RECORD OF DECISION

Facet Enterprises, Inc.

Village of Elmira Heights, Chemung County, New York

United States Environmental Protection Agency Region II New York, New York June 1992

DECLARATION FOR THE RECORD OF DECISION

SITE NAME AND LOCATION

Facet Enterprises, Inc. Village of Elmira Heights Chemung County, New York

STATEMENT OF BASIS AND PURPOSE

This decision document presents the selected remedial action for the Facet Enterprises, Inc. Site, which was chosen in accordance with the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended (CERCLA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This decision document explains the factual and legal basis for selecting the remedy for this Site.

The New York State Department of Environmental Conservation (NYSDEC) concurs with the selected remedy, per the letter attached as Appendix IV. The information supporting this remedial action decision is contained in the administrative record for this site, the index of which is attached as Appendix III.

ASSESSMENT OF THE SITE

Actual or threatened releases of hazardous substances from the site, if not addressed by implementing the response actions selected in this Record of Decision, may present an imminent and substantial endangerment to public health, welfare or the environment.

DESCRIPTION OF THE SELECTED REMEDY

The major components of the selected remedy for the treatment of soils, sediments, and ground water at the Facet Enterprises, Inc. Site include the following:

- Excavation of contaminated soils and sediments from the Disposal Areas as identified in the Risk Assessment and in those areas where soils and sediment pose a risk to ground water quality,
- Disposal of TSCA waste (PCBs > 50 ppm) in a secure TSCA double lined landfill facility (estimated at approximately 1,275 cubic yards),
- Stabilization of RCRA waste to prevent leaching of metals and subsequent disposal in a secure RCRA lined facility (approximate volume 2,124 cubic yards),

- Disposal of non-RCRA wastes in an industrial waste landfill (approximate volume 120 cubic yards),
- Strategic placement of pumping wells to extract the contaminated ground water from the aquifer,
- Storage of extracted ground water in a central collection tank for subsequent treatment in an above-ground system,
- Treatment of the contaminated ground water to meet Federal and State Standards for surface water discharge. Treated ground water would then be either discharged as effluent to the facility non-contact cooling system, or to a surface water discharge,
- Recommendation that local institutional controls, in the form of local zoning ordinances, be implemented in an attempt to control any future site use that could create an exposure pathway to subsurface soils,
- Recommendation that institutional controls be provided/maintained to restrict access to those portions of the aquifer which remain contaminated above cleanup levels, and
- Implementation of a long-term monitoring program to track the migration and concentrations of the contaminants of concern.

DECLARATION OF STATUTORY DETERMINATIONS

The selected remedy is protective of human health and the environment, complies with federal and state requirements that are legally applicable or relevant and appropriate to the remedial action, and is cost effective. The selected remedy utilizes permanent solutions and alternative treatment (or resource recovery) technologies to the maximum extent practicable, and it satisfies the statutory preference for remedies that employ treatment that reduces toxicity, mobility, or volume as their principal element.

Because this remedy will result in hazardous substances remaining on site above health-based levels, a review will be conducted within five years after commencement of remedial action, and every five years thereafter, to ensure that the remedy continues to provide adequate protection of human health and the environment.

Constantine Sidamon-Eristoff

Constantine Sidamon-Eristoff Regional Administrator

Date

FAC

003 1162

ROD FACT SHEET

<u>SITE</u>

Site name: Facet Enterprises, Inc.

Site location: Village of Elmira Heights, Chemung County, New York

HRS score: 46.67

ROD

Selected remedy: Soil and Sediment - Off-site Shipment for Treatment and Disposal Ground Water - Pump, filtration/precipitation, air stripping

Capital cost: \$3,545,060

O & M cost: \$1,305,596

Present-worth cost: \$4,850,656

<u>LEAD</u>

United States Environmental Protection Agency

Primary Contact: J. Jeffrey Josephson (212) 264-4183

Secondary Contact: Kevin Lynch (212) 264-6194

Main PRPs: Purolator Products Company Allied-Signal Corporation

<u>WASTE</u>

Waste type: VOCs, PAHs, PCBs, Metals

Waste origin: Industrial Disposal

Estimated waste quantity: At least 3,519 cubic yards sediment and soil and 4.7x10⁸ gallons contaminated ground water

Contaminated mediums: Soil, sediment, and Ground water

RECORD OF DECISION DECISION SUMMARY

Facet Enterprises, Inc.

Village of Elmira Heights, Chemung County, New York

United States Environmental Protection Agency Region II New York, New York

TABLE OF CONTENTS

SITE NAME, LOCATION AND DESCRIPTION 1
SITE HISTORY AND ENFORCEMENT ACTIVITIES
HIGHLIGHTS OF COMMUNITY PARTICIPATION
SCOPE AND ROLE OF OPERABLE UNIT
SUMMARY OF SITE CHARACTERISTICS
SUMMARY OF SITE RISKS
DESCRIPTION OF REMEDIAL ALTERNATIVES
SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES
SELECTED REMEDY
STATUTORY DETERMINATIONS 27
DOCUMENTATION OF SIGNIFICANT CHANGES

ATTACHMENTS

APPENDIX I.FIGURES APPENDIX II.TABLES APPENDIX III.ADMINISTRATIVE RECORD INDEX APPENDIX IV.STATE LETTER OF CONCURRENCE APPENDIX V.RESPONSIVENESS SUMMARY

FAC 003 1165

PAGE

SITE NAME, LOCATION AND DESCRIPTION

The Facet Enterprises, Inc. site includes a 31-acre parcel of land in the Village of Elmira Heights, Chemung County, New York. The Facet Enterprises facility property is bounded to the north by a municipal golf course, to the east by State Route 14, to the south by residential property along West 17th and West 18th Streets, and to the west by residential property and Robinwood Avenue. The Village of Elmira Heights is a mixture of residential, commercial, industrial, and wooded land, but the section in which the site is located is zoned primarily for residential and commercial use. The closest residences are within 60 feet of the present manufacturing facility to the south and west. (See Figure 1.)

Approximately one half of the facility property is currently developed. Between one third and one quarter of the facility property is comprised of one manufacturing plant and the foundation and cement slab of a former manufacturing plant, while the remainder of the developed property is comprised of parking areas or other small production buildings including a starter drive laboratory, a maintenance shop, a fuel pump test laboratory, a boiler room, and several other small buildings. (See Figure 2.)

The facility is not located on or adjacent to a New York State regulated wetland. Any existing Federally regulated wetlands at the Site will be delineated prior to conducting any remediation activities. No Federal or State endangered species have been identified at the site, and no critical habitats are present.

The Facet facility was constructed in 1895 and was used by the Eclipse Bicycle Company (Eclipse) for the manufacture of bicycles. In the early 1900s, Eclipse began manufacturing motorcycles and engine parts and changed its name to Eclipse Machine Company. During World Wars I and II, Eclipse manufactured military support parts, ammunition, airplane parts, and fuel pumps. In 1929, Bendix Aviation Corporation, later to become Bendix Corporation (Bendix), acquired control of Eclipse. Although the Eclipse name remained, Bendix controlled the company. From 1960 until 1975, Eclipse, as a division of Bendix, manufactured electric clutches and brakes.

Facet Enterprises, Inc. was organized as a result of an antitrust action between Bendix and the U.S. Federal Trade Commission in 1974. Purolator Products Company (Purolator) became the corporate successor to Facet in 1989 and maintains the Purolator name to date.

The following areas at the facility are known to have been used for disposal purposes based on the site history.

Area 1 - Plating wastes, oil sludges, and grinding wastes were disposed of in this area between 1960 and 1971. Liquid wastes may have also been disposed in this area; lime was dumped here in an attempt to neutralize the waste prior to covering it with soil.

Area 2 - Plating waste was thought to have been disposed of at Area 2 between 1960 and 1971. Attempts were apparently made to neutralize the waste prior to covering it with soil.

Area 3 - Plating waste, oil sludge, grinding waste and non-characterized liquids may have been disposed of at Area 3 between 1940 and 1965. After 1965, miscellaneous wastes (cinder blocks, metal grindings) were disposed of at Area 3 until 1980. During use, the area was periodically covered and graded. Leachate outbreaks have been noted at the base of this disposal area.

Area 4 - Oils and unknown liquid wastes were disposed of in this currently inactive lagoon between 1920 and 1971. Liquid from this area previously was discharged to the North Drainage Way via a swale which is now filled. In 1981 a soil sample collected from Area 4 contained polychlorinated biphenyls (PCBs) at 320 parts per million (ppm).

Area 5 - Area 5 was previously used as a sludge disposal area containing wastewater treatment units and sand filter beds; metal hydroxide sludge was disposed of in Area 5 until 1965. After 1965, sludge was spread over the surface. The area has been filled and seeded. Sampling conducted by NYSDEC in 1981 detected the presence of cadmium and chromium in excess of 100,000 ppm and copper in excess of 10,000 ppm.

Area 6 - This area, constructed in the early 1970s, is a small pond originally designed to collect seepage and runoff from Areas 1 and 2. Chromic acid may have been treated near this area.

Area 7 - Ash from the production facilities was stored at Area 7 from the early 1940s to the mid 1950s.

Area 8 - Sediments and oily soil have drained over time from a drain pipe from Area 4 into this area.

Area 9 - Ash from the production facilities was stored at Area 9 from the early 1940s to the mid 1950s.

Area 10 - Heat treatment water, non-contact cooling water, and possibly oils were disposed of in this lagoon. The lagoon is no longer active but a surface water impoundment remains in this area. This area is thought to have once been a filter bed.

Plant 2 Yard - Grinding chips, machinery oil, and drummed waste were stored in this area from as early as 1940. The area has been graded and seeded.

Oil/Water Separator - This area was used to segregate oil and particulates from runoff or treatment water at the facility. The oil/water separator is located at the southern boundary of the property.

Dry Wells - Up to five dry wells used for the disposal of liquid wastes and/or water from the facility are present at the facility. The dry wells are being closed pursuant to a consent order with the New York State Department of Envrionmental Conservation (NYSDEC).

RC 003 1167

Surface Water - In addition to the Area 10 lagoon and the Area 6 pond, Mays Creek, an unnamed drainage way south of the Facet facility, and a drainage way which drains surface water from the northern portion of the facility have all received industrial waste from production activities by way of surface run-off and point source discharge.

SITE HISTORY AND ENFORCEMENT ACTIVITIES

Several investigations of the facility have been conducted by EPA or NYSDEC since 1979. In 1979, an initial Facility inspection conducted by NYSDEC resulted in the implementation of remedial measures which included excavation of surface water diversions, covering of past disposal areas with soil, and construction of a leachate collection system. A facility inspection and sampling was conducted by USEPA in 1980, and additional sampling and investigation was conducted by NYSDEC during March and June 1981. These investigations indicated that volatile organics, inorganics, pesticides, and PCB compounds were present in surface soils, in soils and sediments in the disposal areas, and in surface water drainage streams at the facility.

The Site was first proposed for the National Priorities List on October 1, 1981 and was placed on the NPL on September 1, 1983. In 1983 a preliminary hydrogeologic investigation was conducted at the facility by Facet Enterprises, Inc. under an EPA Administrative Order pursuant to Section 3013 of the Resource Conservation and Recovery Act (RCRA). The investigation concluded that trichloroethylene (TCE) contamination in the ground water exceeded NYSDEC standards. In 1986, Facet Enterprises, Inc. agreed to conduct a Remedial Investigation /Feasibility Study (RI/FS) under a CERCLA Administrative Order (Allied-Signal Corporation, the corporate successor to Bendix Corporation, was also a signatory to this consent order). The 1986 draft RI concluded that TCE, perchloroethylene, 1,1,1-trichloroethane, 1,1-dichloroethane, trans -1,2-dichloroethene, 1,2-dichloroethene, 1,2-dichloroethane, trichlorofluoromethane, methylene chloride, acetone, PCBs, and polyaromatic hydrocarbons (PAHs) were present in Site soils. In addition, 14 volatile organic contaminants, pentachlorophenol, and 4 inorganics contaminants were detected in ground water at concentrations above NYSDEC standards.

Based upon a review of the 1986 RI, EPA concluded that additional Site characterization was required before the RI could be finalized. In 1990, Purolator began the necessary field work required to complete the RI. The findings of this field work are reported below.

Enforcement

Facet Enterprises, Inc. has conducted investigations under the following Administrative orders with the EPA:

1) Administrative Order RCRA II-3013-20201 - April 8, 1983 - Hydrogeological Investigation

2) Administrative Order CERCLA II-60205 - May 1986 - (Allied-Signal is also a signatory this Order). - Remedial Investigation/Feasibility Study

Facet Enterprises, Inc. has conducted investigations under the following Administrative order with the NYSDEC:

1) NYSDEC Consent Order under the Clean Water Act R8-0771-90-04 - Dry Well Investigation

HIGHLIGHTS OF COMMUNITY PARTICIPATION

The RI report, FS report, and the Proposed Plan for the Site were released to the public for comment on May 27, 1992. These documents were made available to the public in the administrative record file at the EPA Docket Room in Region II, New York and the information repositories at Village of Elmira Heights, Village Hall, 215 Elmwood Ave, Village of Elmira Heights, New York. The notice of availability for the above-referenced documents was published in the Elmira Star-Gazette on May 27, 1992. The public comment period on these documents was held from May 27, 1992 until June 27, 1992.

On June 16, 1992, EPA, the NYSDEC, and the New York State Department of Health conducted a public meeting at the Village of Elmira Heights Village Hall, to inform local officials and interested citizens about the Superfund process, to review current and planned remedial activities at the Site, and to respond to any questions from area residents and other attenders.

Responses to the comments received at the public meeting and in writing during the public comment period are included in the Responsiveness Summary (see Appendix V).

SCOPE AND ROLE OF OPERABLE UNIT

This Record of Decision outlines EPA's strategy to eliminate the threat to human health and the environment posed by contaminated ground water and contaminated soils and sediments present at the Site. Specifically, remediation of soil and sediment in disposal areas in concentrations above site specific cleanup levels will be conducted. The proposed remediation of ground water will treat contaminated ground water at the facility to meet Federal and State drinking water standards. No further operable units are currently planned for this site.

During the Spring of 1992, pursuant to the CERCLA Administrative Order, Purolator excavated and removed 469 drums buried in Disposal Areas 1,2,3, and 4. In addition, 2,250 tons of contaminated soil was excavated and 30,000 gallons of contaminated liquids were removed to be sent off-site for treatment and disposal at a permitted industrial waste landfill. The drum and soil excavation activities were conducted with oversight by EPA. Purolator and EPA collected confirmatory samples from the excavation floor in each of these disposal areas. Based on the data obtained during the Summer 1992, EPA will evaluate if further action is required.

Once the excavation of the drums and the contaminated soil from Disposal Areas 1,2, and 3 is completed, the potential threat that these materials pose to ground water will be removed. Final remediation of Disposal Area 4 is discussed in this ROD.

Dry well closure, which includes excavation of contaminated sediment and sludges, will be addressed by Purolator Products Company under the consent agreement with the NYSDEC.

The proposed actions to be undertaken at this Site, in conjunction with dry well cleanup actions currently under way under the supervision of the NYSDEC, will address the sources of ground water contamination and the principal threats posed by contaminated soils and sediments.

SUMMARY OF SITE CHARACTERISTICS

A. Site Geology and Hydrology

The Purolator facility lies along the western side of the Newtown Creek Valley. The unconsolidated sediments which underlain the western portion of the facility consist of sands, silts, and clays. In the eastern portion of the facility the unconsolidated sediments consist of outwash sands and gravels and may contain silts and clays. The ground-water flow direction, as determined by water level measurements taken at facility monitoring wells, is south easterly. Figure 3 illustrates ground-water flow direction measured during the summer of 1990. Figure 4 presents the estimated regional ground water flow direction presented in the Kentucky Avenue Wellfield Remedial Investigation Report. Figure 5 illustrates surface water drainage at the facility.

B. Nature and Extent of Contamination

The following section summarizes the known contamination at and near the facility as determined during the Remedial Investigation: This study consisted of the following: eighty-five soil samples were collected from the surface soils or from subsurface borings in known or suspected disposal areas; twenty-five sediment samples were collected from streams; ponds or lagoons at the facility or in streams adjacent to the facility; fourteen ground water samples were collected from monitoring wells or production wells at or near the facility; and 8 surface water samples were collected from streams or lagoons at the facility or in streams adjacent to the facility. Tables 1-11 present analytical data collected during remedial investigation activities. More detailed descriptions of the work can be found in the RI report.

Area 1/Area 2 - A total of 27 samples from these areas were collected for chemical analyses from depths ranging from 1 to 12 feet below ground level. Soil collected from one boring in Area 2 had elevated levels of contaminants. The analytical results indicate the

003 1170

presence of cadmium (351 ppm), chromium (2410 ppm), and copper (1120 ppm). The maximum TCE concentration in soil was 110 ppb. (Table 1)

Area 3 - A total of 12 samples were collected for chemical analyses from this area at depths from 8 to 14 feet below ground surface. Elevated levels of chromium (2110 ppm), cadmium (72.3 ppm), and copper (270 ppm) were found in soil samples. (Table 2)

Area 4 - A total of 13 samples from this area were collected for chemical analyses at depths ranging from 8 to 20.5 feet below ground surface. The soil borings in this area indicate that a layer of fill approximately 8 feet thick is saturated with oil product. Numerous volatiles and semi-volatiles were detected in Area 4 including toluene (210 ppb), PCB (Arochlor 1248) (35 ppm). (Table 3)

Area 5 - Three samples out of the 21 samples collected at depths ranging from 8 to 20 feet below ground surface from Area 5 had elevated levels of chromium (13,000 ppm). TCE was detected in 14 soil samples in concentrations up to 240 ppb. (Table 4)

Area 6 - Two surface soil samples collected from pond sediments had TCE in concentrations up to 130 ppb. Elevated levels of arsenic (588 ppm), cadmium (79 ppm), and chromium (1220 ppm) were also detected. Confirmatory sampling conducted during the FS, completed in order to determine the presence of Resource Conservation and Recovery Act (RCRA) hazardous waste, revealed that a sediment sample exhibited the characteristic for cadmium waste. (Table 5)

Area 7 - Three surface soil samples were collected from this area. PCB compounds were detected at concentrations ranging from 0.32 ppm to 5.3 ppm. Semi-volatile organics were detected in the one surface sediment sample at concentrations up to 22 ppm. (Table 5)

Area 8 - Area 8 soils contained elevated concentrations of eighteen semi-volatile organic compounds at concentrations up to 69 ppm (benzo(b)fluoranthene). PCBs were detected in concentrations up to 11 ppm. (Table 5)

Area 9 - The one surface soil sample collected from Area 9 contained 1 ppm PCBs. (Table 5)

Area 10 - Two sediment samples and one duplicate sample was collected from Area 10. PCBs were detected in sediments in concentrations up to 14 ppm. Cadmium (796 ppm), chromium (10,100 ppm), and copper (1,110 ppm) were detected in these surface sediment samples. (Table 5)

Plant 2 Yard - Soil sampling (24 samples including duplicate samples in soil boring samples collected from 0-8 feet below the ground surface.) conducted during the 1986 RI field work detected TCE in concentrations ranging from 3.4 ppb to 253 ppb. In addition the analyses revealed tetrachloroethylene (150 ppb), 1,1,1-trichloroethane (48.1 ppb), and 1,1 dichloroethane (8.58 ppb). (Table 6)

FAC 003 1171

Oil/Water Separator - Twenty two semi-volatile compounds (8 of which were in concentrations over 100,000 ppb) were detected in soil collected from near the oil/water separator. Soil samples contained slightly elevated levels of cadmium (41.4 ppm), copper (502 ppm), and zinc (675 ppm). (Table 7)

Dry Wells - Sampling and analysis of dry well liquids, sludges, and sediment has been conducted by Purolator as a part of a consent order with the NYSDEC. The sampling has detected liquid with PCB concentrations up to 31 ppm. TCE was present in sludge material in concentrations up to 60 ppm. Lead was present in concentrations up to 5500 ppm, and chromium was present in concentrations of 450 ppm in dry well sludge. Benzene (1390 ppb), toluene (3050 ppb), chlorobenzene (9260 ppb), ethylbenzene (3330 ppb), p-xylene (3780 ppb), o-xylene (3780 ppb), and 1,3-dichlorobenzene (4940 ppb) were also detected in dry well sludges or liquids.

Unnamed Drainage Swale South of Facility (Also known as the Heights Drainage Swale) - Twenty-one soil and sediment samples were collected from 0 - 6 feet below ground surface from this area. Soil samples and boring data collected from the drainage way south of the Facet facility contained the semi-volatiles benzo(a)anthracene (11 ppm), benzo(a)pyrene (11 ppm), benzo(b)fluoranthene (30 ppm), benzo(k) fluoranthene (30 ppm), and ideno(1,2,3-cd)pyrene (6 ppm); PCB 1254 (6.8 ppm), and the inorganics arsenic (23 ppm) and chromium (3920 ppm) in elevated concentrations. (Table 8)

North Drainage Way - Arsenic (320 ppm) was detected in the North Drainage Ditch in a surface sediment sample collected in July 1980. (Table 9)

Buried Drums - A magnetometry survey and interviews with employees indicated that buried drums were present at the facility. Based on the magnetometry survey results, Purolator Products Company, with oversight by EPA, removed 469 drums from Disposal Areas 1,2,3 and 4. In addition, at least 2,250 tons of contaminated soil have been excavated, and approximately 30,000 gallons of contaminated water have been contained for off site treatment and disposal.

Surface Water Sampling - Seven surface water samples were collected from surface water bodies at the Site. TCE was detected at the oil/water separator effluent at up to 26 ppb, and chloromethane was present at 24 ppb. TCE was detected in Mays Creek surface water at 11 ppb. Surface water samples collected from Area 10 contained elevated concentration of cadmium (77.8 ppb), chromium (2190 ppb), and zinc (894 ppb). (Table 10)

Ground water - A total of 13 monitoring wells were installed at or near the facility in the unconsolidated sediments below the Site. The wells vary in depth from 12.5 feet to 49.2 feet below ground surface. Fourteen organics: n-butylbenzene (13 ppb), 1,1-dichloroethene (160 ppb), ethylbenzene (12 ppb), isopropylbenzene (8 ppb), 4-Isopropyltoluene (12 ppb), methylene chloride (69 ppb), n-propylbenzene (22 ppb), 1,1,1-trichloroethane (13 ppb), trichloroethene (190 ppb), trichlorofluoromethane (19 ppb), 1,2,4-trimethylbenzene (18 ppb), 1,3,5-trimethylbenzene (81 ppb), vinyl chloride (33 ppb Spring 1991 sampling),

7

and xylenes (14 ppb), and six inorganic contaminants: cadmium (55.8 ppb), chromium (1540 ppb), copper (1200 ppb), lead (146 ppb), mercury (5.6 ppb), zinc (1180 ppb) were detected in ground water at the facility at concentrations in excess of State and Federal standards for potable drinking water sources. (Table 11)

In addition, the concentrations of antimony (45.8 ppb), beryllium (4.2 ppb), and nickel (602 ppb) exceeded either NYSDEC guidance values or EPA proposed Maximum Contaminant Levels (MCLs), the latter of which were promulgated under the Federal Safe Drinking Water Act.

Figures 6 and 7, present respectively, the sampling results of facility groundwater monitoring wells with volatile organic contaminants or inorganic contaminants present.

The ground water contamination flows in the direction consistent with the regional ground water flow direction. The facility contamination contributes to the contamination within the Newtown Creek Aquifer which is classified by EPA a Class IIa aquifer. See Figure 8.

Floating Product - EPA detected a layer of pure product floating on top of the water table (approximately 20 feet below the ground surface) at monitoring well D-5 located on the facility property. (See Figure 2).

SUMMARY OF SITE RISKS

EPA conducted a baseline risk assessment to evaluate the potential risks to human health and the environment associated with the Facet Enterprises, Inc. Site in its current state. The Risk Assessment focused on contaminants in the soil, sediment, surface water, ground water and air which are likely to pose significant risks to human health and the environment. The summary of the contaminants of concern (COC) in sampled matrices is listed in Table 12.

The baseline risk assessment evaluated the health effects which could result from exposure to contamination as a result of ingestion of ground water, inhalation of ground water contaminants during showering, ingestion of sediments in the drainage swale south of the facility, incidental ingestion of sediments while wading in the North Drainage way, ingestion of on site soils, ingestion of sediments in Mays Creek, and incidental ingestion of sediments in areas 6 and 10 lagoons. Both current and future land use at the facility was considered to be industrial with exposure scenarios for on site workers and trespassers. For Mays Creek and the unnamed drainage way south of the facility, exposure to small children and adults was considered because these areas are generally more accessible to the public. A total of 12 exposure pathways were evaluated under possible on site current and future land-use conditions. The exposure pathways considered under current and future uses are listed in Table 13. The reasonable maximum exposure was evaluated.

Under current EPA guidelines, the likelihood of carcinogenic (cancer-causing) and noncarcinogenic effects as a result of exposure to site chemicals are considered separately. It was assumed that the toxic effects of the site-related chemicals would be

additive. Thus, carcinogenic and noncarcinogenic risks associated with exposures to individual compounds of concern were summed to indicate the potential risks associated with mixtures of potential carcinogens and noncarcinogens, respectively.

Noncarcinogenic risks were assessed using a hazard index (HI) approach, based on a comparison of expected contaminant intakes and safe levels of intake (Reference Doses). Reference doses (RfDs) have been developed by EPA for indicating the potential for adverse health effects. RfDs, which are expressed in units of mg/kg-day, are estimates of daily exposure levels for humans which are thought to be safe over a lifetime (including sensitive individuals). Estimated intakes of chemicals from environmental media (e.g., the amount of a chemical ingested from contaminant in the particular medium. The HI is obtained by adding the hazard quotients for all compounds across all media that impact a particular receptor population.

An HI greater than 1.0 indicates that the potential exists for noncarcinogenic health effects to occur as a result of site-related exposures. The HI provides a useful reference point for gauging the potential significance of multiple contaminant exposures within a single medium or across media. The reference doses for the compounds of concern at the Site are presented in Table 14. A summary of the noncarcinogenic risks associated with these chemicals across various exposure pathways is found in Table 15.

It can be seen from Table 5 that the HI for noncarcinogenic effects from ingestion of untreated ground water exceeded one (HI = 46) for reasonable maximum exposure for children, therefore, noncarcinogenic effects may occur from the exposure routes evaluated in the Risk Assessment. The noncarcinogenic risk was attributable to several compounds including vinyl chloride, cis-1,2 dichloroethylene, TCE, antimony, arsenic, cadmium, chromium, mercury, and nickel. Furthermore, it can be seen from Table 15 that the HI for noncarcinogenic effects from ingestion of sediment in the unnamed drainage swale (also known as the Heights drainage swale) exceeded one (HI = 3.5) for reasonable maximum exposure for children, therefore, noncarcinogenic effects may occur from the exposure routes evaluated in the Risk Assessment. The noncarcinogenic effects may occur from the exposure routes evaluated in the Risk Assessment. The noncarcinogenic risk was attributable to several compounds exposure for children, therefore, noncarcinogenic effects may occur from the exposure routes evaluated in the Risk Assessment. The noncarcinogenic risk was attributable to several compounds including chromium..

Potential carcinogenic risks were evaluated using the cancer slope factors (Sfs) developed by EPA for the chemicals of potential concern. Sfs have been developed by EPA's Carcinogenic Risk Assessment Verification Endeavor (CRAVE) for estimating excess lifetime cancer risks associated with exposure to potentially carcinogenic chemicals. Sfs which are expressed in units of (mg/kg-day)⁻¹, are multiplied by the estimated intake of a potential carcinogen, in mg/kg-day, to generate an upper-bound estimate of the excess lifetime cancer risk associated with exposure to the compound at that intake level. The term "upper bound" reflects the conservative estimate of the risks calculated from the SF. Use of this approach makes the underestimation of the risk highly unlikely. The SF for each indicator chemical is presented in Table 16.

9

FAC 003 1174

For known or suspected carcinogens, EPA considers excess upper bound individual lifetime cancer risks of between 10⁻⁴ to 10⁻⁶ to be acceptable. This level indicates that an individual has not greater than a one in ten thousand to one in a million chance of developing cancer as a result of site-related exposure to a carcinogen over a 70-year period under specific exposure conditions at the Site. The total cancer risks at the Facet Enterprises, Inc. Site are outlined in Table 17. In addition, MCLs are currently exceeded for several hazardous substances in ground water. Although the risks posed by the soils are within EPA's acceptable risk criteria, contamination in the soils, if not addressed, will likely continue to contribute to further contamination of the ground water at the Site.

Uncertainties

The procedures and inputs used to assess risks in this evaluation, as in all such assessments, are subject to a wide variety of uncertainties. In general, the main sources of uncertainty include:

- environmental chemistry sampling and analysis
- environmental parameter measurement
- fate and transport modeling
- exposure parameter estimation
- toxicological data.

Uncertainty in environmental sampling arises in part from the potentially uneven distribution of chemicals in the media sampled. Consequently, there is significant 'uncertainty as to the actual levels present. Environmental chemistry-analysis error can stem from several sources including the errors inherent in the analytical methods and characteristics of the matrix being sampled.

Uncertainties in the exposure assessment are related to estimates of how often an individual would actually come in contact with the chemicals of concern, the period of time over which such exposure would occur, and in the models used to estimate the concentrations of the chemicals of concern at the point of exposure.

Uncertainties in toxicological data occur in extrapolating both from animals to humans and from high to low doses of exposure, as well as from the difficulties in assessing the toxicity of a mixture of chemicals. These uncertainties are addressed by making conservative assumptions concerning risk and exposure parameters throughout the assessment. As a result, the Risk Assessment provides upper-bound estimates of the risks to populations near the Site, and is highly unlikely to underestimate actual risks related to the Site.

There are, also, additional uncertainties unique to the Site that would serve to underestimate Site-related risks. Specifically, they are: the presence of previously undetected drums and associated contaminated soils; an on-site "reservoir" of contaminants that may potentially migrate from the facility property; designation of future land use at the facility property as industrial rather than residential; and the contribution to risk resulting from - but not quantified, as a result of limited scientific data - dermal exposure to soil-borne contaminants. More specific information concerning public health risks, including a quantitative evaluation of the degree of risk associated with various exposure pathways, is presented in the Risk Assessment Report.

Current federal guidelines for acceptable exposures are a health Hazard Index equal to 1.0 and an individual lifetime excess carcinogenic risk in the range of 10^{-4} to 10^{-6} . Some of the on site soil and sediment risks fall within EPA's acceptable risk range. However, EPA has determined that remedial action is necessary in these areas due to: the uncertainties as mentioned above, the contribution of some of the chemicals to the ground water contamination, and that unless these soils and sediments are remediated, they would continue to migrate off the facility property and accumulate which would likely result in an unacceptable risk to the public.

Actual or threatened releases of hazardous substances from this Site, if not addressed by the preferred alternative or one of the other active measures considered, may present a current or potential threat to public health, welfare or the environment.

REMEDIAL ACTION OBJECTIVES

Remedial action objectives are specific goals to protect human health and the environment; they specify the contaminant(s) of concern, the exposure route(s), receptor(s), and acceptable contaminant level(s) for each exposure route. These objectives are based on available information and standards such as applicable, or relevant and appropriate requirements (ARARs) and risk-based levels established in the risk assessment.

The cleanup levels have been chosen for each area where an unacceptable exposure risk was determined or from data which indicates that a disposal area contributes to the groundwater contamination. These cleanup levels are derived from the point of departure, as defined in the NCP, of 1.00×10^6 or a Hazard Index of 1 and using the same risk modeling assumptions used in the risk assessment, thereby yielding a cutoff value below which the ingestion of sediment at the Site is no longer a risk.

Soils and Sediments - The following remedial action objectives have been determined for clean-up of soils and sediments at the Site.

Surface Soils (0 to 2 feet below ground surface) and Sediments

Unnamed Drainage Way and Mays Creek Soils/ Facility Surface Soils/Sediments Sediments				
Semivolatiles (ppm)				
Benzo (a) anthracene	20	3		
Benzo(b)fluoranthene	20	3		
Benzo (k)fluoranthene	43	7		
Benzo(a)pyrene	3	1		
Indeno(1,2,3-cd)pyrene	12	2		

11

FAC

003

1176

Dibenzo(a,h)anthracene	3	1
PCBs (ppm)	10	1
<u>Inorganics (ppm)</u> Arsenic	19	7
Chromium	-	1110

Cleanup levels are lower for the Unnamed drainage way and Mays Creek soil/sediment than for facility soils and sediment because there is a greater potential for residential exposure (as opposed to industrial exposure) in areas off the facility property.

Subsurface Soils (> 2 ft below ground surface)

Facility Subsurface Soil

Semivolatiles (ppm)

Benzo(a) anthracene54Benzo(b) fluoranthene55Benzo(k) flouranthene118Benzo(a) pyrene8Indeno(1,2,3-cd) pyrene33PCBs (ppm)25Inorganics (ppm)

Arsenic 52

The facility subsurface soils cleanup levels are higher than facility surface soils cleanup levels because the potential for human exposure to subsurface soils is restricted to occasional exposure to utility workers.

Soils and Sediments Which May Pose a Threat to the Aquifer

Analytical data from soils and sediment collected from Disposal Areas 6, 10, and 5 indicate that these areas may be contributing to the Site ground water contamination. For these areas, soils and sediments will be analyzed using the TCLP method to determine this potential, and soils or sediments which do not pass this test will be remediated. In addition, preliminary confirmatory data from the bottom of the excavation in drum removal areas 1,2,3 indicate that a small volume of soils remaining pose a threat to ground water quality. These areas will be re-excavated, and confirmatory sampling will be re-conducted.

Ground water

Cleanup levels for ground water are established by federal and State laws and regulations. According to RI data, the aquifer beneath the Site is contaminated with a variety of chemicals. The aquifer is designated by EPA as a Class IIa aquifer and New York State designates the aquifer as a class GA aquifer, or a potential source of potable water. This designation requires that applicable or relevant and appropriate requirements (ARARs) for drinking water be met. Cleanup levels are thereby driven by MCLs established by State and federal regulations. See Table 8. For example, the maximum concentration of the organic chemical TCE in ground water is 190 ppb, while the MCL for TCE for the aquifer is the NYSDEC standard of 5 ppb. For chromium, an inorganic chemical, the maximum concentration in ground water at the facility is 1540 ppb, while the MCL for chromium is the NYSDEC standard of 50 ppb.

DESCRIPTION OF REMEDIAL ALTERNATIVES

CERCLA requires that each selected site remedy be protective of human health and the environment, be cost-effective, comply with other statutory laws, and utilize permanent solutions, alternative treatment technologies and resource recovery alternatives to the maximum extent practicable. In addition, the statute includes a preference for the use of treatment as a principal element for the reduction of toxicity, mobility, or volume of the hazardous substances.

This Record of Decision evaluates in detail eight soil and sediment and two ground water remedial alternatives for addressing the contamination associated with the Site. The time to implement reflects only the time required to construct and/or implement the remedy and does not include the time required to design the remedy, negotiate with the responsible parties, if appropriate, or procure contracts for design and construction. These alternatives are:

MEDIA 1 and 2: SOILS AND SEDIMENTS

Alternative 1 - No Action

Capital Cost: \$ 0 Annual O&M Costs: \$0 Present Worth: \$ 0 Time to Implement: Could be implemented immediately.

The Superfund program requires that a "no action" alternative be evaluated at every site to establish a baseline for comparison. Under this alternative, a public awareness program concerning surface soil contamination would be implemented, including conducting public

meetings and posting warning signs. The Site would be reviewed every five years to evaluate the protectiveness of the remedy.

Alternative 2 - Access Restriction

Capital Cost: \$9,750 Annual O&M Costs:\$0 Total Cost: \$9,750 Time to Implement: Approximately 6 months

This alternative consists of deed restrictions to restrict future uses of the Facility to industrial operation, to prohibit the extraction of ground water to be used as drinking water, to provide maintenance of the fences surrounding the facility, including the unnamed drainage way south of the facility, and to continue 24-hour security. The Site would be reviewed every five years to evaluate the protectiveness of the remedy.

Common Action for Sediment and Soil Remedial Alternatives

Six of the remedial alternatives evaluated for remediation of surface, subsurface soils and sediment contain the common actions of removal and de-watering of sediment, consolidation of soil, and product recovery, as described below:

1) Excavation of sediment from May's Creek, the Unnamed Drainage way, the North drainage way, and Area 10 Lagoon. The sediment would be staged in one area and dewatered.

2) Excavation of surface soils from Areas 6,7, and 8 and subsurface soil from the oil/water separator and Area 4.

(Volume calculations of the amount of soils and sediments exceeding cleanup levels, which were performed during the FS, indicate that an estimated 3,480 cubic yards of contaminated soil and sediment must be removed to reduce risks posed by the contaminated soil to the 10⁻⁶ range. In addition, it is estimated that 55 cubic yards of cadmium contaminated soils must be removed from disposal Area 6 to remove the potential threat to ground water posed by these contaminated soils.)

3) Confirmation sampling to ensure remediation goals are obtained.

4) Replacement of existing sediment and soil with clean fill.

5) Implementation of a free-product investigation and remediation program. This program will investigate the source (likely to be contaminated soils) of the floating product detected at monitoring well D-5, and following this study, source control and product recovery will be performed.

6) Access restrictions in the form of existing fences and facility security. This prevents inadvertent trespassing onto the industrial property.

7) Collection of additional soil samples from Area 5 and analysis for TCLP. Based on the TCLP data, a RCRA cover pursuant to 40 CFR Part 264 would be installed over the contaminated areas of Disposal Area 5. A fence with a gate would be placed around the disposal areas. If the volume of contaminated material is very small, EPA will consider off-site treatment and disposal of this material.

8) Collection of additional samples from Area 4 so that wastes may be segregated for proper disposal of PCB-contaminated soils.

9) Installation of a geotextile membrane under rip-rap in May's Creek. This will be installed as a protective measure for aquatic species exposure to low levels of cadmium which have been detected.

Alternative 3 - Consolidate Soil and Sediment, Install RCRA Cover

Capital Cost: \$913,094 Annual O&M Costs: \$14,300 Present Worth of O&M: \$134,849 Total Cost: \$1,047,943 Time to Implement: 1 year

The common actions described above would be completed prior to clearing vegetation and grading in a portion of the western half of the facility property selected for the disposal and capping. The consolidated and de-watered sediment would be placed in this selected area. A RCRA cover pursuant to 40 CFR Part 264 would be installed over the soil and sediment. A RCRA cover includes two feet of soil capable of supporting adequate vegetation, a six inch thick drainage layer or synthetic drainage net, a 60 mil geotextile membrane liner, non-woven geotextile, and a one-foot thick layer of intermediate cover above consolidated soil and sediment. A fence with a gate and lock would be installed around the RCRA cover area. Post closure care would include maintenance of the RCRA cover.

Alternative 4 - Consolidate Soil and Sediment, Stabilize, Install RCRA Cover

Capital Cost: \$1,447,869 Annual Operation and Maintenance (O&M) Costs: \$14,300 Present Worth of O&M: \$134,849 Total Cost: 1,582,718 Time to Implement: 1 year

The common actions described above except de-watering would be completed prior to clearing vegetation and grading in a portion of the western half of the facility property selected for the disposal of the stabilized material. A treatability study would have to be

conducted in order to determine the most effective stabilization agent. Stabilization agents include portland cement, lime, cement kiln dust, and commercially available materials. The RCRA cover and fencing would be identical to that described for Alternative 3.

<u>Alternative 5 - Segregate Soil and Sediment, Use Low Temperature Thermal Treatment,</u> <u>Stabilize, Install RCRA Cover</u>

Capital Cost: \$2,207,215 Annual O&M Costs: \$14,300 Present Worth of O&M: \$134,849 Total Cost: \$2,342,064 Time to Implement: 2 years

The common actions as described above would be conducted. The soil contaminated with inorganics in Area 7 would be segregated from the remainder of the excavated soil and sediment. The Area 7 soil exceeds cleanup levels for metals (arsenic) but not for PAHs and PCBs. Soil and sediment would be treated using a low temperature thermal treatment system. The excavated soil and sediment from Area 7 would then be mixed with the thermally treated material and would be stabilized following a stabilization treatability study. An area in the western portion of the facility property would be selected for placement of the consolidated soil, cleared of vegetation, and graded. The RCRA cover and fencing would be identical to that described for Alternative 3.

Alternative 6 - Consolidate Soils and Sediment, Dispose of Off-Site at Industrial Waste Landfill

Capital Costs; \$2,811,931 Annual O&M Costs: \$0 Total Cost: \$ 2,811,931 Time to Implement: 1 year

This alternative consists of all the common actions described above. The excavated soil and de-watered sediment would be staged in a central area. After consolidation, all the soil and sediment would be transported to a RCRA approved industrial waste landfill.

Alternative 7 - Consolidate Soil and Sediment, Build an On site RCRA-Disposal Landfill

Capital Costs: \$ 1,052,252 Annual O&M Costs: \$14,300 Present Worth of O&M: \$134,849 Total Cost: \$1,187,101 Time to Implement: 1 year

This alternative consists of all the common actions described above. An area in the western portion of the Facility property would be selected for construction of the on-site RCRA landfill (approximately 10,340 square feet are required). The on-site RCRA landfill would be constructed as follows: a multi-liner would be constructed from top to bottom consisting of: 1 foot protective cover, non-woven geotextile, 60 mil- geotextile membrane, non-woven geotextile, 1-foot drainage layer, non-woven geotextile, 60 mil- geotextile membrane, non-woven geotextile, 6" compacted sub-base. The liners would be designed and constructed to meet 40 CFR and NYS 6 NYCRR 373-2 requirements. The contaminated soil would be placed over the liner and non-impacted soil would be placed between the contaminated soil and the RCRA cover. The RCRA cover and fencing would be identical to that described for Alternative 3.

Alternative 8 - Consolidate Soil and Sediment, Ship Off-site For Treatment and Disposal

Capital Costs: \$ 2,462,334 Annual O&M Costs:\$0 Total Costs: \$2,462,334 Time to Implement: 1 year

This alternative consists of all the common actions described above. The soil and dewatered sediment would be staged in a central area. After consolidation, all the soil and sediment would be transported to an approved treatment and/or disposal facility. Treatment would be conducted in order to meet RCRA Land Ban Regulations. This alternative includes TSCA waste (PCBs > 50 ppm) disposal in a secure TSCA double lined landfill facility (approximate volume 1,275 cubic yards). RCRA waste (e.g. PCBs < 50 ppm, Arsenic > 5 ppm, Chromium > 5ppm) would be stabilized to prevent leaching of metals and disposed of in a secured RCRA lined facility (approximately 2,124 cubic yards as determined as the reasonable likely quantity in the Feasibility Study), and non-RCRA wastes would be disposed of in an industrial waste landfill (approximate volume 120 cubic yards). Based on soil estimates of 3000 to 6000 cubic yards, approximately 150 to 300 trucks would be expected to leave the facility. The cost estimate is based on the 2,124 cubic yards and may vary depending on the final volume actually excavated.

MEDIUM 3: Ground Water

Ground water analyses conducted during the RI indicate that 14 organics and 7 inorganics are present in concentrations above cleanup levels at the facility.

The ultimate goal of the EPA Superfund Program's approach to ground water remediation, as stated in the NCP (40 CFR Part 300), is to return usable ground waters to their beneficial uses within a time frame that is reasonable. Therefore, for this aquifer, which is classified by New York State as a potential drinking water source, the final cleanup levels will be federal and State drinking water standards. The remedial alternatives for ground water include no action and ground water treatment.

Alternative 9 - No Action

Capital Costs: \$12,000 Annual O&M Costs: \$14,300 Present Worth of O&M: \$134,849 Total Costs: \$146,849 Time to Implement: At least 30 years

As previously stated, the Superfund program requires that a "no action" alternative be evaluated at every site to establish a baseline for comparison. Under this alternative, a public awareness program concerning ground water contamination would be implemented, including conducting public meetings and posting warning signs. Institutional controls would be implemented to prevent untreated ground water use as a source of potable water at the Site. Long-term surface water and ground water monitoring would be included to track any contaminant migration. The Site would be reviewed every five years to evaluate the protectiveness of the remedy.

Alternative 10 - Ground water Treatment

Capital Cost: \$1,082,726 Annual O&M Cost: \$153,419 Present Worth of O&M (20 years): \$1,305,596 Total Costs:\$ 2,388,322 Time to Implement: Approx 20 years

This alternative involves the pumping and treatment of contaminated ground water with the goal of achieving federal and state drinking water cleanup levels. Treatment will consist of air stripping the extracted water to remove VOCs and, if necessary, metals removal by either filtration or precipitation. Air emission treatment, if necessary, will be installed to meet 6 NYCRR Parts 200, 201, and 212 regulations and New York State Air Guide 1. See Figure 9. The exact treatment specifications required will be determined during the remedial design. Treated ground water will be discharged to the non-contact cooling system at the

plant, or to surface water in accordance with the State Pollutant Discharge Elimination System requirements. The costs are based on pumping and treating 30 gallons per minute. It is possible that higher pumping rates will be required to contain and/or capture contamination in ground water at the facility. The exact pumping rate will be determined during the design stage. Recent studies have indicated that pumping and treatment technologies may contain uncertainties in achieving concentrations required under Federal and State standards over a reasonable period of time. However, these studies also indicate significant decreases in contaminant concentrations early in the system implementation, followed by a leveling out. For these reasons, this alternative stipulates contingency measures, whereby the ground water extraction and treatment system's performance will be monitored on a regular basis and adjusted as warranted by the performance data collected during operation. Modifications may include any or all of the following:

- a) at individual wells where cleanup goals have been attained, pumping may be discontinued;
- b) alternate pumping at wells to eliminate stagnation points;
- c) pulse pumping to allow aquifer equilibration and to allow adsorbed contaminants to partition into ground water; and
- d) install additional extraction wells to facilitate or accelerate cleanup of the contaminant plume.

If it is determined, on the basis of the preceding criteria and the system performance data, that certain portions of the aquifer cannot be restored to their beneficial use in a reasonable time frame, all of the following measures involving long-term management may occur, for an indefinite period as a modification of the existing system:

- a) engineering controls such as physical barriers including trenches, source control measures, or long-term gradient control provided by low level pumping, may be implemented as containment measures;
- b) chemical-specific ARARs will be waived for the cleanup of those portions of the aquifer which cannot be restored based on the technical impracticability of achieving further contaminant reduction;
- c) institutional controls will be provided/maintained to restrict access to those portions of the aquifer which remain above cleanup levels;
- d) continued monitoring of specified wells; and
- e) periodic reevaluation of remedial technologies for ground water restoration.

The decision to invoke any or all of these measures may be made during a periodic review of the remedial action, which will occur at intervals of no less often than every five years after the initiation of the operation.

All costs and implementation times are estimated. Remedial design period is not included in implementation times.

SUMMARY OF COMPARATIVE ANALYSIS OF ALTERNATIVES

During the detailed evaluation of remedial alternatives, each alternative was assessed utilizing nine evaluation criteria as set forth in the NCP and OSWER Directive 9355.3-01. These criteria were developed to address the requirements of Section 121 of CERCLA to ensure all important considerations are factored into remedy selection decisions.

The following "threshold" criteria are the most important, and must be satisfied by any alternative in order to be eligible for selection:

- 1. Overall protection of human health and the environment addresses whether or not a remedy provides adequate protection and describes how risks posed through each exposure pathway (based on a reasonable maximum exposure scenario) are eliminated, reduced, or controlled through treatment, engineering controls, or institu tional controls.
- 2. Compliance with ARARs addresses whether or not a remedy would meet all of the applicable, or relevant and appropriate requirements of federal and state environmen tal statutes and requirements or provide grounds for invoking a waiver.

The following "primary balancing" criteria are used to make comparisons and to identify the major trade-offs between alternatives:

- 3. Long-term effectiveness and permanence refers to the ability of a remedy to maintain reliable protection of human health and the environment over time, once cleanup goals have been met. It also addresses the magnitude and effectiveness of the measures that may be required to manage the risk posed by treatment residuals and/or untreated wastes.
- 4. Reduction of toxicity, mobility, or volume through treatment is the anticipated perfor mance of a remedial technology, with respect to these parameters, that a remedy may employ.
- 5. Short-term effectiveness addresses the period of time needed to achieve protection and any adverse impacts on human health and the environment that may be posed during the construction and implementation periods until cleanup goals are achieved.
- 6. *Implementability* is the technical and administrative feasibility of a remedy, including the availability of materials and services needed.

7. Cost includes estimated capital and operation and maintenance costs, and the present-worth costs.

The following "modifying" criteria are considered fully after the formal public comment period on the Proposed Plan is complete:

- 8. State acceptance indicates whether, based on its review of the RI/FS and the Proposed Plan, the State supports, opposes, and/or has identified any reservations with the preferred alternative.
- 9. Community acceptance refers to the public's general response to the alternatives described in the Proposed Plan and the RI/FS reports. Factors of community acceptance to be discussed include support, reservation, and opposition by the community.

A comparative analysis of the remedial alternatives based upon the evaluation criteria noted above follows.

Overall Protection of Human Health and the Environment

Soils and Stream Sediments: All of the alternatives, with the exception of the no action alternative and access restriction alternative (Alternatives 1 and 2), would provide adequate protection of human health and the environment by eliminating or controlling risk through containment, removal, or treatment.

Alternatives 1 and 2 are not an acceptable remedial option given that the current risk from PAHs, PCBs, and inorganics posed by the Site exceeds the acceptable risk range of 10^4 to 10^6 in certain areas of the Site. Therefore, since Alternatives 1 and 2 do not meet this threshold criterion, they will not be discussed further in this section.

Ground water: Only the treatment alternative (Alternative 10) for ground water attempts to provide adequate protection of human health and the environment by reducing contaminant levels to cleanup levels. Although there is no current exposure pathway for ground water use at the facility, the no action alternative is not protective

of public water supplies because it will not prevent the migration of contaminants within the Newtown Creek Aquifer. Consequently, and in accordance with EPA ground water policy as set forth in the NCP, Site remediation is warranted to restore ground water to its beneficial use. Therefore, since Alternative 9 (no action) does not meet this threshold criterion, it will not be discussed further.

Compliance with ARARs

Soils and Stream Sediments: Alternatives 3,4,5,6,7, and 8 provide containment or treatment as a means of eliminating potential exposures.

Land Disposal Restrictions (LDRs) are chemical- and action-specific ARARs that are triggered by the placement of wastes regulated under RCRA. LDRs require that excavated hazardous wastes be treated to acceptable levels before land disposal. For non-listed wastes, on-site or off-site disposal of treated wastes is permitted provided the wastes are not, after treatment, RCRA characteristic hazardous wastes. Soils in Area 6 contain hazardous waste and must therefore be treated so that the contaminants remaining in the leachate (as determined by TCLP) are less than the Toxicity Characteristic limit so as to no longer be considered hazardous waste and therefore be eligible for disposal. Area 5 contains listed hazardous waste, and LDR restrictions would prevent any land disposal of these materials. The LDR requirements, however are not triggered if the material is contained without excavation with a RCRA cover. Alternative 8 would meet Land Disposal Restrictions for all wastes while Alternatives 3 and 6 would not.

One sample from Disposal Area 4 indicated PCBs at a concentration of 320 ppm. Therefore, the potential exists that additional soils and /or sediments will be encountered with concentrations above 50 ppm. For these sediments or soils, Alternative 8, which includes excavation, segregation and off site disposal in a TSCA regulated landfill, would meet TSCA ARARs.

Alternative 7 would not meet New York State requirements as set forth at 6 NYCRR 373-2 for all contaminated soil or sediments because ground water must be greater than 10 feet from a landfill's cell bottom and because the area proposed for the landfill is a ground water recharge zone. Perched ground water was encountered at 4-5 feet below the ground surface during drum excavation activities in Disposal Areas 1 and 2 and therefore this requirement cannot be satisfied.

Other action-specific and location-specific ARARs that are applicable or relevant and appropriate would be met under the selected alternative (Table 9). Examples include Occupational Safety and Health Administration (OSHA) Standards for Hazardous Responses and New York RCRA Hazardous Waste Facility Requirements for the handling and storage of hazardous wastes.

Ground water: According to the federal site-specific classification scheme, the ground water at the Site is Class 2A, which is potential drinking water. New York State classifies the Site ground water "GA" which indicates that the underlying aquifer is a potential drinking water aquifer. Safe Drinking Water Act (SDWA) MCLs are federal chemical-specific ARARs as are NYSDEC Class GA Ground water Quality Standards.

Alternative 10 attempts to meet these ARARs; if ARARs are demonstrated to be unattainable after implementation of a ground water extraction and treatment system, the contingency exists for a waiver of these ARARs, as outlined in the Summary of Alternatives section.

Alternative 10, ground water treatment, would also meet action-specific ARARs. Locationspecific ARARs that are applicable or relevant and appropriate would also be met under the preferred alternative. Examples include OSHA Standards for Hazardous Responses and New York State Pollutant Discharge Elimination System (SPDES) Requirements for Site Runoff, Surface Water and Ground Water Discharge Limits (Table 9).

Long-term Effectiveness and Permanence

Soils and Stream Sediments: Alternative 8 would be both effective and permanent once the construction phase is complete because the potential risks posed by the contaminated soil and sediments would be removed and the contaminated soil areas would be restored to ambient conditions. Alternative 8 will result in transporting additional material to an existing off-site disposal facility as opposed to creating a new disposal facility on-site, thereby restricting future uses of that on site piece of property. Each of the remaining alternatives offer long-term effectiveness and some degree of permanence by removing the exposure pathway or treating the contaminated materials.

Ground water: Alternative 10 is effective and permanent in that the remedial goal is to achieve ARARs and the pumping and treatment would remove the ground water contamination and prevent further negative impacts to the Newtown Creek Aquifer.

Reduction of Toxicity, Mobility, or Volume

Soils and Stream Sediments: Alternative 3 provides no reduction in toxicity or volume because of the absence of treatment, but it would reduce the mobility of contaminants in the soil because they would be contained and no longer exposed for transport by wind or water erosion.

Alternatives 4 and 8 would reduce the mobility of inorganic contaminants through treatment. These alternatives may increase the total volume of waste material. No reduction in toxicity of contaminated soils or sediments would occur under Alternatives 3,4,6, 7 or 8. Only Alternative 5 meets this criterion fully.

Ground water: Alternative 10, pumping and treatment, would contain the ground water contaminants thereby reducing mobility and the ability of contaminants to migrate into the Newtown Creek Aquifer. The treatment process would reduce contaminant concentrations in the treated ground water to below surface water discharge standards and would have the goal of reducing contaminant concentrations in the aquifer to below ARARs, effectively diminishing both toxicity and volume.

Short-term Effectiveness

Soils and Stream Sediments: The short-term effectiveness of all the alternatives is high since each alternative involves relatively little construction and implementation. Although the potential for dust release is higher for Alternative 8 than for on-site alternatives, this alternative is neverthless effective in regard to this criterion. Reliable technologies would

be used in the excavation, treatment, transport, and consolidation phases to ensure that any dust releases would be minimized.

Ground water: The short-term effectiveness of Alternative 10 is high since there is no exposure to contaminated ground water during implementation. Any short-term risks are derived from the potential of constructing and using a ground water well on site before institutional controls are in place, which is considered highly unlikely since the Site is provided with water from the town municipal system. Implementation of Alternative 10 would not result in any exposures through proper operational procedures. The estimated time for implementation of the construction phase for the preferred alternative is 24 months, with a minimum of 20 years of monitoring to complete the remedial action.

Implementability

Soils and Stream Sediments: Alternative 3 is technically easy to implement, although it requires maintenance to remain effective.

Alternative 8, excavation and off-site disposal after treatment, utilizes technologies that are readily implementable. The equipment and personnel required for this alternative are readily available. The removal of all surface soil and sediment will require approximately 150 to 300 trucks leaving the facility.

Treatment alternatives 4 and 5 would require treatability studies to ensure effectiveness, and Alternative 5 must be able to meet NYS air regulations prior to full scale operation.

Ground water: Alternative 10 uses standard equipment and well developed technologies that are commercially available. Treatment alternatives for the extracted ground water would require treatability testing during remedial design. The small volume of residuals from the construction of this alternative would be transported off-site for disposal. However, contingencies will be included to maximize the pump and treatment system's effectiveness in realizing this goal.

<u>Cost</u>

Soils and Stream Sediments: Based on the RI data and the FS evaluation, the cost of treating soils and sediments to meet LDR's, prior to off-site disposal in an Industrial Waste Landfill (Alternative 8) is not substantially higher than the cost of the on-site disposal and treatment alternatives (Alternative 4 and 5). The cost of off site treatment is higher than construction of a RCRA cell for treated wastes, but removal and treatment provides for permanent removal of the contaminants.

The estimated present worth cost of the selected Alternative #8 is \$2,462,334. The present worth costs for soil and sediment remediation ranged from \$9,750 for Alternative 2 to \$2,811,931 for Alternative 6.

Ground water: The actual cost of Alternative 10 could be considerably less depending on whether the contingency measures are invoked after initial implementation, or if EPA decides that the treatment system should be operated for more than 20 years.

The thirty year present worth cost of the no action alternative is \$146,849, while the twenty year (estimated time for remediation) present worth cost of the treatment alternative is \$2,714,721. Individual cost breakdowns are included in the Summary of Remedial Alternatives section of this Proposed Plan.

State Acceptance

The State of New York concurs with the preferred alternatives presented in this Record of Decision.

Community Acceptance

The Public Comment Period on the Proposed Plan for the Site was held from May 27, 1992 through June 27, 1992. In addition, a Public Meeting was held at the Village of Elmira Heights Village Hall on June 16, 1992 to discuss, answer questions about, and accept comments on the Proposed Plan. No negative comments regarding EPA's Proposed Plan were made by the public during the Public meeting.

SELECTED REMEDY

Based upon consideration of the requirements of CERCLA, the detailed analysis of the alternatives, and public comments, both NYSDEC and EPA have determined that Alternative 8: Consolidate Soil and Sediment, Ship Off site for Treatment and Disposal; and Alternative 10: Extraction/Air Stripping /Metals Precipitation and or Filtration/Surface Water Discharge are the appropriate remedies for the Site.

The major components of the selected remedy are as follows:

- Excavation of contaminated soils and sediments from the Disposal Areas identified in the Risk Assessment and where soils and sediment pose a risk to ground water quality,
- Disposal of TSCA waste (PCBs > 50 ppm) in a secure TSCA double lined landfill facility (estimated at approximately 1,275 cubic yards),
- Stabilization of RCRA waste to prevent leaching of metals and disposal in a secure RCRA lined facility (approximate volume 2,124 cubic yards),

- Disposal of non-RCRA wastes in an industrial waste landfill (approximate volume 120 cubic yards),
- Strategic placement of pumping wells to extract the contaminated ground water from the aquifer,
- Storage of pumped ground water in a central collection tank for subsequent treatment in an above-ground system,
- Treatment of the contaminated ground water to meet Federal and State Standards for surface water discharge. Treated ground water would then be either discharged as effluent to the facility non-contact cooling system or to a surface water discharge,
- Recommendation that local institutional controls, in the form of local zoning ordinances, be implemented in an attempt to control any future site use that could open an exposure pathway to subsurface soils,
- Recommendation that institutional controls will be provided/maintained to restrict access to those portions of the aquifer which remain above cleanup levels, and
- Implementation of a long-term monitoring program to track the migration and concentrations of the contaminants of concern.

The ground water alternative also stipulates contingency measures, outlined under Alternative 10 in the Summary of Remedial Alternatives section of this Record of Decision, whereby the ground water extraction and treatment system's performance will be monitored on a regular basis and adjusted as warranted by the performance data collected during operation. If it is determined, in spite of any contingency measures that may be taken, that portions of the aquifer cannot be restored to its beneficial use, ARARs may be waived based on technical impracticability of achieving further contaminant reduction. The decision to invoke a contingency measure may be made during periodic review of the remedy, which will occur at intervals of no less often than every five years.

The selected alternative is believed to provide the best balance of trade-offs among the alternatives with respect to the evaluation criteria. Based on the information available at this time, EPA believes the selected alternative would be protective of human health and the environment, would comply with ARARs, would be cost effective, and would utilize permanent technologies to the maximum extent practicable. The preferred alternatives also treat the most grossly contaminated material (surface soils, sediments, and ground water), meeting the statutory preference for the use of a remedy that involves treatment as a principal element.

STATUTORY DETERMINATIONS

Under its legal authorities, EPA's primary responsibility at Superfund sites is to undertake remedial actions that are protective of human health and the environment. In addition, Section 121 of CERCLA establishes several other statutory requirements and preferences. These specify that when complete, the selected remedial action for this Site must comply with applicable, or relevant and appropriate environmental standards established under Federal and State environmental laws unless a statutory waiver is justified. The selected remedy also must be cost-effective and utilize permanent solutions and alternative treatment technologies or resource-recovery technologies to the maximum extent practicable. Finally, the statute includes a preference for remedies that employ treatment that permanently and significantly reduce the volume, toxicity, or mobility of hazardous wastes, as available. The following sections discuss how the selected remedy meets these statutory requirements.

Protection of Human Health and the Environment

Once excavation and shipment off-site of sediment and soils with unacceptable levels of contamination is completed, the unacceptable risks posed by these materials will be permanently removed. The soils and sediments will be shipped off-site for treatment and disposal, confirmatory sampling will be conducted in the excavated areas to ensure that all unacceptably contaminated material is removed, and the excavated areas will be covered with clean fill. In addition, EPA will recommend to local officials that institutional controls be implemented to prevent activities at the facility from opening an exposure pathway to the subsurface soils.

After design and construction of a ground water pump and treat system is completed, contaminated ground water will be pumped in order to contain the facility ground water contamination, and to restore the aquifer quality to appropriate State and Federal Standards for a Class IIa and GA aquifer. EPA will recommend to local officials that institutional controls be implemented to prevent installation of a drinking water well in areas effected by the contamination caused by releases at the facility.

Compliance with ARARs

At the completion of the response actions, the selected remedy will have complied with the following:

Action Specific ARARs

Soils and Sediments -

6 NYCRR 373-1 Hazardous Waste Facility standards for permitting, 40 CFR 761 PCB Spill Cleanup Policy, and RCRA Land Disposal restriction under 40 C.F.R. 268, 40 C.F.R. 261

determination of whether a waste is hazardous, 40 C.F.R.262 Hazardous waste generator requirements, and 40 C.F.R. 263 Hazardous waste transporter requirements.

Ground Water -

Safe Drinking Water Act (SDWA) Maximum Contaminant Levels (40 C.F.R. 141.11-141.16) and 6 NYCRR Ground Water Quality Regulations (Parts 703.5, 703.6, 703.7) as well as NYS 10 NYCRR 5, 10NYCRR 170 (State Public Drinking Water Standards and State Public Drinking Water Sources Standards, 6 NYCRR 750-757 State Pollution Discharge Elmination System. For air pollution control 6 NYCRR 200, 201, 211, and 212, as well as 6NYCRR 257, and NYS Air Guide 1 will have been considered.

Chemical-Specific ARARs:

Since the ground water at the Site is classified by EPAas IIa (GA by NYSDEC), drinking water standards are relevant and appropriate. Again, these include SWDA MCLs and 6NYCRR Ground Water Quality Regulations. However, achieving chemical-specific ARARs for ground water is dependent on remediation of the contaminant sources at the facility. The remedial action is intended to result in attainment of chemical specific ground water ARARs providing that the remedy is effective in eliminating the sources of aquifer contamination.

Other potential remedial action objectives are presented in Table 18.

Cost-Effectiveness

The selected remedy is cost effective and provides the greatest overall protectiveness proportionate to costs. Excavation, segregation and shipment off-site for treatment and disposal at a present worth of \$2,462,334, is more expensive than some of the other alternatives but it does not result in the incurrence of the cost of treatability studies; also it can be completed more quickly than these other alternatives at a reasonable cost. The present worth cost of the ground water treatment and discharge (to the non-contact cooling system or the surface water directly after treatment) is \$2,388,322 based on pumping and treating for 20 years and pumping and treating 30 gallons per minute. This alternative provides for containment of the contaminant plume and restoration of the aquifer at the facility to meet Federal and State standards at a reasonable cost.

Utilization of Permanent Solutions and Alternative Treatment Technologies to the Maximum Extent Practicable

The selected remedy utilizes permanent solutions and treatment technologies to the maximum extent practicable. The selected remedy represents the best balance of trade-offs among the alternatives with respect to the evaluation criteria.

Preference for Treatment as a Principal Element

The preference for treatment as a principal element is satisfied since treatment of the principal threat (soil and sediment and ground water) will be conducted. The off-site treatment of soil and sediment may include stabilization and incineration, if necessary, to meet LDRs. For ground water treatment: filtration and/or precipitation, and air stripping of contaminants will be utilized to attain ARARs.

DOCUMENTATION OF SIGNIFICANT CHANGES

There are no significant changes from the preferred alternative presented in the Proposed Plan.

APPENDIX I

FIGURES

Figures

Figure 1 - Site Location

Figure 2 - Facility Plan

Figure 3 - Ground Water Flow Direction

Figure 4 - Regional Ground Water Flow Direction

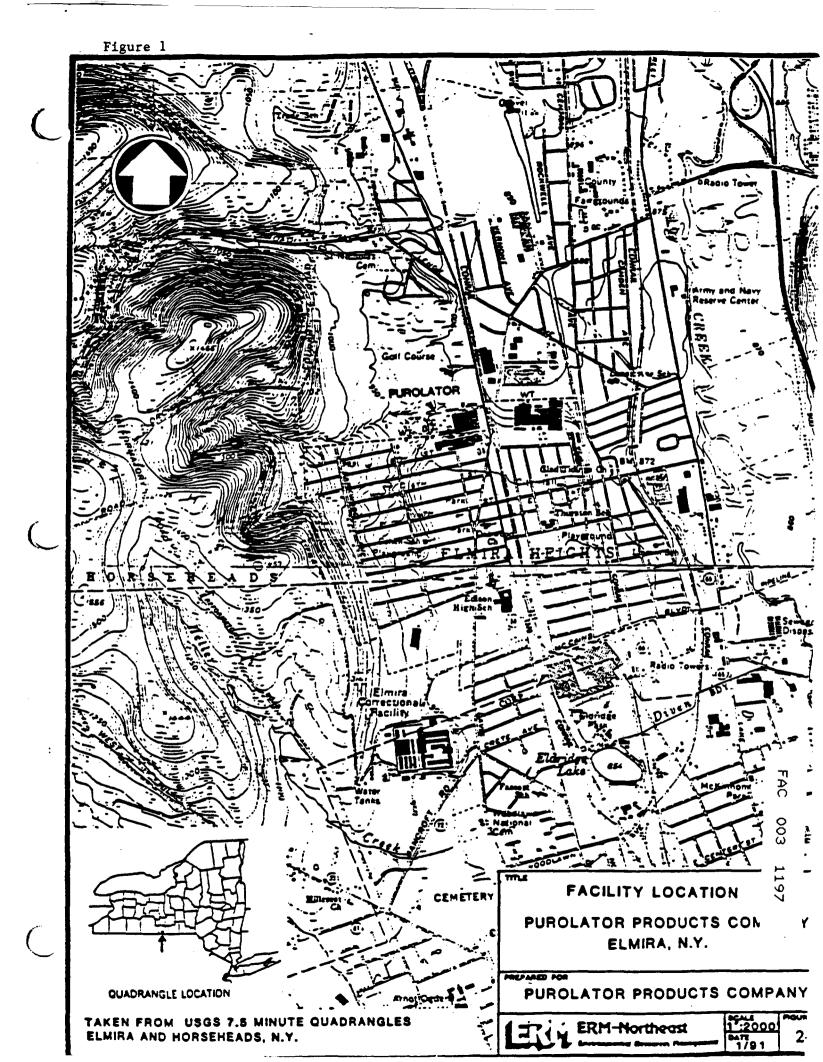
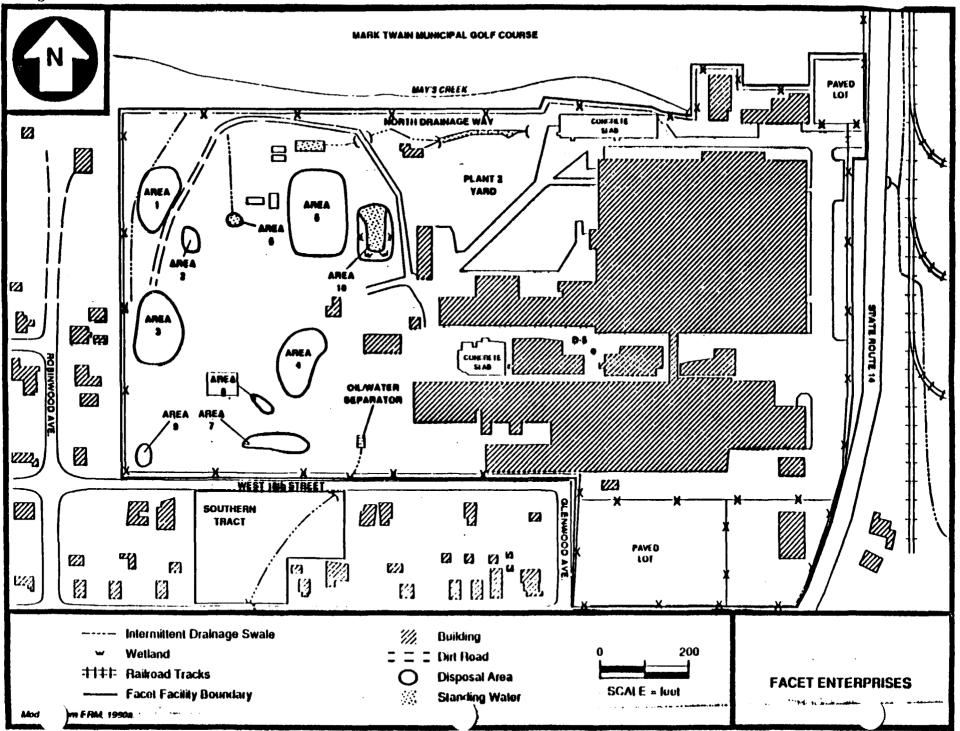
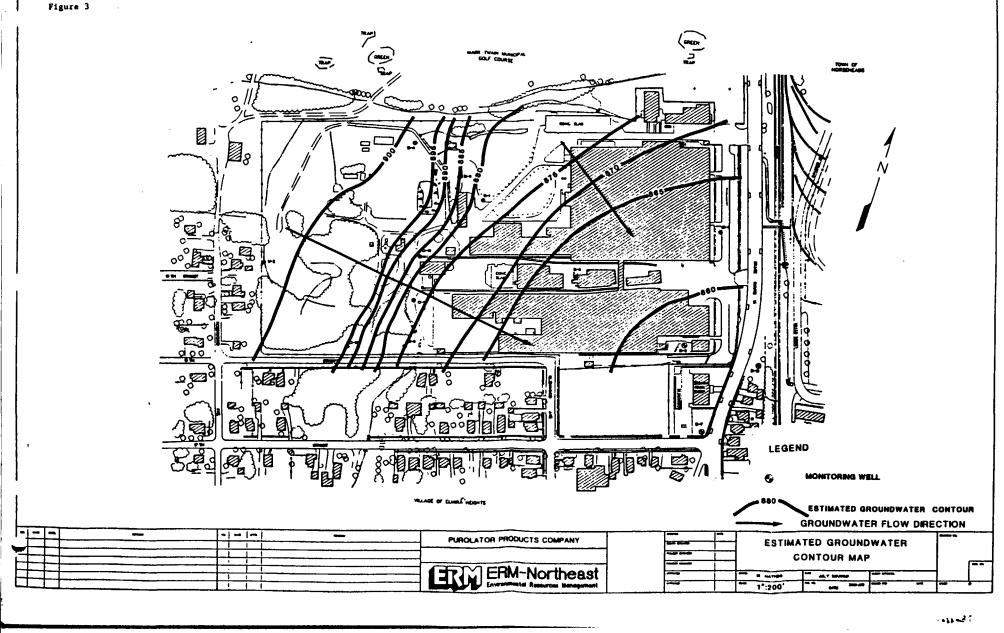

Figure 5 - Surface Water Flow at the Facet Facility

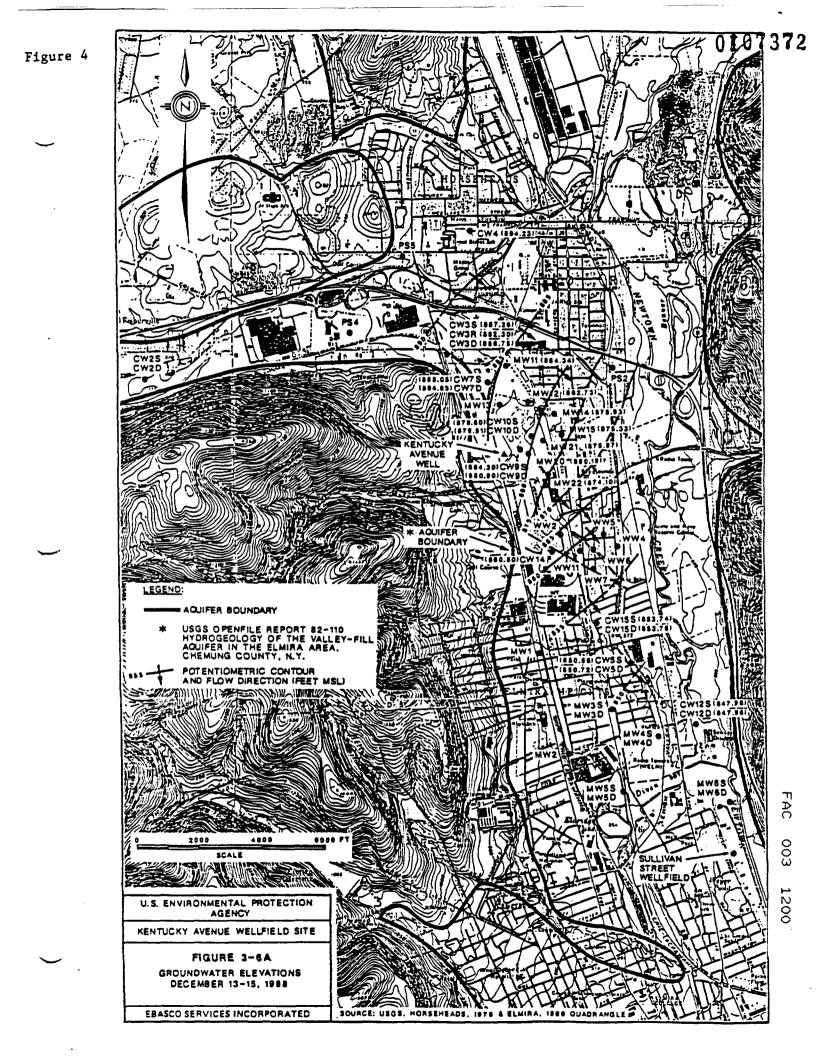
Figure 6 - VOC Concentrations in Ground Water

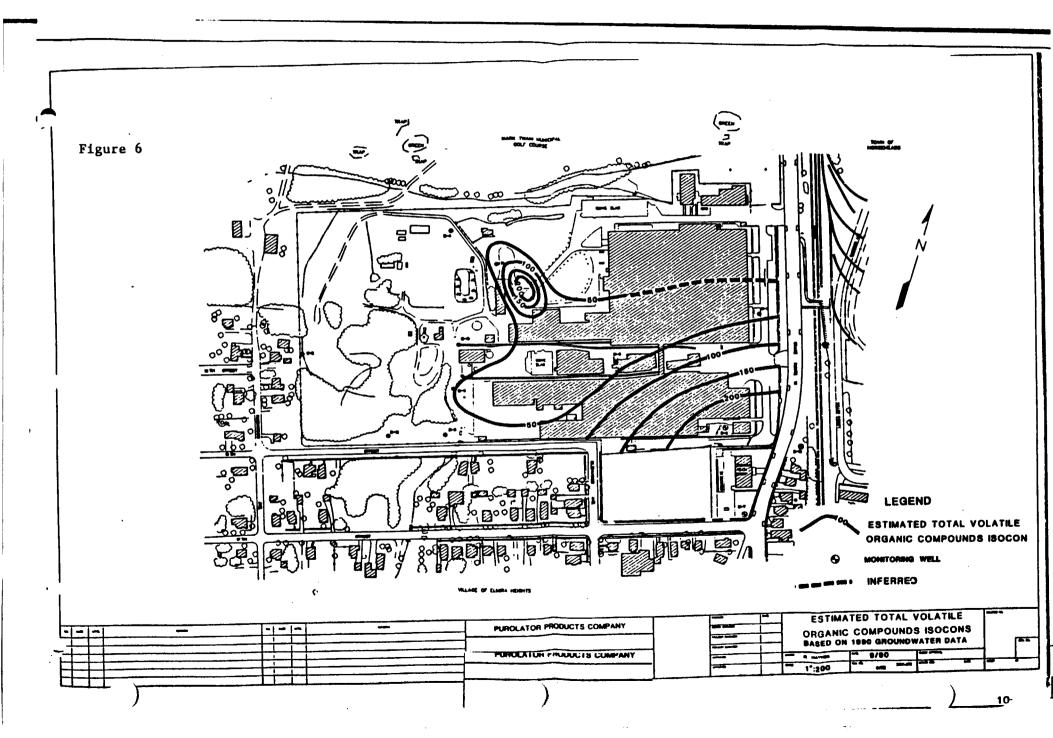
Figure 7 - Cadmium and Chromium Concentrations in Ground Water

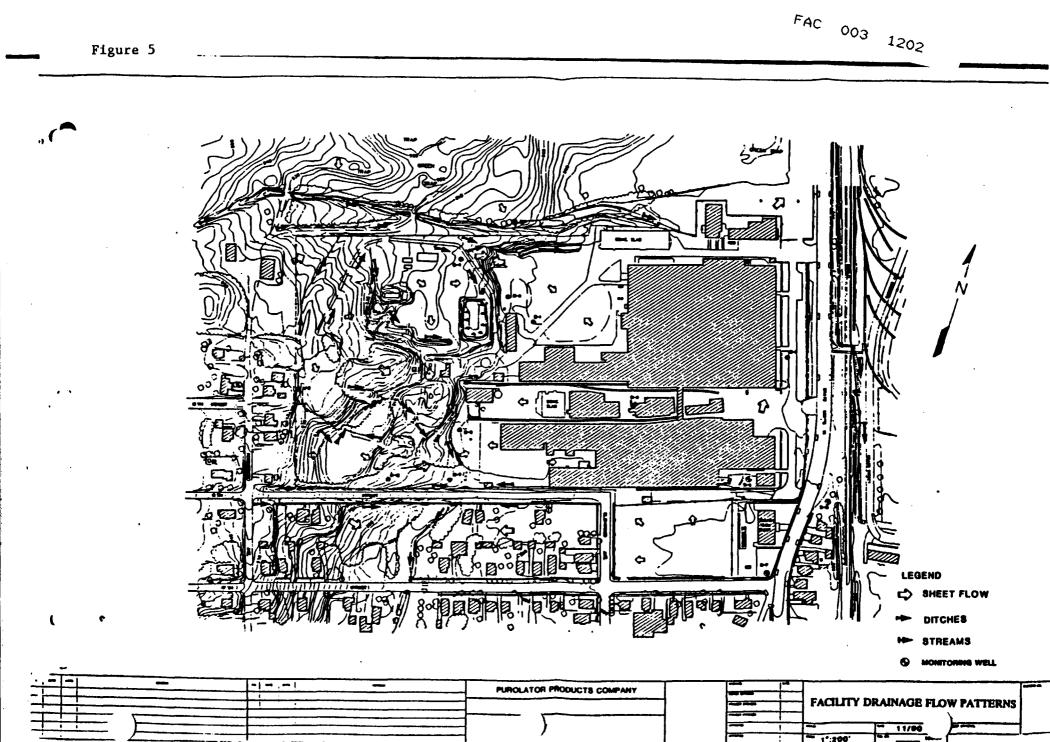
Figure 8 - Regional TCE Concentration in Ground Water


Figure 9 - Ground Water Treatment System

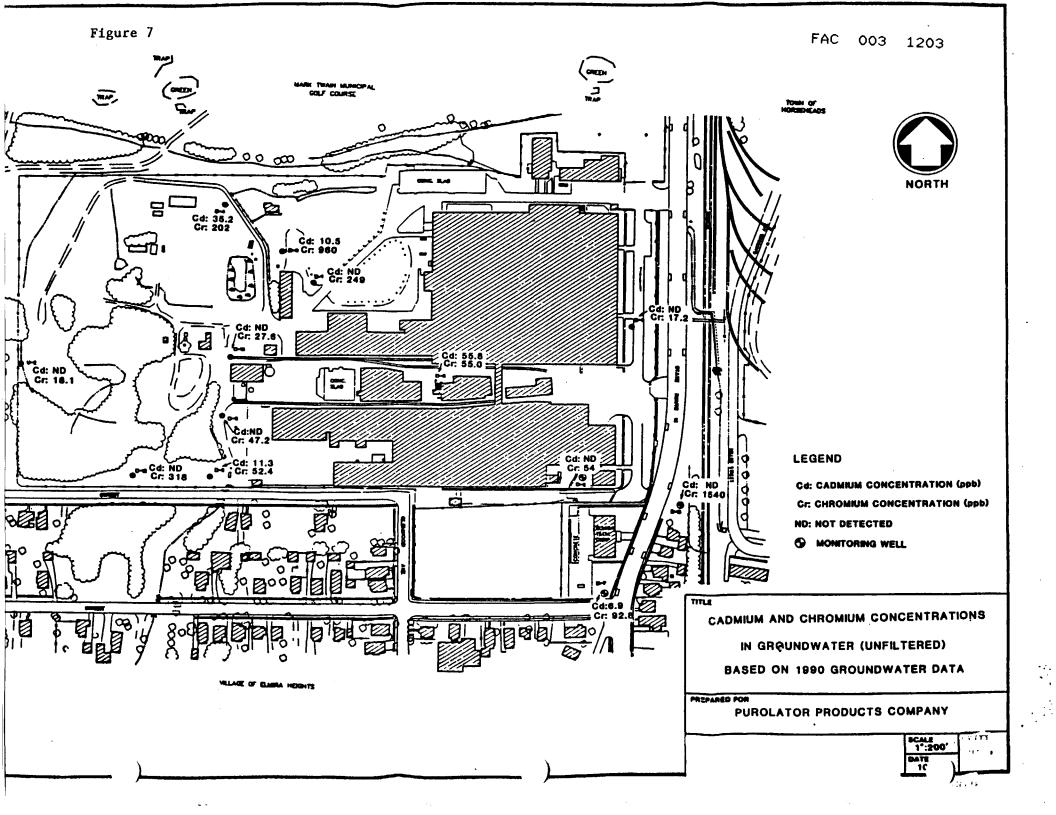


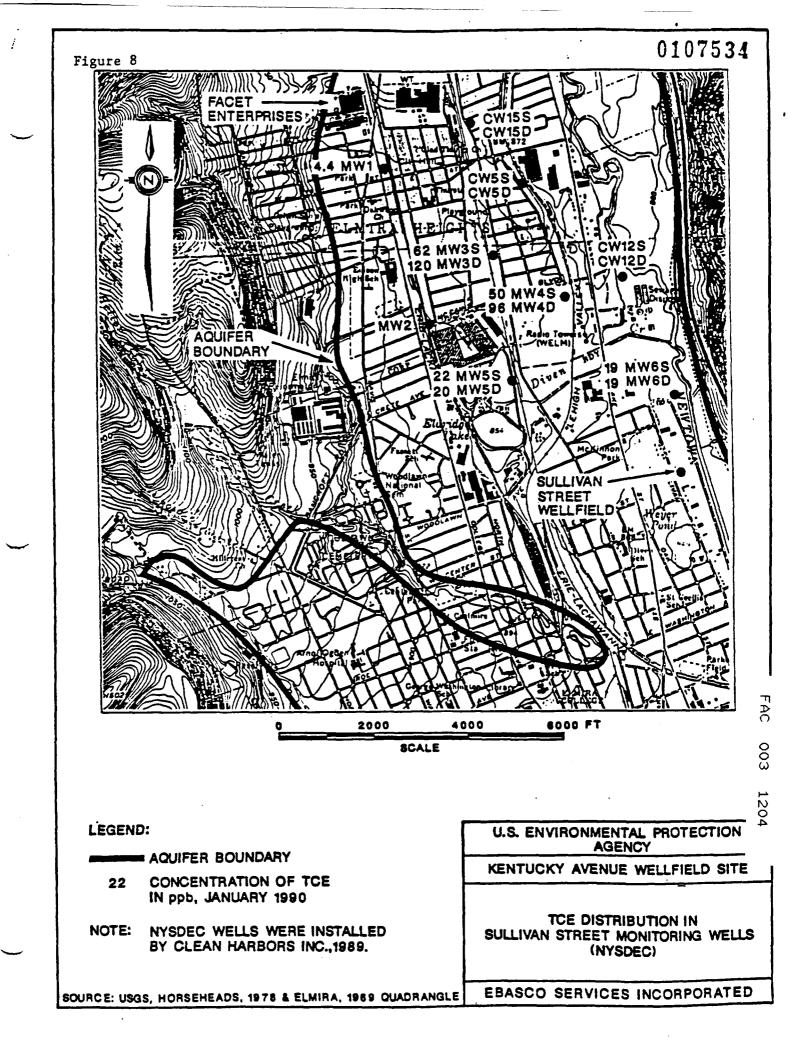

FAC 003 1198

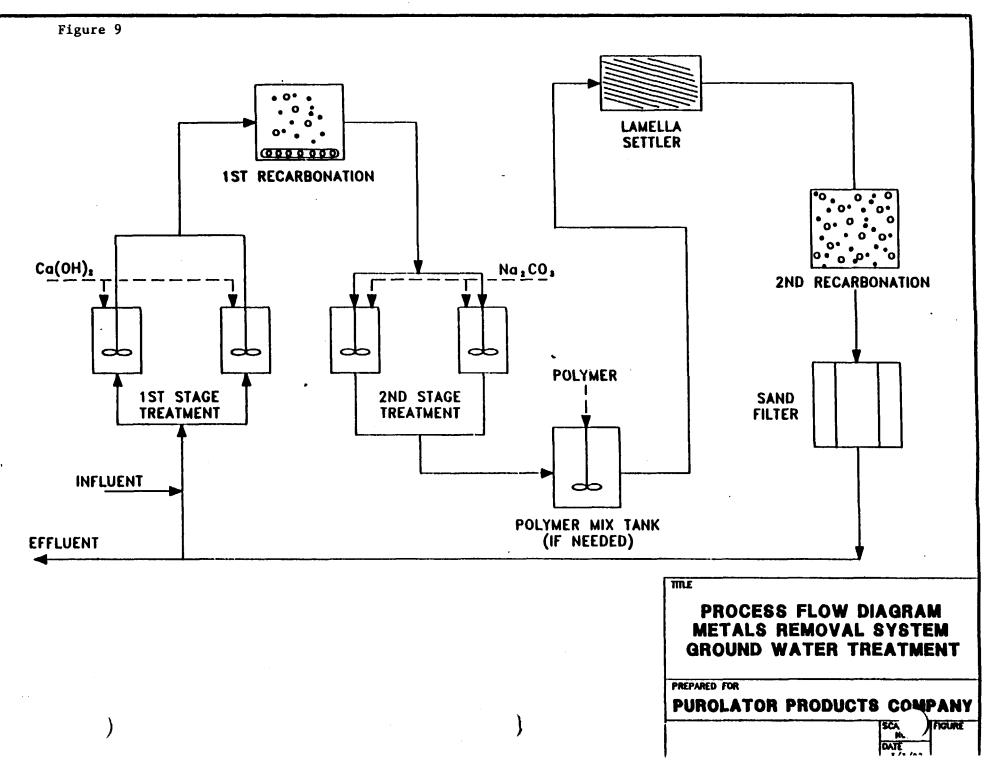

120



____ FAC 003 1199








		and the second		PUROLATOR PRODUCTS COMPANY			· ·				
				FUNCEI ON FINODOCIA COMPANY	1997						1
			<u>∤~ i~~~~~~~~~~</u>					FACILITY DR	AINAGE FLO	W PATTERNS	i
_				<u></u>						\	i i
	-										i
		/] /					11700	<u></u>	
	· · · ·				I	- -		1':200'			

FAC 003 1206

١

APPENDIX II

TABLES

TABLE

TABLE 1 VALID ANALYTICAL RESULTS AREA 1 AND AREA 2 SOIL BORING SAMPLES VOLATILE ORGANIC COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

TCL Compound	<u>\$85:4-6</u>	<u>585:6 8</u>	S851:6-8 (S85:6-8 Dup.)	<u>585:8-10</u>	<u>586:6-8</u>	<u>586:8-10</u>	<u>588:6-10</u>	<u>589:4-6</u>	<u>589:6-8</u>	<u>5812:4-6</u>	<u>5812:6-8</u>	<u>5812:0-10</u>
Acetone	7J	6.1	6J	8 J	-	-			9 J	-		
1,1-Dichioroethene	1J	•••	-		•••	***	•••		***			
1,2-Dichloroethene	12	5J		6								
1, 1, 1-Trichloroethene	2J							-				
Trichloroethene	110	89	12	53	31	4J				12	30	42
Benzene							2J	· •••				
Tetrachloroethene					•••	_		1J				

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)). No volatile organic compounds were detected in S86:4-6, S87:4-6, S87:6-8, S87:6-10, S80:4-6, S80:6-8, S89:8-10, S810:4-8, S810:6-8, S810:8-10, S811:4-6, S811:6-8, S811:8-10, S813:0-2, S813:2-4, and S813:4-6.

Compound not detected in this sample, but present in another.

J - Semi-guantitative due to concentration below Contract Regulted Quantitation Limit (CRQL).

TABLE 1 contd.

TABLE VALID ANALYTICAL RESULTS AREA 1 AND AREA 2 SOIL BORING SAMPLES SEMI-VOLATILE ORGANIC COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

TCL Compound	<u>SB5:4-6</u>	<u>\$85:6-8</u>	SB51:6-8 (SB5:6-8_Dup.)	<u>SB5:8-10.</u>	<u>SB7:6-8</u>	<u>SB7:8-10</u>	<u>SB10:8-10</u>	<u>SB11:6-8</u>	SB12:6-8	<u>SB12:8-10</u>	<u>SB13:0-2</u>	<u>SB13:2-4</u>	<u>SB13:4 6</u>
2 Methylnaphthalene				•••					•		45J	•	
Phenanthrene			• •		• •				•••		84J		•-•
Fluoranthene									***	***	100J	•••	•••
Pyrene		***		•••	•••				·	***	84J	•••	
Benzo(a)Anthracene	•••		• •	•••	•••	•-•			-		66.J	•••	+
Chrysene	***				•	•••					66 J	•-•	
Benzo(b)Fluoranthene			•••						-		130XJ		
Benzo(k)Fluroanthene				•••		•	·			-	130XJ		
Benzo(a)Pyrene			•••		•-•		•••				51J		
Di-n-Butylphthalate	*	***	•-•					86J		-			
Bis(2-Ethylhexyl)phthalate	***			-	51J	53J		-	-	74J	72J	56J	44 J
TIC Compounds			•										
Total Unknowns	230J	240J	240J		•••		•••		230J	230J	4750J	•••	- .
Total Unknown Hydrocarbons				140J		***					3620J		
2H-1-Benzopyran-2-one	***								-	_	190JN		
11H Benzofluorene				*-*		•			***	••••	300J		
Mono(2-Ether)Hexanedioic Acid		•••	•		•••		190JN		••••			***	
Trimethylhexane				•	···· ·		• <u>•</u> •	300J			*	•••	-

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)).

No semi-volatile organic compounds were detected in SB6:4-6, SB6:6-8, SB6:8-10, SB7:4-6,

SB8:4-6, SB8:6-0, SB8:8-10, SB9:4-6, SB9:6-8, SB9:8-10, SB10:4-6, SB10:6-8, SB11:4-6, SB11:6-10, and SB12:4-6.

--- = Compound not detected in this sample, but present in another.

X = Identifies coeluting Indistinguishable isomers.

N = Identified TIC.

23

TABLE 1 contd.

TABLE -1 VALID ANALYTICAL RESULTS AREA 1 AND AREA 2 SOIL BORING SAMPLES METALS AND CYANIDE 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

Analyte	<u>585:4-6</u>	<u>585:6-8</u>	\$851:6-8 (<u>\$85: 6-8 Dup.)</u>	<u>585:8-10</u>	<u>586:4 6</u>	<u>586:6 8</u>	<u>586:8-10</u>	<u>587:4-6</u>	<u>587:6-8</u>	<u>587:8-10</u>	<u>588:4-6</u>	<u>\$88:6-8</u>	<u>588:0-10</u>	589:4-6
Aluminum	10700.)	10400.1	8790.1	8710.)	8720	7460	8100	12400	12900	7740	13600.J	11300J	11500J	7170
Arsenic	9.2	5.2	7.0	4.6	6.4.1			4.9J	4.5.1	•••	7.0J	7.6J	5.7J	4.1J
Barlum	91.6J	96.4J	84.3J	84.3J	80.6	73.0	89.4	125	137	63.9	129J	95.4J	95.4J	60.4
Beryllum	.508	.598	.428	.46B	.	.238	.268	.438	.538	.308	.518	.418	.368	.318
Cadmium	57.3J	77.9J	73.8J	351J	•••	•••			•••	-	11.8			
Chromium	2410J	224J	215J	548J	15.1	14.7	26.3	43.4	53.1	18.1	96.6J	49.6J	50.4J	12.5
Copper	1120J	62.7J	63.4J	532J				24.1J	27.2.1	20.2J	30.4J	25.8J	26.1J	20.9J
Lead	9.6J	9.3J	10.2J	8.6.I	9.7	8.5	9.2			-	10.8	9.6	11.4	
Mercury	•				.12J			••	•••		-			
Nickel	29.2	25.5	23.4	37 9	21.9	16.9	17.0	29.6	32.9	22.1	27.8	26.3	30.2	22.7
Tin		-			•••			***						
Zinc	242J	175J	174J	442J	63.4	59.0	60.1	81.3	88.5	68.6	139J	81.5J	67.2J	67.2
Cyanide			1.8	3.0	•••		-		1.2					
						****			CD 10.4 0					
Analyte	<u>\$89:6-0</u>	<u>589:8-10</u>	5810:4-6	5810:6-8	<u>5810:8-10</u>	<u>\$811:4-6</u>	<u>5811:6-0</u>	<u>5811:8-10</u>	<u>5812:4-6</u>	<u>5812:6-8</u>	<u>5812:8-10</u>	<u>5013:0-2</u>	5813:2-4	<u>\$813:4-6</u>
<u>Analyte</u> Aluminum	<u>\$89:6-8</u> 9280J	<u>589:8-10</u> 12400J	<u>5810:4-6</u> 13100	<u>5810:6-8</u> 17500	<u>5810:8-10</u> 12900	5811:4-5 6670	<u>5811:6-0</u> 9600	<u>5811:8-10</u> 10800	<u>5812:4-6</u> 20100	<u>5812:6-8</u> 8760	<u>5812:6-10</u> 15900	<u>5813:0-2</u> 14900	<u>5813:2-4</u> 17500	<u>5813:4-6</u> 12100
Aluminum	9280.1	12400J	13100	17500	12900	8870	9600	10800	20100	8760	15900	14900	17500	12100
Aluminum Arsenic	9280J 3.0	12400J 7.5	13100 1.9BJ	17500 4.0J	12900 3.6J	6670 3.7J	9600 8.7J	10800 4.0J	20100 6.9J	8760 3.7J	 15900 7.6J	14900 8.6J	17500	12100 11.5J
Aluminum Arsenic Berlum	9280J 3.0 89.5J	12400J 7.5 110J	13100 1.9BJ 67.3	17500 4.0J 132	12900 3.6J 99.6	6670 3.7J 100	9600 8.7J 151	10800 4.0J 151	20100 0.9J 152	8760 3.7J 77.1	15900 7.6J 125	14900 8.6J 162	17500 145 .758	12100 11.5J 98.9 ,368
Aluminum Arsenic Barlum Beryllum	9280J 3.0 89.5J .478	12400J 7.5 110J .63B	13100 1.98J 67.3 .528	17500 4.0J 132 .54B	12900 3.6J 99.6 .536	6670 3.7J 100 .328	9600 8.7J 151 .328	10800 4.0J 151 ,358	20100 8.9J 152 .728	8760 3.7J 77.1 .338	15900 7.6J 125 .578	14900 8.6.J 162 .548	17500 145 .758	12100 11.5J 90.9 .368 18.5
Aluminum Arsenic Berlum Beryillum Cadmium	9280J 3.0 89.5J .478	12400J 7.5 110J .638	13100 1.9BJ 67.3 .528	17500 4.0J 132 .54B	12900 3.8J 99.6 .538	6670 3.7J 100 .328	9600 8.7J 151 .328	10800 4.0J 151 .358	20100 8.9.J 152 .728 27.6	8760 3.7.J 77.1 .338 2.7	15900 7.6J 125 .578	14900 8.6J 162 .548 16.8	17500 145 .758	12100 11.5J 98.9 ,368
Aluminum Arsenic Barlum Beryillum Cadmium Chromium	9280J 3.0 89.5J .478 15.8J	12400J 7.5 110J .63B 20.0J	13100 1.98J 67.3 .528 18.5	17500 4.0J 132 .54B 25.8	12900 3.8.J 99.6 19.6	6870 3.7J 100 .328 16.7	9600 8.7J 151 .328 14.4	10800 4.0J 151 .358 16.6	20100 8.9.J 152 .728 27.6 113	8760 3.7.J 77.1 .338 2.7 67.3	15900 7.6J 125 .578 100	14900 8.8.J 182 .548 16.8 545	17500 145 .758 25.1	12100 11.5J 90.9 .368 18.5
Aluminum Arsenic Barlum Beryillum Cadmium Chromium Chromium Copper	9280J 3.0 89.5J .478 15.8J 9.1J	12400J 7.5 110J .63B 20.0J 11.0J	13100 1.98J 67.3 18.5 21.9J	17500 4.0J 132 .54B 25.8 30.2J	12900 3.8J 99.6 .538 19.6 24.6J	6670 3.7J 100 .328 16.7 21.2J	9600 8.7J 151 .328 14.4 23.8J	10800 4.0J 151 16.6 20.2J	20100 0.9.J 152 .728 27.6 113 42.7.J	8760 3.7J 77.1 .338 2.7 67.3 21.4J	15900 7.6J 125 .578 100 26.1J	14900 8.8J 182 .548 16.8 545 81.4J	17500 145 .758 25.1 32.5J	12100 11.5J 90.9 .,308 10.5 27.3J
Aluminum Arsenic Berlum Beryllum Cadmium Chromium Copper Lead	9200J 3.0 89.5J .478 15.8J 9.1J 9.3J	12400J 7.5 110J .63B 20.0J 11.0J 11.8J	13100 1.98J 67.3 18.5 21.9J 	17500 4.0J 132 25.8 30.2J	12900 3.8.J 99.6 .538 19.6 24.6.J	6670 3.7J 100 .328 16.7 21.2J 	9600 8.7J 151 .328 14.4 23.6J	10800 4.0J 151 .358 16.6 20.2J	20100 0.9J 152 .728 27.6 113 42.7J	8760 3.7J 77.1 .338 2.7 67.3 21.4J	15900 7.8J 125 .578 100 26.1J 10.4	14900 8.8J 162 .548 16.8 545 81.4J	17500 145 .758 25.1 32.5J	12100 11.5J 90.9 , 308 18.5 27.3J
Aluminum Arsminum Barlun Barlun Cadmium Chromium Chromium Copper Lead Mercury	9280J 3.0 89.5J .478 9.1J 9.3J	12400J 7.5 110J .63B 20.0J 11.0J 11.0J	13100 1.98J 67.3 .528 18.5 21.9J 	17500 4.0J 132 .548 25.8 30.2J	12900 3.8.J 99.6 .538 19.6 24.6.J 	6670 3.7J 100 .328 16.7 21.2J 	9600 8.7J 151 14.4 23.8J 	10800 4.0J 151 16.6 20.2J 	20100 0.9.J 152 .729 27.6 113 42.7.J 	8760 3.7J 77.1 .338 2.7 67.3 21.4J	15900 7.6J 125 578 100 26.1J 10.4	14900 0.6J 162 .548 16.8 545 81.4J 	17500 145 .758 	12100 11.5J 98.9 .368 18.5 27.3J
Aluminum Arsenic Barlum Beryllum Cadmium Chromium Chromium Copper Lead Mercury Nickel	9280J 3.0 695J .478 9.1J 9.3J 23.0	12400J 7.5 110J 20.0J 11.0J 11.0J 11.0J 27.1	13100 1.98J 67.3 .528 18.5 21.9J 31.1	17500 4.0J 132 548 25.8 30.2J 30.2J 30.2	12900 3.6J 99.6 .538 19.6 24.6J 33.0	6670 3.7J 100 .328 16.7 21.2J 24.3	9600 8.7J 151 .328 14.4 23.8J 30.8	10600 4.0J 151 16.6 20.2J 25.6	20100 0.9.J 152 .729 27.6 113 42.7.J 43.6	8760 3.7J 77.1 .338 2.7 67.3 21.4J 32.2	15900 7.6J 125 .578 100 26.1J 10.4 29.6j	14900 8.6J 162 .548 16.8 545 81.4J 28.0	17500 145 .758 	12100 11.5J 90.9

Notes: All concentrations are in milligrams, per kilogram (mg/kg = parts per million (ppm)).

--- - Analyte not detected in this sample but present in another.

J - Semi-quantitative due to QA/QC requirements.

B. - - Value is above instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

TABLE 2

TABLE 2 VALID ANALYTICAL RESULTS AREA 3 SOIL BORING SAMPLES VOLATILE ORGANIC COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

		SB50:2-4		
TCL Compound	<u>SB1:2-4</u>	(SB1:2-4 Dup.)	<u>SB2:8-10</u>	<u>\$B4:6-8</u>
Acetone			1 9	
1,2-Dichloroethene		3J		
2-Butanone	6J			2J
Trichloroethene	2J			
Toluene			2J	

1.	

Notes:All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)).No volatile organic compounds were detected in SB1:4-6, SB1:8-10, SB2:2-4, SB2:4-6,
SB3:2-4, SB3:4-6, SB3:6-8, SB4:2-4, and SB4:4-6.--- =Compound not detected in this sample, but present in another.

1 =

Semi-quantitative due to concentration below Contract Required Quantitation Limit (CRQL).

TABLE 2 contd.

TABLE

VALID ANALYTICAL RESULTS AREA 3 SOIL BORING SAMPLES SEMI-VOLATILE ORGANIC COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

TCL Compounds	<u>SB1:2-4</u>	SB50:2-4 (SB1:2-4 Dup.)	<u>\$81:0-10</u>	<u>SB2:2-3</u>	<u>SB3:2-4</u>	<u>SB3:4-6</u>	<u>SB3:6-8</u>	<u>SB4:2-4</u>	<u>SB4:4-6</u>	<u>584:6-8</u>
Benzoic Acid			 `			•••		67J		
Pentachlorophenol	•••	•••			•••	•••		66J		
Fluorenthene	50J				•••	•••		·		
Pyrene	45J					•••				
Benzo(a)Anthracene	48J						• ·			•
Bis(2-Ethylhexyl)phthelate		40J		•••			68J			52J
Benzo(b)Fluoranthene	69XJ	** *				•••				
Benzo(k)Fluoranthene	69XJ	•			• •				-	
TIC Compounds										
Total Unknowns	2600J	1350J	220J	3760 J	620J	2640J	590J	-	250J	
Total Unknown Hydrocarbons	1220J	1650J		3240J		430J			-	-
Total Unknown Aldehydes	240J			***		•••		_	****	
Decane			***		150JN	•••				¹
Octadecanal						360JN		-	-	-

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)).

No semi-volatile organic compounds were detected in SB1:4-6.

--- = Compound not detected in this sample, but present in another.

X = Identifies coeluting indistinguishable isomers.

N = Identified TIC.

TABLE 2 contd.

TABLE VALID ANALYTICAL RESULTS **AREA 3 SOIL BORING SAMPLES** METALS **1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY**

Analyte	<u>581:2-4</u>	5850:2-4 (581:2-4 Dup.)	<u>581:4 6</u>	<u>501:6-10</u>	<u>582:2-3</u>	<u>582:3-4</u>	<u>582:8-10</u>	583:2-4	<u>583:4-6</u>	<u>\$83:6-0</u>	<u>584:2-4</u>	<u>584:4-6</u>	<u>584:6-0</u>
Aluminum	13600	12900J	12700	10800J	16100	15400	10900J	13300J	15800J	10000J	15000J	13000J	13500
Arsenic	7.3J	3.4J	8.4.)	5.8	5.5J	6.0.1	4.5		5.6				4.8J
Berlum	147	103	50.5	74.3J	174	33.38	66.3J	165	92.0.1	70.4	152	121	128
Beryllium	.458	.268	.478	.538	.558	.438	.588	.498	.728		.488	.368	.448
Cadmium		1.5J	1.3J	72.3J	58.7J	5.7J	•••	•••					
Chromium	26.5	29.9	47.5	466J	2110	66.4	22.1J	16.7	17.6J	15.2	19.3	15.9	17.2
Copper	27.9	243.1	33 4	143J	270	23.1	12.2J	4.30.1	5.28J				24.7
Lead	14.9	41.1J	12.4	11.7.J	18.0	11.7	9.5J	15.9	16.4J	11.7	21.6	14.9	12.4
Mercury		***	•••		.14J	•••	•••	•••		-			
Nickel	26.5	28.4	21.4	93.8	57.8	25.3	30.1	26.7	26.3	27.5	32.7	29.2	25.9
Zinc	00.9	278J	80.5	266J	209	73.7	84.5J	73.6J	81.1J	76.4J	78.1J	80.9J	74.4

Notes: All concentrations are in miligrams, per kilogram (mg/kg = parts per million (ppm)).

Cyanide was not detected in any of these samples. Analyte not detected in this sample but present in another,

Semi-quantitative due to QA/QC requirements.

1 8

FAC 003 1213

Value is above instrument Detection Limit (IDI), but below Contract Required Detection Limit (CRDL).

ት አ

TABLY ' ' VALID ANALY AL RESULTS AREA 4 SOIL BORING SAMPLES VOLATILE ORGANIC COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

				SB32:6 9			
TCL Compounds	<u>SB21:10-14</u>	<u>SD22.9.11</u>	<u>SB23:6 9</u>	(SB23:6 9 Dup.)	<u>SB23:9-10</u>	<u>SB24:3-5</u>	<u>SB24:11-15</u>
1,1-Dichloroethane		•	tJ	•••			
Chloroform	•••		·	•••			5J
2-Butanone			29J	•••		3J	4 J
Benzene	•••	•-•	3J	•••			
Toluene	210J	•••	7		•••		•••
Ethylbenzene	520J	•••	9	•••	•	•••	
Xylenes	760J	31	47	840J	4J		
TIC Compounds							
Tolal Unknowns	7000J	13J	220J	35300J		-	
Total Unknown Hydrocarbons	13600J	•		29600J	•••• ·		
Unknown Sub. Cyclohexane	4000J		•••	12000J			
Decane	4300JN	•••	•••				
Dimethyl Cyclohexane			180J			-	
Dimethyl Cyclopentane			160J			-	
Dimethyl Nonane	4000J	•••			-	-	
Dimethyl Octane		•••	1570J		-		-
Ethylmethyl Benzene		8.5J	-		23J	-	
Ethylmethyl Heptane		~- -	360 J		-		
Heptane	3300JN			•••	-		
Methyl Cyclohexane	5900JN	18JN	450JN		19JN		
Methyl Nonane			390J	•••		-	
Methyl Propyl Cyclohexane	***		580J	•	-	-	
Propytheptanol	***		320J		-		
Trimethylbenzene	4000J		•	5900J	13J		
Trimethyl Octane				10000J			

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)).

No volatile organic compounds were detected in SB22:11-13, SB22:13-15, SB23:11-13, SB24:0-3, SB25:2-4, SB25:4-6, and SB25:6-8.

--- Compound not detected in this sample, but present in another.

J Semi-quantitative due to QA/QC criteria outside of control limits, value below Contract Required Quantitation Limit (CRQL) or compound being a TIC.

N Identified TIC.

15-55

TABY 3 contd. AREA 4 SOIL & ING SAMPLES SEMI-VOLATILE ORGANIC COMPOUNDS PUROLATOR PRODUCTS COMPANY

TCL Compound	<u>5821:10-14</u>	<u>5822:9-11</u>	<u>\$822:12-13</u>	<u>5822:14-15</u>	<u>5823:6-9</u>	5832:6-9 <u>(58:23:6-9 Dup.)</u>	<u>5823;9-10</u>	<u>\$823:11-13</u>	<u>5824:3-5</u>	<u>5825:4-6</u>
Naphalena	670J	-		***	-	1200.1	56J		-	
2-Methylnaphthalene	1400		•••		1300J	1800J	120J			•
Acenaphthene					780J	560.1		-	-	•••
Dibenzoluran	•••		•••		580J			-		
Fluorene	4303		••	•••	10000	1100.)	•••			•••
Phenenthrene	1100	44J	48J		4900	5800	140.J			
Anthracene	•••				1000J	1006				•••
DI-n-Butyiphthalate	•••		44J	•••	580J		•••			
Fluoranthene	•••	42J	40.1		4900	4500	63J	45J		
Pyrene		85J		•••	2600	3900				
Benzo(a)Anthracena		190XJ	•••	•••	2300	3300	•			
Chrysene	870	190XJ	\$10.1	•••	2100J	2800	•••	•••		
Bis(2-Ethylhexyl)phthelate	•••	•	•••		970J	•••	•••	•••	73J	-
Di-n-Octyl Phthelate			•-•	•••	340J		•••	••••	-	•••
Benzo(b)Fluoranthene		•••			3100XJ	4200XJ				
Benzo(k)Fluoranthene	•••		•••	•	3100XJ	4200XJ	•		•••	
Benzo(a)Pyrene	•••	•••	•••	•••	1400J	5000°t	•••			•••
Indeno(1,2,3-cd)Pyrene		•••		•••	530J	850J	•••			
Dibenzo(a,h)Anthracene			•••	•••		360J	•••	***		·
Benzo(g,h,l)Perylene	•••			•••	570J	600J	•••	-		
TIC Compounds										
Total Unknown	44100J	5390J	7700.1	240J	14360UJ	145000J	4500J		5610J	-
Total Unknown Hydrocarbons	99900J	21000J	17900J		184000J	211000J	14500J	-	-	-
Total Unknown Cyclic Hydrocarbons	5700J							-	-	-
Total Unknown PAH			1300J			•••		-		_
2-Cyclohenyl,2-Cyclodecane				•••				_		-
Dimethylheptadecane		3900JN	8130J		_	24000J	12500J	_	-	
Hexatriacontane		33003M	01303		_	210003	1100JN	_	_	
Iron, Tricerbonyi[N-(Phenyi)]		4400JN			20000JN	•••		_		
Methyl Tridecane		4400.044			200000		2100J	-		
								-		
N Propyl-Benzamide	6200J		***							460.JN
Tetramethyl Benzene		•••								
Tetramethylheptadecune		•••	••			•••	3000.1			
2,6, 10, 14-	•••		••		21000JN					
Tetramethylpentadecane Undecylcyclohexane				•••			1100J			

Notes: All concentrations are in micrograms, per liter (ug/l - parts per billion (ppb)).

No semi-volatile organic compounds were detected in \$823:0-3, \$824:11-15, \$825:6-8.

--- - Compound not present in this sample but present in another.

J - Semi-quantitative due to concentration below Contract Required Quantitation Limit (CRQL), data validation requirements or compound being a TIC.

N - Identified TIC.

X - Identifies coeluting indistinguishable isomers.

TABLE 3 contd.VALID ANALYTICAL RESULTSAREA 4 SOIL BORING SAMPLESPESTICIDE/PCB COMPOUNDS1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

TCL Compound	<u>SB21:10-14</u>	<u>SB22:9-11</u>	<u>SB22:12-13</u>	<u>SB23:6-9</u>	SB32:6-9 (SB23:6-9 Dup.)	<u>SB23:9-10</u>
Arochlor 1248 Arochlor 1254	13000C	780 	140	35000C	28000C	190

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)). No pesticide/PCB compounds were detected in SB22:13-15, SB23:11-13, SB24:0-3, SB24:3-5, SB24:11-15, SB25:2-4, SB25:4-6, and SB25:6-8.

-- = Compound not detected in this sample, but present in another.

C = Value confirmed by GC/MS Analysis.

FAC 003 1216

TABLE 3 contd.VALID ANALYTICAL RESULTSAREA 4 SOIL BORING SAMPLESMETALS AND CYANIDE1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

4

Analyte	<u>5821:10-14</u>	<u>5822:9-11</u>	<u>5822:12-13</u>	<u>5822:14-15</u>	<u>5823:6 9</u>	SB32:6-9 <u>(SB23:6-9 Dup.)</u>	<u>5823:9-10</u>	<u>5823:11-13</u>	<u>5824:0-3</u>	<u>5824:3-5</u>	<u>5824:11-15</u>	<u>5825:2-4</u>	<u>\$825:4-6</u>	<u>5825:6-0</u>
Aluminum	13600J	28100J	16000	7480	20000J	21500	22900J	14600J	14600J	13500.J	24400J	13700J	19200J	27100J
Antimony		•••		9.98J		11.3BJ							- •••	
Arsenic	16.6J	8.6J	3.9J ·	3.9J	9.6J	•••	14.1J	14.5J	4.7J	3.QJ	12.3J	7.4J	9.7J	6.2J
Berlum	628J	272J	135	91.7	1110J	553	278J	150J	139J	84.1J	202J	81.7J	194J	252J
Beryllium	.648	1,16	.558	.348	.908	1.08	.968	.518	.658	.598	.998	.506	.758	1.18
Cedmium	322	2.3	4.5	•••	476	160	44.0	10.6		•••				** -
Chromlum	851J	40.9J	31. 9 J	12.6J	1250.1	462J	1373	47.6.1	21.3J	18.6J	35.4J	19.4J	29.1J	32.33
Copper	221J	40.1J	31.1	15.4	382J	146	66.6J	29.8J	22.3J	16.3J	40.7J	20.5J	33.1J	28.1J
Leed	133	12.5J	13.1	7.9	235	86.0	28.0J	19.3J	11.4J	12.6J	17.6J	13.6J	14.4J	16.8J
Mercury	1.9J	.26J		•••	2.2J	1.7	.94J	.24J	.27J	.36J	.33J	.31J	.22J	.26J
Nickel	273	60.1	44.2	19.5	366	159	79.6	38.3	29.7	24.0	48.0	27.4	43.0	52.1
Tin	***	-	-		5.28	***	*						·	
Zinc	1160J	141J	108J	48.2J	2590J	962J	293J	126J	84.8J	73.9J	154J	75.7J	104J	105J
Cyanida	57.9	1.7	2.9	· 🗕	30.5	29.1	18.2	2.5			1.0			-

Notes: All concentrations are in milligrams, per bilogram (mg/kg = perts per million (ppm)).

- • Analyte not detected in this sample but present in another.

Semi-quantitative due to QA/QC requirements.

B - Value is above instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

TABLE 3 contd.

TABLE 6-9 VALID ANALYTICAL RESULTS SEMI-VOLATILE ORGANIC COMPOUNDS, PESTICIDES AND PCBs SOIL SAMPLES 1986 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

Compound	<u>L-1</u>	<u>L-2</u>	<u>L-4</u>	<u>L-8</u> •	<u>L-5</u>	<u>L-6</u>	<u>L-7</u>	<u>D-12-5</u>	<u>SB-31-7</u>
PCB-1016	120								
PCB-1248	***	24000			3150 J				
PCB-1254			230	290		150	53		
PCB-1260	110					****			
4-Methylphenol	NA	NA	NA	NA	NA	NA	NA	96 J	
Naphthalene	NA	NA	NA	NA	NA	NA	NA	170	***
2-Methyinaphthalene	NA	NA	NA	NA	NA	NA	NÁ	140 J	***
Flurorene	NA	NA	NA	NA	NA	NA	NA	83 J	
Phenanthrene	NA	NA	NA	NA	NA	NA	NA	605	
Anthracene	NA	NA	NA	NA	NA	NA	NA	190	
Di-n-butylphthalate	NA	NA	NA	NA	NA	NA	NA	230	3600 J
Fluoranthene	NA	NA	NA	NA	NA	NA	NA	550	
Pyrene	NA	NA	NA	NA	NA	NA	NA	350	
Benzo (a) Anthracene	NA	NA	NA	NA	NA	NA	NA	250 J	
Chrysene	NA	NA	NA	NA	NA	NA	NA	370	
Bis(2-ethylhexyl)phthalate	NA	NA	NA	NA	NA	NA	NA		1 008

NOTES:All concentrations in parts per billion (ppb).---=Compound not detected in this sample, but present in another.NA=Compound not analyzed for in this sample.J=Semi-quantitative value due to QA/QC data validation requirements or value below CRQL.

= L-8 is a duplicate of L-4.

FAC 003 1218

TABLE '4 '*VALID ANALYTICAL RESULTS
AREA 5 SOIL BORING SAMPLESVOLATILE ORGANIC AND PESTICIDE/PCB COMPOUNDS
1990 REMEDIAL INVESTIGATION
PUROLATOR PRODUCTS COMPANY

<u>TCL VOC</u>	<u>5814:1-3</u>	<u>5814:3-5</u>	<u>5814:6-0</u>	<u>5815:1-3</u>	<u>5815:354.5</u>	<u>5815:4-5</u>	<u>\$816:4-6</u>	<u>5817:2-4</u>	<u>5817:5-7</u>	<u>5817:8-10</u>	<u>5818:1-3</u>	<u>5818:4-6</u>	<u>5818:6-0</u>	<u>5819:2-4</u>	5819:4-6	<u>5820:4-6</u>	<u>5820:8.5-10</u>
Carbon Disuilde											4J		1J				
1,1-Dichloroethene	•••	•••		•••		•••		•••	•••	••	4J	5J	•	•			
1,2 Dichloroethene	•••	•••		•••	50	•••	•-•	•••		••	90	110			•••	•••	•••
1, 1, 1-Trichloroethene	***			•••	10			2J		•••			•••		•		•••
Trichloroethene	4J	ວມ	2J	7	240E.I	27	31			2J	14	19		30	2J	1J	2J
Toluene				***		•••	-	5J								-	
Ethylbenzene		•••		***	•••		•••	7	•	•••		-					
Styrane			•••	***	•••	•••	•	1J		•••	***		-		-	-	
Xylenes			***					2J				-	-		-		
TIC Volatiles																	
Total Unknowns				***	16J			35.8J	140J		245.1J		23.1				
Total Unknown Alcohols		•••	•					_				-	31J			-	
											•						
TCL Pesticide/PCB																	
Arochior 1248			.		580						1500		-	_		_	
Arochior 1254	310			***							1300						
20001101 1234	JIU								_•								

Notes: All concentrations are in micrograms, per fillogram (ug/kg = parts per billion (ppb)).

No volatile organic and pasticide/PCB compounds were detected in S816:0-2, S816:2-4, SB19:6-8, and S820:6-8.

- • Compound not present in this sample, but present in another.

J = Semi-quantitative due to QA/QC criteria outside of control limits, value below Contract Required Quantitation Limit (CROL) or compound being a TIC.

Contamination found in associated blank. Sample value is greater than 10 times the associated blank value.

E - Estimated value. Sample result is over the instrument's linear calibration range by less than 10%.

FAC 003 1219

TABLE 4 contd.VALID ANALYTICAL RESULTSAREA 5 SOIL BORING SAMPLESSEMI-VOLATILE ORGANIC COMPOUNDS1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

TCL Compounds	<u>SB14:1-3</u>	<u>SB14:3 5</u>	SB15:1-3	<u>SB15:3.5-4.5</u>	SB15:4-5	<u>SB16:0-2</u>	<u>SB16:2-4</u>	<u>\$B17:2-4</u>	<u>SB17:5-7</u>
Benzoic Acid	220J		•-•	990J				85J	***
Acenaphthylene	-		•		•		•••		
Acenephthene			•••				***		***
Fluorene		•••		•••			•	•	***
N-Nitrosodiphenylamine	•	•••		42J				•	***
Pentachlorophenol		• •••				54J			·
Phenanthrene	100J		***			•==	•••	•••	
Anthracene		•••							
Di-n-Butylphthalate	•	•••		120J		110J			55J
Fluoranthene	84J	•••	•-		•••			•-	
Pyrene	110J		•••			•••			***
Butylbenzylphthalate				160J	•••			-	
Benzo(s)Anthracene	• - -			-			. 		
Chrysene			•	190J			-	420	-
Bis(2-Ethythexy1)phthelete	250J	52J	89J	340J	42J	•••	-	-	180J
Di-n-Octyl Phihalate	 .			74J					
Benzo(b)Fluoranthene	84XJ							,	
Benzo(k)Fluoranthene	84XJ	***	*	•••				-	-
TIC Compounds									
Total Unknowns	57260J	8760 J		171300J	-	220J	600J	36100J	10700J
Total Unknown Hydrocarbons	-	•••	•				260J	63800J	L0698
Total Unk. Cyclic Hydrocarbons					•••			4700J	-
Alochior		•••	210JN			•••	I	***	
Bromochlorobenzene			•				-		
Benzo Quinoline	***	***			••••	•••	'		***
Dimethyl Heptadecane	•••		•-•				300 J		3900J
Heptadecane						•••			990JN
Mono(2-Ether)Hexanediolc Acid	***	•				•••			-
2,6,10,14-Tetramethyl Hexadecane	••••								1000JN
2,6,10,15-Tetramethyl Heptadecane				-	•••				2200JN

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)).

No sami-volatile organic compounds were detected in SB14:6-8, SB15:6-8, SB16:4-6, and SB20:6-8.

-- - Compound not detected in this sample, but present in another.

J = Semi-quantitative due to QA/QC criteria outside of control limits, value below Contract Required Quantitation Limit (CRQL) or compound being a TIC.

Identifies coeluting Indistinguishable isomers.

N = Identified TIC.

۰.

4. . .

TABLE 4 (cont'd)

TCL Compounds	<u>5817:8-10</u>	<u>5810:1-3</u>	<u>SB18:46</u>	<u>SB18:6-8</u>	<u>SB19:2-4</u>	SB19:4-6	<u>SB19:6-0</u>	<u>SB20:4-6</u>	<u>SB20:8.5-10</u>
Benzolc Acid		84J			***	•••		72J	
Acenaphihylene	***		•••			•••		360	47 J
Acenaphthene							***	77J	
Fluorene	***	•-•		•••	-		-	130J	
N-Nitrosodiphenylamine	•	•••	••••			•			
Pentachlorophenol		•				•			***
Phenanthrene	***	91J	•••		95J	•		87J	
Anthracene			•••					530	
Di-n-Butylphthalate		•	56J	47J	•••		•••		• • •
Fluoranthene	•••	84J			340J	•-•		120J	
Pyrene		130J		•••	380J	•••	***	130J	
Butylbenzylphthalate			•••	•••	180J	•••			
Benzo(a)Anthracene		310J	•••		380XJ			•	
Chrysene		•••	•••	•••	380XJ	•••		••••	au #
Bis(2-Ethyfhexyl)phthalate	75J	•••	50 J		1200	45J	53J	270J	
Di-n-Octyl Phthalate		150J			230J		-		
Benzo(b)Fluoranthene						•••			***
Benzo(k)Fluoranthene			•-•			•••		-	
TIC Compounds									
Tolal Unknowns	•	120300J	9890J	870J	104000J		_	34300J	-
Total Unknown Hydrocarbons		20700J	2960J		92000J			31300J	***
Total Unk. Cyclic Hydrocarbons	***				•••				
Alochior						•••			
Bromochlorobenzene			•••				-		230J
Benzo Quinoline								2100J	
Dimethyl Heptadecane			••••						
Hepladecane		•••							•••
Mono(2-Ether)Hexanedioic Acid	390JN								
2.6, 10, 14-Tetramethyl Hexadecane					··· .			•••	
2,6,10,15-Tetramethyl Heptadecane								•	

4

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)).

No semi-volatile organic compounds were detected in SB14:6-8, SB15:6-8, SB16:4-6, and SB20:6-8.

--- - Compound not detected in this sample, but present in another.

J = Semi-quantitative due to QA/QC criteria outside of control limits, value below Contract Required Quantitation Limit (CRQL) or compound being a TIC.

X = Identifies coeluting Indistinguishable isomers.

N = Identified TIC.

1.

TABLE 4 contd. VALID ANALYTICAL RESULTS AREA 5 SOIL BORING SAMPLES METALS AND CYANIDE 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

Analyte	<u>SB14;1-3</u>	<u>SB14:3-5</u>	<u>\$B14:6-8</u>	<u>SB15;1-3</u>	<u>SB15:3.5-4.5</u>	<u>SB15:4-5</u>	<u>SB16:0-2</u>	<u>SB16:2-4</u>	<u>SB16:4-6</u>	<u>SB17;2-4</u>
Aluminum	8220J	9870J	10600J	9470J	13700J	16100J	133001	15100J	14400J	10900J
Antimony					*					
Arsenic	8.3J	11.2J	5.4J	5.0J	9.4J	11.9J	5.4J			
Barium	95.91	56.5J	85.8J	64.3J	219J	1731	106J	1313	119J	52.6J
Beryllium	.28B	.26B	.28B		.56B	.61B	.39 B	.58B	.50B	.31B
Cadmium	143	18.6		1.6	107		5.7		4.9	1.3
Chromium	296J	45.3J	25.8J	19.2J	2750J	112J	38.6J	19.2J	31.3J	19.2J
Copper	82.3J	34.2J	18.7J	32.0J	352J	35.11	24.6J	16.6J	54.3J	39.3J
Lead	24.4	17.8	8.4	12.3	73.0	15.5	16.91	40.7	11.8	11.2
Mercury	.12			•	.96					
Nickel	130	36.7	227	22.6	138	34.4	29.3	25.6	40.3	26.9
Silver	2.0BJ				6.8J					
Tin	115	12.8			113					
Zinc	406J	128J	72.7J	92.4J	3731	102J	91.9J	79.0J	87.3	99.4J
Cyanide	2.2	1.6	1.0	.70	25.0		.63			

Notes: All concentrations are in milligrams per kilogram (mg/kg = parts per million (ppm)).

SB15:6-8 not submitted for analysis.

--- = Analyte not detected in this sample but present in another.

J = Semi-quantitative due to QA/QC requirements.

B = Value is above Instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

TABLE	4 ((cont'd)	
-------	-----	----------	--

<u>Analyte</u>	<u>SB17:5-7</u>	<u>SB17:8-10</u>	<u>SB18:1-3</u>	<u>SB18:4-6</u>	<u>SB18:6-8</u>	<u>SB19:2-4</u>	<u>SB19:4-6</u>	<u>SB19:6-8</u>	<u>SB20;4-6</u>	<u>SB20.7-8.5</u>	<u>SB20:8.5-10</u>
Aluminum	18300J	15200J	9780J	9070J	20900J	7940J	9030J	9060J	9150J	8740J	11300J
Antimony			8.6BJ			23.7J					
Arsenic		5.2J	2.3BJ				5,3J	5.3J	5.1J	5.1J	32.4J
Barium	124J	105 J	132J	51.9J	126J	85.8J	76.9 J	77. 9 J	55.IJ	46. 4 J	116
Beryllium	.67B	.61B	.26B	.29B	.67B		.28B	.25B	.25B	.28B	.50B
Cadmium			439	15.7	1.9	3390			38.7	4.0	
Chromium	29.IJ	23.IJ	4060 J	54.6J	52.8J	13000J	26.9J	15.9J	94.8J	78.6J	126J
Copper	24.6J	21.91	337J	38.6J	29.8J	1910J	38.1J	20.2J	94.4J	49.6J	23.6J
Lead	14.9	12.5	45.1	12.8	14.9	50.3	10.9J	22.8J	14.1J	9.4J	23.6J
Mercury			.39				.21J	.25J	.22J	.26J	.30J
Nickel	39.3	26.2	516	35.2	44.0	320	20.3	20.7	21.6	21.2	23.1
Silver			7.9 J			3.0J			2.8J		
Tin		***	193	9.7	** -* #	133					
Zinc	93.7J	71.6J	2290J	1111	106J	3460J	71.2J	62. 8 J	165J	72.1J	`74.0J
Cyanide	.86		114	2.2	1.1	167	6.2	3.2	6.2	.57	.67

Notes: All concentrations are in milligrams per kilogram (mg/kg = parts per million (ppm)).

SB15:6-8 not submitted for analysis.

FAC 003 1223

--- = Analyte not detected in this sample but present in another.

J = Semi-quantitative due to QA/QC requirements.

B = Value is above Instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

TABLE 5VALID ANALYTICAL RESULTSSURFACE SOIL SAMPLESVOLATILE ORGANIC COMPOUNDS1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

•

TCL Compounds	<u>\$\$1:</u> (<u>0-1 \$\$2:0-1</u>	<u>\$\$4:0-1</u>	<u>\$\$5:0-1</u>	<u> SS6:0-1</u>	<u>\$\$7:0-1</u>	<u>\$\$9:0-1</u>	SS21:0-1 <u>(\$S9:0-1 Dup.)</u>
Vinyl Chloride	2J					~~~		
Methylene Chloride				22BJ				
Acetone				5J	34J			
Carbon Disulfide								15J
1,1 Dichloroethane	3J					ar		***
1,2 Dichloroethene	43	23	13		4J			***
2-Butanone					9J			
1,1,1 Trichloroethan	e 11							
Trichloroethene	130		5J		2 J		73	10J
Chlorobenzene				13			440 ang ang	
TIC Compounds								
Unknowns				·		199		
No vo = Comp J = Semi-	oncentrations are i platile organic con pounds not present quantitative due t (L) or compound (npounds were of t in this sample o QA/QC crite	detected in S e, but presen	S3:0-1, and t in another	SS8:0-1.	low Contrac	t Required (Quantitation Limit

B = Contaminant found in associated blank. Sample value is greater than 10 times the associated blank value.

TABLE 5 contd. VALID ANALYTICAL RESULTS SURFACE SOIL SAMPLES SEMI-VOLATILE ORGANIC COMPOUNDS **1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY**

			5520:0-1								5521:0-1
TCL Compounds	<u>551:0-1</u>	<u>552:0-1</u>	(SS2:0-1 Dup.)	<u>553:0-1</u>	<u>\$\$4:0-1</u>	<u>\$\$\$:0-1</u>	<u>\$56:0-1</u>	<u>\$\$7:0-1</u>	<u>\$\$8:0-1</u>	<u>\$\$9:0-1</u>	(559:0-1 Dup.)
Phenol	·				. 57J						
4-Methylphenol	•••		•-•		100J		***	•••			
2,4 Dimethylphenol	***				180.1						
Benzoic Acid	***						990.1	260.1			
Naphthalene				300J	1500	55.1	7600J	210.1			
2-Methylnaphalene				110	1700	84J	3000.1	350J	72J		-
Acenachthene	71J		•••	260.1	1900		8300.1				-
Diverzohran		***	***	200.1	1300	•••	4900J	83.1			
Fluorene			•••	250.1	1800		6400J				-
Pentachlorophenol						4 9J			_		-
Phenonthrene	450	210J	1303	2600	10000		77000	260.1	_	_	
Anthracene	130J	50.1		560	3400		18000	_			
Di-n-Butyiphthelate		59.1	***	60J	95.J						
Fluorenthene	720	480	2161	3700	18000	220J	110000	210.1	-		-
Pyrene	520	320J	140J	2400	11000	180J	65000	200.1	_	_	_ ·
Benzo(a)Anthracene	430	220J	350J	1400	8700	76J	43000	140J		3400.J	
Chrysene	340.3	200J	190J	1500	7200	54J	32000	140J	<u> </u>	3600.1	490J
Dis(2 Ethylhexyl)Phiheiste	46J	62J	80J	66J	300J				2200.1	7300	-
DI-n-Octyl Phthelete		130J	••								
Benzo(b)Fluoranthene	690)(J	410XJ	38034	2500KJ	19000XJ	52XJ	69000XJ		150J		-
Benzo(k)Fluorenthene	690XJ	410XJ	360)(J	2500)(.)	19000XJ	52XJ	69000XJ				
Benzo(s)Pyrene	350J	210J	200J	1400	7400		33000			-	
Indeno(1,2,3-cd)Pyrens		•••	99.1	490	2600		16000	-			-
Dibenz(a,h)Anthracene	•	•••		190J	510	•••	5200J				
Benzo(g,h,i)Perylens		•••	99.1	440	2500		17000				-
Acenaphthylenc	••••	•••	 	•••	150J		•••			-	

EAC 003 1225

TABLE 5 contd. VALID ANALYTICAL RESULTS SURFACE SOIL SAMPLES **METALS AND CYANIDE 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY**

	<u>Analyte</u>	<u>SS1:0-1</u>	<u>\$\$2:0-1</u>	SS20:0-1 <u>(\$S2:0-1_Dup.)</u>	<u>SS3:0-1</u>	<u>SS4:0-1</u>	<u>SS5:0-1</u>	<u>SS6:0-1</u>	<u>SS7:0-1</u>	<u>SS8:0-1</u>	<u>SS9:0-1</u>	SS21:0-1 (SS9:0-1 Dup.)
	Aluminum	9420	8280	10300	14400J	6910J	16400J	6760J	8180J	7550	7840J	7440J
	Antimony									11.7J	25.9J	18.1J
	Arsenic	11.3J			9.5 J		247	6.4J	16.3	4.1 J	8.IJ	
	Barium	229	129	152	288	2510J	732 J	588	88.4J	318	766 J	697J
	Beryllium		.36B		.47B	.52B	7.6	.44B	.76B			
	Cadmium	25.1J	50.9J	17.IJ	2.9	26.5J		78.9J		622	796J	830J
	Chromium	1280	823	641	28.1	169J	26.2J	1220	10.6J	3940	10100J	7370J
5	Copper	33.7	46.6J	34.3J	83.8J	1210J	56.6J	442J	64.3J	459J	1110J	819J
ñ	Lead	19.6	20.3	15.3	29.5	292 J	57.1J	88.2J	14.1J	110	311J	286J
5	Mercury		.13J	.3IJ	.12	.35	.13	.51		.52	.78J	1.IJ
	Nickel	119	59.6	46.9	40.4	224	52.5	138		198	452J	520J
	Selenium							***				
	Silver									2.6BJ	4.6BJ	
	Thallium						16.7J					
	Tin					15.5			5.4	435	387J	478J
	Zinc	106	135	121	162J	2840J	95.1J	535J	44.1J	3880	11100J	12600J
	Cyanide	.74	2.3	1.2	.73	3.6		10.7		25.5	40.3J	38.51

Notes: All concentrations are in milligrams per kilogram (mg/kg= parts per million (ppm)).

--- = Analyte not detected in this sample but present in another.

= Semi-quantitative due to QA/QC requirements. J

= Value is above Instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL). B

TABLE '5' contd. VALID ANALYTICAL RESULTS SURFACE SOIL SAMPLES PESTICIDE/PCB COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

TCL Compound	<u>SS2:0-1</u>	SS20:0-1 (SS2:0-1 Dup.)	<u>\$\$3:0-1</u>	<u>SS4:0-1</u>	<u>SS5:0-1</u>	<u>SS6:0-1</u>	<u>SS7:0-1</u>	<u>\$\$8;0-1</u>	<u>\$\$9:0-1</u>	SS21:0-1 (SS9:0-1 Dup.)
HeptachlorEpoxide	15	/								
Arochlor 1248		540	3700C	5300C	320	11000C	1000	3300C	14000C	8900C
Arochlor 1254				1000						

Notes: All concentrations are in micrograms per kilogram (ug/kg = parts per billion (ppb)). No pesticide/PCB compounds were detected in SS1:0-1.

= Compound not present in this sample, but present in another.

= Value confirmed by GC/MS analysis.

9-52

С

TABLE 6-11VALID ANALYTICAL RESULTSVOLATILE ORGANIC COMPOUNDSSOIL SAMPLES1986 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

Compound	<u>SB-5-5</u>	<u>SB-0-5</u>	<u>SB-0-7.5</u>	<u>SB 10 2.5</u>	<u>SB-10-7.5</u>	<u>SB-11-2.5</u>	<u>SB-11-7.5</u>	<u>SB-12-2.5</u>	<u>58-12-5</u>	<u>SB-13-2.5</u>	<u>SB-15-2.5</u>	SB-15-2.5 _(DUP)	<u>SB-15-7.5</u>
Trichloroethene	12.4	50.8	23.5 J	28.9	25.4 J	253	39.7 J	118	65.1	7.57	83.9	139	118
Tetrachloroethene		150		6.34	•••	•••	•••						-
1,1,-Dichloroethane		•••		8 58						-	-		- ,
1,1,1-Trichloroethane			13.5 J	18.5	15.0 J	20.5		20.2 J		14.6			8.04
t-1,2 Dichloroethene		•-•	9.22 J	••	13.0 J			·	***				5.75
Trichlorofluoromethane										-			
Methylene Chloride													
1,2 Dichlorobenzene											-		-
							SB.22.5			SB.21.7 5			
Compound	<u>SB-17-7.5</u>	<u>SB-18-2.5</u>	<u>SB-18-5</u>	<u>SB-19-5</u>	<u>SB-20-5</u>	<u>SB-22-5</u>	SB-22-5 (DUP)	<u>58-22-7.5</u>	<u>58-23-7.5</u>	SB-23-7.5 (DUP)	<u>SB-24-2.5</u>	<u>SB-24-7.5</u>	<u>SB 25 2.5</u>
<u>Compound</u> Trichloroethene	<u>SB-17-7.5</u> 7.13	<u>SB-18-2.5</u> 156	<u>SB-18-5</u> 16.9	<u>SB-19-5</u> 14.9	<u>SB-20-5</u> 7.59	<u>SB-22-5</u> 28.9		<u>SB-22-7.5</u> 23.6	<u>SB-23-7.5</u> 		<u>SB-24-2.5</u> 112	<u>SB-24-7.5</u> 27.5	<u>SB 25 2.5</u> 4.92
							(DUP)			<u>(DUP)</u>			
Trichloroethene	7.13	156	16.9	14.9	7.59	28.9	<u>(DUP)</u> 18.9	23.6		(<u>DUP)</u>	112	27.5	4.92
Trichloroethene Tetrachloroethene	7.13 7.65	156 7.83	16.9 	14.9 	7.59	28.9	<u>(DUP)</u> 18.9 	23.6		<u>(DUP)</u>	112	27.5	4.92
Trichloroethene Tetrachloroethene 1,1-Dichloroethane	7.13 7.65	156 7.83	16.9 	14.9 	7.59 	28.9 	<u>(OUP)</u> 18.9 	23.6 	-	(<u>DUP)</u> 	112 	27.5	4.92
Trichioroethene Tetrachioroethene 1,1-Dichioroethane 1,1,1-Trichioroethane	7.13 7.65 	156 7.83 18.5	16.9 11.2	14.9 19.8	7.59 	28.9 24.7	(DUP) 18.9 22.7	23.8 	 20.7	(OUP) 	112 25.7	27.5	4.92
Trichloroethene Tetrachloroethene 1,1-Dichloroethane 1,1,1-Trichloroethane 1-1,2-Dichloroethene	7.13 7.65 	156 7.83 18.5 	16.9 11.2 	14.9 19.8 	7.59 	28.9 24.7 	(DUP) 18.9 22.7	23.8 	 20.7	(OUP) 	112 25.7 22.8	27.5 10.4	4.92 21.6

FAC 003 1228

.

i.

6-36

timbe 6

TABLE 6-11 (cont'd)

ł.

Compound	SB-25-2.5 _{(DUP)	<u>58-26-2.5</u>	<u>SB 26 7.5</u>	<u>SB-27-7.5</u>	SB 27 7 5 _(DUP)	<u>SB 29 10</u>	<u>SB 31-7</u>	SB-31-7 _(DUP)	<u>D-9-2.5</u>	D-9-5	<u>D-9-7.5</u>
Trichloroethene	5.14	121	3.46	58.5	42.4	5.69	5.07	7.53	47.7	96.2	44.4
Tetrachloroethcne		7.97		12.7	17.0	•		•••	5.06	7.31	•••
1,1 Dichloroethane	•••	•••	•••		•••					-	
1,1,1-Trichloroethane	26.9	48.1	12.2	18.1	20.4				-	20.8	
1-1,2-Dichloroethene			•••				•••				22.2
Trichlorolluoromethane	18.4	29.0	•••	15.3	13.1	•	•••	***		-	
Methylene Chloride		15.8			•		•••	* **			
1,2 Dichlorobenzene	•••			•••	•••		••••		-	14.3	

Notes:

All concentrations are in parts per billion (ppb). Compound not detected in this sample, but present in another. .

J Semi-quantitative value due to QA/QC data validation requirements. .

1

TABLE 7.

VALID ANALYTICAL RESULTS OIL/WATER SEPARATOR SAMPLES VOLATILE ORGANIC COMPOUNDS, PESTICIDES/PCBs AND TOTAL PETROLEUM HYDROCARBONS 1990 REMEDIATION INVESTIGATION PUROLATOR PRODUCTS COMPANY

<u>TCL - VOC</u>	<u>SW-OWS</u>	SED-OWS	<u>SB26*</u>	<u>SB27:0-4</u>	<u>\$B:28:2-4</u>
Acetone Chloroform Toluene Chlorobenzene	91J 0.6J 	6800J 		 2J 1J	
TIC Volatiles					
Unknown Compounds Unknown Hydrocarbons Decane Undecane Undecane and Unknown Dichlorobenzene and Unknown Ethylmethylbenzene Trimethylbenzene	65J 120J 25JN 	50000J 24000JN 13000J 15000J 6200J 8800J	 	 	
TCL Pesticide/PCB					
Delta - BHC				130	
<u>Total Petroleum</u> <u>Hydrocarbons</u>	1100	180000	NA	3000	NA

Notes: All volatile and pesticide concentrations are in micrograms per kilogram (ug/kg) except SW-OWS which is in micrograms per liter (ug/l). Both units are equivalent to parts per billion (ppb). TPH concentrations are milligrams per liter (mg/l) for SW-OWS and milligrams per kilogram (mg/kg) for SED-OWS and SB27:0-4. Both units are equivalent to parts per million (ppm).
 -- = Compound not present in this sample but detected in another.

FAC

003

1230

J = Estimated value due to QA/QC criteria outside of control limits, value below Contract Required Quantitation Limit (CRQL), or compound being a TIC.

N = Identified TIC.

NA = Not analyzed for in this sample.

Sample from SB26 was collected at a depth of 5.5 to 7.5 feet.

9-55

TABLE7VALID ANALYTICAL RESULTSOIL/WATER SEPARATOR SAMPLESSEMI-VOLATILE ORGANIC COMPOUNDS1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

TCL Compounds	SW-OWS	SED-OWS	<u>5826</u>	<u>5827.0 4</u>	<u>5828:2-4</u>
Phenol				390J	
2-Methylphenol				230J	
4-Methylphenol				550J	•••
Nitrobenzene		220J		•••	
2,4-Dimethylphenol				550J	•••
Naphthalenc		400J		18000	•••
2-Methylnapthalene		1000J		6400 '	
Acenaphthylene				880J	
Acenaphthene		380J		25000	
Dibenzofuran	-	180J		15000	
Diethylphthalate			71J		
Fluorene	15J	650J		26000	
Phenanthrene	29J	3100J	55J	190000	
Anthracene		3100J		31000	
Fluoranthene	22J	2300J	79J	320000	
Pyrene	48J	2400J	69J	210000	•••
Benzo(a)Anthracene	21J		50 J	160000	
Chrysene	32J			130000	
Bis(2-Ethylhexyl)phthalate		1700.1		•••	
Benzo(b)Fluoranthene	60XJ	3400J	40J	330000XJ	
Benzo(k)Fluoranthene	60XJ	3400J		330000XJ	
Benzo(a)Pyrene	16J	1300J		130000	
Indeno(1,2,3-cd)Pyrene		890J		29000	
Dibenzo(a,h)Anthracene		400J		12000	
Benzo(g,h,l)Perylene		1000J		28000	•

TIC Compounds	<u>sw-ows</u>	SED-OWS	<u>5826</u>	<u>5827:0-4</u>	<u>SB28:2-4</u>
Total Unknowns	28300J	71000J	4900J	302000J	3120J
Total Unknown Hydrocarbons	46000J	96200J	160J	86000J	
Total Unknown PAH				344000J	
Total Unknown Alcohol	2800J				***
Benzofluoranthene			***	50000J	
Benzonaptholuran		•••		56000J	•••
Dimethylphenanthrene				36000J	
Dodecanamide, N, N-Bis(2-Hydro)			480.JN	-	
Heptadecane					370JN
Hexadecane					370JN
Hexadecanoic Acid			520JN		
Methyl Chrysene			-	50000J	
Tetradecanoic Acid	_	-	360.JN		

Notes: SW-OWS concentrations in micrograms per liter (ug/l + parts per billion (ppb)). All other concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)).

J = Semi-quantitative due to QA/QC criteria outside of control limits, value below Contract Required Quantitation Limit (CRQL), or compound being a TIC.

N - Identified TIC.

X - Identifies coeluting indistinguishable isomers.

--- - Compound not detected in this sample, but present in another.

TABLE 7 contd. VALID ANALYTICAL RESULTS **OIL/WATER SEPARATOR SAMPLES** METALS AND CYANIDE **1990 REMEDIAL INVESTIGATION** PUROLATOR PRODUCTS COMPANY

Analyte	<u>SW-OWS</u>	SED-OWS	<u>SB26</u>	<u>SB27:0-4</u>	<u>SB28:2-4</u>
Aluminum	933J	9700	13000J	10900J	13600J
Arsenic		7. 7J	5.0J	10.9J	3.4J
Barium	165BJ	256	98.8J	31 9J	156J
Beryllium			.60B	.61B	.67B
Cadmium	11.5J	44.0J		41.4	
Chromium	16.2J	153 J	18.5J	45.1J	37.7J
Copper	67.1J	425	23.5J	502J	41.4J
Lead	51.9J	158J	11. 4J	58.3	12.3J
Mercury	***	.65	.24J	.43J	.25J
Nickel		73.5	22.8	129	31.0
Tin		26.5		8.4 '	
Zinc	269J	767	75.1J	675J	78.0J
Cyanide		2.7J		4.3	•••

Notes:	All concentrations, except for SW-OWS, are in milligrams per kilogram
	(mg/kg = parts per million (ppm)). Units for SW-OWS are micrograms per
	liter $(ug/l = parts per billion (ppb))$.

- J =
- Analyte not detected in this sample but present in another. Semi-quantitative due to QA/QC requirements. Value is above Instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL). B =

FAC 003 1232

TABLE 8VALID ANALYTICAL RESULTSUNNAMED DRAINAGE WAY SEDIMENT SAMPLESVOLATILE ORGANIC COMPOUNDS1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

TCL Compound	<u>TS1:2-3</u>	<u>TS2:0-1</u>	<u>TS2:2-3</u>	<u>TS4:0-1</u>	TS21:0-1 (TS4:0-1_Dup.)	<u>TS6:0-1</u>	<u>TS7:0-1</u>	TS20:0-1 (TS7:0-1_Dup.)	<u>TS9:0-1</u>
2-Butenone Trichloroethene	 3J	 2J	8	 5J	 6J	6	3J	1J 7J	 3J

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)). No volatile organic compounds were detected in TS1:0-1, TS1:5-6, TS2:5-6, TS3:0-1, TS3:2-3, TS3:5-6, TS4:2-3, TS4:5-6, TS5:0-1, TS5:2-3, TS5:5-6, TS6:2-3, TS6:5-6, TS6:0-1.

Semi-guantitative due to concentration below Contract Required Quantitation Limit (CRQL).

- - Compound not detected in this sample, but present in another.

VALID ANALYTICAL RESULTS UNNAMED DRAINAGE SEDIMENT SAMPLES SEMI-VOLATILE ON NIC COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

				TABLE	8 contd.				
TCL Compounds	<u> 751:0-1</u>	<u>TS1:2-3</u>	<u>152:0-1</u>	<u> 152:2-3</u>	<u>152:5-6</u>	<u>T53:0-1</u>	<u>T54:0-1</u>	T521:0-1 (T54:0-1 Dup.)	<u>T54:2-3</u>
Phenol	-	·	•••			••		·	
4-Methylphenol	•			•••	•••	50J			•••
Nitrobenzene		•••	•••		470J				
Benzoic Acid	•	82J		60.1		240.J	780J	360J	***
Naphthalene	110J	330J	190J	66.J	•••	350J	3301	120J	
2-Methyinaphihaiene	130J	540	330J	110J	•••	620	490	130J	
Acenaphthylena		76J	120J			72J	69J		
Acenaphihene		51J	95.1	•••	•••	67J	120J	•••	
Dibenzoluran		160.J	120.1			200.0	170J	•••	+
Fluorene	•••	65J	140J		•••	73.1	140J	***	
Pentachiorophenol		•••	•••	•••	•			•••	•••
Phenanthrene	540J	560	1200	99J	•••	670	1500	260J	
Anthracene	140J	76J	1703			100 J	210J		
Di-n Butyiphthalate		140J			•••	67.J	66J	160J	
Fluoranthene	890	890	1500	200 J		560	2500	300J	
Pyrene	430J	520	950	110J		600	1700	•••	
Benzo(a)Anthracene	300J	530	1600	130J		810	1100	200J	
Chrysene	420J	480	860	140J		480	1100	280.1	 .
Bis(2-Ethylhexyl)phthelete	***	60J				+	100J	330J	82J
Di-n-Octyl Philodete			•	<u> </u>					·
Benzo(b)Fluoranthene	690XJ	1300XJ	1300XJ	190JXJ	•••	1000XJ	1700/1	460XJ	-
Benzo(k)Fluoranthene	690XJ	1300%	1300XJ	190JXJ	•	1000%.J	1700)(J	460XJ	
Benzo(a)Pyrena	300J	440J	600	100J		320J	770	300J	-
Indeno(1,2,3-cd)Pyrene	120J	130J	3001	58J		190J	310.1	200J	
Dibenzo(a,h)Anthracene		62J				56J	96.1	_	
Benzo(g.h.i)Perylens	110J	160J	470	51J		300J	360J	190J	
1,2,4-Trichlorobenzene			•••		46J				
4-Chloro-3-Methylphenol		•==	•••	•••				*	-
TIC Compounds									
Benzenesmine, Hydrochloride					930JN		-		
BenzoFluorene								-	-
BenzoPyrene	310J								
Decane			•••						
4-Methyl Octane	***	•••		***	•••	•••			200JN
Total PCB	•••	3500J	•••	3690J		30600 J	6700J	·	
Total Unknown Aldehyde	4900J	*	•••			•••			
Total Unknown Hydrocarbon	4520.1	***		520J		_ 1700J	14140J		3030J
Total Unknown Sub.Hydrocarbon	5400J	•••	•••	•••		• •••			
Total Unknown PAH		•••	•••	•••	•••			***	
Total Unknowns	1840J	36260J	80600J	14430J		83800J	20370J	263200J	2250J

Notes: All concentrations in micrograms per kilogram (ug/kg - parts per billion (ppb)).

No semi-volatile organic compounds were detected in TS1:5-6, TS3:2-3, TS3:5-6, TS5:5-6.

Semi-quantitative due to GA/QC criteria outside of control limits, value below Contract Required Quantitation Limit (CHOL) or compound being a TIC.

N = Identified TiC.

L

X = Identifies coeluting indistinguishable isomers.

-- • Compound not detected in this sample, but present in another.

EAC 003 1234

.

TABLE ((cont'd)

a)

								T520:0-1		
TCL Compounds	T54:5-6	T55:0-1	155:2 3	T56:0-1	T56:2·J	T56:5-6	TS7:0-1	(TS7:0-1 Dup.)	TS8:0-1	T59:0-1
								<u></u>		
Phenol	•••	***	•••		-	•	•••	100J		
4 Methylphenol		•••	••		•••	•••	210J	320J		290J
Nirobenzene	•-•	•••								
Benzolc Acid	***		•••	130J		•-	230J	440.J	640J	180J
Naphthalene		45J			•		440J	460.J	5503	470J
2 Methylnophthalene		80J	•••	45J			550J	560J	690J	690J
Acenaphthylena		130J			59.1			110.1		1403
Acenaphthene							330J	470.1	840J	350J
Dibenzoluran		51J			-		290J	310J	540J	330J
Fluorene	•	130J	•••		59J		340J	450J	600J	320J
Pentachlorophenol			•••	•••		•		370J	440J	•
Phenanthrone	43J	380.1		84J	120J	•••	4300	6600	8300	3900
Anthracene		92J					570J	770J	950J	690J
DI-n-Butylphthelute				•••		•••	•••		390J	
Fluoranthene	75J	310J		140J	130.1	45J	15000	15000	20000	11000
Pyrene	55J	250J	•••	100J	94J		5600J	11000	13000J	6700
Benzo(a)Anthracene	54J	250J	•••	100.J	94J		3900.1	6000	11000	4400
Chrysene	42J	150J		74J	67J	•••	5100J	7000	11000	5500
Bis (2-Ethylhexyl)phthalate		533				•••	690J	12008	600.1	440.3
Di-n-Octyl Phtholate			•••	•••		•	440J	-		
Benzo(b)Fluoranthene	86XJ	290XJ		1803.3	120XJ	42J	12000XJ	16000XJ	3000000	17000XJ
Benzo(k)Fluoranthene	60X.I	290XJ		160XJ	120XJ		12000XJ	18000XJ	30000XJ	17000XJ
Benzo(a)Pyrene	52J	150J	•••	87J	55J	•••	5600J	8200	11000	6200
Indeno(1,2,3-cd)Pyrene		58J		•-•		•••	1800J	4000	6000	4100
Dibenzo(a,h)Anthracene			•••	•••			830J	800J .	1500J	1000.1
Benzo(g.h.)Perylene		62J	•••	•••			1800J	3900	6300	4900
1,2,4-Trichlorobenzene			•••			•••		-		
4-Chioro-3-Methylphenol			•••	•••	•••	•••		-		160J
TIC Compounds										
Benzeneamine, Hydrochioride			•••					-		
BenzoFluorene		230J		••••				-		
BenzoPyrene	••••							_		
Decane			•••	150JN						
4-Methyl Octane						•••		-		***
Total PCB				1310J				-		•••
Total Unknown Aldehyde							•••			
Total Unknown Hydrocarbon			•••	36001			78000.)		111200J	52800J
Total Unknown Sub.Hydrocarbon										
Total Unknowns	700.1	5490J	600J	5670.1	2070J	1020J	369000.0	386600.J	394300J	168100J
					20100	14844		*		1001000

Notes: All concentrations in micrograms, per kilogram (ug/kg = parts per billion = (ppb)).

No semi-volatile organic compounds were detected in TS1:5-6, TS3:2-3, TS3:5-6, TS5:5-6.

J -- Semi-quantitative due to QA/QC criteria outside of control limits, value below Contract Regulated Quantitation Limit (CRQL) or compound being a TIC.

N - Identified TIC.

्र-२-२-

X

 Identifies coeluting indistinguishable isomers.

-- • Compound not detected in this sample, but present in another.

B - Contaminant found in associated blank. Sample value is greater than 10 times the associated blank value.

FAC 003 1235

TABLE 8 contd.VALID ANALYTICAL RESULTSUNNAMED DRAINAGE WAY SEDIMENT SAMPLESPESTICIDE/PCB COMPOUNDS1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

TCL Compound	<u>TS1:0-1</u>	<u>TS1:2-3</u>	<u>TS2:0-1</u>	<u>152:2 J</u>	<u>TS3:0-1</u>	<u>TS4:0-1</u>	TS21:0-1 <u>(TS4:0-1_Dup.)</u>	<u>TS5:0-1</u>	<u>TS6:0-1</u>	<u>TS7:0-1</u>	TS20:0-1 (TS7:0-1_Dup.)
Heptachlor Epoxide		•-•		•••	•	*	•••			31	*==
Dieldrin		•		•••		•••				39	
Arochlor 1260			•••				240	***	***		
Arochlor 1254	570	3400C	1500C	1100C	6800C	3000C		210	1200C	***	570

Notes: All concentrations in micrograms per kilogram (ug/kg = parts per billion (ppb)). No pesticide/PCB compounds were detected in TS1:5-6, TS2:5-6, TS3:2-3, TS3:5-6, TS4:2-3, TS4:5-6, TS5:2-3, TS5:5-6, TS6:5-6, TS6:0-1, TS9:0-1.

C = Value confirmed by GC/MS analysis.

FAC 003 1236

- . Compound not detected in this sample, but present in another.

ç,

TABLE 8 contd.VALID ANALYTICAL RESULTSUNNAMED DRAINAGE WAY SEDIMENT SAMPLESMETALS AND CYANIDE1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

Analyte	<u>TS1:0-1</u>	<u>TS1:2-3</u>	<u>TS1:5-6</u>	<u>TS2:0-1</u>	<u>TS2:2·3</u>	<u>TS2:5-6</u>	<u>TS3:0-1</u>	<u>TS3:2-3</u>	<u>TS3:5-6</u>	<u>TS4:0-1</u>	TS21:0-1 {TS4:0-1_Dup.}
Aluminum	15400J	20000J	12100J	10100J	15200J	14800J	14600	21800J	15300	8620	10100
Antimony											10.68J
Arsenic		6.3J	9.2J	15.7	12.0	2.4	•••	•••	23.0J	_	
Barium	510	327	126	260J	637J	127J	455	253	174	830J	194J
Beryllium	.65B	.768	.40B	.658	.958	.60B	.63B	1.0B	.408	.448	.30B
Cadmium	9.6J	6.7J	•••	44.8J	59.1J	1.5J	49.4J			55.6J	372J
Chromium	68.4	56.1	16.5	246J	208J	22.0J	373	27.8	22.3	150J	3920J
Copper	146J	72.4J		181J	217J	4.9BJ	338	-		542	- 814
Lead	61.5J	45.8J	13.2	153J	126J	43.9J	199J	16.0	14.0	109J	108J
Mercury	.44	2.3	.12	.88	.60		. 99 J			.57J	.97J
Nickel	38.7	34.9	23.0	41.8	59.9	20.9	73.0	21.4	21.5	96.5J	1510J
Tin				7.7	5.2B		5.1B		_	7.7 ·	-
Zinc	217J	160J	58.3J	443J	386J	80.7J	964	102J	65.1	621J	1090J
Cyanide	.82	16.7		.87	1.3		3.7	-		19.8	49.5

Notes: All concentrations are in milligrams per kilogram (mg/kg = parts per million (ppm)).

- - Analyte not detected in this sample but present in another.

J = Semi-quantitative due to QA/QC requirements.

B = Value is above instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

Analyte	<u>TS4:2-3</u>	<u>TS4:5-8</u>	<u>TS5:0-1</u>	<u>TS5:2-3</u>	TS5:5-6	<u>TS6:0-1</u>	<u>TS6:2-3</u>	<u>TS6:5-6</u>	<u> TS7:0-1</u>	TS20:0-1 (TS7:0-1_Dup)	<u>TS8:0-1</u>	<u>TS9:0-1</u>
Aluminum	18400	18100	20600J	25100J ~~	14000J	21100J	22100J	14400	6300J	10500J	9850	15600J
	10400	10100	200003	201000							8030	
Antimony			••••	•••			•-•					
Arsenic	9.5J	5.0J		•••	8.8J	•••		~ -	6.0J	5.5	6.8J	5. 8J
Barium	254	230	243	297	166	257	334	179	183	224J	319	222
Beryllium	.89B	.66B	.698	.94B	.30B	.718	.858	.468	.32 B	.828	. 40B	.688
Cadmium	81.5J	22.4J	52.6J	2.7J		4.73	18. 8J		25. 9 J	38.3J	56.8J	28.1J
Chromium	87.1	30.0	39.4	40.9	23.0	32.7	40.6	16.8	.157	299J	226	347
Copper	79.9	34.2	104J				33.3	-	269J	349J	427	329
Lead	17.3	14.1	36.9J	18.6	11.0	25.8	18.2	12.8	143J	190J	218J	192J
Mercury			.21	.40		.29	.19	11J	.62J	.68	L08.	.58
Nickel	60.1	35.5	63.9	30.9	21.8	30.3	38.4	24.1	57.0	60.2	77.0	83.9
Tin	•	6.08						-	6.5	13.1	12.6	16.7
Zinc	96.7	65.0	126J	111J	58.4J	113J	132J	61.2	619J	801J	794	855J
Cyanide	1.1		61.0	.74	• •• ••	2.2	1.5	-	1.6	1.2	1.3	1.4

5.1 1-1

Notes: All concentrations are in milligrams per kilogram (mg/kg = parts per million (ppm)).

- - Analyle not detected in this sample but present in another.

J = Semi-quantitative due to QA/QC requirements.

B = Value is above instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

TABLE 9 PREVIOUS INVESTIGATIONS ANALYTICAL RESULTS PUROLATOR PRODUCTS COMPANY

Organica in	Musta 18) Sampi	• •-•	i July 28, 1980 Area 1 Soli 20052	Area 2 Sol 20052	Area 2 Soli 20051	Area 3 Soli 2015	Ares 4 Set 20121	N.Cinch Sed. 30057	5.0heb Sod. 39538	N. Obyt Water 901-0	S. Chair Weiter SQ120	NYSDEC N_Ditch Set £1	March 25, 1981 002 Water £7	Aras 8 Watar £1.,	Tan" Wener £19.	Set CSSE		Jane 10, 1981 Ares 1/2*** Sol <u>\$1-1\$1-51</u>	Arms 4 Ball <u>81-181-94</u>	Ares 6 Water 61-161-08	8.00cm Wexer <u>81-181-80</u>
Citarolom)	NA	NA	NA	NA	NA	NA	NA	N/A	N/A	N/A	-	-	-	-		N/A	200	-	NA	-
* Mediyiana		NA	MA	NA	NA	NA	NA	NA	N/A	N/A	MA	-	-	-			MA	876	205	NA .	1
1-1.2 Dicks		NA	MA	MA	NA	HAL	MA	MMA	NA	NA	NA		-	-		MA	-	-	-	~	-
1,1,1-Trichi		NA	NA .	NA	N/A	NA	MAR	NA	NA	MAA.	NA	21	-	28	-	N/A	ALM.	-	-	N/A	
Trichlaroet	hene	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	34	5	180	- 44	NA	NA	204	-	NA	-
alpha-BHC		MAA	N/A	N/A	NA	N/A	NA	NA	N/A	NA	N/A	N/A	N/R	0.02	-	NA	NA	390		N/A	- 1
gamma-8H	c	N/A	NA	N/A	N/A	N/A	MA	NA	N/A	N/A	NA		-	-	-	NA	NA	39	-	N/A	-
ALCHA-ETTEO	euter	M/A	N/A	NA	NA	NA	NA	N/A	MAR	NA.	N/A	-	-		-	M/A	N/A		-	NA	18.87
Heptachior	,	MA	N/A	NA	NA	NA	NA	NVA.	N/A	N/A	MAA	-	-		-	N/A	N/A	20		N/A	-)
PCB-1248		Nja	NA	NA	NA	N/A	NJA	H/A	NA	NA	N/A	-		-	-	N/A	NJA	-	320000	NA	-
Metata Juan	<u></u>																				· [·
Arsente		-	440	250	80	30	808	138		-	-	-	-	-	-	34	2.9	28	NA	-	–
Berythum		-	-	-		-	-	~	-	-	· _	-	-	-	_	33	-	-	-	-	
Commium		i i i	33	3	4	200	1200	2300	70	6.134	0.017	6.000	6.016	8.007	6.005	31	130008	22	MA		-
Chromeum		120	1400	380	540	3200	1200	540	760	0.214	-	0.040	0.005	16	0.006	480	130009	10	NA	14	-
Comper		240	330	310	380	500	\$300	680	540	0.165	-	0.546	0.008	0.014	-	1008	13000	25	NA	8.046	0.025
Loog		140	130	108	140	100	1100	180	280	-	-	-	8.04	-	-	-230	- 180	-	N/A	0.080	- 1
Mercury		-	-	-		-	-		-		-	-	-	-	-	0.84	• 🗕	0.57	NA	-	- 1
Nichel		54	58	52	40	100	108	-	97	8.035	-	-		-	0.61	800	~400	13	, NA		- 1
Sher			-		-	-	-			~	-	9.01	9.007	8.007	0.012	0.16	-	0.24	NA	-	- /
Salunkata		30	100	3	100	200	180	228	140		-	-	-	-	-	• 🛥	-		N/A	-	-
Theilium		26	20	30	20	200	20	20	20	~	_	-	-			-	-	-	NA	-	
Zne		70	130	80	2908	290	32000	300	388 .	0.27	0.038	1.3	0.875	6.006	0.005	2	35040	17	N/A		6.1
Cynadda		N/A	NA	NA	NA	NA	N/A	NA	NA	N/A	N/A	-	6.016	8.013	-	N/A	N/A	N/A	NA	N/A	NA I

c

٠.

diam's second مغالا ما ججا أله

. .

1

.

natyces parterning by AECAA. Research. Location of "Facet Sol" unknown, (Area 1/2) - Composite voll train Area 1 and Area 2.

TABLE 9 PREVIOUS INVESTIGATIONS ANALYTICAL RESULTS PUROLATOR PRODUCTS COMPANY

.

.

s	ingenting design	Event: Location; Methic: Semple dt	USEPA Area 1 Sol 22521	July 28, 1999 Area 1 Soli 20012	tres 2 Sat 20022	Aren 2 Sol 2952 <u>1</u>	Arus 3 Soli 301 <u>323</u>	Area 4 Sel 20121	H.Cilich Sed. 39952	S.Dinch Sed. 30238	H. Cilisti Water <u>\$10149</u>	S. Cilicin Vision <u>90120</u>	Nysbec N.Dhch Sed £1	March 23, 1981 002 Weier £1	Area 8 Weter £1.,	Taar Watar £10_	141 396		Jama 10, 1981 Area 1/2 ⁴⁴ Sol 8 <u>1-161-83</u>	Ares 4 Sol <u>81-181-84</u>	Area 6 Vialur 81-101-68	9.00x0 Viewer 91-101-0
¢	Nerolenik		-	NA	MA	NA	NA	N/A	MA	164A	PLA.	MA	-	-	-			14M	700	-	N/A	-
· •	Anthylana (Nazida		NA	N/A	N/A	NA	NA	N/A	NA	N/A	NA	MM	-	-	-		-	N/A	810	200	NM .	8
	1,2 Oknererthene		N/A	NA	MA	N/A	MAR	HA	N/A	N/A	NA	NA	-	-	-	1	MA	-	-	-	-	
	1,1-Trichleroethine		N/A	N/A	NA.	NAR.	N/A	NA	NA	N/A	NA	NA	21	-	21		N/A	MAR	-	-	N/A	•
	vichiordelhene		NGN.	NA	PMAR.	N/R	H/R	N/R	NA	MAR	NA	NA	34	5	180	46	MAR	NA	206		MA	- 1
- 4	Ione-BHC		NA	MA	NA	MA	N/A	N/R	54,8 6	NM.	NA	MA	MA	NA	0.02		MA	MA	350	-	MA	-
•	amma-BHC		N/A	NA	NA	N/A	NA	NA	NA	MAR	N/A	MAR		-	-	-	MAA	N/A	30	-	N/A	1
	name-Endoquilles		HAR	N/A	NA	NA	NA	N/R	N/A	N/A	N/A	MA					MA	N/A			N/R	· 0.67
	legiachier		Hat.	N/A	Mat	N/A	NA	N/A	NGR.	N/A	NA	HA	-		-	-	NA	NA	20		NA	-
P	C8-1246		NA	N/A	MA	NA	N/A	N/A	NA	M/A	N/R	N/A	-	~	~		Mar	MA	~	220000	MAA	-
1	interio (anterio												•									
	reants		-	440	. 230		36	#0#	320		-	-	-		-	-	58	11	36	MAR	-	-
	laryddynt		-	-	-		-	-	-	-	-	· •••	-	-	-	-	33	-		-	-	- /
•			4	33	3	4	200	1208	2308	70	8.134	0.817	0.000	8.010	0.097	0.005	31	130660	22	NA	-	-
	Tromas .		139	1400	300	540	3200	1200	940	768	8.214		0.040	0.005	18	0.006	490	130000	10	NA.	\$4	-
	CODOCT		240	530	318	205	500	5309	880	340	0.165	-	0.540	0.008	8.014	-	1000	13000	25	N/A	6.648	6.625
			140	128	100	148	108	1109	180	200			-	6.04	-	-	-238	- 160		MA	6.090	- (;
	Amoury		-	-		-	-	-	-	-	-				-	-	9.64	· -	8.57	NA		- 11
	licited		54	50	52	40	108	100	-	97	0.635	-				9.63	800	-100	33	NA	-	- 1
	äver		-			-			-	~		-	6.01	0.007	9.067	8.012	6.16	-	6.24	MAR		-
	alankata .		39	100	3	100	200	100	220	140	-	-	~	-	-	-	·	-	-	MA		- (
	hallon		26	20	20	20	200	20	2	38	-		-	-			-	-	-	MAR		-
			70	139		2909	290	32000	500	300	6.27	6.630	1.3	0.075	6.000	8.088		25060	17	NA		6.1
•	(yestide		N/A	N/A	N/A	N/A	NA	N/A	NA	N/A	N/A	N/A	-	9.816	0.013	-		N/A	N/A	N/A	N/A	NA
																					•	

All arguets concententients are in parts per fallen (ppin), all motals concentrations are in parts per millen (ppin). Compared not descend in this anaper, but present in anyther. Compared not analyzed for in this compte.

Car

HYSDEC 6

:

.

.

Languesen and the MECNA. Research. Location of "Facet Sel" universe. Jorag 1/2) - Composite cell trans Area 1 and Area 2.

٩,

TABLE 10 VALID ANALYTICAL RESULTS SURFACE WATER SAMPLES VOLATILE ORGANIC COMPOUNDS 1990 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

			SW-10					
TCL Compounds	<u>SW-1</u>	<u>SW-2</u>	<u>(SW-2 Dup.)</u>	<u>SW-3</u>	<u>SW-4</u>	<u>SW-5</u>	<u>SW-6</u>	<u>SW-7</u>
I, I-Dichloroethane	·					·	0.4J	
cis-1,2-Dichloroethene	0.2J	0.7J	0.6J				5J	0.5J
Trichloroethene		113	10	26J			2J	
Chloroform	0.03J	0.08J	0.07 j					
1,1,1-Trichloroethane		5J	4					
Chloromethane	61	6J	4	24J			6J	4J
Acetone				34BJ	5J	3J		
Carbon Disulfide				0.1J			0.IJ	
TIC Compounds								
Unknown Compounds	1.0J			2.2J	0.5J		1.5J	0.9J
Unknown Hydrocarbons				7.9J				

Notes: All concentrations are in micrograms per liter (ug/l = parts per billion (ppb)).

Of the compounds detected, only TCE has a guidance value (11ppb) for Class C waters as presented in NYSDEC Water Quality Standards, Parts 700-705, effective September 1, 1991.

--- = Compound not present in this sample but present in another.

J = Semi-quantitative due to concentration below Contract Required Quantitation Limit (CRQL), data validation requirements or compound being a TIC.

B = Contaminant found in associated blank. Sample value is greater than 10 times the associated blank value.

54.62

FAC 003 1241

(

TABLE 10 contd.VALID ANALYTICAL RESULTSSURFACE WATER SAMPLESSEMI-VOLATILE ORGANIC COMPOUNDS1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

	SW 10 CL Compounds SW 1 SW 2 (SW 2 Dup.) SW 3 SW 4 SW 5 SW 8 SW 7												
TCL Compounds	<u>SW-1</u>	<u>SW 2</u>	(SW-2 Dup.)	SW-3	SW-4	<u>SW-5</u>	SW-6	<u>SW-7</u>					
bis (2-Ethythexyl)phthalate	•••			5J		-	9 J	4 J					
Benzoic Acid	•••	•••		•				3J					
1,2-Dichlorobenzene		•••		*			2J	2J					
TIC Compounds													
Dimethylheptadecane				52J			198J	—					
Tetramethylpentadecane	****			48J		-	-	-					
Trimethyldodecane	•••				. 	-	38J	72J					
Unknowns				62J	•		192J	990J					
Unknown Hydrocarbons	-		***	462J	•••		490J	1570J					
Unknown Cyclic Hydrocarbons		•••			•••	-	28J	-					

NOTES: All concentration are in micrograms per liter (ug/l = parts per billion (ppb)).

Of the compounds detected, only 1,2-Dichlorobenzene has a standard (5.0 ppb) for Class C waters as presented in NYSDEC Water Quality Standards, Parts 700-705, effective September 1, 1991.

Compound not present in this sample but present in another.

EAC 003 1242

ji L

TABLE 10VALID ANALYTICAL RESULTSSURFACE WATER SAMPLESMETALS AND CYANIDE1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

	NYS			SW-10		·			
<u>Analyte</u>	<u>sws</u>	<u>SW-1</u>	<u>SW-2</u>	(SW-2 Dup.)	<u>SW-3</u>	<u>SW-4</u>	<u>SW-5</u>	<u>SW-6</u>	<u>SW-7</u>
Aluminum	100	174 B	127 B	134 B	76 6	133 B	379	194 BJ	548J
Arsenic	190 ¹					***	3.0 B	***	
Barium	NS	81.8 B	149 B	150 B	1100	45.8 B	81.4 B	163 BJ	240 J
Cadmium	5	•==	*	***	5.4			77.8 J	76.6 J
Chromium	16		***		11.6	****	•••	1290J	2190 J
Copper	22		****	***	36.7J		27.0J	29.0J	70.81
Lead	110	2.7BJ		***	15.7 J		9 .9	11.3J	28.11
Nickel	2185	***	****					***	62.21
Zinc	30		18.6 BJ	17.9BJ	153	30.2	171	335 J	894J
C ride	5.2 ²		***		20.5B	41.3		***	12.7

Notes:
NYS SWS
NS
1
2
J
В

All concentrations are in micrograms per liter (ug/l = parts per billion (ppb)).

New York State Surface Water Standard for Class C waters as presented in NYSDEC Water Quality Standards, Parts 700-705, effective September 1, 1991, based on a reported average hardness of 125 ppm. No standard.

= Dissolved form.

= As free cyanide.

= Analyte not present in this sample but present in another.

= Estimated value due to QA/QC requirements.

= Value is above Instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

003 1243

FAC

TABLE 11VALID ANALYTICAL RESULTS
GROUNDWATER SAMPLESVOLATILE ORGANIC COMPOUNDS
1990 REMEDIAL INVESTIGATION
PUROLATOR PRODUCTS COMPANY

TCL Compounds	NYS GWS	MWU-2	MWD-1	MWD-20 (MWD-1 dup.)	MWD-2	MWD-3	MWD-4	MWD-5	MWD-8	<u>MWD-7</u>	MWD-8	MWD-9	<u>MWD-10</u>	MWD-11	<u>MWD-12</u>	<u>MWD-13</u>	MWRB-1
Methylene Chioride	5		698J						-		***	_			-	 .	36J (
1,1-Dichloroethane	. 5		2J	-	2J			0.3J		1J		0.8J			•••	1J	
cls-1,2 Dichloroethene	5		32J	41J	41	0.4J		19J	0.3J	160J	7J	9	0.8J	23J		47J	
Trichloroethene	5		120J	140J	190J		4	10J	6.J	64J	40J	44	-	-	_	160	
1,1-Dichloroethene	5	~			2J					1J	***	-					·
Chloroform	7		*		0.2J		•••	-	1J	0.06J	0.1J	0.05J	_	***		0.1J	
1,1,1-Trichloroethane	5	~		6J	13J					0.4.1		0.9J				0.6J	
Vinyl Chloride	2	~				0.4J				33J	-			26J			_
1,2-Dichloroethane	5					0.3J		-					_			-	***
Ethylbenzene	5	***	_			0.4J					_						—
Trichlorolluoromethene	5	***	****	19 J	·	0.2J		0.4J		****	0.1J	_					
Isopropylbenzene	5				-	0.7J					***		-				
trans-1,2-Dichloroethane	5							0.2J		2J	0.3J	1		1J		0.3J	
Chloromethane	5							-							-		8J
Acetone	50		-					-			-	-	-		-	-	88J
TIC Compounds																	
Unknown Compounds	NS	-			26J	0.9J		0.7J			2.4J			_			
Unknown Hydrocarbons	NS			5.0J							0.9J						_
Hexane	NS	_		3.03						_			-				2.0JN
								-									8.931V

Notes: All concentrations are in micrograms per liter (ugA - parts per billion (ppb)).

NYS GWS - New York State Groundwater Standard as presented in NYSDEC Water Quality Standards, Parts 700-705, effective September 1, 1991.

NS =

Compound not present in this sample, but present in another.

Semi-guantitative due to concentration below Contract Required Quantitation Limit (CRQL), data validation requirements or compound being a TIC.

8 Contaminant found in associated blank. Sample value is greater than 10 times the associated blank value.

N - Identified TIC.

No standard.

Groundwater samples were collected during the 1990 RI using a WaTerra Invitial pump consisting of a studyless steel check valve and tellon tubing. USEPA Region II representatives have raised concerns that sampling groundwater monitoring wells with this pump may result in a loss of volatile organic compounds, thus blashing volatile organic compound analytical results low. Therefore, the data presented on this table are assumed to represent minimum concentrations of volatile organic compounds in the groundwater samples. USEPA Region if has since re-sampled selected monitoring wells utilizing approved baller methodology as presented in Appendix H.

TABLE 11 contd.VALID ANALYTICAL RESULTS
GROUNDWATER SAMPLESSEMI-VOLATILE ORGANIC COMPOUNDS
1990 REMEDIAL INVESTIGATION
PUROLATOR PRODUCTS COMPANY

TCL Compounds	MWU-2	MWD-1	MWD-20 (MWD-1 Dup.)	MWD 2	MWD-3	MWD-4	MWD-5	MWD-6	<u>MWD-7</u>	<u>MWD-8</u>	<u>e-Gwm</u>	<u>MWD-10</u>	<u>MWD-11</u>	<u>MWD-12</u>	<u>MWD-13</u>
bis (2-Ethylhexyl)phthalate Benzoic Acid	 		•••• •••	4J 	••• ···	 	•••	 	••••	•			 ນ		
TIC Compounds															
2,5-Cyclohexadione-1,4-Dione Unknown Oxygonated Alliane 1,2-Benzenediol,3-Fluoro- Total Unknowns	•••	 74J	 	 	 172J	••• ••• •••	8.0JN 	 	···· ··· ···	 76J	 16JN 116J		10.J 20.J	 32J	

NOTES: All concentrations are in micrograms per kilogram (ug/kg + parts pur billion (ppb)). Of the compounds detected, only bis(2-Ethylinexy),phihaiele has a standard (50 ppb) as presented in NYSDEC Water Quality Standards, Parts 700-705, effective September 1, 1991. --- • Compound not present in this sample but present in another.

Semi-quantitative due to concentration below CROL or data validation requirements.

Identified TiC.

JN

TABLE 11 contd.VALID ANALYTICAL RESULTSGROUNDWATER SAMPLESMETALS AND CYANIDE1990 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

	A	NYS	NAME T A			MWD-20	MWD-20F					
	Analyte	<u>GWS</u>	<u>MWU-2</u>	<u>MWD-I</u>	MWD-1F	(MWD- Dup.)	(MWD-IF Dup.)	<u>MWD-2</u>	<u>MWD-3</u>	<u>MWD-4</u>	<u>MWD-4F</u>	<u>MWD-5</u>
	Aluminum	NS	6360	29800J	125B	22500	137B	29900	21100	4570	186B	39400
	Antimony	3*			NA		NA					40.1B
	Arsenic	25		9.2B		10.2	2.2B	7.3B	6.5B	3.4B	·	3.0B
	Barium	1000	140B	778	75.4B	917	76.0B	491	547	171B	56.3B	679
	Beryllium	3*		1.6B	NA	1.2B	NA	1.1B	1.2B			1.5B
	Cadmium	10							11.3	35.2		55. 8
	Chromium	50	18.1	249	33.4J	296	43.3J	54.0	52.4	202	145J	55.0
	Copper	200	31.21	1523	15.6B	1541	17.2B	168	148	73.71	9.5	12001
	Lead	25	10.1 J	36.2J		40.2J			46.8J	8.7J		1111
	Mercury	2		.25				.26				5.6
:	Nickel	100**		74.1		71.7		88.4	62.3	86.7		79.1
4	Silver	50			· · · ·						,	
	Zinc	300	104	261J	7.2B	222J	10.1B	413	264	66.1J	5.6B	615
	Cyanide	100		36.7	NA	32.8	NA	•	36.6	99.4	NA	

Notes: All concentrations in micrograms per liter (ug/l = parts per billion (ppb)).

NYS GWS = New York State Groundwater Standard as presented in NYSDEC Water Quality Standards, Parts 700-705, effective September 1, 1991.

No standard.

NS

B

- = Guidance value.
- Tentatively proposed USEPA MCL
- --- = Analyte not present in this sample but present in another.
 - = Semi-quantitative value due to QA/QC requirements.
 - = Value is above Instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).
- NA = Analyte not analyzed for in this sample.
- F = Filtered sample.

TABLE 11 (cont'd)

Analyte	NYS <u>GWS</u>	MWD-6	MWD-7	MWD-8	MWD-9	MWD-10	MWD-11	MWD-11	E MWD-12	<u>MWD-13</u>	MWRB-1
<u>Auguno</u>		<u>PILIP V</u>	<u>14412 1</u>	<u>Printz v</u>	<u>pres</u>		<u>Energy</u>	<u>mag-11</u>			
Aluminum	NS	9080	43300	8900	29600	6380	9710	131B	95500J	45500J	102B
Antimony	3*							NA	45.8BJ	43.5BJ	
Arsenic	25	3.9B	7.1B	3.7B	20.4	5.1B	6.8B	5.1B		6.7BJ	
Barium	1000	294	739	517	672	· 118B	237	113B	911J	613J	
Beryllium	3*		1.8B		1.4B			NA	4.2BJ	1.9BJ	
Cadmium	10		6.9		10.5						
Chromium	50	20.5	92.8	17.2	960	27.6	47.2		318J	1540J	
Copper	200	31.8J	274	34.IJ	456	30.9J	68.7J	9.1B	337J	353J	
Lead	. 25	50.1J	58.2J	27.8J	45.8J	6.2J	15.3J		146J	56.8J	
Mercury	2			.25	.77				.25J		
Nickel	100++		117		338	64.1			290J	602J	
Silver	50				10.2						
Zinc	300	124	698	147	254	65.0 J	106	6.3B	1180J	792J	10.7BJ
Cyanide	100				31.9			NA			***

Notes: All concentrations in micrograms per liter (ug/l = parts per billion (ppb)).

NYS GWS = New York State Groundwater Standard as presented in NYSDEC Water Quality Standards, Parts 700-705, effective September 1, 1991.

No standard.

NS

B

F

- Guidance value.

= Tentatively proposed USEPA MCL

= Analyte not present in this sample but present in another.

= Semi-quantitative value due to QA/QC requirements.

- Value is above Instrument Detection Limit (IDL), but below Contract Required Detection Limit (CRDL).

NA = Analyte not analyzed for in this sample.

= Filtered sample.

TABLE 11 contd.VALID ANALYTICAL RESULTSVOLATILE ORGANIC COMPOUNDSGROUNDWATER SAMPLES1986 REMEDIAL INVESTIGATIONPUROLATOR PRODUCTS COMPANY

Compound	<u>D-1</u>	<u>D-2</u>	<u>D-4</u>	<u>D-5</u>	<u>D-6</u>	<u>D-7</u>	<u>D-8</u>	D-8 (<u>DUP</u>)	<u>D-9</u>	<u>D-11</u>	D-11 (DUP	<u>D-12</u>	<u>D-13</u>	<u>PW-3</u>	FT
I, I-Dichloroethene	5.3														
t-1,2-Dichloroethene	31	176		11.5	2.96	189	25.4	23.4		14 Q	12		140	8.85	
1,1,1-Trichloroethane	2.5 J	46.5												1.50	
Trichloroethene	140	438	7.3 Q	10.0	13.9	66.5	51.3	55.1	34				268	9.57	2.97
Tetrachloroethene	1.0 J													0.35	0.48
Chlorobenzene				1.42											
Vinyl Chloride						14.0			3.1 J	15 Q	22				
Trichlorofluoromethane										`				0.86	
1,1-Dichloroethane									2.3 J					0.58	11.4
Methylene Chloride															8.03
Chloroform													43.6		
Total Xylenes												11B			

NOTES: All concentrations are in micrograms per liter (ug/l = parts per billion (ppb)).

-- = Compound not detected in this sample, but present in another.

Semi-quantitative value due to QA/QC data validation requirements or value below CRQL.

Q = Qualitative value due to QA/QC data validation requirements.

B = Compound found in associated blank. Sample value is greater than five times the associated blank value.

FAC 003 1248

ľ.

TABLE 11 contd. VALID ANALYTICAL RESULTS SEMI-VOLATILE ORGANICS COMPOUNDS, **PESTICIDES AND PCBs GROUNDWATER SAMPLES** 1986 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY

Compound	<u>MWD-1</u>	<u>MWD-9</u>	<u>MWD-11</u>	MWD-11 (DUP)	<u>MWD-12</u>
Pentachlorophenol	300				
Bis(2-ethylhexyl)phthalate	7 Q	2	3	4	3
4,4' - DDT				0.02	
Methoxychlor	3.0				

NOTES:

All concentrations are in parts per billion (ppb). Compound not detected in this sample but present in another. =

Qualitative due to QA/QC data validation requirements. 0 =

> FAC 003 1249

TABLE 11 contd. VALID ANALYTICAL RESULTS TOTAL AND DISSOLVED METALS AND CYANIDE **GROUNDWATER SAMPLES 1986 REMEDIAL INVESTIGATION PUROLATOR PRODUCTS COMPANY**

	Analyte	MWD-1 <u>Total</u>	MWD-1 Fill,	MWD-3 <u>Total</u>	MWD-3 Fin.	MWD-4 Total	MWD-4 Fill.	MWD 9 Totel	MWD-9 Filt.	MWD-10 Total	MWD-10 Fir.		MWD-11 Filt.	MWD-11D Total	MWD-11D <u>Filt.</u>	MWD-12 <u>Total</u>	MWD-12 Fill.		MWU-2 <u>Fik.</u>
	Arsenic	12 J		10 J	5	5 J		10 J		16 J		9 J	3	12 J	5	41 J		18 J	'
	Cadmium					7	•••-									. 	•••	6	
	Chromium	280	42	41		119	67	58	11	64		62		78		135		106	
	Copper	115		135		68		137	29	86	***	125	21	157		193		355	
	Lead	50		53		14		18		28		21		69	*	63	•••	17	
	Mercury			0.2	0.1	0.1		0.2	•-•	0.1		0.2	0.1	0.1	•				
	Nickel	65		69		61		68		109		78		•		201		218	
	Zinc	165 J	-	208 J		75 J		130 J		251 J		162 J		218 J		566 J		648 J	
7	Cyanide	51 J	NA	24	NA	100	NA	27			NA		NA		NA		NA	NA	NA

NOTES:	All concentrations are in parts per billion (ppb).
	D-11D is duplicate sample of D-11.
=	Analyte not detected in this sample, but present in another.
NA =	Analyte not analyzed for in this sample.

Semi-quantitative value due to QA/QC data validation requirements.

. TABLE 12

SUMMARY STATISTICS FOR PACET SITE, BY CHEMICAL AND MEDIUM/AREA

	Num.	Num.	Lovest	Highest	Geon.	95 P at.	Min.	Hax.
	Times	Samples	Detected	Detected	Mean	Upp. Conf.	Detect.	Detect
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
Vinyl Chloride	. 3	13	0.40	28.0	0.06	•	0.5	6.0
Methylene Chloride	2	13	2.00	69.0	1.91	•	1.0	20.0
1,1-Dichloroethene	1	13	1.00	1.9	0.06	•	1.0	12.0
1,1-Dichloroethane	6	13	0.30	2.0	0.69	•	1.0	1.0
cis-1,2-Dichloroethene	11	13	0.30	160.0	5.70	•	1.0	1.0
Chloroform	4	13	0.05	2.0	0.59	•	1.0	12.0
1,2-Dichloroethane	1	13	0.30	0.3	0.09	•	1.0	12.0
1,1,1-Trichloroethene	4	13	0.90	11.0	1.09	•	1.0	5.0
Trichloroethene	9	13	4.00	190.0	9.69	•	1.0	1.0
Ethylbenzene	1	13	0.40	0.4	0.91	•	1.0	12.0
Frichlorofluoromethane	4	13	0.10	19.0	0.42	•	1.0	10.6
trans-1,2-Dichloroethane	6	13	0.20	2.0	0.03	•	1.0	12.0
Isopropylbenzene	1	13	0.70	0.7	0.95	•	1.0	12.0
Benzoic Acid	1	11	3.00	3.0	20.62	•	50.0	50.0
bis(2-Ethylhexyl)phthalate	1	13	4.00	4.0	4.91	. •	10.0	10.0
Aluminum	13	13	4570.00	95500.0	20016.06	•	•	•
Antimony	3	13	40.10	45.0	21.54	•	35.0	35.6
Arsenig	12	13	3.00	20.4	5.25	•	2.0	2.0
Barium	13	13	118.00	911.0	450.14	•	•	
Beryllium	•	13	1.10	4.2	1.04	•	1.0	1.0
Cadmium	5	13	6.90	55.0	5.20	. •	5.0	5.(
Chromium	13	13	17.20	1540.0	104.24	•	•	
Copper	13	13	30.90	1200.0	144.06	•	•	
Lead	12	12	6.20	146.0	36.19	•	•	
Mercury	6	13	0.25	5.6	0.21	•	0.2	0.
Nickel	10	13	62.30	602.0	03.12	•	39.0	39.(
Bilver	1	13	10.20	10.2	4.30	•	6.0	
Zinc	13	13	65.00	1180.0	257.85	•		
Cyanide		13	31.90	99.4	9.82	· ·	10.0	10.0
Tin	-	13	16.10	16.1	0.39	•	15.9	15.5

FAC 003 1251

F

TABLE 12 contd.

			TIPB-OLO	MUGASCOL (N)	ltered)			
Analyte	Num. Tines Detected	Num. Semples Analyzod	Lowest Detected Cong.	Highest Detected Conc.	Geon. Mean Conc.	95 Pct. Upp. Conf. Limit	Nin. Detect. Limit	Max. Detect. Limit
Aluminum	3	3	131.00	106.00	147.230	•	•	•
Arsenic	2	3	2.20	5.10	2.239	•	2	2 .
Barium	3	3	56.30	113.00	78.384	•	•	•
Chromium	2	3	30.35	145.00	25.552	•	6	6
Copper	3	3	9.10	16.40	11.234	•	•	•
Ling	3	3	5.60	0.65	6.733			

4

• •

EAC 003 1252

TABLE contd.

				dwater (Back	around)			
	Mum. Times	Num. Samples	Lowest Detected	Highest Detected	Geom. Mean	95 Pct. Upp. Conf.	Min. Detect.	Mex. Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
Aluminum	1	1	6360.0	6360.0	6360.0	•	•	•
Berium	1	1	140.0	140.0	140.0	•	•	•
Chromium	1	1	10.1	18.1	10.1	•	•	•
Copper	1	1	31.2	31.2	31.2	•	•	•
Load	1	1	10.1	10.1	10.1	•	•	•
Linc	1	1	104.0	104.0	194.0	•	•	

EAC 003 1253

SUMMARY STATISTICS FOR PACET SITE, BY CHEMICAL AND MEDIUM/AREA

	Num.	Num.	Lovest	Highest	Geom.	95 Pct.	Min.	Max.
_	Times	Samples	Detected	Detected	Nean	Upp. Conf.	Detect.	Detect
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
Methylene Chloride	1	7	22.00	22.00	5.00	•	5.00	. 18.0
Acetone	2	7	5.00	34.00	7.28	•	10.00	14.0
1,2-Dichloroethene (total)	2	7	1.00	4.00	2.54		5.00	6.0
2-Butanone	1	7	9.00	9.00	5.97		10.00	12.0
Trichloroethene	2	7	2.00	5.00	2.89	•	5.00	6.0
Chlorobenzene	1	7	1.00	1.00	2.49		5.00	7.0
Benzoic Acid	1	5	990.00	990.00	936.06		1800.00	2000.0
Naphthalene	4	6	55.00	7600.00	411.40	•	370.00	360.0
2-Methylnaphthalene	5	6	45.00	3000.00	245.98	•	370.00	370.0
Acenaphthene	3	6	260.00	8300.00	515.01	•	370.00	410.0
Dibenzofuran	3	6	200.00	4900.00	421.14	•	370.00	410.0
Fluorene	3	6	250.00	\$400.00	512.60	•	370.00	410.0
Pentachlorophenol	2	4	49.00	54.00	215.16	•	1800.00	1000.0
Phonanthrene .	5	6	84.00	77000.00	1332.59	•	370.00	370.0
Anthracene	3	6	560.00	10000.00	747.41	•	370.00	410.0
Di-n-butylphthalate	2	4	60.00	110.00	126.62	•	380.00	410.0
Fluoranthene	5	6	100.00	110000.00	1760.94	•	370.00	370.0
Pyrene	5	6	84.00	65000.00	1298.79	•	370.00	370.0
Benzo(a) anthracene	5	6	66.00	43000.00		•	370.00	370.0
Chrysene	5.	6	54.00	32000.00	781.53	•	370.00	370.0
bis(2-Ethylhexyl)phthalate	3	5	72.00	430.00	158.00	•	370.00	410.0
Benzo(b)fluorenthene	5	6	52.00	69000.00	1265.06	•	370.00	370.0
Benzo(k)fluorenthene	5	6	52.00	69000.00	1265.06		370.00	370.0
Benzo(a) pyrene	4	6	51.00	33000.00	933.39	•	370.00	410.0
Indeno(1,2,3-cd)pyrene	3	6	490.00	16000.00	755.02	•	370.00	410.0
Dibenzo(e,h)anthracene	3	6	190.00	5200.00	306.74		370.00	410.0
Benzo(g,h,i)perylene	3	6	440.00	17000.00	753.66	•	370.00	410.0
Aroclor-1240	5	7	320.00	11000.00	756.15	-	90.00	91.0
Aroclor-1254	1	7	1000.00	1000.00	200.01		170.00	1000.0
Aluminum	7	7	6760.00	16400.00	10065.77	•		
Arsenic	7	7	5.40	247.00	17.39	•	•	•
Berium	7	7	88.40	2510.00	334.00	•		
Beryllium	7	7	0.39	7.60	0.75	•	•	-
Cadmium	5	7	2.90	78.90	5.75	•	1.10	1.3
Chromium	7	7	10.60	1220.00	05.66	•	•	

TABLE 12 ntd.

			(Continue TYPE-Soil (S		********			
·	Num. Times	Num. Samples	Lowest Detected	Highest Detected	Geom. Mean	95 Pct. Upp. Conf.	Min. Detect.	Mex. Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
Copper	7	7 ·	24.60	1210.00	110.42	•	•	•
Load	7	7	14.10	292.00	41.70	•	•	•
Nercury	4	7	0.12	0.51	0.12	•	0.10	0.11
Mickel	6	7	28.00	224.00	41.00	•	8.40	8.40
Selenium	1	7	11.00	11.00	0.63	•	0.43	2.30
Thallium	ĩ	7	16.70	16.70	0.43	• .	0.43	0.52
Sinc	7	7	44.10	2840.00	200.44	•	•	•
Cyanide	5	7	0.63	10.70	1.40	•	0.54	0.63
Tin	2	7	5.40	15.50	2.97	•	3.50	4.20

.

•

.

•

SUMMARY STATISTICS FOR FACET SITE, BY CHENICAL AND MEDIUM/AREA

----- TYPE-Soil (Subsurf.

	-	 	•	•	-	-	•	-	•	-			-		-	-	-
			_		-	_	_	_	-	-	-	-	_	-	_	-	-

	Num. Times	Num. Samples	Lovest Detected	Highest Detected	Geom. Mean	95 Pct. Upp. Conf.	Nin. Detect.	Max. Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit -	Limit
Acetone	6	70	7.00	170.00	7.52	9.83	10.00	73.00
Carbon Disulfide	2	70	1.00	4.00	2.04	2.96	5.00	7.00
1,1-Dichloroethane	4	70	1.00	5.00	2.03	3.02	5.00	7.00
1,2-Dichloroetheme (total)	7	70	2.00	110.00	3.44	5.24	5.00	7.00
Chloroform	1	70	5.00	5,00	2.90	2.98	5.00	7.00
2-Butanone	5	70	2.00	29.00	5.76	6.36	11.00	32.00
1,1,1-Trichloroethane	3	70	2.00	10.00	2.09	3.05	5.00	7.00
Trichloroethene	23	70	1.00	240.00	4.25	9.62	5.00	7.00
Bentene	2	70	2.00	3.00	2.06	3.00	5.00	7.00
Tetrach loroethene	· 1	70	1.00	1.00	2.03	2.95	5.00	7.00
Toluene	4	71	2.00	210.00	3.10	4.01	5.00	7.00
Ethylbenzene	3	71	7.00	520.00	3.10	4.54	5.00	7.00
Styrene	1	70	1.00	1.00	2.03	2.95	5.00	7.00
Xylene (total)	5	71	2.00	760.00	3.33	6.24	5.00	7.00
N-Nitroso-Di-m-propylamine	1	68	400.00	400.00	109.10	194.41	340.00	430.00
Benzoic Acid	•	68	67.00	2100.00	707.31	1112.01	1600.00	2100.00
Naphthelene	3 .	70	56.00	1200.00	192.29	215.52	340.00	430.00
2-Methylnephthelene	3	70	120.00	1550.00	197.17	226.60	340.00	430.00
Aconophthylene	2	60	47.00	360.00	105.33	196.66	340.00	430.00
Acenaphthene	2	69	77.00	670.00	100.41	200.01	340.00	430.00
Dibenzofuran	1	69	580.00	500.00	190.27	190.20	340.00	430.00
Pluorene	3	70	130.00	1050.00	193.32	200.97	340.00	430.00
N-Nitrosodiphenylamine	1	68	42.00	42.00	103.14	193.96	340.00	430.00
Pentachlorophenol	L	68	66.00	66.00	874.77	908.16	1600.00	2100.00
Phonanthrono	,	71 -	44.00	5350.00	105.02	241.97	340.00	430.00
Anthracepe	2	69	530.00	965.00	194.70	210.61	340.00	430.00
Di-n-butylphthalate	7	69	44.00	580.00	172.57	198.80	340.00	420.00
Fluoranthene	10	70	40.00	4700.00	173.53	230.42	340.00	430.00
Pyrene	7	70	45.00	3250.00	107.34	223.03	340.00	430.00
Butylbenzylphthalate	2	69	160.00	180.00	106.68	180.00	340.00	430.00
Benzo(a) anthracene	5	70	40.00	2000.00	193.74	226.15	340.00	430.00
Chrysene	7	71	110.00	2450.00	200.80	234.45	340.00	430.00
bis(2-Ethylhexyl)phthalate	22	70	40.00	1200.00	152.54	216.49	340.00	430.00
Di-n-octylphthalate		70	74.00	340.00	106.10	193.97	340.00	430.00
Benzo(b) fluoranthene	Ĵ	69	69.00	3650.00	190.42	224.41	340.00	430.00

EAC 003 1256

•

TABLE 12 contd.

****	*******	1	(Continu YPE=Soll (Su	•		************		********
	Mum .	Num.	Lowest	Highest	Geom.	95 Pct.	Min.	Nax.
	Times	Samples	Detected	Detected	Mean	Upp. Conf.	Detect.	Detect.
Analyte	Detected	Analyzed	CORC.	Conc.	Conc.	Limit	Limit	Limit
Benzo(k) fluoranthene	3	69	69.00	3650.00	190.42	224.41	340.00	430.00
Benzo(a) pyrene	1	69	1700.00	1700.00	193.26	212.26	340.00	430.00
Indeno(1,2,3-cd)pyrene	1	69	690.00	690.00	190.75	200.14	340.00	430.00
Dibanzo(a, h) anthrecone	I	69	360.00	360.00	100.96	360.00	340.00	430.00
Benzo(g,h,i)perylene	1	69	685.00	605.00	190.73	200.05	340.00	430.00
Aroclor-1248	6	71	140.00	31500.00	62.04	173.10	64.00	100.00
Aroclor-1254	2	70	190.00	310.00	95,98	105.21	170.00	1000.00
Aluminum	71	71	7170.00	29100.00	12434.26	14011.09	•	•
Antimony	4	71	8.60	23.70	4.26	4.70	7.10	9,30
Arsenic	70	71	1.50	32.40	5.82	7.71	2.70	2.70
Barium	71	71	33.30	831.50	109.43	142.45	•	•
Beryllium	67	71	Q423	1.10	0.43	0.55	0.21	0.24
Cedmium	29	71	1.30	3390.00	2.52	84.36	1.00	1.30
Chromium	71	71	12.50	13000.00	53.83	301.63	•	•
Copper	71	71	3.70	1910.00	34.19	109.00	•	• .
Lead	71	71	3.60	161.50	14.70	20.38	•	•
Nercury	21	71	0.12	1.95	0.09	0.10	0.10	0.13
Mickel	71	71	16.90	516.00	36.09	53.43	•	•
Silver	6	71	1.00	7.90	1.03	1.22	1.60	2.10
Linc	71	71	40.20	3460.00	110.30	200.56	•	•
Cyanide	27	71	0.57	167.00	0.75	4.53	0.54	0.63
Tin		71	4.20	193.00	2.51	5.73	3.20	4.20

FAC 003 1257

و به بوده و دو **دو مستقد ا**

SUMMARY STATISTICS FOR FACET SITE, BY CHEMICAL AND MEDIUM/AREA

----- TYPE=Soil-Oil/Wat. Sep. (Subsurf.) -----

	Num.	Num.	Lovest	Highest	Geom.	95 Pct.	Min.	Nex.
	Times	Samples	Detected	Detected	Hean	Upp. Conf.	Detect.	Detect.
Inalyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
folueae	1	3	2.00	2.00	2.62	•	6.00	6.00
Chlorobenzene	1	3	1.00	1.00	2.08	•	6.00	6.00
Nephthelene	1	3	15000.00	15000.00	836.34	•	390.00	400.00
2-Methylnaphthalene	1	3	5600.00	5600.00	602.21	•	390.00	400.00
Aconaphthone	1	3	21000.00	21000.00	935.61	•	390.00	400.00
Dibenzofuran	1	. 3	13000.00	13000.00	797.39		390.00	400.00
Diethylphthalate	1	2	71.00	71.00	119.16	•	400.00	400.00
Fluorene	1	3	22000.00	22000.00	950.23	•	390.00	400.00
Phenenthrone	2	3	55.00	190000.00	1270.54	•	400.00	400.00
Anthracene	1	3	58909.00	58000.00	1312.70	•	390.00	400.00
Fluorentheme	2 ·	3	79.00	320000.00	1716.34		400.00	400.00
Pyrene	2	3	69.00	210000.00	1425.72	•	400.00	400.00
Benzo(a) enthracene	2	3	50.00	160000.00	1169.61	•	400.00	400.00
Chrysene	1	3	130000.00	130000.00	1717.92	•	390.00	400.00
Benzo(b)fluoranthene	- 2	3	40.00	330000.00	1382.08	•	400.00	400.00
Benzo(k)fluoranthene	. 1	3	330000.00	330000.00	2343.47	•	390.00	400.00
Benzo(a)pyrene	1	3	130000.00	130000.00	1717.92	•	390.00	400.00
Indeno(1,2,3-cd)pyrene	1 .	3	35000.00	35000.00	1109.29		390.00	. 400.00
Dibenzo(a, h) anthracene	1	3	12000.00	12000.00	776.39	•	390.00	400.00
Denzo(g,h,1)perylene	1	3	34000.00	34000.00	1090.62		390.00	.400.00
Aluminum	3	3	10900.00	13600.00	12444.27	•		
Arsenic	, 3	3	3.40	10.90	5.70	•	•	
Barium	` 3	3	98.80	319.00	170.04	•	•	•
Beryllium	3	3	0.60	0.67	0.63	•		
Cedmium	1	3	41.40	41.40	2.10	•	1.00	1.00
Chromium	3	3	- 10.50	45.10	31.57	•	•	
Copper	3	3	23.50	502.00	70.75	•	•	•
Lead	3	3	11.40	50.30	20.14	•		•
Nercu ry	3	3	0.24	0.43	0.30		•	•
Nickel	3	3	22.80	129.00	45.01	•	•	•
Linc	3	3	75.10	675.00	150.13	•	•	•
Cyanide	1	3	4.30	4.30	0.65		0.51	0.51
Tin	1	3	0.40	0.40	2.01	•	3.20	3.30

EAC 003 1258

•

TABLE 12 (itd.

	Num.	Num.	Lovest	Wighest	Geom.	95 Pct.	Min.	Max.					
	Times	Samples	Detected	Detected	Mean	Upp. Conf.	Detect.	Detect.					
Malyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit					
Nethylene Chloride	1	20	15.00	15.80	1.9973	3.051	3.10	6.80					
1,1-Dichloroethane	1	20	0.50	0,50	0.5105	0.005	0.00	0.00					
trans-1,2-Dichlorostheme	2	20	17.70	22.60	0.9156	3.046	1.30	1.30					
1,1,1-Trichloroethene	•	20	11.60	48.10	10.6917	10.571	0.50	16.00					
Trichloroethene	11	20	5.03	253.00	11.7071	719.223	3.00	3.90					
Tetrachloroethene	5	20	5.46	20.50	3.1340	5.201	4.30	4.00					
Trichlorofluorometheme	2	2	16.70	29.00	22.0060	•	•	•					

.

TABLE 12 contd.

Analyte	Num. Times Detected	Num. Samples Analyzed	Lowest Detected Conc.	Nighest Detected Conc.	Geom. Meen Conc.	95 Pct. Upp. Conf. Limit	Min. Detect. Limit	Hax. Detect. Limit				
trans-1,2-Dichloroethene	5	21	5.75	22.2	1.2740	6.3440	1.30	1.3				
1,1,1-Trichloroethene	10	21	8.04	23.7	9.0790	14.5483	8.50	.19.0				
Trichloroethene	10	21	3.46	118.0	17.3334	91.9965	3.20	4.4				
Tetrachloroethene	4	21	7.31	150.0	2.0056	22.3635	0.30	4.0				
1,2-Dichlorobenzene	1	21	14.30	14.3	1.0009	1.6949	1.90	1.9				
Trichlorofluoromethane	1	t	14.20	14.2	14.2008	•		•				

÷ .

FAC 003 1260

. .

SUMMARY STATISTICS FOR PACET SITE, BY CHEMICAL AND MEDIUM/AREA ----- TYPE-Soil (Background) ------Mum. Num. Lovest Highest Geom. 95 Pct. Min. Max. Times Samples Detected Detected Mean Upp. Conf. Detect. Detect. Analyte Detected Analyzed Conc. Conc. Conc. Limit Limit Limit Acetone 3 5.00 5.00 5.63 11.0 13.0 Phonenthrone 3 120.00 120.00 162.68 350.0 410.0 Pluoranthene 220.00 220.00 199.10 3 350.0 410.0 220.00 Pyrene 3 220.00 199.10 350.0 410.0 1 Benzo(a) anthracene 3 140.00 140.00 171.25 1 350.0 410.0 Chrysene 3 120.00 120.00 162.68 410.0 350.0 Benzo(b) fluoranthene 1 3 230.00 230.00 202.07 350.0 410.0 230.00 Benzo(k) fluoranthese 1 3 230.00 202.07 350.0 410.0 Benzo(a) pyrene 3 130.00 130.00 167.08 350.0 410.0 Indeno(1,2,3-cd) pyrene 3 53.00 53.00 123.89 410.0 1 350.0 Benzo(g, h, i) perylene 1 3 60.00 60.00 129.12 350.0 410.0 Aluminum 14400.00 16300.00 15347.00 з 3 Arsenic 3 3 -4.00 7.40 5.14

103.00

0.71

42.20

33.40

5.90

0.85

30.60

105.00

94.66

0.62

5.20

20.05

0.19

22.98

90.22

.

0.1

0.1

25.70

87.90

0.50

10.00

12.90

16.00

72.70

4.00

0.15

TABLE 1 ntd.

FAC 003 1261

Berium

Copper

Mercury

Mickel

Lead

Zing

Beryllium

Chromium

Э

3

3

3

3

2

3

3

3

3

٩.

3

3

3

3

3

SUMMARY STATISTICS FOR FACET SITE, BY CHEMICAL AND MEDIUM/AREA

TYPE-Sediment-Drain Swale (Surf.) --

4

					•			
	Nun.	Num.	Lovest	Highest	Geon.	95 Pct.	Min.	Max.
	Times	Samples	Detected	Detected	Mean	Upp. Conf.	Detect.	Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
-	•							
2-Butanone	1	9	1.00	1.00	5.61	• •	12.0	10.0
Trichloroethene	5	9	2.00	6.00	3.65	•	6.0	9.0
Toluene	1	9	2.00	2.00	3.29	•	6.0	9.0
4-Methylphenol	3		50.00	300.00	213.07	•	370.0	760.0
Benzoic Acid	5	•	130.00	640.00	500.07	•	1900.0	3700.0
Naphthalene	•	9	45.00	550.00	235.57	•	370.0	370.0
4-Chloro-3-methylphenol	1	7	168.00	160.00	232.04	•	370.0	760.0
2-Methylnephthelene	9	9	45.00	690.00	268,69	•	•	•
Aconaphthylene	5	7	72.00	140.00	140.05	•	370.0	760.0
Aconaphthene	6	9	67.00	\$40.00	226.03	•	370.0	760.0
Dibenzofuran	7	9	51.00	540.00	210.40	•	370.0	760.0
Fluorene	7	9	73.00	600.00	221.44	•	370.0	760.0
Pentachlorophenol	1	7	440.00	440.00	1043.52	•	1000.0	3700.0
Phenanthrene	9	9	84.00	8300.00	1003.19	•	•	•
Anthracene	•	9	92.00	950.00	254.21	•	370.0	370.0
Di-n-butylphthelate	3	7	67.00	390.00	190.40	•	370.0	760.0
Fluoranthene	,	9	140.00	20000.00	1738.20	•	•	•
Pyrene	9	9	100.00	13000.00	1257.24	•	•	•
Benzo(a) anthracene	. 9	9	100.00	11000.00	1111.55	•	•	
Chrysene	9	9	74.00	11000.00	939.70	•	•	
bis(2-Ethylhexyl)phthalate	5	9	53.00	1500.00	294.01	•	370.0	760.0
Benzo(b)fluorenthene	9	,	100.00	30000.00	1945.75	•	•	•
Benzo(k)fluoranthene	,	9	180.00	30000.00	1945.75	•	•	•
Benzo(a) pyrene	9	9	07.00	11000.00	055.29			
Indeno(1,2,3-cd)pyrene	•	9	. 50.00	6000.00	403.73	•	370.0	370.0
Dibenzo(a, h) enthracene	5	9	56.00	1500.00	309.32		370.0	760.0
Benzo(g, h, 1) perylene	•	9	62.00	6300.00	554.10	-	370.0	370.0
Heptachlor epoxide	1	9	31.00	31.00	7.05	•	9.0	68.0
Dieldrin	1	9	39.00	39.00	14.92	-	18.0	140.0
Aroclor-1254	7	. 9	210.00	6800.00	050.07	-	290.0	1400.0
Aroclor-1260	1	9	240.00	240.00	143.15		100.0	1400.0
Aluminum	,	9	9360.00	21100.00	13336.27	-		
Antimony	1	9	10.60	10.60	5.34		0.1	
Arsenic	•	9	3.20	15.70	5.30	•	2.3	2.3
Barium	,	,	203.50	512.00	311.74	•	•••	
Boryllium	9	9	0.37	0.71	0.58	•	•	•
Cedmium	9	9	4.70	213.00	33.00	•	•	•
Chromiur	9	9	32.70	2035.00	198,06	•	•	•
1562 Jacob	9	9	21.00	678.00	202.56	•	•	•
Leed 1363	DA7	9	25.00	210.00	103.37	•	•	•
• • • • · •	~~=				7	·		

TABLE _ contd.

(Continued) TYPE=Sediment-Drain Swale (Surf.)												
Analyte	Num. Times Detected	Num. Samples Analyzed	Lowest Detected Conc.	Highest Detected <i>Conc.</i>	Geom. Mean Conc.	95 Pct. Upp. Conf. Limit	Nin. Detect. Limit	Nex. Detect. Limit				
Hercury	. 9	9	0.21	0.99	0.57	•	•	•				
Nickel	9	9	30.30	003.25	75.60	•	•	•				
Ziac	9	9	113.00	964.00	433.01	•	•	•				
Cyanide	9	9	0.02	61.00	3.16	•	•	•				
Tin	6	•	5.10	16.70	5.47	•	3.7	3.1				

EAC 003 1263

SUMMARY STATISTICS FOR PACET SITE, BY CHEMICAL AND MEDIUM/AREA

1.

	Num. Times	Num. Samples	Lovest	Highest	Geom.	95 Pet.	Nin.	Max.
Inelyte	Times Detected	Analyzed	Detected Conc.	Detected Conc.	Mean Conc.	Upp. Conf. Limit	Detect. Limit	Detect. Limit
melle	hereneas	WHETLEAR	LUUU.	CUHU,	CUIIC .	êter e	ntmre	DIMI?
frichloroeth ene	2	12	3.00		3.30	•	6.00	7.00
litrobenzene	1	12	470.00	470.0	219.30	•	380.00	470.00
Benzoic Acid	2	12	80.00	02.0	635.09	•	1800.00	2100.00
1,2,4-Trichlorobeazeae	1	12	46.00	46.0	180.68	•	300.00	470.00
fephthelene	2	12	68.00	330.0	190.05	•	300.00	430.00
-Methylnaphthalene	2	12	110.00	540.0	206.11	•	300.00	430.00
Cenaphthylene	2	12	59.00	76.0	166.05	•	300.00	430.00
lcenaphthene	1	12	51.00	51.0	179.04	•	300.00	430.00
Dibenzofur an	1	12	160.00	160.0	196.94	•	300.00	430.00
luorene	2	12	59.00	85.0	168.41	•	380.00	430.05
Phenanthrene	• -		43.00	560.0	172.07	•	380.00	430.00
Anthracene	1	12	76.00	76.0	105.10	•	300.00	430.00
Di-n-butylphthelate	1	12	140.00	140.0	194.76	•	300.00	430.00
Fluoranthene	5	12	45.00	890.0	176.96	•	300.00	430.00
Pyrene	4	12	55.00	520.0	172.55	•	300.00	430.00
Benzo(a) anthracene	· 4	12	54.00	530.0	174.90	•	300.00	430.00
Chrysene	6	12	42.00	480.0	166.24	•	380.00	430.00
ois(2-Ethylhexyl)phthelete	2	12	60.00	82.0	160.85	•	380.00	430.00
Senzo(b) fluorentheme	5	12	42.00	1300.0	102.03	•	300.00	430.00
Senzo(k)fluorantheme	۰ د	12	88.00	1300.0	206.07	•	300.00	430.00
Benzo(a) pyrene	4	12	52.00	440.0	160.69	•	300.00	430.00
Indeno(1,2,3-cd)pyrene	2	12	50.00	130.0	173.54	•	300.00	430.0
Dibenzo(4, b) anthracene	1	12	62.00	62.0	101.90	•	380.00	430.00
Benzo(g,h,1)perylene	2	12	51.00	160.0	174.69	•	380.00	430.0
Aroclor-1254	2	12	1100.00	3400.0	150,10	•	100.00	210.0
luminum	12	12	- 12100.00	25100.0	17212.40	•	•	
Arsenic	•	12	2.40	23.0	2.07	•	0.50	2.3
Berium	12	12	126.00	637.0	232.74	•	•	•
Beryllium	12	12	0.30	1.0	0.64	•	•	
Zedmium	7	12	1.50	01.5	3.57	•	1.10	1.3
Chromium	12	12	16.00	208.0	36.12	•	•	•
Copper	12	12	4.40	217.0	• 17.36	•		
Lead	12	12	11.00	126.0	21.30		•	-
lercury	6	12	0.11	2.3	0.14	•	0.10	0.1
Mickel	12	12	20.90	60.1	30.37	•	•	,
Linc	12	12	50.30	386.0	30.46	•	•	•
Cyanide	5	12	0.74	16.7	0.65	•	0.57	0.6
	2	12	5.20	6.0	2.34		3.70	4.6

FAC 003 1264

:

TABLE 1 ontd.

SUMMARY STATISTICS FOR FACET SITE, BY CHEMICAL AND MEDIUM/AREA

	Num.	Num.	Lovest	Highest	Geom.	95 Pct.	Min.	Max.
	Times	Samples	Detected	Detected	Mean	Upp. Conf.	Detect.	Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
Methylene Chloride	1	3	8.00	8.00	7.01	. •	14.0	17.00
Phenanthrene	3	3	500.00	4400.00	1564.31	•	•	•
Anthrecene	1	3	1200.00	1200.00	1909.02	•	4300.0	6100.00
Fluorenthene	3	3	630.00	8500.00	2523.25	•	•	•
Pyrene	3	3	560.00	8300.00	2557.74	•	•	•
Benzo(a) anthracene	2	3	1700.00	4000.00	2445.21	•	4300.0	4300.00
Chrysene	2	3	2300.00	4800.00	2873.88	•	4300.0	4300.00
bis(2-Ethylhexyl)phthelate	1	3	1400.00	1400.00	2460.69	•	4300.0	9900.00
Benzo(b)fluoranthene	2	3	2300.00	4000.00	2704.43	•	4300.0	4300.00
Benzo(k)fluoranthene	2	3	2000.00	3700.00	2515.11	•	4300.0	4300.00
Benzo(a) pyrene	2	3	2000.00	3900.00	2559.63	•	4300.0	4300.00
Indeno(1,2,3-cd)pyrene	2	3	1100.00	2000.00	1678.63	•	4300.0	4300.00
Benzo(g,h,1)perylene	2	3	1000.00	1000.00	1570.01	•	4300.0	4300.00
Aroclor-1248	1	3	1100.00	1100.00	253.16	•	100.0	590.00
Aluminum	3	3	5480.00	6680.00	5999.79	•	•	•
Arsenic	3	3	7.50	13.20	10.19	•	•	•
Barium	· 3	3	130.00	398.00	222.00	•	•	•
Cadmium	3	3	96.20	003.00	225.51	•	•	•
Calcium	3	3	10200.00	176000.00	69763.78	• •	•	. •
Chromium	3	3	225.00	4340.00	063.35	•	•	•
Cobelt	1	· 3	6.00	6.80	3.49	•	4.0	5.20
Copper	3	3	200.00	2070.00	712.53	•	•	•
Iron	3	3	14100.00	20400.00	16133.70	•	•	•
Lead	3	3	40.30	111.00	60.46	•	•	•
Negnesium	3	3	4130.00	5870.00	4708.02	•	•	•
Manganese	З	3	165.00	632.00	345.94	•	•	•
Mercury	3	3	0.20	0.32	0.31	•	•	• .
Wickel	3	3	47.10	202.00	115.27	•	•	•
Potessium	2	3	010.00	1120.00	530.09	•	345.0	345.00
Venedium	2	3	11.00	15.40		•	0.3	0.30
Zinc	3	3	572.00	7730.00	1652.10	•	•	•
Cyanide	1	3	7.10	7.10	1.09	•	0.0	0.92

4

SUMMARY STATISTICS FOR FACET SITE, BY CHEMICAL AND MEDIUM/AREA

1

		TYPE-8	ediment-Maya	Crk. (Dwnga	rd)			
Analyte	Num. Times Detected	Num. Samples Analyzed	Lovest Detected Conc.	Nighest Detected Conc.	Geom. Mean	95 Pct. Upp. Conf.	Win. Detect.	Nex. Detect.
Acetone					Conc.	Limit	Limit	Limit
Nephthelene	1	1	290.00	290.00	290.00			
2-Methylnephthelene	1	1	3600.00	3600.00	3600.00	•	•	•
Aconaphthene	•	1	2500.00	2500.00	2500.00	•	•	•
Dibenzofuran	1	1	6400.00	6400.00	6400.00	•	•	•
Fluorene	1	1	4900.00	4900.00	4900.00	•	•	•
Phonenthropo	1	1	7600.00	7600.00	7600.00	•	•	•
Anthracene	1	1	55000.00	55000.00	55000.00	٠	•	•
Fluorenthene	1 .	1	14000.00	14000.00	14000.00	•	•	•
Pyrene	1	• 1	58000.00	58000.00	58000.00	•	•	•
Benzo(a) anthracene	1	1	56000.00	56000.00	56000.00	•	•	•
Chrysene	1	1	29000.00	29000.00	29000.00	•	•	•
bis(2-Ethylbexyl)phthelate	1	1	26000.00	26000.00	26000.00	•	•	•
Benzo(b) fluoranthene	1	1	990.00	990.00	390.00	•	•	•
Benzo(k)fluoranthene	1	1	36000.00	36000.00	36000.00	•	•	•
Benzo(a) pyrene	1	1	50000.00	50000.00	50000.00	•	•	•
Indeno(1,2,3-od)pyrene	1	1	22000.00	22000.00	22000.00	•	•	•
Benzo(g,h,1)perylene	4	1	6300.00	6300.00	6300.00	•	•	•
Aluminum	1	1	5900.00	5900.00	5900.00	•	•	•
Arsenic	· ·	1	11300.00	11300.00	11300.00	•	•	•
Berium	1	1	22.00	22.00	22.00	•	•	•
Beryllium	1	1	195.00	195.00	195.00	•	•	•
Cadmium	1	1	1.20	1.20	1.20	•	•	•
Calcium	1	1	24.10	24.10	24.10	•	•	•
Chromium	1	1	6390.00	6390.00	6390.00	•	•	•
Cobelt	1	1	92.20	92.20	92.20	•	•	•
Iron	1	1	8.40	0.40	92.20	•	•	•
Lead	1	1	21900.00	21900.00	21900.00	•	· •	
Magnesium	1	1	53.80	53.00	53.80	•	•	
Manganese	L	1	3930.00	3930.00	3930.00	•	•	
Mercury	1	1	276.00	276.00	276.00	•	•	
Nickel	1	1	0.06	0.86		•	•	
Potassium	I	1	23.90	23.90	0.86 23.90	•	•	.
Venedium	1	1	1630.00	1630.00	1630.00	•	•	.
Linc	1	1	19.60	19.60	19.60	•	•	.
	1	1	439.00	439.00		. •	•	. 1
				v	439.00	•	•	

.

.

TAB .2 contd.

SUMMARY STATISTICS FOR PACET SITE, BY CHEMICAL AND MEDIUM/AREA

.

6

Analyte	Num. Times	Num. Semplos Anelyzod	Lovest Detected Conc.	Highest Detected Conc.	Geom. Mean Conc.	95 Pct. Upp. Conf. Limit	Hin. Detect. Limit	Max. Detect. Limit
	Detected							
/inyl Chloride	1	2	2.00	2.00	3.67	•	13.50	13.50
l,1-Dichloroethane	L	2.	3.00	3.00	3.12	•	6.50	6.50
1,2-Dichloroethene (total)	2	2	2.00	43.00	9.27	•	•	•
l,1,1-Trichloroethane	1	2	11.00	11.00	5.90	•	6.50	6.5
Trichloroethene	1	2	130.00	130.00	20.55	•	6.50	6.5
lcenaphthene	1	2	71.00	71.00	124.27	•	435.00	435.0
Phenanthrene	2	2	170.00	450.00	276.59	•	•	•
nthrecene ,	2	2	50.00	130.00	0.62	•	•	
l-n-butylphthelate	· 1	2	59.00	59.00	-112.63	•	430.00	430.0
luoranthene	2	2	345.00	720.00	490.40	•	•	
Yrene	2	2	230.00	520.00	345.03		•	
enzo(a) anthracene	2	2	205.00	430.00	350.07	•	•	
hrysene	2	2	195.00	340.00	257.49			
is(2-Ethylhexyl)phthalate	2	2	46.00	71.00	57.15	•	•	
i-n-octylphthelate	1	2	130.00	130.00	167.18		430.00	430.0
enzo(b)fluorenthene	2.	2	395.00	690.00	522.06	•	•	
enzo(k)fluorenthene	2	2	395,00	670.00	522.06		•	
enzo(a)pyrene	2	2	205.00	350.00	267.86	•	•	
ndeno(1,2,3~cd)pyrene	1	2	99.00	99.00	145.09		430.00	430.0
enzo(g,h,i)perylene	1	2	99.00	77.00	145.09	•	430.00	430.0
eptachlor epoxide	1	2	15.00	15.00	1.66		10.00	10.0
roclor-1248	1	2	540.00	540.00	. 164.32	•	100.00	100.0
luminum	2	2	9290.00	9420.00	9354.77	•	•	
rsenic	2	2	4.90	11.30	7.44		•	•
erium	2	2	140.50	229.00	179.37	•	•	•
leryllium	1	2	0.36	0.36	0.22	•	0.26	0.2
admium	2	2	25.10	34.00	29.21	•		
thromium.	. 2	2	732.00	1280.00	967.97	•	•	. •
opper ,	2	2	33.70	40.45	36.92	•	•	•
eed	2	2	17.00	19.60	10.68	•	•	•
ercury	• 1	2	0.22	0.22	0.11	•	0.12	•.1
lickel	2	2	53.25	119.00	79.60	•		4.1
inc	2	2	106.00	120.00	116.40	•	•	•
Cynide -	2	2	0.74	1.75	1.14	•	•	•

FAC 003 1267

.

;

.

SUMMARY STATISTICS FOR FACET SITE, BY CHENICAL AND MEDICM/AREA

	Num.	Num.	Lovest	' Wighest	Geom.	95 Pct.	Nin.	Hax.
	Times	Samples	Detected	Detected	Nean	Upp. Conf.	Detect.	Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
Carbon Disulfide	1	2	15.00	15.00	7.75	•	•	
Trichloroethene	1	2	8.58	8.50	5.03	•	•	
2-Methylnaphthalene	. 1	1	72.00	72.00	72.00	•	•	•
Benzo(a) anthracene	1	2	3400.00	3400.00	940.21	•	520	520
Chrysene	1	2	2045.00	2045.00	729.10	•	520	520
bis(2-Sthylhexyl)phthelate	2	2	2200.00	7308.00	4007.49	•	•	•
Benzo(b)fluorenthese	1	1	150.00	150.00	150.00	•	•	•
Aroclor-1248	2	2	3300.00	11450.00	6146.95	•	•	•
Aluminum	2 -	2	7550.00	7640.00	7594.07	•	•	•
Antimony	2	2	11.70	22.00	16.04	•	•	•
Arsenic	2	2	4.10	7.25	5.45	•	•	•
Berium	2	2	318.00	731.50	402.30	•	•	•
Cedmium	2	2	622.00	613.00	711.12	•	•	•
Chromium	2	2	3940.00	8735.00	5066.51	•	•	•
Copper	2	2	459.00	964.50	665.36	•	•	•
Lead	2	2	110.00	298.50	101.20	•	•	· .
Nercury	2	2	0.52	0.94	0.70	•	•	•
Nickel	2	2	190.00	486.00	310.21	•	•	•
Silver	. 2	2	2.60	4.60	3.46	•	•	
Zinc	2	2	3880.00	11850.00	6780.71	•	•	•
Cyanide	2	2	25.50	39.40	31.70	•	•	•
Tin	2.	2	432.50	435.00	433.75	•		

4

SUMMARY STATISTICS FOR PACET SITE, BY CHEMICAL AND MEDIUM/AREA

Wat -TYPE-Su

rf.	Water-Hays	Crk.	(Upgrd)	************************
-----	------------	------	---------	--------------------------

Anelyte	Num. Times Detected	Num. Samples Analyzed	Lowest Detected Conc.	Highest Detected Conc.	Geom. Mean Conc.	95 Pct. Upp. Conf. Limit	Nin. Detect. Limit	Mex. Detect. Limit	
Chloromethane	1	1	6.00	6.00	6.00			•	
cis-1,2-Dichloroethene	1	1	0.20	0.20	0.20	•	•		
Chloroform	1	1	0.03	0.03	0.03	-			
Aluminum	1	1	174.00	174.00	174.00	•			
Berium	1	1	81.00	81.80	01.00	•	•	•	
Lead	1	1	2.70	2.70	2.70		•	•	•

TAL 12 contd.

.

SUMMARY STATISTICS FOR FACET SITE, BY CHEMICAL AND MEDIUM/AREA

----- TYPE-Sediment-Oil/Wat. Sep. -----

	Num.	Num.	Lovest	Highest	Geom.	95 Pct.	Min.	Mex.
	Times	Samples	Detected	Detected	Neen	Upp. Conf.	Detect.	Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	Conc.	Limit	Limit	Limit
Acetone	1	1	6800.00	6000.00	6800.00	•	•	•
Mitrobenzene	1	1	220.00	220.00	220.00	•	• •	•
Maphthalene	1	1	400.00	400.00	400.00	•	•	•
2-Methylnaphthalene	1	1	1000.00	1000.00	1000.00	•	•.	•
Acenephthene	1	1	380.00	300.00	300.00	•	•	•
Dibenzofuran	1	1	100.00	100.00	100.00	•	•	•
/luorene	1	1	650.00	650.00	650.00	•	•	•
Phenenthrene	1	1	3100.00	3100.00	3100.00	•	•	•
Anthracene	1	1	3100.00	3100.00	3100.00	•	•	•
Fluoranthene	1	1	2300.00	2300.00	2300.00	•	•	•
Pyrene	1	1	2400.00	2400.00	2400.00	•	•	
bis(2-Ethylhexyl)phthalate	1	1	1700.00	1700.00	1700.00	•	•	•
Benzo(b)fluoranthene	1	1	3400.00	3400.00	3400.00	•	•	•
lenzo(k)fluoranthene	1	1	3400.00	3400.00	3400.00	•	•	•
lenzo(a) pyreze	1	1	1300.00	1300.00	1300.00	•	•	•
Indeno(1,2,3-cd) pyrene	1	1	890.00	890.00	890.00	•	•	•
Dibenzo(a, h) anthracene	1	1	400.00	400.00	400.00	•	•	•
Benzo(g, h, 1) perylene	1	1	1000.00	1000.00	1000.00	•	•	•
Aluminum	1	1	9700.00	9700.00	9700.00	•	•	•
Arsenic	1	. 1	7.70	7.70	7.70	•	•	•
Berium	1	1	256.00	256.00	256.00	•	•	•
Cadmium	1	· 1	44.00	44.00	44.00	•	•	•
Chronium	L	1	153.00	153.00	153.00	•	•	•
Copper	1	1	425.00	425.00	425.00	•	•	•
Leed	1	1	150.00	150.00	150.00	•	•	•
Hercury	1	1	0.65	0.65	0.65	•	•	•
Wickel	1	1	73.50	73.50	73.50	•	• •	•
Linc	1	1	767.00	- 767.00	767.00	•	•	•
Cyanida	1	1	2.70	2.70	2.70	•	•	•
Tin	1	1	26.50	26.50	26.50		-	

; '

TABLE (contd.

Anelyte	Num. Times Detected	Num. Samples Analyzed	Lowest Detected Conc.	Highest Detected Conc.	Geom. Mean Conc.	95 Pct. Upp. Conf. Limit	Nin. Detect. Limit	Max. Detect. Limit			
Chloromethene	1	1	5.000	5.000	5.000	•	•	•			
cis-1,2-Dichlorostheme	1	1	0.650	0.650	0.650	•	•	•			
Chloroform	1	1	0.075	0.075	0.075	•	•	•			
1,1,1-Trichloroethane	1	1	4.500	4.500	4.500	•	•	•			
Trichlorostheme	1	1	10.500	10.500	10.500	•	•	•			
Aluminum	1	1	130.500	130.500	130.500	•	•	•			
Derium	1	1	149.500	149.500	149.500	•	•	•			
Zinc	1	1	18.250	10.250	10.250	•	•	•			
Cyanide	1	1	20.400	20.400	20.400	•	•				

TABLE 12 contd.

	SOLEWEI (TATISTICS PO	DR PACET SITI	, BY CHENIC	AL AND MEDI	M/AREA		
			E-Surf. Wate					
Abalyte	Num. Times Detected	Num. Samples Analyzed	Lowest Detected Conc.	Nighest Detected Conc.	Geon. Mean Conc.	95 Pct. Upp. Conf. Limit	Nin. Detect.	Nex. Detect,
Chloromethane	2	•			• • • • • •	MANEL C	Limit	Limit
Carbon Disulfide		4	4.0	6.0	4.90			
1,1-Dichloroethane	ĩ	4	0.1	0.1	0.22	•	•	•
cis-1,2-Dichlorosthene	•	4	0.4		0.45	•	1	1
Trichloroethene	-	2	0.5	5.0	1.50	•	1	1
1,2-Dichlorobenzene	•	2	2.0	2.0	1.00	•	•	•
Benzoic Acid	4	2	2.0	2.0	2.00	•	1	1
bis(2-Sthylhexyl)phthalate		2	3.0	3.0	8.66	•	•	•
Aroclor-1240	4	2	4.0	9.0	6.00	•	58	50
Aluminum	2	2	1.3	3.0	1.97	•	•	•
Barium	2	2	194.0	548.0	326.06	•	•	
Cadmium	2	2	163.0	240.0		•	•	•
Chronium	2	2	76.6	77.6	197.79	•	• • •	
Copper	2	2	1290.0	2190.0	77.20	•	•	
ead	2	2	29.0	70.0	1600.00	•	•	•
lickel	2	2	11.3	20.1	45.31	•	•	•
inc	1	2	62.2	62.2	17.82	•	•	•
Yanide	2	2	335.0		34.03	•	39	39
•	_ 1	2	12.7	894.0	547.26	•		
			/	12.7	7.97	•	10	

TABLE 12 rtd.

	Num. Times Detected	Num. Samples Analyzed	Lowest Detected Conc.	-011/Wat. Seg Nighest Detected Cong.	Geom. Mean Cong.	95 Pct. Upp. Conf. Limit	Nin. Detect. Limit	Max. Detect Limit
Analyte				5.0	5.0	•		•
	•	1	5.0	15.0	15.0	•	•	•
Chloromethane	1	1	15.0	29.0	29.0	•	•	٠
Fluorene		1	29.0	22.0	22.0	•	•	
Phenenthrene		1	22.9	48.4	48.0	•	•	•
Fluoranthene	1	1	48.9	21.0	21.0	•	• .	
Pyrene		ī	21.0		32.0	•	•	•
Benzo(a) anthracene	1	ī	32.0	32.0	60.0	•	•	•
ch ryselle	1	· .	60.0	60.0	60.0	•	•	•
Benzo(b) fluoranthene	1		60.0	60.0	18.0	•	•	•
Benzo(k) fluoranthene	1		18.0	10.0			•	•
	1	1	933.0	933.0	933.0		•	•
Benzo(a) pyrene	1	1	165.0	165.0	165.0	•	•	•
Aluminum	1	1	11.5	11.5	11.5	•	•	•
Berium	1	1	16.2	16.2	16.2	•	•	•
Cadmium	1	1	67.1	67.1	67.1	•	•	•
Chromium	1	, 1	51.9	51.9	51.9	•	•	•
Copper	ī	1	269.0	269.0	269.0	•	-	

FAC 003 12>3

.

THE CHEMICAL AND MEDIUM/AREA

TABL 12 contd.

SUMMARY STATISTICS FOR FACET SITE, BY CHENICAL AND NEDIUM/AREA

----- TYPE-Surf. Water-Drain Swale (Dwngrd)

	Num. Times	Num. Samples	Lowest Detected	Nighest Detected	Geom. Mean	95 Pct. Upp. Conf.	Min. Detect.	Mex. Detect.
Analyte	Detected	Analyzed	Conc.	Conc.	COAC.	Limit	Limit	Limit
Chloromethane	· 1	3	24.00	24.00	1.017	•	1.0	1.0
Acetone	3	3	3.00	34.00	7.990	•	•	•
Carbon Disulfide	1	3	0.10	0.10	0.292	•	1.0	1.0
bis(2-Ethylhexyl)phthalate	1	3	5.00	5.00	5.000	•	10.0	10.0
Endrin ketone	1	3	0.12	0.12	0.067	•	0.1	0.1
Aluminum	3	3	133.00	766.00	337.992	•	•	•
Arsenic	1	3	3.00	3.00	2.466	•	2.0	10.0
Berium	3	3	45.00	1100.00	160.064	•	•	•
Cadmium	1	3	5.40	5.40	3.232	•	5.0	5.0
Chronium	1	з '	11.60	11.60	4.709	•	6.0	6.0
Copper	2	3	27.00	36.70	15.026	•	8.0	8.0
Lead	2	3	9.90	15.70	5.377	•	2.0	2.0
Zinc	3	3	30.20	171.00	92.440	•		•
Cyanide	ī	3	41.30	41.30	10.107	•	10.0	10.0
Tin	1	3	20.50	20.50	10.902		15.9	15.9

.

TABLE EXPOSURE PATHWAY: INCESTION OF SEDMENTS IN AREAS 6 & 10 BY TRESPASSERS, PRESENT AND FUTURE SCENARIOS

....

...

			VALUB		
VARIABLE	RANGE	MOPORIT	USED	BATIONALE	REFERENCE
Receptor Population			Ministry a	Trapagars	
Body Weight (Kg)		/			
Youth (Age 9-15)	30.7 - 66.7	48.7	SO	SOIb percentile values in	EPH, 1989
				range; value used is sve.	
				of mage	
Duration of Expensive (Years)					
Youth	1 - 10	5	10	Total years in age group	
Ехропит Геариску (Дауз!Уант)					
Youth	1 - 273	136.3		Assume youth traspasses 1	
				divit during spring.	
		-		summer, and fall (39 weeks	
				total)	
Ingestion Rate (D(g/Day)					
Youth	100 - 200	150	100	Value used is specified	RAGS, 1989
·			0000	for children more than 6	
				ymen old	
Fraction Ingested from			<u> 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>		
Contemine of Source			•		
(Unisland)	•	•	1	Assume that all mil	RAGS, 1989
				contacted is contamicated	
Averaging Time (Days)					
Youth					
pontercinogeta	365 - 3650	1825	3459	Range, midpolot, & value	RAGS, 1969
carcicogect	10950 - 25550	18250	2550	used are based on exposure	
				antes	

EFH, 1989. Exposure Factors Handbook, EFA /600/8-89/043. Exposure Assessment Group, Office of Health and Environmental Assessment. 1989 RAGS, 1989. Risk Assessment Guidance for Superfund, Volume I, EFA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. SEAM, 1988. Superfund Exposure Assessment Manual, EFA 540/1-88/001. Office of Remedial Response. April 1988.

FAC 003 1275

TABLE	13
-------	----

TAELE ECPOSURE PATHWAY: INGESTION OF SEDIMENTS IN MAY'S CREEK BY LOCAL RESIDENTS.

2

PROENT AND	FUTURE SCENARIOS	

VARIABLE	RANGE	MIDPOINT	USED	BATIONALE	REFERENCE
Reseptor Population			\$ #0100	Lord Ruidents	
Inly Weight (Kg)		<u> </u>			
Small Child (Age 3-6)	•	•	T7 A	Value specified in EPH	EFH, 1989
Aduk	•	•	70	By econotice	RAOS. 1989
Duration of Exposure (Years)					
Small Child	1 - 3	. 2	3	Total years in age group	
Aduk	1 - 30	15		90th percentile for time	RAGS, 1989
				at a single residence	
Spears Frequency (Deys Year)		•			
Small Child	1 - 273	134.5	14	Assume 5 divit sutdoors	
				during summer & 3 d/s/c	
				during spring and fall (39	
				weeks tital)	
Adat	1 - 273	136.5	78	Assume 2 d/wt outdoors	
				during spring, summer, &	
				fall (39 weeks antal)	
ingestion Rate (Mg/Day)			8		
	•	•	200	Value used is specified in	RAGS, 1989
				BAGE	
Aduk	•	•	100	Value used is specified in	RAGS, 1989
				RAOS	
Fraction Ingested from					
Contaminated Source					
(Uniclass)	•	•	£	Assume that all soll	RAGS, 1989
				contexted is contamineted	
lveraging Time (Days)				۰.	•
Child					
Banaurcicogens	365 - 1095	730	1095	Range, midpolet, & value	RAGS, 1989
erticopers	10950 - 25550	18250	25550	used are based on exponents	
			-	éunice .	
Aduk					
Bancercinogene	365 - 10950	56.58	10950	Runge, midpoint, & value	RAGS, 1989
mitingens	10950 - 25550	18290	25150	used are based on arponare	
				dunidas	

2PH, 1989. Exposure Factors Handbook, EPA /600,3-49/043. Exposure Assessment Group, Office of Health and Environmental American 1989 RADS, 1989. Risk Austrations Guidance for Superfund, Volume I, EPA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. *EAM, 1988. Superfund Exposure Assessment Manual, EPA 540/1-88/001. Office of Remedial Response. April 1988.

•

FAC

VARIABLE	RANGE	MEPCONT	VALUE	RATIONALE	LEFELINCE
Receptor Population				Utility Workers	•
Body Weight (Kg)					
Adult	•	•	70	By apriveation	RAGS, 1989
Duration of Exposure (Years)					
Adult	1 - 30	15	2	Best professional judgement	
Espanire Frequency (Days/Year)	······································				
Adult	1 - 345	182.5	10	Assume majotanence of	
,				buried utilities is	
				sectomry 10 for d/yr	
Ingestion Rate (Hg/Day)					
Adult	•	•	100	Value used is specified in	RAGS, 1989
				RAGS	
Fraction Ingested from					
Contaminated Source					
(Uniters)	•	•		Assume that all soil	RAOS, 1969
				contacted is contaminated	
Averaging Time (Days)			2 84098		
Adult					
soncertizogeas	345 - 10950	5475	7300	Range, midpoint, & value	RAGS, 1989
carcinogena	10950 - 25550	18250	25590	used are based on exposure	
-				duration	

TABLE EXPOSURE PATHWAY: INGESTION OF ONSITE SUBSURFACE SOILS BY UTILITY WORKERS, PRESENT AND FUTURE SCENARIOS

EFH, 1989. Exposure Factors Handbook, EPA /600/8-89/043. Exposure Assessment Group, Office of Health and Environmental Assessment. 1989 RAGS, 1989. Risk Assessment Guidance for Superfund, Volume I, EPA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. SEAM, 1988. Superfund Exposure Assessment Manual, EPA 540/1-88/001. Office of Remedial Response. April 1988.

TABLE 13

	TA	BL	E	1	3
--	----	----	---	---	---

TABLE EXPOSURE PATHWAY: INCESTION OF ONSITE SURFACE SOLS BY TRESPASSERS, PRESENT AND FUTURE SCENARIOS

•			YALDE		
VARIABLE	RANCE	MIDPOINT	USED	RATIONALE	REFERENCE
Receptor Population		_ •	B aganisti,	Типринит	
Body Weishi (Ke)					
Youth (Age 9-18)	30.7 - 66.7	48.7	D	50th percentile values in	EFH, 1989
				tange; value and is ave.	
				of more	
Duration of Esposure (Years)					
Youth	1 - 10	5	10	Total years in age group	
Exposure Frequency (Days/Year)			in the second		
Yout	1 - 273	136.5	9	Assume youth trouptons 1	
				d/wt during spring,	
				summer, and fall (39 weeks	
			8	total)	
Ingestion Rate (Mg/Day)					
Youth	100 - 200	150	100	Value used is specified	RAUS, 1989
				for children more than 6	
				years old	
Fraction Ingested from					
Contemine of Source					
(Unitiess)	•	•	•	Assume that all soll	RAOS, 1989
				contacted is contaminated	
Averaging Time (Days)					
Yaith				•	
sonarcinogens	365 - 3650	1825	3650	Range, midpoint, & value	RAGS, 1989
tartinogets	10950 - 25550	18250	2550	sundars as based as arpanets	
	Ň			durition	

EFH, 1989. Exposure Factors Handbook, EFA 600.3-89/043. Exposure Assessment Group, Office of Health and Environmental Assessment. 1989 RAOS, 1989. Risk Assessment Guidance for Superfund, Volume 1, EFA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. SEAM, 1988. Superfund Exposure Assessment Manual, EFA 540/1-88/003. Office of Remedial Response. April 1988.

TABLE	EQPOSURE PATHWAY: INGESTION OF SEDIMENTS IN THE NORTH DRAINAGE DITCH BY TRESPASSERS, PRESENT	HE NORTH DRAINAGE DITCH BY TRESPASSERS, PRESENT
	AND FUTURE SCENARIOS	

the second s	AND FUTURE 3C				
VARIABLE	LANGE	MIDPOD	VALUE	RATIONALE	NEFERENCE
Respir Population			eerse s	Trespassers	
Body Weight (Kg)			ana ang		
Youth (Apr 9-18)	30.7 - 44.7	46.7		S0th perceptile values in	EFH, 1989
				range; value used is ave.	
				of more	
Duration of Exposure (Years)					
Youth	1 - 10	5		Total years in age group	
Exposure Frequency (Deys/Year)					
Youth	1 - 273	136.5	7	Assume youth traspesses 1	
				d/wg outdoors during	
				opring, summer, and fall	
			3 84 (143	(39 weeks/tital)	
Ingestion Rate (Mg/Day)					
Youth	100 - 200	150	100	Value used is specified	RAOS, 1969
х.				for children more than 6	
				years old	
Fractice Ingested from				•	
Contaminated Source					
(Unities)	•	•	r.	Assume that all soll	RAGS, 1989
				contacted is contactinated	
Averaging Time (Days)			West		
Youth	•				
soncarcinogens	365 - 3650	1825	345 0	Range, midpoint, & value	RAGS, 1989
carcinogens	10950 - 25550	18250	259	used are based on exposure	
				duration	_

EFH, 1989. Exposure Factors Handbook, EFA /600/8-89/043. Exposure Assessment Group, Office of Health and Environmental Assessment, 1989 RAGS, 1989. Risk Assessment Guidance for Superfund, Volume L EFA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. SEAM, 1988. Superfund Exposure Assessment Manual, EFA 540/1-88/001. Office of Remedial Response. April 1988.

FAC 003 1279

TABLE 13

TABLE 13

TABLE EXPOSURE PATHWAY: INGESTION OF SEDMENTS IN HEIGHTS DRAINAGE SWALE BY LOCAL RESIDENTS.

PRESENT AND FUTURE SCENARIOS VALUE REFERENCE USED BATTONALB VARIABLE LANCE MIDPOONT Receptor Population konta de cos Local Residents Body Weight (Kg) EFHL 1989 Small Child (Age 3-6) 11.4 Value specified in EFH 70 RAOS, 1989 By approaction Adult Duration of Esposure (Years) Small Child 1 - 3 2 3 Total years in age group 90th perceptile for time RAOS, 1989 1 - 30 Adult 15 30 st a single maidence Espassive Frequency (Doys/Year) 1 - 273 136.5 10 Assumes 5 d/wk outdoors Small Child during summer & 3 direk during spring and fall (39 (later edeew 1 - 273 136.5 Assume 2 drive outdoors Adult during spring, summer, & fall (39 weeks total) Ingenian Rate (Mg/Day) RAOS, 1989 Value used is specified in 200 Child RAGS RAGS 1989 100 Value used is specified in Adult 10 A S RACS Fraction Ingested from Conteminated Source RACS, 1969 Amone that all soil 1 (Unislass) betacionation ai betacaron Averaging Time (Days) 0.14 RAGS. 1989 365 - 1095 1095 Range, midpoint, & value Boncarcipogets 730 18250 25550 streed as presed as exposure 10950 - 25550 carcitogens dention Adult RAOS, 1989 5658 Range, midpoint, & value 10950 365 - 10950 acrossiboge to 18250 2559 executes an based are based 10950 - 25550 carcinogens dandas

EFH, 1989. Exposure Factors Handbook, EPA /600/8-89/043. Exposure Amesament Group, Office of Health and Environmental Amesament. 1989 RAGS, 1989. Risk Amesament Guidance for Superfund, Volume I, EPA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. SEAM, 1988. Superfund Exposure Assessment Manual, EPA 540/1-88/001. Office of Remedial Response. April 1988.

1280

FAC

003

			WER, PREDENT AN	D FUTURE SLE		
VARIABLE	RANGE		MEPORT	VALUE USED	BATIONALE	LEFERENCE
Receptor Population				200 (M) (M)	Local Residents	
Conteminant Concentration (Mg/Ca. M)						
Modeled value (See Appendix C)						
Body Weight (Kg)					•	
Adult		•	•	70	By appreciation	RAGS, 1989
Exposure Time (HoursDay)				8.000 VX		
Adult	0.116	- 02	0.158	61	90th percentile value for	RAGS, 1989
					showering	
Duration of Exposure (Years)				i da z		
Adult	1	- 70	35		90th perceptile for time	RAGS, 1989
					at a single residence	
Espesiere Frequency (Days/Year)	1	- 365	182.5	345	Assume daily showers	SEAM, 1988
Inhalation Rate (Cu. Millout)				.		
Adult		•	•	0.6	Value used is an bourly	RAOS, 1989
					rate that is specific to	
					showering activities	
Averaging Time (Days)						
Adult						
Doscarcinogeda	365	- 25550	12775	10950	Range, midpoint, & value	RAOS, 1989
cercipogens	10950	- 25550	12775	2550	used are based on exposure	
					duration	

TABLE EXPOSURE PATHWAY: INHALATION OF CONTAMENANTS VOLATILIZED FROM GROUND WATER WHEN RESIDENTS SHOWER, FRESENT AND FUTURE SCENARIOS

TABLE 13

EFH, 1989. Exposure Factors Handbook, EPA /600/8-89/043. Exposure Assessment Oroup, Office of Health and Environmental Assessment, 1989 RAGS, 1989. Risk Assessment Guidance for Superfund, Volume I, EPA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. SEAM, 1988. Superfund Exposure Assessment Manual, EPA 540/1-88/001. Office of Remedial Response. April 1988.

.

TABLE	1	3
-------	---	---

TABLE EDFOSURE PATHWAY: INGESTION OF GROUND WATER BY LOCAL RESIDENTS, PRESENT AND FUTURE SCENARIOS

VARIABLE	BANGE	MOTONT	VALOE	RATIONALE	LEFFLENCE
Receptor Population			*	Local Revidents	
Body Weight (Kg)					
Child (Age <6)	11.6 - 17.4	15	25	Midpoint of range	EFH, 1969
Adult	•	-	70	By surveation	RAGS, 1989
Duration of Expressor (Years)					
Calif	1 - 6	3		Total years in age group	
Aduk	1 - 70	35	30	90th percentile for time	RAGS, 1989
				at a single real dence	
Espanse Frequency (Deys/Year)	1 - 345	182.5	\$ 365	Value used is specified in	RAGS, 1989
				RACS	
Ingertion Rate (LDoy)		•	1		
Child	•	•	1	Value used is specified in	EFH, 1989
				2FH	
Adult	•	-	2	Value used is specified in	RACIS, 1989
				RACS	
Iveraging Time (Days)					
Child					
Boncerciaogets	365 - 2190	1095	2190	Range, midpolat, de veitur	RACS, 1989
enticogens	10950 - 25550	12775	2550	enadare based on exponent	
				duration .	
Adult					
sonarcinogets	MS - 25590	12775	10950	Range, midpoint, & value	RAGS, 1969
carcinogena	10950 - 25550	12775	2550	strandars passed as emboarte	
				denta	

EFH, 1989. Exposure Factors Handbook, EFA /600/8-89/043. Exposure Amesament Group, Office of Health and Environmental Amesament. 1989 RAOS, 1989. Risk Assessment Guidance for Superfund, Volume I, EFA 540/1-89/002. Office of Emergency and Remedial Response. December 1989. SEAM, 1988. Superfund Exposure Assessment Manual, EFA 540/1-88/001. Office of Remedial Response. April 1988.

TABLE	14
-------	----

TABLE POTENTIAL NONCARCINOGENIC EFFECTS OF FACET COCs: TOXICITY VALUES

	Contaminant of Concern	Chronic RfD (oral) (mg/kg/day)	Confidence Level (a)	Critical Effect/Species	Uncertainty and Modifying Factors (b)	RfD Source
	Volatiles					
	Acetone	1 x 10"	low	increased liver weight and nephroloxicity/rat	UF = 1,000 MF = 1	IRIS (2/91) (U.S. EPA study)
	Benzene	-	-			-
	2-Bulanone	5 x 10 ⁴	medium	no adverse effects observed	UF = 1000 MF = 1	IRIS (3/6/91) (LaBelle and Brieger, 1955)
	Carbon disullide	1 x 10 ⁴	medium	fetal toxicity/malformations in rabbits	UF = 100 MF = 1	1R18 (2/5/91) (Hardin et. al., 1981)
	Chloroform	1 x 10 ²	medium	fatty cyst formation in liver/dog	UF = 1,000 MF = 1	IRIS (2/91) (Heywood et. al., 1979)
	Chloromethane			-	· · ·	Heast, 1990
	1,1-Dichloroethane	1 x 10'			••••	HEAST, 1990
1283	1,2-Dichloroethane €00 ⊃∀∃	7.4 x 10 ⁻² (d)				U.S. EPA Drinking Water Regulations and Health Advisories, 1990
	cis-1,2- Dichloroethylene	1 x 10 ⁴			••••	HEAST, 1990

TABLE (CONTINUED)

Contaminant of Concern	Chronic RfD (oral) (mg/kg/day)	Confidence Lovel (a)	Critical Effect/Species	Uncertainty and Modifying Factors (b)	RfD Source
trans-1,2- Dichlorosthylene	2 x 10²	low	increased serum alkaline phosphatase in male mice	UF = 1,000 MF = 1	iRIS (2/91) (Barnes et. al., 1985)
1,1-Dichloroethylene	9 x 10 ⁴	medium	hepatic lesions in rats	UF = 1000 MF = 1	IRIS (2/91) (Quast et. al., 1983)
Ethylbenzone	1 x 10'	low	liver and lidney toxicity/rat	UF = 1,000 MF = 1	(Woli, et al., 1956)
Methylene Chloride	6 x 10 ⁴	-	liver toxicity/rat	UF = 100 MF = 1	IRIS (2/91)
Tetrachioroethylene	1 x 10 ^e	medium	hepatotoxicity in mice	UF = 1000 MF = 1	IRIS (2/91) (Buben and O'Flaherty, 1985)
Toluene	2 x 10" (c,e)		CNS effects/rat	UF = 100 MF = NA	HEAST, 1990
1,1,1-Trichloroethane	9 x 10 ²	medium	slight growth retardation in guinea pigs	UF = 1,000 MF = 1	IRIS (2/91) (Adame et. al., 1950 Torkelson et. al., 1958)
Trichloroethylene	7 x 10 ²	-	••		U.S. EPA Drinking Water Regulations
003 1584	FAC				and Health Advisories, 1990
Trichlorofluoromethane	3 x 10 ⁻¹	medium	histopathology in rats/mice	UF = 1,000 MF = 100	IRIS (2/91) (NCI, 1978)

TABLE (CONTINUED)

Contaminant of Concern	Chronic RfD (oral) (mg/kg/day)	Confidence Level (a)	Critical Effect/Species	Uncertainty and Modifying Factors (b)	RfD Source
Vinyl Chloride	1.4 x 10 ⁴ (d)	-	••		U.S. EPA Drinking Water Regulations and Health Advisories, 1990
Xylenes (lotal)	2 x 10°	medium	hyperactivity, in- creased mortality/rats	UF = 100	IRIS (2/91)
Base Neutral/Acid Ex	dractable				
Aconophihono	6 x 10 ⁴	low ·	hepatoxicity in mice	UF = 3,000 MF = NA	IRIS (3/91) (U.8. EPA, 1989)
Aconophibylone	6 x 10²			-	U.S. EPA Drinking Water Regulations and Health Advisories, 1990 (DWRHA, 1990)
Anthracene	3 x 10 ⁻¹	low	no effects in mice	UF = 3,000 MF = 1	IRIS (3/91) (U.S. EPA , 1989)
Benzoia Acid	4 x 10°		irritation, malaise/ human	UF = 1 MF = 1	IRIS (2/91) (U.S. EPA, 1987)
Benzo(a)anthracene					IRIS (3/91)
Benzo(a)pyrene					IRIS (2/91)
Benzo(b)fluoranthene			***	••••	IRIS (3/91)
Benzo(g,h,i)perylene	4 x 10 ⁻⁸ (g)		8-10	***	IRIS (3/91)

46 003 TS8P

4. 44 L

TABLE

(CONTINUED)

Contaminant of Concern	Chronic RfD (oral) (mg/kg/day)	Confidence Level (a)	Critical	Uncertainty and Modifying Factors b)	RID Source	
Benzo(k)/luoranthene				***	IRIS (3/91)	
Bis(2-ethylhexyl) bhthalate	2 x 10 ²	medium	increased liver weight/ guinea pig	UF = 1,000 MF = 1	IRIS (10/90); (Carpenter, et al., 1953	
Chrysene	 [·]		-	-	IRIS (3/21/91)	
Dibenzo(a,h) anthracene						
Dibenzoluran (1)	-			-		
Di-n-butyi phthalate	1 x 101	low	increased mortality in rats	UF = 1,000 MF = 1	IRIS (3/91) (Smith, 1953)	
Pi-n-octyl Patha laie	2 x 10 ⁴	-	elevated kidney and liver weights/rat	UF = 1000 MF = NA	HEAST, 1990 (Piekacz, 1971; EPA, 1987)	
Ruoroanthrene	4 x 10 ²	low .	nephropathology, liver weight changes, hematologics changes/mice	UF = 3,000 MF = 1	IRIS (3/91) (U.S. EPA, 1980)	
Puorene	4 x 10*	low	hematological changes/mice	UF = 3000 MF = 1	IRIS (3/91) (U.S. EPA, 1989)	
deno(1,2,3-cd)pyrene				*	IRIS (3/91)	
-Methyl naphthalene				-		
laphthalene	601 x 4		ocular and internal lesions/rat	6	HEAST, 1990	

TABLE (CONTINUED)

Contaminant of Concern	Chronic RfD (oral) (mg/kg/day)) Confidence Critical Level (a) Effect/Species		Uncertainty and Modifying Factors (b)	RfD Source	
Pentachiorophenol	3 x 10*	medium	liver/kidney pathology/rat	UF = 1,000 MF = 1	IRIS (2/91) (Schwetx el. al., 1978)	
Phonanthrone	-				IRIS (3/91)	
Pyrene	3 x 10 ⁴	low	lidney effects/mice	UF = 3,000 MF = 1	IRIS (3/91) (U.S. EPA, 1989)	
Pesticides/PCBs						
Arocior-1248	1.2 x 10 ⁴ (d)			-	IFNS (2/91)	
Aracior-1254	1.2 x 10 ⁴ (d)				IRIS (2/91)	
Inorganics						
Akiminum			-		-	
Antimony	4 x 10 ⁴	low	reduced lifespan, altered blood chemistries/rat	UF = 1,000 MF = 1	IRIS (2/91) (Shroeder, et al., 1970)	
Arsenic	1 x 10 ^{.3} (c)		keratosis and hyper- pigmentation/human	UF = 1 MF = NA	HEAST, 1990	
Barium 2821	*01 x 7 ⊾∀C 003	medium	increased blood pressure in humans	UF = 3 MF = 1	IRIS (2/91) (Wones et. al., 1990; Brenniman and Levy, 1984)	

Contaminant of Concern	Chronic RfD (oral) (mg/kg/day)	Confidence Level (a)	Critical Effect/Species	Uncertainty and Modifying Factors (b)	RfD Source
Beryllium	5 x 10 ⁻⁸	low	no observed adverse effect/rat	UF = 100 MF = 1	IRIS (2/91) (Shroeder and Mitchner, 1975)
Cadmium	5 x 10 ⁴	high	significant proteinuria/ human	UF = 10 MF =1	IRIS (2/91) (U.S. EPA, 1984)
Chromium VI	5 x 10 ⁴	low	not defined/rat	UF = 500 MF = 100	IRIS (2/91) (MacKenzie, et. al., 1958)
Copper		-		-	iris (2/91)
Cyanida	2 x 10 ⁴	medium	weight loss, thyroid effects, myeline degeneration in rate	UF = 100 MF = 5	IRIS (2/91) (Howard and Hanzal, 1955; Philbrick et. al., 1979)
Lead	No threshold	••	-	4	IRIS (2/91)
Morcury	3 x 10 ⁴	-	neurotoxicity, kidney effects/rat	UF = 1,000	HEAST, 1990; (Fawor, et. al., 1987)
Nickel	2 x 10 ⁴	medium	decreased body weight/rat	UF = 100 MF = 3	IRIS (2/91)
Silver	3 x 10 ⁹	mədium	argyria/humans	UF = 2 MF = 1	IRIS (2/91); (Gaul and Staud, 1935 East, et. al., 1980)

TABLE (CONTINUED)

TABLE (CONTINUED)

Contaminant of Concern	Chronic RfD (oral) (mg/kg/day)	Confidence Level (a)	Critical Effect/Species	Uncertainty and Modifying Factors (b)	RfD Source
Tin	- 6 x 10 ⁻¹				
Zinc	2 x 10'	_	-		HEAST, 1990
			anomia/humano	UF = 10 MF = N/A	HEAST, 1990 (Pories, el. al., 1967;
— not available					Presed, et. al., 1975)

- (a) Confidence level from IRIS; rated either high, medium, or low.

(b) Uncertainty Factor (UF) and Modifying Factor (MF) are adjustments used to account for the following uncertainties:

UFs (10-fold factor for each):

- variation in human sensitivity
- · animal to human extrapolation
- extrapolation from subchronic to chronic NOAEL
- extrapolation from LOAEL to NOAEL

MFs (greater than zero and less than or equal to 10)

- Professional judgment based on scientific uncertainties of study and database other than those listed above; default value is 1. (c) Under review by the EPA RID Work Group; therefore, no IRIS entry. (d) No RID available. Chronic protective dose derived from Long-Term Health Advisory (HA) for adults as follows:

Protective dose (mg/kg/day) = (Long-term HA µg/L) (2L exposure/day)

(mg/1000 µg)

(e) New revised RfD pending.

30

- (1)
- Available data inadequate for quantitative risk assessment (HEAST, 1990).

(9) The RID for naphthalene is used as a surrogate for PAHs showing evidence of noncercinogenic effects. Note: Sauras --- 1010 (COA, 1991b) and HEAST (EPA, 1990a).

70 kg (µg/L)

TABLE SUMMARY OF NONCARCINOGENIC HAZARD INDICES (HI) FOR THE FACET SITE

Scenario	Receptor	Current/ Future	Acute HI	Chronic HI
Ground Water				
Ingestion	Resident	C/F	2.0 x 10°(b)* 4.6 x 10°(c)*	2.0×10^{1} (b)* 4.6×10^{1} (c)*
Volatiles Inhalation While Showering	Re	,	NA	2.4×10^{-3}
Soil		ÿ		
Surface Soil - Ingestion			× 10 ² در 3.9 x 10 ²	1.6 x 10 ⁻¹ 6.8 x 10 ⁻³
Subsurface Soil - Ingestion Surface Soil, Plant 2 Yard - Ingestion		٦F	6.6 x 10 ⁻⁸	2.2 x 10 ⁻⁵
Subsurface Soil, Plant 2 Yard - Ingestio. Oil/Water Separator - Ingestion		C/F C/F	1.7 x 10 ⁻⁷ 3.5 x 10 ⁻³	6.2 x 10 ⁻⁷ 4.1 x 10 ⁻³
Sediment	•			
Height's Drainage Swale - Ingestion	Resident	C/F	1.3 x 10 ⁻¹ (b) 1.0 x 10 ⁶ (c)*	2.4×10^{-1} (b) 3.5×10^{0} (c)*
North Drainage Ditch - Ingestion	Trespasser	C/F	5.1×10^{10}	3.9×10^{10}
May's Creek - Ingestion	Resident	C/F	1.1 x 10 ² (b)	2.9 x 10 ⁻² (b)
•	_		8.5 x 10^{-2} (c)	4.3×10^{-1} (c)
Area 6 - Ingestion	Trespasser		3.9×10^{2}	6.8×10^{-2}
Area 10 - Ingestion	Trespasser	C/F	5.8 x 10 ¹	6.0 x 10 ⁻¹

*Dermal pathways not evaluated quantitatively based on current EPA Region II guidance for the Facet site (EPA, 1992).

(b) - adult (c) - child

* HI exceeds one (1).

FAC 003 1290

ΤÆ	B	LE	1	5

TABLE SUMMARY OF NONCARCINOGENIC HAZARD INDICES (HI) FOR THE FACET SITE

Scenario	Receptor	Current/ Future	Acute HI	Chronic HI
Ground Water				
Ingestion	Resident	C/F	2.0 x 10°(b)* 4.6 x 10°(c)*	2.0×10^{1} (b)* 4.6×10^{1} (c)*
Volatiles Inhalation While Showering	Resident	C/F	NA	2.4×10^{-3}
Soil				
Surface Soil - Ingestion	Trespasser	C/F	7.3 x 10 ⁻³	1.6 x 10 ⁻¹
Subsurface Soil - Ingestion	Worker	C/F	3.9 x 10 ⁻³	6.8×10^{-3}
Surface Soil, Plant 2 Yard - Ingestion	Trespasser		6.6 x 10 ⁻⁸	2.2×10^{-5}
Subsurface Soil, Plant 2 Yard - Ingestion		C/F	1.7×10^{-7}	6.2 x 10 ⁷
Oil/Water Separator - Ingestion	Worker	C/F	3.5 x 10 ³	4.1×10^{-3}
Sediment				
Height's Drainage Swale - Ingestion	Resident	C/F	1.3 x 10 ⁻¹ (b)	2.4 x 10 ⁻¹ (b)
			$1.0 \ge 10^{\circ}(c)^{\circ}$	3.5 x 10°(c)*
North Drainage Ditch - Ingestion	Trespasser	C/F	5.1×10^{1}	3.9×10^{-1}
May's Creek - Ingestion	Resident	C/F	1.1×10^{2} (b)	2.9×10^{-2} (b)
•			$8.5 \times 10^{2}(c)$	4.3×10^{-1} (c)
Area 6 - Ingestion	Trespasser		3.9×10^{-2}	6.8×10^{-2}
Area 10 - Ingestion	Trespasser	C/F	5.8 x 10 ¹	6.0×10^{1}

^{*}Dermal pathways not evaluated quantitatively based on current EPA Region II guidance for the Facet site (EPA, 1992).

(b) - adult

(c) - child

• HI exceeds one (1).

TABLE ... POTENTIAL CARCINOGENIC EFFECTS OF FACET COCS: SLOPE FACTORS

Chemical		Slope Factor (mg/kg/day) ⁴	EPA Weight of Evidence Classification	Type of Cancer/Species	Slope Factor Source
Volatiles		· ·			
Acetone		-	D	lack of data in humans and animals	I RIS (2/91)
Benzene		2.9 x 10 ⁻² (oral) 2.9 x 10 ⁻² (inhal)	•	leukemia/human	IRIS (2/91) (Rinsky, et al., 1981; Ott, et al., 1978; Wang, et al., 1983)
2-Butanone		 .	D	lack of data in humans and animals	IRIS (3/91)
Carbon Disullide			D	lack of data in humans and animals	I RIS (2/91)
Chioroform		6.1 x 10 ^{.9} (oral)	B2	kidney tumors/rat	IRIS (2/91) (Jorgensen, et al.,
	FAC	8.1 x 10 ^{-e} (inhal)		hepatocellular carcinoma/ lemale mouse	(Jorgansan, et al., 1985; NCI, 1976)
Chioromethane		1.3 x 10 ^{.2} (oral)	C	mouse kidney	HEAST, 1990 (CIIT, 1981; NIOSH, 1984;
	003	6.3 x 10 ⁻⁹ (inhai)		mouse kidney	US EPA, 1986,87)
1,1-Dichloroethane	1292		C	hemangio-sarcoma in rat	IRIS (2/91) (NCI, 1978)
1.2-Dichloroethane		9.1 x 10 ⁻⁴ (oral)	B2	liver/rat and mouse	IRIS (2/91)

TABLE 16 (CON JED) .

Chemical	Siope Factor (mg/kg/day) ⁻¹	EPA Weight of Evidence Classification	Type of Cancer/Species	Slope Factor Source
cls-1,2-Dichloroethylene	**	-	-	1 10
trans-1,2-Dichloroethylene	-	D	lack of data in humans and animals	I RIS (2/91)
1,1-Dichloroethylene	6.0 x 10 ⁻¹ (oral)	C	adrenal pheochromocytomas in male raVF344	IRIS (2/91) (NTD, 1962)
	1.2 (inhai)		kidney adenocarcinoma in male Swiss mouse	IRIS (2/91) (Mattori, et al . 1977, 1985)
Ethylbenzene	-	D	lack of animal bloassay and human studies	IRIS (2/91)
Methylene Chloride	7.5 x 10 ⁻⁹ (oral)	B2 ·	liver/rat and mice 1.4 x 10 ⁻² (inhal)	IRIS (2/91)
Tetrachloroethylene	5.1 x 10 ⁻² (oral)	B2	liver/mouse	HEAST, 1990 (NCI, 1978)
Toluene	-	D	no human dat a; inadequate animal data	I RIS (2/91)
1,1,1-Trichloroethane	-	D.	no human data; inadequate animal data	IRIS (2/91)
Trichloroethylene	1.1 x 10 ⁺ (oral) 1.7 x 10 ⁺ (inhal)	82	lung and liver tumors/mouse	HEAST, 1990 (Maltoni, et al., 1966)

EAC 003 1593

•

 TABLE 16
 (CONTINUED)

Chemical	Slope Factor (mg/kg/day) ⁻¹	EPA Weight of Evidence Classification	Type of Cancer/Species	Slope Factor Source
Trichiorofluoromethane	e=	D .	leck of data in humans and animals	IRIS (2/91)
Vinyl Chloride	1.9 (oral) (b)	▲	lung and liver/rat	HEAST, 1990 (Maltoni, et al., 1980)
Xylenes (lotal)	•	D	animal and human data inadequate	IRIS (2/91)
Base Neutral/Acid Extractable				•
Acenaphthene	-	-		IRIS (3/91)
Aconophthylene	-	D	no human data; inadequate `animal data	IRIS (3/91)
Anthracene		D	no human data; inadequate animal data	IRIS (3/91)
Benzoic Acid	-	D	no human data; inadequate animal data	IRIS (2/91)
Benzo(a)anthracene	1.15 x 10 ¹ (c)	B2 ·	human carcinogenicity in mixture (d)	IRIS (3/91) (US EPA, 1984, 1990) IARC, 1984)

.

FAC 003 1294

l

Chemical		Slope Factor (mg/kg/day) ⁻¹	EPA Weight of Evidence Classification	Type of Cancer/Species	Slope Factor Source
Benzo(a)pyrene		1.15 x 10 ¹	82	hamster respiratory tract/mouse stomach	AWQC (1986) (Thyssen, et al., 1990 US EPA, 1980; Neal and Rigden, 1967)
Benzo(b)Fluoroanthrene		1.15 x 10'(c)	B2	human carcinogenicity in mixture (d)	IRIS (3/91) (US EPA, 1984, 1990; IARC, 1984)
Benzo(g,h,i)perylane		-	D	no human data; inadequate animal data	I RIS (3/91)
Benzo(k)flouranthene		1.15 x 10'(c)	B2	human carcinogenicity in mixture (d)	IRIS (3/91) (US EPA, 1964, 1990; IARC, 1964)
Bis(2-ethythexyl) phthalate		1.4 x 10 ^{-e} (oral)	B2 -	hepatocellular carcinoma and adenoma/mouse	IRIS (2/91) (NTP, 1982)
Chrysene	FAC	1.15 x 10'(c)	B2	liver tumors in male mice	IRIS (3/91) (Wislocki, et. al., 1986; Buening et. at., 1986)
Dibenz(a,h)anthracene	003	1.15 x 10'(c)	B2(b)	NA	HEAST, 1990
Dibenzoluran	129	-	D	lack of data in humans and animals	IRIS (2/91)
Di-n-butyi phthalate	U	•	D	lack of data in humans and animals	IRIS (3/91)

TABLE 16(CONTINUED)

.08.4

с**.** .

TABLE 16	(CONTINUED)
----------	-------------

Chemical	Slope Factor (mg/kg/day) ¹	EPA Weight of Evidence Classification	Type of Cancer/Species	Slope Factor Source
Di-n-octyiphthalate		-	-	
Fluoranthene		D	no human data; inadequate animal data	IRIS (3/91)
Fluorene	-	D.	no human data; Inadequate animal data	IRIS (3/91)
Ideno(1,23-cd)pyrene	1.15 x 10'(C)	B2	epidermold carcinomas in rat's lungs	IRIS (3/91) (Deutsch-Wenzel, et. 1963)
2-Methyl naphthalene	-	-	-	
Naphthalene	-	D	no human data; inadequate animal data	IRIS (3/91)
Pentachiorophenoi	1.2 x 10 ⁻¹	B2(b)	liver, adrenal, circulatory systems	HEAST, 1990
Phenanthrene	••	D	no human dala; inadequale animal dala	IRIS (3/91)
Pyrene		D _	no human dala; inadequale animal dala	IRIS (3/91)

FAC 003 1296

EPA **Slope Factor** Weight of Evidence **Type of Cancer/Species** Chemical (mg/kg/day)⁻¹ Classification **Slope Factor Source Pesticides/PCBs** 7.7 (oral) 82 hepatocellular carcinoma/ IRIS (2/91) Aroclor-1248 rats and mice (Norback and Weltman, 1965) .. **B2** IRIS (2/91) Aroclor-1254 7.7 (oral) hepatocellular carcinoma/ rats and mice (Norback and Wettman, 1985) inorganics Aluminum IRIS (2/91) Antimony 1.75 (oral) skin/humans IRIS (2/91) Arsenic A Barlum IRIS (2/91) Π AC gross tumors all siles/rats IRIS (2/91) Beryllum 4.3 (oral) **B2** 003 Cadmium 6.1 (inhal) Bt lung cancer/humans IRIS (2/91) lung tumors/rats (Thun, et al., 1985) 1297 Chromium VI IRIS (2/91) 4.1 x 10¹ (inhal) A lung cancer/humans (Mancuso, 1975) D IRIS (2/91) Copper

TABLE 16 (CONTINUED)

Chemical	Slope Factor (mg/kg/day)*	EPA Weight of Evidence Classification	Type of Cancer/Species	Slope Factor Source
Cyanide		D	lack of data on humans and animals	IRIS (2/91)
Lead(a)		B2	-	I RIS (2/91)
Mercury	-	D	no human data/inadequate animal data	IRIS (2/91)
Nickol	-	D	-	IRIS (2/91)
Silver	-	D	-	IRIS (2/91)
Tin	-	⊷ _	-	
Zinc	-	D	animal and human dala inadequale	i RIS (3/91)

. .

TABLE 16 (CONTINUED)

(a) EPA Cancer Assessment Group recommends numerical estimate not be used for lead.

(b) IRIS input pending.

FAC

003

1298

(c) Per EPA guidance, the benzo(a)pyrene slope factor is used as a surrogate for other PAHs where sufficient evidence of carcinogenicity exists, as designated in IRIS or HEAST.

(e) Soot containing these chemicals was found to be carcinogenic (IRIS, 1991).

Sources: IRIS - See EPA, 1991b.

HEAST - See EPA, 1990a.

TABLE . SUMMARY OF CARCINOGENIC RISK ESTIMATES FOR THE FACET SITE

Scenario	Receptor	Current/ Future	Incremental Risk
Ground Water			
Ingestion	Resident	C/F	2.0 x 10 ⁻³ **
Volatiles Inhalation While Showering	Resident	C/F	8.0 x 10 ⁻⁵ *
Soil			
-surface Soil - Ingestion	Trespasser	C/F	1.1 x 10 ⁻⁴ **
Subsurface Soil - Ingestion	Worker	C/F	4.2×10^{-7}
Surface Soil, Plant 2 Yard - Ingestion	Trespasser	C/F	2.5×10^{-10}
Subsurface Soil, Plant 2 Yard - Ingestion	Worker	C/F	2.4×10^{-11}
Oil/Water Separator - Ingestion	Worker	C/F	1.5 x 10 ⁻⁴ **
Sediment			
Height's Drainage Swale - Ingestion	Resident	C/F	4.0 x 10 ⁻⁴ **
North Drainage Ditch - Ingestion	Trespasser	C/F	8.8 x 10 ⁻⁶ *
May's Creek - Ingestion	Resident	C/F	6.5 x 10 ⁻⁴ **
Area 6 - Ingestion	Trespasser	C/F	1.7 x 10 ⁻⁶ *
Area 10 - Ingestion	Trespasser	C/F	5.1 x 10 ⁻⁶ ∗

Exceeds 10⁻⁶ risk.
Exceeds 10⁻⁴ risk.

1.

Dermal pathways not evaluated quantatively based on current EPA Region II guidance for the Facet site (EPA, 1992).

TABLE 17 ·

TABLE . SUMMARY OF CARCINOGENIC RISK ESTIMATES FOR THE FACET SITE

Scenario	Receptor	Current/ Future	Incrementa Risk
Ground Water			
Ingestion	Resident	C/F	2.0 x 10 ⁻³ **
Volatiles Inhalation While Showering	Resident	C/F	8.0 x 10 ⁻⁵ *
Soil			
rface Soil - Ingestion	Trespasser	C/F	1.1 x 10 ⁻⁴ **
Subsurface Soil - Ingestion	Worker	C/F	4.2×10^{-7}
Surface Soil, Plant 2 Yard - Ingestion	Trespasser	C/F	2.5×10^{-10}
Subsurface Soil, Plant 2 Yard - Ingestion	Worker	C/F	2.4×10^{-11}
Oil/Water Separator - Ingestion	Worker	C/F	1.5 x 10 ⁻⁴ **
Sediment			
Height's Drainage Swale - Ingestion	Resident	C/F	4.0 x 10 ⁻⁴ **
North Drainage Ditch - Ingestion	Trespasser	C/F	8.8 x 10 ⁻⁶ *
May's Creek - Ingestion	Resident	C/F	6.5 x 10 ⁻⁴ **
Area 6 - Ingestion	Trespasser	C/F	1.7 x 10 ⁻⁶ *
Area 10 - Ingestion	Trespasser	C/F	5.1 x 10 ⁻⁶ *

* Exceeds 10⁻⁶ risk.

 \sim

** Exceeds 10⁻⁴ risk.

[•]Dermal pathways not evaluated quantatively based on current EPA Region II guidance for the Facet site (EPA, 1992).

003 1

FAC

i

1300

TABLE 18 PUROLATOR PRODUCTS COMPANY

CHEMICAL	MAX.CONC. (18/1)		GROUND WATER ARAR (1)	SOURCE (2)	MAX CONC. IS GREATER THAN ARAR
			ORGANICS		
a-Butylbeazeae	13	5	Standard	NYSDEC (9/90)	YES
Chloroform	1	7	Standard	NYSDEC (5/91)	NO
1,1-Dichloroethane	2	5	Standard	NYSDEC (9/90)	NO
1,2-Dichlorcethane	0.3	5	Standard	NYSDEC (9/90)	NO
1,1-Dichloroetheae	2	5	Standard	NYSDEC (9/90)	NO
cis-1,2-Dichloroetheae	160	5	Standard	NYSDEC (9/90)	YES
trans-1,2-Dichloroethese	2	5	Standard	NYSDEC (9/90)	NO
Dichlorodifluoromethane	2	5	Standard	NYSDEC (9/90)	NO
Ethylbeazene	12	5	Standard	NYSDEC (9/90)	YES
Lopropyibenzene	8	5	Stat. Jard	NYSDEC (9/90)	YES
4-Isopropyltoluene	12	5	Standard	NYSDEC (9/90)	YES
Methylene Chloride	69	5	Standard	NYSDEC (9/90)	YES
Naphthalene	23	50	Standard	NYSDEC (9/90)	NO
a-Propylbeazese	22	5	Standard	NYSDEC (9/90)	YES
1,1,1-Trichloroethane	13	5	Standard	NYSDEC (9/90)	YES
Trichloroethene	190	5	Standard	NYSDEC (9/90)	YES
Trichlorofluoromethane	19	5	Standard	NYSDEC (9/90)	YES
1.2,4-Trimethylbenzene	18	5	Standard	NYSDEC (9/90)	YES
1,3,5-Trimethylbenzene	\$1	5	Standard	NYSDEC (9/90)	YES
Vinyi Chloride	33	2	Standard	NYSDEC (5/91)	YES
Xylenes	14	5	Standard	NYSDEC (9/90)	YES
		.	INORGANICS		
Aluminum	95500	1	NA (3)		_
Antimony	45.8	3	Guidance Value (4)	NYSDEC (9/90)	YES
Amenic	20.4	25	Standard	NYSDEC (5/91)	NO
Berium	911	1000	Standard	NYSDEC (5/91)	NO
Beryllium	42	3	Guidance Value (4)	NYSDEC (9/90)	YES
Cadmium	\$5.8	10	Standard	NYSDEC (5/91)	YES
Chromium	1540	50	Standard	NYSDEC (5/91)	YES
Copper	1200	200	Standard	NYSDEC (5/91)	YES
Land	146	25	Standard	NYSDEC (5/91)	YES
Mercury	5.6	2	Standard	NYSDEC (5/91)	YES
Nickel	602	100	Tenutive Proposed MCL (4)	USEPA (5/90)	YES
Silver	10.2	مد	Standard	NYSDEC (5/91)	NO
Tin ·	16.1	21000	Chronic RID (4)	USEPA-HEAST (1991)	NO
Zinc	1180	Ĩ.	Standard	NYSDEC (5/91)	YES
Cyanide	99. A	100	Standard	NYSDEC (5/91)	NO

NOTES:

(1) When no ARAR has been established, an appropriate guidance or other health-based value is listed, as noted.

(2) a. NYSDEC, 1991. Revision of Water Quality Regulations for Surface Water and Ground Waters. May.

b. NYSDEC, 1990. Division of Water -Technical and Operational Guidance Series (1.1.1) - Ambient Water Quality Standards and Guidance Values. September.

e. USEPA, 1991b. Health Effects Amerisment Summary Tables (HEAST). January. d. USEPA, 1990a. Fact Sheet - Drinking Water Regulations under the Safe Drinking Water Act. May.

FAC

003

1301

(3) No ARAR or health-based toxicity value available. RA did not identify aluminum as a chemical of concern. Therefore, no remediation goal is developed.

(4) No ARAR svailable as defined in USEPA, 1989a. Therefore, an acceptable concentration was derived using the USEPA oral chronic reference dose (RfD) and the standard exposure assumptions of 2 liters/day ingestion rate and 70 kg average body weight.

PUTENTIAL ARARS AND TBCs FEASIBILITY STUDY PUROLATOR PRODUCTS COMPANY

Citation	Description	Type	Reason for Listing
NYS; 6 NYCRR 756	State pollutant discharge elimination system	action	May relate to on-site treatment of wastes.
NYS; 6 NYCRR 757	State pollutant discharge elimination system	action	May relate to on-site treatment of wastes.
NYS; TOGS 1	Technical and operational guidance for pollutant discharge elimination system	action	May relate to on-site treatment of wastes.
NYS; TOGS 2	Technical and operational guidance for ground water	action	May relate to remediation of ground water.
NYS; 10 NYCRR 5	State public drinking water standards	chemical	May relate to remediation of ground water.
NYS; 10 NYCRR 170	State public drinking water source standards	chemical	May relate to remediation of ground water.

GLOSSARY OF ACRONYMS

ARARs	•	Applicable or Relevant and Appropriate Requirements
CAA	•	Clean Air Act
CWA	-	Clean Water Act
OSHA .	•	Occupational Safety and Health Act
RCRA	•	Resource Conservation and Recovery Act
SDWA	•	Safe Drinking Water Act
TBC:	•	To Be Considered
TSCA	•	Toxic Substances Control Act

i a

FAC 003

1302

TABLE 18 **POTENTIAL ARARS AND TBCS FEASIBILITY STUDY PUROLATOR PRODUCTS COMPANY**

<u>Citation</u>	Description	Impe	Reason for Listing
OSHA; 29 CFR 1910	Guidelines and requirements for workers at hazardous waste sites (subpart 120) and standards for air contaminants (subpart 1)	action	May relate to remediation of all areas.
CAA; 40 CFR 50	National Ambient air quality standards	chemical	May relate to on-site treatment of wastes.
CAA; 40 CFR 52	National ambient air quality standards attainment areas	location	May relate to on-site treatment of wastes.
CAA; 40 CFR 60	New source performance standards	action	May relate to on-site treatment of wastes.
CAA; 40 CFR 61	National emission standards for hazardous air pollutants	action, chemical	May relate to on-site treatment of wastes.
C WA; 40 CFR 122	Treatment system discharge standards	action, chemical	May relate to ground water remediation.
C WA; 40 CFR 136	Approved test methods for discharge monitoring	action	May relate to ground water remediation.
*DWA; 40 CFR 141	National primary drinking water standards	chemical	May relate to remediation of ground water.
RCRA; 40 CFR 261	Determination of whether a waste is hazardous	action, chemical	May relate to remediation of all areas.
RCRA; 40 CFR 262	Hazardous waste generator requirements	action	May relate to off-site disposal of wastes.
RCRA; 40 CFR 263	Hazardous waste transporter requirements	action	May relate to off-site disposal of wastes.
RCRA; 40 CFR 264	TSDF standards	action, chemical, location	May relate to remediation of all areas.

APPENDIX III

ADMINISTRATIVE RECORD INDEX

₹				
06/26/92		ment Number Order RPRISES Documents		Page: 1
	922¥3922222225722356222	**==:8*==:3=====;**===============		*======================================
Document Number: FAC-001-	0001 To 0191		Date: / /	
Title: Facet Enterprises, and other backgrou		s Division (Nature of business, i	history of operation,	
Type: PLAN				
Author: none: none				
Recipient: none: none				
Document Number: FAC-001-			Date: 06/30/80	
Title: Record of Communic	ation (providing a des	cription of the Facet Enterprise	s site)	
Type: CORRESPONDENCE				
Author: Leichter, Irv:				
Recipient: Spear, Richard Attached: FAC-001-0193	: US EPA			
Document Number: FAC-001-	0193 To 0203	Parent: FAC-001-0192	Date: 06/27/80	
Title: Potentiai Hazardou:	s Waste Site - Site In	spection Report (for the Facet Er	nterprises site)	
Type: REPORT				
Author: Leichter, Irv:	US EPA			
<pre>`ecipient: none: US EPA</pre>			•	
Document Number: FAC-001-6			Date: 09/16/83	
Title: Hydrogeologic Inve	stigations, Facet Ente	rprises, Inc., Elmira, New York -	Final Report	
Type: REPORT				
Author: Little, William		ion		
Recipient: none: Facet E	nterprises			
Document Number: FAC-001-0	0373 To 0392		Date: 06/10/82	
Title: Revised Proposal to Enterprises, Elmin		tion of Geology and Ground-Water	Conditions at Facet	
Type: PLAN				
Author: none: Radian (Corporation			
Recipient: Jackson, David	W.: Facet Enterprises	5		וד
				FAC
				600 500
				εC
				13
				305

L

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 2
Document Number: FAC-001-0	1393 To 0422	Date: 05/22/86	***********
Title: Health and Safety P Elmira, New York	lan for Supplemental Hydrogeologic Investigations	, Facet Enterprises, Inc.,	
Recipient: Wyant, Clyde:	M.: Radian Corporation Facet Enterprises		·
Document Number: FAC-001-0	423 To 0445	Date: 05/22/86	
Title: Quality Assurance P Elmira, New York	lan, Supplemental Hydrogeologic Investigations, Fa	acet Enterprises, Inc.,	
Type: PLAN Author: Grimshaw, T.W.: Little, William Recipient: Wyant, Clyde:	M.: Radian Corporation		
Document Number: FAC-001-0	446 To 0446	Date: 06/18/86	
Title: (Letter forwarding	the attached draft Field Operations Plan for the I	Facet Enterprises site)	
Type: CORRESPONDENCE Author: Sachdev, Dev R. Recipient: Alvi, M. Shahee Dolan, Charles: Attached: FAC-001-0447	r: US EPA US EPA		
Document Number: FAC-001-0	447 To 0614 Parent: FAC-001-0446	Date: 06/01/86	
Title: Field Operations Pl. Type: PLAN Author: Fitzgerald, Dan Recipient: none: US EPA	an, Supplemental RI/FS, Facet Enterprises, Inc., S iel: Ebasco Services	Site	

ί

06/26/92	Index Document Number Ord FACET ENTERPRISES Documer	
<u> </u>	FAC-001-0615 To 0637	Date: 07/07/86
Title: Quality As: York	surance Plan, Remedial Investigation for the	Facet Enterprises Site, Elmira, New
Little	aw, T.W.: Radian Corporation , William M.: Radian Corporation Clyde: Facet Enterprises	
Document Number: 1	FAC-001-0638 To 0860	Date: 10/27/89
	Quality Assurance Plan, Work Plan Document I rprises, Inc.	I, Attachment I, Remedial Investigation,
Type: PLAN Author: none: Recipient: none:	CompuChem Facet Enterprises	
Document Number: I	FAC-001-0861 To 0947	Date: 10/27/89
Title: Quality As: Inc.	surance Project Plan, Work Plan Document II,	Remedial Investigation, Facet Enterprises,
Type: PLAN		
Author: none: Recipient: none:	ERM-Northeast Facet Enterprises	
Document Number: 1	FAC-001-0948 To 1007	Date: 10/27/89
Title: Health & Sa	afety Plan, Work Plan Document III, Remedial	Investigation, Facet Enterprises, Inc.
Type: PLAN Author: none: Recipient: none:	ERM-Northeast Facet Enterprises	

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Pag	e: 4
Document Number: FAC-001-1008 To 10		Date: 11/16/89	FİİZƏ
Title: Field Sampling Plan, Work Pi	an Document I, Remedial Investigation,	Facet Enterprises, Inc.	
Type: PLAN Author: none: ERM-Northeast Recipient: none: Facet Enterprises			
Document Number: FAC-001-1087 To 11	143	Date: 05/24/90	
Title: Field Oversight Plan, Facet York	Enterprises Site, Village of Elmira Hei	ghts, Chemung County, New	
Type: PLAN Author: Angers, Alan K.: Alliar Recipient: Josephson, J. Jeff: US	EPA		
Document Number: FAC-001-1144 To 11	62	Date: / /	
Title: Appendix B: Site Safety Pla Heights, New York	n, RI Field Oversight Activities, Facet	Enterprises Site, Elmira	
Type: PLAN Condition: DRAFT			
Author: none: Alliance Technolo Recipient: none: US EPA	gies Corporation	,	
••••••			
Document Number: FAC-001-1163 To 11	68	Date: 10/31/90	
•	ns with Alliance about the soil sampling rding copies of telephone logs and pages		
Type: CORRESPONDENCE Author: Blasting, James F.: ERM Recipient: Josephson, J. Jeff: US			

ļ

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 5
Document Number: FAC-001-1169 To		Date: 06/14/91	
Title: QA Plan Short Form/Sampling Support	g Plan - Facet Enterprises, Elmira	, NY - Groundwater Sampling, Remedial	
Type: PLAN Author: Brochu, Amy J.: US EP/ Scalise, Laura: US EP/ Recipient: none: US EPA	N		
Document Number: FAC-001-1181 To 1	1199	Date: 07/12/91	
Title: Completed Analysis Report ((for the Facet Enterprises site)		
Type: DATA Author: illegible, Gerard: US Recipient: none: none			
Document Number: FAC-001-1200 To 1	1201	Date: 07/22/91	
Title: (Letter providing informati	ion on three active oil sumps loca	ted at the Facet Enterprises facility)	
Type: CORRESPONDENCE Author: Skaggs, James R. Jr.: cipient: Josephson, J. Jeff: US	S EPA		
Document Number: FAC-001-1202 To 1	1206	Date: 07/18/91	
Title: (Letter providing informati New York)	ion on the cause of death of trees	at the Purolator site in Elmira,	
Type: CORRESPONDENCE Author: Sinclair, Wayne A.: no Recipient: Blasting, James F.: ER			

ł

!

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 6
***********************	= 1 = 1 = 1 = 2 = 2 = 2 = 2 = 2 = 2 = 2		2227727777883838383
Document Number: FAC-001	-1207 To 1221	Date: 07/01/91	
Title: Review of Risk As: New York	sessment of Purolator Products Company Superfund	Site at Elmira Heights,	
Type: PLAN Author: Mahagaokar, Su Recipient: none: none	uneeta: Environmental Safety and Health Affairs		
Document Number: FAC-001	·1222 To 1330	Date: 08/27/91	
Title: Field Sampling Pla Products Company A	an, Work Plan Appendix II, Document I, Test Trenc RI	ch Excavation, Purolator	
Type: PLAN			
Author: none: ERM-Nor	theast		
Recipient: none: Purola	tor Products Company		
Document Number: FAC-001	-1331 то 1388	Date: 08/27/91	
Title: Health & Safety Pl Products Company R	lan, Work Plan Appendix II, Document III, Test Tr RI	ench Excavation Purolator	
Type: PLAN			
- Author: none: ERM-Nor	theast	i	
Recipient: none: Purolat	tor Products Company		
Document Number: FAC-001	·1389 To 1412	Date: / /	
Title: USEPA Comments/Pu	rolator Response, Test Trench Excavation Work Pla	n Purolator Products Company	
Type: PLAN			
Author: none: ERM-Nor	theast		
Recipient: none: none			

.

7				
06/26/92	FACET EN	cument Number Order IERPRISES Documents	Page	
Document Number: FAC-00			Date: 08/07/81	82233
Title: (Memo forwarding	the attached data from	a sampling conducted on June 10, 19	981)	
-	,			
Type: DATA Author: Hogan, Maure	en: NY Dept of Enviro	mmental Conservation		
Recipient: Herington, C	arol C.: NY Dept of E	nvironmental Conservation		
Document Number: FAC-00			Date: 08/25/81	
Title: Transmittal Slip site for review)		ned Sampling Inspection Report for	the Facet Enterprises	
Type: CORRESPONDEN	CE			
	•	vironmental Conservation		
Recipient: Rankin, John Attached: FAC-001-1430)	ental Conservation		
Document Number: FAC-00		Parent: FAC-001-1429		
Title: Sampling Inspect	ion Report, Facet Enter	prises, Inc., Horseheads, Chemung	County	
Type: REPORT				
Author: Herington, C Recipient: none: NY De		nvironmental Conservation Aservation		
Document Number: FAC-00			Date: 06/26/81	
Title: (Letter forwardi and 27, 1981)	ng the attached analyti	cal results for sixteen samples re	ceived on March 26	
Type: CORRESPONDEN	CE			
	mes A.: Recra Research			
Recipient: Herington, C Attached: FAC-001-1440	•	wironmental Conservation		
Document Number: FAC-00	1-1440 то 1457	Parent: FAC-001-1439	Date: 06/26/81	
Title: Analytical Repor Analyses	t – New York States Dep	partment of Environmental Conservat	ion Priority Pollutant	
Type: REPORT				
Author: none: Recra Recipient: none: NY De		rearvation		
NGUIDICIUI DODEI NI DE	pr of chartonmental Cor	NEL VEL IVII	-	
			FAC	

•

⁰⁰³ 1311

06/26/92	Index Document Number Order	Page: 8
	FACET ENTERPRISES Documents	-
		
Document Number: FAC-001-1458	To 1487	Date: 07/09/81
Title: Analytical Report - Ne Analyses	W York State Department of Environmental Con	servation, Priority Pollutant
Type: REPORT		
Author: none: Recra Resea		
Recipient: none: NY Dept of I	Environmental Conservation	
Document Number: FAC-001-1488	To 1488	Date: 01/31/89
Title: New York State Departm Facet Enterprises, Inc.	ent of Environmental Conservation - Industri .)	al Chemical Survey (for
Type: DATA		
Author: none: NY Dept of I	Environmental Conservation	
Recipient: none: NY Dept of I	Environmental Conservation	
Document Number: FAC-001-1489	To 1536	Date: 06/22/90
_	attached HDL Study done for EPA Method 524.3 ary Reports and a Corporate Introduction)	2 along with Organic Performance
Type: DATA		
✓ Author: Shringarpure, Jayar Recipient: Giglio, Rick: Comp	nt: Southwest Laboratory of Oklahoma, Inc. DuChem	
Document Number: FAC-001-1537	To 1544	Date: 08/08/90
Title: (Letter summarizing and the drywell at the Face	d forwarding the attached laboratory results et Enterprises site)	for samples taken from
Type: DATA		
Author: Argus, Lawrence D.:	ERM-Northeast	

Recipient: Howland, Reeve B.: Purolator Products Company

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 9
Document Number: FAC-001-1545 To 16	**************************************	Date: 11/01/90	
Title: Report: Dry-Wells Analysis	at Purolator Products Co., Elmira, New Y	'ork, October, 1990	
Type: REPORT Author: Brown, Lindsey K.: FLI Criss, Stanley C.: FLI Recipient: Howland, Reeve B.: Puro	Environmental Services		
Document Number: FAC-001-1630 To 16	54	Date: 11/29/90	
	raw data packages for the identified dat anch for data validation audits)	a be submitted to the	
Type: DATA Author: Josephson, J. Jeff: US i Recipient: Howland, Reeve B.: Puro			
Document Number: FAC-001-1655 To 16	59	Date: 09/24/91	
Title: (Letter discussing review of of 1990)	inorganic data generated during the Rem	edial Investigation activities	
Type: CORRESPONDENCE Author: Blasting, James F.: ERM Recipient: Howland, Reeve B.: Puro Attached: FAC-001-1660 FAC-001-16	lator Products Company 661	,	
Document Number: FAC-001-1660 To 16		Date: 07/25/91	
Title: (Memo discussing the revalid	ation of Inorganic data for the Facet Er	terprises site)	
Type: CORRESPONDENCE Author: Sheikh, Hanif: US EPA Recipient: Josephson, J. Jeff: US H	EPA		
			⊓ ⊳ ⊃
			003
			ב ב נ

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 10
Document Number: FAC-001-1661 To 173		
Title: (Memo forwarding the attached	i technical data validation report and prov	iding comments)
Type: DATA Author: Boshart, Dale S.: Roy F. Recipient: Sheikh, Hanif: US EPA	Weston, Inc.	
Document Number: FAC-001-1731 To 174	3	Date: 12/30/91
· · · · · ·	the Final Field Sampling Plan, Quality Ass is to EPA comments on the Quality Assurance prises site)	-
Type: CORRESPONDENCE Condition: MISSING ATTACHMENT Author: Howland, Reeve B.: Purol Recipient: Josephson, J. Jeff: US E		
Attached: FAC-001-1744		. :
Document Number: FAC-001-1744 To 177	'1 Parent: FAC-001-1731	
Title: Standard Operating Procedure	- Appendix A.1: Data Assessment - Contrac	t Compliance
Type: PLAN Condition: INCOMPLETE Author: none: US EPA Recipient: none: none		
Document Number: FAC-001-1772 To 179	5	Date: 05/18/90
Title: Addendum to Work Plan Documen	ts - Remedial Investigation, Facet Enterpr	ises, Inc.
Type: PLAN Author: none: ERM-Northeast Recipient: none: Facet Enterprises		

FAC 003 1314

,

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 11
	397877777777777777777777777777777777777	***************************************	<u>보유모문은 유민원</u> 로 또 또
Document Number: FAC-001-1796 To 182	2	Date: / /	
Title: Work Plan - Soil and Surface	Water Investigation		
Type: PLAN Author: none: Facet Enterprises Recipient: none: none			
Document Number: FAC-001-1823 To 182	3	Date: 02/28/83	•••••
Title: (Letter forwarding the attach site)	ed Final Remedial Action Master Plan for the Fa	cet Enterprises	
Type: CORRESPONDENCE Author: Cassis, Jeffrey A.: Camp Recipient: Deieso, Donald: US EPA Attached: FAC-001-1824	Dresser & McKee (CDM)		
Document Number: FAC-001-1824 To 184			
Title: Remedial Action Master Plan f	or Facet Enterprises Site, Elmira Heights, NY		
Type: PLAN Author: none: CC Johnson & Assoc cipient: none: none	iates		
Document Number: FAC-001-1943 To 197	5	Date: 07/26/85	•••••
Title: Work Plan - Supplemental Hydro York	ogeologic Investigations, Facet Enterprises, In	c., Elmira, N ew	
Type: PLAN			
Author: none: Radian Corporation Recipient: Jackson, David W.: Facet	Enterprises		
Document Number: FAC-001-1983 To 202	4	Date: 07/07/86	
Title: Remedial Investigation Work P	lan for the Facet Enterprises Site, Elmira, New	York	
Type: PLAN			
Author: none: Radian Corporation Recipient: Wyant, Clyde: Facet Enter	rorises		ח
, ,,,	• -		AC
			003
			1315

Index	Document Number Order	
FACET	ENTERPRISES Documents	

.

~

.

06/26/92

Page: 12

Document Number: FAC-001-2025 To 2026		Date: 10/07/86
Title: (Letter forwarding the attached Final Wo Study Oversight Project)	ork Plan for the Facet Enterprises	Remedial Investigation/Feasibility
Type: CORRESPONDENCE		
Author: Sachdev, Dev R.: Ebasco Services		
Recipient: Alvi, H. Shaheer: US EPA		
Dolan, Charles: US EPA		
Attached: FAC-001-2027		
Document Number: FAC-001-2027 To 2046	Parent: FAC-001-2025	Date: 01/08/87
Title: Final Work Plan RI/FS Oversight, Facet E	Interprises, Incorporated, Elmira,	NY
Type: PLAN		
Author: Sisovsky, Patricia: Ebasco Services Recipient: none: US EPA	, . ,	
Document Number: FAC-001-2047 To 2168		Date: 06/17/91 Confidential
Title: Revision 2 - Field Oversight Work Plan, - RI/FS Compliance Oversight	Purolator Products Company Site,	Elmira, New York
		· · ·
Type: PLAN		,
 Author: Foster, Charles H.: Alliance Technol Desining Transmission Technology 	logies Corporation	
Recipient: Taccone, Tom: US EPA Attached: FAC-001-2048		
Document Number: FAC-001-2048 To 2048	Parent: FAC-001-2047	Date: 08/19/91
Title: (Nandwritten Record of Communication det	ailing a phone conversation with	Laura Scalise about
the review of the Purolator Test Trench	QAPP and Oversight QAPP)	
Type: CORRESPONDENCE		
Author: Taccone, Tom: US EPA		
Recipient: file: US EPA		

06/26/92 Index Document Number Order Page: 13 FACET ENTERPRISES Documents Document Number: FAC-002-0001 To 0036 Date: 12/04/91 Title: Work Plan, Oil Investigation Purolator Products Company, Elmira, New York Type: PLAN Author: none: ERM-Northeast Recipient: none: Purolator Products Company Document Number: FAC-002-0037 To 0038 Date: 09/12/86 Title: (Letter forwarding the enclosed Draft Field Activities Summary Report for the Facet Enterprises, Inc., site in Elmira, New York) Type: CORRESPONDENCE Author: Sachdev, Dev R.: Ebasco Services Recipient: Alvi, M. Shaheer: US EPA Dolan, Charles: US EPA Attached: FAC-002-0039 Document Number: FAC-002-0039 To 0138 Parent: FAC-002-0037 Date: 09/01/86 Title: Field Activities Summary Report RI/FS Oversight, Facet Enterprises, Inc. Site, Elmira, New York Type: REPORT Condition: DRAFT Author: Sisovsky, Patricia: Ebasco Services Recipient: none: US EPA -----Document Number: FAC-002-0139 To 0140 Date: 11/26/86 Title: (Letter forwarding the enclosed Draft Report, Remedial Investigation Review for the Facet Enterprises, Inc., site in Elmira, New York) Type: CORRESPONDENCE Author: Sachdev, Dev R.: Ebasco Services Recipient: Alvi, M. Shaheer: US EPA Dolan, Charles: US EPA Attached: FAC-002-0141

1

06/26/92		nt Number Order RISES Documents		Page: 14
*****				*******
Document Number: FAC-002-0141 To I	0177	Parent: FAC-002-0139	Date: 11/01/86	
Title: Draft Report Review of RI I	Ocument, Facet	Enterprises, Inc., Site, Elmira	a, New York	
Type: REPORT				
Condition: DRAFT				
Author: Sisovsky, Patricia: El	basco Services			
Recipient: none: US EPA				
Document Number: FAC-002-0178 To (0178		Date: 07/30/90	
Title: Final Report, NYSDEC Conser	nt Order Case No	. R8-0771-90-04, Schedule 1, Pa	aragraph 4	
Type: REPORT				
Author: none: ERM-Northeast		-	•	
Recipient: Howland, Reeve B.: Pur Attached: FAC-002-0179	olator Products	Company		
Document Number: FAC-002-0179 To (185	Parent: FAC-002-0178	Date: 07/31/90	
Title: (Letter providing an Engine	ering Report and	d associated drawings identifyi	ng and reviewing	
all surface drainage, areas	of potential r	moff and collection and/or was	stewater disposition	
for the drainage area and t	the Facet Enterp	rises site)		
Type: CORRESPONDENCE			i	
Author: Miller, Richard C.: ER	M-Northeast			
Recipient: Howland, Reeve B.: Pur	olator Products	Company		
Document Number: FAC-002-0186 To 0	1718		Date: 11/15/91	·
Title: 1990 Remedial Investigation	Report, Purola	tor Products Company, Elmira, N	lew York	
Type: REPORT			•	
Author: none: ERM-Northeast				
Recipient: none: Purolator Produc	ts Company			

FAC 003 1318

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 15
	***************************************	***************************************
Document Number: FAC-002-0719 To 07	19	Date: 02/13/92
Title: (Letter forwarding the enclose	ed Risk Assessment, Revision 3 for the Facet	Enterprises site)
Type: CORRESPONDENCE Author: Feinberg, Charles: Allia Recipient: Moyik, Cathy: US EPA Attached: FAC-002-0720	ance Technologies Corporation	
Document Number: FAC-002-0720 To 114	7 Parent: FAC-002-0719	Date: / /
Title: Risk Assessment Revision 3, 1	acet Enterprises Site, Elmira Heights, New Yo	ork
Type: PLAN Author: none: Alliance Technolog Recipient: none: US EPA	ies Corporation	
Document Number: FAC-002-1148 To 121	4	Date: / /
Title: (Sections of a report detaili Enterprises site)	ing aspects of the Remedial Investigation per	formed at the Facet
Type: PLAN		
<pre>*ondition: INCOMPLETE Author: none: ERM-Northeast</pre>		•
Recipient: none: none		
Document Number: FAC-002-1215 To 126	4	Date: / /
Title: Appendix C (from the Remedial	Investigation Report for the Facet Enterpris	ses site)
Type: PLAN Condition: INCOMPLETE Author: none: ERM-Northeast Recipient: none: none		
		F AC
		003

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 16
			822 572122 2222
Document Number: FAC-002-1265 To 13	56	Date: / /	
Title: Appendix G (from the Remedia	l Investigation for the Facet Enterp	rises site)	
Type: PLAN			
Condition: INCOMPLETE			
Author: none: ERM-Northeast			
Recipient: none: none			
Document Number: FAC-002-1357 To 13	20	Date: / /	
Document Number: PAC-002-1357 10 13			
Title: (A section of a document dis	cussing facts establishing defendant:	s liability)	
Type: PLAN			
Condition: INCOMPLETE			
Author: none: none			
Recipient: none: none			
Document Number: FAC-002-1361 To 13	62	Date: 08/08/85	
Title: (Memo listing issues that mu and Work Plan can be approve	ist be addressed before the Facet Ente d)	erprises Quality Assurance	
Type: CORRESPONDENCE			
 Author: Gatton, Lisa: US EPA 			
Recipient: Dolan, Charles: US EPA			
Document Number: FAC-002-1363 To 13		Date: 08/20/85	,
Title: (Letter commenting on Radian	's Quality Assurance and Remedial Im	vestigation Work Plan for	
the Facet Enterprises site)			
Type: CORRESPONDENCE			
Author: Dolan, Charles: US EPA			
Recipient: Little, William M.: Rad	ian Corporation		

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 17
	**************************************	***************************************
Document Number: FAC-002-1365 To 136	9	Date: 10/15/85
Title: (Memo forwarding four pages of Facet Enterprises Quality Ass		o comments received on the
Type: CORRESPONDENCE		
Author: Gatton, Lisa: US EPA Recipient: Dolan, Charles: US EPA		
Document Number: FAC-002-1370 To 137	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Date: 08/25/86
	-	
Title: (Letter commenting on the pot investigation for the Facet E	-	the adequacy of the proposed
Type: CORRESPONDENCE		
Condition: MARGINALIA	t of Health	
Author: Weiss, Dennis R.: NY Dep Recipient: Dolan, Charles: US EPA		
		Date: 12/03/86
Document Number: FAC-002-1373 To 137	3	Date: 12/03/00
Title: (Letter discussing the invest area)	igations of groundwater and soil co	ontamination in Horseheads/Elmira
Type: CORRESPONDENCE		,
Author: Dolan, Charles: US EPA Recipient: Driscoll, John T.: S. M.	Fleckinger Company, Inc.	
Document Number: FAC-002-1374 To 137		Date: 02/05/87
Title: (Letter forwarding the attach sampling activities for Facet		asco's recommended additional
Type: CORRESPONDENCE		
Author: Petrino, Patricia: Ebasc	o Services	
Recipient: Dolan, Charles: US EPA Attached: FAC-002-1375		

FAC 003 1321

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 18
	122112325222823100/52328552235255552285215	4455483587 <u></u>
Document Number: FAC-002-1375 To 137	79 Parent: FAC-002-1374	Date: / /
Title: Scope of Work, Facet Enterpri	ises, Details for Recommended Additional F	ield Investigation Studies
Type: PLAN Author: none: Ebasco Services Recipient: none: none		
Document Number: FAC-002-1380 To 138	32	Date: 02/17/87
-	ork State Department of Environmental Conso comments on the draft Remedial Investigation	-
Type: CORRESPONDENCE Author: Nosenchuck, Norman H.: N Recipient: Luftig, Stephen D.: US E	IY Dept of Environmental Conservation PA	
Document Number: FAC-002-1383 To 138	35	Date: 03/10/87
Title: (Letter commenting on the Oct site)	ober 1986 Draft Remedial Investigation Rep	port for the Facet Enterprises
Type: CORRESPONDENCE		
Author: Weiss, Dennis R.: NY Dep Recipient: Dolan, Charles: US EPA	ot of Health	
Document Number: FAC-002-1386 To 138	6	Date: 03/18/87
Title: (Handwritten memo requesting the Facet Enterprises site)	that the recipient handle the remedial par	t of the clean-up at
Туре: CORRESPONDENCE Author: unknown, Joel: US EPA Recipient: none: US EPA		
		۳ AC
		εοο
		1322

•	06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 19
	•	***************************************	***************************************	2223 <u>2</u> 232232
$\overline{}$	Document Number: FAC-002-1	387 To 1398	Date: 03/14/88	
		EPA's, NYSDEC's, and NYSDOH's comments on the P prises site, dated October 1986)	emedial Investigation Report	
	Type: CORRESPONDENCE			
	Author: Czapor, John: 1	JS EPA		
	Recipient: Little, William	M.: Radian Corporation		
	Document Number: FAC-002-1		Date: 04/14/88	•••••
		to EPA's March 14, 1988, letter commenting on R t for the Facet Enterprises site)	adian's October 1986 Remedial	
	Type: CORRESPONDENCE			
		M.: Radian Corporation		
	Recipient: Czapor, John: 1			
	Document Number: FAC-002-14	606 To 1406	Date: 05/09/88	
	Title: (Letter discussing) of the Facet Enterpy	the water problem caused by the inadequate drai rises site)	nage of a ditch in the vicinity	
	Type: CORRESPONDENCE			
	Author: Elford, Gordon F			
	.ecipient: Brink, Gardon R.	.: Elmira Heights (Village of)	· •	
	Document Number: FAC-002-14	607 To 1407	Date: 05/10/88	
		the potential health and environmental hazard on hity of the Facet Enterprises site)	f the West Side Drainage	
	Type: CORRESPONDENCE			
	••	es R.: Chemung County Health Department		
	Recipient: Brink, Gordon R.	: Elmira Heights (Village of)		

_

. ~

.

FAC 003 1323

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 20
	***************************************	₽₩±₽±₽₹₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	**********
Document Number: FAC-00	2-1408 To 1408	Date: 05/10/88	
Title: (Letter recommen Facet Enterprise	ding a solution to the drainage and flooding problem is site)	n the vicinity of the	
Type: CORRESPONDEN	CE		
Author: Buddle, Alla	n F.: NY Dept of Environmental Conservation		
Recipient: Brink, Gordo	n R.: Elmira Heights (Village of)		
Document Number: FAC-00	2-1409 To 1414	Date: 06/13/89	
Title: (Letter commentie letter)	ng on Radian's April 14, 1988, response to EPA's Remed	ial Investigation comment	
Type: CORRESPONDEN	CE		
Author: Petersen, Ca			
Recipient: Morahan, Tho	mas: Radian Corporation		
Document Number: FAC-00			
	that Facet Enterprises' Work Plan, "Soil and Surface W d forwarding specific concerns and recommendations base		
Type: CORRESPONDEN	CE	,	
Author: Brown, Bradle Recipient: Josephson, J.	ey A.: NY Dept of Environmental Conservation . Jeff: US EPA		
Document Number: FAC-00		Date: 06/22/89	
Title: (Cover sheet for	warding comments on the Facet Sampling Plan)		
Type: CORRESPONDEN	CE		
	: NY Dept of Environmental Conservation		
Recipient: Josephson, J			
Attached: FAC-002-1419			

,

•

06/26/92	FACET EN	cument Number Order TERPRISES Documents		Page: 21
Document Number: FAC-002		Parent: FAC-002-1418	Date: 06/22/89	
Title: (Letter commentin	g on the Facet Tribut	ary Sampling Plan)		
Type: CORRESPONDENC Author: Sosnow, Micha Recipient: Josephson, J.	el C.: NY Dept of Em	vironmental Conservation		
Document Number: FAC-002			Date: 07/03/89	•••••
		letter which stated that addition be held to discuss the facet Ente		
Type: CORRESPONDENC Author: Wyant, Clyde: Recipient: Josephson, J.	Facet Enterprises			
Document Number: FAC-002	-1423 To 1423		Date: 07/10/89	
Title: (Letter which con: site)	stitutes Radian's mont	thly progress report for June 1989	for the Facet Enterprises	
Type: CORRESPONDENCE	E			
Author: Morahan, Thom	-	n	•	
Recipient: Josephson, J.	Jeff: US EPA			
******			••••••	
Document Number: FAC-002	-1424 To 1425		Date: 09/29/89	
-		mira's request for guidance in sa g from the outfall located at Face		
Type: CORRESPONDENCE	E			
Authors Dolling Dive	- F - NY Dent of Emul			

Author: Rollins, Dixon F.: NY Dept of Environmental Conservation Recipient: Winkkey, Eric: Elmira Heights (Village of)

FAC 003 1325

06/26/92	Index Doc	ument Number Order		Page: 2
_	FACET ENT	ERPRISES Documents		-
Document Number: FAC-002-14		************************************	Date: 10/05/89	IZJÜÊ GRÎÊ <u>Y</u> BE
Title: (Letter forwarding a should be analyzed f		y Acceptable Laboratories and sta	ting that the samples	
Type: CORRESPONDENCE				
Condition: MISSING ATTACHME	ENT			
Author: Rollins, Dixon I	•			
Recipient: Winkkey, Eric:				
Document Number: FAC-002-14			Date: 10/27/89	
Title: (Letter forwarding a in the Newton Creek		arameters for groundwater monitor	ing wells located	
Type: CORRESPONDENCE				
Condition: MISSING ATTACHME				
Condition: MISSING ATTACHME Author: Josephson, J. Je	eff: US EPA			
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E	eff: US EPA B.: Facet Enterprise		· .	
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E	eff: US EPA 8.: Facet Enterprise	ës	Date: 02/06/90	
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E	eff: US EPA 8.: Facet Enterprise 428 To 1428			
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E Document Number: FAC-002-14	eff: US EPA 8.: Facet Enterprise 428 To 1428			
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E Document Number: FAC-002-14 Title: (Letter forwarding R	eff: US EPA 8.: Facet Enterprise 428 To 1428			
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E Document Number: FAC-002-14 Title: (Letter forwarding F Type: CORRESPONDENCE Condition: INCOMPLETE Author: Josephson, J. Je	eff: US EPA B.: Facet Enterprise 428 To 1428 Region 11's data vali eff: US EPA			
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E Document Number: FAC-002-14 Title: (Letter forwarding F Type: CORRESPONDENCE Condition: INCOMPLETE Author: Josephson, J. Je Recipient: Wolff, Doug: EF	eff: US EPA B.: Facet Enterprise 428 To 1428 Region 11's data vali eff: US EPA			
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E Document Number: FAC-002-14 Title: (Letter forwarding F Type: CORRESPONDENCE Condition: INCOMPLETE Author: Josephson, J. Je	eff: US EPA B.: Facet Enterprise 428 To 1428 Region 11's data vali eff: US EPA RM-Northeast	idation package)		
Condition: MISSING ATTACHME Author: Josephson, J. Je Recipient: Howland, Reeve E Document Number: FAC-002-14 Title: (Letter forwarding F Type: CORRESPONDENCE Condition: INCOMPLETE Author: Josephson, J. Je Recipient: Wolff, Doug: EF	eff: US EPA B.: Facet Enterprise 428 To 1428 Region 11's data vali eff: US EPA RM-Northeast	idation package)	Date: 02/06/90	

Author: none: vario Recipient: none: none

i

j

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 23
********************* ***************	***************************************	***************************************	322822222882288
Document Number: FAC-002-	-2226 To 2228	Date: 02/15/90	
Wildlife and NYSDC	g NYSEDC's Division of Hazardous Waste Remediati DH's comments on ERM-Northeast's draft Field Sam the Facet Enterprises site)	•	
Type: CORRESPONDENCE	E		
	A.: NY Dept of Environmental Conservation		
Recipient: Josephson, J.	Jeff: US EPA	,	
Document Number: FAC-002-	-2220 7- 2225	Date: 02/21/90	
Document Number: FAC-002-	• 2229 10 2233	Date: 02/21/90	
Title: (Letter commenting	g on the Field Sampling/Work Plan, Quality Assur	ance Work Plan Document and	
the Health and Saf	fety Plan for the Facet Enterprises site)		
Type: CORRESPONDENCE			
Author: Petersen, Caro			
Recipient: Howland, Reeve	e B.: Facet Enterprises		

Document Number: FAC-002-	-2236 To 2236	Date: 02/09/90	
	the November 16, 1989, Field Sampling Plan for t the New York Division of Air Resources)	the Facet Enterprises site	
		ł	
Author: Fossa, Art: N	IY Dept of Environmental Conservation		
Recipient: Brown, Bradley	<pre>/ A.: NY Dept of Environmental Conservation</pre>		
Document Number: FAC-002-	-2237 To 2237	Date: 03/07/90	
Title: (Letter forwarding	g the attached monthly progress report for Februa	ary 1 to February 28, 1990)	
Type: CORRESPONDENCE			
•	B.: Facet Enterprises		
Recipient: Josephson, J.	Jeff: US EPA		
Attached: FAC-002-2238			

.

06/26/92		ument Number Order ERPRISES Documents		Page: 24
****	******************	I 325455222222222222222222222222222222222	**********************	52332525555555555555555555555555555555
Document Number: FAC-002-2	238 To 2239	Parent: FAC-002-223	7 Date: 03/0	07/90
Title: Facet Enterprises,	Inc., Remedial Inves	tigation Monthly Report for	February, 1990	
Type: REPORT Author: Blasting, James Recipient: none: none	F.: ERM-Northeast			
Document Number: FAC-002-2			Date: 03/0	09/90
_	ERM's responses to E acet Enterprises sit	PA's comments on the Remedia e)	l Investigation plan	s originally
Type: CORRESPONDENCE Author: Howland, Reeve Recipient: Josephson, J. J Attached: FAC-002-2241	eff: US EPA	es .		
Document Number: FAC-002-2		Parent: FAC-002-224	0 Date: 03/0	08/90
Title: (Letter responding documents)	to EPA's comments re	garding the Facet Remedial I	nvestigation Work Pla	2 N
Type: CORRESPONDENCE Author: Blasting, James Recipient: Howland, Reeve		e3	•	
Document Number: FAC-002-2			Date: 03/	19/90
· · · ·	answers to questions Remedial Investigati	raised during a March 14, 1 on)	990, meeting, regardi	ing
Type: CORRESPONDENCE Author: Josephson, J. J Recipient: Howland, Reeve		e 3		

Document Number: FAC-002-2253 To 2253 Title: (Letter discussing a March 14, remedial investigation at the F Type: CORRESPONDENCE Condition: MISSING ATTACHMENT Author: Blasting, James F.: ERM-No Recipient: Howland, Reeve B.: Facet E	1990, meeting which was attended b	Date: 03/22/90 by parties involved in the
remedial investigation at the F Type: CORRESPONDENCE Condition: MISSING ATTACHMENT Author: Blasting, James F.: ERM-No		wy parties involved in the
Condition: MISSING ATTACHMENT Author: Blasting, James F.: ERM-No		
Author: Blasting, James F.: ERM-No	•	
Recipient, Nouisna Reeve H , Facet F		
	nterprises	
Document Number: FAC-002-2254 To 2254		Date: 03/30/90
Title: (Letter confirming a telephone cancelled its April 2, 1990, pl	conversation in which it was state ans to begin sampling and testing	•
Type: CORRESPONDENCE		
Author: Garrett, Theodore L.: Covi Recipient: Josephson, J. Jeff: US EPA		
Document Number: FAC-002-2255 To 2256		Date: 04/05/90
Title: (Letter confirming that neither the Remedial Investigation unti Work Plan documents is complete	l the review and approval process	
Type: CORRESPONDENCE		,
Author: Josephson, J. Jeff: US EPA		
Recipient: Howland, Reeve B.: Facet E	nterprises	
Document Number: FAC-002-2257 To 2257		Date: 04/12/90
Title: (Letter forwarding the attached site)	monthly progress report for March	, 1990, for the Facet Enterprises
Type: CORRESPONDENCE		
Author: Howland, Reeve B.: Facet E		
Recipient: Josephson, J. Jeff: US EPA Attached: FAC-002-2258		

n6/26/92	Index Document Number Order FACET ENTERPRISES Documents		
	***************************************		************************
Document Number: FAC-002-2258 To 220	50 Parent: FAC-002	2-2257 Date: 04/0	3/90
Title: Facet Enterprises, Inc., Rem	dial Investigation Monthly Progres	s Report for March, 1990	
Type: REPORT Author: Blasting, James F.: ERM- Recipient: none: none			
Document Number: FAC-002-2261 To 226	52	Date: 05/1	4/90
Title: (Letter commenting on the ove	ersight Work Plan for the Facet Ent	erprises site Remedial In	vestigation)
Type: CORRESPONDENCE Author: Josephson, J. Jeff: US E Recipient: Angers, Alan K.: Alliand			
Document Number: FAC-002-2263 To 226	5	Date: 05/1	4/90
Title: (Letter commenting on the Add	lendum to Field Sampling/Work Plan	for the Facet Enterprises	site)
Type: CORRESPONDENCE Author: Josephson, J. Jeff: US E scipient: Howland, Reeve B.: Facet		1	
Document Number: FAC-002-2266 To 226	6	Date: 05/1	6/90
Title: (Letter forwarding the attach channel south of the Facet ou	ed results of analyses pertaining stfall and a map indicating the loc	•	pen
Type: CORRESPONDENCE Condition: MISSING ATTACHMENT Author: Cazorla, Jean: Elmira He Recipient: Josephson, J. Jeff: US E Attached: FAC-002-2267 FAC-002-22	PA		
Document Number: FAC-002-2267 To 226	7 Parent: FAC-002	-2266 Date: 05/1	1/90
Title: (Letter discussing the result and EP toxicity metals)	s of volatile and semi-volatile GC	/HC analysis, total metal:	3,
Type: CORRESPONDENCE			_
Author: Buck, John H.: Buck Envi Recipient: Cazorla, Jean: Elmira He			FAC
			003
			حر
			1330

06/26/92	FACET ENT	ument Number Order ERPRISES Documents		Page: 27
Document Number: FAC-00		Parent: FAC-002-2266		:t22223322233
Title: (Laboratory repo		woratory reports of samples taken		
Type: DATA Author: Buck, John H Recipient: none: Elmir	.: Buck Environmental a Heights (Village of)	Services		
Document Number: FAC-00			Date: 05/18/90	
-	ng changes made to the Facet Enterprises site)	Work Plan Addendum regarding the	sampling and analysis	
Type: CORRESPONDEN Condition: MISSING ATTA Author: Blasting, Ja Recipient: Howland, Ree	CHMENT mes F.: ERM-Northeast	es		
Document Number: FAC-00			Date: 05/21/90	
		m to Work Plan Documents, Remedia comments received on the original		
Type: CORRESPONDEN	CE			
Condition: MISSING ATTA	CHMENT		,	
Author: Howland, Ree Recipient: Josephson, J	ve B.: Facet Enterpris . Jeff: US EPA	es		
				• • • • • • • • • • • • • • • • • • • •
Document Number: FAC-00	2-2288 To 2288		Date: 06/01/90	
Title: (Letter listing 11, 1990)	analytical methods used	in the Elmira Heights analytical	l package dated May	
Type: CORRESPONDEN	CE			
	.: Buck Environmental	Services		
Recipient: Josephson, J	. Jeff: US EPA			

.

1

. 06/26/92		ument Number Order ERPRISES Documents		Page: 28
			12282222222222222222222222222222222222	************
Document Number: FAC-0	02-2289 To 2289		Date: 06/13/90	
Title: (Letter approvi for the Facet E	•	dum to the Field Sampling/Work Pl	an dated May 21, 1990,	
Type: CORRESPONDE	NCE			
Author: Petersen, C				
Recipient: Howland, Re	eve B.: Facet Enterpris			
Document Number: FAC-0			Date: 06/28/90	
		theast letter and referenced encl egarding S.A.S. 524.2 - Revision		
Type: CORRESPONDE	NCE			
Author: Howland, Re	eve B.: Purolator Produ	cts Company		
Recipient: Josephson, Attached: FAC-002-229	1			
Document Number: FAC-0		Parent: FAC-002-2290		
	cedure for becoming acce	ontracted Special Analytical Serv pted by EPA to perform SAS work,		
Type: CORRESPONDE	NCE			
ondition: MISSING ATT،	ACHMENT		,	
	ames F.: ERM-Northeast			
Recipient: Howland, Re	eve B.: Facet Enterpris	es		
•••••	• • • • • • • • • • • • • • • • • • • •			
Document Number: FAC-0	02-2293 To 2295		Date: 07/31/90	
Title: Purolator Produ	cts Company, Remedial In	vestigation, Monthly Report for J	uly, 1990	
Type: REPORT				
	ames F.: ERM-Northeast			
Recipient: none: none				
Attached: FAC-002-229	0			

06/26/92		ment Number Order RPRISES Documents		Page: 29
	******************	¥#£5278595522722222222222333333333333333333		
Document Number: FAC-002-229	6 To 2300	Parent: FAC-002-2293	Date: 07/10/90	
Title: ERN Quality Assurance	Audit (for the Pur	olator (Facet) Remedial Investiga	tion)	
Type: OTHER Author: Blasting, James F Recipient: none: none	: ERM-Northeast			
Document Number: FAC-002-230			Date: 07/03/90	•••••
-		re, and results of the proton magn igation and forwarding the attache		
Type: CORRESPONDENCE				
Author: Blasting, James F	.: ERM-Northeast			
Recipient: Howland, Reeve B.	: Purolator Produc	ts Company		

Document Number: FAC-002-231	4 To 2314		Date: 07/12/90	
Title: (Letter forwarding th site)	e attached monthly	progress report for June 1990 for	the Facet Enterprises	
Type: CORRESPONDENCE			,	
Author: Howland, Reeve B.		ts Company		
Recipient: Josephson, J. Jef Attached: FAC-002-2315 FA				
Attached: FAC-002-2313 FA				
Document Number: FAC-002-231	5 To 2316	Parent: FAC-002-2314	Date: 07/11/90	
Title: Purolator Products Co	mpany, Remedial Inv	estigation, Monthly Report for Jur	ne, 1990	
Type: REPORT				
Author: Blasting, James F	.: ERM-Northeast			
Recipient: none: none				

. 06/26/92	Index Document Num FACET ENTERPRISES	Documents		Page: 30
Document Number: FAC-002-2317 To 23		Parent: FAC-002-2314		
Title: ERN Quality Assurance Audit	(for the Purolator (Facet) Remedial Investig	gation)	
Type: OTHER Author: Blasting, James F.: ERM Recipient: none: none	-Northeast			
Document Number: FAC-002-2322 To 23			Date: 08/08/90	
Title: (Letter forwarding the attack site)	hed monthly progress	report for July, 1990 f	or the Facet Enterprises	
Type: CORRESPONDENCE Author: Howland, Reeve B.: Puro Recipient: Josephson, J. Jeff: US 1 Attached: FAC-002-2324 FAC-002-2	EPA	ny		
Document Number: FAC-002-2324 To 23	26	Parent: FAC-002-2322	Date: 07/31/90	
Title: Purolator Products Company, I Type: REPORT Author: Blasting, James F.: ERM- Recipient: none: none		on, Monthly Report for J	luly, 1990	
Document Number: FAC-002-2327 To 23			Date: 07/10/90	
Title: ERM Quality Assurance Audit	(for the Purolator (Facet) Remedial Investig	ation)	
Type: OTHER Author: Blasting, James F.: ERM Recipient: none: none	-Northeast			
Document Number: FAC-002-2332 To 23			Date: 09/06/90	
Title: (Letter forwarding the month of Elmira Heights street cons		or August, 1990, and dis	cussing the Village	
Type: CORRESPONDENCE Author: Howland, Reeve B.: Purol Recipient: Josephson, J. Jeff: US I Attached: FAC-002-2333	-	Y		

06/26/92	FACET ENTER	ent Number Order PRISES Documents		Page: 31
Document Number: FAC-002-2333		Parent: FAC-002-2332	Date: 08/30/90	
Type: REPORT Author: Blasting, James F. Recipient: none: none	: ERM-Northeast	itigation, Monthly Report for Aug		
Document Number: FAC-002-2335			Date: 11/12/90	
	granted a two week	ogress report for October, 1990, extension for the submission of		
Type: CORRESPONDENCE Author: Howland, Reeve B.: Recipient: Josephson, J. Jeff Attached: FAC-002-2336	: US EPA			
Document Number: FAC-002-2336		Parent: FAC-002-2335	Date: 11/05/90	
Title: Purolator Products Com	pany, Remedial Inves	tigation, Monthly Report for Oct	ober, 1990	
Type: REPORT Author: Blasting, James F. Recipient: none: none	: ERM-Northeast		,	
Document Number: FAC-002-2337			Date: 10/12/90	
Title: (Letter forwarding the site)	attached monthly re	port for September 1990 for the	Facet Enterprises	
Type: CORRESPONDENCE Author: Howland, Reeve B.: Recipient: Josephson, J. Jeff Attached: FAC-002-2338		Company		

06/26/92	Index Document FACET ENTERPRIS	ES Documents		Page: 32
Document Number: FAC-002-2338 To		Parent: FAC-002-2337	Date: 10/10/90	
Title: Purolator Products Company	, Remedial Investig	ation, Monthly Report for Se	ptember, 1990	
Type: REPORT Author: Blasting, James F.: E Recipient: none: none	RM-Northeast			
Document Number: FAC-002-2339 To			Date: 11/16/90	
Title: (Letter forwarding copies site)	of the 1990 draft R	emedial Investigation Report	for the Facet Enterprise	5
Type: CORRESPONDENCE				
Condition: MISSING ATTACHMENT				
Author: Howland, Reeve B.: Pu Recipient: Josephson, J. Jeff: U	IS EPA			
Document Number: FAC-002-2340 To			Date: 10/19/90	
Title: (Letter confirming that th EPA and that an analytical 15, 1990)		or the Facet Enterprises sit t will be sent to EPA during		
Type: CORRESPONDENCE				
Author: Josephson, J. Jeff: U	IS EPA			
Recipient: Howland, Reeve B.: Fa	cet Enterprises			
Document Number: FAC-002-2341 To	2342		Date: 11/29/90	
Title: (Letter discussing and for	warding the analyti	cal results of sampling at d	rywells #1 and #3)	
Type: CORRESPONDENCE				
Condition: MISSING ATTACHMENT				
Author: Howland, Reeve B.: Pu Recipient: Kiser, David J.: NY D				
				-11
			•	FAC
				600
				1336
				6

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 33
	10103740576824989228738257522222335555555555]}}	
Document Number: FAC-002-2	343 To 2343	Date: 11/29/90	
Title: (Hemo forwarding th	e draft Remedial Investigation Report for th	ne Facet Enterprises site)	
Type: CORRESPONDENCE Condition: MISSING ATTACHM Author: Josephson, J. J Recipient: Adams, Darvene:	eff: US EPA		
Document Number: FAC-002-2		Date: 01/03/91	
Document wunder: PAC-002-2			
Title: (Letter forwarding	Field Notes for the Facet Enterprises site)		
Recipient: Moyik, Cathy: Attached: FAC-002-2345	es: Alliance Technologies Corporation JS EPA		
Document Number: FAC-002-2		2-2344 Date: / /	
Title: Facet Enterprises S	ite Book #1		
Type: OTHER Author: none: Alliance .ecipient: none: US EPA	Technologies Corporation	,	
Document Number: FAC-002-2	390 To 2392	Date: 01/07/91	
Title: (Letter commenting (on the draft Remedial Investigation Report f	or the Facet Enterprises site)	
Type: CORRESPONDENCE Author: Cross, Gardiner Recipient: Josephson, J. Jo	: NY Dept of Environmental Conservation eff: US EPA		
		Date: 02/12/91	
Document Number: FAC-002-2 Title: (Letter commenting of site and containing	on the 1990 draft Remedial Investigation Rep		
Type: CORRESPONDENCE			
Author: Petersen, Carol			
Recipient: Howland, Reeve	3.: Facet Enterprises		FAC
			0
			600
			1337

• •

.

`\$/26/92 	Index Document Number Order FACET ENTERPRISES Documents		Page: 34
****************** ******************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Document Number: FAC-002-2405 1	°o 2406	Date: 03/13/91	
	PA's Comments on the 1990 draft Remedial I and forwarding the modified pages for the		
Type: CORRESPONDENCE			
Condition: MISSING ATTACHMENT	: Purolator Products Company		
Recipient: Petersen, Carole: L			
Document Number: FAC-002-2407 1	~ 2/28	Date: 03/14/91	
Decale in Males . FAC-002-2407)			
Title: (Letter of transmittal f Report)	orwarding revised pages and figures of th	e 1990 Remedial Investigation	
Type: CORRESPONDENCE			
Author: Blasting, James F.:			
Recipient: Josephson, J. Jeff:	US EPA		
Document Number: FAC-002-2429 1	0 2443	Date: 03/14/91	
Title: U.S. EPA Comments/Purola Executive Summary	tor Response, 1990 Remedial Investigation	, Purolator Products Company,	
Type: PLAN			
Author: none: ERM-Northeast		·	
Recipient: none: none			
Document Number: FAC-002-2444 T	o 2444	Date: 03/20/91	
Title: (Letter stating that inf Elmira plant is not pres	formation regarding Allied-Signal's solven ently available)	t disposal at Purolator's	
Type: CORRESPONDENCE	Purolator Products Company		
Recipient: Josephson, J. Jeff:	Purolator Products Company US EPA	· · · ·	

,

06/26/92	FACET ENT	ument Number Order ERPRISES Documents		je: 35
Document Number: FAC-00			Date: 04/02/91	
Title: (Letter commenti site)	ing on the "Test Trench	Excavation Work Plan Appendix II"	for the Facet Enterprises	
Type: CORRESPONDEN Author: Cross, Gardi Recipient: Josephson, .	iner: NY Dept of Enviro	nmental Conservation		
Document Number: FAC-00			Date: 05/14/91	
	ing the attached "Technic Test Trench Excavation W	cál Review of Purolator Products C ork Plan, Appendix II")	ompany, Remedial	
Recipient: Moyik, Cathy Attached: FAC-002-2448	aarles: Allîance Techno 7: US EPA 3	·		
Document Number: FAC-00		Parent: FAC-002-2447		
	a of Purolator Products (ndix II, Facet Enterprise	Company, Remedial Investigation, T es Site	est Trench Excavation	
Type: PLAN — Author: Foster, Char Recipient: Taccone, Ton	les H.: Alliance Techno n: US EPA	ologies Corporation	, ,	
Document Number: FAC-00			Date: 05/24/91	•••••
		e made to the Remedial Investigati th Administrative Order #60205)	on in order for Purolator	
Type: CORRESPONDEN Author: Petersen, Ca				

Recipient: Howland, Reeve B.: Purolator Products Company

۹٤/26/92	Index Document FACET ENTERPRIS		Page: 36
Document Number: FAC-002-2474	To 2474		Date: 06/04/91
Title: (Letter discussing the a copy of a May 14, 199		n tract of the Purolator (Fa ional details for the propos	
Type: CORRESPONDENCE			
Author: Howland, Reeve B.:	Purolator Products Co	mpany	
Recipient: Wilson, Lloyd: NY Attached: FAC-002-2475	•		
Document Number: FAC-002-2475		Parent: FAC-002-2474	
Title: (Letter discussing the	fencing around the sou	thern tract of the Purolator	· (Facet) site)
Type: CORRESPONDENCE Author: Howland, Reeve B.: Recipient: Josephson, J. Jeff:		mpany	
Document Number: FAC-002-2477			Date: 06/05/91
Title: (Letter forwarding the the North Drainage Way	•		it samples taken at
Type: CORRESPONDENCE			
	ATTACHMENT		,
Author: Petersen, Carole: 1	JS EPA		
Recipient: Howland, Reeve B.:	Purolator Products Co	mpany	
Document Number: FAC-002-2485			Date: 06/07/91
Title: (Letter listing the info Facet Enterprises site			ng analysis at the
Type: CORRESPONDENCE			
Author: Skaggs, James R. Jr.	.: Purolator Products	Company	

Recipient: Josephson, J. Jeff: US EPA

₹ <u>₽₩₽₽₽₩₩₽₩₩₽₩₩₽₽₽₽₽₽₽₽₽₽</u> ₽₽₽₽₽₽₽₩₩₩₩₽₽₽₽₽₽	
Document Number: FAC-002-2487 To 2488 Date: 06/24/91	
Title: (Memo discussing a June 19, 1991, sampling trip report for the Facet Enterprises site, when monitoring wells were sampled)	
Type: CORRESPONDENCE Author: Brochu, Amy J.: US EPA Recipient: Josephson, J. Jeff: US EPA	
Document Number: FAC-002-2489 To 2489 Date: 07/24/91	
Title: (Memo discussing the analytical results of sampling conducted on June 19, 1991 at the Facet Enterprises site)	
Type: CORRESPONDENCE	
Author: Brochu, Amy J.: US EPA	
Recipient: Josephson, J. Jeff: US EPA	
Document Number: FAC-002-2490 To 2490 Date: 07/25/91	
Title: (Memo discussing the revalidation of inorganic data for the Facet Enterprises site)	
Type: CORRESPONDENCE	
Author: Sheikh, Hanif: US EPA	
Recipient: Josephson, J. Jeff: US EPA	
Document Number: FAC-003-0001 To 0001 Date: 08/02/91	••••••
Title: (Letter commenting on Purolator Product's Test Trench Field Sampling Plan and Health and Safety Plan, each dated February 14, 1991)	
Type: CORRESPONDENCE	
Author: Petersen, Carole: US EPA	
Recipient: Howland, Reeve B.: Purolator Products Company Attached: FAC-003-0002	

06/26/92	Index Document FACET ENTERPRIS			Page: 38
	3342389238888888825888	******	iter::::::::::::::::::::::::::::::::::::	IXII 2222222222222
Document Number: FAC-003-0002 To	0016	Parent: FAC-003-0001	Date: / /	
Title: Attachment I, Field Sampli	ng Plan Work Plan,	General Comments		
Type: PLAN				
Author: none: US EPA				
Recipient: none: Purolator Produ	cts Company			
Document Number: FAC-003-0017 To			Date: 09/11/91	***********
Title: (Letter forwarding the att to locate drywells #2 and		draft report regarding the	e results of the efforts	
Type: CORRESPONDENCE				
Author: Skaggs, James R. Jr.:	Purolator Products	Company		
Recipient: Josephson, J. Jeff: U				
Attached: FAC-003-0018 FAC-003	-0019			
Document Number: FAC-003-0018 To		Parent: FAC-003-0017		•••••
Title: Inspection and Repair of M	onitoring Wells - 7	/10/91 - 7/11/91		
Type: OTHER				
Author: none: none				
lecipient: none: none)	
Document Number: FAC-003-0019 To		Parent: FAC-003-0017		•••••
Title: (Report summarizing the in for further work to open a			ls and providing recommendati	ons
Type: REPORT				
Condition: DRAFT				
Author: Blickwedehl, Robert D.	: Dames & Moore			
Recipient: Skaggs, James R. Jr.:	Purolator Products	Company		
				Ţ
				AC

. •

06/26/92	Index Document FACET ENTERPRIS			Page: 39

Document Number: FAC-003-004	41 To 0041		Date: 09/16/91	
Title: (Letter forwarding ti on July 10 and 11, 19		ell maintenance activities	performed by ERM-Northeast	
Type: CORRESPONDENCE Author: Howland, Reeve B. Recipient: Josephson, J. Je Attached: FAC-003-0042		жралу		
Attached: FAC-003-0042				
Document Number: FAC-003-004	2 To 0042	Parent: FAC-003-0041	Date: 07/11/91	
Title: Inspection and Repair	of Monitoring Wells - 7	7/10/91 - 7/11/91		
Type: OTHER				
Author: none: none				
Recipient: none: none				
Document Number: FAC-003-004			Date: 09/17/91	
Title: (Letter discussing Pu Report for the Facet		's comments on the draft f	inal Risk Assessment	
Type: CORRESPONDENCE				
undition: MISSING ATTACHMEN	т		6	
Author: Petersen, Carole:				
Recipient: Boruta, Roman E.:	: Purolator Products Com	ipany		
Document Number: FAC-003-004		•••••	Date: 09/18/91	************
Title: (Letter stating that work plan and providi D-5)		ny is not required to subm address the floating produ		
Type: CORRESPONDENCE				

Author: Petersen, Carole: US EPA Recipient: Boruta, Roman E.: Purolator Products Company

.

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 40
Document Number: FAC-003-		Date: 09/24/91
Title: (Letter commenting activities of 1990	on EPA's review of the inorganic data gene)	rated during the Remedial Investigation
Type: CORRESPONDENCE Author: Blasting, Jame Recipient: Howland, Reeve		
•••••		
Document Number: FAC-003-	0051 To 0052	Date: 09/27/91
Title: (Letter commenting trench work plan)	on Purolator Products Company's response t	o EPA's comments on the test
Type: CORRESPONDENCE		
Author: Petersen, Caro Recipient: Skaggs, James	le: US EPA R. Jr.: Purolator Products Company	
Document Number: FAC-003-	0053 To 0054	Date: 10/10/91
Title: (Letter forwarding items)	minutes of the October 1, 1991, meeting an	d identifying relevant action
Type: CORRESPONDENCE		
Condition: MISSING ATTACH	MENT	
-	E.: Purolator Products Company	
Recipient: Petersen, Caro	le: US EPA	
		Date: 10/18/91
Document Number: FAC-003-		Vate. 10/10/91
	on the revised section 5 of the Test Trend o section 5 is necessary)	h Work Plan and stating that
Type: CORRESPONDENCE Author: Petersen, Caro	le: US EPA	

...

Recipient: Skaggs, James R. Jr.: Purolator Products Company

	_			
•				
•				
06/26/92	Index Document FACET ENTERPRI			Page: 4
	FAGET ENTERER.			
dagaateexteexteexteexteexteexteexteexteexte		***********************************		***********
Document Number: FAC-003-0056 To	0056		Date: 10/24/91	
Title: (Letter forwarding the at	tached monthly acti	ivity report for September 19	91)	
Type: CORRESPONDENCE Author: Howland, Reeve B.: Pr	icolator Broducte (°ompany.		
Recipient: Josephson, J. Jeff: (-Ciriperiy		
Attached: FAC-003-0057				
Document Number: FAC-003-0057 To			Date: 10/03/91	
Title: Purolator Products Company	v. Remedial Investi	igation. Nonthly Report for S	eptember 1991	
Type: REPORT				
Author: Blasting, James F.:	RM-Northeast			
Recipient: none: US EPA				
Document Number: FAC-003-0059 To	0060		Date: 10/28/91	
Title: (Letter responding to EPA	's comments on the	1990 Remedial Investigation	organics data)	
•••••••••••••••••••••••••••••••••••••••			-	
Type: CORRESPONDENCE				
Author: Blasting, James F.: 1		-		
Recipient: Skaggs, James R. Jr.: Attached: FAC-003-0061	Purolator Product	ts Company		
<u>.</u>				
Document Number: FAC-003-0061 To	0062	Parent: FAC-003-0059	Date: 10/28/91	
Title: Table I: 10/28/91, Organi	ics Data Validation	n Review, 1990 Remedial Inves	tigation, Purolator	
Products Company				
Type: FINANCIAL/TECHNICAL				
Author: none: ERM-Northeast				
Recipient: none: none				
••••••		·····		
Document Number: FAC-003-0063 To	0063		Date: 10/29/91	
Title: (Letter forwarding the rev	vised Risk Assessme	ent for the Facet Enterprises	site)	
Type: CORRESPONDENCE				
Condition: MISSING ATTACHMENT				_
Author: Josephson, J. Jeff: U	IS EPA			TI D
Recipient: Skaggs, James R. Jr.:	Purolator Product	s Company		AC
				0
				00
				ω
				1
				34
				T II

06/26/92		ment Number Order RPRISES Documents		Page: 42
Document Number: FAC-003-0		***************	Date: 11/27/91	183 <u>22222</u> 2222222
-		bles summarizing the costs incurr d to be incurred at the Sullivan	=	
Type: CORRESPONDENCE Author: Doyle, James: Recipient: Garrett, Theodo Attached: FAC-003-0065	re L.: Covington & B FAC-003-0066			
Document Number: FAC-003-0		Parent: FAC-003-0064	Date: 06/07/91	
	cipated future costs	sts as of June 7, 1991, at the Ke at the Sullivan Street Wellfield)	•	
Document Number: FAC-003-0		Parent: FAC-003-0064	Date: / /	
Title: Costs Associated wi	th Air Stripper Desig	n at Sullivan Street Wellfield -	Subject to Change	
Type: FINANCIAL/TECHN Author: none: none Mecipient: none: none	ICAL		i	
Document Number: FAC-003-0			Date: 11/19/91	
Title: (Letter commenting o Plan)	on the Purolator Test	Trench Quality Assurance Plan an	d the Field Sampling	
Type: CORRESPONDENCE Author: Petersen, Carol Recipient: Skaggs, James R		ducts Company		

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 43
Document Number: FAC-00	03-0074 To 0074	Date: 11/26/91
-	ing an October 31, 1991, letter regarding the investigati tion present at monitoring well D-5 at the Facet Enterpri	÷
Type: CORRESPONDEN	ICE	
Author: Petersen, Ca		
Recipient: Skaggs, Jame	es R. Jr.: Purolator Products Company	
•••••		
Document Number: FAC-00	13-0075 To 0077	Date: 11/29/91
Title: (Letter discussi	ng the action items raised in Mr. Boruta's October 10, 1	991, letter)
Type: CORRESPONDEN	ICE	
Author: Petersen, Ca	arole: US EPA	
Recipient: Boruta, Roma	n E.: Purolator Products Company	
Document Number: FAC-00	03-0078 To 0078	Date: 12/05/91
	ing a draft copy of the work plan for the floating produc ing written comments on the plan)	t at the Facet Enterprises
Type: CORRESPONDEN	ICE	
Condition: MISSING ATTA	CHMENT	
Author: Josephson, J		
Recipient: Cross, Gardi	ner: NY Dept of Environmental Conservation	
	7 4070 0 4070	
Document Number: FAC-00	3-0079 16 0079	Date: 12/09/91
Title: (Letter forwardi	ng the attached proposed schedule for the Elmira test tr	enching)
Type: CORRESPONDEN	CE f	
-	s R. Jr.: Purolator Products Company	
Recipient: Petersen, Ca		
Attached: FAC-003-0080		

06/26/92	Index Document FACET ENTERPRI			Page: 44
**********	223823832 <u>2875282</u> 23	::::::::::::::::::::::::::::::::::::::		
Document Number: FAC-003-0080 To	0080	Parent: FAC-003-0079	Date: / /	
Title: Figure 9-1, Test Trench Ex	cavation, Purolato	or Products Company, Elmira,	, N.Y.	
Type: OTHER				
Author: none: none Recipient: none: none				
Document Number: FAC-003-0081 To (Date: 12/04/91	
Title: (Memo forwarding the attac Facet Enterprises site)	hed response to th	e September 24, 1991, ERM :	revalidation of the	
Type: CORRESPONDENCE				
Author: Sheikh, Hanif: US EPA Recipient: Josephson, J. Jeff: U				
Attached: FAC-003-0082				
Document Number: FAC-003-0082 To (0085	Parent: FAC-003-0081	Date: 10/17/91	
Title: (Memo discussing the differ validation guidelines and p		's and EPA's interpretation	n of recognized data	
Type: CORRESPONDENCE				
Author: Boshart, Dale S.: Roy Recipient: Sheikh, Hanif: US EPA	-		,	
Document Number: FAC-003-0086 To (0086		Date: 01/16/92	
Title: (Sign-in sheet for the Fac		e January 16, 1992, meeting		
	•	· · · · · · · · · · · · · · · · · · ·		
Type: OTHER Author: various: various				
Recipient: none: various				
Document Number: FAC-003-0087 To (0087		Date: 01/28/92	
Title: (Letter stating that as of of \$100,195.00 which is app				
Type: CORRESPONDENCE Author: Feinberg, Charles: All	liance Technologie	s Corporation		
Recipient: Moyik, Cathy: US EPA				_
				FAC
				õ
				003
				1
				.348

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 45
		IJZZZŻŻŻŻŻ RUŻKUZDRZYJNE Z SZŻZŻŻŻZZZZ	******
Document Number: FAC-003-0	088 To 0088	Date: 01/31/92	
•	PA with an update of the Elmira Plant drywell t Order #R8-0771-90-04)	investigation being conducted	
Type: CORRESPONDENCE			
Author: Skaggs, James R Recipient: Josephson, J. J	. Jr.: Purolator Products Company		
Recipient: Josephson, J. J			,
Document Number: FAC-003-0	089 To 0089	Date: 02/14/92	
Title: (Letter forwarding)	Revision 3 of the Risk Assessment for the Face	et Enterprises site)	
-			
Type: CORRESPONDENCE Condition: MISSING ATTACHM	ENT		
Author: Josephson, J. J	-		
• •	. Jr.: Purolator Products Company		
Document Number: FAC-003-0	090 18 0090	Date: 02/21/92	
•	the revised Field Oversight Work/Quality Assur te Drum Excavation has been approved)	ance Plan for the Purolator	
Type: CORRESPONDENCE		,	
Author: Scalise, Laura:	US EPA		
Recipient: Josephson, J. J			

Document Number: FAC-003-0	091 To 0092	Date: 02/24/92	
	approval to establish a staging area for "roll ed staging areas for storage of contaminated s		
Type: CORRESPONDENCE	. Jr.: Purolator Products Company		
Recipient: Josephson, J. J			
Attached: FAC-003-0093			

τ.

06/26/92 Index Document Number Order Page: 46 FACET ENTERPRISES Documents Document Number: FAC-003-0093 To 0093 Parent: FAC-003-0091 Date: 08/01/91 Title: "Roll Off" Container Location Map, Area 4 Type: GRAPHIC Author: none: ERM-Northeast Recipient: none: Purolator Products Company Document Number: FAC-003-0094 To 0095 Date: 03/30/92 Title: (Letter discussing the intrusion of water into the Disposal Area 1/2 excavation at the Purolator Products Company) Type: CORRESPONDENCE Author: Skaggs, James R. Jr.: Purolator Products Company Recipient: Josephson, J. Jeff: US EPA Document Number: FAC-003-0096 To 0097 Date: 03/31/92 Title: (Letter commenting on Mr. Skaggs' March 30, 1992, letter regarding dewatering activities in excavation areas where drum removal is being conducted at the Facet Enterprises site) Type: CORRESPONDENCE Author: Petersen, Carole: US EPA Recipient: Skaggs, James R. Jr.: Purolator Products Company ------Document Number: FAC-003-0098 To 0145 Date: 04/23/92 Title: Bi-Weekly Oversight Summary Report, Period 30 March 1992 to 10 April 1992, Test Trench Excavation, Purolator Products Company Site (Facet Enterprises) Type: REPORT Author: Foster, Charles H.: Alliance Technologies Corporation Recipient: Josephson, J. Jeff: US EPA

η

~

• •			
-			
	ment Number Order RPRISES Documents		Page: 47
	11235-55396-51125 555555555555555555555555555555555		83888223888888888
Document Number: FAC-003-0146 To 0146		Date: 05/08/92	
Title: (Letter confirming a May 19, 1992, meeti which is to be reviewed)	ng and forwarding the attached pr	oposed meeting agenda,	
Type: CORRESPONDENCE Author: Skaggs, James R. Jr.: Purolator Pro Recipient: Josephson, J. Jeff: US EPA Attached: FAC-003-0147	ducts Company		
Document Number: FAC-003-0147 To 0147	Parent: FAC-003-0146		
Title: Facet Enterprises Superfund Site, Meetin	g Agenda, May 19, 1992, 9:00 AM		
Type: OTHER Author: none: none Recipient: none: none			
Document Number: FAC-003-0148 To 0148		Date: 05/11/92	
Title: (Letter forwarding the attached ERM-North 1992, for the Facet Enterprises site)	heast monthly reports for January	1992, through March	
Type: CORRESPONDENCE Author: Howland, Reeve B.: Purolator Produc Recipient: Josephson, J. Jeff: US EPA Attached: FAC-003-0149 FAC-003-0150 FAC-003			
Document Number: FAC-003-0149 To 0149 .	Parent: FAC-003-0148	Date: 03/13/92	
Title: Purolator Products Company, Remedial Invo	estigation, Monthly Report for Ja	nuary, 1992	
Type: REPORT Author: Blasting, James F.: ERN-Northeast Recipient: none: none		•	
Document Number: FAC-003-0150 To 0150	Parent: FAC-003-0148	Date: 03/13/92	
Title: Purolator Products Company, Remedial Invo	estigation, Monthly Report for Fe	bruary, 1992	
Type: REPORT Author: Blasting, James F.: ERM-Northeast			
Recipient: none: none			FAC
			003
			1351

•

<u> </u>		FACET ENTERPR	t Number Order ISES Documents		Page: 48
	ment Number: FAC-003-0151 To (Parent: FAC-003-0148		
Títi	e: Purolator Products Company,	, Remedial Invest	igation, Monthly Report for M	larch, 1992	
	Type: REPORT uthor: Blasting, James F.: Ef pient: none: none	RM-Northeast			
 Docu	ment Number: FAC-003-0152 To (Date: 05/22/92	
Titl	e: (Letter listing the facilit of waste generated as part		oducts Company is considering ching Interim Remedial Measur		
	Type: CORRESPONDENCE				
	uthor: Skaggs, James R. Jr.: pient: Josephson, J. Jeff: US		ts Company		
Att	ached: FAC-003-0154				
	ment Number: FAC-003-0154 To (Parent: FAC-003-0152		×
Title	e: Purolator Products Company,	, Test Trench Exca	avations, Perimeter Ambient A	ir Monitoring	
	Type: FINANCIAL/TECHNICAL				
	uthor: none: none pient: none: none			•	
Docu	ment Number: FAC-003-0155 To (Date: 05/27/92	
Titl	e: (Letter forwarding the atta items discussed during the		the May 19, 1992, meeting and	listing the action	
	Type: CORRESPONDENCE				
	uthor: Boruta, Roman E.: Purc pient: Petersen, Carole: US E		mpany		
Atti	ached: FAC-003-0157 FAC-003-	-0159			
Docu	ment Number: FAC-003-0157 To C	0158	Parent: FAC-003-0155	Date: 05/19/92	
Title	e: EPA/Purolator Neeting Minut	tes, Facet Enterpr	ises Inc., Superfund Site, M	ay 19, 1992	
	Type: OTHER uthor: none: none			· .	
	pient: none: none				L L
					AC
					003
					<u>م</u> ر
,					1352

06/26/92	Index Doc	ument Number Order		Page: 49
	FACET ENT	ERPRISES Documents		

Document Number: FAC-003-	0159 To 0159	Parent: FAC-003-0155	Date: 05/19/92	
Title: Attachment 1, Face	et Enterprises Site, M	lay 19, 1992 (Attendance list)		
Type: OTHER				
Author: none: none				
Recipient: none: none				

Document Number: FAC-003-	0160 To 0161		Date: 05/29/92	
			· · · · ·	
•		mentioned in Mr. Skaggs' May 22,		
acceptable for off	-site disposal of was	te from the Facet Enterprises site	•)	
Type: CORRESPONDENCE				
Author: Petersen, Card				
Recipient: Skaggs, James		oducts Company		
•••••••••••••••••••••••••••••••••••••••				
Document Number: FAC-003-	0162 To 0164		Date: / /	
			. 1	
	; on the Addendum to t	he Field Sampling/Work Plan for th	e Facet Enterpris e s	
site)				
-				
Type: CORRESPONDENCE				
Author: Josephson, J.			•	
Recipient: Howland, Reeve	B.: Facet Enterpris			
Document Number: FAC-003-	0165 To 0166		Date: / /	
• •		ation of a rail track near the Fac andfill surface soils)	et Enterprises site	
Type: CORRESPONDENCE				
		Environmental Conservation		
Recipient: Luftig, Stephe	•	ANT I OFFICILAL CONSCITATION		
manihi and the state of the				

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 50
	;=\$%=\$		*************
Document Number: FAC-003	-0167 To 0172	Date: / /	
	g on the Field Sampling/Work Plan, Quality Assura d Safety Plan for the Facet Enterprises site)	ance Work Plan Document,	
Type: CORRESPONDENCI			
Condition: DRAFT; MARGIN/ Author: Petersen, Card			
Recipient: Howland, Reeve			
Document Number: FAC-003	-0173 то 0174	Date: / /	
	g a validated copy of the confirmatory sampling c t Enterprises site)	data from the selected monitoring	
Type: CORRESPONDENCE			
Condition: MISSING ATTACK			
Author: Josephson, J.	Jeff: US EPA		
Recipient: Skaggs, James	R. Jr.: Purolator Products Company	. '	
Document Number: FAC-003	-0175 To 0175	Date: 01/17/91	
Title: 1990 RI Sediment S	Sample Locations (Map of the Village of Elmira He	ights)	
Type: GRAPHIC			
	ce Technologies Corporation		
Recipient: none: none			
Document Number: FAC-003-	·0176 To 0181	Date: 03/06/91	••••
	g the attached summary of New York State Applicab Rs) and To Be Considered (TBC) standards for the		
Type: CORRESPONDENCE			
	rd R.: NY Dept of Environmental Conservation		
Recipient: Petersen, Caro Attached: FAC-003-0182	ble: US EPA		
			וד
		•	FAC
			00
			ŭ

	-	
•		
06/26/92	Index Document Number Order	Pag
	FACET ENTERPRISES Documents	
***************************************		\
Document Number: FAC-003-018	J2 To 0251 Parent: FAC-003-01	176 Date: 09/25/90
Title: (Memo forwarding Ambi pollutants)	ient Water Quality Standards and Guidance Valu	es for toxic and non-conventional
Type: CORRESPONDENCE		
	e: NY Dept of Environmental Conservation	
Recipient: Various: NT Dept	t of Environmental Conservation	
Document Number: FAC-003-025	i2 To 0256	Date: 06/11/91
Title: (Letter forwarding an	a attached list and map of the current, active	tanks and underground tanks
-	d from the Purolator Products Elmira facility	
Type: CORRESPONDENCE		
Author: Skaggs, James R. Recipient: Josephson, J. Jef	Jr.: Purolator Products Company	
Recipient. Josephson, J. Jen		
Document Number: FAC-003-025	7 To 0827	Date: 03/05/92
Title: Feasibility Study Rep	ort, Purolator Products Company, Elmíra, New '	York
Type: REPORT		
Author: none: ERM-Northe		
Recipient: none: Purolator	Products Company	
Document Number: FAC-003-082	8 To 0846	Date: 05/01/92
Title: Superfund Proposed Pl	an, Facet Enterprises, Inc., Site, Village of	Elmira Heights, New York
Type: PLAN		
Author: none: US EPA		
Recipient: none: none		
Document Number: FAC-003-084		Date: 01/01/92
Title: Supplement to the Fea	sibility Study, Facet Enterprises, Inc., Super	rfund Site, Elmira, New
York - Spring 1992		
Type: PLAN	Alliance Technologies Corporation	
Author: Hiller, Alison:	· · · · · ·	
Author: Hiller, Alison:	.: Alliance Technologies Corporation	
Author: Hiller, Alison:	· · · · · ·	ć
Author: Hiller, Alison:	· · · · · ·	ć
Author: Hiller, Alison:	· · · · · ·	
Author: Hiller, Alison:	· · · · · ·	ć

;

n6/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 52

Document Number: FAC-003-0870 To 087	73	Date: 07/13/89	
Title: (Letter discussing the Work F Facet Enterprises, Inc., Elmi		igation, Motor Components Division,	
Type: CORRESPONDENCE Author: Josephson, J. Jeff: US E Recipient: Howland, Reeve B.: Face1			
Document Number: FAC-003-0874 To 087		Date: 12/07/90	
Title: (Letter discussing the submit site and requesting a meeting Report)	• •	Work Plan for the Facet Enterprises and the Draft Remedial Investigation	
Type: CORRESPONDENCE Author: Josephson, J. Jeff: US E Recipient: Howland, Reeve B.: Purol		. '	
Document Number: FAC-003-0875 To 087	5	Date: 08/02/91	
Title: (Letter discussing the status Study)	of Southwest Laboratories and ho	a to proceed with the Feasibility	ĩ
Type: CORRESPONDENCE Author: Petersen, Carole: US EPA Recipient: Boruta, Roman E.: Purola			
••••••			
Document Number: FAC-003-0876 To 090	7	Date: 09/24/91	
Title: (Letter forwarding the attach data reports for sampling per	ed soil sampling summary table, an formed for the Facet Enterprises s	• • •	
Type: DATA Author: Blasting, James F.: ERM- Recipient: Skaggs, James R. Jr.: Pu			

06/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 53
	***************************************	****
Document Number: FAC-003-09	08 To 0913	Date: 11/29/91
Title: (Letter providing co site)	mments on the draft Feasibility Study Report	for the Facet Enterprises
Type: CORRESPONDENCE Author: Cross, Gardiner: Recipient: Josephson, J. Je	NY Dept of Environmental Conservation ff: US EPA	
Document Number: FAC-003-09	1/ To 1021	Date: 12/23/91
Document Number: PAC-003-07	14 10 0921	
Title: (Letter providing co	mments on the draft Feasibility Study for the	Facet Enterprises site)
Type: CORRESPONDENCE Author: Petersen, Carole Recipient: Skaggs, James R.	: US EPA Jr.: Purolator Products Company	
Document Number: FAC-003-09		Date: 01/14/92
Title: (Letter forwarding t review)	he preliminary response to comments and a Tec	hnical Memorandum for EPA's
Type: CORRESPONDENCE		
	AC-003-0930	۰ i
Document Number: FAC-003-09	24 To 0929 Parent: FAC-003-0	
Title: Preliminary Response Superfund Site, Elmi	to Comments, Administrative Order, Index II, ra, New York	CERCLA-60205 Facet Enterprises
Type: PLAN Author: none: ERN-North Recipient: none: US EPA	east	

06/26/92	Index Document FACET ENTERPRIS			Page: 54
***************************************	L 등 는 글 드 드 드 드 프 프 프 프 프 프 프 프 프 프 프 프 프 프 프	***************************************	*======================================	15311528233711 <u>9</u>
Document Number: FAC-003-0930 To 1	1016	Parent: FAC-003-0922	Date: 01/14/92	
Title: Technical Memorandum No. 1 Goals and Volume Estimates			Revised Remediation	
Type: FINANCIAL/TECHNICAL				
Author: none: ERM-Northeast				
Recipient: none: Purolator Produc	ts Company			
Document Number: FAC-003-1017 To 1			Date: 01/31/92	
Title: (Letter forwarding the atta items requiring action or r		cussion for EPA's review a	nd identifying certain	
Type: CORRESPONDENCE				
Author: Skaggs, James R. Jr.:		Company		
Recipient: Josephson, J. Jeff: US Attached: FAC-003-1019				
Document Number: FAC-003-1019 To 1		Parent: FAC-003-1017		
Title: Summary of Discussion - Fac	et Enterprises Site	e, Feasibility Study		
Type: PLAN	·			
Author: none: Purolator Produc	ts Company			•
Recipient: none: none				
				•••••
Document Number: FAC-003-1024 To 1	025		Date: 02/06/92	
Title: Exhibit B (Letter discussin Feasibility Study for the f	•		o complete the Final	
Type: CORRESPONDENCE				
Author: Skaggs, James R. Jr.:		Company		

06/26/92	Index Document Number Order FACET ENTERPRISES Documents		Page: 55
85 9933399999999999999999999999999999999	***************************************	***************************************	[,] ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
Document Number: FAC-003-10	26 To 1026	Date: 02/18/92	
Title: (Letter forwarding d	ocuments in response to EPA comments on the dr	raft Feasibility Study)	
Type: CORRESPONDENCE			
Condition: MISSING ATTACHME	NT		
Author: Skaggs, James R.	Jr.: Purolator Products Company		
Recipient: Josephson, J. Je	ff: US EPA		
Document Number: FAC-003-10	27 10 1027	Date: 03/05/92	
Title: (Letter forwarding co	opies of the Final Feasibility Study for the F	acet Enterprises site)	
Type: CORRESPONDENCE			
Condition: MISSING ATTACHME	NT		
•	Jr.: Purolator Products Company		
Recipient: Petersen, Carole	: US EPA		
Document Number: FAC-003-102	28 To 1030	Date: 03/20/92	- • • • • • • • • • • • • • • • • • • •
	ubmittal of the draft Feasibility Study report between Purolator (Facet) and EPA)	and detailing the status	
Type: CORRESPONDENCE		,	
Author: Callahan, Kathlee	en C.: US EPA		
Recipient: Boruta, Roman E.:	: Purolator Products Company		
Document Number: FAC-003-103		Date: 04/21/92	
Title: (Letter forwarding th	he draft Proposed Plan for the Facet Enterpris	es site for NYSDEC's review)	
Type: CORRESPONDENCE			
Condition: MISSING ATTACHMEN			
Author: Petersen, Carole:			
xecipient: Belmore, Edward i	R.: NY Dept of Environmental Conservation		

06/26/92	FACET ENTERPR	nt Number Order RISES Documents		Page: 56
Document Number: FAC-003-10		::************************************	Date: 04/28/92	
• •		20, 1992, regarding the Fina responsiveness throughout the		
Type: CORRESPONDENCE Author: Boruta, Roman E. Recipient: Petersen, Carole		Company		
Document Number: FAC-003-10	34 To 1035		Date: 05/15/92	
		ected remedial alternative fro widing additional comments)	m the draft Proposed	
Type: CORRESPONDENCE Author: Markell, David L Recipient: Josephson, J. Je Attached: FAC-003-1036	ff: US EPA	mental Conservation		
Document Number: FAC-003-10		Parent: FAC-003-1034		
Title: (Letter providing co site)	mments on the Preferred	Remedial Action Plan (PRAP)	for the Facet Enterprises	·
Type: CORRESPONDENCE Author: Wilson, Lloyd: Recipient: Cross, Gardiner:	•	Ital Conservation		·
Document Number: FAC-003-10			Date: 05/18/92	
Title: (Nemo documenting th Plan)	e cost estimate for Alt	ernative 8 of the Facet Enter	prise site Proposed	
Type: CORRESPONDENCE Author: Josephson, J. Je Recipient: file: US EPA	ff: US EPA			

06/26/92		ument Number Order ERPRISES Documents		Page: 57
	ign#231 0235075 225392252	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,		**************
Document Number: FAC-0	03-1038 To 1038		Date: 06/02/92	
		ed Plan and the Supplement to th for the Facet Enterprises site)		
Type: CORRESPONDED Condition: MISSING ATT/	ACHMENT			
Author: Josephson, Recipient: Skaggs, Jam	J. Jeff: US EPA es R. Jr.: Purolator Pro	oducts Company		
Document Number: FAC-00			Date: 01/04/91	
	ng a State Pollutant Disc in Horseheads, NY)	charge Elimination System (SPDES) permit for Hardinge	
•	rt K.: NY Dept of Enviro im: Hardinge Brothers, 1			
Document Number: FAC-00		Parent: FAC-003-1039	Date: 01/04/91	· · · · · · · · · · · · · · · · · · ·
Title: State Pollutant Inc.)	Discharge Elimination Sy	ystem (SPDES) Discharge Permit (for Hardinge Brothers,	
Type: OTHER			,	
-	rt K.: NY Dept of Enviro im: Hardinge Brothers, 1			
Document Number: FAC-00	03-1045 To 1046		Date: 03/09/90	
	ing analytical results fo on of the Facet Enterpris	or samples collected on December ses facility)	12, 1989, during an	
Type: CORRESPONDE	ICE			
Condition: MISSING ATTA Author: Kiser, David	ACHMENT d J.: NY Dept of Enviror	mental Conservation		
-	eve B.: Facet Enterprise			
			·	
				FAC
				ć

n6/26/92	Index Document Number Order FACET ENTERPRISES Documents	Page: 58	
Sk galtasaalsaasaatasaasaa	#\$%\$\$#################################		22
Document Number: FAC-003-1047 To 10	48	Date: 03/17/88	
Title: (Handwritten memo discussing	the transfer of sites within EPA Office of	f Regional Counsel)	
Type: CORRESPONDENCE Author: Thompson, Margaret: US Recipient: Schaaf, Eric: US EPA	EPA		
•••••••••••••••••••••••••••••••••••••••			••
Document Number: FAC-003-1049 To 104	49	Date: 07/31/91	
Title: (Letter discussing the cause	of dead trees at the Purolator Products (Facet Enterprises) site)	
Type: CORRESPONDENCE Condition: MISSING ATTACHMENT			
Author: Skaggs, James R. Jr.: Po Recipient: Josephson, J. Jeff: US (, ,		
			•
Document Number: FAC-003-1050 To 10	50	Date: 11/28/88	
Title: (Memo forwarding the attached site for review)	d draft Preliminary Health Assessment for	the Facet Enterprises	
Type: CORRESPONDENCE			
• • •	for Toxic Substances & Disease Registry (ATSDR)	
Recipient: Visnic, Chris: US EPA Attached: FAC-003-1051			
Document Number: FAC-003-1051 To 100		Date: 10/01/88	
Title: Draft Preliminary Health Asso	essment, Facet Enterprises, Inc., NY		
Type: PLAN Author: none: Agency for Toxic S Recipient: none: US EPA	Substances & Disease Registry (ATSDR)		
	· · · · · · · · · · · · · · · · · · ·		-
Document Number: FAC-003-1065 To 103	74	Date: 05/01/89	
Title: Preliminary Health Assessment County, Elmira Heights, New Y	t For Facet Enterprises, Inc., CERCLIS No. York	NYD073675514, Chemung	
Type: PLAN		л — — — — — — — — — — — — — — — — — — —	
Author: none: NY Dept of Health		AC	
Recipient: none: Agency for Toxic S	Substances & Disease Registry (ATSDR)	0	
		003	
		بر	
		1362	

م

06/26/92	Index Document Number Order	Pa	ige: 59
-	FACET ENTERPRISES Documents		
8 72338889772 222228832333	***************************************	***************************************	********
Document Number: FAC-003-1	1075 To 1075	Date: 05/22/92	
Title: (Letter discussing	the availability of public documents for the	e Facet Enterprises site)	
Type: CORRESPONDENCE			
Author: Josephson, J.	Jeff: US EPA		
Recipient: Brink, Gordon H	R.: Elmira Heights (Village of)		
Document Number: FAC-003-		Date: 01/16/92	
Document, number: PAC-003-			
Title: EPA Meeting Agenda,	, January 16, 1992		
Type: PLAN			
Condition: MARGINALIA			
Author: none: none			
Recipient: none: none			
Document Number: FAC-003-1	10/7 16 10/7	Date: 01/09/92	
Title: (Letter forwarding	a proposed agenda for a January 16, 1992, me	eting between EPA and Purolator)	
Type: CORRESPONDENCE			
Condition: MISSING ATTACHN		1	
 Author: Skaggs, James Recipient: Josephson, J. 	?. Jr.: Purolator Products Company Jeff: US EPA		
Document Number: FAC-003-1		Date: 09/27/91	******
Title: (Letter forwarding Products Company)	a proposed agenda for an October 1, 1991, me	eting between EPA and Purolator	
• •			
Type: CORRESPONDENCE	han a Dural and Daviduate Democratic		
Author: Skaggs, James F Recipient: Taccone, Tom:	R. Jr.: Purolator Products Company		
Attached: FAC-003-1079	US EFA		
		-	η
		Ę į	ח ס ס
		(,

	· · · · · · · · · · · · · · · · · · · ·	₽≈≠≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈	******
	Parent: FAC-003-1078	Date: 10/01/91	
1991			
ompany			
		Date: 10/10/91	
the October 1, ing specific ac	1991, Facet Enterprises tion items)	site meeting between	
r Products Comp			
		Date: 10/01/91	
Facet Enterpris	es, Inc., Superfund Site	, October 1, 1991	·*
ompany			
		ł	-•
		Date: 04/14/89	
	Elmira Star Gazette dea	ling with groundwater	
	Facet Enterpris ompany ticles from the eek Aquifer)	Parent: FAC-003-1080 Facet Enterprises, Inc., Superfund Site ompany ticles from the Elmira Star Gazette dea	Parent: FAC-003-1080 Date: 10/01/91 Facet Enterprises, Inc., Superfund Site, October 1, 1991 ompany Date: 04/14/89 ticles from the Elmira Star Gazette dealing with groundwater eek Aquifer)

Author: Considine, L. Edward: Elmir Recipient: Josephson, J. Jeff: US EPA

•

26/92</th <th>Index Document Number Order FACET ENTERPRISES Documents</th> <th></th> <th>e: 6'</th>	Index Document Number Order FACET ENTERPRISES Documents		e: 6'
ocument Number: FAC-003	5-1087 To 1087	Date: 02/24/89	
•	ng concern and requesting information about a toxic ity in Elmira Heights, New York)	waste site on the Facet	
Type: CORRESPONDENC	E		
••	R.: Elmira Heights (Village of)		
ecipient: Lynch, Kevin:			
ocument Number: FAC-003	-1088 To 1092	Date: / /	
itle: (Maps and graphic	s of the piping and sewer systems around the Facet	Enterprises site)	
Type: GRAPHIC			
Author: none: variou	S		
cipient: none: none			
ocument Number: FAC-003	-1093 To 1159	Date: 11/01/77	
itle: Groundwater Model	Application to the Chemung Basin 208 Study Area,	New York State	
Type: FINANCIAL/TEC	HNICAL		
	.E.: Battelle Pacific Northwest Laboratories		
	uthern Tier Central Regional Planning and Developm		

ć

•

FAC 003 1365

.

.... R.

.

APPENDIX IV

STATE LETTER OF CONCURRENCE

 $\frac{1}{2}$

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

Thomas C. Jorling Commissioner

JUN 30 1992

Ms. Kathleen C. Callahan Director Emergency & Remedial Response Division USEPA, Region II 26 Federal Plaza New York, NY 10278

Dear Mg. Callahan:

Re: Facet Enterprises Site, Chemung Co, NY Record of Decision

The purpose of this letter is to confirm the New York State Department of Environmental Conservation's concurrence with USEPA's Record of Decision for the Facet Enterprises NPL Site in Elmira Heights, NY. The selected remedial measure will remove a significant source of groundwater contamination in the Newtown Creek Aquifer.

The ROD notes that EPA will evaluate the need for further action in areas 1,2, and 3 based on the results of confirmatory sampling performed after the drum removal. NYSDEC must have the opportunity to review and concur with this decision when it is made.

We greatly appreciate USEPA's efforts to have as much contaminated material as possible removed from the site for proper treatment and disposal. However, as mentioned in the ROD, some hazardous substances will remain on-site. We support efforts to restrict access to this site in the future to prevent inadvertent human exposure to these substances. A deed restriction would be the most effective means to accomplish this. If this option is unavailable, then NYSDEC and NYSDOH retain the option of filing a deed notification letter with the appropriate local authorities.

Sincerely,

Jr. P.E. Michael з. Ô Toole,

Director Division of Hazardous Waste Remediation

GC/kp

cc: A. Carlson

ost-It" brand fax transmittal	mento 7871 - er este
· Joff lisechism	George Fleering
Co.	Co.
Dept.	Phone #
ax f	Fax #

FAC

ε00

APPENDIX V

RESPONSIVENESS SUMMARY

FAC 003

SIGN-IN SHEET FACET ENTERPRISES PUBLIC Meeting Elmira Heights, N.Y. 6/16/92 ADDRESS NAME Gardiner Cross NYSDEC 50 Wolf Rd Albany NY 12203-Im Staggs Po Bux 2967 Houston, TX 200 TR52 106 LILAC DR. H HEADS NY 14845 RALPH KREBS Ed Derry 282 Robinwood Elmina Hrs. 14903 Robert J. Kurcoba Elmira Water BOARD Brue to Dominic Scaringe 40 CHURCHILI PL - BIG FLATS, NY, 4814 DAVID SEELY iseph w, Poliseo Zos Fern Dell Dr. Elminu, NY 14805 ge + Pat Salari 278 ROBIN WOOD ANE ELMIRA HUS. M. 14, 1110 Hoffman AT Elmini h / 14901-NYS Dopt Health, All Kim Mann ng Muchalle 209 SCOTTWOOD F/ 5/+T-208 SHERIDAN AGE ELM HTS. 253 W. 18th St. Elmine Hets. Carion Smith loude En you 232 W14 J EV. A.al. hana len arjonie + Walter Melville 285 Robinwood ave. El Hot. FAC 1369

STATE OF NEW YORK 1 2 COUNTY OF CHEMUNG 3 In the Matter 4 5 of 6 Facet enterprises Superfund Site 7 Village of Elmira Heights, Chemung County, New York 8 A Public Meeting held at Village of Elmira 9 Heights Village Hall, Elmira Heights, New York, on 10 the 16th day of June, 1992, commencing at 7:00 PM. 11 BEFORE: CZERENDA COURT REPORTING, INC 12 164 Court Street 13 Bingamton, New York 13902 14 BARBARA L. HEURING 15 Shorthand Reporter 16 Notary Public 17 Binghamton - (607) 723-5820 18 (800) 633-9149 19 ALSO PRESENT: 20 Ann Rychlenski, Community Relations Coordinator 21 Kevin Lynch, Chief Western New York Superfund FAC 22 Section II 23 003 Jeff Josephson, Remedial Project Manager 24 James Doyle, Office of Regional Counsel 1370

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

MS. RYCHLENSKI: Good evening. Hi. Thank you for all coming out here tonight. My name is Ann Rychlenski, and I'm a community coordination advisor in the United States Environmental Protection Agency. This is to present the proposed plan for the Superfund site, Facet Enterprises, in Elmira heights. I want to introduce my constituents. Immediately to my right is James Doyle. He's with our office of regional counsel. This is Mr. Kevin Lynch, he's a section chief with the Superfund. Kevin is going to be speak to you about Superfund and explain the ins and outs of Superfund. And right there at the very end is Mr. Jeff Josephson, and Jeff is the project manager for the EPA on the Facet site.

> Jeff is going to be talking about a couple things about a remedial investigation and feasiblity study,

FAC

003

1371

field investigations EPA did at the site, how much it is and where it is, and feasiblity study, which is pretty much what it sounds like, to see how indeed can we clean this up, what is the most feasible way. And Jeff is going to be speak about the proposed plan and this is the proposed plan for the clean up itself.

3

I wanted to speak about a few things. We have a stenographer here, and her purpose is to keep a record of this meeting. This is a public hearing and we are going to be taking public comment here tonight. So, whatever you say, whatever comments you have, whether they're questions or comments as to how we're doing our job, that will be going on the public record.

In addition, we will be having something known as the public comment period, and that goes until June 27, I believe, close of business June 27. If you wish to put any comments in writing

FAC 003 1372

1

2

3

Δ

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

-

1	about how you feel about the proposed
2	plan for clean up, you can do that and
3	send it on to Jeff. And it has to be
4	postmarked by the 27th of June, and that
5	will also go into record.
6	One of the reasons we do this is
7	because community acceptance of the
8	selection process is very, very
9	important. And this is how we get
10	community comment, so it is important
11	that your comments be on the record.
12	Once we get all those comments, EPA will
13	look at them and respond to them in a
14	document. All the documents pertinent
15	to this site, all the information will
16	be right here in the Village Hall so you
17	can come in and look at them and go
18	through them and see what you think and
19	make your comments accordingly so they
20	are available to you.
21	I just want to let you know,
22	after we're done with the presentations,
23	we will have a question and answer
24	period. For the purposes of keeping a

....

FAC 003 1373

....

clear record of this meeting, when you 1 2 ask your questions or give your 3 comments, please stand, please speak 4 clearly and please state your name each time you comment or give a question, and 5 that's so the stenographer can keep a 6 7 record. I think that's about it. 8 Without any further ado, I will 9 turn this over to Mr. Lynch. I just 10 want to acknowledge here Mr. Mann from 11 the New York State Department of Health, 12 and I believe there are some 13 representatives from the Elmira Water Board here tonight. And where are they? 14 15 Just wanted to acknowledge it. That's 16 about it. And with no further ado, 17 Kevin? I'd like to take a 18 MR. LYNCH: couple minutes to talk about the law we 19 20 work under and process we do. In the 21 late 70s there were a couple of environmental emergencies that came up; 22 one the Love Canal where it was 23 discovered people were living on a 24 FAC 003 1374

leaking hazardous waste; and a chemical 1 2 control fire where some 80 thousand 3 barrels of waste were piled up in an 4 incinerator in New Jersey. 5 Up until that time we realized the federal government had no way of 6 7 dealing with thses and passed the 8 Comprehensive and Liability Act, which also had with it a \$1.5 Billion fund to 9 10 pay for the actions we'd take. This is 11 called the Superfund, and that's what we've been known as ever since. 12 13 When they looked at the world out 14 there, world of sites, they thought there were going to be hundreds of sites 15 16 out there, and they wanted to approach 17 the worst sites. They created a national priorities list. You can get a 18 19 site on the list a number of different 20 ways; the most common ways, the state 21 would nominate a site to us, we would do 22 preliminary assessment, we would gather 23 any information that was out there about 24 the site, possibly a site investigation

FAC 003 1375

where we go out and grab samples themselves to evaluate the sites. We were trying to look at the sites -- the most potential for harm so we could address them first.

7

The information we get, we put in a mathematical model. If it's above a certain score, it goes on the national priority list and we address it using the Superfund. If it's below the number, the state usually addresses it using the state fund. Once it gets on the list, there are a couple ways we can take action. One, emergency situation, threat of a fire or people drinking seriously contaminated water, we can take emergency actions called removals. The normal way we go about a

site, we would do a study which is a remedial investigation feasibility study. Remedial investigation goes into the field, takes environmental samples, soil, the air, groundwater, to try to determine the nature and extent of the

FAC 003 1376

.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

1 problem. What we're looking for is what 2 is out there, where is it, where is it We take that information and do 3 going. 4 a feasibility study, which is a study of 5 different alternative solutions which we 6 analyze through certain criteria. We have to identify what's the best thing 7 we do with the site once we do that. 8 9 We go through the remedy 10 selection process, the agency will try 11 to identify what we believe the best thing to do out there, put it in a 12 13 proposed plan and then we present it to 14 the public, which we're going to do 15 tonight, and we ask for your comments on 16 it. At that time, we'll come back, take the comments, present everything to our 17 regional administrator. He will sign 18 19 what we call a record of decision, which is the decision on the solution of what 20 we'll do, what we'll implement at the 21 site. 22 23 Once selected, they go into a 24 detailed design and go and implement 003 1377 FAC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

that design. Now, the Superfund, \$1.5 Billion sounded like a lot of money, actually it is a lot of money, and in '85 they added a lot more to it. There are thousands more sites than originally thought than when they passed this, thought it would be a one-shot deal, go out there, clean up the sites. And we're finding tens of thousands of sites across America and these billions of dollars isn't enough to clean up all those sites.

9

They're much more complicated problems than we thought we were going to find and have taken a lot more to address them and lot more expensive than we thought they would be. The law also allows for an enforcement and it talks to potentially responsible parties and these are anyone who helped create the problem, it could be whoever manufactured the hazardous substance, who set the site, who owned, operated the site or anyone who transported to

FAC 003 1378

1 the sight, all of these people are 2 liable for the cost of cleaning up the 3 It's an approach, if you're part site. 4 of the problem, you have to be part of the sollution. 5 The EPA addresses that. We will 6 7 go out and give those responsible parties the opportunity to perform the 8 work, and if they say no, we have a 9 number of choices, we can fund it 10 11 ourselves, and we can order them to do it and bring them to court to enforce 12 that order and we can go to court and 13 sue them if we fund it ourselves and we 14 15 would sue them to recover our cost. In this case, when we went out, 16 17 one of the potential contributors, Facet agreed to do these studies, anything 18 19 they do they have to give us plans on, how they're going to do it, they have to 20 21 be approved by us and we have 22 contractors out on the field watching 23 and making sure they do that. Perolator 24 has since taken over the company and

FAC 003 1379

they have completed the study.

Jeff Josephson will be presenting the results of that remedial investigation feasibility study and EPA's proposed plan.

MR. JOSEPHSON: I have a number of investigations to summarize, and I'm going to speak in very general terms. If you have a questions after the talk, I'll be happy to answer them. I will be summarizing a remedial investigation, risk assessment feasibility study, and presenting the proposed plan. The remedial investigation and feasibility study were conducted by Perolator Products Compand and the risk assessment and proposed plan were conducted by EPA.

The remedial investigation considers the types of contaminants that are present at the site, the concentrations that exist and the potential for contamination to leave the facility.

A risk assessment utilizes the

FAC 003 1380

23 24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

information gained during the remedial 1 investigation and determines what risk 2 the contamination poses to human health 3 and the environment. 4 5 The feasibility study incorporated the information from the 6 remedial investigation and risk 7 assessment and looks for alternatives 8 for handling the contaminants. 9 The proposed plan is EPA's 10 11 summary of the alternatives in the feasibility study and we also present 12 13 what the agency feels is the proper 14 approach to the problems. 15 Remedial Investiation. 16 for your information, the remedial investigation concentrated on 17 known or suspected disposal areas in the 18 back, or the western edge of the 19 In addition, we looked at a 20 property. 21 piece of property south of the Facet facility and May's creek, which is north 22 of the facility. The investigation 23 consisted of conducting a number of soil. 24 FAC 003 1381

1	borings and sediment analyses from the
2	disposal areas, from the streams and in
3	addition, groundwater, monitoring wells
4	that have been installed at the facility
5	and have been sampled.
6	A total of 85 soil samples were
7	selected from surface soils or from
8	subsurface borings in known or suspected
9	disposal areas.
10	25 sediments samples collected
11	from streams, ponds or lagoons at the
12	facility or in streams adjacent to the
13	facility.
14	14 groundwater samples collected
15	from the monitoring or production wells.
16	8 water samples collected from
17	streams or lagoons at the facility or in
18	streams adjacent to the facility.
19	Magnetometer survey - conducted
20	at disposal areas to determine the
21	location of buried drums at the
2 2	facility.
23	Evaluation for the presence of
24	critical habitats or endangered species
	FAC 003 1382

Matter o	f Facet	Enter	prises
----------	---------	-------	--------

1	at the facility was conducted.
2	In addition, information
3	collected during a preliminary
· 4	investiagion conducted in 1986, and
5	data/information collected by EPA and
6	New York State Department of
7	Environmental Conservation during
8	various inspections at the facility were
9	incorporated into the remedial
10	investigation/feasibilty study reports
11	and proposed plan.
12	To summarize the results of the
13	remedial investigation, soil
14	contamination exists in waste disposal
15	areas formally used at the facility.
16	The contamination consists of volatiles,
17	that would be solvents such as
18	trichloroethylene; semivolatiles; PCBs,
19	metals; that have been used at the
20	facility. The contamintion primarily
21	exists in subsurface soils.
22	Sediments in May's creek, the
23	unnamed drainageway south of the
24	facility, the area 6 pond, and the area

FAC 003 1383

1

2

3

Δ

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

10 lagoon have accumulated inorganics, PCBs and semivolatiles at unacceptable concentrations. Investigations conducted by Purolator for the New York State Department of Environmental Conservation at dry wells indicate that sediments in the dry wells is contaminated.

15

Groundwater collected from some monitoring wells located at the facility are contaminated with volatile organic contaminants, and inorganic contaminants at levels wich exceed federal/state standards for drinking water. At monitoring well D-5, pure product was detected floating on the water surface.

In addition, buried drums have been discovered during the RI and are believed to contain metal plating wastes, as well as other liquid and solid waste materials. The drummed waste when released contributes to the soil and groundwater contamination present at the site. To date, 469

FAC 003 1384

1 buried drums have been removed and from 2 the facility and 30,000 gallons of waste were removed from disposal areas 1, 2, 3 3 4 and 4. In addition, 2,250 tons of soil have been removed. 5 In addition to determining the 6 nature and types of contaminants and 7 concentrations, one of the purposes of 8 9 the remedial investigation is to determine groundwater flow direction 10 from the facility in order to determine 11 which way the contamination flows from 12 13 the property. I have a map here of the 14 facility. These are the plant 15 buildings, this is Route 14 here. 16 This information is determined by measuring 17 water levels in the monitoring wells at 18 the plant. Based on these water levels 19 at the plant, the conclusion is that the 20 groundwater flow is to the southeast. 21 Furthermore, based on this conclusion, 22 we have concluded that contamination 23 24 from the facility flows toward the

FAC 003 1385

	Matter of Facet Enterprises 17	
1	southeast into the Newton Creek	
2	aquifier.	
3	<u>Risk_Assessment</u> .	
4	I will summarize the results of	
5	the risk assessment. The risk	
6	assessment considers what contaminant	
7	concentrations are present at the site,	
8	and the toxicity of these contaminants.	
9	Equally in addition, and equally	
10	as important, the risk assessment	
11	considers the pathway, and exposure	
12	potential of these contaminants to the	
13	population.	
14	For the Facet Enterprises, Inc,	
15	site, the exposure pathways considered	
16	are: Ingestion of untreated groundwater	
17	and ingestion of sediments soils. The	
18	exposure pathway analysis evaluates	
19	conservative assumptions regarding	
20	potential exposure to the contamination.	
21	For contamination that has left	
2 2	the facility and has accumulated in	
23	sediments in drainage ways, exposure	
24	potential (ingestion of sediment	

FAC 003 1386

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

groundwater or surface water) is evaluated for children and adults. For contamination at the facility exposure potential is evaluated for trespassers, and industrial workers because access to the facility is restricted by a fence and security measures are present at the plant. Using concentration and toxicity of contaminants, exposure pathway and exposure potential, both carcinogenic and non-carcenogenic risk is evaluated for the Superfund site. The results of the risk assessment indicate that some of the soil contaminants in some of the disposal areas are present at elevated concentrations which, as determined by the site specific risk assessment, pose an unacceptable risk to human health or the environment. The risk is evaluated conservatively for industrial workers which might come in contact with subsurface soils. In other areas of the

FAC 003 1387

1 facility contaminants are present, but 2 the levels detected during the remedial investigation do not indicate that they 3 pose a risk to human health or the 4 environment. 5 A relatively small volume of 6 7 contaminants accumulated in stream sediments in May's creek, and the 8 9 unnamed drainageway south of the Facet 10 facility pose an unacceptable risk. Using conservative assumptions regarding 11 ingestion of these contaminated soils, 12 13 the carcinogenic risk exceeds the 14 Environmental Protection Agency's Superfund action level. 15 Removal of 16 these sediments is required to permanently remove the risk. The risk 17 18 has been temporarily reduced by the installation of a fence around the 19 20 unnamed drainageway south of the plant. 21 The volume of soils, sediments 22 which exceed cleanup levels is estimated to be 3,000 to 6,000 cubic yardds. 23 24 Based on the results of the FAC 003 1388

	Matter of Facet Enterprises 20
1	remedical investigation and, the risk
2	assessment a feasibility study is
3	conducted.
4	Feasibility_Study.
5	The feasibility study
6	incorporates the information gathered
7	and then looks at technologies and
8	methods for handling contamination for
9	the soils and sediments contamination.
10	The alternatives involved primarily
11	treating the material at the plant and
12	putting it back after it no longer
13	contains the levels, consolidating the
14	material and putting it at the facility
15	underneath a cap which would prevent
16	public exposure to that material.
17	In addition, the treatment
18	alternatives for the site includes a
19	low-temperature thermal absorption that
20	would subject material to low
21	temperature heat, and drive out
22	volatiles or stabalizization of
23	contaminants so the metals can no longer
24	be released to the environment.
	FAC 003 1389

1	In addition, we looked for off
2	site alternatives, that is, to dig up
3	the volume of the material that is
4	unacceptable and send it off site to a
5	permitted landfill, and possibly what
6	would be required would be to
7	consolidate the material, send it off
8	site for treatment and for final
9	disposal off site.
10	In addition, as required by the
11	Superfund law, we also evaluate a
12	no-action alternative, and that is we
13	evaluate what the site conditions would
14	be if no action is taken.
15	In addition, we also evaluate
16	what the potential exposure is and long
17	term effects of just restricting access
18	to the property, that would include deed
19	restrictions to prevent future
20	investment of the property.
21	For groundwater, a no-action
22	alternative is evaluated and groundwater
23	treatments are evaluated. The
24	groundwater treatment alternatives looks
	FAC 003 1390

2remediate the contamination that's in3the groundwater.4Each of these alternatives is5evaluated according to criteria6developed in the Superfund. They7include overall protection of human8health and environment, compliance with9ARARS, long-term effectiveness and10permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.		
3the groundwater.4Each of these alternatives is5evaluated according to criteria6developed in the Superfund. They7include overall protection of human8health and environment, compliance with9ARARs, long-term effectiveness and10permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	1	at a number of different technologies to
4Each of these alternatives is5evaluated according to criteria6developed in the Superfund. They7include overall protection of human8health and environment, compliance with9ARARS, long-term effectiveness and10permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	2	remediate the contamination that's in
5evaluated according to criteria6developed in the Superfund. They7include overall protection of human8health and environment, compliance with9ARARS, long-term effectiveness and10permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	3	the groundwater.
6developed in the Superfund. They7include overall protection of human8health and environment, compliance with9ARARS, long-term effectiveness and10permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	4	Each of these alternatives is
7include overall protection of human8health and environment, compliance with9ARARS, long-term effectiveness and10permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	5	evaluated according to criteria
8health and environment, compliance with ARARS, long-term effectiveness and permanence, reduction of toxicity,11mobility or volume through treatment, short-term effectiveness,12short-term effectiveness,13implementability, cost and state and acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	6	developed in the Superfund. They
9ARARs, long-term effectiveness and permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	7	include overall protection of human
10permanence, reduction of toxicity,11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	8	health and environment, compliance with
11mobility or volume through treatment,12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	9	ARARs, long-term effectiveness and
12short-term effectiveness,13implementability, cost and state and14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	10	permanence, reduction of toxicity,
13implementability, cost and state and acceptance.14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	11	mobility or volume through treatment,
14acceptance.15Based on that evaluation, EPA16develops a proposed plan. For the Face17Enterprises site, EPA is to consolidate18soil and sediments and ship off site fo19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	12	short-term effectiveness,
Based on that evaluation, EPA develops a proposed plan. For the Face Enterprises site, EPA is to consolidate soil and sediments and ship off site fo treatment and disposal. Based on the remedial investigation results, between 3,000 and 6,000 cubic yards of soil which exceeds cleanup levels will be consolidated from the disposal areas.	13	implementability, cost and state and
develops a proposed plan. For the Face Enterprises site, EPA is to consolidate soil and sediments and ship off site fo treatment and disposal. Based on the remedial investigation results, between 3,000 and 6,000 cubic yards of soil which exceeds cleanup levels will be consolidated from the disposal areas.	14	acceptance.
17 Enterprises site, EPA is to consolidate 18 soil and sediments and ship off site fo 19 treatment and disposal. Based on the 20 remedial investigation results, between 21 3,000 and 6,000 cubic yards of soil 22 which exceeds cleanup levels will be 23 consolidated from the disposal areas.	15	Based on that evaluation, EPA
18 soil and sediments and ship off site fo 19 treatment and disposal. Based on the 20 remedial investigation results, between 21 3,000 and 6,000 cubic yards of soil 22 which exceeds cleanup levels will be 23 consolidated from the disposal areas.	16	develops a proposed plan. For the Facet
19treatment and disposal. Based on the20remedial investigation results, between213,000 and 6,000 cubic yards of soil22which exceeds cleanup levels will be23consolidated from the disposal areas.	17	Enterprises site, EPA is to consolidate
remedial investigation results, between 3,000 and 6,000 cubic yards of soil which exceeds cleanup levels will be consolidated from the disposal areas.	18	soil and sediments and ship off site for
 3,000 and 6,000 cubic yards of soil which exceeds cleanup levels will be consolidated from the disposal areas. 	19	treatment and disposal. Based on the
which exceeds cleanup levels will be consolidated from the disposal areas.	20	remedial investigation results, between
23 consolidated from the disposal areas.	21	3,000 and 6,000 cubic yards of soil
	22	which exceeds cleanup levels will be
24 The material will be characterized for	23	consolidated from the disposal areas.
	24	The material will be characterized for
FAC 003 1391		FAC 003 1391

22

ς.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

off-site treatment and disposal. The estimated cost based on RI results are \$2,462,334, with time and disposal is approximately one year.

23

For groundwater, the preferred alternative is: Groundwater will be pumped from strategically-placed recovery wells, and treated. The treated water will be discharged either to the facility non-contact cooling system and discharged to surface water, or discharged after treatment directly to the surface water. Based on the assumptions in the feasibility study, the total cost will be \$2,388,322. The time required to remediate groundwater at the facility to federal and state is based on model in the feasibility study is 20 years.

Now we open session to questions and comments.

MR. LYNCH: I'd like to think we were thorough enough to cover everything.

FAC 003 1392

1	MS. DAIRY: Have they made a
2	determination if you are going to has
3	the determination made made it is going
4	to be cleaned up and when?
5	MR. LYNCH: When the
6	determination will be made, the plan
7	that we just proposed that Jeff just
8	described, what we will do now is based
9	on comment we get here, we will
10	recommend to a regional administrator.
11	What we think we're going to recommend
12	is this proposal. If we've done our job
13	right, we should be proposing something
14	that should be accepted.
15	We will make that recommendation
16	after the public comment period closes,
17	which will be June 27th. So sometime
18	soon after that, depending on the
19	massive comments we get, we will be
20	making a recommendation to him, he will
21	then make that decision.
22	A time that it would take to
23	implement after that is we would have a
24	series of negotiations with these
	FAC 003 1393

1 potential and responsible parties to see 2 if they want to do it, which would take 3 about three months. Actually the law requires us to give 120 days, and the 4 design for the soil would take nine 5 months to a year to do that, so it would 6 7 be roughly a year from now is when we would start the action. 8 MS. DAIRY: From the information 9 that you've given us, it sounds like to 10 me and from the diagrams that the 11 contaminants -- now, I'm looking at the 12 upper most part of the property, there's 13 a fence that goes around so it looks to 14 me like any contaminants are below that 15 fence. You don't seem to have found 16 17 any -- as far as you know, there's no problem beyond that fence, water doesn't 18 run uphill? 19 MR. JOSEPHSON: I'll address 20 Here's a map of the facility 21 that. you're talking about this area. 22 MS. DAIRY: Robinwood Avenue 23 24 area. FAC 003 1394

MR. JOSEPHSON: 1 As you may know, we've excavated drums from this area and 2 That material will be removed 3 soil. 4 during the month of July. We conducted some conformational 5 sampling up there to insure all the 6 7 material that's at unacceptable levels has been removed. We're waiting for the 8 result. We may have to go up and dig up 9 some more. Beyond that fence line, we 10 don't really know. We have evaluated 11 historical photographs from the 40s, 50s 12 and '60s, and they don't show that 13 disposal activities occurred beyond that 14 15 fence line, and to my knowledge, no, I don't know they did. 16 In addition, the groundwater map 17 shows that groundwater flow is to the 18 The wells in this area are southeast. 19 monitoring the deep water groundwater 20 that is at 30 feet and we don't know the 21 flow of very shallow groundwater, but is 22 23 is very unlikely to flow in the opposite It's probably very localized. 24 direction.

FAC 003 1395

1

2

3

Δ

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

groundwater.

MS. DAIRY: Even though right now it's conjecture is just how far it's gone, I do know there are local banks that have refused to work with people along Robinwood Avenue until this is cleaned up. So I feel, if there's -how would these people, supposing they needed a sampling done, how would they go about this to clear up their own?

27

MR. JOSEPHSON: For one thing, they can look at the studies that have been conducted to see the information they needed. If after the meeting they wanted to talk to us about it, we can talk to them and see what exactly the problem is. We could talk to the bank and see what their concerns are, and that's about all I can say.

MS. SELWAR: My name is Pat Selwar. You've tested the water, you've tested the ground. Has there been a test of the air quality?

MR. JOSEPHSON: Yes, there has.

FAC 003 1396

MS. SELWAR: How did that make 1 out? 2 MR. JOSEPHSON: 3 There are results of testing of the air quality 4 during the remediation and drum removal 5 and excavation. I have some of the 6 7 results with me. The company Purolator, who measured volitiles and particulates, 8 there were no volatiles detedted and 9 particulates were normal, below any kind 10 of level of concern. And I have these 11 numbers and please get a copy of it. 12 That's the work we've done so far. 13 MS. SELWAR: Now, this would be 14 over a long period of time for residents 15 that's lived there for 30, 40, 50 years? 16 MR. JOSEPHSON: We haven't 17 monitored for that long. 18 MS. SELWAR: What I meant, would 19 20 your test prove there shouldn't have been any? 21 MR. JOSEPHSON: No, I wouldn't 22 23 say. MR. LYNCH: The monitoring we dd. 24 FAC 003 1397

:

1	is when we are taking activities when we
2	are disturbing the ground is when you
3	would expect something is going to
4	migrate. That's when you would expect
5	it, but we can't draw the conclusion
6	back that nothing has in 30 years.
7	MS. SELWAR: Is there anyway
8	when they were put in the ground if
9	there were fumes generated at that
10	point?
11	MR. JOSEPHSON: I don't think
12	there's any way to know for sure. If
13	they conducted some kind of monitoring
14	during that operation, possibly.
15	MS. RYCHLENSKI: Are there any
16	more questions or comments?
17	MR. LYNCH: If there are no
18	other questions, we will be around for a
19	while. If someone wants to come up and
20	individually talk to us, we will be glad
21	to talk to them also.
22	MS. RYCHLENSKI: Before you
23	leave or if you want to come up and talk
24	to us before you leave, please sign in.
	FAC 003 1398

7	
1	There are sign-in sheets. If you
2	haven't already signed in, please give
3	your name and address so I can have it
4	for my mailing list, I can keep you
5	informed what's happening. And there
6	are proposed plans for clean up there.
7	If you don't have one, please
8	take it. And if you want to write to us
9	and let us know what you think about it,
10	please let Jeff know and do that by the
11	27th. Thanks a lot for coming out.
12	
13	
14	
15	
16	
17	
18	
19	
20	TAC AC
21	
22	00 2
23	1399
24	ঁ

STATE OF NEW YORK : COUNTY OF BROOME • I, BARBARA L. HEURING, Shorthand Reporter, do certify that the foregoing is a true and accurate transcript of the proceedings in the matter of Facet Enterprises, held in Elmira Heights, New York, on June 16, 1992. BY: Bhutan & Dennig BARBARA L. HEURING Shorthand Reporter Notary Public CZERENDA COURT REPORTING, INC 164 Court Street Binghamton, New York 13901 FAC

June 26, 1992

VIA CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. J. Jeff Josephson, Project Manager Western New York Compliance Section EPA Region II Jacob K. Javits Federal Building 26 Federal Plaza New York, New York 10278

RE: ADMINISTRATIVE ORDER, INDEX II, CERCLA 60205 FACET ENTERPRISES - ELMIRA, NY

Dear Mr. Josephson:

This is in response to your letter dated May 26, 1992, in which you provided Purolator a copy of the Proposed Remedial Action Plan (PRAP) for the Facet Enterprises Superfund Site. Purolator agrees with EPA in selection of Alternative 10 as the preferred remedial alternative for groundwater treatment. We also agree with some of the elements of the proposed remediation for soil and sediment (Alternative 8). However, Purolator does not agree with the overall selection of Alternative 8 as the preferred remedial alternative for soil and sediment. Based on our evaluation of the 1991 Remedial Investigation (RI) and the 1992 Feasibility Study (FS), the results of the recent drum removal project and our in-depth knowledge of the site, we feel that Alternative 7 combined with stabilization should be the selected remediation method. There are numerous factors that led us to that conclusion as follows:

- (1) <u>LIABILITY</u> Utilizing the on-site disposal alternative allows Purolator to manage the stabilized waste materials. This would preclude the possibility that further liability could be incurred by our company in the event an off-site disposal facility is not managed properly.
- (2) <u>EXPOSURE POTENTIAL</u> Off-site treatment and disposal will require additional handling of the material on-site, transporting the material off-site (150 to 300 trucks), and additional handling at the disposal facilities. This transportation and additional handling creates the potential for unnecessary

FAC 003

> to TSCA regulations due to the presence of PCBs in concentrations over 50 ppm. Information provided in the 1991 Remedial Investigation (RI) and the 1992 FS demonstrates that the majority of this material is not subject to TSCA. In particular, the PCB concentrations of 24 ppm and 35 ppm represent approximately 920 cubic yards of the 1,274 cubic yards referred to in the PRAP as TSCA waste. This issue appears to be the result of an error in the 1991 draft FS as discussed above in comment 2, paragraph 1. Additional TSCA issues related to the validity of pre-1991 RI PCB data and the applicability of the TSCA "anti-dilution" rule are presented in Section 2.1 of the comments on the 1992 FS Supplement (Attachment II).

> <u>RCRA Classification</u> - The PRAP and the 1992 Supplemental FS have made hazardous versus non-hazardous volumetric determinations based on waste characterizations that appear to be unsubstantiated by field data. Specifically, the 1992 Supplemental FS uses a criteria of <50 ppm PCBs, >5 ppm Arsenic, and >5ppm Chromium to designate sediment and soils as hazardous waste. Since data gathered during a 1991 TCLP testing program (as described in the 1992 FS) indicate that Areas 4, 5, 7, 8, 10, Unnamed Drainage Ditch, May's Creek and the North Drainage Way do not exceed these TCLP metal or PCB thresholds (with the exception of some Area 4 soils), the 1992 Supplemental FS criteria used to determine hazardous waste volumes is incorrect.

> Therefore, 1992 Supplemental FS soil volumes used to determine PRAP Remedial Alternative costs appear to be invalid without revisiting the conclusions outlined in the 1992 Supplemental FS. In addition, the impact of Land Disposal Restrictions (LDRs) restrictions on characteristic wastes should also be revisited to ensure that on-site treatment and disposal options does not provide equally protective but more cost effective remedial alternatives.

4. <u>GROUNDWATER ELEVATIONS</u> - The PRAP (Analysis of Alternatives, compliance with ARARs) states that Alternative 7 would not meet the New York State Department of Environmental Conservation (NYSDEC) hazardous waste requirements for landfill construction because of the presence of perched ground water. Purolator disagrees with this conclusion based on two factors.

First, the material to be placed in the Facility RCRA-type cell in Alternative 7 is not a hazardous waste. This includes Area 6 sediment which, although it did not pass the TCLP test, would be stabilized and rendered non-hazardous prior to placement in the cell. The remaining soil and sediment evaluated for disposal in the on-site cell in the FS is not a hazardous waste since it passed all TCLP testing and it is not

FAC

ε00

derived from a listed hazardous waste. As a result, use of NYSDEC hazardous waste regulations is not applicable.

Secondly, it appears that EPA erred in referencing 6 NYCRR 373-2, of the NYS Hazardous Waste Treatment, Storage and Disposal regulations, by including the following statement in the PRAP:

Alternative 7 would not meet 6 NYCRR 373-2 for all contaminated soil or sediments because groundwater must be greater than 5 feet from the cell bottom,...

Page 202 of 6 NYCRR 373-2 (Attachment II) states that "no waste shall be closer than 10 feet to an aquifer or bedrock." The document describes an aquifer as "a geologic formation...capable of yielding a significant amount of ground water to wells or springs." The formation in the proposed RCRA-type cell area is low-permeability till which yields very little water (U-1, drilled by Radian, was dry and the depth to water in U-2 is 30 feet; also, U-2 is a very low producer). Clearly, the "perched ground water" referenced by EPA does not constitute an aquifer capable of significant groundwater yield.

The second part of the PRAP comment deals with ground water recharge:

...and because the area proposed for the landfill is a groundwater recharge zone.

NYCRR 373-2 states that "no facility shall be located over groundwater recharge areas serving public water supplies." The regulations also state that exceptions are possible. All published reports regarding the Elmira-Horseheads-Big Flats Primary Aquifer delineates the edge of the aquifer very near the central portion of the Facet site. Therefore, the proposed onsite RCRA-type cell location is not within the delineated aquifer zone.

It may be that EPA is confusing Part 373 regulations with Part 360 regulations. The 6 NYCRR 360 regulations deal with solid waste management facilities. Those regulations state that "a minimum separation of five feet must be maintained between the base of the constructed liner system and the seasonal high groundwater table." The citation and the Part 360 definitions of "groundwater" and "groundwater table" are included in Attachment II. Note that "perched water" is included in the definition of "groundwater." Part 360 also restricts siting landfills over "primary water supply and principal aquifers"; however, exceptions are allowed.

> It is important to note that 6 NYCRR Part 360 and 6 NYCRR 373-2 are stated as ARARs in the 1992 FS because off-site disposal at industrial (i.e., Part 360) and RCRA (i.e., Part 373-2) landfills was considered. Also, construction of the on-site RCRA-type cell, though exempt from permitting requirements, should comply with applicable parts of the regulations.

5. <u>ON-SITE VS. OFF-SITE PREFERENCE</u> - On-site alternatives evaluated in the 1992 FS provide similar and possibly increased benefits over the off-site alternative (Alternative 8) recommended in the PRAP. In addition, adding stabilization to Alternative 7 would make this alternative equivalent to the selected remedy, at approximately one-half the cost. The issue of the benefits of on-site versus off-site disposal is discussed in more detail in Section 2.3 of the attached comments to the 1992 FS Supplement. The comment notes contained in the preamble to the 1990 National Contingency Plan (NCP) clearly state that CERCLA and the NCP are neutral with respect to this issue and intend no preference for either on-site or off-site disposal, if treatment is part of the remedy.

In addition, a search of the Records of Decision (RODs) issued by EPA Region II since 1988 to the present was conducted. This search was conducted for sites that had similar contaminants (PCBs, PAHs and/or metals). Out of these 87 RODs, 31 addressed soils containing elevated levels of these contaminants. Of these 31 RODs, 17 selected on-site treatment and/or disposal, 10 selected off-site treatment and/or disposal and 4 selected a combination of on-site and off-site. If the 4 RODs that included both on-site and off-site are not included, the 17 RODs recommending on-site treatment and/or disposal represents 63% of the remaining RODs. This analysis clearly demonstrates a preference for on-site treatment and/or disposal. A more detailed report on this analysis is included in Attachment III.

- 6. <u>COSTS</u> The PRAP (Summary of Remedial Alternatives) presents an estimated cost for alternative 8 of approximately \$2.5 million. This cost is based on an estimate presented in the 1992 FS Supplement. There are four inconsistencies in the 1992 FS Supplement that affect the costs estimated for this alternative, which are as follows:
 - A. Soil density (described above);

B. Area 6 sediment;
C. Area 4 soil (described above); and
D. Additional cost factors

The soil density issue and the error in the Area 4 soil quantity estimated were described above. The Area 6 sediment quantity refers to the omission of 55 cubic yards of Area 6 sediment from the 1992 FS Supplement calculations. Also, the additional cost factors for engineering and construction oversight recommended in the USEPA CERCLA cost estimating guide, were used in the 1992 FS but not in the 1992 FS Supplement. Section 2.2 and Table 1 of the Attachment I provides additional information on these issues. As a result, Purolator does not feel that the costs for Alternative 8, as presented in the 1992 FS Supplement and the PRAP, are consistent with the cost of the other alternatives and cannot be compared to the other alternatives because of these inconsistencies. Table 1 through 3 of attachment II, present a calculation of the total cost of off-site disposal based on the quantities presented in the 1992 FS, a multiplier of 1.5 to convert cubic yards to tons, and handling, transportation and disposal costs comparable to those used in the 1992 FS Supplement.

II. SPECIFIC COMMENTS

- 1. Page 2, paragraph 4 Although residences are within 60 feet of the "site" property line, the distance between "present manufacturing facilities" and residences is 500 to 1,000 feet.
- 2. <u>Page 3, paragraph 4</u> The PRAP should state when and by whom leachate was observed and that leachate has not been present in recent years.
- 3. Page 3, paragraph 5 Area 4 discharge may have been discharged to the North Drainage Ditch via a swale prior to 1941 (according to plant personnel).
- 4. Page 3, paragraph 5 The 1981 data which reportedly indicated PCBs in Area 4 soil at 320 ppm is suspect because sampling reports and laboratory procedures and complete analytical reports are not available. EPA should produce data reports or qualify this statement. ERM's resampling of this 1981 location during the recent drum investigation indicated a PCB concentration of 43 ppm.
- 5. Page 3, paragraph 6 The 1981 sampling was reportedly conducted by NYSDEC, not EPA. As stated above, the data is of questionable value because sampling documentation and data reports are not available. 1990 RI sampling results (performed in accordance with CLP protocol) indicate maximum values as follows: 13,000 ppm chromium, 3,390 ppm cadmium and 1,910 ppm copper in one sample.

FAC

Mr. Jeff Josephson June 26, 1992 Page 2

increased exposure to the general public, neighbors adjacent to the site, workers at the site and workers at the disposal facilities.

- (3) ON-SITE VS. OFF-SITE PREFERENCE EPA Region II has utilized onsite treatment and disposal in other Superfund sites within the Region. Our information indicates that since 1988, out of 87 sites remediated in Region II, there have been 31 sites that addressed soils containing similar contaminants (PAHs, PCBs and/or metals). Of these 31 sites, 63% of the Records of Decision selected on-site treatment and/or disposal versus off-site treatment and/or disposal. This analysis appears to demonstrate an Agency preference for on-site versus off-site disposal.
- (4) <u>GROUNDWATER ELEVATIONS</u> Purolator does not agree with the Agency in its interpretation of the applicability of 6 NYCRR 373-2 with respect to restricting the construction of the RCRA-type cell in the proposed location. Purolator feels that the state regulation does not preclude construction of this cell and this alternative should not be excluded from consideration. (Reference Attachment I for more detailed discussion on this issue).
- (5) <u>COST</u> The Agency states in its discussion of cost that the cost of Alternative 8 versus Alternative 4 and 5 is not substantially higher (the difference between Alternative 8 and 4 is approximately \$900,000). Purolator disagrees with this statement. "Substantial" is a relative term that depends on the position of the party defining the term. While \$900,000 is stated in the PRAP as not being substantial, it is substantial to Purolator Products Company and the Elmira plant. Specifically, \$900,000 represents more than 35% of the cost for the soil and sediment remediation when considering the difference between Alternatives 8 and 4.

In addition to the comments in this letter, Purolator's complete detailed comments addressing both the PRAP and the 1992 Feasibility Study Supplement are included as Attachments I - III.

In summary, Purolator agrees with the selected alternative for groundwater and most of the elements of the proposed soil and sediment remediation, but does not agree in total with the selected alternative for soil and sediment for the reasons stated above. Purolator feels that Alternative 7 (on-site disposal in a RCRA-type cell) combined with stabilization should be the preferred plan for remediating this site. This method would achieve the goals of the 1992 Feasibility Study (FS) while reducing risks associated with the additional handling and transportation that would be required with off-site treatment. In addition, this method would be more cost effective.

Mr. Jeff Josephson June 26, 1992 Page 3

Therefore, Purolator requests that EPA reconsider its proposed remedial action plan for soil and sediment and further investigate the use of an on-site stabilization and disposal in an on-site RCRA-type cell. Again we feel that this is the most viable option for remediating the site and achieving the goals of the 1992 FS. We request that the Agency give this its fullest consideration and pursue further review of this method vigorously. I feel that our mutual goal of remediating the Facet Enterprises Superfund Site is close at hand and want to reiterate that Purolator is committed to cooperating with EPA in achieving that goal.

Should you have any questions concerning this matter or require further information concerning our preferred remedial alternative proposal, please contact me at 713/546-6273.

Sincerely,

James R. Skaggs, Jr. Manager, Environmental Services

JRS/it

Attachments

ATTACHMENT I

PUROLATOR PRODUCTS COMPANY COMMENTS ON EPA REGION II PROPOSED REMEDIAL ACTION PLAN FOR THE FACET ENTERPRISE SITE MAY 26, 1991

JUNE 26, 1992

PUROLATOR PRODUCTS COMPANY COMMENTS ON EPA REGION II PROPOSED REMEDIAL ACTION PLAN FOR THE FACET ENTERPRISE SITE MAY 26, 1991

Purolator Products Company has reviewed the Environmental Protection Agency's (Agency) Proposed Remedial Action Plan (PRAP) dated May 26, 1992. General and specific comments concerning the PRAP are listed below.

I. GENERAL COMMENTS

- 1. <u>CONTAMINANT CONCENTRATION</u> The PRAP continuously references "elevated levels" of contaminants in the soil, but does not define "elevated levels." An effort should be made to qualify what this term means so that it will be more relevant in the scope of understanding the significance of these levels. In addition, contaminant values are stated throughout the document in parenthesis, resulting in a very misleading presentation. EPA should state that the maximum detected concentration of selected analytes are presented in parenthesis throughout the document.
- 2. <u>WASTE QUANTITY ESTIMATES</u> The 1992 Feasibility Study (FS) Supplement utilized 3,480 cubic yards of soil and sediment, which was the quantity presented in the draft 1991 Feasibility Study (FS) submitted to EPA in October, 1991. An error in calculating the volume of Area 4 soil to be remediated was corrected in the 1992 Feasibility Study (FS) submitted to EPA on March 5, 1992. The error consisted of adding approximately 920 cubic yards of Area 4 soil based on the PCB concentration of 35 ppm in sample SB-23 to two categories of soil, thereby counting this single soil volume twice. The correct estimate of soil and sediment to be remediated is 2,533 cubic yards.

In addition, The 1992 FS Supplement assumed a lower soil density (i.e., 1.0 ton per cubic yard) than the soil density that was utilized in the 1992 FS (i.e., 1.5 tons per cubic yard). As explained in the attached comments on the 1992 FS Supplement (Attachment II, Section 2.2.1), a single soil density must be used in order to compute comparable remedial costs. Since soil quantity estimates are in cubic yards and the costs computed by Alliance for Alternative 8 are based on tons, the number of tons assumed to be present per cubic yard directly affects the estimated costs.

3. <u>WASTE CLASSIFICATION</u> - In addition to the quantity of soil and sediment, another key basis of PRAP selected remedial alternative 8 is the classification of waste in accordance with TSCA and RCRA regulations. These two issues are described below.

<u>TSCA</u> <u>Classification</u> - The PRAP (Evaluation of Alternatives) states that approximately 1,275 cubic yards of soil, presumably from Area 4, would be subject

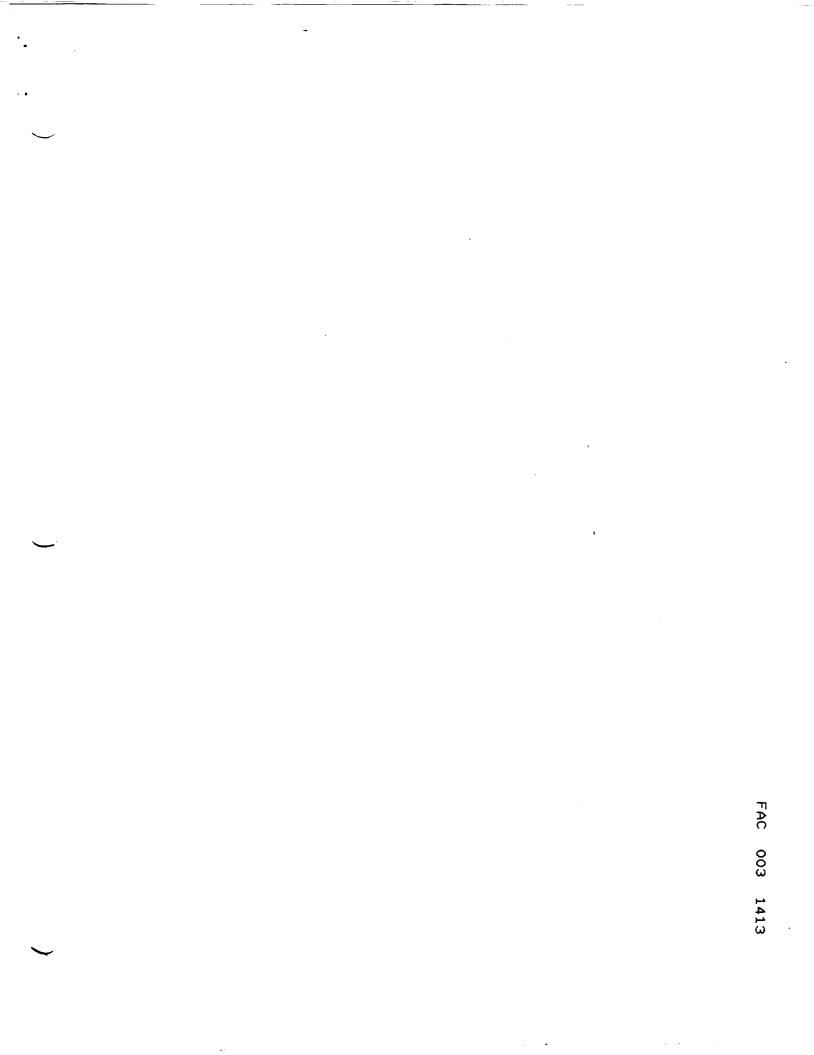
- 27. Page 15, paragraph 3 Monitoring wells in the area of the proposed RCRA-type cell indicate a depth to ground water capable of significant water yield at approximately 30 feet.
- 28. Page 15, paragraph 5 EPA has never produced or been able to reference a document which classified ground water as class 2A aquifer.
- 29. Page 16, paragraph 9 See adjusted volume and cost calculations.
- 30. Page 17, paragraph 3 As stated earlier in the PRAP, the summary should state metals precipitation if necessary.
- 31. Page 17, paragraph 6 RCRA waste exists only in Area 6 due to the leachable cadmium. In addition, based on the 1991 RI there does not appear to be 2,124 c.y. of RCRA waste at the site. Rather, most of the material appears to be non-hazardous.
- 32. Page 17, paragraph 7 It will be difficult to find an industrial waste landfill to accept site soil; furthermore, Purolator may choose to send waste to a secured "RCRA" landfill for security and should be able to retain that option.
- 33. Page 17, paragraph 9 Storage of pumped ground water should not be specified.
- 34. Page 17, paragraph 11 "Long term monitoring" should be described more specifically. Does this mean ground water monitoring, effluent monitoring or other?

FAC

003

- 16. Page 5, paragraph 4 & 10 The drum excavation final count was 469 drums.
- 17. Page 6, paragraph 1 The soil removed during the drum excavation will be disposed of in a secured RCRA hazardous waste landfill with the exception of a small volume of PCB containing soil that will be disposed of in a TSCA landfill.
- 18. Page 6, paragraph 1 What is the source of the Summer 1992 data?
- 19. Page 8, paragraph 2 Purolator is not aware of an on-site "reservoir" of contaminants that exists at the site. EPA needs to clarify what is meant by this statement.

20. Page 8, paragraph 3 - EPA needs to be more specific with respect to what areas and volumes of material must be remediated despite being within acceptable risk guidelines. Purolator is concerned that this may be an open-ended loophole that could require potentially unlimited remediation based on undefined "uncertainties".


- 21. Page 9, paragraph 2 Soil from Area 5 was tested by the TCLP method and "passed"; however, Purolator has agreed to resample Area 5. Area 10 sediment was similarly sampled and passed the TCLP method; therefore, Area 10 should not be referenced here.
- 22. Page 10, paragraph 8 Product recovery may not be possible, since less than one inch of oil has been detected at monitoring well D-5. Therefore, product recovery should only be mentioned as a possibility.
- 23. Page 10, paragraph 10 EPA should state specifically how many TCLP samples need to be taken in Area 5 and the exact conditions under which the results of the TCLP analyses would lead to remediation.
- 24. Page 12, paragraph 1 This section contains an incorrect definition of a RCRA waste. A material is defined as a RCRA waste if it is either listed or is a characteristic RCRA waste; i.e., due to ignitability, reactivity, pH, or toxicity (failure of TCLP tests). Total Arsenic and chromium values are not related to RCRA characterization. As such, the site waste is generally not RCRA waste.
- 25. Page 13, paragraph 13 The RI identified RCRA waste in Area 6 sediment only. All other waste is considered characteristically non-hazardous.
- 26. Page 15, paragraph 1 Land disposal restrictions do not prevent the off-site disposal of listed hazardous waste.

FAC 003 1411

Attachment I June 26, 1992 Page 6

- 6. *Page 3, paragraph 9* It appears that EPA is misinterpreting the use of a previous stormwater conveyance pipe whose elevation would produce drainage.
- 7. Page 3, paragraph 10 Stating that coal ash was from the "production facility" is misleading; the source of the ash was primarily from the plant coal-fired boilers.
- 8. Page 4, paragraph 1 According to the 1990 RI report, the 1986 investigation included sampling fourteen monitoring wells resulting in the detection of eight VOCs, semi-volatiles, and five inorganics above federal and state ground water standards (GWS).
- 9. Page 4, paragraph 6 "Numerous" semi-volatile organic compounds (SVOCs) related to oil were detected in Area 4 soil; however, only seven VOCs were detected (not including TCE) and only toluene, ethylbenzene and xylene were detected at over 100 ppb. All other VOC concentrations were below 1 ppm.
- 10. Page 4, paragraph 7 This is an example of misleading use of a maximum concentration as displayed in parenthesis (see general comments). Only one Area 5 soil sample contained chromium at 13,000 ppm; all other values were at least one order of magnitude lower. Although TCE was detected in fourteen soil samples, nine values were below 10 ppb, four values were at or below 30 ppb, and only one (240 ppb) exceeded 30 ppb.
- 11. Page 4, paragraph 9 PCB concentrations for the three samples from Area 7 are as follows: 3.7 ppm, 5.3 ppm and 0.32 ppm; therefore, EPA's statement is incorrect. Also, the SVOC statement is misleading because the maximum concentration for one SVOC was 19 ppm while the total of all detected SVOCs did not exceed 22 ppm.
- 12. Page 4, paragraph 10 The 1990 RI states that eighteen SVOCs were detected in Area 8. Also, PCBs were detected in only one sediment sample at a concentration of 11 ppm.
- 13. Page 4, paragraph 12 Sediment samples, not surface soil samples, were collected in Area 10.
- 14. Page 4, paragraph 14 A total of 22 TCL SVOCs were in soil near the oil/water separator, 8 of which exceeded 100,000 ppb (not ppm). Soil samples, not sediment samples, contained the metals at concentrations listed.
- 15. Page 5, paragraph 3 As stated earlier, the 1980 data is suspect and the recent data from Alliance sampling is not referenced.

FAC 003 1412

ATTACHMENT II

Review and Critique Supplement to the Feasibility Study Facet Enterprise Site

Elmira, New York

Attachment II Review and Critique Supplement to the Feasibility Study Facet Enterprises Site Elmira, New York

1.0 INTRODUCTION

ERM-Northeast (ERM) has reviewed the "Supplement to the Feasibility Study" for the Facet Enterprises Inc. Superfund Site, Elmira, New York, prepared by Alliance Technologies for the U.S. Environmental Protection Agency (USEPA). Based on this review, ERM has prepared comments on six major and four minor technical issues related to the FS Supplement. They are:

Major Technical Issues

- 1. TSCA "Anti-Dilution" Rule Interpretation.
- 2. Cost Estimate Corrections.
- 3. On-site vs. Off-site Preference.
- 4. RCRA Classification.
- 5. Stabilization.
- 6. Appropriateness of Non-hazardous Waste Landfill Disposal.

FAC

003

1415

Minor Technical Issues

- 1. Table 1 and Table 2 Comments.
- 2. PCBs in May's Creek.
- 3. Soil Segregation.
- 4. Future PCB Requirements.

Comments related to each issue are presented below.

2.0 MAJOR TECHNICAL ISSUES

Major technical issues related to the FS Supplement have the greatest potential to affect the evaluation of the soil and sediment remedy described in the FS Supplement and, in particular, the cost estimates for the FS Supplement remedy. Comments related to each of the six major technical issues listed in Section 1.0 are presented.

2.1 <u>TSCA "Anti-Dilution" Rule (FS Supplement, Assumptions, Item 6)</u>

Toxic Substances Control Act (TSCA) regulations prohibit dilution of PCBs to escape TSCA disposal requirements. This prohibition, referred to as the anti-dilution rule, has been interpreted by the USEPA to mean that only PCBs that have been deposited in the environment <u>after</u> the effective date of the regulation, February 17, 1978, are treated, for the purposes of determining disposal requirements, as if they were at the concentration of the original material. In addition, USEPA policy also states that the USEPA is not subject to the TSCA anti-dilution provision at CERCLA sites when it selects a remedy. Refer to Section 2.2, "Guidance on Remedial Actions at Superfund Sites with PCB Contamination" (EPA/540/G-90/007; August 1990).

The statement in the FS Supplement concerning PCBs assumes that the TSCA "antidilution" rule would apply if PCBs were derived from a PCB source greater than 50 ppm. PCBs were not disposed in Area 4 after February 17, 1978. As reported in the RI, this area was covered and graded in 1971. In addition, this is a CERCLA site and USEPA is not subject to the TSCA "anti-dilution" provisions when it is selecting a remedy. As a result, the TSCA "anti-dilution" rule does not apply to the Site. The FS Supplement also does not address the questions concerning the validity of the one sample analysis for which PCB concentrations were reported to exceed 50 ppm, as described on page 2-68 of the Final Draft Feasibility Study (ERM, March 5, 1992).

2.2 <u>Cost Estimate Corrections (FS Supplement, Various Sections)</u>

ERM identified four assumptions used in the information provided by Alliance to vendors for their use in estimating the costs for off-site disposal that are significantly different than those used in the Final Draft FS. They are:

- 1. Soil Density
- 2. Area 6 Soil Quantity
- 3. Area 4 Soil Quantity
- 4. Additional Cost Factors

In order to be able to compare the cost of the alternative evaluated in the FS Supplement to the costs of the alternatives evaluated in the Final Draft FS, the FS Supplement cost estimate should have used the same assumptions as those used in the Final Draft FS. Each of these assumptions are described below. The corrected cost estimate, using the unit price provided to Alliance by the vendors, are presented in Table 1. In addition, the cost estimate notes presented in the FS Supplement have been corrected and are included here as Appendix A.

2.2.1 <u>Soil Density (FS Supplement, Assumptions, Item 9)</u>. Soil Density varies from about 1.0 to 1.5 tons per cubic yard. The FS Supplement used 1.0 tons per cubic yard. However, the FS Supplement should have used 1.5 tons per cubic yard, the soil density used in the FS, in order to be consistent with the cost estimate in the Final Draft FS. As a result, all soil quantities used in the FS Supplement estimate of costs should be increased by 50 percent to be comparable to the costs presented in the Final Draft FS. The costs shown in Table 1 and the vendor information provided in Appendix A have been corrected to address this discrepancy.

2.2.2 <u>Area 6 Soil (FS Supplement, Recommendations, Table of Quantities)</u>. As described in Section 2.4.2.2 of the Final Draft FS, the USEPA requested that soil in Area 6 be evaluated for remediation. Although the RA concluded that the concentrations of chemicals in this area do not pose unacceptable human health risks, a sediment sample

collected from this area and analyzed for TCLP metals revealed a concentration of cadmium in excess of the TCLP limit. The costs shown in Table 1 and the vendor information provided in Appendix A have been corrected to address this discrepancy.

2.2.3 <u>Area 4 Soil (FS Supplement, Recommendations, Table of Quantities)</u>. The data from Area 4 clearly identifies approximately 1,035 cubic yards of the 1,275 cubic yards listed as TSCA waste in the FS Supplement as containing PCBs in concentrations less than the TSCA threshold concentration of 50 ppm. There appears to be an error in the FS Supplement since the 1,035 cubic yards of non-TSCA Area 4 soil is listed again in the FS Supplement in the following categories:

Treatment 2: Stabilization and Disposal in a RCRA Lined Landfill Facility Quantity = 920 cubic yards (approximately) of Area 4 subsurface soil Treatment 3: No Treatment Proposed, Industrial Non-hazardous Landfill Facility Quantity = 120 cubic yards (approximately) of Area 4 surface

soil

The total quantity of potential TSCA soil, then, is approximately 240 cubic yards (1,275 cubic yards - 1,035 cubic yards), not 1,275 cubic yards. In addition, minor changes (i.e., approximately 10 cubic yards) made to soil quantities in the Final Draft FS for Areas 8 and 10 and the Unnamed Drainage Way were not incorporated into the FS Supplement. The costs shown in Table 1 and the vendor information provided in Appendix A have been corrected to address this discrepancy.

2.2.3 <u>Additional Cost Factors (FS Supplement, Table 4)</u>. In accordance with the procedures outlined in Section 3.2.1.2 of the USEPA document "Remedial Action Costing Procedures Manual" (EPA/600/8-87/049; October 1987) for estimating the cost of remedial actions at CERCLA sites, the Final Draft FS used the following additional cost factors:

FAC 003 1418

Mobilization = 10 percent Engineering and Construction Oversight = 15 percent Contingency = 25 percent

Although it may be assumed that the costs provided by vendors to Alliance included mobilization in the cost estimate, the additional engineering and construction oversight and contingency costs factors should have been included in the FS Supplement costs. This adjustment is necessary to comply with the guidelines provided in the USEPA cost manual and to be able to directly compare the FS Supplement costs to the costs presented in the Final Draft FS. As a result, the FS Supplement costs should be increased by a factor of 40 percent (i.e., engineering and construction oversight, 10 percent, and contingency, 25 percent). The costs shown in Table 1 and the vendor information provided in Appendix A have been corrected to address this discrepancy.

2.2.4 <u>Summary</u>. The FS Supplement cost estimates, adjusted for corrections in volume estimates, soil density and additional cost factors, range from \$1,341,540 for Chemical Waste Management to \$2,184,550 for Delaware Container Corporation.

2.3 <u>On-site vs. Off-site Preference (FS Supplement, Identification of Treatment/Disposal</u> <u>Options)</u>

The FS Supplement states that soil to be remediated must be removed from the generator site. This statement implies a preference for off-site treatment and/or disposal. CERCLA and the National Contingency Plan (NCP) provide no support to a preference for either on-site or off-site disposal. This issue is described in the preamble to the NCP (Federal Register, May 8, 1990, page 8725):

"One commenter noted that EPA had omitted in the proposal a reference to the statute's bias against off-site land disposal of untreated waste. EPA notes the omission and has changed proposed Section FAC 003 1419

 $300.430{f}{3{iii}(Section 300.430{f}{1}{ii}{E})}$ in the final rule) to clarify that an alternative that relies on the off-site transport and land disposal of untreated hazardous substances will be the least favored alternative where practicable treatment technologies are available, as determined by analysis using the nine criteria. EPA notes that CERCLA does not express a preference for or bias against off-site remedies involving treatment and that the NCP is similarly neutral."

In addition, the evaluation of the FS Supplement alternative for the six NCP criteria, summarized in Table 3 of the FS Supplement, also applies to the on-site alternative evaluated in the FS (Alternative VII: Disposal in a Facility RCRA-type Cell) if stabilization is included. As described in the FS, stabilization is of limited benefit to Site soil, since the potential risk posed by metals in soil (i.e., arsenic an chromium) were due to possible ingestion by humans, not potential ground water impacts. As previously stated, TCLP tests of Site soil to be remediated, except for the 55 cubic yards of Area 6 soil, did not exceed the maximum allowable concentration, demonstrating that leaching of chemicals in all but Area 6 soil to ground water is not a problem.

2.4 <u>RCRA Classification (FS Supplement, Identification of Treatment/Disposal</u> <u>Options)</u>

The total waste concentration of arsenic and chromium in soil (i.e., not extract or leachate) above 5 ppm does not classify this material as a RCRA characteristic hazardous waste. The correct description is that concentrations of arsenic or chromium above 5 ppm in TCLP test leachate from a soil sample would classify this material as a RCRA hazardous waste. The soil in each potential area of concern at the Site was tested using TCLP and all but Area 6 soil did not exceed the RCRA TCLP maximum allowable concentration for any parameter. In addition, RCRA guidance states that if the total waste concentration is twenty times or less the TCLP maximum allowable concentration, the waste cannot be a characteristic hazardous waste. Refer to page 2-6 of "CERCLA Compliance With Other

Laws Manual", OSWER Directive 9234.1-01, August 8, 1988. If it does exceed twenty times the maximum allowable concentration, then testing is recommended. Two of the four arsenic concentrations listed in Table 1 of the FS Supplement are less than twenty times the maximum allowable concentration (i.e., 100 ppm, or 5 ppm times 20) and would not even require additional TCLP testing for arsenic.

In addition, none of the soil in the areas of concern evaluated in the FS was derived from a listed RCRA hazardous waste. As a result, the FS Supplement classification of Site material with PCBs levels less than 50 ppm and arsenic and chromium greater than 5 ppm as a RCRA hazardous waste is inappropriate. This material is clearly a non-hazardous waste. Moreover, soil that is a characteristic RCRA hazardous waste due to TCLP results can be treated (i.e., stabilized on-site) and rendered non-hazardous.

2.5 <u>Stabilization (FS Supplement, Identification of Treatment/Disposal Options)</u>

The FS Supplement recommends stabilization of all soil in the Treatment 2 category, approximately 2,123 cubic yards. (Refer to Section 2.2, above, for corrections to soil quantity estimates.) Only soil that exceeds the TCLP limits for metals needs to be stabilized prior to land disposal. Since the TCLP results for all areas except Area 6 did not exceed the maximum allowable concentration, all but 55 cubic yards (i.e., Area 6 soil) would not require stabilization prior to land disposal.

2.6 <u>Appropriateness of Non-hazardous Waste Landfill Disposal (FS Supplement,</u> <u>Identification of Treatment/Disposal Options)</u>

Relying on vendors to develop a remedial approach to disposal is not appropriate. Although reliable vendors can be expected to recommend an approach that complies with ARARs, they can not be expected to recommend a cost-effective remedial alternative. It is the consultant's role to investigate alternative approaches and to select a cost-effective remedial approach. As a result, the statement in the FS Supplement that only one vendor

FAC 003 1421

proposed disposal of non-hazardous waste in an industrial waste landfill may be misleading. The use of an industrial waste landfill for disposal of all Site soil except Area 6 soil satisfies all RCRA Subtitle C and Subtitle D requirements and is an appropriate cost-effective approach to off-site disposal.

3.0 <u>MINOR TECHNICAL ISSUES</u>

ERM identified four minor technical issues related to the FS Supplement which, although they do not greatly affect the selection of the remedy, should be addressed in the final FS Supplement. They are:

- 1. Table 1 and Table 2 Comments
- 2. PCBs in May's Creek
- 3. Soil Segregation
- 4. Future PCB Requirements

Comments related to each of these issues are presented below.

3.1 <u>Table 1 and Table 2 Comments</u>

The following comments relate to Table 1 of the FS Supplement:

- a. The table is missing the 3,920 ppm result for chromium in the Unnamed Drainage Way.
- b. The term "chromium hexavalent" used in Table 1 is not correct. The analytical results listed were for total chromium (i.e., the sum of hexavalent and trivalent chromium).

FAC

003

1422

c. The quantity of soil and the analytical results for Area 6 are not listed. The USEPA requested that Area 6 soil be evaluated for remediation.

- d. The volume of Area 4 soil is not correct. Refer to discussion in Section 2.2.3, above.
- e. With respect to the "Z" notation in Table 2, samples were analyzed for all target compound list and priority pollutant metals analytes. The full list of analytes and results were included in Section 9.0 of the Remedial Investigation report and used in the Risk Assessment prepared by Alliance. The FS clearly states that the data provided in Section 2.0 of the FS is a <u>summary</u> of the RI data and the chemicals for which data is presented are those chemicals which the Risk Assessment identified as presenting potentially unacceptable risks.

3.2 PCBs in May's Creek (FS Supplement, Assumptions, Item 2)

The assumption made in the FS Supplement that PCBs are present in concentrations equal to the quantitation limit of 13 ppm is not appropriate. Even the USEPA risk assessment guidance, which is very conservative, recommends using one half the detection limit as an assumed concentration for calculating potential risks. The only conclusion that can be made is that PCBs may be present, but that the concentration is unknown. Additional samples may be taken and analyzed using special analytical techniques, but this soil is to be remediated for PAHs and arsenic whether PCBs are present or not.

3.3 Soil Segregation (FS Supplement, Assumptions, Item 4)

Soil from each area of concern does not need to be kept separate. Soil should only be kept separate depending on the treatment and/or disposal requirements. That is, Area 7 soil containing metals only should be kept separate from soil from other areas. Area 4 soil which may contain PCBs in concentrations above 50 ppm should also be kept separate. Also, it is not necessary to store waste in roll-off containers. Soil can be moved directly to trucks for disposal or can be stored in lined areas of the Site temporarily. The use of rolloff containers is more expensive and more susceptible to spills during transportation.

3.4 <u>Future PCB Requirements (FS Supplement, Recommendations)</u>

The FS Supplement statement that future regulations may also become more stringent for PCBs less than 25 ppm should be clarified. It is unlikely that future regulations governing PCB concentrations less than 25 ppm would be more stringent, since current USEPA risk assessment guidance identifies 25 ppm as an acceptable PCB concentration for soil in industrial areas. PCBs are relatively immobile in the environment and future off-site landfill problems due to the disposal of soil containing PCBs in concentrations less than 25 ppm are unlikely.

TABLE 1

CORRECTED FS SUPPLEMENT COST ESTIMATES

<u>Vendor</u>	Corrected Direct Costs ⁽¹⁾	<u>Corrected Total Costs</u> ²²	
Advanced Environmental Technology Corporation	\$1,4 81,160	\$2,073,620	
Chemical Waste Managem	nent \$ 958,240	\$1,341,540	
Delaware Container Comp	any \$1,560,390	\$2,184,55 0	
Environmental Waste Tech	hnology \$ 829,870	\$1,161,820	
Envirosafe Services of Ohio, Inc. Stout Environmental, Inc.	\$1,189,600 \$1,330,000	\$1,665,440 \$1,862,000	
Waste Conversion, Inc.	\$ 929,400	\$1,301,160	

Notes:

- 1. Represents vendor costs presented in the FS Supplement corrected for the following:
 - a. soil density of 1.5 tons per cubic yard
 - b. addition of 55 cubic yards of Area 6 soil
 - c. deletion of 1,035 cubic yards of Area 4 soil
- 2. Represents adjusted direst costs increased 40 percent for the following additional cost factors:

a. Engineering and Construction Oversight:b. Contingency:		15 percent 25 percent	
	Total Additional Cost Factor:	40 percent	

FAC

003

1425

II-11

Appendix A (To Attachment II)

Revised Vendor Cost Estimates

Supplement to the Feasibility Study

Facet Enterprises Site

Elmira, New York

NOTES - VENDORS SUBMITTING PROPOSALS

··· Vendor 1 Advanced Environmental Technology Corporation 4914 W. Genesee Street Camillus NY 13031 EPA Identification_number: NJD 980536563 Contact: Nadia Godhan_____tl: 315-468 3060 ax: 315-46B 30B9 Proposal: \$400/ton = \$-186.4Chromium waste to be stabilized and TSCA bridfill (470 tons) \$ 282,000 470 × 1.5 = 705 PCB=0, waste to landfill ______ \$ 286/ton = \$-5+1 (18 tons) _____\$7,700 _____ All other waste to be stabilized \$ 358/ton = \$ 1,081 and TSCA landfill (3.030 tors) \$1,099,060 Iransportation: 2533 - (470 + 18) = 2045x 1.5= 3070 Durp truck (30 tors) (2533:30:84) \$750/load = \$ total of THE loads required \$63,000 \$ 63,000 Dunp truck drop off______ \$ 300/truck = \$ _Durp_truck_rental_____\$50/day = 1 \$4,200 _____ (assure__ (day)_____ <u>g 1,481,161</u> Total Cost: \$1,407,680 Comments: - All disposal to take place at Nodel City, NY . This verdor has not quoted for sampling or labour to lood the · Taxes not included. FAC 003 1427 - 1

Vendor 2 ... Chemical Waste Nanagement 1135 Balmel Road Model City NY 14107 EPA Identification number: 120000672121____ Contact: John Halcovitch tel: 717-648 1155 Jax: same Procesal: PCB > 50ppm. TSCA waste _____ \$ 281/ton = \$3581 direct to TSCA land fill (1,275 tors) \$ 101,160 240×1.5= 360 RCRA waste to stabilization \$ 250 (ton = \$ 42 \$651,820 and RCRA landfill (T, 621 tors)_ 1,621 + 50 c. y. (Rrea 6) = 1,671 × 1.5=. 2,507 _____ RCRA worte to RCRA landfill______\$ 220 (ton = \$136,8 <u>no stabilization required for</u> \$ 205,260 As < 25 ppm 622×15=933 total ast = \$ 916,575 (2533 · (240+1671))=622 \$ 958,240 * This veroo's facility at Model City has a variance wil Nay 8, attaing Arsenic levels up to 25pm to be longfilled without stabilization Comments: · All transportation, treatment and dusposal costs, or included. · Taxes (6% community tax, 1% NY cales tax) included. Disposal at Model City, NY On site ranging available at \$1,200/ day. <u>5 galos sanple requires for stabilization assessment</u> · Generator wask profik report required. FAC 003 1428 -----A-2 --

Vendor 3 Delaware Container Conpany West 11th Avenue and Valley Rd Coatesville 19320 A A _ EPA Identification number: PAD 064375470 Contact: Jon Fetternan tel: 215-383 6600 Jox: 215-383 9406 Proposal: PCB > 50 ppm, TSCA WOOK \$275/ton = \$55 disposal at TSCA landfill (7,275 tons) (240×1.5=360) 599,000 \$395/ton = \$ 835 RIRA waste to stabilization and RCRA bridhill (2,343, 500) \$ 1,358,800 2,243 + 50 (Aires 6)=2293×1.5= 3,440 Transportation: 2,533×1.5= 3800 tons \$102,590 Total casts = \$ 1,331,5 \$ 1 560,390 Comments: · Disposal_to_take_place_at_Nodel_City, NY . Insurance authorize of 570 of disposal and transportation asts not included · Denurage at \$ 60/ hour charged after first 1/2 hrs. FAC 003 1429 A-3

				·
· Martan				
· _ Vendor 4				
Environm			. .	•
			•••••	• •
PO Box	_	•• · ••	• •••• • •• • •	••••••••••
	Upper Falls			••
Ma. 02	164	•	• • •	.
Contact : Ke	ith Genovere	••••••••	*1: 617-	332 2877
		··· ··· · · · · · · · · · · · · · · ·		_445 <u>7943</u>
		•	1	332_8712
		· · · · · · · · · · · · · · · · · · ·		
Proposal:				
Pce	> 50ppm, T	sca wook		\$ 310/ ton = \$395
to	Model City _T	sca landh'll ((1,275 tons)_	\$111,600
······································		240×1.5=	360	•• •=• •=• •=• •• • • • • • •
	RA worte to			\$215/107=5456
RC	ea.londfill_a	+_Niorigan_C)isposal (nc.	\$ 700,100
0	Belleville, Ni			
<u> </u>		240 + 120)=21		
	<u>-RCRA. non-</u>			<u>= 196.50/107 = 546</u>
	B_425pm,.			\$ 17, 370
	na fil _ at_An			
N	byrespurg, _0	nio <u>(1259</u>		
· · · · · · · · · · · · · · · · · · ·		120×1.5 -		
	منصوب بدة متعظيني متناوست			cost = 3853,275 \$ 829,870
Comments :			·	· • 861,870
	inspectation	keatment ond	disaral co	st included
	York sales to			
			- Noolel cit	y_(CWM)_transpirate
				king Contrary 1 -
				a orio. P
- <u>l</u> œdi	ng_/demun	age at \$ 8	s/lood_at	v Arst 2 hour o
- Requi	reinalysis_a	an follows: T	CLP RCRA	B metals due "
Copper	, Nickel, Zin	c_and_Thall	liun,_pH,_	Aostroint _ 1001
Nau	ivity (cyanid	e_and_suf	ide), <u>RBs</u> ,	TCLP ZER War 8
	tades, TUP	ocid and r	outral oxtra	stades.
		$\Delta 4^{-63}$	+ \$825 (saude.

•

۰.

. •

-

Vendor 5 Envirosate Services of Ohio, Inc. 1600 Madison Avenue Toledo onio 43624 EPA dentification number: OHD 045243706 Contact: Blaine Hines _____ tel: 419-255 5100 Proposal: PCB > 50ppu, TSCA wook _____ \$140/100 = \$178,500 TSCA landhill of Grandview, Idoho \$50,400 (1975 tons) 240 x 1.5 = 360 RERA waste to stabilization ______ \$ 250/ ton . ______ and RCRA landfill at Ohio \$ \$60,000 (-2,243 tors)____ 2533 - 240= 2293 × 1.5= 3,440 \$90,000 Transportation: 360 1,275 tons to Grandview, Idano \$250/101 = \$3187 3440 7,243 tors to chio_____ _____\$55/ton = \$123, \$ 181,200 Total costs = +1,181,365 \$ 1. 189,600 __ Comments: · Both TSCA and RCRA land fill focilities award by this ver · A sample of contaminated soil required · Verda can provide analysis at \$ 450 lab fee. $\Delta - 5$

Verda 6 ...Start Environmental, Inc. 115 Rome Street Farmingdale NY .T: 735 EPA Identification number: NYD 000 691949 <u>Contact: Keith Bullack</u><u>kl: 516-249_4384</u> lax: 516-249-0724 Proposal: · TSCA work to TSCA landfill \$350/ton= \$7,23+2 · RERA waste to stabilization \$1,330,000 and ecen brafill (3,528 tons) _____Z533 × 1.5= 3800 Tacal cost = 57,231,300 -----\$ 1, \$30,000 Comments: · Transportation included in above · TCLP analysis can be provided at \$950 each FAC A-6

Vendor 7 Waste Conversion Inc. Subsidiary of Start Environmental Inc 2321 North Pen Road Hatfield 19:440 PA EPA. Identification _number .: PAD 085690592 Contact: Maria Ziccardi _____ tel: 215-822 2676___ lax: 215-997 1315 Proposal: ___ PCB > 50 pm, TSCA work \$375/10 = \$470,12 - to landfill (Tizzes tons) \$135 000 to landfill (T,275 tons) ______Z40 ~ 1.5= 360 _RCRA work to platilization _______ \$200/ton = \$448.6 ord ecen lona fill (2,243, tors) \$688,000 2843+50 (BREAG) = 2293 × 1.5 = 3440 Trans portation: 3,518 tons, all to Nodel City _ \$28/ton = \$98,5 \$106,400 2533 × 1.5= 3800 TOTAL : \$929,400 <u>Comments:</u> <u>TOTAL: \$929,400</u> <u>Although this is a autosidiary of Start Environmenta</u> separate bids have been submitted. Both are aware _____d_each__other's_bids._____ - Lab warte opproval fee of \$150 / saude. A - /

370.2(b)(10) = definitions for part 3:73

۰.

FAC

003

1434

revisions or modifications to the forms. Application also includes the information required by the department under Part 373.

(11) "Approved program" or "approved State" means a State which has been approved or authorized by EPA under 40 CFR part 271 (see section 370.1(e) of this Part).

(12) "Aquifer" means a geologic formation, group of formations, or part of a formation capable of yielding a significant amount of groundwater to wells or springs.

(13) "Authorized representative" means the person responsible for the overall operation of a facility or an operational unit (i.e., part of a facility), such as the plant manager, superintendent or person of equivalent responsibility.

(14) "Authorized treatment, storage or disposal facility" or authorized facility" with respect to a particular hazardous waste means a treatment, storage or disposal facility which is authorized, under the laws and regulations of both the Federal Government and the state in which it is located, to accept the hazardous waste for treatment, storage or disposal.

(15) "Bedrock" means cemented or consolidated earth materials exposed on the earth's surface or underlying unconsolidated earth materials.

(16) "Bodily injury" means injury to the body, sickness, or disease including death resulting from any of these.

(17) "Boiler" means an enclosed device using controlled flame combustion and having the following characteristics:

(i) (a) the unit must have physical provisions for recovering and exporting thermal energy in the form of steam, heated fluids, or heated gases;

(b) the unit's combustion chamber and primary energy recovery section(s) must be of integral design. To be of integral design, the combustion chamber and the primary energy section(s) (such as waterwells and superheaters) must be physically formed into one manufactured or assembled unit. A unit in which the combustion chamber and the primary energy recovery sections(s) are joined only by ducts or connections carrying flue gas is not integrally designed; however, secondary energy recovery equipment (such as economizers or air preheaters) need not be physically formed into the same unit as the combustion chamber and the primary energy recovery section. The following units are not precluded from being boilers solely because they are not of integral design: process heaters (units that transfer energy directly to a process stream), and fluidized bed combustion units; 370.2(b)(65)

Federal, State or local hazardous waste control statutes, regulations or ordinances.

(66) "Final authorization" means approval by EPA of a State program which has met the requirements of section 3006(b) of RCRA and the applicable requirements of 40 CFR part 271, subpart A. (see section 370.1(e) of this Part.

(67) "Final closure" means the closure of all hazardous waste management units at the facility in accordance with all applicable closure requirements so that hazardous waste management activities under Subparts 373-2 and 373-3 of this Title are no longer conducted at the facility unless subject to the provisions in section 372.2(a)(8) of this Title.

(68) "Final cover" means the cover material placed on all surfaces of a landfill where no additional refuse will be deposited within one year. These areas must be designed and constructed in accordance with the requirements of section 373-2.14 of this Title.

(69) "Flood plain" shall mean any land susceptible to being inundated by water from any source. A <u>100-year</u> flood plain is that land inundated by a 100-year flood that has a one percent chance of occurring in any given year.

(70) "Food-chain crops" means tobacco, crops grown for human consumption and crops grown for feed for animals whose products are consumed by humans.

(71) "Forbidden explosive" defined in 49 CFR 173.51 (see section 370.1(e) of this Part.)

(72) "Freeboard" means the vertical distance between the lowest elevation of the top of a tank or surface impoundment dike, and the surface of the waste contained therein.

(73) "Free liquids" means liquids which readily separate from the solid portion of a waste under ambient temperature and pressure.

(74) "Functionally equivalent component" means a component which performs the same function or measurement and which meets or exceeds the performance specifications of another component.

(75) "Generator" means any person, by site, whose act or process produces hazardous waste as defined in Part 371 of this Title or whose act first causes a hazardous waste to become subject to regulation.

(76) "Generator state" means the state which is the point of origin for a hazardous waste shipment.

П

AC

003

1435

(77) "Groundwater" means those waters in the zone of saturations, including perched water areas.

373-2.14(a)

Section 373-2.14 Secure Landburial Facilities.

(a) Applicability. The regulations in this section apply to owners and operators of facilities that dispose of hazardous waste in landfills, except as section 373-2.1(a) of this Subpart provides otherwise.

(b) Site Characteristics.

(1) The soil beneath the facility shall have a hydraulic conductivity of 10^{-5} centimeters per second or less as determined by in situ hydraulic conductivity test methods and shall be subject to the approval of the department.

(2) No waste shall be closer than 10 feet to an aquifer or bedrock.

(3) No facility shall be located over groundwater recharge areas serving public water supplies.

(4) Facilities shall be located at an elevation not less than five feet above a flood plain unless provisions have been made to prevent the encroachment of flood waters.

(5) All fill areas or excavations shall terminate no closer than fifty feet from the boundary lines of the property on which the secure landburial facility is operated.

(6) The required horizontal separation between deposited hazardous waste and any surface waters shall be determined for each secure landburial facility by reference to soil attenuation characteristics, drainage, and natural or man-made barriers.

(c) Design and operating requirements.

(1) Any landfill that is not covered by paragraph (3) of this subdivision or section 373-3.14(j)(1) of this part must have a liner system for all portions of the landfill (except for existing portions of such landfill). The liner system must have:

(i) a liner that is designed, constructed, and installed to prevent any migration of wastes out of the pile into the adjacent subsurface soil or groundwater or surface water at any time during the active life (including the closure period) of the landfill. The liner must be constructed of materials that prevent wastes from passing into the liner during the active life of the facility. The composition and thickness of the liner, and the hydraulic conductivity of any natural material required as part of the liner, shall be subject to approval of the department. In no case, shall the hydraulic conductivity of any approved liner consisting of natural material be greater than 10^{-7} centimeters per second. The liner must be:

AC 003 1436

GENERAL PROVISIONS

360-1.2(b)(10)

(10) "Aquifer" means a consolidated or unconsolidated geologic formation, group of formations or part of a formation capable of yielding a significant amount of groundwater to wells or springs. Two types of highly productive aquifers in unconsolidated (nonbedrock) formations are defined in subparagraphs (i) and (ii) of this paragraph. The ultimate determination of the presence and extent of these aquifers rests with the department.

(i) "Primary water supply aquifer" or "primary aquifer" means a highly productive aquifer which is presently used as a source of public water supply by major municipal water supply systems.

(ii) "Principal aquifer" means a formation or formations known to be highly productive or deposits whose geology suggests abundant potential water supply, but which is not intensively used as a source of water supply by major municipal systems at the present time. Some water supply development has taken place in some of these areas but it is generally not as intensive as in the primary aquifer areas.

(11) "Architect/engineer procurement" means an approach whereby a consulting engineering firm is hired by a person to plan and develop the design for a solid waste management facility, which includes, but is not limited to, preparation of an engineering report and complete and biddable contract documents for facility construction.

(12) "Asbestos waste" for the purposes of this Part is friable solid waste that contains more than one percent asbestos by weight and can be crumbled, pulverized, or reduced to powder, when dry, by hand pressure. Asbestos waste also includes any asbestos-containing solid waste that is collected in a pollution control device designed to remove asbestos.

(13) "Ash residue" means all the solid residue and any entrained liquids resulting from the combustion of solid waste or solid waste in combination with fossil fuel at a solid waste incinerator, including bottom ash, boiler ash, fly ash, and the solid residue of any air pollution control device used at a solid waste incinerator.

(14) "Authorized representative" means the individual responsible for the overall operation of a solid waste management facility or an operational unit of a facility, such as the plant manager, superintendent, or individual of equivalent responsibility who has authority and knowledge to make and implement decisions regarding operating conditions at the facility.

(15) "Baseline parameters" means the list of standard chemical species or other samples listed in the Water Quality Analysis Table in paragraph 360-2.11(c)(6) of this Part.

(16) "Bedrock" means cemented or consolidated earth materials exposed on the earth's surface or underlying unconsolidated earth materials, including decomposed and weathered rock and saprolite. GENERAL PROVISIONS

360-1.2(b)(65)

(65) "Full service procurement" means an approach whereby a single person is responsible for the solid waste management facility design, construction, startup, testing, operation, and possible ownership.

(66) "Garbage" means putrescible solid waste including animal and vegetable waste resulting from the handling, storage, sale, preparation, cooking or serving of foods. Garbage originates primarily in home kitchens, stores, markets, restaurants and other places where food is stored, prepared, or served.

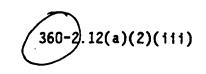
(67) "Generator" means any person whose act or process produces a solid waste or whose act first causes solid waste to be subject to regulation under this Title.

(68) "Geocomposite" means a manufactured material using geotextiles, geogrids, geomembranes, or combinations of same, in a laminated or composite form.

(69) "Geogrid" means a deformed or nondeformed netlike polymeric material used with foundation, soil, rock, earth, or any other geotechnical engineering-related material as an integral part of the man-made structure or system to provide reinforcement to soil slopes.

(70) "Geomembrane" means an essentially impermeable membrane used with foundation, soil, rock, earth, or any other geotechnical engineering-related material as an integral part of a man-made structure or system designed to limit the movement of liquid or gas in the system.

(71) "Geonet" means a type of a geogrid that allows planar flow of liquids and serves as a drainage system.


(72) "Geosynthetics" means the generic classification of all synthetic materials used in geotechnical engineering applications, including geotextiles, geogrids, geomembranes, and geocomposites.

(73) "Geotextile" means any permeable textile used with foundation, soil, rock, earth or any other geotechnical engineering-related material as an integral part of a man-made structure or system designed to act as a filter to prevent the flow of soil fines into drainage systems, to provide planar flow for drainage, or to serve as a cushion to protect geomembranes, or to provide structural support.

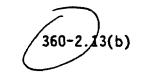
(74) "Groundwater" means water below the land surface in the saturated zone of the soil or rock. This includes perched water separated from the main body of groundwater by an unsaturated zone.

(75) "Groundwater table" means the naturally occurring seasonally high surface of groundwater at which it is subjected to atmospheric pressure. Groundwater table does not include the potentiometric head leve in a confined aquifer.

「ないない」とないであるとうとうとうとう

to identify the sites that appear to be the most environmentally suitable. At a minimum, the site evaluation criteria in subdivision (e) of this section must be applied to evaluate the suitability of these sites for landfill development.

(iv) Preliminary field investigations must be conducted at the highest ranking available site or sites, to identify any major obstacles to site development, and to provide sufficient data to differentiate among the preferred sites and support a siting decision.


(b) A site selection study will not be required pursuant to this Part for expansions of existing facilities if the proposed expansion is not located in an area identified in subdivision 360-1.14(c) of this Part; complies with the landfill siting restrictions identified in subdivision (c) of this section; is consistent with the intent of the landfill siting requirements of subdivision (d) of this section and can satisfy the landfill construction requirements identified in section 360-2.13 of this Part. For such expansions, the site selection report may be limited to a demonstration of the suitability based upon these criterion.

(c) Landfill siting restrictions. In addition to the provisions of subdivision 360-1.14(c) of this Part, the following landfill siting restrictions apply.

(1) Primary water supply and principal aquifers:

(i) Except in Nassau and Suffolk Counties, and except as provided in subparagraph (ii) of this paragraph, no new landfill and no lateral expansion of an existing landfill may be constructed over primary water supply aquifers, principal aquifers, or within public water supply wellhead areas.

(ii) The commissioner may allow lateral expansions of landfills in operation on the effective date of this Part [December 31, 1988] that are on principal aquifers if there is a demonstrated public need for the capacity provided by the expansion that cannot be reasonably provided elsewhere and that outweighs the potential risk of contamination to the aquifer. Additionally, the facility's expansion must promote the implementation of the State's solid waste management priorities set forth in ECL 27-0106 and must be an integral part of any local solid waste management plan that may be in effect for the Planning unit (as defined in ECL 27-0107) within which the facility is located; and the expansion must comply with all other requirements of this Part. However, the maximum time period allocated by the commissioner for any such expansion must not exceed seven years from the effective date of this Part. In granting any expansion under this subparagraph, the department must impose specific conditions that are reasonably necessary to assure that the expansion will, to the extent practicable, have no significant adverse impacts on public health or safety or on the environment and such approval contributes to the proper management of solid waste at the earliest possible time.

R

003

1440

(b) One permanent survey benchmark of known elevation measured from a U.S. Geological Survey benchmark must be established and maintained for each 25 acres of developed landfill, or part thereof, at the site. This benchmark must be the reference point for establishing vertical elevation control.

(c) The New York Transverse Mercator (NYTM) coordinates must be established. Horizontal control must be established and one of its points must be the benchmark of known NYTM coordinates.

(d) A minimum separation of five feet must be maintained between the base of the constructed liner system and the seasonal high groundwater table. At landfill sites where it has been adequately demonstrated that the underlying soils are homogeneous and have representative coefficients of permeability of less than $5 \times 10^{\circ}$ centimeters per second and exhibit a minimum thickness of 10 feet, this minimum five feet separation requirement may be reduced or waived. In such cases, the department will require additional groundwater drainage systems to ensure that the seasonal high groundwater table does not come in contact with the lowermost portion of the landfill liner during construction and until the hydrostatic pressures are equalized by weight of the liner system and waste.

(e) A minimum of ten feet vertical separation must be maintained between the base of the constructed liner and bedrock. The nature of the materials making up this separation, whether natural or backfilled, is subject to department approval.

(f) Liner system. The minimum liner requirement for all landfills accepting mixed solid waste must consist of the following:

(1) On all bottom areas where the landfill slope is less than or equal to 25 percent, the liner system must consist of a double composite liner separated by a secondary leachate collection and removal system.

(2) On all side slope areas where the landfill slope is greater than 25 percent the liner system need only consist of an upper geomembrane liner and a lower composite liner separated by a secondary leachate collection and removal system.

(3) A composite liner must consist of two components, an upper geomembrane liner placed directly above a low permeability soil layer meeting the requirements specified in subdivisions (j) and (k) of this section. Each composite liner is considered a single liner.

(4) The double composite liner system must include a primary leachate collection and removal system consisting of a 24-inch granular soil layer with a leachate collection pipe network. The primary leachate collection and removal system lies above the primary (upper) composite liner. The primary composite liner consists of a 60 mil geomembrane that directly overlays an 18-inch thick low permeability soil layer. The primary composite liner lies above the secondary leachate collection and

ATTACHMENT III

Record of Decision Review

FAC ε00 1441

475 Park Avenue South • 7^m Floor • New York, New York 10016 • (212) 447-1900 • Telefax (212) 447-1904

June 9, 1992

Mr. James R. Skaggs, Jr. Pennzoil Company 700 Milam St., 12th Floor Houston, Texas 77002

RE: Purolator Site, Elmira, NY Identification of RODs Issued for On-Site and Off-Site Treatment and/or Disposal of Soils

Dear Mr. Skaggs:

At your request, ERM-Northeast conducted a search of U.S. Environmental Protection Agency (USEPA) Records of Decision (RODs) to: (1) determine the number of sites in USEPA Region 2 where on-site treatment and/or disposal of soil with elevated concentrations of PCBs, PAHs, and/or metals was recommended; and (2) determine whether a preference for on- or off-site treatment and/or disposal exists. As discussed in our June 4, 1992 letter to you, the ROD search was conducted by the USEPA.

To facilitate your request, the RODs retrieved were limited to the following:

- o USEPA Region 2;
- o 1988 to present;
- o on-site or off-site treatment and/or disposal; and
- o soils containing PCBs, PAHs and/or metals.

Three ROD searches were conducted. All three searches were limited to RODs issued by USEPA Region 2 in the years from 1988 to the present. The first search was

FAC

003

Mr. James R. Skaggs, Jr.

-2-

June 9, 1992

limited to on-site treatment and/or disposal of soils containing PCBs, PAHs and/or metals. (The results of this search were discussed in our June 4, 1992 letter to you.) The second search was limited to off-site treatment and/or disposal of soils containing PCBs, PAHs and/or metals, and the third search was limited to soils containing PCBs, PAHs and/or metals. For the last search, neither on-site nor off-site was specified so that the total number of sites requiring soils remediation could be identified.

The searches were first reviewed to determine the total number of sites utilizing onsite or off-site treatment and/or disposal. The general soil search was then reviewed to determine if any appropriate sites had been omitted from the other two searches because the keywords on-site or off-site were not included in the text.

In addition to these searches, ERM-Northeast files were also reviewed for additional sites. This exercise revealed that all applicable sites in our files were also included in the database.

A summary of the information obtained from the search is presented in Table 1. Out of the 87 RODs issued in Region II since 1988, 31 addressed soils containing elevated levels of PCBs, PAHs and/or metals. This total (31) was therefore used as the basis for data analyses.

Based upon the information collected, sites were broken into the following six groups: (1) no treatment (cap or containment); (2) on-site treatment and/or disposal; (3) on-site treatment and off-site disposal; (4) off-site treatment and disposal; (5) off-site treatment and on-site cap; and (6) on-site and off-site treatment. The first two groups address sites where on-site treatment and/or disposal was specified, the third and fourth groups address sites

FAC

003

Mr. James R. Skaggs, Jr.

-3-

June 9, 1992

where off-site treatment and/or disposal was specified, and the last two groups address sites where a combination of the two was specified. The breakdown of the 31 on-site and off-site soil treatment and/or disposal RODs is as follows:

o on-site treatment and/or disposal -> 17 RODs -> 55% of all applicable RODs

o off-site treatment and/or disposal -> 10 RODs -> 32% of all applicable RODs

o on-site and off-site treatment and/or disposal -> 4 RODs -> 12% of all applicable
 RODs

If the four RODs where the remedy included both on-site and off-site treatment and/or disposal are not included, the 17 RODs recommending on-site treatment and/or disposal would represent 63% of the remaining 27 RODs. This analysis demonstrates that recent USEPA Region 2 RODs show a preference (i.e., 55 percent to 63 percent) for on-site treatment and/or disposal.

A summary of specified treatment technologies along with soil volumes is presented in Table 2. This summary indicates that both on-site and off-site treatment and/or disposal was recommended for a wide range of soil volumes. On-site treatment soil volumes ranged from 1,250 cubic yards to 60,000 cubic yards and off-site treatment volumes ranged from less than 5 to 54,000 cubic yards.

Soil volumes for on-site stabilization ranged from 5,900 to 30,000 cubic yards. Unfortunately, the number of sites where this technology was recommended (two) is inadequate to obtain an accurate lower limit soil volume for feasibility of this treatment technology. However, soil volumes for low temperature thermal treatment (LTTT), a treatment technology which entails significantly higher mobilization and capital costs than

FAC

003

Mr. James R. Skaggs, Jr.

June 9, 1992

stabilization, ranged from 1,600 to 60,000 cubic yards. Because high costs tend to limit the feasibility of on-site treatment to higher soil volumes and stabilization generally has a lower investment cost than LTTT, stabilization would be feasible at lower soil volumes than LTTT. As a result, the lower level soil volume for stabilization would be less than 1,600 cubic yards. As estimated in the FS, the soil volume for which stabilization could be used at the Purolator site is approximately 2,500 cubic yards.

A detailed list of the site names, the year the ROD was issued and its number (e.g., 89/077), the chemicals of concern at the site, the treatment technology specified and the quantity of soils requiring treatment and/or disposal is included as Attachment #1. In addition, computer printouts for the database searches are also attached.

Should you have any questions regarding this matter, please feel free to contact me at (212) 447-1900.

Sincerely, ERM-Northeast

Carla Weinpahl Project Engineer

cc: Jim Blasting, ERM-Northeast John Iannone, ERM-Northeast

FAC 003

TABLE 1

SUMMARY OF INFORMATION **USEPA REGION 2 SOIL REMEDIATION RODs 1988 - PRESENT**

ROD Database Search Field: 1988-Present Region II Soils with PAHs, PCBs and/or metals			
Category	Notes	# Sites	Percent
No Treatment (Cap or Containment) On-Site Treatment and/or Disposal On-Site Treatment and Off-Site Disposal Off-Site Treatment and Disposal Off-Site Treatment and On-Site Cap Combination of On-Site and Off-Site Treatment	A A B C C	7 10 1 9 2 2	22% 32% 3% 29% 6.5% 6.5%
	Total	31	100%

Notes:

- Α.
- B.
- Included in total of 17 on-site treatment and/or disposal RODs. Included in total of 10 off-site treatment and/or disposal RODs. Included in total of 4 on-site and off-site treatment and/or disposal RODs. **C**.

FAC 003 1446

TABLE 2

TREATMENT TECHNOLOGY SUMMARY **USEPA SOIL REMEDIATION RODs 1988 - PRESENT**

Treatment Technology	Volume of Soils, cubic yards	No. of Sites*
On-Site Treatment		
Low Temperature Thermal Treatment Stabilization/Solidification Soil Flushing ^{**} Soil Washing Dechlorination Vapor Extraction ^{**} Steam or Air Soil Stripping ^{**}	1,600 to 60,000 5,900 to 30,000 4,100 22,000 to 48,700 48,700 not specified 1,250	6 2 2 3 1 2 1
Off-Site Treatment Unspecified Incineration RCRA Landfill Landfill Stabilization and Landfill	<5 to 54,000 930 to 4,500 40 not specified 120	6 5 3 1 1

• The total number of sites is greater than 31 since some sites specified more than one soil treatment technology. • In-situ soil treatment technologies

	 k1		l an-	3150	ЕТ	REAT	MEN	F	<u>ا</u> _		REE	s.AL_		DE	<u>ŧ~m</u>	172	AM	NT/	dis ,	۰ ۰		1
	202	£s	3轮	888				I 1	25 ×		28	LAP	-	Ę	LA	Ę	23	'		1		
SITE NAME HEMICALS OF CONCERN	lanman T Trimmen T ILY	trannent HP ouly	and temporative	Application A constrained	4714	which why	DECHLORINATION	WIRDE OMRALINOV	IL STICLADING		BACKFILL OR	Ą	UNYMERINET	incender and	RUNA PR. HW	LAMOFILL	SALANDELL					
EWAN AWPACT (SOURCE) VOC, Cr. Pb 88/13														4,500 1413 X								
EWAN PROPARTY (RESIRVA) VOC, CT, Pb 89195						22,000 413 X					×											-
RINGNOOD MINES Ar, Pb, PHCS \$8/75													445 VNKN. X								<u>.</u>	
SMS INSTRUMENTS									1,250 44 X													
VCC, Cr, Pb 89/83 ROCBUNG STREEL PCB, Pb; Ar, Cr 30/100															nemus 40 yd ' X		120, 443 X			•		
FAA TEUINICAL CONTEN														9303 493 X								
YOC, PCB, PLBS, Cr Solios HOOLER - 102nd 90/117 YOC, PCB, PHONOL, Ar		100 - 20 - 20 20 20 20 20 20 20 20 20 20 20 20 20 2								·					Hight conc XD						EDIME LOW- HAH TOPC	NT INDER INC. NESI
HATTIACE PEROUTEMIU 190/119 10C, Ar, Cr, Po, PHENIC	r										-		×		-2-12							
YOC, 1243, PEST, Cr. Pb												eyc. Ariett X	20 4d ³ X	4.7.67 4.7.67 4.7.67 4.7.67								
KING OF PRUSSIA: YOC, Cr. Ph. 90/113						Highus X L	~ SW	Jue, S Seon	al Ent		X			X	501L CO	URUM	2041 5.tu	eums				
HOOKER CHEMICAN/RUCO PCBS 90/121														7500 X		710 2590 X						
C 003 It48)A7					7.			y				_	_								

	<u>k</u>		an-	1215		REAT	MEN	F			L DER	s Al	<u> </u>	DE	Ехп	. 120	AME	NT/I	ISP	1		I ;	
E NAME 11CALS OF CONCERN	LOUTAINMENT	NO TRATHENT		Sanaruzanau Sanon Ficahau				•	STEAM OR AND STRUPPING		BACKFILL OR	LAP	` c	INCINERATION	RULA OR HW	LANDFILL	South regulation	F	аС	003	1449	, 	
2EMONT REMOCHANIC 90/123 1AV. G. P. B. ASPESTOS	n		1, 600 44 3 X								×												
90/123 1AV, GY, Pb, KEPESTOS PAL LANIT7ITIL 91/147 AV, GY, Pb		×			i					-												-	,
TEL LANDFILL Ar, Gr. Pb SILINO		x																					
KOIL CO. 88/054				30,000 1/4 ¹ X							\varkappa												
AV. CV. PD			(vor.?) X													×					-		
MUCAN THERMOSTAT			4,800 4d' X								X		254d X								·		
- BUC LANDFILL 88/68 1. 1203. AV. PS	x	×			·																		'
Ar, Cr, Pb 90/110 - BUC LANDFILL 88/48 + 1203, Ar, Pb DLAWN TPK PT 532 - PH2NOL 90/02 - 1203, PLBT, PLANIONIUC.													54,000 413 X									İ	
LOW SAND & GRAVEL BB/64 ; PCB, PHENOL		×																					
• :		i																					
	1	4	3	1							3		Z			1							
· · · ·	~	-	1.	~	7	2	,	2	,	- 1	8	,	/	<u> </u>	2	2	1				1		

ć i k					E	LEAT	MEN	Г			DEF	s AL	<	DE	<u>₹~m</u>	TRU	hme	<u> vr/</u>	tier ,	ATTA		NT
SITE NAME HEMICALS OF CONCERN	LOUTAINMENT	NO TRAMME	THEREAL OF	California and a constant	Soil Pristing	Soil marthaly	DECHLORNATION	ANPOL ENTRALINON	STRAM AR		CANDAL OR	CAP	NARUBAR	INCINERATION	RUA & AW	LANDFILL	SALAR SALAN				#-1	
CLOTHIER DISPOSAL	47	3	C. NGE	<u> </u>			Ž		14				2	~			2				 	
891077 VOCS, FAHS, PEPS, METALS		×																				.
FULTON'TERMINALIS 89/081 VOC, PAH, CV, PB			4,000 X								×	×										•
DE RENAL CHEMINIL CO. 891087 VOC, PAH, Cr, Pb			2,100 44? 024 X	14 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -							X											•
BYRON BARREL DEVM 691089					4,100 ma 3 X									,							For	NATION HPHLI 1,100
VOC, PAH, Cr, Pb															ļ	 	 	 		[INNOR	i.cont
N. SEA MUNICIPAL LF 69/005		×																				
71H, VOC, AV, PO													24 000				<u>}</u>	<u> </u>				
WOODLAWN TPK RT 72. PHENOLS, PO. Cr 90/101 YOC, PCB, PEST, PADONICUTE													24,000 447 X	~4	10 19 00	ун ⁷ р. JT. М	TTOL	ALCAL	rorm	For B	n4 51	1 85 5)
MYBLS HUDPALTY JOC, PCB, PAH, DIOXIN AT, PS, PBSTUDES						X	+++++++++++++++++++++++++++++++++++++++				×											
VESTAL WATER SUPPLY 90/130	FAC							×	-		-											
MARIAL OIL CO.	003			Pre			Pee	RED	ME	25					Perina	~73	0040	3	†			
90/128				101	Lo	Ano	NU	IKA	6W1	7					1-3,2							
10C, PAH, PCB, Ar, Cr, Pb SOLVENIT SANERS 90/111	1450		म. ००० पुर्व					-						~						1	ROS:	LTT R NC.
JOC, PAH, PCB, AY, CI, PS	Ū		ngy		×∢	- 0	2	×						7.			1				voc:	
Scilamific citemicans 90/109 PAH, VOC, PCO, Ar, Cr, Pb	×																					
	;	7.	3	r	7	,	;	7			2	,	,		,					1		

RESPONSIVENESS SUMMARY FOR THE REMEDIAL ACTION AT THE FACET ENTERPRISES, INC. SUPERFUND SITE VILLAGE OF ELMIRA HEIGHTS, CHEMUNG COUNTY, NEW YORK

<u>Sect</u>	<u>ion</u>	
INTR	RODUCTION	2
I.	OVERVIEW	2
II.	BACKGROUND ON COMMUNITY INVOLVEMENT AND CONCERNS	3
III.	COMPREHENSIVE SUMMARY OF MAJOR QUESTIONS, COMMENTS, CONCERNS AND RESPONSES	4

FAC 003 1451

RESPONSIVENESS SUMMARY FOR THE FACET ENTERPRISES, INC. SITE VILLAGE OF ELMIRA HEIGHTS, NEW YORK

INTRODUCTION

This Responsiveness Summary provides a summary of citizen's comments and concerns and the U.S. Environmental Protection Agency's (EPA) responses to those comments regarding the Remedial Investigation/Feasibility Study (RI/FS) Reports and Proposed Plan for the Facet Enterprises, Inc. Site (Facet Site or Site). EPA, in consultation with the New York State Department of Environmental Conservation (NYSDEC), will select a final cleanup remedy for the Facet Site only after reviewing and considering all public comments received during the public comment period.

EPA held a public comment period from May 27, 1992 through June 27, 1992 to provide interested parties with the opportunity to comment on the RI/FS and Proposed Plan for the Facet Site. A Public Information Meeting was held to discuss the remedial alternatives in the FS and to present EPA's preferred remedial alternative for controlling contamination at the Site. The meeting was held at the Village of Elmira Heights Village Hall, Village of Elmira Heights, New York on June 16, 1992 at 7:00 p.m.

This community relations responsiveness summary is divided into the following sections:

- I. OVERVIEW: This section briefly outlines the EPA's preferred remedial alternative.
- II. BACKGROUND ON COMMUNITY INVOLVEMENT AND CONCERNS: This section provides a brief history of community concerns and interests regarding the Facet Site.

FAC

003

1452

III. COMPREHENSIVE SUMMARY OF MAJOR QUESTIONS, COMMENTS, CONCERNS AND RESPONSES: This section summarizes oral comments received by EPA at the public meeting for the Facet Site and those raised in written comments by the Purolator Products Company.

I. <u>OVERVIEW</u>

At the beginning of the public comment period, EPA published its preferred alternative for the Facet Site located in the Village of Elmira Heights, Chemung County, New York. EPA generally prefers treatment or removal technologies which reduce the toxicity, mobility, or volume of waste contaminants. EPA screened possible alternatives, giving consideration to nine key criteria:

3

Threshold criteria, including:

--Overall protection of human health and the environment

--Compliance with Federal, State, and local environmental laws

Balancing criteria, including:

--Long-term effectiveness

--Short-term effectiveness

--Reduction of mobility, toxicity, or volume

--Ability to implement

--Cost, and

Modifying criteria, including:

--State acceptance, and

--Local acceptance

EPA weighed State and local acceptance of the remedy prior to reaching the final decision regarding the remedy for the Site.

EPA's selected alternative for addressing contaminated soils and ground water at the Site are: Soil and Sediment Alternative 8 -Consolidate Soil and Sediment, Ship Off-Site for Treatment and Disposal; and Ground Water Treatment Alternative 10 - Metals Precipitation/Filtration, and Volatiles Removal with Air Stripping. If necessary, air pollution controls will be installed. Based on current information, the preferred alternatives provide the best balance of trade-offs among the alternatives with respect to the above-listed nine criteria that EPA uses to evaluate alternatives.

II. BACKGROUND ON COMMUNITY INVOLVEMENT AND CONCERNS

To obtain public input on the feasibility study report and the proposed remedy, EPA held a public comment period from May 27, 1992 to June 27, 1992. A public meeting was held on June 16, 1992.

Approximately 20 people, including local residents, representatives from local industry, state and local government officials, and local television and newspaper media attended the public meeting. During the question and answer session, EPA was asked questions concerning contamination at the facility boundary detected during the RI, in particular along Robinwood Avenue. Also, questions were FAC

003

asked concerning air contaminant emissions during future response activities at the Site, and during the recent drum excavation.

A summary of the questions posed during the meeting is provided in Section III.

III. <u>COMPREHENSIVE SUMMARY OF MAJOR QUESTIONS, COMMENTS, CONCERNS</u> <u>AND RESPONSES</u>

This section summarizes oral comments raised at the public meeting and EPA's response to these comments as well as a response to written comments submitted to EPA.

A. SUMMARY OF QUESTIONS AND RESPONSES FROM THE PUBLIC MEETING CONCERNING THE FACET ENTERPRISES, INC. SUPERFUND SITE

COMMENT:

A citizen asked if a final cleanup decision has been made by EPA and when will the cleanup begin?

EPA'S RESPONSE:

> No final decision on the cleanup activities is made until after the public comment period has ended and EPA has considered all comments. After a final decision is made, negotiations are conducted with potentially responsible parties (PRPs) to determine if they are willing to implement the selected remedial action. If the PRPs do not agree, EPA may either unilaterally order them to conduct the remedy, or EPA may fund the remedial action. In either case, the design of the remedy is then conducted. After review and approval of the design and design work plans (estimated to take one year), the Site cleanup work can begin.

COMMENT:

A citizen requested information regarding soil and sediment contamination, ground water contamination concentrations, and ground water flow direction at the western boundary of the facility.

EPA'S RESPONSE:

> Four-hundred and sixty-nine drums were excavated from approximately 50 feet from the western boundary of the facility. In addition, 2,250 tons of contaminated soil, and 30,000 gallons of contaminated liquid have been temporarily contained. This material is scheduled for shipment off-site for treatment and disposal to permitted waste management

AC 003 1454

facilities during July 1992.

Confirmational sampling was conducted during the drum and soil excavation. EPA will be receiving the results during the Summer of 1992, and based on the results of this sampling, and after consultation with NYSDEC, EPA will decide if additional excavation is required to remove soil and sediment contamination which is either above health-based cleanup levels or poses a threat to ground water quality. Additional soil data is available in the 1990 Remedial Investigation Report.

Beyond the facility fence line, along the western boundary of the facility property, no samples have been collected. However, based on evaluation of historical photographs from the 1940's, 1950's and 1960's it does not appear that disposal activities occurred in the residential areas west of the facility.

Ground-water flow direction at the western margin of the facility was determined during the Remedial Investigation to be in a south-easterly direction. The western-most monitoring well for the Site did not show any volatile organic contamination during sampling conducted for the Remedial Investigation. The depth to the ground water in this monitoring well is approximately 36 feet below the ground surface. No monitoring wells in this area are screened to monitor shallow, perched, ground water quality. However, based on the topography at the facility it is unlikely that if unimpeded, perched ground water from the facility would flow in a westerly direction.

COMMENT:

A citizen indicated that local banks have refused credit to residents along Robinwood Ave., and wanted to know how they could get sampling done to satisfy the banks if this type of information was requested by the banks.

EPA'S RESPONSE:

Studies conducted to date at the Site may contain the requested sampling data. EPA representatives are available to discuss with the public the significance of any data collected to date at the Site, upon request to the EPA Project Manager. The available information should be evaluated carefully before additional sampling is conducted to eliminate any sampling redundancy.

FAC 003 1455

A citizen requested if air sampling has been conducted at the Site. This citizen inquired about historical releases of air contaminants during the disposal activities at the facility.

EPA'S RESPONSE:

Air quality monitoring was conducted both during the Remedial Investigation, for characterization purposes, and during the drum removal activities at the facility, to ensure protection to on-site workers and the public. Air monitoring conducted along the perimeter of the facility during drum and soil removal activities did not indicate that any volatile organic contaminants were present. Furthermore, particulate emissions were not elevated to a level of concern. Air quality monitoring during the Remedial Investigation did not indicate the presence of contaminants at levels of concern.

EPA does not have any data concerning past releases of any air contaminants during historical disposal activities. Monitoring data collected during the Remedial Investigation and during the drum and soil removal activities will not indicate if releases occurred during past disposal activities.

B. SUMMARY OF WRITTEN COMMENTS AND EPA RESPONSES CONCERNING THE FACET ENTERPRISES SUPERFUND SITE

EPA received written comments dated June 26, 1992 from the Purolator Products Company. The letter indicates that Purolator agrees with EPA in selection of Alternative 10 as the alternative for ground water treatment. Purolator also indicates that they agree with some of the elements of the proposed remediation for soil and sediment as detailed in Alternative 8. However, Purolator indicates that an on-site RCRA cell (landfill) combined with stabilization should be the selected remedial alternative. The following summarizes their comments and provides EPA response to those comments.

i) Comments from the Purolator Products Company - June 26, 1992

FAC

003

1456

COMMENT:

 Building an on-site RCRA cell (landfill) allows Purolator to manage the hazardous substances, and would preclude the possibility that further liability could be incurred by Purolator in the event that an off-site treatment/disposal facility in not managed properly. EPA'S RESPONSE:

> It is not appropriate to consider, in the selection of a remedy, what impact a particular remedy will have on potential future liability of a party. The nine criteria for the selection of a remedy, as set forth in the NCP at 40 CFR 300.430(e)(9)(iii), do not include the consideration of the potential for future liability of a party. Also, as stated above, EPA has determined, based on data gathered during the RI and drum excavation as well as comments from NYSDEC, that the geological conditions at the Site are not conducive to the siting of the RCRA cell as proposed. Furthermore, the cost estimates for treating the wastes on-site, constructing the RCRA cell, and placing the wastes therein versus off-site disposal seem to indicate that the former may be more costly. Lastly, the potential for liability exists for Purolator as a result of the generation and continued presence of hazardous substances at the Site, whether those substances remain at the facility or at an off-site facility. Consequently, selecting on-site disposal is neither consistent with the applicable regulations (NCP and NYCRR 373) nor technically justified.

COMMENT:

2. Purolator is concerned that off-site treatment and disposal will require additional handling of material on-site, transporting the material off-site, and that the additional handling creates the potential for unnecessary, increased exposure to the general public, neighbors adjacent to the Site, workers at the Site and workers at the disposal facilities.

EPA'S RESPONSE:

Additional Handling of Material

For all soil and sediment treatment or disposal alternatives consolidation of wastes is required and therefore the <u>potential</u> for exposure does exist. For on-site treatment and disposal options, additional potential exposure exists to workers responsible for treating the soils or sediments which contain hazardous substances. For off-site disposal options additional <u>potential</u> exposure exists for material handlers loading/unloading the materials into/off of trucks. Worker protection on-site as well as at disposal facilities is achieved through the use of a health and safety plan, as required by OSHA (40 C.F.R. 1910). Monitoring, protective clothing, and respirators, where required, will provide protection for workers during remedial actions. Areas of the site will be marked prior to initiating any remedial action and Facility personnel who have not been trained in health and safety issues will not be given access to these areas of the site.

Monitoring of air contaminants and particulates during the remedial action and comparison with established action levels set for the perimeter of the facility or response activity will prevent exposure to the general public including residents adjacent the facility. Action levels developed for perimeter locations will trigger a response to stop the unacceptable releases of contaminants or particulates.

Any transportation of hazardous waste is regulated by the Resource Conservation and Recovery Act, Department of Transportation and State regulations (such as 6 NYCRR 364 Waste transporter permits) which eliminate or minimize exposure to wastes.

In the event that remediation of soil and sediment generates dust and other particulates as a result of excavation activities or heavy truck traffic, dust control measures such as the use of water and/or foam would be used.

COMMENT:

3. EPA Region II has a historical preference for on-site disposal rather than off-site disposal for 31 Superfund sites with similar types of contamination.

EPA'S RESPONSE:

The selection of the remedial action for a Superfund Site is a site-specific decision which is based on among other things, the evaluation of the alternatives conducted in accordance with the nine criteria set forth in the National Contingency Plan. This evaluation is based on information included in the Feasibility Study along with other information contained in the site-specific administrative record, and is set forth in the Proposed Plan.

For the Region II sites where EPA selected on-site treatment or disposal, site specific conditions warranted this decision, while for the remaining sites, off-site disposal was the appropriate remedy. (See the following comment regarding the

9

conditions at the Facet Site as they relate to siting an on-site RCRA landfill).

COMMENT:

4. Purolator indicates that EPA misinterpreted NYCRR 373, and does not feel that the NYCRR 373-2 precludes construction of a RCRA cell (landfill) on the property. Furthermore, the comments indicate that Purolator believes that EPA may be confusing NYCRR 360 with NYCRR 373.

EPA

RESPONSE:

Data collected during the 1990 RI and existing United States Geological Survey studies indicate that the western portion of the facility is in an aquifer recharge zone, while under the eastern portion of the facility there is Newtown Creek Aquifer soils and/or sediments and transitional Newtown Creek aquifer soils and sediments. In the western area of the facility where the on-site RCRA landfill has been proposed, substantial quantities of perched groundwater which recharges the aquifer would be less than five feet from the RCRA cell this would not meet the requirement that the wastes be less than 10 feet from the aquifer.

EPA does not feel that NYCRR 373 has been misinterpreted for the following reasons:

A. Ground Water

a) Figure 1 (attached) is an excerpt from the Department of Interior United States Geological Survey "Surficial Geology" Open File Report 82-110. Sheet 1 of 7 illustrates the surficial geology at the Site and indicates that the portion of the facility where a RCRA Cell was considered is underlain by: "Kame and kame terrace sand and gravel; ice contact deposits; some sorting and secondary calcite cementation; high permeability".

Boring logs from the Site are consistent agreement with this interpretation that some other soils underlying the site are highly permeable.

b) Figure 2 (attached) is an excerpt from the Department of Interior United States Geological Survey Open File Report 92-110, Sheet 3 of 7 illustrating infiltration potential of soils. Soils at the Site in the area of the proposed RCRA cell or landfill are classified as having "moderate" infiltration potential (0.63 to 2.0 inches per hour). 003 1459

A

Soil borings and drum excavations conducted during the RI at Disposal Areas near the proposed RCRA landfill indicate discontinuous layers of sand and gravel along with discontinuous clay layers. This strongly supports that the potential for downward migration of contaminants exists. The levels of inorganics detected during the 1990 RI at monitoring well D-12 may be attributable to metal plating waste discovered in Disposal Area 3 which has leached into the ground water. Ground-water flow direction determined during the 1990 RI indicates that ground-water flow direction is to the south-east.

c) The perched water table at the facility is capable of yielding substantial amounts of ground-water. Evidence of this includes the collection of approximately 30,000 gallons of water during the recently conducted drum excavation activities in this portion of the facility.

d) Construction of any clay and/or synthetic lined landfill may cause shallow, perched ground water to back up behind the landfill structure. Over time this could possibly flood residential areas, some of which are located approximately 50 feet from the western boundary of the proposed RCRA landfill.

EPA is not confusing NYCRR Part 373 with NYCRR Part 360. A typographic error exists in the Proposed Plan which should state that no waste shall be closer than 10 feet to an aquifer or bedrock. However, site conditions are not appropriate for a landfill built pursuant to NYCRR Part 360 because a minimum separation of 5 feet must be maintained between the base of the constructed liner and the seasonal high ground water.

Comment:

5. Purolator comments that the Supplement to the Feasibility Study has made a classification of hazardous vs. nonhazardous waste based on waste characterizations unsubstantiated by field data.

EPA RESPONSE:

EPA disagrees with this comment for the following reasons:

RCRA Wastes

a) Listed wastes are present at the Site. In EPA's comments on the draft Feasibility Study dated 12/23/91, EPA provided Purolator with NYSDEC Community Right to Know forms completed by Facet Enterprises, Inc. and submitted to the NYSDEC which indicate that F006 a RCRA listed waste is disposed at the facility. FAC

003

In addition, characteristic hazardous wastes have been identified in Disposal Area 6 during sampling conducted for the FS.

Furthermore, preliminary data collected during the 1992 drum removal provided as an attachment to the Responsiveness Summary and those data contained in the site file demonstrates that soils at the site are 1) characteristic wastes, and/or have soils which have PCBs which exceed 50 ppm which would make them subject to TSCA. Manifests located in the Site file from the 1992 drum/soil removal also indicate hazardous wastes are present at the site.

b) Sampling for TCLP extraction and Toxicity Characteristic analysis which was conducted by Purolator during the FS to determine the presence or absence of hazardous waste was not conducted pursuant to an EPA approved sampling plan, nor were EPA oversight contractors present during the sampling. In addition, much of the sampling was conducted by compositing samples, therefore the results are not conclusive regarding the concentration of constituents that might be present. Furthermore, in Disposal Area 6 one sample (which was not a composite sample) revealed the presence of characteristic hazardous waste.

<u>TSCA Wastes</u>

The volume of soil in Disposal Area 4 contaminated with PCBs at a level above the TSCA regulatory level used in the Supplement to the FS is an estimate based on the RI report, the FS, and historical sampling conducted at Disposal Area 4. Preliminary data collected during the 1992 drum removal activities supports the estimate. Confirmational sampling to be conducted during the remedial design and remedial action will establish the exact volume that will be remediated.

COMMENT:

6. Purolator has commented that \$900,000 is a substantial difference in cost between Alternatives 4 or 5 compared with Alternative 8.

EPA RESPONSE:

Soil and sediment at the Site is contaminated with both organic (including PCBs) and inorganic hazardous substances. Both listed and characteristic hazardous wastes are present. Consequently, there is a high probability that clean-up levels determined for the site, along with Land-Disposal Regulations, would probably require both stabilization and low-temperature thermal treatment technologies to be utilized at the facility. This is supported by the preliminary data collected during the drum removal activities. The combined costs (Alternatives 4 and 5) would be approximately \$3,924,782. Moreover, treatability studies would be required to determine the effectiveness of the technologies, and substantive requirements for air permits for low temperature thermal treatment would have to be met. Although substantial when compared individually, if the costs for Alternatives 4 and 5 are combined (\$3,924,782) the off-site

treatment and disposal option is less expensive (\$2,462,334).

ii) Attachment I - General Comments from Purolator Products Company

The Proposed Plan

COMMENT:

1. <u>Contaminant Concentration</u>

The Proposed Plan continuously refers to elevated levels of contaminants but no definition of what constitutes "elevated" is given. Also, the proposed plan does not indicate that the concentrations given are maximum concentrations. The Proposed Plan is misleading because only the maximum concentrations are presented without discussing other sampling results.

EPA

RESPONSE:

EPA does not believe that the Proposed Plan is misleading. The purpose of the Proposed Plan is to summarize in a concise manner the results of the Remedial Investigation, Feasibility Study, and the Risk Assessment which can be understood by the general public, and to present EPA's proposed alternative. On Page 1 of the Proposed Plan we indicate "Detailed information on all of the material discussed here (in the Proposed Plan) may be found in the November 1991 Remedial Investigation Report, the March 1992 Feasibility Study Report... " etc. In these documents, detailed discussions and comparisons of background soil concentrations of chemical parameters can be compared to areas impacted by activities at the facility. Or, for example, upgradient concentrations of volatile organic contaminants (0 ppb) when compared to downgradient concentrations of volatile organics (>200 ppb) reveal elevated or above background concentrations of organics in ground water as a consequence of waste disposal activities at the Site. For ease of discussion in the Proposed Plan, the maximum detected concentration was placed in parenthesis.

AC

ε00

COMMENT:

2. Waste Quantity Estimates and Waste Classification

Purolator expressed the following concerns: 1) EPA has overestimated the total volume of soils in Disposal Area 4 that might be subject to Toxic Substance and Control Act (TSCA) regulations; 2) the FS Supplement relied on volume data from the October 1991 draft FS rather than data from the March 1992 FS; 3) the FS Supplement uses a soil density of 1 when the FS uses a soil density of 1.5; and 4) Purolator indicates that the October 1991 draft FS indicated that the total volume of soil requiring remediation is 3,480 cubic yards while the March 1992 draft FS indicates that only 2,533 cubic yards of soil require remediation. The 920 cubic yard difference between the March 1992 FS and the October 1991 draft FS is due to an error in the October 1991 draft FS. EPA used the information from the October 1991 draft FS in the Supplement to the FS and the Proposed Plan.

EPA RESPONSE:

The reason that the FS supplement uses the volume from the October 1991 draft FS is because at the time that EPA directed Alliance Technologies to complete the FS Supplement (March 1992) the revised FS was not available. However, the "error" of 920 cubic yards that Purolator references is irrelevant because the exact volume will be determined during the remedial design and remedial action.

Furthermore, in EPA's written comments on the RI to Purolator Products Company dated 2/12/91, EPA expressed its concern over the approach that Purolator used in the 1990 RI sampling, or lack of sampling, of oil saturated sediments which contain PCBs in Disposal Area 4. Purolator's decision during the field work to send non-lagoon (later termed "background") samples from Disposal Area 4 to a laboratory for analysis, while not sampling observed oil saturated soils and sediments, has resulted in some uncertainty concerning the total volume of soil requiring remediation. For this reason EPA used a conservative value for the volume of PCB contaminated soils and sediments needing remediation from the draft FS. In any event, EPA will require confirmational sampling to ensure that soils and sediments with unacceptable levels of PCBs are removed.

Use of 1 versus 1.5 for density does affect the cost estimate for the removal of the soils and sediments. However, the cost estimate in the Proposed Plan is higher than the cost estimate in the Supplement and therefore has accounted for the uncertainty in soil densities at the site.

Preliminary analytical data from samples collected from the stock piled soil accumulated from Disposal Area 4 during the Summer 1992 drum removal activities confirmed that additional soils requiring remediation exist in Area 4 and therefore the estimated volumes are still valid in the Proposed Plan

iii. Attachment I - Specific Comments from Purolator Products Company

COMMENT:

1. "Page 2 - Paragraph 4 - Although residences are within 60 feet of the "site" property line, the distance between "present manufacturing facilities" and residences is 500 to 1,000 feet."

EPA RESPONSE:

For the purpose of discussion in the Proposed Plan, property owned by Purolator Products Company, west of Route 14 and north of 18th Street was considered as the present manufacturing facility.

COMMENT:

 "<u>Page 3, paragraph 4</u> - The PRAP should state when and by whom leachate was observed and that leachate has not been present in recent years."

EPA

RESPONSE:

The documentation of leachate observed at the facility is present in the site administrative file. Leachate was observed as recently as during the drum removal activity at the site during the Spring of 1992.

COMMENT:

3. "Page 3, paragraph 5 - Area 4 discharge may have been discharged to the North Drainage Ditch via a swale prior to 1941 (according to plant personnel)." 15

EPA RESPONSE:

EPA Agrees.

COMMENT:

4. "Page 3, paragraph 5 - The 1981 data which reportedly indicated PCBs in Area 4 soil at 320 ppm is suspect because sampling reports and laboratory procedures and complete analytical reports are not available. EPA should produce data reports or qualify this statement. ERM's resampling of this 1981 location during the recent drum investigation indicated a PCB concentration of 43 ppm."

EPA

RESPONSE:

The data reports provided by NYSDEC to EPA are contained in the Administrative Record. EPA believes that the data is valid. Although PCB concentrations at the site have not recently been measured as high as 320 ppm, this is the maximum value detected to date. Materials contaminated with PCBs above 50 ppm have however been detected at the Site since completion of the RI Report. Attachment 1 illustrates that PCB contaminated materials at concentrations above 50 ppb were detected in both Disposal Areas 1 and 4.

COMMENT:

5. "Page 3, paragraph 6 - The 1981 sampling was reported conducted by NYSDEC, not EPA. As stated above, the data is of questionable value because sampling documentation and data reports are not available. 1990 RI sampling results (performed in accordance with CLP protocol) indicate maximum values as follows: 13,000 ppm chromium, 3,390 ppm cadmium and 1,910 ppm copper in one sample."

EPA

RESPONSE:

EPA acknowledges that the 1981 sampling was conducted by NYSDEC and not EPA. As stated above, data reports provided by NYSDEC are available in the Administrative Record for the site. The comment on the 1990 RI sampling results is acknowledged.

COMMENT:

6. "Page 3, paragraph 9 - It appears that EPA is misinterpreting the use of a previous stormwater conveyance pipe whose elevation would produce drainage." EPA RESPONSE:

EPA agrees.

COMMENT:

7. "Page 3, paragraph 10 - Stating that coal ash was from the "production facility" is misleading; the source of the ash was primarily from the plant coal-fired boilers."

EPA

RESPONSE:

See EPA response to comment #1 in **iii. Attachment I - Specific** Comments from Purolator Products Company located on page 14.

COMMENT:

8. "Page 4, paragraph 1 - According to the 1990 RI report, the 1986 investigation included sampling fourteen monitoring wells resulting in the detection of eight VOCs, semi-volatiles, and five inorganics above federal and state ground water standards (GWS)."

EPA

RESPONSE:

Page 6-40 of the 1990 RI states that "Fourteen volatile organic compounds were reportedly detected in the wells." Page 1-19 of the Feasibility Study contains a summary of the 1986 RI and states that: "Fourteen volatile organic compounds were reportedly detected in Facility monitoring wells."

COMMENT:

9. "Page 4, paragraph 6 - "Numerous" semi-volatile organic compounds (SVOCs) related to oil were detected in Area 4 soil; however, only seven VOCs were detected (not including TCE) and only toluene, ethylbenzene and xylene were detected at over 100 ppb. All other VOC concentrations were below 1 ppm."

EPA

RESPONSE:

The Proposed Plan does not contradict this comment.

AC

COMMENT:

10. "Page 4, paragraph 7 - This is an example of misleading use of a maximum concentration as displayed in parenthesis (see general comments). Only one Area 5 soil sample contained chromium at 13,000 ppm; all other values were at least one order of magnitude lower. Although TCE was detected in fourteen soil samples, nine values were below 10 ppb, four values were at or below 30 ppb, and only one (240 ppb) exceeded 30 ppb."

EPA RESPONSE:

The purpose of the Proposed Plan is to summarize in a concise manner the results of the Remedial Investigation, Feasibility Study, and the Risk Assessment which can be understood by the general public, and to present EPA's proposed alternative. On Page 1 of the Proposed Plan we indicate "Detailed information on all of the material discussed here (in the Proposed Plan) may be found in the November 1991 Remedial Investigation Report, the March 1992 Feasibility Study Report... " etc. In these documents, detailed discussions and comparisons of background soil concentrations of chemical parameters can be compared to areas impacted by activities at the facility. Or, for example, upgradient concentrations of volatile organic contaminants (0 ppb) when compared to downgradient concentrations of volatile organics (>200 ppb) reveal elevated or above background concentrations of organics in ground water as a consequence of waste disposal activities at the Site. For ease of discussion in the Proposed Plan, the maximum detected concentration was placed in parenthesis.

COMMENT:

11. "Page 4, paragraph 9 - PCB concentrations for the three samples from Area 7 are as follows: 3.7 ppm, 5.3 ppm and 0.32 ppm; therefore, EPA's statement is incorrect. Also, the SVOC statement is misleading because the maximum concentration for one SVOC was 19 ppm while the total of all detected SVOC did not exceed 22 ppm."

FAC

003

1467

EPA RESPONSE:

The errors are acknowledged. This error was due to the fact that Table 9-26 in the 1990 RI is unlear as to the exact sample collection location. The Record of Decision Decision will reflect these corrections.

COMMENT:

12. "Page 4, paragraph 10 - The 1990 RI states that eighteen SVOCs were detected in Area 8. Also, PCBs were detected in only one sediment sample at a concentration of 11 ppm."

EPA

RESPONSE:

The errors are acknowledged. This error was due to the the fact that Table 9-26 in the 1990 RI is unlear as to the exact sample collection location. The Record of Decision Decision will reflect these corrections.

COMMENT:

13. "Page 4, paragraph 12 - Sediment samples, not surface soil samples, were collected in Area 10."

EPA

RESPONSE:

The typographic errors are acknowledged. The Record of Decision will reflect these corrections.

COMMENT:

14. "Page 4, paragraph 14 - A total of 22 TCL SVOCs were in soil near the oil/water separator, 8 of which exceeded 100,000 ppb (not ppm). Soil samples, not sediment samples, contained the metal at concentrations listed."

EPA

RESPONSE:

The typographic errors are acknowledged. The Record of Decision will reflect these corrections.

COMMENT:

15. "Page 5, paragraph 3 - As stated earlier, the 1980 data is suspect and the recent data from Alliance sampling is not referenced."

EPA RESPONSE:

> The 1980 data is not referenced above, however, EPA believes that this data is valid. The data packages are contained in the site file. The recent data collected by Alliance is available in the Risk Assessment

COMMENT:

16. "Page 5, paragraph 4 & 10 - The drum excavation final count was 469 drums."

EPA

RESPONSE:

This agrees with the EPA oversight contractor accounting. At the time that the Proposed Plan was prepared, only 461 drums had been identified and removed. Since that time, as Purolator points out, 469 drums have been removed.

COMMENT:

17. "Page 6, paragraph 1 - The soil removed during the drum excavation will be disposed of in a secured RCRA hazardous waste landfill with the exception of a small volume of PCB containing soil that will be disposed of in a TSCA landfill."

EPA

RESPONSE:

The Proposed Plan does not contradict this comment. It states, rather, that the material will be sent to a permitted industrial waste landfill. However, materials removed from the subsurface may require treatment to meet all Land Disposal Regulations.

COMMENT:

18. "Page 6, paragraph 1 - What is the source of the Summer 1992 data?"

EPA

RESPONSE:

The source of the data will be those final data provided by Purolator Products Company and data collected for EPA by Alliance Technologies, Inc. (EPA's oversight contractor) once those data are validated.

COMMENT:

19. "Page 8, paragraph 2 - Purolator is not aware of an on-site "reservoir" of contaminants that exists at the site. EPA needs to clarify what is meant by this statement."

EPA

RESPONSE:

Accumulations of contaminated sediments and soils in the unnamed drainageway south of the Facet facility and Mays Creek have been determined to be a result of releases of contaminants from the Facet Site. Historical releases include point source discharges from the oil/water separator. The 1990 Remedial Investigation Plate 2 (attached) illustrates that the piping systems from the disposal areas lead to the Oil/Water separator and then to either the Unnamed drainage way south of the facility or to the North Drainageway.

The drum disposal areas at the facility are considered to have been on-site reservoirs or sources of contamination. Until all the contaminated soils which present a risk to ground water are removed they will continue to be considered an on site reservoir.

In addition, contaminated soils and sediments in dry wells are deemed on-site reservoirs, or sources of ground water contamination.

COMMENT:

20. "Page 8, paragraph 3 - EPA needs to be more specific with respect to what areas and volumes of material must be remediated despite being within acceptable risk guidelines. Purolator is concerned that this may be an open-ended loophole that could require potentially unlimited remediation based on undefined "uncertainties"."

EPA

RESPONSE:

The paragraph that is being referenced here does not define the areas for remediation but simply states some of the uncertainties associated with generating risk numbers with a limited data base. The areas to be remediated are defined in the section entitled "Cleanup Levels for the Site."

COMMENT:

21. "Page 9, paragraph 2 -soil from Area 5 was tested by the TCLP method and "passed"; however, Purolator has agreed to resample Area 5. Area 10 sediment was similarly sampled and passed the

AC 003 1470

TCLP method; therefore, Area 10 should not be referenced here."

EPA

RESPONSE:

See EPA response to comment #5 in i) Comments from the Purolator Products Company - June 26, 1992 located on page 10.

Area 10 sediments contained 10,000 ppm chromium. This concentration of chromium indicates that this area presents a potentially unacceptable risk to ground water quality, and therefore additional testing is required in this area.

Superfund Publication 9347.3 -11FS, CERCLA Compliance with RCRA Toxicity Characteristics (TC) Rule: Part II indicates that for Record of Decisions signed after September 25, 1990, wastes shipped off-site must be evaluated for the toxicity characteristic to ensure that applicable RCRA Subtitle C requirements are met the time of disposal.

COMMENT:

22. "Page 10, paragraph 8 - Product recovery may not be possible, since less than one inch of oil has been detected at monitoring well D-5. Therefore, product recovery should only be mentioned as a possibility."

EPA

RESPONSE:

EPA personnel from the Monitoring and Management Branch of the Environmental Services Division re-sampled selected monitoring wells at the Site during June of 1991 that had been sampled by Purolator during the 1990 field season. This resampling was required because, after an EPA review of field notes, it was determined that Purolator conducted some of the field work in 1990 with methods that were not approved by EPA.

As a result of this re-sampling effort, EPA personnel detected previously unreported product floating on the water table at the Site (at well D-5). At that time, the EPA personnel estimated that the layer of floating product was 1-foot thick. This thickness of oil will require recovery. Further determination during the remedial design will confirm the need to recover the floating product. FAC 003 1471

23. "Page 10, paragraph 10 - EPA should state specifically how many TCLP samples need to be taken in Area 5 and the exact conditions under which the results of the TCLP analyses would lead to remediation."

EPA

RESPONSE:

The number will be determined during the remedial design phase of the project. Those samples that fail characterization as a hazardous waste, or based on TCLP indicate the ability to leach into groundwater will require remediation.

COMMENT

24. "Page 12, paragraph 1- This section contains an incorrect definition of a RCRA waste. A material is defined as a RCRA waste if it is either listed or is a characteristic RCRA waste; i.e., due to ignitability, reactivity, pH, or toxicity (failure of TCLP tests). Total Arsenic and chromium values are not related to RCRA characterization. As such, the site waste is generally not RCRA waste."

EPA

RESPONSE:

See EPA responses to comment # 5 in i. Comments from the Purolator Products Company - June 26, 1992 located on page 10, and EPA response to comment # 3 in iv. EPA Comments on Attachment II - Purolator's Review and Critique of the Supplement to the Feasibility Study, Facet Enterprises Site, Elmira, New York located on Page 26.

COMMENT:

25. "Page 13, paragraph 13 - The RI identified RCRA waste in Area 6 sediment only. All other waste is considered characteristically non-hazardous."

EPA

RESPONSE:

See EPA responses to comment # 5 in i. Comments from the Purolator Products Company - June 26, 1992 located on page 10, and EPA response to comment # 3 in iv. EPA Comments on Attachment II - Purolator's Review and Critique of the Supplement to the Feasibility Study, Facet Enterprises Site, Elmira, New York located on Page 26. FAC

COMMENT:

26. "Page 15, paragraph 1 - Land disposal restrictions do not prevent the off-site disposal of listed hazardous waste."

EPA

RESPONSE:

Land Disposal Restrictions do not permit off-site disposal of <u>untreated</u> RCRA listed hazardous waste.

COMMENT:

27. "Page 15, paragraph 3 - Monitoring wells in the area of the proposed RCRA-type cell indicate a depth to ground water capable of significant water yield at approximately 30 feet."

EPA

RESPONSE:

The monitoring well closest to the proposed RCRA landfill does have ground water at a depth of approximately 30 feet. However, during the drum excavation activities at the Site perched ground water capable of yielding significant quantities of water was observed.

COMMENT

28. "Page 15, paragraph 5 - EPA has never produced or been able to reference a document which classified ground water as class 2A aquifer."

EPA RESPONSE:

Information and publications regarding classification of aquifers by EPA can be obtained from EPA Guidance for Ground Water Classification (Final Draft, December 1986). This document forms the basis for classification of the Newtown Creek Aquifer as a Class IIa aquifer. The State of New York Classifies this aquifer as "GA" indicating that it is a potential drinking water supply.

COMMENT:

29. "Page 16, paragraph 9 - See adjusted volume and cost calculations."

П

EPA RESPONSE:

See EPA response to comment number # 2 in ii) Attachment I - General Comments from Purolator Products Company located on page 13.

COMMENT:

30. "Page 17, paragraph 3 - As stated earlier in the PRAP, the summary should state metals precipitation if necessary."

EPA

RESPONSE:

Acknowledged. The Record of Decision will reflect this correction.

COMMENT:

31. "Page 17, paragraph 6 - RCRA waste exist only in Area 6 due to the leachable cadmium. In addition, based on the 1991 RI there does not appear to be 2,124 c.y. of RCRA waste at the site. Rather, most of the material appears to be nonhazardous."

EPA

RESPONSE:

See EPA Response to comment # 5 in i) Comments from the Purolator Products Company - June 26, 1992 located on page 10.

COMMENT:

32. "Page 17, paragraph 7 - It will be difficult to find an industrial waste landfill to accept site soil; furthermore, Purolator may choose to send waste to a secured "RCRA" landfill for security and should be able to retain that option."

EPA RESPONSE:

The option of disposing of non-hazardous waste in a hazardous waste landfill would not be excluded by the selected remedial alternative.

FAC

003

COMMENT:

33. "Page 17, paragraph 9 - Storage of pumped ground water specified."

EPA

RESPONSE:

This will remain specified. Tank storage of pumped water is often required, as it often is, prior to treatment and/or discharge. The need for storage at this site will be determined by the final pumping rate required to remediate ground water, and whether the water is discharged after treatment directly to surface water or to the facility non-contact cooling system prior to surface water discharge.

COMMENT:

34. "Page 17, paragraph 11 - "Long term monitoring" should be described more specifically. Does this mean ground water monitoring, effluent monitoring or other ?"

EPA RESPONSE:

> Ground water sampling, and effluent monitoring will be required. If site conditions indicate that releases from the site by surface water run-off or point source discharges are resulting in accumulation of contaminants in sediments in streams or drainage ways these too may be periodically monitored.

iv. EPA Comments on Attachment II - Purolator's Review and Critique of the Supplement to the Feasibility Study, Facet Enterprises Site, Elmira, New York

<u>Attachment II - Major Technical Issues</u>

TSCA "Anti-Dilution" Rule

COMMENT:

1. Purolator indicates that they believe that Assumption 6 in the Supplement to the Feasibility Study indicates that the TSCA anti-dilution policy applies to all PCB waste at the Facet Site.

EPA

RESPONSE:

The Supplement to the FS does not indicate that the TSCA antidilution policy applies to PCB contaminated waste at the Facet Site. Assumption 6 only indicates that the source of the PCBs was less than 50 ppm. Therefore no evaluation of the TSCA anti-dilution policy was required. For CERCLA sites the TSCA anti-dilution policy does not apply.

COMMENT:

2. Purolator has provided a re-calculation of costs in the Supplement to the FS based on assumptions used in their Feasibility Study. Purolator commented that some of the volume calculations were based on the draft FS not the final FS. Purolator indicated that Alliance Technologies should have used 1.5 tons per cubic yard instead of 1 ton per cubic yard in the calculations.

EPA

RESPONSE:

The cost for Alternative 8 in the Proposed Plan is different than the cost for Alternative 8 in the Supplement to the FS as described in a memo contained in the Administrative Record. Essentially, in estimating the cost for Alternative 8 in the Proposed Plan, EPA took into consideration some of the uncertainties associated with off-site shipment, treatment, and disposal of wastes including differing soil densities.

The volume calculations utilized in the Supplemental FS were based on the draft FS because Purolator did not meet the submission date for submitting the revised FS to EPA. Therefore the information contained in the revised FS was not available to EPA when we contracted with Alliance to complete the Supplement to the FS. However, the additional volume from Disposal Area 6 which was reflected in the revised FS adds a cost of approximately \$20,000 to the disposal option.

COMMENT:

3. Purolator comments that the Supplement to the FS does not provide an accurate definition of a RCRA Hazardous Waste. Purolator indicates that page 2-6 of "CERCLA Compliance With Other Laws Manual," OSWER Directive 9234.1-01 August 8, 1988 indicates that if a total metal concentration is less than 20 times the Toxicity Characteristic Rule regulatory level, no additional TCLP testing would be required.

EPA

RESPONSE:

The Supplement to the FS does not attempt to define RCRA waste. The Supplement merely provides the regulatory levels

Т

AC

003

above which a material is considered a hazardous waste if that material has been extracted according to the TCLP procedure. In order to comply with RCRA requirements that are applicable or relevant and appropriate it is necessary to determine if RCRA characteristic waste is present. In determining the presence of RCRA wastes that are hazardous because they exhibit the characteristic of toxicity, the Toxicity Characteristic Rule promulgated by EPA on March 29, 1990 (and effective September 25, 1990) is utilized. Wastes which exhibit a characteristic must be disposed in a Subtitle C landfill or treated until they no longer exhibit the characteristic before disposal in a Subtitle D landfill.

Likewise, in the Proposed Plan, EPA listed for illustrative purposes only, the regulatory levels at which soils and sediments would be considered hazardous waste as determined by the Toxicity Characteristic Rule.

Page 2-6 of the "CERCLA Compliance With Other Laws Manual," OSWER Directive 9234.1-01 August 8, 1988 referenced above is a guidance for determining when sampling for hazardous waste should be conducted. The Manual provides examples, for illustrative purposes, for when testing for hazardous waste would likely be required. The text indicates that a decision about whether or not testing for hazardous waste should be conducted is dependent on site-specific factors related to the waste disposal history, sampling data, available manifests etc. Page 2-5 of the "CERCLA Compliance With Other Laws Manual," OSWER Directive 9234.1-01 August 8,1988 states that "The lead agency (EPA in this case) must use best professional judgement to determine, on a site-specific basis, if testing for hazardous characteristics is necessary." For this Site, the following factors have led to the determination that TCLP testing is required.

a) Sampling for TCLP extraction and Toxicity Characteristic analysis which was conducted by Purolator during the FS to determine the presence or absence of hazardous waste was not conducted pursuant to an EPA approved sampling plan, nor were EPA oversight contractors present during the sampling. In addition, much of the sampling was conducted by compositing samples, therefore the results are not conclusive regarding the concentration of constituents that might be present. Furthermore, in Disposal Area 6 one sample (which was not a composite sample) revealed the presence of characteristic hazardous waste.

b) Listed wastes are present at the Site. In EPA's comments on the draft Feasibility Study dated 12/23/91, EPA provided Purolator with NYSDEC Community Right to Know forms completed by Facet Enterprises, Inc. and submitted to the NYSDEC which indicate that F006 waste (a RCRA listed waste) is disposed at the facility.

c) Preliminary data collected during the 1992 drum removal provided as an attachment to the Responsiveness Summary demonstrates that soils at the site are 1) characteristic wastes, and/or have soils which have PCBs which exceed 50 ppm.

e) On August 13, 1992, Purolator submitted the manifests from the 1992 drum and soil removal activities to EPA. The submittal indicates that the soils that Purolator shipped were RCRA Hazardous wastes and included the following:

<u>Solid</u>

		Volume	Total Weight
a)	F008 (Cadmium and Chromium)	2685 yds.	> 6,000,000 lbs.
b)	F001 (TCE, Cadmium	195 yds.	300,140 lbs.
	and Chromium)		
C)	F001 and F008 (Cadmium,	-	760,650 lbs.
	Chromium, TCE, PCBs > 60 ppm	n	
d)	F011 and F012 Waste Poison	96 yds.	-
•	(sodium cyanide)	-	

<u>Liquid</u>

Volume a) F001 and F008 Cadmium, 29,715 gallons TCE, 111 -Trichloroethane, PCBs

b) D002, D004, D005, and D007 Chromic Acid waste 990 gallons

Ř

003 1478

COMMENT:

4. RCRA Waste - a) Purolator comments that RCRA wastes are incorrectly defined in the Proposed Plan and the Supplement;
b) Purolator comments that there are no RCRA wastes at the site; and c) Furthermore, Purolator comments that no additional testing for RCRA waste is required.

EPA RESPONSE:

a) The purpose of the Proposed Plan is to summarize in a concise manner the results of the Remedial Investigation, Feasibility Study, and the Risk Assessment which can be understood by the general public, and to present EPA's

indicate "Detailed information on all of the material discussed here (in the Proposed Plan) may be found in the November 1991 Remedial Investigation Report, the March 1992 Feasibility Study Report..." etc.

b) Listed wastes are present at the Site. In EPA's comments on the draft Feasibility Study dated 12/23/91, EPA provided Purolator with NYSDEC Community Right to Know forms completed by Facet Enterprises, Inc. and submitted to the NYSDEC which indicate that F006 waste (a RCRA listed waste) is disposed at the facility.

Also, characteristic hazardous wastes have been identified in Disposal Area 6 during sampling conducted for the FS.

Preliminary data collected during the 1992 drum removal provided as an attachment to the Responsiveness Summary demonstrates that soils at the site are 1) characteristic wastes, and/or have soils which have PCBs which exceed 50 ppm.

c) EPA believes that additional testing for RCRA waste is required for the following reasons. Sampling for TCLP extraction and TC analysis which was conducted by Purolator during the FS to determine the presence or absence of hazardous waste was not conducted pursuant to an EPA approved sampling plan, nor were EPA oversight contractors present during the sampling. In addition, much of the sampling was conducted by compositing samples, therefore the results are not conclusive regarding the concentration of constituents that might be present. Furthermore, in Disposal Area 6 one sample (which was not a composite sample) revealed the presence of characteristic hazardous waste.

See also the response to Comment 3 on page 26.

COMMENT:

5. Purolator comments that the FS Supplement states that all waste in the Treatment 2 category requires stabilization.

EPA

RESPONSE:

For off-site disposal, wastes that fail Land Ban Disposal Restrictions would require treatment or stabilization prior to disposal. The FS Supplement uses the volumes presented for cost estimating purposes only. FAC

003 1479

COMMENT:

6. Purolator comments that relying on vendors to develop remedial

alternatives is unreliable. Purolator indicates that a consultant select a remedial approach. Furthermore, Purolator comments that all waste at the Site, except from Disposal Area 6, can go to a hazardous waste landfill without treatment.

EPA RESPONSE:

EPA did not rely on vendors to evaluate Alternative 8 -Offsite Treatment and Disposal of Contaminated Soils and Sediments. The alternative is evaluated in the Supplement to the Feasibility Study which was conducted by Alliance Technologies Inc., a consultant to EPA. Furthermore, EPA does not use consultants to select a remedial approach. After consideration of the Remedial Investigation, Feasibility Study, and Risk Assessment, EPA releases a Proposed Plan which summarizes the evaluation of alternatives and indicates EPA preferred alternative. After a public comment period ends, EPA considers all comments a remedy.

EPA disagrees with Purolator that all wastes at the Site except from Disposal Area 6, can go to a hazardous waste landfill without treatment. See response to comment #5 page 10 above.

Attachment II - Minor Technical Issues

Table 1 Comments

COMMENT:

 "The table is missing the 3,920 ppm result for chromium in the Unnamed Drainage Way."

EPA

RESPONSE

EPA agrees with this comment.

COMMENT:

2. "The term "chromium hexavalent" used in Table 1 is not correct. The analytical results listed are total chromium (i.e. the sum of hexavalent and trivalent chromium)." FAC

003

1480

EPA

RESPONSE

EPA agrees with this comment.

COMMENT:

3. "The quantity of soil and analytical results for Area 6 are not listed. The USEPA requested that Area 6 soil be evaluated for remediation."

EPA

RESPONSE:

At the time that EPA directed Alliance Technologies Inc. to complete the Supplement to the Feasibility Study, the information in the revised Feasibility Study was not available.

COMMENT:

4. The volume of Area 4 soil is not correct.

EPA

RESPONSE:

See EPA Response to comment # 2 in ii) Attachment I - General Comments from Purolator Products Company located on page 13.

COMMENT:

5. Purolator commented that the "2" notation used in the Supplement to the FS was not required because the FS indicated that analysis for a full list of analytes had been conducted and only detects are reported in the FS.

EPA

RESPONSE:

EPA agrees with this comment.

COMMENT:

6. Purolator comments that using 13 ppm as the PCB concentration in the Mays Creek is incorrect. The data only supports the conclusion that PCBs are present in the Mays Creek.

EPA

RESPONSE:

The Supplement to the FS used this value because Mays Creek may have been used in the past for disposal of PCB contaminated wastes from Disposal Area 4. Also, sediments collected from the North Drainageway which empties into Mays Creek contain PCBs.

During the RI sampling, only a limited number of samples were collected by Alliance Technologies from Mays Creek. The quantitation limit for PCBs during this sampling was 6.5 ppm and 13 ppm. In the FS report on page 2-74 the text states "The comparison shows that sample MC-4 exceeds the remediation goals for PAHs, arsenic and possibly PCBs (the quantitation limits of 6.5 ppm and 13 ppm for PCB arochlors in the sample are above the 1 ppm PCB remediation goal for sediment in this area)." Due to the identification of this potential problem Alliance Technologies used a conservative estimate of PCB concentrations present.

COMMENT:

7. Purolator comments that contaminated soils do not need to be segregated. Soil should only be kept separated depending on treatment and or disposal requirements.

EPA

RESPONSE:

EPA agrees that if treatment or disposal alternatives do not require segregated wastes, then the waste can be mixed.

COMMENT:

8. Purolator commented that the Supplement to the Feasibility Study incorrectly states that future PCB landfill requirements are likely to become more stringent.

EPA

RESPONSE:

Future regulations are not considered in the selection of a remedy since the ARARs are "frozen" at the time of the remedy selection.

Artificial fill

Open-water i

.

af

pœ

alg

als

185

osg

ksg

mt

t/r

QUATERNARY

EXPLANATION

Peat, marl, muck, and clay; bog deposits of postglacial to recent age; low permeability

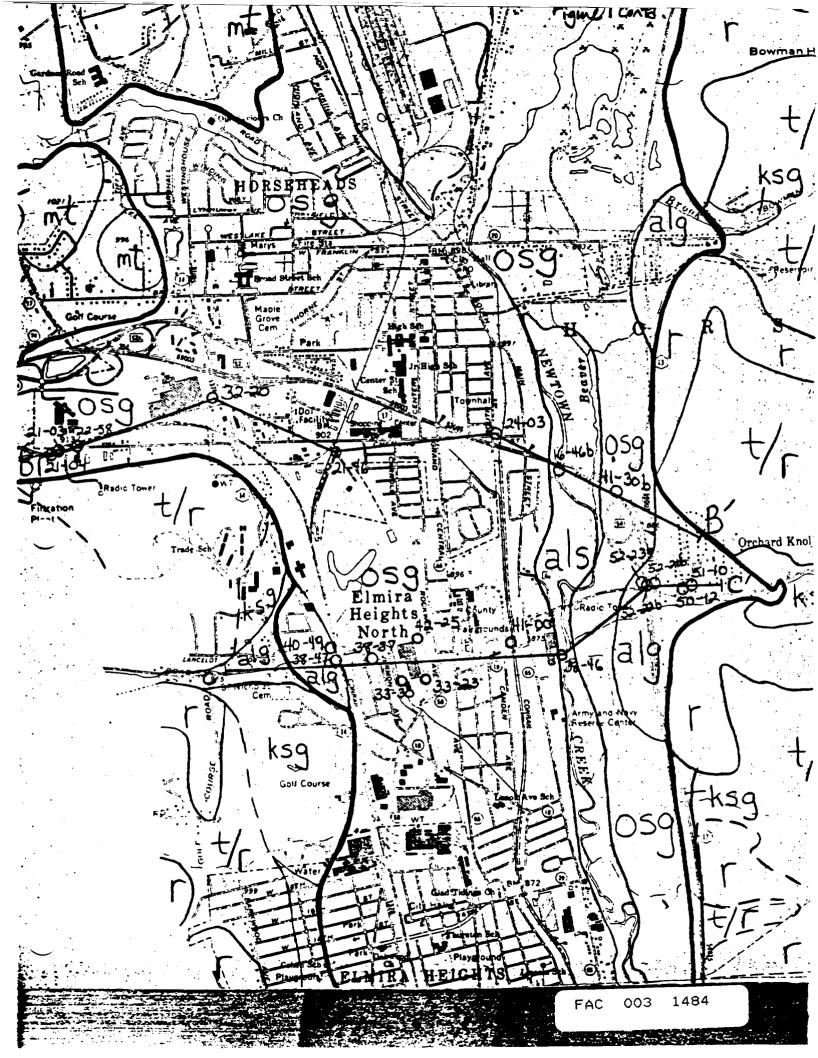
Alluvial sand and gravel; stream, fan, channel, and terrace deposits of postglacial to recent age; high permeability

Alluvial silt and (or) very fine sand; floodplain deposits of postglacial to recent age; low permembility

Lake silt and fine sand; offshore deposits in proglacial or postglacial lakes; thin bedded to massive; low to moderate permeability

Dutwith sand and gravel; meltwater deposits; stratified and well sorted; high permeability

Kame and kame terrace and and gravel; ice-costact deposits; some sorting and secondary calcite cementation; high permeability


Morainal till; generally stony with limited edmixture of poorly sorted gravel deposited at edge of ice sheet; low permeability

Till over bedrock (undifferentiated); glacial-deposits of unstratified silt and sand, with occasional pebbles, cobbles, and boulders, generally less than 30 feet thick; low permeability

Bedrock (undifferentiated); shale and siltstone; low to moderate permeability in fractures and joints

GEOLOGIC CONTACT--dashed where approximately located LINE OF SECTION--see sheet 2, "Geologic Sections" AQUIFER BOUNDARY--dashed where full extent of squifer 1483

AC

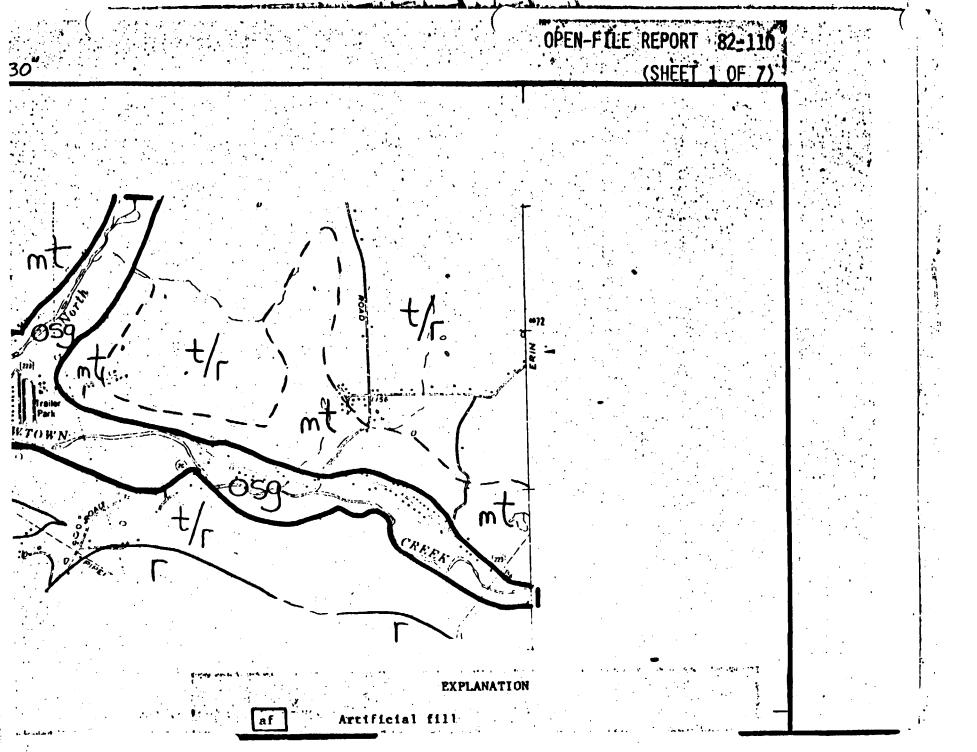
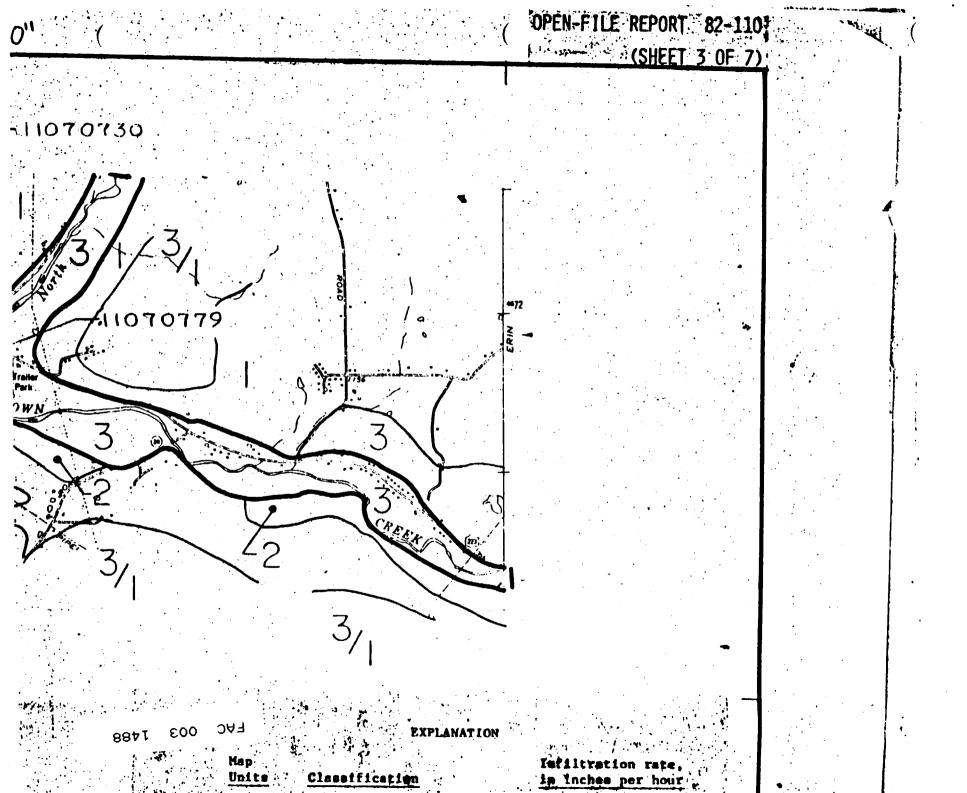



Figure 2


ł

! . • •

Map Units	<u>Classification</u>	Infiltration rate, in Inches per hour	
	Very low	less than 0.20	
2	Lou	. 0.20 to 0.63	
3	Moderate	0.61 to 2.0	
3/1		lerately permeable, irregular	
	thin till, but very	ved from weathered bedrock or	
	depth of about 20-4	at surface of is usually at a	
•	Noderate to high	, * 2.0 to 6.3	
5	Too variable to est	inat	
	NOTE		
2 			
Chemung Count	y (1973) and are estimate	e derived from a soil survey of mates of the rate that water	
surface). Th	e estimates are based	on infiltration and per-	
drainage obse		structure, porosity, and	
		soil permeability may not	
mation of soi	1 in till, the B horiz	mits. For example, in the for-	
		due to disturbances such as burrowing by animals and	
		d gravel unit will usually a state of the accumulation of the second state of the seco	
clay, iron, a zon.	luminum, and other com	spounds leached from the A hori-	
	• • • • • • • • • • • • • • • • • • •		
· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	ER-INFILTRATION POTENTIAL	
	proximately located		A C
			\bullet \bullet
		39999 99 99999999 333999 8 899999993	
	بر پر این میں اور کی تعدید پر ایک اور ایک اور کر میں م یں ہے۔ ا		1486
			36

**

.....

the const

TABLE 5-1

FRELMINARY ANALYTICAL RESULTS STOCKPILE SOLS CHARACTERIZATION - AREAS 1, 3 AND 4 1002 TEST TRENCH EXCAVATIONS PUROLATOR PRODUCTS COMPANY

.

	TCLP		· .					:	SAMPLE N	JMBER	the state			$D_{\rm eff} = 100$	<u> </u>	ing the second		
ANALYTE	LIMIT	1-3-7	1-3-8	1-3-9 1	1-3-10	1-3-11	1-3-12	1-3-16	13-17	1-3-18	3-1-8	3-2-1	3-5-1	42-3	44-138	4-5-1)/2		
TICa																		
Unknown Hydrocarbons			_		NA	NA	NA				NA	NA	NA	NA	12216J	NA		
Unknown Substituted Cyclohexene			·		NA	NA	NA	<u> </u>			NA	NA_	NA	NA	2300J	NA		
Unknown		_	-		<u>NA</u>	NA	NA				NA_	NA	NA	NA	17800	NA		
TOTAL PCB's (ug/kg)																		
PCB-1248		21000	45000	36000	NA	NA	2400	3800	00000	18000	1600	2300		5400	95000	43000		
PCB-1254					NA	NA					950		740	1700		-		
PCB-1260				<u> </u>	<u>NA</u>	NA	<u> </u>	<u> </u>	<u> </u>	<u> </u>		180			L			
TPH (mg/kg)		NA	NA	NA	NA	NA	NA	NA	NA	NA	17800	5130	38400	NA	ND	NA		
Cyanide (mg/kg)		361	144	151	NA	NA	NA	222	14.7	33.5	NA	NA	NA	ND	ND	NA		
pH		ND	ND	ND	ND	ND	NA	NO	ND	ND	NA	NA	NA	ND	ND	NA		
Reactivity (mg/kg)						•												
Cyanida		533	130	121	41.5	ND	NA	ND	ND	ND	6.06	11.1	350	ND	ND	NA		
Sulide		•	•	•	•	ND	NA	ND	ND	ND	•	•	•	NO	ND	NA		

NOTES:

ND No date as of April 30, 1982. 1 1-3-8 is duplicate of 1-3-8. --- Not detected in this sample but detected in other eamples.
* Not found in any sample to dete; however, some data is still outstanding.

NA Not analyzed. Shaded values encood TCLP limit. Page 2 of 2

.

TABLE 5-1 PRELIMINARY ANALYTICAL RESULTS

*** --

STOCKPILE SOILS CHARACTERIZATION - AREAS 1, 3 AND 4 1982 TEST TRENCH EXCAVATIONS PUROLATOR PRODUCTS COMPANY

.

	TCLP	$\frac{1}{2}$			SAMPLE NUMBER											
ANALYTE	LIMIT	1.3.7	1-3-8	1-3-0 1	1-3-10	13-11	1-3-12	1-3-18	1-3-17	1-3-18	3-1-8	3-2-1	58-1	423	4-4-1308	4-5-1)(2
TOLP SNOA (mg/ d)		•	·	•	NA	NA	•		•	•	•	•	•	ND	•	NA
TCLP PEST (mg/ 0		•	•	· · ·	NA	NA	NA	<u> </u>	•	•	NA	NA	NA	•	NA	NA
TCLP METALS (mg/ 0							_	· · · · · · · · · · · · · · · · · · ·					·			
Cedmlum	1.0	1.40	2.51	3.83	NA	NA	NA	2.32	5.68	4.84	1.32	2.30		ND	NO	NA
Chromium	5.0	4.07	3.96	3.79	NA	NA	NA	2.85	<u> </u>	27.58	<u> </u>			ND	ND	NA
TCLP Volatiles (mg/kg)		· · · · · · · · · · · · · · · · · · ·						·								
Trichloroethene	0.5	4.598	_5.109	1.554	NA	NA	NA	<u> </u>	<u> </u>	<u> </u>	NA_	NA	NA	NA		ND
TCL Volatiles (sg/kg)			r		·			· · · · · · · · · · · · · · · · · · ·			.	<u> </u>	r		<u></u>	
Acetone			1200J		NA	NA	NA		1308	28000	NA	NA	NA	NA	60BJ	NA
Methylene Chloride	<u> </u>	3300B	28008	18008	<u>NA</u>	NA	NA	658	338	430BJ	<u>NA</u>	NA	NA	NA	98	NA
1,2 Dichloroethene		210J	_190J	180J	NA	NA	NA	<u> </u>	<u> </u>		NA	NA	NA	NA	4.	NA
Trichloroethene	- <u>-</u>	1700	4100	6100	NA	NA	NA_	. 44	<u> </u>	3900	NA	NA	NA	NA	<u> </u>	NA
Taluene	·	190J		_200J	NA	NA	NA	ļ	4.1		NA	NA	NA	NA	20	NA
1,1,1-Trichloroethene			_240J	360J	NA	NA_	NA	<u> </u>	400	<u> - </u>	NA	NA	NA	NA		NA
2-Butanone					NA	NA	NA	<u> </u>		ļ. <u> </u>	NA_	NA	NA	NA .	<u> </u>	NA
1,1 Dichloroethene				<u> - </u>	NA	NA	NA_	<u> </u>	<u>↓</u>	<u> </u>	NA_	NA	NA	NA		NA
Benzene	L	├	<u> </u>	╞───	NA	NA_		╂	<u> </u>	<u> </u>	<u>NA</u>	<u>NA</u>	NA	NA	<u>5</u>	NA
Tetrachloroethene		 	<u>↓</u>		NA	NA_	NA		<u> </u>		<u>NA</u>	NA	NA	NA	<u>8</u>]	<u>NA</u>
Chlorobenzene		<u> </u>	↓	<u> </u>	NA	NA	NA NA	┠╼		<u>↓ −</u>	NA	NA	NA	NA	30	NA
Ethylbenzene		<u> </u>			<u>NA</u>	NA	NA_			<u> </u>	NA	NA	NA	NA.	34	NA
Xylene		<u> </u>	<u> </u>	<u> </u>	NA	NA_	<u>NA</u>		<u> </u>	<u> </u>	NA	NA	NA	NA	190	NA

41

Page 1 of 2 1

.

• • • •
