM
EPA-3B	23-Jun-20	13.80	9.47	597.0	-40.1	0.74	1.69
EPA-3C	23-Jun-20	14.50	9.53	611.4	-47.3	0.72	3.60
OMW-102	16-Jun-20	13.80	8.02	190.4	-161.2	0.35	11.80
OMW-201	16-Jun-20	11.10	7.26	625.2	-115.6	2.99	28.80
OMW-204	NA	NM	NM	NM	NM	NM	NM
OMW-205	16-Jun-20	9.90	7.79	402.7	-172.7	0.29	16.20
OMW-211	NA	NM	NM	NM	NM	NM	NM
OMW-213	NA	NM	NM	NM	NM	NM	NM
OMW-215	17-Jun-20	10.40	9.79	507.9	-9.5	0.00	1.82
OMW-219	17-Jun-20	10.30	9.69	806.0	-284.6	0.19	7.16

- 1. "°C" designates degrees Celsius.
- 2. "µS/cm" designates microsiemens per centimeter.
- 3. "ORP" designates oxidation-reduction potential.
- 4. "mV" designates millivolts.
- 5. "mg/L" designates milligrams per liter.
- 6. "NTU" designates nephelometric turbidity units.
- 7. Results reflect final reading at the end of purging.
- 8. "NA" designates not applicable.
- 9. "NM" designates not measured.

Table 4-4
Summary of Fall 2020 Field Parameter Results
Dewey Loeffel Landfill Superfund Site
Nassau, New York

Well	Date Sampled	Temperature (°C)	pH (standard units)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
EPA-1A	13-Nov-20	9.1	9.79	375.2	-98.1	2.88	0.50
EPA-1B	13-Nov-20	9.3	10.17	475.0	-120.5	1.61	0.88
EPA-1C	13-Nov-20	9.5	10.37	353.1	-128.2	0.81	0.80
EPA-2A	16-Nov-20	9.9	7.80	440.9	-102.7	1.72	0.57
EPA-2B	16-Nov-20	9.6	7.85	490.0	-92.6	1.31	0.60
EPA-2C	16-Nov-20	9.7	7.93	453.3	-97.7	1.18	0.51
EPA-3A	NA	NM	NM	NM	NM	NM	NM
EPA-3B	11-Nov-20	12.2	9.10	807.0	89.1	1.09	1.29
EPA-3C	11-Nov-20	12.8	9.10	839.0	75.3	0.74	2.71
EPA-4A	10-Nov-20	11.6	7.99	497.8	-30.5	0.99	0.64
EPA-4B	10-Nov-20	11.9	9.12	608.2	-1.6	0.84	3.26
EPA-5A	12-Nov-20	10.2	7.62	213.3	74.4	2.44	0.38
EPA-5B	12-Nov-20	9.6	7.75	296.4	51.2	1.07	0.52
OMW-101	NA	NM	NM	NM	NM	NM	NM
OMW-102	10-Nov-20	12.1	7.51	490.9	-168.0	0.17	11.6
OMW-103	18-Nov-20	9.0	5.87	77.4	128.0	2.63	16.5
OMW-201	10-Nov-20	11.6	7.44	1,201.0	-203.5	0.22	3.70
OMW-202	12-Nov-20	9.6	8.42	552.0	167.3	1.09	13.8
OMW-204	NA	NM	NM	NM	NM	NM	NM

- 1. "°C" designates degrees Celsius.
- 2. "µS/cm" designates microsiemens per centimeter.
- 3. "ORP" designates oxidation-reduction potential.
- 4. "mV" designates millivolts.
- 5. "mg/L" designates milligrams per liter.
- 6. "NTU" designates nephelometric turbidity units.
- 7. Results reflect final reading at the end of purging.
- 8. "NA" designates not applicable.
- 9. "NM" designates not measured.
- 10. "*" indicates value biased high due to air bubbles in flow cell.

Table 4-4 Summary of Fall 2020 Field Parameter Results Dewey Loeffel Landfill Superfund Site Nassau, New York

Well	Date Sampled	Temperature (°C)	pH (standard units)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
OMW-205	11-Nov-20	11.7	7.89	428.4	-134.0	0.34	9.51
OMW-211	NA	NM	NM	NM	NM	NM	NM
OMW-213	NA	NM	NM	NM	NM	NM	NM
OMW-214	11-Nov-20	13.6	9.94	476.0	32.9	0.78	0.30
OMW-215	12-Nov-20	9.6	9.50	585.9	-157.9	0.15	3.27
OMW-216	11-Nov-20	11.0	7.49	480.7	-152.6	0.23	6.39
OMW-218	16-Nov-20	9.9	9.54	501.1	107.7	0.17	1.79
OMW-219	16-Nov-20	9.5	10.18	870.0	-196.4	6.83*	0.21
OMW-221	16-Nov-20	9.4	8.12	504.7	-106.7	0.06	0.67
OMW-222	13-Nov-20	9.6	8.21	254.1	-85.6	0.34	0.42
OMW-223	13-Nov-20	10.5	8.83	485.6	-84.2	0.08	0.97

- 1. "°C" designates degrees Celsius.
- 2. "µS/cm" designates microsiemens per centimeter.
- 3. "ORP" designates oxidation-reduction potential.
- 4. "mV" designates millivolts.
- 5. "mg/L" designates milligrams per liter.
- 6. "NTU" designates nephelometric turbidity units.
- 7. Results reflect final reading at the end of purging.
- 8. "NA" designates not applicable.
- 9. "NM" designates not measured.
- 10. "*" indicates value biased high due to air bubbles in flow cell.

Table 4-5

VOCs Detected in Spring 2020 Groundwater Samples

Dewey Loeffel Landfill Superfund Site

Nassau, New York

	Location ID Sample ID	EPA-1A MW-B-EPA-1A-06192020	EPA-1B MW-B-EPA-1B-06192020	EPA-1C MW-B-EPA-1C-06192020	EPA-2A MW-B-EPA-2A-06182020	EPA-2B MW-B-EPA-2B-06182020
Compound	Sample Date	6/19/2020	6/19/2020	6/19/2020	6/18/2020	6/18/2020
1,1-Dichloroeth	ane	8.6	5.1	3.2		
1,1-Dichloroeth	ene	7.4	6.5	6.1		
1,2-Dichloroeth	ane	21	12	10		0.59 J
1,4-Dichloroben	nzene					
2-Butanone						
4-Methyl-2-Pen	tanone					
Acetone						
Benzene		8.3	56	41	0.39 J	1.2
Chlorobenzene		13	8.5	5.7		
Chloroethane		1.5 J		1.7		
cis-1,2-Dichloro	ethene	320	730 J	870 J	4.1	3.0
Ethylbenzene						
m,p-Xylene						
o-Xylene						
Tetrachloroethe	ene	3.9	1.1			
Toluene		1.5 J	1.5	2.3		
trans-1,2-Dichlo	oroethene	1.6 J	2.5 J	2.3 J		
Trichloroethene		1,800	440 J	220	3.0	35
Vinyl Chloride		0.84 J	0.83 J	0.93 J		

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter (µg/L).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania, and Eurofins TestAmerica Laboratories, Inc. in Edison, New Jersey.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in June 2020.
- ${\bf 6.~"J"}$ designates that the detected concentration is considered an estimated value.

Table 4-5
VOCs Detected in Spring 2020 Groundwater Samples
Dewey Loeffel Landfill Superfund Site
Nassau, New York

	Location ID	EPA-2C	EPA-3B	EPA-3C	OMW-102	OMW-201
	Sample ID	MW-B-EPA-2C-06182020	MW-B-EPA-3B-06232020	MW-B-EPA-3C-06232020	MW-B-OMW-102-06162020	MW-B-OMW-201-06162020
Compound	Sample Date	6/18/2020	6/23/2020	6/23/2020	6/16/2020	6/16/2020
1,1-Dichloroeth	nane	1.3				
1,1-Dichloroeth	nene	0.82 J				
1,2-Dichloroeth	nane	3.0				
1,4-Dichlorober	nzene					22 J
2-Butanone						
4-Methyl-2-Per	ntanone					
Acetone						
Benzene		14	5.3	8.4	930	14,000
Chlorobenzene		1.3		0.40 J	13	3,400
Chloroethane					1.1 J	49
cis-1,2-Dichloro	oethene	40	0.44 J	0.78 J		
Ethylbenzene						290
m,p-Xylene						990
o-Xylene						220
Tetrachloroethe	ene	0.34 J				
Toluene			0.58 J	1.5		770
trans-1,2-Dichl	oroethene					8.6 J
Trichloroethene	9	130	0.48 J	0.70 J		
Vinyl Chloride		0.28 J				

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter (µg/L).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania, and Eurofins TestAmerica Laboratories, Inc. in Edison, New Jersey.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in June 2020.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-5
VOCs Detected in Spring 2020 Groundwater Samples
Dewey Loeffel Landfill Superfund Site
Nassau, New York

	Location ID	OMW-201	OMW-205	OMW-215	OMW-219
	Sample ID	DUP-001-06162020	MW-B-OMW-205-06162020	MW-B-OMW-215-06172020	MW-B-OMW-219-06172020
Compound	Sample Date	6/16/2020	6/16/2020	6/17/2020	6/17/2020
1,1-Dichloroet	hane			0.21 J	1.1
1,1-Dichloroet	thene				
1,2-Dichloroet	thane				
1,4-Dichlorobe	enzene	20 J	0.38 J		
2-Butanone					2.6 J
4-Methyl-2-Pe	entanone				3.2 J
Acetone					40
Benzene		12,000	0.70 J	74	450
Chlorobenzene	е	3,100	51	1.9	23
Chloroethane		48			
cis-1,2-Dichlor	roethene		3.2		2.1
Ethylbenzene		250			1.5
m,p-Xylene		890			4.1 J
o-Xylene		190			1.7
Tetrachloroeth	nene				
Toluene		730		3.4	160
trans-1,2-Dich	nloroethene	8.0 J			
Trichloroethen	ne		0.46 Ј		1.2
Vinyl Chloride			0.49 J		0.44 J

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter (µg/L).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania, and Eurofins TestAmerica Laboratories, Inc. in Edison, New Jersey.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in June 2020.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-6

1,4-Dioxane Detected in Spring 2020 Groundwater Samples Dewey Loeffel Landfill Superfund Site

Nassau, New York

	Location ID	OMW-102	OMW-201	OMW-201	OMW-205	OMW-215
	Sample ID	MW-B-OMW-102-06162020	MW-B-OMW-201-06162020	DUP-001-06162020	MW-B-OMW-205-06162020	MW-B-OMW-215-06172020
Compound	Sample Date	6/16/2020	6/16/2020	6/16/2020	6/16/2020	6/17/2020
1,4-Dioxane	•	21	700	650	2.6	1.7

- 1. Results are in micrograms per liter (μ g/L).
- 2. 1,4-Dioxane analyzed by United States Environmental Protection Agency SW-846 Method 8270D selected ion monitoring (SIM) by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania.
- 3. Blind duplicate samples are shown immediately after their parent sample.

Table 4-7
VOCs Detected in Fall 2020 Groundwater Samples
Dewey Loeffel Landfill Superfund Site
Nassau, New York

	Location ID	EPA-1A	EPA-1B	EPA-1C	EPA-2A	EPA-2B
	Sample ID	MW-B-EPA-1A-11132020	MW-B-EPA-1B-11132020	MW-B-EPA-1C-11132020	MW-B-EPA-2A-11162020	MW-B-EPA-2B-11162020
Compound	Sample Date	11/13/2020	11/13/2020	11/13/2020	11/16/2020	11/16/2020
1,1-Dichloroethane		10	5.4	3.6		
1,1-Dichloroethene		7.7	6.2	5.7		
1,2-Dichloroethane		22	12	9.7		0.64 J
1,4-Dichlorobenzene						
2-Butanone		3.5 J				
4-Methyl-2-Pentanone						
Acetone		0.84 J				
Benzene		8.5	54	42	0.36 J	1.1
Carbon Disulfide						
Chlorobenzene		14	8.6	6.4		
Chloroethane		1.7	1.3	2.0		
cis-1,2-Dichloroethene		300	720	830	4.5	2.9
Ethylbenzene						
m,p-Xylene						
Methylene Chloride		0.94 J				
o-Xylene						
Tetrachloroethene		3.6	0.75 J			
Toluene		1.5	1.6	2.4		
trans-1,2-Dichloroethe	ne	0.85 J	2.3	2.3		
Trichloroethene		1,800	410	210	2.4	36
Vinyl Chloride		1.2	1.1	0.94 J		

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter (μ g/L).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in November 2020.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-7
VOCs Detected in Fall 2020 Groundwater Samples
Dewey Loeffel Landfill Superfund Site
Nassau, New York

	Location ID	EPA-2C	EPA-3B	EPA-3C	EPA-4A	EPA-4B
	Sample ID	MW-B-EPA-2C-11162020	MW-B-EPA-3B-11112020	MW-B-EPA-3C-11112020	MW-B-EPA-4A-11102020	MW-B-EPA-4B-11102020
Compound	Sample Date	11/16/2020	11/11/2020	11/11/2020	11/10/2020	11/10/2020
1,1-Dichloroethane		1.3				
1,1-Dichloroethene		0.71 J				
1,2-Dichloroethane		2.9		0.30 J		
1,4-Dichlorobenzene						
2-Butanone		0.62 J				
4-Methyl-2-Pentanone						
Acetone					1.1 J	
Benzene		13	5.4	9.0		
Carbon Disulfide						
Chlorobenzene		1.3	0.24 J	0.39 J		
Chloroethane						
cis-1,2-Dichloroethene		46	0.50 J	0.75 J		
Ethylbenzene						
m,p-Xylene						
Methylene Chloride						
o-Xylene						
Tetrachloroethene		0.30 J				
Toluene			0.48 J	0.68 J		3.7
trans-1,2-Dichloroether	ne					
Trichloroethene		150	0.47 J	0.75 J		
Vinyl Chloride		0.20 J				

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter (μ g/L).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in November 2020.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-7
VOCs Detected in Fall 2020 Groundwater Samples
Dewey Loeffel Landfill Superfund Site
Nassau, New York

	Location ID	OMW-102	OMW-102	OMW-201	OMW-202	OMW-202
		MW-B-OMW-102-11102020	DUP-001-11102020	MW-B-OMW-201-11102020	MW-B-OMW-202-11122020	DUP-002-11122020
Compound	Sample Date	11/10/2020	11/10/2020	11/10/2020	11/12/2020	11/12/2020
1,1-Dichloroethane						
1,1-Dichloroethene						
1,2-Dichloroethane					0.36 Ј	0.38 J
1,4-Dichlorobenzene				11 J		
2-Butanone						
4-Methyl-2-Pentanone						
Acetone						
Benzene		2,000	1,800	13,000	6.3	6.5
Carbon Disulfide						
Chlorobenzene		26	25	2,800	0.40 Ј	0.38 J
Chloroethane		1.6 J	1.7 J	40		
cis-1,2-Dichloroethene					1.2	1.2
Ethylbenzene				180		
m,p-Xylene				590		
Methylene Chloride						
o-Xylene				110		
Tetrachloroethene						
Toluene				590		
trans-1,2-Dichloroether	пе			6.6 J		
Trichloroethene					1.0	0.93 J
Vinyl Chloride						

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter (μ g/L).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in November 2020.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-7
VOCs Detected in Fall 2020 Groundwater Samples
Dewey Loeffel Landfill Superfund Site
Nassau, New York

	Location ID	OMW-205	OMW-214	OMW-215	OMW-216	OMW-219
	Sample ID	MW-B-OMW-205-11112020	MW-B-OMW-214-11112020	MW-B-OMW-215-11122020	MW-B-OMW-216-11112020	MW-B-OMW-219-11162020
Compound	Sample Date	11/11/2020	11/11/2020	11/12/2020	11/11/2020	11/16/2020
1,1-Dichloroethane						1.0
1,1-Dichloroethene						
1,2-Dichloroethane		0.31 J			0.36 J	12
1,4-Dichlorobenzene		0.27 J				
2-Butanone						3.0 J
4-Methyl-2-Pentanone						2.8 J
Acetone			0.78 J			66
Benzene		0.66 J		79	0.42 J	460
Carbon Disulfide			0.53 J			0.27 J
Chlorobenzene		44	0.27 J	1.9	2.8	22
Chloroethane						
cis-1,2-Dichloroethene		3.4			1.4	1.9
Ethylbenzene						1.1
m,p-Xylene						2.9 J
Methylene Chloride						
o-Xylene						1.1
Tetrachloroethene						
Toluene				3.2		140
trans-1,2-Dichloroethe	ne					
Trichloroethene		0.40 J			0.82 J	0.85 J
Vinyl Chloride		0.55 J				0.50 J

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter ($\mu g/L$).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in November 2020.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-7

VOCs Detected in Fall 2020 Groundwater Samples Dewey Loeffel Landfill Superfund Site Nassau, New York

	Location ID	OMW-221
	Sample ID	MW-B-OMW-221-11162020
Compound	Sample Date	11/16/2020
1,1-Dichloroethane		
1,1-Dichloroethene		
1,2-Dichloroethane		
1,4-Dichlorobenzene		
2-Butanone		
4-Methyl-2-Pentanone		
Acetone		
Benzene		
Carbon Disulfide		
Chlorobenzene		
Chloroethane		
cis-1,2-Dichloroethene		
Ethylbenzene		
m,p-Xylene		
Methylene Chloride		
o-Xylene		
Tetrachloroethene		
Toluene		
trans-1,2-Dichloroethene		
Trichloroethene		1.3
Vinyl Chloride		

- 1. "VOCs" designates volatile organic compounds.
- 2. Results are in micrograms per liter (μ g/L).
- 3. VOCs analyzed by United States Environmental Protection Agency SW-846 Method 8260C by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania.
- 4. Blind duplicate samples are shown immediately after their parent sample.
- 5. "---" designates compound was not detected in that monitoring well in November 2020.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-8

1,4-Dioxane Detected in Fall 2020 Groundwater Samples Dewey Loeffel Landfill Superfund Site

Nassau, New York

	Location ID	EPA-1A	EPA-1B	EPA-1C	EPA-2C	EPA-3B
	Sample ID	MW-B-EPA-1A-11132020	MW-B-EPA-1B-11132020	MW-B-EPA-1C-11132020	MW-B-EPA-2C-11162020	MW-B-EPA-3B-11112020
Compound	Sample Date	11/13/2020	11/13/2020	11/13/2020	11/16/2020	11/11/2020
1,4-Dioxane		0.48	0.38	1.0	0.32	1.1

	Location ID	EPA-4A	EPA-4B	OMW-102	OMW-102	OMW-201
	Sample ID	MW-B-EPA-4A-11102020	MW-B-EPA-4B-11102020	MW-B-OMW-102-11102020	DUP-001-11102020	MW-B-OMW-201-11102020
Compound	Sample Date	11/10/2020	11/10/2020	11/10/2020	11/10/2020	11/10/2020
1,4-Dioxane		0.59 J	0.57	96	96	750

	Location ID	OMW-205	OMW-214	OMW-215	OMW-216	OMW-219
	Sample ID	MW-B-OMW-205-11112020	MW-B-OMW-214-11112020	MW-B-OMW-215-11122020	MW-B-OMW-216-11112020	MW-B-OMW-219-11162020
Compound	Sample Date	11/11/2020	11/11/2020	11/12/2020	11/11/2020	11/16/2020
1,4-Dioxane		2.8	0.64	2.1	1.1	31

- 1. Results are in micrograms per liter (μ g/L).
- 2. 1,4-Dioxane analyzed by United States Environmental Protection Agency SW-846 Method 8270D selected ion monitoring (SIM) by Eurofins Lancaster Laboratories Environmental, LLC in Lancaster, Pennsylvania.
- 3. Blind duplicate samples are shown immediately after their parent sample.
- 4. "J" designates that the detected concentration is considered an estimated value.

	Sample ID	EW-1 EW-1 082620	EW-2 EW-2 082620	EW-3 EW-3 082620	EW-4 EW-4 082620	EW-5 EW-5 08262
Compound	Date	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Volatile Organic Compounds (VO	Ce) (ug/L)					
1,1,1,2-Tetrachloroethane	cs) (µg/L)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane		4.5	115	1.0 U	450	163
1,1,2,2-Tetrachloroethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane		1.0 U	1.2	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane		1.0 U	2.8	1.0 U	1.8	1.0 U
1,1-Dichloroethane		30.6	156	11.2	360	1.0 0
1,1-Dichloroethene		18.3	87.7	1.0 U	64.6	18.0
1,2,3-Trichlorobenzene		20.7	214	1.0 U	56.1	20.5
1,2,4-Trichlorobenzene		98.2	1,000	1.0 U	274	74.9
1,2-Dibromo-3-chloropropane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromoethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
		4.3	49.2			3.1
1,2-Dichlorobenzene			49.2 546	1.0 U	13.3	688
1,2-Dichloroethane		91.0	2.0	12.7	1,700	
1,2-Dichloropropane		1.0 U		1.0 U	1.9	1.0 U
1,3-Dichlorobenzene		1.3	16.0	1.0 U	9.4	1.8
1,4-Dichlorobenzene		9.6	116	4.1	83.7	17.7
2-Hexanone		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone		7.6	236	19.1	1,460	57.8
Benzene		393	2,990	1,300	14,000	7,050
Bromobenzene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromochloromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Disulfide		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene		95.0	977	312	4,670	1,940
Chloroethane		1.0 U	1.0 U	3.2	3.2	1.0 U
Chloroform		17.4	492	1.0 U	250	108
Chloromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cis-1,2-Dichloroethylene		470	3,900	65.2	6,050	1,280
Cis-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane		1.0 U	5.0	1.5	18.3	6.6
Dibromochloromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene		7.8	260	41.4	604	186
sopropylbenzene		1.0 U	8.9	1.0 U	7.3	2.2
1,P-Xylenes		6.0	450	152	2,500	690
Methyl Acetate		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone		5.0 U	12.7	5.0 U	96.7	5.0 U
1-Methyl-2-Pentanone		5.0 U	20.4	5.0 U	95.4	49.1
Methylcyclohexane		1.0 U	6.0	1.0 U	3.8	1.1
Methylene Chloride		1.0 U	622	3.0	464	7.5
)-Xylene		11.4	265	53.3	743	217
Styrene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
ert-Butyl Methyl Ether		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
etrachloroethylene		29.3	217	1.0 U	8.4	3.1
oluene		77.2	3,780	3,070	37,400	12,800
rans-1,2-Dichloroethene		4.0	23.3	2.2	42.2	12.5
Frans-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Frichloroethylene		4,770	23,300	63.8	201	57.6
richlorofluoromethane		1.0 U	1.9	1.0 U	1.0 U	1.0 U
/inyl Chloride		24.3	561	12.9	592	341

	Location ID	EW-1	EW-2	EW-3	EW-4	EW-5
	Sample ID	EW-1 082620	EW-2 082620	EW-3 082620	EW-4 082620	EW-5 082620
	Date	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Compound	-d- (5V0C-) (. (1.)				
Semi-Volatile Organic Compour 2,4,5-Trichlorophenol	nas (SVOCS) (µg	5.0 U	5.0 U	5.0 U	100 U	25.0 U
2,4,6-Trichlorophenol		5.0 U	5.0 U	5.0 U	100 U	25.0 U
		5.0 U	5.0 U	5.0 U	100 U	25.0 U
2,4-Dichlorophenol		5.0 U	9.7	15.8	238	92.0
2,4-Dimethylphenol 2,4-Dinitrophenol			10.0 U	10.0 U	238 200 U	50.0 U
2,4-Dinitrophenol		10.0 U 5.0 U	5.0 U	5.0 U	100 U	25.0 U
2,6-Dinitrotoluene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
2-Chloronaphthalene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
2-Chlorophenol		5.0 U	5.0 U	5.0 U	100 U	25.0 U
2-Methylnaphthalene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
2-Methylphenol		5.0 U	44.1	10.1	313	122
2-Nitroaniline		5.0 U	5.0 U	5.0 U	100 U	25.0 U
2-Nitrophenol		5.0 U	5.0 U	5.0 U	100 U	25.0 U
3&4-Methylphenol		5.0 U	49.9	43.8	966	335
3,3-Dichlorobenzidine		5.0 U	5.0 U	5.0 U	100 U	25.0 U
3-Nitroaniline		5.0 U	5.0 U	5.0 U	100 U	25.0 U
4,6-Dinitro-2-methylphenol		10.0 U	10.0 U	10.0 U	200 U	50.0 U
4-Bromophenyl-phenylether		5.0 U	5.0 U	5.0 U	100 U	25.0 U
4-Chloro-3-methylphenol		5.0 U	5.0 U	5.0 U	100 U	25.0 U
4-Chloroaniline		5.0 U	5.0 U	5.0 U	100 U	25.0 U
4-Chlorophenyl-phenylether		5.0 U	5.0 U	5.0 U	100 U	25.0 U
4-Nitroaniline		5.0 U	5.0 U	5.0 U	100 U	25.0 U
4-Nitrophenol		10.0 U	10.0 U	10.0 U	200 U	50.0 U
Acenaphthene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Acenaphthylene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Anthracene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Benzo[a]anthracene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Benzo[a]pyrene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Benzo[b]fluoranthene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Benzo[g,h,i]perylene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Benzo[k]fluoranthene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Bis(2-Chloroethoxy)methane		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Bis(2-Chloroethyl)Ether		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Bis(2-Chloroisopropyl)ether		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Bis(2-Ethylhexyl)phthalate		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Butylbenzylphthalate		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Carbazole		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Chrysene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Dibenzo[a,h]Anthracene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Dibenzofuran		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Diethylphthalate		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Dimethylphthalate		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Di-n-butylphthalate		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Di-n-octylphthalate		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Fluoranthene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Fluorene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Hexachlorobenzene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Hexachlorobutadiene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Hexachlorocyclopentadiene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Hexachloroethane		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Indeno[1,2,3-cd]pyrene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Isophorone		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Naphthalene		5.0 U	9.5	5.0 U	100 U	25.0 U
Nitrobenzene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
N-Nitroso-Di-N-Propylamine		5.0 U	5.0 U	5.0 U	100 U	25.0 U
N-Nitrosodiphenylamine		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Pentachlorophenol		10.0 U	16.5	10.0 U	200 U	50.0 U
Phenanthrene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
Phenol		5.0 U	30.2	5.0 U	323	25.0 U
Pyrene		5.0 U	5.0 U	5.0 U	100 U	25.0 U
. ,		5.00	3.0 0	66	100 0	23.00

	Location ID Sample ID	EW-1 EW-1 082620	EW-2 EW-2 082620	EW-3 EW-3 082620	EW-4 EW-4 082620	EW-5 EW-5 082620
	Date	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Compound	Dute	0, 20, 2020	0, 20, 2020	0, 20, 2020	0, 20, 2020	0, 20, 2020
Polychlorinated biphenyls (PCB	s) (µg/L)					
Aroclor-1016		0.25 U	0.24 U	0.25 U	0.24 U	0.24 U
Aroclor-1221		0.25 U	0.24 U	0.25 U	0.24 U	0.24 U
Aroclor-1232		0.25 U	0.24 U	0.25 U	0.24 U	0.24 U
Aroclor-1242		0.25 U	0.24 U	0.25 U	0.24 U	0.24 U
Aroclor-1248		0.25 U	0.24 U	0.25 U	0.24 U	0.24 U
Aroclor-1254		0.25 U	0.24 U	0.25 U	0.24 U	0.24 U
Aroclor-1260		0.25 U	0.24 U	0.25 U	0.24 U	0.24 U
Metals (mg/L)						
Aluminum		0.2 U				
Antimony		0.0600 U				
Arsenic		0.0100 U				
Barium		0.2 U	0.2 U	0.2 U	1.9	0.653
Beryllium		0.0050 U				
Cadmium		0.0025 U				
Calcium		24.1	18.5	16.6	34	39.2
Chromium		0.0100 U				
Cobalt		0.0500 U				
Copper		0.0250 U				
Iron		0.349	0.534	0.0524	0.0877	0.0200 U
Lead		0.0050 U				
Magnesium		5.12	4.33	0.778	2.39	4.28
Manganese		0.209	0.441	0.162	0.931	0.463
Nickel		0.0400 U				
Potassium		5 U	5 U	5 U	5 U	5 U
Selenium		0.0100 U				
Silver		0.0100 U				
Sodium		54.3	49.2	125	169	147
Thallium		0.0100 U				
Vanadium		0.0500 U				
Zinc		0.0245	0.0200 U	0.0200 U	1.05	0.0200 U

Source: ARCADIS U.S., Inc.

- 1. Detections are bolded
- 2. Results reported in micrograms per liter ($\mu g/L$) except metals, which are in milligrams per liter (mg/L).
- 3. VOCs, SVOCs and metals analyzed by United States Environmental Protection Agency (USEPA) SW-846 Methods 8260C, 8270D and 6010C, respectively, by Pace Analytical Services, Inc. in Melville, New York. 1,4-Dioxane analyzed by USEPA SW-846 Method 8270D selected ion monitoring (SIM) by ALS Environmental of Rochester, New York. PCBs analyzed by United States Environmental Protection Agency USEPA SW-846 Method 8082A by Pace Analytical Services, Inc. in Greensburg, Pennsylvania.
- 4. Blind duplicate shown immediately after parent sample.
- 5. "U" designates the result is not detected at or above the reported practical quantitation limit.
- 6. "J" designates that the detected concentration is considered an estimated value.

Compound Volatile Organic Compounds (VOC 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichlorobenzene 1,2-A-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene	Sample ID Date	1.0 U 953 1.0 U 1.0 U 5.5 773 139	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U
Volatile Organic Compounds (VOC 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-3-Trichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		1.0 U 953 1.0 U 1.0 U 5.5	1.0 U 1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U 1.0 U	1.0 U 1.0 U
Volatile Organic Compounds (VOC 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Trichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichl	Cs) (μg/L)	953 1.0 U 1.0 U 5.5 773	1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U	1.0 U
1,1,1,2-Tetrachloroethane 1,1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene	.s) (µg/L)	953 1.0 U 1.0 U 5.5 773	1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U	1.0 U
1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-3-Trichlorobenzene 1,2-4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene		953 1.0 U 1.0 U 5.5 773	1.0 U 1.0 U 1.0 U 1.0 U	1.0 U 1.0 U	1.0 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene		1.0 U 1.0 U 5.5 773	1.0 U 1.0 U 1.0 U	1.0 U	
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichloropropane 1,3-Dichloropropane 1,4-Dichlorobenzene 1,4-Dichlorobenzene		1.0 U 5.5 773	1.0 U 1.0 U		
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene		5.5 773	1.0 U	1.0 0	1.0 U
1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene		773		1.0 U	1.0 U
1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene			198	1.0 U	1.0 U
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		139			
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone			1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		131	6.7	1.0 U	1.0 U
1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		448	2.6	1.0 U	1.0 U
1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		26.6	8.4	1.0 U	1.0 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Hexanone		5,460	15.4	1.3	1.3
1,4-Dichlorobenzene 2-Hexanone		4.5	1.9	1.0 U	1.0 U
2-Hexanone		8.2	5.1	1.0 U	1.0 U
		171	104	1.0 U	1.0 U
Acetone		5.0 U	5.0 U	5.0 U	5.0 U
		4,990	315	5.0 U	5.0 U
Benzene		31,100	19,600	679	611
Bromobenzene		1.0 U	1.0 U	1.0 U	1.0 U
Bromochloromethane		1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane		1.0 U	1.0 U	1.0 U	1.0 U
Bromoform		1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane		1.0 U	1.0 U	1.0 U	1.0 U
Carbon Disulfide		1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride		1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene		12,200	6,080	40.4	40.2
Chloroethane		9.4	25.0	1.9	1.0 U
Chloroform		602	1.0 U	1.0 U	1.0 U
Chloromethane		2.9	1.0 U	1.0 U	1.0 U
Cis-1,2-Dichloroethylene		15,100	447	5.1	4.6
Cis-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane		34.0	23.2	1.0 U	1.0 U
Dibromochloromethane		1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane		1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene		1,200	690	1.9	1.8
Isopropylbenzene		14.1	6.1	1.0 U	1.0 U
M,P-Xylenes		4,710	2,860	2.0 U	2.0 U
Methyl Acetate		1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone		222	20.9	5.0 U	5.0 U
4-Methyl-2-Pentanone		167	85.0	5.0 U	5.0 U
Methylcyclohexane		7.6	2.9	1.0 U	1.0 U
Methylene Chloride		1,210	1.0 U	1.0 U	1.0 U
O-Xylene		1,360	841	1.0 U	1.0 U
Styrene		1.0 U	1.0 U	1.0 U	1.0 U
Fert-Butyl Methyl Ether		1.3	1.0 U	1.0 U	1.0 U
Fetrachloroethylene		33.3	1.0 U	1.0 U	1.0 U
		67,000			
Toluene		•	50,700	3.5	3.4
Frans-1,2-Dichloroethene		90.1	47.7	1.0 U	1.0 U
Frans-1,3-Dichloropropene		1.0 U	1.0 U	1.0 U	1.0 U
Frichloroethylene		165	1.0 U	2.3	2.1
Trichlorofluoromethane Vinyl Chloride		1.0 U 2,240	1.0 U 852	1.0 U 1.0 U	1.0 U 1.0 U

	Location ID	EW-6	EW-7	EW-8	EW-8
	Sample ID	EW-6 082620	EW-7 082620	EW-8 082620	DUP-1 082620
Compound	Date	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Semi-Volatile Organic Compo	unds (SVOCs) (u	a/I)			
2,4,5-Trichlorophenol	unus (SVOCS) (A	250 U	250 U	25.0 U	25.0 U
2,4,6-Trichlorophenol		250 U	250 U	25.0 U	25.0 U
2,4-Dichlorophenol		250 U	250 U	25.0 U	25.0 U
2,4-Dimethylphenol		592	372	25.0 U	25.0 U
2,4-Dinitrophenol		500 U	500 U	50.0 U	50.0 U
2,4-Dinitrotoluene		250 U	250 U	25.0 U	25.0 U
2,6-Dinitrotoluene		250 U	250 U	25.0 U	25.0 U
2-Chloronaphthalene		250 U	250 U	25.0 U	25.0 U
2-Chlorophenol		250 U	250 U	25.0 U	25.0 U
2-Methylnaphthalene		250 U	250 U	25.0 U	25.0 U
2-Methylphenol		572	250 U	25.0 U	25.0 U
2-Nitroaniline		250 U	250 U	25.0 U	25.0 U
2-Nitrophenol		250 U	250 U	25.0 U	25.0 U
3&4-Methylphenol		2,540	1,270	25.0 U	25.0 U
3,3-Dichlorobenzidine		250 U	250 U	25.0 U	25.0 U
3-Nitroaniline		250 U	250 U	25.0 U	25.0 U
4,6-Dinitro-2-methylphenol		500 U	500 U	50.0 U	50.0 U
4-Bromophenyl-phenylether		250 U	250 U	25.0 U	25.0 U
4-Chloro-3-methylphenol		250 U	250 U	25.0 U	25.0 U
4-Chloroaniline		250 U	250 U	25.0 U	25.0 U
4-Chlorophenyl-phenylether		250 U	250 U	25.0 U	25.0 U
4-Nitroaniline		250 U	250 U	25.0 U	25.0 U
4-Nitrophenol		500 U	500 U	50.0 U	50.0 U
Acenaphthene		250 U	250 U	25.0 U	25.0 U
Acenaphthylene		250 U	250 U	25.0 U	25.0 U
Anthracene		250 U	250 U	25.0 U	25.0 U
Benzo[a]anthracene		250 U	250 U	25.0 U	25.0 U
Benzo[a]pyrene		250 U	250 U	25.0 U	25.0 U
Benzo[b]fluoranthene		250 U	250 U	25.0 U	25.0 U
Benzo[g,h,i]perylene		250 U	250 U	25.0 U	25.0 U
Benzo[k]fluoranthene		250 U	250 U	25.0 U	25.0 U
Bis(2-Chloroethoxy)methane		250 U	250 U	25.0 U	25.0 U
Bis(2-Chloroethyl)Ether		250 U	250 U	25.0 U	25.0 U
Bis(2-Chloroisopropyl)ether		250 U	250 U	25.0 U	25.0 U
Bis(2-Ethylhexyl)phthalate		250 U	250 U	25.0 U	25.0 U
Butylbenzylphthalate		250 U	250 U	25.0 U	25.0 U
Carbazole		250 U	250 U	25.0 U	25.0 U
Chrysene		250 U	250 U	25.0 U	25.0 U
Dibenzo[a,h]Anthracene		250 U	250 U	25.0 U	25.0 U
Dibenzofuran		250 U	250 U	25.0 U	25.0 U
Diethylphthalate		250 U	250 U	25.0 U	25.0 U
Dimethylphthalate		250 U	250 U	25.0 U	25.0 U
Di-n-butylphthalate		250 U	250 U	25.0 U	25.0 U
Di-n-octylphthalate		250 U	250 U	25.0 U	25.0 U
Fluoranthene		250 U	250 U	25.0 U	25.0 U
Fluorene		250 U	250 U	25.0 U	25.0 U
Hexachlorobenzene		250 U	250 U	25.0 U	25.0 U
Hexachlorobutadiene		250 U	250 U	25.0 U	25.0 U
Hexachlorocyclopentadiene		250 U	250 U	25.0 U	25.0 U
Hexachloroethane		250 U	250 U	25.0 U	25.0 U
Indeno[1,2,3-cd]pyrene		250 U	250 U	25.0 U	25.0 U
Isophorone		250 U	250 U	25.0 U	25.0 U
Naphthalene		250 U	250 U	25.0 U	25.0 U
Nitrobenzene		250 U	250 U	25.0 U	25.0 U
N-Nitroso-Di-N-Propylamine		250 U	250 U	25.0 U	25.0 U
N-Nitrosodiphenylamine		250 U	250 U	25.0 U	25.0 U
Pentachlorophenol		500 U	500 U	50.0 U	50.0 U
Phenanthrene		250 U	250 U	25.0 U	25.0 U
Phenol		989	250 U	25.0 U	25.0 U
Pyrene		250 U	250 U	25.0 U	25.0 U
1,4-Dioxane		910	1,200	47	46

	Location ID	EW-6	EW-7	EW-8	EW-8
	Sample ID	EW-6 082620	EW-7 082620	EW-8 082620	DUP-1 082620
	Date	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Compound					
Polychlorinated biphenyls	(PCBs) (µg/L)				
Aroclor-1016		0.25 U	0.25 U	0.24 U	0.24 U
Aroclor-1221		0.25 U	0.25 U	0.24 U	0.24 U
Aroclor-1232		0.25 U	0.25 U	0.24 U	0.24 U
Aroclor-1242		0.25 U	0.25 U	0.24 U	0.24 U
Aroclor-1248		0.25 U	0.25 U	0.24 U	0.24 U
Aroclor-1254		0.25 U	0.25 U	0.24 U	0.24 U
Aroclor-1260		0.25 U	0.25 U	0.24 U	0.24 U
Metals (mg/L)					
Aluminum		0.2 U	0.2 U	0.2 U	0.2 U
Antimony		0.0600 U	0.0600 U	0.0600 U	0.0600 U
Arsenic		0.0100 U	0.0100 U	0.0100 U	0.0100 U
Barium		7.1	4.72	0.2 U	0.2 U
Beryllium		0.0050 U	0.0050 U	0.0050 U	0.0050 U
Cadmium		0.0025 U	0.0025 U	0.0025 U	0.0025 U
Calcium		200	184	10.1	10
Chromium		0.0100 U	0.0100 U	0.0100 U	0.0100 U
Cobalt		0.0500 U	0.0500 U	0.0500 U	0.0500 U
Copper		0.0250 U	0.0250 U	0.0250 U	0.0250 U
Iron		0.69	0.828	0.0406	0.0200 U
Lead		0.0054	0.0061	0.0050 U	0.0050 U
Magnesium		34.8	49.2	0.874	0.825
Manganese		2.46	1.24	0.16	0.162
Nickel		0.0400 U	0.0400 U	0.0400 U	0.0400 U
Potassium		5 U	5 U	5 U	5 U
Selenium		0.0100 U	0.0100 U	0.0100 U	0.0100 U
Silver		0.0100 U	0.0100 U	0.0100 U	0.0100 U
Sodium		43	25.1	123	124
Thallium		0.0100 U	0.0100 U	0.0100 U	0.0100 U
Vanadium		0.0500 U	0.0500 U	0.0500 U	0.0500 U
Zinc		0.677	0.0200 U	0.0200 U	0.0200 U

Source: ARCADIS U.S., Inc.

- 1. Detections are bolded.
- 2. Results reported in micrograms per liter ($\mu g/L$) except metals, which are in milligrams per liter (mg/L).
- 3. VOCs, SVOCs and metals analyzed by United States Environmental Protection Agency (USEPA) SW-846 Methods 8260C, 8270D and 6010C, respectively, by Pace Analytical Services, Inc. in Melville, New York. 1,4-Dioxane analyzed by USEPA SW-846 Method 8270D selected ion monitoring (SIM) by ALS Environmental of Rochester, New York. PCBs analyzed by United States Environmental Protection Agency USEPA SW-846 Method 8082A by Pace Analytical Services, Inc. in Greensburg, Pennsylvania.
- 4. Blind duplicate shown immediately after parent sample.
- 5. "U" designates the result is not detected at or above the reported practical quantitation limit.
- 6. "J" designates that the detected concentration is considered an estimated value.

Table 4-10 Summary of Mann-Kendall Analysis in Extraction Wells EW-1 Through EW-8 **Dewey Loeffel Landfill Superfund Site** Nassau, New York

	Number of Samples	Fourth Quarter 2019 Result	S Value	Trend
EW-1				
Benzene	16	352	-85	Decreasing
Toluene	16	44.8	-85	Decreasing
Ethylbenzene	16	20.0 U	Analysis ı	not performed*
m,p-Xylenes	16	40.0 U	Analysis ı	not performed*
o-Xylene	16	20.0 U	Analysis ı	not performed*
Trichloroethene	16	4,070	-92	Decreasing
cis-1,2-Dichloroethene	16	430	-83	Decreasing
Vinyl chloride	16	24.2	Analysis ı	not performed*
Chlorobenzene	16	79.8	-79	Decreasing
1,4-Dioxane	16	5.0	-45	Decreasing
EW-2				
Benzene	16	3,490	-82	Decreasing
Toluene	16	4,730	-78	Decreasing
Ethylbenzene	16	346	+14	Stable/No Trend
m,p-Xylenes	16	540	-16	Stable/No Trend
o-Xylene	16	325	-17	Stable/No Trend
Trichloroethene	16	28,500	-37	Stable/No Trend
cis-1,2-Dichloroethene	16	4,740	-78	Decreasing
Vinyl chloride	16	736	+64	Increasing
Chlorobenzene	16	1,160	-24	Stable/No Trend
1,4-Dioxane	16	51	-49	Decreasing
EW-3#				
Benzene	15	1,910	-90	Decreasing
Toluene	15	4,680	+28	Stable/No Trend
Ethylbenzene	15	62.0	+41	Increasing
m,p-Xylenes	15	219	+43	Increasing
o-Xylene	15	73.8	+46	Increasing
Trichloroethene	15	83.8	-62	Decreasing
cis-1,2-Dichloroethene	15	74.9	-102	Decreasing
Vinyl chloride	15	22.9	-83	Decreasing
Chlorobenzene	15	443	-24	Stable/No Trend
1,4-Dioxane	15	91	-36	Decreasing
EW-4				
Benzene	16	15,700	-51	Decreasing
Toluene	16	39,400	+74	Increasing
Ethylbenzene	16	705	+64	Increasing
m,p-Xylenes	16	2,720	+73	Increasing
o-Xylene	16	783	+68	Increasing
Trichloroethene	16	217	-102	Decreasing
cis-1,2-Dichloroethene	16	7,170	+57	Increasing
Vinyl chloride	16	655	-5	Stable/No Trend
Chlorobenzene	16	5,070	+62	Increasing
1,4-Dioxane	16	460	+66	Increasing

Table 4-10 Summary of Mann-Kendall Analysis in Extraction Wells EW-1 Through EW-8 **Dewey Loeffel Landfill Superfund Site** Nassau, New York

	Number of Samples	Fourth Quarter 2019 Result	S Value	Trend
EW-5				
Benzene	16	7,310	-44	Decreasing
Toluene	16	12,300	+99	Increasing
Ethylbenzene	16	169	+114	Increasing
m,p-Xylenes	16	650	+114	Increasing
o-Xylene	16	207	+114	Increasing
Trichloroethene	16	65.7	-98	Decreasing
cis-1,2-Dichloroethene	16	1,430	-4	Stable/No Trend
Vinyl chloride	16	379	+68	Increasing
Chlorobenzene	16	1,960	+96	Increasing
1,4-Dioxane	16	270	+56	Increasing
EW-6				
Benzene	16	43,800	-54	Decreasing
Toluene	16	83,700	+38	Increasing
Ethylbenzene	16	1,380	+39	Increasing
m,p-Xylenes	16	5,580	+43	Increasing
o-Xylene	16	1,730	+39	Increasing
Trichloroethene	16	500 U	-85	Decreasing
cis-1,2-Dichloroethene	16	20,800	-24	Stable/No Trend
Vinyl chloride	16	3,770	-5	Stable/No Trend
Chlorobenzene	16	15,000	+29	Stable/No Trend
1,4-Dioxane	16	1,200	+63	Increasing
EW-7				
Benzene	16	21,700	-75	Decreasing
Toluene	16	54,700	+26	Stable/No Trend
Ethylbenzene	16	751	+26	Stable/No Trend
m,p-Xylenes	16	3,020	+27	Stable/No Trend
o-Xylene	16	912	+26	Stable/No Trend
Trichloroethene	16	400 U	Analysis r	not performed*
cis-1,2-Dichloroethene	16	1,090	-100	Decreasing
Vinyl chloride	16	2,020	-54	Decreasing
Chlorobenzene	16	6,480	-14	Stable/No Trend
1,4-Dioxane	16	1,100	+1	Stable/No Trend
EW-8				
Benzene	16	718	-98	Decreasing
Toluene	16	5.2	-77	Decreasing
Ethylbenzene	16	5.0 U	Analysis r	not performed*
m,p-Xylenes	16	10.0 U	Analysis r	not performed*
o-Xylene	16	5.0 U	Analysis r	not performed*
Trichloroethene	16	5.0 U	Analysis r	not performed*
cis-1,2-Dichloroethene	16	5.0 U	Analysis r	not performed*
Vinyl chloride	16	5.0 U	Analysis r	not performed*
Chlorobenzene	16	45.5	-74	Decreasing
				3

Table 4-10

Summary of Mann-Kendall Analysis in Extraction Wells EW-1 Through EW-8 Dewey Loeffel Landfill Superfund Site Nassau, New York

Numbe	r of Fou	rth Quarter	S Value	Tuesd
Sampl	es 20	19 Result	5 value	Trend

- 1. Detections are bolded.
- 2. Mann-Kendall analysis run on data collected quarterly in 2016 through 2019.
- 3. Significance level (α) is 95 percent (%).
- 4. Non-detects reported at the practical quantitation limit (PQL).
- 5. Blind duplicate samples were not used in analysis.
- 6. Concentrations reported in micrograms per liter (μ g/L).
- 7. "U" designates the result is not detected at or above the reported PQL shown.
- 8. "*" designates Mann-Kendall analysis not performed due to low frequency of detected concentrations.
- 9. "#" designates EW-3 was not sampled in August 2018 because pump was out of service at the time of sampling.

Table 4-11 Residential Well Summary Dewey Loeffel Landfill Superfund Site Nassau, New York

IYSDOH We ID	ell Location	Sampling Dates	Notes	
ells with P	OU Treatment Systems - Sampled Quarterly			
		May 5, 2020	POU system installed 5/1996;	
1 ^a	Mead Road	November 10, 2020	bottled water also provided sind 12/1999	
23 Central N		February 18, 2020	POU system installed 4/2004; bottled water also provided sinc 6/2001	
		May 5, 2020		
	Central Nassau Road	August 11, 2020		
		November 10, 2020		
24S C		February 18, 2020		
		May 5, 2020	POU system installed 2/1993; bottled water also provided sind 10/1998	
	Central Nassau Road	August 11, 2020		
		November 10, 2020		
		February 18, 2020		
24D Central N		May 5, 2020	POU system installed 2/1993; bottled water also provided sind 10/1998	
	Central Nassau Road	August 11, 2020		
		November 10, 2020		
25 Central		February 18, 2020		
		May 5, 2020	POU system installed 4/1993	
	Central Nassau Road	August 11, 2020	bottled water also provided si 12/1999	
		November 10, 2020		
/ells withou	ıt POU Treatment Systems - Sampled Semi-Annı	· · · · · · · · · · · · · · · · · · ·		
Tello William Communication Systems Sumplea Sem		May 12, 2020		
3 Mea	Mead Road, west of Landfill	November 11, 2020	Bottled water provided	
16°	Central Nassau Road, near intersection of		Bottled water provided	
	Curtis Hill Road			
17 ^c Centra	Central Nassau Road, near intersection of		Bottled water provided	
	Curtis Hill Road		bottled water provided	
18 ^b Central	Central Nassau Road, near intersection of		Bottled water provided	
	Curtis Hill Road		Bottled Water provided	
19 Central Na	Central Nassau Road, near intersection of	May 12, 2020	Bottled water provided	
	Curtis Hill Road	November 11, 2020	bottled water provided	
20°	Central Nassau Road, near intersection of		Bottled water provided	
20	Curtis Hill Road		Dottied Hater provided	
21 Cen	Central Nassau Road, near intersection of	May 12, 2020	Bottled water provided	
	Curtis Hill Road	November 11, 2020		
22 Centr	Central Nassau Road, near intersection of	May 12, 2020	Bottled water provided	
	Curtis Hill Road	November 11, 2020		
32	Curtis Hill Road, near Central Nassau Road	May 12, 2020	Bottled water provided	
	cards riii Roud, near central Nassau Road	November 11, 2020		

Table 4-11 Residential Well Summary Dewey Loeffel Landfill Superfund Site Nassau, New York

SDOH We	Location	Sampling Dates	Notes				
ells without POU Treatment Systems - Sampled Annually							
26	Central Nassau Road	November 11, 2020					
27	Central Nassau Road	November 11, 2020					
28	Central Nassau Road, near intersection of Mead Road	November 11, 2020					
29	Central Nassau Road, near intersection of Mead Road	November 11, 2020					
30	Mead Road, near intersection of Central Nassau Road	November 11, 2020					
33	Mead Road, near intersection of Central Nassau Road	November 11, 2020					
ells withou	ut POU Treatment Systems - Sampled Biennially						
6 ^d	Nassau Averill Park Road	November 11, 2020					
7	Nassau Averill Park Road						
9	Nassau Averill Park Road, near intersection of Mead Road						
10	Nassau Averill Park Road, near intersection of Mead Road						
11	Nassau Averill Park Road						
12 ^d	Nassau Averill Park Road	May 12, 2020					
13 ^d	Nassau Averill Park Road	May 12, 2020					
34	Nassau Averill Park Road						

- 1. "NYSDOH" designates New York State Department of Health.
- 2. "POU" designates point of use.
- 3. Residential wells sampled for volatile organic compounds (VOCs) and 1,4-dioxane, excluding the first and third quarter sampling of wells with POU treatment systems which were sampled for VOCs only.
- 4. VOC analyses by United States Environmental Protection Agency (USEPA) Method 524.2 and 1,4-dioxane analyses by USEPA SW-846 Method 8270D selected ion monitoring (SIM) were subcontracted by Pace Analytical Services in Greensburg, Pennsylvania to ALS Environmental in Rochester, New York (1,4-dioxane) and ALS in Middletown, Pennsylvania (VOCs).
- 5. " $^{\mbox{\tiny au}}$ designates NYSDOH well 1 was sampled semi-annually due to low water usage rates.
- 6. "b" designates NYSDOH wells 16 and 18 were not sampled in 2020 due to COVID-19 concerns.
- 7. "---" designates not applicable.
- 8. "c" designates NYSDOH wells 17 and 20 were not sampled in 2020 because the property was unoccupied and the water was shut off.
- 9. "d" designates NYSDOH wells 6, 12 and 13 were scheduled to be sampled in 2019, but could not be because the property owners were unavailable and the water was shut off. Samples were collected in 2020.

Table 4-12 VOCs and 1,4-Dioxane in Residential Wells with POU Treatment Systems Dewey Loeffel Landfill Superfund Site Nassau, New York

Location ID	NYSDO	H Well 1		NYSDO	H Well 23			NYSDOI	H Well 24S	
Sample ID	1-INLET-050520 1-INLET-111020		23-INLET-021820 23-INLET-050520 23-INLET-08112020			23-INLET-111020	24S-INLET-021820	24S-INLET-050520 24S-INLET-0811202	24S-INLET-08112020	0 24S-INLET-111020
Date	5/5/2020	11/10/2020	2/18/2020	5/5/2020	8/11/2020	11/10/2020	2/18/2020	5/5/2020	8/11/2020	11/10/2020
Compound										
1,1,1,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,1-Trichloroethane	0.5 U		0.5 U	0.5 U			0.5 U	0.5 U		
1,1,2,2-Tetrachloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-Trichloro-1,2,2-trifluoroethane		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	3.2	2.3	3.2	3.5
1,1-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.5	1.4	1.5	1.8
1,1-Dichloropropene	0.5 U		0.5 U	0.5 U			0.5 U	0.5 U		
1,2,3-Trichlorobenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
1,2,3-Trichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2,4-Trimethylbenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
1,2-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.3	0.5 U	4.5	4.7
1,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3,5-Trimethylbenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,3-Dichloropropylene	1 U			1 U				1 U		
1,4-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2,2-Dichloropropane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
2-Hexanone	0.5 0	2.5 U	2.5 U	0.5 0	2.5 U	2.5 U	2.5 U	0.5 0	2.5 U	2.5 U
		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
4-Isopropyltoluene		5 U	5 U		4 J	5 U	5 U		2.4 J	5 U
Acetone	0.5.11									34.5
Benzene	0.5 U	0.5 U	0.52	0.5 U	0.5 U	0.5 U	32.8	22.4	36.7	
Bromobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromochloromethane		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Bromodichloromethane	1 U	1 U	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U
Bromoform	1 U	1 U	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U
Bromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.34 J	0.5 U	0.5 U	0.5 U	0.5 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.55	0.44 J	0.5 U	0.5 U	0.5 U	0.5 U	1.5	1.1	1.8	1.7
Chloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	1 U	1 U	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethylene	0.5 U	0.5 U	0.61	0.5 U	0.5 U	0.5 U	62	57.9	67	69.3
cis-1,3-Dichloropropene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Dibromochloromethane	1 U	1 U	0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U
Dibromomethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Dichlorofluoromethane		0.5 U			0.5 U	0.5 U			0.21 J	0.33 J
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.29 J	0.23 J
Hexachlorobutadiene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Isopropylbenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
2-Butanone		2.5 U	2.5 U		2.5 U	2.5 U	2.5 U		2.5 U	2.5 U
4-Methyl-2-pentanone		2.5 U	2.5 U		2.5 U	2.5 U	2.5 U		2.5 U	2.5 U

Table 4-12
VOCs and 1,4-Dioxane in Residential Wells with POU Treatment Systems
Dewey Loeffel Landfill Superfund Site
Nassau, New York

Location ID	NYSDO	NYSDOH Well 1		NYSDOI	H Well 23			NYSDOH	l Well 24S	
Sample ID	1-INLET-050520	1-INLET-111020	23-INLET-021820	23-INLET-050520	23-INLET-08112020	23-INLET-111020	24S-INLET-021820	24S-INLET-050520	24S-INLET-08112020	24S-INLET-111020
Date	5/5/2020	11/10/2020	2/18/2020	5/5/2020	8/11/2020	11/10/2020	2/18/2020	5/5/2020	8/11/2020	11/10/2020
Compound										
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
M-P-Xylene		0.25 U	0.25 U		0.25 U	0.25 U	0.25 U		0.25 U	0.25 U
Naphthalene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
n-Butylbenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
n-Propylbenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
o-Chlorotoluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
o-Xylene		0.25 U	0.25 U		0.25 U	0.25 U	0.25 U		0.25 U	0.25 U
p-Chlorotoluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
sec-Butylbenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tert-butyl methyl ether		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Tert-Butylbenzene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tetrahydrofuran		2.5 U			2.5 U	2.5 U			2.5 U	2.5 U
Toluene	0.5 U	0.14 J	0.5 U	0.5 U	0.5 U	0.13 J	0.5 U	0.5 U	0.5 U	0.2 J
trans-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	124	83.1	118	127
trans-1,3-Dichloropropene		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Trichloroethene	0.5 U	0.5 U	9.7	4.6	1.7	3.7	242	197	306	322
Trichlorofluoromethane		0.5 U	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane	0.48 / 0.57	0.48		0.040 U		0.031 J / 0.039 J		0.045		0.072

Source: ARCADIS U.S., Inc.

- 1. Detections are bolded.
- 2. "VOCs" designates volatile organic compounds.
- 3. "POU" designates point-of-use.
- 4. Results are in micrograms per liter (μ g/L).
- 5. VOC analyses by United States Environmental Protection Agency (USEPA) Method 524.2 subcontracted by Pace Analytical Services in Greensburg, Pennsylvania to ALS Environmental in Middletown, Pennsylvania.
 - 1,4-Dioxane analyses by USEPA SW-846 Method 8270D selected ion monitoring (SIM) were subcontracted by Pace Analytical Services in Greensburg, Pennsylvania to ALS Environmental in Rochester, New York.
- 6. Blind duplicate shown immediately after parent sample.
- 7. "U" designates the result is not detected at or above the reported practical quantitation limit.
- 8. "---" designates compound was not analyzed for in that sample.
- 9. "J" designates that the detected concentration is considered an estimated value.

Table 4-12
VOCs and 1,4-Dioxane in Residential Wells with POU Treatment Systems
Dewey Loeffel Landfill Superfund Site
Nassau, New York

L	ocation ID		NYSDOH	Well 24D		NYSDOH Well 25				
	Sample ID	24D-INLET-021820	24D-INLET-050520	24D-INLET-08112020	24D-INLET-111020	25-INLET-021820	25-INLET-050520	25-INLET-08112020	25-INLET-111020	
	Date	2/18/2020	5/5/2020	8/11/2020	11/10/2020	2/18/2020	5/5/2020	8/11/2020	11/10/2020	
Compound										
1,1,1,2-Tetrachloroethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1,1-Trichloroethane		0.5 U	0.5 U			0.5 U	0.5 U			
1,1,2,2-Tetrachloroethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1,2-Trichloro-1,2,2-trifluoroethane		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
1,1,2-Trichloroethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,1-Dichloroethane		2.5	3.2	3	3.6	0.5 U	0.5 U	0.5 U	0.5 U	
1,1-Dichloroethene		1.5	2	1.9	2.4	0.5 U	0.5 U	0.5 U	0.5 U	
1,1-Dichloropropene		0.5 U	0.5 U			0.5 U	0.5 U			
1,2,3-Trichlorobenzene		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
1,2,3-Trichloropropane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2,4-Trichlorobenzene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2,4-Trimethylbenzene		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
1,2-Dichlorobenzene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,2-Dichloroethane		5.7	6.4	5.8	7.9	0.5 U	0.5 U	0.5 U	0.5 U	
1,2-Dichloropropane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,3,5-Trimethylbenzene		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
1,3-Dichlorobenzene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,3-Dichloropropane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
1,3-Dichloropropylene			1 U				1 U			
1,4-Dichlorobenzene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
2,2-Dichloropropane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
2-Hexanone		2.5 U		2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	
		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
4-Isopropyltoluene		5 U			5 U	5 U			5 U	
Acetone				3.4 J				4.6 J		
Benzene		33.6	38.6	35.9	50 U	0.5 U	0.5 U	0.5 U	0.5 U	
Bromobenzene		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Bromochloromethane		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
Bromodichloromethane		0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	
Bromoform		0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	
Bromomethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Carbon tetrachloride		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Chlorobenzene		3.3	4.1	3.8	4.2	0.5 U	0.5 U	0.5 U	0.5 U	
Chloroethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Chloroform		0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	
Chloromethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
cis-1,2-Dichloroethylene		23.6	26.3	27.1	29.3 J	0.5 U	0.5 U	0.5 U	0.5 U	
cis-1,3-Dichloropropene		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
Dibromochloromethane		0.5 U	1 U	1 U	1 U	0.5 U	1 U	1 U	1 U	
Dibromomethane		0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Dichlorodifluoromethane		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
Dichlorofluoromethane				0.29 J	0.38 J			0.5 U	0.5 U	
Ethylbenzene		0.5 U	0.5 U	0.18 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	
Hexachlorobutadiene		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
Isopropylbenzene		0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U	
2-Butanone		2.5 U		2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	
4-Methyl-2-pentanone		2.5 U		2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	

Table 4-12
VOCs and 1,4-Dioxane in Residential Wells with POU Treatment Systems
Dewey Loeffel Landfill Superfund Site
Nassau, New York

Location	ID	NYSDOF	ł Well 24D			NYSDO	H Well 25	
Sample	ID 24D-INLET-021820	24D-INLET-050520	24D-INLET-08112020	24D-INLET-111020	25-INLET-021820	25-INLET-050520	25-INLET-08112020	25-INLET-111020
	ate 2/18/2020	5/5/2020	8/11/2020	11/10/2020	2/18/2020	5/5/2020	8/11/2020	11/10/2020
Compound								
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
M-P-Xylene	0.25 U		0.25 U	0.25 U	0.25 U		0.25 U	0.25 U
Naphthalene	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
n-Butylbenzene	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
n-Propylbenzene	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
o-Chlorotoluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
o-Xylene	0.25 U		0.25 U	0.25 U	0.25 U		0.25 U	0.25 U
p-Chlorotoluene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
sec-Butylbenzene	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Styrene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Tert-butyl methyl ether	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Tert-Butylbenzene	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Tetrachloroethene	0.97	1.5	1.1	1.3	0.5 U	0.5 U	0.5 U	0.5 U
Tetrahydrofuran			2.5 U	2.5 U			2.5 U	2.5 U
Toluene	0.5 U	0.19 J	0.21 J	0.23 J	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	0.41 J	0.5 U	0.47 J	0.5 U	0.5 U	0.5 U	0.5 U
trans-1,3-Dichloropropene	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Trichloroethene	571	762	730	853	2.5	2.7	3.2	2.5
Trichlorofluoromethane	0.5 U		0.5 U	0.5 U	0.5 U		0.5 U	0.5 U
Vinyl chloride	0.5 U	0.5 U	0.5 U	0.54	0.5 U	0.5 U	0.5 U	0.5 U
Xylenes, Total	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane		0.076		0.081		0.040 U		0.034 J

Source: ARCADIS U.S., Inc.

- 1. Detections are bolded.
- 2. "VOCs" designates volatile organic compounds.
- 3. "POU" designates point-of-use.
- 4. Results are in micrograms per liter (μg/L).
- 5. VOC analyses by United States Environmental Protection Agency (USEPA) Method 524.2 subcontracted by Pace Analytical Services in Greensburg, Pennsylvania to ALS Environmental in Middletown, Pennsylvania.
 - 1,4-Dioxane analyses by USEPA SW-846 Method 8270D selected ion monitoring (SIM) were subcontracted by Pace Analytical Services in Greensburg, Pennsylvania to ALS Environmental in Rochester, New York.
- 6. Blind duplicate shown immediately after parent sample.
- 7. "U" designates the result is not detected at or above the reported practical quantitation limit.
- 8. "---" designates compound was not analyzed for in that sample.
- 9. "J" designates that the detected concentration is considered an estimated value.

Table 4-13 Summary of Mann-Kendall Analysis in Residential Wells with Point-of-Use Treatment Systems NYSDOH Wells 1, 23, 24D and 25 Dewey Loeffel Landfill Superfund Site Nassau, New York

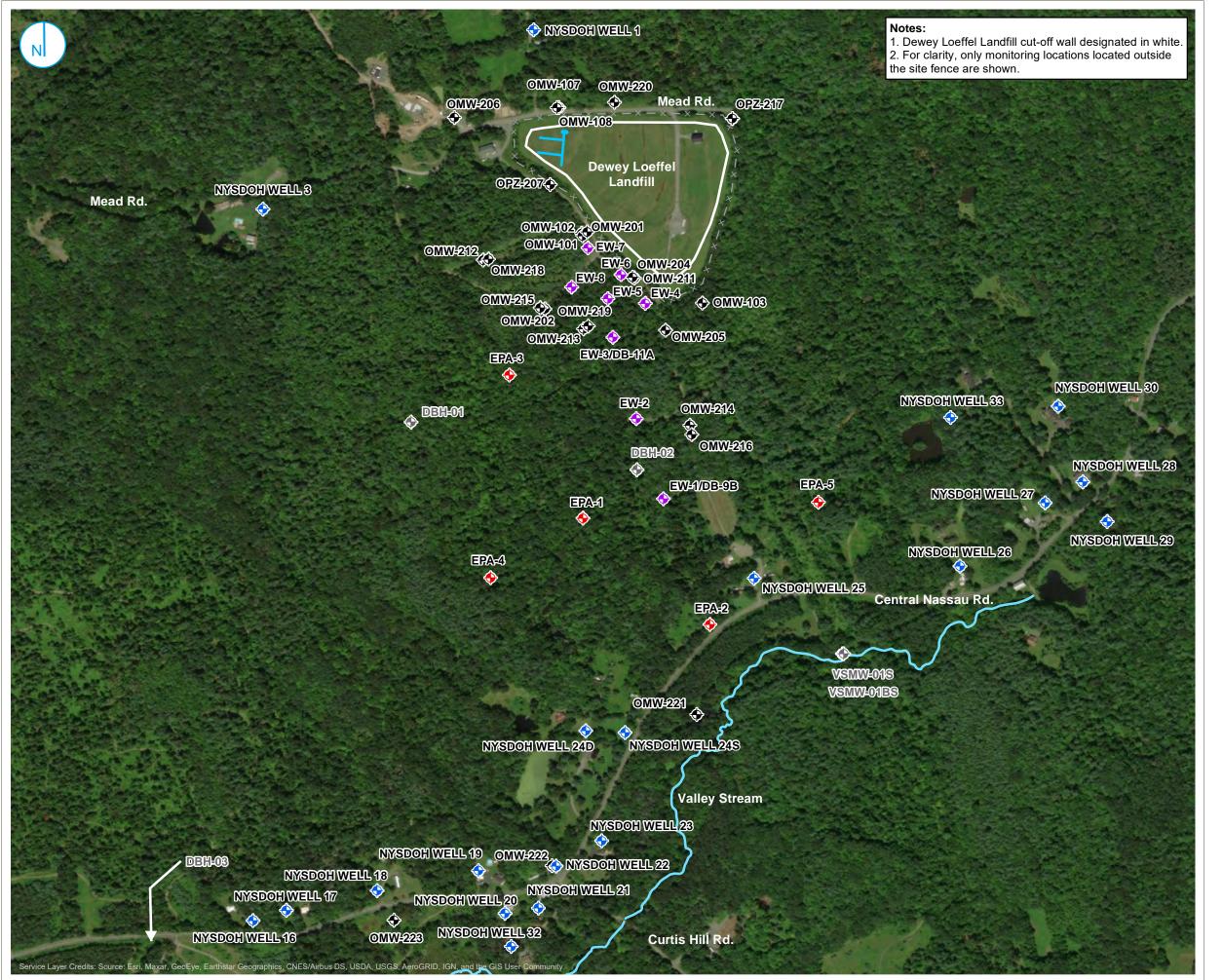

	Number of Samples	Fourth Quarter 2019 Result	S Value	Trend
NYSDOH Well 1				
Benzene	16	0.5 U	+35	Stable/No Trend
Toluene	16	0.5 U	Analysis not performed*	
Ethylbenzene	16	0.5 U	Analysis n	ot performed*
m,p-Xylenes	16	0.25 U	Analysis n	ot performed*
o-Xylene	16	0.25 U	Analysis n	ot performed*
Trichloroethene	16	0.5 U	Analysis n	ot performed*
cis-1,2-Dichloroethene	16	0.5 U	Analysis n	ot performed*
Vinyl chloride	16	0.5 U	Analysis n	ot performed*
Chlorobenzene	16	0.62	+3	Stable/No Trend
1,4-Dioxane	8	0.49	-6	Stable/No Trend
NYSDOH Well 23				
Benzene	16	0.5 U	+13	Stable/No Trend
Toluene	16	0.5 U	Analysis n	ot performed*
Ethylbenzene	16	0.5 U	Analysis n	ot performed*
m,p-Xylenes	16	0.25 U	Analysis n	ot performed*
o-Xylene	16	0.25 U	Analysis n	ot performed*
Trichloroethene	16	4.2	-21	Stable/No Trend
cis-1,2-Dichloroethene	16	0.5 U	-9	Stable/No Trend
Vinyl chloride	16	0.5 U	Analysis n	ot performed*
Chlorobenzene	16	0.5 U	Analysis n	ot performed*
1,4-Dioxane	8	0.028 J	-7	Stable/No Trend
NYSDOH Well 24D				
Benzene	16	50 U	-24	Stable/No Trend
Toluene	16	0.2 J	Analysis n	ot performed*
Ethylbenzene	16	0.21 J	Analysis n	ot performed*
m,p-Xylenes	16	0.25 U	Analysis n	ot performed*
o-Xylene	16	0.25 U	Analysis n	ot performed*
Trichloroethene	16	612	-61	Decreasing
cis-1,2-Dichloroethene	16	50 U	-8	Stable/No Trend
Vinyl chloride	16	0.5 U	Analysis n	ot performed*
Chlorobenzene	16	4.6	+14	Stable/No Trend
1,4-Dioxane	8	0.073	-10	Stable/No Trend

Table 4-13 Summary of Mann-Kendall Analysis in Residential Wells with Point-of-Use Treatment Systems NYSDOH Wells 1, 23, 24D and 25 **Dewey Loeffel Landfill Superfund Site** Nassau, New York

	Number of Samples	Fourth Quarter 2019 Result	S Value	Trend	
NYSDOH Well 25					
Benzene	16	0.5 U	+16	Stable/No Trend	
Toluene	16	0.5 U	Analysis r	not performed*	
Ethylbenzene	16	0.5 U	Analysis not performed*		
m,p-Xylenes	16	0.25 U	Analysis r	not performed*	
o-Xylene	16	0.25 U	Analysis r	not performed*	
Trichloroethene	16	4.5	-14	Stable/No Trend	
cis-1,2-Dichloroethene	16	0.5 U	+16	Stable/No Trend	
Vinyl chloride	16	0.5 U	Analysis not performed*		
Chlorobenzene	16	0.5 U	Analysis not performed*		
1,4-Dioxane	8	0.036 J	+4	Stable/No Trend	

- 1. Detections are bolded.
- 2. Mann-Kendall analysis run on data collected quarterly in 2016 through 2019, with the exception of 1,4-dioxane which was collected semi-annually.
- 3. Significance level (α) is 95 percent (%).
- 4. Non-detects reported at the practical quantitation limit (PQL).
- 5. Blind duplicate samples were not used in analysis.
- 6. Concentrations reported in micrograms per liter ($\mu g/L$).
- 7. "NYSDOH" indicates New York State Department of Health.
- 8. "U" designates the result is not detected at or above the reported PQL shown.
- 9. "*" designates Mann-Kendall analysis not performed due to low frequency of detected concentrations.
- 10. "J" designates that the detected concentration is considered an estimated value.

FIGURES

- Extraction Well
- Residential Well
- ◆ FLUTe™ Multi-Level Monitoring Well
- Monitoring Well Included in Groundwater Monitoring Plan
- ◆ Additional Site Well Sampled in 2020
- \times Site Fence
- Leachate Collection System

500 1,000 ______ Feet

SITE MAP

DEWEY LOEFFEL LANDFILL SUPERFUND SITE

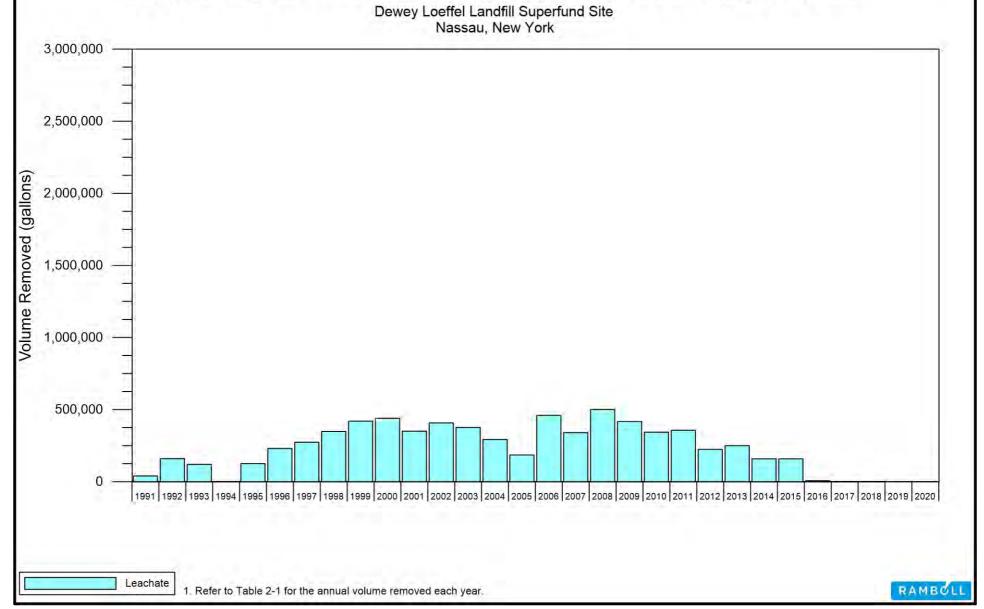
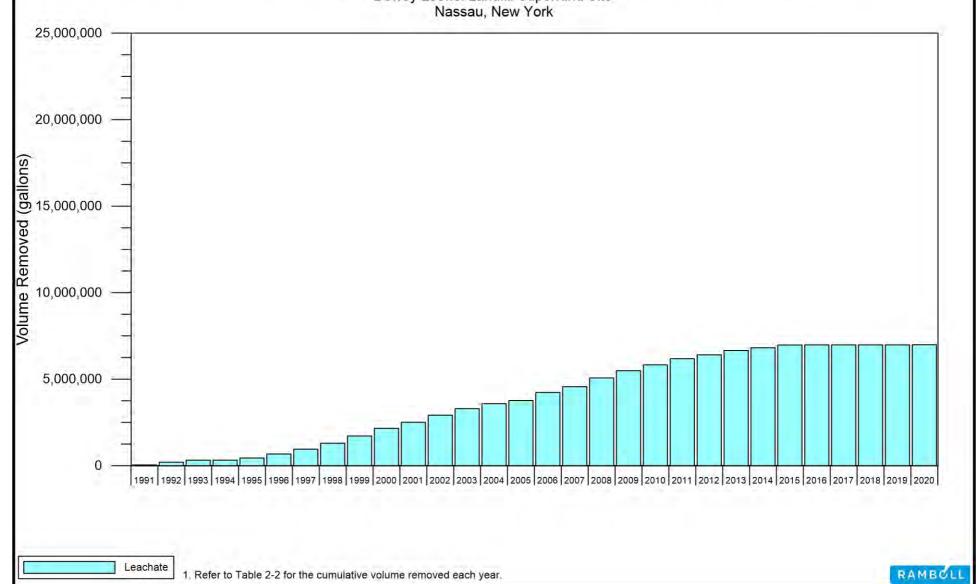
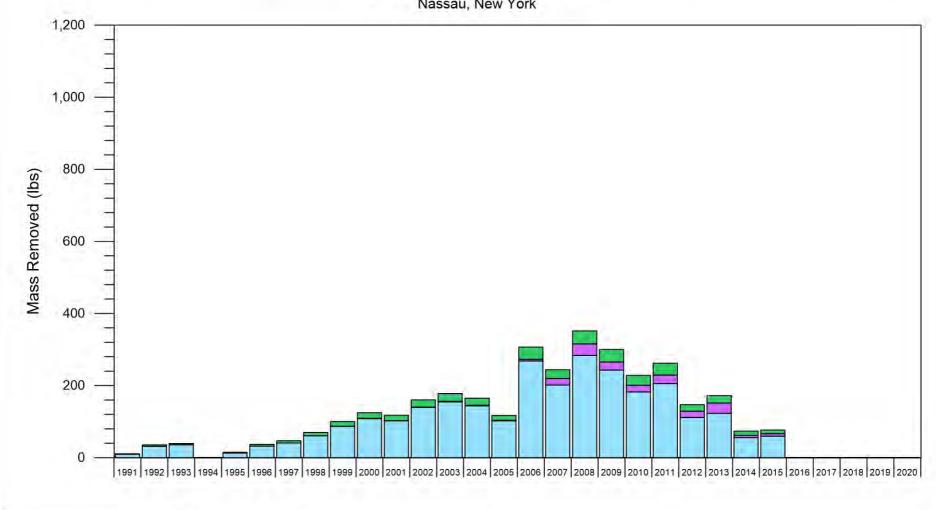

NASSAU, NEW YORK

FIGURE 1-1

RAMBOLL US CORPORATION A RAMBOLL COMPANY





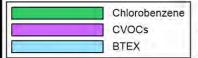
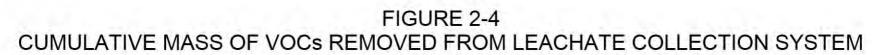
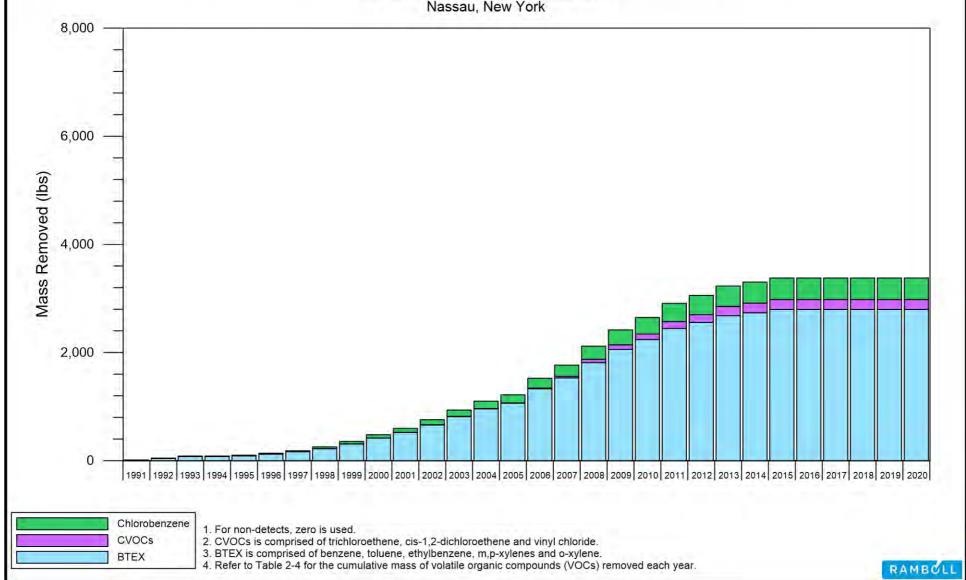
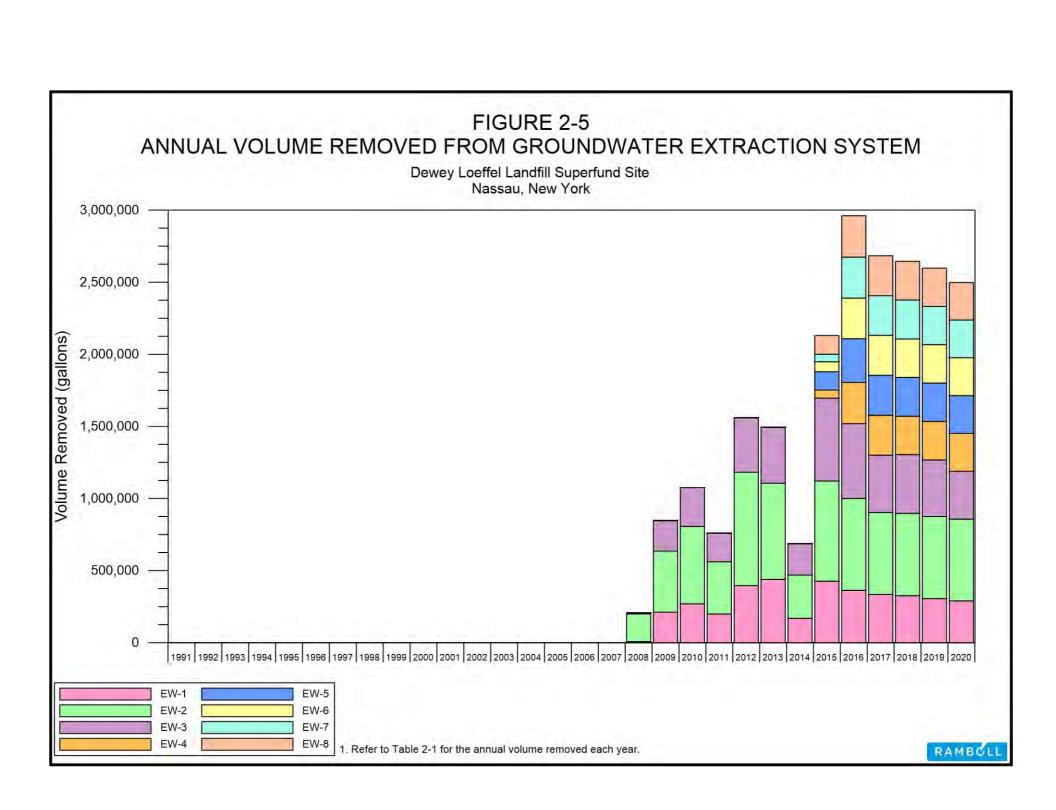
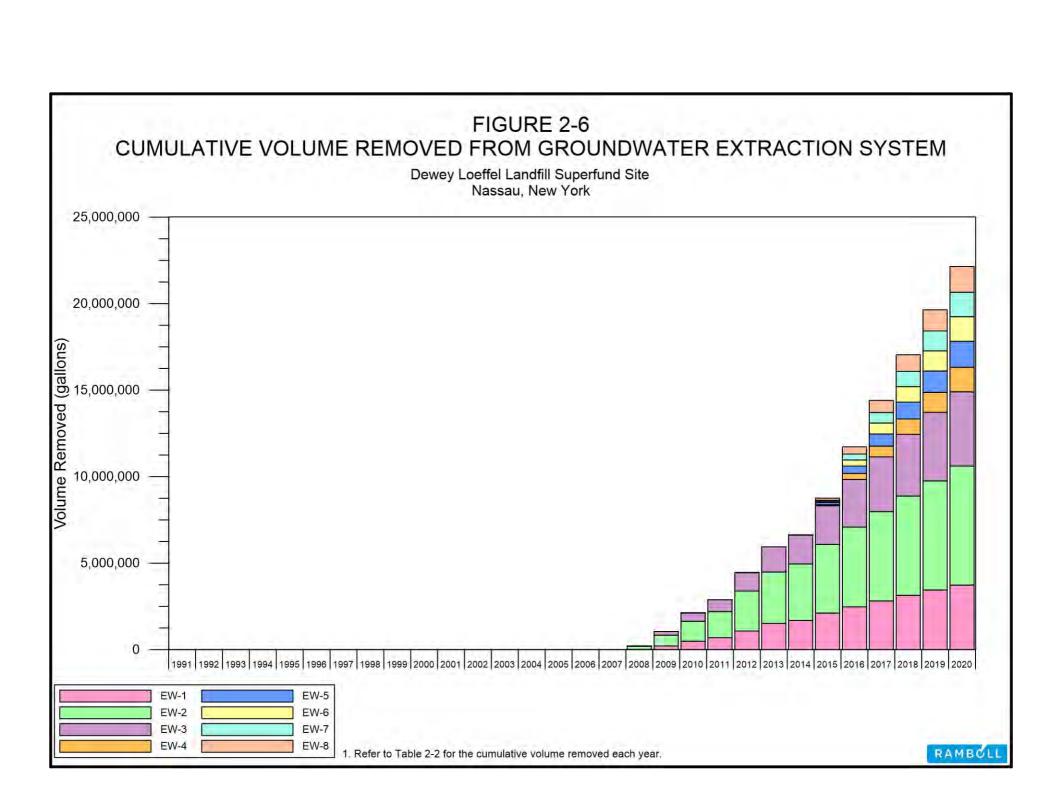

Dewey Loeffel Landfill Superfund Site

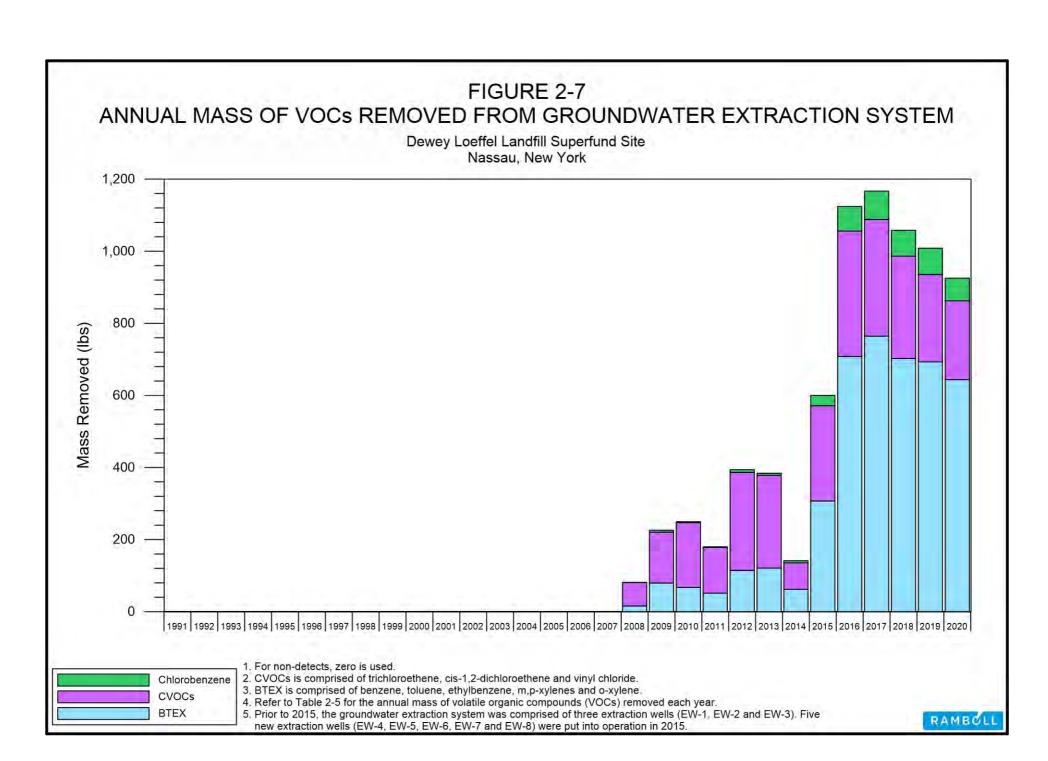
FIGURE 2-3 ANNUAL MASS OF VOCs REMOVED FROM LEACHATE COLLECTION SYSTEM

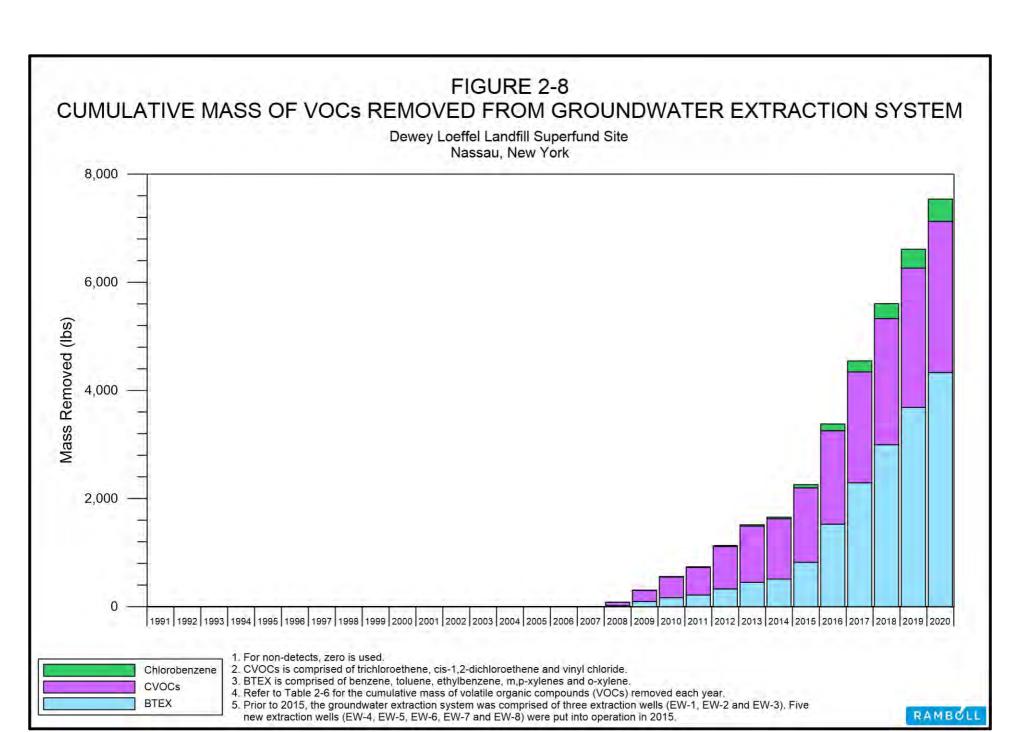

Dewey Loeffel Landfill Superfund Site Nassau, New York

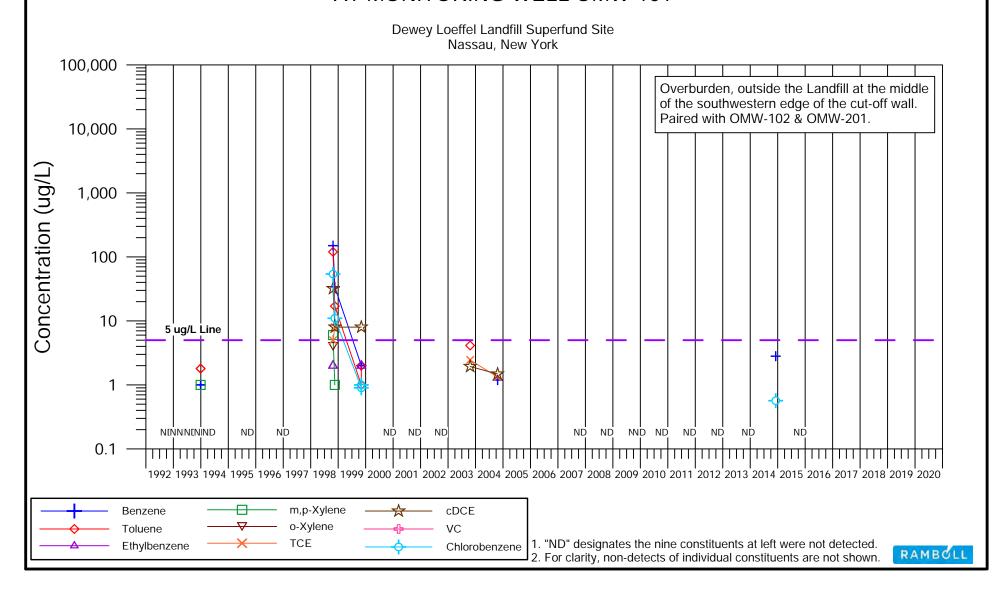


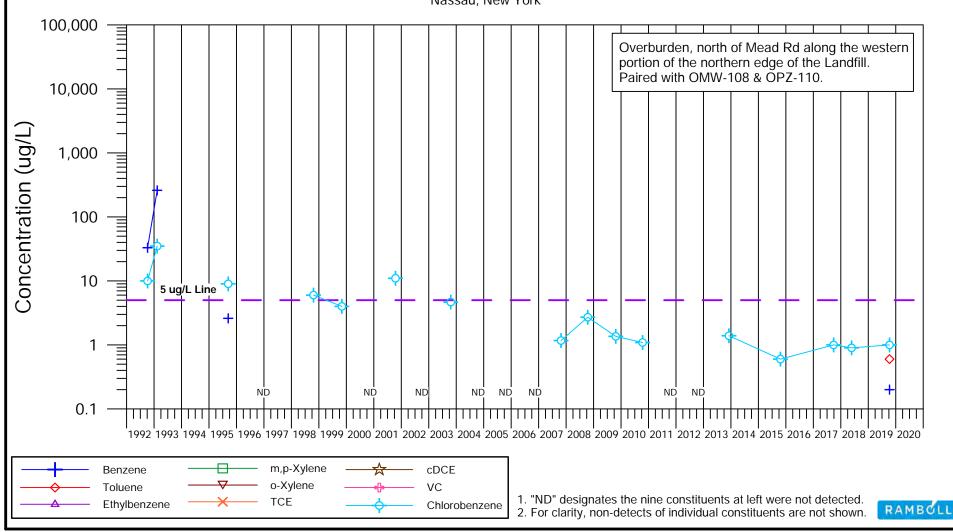


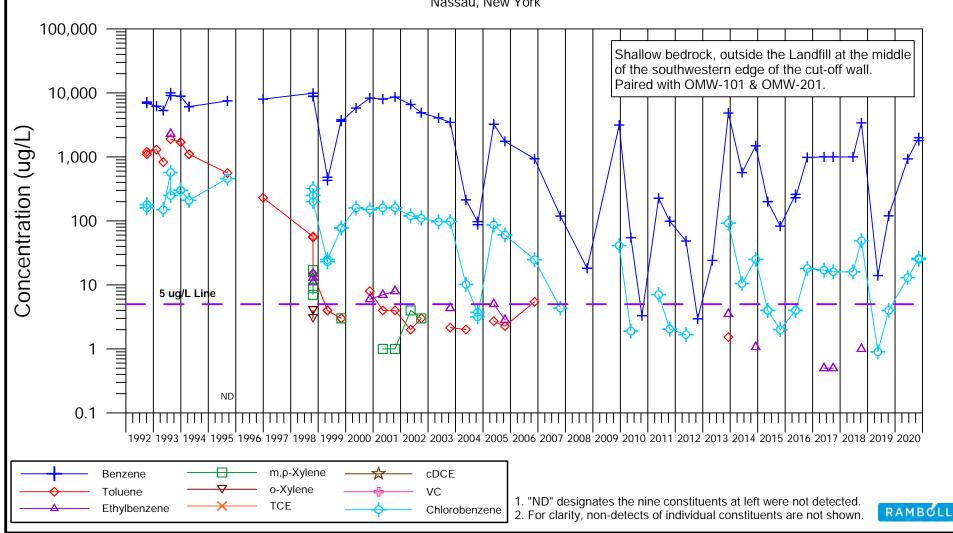

- 1. For non-detects, zero is used.
- 2. CVOCs is comprised of trichloroethene, cis-1,2-dichloroethene and vinyl chloride.
- 3. BTEX is comprised of benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene.
- 4. Refer to Table 2-3 for the annual mass of volatile organic compounds (VOCs) removed each year.

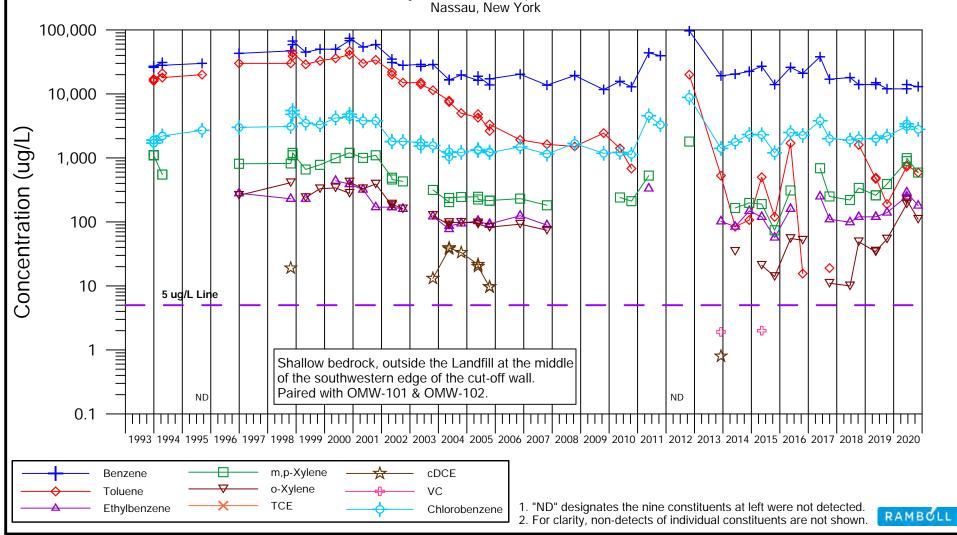

RAMBOLL








CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-101


CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-107

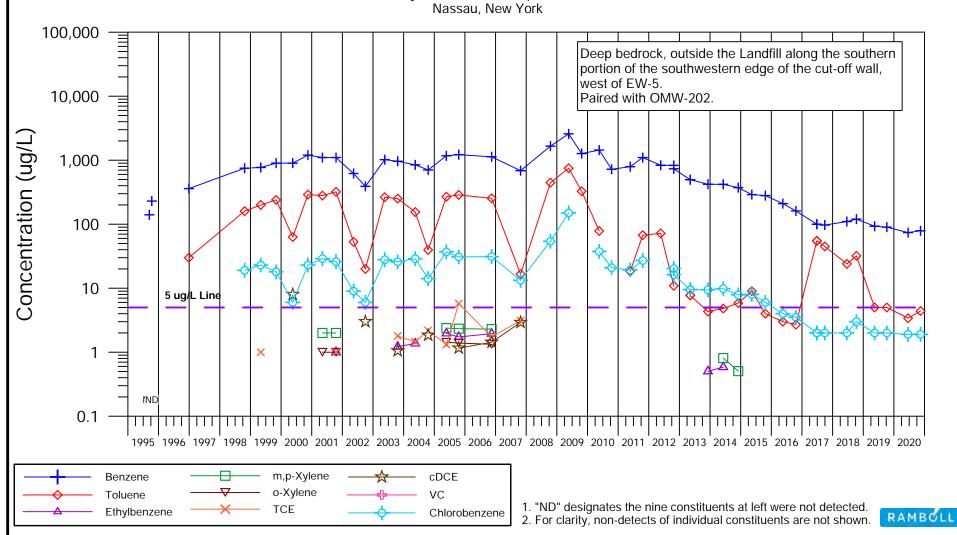
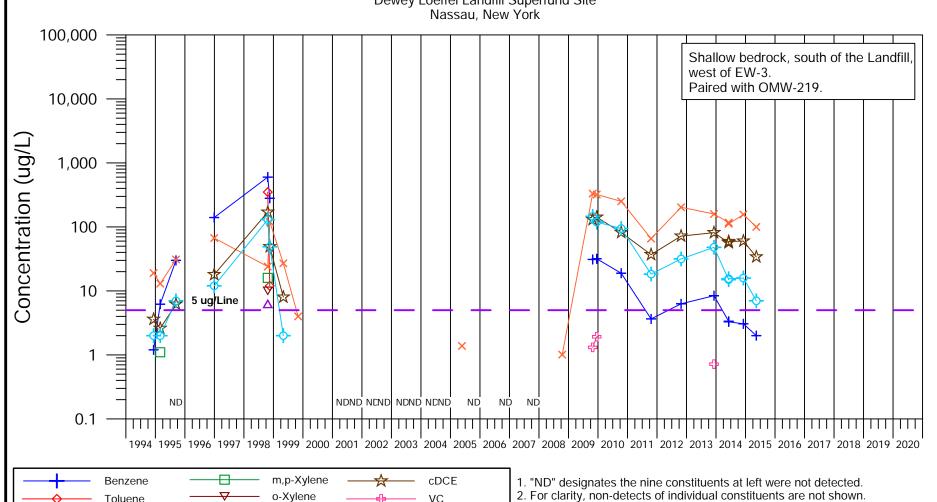

CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-102

FIGURE 4-4 CONCENTRATIONS OF VOCS AT MONITORING WELL OMW-201



CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-215

CONCENTRATIONS OF VOCS AT MONITORING WELL OMW-213

Dewey Loeffel Landfill Superfund Site

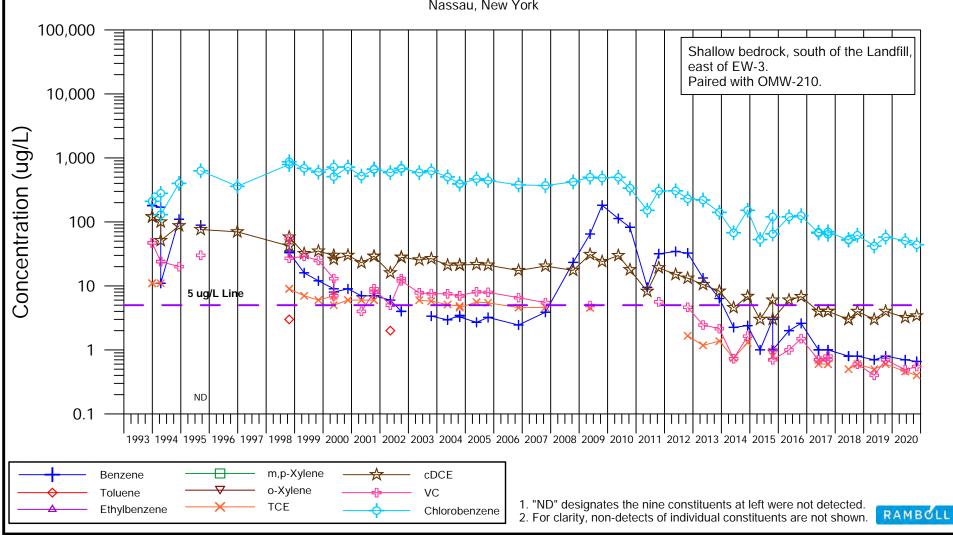
VC

Chlorobenzene

3. Monitoring well has been historically dry following the Spring 2015

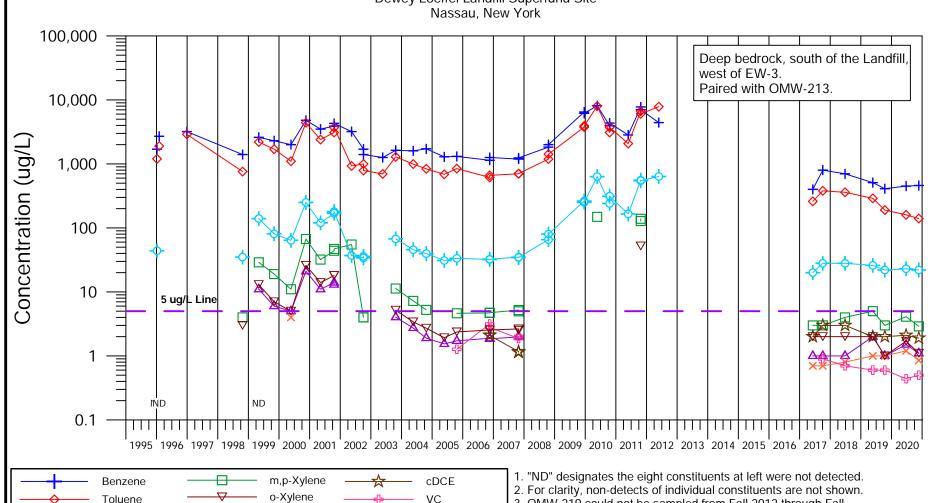
RAMBOLL

groundwater sampling event.


o-Xylene

TCE

Toluene


Ethylbenzene

CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-205

CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-219

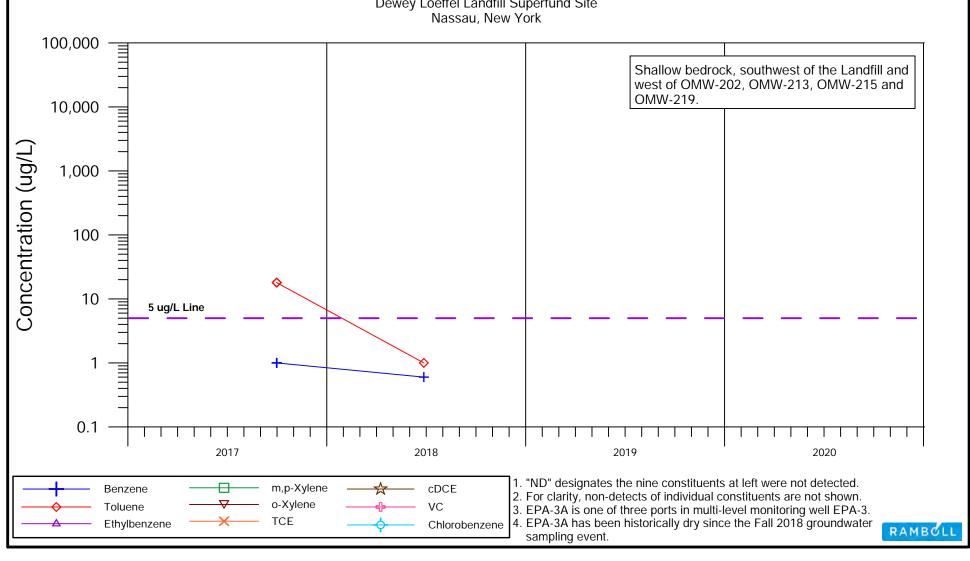
Dewey Loeffel Landfill Superfund Site

VC

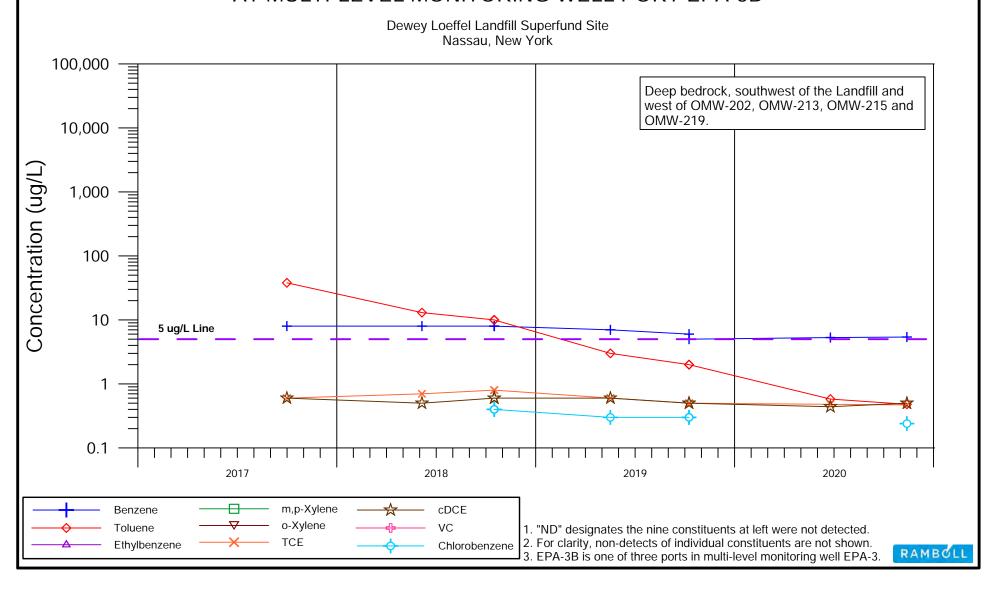
Chlorobenzene

TCE

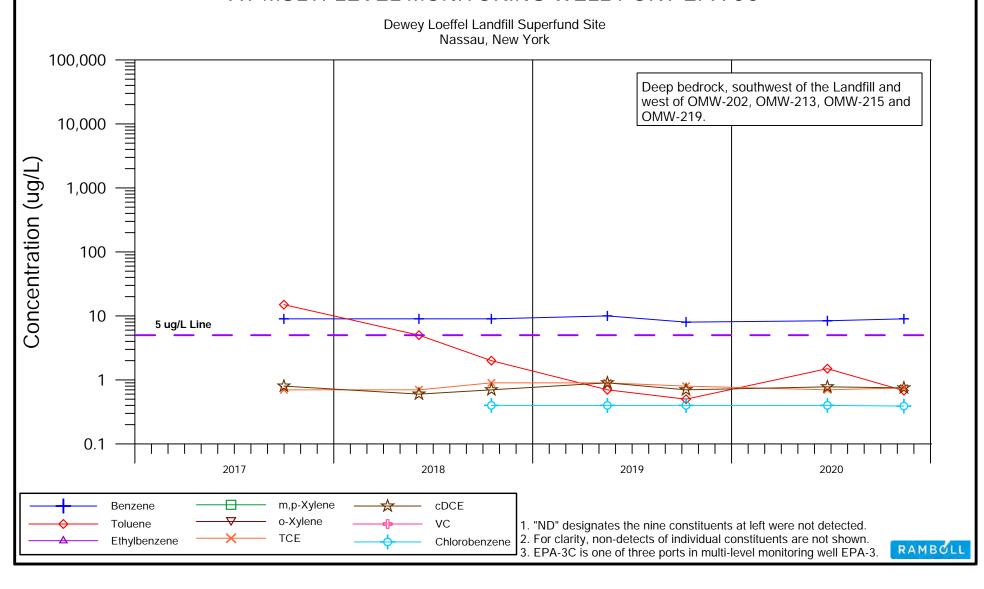
Toluene

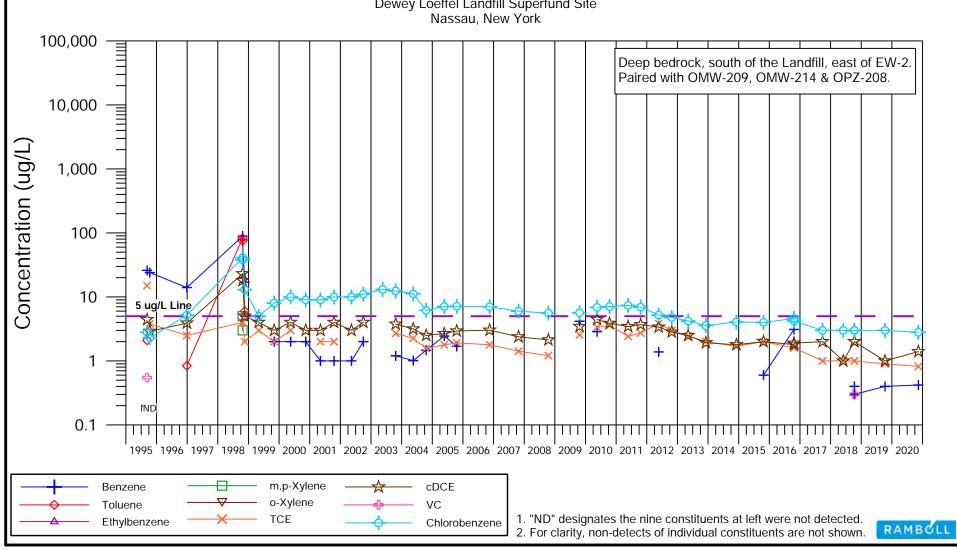

Ethylbenzene

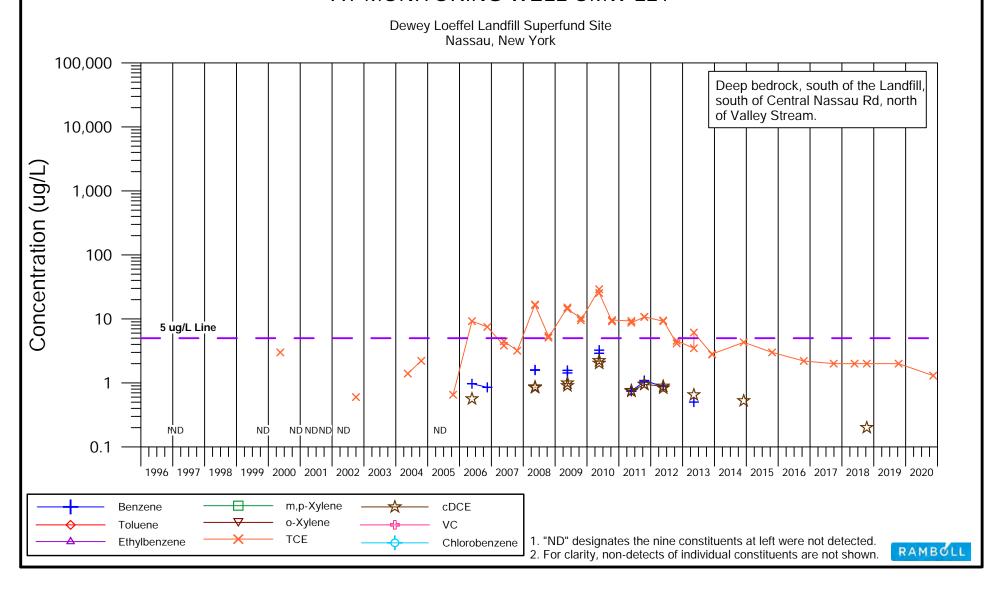
- 2. For clarity, non-detects of individual constituents are not shown.
- 3. OMW-219 could not be sampled from Fall 2012 through Fall 2016 because the well was damaged. The monitoring well was recompleted in May 2017 prior to the Spring 2017 sampling event.

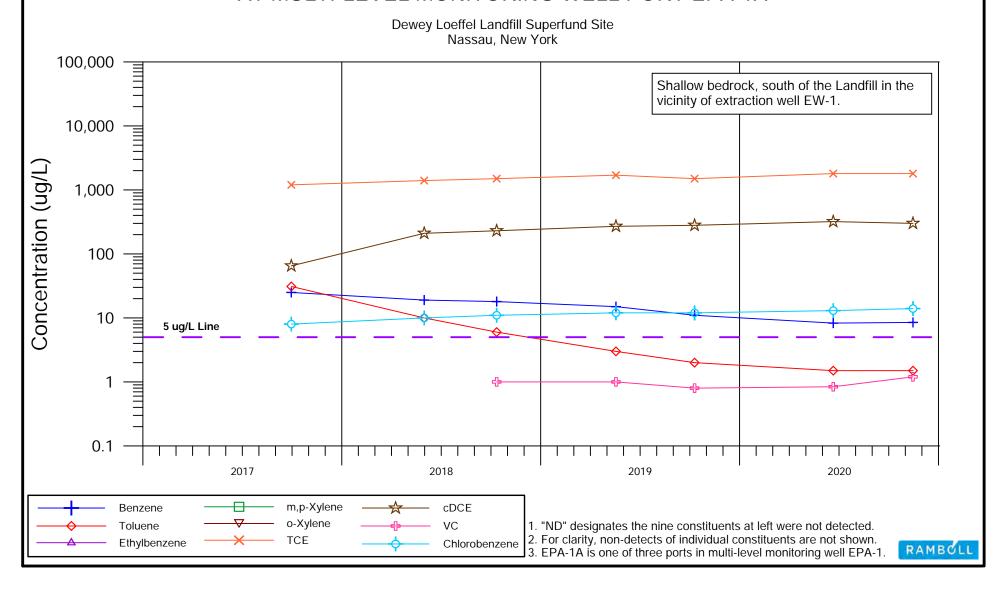

RAMBOLL

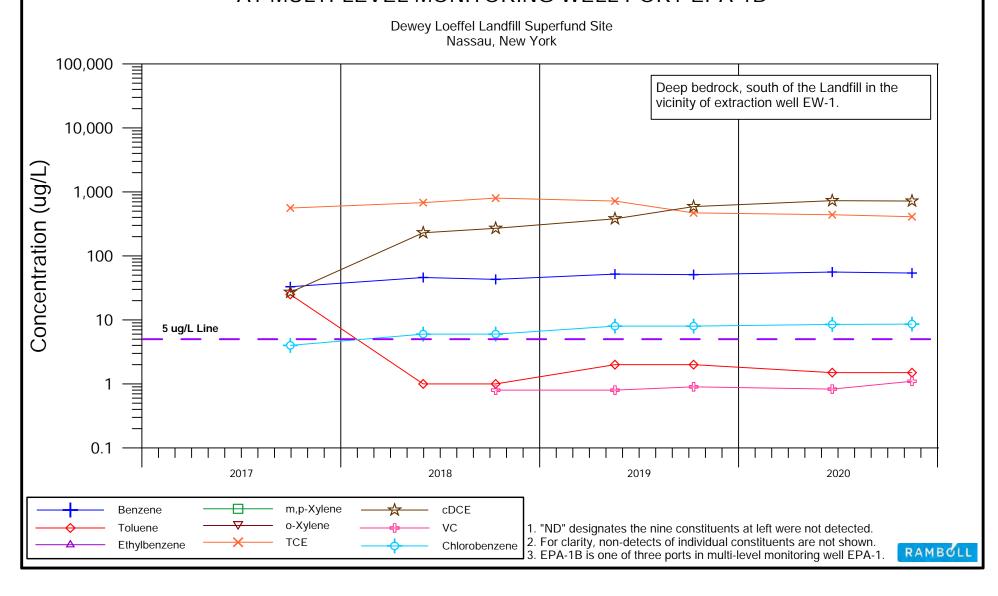
CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-3A

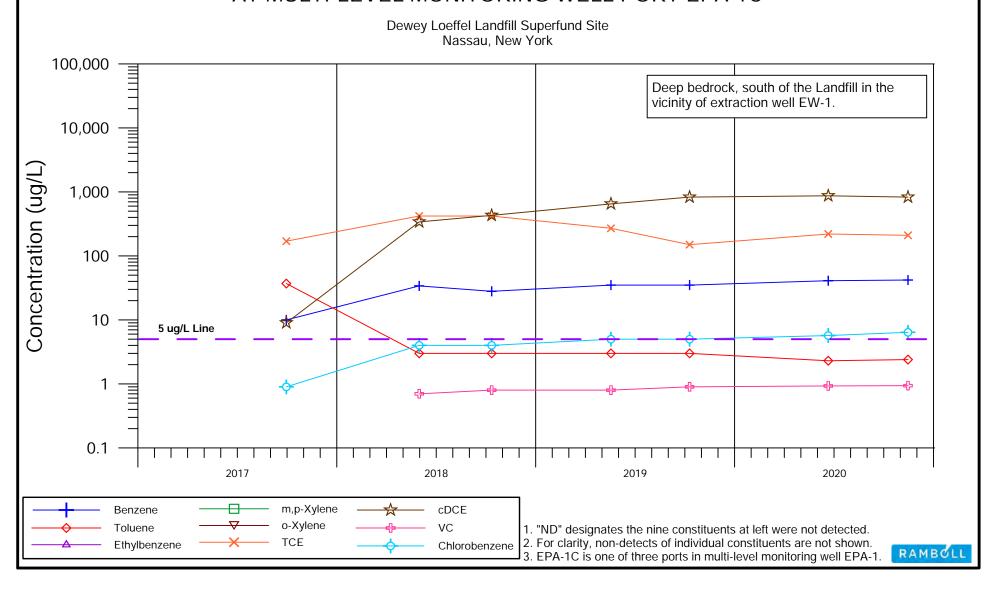

Dewey Loeffel Landfill Superfund Site

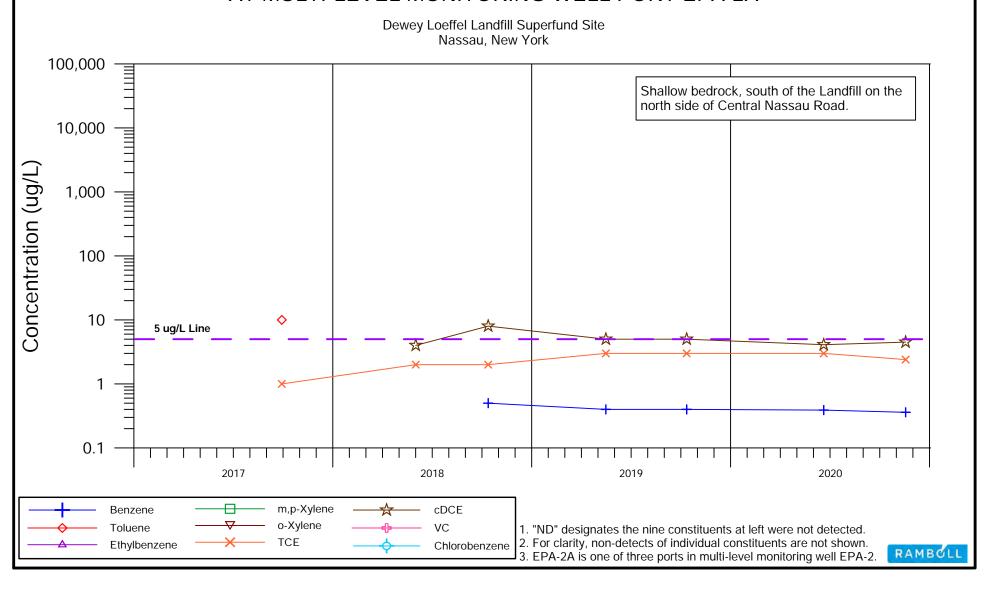

CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-3B

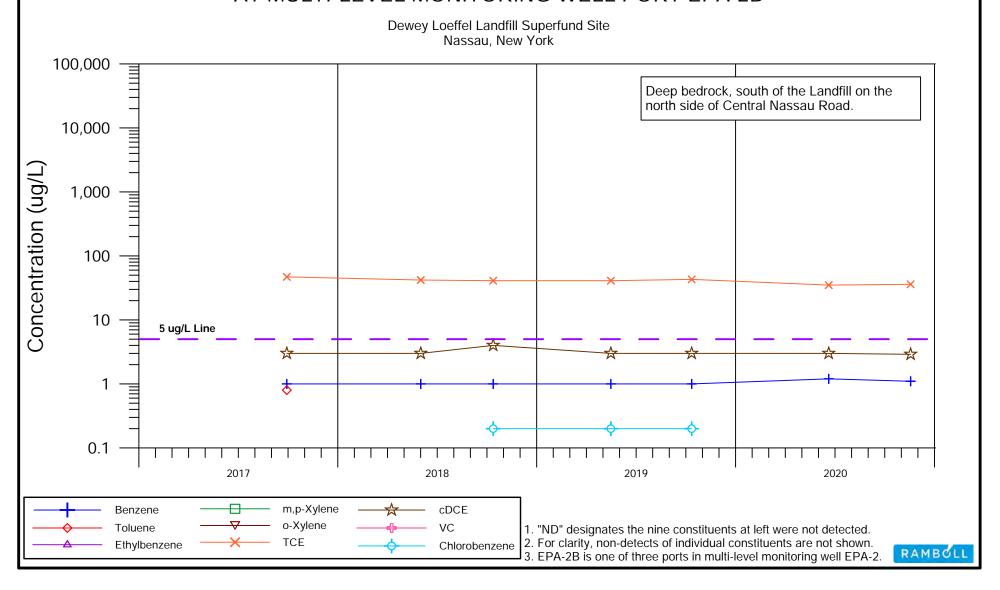

CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-3C

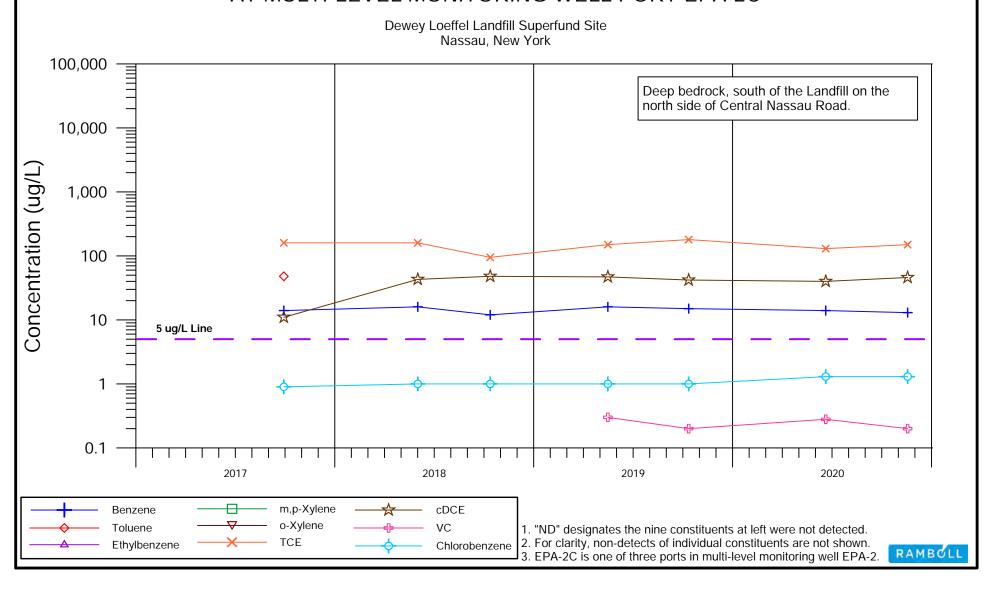

CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-216


CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-221


CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-1A


CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-1B


CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-1C


CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-2A

CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-2B

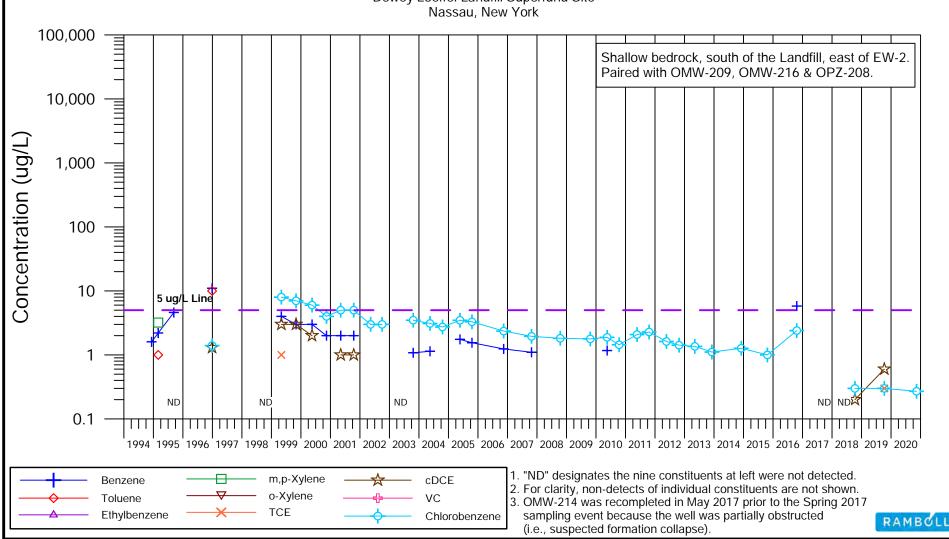

CONCENTRATIONS OF VOCs AT MULTI-LEVEL MONITORING WELL PORT EPA-2C

FIGURE 4-20

CONCENTRATIONS OF VOCs AT MONITORING WELL OMW-214

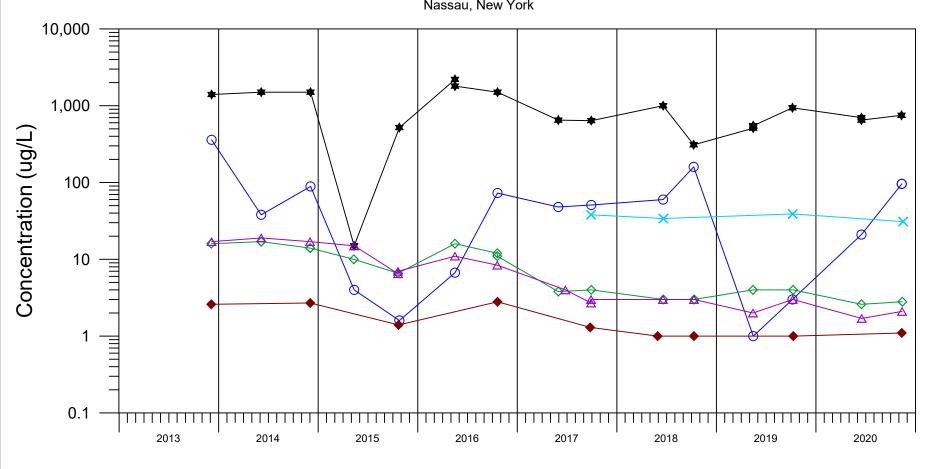
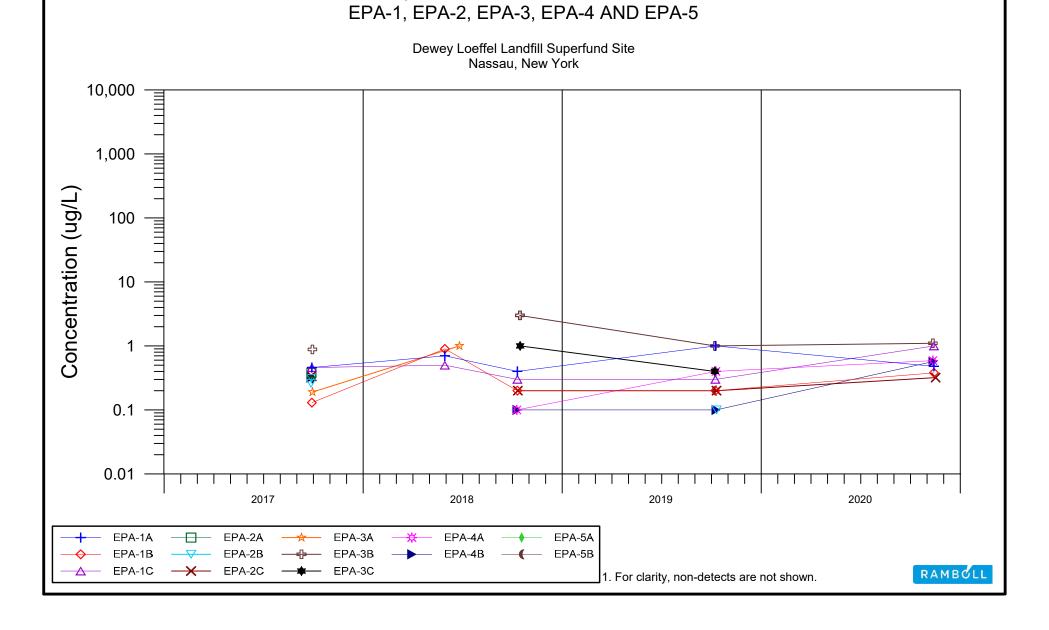
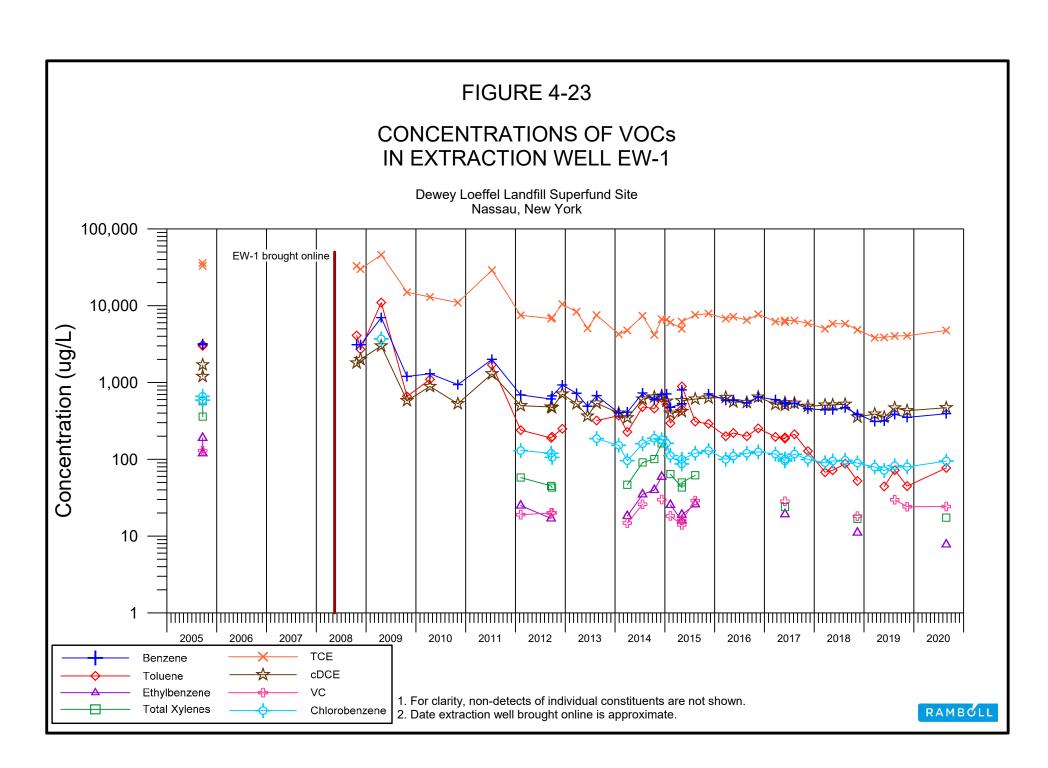

Dewey Loeffel Landfill Superfund Site

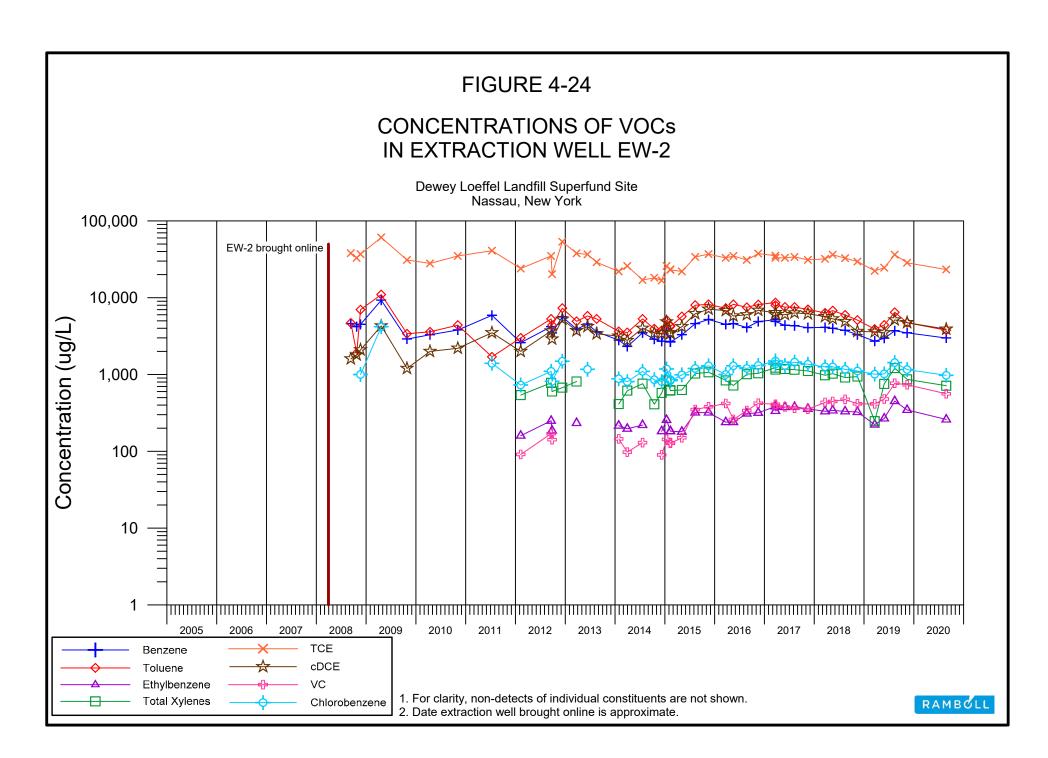
FIGURE 4-21

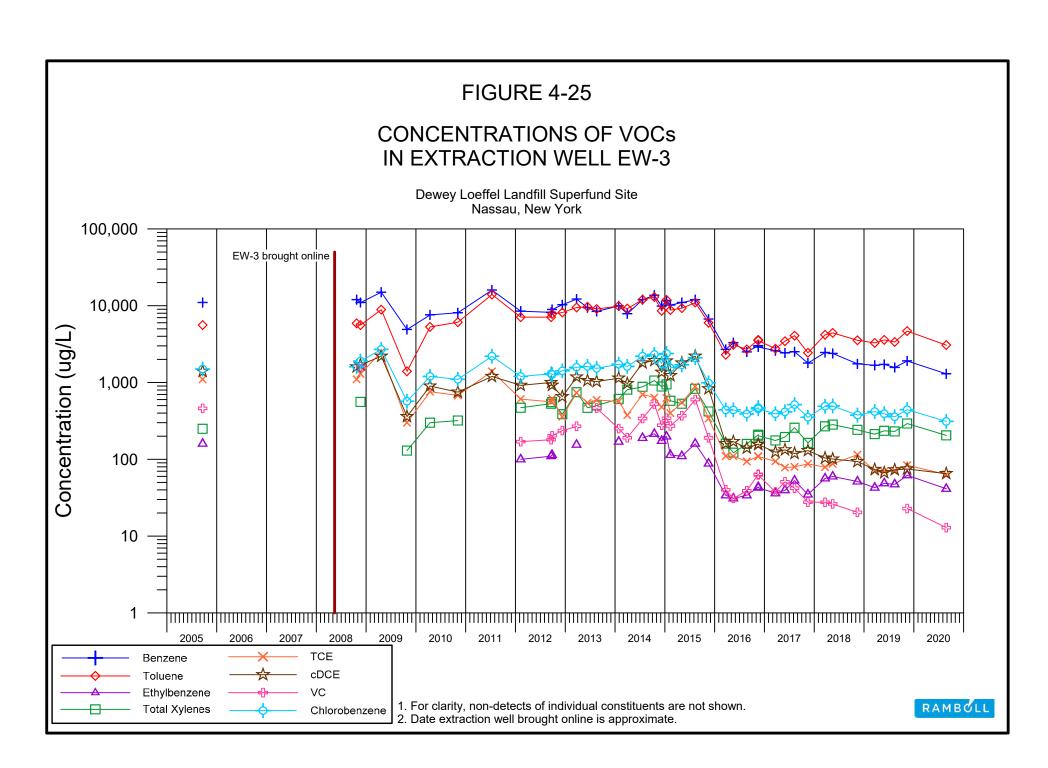
CONCENTRATIONS OF 1,4-DIOXANE AT MONITORING WELLS OMW-102, OMW-201, OMW-205, OMW-215, OMW-216 AND OMW-219

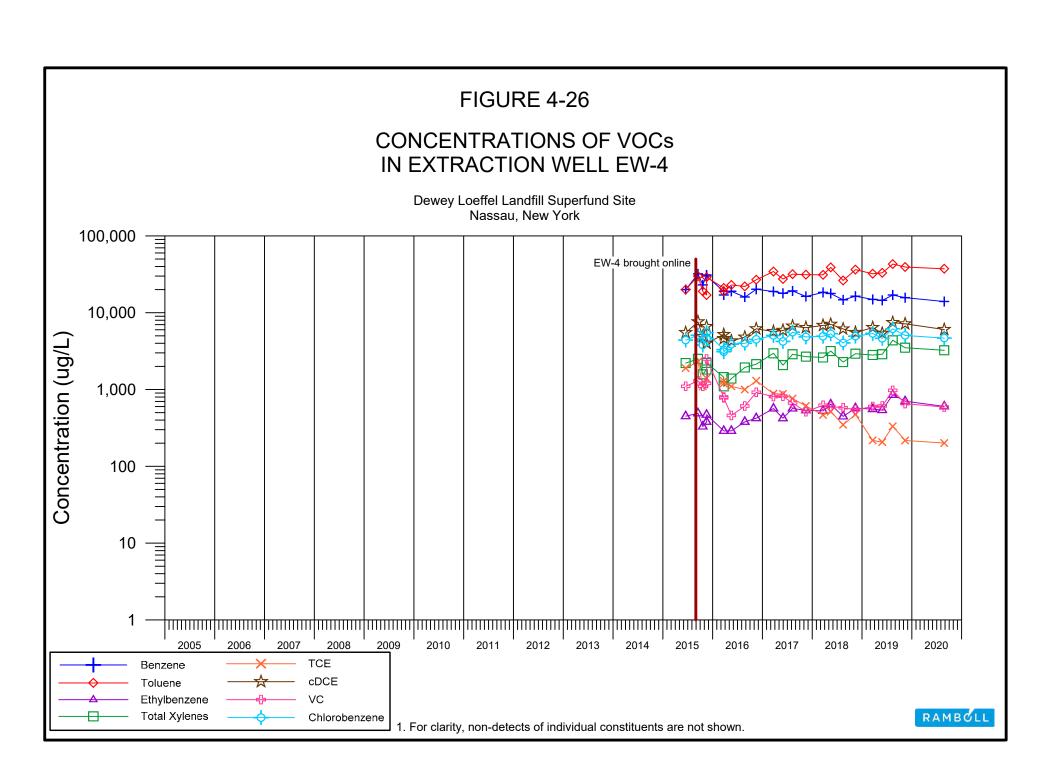
Dewey Loeffel Landfill Superfund Site Nassau, New York

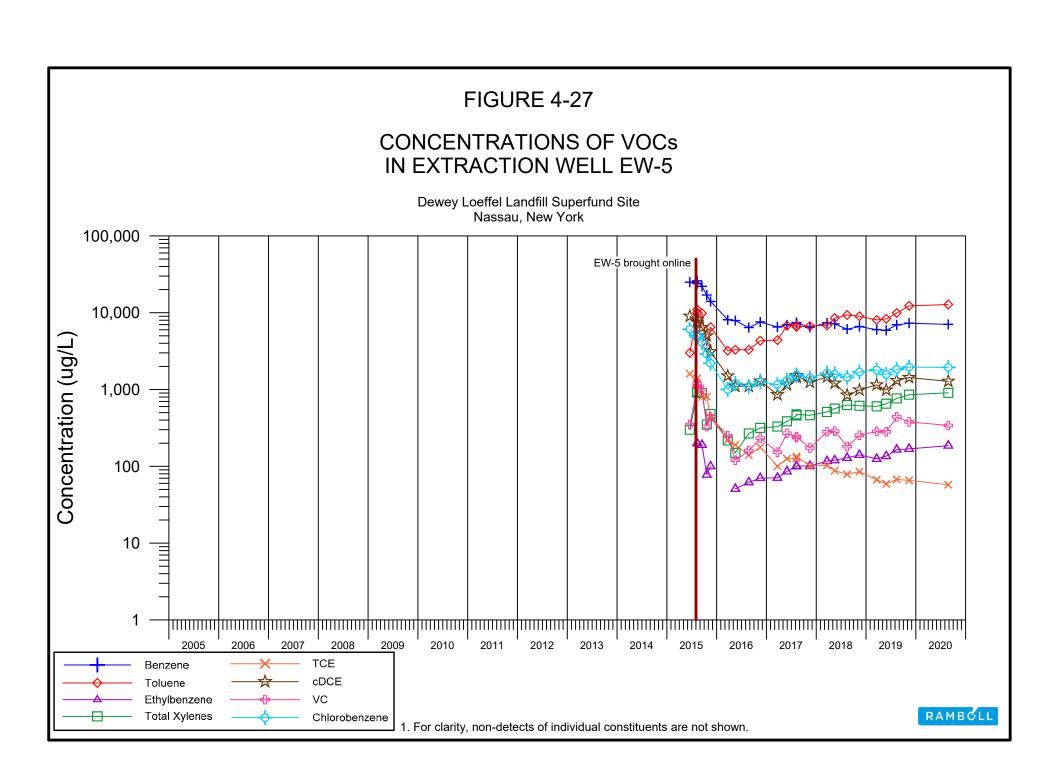


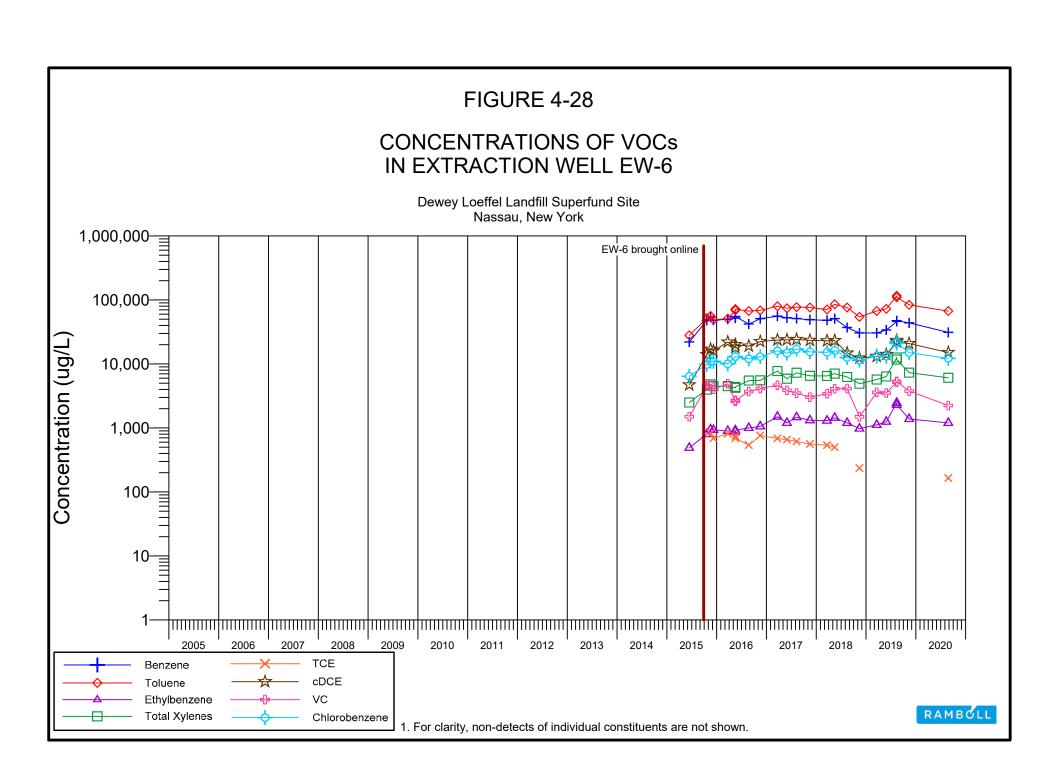



 OMW-219 could not be sampled from Fall 2012 through Fall 2016 because the well was damaged. The monitoring well was recompleted in May 2017 prior to the Spring 2017 sampling event.

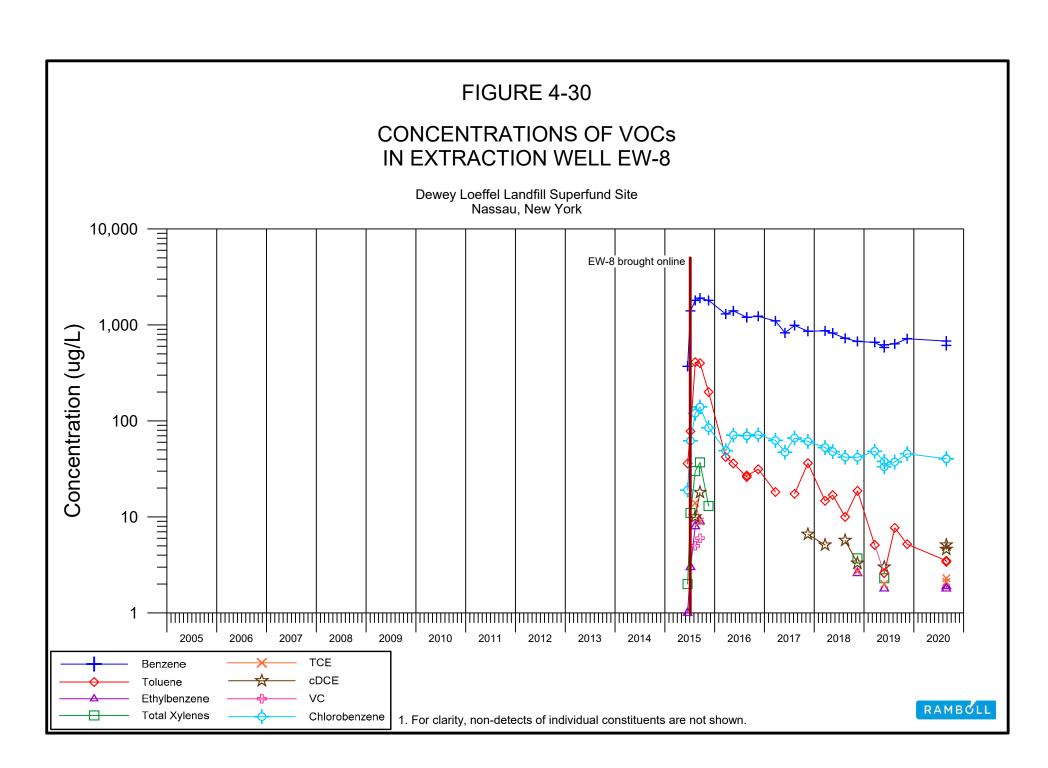



FIGURE 4-22 CONCENTRATIONS OF 1,4-DIOXANE AT MULTI-LEVEL MONITORING WELLS









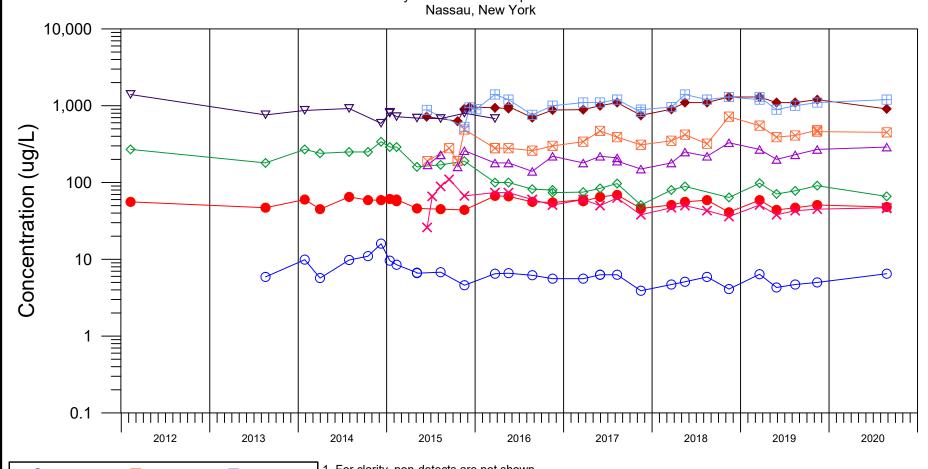
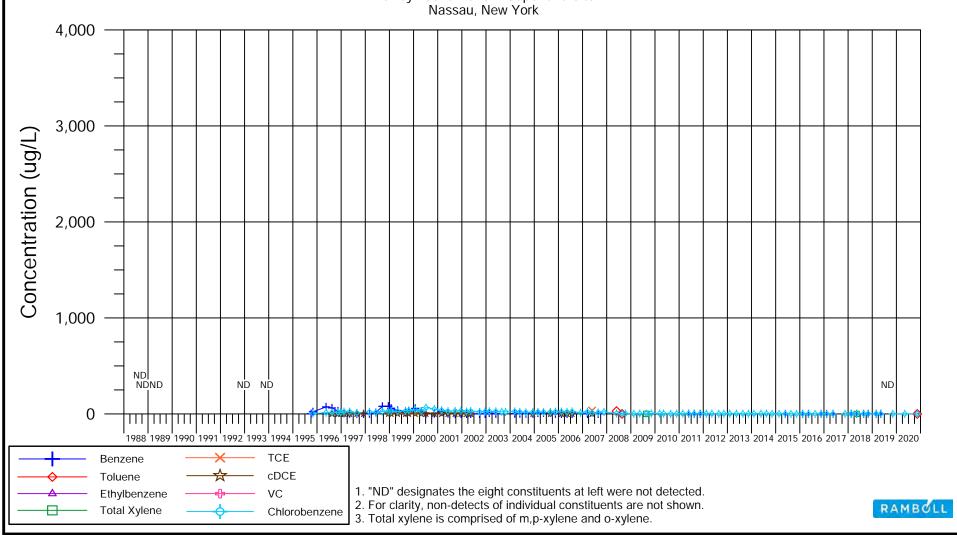



FIGURE 4-31 CONCENTRATIONS OF VOCs IN LEACHATE COLLECTION TANK Dewey Loeffel Landfill Superfund Site Nassau, New York 100,000 10,000 Concentration (ug/L) 1,000 100 10 TCE Benzene cDCE Toluene Ethylbenzene VC 1. For clarity, non-detects of individual constituents are not shown. Chlorobenzene 2. The leachate collection tank has not been sampled since March 2016 Total Xylenes RAMBOLL due to low water levels in the Landfill.

FIGURE 4-32

CONCENTRATIONS OF 1,4-DIOXANE IN EXTRACTION WELLS **EW-1 THROUGH EW-8 AND LEACHATE COLLECTION TANK**

Dewey Loeffel Landfill Superfund Site Nassau, New York



- 1. For clarity, non-detects are not shown.
- 2. 1,4-Dioxane was detected at an anomalously low estimated concentration of 0.042 µg/L in EW-5 on September 16, 2015.
- Leachate 3. The leachate collection tank has not been sampled since March 2016 due to low water levels in the Landfill.

RAMBOLL

FIGURE 4-33a

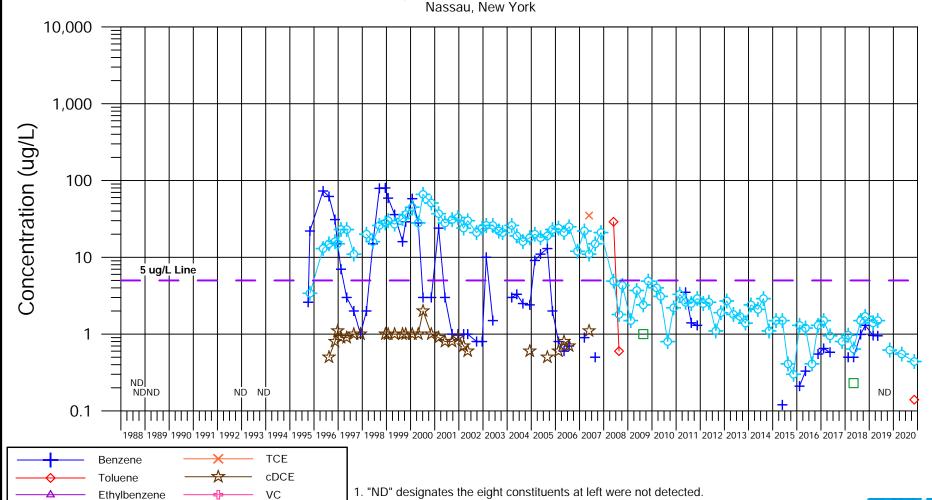

CONCENTRATIONS OF VOCs AT NYSDOH WELL 1

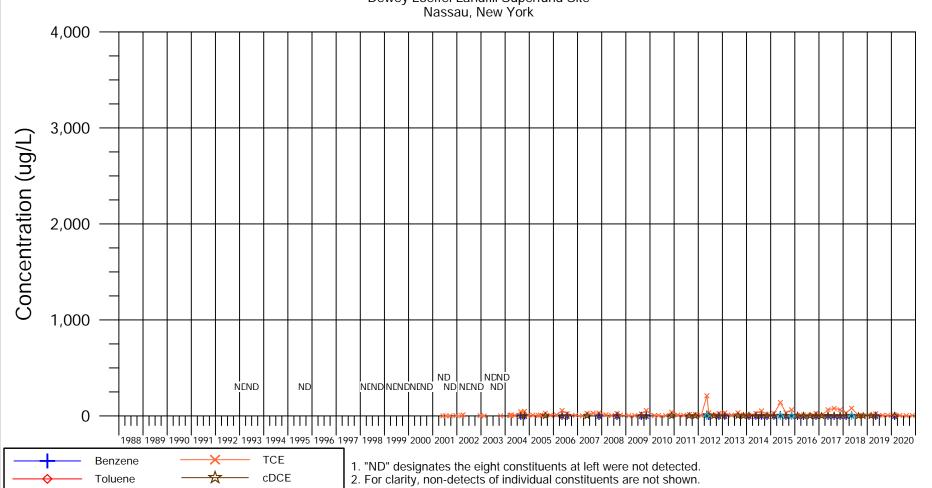
FIGURE 4-33b

CONCENTRATIONS OF VOCs AT NYSDOH WELL 1

Dewey Loeffel Landfill Superfund Site Nassau, New York

Total Xylene

Chlorobenzene


2. For clarity, non-detects of individual constituents are not shown.3. Total xylene is comprised of m,p-xylene and o-xylene.

RAMBOLL

FIGURE 4-34a

CONCENTRATIONS OF VOCs AT NYSDOH WELL 23

Dewey Loeffel Landfill Superfund Site

3. Total xylene is comprised of m,p-xylene and o-xylene.

Ethylbenzene

Total Xylene

VC

Chlorobenzene

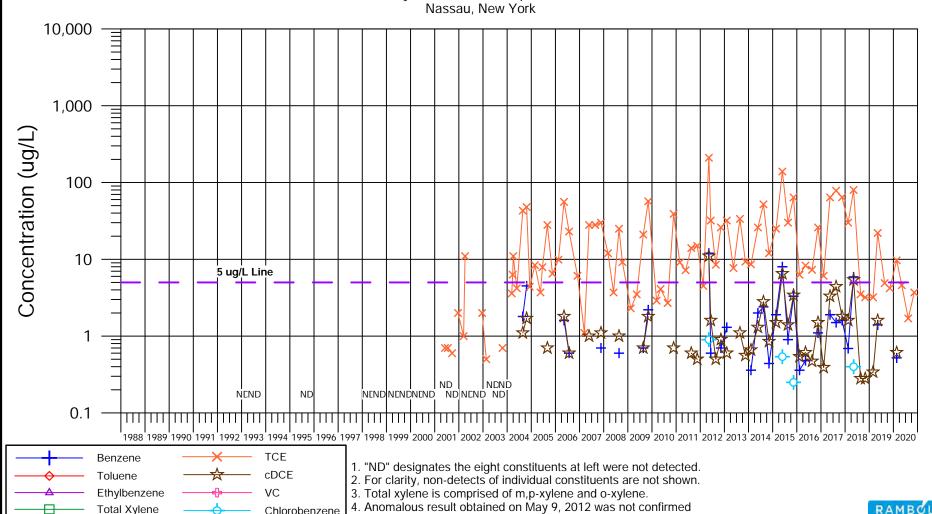
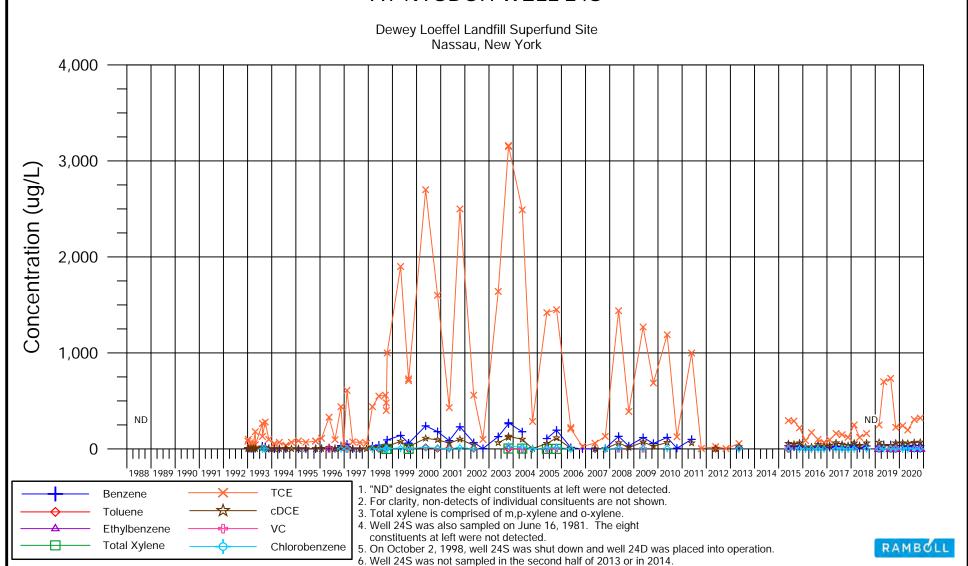

4. Anomalous result obtained on May 9, 2012 was not confirmed by resampling on June 7, 2012.

FIGURE 4-34b

CONCENTRATIONS OF VOCs AT NYSDOH WELL 23

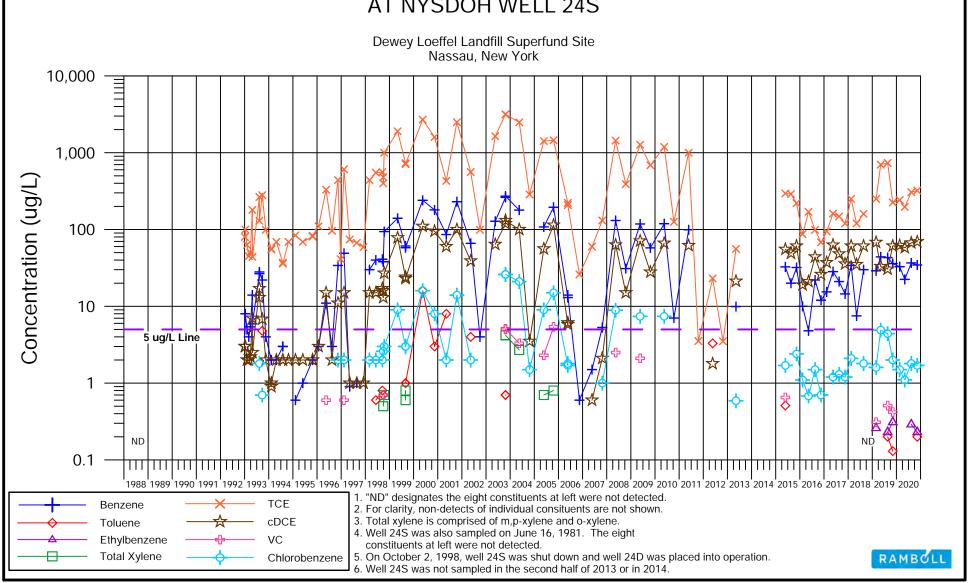
Dewey Loeffel Landfill Superfund Site Nassau, New York

by resampling on June 7, 2012.


Total Xylene

Chlorobenzene

RAMBOLL


FIGURE 4-35a

CONCENTRATIONS OF VOCs AT NYSDOH WELL 24S

FIGURE 4-35b

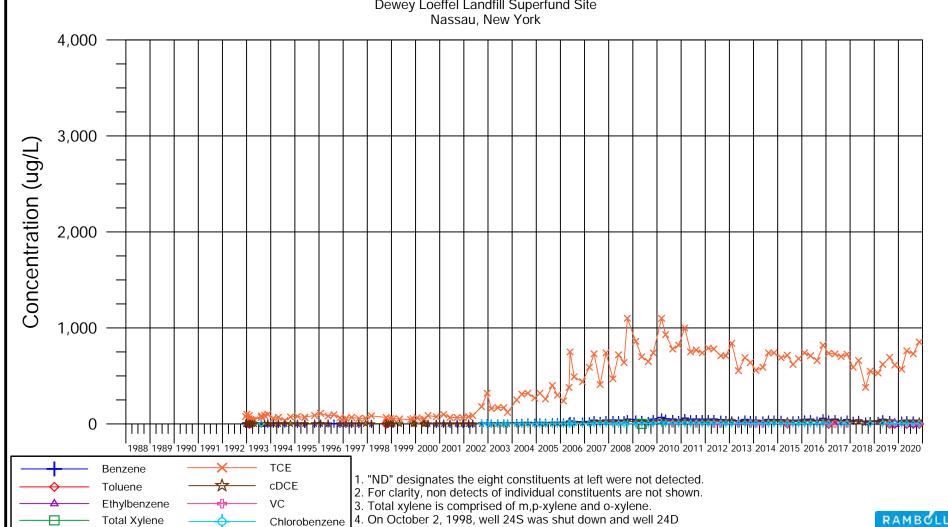
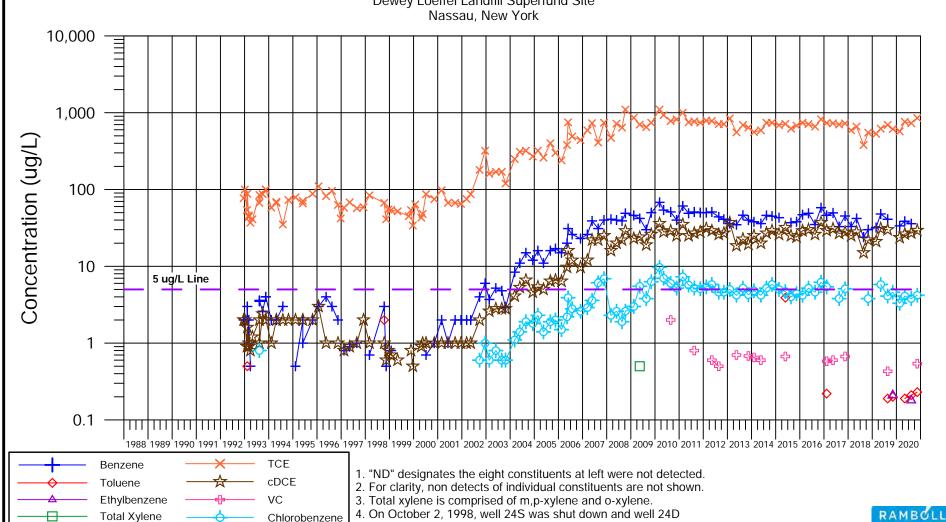

CONCENTRATIONS OF VOCS AT NYSDOH WELL 24S

FIGURE 4-36a

CONCENTRATIONS OF VOCs AT NYSDOH WELL 24D

Dewey Loeffel Landfill Superfund Site

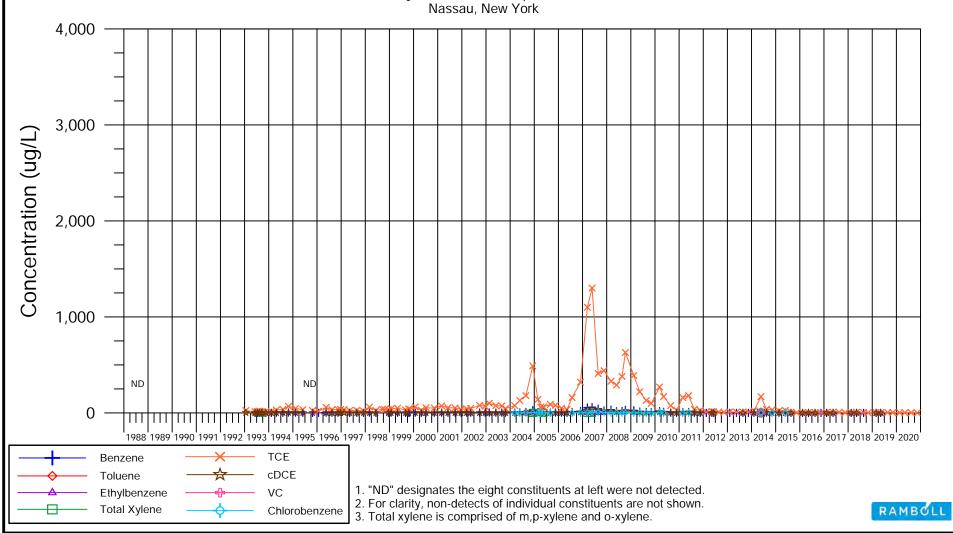


was placed into operation.

FIGURE 4-36b

CONCENTRATIONS OF VOCs AT NYSDOH WELL 24D

Dewey Loeffel Landfill Superfund Site



was placed into operation.

Chlorobenzene

FIGURE 4-37a

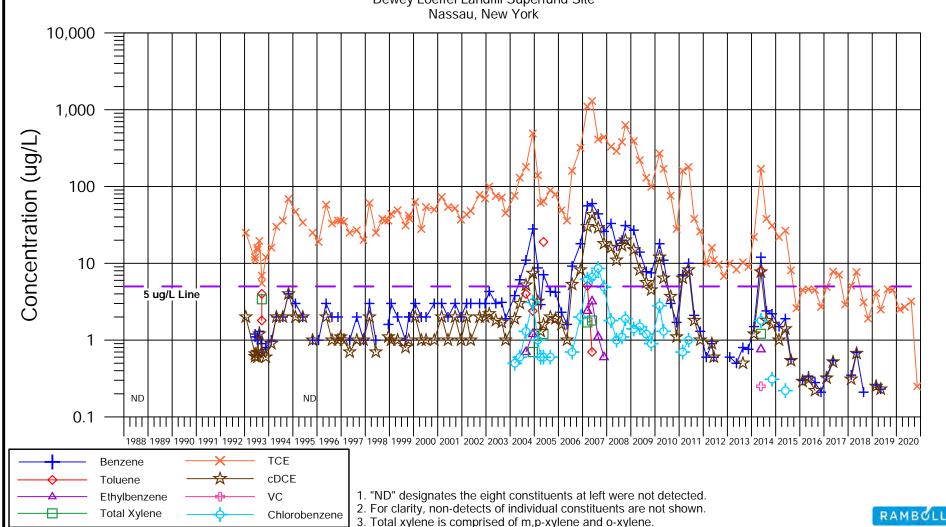

CONCENTRATIONS OF VOCs AT NYSDOH WELL 25

FIGURE 4-37b

CONCENTRATIONS OF VOCs AT NYSDOH WELL 25

Dewey Loeffel Landfill Superfund Site

FIGURE 4-38 CONCENTRATIONS OF 1,4 DIOXANE AT NYSDOH WELLS 1, 3, 23, 24S, 24D AND 25 Dewey Loeffel Landfill Superfund Site Nassau, New York 10 Concentration (ug/L) \Diamond Ξ ND 0.01 2012 2013 2014 2015 2016 2017 2018 2019 2020 NYSDOH Well 1 NYSDOH Well 24S NYSDOH Well 3 NYSDOH Well 24D NYSDOH Well 23 NYSDOH Well 25 1. "ND" designates 1,4-dioxane was not detected. RAMBOLL

APPENDICES

APPENDIX A QUARTERLY FLUID LEVEL MEASUREMENTS

Quarterly Water and Light Non-Aqueous Phase Liquid (LNAPL) Level Measurements March 5, 2020

Dewey Loeffel Landfill Superfund Site Nassau, New York

	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation	Product Thickness	Depth to Product				
Monitoring Wells Inside Cut-Off Wall											
GMW-1D	Overburden	641.03	638.5	24.39	616.64						
GMW-10B	Overburden	641.29	639.2	Dry	NA						
GMW-11B	Overburden	645.55	644.1	17.72	627.83						
PO-1	Overburden	649.83	646.7	25.52	624.31						
PO-2	Overburden	643.41	640.8	20.80	622.61						
PO-3	Overburden	644.47	641.5	Dry	NA						
PO-4	Overburden	642.40	639.9	Dry	NA						
PW-4	Overburden	642.56	640.6	22.96	619.60						
14C	Overburden	652.09	650.0	21.47	630.62						
14F	Overburden	648.06	647.9	14.29	633.77						
DB-1S	Overburden	643.85	641.6	23.55**	620.30**	NA	NA				
DB-2S	Overburden	643.65	641.2	Dry	NA	0.60**	24.00**				
DB-3S	Overburden	642.36	640.7	23.30**	619.59**	0.58**	22.72**				
DB-4S	Overburden	644.09	642.0	25.53**	619.59**	1.14**	24.39**				
DB-5S	Overburden	644.26	640.7	Dry	NA	7.15**	18.15**				
DB-6S	Overburden	641.77	640.7	*	NA	NA	*				
DB-7S	Overburden	643.58	641.3	Dry	NA						
OB-1	Overburden	650.59	648.0	18.52	632.07						
OB-2	Overburden	651.25	648.3	18.83	632.42						
OB-3	Overburden	650.38	647.6	18.10	632.28						
OB-4	Overburden	641.46	639.2	22.12	619.34						
OB-5	Overburden	642.08	640.1	23.13	618.95						
OB-6	Overburden	642.59	640.2	24.62	617.97						
PTW-1	Overburden	642.29	639.2	23.92	618.37						
PTW-2	Overburden	643.71	640.9	23.79	619.92						
S-1	Overburden	648.65	647.3	16.12	632.53						
T-1	Overburden	650.53	647.7	18.05	632.48						
T-2	Overburden	650.41	648.1	Dry	NA						
DB-1I	Shallow Bedrock	642.79	641.1	26.47	616.32						
DB-2I	Shallow Bedrock	642.13	641.1	22.72	619.41						
DB-3I	Shallow Bedrock	642.06	640.3	23.38	618.68						
DB-4I	Shallow Bedrock	642.10	641.1	24.30	617.80						
DB-5I	Shallow Bedrock	641.84	640.6	22.12	619.72						
	Shallow Bedrock	642.06	640.4	22.80	619.26						
DB-7I	Shallow Bedrock	643.28	641.3	60.81	582.47						
			ells Inside Fenc								
LFMW-19S***	Overburden	646.11	643.6	11.96**	637.01**	3.15**	8.81**				
GMW-11	Overburden	639.68	637.5	3.52	636.16						
GMW-2B	Overburden	639.52	637.8	21.63	617.89						
GMW-1C	Overburden	625.40	622.1	5.73	619.67						
PW-1	Overburden	641.78	638.6	*	NA						
PW-2	Overburden	643.33	640.8	6.81	636.52						
PW-3	Overburden	650.09	646.5	28.29	621.80						
DB-8S	Overburden	642.81	640.9	12.90	629.91						
	Shallow Bedrock	641.91	640.6	53.71	588.20						
	Shallow Bedrock	631.32	629.6	32.86	598.46						
	Shallow Bedrock	638.61	636.4	11.81	626.80						
	Shallow Bedrock	638.65	636.8	3.35	635.30						
	Shallow Bedrock	641.93	639.4	64.13	577.80						
FD-1	Shallow Bedrock	641.93	647.1	27.05	622.65						

Notes:

- 1. Elevations are in feet referenced to North American Vertical Datum of 1988.
- 2. Depth to water and/or product provided in feet below measuring point.
- 3. Product thickness provided in feet.
- 4. "NA" designates not applicable.
- 5. Water-level elevations corrected for monitoring wells with LNAPL product. Water-level elevations calculated by applying an LNAPL correction coefficient using the average specific gravity measured by PTS Laboratories, Inc. from DB-3S and LFMW-09S at 70°F.
- 6. "**" designates measurement may not be reliable due to adhesion of product onto interface probe.
- 7. "*" designates measurement not taken due to obstruction in well.
- 8. "***" designates additional fluid level measurements collected to support the additional investigation near LFMW-19S for the Remedial Investigation/Feasibility Study.

Quarterly Water and Light Non-Aqueous Phase Liquid (LNAPL) Level Measurements June 15, 2020

Dewey Loeffel Landfill Superfund Site Nassau, New York

Well ID	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation	Product Thickness	Depth to Product
		Moni	toring Wells In	side Cut-Off W	all		
GMW-1D	Overburden	641.03	638.5	26.42	614.61		
GMW-10B	Overburden	641.29	639.2	Dry	NA		
GMW-11B	Overburden	645.55	644.1	16.96	628.59		
PO-1	Overburden	649.83	646.7	26.71	623.12		
PO-2	Overburden	643.41	640.8	21.90	621.51		
PO-3	Overburden	644.47	641.5	Dry	NA		
PO-4	Overburden	642.40	639.9	Dry	NA		
PW-4	Overburden	642.56	640.6	23.07	619.49		
14C	Overburden	652.09	650.0	21.36	630.73		
14F	Overburden	648.06	647.9	14.99	633.07		
DB-1S	Overburden	643.85	641.6	23.51**	620.34**	NA	NA
DB-2S	Overburden	643.65	641.2	Dry	NA	0.66**	24.02**
DB-3S	Overburden	642.36	640.7	27.08**	617.69**	2.66**	24.42**
DB-4S	Overburden	644.09	642.0	25.54**	621.12**	2.83**	22.71**
DB-5S	Overburden	644.26	640.7	Dry	NA	0.18**	24.27**
DB-6S	Overburden	641.77	640.7	*	NA	NA	*
DB-7S	Overburden	643.58	641.3	Dry	NA		
OB-1	Overburden	650.59	648.0	18.74	631.85		
OB-2	Overburden	651.25	648.3	19.32	631.93		
OB-3	Overburden	650.38	647.6	18.51	631.87		
OB-4	Overburden	641.46	639.2	22.14	619.32		
OB-5	Overburden	642.08	640.1	23.28	618.80		
OB-6	Overburden	642.59	640.2	23.84	618.75		
PTW-1	Overburden	642.29	639.2	23.01	619.28		
PTW-2	Overburden	643.71	640.9	24.91	618.80		
S-1	Overburden	648.65	647.3	16.77	631.88		
T-1	Overburden	650.53	647.7	18.81	631.72		
T-2	Overburden	650.41	648.1	18.54	631.87		
DB-1I	Shallow Bedrock	642.79	641.1	26.33	616.46		
DB-2I	Shallow Bedrock	642.13	641.1	22.67	619.46		
DB-3I	Shallow Bedrock	642.06	640.3	23.28	618.78		
DB-4I	Shallow Bedrock	642.10	641.1	24.28	617.82		
DB-5I	Shallow Bedrock	641.84	640.6	22.07	619.77		
DB-6I	Shallow Bedrock	642.06	640.4	22.78	619.28		
DB-7I	Shallow Bedrock	643.28	641.3	52.16	591.12		
00 /1	Shahow Bearock		ells Inside Fenc				
LFMW-19S***	* Overburden	646.11	643.6	13.53**	635.39**	3.10**	10.43**
GMW-193	Overburden	639.68	637.5	7.21	632.47	J.10 	10.43
GMW-11 GMW-2B	Overburden	639.52	637.8	22.34	617.18		
GMW-2B	Overburden	625.40	622.1	9.46	615.94		
PW-1	Overburden	641.78	638.6	*	013.94 NA		
PW-1 PW-2	Overburden	643.33	640.8	10.87	632.46		
PW-2 PW-3	Overburden	650.09	646.5	29.48	632.46		
DB-8S	Overburden	642.81	640.9	13.85	628.96		
DB-8S DB-8I	Shallow Bedrock	642.81	640.6	53.81	588.10		
GMW-1B	Shallow Bedrock	631.32	629.6	33.51	597.81		
GMW-11A	Shallow Bedrock	638.61	636.4	12.24	626.37		
GMW-12B	Shallow Bedrock Shallow Bedrock	638.65 641.93	636.8 639.4	3.45 64.19	635.20 577.74		
PB-1				64 14	5///4		

Notes:

- 1. Elevations are in feet referenced to North American Vertical Datum of 1988.
- 2. Depth to water and/or product provided in feet below measuring point.
- 3. Product thickness provided in feet.
- 4. "NA" designates not applicable.
- 5. Water-level elevations corrected for monitoring wells with LNAPL product. Water-level elevations calculated by applying an LNAPL correction coefficient using the average specific gravity measured by PTS Laboratories, Inc. from DB-3S and LFMW-09S at 70°F.
- 6. "**" designates measurement may not be reliable due to adhesion of product onto interface probe.
- 7. "*" designates measurement not taken due to obstruction in well.
- 8. "***" designates additional fluid level measurements collected to support the additional investigation near LFMW-19S for the Remedial Investigation/Feasibility Study.

Quarterly Water and Light Non-Aqueous Phase Liquid (LNAPL) Level Measurements August 24, 2020

Well ID	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation	Product Thickness	Depth to Product
		Moni	toring Wells In	side Cut-Off W	'all		
GMW-1D	Overburden	641.03	638.5	28.07	612.96		
GMW-10B	Overburden	641.29	639.2	Dry	NA		
GMW-11B	Overburden	645.55	644.1	17.84	627.71		
PO-1	Overburden	649.83	646.7	27.03	622.80		
PO-2	Overburden	643.41	640.8	20.95	622.46		
PO-3	Overburden	644.47	641.5	Dry	NA		
PO-4	Overburden	642.40	639.9	Dry	NA		
PW-4	Overburden	642.56	640.6	23.16	619.40		
14C	Overburden	652.09	650.0	21.79	630.30		
14F	Overburden	648.06	647.9	15.20	632.86		
DB-1S	Overburden	643.85	641.6	23.53**	620.32**	NA	NA
DB-2S	Overburden	643.65	641.2	Dry	NA	0.46**	24.34**
DB-3S	Overburden	642.36	640.7	24.40**	619.28**	1.45**	22.95**
DB-4S	Overburden	644.09	642.0	25.46**	619.23**	0.66**	24.80**
DB-5S	Overburden	644.26	640.7	Dry	NA	0.07**	24.33**
DB-6S	Overburden	641.77	640.7	*	NA	NA	*
DB-7S	Overburden	643.58	641.3	Dry	NA 631.55		
OB-1	Overburden	650.59	648.0	19.04			
OB-2	Overburden	651.25	648.3	19.64	631.61		
OB-3	Overburden	650.38	647.6	18.82 22.27	631.56		
OB-4	Overburden Overburden	641.46	639.2		619.19		
OB-5		642.08	640.1	23.10	618.98		
OB-6 PTW-1	Overburden Overburden	642.59 642.29	640.2 639.2	23.92 23.10	618.67 619.19		
PTW-2	Overburden	643.71	640.9	25.00	618.71		
S-1	Overburden	648.65	647.3	17.10	631.55		
T-1	Overburden	650.53	647.7	19.09	631.44		
T-2	Overburden	650.41	648.1	18.84	631.57		
	Shallow Bedrock	642.79	641.1	26.61	616.18		
				22.99			
	Shallow Bedrock	642.13	641.1		619.14		
	Shallow Bedrock	642.06	640.3	23.52	618.54		
	Shallow Bedrock	642.10	641.1	24.47	617.63		
	Shallow Bedrock	641.84	640.6	22.45	619.39		
	Shallow Bedrock	642.06	640.4	23.04	619.02		
	Shallow Bedrock	643.28	641.3	58.44	584.84		
LFMW-01S***	Overburden	642.96	640.2	25.03**	619.89**	2.16**	22.87**
LFMW-01I***	Overburden	642.69	640.3	23.92	618.77		
LFMW-01D***	Overburden	642.80	640.2	30.74	612.06		
LFMW-02S*** LFMW-02I***	Overburden Overburden	641.87	639.6	22.99 23.21	618.88		
I FMW-02D***	Overburden	642.14 641.85	639.7 639.3	44.06	618.93 597.79		
LFMW-02D***	Overburden	641.85	639.3	44.06 22.98	619.97		
LFMW-04S***	Overburden	655.25	652.7	25.43	629.82		
IFMW-043***	Overburden	654.90	652.4	25.43	629.76		
LFMW-05S***	Overburden	644.11	641.3	25.14	619.04		
LFMW-051***	Overburden	644.20	641.7	25.60	618.60		
LFMW-06S***	Overburden	642.64	639.8	*	NA	NA	*
LFMW-061***	Overburden	642.55	639.9	25.75	616.80		
LFMW-07S***	Overburden	644.62	641.6	16.76	627.86		
LFMW-08S***	Overburden	643.56	641.1	24.64	618.92		
I FMW-081***	Overburden	643.50	641.0	41.01	602.49		
LFMW-09S***	Overburden	654.45	651.8	21.75**	633.45**	0.83**	20.92**
LFMW-10S***	Overburden	653.41	650.9	Dry	NA		
LFMW-11S***	Overburden	650.74	648.1	16.60	634.14		
LFMW-12S***	Overburden	648.95	647.5	21.50	627.45		
LFMW-12I***	Overburden	649.08	647.4	29.01	620.07		

Quarterly Water and Light Non-Aqueous Phase Liquid (LNAPL) Level Measurements August 24, 2020

Dewey Loeffel Landfill Superfund Site Nassau, New York

Well ID	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation	Product Thickness	Depth to Product				
Monitoring Wells Inside Fence But Outside Cut-Off Wall											
LFMW-19S***	Overburden	646.11	643.6	15.64**	633.90**	3.78**	11.86**				
GMW-11	Overburden	639.68	637.5	8.61	631.07						
GMW-2B	Overburden	639.52	637.8	22.91	616.61						
GMW-1C	Overburden	625.40	622.1	11.35	614.05						
PW-1	Overburden	641.78	638.6	*	NA						
PW-2	Overburden	643.33	640.8	12.36	630.97						
PW-3	Overburden	650.09	646.5	29.72	620.37						
DB-8S	Overburden	642.81	640.9	15.86	626.95						
DB-8I	Shallow Bedrock	641.91	640.6	54.00	587.91						
GMW-1B	Shallow Bedrock	631.32	629.6	34.63	596.69						
GMW-11A	Shallow Bedrock	638.61	636.4	12.80	625.81						
GMW-12B	Shallow Bedrock	638.65	636.8	4.58	634.07						
PB-1	Shallow Bedrock	641.93	639.4	64.38	577.55						
PB-2	Shallow Bedrock	649.70	647.1	28.43	621.27						

Notes:

- 1. Elevations are in feet referenced to North American Vertical Datum of 1988.
- 2. Depth to water and/or product provided in feet below measuring point.
- 3. Product thickness provided in feet
- 4. "NA" designates not applicable.
- 5. Water-level elevations corrected for monitoring wells with LNAPL product. Water-level elevations calculated by applying an LNAPL correction coefficient using the average specific gravity measured by PTS Laboratories, Inc. from DB-3S and LFMW-09S at 70°F.
- 6. "**" designates measurement may not be reliable due to adhesion of product onto interface probe.
- 7. "*" designates measurement not taken due to obstruction in well.
- 8. "***" designates additional fluid level measurements collected to support the Treatability Testing and additional investigation near LFMW-19S performed under the Remedial Investigation/Feasibility Study.

Quarterly Water and Light Non-Aqueous Phase Liquid (LNAPL) Level Measurements November 9, 2020

Well ID	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation	Product Thickness	Depth to Product
		Mor	nitoring Wells	nside Cut-Off	Wall		
GMW-1D	Overburden	641.03	638.5	28.19	612.84		
GMW-10B	Overburden	641.29	639.2	Dry	NA		
GMW-11B	Overburden	645.55	644.1	18.19	627.36		
PO-1	Overburden	649.83	646.7	26.35	623.48		
PO-2	Overburden	643.41	640.8	21.00	622.41		
PO-3	Overburden	644.47	641.5	8.47	636.00		
PO-4	Overburden	642.40	639.9	Dry	NA		
PW-4	Overburden	642.56	640.6	23.06	619.50		
14C	Overburden	652.09	650.0	22.41	629.68		
14F	Overburden	648.06	647.9	15.46	632.60		
DB-1S	Overburden			23.61**	620.24**		NA
DB-1S DB-2S	Overburden	643.85	641.6 641.2		NA	NA NA	NA NA
	Overburden	643.65		Dry			
DB-3S		642.36	640.7	26.77**	619.04**	3.80**	22.97**
DB-4S	Overburden	644.09	642.0	24.86**	619.33**	0.11**	24.75**
DB-5S	Overburden	644.26	640.7	Dry	NA	NA	NA *
DB-6S	Overburden	641.77	640.7	*	NA	NA	
DB-7S	Overburden	643.58	641.3	Dry	NA		
OB-1	Overburden	650.59	648.0	19.19	631.40		
OB-2	Overburden	651.25	648.3	19.76	631.49		
OB-3	Overburden	650.38	647.6	18.15	632.23		
OB-4	Overburden	641.46	639.2	22.52	618.94		
OB-5	Overburden	642.08	640.1	23.68	618.40		
OB-6	Overburden	642.59	640.2	24.23	618.36		
PTW-1	Overburden	642.29	639.2	23.42	618.87		
PTW-2	Overburden	643.71	640.9	25.20	618.51		
S-1	Overburden	648.65	647.3	17.22	631.43		
T-1	Overburden	650.53	647.7	19.12	631.41		
T-2	Overburden	650.41	648.1	19.00	631.41		
DB-1I	Shallow Bedrock	642.79	641.1	26.91	615.88		
DB-2I	Shallow Bedrock	642.13	641.1	23.19	618.94		
DB-3I	Shallow Bedrock	642.06	640.3	23.80	618.26		
DB-4I	Shallow Bedrock	642.10	641.1	24.76	617.34		
DB-5I	Shallow Bedrock	641.84	640.6	22.64	619.20		
DB-6I	Shallow Bedrock	642.06	640.4	23.28	618.78		
DB-7I	Shallow Bedrock	643.28	641.3	52.61	590.67		
LFMW-01S*	*** Overburden	642.96	640.2	24.15	618.81		
LFMW-01I*		642.69	640.3	25.51**	618.11**	1.03**	24.48**
	*** Overburden	642.80	640.2	30.85	611.95		
LFMW-02S*		641.87	639.6	23.19	618.68		
	** Overburden	642.14	639.7	23.49	618.65		
	*** Overburden	641.85	639.3	44.16	597.69		
	*** Overburden	642.95	640.7	13.26	629.69		
	*** Overburden	655.25	652.7	25.91	629.34		
	** Overburden	654.90	652.4	25.64	629.26		
	*** Overburden	644.11	641.3	25.64	618.71		
	** Overburden						
		644.20	641.7	26.41	617.79 NA	 NA	*
	** Overburden	642.64	639.8		NA	NA	
	** Overburden	642.55	639.9	23.57	618.98		
	*** Overburden	644.62	641.6	17.37	627.25		
	*** Overburden	643.56	641.1	25.84	617.72		
	** Overburden	643.50	641.0	41.13	602.37		
	*** Overburden	654.45	651.8	22.44**	633.00**	1.09**	21.35**
	*** Overburden	653.41	650.9	Dry	NA		
LFMW-11S*	*** Overburden	650.74	648.1	17.11**	634.53**	0.99**	16.12**
LFMW-12S*	*** Overburden	648.95	647.5	21.85	627.10		
I FMW-12I*	** Overburden	649.08	647.4	29.25	619.83		

Quarterly Water and Light Non-Aqueous Phase Liquid (LNAPL) Level Measurements November 9, 2020

Dewey Loeffel Landfill Superfund Site Nassau, New York

Well ID	Geologic Unit	Measuring Point Elevation	Ground Elevation	Depth to Water	Water Level Elevation	Product Thickness	Depth to Product		
Monitoring Wells Inside Fence But Outside Cut-Off Wall									
LFMW-19S**	* Overburden	646.11	643.6	10.49**	635.94**	0.35**	10.14**		
GMW-11	Overburden	639.68	637.5	6.23	633.45				
GMW-2B	Overburden	639.52	637.8	23.10	616.42				
GMW-1C	Overburden	625.40	622.1	10.41	614.99				
PW-1	Overburden	641.78	638.6	*	NA				
PW-2	Overburden	643.33	640.8	9.83	633.50				
PW-3	Overburden	650.09	646.5	28.88	621.21				
DB-8S	Overburden	642.81	640.9	16.18	626.63				
DB-8I	Shallow Bedrock	641.91	640.6	54.14	587.77				
GMW-1B	Shallow Bedrock	631.32	629.6	35.09	596.23				
GMW-11A	Shallow Bedrock	638.61	636.4	12.80	625.81				
GMW-12B	Shallow Bedrock	638.65	636.8	4.82	633.83				
PB-1	Shallow Bedrock	641.93	639.4	64.39	577.54				
PB-2	Shallow Bedrock	649.70	647.1	28.36	621.34				

Notes:

- 1. Elevations are in feet referenced to North American Vertical Datum of 1988.
- 2. Depth to water and/or product provided in feet below measuring point.
- 3. Product thickness provided in feet.
- 4. "NA" designates not applicable.
- 5. Water-level elevations corrected for monitoring wells with LNAPL product. Water-level elevations calculated by applying an LNAPL correction coefficient using the average specific gravity measured by PTS Laboratories, Inc. from DB-3S and LFMW-09S at 70°F.
- 6. "**" designates measurement may not be reliable due to adhesion of product onto interface probe.
- 7. "*" designates measurement not taken due to obstruction in well.
- 8. "***" designates additional fluid level measurements collected to support the Treatability Testing and additional investigation near LFMW-19S performed under the Remedial Investigation/Feasibility Study.

APPENDIX B HISTORICAL GROUNDWATER DATA

Summary Table Notes

- 1. Results are in micrograms per liter (μg/L).
- 2. The tables in this appendix show volatile organic compound (VOC), semi-volatile organic compound (SVOC) and dissolved gas concentrations for those compounds that have been detected at least once for each well, and all reported concentrations for polychlorinated biphenyls (PCBs).
- 3. "---" designates not analyzed.
- 4. "AD" designates Arcolor 1242 is being reported as the best Aroclor match. The samples exhibits an altered PCB pattern.
- 5. "B" designates a contaminated field/trip/method blank.
- 6. "C" designates instrument calibration or resolution problems.
- 7. "D" designates result was identified at a secondary dilution.
- 8. "E" designates the compound exceeds the calibration value.
- 9. "H" designates the sample was analyzed outside of method holding time.
- 10. "J" designates the result is considered estimated.
- 11. "PB" designates Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 is not present in the sample, but is reported to more accurately quantify PCBs present in the sample that have undergone environmental alteration.
- 12. "Q" unknown qualifier definition.
- 13. "R" designates result is rejected.
- 14. "S" designates surrogate or matrix spike problems.
- 15. "T" designates sample was analyzed outside of holding time.
- 16. "U" designates the compound was not detected at the practical quantitation limit shown.
- 17. "UJ" designates the compound was not detected at the estimated practical quantitation limit shown.
- 18. "X" unknown qualifier definition.

Historical Detected Concentrations in EPA-1A

Sample Date	11/13/2020	6/19/2020	10/9/2019	5/17/2019	10/10/2018	5/30/2018	9/28/2017
1,1-Dichloroethane	10	8.6	8	8	8	7	6
1,1-Dichloroethene	7.7	7.4	5	6	6	4 J	3
1,2-Dichloroethane	22	21	22	19	26	21	18
1,4-Dioxane	0.48		1		0.4	0.7	0.46
2-Butanone	3.5 J	20 U	20 U	3 J	8 J	50 U	11 J
Acetone	0.84 J	40 U	40 U	40 U	2 J	100 U	40 U
Benzene	8.5	8.3	11	15	18	19	25
Chlorobenzene	14	13	12	12	11	10	8
Chloroethane	1.7	1.5 J	1 J	1 J	1 J	5 U	2 U
cis-1,2-Dichloroethene	300	320	280	270	230	210	65
Methane							22
Methylene Chloride	0.94 JJ	2.0 U	2 U	0.9 J	2 J	5 U	1 J
Tetrachloroethene	3.6	3.9	3	3	3	5 U	2 J
Toluene	1.5	1.5 J	2	3	6	10	31
trans-1,2-Dichloroethene	0.85 J	1.6 J	3	0.9 J	0.6 J	3 J	2 U
Trichloroethene	1800	1800	1500	1700	1500	1400	1200
Vinyl Chloride	1.2	0.84 J	0.8 J	1 J	1 J	5 U	2 U

Historical Detected Concentrations in EPA-1B

Sample Date	11/13/2020	6/19/2020	10/9/2019	5/17/2019	10/10/2018	5/30/2018	9/28/2017
1,1-Dichloroethane	5.4	5.1	4	4	4	4	2
1,1-Dichloroethene	6.2	6.5	5	5	4	3	2
1,2-Dichloroethane	12	12	13	11	14	11	6
1,4-Dioxane	0.38		0.2 J		0.2 J	0.9	0.13 J
2-Butanone	10 U	10 U	10 U	10 U	4 J	20 U	10 U
Acetone	20 U	20 U	20 U	20 U	4 J	40 U	20 U
Benzene	54	56	51	52	43	46	33
Chlorobenzene	8.6	8.5	8	8	6	6	4
Chloroethane	1.3	1.0 U	0.9 J	0.7 J	0.6 J	2 U	1 U
cis-1,2-Dichloroethene	720	730 J	590	380	270	230	27
Tetrachloroethene	0.75 J	1.1	1	2	2 J	2 J	1
Toluene	1.6	1.5	2	2	1 J	1 J	25
trans-1,2-Dichloroethene	2.3	2.5 J	2	0.9 J	2 U	2 J	1 U
Trichloroethene	410	440 J	470	720	800	680	560
Vinyl Chloride	1.1	0.83 J	0.9 J	0.8 J	0.8 J	2 U	1 U

Sample Date	11/13/2020	6/19/2020	10/9/2019	5/17/2019	10/10/2018	5/30/2018	9/28/2017
1,1-Dichloroethane	3.6	3.2	3	3	3	3	0.8 J
1,1-Dichloroethene	5.7	6.1	5	4	3	3	1 U
1,2-Dichloroethane	9.7	10	11	10	10	7	3
1,4-Dioxane	1.0		0.3		0.3 J	0.5	0.46 J
2-Butanone	10 U	10 U	0.7 J	1 J	5 J	5 J	7 J
Acetone	20 U	20 U	20 U	20 U	4 J	20 U	20 U
Benzene	42	41	35	35	28	34	10
Chlorobenzene	6.4	5.7	5	5	4	4	0.9 J
Chloroethane	2.0	1.7	2	1	0.9 J	0.6 J	1 U
cis-1,2-Dichloroethene	830	870 J	830	650	430	340	9
Methane							6.4
Methylene Chloride	1.0 U	1.0 U	1 U	0.4 J	0.4 J	1 U	1 U
Tetrachloroethene	1.0 U	1.0 U	0.3 J	0.6 J	0.8 J	0.8 J	1 U
Toluene	2.4	2.3	3	3	3	3	37
trans-1,2-Dichloroethene	2.3	2.3 J	2	1	0.3 J	1 U	1 U
Trichloroethene	210	220	150	270	420	420	170
Vinyl Chloride	0.94 J	0.93 J	0.9 J	0.8 J	0.8 J	0.7 J	1 U

Sample Date	11/16/2020	6/18/2020	10/11/2019	5/15/2019	10/11/2018	5/31/2018	9/27/2017
1,4-Dioxane	0.30 U		0.3 U		0.3 U	0.3 U	0.38
2-Butanone	10 U	5.0 U	10 U	0.4 J	1 J	10 U	10 U
Benzene	0.36 J	0.39 J	0.4 J	0.4 J	0.5 J	1 U	1 U
cis-1,2-Dichloroethene	4.5	4.1	5	5	8	4	1 U
Toluene	1.0 U	1.0 U	1 U	1 U	1 U	1 U	10
Trichloroethene	2.4	3.0	3	3	2	2	1

Sample Date	11/16/2020	6/18/2020	10/11/2019	5/15/2019	10/11/2018	5/31/2018	9/27/2017	9/27/2017
1,1-Dichloroethane	1.0 U	1.0 U	0.3 J	0.3 J	1 U	1 U	1 U	
1,2-Dichloroethane	0.64 J	0.59 J	1 U	0.7 J	0.7 J	0.8 J	1 U	
1,4-Dioxane	0.29 U		0.1 J		0.3 U	0.3 U	0.31	0.26
Benzene	1.1	1.2	1	1	1	1	1	
Chlorobenzene	1.0 U	1.0 U	0.2 J	0.2 J	0.2 J	1 U	1 U	
cis-1,2-Dichloroethene	2.9	3.0	3	3	4	3	3	
Toluene	1.0 U	1.0 U	1 U	1 U	1 U	1 U	0.8 J	
Trichloroethene	36	35	43	41	41	42	47	

Sample Date	11/16/2020	6/18/2020	10/11/2019	5/15/2019	10/11/2018	5/31/2018	9/27/2017
1,1-Dichloroethane	1.3	1.3	1	2	1	2	1
1,1-Dichloroethene	0.71 J	0.82 J	0.9 J	0.8 J	1 U	0.8 J	0.6 J
1,2-Dichloroethane	2.9	3.0	4	3	3	3	4
1,4-Dioxane	0.32		0.2 J		0.2 J	0.3U	0.34
2-Butanone	0.62 J	5.0 U	0.7 J	1 J	2 J	5 J	9 J
Acetone	20 U	5.0 U	20 U	20 U	1 J	20 U	20 U
Benzene	13	14	15	16	12	16	14
Chlorobenzene	1.3	1.3	1	1	1 J	1	0.9 J
cis-1,2-Dichloroethene	46	40	42	47	48	43	11
Ethane						0.64 J	1.7 J
Ethene						0.90 J	5.0 U
Methane						25	5.4
Tetrachloroethene	0.30 J	0.34 J	0.4 J	0.3 J	0.3 J	1 U	1 U
Toluene	1.0 U	1.0 U	1 U	1 U	1 U	1 U	48
Trichloroethene	150	130	180	150	95	160	160
Vinyl Chloride	0.20 J	0.28 J	0.2 J	0.3 J	1 U	1 U	1 U

	Sample Date	6/26/2018	9/29/2017	9/29/2017
1,4-Dioxane		1	0.19 J	
Acetone		45	20 U	20 U
Benzene		0.6 J	1	1
Methane			11	
Toluene		1 J	18	18

Sample Date	11/11/2020	6/23/2020	10/8/2019	10/8/2019	5/16/2019	10/15/2018	10/15/2018	6/4/2018	9/29/2017	9/29/2017
1,4-Dioxane	1.1		1			3	3	0.3 U	0.88 J	
Benzene	5.4	5.3	6	5	7	8	8	8	8	
Chlorobenzene	0.24 J	1.0 U	0.3 J	0.3 J	0.3 J	0.4 J	0.4 J	1 U	1 U	
cis-1,2-Dichloroethene	0.50 J	0.44 J	0.5 J	0.5 J	0.6 J	0.6 J	0.6 J	0.5 J	0.6 J	
Ethane								0.98 J	1.3 J	3.5 J
Ethene								0.57 J	5.0 U	5.0 U
Methane								210	22	20
Toluene	0.48 J	0.58 J	2	2	3	10	10	13	38	
Trichloroethene	0.47 J	0.48 J	0.5 J	0.5 J	0.6 J	0.8 J	0.8 J	0.7 J	0.6 J	

Sample Date	11/11/2020	6/23/2020	10/8/2019	5/16/2019	10/15/2018	6/4/2018	9/29/2017
1,2-Dichloroethane	0.30 J	1.0 U	1 U	1 U	1 U	1 U	1 U
1,4-Dioxane	0.32 U		0.4 J		1	0.3 U	0.31 J
Benzene	9.0	8.4	8	10	9	9	9
Chlorobenzene	0.39 J	0.40 J	0.4 J	0.4 J	0.4 J	1 U	1 U
cis-1,2-Dichloroethene	0.75 J	0.78 J	0.7 J	0.9 J	0.7 J	0.6 J	0.8 J
Ethane							2.3 J
Methane							15
Toluene	0.68 J	1.5	0.5 J	0.7 J	2	5	15
Trichloroethene	0.75 J	0.70 J	0.8 J	0.9 J	0.9 J	0.7 J	0.7 J

	Sample Date	11/10/2020	6/16/2020	10/10/2019	5/21/2019	10/9/2018	5/29/2018	9/26/2017
1,4-Dioxane		0.59 J	0.54 J	0.4	0.2 J	0.1 J	0.3 U	0.21 U
2-Butanone		10 U	10 U	10 U	10 U	1 J	10 U	5 J
Acetone		1.1 J	20 U	20 U	20 U	20 U	20 U	20 U
Toluene		1.0 U	1.0 U	1 U	1 U	0.2 J	0.7 J	15

	Sample Date	11/10/2020	6/16/2020	10/10/2019	10/10/2019	5/21/2019	5/21/2019	10/9/2018	5/29/2018	9/26/2017
1,4-Dioxane		0.57	0.74	0.1 J		0.3 U	0.9	0.1 J	0.3 U	0.32
2-Butanone		10 U	10 U	10 U	10 U	0.7 J	0.9 J	2 J	10 U	5 J
Methane										4.3 J
Toluene		3.7	5.5	9	9	12	13	25	34	35

Sample Da	te 11/12/2020	10/7/2019	10/8/2018	5/24/2018	9/25/2017
1,4-Dioxane	0.31 U	0.3 J	0.3 U	0.3 UJ	0.21 U
Toluene	1.0 U	1 U	1 U	1 U	0.5 J

Sample Date	11/12/2020	10/7/2019	10/8/2018	5/24/2018	9/25/2017
1,4-Dioxane	0.31 U	0.2 J	0.3 U	0.3 UJ	0.20 U
Toluene	1.0 U	1 U	1 U	1 U	3

Sample Date	10/26/2015	12/4/2014	12/6/2013	10/22/2012	10/17/2011	10/11/2010	12/15/2009	10/19/2009	10/13/2008	10/24/2007	11/14/2006
1,1-Dichloroethane	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.14 J
1,4-Dioxane			0.096 J								
Benzene	0.5 U	2.81	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	0.5 U	0.567 J	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
m,p-Xylenes	0.5 U	1.00 U							5 U		
Methylene chloride	2 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/18/2005	10/20/2004	10/21/2003	9/30/2002	10/15/2001	11/16/2000	11/4/1999	11/4/1999	11/17/1998	10/24/1998	12/27/1996
1,1-Dichloroethane	5 U	5 U	1.96 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U
1,2-Dichloroethane	1.95 J	2.2 J	27.1	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U
1,4-Dioxane								-			
Benzene	5 U	1.19 J	5 U	5 U	5 U	5 U	2 J	2 J	34	150	0.5 U
Chlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	1 J	0.9 J	11	54	0.5 U
Chloroform	5 U	5 U	8.69	5 U	5 U	5 U	5 U	5 U	4 J	2 J	0.5 U
cis-1,2-Dichloroethene	5 U	1.48 J	1.94 J	5 U	5 U	5 U	5 U	8	8	32	0.5 U
Ethylbenzene	5 U	5 U	5 U	5 U	5 U	5 U	2 J	5 U	5 U	2 J	0.5 U
m,p-Xylenes	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 J	6	1 U
Methylene chloride	1.91 J	3.28 J	75.8	5 U	5 U	5 U	5 U	5 U	6 B	7	0.5 U
Toluene	5 U	5 U	4.13 J	5 U	5 U	5 U	2 J	1 J	17	120	0.5 U
Trichloroethene	5 U	1.32 J	2.46 J	5 U	5 U	5 U	5 U	5 U	8	5	0.5 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232								-			
Aroclor-1242								-			
Aroclor-1248											
Aroclor-1254								-			
Aroclor-1260											

Sample Date	9/12/1995	4/19/1994	12/29/1993	12/29/1993	8/18/1993	5/12/1993	2/11/1993	10/6/1992
1,1-Dichloroethane	0.5 U	1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloroethane	0.5 U	1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dioxane						-		
Benzene	0.5 UJ-C	1 U	0.5 U	1 J	0.5 U	0.5 U	0.5 UJ	0.5 U
Chlorobenzene	0.5 U	1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	0.5 U	1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Ethylbenzene	0.5 UJ-C	1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
m,p-Xylenes	1 UJ-C	1 U	1 J	1 UJ	1 U	1 U	1 UJ	1 UJ
Methylene chloride	0.5 UJ-C	1 U	0.5 U	1.2 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0.5 UJ-C	1 U	0.5 U	1.8 J	0.5 U	0.5 U	0.5 UJ	0.5 U
Trichloroethene	0.5 U	1 U	0.5 U	0.5 UJ	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1016	0.022 U		0.022 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1221	0.022 U		0.022 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1232	0.022 U		0.022 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1242	0.022 UJ-C		0.022 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1248	0.022 U		0.022 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1254	0.022 U		0.022 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1260	0.022 U		0.022 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U

Sample Date	11/10/2020	11/10/2020	6/16/2020	10/7/2019	5/16/2019	10/9/2018	6/19/2018	9/29/2017	5/31/2017	10/20/2016
1,1,2,2-Tetrachloroethane	5.0 U	5.0 U	2.0 U	1 U	1 U	2 U	1 U	1 U	1 U	1.0 U
1,1-Dichloroethane	5.0 U	5.0 U	2.0 U	1 U	1 U	2 U	1 U	1 U	1 U	1.0 U
1,2-Dichloroethane	5.0 U	5.0 U	2.0 U	1 U	1 U	2 U	1 U	1 U	1 U	1.0 U
1,4-Dioxane	96	96	21	5 J	1	160	60 J	51 J	48	73
4-Methyl-2-Pentanone	50 U	50 U	20 U	10 U	10 U	20 U	10 U	10 U	10 U	1.0 U
Acetone	100 U	100 U	40 U	20 U	20 U	40 U	20 U	20 U	20 U	5.0 U
Benzene	1800	2000	930	120	14	3400	1000	1000	1000	981
Chlorobenzene	25	26	13	4	0.9 J	49	16	16	17	18.0
Chloroethane	1.7 J	1.6 J	1.1 J	1 U	1 U	3	1	1 U	0.5 J	1.0 U
Chloroform	5.0 U	5.0 U	2.0 U	1 U	1 U	2 U	1 U	1 U	1 U	1.0 U
Ethane								250		
Ethylbenzene	5.0 U	5.0 U	2.0 U	1 U	1 U	1 J	1 U	0.5 J	0.5 J	1.0 U
m,p-Xylenes	5.0 U	5.0 U	2.0 U	5 U	5 U	10 U	1 U	1 U	1 U	2.0 U
Methane								5900		
Methylene chloride	5.0 U	5.0 U	2.0 U	1 U	1 U	2 U	1 U	1 U	4 U	1.0 U
o-Xylene	5.0 U	5.0 U	2.0 U	1 U	1 U	2 U	1 U	1 U	1 U	1.0 U
Toluene	5.0 U	5.0 U	2.0 U	1 U	1 U	2 U	1 U	1 U	1 U	1.0 U
2,4-Dimethylphenol				10 U				1 UJ		
2-Methylphenol				2 U				1 UJ		
4-Methylphenol				2 U				1 UJ		
bis(2-Ethylhexyl)Phthalate										
Nitrobenzene										
Phenol				2 U				4 J		
Aroclor-1016										
Aroclor-1221										
Aroclor-1232										
Aroclor-1242										
Aroclor-1248										
Aroclor-1254										
Aroclor-1260										

Sample Date	5/17/2016	5/17/2016	10/26/2015	5/13/2015	5/13/2015	12/4/2014	6/6/2014	12/6/2013	5/7/2013	10/23/2012	5/21/2012
1,1,2,2-Tetrachloroethane	1 U	1 U	0.5 U	10 U	10 U	1.00 U	1.00 U	1.00 U	5 U	5 U	5 U
1,1-Dichloroethane	1 U	1 U	0.5 U	1 U	1 U	1.00 U	1.00 U	0.992 J	5 U	5 U	5 U
1,2-Dichloroethane	1 U	1 U	0.5 U	1 U	1 U	1.00 U	1.00 U	1.00 U	5 U	5 U	5 U
1,4-Dioxane	6.7		1.6	4.0		89	38	360			
4-Methyl-2-Pentanone	1 U	1 U	3 U	1 U	1 U	5.00 U	5.00 U	1.00 U	5 U	5 U	5 U
Acetone	1 J	1 J	6 U	6	6	10.0 U	10.0 U	5.00 U	5 U	5 U	5 U
Benzene	260	230	83	200	200	1490 J	569	4850	24.1	2.95 J	48.5
Chlorobenzene	4	4	2	4	4	25.0 J	10.5	92.2	5 U	5 U	1.67 J
Chloroethane	1 U	1 U	0.5 U	1 U	1 U	0.921 J	1.00 U	3.27	5 U	5 U	5 U
Chloroform	1 U	1 U	0.5 U	1 U	1 U	1.00 U	1.00 U	1.00 U	5 U	5 U	5 U
Ethane											
Ethylbenzene	1 U	1 U	0.5 U	1 U	1 U	1.07 J	1.00 U	3.52	5 U	5 U	5 U
m,p-Xylenes	1 U	1 U	0.5 U	1 U	1 U	1.00 U	1.00 U	1.00 U	5 U		5 U
Methane											
Methylene chloride	1 U	1 U	2 U	1 U	1 U	1.00 U	1.00 U	1.00 U	5 U	5 U	5 U
o-Xylene	1 U	1 U	0.5 U	1 U	1 U	1.00 U	1.00 U	1.00 U	5 U	5 U	5 U
Toluene	1 U	1 U	0.5 U	1 U	1 U	1.00 U	1.00 U	1.53	5 U	5 U	5 U
2,4-Dimethylphenol			0.5 U					10.0 U			
2-Methylphenol			0.5 U					10.0 U			
4-Methylphenol			0.5 U								
bis(2-Ethylhexyl)Phthalate								10.0 U			
Nitrobenzene								10.0 U			
Phenol			0.5 U					10.0 U			
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/18/2011	5/23/2011	10/13/2010	5/19/2010	12/15/2009	10/14/2008	10/25/2007	11/15/2006	10/18/2005	5/23/2005	10/20/2004
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	5 U	5 U	5 U
1,1-Dichloroethane	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	5 U	1.65 J	5 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	5 U	5 U	5 U
1,4-Dioxane											
4-Methyl-2-Pentanone	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	5 U	5 U	5 U
Acetone	5 U	5 U	1.28 J	5 U	25 U	5 U	5 U	25 U	17.8 B	18.2 B	2.24 JB
Benzene	98.7	226	3.31 J	54.8	3150	18.2	119	936	1750	3240	97.5
Chlorobenzene	2.04 J	7.06	5 U	1.9 J	41.2	5 U	4.34 J	24.8 J	60.4	86.6	3.72 J
Chloroethane	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	3.03 J	2.32 J	5 U
Chloroform	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	5 U	5 U	5 U
Ethane											
Ethylbenzene	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	2.84 J	5.03	5 U
m,p-Xylenes						5 U			5 U	5 U	5 U
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	5 U	5 U	5 U
o-Xylene	5 U	5 U	5 U	5 U	25 U	5 U	5 U	25 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	25 U	5 U	5 U	5.45 J	2.27 J	2.71 J	5 U
2,4-Dimethylphenol	9.26 U					9.43 U			9.43 U		18.5 U
2-Methylphenol	9.26 U					9.43 U			9.43 U		18.5 U
4-Methylphenol	9.26 U					9.43 U			9.43 U		18.5 U
bis(2-Ethylhexyl)Phthalate	9.26 U					9.43 U			9.43 U		150
Nitrobenzene	9.26 U					9.43 U			9.43 U		18.5 U
Phenol	9.26 U					9.43 U			21.2		18.5 U
Aroclor-1016	0.05 U					0.05 U			0.05 U		0.05 U
Aroclor-1221	0.05 U					0.05 U			0.05 U		0.05 U
Aroclor-1232	0.05 U					0.05 U			0.05 U		0.05 U
Aroclor-1242	0.05 U					0.05 U			0.05 U		0.05 U
Aroclor-1248	0.05 U					0.05 U			0.05 U		0.05 U
Aroclor-1254	0.05 U					0.05 U			0.05 U		0.05 U
Aroclor-1260	0.05 U					0.05 U			0.05 U		0.05 U

Sample Date	10/20/2004	5/18/2004	10/22/2003	5/20/2003	10/2/2002	5/14/2002	10/18/2001	5/9/2001	11/17/2000	5/18/2000	11/4/1999	11/4/1999
1,1,2,2-Tetrachloroethane	5 U	1 U	5 U	25 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5 U	1 U	1.66 J	25 U	3 J	5 U	4 J	5 J	10	5 U	4 J	4 J
1,2-Dichloroethane	5 U	1 U	5 U	25 U	5 U	5 U	5 U	10	5 U	5 U	5 U	5 U
1,4-Dioxane												
4-Methyl-2-Pentanone	5 U	1 U	5 U	25 U	10 U	10 U	10 U	10 U	10 U	10 U	12	15
Acetone	5 U	7.01 B	5 U	25 U	10 U	12	10 U	10 U	10 U	10 U	70	130
Benzene	87.4	213	3460	4070	4900	6600	8600	8000	8300	5800	3800	3600
Chlorobenzene	3.17 J	10.2	98	96.8	110	120	160	160	150	160 J	77	78
Chloroethane	5 U	1 U	3.56 J	25 U	6 J	10 U	10 U	10 U	10 U	10 U	2 J	10 U
Chloroform	5 U	1 U	5 U	25 U	5 U	5 U	5 U	5 U	5 U	5 U	2 J	5 U
Ethane					-							
Ethylbenzene	5 U	1 U	4.34 J	25 U	5 U	5 U	8	7	6	5 U	5 U	5 U
m,p-Xylenes	5 U	1 U	5 U	25 U	3 J	4 J	1 J	1 J	5 U	5 U	5 U	3 J
Methane					-							
Methylene chloride	5 U	1 U	5 U	25 U	5 U	5 U	5 U	5 U	5 U	150 BJ	5 U	5 U
o-Xylene	5 U	1 U	5 U	25 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	2.01	2.15 J	25 U	3 J	2 J	4 J	4 J	8	5 U	3 J	3 J
2,4-Dimethylphenol			9.26 U		5 U		10 U		10 U		6 J	
2-Methylphenol			9.26 U		5 U		10 U		10 U		2 J	
4-Methylphenol			43.6		5 U		10 U		10 U		5 J	
bis(2-Ethylhexyl)Phthalate			9.26 U		0.7 J		17		10 U		10 U	
Nitrobenzene			2.15 J		5 U		10 U		10 U		10 U	
Phenol			7.45 J		1 J		3 J		8 J		11	
Aroclor-1016			0.05 U		0.065 U		0.065 U		0.065 U		0.065 U	
Aroclor-1221			0.05 U		0.065 U		0.065 U		0.065 U		0.065 U	
Aroclor-1232			0.05 U		0.065 U		0.065 U		0.065 U		0.065 U	
Aroclor-1242			0.05 U		0.065 U		0.065 U		0.065 U		0.065 U	
Aroclor-1248			0.05 U		0.065 U		0.065 U		0.065 U		0.065 U	
Aroclor-1254			0.05 U		0.065 U		0.065 U		0.065 U		0.065 U	
Aroclor-1260			0.05 U		0.065 U		0.065 U		0.065 U		0.065 U	

Sample Date	5/4/1999	5/4/1999	10/24/1998	10/24/1998	9/12/1995	4/20/1994	12/29/1993	8/18/1993	8/18/1993	5/12/1993	2/11/1993	2/11/1993
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	200 UJ-C	100 UJ-C	130 UJ	430	120 U	84 U		250 UJ
1,1-Dichloroethane	5 U	5 U	10	10	200 U	100 U	130 UJ	250 U	120 U	84 U		250 UJ
1,2-Dichloroethane	5 U	5 U	5 U	5 U	200 U	100 U	130 UJ	250 U	120 U	84 U		250 UJ
1,4-Dioxane												
4-Methyl-2-Pentanone	10 U	10 U	12	15								
Acetone	10 U	10 U	10 U	10 U								
Benzene	480	430	9900	8900	7500 J-C	6100	8900 J	10000	9100	5300		6200 J
Chlorobenzene	23	25	320	250 J	460	210	300 J	570	250	150		250 UJ
Chloroethane	10 U	10 U	10 U	10 U	200 U	100 U	130 UJ	250 U	120 U	84 U		250 UJ
Chloroform	2 BJ	2 BJ	1 J	5 U	200 U	100 U	250 J	250 U	120 U	84 U		250 UJ
Ethane												
Ethylbenzene	5 U	5 U	13	15	200 UJ-C	100 U	130 UJ	2300	120 U	84 U		250 UJ
m,p-Xylenes	5 U	5 U	7	9	200 UJ-C	200 U	260 UJ	500 U	250 U	84 U		500 UJ
Methane						-				-		
Methylene chloride	4 J	4 J	5 U	5 U	200 UJ-C	100 U	130 UJ	250 U	120 U	84 U		250 UJ
o-Xylene	5 U	5 U	4 J	3 J								
Toluene	4 J	4 J	57	55	560 J-C	1100	1700 J	250 U	1900	830		1300 J
2,4-Dimethylphenol			10 U	10 U	11 R-S	8	12			U	4.9 J	5 J
2-Methylphenol			10 U	10 U	11 R-S	25	31			U	19	18 J
4-Methylphenol			10 U	10 U	11 R-S	72	120			U	63 J	63 J
bis(2-Ethylhexyl)Phthalate			9 BJ	5 BJ	11 U							
Nitrobenzene			10 U	10 U	11 U							
Phenol			10 U	10 U	11 R-S	7	8 J	С	С	С	7.1	10 J
Aroclor-1016			0.5 U	0.5 U	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U		0.09 U
Aroclor-1221			0.5 U	0.5 U	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U		0.09 U
Aroclor-1232			0.5 U	0.5 U	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U		0.09 U
Aroclor-1242			0.5 U	0.5 U	0.022 UJ-C		0.09 U	0.09 U	0.09 U	0.09 U		0.09 U
Aroclor-1248			0.5 U	0.5 U	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U		0.09 U
Aroclor-1254			1 U	1 U	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U		0.09 U
Aroclor-1260			1 U	1 U	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U		0.09 U

Sample Date	10/6/1992
1,1,2,2-Tetrachloroethane	120 U
1,1-Dichloroethane	120 U
1,2-Dichloroethane	120 U
1,4-Dioxane	-
4-Methyl-2-Pentanone	
Acetone	
Benzene	7200
Chlorobenzene	160 J
Chloroethane	120 U
Chloroform	120 U
Ethane	
Ethylbenzene	120 U
m,p-Xylenes	250 U
Methane	-
Methylene chloride	120 U
o-Xylene	
Toluene	1200
2,4-Dimethylphenol	1 U
2-Methylphenol	5.5
4-Methylphenol	24
bis(2-Ethylhexyl)Phthalate	
Nitrobenzene	
Phenol	1 U
Aroclor-1016	0.1 U
Aroclor-1221	0.1 U
Aroclor-1232	0.1 U
Aroclor-1242	0.1 U
Aroclor-1248	0.1 U
Aroclor-1254	0.1 U
Aroclor-1260	0.1 U

Sample Date	11/18/2020	10/16/2019	10/12/2018	5/23/2018	9/28/2017	10/19/2016	10/23/2015	12/4/2014	12/4/2013	10/22/2012	10/17/2011
1,4-Dioxane				0.3 U	0.24				0.20 U		
Benzene	1.0 U	1 U	1 U	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	5 U	5 U
Ethene					5.0 U				-		
Methane					890						
Methylene chloride	1.0 U	1 U	1 U	1 U	1 U	1.0 U	2 U	1.00 U	1.00 U	5 U	5 U
Toluene	1.0 U	1 U	1 U	1 U	300	7.6	0.5 U	1.00 U	1.00 U	5 U	5 U
Benzoic Acid											
Cyclohexane		5 U	5 U	4 J	5 U	1.0 U	5 U	1.00 U	1.00 U		
di-n-Butyl Phthalate											
Aroclor-1016									-		
Aroclor-1221											
Aroclor-1232									-		
Aroclor-1242											
Aroclor-1248									-		
Aroclor-1254									-		
Aroclor-1260											

Sample Date	10/13/2010	10/20/2009	10/14/2008	10/24/2007	11/13/2006	10/17/2005	10/19/2004	10/21/2003	9/30/2002	10/16/2001	11/15/2000
1,4-Dioxane											
Benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Ethene											
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzoic Acid											
Cyclohexane											
di-n-Butyl Phthalate											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	11/3/1999	10/22/1998	1/23/1997	12/28/1996	9/13/1995	4/19/1994	12/29/1993	8/18/1993	5/12/1993	2/11/1993	10/6/1992
1,4-Dioxane											
Benzene	5 U	5 U		0.5 U	0.5 U	1 U	0.6 J	0.5 U	0.5 U	0.5 UJ	0.5 U
Ethene			9								
Methane											
Methylene chloride	5 U	6 B		0.5 U	0.5 U	1 U	0.8 J	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	5 U	5 U		1.9	0.5 U	1 U	1.2 J	0.5 U	0.5 U	0.5 UJ	0.5 U
Benzoic Acid					2 J						
Cyclohexane					2 J						
di-n-Butyl Phthalate					1 J					-	
Aroclor-1016					0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1221					0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1232					0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1242					0.022 UJ-C	-	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1248					0.022 U	-	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1254					0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1260					0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U

Sample Date	10/9/2019	5/22/2018	9/26/2017	10/20/2015	12/4/2013	10/23/2012	10/18/2011	10/12/2010	10/21/2009	10/14/2008	10/24/2007
1,1-Dichloroethane	0.9 J	1 U	0.7 J	0.5 U	0.530 J	5 U	5 U	0.5 U	5 U	1.03 J	5 U
1,4-Dioxane	2	2 J	2.4	0.92	2.2						
Acetone	1 J	20 U	20 U	20 U	5.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Benzene	0.2 J	1 U	1 U	0.5 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Chlorobenzene	1	0.9 J	1	0.6 J	1.39	5 U	5 U	1.09	1.36 J	2.71 J	1.17 J
Chloroethane	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Ethene			5.0 U								
Methane			42								
Methylene chloride	1 U	1 U	1 U	2 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Toluene	0.6 J	0.6 J	1 U	1 U	1 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U
di-n-Butyl Phthalate											
Phenol											
Aroclor-1016					-						
Aroclor-1221											
Aroclor-1232											
Aroclor-1242					-						
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	11/14/2006	10/17/2005	10/19/2004	10/20/2003	9/30/2002	10/15/2001	11/14/2000	11/2/1999	10/21/1998	1/16/1997	12/24/1996
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	3 J	5 U	5 U	5 U		0.5 U
1,4-Dioxane											
Acetone	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U		
Benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		0.5 U
Chlorobenzene	5 U	5 U	5 U	4.67 J	5 U	11	5 U	4 J	6		0.5 U
Chloroethane	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U		0.5 U
Ethene										6	
Methane										46	
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		0.5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
di-n-Butyl Phthalate											
Phenol											10 U
Aroclor-1016								-			
Aroclor-1221								-			
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	9/13/1995	4/19/1994	12/29/1993	8/18/1993	5/12/1993	2/11/1993	10/6/1992
1,1-Dichloroethane	3.5 J-S	3.6 J-HS	3 J	6	3.1	6.2 UJ	9.7
1,4-Dioxane							
Acetone		-					
Benzene	2.6 J-S	1 U	0.5 UJ	0.5 U	0.5 U	260 J	33
Chlorobenzene	9 J-CS	1 U	0.5 UJ	0.5 U	0.5 U	35 J	10 J
Chloroethane	1.3 J-CS	1.3 J-HS	1.1 J	2.3	1.4	6.2 UJ	4
Ethene							
Methane		-					
Methylene chloride	0.5 UJ-S	1 U	0.8 J	0.5 U	0.5 U	6.2 UJ	0.5 U
Toluene	0.5 UJ-S	1 U	0.5 UJ	0.5 U	0.5 U	6.2 UJ	0.5 U
di-n-Butyl Phthalate	1 J						
Phenol	12 R-S	5 U	8 J	С	С	R	1 R
Aroclor-1016	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1221	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1232	0.022 U	-	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1242	0.022 UJ-C		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1248	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1254	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
Aroclor-1260	0.022 U		0.09 U	0.09 U	0.09 U	0.09 U	0.09 U

Sample Date	10/9/2019	5/22/2018	9/26/2017	10/20/2015	12/4/2013	10/22/2012	10/17/2011	10/12/2010	10/20/2009	10/14/2008	10/24/2007
1,1-Dichloroethane	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
1,4-Dioxane	0.3 U	0.4 UJ	0.20 U	0.10 J	0.22						
Acetone	0.7 J	20 U	20 U	20 U	5.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Benzene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Chlorobenzene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	1.2 J
Methylene chloride	1 U	1 U	1 U	2 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Toluene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	0.5 U	5 U	5 U	5 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242					-						
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	11/14/2006	10/17/2005	10/18/2004	10/20/2003	10/1/2002	10/16/2001	11/14/2000	11/2/1999	10/21/1998	12/29/1996	9/13/1995
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U	0.5 U
1,4-Dioxane											
Acetone	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U		
Benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U	1.5
Chlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U	0.5 U
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U	0.5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.56	0.5 U
Aroclor-1016											0.022 U
Aroclor-1221											0.022 U
Aroclor-1232											0.022 U
Aroclor-1242								-			0.022 UJ-C
Aroclor-1248								-			0.022 U
Aroclor-1254								-			0.022 U
Aroclor-1260											0.022 U

Sample Date	4/19/1994	12/29/1993	8/18/1993	5/12/1993	2/11/1993	10/6/1992
1,1-Dichloroethane	1 U	0.7 J	0.5 U	0.5 U	0.5 UJ	0.5 U
1,4-Dioxane						
Acetone						
Benzene	1 U	0.5 UJ	0.5 U	0.5 U	5.5 J	0.5 U
Chlorobenzene	1 U	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
Methylene chloride	1 U	1.1 J	0.5 U	0.5 U	0.5 UJ	0.5 U
Toluene	1 U	0.5 UJ	0.5 U	0.5 U	0.5 UJ	0.5 U
Aroclor-1016		0.09 U	0.09 U	0.18 U	0.09 U	0.09 U
Aroclor-1221		0.09 U	0.09 U	0.18 U	0.09 U	0.09 U
Aroclor-1232		0.09 U	0.09 U	0.18 U	0.09 U	0.09 U
Aroclor-1242		0.09 U	0.09 U	0.18 U	0.09 U	0.09 U
Aroclor-1248		0.09 U	0.09 U	0.18 U	0.09 U	0.09 U
Aroclor-1254		0.09 U	0.09 U	0.18 U	0.09 U	0.09 U
Aroclor-1260		0.09 U	0.09 U	0.18 U	0.09 U	0.09 U

Sample Date	11/10/2020	6/16/2020	6/16/2020	10/7/2019	5/16/2019	5/16/2019	10/9/2018	6/19/2018	9/29/2017	9/29/2017	5/31/2017
1,1-Dichloroethane	20 U	20 U	20 U	20 U	20 U	20 U	10 U	20 U	10 U		50 U
1,2-Dichloroethane	20 U	20 U	20 U	20 U	20 U	20 U	10 U	20 U	10 U		50 U
1,4-Dichlorobenzene	11 J	20 J	22 J	8 J	100 U	4 J	5 J	100 U	50 U		250 U
1,4-Dioxane	750	650	700	730 J	540	510	310	1000 J	640 J		650
2-Butanone	199 U	197 U	198 U	200 U	200 U	200 U	100 U	200 U	100 UJ		500 U
2-Hexanone	200 U	200 U	200 U	200 U	200 U	200 U	100 U	200 U	100 U		500 U
4-Methyl-2-Pentanone	200 U	200 U	200 U	200 U	200 U	200 U	100 U	200 U	100 U		500 U
Acetone	400 U	400 U	400 U	400 U	400 U	400 U	200 U	400 U	200 U		1000 U
Benzene	13000	12000	14000	12000	15000	14000	14000	18000	17000		38000
Chlorobenzene	2800	3100	3400	2200	2000	2000	2000	1900	2000		3800
Chloroethane	40	48	49	24	26	24	27	31	18		59
Chloroform	20 U	20 U	20 U	20 U	20 U	20 U	10 U	20 U	10 U		50 U
cis-1,2-Dichloroethene	20 U	20 U	20 U	20 U	20 U	20 U	10 U	20 U	10 U		50 U
Cyclohexane	100 U	100 U	100 U	100 U	100 U	100 U	50 U	100 U	50 U		250 U
Ethane								460	880		
Ethene								0.22 J	5.0 U		
Ethylbenzene	180	250	290	140	120	120	120	99	110		250
Isopropylbenzene	99 U	97 U	98 U	100 U	100 U	100 U	50 U	100 UJ	50 U		250 U
m,p-Xylenes	590	890	990	390	260	260	340	220	250		690
Methane								7100	8100		
Methyl Acetate	100 U	100 U	100 U	100 U	100 U	100 U	50 U	100 U	50 U		250 U
Methylene chloride	20 U	20 U	20 U	20 U	20 U	20 U	10 U	20 U	10 U		200 U
Methyl tert-Butyl ether	20 U	20 U	20 U	20 U	20 U	20 U	10 U	20 UJ	10 U		50 U
o-Xylene	110	190	220	54	35	34	49	10 J	11		50 U
Styrene	100 U	6.8 J	100 U	100 U	100 U	100 U	50 U	100 U	50 U		250 U
Toluene	590	730	770	190	490	470	1600	20 U	19		50 U
trans-1,2-Dichloroethylene	6.6 J	8.0 J	8.6 J	20 U	20 U	20 U	3 J	20 U	10 U		50 U
Vinyl chloride	20 U	20 U	20 U	20 U	20 U	20 U	10 U	20 U	10 U		50 U
1,4-Dichlorobenzene											
2,4-Dimethylphenol				150					53	63	
2-Chlorophenol				8					6	6	
2-Methylphenol				6					3	3	
4-Chloro-3-Methylphenol				2 U					1 U	1 U	
4-Methylphenol				1 J					0.6 J	0.6 J	
bis(2-Ethylhexyl)Phthalate											
Naphthalene											
Nitrobenzene											

	Sample Date	11/10/2020	6/16/2020	6/16/2020	10/7/2019	5/16/2019	5/16/2019	10/9/2018	6/19/2018	9/29/2017	9/29/2017	5/31/2017
Phenol					19					14	15	
Aroclor-1016												
Aroclor-1221												
Aroclor-1232												
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												
PCBs, Total												

Sample Date	10/20/2016	5/17/2016	5/17/2016	10/26/2015	10/26/2015	5/13/2015	12/4/2014	6/6/2014	12/6/2013	10/25/2012	5/22/2012
1,1-Dichloroethane	1.0 UJ	20 U		5 U		1	100 U	1.00 U	1.00 UJ	5000 U	5 U
1,2-Dichloroethane	1.0 UJ	20 U		5 U		1 U	100 U	1.00 U	0.901 J	5000 U	5 U
1,4-Dichlorobenzene	3.8 J	20 U		10 U		1 U	100 U	1.12 J	1.62 J		
1,4-Dioxane	1500	2200	1800	520		15	1500	1500	1400		
2-Butanone	1.0 UJ	20 U		30 U		1 U	500 U	5.00 U	1.00 UJ	5000 U	5 U
2-Hexanone	1.0 UJ	100 U		30 U		5 U	500 U	1.59 J	1.00 UJ	5000 U	5 U
4-Methyl-2-Pentanone	8.3 J	20 U		30 U		10	500 U	6.67 J	18.5 J	5000 U	5 U
Acetone	51.9 J	100 U		60 U		8	1000 U	66.2 J	22.0 J	5000 U	5 U
Benzene	21000	26000		14000		27000	22500	20400	19200	96400	5 U
Chlorobenzene	2250	2500		1200		2300	2320	1770	1410	8830	5 U
Chloroethane	42.3 J	26		13		33	54.6 J	16.9 J	28.4 J	5000 U	5 U
Chloroform	1.0 UJ	20 U		5 U		1 U	100 U	1.00 U	1.00 UJ	5000 U	5 U
cis-1,2-Dichloroethene	1.0 UJ	20 U		5 U		1 U	100 U	1.00 U	0.797 J	5000 U	5 U
Cyclohexane	1.0 UJ	20 U		20 U		1 UJ	100 U	1.85 J	2.75 J		
Ethane											
Ethene											
Ethylbenzene	500 U	160		57		120	148	84.4	102 J	5000 U	5 U
Isopropylbenzene	1.5 J	20 U		10 U		1 U	100 U	0.595 J	0.757 J		
m,p-Xylenes	1000 U	310		74		190	198	165 J	173 J		5 U
Methane											
Methyl Acetate	1.0 UJ	20 U		10 U		1 U	100 U	28.8 J	1.00 UJ		
Methylene chloride	1.0 UJ	20 U		20 U		1 U	100 U	1.00 U	1.00 UJ	5000 U	5 U
Methyl tert-Butyl ether	1.0 UJ	20 U		5 U		1 U	100 U	0.501 J	0.597 J		
o-Xylene	51.8 J	55		14		21	100 U	34.7 J	38.7 J	5000 U	5 U
Styrene	1.0 UJ	20 U		50 U		1 U	100 U	1.00 U	1.00 UJ	5000 U	5 U
Toluene	15.6 J	1700		120		500	107	84.2 J	528	20000	5 U
trans-1,2-Dichloroethylene	4.8 J	20 U		5 U		3	100 U	2.47 J	2.24 J	5000 U	5 U
Vinyl chloride	1.0 UJ	20 U		5 U		2	100 U	1.00 U	1.91	5000 U	5 U
1,4-Dichlorobenzene									1.62 J		
2,4-Dimethylphenol				32 J	22 J				109		
2-Chlorophenol				5 J	3 J				10.0 U		
2-Methylphenol				6 J	4 J				46.1		
4-Chloro-3-Methylphenol				0.5 UJ	0.5 UJ				10.0 UJ		
4-Methylphenol				5 J	3 J						
bis(2-Ethylhexyl)Phthalate									10.0 U		
Naphthalene									5.00 U		
Nitrobenzene									10.0 U		

	Sample Date	10/20/2016	5/17/2016	5/17/2016	10/26/2015	10/26/2015	5/13/2015	12/4/2014	6/6/2014	12/6/2013	10/25/2012	5/22/2012
Phenol					3 J	2 J				36.2		
Aroclor-1016												
Aroclor-1221												
Aroclor-1232												
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												
PCBs, Total												

Sample Date	10/20/2011	5/24/2011	10/13/2010	5/19/2010	10/22/2009	10/15/2008	10/25/2007	11/15/2006	10/19/2005	10/19/2005	5/24/2005
1,1-Dichloroethane	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	25 U
1,2-Dichloroethane	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	6.23 J
1,4-Dichlorobenzene	9.26 U	3.83 J				9.26 U				22.5 U	
1,4-Dioxane											
2-Butanone	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	17.5 J
2-Hexanone	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	25 U
4-Methyl-2-Pentanone	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	66.1	62.6	73.5
Acetone	5000 U	248 J	142	1000 U	2500 U	2500 U	100 U	100 U	120	118	191 B
Benzene	39500	43800	12900	15700	11700	19400	13700	20300	17200	13800	16300
Chlorobenzene	3300 J	4550	1130	1220	1180 J	1680 J	1150	1490	1210	1240	1350
Chloroethane	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	22 J	100 U	41	35.5	30.3
Chloroform	5000 U	1000 U	111	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	25 U
cis-1,2-Dichloroethene	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	9.71 J	9.59 J	21.6 J
Cyclohexane											
Ethane											
Ethene											
Ethylbenzene	5000 U	333 J	100 U	1000 U	2500 U	2500 U	89 J	125	93	90	104
Isopropylbenzene											
m,p-Xylenes						2500 U			216	214	247
Methane											
Methyl Acetate											
Methylene chloride	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	25 U
Methyl tert-Butyl ether											
o-Xylene	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	74.1 J	92.3 J	82.8	82.5	97
Styrene	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	25 U
Toluene	5000 U	1000 U	684	1410	2440 J	1510 J	1630	1920	3340	2640	4260
trans-1,2-Dichloroethylene	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	25 U
Vinyl chloride	5000 U	1000 U	100 U	1000 U	2500 U	2500 U	100 U	100 U	25 U	25 U	25 U
1,4-Dichlorobenzene	9.26 U	3.83 J				9.26 U			20.2 U	22.5 U	
2,4-Dimethylphenol	165	152				202			202	203	
2-Chlorophenol	9.52	3.64 J				5.7 J			8.89 J	7.9 J	
2-Methylphenol	98	2.68 J				130			206	184	
4-Chloro-3-Methylphenol	9.26 U	9.43 U				9.36			20.2 U	22.5 U	
4-Methylphenol	364	9.02 J				891			935	1080	
bis(2-Ethylhexyl)Phthalate	9.26 U	9.43 U				9.26 U			20.2 U	22.5 U	
Naphthalene	8.66	4.72 U				9.26 U			20.2 U	22.5 U	
Nitrobenzene	9.26 U	9.43 U				9.26 U			62.1	62.3	

	Sample Date	10/20/2011	5/24/2011	10/13/2010	5/19/2010	10/22/2009	10/15/2008	10/25/2007	11/15/2006	10/19/2005	10/19/2005	5/24/2005
Phenol		104	128				61.6			168	180	
Aroclor-1016		0.05 U	0.05 U				0.05 U			0.05 U	0.0505 U	
Aroclor-1221		0.05 U	0.05 U				0.05 U			0.05 U	0.0505 U	
Aroclor-1232		0.05 U	0.05 U				0.05 U			0.05 U	0.0505 U	
Aroclor-1242		0.0481 AD,J	0.05 U				0.05 U			0.05 U	0.0505 U	
Aroclor-1248		0.05 U	0.05 U				0.05 U			0.05 U	0.0505 U	
Aroclor-1254		0.05 U	0.05 U				0.05 U			0.05 U	0.0505 U	
Aroclor-1260		0.05 U	0.05 U				0.05 U			0.05 U	0.0505 U	
PCBs, Total		0.0481 J	0.05 U				0.05 U			0.05 U	0.0505 U	

Sample Date	5/24/2005	10/20/2004	5/18/2004	5/18/2004	10/23/2003	5/21/2003	5/21/2003	10/3/2002	5/15/2002	5/15/2002	10/19/2001	5/9/2001
1,1-Dichloroethane	25 U	5.53 J	8.97	9.84	50 U	500 U	500 U	8	13	12	17	250 U
1,2-Dichloroethane	6.14 J	7.63 J	7.21	7.61	50 U	500 U	500 U	5 U	5 U	5 U	5 U	250 U
1,4-Dichlorobenzene		19.2			9.26			100 U			250 U	
1,4-Dioxane												
2-Butanone	17.4 J	25 U	21.1	5 U	50 U	500 U	500 U	13	46	40	37	500 U
2-Hexanone	25 U	25 U	5 U	8.91	50 U	500 U	500 U	10 U	10 U	10 U	10 U	500 U
4-Methyl-2-Pentanone	71.5	106	118	136	50 U	500 U	500 U	170	350	350	670	640
Acetone	191 B	117 B	201 B	209 B	117	500 U	500 U	370	270	280	680	500 U
Benzene	18900	19800	16700	16500	28800 E	28900	26900	28000	35000	31000	59000	54000
Chlorobenzene	1310	1220	1040	1240	1560	1750	1530	1800	1800	1800	3800	3800
Chloroethane	27.6	32.7	26.1	24.6	22.3 J	500 U	500 U	41	30	10 U	99	500 U
Chloroform	25 U	25 U	5 U	5 U	50 U	500 U	500 U	5 U	5 U	5 U	5 U	140 J
cis-1,2-Dichloroethene	20.1 J	33.1	37.8	39.4	13.1 J	500 U	500 U	5 U	5 U	5 U	5 U	250 U
Cyclohexane												
Ethane												
Ethene												
Ethylbenzene	103	94.8	77.3	86.6	122	500 U	500 U	160	170	170	170	320
Isopropylbenzene												
m,p-Xylenes	224	245	204	237	316	500 U	500 U	430	490	460	1100	1000
Methane												
Methyl Acetate												
Methylene chloride	7.38 J	10.2 J	26.9	16.5	50 U	500 U	500 U	5 U	5 U	5 U	5 U	260 B
Methyl tert-Butyl ether												
o-Xylene	92.3	98.6	89.9	97.7	126	500 U	500 U	160	180	190	390	330
Styrene	25 U	25 U	5 U	5 U	50 U	500 U	500 U	5 U	5 U	5 U	5 U	250 U
Toluene	4830	5000	7840	7480	11400 E	15000	14100	15000	22000	20000	34000	30000
trans-1,2-Dichloroethylene	25 U	25 U	5 U	5 U	50 U	500 U	500 U	5 U	5 U	5 U	5 U	250 U
Vinyl chloride	25 U	25 U	5 U	5 U	50 U	500 U	500 U	10 U	10 U	10 U	10 U	500 U
1,4-Dichlorobenzene		19.2 U			9.26 U			100 U			250 U	
2,4-Dimethylphenol		19.2 U			9.26 U			100 U			130 J	
2-Chlorophenol		19.2 U			6.68 J			100 U			250 U	
2-Methylphenol		164			73			62 J			95 J	
4-Chloro-3-Methylphenol		19.2 U			9.26 U			100 U			250 U	
4-Methylphenol		1380			1240			1400			1700	
bis(2-Ethylhexyl)Phthalate		103			53.5			100 U			250 U	
Naphthalene		19.2 U			9.26 U			100 U			250 U	
Nitrobenzene		58.3			9.26 U			100 U			250 U	

	Sample Date	5/24/2005	10/20/2004	5/18/2004	5/18/2004	10/23/2003	5/21/2003	5/21/2003	10/3/2002	5/15/2002	5/15/2002	10/19/2001	5/9/2001
Phenol			161			123			100 U			250 U	
Aroclor-1016			0.05 U			0.05 U			0.065 U			0.065 U	
Aroclor-1221			0.05 U			0.05 U			0.065 U			0.065 U	
Aroclor-1232			0.05 U			0.05 U			0.065 U			0.065 U	
Aroclor-1242			0.05 U			0.05 U			0.065 U			0.065 U	
Aroclor-1248			0.05 U			0.05 U			0.065 U			0.065 U	
Aroclor-1254			0.05 U			0.05 U			0.065 U			0.065 U	
Aroclor-1260			0.05 U			0.05 U			0.065 U			0.065 U	
PCBs, Total			U										

Sample Date	11/17/2000	11/17/2000	5/22/2000	11/4/1999	5/4/1999	11/17/1998	11/17/1998	10/24/1998	1/22/1997	12/29/1996	9/12/1995
1,1-Dichloroethane	74	97	70	86	130	5 U	5 U	140		150 U	800 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		150 U	800 U
1,4-Dichlorobenzene		250 U		10 U		10 U	10 U	10 U			
1,4-Dioxane											
2-Butanone	10 U	10 U	51	62	110	10 U	10 U	170			
2-Hexanone	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U			
4-Methyl-2-Pentanone	610	610	430 J	360	320	10 U	10 U	920			
Acetone	10 U	10 U	780	790	1900	10 U	10 U	710			
Benzene	74000	68000	57000	50000	45000	59000	67000	47000		43000 D	30000 J-C
Chlorobenzene	4800	4400	4200	3300	3500	4800	5500	3100		3000	2700
Chloroethane	140	140	76	45	60	10 U	10 U	62		150 U	800 U
Chloroform	5 U	5 U	5 U	5 U	2 BJ	5 U	5 U	5 U		150 U	800 U
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	19		150 U	800 U
Cyclohexane											
Ethane									510 J		
Ethene									3800		
Ethylbenzene	390	390	440	5 U	230	5 U	5 U	230		280	800 UJ-C
Isopropylbenzene											
m,p-Xylenes	1200	1200	990	780	660	1100 J	1200 J	820		810	800 UJ-C
Methane									3300		
Methyl Acetate											
Methylene chloride	5 U	5 U	8 B	5 U	11	6600 B	6600 B	5 U		150 U	800 UJ-C
Methyl tert-Butyl ether											
o-Xylene	420	280	340	330	240	5 U	5 U	410		260	
Styrene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U			800 UJ-C
Toluene	47000	41000	36000	33000	29000	39000	44000	30000		30000 D	20000 J-C
trans-1,2-Dichloroethylene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U			800 UJ-C
Vinyl chloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U			800 UJ-C
1,4-Dichlorobenzene	250 U	250 U		10 U		10 U	10 U	10 U		150 U	800 U
2,4-Dimethylphenol	88 J	110 J		10 U		77 J	83 J	35 J		220 J	64 J
2-Chlorophenol	250 U	250 U		10 U		10 U	10 U	10 U		330 U	400 U
2-Methylphenol	89 J	10 U		68 J		110 J	93 J	44 J		160 J	120 J
4-Chloro-3-Methylphenol	250 U	250 U		10 U		10 U	10 U	10 U			400 U
4-Methylphenol	1800	1100		920		2000	1800	640		2300	2000
bis(2-Ethylhexyl)Phthalate	250 U	250 U		10 U		10 U	10 U	8 BJ			400 U
Naphthalene	250 U	250 U		10 U		10 U	10 U	10 U			400 U
Nitrobenzene	250 U	250 U		10 U		10 U	10 U	10 U			400 U

	Sample Date	11/17/2000	11/17/2000	5/22/2000	11/4/1999	5/4/1999	11/17/1998	11/17/1998	10/24/1998	1/22/1997	12/29/1996	9/12/1995
Phenol		250 U	250 U		10 U		10 U	10 U	10 U		26 J	400 U
Aroclor-1016		0.065 U	0.065 U		0.065 U		0.5 U	0.5 U	0.5 U			0.022 U
Aroclor-1221		0.065 U	0.065 U		0.065 U		0.5 U	0.5 U	0.5 U			0.022 U
Aroclor-1232		0.065 U	0.065 U		0.065 U		0.5 U	0.5 U	0.5 U			0.022 U
Aroclor-1242		0.065 U	0.065 U		0.065 U		0.5 U	0.5 U	0.5 U			0.022 UJ-C
Aroclor-1248		0.065 U	0.065 U		0.065 U		0.5 U	0.5 U	0.5 U		-	0.022 U
Aroclor-1254		0.065 U	0.065 U		0.065 U		1 U	1 U	1 U			0.022 U
Aroclor-1260		0.065 U	0.065 U		0.065 U		1 U	1 U	1 U			0.022 U
PCBs, Total												

Sample Date	4/20/1994	12/30/1993	12/30/1993
1,1-Dichloroethane	250 U	500 U	500 U
1,2-Dichloroethane	250 U	500 U	500 U
1,4-Dichlorobenzene			
1,4-Dioxane			
2-Butanone			
2-Hexanone			
4-Methyl-2-Pentanone			
Acetone			
Benzene	31000	27000	27000 J
Chlorobenzene	2200	1900	1900
Chloroethane	250 U	500 U	500 U
Chloroform	250 U	500 U	500 U
cis-1,2-Dichloroethene	250 U	500 U	500 U
Cyclohexane			
Ethane			
Ethene			
Ethylbenzene	250 U	500 U	500 U
Isopropylbenzene			
m,p-Xylenes	550	1100 J	1100 J
Methane			
Methyl Acetate			
Methylene chloride	250 U	500 U	500 U
Methyl tert-Butyl ether			
o-Xylene			
Styrene	250 U	500 U	500 U
Toluene	21000	17000	17000
trans-1,2-Dichloroethylene	250 U	500 U	500 U
Vinyl chloride	250 U	500 U	500 U
1,4-Dichlorobenzene	250 U	500 U	500 U
2,4-Dimethylphenol	140	110	110
2-Chlorophenol	5 U	62 U	71 U
2-Methylphenol	160	150	150
4-Chloro-3-Methylphenol	5 U	62 U	71 U
4-Methylphenol	1700 D	1800	1800
bis(2-Ethylhexyl)Phthalate			
Naphthalene			
Nitrobenzene			

	Sample Date	4/20/1994	12/30/1993	12/30/1993
Phenol		39	18 J	22 J
Aroclor-1016		0.023 U	0.022 U	0.09 U
Aroclor-1221		0.023 U	0.022 U	0.09 U
Aroclor-1232		0.023 U	0.022 U	0.09 U
Aroclor-1242		0.023 U	0.022 U	0.09 U
Aroclor-1248		0.023 U	0.022 U	0.09 U
Aroclor-1254		0.023 U	0.022 U	0.09 U
Aroclor-1260		0.023 U	0.022 U	0.09 U
PCBs, Total				

Sample Date	11/12/2020	11/12/2020	10/8/2019	10/10/2018	5/30/2018	9/28/2107	10/19/2016	10/21/2015	10/21/2015	12/2/2014	12/6/2013
1,2-Dichloroethane	0.38 J	0.36 J	1 U	1 J	1 U	1 U	1.0 U	1 U	1 U	1.00 U	1.00 U
1,4-Dioxane					0.4	0.24					0.060 J
Acetone	20 U	21 U	22 U	20 U	20 U	20 U	5.0 U	6 U	6 U	10.0 U	5.00 U
Benzene	6.5	6.3	7	11	11	14	9.6	2	2	1.00 U	1.00 U
Chlorobenzene	0.38 J	0.40 J	0.4 J	0.4 J	1 U	1 U	1.0 U	0.5 U	0.5 U	1.00 U	1.00 U
Chloroform	1.0 U	1.0 U	1 U	1 U	1 U	1 U	1.0 U	0.5 U	0.5 U	1.00 U	1.00 U
Chloromethane	1.0 U	1.0 U	1 U	1 U	1 U	1 U	1.0 U	0.5 U	0.5 U	1.00 U	1.00 U
cis-1,2-Dichloroethene	1.2	1.2	1	1	1	1	1.0 U	0.5 U	0.5 U	1.00 U	1.00 U
Ethane					2.7 J	2.4 J					
Methane					60	53					
Methylene chloride	1.0 U	1.0 U	1 U	1 U	1 U	1 U	1.0 U	2 U	2 U	1.00 U	1.00 U
Toluene	1.0 U	1.0 U	1 U	1 U	1 U	1 U	1.0 U	0.5 U	0.5 U	1.00 U	1.00 U
Trichloroethene	0.93 J	1.0	1	1	1	1	1.0 U	0.5 U	0.5 U	1.00 U	1.00 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/22/2012	10/17/2011	10/13/2010	10/20/2009	10/14/2008	10/24/2007	11/14/2006	10/18/2005	5/23/2005	10/18/2004	5/17/2004
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
1,4-Dioxane											
Acetone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.03 JB	1.47 JB	5 U	1 U
Benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.02
Chlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
Chloromethane	1.13 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
Ethane											
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/21/2003	5/19/2003	10/1/2002	5/14/2002	10/17/2001	5/8/2001	11/17/2000	5/17/2000	11/3/1999	5/3/1999	10/23/1998	12/28/1996
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
1,4-Dioxane												
Acetone	5 U	5 U	10 U	10 U	10 U	29	74	10 U	140	10 U	10 U	
Benzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	6	5 U	6.5
Chlorobenzene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 BJ	3 J	0.5 U
Chloromethane	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0.5 U
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 J	5 U	0.5
Ethane			-							-		
Methane												
Methylene chloride	5 U	5 U	5 U	5 U	5 U	2 BJ	5 U	3 BJ	5 B	4 BJ	5 U	0.5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1.1
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 J	2 J	0.9
Aroclor-1016												
Aroclor-1221												
Aroclor-1232										-		
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												

Sample Date	9/13/1995	4/20/1994	12/30/1993
1,2-Dichloroethane	0.5 U	1 U	0.5 U
1,4-Dioxane			
Acetone			
Benzene	18 J-C	13	11 J
Chlorobenzene	1.8 J-C	1.2	0.7
Chloroform	1.3	1 U	0.5 U
Chloromethane	0.5 U	1 U	0.5 U
cis-1,2-Dichloroethene	2.4 J-C	2	1.1
Ethane			
Methane			
Methylene chloride	0.5 U	1 U	0.5 U
Toluene	0.5 UJ-C	1 U	1
Trichloroethene	5.8 J-C	3.2	1.7
Aroclor-1016	0.022 U	0.023 U	0.09 U
Aroclor-1221	0.022 U	0.023 U	0.09 U
Aroclor-1232	0.022 U	0.023 U	0.09 U
Aroclor-1242	0.022 UJ-C	0.023 U	0.09 U
Aroclor-1248	0.022 U	0.023 U	0.09 U
Aroclor-1254	0.022 U	0.023 U	0.09 U
Aroclor-1260	0.022 U	0.023 U	0.09 U

Sample Date	6/6/2014	5/24/2011	12/15/2009	10/22/2009	10/15/2008	10/25/2007	11/15/2006	10/19/2005	5/24/2005	10/20/2004	5/18/2004
1,1,1-Trichloroethane	203	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	50 U	200 U	87.3
1,1,2,2-Tetrachloroethane	100 U	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	50 U	200 U	1.02
1,1-Dichloroethane	999	10000 U	1690 J	1170 J	5000 U	707	635	995	1270	1010	953
1,1-Dichloroethene	193	10000 U	5000 U	5000 U	5000 U	107 J	137 J	185 J	272	200 U	172
1,2-Dichloroethane	2550	3170 J	3910 J	2840 J	2200 J	1910	2010	2360	2650	2260	2270
1,2-Dichloropropane	100 U	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	50 U	200 U	1.85
2-Butanone	3470	3240 J	3780 J	2380 J	5000 U	500 U	500 U	500 U	2960	200 U	2230
4-Methyl-2-Pentanone	879	10000 U	1090 J	5000 U	5000 U	500 U	500 U	749	731	200 U	733
Acetone	5910 J	11800	11700	9990	5000 U	4050	4560	5650	6680 B	4860 B	5960 B
Benzene	44500	65100	92200	58900	46200	36500	36100	45500	57500	47000	41300
Chlorobenzene	8010	10600	17100	9640	7320	6080	6410	8210	9240	7090 J	7260
Chloroethane	100 UJ	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	16.9 J	200 U	19.9
Chloroform	825	10000 U	1760 J	5000 U	5000 U	172 J	269 J	437 J	902	290 J	530
Chloromethane	100 U	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	50 U	200 U	11
cis-1,2-Dichloroethene	16100	18600	26000	13100	12300	10300	9850	12800	14200	11900	11100
Ethylbenzene	460	10000 U	1190 J	5000 U	5000 U	437 J	430 J	593	811	490 J	586
m,p-Xylenes	1530				1540 J			1770	2420	1360	1640
Methylene chloride	1360	2330 J	3790 J	2960 J	3760 J	3160	3140	2950	5280	4000	4370
o-Xylene	531	10000 U	1170 J	5000 U	5000 U	464 J	468 J	687	768	544 J	631
Styrene	100 U	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	50 U	200 U	36.6
Tetrachloroethene	100 U	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	50 U	200 U	17.8
Toluene	22900	37000	51500	31300	23400	18900	20200	24400	31200	19700	22100
trans-1,2-Dichloroethylene	100 U	10000 U	5000 U	5000 U	5000 U	500 U	500 U	500 U	22.4 J	200 U	15.4
Trichloroethene	173	10000 U	5000 U	5000 U	5000 U	500 U	113 J	265 J	596	295 J	419
Vinyl Chloride	673	10000 U	1700 J	5000 U	5000 U	650	590	894	1140	728 J	782
1,2,4-Trichlorobenzene	123	82.7			100			157 J		154	
1,2-Dichlorobenzene	100 U	3.1 J			9.07 J			92.6 U		46.3 U	
1,3-Dichlorobenzene	100 U	3.31 J			10 U			92.6 U		46.3 U	
1,4-Dichlorobenzene	100 U	16.2 J			23.6			27.7 J		46.3 U	
2,4-Dimethylphenol		123			76.7			140		46.3 U	
2-Chlorophenol		138			127 E			121		144	
2-Methylphenol		733 J			574			733		568	
4-Chloro-3-Methylphenol		18.5 U			23.6			92.6 U		46.3 U	
4-Methylphenol		2920			2280			2110		2300	
Benzoic Acid											
bis(2-Ethylhexyl)Phthalate		93.2			10 U			92.6 U		46.3 U	
Naphthalene		104			81.4			92.6 U		46.3 U	

	Sample Date	6/6/2014	5/24/2011	12/15/2009	10/22/2009	10/15/2008	10/25/2007	11/15/2006	10/19/2005	5/24/2005	10/20/2004	5/18/2004
Nitrobenzene			18.5 U			10 U			32.5 J		46.3 U	
Phenol			5820			4010			4590		5730 E	
Aroclor-1016			0.05 U			0.05 U			0.05 U		0.05 U	
Aroclor-1221			0.05 U			0.05 U			0.05 U		0.05 U	
Aroclor-1232			0.05 U			0.05 U			0.05 U		0.05 U	
Aroclor-1242			0.05 U			0.05 U			0.05 U		0.05 U	
Aroclor-1248			0.05 U			0.05 U			0.05 U		0.05 U	
Aroclor-1254			0.05 U			0.05 U			0.05 U		0.05 U	
Aroclor-1260			0.05 U			0.05 U			0.05 U		0.05 U	

Sample Date	10/23/2003	5/21/2003	10/2/2002	5/15/2002	10/18/2001	5/9/2001	11/17/2000	5/19/2000	11/4/1999	5/4/1999	10/22/1998	12/29/1996
1,1,1-Trichloroethane	22.4 J	500 U	230	120	280	230	390	570	360	220	53	1000 U
1,1,2,2-Tetrachloroethane	50 U	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1000 U
1,1-Dichloroethane	757	890	1300	710	1200	320	2600	1200	760	750	290	1000 U
1,1-Dichloroethene	95.1	500 U	280	120	250	63 J	450	240	130	200	18	1000 U
1,2-Dichloroethane	2010	2290	5 U	5 U	5 U	42	5 U	2600	5 U	840	1300	2100
1,2-Dichloropropane	50 U	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1000 U
2-Butanone	50 U	500 U	3000 J	1900	1900	750	3600	1100	1200	1100	1300	
4-Methyl-2-Pentanone	50 U	500 U	410	700	500	240	510	370	300	250	330	
Acetone	5880	5840	6800	5700	8000	2500	9500	10000	11000	11000	7200	
Benzene	47100 E	58000	48000	54000	64000	75000	63000	66000	52000	47000	13000	39000
Chlorobenzene	6230	8620	7600	8900	11000	11000	8600	9900	6700	5 U	1300	2600
Chloroethane	11 J	500 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	1000 U
Chloroform	244	500 U	1000	720	1200	590	1400	1200	1000	5 U	390	1000 U
Chloromethane	14.4 J	500 U	10 U	10 U	10 U	10 U	10 U	26	10 U	10 U	10 U	1000 U
cis-1,2-Dichloroethene	11100 E	14400	12000	11000	18000	18000	17000	18000	16000	12000	4700	12000
Ethylbenzene	435	557	630	770	530	300	610	520	5 U	420	5 U	1000 U
m,p-Xylenes	1180	1610	2000	2100	2000	800	1600	1400	840	1000	150	2000 U
Methylene chloride	4510	4370	3500	5500	5500	1600	10000 E	4000 B	5800	8500	3000	4000
o-Xylene	459	590	750	810	700	300	670	630	420	440	120	1000 U
Styrene	50 U	500 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1000 U
Tetrachloroethene	50 U	500 U	16	33	34	15	21	33	16	26	5 U	1000 U
Toluene	17600 E	26800	23000	28000	29000	31000	27000	26000	21000	22000	4300	12000
trans-1,2-Dichloroethylene	50 U	500 U	5 U	5 U	18	5 U	5 U	5 U	5 U	5 U	5 U	1000 U
Trichloroethene	226	500 U	460	480	830	410	740	1100	670	630	200	1000 U
Vinyl Chloride	623	630	1500	520	1000	240	2100	1300	1400	1400	170	1000 U
1,2,4-Trichlorobenzene	9.26 U		140		110 J		38 J		51 J		10 U	
1,2-Dichlorobenzene	9.26 U		100 U		200 U		200 U		10 U		10 U	1000 U
1,3-Dichlorobenzene	9.26 U		100 U		200 U		200 U		10 U		10 U	1000 U
1,4-Dichlorobenzene	18.8		100 U		22 J		200 U		10 U		10 U	1000 U
2,4-Dimethylphenol	9.26 U		47 J		120 J		88 J		110		58 J	85 J
2-Chlorophenol	105		100 U		72 J		69 J		48 J		55 J	51 J
2-Methylphenol	185		430		440		420		370		340	340
4-Chloro-3-Methylphenol	9.26 U		100 U		200 U		200 U		10 U		10 U	250 U
4-Methylphenol	1380		1400		1200		1200		1000		990	1000
Benzoic Acid			500 U						340		900	
bis(2-Ethylhexyl)Phthalate	253		100 U		200 U		200 U		10 U		10 U	
Naphthalene	4.7 J		100 U		80 J		200 U		10 U		10 U	

	Sample Date	10/23/2003	5/21/2003	10/2/2002	5/15/2002	10/18/2001	5/9/2001	11/17/2000	5/19/2000	11/4/1999	5/4/1999	10/22/1998	12/29/1996
Nitrobenzene		9.26 U		100 U		200 U		200 U		10 U		10 U	
Phenol		3310		1800 E		1600		1700		1500		1500	250 J
Aroclor-1016		0.05 U		0.065 U		0.065 U		0.065 U		0.070 U		0.5 U	
Aroclor-1221		0.05 U		0.065 U		0.065 U		0.065 U		0.070 U		0.5 U	
Aroclor-1232		0.05 U		0.065 U		0.065 U		0.065 U		0.070 U		0.5 U	
Aroclor-1242		0.05 U		0.065 U		0.065 U		0.065 U		0.070 U		0.5 U	
Aroclor-1248		0.05 U		0.065 U		0.065 U		0.065 U		0.070 U		0.5 U	
Aroclor-1254		0.05 U		0.065 U		0.065 U		0.065 U		0.070 U		1 U	
Aroclor-1260		0.05 U		0.065 U		0.065 U		0.065 U		0.070 U		1 U	

Sample Date	9/13/1995	12/12/1994	4/19/1994	12/30/1993
1,1,1-Trichloroethane	500 U	1000 U	610	500 U
1,1,2,2-Tetrachloroethane	500 U	1000 U	500 UJ-C	500 UJ
1,1-Dichloroethane	500 U	1000 U	500 U	500 U
1,1-Dichloroethene	500 U	1000 U	500 U	500 U
1,2-Dichloroethane	500 U	1700	2000	1700
1,2-Dichloropropane	500 U	1000 U	500 U	500 UJ
2-Butanone				
4-Methyl-2-Pentanone				
Acetone				
Benzene	18000 J-C	44000	41000	32000 J
Chlorobenzene	3400 J-C	6100	5400	4400
Chloroethane	500 U	1000 U	500 U	500 U
Chloroform	2200 J-C	2700	2900	2300
Chloromethane	500 U	1000 U	500 U	500 U
cis-1,2-Dichloroethene	6400 J-C	11000	12000	8500
Ethylbenzene	500 UJ-C	1000 U	520	500 U
m,p-Xylenes	1000 UJ-C	2000 U	1900	2100 J
Methylene chloride	2100	3700	500 U	500 U
o-Xylene				
Styrene	500 UJ-C	1000 U	500 U	500 UJ
Tetrachloroethene	500 U	1000 U	500 U	500 U
Toluene	5900 J-C	15000	18000	13000
trans-1,2-Dichloroethylene	500 U	1000 U	500 U	500 U
Trichloroethene	500 U	1500	1300	1200
Vinyl Chloride	500 U	1000 U	500 U	500 U
1,2,4-Trichlorobenzene	110 J			
1,2-Dichlorobenzene	500 U	1000 U	500 U	500 U
1,3-Dichlorobenzene	500 U	1000 U	500 U	500 U
1,4-Dichlorobenzene	500 U	1000 U	500 U	500 U
2,4-Dimethylphenol	100 J		100 D	76 J
2-Chlorophenol	58 J		56	65 J
2-Methylphenol	380 J		420 D	460
4-Chloro-3-Methylphenol	430 U		5 U	120 U
4-Methylphenol	1100		1100 D	1500
Benzoic Acid	870 J			
bis(2-Ethylhexyl)Phthalate	430 U			
Naphthalene	430 U			

	Sample Date	9/13/1995	12/12/1994	4/19/1994	12/30/1993
Nitrobenzene		430 U			
Phenol		1800		2300 D	3000
Aroclor-1016		0.022 U		0.023 U	0.09 U
Aroclor-1221		0.022 U		0.023 U	0.09 U
Aroclor-1232		0.022 U		0.023 U	0.09 U
Aroclor-1242		0.022 UJ-C		0.023 U	0.09 U
Aroclor-1248		0.022 U		0.023 U	0.09 U
Aroclor-1254	•	0.022 U		0.023 U	0.09 U
Aroclor-1260		0.022 U		0.023 U	0.09 U

Sample Date	11/11/2020	6/16/2020	10/9/2019	5/15/2019	10/11/2018	10/11/2018	6/20/2018	6/20/2018	9/29/2017	9/29/2017	5/31/2017
1,1-Dichloroethane	1.0 U	1.0 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.31 J	1.0 U	1 U	0.3 J	0.3 J		1 U	1 U	1 U	1 U	1 U
1,3-Dichlorobenzene	5.0 U	5.0 U	5 U	5 U	5 U		5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	0.27 J	0.38 J	0.4 J	0.4 J	0.5 J		5 U	5 U	5 U	5 U	5 U
1,4-Dioxane	2.8	2.6	4	4	3	3	3	3	4.0 J		3.8
Acetone	20 U	20 U	20 U	20 U	20 U		20 U				
Benzene	0.66 J	0.70 J	0.8 J	0.7 J	0.8 J		0.8 J	0.8 J	1 J	1	1
Chlorobenzene	44	51	58	42	62		52	53	64	70	67
Chloroethane	1.0 U	1.0 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
Chloroform	1.0 U	1.0 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
Chloromethane	1.0 U	1.0 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
cis-1,2-Dichloroethene	3.4	3.2	4	3	4		3	3	4	4	4
Ethane									15		
Ethene									5.0 U		
Methane									110		
Methylene chloride	1.0 U	1.0 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	4 U
Toluene	1.0 U	1.0 U	1 U	1 U	1 U		1 U	1 U	1 U	1 U	1 U
Trichloroethene	0.40 J	0.46 J	0.6 J	0.5 J	0.6 J		1 U	0.5 J	0.6 J	0.6 J	0.7 J
Vinyl Chloride	0.55 J	0.49 J	0.7 J	0.4 J	0.6 J		1 UJ	1 UJ	0.7 J	0.8 J	0.7 J
2,4-Dimethylphenol											
4-Methylphenol											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/31/2017	10/19/2016	10/19/2016	5/17/2016	10/21/2015	10/21/2015	5/12/2015	12/3/2014	12/3/2014	6/6/2014	6/6/2014
1,1-Dichloroethane	1 U	1.0 U		1 U	0.5 U	0.5 U	1 U	1.00 U		1.00 U	
1,2-Dichloroethane	1 U	1.0 U		1 U	0.5 J	0.5 U	1 U	1.00 U		1.00 U	
1,3-Dichlorobenzene	5 U	1.0 U		1 U	1 U	1 U	1 U	0.597 J		1.00 U	
1,4-Dichlorobenzene	5 U	1.4		1	2 J	1 J	1 U	1.44		1.11	
1,4-Dioxane	3.8	12	11	16	6.6		10	14	14	17	17
Acetone	20 U	5.1 U		5 U	6 U	6 U	5 U	10.0 U		10.0 UJ	
Benzene	1	2.6		2	3	1	1	2.39		2.25	
Chlorobenzene	69	125		120	120 J	65 J	53	152		67.6	
Chloroethane	1 U	1.0 U		1 U	0.5 U	0.5 U	1 U	0.960 J		1.00 UJ	
Chloroform	1 U	1.0 U		1 U	0.5 U	0.5 U	1 U	1.00 U		1.00 U	
Chloromethane	1 U	1.0 U		1 U	0.5 U	0.5 U	1 U	1.00 U		1.00 U	
cis-1,2-Dichloroethene	4	6.8		6	6 J	3 J	3	6.86		4.57	
Ethane											
Ethene											
Methane											
Methylene chloride	4 U	1.0 U		1 U	2 U	2 U	1 U	1.00 U		1.00 U	
Toluene	1 U	1.0 U		1 U	0.5 U	0.5 U	1 U	1.00 U		1.00 U	
Trichloroethene	0.6 J	1.0 U		1 U	0.8 J	0.5 U	1 U	1.30		0.745 J	
Vinyl Chloride	0.7 J	1.5		1	1	0.7 J	1 U	1.64		0.728 J	
2,4-Dimethylphenol											
4-Methylphenol											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	12/5/2013	5/9/2013	10/24/2012	5/22/2012	10/19/2011	5/24/2011	10/14/2010	5/18/2010	10/22/2009	5/20/2009	10/15/2008
1,1-Dichloroethane	1.00 U	5 U	5 U	25 U	25 U	25 U	50 U	50 U	50 U	1.2 J	50 U
1,2-Dichloroethane	1.00 U	5 U	1.04 J	25 U	25 U	25 U	50 U	50 U	50 U	1.87 J	50 U
1,3-Dichlorobenzene	1.00 U										
1,4-Dichlorobenzene	1.72										
1,4-Dioxane	16										
Acetone	5.00 U	5 U	5 U	25 U	25 U	5.49 J	50 U	50 U	50 U	5 U	50 U
Benzene	6.36	13.3	32.6	34.5	31.8	9.49 J	82.4	113	182	64.7	23.3 J
Chlorobenzene	141	220	231	306	304	152	337	498	486	499	422
Chloroethane	1.37	3 J	4.92 J	5.15 J	6.86 J	25 U	50 U	12.1 J	50 U	10.6	50 U
Chloroform	1.00 U	5 U	5 U	25 U	25 U	25 U	50 U	50 U	50 U	5 U	50 U
Chloromethane	1.00 U	5 U	5 U	25 U	25 U	25 U	50 U	50 U	50 U	5 U	50 U
cis-1,2-Dichloroethene	8.27	10.5	13.2	15.1 J	19.2 J	8.23 J	17.9 J	29.8 J	24 J	31	17.5 J
Ethane											
Ethene											
Methane											
Methylene chloride	1.00 U	5 U	5 U	25 U	25 U	25 U	50 U	50 U	50 U	5 U	50 U
Toluene	1.00 U	5 U	5 U	25 U	25 U	25 U	50 U	50 U	50 U	5 U	50 U
Trichloroethene	1.37	1.18 J	1.66 J	25 U	25 U	25 U	50 U	50 U	50 U	4.54 J	50 U
Vinyl Chloride	2.15	2.45 J	4.63 J	25 U	5.63 J	25 U	50 U	50 U	50 U	4.94 J	50 U
2,4-Dimethylphenol											
4-Methylphenol											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/25/2007	11/14/2006	10/19/2005	5/24/2005	10/20/2004	10/20/2004	5/18/2004	10/22/2003	5/20/2003	10/2/2002	10/2/2002
1,1-Dichloroethane	5 U	5 U	1.01 J	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	1.77 J	2.05 J	2.12 J	2.2 J	2.16 J	2.04 J	2.04	1.64 J	5 U	5 U	5 U
1,3-Dichlorobenzene											
1,4-Dichlorobenzene											
1,4-Dioxane											
Acetone	5 U	5 U	5 U	5 U	1.77 JB	5 U	1 U	5 U	5 U	10 U	10 U
Benzene	3.88 J	2.45 J	3.22 J	2.7 J	3.46 J	3.27 J	2.95	3.37 J	5 U	4 J	4 J
Chlorobenzene	370	379	444	472	396	391	505	629	589	690	680
Chloroethane	8.38	14.1	16.9	12.6	12.8	13.1	12.1	14.9	14	24	21
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U
Chloromethane	5 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	10 U	110
cis-1,2-Dichloroethene	20.4	17.4	21.1	21.6	21.1	21.3	21.1	26.7	25.5	28	28
Ethane											
Ethene											
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U
Trichloroethene	4.61 J	4.58 J	5.45	5.58	4.84 J	4.59 J	5.11	5.77	5.97	5 U	5 U
Vinyl Chloride	5.49	6.55	7.92	8.09	6.96	7.04	7.52	7.58	7.79	12	13
2,4-Dimethylphenol											
4-Methylphenol											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/14/2002	10/17/2001	10/17/2001	5/8/2001	11/16/2000	5/18/2000	5/18/2000	11/3/1999	5/4/1999	10/24/1998	1/22/1997	12/27/1996
1,1-Dichloroethane	5 U	1 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		15 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U		15 U
1,3-Dichlorobenzene												
1,4-Dichlorobenzene												
1,4-Dioxane												
Acetone	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		
Benzene	6	7	7	7	9	8	9	12	16	35		67
Chlorobenzene	590	660	670	520	720	510	720	600	690	790		360
Chloroethane	11	20	20	10 U	10 U	20	29	27	34	19		15 U
Chloroform	5 U	1 J	5 U	5 U	5 U	1 J	1 J	5 U	2 BJ	5 U		15 U
Chloromethane	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U		15 U
cis-1,2-Dichloroethene	16	29	29	23	30	26	30	35	32	42		70
Ethane											59	
Ethene											3.6 J	
Methane											420	
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 J	5 U		15 U
Toluene	2 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	3 J		15 U
Trichloroethene	5 U	6	6	6	6	5	7	6	7	9		15 U
Vinyl Chloride	5 J	8 J	9 J	4 J	10 U	7 J	13	25	29	55		15 U
2,4-Dimethylphenol												1.2 J
4-Methylphenol												1.2 J
Phenol												10 U
Aroclor-1016												
Aroclor-1221												
Aroclor-1232												
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												

Sample Date	9/14/1995	9/13/1995	12/10/1994	4/19/1994	12/30/1993
1,1-Dichloroethane	12 U		10 U	1 U	3.2 U
1,2-Dichloroethane	12 U		10 U	3	3.2
1,3-Dichlorobenzene	12 U	11 U	10 U	1 U	3.2 U
1,4-Dichlorobenzene	12U	11 U	10 U	1 U	3.2 U
1,4-Dioxane					
Acetone					
Benzene	89 J-CS		110	170	180 J
Chlorobenzene	630 J-CS		400	280	210
Chloroethane	25 J-CS		18	6.3	4
Chloroform	12 U		10 U	1 U	3.2 U
Chloromethane	12 U		10 U	1 U	3.2 U
cis-1,2-Dichloroethene	76 J-CS		87	51 D	120
Ethane					
Ethene					
Methane					
Methylene chloride	12 U		10 U	1 U	3.2 U
Toluene	12 UJ-C		10 U	1 U	3.2 U
Trichloroethene	12 U		10 U	11	11
Vinyl Chloride	30 J-CS		20	24	47
2,4-Dimethylphenol		11 U		5 U	10 U
4-Methylphenol		11 U		5 U	10 U
Phenol		11 U		3 J	10 U
Aroclor-1016		0.022 U		0.023 U	0.09 U
Aroclor-1221		0.022 U		0.023 U	0.09 U
Aroclor-1232		0.022 U		0.023 U	0.09 U
Aroclor-1242		0.022 UJ-C		0.023 U	0.09 U
Aroclor-1248		0.022 U		0.023 U	0.09 U
Aroclor-1254		0.022 U		0.023 U	0.09 U
Aroclor-1260		0.022 U		0.023 U	0.09 U

Sample Date	10/10/2019	5/25/2018	9/27/2017	10/20/2015	12/5/2013	10/23/2012	10/18/2011	10/11/2010	10/21/2009	10/13/2008	10/23/2007
1,4-Dioxane	0.3 U	0.3 U	0.20 U	0.19 U	0.026 J						
Acetone	20 U	20 U	20 U	6 U	5.00 U	5 U	5 U	1.37 J	5 U	5 U	5 U
Benzene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U
m,p-Xylenes	5 U	1 U	1 U	0.5 U						5 U	
Methane			110								
Methylene chloride	1 U	1 U	1 U	2 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	5 U	5 U	5 U	5 U
Aroclor-1016							0.05 U			0.05 U	
Aroclor-1221							0.05 U			0.05 U	
Aroclor-1232							0.05 U			0.05 U	
Aroclor-1242							0.05 U			0.05 U	
Aroclor-1248							0.05 U			0.05 U	
Aroclor-1254							0.05 U			0.05 U	
Aroclor-1260							0.05 U			0.05 U	

Sample Date	11/13/2006	10/17/2005	10/19/2004	10/21/2003	12/20/2002	10/3/2002	10/15/2001	11/14/2000	11/2/1999	10/21/1998	12/29/1996
1,4-Dioxane						-					
Acetone	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	
Benzene	5 U	5 U	5 U	5 U	10 U	74	10 U	10 U	10 U	5 U	0.5 U
Chlorobenzene	5 U	5 U	5 U	5 U	10 U	23	10 U	10 U	5 U	5 U	0.5 U
Chloroform	5 U	5 U	5 U	5 U	3 J	10 U	10 U	10 U	5 U	5 U	0.5 U
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	10 U	4 J	10 U	10 U	5 U	5 U	0.5 U
m,p-Xylenes		5 U	5 U	5 U	10 U	3 J	10 U	10 U	5 U	5 U	1 U
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	5 U	5 B	0.5 U
Toluene	5 U	5 U	5 U	5 U	10 U	110	10 U	10 U	5 U	5 U	0.58
Aroclor-1016	0.05 U										
Aroclor-1221	0.05 U										
Aroclor-1232	0.05 U										
Aroclor-1242	0.05 U										
Aroclor-1248	0.05 U					-					
Aroclor-1254	0.05 U					-					
Aroclor-1260	0.05 U										

Sample Date	9/13/1995	4/19/1994	12/30/1993
1,4-Dioxane			
Acetone			
Benzene	0.5 UJ-C	1 U	0.5 UJ
Chlorobenzene	0.5 U	1 U	0.5 UJ
Chloroform	0.5 U	1 U	0.5 UJ
cis-1,2-Dichloroethene	0.5 U	1 U	0.5 UJ
m,p-Xylenes	1 UJ-C	1 U	1 UJ
Methane			
Methylene chloride	0.5 U	1 U	0.5 UJ
Toluene	0.5 UJ-C	1 U	0.5 UJ
Aroclor-1016	0.022 U	0.022 U	0.09 U
Aroclor-1221	0.022 U	0.022 U	0.09 U
Aroclor-1232	0.022 U	0.022 U	0.09 U
Aroclor-1242	0.022 UJ-C	0.022 U	0.09 U
Aroclor-1248	0.022 U	0.022 U	0.09 U
Aroclor-1254	0.022 U	0.022 U	0.09 U
Aroclor-1260	0.022 U	0.022 U	0.09 U

Sample Date	5/24/2011	12/15/2009	10/15/2008	10/25/2007	11/15/2006	10/19/2005	5/24/2005	10/20/2004	5/18/2004	10/23/2003	10/23/2003
1,1,1-Trichloroethane	23.3 J	28.3 J	1000 U	500 U	100 U	14.6	17.9	13	10.6	9.08	8.09 J
1,1-Dichloroethane	40.6	83 J	200 J	500 U	96.9 J	90.2	99.1	85.1	72.9	53.3	10.2
1,1-Dichloroethene	7.68 J	100 U	1000 U	500 U	100 U	24.1	25.8	19.4	14.6	11.6	11.3 J
1,2-Dichloroethane	135	278	615 J	318 J	284	339	362	272	264	273	281
4-Methyl-2-Pentanone	25 U	100 U	1000 U	500 U	100 U	5 U	5 U	5 U	1 U	5 U	25 U
Acetone	7.57 J	100 U	1000 U	500 U	100 U	5 U	32.4 B	5 U	1 U	5 U	25 U
Benzene	200	219	17300	6830	6010	6300	8530	5730	3930	5220	5890 E
Chlorobenzene	59.3	101	2750	1080	965	1030	1160	884	668	724	190
Chloroethane	25 U	100 U	1000 U	500 U	100 U	1.77 J	1.53 J	1.21 J	1 U	1.43	25 U
Chloroform	107	202	437 J	234 J	256	310	352	286	258	309	306
cis-1,2-Dichloroethene	237	662	3850	1870	1520	1720	2040	1780	1380	1430	1610
Ethene											
m,p-Xylenes			1000 U			5 U	5 U	5 U	1 U	5 U	25 U
Methane											
Methylene chloride	17.4 J	141	1000 U	500 U	100 U	73.7	110	87.8	51.9	183	185
o-Xylene	25 U	100 U	1000 U	500 U	100 U	16.5	22.6	16.8	14.4	21.9	13.6 J
Tetrachloroethene	25 U	100 U	1000 U	500 U	100 U	2.89 J	3.31 J	2.71 J	2.15	3.32 J	25 U
Toluene	25 U	60.3 J	1000 U	500 U	100 U	4.96 J	5.71	5	4.52	4.68 J	25 U
trans-1,2-Dichloroethylene	25 U	100 U	1000 U	500 U	100 U	6.08	5.77	4.19 J	4.8	2.04 J	25 U
Trichloroethene	103	158	308 J	151 J	193	231	264	227	218	256	247
Vinyl Chloride	10.8 J	34.9 J	511 J	201 J	187	221	198	165	120	163	155
1,2,4-Trichlorobenzene			9.24 J			4.16 J		18.5 U		3.4 J	3.31 J
1,2-Dichlorobenzene			9.26 U			18.7 U		18.5 U		1.46 J	1.22 J
1,4-Dichlorobenzene			9.26 U			2.89 J		18.5 U		9.26 U	9.26 U
2,4-Dimethylphenol			9.26 U			3.77 J		18.5 U		9.26 U	9.26 U
2-Chlorophenol			9.26 U			18.7 U		18.5 U		9.26 U	9.26 U
2-Methylphenol			9.26 U			18.7 U		18.5 U		9.26 U	9.26 U
bis(2-Ethylhexyl)Phthalate			9.26 U			18.7 U		18.5 U		1.62 J	9.26 U
Naphthalene			15.9			18.7 U		18.5 U		9.26 U	9.26 U
Phenol			8.67 J			57.9		18.5 U		6.27 J	3.81 J
Aroclor-1016			0.05 U			0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1221			0.05 U			0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1232			0.05 U			0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1242			0.05 U			0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1248			0.05 U			0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1254			0.05 U			0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1260			0.05 U			0.05 U		0.05 U		0.05 U	0.05 U

Sample Date	5/21/2003	10/3/2002	5/14/2002	10/19/2001	5/9/2001	5/9/2001	11/17/2000	11/17/2000	5/19/2000	11/4/1999	10/22/1998	1/16/1997
1,1,1-Trichloroethane	10.8	5	8	10	11	11	5 U	11	15	7	12	
1,1-Dichloroethane	59.3	25	28	64	31	25	60	57	45	24	33	
1,1-Dichloroethene	11.7	7	5 U	15	8	7	5 U	5 U	12	7	5 U	
1,2-Dichloroethane	234	5 U	5 U	5 U	42	31	5 U	5 U	300	5 U	150	
4-Methyl-2-Pentanone	5 U	16	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Acetone	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Benzene	4820	4200	5600	6200	5500	5500	6200	6100	4100	3100	6100	
Chlorobenzene	668	550	780	890	720	720	700	810	650	430	930	
Chloroethane	5 U	10 U	10 U	3 J	10 U	10 U	10 U	10 U	10 U	10 U	10 U	
Chloroform	279	140	370	410	360	560 B	360	370	320 B	290	450	
cis-1,2-Dichloroethene	1410	1000	1700	2100	1600	1900	1800	1800	1500	1200	2100	
Ethene												9
m,p-Xylenes	5 U	3 J	15	5 U	5 U	5 U	18	18	15	5 U	5 U	
Methane												90
Methylene chloride	111	51	57	190	100	81 B	250	230 E	1200	150	670	
o-Xylene	17.5	13	20	20	17	5 U	5 U	5 U	5 U	12	43	
Tetrachloroethene	5 U	5 U	5 U	2 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Toluene	5 U	38	3 J	4 J	4 J	3 J	3 J	3 J	5 J	2 J	6	
trans-1,2-Dichloroethylene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Trichloroethene	225	120	170	300	260	260	260	290	260	150	410	
Vinyl Chloride	96	120	55	150	63	57	130	120	230 E	230 E	130	
1,2,4-Trichlorobenzene		5 U		2 J			2 J	2 J		10 U	10 U	
1,2-Dichlorobenzene		5 U		10 U			10 U	10 U		10 U	10 U	
1,4-Dichlorobenzene		5 U		1 J			2 J	2 J		10 U	3 J	
2,4-Dimethylphenol		5 U		10 U			10 U	10 U		10 J	15	
2-Chlorophenol		5 U		10 U			10 U	10 U		10 U	10 U	
2-Methylphenol		5 U		10 U			10 U	10 U		10 U	10 U	
bis(2-Ethylhexyl)Phthalate		5 U		1 J			10 U	10 U		4 BJ	9 BJ	
Naphthalene		5 U		3 J			10 U	10 U		10 U	10 U	
Phenol		5 U		1 J			10 U	10 U		7 J	10 U	
Aroclor-1016		0.065 U		0.065 U			0.065 U	0.065 U		0.068 U	0.5 U	
Aroclor-1221		0.065 U		0.065 U			0.065 U	0.065 U		0.068 U	0.5 U	
Aroclor-1232		0.065 U		0.065 U			0.065 U	0.065 U		0.068 U	0.5 U	
Aroclor-1242		0.065 U		0.065 U			0.065 U	0.065 U		0.068 U	0.5 U	
Aroclor-1248		0.065 U		0.065 U			0.065 U	0.065 U		0.068 U	0.5 U	
Aroclor-1254		0.065 U		0.065 U			0.065 U	0.065 U		0.068 U	1 U	
Aroclor-1260		0.065 U		0.065 U			0.065 U	0.065 U		0.068 U	1 U	

Sample Date	12/27/1996	9/13/1995	3/2/1995	12/10/1994
1,1,1-Trichloroethane	50 U	50 U	50 U	100 U
1,1-Dichloroethane	50 U	50 U	50 UJ-C	100 U
1,1-Dichloroethene	50 U	50 U	50 U	100 U
1,2-Dichloroethane	240	50 U	150	150
4-Methyl-2-Pentanone				
Acetone				
Benzene	3500	3100 J-C	1300 J-C	4400
Chlorobenzene	350	500 J-C	230	500
Chloroethane	50 U	50 U	50 UJ-C	100 U
Chloroform	410	490	300 J-C	430
cis-1,2-Dichloroethene	1600	960 J-C	590	1100
Ethene				
m,p-Xylenes	100 U	100 UJ-C	100 UJ-C	200 U
Methane				
Methylene chloride	490	450	490 J-C	610
o-Xylene	50 U			
Tetrachloroethene	50 U	50 U	50 U	100 U
Toluene	50 U	50 UJ-C	50 UJ-C	100 U
trans-1,2-Dichloroethylene	50 U	50 U	50 U	100 U
Trichloroethene	370	340 J-C	250 J-C	490
Vinyl Chloride	50 U	50 UJ-C	50 U	100 U
1,2,4-Trichlorobenzene		16 U	-	
1,2-Dichlorobenzene	50 U	50 U	50 U	100 U
1,4-Dichlorobenzene	50 U	50 U	50 U	100 U
2,4-Dimethylphenol	6.3 J	16 U	3 J	2 J
2-Chlorophenol	10 U	2 J	2 J	2 J
2-Methylphenol	6.5 J	16 U	5 U	5 U
bis(2-Ethylhexyl)Phthalate		2 J		
Naphthalene		16 U		
Phenol	6.8 J	16 U	1 J	5
Aroclor-1016		0.022 U		0.022 U
Aroclor-1221		0.022 U		0.022 U
Aroclor-1232		0.022 U		0.022 U
Aroclor-1242		0.022 UJ-C		0.022 U
Aroclor-1248		0.022 U		0.022 U
Aroclor-1254		0.022 U		0.022 U
Aroclor-1260		0.022 U		0.022 U

Sample Date	10/8/2019	5/25/2018	9/25/2017	10/18/2016	10/21/2015	12/2/2014	12/4/2013	10/24/2012	10/19/2011	10/13/2010	12/15/2009
1,4-Dioxane		0.7	1.1				1.3				
2-Butanone	3 J	10 U	10 U	1.0 U	10 U	5.00 U	1.00 U	5 U	5 U	5 U	5 U
Acetone	46	27	25	34.8	22	10.0 U	10.6	71.1	21.4	19	14.4
Chloroform	1 U	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U
Methane			3.8 J			-					
Methylene chloride	1 U	1 U	1 U	1.0 U	2 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U
Toluene	1 U	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U
bis(2-Ethylhexyl)Phthalate						-					
di-n-Butyl Phthalate											
Aroclor-1016						-					
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248						-					
Aroclor-1254											
Aroclor-1260											

Sample Date	10/19/2009	10/13/2008	10/25/2007	11/14/2006	10/18/2005	10/18/2004	10/20/2003	10/2/2002	10/17/2001	11/16/2000	11/3/1999
1,4-Dioxane											
2-Butanone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U
Acetone	26.2	5 U	5 U	2.43 J	11.3 B	8.09 B	5 U	10 U	74	100	55
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
bis(2-Ethylhexyl)Phthalate											
di-n-Butyl Phthalate											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	11/17/1998	10/20/1998	12/29/1996	9/14/1995	3/2/1995	12/10/1994
1,4-Dioxane						
2-Butanone	10 U	10 U				
Acetone	33	76				
Chloroform	2 J	5 U	0.5 U	0.5 U	0.5 UJ-C	0.5 U
Methane						
Methylene chloride	6 B	6 B	0.5 U	0.5 U	0.5 UJ-C	0.5 U
Toluene	5 U	5 U	0.88	0.5 UJ-C	0.5 UJ-C	0.5 U
bis(2-Ethylhexyl)Phthalate				3 J		
di-n-Butyl Phthalate				1 J		
Aroclor-1016				0.022 U		0.022 U
Aroclor-1221				0.022 U		0.022 U
Aroclor-1232				0.022 U		0.022 U
Aroclor-1242				0.022 UJ-C		0.022 U
Aroclor-1248				0.022 U		0.022 U
Aroclor-1254				0.022 U		0.022 U
Aroclor-1260				0.022 U		0.022 U

Sample Date	5/14/2015	12/5/2014	6/6/2014	6/6/2014	12/6/2013	10/24/2012	10/19/2011	10/14/2010	12/15/2009	10/26/2009	10/14/2008
1,1,1-Trichloroethane	1 U	0.596 J	1.00 U	1.00 U	1.00 U	5 U	5 U	25 U	4.88 J	3.96 J	5 U
1,1-Dichloroethane	2	3.04	2.64	2.65	4.18	3.37 J	1.44 J	5.56 J	4.55 J	4.37 J	5 U
1,1-Dichloroethene	1	2.41	1.70	1.72	2.94	2.06 J	5 U	25 U	5.6	4.1 J	5 U
1,2-Dichloroethane	7	11.2	9.76	9.63	10.9	11.6	8.57	17.4 J	24	25.8	5 U
1,4-Dioxane					0.35						
Acetone	5 U	10.0 U	10.0 U	10.0 U	5.00 U	5 U	5 U	6.21 J	5 U	5 U	5 U
Benzene	2	3.06	3.29	3.35	8.41	6.29	3.65 J	18.9 J	31.8	31	5 U
Chlorobenzene	7	15.9	15.5	15.0	48.0	31.6	18.3	94.5	119	146	5 U
Chloroform	9	15.5	12.6	12.8	8.91	17.9	9.69	12.1 J	132	128	5 U
cis-1,2-Dichloroethene	34	60.1	59.2	56.6	81.3	71.9	36.9	81.8	142	130	5 U
Ethene											
m,p-Xylenes	1 U	1.00 U	1.00 U	1.00 U	1.00 U						5 U
Methylcylohexane	1 U	1.00 U	0.714 J	1.00 U	2.61						
Methylene chloride	1 U	1.00 U	1.00 U	1.00 U	1.00 U	5 U	5 U	25 U	2.22 J	1.16 J	5 U
Toluene	1 U	1.00 U	1.00 U	1.00 U	1.00 U	5 U	5 U	25 U	5 U	5 U	5 U
Trichloroethene	100	156	112	117	159	203	65.7	251	321	332	1.01 J
Vinyl Chloride	1 U	1.00 U	1.00 U	1.00 U	0.718 J	5 U	5 U	25 U	1.92 J	1.31 J	5 U
di-n-Butyl Phthalate											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/24/2007	11/13/2006	10/17/2005	5/23/2005	10/18/2004	5/17/2004	10/21/2003	5/19/2003	10/1/2002	5/13/2002	10/16/2001
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
1,4-Dioxane											
Acetone	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	10 U	10 U	10 U
Benzene	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Chloroform	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Ethene											
m,p-Xylenes			5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Methylcylohexane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5 U	5 U	5 U	1.38 J	5 U	1 U	5 U	5 U	5 U	5 U	5 U
Vinyl Chloride	5 U	5 U	5 U	5 U	5 U	1 U	5 U	5 U	10 U	10 U	10 U
di-n-Butyl Phthalate											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/8/2001	11/15/2000	5/17/2000	11/3/1999	5/4/1999	11/17/1998	10/23/1998	1/21/1997	12/29/1996	9/13/1995	3/2/1995	12/10/1994
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	1 U	0.5 U	0.5 U
1,1-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	8		5 U	1 U	0.5 UJ-C	0.5 U
1,1-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	1 U	0.5 U	0.5 U
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U		5 U	1 U	0.8	0.5 U
1,4-Dioxane												
Acetone	10 U	10 U	10 U	10 U	10 U	10 U	19					
Benzene	5 U	5 U	5 U	5 U	5 U	280	600		140	30 J-C	6.2 J-C	1.2
Chlorobenzene	5 U	5 U	5 U	5 U	2 J	49	130		12	7 J-C	2	2
Chloroform	5 U	4 J	5 U	5 U	3 BJ	39	14		24	9.2	2.4 J-C	2.1
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	8	49	170		18	6.2 J-C	2.6	3.6
Ethene								0.9 J				
m,p-Xylenes	5 U	5 U	5 U	5 U	5 U	5 U	16		10 U	2 UJ-C	1.1 J-C	1 U
Methylcylohexane												
Methylene chloride	5 U	5 U	3 BJ	5 U	5 U	26 B	49		5 U	1 U	0.5 UJ-C	0.5 U
Toluene	5 U	5 U	5 U	5 U	5 U	12 J	350		5 U	1 UJ-C	0.5 UJ-C	0.5 U
Trichloroethene	5 U	5 U	5 U	4 J	27	120	24		67	31 J-C	13 J-C	19
Vinyl Chloride	10 U	10 U	10 U	10 U	10 U	10 U	10 U		5 U	1 UJ-C	0.5 U	0.5 U
di-n-Butyl Phthalate										1 J		
Phenol									10 U	11 U	5 U	5 U
Aroclor-1016										0.022 U		0.022 U
Aroclor-1221										0.022 U		0.022 U
Aroclor-1232										0.022 U		0.022 U
Aroclor-1242										0.022 UJ-C		0.022 U
Aroclor-1248										0.022 U		0.022 U
Aroclor-1254										0.022 U		0.022 U
Aroclor-1260										0.022 U		0.022 U

Sample Date	11/11/2020	10/9/2019	10/10/2018	5/29/2018	9/26/2017	10/20/2016	10/23/2015	12/3/2014	12/5/2013	5/7/2013	10/24/2012
1,2-Dichloroethane	1.0 U	1 U	0.3 J	1 U	1 U	1.0 U	1 U	1.00 U	1.00 U	5 U	5 U
1,4-Dioxane	0.64	1	0.9	0.9	1.2	2.4	1.2	2.2	2.9		
2-Butanone	10 U	0.4 J	10 U	10 U	10 U	1.0 U	3 U	1.45 J	1.00 U	5 U	5 U
Acetone	0.78 J	1 J	5 J	20 U	20	24.8	10 J	13.9	4.26 J	5 U	5 U
Benzene	1.0 U	1 U	1 U	1 U	1 U	5.8 J	0.5 U	1.00 U	1.00 U	5 U	5 U
Carbon disulfide	0.53 J	0.2 J	5 J	13	4 J	1.0 U	5 U	1.00 U	1.00 UJ	5 U	5 U
Chlorobenzene	0.27 J	0.3 J	0.3 J	1 U	1 U	2.4	1	1.27	1.11	1.36 J	1.42 J
Chloroform	1.0 U	1 U	1 U	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	5 U	5 U
Chloromethane	1.0 U	1 U	0.2 J	1 U	1 U	1.5	1 U	1.00 U	1.00 U	5 U	5 U
cis-1,2-Dichloroethene	1.0 U	0.6 J	0.2 J	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	5 U	5 U
m,p-Xylenes	5.0 U	5 U	5 U	1 U	1 U	2.0 U	0.5 U	1.00 U		5 U	
Methane					18						
Methylene chloride	1.0 U	1 U	1 U	1 U	1 U	1.0 U	2 U	1.00 U	1.00 U	5 U	5 U
Toluene	1.0 U	1 U	1 U	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	5 U	5 U
Trichloroethene	1.0 U	0.3 J	1 U	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	5 U	5 U
Benzoic Acid											
bis(2-Ethylhexyl)Phthalate											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/21/2012	10/19/2011	5/23/2011	10/13/2010	5/18/2010	10/21/2009	10/14/2008	10/25/2007	11/14/2006	10/18/2005	5/23/2005
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,4-Dioxane											
2-Butanone	5 U	5 U	5 U	1.32 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	5 U	5.61	4.44 J	5.09	6.07	5 U	5 U	5 U	5 U	7.34 B	6.03 B
Benzene	5 U	5 U	5 U	5 U	1.17 J	5 U	5 U	1.1 J	1.24 J	1.55 J	1.75 J
Carbon disulfide	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	1.62 J	2.28 J	2.08 J	1.44 J	1.88 J	1.78 J	1.82 J	1.95 J	2.36 J	3.29 J	3.48 J
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloromethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
m,p-Xylenes	5 U						5 U			5 U	5 U
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzoic Acid											
bis(2-Ethylhexyl)Phthalate											
Phenol											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/19/2004	5/17/2004	10/22/2003	5/20/2003	10/2/2002	5/13/2002	10/16/2001	5/8/2001	11/13/2000	5/18/2000	11/2/1999	5/4/1999
1,2-Dichloroethane	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,4-Dioxane												
2-Butanone	5 U	1 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	5.79 B	5.77 B	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	5 U	1.14	1.08 J	5 U	5 U	5 U	2 J	2 J	2 J	3 J	3 J	4 J
Carbon disulfide	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	2.73 J	3.1	3.49 J	5 U	3 J	3 J	5 J	5 J	4 J	6	7	8
Chloroform	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 BJ
Chloromethane	5 U	1 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,2-Dichloroethene	5 U	1 U	5 U	5 U	5 U	5 U	1 J	1 J	5 U	2 J	3 J	3 J
m,p-Xylenes	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methane												
Methylene chloride	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	2 BJ	5 U	4 BJ
Toluene	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	1 J
Benzoic Acid												
bis(2-Ethylhexyl)Phthalate												
Phenol												
Aroclor-1016												
Aroclor-1221												
Aroclor-1232												
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												

Sample Date	10/23/1998	12/28/1996	9/11/1995	3/2/1995	12/13/1994	12/10/1994
1,2-Dichloroethane	5 U		0.5 U	0.5 U		0.5 U
1,4-Dioxane						
2-Butanone	10 U					
Acetone	10 U					
Benzene	5 U	11	4.6 J-C	2.2 J-C		1.6
Carbon disulfide	5 U					
Chlorobenzene	5 U	1.4	0.5 U	0.5 U		0.5 U
Chloroform	5 U	0.5 U	0.5 U	0.5 UJ-C		0.5 U
Chloromethane	10 U		0.5 U	0.5 U		0.5 UJ-C
cis-1,2-Dichloroethene	5 U	1.3	0.5 U	0.5 U		0.5 U
m,p-Xylenes	5 U	1 U	1 U	3.2 J-C		1 U
Methane						
Methylene chloride	5 U	0.5 U	0.5 UJ-C	0.5 UJ-C		0.5 U
Toluene	5 U	10	0.5 U	1 J-C		0.5 UJ-C
Trichloroethene	5 U	0.5 U	0.5 U	0.5 UJ-C		0.5 U
Benzoic Acid			3 J	-		
bis(2-Ethylhexyl)Phthalate			3 J			
Phenol		10 U	10 U	5 U	5 U	
Aroclor-1016			0.023 U			0.022 U
Aroclor-1221			0.023 U			0.022 U
Aroclor-1232			0.023 U			0.022 U
Aroclor-1242			0.023 UJ-C			0.022 U
Aroclor-1248			0.023 U			0.022 U
Aroclor-1254			0.023 U			0.022 U
Aroclor-1260			0.023 U			0.022 U

Sample Date	11/12/2020	6/17/2020	10/8/2019	10/8/2019	5/15/2019	10/10/2018	6/18/2018	9/28/2017	9/28/2017	6/26/2017
1,1-Dichloroethane		0.21 J	0.2 J		0.2 J	0.4 J	1 U	1 U		1 U
1,4-Dioxane	2.1	1.7	3	3	2	3	3	2.7	3.0	4.0
2-Butanone	10 U	10 U	10 U		10 U	10 U	10 U	10 U		10 U
4-Methyl-2-Pentanone	10 U	10 U	10 U		10 U	10 U	10 U	10 U		10 U
Acetone	20 U	20 U	20 U		20 U	20 U	20 U	20 U		20 U
Benzene	79	74	90		93	120	110	97		100
Chlorobenzene	1.9	1.9	2		2	3	2	2		2
Chloroethane	1.0 U	1.0 U	1 U		1 U	1 U	1 U	1 U		1 U
Chloroform	1.0 U	1.0 U	1 U		1 U	1 U	1 U	1 U		1 U
cis-1,2-Dichloroethene	1.0 U	1.0 U	1 U		1 U	1 U	1 U	1 U		1 U
Ethane							15	15		
Ethene							30	28 J		
Ethylbenzene	1.0 U	1.0 U	1 U		1 U	1 U	1 U	1 U		1 U
m,p-Xylenes	5.0 U	5.0 U	5 U		5 U	5 U	1 U	1 U		1 U
Methane							340	360		
o-Xylene	1.0 U	1.0 U	1 U		1 U	1 U	1 U	1 U		1 U
Toluene	3.2	3.4	5		5	32	24	45		55
Trichloroethene	1.0 U	1.0 U	1 U		1 U	1 U	1 U	1 U		1 U
2,4-Dimethylphenol			10 U					1 U		
2-Methylphenol			2 U					1 U		
4-Methylphenol			2 U					0.9 J		
bis(2-Ethylhexyl)Phthalate										
di-n-Butyl Phthalate										
Phenol			2 U					1 J		
Aroclor-1016										
Aroclor-1221										
Aroclor-1232										
Aroclor-1242										
Aroclor-1248										
Aroclor-1254										
Aroclor-1260										

Sample Date	10/19/2016	5/17/2016	10/21/2015	10/21/2015	5/13/2015	5/13/2015	12/2/2014	6/6/2014	12/6/2013	12/6/2013	5/8/2013
1,1-Dichloroethane	1.0 U	1 U	0.7 J		1		0.916 J	1.02	1.27 J		1.24 J
1,4-Dioxane	8.4	11	6.5	7.0	15	15	17	19	17		
2-Butanone	1.0 U	1 U	3 U		1 U		5.00 U	5.00 U	1.00 U		5 U
4-Methyl-2-Pentanone	1.0 U	1 U	3 U		1 U		5.00 U	5.00 U	1.00 U		5 U
Acetone	5.0 U	5 U	6 U		5 U		10.0 U	10.0 U	5.70		5 U
Benzene	161	210	280		290		373	420	421		496
Chlorobenzene	3.5	4	6		8		7.88	9.85	9.45		9.5
Chloroethane	1.0 U	1 U	0.5 U		1 U		1.00 U	1.00 U	1.00 U		5 U
Chloroform	1.0 U	1 U	0.5 U		1 U		1.00 U	1.00 U	1.00 U		5 U
cis-1,2-Dichloroethene	1.0 U	1 U	0.5 U		1 U		1.00 U	1.00 U	1.00 U		5 U
Ethane											
Ethene											
Ethylbenzene	1.0 U	1 U	0.5 U		1 U		1.00 U	0.575 J	0.503 J		5 U
m,p-Xylenes	2.0 U	1 U	0.5 U		1 U		0.506 J	0.809 J	0.812 J		5 U
Methane											
o-Xylene	1.0 U	1 U	0.5 U		1 U		1.00 U	1.00 U	1.00 U		5 U
Toluene	2.7	3	4		9		5.86	4.82	4.32		7.74
Trichloroethene	1.0 U	1 U	0.5 U		1 U		1.00 U	1.00 U	1.00 U		5 U
2,4-Dimethylphenol			0.5 U						9.62 U	9.26 U	
2-Methylphenol			0.5 U						9.62 U	9.26 U	
4-Methylphenol			0.5 U								
bis(2-Ethylhexyl)Phthalate									9.62 U	9.26 U	
di-n-Butyl Phthalate									9.62 U	9.26 U	
Phenol			1						9.62 UJ	9.26 UJ	
Aroclor-1016									0.0500 U	0.0500 U	
Aroclor-1221									0.0500 U	0.0500 U	
Aroclor-1232									0.0500 U	0.0500 U	
Aroclor-1242									0.0500 U	0.0500 U	
Aroclor-1248									0.0500 U	0.0500 U	
Aroclor-1254									0.0500 U	0.0500 U	
Aroclor-1260									0.0500 U	0.0500 U	

Sample Date	10/24/2012	10/24/2012	5/21/2012	10/20/2011	5/24/2011	10/14/2010	5/19/2010	10/22/2009	5/20/2009	10/15/2008	10/25/2007
1,1-Dichloroethane	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	1.93 J
1,4-Dioxane											
2-Butanone	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	5 U
4-Methyl-2-Pentanone	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	5 U
Acetone	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	5 U
Benzene	830	733	834	1100	792	722	1440	1270	2580	1660	686
Chlorobenzene	20.3 J	16.3 J	100 U	27.1 J	19.3 J	20.9 J	37.5 J	250 U	150 J	54.1 J	13.3
Chloroethane	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	5 U
Chloroform	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	5 U
cis-1,2-Dichloroethene	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	2.92 J
Ethane											
Ethene											
Ethylbenzene	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	5 U
m,p-Xylenes			100 U						250 U	100 U	
Methane											
o-Xylene	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	5 U
Toluene	10.9 J	50 U	71.9 J	67.4	18.3 J	100 U	78.4 J	327	750	446	16.6
Trichloroethene	50 U	50 U	100 U	50 U	50 U	100 U	100 U	250 U	250 U	100 U	3.1 J
2,4-Dimethylphenol	9.26 U	9.26 U		9.26 U		9.26 U		1.29 J		23.8 U	9.26 U
2-Methylphenol	9.26 U	9.26 U		9.26 U		1.75 J		3.25 J		23.8 U	9.26 U
4-Methylphenol				20.5		24.9		48.8		42.2	20.3
bis(2-Ethylhexyl)Phthalate	9.26 U	15.7		9.26 U		9.26 U		8.37 J		23.8 U	9.26 U
di-n-Butyl Phthalate	9.26 U	9.26 U		9.26 U		9.26 U		9.26 U		23.8 U	9.26 U
Phenol	9.26 U	9.26 U		9.26 U		6.28 J		5.46 J		23.8 U	9.26 U
Aroclor-1016	0.05 U	0.05 U		0.05 U		0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1221	0.05 U	0.05 U		0.05 U		0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1232	0.05 U	0.05 U		0.05 U		0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1242	0.05 U	0.05 U		0.05 U		0.05 U		0.05 U		0.05 U	0.0545
Aroclor-1248	0.05 U	0.05 U		0.05 U		0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1254	0.05 U	0.05 U		0.05 U		0.05 U		0.05 U		0.05 U	0.05 U
Aroclor-1260	0.05 U	0.05 U		0.05 U		0.05 U		0.05 U		0.05 U	0.05 U

Sample Date	11/14/2006	10/18/2005	5/24/2005	10/19/2004	5/18/2004	10/22/2003	5/21/2003	10/2/2002	5/14/2002	10/17/2001	5/8/2001
1,1-Dichloroethane	3.63 J	3.43 J	3.81 J	2.61 J	2.96	2.92 J	25 U	2 J	5 U	3 J	3 J
1,4-Dioxane											
2-Butanone	5 U	5 U	2.37 J	5 U	1 U	5 U	25 U	10 U	10 U	5 J	10 U
4-Methyl-2-Pentanone	5 U	12.6	10.5	5 U	9.07	5 U	25 U	10 U	10 U	9 J	13
Acetone	15.8	22.5 B	27.2 B	5 U	31.1 B	47.1	48.6	12	27	100	68
Benzene	1130	1220	1170	704	846	962	1020	390	620	1100	1100
Chlorobenzene	31.2	30.8	37	14.1	28.9	25.9	27.9	6	9	26	29
Chloroethane	5 U	1.57 J	1.03 J	1 J	1.2	5 U	25 U	10 U	10 U	10 U	10 U
Chloroform	5 U	5 U	5 U	5 U	1 U	5 U	25 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	1.43 J	1.16 J	5 U	1.84 J	1 U	1.05 J	25 U	3 J	5 U	5 U	5 U
Ethane											
Ethene											
Ethylbenzene	1.95 J	1.73 J	1.97 J	5 U	1.37	1.22 J	25 U	5 U	5 U	1 J	5 U
m,p-Xylenes		2.33 J	2.38 J	5 U	1 U	5 U	25 U	5 U	5 U	2 J	2 J
Methane											
o-Xylene	1.33 J	1.39 J	1.43 J	5 U	1 U	5 U	25 U	5 U	5 U	1 J	1 J
Toluene	254	287	269	39.6	155	251	264	20	53	320	280
Trichloroethene	1.74 J	5.75	1.32 J	2.18 J	1.45	1.8 J	25 U	5 U	5 U	1 J	5 U
2,4-Dimethylphenol	10 U	9.52 U		9.26 U		9.26 U		5 U		1 J	
2-Methylphenol	10 U	9.52 U		9.26 U		1.2 J		5 U		3 J	
4-Methylphenol	50.4	58.8		25.3		35.2		5 J		37	
bis(2-Ethylhexyl)Phthalate	10 U	9.52 U		9.26 U		9.26 U		5 U		1 J	
di-n-Butyl Phthalate	10 U	9.52 U		9.26 U		9.26 U		5 U		10 U	
Phenol	16	12.6		10.4		7.99 J		2 J		3 J	
Aroclor-1016	0.05 U	0.05 U		0.05 U		0.05 U		0.065 U		0.065 U	
Aroclor-1221	0.05 U	0.05 U		0.05 U		0.05 U		0.065 U		0.065 U	
Aroclor-1232	0.05 U	0.05 U		0.05 U		0.05 U		0.065 U		0.065 U	
Aroclor-1242	0.05 U	0.05 U		0.05 U		0.05 U		0.065 U		0.065 U	
Aroclor-1248	0.05 U	0.05 U		0.05 U		0.05 U		0.065 U		0.065 U	
Aroclor-1254	0.05 U	0.05 U		0.05 U		0.05 U		0.065 U		0.065 U	
Aroclor-1260	0.05 U	0.05 U		0.05 U		0.05 U		0.065 U		0.065 U	

Sample Date	11/16/2000	5/19/2000	11/3/1999	5/4/1999	10/23/1998	1/15/1997	12/28/1996	10/13/1995	9/14/1995
1,1-Dichloroethane	5 U	3 J	2 J	5 U	5 U		10 U	7.5 U	5 U
1,4-Dioxane									
2-Butanone	10 U	10 U	5 J	10 U	10 U				
4-Methyl-2-Pentanone	8 J	5 J	6 J	10 U	6 J				
Acetone	10 U	45	80	160	45				
Benzene	1200	600	900	770	750		360	230	140 J-C
Chlorobenzene	23	6	18	23	19		10 U	7.5 U	5 U
Chloroethane	10 U	10 U	10 U	10 U	10 U		10 U	7.5 U	5 U
Chloroform	5 U	5 U	5 U	2 BJ	5 U		10 U	7.5 U	9.4 J-BC
cis-1,2-Dichloroethene	5 U	8 J	5 U	5 U	5 U		10 U	7.5 U	5 U
Ethane									
Ethene						76			
Ethylbenzene	5 U	5 U	5 U	5 U	5 U		10 U	7.5 UJ-C	5 UJ-C
m,p-Xylenes	5 U	5 U	5 U	5 U	5 U		20 U	15 U	10 UJ-C
Methane						440			
o-Xylene	5 U	5 U	5 U	5 U	5 U		10 U		-
Toluene	290	63	240	200	160		30	7.5 UJ-C	5 UJ-C
Trichloroethene	5 U	5 U	5 U	1 J	5 U		10 U	7.5 U	5 U
2,4-Dimethylphenol	10 U		9 J		4 J		10 U	10 U	12 U
2-Methylphenol	2 J		10 U		10 U		1.4 J	10 U	12 U
4-Methylphenol	26		22		11		15	10 U	12 U
bis(2-Ethylhexyl)Phthalate	10 U		10 U		5 BJ			10 U	12 U
di-n-Butyl Phthalate	10 U		10 U		10 U			10 U	2 J
Phenol	3 J		10 U		10 U		10 U	10 U	12 U
Aroclor-1016	0.065 U		0.065 U		0.5 U			0.022 U	0.026 U
Aroclor-1221	0.065 U		0.065 U		0.5 U			0.022 U	0.026 U
Aroclor-1232	0.065 U		0.065 U		0.5 U			0.022 U	0.026 U
Aroclor-1242	0.065 U		0.065 U		0.5 U			0.022 UJ-C	0.026 UJ-C
Aroclor-1248	0.065 U		0.065 U		0.5 U			0.022 U	0.026 U
Aroclor-1254	0.065 U		0.065 U		1 U			0.022 U	0.4
Aroclor-1260	0.065 U		0.065 U		1 U			0.022 U	0.026 U

Sample Date	11/11/2020	10/10/2019	10/10/2018	10/10/2018	5/30/2018	9/25/2017	10/20/2016	10/20/2016	10/23/2015	12/3/2014	12/5/2013
1,2-Dichloroethane	0.36 J	0.4 J	0.5 J	0.5 J	1 U	1 U	1.0 U	1.0 U	0.5 U	1.00 U	1.00 U
1,4-Dioxane	1.1	1	1		1	1.3	2.8		1.4	2.7	2.6
Acetone	19 U	20 U	20 U	20 U	20 U	20 U	5.0 U	5.0 U	6 U	10.0 U	5.00 U
Benzene	0.42 J	0.4 J	0.4 J	0.3 J	1 U	1 U	1.0 U	3.1	0.6 J	1.00 U	1.00 U
Chlorobenzene	2.8	3	3	3	3	3	4.2	4.6	4	4.06	3.57
Chloroethane	1.0 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	0.5 U	1.00 U	1.00 U
Chloroform	1.0 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	0.5 U	1.00 U	1.00 U
cis-1,2-Dichloroethene	1.4	1	2	2	1	2	1.9	1.8	2	1.79	1.92
m,p-Xylenes	5.0 U	5 U	5 U	5 U	1 U	1 U	2.0 U	2.0 U	0.5 U	1.00 U	
Methane						33					
Methylene chloride	1.0 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	2 U	1.00 U	1.00 U
o-Xylene	1.0 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	0.5 U	1.00 U	
Toluene	1.0 U	1 U	1 U	1 U	1 U	1 U	1.0 U	1.0 U	0.5 U	1.00 U	1.00 U
Trichloroethene	0.82 J	0.9 J	1	1	1 J	1	1.6	1.6	2	1.69	2.01
Vinyl Chloride		1 U	0.3 J	0.3 J	1 U	1 U	1.0 U	1.0 U	0.5 U	1.00 U	1.00 U
bis(2-Ethylhexyl)Phthalate											
di-n-Butyl Phthalate											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/7/2013	10/24/2012	5/21/2012	10/19/2011	5/23/2011	10/13/2010	5/18/2010	10/21/2009	10/14/2008	10/25/2007	11/14/2006
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,4-Dioxane											
Acetone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	5 U	5 U	1.38 J	5 U	5 U	5 U	2.87 J	4.16 J	5 U	5 U	5 U
Chlorobenzene	4.2 J	4.77 J	5.2	6.93	7.37	7.07	6.86	5.65	5.59	5.98	7.03
Chloroethane	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroform	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	2.49 J	2.83 J	3.38 J	3.69 J	3.45 J	3.86 J	4.44 J	3.45 J	2.13 J	2.38 J	3.02 J
m,p-Xylenes	5 U		5 U						5 U		
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
o-Xylene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	2.45 J	2.98 J	3.83 J	2.73 J	2.42 J	3.57 J	3.35 J	2.55 J	1.21 J	1.42 J	1.79 J
Vinyl Chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
bis(2-Ethylhexyl)Phthalate											
di-n-Butyl Phthalate											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/18/2005	5/23/2005	10/19/2004	5/18/2004	10/22/2003	5/20/2003	10/2/2002	5/13/2002	10/17/2001	5/8/2001	11/14/2000	5/18/2000
1,2-Dichloroethane	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
1,4-Dioxane												
Acetone	5 U	1.1 JB	5 U	1 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzene	1.69 J	2.45 J	1.47 J	1.01	1.2 J	5 U	2 J	1 J	1 J	1 J	2 J	2 J
Chlorobenzene	7.14	7.08	6.16	11.2	12.4	13.1	11	10	10	9	9	10
Chloroethane	1.21 J	5 U	5 U	1 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
Chloroform	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	2.94 J	2.67 J	2.5 J	3.16	3.76 J	5 U	4 J	3 J	4 J	3 J	3 J	4 J
m,p-Xylenes	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Methane												
Methylene chloride	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U	3 BJ	5 U	5 U
o-Xylene	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	1 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	1.91 J	1.79 J	1.57 J	2.25	2.7 J	5 U	5 U	5 U	2 J	2 J	5 U	3 J
Vinyl Chloride	5 U	5 U	5 U	1 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U
bis(2-Ethylhexyl)Phthalate												
di-n-Butyl Phthalate		-										
Aroclor-1016												
Aroclor-1221												
Aroclor-1232												
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												

Sample Date	11/3/1999	5/3/1999	11/17/1998	10/23/1998	10/23/1998	1/20/1997	12/28/1996	10/13/1995	10/12/1995	9/11/1995
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U		0.5 U	1 U		1.2
1,4-Dioxane										
Acetone	10 U	10 U	10 U	10 U	10 U					
Benzene	2 J	5 U	17	89	78		14	24		26 J-C
Chlorobenzene	8	5	13	41	38		5.2	2.3 J-P		2.8
Chloroethane	10 U	10 U	10 U	10 U	10 U		0.5 U	1 U		0.5 U
Chloroform	5 U	2 BJ	5 U	2 J	5 U		0.5 U	1 U		1.3
cis-1,2-Dichloroethene	3 J	4 J	5	23	18		3.9	2.9		4.4
m,p-Xylenes	5 U	5 U	5 U	5 J	3 J		1 U	2 U		1 U
Methane						43				
Methylene chloride	4 BJ	3 BJ	9 B	5 U	5 U		0.5 U	0.43 J-P		6
o-Xylene	5 U	5 U	5 U	2 J	3 J		0.5 U			
Toluene	5 U	5 U	6	83	75		0.84	1 UJ-C		2.1 J-C
Trichloroethene	2 J	3 J	2 J	4 J	4 J		2.5	3.8 J-P		15
Vinyl Chloride	10 U	10 U	10 U	10 U	10 U		0.5 U	1 UJ-C		0.55 J-C
bis(2-Ethylhexyl)Phthalate	-								10 U	11
di-n-Butyl Phthalate	-								10 U	1 J
Aroclor-1016								0.023 U		0.022 U
Aroclor-1221	-							0.023 U		0.022 U
Aroclor-1232								0.023 U		0.022 U
Aroclor-1242								0.023 UJ-C		0.022 UJ-C
Aroclor-1248	-							0.023 U		0.022 U
Aroclor-1254								0.023 U		0.022 U
Aroclor-1260								0.023 U		0.022 U

Sample Date	11/16/2020	10/8/2019	10/11/2018	5/25/2018	9/25/2017	10/18/2016	10/21/2015	12/2/2014	12/4/2013	10/23/2012	10/18/2011
1,4-Dioxane				0.3 U	0.20 U				0.13 J		
Acetone	20 U	20 U	20 U	20 U	20 U	5.1 U	6 U	10.0 U	5.00 U	5 U	5 U
Methane					9.7						
Methylene chloride	1.0 U	1 U	1 U	1 U	1 U	1.0 U	2 U	1.00 U	1.00 U	5 U	5 U
Toluene	1.0 U	1 U	1 U	1 U	1 U	1.0 U	5	1.00 U	1.00 U	5 U	5 U
Benzidine											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242								-			
Aroclor-1248											
Aroclor-1254								-			
Aroclor-1260											

Sample Date	10/11/2010	10/20/2009	10/13/2008	10/24/2007	11/13/2006	10/17/2005	10/18/2004	10/20/2003	10/1/2002	10/16/2001	11/15/2000
1,4-Dioxane											
Acetone	1.17 J	5 U	5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U
Methane											
Methylene chloride	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzidine											
Aroclor-1016											
Aroclor-1221											
Aroclor-1232			-								
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	11/3/1999	10/20/1998	1/16/1997	12/28/1996	2/2/1996	1/7/1996
1,4-Dioxane						
Acetone	10 U	10 U				
Methane			17			
Methylene chloride	5 U	5 BJ		0.5 U	0.5 U	0.5 UJ-CS
Toluene	5 U	5 U		0.63	0.5 U	0.5 UJ-S
Benzidine					50 UJ-C	51 R-C
Aroclor-1016					0.022 U	0.022 U
Aroclor-1221					0.022 U	0.022 U
Aroclor-1232					0.022 U	0.022 U
Aroclor-1242					0.022 U	0.022 U
Aroclor-1248					0.022 U	0.078
Aroclor-1254					0.022 U	0.022 U
Aroclor-1260					0.022 U	0.022 U

Sample Date	11/16/2020	6/17/2020	10/8/2019	5/17/2019	6/20/2018	9/28/2017	9/28/2017	6/1/2017	5/22/2012	10/20/2011	10/20/2011
1,1-Dichloroethane	1.0	1.1	1	1	1	1		0.8 J	500 U	250 U	250 U
1,2-Dichloroethane	12	1.0 U	0.8 J	1 U	1 UJ	1 U		1 U	500 U	250 U	250 U
1,4-Dioxane	31		39		34	38					
2-Butanone	3.0 J	2.6 J	10 J	2 J	10 U	10 U		10 U	500 U	250 U	250 U
4-Methyl-2-Pentanone	2.8 J	3.2 J	3 J	3 J	10 U	5 J		10 U	500 U	250 U	250 U
Acetone	66	40	71	63	41	32		44	500 U	250 U	136 J
Benzene	460	450	410	510	700	800		400	4420	7760	7040
Carbon disulfide	0.27 J	5.0 U	1 J	2 J	5	3 J		5 U	500 U	250 U	250 U
Chlorobenzene	22	23	22	26	28	28		20	636	557	547
Chloroethane	1.0 U	1.0 U	1 U	1 U	1 UJ	1 U		1 U	500 U	250 U	250 U
Chloroform	1.0 U	1.0 U	1 U	1 U	1 U	1 U		1 U	500 U	250 U	250 U
cis-1,2-Dichloroethene	1.9	2.1	2	2	3	3		2	500 U	250 U	250 U
Ethane					230	260	250				
Ethene					130	140	140				
Ethylbenzene	1.1	1.5	1	2	1	1		1	500 U	250 U	250 U
m,p-Xylenes	2.9 J	4.1 J	3 J	5 J	4	3		3	500 U		
Methane					2200	3300 J	3400				
Methyl tert-Butyl ether	1.0 U	1.0 U	1 U	1 U	1 U	1 U		1 U			
Methylene chloride	1.0 U	1.0 U	1 U	1 U	1 U	1 U		4 U	500 U	250 U	250 U
o-Xylene	1.1	1.7	1	2	2	2		2	500 U	250 U	52.1 J
Toluene	140	160	190	290	360	380		260	7840	6650	6060
Trichloroethene	0.85 J	1.2	1	1	0.8 J	0.7 J		0.7 J	500 U	250 U	250 U
Vinyl Chloride	0.50 J	0.44 J	0.6 J	0.6 J	0.7 J	0.9 J		1 U	500 U	250 U	250 U
2,4-Dimethylphenol			10 U			3				30.5	33.6
2-Methylphenol			2 U			3				28	31.2
4-Methylphenol			2 U			40				273	335
Benzidine											
bis(2-Chloroethoxy)methane										9.26 U	9.26 U
Naphthalene										4.63 U	4.63 U
Nitrobenzene										9.26 U	9.26 U
Phenol			2 U			2				9.26 U	9.26 U
Aroclor-1016										0.05 U	0.05 U
Aroclor-1221										0.05 U	0.05 U
Aroclor-1232										0.05 U	0.05 U
Aroclor-1242										0.0319 AD,J	0.0463 AD,J
Aroclor-1248										0.05 U	0.05 U
Aroclor-1254										0.05 U	0.05 U
Aroclor-1260										0.05 U	0.05 U

Sample Date	5/24/2011	10/14/2010	10/14/2010	5/19/2010	12/15/2009	12/15/2009	10/21/2009	10/21/2009	10/15/2008	10/15/2008	10/25/2007	10/25/2007
1,1-Dichloroethane	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	1.94 J	1.9 J
1,2-Dichloroethane	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
1,4-Dioxane												
2-Butanone	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
4-Methyl-2-Pentanone	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
Acetone	250 U	257 J	212 J	500 U	500 U	164 J			100 U	100 U	65	62.6
Benzene	2830	3960	4350	8130	6170	6470			2000	1830	1240	1190
Carbon disulfide	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
Chlorobenzene	165 J	241 J	313 J	634	251 J	263 J			80.1 J	65.7 J	34.5	34.9
Chloroethane	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
Chloroform	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
cis-1,2-Dichloroethene	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	1.14 J	1.17 J
Ethane												
Ethene												
Ethylbenzene	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	2.04 J	1.98 J
m,p-Xylenes									100 U	100 U		
Methane												
Methyl tert-Butyl ether												
Methylene chloride	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
o-Xylene	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	2.51 J	2.64 J
Toluene	2080	3100	3730	8010	3930	3760			1420	1190	706	701
Trichloroethene	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	5 U	5 U
Vinyl Chloride	250 U	500 U	500 U	500 U	500 U	500 U			100 U	100 U	2.02 J	1.87 J
2,4-Dimethylphenol	10.5	18.9	18.1				27.4	27.3	9.02 J	11.4	11.6 U	12.2 U
2-Methylphenol	12.7	17.3	17.4				24	28	9.75	11.4	11.6 U	12.2 U
4-Methylphenol	162	260	238				602	704	223	255	119	126
Benzidine												
bis(2-Chloroethoxy)methane	9.26 U	9.26 U	9.26 U				9.26 U	9.26 U	9.26 U	9.26 U	11.6 U	12.2 U
Naphthalene	4.63 U	9.26 U	9.26 U				4.43 J	4.61 J	9.26 U	9.26 U	11.6 U	12.2 U
Nitrobenzene	9.26 U	9.26 U	9.26 U				9.26 U	9.26 U	9.26 U	9.26 U	11.6 U	12.2 U
Phenol	7.67 J	10.9	13.1				7.83 J	8.5 J	3.99 J	9.26 U	11.6 U	12.2 U
Aroclor-1016	0.05 U	0.05 U	0.05 U				0.05 U					
Aroclor-1221	0.05 U	0.0315 PB,J	0.0271 PB,J				0.05 U					
Aroclor-1232	0.05 U	0.05 U	0.05 U				0.05 U					
Aroclor-1242	0.05 U	0.05 U	0.05 U				0.05 U					
Aroclor-1248	0.05 U	0.05 U	0.05 U				0.05 U					
Aroclor-1254	0.05 U	0.05 U	0.05 U				0.05 U					
Aroclor-1260	0.05 U	0.05 U	0.05 U				0.05 U					

Sample Date	11/15/2006	11/15/2006	10/19/2005	5/23/2005	10/20/2004	5/18/2004	10/22/2003	5/20/2003	10/3/2002	10/3/2002	5/14/2002	10/18/2001
1,1-Dichloroethane	2.87 J	2.17 J	2.78 J	2.99 J	4.54 J	4.57	3.74 J	50 U	4 J	5 U	5	8
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U	1 U	5 U	50 U	5 U	5 U	5 U	5 U
1,4-Dioxane												
2-Butanone	5 U	5 U	5 U	5 U	5 U	1 U	5 U	50 U	10 U	10 U	11	10 U
4-Methyl-2-Pentanone	5 U	5 U	15 J	5 U	5 U	25.7	5 U	50 U	14	18	27	43
Acetone	5 U	5 U	55.2	58.5 B	75.1 B	102 B	69.6	66.2	210	110	130	190
Benzene	1260	1140	1310	1290	1720	1600	1630	1260	1700	1400	3200	3900
Carbon disulfide	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	32.4	32.1	33.5	31	39.7	45.7	67.4	50 U	34	36	37	170
Chloroethane	5 U	5 U	2.42 J	2.06 J	4.1 J	3.27	4.2 J	50 U	10 U	10 U	10 U	10 U
Chloroform	5 U	5 U	5 U	5 U	5 U	1 U	5 U	50 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	2.09 J	2.12 J	5 U	5 U	5 U	1 U	5 U	50 U	5 U	5 U	5 U	5 U
Ethane												
Ethene												
Ethylbenzene	1.85 J	1.89 J	1.72 J	1.54 J	1.9 J	2.73	4.03 J	50 U	5 U	5 U	5 U	14
m,p-Xylenes			4.64 J	5 U	5.24	7.24	11.3	50 U	4 J	4 J	5 J	44
Methane												
Methyl tert-Butyl ether												
Methylene chloride	5 U	5 U	5 U	5 U	5 U	1 U	5 U	50 U	5 U	5 U	5 U	5 U
o-Xylene	2.54 J	2.54 J	2.37 J	1.92 J	2.71 J	3.4	5.18	50 U	5 U	5 U	5 U	18
Toluene	663	615	845	688	838	995	1290	698	1000	790	930	3100
Trichloroethene	5 U	5 U	5 U	5 U	5 U	1 U	5 U	50 U	5 U	5 U	5 U	5 U
Vinyl Chloride	2.8 J	3.15 J	1.27 J	5 U	5 U	1 U	5 U	50 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	10.1 U	10.9 U	3.44 J		18.9 U		7.25 J		10 U	2 J		16 J
2-Methylphenol	10.1 U	10.9 U	5.49 J		18.9 U		4.13 J		3 J	2 J		12 J
4-Methylphenol	218	157	118		166		188		130	160		200
Benzidine												
bis(2-Chloroethoxy)methane	10.1 U	10.9 U	9.52 U		18.9 U		2.13 J		10 U	10 U		20 U
Naphthalene	10.1 U	10.9 U	9.52 U		18.9 U		9.26 U		10 U	10 U		20 U
Nitrobenzene	10.1 U	10.9 U	9.52 U		18.9 U		8.48 J		10 U	10 U		20 U
Phenol	10.1 U	10.9 U	3.72 J		18.9 U		4.93 J		10 U	10 U		3 J
Aroclor-1016	0.0521 U	0.0543 U	0.05 U		0.05 U		0.05 U		0.065 U	0.065 U		0.065 U
Aroclor-1221	0.0521 U	0.0543 U	0.05 U		0.05 U		0.05 U		0.065 U	0.065 U		0.065 U
Aroclor-1232	0.0521 U	0.0543 U	0.05 U		0.05 U		0.05 U		0.065 U	0.065 U		0.065 U
Aroclor-1242	0.0521 U	0.0543 U	0.05 U		0.05 U		0.05 U		0.065 U	0.065 U		0.065 U
Aroclor-1248	0.0521 U	0.0543 U	0.05 U		0.05 U		0.05 U		0.065 U	0.065 U		0.065 U
Aroclor-1254	0.0521 U	0.0543 U	0.05 U		0.05 U		0.05 U		0.065 U	0.065 U		0.065 U
Aroclor-1260	0.0521 U	0.0543 U	0.05 U		0.05 U		0.05 U		0.065 U	0.065 U		0.065 U

Sample Date	10/18/2001	5/9/2001	11/16/2000	11/16/2000	5/22/2000	11/3/1999	5/4/1999	10/23/1998	1/21/1997	12/28/1996	2/2/1996	1/7/1996
1,1-Dichloroethane	8	6		11	7	5	10	5		100 U	100 U	50 UJ-HS
1,2-Dichloroethane	5 U	4 J		5 U	5 U	5 U	5 U	5 U		100 U	100 UJ-C	50 UJ-HS
1,4-Dioxane												
2-Butanone	10 U	10 U		10 U	10 U	10 U	11	17				
4-Methyl-2-Pentanone	45	55		68	37	31	35	25				
Acetone	180	10 U		10 U	230	620	830 E	160				
Benzene	4300	3500		4800	2000	2300	2600	1400		3200	2700 J-S	1700 J-HCS
Carbon disulfide	5 U	5 U		5 U	5 U	5 U	5 U	5 U				
Chlorobenzene	180	120		250	64	81	140	35		100 U	100 UJ-C	44 J-HSP
Chloroethane	10 U	10 U		10 U	10 U	10 U	10 U	10 U		100 U	100 U	50 UJ-HCS
Chloroform	5 U	5 U		5 U	5 U	5 U	4 BJ	5 U		100 U	100 U	50 UJ-HS
cis-1,2-Dichloroethene	5 U	5 U		5 U	5 U	5 U	5 U	5 U		100 U	100 UJ-C	50 UJ-HS
Ethane									600			
Ethene									110 J			
Ethylbenzene	13	11		21	5 J	6	11	5 U		100 U	100 U	50 UJ-HS
m,p-Xylenes	47	32		67	11	19	29	4 J		200 U	200 U	100 UJ-HS
Methane									700			
Methyl tert-Butyl ether										100 U	100 R-Q	50 UJ-HCS
Methylene chloride	5 U	6 B		5 U	8 B	5 U	11	5 U		100 U	100 U	50 UJ-HS
o-Xylene	18	14		26	5	7	13	3 J		100 U	100 U	50 UJ-HS
Toluene	3700	2400 J		4400	1100	1700	2200	760		2900	1900 J-S	1200 J-HS
Trichloroethene	5 U	5 U		5 U	4 J	5 U	5 U	5 U		100 U	100 U	50 UJ-HS
Vinyl Chloride	10 U	10 U		10 U	10 U	10 U	10 U	10 U		100 U	100 U	50 UJ-HS
2,4-Dimethylphenol	17 J			10 J		8 J		22		11 J	7 J	5 J
2-Methylphenol	13 J			7 J		7 J		4 J		8.6 J	9 J	6 J
4-Methylphenol	220			160		130		70		200	260	130
Benzidine											170 UJ-C	100 R-C
bis(2-Chloroethoxy)methane	20 U			20 U		10 U		10 U			33 U	20 U
Naphthalene	2 J			20 U		2 J		10 U			33 U	20 U
Nitrobenzene	20 U			20 U		10 U		10 U			33 U	20 U
Phenol	3 J			20 U		10 U		10 U		40 J	33 U	20 U
Aroclor-1016	0.065 U		0.065 U	0.065 U		0.065 U		0.5 U			0.022 U	0.022 U
Aroclor-1221	0.065 U		0.065 U	0.065 U		0.065 U		0.5 U			0.022 U	0.022 U
Aroclor-1232	0.065 U		0.065 U	0.065 U		0.065 U		0.5 U			0.022 U	0.022 U
Aroclor-1242	0.065 U		0.065 U	0.065 U		0.065 U		0.5 U			0.022 U	0.022 U
Aroclor-1248	0.065 U		0.065 U	0.065 U		0.065 U		0.5 U			0.022 U	0.11
Aroclor-1254	0.065 U		0.065 U	0.065 U		0.065 U		1 U			0.022 U	0.022 U
Aroclor-1260	0.065 U		0.065 U	0.065 U		0.065 U		1 U			0.022 U	0.022 U

Sample Date	10/9/2019	5/23/2018	9/26/2017	10/22/2015	12/5/2013	10/23/2012	10/18/2011	10/12/2010	10/21/2009	10/14/2008	10/24/2007
1,4-Dioxane		0.3 U	0.20 U		0.090 J						
Carbon Disulfide	5 U	5 U	5 U	3 J	3.44 J	2.03 J	1.94	2.85	3.72 J	3.18	2.84
Methane			4.0 J								
Methylene chloride	1 U	1 U	1 U	2 U	1.00 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Toluene	1 U	1 U	1 U	0.5 U	1.00 U	5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	11/14/2006	10/18/2005	10/19/2004	10/20/2003	9/30/2002	10/15/2001	11/14/2000	11/2/1999	10/21/1998	12/29/1996
1,4-Dioxane										
Carbon Disulfide	3.77	0.698	4.55 J	6.24	5 U	5 U	5 U	5 U	5 U	
Methane										
Methylene chloride	0.5 U	0.5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	6 B	0.5 U
Toluene	0.5 U	0.5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.78
Aroclor-1016										0.01 U
Aroclor-1221										0.01 U
Aroclor-1232										0.01 U
Aroclor-1242										0.01 U
Aroclor-1248										0.01 U
Aroclor-1254										0.01 U
Aroclor-1260										0.01 U

Sample Date	11/16/2020	10/11/2019	10/11/2018	5/24/2018	9/27/2017	10/19/2016	10/22/2015	12/1/2014	12/5/2013	12/5/2013	5/8/2013
1,2,3-Trichlorobenzene	5.0 U	5 U	0.4 J	5 U	5 U	1.0 U	0.5 U	1.00 U	1.00 U	1.00 U	
1,4-Dioxane		0.3 U		0.3 UJ	0.30		0.19 U	-	0.20 U	0.20 U	
Acetone	20 U	20 U	20 U	20 U	20 U	5.0 U	6 U	10.0 U	5.00 U	5.00 U	0.5 U
Benzene	1.0 U	1 U	1 U	1 U	1 U	1.0 U	0.5 U	1.00 U	1.00 U	1.00 U	0.5 U
cis-1,2-Dichloroethene	1.0 U	1 U	0.2 J	1 U	1 U	1.0 U	0.5 U	0.525 J	1.00 U	1.00 U	0.5 U
Methylene chloride	1.0 U	1 U	1 U	1 U	1 U	1.0 U	2 U	1.00 U	1.00 U	1.00 U	0.5 U
Trichloroethene	1.3	2	2	2	2	2.2	3	4.31	2.78	2.83	3.48
Aroclor-1016											
Aroclor-1221								-			
Aroclor-1232											
Aroclor-1242								-			
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/8/2013	10/23/2012	10/23/2012	5/22/2012	5/22/2012	10/18/2011	10/18/2011	5/23/2011	5/23/2011	10/13/2010	10/13/2010
1,2,3-Trichlorobenzene				-				-			
1,4-Dioxane											
Acetone	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	5 U
Benzene	0.502	0.5 U	0.5 U	0.877	0.899	1.04	1.09	0.753	0.74	5 U	5 U
cis-1,2-Dichloroethene	0.65	0.5 U	0.5 U	0.886	0.829	0.946	0.951	0.742	0.758	5 U	5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	5 U
Trichloroethene	6.13	4.15	4.56	9.2	9.44	10.7	10.8	8.72	9.3	9.14	9.58
Aroclor-1016				-				-			
Aroclor-1221											
Aroclor-1232				-				-			
Aroclor-1242											
Aroclor-1248				-				-			
Aroclor-1254											
Aroclor-1260											

Sample Date	5/19/2010	5/19/2010	10/21/2009	10/21/2009	5/20/2009	5/20/2009	10/14/2008	10/14/2008	5/14/2008	5/14/2008	10/23/2007
1,2,3-Trichlorobenzene											
1,4-Dioxane											
Acetone	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Benzene	2.9	3.25	5 U	5 U	1.57	1.43	0.5 U	5 U	1.58	1.6	0.5 U
cis-1,2-Dichloroethene	2.02	2.22	5 U	5 U	0.995	0.901	0.5 U	5 U	0.865	0.843	0.5 U
Methylene chloride	0.5 U	0.5 U	5 U	5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	25.4	29.1	9.52	10.3	15.1	14.3	5.42	5.09	16.8	16.4	3.19
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/23/2007	5/23/2007	11/14/2006	5/22/2006	10/18/2005	5/23/2005	10/18/2004	5/17/2004	10/21/2003	5/19/2003	10/1/2002	5/13/2002
1,2,3-Trichlorobenzene												
1,4-Dioxane												
Acetone	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	5 U	0.5 U	0.5 U	1	0.819	0.5 U	0.5 U
Benzene	0.5 U	0.5 U	0.853	0.972	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,2-Dichloroethene	0.5 U	0.5 U	0.5 U	0.563	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	1.2 B	0.5 U	5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Trichloroethene	4.48	3.83	7.5	9.23	0.653	5 U	2.21	1.4	0.5 U	0.5 U	0.6	0.5 U
Aroclor-1016										-		
Aroclor-1221												
Aroclor-1232										-		
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												

Sample Date	10/16/2001	5/9/2001	11/13/2000	5/17/2000	11/2/1999	10/22/1998	1/14/1997
1,2,3-Trichlorobenzene							
1,4-Dioxane							
Acetone	10 U	10 U	10 U	10 U	10 U	10 U	
Benzene	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	5 U	5 U	0.5 U
Methylene chloride	5 U	5 U	5 U	4 BJ	5 U	6 B	0.5 U
Trichloroethene	5 U	5 U	5 U	3 J	5 U	5 U	0.5 U
Aroclor-1016				-			0.01 U
Aroclor-1221							0.01 U
Aroclor-1232				-			0.01 U
Aroclor-1242							0.01 U
Aroclor-1248							0.01 U
Aroclor-1254							0.01 U
Aroclor-1260							0.01 U

Sample Date	11/13/2020	10/10/2019	10/12/2018	5/23/2018	9/27/2017	10/18/2016	10/22/2015	12/3/2014	12/3/2014	12/3/2013	5/7/2013
1,4-Dioxane		0.3 U		0.3 U	0.36		0.19 U			0.20 U	
Acetone	20 U	20 U	20 U	20 U	20 U	5.0 U	6 U	10.0 U	10.0 U	5.00 U	0.5 U
Carbon Disulfide	5.0 U	5 U	5 U	5 U	5 U	1.0 U	1 U	1.00 U	1.00 U	1.00 UJ	0.5 U
Methane					68						
Methylene chloride	1.0 U	1 U	1 U	1 U	1 U	1.0 U	2 U	1.00 U	1.00 U	1.00 U	0.5 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260									-		

Sample Date	10/22/2012	5/21/2012	10/17/2011	5/23/2011	10/12/2010	5/18/2010	12/15/2009	10/19/2009	5/20/2009	10/13/2008	5/14/2008
1,4-Dioxane											
Acetone	0.5 U	0.5 U	0.5 U	5 U	0.5 U						
Carbon Disulfide	0.5 U	0.5 U	0.5 U	5 U	0.5 U						
Methane											
Methylene chloride	0.5 U	0.5 U	0.5 U	5 U	0.5 U						
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/23/2007	5/23/2007	11/13/2006	5/22/2006	10/17/2005	5/23/2005	10/19/2004	5/17/2004	10/21/2003	5/19/2003	10/1/2002
1,4-Dioxane											
Acetone	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.09 B	0.5 U	0.633 B	2.51	0.5 U	0.5 U
Carbon Disulfide	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.51	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methane											
Methylene chloride	0.5 U	0.5 U	0.5 U	0.935 B	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/14/2002	10/16/2001	5/7/2001	11/13/2000	5/16/2000	11/2/1999	10/22/1998	1/14/1997
1,4-Dioxane								
Acetone	0.5 U	10 U	10 U	10 U	10 U	10 U	10 U	
Carbon Disulfide	0.5 U	5 U	5 U	5 U	5 U	5 U	5 U	
Methane								
Methylene chloride	0.5 U	5 U	5 U	5 U	7 B	4 BJ	5 U	0.5 U
Aroclor-1016								0.01 U
Aroclor-1221								0.01 U
Aroclor-1232								0.01 U
Aroclor-1242								0.01 U
Aroclor-1248								0.01 U
Aroclor-1254								0.01 U
Aroclor-1260								0.01 U

Sample Date	11/13/2020	10/10/2019	10/12/2018	5/24/2018	9/27/2017	10/18/2016	10/22/2015	12/3/2014	12/3/2013	5/9/2013	10/22/2012
1,4-Dioxane				0.3 UJ	0.20 U				0.20 U		
Acetone	20 U	20 U	20 U	20 U	20 U	5.0 U	6 U	10.0 U	5.00 U	0.5 U	0.5 U
Chloromethane	1.0 U	1 U	1 U	1 U	1 UJ	1.0 U	0.5 U	1.00 U	1.00 U	0.5 U	0.5 U
Methylene chloride	1.0 U	1 U	1 U	1 U	1 U	1.0 U	2 U	1.00 U	1.00 U	0.5 U	0.5 U
Aroclor-1016				0.40 U							
Aroclor-1221	-	-		0.40 U							
Aroclor-1232				0.40 U							
Aroclor-1242				0.40 U							
Aroclor-1248				0.40 U							
Aroclor-1254				0.40 U							
Aroclor-1260				0.40 U							

Sample Date	5/21/2012	10/17/2011	5/23/2011	10/12/2010	5/18/2010	12/15/2009	10/19/2009	5/20/2009	10/13/2008	5/14/2008	10/23/2007
1,4-Dioxane											
Acetone	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5	0.5 U	0.5 U	0.5 U	0.5 U
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1016							-1				
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	5/23/2007	11/13/2006	5/22/2006	10/18/2005	5/23/2005	10/18/2004	5/17/2004	10/21/2003	5/19/2003	9/30/2002	5/13/2002
1,4-Dioxane											
Acetone	0.5 U	0.5 U	0.5 U	0.5 U	0.658 B	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U						
Methylene chloride	0.5 U	0.5 U	1.45 B	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor-1016											
Aroclor-1221											
Aroclor-1232											
Aroclor-1242											
Aroclor-1248											
Aroclor-1254											
Aroclor-1260											

Sample Date	10/16/2001	5/7/2001	11/13/2000	5/16/2000	11/2/1999	10/22/1998	1/14/1997
1,4-Dioxane							
Acetone	10 U	10 U	10 U	10 U	10 U	10 U	
Chloromethane	10 U	10 U	10 U	10 U	10 U	10 U	0.5 U
Methylene chloride	5 U	5 U	5 U	7 B	5 U	7 B	0.5 U
Aroclor-1016							0.01 U
Aroclor-1221					-		0.01 U
Aroclor-1232							0.01 U
Aroclor-1242					-		0.01 U
Aroclor-1248							0.01 U
Aroclor-1254					-		0.01 U
Aroclor-1260							0.01 U

S	Sample Date	10/10/2019	10/10/2019	5/30/2018	5/30/2018	9/29/2017	10/23/2015	12/4/2013	10/23/2012	10/18/2011	10/11/2010	12/15/2009
1,4-Dioxane		13	14	6	6	6.1 J	4.0	0.22				
Acetone		20 U		20 U	20 U	20 U	6 U	5.00 U	5 U	5 U	1.34 J	5 U
Benzene		19		10	12	11	14	1.00 U	5 U	5 U	5 U	5 U
Chlorobenzene		0.5 J		1 U	1 U	1 U	1 U	1.00 U	5 U	5 U	5 U	5 U
Chloroethane		0.5 J		1 U	1 U	1 U	1 U	1.00 U	5 U	5 U	5 U	5 U
Chloroform		1 U		1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	5 U	5 U
Ethane				12	23	16						
Ethene				1.8 J	3.8 J	4.4 J						
Methane				720	510	1500						
Toluene		1 U		1 U	1 U	1 U	0.5 U	1.00 U	5 U	5 U	5 U	5 U
Aroclor-1016												
Aroclor-1221												
Aroclor-1232												
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												

S	Sample Date	10/19/2009	10/13/2008	10/24/2007	11/13/2006	10/17/2005	10/18/2004	10/21/2003	10/1/2002	10/16/2001	11/15/2000	11/2/1999
1,4-Dioxane												
Acetone		5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U
Benzene		5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene		5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane		5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U
Chloroform		5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	6	5 U
Ethane												
Ethene												
Methane												
Toluene		5 U	0.5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Aroclor-1016												
Aroclor-1221												
Aroclor-1232												
Aroclor-1242												
Aroclor-1248												
Aroclor-1254												
Aroclor-1260												

	Sample Date	10/21/1998	4/19/1994	4/19/1994	4/19/1994
1,4-Dioxane					
Acetone		10 U			
Benzene		5 U	0.5 U	0.5 U	1 U
Chlorobenzene		5 U	1 U	0.5 U	0.5 U
Chloroethane		10 U	1 U	0.5 U	0.5 U
Chloroform		5 U	0.5 U	0.5 U	1 U
Ethane					
Ethene					
Methane					
Toluene		5 U	0.5 U	0.5	1 U
Aroclor-1016			0.022 U	0.023 U	J
Aroclor-1221			0.022 U	0.023 U	U
Aroclor-1232			0.022 U	0.023 U	J
Aroclor-1242			0.022 U	0.023 U	U
Aroclor-1248			0.022 U	0.023 U	U
Aroclor-1254			0.022 U	0.023 U	U
Aroclor-1260			0.022 U	0.023 U	U

	Sample Date	10/9/2019	5/22/2018	9/26/2017	10/20/2015	12/3/2013	12/3/2013	10/23/2012	10/18/2011	10/13/2010	10/20/2009	10/13/2008
1,4-Dioxane			0.6 UJ	0.20 U		0.20 UJ	0.20 U					
Acetone		20 U	20 U	20 U	6 U	5.00 U	5.00 U	5 U	5 U	1.11 J	5 U	5 U
Methane				78								
Toluene		1 U	1 U	1 U	0.5 U	1.00 U	1.00 U	5 U	5 U	5 U	5 U	5 U

Historical Detected Concentrations in OPZ-217

Dewey Loeffel Landfill Superfund Site Nassau, New York

Sa	ample Date	10/24/2007	11/13/2006	10/17/2005	10/18/2004	10/20/2003	9/30/2002	10/15/2001	11/14/2000	11/2/1999	10/20/1998	12/28/1996
1,4-Dioxane												
Acetone		5 U	5 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	
Methane												
Toluene		5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.9

APPENDIX C GROUNDWATER MONITORING FORMS

APPENDIX C.1 SPRING 2020 LOW-FLOW SAMPLING FORMS

RAI	MBCLL			Groundwater Sampling Log Well ID: EPA-1A Northing: 1351173.3 Easting: 7447.46.5								
Site Na Site Loca Proje	tion: N	Loeffel Landfill Lassau, NY 541.402.016	Faul	oling Method: pment Used:	FWT.	1 -1 7	Field Perso	onnel: SET+ Onnel: Onnel: Onle	-ZO			
Mea	talled Depth of sured Depth of Depth to Vater Column	of Well*: Water*: (LWC):	9.90 ft. t	omp.			* Measurement Point: Well Casing Protective Casing Other: Port Midpoint Depth*: 119.95 ft. b					
	Purge Time: oservations:	Color Ch	ear o	odor SUR		een/Free Prod	luct NONE	<u></u>				
Elapsed Time minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Additiona Notes			
70	85.52 85.71	13.7	9.27	416-2	-92.8	2.06	0.31	3				
210	85.72	14.8	6.92	450.8	-61.4	2.19	0.31	ц				
Tot	Purge Time: al volume of eservations:	1250 groundwater pur		gal. Slight	tly She	een/Free Prod	uct <u>101</u> 0	L_				
	ID: MW -	B-EPA-IA VOCS by EPA I) for TCE and cD	Sample Tim CE by method 130		opes (37C/35C) for TCE	E by method ³⁷ (
Containe 40-m	nl	Container Type Glass VOA Glass VOA	# Colleg	cted Fie	eld Filtered? No	CSIA Pro	eservative HCL HCL	Labora Eurofins La Microbial II	ncaster			
40-11		Class VOA			140		NOL	WICTODIATI	nsignis			
otes: <u>CSI</u> <u>Sam</u>	A sam	ngling.	did n	of ger	5PA	cippro	val ye	time do	ð			

RAN	1BCLL			Groundwat	er Samplir	ng Log	Well Northi Easti	ing: 1357	93.7		
Site Locat	tion: N	Loeffel Landfill assau, NY 541.402.016	Equi	pling Method: pment Used: pntreller ID#: 1	FLUTO 12037881	67874 P	Field Perso	nnel: State:	2000		
Meas Length of W	talled Depth of sured Depth of Depth to Vater Column Well Di	of Well*: Water*: 20 (LWC): iameter: 4	ft. t. 	omp. omp. odor SUR	* Measurement Point: Well Casing Protective Casing Other: Port Midpoint Depth*: 201.15						
- 62%	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU) 8.17 8.22 8.25	Specific Conductivity	ORP (mV)	Dissolved Oxygen (mg/l) 2.05	Turbidity (NTU) 0.44 1.34 8.66	Port Volume (removed)	Additiona Notes		
210	90.08	15.4	8-22	368.4	-85.5	1.79	0.14	4			
	4										
End I	Purge Time:	1750	- v3. s	nal t. I							
		17.50 groundwater pur Color Old			she	en/Free Prod	uct <u>non</u>				
	Parameters:	VOCs by EPA M		Mul		oumple till	10				
Containe 40-m		Container Type Glass VOA	# Collection	cted F	ield Filtered? No	Pro	eservative HCL	Labora Eurofins La			
Notes:											

Sito No		and the same of th	0,00	All and additional and		120000000000000000000000000000000000000	Easting: 744746.9			
Site Loca		/ Loeffel Landfill lassau, NY	•	ling Method: oment Used:	FUJT.	e bidu M		nnel: SET + (200	
	ct #: 71		- 16.41		K0378	FADOI		ther: +80, S		
ell inform	nation:			-				leasurement Poir		
	talled Depth		1.00 ft. b					Well Casing		
Mea	sured Depth	of Well*:		mp.				Other: Other		
ength of V	Vater Column		ft.				L	Circle Va		
	Well D	iameter: 4	.0 in.			Po	ort Midpoint Dep	th*: 232.25	ft. bm	
	Purge Time:	0920		2 10	le de la serie		-200			
Initial Ob	servations:	Color CH	ear c	odor Suff	The state of the s	een/Free Prod	uct nove			
Elapsed	Depth	Tomporatura	nu u	Specific	e units ORP	Dissolved	Turbidity	Port Volume	Additiona	
Time	to Water	Temperature	pH	Conductivity	1000	Oxygen	Turbidity	10.000.000.000	Notes	
minutes)	(ft bmp)	(Celsius)	(SU)		-98-1	(mg/l)	(NTU)	(removed)	1	
70	90.78	13.6	8.24	334.1	<124.1	1.76	0.28	Z		
140	91.56	13.7	8.31	337.0	-85.6	1 03	0.28			
210	9,63	14.1	8.7.8	334.4	-67.8	1.13	6.21	3		
200	41.03	1901	0.60	334.4	-04.0	1.67	0.01	7		
								-		
				· · · · · · · · · · · · · · · · · · ·						
	7-7-4		J							
			-							
		1								
						1				
		1			V					
		1250	~3	5		\$				
		groundwater pur	geu.	gal. Slig	intly		3.73			
Final Ob	servations:	Color Clea		dor Sul	She	en/Free Prod	uct <u>nove</u>			
Sample	ID: MM-	B-EPA-	1C-06	192020		Sample Tim	ne: 1410			
nalytical I	Parameters:	VOCs by EPA	Method 8260, Ca	rbon Isotopes (13C/12C) for TCE and cD		CSIA, Chorine Isoto	pes (37C/35C) for TCE	by method 37	
0	0:		" 0 "		1.1 571 10	CSIA		Labore		
Containe 40-n		Container Type Glass VOA	# Collect	cted Fie	eld Filtered?	Pro	eservative HCL	Labora Eurofins La		
40-n		Glass VOA	8		No		HCL	Microbial I		
_										
						, at				
otes:		pling di			Section 1	The second of the second	i we			

Site Locati	mo: Dowou	RAMBOLL			er Samplir	Well ID: EPA-2A Northing: 1356625.0 Easting: 745424.1			
Projec	Site Name: Dewey Loeffel Landfill Site Location: Nassau, NY Project #: 71541.402.016 ell information:			ling Method: pment Used: pntroller ID#:	YSI HI	e in bidit	Field Perso		70
Inst Meas Length of W	alled Depth oured Depth of Depth to atter Column	of Well*: Water*: (LWC): iameter: 4	ft. b	Strag	9	Measurement Poir Well Casing Protective Casir Other: 100.00	nt:		
Initial Obs	servations:	Color CK	ar c	odor <u>Cuffi</u>	She te units	en/Free Produ	ict none		
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Addition: Notes
0	16.84	13.1	7.82	358-7	189.9	2.55	1.02	1	
86	17.13	14.5	8.23	362.8	-165.2	1.76	0.46	2	
755	17.22	13.5	8.00	365-4	-115-2	1.94	0.19	3	
	urge Time:	groundwater purg	340 ed: N3	5 gal.					
Final Obs	servations:	Color 1	ESO o	dor Suffu	She	en/Free Produ	not none	2_	
		B-EPA-Z	A-06	82020		Sample Time	e: _1505		
nalytical Pa	arameters:	VOCs by EPA M	ethod 8260						
Container 40-ml		ontainer Type Glass VOA	# Collect	ted Fie	No	Pre	servative HCL	Laborat Eurofins La	
lotes:									

		Loeffel Landfill	Samr	Groundwate		g Log	Northi Easti		74.
Site Locati		Loeffel Landfill	Samr						
				ling Method:	FUTE	<i>xloidit</i>	Field Person	A 19	
]	_	41.402.016		pment Used: ontroller ID#:				ther: #80	
ell informa			1	20 20 20 20 20 20		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		leasurement Poin	
	alled Depth o	of Well*: 164	1.10 ft. b	mp.				Well Casing	
	ured Depth o	f Well*:		omp.				Protective Casir	
	Depth to		.95 ft.				(2)	Other:	ox _
ength of W	ater Column Well Di	The same of the sa	ft.			Ро	rt Midpoint Dep	th*:154.40	ft. bm
	urge Time: servations:	Color M	clear	odor Suft		en/Free Produ	uct north		
Elapsed	Depth	and the second		Specific	te units	Dissolved	T	Don't Votions	A delistan
Time minutes)	to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Conductivity	ORP (mV)	Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Addition: Notes
0	1695	13.7	7.88	412-1	-195.9	1.26	0.30	1	
85	17.20	13.2	8.68	415.8	-166.4	1.48	0:28	2	
170	17.28	13-5	8.07	418-7	-99.1	1-39	0.86	3	
255	17.18	13.6	8.08	418.7	-51.2	1.27	1.17	4	
	4 1								
									1 = 1
Tota Final Ob	servations:	groundwater pur	or o	odor Suifu	She	en/Free Prod		<u>L</u>	ar I
	Parameters:	VOCs by EPA	10.0	13 20 22			15/2		
Container	r Size C	Container Type	# Colle	cted Fi	eld Filtered?	Pro	eservative	Labora	itory
40-m	nl	Glass VOA	3		No		HCL	Eurofins La	ancaster
			4						
			I -						
lotes:									

	1BCLL			Groundwat			Northi East	ng: 7454	24.1	
Site Locat	ion: Na	Loeffel Landfill assau, NY 641.402.016	Equi	oling Method: pment Used: ontroller ID#:		ubidy	-	Date: 6-18-20		
ell inform	ation:						* N	Measurement Poir	nt:	
Inst	alled Depth o	of Well*: 276	6.80 ft. t	omp.				Well Casing		
Meas	sured Depth o			omp.				Protective Casin	-	
anoth of M	Depth to later Column		.55 ft.					Other:	<u>T</u>	
engin or vi		Maria at the second	.0 in.			Po	ort Midpoint Dep	th*: 268.60	ft. bm	
	urge Time: servations:	6925 Color ()	ear c	odor Strong	She She	een/Free Prod	luct NON	_		
Elapsed	Depth				ate units	Dissolved				
Time	to Water	Temperature	рН	Conductivity	ORP	Oxygen	Turbidity	Port Volume	Addition	
minutes)	(ft bmp)	(Celsius)	(SU)	(us/cm)	(mV)	(mg/l)	(NTU)	(removed)	Notes	
0	22.55	13.9	7-89	390-5	-194.2	1.16	0.78			
85	22.70	14.1	8.10	384.3	-153.8	1.12	0.76	2		
170	22.70	15.6	7.65	388-6	104.8	1.53	1-69	3		
255	22.66	17.1	8.13	384.4	-94.2	1.72	0.98	i.j		
					N ====					
					(4.1.1.1	1				
End F	Purge Time:	1340		5						
	al volume of servations:	groundwater pur	V -	gal. Odor Sulfu	She	en/Free Prod	uct none			
	y sold with the	B-EPA-				Sample Tin				
	arameters:				C) for TCE and cD			pes (37C/35C) for TCE	by method ³⁷	
Container	r Size C	ontainer Type	# Colle	cted Fi	ield Filtered?	21.40	eservative	Labora	tory	
40-m	ıl	Glass VOA	3		No	XY	HCL	Eurofins La	ncaster	
40-m	ıl	Glass VOA	0		No		HCL	Microbial I	nsights	
otes:										

RAN	1BCLL			Groundwa	ter Sampli	Well ID: EPA-3A Northing: 1357959.1 Easting: 744351.8				
Site Na Site Locat Project	ion: N	Loeffel Landfill assau, NY 541.402.016	Equ	pling Method: ipment Used: controller ID#:	Flute WA	Onte	Field Perso	nnel: <u>CDA/S</u> Date: <u>6/23/2</u> other: 80+ Su	0	
Meas	alled Depth of sured Depth to Depth to ater Column Well D		ft. ft. ft.	bmp. bmp.			* Measurement Point: Well Casing Protective Casing Other: Other: 127.00 ft. I			
	urge Time: servations:	Color		Odor	Sh	een/Free Produ	ict	_		
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Addition Notes	
						71				
Tot	servations:	groundwater purg		gal.	Sho	een/Free Produ				
	arameters:	VOCs by EPA Me	ethod 8260			100				
Containe 40-m		Container Type Glass VOA	# Colle	ected F	Field Filtered? Pre		eservative	Labora Eurofins La		
4011		GIAGO VOA					1102	Editinis	, incusion	
	1									

RA	MBCLL			Groundwat	er Samplir	Well ID: EPA-3B Northing: 13578571 Easting: 744351			
Site Loca	ation: N	y Loeffel Landfill Jassau, NY 541.402.016	Equ	apling Method: uipment Used: Controller ID#:	FLUTE Water NA	flute	Field Perso	Date: 6-23-2	ET OZO
Mea	stalled Depth asured Depth Depth to Water Columr	of Well*: Water*: (LWC): Diameter:	ft.		i-378			Other: Port	ng
	bservations:	Color Ci-C	600	Odor Nove indica	She	een/Free Pro	duct Mare	-	
Elapsed Time (minutes)	to Water	Temperature (Celsius)	pH (SU)	Specific Conductivity ()	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Addition: Notes
10	107.90	17.3	9.38	555.0 584.8	-95.7 -118.7	.72	1,62	21	- CO 17-34
120	100	13.5	9.48	587.8	-11502	,84	1.97	3 2	
180	108.29	13.8	9.47	597.0	-40:1	-74	1.69	14	
							1		
To		groundwater pur	rged: 4 ~ C		fer She	en/Free Prod	duct none		
Sample	e ID: <u>M</u> ஸ்-	-B-EPA-3	8-062				ne: <u>/</u> 325		
Contain	Parameters:	VOCs by EPA	Method 8260 # Colle	ected Fi	eld Filtered?	Pi	reservative	Labora	tory
40-		Glass VOA	3	Sected 11	No		HCL	Eurofins La	
		o furgi							

RAI	MBCLL	Ų,		Groundwate	er Samplir	ng Log	Well Northi Easti		58.1
Site Loca	tion: N	Loeffel Landfill assau, NY 641.402.016	Equi	ling Method: pment Used: ontroller ID#:	Flute	LATE	Field Person	nnel: CDLS S Date: 6-23-3 ther 60° SV	ET 920
Meas	talled Depth of sured Depth of Depth to Vater Column	of Well*: Water*: (64 (LWC):	ft. b	omp. YS	1-378			Measurement Point Well Casing Protective Casin Other:	ng
	Purge Time:	Color Clec	r_ (Odor		een/Free Prod	duct Nors	_	
Elapsed Time minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Additiona Notes
-6	104.76	17.0	9.41	602	-124.2		3,63		CON
80	10376	12.2	9.41	604.8	-121.2	*73	1,65		
60	104.26		7.30	612.4	-101-1	081	3.47	2	
120	104.34	14.5	9.53	60965	-60.3	665	3.60	3	
		V - 0	2.						
To Final Ob Sample	tal volume of oservations:	Golor Clean Color Clean Color Clean Color Clean Color Style PA	ged: ~5 - 06	Odor Sight Se	Her Sho	- 16	duct non l		
Containe	er Size	Container Type	# Colle	cted F	ield Filtered?	P	reservative	Labora	atory
40-n		Glass VOA	3		No		HCL	Eurofins L	ancaster
lotes: S	TAGTED	ON WED 20920	KG PRI	Sinre @	8905,	RE STA	IQTED ON) CORREC	7

Site Loca	tion: N	Loeffel Landfill Lassau, NY 541.402.016	Equ	pling Method: ipment Used: Controller ID#:	Bladde MP 10/75 FA 025	r Pump 1990 Awa/ 25	TIMBING 1	Date: 06/16/2020 eather: 750 SUNNY		
Meas	talled Depth sured Depth Depth to Vater Column	of Well*: Water*: (LWC): 13.4 iameter:	- ft.	bmp.	* Measurement Point: Well Casing Protective Casing Other: Pump Intake Depth*: 72.99					
	Depth	Color Que	pH	Odor Now indica Specific	She te units	Dissolved	Turbidity	Flow	PSI MI Other	
Time (minutes)	to Water (ft bmp)	(Celsius)	(SU)	Conductivity	(mV)	Oxygen (mg/l)	(NTU)	Rate (ml/min)	(
0	64,56	10.2	7.30	726	-130.7	-83	3,40	900		
5	65.85	10.4	7,77	685,5	-178.4	040	15.7	6001225		
10	46,23	11.0	7.85	634,4	-192,0	.31	13.0	225		
15	66.71	11.0	7.88	845.3	-204.7	.26	13.0	225		
20	67.11	11.6	7.93	444.8	-218.0	024	13.2	150		
25	67.39	12.1	7.99	3761	-232.0	.19	14.0	150		
30	67.65	12.9	8,01	3381	-257.6	020	12,5	150		
35	67.84	13.2	8,02	319.5	-251.7	018	12.5	180		
40	68,02	14.8	8.03	297.9	183.3	018	12,5	150H750	W/m	
45	68.3	13.5	8.05	292.3	_ 205.6	.18	12.8	12.5		
50	68,55	12.5	8.07	280.9	-220,4	017	12.9	180		
35	68,92	10.7	8107	242.4	-225,0	317	12.1	150		
60	69.61	1118	7,99	2034	-19419	018	11.3	150		
65	69.9	11.9	8,00	185.4	-180,1	021	11.9	100		
707	70.05	12.1	8,00	185.7	-178.9	.25	123	100	4	
75	70.25	13.6	8.01	189.8	-17106	,30	12.0	100		
80	70.35	13.8	8,02	190.4	-161.2	±35	11.8	100		
Stabilization	Δ≤0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500		
End To Final Ob Sample	Purge Time: tal volume of oservations:	1/35 groundwater pur Color[lear	ged: 4, 5	gal. Odor nove	She	een/Free Prod	luct <u>None</u> ne: <u>1146</u>			
Containe		Container Type	# Colle	ected Fi	eld Filtered?	Pi	eservative	Laborat		
40-n 250-l		Glass Amber Glass	3		No No		HCL None	Eurofins Lai		
								-		

KAN	BOLL		LOW	Flow Groun	uwater 5	impining Lo		Northing: 1358723 Easting: 744769	
Site Na	me: Dewey	Loeffel Landfill	Samı	pling Method:		er Pump	Field Perso	nnel: JF6-	
Site Locat	ion: N	assau, NY	Equ	ipment Used:	FA0303			Date: 6-16-	
Projec	et #: 718	541.402.016	Pump/C	controller ID#:	FAUD31	6	Wea	ather: Sun 84	56
ell inform	ation:	7.2.2					* N	Measurement Poin	t:
	alled Depth		3.21 ft. I	bmp.			t	Well Casing	
Meas	ured Depth		R. 71 ft. 1	omp.				Protective Casir	g
	Depth to	- 1// 3.	85 ft.					Other:	
ength of W	ater Column Well D		9. 96 ft. .0 in.			P	ump Intake Dep	oth*: 98.21	ft. bn
Start P	urge Time:	1145						-	
	servations:	Color C QU	v_ c	Odor nd	She	een/Free Prod	duct ho		
Elapsed	Depth	(2000 miles)		indica. Specific	te units	Dissolved		Flow	
Time	to Water	Temperature	pН	Conductivity	ORP	Oxygen	Turbidity	Rate	Other
minutes)	(ft bmp)	(Celsius)	(SU)	(US/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	(
0	63.85	8.11	7.51	1106	-123.9	3.86	17.6.	150	
5	64.03	11.2	7.73	1263	-140.9	4.16	19.1	150	
10	65.81	11.2	7.72	1242	-1451	3.68	16.4	150	
15	65.61	11.3	7.57	1131	-1587	428	19.8	150	4
20	66.11	11.1	766	716	-1500	376	174	150	
25	66-38	1111	766	927	-1500	2.64	147	150	
30	11.72	117	7.59	705	-1520	2 GU	11.5	150	
35	(06.86)	113	763	100	1517	7 77	10.	150	
	_	11.5	4.45	690	-1507	2.73	10.		
40	47.20		(1)	673	-135.1	2.82	15.1	150	
45	67.28	11.2	7.42	63	-151.2	2.87	1.	150	
50	67.40	[1.0	7.44	680.6	-137.4	282	16.9	150	
55	67.54	11.2	1.42	682.6	-128.3	2.79	22.6	150	
60	67.62	1.	7.26	628.5	-121.9	2.83	26.4	150	
63	67.72	11.2	7.30	611.4	-118.2	2.78	27.7	150	
66	67.78	11.1	7.26	633.1	-114.9	3.00	28.4	150	
69	67.85	16	7.26	6252	-115.6	2.99	28.8	150	
			1000					/	
	4 < 0.21	Not Applicable	.01	. 00/	. 10 \	. 100/	. 400/	100 < V < 500	
abilization	Δ≤0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
	urge Time:	1254 groundwater purg	and: Ca	gal.					
Final Ob	servations:	Color Clou	W_ C	Odor NON	She	een/Free Prod	luct 10 one		
Sample	ID: <u>/</u> /\W-	-B-OMW-	201-0	6162020		Sample Tin	ne: 1300		
alytical P	arameters:	VOCs by EPA M	lethod 8260, 1,4	-dioxane by EPA Metho	od 8270D SIM				
Container	Size C	Container Type	# Colle	cted Fie	eld Filtered?	Pr	eservative	Laborat	ory
40-m		Glass	6		No		HCL	Eurofins La	
250-n	ii .	Amber Glass	4		No		None	Eurofins La	ncaster
								1	
ites:				-				•	

RAI	мвегг		Low	Flow Groun	ndwater Sa	ampling Lo	g North	ing: 13589	18.1
Site Loca	tion:	y Loeffel Landfill Nassau, NY 541.402.016	Equ	pling Method: ipment Used: controller ID#:	Bladde	er Pump	Field Perso	ing: 74502 onnel: SET Date: 6/16/2 ather: \$75°F	
Vell inform Ins Meas	nation: talled Depth sured Depth Depth to Vater Colum Well I	of Well*: 70. of Well*: \$5 o Water*: \$5 n (LWC): 0. Diameter: 4.	82 ft. 1 ,50 ft. 1 ,27 ft.	omp.		Pi	* N	Measurement Poin Well Casing Protective Casin Other: 51.20	t: ng
	Purge Time: eservations:		(een/Free Prod	uct	_	
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity	ORP (mV)	Dissolved Oxygen	Turbidity	Flow Rate	Other
- Indices	(it binp)	(Cersius)	(30)		(iiiv)	(mg/l)	(NTU)	(ml/min)	
							-		
						- 1			
N-1-11-11-1	4 < 0.01	Not Applicable	. 0.4		1000	100			
	∆ ≤ 0.3' Purge Time:		± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
	al volume of servations:	groundwater purge		gal. Odor	She	en/Free Produ	ıct		
Sample	ID:	_				Sample Tim	e:		
nalytical P	arameters:	VOCs by EPA Me	hod 8260						
Container 40-m		Container Type Glass	# Collection	ted Fie	eld Filtered? No	Pre	eservative HCL	Laborat Eurofins Lar	
otes:	is b	asically o	MI · A	du 0.7	3, 1707	er M	not	Scan a	-
1		50 bme	3)		5000		1 110	5	

Site No		y Loeffel Landfill Nassau, NY		npling Method:	Bladd	er Pump	Field Pers	ting: 74518	
Proje		541.402.016	Pump/	Controller ID#:	FADZS	Womoter,	MINTO IM	Date: 06/16/28 eather: 80 + 50	020
ell inforn					INJUN				_
	stalled Depth	of Well*: 5	5.37 ft.	bmp.				Measurement Poir Well Casing	nt:
	sured Depth	of Well*: 50.	65 ft.	bmp.				Protective Casin	na
		Water*: 32.						Other:	3
ength of V		n (LWC): 18	_					7	
		-	4.0 in	•			Pump Intake De	pth*; 44.15	ft. br
	Purge Time:		_			William I			
IIIIIai Oi	servations.	Color (/cc	.(Odor Mare	7 ()	een/Free Pro	duct MVM		
Elapsed	Depth	+4	Trail-	Specific	te units	Dissolved	To status.	Flow	-
Time	to Water	Temperature	pH	Conductivity	ORP	Oxygen	Turbidity	Rate	Other
minutes)	(ft bmp)	(Celsius)	(SU)	()	(mV)	(mg/l)	(NTU)	(ml/min)	(
6	37.06	1010	8.15	4/5.5	-77.6	3.16	20.4	500	1
5	3320	9.3	8.16	412,6	-14/4.1	086	18.9	350	
16	33,35	10.1	7.96	410.8	-151.0	.74	19.7	206	
15	33,57	10.1	7.64	410.4	-155.4	051	17.6	160	
20	33.76	10.00	7.87	409,9	-159.0	047	195	160	
25	33.95	10.1	7.77	408.9	-162.2	244	17.8	160	
30	34,20	10,1	7.77	410.2	-162.8	0.37	16,0	160	
35	34. 37	9.9	7.74	406	-169,4	0.33	17.3	160	
40	34.52	9.9	7.81	405.0	-169,7	0,31	17.7	160	
45.	34.66	9,9	7.79	462.7	-172.7	.29	16.2	160	
3 - 1	1						10		
		0-							
									H
1								71.2	
			1						
	4								
abilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
	urge Time:								
Tota	al volume of	groundwater purç	ged: 4	gal.					
Final Obs	servations:	Color Clea	- (Odor MUNE	She	en/Free Prod	luct Mynu		
Sample	D: MU			5-0616702		Sample Tin		_	
	arameters:	- ANC 3 A 3 GOV A				Gampio Tili	ic. Line		
,	di dillotoro.	VOCS BY EPA M	etnod 8260, 1,4	-dioxane by EPA Metho	d 8270D SIM				
Container	Size C	ontainer Type	# Colle	cted Fie	ld Filtered?	Pr	eservative	Laborato	ny
40-m		Glass	3	111	No		HCL	Eurofins Lan	
250-m	1 /	Amber Glass	2		No		None	Eurofins Lan	caster
						7/2			_
						. /			
			-			74			
tes: Se	t m	PH 50 to	06	031 + 4	/min				

RAI	мвегг		Low	Flow Ground	dwater S	ampling Lo		ng: 13584	182.4
		y Loeffel Landfill	Corre	oling Mother	DI- 43	low Diverse	Eastin	ng:(5)75-74	5011.4
Site Loca		lassau, NY		oling Method: ipment Used:	Bladd	er Pump		nnel: SET	70
Proje		541.402.016		ontroller ID#:		_		ther: ±75°F	
Well inform								easurement Poi	,
The state of the s	alled Depth	of Well*: 52.	87 ft.	bmp.				Well Casing	III.
	sured Depth			bmp.			_	Protective Casi	ng
	Depth to	Water*: DM						Other:	
Length of W	ater Column								
	Well D	iameter: 2.	0 in.			Pı	ımp Intake Dept	h*: 50.38	ft. bmp
Start P	urge Time:	_							
Initial Ob	servations:	Color	(Odor		een/Free Prod	uct		
Elancod	Donth			indicat	e units	I Discolated I			
Elapsed Time	Depth to Water	Temperature	рН	Specific Conductivity	ORP	Dissolved Oxygen	Turbidity	Flow Rate	Other
(minutes)	(ft bmp)	(Celsius)	(SU)	()	(mV)	(mg/l)	(NTU)	(ml/min)	()
				Î Î					
1									
	1		-						
							_		
					-				
								k	
			1						
		1			1				
									1
				(
			_		_				
Stabilization	Δ ≤ 0.3'	Not Applicable	.01	. 20/	± 10 mV	1.100/	. 100/	100 1 1 1 1 1 1 1 1 1	
		Not Applicable	± 0.1	±3%	± 10 mv	± 10%	± 10%	100 ≤ X ≤ 500	
	Purge Time: I volume of	groundwater purge	ed:	gal.					
Final Ob	servations:	Color		Odor	She	en/Free Produ	ict		
Sample	ID:	_				Sample Tim	e:		
Analytical F	arameters:	VOCs by EPA Me	thod 8260						
Container	Size C	ontainer Type	# Colle	cted Fiel	d Filtered?	Pre	servative	Labora	tory
40-m		Glass	0		No		HCL	Eurofins La	
				70.7					
Notes:			Λ.						
well	is dr	ican not	Sam	ple. TD =	50.43	3' bmp			
_	(1.0							

RAI	мвсг	3	Lo	w Flow Grou	ndwater S	ampling Log) North		05.9
		ey Loeffel Landfill	San	npling Method:	Bladd	ler Pump	Field Person		17.5
Site Local	_	Nassau, NY 71541.402.016	-	uipment Used: Controller ID#:	***		We	Date: (116)	120
Vell inform	nation:				*			Measurement Poi	
	talled Dept	h of Well*: 85	.27 ft.	bmp.				Well Casing	it:
Meas	sured Dept		4.9 ft.	bmp.			_	Protective Casi	na
	Depth	to Water*:	Dry ft.					Other:	
ength of W			ft.			Pui	mp Intake Dep		ft. br
Start P	urge Time	: -					D4 47 HBM22 05 24		
	servations			Odor		een/Free Produ	ct	_	
Elapsed	Depth	1 2	100	Specific	ate units	Dissolved	ALCO DE LA	Flow	_
Time	to Water	Temperature	pH	Conductivity	ORP	Oxygen	Turbidity	Rate	Other
minutes)	(ft bmp)	(Celsius)	(SU)	()	(mV)	(mg/l)	(NTU)	(ml/min)	(
		7							
- 11									
						1			
			\						
			1			71			
			1						
								Marie Carl	
		1							
		H				/			
		1							
-		1				2			
					1				
abilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Tota Final Obs	ervations:	f groundwater purg	_	gal.	Shee	en/Free Product			
Sample II	D:					Sample Time:	_		
alytical Pa	arameters:	VOCs by EPA Me	thod 8260						
Container :	Size	Container Type	# Collec	ated Fie	eld Filtered?	Droce	ervative	Laborat	
40-ml		Glass	C	, ica	No		ICL	Laborate Eurofins Lan	
	100							Luiollis Lan	casiei
								4 =	
								(a	
						-			
es:							= -3		
tes:	-c Am	y; (an not	00.04	ple. TD=	85.17	M. s.	= -3		

RA	мветь		Lov	Flow Groun	ndwater S	ampling Lo	g North	10000	1.9
Site Loca	ame: Dewe		Equ	pling Method: ipment Used: Controller ID#:	FAO:	ler Pump	Field Perso	Date: 6-17-	20
Well inform Ins Mea Length of V	nation: stalled Depth sured Depth Depth to Vater Column	of Well*: 24 of Well*: 24 of Water*: 9 of (LWC): 152	43.5 ft. 2.48 ft. 09 ft.	bmp.	<u> </u>	1 4	· 1	Measurement Poin Well Casing Protective Casin Other: by cht*: 224.97	
Initial Ob	servations:	Color Cle	ar o		Sh nte units	een/Free Prod	luct none	_	
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity	ORP (mV)	Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)	Other
0	90.09	10.6	7.74	516	45.1	1.10	20.5	200	
5	NM	160	9.81	510.3	177	.22			
10	/ / / / / /	105	9.30	210.3	110		5.98	200	
		10.2	-	511.	11.8	.15	4,74	200	
15		10.2	9.81	509.8	11.3	.10	251	200	
20		10.3	9.80	508.7	5.7	.05	2.04	200	
25	V	10.3	9.80	508.2	2.7	.02	1.23	200	
30	93.25	10.3	9.80	508.1	-3	.01	155	200	
35	93.25	10.7	071	508.3	-4.3		1 71		_
40	9376	10.4	0 30		11	9	724	200	_
	(12.25	1 4	9.76	508.3	6.1	Ó	2.24	200	
45	75.2)	10.3	9.77	508.	-7.7	0	1-56	200	
50	93.25	10.4	9.79	507.9	-9.5	0	1.82	200	
55					- 4				
66									
					A				
Stabilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Final Obs	servations:	groundwater purg	v-215-	gal. dor \(\int \(\int \) \(\	2020	en/Free Produ Sample Time	e: 1051		
Container	Size C	ontainer Type	# Collec	ted Fie	eld Filtered?	Pre	servative	Laborato	n/
40-m		Glass	3	110	No No	Tie	HCL	Eurofins Land	-
250-m	nl /	Amber Glass	2		No		None	Eurofins Land	
- 1	18 V								
1000									
otes:								(9)	1
									-

	мвосг			r_n_n		ampling L		hing: 13587 sting: 7447	13.9
	_	y Loeffel Landfill	_	npling Method:		ler Pump	Field Pers	sonnel: (thu	
Site Loca Proje		Nassau, NY 541.402.016	-	uipment Used: Controller ID#:	131 AROY	Want,	mroidily alto	Date: 06/17/20	ord
Vell inform					_			eatheri-70 den	
	stalled Depth	of Well*: 26	88.18 ft.	bmp.				Measurement Poir	nt:
	sured Depth	and the same of th		bmp.				Well CasingProtective Casin	20
	Depth to	Water*: 107	41 ft.					Other:	19
_ength of V		n (LWC): 160 . Diameter:	77 ft.			1		pth*: 247.18	ft.
Start F	Purge Time:	955							
	servations:		_	Odor Mindica	Sh	een/Free Pro	duct None		
Elapsed	Depth	Temperature	nU.	Specific	11 1000	Dissolved	1.4117.57	Flow	7.50
Time	to Water		pН	Conductivity	ORP	Oxygen	Turbidity	Rate	Oth
minutes)	(ft bmp)	(Celsius)	(SU)	cus/cm;	(mV)	(mg/l)	(NTU)	(ml/min)	(
0	107,41	10,7	9.20	847	160,0	11.06	4,20	200	
	107,76	10.1	9,82	848	-223.9	3.56	3,52	200	
10	107.86	10.0	9.98	856	-257.1	097	6.58	200	
15	107.90	10.2	10.08	873	-271,5	e43	12.6	200	
20	107.87	10.2	10.02	864	-2754	,35	12.5	175	
25	107,83	10,3	9.92	857	-280,4	031	12.2	175	
30	107,77	10.2	9.85	845	-276.5	028	11.4	175	
35	107.68	10.3	9,80	831	- 285,4	023	10.58	175	
2840		1013	7.77	826 -	-286.3		8,86	175	
1.0	107.63	1011	9,72	8/3	-2.82.1	019	7.54		
	07.56	1013	9,69	806	-284.6	.19		175	
	27106		-164	006	207.0	21/	7.16	175	
						1		1	
							4		
				1000					
abilization	Δ ≤ 0.3'	Not Applicable	+01	. 20/	. 10 1/	1001	V Ew		
			± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Tota		groundwater purg							
		-B-Onne		odor None	Shee		uct_none		
	arameters:	VOCs by EPA Me		6112020		Sample Tim	ie: <u>1050</u>		
Container 40-ml	Size Co	ontainer Type Glass	# Collec	ted Fiel	d Filtered?	Pre	eservative	Laborato	ry
40-1111		Glass	3		No		HCL	Eurofins Land	caster
			,						
es: 90	Ish P.	51@4/	min						

APPENDIX C.2
SPRING 2020 GROUNDWATER SAMPLE CHAIN-OF-CUSTODY FORMS

C. CWM 410-4736 Chain of Cust

RAMBOLL SDG: GWM		un or ouslody		Dev	vey L	oeffel La	andfill	Su	per	fund !	Site					rege I m I
PO: 119007	711	Client: Site Name / Lo GE-CEP/SI Group, Inc.		dfill / Namau, N	Y.	Sampling Program 1st Semi-Annual G Program Sampling	roundwater M	onitorin	В	Samplera: Jewl Jewl	Sarah Tra		John Gan	70.	W	Lab Use Only Project Number:
amboli Office: Albany		Laboratory:		Analysis Hold	ling Time:			Chen	ical Pres	ervatives: (se	e liey at bo	ettom)				
ddress: Ramboll		Megan Moeller		Refer to the UI			0	1	0							Lab ID;
New Kamer Bd, Suite 106, Albany, N.Y. 12203 hone: (518) 724-7272		Eurofins Lancaster Labor 2425 New Holland Pike	atones, Inc.	(GBG, Septem holding times.	ber 2015) for 1	he analysis	ite (6	AS.	1							
ux: (518) 869-2945		Lancaster, PA 17601		Package Requ	ulrement		Composite (C)	by USEPA SW-	by USEPA							Job Number:
mject Contact: Robert Homung / Amy Spooner-Stevens /Jesse Vollick				Full CLP Level	w/28 calend	ar day TAT	- 8	0 kg p	e by I			8.1				
mall: Robert. Hornung@ramboll.com / Amy.Spooner-Stevens@ramboll.com / Jes	se.Vollick@ramboll.com	Phone: (717) 656-2300 Pax: (717) 656-6766		Project Numb		200 & USEPA Region 2	Grab (G)	TCL, VOCa h	1,4-Dimane							
Sample Identification							Field Filtered (Y/N)		N							
Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hh:mm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting Units	7/30	T/Bn							Lab Sample ID
1 MW-B-0MW-102-06162020	201-MMO	06/16/20	11:40	N	WG	5	6	X	X			1				2007
MW-B-0MW-201-06162020	0mul-201	05/16/120	13:00	N	WG	5	6	X	X							
3 MW-B-EPA-4A-06162020	EPA-4A	06/16/20	14:00	2	WG	5	G	X	X							
1 MW-B-EPA-44-00162020-MS	EPA-4A	06/16/20	14:00	MS	WQ	5	G	X	X							
5 MW-B-EPA-4A-06162020-MSD	FPA-4A	06/16/20	14:00	MS	WO	5	6	X	×	1-1						
6 MW-B-F.PA-4B-06162020	EPA-4B	06/16/20	14:05	N	WG	5	G	X	x							
MW-B-0MW-205-06162020	0MW-205	06/16/20	14:52	N	WG	5	6	X	X							112
DUP-001-06162020	_	06/16/20	-	FD	WG	5	6	X	×							
6W-0616Z0Z0-TB	_	06/16/20	-	TB	MQ	2	6	X	^							
10																
Special Instructions: 1,28 calendar day turnaround time per UFP QAP CUSTODY SEAIS 8015Z & 80		above the MDL, but be	elow the PQL ("J	" flags). Custo	ody seal nur	nbers:										
einquished by:	Date 06/16/20	Received by: Fed	Ek			Date 6/16	170	Cond		v 1	_				Commer	ts or Notes:
Ramball	Time /630	Tracking Number(s): 8		0 842	7	Time 163		1	11	itact						and report in accordance with
Relanquished by:	Date	Received by:	101	11-10		Date		Custo	dy Seala I	ntact? Y	N				QAPP (.oeffel Landfill Superfund Site U OBG, September 2015). 28 calent
ž.	Time	of:				Time	~ ~	1		U					EQuIS	for Full CLP Level Pkg (PDF) file and USEPA Region 2 Versi
Relarquisted by:	Date	Received by	N			411	10	Coole	r Tempen	iture:					4 EDD v	with USEPA Region 2 Reference
	Time	1 ///			Time 1	27	1		1.1					1		

RAMBOLL SDG: GWM				Dev	vey L	oeffel La	andfill	Su	per	func	1 Sit	e		410-4	880 Ch	ain of	Custody
PO: 11900'	711	Client: Site Name / Lo GE-CEP/SI Group, Inc.		dfill / Nassau, N.	Y.	Sampling Program 1st Semi-Annual G Program Sampling	coundwater M	onitorin	E.	Samplers:	a	Travaly	W F	Sardnes N/V	Chra W	Veiman	Project Number:
Rambnil Office: Albany Address: Ramboll 94 New Kamer Rd, Suite 105, Albany, N.Y. 12203 Phone: (\$18) 724-7272 Fax: (\$18) 869-2945 Project Contact: Robert Humung / Amy Spounce-Stevens / Jesse Vollick Email: Robert. Humung@ramboll.com / Amy Spounce-Stevens@ramboll.com / Jes	use Vollick@ramboll.com	Laboratory: Megan Moeller Eurofins Lancaster Labo 2425 New Holland Prix Lancaster, PA 17601 Phone: (717) 656-2300 Fax: (717) 656-6766	ratories, Toc.	Analysis Hold Refer to the UI (OBG, Septem holding times. Parkinge Requ Full CLP Level Project Numb EDD Format:	FP QAPP ber 2015) for the direment: w/28 calendary per: 71541.402	ar day TAT	Grab (G) or Composite (C)	TCL. VOCs by USEPA SW.	1,4 Diname by USEPA SW.	ervatives	(see key	at bottom)				Lab ID: Job Number:
Sample Identification							Field Filteres (Y/N)	N	N								
Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hh:mm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting Units	18/L	T/St								Lab Sample ID
1 MW-B-0MW-219-06172020	0MW-219	06/17/20	10:50	N	WG	3	6	X					3 0				tino catti inc ta
: MW-B-0MW-215-06172020	0MW-215	06/17/20	10:51	N	WG	5	G	X	X								
3 GW-06172020-EB	_	05/17/20	17:50	EB	Wa	5	6	X	X								
1 MW-B-DBH-03A-06172020	DRH-03A	06/17/20	15:10	N	WG	5	6	X	X								
5 MW-B-DBH-03B-06172020	DRH-A3R	06/17/20	15:15	14	NG	5	G	X	X			1				1	
6 MN-B-DBH-03C-06172020	DRH-A3C	06/17/20	15:20	11	WG	5	6	X	X							-	
, MW-B-DBH-03 D-06172020		06/17/20	15:25	12	WG	5	G	X	~			1				+	
: MW-0VB-VSMW-015-06172020			15:45	N	WG	5	6	X	X		-					+	1000
, GW-06172020-TB	- 01-	06/17/20	13-73	TB	20	278		X	^		-	1			1	-	
W DOITECOO 10		00/11/00		10		-40	50	^			-	1					-
Special Instructions: 1, 28 calendar day turnaround time per UFP QAP	P. 2. Report detections	above the MDL, but b	elow the PQL ("J	" flags). Custo	ndy seal num	nbers:	460)	-									
Custody seals 80153, 80154	t																
of Remtoll	Dain 6-17-20 Time 1800	Received by: Fed F		7 0 2115	_	Date 6-15 Time 180	1-Z0	Cond	ion:	rtac	+				1	Analyze s	or Notes: and report in accordance with
Relinquished by:	Date Time	Received by:	100 10 10	7 595		Date Time	_	Custo	dy Seala I		N (Y				0	QAPP (O	effel Landfill Superfund Site UFP BG, September 2015). 28 calendar, or Full CLP Level Pkg (PDF) and ile and USEPA Region 2 Version
Relanquished by:	Date Time	Received by:	R	EILE		Time 61	70	Coale	Temper	ihire:					-		th USEPA Region 2 Reference
Sample Type: N = Normal environmental sample, FD = field duplicate, EB Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Surfa Preservatives Code: 0 = none, 1 = HCL, 2 = HNO3, 3 = H2SO4, 4 = NaOH	ice Water, WW = Waste W	ater, WQ = Water Quali	ry, TA = Animal T	issue, TP = Plan	nt Tissue, A	A = Ambient Air, C	Other (Specify):									*

CS

410-5050 Chain of Custody

RAMBOLL SDG: GWM	09	ı			ey L	oeffel La	andfill	Su	per	fund	Site					Page of
PO: 119007	711	Client: Site Name / Lo	cations			Sampling Program	m	_	-	Samplers:	Agrals Tras	valo .a	John Gard	nee - Chess	Weiman	Lab Use Only
		GE-CEP/SI Group, Inc.		dfill / Naesau, N.	Υ.	1st Semi-Annual G Program Sampling	roundwater M	onitorin	В	Samplers:	ulf	Ou	Fay,	2000	2	Project Number:
Rambolt Office: Albany		Laboratory:		Analysis Hold	ling Time:			Chem	ical Pres	ervatives: (s	ee key at bo	ttom)				
Address: Ramboll		Megan Moeller		Refer to the UF	T' QAPP			1	0							Lab ID:
4 New Karner Rd, Suite 106, Albany, N.Y. 12203		Eurofins Lancaster Labor	ratories, Inc.	(OBG, Septemb	ber 2015) for t	he analysis	0	tie.	SW.							
thone: (518) 724-7272		2425 New Holland Pike		holding times.			osfire	Y ST	PAS							
Faxt (518) 869-2945		Lancaster, PA 17601		Package Requ			duo	JSEI 3C	USEPA :							Job Number:
roject Contact: Robert Homung / Amy Spooner-Stevens /Jesse Vollick		-		Full CLP Level	w/28 calenda	ir day TAT	ŭ,	1 by 1	27		1 1	1 3				
Imail: Robert. Homong@ramboll.com / Amy Spooner-Stevens@ramboll.com / Jea	sse.Vollick@ramboll.com	Phone: (717) 656-2300 Fax: (717) 656-6766		Project Numb EDD Format:		200 & USEPA Region 2	Grab (G) or Compostire (C)	TCL VOCs by USEPA SW- H6 Method 12/0C	1,4-Dioxane 845 Merhod							
Sample Identification							Field Filtered (Y/N)	1	N							
					Cample		n. de									
Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hlumm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting	T/Sn	7/20							Lab Sample ID
1 MW-B-VSMW-0135-06182020	VSYW-01BS	0918120	10:55	N	WG	5	G	X	X							
2 MN-8-EPA-4A-0 30 6/18/20-																
	ERA AA	-110100	IF SE	1 . 1	1.10	3	^									
, MW-B-EPA-ZA-06182020	EPA-ZA	05/18/20	15.05		WG		G	X			\Box					
1/MW-B-EPA-ZB-00182020	EPA-ZB	05/18/20	15:10	N	WG	3	6	X								
1 MW-B-EPA-ZR-06182020 5 MW-B-EPA-ZC-06182020	EPA-ZC	dd18120	15:15	N	WG	3	6	×								
6 GW-06182020-TB		02/8/20	_	TB	Wa	7	6	-				1				
6 BW-4018 WW-18		Dallaren		115	MU	6	0	X	-		-	-				
7																
8																
9						-		-		_	++-	-				
10																
Special Instructions: 1, 28 calendar day turnaround time per UFP QAP		above the MDL, but be	elow the PQL ("]	" flags), Gusto	dy seal nun	nbers:										
	Date 6-18-20	Received by: Fed E	De .			Date 6-18	-70	Condi	tion:						Comments of	or Notes:
				0 117		Time (700		1								d report in accordance with
Ramboll	Date	Tracking Number(s): 81	60 7540	1070	2	Date)		dy Seals I						Dewey Loca	ffel Landfill Superfund Site U
nemiquated by		Mercineuroj.				22		Custo	ny Seats 1	ntact? Y	N					G, September 2015), 28 calend or Full CLP Level Pkg (PDF)
of.	Time	a£.				Time						_			EQuIS 4-fil	e and USEPA Region 2 Versi
Relanquished by:	Date	Received by				Detel 1911.	20	Coole	Temper	ature:					Values,	USEPA Region 2 Reference
	Time	-	ELL	E		Time /UZ	Q									
Sample Type: N = Normal environmental sample, FD = field duplicate, EB:	F	of:					- 0									

RAMBOLL SDG: GWM				Dev	wey L	oeffel La	ndfill	Sup	per	fund S	410-52	19 Chair	of Custo	ody	
PO: 11900	3711	Client: Site Name / Loc GB-CEP/SI Group, Inc.:		ifili / Nassau, N	.Υ.	Sampling Program 1st Semi-Annual Gr Program Sampling I	oundwater Me	gaintting		Sampleni S	th Travaly	January	em		
amboll Office: Albany		Laboratory:		Analysis Hold				Chemic	al Pres	ervatives: (see ke	at bottom)				1
ddress; Ramboll		Megan Moeller		Refer to the Ul	FP QAPP		-	1	0						Lab ID;
4 New Karner Rd, Suite 106, Albany, N.Y. 12203		Eurofina Lancaster Labor	stories, Inc.	(OBG, Septem	ber 2015) for 1	he analysis	osite (C)	*	STV.						
hone: (518) 724-7272 ax: (518) 869-2945		2425 New Holland Pike		holding times.			posi	Yar	by USEPA S \$270D SIM						Job Numberi
roject Contact: Robert Homung / Amy Spooner-Stevens /Jesse Vollick		Lancaster, PA 17601		Package Requ Full CLP Level		or day TAT	Сопр	LOSE 160C	J US						Jou Muniperi
The state of the s	7.			THE SHAT SEVE	w/40 calend	at way 1711	3 04	Caby	ane b						
mail: Robert, Homung@ramboll.com / Amy.Spooner-Stevens@ramboll.com / J	lesse.Vollick@ramboll.com	Phone: (717) 656-2300		Project Numb			Grab (G) or	ICL VOC. by USEPA SW- F46 Method f240C	L,4-Dioxane 546 Method 8						
		Fax: (717) 656-6766		CLID Format	EQuia 4-Pil	& USEPA Region 2	5	53	2.2						V.
							Field Filtered (Y/N)								
Sample Identification	1	-					(1714)	N	N						Mary and the second
Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hlumm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting Units	7/ ⁸ n	T/Bn						Lab Sample ID
MW-B-EPA-1A-06192020	EP7-1A	06/19/20	14:00	N	WG	3	G	X							The sample say
MW-B-EPA-13-00197070	EPA-IB	06/19/20	14:05	N	WG		G	X							
: MW-B-EPA-1B-06192020 ; MW-B-EPA-1C-06192020 : GW-06192020-+B	EPA-IC	06/19/20	14:10	N	WG	3	G	X							
GU-06197070=+P	-	06/19/20	-	TB		2		1						-	
I CIN OCHTOCO TE		00/19/20		10	MO	6	G	X					-		
5															
6															
7															
											1				
						-			_						
9															

Sample Type: N = Normal environmental sample, FD = field duplicate, EB = Equipment Illank, FB = Field Blank, TB = Trip Illank, MS = Lab Matrix Spike, Other (Specify):

Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Surface Water, WW = Waste Water, WQ = Water Quality, TA = Animal Tissue, TP = Plant Tissue, AA = Ambient Air, Other (Specify):

Preservatives Code: 0 = none, 1 = HCL, 2 = HNO3, 3 = H2SO4, 4 = NaOH, 5 = Ascorbic Acid, 6 = MeOH, 7 = NaHSO4, 8 = Na2S2O3, 9 = H3PO4, 10 = Zinc acetate + NaOH

Tracking Number(4): 8160 9540 8415

Reimquished by:

Comments or Notes:

Values.

Justody Seals Intact?

Analyze and report in accordance with Dewey Loeffel Landfill Superfund Site UFP QAPP (OBG, September 2015), 28 calendar day TAT for Full CLP Level Pkg (PDF) and EQuIS 4-file and USEPA Region 2 Version

4 EDD with USEPA Region 2 Reference

Preservatives Code: 0 = none, 1 = HCL, 2 = HNO3, 3 = H2SO4, 4 = NaOH, 5 = Ascorbic Acid, 6 = MeOH, 7 = NaH5O4, 8 = Na2S2O3, 9 = H3FO4, 10 = Zinc acetate + NaOH

Page of SDG: GWM 10 ey Loeffel Landfill Superfund Site RAMBOLL Lab Use Only PO: 11900711 Client: Site Name / Location: roject Number: GE-CEP/SI Group, Inc.: Dewey Loeffel Landfill / Names, N.Y. lar Semi-Annual Groundwater Monitoring Program Sampling Event Ramboll Office: Albany Laboratory Analysis Holding Time: Chemical Preservatives: (see key at bottom) Lab ID: Address: Ramboll Meran Moeller Refer to the LIFP OAPP 0 irab (G) or Composite (C) 94 New Karner Rd, Suite 106, Albany, N.Y. 12203 Eurofins Lancaster Laboratories, Inc. (OBG, September 2015) for the analysis CL VOCs by USEPA SW. Phone: (518) 724-7272 2425 New Holland Pike 4 Digrame by USEPA 54 Method 1270D SIM lob Number: Fax: (518) 869-2945 Lancaster, PA 17601 Package Requirement: Project Contact: Robert Hornung / Amy Spooner-Stevens /Jesse Vollick Full CLP Level w/28 calendar day TAT Email: Robert, Homung@ramboll.com / Amy.Spooner-Stevens@ramboll.com / Jesse.Vollick@ramboll.com Phone: (717) 656-2300 Project Number: 71541.402.200 EDD Format: EQuIS 4-File & USEPA Record Fax: (717) 656-6766 ield Filtered (Y/N) N Sample Identification Sample Sample Date (mm/dd/yy) Sample Time Sample Type Matrix Unique Field Sample ID Sample Location (hlumm) (see key) # of Containers Lab Sample ID MW-B-EPA-3B-06232020 13:ZZ EPA-38 06/23/74 G MW-B-EPA-3C-06232020 WG EPA-36 13:25 06/23/22 × GW-66232020-TB Wa × 66/23/20 Special Instructions: 1.28 calendar day turnaround time per UFP QAPP. 2. Report detections above the MDL, but below the PQL ("J" flags). Custody seal numbers: CUSTODY SEAL - 80162/ Relanquished by CMS WEIMAN 6-23-2020 leceived by: Fedex 6-23-2020 omments or Notes: Tracking Number (# 21081609 5408390 Time /545 Analyze and report in accordance with 1545 Dewey Loeffel Landfill Superfund Site UFP QAPP (OBG, September 2015), 28 calendar, day TAT for Full CLP Level Pkg (PDF) and Time EQuIS 4-file and USEPA Region 2 Version Date Relinquished by: Pf- 24/220 EDD with USEPA Region 2 Reference Sample Type: N = Normal environmental sample, FD = field duplicate, EB = Equipment Blank, FB = Field Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify):
Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Surface Water, WW = Waste Water, WQ = Water Quality, TA = Animal Tissue, TP = Plant Tissue, AA = Ambient Air, Other (Specify):

w

APPENDIX C.3 FALL 2020 LOW-FLOW SAMPLING FORMS

Site Name: Dewey Loeffel Landfill Sampling Method: Water FLUTe Field Personnel: Set Location: Nassau, NY Equipment Used: YSI / Turbidity Meter Date: 11-12-20 Project #: 1970071541.402.016 Equipment IDs# Project #: 1970071541.402.016 Equipment IDs# Project #: 1970071541.402.016 Equipment IDs# Project #: 129.90 ft. bmp. Installed Depth of Well*: 129.90 ft. bmp. Measured Depth of Well*: ft. bmp. Depth to Water*: 41.55 ft. Well Diameter: 4.0 in. Port Midpoint Depth*: 119.95 ft. br Start Purge Time: ICI5 Initial Observations: Color Color Odor Silver Sheen/Free Product Oxygen Time to Water Temperature pH Specific Conductivity ORP Oxygen Oxygen Oxygen Oxygen Water FLUTE Field Personnel: Set III-12-20 Weather: 1-12-20 Weather: 40° Road III-12-20 Weather: 4	RAI	4BCLL			Groundwate	er Samplin	ıg Log	Well Northi	ng: 135719	93.7
Size Location Nassau, NY Equipment Used Size Turbridgy Meter 1280 Color Colo			Looffol Landfill	Samo	ling Method:	Water	FLUTe			
Project # 1970071541.402.016					_					
Information:										
Installed Cepth of Well* 129.90 1t. bmp. 129.90 1t. bmp.			7 1341.402.010	Equ	ipment (Dair)	MDC . 1	Trace		1.	
Measured Depth of Well* Depth to Water* St4.555 ft. ength of Well* Well Diameter: 4.0 in. Port Midpoint Depth*: Third Observations: Color Cuttor Start Purgo Time: 10 55 Intill Observations: Color Cuttor Start Purgo Time: 10 55 Intill Observations: Color Cuttor Sheecific Conductivity (Robin) Sheecific Conductivity (Robin) Sheecific Conductivity (Robin) (Robin) Sheecific Conductivity (Robin) (Robin) Sheecific Conductivity (Robin) (R										τ:
Depth to Water Depth to Water Sq. 5-5 n.		•	_					_	_	_
Start Purge Time 10 Start Purger Time	Mea				omp.					ng
Start Purge Time: 19.5		-						X	Other: Port	_
Initial Observations: Cofor	ength of V.			_			Po	rt Midpoint Dep	th*:119,95	ft. bm
Initial Observations: Cofor	Start F	urge Time:	1015		^					
Elepsed Depth to Water Temperature pH (Sels) Specific Conductivity (µS/cm) (µW) Dissolved Oxygen (NTU) Port Volume (removed) Notes (ntminutes) (th bmg) (12 mg/cm) (1				0			en/Free Prod	uct		
Time	Elapsed	Depth	_				Dissolved	Turbidity	Port Volume	Addition
Color Colo			Temperature	рн	Conductivity	UKP	Oxygen			Notes
## 10 84.93 9.1 10.04 433.7 -199.8 2.69 0.89 2 HO 86.04 9.1 10.37 438.9 -172.7 2.47 1.16 3 Final Observations: Color Clear Odor Grandly Sub Sheen/Free Product	(minutes)	(ft bmp)	(Celsius)		(µS/cm)	(mV)	(mg/l)	(NTU)	(removed)	
## 10 84.93 9.1 10.04 433.7 -199.8 2.69 0.89 2 HO 86.04 9.1 10.37 438.9 -172.7 2.47 1.16 3 Final Observations: Color Clear Odor Grandly Sub Sheen/Free Product	0	24.55	97	9.75	616-0	251.0	2.35	0.77	1	
10 85.04 9.1 10.37 138.9 -172.7 2.47 1.18 3	70					-199 8	719	089	7	
End Purge Time:					100					
End Purge Time: 12-15 Total volume of groundwater purged: 3 - 5 gal. Final Observations: Color Clear Odor Sundly Sheen/Free Product VICIN Sample ID: MN-R-EPA - 1 - 1/13 2000 Sample Time: 1455 nalytical Parameters: TCL VOCs by USEPA SW-846 Method 8280C, 14-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon isolopes ("C)"C) for TCE and cDC method "C CASA, Chronie Isolopes (37C/3SC) for TCE by method "C Container Type # Collected Field Filtered?" Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 40-ml Glass VOA 8 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights	_									
End Purge Time: 12-15 Total volume of groundwater purged: 3 - 5 gal. Final Observations: Color Clear Odor Sundly Sheen/Free Product VICIN Sample ID: MN-R-EPA - 1 - 1/13 2000 Sample Time: 1455 nalytical Parameters: TCL VOCs by USEPA SW-846 Method 8280C, 14-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon isolopes ("C)"C) for TCE and cDC method "C CASA, Chronie Isolopes (37C/3SC) for TCE by method "C Container Type # Collected Field Filtered?" Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 40-ml Glass VOA 8 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights	210	85.08	9,1	4.79	375.7	-78.1	238	0.50	ч	
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights					111111111111111111111111111111111111111					1
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights				-						
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights	_									
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights									-	-
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights						-				
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights										
Total volume of groundwater purged: 5 ° 5 gal. Final Observations: Color Odor Stably Subset Sheen/Free Product North Sample ID: MN-R-EPA - IA - III 3 Z O Z O Sample Time: 1455 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM, Carbon Isotopes (13C/12C) for TCE and cDC method 13C CSIA, Chorine Isotopes (37C/35C) for TCE by method 27Cl CSIA Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights									1	
Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml / Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights	To Final Ol Sample	tal volume of oservations:	groundwater pur Color Clec S-EPA - I A	-111320	odor Sightly		Sample Tin	ne: 1455	<u> </u>	
40-ml Glass VOA 3 No HCL ETA Lancaster 250-ml / Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights					method ¹³ C CSIA	, Chorine Isotope	s (37C/35C) for To	CE by method ³⁷ CI C	SIA	
250-ml · Amber Glass 2 No None ETA Lancaster 40-ml Glass VOA 8 No HCL Microbial Insights					oteu F				7	
40-ml Glass VOA & No HCL Microbial Insights	_								_	
									4	
ples:	4U-r		Glass VUA	5		INO		1102	MICIODIAI	
oles:										
oles:			_				_			
oles:										
oies.	latac:									
	otes:									

RAI	иво́LL			Groundwat	er Samplin	g Log	Well Northi Easti	ng: 135719	93.7
Site Locat	tion: Na	Loeffel Landfill assau, NY 71541_402.016	Equip	ling Method: oment Used: pment IDs#:		FLUTe idity Meter	Field Perso	46.	70
Meas	talled Depth of sured Depth of Depth to Vater Column	of Well*: - Water*: 39	0.20 ft. b ft. b 1.73 ft ft.			Pc	□ X	Measurement Poir Well Casing Protective Casir Other: Port	ng
	Purge Time: eservations:	Color Cl	ecv o	dor <u>sulf</u>	She units	en/Free Prod	luct Norw	<u> </u>	
Elapsed Time minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Additiona Notes
O	89.73	9.3	9.17	434.7	216.1	1.44	1.36	1	
70	89,80	8.8	10.18	402.0	-160.1	1.75	0.49	2	
140	89.82	8.8	10.36	383.3	-142.0	1.45	0.82	3	
210	89.82	9.3	10.17	475.0	-120.5	1.61	0.88	<i>L</i>	
								15	
Final Ob	servations:	groundwater pur Color CH R-EPA-1	3-11132	odor Skyntiu		Sample Tir		L	
Containe	r Sizo	Container Type	# Collec	rted E	ield Filtered?	, p	reservative	Labora	atory
40-m		Glass VOA	# Collect	Sicu F	No		HCL	ETA Lar	
250-r		Amber Glass	2		No		None	ETA Lar	caster
otes:									

Site Location: Project #: /ell information: Installed I Measured I .ength of Water O Start Purge I Initial Observat Elapsed De Time to W (minutes) (ft b	Dewey I Na 197007 I: Depth of Depth to V Column (Well Dia Itions: epth Water bmp) 67 26 36	Well*:	.00 ft. b .02 ft ft ft ft ft.	mp. mp.	Water YSI / Turb	FLUTe idity Meter	* Meat * Meat X rt Midpoint Dept	ng: 74474 nnel: SE nate: 11-13- cher: +40° well Casing Protective Casin Other: Port h*: 232.25	6.9 T 20 Rein t:
Site Location: Project #: /ell information: Installed I Measured I De Length of Water O Start Purge T Initial Observat Elapsed Time to W (minutes) (ft b	Na 197007 II: Depth of Depth of Depth to V Column (Well Dia Time: ations: epth Water bmp) 0 7 2 6 3 6	ssau, NY 1541.402.016 Well*: 241 Welt*: Vater*: 90 (LWC): ameter: 4. Temperature (Celsius) 9 4	Equip Equip (50) ft. b ft. b ft. c f	mp. mp. mp. mp. mp. mp. mp. mp.	YSI / Turb A00430 She te units ORP (mV) 134.3 -194.0 -166.1	Polen/Free Produ	Field Person Weat * Mo X rt Midpoint Dept Turbidity (NTU) 2.20 2.61 1.25	easurement Poin Well Casing Protective Casin Other: Port h*: 232.25 Port Volume (removed)	TO PCVO
Site Location: Project #: /ell information: Installed I Measured I De Length of Water O Start Purge T Initial Observat Elapsed Time to W minutes) O 10 170 110 110 110 110 110 110 110 110 1	Na 197007 II: Depth of Depth of Depth to V Column (Well Dia Time: ations: epth Water bmp) 0 7 2 6 3 6	ssau, NY 1541.402.016 Well*: 241 Welt*: Vater*: 90 (LWC): ameter: 4. Temperature (Celsius) 9 4	Equip Equip (50) ft. b ft. b ft. c f	mp. mp. mp. mp. mp. mp. mp. mp.	YSI / Turb A00430 She te units ORP (mV) 134.3 -194.0 -166.1	Polen/Free Produ	Weat * Mid X rt Midpoint Dept Uct	easurement Poin Well Casing Protective Casin Other: Port h*: 232.25 Port Volume (removed)	t: Addition
Project #: [Vell information:	197007 I: Depth of Depth to Well Dia Time: ations: epth Water bmp) Class of Column (Column	1541.402.016 Well*: 241 Well*: Vater*: 90 (LWC): ameter: 4. Temperature (Celsius) 9 4	Equi .00 ft. b ft. b .62 ft. ft. o in. pH (SU)	mp. mp. mp. indicat Specific Conductivity (µS/cm) 367-2 435.8 382.3	M She te units ORP (mV) 134.3 -194.0 -166.1	Porten/Free Production (mg/l) O 92 O 83 O 87	* Meat * Midpoint Dept Uct	easurement Poin Well Casing Protective Casin Other: Port h*: 232.25 Port Volume (removed)	t: g ft br
rell information: Installed I Measured I Deength of Water C Start Purge I Initial Observat Elapsed Time to W minutes) (ft b	Depth of Depth of Depth to V Column (Well Dia Time: _ations: epth Water bmp)	Well*: 241 Well*: 90 (LWC): ameter: 4. Temperature (Celsius) 9 4	.00 ft. b	mp. mp. indicat Specific Conductivity (µS/cm) 367.2 435.8 382.3	She writs ORP (mV) 134.3 -194.0	en/Free Produ Dissolved Oxygen (mg/l) O.92 O.83	* Midpoint Dept Unit	Port Volume (removed)	t: g ft br
Installed I Measured I Deength of Water O Start Purge I Initial Observat Elapsed Time to W minutes) (ft b	Depth of Depth of Depth to V Column (Well Dia Time: _ations: epth Water bmp)	Well*:	ft. b .62 ft. 0 in. pH (SU) 7.08 10.24	indicate Specific Conductivity (µS/cm) 367.2 435.8 382.3	ORP (mV) 134.3 -194.0 -166.1	en/Free Produ Dissolved Oxygen (mg/l) O 92 O 83	Turbidity (NTU) 2.20 2.61	Port Volume (removed)	ft br
Measured IDE ength of Water Control Start Purge Initial Observation Time to Winnutes) O 10 (ft b) 7 0 9 (1)	Depth of Depth to V Column (Well Dia Time: _ations: epth Water bmp)	Well*:	ft. b .62 ft. 0 in. pH (SU) 7.08 10.24	indicate Specific Conductivity (µS/cm) 367.2 435.8 382.3	ORP (mV) 134.3 -194.0 -166.1	en/Free Produ Dissolved Oxygen (mg/l) O 92 O 83	Turbidity (NTU) 2.20 1.25	Protective Casin Other: Port h*: 232.25 Port Volume (removed) 1 2 3	ft br
Start Purge Telephone Initial Observate Time to Windows (ft be 1900)	Depth to V Column (Well Dia Time: ations: epth Water bmp) 67 26 36	Vater*: 90 (LWC):	pH (SU)	indical Specific Conductivity (µS/cm) 367.2 435.8 382.3	ORP (mV) 134.3 -194.0 -166.1	en/Free Produ Dissolved Oxygen (mg/l) O 92 O 83	Turbidity (NTU) 2.20 2.61	Port Volume (removed)	ft br
Start Purge Initial Observat Elapsed Time to W minutes) (ft b	Column (Well Dia Time: ations: epth Water bmp) 62 26 36	Temperature (Celsius)	pH (SU) 7.08 10.24	indical Specific Conductivity (µS/cm) 367.2 435.8 382.3	ORP (mV) 134.3 -194.0 -166.1	en/Free Produ Dissolved Oxygen (mg/l) O 92 O 83	Turbidity (NTU) 2.20 2.61	Port Volume (removed)	Addition
Start Purge Initial Observation Elapsed Time to Wiminutes) (ft b	Well Dia Time: _ations: epth Water bmp) 67 26 36	Temperature (Celsius)	pH (su) 7.08 10.24	indical Specific Conductivity (µS/cm) 367.2 435.8 382.3	ORP (mV) 134.3 -194.0 -166.1	en/Free Produ Dissolved Oxygen (mg/l) O 92 O 83	Turbidity (NTU) 2.20 2.61 1.25	Port Volume (removed)	Addition
Initial Observation Elapsed Time to W (fit by Time) O 70 91 11 11 11 11 11 11 11 11 11 11 11 11	epth Water bmp)	Temperature (Celsius)	рн (su) 9.e8 10.Z4 10.18	indical Specific Conductivity (µS/cm) 367.2 435.8 382.3	ORP (mV) 134.3 -194.0 -166.1	Dissolved Oxygen (mg/l) O.92 O.83	Turbidity (NTU) 2.20 2.61 1.25	Port Volume (removed)	
Elapsed De to W (fit b 7 0 9)	epth Water bmp) 62 26	Temperature (Celsius)	рн (su) 7.e8 10.Z4 10.18	indical Specific Conductivity (µS/cm) 367.2 435.8 382.3	ORP (mV) 134.3 -194.0 -166.1	Dissolved Oxygen (mg/l) O.92 O.83	Turbidity (NTU) 2.20 2.61 1.25	Port Volume (removed)	
Time to W (ft b)	Water bmp) 26 36	(Celsius) 9.4 9.1 9.3	(su) 9.08 10.24 10.18	Conductivity (µS/cm) 367.2 435.8 382.3	(mV) 136.3 -194.0 -166.1	Oxygen (mg/l) 0.92 0.83 0.89	(NTU) 2.20 2.61 1.25	(removed)	
70 91.3 140 91.3	bmp) 62 26 36	(Celsius) 9.4 9.1 9.3	(su) 9.08 10.24 10.18	(μS/cm) 367.2 435.8 382.3	(mV) 136.3 -194.0 -166.1	(mg/l) 0.92 0.83 0.89	(NTU) 2.20 2.61 1.25	(removed)	
0 90.0 70 91.1	62 26 36	9.4	9.08	367.2 435.8 382.3	136.3 -194.0 -166.1	0.92	2.20	2 3	
70 91.	26	9.1	10.24	435.8	-1940 -166.1	0.88	2.61	3	
140 91.	36	9.3	10.18	382.3	-166.1	0.89	1.25	3	
	36	9.3	10.18	382.3	100	0.89	1.25		
					100			4	
CIO 9/10	96	1.3	.0.31	3 36,1	120,6	0.81			
1									
1									
1									
ı									
,									
ı t									
								-	
					1				
	- 1								
_	-								
Final Observat	lume of g	1345 groundwater purg	ar c	odorslightly	Sulfirshe				
Sample ID:	Muy-	B-EPA-11	C-11132	000	-	Sample Tim	ne: <u>1505</u>		
nalytical Param	neters:	TCL VOCs by U	JSEPA SW-846 N	Method 8260C, 1,4-Did method ¹³ C CSIA,	oxane by USEPA Chorine Isotope:	SW-846 Melhod 8 s (37C/35C) for TC	B270D SIM, Carbon I CE by method ³⁷ CI CS	sotopes (¹³ C/ ¹² C) for T SIA	CE and cDC
Container Size	e Co	ontainer Type	# Collec	cted Fi	eld Filtered?	Pr	eservative	Labora	atory
40-ml	_	Glass VOA	3		No	1 32	HCL	ETA Lan	caster
250-ml	_	Amber Glass	2		No		None	ETA Lan	caster
40-ml	_	Glass VOA	8		No		HCL	Microbial	Insights
	110		9						
otes:									

RAN	BELL			Groundwate	r Samplin	g Log	Well Northi	ng: 135662	25.0
Site Nar Site Locat Project	ion: Na	Loeffel Landfill assau, NY 71541.402.016	Equip	ling Method: oment Used: ipment IDs#:	YSI / Turb	FLUTe idity Meter	Field Personnel: Date: Weather: \$\frac{145424.1}{20}\$		
/ell informations in the control of	ation: alled Depth oured Depth o	of Well*: 110 of Well*: Water*: 10	- ft. b	•			* M	leasurement Poin Well Casing Protective Casir Other: Port	
ength of W	ater Column Well Di	(LWC): ameter: 4.				Ро	ort Midpoint Dep	th*:100.00	ft, bn
	urge Time: servations:	0950 Color 120	<u> </u>	odor Sulfu		en/Free Prod	uct None		
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	indicat Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Addition Notes
0	16.75	9.8	8 03	657.6	249.9	4.08	0.66	1	
85	17.07	9.7	8.11	430.2	-172.1	1.35	0.41	3	
255	17.17	9.9	7.80	440.9	-102.7	1.72	0.57	4	
							11 11 11 11		25
Tot	Purge Time: al volume of servations:	groundwater purg		gal. Odor Sulfu	She	een/Free Prod	luct <u>no</u> M		
	ID: MW -	B-EPA-ZA			wasa by I ISEDA	Sample Tin		.0	
Containe		Container Type	# Colle	Method 8260C, 1,4-Did	eld Filtered?		reservative	Labora	atory
40-rr		Glass VOA	3		No		HCL	ETA Lan	
250-r	nl	Amber Glass	2		No		None	ETA Lan	caster
lotes:									

RAN	1B&LL	·		Groundwate	er Samplin	g Log	Well Northi		
- NAI							Easti		
Site Na	_	Loeffel Landfill		ling Method:		FLUTe	Field Persor	nnel: 367 Date: 11-16-	
Site Locat	_	71541.402.016		pment Used: ipment IDs#:		idity Meter		ther: ±40%	
	_	7 1341 402.010	Lqu	ipinent iban:	PHO CATE	JII ICOIO		leasurement Poin	
ell inform	ation: alled Depth o	of Well*: 164	.10 ft. b	omp_			V		ı.
	sured Depth of	_		omp.				Protective Casin	ng
	Depth to		96 ft.				X	Other: Port	
ength of W	ater Column	_	ft.			Po	rt Midpoint Dep	th*: 154.40	ft, br
0			.0 in.	18.		P0	т міаропт Бер	104.40	iii, bii
	urge Time: servations:	Color Clea	<u></u>	Odorindica	te units	en/Free Produ	uct none	<u></u>	
Elapsed	Depth			Specific		Dissolved	Tuebielite	Port Volume	Addition
Time (minutes)	to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Conductivity	ORP (mV)	Oxygen (mg/l)	Turbidity (NTU)	(removed)	Notes
0	16.96	9.7	7.79	611.0	717.9	2.37	1.02		
85	17.14	9.7	8.13	490.8	-129.2	1.66	1.52	2	
170	17:18	10.3	8.14	490.1	-147.5	1.23	0.43	3	
255	17.10	9.6	7.85	490.0	-92.6	1.31	0.60	4	
_									
							-		
Tot Final Ob	servations:	groundwater pur ColorCO	<u> </u>	odor <u>Sulfu</u>	She	en/Free Prod		<u></u>	
Sample	ID: MUU-	2-EPA-2	R- MV	1010		Sample Tin	ne: 1555		
nalytical F	Parameters:	TCL VOCs by U		Method 8260C, 1,4-Did					
Containe		Container Type	# Colle	cted Fi	eld Filtered?	Pr	eservative	Labora	
40-m		Glass VOA Amber Glass	3		No No		HCL None	ETAs Lar ETA Lan	
250-r		Alliper Glass			140		, 10110	LIXEAN	
						4			
						_			
otes:									

							Well		
RAH	IBCLL			Groundwate	er Samplin	ıg Log	Northi Easti	_	
Site Na	me: Dewey	Loeffel Landfill	Sampl	ing Method:	Water	FLUTe	Field Person	-	
Site Locati		assau, NY		ment Used:		idity Meter		Date: 11-16	
Projec	0	71541,402.016				/FA0212	2 Wea	ther: +46F. (
					-10.0			leasurement Poin	
/ell inform	ation: alled Depth c	of Well*: 276	.80 ft, b	mp			, v	Well Casing	
	ured Depth o	-					П	Protective Casin	ng
Wicas	Depth to		, 79 ft.				_	Other: Port	
ength of W	ater Column Well Di	(LWC):				Po	rt Midpoint Dep		ft. bm
Start D	urge Time:	M950							
	servations:	Color Cled	<u>v</u> 0	dor <u>Sulfu</u>	She te units	en/Free Prodi	uct none		
Elapsed	Depth	V		Specific		Dissolved	Tuebidite	Port Volume	Addition
Time	to Water	Temperature	рН	Conductivity	ORP	Oxygen	Turbidity		Notes
(minutes)	(ft bmp)	(Celsius)	(SU)	' (µS/cm)	(mV)	(mg/l)	(NTU)	(removed)	Hotes
0	22.79	9.0	7.99	468.1	-67.2	1,22	1.11		
85	22.94	99	8.23	456.2	-139.4	1.17	1.06	2	
170	22.92	10.2	8.22	454.4	-150-9	102	0.52	3	
255	22.92	9.7	7.93	453.3	-97.7	1.18	0.51	Ч	-
133	26.16	1.4	1.13	1)3.3	1,1,1	1210	0.0	1	
	Purge Time:	1405	2 6						
		groundwater pur	1	0.11	2		luct NOW		
	servations:	Color			She	een/Free Prod	1		
		R-EPA-2				Sample Tin			
.nalytical F	arameters:	TCL VOCs by L	ISEPA SW-846 N	Method 8260C, 1,4-Di method ¹³ C CSIA	oxane by USEPA , Chorine Isotope	SW-846 Method s (37C/35C) for TO	8270D SIM, Carbon CE by method ³⁷ CI C		
Containe	r Size C	Container Type	# Collec	cted Fi	ield Filtered?	Pr	eservative	Labora	
40-m		Glass VOA	3	4	No		HCL	ETA Lar	
		Amber Glass	2		No	1	None HCL	ETA Lar Microbial	
250-r	11	Glass VOA	8		No		TIOL	Wicrobat	n laigi ita
250-r 40-m									

DAN	ивогг			Groundwate	r Sampli	na Loa	Well Northi		
Site Na	me: Dewe	ey Loeffel Landfill Nassau, NY	•	Sampling Method: Water FLUTe Equipment Used: YSI / Turbidity Meter			Field Perso	1.8 AB	
Site Locat Project		071541.402.016	•			FADZIZ		Date:	
ell inform								leasurement Poin	1
	talled Depth	of Well*: 137	7 00 ft. b	omp_				Well Casing	
Meas	sured Depth			omp				Protective Casin	ng
		o Water*: 183.					X	Other: Port	
ength of W	Vater Colun Well	_	ft. 0 in.			Ро	rt Midpoint Dep	th*: 127.00	ft. bn
	urge Time servations:		ar c	odor Stantly	Surash	een/Free Prod	uct_100	2	
				indicate	units	Ta:		r	
Elapsed Time	Depth to Water	Temperature	pН	Specific Conductivity	ORP	Dissolved Oxygen	Turbidity	Port Volume	Addition
minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(removed)	Notes
									4
									-
									1
	Purge Time		C						
101	ai volume d	of groundwater pure	gea:	gal.					
Final Ob	servations:	Color		Odor	Sh	een/Free Prod	uct	_	
Sample	ID:	_				Sample Tim	ne:		
nalytical F	Parameters	: TCL VOCs by U	SEPA SW-846 I	Method 8260C, 1,4-Diox	ane by USEPA	A SW-846 Method 8	3270D SIM		
Containe	r Size	Container Type	# Colle	cted Fie	ld Filtered?	Pro	eservative	Labora	itory
40-m		Glass VOA	6	110	No		HCL	ETA Lan	
250-r		Amber Glass	O		No		None	ETA Lan	caster
								ntil .	
otes:					-	A		-	
otes:	TE po	ingled di	y aft	to be	nl o	f wate	r rem	oved.	

Site Nan Site Location Project ell informa Instate Measu ength of Wa	on: Na t #: 197007 ation: alled Depth oured Depth o	f Well*: - Water*: 10 7 (LWC): - ameter: 4	Equi Equ 1.80 ft. t	Groundwate pling Method: pment Used: ipment IDs#: pmp. pmp.	Water YSI / Turb	FLUTe bidity Meter	Wea		Cloud,
Site Location Project ell information Instate Measurement of Water Start Put Initial Obs	on: Na t #: 197007 ation: alled Depth o ured Depth to Depth to ater Column Well Dia	f Well*: 254 f Well*: 254 f Well*: 254 f Well*: 254 f Well*: 254 mater*: 4	Equi Equ 1.80 ft. t ft. t ft.	pment Used: ipment IDs#:	YSI / Turb	oidity Meter	77 Wea	Date: Will 2	cloud
Insta Measu ength of Wa Start Pu Initial Obs	alled Depth o ured Depth o Depth to ater Column Well Dia	f Well*: - Water*: 10 7 (LWC): - ameter: 4	ft. t ft. ft.	•				easurement Poin	
Measu ength of Wa Start Pu Initial Obs	ured Depth o Depth to vater Column Well Dia	f Well*: - Water*: 10 7 (LWC): - ameter: 4	ft. t ft. ft.	•					i:
Start Pu	Depth to vater Column Well Dia	Water*: 10 7 (LWC): - ameter: 4	. 84 ft.	omp.			ш	Well Casing	
Start Pu Initial Obs	ater Column Well Dia	(LWC): - ameter: 4	ft.					Protective Casin	g
Initial Obs	urge Time:					Po	X rt Midpoint Dep		ft. br
Initial Obs		0700			0				
		Color deni			Sulfor She	en/Free Produ	uct Nove	_	
minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Addition Notes
Ò	107.84	11 90	9.01	867	471	1.67	1.31	1	
60	108-65	123	9.36	841	-38.5	1.64	1,90	2	
120	108.85	12.6	9,23	811	57.5	13 91	1.72.	3	
80	108-41	12.2	9.10	807	89.1	1.09	1.29	4	
			= =						
-									
Tota Final Obs	al volume of g servations:	groundwater pure	ged: 5	odor slightly	Sulfiv	een/Free Prod			
Sample I	arameters:	TCL VOCs by U		Method 8260C, 1,4-Dio	xane by USEPA	Sample Tim			
Container	Size C	ontainer Type	# Colle	cted Fie	eld Filtered?	Pr	eservative	Labora	tory
40-ml		Glass VOA	3		No		HCL	ETA Lan	aster
250-m	ıl A	Amber Glass	て		No		None	ETA Lan	caster
otes:									

DA	1BCLL			Groundwate	er Samplin	na Loa	Well Northi	-	$\overline{}$
RAI	MEGLL			Croundwate			Easti	ng: 74435	1.8
Site Na		Loeffel Landfill		oling Method:		FLUTe	Field Perso		
Site Locat		assau, NY		pment Used:		FAOZIZ		Date: 1/1/0	
Projec	197007	71541.402.016	Equ	ipment IDs#:	MOUPIS	FRUCIE			-
Vell inform		C14/-11# 00						leasurement Poin Well Casing	t:
	tailed Depth o sured Depth o	-		omp. omp.				Protective Casing	ng
ivieas	Depth to	-		Sitip.			_	Other: Port	.9
_ength of W	ater Column/ Well Dia	(LWC):	- ft.			Po	ort Midpoint Dep	-	ft, bn
Start P	urge Time:()	07:35		chante	s. Av				
	servations:	Color Lle	<u> </u>	Odor indica	She units	en/Free Prod	uct		
Elapsed	Depth	Temperature	pН	Specific	ORP	Dissolved	Turbidity	Port Volume	Additional
Time (minutes)	to Water (ft bmp)	(Celsius)	(SU)	Conductivity (µS/cm)	(mV)	Oxygen (mg/l)	(NTU)	(removed)	Notes
0.	104.48	12.0	9.26	847	18.7	1.63	2.42		
60	104.61	13.6	9.24	613	-309	1,68.	3,19	2	
8120	105.75	12,5	9.16	840	57.2	1.15	2.94	3	
180	104.60	12.8	9.10	839	75.3	0.74	2.71	4	
100									æ.
									-
			A						
Tot Final Ob	servations:	1725 groundwater purg Color <u>Û</u> & 3-EPA-30	0/	gal.	Sulfrishe	een/Free Prod)	
	arameters:			Wethod 8260C, 1,4-Did	xane by USEPA				
								I ah	toni
Container 40-m		ontainer Type Glass VOA	# Colle	cted Fig	eld Filtered?	Pr	eservative HCL	Labora ETA Lan	
250-n		Amber Glass	2		No		None	ETA Lan	
otes:									

RAI	мвось			Groundwat	er Samplir	ıg Log	Well Northi Easti	ng: 135687	75.6
Site Locat	tion: N	Loeffel Landfill assau, NY 71541,402,016	Equi	ling Method: pment Used: ipment IDs#:	YSI / Turb	FLUTe idity Meter		nnel; SE Date: 11/10/ ther: SMy	D
Meas	talled Depth of sured Depth of Depth to Vater Column	of Well*: Water*: (LWC):	5.00 ft. b ft. b .37 ft. ft. ft.	omp.			□ X	Protective Casir Other: Port th*: 125.00	
initial Ob	Depth		2 <u>0</u> C	Specific	Sv She she units	Dissolved	Turbidity	Port Volume	Additiona
Time (minutes)	to Water (ft bmp)	(Celsius)	(SU)	Conductivity	(mV)	Oxygen (mg/l)	(NTU)	(removed)	Notes
0	104.37	11.6	7-63	603.4	-16.0	1.47	0.67		
60	104.46	12.2	8-02	498.5	-72.9	1.17	0.52	2	
120	104.50	11.8	7.99	501.0	-26.3	1.09	0.63	3	
180	104-50	11.6	7.99	497.8	-30.5	0.99	0-64		
							3.44		
	Purge Time:	1300 groundwater pur		gal.	. 0				
	servations:	Color <u>NPA</u>		odor stightly	Sulfur She	en/Free Prod		_	
	Parameters:			6 Method 8260C, 1,	4-Dioxane by US				
Containe	r Size	ontainer Type	# Collec	cted F	eld Filtered?	Pr	eservative	Labora	itory
40-m 250-r	nl	Glass VOA Amber Glass	9		No No		HCL None	ETA Lan	caster
'N	NW-B-EP	ected to a A-4A-1110 1A-4B-1111	2020-14	S					

RAI	MBCLL			Groundwa	ter Samplin	ng Log	Well I Northin Eastin	g: 13568	75.6
Site Na	me: Dewey	Loeffel Landfill	Samp	ling Method:	Water	FLUTe	Field Person		
Site Loca		assau, NY		pment Used:		idity Meter		ate:(1/10	
Proje	ct #:19700	71541_402.016	Equ	ipment IDs#:	FADOUIS	JFA02	Veati	her: Suny,	±50°F
	nation: talled Depth o sured Depth o			omp. omp.				easurement Poir Well Casing Protective Casir	
	Depth to	Water*: 103	.40 ft.				X	Other: Port	-
Length of V	Vater Column Well Di	1.7	ft.			Р	ort Midpoint Deptl	n*: 269.05	ft. bm
	Purge Time: pservations:	Color Cle	ear c		Suffer She	en/Free Pro	duct Nort		
Elapsed	Depth	Temperature	nu nu	Specific	ORP	Dissolved	Turbidity	Port Volume	Addition
Time	to Water		pН	Conductivity	/	Oxygen			Notes
(minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(removed)	
0	103.40	11.7	9.07	610.4	-15.9	1.31	1.83	1	
60	103.39	12.0	9.08	612-6	-77.9	0.47	(3) 2 2.87	3	
120	103.38	12.1	9.11	610.6	-6.5	0.85	3 298		
180	103.34	11.9	9.12	608.2	-1-6	0.84	4 3.26	4	
					-				
-									
				qwgt (T	(no				
	-								
									-
	Purge Time: al volume of	1300 groundwater pur		gal.					
	servations:	Color Clea		odor stantl	Sulfur she				
Sample	ID: MW-F	3-EPA-41	50111 - E	070		Sample Ti	ne: <u>1410</u>		
nalytical F	Parameters:	TCL VOCs by	JSEPA SW-840	6 Method 8260C, 1	,4-Dioxane by US	EPA SW-846 N	lethod 8270D SIM		
Containe	r Size C	ontainer Type	# Collec	cted F	Field Filtered?	Р	reservative	Labora	tory
40-m	nl l	Glass VOA	3		No		HCL	ETA Lan	
250-r	nl /	Amber Glass	2		No		None	ETA Lan	caster
lotes			-						
-									

RAN	4BQLF			Groundwa	ter Samplin	ng Log	Well Northir Eastir	ng: 135727	79.2
Site Locat	ion: N	/ Loeffel Landfill lassau, NY 071541_402.016	Equip	oling Method: pment Used: ipment IDs#:		FLUTe idity Meter	Weat	Date: 11/12 ther: ±45°F	Rain
Meas	alled Depth of sured Depth of Depth to later Column	of Well*:	ft. b ft. b ft. ft. ft.	1		Pı	* M □ □ X ort Midpoint Dept		
	urge Time: servations:	Color Clean	<u>v</u> o	. 3	Suffw She	en/Free Proc	duct _no~e		
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Additiona Notes
0	7.41	9.7	8.13	332.5		0.81	1.31	1	
65	7.62	9.7	8.08	213.9	60.5	2.20	0.52	2	
130	7.88	10.2	7.88	211.8	81.9	2.35	0.52	3	
195	8.01	10.2	7.62	213.3	74.4	2.44	6.38	4	
Tot Final Ob Sample Analytical F Contained 40-m	Parameters:	groundwater pure Color CICO	SA-1117	6 Method 8260C, 1	1,4-Dioxane by US Field Filtered? No		me: JuZu Method 8270D SIM Preservative HCL	Labora ETA Lan	caster
250-n Notes: 	KD CO	Amber Glass Amber Glass Amber Glass Amber Glass	2 22020 -	ms -MSD	No		None	ETA Lan	Caster

RAM	1B&LL			Groundwa	ter Samplin	ig Log	Well I Northin Eastir	ng: 135727 ng: 74600	79.2 3.7
Site Nar Site Locati Projec	ion: N	/ Loeffel Landfill lassau, NY 171541_402.016	Equip	oling Method: pment Used: ipment IDs#:	YSI / Turb	FLUTe idity Meter	Z Weat	her: =45°F	Ram
Meas	alled Depth of sured Depth of Depth to later Column	of Well*: - Water*: [[] (ft. b	omp.		Por		easurement Poin Well Casing Protective Casin Other: Port	ng
	urge Time: servations:	Color Cleux			SU(GV She	en/Free Produ	ct none	_	
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivit (µS/cm)	(mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Port Volume (removed)	Addition: Notes
0	10.67	9.5	8.55	364.1	49.9	1.10	0.79	1	/ ====
65	10.79	10.0	8.25	296-6		1.21	0.43	2	
130	10.93	9.5	8.39	296.8	47.0	1.31	0.52	3	
195	11.00	9.6	7.75	296.4	51.2	1.07	0.52	4	
End	Purge Time:	i315							
Total Ob	al volume of servations: ID: MW- Parameters:	Groundwater pur Color <u>Uff</u> R-EPA-5	B-11127	46 Method 8260C,	1,4-Dioxane by US		ne: <u>1425</u>		atory
40-m		Glass VOA	3		No		HCL	ETA Lan	
	nl	Amber Glass	2		No		None	EIALAI	icastei
40-m 250-r Notes:		Glass VOA Amber Glass	3 2		No No		None None	ETA Lar	_

RAI	1BQLL		Low	Flow Ground	dwater Sa	mpling Log	Well Northi Easti	ng: 135870	4.6
Site Locat	ion: N	Loeffel Landfill Lassau, NY 171541.402.016	Equi	oling Method: pment Used: ipment IDs#:		er Pump pidity Meter	Field Person	nnel: SEFF (
Meas	alled Depth of sured Depth of Depth to later Column	of Well*:	ft. I	omp. omp.		Pur			
	urge Time: servations:	Color		Odorindical	She e units	en/Free Produ	ct	-	
Elapsed Time (minutes)	Depth to Water (ft bmp)	Temperature (Celsius)	pH (SU)	Specific Conductivity (µS/cm)	ORP (mV)	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)	Other
Stabilization	Δ ≤ 0.3'	± 3%	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Tota	urge Time: al volume of servations:	groundwater purg		gal_ Odoŕ	She	en/Free Produ	ct		
Sample Analytical P	D:arameters:	TCL VOCs by U	SEPA SW-846	6 Method 8260C		Sample Time	:		
Container 40-m		Container Type Glass	# Colle		No No		servative HCL	Laborat ETA Lanc	
- Che	ll is (by canni	ot so	ample, T	D=62.	60'bmp	(d) 100	2	

Measured E	n: 19400 194	Temperature (Celsius) 10.7 10.7 10.7 10.8	.04 ft, b	Specific Conductivity (µS/cm) 49/.5 867 830	She te units ORP (mV) 85.9 -82.5	F	Wea	Date: 11/10/20 ather: 4/0 54 Measurement Point: Well Casing Protective Casing Other: 72.99 Flow Rate (ml/min)	
Project #: /ell information Installed Measured ength of Water Start Purge Initial Observa Elapsed Time to minutes) (ft // 5 66 10 64 15 65 30 67 40 69 50	19400 In the description of the	71541.402.016 of Well*: 78 of Well*: Water*: 44.6 (LWC): 3.3. ameter: 4 OS Color (Jese Temperature (Celsius) 10.7 10.7 10.7 10.8	Equ .04 ft, b ft, b ft, c ft	omp. omp.	She te units ORP (mV) 85.9 -82.5	en/Free Prod Oxygen (mg/l) S. 17	ump Intake Depute Interest Int	Measurement Point: Well Casing Protective Casing Other: 72.99 Flow Rate (ml/min)	: g ft. t
rell information Installed Measured Elapsed Initial Observation Fine to minutes (ft) 10 64 15 64, 20 67 35 68, 36 69, 40 69, 50 67 50 68, 50 69, 60	Depth of Water ft bmp) Depth of Water ft bmp) 7, 43 8,80 7,24 8,57	rf Well*: 78 rf Well*: 78 rf Well*: 78 Water*: 61,6 (LWC): 13,3 ameter: 4 Color Cless Temperature (Celsius) 10,9 10,7 10,7 10,7 10,8 10,8	.04 ft, b ft, b ft. ft. ft. o in. 0 pH (su) 6.83 6.73 7.27 7.27	omp. omp. omp. omp. omp. indical Specific Conductivity (µS/cm) 4%,5 86,7 830 797	She te units ORP (mV) 85.9 -82.5	en/Free Prod Dissolved Oxygen (mg/l) S. 17	ump Intake Depluct in one Turbidity (NTU) 7,73	Measurement Point: Well Casing Protective Casing Other: oth*: 72.99 Flow Rate (ml/min)	: g ft. t
Installed Measured Installed Measured Installed Installe	d Depth of Depth to Depth to Property of Column Well Disperty of Column Well D	Temperature (Celsius) 10.7 10.7 10.7 10.8	ft, b ft. ft. ft. o in. 0 pH (SU) 6.83 6.73 7.27 7.27	omp. odor Sufectindical Specific Conductivity (µS/cm) 49/-5 867 830 797	ORP (mV) 85.9 -82.5	Dissolved Oxygen (mg/l)	ump Intake Depluct increase Turbidity (NTU)	Well Casing Protective Casing Other: pth*: 72.99 Flow Rate (ml/min)	g ft. t
Measured Ength of Water Start Purge Initial Observation Elapsed Time to minutes) (ft O 64 IS 66, IO 64 IS 68, 30 63 SS 69, 40 69, 50 69	Depth to Property of the Column Well Dispertions: Depth to Water ft bmp) 1.56 1.66 1.43 1.57 1.24 1.57	Temperature (Celsius) 10.7 10.7 10.7 10.8	ft, b ft. ft. ft. o in. 0 pH (SU) 6.83 6.73 7.27 7.27	omp. odor Sufectindical Specific Conductivity (µS/cm) 49/-5 867 830 797	ORP (mV) 85.9 -82.5	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Protective Casing Other: pth*: 72.99 Flow Rate (ml/min)	ft. t
ength of Water Start Purge Initial Observation Elapsed Time to minutes) (ft O 64 S 66 10 64 15 64 20 67 20 67 35 68 35 69 40 69 50 67 50	Depth to Process of Column Well Dispersions: Depth of Water ft bmp) 4.68 6.07 7.43 8.80 7.44 8.57	Water*: (LWC): 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	ft. ft. ft. o in.	indicate Specific Conductivity (µS/cm) 49/.5 867 830	ORP (mV) 85.9 -82.5	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Other: 72.99 Flow Rate (ml/min)	ft. t
Start Purge Initial Observation of Water Purge Initial Observation of the Initial Observation of Initial Observation of the Initial Observation of In	Precional Precio	(LWC): 13.3. ameter: 4 OS Color (Jest) Temperature (Celsius) 10.9 10.7 10.7 10.7 10.8 10.8	pH (SU) 6.83 6.7.19 7.27 7.35	indical Specific Conductivity (µS/cm) 49/.5 867 830	ORP (mV) 85.9 -82.5	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)	
Elapsed Time to minutes) (ft	Depth o Water ft bmp) 4.63 6.60 7.43 8.80 9.24 9.57	Temperature (Celsius) IO:9 II.O IO:7 IO:7 IO:7 IO:8 IO:8	pH (SU) 6.83 6.7.19 7.27 7.35	indical Specific Conductivity (µS/cm) 49/.5 867 830	ORP (mV) 85.9 -82.5	Dissolved Oxygen (mg/l)	Turbidity (NTU)	Flow Rate (ml/min)	
Elapsed Time to minutes) (ft	Depth o Water ft bmp) 4.68 6.09 5.56 7.43 8.80 8.24 8.57 9.25	Temperature (Celsius) 10.9 11.0 10.7 10.7 10.7 10.8	pH (su) 6.83 6.93 6.7.19 7.27 7.35	indical Specific Conductivity (µS/cm) 49/.5 867 830	ORP (mV) 85.9 -82.5	Dissolved Oxygen (mg/l) 8.17	Turbidity (NTU)	Rate (ml/min)	Othe (
Elapsed Time to minutes) (ft	Depth o Water ft bmp) 4.68 6.09 5.56 7.43 8.80 8.24 8.57 9.25	Temperature (Celsius) 10.9 11.0 10.7 10.7 10.7 10.8	pH (su) 6.83 6.93 6.7.19 7.27 7.35	indical Specific Conductivity (µS/cm) 49/.5 867 830	ORP (mV) 85.9 -82.5	Dissolved Oxygen (mg/l) 8.17	Turbidity (NTU)	Rate (ml/min)	Othe
Time to minutes) (ft O 64 S 66. 10	Water (t bmp) 4.68 4.68 4.60 7.43 8.80 9.24 9.57	(Celsius) 1().9 11,0 10.9 10.7 10.7 10.7 10.8	(su) 6,83 6,93 6, 7.19 7.27 7,35	Specific Conductivity (µS/cm) 49/.5 867 830	ORP (mV) 85.9 -82.5 -134,7	Oxygen (mg/l) る. (フ	(NTU) 8,73	Rate (ml/min)	Othe
Time to (ft) O 64 S 66. 10 64 15 66. 20 67 23 68. 30 69 40 69. 40 69. 50 69. 50 40. 50 40. 50 69. 50 76. 50 76.	Water (t bmp) 4.68 4.68 4.60 7.43 8.80 9.24 9.57	(Celsius) 1().9 11,0 10.9 10.7 10.7 10.7 10.8	(su) 6,83 6,93 6, 7.19 7.27 7,35	Conductivity (μS/cm) 4/9/.5 867 830 7 97	(mV) 85.9 -82.5 -134,7	Oxygen (mg/l) る. (フ	(NTU) 8,73	Rate (ml/min)	Othe
minutes) (ft O 64 S 66. 10 64 15 66. 20 67 23 68. 30 69 40 69. 40 69. 50 69. 50 41 50 69. 50 41 50 69.	1 bmp) 4.68 6.09 6.56 7.43 8.80 9.24 8.57 9.25	10.9 11.0 10.9 10.7 10.7 10.7 10.8	6,83 6,93 6,7.19 7.27 7,35	(µS/cm) 491.5 867 830 797	85.9 -82.5 -134,7	(mg/l) 8.17	8,73	(ml/min)	(
5 66. 10 64 15 66. 20 67 23 68. 30 69. 35 69. 40 69. 50 76. 50 76. 60 44.	(,09 ,56 ,60 7,43 (31 8,80 8,80 4,24 8,57 9,25	11.0 10.9 10.7 10.7 10.7 10.8 10.8	6,93 6,7,19 7,27 7,35	867 830 797	-82.5 -134,7				
5 66. 10 64. 15 64. 20 6.7 23 68. 30 68. 35 69. 40 69. 40 69. 50 68. 50 41. 50 41.	(,09 ,56 ,60 7,43 (31 8,80 8,80 4,24 8,57 9,25	10:9 10:7 10:7 10:7 10:8 10:8	6,93 6,7,19 7,27 7,35	830 797	-82.5 -134,7	,28			
15 6t, 20 67 25 68, 30 69 40 69, 40 69, 50 69 50 76, 60 41, 63 70 66 2 70	7,60 7,43 131 8,80 9,24 9,57	10.7 10.7 10.7 10.8 10.8	7.27 7.35	830 797	-136,7		1.15	250	
15 66, 20 67 25 68, 30 69 40 69, 40 69, 50 76. 50 447 63 70 66 21 70	7,60 7,43 131 8,80 9,24 9,57	10.7 10.7 10.7 10.8 10.8	7.27 7.35			.20	9,57	328	
25 68, 20 69, 40 69, 40 69, 40 69, 40 69, 50 69, 50 41, 60 41, 63 70, 66 2' 70,	8.80 9.24 9.57 9.75	10.7 10.8 10.8			-152,4	615	10.83	275	
25 68, 20 69, 40 69, 45 69, 50 69, 50 41, 63 70, 66 21 70,	8.80 9.24 9.57 9.75	10.7 10.8 10.8		737.3	-170,0	.16	11.3℃	275	
30 69 35 69 40 69 50 69 50 76 50 44 53 70 66 2' 70	8,80 9,24 9,57 9,75	10.8		677.8	-185.6	616	10:66	275	
35 69. 40 69. 40 69. 50 69. 50 41. 60 41. 63 70. 66 2' 70.	9,24 9,57 9,75	10.8	7.48	639.4	-196.1	-14	11.63	275	
40 69. 415 69. 50 69. 55 76. 50 41. 63 70. 66 21 70.	9,75		7.52	5,93.0	-202.9	. 14	12.16	200	
45 69 50 69 55 76. 50 41 53 70 66 2' 70	9,75	11.2	7,54	5500	-762.2	-13	11.97	200	
50 69 55 76. 60 47 63 70 66 21 70		11.7	7,53	531.7	-199.6	.14	11.12	125	
55 76. 50 #1 63 70 66 21 70	9,90	11.8	7,53	5165	-194.1	514	11.54	125	
60 #1 63 1 70 66 21 70	.06	11.9	75365		-1891	.15	11.17	150	
63 1 70 66 2 10		12.1	7-1551	1/99.8	-185.7	,15	11.34	150	
56 21 70	5.3)	1118	7.52	492.4	-176.8	.16	11.5	150	
		17.0	7.53	491.2	- 173.8	.17	11.7	125	
	0.51	17.1	7.51	470.9	~168.0	17	11.6	125	
		12.1	0101	7 101	-120.0		1110		- *
								1	
tabilization Δ	\ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
End Purge		145035	2 0.11						
		groundwater purg	red: 41.5	gal.				1	
				dor suffer /	Ob -	- /F D	had an a d d .		
Final Observa		Color Clean					luct non		-
Sample ID:	MU-8	501-WMD-102	-11102020	/ Purpol-	MOZOZO	Sample Tir	ne: <u>//30</u>		
nalytical Paran	meters:	TCL VOCs by l	JSEPA SW-846	Method 8260C, 1,4	-Dioxane by USI	EPA SW-846 M	ethod 8270D SIM		
Container Size	re C	ontainer Type	# Collec	ted Fie	eld Filtered?	Pı	eservative	Laborato	orv
40-ml		Glass	A 3	y L	No		HCL	ETA Lanca	-
250-ml	1	Amber Glass	पाणि उ	0	No		None	ETA Lanca	aster
		7 - 1							
otes: Confee	ctent	dup-00	1 for	VOCS +	1,4-Pia	are			

- ALICE	BOLL	N.	Low	Flow Groun	dwater Sa	ımplina I d	Well Og Northi		
	DOLL	V.		r iour oroun	awater oc	piiiig L	East		
Site Nar	me: Dewey	/ Loeffel Landfill	Sam	pling Method:	Bladde	er Pump	Field Perso	-	-
Site Location		lassau, NY	-	ipment Used:	-	oidity Meter		Date: 11/18/20	
Project	t #: 19400	71541.402.016	Pump/C	Controller ID#:	0415	148	- Wea	ather: 24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
ell informa	ation:								
	alled Depth	of Well*· 2	1.82 ft.	bmp.				leasurement Poin Well Casing	L:
	ured Depth	-		bmp.			Zi	Protective Casing	ng.
	-	Water*: 9.34					П		9
ength of Wa	ater Column	(LWC): 12 .4	ft.						
			2.0 in			F	ump Intake Dep	th*: 18.66	ft. b
Start Pu	urge Time:	1165							
	servations:	Color Clear	_ (Odor Chem/Si	JG. She	en/Free Prod	duct now		
		qui			te units		-	_	
lapsed	Depth	Temperature	pН	Specific	ORP	Dissolved	T. 1100	Flow	
Time	to Water			Conductivity		Oxygen	Turbidity	Rate	Othe
inutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	_
	9.34	8.9	6.80	112.2	168.7	:39	18.6	160	
5	9,80	9,2	6.25	153.7	104.9	.24	223	120	
10	9.84	8.8	6.11	147.1	1005	.26	27.5	120	
15	1,92	9,8	5.93	131- 91.7	131.5	.46	28.9	120	100
	0.86	8.7	5.90	\$7.6	124.1	. 85	27.7	120	
	10.08	8,8	5.88	80.9	123.6	7.04	72.0	120	
	0,12	8.9	5.82	78,4	127,8	2.37	18.1		
	1019	9,1	5.86		127.6			120	
	0.73	9,0	5.87	77.6		2.54	17.7	120	
96	ν.ε.ς	1,0	3.0/	77.4	72 5- 1280	2.63	16.5	120	
					1		0		
				- 4					
							11		
							100		
		76			7				
									-
bilization	Δ ≤ 0.3'	± 3%	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	

RAM	BCLL		Low	Flow Groun	dwater Sa	mpling Lo	Well og Northi Easti	ing: 135872	23.4
Site Na	me: Dewey	y Loeffel Landfill	Sam	pling Method:	Bladde	r Pump		nnel: CDW	
Site Locat	tion: N	lassau, NY	Equ	ipment Used:		idity Meter		Date: 1//10/23	
Projec	ct #: 19400	071541.402 016	Equ	uipment (Ds#:	0470 /21	15	Wea	ather: 60° Sun	<u> </u>
ell inform	nation:						. V	leasurement Poin	t:
	talled Depth			bmp.			₫	Well Casing	
Meas	sured Depth			bmp.					ng
		Water*: 63,54						Other:	_
		Diameter: 4	77 ft.			F	Pump Intake Dep	oth*: 98.21	ft. bi
	Purge Time: oservations:	Color AAA		Odor <u>Sign</u> Cu	She	en/Free Pro	duct nane		
Elapsed	Depth	-		Specific	ORP	Dissolved	Turbidity	Flow	Other
Time	to Water	Temperature	pН	Conductivity		Oxygen		Rate	, Other
(minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	
0	6394	13,2	7.00	1330	-	1.23	13.9	175	
5	64.71	12.0	7,24	1316	-170.2		12.5		
10	64.62	12.3	730	1301	778.1	045	12.14	100	
15	64.72	12.1	7.36	1282	-183.7	. 35	9.42	150	
20	64.83	11.8	7.40	1256	-191.6	820	12.8	150	-
Es	64,96	11.9	7.42	1243	-196,3	-27	125	156	
30		11.8	7,43	1228	-199.4	.27	5.85	130	
35	65.23	11.8	7.43	1218	-206,2	, 24	3.81	150	
50	63,35	11,7	7.43	1212	-201.4			150	
55	65.46	11.6	7.44 ~	[20;	-203.5	۰ 22 ،	3.70	150	
Stabilization	Δ ≤ 0.3′	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Tot Final Ob Sample	ID: Mu	Golor CKET	Z01 _ //			Sample Ti	duct <u>NoN</u>		
	Parameters:			46 Method 8260C, 1,	4-Dioxane by US		Preservative	Labora	atony
Containe 40-m		Container Type Glass	# Colle	ected F	No		HCL	Eurofins La	
250-r		Amber Glass	3		No		None	Eurofins La	ancaster
	- S								

21

Elapsed	Depth			Specific	e units	Dissolved		Flow	
Time ninutes)	to Water (ft bmp)	Temperature (Celcius)	pH (SU)	Conductivity	ORP (mV)	Oxygen (mg/l)	Turbidity (NTU)	Rate (ml/min)	Other
				Continued from	previous pa	ge.			
90	97,95	9.6	8,26	564.5	176.7	.78	ZII	280	
95	97.95	9.5	8.17	574.3	173.3	.62	6.3	200	
100	97.96	9.6	8.34	558.9	169.0	1.01	15.1	200	
103	97.97	9.6	6.40	558.9 5525	168,9	1.06	14.6	200	
106	97.98	9.6	8.42	5520	167.3	1.09	13.8	200	
tabilization	Δ ≤ 0.3'	± 3%	± 0.1	± 3%	± 10 mV	± 10%	± 10%	200 ≤ X ≤ 500	
otes:									

RAN	1BCLL		Low	Flow Ground	dwater Sa	mpling Log	Well Northir Eastir	ng: 135897	8.1
Site Locat	ion: N	Loeffel Landfill assau, NY 71541 402.016	Equi	oling Method: ipment Used: ipment IDs#:		r Pump idity Meter	Field Person	-	CAB
Meas	ation: talled Depth of sured Depth to Depth to /ater Column	of Well*:	ft. b	omp. omp.				leasurement Point Well Casing Protective Casin Other:	g
	Well D	iameter: 4.0				Pu	ımp Intake Dept	th*: 51.20	ft. bm
	ervations:	Color	(Odor		en/Free Produ	uct		
Elapsed Time	Depth to Water	Temperature	pН	Specific Conductivity	ORP	Dissolved Oxygen	Turbidity	Flow Rate	Other
(minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	<u>C</u>
							7		
			-						
							-		
Stabilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Tot	Purge Time: tal volume of oservations:	groundwater purg		gal. Odor	She	een/Free Prod	uct		
Sample	ID:					Sample Tim	ne:		
Analytical F	Parameters:	TCL VOCs by US	SEPA SW-846	Method B260C					
Containe 40-n		Container Type Glass	# Colle		eld Filtered?	Pr	eservative HCL	Labora ETA Lan	
40-11		Glass			140				
Notes:	1 -4 -5	- a rot a Office	- A-	lu aunt	۵٥	cler Ca	n not	Cample.	
ine	d is k	costically a	hy; 01	7.40	0x 1/2	arr. Ca	d uet	San ball	
ID:	81.3	0' bong (a	h 1158						

Start Purge Time: 13 10 Initial Observations: Color Clear Odor Now Sheen/Free Product Indicate units Indicate units	RAM	IBCLL		Low	Flow Ground	lwater Sa	mpling Lo	Well g Northi Easti	ng: 135819	8.3
Installed Depth of Well'	Site Locati	ion: N	assau, NY	Equip	ment Used:	YSI / Turb	dity Meter	[Date: 11/11/7) cain
Sheen/Free Product Sheen/F	Inst Meas	alled Depth of sured Depth of Depth to later Column	of Well*:	ft. b	•		Р		Well Casing Protective Casin Other:	
Depth Time Depth To Water Time PH Conductivity ORP Conductivity (Referred to Water Time PH (Referred to Water Time PR PH (Referred to Water Time PH (Referred to Water Time PT PH (Referred to Water Time PT PT PT PT PT (Referred to Water Time PT PT PT PT PT PT PT P				0	dor www	She	en/Free Prod	luct hone		
32.77 3	Time	to Water	100000000000000000000000000000000000000		Specific Conductivity	ORP	Oxygen		Rate	Other
S 32.77 3 8.6							2.89	13.19	206	
16 33.07 10.7 7.88 427.1 -109.7 75 17.21 160 15 33.18 11.6 7.84 428.6 -117.8 .56 17.25 160 20 33.32 11.5 7.86 429.0 176.2 .41 9.54 160 23 33.46 11.6 7.85 428.5 -128.9 .36 9.60 160 23 33.56 11.5 7.81 428.6 -133.1 .35 9.39 160 35 32.62 11.7 7.89 428.4 -134.0 .34 9.51 160 35 32.62 11.7 7.89 428.4 -134.0 .34 9.51 160 35 32.62 11.7 7.89 428.4 -134.0 .34 9.51 160 36 37 37 38 38 38 38 38 38		April Took ST				-82.9		12.32	200	
33 8						-109,7			160	
20 33 32 115 7,86 127,0 176,2 41 9,54 160 23 33,46 11.6 7,85 428,6 -128,7 .36 9,60 160 33 33,56 11.5 7,81 428,6 -133,1 .35 9,39 160 35 32,62 11,7 7,89 428,4 -134,0 .34 9,51 160 35 32,62 11,7 7,89 428,4 -134,0 .34 9,51 160 35 32,62 11,7 7,89 428,4 -134,0 .34 9,51 160 35 32,62 11,7 7,89 428,4 -134,0 .34 9,51 160 36 37 17 17 17 17 17 17 17						-117.8		7	160	
2 3 33.46									160	
33 35 11.5 7.81 428.6 -133.1 3.5 9.39 160							_			
35 32,62 1,7 7,89 428 4 -134,0									160	
End Purge Time: 1345 Total volume of groundwater purged: 2.5 gal. Final Observations: Color Color Odor Sheen/Free Product Sample ID: MI 1-0-0MW-205-IIII20 20 Sample Time: 1350 Analytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 5 No HCL ETA Lancaster									160	
End Purge Time: 1345 Total volume of groundwater purged: 2.5 gal. Final Observations: Color den 5 Odor Sheen/Free Product Sample ID: MI 1-0-0MW-205-IIII20 20 Sample Time: 1350 Analytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 5 No HCL ETA Lancaster										
End Purge Time: 1345 Total volume of groundwater purged 2.5 gal. Final Observations: Color dens Odor Sheen/Free Product Sheen/Free Product Sample ID: MI 1-0-0mw-205-IIII20 20 Sample Time: 1350 Malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass > No HCL ETA Lancaster										
End Purge Time: 1345 Total volume of groundwater purged: 2.5 gal. Final Observations: Color dens Odor Sheen/Free Product Sheen/Free Product Sample ID: MI 1-0-0MW-205-IIII20 20 Sample Time: 1350 Analytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 5 No HCL ETA Lancaster										
End Purge Time: 1345 Total volume of groundwater purged: 2.5 gal. Final Observations: Color dens Odor Sheen/Free Product Sample ID: MI - 0 - 0 m - 205 - 111120 20 Sample Time: 1350 Analytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C, 1,4-Dioxane by USEPA SW-846 Method 8270D SIM Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 5 No HCL ETA Lancaster	Stabilization	A < 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 5 No HCL ETA Lancaster	To Final Ol Sample	bservations:	Color den	-205-11	Odor Horl		Sample Ti	ime: <u>1350</u>		
40-ml Glass 5 No HCL ETA Lancaster										atory
250-ml Amber Glass Z No None ETA Lancaster			Glass	3		No	7			
	250-	ml	Amber Glass	Z		No		None	EIALa	ilicastei
Notes:	Notes:									

							Well		
RAN	1BCLL	2	Low	Flow Ground	lwater Sa	mpling Lo	g Northii Eastir		
Site Na	me: Dewey	Loeffel Landfill	Samp	ling Method:	Bladde	r Pump	Field Persor	-3-	CAR
Site Locat		assau, NY		oment Used:		idity Meter		ate: 11/11/7	0
Projec	_	71541.402.016		pment IDs#:			Weat	ther: ± 65°F	Ran
ell inform	ation:						* M	easurement Point	
	alled Depth	of Well*: 52.8	37 ft. b	mp.				Well Casing	
	ured Depth	_		mp.				Protective Casing	9
	Depth to	Water*:	ft.					Other:	
ength of W	ater Column	(LWC):	ft.						
	Well D	iameter: 2.0	in.			Pı	ımp Intake Depi	th*: 50.38	ft. bi
	urge Time: servations:	 Color		Odor	She	en/Free Prod	uct		
				indicat	e units				
Elapsed	Depth	Temperature	рН	Specific Conductivity	ORP	Dissolved Oxygen	Turbidity	Flow Rate	Othe
Time (minutes)	to Water (ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	(
minutes)	(it billp)	(00:0:00)	(00)						
			-			-			
									_
)							-
	4							0	
								4	
		1							
				-					
	4 4 0 01	Not Applicable	101	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
itabilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	±10mv	1 1076	11070	100=X=000	
	Purge Time:								
Tota	al volume of	groundwater purg							
Final Ob	servations:	Color		Odor	She	en/Free Prod	luct		
Sample	ID:	_				Sample Tin	ne: —		
				4 11 4 20000					
naiyticai F	arameters:	TCL VOCs by US	SEPA SW-846 I	Method 8260C					
Containe	r Size (Container Type	# Colle	cted Fie	eld Filtered?	Pr	eservative	Labora	tory
40-m		Glass	# COME		No		HCL	ETA Land	-
		1							
lotes:									
well	is de	y (anno)	Sa	mo4. TI)=46.	55 b	mp 6	1155	
) '							

RAM	BCLL		Low	Flow Ground	dwater Sa	water Sampling Log Well ID: OM Northing: 135 Easting: 74						
Site Locati	on: N	Loeffel Landfill assau, NY	Equi	ling Method: pment Used:		r Pump idity Meter	Field Person	nnel: Serr	CITB			
Projec	t #: 19400	71541.402.016		ipment IDs#:				ther: <u>365°F (6</u>				
ell informa		92	10 GP b	111170				leasurement Poin	t:			
	alled Depth o	of Well*: 85.2	7 Tt b	mp.				Well Casing Protective Casin	NG.			
Meas	ured Depth o	144 747	9 85.2fl. b	imp.			_	Other:				
ength of W	Depth to ater Column		1									
engin or w		iameter: 4.0				Pur	mp Intake Dep	th*: 74.07	ft. b			
Start P	urge Time:											
Initial Obs	servations:	Color	0	Odor		en/Free Produ	ct	\Rightarrow				
Elapsed	Depth			Specific	e units	Dissolved		Flow	045-			
Time	to Water	Temperature	рH	Conductivity	ORP	Oxygen	Turbidity	Rate	Othe			
minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	(
									1			
		1										
									-			
Stabilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500				
Tot	Purge Time: al volume of servations:	groundwater purg	-	gal.	She	een/Free Produ	ıct					
Sample	ID:					Sample Tim	e:					
nalytical F	arameters:	TCL VOCs by US	EPA SW-846	Method 8260C								
Containe		Container Type	# Colle	cted Fi	eld Filtered?	Pre	eservative HCL	Labora ETA Lar				
40-m		Glass	0		No		HUL	EIALai	icasiei			
				- 10								
								110				
otes:	is de	iy. (annot	sam	pe. TD	=92-10	Dmo 6	9 1149					

RAN	BOLL		Low	Flow Groun	dwater Sa	mpling Lo	Well og Northi Easti	ing: 1357690	0.0
Site Na	ma: Dewey	/ Loeffel Landfill	Samr	oling Method:	Bladde	r Pump		nnel: CDW	
Site Locat	_	lassau, NY		pment Used:		idity Meter		Date: /////20	
Projec	-	71541.402.016	-0.	ipment IDs#:	6476/0		Wea	ather: 60° ave	cost
								Measurement Point	
ell inform	ation: alled Depth	of \0/oll*: 11	0.3 ft. i	omp.				∠Well Casing	
	alled Depth :			omp.				Protective Casing	3
IVICAS		Water*: 41,43		.					
ength of W	ater Columr	1 (LWC): 6%.				F	oump Intake Dep		ft. b
	urge Time: servations:	Color Clea	-,- (Odor none		en/Free Pro	duct nav	-	
Elapsed	Depth			Specific	ate units	Dissolved		Flow	Other
Time	to Water	Temperature	рН	Conductivity	ORP	Oxygen	Turbidity	Rate	Othe
minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	(
0	41.43	11.6	9.28	475.6	55.7	,51	7.36	300	
3	47.64	167	9.66	474,7	43.7	.40	1.81	175	
10	43.30	12.0	9.69	473.8	4*3,4	-61	0,85	175	
	13.35	12.6	9.78	36.6	473.7	263	0.50	125	
	43.66	12.8	9 84		34.5	.71	0.25	125	
20				475.5	34.0	.72	0.65	/25	
25	43.82	133	9,85	47/7			0.38	125	
30	44,61	13.2	9,85	476.4	33.9	±71	0.83	100 1	
35		13,3	9.87	475.8	244	.76			
340	44.71	13.7	9.37	476.9	35.2	177	0.27	100 +	
4/5	44.80	13.6	9.94	476.0	32.9	678	130	100 +	
		7							
Stabilization	A < 0.3'	+ 3%	+ 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
To		f groundwater pur			± 10 mV	± 10%		100 ≤ X ≤ 500	
	servations:			Odor whi	She		oduct none		
Sample	ID: MW	- B - Omi)-Z14-11	।। २०३०		Sample Ti	ime: <u>1140</u>		
nalytical i	Parameters:	TCL VOCs by	USEPA SW-84	46 Method 8260C, 1	,4-Dioxane by US	SEPA SW-846	Method 8270D SIM		
Containe	r Size	Container Type	# Colle	ected F	ield Filtered?	F	Preservative	Labora	tory
40-n		Glass	3		No		HCL	ETA Land	caster
			_		Ma		None	ETA Land	raeter
250-ı	ml	Amber Glass	2		No		NOTIC	LIALand	dotoi

Site Location: Project #: Vell information Installed Measured Length of Water Start Purge Initial Observ	Na: 194007 on: d Depth of Depth to V or Column Well Dia vations:	Water*: 242 Water*: 90,66 (LWC): 5 .66 ameter: 1.	Equip Equip Equip 3.5	-	Bladder YSI / Turbic OHIS / 2	dity Meter	Weat	ther: 40,5h, Oleasurement Point Well Casing Protective Casin Other:	i:
Installed Measured I Length of Water Start Purge Initial Observ	d Depth of d Depth of Depth to W or Column Well Dia te Time: vations:	Well*: 242 Nater*: 90,66 (LWC): 5 ,6 ameter: 1.	ft. br ft. 1 ft. 0 in	-			X	Well Casing Protective Casin	
		Color Geo	_ ^	dor Slight sulfer	Sho		ump Intake Dep	th*: 224.97	ft. bmp
A STATE OF THE STA	Depth	Temperature	рН	indicat Specific		Dissolved Oxygen	Turbidity	Flow Rate	Other
1 4 3 1 7 mg Water	Water	(Celsius)	(SU)	Conductivity (µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	()
	0,66	9,4	8.49	571.8	171.8	4.82	61.6	725	
	3.4	9.7	9,42	630.7	-106.4	.26	887	166	
		916	9,48	591.2	-119.7	. 27	160	160	
	2.81	9.6	9,49	586.8	- 121.1	.21	6.63	160	
	12.78	9,6	949	587.0	-126,6	,19	4.89	160	
0	2.82	9,6	9.49	586.6	-132.9	.16	3.81	160	
-		9.6	9.50	586.6	-139.9	.16	2,80	100	
	2.61	9.4	9,5	587.1	-143,3	.17	2.93	100	
115		1 1 1	Swer	ohn ni	1				
	2.34	9.6	9,49	S85.7	-136.1	.43	3.36	175	
-		9,6	9.49	545.9	-145.9	614	7.57	125	
	3,20 2,55	9.5	9.49	5863	-151.7	14	3.20	12.5	
	Z.50	9.5	9,49	5855	- 155.6	٥١٥	3.24	125	
	12.55	9.6	9.50	585.9	-157.9	15	3.27	150	
70	2.33	1.6	1130	, yo, i	10 (1)				
10									
	_								
	- 6								-
Stabilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
End Pur Total \	rge Time: volume of ervations:	/4/30 groundwater pur	rged: 3	Odor Shight	Sh	een/Free Pro	ime: 1435		
Analytical Par				46 Method 8260C, 1	,4-Dioxane by U	SEPA SW-846	Method 8270D SIM		
		Oantois as Trias	# 0.0	octed E	ield Filtered?		Preservative	Labor	ratory
Container S 40-ml	Size	Container Type Glass	# Colle	ecieu F	No No		HCL	ETA La	incaster
250-ml		Amber Glass	Z		No		None	ETA La	ncaster
			1/					-	
			4						
Notes:									

RAN	IBCLL		Low	Flow Ground	dwater Sa	mpling Lo	Well Og North East	ing: 135764	0.7
Site Na	me: Dewey	y Loeffel Landfill	Samı	pling Method:	Bladde	r Pump	Field Perso	nnel: 🐠 🛶	
Site Locat	tion: N	lassau, NY	Equ	ipment Used:		idity Meter		Date: 11/11/2026	
Projec	ct #: 19400	71541.402,016	Equ	ipment IDs#: 1	100470/	FAOZ115	Wea	ather: 65°, some	clouds
ell inform			Vand					Measurement Point	:
	talled Depth	-		bmp.			_	Well Casing Protective Casin	a
Meas	sured Depth	of Well*:		bmp.					
ength of W	/ater Columr	1 (LWC): 121,4				F	oump Intake Dep		ft bm
	urge Time: servations:	970 Color Clear		Odor Slight Suke	She te units	en/Free Prod	duct none		
Elapsed	Depth	-	i	Specific		Dissolved	Tuebiditu	Flow	Other
Time	to Water	Temperature	pH	Conductivity	ORP	Oxygen	Turbidity	Rate	Other
minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	-
0	50.12	10.4	7,23	399,0	183.9	. 67	11.8	350 , will	
5	50,74	16.0	6.90	486.8	-79.8	.29	26.8	300	
10	51,32	10.3	7.05	4/82.5	-104,9	.33	21.3	200	
15	51.48	10.3	7.14	483,4	-118.7	.29	13.9	200	
20	51,81	10,3	7.75	482.8	-133.9	. ZS	11,841	200	
25	Sz.00	10.3	7,31	4/83.0	- 141,3	-23	11,59	200	
30	52.19	10.2	7.36	4182.4	-146.8	. 22	7.86	200	
	52,46	16.2	7,40	482.0	-151.5	.21	7.75	200	
25 10	52.54	10.9	7.42	480.2	-1520	023	6.59	150	
_		10.8	7,46	4/8/.1	- 152.0	624	1.73	150	
50	S2,49	11.0	7.49	480.7	-152.6	.23	6.39	/56	
30	Sc. 4	11.0		120.			G.S.	730	
	_								
							*		
									-
		11		15					
		No. 1			1:				
tabilization	Δ ≤ 0.3'	± 3%	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Tot Final Ob	al volume of servations:	groundwater pur	ged: <u>- 4</u>	Odor <u>Su</u> Ker	She		duct none		
Sample	ID: MW-	· B · Omw -	216-11112	020		Sample Ti	me: <u>1025</u> 10	215	
nalytical F	Parameters:	TCL VOCs by USE	PA SW-846 Me	ethod 8260C, 1,4-Dio	xane by USEPA	SW-846 Metho	d 8270D SIM		
Container	r Size (Container Type	# Colle	ected Fi	eld Filtered?	P	reservative	Labora	tory
40-m		Glass	3		No	- 0	HCL	ETA Land	
250-r	nl	Amber Glass	2		No		None	ETA Land	caster
otes:						2	90 psi X	roller to	M/m.s

Site Name Site Location Project #	BOLL		Low	Flow Ground	dwater Sa	mpling Lo	Well g Northi Easti	ng: 1358579	9.5
	e: Dewey	Loeffel Landfill	Samp	ling Method:		er Pump		nnel: CDW	
Project #		assau, NY		oment Used:		oidity Meter		Date: 11/16/2020	
, roject #	#: <u>194007</u>	71541_402.016	Equi	pment IDs#:	0415/	ZILS	Wea	ither: 40° ove	rcast
ell information	ion:	- 0	.v					Measurement Point	:
	ed Depth o	-		mp.			ď	Well Casing	
Measure	ed Depth o	f Well*: 254 Water*: 69.19	1.94 ft. b	mp				Protective Casing Other:	9
enath of Wate		(LWC): 157.						Other.	_
Jingar or **acc	Well Dia		.0 in.			Р	ump Intake Dep	oth*: 248.20	ft br
Stort Dur	ge Time: (0/05							
Initial Obser		Color Clean	c	odor Nene	She	een/Free Prod	luct hone	-	
Elapsed	Depth			Specific		Dissolved	To cole i alife a	Flow	Other
Time to	o Water	Temperature	pН	Conductivity	ORP	Oxygen	Turbidity	Rate	Other
	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)	(NTU)	(ml/min)	
	9.19	9.7	9.56	577.4	2086	4.78	1,99	215	
	2510	9.8	9.63	514,9	171.3	2.09	7,27	200	
	9.40	9.9	9,64	516.5	115.9	060	4.26	190	
13 69	9,59	9.8	9,60		126,3	.49	2.96	200	
20 6	9.52	9,8	9.58	504.8	114.8	.40	1,9)	200	
25 6	9.50	9.9	9.57	503.2	117.9	-32	2.13	206	
20 69	9,60	9.8	9.56	502.41	115.2	.26	1,60	200	
35 19.	60	9.8	9.56	502.2	112.9	23	1,56	200	
40 6	9.63	9.9	\$55	501.5	108.5	.17	1.82	200	
45 6	9.65	9.9	9.54	501.0	106.2	017	1,65	200	
50 6	59.66	9.9	9.54	501.1	107.7	017	1.79	Zeo	
								1 t	
					11 1				
Stabilization 1	Δ ≤ 0.3'	± 3%	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	

DAL	190		Low	Flow Ground	dwater Sa	mplina Lo							
KAD	IBCLL			11011 010		-	East	ing: 744773	_				
Site Na		Loeffel Landfill		oling Method:		er Pump		nnel: CDD					
Site Locat		assau, NY	4.5	pment Used:		oidity Meter		Date: 11/16/20	-				
Projec	et #: 19400	71541_402.016	Equ	ipment IDs#:	0115 /2	115	Wea	ather: 20° ove	cast				
ell inform	ation:							Measurement Point	:				
	alled Depth o	-		omp.			×	Well Casing					
Meas	sured Depth o	_		omp				Protective Casin	g				
		Water*: 107.8 (LWC): 160 33						Other:	_				
engui oi vi		-	0 in.			Р	ump intake Dep	oth*: 247.18	ft, br				
Start P	urge Time:	200 1205											
Initial Ob	servations:	Color Clear		odor N A Security indicat	She te anits	een/Free Prod	luct Now						
Elapsed	Depth			Specific		Dissolved	Turbidity	Flow	Other				
Time	to Water	Temperature	pН	Conductivity	ORP	Oxygen	i	Rate	Other				
minutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	' (mV)	(mg/l)	(NTU)	(ml/min)	(
0	107,84	9.8	9,31	826	138.2	10.48	1,48	300					
5	108.38	9.5	9,64	528	-12.8	5.05	3.25	200					
10	108.38	9,4	994	836	-100.5	1.85	2.82	160					
15	108.45	9.5	10.00	844	140.7	4.53	0.58	160					
20	108.47	9,5	10.16	361	-156.1	6.85	.40	160					
25	108,55	9.5	10.26	881	-1691	8.20	, 33	160					
35	165.56	9.5	10.27	885	-179,6	8,19	,30	160					
35	108:59	9,6	16.24	881	-187.1	791	,23	160					
40		9,6	10,20	874	-193.8	6.42	, 22	166					
45	108.64	9.5	10.18	870	-196.4		.21	160					
15	108100		10.16	0.70	-116.7	0.00	- 21	100					
Stabilization	Δ ≤ 0.3'	Not Applicable	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	1				
Tot Final Ob	servations:	groundwater pure Color	ar (Odor Chem	She		duct port						
	Parameters:			6 Method 8260C, 1,4	L-Dioxage by I I								
narytical r	arameters.	TCL VOCS By	USEPA SW-64	6 Method 6260C, 1,4	-Dioxarie by Os	3V-040 IV	ietilog dz rob Silw						
Container	Size C	Container Type	# Colle	cted Fi	eld Filtered?	Р	reservative	Labora	tory				
40-m		Glass	3		No	Tul-	HCL	ETA Land	caster				
	nl	Amber Glass	2		No		None	ETA Land	caster				
250-n								1	-				
						_							

Site Name Devey Losffel Landill Site Losation Nassau,	RAM	IBOLL		Low	Flow Groun	dwater Sa	mpling Lo	og North East	ing: 745353	4.7
Project #. 1940071541.402.016 Equipment IDs# Weather #0 Question	Site Na	me: Dewey	Loeffel Landfill	Samp	oling Method:	Low	Flow		-	
Measurement Point Measurement Point Measurement Point Measurement Point Measurement Point Measurement Point Measured Depth of Welt* 142.22 ft. bmp.	Site Locati	ion: N	assau, NY	Equi	pment Used:	YSI / Turb	oidity Meter			
Installed Depth of Well*	Projec	t #: 19400	71541,402,016	Equ	ipment IDs#:	-		Wea	ather: 40, ove	rcest
Measured Depth of Welst* 142.22 ft. bmp Depth to Water* 0.7.00 ft.			of Mou*: 141	222 61	omp					:
Depth to Water O, 00 ft. Other Othe			_	_	•					a
Start Purge	Meas	•			Simp			_	•	
Part Color	ength of W	ater Column	(LWC): 142.23	ft		ij.	F	oump Intake Dep	oth*: 113.22	ft. b
Elapsed Depth Temperature pH Conductivity ORP Dissolved Oxygen (NTU) Flow Rate (milmin)				(een/Free Prod	duct <u>cone</u>		
Time to Water minutes fl. bmp (Celsius) (SU) (µSicm) (mV) (mg/l) (NTU) (mllmin) (mll	Elapsed	Depth	Tomosatura	nU.			Dissolved	Turbidity		Othe
10	Time									,
For							_			_
S P P P P P P P P P		0		_		-		-		
#####################################										
2.5 9.4 8.05 504.7 -9.19 1.4 .72 .50 3.0 7.4 8.11 504.7 103.7 .69 .63 506 3.5 √ 7.4 8.12 .74 7.16.7 .76 .67 .60 3.5 √ 7.4 8.12 .74 7.16.7 .76 .67 .60 3.5 √ 7.4 8.12 .74 7.16.7 .76 .67 .60 3.5 √ 7.4 8.12 .74 7.16.7 .76 .67 .60 3.5 √ 7.4 8.12 .74 7.16.7 .76 .67 .60 3.5 √ 7.4 8.12 .74 .76 .67 .60 3.5 √ 7.4 8.12 .74 .76 .67 .60 3.5 √ 7.4 8.12 .74 .76 .67 .60 3.5 √ 7.4 8.12 .76 .67 .60 3.5 √ 7.4 8.12 .76 .67 .60 3.5 √ 7.4 8.12 .76 .67 .60 3.5 √ 7.4 8.12 .76 .67 .60 3.5 √ 7.4 8.12 .76 .67 .60 3.5 √ 7.4 8.12 .76 .76 .67 3.5 √ 7.4 8.12 .76 .76 .67 3.5 √ 7.4 8.12 .76 .76 .67 3.5 √ 7.4 8.12 .76 .76 .67 3.5 √ 7.4 8.12 .76 .76 .67 3.5 √ 7.4 8.12 .76 .76 3.5 √ 7.4 8.12 .76 .77 3.6 √ 7.4 7.6 7.6 .67 3.5 √ 7.4 7.6 7.6 7.6 3.5 √ 7.4 7.6 7.6 7.6 3.5 √ 7.4 7.12 7.7 7.6 7.6 3.5 √ 7.4 7.12 7.7 7.6 7.6 3.5 √ 7.4 7.12 7.7 7.6 7.6 3.5 √ 7.4 7.12 7.7 7.6 7.6 3.5 √ 7.4 7.12 7.7 7.6 7.6 3.5 √ 7.4 7.12 7.7 7.6 7.6 3.5 √ 7.4 7.12 7.7 7.6 7.6 3.5 √ 7.4 7.6 7.6 7.6 3.5 √ 7.4 7.6 7.6 7.6 3.5 √ 7.4 7.6	15 10		9.4	8.05	505 5	-62.1				
20	20 15		9.4	8.08	505,0	-80.6				-
25 9,4 8,10 504.8 −97.9 0,0 .91 .500 35 √ 7.4 8,12 504.7 103.7 .657 .67 .600 35 √ 7.4 8,12 504.7 103.7 .627 .667 .600	20		9.4	8.09	504.7	-919	14	072	500	
3.5	25			7	504.8	-97.9	010	471	500	
1	36	1			504.7			.63	500	
Indification ∆ ≤ 0.3' ± 3% ± 0.1 ± 3% ± 10 mV ± 10% ± 10% 100 ≤ X ≤ 500		N/					0			
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MW-3-0MW-77.1~ III070700 Sample Time: 1530 Inalytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING	7 - 5									
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1~ III070700 Sample Time: 1530 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING										
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1~ III070700 Sample Time: 1530 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING										
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1~ III070700 Sample Time: 1530 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING					li e					
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1~ III070700 Sample Time: 1530 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING										
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1~ III070700 Sample Time: 1530 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING										
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1~ III070700 Sample Time: 1530 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING										
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1~ III070700 Sample Time: 1530 malytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING										
End Purge Time: 1525 Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Variation Sheen/Free Product More Sample ID: MW-3-0MW-77.1~ III070700 Sample Time: 1530 TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING						1 - 1				
Total volume of groundwater purged: 30 gal. Final Observations: Color Quer Odor Veric Sheen/Free Product Nove Sample ID: MN-2-0MW-77.1-11070700 Sample Time: 530 TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING	tabilization	Δ ≤ 0.3'	± 3%	± 0.1	± 3%	± 10 mV	± 10%	± 10%	100 ≤ X ≤ 500	
Total volume of groundwater purged: 30 gal. Final Observations: Color Que Odor New Sheen/Free Product Now Sample ID: MW-3-0MW-77.1~ III070700 Sample Time: 530 Inalytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING	End F	Purge Time:	1525							
Sample ID: MW-3-0MW-77.1 ~ III07070 Sample Time: 530 Inalytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster Otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING	Tota	al volume of	groundwater pur			She	oog/Eroo Pro	duct NAY.		
Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING			, 0							
Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING	Sample	ID: <u>MM-3</u>	3-0mw-221	-111620	020		Sample Ti	me: /530		
40-ml Glass 3 No HCL ETA Lancaster oles: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING	nalytical P	Parameters:	TCL VOCs by	USEPA SW-84	16 Method 8260C					
40-ml Glass 3 No HCL ETA Lancaster otes: WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING	Container	Size C	Container Type	# Colle	ected Fi	eld Filtered?	Р	reservative	Labora	tory
WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING				3		No		HCL	ETA Land	aster
WELL IS ARTESIAN - PURGE 1 WELL VOLUME FIRST PRIOR TO LOW-FLOW SAMPLING										
	otes:		10 40==0::::	DUDGE 411	C11 VOLUME =	DET DRICE	TO LOW F	OW CAMPI IN	_	
1 Well your - 25 garons 1 began page (1330	Laura							OW SAMPLING		
No. of the second secon	_ INT	u ACIM	- LS ga	100	- Jan	Phil	150-			

Site Name: Dewey Loeffel Landfill Site Location: Nassau, NY Project #: 1940071541.402.016 Equipment Used: YSI / Turbidity Meter Date: 1/3/2000 Weather: 40°, aux cust * Measurement Point: Installed Depth of Well*: 215.47 ft. bmp. Measured Depth to Water*: 34,06 ft. Length of Water Column (LWC): 18134 ft. Well Diameter: 2.0 in. Start Purge Time: O20 Initial Observations: Color 1000	RAI	MBCLL		Low	Flow Groun	dwater Sa	mpling Lo	Well g Northi Easti	ng: 135533	5.5
Measured Depth of Well* 215.47 ft. bmp.	Site Loca	tion: N	assau, NY	Equi	pment Used:	YSI / Turb	oidity Meter	Field Perso	nnel: <u>DW</u> Date: <u> / 3/202</u>	2
Installed Depth of Well* 215.47 ft. bmp.		_	71541.402.016	Equ	ipment ibs#:	0113 /	4113			
Measured Depth of Well*:			-610/-41*. 04/	- 47 - 41						t:
Depth to Water Column (LWC)										a
Start Purps Time:	ivieas				onip.					-
Sheen/Free Product Sheen/	ength of V	/ater Column	(LWC): 8 13	ft.			P			ft. bn
Elapsed Time Temperature PH Conductivity ORP Oxygen Turbidity Flow Rate (milmin) Conductivity ORP Oxygen Turbidity Flow Rate (milmin) Conductivity ORP Oxygen		-		- ' (-	en/Free Prod	luct hon	_	
O 34.00 9.6 8.54 273.0 180.4 7.66 .94 400 S 34.28 9.6 8.72 256.6 185.3 4.23 .70 1.75 D 31.08 9.6 8.07 247.0 -31.1 1.07 1.63 250 S 23.1.6 9.7 8.07 247.9 -45.4 .87 2.20 250 S 4.06 9.7 8.11 250.6 -59.0 .55 1.56 275 S 4.06 9.7 8.16 254.0 -73.6 .37 .47 .75 3.0 34.06 9.7 8.16 254.0 -73.6 .37 .47 .75 3.5 34.6 9.7 8.18 754.7 52.1 .34 .42 27.5 40 34.06 9.8 7.19 254.4 -87.8 .35 .945 .275 41 34.06 9.6 8.12 254.1 85.6 .34 .42 27.5 42 34.06 9.6 8.12 254.1 85.6 .34 .42 27.5 43 34.06 9.6 8.12 254.1 85.6 .34 .42 27.5 45 34.06 9.6 8.12 254.1 85.6 .34 .42 27.5 45 34.06 9.6 8.12 254.1 85.6 .34 .42 27.5 46 9.7 9.8	Time	to Water			Specific Conductivity	ORP	Oxygen	-	Rate	Other
S 31/28 9,6 872 256,6 185.3 4/23 870 1725 10 31/16 9,6 5.07 247.0 -31,1 1.07 1.63 250 15 9≥31/16 9.7 5.07 247.9 -45.4 887 2.20 250 20 24.06 9.7 5.11 250.6 -54.0 .55 1.56 275 25 44.06 9.7 8.14 253.0 .44.9 .41 1.11 225 30 34.06 9.7 8.16 254.0 -73.6 .37 .47 275 35 34.6 9.7 8.18 754.7 -82.1 .34 .42 275 40 34.06 9.8 8.19 254.4 -87.8 .35 0.45 275 41 34.06 9.6 8.21 254.1 -85.6										
0 31.08										
15						1	-			
7.67 3.41.06 9.7 8.11 2.50.6 -54.0 .55 1.56 275 2.5 34.06 9.7 8.14 2.53.0 .44.9 .41 1.11 2.25 3.0 34.06 9.7 8.16 2.54.0 -73.6 .37 .47 .75 3.5 34.06 9.8 8.17 2.54.1 -87.8 .33 .42 .42 .42 40 34.06 9.8 8.19 2.54.1 -85.6 .34 .42 .42 .42 41 34.06 9.6 8.21 2.54.1 -85.6 .34 .42 .42 .42 .42 41 34.06 9.6 8.21 2.54.1 -85.6 .34 .42 .42 .42 .42 42 2.75 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 42 34.06 9.6 8.21 2.54.1 -85.6 .34 .42 .42 .42 .42 .42 .44 43 34.06 9.6 8.21 2.54.1 -85.6 .34 .42 .42 .42 .42 .44 44 45 45 45 45 45 45									- V	
2.5	15									_
30 3406 9.7 8.16 2540 -73.6 .37 .47 .75 35 34.86 9.7 8.18 .764.2 -782.1 .34 .42 .275 40 34.06 9.8 7.19 .254.4 - 187.8 .35 .45 .275 45 34.06 9.6 8.21 .254.1 -85.6 √ .34 ✓ •42 .275 45 34.06 9.6 8.21 .254.1 -85.6 ✓ .34 ✓ •42 .275 45 34.06 9.6 8.21 .254.1 -85.6 ✓ .34 ✓ •42 .275 46 275 475 34.06 9.6 8.21 .254.1 -85.6 ✓ .34 ✓ •42 .275 475 275 475 34.06 9.6 8.21 .254.1 -85.6 ✓ .34 ✓ •42 .275 475 275 475 275 475 275 475 275 475 275 475 275 475 275 477 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 275 478 277 275 478 277 275 478 277 275 478 277 275 478 277 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 277 277 478 2		34.06				1			-	_
3.5 34.66 9.7 8.18 754.2 -82.1 3.34 .42 27.5 40 34.06 9.8 8.19 254.4 -87.8 3.3 04.5 27.5 4.5 34.06 9.6 8.21 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.6 8.21 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.6 8.21 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.6 8.21 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.6 8.21 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.6 8.21 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.6 8.21 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.4 04.2 27.5 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.3 0.45 2.75 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.3 0.45 2.75 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.3 0.45 2.75 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 3.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.3 0.45 4.5 34.06 9.8 8.19 2.54.1 -85.6 0.3 0.45 4.5 34.06 9.8 8.19 2.54 4.5 34.06 9.8 8.10 4.5 34.06 9.8 8.10 4.5 34.06 9.8 8.10 4.5 34.06 9.8 8.10 4.5 34.06 9.8 8.10 4.5 34.06 9.8 8.10 4.5 34.06 9.8 8.10 4.5 34.06 9							-	1		
34.06 9.8 7.1 254.4 -87.8 33 045 275 4.5 34.06 9.6 7.2 254.1 -85.6										
	35								+	
Stabilization ∆ ≤ 0.3'	40									
End Purge Time: 105 Total volume of groundwater purged: 3.5 gal. Final Observations: Color 102 Odor 103 Sheen/Free Product 100 Sample ID: 14W - 0 - 0 M W - 722 - 1132020 Sample Time: 110 Inalytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaste	45	34.06	9,6	8,21	254.1	705.6	.34	• 12	275	
End Purge Time: 105 Total volume of groundwater purged: 3.5 gal. Final Observations: Color 102 Odor 103 Sheen/Free Product 100 Sample ID: 14W - 0 - 0 M W - 722 - 1132020 Sample Time: 110 Inalytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaste)						
End Purge Time: OS Total volume of groundwater purged: 3.5 gal. Final Observations: Color Odor Odor Sheen/Free Product Odor										
End Purge Time: OS Total volume of groundwater purged: 3.5 gal. Final Observations: Color Odor Odor Sheen/Free Product Odor										
Total volume of groundwater purged: 3.5 gal. Final Observations: Color Cloc Odor None Sheen/Free Product None Sample ID: None TCL vocs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaste	Stabilization	Δ ≤ 0.3'	± 3%	± 0.1	± 3%	± 10 mV	± 10%	± 10%	200 ≤ X ≤ 500	
Sample ID: MW-W-W-ONW-772-1132026 Sample Time: 110 Inalytical Parameters: TCL VOCs by USEPA SW-846 Method 8260C Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaste	Tot	al volume of	groundwater pur			She	een/Free Proc	luct N D a 8 .		
Container Size Container Type # Collected Field Filtered? Preservative Laboratory 40-ml Glass 3 No HCL ETA Lancaste										
40-ml Glass 3 No HCL ETA Lancaste										
40-ml Glass 3 No HCL ETA Lancaste	Containe	Size C	Container Type	# Colle	cted Fi	eld Filtered?	Pi	reservative	Labora	tory
lotes:				- GL D-(J) - D			= 1			
lotes:										
	otes:									
	1									-
	-									

R AL	MBCLL		Low	Flow Groun	dwater Sa	mplina I d	Well Northi		
	MROLL		LOW	Tiow Groun	uwater ou	inpinig E	Easti		
Site Na	me: Dewe	y Loeffel Landfill	Samr	oling Method:	Bladde	r Pump		nnel: (DL)	
Site Locat	_	lassau, NY	-	pment Used:		idity Meter		Date: 11/13/2020	
	-	71541.402.016	-	ipment IDs#:	0415/02		. Wea	ther: 2/01, on/off	C6:D
	_	771041.402.010		mprinerie ibeir.	011-102	41,7		· ·	
ell inform			0.04					Measurement Point	:
	alled Depth	_		omp.			_	 Well Casing Protective Casing 	~
ivieas	sured Depth	of weil":		omp.					
nath of M	Deptin to ater Columr/						Ц	Other.	
igui oi vv			2.0 in			P	ump Intake Dep	th*: 144.10	ft. b
Start P	urge Time:	1710							
	servations:	Color Clec	r (odornon	She	en/Free Prod	duct none		
					te units				
lapsed	Depth	Temperature	pН	Specific	ORP	Dissolved	Turbidity	Flow	Othe
Time	to Water	10.00		Conductivity	(m)/)	Oxygen	(NTU)	Rate (ml/min)	1
inutes)	(ft bmp)	(Celsius)	(SU)	(µS/cm)	(mV)	(mg/l)			
0	12.80	10.4	8.87	481.9	82.8	1.74	0,84	175	
5	12.83	10.6	8.75	484.0	10.0	.16	1,2	175	
0	12.89	10.6	8,75	4813	-16.8	.11	3.16	175	
15	12.91	10.6	8 76	484.2	-31.1	.10	7.81	175	
20	17.95	10.6	8.78	484.4	-48,5	-10	1.91	175	
25	17.96	16.5	8.79	487.3	-60.0	09	1.02	175	
30	13.01	10,6	8.79	4844	-68.5	.08	.95	175	
	1	_	8.80	4184.7	-75.8	208	.89	175	
_	13.64	10.5							
0	13.04	10.5	8.82	485.1	-80-9	609	1.05	175	
-/5	13,05	10.5	8.83	485.6	-84.2	80.	.97	175	
	-								
			-040						
							-		
						-	1		
					V				
						± 10%	± 10%	200 ≤ X ≤ 500	

APPENDIX C.4
FALL 2020 GROUNDWATER SAMPLE CHAIN-OF-CUSTODY FORMS

	287000	Dewey Loeffel Landfill Superfund Site 410-20426 Chain of Custody											ody		
PO: 11900	HI SO WIOTZO	Clienti Site Name / Lo Gli 421P/Si Group, Inc.		ulfill / Namau, N	Y-	Sampling Program 2nd Sens-Annual C Program Sampling	roundwater A	louites	ing	Samplers: Saga Traval	-	Ci	Mc	-	Project Number:
amboll Office: Albany		Laboratory:		Analysis Hold	ing Time:			Chem	nical Pre	servatives: (see key at botto	m)				
ddress: Ramboll		Mrgan Mueller		Refer to the Ut	LOTAIN.		100	1	0						ab ID:
New Kamer Rd, State 106, Albany, N.Y. 12203		Eurofins Lancaster Labor	atones, Inc	(UHIG, Seprem	her 2015) for i	eseylare at	Composite (C)	100	Ä						
hone: (518) 724-7272 ax: (518) 869-2945		2425 New Holland Pike		holding times.			posit	by USEPASW.	PAS			1 1			
roject Contact: Robert Homung / Amy Spooner Stevens / Jesse Vollick		Lancaster, PA 17601		Package Required CLP Level		- Province	E O	LISE	by USEPAS					P	ob Number:
imail: Robert. Homung@ramboll.com / Arny Spooner-Stevens@ramboll.com / Jes	sse Vollick@ramboll.com	Phone: (717) (-56-2300) Fax: (717) (-56-6766)		Project Numb	er: 19400715		Grab (G) or (TCL VOCaby	1,4-Dioxane by 846 Method 82						
Sample Identification							Field Filtered (Y/N)	N	N						
Unique Field Sample 1D	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hh:mm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting Units	ug/L	1/2r						Lab Sample ID
MW-B-0MW-102-11102020	0MW-10Z	11/10/20	11:30	N	WG	5	G	X	X						Lan Sample 117
MW-8-0MW-201-11102020	0mw-201	11/10/20	13:25	N	WG	5	6	X				+	++	+	
MW-B-EPA-4A-1110ZOZO	EPA-4A	11/10/20	14:00	N	WG	5	G	X	X		-	++	++	++	
: MW-B-EPA-4A-11102020-MS	EPA-4A	11/10/20	14:00	MS	WQ	5						++	++	++	
5 MW-B-EPA-4A-11102020-MSD		1.1			WQ		G	X	X			++	++	+	
	EPA-4A	11/10/20	14:00	ms		5	G	X	X			1	-	++	
MW-B-EPA-4B-11102020	EPA-4B	11/10/20	14:10	N	WG	5	G	X	X						
DUP-001-11102020	_	11/10/20		FD	WG	5	6	X	X						
1 GW-11102020-TB		11/10/20	-	TB	WQ	2	G	X							
9															
10															
pecial Instructions: 1. 28 calendar day turnaround time per UFP QAF WStody SealS = #1248483 & 17				J" flags). Cust	ody seal nu	mbers:									
delinquished by And	Date 11/10/20	Herman In Fede	×			Date 11/10/	120	Candi	ittim:	1			Cor	mments ur	Nores:
Rungell	Time 1630	Tracking Numbered &	155.33	1 736	7	Time 1630)	1		Good.					report in accordance with
epitrophia pi	Date Time	D Tracking Number(s) 8155, 3311 7362 Recrived by			Date Time		Caratis	dy Scala I	ntacif Y N			QA	PP (OBG	el Landfill Superfund Site U September 2015). 28 calen Full CLP Level Pkg (PDF) and USEPA Berron 2 Ven	
ichmquohed by:	Dste Time	Received by TELVE Date WILLIAMS Cauder Temperature 4.3%				EQuIS 4-file and USEPA Region 2 4 EDD with USEPA Region 2 Refer Values.									

CMC

Page I of I 1940000783 el Landfill Superfund Site RAMBOLL PO: 11900711 D 1/11/20 Client Site Name / Location; ah Use Only Project Number Chung 31 -CLP/SI Group, Inc. Dewey Loeffel Landfill / Nasson, N.Y. 3ml Serra Animal Commission Manimums Program Sampling Event Laboratory: Analysis Holding Time: Chemical Preservatives: (see key at bottom Ramboll Office: Albany Lab ID: Meant Mieller Refer to the UTP CUAPP Address: Ramboll Eurofins Lancaster Laboratowes, Inc. (OBG, September 2015) for the analysis 94 New Kamer Rd. Sinte 106, Albany, N.Y. 12203 A-Diezane by USLPA SW-2425 New Holland 19ke holding procs Phone: (518) 724-7272 lob Number ancaster, PA 17601 Package Requirement Fax: (518) 869-2945 Foll CLP Level w/28 calendar day TAT Project Contact: Robert Homung / Amy Spooner-Stevens /Jesse Vollick Grab (G) o Phone: (717) 656-23(4) Email: Robert Homangairambolt.com / Amy Spooner Stevensalramboll.com / Jesse Volliekia/rambolt.com Project Number: 1940071541.402.300 EDD Format: 13 July 4-14le & USE PA Region Fax: (717) 656-6766 Sample Identification Sample Sample Date Sample Type Sample Time Matrix Sample Location (mm/dd/vv) (hh:mm) Unique Field Sample ID MW-B-DMW-216-11112020 OMN-716 10:15 N MW-B-0MW-Z14-11112020 0mw-214 11:40 NG 11/11/70 MWI-B-EPA-3R - 11112020 13:25 WG 55 13:30 MW-R-EPA-3C-11117020 MG MW-R-0MW-Z05-11112020 0MW-205 11/11/20 N 13:50 GW-11117020-TR WO Special Instructions: I. 28 calendar day turnaround time per UFP QAPP. 2. Report detections above the MDL, but below the PQL ("J" flags). Custody seal numbers: Seal #: 91286 £ 91283 Tracking Number(s) 8161 4706 8 351 Analyze and report in accordance with Dewey Loeffel Landfill Superfund Site UFP ustedy Scale Intact? QAPP (OBG, September 2015). 28 calendar day TAT for Full CLP Level Pkg (PDF) and EQuIS 4-file and USEPA Region 2 Version 4 EDD with USEPA Region 2 Reference order Lemperature 13/7.520 Values. FLLE Sample Type: N = Normal environmental sample, FD = field duplicate, EB = Equipment Blank, FB = Field Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Surface Water, WW = Waste Water, WQ = Water Quality, TA = Animal Tissue, TP = Plant Tissue, AA = Anibient Air, Other (Specify): Preservatives Code: 0 = none, 1 = HCL, 2 = HNO3, 3 = H2SO4, 4 = NaOH, 5 = Ascorbic Acid, 6 = MeOH, 7 = NaHSO4, 8 = Na2S2O3, 9 = H3PO4, 10 = Zinc accrtate + NaOH

Ture

55

RAMBOLL 1940	000783 1711- B 1/1420			De	wey L	oeffel L	andfil	l Sı	ipei	fund	Site					Page of
PO: 11900	1711- (3) 191426	Client: Site Name / Lo	cation;			Sampling Progr	am:	_		Sampkys:	SpalyTre	valv	_	Chris West	nau	Lab Use Only
		GE-CFT/SI Group, lise	Dewey Loctfel Lar	ndfill / Nanan, ?	× Y.	2nd Semi-Annua Program Samplin		Monutor	под	1	ill	_	6	n	1~	Project Number:
Ramboll Office: Albany		Laboratory:		Analysis Hol	ding Time:	1		Chen	nical Pre	servatives:	are her or be	mom)			_	-
Address: Hamboll		Megas Moeller		Refer to the U	IFP CEAPIT			1	0			TT			TT	Lab ID:
94 New Kamer Rd, Soite 106, Albany, N.Y. 12203		Kumfins Lancaster Labor	tatories, Inc.	(UBG, Septen	nber 2015) for	the analysis	G.	4								
Phone: (518) 724-7272		2425 New Holland Pike		hulding neres			osite	USEPASW.	PA SW.		11				1 1	
Fax: (518) 869-2945		Lancaster, PA 17601		Package Req			dwo	26.7	by USEPAS						1 1	Job Number:
Project Contact: Robert Homung / Amy Spooner-Stevens /Jesse Vollick				Full CLP Leve	w/28 calend	ar day TAT	- b	100	E 2		1 1	1 1			1 1	
Email: Robert Homong@tamboll.com / Amy Spourer Stevens@tamboll.com /	esse Vollack@ramboll.com	Phone: (717) (56-23(4) Fax: (717) (56-676)			ben 1940/715 ti +Qubs 4-Fil	41,402,200 c & USEPA Region	Grab (G) or Composite (C)	TCL VOCa I	I,4-Dioxane 846 Merhod							
Sample Identification	-						Field Filtere (Y/N)	d N	2							
Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hh:mm)	Sample Type		222	Reporting Units	g/L	7/2r							
, MW-B-OMW-ZOZ-11122020		11/12/20	12:15	(see key)	WG WG	# of Container	1	X	- to	-	++	++	-	-	++	Lab Sample ID
				N			19		1		++	++	-		-	
: MW-B-EPA-4A-11122020	EPA-4A	11/12/20	14:20	N	WG	5	6	X	X							
, MW-B-EPA-4A-11122020 ms	EPA-4A	11/12/20	14:20	MS	NQ	3	G	X								
. MW-B-EPA-4A-11122020-MSI	EPA-4A	11/12/20	14:20	MS	WQ	3	6	X								
, MW-B-EPA-4B-11122020	EPA-4B	11/2/20	14:25	N	WG	5	16	X	X							
6 MW-B-0MW-215-11122020	0MW-215			N	WG	5	G	X	X		+	++	+			
, DUP-00Z-111Z20Z0	-	11/12/20	-	FD	WG	3	6	X	1		11	11				
" GW-11122020 -TB	_	11/12/20	_	TB	WG	2	G	X								
9							-									
10		·										1	7			
Special Instructions: 1. 28 calendar day turnaround time per UFP Q/ CuStody Seal #S: 9128			pelaw the PQL ("	J" flags). Cur	stody seal nu	mbers:										
Relinquisted by Andrew	O2/21/11 314CI	Received by Fect E	k			Date 11/12	170	Could	itten.						Commission	ni Viliano
Remeall!	Time 1700	Veachood Sumber(s): 8	61 470	6 836	52		00								Analyze at	nd report in accordance with
Relinquisted to	Date	Herewed by	41 110	4 300		Dare	-	Chen	rdy Seals 1	marrie A) N	_	_			effel Landfill Superfund Site U NG, September 2015). 28 calend
of ~	Time	of				Time (C	, .				day TAT	or Full CLP Level Pkg (PDF) a ile and USEPA Region 2 Versio
Relanguished by:	Date	Received by				Date 1 13	hou	Coole	r Tempe	Citing	10				4 EDD wi	th USEI'A Region 2 Reference
of	Time	00	El	LUE		Time 103				0.6					Values.	
Sample Type: N = Normal environmental sample, FD = field duplicate, E Sample Matrix: SE = Sediment, SO = Soil, WG = Ground Water, WS = Su	B = Equipment Blank, FB	Field Blank, TB = Tri	p Blank, MS = Lat	Matrix Spike.	Other (Specia	ivi:							-	_		

al

RAMBOLL	1940000783 D: 11900711 Du/13/20			Dev	wey L	oeffel L	andfil	l Sı	ipei	fun	410-20	957 CI	hain of	Custod	У	
Po	J: 119007113 11/13/22	GE-GEP/SI Group, Inc		rdfill / Nassau, N	N.Y	Sampling Progra 2nd Semi-Annual Program Sampling	Gennidwater	Monitor	ng	Samplers	Arah Tro	valy	C	Chris We	-	Project Number:
Ramboll Office: Albany Address: Ramboll 94 New Kamer Rd, Suite 106, Albany, N.Y. 12203 Phone: (518) 724-7272		Laboratory: Megan Moeller Homelins Lancaster Labor 2425 New Holland Pike	raturies, Jus	Analysis Hol Refer to the U (OBG, Septem holding times.	11 P (2APP riber 2015) for	the analyses	osite (C)	1	0	servatives: (a	ee key at bo	ettom)			П	Lab ID:
Fax: (518) 809-2945 Project Contact: Robert Homung / Amy Spooner Stevens / Jesse Vo Email: Robert Homung@ramboll.com / Amy Spooner Stevens@ra		Lancaster, PA 17601 Phone: (717) 656-23(8) Fax: (717) 656-6766		Package Req Full CLP Leve Project Num	uirement: l w/28 calend iber: 1940/715		o (G) or Comp	TCL VOCs by USEPASW-	LA-Diexant by USUPA SW. 846 Method 8270D SIM							Job Number:
Sample Identification		100		2			Field Filtere (Y/N)		Z Z							
Unique Field Sample 1D	Sample Location	Sample Date (mm/dd/yy)	Sample Time (lih:mm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting Units	ag/L	JE/L							Lab Sample ID
1 MW-B-OMW-222-11132	DZO OMW-ZZZ	11/13/20	11:10	2	WG	3	G	X								Can Sample 113
2 MW-B-DMW-223-11132	020 DMW-223	11/13/20	13:00	N	WG	3	6	X								
3 MW-B-EPA-1A-1113202		11/13/20	14:55	N	WG	5	G	×	X						11	
, MW-B-EPA-1B-111320	20 EPA-1B	11/13/20	15:00	N	WG	5	G	X	X				1			
5 MW-B-EPA-1C-111320	20 EPA -1C	11/13/20	15:05	N	WG	5	G	X	X		1				11	
. GW-11132020-TB		11/13/20	_	TB	WQ	2	6	X								
9								-			++	++		++	++	
10												11			11	
Special Instructions: 1, 28 calendar day turnaround time p Custody Seals #: 912 89				J" flags). Cus	stody seal nu	mbers;					1-1-				1 1	-1
ut Bantal	Time 1700	Tracking Number(s): 8	X 161 4701	6 8373	3	Date 11-13 Time 1700		Sondi	Ficari:						Analyze	ots or Notes. and report in accordance with Loeffel Landfill Superfund Site U
Relampushed by	Time	Received by	7			Date Time		Classody Scale Intact? V S QA day		QAPP (day TA EQuIS	OBG, September 2015). 28 calent I for Full CLP Level Pkg (PDF) 4-file and USEPA Region 2 Versi					
Relangualted by	Date Turse	Received by	54	UE		Time WZ		t Jan No	r Lemper	1,4	,	4 EDD Values.			with USEPA Region 2 Reference	

RAMBOLL 1940	00783 741 @ 11/16/20	Dewey Loeffel Landfill Superfund Site							Page Luft							
PO: 41900	Client: Site Name / Location; GE-GEP/SI Group, Inc. Dewey Loeffel Landfill / Nassau, N.Y.				Sampling Program: 2nd Semi-Annual Graundwater Manitum Program Sampling Uvent				Samplers: Sarah Travah Ahns Weuhan						Project Number:	
amboll Office: Albany		Laboratory;		Analysis Hole	ding Time:			Chen	nical Pre	ervatives: (ee key at	bottom)				
Idress: Ramboll		Alegan Sheller Refer to the 111			ED-CADD		(C)	i i	0							Lab ID:
New Kamer Rd, State 106, Albany, N.Y. 12203	Eurofins Lancaster Labo		ther 2015) for	he analysis	ii											
sone: (518) 869-2945		2425 New Holland Pike	holding times.			positi	I STED SW.	by USLIPA SW.								
oject Contact: Robert Homung / Amy Spooner Stevens / Jesse Vollick		Lancaster, PA 17601	Package Req	uirement: l w/28 calend	and and Add	E CO	USE KOC	USI TeD				1 1			Job Number:	
The Control of the Manual Control of the Control of				Print state anger	1 W/ 28 catend	ir day 1.51) or (14 by	ac by							
mail: Robert-Homusgestamboll.com / Amy Spooner-Stevensestramboll.com / Je	Phone; (717) 656-23wi Fax: (717) 656-6766		Project Number 12 Project Numb		A USEPA Region	Grab (G) or Composite (C)	TCL, VOCa h	1,4-Diexane 846 Merhad								
Sample Identification							Field Filtered (Y/N)	Z	N							
COulisits Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hh:mm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting Units	T/Zo	T/år							Lab Sample ID
0502 9111-812-MM-B-0MM-Z18-1116 Z020	815-WMO	11/16/20	11:00	N	WG	3	G	X								120 Sample 119
MW-B-0MW-Z19-11162020	215-MMG	11/16/20	12:55	N	WG	5	G	X	X		++			++		
MW-B-0MW-221-11162020		11/16/20	15:30	N	WG	3	G	X	^		+	-		++	+	
MW-B-EPA-ZA-1116 ZOZO	OMW-721 EPA-ZA							113	X		++	+	+	++	+	
	ETH-CH	11/16/20	15:30	N	WG	5	6	-			++	-		1		
5 MW-B-EPA-ZB-11162020	EPA-ZB	11/16/20	15:35	N	WG	5	G	X	X							
6 MW-B-EPA-ZC-11/62020	EPA-2C	11/16/20	15:40	N	WG	5	G	X	X							
1 GW-11162020-TB	_	11/16/20	_	TB	Wa	2	6	X								
(DIJI4Zo		11110		100		-	7	-						++	11	
											+	-		++	++	
										_	++		++	++	+	
pecial Instructions: 1. 28 calendar day turnaround time per UFP QA.	PP. 2. Report detections	above the MDL, but	below the PQL ("	J" flags). Cus	tody seal nu	mbers:				_						
Custody Seal #5.91288 & 912																
cliniquished by MM	Date 11-16-20	Received by Fede	×			Date 11-16	-70	Camdi	litters:						Comm	ents or Nates
REMOI!	Time 1745	Tracking Number(s): 8	0251		Time /7//r	-								re and report in accordance wit		
clanquished by	Date	Received by	6 8 34-	1	Date		D					Dewey	Loeffel Landfill Superfund Sit (OBG, September 2015). 28 ca			
	Time	1.	-	_	+ Title		1	usersdy Scale Intacty O S				day.T	AT for Full CLP Level Pkg (PL			
cloopushed by:	Date	Received by	1000	_	-	Date (1)17/2	. ^	fàinle	er Temper	altific				_	4 EDI	5 4-file and USEPA Region 2 V) with USEPA Region 2 Refere
	Time	1	1 1 ye	b		Time Time	.0						Value	K.		
		of.	DIE Matrix Spike, Other (Specie		113	8										

Pur

10-21151 Chain of Custody

RAMBOLL	1940000783		Dewey Loeffel Landfill Superfund Site												Page f of f		
	PO: 11908741@1418/20			Client: Site Name / Location;					Samplers: Salah Traval) Thru Weiman								Lab Use Only Project Number:
		G1 -CEP/SI Group, Inc	Dewey Loeffel La	ndfill / Namas, N A 2nd Serns-Animal of Program Sampling			Amstoni	ng	Struct 1					_			
Ramboll Office: Alhany	Laboratory: Analysis Holding Time:						Chem	ical Pres	-								
Address: Ramboll		Alegan Medler Refer to the (3)						1	0								Lab ID:
94 New Kamer Rd, Suite 106, Albany, N.Y. 12203 Phone: (518) 724-7272		Humfin Lancaster Labo 2425 New Holland Pike	(ORG, September 2015) for the an		he analysis	E (C	ii	***									
Fax: (518) 869-2945		Lancaster, PA 17601	Indding times Package Requ	Jeannair		bodi	PAS	SIM SIM								Jub Number:	
Project Contact: Robert Homung / Amy Spooner Stevens /Jesse	c Vollick			Full (4.P Level	ar day TAT	Соп	by USEPASTE.	by USEPA SW. R270D SIM								jour vanice.	
Email: Robert Homung@ramboll.com / Amy.Spooter-Stevens	Phone: (717) 650-23041 Fax: (717) 650-6766		Project Number: 1940/71541 4/0 EDD Format: 193/6/S 4-file & 19			Grab (G) or Composite (C)	TCl, VOCs b	1,4-Dissance 846 Method									
Sample Identificat						Field Filtered (Y/N)	ed N	Ň									
Unique Field Sample ID	Sample Location	Sample Date (mm/dd/yy)	Sample Time (hh:mm)	Sample Type (see key)	Sample Matrix (see key)	# of Containers	Reporting Units	-T/3r	7/5:								Lab Sample ID
1 MW-8-07W-103-1116202	0 0mw-103	11/18/20	11:50	N	WG	3	G	X									Lan Sample ID
2 MW-B-DB-II-11182020	DB-II	11/18/20	13:55	N	WG	3	6	X'									
, MW-B-DBH-02A-11182021		11/18/20	15.45	N	WG	3	6	X				\vdash					
. MW-B-DBH-02B-111820;		11/18/20	15:50	N	WG	3	G	×						-		-	
5 MW-B-DBH-020-111820		11/18/20	15:55	N	WG	3	6	X			+	-	-		-		
" GW-11182020-TB	- DOIT CED	11/18/20	-	TB	wa	2	6	X			+		-		-	-	
118 COZO - 18		11/10/20		ID	WU	6	6	1		-	+	-	+	-	-	+	
											+	-	-	-	-	-	
8								-		-	+	-				-	
9																	
10 Special Instructions: 1. 28 calendar day turnaround tim	on part LEB CARR 2. Paners described	above the MIDL has b	-I- a not a	111 0 1 0													
Custody Seals#: 60293 Relayushed by Chris Jen	d 7210-	above the MDL, but I	seiow the PQL ("	J. Hags), Cust	ody seal nu	mbers:											
teloromished by	2 15115	Received by - 1-				Il) are	_	Tre and									
2 Chrs Jen	Time 1720	Reveived by Fede			Date 11-18					intact						s or Notes	
of Remodell	Date	Tracking Number(s) &	8318		116	0	_		1					Dewey L	and report in accordance with oeffel Landfill Superfund Site U		
7	Lime	The state of the s			Date		Custody Scale Intactiv () N							OBG, September 2015), 28 calend for Full CLP Level Pkg (PDF)			
Relationshed by	Date	Mecened In			13pt/19/207	24.	Cooler Temperature					EQuIS 4	QuIS 4-file and USEPA Region 2 Ver EDD with USEPA Region 2 Reference				
	Time	SELVE			Time 12 1			20			2 H						
of		of	-1-1-			114		1		7.1							

410-21453 Chain of Custody

APPENDIX D DATA QUALITY EVALUATION

APPENDIX D DATA QUALITY EVALUATION

CONTENTS

1.	Data Quality Review	1
1.1	Spring 2020 Sample Results	2
1.1.1	Volatile Organic Analyses	2
1.1.2	1,4-Dioxane Analyses	3
1.2	Fall 2020 Sample Results	4
1.2.1	Volatile Organic Analyses	4
1.2.2	1.4-Dioxane Analyses	5

1. Data Quality Review

Data quality reviews were performed on the data collected as part of the groundwater monitoring program in 2020. During the Spring and Fall 2020 sampling events, samples were collected and analyzed for VOCs and 1,4-dioxane by United States Environmental Protection Agency (USEPA) SW-846 Methods 8260C and 8270D selected-ion monitoring (SIM), respectively, as shown in Tables 4-1 and 4-2, respectively. Analyses were performed by Eurofins Lancaster Laboratories Environmental, LLC (ELLE) of Lancaster, Pennsylvania. Additional sampling was performed during the both the Spring and Fall 2020 sampling events in conjunction with supplemental groundwater sampling at select monitoring wells and multi-level monitoring well ports at the request of USEPA under the RI/FS Work Plan. The results of the supplemental groundwater sampling performed at the request of USEPA will be discussed in the revised SCSR Addendum and are not included in the discussion below.

Results of the data quality review performed on the groundwater samples collected during the Spring and Fall 2020 sampling events are provided in Sections 1.1 and 1.2, respectively. The VOC and 1,4-dioxane analytical data from the Spring and Fall 2020 sampling events are summarized in a detects-only tabular format in Tables 4-5 through 4-8. The analytical result forms for both the Spring and Fall 2020 sampling events are presented in Appendix E.

The purpose of the data quality review is to provide an assessment regarding data quality. The laboratory reports were reviewed and the following quality assurance/quality control (QA/QC) parameters were assessed:

- Case narrative
- Chain-of-custody record
- · Sample preservation
- Sample holding time
- Method blanks
- Surrogate spike recoveries
- · Laboratory control sample (LCS) recoveries

- Matrix spike/matrix spike duplicate (MS/MSD) results
- Blind field duplicate sample precision
- Reported practical quantitation limits (PQLs)
- Trip blank sample results
- Document completeness.

During the review, data were assessed to verify that the measurement was conducted in accordance with the quality assurance criteria specified for that measurement. Data usability was established as a result of the data quality review using the following data qualifiers:

"J" Indicates that the detected concentration should be considered an estimated value. The decision to add the "J" qualifier is based on the quantitative criteria contained in data validation guidelines. The identity of the analyte is not brought into question. However, the "J" qualifier results in a loss of confidence in the accuracy of the detected concentration, and, therefore is presented as an estimated value. The "J" qualifier is also applied to concentrations detected above the method detection limit, but below the PQL.

Overall Data Assessment

For the Spring and Fall 2020 sampling events, 100 percent (%) of the data were determined to be usable for qualitative and quantitative purposes based on the data quality review. Less than 0.5% of the data collected as part of the Spring and Fall 2020 sampling events were qualified, as discussed in Sections 1.1 and 1.2, respectively.

1.1 Spring 2020 Sample Results

1.1.1 Volatile Organic Analyses

The samples analyzed for VOCs during the Spring 2020 sampling event are shown in Table 4-1. While the majority of the samples were analyzed by ELLE, a subset of the samples were analyzed by Eurofins TestAmerica, Inc. (TestAmerica) of Edison, New Jersey due to analytical instrument malfunctions and the subsequent reduction in analysis capacity at ELLE. The samples analyzed by TestAmerica included three samples collected from multi-level monitoring well EPA-2 (EPA-2A, EPA-2B and EPA-2C), two samples collected from multi-level monitoring well EPA-3 (EPA-3B and EPA-3C), and the trip blanks shipped with samples collected on June 18, 2020 and June 23, 2020. The PQLs reported by TestAmerica were consistent with or lower than those reported by ELLE.

The following QA/QC parameters for VOCs were found to meet QC criteria or if not, did not result in qualification of the data in the Spring 2020 sampling event: case narrative; chain-of-custody records; sample preservation; method blanks; surrogate spike recoveries; LCS recoveries; MS/MSD results; blind field duplicate sample precision; reported PQLs; trip blank results; and, document completeness. Field QA/QC sample result details, as well as excursions that resulted in qualification of the data, are summarized below.

Blind Field Duplicate Results

During the Spring 2020 sampling event, blind duplicate sample DUP-001-06162020 was collected from

monitoring well OMW-201. The detected analytes had relative percent difference (RPD) values below the QC criteria of 50%.

MS/MSD Results

During the Spring 2020 sampling event, MS/MSD sample pairs were collected from two multi-level monitoring well ports sampled at the request of USEPA under the RI/FS Work Plan; MS/MSD sample pairs were not collected from monitoring wells or monitoring well ports sampled under the GWMP. Although some of the percent recoveries in the MS and/or MSD were above the QC limits in one of the two MS/MSD sample pairs, qualification of the parent sample was not necessary and samples collected under the GWMP were unaffected.

Sample Holding Time

The samples collected from multi-level monitoring well ports EPA-1B and EPA-1C were analyzed undiluted and with a 10-fold dilution. Due to laboratory error, the 10-fold dilutions of both samples were analyzed on July 14, 2020, which is 25 days after sample collection and 11 days past the 14-day holding time. As a result of the analyses performed outside the holding time, the results reported from the 10-fold dilution were qualified as estimated (J) as follows:

- cis-1,2-Dichloroethene (cDCE) in multi-level monitoring well EPA-1B at 730 J micrograms per liter (µg/L).
- Trichloroethene (TCE) in multi-level monitoring well port EPA-1B at 440 J μg/L.
- cDCE in multi-level monitoring well port EPA-1C at 870 J μg/L.

1.1.2 1,4-Dioxane Analyses

The samples analyzed for 1,4-dioxane during the Spring 2020 sampling event are shown in Table 4-1. The following QA/QC parameters for 1,4-dioxane were found to meet QC criteria or if not, did not result in qualification of the data during the Spring 2020 sampling event: case narrative; chain-of-custody records; sample preservation; sample holding time; method blanks; surrogate spike recoveries; LCS recoveries; MS/MSD results, blind field duplicate sample precision; reported PQLs and, document completeness. Field QA/QC sample result details are summarized below.

Blind Field Duplicate Results

During the Spring 2020 sampling event, blind duplicate sample DUP-001-06162020 was collected from monitoring well OMW-201. The 1,4-dioxane detections had an RPD value below the QC criteria of 50%.

MS/MSD Results

During the Spring 2020 sampling event, an MS/MSD sample pair was collected from a multi-level monitoring well port sampled at the request of USEPA under the RI/FS Work Plan; an MS/MSD sample pair was not collected from monitoring wells or monitoring well ports sampled under the GWMP. The percent recoveries of 1,4-dioxane in the MS and MSD were below the QC limits and the detected 1,4-dioxane result was qualified as estimated (J) in the original sample due to the potential for the detection to be biased low. Samples collected under the GWMP were unaffected.

Due to the low percent recoveries in the MS and MSD samples and the potential for the 1,4-dioxane result to be biased low, the detected concentration of 1,4-dioxane was qualified as estimated (J) in multi-level monitoring well port EPA-4A.

1.2 Fall 2020 Sample Results

1.2.1 Volatile Organic Analyses

The samples analyzed for VOCs during the Fall 2020 sampling event are shown in Table 4-2. The following QA/QC parameters for VOCs were found to meet QC criteria or if not, did not result in qualification of the data in the Fall 2020 sampling event: chain-of-custody records; sample preservation; sample holding time; method blanks; surrogate spike recoveries; LCS recoveries; MS/MSD results; blind field duplicate sample precision; reported PQLs; trip blank sample results; and, document completeness. Field QA/QC sample result details, as well as excursions that resulted in qualification of the data, are summarized below.

Blind Field Duplicate Results

During the Fall 2020 sampling event, blind duplicate sample DUP-001-11102020 was collected from monitoring well OMW-102 and blind duplicate sample DUP-002-11122020 was collected from monitoring well OMW-202. The detected analytes had RPD values below the QC criteria of 50%.

MS/MSD Results

During the Fall 2020 sampling event, MS/MSD sample pairs were collected from multi-level monitoring well ports EPA-4A and EPA-5A. The percent recoveries and RPD values were within the QC criteria with the following exceptions:

- The cDCE and 1,2-dichloropropane percent recoveries in the EPA-5A MSD sample was above the QC criteria.
- The cyclohexane percent recoveries in the EPA-5A MS and MSD samples were above the QC criteria.

The percent recoveries of cDCE and 1,2-dichloropropane in the EPA-5A MS sample, the associated LCS and the associated LCS duplicate were within the QC criteria; therefore, qualification was not necessary. The percent recoveries of cyclohexane in the LCS and LCS duplicate associated with EPA-5A were within the QC criteria and cyclohexane was not detected in EPA-5A; therefore, qualification was not necessary.

Case Narrative

As discussed in the case narrative of the Fall 2020 data package, one or more continuing calibration verification (CCV) percent recoveries were above the QC criteria in five of the nine CCVs analyzed with project samples. Due to the high CCV percent recoveries, the following detected results were qualified as estimated (J):

- Acetone in multi-level monitoring well port EPA-4A at 1.1 J μg/L.
- Carbon disulfide in monitoring well OMW-214 at 0.53 J μg/L.
- Methylene chloride in multi-level monitoring well port EPA-1A at 0.94 J μg/L.

1.2.2 1,4-Dioxane Analyses

The samples analyzed for 1,4-dioxane during the Fall 2020 sampling event are shown in Table 4-2. The following QA/QC parameters for 1,4-dioxane were found to meet QC criteria or if not, did not result in qualification of the data in the Fall 2020 sampling event: case narrative; chain-of-custody records; sample preservation; sample holding time; method blanks; LCS recoveries; blind field duplicate sample precision; reported PQLs; and, document completeness. Field QA/QC sample result details, as well as excursions that resulted in qualification of the data, are summarized below.

Blind Field Duplicate Results

During the Fall 2020 sampling event, blind duplicate sample DUP-001-11102020 was collected from monitoring well OMW-102. 1,4-Dioxane had an RPD value below the QC criteria of 50%.

MS/MSD Results

During the Fall 2020 sampling event, an MS/MSD sample pair was collected from multi-level monitoring well port EPA-4A. The percent recoveries of 1,4-dioxane were below the QC criteria in the EPA-4A MS and MSD samples; the RPD for 1,4-dioxane was within the QC criteria. Due to the low percent recoveries in the MS and MSD samples and the potential for the 1,4-dioxane result to be biased low, the detected concentration of 1,4-dioxane was qualified as estimated (J) in multi-level monitoring well port EPA-4A.

Surrogate Spike Recoveries

The surrogate spike recoveries of fluoranthene-d10, benzo(a)pyrene-d12 and 1-methylnaphthalene-d10 were within the QC criteria for all project and associated QC samples with the following exceptions:

• The surrogate spike recoveries of fluoranthene-d10 were below the QC criteria in the original, MS and MSD samples collected from multi-level monitoring well port EPA-4A.

Due to the low percent recoveries of fluoranthene-d10 in the original samples collected from multi-level monitoring well port EPA-4A, the detected concentration of 1,4-dioxane in EPA-4A was qualified as estimated (J).

APPENDIX E 2020 GROUNDWATER SAMPLING LABORATORY RESULT FORMS

APPENDIX E.1 SPRING 2020 LABORATORY RESULT FORMS

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-102-06162020 Lab Sample ID: 410-4736-1

Date Collected: 06/16/20 11:40 Matrix: Groundwater

Date Received: 06/17/20 10:32

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Ethylbenzene	ND -	2.0	0.80	ug/L			06/29/20 17:59	
Styrene	ND	10	0.40	ug/L			06/29/20 17:59	
cis-1,3-Dichloropropene	ND	2.0	0.40	ug/L			06/29/20 17:59	
trans-1,3-Dichloropropene	ND	2.0	0.40	ug/L			06/29/20 17:59	
1,4-Dichlorobenzene	ND	10	0.40	ug/L			06/29/20 17:59	
1,2-Dibromoethane	ND	2.0	0.40	ug/L			06/29/20 17:59	
1,2-Dichloroethane	ND	2.0	0.60	ug/L			06/29/20 17:59	
4-Methyl-2-pentanone	ND	20		ug/L			06/29/20 17:59	
Methylcyclohexane	ND	10		ug/L			06/29/20 17:59	
Foluene	ND	2.0		ug/L			06/29/20 17:59	
Chlorobenzene	13	2.0		ug/L			06/29/20 17:59	
Cyclohexane	ND	10		ug/L			06/29/20 17:59	
1,2,4-Trichlorobenzene	ND	10		ug/L			06/29/20 17:59	
Dibromochloromethane	ND	2.0		ug/L			06/29/20 17:59	
Tetrachloroethene	ND	2.0		ug/L			06/29/20 17:59	
cis-1.2-Dichloroethene	ND	2.0		ug/L			06/29/20 17:59	
rans-1,2-Dichloroethene	ND	10		ug/L			06/29/20 17:59	
Methyl tertiary butyl ether	ND	2.0		ug/L			06/29/20 17:59	
1,3-Dichlorobenzene	ND	10		ug/L			06/29/20 17:59	
Carbon tetrachloride	ND	2.0		ug/L			06/29/20 17:59	
	ND	2.0		ug/L ug/L			06/29/20 17:59	
2-Hexanone	ND	40		_			06/29/20 17:59	
Acetone				ug/L				
Chloroform	ND	2.0		ug/L			06/29/20 17:59	
1,1,1-Trichloroethane	ND	2.0		ug/L			06/29/20 17:59	
Bromomethane	ND	2.0		ug/L			06/29/20 17:59	
Chloromethane	ND	2.0		ug/L			06/29/20 17:59	
Bromochloromethane	ND	10		ug/L			06/29/20 17:59	
Chloroethane	1.1 J	2.0		ug/L			06/29/20 17:59	
Vinyl chloride	ND	2.0		ug/L			06/29/20 17:59	
Methylene Chloride	ND	2.0		ug/L			06/29/20 17:59	
Carbon disulfide	ND	10		ug/L			06/29/20 17:59	
Bromoform	ND	8.0		ug/L			06/29/20 17:59	
Bromodichloromethane	ND	2.0		ug/L			06/29/20 17:59	
1,1-Dichloroethane	ND	2.0	0.40	ug/L			06/29/20 17:59	
1,1-Dichloroethene	ND	2.0	0.40	ug/L			06/29/20 17:59	
Trichlorofluoromethane	ND	2.0	0.40	ug/L			06/29/20 17:59	
Dichlorodifluoromethane	ND	2.0	0.40	ug/L			06/29/20 17:59	
Freon 113	ND	20	0.40	ug/L			06/29/20 17:59	
1,2-Dichloropropane	ND	2.0	0.40	ug/L			06/29/20 17:59	
2-Butanone	ND	20	0.60	ug/L			06/29/20 17:59	
1,1,2-Trichloroethane	ND	2.0	0.40	ug/L			06/29/20 17:59	
Trichloroethene	ND	2.0	0.40	ug/L			06/29/20 17:59	
Methyl acetate	ND	10		ug/L			06/29/20 17:59	
1,1,2,2-Tetrachloroethane	ND	2.0		ug/L			06/29/20 17:59	
1,2,3-Trichlorobenzene	ND	10		ug/L			06/29/20 17:59	
o-Xylene	ND	2.0		ug/L			06/29/20 17:59	
1,2-Dichlorobenzene	ND	10		ug/L			06/29/20 17:59	
1,2-Dibromo-3-Chloropropane	ND	10		ug/L			06/29/20 17:59	
Isopropylbenzene	ND	10		ug/L			06/29/20 17:59	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-102-06162020 Lab Sample ID: 410-4736-1

Date Collected: 06/16/20 11:40 Matrix: Groundwater
Date Received: 06/17/20 10:32

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Method. 6260C - Volatile Org		-	`	,		_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m&p-Xylene	ND		10	2.0	ug/L			06/29/20 17:59	2
_									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120			-		06/29/20 17:59	2
4-Bromofluorobenzene (Surr)	93		80 - 120					06/29/20 17:59	2
Dibromofluoromethane (Surr)	91		80 - 120					06/29/20 17:59	2
Toluene-d8 (Surr)	98		80 - 120					06/29/20 17:59	2

Method: 8260C - Volatile O Analyte	•	unds by G Qualifier	C/MS - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	930		20	4.0	ug/L			06/29/20 18:22	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		80 - 120					06/29/20 18:22	20
4-Bromofluorobenzene (Surr)	92		80 - 120					06/29/20 18:22	20
Dibromofluoromethane (Surr)	91		80 - 120					06/29/20 18:22	20
Toluene-d8 (Surr)	98		80 - 120					06/29/20 18:22	20

Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	21		1.7	0.56	ug/L		06/21/20 12:00	06/23/20 00:39	5
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	49		10 - 138				06/21/20 12:00	06/23/20 00:39	5
1-Methylnaphthalene-d10 (Surr)	64		15 - 121				06/21/20 12:00	06/23/20 00:39	5
Fluoranthene-d10 (Surr)	75		34 - 125				06/21/20 12:00	06/23/20 00:39	5

Client Sample ID: MW-B-OMW-201-06162020 Lab Sample ID: 410-4736-2

Date Collected: 06/16/20 13:00 Matrix: Groundwater
Date Received: 06/17/20 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	290		20	8.0	ug/L			06/29/20 18:45	20
Styrene	ND		100	4.0	ug/L			06/29/20 18:45	20
cis-1,3-Dichloropropene	ND		20	4.0	ug/L			06/29/20 18:45	20
trans-1,3-Dichloropropene	ND		20	4.0	ug/L			06/29/20 18:45	20
1,4-Dichlorobenzene	22	J	100	4.0	ug/L			06/29/20 18:45	20
1,2-Dibromoethane	ND		20	4.0	ug/L			06/29/20 18:45	20
1,2-Dichloroethane	ND		20	6.0	ug/L			06/29/20 18:45	20
4-Methyl-2-pentanone	ND		200	10	ug/L			06/29/20 18:45	20
Methylcyclohexane	ND		100	10	ug/L			06/29/20 18:45	20
Toluene	770		20	4.0	ug/L			06/29/20 18:45	20
Chlorobenzene	3400		20	4.0	ug/L			06/29/20 18:45	20
Cyclohexane	ND		100	20	ug/L			06/29/20 18:45	20
1,2,4-Trichlorobenzene	ND		100	6.0	ug/L			06/29/20 18:45	20
Dibromochloromethane	ND		20	4.0	ug/L			06/29/20 18:45	20
Tetrachloroethene	ND		20	4.0	ug/L			06/29/20 18:45	20
cis-1,2-Dichloroethene	ND		20	4.0	ug/L			06/29/20 18:45	20
trans-1,2-Dichloroethene	8.6	J	100	4.0	ug/L			06/29/20 18:45	20
Methyl tertiary butyl ether	ND		20	4.0	ug/L			06/29/20 18:45	20

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-201-06162020 Lab Sample ID: 410-4736-2

Date Collected: 06/16/20 13:00 Matrix: Groundwater

Date Received: 06/17/20 10:32

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,3-Dichlorobenzene	ND		100	4.0	ug/L			06/29/20 18:45	20
Carbon tetrachloride	ND		20	4.0	ug/L			06/29/20 18:45	20
2-Hexanone	ND		200	6.0	ug/L			06/29/20 18:45	20
Acetone	ND		400	14	ug/L			06/29/20 18:45	20
Chloroform	ND		20	4.0	ug/L			06/29/20 18:45	20
1,1,1-Trichloroethane	ND		20	6.0	ug/L			06/29/20 18:45	20
Bromomethane	ND		20	6.0	ug/L			06/29/20 18:45	20
Chloromethane	ND		20	4.0	ug/L			06/29/20 18:45	20
Bromochloromethane	ND		100	4.0	ug/L			06/29/20 18:45	20
Chloroethane	49		20	4.0	ug/L			06/29/20 18:45	20
Vinyl chloride	ND		20	4.0	ug/L			06/29/20 18:45	20
Methylene Chloride	ND		20	6.0	ug/L			06/29/20 18:45	20
Carbon disulfide	ND		100	4.0	ug/L			06/29/20 18:45	20
Bromoform	ND		80		ug/L			06/29/20 18:45	20
Bromodichloromethane	ND		20		ug/L			06/29/20 18:45	20
1,1-Dichloroethane	ND		20		ug/L			06/29/20 18:45	20
1,1-Dichloroethene	ND		20		ug/L			06/29/20 18:45	20
Trichlorofluoromethane	ND		20		ug/L			06/29/20 18:45	20
Dichlorodifluoromethane	ND		20		ug/L			06/29/20 18:45	20
Freon 113	ND		200		ug/L			06/29/20 18:45	20
1,2-Dichloropropane	ND		20		ug/L			06/29/20 18:45	20
2-Butanone	ND		200		ug/L			06/29/20 18:45	20
1,1,2-Trichloroethane	ND		20		ug/L			06/29/20 18:45	20
Trichloroethene	ND		20		ug/L			06/29/20 18:45	20
Methyl acetate	ND		100		ug/L			06/29/20 18:45	20
1,1,2,2-Tetrachloroethane	ND		20		ug/L			06/29/20 18:45	20
1,2,3-Trichlorobenzene	ND		100		ug/L			06/29/20 18:45	20
o-Xylene	220		20		ug/L			06/29/20 18:45	20
1,2-Dichlorobenzene	ND.		100		ug/L			06/29/20 18:45	20
1,2-Dibromo-3-Chloropropane	ND		100		ug/L			06/29/20 18:45	20
Isopropylbenzene	ND		100		ug/L			06/29/20 18:45	20
m&p-Xylene	990		100		ug/L			06/29/20 18:45	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96	Qualifier	80 - 120			-	rrepared	06/29/20 18:45	2
4-Bromofluorobenzene (Surr)	93		80 - 120					06/29/20 18:45	2
Dibromofluoromethane (Surr)	91		80 - 120					06/29/20 18:45	2
Toluene-d8 (Surr)	99		80 - 120					06/29/20 18:45	20
								00/29/20 10.43	21
Method: 8260C - Volatile On Analyte		unds by G Qualifier	C/MS - DL RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	14000		200		ug/L			06/29/20 19:07	200
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	96		80 - 120			-	<u> </u>	06/29/20 19:07	20
4-Bromofluorobenzene (Surr)	92		80 - 120					06/29/20 19:07	20
Dibromofluoromethane (Surr)	92		80 - 120					06/29/20 19:07	20
Toluene-d8 (Surr)	98		80 - 120					06/29/20 19:07	20

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-201-06162020 Lab Sample ID: 410-4736-2

Date Collected: 06/16/20 13:00 Matrix: Groundwater

Date Received: 06/17/20 10:32

Method: 8270D SIM - Semive	olatile Organi	c Compou	inds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	700		30	10	ug/L		06/21/20 12:00	06/23/20 01:10	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	62		10 - 138				06/21/20 12:00	06/23/20 01:10	100
1-Methylnaphthalene-d10 (Surr)	101		15 - 121				06/21/20 12:00	06/23/20 01:10	100
Fluoranthene-d10 (Surr)	90		34 - 125				06/21/20 12:00	06/23/20 01:10	100

Client Sample ID: MW-B-EPA-4A-06162020 Lab Sample ID: 410-4736-3

Date Collected: 06/16/20 14:00 Matrix: Groundwater

Date Received: 06/17/20 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	F1	1.0	0.40	ug/L			06/29/20 12:19	1
Styrene	ND	F1	5.0	0.20	ug/L			06/29/20 12:19	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			06/29/20 12:19	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			06/29/20 12:19	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			06/29/20 12:19	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			06/29/20 12:19	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L		. /	06/29/20 12:19	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			06/29/20 12:19	1
Methylcyclohexane	ND	F1	5.0	0.50	ug/L			06/29/20 12:19	1
Toluene	ND	F1	1.0	0.20	ug/L	/		06/29/20 12:19	1
Chlorobenzene	ND	F1	1.0	0.20	ug/L			06/29/20 12:19	1
Cyclohexane	ND	F1	5.0	1.0	ug/L			06/29/20 12:19	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			06/29/20 12:19	1
Dibromochloromethane	ND		1.0		ug/L			06/29/20 12:19	1
Tetrachloroethene	ND	F1	1.0	0.20	ug/L			06/29/20 12:19	1
cis-1,2-Dichloroethene	ND	F1	1.0	0.20	ug/L			06/29/20 12:19	1
trans-1,2-Dichloroethene	ND	F1	5.0	0.20				06/29/20 12:19	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			06/29/20 12:19	1
1,3-Dichlorobenzene	ND		5.0	0.20				06/29/20 12:19	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			06/29/20 12:19	1
2-Hexanone	ND		10	0.30				06/29/20 12:19	1
Acetone	ND	/	20	0.70				06/29/20 12:19	1
Chloroform	ND		1.0	0.20	ug/L			06/29/20 12:19	1
Benzene	ND	F1	1.0	0.20	ug/L			06/29/20 12:19	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			06/29/20 12:19	1
Bromomethane	ND		1.0	0.30	ug/L			06/29/20 12:19	1
Chloromethane	ND		1.0	0.20	ug/L			06/29/20 12:19	1
Bromochloromethane /	ND		5.0	0.20	ug/L			06/29/20 12:19	1
Chloroethane	ND		1.0	0.20	ug/L			06/29/20 12:19	1
Vinyl chloride	ND		1.0	0.20	_			06/29/20 12:19	1
Methylene Chloride	ND	F1	1.0	0.30	-			06/29/20 12:19	1
Carbon disulfide	ND	F1	5.0	0.20	-			06/29/20 12:19	1
Bromoform	ND		4.0		ug/L			06/29/20 12:19	1
Bromodichloromethane	ND		1.0	0.20	-			06/29/20 12:19	1
1,1-Dichloroethane	ND	F1	1.0	0.20	-			06/29/20 12:19	1
1,1-Dichloroethene	ND	F1	1.0	0.20	-			06/29/20 12:19	1
Trichlorofluoromethane	ND		1.0	0.20	-			06/29/20 12:19	1

SET 2/8/2021

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-4B-06162020 Lab Sample ID: 410-4736-4

Date Collected: 06/16/20 14:05 **Matrix: Groundwater**

Date Received: 06/17/20 10:32

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

%Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac Fluoranthene-d10 (Surr) 75 34 - 125 06/21/20 12:00 06/22/20 15:46

Client Sample ID: MW-B-OMW-205-06162020

Lab Sample ID: 410-4736-5

Date Collected: 06/16/20 14:52 **Matrix: Groundwater** Date Received: 06/17/20 10:32

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.40	ug/L			06/29/20 14:13	1
Styrene	ND		5.0	0.20	ug/L			06/29/20 14:13	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			06/29/20 14:13	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			06/29/20 14:13	1
1,4-Dichlorobenzene	0.38	J	5.0	0.20	ug/L			06/29/20 14:13	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L			06/29/20 14:13	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			06/29/20 14:13	1
Methylcyclohexane	ND		5.0	0.50	ug/L			06/29/20 14:13	1
Toluene	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Chlorobenzene	51		1.0	0.20	ug/L			06/29/20 14:13	1
Cyclohexane	ND		5.0	1.0	ug/L			06/29/20 14:13	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			06/29/20 14:13	1
Dibromochloromethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Tetrachloroethene	ND		1.0	0.20	ug/L			06/29/20 14:13	1
cis-1,2-Dichloroethene	3.2		1.0	0.20	ug/L			06/29/20 14:13	1
trans-1,2-Dichloroethene	ND		5.0	0.20	ug/L			06/29/20 14:13	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			06/29/20 14:13	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			06/29/20 14:13	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			06/29/20 14:13	1
2-Hexanone	ND		10	0.30	ug/L			06/29/20 14:13	1
Acetone	ND		20	0.70	ug/L			06/29/20 14:13	1
Chloroform	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Benzene	0.70	J	1.0	0.20	ug/L			06/29/20 14:13	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			06/29/20 14:13	1
Bromomethane	ND		1.0	0.30	ug/L			06/29/20 14:13	1
Chloromethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Bromochloromethane	ND		5.0	0.20	ug/L			06/29/20 14:13	1
Chloroethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Vinyl chloride	0.49	J	1.0	0.20	ug/L			06/29/20 14:13	1
Methylene Chloride	ND		1.0	0.30	ug/L			06/29/20 14:13	1
Carbon disulfide	ND		5.0	0.20	ug/L			06/29/20 14:13	1
Bromoform	ND		4.0	1.0	ug/L			06/29/20 14:13	1
Bromodichloromethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
1,1-Dichloroethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Freon 113	ND		10	0.20	ug/L			06/29/20 14:13	1
1,2-Dichloropropane	ND		1.0		ug/L			06/29/20 14:13	1
2-Butanone	ND		10		ug/L			06/29/20 14:13	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-205-06162020 Lab Sample ID: 410-4736-5

Date Collected: 06/16/20 14:52 Matrix: Groundwater

Date Received: 06/17/20 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
Trichloroethene	0.46	J	1.0	0.20	ug/L			06/29/20 14:13	1
Methyl acetate	ND		5.0	0.30	ug/L			06/29/20 14:13	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			06/29/20 14:13	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			06/29/20 14:13	1
o-Xylene	ND		1.0	0.40	ug/L			06/29/20 14:13	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			06/29/20 14:13	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			06/29/20 14:13	1
Isopropylbenzene	ND		5.0	0.20	ug/L			06/29/20 14:13	1
m&p-Xylene	ND		5.0	1.0	ug/L			06/29/20 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120			-		06/29/20 14:13	1
4-Bromofluorobenzene (Surr)	92		80 - 120					06/29/20 14:13	1
Dibromofluoromethane (Surr)	92		80 - 120					06/29/20 14:13	1
Toluene-d8 (Surr)	98		80 - 120					06/29/20 14:13	1
Method: 8270D SIM - Semi	volatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

	1,4-Dioxane	2.6	0.31	0.10 ug/L	06/21/20 12:00	06/22/20 16:17	1
	Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
	Benzo(a)pyrene-d12 (Surr)	60	10 - 138		06/21/20 12:00	06/22/20 16:17	1
ı	1-Methylnaphthalene-d10 (Surr)	76	15 - 121		06/21/20 12:00	06/22/20 16:17	1
	Fluoranthene-d10 (Surr)	93	34 - 125		06/21/20 12:00	06/22/20 16:17	1

Client Sample ID: DUP-001-06162020 (blind dup of OMW-201) Lab Sample ID: 410-4736-6

Date Collected: 06/16/20 00:00 Date Received: 06/17/20 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	250		20	8.0	ug/L			06/30/20 04:22	20
Styrene	6.8	J	100	4.0	ug/L			06/30/20 04:22	20
cis-1,3-Dichloropropene	ND		20	4.0	ug/L			06/30/20 04:22	20
trans-1,3-Dichloropropene	ND		20	4.0	ug/L			06/30/20 04:22	20
1,4-Dichlorobenzene	20	J	100	4.0	ug/L			06/30/20 04:22	20
1,2-Dibromoethane	ND		20	4.0	ug/L			06/30/20 04:22	20
1,2-Dichloroethane	ND		20	6.0	ug/L			06/30/20 04:22	20
4-Methyl-2-pentanone	ND		200	10	ug/L			06/30/20 04:22	20
Methylcyclohexane	ND		100	10	ug/L			06/30/20 04:22	20
Toluene	730		20	4.0	ug/L			06/30/20 04:22	20
Chlorobenzene	3100		20	4.0	ug/L			06/30/20 04:22	20
Cyclohexane	ND		100	20	ug/L			06/30/20 04:22	20
1,2,4-Trichlorobenzene	ND		100	6.0	ug/L			06/30/20 04:22	20
Dibromochloromethane	ND		20	4.0	ug/L			06/30/20 04:22	20
Tetrachloroethene	ND		20	4.0	ug/L			06/30/20 04:22	20
cis-1,2-Dichloroethene	ND		20	4.0	ug/L			06/30/20 04:22	20
trans-1,2-Dichloroethene	8.0	J	100	4.0	ug/L			06/30/20 04:22	20
Methyl tertiary butyl ether	ND		20	4.0	ug/L			06/30/20 04:22	20
1,3-Dichlorobenzene	ND		100	4.0	ug/L			06/30/20 04:22	20

AMSS 8/26/2020

Eurofins Lancaster Laboratories Env, LLC

Job ID: 410-4736-1

Matrix: Groundwater

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: DUP-001-06162020 (blind dup of OMW-201) Lab Sample ID: 410-4736-6

Date Collected: 06/16/20 00:00 Matrix: Groundwater

Date Received: 06/17/20 10:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon tetrachloride	ND		20	4.0	ug/L			06/30/20 04:22	2
2-Hexanone	ND		200	6.0	ug/L			06/30/20 04:22	2
Acetone	ND		400	14	ug/L			06/30/20 04:22	2
Chloroform	ND		20	4.0	ug/L			06/30/20 04:22	2
1,1,1-Trichloroethane	ND		20	6.0	ug/L			06/30/20 04:22	2
Bromomethane	ND		20	6.0	ug/L			06/30/20 04:22	2
Chloromethane	ND		20	4.0	ug/L			06/30/20 04:22	2
Bromochloromethane	ND		100	4.0	ug/L			06/30/20 04:22	2
Chloroethane	48		20	4.0	ug/L			06/30/20 04:22	2
Vinyl chloride	ND		20	4.0	ug/L			06/30/20 04:22	2
Methylene Chloride	ND		20	6.0	ug/L			06/30/20 04:22	2
Carbon disulfide	ND		100	4.0	ug/L			06/30/20 04:22	2
Bromoform	ND		80	20	ug/L			06/30/20 04:22	2
Bromodichloromethane	ND		20	4.0	ug/L			06/30/20 04:22	2
1,1-Dichloroethane	ND		20	4.0	ug/L			06/30/20 04:22	2
1,1-Dichloroethene	ND		20		ug/L			06/30/20 04:22	2
Trichlorofluoromethane	ND		20	4.0	ug/L			06/30/20 04:22	2
Dichlorodifluoromethane	ND		20	4.0	ug/L			06/30/20 04:22	2
Freon 113	ND		200	4.0	ug/L			06/30/20 04:22	2
1,2-Dichloropropane	ND		20	4.0	ug/L			06/30/20 04:22	2
2-Butanone	ND		200	6.0	ug/L			06/30/20 04:22	2
1,1,2-Trichloroethane	ND		20	4.0	ug/L			06/30/20 04:22	2
Trichloroethene	ND		20	4.0	ug/L			06/30/20 04:22	2
Methyl acetate	ND		100	6.0	ug/L			06/30/20 04:22	2
1,1,2,2-Tetrachloroethane	ND		20	4.0	ug/L			06/30/20 04:22	2
1,2,3-Trichlorobenzene	ND		100	8.0	ug/L			06/30/20 04:22	2
o-Xylene	190		20	8.0	ug/L			06/30/20 04:22	2
1,2-Dichlorobenzene	ND		100	4.0	ug/L			06/30/20 04:22	2
1,2-Dibromo-3-Chloropropane	ND		100	6.0	ug/L			06/30/20 04:22	2
Isopropylbenzene	ND		100		ug/L			06/30/20 04:22	2
m&p-Xylene	890		100		ug/L			06/30/20 04:22	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		80 - 120					06/30/20 04:22	2
4-Bromofluorobenzene (Surr)	100		80 - 120					06/30/20 04:22	2
Dibromofluoromethane (Surr)	109		80 - 120					06/30/20 04:22	2
Toluene-d8 (Surr)	98		80 - 120					06/30/20 04:22	2
Method: 8260C - Volatile O	rganic Compo	unde by G	C/MS - DI						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	12000		200	40	ug/L			06/30/20 04:44	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		80 - 120			=		06/30/20 04:44	20
4-Bromofluorobenzene (Surr)	98		80 - 120					06/30/20 04:44	20
Dibromofluoromethane (Surr)	109		80 - 120					06/30/20 04:44	20
Toluene-d8 (Surr)	99		80 - 120					06/30/20 04:44	20

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: DUP-001-06162020 (blind dup of OMW-201) Lab Sample ID: 410-4736-6

Date Collected: 06/16/20 00:00 Matrix: Groundwater

Date Received: 06/17/20 10:32

Method: 8270D SIM - Semivo	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	650		31	10	ug/L		06/21/20 12:00	06/23/20 01:40	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	61		10 - 138				06/21/20 12:00	06/23/20 01:40	100
1-Methylnaphthalene-d10 (Surr)	92		15 - 121				06/21/20 12:00	06/23/20 01:40	100

Client Sample ID: GW-06162020-TB

Date Collected: 06/16/20 00:00

Lab Sample ID: 410-4736-7

Matrix: Water

Date Collected: 06/16/20 00:00
Date Received: 06/17/20 10:32

Method: 8260C - Volatile Or Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			06/29/20 11:57	1
Styrene	ND	5.0	0.20	ug/L			06/29/20 11:57	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			06/29/20 11:57	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			06/29/20 11:57	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			06/29/20 11:57	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			06/29/20 11:57	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			06/29/20 11:57	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			06/29/20 11:57	1
Methylcyclohexane	ND	5.0	0.50	ug/L			06/29/20 11:57	1
Toluene	ND	1.0	0.20	ug/L			06/29/20 11:57	1
Chlorobenzene	ND	1.0	0.20	ug/L			06/29/20 11:57	1
Cyclohexane	ND	5.0	1.0	ug/L			06/29/20 11:57	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			06/29/20 11:57	1
Dibromochloromethane	ND	1.0	0.20	ug/L			06/29/20 11:57	1
Tetrachloroethene	ND	1.0	0.20	ug/L			06/29/20 11:57	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			06/29/20 11:57	1
trans-1,2-Dichloroethene	ND	5.0	0.20	ug/L			06/29/20 11:57	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			06/29/20 11:57	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			06/29/20 11:57	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			06/29/20 11:57	1
2-Hexanone	ND	10	0.30	ug/L			06/29/20 11:57	1
Acetone	ND	20	0.70	ug/L			06/29/20 11:57	1
Chloroform	ND	1.0	0.20	ug/L			06/29/20 11:57	1
Benzene	ND	1.0	0.20	ug/L			06/29/20 11:57	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			06/29/20 11:57	1
Bromomethane	ND	1.0	0.30	ug/L			06/29/20 11:57	1
Chloromethane	ND	1.0	0.20	ug/L			06/29/20 11:57	1
Bromochloromethane	ND	5.0	0.20	ug/L			06/29/20 11:57	1
Chloroethane	ND	1.0	0.20	ug/L			06/29/20 11:57	1
Vinyl chloride	ND	1.0	0.20	ug/L			06/29/20 11:57	1
Methylene Chloride	ND	1.0	0.30	ug/L			06/29/20 11:57	1
Carbon disulfide	ND	5.0	0.20	ug/L			06/29/20 11:57	1
Bromoform	ND	4.0	1.0	ug/L			06/29/20 11:57	1
Bromodichloromethane	ND	1.0	0.20	ug/L			06/29/20 11:57	1
1,1-Dichloroethane	ND	1.0		ug/L			06/29/20 11:57	1
1,1-Dichloroethene	ND	1.0	0.20	_			06/29/20 11:57	1
Trichlorofluoromethane	ND	1.0		ug/L			06/29/20 11:57	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: GW-06162020-TB Lab Sample ID: 410-4736-7

Date Collected: 06/16/20 00:00 Date Received: 06/17/20 10:32

Matrix: Water

Job ID: 410-4736-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			06/29/20 11:57	1
Freon 113	ND		10	0.20	ug/L			06/29/20 11:57	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			06/29/20 11:57	1
2-Butanone	ND		10	0.30	ug/L			06/29/20 11:57	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			06/29/20 11:57	1
Trichloroethene	ND		1.0	0.20	ug/L			06/29/20 11:57	1
Methyl acetate	ND		5.0	0.30	ug/L			06/29/20 11:57	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			06/29/20 11:57	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			06/29/20 11:57	1
o-Xylene	ND		1.0	0.40	ug/L			06/29/20 11:57	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			06/29/20 11:57	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			06/29/20 11:57	1
Isopropylbenzene	ND		5.0	0.20	ug/L			06/29/20 11:57	1
m&p-Xylene	ND		5.0	1.0	ug/L			06/29/20 11:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		80 - 120			-		06/29/20 11:57	1
4-Bromofluorobenzene (Surr)	92		80 - 120					06/29/20 11:57	1
Dibromofluoromethane (Surr)	92		80 - 120					06/29/20 11:57	1
Toluene-d8 (Surr)	98		80 - 120					06/29/20 11:57	1

Client Sample ID: MW-B-OMW-219-06172020

Date Collected: 06/17/20 10:50 Date Received: 06/18/20 10:27

Lab Sample ID: 410-4880-1

Matrix: Groundwater

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	1.5		1.0	0.40	ug/L			07/01/20 06:15	1
Styrene	ND		5.0	0.20	ug/L			07/01/20 06:15	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			07/01/20 06:15	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			07/01/20 06:15	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			07/01/20 06:15	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L			07/01/20 06:15	1
4-Methyl-2-pentanone	3.2	J	10	0.50	ug/L			07/01/20 06:15	1
Methylcyclohexane	ND		5.0	0.50	ug/L			07/01/20 06:15	1
Toluene	160		1.0	0.20	ug/L			07/01/20 06:15	1
Chlorobenzene	23		1.0	0.20	ug/L			07/01/20 06:15	1
Cyclohexane	ND		5.0	1.0	ug/L			07/01/20 06:15	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			07/01/20 06:15	1
Dibromochloromethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
Tetrachloroethene	ND		1.0	0.20	ug/L			07/01/20 06:15	1
cis-1,2-Dichloroethene	2.1		1.0	0.20	ug/L			07/01/20 06:15	1
trans-1,2-Dichloroethene	ND		5.0	0.20	ug/L			07/01/20 06:15	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			07/01/20 06:15	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			07/01/20 06:15	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			07/01/20 06:15	1
2-Hexanone	ND		10	0.30	ug/L			07/01/20 06:15	1
Acetone	40		20	0.70	ug/L			07/01/20 06:15	1
Chloroform	ND		1.0	0.20	ug/L			07/01/20 06:15	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

Client Sample ID: MW-B-OMW-219-06172020 Lab Sample ID: 410-4880-1

Date Collected: 06/17/20 10:50 Matrix: Groundwater

RL

1.0

1.0

1.0

MDL Unit

0.30 ug/L

0.30 ug/L

0.20 ug/L

D

Prepared

Date Received: 06/18/20 10:27

Date Collected: 06/17/20 10:51

Date Received: 06/18/20 10:27

Analyte

Ethylbenzene

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

Analyte

1,1,1-Trichloroethane

Bromomethane

Chloromethane

00.00					0				
Bromochloromethane	ND		5.0	0.20	ug/L			07/01/20 06:15	1
Chloroethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
Vinyl chloride	0.44	J	1.0	0.20	ug/L			07/01/20 06:15	
Methylene Chloride	ND		1.0	0.30	ug/L			07/01/20 06:15	
Carbon disulfide	ND		5.0	0.20	ug/L			07/01/20 06:15	1
Bromoform	ND		4.0	1.0	ug/L			07/01/20 06:15	
Bromodichloromethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
1,1-Dichloroethane	1.1		1.0	0.20	ug/L			07/01/20 06:15	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			07/01/20 06:15	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
Freon 113	ND		10	0.20	ug/L			07/01/20 06:15	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
2-Butanone	2.6	J	10	0.30	ug/L			07/01/20 06:15	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
Trichloroethene	1.2		1.0	0.20	ug/L			07/01/20 06:15	1
Methyl acetate	ND		5.0	0.30	ug/L			07/01/20 06:15	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			07/01/20 06:15	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			07/01/20 06:15	1
o-Xylene	1.7		1.0	0.40	ug/L			07/01/20 06:15	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			07/01/20 06:15	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			07/01/20 06:15	1
Isopropylbenzene	ND		5.0	0.20	ug/L			07/01/20 06:15	1
m&p-Xylene	4.1	J	5.0	1.0	ug/L			07/01/20 06:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120					07/01/20 06:15	
4-Bromofluorobenzene (Surr)	101		80 - 120					07/01/20 06:15	1
Dibromofluoromethane (Surr)	99		80 - 120					07/01/20 06:15	1
Toluene-d8 (Surr)	100		80 - 120					07/01/20 06:15	1
Method: 8260C - Volatile O						_			
Analyte -		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	450		10	2.0	ug/L			07/01/20 06:37	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120					07/01/20 06:37	10
4-Bromofluorobenzene (Surr)	99		80 - 120					07/01/20 06:37	10
Dibromofluoromethane (Surr)	99		80 - 120					07/01/20 06:37	10
Toluene-d8 (Surr)	100		80 - 120					07/01/20 06:37	10

Matrix: Groundwater

Dil Fac

Analyzed

07/01/20 04:03

Job ID: 410-4736-1

Dil Fac

1

Analyzed

07/01/20 06:15

07/01/20 06:15

07/01/20 06:15

RL

1.0

MDL Unit

0.40 ug/L

D

Prepared

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-215-06172020 Lab Sample ID: 410-4880-2

Date Collected: 06/17/20 10:51 Matrix: Groundwater

Date Received: 06/18/20 10:27

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Styrene		5.0	0.20	ug/L			07/01/20 04:03	
cis-1,3-Dichloropropene	ND	1.0		ug/L			07/01/20 04:03	
trans-1,3-Dichloropropene	ND	1.0		ug/L			07/01/20 04:03	
1,4-Dichlorobenzene	ND	5.0		ug/L			07/01/20 04:03	
1,2-Dibromoethane	ND	1.0		ug/L			07/01/20 04:03	
1,2-Dichloroethane	ND	1.0		ug/L			07/01/20 04:03	
4-Methyl-2-pentanone	ND	10		ug/L			07/01/20 04:03	
Methylcyclohexane	ND	5.0		ug/L			07/01/20 04:03	
Toluene	3.4	1.0		ug/L			07/01/20 04:03	
Chlorobenzene	1.9	1.0		ug/L			07/01/20 04:03	
Cyclohexane	ND	5.0		ug/L			07/01/20 04:03	
1,2,4-Trichlorobenzene	ND	5.0		ug/L			07/01/20 04:03	
Dibromochloromethane	ND	1.0		ug/L			07/01/20 04:03	
Tetrachloroethene	ND	1.0		ug/L			07/01/20 04:03	
cis-1,2-Dichloroethene	ND	1.0		ug/L			07/01/20 04:03	
rans-1,2-Dichloroethene	ND	5.0		ug/L			07/01/20 04:03	
Methyl tertiary butyl ether	ND	1.0		ug/L			07/01/20 04:03	
1,3-Dichlorobenzene	ND	5.0		ug/L			07/01/20 04:03	
Carbon tetrachloride	ND	1.0		ug/L			07/01/20 04:03	
2-Hexanone	ND	10		ug/L			07/01/20 04:03	
Acetone	ND	20		ug/L			07/01/20 04:03	
Chloroform	ND	1.0		ug/L			07/01/20 04:03	
Benzene	74	1.0		ug/L			07/01/20 04:03	
1,1,1-Trichloroethane	ND	1.0		ug/L			07/01/20 04:03	
Bromomethane	ND	1.0		ug/L			07/01/20 04:03	
Chloromethane	ND	1.0		ug/L			07/01/20 04:03	
Bromochloromethane	ND	5.0		ug/L			07/01/20 04:03	
Chloroethane	ND	1.0		ug/L			07/01/20 04:03	
Vinyl chloride	ND	1.0		ug/L			07/01/20 04:03	
Methylene Chloride	ND	1.0		ug/L			07/01/20 04:03	
Carbon disulfide	ND	5.0		ug/L			07/01/20 04:03	
Bromoform	ND	4.0		ug/L			07/01/20 04:03	
Bromodichloromethane	ND	1.0		ug/L			07/01/20 04:03	
1.1-Dichloroethane	0.21 J	1.0		ug/L			07/01/20 04:03	
1,1-Dichloroethene	ND	1.0		ug/L			07/01/20 04:03	
Trichlorofluoromethane	ND	1.0		ug/L			07/01/20 04:03	
Dichlorodifluoromethane	ND	1.0		ug/L			07/01/20 04:03	
Freon 113	ND	10		ug/L			07/01/20 04:03	
1,2-Dichloropropane	ND	1.0		ug/L			07/01/20 04:03	
2-Butanone	ND	10		ug/L			07/01/20 04:03	
1,1,2-Trichloroethane	ND	1.0		ug/L			07/01/20 04:03	
Trichloroethene	ND	1.0		ug/L			07/01/20 04:03	
Methyl acetate	ND	5.0		ug/L ug/L			07/01/20 04:03	
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L ug/L			07/01/20 04:03	
1, 1, 2, 3-Trichlorobenzene	ND	5.0		ug/L ug/L			07/01/20 04:03	
	ND ND	1.0		ug/L ug/L			07/01/20 04:03	
o-Xylene 1,2-Dichlorobenzene	ND	5.0		_			07/01/20 04:03	
1,2-Dichlorobenzene 1,2-Dibromo-3-Chloropropane				ug/L				
1,2-Dibromo-3-Chioropropane Isopropylbenzene	ND ND	5.0 5.0	0.30	ug/L			07/01/20 04:03 07/01/20 04:03	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-215-06172020 Lab Sample ID: 410-4880-2

Date Collected: 06/17/20 10:51 Matrix: Groundwater

Date Received: 06/18/20 10:27

Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m&p-Xylene	ND		5.0	1.0	ug/L			07/01/20 04:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120					07/01/20 04:03	1
4-Bromofluorobenzene (Surr)	100		80 - 120					07/01/20 04:03	1
Dibromofluoromethane (Surr)	100		80 - 120					07/01/20 04:03	1
Toluene-d8 (Surr)	99		80 - 120					07/01/20 04:03	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Result Qualifier MDL Unit **Analyte** Prepared Analyzed Dil Fac 0.30 1,4-Dioxane 1.7 0.10 ug/L 06/21/20 12:00 06/22/20 18:50 Surrogate Limits Dil Fac %Recovery Qualifier Prepared Analyzed Benzo(a)pyrene-d12 (Surr) 87 10 - 138 06/21/20 12:00 06/22/20 18:50 1-Methylnaphthalene-d10 (Surr) 79 15 - 121 06/21/20 12:00 06/22/20 18:50 Fluoranthene-d10 (Surr) 107 34 - 125 06/21/20 12:00 06/22/20 18:50

Client Sample ID: GW-06172020-EB

Date Collected: 06/17/20 12:50

Lab Sample ID: 410-4880-3

Matrix: Water

Date Collected: 06/17/20 12:50 Date Received: 06/18/20 10:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.40	ug/L			07/01/20 02:57	1
Styrene	ND		5.0	0.20	ug/L			07/01/20 02:57	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			07/01/20 02:57	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			07/01/20 02:57	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			07/01/20 02:57	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			07/01/20 02:57	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L			07/01/20 02:57	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			07/01/20 02:57	1
Methylcyclohexane	ND		5.0	0.50	ug/L			07/01/20 02:57	1
Toluene	ND		1.0	0.20	ug/L			07/01/20 02:57	1
Chlorobenzene	ND		1.0	0.20	ug/L			07/01/20 02:57	1
Cyclohexane	ND		5.0	1.0	ug/L			07/01/20 02:57	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			07/01/20 02:57	1
Dibromochloromethane	ND		1.0	0.20	ug/L			07/01/20 02:57	1
Tetrachloroethene	ND		1.0	0.20	ug/L			07/01/20 02:57	1
cis-1,2-Dichloroethene	ND		1.0	0.20	ug/L			07/01/20 02:57	1
trans-1,2-Dichloroethene	ND		5.0	0.20	ug/L			07/01/20 02:57	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			07/01/20 02:57	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			07/01/20 02:57	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			07/01/20 02:57	1
2-Hexanone	ND		10	0.30	ug/L			07/01/20 02:57	1
Acetone	ND		20	0.70	ug/L			07/01/20 02:57	1
Chloroform	ND		1.0	0.20	ug/L			07/01/20 02:57	1
Benzene	ND		1.0	0.20	ug/L			07/01/20 02:57	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			07/01/20 02:57	1
Bromomethane	ND		1.0	0.30	ug/L			07/01/20 02:57	1
Chloremethane	ND		1.0	0.20	ug/L			07/01/20 02:57	1
Bromochloromethane	ND		5.0	0.20	ug/L			07/01/20 02:57	1

SET 2/8/2021

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 06/17/20 00:00 Date Received: 06/18/20 10:27 Matrix: Water

Method: 8260C - Volatile Orç Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0		ug/L			07/01/20 03:19	1
Styrene	ND	5.0		ug/L			07/01/20 03:19	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			07/01/20 03:19	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			07/01/20 03:19	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			07/01/20 03:19	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			07/01/20 03:19	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			07/01/20 03:19	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			07/01/20 03:19	1
Methylcyclohexane	ND	5.0	0.50	ug/L			07/01/20 03:19	1
Toluene	ND	1.0	0.20	ug/L			07/01/20 03:19	1
Chlorobenzene	ND	1.0	0.20	ug/L			07/01/20 03:19	1
Cyclohexane	ND	5.0	1.0	ug/L			07/01/20 03:19	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			07/01/20 03:19	1
Dibromochloromethane	ND	1.0	0.20	ug/L			07/01/20 03:19	1
Tetrachloroethene	ND	1.0	0.20	ug/L			07/01/20 03:19	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			07/01/20 03:19	1
trans-1,2-Dichloroethene	ND	5.0	0.20	ug/L			07/01/20 03:19	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			07/01/20 03:19	1
1,3-Dichlorobenzene	ND	5.0		ug/L			07/01/20 03:19	1
Carbon tetrachloride	ND	1.0		ug/L			07/01/20 03:19	1
2-Hexanone	ND	10		ug/L			07/01/20 03:19	1
Acetone	ND	20		ug/L			07/01/20 03:19	1
Chloroform	ND	1.0		ug/L			07/01/20 03:19	1
Benzene	ND	1.0		ug/L			07/01/20 03:19	1
1,1,1-Trichloroethane	ND	1.0		ug/L			07/01/20 03:19	1
Bromomethane	ND	1.0		ug/L			07/01/20 03:19	1
Chloromethane	ND	1.0		ug/L			07/01/20 03:19	1
Bromochloromethane	ND	5.0		ug/L			07/01/20 03:19	1
Chloroethane	ND	1.0		ug/L			07/01/20 03:19	1
Vinyl chloride	ND	1.0		ug/L			07/01/20 03:19	1
Methylene Chloride	ND	1.0		ug/L			07/01/20 03:19	1
Carbon disulfide	ND	5.0		ug/L			07/01/20 03:19	1
Bromoform	ND	4.0		ug/L			07/01/20 03:19	1
Bromodichloromethane	ND	1.0		ug/L			07/01/20 03:19	
1,1-Dichloroethane	ND	1.0	0.20	-			07/01/20 03:19	1
1,1-Dichloroethene	ND	1.0		ug/L			07/01/20 03:19	1
Trichlorofluoromethane	ND	1.0		ug/L			07/01/20 03:19	
Dichlorodifluoromethane	ND	1.0		ug/L			07/01/20 03:19	1
Freon 113	ND	1.0		ug/L			07/01/20 03:19	1
1,2-Dichloropropane	ND	1.0		ug/L			07/01/20 03:19	' 1
2-Butanone	ND	1.0		ug/L			07/01/20 03:19	1
1,1,2-Trichloroethane	ND	1.0		ug/L ug/L			07/01/20 03:19	1
Trichloroethene	ND			ug/L			07/01/20 03:19	
	ND ND	1.0 5.0		ug/L ug/L			07/01/20 03:19	1
Methyl acetate	ND ND			•				1
1,1,2,2-Tetrachloroethane		1.0		ug/L			07/01/20 03:19	1
1,2,3-Trichlorobenzene	ND ND	5.0		ug/L			07/01/20 03:19	1
o-Xylene	ND	1.0		ug/L			07/01/20 03:19	1
1,2-Dichlorobenzene	ND	5.0	0.20	ug/L			07/01/20 03:19	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Lab Sample ID: 410-4880-9

Matrix: Water

Job ID: 410-4736-1

Client Sample ID: GW-06172020-TB

Date Collected: 06/17/20 00:00 Date Received: 06/18/20 10:27

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Conti	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		5.0	0.20	ug/L			07/01/20 03:19	1
m&p-Xylene	ND		5.0	1.0	ug/L			07/01/20 03:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120					07/01/20 03:19	1
4-Bromofluorobenzene (Surr)	98		80 - 120					07/01/20 03:19	1
Dibromofluoromethane (Surr)	101		80 - 120					07/01/20 03:19	1
Toluene-d8 (Surr)	99		80 - 120					07/01/20 03:19	1

Client Sample ID: MW-B-VSMW-01BS-06182020

Date Collected: 06/18/20 10:55 Date Received: 06/19/20 10:28 Lab Sample ID: 410-5050-1

Matrix: Groundwater

Analyte	Result C	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L				07/02/20 09:27	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L				07/02/20 09:27	1
1,1,2-Trichloroethane	ND		1.0	0.43	ug/L				07/02/20 09:27	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L				07/02/20 09:27	1
1,1-Dichloroethene	ND		1.0	0.26	ug/L				07/02/20 09:27	1
1,2,3-Trichlorobenzene	ND		1.0	0.36	ug/L				07/02/20 09:27	1
1,2,4-Trichlorobenzene	ND		1.0	0.37	ug/L	/			07/02/20 09:27	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.38	ug/L				07/02/20 09:27	1
1,2-Dibromoethane	ND		1.0	0.50	ug/L				07/02/20 09:27	1
1,2-Dichlorobenzene	ND		1.0	0.43	ug/L				07/02/20 09:27	1
1,2-Dichloroethane	ND		1.0	0.43	ug/L				07/02/20 09:27	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L				07/02/20 09:27	1
1,3-Dichlorobenzene	ND		1.0	0.34	ug/L				07/02/20 09:27	1
1,4-Dichlorobenzene	ND		1.0	0.33	ug/L				07/02/20 09:27	1
2-Butanone	ND		5.0	1.9	ug/L				07/02/20 09:27	1
2-Hexanone	ND		5.0	1.1	ug/L				07/02/20 09:27	1
4-Methyl-2-pentanone	ND		5.0	1.3	ug/L				07/02/20 09:27	1
Acetone	ND		5.0	4.4	ug/L				07/02/20 09:27	1
Benzene	0.27 J	· · · · / · · · · · · · · · · · · · · ·	1.0	0.20	ug/L				07/02/20 09:27	1
Bromochloromethane	ND		1.0	0.41	ug/L				07/02/20 09:27	1
Bromodichloromethane	ND /		1.0	0.34	ug/L				07/02/20 09:27	1
Bromoform	DIE		1.0	0.54	ug/L				07/02/20 09:27	1
Bromomethane	ND		1.0	0.55	ug/L				07/02/20 09:27	1
Carbon disulfide	ND		1.0	0.82	ug/L				07/02/20 09:27	1
Carbon tetrachloride	ND		1.0	0.21	ug/L		<u> </u>		07/02/20 09:27	1
Chlorobenzene	ND		1.0	0.38	ug/L				07/02/20 09:27	1
Chloroethane	ND		1.0	0.32	ug/L				07/02/20 09:27	1
Chloroform	ND		1.0	0.33	ug/L				07/02/20 09:27	1
Chloromethane	ND		1.0	0.40	ug/L				07/02/20 09:27	1
cis-1,2-Dichloroethene	0.40 J	J	1.0	0.22	ug/L				07/02/20 09:27	1
cis-1,3-Dichloropropene	ND		1.0	0.22	ug/L				07/02/20 09:27	1
Cyclohexane	ND		1.0	0.32	ug/L				07/02/20 09:27	1
Dibromochloromethane	ND		1.0	0.28	ug/L				07/02/20 09:27	1
Dichlorodifluoromethane	ND		1.0	0.31	ug/L				07/02/20 09:27	1
Ethylbenzene	ND		1.0	0.30	-				07/02/20 09:27	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-VSMW-01BS-06182020

Lab Sample ID; 410-5050-1

Matrix: Groundwater

Job ID: 410-4736-1

Date Collected: 06/18/20 10:55 Date Received: 06/19/20 10:28

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Freon 113	ND		1.0	0.31	ug/L			07/02/20 09:27	1
Isopropylbenzene	ND		1.0	0.34	ug/L		/	07/02/20 09:27	1
m&p-Xylene	ND		1.0	0.30	ug/L			07/02/20 09:27	1
Methyl acetate	ND		5.0	0.79	ug/L			07/02/20 09:27	1
Methyl tertiary butyl ether	ND		1.0	0.47	ug/L			07/02/20 09:27	1
Methylcyclohexane	ND		1.0	0.26	ug/L			07/02/20 09:27	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/02/20 09:27	1
o-Xylene	ND		1.0	0.36	ug/L			07/02/20 09:27	1
Styrene	0.58	J	1.0	0.42	ug/L			07/02/20 09:27	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/02/20 09:27	1
Toluene	ND		1.0	0.38	ug/L			07/02/20 09:27	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/02/20 09:27	1
trans-1,3-Dichloropropene	ND	`	1.0	0.49	ug/L			07/02/20 09:27	1
Trichloroethene	ND		1.0	0.31	ug/L			07/02/20 09:27	1
Trichlorofluoromethane	ND		1.0	0.32	ug/L			07/02/20 09:27	1
Vinyl chloride	ND		1.0	0.17	ug/L			07/02/20 09:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		76 - 120					07/02/20 09:27	1
1,2-Dichloroethane-d4 (Surr)	95		75 - 123					07/02/20 09:27	1
Dibromofluoromethane (Surr)	96		77 - 124					07/02/20 09:27	1
Toluene-d8 (Surr)	100		80 - 120					07/02/20 09:27	1
Method: 8270D SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.30	0.10	ug/L		06/22/20 08:30	06/23/20 07:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	61		10 - 138				06/22/20 08:30	06/23/20 07:15	1
1-Methylnaphthalene-d10 (Surr)	66		15 - 121				06/22/20 08:30	06/23/20 07:15	1

Client Sample ID: MW-B-EPA-2A-06182020

94

Date Collected: 06/18/20 15:05 Date Received: 06/19/20 10:28

Fluoranthene-d10 (Surr)

Lab Sample ID: 410-5050-2

06/22/20 08:30 06/23/20 07:15

Matrix: Groundwater

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			07/01/20 23:26	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			07/01/20 23:26	1
1,1,2-Trichloroethane	ND	1.0	0.43	ug/L			07/01/20 23:26	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			07/01/20 23:26	1
1,1-Dichloroethene	ND	1.0	0.26	ug/L			07/01/20 23:26	1
1,2,3-Trichlorobenzene	ND	1.0	0.36	ug/L			07/01/20 23:26	1
1,2,4-Trichlorobenzene	ND	1.0	0.37	ug/L			07/01/20 23:26	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.38	ug/L			07/01/20 23:26	1
1,2-Dibromoethane	ND	1.0	0.50	ug/L			07/01/20 23:26	1
1,2-Dichlorobenzene	ND	1.0	0.43	ug/L			07/01/20 23:26	1
1,2-Dichloroethane	ND	1.0	0.43	ug/L			07/01/20 23:26	1
1,2-Dichloropropane	ND	1.0	0.35	ug/L			07/01/20 23:26	1
1,3-Dichlorobenzene	ND	1.0	0.34	ug/L			07/01/20 23:26	1

34 - 125

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 06/18/20 15:05 Matrix: Groundwater

Date Received: 06/19/20 10:28

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND		1.0		ug/L			07/01/20 23:26	1
2-Butanone	ND		5.0		ug/L			07/01/20 23:26	1
2-Hexanone	ND		5.0		ug/L			07/01/20 23:26	1
4-Methyl-2-pentanone	ND		5.0		ug/L			07/01/20 23:26	1
Acetone	ND		5.0	4.4	ug/L			07/01/20 23:26	1
Benzene	0.39	J	1.0	0.20	ug/L			07/01/20 23:26	1
Bromochloromethane	ND		1.0	0.41	ug/L			07/01/20 23:26	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/01/20 23:26	•
Bromoform	ND		1.0	0.54	ug/L			07/01/20 23:26	
Bromomethane	ND		1.0	0.55	ug/L			07/01/20 23:26	1
Carbon disulfide	ND		1.0	0.82	ug/L			07/01/20 23:26	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/01/20 23:26	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/01/20 23:26	1
Chloroethane	ND		1.0	0.32	ug/L			07/01/20 23:26	
Chloroform	ND		1.0	0.33	ug/L			07/01/20 23:26	
Chloromethane	ND		1.0	0.40	ug/L			07/01/20 23:26	
cis-1,2-Dichloroethene	4.1		1.0	0.22	ug/L			07/01/20 23:26	
cis-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/01/20 23:26	
Cyclohexane	ND		1.0	0.32				07/01/20 23:26	1
Dibromochloromethane	ND		1.0	0.28	ug/L			07/01/20 23:26	
Dichlorodifluoromethane	ND		1.0	0.31	ug/L			07/01/20 23:26	• • • • • • •
Ethylbenzene	ND		1.0	0.30				07/01/20 23:26	
Freon 113	ND		1.0	0.31	-			07/01/20 23:26	
Isopropylbenzene	ND		1.0	0.34	-			07/01/20 23:26	
m&p-Xylene	ND		1.0	0.30	ug/L			07/01/20 23:26	
Methyl acetate	ND		5.0	0.79	ug/L			07/01/20 23:26	
Methyl tertiary butyl ether	ND		1.0	0.47	ug/L			07/01/20 23:26	
Methylcyclohexane	ND		1.0	0.26	-			07/01/20 23:26	
Methylene Chloride	ND		1.0	0.32	ug/L			07/01/20 23:26	
o-Xylene	ND		1.0	0.36				07/01/20 23:26	· · · · · · .
Styrene	ND		1.0	0.42				07/01/20 23:26	
Tetrachloroethene	ND		1.0	0.25				07/01/20 23:26	
Toluene	ND		1.0	0.38				07/01/20 23:26	· · · · · · .
trans-1,2-Dichloroethene	ND		1.0	0.24				07/01/20 23:26	
trans-1,3-Dichloropropene	ND		1.0	0.49	_			07/01/20 23:26	
Trichloroethene	3.0		1.0		ug/L			07/01/20 23:26	
Trichlorofluoromethane	ND		1.0		ug/L			07/01/20 23:26	
Vinyl chloride	ND		1.0		ug/L			07/01/20 23:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	93		76 - 120			=		07/01/20 23:26	-
1,2-Dichloroethane-d4 (Surr)	98		75 - 123					07/01/20 23:26	•
Dibromofluoromethane (Surr)	97		77 - 124					07/01/20 23:26	1
Toluene-d8 (Surr)	101		80 - 120					07/01/20 23:26	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-2B-06182020 Lab Sample ID: 410-5050-3

Date Collected: 06/18/20 15:10 Matrix: Groundwater

Date Received: 06/19/20 10:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1-Trichloroethane	ND		1.0	0.24	ug/L		-	07/02/20 09:48	
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/02/20 09:48	
1,1,2-Trichloroethane	ND		1.0	0.43	ug/L			07/02/20 09:48	
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/02/20 09:48	
1,1-Dichloroethene	ND		1.0		ug/L			07/02/20 09:48	
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/02/20 09:48	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/02/20 09:48	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			07/02/20 09:48	
1.2-Dibromoethane	ND		1.0		ug/L			07/02/20 09:48	
1,2-Dichlorobenzene	ND		1.0		ug/L			07/02/20 09:48	
I,2-Dichloroethane	0.59	J	1.0		ug/L			07/02/20 09:48	
1,2-Dichloropropane	ND		1.0		ug/L			07/02/20 09:48	
1,3-Dichlorobenzene	ND		1.0		ug/L			07/02/20 09:48	
1.4-Dichlorobenzene	ND		1.0		ug/L			07/02/20 09:48	
2-Butanone	ND		5.0		ug/L			07/02/20 09:48	
2-Hexanone	ND		5.0		ug/L			07/02/20 09:48	
1-Methyl-2-pentanone	ND		5.0		ug/L			07/02/20 09:48	
Acetone	ND		5.0		ug/L			07/02/20 09:48	
Benzene	1.2		1.0		ug/L			07/02/20 09:48	
Bromochloromethane	ND		1.0		ug/L			07/02/20 09:48	
Bromodichloromethane	ND		1.0		ug/L ug/L			07/02/20 09:48	
Bromoform	ND				-			07/02/20 09:48	
			1.0		ug/L				
Bromomethane	ND		1.0		ug/L			07/02/20 09:48	
Carbon disulfide	ND		1.0		ug/L			07/02/20 09:48	
Carbon tetrachloride	ND		1.0		ug/L			07/02/20 09:48	
Chlorobenzene	ND		1.0		ug/L			07/02/20 09:48	
Chloroethane	ND		1.0		ug/L			07/02/20 09:48	
Chloroform	ND		1.0		ug/L			07/02/20 09:48	
Chloromethane	ND		1.0		ug/L			07/02/20 09:48	
cis-1,2-Dichloroethene	3.0		1.0		ug/L			07/02/20 09:48	
cis-1,3-Dichloropropene	ND		1.0		ug/L			07/02/20 09:48	
Cyclohexane	ND		1.0		ug/L			07/02/20 09:48	
Dibromochloromethane	ND		1.0		ug/L			07/02/20 09:48	
Dichlorodifluoromethane	ND		1.0	0.31	ug/L			07/02/20 09:48	
Ethylbenzene	ND		1.0		ug/L			07/02/20 09:48	
Freon 113	ND		1.0		ug/L			07/02/20 09:48	
sopropylbenzene	ND		1.0	0.34	ug/L			07/02/20 09:48	
n&p-Xylene	ND		1.0	0.30	ug/L			07/02/20 09:48	
Methyl acetate	ND		5.0	0.79	ug/L			07/02/20 09:48	
Methyl tertiary butyl ether	ND		1.0	0.47	ug/L			07/02/20 09:48	
Methylcyclohexane	ND		1.0	0.26	ug/L			07/02/20 09:48	
Methylene Chloride	ND		1.0	0.32	ug/L			07/02/20 09:48	
o-Xylene	ND		1.0	0.36	ug/L			07/02/20 09:48	
Styrene	ND		1.0		ug/L			07/02/20 09:48	
etrachloroethene	ND		1.0		ug/L			07/02/20 09:48	
roluene	ND		1.0		ug/L			07/02/20 09:48	
rans-1,2-Dichloroethene	ND		1.0		ug/L			07/02/20 09:48	
rans-1,3-Dichloropropene	ND		1.0		ug/L			07/02/20 09:48	
Trichloroethene	35		1.0		ug/L			07/02/20 09:48	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-2B-06182020 Lab Sample ID: 410-5050-3

Date Collected: 06/18/20 15:10 **Matrix: Groundwater**

Date Received: 06/19/20 10:28

Method: 8260C - Volatile Or	rganic Compo	unds by G	C/MS (Contin	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0	0.32	ug/L			07/02/20 09:48	1
Vinyl chloride	ND		1.0	0.17	ug/L			07/02/20 09:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		76 - 120					07/02/20 09:48	1
1,2-Dichloroethane-d4 (Surr)	98		75 - 123					07/02/20 09:48	1
Dibromofluoromethane (Surr)	97		77 - 124					07/02/20 09:48	1
Toluene-d8 (Surr)	98		80 - 120					07/02/20 09:48	1

Client Sample ID: MW-B-EPA-2C-06182020 Lab Sample ID: 410-5050-4

Date Collected: 06/18/20 15:15 **Matrix: Groundwater** Date Received: 06/19/20 10:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/01/20 23:47	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/01/20 23:47	1
1,1,2-Trichloroethane	ND		1.0	0.43	ug/L			07/01/20 23:47	1
1,1-Dichloroethane	1.3		1.0	0.26	ug/L			07/01/20 23:47	1
1,1-Dichloroethene	0.82	J	1.0	0.26	ug/L			07/01/20 23:47	1
1,2,3-Trichlorobenzene	ND		1.0	0.36	ug/L			07/01/20 23:47	1
1,2,4-Trichlorobenzene	ND		1.0	0.37	ug/L			07/01/20 23:47	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.38	ug/L			07/01/20 23:47	1
1,2-Dibromoethane	ND		1.0	0.50	ug/L			07/01/20 23:47	1
1,2-Dichlorobenzene	ND		1.0	0.43	ug/L			07/01/20 23:47	1
1,2-Dichloroethane	3.0		1.0	0.43	ug/L			07/01/20 23:47	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/01/20 23:47	1
1,3-Dichlorobenzene	ND		1.0	0.34	ug/L			07/01/20 23:47	1
1,4-Dichlorobenzene	ND		1.0	0.33	ug/L			07/01/20 23:47	1
2-Butanone	ND		5.0	1.9	ug/L			07/01/20 23:47	1
2-Hexanone	ND		5.0	1.1	ug/L			07/01/20 23:47	1
4-Methyl-2-pentanone	ND		5.0	1.3	ug/L			07/01/20 23:47	1
Acetone	ND		5.0	4.4	ug/L			07/01/20 23:47	1
Benzene	14		1.0	0.20	ug/L			07/01/20 23:47	1
Bromochloromethane	ND		1.0	0.41	ug/L			07/01/20 23:47	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/01/20 23:47	1
Bromoform	ND		1.0	0.54	ug/L			07/01/20 23:47	1
Bromomethane	ND		1.0	0.55	ug/L			07/01/20 23:47	1
Carbon disulfide	ND		1.0	0.82	ug/L			07/01/20 23:47	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/01/20 23:47	1
Chlorobenzene	1.3		1.0	0.38	ug/L			07/01/20 23:47	1
Chloroethane	ND		1.0	0.32	ug/L			07/01/20 23:47	1
Chloroform	ND		1.0	0.33	ug/L			07/01/20 23:47	1
Chloromethane	ND		1.0	0.40	ug/L			07/01/20 23:47	1
cis-1,2-Dichloroethene	40		1.0	0.22	ug/L			07/01/20 23:47	1
cis-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/01/20 23:47	1
Cyclohexane	ND		1.0	0.32	ug/L			07/01/20 23:47	1
Dibromochloromethane	ND		1.0	0.28	_			07/01/20 23:47	1
Dichlorodifluoromethane	ND		1.0		ug/L			07/01/20 23:47	1
Ethylbenzene	ND		1.0		ug/L			07/01/20 23:47	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 06/18/20 15:15 Matrix: Groundwater

Date Received: 06/19/20 10:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Freon 113	ND		1.0	0.31	ug/L			07/01/20 23:47	1
Isopropylbenzene	ND		1.0	0.34	ug/L			07/01/20 23:47	1
m&p-Xylene	ND		1.0	0.30	ug/L			07/01/20 23:47	1
Methyl acetate	ND		5.0	0.79	ug/L			07/01/20 23:47	1
Methyl tertiary butyl ether	ND		1.0	0.47	ug/L			07/01/20 23:47	1
Methylcyclohexane	ND		1.0	0.26	ug/L			07/01/20 23:47	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/01/20 23:47	1
o-Xylene	ND		1.0	0.36	ug/L			07/01/20 23:47	1
Styrene	ND		1.0	0.42	ug/L			07/01/20 23:47	1
Tetrachloroethene	0.34	J	1.0	0.25	ug/L			07/01/20 23:47	1
Toluene	ND		1.0	0.38	ug/L			07/01/20 23:47	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/01/20 23:47	1
trans-1,3-Dichloropropene	ND		1.0	0.49	ug/L			07/01/20 23:47	1
Trichloroethene	130		1.0	0.31	ug/L			07/01/20 23:47	1
Trichlorofluoromethane	ND		1.0	0.32	ug/L			07/01/20 23:47	1
Vinyl chloride	0.28	J	1.0	0.17	ug/L			07/01/20 23:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		76 - 120			-		07/01/20 23:47	1
1,2-Dichloroethane-d4 (Surr)	98		75 - 123					07/01/20 23:47	1
Dibromofluoromethane (Surr)	98		77 - 124					07/01/20 23:47	1
Toluene-d8 (Surr)	98		80 - 120					07/01/20 23:47	1

Client Sample ID: GW-06182020-TB

Date Collected: 06/18/20 00:00 Date Received: 06/19/20 10:28 **Lab Sample ID: 410-5050-5**

Matrix: Water

Job ID: 410-4736-1

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.24 u	ug/L			07/01/20 20:41	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37 u	ug/L			07/01/20 20:41	1
1,1,2-Trichloroethane	ND	1.0	0.43 u	ug/L			07/01/20 20:41	1
1,1-Dichloroethane	ND	1.0	0.26 u	ug/L			07/01/20 20:41	1
1,1-Dichloroethene	ND	1.0	0.26 u	ug/L			07/01/20 20:41	1
1,2,3-Trichlorobenzene	ND	1.0	0.36 u	ug/L			07/01/20 20:41	1
1,2,4-Trichlorobenzene	ND	1.0	0.37 u	ug/L			07/01/20 20:41	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.38 u	ug/L			07/01/20 20:41	1
1,2-Dibromoethane	ND	1.0	0.50 u	ug/L			07/01/20 20:41	1
1,2-Dichlorobenzene	ND	1.0	0.43 u	ug/L			07/01/20 20:41	1
1,2-Dichloroethane	ND	1.0	0.43 u	ug/L			07/01/20 20:41	1
1,2-Dichloropropane	ND	1.0	0.35 u	ug/L			07/01/20 20:41	1
1,3-Dichlorobenzene	ND	1.0	0.34 u	ug/L			07/01/20 20:41	1
1,4-Dichlorobenzene	ND	1.0	0.33 u	ug/L			07/01/20 20:41	1
2-Butanone	ND	5.0	1.9 u	ug/L			07/01/20 20:41	1
2-Hexanone	ND	5.0	1.1 u	ug/L			07/01/20 20:41	1
4-Methyl-2-pentanone	ND	5.0	1.3 u	ug/L			07/01/20 20:41	1
Acetone	ND	5.0	4.4 u	ug/L			07/01/20 20:41	1
Benzene	ND	1.0	0.20 u	ug/L			07/01/20 20:41	1
Bromochloromethane	ND	1.0	0.41 u	ug/L			07/01/20 20:41	1
Bromodichloromethane	ND	1.0	0.34 u				07/01/20 20:41	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: GW-06182020-TB Lab Sample ID: 410-5050-5

Date Collected: 06/18/20 00:00 Date Received: 06/19/20 10:28

Matrix: Water

Job ID: 410-4736-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	ND		1.0	0.54	ug/L			07/01/20 20:41	1
Bromomethane	ND		1.0	0.55	ug/L			07/01/20 20:41	1
Carbon disulfide	ND		1.0	0.82	ug/L			07/01/20 20:41	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/01/20 20:41	1
Chlorobenzene	ND		1.0	0.38	ug/L			07/01/20 20:41	1
Chloroethane	ND		1.0	0.32	ug/L			07/01/20 20:41	1
Chloroform	ND		1.0	0.33	ug/L			07/01/20 20:41	1
Chloromethane	ND		1.0	0.40	ug/L			07/01/20 20:41	1
cis-1,2-Dichloroethene	ND		1.0	0.22	ug/L			07/01/20 20:41	1
cis-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/01/20 20:41	1
Cyclohexane	ND		1.0	0.32	ug/L			07/01/20 20:41	1
Dibromochloromethane	ND		1.0	0.28	ug/L			07/01/20 20:41	1
Dichlorodifluoromethane	ND		1.0	0.31	ug/L			07/01/20 20:41	1
Ethylbenzene	ND		1.0	0.30	ug/L			07/01/20 20:41	1
Freon 113	ND		1.0	0.31	ug/L			07/01/20 20:41	1
Isopropylbenzene	ND		1.0	0.34	ug/L			07/01/20 20:41	1
m&p-Xylene	ND		1.0	0.30	ug/L			07/01/20 20:41	1
Methyl acetate	ND		5.0	0.79	ug/L			07/01/20 20:41	1
Methyl tertiary butyl ether	ND		1.0	0.47	ug/L			07/01/20 20:41	1
Methylcyclohexane	ND		1.0	0.26	ug/L			07/01/20 20:41	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/01/20 20:41	1
o-Xylene	ND		1.0	0.36	ug/L			07/01/20 20:41	1
Styrene	ND		1.0	0.42	ug/L			07/01/20 20:41	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/01/20 20:41	1
Toluene	ND		1.0	0.38	ug/L			07/01/20 20:41	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/01/20 20:41	1
trans-1,3-Dichloropropene	ND		1.0	0.49	ug/L			07/01/20 20:41	1
Trichloroethene	ND		1.0	0.31	ug/L			07/01/20 20:41	1
Trichlorofluoromethane	ND		1.0	0.32	ug/L			07/01/20 20:41	1
Vinyl chloride	ND		1.0	0.17	ug/L			07/01/20 20:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		76 - 120					07/01/20 20:41	1
1,2-Dichloroethane-d4 (Surr)	98		75 - 123					07/01/20 20:41	1
Dibromofluoromethane (Surr)	98		77 - 124					07/01/20 20:41	1
Toluene-d8 (Surr)	100		80 - 120					07/01/20 20:41	1

Client Sample ID: MW-B-EPA-1A-06192020

Lab Sample ID: 410-5219-1 Date Collected: 06/19/20 14:00 **Matrix: Groundwater**

Date Received: 06/20/20 10:13

Method: 8260C	 Volatile Organi 	c Compounds b	y GC/MS
---------------	-------------------------------------	---------------	---------

Welliou. 02000 - Volatile Of	gaine compounds by cor	IVIO						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	2.0	0.80	ug/L			07/02/20 07:37	2
Styrene	ND	10	0.40	ug/L			07/02/20 07:37	2
cis-1,3-Dichloropropene	ND	2.0	0.40	ug/L			07/02/20 07:37	2
trans-1,3-Dichloropropene	ND	2.0	0.40	ug/L			07/02/20 07:37	2
1,4-Dichlorobenzene	ND	10	0.40	ug/L			07/02/20 07:37	2
1,2-Dibromoethane	ND	2.0	0.40	ug/L			07/02/20 07:37	2
1,2-Dichloroethane	21	2.0	0.60	ug/L			07/02/20 07:37	2

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1A-06192020 Lab Sample ID: 410-5219-1

Date Collected: 06/19/20 14:00 Matrix: Groundwater

Date Received: 06/20/20 10:13

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1-Methyl-2-pentanone	ND		20	1.0	ug/L			07/02/20 07:37	
Methylcyclohexane	ND		10	1.0	ug/L			07/02/20 07:37	
Toluene	1.5	J	2.0	0.40	ug/L			07/02/20 07:37	
Chlorobenzene	13		2.0	0.40	ug/L			07/02/20 07:37	
Cyclohexane	ND		10	2.0	ug/L			07/02/20 07:37	
1,2,4-Trichlorobenzene	ND		10	0.60	ug/L			07/02/20 07:37	
Dibromochloromethane	ND		2.0	0.40	ug/L			07/02/20 07:37	
Tetrachloroethene	3.9		2.0	0.40	ug/L			07/02/20 07:37	
cis-1,2-Dichloroethene	320		2.0	0.40	ug/L			07/02/20 07:37	
trans-1,2-Dichloroethene	1.6	J	10	0.40	ug/L			07/02/20 07:37	
Methyl tertiary butyl ether	ND		2.0	0.40	ug/L			07/02/20 07:37	
1,3-Dichlorobenzene	ND		10	0.40	-			07/02/20 07:37	
Carbon tetrachloride	ND		2.0	0.40	ug/L			07/02/20 07:37	
2-Hexanone	ND		20	0.60	ug/L			07/02/20 07:37	
Acetone	ND		40		ug/L			07/02/20 07:37	
Chloroform	ND		2.0	0.40	-			07/02/20 07:37	
Benzene	8.3		2.0	0.40	-			07/02/20 07:37	
1,1,1-Trichloroethane	ND		2.0	0.60	ug/L			07/02/20 07:37	
Bromomethane	ND		2.0	0.60	-			07/02/20 07:37	
Chloromethane	ND		2.0	0.40	-			07/02/20 07:37	
Bromochloromethane	ND		10	0.40	-			07/02/20 07:37	
Chloroethane	1.5	J	2.0	0.40	-			07/02/20 07:37	
Vinyl chloride	0.84		2.0	0.40	-			07/02/20 07:37	
Methylene Chloride	ND		2.0	0.60	-			07/02/20 07:37	
Carbon disulfide	ND		10	0.40	-			07/02/20 07:37	
Bromoform	ND		8.0		ug/L			07/02/20 07:37	
Bromodichloromethane	ND		2.0	0.40	-			07/02/20 07:37	
1,1-Dichloroethane	8.6		2.0	0.40	-			07/02/20 07:37	
1,1-Dichloroethene	7.4		2.0	0.40	-			07/02/20 07:37	
Trichlorofluoromethane	ND		2.0	0.40	_			07/02/20 07:37	
Dichlorodifluoromethane	ND		2.0	0.40	-			07/02/20 07:37	
Freon 113	ND		20	0.40	-			07/02/20 07:37	
1,2-Dichloropropane	ND		2.0	0.40	-			07/02/20 07:37	
2-Butanone	ND		20	0.60	_			07/02/20 07:37	
1,1,2-Trichloroethane	ND		2.0	0.40	-			07/02/20 07:37	
Methyl acetate	ND		10	0.60				07/02/20 07:37	
1,1,2,2-Tetrachloroethane	ND		2.0	0.40	-			07/02/20 07:37	
1,2,3-Trichlorobenzene	ND		10	0.80	•			07/02/20 07:37	
p-Xylene	ND		2.0	0.80	•			07/02/20 07:37	
1,2-Dichlorobenzene	ND		10	0.40	-			07/02/20 07:37	
1,2-Dibromo-3-Chloropropane	ND		10	0.60	•			07/02/20 07:37	
sopropylbenzene	ND		10	0.40	_			07/02/20 07:37	
m&p-Xylene	ND		10		ug/L			07/02/20 07:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1,2-Dichloroethane-d4 (Surr)	106		80 - 120			-		07/02/20 07:37	
4-Bromofluorobenzene (Surr)	92		80 - 120					07/02/20 07:37	
Dibromofluoromethane (Surr)	109		80 - 120					07/02/20 07:37	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1A-06192020 Lab Sample ID: 410-5219-1

Date Collected: 06/19/20 14:00 Matrix: Groundwater

Date Received: 06/20/20 10:13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	1800		20	4.0	ug/L			07/02/20 08:01	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		80 - 120			•		07/02/20 08:01	20
4-Bromofluorobenzene (Surr)	92		80 - 120					07/02/20 08:01	20
Dibromofluoromethane (Surr)	105		80 - 120					07/02/20 08:01	20
Toluene-d8 (Surr)	97		80 - 120					07/02/20 08:01	20

Client Sample ID: MW-B-EPA-1B-06192020

Date Collected: 06/19/20 14:05 Date Received: 06/20/20 10:13 Lab Sample ID: 410-5219-2
Matrix: Groundwater

Job ID: 410-4736-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			07/02/20 04:51	1
Styrene	ND	5.0	0.20	ug/L			07/02/20 04:51	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			07/02/20 04:51	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			07/02/20 04:51	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			07/02/20 04:51	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			07/02/20 04:51	1
1,2-Dichloroethane	12	1.0	0.30	ug/L			07/02/20 04:51	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			07/02/20 04:51	1
Methylcyclohexane	ND	5.0	0.50	ug/L			07/02/20 04:51	1
Toluene	1.5	1.0	0.20	ug/L			07/02/20 04:51	1
Chlorobenzene	8.5	1.0	0.20	ug/L			07/02/20 04:51	1
Cyclohexane	ND	5.0	1.0	ug/L			07/02/20 04:51	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			07/02/20 04:51	1
Dibromochloromethane	ND	1.0	0.20	ug/L			07/02/20 04:51	1
Tetrachloroethene	1.1	1.0	0.20	ug/L			07/02/20 04:51	1
trans-1,2-Dichloroethene	2.5 J	5.0	0.20	ug/L			07/02/20 04:51	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			07/02/20 04:51	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			07/02/20 04:51	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			07/02/20 04:51	1
2-Hexanone	ND	10	0.30	ug/L			07/02/20 04:51	1
Acetone	ND	20	0.70	ug/L			07/02/20 04:51	1
Chloroform	ND	1.0	0.20	ug/L			07/02/20 04:51	1
Benzene	56	1.0	0.20	ug/L			07/02/20 04:51	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			07/02/20 04:51	1
Bromomethane	ND	1.0	0.30	ug/L			07/02/20 04:51	1
Chloromethane	ND	1.0	0.20	ug/L			07/02/20 04:51	1
Bromochloromethane	ND	5.0	0.20	ug/L			07/02/20 04:51	1
Chloroethane	ND	1.0	0.20	ug/L			07/02/20 04:51	1
Vinyl chloride	0.83 J	1.0	0.20	ug/L			07/02/20 04:51	1
Methylene Chloride	ND	1.0	0.30	ug/L			07/02/20 04:51	1
Carbon disulfide	ND	5.0	0.20	ug/L			07/02/20 04:51	1
Bromoform	ND	4.0	1.0	ug/L			07/02/20 04:51	1
Bromodichloromethane	ND	1.0	0.20	ug/L			07/02/20 04:51	1
1,1-Dichloroethane	5.1	1.0	0.20	ug/L			07/02/20 04:51	1
1,1-Dichloroethene	6.5	1.0		ug/L			07/02/20 04:51	1
Trichlorofluoromethane	ND	1.0		ug/L			07/02/20 04:51	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1B-06192020 Lab Sample ID: 410-5219-2

Date Collected: 06/19/20 14:05 Matrix: Groundwater

Date Received: 06/20/20 10:13

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			07/02/20 04:51	
Freon 113	ND		10	0.20	ug/L			07/02/20 04:51	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			07/02/20 04:51	1
2-Butanone	ND		10	0.30	ug/L			07/02/20 04:51	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			07/02/20 04:51	1
Methyl acetate	ND		5.0	0.30	ug/L			07/02/20 04:51	
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			07/02/20 04:51	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			07/02/20 04:51	1
o-Xylene	ND		1.0	0.40	ug/L			07/02/20 04:51	
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			07/02/20 04:51	
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			07/02/20 04:51	
Isopropylbenzene	ND		5.0	0.20	ug/L			07/02/20 04:51	
m&p-Xylene	ND		5.0	1.0	ug/L			07/02/20 04:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	106		80 - 120			·		07/02/20 04:51	
4-Bromofluorobenzene (Surr)	91		80 - 120					07/02/20 04:51	
Dibromofluoromethane (Surr)	106		80 - 120					07/02/20 04:51	
Toluene-d8 (Surr)	98		80 - 120					07/02/20 04:51	1
Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	730	# J	10	2.0	ug/L			07/14/20 15:05	10
Trichloroethene	440	# J	10	2.0	ug/L			07/14/20 15:05	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	106		80 - 120					07/14/20 15:05	10
	94		80 - 120					07/14/20 15:05	10
4-Bromofluorobenzene (Surr)	94								
4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	106		80 - 120					07/14/20 15:05	10

Client Sample ID: MW-B-EPA-1C-06192020

Date Collected: 06/19/20 14:10

Date Received: 06/20/20 10:13

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			07/02/20 05:15	1
Styrene	ND	5.0	0.20	ug/L			07/02/20 05:15	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			07/02/20 05:15	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			07/02/20 05:15	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			07/02/20 05:15	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			07/02/20 05:15	1
1,2-Dichloroethane	10	1.0	0.30	ug/L			07/02/20 05:15	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			07/02/20 05:15	1
Methylcyclohexane	ND	5.0	0.50	ug/L			07/02/20 05:15	1
Toluene	2.3	1.0	0.20	ug/L			07/02/20 05:15	1
Chlorobenzene	5.7	1.0	0.20	ug/L			07/02/20 05:15	1
Cyclohexane	ND	5.0	1.0	ug/L			07/02/20 05:15	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			07/02/20 05:15	1
Dibromochloromethane	ND	1.0	0.20	ug/L			07/02/20 05:15	1

AMSS 8/26/2020

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-5219-3

Matrix: Groundwater

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1C-06192020 Lab Sample ID: 410-5219-3

Date Collected: 06/19/20 14:10 Matrix: Groundwater

Date Received: 06/20/20 10:13

Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.20	ug/L			07/02/20 05:15	1
trans-1,2-Dichloroethene	2.3	J	5.0	0.20	ug/L			07/02/20 05:15	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			07/02/20 05:15	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			07/02/20 05:15	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			07/02/20 05:15	1
2-Hexanone	ND		10	0.30	ug/L			07/02/20 05:15	1
Acetone	ND		20	0.70	ug/L			07/02/20 05:15	1
Chloroform	ND		1.0	0.20	ug/L			07/02/20 05:15	1
Benzene	41		1.0	0.20	ug/L			07/02/20 05:15	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			07/02/20 05:15	1
Bromomethane	ND		1.0	0.30	ug/L			07/02/20 05:15	1
Chloromethane	ND		1.0	0.20	ug/L			07/02/20 05:15	1
Bromochloromethane	ND		5.0	0.20	ug/L			07/02/20 05:15	1
Chloroethane	1.7		1.0	0.20				07/02/20 05:15	1
Vinyl chloride	0.93	J	1.0	0.20	_			07/02/20 05:15	1
Methylene Chloride	ND		1.0	0.30	_			07/02/20 05:15	1
Carbon disulfide	ND		5.0	0.20				07/02/20 05:15	1
Bromoform	ND		4.0		ug/L			07/02/20 05:15	1
Bromodichloromethane	ND		1.0	0.20	-			07/02/20 05:15	1
1,1-Dichloroethane	3.2		1.0	0.20				07/02/20 05:15	1
1,1-Dichloroethene	6.1		1.0	0.20	_			07/02/20 05:15	1
Trichlorofluoromethane	ND		1.0	0.20	_			07/02/20 05:15	1
Dichlorodifluoromethane	ND		1.0	0.20				07/02/20 05:15	1
Freon 113	ND		10	0.20	_			07/02/20 05:15	1
1,2-Dichloropropane	ND		1.0	0.20	_			07/02/20 05:15	1
2-Butanone	ND		10	0.30				07/02/20 05:15	1
1,1,2-Trichloroethane	ND		1.0	0.20	-			07/02/20 05:15	1
Trichloroethene	220		1.0	0.20	-			07/02/20 05:15	1
Methyl acetate	ND		5.0	0.30	-			07/02/20 05:15	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	_			07/02/20 05:15	1
1.2.3-Trichlorobenzene	ND		5.0	0.40	_			07/02/20 05:15	1
o-Xylene	ND		1.0	0.40				07/02/20 05:15	1
1,2-Dichlorobenzene	ND		5.0	0.20	-			07/02/20 05:15	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	-			07/02/20 05:15	1
Isopropylbenzene	ND		5.0	0.20	-			07/02/20 05:15	
m&p-Xylene	ND		5.0		ug/L			07/02/20 05:15	1
					Ü				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		80 - 120					07/02/20 05:15	1
4-Bromofluorobenzene (Surr)	92		80 - 120					07/02/20 05:15	1
Dibromofluoromethane (Surr)	112		80 - 120					07/02/20 05:15	
Toluene-d8 (Surr)	99		80 - 120					07/02/20 05:15	1
Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS - DL						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	870	# J	10	2.0	ug/L		<u> </u>	07/14/20 15:29	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105	· ·	80 - 120					07/14/20 15:29	10
4-Bromofluorobenzene (Surr)	96		80 - 120					07/14/20 15:29	10

AMSS 8/26/2020

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1C-06192020 Lab Sample ID: 410-5219-3

Date Collected: 06/19/20 14:10 **Matrix: Groundwater**

Date Received: 06/20/20 10:13

Method: 8260C - Volatile Organic Compounds by GC/MS - DL (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	106		80 - 120		07/14/20 15:29	10
Toluene-d8 (Surr)	101		80 - 120		07/14/20 15:29	10

Client Sample ID: GW-06192020-TB Lab Sample ID: 410-5219-4

Date Collected: 06/19/20 00:00 Date Received: 06/20/20 10:13

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			07/02/20 00:30	1
Styrene	ND	5.0	0.20	ug/L			07/02/20 00:30	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			07/02/20 00:30	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			07/02/20 00:30	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			07/02/20 00:30	1
Methylcyclohexane	ND	5.0	0.50	ug/L			07/02/20 00:30	1
Toluene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Chlorobenzene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Cyclohexane	ND	5.0	1.0	ug/L			07/02/20 00:30	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			07/02/20 00:30	1
Dibromochloromethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Tetrachloroethene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
trans-1,2-Dichloroethene	ND	5.0	0.20	ug/L			07/02/20 00:30	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			07/02/20 00:30	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			07/02/20 00:30	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			07/02/20 00:30	1
2-Hexanone	ND	10	0.30	ug/L			07/02/20 00:30	1
Acetone	ND	20	0.70	ug/L			07/02/20 00:30	1
Chloroform	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Benzene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			07/02/20 00:30	1
Bromomethane	ND	1.0	0.30	ug/L			07/02/20 00:30	1
Chloromethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Bromochloromethane	ND	5.0	0.20	ug/L			07/02/20 00:30	1
Chloroethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Vinyl chloride	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Methylene Chloride	ND	1.0	0.30	ug/L			07/02/20 00:30	1
Carbon disulfide	ND	5.0	0.20	ug/L			07/02/20 00:30	1
Bromoform	ND	4.0	1.0	ug/L			07/02/20 00:30	1
Bromodichloromethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
1,1-Dichloroethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
1,1-Dichloroethene	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Trichlorofluoromethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Dichlorodifluoromethane	ND	1.0	0.20	ug/L			07/02/20 00:30	1
Freon 113	ND	10	0.20	ug/L			07/02/20 00:30	1
1,2-Dichloropropane	ND	1.0	0.20	ug/L			07/02/20 00:30	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: GW-06192020-TB Lab Sample ID: 410-5219-4

Date Collected: 06/19/20 00:00 Date Received: 06/20/20 10:13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone	ND		10	0.30	ug/L			07/02/20 00:30	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			07/02/20 00:30	1
Trichloroethene	ND		1.0	0.20	ug/L			07/02/20 00:30	1
Methyl acetate	ND		5.0	0.30	ug/L			07/02/20 00:30	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			07/02/20 00:30	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			07/02/20 00:30	1
o-Xylene	ND		1.0	0.40	ug/L			07/02/20 00:30	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			07/02/20 00:30	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			07/02/20 00:30	1
Isopropylbenzene	ND		5.0	0.20	ug/L			07/02/20 00:30	1
m&p-Xylene	ND		5.0	1.0	ug/L			07/02/20 00:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		80 - 120					07/02/20 00:30	1
4-Bromofluorobenzene (Surr)	90		80 - 120					07/02/20 00:30	1
Dibromofluoromethane (Surr)	106		80 - 120					07/02/20 00:30	1
Toluene-d8 (Surr)	98		80 - 120					07/02/20 00:30	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-3B-06232020 Lab Sample ID: 410-5535-1

Date Collected: 06/23/20 13:22 Matrix: Groundwater

Date Received: 06/24/20 10:48

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1-Trichloroethane	ND	1.0		ug/L			07/06/20 14:44	
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			07/06/20 14:44	
1,1,2-Trichloroethane	ND	1.0	0.43	ug/L			07/06/20 14:44	
1,1-Dichloroethane	ND	1.0	0.26	ug/L			07/06/20 14:44	
1,1-Dichloroethene	ND	1.0	0.26	ug/L			07/06/20 14:44	
1,2,3-Trichlorobenzene	ND	1.0	0.36	ug/L			07/06/20 14:44	
1,2,4-Trichlorobenzene	ND	1.0	0.37	ug/L			07/06/20 14:44	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.38	ug/L			07/06/20 14:44	
1,2-Dibromoethane	ND	1.0	0.50	ug/L			07/06/20 14:44	
1,2-Dichlorobenzene	ND	1.0	0.43	ug/L			07/06/20 14:44	
1,2-Dichloroethane	ND	1.0	0.43	ug/L			07/06/20 14:44	
1,2-Dichloropropane	ND	1.0		ug/L			07/06/20 14:44	
1,3-Dichlorobenzene	ND	1.0		ug/L			07/06/20 14:44	
1,4-Dichlorobenzene	ND	1.0		ug/L			07/06/20 14:44	
2-Butanone	ND	5.0		ug/L			07/06/20 14:44	
2-Hexanone	ND	5.0		ug/L			07/06/20 14:44	
1-Methyl-2-pentanone	ND	5.0		ug/L			07/06/20 14:44	
Acetone	ND	5.0		ug/L			07/06/20 14:44	
3enzene	5.3	1.0		ug/L			07/06/20 14:44	
Bromochloromethane	ND	1.0		ug/L			07/06/20 14:44	
Bromodichloromethane	ND	1.0		ug/L			07/06/20 14:44	
Bromoform	ND	1.0		ug/L			07/06/20 14:44	
Bromomethane	ND	1.0		ug/L			07/06/20 14:44	
Carbon disulfide	ND	1.0		ug/L			07/06/20 14:44	
Carbon tetrachloride	ND	1.0		ug/L			07/06/20 14:44	
Chlorobenzene	ND	1.0		ug/L			07/06/20 14:44	
Chloroethane	ND	1.0		ug/L			07/06/20 14:44	
Chloroform	ND	1.0		ug/L			07/06/20 14:44	
Chloromethane	ND	1.0		ug/L			07/06/20 14:44	
cis-1,2-Dichloroethene	0.44 J	1.0		ug/L			07/06/20 14:44	
cis-1,3-Dichloropropene	ND	1.0		ug/L			07/06/20 14:44	
Cyclohexane	ND	1.0		ug/L			07/06/20 14:44	
Dibromochloromethane	ND	1.0		ug/L			07/06/20 14:44	
Dichlorodifluoromethane	ND	1.0		ug/L			07/06/20 14:44	
Ethylbenzene	ND	1.0	0.30	_			07/06/20 14:44	
Freon 113	ND	1.0		ug/L			07/06/20 14:44	
sopropylbenzene	ND	1.0		ug/L			07/06/20 14:44	
n&p-Xylene	ND	1.0		ug/L ug/L			07/06/20 14:44	
Methyl acetate	ND	5.0		ug/L ug/L			07/06/20 14:44	
Methyl tertiary butyl ether	ND ND	1.0		ug/L			07/06/20 14:44	
Methylcyclohexane	ND	1.0		ug/L ug/L			07/06/20 14:44	
Methylene Chloride	ND	1.0		ug/L ug/L			07/06/20 14:44	
o-Xylene	ND	1.0		ug/L			07/06/20 14:44	
Styrene	ND	1.0		ug/L ug/L			07/06/20 14:44	
Fetrachloroethene	ND ND	1.0		ug/L ug/L			07/06/20 14:44	
Coluene	0.58 J	1.0		ug/L			07/06/20 14:44	
rans-1,2-Dichloroethene	ND	1.0		ug/L			07/06/20 14:44	
rans-1,3-Dichloropropene Frichloroethene	ND 0.48 J	1.0	0.49	ug/L			07/06/20 14:44 07/06/20 14:44	

Job ID: 410-5535-1

SDG: GWM10

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

SDG: GWM10

Client Sample ID: MW-B-EPA-3B-06232020 Lab Sample ID: 410-5535-1 Date Collected: 06/23/20 13:22 **Matrix: Groundwater**

Date Received: 06/24/20 10:48

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Conti	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0	0.32	ug/L			07/06/20 14:44	1
Vinyl chloride	ND		1.0	0.17	ug/L			07/06/20 14:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		76 - 120			,		07/06/20 14:44	1
1,2-Dichloroethane-d4 (Surr)	90		75 - 123					07/06/20 14:44	1
Dibromofluoromethane (Surr)	95		77 - 124					07/06/20 14:44	1
Toluene-d8 (Surr)	95		80 - 120					07/06/20 14:44	1

Client Sample ID: MW-B-EPA-3C-06232020 Lab Sample ID: 410-5535-2

Date Collected: 06/23/20 13:25	Matrix: Groundwater
Date Received: 06/24/20 10:48	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			07/06/20 15:05	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			07/06/20 15:05	1
1,1,2-Trichloroethane	ND		1.0	0.43	ug/L			07/06/20 15:05	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			07/06/20 15:05	1
1,1-Dichloroethene	ND		1.0	0.26	ug/L			07/06/20 15:05	1
1,2,3-Trichlorobenzene	ND		1.0	0.36	ug/L			07/06/20 15:05	1
1,2,4-Trichlorobenzene	ND		1.0	0.37	ug/L			07/06/20 15:05	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.38	ug/L			07/06/20 15:05	1
1,2-Dibromoethane	ND		1.0	0.50	ug/L			07/06/20 15:05	1
1,2-Dichlorobenzene	ND		1.0	0.43	ug/L			07/06/20 15:05	1
1,2-Dichloroethane	ND		1.0	0.43	ug/L			07/06/20 15:05	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			07/06/20 15:05	1
1,3-Dichlorobenzene	ND		1.0	0.34	ug/L			07/06/20 15:05	1
1,4-Dichlorobenzene	ND		1.0	0.33	ug/L			07/06/20 15:05	1
2-Butanone	ND		5.0	1.9	ug/L			07/06/20 15:05	1
2-Hexanone	ND		5.0	1.1	ug/L			07/06/20 15:05	1
4-Methyl-2-pentanone	ND		5.0	1.3	ug/L			07/06/20 15:05	1
Acetone	ND		5.0	4.4	ug/L			07/06/20 15:05	1
Benzene	8.4		1.0	0.20	ug/L			07/06/20 15:05	1
Bromochloromethane	ND		1.0	0.41	ug/L			07/06/20 15:05	1
Bromodichloromethane	ND		1.0	0.34	ug/L			07/06/20 15:05	1
Bromoform	ND		1.0	0.54	ug/L			07/06/20 15:05	1
Bromomethane	ND		1.0	0.55	ug/L			07/06/20 15:05	1
Carbon disulfide	ND		1.0	0.82	ug/L			07/06/20 15:05	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			07/06/20 15:05	1
Chlorobenzene	0.40	J	1.0	0.38	ug/L			07/06/20 15:05	1
Chloroethane	ND		1.0	0.32	ug/L			07/06/20 15:05	1
Chloroform	ND		1.0	0.33	ug/L			07/06/20 15:05	1
Chloromethane	ND		1.0	0.40	ug/L			07/06/20 15:05	1
cis-1,2-Dichloroethene	0.78	J	1.0	0.22	ug/L			07/06/20 15:05	1
cis-1,3-Dichloropropene	ND		1.0	0.22	ug/L			07/06/20 15:05	1
Cyclohexane	ND		1.0	0.32	ug/L			07/06/20 15:05	1
Dibromochloromethane	ND		1.0		ug/L			07/06/20 15:05	1
Dichlorodifluoromethane	ND		1.0		ug/L			07/06/20 15:05	1
Ethylbenzene	ND		1.0		ug/L			07/06/20 15:05	1

Job ID: 410-5535-1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-3C-06232020

Lab Sample ID: 410-5535-2

Date Collected: 06/23/20 13:25 Matrix: Groundwater

Date Received: 06/24/20 10:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Freon 113	ND		1.0	0.31	ug/L			07/06/20 15:05	1
Isopropylbenzene	ND		1.0	0.34	ug/L			07/06/20 15:05	1
m&p-Xylene	ND		1.0	0.30	ug/L			07/06/20 15:05	1
Methyl acetate	ND		5.0	0.79	ug/L			07/06/20 15:05	1
Methyl tertiary butyl ether	ND		1.0	0.47	ug/L			07/06/20 15:05	1
Methylcyclohexane	ND		1.0	0.26	ug/L			07/06/20 15:05	1
Methylene Chloride	ND		1.0	0.32	ug/L			07/06/20 15:05	1
o-Xylene	ND		1.0	0.36	ug/L			07/06/20 15:05	1
Styrene	ND		1.0	0.42	ug/L			07/06/20 15:05	1
Tetrachloroethene	ND		1.0	0.25	ug/L			07/06/20 15:05	1
Toluene	1.5		1.0	0.38	ug/L			07/06/20 15:05	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			07/06/20 15:05	1
trans-1,3-Dichloropropene	ND		1.0	0.49	ug/L			07/06/20 15:05	1
Trichloroethene	0.70	J	1.0	0.31	ug/L			07/06/20 15:05	1
Trichlorofluoromethane	ND		1.0	0.32	ug/L			07/06/20 15:05	1
Vinyl chloride	ND		1.0	0.17	ug/L			07/06/20 15:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92		76 - 120			-		07/06/20 15:05	1
1,2-Dichloroethane-d4 (Surr)	91		75 - 123					07/06/20 15:05	1
Dibromofluoromethane (Surr)	99		77 - 124					07/06/20 15:05	1
Toluene-d8 (Surr)	93		80 - 120					07/06/20 15:05	1

Client Sample ID: GW-06232020-TB

Date Collected: 06/23/20 00:00

Date Received: 06/24/20 10:48

Lab Sample	ID: 410-5535-3
------------	----------------

Matrix: Water

Job ID: 410-5535-1

Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.24 ug	ıg/L			07/06/20 14:24	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37 ug	ıg/L			07/06/20 14:24	1
1,1,2-Trichloroethane	ND	1.0	0.43 ug	ıg/L			07/06/20 14:24	1
1,1-Dichloroethane	ND	1.0	0.26 ug	g/L			07/06/20 14:24	1
1,1-Dichloroethene	ND	1.0	0.26 ug	ıg/L			07/06/20 14:24	1
1,2,3-Trichlorobenzene	ND	1.0	0.36 ug	ıg/L			07/06/20 14:24	1
1,2,4-Trichlorobenzene	ND	1.0	0.37 ug	g/L			07/06/20 14:24	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.38 ug	ıg/L			07/06/20 14:24	1
1,2-Dibromoethane	ND	1.0	0.50 ug	ıg/L			07/06/20 14:24	1
1,2-Dichlorobenzene	ND	1.0	0.43 ug	ıg/L			07/06/20 14:24	1
1,2-Dichloroethane	ND	1.0	0.43 ug	ıg/L			07/06/20 14:24	1
1,2-Dichloropropane	ND	1.0	0.35 ug	ıg/L			07/06/20 14:24	1
1,3-Dichlorobenzene	ND	1.0	0.34 ug	ıg/L			07/06/20 14:24	1
1,4-Dichlorobenzene	ND	1.0	0.33 ug	ıg/L			07/06/20 14:24	1
2-Butanone	ND	5.0	1.9 ug	ıg/L			07/06/20 14:24	1
2-Hexanone	ND	5.0	1.1 ug	ıg/L			07/06/20 14:24	1
4-Methyl-2-pentanone	ND	5.0	1.3 ug	ıg/L			07/06/20 14:24	1
Acetone	ND	5.0	4.4 ug	ıg/L			07/06/20 14:24	1
Benzene	ND	1.0	0.20 ug	g/L			07/06/20 14:24	1
Bromochloromethane	ND	1.0	0.41 ug	ıg/L			07/06/20 14:24	1
Bromodichloromethane	ND	1.0	0.34 ug	ıg/L			07/06/20 14:24	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: GW-06232020-TB Lab Sample ID: 410-5535-3

Date Collected: 06/23/20 00:00 Date Received: 06/24/20 10:48

Matrix: Water

Job ID: 410-5535-1 SDG: GWM10

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Analyte Result Qualifier RL **MDL** Unit D Prepared **Analyzed** Dil Fac Bromoform $\overline{\mathsf{ND}}$ 1.0 0.54 ug/L 07/06/20 14:24 ND Bromomethane 1.0 0.55 ug/L 07/06/20 14:24 1 ND 1.0 Carbon disulfide 0.82 ug/L 07/06/20 14:24 1 Carbon tetrachloride ND 1.0 0.21 ug/L 07/06/20 14:24 1 Chlorobenzene ND 1.0 0.38 ug/L 07/06/20 14:24 1 Chloroethane ND 0.32 ug/L 1.0 07/06/20 14:24 1 Chloroform ND 1.0 0.33 ug/L 07/06/20 14:24 1 Chloromethane ND 1.0 0.40 ug/L 07/06/20 14:24 ND 1.0 0.22 ug/L cis-1.2-Dichloroethene 07/06/20 14:24 1 cis-1,3-Dichloropropene ND 1.0 0.22 ug/L 07/06/20 14:24 Cyclohexane ND 1.0 0.32 ug/L 07/06/20 14:24 1 Dibromochloromethane ND 1.0 0.28 ug/L 07/06/20 14:24 1 Dichlorodifluoromethane ND 07/06/20 14:24 1.0 0.31 ug/L 1 Ethylbenzene ND 1.0 0.30 ug/L 07/06/20 14:24 1 Freon 113 ND 0.31 ug/L 07/06/20 14:24 1.0 1 Isopropylbenzene ND 1.0 0.34 ug/L 07/06/20 14:24 1 m&p-Xylene ND 1.0 0.30 ug/L 07/06/20 14:24 1 ND 5.0 0.79 ug/L 07/06/20 14:24 Methyl acetate 1 Methyl tertiary butyl ether ND 1.0 0.47 ug/L 07/06/20 14:24 1 Methylcyclohexane ND 10 0.26 ug/L 07/06/20 14:24 1 Methylene Chloride ND 1.0 0.32 ug/L 07/06/20 14:24 1 o-Xylene ND 1.0 0.36 ug/L 07/06/20 14:24 1 Styrene ND 0.42 ug/L 07/06/20 14:24 1.0 Tetrachloroethene ND 1.0 0.25 ug/L 07/06/20 14:24 1 Toluene ND 1.0 0.38 ug/L 07/06/20 14:24 1 trans-1,2-Dichloroethene ND 0.24 ug/L 07/06/20 14:24 1.0 1 trans-1,3-Dichloropropene ND 1.0 0.49 ug/L 07/06/20 14:24 1 Trichloroethene ND 1.0 0.31 ug/L 07/06/20 14:24 1 Trichlorofluoromethane ND 1.0 0.32 ug/L 07/06/20 14:24 1 Vinyl chloride ND 07/06/20 14:24 1.0 0.17 ug/L Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 4-Bromofluorobenzene 95 76 - 120 07/06/20 14:24 1,2-Dichloroethane-d4 (Surr) 93 75 - 123 07/06/20 14:24 1 Dibromofluoromethane (Surr) 97 77 - 124 07/06/20 14:24 1 Toluene-d8 (Surr) 97 80 - 120 07/06/20 14:24

APPENDIX E.2 FALL 2020 LABORATORY RESULT FORMS

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-102-11102020 Lab Sample ID: 410-20426-1

Date Collected: 11/10/20 11:30 Matrix: Groundwater

Date Received: 11/11/20 10:40

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethylbenzene	ND		5.0	2.0	ug/L			11/19/20 05:43	
Styrene	ND		25	1.0	ug/L			11/19/20 05:43	
cis-1,3-Dichloropropene	ND		5.0	1.0	ug/L			11/19/20 05:43	
trans-1,3-Dichloropropene	ND		5.0	1.0	ug/L			11/19/20 05:43	
1,4-Dichlorobenzene	ND		25	1.0	ug/L			11/19/20 05:43	
1,2-Dibromoethane	ND		5.0	1.0	ug/L			11/19/20 05:43	
1,2-Dichloroethane	ND		5.0	1.5	ug/L			11/19/20 05:43	
4-Methyl-2-pentanone	ND		50		ug/L			11/19/20 05:43	
Methylcyclohexane	ND		25		ug/L			11/19/20 05:43	
Toluene	ND		5.0		ug/L			11/19/20 05:43	
Chlorobenzene	26		5.0		ug/L			11/19/20 05:43	
Cyclohexane	ND		25		ug/L			11/19/20 05:43	
1,2,4-Trichlorobenzene	ND		25		ug/L			11/19/20 05:43	
Dibromochloromethane	ND		5.0		ug/L			11/19/20 05:43	
Tetrachloroethene	ND		5.0		ug/L			11/19/20 05:43	
cis-1,2-Dichloroethene	ND		5.0		ug/L			11/19/20 05:43	
trans-1,2-Dichloroethene	ND		5.0		ug/L			11/19/20 05:43	
Methyl tertiary butyl ether	ND		5.0		ug/L			11/19/20 05:43	
1.3-Dichlorobenzene	ND		25		ug/L			11/19/20 05:43	
Carbon tetrachloride	ND		5.0		ug/L			11/19/20 05:43	
2-Hexanone	ND ND		50		ug/L ug/L			11/19/20 05:43	
Acetone	ND		100					11/19/20 05:43	
Chloroform	ND ND		5.0		ug/L ug/L				
					_			11/19/20 05:43	
1,1,1-Trichloroethane	ND		5.0		ug/L			11/19/20 05:43	
Bromomethane	ND		5.0		ug/L			11/19/20 05:43	
Chloromethane	ND		5.0		ug/L			11/19/20 05:43	
Bromochloromethane	ND		25		ug/L			11/19/20 05:43	
Chloroethane	1.6	J	5.0		ug/L			11/19/20 05:43	
Vinyl chloride	ND		5.0		ug/L			11/19/20 05:43	
Methylene Chloride	ND		5.0		ug/L			11/19/20 05:43	
Carbon disulfide	ND		25		ug/L			11/19/20 05:43	
Bromoform	ND		20		ug/L			11/19/20 05:43	
Bromodichloromethane	ND		5.0		ug/L			11/19/20 05:43	
1,1-Dichloroethane	ND		5.0		ug/L			11/19/20 05:43	
1,1-Dichloroethene	ND		5.0	1.0	ug/L			11/19/20 05:43	
Trichlorofluoromethane	ND		5.0		ug/L			11/19/20 05:43	
Dichlorodifluoromethane	ND		5.0	1.0	ug/L			11/19/20 05:43	
Freon 113	ND		50	1.0	ug/L			11/19/20 05:43	
1,2-Dichloropropane	ND		5.0	1.0	ug/L			11/19/20 05:43	
2-Butanone	ND		50	1.5	ug/L			11/19/20 05:43	
1,1,2-Trichloroethane	ND		5.0	1.0	ug/L			11/19/20 05:43	
Trichloroethene	ND		5.0	1.0	ug/L			11/19/20 05:43	
Methyl acetate	ND		25	1.5	ug/L			11/19/20 05:43	
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			11/19/20 05:43	
1,2,3-Trichlorobenzene	ND		25		ug/L			11/19/20 05:43	
p-Xylene	ND		5.0		ug/L			11/19/20 05:43	
1,2-Dichlorobenzene	ND		25		ug/L			11/19/20 05:43	
1,2-Dibromo-3-Chloropropane	ND		25		ug/L			11/19/20 05:43	
Isopropylbenzene	ND		25		ug/L			11/19/20 05:43	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-102-11102020 Lab Sample ID: 410-20426-1

Date Collected: 11/10/20 11:30 Matrix: Groundwater

Date Received: 11/11/20 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m&p-Xylene	ND		25	5.0	ug/L			11/19/20 05:43	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		80 - 120					11/19/20 05:43	5
4-Bromofluorobenzene (Surr)	91		80 - 120					11/19/20 05:43	5
Dibromofluoromethane (Surr)	100		80 - 120					11/19/20 05:43	5
Toluene-d8 (Surr)	101		80 - 120					11/19/20 05:43	5

Method: 8260C - Volatile O Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2000		50	10	ug/L		<u> </u>	11/19/20 06:05	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		80 - 120					11/19/20 06:05	50
4-Bromofluorobenzene (Surr)	90		80 - 120					11/19/20 06:05	50
Dibromofluoromethane (Surr)	101		80 - 120					11/19/20 06:05	50
Toluene-d8 (Surr)	101		80 - 120					11/19/20 06:05	50

Method: 8270D SIM - Semivo	latile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	96		6.1	2.0	ug/L		11/17/20 09:06	11/18/20 20:45	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	51		10 - 122				11/17/20 09:06	11/18/20 20:45	20
1-Methylnaphthalene-d10 (Surr)	74		49 - 115				11/17/20 09:06	11/18/20 20:45	20
Fluoranthene-d10 (Surr)	81		65 - 129				11/17/20 09:06	11/18/20 20:45	20

Client Sample ID: MW-B-OMW-201-11102020

Date Collected: 11/10/20 13:25

Lab Sample ID: 410-20426-2

Matrix: Groundwater

Date Received: 11/11/20 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	180		20	8.0	ug/L			11/19/20 06:27	20
Styrene	ND		100	4.0	ug/L			11/19/20 06:27	20
cis-1,3-Dichloropropene	ND		20	4.0	ug/L			11/19/20 06:27	20
trans-1,3-Dichloropropene	ND		20	4.0	ug/L			11/19/20 06:27	20
1,4-Dichlorobenzene	11	J	100	4.0	ug/L			11/19/20 06:27	20
1,2-Dibromoethane	ND		20	4.0	ug/L			11/19/20 06:27	20
1,2-Dichloroethane	ND		20	6.0	ug/L			11/19/20 06:27	20
4-Methyl-2-pentanone	ND		200	10	ug/L			11/19/20 06:27	20
Methylcyclohexane	ND		100	10	ug/L			11/19/20 06:27	20
Toluene	590		20	4.0	ug/L			11/19/20 06:27	20
Chlorobenzene	2800		20	4.0	ug/L			11/19/20 06:27	20
Cyclohexane	ND		100	20	ug/L			11/19/20 06:27	20
1,2,4-Trichlorobenzene	ND		100	6.0	ug/L			11/19/20 06:27	20
Dibromochloromethane	ND		20	4.0	ug/L			11/19/20 06:27	20
Tetrachloroethene	ND		20	4.0	ug/L			11/19/20 06:27	20
cis-1,2-Dichloroethene	ND		20	4.0	ug/L			11/19/20 06:27	20
trans-1,2-Dichloroethene	6.6	J	20	4.0	ug/L			11/19/20 06:27	20
Methyl tertiary butyl ether	ND		20	4.0	ug/L			11/19/20 06:27	20

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-201-11102020 Lab Sample ID: 410-20426-2

Date Collected: 11/10/20 13:25 Matrix: Groundwater

Date Received: 11/11/20 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,3-Dichlorobenzene	ND		100	4.0	ug/L			11/19/20 06:27	2
Carbon tetrachloride	ND		20	4.0	ug/L			11/19/20 06:27	2
2-Hexanone	ND		200	6.0	ug/L			11/19/20 06:27	2
Acetone	ND		400	14	ug/L			11/19/20 06:27	2
Chloroform	ND		20	4.0	ug/L			11/19/20 06:27	2
1,1,1-Trichloroethane	ND		20		ug/L			11/19/20 06:27	2
Bromomethane	ND		20		ug/L			11/19/20 06:27	2
Chloromethane	ND		20		ug/L			11/19/20 06:27	2
Bromochloromethane	ND		100		ug/L			11/19/20 06:27	2
Chloroethane	40		20		ug/L			11/19/20 06:27	2
Vinyl chloride	ND		20		ug/L			11/19/20 06:27	2
Methylene Chloride	ND		20		ug/L			11/19/20 06:27	2
Carbon disulfide	ND		100		ug/L			11/19/20 06:27	2
Bromoform	ND		80		ug/L			11/19/20 06:27	2
Bromodichloromethane	ND ND		20		ug/L ug/L			11/19/20 06:27	2
1.1-Dichloroethane	ND		20		ug/L			11/19/20 06:27	2
1,1-Dichloroethene	ND ND		20		ug/L ug/L			11/19/20 06:27	2
Trichlorofluoromethane	ND ND		20		_			11/19/20 06:27	
Dichlorodifluoromethane					ug/L				
	ND		20		ug/L			11/19/20 06:27	2
Freon 113	ND		200		ug/L			11/19/20 06:27	2
1,2-Dichloropropane	ND		20		ug/L			11/19/20 06:27	
2-Butanone	ND		200		ug/L			11/19/20 06:27	2
1,1,2-Trichloroethane	ND		20		ug/L			11/19/20 06:27	2
Trichloroethene	ND		20		ug/L			11/19/20 06:27	
Methyl acetate	ND		100		ug/L			11/19/20 06:27	2
1,1,2,2-Tetrachloroethane	ND		20		ug/L			11/19/20 06:27	2
1,2,3-Trichlorobenzene	ND		100		ug/L			11/19/20 06:27	
o-Xylene	110		20	8.0	ug/L			11/19/20 06:27	2
1,2-Dichlorobenzene	ND		100	4.0	ug/L			11/19/20 06:27	2
1,2-Dibromo-3-Chloropropane	ND		100	6.0	ug/L			11/19/20 06:27	2
Isopropylbenzene	ND		100	4.0	ug/L			11/19/20 06:27	2
m&p-Xylene	590		100	20	ug/L			11/19/20 06:27	2
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	111		80 - 120					11/19/20 06:27	2
4-Bromofluorobenzene (Surr)	93		80 - 120					11/19/20 06:27	2
Dibromofluoromethane (Surr)	100		80 - 120					11/19/20 06:27	2
Toluene-d8 (Surr)	99		80 - 120					11/19/20 06:27	2
Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS - DL						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Benzene	13000		200	40	ug/L			11/19/20 06:49	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	104		80 - 120			-		11/19/20 06:49	20
4-Bromofluorobenzene (Surr)	92		80 - 120					11/19/20 06:49	20
Dibromofluoromethane (Surr)	102		80 - 120					11/19/20 06:49	20
Toluene-d8 (Surr)	101		80 - 120					11/19/20 06:49	20

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-201-11102020 Lab Sample ID: 410-20426-2

Date Collected: 11/10/20 13:25 Matrix: Groundwater

Date Received: 11/11/20 10:40

Method: 8270D SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	750		28	9.3	ug/L		11/17/20 09:06	11/25/20 23:13	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	60		10 - 122				11/17/20 09:06	11/25/20 23:13	100
1-Methylnaphthalene-d10 (Surr)	102		49 - 115				11/17/20 09:06	11/25/20 23:13	100

Client Sample ID: MW-B-EPA-4A-11102020 Lab Sample ID: 410-20426-3

Date Collected: 11/10/20 14:00 Matrix: Groundwater

Date Received: 11/11/20 10:40

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/19/20 00:13	1
Styrene	ND	5.0	0.20	-			11/19/20 00:13	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/19/20 00:13	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/19/20 00:13	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/19/20 00:13	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/19/20 00:13	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/19/20 00:13	1
Toluene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Cyclohexane	ND	5.0	1.0	ug/L			11/19/20 00:13	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/19/20 00:13	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/19/20 00:13	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/19/20 00:13	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/19/20 00:13	1
2-Hexanone	ND	10	0.30	ug/L			11/19/20 00:13	1
Acetone	1.1 J J	20	0.70	ug/L			11/19/20 00:13	1
Chloroform	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Benzene	ND	1.0	0.20	ug/L			11/19/20 00:13	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/19/20 00:13	1
Bromomethane	ND	1.0	0.30	ug/L			11/19/20 00:13	1
Chloromethane	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Bromochloromethane	ND	5.0	0.20				11/19/20 00:13	1
Chloroethane	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Vinyl chloride	ND	1.0	0.20	ug/L			11/19/20 00:13	1
Methylene Chloride	ND	1.0	0.30	ug/L			11/19/20 00:13	1
Carbon disulfide	ND	5.0		ug/L			11/19/20 00:13	1
Bromoform	ND	4.0		ug/L			11/19/20 00:13	1
Bromodichloromethane	ND	1.0	0.20				11/19/20 00:13	1
1,1-Dichloroethane	ND	1.0	0.20	-			11/19/20 00:13	1
1,1-Dichloroethene	ND	1.0		ug/L			11/19/20 00:13	1
Trichlorofluoromethane	ND	1.0		ug/L			11/19/20 00:13	1

AMSS 12/15/2020

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-4A-11102020 Lab Sample ID: 410-20426-3

Date Collected: 11/10/20 14:00 **Matrix: Groundwater**

Date Received: 11/11/20 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/19/20 00:13	1
Freon 113	ND		10	0.20	ug/L			11/19/20 00:13	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/19/20 00:13	1
2-Butanone	ND		10	0.30	ug/L			11/19/20 00:13	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/19/20 00:13	1
Trichloroethene	ND		1.0	0.20	ug/L			11/19/20 00:13	1
Methyl acetate	ND		5.0	0.30	ug/L			11/19/20 00:13	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/19/20 00:13	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/19/20 00:13	1
o-Xylene	ND		1.0	0.40	ug/L			11/19/20 00:13	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/19/20 00:13	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/19/20 00:13	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/19/20 00:13	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/19/20 00:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 120					11/19/20 00:13	1
4-Bromofluorobenzene (Surr)	90		80 - 120					11/19/20 00:13	1
Dibromofluoromethane (Surr)	102		80 - 120					11/19/20 00:13	1
Toluene-d8 (Surr)	99		80 - 120					11/19/20 00:13	1

Method: 8270D SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.59	F1 J	0.29	0.096	ug/L		11/17/20 09:06	11/18/20 21:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	48		10 - 122				11/17/20 09:06	11/18/20 21:46	1
1-Methylnaphthalene-d10 (Surr)	77		49 - 115				11/17/20 09:06	11/18/20 21:46	1

Client Sample ID: MW-B-EPA-4B-11102020

Fluoranthene-d10 (Surr)

Lab Sample ID: 410-20426-4 Date Collected: 11/10/20 14:10 **Matrix: Groundwater** Date Received: 11/11/20 10:40

65 - 129

34 X *3

	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/19/20 01:19	1
Styrene	ND	5.0	0.20	ug/L			11/19/20 01:19	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/19/20 01:19	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/19/20 01:19	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/19/20 01:19	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/19/20 01:19	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/19/20 01:19	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/19/20 01:19	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/19/20 01:19	1
Toluene	3.7	1.0	0.20	ug/L			11/19/20 01:19	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/19/20 01:19	1
Cyclohexane	ND	5.0	1.0	ug/L			11/19/20 01:19	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/19/20 01:19	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/19/20 01:19	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/19/20 01:19	1

AMSS 12/17/2020

Eurofins Lancaster Laboratories Env, LLC

11/17/20 09:06 11/18/20 21:46

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-4B-11102020

Date Collected: 11/10/20 14:10 Date Received: 11/11/20 10:40 Lab Sample ID: 410-20426-4

Matrix: Groundwater

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/19/20 01:19	
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/19/20 01:19	
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/19/20 01:19	
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/19/20 01:19	
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/19/20 01:19	
2-Hexanone	ND		10	0.30	ug/L			11/19/20 01:19	
Acetone	ND		20	0.70	ug/L			11/19/20 01:19	
Chloroform	ND		1.0	0.20	ug/L			11/19/20 01:19	
Benzene	ND		1.0	0.20	ug/L			11/19/20 01:19	
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/19/20 01:19	
Bromomethane	ND		1.0	0.30	ug/L			11/19/20 01:19	
Chloromethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
Bromochloromethane	ND		5.0	0.20	ug/L			11/19/20 01:19	
Chloroethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
Vinyl chloride	ND		1.0	0.20	ug/L			11/19/20 01:19	
Methylene Chloride	ND		1.0	0.30	ug/L			11/19/20 01:19	
Carbon disulfide	ND		5.0	0.20	ug/L			11/19/20 01:19	
Bromoform	ND		4.0	1.0	ug/L			11/19/20 01:19	
Bromodichloromethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/19/20 01:19	
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
Freon 113	ND		10	0.20	ug/L			11/19/20 01:19	
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/19/20 01:19	
2-Butanone	ND		10	0.30	ug/L			11/19/20 01:19	
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
Trichloroethene	ND		1.0	0.20	ug/L			11/19/20 01:19	
Methyl acetate	ND		5.0	0.30	ug/L			11/19/20 01:19	
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/19/20 01:19	
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/19/20 01:19	
o-Xylene	ND		1.0	0.40	ug/L			11/19/20 01:19	
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/19/20 01:19	
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/19/20 01:19	
Isopropylbenzene	ND		5.0		ug/L			11/19/20 01:19	
m&p-Xylene	ND		5.0	1.0	ug/L			11/19/20 01:19	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		80 - 120			· ·		11/19/20 01:19	
4-Bromofluorobenzene (Surr)	93		80 - 120					11/19/20 01:19	
Dibromofluoromethane (Surr)	101		80 - 120					11/19/20 01:19	
Toluene-d8 (Surr)	101		80 - 120					11/19/20 01:19	

Method: 8270D SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.57		0.30	0.10	ug/L		11/17/20 09:06	11/18/20 23:17	1
							- ·		D:/ E
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate Benzo(a)pyrene-d12 (Surr)		Qualifier	10 - 122					Analyzed 11/18/20 23:17	DII Fac

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-4B-11102020 Lab Sample ID: 410-20426-4

Date Collected: 11/10/20 14:10 **Matrix: Groundwater**

Date Received: 11/11/20 10:40

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) (Continued)

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Fluoranthene-d10 (Surr) 65 - 129 11/17/20 09:06 11/18/20 23:17 75

Client Sample ID: DUP-001-11102020 (blind dup of OMW-102)

Lab Sample ID: 410-20426-5 Date Collected: 11/10/20 00:00 **Matrix: Groundwater**

Date Received: 11/11/20 10:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	5.0	2.0	ug/L			11/19/20 07:11	5
Styrene	ND	25	1.0	ug/L			11/19/20 07:11	5
cis-1,3-Dichloropropene	ND	5.0	1.0	ug/L			11/19/20 07:11	5
trans-1,3-Dichloropropene	ND	5.0	1.0	ug/L			11/19/20 07:11	5
1,4-Dichlorobenzene	ND	25	1.0	ug/L			11/19/20 07:11	5
1,2-Dibromoethane	ND	5.0	1.0	ug/L			11/19/20 07:11	5
1,2-Dichloroethane	ND	5.0	1.5	ug/L			11/19/20 07:11	5
4-Methyl-2-pentanone	ND	50	2.5	ug/L			11/19/20 07:11	5
Methylcyclohexane	ND	25	2.5	ug/L			11/19/20 07:11	5
Toluene	ND	5.0	1.0	ug/L			11/19/20 07:11	5
Chlorobenzene	25	5.0	1.0	ug/L			11/19/20 07:11	5
Cyclohexane	ND	25	5.0	ug/L			11/19/20 07:11	5
1,2,4-Trichlorobenzene	ND	25	1.5	ug/L			11/19/20 07:11	5
Dibromochloromethane	ND	5.0	1.0	ug/L			11/19/20 07:11	5
Tetrachloroethene	ND	5.0	1.0	ug/L			11/19/20 07:11	5
cis-1,2-Dichloroethene	ND	5.0	1.0	ug/L			11/19/20 07:11	5
trans-1,2-Dichloroethene	ND	5.0	1.0	ug/L			11/19/20 07:11	5
Methyl tertiary butyl ether	ND	5.0	1.0	ug/L			11/19/20 07:11	5
1,3-Dichlorobenzene	ND	25	1.0	ug/L			11/19/20 07:11	5
Carbon tetrachloride	ND	5.0	1.0	ug/L			11/19/20 07:11	5
2-Hexanone	ND	50	1.5	ug/L			11/19/20 07:11	5
Acetone	ND	100	3.5	ug/L			11/19/20 07:11	5
Chloroform	ND	5.0	1.0	ug/L			11/19/20 07:11	5
1,1,1-Trichloroethane	ND	5.0	1.5	ug/L			11/19/20 07:11	5
Bromomethane	ND	5.0	1.5	ug/L			11/19/20 07:11	5
Chloromethane	ND	5.0	1.0	ug/L			11/19/20 07:11	5
Bromochloromethane	ND	25	1.0	ug/L			11/19/20 07:11	5
Chloroethane	1.7 J	5.0	1.0	ug/L			11/19/20 07:11	5
Vinyl chloride	ND	5.0	1.0	ug/L			11/19/20 07:11	5
Methylene Chloride	ND	5.0	1.5	ug/L			11/19/20 07:11	5
Carbon disulfide	ND	25	1.0	ug/L			11/19/20 07:11	5
Bromoform	ND	20	5.0	ug/L			11/19/20 07:11	5
Bromodichloromethane	ND	5.0	1.0	ug/L			11/19/20 07:11	5
1,1-Dichloroethane	ND	5.0	1.0	ug/L			11/19/20 07:11	5
1,1-Dichloroethene	ND	5.0	1.0	ug/L			11/19/20 07:11	5
Trichlorofluoromethane	ND	5.0	1.0	ug/L			11/19/20 07:11	5
Dichlorodifluoromethane	ND	5.0		ug/L			11/19/20 07:11	5
Freon 113	ND	50	1.0	ug/L			11/19/20 07:11	5
1,2-Dichloropropane	ND	5.0		ug/L			11/19/20 07:11	5
2-Butanone	ND	50		ug/L			11/19/20 07:11	5
1,1,2-Trichloroethane	ND	5.0		ug/L			11/19/20 07:11	5

AMSS 12/15/2020

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: DUP-001-11102020 (blind dup of OMW-102) Lab Sample ID: 410-20426-5

Date Collected: 11/10/20 00:00 **Matrix: Groundwater**

Date Received: 11/11/20 10:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		5.0	1.0	ug/L			11/19/20 07:11	5
Methyl acetate	ND		25	1.5	ug/L			11/19/20 07:11	5
1,1,2,2-Tetrachloroethane	ND		5.0	1.0	ug/L			11/19/20 07:11	5
1,2,3-Trichlorobenzene	ND		25	2.0	ug/L			11/19/20 07:11	5
o-Xylene	ND		5.0	2.0	ug/L			11/19/20 07:11	5
1,2-Dichlorobenzene	ND		25	1.0	ug/L			11/19/20 07:11	5
1,2-Dibromo-3-Chloropropane	ND		25	1.5	ug/L			11/19/20 07:11	5
Isopropylbenzene	ND		25	1.0	ug/L			11/19/20 07:11	5
m&p-Xylene	ND		25	5.0	ug/L			11/19/20 07:11	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		80 - 120					11/19/20 07:11	5
4-Bromofluorobenzene (Surr)	90		80 - 120					11/19/20 07:11	5
Dibromofluoromethane (Surr)	100		80 - 120					11/19/20 07:11	5
Toluene-d8 (Surr)	101		80 - 120					11/19/20 07:11	5
Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS - DI						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1800		50	10	ug/L		<u> </u>	11/19/20 07:33	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		80 - 120					11/19/20 07:33	50
4-Bromofluorobenzene (Surr)	90		80 - 120					11/19/20 07:33	50
Dibromofluoromethane (Surr)	102		80 - 120					11/19/20 07:33	50
Dibromonacionicanane (Carr)			80 - 120					11/19/20 07:33	50
Toluene-d8 (Surr)	101								
		c Compou	nds (GC/MS	SIM)					
Toluene-d8 (Surr)	volatile Organi	c Compou Qualifier	nds (GC/MS RL	SIM) MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method. 6270D Shirt - Sening	voiatile Organic	Compou	ilus (GC/MS	Olivi)					
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	96		6.2	2.1	ug/L		11/17/20 09:06	11/18/20 23:48	20
Surrogate	%Recovery 0	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)			10 - 122				11/17/20 09:06	11/18/20 23:48	20

Surrogate	70Necovery	Qualifier	LIIIIII	riepaieu	Allalyzeu	DII Fac
Benzo(a)pyrene-d12 (Surr)	55		10 - 122	11/17/20 09:06	11/18/20 23:48	20
1-Methylnaphthalene-d10 (Surr)	70		49 - 115	11/17/20 09:06	11/18/20 23:48	20
Fluoranthene-d10 (Surr)	87		65 - 129	11/17/20 09:06	11/18/20 23:48	20

Client Sample ID: GW-11102020-TB

Toluene

Lab Sample ID: 410-20426-6 Date Collected: 11/10/20 00:00 **Matrix: Water** Date Received: 11/11/20 10:40

Method: 8260C - Volatile Or	ganic Compounds by GC/	IVI S						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/18/20 23:30	1
Styrene	ND	5.0	0.20	ug/L			11/18/20 23:30	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/18/20 23:30	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/18/20 23:30	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/18/20 23:30	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/18/20 23:30	1

AMSS 12/15/2020

1.0

0.20 ug/L

ND

11/18/20 23:30

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 11/10/20 00:00 Date Received: 11/11/20 10:40 Matrix: Water

Analyte	Result Qu		MDL		D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Cyclohexane	ND	5.0	1.0	ug/L			11/18/20 23:30	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/18/20 23:30	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/18/20 23:30	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/18/20 23:30	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/18/20 23:30	1
2-Hexanone	ND	10	0.30	ug/L			11/18/20 23:30	1
Acetone	ND	20	0.70	ug/L			11/18/20 23:30	1
Chloroform	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Benzene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/18/20 23:30	1
Bromomethane	ND	1.0	0.30	ug/L			11/18/20 23:30	1
Chloromethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/18/20 23:30	1
Chloroethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Vinyl chloride	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Methylene Chloride	ND	1.0	0.30	ug/L			11/18/20 23:30	1
Carbon disulfide	ND	5.0	0.20	ug/L			11/18/20 23:30	1
Bromoform	ND	4.0	1.0	ug/L			11/18/20 23:30	1
Bromodichloromethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
1,1-Dichloroethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
1,1-Dichloroethene	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Trichlorofluoromethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Dichlorodifluoromethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Freon 113	ND	10	0.20	ug/L			11/18/20 23:30	1
1,2-Dichloropropane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
2-Butanone	ND	10	0.30	ug/L			11/18/20 23:30	1
1,1,2-Trichloroethane	ND	1.0	0.20	ug/L			11/18/20 23:30	1
Trichloroethene	ND	1.0	0.20				11/18/20 23:30	1
Methyl acetate	ND	5.0	0.30	_			11/18/20 23:30	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.20	_			11/18/20 23:30	1
1,2,3-Trichlorobenzene	ND	5.0	0.40				11/18/20 23:30	1
o-Xylene	ND	1.0		ug/L			11/18/20 23:30	1
1,2-Dichlorobenzene	ND	5.0		ug/L			11/18/20 23:30	1
1,2-Dibromo-3-Chloropropane	ND	5.0	0.30				11/18/20 23:30	1
Isopropylbenzene	ND	5.0	0.20				11/18/20 23:30	1
m&p-Xylene	ND	5.0		ug/L			11/18/20 23:30	1
Surrogate	%Recovery Qu	alifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	80 - 120			-		11/18/20 23:30	1
4-Bromofluorobenzene (Surr)	92	80 - 120					11/18/20 23:30	1
Dibromofluoromethane (Surr)	101	80 - 120					11/18/20 23:30	1
Toluene-d8 (Surr)	101	80 - 120					11/18/20 23:30	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-202-11122020 Lab Sample ID: 410-20764-1

Date Collected: 11/12/20 12:15

Matrix: Groundwater

Date Received: 11/13/20 10:37

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethylbenzene	ND	1.0	0.40	ug/L			11/23/20 06:55	
Styrene	ND	5.0	0.20	ug/L			11/23/20 06:55	
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 06:55	
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 06:55	
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 06:55	
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 06:55	
1,2-Dichloroethane	0.36 J	1.0	0.30	ug/L			11/23/20 06:55	
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 06:55	
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 06:55	
Toluene	ND	1.0	0.20	ug/L			11/23/20 06:55	
Chlorobenzene	0.40 J	1.0		ug/L			11/23/20 06:55	
Cyclohexane	ND	5.0		ug/L			11/23/20 06:55	
1,2,4-Trichlorobenzene	ND	5.0		ug/L			11/23/20 06:55	
Dibromochloromethane	ND	1.0		ug/L			11/23/20 06:55	
Tetrachloroethene	ND	1.0		ug/L			11/23/20 06:55	
cis-1,2-Dichloroethene	1.2	1.0		ug/L			11/23/20 06:55	
trans-1,2-Dichloroethene	ND	1.0		ug/L			11/23/20 06:55	
Methyl tertiary butyl ether	ND	1.0		ug/L			11/23/20 06:55	
1.3-Dichlorobenzene	ND	5.0		ug/L			11/23/20 06:55	,
Carbon tetrachloride	ND	1.0		ug/L			11/23/20 06:55	
2-Hexanone	ND	10		ug/L			11/23/20 06:55	
Acetone	ND	20		ug/L			11/23/20 06:55	
Chloroform	ND	1.0		ug/L			11/23/20 06:55	
Benzene	6.3	1.0		ug/L			11/23/20 06:55	
1,1,1-Trichloroethane	ND	1.0		ug/L			11/23/20 06:55	· · · · · · .
Bromomethane	ND	1.0		ug/L			11/23/20 06:55	
Chloromethane	ND	1.0		ug/L			11/23/20 06:55	
Bromochloromethane	ND	5.0		ug/L			11/23/20 06:55	
Chloroethane	ND ND	1.0		_			11/23/20 06:55	
Vinyl chloride	ND ND	1.0		ug/L			11/23/20 06:55	
	ND ND			ug/L				
Methylene Chloride Carbon disulfide	ND ND	1.0 5.0		ug/L			11/23/20 06:55	
Sromoform	ND ND			ug/L			11/23/20 06:55	
		4.0		ug/L			11/23/20 06:55	
Bromodichloromethane	ND	1.0		ug/L			11/23/20 06:55	
1,1-Dichloroethane	ND	1.0		ug/L			11/23/20 06:55	
1,1-Dichloroethene	ND	1.0		ug/L			11/23/20 06:55	
Trichlorofluoromethane	ND	1.0		ug/L			11/23/20 06:55	
Dichlorodifluoromethane	ND	1.0		ug/L			11/23/20 06:55	,
Freon 113	ND	10		ug/L			11/23/20 06:55	
1,2-Dichloropropane	ND	1.0		ug/L			11/23/20 06:55	,
2-Butanone	ND	10		ug/L			11/23/20 06:55	,
1,1,2-Trichloroethane	ND	1.0		ug/L			11/23/20 06:55	
Trichloroethene	1.0	1.0		ug/L			11/23/20 06:55	•
Methyl acetate	ND	5.0		ug/L			11/23/20 06:55	
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			11/23/20 06:55	
1,2,3-Trichlorobenzene	ND	5.0		ug/L			11/23/20 06:55	•
o-Xylene	ND	1.0		ug/L			11/23/20 06:55	
1,2-Dichlorobenzene	ND	5.0		ug/L			11/23/20 06:55	
1,2-Dibromo-3-Chloropropane	ND	5.0	0.30	ug/L			11/23/20 06:55	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-202-11122020 Lab Sample ID: 410-20764-1

Date Collected: 11/12/20 12:15 Matrix: Groundwater

Date Received: 11/13/20 10:37

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		5.0	0.20	ug/L			11/23/20 06:55	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 06:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		80 - 120					11/23/20 06:55	1
4-Bromofluorobenzene (Surr)	98		80 - 120					11/23/20 06:55	1
Dibromofluoromethane (Surr)	98		80 - 120					11/23/20 06:55	1
Toluene-d8 (Surr)	103		80 - 120					11/23/20 06:55	1

Client Sample ID: MW-B-EPA-5A-11122020 Lab Sample ID: 410-20764-2

Date Collected: 11/12/20 14:20 Date Received: 11/13/20 10:37 Matrix: Groundwater

Job ID: 410-20426-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.40	ug/L			11/23/20 00:28	1
Styrene	ND		5.0	0.20	ug/L			11/23/20 00:28	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 00:28	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L			11/23/20 00:28	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			11/23/20 00:28	1
Methylcyclohexane	ND		5.0	0.50	ug/L			11/23/20 00:28	1
Toluene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Chlorobenzene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Cyclohexane	ND	F1	5.0	1.0	ug/L			11/23/20 00:28	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/23/20 00:28	1
Dibromochloromethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Tetrachloroethene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
cis-1,2-Dichloroethene	ND	F1	1.0	0.20	ug/L			11/23/20 00:28	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/23/20 00:28	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 00:28	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/23/20 00:28	1
2-Hexanone	ND		10	0.30	ug/L			11/23/20 00:28	1
Acetone	ND		20	0.70	ug/L			11/23/20 00:28	1
Chloroform	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Benzene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/23/20 00:28	1
Bromomethane	ND		1.0	0.30	ug/L			11/23/20 00:28	1
Chloromethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Bromochloromethane	ND		5.0	0.20	ug/L			11/23/20 00:28	1
Chloroethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Vinyl chloride	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/23/20 00:28	1
Carbon disulfide	ND		5.0	0.20	ug/L			11/23/20 00:28	1
Bromoform	ND		4.0	1.0	ug/L			11/23/20 00:28	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
1,1-Dichloroethane	ND		1.0		ug/L			11/23/20 00:28	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-5A-11122020 Lab Sample ID: 410-20764-2

Date Collected: 11/12/20 14:20 Matrix: Groundwater

Date Received: 11/13/20 10:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Freon 113	ND		10	0.20	ug/L			11/23/20 00:28	1
1,2-Dichloropropane	ND	F1	1.0	0.20	ug/L			11/23/20 00:28	1
2-Butanone	ND		10	0.30	ug/L			11/23/20 00:28	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Trichloroethene	ND		1.0	0.20	ug/L			11/23/20 00:28	1
Methyl acetate	ND		5.0	0.30	ug/L			11/23/20 00:28	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/23/20 00:28	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/23/20 00:28	1
o-Xylene	ND		1.0	0.40	ug/L			11/23/20 00:28	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 00:28	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/23/20 00:28	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/23/20 00:28	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 00:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		80 - 120			-		11/23/20 00:28	1
4-Bromofluorobenzene (Surr)	99		80 - 120					11/23/20 00:28	1
Dibromofluoromethane (Surr)	97		80 - 120					11/23/20 00:28	1
Toluene-d8 (Surr)	101		80 - 120					11/23/20 00:28	1
Method: 8270D SIM - Semi	volatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 8270D SIM - Semi	volatile Organic	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.31	0.10	ug/L		11/19/20 10:20	12/03/20 17:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	34		10 - 122				11/19/20 10:20	12/03/20 17:13	1

 Benzo(a)pyrene-d12 (Surr)
 34
 10 - 122
 11/19/20 10:20
 12/03/20 17:13

 1-Methylnaphthalene-d10 (Surr)
 67
 49 - 115
 11/19/20 10:20
 12/03/20 17:13

 Fluoranthene-d10 (Surr)
 72
 65 - 129
 11/19/20 10:20
 12/03/20 17:13

Client Sample ID: MW-B-EPA-5B-11122020

Date Collected: 11/12/20 14:25 Date Received: 11/13/20 10:37 Lab Sample ID: 410-20764-3

Matrix: Groundwater

Job ID: 410-20426-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/23/20 01:36	1
Styrene	ND	5.0	0.20	ug/L			11/23/20 01:36	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 01:36	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 01:36	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 01:36	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 01:36	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/23/20 01:36	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 01:36	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 01:36	1
Toluene	ND	1.0	0.20	ug/L			11/23/20 01:36	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/23/20 01:36	1
Cyclohexane	ND	5.0	1.0	ug/L			11/23/20 01:36	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/23/20 01:36	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-5B-11122020 Lab Sample ID: 410-20764-3

Date Collected: 11/12/20 14:25

Matrix: Groundwater

Date Received: 11/13/20 10:37

1,4-Dioxane

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Dibromochloromethane	ND		1.0	0.20	ug/L			11/23/20 01:36	
Tetrachloroethene	ND		1.0	0.20	ug/L			11/23/20 01:36	
cis-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 01:36	
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 01:36	
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/23/20 01:36	
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 01:36	
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/23/20 01:36	
2-Hexanone	ND		10	0.30	ug/L			11/23/20 01:36	
Acetone	ND		20	0.70	ug/L			11/23/20 01:36	
Chloroform	ND		1.0	0.20	ug/L			11/23/20 01:36	
Benzene	ND		1.0	0.20	ug/L			11/23/20 01:36	
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/23/20 01:36	
Bromomethane	ND		1.0		ug/L			11/23/20 01:36	
Chloromethane	ND		1.0		ug/L			11/23/20 01:36	
Bromochloromethane	ND		5.0		ug/L			11/23/20 01:36	
Chloroethane	ND		1.0		ug/L			11/23/20 01:36	
Vinyl chloride	ND		1.0		ug/L			11/23/20 01:36	
Methylene Chloride	ND		1.0		ug/L			11/23/20 01:36	
Carbon disulfide	ND		5.0		ug/L			11/23/20 01:36	
Bromoform	ND		4.0		ug/L			11/23/20 01:36	
Bromodichloromethane	ND		1.0		ug/L			11/23/20 01:36	
1,1-Dichloroethane	ND		1.0		ug/L			11/23/20 01:36	
1,1-Dichloroethene	ND		1.0		ug/L			11/23/20 01:36	
Trichlorofluoromethane	ND		1.0		ug/L			11/23/20 01:36	· · · · · · .
Dichlorodifluoromethane	ND		1.0		ug/L			11/23/20 01:36	
Freon 113	ND		10		ug/L			11/23/20 01:36	
1,2-Dichloropropane	ND		1.0		ug/L			11/23/20 01:36	,
2-Butanone	ND		10		ug/L			11/23/20 01:36	
1,1,2-Trichloroethane	ND		1.0		ug/L			11/23/20 01:36	
Trichloroethene	ND		1.0		ug/L			11/23/20 01:36	
Methyl acetate	ND ND		5.0		ug/L			11/23/20 01:36	
1,1,2,2-Tetrachloroethane	ND ND		1.0		ug/L ug/L			11/23/20 01:36	
1,2,3-Trichlorobenzene	ND		5.0		ug/L			11/23/20 01:36	
o-Xylene	ND		1.0		ug/L			11/23/20 01:36	
1,2-Dichlorobenzene	ND		5.0		ug/L			11/23/20 01:36	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			11/23/20 01:36	
Isopropylbenzene	ND		5.0		ug/L			11/23/20 01:36	
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 01:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		80 - 120					11/23/20 01:36	
4-Bromofluorobenzene (Surr)	99		80 - 120					11/23/20 01:36	
Dibromofluoromethane (Surr)	99		80 - 120					11/23/20 01:36	
Toluene-d8 (Surr)	102		80 - 120					11/23/20 01:36	
Method: 8270D SIM - Semiv	_	-	•	-					
Analyte	Result	Qualifier	RL	MDL 0.10	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
1.4 Dioyono									

11/19/20 10:20 12/03/20 17:44

Job ID: 410-20426-1

0.31

0.10 ug/L

ND

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-5B-11122020 Lab Sample ID: 410-20764-3

Date Collected: 11/12/20 14:25 Matrix: Groundwater

Date Received: 11/13/20 10:37

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	61	10 - 122	11/19/20 10:20	12/03/20 17:44	1
1-Methylnaphthalene-d10 (Surr)	77	49 - 115	11/19/20 10:20	12/03/20 17:44	1
Fluoranthene-d10 (Surr)	72	65 - 129	11/19/20 10:20	12/03/20 17:44	1

Client Sample ID: MW-B-OMW-215-11122020 Lab Sample ID: 410-20764-4

Date Collected: 11/12/20 14:35 Matrix: Groundwater
Date Received: 11/13/20 10:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.40	ug/L			11/23/20 01:59	1
Styrene	ND		5.0	0.20	ug/L			11/23/20 01:59	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/23/20 01:59	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/23/20 01:59	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 01:59	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			11/23/20 01:59	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L			11/23/20 01:59	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			11/23/20 01:59	1
Methylcyclohexane	ND		5.0	0.50	ug/L			11/23/20 01:59	1
Toluene	3.2		1.0	0.20	ug/L			11/23/20 01:59	1
Chlorobenzene	1.9		1.0	0.20	ug/L			11/23/20 01:59	1
Cyclohexane	ND		5.0	1.0	ug/L			11/23/20 01:59	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/23/20 01:59	1
Dibromochloromethane	ND		1.0	0.20	ug/L			11/23/20 01:59	1
Tetrachloroethene	ND		1.0	0.20	ug/L			11/23/20 01:59	1
cis-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 01:59	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 01:59	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/23/20 01:59	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 01:59	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/23/20 01:59	1
2-Hexanone	ND		10	0.30	ug/L			11/23/20 01:59	1
Acetone	ND		20	0.70	ug/L			11/23/20 01:59	1
Chloroform	ND		1.0	0.20	ug/L			11/23/20 01:59	1
Benzene	79		1.0	0.20	ug/L			11/23/20 01:59	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/23/20 01:59	1
Bromomethane	ND		1.0	0.30	ug/L			11/23/20 01:59	1
Chloromethane	ND		1.0	0.20	ug/L			11/23/20 01:59	1
Bromochloromethane	ND		5.0	0.20				11/23/20 01:59	1
Chloroethane	ND		1.0	0.20				11/23/20 01:59	1
Vinyl chloride	ND		1.0	0.20	ug/L			11/23/20 01:59	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/23/20 01:59	1
Carbon disulfide	ND		5.0		ug/L			11/23/20 01:59	1
Bromoform	ND		4.0		ug/L			11/23/20 01:59	1
Bromodichloromethane	ND		1.0		ug/L			11/23/20 01:59	1
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/23/20 01:59	1
1,1-Dichloroethene	ND		1.0		ug/L			11/23/20 01:59	1
Trichlorofluoromethane	ND		1.0		ug/L			11/23/20 01:59	1
Dichlorodifluoromethane	ND		1.0		ug/L			11/23/20 01:59	1
Freon 113	ND		10	0.20	•			11/23/20 01:59	1
1,2-Dichloropropane	ND		1.0		ug/L			11/23/20 01:59	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-215-11122020 Lab Sample ID: 410-20764-4

Date Collected: 11/12/20 14:35 Matrix: Groundwater

Date Received: 11/13/20 10:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone	ND		10	0.30	ug/L			11/23/20 01:59	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/23/20 01:59	1
Trichloroethene	ND		1.0	0.20	ug/L			11/23/20 01:59	1
Methyl acetate	ND		5.0	0.30	ug/L			11/23/20 01:59	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/23/20 01:59	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/23/20 01:59	1
o-Xylene	ND		1.0	0.40	ug/L			11/23/20 01:59	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 01:59	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/23/20 01:59	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/23/20 01:59	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 01:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120					11/23/20 01:59	1
4-Bromofluorobenzene (Surr)	99		80 - 120					11/23/20 01:59	1
Dibromofluoromethane (Surr)	99		80 - 120					11/23/20 01:59	1
Toluene-d8 (Surr)	100		80 - 120					11/23/20 01:59	1
Method: 8270D SIM - Semi	volatile Organi	c Compou	inds (GC/MS	SIM)					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	2.1		0.31	0.10	ug/L		11/19/20 10:20	12/03/20 15:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	89		10 - 122				11/19/20 10:20	12/03/20 15:40	1

Client Sample ID: DUP-002-11122020 (blind dup of OMW-202) Lab Sample ID: 410-20764-5

49 - 115

65 - 129

Date Collected: 11/12/20 00:00 Date Received: 11/13/20 10:37

1-Methylnaphthalene-d10 (Surr)

Fluoranthene-d10 (Surr)

80

94

Method: 8260C - Volatile Or	ganic Compounds	s by GC/MS						
Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/23/20 02:22	1
Styrene	ND	5.0	0.20	ug/L			11/23/20 02:22	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 02:22	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 02:22	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 02:22	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 02:22	1
1,2-Dichloroethane	0.38 J	1.0	0.30	ug/L			11/23/20 02:22	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 02:22	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 02:22	1
Toluene	ND	1.0	0.20	ug/L			11/23/20 02:22	1
Chlorobenzene	0.38 J	1.0	0.20	ug/L			11/23/20 02:22	1
Cyclohexane	ND	5.0	1.0	ug/L			11/23/20 02:22	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/23/20 02:22	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/23/20 02:22	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/23/20 02:22	1
cis-1,2-Dichloroethene	1.2	1.0	0.20	ug/L			11/23/20 02:22	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 02:22	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/23/20 02:22	1

AMSS 12/15/2020

Eurofins Lancaster Laboratories Env, LLC

11/19/20 10:20 12/03/20 15:40

11/19/20 10:20 12/03/20 15:40

Matrix: Groundwater

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: DUP-002-11122020 (blind dup of OMW-202) Lab Sample ID: 410-20764-5

Date Collected: 11/12/20 00:00 Matrix: Groundwater

Date Received: 11/13/20 10:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 02:22	
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/23/20 02:22	1
2-Hexanone	ND		10	0.30	ug/L			11/23/20 02:22	1
Acetone	ND		20	0.70	ug/L			11/23/20 02:22	1
Chloroform	ND		1.0	0.20	ug/L			11/23/20 02:22	1
Benzene	6.5		1.0	0.20	ug/L			11/23/20 02:22	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/23/20 02:22	1
Bromomethane	ND		1.0	0.30	ug/L			11/23/20 02:22	1
Chloromethane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
Bromochloromethane	ND		5.0	0.20	ug/L			11/23/20 02:22	1
Chloroethane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
Vinyl chloride	ND		1.0	0.20	ug/L			11/23/20 02:22	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/23/20 02:22	1
Carbon disulfide	ND		5.0	0.20	ug/L			11/23/20 02:22	1
Bromoform	ND		4.0	1.0	ug/L			11/23/20 02:22	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 02:22	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
Freon 113	ND		10	0.20	ug/L			11/23/20 02:22	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
2-Butanone	ND		10	0.30	ug/L			11/23/20 02:22	
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/23/20 02:22	
Trichloroethene	0.93	J	1.0	0.20	ug/L			11/23/20 02:22	1
Methyl acetate	ND		5.0	0.30	ug/L			11/23/20 02:22	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/23/20 02:22	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/23/20 02:22	1
o-Xylene	ND		1.0	0.40	ug/L			11/23/20 02:22	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 02:22	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/23/20 02:22	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/23/20 02:22	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 02:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		80 - 120			-		11/23/20 02:22	-
4-Bromofluorobenzene (Surr)	98		80 - 120					11/23/20 02:22	1
Dibromofluoromethane (Surr)	97		80 - 120					11/23/20 02:22	1
Toluene-d8 (Surr)	101		80 - 120					11/23/20 02:22	1

Client Sample ID: GW-11122020-TB

Date Collected: 11/12/20 00:00 Date Received: 11/13/20 10:37

trans-1,3-Dichloropropene

Lab Sample ID: 410-20764-6

11/22/20 23:43

Matrix: Water

Job ID: 410-20426-1

Method: 8260C - Volatile Organic Compounds by GC/MS											
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
	Ethylbenzene	ND	1.0	0.40 ug/L			11/22/20 23:43	1			
	Styrene	ND	5.0	0.20 ug/L			11/22/20 23:43	1			
	cis-1,3-Dichloropropene	ND	1.0	0.20 ug/L			11/22/20 23:43	1			

AMSS 12/15/2020

1.0

ND

0.20 ug/L

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 11/12/20 00:00

Matrix: Water

Job ID: 410-20426-1

Date Received: 11/13/20 10:37

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND ND	5.0	0.20	ug/L			11/22/20 23:43	
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/22/20 23:43	
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/22/20 23:43	
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/22/20 23:43	
Methylcyclohexane	ND	5.0	0.50	ug/L			11/22/20 23:43	
Toluene	ND	1.0	0.20	ug/L			11/22/20 23:43	
Chlorobenzene	ND	1.0		ug/L			11/22/20 23:43	
Cyclohexane	ND	5.0		ug/L			11/22/20 23:43	
1,2,4-Trichlorobenzene	ND	5.0		ug/L			11/22/20 23:43	
Dibromochloromethane	ND	1.0		ug/L			11/22/20 23:43	
Tetrachloroethene	ND	1.0		ug/L			11/22/20 23:43	
cis-1,2-Dichloroethene	ND	1.0		ug/L			11/22/20 23:43	
trans-1,2-Dichloroethene	ND	1.0		ug/L			11/22/20 23:43	
Methyl tertiary butyl ether	ND	1.0		ug/L			11/22/20 23:43	
1,3-Dichlorobenzene	ND	5.0		ug/L			11/22/20 23:43	
Carbon tetrachloride	ND	1.0		ug/L			11/22/20 23:43	
2-Hexanone	ND	1.0		ug/L ug/L			11/22/20 23:43	
Acetone	ND	20		ug/L			11/22/20 23:43	
Chloroform	ND	1.0		ug/L			11/22/20 23:43	
Benzene	ND	1.0		ug/L ug/L			11/22/20 23:43	
1,1,1-Trichloroethane	ND	1.0		ug/L ug/L			11/22/20 23:43	
Bromomethane	ND	1.0		ug/L ug/L			11/22/20 23:43	
Chloromethane	ND	1.0		ug/L ug/L			11/22/20 23:43	
Bromochloromethane							11/22/20 23:43	
	ND	5.0		ug/L				
Chloroethane	ND	1.0		ug/L			11/22/20 23:43	
Vinyl chloride	ND	1.0		ug/L			11/22/20 23:43	
Methylene Chloride	ND	1.0		ug/L			11/22/20 23:43	
Carbon disulfide	ND	5.0		ug/L			11/22/20 23:43	
Bromoform	ND	4.0		ug/L			11/22/20 23:43	
Bromodichloromethane	ND	1.0		ug/L			11/22/20 23:43	
1,1-Dichloroethane	ND	1.0		ug/L			11/22/20 23:43	
1,1-Dichloroethene	ND	1.0		ug/L			11/22/20 23:43	
Trichlorofluoromethane	ND	1.0		ug/L			11/22/20 23:43	
Dichlorodifluoromethane	ND	1.0		ug/L			11/22/20 23:43	
Freon 113	ND	10	0.20				11/22/20 23:43	
1,2-Dichloropropane	ND	1.0		ug/L			11/22/20 23:43	
2-Butanone	ND	10		ug/L			11/22/20 23:43	
1,1,2-Trichloroethane	ND	1.0		ug/L			11/22/20 23:43	
Trichloroethene	ND	1.0		ug/L			11/22/20 23:43	
Methyl acetate	ND	5.0	0.30	ug/L			11/22/20 23:43	
1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/L			11/22/20 23:43	
1,2,3-Trichlorobenzene	ND	5.0	0.40	ug/L			11/22/20 23:43	
o-Xylene	ND	1.0	0.40	ug/L			11/22/20 23:43	
1,2-Dichlorobenzene	ND	5.0	0.20	ug/L			11/22/20 23:43	
1,2-Dibromo-3-Chloropropane	ND	5.0	0.30	ug/L			11/22/20 23:43	
Isopropylbenzene	ND	5.0	0.20	ug/L			11/22/20 23:43	
m&p-Xylene	ND	5.0	1.0	ug/L			11/22/20 23:43	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101	80 - 120					11/22/20 23:43	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: GW-11122020-TB Lab Sample ID: 410-20764-6

Date Collected: 11/12/20 00:00 **Matrix: Water**

Date Received: 11/13/20 10:37

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99	80 - 120		11/22/20 23:43	1
Dibromofluoromethane (Surr)	97	80 - 120		11/22/20 23:43	1
Toluene-d8 (Surr)	100	80 - 120		11/22/20 23:43	1

Client Sample ID: MW-B-OMW-216-11112020

Lab Sample ID: 410-20780-1 Date Collected: 11/11/20 10:15 **Matrix: Groundwater**

Date Received: 11/13/20 10:31

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/20/20 14:53	1
Styrene	ND	5.0	0.20	-			11/20/20 14:53	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 14:53	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 14:53	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 14:53	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
1,2-Dichloroethane	0.36 J	1.0	0.30	ug/L			11/20/20 14:53	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/20/20 14:53	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/20/20 14:53	1
Toluene	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Chlorobenzene	2.8	1.0	0.20	ug/L			11/20/20 14:53	1
Cyclohexane	ND	5.0	1.0	ug/L			11/20/20 14:53	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/20/20 14:53	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/20/20 14:53	1
cis-1,2-Dichloroethene	1.4	1.0	0.20	ug/L			11/20/20 14:53	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/20/20 14:53	
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/20/20 14:53	
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 14:53	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/20/20 14:53	1
2-Hexanone	ND	10	0.30	ug/L			11/20/20 14:53	1
Acetone	ND	20	0.70	ug/L			11/20/20 14:53	
Chloroform	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Benzene	0.42 J	1.0	0.20	ug/L			11/20/20 14:53	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/20/20 14:53	1
Bromomethane	ND	1.0	0.30	ug/L			11/20/20 14:53	1
Chloromethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/20/20 14:53	1
Chloroethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Vinyl chloride	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Methylene Chloride	ND	1.0	0.30	ug/L			11/20/20 14:53	1
Carbon disulfide	ND	5.0	0.20	ug/L			11/20/20 14:53	1
Bromoform	ND	4.0	1.0	ug/L			11/20/20 14:53	1
Bromodichloromethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
1,1-Dichloroethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
1,1-Dichloroethene	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Trichlorofluoromethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Dichlorodifluoromethane	ND	1.0	0.20	ug/L			11/20/20 14:53	1
Freon 113	ND	10	0.20	ug/L			11/20/20 14:53	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: MW-B-OMW-216-11112020 Lab Sample ID: 410-20780-1

Date Collected: 11/11/20 10:15 Matrix: Groundwater

Date Received: 11/13/20 10:31

2-Butanone ND 10 0.30 ug/L 11/20/20 14:53 1 1,1,2-Trichloroethane ND 1.0 0.20 ug/L 11/20/20 14:53 1 Trichloroethane 0.82 J 1.0 0.20 ug/L 11/20/20 14:53 1 Methyl acetate ND 5.0 0.30 ug/L 11/20/20 14:53 1 1,1,2,2-Tetrachloroethane ND 5.0 0.30 ug/L 11/20/20 14:53 1 1,2,2-Tetrachloroethane ND 5.0 0.40 ug/L 11/20/20 14:53 1 1,2,2-Trichlorobenzene ND 5.0 0.40 ug/L 11/20/20 14:53 1 1,2,2-Trichlorobenzene ND 5.0 0.40 ug/L 11/20/20 14:53 1 1,2-Dichlorobenzene ND 5.0 0.40 ug/L 11/20/20 14:53 1 1,2-Dichlorobenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 1,2-Dichloropenzene (Surr) 101 80 120	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane ND 1.0 0.20 ug/L 11/20/20 14:53 1 Trichloroethene 0.82 J 1.0 0.20 ug/L 11/20/20 14:53 1 Methyl acetate ND 5.0 0.30 ug/L 11/20/20 14:53 1 Methyl acetate ND 5.0 0.30 ug/L 11/20/20 14:53 1 1,2,2-Tetrachloroethane ND 5.0 0.40 ug/L 11/20/20 14:53 1 1,2-Sirrichlorobenzene ND 5.0 0.40 ug/L 11/20/20 14:53 1 0-Xylene ND 5.0 0.20 ug/L 11/20/20 14:53 1 1,2-Dichlorobenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 1sopropylbenzene ND 5.0 0.30 ug/L 11/20/20 14:53 1 sportopylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 sportopylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 sportopylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.20</td> <td>ug/L</td> <td></td> <td></td> <td>11/20/20 14:53</td> <td>1</td>	1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/20/20 14:53	1
Trichloroethene	2-Butanone	ND		10	0.30	ug/L			11/20/20 14:53	1
Methyl acetate	1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/20/20 14:53	1
1,1,2,2-Tetrachloroethane ND 1.0 0.20 ug/L 11/20/20 14:53 1 1,2,3-Trichlorobenzene ND 5.0 0.40 ug/L 11/20/20 14:53 1 c-Xylene ND 1.0 0.40 ug/L 11/20/20 14:53 1 1,2-Dichlorobenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 1,2-Dibromo-3-Chloropropane ND 5.0 0.30 ug/L 11/20/20 14:53 1 Isopropylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 Isopropylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 Isopropylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane (Surr) 101 80 - 120 11/20/20 14:53 1 Dibromofluoromethane (Surr) 98 80 - 120 11/20/20 14:53 1	Trichloroethene	0.82	J	1.0	0.20	ug/L			11/20/20 14:53	1
1,2,3-Trichlorobenzene ND 5.0 0.40 ug/L 11/20/20 14:53 1 o-Xylene ND 1.0 0.40 ug/L 11/20/20 14:53 1 1,2-Dichlorobenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 1,2-Dibromo-3-Chloropropane ND 5.0 0.30 ug/L 11/20/20 14:53 1 Isopropylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 Surrogate ND 5.0 0.20 ug/L 11/20/20 14:53 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichlorocethane-d4 (Surr) 101 80 - 120 Frepared Analyzed Dil Fac 1,2-Dichlorocethane (Surr) 98 80 - 120 Frepared Analyzed Dil Fac 10ibromofiluoromethane (Surr) 98 80 - 120 Frepared Analyzed Dil Fac Method: 8270D SIM - Semivolatile Organic Compounds Result MD	Methyl acetate	ND		5.0	0.30	ug/L			11/20/20 14:53	1
o-Xylene ND 1.0 0.40 ug/L 11/20/20 14:53 1 1,2-Dichlorobenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 1,2-Dibromo-3-Chloropropane ND 5.0 0.30 ug/L 11/20/20 14:53 1 Isopropylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 Surrogate ND 5.0 1.0 ug/L 11/20/20 14:53 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 101 80 - 120 11/20/20 14:53 1 4-Bromofluorobenzene (Surr) 100 80 - 120 11/20/20 14:53 1 Dibromofluoromethane (Surr) 98 80 - 120 11/20/20 14:53 1 Method: 8270D SIM - Semivolatile Organic Compounts (GC/MS SIM) No.120 11/20/20 14:53 1 Analyzed Qualifier R. MDL Unit D Prepared Analyzed Dil Fac 1,4-Dioxane	1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/20/20 14:53	1
1,2-Dichlorobenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 1,2-Dibromo-3-Chloropropane ND 5.0 0.30 ug/L 11/20/20 14:53 1 Isopropylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 Mep-Xylene ND 5.0 1.0 ug/L 11/20/20 14:53 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 101 80 - 120 11/20/20 14:53 1 4-Bromofluorobenzene (Surr) 100 80 - 120 11/20/20 14:53 1 Dibromofluoromethane (Surr) 98 80 - 120 11/20/20 14:53 1 Toluene-d8 (Surr) 101 80 - 120 11/20/20 14:53 1 Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) N N N N N N N N N N N N N N N N N N <td< td=""><td>1,2,3-Trichlorobenzene</td><td>ND</td><td></td><td>5.0</td><td>0.40</td><td>ug/L</td><td></td><td></td><td>11/20/20 14:53</td><td>1</td></td<>	1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/20/20 14:53	1
1,2-Dibromo-3-Chloropropane ND 5.0 0.30 ug/L 11/20/20 14:53 1 Isopropylbenzene ND 5.0 0.20 ug/L 11/20/20 14:53 1 m&p-Xylene ND 5.0 0.20 ug/L 11/20/20 14:53 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 101 80 - 120 11/20/20 14:53 1 4-Bromofluorobenzene (Surr) 100 80 - 120 11/20/20 14:53 1 Toluene-d8 (Surr) 98 80 - 120 11/20/20 14:53 1 Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) No.120 11/20/20 14:53 1 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,4-Dioxane 1.1 0.31 0.10 ug/L 11/18/20 18:40 11/30/20 19:41 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac <td>o-Xylene</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.40</td> <td>ug/L</td> <td></td> <td></td> <td>11/20/20 14:53</td> <td>1</td>	o-Xylene	ND		1.0	0.40	ug/L			11/20/20 14:53	1
Surrogate ND 5.0 0.20 ug/L 11/20/20 14:53 1 m&p-Xylene ND 5.0 1.0 ug/L 11/20/20 14:53 1 1 1 1 1 1 1 1 1	1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 14:53	1
Surrogate %Recovery (Jualifier (Limits)) Limits (Jualifier (Limits)) Prepared (Manalyzed (M	1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/20/20 14:53	1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 101 80 - 120 11/20/20 14:53 1 4-Bromofluorobenzene (Surr) 100 80 - 120 11/20/20 14:53 1 Dibromofluoromethane (Surr) 98 80 - 120 11/20/20 14:53 1 Toluene-d8 (Surr) 101 80 - 120 11/20/20 14:53 1 Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) National Compounds (GC/MS SIM)	Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 14:53	1
1,2-Dichloroethane-d4 (Surr) 101 80 - 120 11/20/20 14:53 1 4-Bromofluorobenzene (Surr) 100 80 - 120 11/20/20 14:53 1 Dibromofluoromethane (Surr) 98 80 - 120 11/20/20 14:53 1 Toluene-d8 (Surr) 101 80 - 120 11/20/20 14:53 1 Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) No. 100 No. 1	m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 14:53	1
A-Bromofluorobenzene (Surr) 100 80 - 120 11/20/20 14:53 1	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr) 98 80 - 120 11/20/20 14:53 1 Toluene-d8 (Surr) 101 80 - 120 11/20/20 14:53 1 1 11/20/20 14:53 1 1 1 1 1 1 1 1 1	1,2-Dichloroethane-d4 (Surr)	101		80 - 120					11/20/20 14:53	1
Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Analyte Result 1,4-Dioxane Qualifier 2,1,4-Dioxane RECOVERY 2 (Surr) 60 Limits 10 - 122 (Surr) 1-1/4 (Surr) 76 Prepared 2 (Surr) 11/18/20 18:40 Analyzed 2 (Surr) 11/18/20 18:40 Dil Fac 2 (4-Bromofluorobenzene (Surr)	100		80 - 120					11/20/20 14:53	1
Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Analyte Result 1,4-Dioxane Qualifier 1.1 RL MDL ug/L 0.31 Unit ug/L 0.10 D Prepared 11/18/20 18:40 Analyzed 11/30/20 19:41 Dil Fac 11/18/20 18:40 Surrogate %Recovery Benzo(a)pyrene-d12 (Surr) Qualifier 10 - 122 Limits 11/18/20 18:40 Prepared 11/18/20 18:40 Analyzed 11/30/20 19:41 Dil Fac 11/18/20 18:40 Dil Fac 11/18/	Dibromofluoromethane (Surr)	98		80 - 120					11/20/20 14:53	1
Analyte Result 1,4-Dioxane Qualifier 2,4-Dioxane RL R	Toluene-d8 (Surr)	101		80 - 120					11/20/20 14:53	1
Surrogate %Recovery Benzo(a)pyrene-d12 (Surr) Qualifier Limits 10 - 122 Prepared 11/18/20 18:40 Analyzed 11/30/20 19:41 Dil Fac 11/18/20 18:40 11/30/20 19:41 1 1-Methylnaphthalene-d10 (Surr) 76 49 - 115 11/18/20 18:40 11/30/20 19:41 1	Method: 8270D SIM - Semiv	olatile Organi	c Compou	inds (GC/MS	SIM)					
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Benzo(a)pyrene-d12 (Surr) 60 10 - 122 11/18/20 18:40 11/30/20 19:41 1 1-Methylnaphthalene-d10 (Surr) 76 49 - 115 11/18/20 18:40 11/30/20 19:41 1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr) 60 10 - 122 11/18/20 18:40 11/30/20 19:41 1 1-Methylnaphthalene-d10 (Surr) 76 49 - 115 11/18/20 18:40 11/30/20 19:41 1	1,4-Dioxane	1.1		0.31	0.10	ug/L		11/18/20 18:40	11/30/20 19:41	1
1-Methylnaphthalene-d10 (Surr) 76 49 - 115 11/18/20 18:40 11/30/20 19:41 1	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	Benzo(a)pyrene-d12 (Surr)	60		10 - 122				11/18/20 18:40	11/30/20 19:41	1
Fluoranthene-d10 (Surr) 99 65 - 129 11/18/20 18:40 11/30/20 19:41 1		00								
	1-Methylnaphthalene-d10 (Surr)			49 - 115				11/18/20 18:40	11/30/20 19:41	1

Client Sample ID: MW-B-OMW-214-11112020

Date Collected: 11/11/20 11:40

Date Received: 11/13/20 10:31

Lab Sample ID: 410-20780-2

Matrix: Groundwater

Job ID: 410-20426-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/20/20 15:16	1
Styrene	ND	5.0	0.20	ug/L			11/20/20 15:16	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 15:16	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 15:16	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 15:16	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/20/20 15:16	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/20/20 15:16	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/20/20 15:16	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/20/20 15:16	1
Toluene	ND	1.0	0.20	ug/L			11/20/20 15:16	1
Chlorobenzene	0.27 J	1.0	0.20	ug/L			11/20/20 15:16	1
Cyclohexane	ND	5.0	1.0	ug/L			11/20/20 15:16	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/20/20 15:16	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/20/20 15:16	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/20/20 15:16	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/20/20 15:16	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/20/20 15:16	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-214-11112020 Lab Sample ID: 410-20780-2

Date Collected: 11/11/20 11:40 Matrix: Groundwater

Date Received: 11/13/20 10:31

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/20/20 15:16	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 15:16	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/20/20 15:16	1
2-Hexanone	ND		10	0.30	ug/L			11/20/20 15:16	1
Acetone	0.78	J	20	0.70	ug/L			11/20/20 15:16	1
Chloroform	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Benzene	ND		1.0	0.20	ug/L			11/20/20 15:16	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/20/20 15:16	1
Bromomethane	ND		1.0	0.30	ug/L			11/20/20 15:16	1
Chloromethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Bromochloromethane	ND		5.0	0.20	ug/L			11/20/20 15:16	1
Chloroethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Vinyl chloride	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/20/20 15:16	1
Carbon disulfide	0.53	J J	5.0	0.20	ug/L			11/20/20 15:16	1
Bromoform	ND		4.0	1.0	ug/L			11/20/20 15:16	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Freon 113	ND		10	0.20	ug/L			11/20/20 15:16	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
2-Butanone	ND		10	0.30	ug/L			11/20/20 15:16	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Trichloroethene	ND		1.0	0.20	ug/L			11/20/20 15:16	1
Methyl acetate	ND		5.0	0.30	ug/L			11/20/20 15:16	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/20/20 15:16	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/20/20 15:16	1
o-Xylene	ND		1.0	0.40	ug/L			11/20/20 15:16	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 15:16	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30				11/20/20 15:16	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 15:16	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 15:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 120			-		11/20/20 15:16	1
4-Bromofluorobenzene (Surr)	100		80 - 120					11/20/20 15:16	1
Dibromofluoromethane (Surr)	100		80 - 120					11/20/20 15:16	1
Toluene-d8 (Surr)	101		80 - 120					11/20/20 15:16	

l	Method: 82/0D SIM	- Semivolatile Organic Compounds	(GC/MS	SIM)	
l	Analyte	Result Qualifier	RL	MDL	Unit

Analyte	Result Quali	ifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.64	0.30	0.10 ug/L		11/18/20 18:40	11/30/20 20:12	1
Surrogate	%Recovery Quali	ifier Limits			Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	75	10 - 122			11/18/20 18:40	11/30/20 20:12	1
1-Methylnaphthalene-d10 (Surr)	66	49 - 115			11/18/20 18:40	11/30/20 20:12	1
Fluoranthene-d10 (Surr)	81	65 - 129			11/18/20 18:40	11/30/20 20:12	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-3B-11112020 Lab Sample ID: 410-20780-3

Date Collected: 11/11/20 13:25 Matrix: Groundwater

Date Received: 11/13/20 10:31

Method: 8260C - Volatile Org Analyte	•	Qualifier R	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethylbenzene	ND ND	1.	0.40	ug/L		•	11/20/20 15:39	
Styrene	ND	5.		ug/L			11/20/20 15:39	
cis-1,3-Dichloropropene	ND	1.		ug/L			11/20/20 15:39	
trans-1,3-Dichloropropene	ND	1.		ug/L			11/20/20 15:39	
1,4-Dichlorobenzene	ND	5.		ug/L			11/20/20 15:39	
1,2-Dibromoethane	ND	1.		ug/L			11/20/20 15:39	
1,2-Dichloroethane	ND	1.		ug/L			11/20/20 15:39	
4-Methyl-2-pentanone	ND	1		ug/L			11/20/20 15:39	
Methylcyclohexane	ND	5.		ug/L			11/20/20 15:39	
Toluene	0.48			ug/L			11/20/20 15:39	
Chlorobenzene	0.24			ug/L			11/20/20 15:39	
Cyclohexane	ND	5.		ug/L			11/20/20 15:39	
1,2,4-Trichlorobenzene	ND	5.		ug/L			11/20/20 15:39	
Dibromochloromethane	ND	1.		ug/L			11/20/20 15:39	
Tetrachloroethene	ND	1.		ug/L			11/20/20 15:39	
cis-1,2-Dichloroethene	0.50			ug/L			11/20/20 15:39	
trans-1,2-Dichloroethene	ND	1.		ug/L			11/20/20 15:39	
Methyl tertiary butyl ether	ND	1.		ug/L			11/20/20 15:39	
1,3-Dichlorobenzene	ND	5.		ug/L			11/20/20 15:39	
Carbon tetrachloride	ND	1.		ug/L			11/20/20 15:39	
2-Hexanone	ND	1		ug/L			11/20/20 15:39	
Acetone	ND			ug/L			11/20/20 15:39	
Chloroform	ND ND	1.		ug/L ug/L			11/20/20 15:39	
	5.4	1.		ug/L ug/L			11/20/20 15:39	
Benzene 1,1,1-Trichloroethane	5.4 ND	1.					11/20/20 15:39	
Bromomethane	ND ND	1. 1.		ug/L			11/20/20 15:39	
Chloromethane	ND ND	1. 1.		ug/L			11/20/20 15:39	
Snoromethane Bromochloromethane				ug/L			11/20/20 15:39	
	ND	5.		ug/L				
Chloroethane	ND	1.		ug/L			11/20/20 15:39	
Vinyl chloride	ND	1.		ug/L			11/20/20 15:39	
Methylene Chloride	ND	1.		ug/L			11/20/20 15:39	
Carbon disulfide	ND	5.		ug/L			11/20/20 15:39	
Bromoform	ND	4.		ug/L			11/20/20 15:39	
Bromodichloromethane	ND	1.		ug/L			11/20/20 15:39	
1,1-Dichloroethane	ND	1.		ug/L			11/20/20 15:39	
1,1-Dichloroethene	ND	1.		ug/L			11/20/20 15:39	
Trichlorofluoromethane	ND	1.		ug/L			11/20/20 15:39	
Dichlorodifluoromethane	ND	1.		ug/L			11/20/20 15:39	
Freon 113	ND	1.		ug/L			11/20/20 15:39	
1,2-Dichloropropane	ND	1.		ug/L			11/20/20 15:39	
2-Butanone	ND	1		ug/L			11/20/20 15:39	
1,1,2-Trichloroethane	ND	1.		ug/L			11/20/20 15:39	
Trichloroethene	0.47			ug/L			11/20/20 15:39	
Methyl acetate	ND	5.		ug/L			11/20/20 15:39	
1,1,2,2-Tetrachloroethane	ND	1.		ug/L			11/20/20 15:39	
1,2,3-Trichlorobenzene	ND	5.		ug/L			11/20/20 15:39	
o-Xylene	ND	1.		ug/L			11/20/20 15:39	
1,2-Dichlorobenzene	ND	5.	0.20	ug/L			11/20/20 15:39	
1,2-Dibromo-3-Chloropropane	ND	5.	0.30	ug/L			11/20/20 15:39	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-3B-11112020 Lab Sample ID: 410-20780-3

Date Collected: 11/11/20 13:25 Matrix: Groundwater

Date Received: 11/13/20 10:31

Method: 8260C - Volatile O	rganic Compou	ınds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 15:39	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 15:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 120					11/20/20 15:39	1
4-Bromofluorobenzene (Surr)	98		80 - 120					11/20/20 15:39	1
Dibromofluoromethane (Surr)	100		80 - 120					11/20/20 15:39	1
Toluene-d8 (Surr)	99		80 - 120					11/20/20 15:39	1

Method: 8270D SIM - Semiv	olatile Organic O	Compoun	ds (GC/MS	SIM)					
Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	1.1		0.29	0.095	ug/L		11/18/20 18:40	11/30/20 20:43	1
Currents	0/8		,				D		D:/ E
Surrogate	%Recovery Qu	uaiitier	Limits				Prepared	Analyzed	DII Fac
Benzo(a)pyrene-d12 (Surr)	90 % Recovery	uaiitier	10 - 122				11/18/20 18:40	Analyzed 11/30/20 20:43	Dil Fac
		uaiitier							1 1

Client Sample ID: MW-B-EPA-3C-11112020 Lab Sample ID: 410-20780-4

Date Collected: 11/11/20 13:30 Matrix: Groundwater
Date Received: 11/13/20 10:31

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.40	ug/L			11/20/20 16:01	1
Styrene	ND		5.0	0.20	ug/L			11/20/20 16:01	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/20/20 16:01	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/20/20 16:01	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 16:01	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
1,2-Dichloroethane	0.30	J	1.0	0.30	ug/L			11/20/20 16:01	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			11/20/20 16:01	1
Methylcyclohexane	ND		5.0	0.50	ug/L			11/20/20 16:01	1
Toluene	0.68	J	1.0	0.20	ug/L			11/20/20 16:01	1
Chlorobenzene	0.39	J	1.0	0.20	ug/L			11/20/20 16:01	1
Cyclohexane	ND		5.0	1.0	ug/L			11/20/20 16:01	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/20/20 16:01	1
Dibromochloromethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Tetrachloroethene	ND		1.0	0.20	ug/L			11/20/20 16:01	1
cis-1,2-Dichloroethene	0.75	J	1.0	0.20	ug/L			11/20/20 16:01	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/20/20 16:01	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 16:01	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/20/20 16:01	1
2-Hexanone	ND		10	0.30	ug/L			11/20/20 16:01	1
Acetone	ND		20	0.70	ug/L			11/20/20 16:01	1
Chloroform	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Benzene	9.0		1.0	0.20	ug/L			11/20/20 16:01	1
1,1,1-Trichloroethane	ND		1.0		ug/L			11/20/20 16:01	1
Bromomethane	ND		1.0		ug/L			11/20/20 16:01	1
Chloromethane	ND		1.0		ug/L			11/20/20 16:01	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-3C-11112020 Lab Sample ID: 410-20780-4

Date Collected: 11/11/20 13:30 Matrix: Groundwater

Date Received: 11/13/20 10:31

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromochloromethane	ND		5.0	0.20	ug/L			11/20/20 16:01	1
Chloroethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Vinyl chloride	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/20/20 16:01	1
Carbon disulfide	ND		5.0	0.20	ug/L			11/20/20 16:01	1
Bromoform	ND		4.0	1.0	ug/L			11/20/20 16:01	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Freon 113	ND		10	0.20	ug/L			11/20/20 16:01	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
2-Butanone	ND		10	0.30	ug/L			11/20/20 16:01	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
Trichloroethene	0.75	J	1.0	0.20	ug/L			11/20/20 16:01	1
Methyl acetate	ND		5.0	0.30	ug/L			11/20/20 16:01	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/20/20 16:01	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/20/20 16:01	1
o-Xylene	ND		1.0	0.40	ug/L			11/20/20 16:01	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 16:01	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/20/20 16:01	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 16:01	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 16:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		80 - 120			-		11/20/20 16:01	1
4-Bromofluorobenzene (Surr)	100		80 - 120					11/20/20 16:01	1
Dibromofluoromethane (Surr)	99		80 - 120					11/20/20 16:01	1

Mathada 0070D CIM Comit		ounds (CC/MC CIM)		
Toluene-d8 (Surr)	100	80 - 120	11/20/20 16:01	1
Dibromofluoromethane (Surr)	99	80 - 120	11/20/20 16:01	1
4-Bromofluorobenzene (Surr)	100	80 - 120	11/20/20 16:01	1
1,2-Dichloroethane-d4 (Surr)	101	80 - 120	11/20/20 16:01	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac 1,4-Dioxane ND 0.32 0.11 ug/L 11/18/20 18:40 11/30/20 21:14 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Benzo(a)pyrene-d12 (Surr) 90 10 - 122 11/18/20 18:40 11/30/20 21:14

 Benzo(a)pyrene-d12 (Surr)
 90
 10 - 122
 11/18/20 18:40
 11/30/20 21:14
 1

 1-Methylnaphthalene-d10 (Surr)
 86
 49 - 115
 11/18/20 18:40
 11/30/20 21:14
 1

 Fluoranthene-d10 (Surr)
 103
 65 - 129
 11/18/20 18:40
 11/30/20 21:14
 1

Client Sample ID: MW-B-OMW-205-11112020

Date Collected: 11/11/20 13:50

Matrix: Groundwater

Date Received: 11/13/20 10:31

Method: 8260C - Volatile Or Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/20/20 16:24	1
Styrene	ND	5.0	0.20	ug/L			11/20/20 16:24	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 16:24	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 16:24	1
1.4-Dichlorobenzene	0.27 J	5.0	0.20	ua/L			11/20/20 16:24	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-205-11112020 Lab Sample ID: 410-20780-5

Date Collected: 11/11/20 13:50 Matrix: Groundwater

Date Received: 11/13/20 10:31

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	ND		1.0	0.20	ug/L			11/20/20 16:24	
1,2-Dichloroethane	0.31	J	1.0	0.30	ug/L			11/20/20 16:24	
4-Methyl-2-pentanone	ND		10	0.50	ug/L			11/20/20 16:24	
Methylcyclohexane	ND		5.0	0.50	ug/L			11/20/20 16:24	
Toluene	ND		1.0	0.20	ug/L			11/20/20 16:24	
Chlorobenzene	44		1.0	0.20	ug/L			11/20/20 16:24	
Cyclohexane	ND		5.0	1.0	ug/L			11/20/20 16:24	
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/20/20 16:24	
Dibromochloromethane	ND		1.0	0.20				11/20/20 16:24	
Tetrachloroethene	ND		1.0	0.20	-			11/20/20 16:24	
cis-1,2-Dichloroethene	3.4		1.0	0.20				11/20/20 16:24	
trans-1,2-Dichloroethene	ND		1.0	0.20	-			11/20/20 16:24	
Methyl tertiary butyl ether	ND		1.0	0.20	-			11/20/20 16:24	
1,3-Dichlorobenzene	ND		5.0	0.20				11/20/20 16:24	
Carbon tetrachloride	ND		1.0	0.20	-			11/20/20 16:24	
2-Hexanone	ND		10	0.30	-			11/20/20 16:24	
Acetone	ND		20	0.70				11/20/20 16:24	
Chloroform	ND		1.0	0.20	-			11/20/20 16:24	
Benzene	0.66	.1	1.0	0.20	-			11/20/20 16:24	
1,1,1-Trichloroethane	ND		1.0	0.30				11/20/20 16:24	
Bromomethane	ND		1.0	0.30	-			11/20/20 16:24	
Chloromethane	ND		1.0	0.20	-			11/20/20 16:24	
Bromochloromethane	ND		5.0	0.20				11/20/20 16:24	
Chloroethane	ND		1.0	0.20	-			11/20/20 16:24	
	0.55	1	1.0	0.20	_			11/20/20 16:24	
Vinyl chloride Methylene Chloride	0.55 ND	J	1.0	0.30				11/20/20 16:24	
Carbon disulfide	ND ND		5.0	0.30	-			11/20/20 16:24	
	ND ND				_				
Bromoform			4.0		ug/L			11/20/20 16:24	
Bromodichloromethane	ND		1.0	0.20	_			11/20/20 16:24	
1,1-Dichloroethane	ND		1.0	0.20	_			11/20/20 16:24	
1,1-Dichloroethene	ND		1.0	0.20				11/20/20 16:24	
Trichlorofluoromethane	ND		1.0	0.20	_			11/20/20 16:24	
Dichlorodifluoromethane	ND		1.0	0.20	_			11/20/20 16:24	
Freon 113	ND		10	0.20				11/20/20 16:24	
1,2-Dichloropropane	ND		1.0	0.20	-			11/20/20 16:24	
2-Butanone	ND		10	0.30	-			11/20/20 16:24	
1,1,2-Trichloroethane	ND		1.0	0.20				11/20/20 16:24	
Trichloroethene	0.40	J	1.0		ug/L			11/20/20 16:24	
Methyl acetate	ND		5.0	0.30	-			11/20/20 16:24	
1,1,2,2-Tetrachloroethane	ND		1.0	0.20				11/20/20 16:24	
1,2,3-Trichlorobenzene	ND		5.0	0.40	-			11/20/20 16:24	
o-Xylene	ND		1.0	0.40	-			11/20/20 16:24	
1,2-Dichlorobenzene	ND		5.0	0.20				11/20/20 16:24	
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	-			11/20/20 16:24	
Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 16:24	
m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 16:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		80 - 120					11/20/20 16:24	
4-Bromofluorobenzene (Surr)	99		80 - 120					11/20/20 16:24	

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-205-11112020 Lab Sample ID: 410-20780-5

Date Collected: 11/11/20 13:50 **Matrix: Groundwater**

Date Received: 11/13/20 10:31

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	99		80 - 120		11/20/20 16:24	1
Toluene-d8 (Surr)	99		80 - 120		11/20/20 16:24	1

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Analyte	Result	Qualifier	KL	MIDL	Unit	U	Prepared	Analyzed	DII Fac
1,4-Dioxane	2.8		0.28	0.094	ug/L		11/18/20 18:40	12/01/20 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	24		10 - 122				11/18/20 18:40	12/01/20 14:45	1
1-Methylnaphthalene-d10 (Surr)	81		49 - 115				11/18/20 18:40	12/01/20 14:45	1
Fluoranthene-d10 (Surr)	100		65 - 129				11/18/20 18:40	12/01/20 14:45	1

Client Sample ID: GW-11112020-TB

Lab Sample ID: 410-20780-6 Date Collected: 11/11/20 00:00

Date Received: 11/13/20 10:31

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.40	ug/L			11/20/20 13:45	1
Styrene	ND		5.0	0.20	ug/L			11/20/20 13:45	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 13:45	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			11/20/20 13:45	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L			11/20/20 13:45	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			11/20/20 13:45	1
Methylcyclohexane	ND		5.0	0.50	ug/L			11/20/20 13:45	1
Toluene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
Chlorobenzene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
Cyclohexane	ND		5.0	1.0	ug/L			11/20/20 13:45	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/20/20 13:45	1
Dibromochloromethane	ND		1.0	0.20	ug/L			11/20/20 13:45	1
Tetrachloroethene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
cis-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/20/20 13:45	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 13:45	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/20/20 13:45	1
2-Hexanone	ND		10	0.30	ug/L			11/20/20 13:45	1
Acetone	ND		20	0.70	ug/L			11/20/20 13:45	1
Chloroform	ND		1.0	0.20	ug/L			11/20/20 13:45	1
Benzene	ND		1.0	0.20	ug/L			11/20/20 13:45	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/20/20 13:45	1
Bromomethane	ND		1.0	0.30				11/20/20 13:45	1
Chloromethane	ND		1.0	0.20	ug/L			11/20/20 13:45	1
Bromochloromethane	ND		5.0	0.20	ug/L			11/20/20 13:45	1
Chloroethane	ND		1.0	0.20	_			11/20/20 13:45	1
Vinyl chloride	ND		1.0	0.20	-			11/20/20 13:45	1
Methylene Chloride	ND		1.0		ug/L			11/20/20 13:45	1
Carbon disulfide	ND		5.0	0.20				11/20/20 13:45	1

Eurofins Lancaster Laboratories Env, LLC

Job ID: 410-20426-1

Matrix: Water

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Toluene-d8 (Surr)

Client Sample ID: GW-11112020-TB Lab Sample ID: 410-20780-6

Date Collected: 11/11/20 00:00 Matrix: Water Date Received: 11/13/20 10:31

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Result Qualifier RL **MDL** Unit Prepared **Analyte** D **Analyzed** Dil Fac 4.0 Bromoform ND 1.0 ug/L 11/20/20 13:45 ND 1.0 Bromodichloromethane 0.20 ug/L 11/20/20 13:45 1 1,1-Dichloroethane ND 1.0 11/20/20 13:45 0.20 ug/L 1 1,1-Dichloroethene ND 1.0 0.20 ug/L 11/20/20 13:45 1 Trichlorofluoromethane ND 1.0 0.20 ug/L 11/20/20 13:45 1 Dichlorodifluoromethane ND 1.0 0.20 ug/L 11/20/20 13:45 1 Freon 113 ND 10 0.20 ug/L 11/20/20 13:45 1 0.20 ug/L ND 1,2-Dichloropropane 1.0 11/20/20 13:45 2-Butanone ND 0.30 ug/L 10 11/20/20 13:45 1 1.1.2-Trichloroethane ND 1.0 0.20 ug/L 11/20/20 13:45 1 Trichloroethene ND 1.0 0.20 ug/L 11/20/20 13:45 1 Methyl acetate ND 5.0 0.30 ug/L 11/20/20 13:45 1 1,1,2,2-Tetrachloroethane ND 1.0 0.20 ug/L 11/20/20 13:45 1 1,2,3-Trichlorobenzene ND 5.0 0.40 ug/L 11/20/20 13:45 1 o-Xylene ND 1.0 0.40 ug/L 11/20/20 13:45 ND 5.0 0.20 ug/L 11/20/20 13:45 1,2-Dichlorobenzene 1 1,2-Dibromo-3-Chloropropane ND 5.0 0.30 ug/L 11/20/20 13:45 ND Isopropylbenzene 5.0 0.20 ug/L 11/20/20 13:45 1 m&p-Xylene ND 5.0 1.0 ug/L 11/20/20 13:45 1 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 80 - 120 1,2-Dichloroethane-d4 (Surr) 101 11/20/20 13:45 4-Bromofluorobenzene (Surr) 100 80 - 120 11/20/20 13:45 1 Dibromofluoromethane (Surr) 100 80 - 120 11/20/20 13:45 1

Client Sample ID: MW-B-OMW-222-11132020 Lab Sample ID: 410-20957-1

80 - 120

Date Collected: 11/13/20 11:10

Matrix: Groundwater

Date Received: 11/14/20 10:02

101

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/20/20 17:10	1
Styrene	ND	5.0	0.20	ug/L			11/20/20 17:10	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 17:10	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 17:10	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 17:10	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/20/20 17:10	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/20/20 17:10	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/20/20 17:10	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/20/20 17:10	1
Toluene	ND	1.0	0.20	ug/L			11/20/20 17:10	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/20/20 17:10	1
Cyclohexane	ND	5.0	1.0	ug/L			11/20/20 17:10	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/20/20 17:10	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/20/20 17:10	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/20/20 17:10	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/20/20 17:10	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/20/20 17:10	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/20/20 17:10	1

Eurofins Lancaster Laboratories Env, LLC

11/20/20 13:45

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-222-11132020 Lab Sample ID: 410-20957-1

Date Collected: 11/13/20 11:10 **Matrix: Groundwater**

Date Received: 11/14/20 10:02

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 17:10	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/20/20 17:10	1
2-Hexanone	ND		10	0.30	ug/L			11/20/20 17:10	1
Acetone	ND		20	0.70	ug/L			11/20/20 17:10	1
Chloroform	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Benzene	ND		1.0	0.20	ug/L			11/20/20 17:10	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/20/20 17:10	1
Bromomethane	ND		1.0	0.30	ug/L			11/20/20 17:10	1
Chloromethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Bromochloromethane	ND		5.0	0.20	ug/L			11/20/20 17:10	1
Chloroethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Vinyl chloride	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/20/20 17:10	1
Carbon disulfide	ND		5.0	0.20	ug/L			11/20/20 17:10	1
Bromoform	ND		4.0	1.0	ug/L			11/20/20 17:10	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Freon 113	ND		10	0.20	ug/L			11/20/20 17:10	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
2-Butanone	ND		10	0.30	ug/L			11/20/20 17:10	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Trichloroethene	ND		1.0	0.20	ug/L			11/20/20 17:10	1
Methyl acetate	ND		5.0	0.30	ug/L			11/20/20 17:10	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/20/20 17:10	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/20/20 17:10	1
o-Xylene	ND		1.0	0.40	ug/L			11/20/20 17:10	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 17:10	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/20/20 17:10	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 17:10	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 17:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 120			•		11/20/20 17:10	1
4-Bromofluorobenzene (Surr)	100		80 - 120					11/20/20 17:10	1
Dibromofluoromethane (Surr)	98		80 - 120					11/20/20 17:10	1
Toluene-d8 (Surr)	99		80 - 120					11/20/20 17:10	1

Client Sample ID: MW-B-OMW-223-11132020

Lab Sample ID: 410-20957-2 Date Collected: 11/13/20 13:00 **Matrix: Groundwater**

Date Received: 11/14/20 10:02

Method: 8260C - Volatile Organic Compounds by GC/MS								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/20/20 17:32	1
Styrene	ND	5.0	0.20	ug/L			11/20/20 17:32	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 17:32	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 17:32	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-223-11132020 Lab Sample ID: 410-20957-2

Date Collected: 11/13/20 13:00 Matrix: Groundwater
Date Received: 11/14/20 10:02

Date (1000) Ved. 11/14/20 10:02

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND ND	5.0	0.20	ug/L		-	11/20/20 17:32	-
1,2-Dibromoethane	ND	1.0	0.20	-			11/20/20 17:32	
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/20/20 17:32	
4-Methyl-2-pentanone	ND	10	0.50	-			11/20/20 17:32	
Methylcyclohexane	ND	5.0		ug/L			11/20/20 17:32	
Toluene	ND	1.0		ug/L			11/20/20 17:32	
Chlorobenzene	ND	1.0	0.20	-			11/20/20 17:32	
Cyclohexane	ND	5.0		ug/L			11/20/20 17:32	1
1,2,4-Trichlorobenzene	ND	5.0		ug/L			11/20/20 17:32	,
Dibromochloromethane	ND	1.0		ug/L			11/20/20 17:32	
Tetrachloroethene	ND	1.0		ug/L			11/20/20 17:32	
cis-1,2-Dichloroethene	ND	1.0		ug/L			11/20/20 17:32	
trans-1,2-Dichloroethene	ND	1.0	0.20	-			11/20/20 17:32	
Methyl tertiary butyl ether	ND	1.0	0.20	-			11/20/20 17:32	
1,3-Dichlorobenzene	ND	5.0		ug/L			11/20/20 17:32	,
Carbon tetrachloride	ND	1.0	0.20	-			11/20/20 17:32	
2-Hexanone	ND	10		ug/L			11/20/20 17:32	
Acetone	ND	20		ug/L			11/20/20 17:32	
Chloroform	ND	1.0	0.70	-			11/20/20 17:32	
Benzene	ND	1.0		ug/L ug/L			11/20/20 17:32	
1,1,1-Trichloroethane	ND	1.0		ug/L ug/L			11/20/20 17:32	
Bromomethane	ND ND	1.0	0.30	-			11/20/20 17:32	
				-				
Chloromethane	ND	1.0	0.20				11/20/20 17:32	
Bromochloromethane	ND	5.0		ug/L			11/20/20 17:32	
Chloroethane	ND	1.0	0.20	-			11/20/20 17:32	
Vinyl chloride	ND	1.0		ug/L			11/20/20 17:32	
Methylene Chloride	ND	1.0		ug/L			11/20/20 17:32	
Carbon disulfide	ND	5.0	0.20	-			11/20/20 17:32	,
Bromoform	ND	4.0		ug/L			11/20/20 17:32	
Bromodichloromethane	ND	1.0		ug/L			11/20/20 17:32	•
1,1-Dichloroethane	ND	1.0	0.20	_			11/20/20 17:32	
1,1-Dichloroethene	ND	1.0	0.20				11/20/20 17:32	
Trichlorofluoromethane	ND	1.0	0.20	-			11/20/20 17:32	
Dichlorodifluoromethane	ND	1.0	0.20	-			11/20/20 17:32	
Freon 113	ND	10	0.20				11/20/20 17:32	
1,2-Dichloropropane	ND	1.0		ug/L			11/20/20 17:32	
2-Butanone	ND	10		ug/L			11/20/20 17:32	
1,1,2-Trichloroethane	ND	1.0		ug/L			11/20/20 17:32	
Trichloroethene	ND	1.0	0.20	ug/L			11/20/20 17:32	
Methyl acetate	ND	5.0	0.30	ug/L			11/20/20 17:32	
1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/L			11/20/20 17:32	
1,2,3-Trichlorobenzene	ND	5.0	0.40	ug/L			11/20/20 17:32	
o-Xylene	ND	1.0	0.40	ug/L			11/20/20 17:32	
1,2-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 17:32	
1,2-Dibromo-3-Chloropropane	ND	5.0	0.30	ug/L			11/20/20 17:32	
Isopropylbenzene	ND	5.0	0.20	ug/L			11/20/20 17:32	
m&p-Xylene	ND	5.0	1.0	ug/L			11/20/20 17:32	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	80 - 120					11/20/20 17:32	2007

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-223-11132020 Lab Sample ID: 410-20957-2

Date Collected: 11/13/20 13:00 **Matrix: Groundwater**

Date Received: 11/14/20 10:02

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		80 - 120		11/20/20 17:32	1
Dibromofluoromethane (Surr)	99		80 - 120		11/20/20 17:32	1
Toluene-d8 (Surr)	100		80 - 120		11/20/20 17:32	1

Client Sample ID: MW-B-EPA-1A-11132020

Lab Sample ID: 410-20957-3 Date Collected: 11/13/20 14:55 **Matrix: Groundwater** Date Received: 11/14/20 10:02

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier **Analyte** RL MDL Unit D **Prepared** Analyzed Dil Fac ND Ethylbenzene 1.0 0.40 ug/L 11/20/20 17:55 1 Styrene ND 5.0 0.20 ug/L 11/20/20 17:55 1 ND cis-1,3-Dichloropropene 1.0 0.20 ug/L 11/20/20 17:55 1 trans-1,3-Dichloropropene ND 10 0.20 ug/L 11/20/20 17:55 1 1,4-Dichlorobenzene ND 5.0 0.20 ug/L 11/20/20 17:55 ND 1.0 0.20 ug/L 1 2-Dibromoethane 11/20/20 17:55 1 0.30 ug/L 1.2-Dichloroethane 22 1.0 11/20/20 17:55 1 ND 10 4-Methyl-2-pentanone 0.50 ug/L 11/20/20 17:55 1 Methylcyclohexane ND 5.0 0.50 ug/L 11/20/20 17:55 1 1.0 0.20 ug/L 11/20/20 17:55 **Toluene** 1.5 1 0.20 ug/L Chlorobenzene 1.0 11/20/20 17:55 1 14 Cyclohexane ND 5.0 1.0 ug/L 11/20/20 17:55 1 1,2,4-Trichlorobenzene ND 5.0 0.30 ug/L 11/20/20 17:55 1 Dibromochloromethane ND 1.0 0.20 ug/L 11/20/20 17:55 1 1.0 0.20 ug/L 11/20/20 17:55 **Tetrachloroethene** 1 3.6 trans-1,2-Dichloroethene 0.85 1.0 0.20 ug/L 11/20/20 17:55 1 1.0 0.20 ug/L 11/20/20 17:55 Methyl tertiary butyl ether ND 1 ND 0.20 ug/L 1,3-Dichlorobenzene 5.0 11/20/20 17:55 1 Carbon tetrachloride ND 1.0 0.20 ug/L 11/20/20 17:55 1 ND 2-Hexanone 10 0.30 ug/L 11/20/20 17:55 1 20 0.70 ug/L Acetone 0.84 11/20/20 17:55 1 Chloroform ND 1.0 0.20 ug/L 11/20/20 17:55 1 Benzene 8.5 1.0 0.20 ug/L 11/20/20 17:55 1 1.1.1-Trichloroethane ND 1.0 0.30 ug/L 11/20/20 17:55 1 ND Bromomethane 1.0 0.30 ug/L 11/20/20 17:55 1 Chloromethane ND 1.0 0.20 ug/L 11/20/20 17:55 1 Bromochloromethane ND 5.0 0.20 ug/L 11/20/20 17:55 1 Chloroethane 1.7 1.0 0.20 ug/L 11/20/20 17:55 1 1.0 0.20 ug/L 1 Vinyl chloride 1.2 11/20/20 17:55 **Methylene Chloride** 0.94 1.0 0.30 ug/L 11/20/20 17:55 1 ND 5.0 Carbon disulfide 0.20 ug/L 11/20/20 17:55 1 **Bromoform** ND 4.0 1.0 ug/L 11/20/20 17:55 1 Bromodichloromethane ND 1.0 0.20 ug/L 11/20/20 17:55 1 1.0 0.20 ug/L 1 1,1-Dichloroethane 10 11/20/20 17:55 7.7 1.0 0.20 ug/L 11/20/20 17:55 1 1,1-Dichloroethene ND Trichlorofluoromethane 1.0 0.20 ug/L 11/20/20 17:55 1 ND Dichlorodifluoromethane 1.0 0.20 ug/L 11/20/20 17:55 1 Freon 113 ND 10 0.20 ug/L 11/20/20 17:55 1 ND 1,2-Dichloropropane 1.0 0.20 ug/L 11/20/20 17:55 1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1A-11132020 Lab Sample ID: 410-20957-3

Date Collected: 11/13/20 14:55 Matrix: Groundwater

Date Received: 11/14/20 10:02

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone	3.5	J	10	0.30	ug/L			11/20/20 17:55	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/20/20 17:55	1
Methyl acetate	ND		5.0	0.30	ug/L			11/20/20 17:55	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/20/20 17:55	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/20/20 17:55	1
o-Xylene	ND		1.0	0.40	ug/L			11/20/20 17:55	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 17:55	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/20/20 17:55	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 17:55	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120					11/20/20 17:55	1
4-Bromofluorobenzene (Surr)	101		80 - 120					11/20/20 17:55	1
Dibromofluoromethane (Surr)	99		80 - 120					11/20/20 17:55	1
Toluene-d8 (Surr)	100		80 - 120					11/20/20 17:55	1
·		unds bv G						11/20/20 17:55	1
Toluene-d8 (Surr) Method: 8260C - Volatile Or Analyte	ganic Compo	unds by G Qualifier		MDL	Unit	D	Prepared	11/20/20 17:55 Analyzed	1 Dil Fac
Method: 8260C - Volatile Or	ganic Compo		C/MS - DL	MDL 2.0		<u>D</u>	Prepared		
Method: 8260C - Volatile Or Analyte	ganic Compo		C/MS - DL	2.0		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene	ganic Compo	Qualifier	C/MS - DL RL 10	2.0	ug/L	<u>D</u>	Prepared Prepared	Analyzed 11/20/20 18:18	Dil Fac
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene	ganic Compos Result 300 1800	Qualifier	C/MS - DL RL 10	2.0	ug/L	<u>D</u>	<u> </u>	Analyzed 11/20/20 18:18 11/20/20 18:18	Dil Fac 10 10
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene	ganic Compose Result 300 1800 %Recovery	Qualifier	C/MS - DL RL 10 10 Limits	2.0	ug/L	<u>D</u>	<u> </u>	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed	Dil Fac 10 10 Dil Fac
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr)	rganic Compos Result 300 1800 **Recovery	Qualifier	C/MS - DL RL 10 10 10 Limits 80 - 120	2.0	ug/L	<u>D</u>	<u> </u>	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18	Dil Fac 10 10 10 Dil Fac 10
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	### Recovery 100 10	Qualifier	C/MS - DL RL 10 10 20 Limits 80 - 120 80 - 120	2.0	ug/L	<u>D</u>	<u> </u>	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18 11/20/20 18:18	Dil Fac 10 10 10 Dil Fac 10 10
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	### Compose Result 300 1800	Qualifier Qualifier	C/MS - DL RL 10 10 2 Elimits 80 - 120 80 - 120 80 - 120	2.0	ug/L	<u>D</u>	<u> </u>	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18	Dil Fac 10 10 10 Dil Fac 10 10 10
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D SIM - Semiv	### Result 300 1800	Qualifier Qualifier	C/MS - DL RL 10 10 2 Elimits 80 - 120 80 - 120 80 - 120	2.0	ug/L ug/L	<u>D</u>	<u> </u>	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18	Dil Fac 10 10 10 Dil Fac 10 10 10
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr)	### Result 300 1800	Qualifier Qualifier C Compou	C/MS - DL RL 10 10 2 80 - 120 80 - 120 80 - 120 80 - 120	2.0 2.0 SIM) MDL	ug/L ug/L		Prepared	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18	Dil Fac 10 10 Dil Fac 10 10 10 10
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D SIM - Semiv Analyte	ganic Compose Result 300 1800 1800 1000 1000 97 101 rolatile Organi Result	Qualifier Qualifier C Compour Qualifier	C/MS - DL RL 10 10 2 80 - 120 80 - 120 80 - 120 80 - 120 81 - 120	2.0 2.0 SIM) MDL	ug/L ug/L		Prepared Prepared	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18	Dil Fac 10 10 Dil Fac 10 10 10 Dil Fac Dil Fac
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D SIM - Semiv Analyte 1,4-Dioxane	ganic Compose Result 300 1800 200 200 200 200 200 200 200 200 200	Qualifier Qualifier C Compour Qualifier	C/MS - DL RL 10 10 Limits 80 - 120 80 - 120 80 - 120 80 - 120 Inds (GC/MS RL 0.30	2.0 2.0 SIM) MDL	ug/L ug/L		Prepared Prepared 11/20/20 09:00	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18 Analyzed 11/26/20 00:28	Dil Fac 10 10 Dil Fac 10 10 10 Dil Fac 10 10 10
Method: 8260C - Volatile Or Analyte cis-1,2-Dichloroethene Trichloroethene Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr) Toluene-d8 (Surr) Method: 8270D SIM - Semiv Analyte 1,4-Dioxane Surrogate	ganic Compose Result 300 1800 1800 1000 1000 1001 1001 1001	Qualifier Qualifier C Compour Qualifier	C/MS - DL RL 10 10 Limits 80 - 120 80 - 120 80 - 120 80 - 120 Inds (GC/MS RL 0.30 Limits	2.0 2.0 SIM) MDL	ug/L ug/L		Prepared Prepared 11/20/20 09:00 Prepared	Analyzed 11/20/20 18:18 11/20/20 18:18 Analyzed 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18 11/20/20 18:18 11/20/20 01:28 Analyzed Analyzed	Dil Fac 10 10 Dil Fac 10 10 Dil Fac 10 Dil Fac Dil Fac

Client Sample ID: MW-B-EPA-1B-11132020

Date Collected: 11/13/20 15:00 Date Received: 11/14/20 10:02

Lab Sample ID: 410-20957-4

Matrix: Groundwater

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/20/20 18:40	1
Styrene	ND	5.0	0.20	ug/L			11/20/20 18:40	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 18:40	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 18:40	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 18:40	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/20/20 18:40	1
1,2-Dichloroethane	12	1.0	0.30	ug/L			11/20/20 18:40	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/20/20 18:40	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1B-11132020 Lab Sample ID: 410-20957-4

Date Collected: 11/13/20 15:00 Matrix: Groundwater

Date Received: 11/14/20 10:02

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Methylcyclohexane	ND		5.0	0.50				11/20/20 18:40	
Toluene	1.6		1.0	0.20	ug/L			11/20/20 18:40	
Chlorobenzene	8.6		1.0	0.20	ug/L			11/20/20 18:40	
Cyclohexane	ND		5.0	1.0	ug/L			11/20/20 18:40	
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/20/20 18:40	
Dibromochloromethane	ND		1.0	0.20	ug/L			11/20/20 18:40	
Tetrachloroethene	0.75	J	1.0	0.20	ug/L			11/20/20 18:40	
trans-1,2-Dichloroethene	2.3		1.0	0.20	ug/L			11/20/20 18:40	
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/20/20 18:40	
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 18:40	
Carbon tetrachloride	ND		1.0		ug/L			11/20/20 18:40	
2-Hexanone	ND		10	0.30				11/20/20 18:40	
Acetone	ND		20	0.70	-			11/20/20 18:40	
Chloroform	ND		1.0	0.20				11/20/20 18:40	
Benzene	54		1.0	0.20				11/20/20 18:40	
1,1,1-Trichloroethane	ND		1.0	0.30	-			11/20/20 18:40	
Bromomethane	ND		1.0		ug/L			11/20/20 18:40	
Chloromethane	ND		1.0	0.20	-			11/20/20 18:40	
Bromochloromethane	ND		5.0	0.20	-			11/20/20 18:40	
Chloroethane	1.3		1.0	0.20				11/20/20 18:40	
Vinyl chloride	1.1		1.0	0.20				11/20/20 18:40	
Methylene Chloride	ND		1.0	0.30	-			11/20/20 18:40	
Carbon disulfide	ND		5.0	0.20				11/20/20 18:40	
Bromoform	ND ND		4.0		ug/L ug/L			11/20/20 18:40	
Bromodichloromethane	ND ND		1.0	0.20	-			11/20/20 18:40	
			1.0	0.20				11/20/20 18:40	
1,1-Dichloroethane	5.4		1.0	0.20				11/20/20 18:40	
1,1-Dichloroethene	6.2				-				
Trichlorofluoromethane	ND		1.0	0.20				11/20/20 18:40	
Dichlorodifluoromethane	ND		1.0		ug/L			11/20/20 18:40	
Freon 113	ND		10	0.20	-			11/20/20 18:40	
1,2-Dichloropropane	ND		1.0		ug/L			11/20/20 18:40	
2-Butanone	ND		10	0.30				11/20/20 18:40	
1,1,2-Trichloroethane	ND		1.0	0.20				11/20/20 18:40	
Methyl acetate	ND		5.0	0.30				11/20/20 18:40	
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	-			11/20/20 18:40	
1,2,3-Trichlorobenzene	ND		5.0	0.40				11/20/20 18:40	
o-Xylene	ND		1.0		ug/L			11/20/20 18:40	
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/20/20 18:40	
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/20/20 18:40	
Isopropylbenzene	ND		5.0	0.20	ug/L			11/20/20 18:40	
m&p-Xylene	ND		5.0	1.0	ug/L			11/20/20 18:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		80 - 120				•	11/20/20 18:40	
4-Bromofluorobenzene (Surr)	98		80 - 120					11/20/20 18:40	
Dibromofluoromethane (Surr)	98		80 - 120					11/20/20 18:40	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Result Qualifier

Client Sample ID: MW-B-EPA-1B-11132020 Lab Sample ID: 410-20957-4

Date Collected: 11/13/20 15:00 Matrix: Groundwater

Date Received: 11/14/20 10:02

Analyte

cis-1,2-Dichloroethene Trichloroethene	720 410	10 10	2.0 ug/L 2.0 ug/L		11/23/20 06:32 11/23/20 06:32	10 10
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	80 - 120			11/23/20 06:32	10
4-Bromofluorobenzene (Surr)	98	80 - 120			11/23/20 06:32	10
Dibromofluoromethane (Surr)	98	80 - 120			11/23/20 06:32	10
Toluene-d8 (Surr)	101	80 - 120			11/23/20 06:32	10

MDL Unit

Method: 8270D SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	0.38		0.29	0.096	ug/L		11/20/20 09:00	11/26/20 00:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	62		10 - 122				11/20/20 09:00	11/26/20 00:56	1
201120(4)(5)10110 412 (6411)							11720720 00.00	0 0 0 0 0 0	
1-Methylnaphthalene-d10 (Surr)	77		49 - 115				11/20/20 09:00	11/26/20 00:56	1

Client Sample ID: MW-B-EPA-1C-11132020 Lab Sample ID: 410-20957-5

Date Collected: 11/13/20 15:05 Matrix: Groundwater
Date Received: 11/14/20 10:02

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/20/20 19:03	1
Styrene	ND	5.0	0.20	ug/L			11/20/20 19:03	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 19:03	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/20/20 19:03	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 19:03	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/20/20 19:03	1
1,2-Dichloroethane	9.7	1.0	0.30	ug/L			11/20/20 19:03	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/20/20 19:03	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/20/20 19:03	1
Toluene	2.4	1.0	0.20	ug/L			11/20/20 19:03	1
Chlorobenzene	6.4	1.0	0.20	ug/L			11/20/20 19:03	1
Cyclohexane	ND	5.0	1.0	ug/L			11/20/20 19:03	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/20/20 19:03	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/20/20 19:03	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/20/20 19:03	1
trans-1,2-Dichloroethene	2.3	1.0	0.20	ug/L			11/20/20 19:03	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/20/20 19:03	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/20/20 19:03	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/20/20 19:03	1
2-Hexanone	ND	10	0.30	ug/L			11/20/20 19:03	1
Acetone	ND	20	0.70	ug/L			11/20/20 19:03	1
Chloroform	ND	1.0	0.20	ug/L			11/20/20 19:03	1
Benzene	42	1.0	0.20	ug/L			11/20/20 19:03	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/20/20 19:03	1
Bromomethane	ND	1.0	0.30	ug/L			11/20/20 19:03	1
Chloromethane	ND	1.0	0.20	ug/L			11/20/20 19:03	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/20/20 19:03	1

Eurofins Lancaster Laboratories Env, LLC

Job ID: 410-20426-1

Analyzed

Dil Fac

Prepared

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-1C-11132020 Lab Sample ID: 410-20957-5

Date Collected: 11/13/20 15:05 Matrix: Groundwater

Date Received: 11/14/20 10:02

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	2.0		1.0	0.20	ug/L			11/20/20 19:03	
Vinyl chloride	0.94	J	1.0	0.20	ug/L			11/20/20 19:03	
Methylene Chloride	ND		1.0	0.30	ug/L			11/20/20 19:03	•
Carbon disulfide	ND		5.0	0.20	ug/L			11/20/20 19:03	
Bromoform	ND		4.0	1.0	ug/L			11/20/20 19:03	
Bromodichloromethane	ND		1.0	0.20	ug/L			11/20/20 19:03	
1,1-Dichloroethane	3.6		1.0	0.20	ug/L			11/20/20 19:03	
1,1-Dichloroethene	5.7		1.0	0.20	ug/L			11/20/20 19:03	
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/20/20 19:03	
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/20/20 19:03	
Freon 113	ND		10		ug/L			11/20/20 19:03	
1,2-Dichloropropane	ND		1.0		ug/L			11/20/20 19:03	
2-Butanone	ND		10		ug/L			11/20/20 19:03	
1,1,2-Trichloroethane	ND		1.0		ug/L			11/20/20 19:03	
Trichloroethene	210		1.0		ug/L			11/20/20 19:03	
Methyl acetate	ND		5.0		ug/L			11/20/20 19:03	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			11/20/20 19:03	
1,2,3-Trichlorobenzene	ND		5.0		ug/L			11/20/20 19:03	
o-Xylene	ND		1.0		ug/L			11/20/20 19:03	
1,2-Dichlorobenzene	ND		5.0		ug/L			11/20/20 19:03	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			11/20/20 19:03	
Isopropylbenzene	ND		5.0		ug/L			11/20/20 19:03	
m&p-Xylene	ND		5.0		ug/L			11/20/20 19:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	98		80 - 120					11/20/20 19:03	
4-Bromofluorobenzene (Surr)	97		80 - 120					11/20/20 19:03	
Dibromofluoromethane (Surr)	97		80 - 120					11/20/20 19:03	
Toluene-d8 (Surr)	100		80 - 120					11/20/20 19:03	
Method: 8260C - Volatile O	•								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
cis-1,2-Dichloroethene	830		10	2.0	ug/L			11/23/20 06:09	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		80 - 120					11/23/20 06:09	1
4-Bromofluorobenzene (Surr)	99		80 - 120					11/23/20 06:09	1
Dibromofluoromethane (Surr)	100		80 - 120					11/23/20 06:09	1
Toluene-d8 (Surr)	100		80 - 120					11/23/20 06:09	10
	volatile Organi	c Compou	nds (GC/MS	SIM)					
Method: 8270D SIM - Semiv		O	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: 8270D SIM - Semin Analyte	Result	Qualifier			-				
Analyte	Result 1.0	Quaimer	0.30	0.10	ug/L		11/20/20 09:00	11/26/20 01:24	
			0.30	0.10	ug/L		11/20/20 09:00 Prepared	11/26/20 01:24 Analyzed	
Analyte 1,4-Dioxane	1.0			0.10	ug/L				Dil Fa
Analyte 1,4-Dioxane Surrogate	1.0 %Recovery		Limits	0.10	ug/L		Prepared	Analyzed	Dil Fa

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 11/13/20 00:00 Date Received: 11/14/20 10:02 . Matrix: Water

Job ID: 410-20426-1

Mathada 20000 Valatila Omenia Camanada ha CC/MC

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Ethylbenzene	ND	1.0	0.40	-			11/22/20 22:57	
Styrene	ND	5.0	0.20	-			11/22/20 22:57	
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/22/20 22:57	
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/22/20 22:57	
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/22/20 22:57	
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/22/20 22:57	
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/22/20 22:57	
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/22/20 22:57	
Methylcyclohexane	ND	5.0	0.50	ug/L			11/22/20 22:57	
Toluene	ND	1.0	0.20	ug/L			11/22/20 22:57	
Chlorobenzene	ND	1.0	0.20	ug/L			11/22/20 22:57	
Cyclohexane	ND	5.0	1.0	ug/L			11/22/20 22:57	
1,2,4-Trichlorobenzene	ND	5.0	0.30				11/22/20 22:57	
Dibromochloromethane	ND	1.0	0.20				11/22/20 22:57	
Tetrachloroethene	ND	1.0	0.20	_			11/22/20 22:57	
cis-1,2-Dichloroethene	ND	1.0	0.20				11/22/20 22:57	
trans-1,2-Dichloroethene	ND	1.0	0.20				11/22/20 22:57	
Methyl tertiary butyl ether	ND	1.0	0.20	_			11/22/20 22:57	
1,3-Dichlorobenzene	ND	5.0	0.20				11/22/20 22:57	
Carbon tetrachloride	ND	1.0	0.20	-			11/22/20 22:57	
2-Hexanone	ND	10	0.30	_			11/22/20 22:57	
Acetone	ND	20	0.70				11/22/20 22:57	
Chloroform	ND	1.0	0.20				11/22/20 22:57	
Benzene	ND	1.0	0.20	_			11/22/20 22:57	
1,1,1-Trichloroethane	ND	1.0	0.30				11/22/20 22:57	
Bromomethane	ND	1.0	0.30				11/22/20 22:57	
Chloromethane	ND	1.0	0.20	_			11/22/20 22:57	
Bromochloromethane	ND	5.0	0.20				11/22/20 22:57	
Chloroethane	ND	1.0	0.20				11/22/20 22:57	
Vinyl chloride	ND	1.0	0.20	_			11/22/20 22:57	
Methylene Chloride	ND	1.0	0.30				11/22/20 22:57	
Carbon disulfide	ND	5.0	0.20				11/22/20 22:57	
Bromoform	ND	4.0		ug/L ug/L			11/22/20 22:57	
Bromodichloromethane	ND	1.0	0.20				11/22/20 22:57	
1,1-Dichloroethane	ND ND	1.0	0.20	-			11/22/20 22:57	
1,1-Dichloroethane	ND ND	1.0	0.20	_				
Trichlorofluoromethane							11/22/20 22:57	
Trichlorofluoromethane	ND ND	1.0	0.20				11/22/20 22:57 11/22/20 22:57	
		1.0	0.20					
Freon 113	ND	10	0.20				11/22/20 22:57	
1,2-Dichloropropane	ND	1.0	0.20				11/22/20 22:57	
2-Butanone	ND	10	0.30	_			11/22/20 22:57	
1,1,2-Trichloroethane	ND	1.0	0.20				11/22/20 22:57	
Trichloroethene	ND	1.0	0.20				11/22/20 22:57	
Methyl acetate	ND	5.0	0.30	_			11/22/20 22:57	
1,1,2,2-Tetrachloroethane	ND	1.0	0.20				11/22/20 22:57	
1,2,3-Trichlorobenzene	ND	5.0	0.40	•			11/22/20 22:57	
o-Xylene	ND	1.0	0.40	-			11/22/20 22:57	
1,2-Dichlorobenzene	ND	5.0	0.20				11/22/20 22:57	
1,2-Dibromo-3-Chloropropane	ND	5.0	0.30	ug/L			11/22/20 22:57	

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 11/13/20 00:00 Matrix: Water Date Received: 11/14/20 10:02

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Analyte	Result	Qualifier	` RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		5.0	0.20	ug/L			11/22/20 22:57	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/22/20 22:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120					11/22/20 22:57	1
4-Bromofluorobenzene (Surr)	100		80 - 120					11/22/20 22:57	1
Dibromofluoromethane (Surr)	97		80 - 120					11/22/20 22:57	1
Toluene-d8 (Surr)	101		80 - 120					11/22/20 22:57	1

Client Sample ID: MW-B-OMW-218-11162020 Lab Sample ID: 410-21151-1

Date Collected: 11/16/20 11:00 Matrix: Groundwater
Date Received: 11/17/20 11:38

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/23/20 18:15	1
Styrene	ND	5.0	0.20	ug/L			11/23/20 18:15	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 18:15	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 18:15	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/23/20 18:15	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 18:15	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 18:15	1
Toluene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Cyclohexane	ND	5.0	1.0	ug/L			11/23/20 18:15	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/23/20 18:15	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/23/20 18:15	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 18:15	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/23/20 18:15	1
2-Hexanone	ND	10	0.30	ug/L			11/23/20 18:15	1
Acetone	ND	20	0.70	ug/L			11/23/20 18:15	1
Chloroform	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Benzene	ND	1.0	0.20	ug/L			11/23/20 18:15	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/23/20 18:15	1
Bromomethane	ND	1.0	0.30	ug/L			11/23/20 18:15	1
Chloromethane	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/23/20 18:15	1
Chloroethane	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Vinyl chloride	ND	1.0	0.20	ug/L			11/23/20 18:15	1
Methylene Chloride	ND	1.0		ug/L			11/23/20 18:15	1
Carbon disulfide	ND	5.0		ug/L			11/23/20 18:15	1
Bromoform	ND	4.0		ug/L			11/23/20 18:15	1
Bromodichloromethane	ND	1.0		ug/L			11/23/20 18:15	1
1,1-Dichloroethane	ND	1.0		ug/L			11/23/20 18:15	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-218-11162020 Lab Sample ID: 410-21151-1

Date Collected: 11/16/20 11:00 Matrix: Groundwater

Date Received: 11/17/20 11:38

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 18:15	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/23/20 18:15	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/23/20 18:15	1
Freon 113	ND		10	0.20	ug/L			11/23/20 18:15	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/23/20 18:15	1
2-Butanone	ND		10	0.30	ug/L			11/23/20 18:15	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/23/20 18:15	1
Trichloroethene	ND		1.0	0.20	ug/L			11/23/20 18:15	1
Methyl acetate	ND		5.0	0.30	ug/L			11/23/20 18:15	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/23/20 18:15	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/23/20 18:15	1
o-Xylene	ND		1.0	0.40	ug/L			11/23/20 18:15	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 18:15	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/23/20 18:15	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/23/20 18:15	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 120					11/23/20 18:15	1
4-Bromofluorobenzene (Surr)	92		80 - 120					11/23/20 18:15	1
Dibromofluoromethane (Surr)	101		80 - 120					11/23/20 18:15	1
Toluene-d8 (Surr)	100		80 - 120					11/23/20 18:15	1

Client Sample ID: MW-B-OMW-219-11162020

Date Collected: 11/16/20 12:55 Date Received: 11/17/20 11:38

ne Neceived. 11/11/120 11.30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	1.1		1.0	0.40	ug/L			11/23/20 18:37	1
Styrene	ND		5.0	0.20	ug/L			11/23/20 18:37	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/23/20 18:37	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/23/20 18:37	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 18:37	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			11/23/20 18:37	1
1,2-Dichloroethane	12		1.0	0.30	ug/L			11/23/20 18:37	1
4-Methyl-2-pentanone	2.8	J	10	0.50	ug/L			11/23/20 18:37	1
Methylcyclohexane	ND		5.0	0.50	ug/L			11/23/20 18:37	1
Toluene	140		1.0	0.20	ug/L			11/23/20 18:37	1
Chlorobenzene	22		1.0	0.20	ug/L			11/23/20 18:37	1
Cyclohexane	ND		5.0	1.0	ug/L			11/23/20 18:37	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/23/20 18:37	1
Dibromochloromethane	ND		1.0	0.20	ug/L			11/23/20 18:37	1
Tetrachloroethene	ND		1.0	0.20	ug/L			11/23/20 18:37	1
cis-1,2-Dichloroethene	1.9		1.0	0.20	ug/L			11/23/20 18:37	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 18:37	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/23/20 18:37	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 18:37	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/23/20 18:37	1
2-Hexanone	ND		10	0.30	ug/L			11/23/20 18:37	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-21151-2

Matrix: Groundwater

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-219-11162020 Lab Sample ID: 410-21151-2

Date Collected: 11/16/20 12:55 Matrix: Groundwater

Date Received: 11/17/20 11:38

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	66		20					11/23/20 18:37	1
Chloroform	ND		1.0	0.20	ug/L			11/23/20 18:37	1
1,1,1-Trichloroethane	ND		1.0		ug/L			11/23/20 18:37	1
Bromomethane	ND		1.0	0.30	ug/L			11/23/20 18:37	1
Chloromethane	ND		1.0	0.20	ug/L			11/23/20 18:37	1
Bromochloromethane	ND		5.0	0.20	ug/L			11/23/20 18:37	1
Chloroethane	ND		1.0	0.20	ug/L			11/23/20 18:37	1
Vinyl chloride	0.50	J	1.0	0.20	ug/L			11/23/20 18:37	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/23/20 18:37	1
Carbon disulfide	0.27	J	5.0	0.20	ug/L			11/23/20 18:37	1
Bromoform	ND		4.0	1.0	ug/L			11/23/20 18:37	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/23/20 18:37	1
1,1-Dichloroethane	1.0		1.0	0.20	ug/L			11/23/20 18:37	1
1,1-Dichloroethene	ND		1.0		ug/L			11/23/20 18:37	1
Trichlorofluoromethane	ND		1.0		ug/L			11/23/20 18:37	1
Dichlorodifluoromethane	ND		1.0		ug/L			11/23/20 18:37	1
Freon 113	ND		10		ug/L			11/23/20 18:37	1
1,2-Dichloropropane	ND		1.0		ug/L			11/23/20 18:37	1
2-Butanone	3.0		10		ug/L			11/23/20 18:37	
1,1,2-Trichloroethane	ND		1.0		ug/L			11/23/20 18:37	1
Trichloroethene	0.85	.1	1.0		ug/L			11/23/20 18:37	1
Methyl acetate	ND	. •	5.0		ug/L			11/23/20 18:37	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			11/23/20 18:37	1
1,2,3-Trichlorobenzene	ND		5.0		ug/L			11/23/20 18:37	1
o-Xylene	1.1		1.0		ug/L			11/23/20 18:37	' 1
1,2-Dichlorobenzene	ND		5.0		ug/L			11/23/20 18:37	1
1,2-Dibromo-3-Chloropropane	ND ND		5.0		ug/L ug/L			11/23/20 18:37	1
	ND								
Isopropylbenzene			5.0		ug/L			11/23/20 18:37	1
m&p-Xylene	2.9	J	5.0	1.0	ug/L			11/23/20 18:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		80 - 120					11/23/20 18:37	1
4-Bromofluorobenzene (Surr)	93		80 - 120					11/23/20 18:37	1
Dibromofluoromethane (Surr)	99		80 - 120					11/23/20 18:37	1
Toluene-d8 (Surr)	101		80 - 120					11/23/20 18:37	1
Mathada 00000 Valatila Os			C/MC DI						
Method: 8260C - Volatile Or Analyte	•	unds by G Qualifier	C/MS - DL RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	460	Quanner	10		ug/L		Fiepaieu	11/24/20 20:09	10
Surve state	9/ B assyamy	Ovalifian	Limita				Dramarad	Analyzad	Dil Fo
Surrogate 1,2-Dichloroethane-d4 (Surr)	%Recovery	Quaiiller	80 - 120				Prepared	Analyzed 11/24/20 20:09	Dil Fac
4-Bromofluorobenzene (Surr)	92		80 - 120 80 - 120					11/24/20 20:09	10
Dibromofluoromethane (Surr)	101		80 - 120					11/24/20 20:09	10
Toluene-d8 (Surr)	101		80 - 120					11/24/20 20:09	10
Method: 8270D SIM - Semiv	olatile Organi	c Compou	nds (GC/MS	SIM)					
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	31		2.8		ug/L			12/03/20 12:04	10

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-219-11162020 Lab Sample ID: 410-21151-2

Date Collected: 11/16/20 12:55 Matrix: Groundwater

Date Received: 11/17/20 11:38

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	68	10 - 122	11/23/20 10:12	12/03/20 12:04	10
1-Methylnaphthalene-d10 (Surr)	85	49 - 115	11/23/20 10:12	12/03/20 12:04	10
Fluoranthene-d10 (Surr)	77	65 - 129	11/23/20 10:12	12/03/20 12:04	10

Client Sample ID: MW-B-OMW-221-11162020 Lab Sample ID: 410-21151-3

Date Collected: 11/16/20 15:30 Matrix: Groundwater
Date Received: 11/17/20 11:38

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/23/20 18:59	1
Styrene	ND	5.0	0.20	ug/L			11/23/20 18:59	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 18:59	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/23/20 18:59	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 18:59	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 18:59	1
Toluene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Cyclohexane	ND	5.0	1.0	ug/L			11/23/20 18:59	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/23/20 18:59	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/23/20 18:59	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 18:59	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/23/20 18:59	1
2-Hexanone	ND	10	0.30	ug/L			11/23/20 18:59	1
Acetone	ND	20	0.70	ug/L			11/23/20 18:59	1
Chloroform	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Benzene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/23/20 18:59	1
Bromomethane	ND	1.0	0.30	ug/L			11/23/20 18:59	1
Chloromethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/23/20 18:59	1
Chloroethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Vinyl chloride	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Methylene Chloride	ND	1.0	0.30	ug/L			11/23/20 18:59	1
Carbon disulfide	ND	5.0	0.20	ug/L			11/23/20 18:59	1
Bromoform	ND	4.0	1.0	ug/L			11/23/20 18:59	1
Bromodichloromethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
1,1-Dichloroethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
1,1-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Trichlorofluoromethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Dichlorodifluoromethane	ND	1.0	0.20	ug/L			11/23/20 18:59	1
Freon 113	ND	10	0.20	ug/L			11/23/20 18:59	1
1,2-Dichloropropane	ND	1.0	0.20	ug/L			11/23/20 18:59	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-221-11162020 Lab Sample ID: 410-21151-3

Date Collected: 11/16/20 15:30 Matrix: Groundwater

Date Received: 11/17/20 11:38

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone	ND		10	0.30	ug/L			11/23/20 18:59	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/23/20 18:59	1
Trichloroethene	1.3		1.0	0.20	ug/L			11/23/20 18:59	1
Methyl acetate	ND		5.0	0.30	ug/L			11/23/20 18:59	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/23/20 18:59	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/23/20 18:59	1
o-Xylene	ND		1.0	0.40	ug/L			11/23/20 18:59	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 18:59	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/23/20 18:59	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/23/20 18:59	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 18:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		80 - 120			-		11/23/20 18:59	1
4-Bromofluorobenzene (Surr)	92		80 - 120					11/23/20 18:59	1
Dibromofluoromethane (Surr)	101		80 - 120					11/23/20 18:59	1
Toluene-d8 (Surr)	99		80 - 120					11/23/20 18:59	1

Client Sample ID: MW-B-EPA-2A-11162020

Date Collected: 11/16/20 15:30

Date Received: 11/17/20 11:38

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/23/20 19:21	1
Styrene	ND	5.0	0.20	ug/L			11/23/20 19:21	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 19:21	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 19:21	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 19:21	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 19:21	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/23/20 19:21	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 19:21	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 19:21	1
Toluene	ND	1.0	0.20	ug/L			11/23/20 19:21	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/23/20 19:21	1
Cyclohexane	ND	5.0	1.0	ug/L			11/23/20 19:21	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/23/20 19:21	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/23/20 19:21	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/23/20 19:21	1
cis-1,2-Dichloroethene	4.5	1.0	0.20	ug/L			11/23/20 19:21	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 19:21	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/23/20 19:21	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 19:21	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/23/20 19:21	1
2-Hexanone	ND	10	0.30	ug/L			11/23/20 19:21	1
Acetone	ND	20	0.70	ug/L			11/23/20 19:21	1
Chloroform	ND	1.0	0.20	ug/L			11/23/20 19:21	1
Benzene	0.36 J	1.0	0.20	ug/L			11/23/20 19:21	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/23/20 19:21	1
Bromomethane	ND	1.0	0.30	ug/L			11/23/20 19:21	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-21151-4

Matrix: Groundwater

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-2A-11162020 Lab Sample ID: 410-21151-4

Date Collected: 11/16/20 15:30 **Matrix: Groundwater**

Date Received: 11/17/20 11:38

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
Bromochloromethane	ND		5.0	0.20	ug/L			11/23/20 19:21	
Chloroethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
Vinyl chloride	ND		1.0	0.20	ug/L			11/23/20 19:21	
Methylene Chloride	ND		1.0	0.30	ug/L			11/23/20 19:21	
Carbon disulfide	ND		5.0	0.20	ug/L			11/23/20 19:21	
Bromoform	ND		4.0	1.0	ug/L			11/23/20 19:21	
Bromodichloromethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/23/20 19:21	
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
Freon 113	ND		10	0.20	ug/L			11/23/20 19:21	
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/23/20 19:21	
2-Butanone	ND		10	0.30	ug/L			11/23/20 19:21	
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
Trichloroethene	2.4		1.0	0.20	ug/L			11/23/20 19:21	
Methyl acetate	ND		5.0	0.30	ug/L			11/23/20 19:21	
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/23/20 19:21	
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/23/20 19:21	
o-Xylene	ND		1.0	0.40	ug/L			11/23/20 19:21	
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 19:21	
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/23/20 19:21	
Isopropylbenzene	ND		5.0		ug/L			11/23/20 19:21	
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 19:21	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	103		80 - 120					11/23/20 19:21	
4-Bromofluorobenzene (Surr)	92		80 - 120					11/23/20 19:21	
Dibromofluoromethane (Surr)	101		80 - 120					11/23/20 19:21	
Toluene-d8 (Surr)	100		80 - 120					11/23/20 19:21	
Method: 8270D SIM - Semiv	olatile Organi	c Compou	ınds (GC/MS	SIM)					
Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.30	0.099	ug/L		11/23/20 10:12	12/03/20 01:10	-
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Benzo(a)pyrene-d12 (Surr)	51		10 - 122				11/23/20 10:12	12/03/20 01:10	
1-Methylnaphthalene-d10 (Surr)	66		49 - 115				11/23/20 10:12	12/03/20 01:10	1
Fluoranthene-d10 (Surr)	89		65 - 129				11/02/00 10:10	12/03/20 01:10	

Client Sample ID: MW-B-EPA-2B-11162020

Lab Sample ID: 410-21151-5 Date Collected: 11/16/20 15:35 **Matrix: Groundwater**

Date Received: 11/17/20 11:38

Method: 8260C - Volatile Or	ganic Compounds by GC	/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/23/20 19:43	1
Styrene	ND	5.0	0.20	ug/L			11/23/20 19:43	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 19:43	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 19:43	1

Eurofins Lancaster Laboratories Env, LLC

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 11/16/20 15:35 Matrix: Groundwater

Date Received: 11/17/20 11:38

Analyte	Result Qualifier	RL	IVIDE	Unit	D	Prepared	Analyzed	Dil Fa
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 19:43	
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 19:43	
1,2-Dichloroethane	0.64 J	1.0	0.30	ug/L			11/23/20 19:43	
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 19:43	
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 19:43	
Toluene	ND	1.0	0.20	ug/L			11/23/20 19:43	
Chlorobenzene	ND	1.0	0.20	-			11/23/20 19:43	
Cyclohexane	ND	5.0		ug/L			11/23/20 19:43	
1,2,4-Trichlorobenzene	ND	5.0	0.30				11/23/20 19:43	
Dibromochloromethane	ND	1.0	0.20	-			11/23/20 19:43	
Tetrachloroethene	ND	1.0	0.20	-			11/23/20 19:43	
cis-1,2-Dichloroethene	2.9	1.0	0.20				11/23/20 19:43	
trans-1,2-Dichloroethene	ND	1.0	0.20				11/23/20 19:43	
Methyl tertiary butyl ether	ND	1.0	0.20	-			11/23/20 19:43	
1,3-Dichlorobenzene	ND	5.0	0.20				11/23/20 19:43	
Carbon tetrachloride	ND	1.0	0.20				11/23/20 19:43	
2-Hexanone	ND	1.0	0.20	-			11/23/20 19:43	
Acetone	ND	20	0.70				11/23/20 19:43	
Chloroform	ND	1.0	0.70	-			11/23/20 19:43	
	1.1	1.0	0.20	-			11/23/20 19:43	
Benzene 1,1,1-Trichloroethane	ND	1.0	0.20				11/23/20 19:43	
Bromomethane	ND ND	1.0	0.30	-			11/23/20 19:43	
Chloromethane	ND ND	1.0	0.30	-			11/23/20 19:43	
Bromochloromethane							11/23/20 19:43	
	ND	5.0	0.20					
Chloroethane	ND	1.0	0.20	-			11/23/20 19:43	
Vinyl chloride	ND	1.0	0.20				11/23/20 19:43	
Methylene Chloride	ND	1.0	0.30				11/23/20 19:43	
Carbon disulfide	ND	5.0	0.20	-			11/23/20 19:43	
Bromoform	ND	4.0		ug/L			11/23/20 19:43	
Bromodichloromethane	ND	1.0	0.20	-			11/23/20 19:43	
1,1-Dichloroethane	ND	1.0	0.20	_			11/23/20 19:43	
1,1-Dichloroethene	ND	1.0	0.20				11/23/20 19:43	
Trichlorofluoromethane	ND	1.0	0.20	_			11/23/20 19:43	
Dichlorodifluoromethane	ND	1.0	0.20	_			11/23/20 19:43	
Freon 113	ND	10	0.20				11/23/20 19:43	
1,2-Dichloropropane	ND	1.0	0.20	-			11/23/20 19:43	
2-Butanone	ND	10	0.30	•			11/23/20 19:43	
1,1,2-Trichloroethane	ND	1.0	0.20				11/23/20 19:43	
Trichloroethene	36	1.0	0.20	-			11/23/20 19:43	
Methyl acetate	ND	5.0	0.30	ug/L			11/23/20 19:43	
1,1,2,2-Tetrachloroethane	ND	1.0	0.20				11/23/20 19:43	
1,2,3-Trichlorobenzene	ND	5.0	0.40	ug/L			11/23/20 19:43	
o-Xylene	ND	1.0	0.40	ug/L			11/23/20 19:43	
1,2-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 19:43	
1,2-Dibromo-3-Chloropropane	ND	5.0	0.30	ug/L			11/23/20 19:43	
Isopropylbenzene	ND	5.0	0.20	ug/L			11/23/20 19:43	
m&p-Xylene	ND	5.0	1.0	ug/L			11/23/20 19:43	
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fa

Job ID: 410-20426-1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-2B-11162020 Lab Sample ID: 410-21151-5

Date Collected: 11/16/20 15:35 Matrix: Groundwater

Date Received: 11/17/20 11:38

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	92		80 - 120	_		11/23/20 19:43	1	
Dibromofluoromethane (Surr)	101		80 - 120			11/23/20 19:43	1	
Toluene-d8 (Surr)	101		80 - 120			11/23/20 19:43	1	

Method: 8270D SIM - Semivolatile Organic Compounds (GC/MS SIM)

Result Qualifier

1	,4-Dioxane	ND	0.29	0.098 ug/L	11/23/20 10:12	12/03/20 01:38	1
5	Surrogate	%Recovery Qualifie	er Limits		Prepared	Analyzed	Dil Fac
E	Benzo(a)pyrene-d12 (Surr)	52	10 - 122		11/23/20 10:12	12/03/20 01:38	1
1	-Methylnaphthalene-d10 (Surr)	69	49 - 115		11/23/20 10:12	12/03/20 01:38	1
F	Fluoranthene-d10 (Surr)	76	65 - 129		11/23/20 10:12	12/03/20 01:38	1

MDL Unit

Client Sample ID: MW-B-EPA-2C-11162020

Date Collected: 11/16/20 15:40 Date Received: 11/17/20 11:38

Lab Sample ID: 410-21151-6

Prepared

Matrix: Groundwater

Analyzed

Dil Fac

Job ID: 410-20426-1

Method: 8260C - Volatile Or Analyte	ganic Compounds by G Result Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L		-	11/23/20 20:05	
Styrene	ND	5.0	0.20	ug/L			11/23/20 20:05	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 20:05	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 20:05	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 20:05	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 20:05	1
1,2-Dichloroethane	2.9	1.0	0.30	ug/L			11/23/20 20:05	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 20:05	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 20:05	1
Toluene	ND	1.0	0.20	ug/L			11/23/20 20:05	1
Chlorobenzene	1.3	1.0	0.20	ug/L			11/23/20 20:05	1
Cyclohexane	ND	5.0	1.0	ug/L			11/23/20 20:05	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/23/20 20:05	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/23/20 20:05	1
Tetrachloroethene	0.30 J	1.0	0.20	ug/L			11/23/20 20:05	1
cis-1,2-Dichloroethene	46	1.0	0.20	ug/L			11/23/20 20:05	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 20:05	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/23/20 20:05	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 20:05	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/23/20 20:05	1
2-Hexanone	ND	10	0.30	ug/L			11/23/20 20:05	1
Acetone	ND	20	0.70	ug/L			11/23/20 20:05	1
Chloroform	ND	1.0	0.20	ug/L			11/23/20 20:05	1
Benzene	13	1.0	0.20	ug/L			11/23/20 20:05	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/23/20 20:05	1
Bromomethane	ND	1.0	0.30	ug/L			11/23/20 20:05	1
Chloromethane	ND	1.0	0.20	ug/L			11/23/20 20:05	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/23/20 20:05	1
Chloroethane	ND	1.0	0.20	ug/L			11/23/20 20:05	1
Vinyl chloride	0.20 J	1.0	0.20	ug/L			11/23/20 20:05	1
Methylene Chloride	ND	1.0	0.30	ug/L			11/23/20 20:05	1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-EPA-2C-11162020 Lab Sample ID: 410-21151-6

Date Collected: 11/16/20 15:40 **Matrix: Groundwater**

Date Received: 11/17/20 11:38

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	ND		5.0	0.20	ug/L			11/23/20 20:05	1
Bromoform	ND		4.0	1.0	ug/L			11/23/20 20:05	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/23/20 20:05	1
1,1-Dichloroethane	1.3		1.0	0.20	ug/L			11/23/20 20:05	1
1,1-Dichloroethene	0.71	J	1.0	0.20	ug/L			11/23/20 20:05	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/23/20 20:05	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/23/20 20:05	1
Freon 113	ND		10	0.20	ug/L			11/23/20 20:05	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/23/20 20:05	1
2-Butanone	0.62	J	10	0.30	ug/L			11/23/20 20:05	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/23/20 20:05	1
Trichloroethene	150		1.0	0.20	ug/L			11/23/20 20:05	1
Methyl acetate	ND		5.0	0.30	ug/L			11/23/20 20:05	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/23/20 20:05	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/23/20 20:05	1
o-Xylene	ND		1.0	0.40	ug/L			11/23/20 20:05	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/23/20 20:05	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/23/20 20:05	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/23/20 20:05	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/23/20 20:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		80 - 120					11/23/20 20:05	1
4-Bromofluorobenzene (Surr)	92		80 - 120					11/23/20 20:05	1
Dibromofluoromethane (Surr)	101		80 - 120					11/23/20 20:05	1
Toluene-d8 (Surr)	101		80 - 120					11/23/20 20:05	1

Method: 8270D SIM - Semivo			•	•		_			5
Analyte 1.4-Dioxane	0.32	Qualifier	RL	0.098		D	Prepared 11/23/20 10:12	Analyzed 12/03/20 02:06	Dil Fac
1,4-510x4110	0.02		0.20	0.000	ug/L		11/20/20 10:12	12/00/20 02:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Benzo(a)pyrene-d12 (Surr)	67		10 - 122				11/23/20 10:12	12/03/20 02:06	1
1-Methylnaphthalene-d10 (Surr)	70		49 - 115				11/23/20 10:12	12/03/20 02:06	1
Fluoranthene-d10 (Surr)	90		65 - 129				11/23/20 10:12	12/03/20 02:06	1

Client Sample ID: GW-11162020-TB

Lab Sample ID: 410-21151-7 Date Collected: 11/16/20 00:00 **Matrix: Water** Date Received: 11/17/20 11:38

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND	1.0	0.40	ug/L			11/23/20 14:11	1
Styrene	ND	5.0	0.20	ug/L			11/23/20 14:11	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 14:11	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/23/20 14:11	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 14:11	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/23/20 14:11	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/23/20 14:11	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/23/20 14:11	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/23/20 14:11	1

Eurofins Lancaster Laboratories Env, LLC

Job ID: 410-20426-1

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 11/16/20 00:00 Date Received: 11/17/20 11:38

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Matrix: Water

Job ID: 410-20426-1

Method: 8260C - Volatile Organic	Compounds by GC/MS	(Conti	nued)		
Amalista	Descrit Occalifica	`	ME	1114	

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND ND	1.0		ug/L			11/23/20 14:11	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/23/20 14:11	1
Cyclohexane	ND	5.0	1.0	ug/L			11/23/20 14:11	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/23/20 14:11	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/23/20 14:11	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/23/20 14:11	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 14:11	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/23/20 14:11	1
Methyl tertiary butyl ether	ND	1.0	0.20	ug/L			11/23/20 14:11	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/23/20 14:11	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/23/20 14:11	1
2-Hexanone	ND	10	0.30	ug/L			11/23/20 14:11	1
Acetone	ND	20	0.70	ug/L			11/23/20 14:11	1
Chloroform	ND	1.0	0.20	ug/L			11/23/20 14:11	1
Benzene	ND	1.0	0.20	ug/L			11/23/20 14:11	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/23/20 14:11	1
Bromomethane	ND	1.0	0.30	ug/L			11/23/20 14:11	1
Chloromethane	ND	1.0	0.20	ug/L			11/23/20 14:11	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/23/20 14:11	1
Chloroethane	ND	1.0	0.20	ug/L			11/23/20 14:11	1
Vinyl chloride	ND	1.0	0.20	ug/L			11/23/20 14:11	1
Methylene Chloride	ND	1.0	0.30	ug/L			11/23/20 14:11	1
Carbon disulfide	ND	5.0		ug/L			11/23/20 14:11	1
Bromoform	ND	4.0		ug/L			11/23/20 14:11	1
Bromodichloromethane	ND	1.0		ug/L			11/23/20 14:11	1
1,1-Dichloroethane	ND	1.0	0.20	ug/L			11/23/20 14:11	1
1,1-Dichloroethene	ND	1.0		ug/L			11/23/20 14:11	1
Trichlorofluoromethane	ND	1.0		ug/L			11/23/20 14:11	1
Dichlorodifluoromethane	ND	1.0		ug/L			11/23/20 14:11	1
Freon 113	ND	10		ug/L			11/23/20 14:11	1
1,2-Dichloropropane	ND	1.0		ug/L			11/23/20 14:11	1
2-Butanone	ND	10		ug/L			11/23/20 14:11	1
1,1,2-Trichloroethane	ND	1.0		ug/L			11/23/20 14:11	1
Trichloroethene	ND	1.0		ug/L			11/23/20 14:11	1
Methyl acetate	ND	5.0		ug/L			11/23/20 14:11	1
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			11/23/20 14:11	1
1,2,3-Trichlorobenzene	ND	5.0		ug/L			11/23/20 14:11	1
o-Xylene	ND	1.0		ug/L			11/23/20 14:11	1
1,2-Dichlorobenzene	ND	5.0		ug/L			11/23/20 14:11	1
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/L			11/23/20 14:11	
Isopropylbenzene	ND	5.0		ug/L			11/23/20 14:11	1
m&p-Xylene	ND	5.0		ug/L			11/23/20 14:11	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	80 - 120					11/23/20 14:11	1
	• .							

11/23/20 14:11

11/23/20 14:11

11/23/20 14:11

80 - 120

80 - 120

80 - 120

91

102

100

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: GW-11172020-TB

Date Collected: 11/17/20 00:00

Lab Sample ID: 410-21275-4

Matrix: Water

Date Received: 11/18/20 11:42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/28/20 13:49	1
Dichlorodifluoromethane	ND	*	1.0	0.20	ug/L			11/28/20 13:49	1
Freon 113	ND		10	0.20	ug/L			11/28/20 13:49	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/28/20 13:49	1
2-Butanone	ND		10	0.30	ug/L			11/28/20 13:49	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/28/20 13:49	1
Trichloroethene	ND		1.0	0.20	ug/L			11/28/20 13:49	1
Methyl acetate	ND		5.0	0.30	ug/L			11/28/20 13:49	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/28/20 13:49	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/28/20 13:49	1
o-Xylene	ND		1.0	0.40	ug/L			11/28/20 13:49	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/28/20 13:49	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/28/20 13:49	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/28/20 13:49	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/28/20 13:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		80 - 120			-		11/28/20 13:49	1
4-Bromofluorobenzene (Surr)	93		80 - 120					11/28/20 13:49	1
Dibromofluoromethane (Surr)	100		80 - 120					11/28/20 13:49	1
Toluene-d8 (Surr)	96		80 - 120					11/28/20 13:49	1

Client Sample ID: MW-B-OMW-103-11182020

Date Collected: 11/18/20 11:50 Date Received: 11/19/20 11:21 Lab Sample ID: 410-21453-1

Matrix: Groundwater

Job ID: 410-20426-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.0	0.40	ug/L			11/30/20 17:20	1
Styrene	ND		5.0	0.20	ug/L			11/30/20 17:20	1
cis-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
trans-1,3-Dichloropropene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
1,4-Dichlorobenzene	ND		5.0	0.20	ug/L			11/30/20 17:20	1
1,2-Dibromoethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
1,2-Dichloroethane	ND		1.0	0.30	ug/L			11/30/20 17:20	1
4-Methyl-2-pentanone	ND		10	0.50	ug/L			11/30/20 17:20	1
Methylcyclohexane	ND		5.0	0.50	ug/L			11/30/20 17:20	1
Toluene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Chlorobenzene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Cyclohexane	ND		5.0	1.0	ug/L			11/30/20 17:20	1
1,2,4-Trichlorobenzene	ND		5.0	0.30	ug/L			11/30/20 17:20	1
Dibromochloromethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Tetrachloroethene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
cis-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
trans-1,2-Dichloroethene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Methyl tertiary butyl ether	ND		1.0	0.20	ug/L			11/30/20 17:20	1
1,3-Dichlorobenzene	ND		5.0	0.20	ug/L			11/30/20 17:20	1
Carbon tetrachloride	ND		1.0	0.20	ug/L			11/30/20 17:20	1
2-Hexanone	ND		10	0.30	ug/L			11/30/20 17:20	1
Acetone	ND		20	0.70	ug/L			11/30/20 17:20	1

SET 2/8/2021

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-OMW-103-11182020 Lab Sample ID: 410-21453-1

Date Collected: 11/18/20 11:50 Matrix: Groundwater

Date Received: 11/19/20 11:21

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Benzene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
1,1,1-Trichloroethane	ND		1.0	0.30	ug/L			11/30/20 17:20	1
Bromomethane	ND		1.0	0.30	ug/L			11/30/20 17:20	1
Chloromethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Bromochloromethane	ND		5.0	0.20	ug/L			11/30/20 17:20	1
Chloroethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Vinyl chloride	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Methylene Chloride	ND		1.0	0.30	ug/L			11/30/20 17:20	1
Carbon disulfide	ND		5.0	0.20	ug/L			11/30/20 17:20	1
Bromoform	ND		4.0	1.0	ug/L			11/30/20 17:20	1
Bromodichloromethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
1,1-Dichloroethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
1,1-Dichloroethene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Trichlorofluoromethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Dichlorodifluoromethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Freon 113	ND		10	0.20	ug/L			11/30/20 17:20	1
1,2-Dichloropropane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
2-Butanone	ND		10	0.30	ug/L			11/30/20 17:20	1
1,1,2-Trichloroethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Trichloroethene	ND		1.0	0.20	ug/L			11/30/20 17:20	1
Methyl acetate	ND		5.0	0.30	ug/L			11/30/20 17:20	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L			11/30/20 17:20	1
1,2,3-Trichlorobenzene	ND		5.0	0.40	ug/L			11/30/20 17:20	1
o-Xylene	ND		1.0	0.40	ug/L			11/30/20 17:20	1
1,2-Dichlorobenzene	ND		5.0	0.20	ug/L			11/30/20 17:20	1
1,2-Dibromo-3-Chloropropane	ND		5.0	0.30	ug/L			11/30/20 17:20	1
Isopropylbenzene	ND		5.0	0.20	ug/L			11/30/20 17:20	1
m&p-Xylene	ND		5.0	1.0	ug/L			11/30/20 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		80 - 120			-		11/30/20 17:20	1
4-Bromofluorobenzene (Surr)	98		80 - 120					11/30/20 17:20	1
Dibromofluoromethane (Surr)	100		80 - 120					11/30/20 17:20	1
Toluene-d8 (Surr)	101		80 - 120					11/30/20 17:20	1

Client Sample ID: MW-B-DB-1I-11182020

Date Collected: 11/18/20 13:55
Date Received: 11/19/20 11:21

Lab Sample ID: 410-21453-2

Matrix: Groundwater

Job ID: 410-20426-1

Method: 8260C - Volatile Or	ganic Compounds by GC	/MS					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	2200	100	40 ug/L			11/30/20 17:43	100
Styrene	ND	500	20 ug/L			11/30/20 17:43	100
cis-1,3-Dichloropropene	ND	100	20 ug/L			11/30/20 17:43	100
trans-1,3-Dichloropropene	ND	100	20 ug/L			11/30/20 17:43	100
1,4-Dichlorobenzene	120 J	500	20 ug/L			11/30/20 17:43	100
1,2-Dibromoethane	ND	100	20 ug/L			11/30/20 17:43	100
1,2-Dichloroethane	7200	100	30 ug/L			11/30/20 17:43	100
4-Methyl-2-pentanone	880 J	1000	50 ug/L			11/30/20 17:43	100

SET 2/8/2021

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Client Sample ID: MW-B-DBH-02D-11182020 Lab Sample ID: 410-21453-5

Date Collected: 11/18/20 15:55 Matrix: Groundwater
Date Received: 11/19/20 11:21

Method: 8260C - Volatile O Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND	Qualifier	20		ug/L		Frepareu	11/30/20 20:00	20
2-Butanone	ND		200		ug/L		<i> / .</i>	11/30/20 20:00	20
1,1,2-Trichloroethane	ND.		20		ug/L			11/30/20 20:00	20
Methyl acetate	ND		100		ug/L	/		11/30/20 20:00	20
1,1,2,2-Tetrachloroethane	ND		20		ug/L			11/30/20 20:00	20
1,2,3-Trichlorobenzene	19	J	100		ug/L			11/30/20 20:00	20
o-Xylene	69		20		ug/L			11/30/20 20:00	20
1,2-Dichlorobenzene	7.5)	100		ug/L			11/30/20 20:00	20
1,2-Dibromo-3-Chloropropane	ND		100		ug/L			11/30/20 20:00	20
Isopropylbenzene	ND		100		ug/L			11/30/20 20:00	20
m&p-Xylene	23	J	100		ug/L			11/30/20 20:00	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		80 - 120			=	<u> </u>	11/30/20 20:00	20
4-Bromofluorobenzene (Surr)	99		80 - 120					11/30/20 20:00	20
Dibromofluoromethane (Surr)	100		80 - 120					11/30/20 20:00	20
Toluene-d8 (Surr)	101		80 - 120					11/30/20 20:00	20
Method: 8260C - Volatile O	rganic Compo	unds bv G	C/MS - DL						
Analyte	7	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	18000		200	40	ug/L			12/01/20 13:12	200
Tricilloroetherie									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	%Recovery	Qualifier	Limits 80 - 120			-	Prepared	Analyzed 12/01/20 13:12	Dil Fac
Surrogate		Qualifier				-	Prepared		
Surrogate 1,2-Dichloroethane-d4 (Surr)	99	Qualifier	80 - 120			-	Prepared	12/01/20 13:12	200

Client Sample ID: GW-11182020-TB

Date Collected: 11/18/20 00:00 Date Received: 11/19/20 11:21 Lab Sample ID: 410-21453-6

Matrix: Water

Job ID: 410-20426-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND ND	1.0	0.40	ug/L			11/30/20 11:58	1
Styrene	ND	5.0	0.20	ug/L			11/30/20 11:58	1
cis-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
trans-1,3-Dichloropropene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
1,4-Dichlorobenzene	ND	5.0	0.20	ug/L			11/30/20 11:58	1
1,2-Dibromoethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
1,2-Dichloroethane	ND	1.0	0.30	ug/L			11/30/20 11:58	1
4-Methyl-2-pentanone	ND	10	0.50	ug/L			11/30/20 11:58	1
Methylcyclohexane	ND	5.0	0.50	ug/L			11/30/20 11:58	1
Toluene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Chlorobenzene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Cyclohexane	ND	5.0	1.0	ug/L			11/30/20 11:58	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/L			11/30/20 11:58	1
Dibromochloromethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Tetrachloroethene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
cis-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
trans-1,2-Dichloroethene	ND	1.0	0.20	ug/L			11/30/20 11:58	1

SET 2/8/2021

Client: O'Brien & Gere Inc of North America Project/Site: GE - Dewey Loeffel Landfill

Date Collected: 11/18/20 00:00

. Matrix: Water

Job ID: 410-20426-1

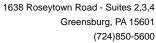
Date Received: 11/19/20 11:21

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tertiary butyl ether	ND ND	1.0	0.20	ug/L			11/30/20 11:58	1
1,3-Dichlorobenzene	ND	5.0	0.20	ug/L			11/30/20 11:58	1
Carbon tetrachloride	ND	1.0	0.20	ug/L			11/30/20 11:58	1
2-Hexanone	ND	10	0.30	ug/L			11/30/20 11:58	1
Acetone	ND	20	0.70	ug/L			11/30/20 11:58	1
Chloroform	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Benzene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
1,1,1-Trichloroethane	ND	1.0	0.30	ug/L			11/30/20 11:58	1
Bromomethane	ND	1.0	0.30	ug/L			11/30/20 11:58	1
Chloromethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Bromochloromethane	ND	5.0	0.20	ug/L			11/30/20 11:58	1
Chloroethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Vinyl chloride	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Methylene Chloride	ND	1.0	0.30	ug/L			11/30/20 11:58	1
Carbon disulfide	ND	5.0	0.20	ug/L			11/30/20 11:58	1
Bromoform	ND	4.0	1.0	ug/L			11/30/20 11:58	1
Bromodichloromethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
1,1-Dichloroethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
1,1-Dichloroethene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Trichlorofluoromethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Dichlorodifluoromethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Freon 113	ND	10	0.20	ug/L			11/30/20 11:58	1
1,2-Dichloropropane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
2-Butanone	ND	10	0.30	ug/L			11/30/20 11:58	1
1,1,2-Trichloroethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Trichloroethene	ND	1.0	0.20	ug/L			11/30/20 11:58	1
Methyl acetate	ND	5.0	0.30	ug/L			11/30/20 11:58	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/L			11/30/20 11:58	1
1,2,3-Trichlorobenzene	ND	5.0	0.40	ug/L			11/30/20 11:58	1
o-Xylene	ND	1.0	0.40	ug/L			11/30/20 11:58	1
1,2-Dichlorobenzene	ND	5.0	0.20	ug/L			11/30/20 11:58	1
1,2-Dibromo-3-Chloropropane	ND	5.0	0.30	ug/L			11/30/20 11:58	1
Isopropylbenzene	ND	5.0	0.20	ug/L			11/30/20 11:58	1
m&p-Xylene	ND	5.0	1.0	ug/L			11/30/20 11:58	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99	80 - 120			·		11/30/20 11:58	1
4-Bromofluorobenzene (Surr)	98	80 - 120					11/30/20 11:58	1
Dibromofluoromethane (Surr)	100	80 - 120					11/30/20 11:58	1
Toluene-d8 (Surr)	100	80 - 120					11/30/20 11:58	1

APPENDIX F 2020 EXTRACTION WELL LABORATORY RESULT FORMS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


Sample: EW-1 082620 Lab ID: 30379383001 Collected: 08/26/20 07:30 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

be biased high.

be blased flight.			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical	Method: EP	A 8270D Prep	paration Met	thod: E	PA 3510C			
	Pace Anal	ytical Servic	es - Long Isla	nd					
2,4-Dinitrophenol	ND	ug/L	10.0	5.7	1	09/01/20 09:59	09/08/20 22:17	51-28-5	CL
2,4-Dinitrotoluene	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 22:17	121-14-2	
2,6-Dinitrotoluene	ND	ug/L	5.0	0.44	1	09/01/20 09:59	09/08/20 22:17	606-20-2	
2-Chloronaphthalene	ND	ug/L	5.0	0.33	1	09/01/20 09:59	09/08/20 22:17	91-58-7	
2-Chlorophenol	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:17	95-57-8	
2-Methylnaphthalene	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 22:17	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 22:17	95-48-7	
2-Nitroaniline	ND	ug/L	5.0	0.40	1	09/01/20 09:59	09/08/20 22:17	88-74-4	
2-Nitrophenol	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 22:17	88-75-5	
3&4-Methylphenol(m&p Cresol)	ND	ug/L	5.0	0.36	1	09/01/20 09:59	09/08/20 22:17		
3,3'-Dichlorobenzidine	ND	ug/L	5.0	0.53	1	09/01/20 09:59	09/08/20 22:17	91-94-1	
3-Nitroaniline	ND	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 22:17	99-09-2	
4,6-Dinitro-2-methylphenol	ND	ug/L	10.0	3.8	1	09/01/20 09:59	09/08/20 22:17	534-52-1	
4-Bromophenylphenyl ether	ND	ug/L	5.0	0.47	1	09/01/20 09:59	09/08/20 22:17	101-55-3	
4-Chloro-3-methylphenol	ND	ug/L	5.0	0.46	1	09/01/20 09:59	09/08/20 22:17	59-50-7	
4-Chloroaniline	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 22:17	106-47-8	
4-Chlorophenylphenyl ether	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:17	7005-72-3	
4-Nitroaniline	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 22:17	100-01-6	
4-Nitrophenol	ND	ug/L	10.0	3.9	1	09/01/20 09:59	09/08/20 22:17	100-02-7	
Acenaphthene	ND	ug/L	5.0	0.26	1	09/01/20 09:59	09/08/20 22:17	83-32-9	
Acenaphthylene	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 22:17	208-96-8	
Anthracene	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 22:17	120-12-7	
Benzo(a)anthracene	ND	ug/L	5.0	0.44	1	09/01/20 09:59	09/08/20 22:17	56-55-3	
Benzo(a)pyrene	ND	ug/L	5.0	0.75	1	09/01/20 09:59	09/08/20 22:17	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	5.0	0.64	1	09/01/20 09:59	09/08/20 22:17		
Benzo(g,h,i)perylene	ND	ug/L	5.0	1.0	1	09/01/20 09:59	09/08/20 22:17		
Benzo(k)fluoranthene	ND	ug/L	5.0	0.76	1	09/01/20 09:59	09/08/20 22:17	207-08-9	
Butylbenzylphthalate	ND	ug/L	5.0	0.40	1	09/01/20 09:59	09/08/20 22:17		
Carbazole	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 22:17		
Chrysene	ND	ug/L	5.0	0.47	1	09/01/20 09:59	09/08/20 22:17		
Di-n-butylphthalate	ND	ug/L	5.0	0.69	1	09/01/20 09:59	09/08/20 22:17		
Di-n-octylphthalate	ND	ug/L	5.0	2.6	1	09/01/20 09:59	09/08/20 22:17		
Dibenz(a,h)anthracene	ND	ug/L	5.0	0.93	1	09/01/20 09:59	09/08/20 22:17		
Dibenzofuran	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:17		
Diethylphthalate	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 22:17		
Dimethylphthalate	ND	ug/L	5.0	0.56	1		09/08/20 22:17		
Fluoranthene	ND	ug/L	5.0	0.40	1	09/01/20 09:59			
Fluorene	ND	ug/L	5.0	0.38	1	09/01/20 09:59			
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1	09/01/20 09:59			L2
Hexachlorobenzene	ND	ug/L	5.0	0.35	1		09/08/20 22:17		
Hexachlorocyclopentadiene	ND	ug/L	5.0	2.2	1	09/01/20 09:59			
Hexachloroethane	ND ND	ug/L	5.0	0.43	1	09/01/20 09:59	09/08/20 22:17		L2
Indeno(1,2,3-cd)pyrene	ND ND	ug/L	5.0	0.43	1		09/08/20 22:17		
muono(1,2,0-ou)pyrene	ND	ug/L	5.0	0.00	'	03/01/20 03.33	03/00/20 22.17	133-33-3	

REPORT OF LABORATORY ANALYSIS

Project: **Dewey Loeffel** Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-1 082620 Lab ID: 30379383001 Collected: 08/26/20 07:30 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

be biased high.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EP	4 8270D Prep	aration Met	hod: E	PA 3510C			
	Pace Anal	ytical Servic	es - Long Islar	nd					
Isophorone	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 22:17	78-59-1	
N-Nitroso-di-n-propylamine	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 22:17	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 22:17	86-30-6	L1
Naphthalene	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:17	91-20-3	
Nitrobenzene	ND	ug/L	5.0	0.50	1	09/01/20 09:59	09/08/20 22:17	98-95-3	
Pentachlorophenol	ND	ug/L	10.0	3.4	1	09/01/20 09:59	09/08/20 22:17	87-86-5	
Phenanthrene	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 22:17	85-01-8	
Phenol	ND	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 22:17	108-95-2	
Pyrene	ND	ug/L	5.0	0.41	1	09/01/20 09:59	09/08/20 22:17	129-00-0	
bis(2-Chloroethoxy)methane	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 22:17	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/L	5.0	0.33	1	09/01/20 09:59	09/08/20 22:17	111-44-4	
bis(2-Ethylhexyl)phthalate	ND	ug/L	5.0	1.5	1	09/01/20 09:59	09/08/20 22:17		
Surrogates		<u>.</u>		=					
Nitrobenzene-d5 (S)	88	%	35-114		1	09/01/20 09:59	09/08/20 22:17	4165-60-0	
2-Fluorobiphenyl (S)	89	%	43-116		1	09/01/20 09:59	09/08/20 22:17	321-60-8	
p-Terphenyl-d14 (S)	279	%	33-141		1	09/01/20 09:59	09/08/20 22:17	1718-51-0	E,S3
Phenol-d5 (S)	19	%	10-110		1	09/01/20 09:59	09/08/20 22:17	4165-62-2	
2-Fluorophenol (S)	33	%	21-110		1	09/01/20 09:59	09/08/20 22:17	367-12-4	
2,4,6-Tribromophenol (S)	101	%	10-123		1	09/01/20 09:59	09/08/20 22:17	118-79-6	
2-Chlorophenol-d4 (S)	69	%	33-110		1	09/01/20 09:59	09/08/20 22:17	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	63	%	16-110		1	09/01/20 09:59	09/08/20 22:17	2199-69-1	
8260C Volatile Organics	Analytical	Method: EPA	A 8260C/5030	С					
	Pace Anal	ytical Servic	es - Long Islar	nd					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 20:33	630-20-6	
1,1,1-Trichloroethane	4.5	ug/L	1.0	0.22	1		09/04/20 20:33	71-55-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 20:33		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.23	1		09/04/20 20:33		
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	0.23	1		09/04/20 20:33	76-13-1	
1,1-Dichloroethane	30.6	ug/L	1.0	0.19	1		09/04/20 20:33	75-34-3	
1,1-Dichloroethene	18.3	ug/L	1.0	0.23	1		09/04/20 20:33	75-35-4	
1,2,3-Trichlorobenzene	20.7	ug/L	1.0	0.64	1		09/04/20 20:33		L1
1,2,4-Trichlorobenzene	98.2	ug/L	1.0	0.45	1		09/04/20 20:33		
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/04/20 20:33		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/04/20 20:33		
1,2-Dichlorobenzene	4.3	ug/L	1.0	0.17	1		09/04/20 20:33		
1,2-Dichloroethane	91.0	ug/L	1.0	0.19	1		09/04/20 20:33		
1,2-Dichloropropane	ND	ug/L	1.0	0.43	1		09/04/20 20:33		
1,3-Dichlorobenzene	1.3	ug/L	1.0	0.23	1		09/04/20 20:33		
1,4-Dichlorobenzene	9.6	ug/L	1.0	0.25	1		09/04/20 20:33		
2-Butanone (MEK)	ND	ug/L	5.0	1.3	1		09/04/20 20:33		IL
2-Hexanone	ND	ug/L	5.0	0.60	1		09/04/20 20:33		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	0.39	1		09/04/20 20:33		

REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

 Sample:
 EW-1 082620
 Lab ID:
 30379383001
 Collected:
 08/26/20 07:30
 Received:
 08/26/20 13:30
 Matrix:
 Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

be biased high.

be biased high.									
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- Tarameters		Office				- Tropared	- Analyzed	- OAO 110.	- - Quai
8082A GCS PCB	Analytical	Method: EP	A 8082A Prep	aration Met	hod: E	PA 3510C			
	Pace Anal	lytical Servic	es - Greensbu	ırg					
PCB-1016 (Aroclor 1016)	ND	ug/L	0.25	0.14	1	08/30/20 10:08	09/03/20 02:23	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.25	0.16	1	08/30/20 10:08	09/03/20 02:23	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.25	0.072	1	08/30/20 10:08	09/03/20 02:23	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.25	0.11	1	08/30/20 10:08	09/03/20 02:23	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.25	0.093	1	08/30/20 10:08	09/03/20 02:23	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.25	0.022	1	08/30/20 10:08	09/03/20 02:23	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.25	0.024	1	08/30/20 10:08	09/03/20 02:23	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	67	%.	39-120		1	08/30/20 10:08	09/03/20 02:23	877-09-8	
Decachlorobiphenyl (S)	64	%.	10-133		1	08/30/20 10:08	09/03/20 02:23	2051-24-3	CL
6010 MET ICP	Analytical	Method: EP	A 6010C Prep	aration Met	thod: E	PA 3005A			
	-		es - Long Islar						
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:06	7429-90-5	
Antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:06	7440-36-0	
Arsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:06		
Barium	ND	ug/L	200	19.8	1	09/09/20 09:54	09/16/20 00:06		
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54	09/16/20 00:06		
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54	09/16/20 00:06		
Calcium	24100	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 00:06		
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54	09/16/20 00:06		
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 00:06		
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 00:06		
Iron	349	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 00:06		
Lead	ND	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:06		
Magnesium	5120	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 00:06		
Manganese	209	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:06		
Nickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54	09/16/20 00:06		
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54	09/16/20 00:06		
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 00:06		
Silver	ND ND	ug/L	10.0	3.6	1	09/09/20 09:54	09/16/20 00:06		
Sodium	54300	ug/L ug/L	5000	374	1	09/09/20 09:54	09/16/20 00:06		
Thallium	54500 ND	ug/L ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:06		
Vanadium	ND ND	ug/L ug/L	50.0	4.4	1	09/09/20 09:54	09/16/20 00:06		
Zinc	24.5	ug/L ug/L	20.0	2.0	1	09/09/20 09:54			
		•							
8270 MSSV			A 8270D Prep ces - Long Islar		iriou. E	FA 30100			
2,2'-Oxybis(1-chloropropane)	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 22:17	108-60-1	
2,4,5-Trichlorophenol	ND	ug/L	5.0	0.34	1	09/01/20 09:59			
2,4,6-Trichlorophenol	ND	ug/L	5.0	0.33	1	09/01/20 09:59			
2,4-Dichlorophenol	ND	ug/L	5.0	0.33	1	09/01/20 09:59			
2,4-Dimethylphenol	ND	ug/L	5.0	0.60	1	09/01/20 09:59			
_,	115	~9/ -	0.0	0.00	•	30,0.,20 00.00	-0,00, <u>-0</u> .17		

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-1 082620 Lab ID: 30379383001 Collected: 08/26/20 07:30 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

be biased high.

be blased nigh.			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260C Volatile Organics	Analytical	Method: EPA	A 8260C/5030					•	
•	Pace Ana	ytical Servic	es - Long Islaı	nd					
Acetone	7.6	ug/L	5.0	1.6	1		09/04/20 20:33	67-64-1	СН
Benzene	393	ug/L	50.0	11.0	50		09/04/20 20:53	71-43-2	
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 20:33	108-86-1	
Bromochloromethane	ND	ug/L	1.0	0.18	1		09/04/20 20:33	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.22	1		09/04/20 20:33	75-27-4	
Bromoform	ND	ug/L	1.0	0.43	1		09/04/20 20:33	75-25-2	
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 20:33	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 20:33	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 20:33	56-23-5	
Chlorobenzene	95.0	ug/L	1.0	0.18	1		09/04/20 20:33	108-90-7	
Chloroethane	ND	ug/L	1.0	0.35	1		09/04/20 20:33	75-00-3	
Chloroform	17.4	ug/L	1.0	0.20	1		09/04/20 20:33	67-66-3	
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 20:33	74-87-3	
Cyclohexane	ND	ug/L	1.0	0.87	1		09/04/20 20:33	110-82-7	
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 20:33	124-48-1	
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 20:33	75-71-8	CL
Ethylbenzene	7.8	ug/L	1.0	0.16	1		09/04/20 20:33		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.23	1		09/04/20 20:33		
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 20:33		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 20:33		
Methylcyclohexane	ND	ug/L	1.0	0.22	1		09/04/20 20:33		
Methylene Chloride	ND	ug/L	1.0	0.30	1		09/04/20 20:33		
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 20:33		
Tetrachloroethene	29.3	ug/L	1.0	0.28	1		09/04/20 20:33		
Toluene	77.2	ug/L	1.0	0.20	1		09/04/20 20:33		
Trichloroethene	4770	ug/L	50.0	10.8	50		09/04/20 20:53		
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 20:33		
Vinyl chloride	24.3	ug/L	1.0	0.33	1		09/04/20 20:33		
cis-1,2-Dichloroethene	470	ug/L	50.0	12.2	50		09/04/20 20:53		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 20:33		
m&p-Xylene	6.0	ug/L	2.0	0.20	1		09/04/20 20:33		
o-Xylene	11.4	ug/L	1.0	0.33	1		09/04/20 20:33		
trans-1,2-Dichloroethene	4.0	ug/L ug/L	1.0	0.18	1		09/04/20 20:33		
trans-1,3-Dichloropropene	4.0 ND	ug/L ug/L	1.0	0.19	1		09/04/20 20:33		
Surrogates	טוו	ug/L	1.0	0.50	1		03/04/20 20.33	10001-02-0	
1,2-Dichloroethane-d4 (S)	99	%	68-153		1		09/04/20 20:33	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-124		1		09/04/20 20:33		
Toluene-d8 (S)	99	%	69-124		1		09/04/20 20:33		

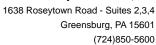
REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


 Sample:
 EW-2 082620
 Lab ID:
 30379383002
 Collected:
 08/26/20 08:00
 Received:
 08/26/20 13:30
 Matrix:
 Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

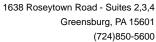
be biased high.

be biased high.									
			Report					0.0	
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EP	A 8082A Prep	aration Met	hod: E	PA 3510C			
	-		es - Greensbu						
PCB-1016 (Aroclor 1016)	ND	ug/L	0.24	0.13	1	09/06/20 15:22	09/08/20 20:46	1267/ 11 2	1c
PCB-1221 (Aroclor 1221)	ND ND	ug/L ug/L	0.24	0.13	1	09/06/20 15:22			1c
PCB-1232 (Aroclor 1232)	ND ND	ug/L ug/L	0.24	0.10	1	09/06/20 15:22			1c
PCB-1232 (Aroclor 1232)	ND ND	ug/L ug/L	0.24	0.070	1	09/06/20 15:22			1c
,	ND ND	-	0.24	0.10	1	09/06/20 15:22			1c
PCB-1248 (Aroclor 1248)		ug/L				09/06/20 15:22	09/08/20 20:46		
PCB-1254 (Aroclor 1254)	ND	ug/L	0.24	0.022	1				1c
PCB-1260 (Aroclor 1260) Surrogates	ND	ug/L	0.24	0.024	1	09/06/20 15:22	09/08/20 20:46	11096-82-5	1c
Tetrachloro-m-xylene (S)	32	%.	39-120		1	09/06/20 15:22	09/08/20 20:46	877-00-8	S8,SR
	74	%.	10-133		1	09/06/20 15:22	09/08/20 20:46		30,31
Decachlorobiphenyl (S)	74	70.	10-133		,	09/00/20 15.22	09/06/20 20.40	2051-24-3	
6010 MET ICP	Analytical	Method: EP	A 6010C Prep	aration Met	hod: E	PA 3005A			
	Pace Anal	ytical Servic	es - Long Islar	nd					
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:11	7429-90-5	
Antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:11		
Arsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:11		
Barium	ND	ug/L	200	19.8	1	09/09/20 09:54			
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54			
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54			
Calcium	18500	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 00:11		
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54	09/16/20 00:11		
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54			
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54			
Iron	534	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 00:11		
Lead	ND	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:11		
Magnesium	4330	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 00:11		
Manganese	441	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:11		
Nickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54			
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54	09/16/20 00:11		
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 00:11		
Silver	ND ND	ug/L	10.0	3.6	1	09/09/20 09:54	09/16/20 00:11		
Sodium	49200	ug/L ug/L	5000	374	1	09/09/20 09:54			
Thallium	49200 ND	-	10.0	5.1	1	09/09/20 09:54			
Vanadium	ND ND	ug/L			1	09/09/20 09:54			
	ND ND	ug/L	50.0	4.4 2.0	1		09/16/20 00:11 09/16/20 00:11		
Zinc	ND	ug/L	20.0	2.0	ı	09/09/20 09:54	09/16/20 00.11	7440-00-0	
8270 MSSV	Analytical	Method: EP	A 8270D Prep	aration Met	hod: E	PA 3510C			
	Pace Anal	ytical Servic	es - Long Islar	nd					
2,2'-Oxybis(1-chloropropane)	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 22:49	108-60-1	
2,4,5-Trichlorophenol	ND	ug/L	5.0	0.34	1	09/01/20 09:59			
2,4,6-Trichlorophenol	ND	ug/L	5.0	0.33	1	09/01/20 09:59			
2,4-Dichlorophenol	ND	ug/L	5.0	0.33	1	09/01/20 09:59			
2,4-Dimethylphenol	9.7	ug/L	5.0	0.60	1	09/01/20 09:59			
_,	···	~9/ L	0.0	0.00	•	30/01/20 00.00	50,00, <u>2</u> 0 <u>22</u> .70	.00 01 0	

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


Sample: EW-2 082620 Lab ID: 30379383002 Collected: 08/26/20 08:00 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

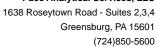
be biased high.

be blased flight.			Report						
Parameters	Results	Units	Limit -	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EP	A 8270D Prep	paration Met	hod: E	PA 3510C			
	Pace Anal	ytical Servic	es - Long Islai	nd					
2,4-Dinitrophenol	ND	ug/L	10.0	5.7	1	09/01/20 09:59	09/08/20 22:49	51-28-5	CL
2,4-Dinitrotoluene	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 22:49	121-14-2	
2,6-Dinitrotoluene	ND	ug/L	5.0	0.44	1	09/01/20 09:59	09/08/20 22:49	606-20-2	
2-Chloronaphthalene	ND	ug/L	5.0	0.33	1	09/01/20 09:59	09/08/20 22:49	91-58-7	
2-Chlorophenol	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:49	95-57-8	
2-Methylnaphthalene	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 22:49	91-57-6	
2-Methylphenol(o-Cresol)	44.1	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 22:49	95-48-7	
2-Nitroaniline	ND	ug/L	5.0	0.40	1	09/01/20 09:59	09/08/20 22:49	88-74-4	
2-Nitrophenol	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 22:49	88-75-5	
8&4-Methylphenol(m&p Cresol)	49.9	ug/L	5.0	0.36	1	09/01/20 09:59	09/08/20 22:49		
3,3'-Dichlorobenzidine	ND	ug/L	5.0	0.53	1	09/01/20 09:59	09/08/20 22:49	91-94-1	
3-Nitroaniline	ND	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 22:49	99-09-2	
1,6-Dinitro-2-methylphenol	ND	ug/L	10.0	3.8	1	09/01/20 09:59	09/08/20 22:49	534-52-1	
1-Bromophenylphenyl ether	ND	ug/L	5.0	0.47	1	09/01/20 09:59	09/08/20 22:49	101-55-3	
1-Chloro-3-methylphenol	ND	ug/L	5.0	0.46	1	09/01/20 09:59	09/08/20 22:49	59-50-7	
1-Chloroaniline	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 22:49	106-47-8	
I-Chlorophenylphenyl ether	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:49	7005-72-3	
1-Nitroaniline	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 22:49	100-01-6	
I-Nitrophenol	ND	ug/L	10.0	3.9	1	09/01/20 09:59	09/08/20 22:49	100-02-7	
Acenaphthene	ND	ug/L	5.0	0.26	1	09/01/20 09:59	09/08/20 22:49	83-32-9	
Acenaphthylene	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 22:49	208-96-8	
Anthracene	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 22:49	120-12-7	
Benzo(a)anthracene	ND	ug/L	5.0	0.44	1	09/01/20 09:59	09/08/20 22:49	56-55-3	
Benzo(a)pyrene	ND	ug/L	5.0	0.75	1	09/01/20 09:59	09/08/20 22:49	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	5.0	0.64	1	09/01/20 09:59	09/08/20 22:49	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	5.0	1.0	1	09/01/20 09:59	09/08/20 22:49	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	5.0	0.76	1	09/01/20 09:59	09/08/20 22:49	207-08-9	
Butylbenzylphthalate	ND	ug/L	5.0	0.40	1	09/01/20 09:59	09/08/20 22:49	85-68-7	
Carbazole	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 22:49	86-74-8	
Chrysene	ND	ug/L	5.0	0.47	1	09/01/20 09:59	09/08/20 22:49	218-01-9	
Di-n-butylphthalate	ND	ug/L	5.0	0.69	1	09/01/20 09:59	09/08/20 22:49	84-74-2	
Di-n-octylphthalate	ND	ug/L	5.0	2.6	1	09/01/20 09:59	09/08/20 22:49	117-84-0	
Dibenz(a,h)anthracene	ND	ug/L	5.0	0.93	1	09/01/20 09:59	09/08/20 22:49	53-70-3	
Dibenzofuran	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:49	132-64-9	
Diethylphthalate	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 22:49	84-66-2	
Dimethylphthalate	ND	ug/L	5.0	0.56	1	09/01/20 09:59	09/08/20 22:49	131-11-3	
Fluoranthene	ND	ug/L	5.0	0.40	1		09/08/20 22:49		
Fluorene	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 22:49	86-73-7	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1	09/01/20 09:59	09/08/20 22:49	87-68-3	L2
Hexachlorobenzene	ND	ug/L	5.0	0.35	1		09/08/20 22:49		
Hexachlorocyclopentadiene	ND	ug/L	5.0	2.2	1	09/01/20 09:59	09/08/20 22:49	77-47-4	
Hexachloroethane	ND	ug/L	5.0	0.43	1	09/01/20 09:59	09/08/20 22:49		L2
ndeno(1,2,3-cd)pyrene	ND	ug/L	5.0	0.88	1		09/08/20 22:49		

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


Sample: EW-2 082620 Lab ID: 30379383002 Collected: 08/26/20 08:00 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

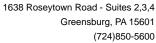
be biased high.

be blased high.			Poport						
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV	Analytical	Method: EP	A 8270D Prepa	aration Met	hod: E	PA 3510C			
	Pace Anal	ytical Servic	es - Long Islan	d					
Isophorone	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 22:49	78-59-1	
N-Nitroso-di-n-propylamine	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 22:49	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 22:49	86-30-6	L1
Naphthalene	9.5	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 22:49	91-20-3	
Nitrobenzene	ND	ug/L	5.0	0.50	1	09/01/20 09:59	09/08/20 22:49	98-95-3	
Pentachlorophenol	16.5	ug/L	10.0	3.4	1	09/01/20 09:59	09/08/20 22:49	87-86-5	
Phenanthrene	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 22:49	85-01-8	
Phenol	30.2	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 22:49	108-95-2	
Pyrene	ND	ug/L	5.0	0.41	1	09/01/20 09:59	09/08/20 22:49	129-00-0	
bis(2-Chloroethoxy)methane	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 22:49	111-91-1	
bis(2-Chloroethyl) ether	ND	ug/L	5.0	0.33	1	09/01/20 09:59	09/08/20 22:49	111-44-4	
bis(2-Ethylhexyl)phthalate Surrogates	ND	ug/L	5.0	1.5	1	09/01/20 09:59	09/08/20 22:49	117-81-7	
Nitrobenzene-d5 (S)	86	%	35-114		1	09/01/20 09:59	09/08/20 22:49	4165-60-0	
2-Fluorobiphenyl (S)	82	%	43-116		1	09/01/20 09:59	09/08/20 22:49		
p-Terphenyl-d14 (S)	287	%	33-141		1	09/01/20 09:59	09/08/20 22:49		E,S0
Phenol-d5 (S)	21	%	10-110		1	09/01/20 09:59	09/08/20 22:49		_,00
2-Fluorophenol (S)	37	%	21-110		1	09/01/20 09:59	09/08/20 22:49		
2,4,6-Tribromophenol (S)	112	%	10-123		1	09/01/20 09:59	09/08/20 22:49		Е
2-Chlorophenol-d4 (S)	74	%	33-110		1	09/01/20 09:59	09/08/20 22:49		_
1,2-Dichlorobenzene-d4 (S)	55	%	16-110		1	09/01/20 09:59	09/08/20 22:49		
8260C Volatile Organics	Analytical	Method: EP	A 8260C/50300						
-	Pace Anal	ytical Servic	es - Long Islan	d					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 02:04	630-20-6	
1,1,1-Trichloroethane	115	ug/L	1.0	0.22	1		09/04/20 02:04		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 02:04	79-34-5	
1,1,2-Trichloroethane	2.8	ug/L	1.0	0.23	1		09/04/20 02:04		
1,1,2-Trichlorotrifluoroethane	1.2	ug/L	1.0	0.23	1		09/04/20 02:04		
1,1-Dichloroethane	156	ug/L	1.0	0.19	1		09/04/20 02:04		
1,1-Dichloroethene	87.7	ug/L	1.0	0.23	1		09/04/20 02:04		
1,2,3-Trichlorobenzene	214	ug/L	200	129	200		09/04/20 20:13		
1,2,4-Trichlorobenzene	1000	ug/L	200	90.2	200		09/04/20 20:13		
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/04/20 02:04		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/04/20 02:04		
1,2-Dichlorobenzene	49.2	ug/L	1.0	0.17	1		09/04/20 02:04		
1,2-Dichloroethane	546	ug/L	200	37.6	200		09/04/20 20:13		
1,2-Dichloropropane	2.0	ug/L	1.0	0.43	1		09/04/20 02:04		
1,3-Dichlorobenzene	16.0	ug/L	1.0	0.23	1		09/04/20 02:04		
1,4-Dichlorobenzene	116	ug/L	1.0	0.25	1		09/04/20 02:04		
		-					09/04/20 02:04		CH,IL
2-Butanone (MFK)	12.7	(1()/1	ສ ບ	1.3					
2-Butanone (MEK) 2-Hexanone	12.7 ND	ug/L ug/L	5.0 5.0	1.3 0.60	1 1		09/04/20 02:04		011,12

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


Sample: EW-2 082620 Lab ID: 30379383002 Collected: 08/26/20 08:00 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

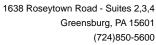
be biased high.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EP/	A 8260C/5030	С					
	Pace Anal	ytical Servic	es - Long Islaı	nd					
Acetone	236	ug/L	5.0	1.6	1		09/04/20 02:04	67-64-1	CH,E
Benzene	2990	ug/L	200	44.2	200		09/04/20 20:13	71-43-2	
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 02:04	108-86-1	
Bromochloromethane	ND	ug/L	1.0	0.18	1		09/04/20 02:04	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.22	1		09/04/20 02:04	75-27-4	
Bromoform	ND	ug/L	1.0	0.43	1		09/04/20 02:04	75-25-2	
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 02:04	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 02:04	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 02:04	56-23-5	
Chlorobenzene	977	ug/L	200	37.0	200		09/04/20 20:13	108-90-7	
Chloroethane	ND	ug/L	1.0	0.35	1		09/04/20 02:04	75-00-3	
Chloroform	492	ug/L	200	39.2	200		09/04/20 20:13	67-66-3	
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 02:04	74-87-3	
Cyclohexane	5.0	ug/L	1.0	0.87	1		09/04/20 02:04	110-82-7	
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 02:04	124-48-1	
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 02:04	75-71-8	
Ethylbenzene	260	ug/L	200	32.2	200		09/04/20 20:13	100-41-4	
sopropylbenzene (Cumene)	8.9	ug/L	1.0	0.23	1		09/04/20 02:04	98-82-8	
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 02:04	79-20-9	
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 02:04	1634-04-4	
Methylcyclohexane	6.0	ug/L	1.0	0.22	1		09/04/20 02:04	108-87-2	
Methylene Chloride	622	ug/L	200	59.6	200		09/04/20 20:13	75-09-2	
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 02:04	100-42-5	
Tetrachloroethene	217	ug/L	200	55.6	200		09/04/20 20:13	127-18-4	
Toluene	3780	ug/L	200	41.0	200		09/04/20 20:13	108-88-3	
Trichloroethene	23300	ug/L	200	43.4	200		09/04/20 20:13	79-01-6	
Frichlorofluoromethane	1.9	ug/L	1.0	0.12	1		09/04/20 02:04	75-69-4	
/inyl chloride	561	ug/L	200	66.8	200		09/04/20 20:13	75-01-4	
cis-1,2-Dichloroethene	3900	ug/L	200	48.6	200		09/04/20 20:13	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 02:04	10061-01-5	
n&p-Xylene	450	ug/L	400	65.8	200		09/04/20 20:13	179601-23-1	
o-Xylene	265	ug/L	200	35.2	200		09/04/20 20:13		
rans-1,2-Dichloroethene	23.3	ug/L	1.0	0.19	1		09/04/20 02:04	156-60-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		09/04/20 02:04		
Surrogates		- 3-							
1,2-Dichloroethane-d4 (S)	93	%	68-153		1		09/04/20 02:04	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124		1		09/04/20 02:04	460-00-4	
Toluene-d8 (S)	96	%	69-124		1		09/04/20 02:04	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project: **Dewey Loeffel** Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


Sample: EW-3 082620 Lab ID: 30379383003 Collected: 08/26/20 08:30 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

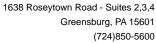
be biased high.

be biased high.									
			Report					0.0.1	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: FP	A 8082A Prep	aration Met	hod: F	PA 3510C			
0002A 000 I OD	-		es - Greensbu		110a. L	17(00100			
		•		•					
PCB-1016 (Aroclor 1016)	ND	ug/L	0.25	0.13	1	08/30/20 10:08	09/03/20 02:40		
PCB-1221 (Aroclor 1221)	ND	ug/L	0.25	0.16	1	08/30/20 10:08	09/03/20 02:40		
PCB-1232 (Aroclor 1232)	ND	ug/L	0.25	0.072	1	08/30/20 10:08	09/03/20 02:40		
PCB-1242 (Aroclor 1242)	ND	ug/L	0.25	0.11	1	08/30/20 10:08	09/03/20 02:40		
PCB-1248 (Aroclor 1248)	ND	ug/L	0.25	0.092	1	08/30/20 10:08	09/03/20 02:40	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.25	0.022	1	08/30/20 10:08	09/03/20 02:40	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.25	0.024	1	08/30/20 10:08	09/03/20 02:40	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	76	%.	39-120		1	08/30/20 10:08	09/03/20 02:40		
Decachlorobiphenyl (S)	60	%.	10-133		1	08/30/20 10:08	09/03/20 02:40	2051-24-3	CL
6010 MET ICP	Analytical	Method: FP	A 6010C Prep	aration Met	hod: F	PA 3005A			
0010 III.E 1 101	•		es - Long Islar			171000071			
		•	ŭ						
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:17		
Antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:17	7440-36-0	
Arsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:17	7440-38-2	
Barium	ND	ug/L	200	19.8	1	09/09/20 09:54	09/16/20 00:17	7440-39-3	
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54	09/16/20 00:17	7440-41-7	
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54	09/16/20 00:17	7440-43-9	
Calcium	16600	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 00:17	7440-70-2	
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54	09/16/20 00:17	7440-47-3	
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 00:17	7440-48-4	
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 00:17	7440-50-8	
Iron	52.4	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 00:17	7439-89-6	
Lead	ND	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:17	7439-92-1	
Magnesium	778	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 00:17	7439-95-4	
Manganese	162	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:17	7439-96-5	
Nickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54	09/16/20 00:17	7440-02-0	
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54	09/16/20 00:17	7440-09-7	
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 00:17	7782-49-2	
Silver	ND	ug/L	10.0	3.6	1	09/09/20 09:54	09/16/20 00:17	7440-22-4	
Sodium	125000	ug/L	5000	374	1	09/09/20 09:54	09/16/20 00:17	7440-23-5	
Thallium	ND	ug/L	10.0	5.1	1	09/09/20 09:54			
Vanadium	ND	ug/L	50.0	4.4	1	09/09/20 09:54	09/16/20 00:17		
Zinc	ND	ug/L	20.0	2.0	1	09/09/20 09:54			
						D			
8270 MSSV	-		A 8270D Prep es - Long Islar		ihod: E	PA 3510C			
2.21 Oxybio(1.chloroproposa)	ND		_		4	00/01/20 00:50	00/09/20 22:24	100 60 1	
2,2'-Oxybis(1-chloropropane)		ug/L	5.0 5.0	0.38	1	09/01/20 09:59			
2,4,5-Trichlorophenol	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 23:21		
2,4,6-Trichlorophenol	ND	ug/L	5.0	0.33	1	09/01/20 09:59	09/08/20 23:21		
2,4-Dichlorophenol	ND	ug/L	5.0	0.33	1	09/01/20 09:59			
2,4-Dimethylphenol	15.8	ug/L	5.0	0.60	1	09/01/20 09:59	09/08/20 23:21	105-67-9	

REPORT OF LABORATORY ANALYSIS

Project: **Dewey Loeffel** Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


Sample: EW-3 082620 Lab ID: 30379383003 Collected: 08/26/20 08:30 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

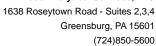
be biased high.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV	-		A 8270D Prep		hod: E	PA 3510C	-		
	Pace Anal	lytical Servic	es - Long Islai	nd					
2,4-Dinitrophenol	ND	ug/L	10.0	5.7	1	09/01/20 09:59	09/08/20 23:21	51-28-5	CL
2,4-Dinitrotoluene	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 23:21	121-14-2	
2,6-Dinitrotoluene	ND	ug/L	5.0	0.44	1	09/01/20 09:59	09/08/20 23:21	606-20-2	
2-Chloronaphthalene	ND	ug/L	5.0	0.33	1	09/01/20 09:59	09/08/20 23:21	91-58-7	
2-Chlorophenol	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 23:21	95-57-8	
2-Methylnaphthalene	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 23:21	91-57-6	
2-Methylphenol(o-Cresol)	10.1	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 23:21	95-48-7	
2-Nitroaniline	ND	ug/L	5.0	0.40	1	09/01/20 09:59	09/08/20 23:21	88-74-4	
2-Nitrophenol	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 23:21	88-75-5	
8&4-Methylphenol(m&p Cresol)	43.8	ug/L	5.0	0.36	1	09/01/20 09:59	09/08/20 23:21		
3,3'-Dichlorobenzidine	ND	ug/L	5.0	0.53	1	09/01/20 09:59	09/08/20 23:21	91-94-1	
3-Nitroaniline	ND	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 23:21	99-09-2	
1,6-Dinitro-2-methylphenol	ND	ug/L	10.0	3.8	1	09/01/20 09:59	09/08/20 23:21	534-52-1	
1-Bromophenylphenyl ether	ND	ug/L	5.0	0.47	1	09/01/20 09:59	09/08/20 23:21	101-55-3	
I-Chloro-3-methylphenol	ND	ug/L	5.0	0.46	1	09/01/20 09:59	09/08/20 23:21	59-50-7	
-Chloroaniline	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 23:21	106-47-8	
-Chlorophenylphenyl ether	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 23:21	7005-72-3	
I-Nitroaniline	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 23:21	100-01-6	
I-Nitrophenol	ND	ug/L	10.0	3.9	1	09/01/20 09:59	09/08/20 23:21	100-02-7	
Acenaphthene	ND	ug/L	5.0	0.26	1	09/01/20 09:59	09/08/20 23:21	83-32-9	
Acenaphthylene	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 23:21	208-96-8	
Anthracene	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 23:21	120-12-7	
Benzo(a)anthracene	ND	ug/L	5.0	0.44	1	09/01/20 09:59	09/08/20 23:21	56-55-3	
Benzo(a)pyrene	ND	ug/L	5.0	0.75	1	09/01/20 09:59	09/08/20 23:21	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	5.0	0.64	1	09/01/20 09:59	09/08/20 23:21	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	5.0	1.0	1	09/01/20 09:59	09/08/20 23:21	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	5.0	0.76	1	09/01/20 09:59	09/08/20 23:21	207-08-9	
Butylbenzylphthalate	ND	ug/L	5.0	0.40	1	09/01/20 09:59	09/08/20 23:21		
Carbazole	ND	ug/L	5.0	0.34	1	09/01/20 09:59	09/08/20 23:21		
Chrysene	ND	ug/L	5.0	0.47	1	09/01/20 09:59	09/08/20 23:21		
Di-n-butylphthalate	ND	ug/L	5.0	0.69	1	09/01/20 09:59	09/08/20 23:21		
Di-n-octylphthalate	ND	ug/L	5.0	2.6	1	09/01/20 09:59	09/08/20 23:21		
Dibenz(a,h)anthracene	ND	ug/L	5.0	0.93	1	09/01/20 09:59	09/08/20 23:21		
Dibenzofuran	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 23:21		
Diethylphthalate	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 23:21		
Dimethylphthalate	ND	ug/L	5.0	0.56	1	09/01/20 09:59	09/08/20 23:21		
Fluoranthene	ND	ug/L	5.0	0.40	1	09/01/20 09:59	09/08/20 23:21		
Fluorene	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 23:21		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	0.46	1	09/01/20 09:59	09/08/20 23:21		L2
Hexachlorobenzene	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 23:21		
Hexachlorocyclopentadiene	ND	ug/L	5.0	2.2	1	09/01/20 09:59	09/08/20 23:21		
Hexachloroethane	ND	ug/L	5.0	0.43	1	09/01/20 09:59	09/08/20 23:21		L2
ndeno(1,2,3-cd)pyrene	ND ND	ug/L	5.0	0.43	1	09/01/20 09:59			LL

REPORT OF LABORATORY ANALYSIS

Project: **Dewey Loeffel** Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM


Sample: EW-3 082620 Lab ID: 30379383003 Collected: 08/26/20 08:30 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

be biased high.

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EP	A 8270D Prepa	aration Met	hod: E	PA 3510C	-		
	Pace Anal	ytical Servic	es - Long Islan	ıd					
Isophorone	ND	ug/L	5.0	0.39	1	09/01/20 09:59	09/08/20 23:21	78-59-1	
N-Nitroso-di-n-propylamine	ND	ug/L	5.0	0.42	1	09/01/20 09:59	09/08/20 23:21	621-64-7	
N-Nitrosodiphenylamine	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 23:21	86-30-6	L1
Naphthalene	ND	ug/L	5.0	0.37	1	09/01/20 09:59	09/08/20 23:21	91-20-3	
Nitrobenzene	ND	ug/L	5.0	0.50	1	09/01/20 09:59	09/08/20 23:21	98-95-3	
Pentachlorophenol	ND	ug/L	10.0	3.4	1	09/01/20 09:59	09/08/20 23:21	87-86-5	
Phenanthrene	ND	ug/L	5.0	0.35	1	09/01/20 09:59	09/08/20 23:21		
Phenol	ND	ug/L	5.0	0.30	1	09/01/20 09:59	09/08/20 23:21	108-95-2	
Pyrene	ND	ug/L	5.0	0.41	1	09/01/20 09:59	09/08/20 23:21		
bis(2-Chloroethoxy)methane	ND	ug/L	5.0	0.38	1	09/01/20 09:59	09/08/20 23:21		
bis(2-Chloroethyl) ether	ND	ug/L	5.0	0.33	1	09/01/20 09:59	09/08/20 23:21		
bis(2-Ethylhexyl)phthalate	ND	ug/L	5.0	1.5	1	09/01/20 09:59	09/08/20 23:21		
Surrogates		~g, =	0.0		•	00/01/20 00:00	00/00/20 20:21		
Nitrobenzene-d5 (S)	89	%	35-114		1	09/01/20 09:59	09/08/20 23:21	4165-60-0	
2-Fluorobiphenyl (S)	83	%	43-116		1	09/01/20 09:59	09/08/20 23:21	321-60-8	
o-Terphenyl-d14 (S)	283	%	33-141		1	09/01/20 09:59	09/08/20 23:21	1718-51-0	E,S0
Phenol-d5 (S)	21	%	10-110		1	09/01/20 09:59	09/08/20 23:21	4165-62-2	,
2-Fluorophenol (S)	40	%	21-110		1	09/01/20 09:59	09/08/20 23:21		
2,4,6-Tribromophenol (S)	106	%	10-123		1	09/01/20 09:59	09/08/20 23:21		
2-Chlorophenol-d4 (S)	73	%	33-110		1	09/01/20 09:59	09/08/20 23:21		
1,2-Dichlorobenzene-d4 (S)	56	%	16-110		1	09/01/20 09:59	09/08/20 23:21		
8260C Volatile Organics	Analytical	Method: EPA	A 8260C/50300	3					
-	Pace Anal	ytical Servic	es - Long Islan	ıd					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 19:12	630-20-6	
I,1,1-Trichloroethane	ND	ug/L	1.0	0.22	1		09/04/20 19:12	71-55-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 19:12		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.23	1		09/04/20 19:12	79-00-5	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	0.23	1		09/04/20 19:12	76-13-1	
1,1-Dichloroethane	11.2	ug/L	1.0	0.19	1		09/04/20 19:12	75-34-3	
1,1-Dichloroethene	ND	ug/L	1.0	0.23	1		09/04/20 19:12	75-35-4	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	0.64	1		09/04/20 19:12		L1
1,2,4-Trichlorobenzene	ND	ug/L	1.0	0.45	1		09/04/20 19:12	120-82-1	
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/04/20 19:12		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/04/20 19:12		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.17	1		09/04/20 19:12		
1,2-Dichloroethane	12.7	ug/L	1.0	0.19	1		09/04/20 19:12		
1,2-Dichloropropane	ND	ug/L	1.0	0.43	1		09/04/20 19:12		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.23	1		09/04/20 19:12		
	4.1	ug/L	1.0	0.25	1		09/04/20 19:12		
1.4-Dichlorobenzene			1.0	5.20			33/3 //20 10.12	.00 .07	
1,4-Dichlorobenzene 2-Butanone (MFK)		_		1.3	1		09/04/20 19:12	78-93-3	CH II
1,4-Dichlorobenzene 2-Butanone (MEK) 2-Hexanone	ND ND	ug/L ug/L	5.0 5.0	1.3 0.60	1 1		09/04/20 19:12 09/04/20 19:12		CH,IL

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-3 082620 Lab ID: 30379383003 Collected: 08/26/20 08:30 Received: 08/26/20 13:30 Matrix: Water

Comments: • Method (8270D): The internal standard response exceeded the lower acceptance limits and confirmed by reanalysis. Results may

be biased high.

be biased high.			Danart						
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
								_	
8260C Volatile Organics			A 8260C/5030						
	Pace Anal	lytical Servic	es - Long Islaı	nd					
Acetone	19.1	ug/L	5.0	1.6	1		09/04/20 19:12	67-64-1	CH
Benzene	1300	ug/L	50.0	11.0	50		09/04/20 19:32	71-43-2	
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 19:12	108-86-1	
Bromochloromethane	ND	ug/L	1.0	0.18	1		09/04/20 19:12	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.22	1		09/04/20 19:12	75-27-4	
Bromoform	ND	ug/L	1.0	0.43	1		09/04/20 19:12	75-25-2	
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 19:12	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 19:12	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 19:12	56-23-5	
Chlorobenzene	312	ug/L	50.0	9.2	50		09/04/20 19:32	108-90-7	
Chloroethane	3.2	ug/L	1.0	0.35	1		09/04/20 19:12	75-00-3	
Chloroform	ND	ug/L	1.0	0.20	1		09/04/20 19:12	67-66-3	
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 19:12	74-87-3	
Cyclohexane	1.5	ug/L	1.0	0.87	1		09/04/20 19:12		
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 19:12	124-48-1	
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 19:12	75-71-8	CL
Ethylbenzene	41.4	ug/L	1.0	0.16	1		09/04/20 19:12		
sopropylbenzene (Cumene)	ND	ug/L	1.0	0.23	1		09/04/20 19:12		
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 19:12	79-20-9	
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 19:12		
Methylcyclohexane	ND	ug/L	1.0	0.22	1		09/04/20 19:12		
Methylene Chloride	3.0	ug/L	1.0	0.30	1		09/04/20 19:12		
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 19:12		
Tetrachloroethene	ND	ug/L	1.0	0.28	1		09/04/20 19:12		
Toluene	3070	ug/L	50.0	10.2	50		09/04/20 19:32		
Trichloroethene	63.8	ug/L	1.0	0.22	1		09/04/20 19:12		
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 19:12		
Vinyl chloride	12.9	ug/L	1.0	0.33	1		09/04/20 19:12		
cis-1,2-Dichloroethene	65.2	ug/L	1.0	0.24	1		09/04/20 19:12		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 19:12		
m&p-Xylene	152	ug/L	2.0	0.33	1		09/04/20 19:12		
o-Xylene	53.3	ug/L	1.0	0.18	1		09/04/20 19:12		
rans-1,2-Dichloroethene	2.2	ug/L	1.0	0.10	1		09/04/20 19:12		
rans-1,3-Dichloropropene	ND	ug/L	1.0	0.19	1		09/04/20 19:12		
Surrogates	ND	ug/L	1.0	0.50	•		55/0 4 /20 13.12	10001-02-0	
1,2-Dichloroethane-d4 (S)	96	%	68-153		1		09/04/20 19:12	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124		1		09/04/20 19:12		
Toluene-d8 (S)	96	%	69-124		1		09/04/20 19:12		

REPORT OF LABORATORY ANALYSIS

(724)850-5600

ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-4 082620	Lab ID:	30379383004	Collected	d: 08/26/20	09:00	Received: 08/	26/20 13:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
082A GCS PCB	Analytical I	Method: EPA 80	082A Prepa	aration Meth	od: EP	A 3510C			
	•	tical Services -							
PCB-1016 (Aroclor 1016)	ND	ug/L	0.24	0.13	1	08/30/20 10:08	09/03/20 02:48	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.24	0.16	1	08/30/20 10:08	09/03/20 02:48	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.24	0.071	1	08/30/20 10:08	09/03/20 02:48	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.24	0.10	1	08/30/20 10:08	09/03/20 02:48		
PCB-1248 (Aroclor 1248)	ND	ug/L	0.24	0.091	1	08/30/20 10:08	09/03/20 02:48		
PCB-1254 (Aroclor 1254)	ND	ug/L	0.24	0.022	1	08/30/20 10:08	09/03/20 02:48		
PCB-1260 (Aroclor 1260)	ND	ug/L	0.24	0.024	1	08/30/20 10:08	09/03/20 02:48		
Surrogates		~g/ =	V	0.02	•	00,00,20 .0.00	00,00,20 02.10		
Tetrachloro-m-xylene (S)	61	%.	39-120		1	08/30/20 10:08	09/03/20 02:48	877-09-8	
Decachlorobiphenyl (S)	62	%.	10-133		1	08/30/20 10:08	09/03/20 02:48	2051-24-3	CL
010 MET ICP	Analytical I	Method: EPA 60	010C Prepa	aration Meth	nod: EP	PA 3005A			
		tical Services -							
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:22	7429-90-5	
Antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:22		
rsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54			
Barium	1900	ug/L	200	19.8	1	09/09/20 09:54	09/16/20 00:22		
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54			
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54			
Calcium	34000	ug/L	200	24.0	1	09/09/20 09:54			
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54			
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 00:22		
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 00:22		
ron	87.7	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 00:22		
_ead	ND	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:22		
Magnesium	2390	ug/L	200	54.7	1	09/09/20 09:54			
Manganese	931	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:22		
Nickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54			
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54			
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54			
Silver	ND	ug/L	10.0	3.6	1	09/09/20 09:54			
Sodium	169000	ug/L ug/L	5000	374	1	09/09/20 09:54	09/16/20 00:22		
Fhallium	ND	ug/L ug/L	10.0	5.1	1		09/16/20 00:22		
/anadium	ND	ug/L	50.0	4.4	1		09/16/20 00:22		
Zinc	1050	ug/L ug/L	20.0	2.0	1		09/16/20 00:22		
270 MSSV		Method: EPA 82							
121 U 14133 V	-	rtical Services -			iou. LF	A 33 100			
2,2'-Oxybis(1-chloropropane)	ND	ug/L	100	7.6	20	09/01/20 09:59	09/10/20 19:31	108-60-1	
2,4,5-Trichlorophenol	ND	ug/L	100	6.8	20	09/01/20 09:59	09/10/20 19:31		
2,4,6-Trichlorophenol	ND ND	ug/L ug/L	100	6.7	20	09/01/20 09:59	09/10/20 19:31		
2,4-Dichlorophenol	ND ND	ug/L ug/L	100	6.6	20	09/01/20 09:59	09/10/20 19:31		
	238	-	100			09/01/20 09:59	09/10/20 19:31		
2,4-Dimethylphenol		ug/L		12.0	20				CI
2,4-Dinitrophenol	ND	ug/L	200	114	20	09/01/20 09:59	09/10/20 19:31		CL
2,4-Dinitrotoluene	ND	ug/L	100	7.0	20	09/01/20 09:59	09/10/20 19:31	121-14-2	

REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

ANALYTICAL RESULTS

Project: **Dewey Loeffel** 30379383 Pace Project No.:

Date: 09/16/2020 06:02 PM

Sample: EW-4 082620	Lab ID:	30379383004	Collecte	d: 08/26/20	09:00	Received: 08/	26/20 13:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EPA 8	270D Prep	aration Me	hod: EF	PA 3510C			
	Pace Ana	lytical Services	Long Islar	nd					
2,6-Dinitrotoluene	ND	ug/L	100	8.9	20	09/01/20 09:59	09/10/20 19:31	606-20-2	
2-Chloronaphthalene	ND	ug/L	100	6.6	20	09/01/20 09:59	09/10/20 19:31	91-58-7	
2-Chlorophenol	ND	ug/L	100	7.5	20	09/01/20 09:59	09/10/20 19:31	95-57-8	
2-Methylnaphthalene	ND	ug/L	100	6.8	20	09/01/20 09:59	09/10/20 19:31	91-57-6	
2-Methylphenol(o-Cresol)	313	ug/L	100	6.0	20	09/01/20 09:59	09/10/20 19:31	95-48-7	
2-Nitroaniline	ND	ug/L	100	8.0	20	09/01/20 09:59	09/10/20 19:31	88-74-4	
2-Nitrophenol	ND	ug/L	100	7.7	20	09/01/20 09:59	09/10/20 19:31		
3&4-Methylphenol(m&p Cresol)	966	ug/L	100	7.2	20	09/01/20 09:59	09/10/20 19:31		
3,3'-Dichlorobenzidine	ND	ug/L	100	10.6	20	09/01/20 09:59	09/10/20 19:31		
3-Nitroaniline	ND	ug/L	100	6.1	20	09/01/20 09:59	09/10/20 19:31		
4,6-Dinitro-2-methylphenol	ND	ug/L	200	76.2	20	09/01/20 09:59	09/10/20 19:31		CL
4-Bromophenylphenyl ether	ND	ug/L	100	9.5	20	09/01/20 09:59	09/10/20 19:31		OL
4-Chloro-3-methylphenol	ND	ug/L	100	9.1	20	09/01/20 09:59	09/10/20 19:31		
4-Chloroaniline	ND	ug/L	100	7.5	20	09/01/20 09:59	09/10/20 19:31		
4-Chlorophenylphenyl ether	ND	ug/L	100	7.5 7.5	20	09/01/20 09:59	09/10/20 19:31		
4-Nitroaniline	ND ND	_	100	7.9	20	09/01/20 09:59	09/10/20 19:31		
		ug/L					09/10/20 19:31		
4-Nitrophenol	ND	ug/L	200	77.3	20	09/01/20 09:59 09/01/20 09:59			
Acenaphthene	ND	ug/L	100	5.3	20	09/01/20 09:59	09/10/20 19:31		
Acenaphthylene	ND	ug/L	100	6.8	20		09/10/20 19:31		
Anthracene	ND	ug/L	100	8.4	20	09/01/20 09:59	09/10/20 19:31		
Benzo(a)anthracene	ND	ug/L	100	8.8	20	09/01/20 09:59	09/10/20 19:31		
Benzo(a)pyrene	ND	ug/L	100	14.9	20	09/01/20 09:59	09/10/20 19:31		
Benzo(b)fluoranthene	ND	ug/L	100	12.9	20	09/01/20 09:59	09/10/20 19:31		
Benzo(g,h,i)perylene	ND	ug/L	100	20.8	20	09/01/20 09:59	09/10/20 19:31		
Benzo(k)fluoranthene	ND	ug/L	100	15.1	20	09/01/20 09:59	09/10/20 19:31		
Butylbenzylphthalate	ND	ug/L	100	8.0	20	09/01/20 09:59	09/10/20 19:31		
Carbazole	ND	ug/L	100	6.8	20	09/01/20 09:59	09/10/20 19:31		
Chrysene	ND	ug/L	100	9.4	20	09/01/20 09:59	09/10/20 19:31		
Di-n-butylphthalate	ND	ug/L	100	13.7	20	09/01/20 09:59	09/10/20 19:31		
Di-n-octylphthalate	ND	ug/L	100	51.2	20	09/01/20 09:59	09/10/20 19:31		
Dibenz(a,h)anthracene	ND	ug/L	100	18.5	20	09/01/20 09:59	09/10/20 19:31	53-70-3	
Dibenzofuran	ND	ug/L	100	7.4	20	09/01/20 09:59	09/10/20 19:31		
Diethylphthalate	ND	ug/L	100	8.3	20	09/01/20 09:59	09/10/20 19:31		
Dimethylphthalate	ND	ug/L	100	11.2	20	09/01/20 09:59	09/10/20 19:31	131-11-3	
Fluoranthene	ND	ug/L	100	7.9	20	09/01/20 09:59	09/10/20 19:31	206-44-0	
Fluorene	ND	ug/L	100	7.5	20	09/01/20 09:59	09/10/20 19:31	86-73-7	
Hexachloro-1,3-butadiene	ND	ug/L	100	9.2	20	09/01/20 09:59	09/10/20 19:31	87-68-3	L2
Hexachlorobenzene	ND	ug/L	100	6.9	20	09/01/20 09:59	09/10/20 19:31	118-74-1	
Hexachlorocyclopentadiene	ND	ug/L	100	44.1	20	09/01/20 09:59	09/10/20 19:31	77-47-4	
Hexachloroethane	ND	ug/L	100	8.7	20	09/01/20 09:59	09/10/20 19:31	67-72-1	L2
ndeno(1,2,3-cd)pyrene	ND	ug/L	100	17.5	20	09/01/20 09:59	09/10/20 19:31	193-39-5	
sophorone	ND	ug/L	100	7.8	20	09/01/20 09:59	09/10/20 19:31		
N-Nitroso-di-n-propylamine	ND	ug/L	100	8.4	20	09/01/20 09:59	09/10/20 19:31		
N-Nitrosodiphenylamine	ND	ug/L	100	7.0	20	09/01/20 09:59	09/10/20 19:31		L1
Naphthalene	ND	ug/L	100	7.5	20	09/01/20 09:59			•

REPORT OF LABORATORY ANALYSIS

Project: **Dewey Loeffel** 30379383 Pace Project No.:

Date: 09/16/2020 06:02 PM

Sample: EW-4 082620	Lab ID:	30379383004	Collected	d: 08/26/20	09:00	Received: 08/	26/20 13:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EPA 8	270D Prep	aration Me	thod: EF	PA 3510C			
	Pace Ana	lytical Services	- Long Islar	nd					
Nitrobenzene	ND	ug/L	100	10.0	20	09/01/20 09:59	09/10/20 19:31	98-95-3	
Pentachlorophenol	ND	ug/L	200	68.8	20	09/01/20 09:59	09/10/20 19:31	87-86-5	CL
Phenanthrene	ND	ug/L	100	7.0	20	09/01/20 09:59	09/10/20 19:31	85-01-8	
Phenol	323	ug/L	100	6.0	20	09/01/20 09:59	09/10/20 19:31	108-95-2	
Pyrene	ND	ug/L	100	8.2	20	09/01/20 09:59	09/10/20 19:31	129-00-0	
bis(2-Chloroethoxy)methane	ND	ug/L	100	7.6	20	09/01/20 09:59	09/10/20 19:31		
bis(2-Chloroethyl) ether	ND	ug/L	100	6.7	20	09/01/20 09:59	09/10/20 19:31	111-44-4	
bis(2-Ethylhexyl)phthalate	ND	ug/L	100	29.4	20	09/01/20 09:59	09/10/20 19:31		
Surrogates		J							
Nitrobenzene-d5 (S)	97	%	35-114		20	09/01/20 09:59	09/10/20 19:31	4165-60-0	
2-Fluorobiphenyl (S)	84	%	43-116		20	09/01/20 09:59	09/10/20 19:31	321-60-8	
p-Terphenyl-d14 (S)	110	%	33-141		20	09/01/20 09:59	09/10/20 19:31	1718-51-0	
Phenol-d5 (S)	23	%	10-110		20	09/01/20 09:59	09/10/20 19:31	4165-62-2	
2-Fluorophenol (S)	43	%	21-110		20	09/01/20 09:59	09/10/20 19:31	367-12-4	
2,4,6-Tribromophenol (S)	90	%	10-123		20	09/01/20 09:59	09/10/20 19:31	118-79-6	
2-Chlorophenol-d4 (S)	78	%	33-110		20	09/01/20 09:59	09/10/20 19:31	93951-73-6	
1,2-Dichlorobenzene-d4 (S)	59	%	16-110		20	09/01/20 09:59	09/10/20 19:31	2199-69-1	
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030	С					
•	Pace Ana	lytical Services	- Long Islar	nd					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 01:24	630-20-6	
1,1,1-Trichloroethane	450	ug/L	200	44.2	200		09/04/20 19:52	71-55-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 01:24		
1,1,2-Trichloroethane	1.8	ug/L	1.0	0.23	1		09/04/20 01:24	79-00-5	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	0.23	1		09/04/20 01:24		
1,1-Dichloroethane	360	ug/L	200	38.0	200		09/04/20 19:52		
1,1-Dichloroethene	64.6	ug/L	1.0	0.23	1		09/04/20 01:24	75-35-4	
1,2,3-Trichlorobenzene	56.1	ug/L	1.0	0.64	1		09/04/20 01:24	87-61-6	
1,2,4-Trichlorobenzene	274	ug/L	1.0	0.45	1		09/04/20 01:24	120-82-1	Е
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/04/20 01:24	96-12-8	
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/04/20 01:24		
1,2-Dichlorobenzene	13.3	ug/L	1.0	0.17	1		09/04/20 01:24		
1,2-Dichloroethane	1700	ug/L	200	37.6	200		09/04/20 19:52		
1,2-Dichloropropane	1.9	ug/L	1.0	0.43	1		09/04/20 01:24	78-87-5	
1,3-Dichlorobenzene	9.4	ug/L	1.0	0.23	1		09/04/20 01:24		
1,4-Dichlorobenzene	83.7	ug/L	1.0	0.25	1		09/04/20 01:24		
2-Butanone (MEK)	96.7	ug/L	5.0	1.3	1		09/04/20 01:24		CH,IL
2-Hexanone	ND	ug/L	5.0	0.60	1		09/04/20 01:24		
4-Methyl-2-pentanone (MIBK)	95.4	ug/L	5.0	0.39	1		09/04/20 01:24		
Acetone	1460	ug/L	1000	311	200		09/04/20 19:52		СН
Benzene	14000	ug/L	200	44.2	200		09/04/20 19:52		J.,
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 01:24		
Bromochloromethane	ND	ug/L	1.0	0.18	1		09/04/20 01:24		
Bromodichloromethane	ND	ug/L	1.0	0.10	1		09/04/20 01:24		
Bromoform	ND	ug/L	1.0	0.43	1		09/04/20 01:24		

REPORT OF LABORATORY ANALYSIS

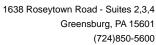
Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-4 082620	Lab ID:	30379383004	Collected:	08/26/20	09:00	Received: 08	3/26/20 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C						
	Pace Ana	lytical Services	- Long Island	l					
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 01:24	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 01:24	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 01:24	56-23-5	
Chlorobenzene	4670	ug/L	200	37.0	200		09/04/20 19:52	108-90-7	
Chloroethane	3.2	ug/L	1.0	0.35	1		09/04/20 01:24	75-00-3	
Chloroform	250	ug/L	200	39.2	200		09/04/20 19:52	67-66-3	
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 01:24		
Cyclohexane	18.3	ug/L	1.0	0.87	1		09/04/20 01:24		
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 01:24		
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 01:24		
Ethylbenzene	604	ug/L	200	32.2	200		09/04/20 19:52		
Isopropylbenzene (Cumene)	7.3	ug/L	1.0	0.23	1		09/04/20 01:24		
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 01:24		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 01:24		
Methylcyclohexane	3.8	ug/L	1.0	0.22	1		09/04/20 01:24		
Methylene Chloride	464	ug/L	200	59.6	200		09/04/20 19:52		
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 01:24		
Tetrachloroethene	8.4	ug/L	1.0	0.28	1		09/04/20 01:24		
Toluene	37400	ug/L	200	41.0	200		09/04/20 19:52	_	
Trichloroethene	201	ug/L	1.0	0.22	1		09/04/20 01:24		Е
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 01:24		_
Vinyl chloride	592	ug/L	200	66.8	200		09/04/20 19:52		
cis-1,2-Dichloroethene	6050	ug/L	200	48.6	200		09/04/20 19:52		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 01:24		
m&p-Xylene	2500	ug/L	400	65.8	200		09/04/20 19:52		
o-Xylene	743	ug/L	200	35.2	200		09/04/20 19:52		
trans-1,2-Dichloroethene	42.2	ug/L	1.0	0.19	1		09/04/20 01:24		
rans-1,3-Dichloropropene	ND	ug/L	1.0	0.19	1		09/04/20 01:24		
Surrogates	140	ug/ L	1.0	0.00	•		33/04/20 01.24	10001 02-0	
1,2-Dichloroethane-d4 (S)	60	%	68-153		1		09/04/20 01:24	17060-07-0	S0
4-Bromofluorobenzene (S)	96	%	79-124		1		09/04/20 01:24		
Toluene-d8 (S)	86	%	69-124		1		09/04/20 01:24		

REPORT OF LABORATORY ANALYSIS

(724)850-5600


ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-5 082620	Lab ID: 3	30379383005	Collected	: 08/26/20	09:30	Received: 08/	26/20 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8082A GCS PCB	Analytical M	/lethod: EPA 80)82A Prepa	aration Meth	od: EP	A 3510C			
	•	tical Services -							
PCB-1016 (Aroclor 1016)	ND	ug/L	0.24	0.13	1	08/30/20 10:08	09/03/20 03:05	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.24	0.16	1	08/30/20 10:08	09/03/20 03:05	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.24	0.071	1	08/30/20 10:08	09/03/20 03:05		
PCB-1242 (Aroclor 1242)	ND	ug/L	0.24	0.10	1	08/30/20 10:08	09/03/20 03:05		
PCB-1248 (Aroclor 1248)	ND	ug/L	0.24	0.091	1	08/30/20 10:08	09/03/20 03:05		
PCB-1254 (Aroclor 1254)	ND	ug/L	0.24	0.022	1	08/30/20 10:08	09/03/20 03:05		
PCB-1260 (Aroclor 1260)	ND	ug/L	0.24	0.024	1	08/30/20 10:08	09/03/20 03:05		
Surrogates	ND	ug/L	0.24	0.024	'	00/30/20 10:00	03/03/20 03.03	11030 02-3	
Tetrachloro-m-xylene (S)	66	%.	39-120		1	08/30/20 10:08	09/03/20 03:05	877-09-8	
Decachlorobiphenyl (S)	68	%.	10-133		1	08/30/20 10:08	09/03/20 03:05	2051-24-3	CL
010 MET ICP	Analytical M	Method: EPA 60	010C Prepa	aration Meth	nod: EP	A 3005A			
		tical Services -							
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:38	7429-90-5	
Antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:38		
Arsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54			
Barium	653	ug/L	200	19.8	1	09/09/20 09:54	09/16/20 00:38		
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54	09/16/20 00:38		
Cadmium	ND ND	ug/L	2.5	0.59	1	09/09/20 09:54			
Calcium	39200	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 00:38		
Chromium	39200 ND	ug/L ug/L	10.0	3.4	1	09/09/20 09:54			
Cobalt	ND ND	ug/L ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 00:38		
Copper	ND ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 00:38		
• •	ND ND	-	20.0	10.2	1	09/09/20 09:54	09/16/20 00:38		
ron	ND ND	ug/L							
_ead		ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:38		
Magnesium	4280	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 00:38		
Manganese	463	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:38		
Nickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54	09/16/20 00:38		
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54			
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 00:38		
Silver	ND	ug/L	10.0	3.6	1	09/09/20 09:54			
Sodium	147000	ug/L	5000	374	1	09/09/20 09:54	09/16/20 00:38		
「hallium	ND	ug/L	10.0	5.1	1		09/16/20 00:38		
/anadium	ND	ug/L	50.0	4.4	1		09/16/20 00:38		
Zinc	ND	ug/L	20.0	2.0	1	09/09/20 09:54	09/16/20 00:38	7440-66-6	
3270 MSSV	Analytical M	Method: EPA 82	270D Prepa	aration Meth	od: EP	A 3510C			
	Pace Analy	tical Services -	Long Islan	d					
2,2'-Oxybis(1-chloropropane)	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03	108-60-1	
2,4,5-Trichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03	95-95-4	
2,4,6-Trichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03		
2,4-Dichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03	120-83-2	
2,4-Dimethylphenol	92.0	ug/L	25.0	3.0	5	09/01/20 09:59	09/10/20 20:03		
2,4-Dinitrophenol	ND	ug/L	50.0	28.4	5	09/01/20 09:59	09/10/20 20:03		CL
2,4-Dinitrotoluene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03		

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-5 082620	Lab ID:	30379383005	Collected	d: 08/26/20	09:30	Received: 08/	26/20 13:30 N	latrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EPA 82	270D Prep	aration Metl	nod: EF	PA 3510C			
	Pace Ana	lytical Services -	Long Islar	nd					
2,6-Dinitrotoluene	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 20:03	606-20-2	
2-Chloronaphthalene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03	91-58-7	
2-Chlorophenol	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03	95-57-8	
2-Methylnaphthalene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03	91-57-6	
2-Methylphenol(o-Cresol)	122	ug/L	25.0	1.5	5	09/01/20 09:59	09/10/20 20:03		
2-Nitroaniline	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 20:03		
2-Nitrophenol	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03		
3&4-Methylphenol(m&p Cresol)	335	ug/L	25.0	1.8	5	09/01/20 09:59	09/10/20 20:03		
3,3'-Dichlorobenzidine	ND	ug/L	25.0	2.6	5	09/01/20 09:59	09/10/20 20:03		
B-Nitroaniline	ND	ug/L	25.0	1.5	5	09/01/20 09:59	09/10/20 20:03		
I,6-Dinitro-2-methylphenol	ND	ug/L	50.0	19.0	5	09/01/20 09:59	09/10/20 20:03		CL
4-Bromophenylphenyl ether	ND	ug/L	25.0	2.4	5	09/01/20 09:59	09/10/20 20:03		OL
4-Chloro-3-methylphenol	ND	ug/L	25.0	2.3	5	09/01/20 09:59	09/10/20 20:03		
I-Chloroaniline	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03		
I-Chlorophenylphenyl ether	ND	ug/L ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03		
-Nitroaniline	ND ND		25.0	2.0		09/01/20 09:59	09/10/20 20:03		
		ug/L			5		09/10/20 20:03		
I-Nitrophenol	ND ND	ug/L	50.0 25.0	19.3 1.3	5 5	09/01/20 09:59 09/01/20 09:59	09/10/20 20:03		
Acenaphthene		ug/L		1.3		09/01/20 09:59			
Acenaphthylene	ND	ug/L	25.0		5		09/10/20 20:03		
Anthracene	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 20:03		
Benzo(a)anthracene	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 20:03		
Benzo(a)pyrene	ND	ug/L	25.0	3.7	5	09/01/20 09:59	09/10/20 20:03		
Benzo(b)fluoranthene	ND	ug/L	25.0	3.2	5	09/01/20 09:59	09/10/20 20:03		
Benzo(g,h,i)perylene	ND	ug/L	25.0	5.2	5	09/01/20 09:59	09/10/20 20:03		
Benzo(k)fluoranthene	ND	ug/L	25.0	3.8	5	09/01/20 09:59	09/10/20 20:03		
Butylbenzylphthalate	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 20:03		
Carbazole	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03		
Chrysene	ND	ug/L	25.0	2.3	5	09/01/20 09:59	09/10/20 20:03		
Di-n-butylphthalate	ND	ug/L	25.0	3.4	5	09/01/20 09:59	09/10/20 20:03		
Di-n-octylphthalate	ND	ug/L	25.0	12.8	5	09/01/20 09:59	09/10/20 20:03		
Dibenz(a,h)anthracene	ND	ug/L	25.0	4.6	5	09/01/20 09:59	09/10/20 20:03	53-70-3	
Dibenzofuran	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03		
Diethylphthalate	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 20:03	84-66-2	
Dimethylphthalate	ND	ug/L	25.0	2.8	5	09/01/20 09:59	09/10/20 20:03	131-11-3	
Fluoranthene	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 20:03	206-44-0	
Fluorene	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03	86-73-7	
lexachloro-1,3-butadiene	ND	ug/L	25.0	2.3	5	09/01/20 09:59	09/10/20 20:03	87-68-3	L2
Hexachlorobenzene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03	118-74-1	
Hexachlorocyclopentadiene	ND	ug/L	25.0	11.0	5	09/01/20 09:59	09/10/20 20:03	77-47-4	
Hexachloroethane	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 20:03	67-72-1	L2
ndeno(1,2,3-cd)pyrene	ND	ug/L	25.0	4.4	5	09/01/20 09:59	09/10/20 20:03		
sophorone	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 20:03		
N-Nitroso-di-n-propylamine	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 20:03		
N-Nitrosodiphenylamine	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03		L1
Naphthalene	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03		•

REPORT OF LABORATORY ANALYSIS

(724)850-5600

ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-5 082620	Lab ID:	30379383005	Collecte	d: 08/26/20	09:30	Received: 08/	26/20 13:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EPA 8	270D Prep	aration Me	thod: EF	PA 3510C			
	Pace Ana	lytical Services	- Long Islai	nd					
Nitrobenzene	ND	ug/L	25.0	2.5	5	09/01/20 09:59	09/10/20 20:03	98-95-3	
Pentachlorophenol	ND	ug/L	50.0	17.2	5	09/01/20 09:59	09/10/20 20:03	87-86-5	CL
Phenanthrene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03	85-01-8	
Phenol	ND	ug/L	25.0	1.5	5	09/01/20 09:59	09/10/20 20:03	108-95-2	
Pyrene	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 20:03	129-00-0	
bis(2-Chloroethoxy)methane	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 20:03		
bis(2-Chloroethyl) ether	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 20:03		
bis(2-Ethylhexyl)phthalate	ND	ug/L	25.0	7.3	5	09/01/20 09:59	09/10/20 20:03		
Surrogates		9-							
Nitrobenzene-d5 (S)	102	%	35-114		5	09/01/20 09:59	09/10/20 20:03	4165-60-0	
2-Fluorobiphenyl (S)	96	%	43-116		5	09/01/20 09:59	09/10/20 20:03	321-60-8	
p-Terphenyl-d14 (S)	143	%	33-141		5	09/01/20 09:59	09/10/20 20:03	1718-51-0	S0
Phenol-d5 (S)	23	%	10-110		5	09/01/20 09:59	09/10/20 20:03	4165-62-2	
2-Fluorophenol (S)	46	%	21-110		5	09/01/20 09:59	09/10/20 20:03	367-12-4	
2,4,6-Tribromophenol (S)	107	%	10-123		5	09/01/20 09:59	09/10/20 20:03		
2-Chlorophenol-d4 (S)	80	%	33-110		5	09/01/20 09:59	09/10/20 20:03		
1,2-Dichlorobenzene-d4 (S)	65	%	16-110		5	09/01/20 09:59	09/10/20 20:03		
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030	С					
ozooo voidilic Organios	•	lytical Services							
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 01:04	630-20-6	
1,1,1-Trichloroethane	163	ug/L	1.0	0.22	1		09/04/20 01:04		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 01:04		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.23	1		09/04/20 01:04		
1,1,2-Trichlorotrifluoroethane	ND ND	ug/L	1.0	0.23	1		09/04/20 01:04		
1,1-Dichloroethane	129	ug/L	1.0	0.19	1		09/04/20 01:04		
1,1-Dichloroethene	18.0	ug/L	1.0	0.13	1		09/04/20 01:04		
1,2,3-Trichlorobenzene	20.5	ug/L	1.0	0.23	1		09/04/20 01:04		
1,2,4-Trichlorobenzene	74.9	ug/L	1.0	0.45	1		09/04/20 01:04		
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.43	1		09/04/20 01:04		
1,2-Dibromoethane (EDB)	ND ND	•		0.47			09/04/20 01:04		
1,2-Dichlorobenzene	3.1	ug/L ug/L	1.0 1.0	0.24	1 1		09/04/20 01:04		
1,2-Dichloroethane	688	ug/L	100	18.8	100		09/04/20 01:04		
,		-							
1,2-Dichloropropane	ND	ug/L	1.0	0.43	1		09/04/20 01:04		
1,3-Dichlorobenzene	1.8	ug/L	1.0	0.23	1		09/04/20 01:04		
1,4-Dichlorobenzene	17.7	ug/L	1.0	0.25	1		09/04/20 01:04		CUU
2-Butanone (MEK)	ND	ug/L	5.0	1.3	1		09/04/20 01:04		CH,IL
2-Hexanone	ND	ug/L	5.0	0.60	1		09/04/20 01:04		
4-Methyl-2-pentanone (MIBK)	49.1	ug/L	5.0	0.39	1		09/04/20 01:04		011
Acetone	57.8	ug/L	5.0	1.6	1		09/04/20 01:04		CH
Benzene	7050	ug/L	100	22.1	100		09/04/20 18:32		
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 01:04		
Bromochloromethane	ND	ug/L	1.0	0.18	1		09/04/20 01:04		
Bromodichloromethane	ND	ug/L	1.0	0.22	1		09/04/20 01:04		
Bromoform	ND	ug/L	1.0	0.43	1		09/04/20 01:04	75-25-2	

REPORT OF LABORATORY ANALYSIS

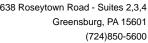
Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-5 082620	Lab ID:	30379383005	Collected:	08/26/20	0 09:30	Received: 08	/26/20 13:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C						
	Pace Ana	lytical Services	- Long Island	l					
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 01:04	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 01:04	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 01:04	56-23-5	
Chlorobenzene	1940	ug/L	100	18.5	100		09/04/20 18:32	108-90-7	
Chloroethane	ND	ug/L	1.0	0.35	1		09/04/20 01:04	75-00-3	
Chloroform	108	ug/L	1.0	0.20	1		09/04/20 01:04	67-66-3	
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 01:04		
Cyclohexane	6.6	ug/L	1.0	0.87	1		09/04/20 01:04		
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 01:04	124-48-1	
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 01:04		
Ethylbenzene	186	ug/L	100	16.1	100		09/04/20 18:32	100-41-4	
Isopropylbenzene (Cumene)	2.2	ug/L	1.0	0.23	1		09/04/20 01:04	98-82-8	
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 01:04		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 01:04	1634-04-4	
Methylcyclohexane	1.1	ug/L	1.0	0.22	1		09/04/20 01:04	108-87-2	
Methylene Chloride	7.5	ug/L	1.0	0.30	1		09/04/20 01:04	75-09-2	
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 01:04		
Tetrachloroethene	3.1	ug/L	1.0	0.28	1		09/04/20 01:04	127-18-4	
Toluene	12800	ug/L	100	20.5	100		09/04/20 18:32	108-88-3	
Trichloroethene	57.6	ug/L	1.0	0.22	1		09/04/20 01:04	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 01:04	75-69-4	
Vinyl chloride	341	ug/L	100	33.4	100		09/04/20 18:32	75-01-4	
cis-1,2-Dichloroethene	1280	ug/L	100	24.3	100		09/04/20 18:32		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 01:04		
m&p-Xylene	690	ug/L	200	32.9	100		09/04/20 18:32		
o-Xylene	217	ug/L	100	17.6	100		09/04/20 18:32		
trans-1,2-Dichloroethene	12.5	ug/L	1.0	0.19	1		09/04/20 01:04		
rans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		09/04/20 01:04		
Surrogates		J	-						
1,2-Dichloroethane-d4 (S)	79	%	68-153		1		09/04/20 01:04	17060-07-0	
4-Bromofluorobenzene (S)	99	%	79-124		1		09/04/20 01:04	460-00-4	
Toluene-d8 (S)	96	%	69-124		1		09/04/20 01:04	2037-26-5	

REPORT OF LABORATORY ANALYSIS

(724)850-5600


ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-6 082620	Lab ID: 3	0379383006	Collected:	08/26/20	10:00	Received: 08/	26/20 13:30 M	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
082A GCS PCB	Analytical M	ethod: EPA 8	082A Prepai	ration Meth	od: EP	A 3510C			
	-	ical Services							
PCB-1016 (Aroclor 1016)	ND	ug/L	0.25	0.14	1	08/30/20 10:08	09/03/20 03:14	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.25	0.16	1	08/30/20 10:08	09/03/20 03:14		
PCB-1232 (Aroclor 1232)	ND	ug/L	0.25	0.072	1	08/30/20 10:08	09/03/20 03:14		
PCB-1242 (Aroclor 1242)	ND	ug/L	0.25	0.11	1	08/30/20 10:08	09/03/20 03:14		
PCB-1248 (Aroclor 1248)	ND	ug/L	0.25	0.093	1	08/30/20 10:08	09/03/20 03:14		
PCB-1254 (Aroclor 1254)	ND	ug/L	0.25	0.022	1	08/30/20 10:08	09/03/20 03:14		
PCB-1260 (Aroclor 1260)	ND	ug/L	0.25	0.024	1	08/30/20 10:08	09/03/20 03:14		
Surrogates	ND	ug/L	0.20	0.024	•	00/00/20 10:00	00/00/20 00:14	11000 02 0	
Tetrachloro-m-xylene (S)	41	%.	39-120		1	08/30/20 10:08	09/03/20 03:14	877-09-8	
Decachlorobiphenyl (S)	56	%.	10-133		1	08/30/20 10:08	09/03/20 03:14	2051-24-3	CL
6010 MET ICP	Analytical M	ethod: EPA 6	010C Prena	ration Meth	od: FF	2Δ 3005Δ			
70 TO INIE 1 101		ical Services			оа. <u>Е</u> т	71000071			
Niconstance	-		•		4	00/00/00 00-54	00/40/00 00:44	7400 00 5	
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:44		
antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:44		
rsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:44		
Barium 	7100	ug/L	200	19.8	1	09/09/20 09:54			
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54	09/16/20 00:44		
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54	09/16/20 00:44		
Calcium	200000	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 00:44		
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54	09/16/20 00:44		
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 00:44		
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 00:44		
ron	690	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 00:44	7439-89-6	
.ead	5.4	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:44	7439-92-1	
Magnesium	34800	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 00:44	7439-95-4	
Manganese	2460	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:44	7439-96-5	
lickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54	09/16/20 00:44	7440-02-0	
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54	09/16/20 00:44	7440-09-7	
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 00:44	7782-49-2	
Silver	ND	ug/L	10.0	3.6	1	09/09/20 09:54	09/16/20 00:44	7440-22-4	
Sodium	43000	ug/L	5000	374	1	09/09/20 09:54	09/16/20 00:44	7440-23-5	
hallium	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:44	7440-28-0	
/anadium	ND	ug/L	50.0	4.4	1	09/09/20 09:54	09/16/20 00:44	7440-62-2	
Zinc	677	ug/L	20.0	2.0	1	09/09/20 09:54	09/16/20 00:44	7440-66-6	
3270 MSSV	Analytical M	ethod: EPA 8	270D Prena	ration Meth	od: FF	PA 3510C			
2270 MOOV	•	ical Services	•		ou. Li	7,00100			
2' Ovubic(1 obleroproposa)	ND		250	19.0	50	00/01/20 00:50	09/10/20 20:36	109 60 1	
2,2'-Oxybis(1-chloropropane)	ND ND	ug/L				09/01/20 09:59			
2,4,5-Trichlorophenol		ug/L	250	17.0	50	09/01/20 09:59	09/10/20 20:36		
2,4,6-Trichlorophenol	ND	ug/L	250	16.7	50 50	09/01/20 09:59	09/10/20 20:36		
2,4-Dichlorophenol	ND	ug/L	250	16.5	50	09/01/20 09:59	09/10/20 20:36		
2,4-Dimethylphenol	592	ug/L	250	30.1	50	09/01/20 09:59	09/10/20 20:36		01
2,4-Dinitrophenol	ND	ug/L	500	284	50	09/01/20 09:59	09/10/20 20:36		CL
2,4-Dinitrotoluene	ND	ug/L	250	17.4	50	09/01/20 09:59	09/10/20 20:36	121-14-2	

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-6 082620	Lab ID:	30379383006	Collected	d: 08/26/20	10:00	Received: 08/	26/20 13:30 N	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EPA 8	270D Prepa	aration Met	hod: EF	PA 3510C			
	Pace Ana	lytical Services	- Long Islan	d					
2,6-Dinitrotoluene	ND	ug/L	250	22.2	50	09/01/20 09:59	09/10/20 20:36	606-20-2	
2-Chloronaphthalene	ND	ug/L	250	16.5	50	09/01/20 09:59	09/10/20 20:36	91-58-7	
2-Chlorophenol	ND	ug/L	250	18.7	50	09/01/20 09:59	09/10/20 20:36	95-57-8	
2-Methylnaphthalene	ND	ug/L	250	17.0	50	09/01/20 09:59	09/10/20 20:36	91-57-6	
2-Methylphenol(o-Cresol)	572	ug/L	250	14.9	50	09/01/20 09:59	09/10/20 20:36		
2-Nitroaniline	ND	ug/L	250	19.9	50	09/01/20 09:59	09/10/20 20:36		
2-Nitrophenol	ND	ug/L	250	19.4	50	09/01/20 09:59	09/10/20 20:36		
3&4-Methylphenol(m&p Cresol)	2540	ug/L	250	17.9	50	09/01/20 09:59	09/10/20 20:36		
3,3'-Dichlorobenzidine	ND	ug/L	250	26.4	50	09/01/20 09:59	09/10/20 20:36		
3-Nitroaniline	ND	ug/L	250	15.1	50	09/01/20 09:59	09/10/20 20:36		
4,6-Dinitro-2-methylphenol	ND	ug/L	500	190	50	09/01/20 09:59	09/10/20 20:36		CL
4-Bromophenylphenyl ether	ND	ug/L	250	23.7	50	09/01/20 09:59	09/10/20 20:36		
4-Chloro-3-methylphenol	ND	ug/L	250	22.8	50	09/01/20 09:59	09/10/20 20:36		
4-Chloroaniline	ND	ug/L	250	18.8	50	09/01/20 09:59	09/10/20 20:36		
4-Chlorophenylphenyl ether	ND	ug/L	250	18.7	50	09/01/20 09:59	09/10/20 20:36		
4-Nitroaniline	ND	ug/L	250	19.7	50	09/01/20 09:59	09/10/20 20:36		
1-Nitrophenol	ND	ug/L	500	193	50	09/01/20 09:59	09/10/20 20:36		
Acenaphthene	ND	ug/L	250	13.2	50	09/01/20 09:59	09/10/20 20:36		
Acenaphthylene	ND	ug/L	250	17.1	50	09/01/20 09:59	09/10/20 20:36		
Anthracene	ND	ug/L	250	21.1	50	09/01/20 09:59	09/10/20 20:36		
Benzo(a)anthracene	ND	ug/L	250	22.0	50	09/01/20 09:59	09/10/20 20:36		
Benzo(a)pyrene	ND	ug/L	250	37.3	50	09/01/20 09:59	09/10/20 20:36		
Benzo(b)fluoranthene	ND	ug/L	250	32.2	50	09/01/20 09:59	09/10/20 20:36		
Benzo(g,h,i)perylene	ND	ug/L	250	52.1	50	09/01/20 09:59	09/10/20 20:36		
Benzo(k)fluoranthene	ND	ug/L	250	37.8	50	09/01/20 09:59	09/10/20 20:36		
Butylbenzylphthalate	ND	ug/L	250	20.1	50	09/01/20 09:59	09/10/20 20:36		
Carbazole	ND	ug/L	250	17.1	50	09/01/20 09:59	09/10/20 20:36		
Chrysene	ND ND	ug/L	250	23.5	50	09/01/20 09:59	09/10/20 20:36		
Di-n-butylphthalate	ND	ug/L	250	34.3	50	09/01/20 09:59	09/10/20 20:36		
Di-n-octylphthalate	ND ND	ug/L	250	128	50	09/01/20 09:59	09/10/20 20:36		
Dibenz(a,h)anthracene	ND ND	ug/L	250	46.3	50	09/01/20 09:59	09/10/20 20:36		
Dibenzofuran	ND ND	ug/L	250	18.5	50	09/01/20 09:59	09/10/20 20:36		
Diethylphthalate	ND ND	ug/L ug/L	250	20.8	50	09/01/20 09:59	09/10/20 20:36		
Dimethylphthalate	ND	ug/L	250	28.0	50	09/01/20 09:59			
Fluoranthene	ND	ug/L	250	19.8	50	09/01/20 09:59	09/10/20 20:36		
Fluorene	ND ND	•	250	18.8		09/01/20 09:59	09/10/20 20:36		
-luorene Hexachloro-1,3-butadiene	ND ND	ug/L	250 250		50 50	09/01/20 09:59	09/10/20 20:36		12
Hexachlorobenzene	ND ND	ug/L ug/L	250 250	22.9 17.3	50 50	09/01/20 09:59	09/10/20 20:36		L2
Hexachlorocyclopentadiene	ND ND	-	250 250	17.3	50 50	09/01/20 09:59			
Hexachlorocyclopentadiene Hexachloroethane	ND ND	ug/L	250 250	21.6	50 50	09/01/20 09:59	09/10/20 20:36		L2
		ug/L							LZ
ndeno(1,2,3-cd)pyrene	ND	ug/L	250	43.8	50 50	09/01/20 09:59	09/10/20 20:36		
sophorone	ND	ug/L	250	19.6	50 50	09/01/20 09:59	09/10/20 20:36		
N-Nitroso-di-n-propylamine	ND ND	ug/L ug/L	250 250	21.1 17.4	50 50	09/01/20 09:59 09/01/20 09:59	09/10/20 20:36 09/10/20 20:36		L1
N-Nitrosodiphenylamine									

REPORT OF LABORATORY ANALYSIS

(724)850-5600

ANALYTICAL RESULTS

Project: **Dewey Loeffel** 30379383 Pace Project No.:

Date: 09/16/2020 06:02 PM

Sample: EW-6 082620	Lab ID:	30379383006	Collected	: 08/26/20	10:00	Received: 08/	26/20 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8270 MSSV	Analytical	Method: EPA 8	270D Prepa	aration Met	hod: EF	PA 3510C			
	•	lytical Services							
Nitrobenzene	ND	ug/L	250	25.1	50	09/01/20 09:59	09/10/20 20:36	98-95-3	
Pentachlorophenol	ND	ug/L	500	172	50	09/01/20 09:59	09/10/20 20:36	87-86-5	CL
Phenanthrene	ND	ug/L	250	17.4	50	09/01/20 09:59	09/10/20 20:36		
Phenol	989	ug/L	250	15.0	50	09/01/20 09:59	09/10/20 20:36		
Pyrene	ND	ug/L	250	20.6	50	09/01/20 09:59	09/10/20 20:36		
bis(2-Chloroethoxy)methane	ND	ug/L	250	19.0	50	09/01/20 09:59	09/10/20 20:36		
bis(2-Chloroethyl) ether	ND	ug/L	250	16.7	50	09/01/20 09:59	09/10/20 20:36		
bis(2-Ethylhexyl)phthalate	ND	ug/L	250	73.5	50	09/01/20 09:59	09/10/20 20:36		
Surrogates	110	ug/L	200	10.0	00	00/01/20 00:00	00/10/20 20:00		
Nitrobenzene-d5 (S)	84	%	35-114		50	09/01/20 09:59	09/10/20 20:36	4165-60-0	
2-Fluorobiphenyl (S)	72	%	43-116		50	09/01/20 09:59	09/10/20 20:36		
p-Terphenyl-d14 (S)	94	%	33-141		50	09/01/20 09:59	09/10/20 20:36		
Phenol-d5 (S)	22	%	10-110		50	09/01/20 09:59	09/10/20 20:36		
2-Fluorophenol (S)	34	%	21-110		50	09/01/20 09:59	09/10/20 20:36		
2,4,6-Tribromophenol (S)	76	%	10-123		50	09/01/20 09:59	09/10/20 20:36		
2-Chlorophenol-d4 (S)	65	%	33-110		50	09/01/20 09:59	09/10/20 20:36		
1,2-Dichlorobenzene-d4 (S)	44	%	16-110		50	09/01/20 09:59	09/10/20 20:36		
					30	03/01/20 03.33	03/10/20 20:30	2100-00-1	
8260C Volatile Organics	•	Method: EPA 8							
	Pace Ana	lytical Services	- Long Island	d					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 00:44	630-20-6	
1,1,1-Trichloroethane	953	ug/L	400	88.4	400		09/04/20 17:44	71-55-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 00:44	79-34-5	
1,1,2-Trichloroethane	5.5	ug/L	1.0	0.23	1		09/04/20 00:44	79-00-5	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	0.23	1		09/04/20 00:44	76-13-1	
1,1-Dichloroethane	773	ug/L	400	76.0	400		09/04/20 17:44	75-34-3	
1,1-Dichloroethene	139	ug/L	1.0	0.23	1		09/04/20 00:44	75-35-4	
1,2,3-Trichlorobenzene	131	ug/L	1.0	0.64	1		09/04/20 00:44	87-61-6	
1,2,4-Trichlorobenzene	448	ug/L	400	180	400		09/04/20 17:44	120-82-1	
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/04/20 00:44	96-12-8	
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/04/20 00:44	106-93-4	
1,2-Dichlorobenzene	26.6	ug/L	1.0	0.17	1		09/04/20 00:44	95-50-1	
1,2-Dichloroethane	5460	ug/L	400	75.2	400		09/04/20 17:44	107-06-2	
1,2-Dichloropropane	4.5	ug/L	1.0	0.43	1		09/04/20 00:44	78-87-5	
1,3-Dichlorobenzene	8.2	ug/L	1.0	0.23	1		09/04/20 00:44		
1,4-Dichlorobenzene	171	ug/L	1.0	0.25	1		09/04/20 00:44		
2-Butanone (MEK)	222	ug/L	5.0	1.3	1		09/04/20 00:44		CH,E,
2-Hexanone	ND	ug/L	5.0	0.60	1		09/04/20 00:44		, -,
4-Methyl-2-pentanone (MIBK)	167	ug/L	5.0	0.39	1		09/04/20 00:44		
Acetone	4990	ug/L	2000	622	400		09/04/20 17:44		СН
Benzene	31100	ug/L	400	88.4	400		09/04/20 17:44		
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 00:44		
JJDJ.ILJ.IJ	110	•	1.0						
Bromochloromethane	ИD	ua/l	1 0	በ 1ጸ	1		$09/04/20\ 00.44$	74-97-5	
Bromochloromethane Bromodichloromethane	ND ND	ug/L ug/L	1.0 1.0	0.18 0.22	1 1		09/04/20 00:44 09/04/20 00:44		

REPORT OF LABORATORY ANALYSIS

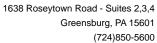
Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-6 082620	Lab ID:	30379383006	Collected	: 08/26/20	10:00	Received: 08	3/26/20 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C	:					
	Pace Anal	ytical Services	- Long Islan	d					
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 00:44	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 00:44	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 00:44	56-23-5	
Chlorobenzene	12200	ug/L	400	74.0	400		09/04/20 17:44	108-90-7	
Chloroethane	9.4	ug/L	1.0	0.35	1		09/04/20 00:44	75-00-3	
Chloroform	602	ug/L	400	78.4	400		09/04/20 17:44		
Chloromethane	2.9	ug/L	1.0	0.20	1		09/04/20 00:44		
Cyclohexane	34.0	ug/L	1.0	0.87	1		09/04/20 00:44		
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 00:44		
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 00:44		
Ethylbenzene	1200	ug/L	400	64.4	400		09/04/20 17:44	100-41-4	
Isopropylbenzene (Cumene)	14.1	ug/L	1.0	0.23	1		09/04/20 00:44		
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 00:44		
Methyl-tert-butyl ether	1.3	ug/L	1.0	0.28	1		09/04/20 00:44		
Methylcyclohexane	7.6	ug/L	1.0	0.22	1		09/04/20 00:44	108-87-2	
Methylene Chloride	1210	ug/L	400	119	400		09/04/20 17:44		
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 00:44		
Tetrachloroethene	33.3	ug/L	1.0	0.28	1		09/04/20 00:44		
Toluene	67000	ug/L	400	82.0	400		09/04/20 17:44	108-88-3	
Trichloroethene	165	ug/L	1.0	0.22	1		09/04/20 00:44		
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 00:44		
Vinyl chloride	2240	ug/L	400	134	400		09/04/20 17:44		
cis-1,2-Dichloroethene	15100	ug/L	400	97.2	400		09/04/20 17:44		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 00:44		
m&p-Xylene	4710	ug/L	800	132	400		09/04/20 17:44		
o-Xylene	1360	ug/L	400	70.4	400		09/04/20 17:44		
trans-1,2-Dichloroethene	90.1	ug/L	1.0	0.19	1		09/04/20 00:44		
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		09/04/20 00:44		
Surrogates	.10	~ <i>5</i> , –		0.00	•		23,0 ,,20 00.11		
1,2-Dichloroethane-d4 (S)	35	%	68-153		1		09/04/20 00:44	17060-07-0	S0
4-Bromofluorobenzene (S)	111	%	79-124		1		09/04/20 00:44		
Toluene-d8 (S)	61	%	69-124		1		09/04/20 00:44		S0

REPORT OF LABORATORY ANALYSIS

(724)850-5600

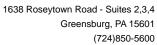

ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-7 082620	Lab ID: 3	30379383007	Collected:	08/26/20	10:30	Received: 08/	26/20 13:30 M	atrix: Water	
_			Report						
Parameters	Results	Units	Limit —	MDL	DF	Prepared	Analyzed	CAS No.	Qua
082A GCS PCB	Analytical N	Method: EPA 8	082A Prepai	ration Meth	od: EP	A 3510C			
	-	tical Services							
PCB-1016 (Aroclor 1016)	ND	ug/L	0.25	0.14	1	08/30/20 10:08	09/03/20 03:23	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.25	0.17	1	08/30/20 10:08	09/03/20 03:23		
PCB-1232 (Aroclor 1232)	ND	ug/L	0.25	0.074	1	08/30/20 10:08	09/03/20 03:23		
PCB-1242 (Aroclor 1242)	ND	ug/L	0.25	0.11	1	08/30/20 10:08	09/03/20 03:23		
PCB-1248 (Aroclor 1248)	ND	ug/L	0.25	0.095	1	08/30/20 10:08	09/03/20 03:23		
PCB-1254 (Aroclor 1254)	ND	ug/L	0.25	0.023	1	08/30/20 10:08	09/03/20 03:23		
PCB-1260 (Aroclor 1260)	ND	ug/L	0.25	0.025	1	08/30/20 10:08	09/03/20 03:23		
Surrogates	ND	ug/L	0.20	0.020		00/00/20 10:00	00/00/20 00:20	11000 02 0	
Tetrachloro-m-xylene (S)	63	%.	39-120		1	08/30/20 10:08	09/03/20 03:23	877-09-8	
Decachlorobiphenyl (S)	60	%.	10-133		1	08/30/20 10:08	09/03/20 03:23	2051-24-3	CL
6010 MET ICP	Analytical N	Method: EPA 6	010C Prena	ration Meth	nod: FF	PA 3005A			
NOTO MET 101		tical Services			iou. Li	71000071			
M	•		•		4	00/00/00 00-54	00/40/00 00:40	7400 00 5	
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:49		
antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:49		
rsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:49		
Barium	4720	ug/L	200	19.8	1	09/09/20 09:54	09/16/20 00:49		
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54	09/16/20 00:49		
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54	09/16/20 00:49		
Calcium	184000	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 00:49		
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54	09/16/20 00:49		
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 00:49		
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 00:49		
ron	828	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 00:49	7439-89-6	
.ead	6.1	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:49	7439-92-1	
Magnesium	49200	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 00:49	7439-95-4	
Manganese	1240	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:49	7439-96-5	
lickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54	09/16/20 00:49	7440-02-0	
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54	09/16/20 00:49	7440-09-7	
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 00:49	7782-49-2	
Silver	ND	ug/L	10.0	3.6	1	09/09/20 09:54	09/16/20 00:49	7440-22-4	
Sodium	25100	ug/L	5000	374	1	09/09/20 09:54	09/16/20 00:49	7440-23-5	
「hallium	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:49	7440-28-0	
/anadium	ND	ug/L	50.0	4.4	1	09/09/20 09:54	09/16/20 00:49	7440-62-2	
Zinc	ND	ug/L	20.0	2.0	1	09/09/20 09:54	09/16/20 00:49	7440-66-6	
3270 MSSV	Analytical M	Method: EPA 8	270D Prena	ration Meth	od: EF	PA 3510C			
·-···	•	tical Services	•						
2,2'-Oxybis(1-chloropropane)	ND	ug/L	250	19.0	50	09/01/20 09:59	09/10/20 21:08	108-60-1	
2,4,5-Trichlorophenol	ND	ug/L ug/L	250	17.0	50	09/01/20 09:59	09/10/20 21:08		
2,4,6-Trichlorophenol	ND	ug/L ug/L	250	16.7	50	09/01/20 09:59	09/10/20 21:08		
2,4-Dichlorophenol	ND ND	ug/L ug/L	250 250	16.7	50	09/01/20 09:59	09/10/20 21:08		
2,4-Dichlorophenol	372	-	250 250	30.1	50	09/01/20 09:59	09/10/20 21:08		
		ug/L							CI
2,4-Dinitrophenol	ND	ug/L	500	284	50	09/01/20 09:59	09/10/20 21:08		CL
2,4-Dinitrotoluene	ND	ug/L	250	17.4	50	09/01/20 09:59	09/10/20 21:08	121-14-2	

REPORT OF LABORATORY ANALYSIS



Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-7 082620	Lab ID:	30379383007	Collected:	08/26/20	10:30	Received: 08/	26/20 13:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV	Analytical	Method: EPA 82	270D Prepa	ration Meth	nod: EP	PA 3510C			
	•	lytical Services -							
2,6-Dinitrotoluene	ND	ug/L	250	22.2	50	09/01/20 09:59	09/10/20 21:08	606-20-2	
2-Chloronaphthalene	ND	ug/L	250	16.5	50	09/01/20 09:59	09/10/20 21:08		
2-Chlorophenol	ND	ug/L	250	18.7	50	09/01/20 09:59	09/10/20 21:08		
2-Methylnaphthalene	ND	ug/L	250	17.0	50	09/01/20 09:59	09/10/20 21:08		
2-Methylphenol(o-Cresol)	ND	ug/L	250	14.9	50	09/01/20 09:59	09/10/20 21:08		
2-Nitroaniline	ND	ug/L	250	19.9	50	09/01/20 09:59	09/10/20 21:08		
2-Nitrophenol	ND	ug/L	250	19.4	50	09/01/20 09:59	09/10/20 21:08		
3&4-Methylphenol(m&p Cresol)	1270	ug/L	250	17.9	50	09/01/20 09:59	09/10/20 21:08		
3,3'-Dichlorobenzidine	ND	ug/L	250	26.4	50	09/01/20 09:59	09/10/20 21:08		
3-Nitroaniline	ND	ug/L	250	15.1	50	09/01/20 09:59	09/10/20 21:08		
1,6-Dinitro-2-methylphenol	ND	ug/L	500	190	50	09/01/20 09:59	09/10/20 21:08		CL
4-Bromophenylphenyl ether	ND	ug/L	250	23.7	50	09/01/20 09:59	09/10/20 21:08		OL.
4-Chloro-3-methylphenol	ND	ug/L	250	22.8	50	09/01/20 09:59	09/10/20 21:08		
4-Chloroaniline	ND	ug/L	250	18.8	50	09/01/20 09:59	09/10/20 21:08		
1-Chlorophenylphenyl ether	ND	ug/L	250	18.7	50	09/01/20 09:59	09/10/20 21:08		
4-Nitroaniline	ND	ug/L	250	19.7	50	09/01/20 09:59	09/10/20 21:08		
1-Nitrophenol	ND	ug/L	500	193	50	09/01/20 09:59	09/10/20 21:08		
Acenaphthene	ND ND	ug/L	250	13.2	50	09/01/20 09:59	09/10/20 21:08		
Acenaphthylene	ND	ug/L	250	17.1	50	09/01/20 09:59	09/10/20 21:08		
Anthracene	ND ND	ug/L ug/L	250	21.1	50	09/01/20 09:59	09/10/20 21:08		
Benzo(a)anthracene	ND	ug/L	250	22.0	50	09/01/20 09:59	09/10/20 21:08		
Benzo(a)pyrene	ND	ug/L	250	37.3	50	09/01/20 09:59	09/10/20 21:08		
Benzo(b)fluoranthene	ND ND	ug/L ug/L	250	32.2	50	09/01/20 09:59	09/10/20 21:08		
Benzo(g,h,i)perylene	ND	ug/L	250	52.1	50	09/01/20 09:59	09/10/20 21:08		
Benzo(k)fluoranthene	ND	ug/L ug/L	250	37.8	50	09/01/20 09:59	09/10/20 21:08		
Butylbenzylphthalate	ND	ug/L ug/L	250	20.1	50	09/01/20 09:59	09/10/20 21:08		
Carbazole	ND ND	ug/L ug/L	250	17.1	50	09/01/20 09:59	09/10/20 21:08		
Chrysene	ND ND	ug/L	250	23.5	50	09/01/20 09:59	09/10/20 21:08		
Di-n-butylphthalate	ND	ug/L	250	34.3	50	09/01/20 09:59	09/10/20 21:08		
Di-n-octylphthalate	ND	ug/L ug/L	250	128	50	09/01/20 09:59	09/10/20 21:08		
Dibenz(a,h)anthracene	ND	ug/L ug/L	250	46.3	50	09/01/20 09:59	09/10/20 21:08		
Dibenzofuran	ND	ug/L ug/L	250	18.5	50	09/01/20 09:59	09/10/20 21:08		
Diethylphthalate	ND ND	ug/L ug/L	250	20.8	50	09/01/20 09:59	09/10/20 21:08		
Dimethylphthalate	ND	ug/L	250	28.0	50	09/01/20 09:59			
Fluoranthene	ND ND	ug/L ug/L	250	19.8	50	09/01/20 09:59	09/10/20 21:08		
Fluorene	ND	ug/L ug/L	250	18.8	50	09/01/20 09:59	09/10/20 21:08		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	250	22.9	50	09/01/20 09:59	09/10/20 21:08		L2
Hexachlorobenzene	ND ND	ug/L ug/L	250 250	17.3	50	09/01/20 09:59	09/10/20 21:08		LZ
Hexachlorocyclopentadiene	ND ND	ug/L ug/L	250 250	17.3	50	09/01/20 09:59	09/10/20 21:08		
Hexachlorocyclopentadiene Hexachloroethane	ND ND		250 250	21.6	50 50	09/01/20 09:59	09/10/20 21:08		L2
		ug/L							LZ
ndeno(1,2,3-cd)pyrene	ND	ug/L	250	43.8	50 50	09/01/20 09:59	09/10/20 21:08		
sophorone	ND	ug/L	250	19.6	50 50	09/01/20 09:59	09/10/20 21:08		
	ND	ug/L	250	21.1	50	09/01/20 09:59	09/10/20 21:08	0∠1-04-7	
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	ND	ug/L	250	17.4	50	09/01/20 09:59	09/10/20 21:08	06.00.0	L1

REPORT OF LABORATORY ANALYSIS

Project: **Dewey Loeffel** 30379383 Pace Project No.:

Date: 09/16/2020 06:02 PM

Sample: EW-7 082620	Lab ID:	30379383007	Collected	: 08/26/20	10:30	Received: 08/	26/20 13:30 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
- Taramotoro									
8270 MSSV	Analytical	Method: EPA 8	270D Prepa	aration Met	hod: EF	PA 3510C			
	Pace Ana	lytical Services	- Long Island	d					
Nitrobenzene	ND	ug/L	250	25.1	50	09/01/20 09:59	09/10/20 21:08	98-95-3	
Pentachlorophenol	ND	ug/L	500	172	50	09/01/20 09:59	09/10/20 21:08		CL
Phenanthrene	ND	ug/L	250	17.4	50	09/01/20 09:59	09/10/20 21:08		
Phenol	ND	ug/L	250	15.0	50	09/01/20 09:59	09/10/20 21:08		
Pyrene	ND	ug/L	250	20.6	50	09/01/20 09:59	09/10/20 21:08		
bis(2-Chloroethoxy)methane	ND	ug/L	250	19.0	50	09/01/20 09:59	09/10/20 21:08		
ois(2-Chloroethyl) ether	ND	ug/L	250	16.7	50	09/01/20 09:59	09/10/20 21:08		
bis(2-Ethylhexyl)phthalate	ND	ug/L	250	73.5	50	09/01/20 09:59	09/10/20 21:08		
Surrogates		9. =							
Nitrobenzene-d5 (S)	93	%	35-114		50	09/01/20 09:59	09/10/20 21:08	4165-60-0	
2-Fluorobiphenyl (S)	81	%	43-116		50	09/01/20 09:59	09/10/20 21:08		
o-Terphenyl-d14 (S)	104	%	33-141		50	09/01/20 09:59	09/10/20 21:08		
Phenol-d5 (S)	23	%	10-110		50	09/01/20 09:59	09/10/20 21:08		
2-Fluorophenol (S)	31	%	21-110		50	09/01/20 09:59	09/10/20 21:08		
2,4,6-Tribromophenol (S)	73	%	10-123		50	09/01/20 09:59	09/10/20 21:08		
2-Chlorophenol-d4 (S)	74	%	33-110		50	09/01/20 09:59	09/10/20 21:08		
1,2-Dichlorobenzene-d4 (S)	58	%	16-110		50	09/01/20 09:59	09/10/20 21:08		
3260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C	:					
ozooo voidine Organios	-	lytical Services							
		•	Ü						
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 00:24		
1,1,1-Trichloroethane	ND	ug/L	1.0	0.22	1		09/04/20 00:24		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 00:24		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.23	1		09/04/20 00:24		
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	0.23	1		09/04/20 00:24		
1,1-Dichloroethane	198	ug/L	1.0	0.19	1		09/04/20 00:24		
1,1-Dichloroethene	ND	ug/L	1.0	0.23	1		09/04/20 00:24		
1,2,3-Trichlorobenzene	6.7	ug/L	1.0	0.64	1		09/04/20 00:24		
1,2,4-Trichlorobenzene	2.6	ug/L	1.0	0.45	1		09/04/20 00:24		
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/04/20 00:24		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/04/20 00:24		
1,2-Dichlorobenzene	8.4	ug/L	1.0	0.17	1		09/04/20 00:24		
1,2-Dichloroethane	15.4	ug/L	1.0	0.19	1		09/04/20 00:24		
1,2-Dichloropropane	1.9	ug/L	1.0	0.43	1		09/04/20 00:24		
1,3-Dichlorobenzene	5.1	ug/L	1.0	0.23	1		09/04/20 00:24	541-73-1	
1,4-Dichlorobenzene	104	ug/L	1.0	0.25	1		09/04/20 00:24		
2-Butanone (MEK)	20.9	ug/L	5.0	1.3	1		09/04/20 00:24		CH,IL
2-Hexanone	ND	ug/L	5.0	0.60	1		09/04/20 00:24	591-78-6	
4-Methyl-2-pentanone (MIBK)	85.0	ug/L	5.0	0.39	1		09/04/20 00:24		
Acetone	315	ug/L	5.0	1.6	1		09/04/20 00:24		CH,E
Benzene	19600	ug/L	400	88.4	400		09/04/20 16:52	71-43-2	
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 00:24	108-86-1	
Bromochloromethane	ND	ug/L	1.0	0.18	1		09/04/20 00:24	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	0.22	1		09/04/20 00:24		
Bromoform	ND	ug/L	1.0	0.43	1		09/04/20 00:24		

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-7 082620	Lab ID:	30379383007	Collected:	08/26/20	10:30	Received: 08	8/26/20 13:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C						
	Pace Ana	lytical Services	- Long Island	l					
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 00:24	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 00:24	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 00:24	56-23-5	
Chlorobenzene	6080	ug/L	400	74.0	400		09/04/20 16:52	108-90-7	
Chloroethane	25.0	ug/L	1.0	0.35	1		09/04/20 00:24	75-00-3	
Chloroform	ND	ug/L	1.0	0.20	1		09/04/20 00:24		
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 00:24		
Cyclohexane	23.2	ug/L	1.0	0.87	1		09/04/20 00:24		
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 00:24		
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 00:24		
Ethylbenzene	690	ug/L	400	64.4	400		09/04/20 16:52		
sopropylbenzene (Cumene)	6.1	ug/L	1.0	0.23	1		09/04/20 00:24		
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 00:24		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 00:24		
Methylcyclohexane	2.9	ug/L	1.0	0.22	1		09/04/20 00:24		
Methylene Chloride	ND	ug/L	1.0	0.30	1		09/04/20 00:24		
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 00:24		
Tetrachloroethene	ND	ug/L	1.0	0.28	1		09/04/20 00:24		
Toluene	50700	ug/L	400	82.0	400		09/04/20 16:52	108-88-3	
Trichloroethene	ND	ug/L	1.0	0.22	1		09/04/20 00:24		
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 00:24		
Vinyl chloride	852	ug/L	400	134	400		09/04/20 16:52		
cis-1,2-Dichloroethene	447	ug/L	400	97.2	400		09/04/20 16:52		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 00:24		
m&p-Xylene	2860	ug/L	800	132	400		09/04/20 16:52		
o-Xylene	841	ug/L	400	70.4	400		09/04/20 16:52		
trans-1,2-Dichloroethene	47.7	ug/L	1.0	0.19	1		09/04/20 00:24		
rans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		09/04/20 00:24		
Surrogates		3 - –			-				
1,2-Dichloroethane-d4 (S)	49	%	68-153		1		09/04/20 00:24	17060-07-0	S0
4-Bromofluorobenzene (S)	98	%	79-124		1		09/04/20 00:24	460-00-4	
Toluene-d8 (S)	75	%	69-124		1		09/04/20 00:24		

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

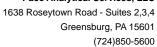
Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-8 082620	Lab ID:	30379383008	Collected:	08/26/20	00:00	Received: 08/	26/20 11:00 M	atrix: Water	
Davarantara	Daguita	Llaita	Report	MDI	סר	Dranauad	A l	CACNI	0
Parameters	Results —	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8082A GCS PCB	Analytical N	Method: EPA 8	082A Prepa	ration Meth	od: EP	A 3510C			
	· ·	tical Services							
PCB-1016 (Aroclor 1016)	ND	ug/L	0.24	0.13	1	08/30/20 10:08	09/03/20 03:31	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.24	0.16	1	08/30/20 10:08	09/03/20 03:31		
PCB-1232 (Aroclor 1232)	ND	ug/L	0.24	0.070	1	08/30/20 10:08	09/03/20 03:31		
PCB-1242 (Aroclor 1242)	ND	ug/L	0.24	0.10	1	08/30/20 10:08	09/03/20 03:31		
PCB-1248 (Aroclor 1248)	ND	ug/L	0.24	0.090	1	08/30/20 10:08	09/03/20 03:31		
PCB-1254 (Aroclor 1254)	ND	ug/L	0.24	0.022	1	08/30/20 10:08	09/03/20 03:31		
PCB-1260 (Aroclor 1260)	ND	ug/L	0.24	0.024	1	08/30/20 10:08	09/03/20 03:31		
Surrogates	ND	ug/L	0.24	0.024		00/00/20 10:00	00/00/20 00:01	11000 02 0	
Tetrachloro-m-xylene (S)	68	%.	39-120		1	08/30/20 10:08	09/03/20 03:31	877-09-8	
Decachlorobiphenyl (S)	58	%.	10-133		1	08/30/20 10:08	09/03/20 03:31	2051-24-3	CL
2040 MET ICD	Analytical N	Mothod: EDA 6	010C Brono	ration Math	od: ED	0A 200E A			
6010 MET ICP		Method: EPA 6			100. EF	A 3005A			
	Pace Analy	tical Services	- Long Island	1					
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 00:55	7429-90-5	
Antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 00:55	7440-36-0	
Arsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:55	7440-38-2	
Barium	ND	ug/L	200	19.8	1	09/09/20 09:54	09/16/20 00:55	7440-39-3	
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54	09/16/20 00:55	7440-41-7	
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54	09/16/20 00:55	7440-43-9	
Calcium	10100	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 00:55	7440-70-2	
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54	09/16/20 00:55	7440-47-3	
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 00:55	7440-48-4	
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 00:55	7440-50-8	
ron	40.6	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 00:55	7439-89-6	
_ead	ND	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 00:55	7439-92-1	
Magnesium	874	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 00:55	7439-95-4	
/langanese	160	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 00:55	7439-96-5	
lickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54	09/16/20 00:55	7440-02-0	
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54	09/16/20 00:55	7440-09-7	
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 00:55	7782-49-2	
Silver	ND	ug/L	10.0	3.6	1	09/09/20 09:54	09/16/20 00:55	7440-22-4	M1
Sodium	123000	ug/L	5000	374	1	09/09/20 09:54	09/16/20 00:55	7440-23-5	
「hallium	ND	ug/L	10.0	5.1	1	09/09/20 09:54	09/16/20 00:55	7440-28-0	
/anadium	ND	ug/L	50.0	4.4	1	09/09/20 09:54	09/16/20 00:55	7440-62-2	
Zinc	ND	ug/L	20.0	2.0	1	09/09/20 09:54	09/16/20 00:55	7440-66-6	
3270 MSSV	Analytical M	Method: EPA 8	270D Prana	ration Meth	od. EE	ν Δ 3510C			
5270 W33V	•	tical Services	•		iou. Lr	A 3310C			
	·		•						
2,2'-Oxybis(1-chloropropane)	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 21:40		
2,4,5-Trichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40		
2,4,6-Trichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40		
2,4-Dichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40		
2,4-Dimethylphenol	ND	ug/L	25.0	3.0	5	09/01/20 09:59	09/10/20 21:40	105-67-9	M1
2,4-Dinitrophenol	ND	ug/L	50.0	28.4	5	09/01/20 09:59	09/10/20 21:40	51-28-5	CL,M1
2,4-Dinitrotoluene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40	121-14-2	

REPORT OF LABORATORY ANALYSIS

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600


ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Parameters 3270 MSSV	Results		D .						
	Resulte		Report						
1270 MSSV		Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
727 U 11100 V	Analytical	Method: EPA 83	270D Prep	aration Met	hod: EF	PA 3510C			
	Pace Ana	lytical Services	- Long Islar	nd					
2,6-Dinitrotoluene	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 21:40	606-20-2	
2-Chloronaphthalene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40	91-58-7	
2-Chlorophenol	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 21:40	95-57-8	
2-Methylnaphthalene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40	91-57-6	
2-Methylphenol(o-Cresol)	ND	ug/L	25.0	1.5	5	09/01/20 09:59	09/10/20 21:40	95-48-7	
2-Nitroaniline	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 21:40	88-74-4	
2-Nitrophenol	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 21:40		
3&4-Methylphenol(m&p Cresol)	ND	ug/L	25.0	1.8	5	09/01/20 09:59	09/10/20 21:40		
3,3'-Dichlorobenzidine	ND	ug/L	25.0	2.6	5	09/01/20 09:59	09/10/20 21:40	91-94-1	M1
B-Nitroaniline	ND	ug/L	25.0	1.5	5	09/01/20 09:59	09/10/20 21:40		
1,6-Dinitro-2-methylphenol	ND	ug/L	50.0	19.0	5	09/01/20 09:59	09/10/20 21:40		CL
4-Bromophenylphenyl ether	ND	ug/L	25.0	2.4	5	09/01/20 09:59	09/10/20 21:40		
1-Chloro-3-methylphenol	ND	ug/L	25.0	2.3	5	09/01/20 09:59	09/10/20 21:40		
4-Chloroaniline	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 21:40		
4-Chlorophenylphenyl ether	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 21:40		
4-Nitroaniline	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 21:40		
1-Nitrophenol	ND	ug/L	50.0	19.3	5	09/01/20 09:59	09/10/20 21:40		
Acenaphthene	ND	ug/L	25.0	1.3	5	09/01/20 09:59	09/10/20 21:40		
Acenaphthylene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40		
Anthracene	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 21:40		
Benzo(a)anthracene	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 21:40		M1
Benzo(a)pyrene	ND	ug/L	25.0	3.7	5	09/01/20 09:59	09/10/20 21:40		
Benzo(b)fluoranthene	ND	ug/L	25.0	3.2	5	09/01/20 09:59	09/10/20 21:40		
Benzo(g,h,i)perylene	ND	ug/L	25.0	5.2	5	09/01/20 09:59	09/10/20 21:40		
Benzo(k)fluoranthene	ND	ug/L	25.0	3.8	5	09/01/20 09:59	09/10/20 21:40		
Butylbenzylphthalate	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 21:40		M1
Carbazole	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 21:40		1411
Chrysene	ND ND	ug/L	25.0	2.3	5	09/01/20 09:59	09/10/20 21:40		
Di-n-butylphthalate	ND	ug/L	25.0	3.4	5	09/01/20 09:59	09/10/20 21:40		
Di-n-octylphthalate	ND	ug/L	25.0	12.8	5	09/01/20 09:59	09/10/20 21:40		
Dibenz(a,h)anthracene	ND ND	ug/L	25.0	4.6	5	09/01/20 09:59	09/10/20 21:40		
Dibenzofuran	ND ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 21:40		
Diethylphthalate	ND ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 21:40		
Dimethylphthalate	ND	ug/L	25.0	2.8	5		09/10/20 21:40		
Fluoranthene	ND ND	ug/L ug/L	25.0	2.0	5	09/01/20 09:59			
Fluorene	ND ND	ug/L ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 21:40		
Hexachloro-1,3-butadiene	ND ND	-	25.0		5	09/01/20 09:59			1.2
Hexachlorobenzene	ND ND	ug/L	25.0 25.0	2.3 1.7	5	09/01/20 09:59	09/10/20 21:40		L2
	ND ND	ug/L	25.0 25.0	11.0	5 5		09/10/20 21:40		
Hexachlorocyclopentadiene		ug/L							1.2
Hexachloroethane	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 21:40		L2
ndeno(1,2,3-cd)pyrene	ND	ug/L	25.0	4.4	5	09/01/20 09:59	09/10/20 21:40		
sophorone	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 21:40		
N-Nitroso-di-n-propylamine	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 21:40		1 4 5 4 4
N-Nitrosodiphenylamine	ND ND	ug/L ug/L	25.0 25.0	1.7 1.9	5 5	09/01/20 09:59	09/10/20 21:40 09/10/20 21:40		L1,MC

REPORT OF LABORATORY ANALYSIS

Project: **Dewey Loeffel** 30379383 Pace Project No.:

Date: 09/16/2020 06:02 PM

Qua
-
CL
M1
_
S3
L1,M0
M1
IL
-
M1
IVII

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: EW-8 082620	Lab ID:	30379383008	Collected	08/26/20	00:00	Received: 08	8/26/20 11:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C	;					
	Pace Anal	ytical Services	- Long Island	d					
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 22:14	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 22:14	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 22:14	56-23-5	
Chlorobenzene	40.4	ug/L	1.0	0.18	1		09/04/20 22:14	108-90-7	
Chloroethane	1.9	ug/L	1.0	0.35	1		09/04/20 22:14	75-00-3	
Chloroform	ND	ug/L	1.0	0.20	1		09/04/20 22:14		
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 22:14	74-87-3	
Cyclohexane	ND	ug/L	1.0	0.87	1		09/04/20 22:14		
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 22:14	124-48-1	
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 22:14	75-71-8	CL
Ethylbenzene	1.9	ug/L	1.0	0.16	1		09/04/20 22:14	100-41-4	
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.23	1		09/04/20 22:14		
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 22:14		
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 22:14		
Methylcyclohexane	ND	ug/L	1.0	0.22	1		09/04/20 22:14	108-87-2	
Methylene Chloride	ND	ug/L	1.0	0.30	1		09/04/20 22:14	75-09-2	
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 22:14		
Tetrachloroethene	ND	ug/L	1.0	0.28	1		09/04/20 22:14		
Toluene	3.5	ug/L	1.0	0.20	1		09/04/20 22:14	108-88-3	
Trichloroethene	2.3	ug/L	1.0	0.22	1		09/04/20 22:14		
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 22:14		
Vinyl chloride	ND	ug/L	1.0	0.33	1		09/04/20 22:14		
cis-1,2-Dichloroethene	5.1	ug/L	1.0	0.24	1		09/04/20 22:14		
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 22:14		
m&p-Xylene	ND	ug/L	2.0	0.33	1		09/04/20 22:14		
o-Xylene	ND	ug/L	1.0	0.18	1		09/04/20 22:14		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		09/04/20 22:14		
trans-1,3-Dichloropropene	ND	ug/L ug/L	1.0	0.16	1		09/04/20 22:14		
Surrogates	.,,5	~ y =		3.00	•		30,0 ., 20 22 . 14	.0007 02 0	
1,2-Dichloroethane-d4 (S)	100	%	68-153		1		09/04/20 22:14	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-124		1		09/04/20 22:14		
Toluene-d8 (S)	98	%	69-124		1		09/04/20 22:14		

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: DUP-1 082620	Lab ID:	30379383009	Collected:	08/26/20	00:00	Received: 08/	26/20 13:30 Ma	atrix: Water	
(blind dup of EW-8)			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3082A GCS PCB	Analytical	Method: EPA 8	082A Prepa	ration Meth	nod: EF	A 3510C			
	-	lytical Services							
PCB-1016 (Aroclor 1016)	ND	ug/L	0.24	0.13	1	08/30/20 10:08	09/03/20 04:05	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.24	0.16	1	08/30/20 10:08	09/03/20 04:05		
PCB-1232 (Aroclor 1232)	ND	ug/L	0.24	0.070	1	08/30/20 10:08	09/03/20 04:05		
PCB-1242 (Aroclor 1242)	ND	ug/L	0.24	0.10	1	08/30/20 10:08	09/03/20 04:05		
PCB-1248 (Aroclor 1248)	ND	ug/L	0.24	0.090	1	08/30/20 10:08	09/03/20 04:05		
PCB-1254 (Aroclor 1254)	ND	ug/L	0.24	0.022	1	08/30/20 10:08	09/03/20 04:05		
PCB-1260 (Aroclor 1260)	ND	ug/L	0.24	0.022	1	08/30/20 10:08	09/03/20 04:05		
Surrogates	ND	ug/L	0.24	0.024	ı	00/30/20 10:00	03/03/20 04.03	11090-02-3	
Tetrachloro-m-xylene (S)	73	%.	39-120		1	08/30/20 10:08	09/03/20 04:05	877-09-8	
Decachlorobiphenyl (S)	62	%.	10-133		1	08/30/20 10:08	09/03/20 04:05	2051-24-3	CL
6010 MET ICP	Analytical	Method: EPA 6	010C Prena	ration Met	hod: EE	2Δ 3005Δ			
OTO WELLICF		lytical Services			ilou. Li	A 3003A			
Niconsissons		•	· ·		4	00/00/00 00-54	00/40/00 04:47	7400 00 5	
Aluminum	ND	ug/L	200	31.9	1	09/09/20 09:54	09/16/20 01:17		
Antimony	ND	ug/L	60.0	9.9	1	09/09/20 09:54	09/16/20 01:17		
arsenic	ND	ug/L	10.0	5.1	1	09/09/20 09:54			
Barium	ND	ug/L	200	19.8	1	09/09/20 09:54			
Beryllium	ND	ug/L	5.0	0.27	1	09/09/20 09:54			
Cadmium	ND	ug/L	2.5	0.59	1	09/09/20 09:54	09/16/20 01:17	7440-43-9	
Calcium	10000	ug/L	200	24.0	1	09/09/20 09:54	09/16/20 01:17	7440-70-2	
Chromium	ND	ug/L	10.0	3.4	1	09/09/20 09:54	09/16/20 01:17	7440-47-3	
Cobalt	ND	ug/L	50.0	2.9	1	09/09/20 09:54	09/16/20 01:17	7440-48-4	
Copper	ND	ug/L	25.0	2.5	1	09/09/20 09:54	09/16/20 01:17	7440-50-8	
ron	ND	ug/L	20.0	10.2	1	09/09/20 09:54	09/16/20 01:17	7439-89-6	
ead	ND	ug/L	5.0	2.9	1	09/09/20 09:54	09/16/20 01:17	7439-92-1	
Magnesium	825	ug/L	200	54.7	1	09/09/20 09:54	09/16/20 01:17	7439-95-4	
/// /// // // // // // // // // // // /	162	ug/L	10.0	0.87	1	09/09/20 09:54	09/16/20 01:17	7439-96-5	
Nickel	ND	ug/L	40.0	1.4	1	09/09/20 09:54	09/16/20 01:17	7440-02-0	
Potassium	ND	ug/L	5000	1290	1	09/09/20 09:54	09/16/20 01:17	7440-09-7	
Selenium	ND	ug/L	10.0	7.4	1	09/09/20 09:54	09/16/20 01:17	7782-49-2	
Silver	ND	ug/L	10.0	3.6	1	09/09/20 09:54	09/16/20 01:17		
Sodium	124000	ug/L	5000	374	1	09/09/20 09:54	09/16/20 01:17		
Thallium	ND	ug/L	10.0	5.1	1		09/16/20 01:17		
/anadium	ND	ug/L	50.0	4.4	1	09/09/20 09:54			
Zinc	ND	ug/L	20.0	2.0	1	09/09/20 09:54			
		Ü							
3270 MSSV		Method: EPA 8 lytical Services			noa: Er	A 3510C			
		•	· ·		_	00/04/05 55 5	0011015	100 5- :	
2,2'-Oxybis(1-chloropropane)	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16		
2,4,5-Trichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16		
2,4,6-Trichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16		
2,4-Dichlorophenol	ND	ug/L	25.0	1.7	5	09/01/20 09:59		120-83-2	
2,4-Dimethylphenol	ND	ug/L	25.0	3.0	5	09/01/20 09:59	09/10/20 23:16	105-67-9	
2,4-Dinitrophenol	ND	ug/L	50.0	28.4	5	09/01/20 09:59	09/10/20 23:16	51-28-5	CL
2,4-Dinitrotoluene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16	121-14-2	

REPORT OF LABORATORY ANALYSIS

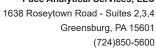
ANALYTICAL RESULTS

Project: Dewey Loeffel 30379383 Pace Project No.:

Date: 09/16/2020 06:02 PM

Sample: DUP-1 082620 (blind dup of EW-8)	Lab ID:	30379383009	Collecte	d: 08/26/20	00:00	Received: 08/	26/20 13:30 M	atrix: Water	
	5 "		Report		5.5			0.0.11	
Parameters ———	Results -	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
3270 MSSV	Analytical	Method: EPA 82	270D Prep	aration Met	hod: EF	PA 3510C			
	-	lytical Services							
2,6-Dinitrotoluene	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 23:16	606-20-2	
2-Chloronaphthalene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16		
2-Chlorophenol	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16		
2-Methylnaphthalene	ND	ug/L	25.0	1.7	5	09/01/20 09:59			
2-Methylphenol(o-Cresol)	ND	ug/L	25.0	1.5	5	09/01/20 09:59	09/10/20 23:16		
2-Nitroaniline	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 23:16		
2-Nitrophenol	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16		
3&4-Methylphenol(m&p Cresol)	ND ND	ug/L ug/L	25.0	1.8	5	09/01/20 09:59	09/10/20 23:16		
3,3'-Dichlorobenzidine	ND	ug/L	25.0	2.6	5	09/01/20 09:59	09/10/20 23:16		
3-Nitroaniline	ND ND	-	25.0	1.5	5	09/01/20 09:59	09/10/20 23:16		
	ND ND	ug/L	50.0	19.0	5 5	09/01/20 09:59	09/10/20 23:16		CL
4,6-Dinitro-2-methylphenol		ug/L			5 5	09/01/20 09:59			OL
4-Bromophenylphenyl ether	ND	ug/L	25.0	2.4 2.3			09/10/20 23:16		
4-Chloro-3-methylphenol	ND	ug/L	25.0		5	09/01/20 09:59	09/10/20 23:16		
4-Chloroaniline	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16		
I-Chlorophenylphenyl ether	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16		
l-Nitroaniline	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 23:16		
I-Nitrophenol	ND	ug/L	50.0	19.3	5	09/01/20 09:59	09/10/20 23:16		
Acenaphthene	ND	ug/L	25.0	1.3	5	09/01/20 09:59	09/10/20 23:16		
Acenaphthylene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16		
Anthracene	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 23:16		
Benzo(a)anthracene	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 23:16	56-55-3	
Benzo(a)pyrene	ND	ug/L	25.0	3.7	5	09/01/20 09:59	09/10/20 23:16		
Benzo(b)fluoranthene	ND	ug/L	25.0	3.2	5	09/01/20 09:59	09/10/20 23:16	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	25.0	5.2	5	09/01/20 09:59	09/10/20 23:16	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	25.0	3.8	5	09/01/20 09:59	09/10/20 23:16	207-08-9	
Butylbenzylphthalate	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 23:16	85-68-7	
Carbazole	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16	86-74-8	
Chrysene	ND	ug/L	25.0	2.3	5	09/01/20 09:59	09/10/20 23:16	218-01-9	
Di-n-butylphthalate	ND	ug/L	25.0	3.4	5	09/01/20 09:59	09/10/20 23:16	84-74-2	
Di-n-octylphthalate	ND	ug/L	25.0	12.8	5	09/01/20 09:59	09/10/20 23:16	117-84-0	
Dibenz(a,h)anthracene	ND	ug/L	25.0	4.6	5	09/01/20 09:59	09/10/20 23:16	53-70-3	
Dibenzofuran	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16	132-64-9	
Diethylphthalate	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 23:16	84-66-2	
Dimethylphthalate	ND	ug/L	25.0	2.8	5	09/01/20 09:59	09/10/20 23:16	131-11-3	
Fluoranthene	ND	ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 23:16		
luorene	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16	86-73-7	
Hexachloro-1,3-butadiene	ND	ug/L	25.0	2.3	5	09/01/20 09:59	09/10/20 23:16		L2
Hexachlorobenzene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16		_
Hexachlorocyclopentadiene	ND	ug/L	25.0	11.0	5	09/01/20 09:59			
Hexachloroethane	ND	ug/L	25.0	2.2	5	09/01/20 09:59	09/10/20 23:16		L2
ndeno(1,2,3-cd)pyrene	ND	ug/L	25.0	4.4	5	09/01/20 09:59	09/10/20 23:16		
sophorone	ND	ug/L ug/L	25.0	2.0	5	09/01/20 09:59	09/10/20 23:16		
	שוו	ug/L	20.0	2.0	J				
•	ND	ua/l	25.0	2.1	_	00/01/20 00:50	00/10/20 22:46	621_64 7	
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	ND ND	ug/L ug/L	25.0 25.0	2.1 1.7	5 5	09/01/20 09:59 09/01/20 09:59	09/10/20 23:16 09/10/20 23:16		L1

REPORT OF LABORATORY ANALYSIS

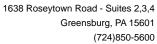

ANALYTICAL RESULTS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: DUP-1 082620 (blind dup of EW-8)	Lab ID:	30379383009	Collected:	08/26/20	00:00	Received: 08/	26/20 13:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
						· ———	- Allalyzeu		
8270 MSSV	Analytica	Method: EPA 8	270D Prepa	ration Met	hod: EF	PA 3510C			
	Pace Ana	lytical Services	- Long Island	d					
Nitrobenzene	ND	ug/L	25.0	2.5	5	09/01/20 09:59	09/10/20 23:16	98-95-3	
Pentachlorophenol	ND	ug/L	50.0	17.2	5	09/01/20 09:59	09/10/20 23:16	87-86-5	CL
Phenanthrene	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16	85-01-8	
Phenol	ND	ug/L	25.0	1.5	5	09/01/20 09:59	09/10/20 23:16	108-95-2	
Pyrene	ND	ug/L	25.0	2.1	5	09/01/20 09:59	09/10/20 23:16		
bis(2-Chloroethoxy)methane	ND	ug/L	25.0	1.9	5	09/01/20 09:59	09/10/20 23:16		
ois(2-Chloroethyl) ether	ND	ug/L	25.0	1.7	5	09/01/20 09:59	09/10/20 23:16		
bis(2-Ethylhexyl)phthalate	ND	ug/L	25.0	7.3	5	09/01/20 09:59	09/10/20 23:16		
Surrogates	110	~9, _	20.0	1.0	9	33/01/20 00:00	20, 10,20 20.10		
Nitrobenzene-d5 (S)	107	%	35-114		5	09/01/20 09:59	09/10/20 23:16	4165-60-0	
2-Fluorobiphenyl (S)	95	%	43-116		5	09/01/20 09:59	09/10/20 23:16		
p-Terphenyl-d14 (S)	144	%	33-141		5	09/01/20 09:59	09/10/20 23:16		S3
Phenol-d5 (S)	26	%	10-110		5	09/01/20 09:59	09/10/20 23:16		-55
2-Fluorophenol (S)	43	%	21-110		5	09/01/20 09:59	09/10/20 23:16		
2,4,6-Tribromophenol (S)	80	%	10-123		5	09/01/20 09:59	09/10/20 23:16		
2-Chlorophenol-d4 (S)	85	%	33-110		5	09/01/20 09:59	09/10/20 23:16		
1,2-Dichlorobenzene-d4 (S)	67	%	16-110		5	09/01/20 09:59	09/10/20 23:16		
1,2-Dichloroberizerie-d4 (S)	07	70	10-110		Э	09/01/20 09.59	09/10/20 23.10	2199-09-1	
8260C Volatile Organics	Analytica	Method: EPA 8	260C/5030C						
	Pace Ana	lytical Services	- Long Island	i					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/04/20 00:04	630-20-6	
1,1,1-Trichloroethane	ND	ug/L	1.0	0.22	1		09/04/20 00:04	71-55-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/04/20 00:04	79-34-5	
1,1,2-Trichloroethane	ND	ug/L	1.0	0.23	1		09/04/20 00:04	79-00-5	
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	0.23	1		09/04/20 00:04	76-13-1	
1,1-Dichloroethane	ND	ug/L	1.0	0.19	1		09/04/20 00:04	75-34-3	
1,1-Dichloroethene	ND	ug/L	1.0	0.23	1		09/04/20 00:04	75-35-4	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	0.64	1		09/04/20 00:04	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	0.45	1		09/04/20 00:04		
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/04/20 00:04		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/04/20 00:04		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.17	1		09/04/20 00:04		
1,2-Dichloroethane	1.3	ug/L	1.0	0.19	1		09/04/20 00:04		
1,2-Dichloropropane	ND	ug/L	1.0	0.43	1		09/04/20 00:04		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.43	1		09/04/20 00:04		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	1.0	0.25	1		09/04/20 00:04		
2-Butanone (MEK)	ND ND	ug/L ug/L	5.0	1.3	1		09/04/20 00:04		IL
, ,		_			1				IL.
2-Hexanone	ND	ug/L	5.0	0.60			09/04/20 00:04		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	0.39	1		09/04/20 00:04		CLI
Acetone	ND	ug/L	5.0	1.6	1		09/04/20 00:04		СН
Benzene	611	ug/L	5.0	1.1	5		09/04/20 16:05		
Bromobenzene	ND	ug/L	1.0	0.21	1		09/04/20 00:04		
Bromochloromethane	ND	ug/L	1.0	0.18	1		09/04/20 00:04		
Bromodichloromethane	ND	ug/L	1.0	0.22	1		09/04/20 00:04		
Bromoform	ND	ug/L	1.0	0.43	1		09/04/20 00:04	75-25-2	

REPORT OF LABORATORY ANALYSIS



Project: Dewey Loeffel 30379383 Pace Project No.:

Date: 09/16/2020 06:02 PM

Sample: DUP-1 082620 (blind dup of EW-8)	Lab ID:	30379383009	Collected	08/26/20	00:00	Received: 08	8/26/20 13:30 Ma	atrix: Water	
(billid dup of EVV-o)			Report						
Parameters	Results	Units	Limit	MDL	DF_	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030C	;					
	Pace Ana	lytical Services	- Long Island	t					
Bromomethane	ND	ug/L	1.0	0.43	1		09/04/20 00:04	74-83-9	
Carbon disulfide	ND	ug/L	1.0	0.25	1		09/04/20 00:04	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	0.20	1		09/04/20 00:04	56-23-5	
Chlorobenzene	40.2	ug/L	1.0	0.18	1		09/04/20 00:04	108-90-7	
Chloroethane	ND	ug/L	1.0	0.35	1		09/04/20 00:04	75-00-3	
Chloroform	ND	ug/L	1.0	0.20	1		09/04/20 00:04	67-66-3	
Chloromethane	ND	ug/L	1.0	0.20	1		09/04/20 00:04	74-87-3	
Cyclohexane	ND	ug/L	1.0	0.87	1		09/04/20 00:04	110-82-7	
Dibromochloromethane	ND	ug/L	1.0	0.29	1		09/04/20 00:04		
Dichlorodifluoromethane	ND	ug/L	1.0	0.24	1		09/04/20 00:04	75-71-8	
Ethylbenzene	1.8	ug/L	1.0	0.16	1		09/04/20 00:04		
Isopropylbenzene (Cumene)	ND	ug/L	1.0	0.23	1		09/04/20 00:04		
Methyl acetate	ND	ug/L	1.0	0.57	1		09/04/20 00:04	79-20-9	
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/04/20 00:04	1634-04-4	
Methylcyclohexane	ND	ug/L	1.0	0.22	1		09/04/20 00:04	108-87-2	
Methylene Chloride	ND	ug/L	1.0	0.30	1		09/04/20 00:04	75-09-2	
Styrene	ND	ug/L	1.0	0.22	1		09/04/20 00:04	100-42-5	
Tetrachloroethene	ND	ug/L	1.0	0.28	1		09/04/20 00:04	127-18-4	
Toluene	3.4	ug/L	1.0	0.20	1		09/04/20 00:04	108-88-3	
Trichloroethene	2.1	ug/L	1.0	0.22	1		09/04/20 00:04	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/04/20 00:04	75-69-4	
Vinyl chloride	ND	ug/L	1.0	0.33	1		09/04/20 00:04	75-01-4	
cis-1,2-Dichloroethene	4.6	ug/L	1.0	0.24	1		09/04/20 00:04	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/04/20 00:04	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	0.33	1		09/04/20 00:04	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.18	1		09/04/20 00:04		
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		09/04/20 00:04		
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		09/04/20 00:04		
Surrogates		J .	-						
1,2-Dichloroethane-d4 (S)	100	%	68-153		1		09/04/20 00:04	17060-07-0	
4-Bromofluorobenzene (S)	103	%	79-124		1		09/04/20 00:04	460-00-4	
Toluene-d8 (S)	100	%	69-124		1		09/04/20 00:04	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: Trip Blank-1 082620	Lab ID:	30379383010	Collecte	d: 08/26/2	07:30	Received: 0	8/26/20 13:30 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF ———	Prepared	Analyzed	CAS No.	Qua
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030	C					
· ·	Pace Ana	lytical Services	- Long Islai	nd					
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	0.22	1		09/03/20 23:43	630-20-6	
1,1,1-Trichloroethane	ND	ug/L	1.0	0.22	1		09/03/20 23:43		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	0.32	1		09/03/20 23:43		
1,1,2-Trichloroethane	ND	ug/L	1.0	0.23	1		09/03/20 23:43		
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	0.23	1		09/03/20 23:43		
1,1-Dichloroethane	ND	ug/L	1.0	0.19	1		09/03/20 23:43		
1,1-Dichloroethene	ND	ug/L	1.0	0.23	1		09/03/20 23:43		
1,2,3-Trichlorobenzene	ND	ug/L	1.0	0.64	1		09/03/20 23:43		
1,2,4-Trichlorobenzene	ND	ug/L	1.0	0.45	1		09/03/20 23:43		
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	0.47	1		09/03/20 23:43		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	0.24	1		09/03/20 23:43		
1,2-Dichlorobenzene	ND	ug/L	1.0	0.17	1		09/03/20 23:43		
1,2-Dichloroethane	ND	ug/L	1.0	0.19	1		09/03/20 23:43		
1,2-Dichloropropane	ND	ug/L	1.0	0.43	1		09/03/20 23:43		
1,3-Dichlorobenzene	ND	ug/L	1.0	0.23	1		09/03/20 23:43		
1,4-Dichlorobenzene	ND	ug/L	1.0	0.25	1		09/03/20 23:43		
2-Butanone (MEK)	ND	ug/L	5.0	1.3	1		09/03/20 23:43		IL
2-Hexanone	ND	ug/L	5.0	0.60	1		09/03/20 23:43		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	0.39	1		09/03/20 23:43		
Acetone	ND	ug/L	5.0	1.6	1		09/03/20 23:43		
Benzene	ND	ug/L	1.0	0.22	1		09/03/20 23:43		
Bromobenzene	ND	ug/L	1.0	0.22	1		09/03/20 23:43		
Bromochloromethane	ND ND	ug/L	1.0	0.18	1		09/03/20 23:43		
Bromodichloromethane	ND	ug/L	1.0	0.10	1		09/03/20 23:43		
Bromoform	ND ND	ug/L	1.0	0.43	1		09/03/20 23:43		
Bromomethane	ND ND	ug/L	1.0	0.43	1		09/03/20 23:43		
Carbon disulfide	ND ND	ug/L	1.0	0.45	1		09/03/20 23:43		
Carbon distillide Carbon tetrachloride	ND ND	ug/L	1.0	0.20	1		09/03/20 23:43		
Chlorobenzene	ND ND	ug/L	1.0	0.20	1		09/03/20 23:43		
Chloroethane	ND ND	ug/L ug/L	1.0	0.16	1		09/03/20 23:43		
Chloroform	ND ND	ug/L ug/L	1.0	0.33	1		09/03/20 23:43		
Chloromethane	ND ND	•		0.20	1		09/03/20 23:43		
Cyclohexane	ND ND	ug/L ug/L	1.0 1.0	0.20	1		09/03/20 23:43		
Dibromochloromethane	ND ND	-		0.87	1		09/03/20 23:43		
Dichlorodifluoromethane	ND ND	ug/L	1.0	0.29			09/03/20 23:43		
		ug/L	1.0		1				
Ethylbenzene	ND	ug/L	1.0	0.16	1		09/03/20 23:43		
sopropylbenzene (Cumene)	ND	ug/L	1.0	0.23	1		09/03/20 23:43 09/03/20 23:43		
Methyl acetate	ND	ug/L	1.0	0.57	1				
Methyl-tert-butyl ether	ND	ug/L	1.0	0.28	1		09/03/20 23:43		
Methylcyclohexane	ND	ug/L	1.0	0.22	1		09/03/20 23:43		
Methylene Chloride	ND	ug/L	1.0	0.30	1		09/03/20 23:43		
Styrene	ND	ug/L	1.0	0.22	1		09/03/20 23:43		
Tetrachloroethene	ND	ug/L	1.0	0.28	1		09/03/20 23:43		
Toluene	ND	ug/L	1.0	0.20	1		09/03/20 23:43		
Trichloroethene	ND	ug/L	1.0	0.22	1		09/03/20 23:43	79-01-6	

REPORT OF LABORATORY ANALYSIS

Project: Dewey Loeffel Pace Project No.: 30379383

Date: 09/16/2020 06:02 PM

Sample: Trip Blank-1 082620	Lab ID:	30379383010	Collecte	d: 08/26/20	07:30	Received: 08	3/26/20 13:30 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
- a.a.metere									
8260C Volatile Organics	Analytical	Method: EPA 8	260C/5030	С					
	Pace Anal	ytical Services	- Long Islar	nd					
Trichlorofluoromethane	ND	ug/L	1.0	0.12	1		09/03/20 23:43	75-69-4	
Vinyl chloride	ND	ug/L	1.0	0.33	1		09/03/20 23:43	75-01-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.24	1		09/03/20 23:43	156-59-2	
cis-1,3-Dichloropropene	ND	ug/L	1.0	0.26	1		09/03/20 23:43	10061-01-5	
m&p-Xylene	ND	ug/L	2.0	0.33	1		09/03/20 23:43	179601-23-1	
o-Xylene	ND	ug/L	1.0	0.18	1		09/03/20 23:43	95-47-6	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		09/03/20 23:43	156-60-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	0.36	1		09/03/20 23:43	10061-02-6	
Surrogates		•							
1,2-Dichloroethane-d4 (S)	100	%	68-153		1		09/03/20 23:43	17060-07-0	
4-Bromofluorobenzene (S)	101	%	79-124		1		09/03/20 23:43	460-00-4	
Toluene-d8 (S)	98	%	69-124		1		09/03/20 23:43	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Project: Dewey Loeffel/30379383 **Date Collected:** 08/26/20 07:30

Sample Matrix: Water Date Received: 08/27/20 10:20

 Sample Name:
 EW-1 082620
 Units: ug/L

 Lab Code:
 R2007852-001
 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM **Prep Method:** EPA 3535A

 Analyte Name
 Result
 MRL
 MDL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 1,4-Dioxane
 6.5
 0.040
 0.027
 1
 08/31/20 19:58
 8/31/20

Surrogate Name % Rec Control Limits Date Analyzed Q

1,4-Dioxane-d8 106 64 - 124 08/31/20 19:58

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Project: Dewey Loeffel/30379383 **Date Collected:** 08/26/20 08:00

Sample Matrix: Water Date Received: 08/27/20 10:20

 Sample Name:
 EW-2 082620
 Units: ug/L

 Lab Code:
 R2007852-002
 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM **Prep Method:** EPA 3535A

 Analyte Name
 Result
 MRL
 MDL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 1,4-Dioxane
 48
 0.040
 0.027
 1
 08/31/20 20:16
 8/31/20

Surrogate Name % Rec Control Limits Date Analyzed Q

1,4-Dioxane-d8 102 64 - 124 08/31/20 20:16

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Service Request: R2007852 **Date Collected:** 08/26/20 08:30 **Project:** Dewey Loeffel/30379383

Sample Matrix: Water **Date Received:** 08/27/20 10:20

Units: ug/L Sample Name: EW-3 082620 Lab Code: R2007852-003 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM Prep Method: EPA 3535A

Analyte Name Result **MRL MDL** Dil. **Date Analyzed Date Extracted** Q 66 0.040 0.027 1 08/31/20 20:34 8/31/20 1,4-Dioxane

Surrogate Name % Rec Q **Control Limits Date Analyzed**

1,4-Dioxane-d8 98 64 - 124 08/31/20 20:34

Analytical Report

Client: Pace Analytical Services -Greensburg PA

Project: Dewey Loeffel/30379383 **Date Collected:** 08/26/20 09:00

Sample Matrix: Water Date Received: 08/27/20 10:20

 Sample Name:
 EW-4 082620
 Units: ug/L

 Lab Code:
 R2007852-004
 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM **Prep Method:** EPA 3535A

 Analyte Name
 Result
 MRL
 MDL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 1,4-Dioxane
 450
 0.20
 0.14
 5
 09/01/20 15:20
 8/31/20

 Surrogate Name
 % Rec
 Control Limits
 Date Analyzed
 Q

 1,4-Dioxane-d8
 105
 64 - 124
 09/01/20 15:20

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Project: Dewey Loeffel/30379383 **Date Collected:** 08/26/20 09:30

Sample Matrix: Water Date Received: 08/27/20 10:20

 Sample Name:
 EW-5 082620
 Units: ug/L

 Lab Code:
 R2007852-005
 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM **Prep Method:** EPA 3535A

 Analyte Name
 Result
 MRL
 MDL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 1,4-Dioxane
 290
 0.20
 0.14
 5
 09/01/20 15:38
 8/31/20

Surrogate Name % Rec Control Limits Date Analyzed Q

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Project: Dewey Loeffel/30379383 **Date Collected:** 08/26/20 10:00

Sample Matrix: Water Date Received: 08/27/20 10:20

 Sample Name:
 EW-6 082620
 Units: ug/L

 Lab Code:
 R2007852-006
 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM **Prep Method:** EPA 3535A

 Analyte Name
 Result
 MRL
 MDL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 1,4-Dioxane
 910
 0.40
 0.27
 10
 09/01/20 15:56
 8/31/20

 Surrogate Name
 % Rec
 Control Limits
 Date Analyzed
 Q

 1,4-Dioxane-d8
 72
 64 - 124
 09/01/20 15:56

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Service Request: R2007852 **Date Collected:** 08/26/20 10:30 **Project:** Dewey Loeffel/30379383

Sample Matrix: Water **Date Received:** 08/27/20 10:20

Units: ug/L Sample Name: EW-7 082620 Lab Code: R2007852-007 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM Prep Method: EPA 3535A

Analyte Name Result **MRL MDL** Dil. **Date Analyzed Date Extracted** Q 1200 0.80 0.54 20 09/01/20 16:48 8/31/20 1,4-Dioxane

Surrogate Name % Rec Q **Control Limits Date Analyzed** 1,4-Dioxane-d8 100 64 - 124 09/01/20 16:48

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Project: Dewey Loeffel/30379383 **Date Collected:** 08/26/20 11:00

Sample Matrix: Water Date Received: 08/27/20 10:20

 Sample Name:
 EW-8 082620
 Units: ug/L

 Lab Code:
 R2007852-008
 Basis: NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM **Prep Method:** EPA 3535A

 Analyte Name
 Result
 MRL
 MDL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 1,4-Dioxane
 47
 0.040
 0.027
 1
 08/31/20 22:10
 8/31/20

1,1 Diomine

 Surrogate Name
 % Rec
 Control Limits
 Date Analyzed
 Q

 1,4-Dioxane-d8
 97
 64 - 124
 08/31/20 22:10

Analytical Report

Client: Pace Analytical Services - Greensburg PA

Project: Dewey Loeffel/30379383 **Date Collected:** 08/26/20 00:01

Sample Matrix: Water Date Received: 08/27/20 10:20

Sample Name: DUP-2 082620 (blind dup of EW-8) Units: ug/L

Lab Code: R2007852-009 **Basis:** NA

1,4-Dioxane by GC/MS

Analysis Method: 8270D SIM **Prep Method:** EPA 3535A

 Analyte Name
 Result
 MRL
 MDL
 Dil.
 Date Analyzed
 Date Extracted
 Q

 1,4-Dioxane
 46
 0.040
 0.027
 1
 08/31/20 23:03
 8/31/20

Surrogate Name % Rec Control Limits Date Analyzed Q

1,4-Dioxane-d8 97 64 - 124 08/31/20 23:03