APPENDICES

FOR

REMEDIAL INVESTIGATION

AND FEASIBILITY STUDY

AT THE

RAMAPO LANDFILL

ROCKLAND COUNTY

NYSDEC SITE NO. 3-44-004

TOWN OF RAMAPO, NEW YORK

SEPTEMBER 1991

PREPARED BY

URS Consultants, Inc. 282 Delaware Avenue Buffalo, New York 14202

VOLUME 4 OF 4

411015

RAM

100

1518

SUMMARY TABLE OF CONTENTS RAMAPO LANDFILL REMEDIAL INVESTIGATION/FEASIBILITY STUDY

VOLUME I: REMEDIAL INVESTIGATION

EXECUTIVE SUMMARY

1 INTRODUCTION

- 2 SUMMARY OF REMEDIAL INVESTIGATION FIELD ACTIVITIES
- 3 PHYSICAL CHARACTERISTICS OF THE STUDY AREA
- 4 ENVIRONMENTAL QUALITY
- 5 GROUNDWATER FLOW AND CONTAMINANT MIGRATION
- 6 BASELINE RISK ASSESSMENT

REFERENCES

VOLUME II: FEASIBILITY STUDY

7 INTRODUCTION
8 IDENTIFICATION AND SCREENING OF TECHNOLOGIES
9 POST-SCREENING TECHNOLOGY EVALUATIONS
10 DEVELOPMENT OF ALTERNATIVES
11 DETAILED EVALUATION OF ALTERNATIVES

REFERENCES

VOLUMES III AND IV: APPENDICES

APPENDIX A - AIR MONITORING RESULTS APPENDIX B - GEOPHYSICAL SURVEY RESULTS APPENDIX C - SOIL BORING LOGS AND PIEZOMETER DETAILS APPENDIX D - MONITORING WELL AND PIEZOMETER INSTALLATION REPORTS APPENDIX E - WELL DEVELOPMENT REPORTS APPENDIX F - WELL PURGING LOGS APPENDIX G - WELL LOCATIONS, ELEVATIONS AND WATER LEVELS APPENDIX H - HYDRAULIC CONDUCTIVITY TESTING RESULTS APPENDIX I - PHYSICAL TESTING REPORTS APPENDIX J - ANALYTICAL DATA USEABILITY REPORTS APPENDIX K - ENVIRONMENTAL SAMPLE DESCRIPTIONS APPENDIX L - BORING LOGS FROM PREVIOUS INVESTIGATIONS APPENDIX M - ANALYTICAL RESULTS FROM PREVIOUS INVESTIGATIONS APPENDIX N - WETLAND IDENTIFICATION AND SPECIES IDENTIFIED FOR ECOLOGICAL STUDY DURING URS FIELD CHECK APPENDIX P - CALCULATIONS APPENDIX Q - HEALTH RISK ASSESSMENT DATA

TOCRIFS

001 15

RAM

TABLE OF CONTENTS (VOLUMES 3 AND 4) LIST OF APPENDICES

· .	
Appendix A	- Air Monitoring Results
	A.1 - Pre- RI Soil Gas Survey
	A.2 - Phase II Air Monitoring Results
Appendix B	- Geophysical Survey Results
••	B.1 - Phase I Seismic Refraction and Reflection
	Surveys
	B.2 - Phase II EM-31 Terrain Conductivity Survey
Appendix C	- Soil Boring Logs and Piezometer Details
	C.1 - Phase I Boring Logs and Piezometer Details
	C.2 - Phase II Boring Logs and Piezometer Details
Appendix D	· 0 -· 0··· · · · · · · · · · · · · ·
Appendix D	 Monitoring Well and Piezometer Installation Reports D.1 - Phase I Monitoring Well and Piezometer
	Installation Reports
	D.2 - Phase II Monitoring Well and Piezometer
· · · ·	Installation Reports
Appendix E	- Well Development Reports
	E.1 - Phase I Well Development Reports
· · ·	E.2 - Phase II Well Development Reports
Appendix F	- Well Purging Logs
	F.1 - Phase I Purging Logs
	F.2 - Phase II Purging Logs
Appendix G	- Well Locations, Elevations and Water Levels
	G.1 - Well Locations and Elevations
	G.2 - Water Levels
Appendix H	- Hydraulic Conductivity Testing Results
••	H.1 - Slug Test Results
	H.1.1 - Phase I Slug Test Results
	H.1.2 - Phase II Slug Test Results
	H.2 - Packer Test Results
	H.2.1 - Phase I Packer Test Results
	H.2.2 - Phase II Packer Test Results
Appendix I	- Physical Testing Reports
inppendix 1	I.1 - Phase I Geotechnical Testing Report
	I.2 - Phase II Geotechnical Testing Report
Appendix J	Analytical Data Useability Reports
Appendix S	- Environmental Sample Descriptions
Appendix K	K.1 - Phase I
Appendix I	K.2 - Phase II and Re-sampling for Phase I
Appendix L	- Selected Boring Logs From Previous Investigations
Appendix M	- Analytical Results From Previous Investigations
Appendix N	- Wetland Identification and Species Identified for
	Ecological Study During URS Field Check
Appendix P	- Calculations
	P.1 - Stream Discharge
	P.2 - Sediment Cleanup Criteria
	P.3 - Groundwater Flow Modeling and Solute Transport
	Analysis
	P.4 - Gas Emissions
Appendix Q	- Health Risk Assessment Data

л,

APPENDIX K

ENVIRONMENTAL SAMPLE DESCRIPTIONS

RAM 001

1521

Γ

APPENDIX K.1

ENVIRONMENTAL SAMPLE DESCRIPTIONS

PHASE I

RAM

100

1522

· · · ·

· |.

4.4.1.1

RAMAPO LANDFILL RI/FS - SAMPLE DATA

Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason for Location
SPS-1	Waste	Moist clay, with sand, silt, and gravel, slight organic odor (0-3")	10/16/89	N-5496 E-5134	Location of high HNu readings during soil gas survey. Composite
SPS-2	Waste	Moist clay, with sand, silt, and gravel, slight sulfer odor (0-18")	10/16/89	N-4452 E-4850	Location of high HNu readings during soil gas survey. Composite
SPS-3	Waste	Wet silty clay with sand and gravel, gray (4-8")	10/15/89	N-3279 E-4261	Low area with surface flow to Torne Brook. Composite
SPS-4	Waste	Saturated silty soil, brown to black, some organics, oil sheen (0-4")	10/15/89	N-3898 E-4390	High HNu readings during soil gas survey. Oil odor noticed during survey. Compos
SPS-5	Waste	Hardened blue, rust, and brown paint sludge over soil (0-8") slight paint odor	10/16/89	N-5629 E-4851	Paint like waste exposed on surface.
SPS-6	Surface soil	Moist silt, sand, and gravel, brown (0-8")	10/27/89	N-4710 E-4530	Composite of several locations around weigh station to assess health risk to employees.
SPS-7	Surface soil	Moist silt, sand, and gravel, brown (0-8")	10/17/89	N-2810 E-4200	Composite of several locations around leachate treatment facility to assess health risk to employees/tresspassers.
SPS-8	Surface soil	Moist silty clay with sand and gravel, some organics (0-8")	10/17/89	N-4565 E-5940	Composite of several locations at pistol range to assess health risk to users.
SPS-9	Surface soil	Moist dark brown silty clay with sand and gravel (0-8")	10/17/89	N-4090 E-5325	Background soil sample. Composite

14 A

RAM 001 1523

and the second second

. •	• • • • •	•	
			•••

Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason for Location
SPS-10	Surface soil	Saturated silty clay with sand, brown (0-8")	10/17/89	N-4835 E-6065	Composite of several locations around bailer building to assess health risk to employees and visitors.
SW-LS-1	Leachate seep	Slightly turbid water, slight odor	10/23/89	N-4604 E-4559	Large volume leachate stream draining large area.
SW-LS-2	Leachate seep	Turbid to highly turbid water, moderate odor	10/23/89	N-5179 E-4816	Large volume leachate outbreak.
SW-1	Surface water	Slightly turbid water, slight odor	10/25/89	N-2915 E-3810	Ramapo River at location of treated leachate outfall.
SW-2	Surface water	Clear water	10/26/89	N-5925 E-5860	Background surface water sample (Torne Brook).
SW-3	Surface water	Clear water	10/26/89	N-3400 E-4150	Torne Brook at leachate system storm overflow
SW-4	Surface water	Slightly turbid water	10/26/89	N-2175 E-4065	Confluence of two small streams draining southern property line area.
SS-1	Stream sediment	Sandy stream sediments, tan	10/25/89	N-2915 E-3810	Taken in conjunction with SW-1. Composite
SS-2	Stream sediment	Lt. brown fine gravel, and fine sand	10/26/89	N-5925 E-5860	Taken in conjunction with SW-2. Composite
SS-3	Stream sediment	Brown, fine sand and gravel	10/26/89	N-3400 E-4150	Taken in conjunction with SW-3. Composite
SS-4	Stream sediment	Brown, fine sand and gravel	10/26/89	N-2175 E-4065	Taken in conjunction with SW-4. Composite
MW-1-SB (11-13')	Subsurface soil	Silty sand, some gravel and clay, dense, brown	11/15/89	N-5020 E-4530	Unsaturated soil above water table at well cluster 1. Composite
MSW-2-SB (7-9')	Subsurface soil	Silty sand, some gravel, trace clay, brown, very dense	12/17/89	N-5510 E-4975	Unsaturated soil above water table at well cluster 2. Composite

ASAL IOO MAA

		T	······································		· · · · · · · · · · · · · · · · · · ·
Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason for Location
MW-3-SB (6-10')	Subsurface soil	Sand, some silt; and gravel, trace clay, medium dense, grey to brown	11/16/89	N-4315 E-4177	Unsaturated soil above water table at well pair 3. Composite
MW-4-SB (1-4')	Subsurface soil	Silty sand, some gravel, trace clay, red brown, medium dense	11/30/89	N-5772 E-5570	Unsaturated soil above water table at well cluster 4. Composite
MW-5-SB (4-6')	Subsurface soil	Silty sand with some to trace gravel, trace clay, brown, medium dense	12/5/89	N-4118 E-5787	Unsaturated soil above water table at well cluster 5. Composite
MW-7-SB (4-8')	Subsurface soil	Sand and gravel, trace silt, brown, loose	10/16/89	N-2716 E-4195	Unsaturated soil above water table at well cluster 7. Composite
MW-8-SB (8-12')	Subsurface soil	Sandy gravel, some silt, trace clay, dense, grey	11/7/89	N-3522 E-4142	Unsaturated soil above water table at well cluster 8. Composite
GW-1-0S	Groundwater	Clear, turning turbid as volume drawn increases. No Odor.	1/25/90	N-5009 E-4523	Shallow GW monitoring/spacial distribution.
GW-1-I	Groundwater	Clear, turning light brown as volume drawn increases. No Odor	1/25/90	N-5020 E-4535	Intermediate groundwater monitoring/spacial distribution.
GW-1-R	Groundwater	Clear, turning light brown as volume drawn increases. No Odor	1/25/90	N-5016 E-4530	Bedrock groundwater monitoring/spacial distribution.
GW-2-05	Groundwater	Very slightly turbid. No Odor	1/24/90	N-5521 E-4980	Shallow groundwater monitoring/downgradient of high soil gas readings.
GW-2-I	Groundwater	Clear, No Odor	1/26/90- 1/27/90	N-5509 E-4978	Intermediate groundwater monitoring/downgradient of high soil gas readings.
GW-2-R	Groundwater	Clear, No Odor	1/24/90	N-5507 E-4969	Bedrock groundwater monitoring.

• - •

IOO MAA SZSI

••

** * ***

A

Sample ID	Sample Type	Description	Date Sampled	Grid Location	Beenen for to it
GW-3-I/OS	Groundwater	Clear, No Odor	1/26/90	N-4310 E-4176	Reason for Location Shallow groundwater monitoring/intersection of
<u> </u>					two major linear trends identified in fracture trace analysis.
GW-3-R	Groundwater	Clear, No Odor	1/26/90	N-4321 E-4177	Bedrock groundwater monitoring/intersection of two major linear trends identified in fracture tract analysis.
GW-4-OS	Groundwater	Clear to turbid, light brown sediment. No Odor	1/25/90	N-5785 E-5555	Shallow groundwater monitoring/high conc. of BTX and high specific conductivity from previous studies.
GW-4-I	Groundwater	Clear with increasing turbidity as volume drawn increased. No Odor	1/25/90	N-5772 E-5566	Intermediate groundwater monitoring/high conc. of BTX and high specific conductivity from previous studies.
GW-4-R	Groundwater	Clear turning slightly turbid with light brown sediment. No Odor	1/25/90	N-5766 E-5572	Bedrock groundwater monitoring/high conc. of BTX and high specific conductivity from previous studies.
GW-5-0S	Groundwater	Clear, No Odor	1/27/90	N-4124 E-5795	Shallow groundwater monitoring/background.
GW-5-1	Groundwater	Clear, No Odor	1/27/90	N-4109 E-5781	Intermediate groundwater monitoring/background.
GW-5-R	Groundwater	Clear, No Odor	1/27/90	N-4118 E-5787	Bedrock groundwater monitoring/background.
GW-7-0S	Groundwater	Clear (VOA & Metals) turbid for all other parameters. No Odor	1/25/90	N-2726 E-4195	Shallow groundwater monitoring near leachate treatment pond.

· · · ·

.

ARM 001 1526

· · · ·

.....

,

•

....

Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason for Location
GW-7-I	Groundwater	Clear, No Odor	1/25/90	N-2706 E-4194	Intermediate groundwater monitoring near leachate treatment pond.
GW-7-R	Groundwater	Clear, No Odor	1/25/90	N-2716 E-4197	Bedrock groundwater monitoring near leachate treatment pond.
GW-8-OS	Groundwater	Turbid with sediment and floaters. No Odor	1/26/90	N-3506 E-4150	Shallow groundwater monitoring/elevated mercury and BTX from previous studies.
GW-8-I	Groundwater	Clear turning slightly turbid as volume drawn increases. Slight odor.	1/26/90	N-3539 E-4135	Intermediate groundwater monitoring/elevated mercury and BTX from previous studies.
GW-8-R	Groundwater	Clear, No Odor	1/26/90	N-3526 E-4146	Bedrock groundwater monitoring/elevated mercury and BTX from previous studies.
RB-1	'QA/QC	Rinse Blank	10/15/89		Wash from mixing bowl after decon. (SPS-3)
RB-2 10/25/89	QA/QC	Rinse Blank	10/25/89		Wash from sampling equipment used for stream sediment sampling (SS-1).
RB-2 11/7/89	QA/QC	Rinse Blank	11/7/89		Wash after decon of sampling equipment used for MW-8-SB.
RL-RB-GW	QA/QC	Rinse Blank	1/26/90		Wash after decon of sampling equipment used for groundwater sampling.
SPS-3 MS/MSD	QA/QC	Matrix Spike Matrix Spike Duplicate	10/15/89	N-3279 E-4261	QA/QC
MW-4-SB MS/MSD	QA/QC	Matrix Spike Matrix Spike Duplicate	11/30/89	N-5772 E-5570	QA/QC

TSZI IOO MAA

.

••	•	Ψ	· .

Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason for Location
GW-8-OS MS/MSD	QA/QC	Matrix Spike Matrix Spike Duplicate	1/26/90 .	N-3506 E-4150	QA/QC
GW-7-R MS/MSD	QA/QC	Matrix Spike Matrix Spike Duplicate	1/25/90	N-2716 E-4197	QA/QC
Drill-1	QA/QC	Clear White Water	10/18/89		Drill water from source hose of CME-75.
Drill-2	QA/QC	Clear White water	11/28/89		Drill water from source hose of GUSPECH.
Drill-3	QA/QC	Clear White Water	12/5/89		Drill water from source hose of D-50.
TB-1	QA/QC	Trip Blank	10/18/89		Trip Blank for Drill-1.
TB-3	QA/QC	Trip Blank	1/24/89		Trip Blank for Groundwater Samples.
SW-LS-TB3	QA/QC	Trip Blank	10/23/89		Trip Blank for Leachate Seep Samples.
TB-4	QA/QC	Trip Blank	10/25/89		Trip Blank for Surface Water Samples.
MW-TB-GW	QA/QC	Trip Blank	1/26/90		Trip Blank for Groundwater Samples.
TB-2	QA/QC	Trip Blank	1/25/90		Trip Blank for Groundwater Samples.

APPENDIX K.2

ENVIRONMENTAL SAMPLE DESCRIPTIONS PHASE II AND RE-SAMPLING FOR PHASE I

RAM 001

1529

RAMAPO LANDFILL RI/FS RE-SAMPLING OF PHASE I LOCATIONS

		· · · · ·			·
SAMPLE ID	SAMPLE TYPE	DESCRIPTION	DATE SAMPLED	GRID LOCATION	REASON FOR LOCATION
GW-4-0S	groundwater	slightly turbid to turbid, no odor	7-24-90	N-5785 E-5555	Re-sample for Phase I
SPS-6	surface soil	brown medium sand w/topsoil, no odor	7-24-90	N-4710 E-4530	Re-sample for Phase I, composite
SW-1	surface water	clear w/similar odor as leachate pond, strong flow on River from outfall pipe	7-20-90	N-2915 E-3810	Re-sample for Phase I PCB/Pest
SW-2	surface water				See SW-5
SW-3	surface water	clear w/slight sewer odor, water had no flow. Sampled pool at 6" deep at the leachate collector's overflow	7-20-90	N-3400 E-4150	Re-sample for Phase semi's + PCB/Pest
SW-4	surface water	clear to slightly turbid w/high organic debris and floaters in sample	7-20-90	N-2175 E-4065	Re-sample for Phase I semi's + PCB/Pest
SS-1	stream sediment	brown fine sand w/fractured gravel and some organic debris	7-20-90	N-2915 E-3810	OC + Re-sample for Phase I semi's + PCB/ Pest, composite
SS-2	stream sediment				see SS-5, composite
SS-3	strèam sediment	brown fine sand w/fractured gravel, moderate sewage odor	7-20-90	N-3400 E-4150	OC + Re-sample for Phase I semi's + PCB/ Pest, composite
SS-4	stream sediment	brown fine sand w/some gravel and organic debris, slight odor	7-20-90	N-2175 E-4065	OC + Re-sample for Phase I semi's + PCB/ Pest, composite

j

Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason For Location
GW-1-OS	Groundwater	very slightly turbid to turbid, no odor	9-13-90	N-5009 E-4523	second round of sampling
GW-1-I	Groundwater	clear, no odor	9-13-90	N-5020 E-4535	second round of sampling
GW-1-R	Groundwater	slightly turbid, no odor	9-13-90	N-5016 E-4530	second round of sampling
GW-2-0S	Groundwater	<pre>slightly turbid w/no odor (VOA + metals), turning turbid</pre>	9-13-90	N-5521 E-4980	second round of sampling
GW-2-I	Groundwater	clear, no odor	9-13-90	N-5509 E-4978	second round of sampling
GW-2-R	Groundwater	clear, no odor	9-13-90	N-5507 E-4969	second round of sampling
GW-3-I/OS	Groundwater	clear for first 3 bailers (VOA + metals) turning turbid as well dried, no odor	9-13-90	N-4310 E-4176	second round of sampling
GW-3-R	Groundwater	clear for first 3 bailers (VOA + metals), turning turbid w/no odor	9-13-90	N-4321 E-4177	second round of sampling
GW-4-0S	Groundwater	turbid, no odor	9-14-90	N-5785 E-5555	second round of sampling
GW-4-I	Groundwater	clear, no odor	9-14-90	N-5772 E-5566	second round of sampling
GW-4-R	Groundwater	clear, no odor	9-14-90	N-5766 E-5572	second round of sampling
GW-5-OS	Groundwater	clear (VOA + metals) turning highly turbid, no odor	9-15-90	N-4124 E-5795	second round of sampling
GW-5-I	Groundwater	turbid, no odor (VOA + metals)	9-15-90	N-4109 E-5781	second round of sampling

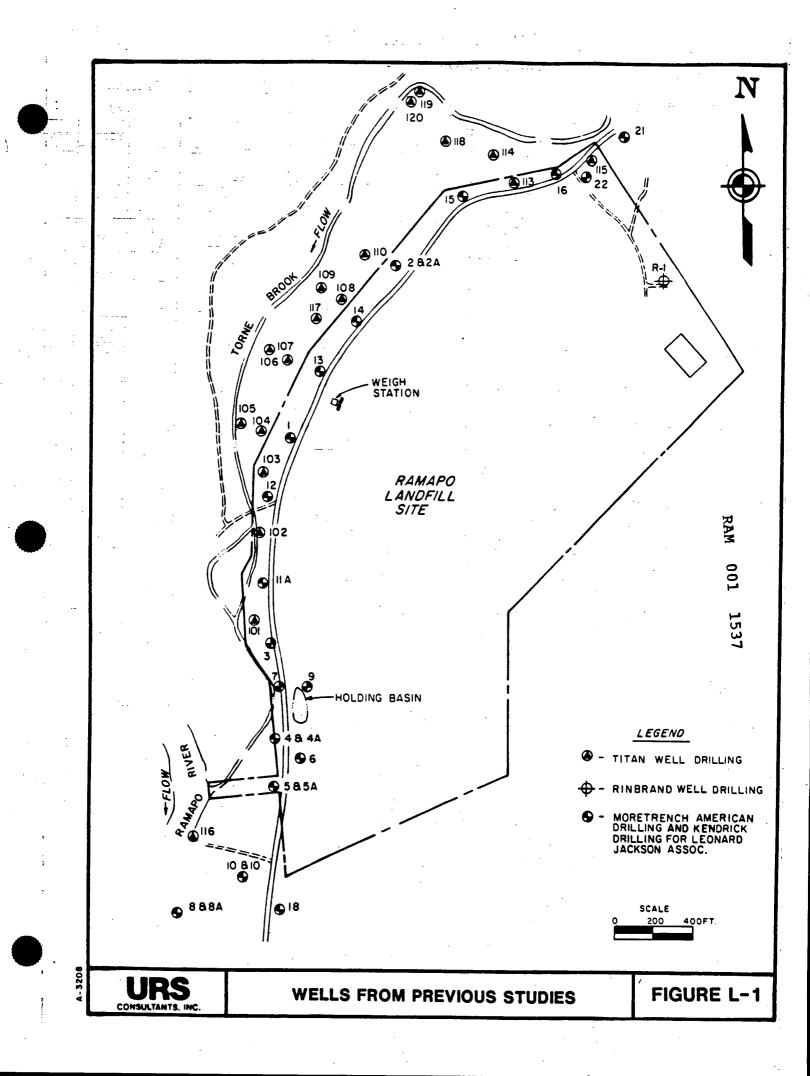
Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason For Location
GW-5-R	Groundwater	clear, no odor	9-15-90	N-4118 E-5787	second round of sampling
GW-6-OS	Groundwater	clear to very slightly turbid w/suspended mica as muscovite particulate	9-15-90	N-5670 E-5851	shallow groundwater monitoring outside leachate collection system
GW-6-I	Groundwater	clear, no odor	9-15-90	N-5670 E-5832	intermediate groundwater monitoring outside leachate collection system
GW-6-R	Groundwater	clear, no odor	9-15-90	N-5688 E-5823	bedrock groundwater monitoring outside leachate collection system
GW-7-OS	Groundwater	clear to highly turbid, no odor	9-11-90	N-2727 E-4195	second round of sampling
GW-7-I	Groundwater	clear to slightly turbid, H ₂ S odor (VOA + metals)	9-11-90	N-2707 E-4195	second round of sampling
GW-7-R	Groundwater	clear, no odor	9-11-90	N-2716 E-4198	second round of sampling
GW-8-OS	Groundwater	clear turning turbid w/orange globs of bottom settlings material-no odor	9-12-90	N-3507 E-4151	second round sampling
GW-8-I (MS/MSD) + (VOA FD)	Matrix spike Matric spike duplicate Field duplicate (VOA only)	slightly turbid w/moderate odor, sample had a foamy/effervescent appearance	9-12-90	N-3539 E-4135	second round of sampling
GW-8-R	Groundwater	slightly turbid (VOA + metals), turning turbid w/no odor	9-12-90	N-3526 E-4146	second round sampling

1	· · · · · · · · · · · · · · · · · · ·	Τ	· · · · · · · · · · · · · · · · · · ·	T	· · · · · · · · · · · · · · · · · · ·
Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason For Location
GW-9-0S	Groundwater	clear, no odor, - EPA Split-	9-14-90	N-3445 E-3925	shallow groundwater monitoring well located offsite between landfill and PW-1
GW-9-I	Groundwater	clear, no odor, - EPA Split-	9-14-90	N-3435 E-3922	intermediate groundwater monitoring well located offsite between landfill and PW-1
GW-9-R (MS/MSD) + (VOA FD)	Matrix spike Matrix spike duplicate, Field duplicate (VOA only)	clear, no odor, first bailer had discoloration - EPA Split -	9-14-90	N-3459 E-3931	bedrock groundwater monitoring well located offsite between landfill and PW-1
GW-10-OS split sample with ACCE	Groundwater	clear to slightly turbid to clear, no odor	9-12-90	N-2326 E-4102	shallow groundwater monitoring well located offsite near southern edge between landfill and Ramapo River
GW-10-R split sample with ACCE	Groundwater	very slightly turbid, no odor	9-14-90	N-2822 E-4019	bedrock groundwater monitoring well located offsite near southern edge between landfill and Ramapo River
GDT-1	Tap water	clear, no odor	9-14-90		residential well
GT-1	Surface soil	gravelly soil, silty, dry, roots	8-2-90	see Fig.	southern edge of property beyond limits of fill

an Baile Cali

Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason For Location
GT-2	Surface soil 0-2"	black oganic-rich topsoil, silty, some fine sand, dry	8-2-90	see Fig.	southern lobe
GT-3	Surface soil 0-2"	silty topsoil, some cobbles and gravel, dry, roots	8-2-90	see Fig.	swale between northern and southern lobes
GT-4	Surface soil 0-2"	silty topsoil w/some cobbles and gravel, dry	8-2-90	see Fig.	northern end of property beyond fill limits
GT-5	Surface soil 0-2"	silty topsoil w/some cobbles and gravel, dry	8-2-90	see Fig.	eastern edge past Pistol Range
GT-6	Surface soil 0-2"	silty topsoil w/gravel, roots	8-2-90	see Fig.	northern lobe
SW-5	surface water	clear w/no odor, background sample taken in area of moderate flow	7/20/90		upstream sample along Torne Brook
SW-6	surface water	clear, no odor, good flow	7-20-90		along Torne Brook
SW-7	surface water	clear, no odor, good flow	7-20-90		along Torne Brook
SW-8	surface water	clear, no odor, slow flow	7-20-90		along Torne Brook before split
SS - 5	stream sediment	brown medium-fine sand w/some silt, gravel and organics, slight degradation	7-20-90		same location as SW-5, composite
SS-6	stream sediment	brown medium-fine sand and gravel w/some silt, no odor	7-20-90		same location as SW-6, composite
SS-7	stream sediment	brown gravel and sand w/trace silt, no odor	7-20-90		same location as SW-7, composite

ł


Sample ID	Sample Type	Description	Date Sampled	Grid Location	Reason For Location
SS-8	stream sediment	brown medium fine gravel and sand, trace silt and organics, slight odor	7-20-90		same location as SW-8, composite
LEF-1	leachate effluent	brown/orange, highly turbid w/strong sulfide odor	8-8-90		effluent from leachate pond for mass balance study
LIN-1	leachate influent	clear to slightly orange, strong sulfide odor	8-8-90		influent to leachate pond for mass balance study
LPSS-1	leachate pond sediment	black silt and very fine sand w/brown decayed moss and algae, slight odor	8-8-90		sediment within leachate pond
LS MW-10	surface soil	brown/orange highly turbid surface sheen	8-24-90		appeared to be a leachate seep near MW-10

APPENDIX L

SELECTED BORING LOGS FROM PREVIOUS INVESTIGATIONS

Ŀ

Ţ

R-1 Rinbrand Well Drilling . 14 Waldron Avenue, Glen Rock, N. J. LOG OF WELL Leanth construction com Log of Well for Well No. Address ... Well located at Perman Sellin Wast ic x 6 Diameter of Well Total Depth to Bottom of Well feet _____ inches Distance to Water from Surface Length of Casing/ - 6 9 Strata Depth of Strata Depth of by (Stratum) Formation Found in Each Stratum by (Stratum) Formation Found in Each Stratu Strata Strata C. to 12 161 220 F_CV Chay P 14 14 Ballin 2801-345 365 GP 1. 790 1 6 49 illow eliny small Ba 49655 39 & 410 Broken 37 66 Jack Grant 19.6 84 84.6.90 5.6-141 Crax Corent sicch 141 2 147 at h Prom RAM 147.6 153 Cray Bran White Com 134161 [00 Remarks 100 ft 1/2 E-Pili 410 ft II G-PM 153 200 Ja 3 C-17/11 5 EPM. 300 1 7 G-PM 3.500 + elf Bet 13 Waly forer 32 ft Drill No. 2-10/4 Drill No. 2-10/4 Drill No. 2-10/4 34/0/0" Drilling Done by Andrew N1.3.32

ARKVILLE N. Y. 12406

PHONE 914-586-40003- 12 10: 23

HEAG

JUNE 11, 1986

MR. EUGENE OSTERTAG TOWN OF RAMAPO HIGHWAY DEPT. PIONEER AVE. TALLMAN, N. Y. 10982

DEAR MR. OSTERTAG:

AS PER OUR TELEPHONE CONVERSATION, ENCLOSED FIND THE COPIES OF THE TEST WELLS DRILLED AT THE LANDFILL SITE, RAMAPO, NEW YORK. (PER YOUR REQUEST).

IF YOU HAVE ANY QUESTIONS, OR NEED MORE INFORMATION, CONTACT ME AT THE ABOVE NUMBER.

SINCERELY,

LYNN JOHNSON

PRESIDENT

LJ/dd ENC.

1

4

TITAN DRILLING CORP.

DRILL LOG & WORK REPORT

\checkmark	-)	_	
~ ^	:	-	

FORM T

	She	et No	of				
: 	Job		,,,,,,,		· ·	Rig No	
ATE	FEET			WELL LOG		Location	
	0	26	JANE			REPORT	
	24	1	Ria	La CORAU	EC		
-+-	24		Bere	world			
		· · · /			-		
				· ·			
1				••			
		·	· · · · ·				
	·			•			
						······································	
	<u> </u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>		
+							
				t .			
1				•		· · · · · · · · · · · · · · · · · · ·	
+							
<u> </u>						•	
DRIL	LING		FT.	TOTAL GPM:			
. CASIN	IG		FT,			APPROX. BIT SIZE:	
				DRIVE SHOE:		OFFSET	
					DRILLER S	GNATURE	

,				TITAN DRILLI		77 - V-7	- FORM T
	She Jot	et No	of			Rig No Location	· · · · · · · · · · · · · · · · · · ·
ATE	FEET			WELL LOG	-	REPORT	
	Õ	10	Bol	D'S R			
	10	36	GRAVEL	- Swall rock	· · -	·	
	ゴし	30		Dar	<u> </u>		
	30			1		····	
			120.20	"all			
— ́ —	· · ·						<u> </u>
		·					
			····		·		
				• •		· · ·	
				· · · · · · · · · · · · · · · · · · ·		· · · ·	-
			· · · · · · · · · · · · · · · · · · ·				•
				· · ·			t <u>í</u>
			· · · · · · · · · · · · · · · · · · ·			- <u> </u>	
							•
					·		
			-	· · · · · · · · · · · · · · · · · · ·			
+			. <u></u>		· · · · · · · · · · · · · · · · · · ·		
						·····	
- +						•	
						······	
			······	r	<u> </u>		RAM
	RILLING		FT;	TOTAL GPM:		APPROX. BIT SIZE:	100
01 -L C	ASING		FT.	DRIVE SHOE:		OFFSET	- ¥ ·

DRILLER SIGNATURE

1541

R CONDITION:

	-)	
1	\prec	
	· \	

1

TITAN DRILLING CORP.

DRILL LOG & WORK REPORT

?	Form	7
•	100 L	

	Job		of		. •		Rig No	
DATE.	FEET			WELL LOG	· · · · · · · · · · · · · · · · · · ·	1	Location	
	$\hat{\Sigma}$	8	50				REPORT	
	\mathbf{S}	10	JANE/		ACE(
• -+	0		130.14					
·	10	14	JAND	GRA	500			
	14	16	Boul	<u>Nirp</u>				
· · · · ·	<u>l</u> e	<u>zi</u> 2	JANE	0 (0)14	036		•	
	2	7	Bard	rock			•	
	·				•			
		· ·	·					- <u></u> .
		·.		•				
								·
					•			
						······································		
	1					· · · · ·		
				······································				······
			· · · · · · · · · · · · · · · · · · ·					· <u> </u>
				····		• •		
+						· · · · · · · · · · · · · · · · · · ·	<u> </u>	
					·			
+						•		
						•	······	
		!	FT;					RAM
				TOTAL GPM:			APPRÓX. BIT SIZE:	
			FT.	DRIVE SHOE:			OFFSET	001
TUN	IDITION:			• • • • •	-	DRILLER SIGNAT	URE	7 + C T

1

						NG CORP	×-102	FOR
			of				Rig No	- ,
<u> </u>	Job	T		·		·	Location	
)ATE	FEET			WELLLOG	·		REPORT	
	0	5.	E:11	• •			· · · · · · · · · · · · · · · · · · ·	
	8	10	Boul	Dar			· ·	
	10	15	50,		- -		· · · · · · · · · · · · · · · · · · ·	
	15	20	GRAU					
	13	Ð		Ron (C		· · · · · · · · · · · · · · · · · · ·		<u> </u>
			· · · · ·					
				· · · · · · · · · · · · · · · · · · ·	•			
	·							<u> </u>
			······································	•				、
			<u> </u>	··	······································			
				<u> </u>				
				······································		· · · · · · · · · · · · · · · · · · ·		
		-			·	· · · · · · · · · · · · · · · · · · ·	······	
			·					
			· · ·				·	
			· · · · · · · · · · · · · · · · · · ·			•		
			—					
+				·····				
			· · · · ·	- <u></u>				
						······································		
_						•		RAM
			· · · · ·	· ·				
AL DRI		<u> </u>	FT:	TOTAL GPM:			APPROX. BIT SIZE:	100
TAL CAS		· .	FT.	DRIVE SHOE:			OFFSET	15
ER CO	NDITION	:	· .	. *		DRILLER SIGNAT	TURE .	43

}

•			-	DRILL LOG		G CORP.	7-107	/ () j FORM T
	Shee Job	t No	of			.•	Rig No	
ITE	FEET			WELL LOG			Location REPORT	
= ==	6	£	Jane	CRAUE	. (
	5	6	Bould					
	C	10	GRAU				<u> </u>	······································
	10	12	Bodle				<u> </u>	
		20	CORPOS			······································	·····	
	_ L	Ð		200. (c				
-								<u></u>
						·	•	
				•		/	•	
			· · · · ·	· _	· · · .			
				• ·		·		
·			• •					-
			· ·			• •••••		• 1
						•		<u></u>
			۰. 					
			. •	• •		····		· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·					<u> </u>
						•	- -	RAM
1			·	r		r		······································
TO AL D		······.	FT.	TOTAL GPM:			APPROX. BIT SIZE:	100
	ASING		FT.	DRIVE SHOE:		•	OFFSET	1544
WĄ ER (CONDITION	1:	· .			DRILLER SIGNAT	URE	44

-1	•			FURM	T
	J .	- \	U	FORM	•
	T	•		1	

			of			Rig No	
F TE	Job FEET)	·		· .	Location	
= =	PEEI			WELL LOG		REPORT	
	O	3	JANE	<u>^</u>		· · · · · · · · · · · · · · · · · · ·	
	3	8	Boul	JOR			
	8	22	JANA	GRAUE	=(.	· · ·	
	3	3	BEE	1 7			
						<u> </u>	
-		-		· · · · · · · · · · · · · · · · · · ·	•		
						· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·		
						······································	
			· · · · · · · · · · · · · · · · · · ·				<u> </u>
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·		,		
			· · ·				•
						<u> </u>	
					· · ·	······································	<u> </u>
						·	
						•	· · · ·
			· · · · · · · · · · · · · · · · · · ·	· ·			RAM
'0' L DF	RILLING		FT.	TOTAL GPM:		APPROX. BIT SIZE:	100
OTAL CA	SING		ET.	DRIVE SHOE:		OFFSET	1.
R CO	ONDITION	:		· ·	DRILLER	SIGNATURE	1545

#105 FURM	
FURM	
×-105	

Sheet No of	Di- st
Job .	Rig No Location
DITE FEET WELL LOO	REPORT
05 JAND - 6	AVEC
E C D LO	LOE C
6 14 JAND - GR	vel
14 19 Bouleor	
19 21 JAND. G	RAUEC
31 BEELDE	
· · · · · · · · · · · · · · · · · · ·	
+	
<u>.</u>	
DRILLING FT. TOTAL GPM	APPROX. BIT SIZE:
CASING FT. DRIVE SHOL	
CONDITION:	OFFSET UT DRILLER SIGNATURE

T

1 K. FORM TI

			of		14	•	Rig	X-100	
C.* TE	Job FEET	, 	T		 	· · · · · · · · · · · · · · · · · · ·		ation	
= =				WELL LOG			REPORT	-	
	0	3	5An		<u></u>			-	
	3	5_	Boul	BR					
	Ľ.	20	SAN	\mathcal{O}					
	20	35		0 & C			· <u>·</u> ··································		
÷	ગ્રસ	30	JANG			1.1	JF WA		
-	З			JRUC (601	JI WA	159	
		<u> </u>		TTORIC		<u> </u>			
				•			·		
					·				
		· _	- -		•			. · ·	
							•		
			·····					· · ·	
							· · · · · · · · · · · · · · · · · · ·		 ·
- T									
- †				······································		•		·	
								·	
- †									
- +				······································		, ,	· · · · · · · · · · · · · · · · · · ·		÷
-				·		•			RAM
<u> </u>		· .							
			FT.	TOTAL GPM:			APPROX. BIT SI	ZE:	100
TAL CA	SING		FT.	DRIVE SHOE:			OFFSET		 سہ
	NDITION:					DRILLER SIGN			1547

1

/ / Form

	o of	Rig No	101
Job		Location	
- ATE FEET	WELL LOG	REPORT	
05	JAND.		
57	Bouldar		
7 3-			
33		hit of Watar	
	Bet leocly		
	•		
			_
<u> </u>	-		•
		•	
			•
	-	•	RAM
			M
DT L DRILLING	FT: TOTAL GPM:	APPROX. BIT SIZE:	001
DTAL CASING	FT. DRIVE SHOE:	OFFSET	•
R CONDITION:			1548
		, .	w.
	. I		• •

FORM TON

		DRILL LOG &	WORK REPORT	J .	-IDR
Sheet No	o of			Kig No	100
Job			· · · .	Location	•
TE FEET		WELL LOG		REPORT	
0.10	DISING	- (FRUEL			
10 13		Cer C			
13 31	Gora				.
31'					
	1.566	" " OEI(
-					
		.	·		·
		· · ·			
-				· · · · · · · · · · · · · · · · · · ·	
		•			
		· · ·			
	-	· · · · · · · · · · · · · · · · · · ·			
•					
	· · · · · · · · · · · · · · · · · · ·				
				-	•
-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
<u></u>		· .			
			· ·		
		· · · · · · · · · · · · · · · · · · ·		······································	
					<u> </u>
		· · · · · · · · · · · · · · · · · · ·			
-:'		· ·			RAM
	FT.	TOTAL GPM:			- 001 -
. ÇASING	FT.	DRIVE SHOE:		APPROX. BIT SIZE:	
ONDITION:			0944 69 66	OFFSET	1549
F i			DRILLER SIGNA	TURE	~

	• .			DRILL LOG	& WORK	REPORT	10	FOI
	She Job	et No	of				Rig No	·. ·
	FEET		•	WELL LOG	·	·	Location REPORT	· · · .
	0	L	\bigcirc			······································	REPORT	
+	$\frac{0}{1}$		<u> </u>					
-	4	6	1300					
-	6	31	(2020				
-	3	l [.]	3399	2 40 - 10	~			
+								
+				••		: 	· · · · · · · · · · · · · · · · · · ·	
				-	• •	·····		
4			•	· · · · · · · · · · · · · · · · · · ·				
	:			· · · · · · · · · · · · · · · · · · ·			· .	
							· · · ·	
			·	· · ·				ź;
					·	· · · · · · · · · · · · · · · · · · ·		
						· ·		<u> </u>
						· .	<u> </u>	·····
						•		
T						· ·		
T				· · · · · · · · · · · · · · · · · · ·		-	· · · · · · · · · · · · · · · · · · ·	<u></u>
T				· · · · · · · · · · · · · · · · · · ·				
T			· · · · · · · ·			<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>
T				······································		•		RAM
Ť								
DI	RILLING	!-	FT.	TOTAL GPM:	<u>.</u>		APPROX. BIT SIZE:	001
	ASING		FT,	DRIVE SHOE:			OFFSET	15
c	ONDITIO	N:	· · · · · · · · · · · · · · · · · · ·		1	DRILLER SIGNA		1550

ì

		TITAN DRIL	LING CORP	+	+ //
Sheet N	o of	DRILL LOG & V	VORK REPORT	×-110	
Job				Rig No	
TE FEET		WELL LOG		Location REPORT	
7 7 1.	Jane	- CRAUT			
49		Der			
93			FILL		·
	· Par	~ GRAUEL	- haral WA	YBR	-
		2 S West		······································	
		•			·
+					
+					
			- · · ·		
+				_	
					RAM
		N · · ·		· · · · · · · · · · · · · · · · · · ·	T00
	FT.	TOTAL GPM:		APPROX. BIT SIZE:	
CASING	FT,	DRIVE SHOE:		OFFSET	1551
CONDITION:			DRILLER SIGNAT		
• . •					
	•		I		

. . .

		TITAN DRILL DRILL LOG & WO	ING CORP.	X- #11	/ FUR
	o of	DRILL LOG & WO	DRK REPORT	Rig No	
Job			······································	Location	-
TE FEET		WELL LOG	3	REPORT	
04	JANE				
_ 4 7	Boul				
7/5	3 JAN			- 	
				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	100:3		· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·	
		•.		·	
				<u> </u>	
		•		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · ·			
	-				
			-	·	
		, 			
		·			
				·····	
		·			
			•		
			· · · · ·	-	<u> </u>
			<u>† </u>	•	RAM
1					
	FT.	TOTAL GPM:	·L		100
				APPROX. BIT SIZE:	
L CASING	FT.	DRIVE SHOE:		OFFSET	1552

ì

FURM TOP

DRILL LOG & WORK REPORT

1

		of		•	Rig No	11 6
Job		4. 		· · · · · · · · · · · · · · · · · · ·	Location	
FEET			WELL LOG		REPORT	
$\downarrow 0$		JANO				
/	5	Boul	JAR			
j.	6	JANI			· · · · · · · · · · · · · · · · · · ·	
6	\mathcal{S}	Bould			·····	<u></u>
S S	18	BeD				<u> </u>
						-
		· · · ·	· · · · · · · · · · · · · · · · · · ·			• ••• ••••••••••••••••••••••••••••••••
	· · ·		•		·	
		······································	·			
<u> </u>		·				
+					·	
<u> </u>			····			
<u> </u>						
<u> </u>					·	
			·			
				•		
						<u></u>
					· · · · · · · · · · · · · · · · · · ·	
		· · ·	<u>.</u>		<u> </u>	• <u>•</u>
				•		RAM
			<u> </u>			• •
DRILLING		FŤ;	TOTAL GPM:		APPROX. BIT SIZE:	100
CASING		FT.	DRIVE SHOE:	······	OFFSET	1553
CONDITION	 1:		·	DRILLER SIG		ω

TITAN DRILLING CORP.

i.

FORM

DRILL LOG & WORK REPORT

				DRILL L	DG & WOR	K REPORT	×	(-113
			of				Rig No),
I Ç^TE	Jol		r'		Я.,	T	Locatio	
; ===	FEET			WELL LOG			REPORT	
•	0	10	SNAC	titte	GRAND			
	10	26	JAN			*		
	5	10	BBB)_o~lc		, mart course	· · · · · · · · · · · · · · · · · · ·	
·				· · · · · · · · · · · · · · · · · · ·				·
·				•.	•	····		
	-			·	•		· · · · · · · · · · · · · · · · · · ·	
	·							-
		· ·					· · · · · · · · · · · · · · · · · · ·	
						······································		
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
			· · · · · · · · · · · · · · · · · · ·			· · · ·		
			· · · · · · · · · · · · · · · · · · ·	······				
+			- 					
				<u> </u>				
+			· · ·				·	
+						· · ·		
·			· · · · · · · · · · · · · · · · · · ·			· .		·
							•	
+						•		RAM
		<u>L</u>		\		·		<u>e</u> .
			FT.	TOTAL GPM:			APPROX. BIT SIZE:	- 001
LCAS			FT.	DRIVE SHOE:			OFFSET	155
: COI	NDITION:			•		DRILLER SIGNAT	TURE	

TITAN DRILLING CORP.

FORM T

-1

DRILL LOG & WORK REPORT

Sheet No	of	X - 11 Rig No	<u> </u>
Job		Location	
ATE FEET	WELL LOG	REPORT	
DE	GRADZ		
- 5 10	Bouldar		· · · ·
1021	GRAUEL		·
31	Bolock		
_			
_	and the second		
_			
			······
		· · · · · · · · · · · · · · · · · · ·	
_		ţ	•
_			<u>.</u>
· ·			<u> </u>
*			 RAM
OTAL DRILLING	FT. TOTAL GPM:	APPROX. BIT SIZE:	001
OTAL CASING	FT. DRIVE SHOE:	OFFSET	- 15
R CONDITION:			1555

1

2

FUI ## 116 TITAN DRILLING CORP. +. Rig No. --DRILL LOG & WORK REPORT Location REPORT ì _. . . . WELL LOG JILUE () 🖸 RAC 36 E fu R 0G 51 RAM APPROX. BIT SIZE: 100 OFFSET TOTAL GPM: 1556 DRILLER SIGNATURE FT. DRIVE SHOE: TA DRILLING FT. TAL CASING TI CONDITION

TITAN DRILLING CORP.

11 FORM TO

DRILL LOG & WORK REPORT

She Job		of			Rig No Location	.
D TE FEET			- WELL LOG		REPORT	
	Ŋ	JANO	A GRAVE (-
3	8	Boul	26 R			
8	TR	GRA	<i>uaC</i>			· · · · · · · · · · · · · · · · · · ·
5 2	3	BaQ_	vel C	······································		· · · ·
1		•				<u></u>
•						· · · ·
		· · · ·	• • • • • •		<u></u>	
					;*;;	·*··· <u>·</u> ·
	-	•	•	-	· · · · · · · · · · · · · · · · · · ·	
		•				
				÷		
					· · · · · · · · · · · · · · · · · · ·	
				_1 -	· · · · ·	•
						•
	-	·				
			· · · ·			· · · · · · · · · · · · · · · · · · ·
	-					· · · ·
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
				•	•	RAM
		FT.	TOTAL GPM:		APPROX. BIT SIZE:	1001
DTAL CASING		FT.	DRIVE SHOE:	······································	OFFSET	1557
R CONDITION	N:	·····	· .	DRILLER SIGNA	TURE	- 7

Job	o of	Rig No Location
I TE FEET	WELLLOG	REPORT
0.0	JAND	
3 -	5 Boulder	
51	JAND & GRAUEL	
	BERNOCIS	
_		
	•	
		, RAM
	<u></u>	[6]
	FT. TOTAL GPM:	APPROX. BIT SIZE:
OTAL CASING	- FT. DRIVE SHOE:	JFFSET UT
R CONDITION:		

RENDRICK DRILLING, INC. 914 783-3190 -1.13 Test Borings & Diamond Drilling 10 Hawshurst Road Boring No. Bit Monroe, N.Y. 10950 PROJECT: _ RAMARE LAND FIL _Location of Boring:___ CLIENT: L Incicso 3279 _Finish_2 Date, start_ 74 **REMARKS**: Ground Water Observations Denth Daß Casing at Casing Hammer Sampler Hammer Wr. 140 We 350 lbs. ____ lbs. 30 Fall _____ Fall_ in. in. Driller: KEMDRUK Helper: Ground Elev.____ I.D. Caring 4" AMPLENO BLOWS ON SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS PER 4" BREWN SAND MICE FILL BROWNISH GRAY FINE TO MED SAND TRACE OF 19 5 1 GRAVE TR S.LT TARE VECATATION. 23 31 GRAY FIRE TO MED SAND SOME GRAVEL JUNE BULDERS WITH SILT. (TIL) 10 2 52 94 ic2 15 150/1" BULDERS OR RUE 3 10 200/1 3 FT STICE UP. STERL J PIPE J'm Gein VS 5 Δ 3' Snuch CENENT .2 PULED STAL 31 TOTAL \$6'P.V.C 10 Screen r. V 5' 4"CASING 1559 ដ 13 21

RERORICK DRILLING, INC. 514 783 280 Test Borings & Diamond Drilling 10 Hawxhurst Road -#Z Boring No._ Monroe, N.Y. 10950 ROJECT: RAMADO LAND FILL Location of Boring: LENT: L. JACKSON ? A Date, start Finish MARKS: Ground Water Observations Date Time Depth Caring at Cering Hammer Sampler Hammer 330 ____ lbs. Wr _ 140 lb. 30 .. in. Fall 11 ____ in. 21 O.D. Spoon_ 4" Driller: 1 KENDRICK _Helper: ound Elev. I.D. Casing SURF. SURF. SAMPLE NO BLOWS ON SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS Sol Sol R P68 6" MIK'S SAND GENVEL, WILD BLINCE SU- FILL. BRINN FINE SAND SUME COURSE 24 51 59 SANDE FINE GRAVEL LITTLE SILT 49 4.5 BRINN GRAY FINE SAMD SUME COARIE SAND FINE GRAVEL TRACE SILT c' •2 43 +7 BROWN FINE SAND WITH FINE GRAVEL 61 72 LITTLE SILT 5 BROW FINE SAND GRAVEL 3 LITTLE S. F. FINE TO MED 37 100/34 GRINEL, SERY FINE SANDY SILT, Some انك 4 16E/64 GRAVEL, BOULDERS, TILL MATERIAL . ·1 27 RAM 200/4" 100 10 61 200/01 1560 217 7 200/60 PACE 1

KENDRICK DRILLING, INC. 914 783-3190 أللخت Test Borings & Diamond Drilling 10 Hawxhurst Road Boring No. RH.2 Monroe, N.Y. 10950 PROJECT: RAMATE LIANS FIL Location of Borine: CLIENT: L JACKSIN Date, start_ Finish **REMARKS:__** Ground Water Obecryation Depth Date Time Casing at Caring Hammer Sampler Hammer Wr. 350 lbe. Wt. _____ lbs. 30 Fall in. Fall ____ in. 24 O.D. Spoon____ Driller: T KEND Rick Helper: Ground Elev. I.D. Casing 4 " BLOWS ON NO. SUN PEON PEON PEON PEON SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS PER 4" FROM 44 ISE VERYHARD 451 8 /c. / 0" 521 100/04 Note Simple Louis Like SURT Rock 551 10 200/3-1 136/10 BACK FILLED FIRCH SE IS SE LITH SAND FRALEL INSTALD PUINT FROM JO' & 40' BACK FILLED WITH PEA GRINGL TO 39', SEALED WITH BENTONITE PELLET TO SE" PUMPED GREET TO SURFACE, MIXINE CEMENTOBENT. CNITE POUDER, LEFT 2' OF 2' PLASTIC 100 STICK UP, THEN CEMENTED S'OF 4" CASING ARCUND PURSTIC PIPE. 156 TUTAL 42'OF 2" PLASTIC PIDE 10 1 WELL SCREEN PAGE 2

KLINDRICK DRILLING, INC. コース Test Borings & Diamond Drilling 914 783-3190 10 Hawxhurst Road Monroe, N.Y. 10950 PROJECT: FILLAR LAND FUL Boring No. _Location of Boring:_ CLIENT ____ REMARKS: Date, start_ Finish Ground Water Observations Date Cating Hammer Time Sampler Hammer Depth Casing at Wt. _____ lbs. Wr. _____ Ibs. Fall _ in. Fall .36 _ in. O.D. Spoon 2 Ground Elev. I.D. Casing 4 Driller: Helper SURE SURE ASING BLOWS ON BELC BELC SAMPLE SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS PER 4" Mis FILL BRUNN FINE SAND JE HE CUARSE 2 SAND LITTLE SIGT 10 BLEWN CENTFINE SAND SUITE CENTE BRUIL FINE SAND WITTH FINE GRINGE 17 BAUNA FINE SANSY SILT & JULIY SAND WITH FILL TE MED GRAVEL 10. 2 PUL. STEEL 2 FT STICK UP CHINE 3FT IN GALLING RAM CENEL, COLUT 100 56 SEN BENTLY, THE 2 71 1562 TETAL I SCREEN Ginne GFF PUC. ביינבצייי I SHI STRECT 17-

READEREK DRILLING, IRC. 514 783-3150 م الأركنية Test Borings & Diamond Drilling. 10 Hawxhurst Road Boring No. B# 3 Monroe, N.Y. 10950 RAMAPE LAND FILL ROJECT:_ Location of Borine: LIENT: Date, start Finish EMARKS: Ground Water Observation Data Time Depth Casing at Cecing Hemmer Sempler Hammer 1. 350 lbs. Wr. ____/4C Ibs. all 30 " _ in. Fall in. 21 O.D. Spoon_ Driller: KELDRUK Helper round Elev. I.D. Casing 41 Ŷ BLOWS ON AMPLE SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS No. לוב PER 4" Mis File SAND BLOCK SILT BREWN FINESONS TE SILT TAME FILL 15 ľĿ NED BRUN SAND TA SUF SUF 1.3 2 ю FINE BRUNN JAND TRAVE GUMEL SUME . c/ 10 SILT JINE BUILDERY (LOUSE) SLICHT) .51 3 9 -10 12 ~ 10 الا 16 19 CR Ruic. Burdzen こで STEEL 4 CHEING 2'6"MGDUE D'6'SACELH. RAM Ger + + > CEMENI 100 a BENTERITE 9 ~ Seni 1563 Por George Torn ריזנשיטך 137 PU.C 10" ScileA. ST 41 CASING 21 15 ز :

KENDRICK (DRIELING, INC. 914 783-3190 Test Borings & Diamond Drilling 10 Hawxhurst Road Boring No. A Monroe, N.Y. 10950 RAMAPO LAND FILL PROJECT:___ Location of Boring:_ L JACKSON CLIENT:____ Finish_ Date, start REMARKS:_ Ground Water Observation Date Time Depth Casing at Sampler Hammor Caring Hammer Wr. <u>3,50</u> lbs. Wr. 14-0 __ lbs. :26" Fall_ Fall _____ in. in. 2" O.D. Spoon_ 4. Ground Elev.__ I.D. Casing Driller:_ Helper_ BLOWS ON SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS BND. -----BROWN SAN'S GRAVEL LARCE BOWDERS FILL SUME SILF BROWN JAND SUME GRAY SAND GRAVEL SEE B#4A 5 SCHA L'MY, BUUDERS 11 1.5 15 1 BRUNN SAND GRAVEL TR JUT <u>UL</u> Poce FRAC COBBIES Ŧ 133 」1 31 34 _ىت RAM 38 23 68 001 3C 30 1Z 1564 43 574 BEULDER ک د BREWIN JAND I GRAVEL TEALE SILT 28 79 BSCLDER BRUNNSAND GRAUEL To Jint HARD DRILLING

KENDRICK DRILLING, INC. 914 783-3190 Test Borings & Diamond Drilling 10 Hawxhurst Road 4 Boring No.___ Monroe, N.Y. 10950 ROJECT: FRIMATU LIAND FILL _Location of Boring:_ CLIENT:____ JACKSON Date, start Finish EMARKS:____ Ground Water Observations Date : Time -Depth Casing at Sampler Hammer Cering Hammer Wr. 140 X/t._____ lbs. ____ lbs. 3/ 1 call _____ in. Fall_ _ in. 27 O.D. Spoon_ Driller: I Knelick Helper. Jround Elev.____ _1.D. Casing_ 4 DELOW BELOW GND. SURF CASING BLOWS PER FCOT AMPLENO BLOWS ON FIELD IDENTIFICATION OF SOIL & REMARKS SAMPLE SPOON PER 6" STEEL P.PE 225 STILL'P ٦ CIROUT. 1 /0 12 A L 1.20 SEAL . GRAVEL SURCEN 21 RAM 5 SCREEN Ţ FILL DEPTH. 42' 100 30 5 SCREEN' 10' 1565 33 23 PVC . 2 ï Snull ۱. 1 SHI STEL PIDE - 517+2VEL Ċ

J-4A KENDRICK DRILLING, INC. 914 703-3190 فالمحت يحم Test Borings & Diamond Drilling Boring No. B# 4-A 10 Hawxhurst Road Monroe, N.Y. 10950 20 JECT RAMAPE LAND FILL Location of Boring:__ LIENT: Thexisen . Finish Date, start EMARKS:_ Ground Water Observations Date These Depth/ Caring at Samplar Hammer Cering Hammer JUN . Wr. lbs. _ lbs. Fall 30 _____ ااء ، in. in. 74 O.D. Spoon_ Driller: Var Auch Helper: 411 I.D. Caring , round Elev.___ LELOW BELOW GND. SURF. CASING BLOWS PER FOOT AMPLE NO BLOWS ON SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS PER 4" BRUN SAND GRAVE SUME SITT. * FILL LARGE BUIDERS BREWS SAND SCHE GARY SAND GRAVEL 10 -11 5. Some CLAY, BUUDRES! 14 12 10 2 8 7 9 公 150/ NiRic Pourder or Pour. 20 STERL CASIVE S'Lorc GROUND 50 RAM S SEAL 100 Toim B' PUC LOSCREEN GRAVEL 1566 5 STEEL CHANC K) Luci 15

KENDRICK DRILLING, INC. 514 783-3150 Test Borings & Diamond Drilling 10 Hawxhurst Road Boring No.___ Monroe, N.Y. 10950 ROJECT: PHILLIAN LAND FILL LOCATION of Boring: LIENT: L JACKSEN ___Date, start_ Finish EMARKS:___ Ground Water Obec, vations Date Time Depth Cosing at Cering Hammer Sampler Hammer Wr._____ lbs. Fall _____ in. Wt. _____ lbs. Fall _____ in. O.D. Spoon_____ Driller: _Helper:__ I.D. Casing pround Elev.____ DI DELOW GND. SURF. CASING PER FCOT SAMPLE NO BLOWS ON SAMPLE SPOON FIELD IDENTIFICATION OF SOIL & REMARKS PER 6" B#2 β^tLa e SCALE. B+I FILL . RAM B# 3 100 1567 **B#4**# Bil A

2/29/80

Jdress-

MORETRENCH AMERICAN CORP. RECORD OF SOIL EXPLORATION

JUL NO - 1 4201

RAMAPO SANITARY LANDFILL, RAMAPO, N.Y.

d Datum used is _____ GS

d Surface this boring is	•
--------------------------	---

EPTH	CLASSIFICATION	Sample	Sample	Depth	NO 01 31	ı ··	ı		Losi
То	Be Careful and Accurate	Түрө	No.*	ļ	151 6"	2nd 6"	3/0 6"	in. 	Rei
13'	Brewn coarse to hive sand and gravel	SS _	1	10	75/2			2"	
	cubbles and boulders				Į.	•			
23'	Brown fine to med. sand, some gravet	SS	2	20	12	18	.14	13"	
	cobbles								ŕ
40'	Brown fine to coarse sand, some	<u>\$</u> \$	3	30	19	20	77	<u>1</u> ś"	
]	gravet, cobbles				. · .	•		н. 1. л. л.	
- 48'	Brown coarse to kine sand, some	SS	4	40	21	32	50/2	<u>14"</u>	
	gravel				-	- ·			•
51'	Brown coarse sand and gravel							. 	
52'	Hard bedrock								
	Grouted hole to 30'. Installed		-				· -		
	well at 29' sand, seal, grout							· - ·	
	standpipe OK							.	
i		•							•
						-		-	··-
			• •						-
		·							-
	· · · · · · · · · · · · · · · · ·						<u> </u>		
									. ·
		-						••••••	• ·
	······································					•			
			į		· · ·		i i	1	
	·		•				···· —· .	RAM	
					•				
						1		···· ·	
							·		
Surface t				~		Ear	ť Hau <u>c</u>	ic i	156
				P (1)	eman			I =	68
el is	ft. below Ground surfacelurs. after coa	inpletion.							

2/28/80

Jdress _

MORETRENCH AMERICAN CORP. RECORD OF SOIL EXPLORATION

_ · · -

.....

. .

. . . .

RAMAPO SANITARY LANDFILL, RAMAPO, N.Y.

.

Datum used is _____ GS

тн	CLASSIFICATION	Sample	Sample	Depth	No of 2	0" blows on Spoon		- Recovery	Lost Wat	
То	Be Careful and Accurate	Түре	No."	Depin	151 6"	2nd 6"	310 6"	_ in.	or Remer	
16'	Brown coarse to kine sand and gravel	<u> </u>	1	10	26	5 <u>0/1</u>	· • ·	<u>6"</u>		
50'	cobbles, rock fragments Brown fine to medium sand, some grave occassional cobbles	ť SS	2	20	<u>17</u>	1 <u>0</u>	<u>16</u>	: 		
53'	Hard dritting, bedruck	SS	3	30	• 11	 14	20	18'	· . -	
	······································	<u></u>		40	16	10		12"		
			• •••• •		• -				- .	
		· · · ·			• •				••• ••	
			-		•		·			
· · - · ·	<u> </u>			-		-		·	• •	
					2		·			
			_ .		· ·				• ·	
+									• • •	
		· · · _ · ·						+-		
	· · · · · · · · · · · · · · · · · · ·				.				····	
				-			· ·			
									·· 	
.		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		· .					••	
••••									RAM	
			• · · ·						_	
		- -	-						100	
ace to.	ft. ' used 13 'S t easing. 10 ft. so	I	I	I_				L	15	
s	ft. below Ground surfacehrs. after con-			Fore	ารสา	Earl	Наид	2	1569	

MORETRENCH AMERICAN CORP. RECORD OF SOIL EXPLORATION

• · · • •

Jub No 1 4201

.

.

iŭ Ad	iress_	KALATU SAATTAK	
-		<i>n</i> n	

. ..

RAMAPO SANITARY LANDFILL, RAMAPO, N.Y.

٦.	: .						G.	s.	
x	eđ.	Datum	used	15	 -	-			·

round Surface this boring is _____

2/27/80

DL	РТН	CLASSIFICATION	Sample	Sample	Depth	No of 30" blows on Spoo		on Sµoon		
Frum	To	Be Cereful and Accurate	Туре	No.*		151.6"	2nd 6"	310 6"	·n	Rem
Grd. urtace	8'	Brown coarse to fine sand and gravel					· · -	 .	.	
:		some cobbles	· · ·	l			.		• •···	
8'		Light brown coarse to fine sand,	·- - -							•••
	•••	some gravel, occassional cobbles,	· .	-	.					
		16' - 19' boutder	SS	1	11	38	50/1		<u>6"</u>	
28	33	Bedrock	<u></u>	_ 2 _	201	- · 			<u>+"</u>	
						. .				
							. <u></u>		·	
						·				
		· · · · · · · · · · · · · · · · · · ·	· · · ·		-					
								· -		- -
			· • • · · · · · · · · · · ·			_ ···			 '	
		·	·····						`	
				• • • •		_				
			· - ·							* •·*
			· - ··			-				
			--	· ·	-					• ·
						- 1				
·	-	· · · · · · · · · · · · · · · · ·							RA	' <u>-</u> -
		<u> </u>	-					Ŧ	•• 3	
		······································		•		·				2
· <u>·</u> .									۰ ۲	
				·						1570
						1				70
		oft. used_ <u>22_jt</u> casing 10 jt.	201001				Γ	rť Hau	â.	
enter lev	el is	tt. below Ground surfacehrs. after co	mpletion.		Fo	remañ -			<u>40</u>	
r Fluter lev	el is "	tt. below Ground surfacehrs. after co	mpletion.					• 6		
រូលារំឆ្នេ ន	opped b	y			Bu	nng No.		~		-

MORETRENCH AMURICAN CORP. RECORD OF SOIL EXPLORATION

.

· _ _ · · ·

	1	1	1	с.	1	
2	/	.]	1	٤	U	
-	•			Ξ.	-	

RAMAPO SANITARY LANDETLL, RAMAPO, N.Y.

. .

.

	-	_	• •			
			L	T	-	4
	÷.	• • •				

Jub No

1-4201

d Surface this boring is

ĠS

	 Ртн	CLASSIFICATION	Semple	Sample	Depth	No of 3) Flowe	on Spaan	Recovery	Lost Wat
, n	To	ge Careful and Accurate	Туре	No."		1st 6"	2nd 6"	3rd 6"	in.	Remier
	12'	Brown coarse to hine sand and gravel	<u>ss</u>	1	10	29	50/1		<u> </u>	- .
		boullders and cobbles	. <u>.</u>					,. 	- <u>-</u>	.
1_'	23'	Light brown fine to med. sand, some	SS	2	20	17	<u>31</u>	37	18"	
		gravel, boulders and cobbles				-				- - - -
. '	42'	Gray brown med to fine sand. Little	<u>.ss</u>	3	<u>30</u>	.17 .	<u> 50 / 1</u>	·		. .
	-	gravel, trace silt, occasional bould								- ·
· ·]	- 44'	Hard drifting, bedrock	SS	4	40	<u>- 86</u>				••••
				•			:	·		
					· -			· <u> </u>		••··••
4					• •	i. T				 · · · · · ·
•		<u></u>							· ••••••	
								: -		
┍┼		· · · · · · · · · · · · · · · · · · ·	•	-	-		. =	· · — ·		- •· •
• 4			. 		-	<u></u>	· ·			- — ¹ .
- 4				. -	· ·					
- +										•
+										
- +	· _· _· · · +									
-										
- +-						· 4				. _
				_		-				
			-				· · -			RAM
1										
				•		·				
				{		·		·		
			l						<u> </u>	+ 1571
: S	urface to	ft. used <u>32</u> <u>At</u> casing 10 ft.	507001							ы
leve	el is	ft. below Ground surface	inpletion.		Fui	em an _	ξ	art.Ho	ווקב	
	el is		mpletion.							
: , ; s1C	pped by	<u> </u>			Bor	ing No.	*/	• •	· • · · .	•

2. 27. 80

MORETRENCH AMERICAN CORP. BECORD OF SOIL EXPLORATION

•.•

RAMATO SANITARY LANDIILL, RAMATO, N.Y.

Jub No 1 1201

Datum used is ...

- Iress . - ----

N.

60. GS

" Surface this boring is ...

тн 	CLASSIFICATION	Sample	Sample	Depth	NO OF 3	0" 510~5	on Spuon	Recovery	Louiv
To	Ise Careful and Accurate	Туре	No."	Depth	151 6"	2nd 6"	3.4 6"	in.	a Ren
23'	Cobbles in medium to fine sand and	SS	1	10	50/1		1	•	
	gravel				-				.
40	Brown gray coarse to fine sand some	. SS	2	20	,62 <u>.</u>			6"	
52	gravet, cobbles Cobbles, boulders, large gravet in	SS S	3	30	37	39	50	18"	
	coarse sand). 						
55	Hard dritting, bedrock	SS		40	- 68	- · ·	-	<u> </u>	
	Installed wellpoint at 42'	· -	·		· · · ·				
	instatten wetepotne at 42							·-	·.
					1	4			
				.			·		
· .								1	
ľ.				Ĩ	İ	1	·· ·		
			1		1	•			
]							• '
					· .				
.	····				.]				• ·
.	· · · ,						. [.	
·			İ				-		
									1-ml
	· · · · -								RAM
-			.	-					-
-		•		-					001
			- -	- [•	· · -	• • •		 1
ce to	it. used35_\$\$ casing. 10 \$t sone	en -		-			 " -	•••• • ••• •	י 1572
	_ft. below Ground surface			Foren	Idfi	Ear	(Haug	2	
	. It. below Ground surface	detion.							
d by	Bedreek		· .	Evrinj	No	# 8			

 11	NU

ì

MORETREACH AMERICAN CORP.

Job No 1-4201

• • .

L. iddress. RAMAPO SANTIARY LANDIILL

xed Datum used is GS

ound Surface this boring is

DCF	· ···	CLASSIFICATION	Semple	Semple	Depth	No. 01	30" blow	1 ON ŜµOO	Aecovery	, Lo
10m	. То	Be Coroful and Accurate	Түре .	No.*		151 6"	2nd 6	" Jrd 6"	in,	F
Grd. Swiffece	22	Cobbles and boulders in medium to					1	1		
		. Line sand and gravel].			1:	1	1
22	28	Brown gray coarse to fine sand and					1		ľ	
		some gravel, cobbles	· ·		a the second					
	• .	Instatted wellpoint at 25 sand, seat						1 :		
1.	. .	grout, st. pipe OK					1			
										• .
										-
									-	• •
	-									
1										
			· · ·							
	- 1	· · · · · · · · · · · · · · · · · · ·							.]	
							.]			•
	.	••••••••••••••••••••••••••••••••••••••			1		.	Ī		
	.									
	.									
									. 1	
					-		-			
									RAM	
									M	
		· · ·	·					ļ	001	
	· ·		1							
<u> </u>]				.		_	. L .	1573	
t Surfa	ace 10.	ft." used 17 ft caring 10 ft scre	сн			,			73	
in level is		ft. below Ground surface hrs. after comp			Forem	.ın l	Eart H	auge		:
, well is		ft. below Ground surface hrs. after comp		. •				-		
-) stoppa	-d by				Boring	rio [≠] £	ŝA			-
7										
	-			-						

	ess	RAMAPO SANITARY LANDFILL, RAMAPO), N.Y.					- •,	•• • •• <i>.</i>	-
		this boring is	• • • • • •		.	· · • · ···				
	гн	CLASSIFICATION	Semple	Sample	Depth	No of 3	0" blows	an Spoor	Recovery	Losi
	To	Be Careful and Accurate	Type	No."		151 6"	2nd 6"	310 6"	in.	Rei
•	. 14'	Boulders and cobbles in coarse to fine sand and gravel		-	-			· · · ·		-
	1.6 '	Hard drilling, bedrock, no samples					 		·••• •	
		Installed wellpoint at 15'. Sand, seal, grout, standpipe OK			•			···		
+.		seat, grout, stampape or	•		<u>.</u>	·			·	
]								· • ··		1
- -										
			······					·		
- 1	_`	·								•••
-		· · · · · · · · · · ·	· · •			•				• • • •
		······································	· • · • • • •		· - ·					
			 1	.				· -	·	• -
				•··	н I.		<u> </u>			
				·						
										-
			· ·	-		· • · • •				••••
-				-						
							-	·	RAM	·
				•					0	, <u> </u>
				• • • • •				-		·
		ft.' used <u>8 ft.</u> casing. 10 ft. s	l_		U	Ą,		- .	5	1576
		ft. below Ground surfacehirs. after con			Furé	- nan	<u>E</u> arľ	Hauge	· • • • • • •	
		ft. below Ground surface	pletion.							
օրբ	ed by .	Brdrock	-		Bori	ng No.	#9			

}

	this boring is	· ·	· · · · · · · · · · · · · · · · · · ·		· · · · · ·		· · · ·		
•тн	CLASSIFICATION	Sample Type	Sample No.*	Depth	·	r	un Sµaan	Aecovery in,	Losi W
To					1st 6"	2nd 6"	3.4 6"	····.	Rema
<u>15</u>	Cobbles and boulders in coarse to _ fine sand and gravel	SS	1	10	45		· -	·	.
38	Gray coarse to medium sand some gravel, cobbles	<u>\$\$</u>	2	20	31	42	. 5 <u>5</u>	18	
47	Cobbles and boulders and gravel in coarse sand	SŞ	3	30	24	.35	40	18	
50.	Hard dritting, bedrock	SS	4	40	50/1				-
- · · · · · · · · · · · · · · · · · · ·	Instatted well at 40'						· _		
								· · · · · ·	
-			-				н 1. н		• • •
		· · · · · · · · · · · · · · · · · · ·			-		· · · · ·		
						· • •			- - ·
		• ••• ··	-				 		-
	······································		· ·	- · ·			 -	•	
	· · · · · ·								
			•	· · · · ·	· 4				RAM
				-					100

ì

Boring No.

MORETRENCH AMERICAN CORP.

RECORD OF SOIL EXFLUENTION

RAMAPO SANITARY LANDFILL

Joh No 1 4201

- 1

- ...-

Buring No. +

Address - -

Ì

nd Surface this boring is

GS

1/7:00

DL	 РТН	CLASSIFICATION	Semple	Sample		No of 3	0" blows	on Spoor	Rucovery	L 051
· •	То	Be Careful and Accurate	Туре	No."	Depth	1st 6"	2nd 6"	310 6"	in.	Re
'd. Su '∙v∙	15	Cobbles and boulders in coarse to	·			-				· .
		fine sand and gravel								
, j	28	Gray coarse to medium sand some grave	Ľ				-			
	-									
		Installed wellpoint at 26', sand,								
т. 1 т.	·	seal, grout, st. pipe OK				• • • • •				
						-	<u> </u>		-	
									•	
								-		
-	. •									
								·		
		····				ĺ				
	ś									
•									· [
	• •			1	· ·				1	
·	•					ļ				
					[÷			
:			İ	- İ	ĺ	Í				
									. I	דולתי
										RAM
						-			· .	0
		• · · · · · · · ·	•	-	·			· · · · · · · · · ·		001
	,	· · · · · · · ·		Í	. 1	•		• •	4	15
·] .	I		L				I -		· • • · _d.	1576
	urface t	· · · ·			-		Fair	Hauge		
	l is .	_ft. below Ground surface . hrs. after con			For	. nam . \	LAIL	mugt		
. ¹ 11-12	l is	It. below Ground surface hrs. after com	pletion.	•		`. ••	-1	0A		

lap stopped by

..

t

1	7	į	5	0	
 	-		•	-	-

ddress _____

1

MORETRENCH AMERICAN CORP. RECORD OF SOIL EXPEDRATION

.

Jub No	1-4201

• ...-

- - ---- - - - -----

.

.

RAMAPO	LANDFILL,	RAMAPO,	N.Y.	

......

Datum used is _____ GS

d Surface this boring is _____ - ____

 اعد	РТН	CLASSIFICATION		Semple	Oepih	No of 3	0" blows	on Spoor	Recovery	L OST Wat
	To	Be Careful and Accurate	Type	No.		111 6"	2nd 6"	3/d 6"	' in,	Remark
	.7'	Brown quarse to find saud and gravet].		 				
		cubbies				Į .			-	•
	12'	Boulder			-		ļ.,			
	19'	Cobbies and boulders in coarse to					-			•
·		Line sand and gravel			:			· • ··		-
ŭ	_22'	Hard drilling, bedrock		, ,	- ··-	· ·		- · · ·	- · -	1
		No samples, no wellpoint				· 	·			
-									; <u> </u>	•··· •
					-					
		···					·			
									:	•
		· · · · ·	•					·		
							-			
.			• • • •				, <u> </u>	···	•	· · ·
.	+		•···•	- · ·			• • •			••.
-+	•									• • • • •
┟					··		• - · · -			
			···							•••••••
-		· · · · · · · · · · · · · · ·								
-†-					••••		• +			•••
-	†					· ••	-1	1		
			-	1					- 1	, ,
ŗ-					. <u>. </u>				N	
1				•						S
										100
1									······································	-
 c.		ft. `` used casing.								157
		ft. below Ground surfacelirs. after con	noletion		For	eman	Eart	Наџде	. <u>-</u>	L.
		ft. below Ground surfacehrs. after co							-	
		Bedrock			Buri	ing No.	<i>#</i>]	1		
.)	,,,.cu u y		-	1.		,		•	- 	
		· · · · ·								

KORLIRE!CH	ARTERI	ICAN	CORP.
RECORD OF S	OIL EXPL	ORATI	DN

Job No	1 4201
LJ -	AII

RAMAPO SANITARY LANDFILL, RAMAPO, N.Y. •••

Juliess. Datum used is

ł

GS | Surface this boring is

- РТН	CLASSIFICATIO		Sample	Sample	Sample Sample 140 of 30" blows on Spoon			Recovery	Losi Wate	
Т.	Be Careful and Accur	• • •	Type.	NO."	Depth	151 6"	2nd 6"	3,0 6"	- in.	or Remark
21	Cobbles and boulders in	i coarse to		1		j		- <u>-</u>		
	hine sand and gravel	·						··· =	-	• • • •
24	Hard drilling, bedrock	·			-					
									•••	•••••
. .	No samples	- 								
	Installed wellpoint at	21'								···· •
	·····	· · · · · · · · · · · · · · · · · · ·								• / · • · · ·
· 	-	•••••••••••••••••••••••••••••••••••••••	· · · ·]			
<u> </u>			÷]	
1						.	.			
		-							·	
· .		,								. <u>.</u>
			· · -							• •··-
↓.	· - · · · · · · · · · · · · · · · · · ·	•. • • •	·		-					· •
	······································							[_		•
				•···- ·				·		· · · · · · ·
	····· ···· ···························		•••••••				<u> </u>			
-			• • • •						÷ • •	• •
,		••••		- -						•• • . •
• •			1		·				•••••	••••
1								· · · ·		···
				1					RAM	"
•			•					- [-	3	
						- 1				2
<u>-</u>									·	
·face t	10ft." used <u>13 ft "</u> casir	ng. 10 ft scr	een					*	 !	1578
1 is					Foren	30	Fas	с Нац	7 <i>1</i> 2	78
is _	_ ft. below Ground surface	hrs, after com			Foren					-
n. Aped b		2			Buring		#11A			

MORETRENCH MALEICAN CORP.

RECORD OF SOIL EXPLORATION

ا من الم

.

...

.

Idress_____RAMAPO SANITARY LANDFILL, RAMAPO, N.Y.

Datum used is _____ GS

2/0/80

d Surface this boring is _____ _ ____

E	РТН	CLASSIFICATION	Cample	Sample	Depth	No. of 3	D" blows	on Spoon	Recovery	Lost Wet
	To	Be Careful and Accurate	Туре	No.*	Depin	151 6"	2nd 6"	3rd 6"	· in,	or Remark
••••	17'	Large boulders and cobbles in coarse								
		te fine sand and gravel								•
	22'	Hard drilling, bedrock, no samples			· .				.	• • •
							· .		-	-
· ·		Installed wellpoint at 20', sand sea	Ľ.							
		grout, standpipe OK					-`		· • ·	·-
-	•	······································			-					•
-				. <u>.</u>		<u>-</u>				···· • •
-			• • • • • •			I	·			•••••
1			••••	••• • •						••
ł										- · ·
	1									
1										•
						·				
								·		
ļ.					· -					
								[
			· ·-						·	··· ··
-	-				• · · · •					
.						.				
- -		······································	·							 اتتا
-			• • • •					1		RAM
F				•						100
4			1							<u>н</u>
Í	[157
 S1	urface to	ft." used <u>12 th</u> tcasing. 10 ft. 1	screen							79
		ft. below Ground surfacehrs. after cor			For	anan	Earl	Hauge		
	l is	ft. below Ground surfacehrs. after con								
		Bedrock	- 		Buri	ng No.	M12			
;						• •				

1 4.21

· **- · -** · · · ·

MORLINERCH AMERICAN CORP. RECORD OF SOIL EXPLORATION

·.._

Jub No 1-4201

• •••,- -

lress	RAMAPO SANITARY	LANDFILL,	RAMAPO,	N.Y.	
Datum used is	GS			· · · _	

-Surface this boring is

5,11:80

РТН	CLASSIFICATION	Sample	Semple	Depth	No of 3	0" blows	on Spoor	Recovery	Lost Wate
То	Be Careful and Accurate.	Түре	No."	Depth	151 6"	2nd 6"	3rd 6"	in,	or Remarks
25'	Boulders and cobbles in coarse to	SS	1	10'	50/1			.6"	
	fine sand and gravel			· ·					•
28'	Hard drifting, bedrock	SS	2	20	- 38	50/1	-	6"	
	n an an an an an an an an an an an an an	1							· -
·				•••				-	-
·									
· · - · · - · - ·							!		-
·	·····				-				
	¹								-
1							. 1		
-	•·· • · · · · ·					.	_]		
+ · - +								-	
• • • • • •					· ·	.			· -
₽ 1	· · · · · · · · · · · · · · · · · · ·								
· · · ·								. .	· - •
, -									
·			.						
		• • •							·
				• · ·					
			·						-
·						. 		-	
		•	-						
									RAM
					- -				·
			•				_	 .	100
		·		. [.	_				
									1580
face to_	ft. used <u>17 ft</u> casing 10 ft. sc	reen.							- S
	ft. below Ground surface	•		Foren	11 80	<u>Earr</u>	Hauge	-	_
is	ftbelow Ground surfacelirsafter.com	opletion.		·					-
sped by		. · ·		Borin	n No.	#1 .	3		
۲.		-						·	

MORETRENCH AMERICAN CORP. RECORD OF SOIL EXPLORATION

5/20,50

JUL No 1-4131

RAMAPO	SANTARY	LANDFILL,	RANAPO.	N.Y.

Address _____

1

ed Datum used is _____ GS

aund Surface this boring is _____

DEP	тн .	CLASSIFICATION	Semple	Sample	Depth	NO. 01 3	0" blows	on Spoor	Recovery	Los
um	То	Be Careful and Accurate	Туре	No.		111 6"	2nd 6"	310 6"	in.	R
rd. Tace	20	Cubbles and boulders in coarse to	<u>\$\$</u>	1	10		75		16"	<u> </u>
		Sine sand and gravel		.	· ·	I				
0	40	Hard drilling, bedrock								
					-					
		Installed wellpoint at 21'								
-1										
1										
										•
			• • • •					-		•••
							·			• • • •
									•=	
· † ·	•	· · · · · · · · · · · · · · · · · · ·		·						-
	·	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l Companya de la companya - · -				• • •	· · - ·			
+-						· · • •	· • • •			-
- -		······································	· · •• •• ••							-
- -		· · · · · · · · · · · · · · · · · · ·	· · - -	.	· •					
╞						+		{		
+			·· ····							
\perp										
⊥				_ .					·	-
. _					- 1	·				
 			.			+				
										- · ··
Į.,										
<u> </u> _							·		RAm	1
				·].		
].	·	100
		N								
S		ft. used <u>13 ftcusing</u> 10 ft so								1581
		•			•		Far	r Ham	5 <i>0</i>	ĥ
		ft. below Ground surfacehrs. after con			FUL	:mañ		۱۳۹۲	ـــــا ز	
		The below Ground surface this, after con Readmands	npletion.				<u> </u>	,		
stop	ped by.	Bedruck	-		Bori	ng No.		•	. 	-

•	ss ເ <u>ຫຼ</u> ຸບຣເ	RAHAPO SANITARY, LANDLILL, RAMAP		••••		• · · · ·		 	• •••	•••
đ Su	rface	this boring is	-, 	· · ·		. 			· · · · · · · · · · · ·	
JEPT	H To	CLASSIFICATION Be Caraful and Accurate	: Semple Type	Sample No.*	Gepth		0" blows 2nd 6"	on Spoon Jid 6"	Recovery .in,	Lost W O Rem
•(•	18'	Cobbles and boulders in coarse to fine sand and gravel	SS _	1	10	40	50/1		_6"	
, .	23'	Hard dritting, bedrock	•	-			- -			· · ·
		Installed wellpoint at 21'	: 	·			. 	· · · ·		
					·			••••		•••
			· · - ·· · -							
										_ '
			· • •		-					
		······································				_	· ·· ·			· · -
			• • • • •	 	• • • •					• •
				 	- 		·			 ····
 					 				 	••••••
<u> </u>										RAM
-										00
								1		- 1 - 15

;

	•	~		c	^	
51	1	9	1	3	U	

MOREVRENCH 7.MERICAN CORP. RECORD OF SOIL EXPLORATION

_ . _ __...

iddress	_	_	 	
	-		 	

1

GS .

RAMAPO SANITARY LANDFILL, RAHAPO, N.Y.

1 Datum used is nd Surface this boring is _____

<u> </u>	Be Corolul and Accurate and boulders in coarse to	Type SS	Sample No.*	Type No."	Depth		-rd'		No of 30" blows on Spoon			Lost V
<u> </u>		22	<u>. </u>		151 6"	2nd 6"	Jid 6"	in,	Rer			
28' <u>Gray br</u> graveľ 32' <u>Hard</u> dr			1	10	31	_50		12"				
28' Gray br graveľ 32' Hard dr	ind and gravel		l									
graveľ 32' Hard dr	own medium to fine sand som	e SS	2	.20	27	50/1		6"				
<u>32' Hard</u> dr												
	illing, bedrock						•					
]ustaĽĽ						1						
	ed wellpaint at 28'											
							··· ·					
							•					
	· · · · · · · · · · · · · · · · · · ·			••••				{	i -			
			-	-								
	······································		·	· ·	-	· · ·	 .	· — · -	•— -			
	······································					╸ー╷┥	{	 	.			
	· · · · · · · · · · · · · · · · · · ·	- · ·			· • • –							
		-					·					
		4		· ·								
				· {								
				· · · · · ·								
									•			
	<u></u>			- [· _			
				- · ·	·							
		· ·	·	. .		4-			•- -			
	· · · · · · · ·	- 1	.		-				• ••••			
						- • .			`_			
	<u></u>								R			
			•				.		RAM			
		.		 _					0			
			<u> </u>						001			
rface to ()	used _ 20 fit casing. 10 ft.	screen							سر			
	w Ground surface			e	man	Earl	Нацае		1583			
				FUIE	man				ω			
pped by Bedra	w Ground surface	unpletion.			ng No.	F16						

MORENERCH AMERICAN CORP.

•

-

RECORD OF SOIL EXPLORATION

Job	No	_	_	1-	4	201
	-				-	

Address. RAMAPO SANITARY LANDITLL, RAMAPO, N.Y.

ed Datum used is ______ GS

Cound Surface this boring is _____

Ŋ

1. . . **.**

DE	ртн	CLASSIFICATION			T	1				••••••••••
um	То	Be Careful and Accurate	Semple Type	Sample No.* -	1 Dense		No of 30" blows on 5		Recovery	Lost
d. Tace	12	Cubbles and builders in cuarse to	SS	 !	10	111 6" 50/1	2nd 6"	3rd 6"	in.	Ren:
. 2	28	fine sand and gravel Coarse gray brown sand	SS	2	20				·= -· · ·	• • • • • •
°S	49	Fine to medium gray sand some grav trace silt, cobbles	UC SS	3	<u>30</u>	17 _ 7 <u>5</u>	28	40	18	• • •
-7	52	Hard drifting bedruck	SS		 -+0	 31	60	• • • • •	12	
	••••	Installed wellpoint at 10'								-
	-					•••				- .
				ļ	-	· .	- 			• •• •.
			•••••••••••••••••••••••••••••••••••••••			••••				<u>.</u>
			· · ·	-						•
	+-					 				·· · · · · ·
										•••••
1			· · · -							
					1	·	· +			· -
i 	·									• ••
· ·			•				1	-	RAM	
					-					
⊂ ir faci ≂ is		ft. used <u>32_5</u> tcasing. 10 ft sc ft. below Ground surfacehrs. after com							1584	
' is	-	_ ft_ below Ground surfacehrs. after comp		ſ	oreman	I	Eant H	lauge	4.	-
r ped	bγ	Bedruck		B	uting ti	0	#17	•		

1,1,50

MORETRUTCH AMERICATE CORP. RECORD OF SOIL EXPLORATION

JUL NUT 4221

R	ama po	SANTIARY	-LANDE I	LL
---	--------	----------	----------	----

Address. ---- -GS ed Datum used is •

DLPTH	CLASSIFICATION		Semple	Sample		No 01 J	0" 610~1	on Spoor	Hecover
	Be Careful and Accurate		TYPE	No.*	Depth		2nd 6"	310 6"	in.
d. 1	Brown medium to coarse san	d some arave	r SS	1	10	14	20	27	18
	cubbles				·	.			.
3 2		trace gravel	SS	2	20	20	17	30	18
8 3			SS	3	30	50/1			
3 3			•	-				-	
							(1		
.] .	Instatled wellpoint at 32!								
								·.	
			•=						
						_	.		. .
							· · ·	<u>-</u>	•••
								•	
-	•								
							•		
	· · · · · · · · · · · · · · · · · · ·		-			-			
		* <u>-</u> *							
	· · · · · · · · · · · · · · · · · · ·	· · · · ·		· · · •			•••	•••	
· .	· · · · · · · · · · · ·		-			· ·· ··	• •••		
•									
1								_	· ·
1								· ·	•
						·			
						.			· •
				•					
				-	ļ		-		
 						l]	. . I	
l Surfac	10ft. used_ 24 ft_casing.	10 ft scr	een		4	•			۲
evel is .		hrs. after comp	letion.		For	enan	Earl	Hauge	
es el is	. ft. below Ground surface	.hrs. after comp							```

MORENELICH AMBRICAN CORP. RECORD OF SOIL EXPLORATION

Juli No

1-1.1

	RAMAPO	SANITARY	LANDF1L
155			

1/2,50

ì

gdress. GS Datum used is . ••• •• • d Surface this boring is . -• :

L

DLPTH		CLASSIFICATION	7	Γ	1	17			Lost W	
			Sample	Semple	Depth	No of 3	0" blows	on Spoon	Recovery	Lost We
•	То	Be Careful and Accurate	Түрө	No."		151 6"	2nd 6"	310 6"	in,	Rema
· .			<u></u> ∤ <u>−</u>				∤ ··· - · -	<u> </u>	·· ··	<u> </u>
iu. ⊡te e	16	Cobbies and boulders in coarse to		1	1			 		.
		fine sand and gravet		1				·		•
15	20	Hard dritting		I						
10	20		· · ·		· ·	i			• • • • • •	•• :
		Ne samples	н			4		1		
		Installed wellpoint at 17', sand,				-				
		seal grout, st. pipe OK		·						
		send guard, sie prive on								
••.			-			· ·			·•• · · ·	-
		••••••••••••••••••••••••••••••••••••••		·		·				
						-				
I		-								
ł	· ·-	•				• • •		· ·		
	-		-				. –	•··•• •• •	•	· · · ·
				·						• . •
							_			-
	i								-	•
									-	
							•		.	
• •		-					[-
·		·· · - ·· · · · · · ·								 ·
						· _		-	·	- • •
									· · · · ·	
									ŀ	
1							I	ļ	ļ	
		· ·				1	1	-	-	•
-								·	•	
								-		
						· ·]		_ [
. 1			-	•				. [RAM
-	· ·	- · · · ·		Ì	·			··· -· [• ••	
			. 1	-		·	· • · · •			001
			l			.		l		ŭ
		b	C 2 0 013							L 4
· Si	inface to	o ft. usid. 9 Str. casing. 10 St. s					r	V 11	~	1586
Jere	l is .	. ft. below Ground surface . hrs. after co	inpletion.		For	ะเกลก	car	<u>l Haug</u>	<u>ሮ</u> *	36
	1 is	. ft. below Ground surface hrs. after co	nulction.						·	
			• • • • • •		0			#20		
្រះលេ	;-;⊪J by			÷	DUN	ing No.		••••		

MORETREACH AMALIICAN CORP. RECORD OF SOIL EXFLORATION

Juli No 1 1-4201

1/	57	20	
----	----	----	--

Address_

RAMAPO SANITARY LANDFILL

GS Ked Datum used is. - and Surface this boring is Lost va. of 30" blows on Spoo Semple Sample DEPTH CLASSIFICATION Depth No." Type in. Be Careful and Accurate R. 111 6" 2 nd 6" 310 6" ۲o 'n Gid. 17 :20 18 Tan fine to medium sand, trace clay SS 1 10 11 12 Surfa: e and gravel, occasional cobbles. . . - -____ . ÷ • 23 18 20 19 27 SS 2 Brown coarse to fine sand, little. 12 26 gravel, occasional cobbles . Hard drilling, bedrock -25. 30. Installed wellpoint at 26', sand seal, grout st. pipe OK. - -RAM 100 1587 d Surface to _____ ft. used 18 St_ casing. 10 ft. screen Earl Hauge Foreman ____ft. below Ground surface . hrs. after completion. a level ishrs. after completion. . ft. below Ground surface Iccel is ... •21 Bedreck Buring No. . ring stopped by_

APPENDIX M

ANALYTICAL RESULTS FROM PREVIOUS INVESTIGATIONS.

• •

RAM

001 1588

Table 1-1 from the Remedial Investigation, which is re-presented here, summarizes efforts performed prior to the RI. Data report numbers shown on this table correspond to the laboratory data sheets and summary tables of analytical data from previous investigations at or in the vicinity of the Ramapo Landfill. This information was taken from reports and information in the NYSDEC, NYSDOH, and Town of Ramapo files. Note that not all results could be located (i.e. #1,2,19), or were too voluminious to reproduce (i.e. #28,29).

RAM

001

1589

20-	X		
A CAR		SUMMARY OF PREVIOUS INV	ESTIGATIONS PLIO 4
P	Date	Matrix	Activity
(*1)	1974	Leachate	Water company discovered a black sludge emanating from landfill
	May 31, 1974	Surface Water (Torne Brook)	Weekly sampling of Torne Brook at 3 locations initiated by Spring Valley Water Supply Co.
(*3)	June 26, 1974	Leachate	Passaic Valley Water Commission analyzed discharge to Torne Brook
(*4) (June 1974 to October 1978	Leachate and Surface Water (Torne Brook and Ramapo River)	NYSDOH and NJDOH analyzed samples taken of leachate, Torne Brook and Ramapo River (6/18/74; 11/24/76; 10/20/77; 2/13/78; 6/29/78; 8/15 & 16/78; 10/30 & 31/78)
(#5)	September 11, 1975	Surface Water (Ramapo River)	Town of Ramapo sampled upstream, opposite and downstream of site
(#6)	October 17, 1975	Leachate	Hackensack Water Co. analysis of leachate
(* 7 -	1975	Leachate and Surface Water (Ramapo River)	Hackensack Water Co. analyzed leachate and upstream, opposite and downstream of site in Ramapo River
(*) (*)	March 9, 1976	Surface Water (Torne Brook and Ramapo River)	Rockland County Department of Health sampled Torne Brook upstream of site and 1,000 ft. from confluence with River; sampled River upstream and downstream of Torne Brook
(*9)	August 26, 1976	Groundwater	NYSDOH sample at weigh station
(* <i>l</i>)	November 24, 1976	Surface Water (Torne Brook)	Leggette Brashears, and Graham, Inc. (for Spring Valley Water Co.) samples taken 50 ft below holding pond outlet and 10 ft below confluence of leachate and Torne Brook

062I IOO MAR

No was	PC 2.	19	
I a low	Date	Matrix	Activity
(1)	May 1978	Surface Water (Torne Brook and Ramapo River)	Leggette Brashears, and Graham, Inc. (for Spring Valley Water Co.) sampled Torne Brook at 8 locations, Ramapo River at 3 locations and analyzed for only specific conductance
(*) (*)	June 21 and July 11, 1978	Surface Water (Ramapo River)	Leggette Brashears, and Graham, Inc. (for Spring Valley Water Co.) sample taken both dates from Ramapo River 1350 ft. downstream from mouth of Brook
(#13)	September 6, 1978	Leachate	Unknown laboratory analysis of leachate
(#il)	March 21, 1979	Groundwater	NYSDOH sampled wells 1, 2A, 3, 4A
(⁴ 5)	March 21, 1979	Groundwater	Unknown lab analyzed wells 1, 2, 2A, 3, 4, 4A
	March 21, 1979	Groundwater	Hackensack Water Co. analyzed wells 1, 2, 2A, 3, 4, 4A
(*7)	March 21, 1979	Groundwater	Fred C. Hart Assoc. sampled B-129 through B- 136
(FE)	April 1 and 11, 1980	Groundwater	Leonard Jackson Assoc. analyzed the majority of the 25 monitoring wells for specific conductance
(*** 19	May 29, 1980	Air	EPA Region II Field Investigation Team explosimeter survey
(AJ)	July, 1980	Offsite Soil and Drum Contents	RCHD collected soil and liquid drum contents from Ramapo Landfill Co. property
(m2C)	October 11, 1980	Waste	EPA sampled a sludge-like material from an unknown location on or near landfill
(z)	October 11, 1980	Leachate	EPA sampled at the leachate inflow and outflow

IEZI IOO MAA

P2Ptrt P63	ol 4	
Date	Matrix	Activity
February and March, 1981	Groundwater	NYSDEC performed extensive sampling and analysis of monitoring wells (2/4/81; 2/18/81; 3/11/81)
March 11, 1981	Groundwater	Hackensack Water Co. analyzed samples from monitoring wells 3, 5, 5A, 8A, 18
1982	Surface water (Torne Brook at confluence with Ramapo River)	NYSDOH analyzed samples taken by NYSDEC for the program: Routine Toxics Surveillance Network Near Problem Landfills (6/1/82; 6/29/82; 7/27/82; 8/24/82; 9/20/82; 10/19/82)
Late 1982 and March 15, 1983	Leachate, Groundwater	NYTL analyzed 2 leachate and 2 groundwater samples
October 28, 1983	Waste	Sample obtained during the course of excavating trench
1983	Leachate	Analysis for NPDES permit
1984 - 1985	Leachate	Town of Ramapo sampled leachate monthly in collectors
1986 - Present	Leachate	Weekly analysis of leachate by Envirotest Laboratories, Inc. for the Town of Ramapo
February 5, 1987	Groundwater, surface water, sediments	NUS Corp. collected samples during their investigation on Ramapo Land Co. property
March 16, 1988	Groundwater	All wells analyzed for indicator parameter 3 wells in depth analysis for Town of Rama
July 25, 1988	Groundwater	Dunn Geoscience sampled monitoring well DG 6S which was installed at the proposed Tor Valley Balefill site, north of the Ramapo Landfill

RAM 001 1592

.....

SURFACE WATER ANALYSIS RAMAPO LANDFILL SITE

	Downstream	Opposite Landfill	Upstream	Downstream	Opposite Landfilt	Upstream	Leschate	Torne Brook	Torne Brook 1000-ft	100-ft	Ramapo River 2000-tt
Sampled by: Parameter	9/11/75 Town of Ramapo	9/11/75 Town of <u>Ramapo</u>	9/11/75 Town of <u>Ramapo</u>	1975 Hackensack Water	1975 Hackensack Water	1975 Hackensack Water	1975 Hackensack <u>Water</u>	Upstream 3/9/76 Rockland County	Upstream to Ramapo River 3/9/76 Rockland <u>County</u>	Upstream of Torne Brook 3/9/76 Rockland <u>County</u>	Downstream of Torne Brook 3/9/76 Rockland <u>County</u>
pH (Units) Dissolved Oxygen BOD Suspended Solids Coliform, MPN Fecal Coliform, (MPN/100ml)	7.8 5.2 14 8 -	8.0 4.4 15.6 10 -	7.8 5.4 9 5 -	- 9.9 1.6 - 6.213 -	- 10.2 3.7 - 5,701 -	- 10.9 1.5 - 1,003 -	0 GT270 940	- - - 73 LT 36	- - 1,200 91	- - 230 230	- - - 430 91

All results given in PPM except as noted. GT Greater Than

LT Less Than

Indicates not analyzed for.

45,7,8 P6 01

т 00 1263

MAA

4-23

GROUNDWATER ANALYSIS

RAMAPO LANDFILL SITE

WELL SAMPLES - NEW YORK STATE DEPARTMENT OF HEALTH

· · · ·	Weigh Station	1	2A	3	·4A
Parameter	8/26/76	<u>3/21/79</u>	3/21/79	<u>3/21/79</u>	<u>3/21/79</u>
Color (Units) Nitrogen, NH3 Nitrogen, NO2(µg/l) Nitrogen, NO3 + NO2 Chloride Hardness, Total Alkalinity, Methylorang pH (Units) COD Iron Manganese Sodium Turbidity Phenols TOC Arsenic Cadmium Chromium, Total Lead Mercury Selenium Xylene (µg/l)	3 LT 0.005 5.01 0.102 38.3 138		- - - - - - - - - - - - - - - - - - -	- - - - - 200 23 - - 0.70 98 0.04 LT 0.02 LT 0.1 LT 0.02 LT 0.1 LT 0.0004 LT 0.01 GT 800 GT 50	- - - - - - - - - - - - - - - - - - -
Toluene (µg/l) Benzene (µg/l)	-	-	-	-	GT 200

Results given in mg/l unless noted Note:

Ц

11

П

LT: Less than

GT: Greater Than

- : Dashes indicate that the compounds were not analyzed for.

4-4

RAM

001

1594

GROUNDWATER ANALYSIS RAMAPO LANDFILL SITE TEST BORINGS - 3/21/79

	Boring Number						
Parameter	1	2	2A	3	4	4A	
pH	6.7	7.2	7.6	6.5	5.9	6.4	
Chloride	82		243	207	9	25	
Ammonia, free (N)	0.03	0.07	0.12	0.32	0.02	0.19	
Nitrite (N)	0.05	0.01	0.09	0.03	0.01	0.02	
Nitrate (N)	0.35	0.51	0.27	0.33	0.23	0.10	
Fluoride	0.09	0.11	0.07	0.07	0.05	0.10	
COD	197	119	88	2,856	142	48	
BOD - 5 day	75	21	12	474	21	9	
Total Coliforms (No./100 ml)	700	2,400	240	500	7,000	LT 23	
Aluminum	0.42	0.12	0.63	20.0	0.03	105 1 30 -	
Copper	0.10	1.01	0.10	0.05	0.09	0.05	
Iron (Total)	39.0	_ 3.4	31.4	46.6	0.52	29.5	
Manganese	0.74	2.30	0.16	0.66	4.00	1.05	
Selenium	0.0001	0.0001	0.0001	0.0001	LT 0.0001	LT 0.0001	
Silver	0.0050	0.0050	0.0080	0.0140	0.0070	0.0050	
Zinc	0.18	0.07	0.25	0.10	0.06	0.08	
Arsenic	0.0050	0.0003	0.0045	0.0084	0.0001	0.0020	
Barium	0.285	0.044	0.286	0.307	0.032	0.052	
Cadmium	0.0005	0.0002	0.0012	0.0006	0.0005	0.0003	
Chromium	0.0256	0.0025	0.0291	0.0115	0.0009	0.0076	
Lead	0.022	0.007	0.059	0.011	0.003	0.011	
Mercury	0.0005	0.0001	0.0001	0.0003	0.0002	0.0001	
Volatile Halogenated							
Organics	ND	ND	ND	ND	ND	ND	

Volatile Halogenated Organics include: Methylene Chloride, Chloroform, 1,2-Dichloroethane, 1,1,1-Trichloroethane, Carbon Tetrachloride, 1,1,2-Trichloroethylene, Dichlorobromomethane, 1,2-Dibromoethane, Tetrachloroethylene, Bromoform, 1,1,2,2-Tetrachloroethane, Diiodomethane, Dibromochloromethane, 1,1,2-Trichloroethane, Dichlorobenzene, Mixed Isomers.

RAM

I00

1595

ND: Non Detectable

LT: Less Than

All results are given in mg/I

Analysis performed by the Hackensack Water Company.

SURFACE WATER ANALYSIS

RAMAPO LANDFILL SITE

	Torne Brook 50 ft below Holding Pond	Torne Brook 10 ft below confluence of		downstream	iver, 1350 ft n from mouth ne Brook
Parameter	Outlet 11/24/76	leachate and brook	<u></u>	6/21/78	- 7/11/78
······		-		0.001	0.001
Arsenic Barium	1.0	-	· .	0.09	0.12
Cadmium	0.02	-		0.001	0.004
Chromium (hexavalent)	0.1 (total)	–	LT	0.005	0.006
Copper	0.05	-	•	0.07	0.01
Iron	0.3	0.48		0.26	0.27
Lead	0.1	—		0.017	0.017
Manganese	-	· · ·		0.02	0.05
Mercury	0.0004	. –	LT	0.0001	0.0007 LT 0.001
Selenium	-	-	LT	0.001	LT 0.001 0.001
Silver	-	-		0.004 0.08	0.02
Zinc	0.05	0.05		U.UO	U.UL

All results are given in ppm LT: Less Than

MAA

τ00

Analysis performed by Leggette, Brashears & Graham, Inc. - : Indicates not analyzed for.

10,17 P6101

.....

4-25

96ST

1

SURFACE WATER ANALYSIS RAMAPO LANDFILL SITE

Location	Sample Date	Specific <u>Conductance</u>
Torne Brook, at new bridge on entrance	5/25/78	39
road into O&R substation, approximately	5/31/78	44
0.8 mile north of Holding Pond.		
Torne Brook tributary above landfill,		
approximately 0.7 mile along access		
road north of Holding Pond.	5/25/78	49
Torne Brook, at bridge approximately		
500 ft south along access road from	5/25/78	54 6
weigh station.	5/31/78	65
Torne Brook, approximately 75 ft		
upstream from mouth of outflow from		
Holding Pond.	5/31/78	- 74
Torne Brook, approximately 100 ft		
downstream from mouth of outlet of		
Holding Pond.	5/31/78	152
Torne Brook, aproximately 150 ft		
downstream from mouth of outlet of		,
Holding Pond.	5/25/78	90 8

1597

TABLE 4-15 SURFACE WATER ANALYSIS RAMAPO LANDFILL SITE PAGE TWO

4

Location	Sample Date	Specific Conductance
Outlet of Holding Pond, at culvert	5/25/78	840
under access road.	5/31/78	1490
Culvert outlet under access road		
opposite old equipment yard and approximately	5/25/78	59
450 ft south of outlet of Holding Pond.	5/31/78	57
Ramapo River, approximately 800 ft upstream	<i>.</i> .	1 = = = = = = = = = = = = = = = = = = =
rom entrance of Torne Brook at edge of Old	•	
slag dump.	5/31/78	171
ast side of Ramapo River, approximately	:	
00 ft downstream from mouth of Torne Brook.	5/25/78	129
ast side of Ramapo River, at picnic area on		
alciated bedrock shore, approximately 0.3 mile		
outh of Holding Pond.	5/31/78	178

Results are given in µmho/cm Analysis performed by Leggette, Brashears, and Graham, Inc. RAM 001 1598

4-27

ITTLLLLLLLL

GROUNDWATER ANALYSIS

RAMAPO LANDFILL SITE

WELL SURVEY AT ROCKLAND COUNTY LANDFILL - 3/21/79

Unknown Lab (see p. 4-3)

.

Parameter	Well Number							
••••••••••••••••••••••••••••••••••••••	1	2	2A	. 3	4	4A		
Aercury	LT 0.001	LT 0.001	0.001	0.001	0.004	0.311		
Total Chromium	0.35	LT 0.02	0.02	0.31	LT 0.02	0.02		
Manganese, S	6.9	2.0	1.1	30.6	3.1	7.9		
Arsenic	0.071	0.023	0.047	0.046	0.015	0.035		
Cadmium	0.02	0.04	0.04	0.05	0.02	0.06		
linc	0.63	0.29	0.44	0.35	0.21	0.29		
Silver	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05		
ron	68.0	6.3	39.8	69.6	1.0	42.5		
Nickel	0.24	0.19	0.14	0.27	0.10	0.23		
ead	0.033	0.005	0.020	0.004	LT 0.002	LT 0.002		
Copper	0.13	LT 0.02	0.04	0.03	LT 0.02	0.03		
Aluminum, T	119.6	1.8	24.9	1.8	LT 0.50	7.9		
TSS	5,209.6	129.6	6,976.4	636.4	16.0	391.6		
Settleable Solids	6,196	188	6,906	597	LT 1	603		
BOD	61	50	5	1923	17	7		
pH	6.6	6.9	7.2	6.3	5.7	6.3		
Nitrate	0.5	LT 0.1	0.3	0.5	0.1	0.4 PG		

4-5

RAM

001

1599

GROUNDWATER ANALYSIS

RAMAPO LANDFILL SITE

WELL SURVEY AT ROCKLAND COUNTY LANDFILL - 3/21/79 PAGE TWO

_ · .							
Parameter			Well Number			<u> </u>	
	1	2	2A	3	4	4A	
Phenols							
	0.003	0.005	0.033	0.560	0.004	0.010	
Ammonia	0.49	0.34	0.69	0.80	0.24	0.99	
Hexavalent Chromium	0.03	LT 0.01	LT 0.01	LT 0.01	LT 0.01	LT 0.01	
Chloride	84.7	103.8	232.5	207.2	5.4	63.1	
Fluoride	0.19	0.05	LT 0.05	LT 0.05	LT 0.05	LT 0.05	
Sulfate	17.8	18.6	31.6	LT 1	15.3	10.9	,
COD	160.0	89.1	29.7	244.1	51.8	39.4	•
Cyanide	0.070	LT 0.001	LT 0.001	0.10	LT 0.001	LT 0.001	- -
Barium	LT 0.10	LT 0.10	LT 0.10	LT 0.10	LT 0.10	LT 0.10	. ;
Selenium	0.082	0.012	0.035	0.790	0.100	LT 0.001	
otal Coliforms,	GT 2400	GT 2400	240	LT 2	GT 2400	920	
APN							
ecal Coliforms,	GT 16 for	GT 16 for	GT 16 for	All pre-	GT 16 for	9.2 for	
IPN	5-ten mi	5-ten ml	5-ten ml	sumptive	5-ten ml	5-ten ml	
	tubes	tubes	tubes	tubes were	tubes	tubes	
			•	negative.		. (#15
				No fecal			# 13
0031 100 MAA				tests were		Pis	2013
	•		•	conducted ·			

4-6

GROUNDWATER ANALYSIS

RAMAPO LANDFILL SITE

WELL SURVEY AT ROCKLAND COUNTY LANDFILL - 3/21/79

PAGE THREE

4-7

<u>Parameter</u>	Well Number						
	1	2	2A	3	4	4A	
Cyanide	LT 0.005	LT 0.005	LT 0.005	LT 0.005	LT 0.005	LT 0.005	
PCB*	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5	LT 0.5	
Chloroform*	LT 1	LT_1	9	4	LT 1	LT 1	
1,1,2-trichloro-							
1,2,2-trifluorethane*	LT 1	LT 1	LT 1	LT 1	LT 1	LT 1	
1,1,1-trichlorethane*	LT 1	LT 1	LT 1	3	LT 1	LT 1	
Carbon tetrachloride*	LT 1	LT 1	LT 1	LT 1	LT 1	LT 1	
Bromodichloromethane*	LT 1	LT 1	3	LT 1	LT 1	LT 1	
Trichloroethylene*	LT 1	LT 1	LT 1	. 1	LT 1	LT 1	
Tetrachloroethylene*	LT 1	LT 1	LT 1	1	LT 1	LT 1	

ä ...

• . .1

. .

7 15

P63013

1.45

All results are given in mg/l unless otherwise noted

* : This result is given in $\mu g/l$

LT: Less Than

GT: Greater Than

Analysis performed by an unknown laboratory.

GROUNDWATER ANALYSIS RAMAPO LANDFILL SITE MONITORING WELL SAMPLES - 3/21/79

		,		Well	Number			
Priority Pollutant Found	<u>B-129</u>	<u>B-130</u>	<u>B-131</u>	<u>B-132</u>	<u>B-133</u>	<u>B-134</u>	<u>B-135</u>	B-136
Benzene	.	-	- .	_	-	-	15	
Methlylene Chloride	-	30	- -	37	52	38	20	35
Ethylbenzene	-	-	-	-	-	_	18	-
Toluene	- '		-	-	- .	-	1,629	-
Arsenic	240	260	- '	-	25	640	110	240
Chromium	-	-	-	-	120	140	61	60
Lead	- ,	-	-	-	_ ·	64	470	560
Nickel	-	96	-	-	230	410	68	620
Selenium	120	-	63	-	27	150	90	30
Diethyl Phthalate	-	-	-	<u> </u>	-	-	10	_ •

Results are given in µg/l

Z09T

4-10

It appears from the analytical report that all the priority

pollutants except asbestos were analyzed for. Only the compounds listed were found.

Samples taken by Fred C. Hart Associates.

MAA

- : Indicates not analyzed for.

τ00

オレチ P6191

GROUNDWATER ANALYSIS

RAMAPO LANDFILL SITE

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		April 1	1080	April 11	, 1980
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Well_		Specific Conductance		Specific Conductance
	2 2a 3 4 5 5 6 7 8 8 9 10 10a 11 12 13 14 15 16 17 18 20	14 12 11 12 11 8 12 8 12 17 12:5 - 8.5 12:5 - 12:5 12:5 12:5 10 12 12 12 12 12	400 480 2,300 210 340 160 580 165 1,850 280 - 1,520 310 - 1,420 880 1,600 440 4,800 2450 190	12 - - 13 - 11 10 - 11 - 8.5 8	380 - 260 - 1,180 1,500 - 2,900 - - 240 112

Note: The specific conductance is compensated to a temperature of 25°C.

Analysis performed by Leonard Jackson Associates. Dashes indicate the analysis was not performed. P610/1

WASTE ANALYSIS RAMAPO LANDFILL SITE

Sludge-like

1.0

	Material
Parameter	10/11/80
Phenol	78
Fluoranthene	250
Bis(2-ethylhexyl)phthalate	60
Diethyl Phthalate	54
Phenanthrene	340
Pyrene	160
Silver (mg/kg)	0.20
Arsenic (mg/kg)	6.0
Beryllium (mg/kg)	·· 0.28
Chromium (mg/kg)	11 -
Copper (mg/Lg)	40
Mercury (mg/kg)	0.24
Lead (mg/kg)	18
Nickel (mg/kg)	15
Antimony (mg/kg)	2
Selenium (mg/kg)	0.32
Zinc (mg/kg)	32
1,1,1-Trichloroethane	7.1
1,1-Dichloroethane	2.8
Ethylbenzene	0.60
Methylene Chloride	3.2
Tetrachloroethylene	12.0
Toluene	4.0

RAM

100

1604

Trichloroethylene

The sample was analyzed for all the priority pollutants Note: except asbestos and cyanide. Only the compounds found are listed.

All resulted are in µg/kg except as noted. Analysis performed by the USEPA, Region II.

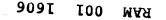
LEALTRE TELLE

1. 1 .

GROUNDWATER ANALYSIS RAMAPO LANDFILL SITE

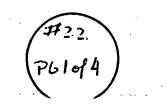
• •	Leachate	Well #16	Well #3	Leachate (inflow)	Leachate (outflow)	Leachate
•	Late 1982	Late 1982	Late 1980	10/11/82 5	10/11/80	3/15/83
	NYTL	NYTL	NYTL	USEPA	USEPA	NYTL
Laboratory Number:	R-3064-01	R-3064-02	R-3064-03	<u> </u>	<u>50248</u>	86-64452
Priority Pollutants			ł.			
Total Phenol	25	39	25	· _	-	-
Chromium	46		-	-	20	NA
Copper	17	34	295	5.0	45	NA
Zinc	34	126	263	1,100	230	NA
Nickel	-	38	163	-	30	NA
Selenium	-	-	. 1	-	·	NA
Arsenic	-	-	3	100	85)	NA
Benzene	-	19	-	0.70	-	NA
Acenaphthene	-	-	-	0.40	-	NA
1,4 Dichlorobenzene	-	-	-	2.2	-	NA
1.2 Diphenylhydrazene	-	-	-	0.80	0.40	NA
Fluoranthene	-	-	· –	0.10	0.60	NA
N-Nitrosodiphenylamine	-	· -	-	3.7	-	NA
Bis(2-ethylhexyl)phthalate	-	-	- '	4.1	47.0	NA
Butyl benzyl phthalate	-	-	· –	2.2	4.6	NA
Diethyl phthalate	-	-	· 🗕	2.2	0.70	NA
Anthracene	-	-	-	0.40	· <u>-</u>	NA
Phenanthrene	-	· _	-	0.50	0.30	NA
Silver	-	-	· –	3.0	-	NA
Beryllium	-	-	- ;	160	13	NA
Cadmium	'	-	-	7.0	6	NA
Lead	-	-	-	50	30	NA
Antimony	-	- ,	-	50	-	NA
Chlorobenzene	· • •	. -	-	0.60	-	NA
Ethyl benzene	-	· -	-	0.50	-	NA
Toluene	-	-	-	0.30	0.20	NA
Di-n-butylphthalate	-	• –	-	-	7.3	NA
Mercury	-	-	-	-	0.31	NA
Methylene Chloride	-	-	-	-	0.90	- '
Chloroform	-	-	-	-	-	2
1,1,2,2-Tetrachloroethane	-	-	- (\ -	-	2
Di-octyl-phthalate	-	-	- (#21,2	.5) -	-	700
			(P61 0)	[2]		

EAM 001 1605 119/1


TABLE 4-10 GROUNDWATER ANALYSIS RAMAPO LANDFILL SITE PAGE TWO

Note: The three samples form Late 1982 were analyzed for all the priority pollutants except dioxin, the two samples from October 1980 were analyzed for all the priority pollutants, and the 1983 sample was analyzed for all the priority pollutants except for metals, cyanide, dioxin, and pesticides. None of the samples were analyzed for asbestos. Results are given in µg/l. Only the compounds detected are listed.

- NYTL: New York Testing Laboratory, Inc.
- Not Detected
- NA: Not Analyzed


4-17

P6201

GROUNDWATER ANALYSIS RAMAPO LANDFILL SITE MONITORING WELL DATA - NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 2/4/81

				•					
Sampling Site Lab Number Parameter	Well #1 81-035-01	Well #2 81-035-02	Well #2A <u>81-035-03</u>	Well #3 81-035-04	Well #7 <u>81-035-05</u>	Well #11A 81-035-06	Well #4A 8 <u>1-040-01</u>	Well #6 81-040-02	-
pH (Lab)	7.36	7.77	7.76	6.55	7.04	6.60	6.70	6.60	
TDS	407	563	1,167	1,182	1,255	1,459	165	95	
SO4	28	26	31	13	7	10	29	26	
NO ₃	0.12	0.10	0.36	1.72	0.84	2.00	0.84	1.98	•
CI	81	98	315	200	250	315	35	15	
CN	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	LT 0.2	
Phenol	0.02	0.03	0.41	0.53	0.28	NA	0.18	0.02	
Hardness	139	129	165	272	410	412	37	27	•
Na	10.6	10.9	64.4	71.6	103.2	100.0	15.4	2.6	•
Cu	LT 0.01	LT 0.01	0.21	0.07	LT 0.01	LT 0.01	0.21	LT 0.01	1.1
Cd	LT 0.01	LT 0.01	0.02	0.01	0.01	0.09	0.01	0.02	
Fe	24.5	2.87	75.75	0.614	33.45	106.35	99.0	20.9	
Zn	0.26	0.06	0.98	0.22	0.13	0.22	0.09	0.40	
Pb	LT 0.01	LT 0.01	LT 0.01	LT 0.01	LT 0.01	0.14	0.09	0.21	
Toluene	ND	ND	ND	1.815	ND	0.605	ND	ND	
M+O-Xylene	ND	ND	ND	0.481	ND	ND	ND	ND	
P-Xylene	ND	ND	ND	0.138	ND	ND ¹	ND	ND	

7001 100 MAA

4-12

TABLE 4-7 GROUNDWATER ANALYSIS RAMAPO LANDFILL SITE MONITORING WELL DATA - NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 2/4/81 PAGE TWO

Sampling Site Well #9 Lab. Number 81-040-03 Parameter	Well #13SC 81-040-04	Well #13 <u>81-035-07</u>	Well #14 81-035-08	Well #15 <u>81-035-09</u>	Well #16 <u>81-035-10</u>	Well #12 8 <u>1-035-11</u>	Well #21 81-035-12
pH (Lab) 7.17 TDS 1,929 SO4 LT 3.0 NO3 4.60 CI 445 CN LT 0.2 Phenol 0.89 Hardness 302 Na 278 Cu 0.16 Cd 0.01 Fe 46.4 Zn LT 0.01 Pb 0.35 Toluene ND M+O-Xylene ND P-Xylene 0.040	7.42 391 18 0.18 75 LT 0.2 0.03 123 4.8 LT 0.01 0.02 0.62 0.09 LT 0.01 ND ND	6.77 1,921 27 0.89 470 LT 0.2 - 603 180 LT 0.01 LT 0.01 70.55 0.04 0.14 ND ND ND	7.12 861 53 0.31 185 LT 0.2 0.91 291 64.7 LT 0.01 LT 0.01 24.36 0.07 0.03 ND ND	10.74 186 30 0.16 20 LT 0.2 0.02 46 9.0 LT 0.01 0.01 0.01 0.87 0.10 0.02 ND ND ND	6.77 1,898 10 2.10 195 LT 0.2 - 651 108.8 LT 0.01 0.01 173.75 0.10 0.07 2.475 0.550 0.112	6.44 1,865 24 0.88 295 LT 0.2 - 258 97.5 LT 0.01 0.01 76.35 0.47 0.99 ND ND ND	7.24 16 14 0.44 15 LT 0.2 0.09 12 3.4 LT 0.01 0.02 4.13 0.22 0.01 ND ND

ND: Not Detected

LT: Less Than

All results given in mg/l

NA: Is assumed to mean not analyzed.

It is unknown what the dashes indicate although not analyzed seems likely.

809T **TOO** MAA

#22

 $\vec{\omega}$

GROUNDWATER ANALYSIS RAMAPO LANDFILL SITE

P630

ろろ

RAM

100

1609

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, 2/18/81

					,		
:.			Sar	npling Site/La	boratory Num	ber	
	Parameter	44SO2UO1 81-049-01	44SO2U02 81-049-02	44SO2D01 81-049-03	44SO2DO2 81-049-04	44SO2DO3 81-049-05	<u>81-049-06</u>
	Phenol	0.09	0.05	0.16	0.33	0.16	0.20
	Cu	LT 0.01	LT 0.01	3.58	0.46	LT 0.01	LT 0.01
· ···	Cd	LT 0.01	LT 0.01	0.01	0.02	0.01	LT 0.01
	Fe	0.72	0.38	207	228	2.89	3.9
	Zn	LT 0.01	0.07	7.2	0.71	0.12	0.11
	Cr	LT 0.01	LT 0.01	0.11	0.10	0.01	0.02
	Pb	0.01	LT 0.01	0.08	0.09	0.02	0.04
	Ni	LT 0.01	LT 0.01	0.74	0.05	LT 0.01	LT 0.01
				-			

LT: Less Than Results given in mg/l

1 a.

1

2.

Ĩ

GROUNDWATER ANALYSIS

RAMAPO LANDFILL SITE

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, 3/11/81

	•		Well Samp	led/Laboratory	/ Numbers		4
Parameter	Well #5 <u>81-035-01</u>	Well #5A 81-035-02	Well #8 <u>81-035-03</u>	Well #8A 81-035-04	Well #10 <u>81-035-05</u>	Well #10A 81-035-06	Well #18 81-040-07
pH (Lab)	2.60	6.73	7.45	7.26	7.02	6.22	6.08
SO4	43.0	20.0	40.0	1950.0	18.5	60.0	80.0
NO3	0.17	0.15	0.18	0.17	0.155	0.25	Interface
CI	169.9	18.0	16.0	38.0	13.0	17.0	2.0
Hardness	38.5	23.5	59.9	117.7	38.5	47.1	17.1
Fe	25.75	1.62	0.50	9.10	6.07	180.5	0.76
Zn	0.18	0.12	0.10	0.09	0.14	0.24	0.13

Results given in mg/l

#22 P640/4

0191 100 MAR

RAMAPO SANITARY Land fill

2

: t 14

HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES ORADELL, NEW JERSEY

VOLATILE ORGANIC ANALYSIS

		DATE.	-23-81	1 77
SAN	PLE IDENTIFI	CATION AND	CONCENTRA	TION
Well #3	Well'# 5	Well# 5A	Well # 8A	Well++)
<u> </u>		· · · · ·		
-				
1 1 1 1				1
ND	ND	ND	ND	ND
			· · · ·	
	- •			<u> </u>
ND	NO	NIO	ND	ND
	1	1		ND
				ND
		1		ND
				ND
ND	ND	NIO	ND	ND
			1	NO
		1		
ND	ND	ND	ND	ND
	<u> </u>			140
ND	ND	NO	NO	ND
	+			
				<u> </u>
· · · · · · · · · · · · · · · · · · ·		RAI	M 001 16	11 -
	<u> </u>		• 	
202	202	204	205	380
	3- SAN Well #3	Well*3 Well*5 ND ND ND ND	3-21-81 3 SAMPLE IDENTIFICATION AND Well #3 Well # 5 ND ND ND RAI	3-21-81 3-23-81 SAMPLE IDENTIFICATION AND CONCENTRADULI #3 Well # 5A Well # 8A Well #3 Well # 5 Well # 5A Well # 8A ND ND ND ND ND

RESULTS EXPRESSED IN PARTS PER BILLION UNLESS OTHERWISE STATED.

NOTE TOTAL TRIHALOMETHANES (TTHMA) - SUN OF FOUR COMPOUNDS MOICATED BY ASTERISKS (*).

N.D. - NOT DETECTABLE N.A. - NOT APPLICABLE

6 FUNG, CHEMIST CHIEF LÉO C

N# SV-120

1982 ANALYTIC RESULTS FROM THE ROUTINE TOXICS SURVEILLANCE MEINORK NEAR PROBLEM LANDFILLS

- # '-----

- (1) Santapogue Creek Downstream of the Babylon Landfill for Heavy Metals
- (2) Freshkills Creek Downstream from the Freshkills Landfill for Heavy Metals, BTX, VHO, FCB's and Part 5 Pesticides
- (3) Torne Brook Dwonstream of the Torne Valley Landfill for Heavy Metals, BTX and VHO
- (4) Delaware River Downstream from Cortese Landfill for Heavy Metals, BTX and VHO
- (5) Matthew Creek Below Johnstown Landfill for Heavy Metals, BTX and VHO
- (6) Feedertow Canal Below Kingsbury and Fort Edward Landfills for Heavy Metals and PCB's (Mater and Sediment)
- (7) Geddes Brook Downstream of Onondaga Landfill for Heavy Metals
- (8) Black Brock at Montezura National Refuge Wetland Downstream from Seneca Falls (Tantalo) Landfill for Heavy Metals, BTX, VHO, PCB's and Part 5 Pesticides
- (9) Tonawanda Creek Below Batavia Landfill for Heavy Metals, VHO and Part 5 Pesticides
- (10) Two Mile Creck Downstream of Niagara (Seaway) Landfill for Heavy Metals, BIX, VHO and PCB's
- (11) HOSMEY Brock Downstream of Chaffee LandFill for Heavy Metals, BTM, VHO and PCD's

RAM

100

612

0385	DEVISION OF LAB	DEPARTMENT OF HEAL DRATORIES AND RESEA L HEALTH CENTER	TH ł RCH /	
FINAL RE			FINAL R	EPORT
	RESULTS OF (PAGE 1	EKAMINATION		. ·
LAB ACCE	ESSEDN NOL 21045 YR/MO/DAY/		/06/03/11	
	NG LAB: 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.	E P .		
STATION	(SOURCE) NO: 31501161		•	
DR AINAGE	E BASIN: 15 NY GAZETTEER NO: NTES: 41 DEG 08º 20ºN, 74 DE	4353 COUNTY: ROCK	LAND	
COPHON D	NAME INCL SUBWESHED: TORNE BE DWSTR OF	COOK AT CONFLUENCE Torne Valley Land	WITH RAMAPO Fill	RIVER
TYPE OF	AMPLING POINT: AT CONFLUENCE SAMPLE: 21 SURFACE WATER			
REPORT S	AR OF SAMPLING& FROM 00/00 TO SENT TO: CO (29 RO (0) LPHE (06/01/10 (0) LHO (0) FED (0)	CHEN (1)	
PAR	ANDTER	UNIT	RESULT	NOTATION
070309	META XYLENE	NCG/L	1.	LT.
070409	PARA HYLENE	NCG/L	1.	LT
151409	ORTHO XYLENE	NCG/L	1.	LT
323609	1,1,1-TRICHLORDE THANE	HCG/L	1.	20-12 20-125
323809	DICHLOROMETHANE	NCG/L	1.	LT H
334409	BENZEME	NCG/L	1.	
336609	CARBON TETRACHLORIDE	MCG/L	1.	LT
338909	BROMODICHL BROMETHANE	NCG/L	1.	LT
339009	CHLOROFORM	NCG/L	1.	LT
339209	TOLUENE	NCG/L	1.	LT
340909	CHLOROBONZENE	NCG/L	1.	LT
341009	VINYL CHLORIDE	MCG/L	1. RAM	LT
341209	TETRACHLOROETHENE	NCG/L	L.	LT
DATE PRI	NTED: 5/18/82	• •	100	

1613

HR.F.ESTRABROOKS, RH. 300, TOXIC TRACKDOWNS NYS-DEPT.OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.V. 12235

SUBNITTED BY: ESTABROOK

ì

0386	DEVISIO	RK STATE DEPAR N OF LABORATOR	IES AND RESI	ALTH Earch	• .
		RONMENTAL HEAL	TH CENTER	<u>\</u>	
FINAL RE	FUKI	FINAL REPORT		FINAL	REPORT
	<u> </u>	SULTS OF EXAMI CMAGE 2 OF 3			
LAB ACCE	SSEON NO: 21045 YR	NO/DAY/HR SAN		82/06/03/11	
REPORTIN	G LAB: 17. EHC ALBA	NY .			:
	570 TOXICS SURVEIL (Source) NO: 315011				
	BASIN: \$5 NY GAZET		COUNTY: ROD	CKLAND	
COORDINA	TES: 41 DEG 08º 20º	N. 74 DEG 074	47**		• ·
	AME INCL SUBH® SHED: Mpling pbint: at co	DESTR OF TORM	E VALLEY LAN	IDFILL	C RIVER
TYPEOF	SAMPLE: 21 SUBFACE	WATER		•	
NO/DAY/H	R ØF SAMPLING: FROM Ent fo: co (29 ro ()	00/00 10 06/01			
ALFUNI J	CHI (U+ CU (24 KU (UJ LPHE (UJ LH		JJ CHEN (1)	
PAR	ANETER		UNIT	RÉSULT	NOTATIO
342109	BRONDFORM		NCG/L	1.	LT
344109	1.2-DICHLORDBENZ	ENE	NCG/L	1.	LT
344209	1.4-DICHLOROBENZ	ENE	HCG/L	1.	LT
344909	DIBRONOCHLORONETI	TANE	MCG/L	1.	LIA
349709	1 - 3 - DICHLOROBENZ	ENE	NCG/L	1.	LICH
350809	1+2-DBCHLOROETHAI	1E	NCG/L	1.	LT
350909	1-1-DECHLOBOETHE	IE .	MCG/L	1.	LT
351009	ETHYLBENZENE	•	MCG/L	1.	LT
35 1709	1+1+2+TRICHLORDE	THANE	MCG/L	1.	LT
351809	1,1,2,2-TETRACHLO	DROETHANE	NCG/L	1.	LT
351909	1-1-DICHLORDETHAN	IE	NCG/L	1.	LT
361109	2-CHLORDETHYLVIN	IL ETHER	NCG/L	l. RAM	LT
	TRANS 1+2-BICHLOP	DETHENE	NCG/L	1.	LT
361209				0	
361209 Date Prii	ITED: 6/18/82			001	
	ITED: 6/18/82			91 16	•

HR.F.ESTRABROOKS, RN.300, TOKIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.F. 12235

2

SUBNITTED BY: ESTABROOK

FINAL RE	ENKIRONHENTAL HEA		FINAL R	EPORT
	RESULTS OF EXAM		· · · · ·	_ ·
LAB ACCE	SSEON NOE 21045 YR/HD/DAY/HR SA		2/06/03/11	· · · ·
REPORTIN	G LAB: 17. EHE ALBANY			
PROGRAM:	570 TOXICS SURVEILLANCE, D.E.C.	-	· · · · · · · · · · · · · · · · · · ·	
STATION	(SOURCE) NO: 31501161			
CONSOLAT	8ASIN: 15 NY GAZEFTEER NO: 4353 Tes: 41 deg-08" 20"N+ 74 deg 09	COUNTY: RO(KLAND	
COMMON N	AME INCL SUBW SHED: TORNE BROOK	AT CONFLUENCE	WITH PAMADA	PTVE-
	DASTR OF TOR	NE VALLEY LAN	DFILL	11 A A - K
	MPLING POINT: AT CONFLUENCE WITH	RAMAPO RIVER		
	SANPLE: 21 SURFACE HATER		• • • •	· .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	R OF SAMPLINGS FROM 00/00 TO 05/	01/10		
REPORT S	ENT TO: CO (2) RO (0) LPHE (0) I	HO (0) FFD (A	D CHEM (1)	
REPORT S	ENT TO: CO (2) RO (0) LPHE (0) L	HO (0) FED (0	) CHEN (1)	
REPORT S	ENT TO: CO (2) RO (0) LPHE (0) L Ameter	HO (O) FED (O Unit	)) CHEN (1) Result	NOTATION
REPORT S				NUTATION
REPORT S	ANETER	UNE T	RESULT	
REPORT S PAR 361309	ANETER 1-2-DECHLOBORROPANE	UNI T NCG/L	RESULT 1.	LT
REPORT S PAR 361309 361407	AMETER 1,2-DJCHLORORROPANE CIS 1,3-DICHLOROPROPENE	UNIT HCG/L HCG/L	RESULT 1.	LT LT
REPORT S PAR 361309 361409 361909	AMETER 1,2-DJCHLOBORROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE	UNIT NCG/L NCG/L NCG/L	RE S UL T 1. 1. 1.	LT LT LT
REPORT S PAR 361309 361409 361909 361609	AMETER 1,2-DJCHLORORROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLORDEJHENE	UNIT NCG/L NCG/L NCG/L	RE 5 UL T 1. 1. 1.	
REPORT S PAR 361309 361407 361909 361609 361709	AMETER 1,2-DJCHLOBORROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLOROEJHENE TRICHLOROFLUROMETHANE	UNIT MCG/L MCG/L MCG/L MCG/L	RESULT 1. 1. 1. 1.	
REPORT S PAR 361309 361407 361909 361609 361709 361809	AMETER 1,2-DJCHLOBORROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLOROEJHENE TRICHLOROFLUROMETHANE BRONDMETHANE	UNIT NCG/L NCG/L NCG/L NCG/L NCG/L	RESULT 1. 1. 1. 1. 1.	

DATE PRINTED: 5/18/82

1

HR.F.ESTRABROOKS, RN.300, TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANYM N.F. 12235

SUBNITTED BY: ESTABROOK

RAM

001

1615

÷

T PARAL Final Rei	ENVIRONMENT	BORATORIES AND RESE AL HEALTH CENTER Report	ARCH FINAL R	EPORT
AB ACCE		F EXAMINATION 1 OF 1) /HR SAMPLE REC'D; 8	2/06/07/11	
REPORTING ROGRAMI STATION RAINAGE CORDINA COMMON NA SACT SAU SYPE OF	ABI 10 EHC ALBANY 570 TOXICS SURVEILLANCE, SOURCE) NOI 31501161 BASINI 15 NY GAZETTEER NO ESI 41 DEG 08' 20"N, 74 ME INCL SUBW'SHEDI TORNE DWSTR PLING POINT: AT CONFLUENC BAMPLE: 21 SURFACE WATER	D.E.C. 1 4353 COUNTY: ROC DEG 09' 47"W BROOK AT CONFLUENCE OF TORNE VALLEY LAN E WITH RAMAPO RIVER	KLAND WITH RAMAPO Ofill	RIVER
EPORT SI	R OF SAMPLING; FROM 00/00 INT TO: CO (2) RO (0) LPHE	(0) LHO (0) FED (0		
• -	METER	UNIT	RESULT	NOTATION
09501	BERYLLIUM	MG/L	50.0	LT
09901	COPPER	MG/L	0.05	LT /
010309	MERCURY, TOTAL	MCG/L	0.4	LY =
10601	SILVER	MG/L	0.02	<b>₩</b>
10901	ZINC	MG/L	0.05	LT
011201	ANTIMONY	MG/L	1.	LT
)12801	NICKEL	MG/L	0.05	LT
	THALLIUM	NG/L	1.	LT
014301	ARSENIC	MCG/L	10.	LT
509309		MCG/L	5,	LT
509309				LT
	CHROMIUM	HCG/L	10.	•
\$0 <b>9</b> 309 \$09709		HCG/L MCG/L	10. RAM	LT

1616

ŧ

HR.F.ESTRABROOKS,RM.300,TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

1

-75

SUBNITTED BY: ESTABROKS

0442 FINAL RE	NEW YORK STATE DE DIVISION OF LABORA ENVIRONMENTAL H PORT FINAL REP	TURIES AND RESE Ealth center	ARCH	AL REP	ORT
	RESULTS OF EX (PAGE 1 0	AMÍNATION			
PROGRAMI STATION DRAINAGE COORDINA COMMON N EXACT SAU TYPE OF MO/DAY/HU	AME INCL SUBWISHED: TORNE BROO	53 COUNTY: ROC 09' 47"W K AT CONFLUENCE ORNE VALLEY LAN TH RAMAPO RIVER 0719/10	WITH RA		IVER
	AMETER	UNIT	RESU	•	NOTATION
070309	META XYLENE	MCG/L	1.		LT
070409	PARA XYLENE	MCG/L	1.1		LT
151409	ORTHO XYLENE	MCG/L	1.		LT _
323609	1,1,1-TRICHLOROETHANE	HCG/L	1.		LVJ
323809	DICHLOROMETHANE	MCG/L	1.		
	BENZENE	MCG/L	2.		
					LT
334409	CARBON TETRACHLORIDE	MCG/L	1.		
334409 336609	CARBON TETRACHLORIDE Bromodichloromethane	MCG/L MCG/L	1. 1.		LT
334409 336609 338909					LT LT
334409 336609 338909 339009	BROMODICHLOROMETHANE	MCG/L	1.		
334409 336609 338909 339009 339209	BROMODICHLOROMETHANE Chloroform	HCG/L HCG/L	1.		
334409 336609 338909 339009 339209 340909	BROMODICHLOROMETHANE Chloroform Toluene	MCG/L MCG/L MCG/L	1.	RAM	ĻŢ
334409 336609 338909 339009 339209 340909 341009	BROMODICHLOROMETHANE Chloroform Toluene Chlorobenzene	HCG/L HCG/L HCG/L HCG/L	1. 1. 1.	RAM O	L <u>.</u> T L.T
334409         336609         338909         339009         339209         340909         341009         341209	BROMODICHLOROMETHANE Chloroform Toluene Chlorobenzene Vinyl Chloride	HCG/L HCG/L HCG/L HCG/L	1. 1. 1. 1.	RAM 001	L,T LT LT

MR.F.ESTRABROOKS,RM.300,TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.Y. 12233

4

SUBMITTED BY: ESTABROOK

6

€

0443 FINAL REI	NEW YORK STATE DE DIVISION OF LABORA ENVIRONMENTAL H PORT FINAL REP	TURIES AND RESE Ealth center		EPORT
. –	RESULTS OF EX		_	
LAB ACCES	(PAGE 2 0 SSION NO: 22465 YR/MO/DAY/HR	F 3)	2710/20/16	
PROGRAM: Station	G LABI 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.E. (Source) Noi 31501161	· · ·		
COORDINA Common N		091 47"W K AT CONFLUENCE Orne Valley Lan	DFILL	RIVER
TYPE OF S MO/DAY/HP	APLING POINT: AT CONFLUENCE WI Sample: 21 Surface Water R OF Sampling: From 00/00 to 1 Ent to: co (2) ro (0) LPHE (0)	0719/10		
PAR	METER	UNIT	RESULT	NOTATION
342109	BROMOFORM	MCG/L	1.	LT
344109	1.2-DICHLOROBENZENE	MCG/L	1.	LT
344209	174-DICHLOROBENZENE	MCG/L	1.	LT _
344909	DIBROMOCHLOROMETHANE	MCG/L	1.	LTT
349709	1,3-DICHLOROBENZENE	MCG/L	1.	LT (#
350809	172-DICHLOROETHANE	MCG/L	1.	LT
	1,1-DICHLOROETHENE	HCG/L	1.	LT
350909				. •
	ETHYLBENZENE	MCG/L	1.	LT
351009	ETHYLBENZENE 1,1,2=TRICHLORDETHANE	MCG/L MCG/L	1.	LT
351009 351709		•	1. 1. 1.	
351009 351709 351809	1,1,2=TRICHLOROETHANE	MÇG/L		LT
351009 351709 351809 351909	1,1,2=TRICHLOROETHANE 1,1,2,2=TETRACHLOROETHANE	MCG/L MCG/L	1.	LT LT LT LT
351009 351709 351809 351909 361109	1,1,2=TRICHLORDETHANE 1,1,2,2=TETRACHLORDETHANE 1,1=DICHLORDETHANE	MCG/L MCG/L MCG/L	1.	LT LT LT LT
350909 351009 351709 351809 351909 361109 361209 DATE PRI	1,1,2=TRICHLOROETHANE 1,1,2,2=TETRACHLOROETHANE 1,1=DICHLOROETHANE 2=CHLOROETHYLVINYL ETHER	MCG/L MCG/L MCG/L MCG/L	1. 1. 1.	LT LT LT LT

HR.F.ESTRABROOKS,RM.300,TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

~

ì

4 4 4	NEW YORK STATE DEP DIVISION OF LABORAT ENVIRONMENTAL HE	URIES AND RESI	ALTH Earch	-	(
( FINAL RE	PORT FINAL REPO	RT	FINAL	REPORT	(
LAB ACCE	RESULTS OF EXA (PAGE 3 OF SSION NO: 22465 YR/MO/DAY/HR S	3)	82/10/20/16		. (
REPORTIN	IG LABI 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.E.C				(
STATION DRAINAGE COORDINA	(SOURCE) NOI 31501161 BASINI 15 NY GAZETTEER NOI 435 TESI 41 DEG 08' 20"N. 74 DEG 0	3 COUNTY: ROC	KLAND		(
EXACT SA	MPLING POINT: AT CONFLUENCE WIT	RNE VALLEY LAN	IDFILL	) RIVER	(
MO/DAY/H	SAMPLE: 21 SURFACE WATER IR OF SAMPLING: FROM 00/00 TO 10 ENT TO: CO (2) RO (0) LPHE (0)	719/10 LHO (0) FED (0	) CHEM (1)		¢
C. PAR	AMETER	UNIT	RESULT	NOTATION	(
361309	1,2-DICHLOROPROPANE	HCG/L	1.	LT	
361409	CIS 1.3-DICHLOROPROPENE	MCG/L	1.	LT	ł
361509	TRANS 1,3=DICHLOROPROPENE	HCG/L	1.	LT /	
361609	TRICHLOROETHENE	MCG/L	1.		60
361709	TRICHLOROFLUROMETHANE	MCG/L	1.	LT	504
361809	BROMOMETHANE	MCG/L	1.	LT	-
361909	CHLOROETHANE	MCG/L	1.	LT	
<b>F</b> 362009	CHLOROMETHANE	MCG/L	1.	LT	ļ
					•

RAM 001

1619

DATE PRINTEDI11/22/82

ì

MR.F.ESTRABROOKS,RM.300,TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

-	가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것	e e e e e e e e e e e e e e e e e e e		
0191 Final Re	ENVIRONMENTAL	DEPARTMENT OF HEA Ratories and rese Health center	ARCH	 
			FINAL R	
	CPAGE 1	EXAMINATION OF 1)		
LAB ACCE	SSION NO: 07402 YR/MO/DAY/H	R SAMPLE REC'D: 8	2/10/25/11	
REPORTIN Program:	G LABI 10 EHC ALBANY 570 TOXICS SURVEILLANCE, D.	F. c		
STATION	(SOURCE) NOT 31501161		W1 4 10	
CUORDINA	BASIN: 15 NY GAZETTEER NO: TES: 41 DEG 08' 20"N, 74 DE	G 001 4788	•	
	AME INCL SUBWISHED: TORNE BR DWSTR OF	TORNE VALLEY LAN	DFILL	RIVER
TYPE OF 3	MPLING POINT: AT CONFLUENCE Sample: 21 Surface water	WITH RAMAPO RIVER		
MO/DAY/H	R OF SAMPLING: FROM 00/00 TO ENT TO: CO (2) RO (0) LPHE (	10/19/10 0) +HD (0) FED (0	) CHEM (A)	
	AMETER	UNIT	RESULT	NOTATION
009501	BERYLLIUM	MG/L	0.05	LT
				•
009901	COPPER	MG/L	0.05	LT _
	COPPER Mercury, Total	MG/L MCG/L	0,05 0,4	
010309			·	
010309	MERCURY, TOTAL	MCG/L	0,4	
010309 010601 010901	MERCURY, TOTAL Silver	MCG/L MG/L	0.4 0.02	
010309 010601 010901 011201	MERCURY, TOTAL Silver Zinc	MCG/L MG/L MG/L	0,4 0,02 0,1	LT == LT == LT
010309 010601 010901 011201 012801	MERCURY, TOTAL SILVER ZINC ANTIMONY	MCG/L MG/L MG/L MG/L	0,4 0,02 0,1 0,5	LT == CC LT LT LT
010309 010601 010901 011201 012801 014301	MERCURY, TOTAL SILVER ZINC ANTIMONY NICKEL	MCG/L MG/L MG/L MG/L	0,4 0,02 0,1 0,5 0,05	LT 7000 LT 4000 LT LT LT
010309 010601 010901 011201 012801 014301 309309	MERCURY, TOTAL SILVER ZINC ANTIMONY NICKEL THALLIUM	MCG/L MG/L MG/L MG/L MG/L	0,4 0,02 0,1 0,5 0,05 1,	LT 7000 LT 4000 LT LT LT LT
010309 010601 010901 011201 012801 014301 309309 309709	MERCURY, TOTAL SILVER ZINC ANTIMONY NICKEL THALLIUM ARSENIC	MCG/L MG/L MG/L MG/L MG/L MCG/L	0.4 0.02 0.1 0.5 0.05 1. 10.	LT ====================================
010309 010601 010901 011201 012801 014301 309309 309709	MERCURY, TOTAL SILVER ZINC ANTIMONY NICKEL THALLIUM ARSENIC CADMIUM	MCG/L MG/L MG/L MG/L MG/L MCG/L MCG/L	0.4 0.02 0.1 0.5 0.05 1. 10. 2.	LT ==== LT === LT LT LT LT LT
010309 010601 010901 011201 012801 014301 309309 309709 309809 310109	MERCURY, TOTAL SILVER ZINC ANTIMONY NICKEL THALLIUM ARSENIC CADMIUM CHROMIUM	MCG/L MG/L MG/L MG/L MG/L MCG/L MCG/L	0.4 0.02 0.1 0.5 0.05 1. 10. 2. 10. 10. RAM	LT T LT LT LT LT LT LT LT
009901 010309 010601 010901 011201 012801 014301 309309 309709 309809 310109 310509 DATE PRIM	MERCURY, TOTAL SILVER ZINC ANTIMONY NICKEL THALLIUM ARSENIC CADMIUM CHROMIUM LEAD	MCG/L MG/L MG/L MG/L MG/L MCG/L MCG/L MCG/L	0,4 0,02 0,1 0,5 0,05 1, 10, 2, 10, 10, RAM	LT T LT LT LT LT LT LT LT LT

MR.F.ESTRABROOKS, RM. 300, TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROKS

(

(

0

•

Ŋ

02. <u>2</u>	NEW YORK STATE DE DIVISION OF LABORA Environmental f	TORIES AND RESE	ARCH	
FINAL RE	PORT FINAL REF	PORT	FINAL R	EPORT
LAB ACCE	RESULTS OF EX (PAGE 1 C SSIDN NOT 21341 YR/MO/DAY/HR		2/06/30/15	· .
PROGRAMS STATION DRAINAGE COORDINA COMMON N	G LABT 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.E. (SOURCE) NOT 31501161 BASIN: 15 NY GAZETTEER NOT 43 TES: 41 DEG 08' 20"N, 74 DEG AME INCL SUBW'SHED; TORNE BROU DWSTR OF T	53 COUNTY: ROC 091 47"H Ik at confluence Torne Valley Lan	IDFILL	RIVER
TYPE OF MO/DAY/H	HPLING POINT: AT CONFLUENCE WI Sample: 21 Surface Water R of Sampling: From 00/00 to 0 Ent to: co (2) ro (0) Lphe (0)	T RAHAPO RIVER	0930	
PAR	APETER	UNIT	RESULT	NOTATIO
070309	META XYLENE	MCG/L	1.	LT
070409	PARA XYLENE	MÇG/L	1.	LT
151409	ORTHO XYLENE	HCG/L	1.	17/1
323609	1,1,1=TRICHLORDETHANE	HCG/L	1.	LT
323809	DICHLOROMETHANE	HCG/L	. 1.	LT
334409	BENZENE	HCG/L	1.	
336609	CARBUN TETRACHLORIDE	HCG/L	1.	LT
	BROHODICHLOROMETHANE	HCG/L	1.	LT
338907	CHLOROFORM	MCG/L	1.	LT
338907 339007	-		· · · · · · · · · · · · · · · · · · ·	
	TOLUENE	HCG/L	۱.	LT
339009		MCG/L HCG/L	1.	LT
339009 339209	TOLUENE	-	1.	LT
339009 339209 340909	TOLUENE Chlorubenzene	HCG/L	1. 1. 2	LT LT
339009 339209 340909 341009 341209	TOLUENE Chlorubenzene Vinyl Chloride	HCG/L MCG/L	1.	LT LT

MR.F.ESTRABROOKS,RM.300,TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

.

1

I						
 T	0253		NEN YORK STATE DE	ATORIES AND RES	ALTH Earch	
Ĩ,	FINAL RE	PORT	ENVIRONMENTAL H Final Ref	PORT	FINAL	REPORT
			RESULTS OF E			
	LAB ACCE	SSIDH NO:	(PAGE 2 ( 21341 YR/MO/DAY/HR	OF 3)' Sample Rec'd: {	82/06/30/15	
			EHC ALBANY			•
	STATION	(SOURCE) NO	5 SURVEILLANCE, D.E. 31 31501161	-		· ,
	COORDINA	TESI 41 DEC	NY GAZETTEER NOI 43 G 081 20"N, 74 DEG	091 47"W	KLAND	
	COMMON N	ANE INCL SU	JBH'SHED: TORNE BROQ	ORNE VALLEY LAN	WITH RAMAP	RIVER
•	EXACT SAT	MPLING POIN SAMPLE 21	NT: AT CONFLUENCE WI Surface Hater	T RAMAPO RIVER	0930	
<b>W</b>	MO/DAY/il	R OF SAMPLI	(NG: FRUM 00/00 TO 0 (2) RO (0) LPHE (0)	6/29/10		•
į,		AMETER				
-	342109			UNIT	RESULT	NOTATION
. • •	-	BROMOFOR		MCG/L	1.	LT
<b>i</b> .	344109		LOROBENZENE	HCG/L	۶ <b>.</b>	LT
	344209		ILOROBENZENE	HCG/L	· <b>1</b> .	LT
-L.	344909	DIBROMOC	HLORUMETHANE	MCG/L	1.	LT
	349709	1,3-DICH	LOROBENZENE	MCG/L	1.	11 = 51
<b>.</b>	350809	1,2-DICH	LORDETHANE	MCG/L	1.	
	350909	1,1=DICH	LOROETHENE	HCG/L	1.	LT
	351009	ETHYLBEN	ZEHE	HCG/L	1.	LT
•	351709	1,1,2=TR	ICHLORDETHANE	HCG/L	1.	LT C
	351809	1,1,2,2-	TETRACHLORDETHANE	HCG/L	1.	LT
-	351909	1,1-DICH	LOROETHANE	MCG/L	1.	LT
Ļ	361109	2-CHLORO	ETHYLVINYL ETHER	HCG/L	1. 🛪	LT
ł	361209	TRANS 1,	2-DICHLOROETHENE	MCG/L	RAM	LT.
-	DATE PRIN	TED: 7/28/	82		100	
(						
ſ	· ·				1622	

MR.F.ESTRABRUOKS,RM.300,TUXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CUNSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOM

I

Ì

. • •	DIVISION OF L	TE DEPARTMENT OF HEL Aboratories and rese		
FINAL RE	ENVIRO, MEN	TAL HEALTH CENTER L REPORT	FINAL	REPORT
•	RESULTS	OF EXAMINATION		
LAB ACCE	SSION NO: 21341 YR/MO/DA	E 3 UF 3) Y/HR SAMPLE REC'D: 8	32/06/30/15	
REPORTI	G LADE 17 EHC ALBANY	· .		
PROGRAM: Station	570 TOXICS SURVEILLANCE, (SOURCE) NO: 31501161	D.E.C.		
DRAINAGE	BASIN: 15 NY GAZETTEER N	01 4353 COUNTY: ROC	KLAND	
COMMON 1	ANE INCL SUBWISHED: TORNE	DEG 091 47"W Brook at confluence	WITH RAMAP	O RIVER
	DWSTR MPLING POINT: AT CONFLUEN	- UF TURNE VALLFY LAN	IDETII	- · • • • • • •
TYPE UF	SAMPLE: 21 SURFACE WATED		0420	
REPURT S	R OF SAMPLINGS FROM 00/00 Ent TO: CO (2) RO (0) LPH	E (0) LHO (0) FED (0	) CHEM (1)	
PAR	AMETER	UNIT	RESULT	NOTATION
361309	1,2-DICHLOROPROPANE	HCG/L	1.	LT
361409	CIS 1,3-DICHLOROPROPEND	HCG/L	1.	LT
	CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPE		1.	
361409				
361409 361509	TRANS 1,3-DICHLOROPROPE	ENE MCG/L	1.	
361409 361509 361609	TRANS 1,3-DICHLOROPROPE TRICHLOROETHENE	ENE 4CG/L 4CG/L	1.	
361409 361509 361609 361709	TRANS 1,3-DICHLOROPROPE TRICHLOROETHENE TRICHLOROFLUROHETHANE	ENE MCG/L MCG/L MCG/L	1. 1. 1.	
361409 361509 361609 361709 361809	TRANS 1,3-DICHLOROPROPE TRICHLOROETHENE TRICHLOROFLUROHETHANE BROMOMETHANE	ENE 4CG/L 4CG/L 4CG/L MCG/L	1. 1. 1.	

DATE PRINTED: 7/28/82

1

HR.F.ESTRABROOKS, RM. 300, TOXIC TRACKDOWNS HYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BYS ESTABROOK

RAM

100

1623

t

ŧ

ŧ

<u>c</u> ) 0551	DIVISION	K STATE DEPARTMENT OF HE OF LABORATORIES AND RES ONMENTAL HEALTH CENTER	ALTH Earch	t
EINAL RE		FINAL REPORT	FINAL F	REPORT
	RES	ULTS OF EXAMINATION	· · · · ·	
LAB ACCE	SSION NO: 07126 YR/	(PAGE 1 OF 1) MO/DAY/HR SAMPLE REC'D:	82/07/02/11	
	G LABI 10 EHC ALBAN		•	• 1
STATION	570 TOXICS SURVEILL (Source) Noi 3150116	1		
	BASINI 15 NY GAZETT TESI 41 DEG 08º 20"N	EER NO: 4353 COUNTY: RO	CKLAND	
	AME INCL SUBWISHED:	TORNE BROOK AT CONFLUENC	E WITH RAMAPO	RIVER
	MPLING POINTS AT CON	DWSTR OF TORNE VALLEY LA Fluence with Ramapo Rive		•
MO/DAY/H	SAMPLE: 21 SURFACE W R OF SAMPLING; FROM	00/00 TO 06/29/10		
REPORT S	ENT TOI CO (2) RO (0	) LPHE (0) LHO (0) FED (	0) CHEM (0)	
	AMETER	UNIT	RESULT	NOTATION
009501	BERYLLIUM	MG/L	50.0	LT
009901	COPPER	MG/L	0.05	LT
010309	MERCURY, TOTAL	HCG/L	0.4	LT
010601	SILVER	MG/L	0.02	# 34 (+ 34 2 4 2 4
010901	ZINC	MG/L	0.05	LT
C 011201	ANTIMONY	HG/L	1.	LT
012801	NICKEL	HG/L	0.05	LT
014301	THALLIUM	MG/L	1.	LT C
. 309309	ARSENIC	HÇG/L	10.	LT
309709	CADHIUM	HCG/L	2.	LT -
309809	CHROMIUM	MCG/L	10.	LT
<b>310109</b>	LEAD	MCG/L	10,	LT (
310509	SELENIUM	MCG/L	5,	
DATE PRI	NTED: 8/11/82			- (

1624

ŧ

MR.F.ESTRABROOKS,RH.300,TOXIC TRACKDOWNS NYS,DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

FINAL RE	ENVIRONMENT	BORATORIES AND RESE AL HEALTH CENTER Report	FINAL	REPORT
	RESULTS	F EXAMINATION 1 OF 3)		
LAB ACCE	SSION NO: 21660 YR/MO/DAY		2/07/29/09	
PRGGRAM: STATION DRAINAGE COGRDINA COHMON N	G LAB: 17 EHC ALBANY 570 TOXICS SURVEILLANCE, (SOURCE) NO: 31501161 BASIN: 15 NY GAZETTEER NO TES: 41 DEG 08º 20°N, 74 AME INCL SUBW'SHED: TORNE DWSTR MPLING POINT: AT CONFLUENC	4353 COUNTY: ROC Deg 09° 47°H Brook at confluence Of torne valley lan	DFILL	N RIVE _R
TYPE OF MO/DAY/H	SAMPLE: 21 SURFACE WATER R DF SAMPLING: FROM 00/00 ENT TO: CO (2) RC (0) LPHE	10 07/27/10		
PAR	METER	UNIT	RESULT	NOTATION
070309	NETA XYLENE	MCG/L	<b>l</b> •	LT
070409	PARA KYLENE	MCG/L	1.	LT
151409	ORTHOXYLENE	MCG/L	1.	LT
323609	1,1,1-TRICHLORDETHANE	HCG/L	1.	LT (#
323809	DICHLORONETHANE	NCG/L	1.	su .
334409	BENZENE	NCG/L	• • •	LT
336609	CAPBON TETRACHLORIDE	NCG/L	1.	LT
•	BROHODICHL CROHETHANE	NCG/L	1.	LT
338909	CHLOROFORM	NCG/L	1.	LT
338909 339009				LT
	TOLUENE	MCG/L	1.	
339009	TOLUENE CHLOROBENZENE	MCG/L NCG/L	1.	LT
339009 339209				LT LT
339009 339209 340909	CHLOROBENZENE	MCG/L	1.	

NR.F.ESTRABROOKS, RN.300, TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

1625

	NEW YORK STATE DEP DIVISION OF LABORATO Environmental hea	RIES AND RESE	LTH ARCH	
FINAL RE	•••		FINAL R	EPORT
	RESULTS OF EXAM			
LAS AcrE	(PAGE 2 OF SSION NO: 21660 YR/HO/DAY/HR SI		2/07/29/09	
L				
PROGRAN:	5 LAB: 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.E.C.	•		•
	(SOURCE) NO: 31501161  BASTN: 15 NY GAZEFTEER NO: 4353	COUNTY - 200	KLAND	
COCRDINA	TES: 41 DEG 08 20"N. 74 DEG 09	* 47=W	•	
COPMON N	AME INCL SUBW'SHED: TORNE BROOK DWSTR OF TOR	AT CONFLUENCE		RIVER
	HPLING POINT: AT CONFLUENCE WITH			
	SAMPLE: 21 SURFACE WATER R OF SAMPLING: FROM 00/00 FO 07/	27/10		
REPORT SI	ENT TO: CO (2) RO (0) LPHE (0) L	HO (0) FED (0	) CHEM (1)	
PAR	AMETER	UNIT	RESULT	NUTATIO
342109	BRONDFORM	HCG/L	1.	LT
344109	1.2-DICHLOROBENZENE	NCG/L	1.	LT
344209	1.4-DICHLOROBENZENE	HCG/L	1.	L
	DIBRONOCHL CROMET HANE	HCG/L	1.	
344909				
344909 349709	1-3-DICHLOROBENZENE	NCG/L	1.	LT
	1,3-DICHLOROBENZENE 1,2-DICHLORDETHANE	NCG/L NCG/L	1.	LT
349709			-	
349709 350809	1,2-DICHLORDETHANE	MCG/L	1.	LT
349709 350809 350909	1,2-DICHLORDETHANE 1,1-DICHLOROETHENE	NCG/L NCG/L	1.	LT LT
349709 350809 350909 351009	1,2-DICHLORDETHANE 1,1-DICHLOROETHENE ETHYLBENZENE	NCG/L NCG/L NCG/L	1. 1. 1.	LT LT LT
349709 350809 350909 351009 351709	1,2-DICHLORDETHANE 1,1-DICHLOROETHENE ETHYLBENZENE 1,1,2-TRICHLORDETHANE	NCG/L NCG/L NCG/L NCG/L	1. 1. 1.	LT LT LT LT
349709 350809 350909 351009 351709 351809	1,2-DICHLORDETHANE 1,1-DICHLOROETHENE ETHYLBENZENE 1,1,2-TRICHLORDETHANE 1,1,2,2-TETRACHLOROETHANE	NCG/L NCG/L NCG/L NCG/L NCG/L	1. 1. 1. 1. 1. 1.	LT LT LT LT
349709 350809 350909 351009 351709 351809 351909	1,2-DICHLORDETHANE 1,1-DICHLOROETHENE ETHYLBENZENE 1,1,2-TRICHLORDETHANE 1,1,2,2-TETRACHLOROETHANE 1,1-DICHLOROETHANE	NCG/L NCG/L NCG/L NCG/L NCG/L	1. 1. 1. 1. 1.	LT LT LT LT LT

MR.F.ESTRABROOKS, RM.300, TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

1626

(

J571	NEW YORK STATE DE Division of Labora Environmental H	TORIES AND RESE	ARCH		
INAL RE			FINAL P	REPORT	1
	RESULTS OF EX	AHINATION	· .		
	CPAGE 3 0				(
AB ACCE	SSION NO: 21660 YR/MO/DAY/HR	SAMPLE RECODE	32/07/29/09		
	G LAB: 17 EHC ALBANY				
	570 TOXICS SURVEILLANCE, D.E.	C.			
	(SJURCE) NO: 31501161 BASIN: 15 NY GAZETTEER NO: 43	53 COUNTY: Rot	KLAND		
CORDINAT	TES: 41 DEG 08º 20"N. 74 DEG	09º 47ºW	·		
OFHON N	AME INCL SUGH SHED: TORNE BROD	K AT CONFLUENCE	WITH RAMAPO	J RI¥ER	•
XACT SA	MPLING POINT: AT CONFLUENCE WI	ORNE VALLEY LAN Th Ranapo Styfe	IDFTLL 1005		
YPE OF :	SAMPLE: 21 SURFACE WATER				
	R OF SAMPLING: FROM 00/00 TO 0				(
ILPURI JE	ENT TO: CO (2) RO (0)-LPHE (0)	LHU (U) FED (U	D CHEN (1)		
PAR	ANETER	UNIT	RESULT	NOTATION	(
861309	1,2-DICHLOROPROPANE	HCG/L	1.	LT	
861409	CIS 1,3-DICHLOROPROPENE	NCG/L	1.	LT	1
561509	TRANS 1,3-DICHLOROPROPENE	MCG/L	t.		5
561609	TRICHLOROETHENE	MCG/L	1.		
561709	TRICHLOROFLUROME THANE	HCG/L	1.		
561809	BRONOMETHANE	MCG/L	1.	LT	(
861909	CHLOPOETHANE	NCG/L	1.	LT T	:
	CHLOROMETHANE	MCG/L	1.	LT	
562009					

DATE PRINTED: 8/13/82

MR.F.ESTRABROOKS, RM. 300, TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

RAM

100

0161 FINAL REP	DIVISION OF LA Environment	E DEPARTHENT OF HEA Boratories and rese Al Health Center Report		EPORT
LAB ACCE	RESULTS O (PAGE SION NO: 07205 YR/HO/DAY	F EXAMINATION 1 OF 1) /HR SAMPLE REC ⁴ D1 8	2707/30/11	
PROGRAMI STATION ( DRAINAGE COORDINAT COMMON NA EXACT SAP TYPE OF T MO/DAY/HF	ME INCL SUBWISHED: TORNE DWSTR Pling Point: At Confluenc Ample: 21 Surface Water of Sampling: From 00/00	1 4353 COUNTY: ROC Deg 09' 47*W Brook at confluence Of torne valley lan E with Ramapo River To 07727/10	DFILL	RIVER
	NT TOI CO (2) RO (0) LPHE	(0) LHO (0) FED (0 Unit	RESULT	NOTATÍO
009501	BERYLLIUM	MG/L	0,02	LT
009901	COPPER	HG/L	0.05	LT
010309	MERCURY, TOTAL	MCG/L	0,4	47
010601	SILVER	MG/L	0,02	+ 24
010901	ZÍNC	NG/L	0.05	Hat Hat
011201	ANTIMONY	MG/L	1.	LT
012801	NÍCKEL	HG/L	0.05	LT
014301	THALLIUM	MG/L	1.	LT
309309	ARSENIC	HCG/L	10.	LT
	CADHIUM	MCG/L	2.	LT
309709	CHRONIUN	MCG/L	10.	LT
			10. _স	LT
309709 309809 310109	LEAD	· MCG/L		
309809	LÉAD SELENIUM	HCG/L	5, RAM	LT
309809 310109 310509			ам 5, 001	<b>L</b> 1

MR.F.ESTRABROOKS, RM.300, TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.Y, 12233

SUBMITTED BY: ESTABROOK

JEDA Final Rei	DIVISION OF LAB Environmenta	DEPARTMENT OF HEA ORATORIES AND RESE L HEALTH CENTER REPORT	FINAL F	FPART
	•	EXAMINATION	Penns P	
AR ACCE	(PAGÉ 1510N NO: 22145 YR/MQ/DAY/	1 OF 3)		
		UN SAULTE VEC DI C	02/04/51/12	
PROGRAM	G LAB: 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D	.E.C.		
DRAINAGE	(SOURCE) NOI 31501161 BASINI 15 NY GAZETTEER NOI	4353 COUNTYS ROC	KLAND	
COMMON N Exact Sai Type of S Mo/Day/Hi	TES: 41 DEG 08: 20"N, 74 D AME INCL SUBW'SHED: TORNE B DHSTR O MPLING POINT: AT CONFLUENCE SAMPLE: 21 SURFACE WATER R OF SAMPLING: FROM 00/00 T ENT TO: CO (2) RO (0) LPHE	ROOK AT CONFLUENCE F TORNE VALLEY LAN WITH RAMAPO RIVER D 09/20/10	IDFILL R	RIVER
	AMETER	UNIT	RESULT	
070309	META XYLENE	MÇG/L	1,	LT
070409	PARA XYLENE	MCG/L	1.	LT
151409	ORTHO XYLENE	HÇG/L	1.	LT
323609	1,1,1-TRICHLOROETHANE	HEG/L	1.	LT
323809	DICHLOROMETHANE	HCG/L	9.	SY
334409	BENZENE	MEG/L	1.	LIF
336609	CARBON TETRACHLORIDE	HÇG/L	1.	LT
338909	BROHODICHLORDHETHANE	HCG/L	1.	LT
339009	CHLOROFORM	HCG/L	1.	LT
539209	TOLUENE	MÇG/L	1.	LT
540909	CHLOROBENZENE	HÇG/L	1.	LT
541009	VINYL CHLORIDE	HÇG/L	1.	LT
	TETRACHLORDETHENE	HÇG/L	1. RAM	LT
641209				
541209 Date Prim	TED110/20/82		001	

MR.F.EBTRABROOKS, RM. 300, TOXIC TRACKDOWNS NYS. DEPT. OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

JEIO	DIVISION OF LA	E DEPARTMENT OF HEA Boratories and rese Al Health Center		
FINAL REP	PORT REFERENCE INAL	REPORT	FINAL R	EPORT
	RESULTS O	F EXAMINATION	••	• · · <u>-</u> .
LAB ACCES		/HR SAMPLE REC'DI 8	2/09/21/15	
PROGRAM: STATION ( DRAINAGE COORDINAL	ESI 41 DEG 081 20"N, 74 Me Incl Subw'shed; Torne	1 4353 COUNTY: ROC Deg 09' 47"W Brook at confluence		RIVER
TYPE OF 8 MO/DAY/HF	IPLING POINT: AT CONFLUENC BAMPLE: 21 SURFACE WATER	TD 09/20/10		· ·· .
PAR	METER	UNIT	RESULT	NOTATION
342109	BROMDFORM	MCG/L	1.	LT.
344109	1,2-DICHLOROBENZENE	HCG/L	1.	LT
344209	1,4-DICHLOROBENZENE	HÇG/L	ĺ.	LT
344909	DIBROMOCHLOROMETHANE	MÇG/L	1.	LT
349709	1,3-DICHLOROBENZENE	MCG/L	1.	LVT
350809	1,2-DICHLOROETHANE	HÇG/L	1.	LT
350909	1,1-DICHLOROETHENE	HÇG/L	1.	LT
351009	ETHYLBENZENE	HCG/L	1.	LT
351709	1,1,2-TRICHLOROETHANE	MÇG/L	1.	LŤ
351809	1,1,2,2-TETRACHLORDETHA	NE MÇG/L	1.	LT
351909	1,1-DICHLOROETHANE	HCG/L	1.	LT
361109	2-CHLOROETHYLVINYL ETHE	R MÇG/L	1.	لم الع
361209	TRANS 1,2-DICHLOROETHEN	E MÇG/L	1.	RAM LT
3016V7	1750110/20/80			001
DATE PRI	150110150105		L	
	150110150105		+ 1030	· .

HR.F.ESTRABROOKS, RH. 300, TOXIC TRACKDOWNS NYS. DEPT. OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.Y. 12233

ł

ē,

3

SUBMITTED BY: ESTABROOK

`

C611	NEN YORK STATE DEP DIVISION OF LABORATO	ORIES AND RESE	ALTH Earch	
FINAL RE	ENVIRONMENTAL HE	ALTH CENTER	FINAL R	EPORT
	REBULTS OF EXAM	MINATION		· · · · ·
LAB ACCE	SSION NOI 22145 YR/MO/DAY/HR SI	3) Ample Rec'd: 8	2/09/21/15	
	G LABI 17 EHC ALBANY			·
PROGRAM:	570 TOXICS SURVEILLANCE, D.E.C. (Source) No: 31501161	Ð		
DRAINAGE	BASINE 15 NY GAZETTEER NOL 435	S COUNTY: ROC	KLAND	
COORDINA	TESI 41 DEG 081 20"N, 74 DEG 09	91 4748		
•	AME INCL SUBWISHED; TORNE BROOK DWSTR OF TOP	RNE VALLEY LAN	IDFILL	RIVER
EXACT SA	NPLING POINT: AT CONFLUENCE WITH	H RAMAPO RIVER		· .
MOZDAY/H	R OF SAMPLING: FROM 00/00 TO 09/	/20/10		
REPORT S	ENT TO: CO (2) RO (0) LPHE (0) L	HO (0) FED (0	) CHEM (1)	
· · ·	•			
	AMETER	UNIT	RESULT	NOTATION
PAR	and the second second second second second second second second second second second second second second second	• •		NOTATION
PAR 361309	AMETER	UNIT	RESULT	
PAR 361309 361409	AMETER 1,2-DICHLOROPROPANE	UNIT MÇG/L	REȘULT 1.	
PAR 361309 361409 361509	AMETER 1,2-DICHLOROPROPANE CIS 1,3-DICHLOROPROPENE	UNIT MÇG/L MÇG/L	REȘULT 1. 1.	LT
	AMETER 1,2-DICHLOROPROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE	UNIT MÇG/L MÇG/L MÇG/L	RESULT 1. 1.	
PAR 361309 361409 361509 361609 361709	AMETER 1,2-DICHLOROPROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLOROETHENE	UNIT MÇG/L MÇG/L MÇG/L HÇG/L	RESULT 1. 1.	
PAR 361309 361409 361509 361609	AMETER 1,2-DICHLOROPROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFLUROMETHANE	UNIT MÇG/L MÇG/L MÇG/L MÇG/L	RESULT 1. 1. 1. 1. 1.	
PAR 361309 361409 361509 361609 361709 361809	AMETER 1,2-DICHLOROPROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFLUROMETHANE BROHOMETHANE	UNIT MÇG/L MÇG/L MÇG/L MÇG/L MÇG/L	RESULT 1. 1. 1. 1. 1. 1.	

DATE PRINTEDI10/20/82

HR.F.ESTRABROOKS, RH. 300, TUXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BYE ESTABROOK

RAM

100

1631

()					,				
Ì	0722		NEW YORK	STATE DEPART	MENT OF HEALT	'H			
• (		·· · · ·	DIVISIUN (	OF-LABORATORI Nmental Healt	ES AND RESEAR	CH			•
	FINAL REPO	RT .		FINAL REPORT		FINA	L REPOR	• •	
T,		·· ·				E & 197	NL REFUR	· 1	
•	. •			LTS OF EXAMIN					
	LAR ACCESS	TON NO: 07	TLT YR/M	(PAGE 1 OF 1) O/Day/HR Sand	LE REC'D: 82/	00/27/4			2
C.				VIUNIINK JA-r	LE RELIVI OCI	JA1511J			
~		LAD: 10 E		NCE, D.E.C.	•				•
C	STATION (S	CURCE) NO:	31561161	• • • •					
	DRAINAGE B	ASIN: 15 N	Y EAZETTER	EP NO: 4353 C	OUNTY: ROCKL	AND			
С	COMMON NAM	S: 47 DEG F INCL SUB	UCT CHTN, HISHED: T(	74 DEG 09* Drnf brook at	47"W Confluence w				- ,
-	· ·	-	DI	WSTR OF TORNE	VALLEY LANDE	ILD ARM	ALA PIT	, F k.	•
C	EXACT SAMP Type of Sa	LING POINT	: AT CONFI	LUENCE WITH R	AMAPO RIVER				
	MO/DAY/HR			0/00 TO 09/20	/10	с. С.		• • • • •	
6	REPORT SEN	T TO: CO C	2) RC (Q)	LPHE (0) LHO	(0) FED (0)	CHEM (0	))		,
2407448 111	PARAN				MIT	« RESUL	T	TATION	
C	009501	BERYLLIUM	and an an an an an an an an an an an an an	a and the second second second second second second second second second second second second second second se	M6/L	20.0	and the second second second second second second second second second second second second second second second	LT	ł.
C	009901	COPPER		-	MG/L	£.05		- LT	•
ſ	616309	MERCURY, 1	CTAL		MCG/L	C.4	•	LT	•
	010601	SILVER	• •	. · ·	MG/L	C.C2	· · · · ·		1
C	010901	ZINC	-	•	#¢/L	6.05	•		2 L C
C	011201	ANTIMONY		•	₩G/L	1.		LT	er l
•	012801	NICKEL			#6/L	C.05	· .	LT	۰.
C	C14301	TPALLIUM	•	· · · · ·	MG/L	1.		LT	· /
C	369339	ARSENIC		•	MCG/L	10.		ET	
	309739	CADPIUM	•		MCG/L	2.		LT	
C	309839	CHROMIUM			MCG/L	10.	<b></b>	LT	
C	310109	LEAD	. * .		MCG/L	10.	RAM	LT	
-	310509	SELENIUM			MCG/L	5.	001	LT	
C,	DATE PRINTE	D: 2/18/83	i	•					
Ċ	·		. *		· · ·		1632	. •	

MR.F.ESTRAEROOKS, PP. 30J, TOXIC TRACKDOWNS NYS.DEFT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

(

 $\boldsymbol{\zeta}_j$ 

9356	NEW YORK STATE DE Division of Labora Environmental H	TORIES AND RESE		•
FINAL REP	PORT FINAL REP		FINAL	REPORT
LAB ACCES	REBULTS OF EX (PAGE 1 O SSION NO: 21919 YR/MO/DAY/HR	F 3)	2708/25/16	
REPORTING PROGRAMI BTATION DRAINAGE	LAB: 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.E. (Source) No: 31501161 Basin: 15 Ny Gazetteer No: 43	C. 53 COUNTY: ROC		
COMMON N/ Exact Sai Type of 8 No/Day/HF	ME INCL SUBW'SHED: TORNE BROO	ORNE VALLEY LAN H Ramapo River 8/24/99	DFILL	PO RIVER
PARI	METER	UNIT	RESULT	NOTATIO
070309	META XYLENE	MCG/L	1.	LT
070409	PARA XYLENE	MCG/L	1:	LT
151409	ORTHO XYLENE	MCG/L	1	LT _
523609	1,1,1-TRICHLORGETHANE	MCG/L	1.	
323809	DICHLOROMETHANE	MCG/L	1.	L T
334409	BENZENE	MCG/L	1.	LT
336009	CARBON TETRACHLORIDE	MCG/L	1.	LT
338909	<b>BPOMUDICHLOROMETHANE</b>	MCG/L	1.	LT
339009	CHLOROFORM	HCG/L	1.	LT
339209	TOLUENE	MCG/L	1.	LT
540909	CHLOROBENZENE	MCG/L	1.	LT
341009	VINYL CHLORIDE	MCG/L	1.	RAM LT
	TETRACHLORUETHENE	HCG/L	1.	0
341209		•	4	5
341209 Date Pri	NTED: 9/10/82			

MR.F.ESTRABROOKS, RM. 300, TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBNITTED BY: ESTABROOK

4

ſ

1.

C327	RESULTS OF EXAM (PAGE 2 OF	ORIES AND RESE Alth Center Rt. Mination 3)	ARCH Final R	EPORT
REPORTIN PROGRAMI STATION DRAINAGE COORDINA COMMON N EXACT SAU TYPE OF MO/DAY/HI	SSION NO: 21919 YR/MO/DAY/HR S G LAB: 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.E.C (SOURCE) NO: 31501161 BASIN: 15 NY GAZETTEER NO: 4353 TES: 41 DEG 08' 20"N, 74 DEG 09 AME INCL SUBW'SHED: TORNE BROOK DWSTR OF TOF MPLING POINT: AT CONFLUENT WITH BAMPLE: 21 SURFACE WATER R OF SAMPLING: FROM 00/00 TO 08, ENT TO: CO (2) RO (0) LPHE (0) L	S COUNTY: ROC 47°W At Confluence RNE Valley Lan Ramapo Riyer 724/00	KLAND WITH RAMAPO DFILL	RIVER
· · ·	AMETER	UNIT	RESULT	NOTATION
342109	BROMOFORM	HCG/L	1.	LT
344109	1,2-DICHLOROBENZENE	MCG/L	1.	LT
344209	1,4-DICHLOROBENZENE	MCG/L	1.	LT
344909	DIBROMOCHLOROMETHANE	MCG/L	1.	
349709	1,3-DICHLOROBENZENE	HCG/L	1:	P15 23.
350809	1,2-DICHLOROETHANE	HCG/L	1.	LT
350909	1,1=DICHLOROETHENE	HCG/L	1	LT
351009	ETHYLBENZENE	HCG/L	1	LT
351709	1,1,2-TRICHLOROETHANE	MCG/L	1.	LT
351809	1,1,2,2-TETRACHLOROETHANE	MCG/L	1.	LT
351909	1,1-DICHLOROETHANE	MCG/L	1.	LT
361109	2-CHLOROETHYLVINYL ETHER	MCG/L	I. RAM	
361209	TRANS 1,2-DICHLOROETHENE	MCG/L	i. ≅	LT
DATE PRIN	TED: 9/10/82		100	<b>_</b> ,
			1634	

MR.F.ESTRABROOKS, RM. 300, TOXIC TRACKDOWNS NYS. DEPT.OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BY: ESTABROOK

1

ŧ

PINAL RE	DIVISION OF LABORATO	LTH CENTER	FINAL I	REPORT
LAB ACCE	RESULTS OF EXAM (PAGE 3 OF SSION NOI 21919 YR/MU/DAY/HR SA	3)		
PROGRAM: STATION DRAINAGE COORDINA COMMON N EXACT SA TYPE OF	G LAB: 17 EHC ALBANY 570 TOXICS SURVEILLANCE, D.E.C. (SOURCE) NO: 31501161 BASIN: 15 NY GAZETTEER NO: 4353 TES: 41 DEG 08' 20"N, 74 DEG 09 AME INCL SUBW'SHED: TORNE BROOK DASTR OF TOR MPLING POINT: AT CONFLUENT WITH SAMPLE: 21 SURFACE WATER R OF SAMPLING: FROM 00/00 TO 08/	COUNTY: ROO 47"W At Confluence Ne Valley Lan Ramapo River	- WITH RAMAPS	) RIVER
REPORT S	ENT TO: CO (2) RO (0) LPHE (0) L	HO (0) FED (0	) CHEM (1)	
REPORT S	ENT TO: CO (2) RO (0) LPHE (0) L Ameter	HO (0) FED (0 UNIT	) CHEN (1) Result	NOTATION
REPORT SI Par	ENT TO: CO (2) RO (0) LPHE (0) L	HO (0) FED (0		NOTATION
REPORT SI Par	ENT TO: CO (2) RO (0) LPHE (0) L Ameter	HO (0) FED (0 Unit	RESULT	_
REPORT SI PAR 361309	ENT TO: CO (2) RO (0) LPHE (0) L Ameter 1,2-Dichloropropane	HO (O) FED (( Unit MCG/L	RESULT	LT
REPORT SI PAR 361309 361409	ENT TO: CO (2) RO (0) LPHE (0) L Ameter 1,2-Dichloropropane CIS 1,3-Dichloropropene	HO (O) FED (C Unit MCG/L HCG/L	REJULT	LT LT
REPORT SI PAR 361309 361409 361509	ENT TO: CO (2) RO (0) LPHE (0) L Ameter 1,2-Dichloropropane CIS 1,3-Dichloropropene Trans 1,3-Dichloropropene	HO (O) FED (C Unit MCG/L MCG/L MCG/L	RESULT 1. 1. 1.	LT LT
REPORT SI PAR 361309 361409 361509 361609	ENT TOI CO (2) RO (0) LPHE (0) L Ameter 1,2-Dichloropropane CIS 1,3-Dichloropropene Trans 1,3-Dichloropropene Trichloroethene	HO (O) FED (( Unit MCG/L HCG/L MCG/L HCG/L	RESULT 1: 1: 1:	
REPORT SI PAR 361309 361409 361509 361609 361709 361809	ENT TOI CO (2) RO (0) LPHE (0) L AMETER 1,2-DICHLOROPROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFLUROMETHANE	HO (O) FED (C Unit MCG/L MCG/L MCG/L MCG/L MCG/L	RESULT 1: 1: 1: 1: 1:	
REPORT SI PAR 361309 361409 361509 361609 361709	ENT TO: CO (2) RO (0) LPHE (0) L AMETER 1,2-DICHLOROPROPANE CIS 1,3-DICHLOROPROPENE TRANS 1,3-DICHLOROPROPENE TRICHLOROETHENE TRICHLOROFLUROMETHANE BROHOMETHANE	HO (O) FED (C Unit MCG/L HCG/L HCG/L HCG/L MCG/L MCG/L	RESULT 1: 1: 1: 1: 1: 1:	

RAM 001

1635

DATE PRINTED: 9/10/82

MR.F.ESTRABROOKS,RM.300,TOXIC TRACKDOWNS NYS.DEPT.OF ENVIRONMENTAL CONSERVATION 50 HOLF ROAD ALBANY, N.Y. 12233

SUBMITTED BYL ESTABROOK

			· •	
IZIS PINAL RE	DIVISION O Environ	STATE DÉPARTMENT OF HE F Laboratories and res Mental Health Center Inal Report	ALTH Earch Final Ri	PORT
	RÉSUL	TS OF EXAMINATION		
LAB ACCE		PAGE 1 OF 1) /DAY/HR SAMPLE REC ¹ D:	82708/30711	
	_			
	G LABI IÕ EHC ALBANY "570 toxics surveillan	CE, D.E.C.		
STATION	(SOURCE) NOT 31501161 BARTNI IS NY GAZETTEE	R_NO: 4353, COUNTY: RO		
COORDINA	TES: 41 DEG 081 204N,	74 DEG 091 474W		
	DW .	RNE BROOK AT CONFLUENC STR OF TORNE VALLEY LA	NDFILL	RIVER
TYPE OF	SAMPLE: 21 SURFACE WAT	UENCE WITH RAMAPO RIVE Er	R	
MO/DAY/H	R OF SAMPLING: FROM 00	/00 TO 08724/11 LPHE (0) [HO (0) FED (	0) CHEN (0)	• .
· ·	AMETER	UNIT	RESULT	NOTATION
0 <b>09501</b>	BERYLLIUM	HG/L	0.02	LT
509901	COPPER	HG/L	0.05	LT
010309	MERCURY, TOTAL	HCG/L	0.4	LT
010601	SILVER	MG/L	0.02	
010401	ZINC	HG/L	0.05	LT
011201	ANTIHONY	HG/L	1.	LT
012801	NICKEL	HG/L	0.05	LT
ó143ò1	THALLIUM	NG/L	1.	LT
304309	ARSENIC	HCG/L	10.	LT
309709	CADHIUM	MCG/L	2,	LT
, 304704				
309809	CHROMIUM	MCG/L	10.	LT
	CHROMÍUN Léad	MCG/L MCG/L	10.	LT
309809				
309809 310109 310509	LEAD	HCG/L	10. RA	LT
309809 310109 310509 Date Pri	LÉAD SELENIUM	HCG/L	10, 7, RAM	LT

MR.F.ESTRABROOKS, RM. 300, TOXIC TRACKDOWNS NYS.DEPT, OF ENVIRONMENTAL CONSERVATION SO WOLF ROAD ALBANY, N.Y. 12833

SUBNITTED BYS ESTABROKS

•

¢

~

SANITA	RY SCIENC	E		EVED	
LABORA'	& Tories, in	<b>C.</b>	:10	2 8 1983	•
555 ROUTE 94. NI	EW WINDSOR - NEWBURG	H. NEW YORK 12	2550 . PHON	Y. S. D. E. C. NEW PALTZ	22
<u>1</u>	EXAMINATION OF MATE	RIAL FROM L	ANDFILL		
Sample No.:	83-1155	Data P	aportad.	18 Novembe	- 1002

Sample NO.:83-1155	Date Reported:	18 November 1983
Work Order No.: 534	Date Collected:	2 November 1983
Purchase Order No.:	Date Received:	2 November 1983
Client Sample No.:	Time Sampled:	
Client: Town of Ramapo, Attn: Mr.	Gene Ostertag	
Address: Dept. of Public Works,	Town Hall, Route 59	, Suffern, NY 10901
Sampling Point: Landfill	· · · · · · · · · · · · · · · · · · ·	
Collectec by:		

#### RESULTS

The sample as received consisted of fist-sized chunks of a rubbery solid which appeared to be dried paint. A slice was cut from the center of each chunk. The slices were shredded and combined. A portion of the composite sample was analyzed directly for aromatic hydrocarbons with results as follows:

Benzene	13 mg/kg
Ethylbenzene	68 mg/kg
Toluene	88 mg/kg
Total Xylenes	260 mg/kg

Another portion of the composite sample was used for an EP Toxicity Extraction which was performed as described in the Federal Register, Vol. 45, No. 98, p. 33127. The extract was analyzed for the following metals with results as listed (mg/1)

Arsenic	less than 0.025
Barium	0.80
Cadmium	0.04
Chromium	less than 0.01
Lead	129
Mercury	0.0005
Selenium	less than 0.001
Silver	less than 0.01

Page 1 of 2

RAM

100

Town of Ramapo Sample No. 83-1155 Page 2 of 2 18 November 1983

The presence of the aromatic hydrocarbons and the concentration of lead in the EP Toxicity Extract indicate that the material tested is a hazardous waste.

By:

Ila G. Fulton, Ph.D. Laboratory Director

10 Z 0 Z

エル

001 1638

RAM

### TABLE 4-12

## GROUNDWATER ANALYSIS

#### RAMAPO LANDFILL SITE

# LEACHATE ANALYSIS FROM NPDES PERMIT APPLICATION - 1983

Parameter	Result
BOD	2,751
COD	4,426
TOC	400
Total Suspended Solids	240
Ammonia	265
pH (Units)	7.3
Color (Units)	300
Fluoride	0.66
Iron	50
Manganese	12
Arsenic	0.021
Cadmium	0.009
Chromium	0.061
Copper	0.295
Lead	0.140
Nickel	0.163
Selenium	0.10
Zinc	1.36
Cyanide	0.001
Total Phenois	0.039
Benzene	0.019
Chloroform	0.002
1,1,2,2-Tetrachloroethane	0.002
Tetrachloroethylene	0.003
Phenol	0.08
Di-n-octylphthalate	0.70

Note: All resulted are in µg/l unless noted.

RAM 001 1639

4-22



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

NAME:		'D: 88/04	/06 DATE FNAME: CITY:	COLL'D:	88/04/06 STATE:	STATUS: Closed
TPL LO	CATION: well 2					
KEPORT Bill	TO: same TO: same					
COL I F COL I FU NO3 NO2 -PO4 U-PO4 SO4 BAS LiO2 H2S H3-C		Br : Color : Odor : Turb : pH : LI :	<0.01 <0.005 8.0 320 umhos	COD HARD-T Ca Hard SO3 Cl Alk BOD-Inf BOD-Eff BOD-S TSS-Inf TSS-Eff MLSS MLVSS	32	Fr 10/33
VSS TS DS SS SOL } & O A1 b S Ba Be Se Id		Co : Cu : Au : Fe : Fb : Mg : Hg : Hg : Hg :	<0.02 0.01 0.57 0.13 0.44 <0.4 ug/1 <0.04	Ag : Na : T1 : Sn : Ti : V :	<pre>&lt;2.0 ug/1 0.005 &lt;0.1 0.06 1.5</pre>	• • •

Remarks: All results in mg/l unless otherwise indicated.

Ronald A. Sayer ¢/2/88 Laboratory Director

RAM

001

PB #63559-001

Client: (T) Ramapo Landfill

Sol Location: Well #2

.Jel Coll'd: 4/6/88

#### Sample Rec'd: 4/6/88

:PA Method 624 Volatile Organics GC/MS

		REBUL	BLANK	
	COMPOUND	Sample Concen. ug/l	MDL ug/1	Conc. uç/l
		N175	100	ND
	Acrolein	ND ND	$\frac{100}{100}$	ND ND
	Acrylonitrile	ND .	5.0	ND
-	Benzene	ND	5.0	ND
	Bromodichloromethane	ND	5.0	ND
	Bromoform	ND ND	5.0	ND
	Bromomethane			ND
	Carbon Tetrachloride	ND	5.0	ND /
		ND	5.0	
	Chloroethane	ND	5.0	ND
	2-Chloroethylvinyl ether	ND	5.0	ND
	Chloroform	ND	5.0	ND(#
	Chloromethane	ND	5.0	ND
	Cis-1,3-dichloropropene	ND	5.0	ND
	Dibromochloromethane	ND .	5.0	ND
	1,2-Dichlorobenzene	ND	5.0	ND
	1,3-Dichlorobenzene	ND	5.0	ND
	1,4-Dichlorobenzene	ND	5.0	ND
	1,1-Dichloroethane	ND	5.0	ND
9)	1,2-Dichloroethane	ND	5.0	ND
$\langle 0 \rangle$	1,1-Dichloroethene	ND	5.0	. ND
1)	1,2-Dichloropropane	ND	5.0	ND
	Ethylbenzene	ND	5.0	ND
	Methvlene chloride	ND	5.0	ND
	1.1.2.2-Tetrachloroethane	ND	5.0	ND
	Tetrachloroethene	ND	5.0	ND
	Toluene	ND	5.0	ND
7)	•	ND	5.0	'ND
	trans-1,2-Dichloroethylene	ND	5.0	ND
	1,1,1-Trichloroethane	ND	5.0	ND
	1.1.2-Trichleroethane	ND	5.0	ND
	Trichloraethene	ND	5.0	ND
	Trichlorofluoromethane	ND	5.0	
	Vinvl chloride	ND	5.0	ND KAM
	Total Xylenes	, <u>ND</u>	• تہر	ND
<b></b> /	IWGAL AFICHER	$1/1_{-}$	$\Lambda^{*}$	
	For EnviroTest Laboratories.	Inc.	lin	'
		Ronald A.	Baver	4/15/88
		President	( )	4/15/88

8 # 40559-001

Clemmy Momazo Langfill	·	Soi Location: Woi: #2
lade Talende (4-6288) -		Sample Rec d: 4/6/83

#### EFA Method 625 Acid Extractables GC/MS

COMPOUND		RESULT	PLANK	
		Samolé Concert MPL Qo/l Qq/l		jenc. ug/l
		ND		5 ( <del>*</del>
	ero-m-Creacl prochenel	ND ND	10 10	ND . ND
	ichloropheasl	ND	10	ND
	imethylphenol	ND	10 j	ND
5) 2.4-0	initrophenel	ND .	20	ND
.e−D	iditro-d-Crescl	ND	20	ND
7) 2-Nit	rophenol	ND	10	ND ND
8) 4-Nit	rocnenol	ND	20	ND
	chlorophencl	ND	10	
10) Fneno		ND	10	ND #
• • • • • • • • • •	-Trichlorathenol	ND	10	ND R

For EnviroTest Laboratories. Inc.

Ronald A. Bé 25/88 President

RAM 001

LAR & STOTE-OPL

Tlients Remado Lindelli

Spl Location: well #2

331 Coll d: 4/6/88

#### Sample Recid: 4/6.33

## EFA Method 625 Base/Neutral Extractables GC/MS

	, RECUL	Te	BLAMK
COMPOUND	cample		
	Concen.	mDL.	Uche.
	ua/1	ug/i -	uc/1
1) Acenaphthene	ND	10	ti E
2) Acenaphthylene	ND	10	NE
3) Anthracene	ND	- 10	· · · · ·
4) Benzidine	ND	10	
5) Benzola/Anthracene	ND-	10	ND
a) Benzo(a)Pyrene	ND	10	HD 🔶
7) Eendo(b)Fluoranthene	ND	10	
Benzo(a.h.i)Pervlene	ND	10	NE Q T
9) Benzo(k)Fluoranthene	ND	10	ND
0) Bis(2-Chloroethoxy)Metha	ine ND ·	10	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1) Pis(2-Chlorosthyl)Ether	ND	10	
<ol> <li>Bis(2-Ch)oroiscoropy1)Et</li> </ol>	her ND	10	
C) Sis(2-Ethylhexyl)ohtnals	te ND	10	42
4) A-Bromophenvlthenylether	- ND	10	NĐ
5) Butyl Benzvl Pothalate	ND	10	hi D
<ol> <li>2-Chloronaphthalene</li> </ol>	ND	10	ND
7) 4-Chiorophenvlphenvletha	n ND	10	NÜ
27 Chrysene	ND	10	40
.7) Dibenzo(a.h)Anthracene	ND	10	ND ND
20) 1.2-Dichloropeazene	NE	10	NE
11/ 1.3-Dichlorocenzene	ND.	10	11
I2) 1.4-Dichiorobenzene	ND	10	
13) 3.3(-Dichlorabenzidine -	NÐ	10	14D
169 Diethvl Phthalate	ND	10	200
25) Dimethvl Phthalate	ND	10	rui)
157 Di-N-Butyl Phthalate	ND	10	1.D
17) 2.4-Dimitrotoluene	ND	10	ND
le) 2.5-Jinitrotoluene	NE	10	14 <b>2</b>
291 Di-N-Octvi Phonalate	ND	$10$ $\odot$	tiĝ 👘
0) 1.2-Dinnenvlhydrazine	ND	10	NE Z
I) Fluoranthene	ND	10	RAM

142 · * AVSE--001

Clir t: Pemapo Landfill

Sol Location: Well FC Genole Recid: 4/6/81

301 Ioli'd: 4/6/85

#### EFA Method 625 Base/Neutral Extractables GC/MS

		RESULT	12	2
cc	MECOND	Bample Concer. uç/l	MDi⊥ uç∕l	Conc. uc/1
•				
22) Flu		ND	10	NE C
	achiorcoenzene '	NŨ	10 -	ND
- 347 Hex	achlorobutadione	ND	10	ND
JE) Hex	achlorocyclopentadiene	ND	10	90 MD
(36) Hax	ach.orcethane	ND	10	N.D
07) (nd	enb(1.2.3-cd) Pyrene	ND	10	ND 20
22) isc	phorone	ND	10	ND ( H, N
39) Nac	htnalene	ND	10	ND V &
40) Nit	robenzene	ND.	ìo	
41) N+N	litrosodimethylamine	ND	10	81 <u>5</u>
	litrosodi-n-Propylene	ND	10	ND
	witrosodiphenvlamine	ND	10	10 m
	nanthrene	ND	10	54 <u>0</u>
	ene	ND	10	AE .
	.4-Trichlorobenzens	ND	. 10	NE

RAM 100 1644 Ronald Ē ĥ Frecident

ALAG Y SINTER-ANA

Spi C511 4: 4/6/35

١,

3

lient: Famaro Landfil

HEL LOCATION: Well #1

Sample Son t: 414/85

EFA Method 608

GC/EC Festicide/PCB

		RELIT	REELTS			BLANK		
•	COMPOUND	Sancle ~ Contan. uc/l	nel Nel		lons.	• .		
					·····			
1.1	Alpha-BHC		0.05		NE			
2.	Pota-BHC	12D	C.05					
722	Delta-BHC	- ND	ം.ട		NE	-		
4.7	Lindane		с. 65		MD			
51	Heotachion	8 - D	े.्≘		ЫĒ			
<b>6</b> )	Aldrin	ND:	0.08		ND /	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
7	Heotachlór eocxide	ND 1	0.05	• .	ND/.	, Å		
8)	Endosulfan l	ND	0.05		NE A	Ph 66/33		
9)	Diélarin	ND	0.05		NE <b>L A</b>	<u>چ</u>		
10)	4.4'-DDE	ND	0.05		- NP 🔪			
111)	Endrin	ND.	ಂ.ಂತ		ND			
12)	Endosulfan II	215	c.c5		ND	-		
. Z )	4.4 - PPD	NE	ಂ.ಂಕ		1N2			
14)	Endosulfan sulfate	NE	∘.्ड		ĮΝL	-		
15/	4.4 -DDT	NE	ಂ.ಂತ					
16)	Methoxychlor	ND .	े.ड		ND			
17)	Endrin Ketone	NÐ	0.1	τ	NE			
18)	Chlordane	ND	.इ		ND	•		
( <b>?</b> )	Toxaphene	ND	· . 3		NE			
200	PCB Araclar 1916	51 <u>5</u>	<u>ः :</u>		ND			
21)	PCB Araciar 1221	*. • • • • • • • • • • • • • • • • • • •	st e de		NC			
227	PCB Araclar 1232	ND .	0.1		11			
23)	PCB Aroclor 1242	NE	Q.1		1-D			
24:	PCP Aroclor 1248	NE	0.1		NE			
25 -		ND	4 		NE	EC.		
_ <b>2</b> 6>	FCB Arcelor 1260	<u>NE</u>	t [∎] n ti tit		ND	RAM		

Inc.

viroTes: Laboratories.

**I**00 1645 Fenald A. Bay Precisent 22 AL

500 5.5

Enviroïest 🔤 Laboratories Inc.



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

_NAME: (T) Ramapo STREET: PL LOCATION: well		AME: TY: STATE:	ZIP:
REPORT TO: same PILL TO: same			
: COLI:	Cr+6 :	COD :	
FCOLI:	Phenol: 0.01	HARD-T :	
	CN : <0.005	Ca Hard:	
•	B :	SO3 :	
N03 :	Br :	C1 : 400	
······································	Color :	Alk :	
-F04 :	Odor :	BOD-Inf:	
0-604 :	Turb :	BOD-Cff:	$\left( \begin{array}{c} 0 \\ \end{array} \right)$
<b>SO4</b> :	pH : 6.6	BOD-S :	(H tm)
BAS :	LI :	TSS-Inf:	(" ")
5102 :	Cond : 1400	TSS-Eff:	
H2S :	NH3-T :	MLSS :	
H3-C :	TKN :	MLVSS :	
VSS :	Ca :	к :	
	Cr : <0.02	Se : <2.0 ug/	1 t
S :	Co :	Ag : 0.005	
TDS : 1000	Cu : 0.03	Na :	
SS :	Au :	T1 : <0.1	
SOL :	Fe : 37	Sn :	
: 10 % ل	РЬ : 0.04	Ti :	
Al :	Mg :	V I	ਸ
<b>ь</b> : <0.1	Mn : 3.1	Zn : 0.08	RAM
s :21 ug/l	Hg : <0.4 ug		
Ba :	Mo :	TOC : 21	0
7e : <0.005	Ni : <0.04		001
`d : <0.01	Pd :		-

Remarks: All results in mg/l unless otherwise indicated.

Ronald A. Bayer 5/2/89

Laboratory Director

LAB_#63559-002

Client: (T) Ramapo Landfill

Sol Location: Well #3

• •--

Sol Coll'd: 4/6/88

## Sample Rec'd: 4/6/88

EPA Method 624 Volatile Organics GC/MS

		RESULTS	
COMFOUND	Samole Concen. uç/l	MDL ug/1	Conc. ug/l
) Acroleia	ND ND	100	ND
> Acrylonitrile	ND	100	ND
) Benzene	ND	5.0	ND
) Bromodichloromethane	ND	5.0	ND
D) Bramoform	ND 1	5.0	ND
) Bromomethane	ND	5.0	ND
) Carbon Tetrachloride	ND	5.0	ND
) Chlorobenzene	ND	5.0	ND ND
2) Chloroethane	ND	5.0	ND
)) 2-Chloroethylvinyl ether	ND	5.0	ND ND
.) Chloroform	ND	5.0	ND Q.
) Chloromethane	ND	5.0	
5) Cis-1,3-dichloropropene	ND	5.0	
) Dibromochloromethane	ND	5.0	ND -
5) 1,2-Dichlorobenzene	ND	5.0	ND
> 1,3-Dichlorobenzene	ND	5.0	ND
<ol> <li>1,4-Dichlorobenzene</li> </ol>	ND	5.0	ND
3) 1.1-Dichloroethane	ND	5.0	ND
7) 1,2-Dichloroethane	ND	5.0	ND
)) 1,1-Dichloroethene	ND	5.0 -	ND
l) 1,2-Dichloropropane	ND	5.0	ND
2) Ethylbenzene	ND	5.0	. ND
3) Methylene chloride	ND	5.0	ND
1) 1,1,2,2-Tetrachloroethane	ND	5.0	ND
5) Tetrachloroethene	ND	5.0	ND
b) Toluene	ND	5.0	ND
1. trans-1 %-Dichloronronana	nun .		
3) trans-1,2-Dichloroethylene	ND	5.0	
7) 1,1,1-Trichloroethane	ND	5.0	ND
) 1,1,2-Trichloroethane	ND	5.0	ND O
) Trichloroethene	ND	5.0	ND H
2) Trichlorofluoromethane	ND	5.0	ND
5) Vinyl chloride	ND	, S.O	ND L
Fotal Xylenes	ND	<b>ः.</b> ्र	ND 4
	XL	7-11	
For EnviroTest Laboratories, In	///	75	
, of chartonest capolatories, 1	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		
	Ronald A.	Distante /	

Eol Cocation: Well #3 Famole Recid: 4/6/88

EPA Method 625 Acid Extractables GC/MS

	RESULTS	ELANK .
COMPOUND	Samole Concent MDL	Conc.
· · · · · · · · · · · · · · · · · · ·	µa∕is ≃uą⁄i	ug/1 *
1) o-Chloro-m-Cresol	ND 10 21	ND .
2) Z-Chiorophenoi	ND 10	ND
3) 2,4-Dichlorophencl	ND 10	ND
4) 2.4-Dimethylohenol	ND 10	ND
5/ 2.4-Dinitrophenol	ND 20	ND
6) 4.6-Dinitro-o-Cresol	ND 20	ND m
7: 2-Nitrophenol	ND 10	ND
8) 4-Nitroomenol	ND 20	ND
Pentachlorophenol	ND 10	ND TH G
10) Phenol	ND 10	ND
11) 2.4.6-Trichlorophenol	ND 10	ND

**1** 

For EnviroTest urbanatories, Inc.

Sonald A. B.C 25789 President

RAM

100

1.5 + SJ559-002'

Clast: Ransos Landfill

Scl Location: Well #3

*::: Call'a: 4/2/88

(Sample Rec'd: 4/c/83

# EPA Method 625 Base/Neutral Extractables GC/MS

	RESULT	i Mili Maria Tan	BLANK
CCHPOUND	Sampie Concent	MDL.	Sarra : Sarra :
	ug/1	ug/1	
			· . · ·
) Acensohthens	NĐ	10	N T
) Acenaphthylene.	ND	10	P411
	ND	10	ND
) Anthracene	ND	10	ះរដ្ឋ
) Senzidina	NE	10	NE
) Benzo(a)Anthracene	ND	10	ач <b>D</b> — .
· Benzo(a)Pyrete	ND ND	10	ND ND
) Benzo(b)Fluoranthene	ND	10	ND C
) Benzo(g,h.i)Pervlene	ND	10	
) Benzo(k)Fluoranthene	ND ND	10	A Jen
) Bis(2-Chloroethoxy)Methane	NE	10	A H CIN
> Bis(2-Chloroethyl)Ether	ND	10	
) Bis(2-Chloroisopropyl)Ether		10	ħĒ
) Eis(2-Ethylhexyl)phthalate	ND	10	ND
) 4-Bromochenvlohenvlether	ND		ND
5) Butvl Benzvi Phthalate	ND	10	ND
) 2-Chicronaonthalene	ND	10	NĐ -
) 4-Chloroohenvlohenvlether	ND	10	ND ND
3) Chrysene	ND	10	
) Dibenzo(a.h)Anthracene	ND	10	- 11 11
() 1.2-Dichlorocenzene	ND	10	10 NE
) 1.3-Dichlargeenzene	NE	10	ND ND
2: 1.4-Dichlorobenzene	ND	10	
3) 3.3 -Dichlorobenzidine	ND	10	다. 19년 - 19년 1981 - 1981
A; Digthvl Potoalate	ND	10	ND RAM
5) Dimethyl Phthalate	ND	10	
sy <u>Di-N-Butyi</u> Phthalate	ND '	10	
7) 2.4-Dinitratoluene	NÐ	10	ND 001
3) 1.4-Dinitrotoluene	ND	- <b>10</b>	· -
9) <u>Si-N-Octyl</u> Phthalate	ND 1	10	ND
	NE	10	16
0: 1.2-Dichenvlhvdracine () Fluorenthene	ND	10	· · · · · · · · · · · · · · · · · · ·

.44 8 ETTER-00Z

Client: Remado Landfill Spi Coll c: 4/6/88

#### Sol Location: Well #0

-'Samola Rec'd: 4/6/85

## EFA Method 625 Base/Neutral Extractables GC/MS

	RESULT	3	BLANK
COMPCUNE	Eamole Concen. ug/l	MDL uç/1	Сопс. ug/1
32) Fluorene	ND	10	ND
33) Hexachlorobenzene	ND	10	ЧÐ
34) Hexachlorobutadiene	ND	10	NÐ
35) Hexachlorocvclopentadiene	ND	10	ND
36) Hexachlorcethane	ND	10	ND
27) Indeno(1,2,3-cd) Pyrene	ND	10	ND 2 5
38) Iscohorone	ND	10	ND/# ~
39) Nachthalene	ND ND	10	ND (# 2
40) Nitrobenzene	ND	10	ND -
41) N-Nitrosodimethvlamine	ND	10 1	DND
42/ N-Nitrosodi-n-Propylene	ND	10	ND
43) Ni-Nitrosodiphenvlamine	ND	10	ND
44) Fhananthrene	ND	10	ND
45) Fyrane	ND	10	NE
45) 1.2.4-Trichlorobenzene	ND	10	ND

RAM 100 1650 Earle Sonald A 4/13/88  $\mathbb{C}_{2^{\prime}}$ csident

EnviroTest 🔛 Laboratories Inc.

For EnviroTest Laboratories. Inc.

LAR 4 67559-007

1

Cident: Ramaco Landfill

Soi Lecarter: well #3

Sample Ref t: 1/2/38/

EFA Method 608 Festicide/FCB

Set Could: 4/6/85

PCB GC/EC

the second second second second second second second second second second second second second second second s	RESUL	.73	
	Samole		· .
•	: Conzeo.		Core.
	uç/1		
1) Albha-8HC	ND	0.0E	ND
2) Bata-BHC	ND		10
3/ Delts-BHC	NO		ND
4) Lindane	4D	0.05	ND
5) Heptachlor	ND	0.CS	ND
s) Aldrin	ND	o.65 👘	ND
7) Heptachlor epoxide	NE	0.0E	ND
8) Endosulfan I	ND	0.0E	ND
9) Dieldrin	ND	0.05	NE
0) 4.4'-DDE	ND	0.05	ND
1) Endrin .	ND	0.05	ND <b>R</b>
2) Endosulfan II	ND	0.05.	ND
3) 4.4 -DDD	ND	0.0E	ND
4) Endosulfan sulfate	ND	. o.os	) ND
(5) 4.4'-DDT	ND	·5	NĐ
6) Methoxychlor	ND	. · · 5	ND
7) Endrin Ketone	ND ND	0.1	ND
15) Chlordane	, ND	ు.క	N D
(F) Toxsphene	ND	0.E	, ND ,
D) FCE Aroclor 1016	ND	0.1	51 Dr.
1/ PCB Aroclor 1221	ND	· • •	
12) PC5 Aroclor 1232	NB	0.1	NE
IS) PCB Aroclos 1242	ND	0.1	ND
>>>> FCB Arcelor 1248	ND ND	3 <b>.1</b>	ND
12: FC9 Araclar 1254	ND	43 <b>.</b> 1	ND
1:) FCB Algolog 1260.	ND .	0.1	14 <b>0</b>

Fonald A. President 330 25/83

For EnviroTest Laboratories. Inc.

RAM 001 1651



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

		(1	59-003 DA ) Ramapo	TE REC'	'D: 98/0	04/05	DATE FNAME: CITY:	COLL'I	): 85	STATE:	ZIF:	Close
			ION: well	#4								
	REPORT BILL	TC TC	): same ):		•		• ·					· ·
•	т соці	:			Cr+6			COD	:			
f	F COLI	:			Fhenol			HARD-1				-
9	SPC	:				: <0.0	05	Ca Har	rd:			
f	F	:			B	:		S03	:			$\frown$
I	NOS	:			Br	:		C1	: 7	4		~ 2
ļ	N02	:	-		Color	:		Alk	:			N mr
	T-P04	:			Odor	:		BOD-Ir			(`	"c #
	0-P04	:			Turb	1	1. A	BOD-E	ff:			A
	S04	:		• •	рH	: 6.8		BOD-S	:			
	MBAS	:	•			1		TSS-In			•	
	Si 02				Cond	: 390	umhos	TSS-E	ff:			
	H2S	:			NH3-T	•		MLSS	:			
	NH3-C	:			TKN	:		MLVSS	:			
	VSS	:	× 1			:		к	:			
	TS	:				: <0.0	2	Se		2.0 ug/l		
	VS	:				:	-4	Ag	<b>a</b> <0	0.005		
	TDS	:	470			: 0.17	,	Na	:			
	SS	:		~	Au	:		Τ1	: <0	0.1		
	% SOL	:				: 1.6		Sn	:			
	G & O	:			P6	: 0.02		Ti	:			
	A1	:	·		Mg	1		V	:			
	Sb		<0.1		Mn	: 2.6		Zn	: 0.	.39		RAM
	As	:	<5.0 ug/l		-	:-<0.4	ug/l	THM	:	_		3
	Ba	:			Mo	:		TOC	: 3.	.8		~
	Be		<0.005		Ni	: <0.0	4	-				001
	Cd	:	<0.01		۴d	:						┝━┩

Remarks: All results in mg/l unless otherwise indicated.

1652 Ronald A. Eayer 5/2/88 Laboratory Director

LAB:#325592003

Client: (T) Ramapo Landfill

Sol Location: Well #4

Sol Coll'd: 4/6/88

Sample Rec'd: 4/6/88

EPA Method 624 Volatile Organics GC/MS

	RESUL	rs	BLANK
	Sample	-	
	Concen.	MDL	Conc.
	ug/1	ug∕1	ug/1
	•		• • • • • • • • • • • • • • • • • • •
1) Acrolein	ND	100	ND
2) Acrylonitrile	ND	100	ND
3) Benzene	ND .	5.0	ND
4) Bromodichloromethane	ND	5.0	ND
5) Bromoform	ND	5.0	ND
6) Bromomethane	ND	5.0	ND
7) Carbon Tetrachloride	ND	5.0	ND
8) Chlorobenzene	ND	5. <u></u>	NEY 2 4
9) Chloroethane	ND	5.0	ND
10) 2-Chloroethylvinyl ether	ND	5.0	ND
11) Chloroform	ND .	5.0	ND
12) Chloromethane	, ND	5.0	ND
13) Cis-1,3-dichloropropene	ND	5.0	ND
14) Dibromochloromethane	ND	ຣ.	ND
15) 1,2-Dichlorobenzene	ND	5.0	ND
16) 1.3-Dichlorobenzene	ND	5.0	ND
17) 1,4-Dichlorobenzene	ND	5.0	ND
18) 1,1-Dichloroethane	ND	5.0	ND
17) 1,2-Dichloroethane	ND ND	5.0	ND
20) 1,1-Dichlordethene	ND	5.0	ND
21) 1,2-Dichloropropane	ND	5.0	ND
22) Ethylbenzene	ND .	5.0	ND
23) Methylene chloride	ND	5.0	ND
24) 1,1,2,2-Tetrachloroethane	ND ND	5.0	. ND
25) Tetrachloroethene	ND	5.0	ND
26) Toluene	ND ND	5.0	ND .
27) trans-1,3-Dichloropropene	ND	5.0	ND 50 .
28) trans-1.2-Dichloroethylene	ND	5.0	RAM
27) 1,1,1-Trichloroethane	ND	5.0	NE
30) 1,1,2-Trichloroethane	ND	5.0	ND O
31) Trichloroethene	ND	. 5.0	ND 001
32) Trichlorofluoromethane	ND	5.0	NL.
33) Vinyl chloride	ND S	5.0	ND
34) Total Xylenes	ND	5.67	ND 165
	$\Lambda F$	2//	5 3
For EnviroTest Laboratories. I		m	
	Ronald A.	Baver	$\gamma \sim 1$
	President		415/28
			U l

LAR 4 50657-003

Sel Coll 5: 4/6/58

Tilent: Ramato Mandfill

Sol Location: Well #4

Sample Recid: 4/6/88

EFA Method 625 Acid Extractables GC/MS

For EnviroTest Laboratories.

REBULTŠ			el ank
COMPOUNE	Sample Concen. uc/l	MDL ug∕l	Conc. uç/l
i - p-Chioro-m-Cresci	ND	10	ND
2: 2-Chloropeeol	ND	10	
3) 2.4-Dichlorophenal	ND	10	ND
4) 2.4-Eimethylchenol	ND	10	NE S
5/ 2.4-Dinitrophenol	ND	20	NI ( M S M
<ol> <li>4.6-Cinitro-o-Cresol</li> </ol>	ND	20	NE A 5 M
7) 2-Nitrochenol	ND	10	ND A
E) 4-Nitrochenol	NĐ	. 20	ND
9) Pentachlorophenol	ND	10 .	ND ND
(0) Sherol	ND	10 1	ND
11) 2.4.6-Trichlorophenol	NĐ	10	N

100 1654 Inc. 26 .er Ronald 5/88 President

RAM

LAB # 23529-003	•
lisest: Samado Landfill	Sol Locat

· . 277

Sol Location: Well #4

20. Call'd: 4/6/86

Sample Rec'd: 4/6/68

EFA Method 625 Base/Neutral Extractables GC/MS

		REEUL	<b>.TS</b> (	•	<u>B</u> LAMM	
	COMPOUNE	Sample Concen. ug/l	MDL ug/l		Conc. ug/l	
				, <b></b>	م متية هيد منه منه منه منه الله الله عنه هذا الله .	
1 .	Acenastthene	NE	10		ND	
$\overline{2}$	Acenaphthylene	ND	10 T		ND	
$\overline{z}$	Anthracene	ND	10		ND	
-	Renzidine	ND	10		ND	
55	Benzo(a)Anthracene	ND	10		ND	
ε,	Benzo(a)Pyrene	ND	10		ND	$\sim$
	Benzo(b)Fluoranthene	ND	10		ND /	
έ÷	Benzo(a.h.i)Perviene	ND	10		ND	6
ē,	Benzo(k)Fluoranthene	ND	10		ND	16
10)	Bis(2-Chloroethoxy)Methane	ND	10		ND \ H	^ع لی کے
11)	Bis(2-Chloroethvl)Ether	- ND	$\sim 10$		ND 🔪	<u></u>
12)	Bis(2-Chloroisopropyl)Ether	. ND	10		ND	
13)	Bis(2-Ethvlhexvl)onthalate	85	10		ND 1	
14)	4-Bromophenvishervlether	ND	10		ND	
15)	Butyl Benzyl Phthalate	ND	10		ND	
15)	1-Chloronaphthalene	ND	10		ND	
17)	4-Chlorophenylphenylether	ND	10		ND	
18)	Chrysene	ND	10		ND	
19)	Dibenzo(a.h)Anthracene	ND	10		ND	
200	1.2-Dichloropenzene	ND	10		ND	
21)	1.3-Dichlarobenzene	ND	10		ND	
22)	i,4-Dichlorobenzene	ND	10		ND	
27 -	3.3'-Dichlorobenzidine	ND	10		ND	
24)	Dietbyl Phthalate	ND	10		ND	
25)	Dimethvi Phthalate	V ND 1	10		ND	
25)	Di-N-Butvl Phthelate	ND	10		ND	R .
27)	2,4-Dinitrotoluene	t:D	10		NĐ	RAM
28)	2.2-Dinitrotoluene	ND	10		ND	
297		ND	10		NĐ	0
<b>3</b> 0)	1.2-Dipnenvlhydrazine	ND	10		ND	Ō
315	Fluoranthena	ND	10		ND	

143 4 63559-000

Sel Coll'd: 4/6/85

Silbor: Ramapo Landfill

Sol Location: Well #4 Sample Rec d: 4/6/93

#### EPA Method 625 Base/Neutral Extractables GC/MS

		REPULTS		BLANK
-	COMPOUND	Samole Concen. uç/l	MDL ua/1	Conc. uc/l
32)	Fluorene	ND	10	> NE .
33)		ND	10	ND
343	Hexachlorobutadiene	NB	10	MD
33)	Hexachlorocyclopentadiene	ND .	10	UND V
33)	Hexachisroethane	ND	10	ND
37)	Indanc(1.2,3-cd) Pyrene	ND	10	ND ( m -
38)	Isophorone	NÐ	10	ND (H 2)
39)	Nachthalene	ND	10	ND
40)	Nitrobenzene	ND	10	ND
41)	N-Nitrosodimetnylamine	ND	10	ND
42)	N-Nitrosodi-n-Propylene	ND	10	ND
43)	Ni-Nitrosodiphenvlamine	ND	10	ND
44)	Phenanthrene	NE	10	ND
45)	Fyrene	ND .	10	ND
46)	1.2.4-Trichlorobenzene	NÐ	10 +	ND

RAM 001 1656

4/25/88

.: ..

Ronald A. Ba President

For EnviroTest Laboratories. Inc.

- Constant Constant Constant La constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant Constant

Client: Ramapo Londfill

Sol Eccation: well #4

351 Coli d: 4/6/88

, Sample Recipion Vo/36 -

EFA Method 608 Pesticide/PCB GC/EC

	REEU	Ц19 ула ула ула ула ула ула ула ула ула ула	BLANK
COMPOUND	Semple Concon. _:c/l	MBL UZYI	Сапа,
1) Alpha-BHC	ND	ः <b>.</b> 5	ND
2: Beta-BHC	MB	.0≡	ND
3) Delta-BHC	ND	0.05	ND
4) Lindane	ыD	, 0 <b>,</b> 08	ND
5: Hectachlor	ND	0.05	NE
S, Aldrin	ND	0.0 <u>5</u>	ND
7) Heptachlor epoxide	ND	·.05	ND( 2 2
2) Endosulfan I	ND	0.0S	NL D .
9) Dieldrin	ND	0.05	
10) 4.4'-DDE	ND 1	0.05	ND
11) Endrin	ND	0.05	ND
12) Endosulfan II	ND .	o.05	MIN
13) 4.4'-DDD	ND	:. <b>.</b> 5	ND
14) Endosulfan sulfate	ND	0.05	NE
15) 4.4'-DDT	ND	<u></u> इ	ND
15: Methoxychlor	ND	0.3	ND
17) Endrin Ketone	ND	0.1	ND
15) Chlordane	ND	0.5	ND .
17) Toxaphene	ND	<b>.</b> 5	ND
201 PCB Araclar 1016	мÐ		ND
21: PCB Arocior 1221	ND	Q. (1)	ND
21: PCB Aroclar 1232	ND	0.1	ND
23) PCB Arosler 1242	ND	0.1	ND RAM
24) PCB Araclar 1248	ND	0.1	ND AM
25. PCB Arselor 1254	NE	0.1	ND
25 FCB Aroclor 1260	ND	C.1	ND 001

Inc. Renald A. Bat President

For EnviroTest Laboratories.

Envirolest E Laboratories Inc.

1657

4/25/8E



Y

315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

LAB#: 63559-004 DATE LNAME: (T) Ramapo STREET: SFL LOCATION: 2A	FNI	DATE COLL'D: 88/04/06 S AME: TY: STATE:	TATUS: Closed
REPORT TO: same BILL TO:			- - -
T COLI: F COLI: SFC : F : NO2 : T-FO4 : O-FO4 : SO4 : MBAS : SiO2 : H2S : NH3-C :	Cr+6 : Phanol: CN : B : Br : Cclor : Cclor : Ocor : Turb : pH : 7.1 LI : Cond : 650 umh NH3-T : TKN :	COD : HARD-T : Ca Hard: SO3 : Cl : 190 Alk : BOD-Inf: BOD-Eff: BOD-S : TSS-Inf: os TSS-Eff: MLSS : MLVSS :	# 20 Plo 190
VSS : TS : VS : TDS : 600 SS : % SOL : G & O : A1 : Sb : As : Ba : Be : Cd : Remarks: A11 res	Ca : Cr : Cc : Cu : Au : Fe : 3.4 Pb : Mg : Mn : 3.3 Hg : Mo : Ni : Po :	K : Se : Ag : Na : T1 : Sn : Ti : V : Zn : THM : TOC : 5.5	RAM 001

658 Ronald A. Bayer \$/2/88 Laboratory Director



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

.659

:5/25

NAME: (T) Ramado TREET: SEL LOCATION: 4A	A COME: CITY:	STATE: ZIP:
EPORT TO: same Lill TO:		
COLI: COLI: SFC : C : O3 : NO2 : T-FO4 : -FO4 : LU4 : MBAS : iO2 : 28 : NH3-C :	Cr+6 : Phenol: CN : B : Dr : Color : Color : Turb : dH : 6.5 LI : Cond : 630 NH3-T : TKN :	COD : HARD-T : Ca Hard: SC3 : C1 : 140 A1k : BOD-Inf: BOD-Eff: BOD-S : TSS-Inf: TSS-Eff: MLSS : MLVSS :
SS : 1S : 7S : 7S : 7&0 : 7&0 : 35 : 35 : 45 : 7a : 26 : 26 : 26 :	Ca : Cr : Cu : Cu : Au : Fe : 13 Fb : Mo : Mo : Ni : Fd :	K : Se : Ag : Na : T1 : Sn : Ti : Zn : THM : TOC : 30 001

Remarks: All results in mg/l unless otherwise indicated.

Remaid A. Saver Laboratory Director



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

LAB#: 63559-006 DATE .NAME: (T) Ramado )TREET: SPL LOCATION: 7	I REC I: 88/04/06	DATE FNAME: CITY:	COLL D: 88/04/06 STATE:	TATUS: Closed
EFORT TO: same BILL TO: same		• •		
COLI: COLI: SPC : 103 : NO2 : T-PO4 : )-PO4 : SO4 : MBAS : 3102 : 125 : NH3-C :	Cr+5 : Phenol: CN : B : Sr : Color : Color : Gdor : Turb : SH : 6.9 LI : Cond : 1700 NH3-T : TKN :		CCD : HARD-T : Ca Hard: 903 : C1 : 320 Alk : BCD-Inf: BCD-Eff: BCD-S : TSS-Inf: TSS-Eff: MLSS : MLVSS :	()
'SS : TS : VS : FDS : 1400 SS : % SOL : 3 & O : 31 : S5 : 45 : 3a : Se : Cc :	Ca : Cr : CO : CU : Au : Fe : 23 Fb : Mo : Mo : Ni : Pd :		K : Se : Ag : Na : T1 : Sn : Ti : V : Zn : THM : TOC : 29	RAM 001 16

·.· .

Remarks: All results in mg/l unless otherwise indicated.

Ronald A. Bayer Laboratory Director



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

TREET	CATION: 8		CITY:	STATE:	ZIF:
EPORT ILL	TC: same TC: same				
COLI	•	Cr+6 :		COD :	
COLI		Phenol:		HARD-T :	
SPC	:	CN :		'Ca Hard:	
	:	в :		S03 :	
03	:	Br :		Cl : 9.6	
-02	:	Color :		Alk :	
F-P04		Odor :		BOD-Inf:	
-P04	:	Turb :		BOD-Eff:	
÷04	:	oH : 6.4		BOD-S :	5
1BAS	•	LI :		TSS-Inf:	
102	:	Cond : 200	· · ·	TSS-Eff:	(¥ 2
25		NH3-T :	· ·	MLSS :	, X A
чн≾-с	:	TKN :		MLVSS :	$\bigcirc$
'és	•	Ca :		к :	
тз	:	Cr :		Se :	
vs	:	·Ca :		Ag :	
DS	: 190	 Ĉu :		Na :	
JS	:	Au :		T1 :	
% SOL	:	Fe : 1.6		Sn :	
÷ & O	:	Pb :		Ti :	
11	-	Ma :		Y :	
Sb	:	Mn : 0.4		. Zn :	
<b>`</b> .5	<b>:</b>	Ha :		THM :	RAM
` <del>2</del> .	:	Mo :		TOC : 1.1	Ξ.
r @	:	Ni :			•
Ca	4	 Pd :			100

Ronald A. Eaver 5/16/98 Laboratory Director



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

AB#: 635 LNAME: (T STREET: 3PL LOCAT		REC'D: 88/0	. F	DATE NAME: CITY:	COLL'D:	88/04/06 STATE:		Closed
REPORT TO BILL TO	: same : same							
T COLI: F COLI: 3PC : 7 : NO3 : NO2 : 7-PO4 : 0-PO4 : 3O4 : 1BAS : SiO2 : H2S : NHC-C :	· ·	Cr+6 Phenol CN B Br Color Odor Turb pH LI Cond NH3-T TKN	6.2 190 u	mhos	COD HARD-T Ca Hard SOJ Cl Alk BOD-Inf BOD-Eff BOD-S TSS-Inf TSS-Eff MLSS MLVSS	: : 9.6 : :	· · · · (	(pro 230)
SS : % SOL : G & O : Al : Sb : As : Ba : Ba : Ee : Cd :	200	Ca Cr Co Cu Au Fe Mg Mn Hg Mo Ni Pd	: 4.4 : 0.3			3.0		RAM 001 166
Remai	rks: All res	ults in mg/	'l unles	s other	nise ind:	2		62

Ronald A. Bayer Laboratory Director

5/2/88



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

	' AB#: 63559-009 DATE REC'D LNAME: (T) Ramapo STREET: PL LOCATION: 10	: 88/04/06 DATE FNAME: CITY:	COLL'D: 88/04/06 ST STATE:	ATUS: Closed
	REPORT TO: same PILL TO: same	•		
-	F COLI: F PC : C NO3 : E NO3 : E NO3 : E NO3 : E NO3 : E NO4 : E NO3 : E NO3 : E NO4 : E NO3 : E NO3 : E NO4 : E NO3 : E NO4 : E NO3 : E NO4 : E NO3 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO4 : E NO	r+6 : /henol: N : Solor : Jolor : Joh : 6.4 I : Cond : 180 umhos NH3-T : TKN :	COD : HARD-T : Ca Hard: SO3 : CI : 24 Alk : BOD-Inf: BOD-Eff: BOD-S : TSS-Inf: TSS-Eff: MLSS : MLVSS :	#30 PL 24 of 33
	-S       :       ()         S       :       ()         TDS       :       ()         SOL       :       ()         SOL       :       ()         SOL       :       ()         A1       :       ()         S       :       ()         Ba       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         :       :       ()         : <td< td=""><td>Ca : Cr : Co : Cu : Au : Fe : 11 Pb : Mg : Mn : 2.5 Hg : Mo : Ni : Pd :</td><td>K : Se : Ag : Na : T1 : Sn : Ti : V : Zn : THM : TOC : 1.5</td><td>RAM 001</td></td<>	Ca : Cr : Co : Cu : Au : Fe : 11 Pb : Mg : Mn : 2.5 Hg : Mo : Ni : Pd :	K : Se : Ag : Na : T1 : Sn : Ti : V : Zn : THM : TOC : 1.5	RAM 001
	Remarks: All results	in mg/l unless other	wise indicated.	1663

3/2/88

Ronald A. Bayer Laboratory Director



315 Fullerton Avenue Newburgh, NY 12550 (91-) 562-0890

_AB#: 63557-010 DATE REC _NAME: (T) Ramapo STREET: 3PL LOCATION: 10A	D: 88/04/06 DATE FNAME: CITY:	COLL'D: 98/04/06 STATUS: Closed STATE: ZIP:
REPORT TO: same BILL TO: same		· .
Γ COLI: F COLI: 3PC : : NO3 : NO2 : Γ-F04 : 0-F04 : 0-F04 : 504 : MBAS : 3102 : H2S : NH3-C :	Cr+6 : Phenol: CN : B : Br : Color : Color : Turb : pH : 6.3 LI : Cond : 190 umhos NH3-T : TKN :	COD : HARD-T : Ca Hard: SO3 : Cl : 28 Alk : BOD-Inf: BOD-Eff: BOD-S : TSS-Inf: TSS-Eff: MLSS : MLVSS :
VSS : T5 : VS : TDS : 180 SS : % SOL : G & O : A1 : S5 : Ba : Be : Cd :	Ca : Cr :' Co : Cu : Au : Fe : 56 Pb : Mg : Mg : Mn : 3.2 Hg : Mo : Ni : Pd :	K : Se : Ag : Na : T1 : Sn : Ti : V : Zn : THM : TOC : 12 001
Remarks: All results	in mg/l unless otherw	ise indicated.

Ronald A. Bayer

Laboratory Director

5/2/88

New York State Department of Health Approved



2

315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

_NAME: STREET	(T) Ramapo	E REC'D: 88/04/06	DATE COLL'D: FNAME: CITY:		TUS: Closed ZIP:
REPORT	TO: same TO: same				
i COLI F COLI iF COLI iPC : NO3 IO2 PO4 0-PO4 504 1BAS 3iO2 H2S JH3-C	: : : : : :	Cr+6 : Phenol: CN : B : Br : Color : Color : Turb : pH : 6.7 LI : Cond : 2000 NH3-T : TKN :	COD HARD-T Ca Hard SOJ C1 A1k BOD-Inf BOD-Eff BOD-S TSS-Inf MLSS MLVSS	: : 440 : : : : :	(2092 AF
VSS TS JS TDS SS % SOL 3 & O A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b A1 3b	: 1800 : :	Ca : Cr : Co : Cu : Au : Fe : 0.6 Pb : Mg : Mg : Mn : 6.8 Hg : Mo : Ni : Pd :	K : Se : Ag : Na : T1 : Sn : T1 : V : Zn : THM : TOC :	3.7	RAM 001

1665 Ronald A. Bayer

Laboratory Director

5/2/88



ì

315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

FNAME: CITY: STATE:	ZIF:
	·
COD :	
HARD-T :	
Ca Hard:	
S03 :	
Cl : 190	
Alk :	
BOD-Inf:	
BOD-Eff:	$\frown$
BOD-S :	6
TSS-Inf:	
100 umhos TSS-Eff:	() () () () () () () () () () () () () (
MLSS :	
MLVSS :	
к :	
Se :	
Ag :	
Na :	
T1 :	
42 Sn :	
Ti :	
V	
4.9 Zn :	प्र
THM :	RAM
TOC : 14	-
	0
· ·	001

Ronald A. Bayer Laboratory Director 5/2/88



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

							•			•	
. r st	NAME:	(T) :	7-013 I Ramapo DN: 12	DATE REC	'D: 88/0	04/06	DATE FNAME: CITY:	COLL'D:	88/04/06 STATE:		Closed
	EPORT		same same								• • •
	02 -F04 -F04	: : : : : : : : : : : : : : :		· · ·	Cr+6 Phenol CN B Br Color Odor Turb pH LI Cond NH3-T TKN	: : : : 6.8 : : 590	umhos	COD HARD-T Ca Hard SO3 Cl Alk BOD-Inf BOD-Eff BOD-S TSS-Inf TSS-Eff MLSS MLVSS	: : 47 : : :		76280
T : 	S DS SOL & D 1 S S S S S S S S S S S S S S S S S S	: : : 62 : : : : : :	0		Ca Cr Cu Au Fb Mn Hgo Ni Pd	: 29 : 29 : 14 : :		K : Se : Ag : Na : T1 : Sn : T1 : V : Zn : THM : TOC :	۰ 11		RAM 001 16
	Re	mark	s: All	results	in mg/	l unle	ss otherw	ise indi	cated.		1667

·· .

Ronald A. Bayer Laboratory Director

5/2/89

New York State Department of Health Approved



ì

315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890.

. . . .

1.1 • 

AB#: 63559-014 DATE F LNAME: (T) Ramapo	EN/	AME:	04/06 STATUS: Closed
STREET:	CI	TY:	STATE: ZIP:
PL LOCATION: 113		· · ·	
			•
REPORT TO: same	•	•	
ILL TO: same			
		COD :	
T COLI:	Cr+6 :	HARD-T :	
5 COLI:	Fhenol:	Ca Hard:	: · · · · ·
SPC :	CN :	SOZ :	· ·
F 1	B :	C1 : 87	,
NG3 (#1	Br :	Alk :	. •
102 :	Color :	BOD-Inf:	
r-₽04 :	Odor : Turb :	BOD-Eff:	
0-P04 :	pH : 8.2	BOD-S :	
304=	LI :	TSS-Inf:	
1BAS :	Cond : 560 unt		
Si02 :	NH3-T :	MLSS :	
H2S 4 :	TKN :	MLVSS :	
NH3-C :			
VSS :	Ca :	к :	
VSS : TS :	Cr :	Se :	
	Co :	Ag :	
TDS : 470	Cu :	Na :	
SS :	Au :	T1 :	
% SOL :	Fe : 1.3	Sn :	
G & C :	Pb :	- Ti :	
Al I	Mg :	· · · ·	RAM
Sb :	Mn : 0.1	Zn :	M
As :	Hg :	THM : TOC : 2.	7 -
Ba :	Mo	TOC : 2.	/ <b>100</b>
Be :	Ni :		· •
Cd :	Pd :	•	

Remarks: All results in mg/l unless otherwise indicated. 668 Ronald A. Bayer Laboratory Director 5/2/88



. . . . . . .

. . .

315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

	· · · · · ·	
_AB#: 63559-015 DATE REC _NAME: (T) Ramapo STREET:	D: 88/04/06 DATE FNAME: CITY:	COLL'D: 88/04/06 STATUS: Closed STATE: /if:
SPL LOCATION: 114		
REFORT TO: same BILL TO: same		
T COLI: F COLI: SFC : F : NO3 : NO2 : T-PO4 : O-PO4 : O-PO4 : SO4 : MBAS : SiO2 : H2S : NH3-C :	Cr+6 : Phenol: CN : B : Br : Color : Odor : Turb : pH : 6.9 LI : Cond : 140 umhos NH3-T : TKN :	COD : HARD-T : Ca Hard: SO3 : Cl : 6.9 Alk : BOD-Inf: BOD-Eff: BOD-S : TSS-Inf: TSS-Eff: MLSS : MLVSS :
VSS : TS : VS : TDS : 140 SS : X SOL : G & O : A1 : Sb : As : Ba : Ba : Be : Cd :	Ca : Cr : ' Co : Cu : Au : Fe : 13 Pb : Mg : Mg : Mn : 0.5 Hg : Ni : Fd :	K : Se : Ag : Na : Tl : Sn : Ti : V : Zn : THM : TOC : 1.5 001

Remarks: All results in mg/l unless otherwise indicated. 1669 Ronald A. Bayer 5/2/99

Laboratory Director



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

LAB#: 63559-016 DATE REC LNAME: (T) Ramapo STREET: SFL LOCATION: 16	'D: 88/04/06	DATE FNAME: CITY:		706 STATUS: Closed
REPORT TO: same BILL TO: same			· · ·	
T COLI: F COLI: SPC : F : NO3 : NO2 : T-FO4 : O-FO4 : SO4 : MBAS : SiO2 : H2S : NHC-C :	Cr+6 : Phenol: CN : B : Br : Color : Odor : Turb : pH : 6.7 LI : Cond : 1300 NH3-T : TKN :	umhos	COD : HARD-T : Ca Hard: SO3 : C1 : 370 Alk : BOD-Inf: BOD-Eff: BOD-S : TSS-Inf: TSS-Eff: MLSS : MLVSS :	DE LE CH
VSS : TS : VS : TDS : 1100 SS : X SOL : G & O : A1 : Sb : As : Ba : Be : Cd :	Ca : Cr : Co : Cu : Au : Fe : 51 Pb : Mg : Mn : 4.3 Hg : Mo : Ni : Fd :		K : Se : Ag : Na : T1 : Sn : T1 : V : Zn : THM : TOC : 29	RAM 001

Remarks: All results in mg/l unless otherwise indicated.

Bayer Ronald A.

1670

5/2/88

Laboratory Director

EnviroTest 😂 Laboratories Inc			<del></del>	·	- 1	315 Fullerton Avenue Newburgh, NY 1255 914) 562-0890
•			•			، در
	n <del>i</del> n n	··· ·· ·	· ** ·			·
		· · · · · ·				• •
•	·· .					ی مسیر با د ب
AB#: 53559-017 DATE RE	C′D: 88/0			COLL D:	88704705	STATUS: Clo
NAME: (T) Ramabo			ME:		<b>07</b> 0 <b>7</b> 5	
STREET: State 115		CIT	Υ:		STATE:	: ZIP:
PE LOCATION: 115						
REFORT TO: same	4 					
FILL TO: same						
	<b>(</b> )/			000		
F COLI: F COLI:	Cr+5 Phenol			COD : HARD-T :		
- COLI: SPC :	CN	•		Ca Hard:		
	B	•		S03 :		
103 :	Br	•		01 :	32	
NO2 :	Color	•		A1k :		
T-F04 :	Odor	:		BOD-Inf:		
D-P04 :	Turb	:		BOD-Eff:		
304 <b>:</b>	DH	: 7.50		BOD-S		
MBAS :	LI	:	,	TSS-Inf:		
SiO2 :	Cond	: 170		TSS-Eff		$\sim$
H2S :	NH3-T	1		MLSS	•	
NH3-C :	TKN	• •		MLVSS	:	
· · · · · · · · · · · · · · · · · · ·						(mm)
VSS :	Ca	:		к :		<u>ل</u> ي کے ل
TS :	Cr	:		Se :		
VS : :	Co	:		Ag :		
TDS : 160	Cu	:		Na :		
SS :	Au	:		T1 :		
% SOL :	Fe	: 0.4		Sn :		•
G & C :	Рb	:		.Ti :		
Al :	Ma	:		Y :		RAM
Sb :	Mn	: <0.05		Zn :		IM
As :	Họ	:		THM :		
Ba :	Mo	:		тос :	1.0	100
je :	Ni	:				Ĩ
Cd :	P'd	*				1671

Remarks: All results in mo/l unless otherwise indicated.

 $\gamma \sim =$ Bayer -Ronald A. Laboratory Director

5/16/88



315 Fullerton Avenue Newburgh, NY 12550 (914) 562-0890

-	LAB#: LNAME: TREET UPL LO	(T)   :	Ramapo	ATE REC	(D: 38/0	4705	DATE FNAME: CITY:		: 35/04/06 s STATE:	BTATUS: Closed ZIP:
	EPORT Ill								· .	
	T COLI COLI F 03 .02 T-PO4 -PO4 04 MBAS C102 23 NH3-C			· · ·	LI :	7.3		COD HARD-T Ca Har SO3 C1 A1k BOD-In BOD-Ef BOD-S TSS-In TSS-Ef MLVSS	d: : 400 : : : : : : : : : : : : : : : : : :	#30 P(6330/
	SS 19 705 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: : : : : : : : : : : : : : : : : : :	•		Ca : Cr : Co : Cu : Au : Fe : Mo : Ho : No : Ni :	41		K Se Ag T1 Sn T1 V Z THM TCC	: : : : 0.13	) Ram 001
	. –	-								<b>م</b> ـر

Pemarks: All results in mg/l unless otherwise indicated.

672

4/237

Ronald A. Baver Laboratory Director



# **BENDER HYGIENIC LABORATORY**

9 Samaritan Drive Albany, N.Y. 12208 (518) 472-9124

RAM

100

1673

ENVIRONMENTAL LABORATORY ANALYTICAL RESULTS

Customer: DUNN GEOSCIENCE CORPORATION -- JOHN URUSKY Bender Sample # 71170 Collected: 7-25-88 Received: 7-26-88 Project: # 2406-1-617 (TOWN OF RAMAPO) Sample ID# DGC-65

ANALYTE	Total Ma	trix	Dissolved M	atrix
ANTIMONY	<0.060	mg\L	<0.060	mg/L
ARSENIC	<0.010	mg∖L	<0.010	.mg/L
BERYLLIUM	<0.002	mg∖L	<0.002	mg∕L
BARIUM	<0.10	mg∖L	<0.10	mg∕L
CADMIUM	<0.002	mg∖L	<0.002	mg∕L
CHROMIUM, TOT.	<0.010	mg∖L	<0.010	mg/L
CHROMIUM, HEX.	NA		NA	-
COPPER	0.03	mg∖L	<0.02	mg/L
LEAD	<0.005	mg\L	<0.005	mg∕L
MERCURY	<0.0004	mg∖L	<0.0004	mg∕L
NICKEL	<0.04	mg∖L	<0.04	mg/L
SELENIUM	<0.002	mg∖L	<0.002	mg∕L
SILVER	<0.005	mg\L _	<0.005	mg/L
THALLIUM	<0.010	mg∖L	<0.010	mg/L
ZINC	0.02	mg\L	<0.02	mg∕L
ALUMINUM	5.04	mg∖L	<0.020	mg∕L
IRON	7.55	mg∖L	<0.05	mg∕L
MANGANESE	0.16	mg∖L	0.03	mg∕L
AMMONIA-N	0.11	mg\L	-	
NITRATE-N	0.2	mg∖L	-	
TOT. KJEL. N	0.11	mg∖L	-	·
BIOL. OXY. DMD.	<2	mg∖L	-	
CHEM. OXY. DMD.	<5	mg∖L	-	
TOT. ORG. CARBON	1.3	mg∖L	-	
CYANIDE, TOT.	<0.010	mg∖L	-	
PHENOLS, TOT.	<0.005	mg∖L	-	
ALKALINITY, TOT.	7	mg∖L	-	
BORON	<0.10	mg\L	-	
CALCIUM	6.2	mg∖L	4.6	mg/L
CHLORIDE	<2	mg∖L	· 🗕	
HARDNESS, TOT. NON-CARBONATE	11	mg∖L	-	
HARDNESS, TOT. CARBONATE	7	mg\L	-	
MAGNESIUM	2.49	mg∖L	1.51	mg∕L
POTASSIUM	1.90	mg\L.	0.76	mg∕Ĺ
SODIUM	3.6	mg∖L		
SULFATE ,	20	mg∖L	-	
TOT. DISS. SOLIDS	54	mg\L	-	
COLOR, UNITS	<5	mg∖L	-	
TURBIDITY, NTU	105	mg∖L	-	

Boron Analysis by ERCO Lab -- ELAP ID# 10141

William Kin les William Ringler

Environmental Division

Date of Report: 8-22-88

NYSDOH ELAP ID# 10350

Sample	Number
DG(	C-65

29

٩

# **Organics Analysis Data Sheet**

(	(rag	8	I)

Laboratory Name: Enseco - Er	co Laboratory	
Lab Sample ID No: 0307-01	· ·	
Sample Matrix: WATER	<u></u>	
Data Balassa Authorized Ru:	VAA / HOC	

Case No: DUNN GEOSCIENCE	_
--------------------------	---

QC Report No: ___

Contract No: ___

Date Sample Received: 07-26-88

## **Volatile Compounds**

Concentration: Low Date Extracted/Prepared:08-02-88

Date Analyzed: 08-02-88

Conc/Dil Factor: 1 <u>pH: -</u>

Percent Moisture: ...-

Percent Moisture (Decanted): ___

CAS Number		ug/
74-87-3	Chioromethane	10 U
74-83-9	Bromomethane	10 U
75-01-4	Vinyt Chloride	10 U
75-00-3	Chioroethane	10 U
75-09-2	Methylene Chioride	5.2 B
67-64-1	Acetone	10 U
75-15-0	Carbon Disuifide	8 U
75-35-4	1,1-Dichiorosthene	SU
75-34-3	1,1-Dichlorosthane	5 U
156-60-5	Trans-1,2-Dichloroethene	5 U
67-66-3	Chioroform	5 U
107-06-2	1,2-Dichlorosthane	5 U
78-93-3	2-Butanone	10 U
71-55-6	1,1,1-Trichloroethane	8 U
56-23-5	Carbon Tetrachioride	5 U
108-05-4	Vinyi Acetate	10 U
75-27-4	Bromodichioromethane	5 U

CAS Number		
78-67-5	1,2-Dichloropropene	5 U
10061-02-6	Trans-1,3-Dichioropropene	5 U
79-01-6	Trichlorosthene	8 U
124-48-1	Dibromochioromethene	5 U
79-00-5	1,1,2-Trichlorosthans	5 U
71-43-2	Benzane	2.6 J
10061-01-8	cie-1,3-Dichioropropene	5 U
110-75-8	2-Chloroethylvinylether	10 U
75-25-2	Bromeform	5 U
108-10-1	4-Methyl-2-Pentanone	10 U
591-78-6	2-Hexanone	10 U
127-18-4	Tetrachiorosthene	6 U
79-34-8	1,1,2,2-Tetrachioroethane	5 U
108-68-3	Totuene	5 U
108-90-7	Chiorobenzene	5 U
100-41-4	Ethylbenzene	5 U
100-42-5	Styrene	5 U
	Total Xylenee	5 U

#### **Data Reporting Qualifiers**

For reporting results to EPA, the following results qualifiers are used. Additional flags or footnotes explaining results are encouraged. However, the definition of each flag must be explicit.

Form I

Value if the result is a value greater than or equal to the detection limit, report the value.

Indicates compound was analyzed for but not detected. Report the minimum detection limit for the sample with the U (e.g. 10U) based on necessary concentration/ dilution actions. (This is not necessarily the instrument detection limit.) The footnote should read: U -Compound was analyzed for but not detected. The number is the minimum attainable detection limit for the sample u the sample

Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed or when the mass spectral data indicated the presence of a compound that meets the identification criteria but the result is less than the specified detection limit but greater than zero. (e.g. 10.). If limit of detection is 10up/ and a concentration of 3up/1is calculated, report as 3J

This flag applies to pesticide parameters where the identification has been confirmed by GCAMS. Single component pesticides >= 10 ng/ul in the final extract should be confirmed by GC/MS

- This flag is used when the analyte is found in the blank as well as a sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action.
- D Coelution.

C

- NA Not Analyzed.
  - Compound exceeded the instrument calibration range.
- NA Not Required.
  - Matrix spike compound.

Prepared by:

7

67

حد

CLF: 11/14/85

Л

WASTE STATES.	QUANTITIES, AND CHARACTERI	PART 2 - WAS	CTION REPORT STE INFORMATION T SITE OJ WASTE CHARACTER		0980640858
A. SOLID B. POMDER, F C. SLUDGE	E. SLURRY FINES X F. LIQUID	(Measures of wast quantities must b independent)	e X.A. TOXIC E. e B. CORROSIVE F. C. RADIOACTIVE G.	SOLUBLE I. HI INFECTIOUS J. EX FLAMMABLE K. RE IGNITABLE I. T	HAT APPTY) IGHLY VOLAT (PLOSIVE EACTIVE ICOMPATIBLE
0. OTHER	(Specify)	TONS CUBIC YARDS NO. OF DRUMS 50		_ M. NO	T APPLICAE
CATEGORY	SUBSTANCE NAME	OI GROSS AMOUNT	OZ UNIT OF MEASURE	03 COMMENTS	
<b>Z</b> .N	SLUDGE		· · · ·		
OLW	OILY WASTE		an an an an an an an an an an an an an a		•
50L	SOLVENTS	· .			
PSD	PESTICIDES			•••	(.
000	OTHER ORGANIC CHEMICAL	s	· · · · · · · · · · · · · · · · · · ·		4
	INORGANIC CHEMICALS	•			•
IOC	INCREMENT CHEMICALS				
ACD	ACIDS				
				liquid wastes	with high c
ACD BAS MES	ACIDS BASES HEAVY METALS	50	Drums	Liquid wastes centrations of were found on	Cu, Pb, ar
ACD BAS MES IV. HAZARDOUS SU	ACIDS BASES HEAVY METALS BSTANCES (See Appendix for	most frequently cli	ted CAS Numbers)	centrations of were found on	Cu, Pb, an site.
ACD BAS MES IV. HAZARDOUS SU CATEGORY	ACIDS BASES HEAVY METALS BSTANCES (See Appendix for 02 SUBSTANCE NAME	most frequently cil	ted CAS Numbers) 04 STORAGE/DISPOSAL METHOD	centrations of were found on 05 CONCENTRATION	Cu, Pb, an site. OS MEASUR CONCENTRA
ACD BAS MES IV. HAZARDOUS SU CATEGORY MES	ACIDS BASES HEAVY METALS BSTANCES (See Appendix for 02 SUBSTANCE NAME Copper	DOST Frequently cli 03 CAS NUMBER 7440-50-8	ted CAS Numbers) 04 STORAGE/DISPOSAL METHOD Drums	centrations of were found on 05 CONCENTRATION 1	Cu, Pb, ar site. OS HEASUR CONCENTR/ mg/L
ACD BAS MES <u>TV. HAZARDOUS SU</u> CATEGORY MES MES	ACIDS BASES HEAVY METALS BSTANCES (See Appendix for 02 SUBSTANCE NAME Copper Lead	most frequently cil	ted CAS Numbers) 04 STORAGE/DISPOSAL METHOD	centrations of were found on 05 CONCENTRATION	Cu, Pb, an site. OS MEASUR CONCENTRA
ACD BAS MES IV. HAZARDOUS SU CATEGORY MES	ACIDS BASES HEAVY METALS BSTANCES (See Appendix for 02 SUBSTANCE NAME Copper	most frequently cfi 03 CAS NUMBER 7440-50-8 7439-92-1	CAS Numbers) 04 STORAGE/DI SPOSAL METHOD Drums Drums	centrations of were found on 05 CONCENTRATION 1 320	Cu, Pb, ar site. OS MEASUR CONCENTR/ mg/L mg/L
ACD BAS MES IV. HAZARDOUS SU CATEGORY MES MES MES	ACIDS BASES HEAVY METALS BSTANCES (See Appendix for 02 SUBSTANCE NAME Copper Lead Zinc	most frequently c11 03 CAS NUMBER 7440-50-8 7439-92-1 7440-66-6	ted CAS Numbers) 04 STORAGE/DI SPOSAL METHOD Drums Drums Drums	centrations of were found on 05 CONCENTRATION 1 320 15	Cu, Pb, an site. O6 MEASUR CONCENTR/ mg/L mg/L
ACD BAS MES IV. HAZARDOUS SU CATEGORY MES MES MES MES	ACIDS BASES HEAVY METALS BSTANCES [See Appendix for 02 SUBSTANCE NAME Copper Lead Zinc Cadmium	most frequently c11 03 CAS NUMBER 7440-50-8 7439-92-1 7440-66-6 7440-43-9	ted CAS Numbers) 04 STORAGE/DISPOSAL METHOD Drums Drums Drums Unknown	centrations of were found on 05 COMCENTRATION 1 320 15 15	Cu, Pb, ar site. OS MEASUR CONCENTR/ mg/L mg/L ug/L

V. FEEDSTOCKS (See	Appendix for CAS Numbers) OI FEEDSTOCK NAME	UZ CAS NUMBER	CATEGORI	OI FEEDSTOCK NAME	UZ CAS NUMBER
FDS			FDS		
FDS		-	FDS		· · · ·
FDS			FDS	RAM 001	1675
FDS	•	•	FDS	· . ·	

VI. SOURCES OF INFORMATION (See specific references. e.g., state files, sample analysis, reports)

New York State Department of Environmental Conservation Files, Phase 1 Study Ramapo Land Company Site, EA Science and Technology.

U.S. EPA Contract Laboratory Program, Environmental Protection Systems and West Coast Analytical Service Inc. Case No. 6812, Laboratory Analysis from NUS Region 2 FIT site inspection conducted on February 5, 1987.

EPA FORM 2070-13 (7-81)

.....

ANALYTICAL DATA

Torne Mountain Sand and Gravel Company aka Ramado Land Company February 5, 1987

ł

i

Case: 16812

VOLATILES

		1						
SAMPLE NUMBER TRAFFIC REPORT NUMBER MATRIX UNITS	iNY62-GWI I BI548 I aqueous I ug/L	EI549	INY62-6W3 BI550 i aqueous t ug/L	i BI459	l BI546 Isediment	81555	INY62-SED2 BI547 Isediment Ug/kg	BI551 aqueous
Chloromethane	1	i i	i i	1	1	:	·	; <del></del>
Bromomethane	!	1	1	+	1		1	•
Vinyl Chloride	1	1	1	1		}	•	1 1
Chloroethane	1	1	1	Ì		•	1	:
Methylene Chloride	1 0	1 0	i	1 0		1		   - 6
Acetone	IQB	IQB	: 0 B	: Q B	1 Q B	1 0 B	1 0 8	1 8
Carbon Disulfide	1.1	1	1	í		1 12 10 . I		•
1,1-Dichloroethene	!	1	1	1		•	1	F
1,1-Dichloroethane	1	1	1			, ,	1	l i
Trans-1.2-Dichloroethene	.1	1				•	1	<b>i</b>
Chloroform	1	1	i	· . !	•	1	1 1	
1.2-Dichloroethane	1	ł	1	i	•	: I		:
2-Butarione	ļ	1	1	1	•	1 · ·		:
1.1.1-Trichloroethane	ł	l	1	;		1	; ,	1
Carbon Tetrachloride	1	1		• •	1	1 i	1	ł
Vinyl Acetate	4	ľ	t	!.	1 1	•	•	1
Bromodichloromethane	1	í .	1		1	• . •	•	l
1, 1, 2, 2-Tetrachloroethane	1	I	,	, 1	1	i i	1	1
1,2-Dichloropropane	1	1	1	1	1 .	1		i
Trans-1.3-Dichloropropene	· . •	· · ·	1 ·	1	1 · ·	1	1 <u>.</u>	1
Trichloroethene	1	1	1		1	1	1	1
Dibromochloromethane	1	- 	• •	1		1 	I.	1
1,1,2-Trichlorcethane	· ·	- -	1	• • •		i. I	1	
Benzene	1	ł		•	1	1	1	ł
Cis-1,3-Dichloropropene	1	1	1	1		i i		
2-Chloroethylvinviether	1	1	i	i		* i [.]	1	
Bromotorm	1		i		•	•	1	i
2-Hexanone	1	1	!	!	•	: 		1
-Methyl-2-Pentanone	1	i	1	! '	•		1 1	•
letrachloroethene	i	1	1		• ·	1	1   1 -	l
foluene	1	1	1	i	1		1   	1
ih lorobenzene	ł :	1	1	- 	1			
Ethylbenzene	1	1	1	1	• •	· . ]	1	
ityrene	1	1	1		•	•	1 (	l
Total Xyienes				•	•	•	•	

#### NOTES:

Blank space - compound analyzed for but not detected

- Q analysis did not pass EPA GA/GC requirements
- $\mathbf{J}$  compound present below the specified detection limit
- B compound found in laboratory blank as well as the sample, indicates cossible/probable blank contamination

(2 + 3) 5 + 32

RAM 001 1676

ANALYTICAL DATA Torne Hountain Sand and Bravel Company aka Ramado Land Company February 5. 1987 Case: #6812

÷

## SEMI-VGLATILES

Sanple Number Traffic Refort Number Hatrix UNITS	NY62-GW1 BI548 aqueous Ug/L	INY62-GH2 I BI549 I adueous ! ug/L	51550	INY62-SW1 I BI459 I ADUPOUS I Ug/L	BIS46	FI555	INY62-SED2 BIS47 Isediment Ug/kg	1 19762-811 51551 aqueous : ug/L
N-Nitrosodimetnylanine	;	1	•••• <del>•••••••••</del>	·/	·   <del></del>		• <del></del> -	1 <del></del>
Phenol	•	!	1	i	1	1		i
Aniline	i	1	1	ł	1	1	1	1
Bis(2-Chloroethyl)Ether	:	I	1	i	•	1	1	• •
2-Chlorophenol	l ·	ł	i	ł	ł	t	!	:
1,3-Dichlorobenzene	1.	E.	1	I.	1	1	1	1
1.4-Dichlorobenzene	;	1	i -	i	1	:	1	1
Benzyl Alcohol	1.	1	I	1	I.	1	1	1
1.2-Dichlorobenzene	1	1	1	I.	1	i	1	1
2-Methylonenol	i	!	:	:	1	i	•	1
Sis(2-Chloroisopropy))Ether	ł .	•	1	t	:	1	:	ŧ
4-Methylphenol	1	i	:	:	i	:	1	;
N-Nitroso-Di-n-Fropylamine	i	1	1	ł	ł.	L ·	ł	1
Hexachioroethane	i .	1	1	1	t in	E.C.	1	1
Nitropenzene	<b>!</b> ,	!	1	` <b>I</b>	1 Contraction	1	: · · ·	1
Isophorone	1	ł	1	1	1	!	1	<b>I</b> .
2-Nitrophenoi	1	1	i :	1 .	1	:	1	i
2,4-Disethylphenoi	1	!	1	1	I	1	1	1
Benzoic Acid	!	ł	•	i	1° 69. J	i	: 110.J	1
Bis(2-Chloroethoxy)Hethane		I	1	ŧ	i	ł	1	!
2,4-Dichlorophenol		i .	i	F.	1	1	i i	1
1,2,4-Trichlorobenzene	1		1	1	i	1	ŧ	
Naphthalene	1	1 -	ł	ł	!	!	1	i
-Chloroaniline		]	!	ł	I	l	1	ŀ
Hexachlorobutadiene 4-Chloro-3-Methylohenoi i		1	1	<b>1</b>	1	ł.	1	2
2-Methylnaonthalene	) I	1		1	!	1	I .	<b>i</b> .
Hexachiorocyclopentadiene		:		i .		t i	+	i
2,4,6-Trichlorophenol	1	· ·	!	1	:	į	!	
2,4,5-Trichlorophenol	l	<b>i</b>	:	1	•	•	1	i
2-Chloronaphthaiene (		: 1	1	1	1	1	1	
2-Nitroaniling		•	1	1	1		1 -	
Dimethyl Phthalate		1	• i	1	: ·	1	1	
cenaphthylene			•	1		!	1	
5-Nitroaniline	· · · ·	• . I	• i	1 ·	•	i .	1 :	
cenaphthene			1	1	•	т •	:	<b>I</b>
2,4-Dinitroonenoi		ł	1	I	•	•	:	•
Nitrophenol				I	•		۱ ۱	
)ibenzofuran :		:	1	1		1	•	1
. 4-Dinitrotoiuene	· ·	ł		1	1	•	<b>I</b> ,	
. 6-Dinitrotoluene		!	1	•		•		
)iethylphthalate		i	•		:			
-Chlorophenviphenv! ether :		i	1		:	1	: 40.J	
luorene	. 1	1	i -	•		•	•	
	• . •	•	•	•	:	¥ .		

RAM

100

1677

ANALYTICAL DATA Torne Mountain Sand and Gravel Company aka Rawado Lano Company February 5. 1987 Case: #6812

ł

SENT-VOLATILES

		· ·						
SAMPLE NUMBER TRAFFIC REPORT NUMBER MATRIX UNITS	INY62-GH1 I 91548 aqueous I ug/L	18962-602 i 91549 i aqueous : ug/L	INY62-GW3 I BI550 I aqueous ug/L	91459 aqueous	INY62-SEDI I BI546 Iseaiment ug/kg	81555	INY62-SED2 BI347 Isediment ug/kg	NY62-2LI SISSI aqueous
4-Nitroaniline		•••••••••••••••••••••••••••••••••••••••	·   <del></del>		• j <del></del>	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
4.6-Dinitro-2-Methylahenol.	i		1		1	1	:	E., T
N-Nitrosodiphenviamine	!		:	1	1	:	• ·	
-Bromonnenyichenvi ether	1	1	1	1	1.	1		
Hexacnlorobenzene	, 1 ·	· ·	1	1	:	!	:	!
Pentacniorophenoi	1	1	1 . 1	· · ·	1	1	i i	Ì
Chenanthrene	• i	•	1 :	· ·	1 220. J	i	1 280.3	
inthracene	•	1	:	:	1 120.J	•	i 57.J	:
Di-n-Butvlohthalate	,   1.J	i LJ	1			1	: :	
luorantnene	· · · · ·	l indi i∵	1	¦	1	: 1.J		
vrene			i t	•	150 <b>.</b> J	i	130 <b>.</b> J	
Sutvloenzviohthaiate	•	1		:	140 <b>. J</b>		140.J	
. 3'-Dichloropenzigine	•	•	:	÷	<b>!</b>		: i	
enzo(a)Anthracene	•	1	1		1	1	1	
is(2-Ethylnexyl)Phthalate	i. I 1.1	а ·	1		1 51.J	ŧ. 1	; !	
hrysene	7 i.J	: <b>:.</b> J	1	• • • • •	9 B	!	I G B	
i-n-Octyl Phthalate	i . I	1	1	:	1 55.1	i	1 49.J	
enzo(b)Fluoranthene	•	1 1	1.	!	1	1	! . (	
enzo(k)Fluoranthene	<b>i</b>	1	1 4 .	I	110.J	1	i 87.j j	
enzo(a)Pyrene	, ,	1	1	:	1	1	· i	
ndeno(1, 2, 3-cd) Pyrene	1	!	1	ł	I 64.J	t -	1 51.J i	
ibenzo(a, h) Anthracene		1	1	•		i	I	
enzo(chi)Pervlene		I	t i	1	•	•	1 .	

RAM

100

1678

#### NOTES:

Blank space - compound analyzed for but not detected

9 - analysis cid not cass EPA GA/OC requirements

J - compound present below the specified detection limit

B - compound found in laboratory blank as well as the sample, indicates possible/probable blank contamination ANALYTICAL DATA

Forme Mountain Sand and Gravel Company aka Ramado Land Company February 5, 1987 Case: #6812

FESTICIDES/PC9s

Addiebus       addiebus       addiebus       addiebus       addiebus       addiebus       saduebus       saduebus <td< th=""><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>			-						
Alpha-BHC Beta-BHC Delta-BHC Gamaa-BHC (Lindane) Heotachlor Aldrin Heotachlor Eboxide Endosulfan I Dieldrin 4.4'-DDE Endosulfar II Endosulfar II Endosulfar II Endosulfar II Endosulfar sulfate Endrin Aldehyde 4.4'-DDT Endrin Ketone Chloraane Toxaanene Aroclor-1221 Aroclor-1232 Anoclor-1232 Anoclor-1242	TRAFFIC REPORT NUMBER	adugous	: 91549 1 aqueous	1 91550 1 aqueous	l BI459 Laqueous	: 91546 Iseciment	BI555 aqueous	BI547 isediment	  NY62-8-1   FI551   aqueous   ug/L
Delta-BHC Gamma-BHC (Lindane) Heotachlor Aldrin Heotachlor Epoxide Endosulfan I Dieldrin 4.4'-DDE Endosulfan II a.4'-DDD Endosulfan sulfate Endrin Aldehyde 4.4'-DDT Methoxycnior Endrin Ketone Chlordane I Aroclor-1221 Aroclor-1232	Alona-RHC		·:	·! - <del></del>	·!	• • • • • • • • • • • • • • • • • • • •	· j	• !	:
Gamma-BHC (Lindane) Heotachlor Aldrin Heotachlor Epoxide Endosulfan I Dieldrin 4.4°-DDE Endosulfan II Endosulfan II A.4°-DDD Endosulfan sulfate Endrin Aldehyde 4.4°-DDT Methoxychlor Endrin Ketone Chlordane Toxaonene Aroclor-1221 Aroclor-1232	Beta-BHC	i			1	1	1	1	1
Heotachlor Aldrin Heotachlor Epoxide Endosulfan I Dieldrin 4.4'-DDE Endosulfan II Endosulfan II Endosulfan sulfate Endrin Aldehyde 4.4'-DDT Methoxycnior Endrin Ketone Chlordane Noxabene Noxabene	Delta-BHC		;	•	•	1	1	1	!
Aldrin Heotachicr Epoxide Endosulfan I Dieldrin A.A ¹ -DDE Endosulfan II Endosulfan sulfate Endrin Aldehyde A.A ¹ -DDT Hethoxycnior Endrin Ketone Chlordane Norapnene	Samma-EHC (Lindane)	. 1	1	1	1	1	1	1	1
Heotachicr Epoxide Endosulfan I Dieldrin A.4'-DDE Endosulfan II Endosulfan II A.4'-DDD Endosulfan sulfate Endrin Aldehyde A.4'-DDT Methoxychior Endrin Ketone Chlordane Foxapnene Foxapnene		· •	1	r 1 -	1	1	1	1	i
Endosulfan I Dieldrin A,4'-DDE Endosulfan II A,4'-DDD Endosulfan sulfate Endrin Aldehyde A,4'-DDT Methoxychior Endrin Ketone Chlordane Foxaonene Arocior-1016 Arocior-1232	Aldrin	1	1	:	•	1. 1.	1 1	1	i
Endosulfan I Dieldrin A.A'-DDE Endrin Endosulfan II A.A'-DDD Endosulfan sulfate Endrin Aldehyde A.A'-DDT Hethoxychior Endrin Ketone Chlordane Foxaonene Foxaonene	Heptachics Epoxide	. 1	i			1	1	1	!
A, 4'-DDE       Endrin       Endosulfan II       A, 4'-DDD       Endrin Aldehyde       Endrin Aldehyde       A'-DDT       Methoxychior       Endrin Ketone       Chlordare       Foxaonene       Moroclor-1016       Moroclor-1232		1	1	1		+ . 1	1	1	!
Endrin Endosulfan II A.4 ¹ -DDD Endosulfan sulfate Endrin Aldehyde A.4 ¹ -DDT Methoxychior Endrin Ketone Chlordane Chlordane Foxaonene Foxaonene Foxaonene	Dieların	;	1	!	1	• •	•	1	1
Endosulfan II   a, 4'-DDD   Endosulfan sulfate   Endrin Aldehyde   a. 4'-DDT   Endrin Aldehyde   a. 4'-DDT   Methoxycnior   Indrin Ketone   Chlordane   Inocior-1016   Brocior-1232	1.41-3DE	1	1		1	•	1 :	1	1
At - DDD Indosulfan sulfate Indrin Aldehyde At - DDT Methoxychior Indrin Ketone Chlordane Chlordane Chlordane Chlordane Inocior-1016 Inocior-1232	indrin		· ·			1	:		:
Indosulfan sulfate Indrin Aldehyde Al-DDT Nethoxychior Indrin Ketone Chlordane Coxaonene Inocior-1016 Inocior-1232	indosulfan II	1	:		1	•	:	1	
Indrin Aldehyae	4. 41-DDD	1	ł		1	1	, ,	1	
A*-DDT       Methoxycnion       Indrin Ketone       Indrin Ketone       Inlordane       Inocior-1016       Irocior-1221       Irocior-1232	ndosulfan sulfate	!	i		:	1	• •	1	1
Nethoxychior IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ndrin Aldehvae	1 .	1	1	i	1		1	:
Indrin Ketone Inlordane Inocior-1016 Inoclor-1221 Inoclor-1232	. 4'-DDT	!	1	· ·		• •	1	1	;
Chlordane IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	lethoxycnior	ł	t	1		1	; 1	1 .	1
oxaonene inocior-1016 Iroclor-1221 Iroclor-1232	ndrin Ketone	1	1	}	1		•	1	:
rocior-1016 Iroclor-1221 Iroclor-1232	hlorgane	1 T	1	1	i.		•	1	1
iroclor-1221	oxaonene	· 1	1	1		1		1	1
inoclor-1232	rocior-1016	ł	ſ	1	1	!	•	1	1
	iroclor-1221	i	1	1	1		•	; 1	1
rocior-1242	irocior-1232	· 1	· ·	1	:		• •	1	
	rocior-1242	i	!	1 .	Ì	· 、		•	I .
iroclor-1348	iroclor-1248	:	·		:	i	•		
iroclor-1254		:	•	i		:	•	1	Ι.
proclor-1250 I I I	roclor-1250	i	1	:	1	1	1	•	

RAM

001 1679

NOTES:

Slank space - compound analyzed for but not detected

Q - analysis did not cass EPA QA/QC requirements

J - compound present below the specified detection limit

B - compound found in laboratory plank as well as the sample,

indicates possible/probable blank contamination

#### ANALYTICAL DATA

Torne Mountain Sand and Gravel Company aka Ramapo Land Company February 5, 1987 Case: #6812

.....

ų

L

ų

L

INORGANICS	I					. ·		
SANG-LE NUMBER TRAFFIC REPORT NUMBER MATRIX UNITS	INY62-GWI I MBI729 I aqueous I ug/L	INY62-GH2 I MB1931 I aqueous I ug/L	1 MB1770	I MB1934	INY62-SED1 I MBI938 Isediment I mg/kg	i MB1936 L'aquecus		INY62-BLI I MEI933 I aquecus I ug/L
Alusinus	1 18500	1 27800	1 41700	1 2170	1 5580	1 [130]	1 6150	1 [71]
Ant Imony	1	I	1	1	1	1	1 7.2E	1
Arsenic	L	I	1	1	I	1	[1.9]	t
Barius -	[130]	1 [160]	1 270	1	1 [30]	1	1 [25]	1
Rervilium	1 [1.0]	.1 [2.3]	1 [1.9]	1	1 [0.4]	1	1 [0.42]	1
Cadmium	1 11	1 15	1 9.5	· ·	1 3.0	I	1 5.4	1
Calcium	1 35400	1 25300	1 94900	1 15200	1 4870	1 18500	1 1330	1
Chromium	1 57	1 54	1 45	i i	1 15	1	1 20	1
Cobalt	1 [15]	1 [19]	1 [20]	1	1 (8.0)	I	1 [6.0]	ł
Copper	1 220	88	1 76	[13]	1 12 -	1 · .	1 33 -	ł
Iron	1 56600	1 50000	1 54700	1 2800	1 13800	1 0 -	1 26100	F [62]
Lead	1 140	1 230	I Q.	I Q	I 10	1	1 15	ł
Magnesium	1 17100	1 15600	1 27700	F [4490]	1 3780	1 [4360]	1 2840	1
Manganese	1 1790	1 3940	1630	1 310	1 .260	1 48	410	ł
Mercury	1 0.3	1	1	1	!	1	I	1
Nickel	I 43	I 45	I [40]	1	1 [6.0]	I	1 12	1
Potassium	·   [3790]	[3030]	1 5040	1 [1490]	1 [710]	F	1 [450]	1
Selenium	I	I	ł	1	1	4	I.	I
Silver	1° Q	1 0		1 Q	I	1 Q	1	I∘ Q
Scdium	1 14900	1 10700	80200	1. 29800	1	1 44500	1	1
Thallium	$-\mathbf{I}_{i} \mathbf{x}_{i} + \mathbf{y}_{i}$	1	H	ł	ļ	1	1	1
Vanadium	1 [48]	1 120	1 64	I	i 16	I -	1 25	1
Zirc	1 120E	1 140E	1 130E	I Q	1 37	F Q	1 48	I Q

RAM

100

1680

#### NOTES:

Blank space - compound analyzed for but not detected

Q - analysis did not pass EPA QA/QC requirements

E - compound found in laboratory blank as well as the sample,

indicates possible/probable blank contamination

[] - compound present above the instrument detection limit, but below specified detection limits

E - indicates a value estimated or not reported due to the presence of interference



## Spring Valley Water Company

August 2, 1991

5, 1992

35202

 $\mathbf{\gamma}$ 

2 many

< ·

RAM

001

1681

AUG

JOB #_

Mr. James Lanzo Project Manager URS Consultants, Inc. 282 Delaware Ave. Buffalo, NY 14202-1805

Dear Mr. Lanzo:

Attached, as per your letter dated July 12, 1991, is water quality information regarding Spring Valley Water Company Wells 94, 95 and 96.

If you have any questions, please feel free to contact me at 914-623-1500.

Sincerely,

Jean M. Matteo Manager-Environmental Resources

JMM:jc Enc.

#### HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES 200 ELM STREET, DRADELL, NJ 07649

#### ANALYTICAL SUMMARY

Lab Number ... 701278

Sample Identification ... Spring Valley Well 94-Ramapo Valley Well Field Collection Date ... 7/12/88 Collector ... ML

· · ·						
pH	6.7			Color (CU)		3
Turbidity (NTU)	0.5	1		Chlorine, Free		ND
		-		Total		ND
·					,	
Temperature (F)	: 62			Fluoride		ND
Alkalinity, CaCO3	42					
Carbon Dioxide, Free	17			Solids, Suspended		ND
Chloride	57			Volatile	•••	78
Hardness, CaCO3	80			Total	•	242
	00			10(3)	•••	
Calcium, Ca	24					
Magnesium, Ma	5			Conductivity		
Potessium, K	1			(Micromhes/om)		357
Silica, Si02			1990 - P	A the sound of Arry	•••	
Sodium, Na	29			Dissolved Oxygen		
Sulfate S04	18				•••	
Ammonie, Free, N	0.0:	2		M.B.A.S.		ND
Nitrite N	ND			<ul> <li>Phosphate ic-P</li> </ul>		0.04
Nitrate, N	0.90	010	1	t-P		0.Û-
		•	L			
Aluminum, Al	0.03	5		Lesd, Fb		ND
Arsenic, As	ND			Manganese , Mn		ND
Barnum Ba	NĐ			Mercury Hg	•••	ND
Cadmium, Cd	ND			Nickel, M		
Chromium, Cr	ND			Selenium, Se		ND
Copper, Cu Tron, Fe	ND			Silver, Ag		ND ND

Total Coliform Organisms, as MPN Index per 100mL ... ND

RAM

100

1682

Louis A. Briganti Chief Chemist

Results are expressed in mg/L, unless otherwise stated.

maiuses are performed in accordance with the latest edition of "Standard Methods for the examination of Water and Wastewater" and/or USEPA approved methodology.

The nomenciature "ND" represents analytes that are not detected, or analytical detection limits as expressed within Appendix A.

## HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES

Louis A. Briganti Chief Chemist 200 Elm Street Orodell, N.J. 07649

## VOLATILE ORGANIC ANALYSIS

Lab Number ... 702149

Sample Identification

... SV WELL #94

Comments...Collection Date...Analysis Date...12/19/88

Collector ... SS Analyst ... Earol **B . Flach, Supervisor Chemist** 

	CONTAMINANT		ppb	CONTAMINANT		ppb	
							t n n
		•••	ND	2,2-DICHLOROPROPANE	•••	···- \	₩ • •
			ND	1,1-DICHLOROPROPENE	•••	ND	
			ND	cis-1,3-DICHLOROPROPENE	•••	ND	
			ND	trans-1,3-DICHLOROPROPENE	•••	ND	
		•••	ND	ETHYL BENZENE	•••	ND	
	BROMOMETHANE		ND	HEXACHLOROBUTADIENE	•••	ND	
		•••	ND	ISOPROPYL BENZENE	•••	ND	
	sec-BUTYLBENZENE		ND	p-ISOPROPYLTOLUENE		ND	
	tert-BUTYLBENZENE		ND	METHYLENE CHLORIDE		ND	
	CARBON TETRACHLORIDE	•••	ND	NAPHTHALENE	•••	ND	
	CHLOROBENZENE	•••	ND	n-PROPYL BENZENE	•••	ND	
		••••	ND	STYRENE		ND	
	CHLOROFORM	••••	ND	1,1,1,2-TETRACHLOROETHANE	•••	ND	- •
		•••	ND	1,1,2,2-TETRACHLOROETHANE	•••	ND	
	2-CHLOROTOLUENE	•••	ND	TETRACHLOROETHENE	•••	ND	
	4-CHLOROTOLUENE		ND	TOLUENE	•••	ND	
·	DIBROMOCHLOROMETHANE	•••	ND	1,2,3-TRICHLOROBENZENE	•••	ND	
	DIBROMOMETHANE	•••	ND	1,2,4-TRICHLOROBENZENE		ND	
	1,2-DICHLOROBENZENE	•••	ND	1,1,1-TRICHLOROETHANE		ND	
	•		ND	1,1,2-TRICHLOROETHANE	•••	ND	
			ND	TRICHLOROETHENE	•••	ND	
			ND	TRICHLOROFLUOROMETHANE	•••	ND	
		•••	ND	1,2,3-TRICHLOROPROPANE	•••	ND	
		•••	ND	1,2,4-TRIMETHYLBENZENE	•••	ND	
			ND	1,3,5-TRIMETHYLBENZENE	•••	ND	
			ND	VINYL CHLORIDE	•••	ND	н
			ND	m-XYLENE	•••	ND	RAM
		•••	ND	o-XYLENE		ND	5
	1,3-DICHLOROPROPANE	•••	ND	p-XYLENE	•••	ND	0
							Ó

The nomenclature "ND" represents contaminants that are not detected, or an analytical detection limit of **0.5 ppb**.

Analyses are performed in accordance with USEPA approved methodology: USEPA Method **502.2**: "Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water". Sept., 1986, EMSL, USEPA, Cincinnati, Ohio. 100

1683

HACKENSACK W DANY ANALYTICAL LABORATORIES 200 ELM STREET

ORADELL, N. 05749

···· · · · ·

## EPA METHOD SUA ANHLYSIS

REPORT DATE: 12/29/88

MICROEXTRACTABLES

SAMPLE =	701278
COLLECTED	
ANALYZED	
	••••

्रेटर १ हर



1,2-Dibromoetnane (EDB) 1,2-Dibromo-3-Chlonopropane (CECF

Kuc

Keith Cortnick / Supervisor-Chemist

Analyses are performed in accordance with USEPA approved methodology: EPA Method 504, EDB and DBCP in Water by Microextraction and Gas Chromatography, 1985, Ed. Rev. 1986.

RAM 001 1684

### HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES 200 ELM STREET,

ORADELL, NJ 07649

## ANALYTICAL SUMMARY

Lab Number ... 70477

Sample Identification ... Spring Valley Well 95-Ramapo Valley Well Field Collection Date ... 3/22/88 Collector ... AR

pH Turbidity (NTU)	7.0 0.4	Color (CU) 4 Chlorine, Free ND
		Total ND
· - ·		
Tomosolumo (E)		
Temperature (F)	41	Fluoride
Alkalinity, CaCO3	42	
Carbon Dioxide, Free	7	Solids, Suspended ND
Chloride	92	Volatile 6
Hardness, CaCO3		Total 126
0-1		•
Calcium, Ca	18	-
Magnesium, Mg	7	Conductivity
Potassium , K	•••	(Micromhos/cm) 300
Silica, SiO2		
Sodium, Na	····	Dissolved Oxygen
Sulfate, SO4	10	
Ammonia, Free, N	0.02	M.B.A.S
Nitrite, N	ND	Phosphate, o-P ND
Nitrate, N	0.76	ι-P 0.05
Aluminum, Al	0.07	Lead, Pb
Arsenic, As		Manganese, Mn 0.21
Barium, Ba	· · · ·	Mercury, Hg
Cadmium, Cd		Nickel, Ni
Chromium, Cr		-
	0.01	Selenium, Se
Copper, Cu		Silver, Ag
iron, Fe	0.07	Zinc, Zn 0.02

Total Coliform Organisms, as MPN Index per 100mL ... ND

Louis A. Briganti Chief Chemist

Results are expressed in mg/L, unless otherwise stated.

Analyses are performed in accordance with the latest edition of "Standard Methods for the examination of Water and Wastewater" and/or USEPA approved methodology.

The nomenclature "ND" represents analytes that are not detected, or analytical detection limits as expressed within Appendix A.

100 1685

RAM

## HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES

Louis A. Briganti Chief Chemist

## VOLATILE ORGANIC ANALYSIS

Lab Number 701854 ...

Sample Identification ... SV WELL #95

Comments		•••	
Collection Date		•••	10/11/38
Analysis Date	1		10/13/88

Collector ... SS Analyst

•••	Carol	R	. Flach,	Supervi

	CONTAMINANT		pob	CONTAMINANT		ppb
	BENZENE	•••	ND	2,2-DICHLOROPROPANE		ND
	BROMOBENZENE	••••	ND	1,1-DICHLOROPROPENE		ND
	BROMOCHLOROMETHANE	•••	ND	cis-1,3-DICHLOROPROPENE	•••	ND
	BROMODICHLOROMETHANE		ND	trans-1,3-DICHLOROPROPENE		ND
	BROMOFORM	•••	ND	ETHYL BENZENE		ND
	BROMOMETHANE		ND	HEXACHLOROBUTADIENE		ND
	n-BUTYLBENZENE		ND	ISOPROPYL BENZENE		ND
	Sec-BUTYLBENZENE		ND	p-ISOPROPYLTOLUENE		ND
	tert-BUTYLBENZENE	•••	ND	METHYLENE CHLORIDE		
	CARBON TETRACHLORIDE	••••	ND	NAPHTHALENE	••••	ND
	CHLOROBENZENE		ND	n-PROPYL BENZENE		ND
	CHLOROETHÂNE	•••	ND	STYRENE		ND
	CHLOROFORM		ND	1,1,1,2-TETRACHLOROETHANE		- ND
	CHLOROMETHANE		ND	1,1,2,2-TETRACHLOROETHANE		ND
	2-CHLOROTOLUENE		ND	TETRACHLOROETHENE		ND
	4-CHLOROTOLUENE		ND	TOLUENE		ND
	DIBROMOCHLOROMETHANE		ND	1,2,3-TRICHLOROBENZENE	••••	ND
	DIBROMOMETHANE		ND	1,2,4-TRICHLOROBENZENE		ND
	1,2-DICHLOROBENZENE		ND'	1,1,1-TRICHLOROETHANE		ND
	1,3-DICHLOROBENZENE		ND	1.1.2-TRICHLOROETHANE		ND
	1,4-DICHLOROBENZENE	•••	ND	TRICHLOROETHENE		ND
	DICHLORODIFLUOROMETHANE		ND	TRICHLOROFLUOROMETHANE		ND
	1,1-DICHLOROETHANE		ND	1,2,3-TRICHLOROPROPANE		ND
	1,2-DICHLOROETHANE	•••	ND	1,2,4-TRIMETHYLBENZENE		ND
	1,1-DICHLOROETHENE	•••	ND	1,3,5-TRIMETHYLBENZENE		ND
1	cis-1,2-DICHLOROETHENE	•••	ND	VINYL CHLORIDE	•••	ND
	trans-1,2-DICHLOROETHENE		ND	m-XYLENE		ND
	1,2-DICHLOROPROPANE	•••	ND	0-XYLENE		ND
	1,3-DICHLOROPROPANE	•••	ŇD	p-XYLENE		ND

The nomenolature "ND" represents contaminants that are not detected, or an analytical detection limit of U.5 ppb.

Analyses are performed in accordance with USEPA approved methodology : USEPA Method 502.2 : "Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water". Sept., 1986, EMSL, USEPA, Cincinnati, Ohio.

RAM 100

1686

isor Chemist

200 Elm Street

Oredell, N.J. 07649

## HACKENSACK WATER COMPANY PESTICIDE / HERBICIDE ANALYSIS

Results expressed in ug/1.

SAMPLE (D: S.V. WELL +95		
	- · ·	
CHLORINATED PESTICIDES	Sample:	<b>#</b> 70
STD Method 509A	collected:	3/24
Lindane	<0.05	
Endrin	<0.05	
Methoxyclor	<0.10	
Toxaphene	<0.50	

CHLOROPHENOXY ACID HERBICIDES STD Method 5096

2,4-D Silvex

0296 24/87

<0.10 <0.05

Charles Appleby Supervisor Chemist

#### HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES 200 ELM STREET URADELL, KJ 86749

## EPA METHOD 504 ANALYSIS

REPORT DATE: 1/13/89 SAMPLE ID : SY WELL #95

SAMPLE # :	702153
COLLECTED:	12/12/88
ANALYZED :	12/16/88

RESULTS (pob)

<.02

<.02



MICROEXTRACTABLES EPA Method 504

1,2-Dibromoethane (EDB) 1,2-Dibromo-3-Chloropropane (DBCP)

Keith Cartnick / Supervisor-Chemist

Analyses are performed in accordance with USEPA approved methodology: EPA Method 504, EDB and DBCP in Water by Microextraction and Gas Chromatography, 1985, Ed. Rev. 1986.

## HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES

200 ELM STREET, ORROELL, NJ 07649

· • • •

## ANALYTICAL SUMMARY

Lab Number	 70478

ЭН	6.9	Color (CU)	3
Turbidity (NTU)	0.1	Chlorine, Free	0 ND
		Total	ND
femperature (F)	45	Fluoride	
Alkalinity, CaCO3	22	-	
Carbon Dioxide, Free	6	Solids, Suspended	ND
Chloride	17	Volatile	6
lardness, CaCO3	70	Total	124
Calcium, Ca	17		
1agnesium, Mg	7	Conductivity	
Potassium, K	····	(Micromhos/cm)	288
Silica, SiO2	····		
Sodium, Na		Dissolved Oxygen	
ulfate, SO4	12	, <b>,,</b>	
mmonia, Free, N	0.02	M.B.A.S.	
vitrite, N	ND	Phosphate, o-P	0.06
litrate, N	0.95	t-P	0.06
Numinum, Al	0.07	Lead, Pb	
Arsenic, As		Manganese, Mn	0.01
sarium, Ba		Mercury, Hg	
Cadmium, Cd		Nickel, Ni	
Chromium, Cr		Selenium, Se	
Copper, Cu	0.01	Silver, Ag	
ron, Fe	0.01	Zinc, Zn	0.01

Total Coliform Organisms, as MPN Index per 100mL ... ND

Louis A. Briganti Chief Chemist

Results are expressed in mg/L, unless otherwise stated.

Analyses are performed in accordance with the latest edition of "Standard Methods for the examination of Water and Wastewater" and/or USEPA approved methodology.

The nomenclature "ND" represents analytes that are not detected, or analytical detection limits as expressed within Appendix A.

001 1689

RAM

HACKENSACK	WATER	COMPANY
ANALYTICAL	LABO	RATORIES

Louis A. Briganti Chief Chemist

## **UOLATILE ORGANIC ANALYSIS**

#### 200 Elm Street Oradell, N.J. 07649

Lab Number 702150

Sample Identification ... SV WELL #96

Comments **Collection Date** 12/12/83 ••• Analysis Date .... 12/19/88

Collector ... SS Analyst ... Corol R . Flach, Supervisor Chemist

CONTAMINANT		ppb	CONTAMINANT		ppb
BENZENE	•••	ND	2,2-DICHLOROPROPANE		ND
BROMOBENZENE		ND	1,1-DICHLOROPROPENE	•••	
BROMOCHLOROMETHANE		ND	cis-1,3-DICHLOROPROPENE	•••	ND
BROMODICHLOROMETHANE		ND	trans-1,3-DICHLOROPROPENE		
BROMOFORM	•••	ND	ETHYL BENZENE		ND
BROMOMETHANE		ND	HEXACHLOROBUTADIENE		ND
n-BUTYLBENZENE		ND	ISOPROPYL BENZENE		ND
sec-BUTYLBENZENE		ND	p-ISOPROPYLTOLUENE		ND
tert-BUTYLBENZENE	•••	ND	METHYLENE CHLORIDE		ND
CARBON TETRACHLORIDE	•••	ND	NAPHTHALENE	•••	ND
CHLOROBENZENE	•••	ND	n-PROPYL BENZENE		ND
CHLOROETHANE	•••	ND	STYRENE		ND
CHLOROFORM	•••	ND	1,1,1,2-TETRACHLOROETHANE		ND
CHLOROMETHANE		ND			ND
2-CHLOROTOLUENE	•••	ND .	TETRACHLOROETHENE		ND
4-CHLOROTOLUENE	•••	ND	TOLUENE		ND
DIBROMOCHLOROMETHANE		ND	1,2,3-TRICHLOROBENZENE		ND
DIBROMOMETHANE		ND	1,2,4-TRICHLOROBENZENE		ND
1,2-DICHLOROBENZENE		ND	1,1,1-TRICHLOROETHANE		ND
1,3-DICHLOROBENZENE		ND	1,1,2-TRICHLOROETHANE		ND
1,4-DICHLOROBENZENE		ND	TRICHLOROETHENE		ND
DICHLORODIFLUOROMETHANE		ND	TRICHLOROFLUOROMETHANE		ND
1,1-DICHLOROETHANE	•••	ND	1,2,3-TRICHLOROPROPANE		ND
1,2-DICHLOROETHANE	•••	ND	1,2,4-TRIMETHYLBENZENE	•••	ND
1,1-DICHLOROETHENE		ND	1,3,5-TRIMETHYLBENZENE	•••	ND
cis-1,2-DICHLOROETHENE	•••	ND	VINYL CHLORIDE	•••	ND
trana-1,2-DICHLOROETHENE	•••	ND	m-XYLENE	••••	ND
1,2-DICHLOROPROPANE	•••	ND	O-XYLENE	•••	ND
1,3-DICHLOROPROPANE	•••	ND	p-XYLENE	•••	ND

The nomenclature "ND" represents contaminants that are not detected, or an analytical detection limit of 0.5 ppb.

Analyses are performed in accordance with USEPA approved methodology : USEPA Method 502.2: "Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water". Sept., 1986, EMSL, USEPA, Cincinnati, Ohio.

RAM 100

1690

## HACKENSACK WATER COMPANT PESTICIDE / HERBICIDE ANALYSIS

Results expressed in ug/1.

#### SAMPLE ID: S.V. WELL #96

• • •		
CHLORINATED PESTICIDES STD Method 509A	•	Sample: #70297 collected: 3/24/87
Lindane Endrin Notpassialen		<0.05 <0.05
Methoxyclon Toxaphene		<0.10 <0.50

CHLOFTPHENOXY ACID HERBICIDES

STD Method 509	8	•	•• •	• •
2,4-0				<0.10
Silvex	· -			<0.05

Charles Appleby Supervisor Chemist

#### HACKENSACK WATER COMPANY ANALYTICAL LABORATORIES SAA ELM STREET ORADELL, NO COTAR

## EPA METHOD 504 ANALYSIS

#### REPORT DATE: 12/29/88 SAMPLE ID : SY WELL #96

ر بينيانج.

SAMPLE = COLLECTED ANALYZED .

7115199

DERIGES CARAG

12

< 02

704279

MICROEXTRACTABLES EDA Methon 504

1.2-Dibromoethane (EDB) 1,2-Dibromo-3-Chloropropane (DBCP)

Kujc

Keith Cortnick / Supervisor-Chemist

Analyses are performed in accordance with USEPA approved methodology: EPA Method 504, EDB and DBCP in Water by Microextraction and Gas Chromatography, 1985, Ed. Rev. 1986.

RAM 001 1692

5/1988 Table I <del>Curren</del>t United States Environmental Protection Agency Drinking Water Standards

1

Parameters ¹	U.S. EPA Primary MCL ²	U.S. EPA Secondary MCL ³
Physical factors		
Color, platinum		
standard	·	15
Odor, threshold		· 3
number	1	
Turbidity, JTU pH, unit	<u> </u>	6.5-8.5
Chemical factors		
Arsenic	0.1	_
Barium	1	_
Cadmium	0.01	
Chloride	—	250
Chromium	0.05	—
Copper		1.0
Fluoride	1.4-2.4	
Iron	0.05	0.3
Lead Manganese	0.05	0.05
MBAS		0.6
Mercury	0.002	0.0
Nitrate (as N)	10	_
Selenium	0.01	
Silver	0.05	_
Sulfate	—	250
Total dissolved solids	<del></del> *	500
Zinc	<del></del>	5
Corrosion and scaling factors		
Hardness	. <u> </u>	non-corrosive
Sodium	_	non-corrosive
Bacteriological factors		
Coliform (membrane filter)	1/100 mL	_
Radiologic factors		
Gross alpha activity	15 pCl/1	<del></del> _
Gross beta activity	. <u> </u>	
Radium 226 and 228	5 pCl/1	
Strontium 90		
Pesticides Herbicides		
Chlorinated hydrocarbons		
Endrin	0.0005	
Lindane	0.005	_
Methoxychlor	1.0	_
Toxaphene	0.005	. —
Chlorophenoxy herbicides		F=
2, 4-D	0.02	— Â
2, 4, 5-TP (Silvex)	0.03	3
Total trihalomethane	0.1	
rotal trinaiomethane	0.1	- o

2. MCL = maximum contaminant level.

1693

J

## New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233-7010



Thomas C. Jorling Commissioner

5 1991

**CONCULTANTS** 

COB 35207- W-C

SEP

September 3, 1991

Mr. Gene Ostertag Senior Engineer Town of Ramapo Department of Public Works Pioneer Avenue Tallman, NY 10982

Dear Mr. Ostertag:

## RE: Ramapo Landfill (Site #344004)

Please find enclosed the results of surface water sampling performed by NYSDEC personnel on July 12, 1991, in the vicinity of the Ramapo Landfill. Samples were collected and analyzed for Target Analyte List metals, cyanide, total organic carbons and ammonia from the following locations:

- * Sample A037-T1 was collected on the Torne Brook upgradient of the Orange and Rockland substation (approximately 100 feet upstream from the power line right-of-way that heads east of the substation).
- * Samples A037-R1, A037-R2 and A037-R3 were collected roughly 150 feet upstream of the former outfall 001, at the confluence with the former outfall, and roughly 150 feet downstream of the outfall, respectively, on the Ramapo River.

Please give me a call (518) 457-1641 if you have any questions about the enclosed data.

Sincerely. Kathleen a Melus

Kathleen McCue Project Manager Bureau of Central Remedial Action Div. of Hazardous Waste Remediation

Enclosure cc: J. Lanzo, URS Consultants A. Lapidos, Ramapo Land Company

R. Nunes, USEPA, Region II

Distribution				
Am IL	2			
IL				
FILE				

RAM

001

1694

15 (12-75)

#### New York State Department of Environmental Conservation

#### MEMORANDUM

Kathleen McCue, Bureau of Central Remedial Action TO: Charles Vernoy, Bureau of Technical Services CAU FROM: Ramapo LF Data Package Usability SUBJECT:

August 29, 1991 DATE:

> After review of the Weston Data Package on the Ramapo Landfill samples for metals the only QC problem was with silver. The silver QC results for the Spike Sample Recovery and the Laboratory Control Sample are both below the acceptable limits (23% and 73% respectfully). Silver data is usable and results would be biased low, but since no concentrations above the detection limit were found in any of the sample results, the silver data is acceptable.

All other metal QC items are acceptable and the sample data is usable.

-If you have any questions please phone me at 7-3252.

cc: M. Serafini

## AUG 3 0 100

		B.E.R.A.	FILE SECTION	l
	FOILABLE Y-N		I	ļ
l	SITE NAME	•		ļ
	SUB SECTIONS	NO DESC	— ÿ	
	PRO. ELEMENT OPERABLE UNIT DRAFT OR FINAL	NU. DEGU.		!

RAM 001 1695



# ROY F. WESTON, INC. Lionville Laboratory

SAMPLES RECEIVED: 7-13-91

CLIENT: CASE RA091NYSDEC RFW #: 9107L151 W.O. #: 1667-07-01

#### INORGANIC NARRATIVE

The following is a summary of the quality control results and a description of any problems encountered during the analysis of this batch of samples:

- 1. All sample holding times as required by 40CFR136 were met for water samples.
- 2. All preparation blank results were below the required detection limit.
- 3. All laboratory control standards (blank spikes) were within the control limits of 80-120%. All %RPD were within the 20% guidance limit.
- 4. All calibration verification checks are within the required control limits of 90-110%. Calibration verification is performed using independent standards.
- 5. Matrix spike recoveries are summarized on the Inorganic Accuracy Report contained within this document. All recoveries were within the 75-125% guidance limit. All %RPD were within the 20% guidance limit.
- 6. Replicate results are summarized on the Inorganic Precision report contained within this document. All results were within the 20% RPD guidance limit.
- 7. The analytical methods applied by the laboratory, unless otherwise requested, for all inorganic analyses are derived from the USEPA <u>Method for Chemical Analysis of</u> <u>Water and Wastes</u> (USEPA 600/4-79-020), and <u>Standard</u> <u>Methods for the Examination of Water and Wastewater 16</u> <u>ed.</u> Methods for the analysis of solid samples are derived from <u>Test Methods for Evaluating Solid Waste</u> (USEPA SW846).

Jack R. Tuschall, Ph.D. Laboratory Manager Lionville Analytical Laboratory

RAM

**I**00

1696

Date

#### ROY F. WESTON INC.

#### INORGANICS DATA SUMMARY REPORT 07/26/91

#### CLIENT: CASE RA091NYSDEC WESTON BATCH #: 9107L151 WORK ORDER: 1667-07-01-0000 REPORTING SITE ID · • • SAMPLE RESULT ANALYTE UNITS LIMIT ======= -----922003 223372020. A749T1 -001 10.0 u UG/L Cyanide, Total 10.0 • Ammonia, as N 0.10 u MG/L 0.1 Total Organic Carbon 1.3 0.50 MG/L i -002 A749R1 Cyanide, Total 10.0 u UG/L 10.0 0.10 u MG/L Ammonia, as N 0.10 Total Organic Carbon 3.7 . MG/L 0.50

-003 A749R3 Cyanide, Total 10.0 u UG/L 10.0 Ammonia, as N 0.10 u MG/L . 0.10 Total Organic Carbon 3.7 MG/L 0.50 . 10.0 u UG/L -004 Cyanide, Total A749R2 10.0 Ammonia, as N 0.10 u MG/L 0.10 Total Organic Carbon 3.7 MG/L 0.50



RAM 001 169



## Roy F. Weston, INC. Lionville Laboratory

CLIENT:CASE RA091 NYSDEC RFW #:9107L151 W.O.#:1667-07-01 SAMPLES RECEIVED:7/13/91

#### METALS NARRATIVE

The set of samples consisted of (4) water samples collected on 7/12/91.

The samples were analyzed according to criteria set forth in CLP SOW 7/87.

The following is a summary of the QC results accompanying these sample results and a description of any problems encountered during their analysis:

- 1. ICVs, CCVs, and LCSs stock standards were purchased from Inorganic Ventures Laboratory.
- 2. All ICV and CCV values were within control limits.

3. All ICB and CCB values were within control limits.

- 4. All preparation blank values were within control limits.
- 5. All LCS results were within the 80-120% control limits.
  - Note: The USEPA has dropped control limits for antimony and silver due to documented difficulties in obtaining reliable results. WESTON Analytics has adopted the same policy.
- 6. All matrix spike recoveries were within the 75-125% control limits with the exception of Ag. All corresponding samples were flagged with an "N" according to CLP protocol.
- 7. All duplicate analyses were within the 20% RPD control limit.

Jack R. Tuschall, Ph.D. Laboratory Manager WESTON Analytical Laboratories

8.6.91.

1698

Date



USEPA CONTRACT LABORATORY PROGRAM DATA QUALIFIER DESCRIPTIONS INORGANIC ANALYSIS SOW NO. 787

## CONCENTRATION QUALIFIERS:

- B = INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.
  - U = INDICATES THAT THE ANALYTE WAS ANALYZED FOR BUT NOT DETECTED.

**OUALIFIERS**:

- E = THE REPORTED VALUE IS ESTIMATED BECAUSE OF THE PRESENCE OF INTERFERENCE.
- M = DUPLICATE INJECTION PRECISION NOT MET.
- N = SPIKED SAMPLE RECOVERY NOT WITHIN CONTROL LIMITS.
- S = THE REPORTED VALUE WAS DETERMINED BY THE METHOD OF STANDARD ADDITIONS (MSA).
- W = POST DIGESTION SPIKE FOR FURNACE AA ANALYSIS IS OUT OF CONTROL LIMITS (85-125%) WHILE SAMPLE ABSORBANCE IS LESS THAN 50% OF SPIKE ABSORBANCE.
- * = DUPLICATE ANALYSIS NOT WITHIN CONTROL LIMITS.
- + = CORRELATION COEFFICIENT FOR THE MSA IS LESS THAN 0.995.

RAM

100

1699

#### METHOD:

P		ICP
λ		FLAME AA
F	=	FURNACE AA
C₹	=	MANUAL COLD VAPOR AA.
۸₹	=	AUTOMATED COLD VAPOR AA.
AS	÷	SEMI-AUTOMATED SPECTROPHOTOMETRIC
		MANUAL SPECTROPHOTOMETRIC
-		TITRIMETRIC
NR	=	NOT REQUIRED

# <u>0</u>00000<u></u>5

U	S	epa	-	CLP	

	مىنى مەرىپىدىد قارار	NODONITO	1 Nalysis data she		EPA SAM	PLE NO.
	in in the second second second second second second second second second second second second second second se	· · · · · · · · · · ·	· · · · · · · · ·		A749T1	
Lab Code:WEST	on Cae	e No:RA091	SAS No.:	·	SDG No.:C	LP151
Matrix (soil/	water):WATE	R	La	b Sample	ID:91071	51001
Level (low/me	d): LOW	<u> </u>	Da	te Recei	ved:07/13	/91

Concentration Units (ug/L or mg/kg dry weight): UG/L

		1	1	1.	1	1
	CAS No.	Analyte	  Concentration 	  C	Q	1 2
	7429-90-5	Aluminum	109.40	В		<u>P</u>
	7440-36-0	Antimony		:		I P
	7440-38-2	Arsenic	2.00	:		F
	7440-39-3	Barium	15.50	B	1	P
	7440-41-7	Beryllium	0.30	ש		P
	7440-43-9	Cadmium	1.50	ĪŪ	· ·	P
	7440-70-2	Calcium	5038.90			P
ļ	7440-47-3	Chromium	2.40	:		P
1	7440-48-4	Cobalt	2.40			P
i	7440-50-8	Copper	2.70	B		P
Ī	7439-89-6	Iron	110.00	_		P
İ	7439-92-1	Lead	2.00			F
İ	7439-95-4	Magnesium	1392.20	B	E	P
İ	7439-96-5	Manganese	46.30			P
İ	7439-97-6	Mercury				CV
İ	7440-02-0	Nickel	5.70	U		P
İ	7440-09-7	Potassium	954.20	U		P
İ	7782-49-2	Selenium	2.00	U		F
İ	7440-22-4	Silver	3.90	<u>ש</u>	N	P
İ	7440-23-5	Sodium	3232.10	B	E	P
ĺ	7440-28-0	Thallium	2.00			F
l	7440-62-2	Vanadium_	6.00	B		P
ľ	7440-66-6	Zinc	8.80	B		P
١.	İ	Cyanide	10.00	DĮ		C
			]	_Ì.		

Color Before: COLORLESS

% Solids: 0.0

Clarity Before:CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR Artifacts:

Comments:

FORM I - IN

RAM 001 1700

#### U.S. EPA - CLP

e e e estado

Contract:1667-07-01

SAS No.:

TNORGANIC	ANALYSTS	בדבת	SHEET
· · · · · · · · · · · · · · · · · · ·	7		-

. .

Case No:RA091

A ......

÷		
		Ê
	A749R1	İ

. . . . . .

EPA SAMPLE NO.

SDG No.:CLP151

Matrix (soil/water):WATER

Lab Name: Roy F. Weston, Inc.

Lab Sample ID:9107151002

Level (low/med): LOW Date Received:07/13/91

% Solids: 0.0

Lab Code:WESTON

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	C	2	
7429-90-5	Aluminum_	84.00			
7440-36-0	Antimony_	17.10	U	I	P
7440-38-2	Arsenic	2.00	U		F
7440-39-3	Barium	15.00	B	· .	P
7440-41-7	Beryllium	0.30	ĮΠ		P
7440-43-9	Cadmium_	1.50	U	I	P
7440-70-2	Calcium	27385.40	1_	E	P
7440-47-3	Chromium_	2.40		I	<u> </u> P
7440-48-4	Cobalt	2.40	미	I	P
7440-50-8	Copper	6.30	B	· · ·	<u> </u> P
7439-89-6	Iron	96.00	B		<u>P</u>
7439-92-1	Lead	2.00	U		<u> </u> <u>F</u>
7439-95-4	Magnesium	7503.40		E	<u> </u> P
7439-96-5	Manganese	63.90		<u>e</u>	P
7439-97-6	Mercury_	0.20	U		
7440-02-0	Nickel	5.70	미		P
7440-09-7	Potassium	2725.10	비		P
7782-49-2	Selenium_	2.00	U		F
7440-22-4	Silver	3.90			P
7440-23-5	Sodium	. 50888.40	_1	E	P
	Thallium_	2.00	-!'		F
	Vanadium_	6.40			<u>P</u>
440-66-6	Zinc	14.00			P
	Cyanide	10.00	미.		l <u>c</u>

Color Before: COLORLESS Clarity Before: CLEAR

Clarity After: CLEAR

Texture:

Artifacts:

Color After: COLORLESS

Comments:

FORM I - IN

RAM 100

## U.S. EPA - CLP

. 1 INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO.

A749R3

Lab Name:Roy F. Weston, Inc. Contract:1667-07-01

шашышы берті бергі, 1941

Lab Code:WESTON Case No:RA091 SAS No.: SDG No.:CLP151 . . . . . . . . . . . . . .

000008

Matrix (soil/water):WATER

Lab Sample ID:9107151003 Date Received:07/13/91

Level (low/med): LOW

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

		•			•
CAS No.	Analyte	  Concentration		Q	м
7429-90-5	Aluminum	84.00	ש	<u> </u>	P
7440-36-0	Antimony	17.10	밀	1	P
7440-38-2	Arsenic	2.00	÷		F
7440-39-3	Barium	14.50	B	[	P
7440-41-7	Beryllium	0.30	Ū		P
7440-43-9	Cadmium	1.50	ĪŪ	I	P
7440-70-2	Calcium	28355.90	i_	E	P
7440-47-3	Chromium_	2.40	:		P
7440-48-4	Cobalt	2.40	U		P
7440-50-8	Copper	3.20	B		P
7439-89-6	Iron	140.00	İ_		P
7439-92-1	Lead	2.90	B		F
7439-95-4	Magnesium	7778.90		E	P
7439-96-5	Manganese	71.20		E	P
7439-97-6	Mercury	0.20	U		<b>CV</b>
7440-02-0	Nickel	5.70			P
7440-09-7	Potassium	2627.70	B		P
7782-49-2	Selenium	2.00	U		F
7440-22-4	Silver	3.90	Ū	N	P_
7440-23-5	Sodium	52731.60	Ī	E	P
7440-28-0	Thallium	2.00	U	<u>₩</u>	P
7440-62-2	Vanadium	7.10	B		P
7440-66-6	Zinc	7.30	B		P
	Cyanide	10.00	٥İ		IC I
	I		_İ.		

Color Before: COLORLESS

Clarity Before:CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

FORM I - IN

RAM

100

## U.S. EPA - CLP

1 INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO.

A749R2

SDG No.:CLP151

Lab Name: Roy F. Weston, Inc. Contract:1667-07-01 Lab Code:WESTON Case No:RA091 Matrix (soil/water):WATER

Lab Sample ID:9107151004 Date Received:07/13/91

000009

% Solids: 0.0

Level (low/med): LOW

Concentration Units (ug/L or mg/kg dry weight): UG/L

SAS No.:

CAS No.	   Analyte	Concentration	  C	Q	2	ж  
7429-90-5	Aluminum	84.00		¦		-¦
7440-36-0	Antimony				-!   P	-!
7440-38-2		2.00	_			-:
7440-39-3	Barium	14.50			-  <u>-</u>	-1
7440-41-7	Beryllium	0.30			P	-1
7440-43-9		1.50				- :
7440-70-2	Calcium	27533.70				1
7440-47-3	Chromium	2.40			P.	ï
7440-48-4	Cobalt	2.40			P	••
7440-50-8	Copper	5.40	-:		P	i
7439-89-6	Iron	125.20	_i		P	i
7439-92-1	Lead	2.60			P	i
7439-95-4	Magnesium	7559.40	<u> </u>	E	P	i
7439-96-5	Manganese	62.30	- İ	E	P	i
7439-97-6	Mercury_	0.20				i
7440-02-0	Nickel	5.70			P	
7440-09-7	Potassium .	2481.80	3		P	i
7782-49-2	Selenium	2.00 1			P	ĺ
7440-22-4	Silver	3.90/1	JI	N	P	
7440-23-5	Sodium	51271.50	]]	2	P	
	Thallium_ _	2.00 0	1		E	
7440-62-2	Vanadium	<u>7.10 8</u>	<u>! _</u>		P	
7440-66-6	Zinc	<u>    14.00  B</u>	! _		P	
	Cyanide	<u> </u>	! _		C	
I	I_		1_			

Color Before: COLORLESS

## Clarity Before:CLEAR

Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

Comments:

RAM

FORM I - IN

## APPENDIX N

Sau av

ì

## WETLAND DELINEATION AND SPECIES IDENTIFIED FOR ECOLOGICAL STUDY DURING URS FIELD CHECK

....

### DATA FORM ROUTINE ONSITE DETERMINATION METHOD¹

í :

la - Para - A Maria - Maria - Maria - Maria - Maria - A Maria - A Maria - A Maria - A Maria - A Maria - A Maria	Landfill State	County:	Rockland	•
ppiicant/Owner:Town_of	Ramapo Plant Com	munity #/Name: 13/H	emlock-Northern Hardwoo	- od For
Vole:-If a more detailed site de	scription is necessary, use the	back of data form or a	field notebook.	
				-
Do normal environmental cond	lions exist at the plant commun	ity?		
res <u>X</u> No (If no, e)		на на на		
tas the vegetation, solis, and/i fes $\frac{1}{X}$ No (if yes, e	r hydrology been significantly d	listurbed?		• •
(ii yes, e	plain on back)		•	
				-
	VEGETATIO	NC	le dia stas	
Dominant Plant Species		ninant Plant Species	Indicator Status Stratun	-
				<u> </u>
1. <u>Isuqa canadensis</u> 2. Quercus rubra				_
3. Quercus alba				-
4 Acer rubrum		* *		-
5. Betula allegheniensis				-
6. Sassafras albidium				-
7. Alnus_sp	FACH 10.			-
8. Cornus florida	FACUS18.			-
g Maianthemum canadense				<b>-</b> ·
10. Onoclea sensibilis	FACWF 20.	· · · · · · · · · · · · · · · · · · ·		_
Percent of dominant angles	hat are OBL, FACW, and/or FA		······································	
is the hydrophytic venetation	riterion met? Vee No.	v <u> </u>		
Rationale: FAC and FACW	criterion met? Yes No to not exceed 50% of domin	ant species		
Matrix Color: <u>unknown</u> Other hydric soll Indicators: – Is the hydric soil criterion met Rationale: <u>No soils of the</u> March, 1989).	No Gleyed? Yes none known Mottle Colo ? Yes No X is series are listed in "			
		·		
	HYDROLO			
		·		
Is the ground surface inundat	od? Yes No_ <u>x_</u> S	Surface water depth: _		
Is the ground surface inundat Is the soil saturated? Yes_	od? Yes No S No	Sunace water deptn: -		
Is the soll saturated? Yes _ Depth to free-standing water	n pit/soil probe hole: Unknown.	Soil Survey says y	water table <b>&gt;6</b> .0ft.	
Is the soll saturated? Yes _ Depth to free-standing water	ed? Yes <u>No x</u> S No <u>x</u> n pit/soil probe hole: <u>Unknown</u> face inundation or soil saturation	Soil Survey says y	water table <b>&gt;6</b> .0ft.	
Is the soil saturated? Yes_ Depth to free-standing water List other field evidence of su	No <u>x</u> n pit/soil probe hole: <u>Unknown.</u> 1ace Inundation or soil saturatio	Soil Survey says v on. none known	water table <b>&gt;6</b> .0ft.	
Is the soil saturated? Yes_ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite	No <u>x</u> n pit/soil probe hole: <u>Unknown</u> 1ace Inundation or soil saturatio	Soil Survey says v on. none known	water table <b>&gt;6</b> .0ft.	
Is the soil saturated? Yes_ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u>	No <u>x</u> n pit/soil probe hole: <u>Unknown</u> face Inundation or soil saturation ion met? Yes No	Soil Survey says v on. none known X	water table >6.0ft.	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl	No <u>x</u> n pit/soil probe hole: <u>Unknown</u> face inundation or soil saturation ion met? Yes <u>No</u> of inundation	Soil Survey says ( on. none known X ATION AND RATION/	water table >6.0ft.	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de 1 This data form can be used	NoNo n pit/soil probe hole: <u>Unknown.</u> face inundation or soil saturation ion met? Yes No of inundation URISDICTIONAL DETERMINA and? Yes No	Soil Survey says ( on. none known X ATION AND RATION/	water_table >6.0ft.	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wet Rationale for jurisdictional de 1 This data form can be used Assessment Procedure.	NoNo	Soil Survey says ( on. none known X ATION AND RATION/	water_table >6.0ft.	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de 1 This data form can be used	NoNo	Soil Survey says ( on. none known X ATION AND RATION/	water_table >6.0ft.	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wet Rationale for jurisdictional de 1 This data form can be used Assessment Procedure.	NoNo n pit/soil probe hole: Unknown. face inundation or soil saturation of inundation URISDICTIONAL DETERMIN and? Yes No bision: None of the three co	Soil Survey says ( on. none known X ATION AND RATION/	water_table >6.0ft.	
Is the soil saturated? Yes_ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de ¹ This data form can be used Assessment Procedure.	NoNo n pit/soil probe hole: Unknown. face inundation or soil saturation of inundation URISDICTIONAL DETERMIN and? Yes No bision: None of the three co	Soil Survey says ( on. none known X ATION AND RATION/	water_table >6.0ft.	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de 1 This data form can be used Assessment Procedure.	NoNo n pit/soil probe hole: Unknown. face inundation or soil saturation of inundation URISDICTIONAL DETERMIN and? Yes No bision: None of the three co	Soil Survey says ( on. none known X ATION AND RATION/	water_table >6.0ft.	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de 1 This data form can be used Assessment Procedure. 2 Classification according to "	NoNo	Soil Survey says ( on. none known X ATION AND RATION/ citeria are met. Procedure and the Pla	ALE	
Is the soil saturated? Yes_ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de ¹ This data form can be used Assessment Procedure. ² Classification according to ⁻	NoNo	Soil Survey says of on. none known X ATION AND RATION/ citeria are met. Procedure and the Pla	ALE	T TOO
Is the soil saturated? Yes_ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de ¹ This data form can be used Assessment Procedure. ² Classification according to ⁻	NoNo	Soil Survey says of on. none known X ATION AND RATION/ citeria are met. Procedure and the Pla	ALE	
Is the soil saturated? Yes _ Depth to free-standing water List other field evidence of su Is the wetland hydrology crite Rationale: <u>No evidence</u> Is the plant community a wetl Rationale for jurisdictional de ¹ This data form can be used Assessment Procedure. ² Classification according to "	NoNo	Soil Survey says of on. none known X ATION AND RATION/ citeria are met. Procedure and the Pla	ALE	+ ,

## DATA FORM ROUTINE ONSITE DETERMINATION METHOD

aid investigator(s): <u>R. West</u> oject/Site: <u>Ramapo Landfill</u>	*** *	State:NY	– Date: <u>May 2</u> — County: <u>Rocl</u>	(land	-
Ject/Site: Ramapo Landfill blicant/Owner: Town of Ram	аро р	Stale:		lintana Farrit	-
te: If a more detailed site desc	ription is necessary.	use the back of dat	a form or a field no	tebook	-
					-
normal environmental conditio		community?			
s No (If no, expl	ain on back)			, ·	
s the vegetation, soils, and/or I		ilicantly disturbed?			•
s No <u>×</u> _ (If yes, expl	lain on back)			•	
					-
		GETATION		1	
aminent Plant Section	Indicator		Casilas	Indicator	
ominant Plant Species		um Dominant Plan		Status Stratur	<u>n</u>
<u>Quercus rubra</u>	<u> </u>		<u> </u>		<u> </u>
Acer rubrum Tsuga canadensis	FAC T	12			-
Quercus alba	FACU T			- · · · · · · · · · · · · · · · · · · ·	
<u>Liriodendron tulipife</u>			·····		
8. <u>Hamamelis virginiana</u>					
7. Viburnum sp	FACU S		· · · · · ·		_
8. Polystichum acrostich					_
9. <u>Cornus florida</u>	FACU S		· · · · ·		_
0. <u>Geranium sp</u>	FACU F	20			
Percent of dominant species the	at are OBL. FACW. a	and/or FAC	20		
the hydrophytic vegetation cri	iterion met? Yes _	NoX			
lationale:					
the soil a Histosol? Yes the soil: Mottled? Yes Matrix Color:unknown Wher hydric soil indicators:	No Histic No Gleye Mo none_known	Undetern c epipedon present? ed? Yes ottle Colors:nk	Nounknow nown	unknown	_
a the soil a Histosol? Yes s the soil: Mottled? Yes Matrix Color:unknown Dther hydric soil Indicators: s the hydric soil criterion met? Rationale: <u>According to soil</u> a the ground surface inundated s the soil saturated? Yes	No X Histic No Gleye none known Yes No survey, no satur H Yes unknown No unkn	Undetern cepipedon present? ed? Yes ottle Colors: <u>unk</u> <u>Not likely</u> ration of this s YDROLOGY o Surface wa nown	oined <u>No</u> No No unknow nown oil unit occurs	unknown	_
s the soil a Histosol? Yes s the soil: Mottled? Yes Matrix Color: Dther hydric soil indicators: s the hydric soil criterion met? Rationale: <u>According to soil</u> attende: <u>According to soil</u> s the ground surface inundated s the soil saturated? Yes Depth to free-standing water in	No X Histic No Gleye none known Yes No survey, no satur 17 Yes unknown No unkn pit/soil probe hole: _	Undeterm     cepipedon present?     Yes ottle Colors:     Not likely     ration of this s     YDROLOGY     Surface wa     nown     Surface wa	oined <u>No</u> No No unknow nown oil unit occurs	unknown n during growing	_
s the soil a Histosol? Yes s the soil: Mottled? Yes Matrix Color:unknown Dther hydric soil indicators: s the hydric soil criterion met? Rationale: <u>According to soil</u> s the ground surface inundated s the soil saturated? Yes Depth to free-standing water in	No X Histic No Gleye none known Yes No survey, no satur 17 Yes unknown No unkn pit/soil probe hole: _	Undetern cepipedon present? ed? Yes ottle Colors: <u>unk</u> <u>Not likely</u> ration of this s YDROLOGY o Surface wa nown <u>unknown</u> il saturation.	oined <u>No</u> No No unknow nown oil unit occurs	unknown n during growing	_
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Survey, no satur H Yes Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No No No No No No No No No No No No No N	Undeterm     cepipedon present?     Yes ottle Colors:k     Not likely     ration of this s     YDROLOGY    Surface wa     nown    Nuknown     il saturation.     nown    Nolike	NoNo NoNo NoUnknown oil unit occurs Ner depth:	unknown n during growing	
the soil a Histosol? Yes the soil: Mottled? Yes Matrix Color:unknown Other hydric soil indicators: the hydric soil criterion met? Nationale: According to soil tationale: According to soil tationale: Yes Depth to free-standing water in list other field evidence of surfa- tationale sole standing water in	No X Histic No Gleye none known Yes No survey, no satur Survey, no satur H Yes Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No No No No No No No No No No No No No N	Undeterm     cepipedon present?     Yes ottle Colors:k     Not likely     ration of this s     YDROLOGY    Surface wa     nown    Nuknown     il saturation.     nown    Nolike	NoNo NoNo NoUnknown oil unit occurs Ner depth:	unknown n during growing	
s the soil a Histosol? Yes s the soil: Mottled? Yes Matrix Color:unknown Dther hydric soil indicators: s the hydric soil criterion met? Rationale: According to soil s the ground surface inundated s the soil saturated? Yes Depth to free-standing water in List other field evidence of surfa is the wetland hydrology criteric Rationale: According to soi	No X Histic No Gleye none known Yes No survey, no satur Survey, no satur H Yes Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No Unknown No No No No No No No No No No No No No N	Undeterm     cepipedon present?     ded? Yes ottle Colors:k <u>Not likely     ration of this s     YDROLOGY     o Surface wa     nown    unknown     il saturation.     nown     Not like     uration of this </u>	Nned No Yes No No unknown oil unit occurs Ner depth: ly soil unit_occur	unknown	
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkr pit/soil probe hole: ace Inundation or soi none kr on met? Yes JRISDICTIONAL DE	Undeterm cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown Surface we nown	Nned No Yes No No unknown oil unit occurs Ner depth: ly soil unit_occur	unknown	
s the soil a Histosol? Yes s the soil: Mottled? Yes Matrix Color:unknown Dther hydric soil indicators: s the hydric soil criterion met? Rationale: According to soil s the ground surface inundated s the soil saturated? Yes Depth to free-standing water in List other field evidence of surfa is the wetland hydrology criteric Rationale: According to soi Jt Is the plant community a wetlar Rationale for jurisdictional decisi sparent saturation of soi	No X Histic No Gleye No Gleye No Gleye Survey, no Satur Yes No survey, no Satur No Unknown No No Unknown No No Unknown No Son met? Yes Survey, no Satur JRISDICTIONAL DE No Sion: Low percent I survey no	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN to tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	
s the soil a Histosol? Yes	No X Histic No Gleye No Gleye No Gleye Survey, no Satur Yes No survey, no Satur No Unknown No No Unknown No No Unknown No Son met? Yes Survey, no Satur JRISDICTIONAL DE No Sion: Low percent I survey no	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN to tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkn pit/soil probe hole: ace Inundation or soi none kr on met? Yes 1 survey, no satur SIRISDICTIONAL DE nd? Yes N sion: Low percent I's during growing or the Hydric Soil Ass	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN to tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkn pit/soil probe hole: ace Inundation or soi none kr on met? Yes 1 survey, no satur SIRISDICTIONAL DE nd? Yes N sion: Low percent I's during growing or the Hydric Soil Ass	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN to tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkn pit/soil probe hole: ace Inundation or soi none kr on met? Yes 1 survey, no satur SIRISDICTIONAL DE nd? Yes N sion: Low percent I's during growing or the Hydric Soil Ass	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	<u>se</u> as
Is the plant community a wetlar Rationale for jurisdictional decis apparent saturation of soi across this relatively sma 'This data form can be used fo	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkn pit/soil probe hole: ace Inundation or soi none kr on met? Yes 1 survey, no satur SIRISDICTIONAL DE nd? Yes N sion: Low percent I's during growing or the Hydric Soil Ass	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	<u>se</u> as
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkn pit/soil probe hole: ace Inundation or soi none kr on met? Yes 1 survey, no satur SIRISDICTIONAL DE nd? Yes N sion: Low percent I's during growing or the Hydric Soil Ass	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkn pit/soil probe hole: ace Inundation or soi none kr on met? Yes 1 survey, no satur SIRISDICTIONAL DE nd? Yes N sion: Low percent I's during growing or the Hydric Soil Ass	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	<u>se</u> as
s the soil a Histosol? Yes	No X Histic No Gleye none known Yes No survey, no satur Yes unknown No unkn pit/soil probe hole: ace Inundation or soi none kr on met? Yes 1 survey, no satur SIRISDICTIONAL DE nd? Yes N sion: Low percent I's during growing or the Hydric Soil Ass	Undelern cepipedon presenti ed? Yes ottle Colors: <u>Not likely</u> ration of this s YDROLOGY o Surface we nown No il saturation. nown Noot like uration of this ETERMINATION AN tage of potentia g season; presen	Nined No Yes No No unknown oil unit occurs Ner depth: ly soil unit occur ID RATIONALE 11y hydrophytic ce of a roadway	unknown n during growing s during growing dominant species with minimal yeg	<u>se</u> as

B-2

į

h

### DATA FORM ROUTINE ONSITE DETERMINATION METHOD¹

1

held investigator(s): <u>R. West</u> roject/Site: <u>Ramapo Landfill</u> oplicant/Owner: <u>Town of Ramap</u>			State:	Count	/:Ro	ckland	
pplicant/Owner: Town of Ramap	0	- Piani	Communit	y #/Name: _22	Successi	onal Old	Field
ote: If a more detailed site descrip	otion is neces	ssary, us	e the back o	of data form or	a field not	ebook.	
o normal environmental conditions							
esNo <u>x1</u> (If no, explain	on back)	Piant Cor	umunity?				
las the vegetation, soils, and/or hy	drology been	n significa	nthy disturb	ed?	•		
es <u>x1</u> No (If yes, explai	n on back)						
	1 . # .	VEGE	TATION				
Dominant Plant Species	Indicator Status	Stratum	Dominant	Plant Species		Indicator Status	Stratum
Salix nigra	FACW	<u>+</u>	11			· · · · · · · · · · · · · · · · · · ·	<del></del>
3. Robinia pseudoaccacia	FACW	<u> </u>	12				· · · · ·
4. Rubus sp		S	14				
5. Rosa sp	FAC	S	15				
6. Parthenocissus cinquefo	lia FACU	WV	16				
7. <u>Solidago sp</u>	FAC	<u> </u>	17			. <u></u>	
8. Trifolium repens	FACU	<u>+</u>	18				<u> </u>
9. Potentilla sp	FACW	<u></u>	19				
10. <u>Lotus corniculatus</u>	· · · · ·	<u>F</u>				·	
Percent of dominant species that	are OBL, FA	CW, and	or FAC	60			
is the hydrophytic vegetation crite	rion met?	Yes X.	No				
Detternet of Caracharia Elena EOG	e dominant	chania	EAC	OF FACW			
Mationale: ureater than 50% of	y dominant	Species	S are FAL	OI FACE			
Rationale: <u>Greater than 50% c</u> Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list?	ton-Hollis Yes	SC -Rock Or No	DILS utcrop (Unde	ogroup:2 <u>Char</u>	ton fine	e sandy lo	
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes	ton-Hollis Yes NoX No	SC -Rock Or No Histic ep Gleved?	DILS utcrop Sul ( Unde ipedon pres	ogroup:2 <u>Char</u> etermined ent? Yes No	ton fine	e sandy lo	am 15-35 own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes	ton-Hollis Yes NoX No	SC -Rock Or No Histic ep Gleved?	DILS utcrop Sul ( Unde ipedon pres	ogroup:2 <u>Char</u> etermined ent? Yes No	ton fine	e sandy lo	am 15-35 own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes	ton-Hollis Yes No No none	So -Rock Or No Histic ep Gleyed? Mottle known	DILS utcrop Sul DIde Unde Pedon pres Yes Colors:	ogroup:2 <u>Char</u> etermined ent? Yes No unknown	ton fine	e sandy lo	am 15-35 own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: <u>Soli Indicators:</u> Other hydric soil Indicators: <u>Indicators</u>	ton-Hollis Yes No No  Yes	So -Rock Or No Histic ep Gleyed? Mottle known No	DILS utcrop Sul Unde pedon pres Yes Colors: unknown	ogroup:2 <u>Char</u> Stermined Sent? Yes No unknown	ton fine	sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: <u>Soil Indicators:</u> Other hydric soil Indicators: <u>Soil</u> Is the hydric soil criterion met?	ton-Hollis Yes No No  Yes	So -Rock Or No Histic ep Gleyed? Mottle known No	DILS utcrop Sul Unde pedon pres Yes Colors: unknown	ogroup:2 <u>Char</u> Stermined Sent? Yes No unknown	ton fine	sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: <u>Soil Indicators:</u> Other hydric soil Indicators: <u>Soil</u> Is the hydric soil criterion met?	ton-Hollis Yes No No  Yes	S( -Rock 0t No Histic ep Gleyed? Mottle known No May be	DILS utcrop Sul Unde pedon pres Yes Colors: unknown met in pi	ogroup:2 <u>Char</u> Stermined Sent? Yes No unknown	ton fine	sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil indicators: Is the hydric soil criterion met? Y Rationale: <u>Not met in Charl</u>	ton-Hollis Yes No No none Yes ton area.	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF	DILS utcrop Sul Unde pedon pres Yes Colors: unknown met in pi ROLOGY	ogroup:2 <u>Char</u> etermined ent? Yes No unknown t(i.e. excav	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil Indicators: Is the hydric soil criterion met? Y Rationale: <u>Not_met_in_Charl</u> Is the ground surface inundated?	ton-Hollis Yes No No Ton area. Yes	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF	DILS utcrop Sul Unde pedon pres Yes Colors: unknown met in pi ROLOGY	ogroup:2 <u>Char</u> etermined ent? Yes No unknown t(i.e. excav	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil Indicators: Other hydric soil criterion met? Yes Is the hydric soil criterion met? Yes Is the ground surface inundated? Is the soil saturated? Yes	ton-Hollis Yes No No Tes ton area. Yes No X	So -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No	DILS utcrop Sul Unde pedon pres Yes Colors: unknown met in pi OLOGY Surfac	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil Indicators: Other hydric soil criterion met? Y Rationale: <u>Not met in Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi	ton-Hollis Yes No X No No Yes ton area.	SC -Rock Or No Histic ep Gleyed? Mottle known No HyDF No HyDF No	DILS Jtcrop Sul Unde pedon pres Yes Colors: unknown met in pi COLOGY Surfac one encour	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil Indicators: Other hydric soil criterion met? Y Rationale: <u>Not met in Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi	ton-Hollis Yes No X No No Yes ton area.	SC -Rock Or No Histic ep Gleyed? Mottle known No HyDF No HyDF No	DILS Jtcrop Sul Unde pedon pres Yes Colors: unknown met in pi COLOGY Surfac one encour	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil Indicators: Other hydric soil criterion met? Yes Is the hydric soil criterion met? Yes Rationale: <u>Not_met_in_Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface	ton-Hollis Yes No X No No Yes ton area. Yes Vosil probe h a inundation Non	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No Ote: No	DILS Jtcrop Sul Unde pedon pres Yes Colors: Unknown met in pi COLOGY CSurfac one encour turation.	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil Indicators: Other hydric soil criterion met? The hydric soil criterion met? Is the hydric soil criterion met? The hydric soil criterion met? Is the soil saturated? Yes Depth to free-standing water in pic. List other field evidence of surface Is the wetland hydrology criterion	ton-Hollis Yes No X No No Yes ton area. Yes Xo X Vsoil probe h a inundation Mon met? Yes	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No iole: or soil sa e	DILS Jtcrop Sul Unde pedon pres Yes Colors: Unknown met in pi OLOGY CSurfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Dat	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil Indicators: Other hydric soil criterion met? Yes Is the hydric soil criterion met? Yes Rationale: <u>Not_met_in_Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface	ton-Hollis Yes No X No No Yes ton area. Yes Xo X Vsoil probe h a inundation Mon met? Yes	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No iole: or soil sa e	DILS Jtcrop Sul Unde pedon pres Yes Colors: Unknown met in pi OLOGY CSurfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Data Surfact Dat	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil indicators: Other hydric soil criterion met? T Rationale: <u>Not met in Charl</u> Is the hydric surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface Is the wetland hydrology criterion Rationale: <u>No evidence of s</u>	ton-Hollis Yes No No Yes ton area. Yes Yes Vsoil probe h a inundation Non met? Yes soil satura	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No No No No HYDF cole:N or soil sa e known Ition or	DILS Jtcrop Sul Unde ipedon pres Yes Colors: Unknown met in pi COLOGY CSurfactor Intration. NoX inundatio	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil indicators: Other hydric soil criterion met? T Rationale: <u>Not met in Charl</u> Is the hydric surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface Is the wetland hydrology criterion Rationale: <u>No evidence of s</u>	ton-Hollis Yes No No Yes ton area. Yes Yes Vsoil probe h a inundation Non met? Yes soil satura	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No No No No HYDF cole:N or soil sa e known	DILS Jtcrop Sul Unde ipedon pres Yes Colors: Unknown met in pi COLOGY CSurfactor Intration. NoX inundatio	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> is the soil on the hydric soils list? is the soil a Histosol? Yes Is the soil: Mottled? Yes Other hydric soil indicators: Other hydric soil indicators: Is the hydric soil criterion met? Y Rationale: <u>Not met in Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface is the wetland hydrology criterion Rationale: <u>No evidence of s</u> JUR	ton-Hollis Yes No No Yes ton area. Yes NoX Vsoil probe h a inundation met? Yes toil_satura ISDICTIONA	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No HYDF No or soil sa er known Lition or	DILS Jtcrop Sult Jtcrop Sult Unde ipedon pres Yes Colors: Unknown met in pi ROLOGY Surfac Discour- turation. No _X inundation	e water depth:	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Matrix Color: Other hydric soil indicators: Is the hydric soil criterion met? Y Rationale: <u>Not met in Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface is the wetland hydrology criterion Rationale: <u>No evidence of surface</u> JUR Is the plant community a wetland	ton-Hollis Yes No No Yes ton area. Yes NoX Vsoil probe h e inundation Non met? Yes ISDICTIONA ? Yes n:	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No HYDF No Cole: No tion or Ltion or No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No	DILS Jtcrop Sut Under pedon pres Yes Colors: Unknown met in pi COLOGY Cone encour turation. NoX inundation RMINATION X	e water depth: blered	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Matrix Color: Other hydric soil indicators: Is the hydric soil criterion met? Y Rationale: <u>Not met in Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface is the wetland hydrology criterion Rationale: <u>No evidence of surface</u> JUR Is the plant community a wetland	ton-Hollis Yes No Yes ton area. Yes Yes Vsoil probe h b inundation Non met? Yes ISDICTIONA ? Yes	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No HYDF No Cole: No tion or Ltion or No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No	DILS Jtcrop Sut Under pedon pres Yes Colors: Unknown met in pi COLOGY Cone encour turation. NoX inundation RMINATION X	e water depth: blered	ton fine No /ated) are	e sandy lo unkn unkn	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: Other hydric soil indicators: Is the hydric soil criterion met? Rationale: <u>Not met in Charl</u> Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface Is the wetland hydrology criterion Rationale: <u>No evidence of surface</u> JUR Is the plant community a wetland Rationale for jurisdictional decision <u>Hydrol c</u>	ton-Hollis Yes No X No Yes ton area. Yes ton area. Yes Yos X Vsoil probe h a inundation No X Vsoil patura ISDICTIONA ? Yes gy criterio	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No HYDF  or soil sa e known  tion or  NL DETER  on is c	DILS Jtcrop Sul Unde ipedon pres Yes Colors: Unknown met in pi COLOGY C Surfac Decour turation. NoX inundatio RMINATION X Learly not	e water depth: http://www.com/com/com/com/com/com/com/com/com/com/	ton fine No vated) are	e sandy lo	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Other hydric soil indicators: Other hydric soil criterion met? Yes Is the hydric soil criterion met? Yes Rationale: <u>Not met in Charl</u> Is the ground surface inundated? Is the soil saturated? Yes Depth to free-standing water in pic List other field evidence of surface Is the wetland hydrology criterion Rationale: <u>No evidence of surface</u> JUR Is the plant community a wetland	ton-Hollis Yes No X No Yes ton area. Yes ton area. Yes Yos X Vsoil probe h a inundation No X Vsoil patura ISDICTIONA ? Yes gy criterio	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No HYDF  or soil sa e known  tion or  NL DETER  on is c	DILS Jtcrop Sul Unde ipedon pres Yes Colors: Unknown met in pi COLOGY C Surfac Decour turation. NoX inundatio RMINATION X Learly not	e water depth: http://www.com/com/com/com/com/com/com/com/com/com/	ton fine No vated) are	e sandy lo	am 15-35 own own
Series/phase: <u>Chatfield-Charl</u> Is the soil on the hydric soils list? Is the soil a Histosol? Yes Is the soil: Mottled? Yes Matrix Color: <u>Color</u> Other hydric soil indicators: <u>Series</u> Is the hydric soil criterion met? Rationale: <u>Not met in Charl</u> Is the soil saturated? Yes Depth to free-standing water in pi List other field evidence of surface is the wetland hydrology criterion Rationale: <u>No evidence of s</u> JUR Is the plant community a wetland Rationale for jurisdictional decisio <u>Hydrol c</u> ¹ This data form can be used for t	ton-Hollis Yes No Yes ton_area. Yes Yes ton_area. Yes Yes Vsoil probe h a inundation met? Yes ISDICTIONA ? Yes he Hydric So	SC -Rock Or No Histic ep Gleyed? Mottle known No May be HYDF No No HYDF  or soil sa e known  tion or  NL DETER  on is c	DILS Jtcrop Sul Unde ipedon pres Yes Colors: Unknown met in pi COLOGY C Surfac Decour turation. NoX inundatio RMINATION X Learly not	e water depth: http://www.com/com/com/com/com/com/com/com/com/com/	ton fine No vated) are	e sandy lo	am 15-35 own own

 $^{1}\ensuremath{\mathsf{The}}$  area has been significantly disturbed by excavation, earth-moving and deposition of waste.

## APPENDIX N

Plant species identified during May 1990 Field Checks are listed in approximate order of frequency of occurrence. Category locations are shown on RI Figure 3-1A.

Category I:

Canopy:

#### Common Name

Red Oak Red Maple Canadian Hemlock White Oak Tulip Tree Downy Juneberry Shagbark Hickory American Beech Sugar Maple Sycamore White Ash

wite Mapl Flow

Groundcovers:

Understory:

Witch-hazelHarMaple-leaf ViburnumVilFlowering DogwoodCoMountain LaurelKaAzaleaAzHoneysuckleLo

Geranium Christmas Fern Hay scented Fern Sensitive Fern Scientific Name Quercus rubra Acer rubrum Tsuga canadensis Quercus alba Liriodendron tulipifera Amelanchier arborea Carya ovata Fagus sylvatica Acer saccharum Platanus occidentalis Fraxinus americana

Hammamelis virginiana Viburnum acerifolia Cornus florida Kalmia latifolia Azalea spp. Lonicera spp.

Geranium spp. Polystichum lonchitis Dennstaedtia punctilobula Onoclea sensibilis

8071 100

RAM

Category II: Canopy:

<u>Common Name</u> Canadian Hemlock Red Oak White Oak Red Maple Yellow Birch

Understory:

Groundcover:

Sassafras Alder Flowering Dogwood

Canada Mayflower Sensitive Fern Bedstraw <u>Scientific Name</u> Tsuga canadensis Quercus rubra Quercus alba Acer rubrum Betula alleghaniensis

Sassafras albidum Alnus spp. Cornus florida

Maianthemum canadense Onoclea sensibilis Galium spp.

## Category III: Herbaceous:

### Common Name

Goldenrod White Clover Cinquefoil Birdsfoot Trefoil Reedgrass

Woody (low growing):

Virginia Creeper Raspberry Rose Grape Vine Poison Ivy Elderberry

Easten Cottonwood Black Willow Shrub Willow Black Locust Tree-of-heaven Red Mulberry Catalpa Staghorn Sumac Solidage spp. Trifolium repens Potentila spp. Lotus corniculatus Phragmites spp.

Scientific Name

Parthenocissus cinquefolia Rubus spp. Rosa spp. Vitis spp. Rhus toxicodendron Sambuca spp.

Populus deltoides Salix nigra Salix spp. Robinia psuedoaccacia Ailanthus altissima Morus rubra Catalpa speciosa Rhus typhina

Category IV:

Trees:

A mixture of species from Areas I and III

1912 ._

}

. . . . . . . . . -:. •--- •-• .-

## APPENDIX P

## CALCULATIONS

. .

1711

100

RAM

## APPENDIX P.1

## STREAM DISCHARGE CALCULATIONS

RAM

URS CONSULTANTS, INC. PAGE OF SHEET NO. / OF PROJECT RAMAPO LANSFILL JOB NO. 35207, CO PROJECT FRAMADO LANDFILL SUBJECT STREAM DISCHARGE CALCULATIONS MADE BY ATEDATE 11/14/59 CHKD. BY BIP DATE 1/17/90

RAM

100

gi = Vidiwi g = SEGMENT DISCHARGE (Fr 3/SEC) V = SEGMENT AVERAGE VELOCITY (FT/SEC) d = SEGMENT DEPTH * 0.6 (FT) W = SEGMENT WIDTH (FT)

 $Q = \sum_{j=1}^{m} q_{jj}$ Q = TOTAL DISCHARGE

LOCATION 1 - 10/24/84 CANDLE BROCK - 40 FF EAST OF BAILER BUILDING G, = 0 × 0.2 × 0.5 8, = 0.0 Fr 3/SEC

82 = 2.0 × 0.5 × 0.5 8= = 0.5 83 = 0.4 × 0.8 × 0.5 83 = 0.16 g = 1.2 × 0.4 × 0.5 84 = 0.24 85 = 0.0 × 0.1 × 0.5 85 = 0.0 86 = 0.0 × 0.3 × 0.5 9,6 = 0.0 Q = 0.9 Fr 3/SEC

URS CONSULTANTS, INC.	PAGE Z OF
PROJECT RAMAPO LANDFILL	SHEET NO. 2 OF JOB NO. 35207.00
SUBJECT STREAM DISCHARGE CALCULATIONS	CHKD BY BTP DATE 1/17/40

LOCATION 2 - 10/24/84 CANSLE BROOK AT CULVERT

8, = 0.0.	× 0.0 × 0.5
	* 0.2 * 0.5
83 = 1.5.	x 0.4 x 0.5
Ry= 0.6 .	x 8.2 × 8.5
	x 0.0 x 0.5

g = 0.0 FT 3/SEC g2= 0.04 83= 0.3 = 0.06 u 85= 0.0 Q = 0.4 Fr 3/SEC

LOCATION 3 - 10/24/89

TORNE BROOK - 50 FT DOWNSTREAM OF CANDLE BROOK

	·- •
0 = 0.2 × 0.38 × 1.0	9, = 0.08 Fr 3/SEC
g= 0.2 × 0.33 × 1.0	$g_{12} = 0.07$
g = 0.3 × 0.33 × 1.0	g3 = 0.10
G= 0.1 × 0.42×1.0	84 = 0.04
g= 0.6 × 0.54 × 1.0	85 = 0.32
86= 1.3 × 0.58 × 1.0	gC = 0.75
g1 = 1.1 * 0.75 × 1.0	87 = 0.83
91 = 0.6 × 0.83 × 1.0	88= 0.50
gy = 0.8 × 0.92 × 1.0	81 = 0.74
g10= 1.3 × 0.75 × 1.0	gio = 0.98
g = 0.4 × 0.92 × 1.0	8" = 0.37
812 = 0.8 × 0.83 ×1.0	g 12 = 0.66
8,1 = 0.9 × 0.83 × 1.0	813 = 0.75
gir = 0.4 x 0.67 × 1.0	814 = 0.27
g= = 0.7 × 0.75 × 1.0	8.5 = 0.53
gib = 0.3 × 0.58 × 1.0	816 = 0.17
Gin = D.2 × 0.42 × 1.0	g17 = D.08
	Q = 7.24 FT / SEC
	/

RAM 001

1714

URS CONSULTANTS, INC.

PROJECT RAMAPO LANDFILL PROJECT KAMAPO LANDFILL SUBJECT STREAM DISCHARGE CALCULATIONS

PAGE 3 OF SHEET NO. 3 OF JOB NO. 35207.00 MADE BY AJLDATE 11/14/89 CHKD. BY RUP DATE 1 17 90

RAM

100

1715

Q = 11.69 FT 3/SEC

REF. PAGE LOCATION 4 - 10/24/89 TOANE BROCK - 50 FT DOWNSTREAM OF PAINT SLUDGE ON BANK q = 0.9 × 0.75 × 1.0 g, = 0.68 FT 3/Sac q = 0.8 × 0.83 × 1.0 gz = 0.66 y = 0.7 × 0.83 × 1.0 93 = 0.58 84 = 0.9 × 0.50 × 1.0 Pr= 0:45 95 = 0.5 × 0.50 × 1.0 g= 0.25 p = 0.2 × 0.42 × 1.0 96 - 0.08 81 = 0.6 × 0.33 × 1.0 87= 0.20 gi = 1.0 × 0.58 × 1.0 81= 0.58 9= = 0.8 × 1.00 × 1.0 85 = 0.80 gr = 0.4 x 1.00 x 1.0 8.0= 0.40 q_ = 0.3 × 1.08 × 1.0 8 u= 0.32 gn= 0.23 g1= = 0.2 × 1.17 × 1.0 q13 = 0,1 × 1.17 × 1.0  $\beta_{13} = 0.12$ 814 = 0.1 × 1.17 × 1.0 g.4 = D.12 85= 0.2 × 1.17 × 1.0 815 = 0.23 qic = 0.6 x 1.25 x 1.0 816 = 0.75 gir = 0.6 × 1.17 × 1.0 8 17 = 0.70 fis = 1.2 × 1.00 × 1.0 918 = 1.20 919 = D.4 x 1.17 x 1.0 gis = 0.47 f10 = 0.7 × 1.25 × 1.0 gz= 0.38 B== 0.43 14 = 0.3 x 1.42 x 1.0 822 = 1.1 × 1.42 × 1.0 922= 1.56

-

URS CONSULTANTS, INC.

PROJECT RAMAPO LANDFILL SUBJECT STREAM DISCHARGE CALCULATIONS

PAGE 2 OF SHEET NO. 4 OF JOB NO. 35207.00 MADE BY ANLOATE 11/14/81 CHKD. BY BJP DATE 1 17 90

[00

171(

LOCATION 5 -10/24/39 TORNE BROOK AT STREAM GAUGE

g1= 0.1 × 0.42 × 1.0 g== 0.1 x 0.58 x 1.0 g= 0.4 × 0.50 × 1.0 84= 1.2 × 0.75 × 1.0 85 - 1.2 × 0.83 × 1.0 ge= 1.7 × 1.17 × 1.0 87= 1.5 × 1.58 × 1.0 80= 1.5 × 2.08 × 1.0 gg= 1.2 × 2.08 × 1.0 q10 = 0.5 × 1.92 × 1.0 En= 1.1 × 2.00 × 1.0

8, = 0.04 FT 3/SEC Q2= 0.06  $g_{3} = 0.20$ 94 = 0.90 85 - 1.00 86= 1.99 87 = 3.68 88= 3.12 89= 2.50 810= 0.97 g = 2.20 Q = 16.05 FT / Sec

URS CONSULTANTS, INC.

PROJECT RAMARO LANDFILL SUBJECT STREAM DISCHARGE CALCULATIONS

PAGE 5 OF SHEET NO. SOF JOB NO. 35207.00 MADE BY AJZ DATE 1/14/89 CHKD. BY RUP DATE 1)17 90

LOCATION 6 10/25/89 RAMAPO RIVER - 20 FT DUWNSTREAM OF TOANE BROOK

g, = 0.6 × 2.00 × 5.0	9. = 6.00 Fr 3/SEC
g2 = 2.1 × 2.50 × 5.0	g= = 26.25
9. = 3.0 × 3.50 × 5.0	1 = 52.50
gy = 3.6 × 3.50 × 5.0	94= 63.00
95 = 3.6 × 3.50 × 5.0	95 = 63.00
90 = 4.6 × 4.00 × 5.0	96 = 92.00
87 = 5.0 × 4.00 × 5.0	G7 = 100.00
81 = 4.1 × 3.50 × 5.0	Ba = 71.75
8y = 3.3 × 2.08 × 5.0	$g_{q} = 34.32$
810 = 2.2 × 1.42 × 5.0	E10 = 15.62
84 = 2.1 × 1.08 × 5.0	g., = 11.34
g12= 1.5 × 0.92 × 5.0	g12 = 6.90
gis = 0.2 × 0.50 × 5.0	g.s = 0.50
V	6

Q = 543.18 Fr 3/SEC

RAM

100

URS CONSULTANTS, INC.

PROJECT RAMAPO LANSFILL SUBJECT STREAM DISCHARGE CALCULATIONS

PAGE 6 OF 6 SHEET NO. 6 OF 6 JOB NO. 35207- CO MADE BY AT- DATE 11/14/29 CHKD. BY PJP DATE 1/17/19

LOCATION 7 - 10/30/89

RAMAPO RIVER - 20 FT DOWNSTREAM OF TORNE BROOK

g, = 0:0 x 0.67 x 5.0	9, = 0.0 Ft 3/SEC
Bz= 0.2 × 1.42 × 5.0	$f_2 = 1.4Z$
g = 0.7 × 2.25 × 5.0	83 = 7.88
84 = 1.8 × 2.67 × 5.0	gy = 24.03
95 = 1.7 × 2.25 × 5.0	85= 19.1.3
96 = 2.3 × 2.75 × 5.0	86 = 31.63
87 = 2.7 × 3.50 × 5.0	81 = 47.25
BI = 3.1 × 4.00 × 5.0	9; = 62.00
89 = 3.5 x 3.50 x 5.0	89 = 61.25
gio = 3.4 x 2.50 x 5.0	810 = 42.50
8" = 2.4 × 1.50 × 5.0	911 = 18.00
giz = 0.4 × 0.67 × 5.0	g12 = 1.34

 $Q = 3/6.43 Fr^{3}/Sec$ 

RAM 001 1718

## -. : ::

Ŋ

APPENDIX P.2

## SEDIMENT CLEANUP CALCULATIONS

• • • • • 

- - - -

RAM

nkelge	BEE Compound	Sectionant fe SS-3 (Mg	g/kg) 55-4	AWQS/GV ug/e	H A*	SS-3 Mai		l 1720
PAGE I OF SHEET NO. OF JOB NO. 35207 MADE BY (MJ DATE I CHKD. BY W PDATE II	4-Methylphenol	NA	NA	none	+1	ND	150 ;	
	Benzoic Acid	NIA	NIA	none.	H	ND	310 ;	······································
	Phenanthrene	21,600	47,600	50	H	ND	75 j	
Rundra L. NC. Rundra L. J. 1 Calcultation of Se	Flouranthrene	160,000	353,000	50	11	40j	110;	······································
	Pyrene	56,900	125,000	50	H.	463	1603	
	Benz (a) an throisene	12	27	.002	+!	ND	65 5	
	7 Chrysene	12	27	.002	1.1	ND	837	
	Benz(b) Houranthreno	110	250	.002		ND	1503	· · · · · · · · · · · · · · · · · · ·
	Bis (z-ethylhexyl)- phthalate	12,000	<b>26,000</b> 4,000	4 0.6	H	4s j	100 ;	·
	Benz (K) flouren lhren	210	460	, 002	11	ND	635	······································
	Benz (a) pyrene	33	73	.002	H	ND	593	
	Gamma - Chlordane	20	43	.02	A H	ND	12 1	
PROJECT	* H: Human health bas A: aquatic organi ist ted "flur	. 01B sed ism health	based	.002	^			,

1.11

URS CONSULTANTS, INC. PAGE Z OF IC SHEET NO. OF PROJECT Ramapo SUBJECT Scoliment Criteria MADE BY /12) DATE 11/19/90 CHKD. BYOW P DATE 1 106/90 Ambient water quality standards / Guidance Values 10g ( 4-Methyl phenol 1.94-& Benzoic Acid 1.87 3 phenanthrene song/2 (cv) 4,46 @ Flouranthrene Songle (Gu) 5,33 & Pyrene Songle (GV) 4,88 5.61 ( Benz (a) on thracene . 002 mg/2 (GV) O Chrysene 5.61 . 002 mg/l (GV) Eenz (6) flouranthrene . 002 mg/R (GU) 6.57 Bis(2-ethylhexyl) phthalate 4 mgll (GV) 5.3 6.84 Benz(k) flouranthrene .002 (G U)6.04 () Benz (a) pyrene .002 (Gu) 1 Gamma - chlordame .02 H (GU)) ("chlordane") 2.68 Organic Carbon Stream Section + 3 = 1.50% RAM 100 H4 = 3.30 %

PAGE 3 OF 10 URS CONSULTANTS, INC. SHEET NO. OF PROJECT Rangepo SUBJECT Scolinght Criteria MADE BY/14/ DATE 11/19/90 CHKD. BYCHP DATE 11/26/90  $O.C. = 1.50\% = \frac{15g}{Kg}$ location SW3 REF. PAGE location SW4 0.(.=3.30% = <u>339</u> Kg phenanthrene Awas/GV = 50 mg/l (ref5) (ref q)log Kow = 4.46 phenanthrene sectiment Criterion = = 50 <u>Mg</u> × 10 4.46 (<u>1 Kg</u>)= 1,442 Mg/goc site specific criterion - location 3 site specific criterion-location 4 =  $1,442 \frac{M_{q}}{800} \cdot \frac{33 g OC}{Kg soil} = \frac{47,586 Mg/Kg soil}{100}$ Flouranthrene ANDS/GV = 50 Mall (ref5) log Kow = 5.33 (ref4) RAM 001 Houven three sediment criterion = 1722  $= 50 \frac{\mu_{q}}{2} \times 10^{5.33} \left( \frac{1 \, k_{q}}{1000 \, m_{q}} \right) = 10,690 \frac{\mu_{q}}{900}$ site specific criterion-location 3 = 10,690 <u>ulo</u>. 15 goe = 160, 347 ug/ Kgsoi sile suecifie criterica - location 4 

page 4 of 10URS CONSULTANTS, INC. SHEET NO. ..... OF ..... PROJECT Ramapon MADE BY PW DATE 11/15/50 CHKD. BYCW? DATE 11 AG190

Pyrene REF. PAGE  $Awqs/Gv = 50 \mu g/l (ref 5)$ log Kow = 4.88 (ref 1, tuble 1-4) sediment criterian= 50 11 . 104.88 (1Km)= 3,793 site specific criterion, location 3 3,793 My 15900 = 56,895 Ma goe Kasoil = 56,895 Ma site specific criterion, location 4 3,793 Ma 3390c = 125,169 Mg/159 Soit Benz (a) anthracene AWQS/GV = . 002 Mall (ref 5) log tow = 5.61 (ref 4) sediment criterion =  $.002 \mu_{4} . 10^{5.61} (1000) = .815 \mu_{4}$ site specific criterion, site 3 . 815 <u>Ma</u> * <u>15 a OC</u> = 12.2 <u>Ma</u>/Ka soil site specific criterion ; location 4 · 815 100 - 33:00 = 26.9 mg/ rg Soil

URS CONSULTANTS, INC.	PAGE OF 10
	SHEET NO. OF
PROJECT Ramapon	JOB NO
SUBJECT Sectiment Cristeric	MADE BY/ DATE 11/19/90
	CHKD. BY WP DATE 11 /26/90

 $\frac{Chrysche}{AWOS/GV = .002 mall (refs)}$   $\log Kow = 5.61 (ref4)$ REF. PAGE Sectiment Criterion= .00210, 105.61 (1kg)= site specific criterion, location 3 =. 815 <u>Mg</u>. <u>ISgOC</u> = 12.2 <u>mg/Kg</u> Soil Site Specific criterion, location 4 = , 815 <u>hg</u> . <u>339 OC</u> JOC - <u>Kg</u> Soil = <u>26.9 mg/ Kg</u> Soil

Benz (b) flouranthene AWQS/G-V= .002 mg/l (ref5) log Kow= 6.57 (ref4) Sectiment Criterion = .002 Mar. 10 (1000) = Site Specific Criterion, location 3 = 7.43 10 · 15 goc 15 Kg soil = 111 Mg / Kg soil Site Specific Criterion, location 4 = 7.43 dec . 33 goc . 245 Mg / Kg Soil

6 OF 12 URS CONSULTANTS, INC. SHEET NO. ..... OF ..... PROJECT Ramajo handfill DE BY 1/1-) DATE 1///9 CHKD. BY WP. DATE 11/26/96 Bis (2-ethylherryl) phthalate (for agratic organish REF. based criteria, PAGE Awas/6-V = 4 mg/2 (ref 5) log Kow = 5.3 (ref 3) Sediment Criterion = 4 10 . 105.3 (1Kg) = 798 ste Specific criterion, location 3 = 798 Lea . 15 and = 11,972 May / Ka soil site specific Criterion, location 4 = 798 <u>Ma</u> . 33 <u>a oc</u> = 26, 334 <u>Ma</u> / Ma soil Benz (i=) flouranthene AWQS/GV = .002 mg/l (ref5) log traw = 6.84 (ref4) Sediment Criterion = .002 1.106.84 (115.)= Site Specific Criterion, location 3 = 13.3 15900 = 208 un/Kg Soil site specific criterion = 13.8 <u>u</u> g GC . 33 g GC g GC . 33 g GC <u>g GC</u> = 4-57 <u>ug / kg</u> Soil RAN

PAGE OF IU URS CONSULTANTS, INC. ET NO. ..... OF ..... PROJECT Ramago fradfill MADE BY M. DATE 11/19/90 CHKD. BYCWP. DATE 11/26/90 REF. PAGE Benz (a) pyrene rels) AWQS/GV = .002 the Human 3 = .0012 the Aquatic log Kow = 6.04 (ref 4) Humm Section + Criterion = .002 2 .106.04 (1Ku)= 2.2 site specific Criterion, location 3 = 2.2 <u>ling</u> . 15 <u>goc</u> = <u>33</u> <u>lig</u>/<u>Ke</u> Soil site specific criterion, location 4  $= 2.2 \frac{m_{e}}{10c} \cdot 33 \frac{a0c}{k_{0}} = 73 \frac{m_{e}}{k_{0}} \frac{1}{k_{0}} \frac{s_{c}}{s_{c}}$ Aquatic Sectiment Criterion = . 0012 Mar. 106.04 (1000) = 1.3 site specific Criterion, location 3 = 1.3 Mai . 15 El OC a OC . 15 Kg Soil = 19.7 Ma/kg Soil site specific criterion, location 4  $= 1.3 \frac{\mu_0}{00c} \cdot 33 \frac{00c}{\kappa_a \text{ soil}} = 42.9 \frac{\mu_g}{\kappa_g} \text{ soil}$ RAM 100

8 OF 10 URS CONSULTANTS. INC. SHEET NO. ..... OF PROJECT Ramage faultill SUBJECT Seclingent Criter MADE BY MA DATE U/19/90 CHKD. BY CWP DATE 11 126/90 REF. PAGE Gamma Chlordane (refs) AWQS /GV "chlordane" .02 Mg/2 human health .002 Mg/2 oquatic organism log Kow = 2.78 (ref6) Human Health Secliment Criterion = .02 /19 . 102.78 (15.1) = 012 20 site specific criterion, location 3 =.012 ha . 15 goc . goc . 15 goc . 0.18 mg/kg soil site specific Criterion, location 4 = .012 Mg . 33 g OC goc · 33 g OC Kg Soil = 0.40 Mg/kg Soil Aquatic Organism Health Sectiment Criterion = .002 Mg . 102.78 (150) = .001200 site specific criterion; location 3 =.0012 Mag . 15 gcc . goc . 15 gcc . . 018 Mag/ Fig Soil Site specific Criterion, location 4 RAM = . 0012 Mg . 15 gOC goc . 15 gOC ity Soil = . 040 Mc/ity Soil 100

URS CONSULTANTS, INC. PAGE 10 OF 10 SHEET NO. OF PROJECT Ramapo Landfill SUBJECT Sectiment Critéria MADE BY M DATE _____ CHKD. BYCHP DATE 11/26/90 References REF. PAGE (1) Handkook of Chemical Property Estimation Methods Environmental Behavior of Organic Compounds Lyman, Recht & Rosenblatt McGraw Hill, 1982 (2) Handbook of Environmental Fate and Exposure Data for Organic Chemicals Howard, ed. Lewis Publishers, 1990 (3) "Clean-up criteria for aquatic Sediments " NYSDEC, Division of Fish and Wildlife Dec., 1989 (4) Review of In-place Treatment Techniques for Confaminated Surface Soils; Vol. 2: Background Information for In-situ Treatment. Sims, etal NTIS # PB85 - 124899 ; Nov., 1984. (5) "Ambient Water Quality Standards and Guidance Values NYSDEC Division of water Technical and operational RAM Guidance Series (1.1.1) 100 NYSDEC, April 1990 1728 (6) Treatability Manual; Vol. I EPA - 500/2 - 82 - 001a Feb. 32

APPENDIX P.3

## GROUNDWATER FLOW MODELING AND SOLUTE TRANSPORT ANALYSIS

### GROUNDWATER FLOW MODELING

The three-dimensional groundwater flow model developed was used to represent existing conditions at site, to evaluate remedial technologies associated with groundwater containment and collection, and to aid in the contaminant transport calculations which were done by hand. In evaluating remedial technologies, all uncertainties and sensitivities inherent in looking at one remedial technology would therefore be applied to all technologies. The model was based on URS field observations and measurements and information gathered during the Remedial Investigation. As part of our field investigations, URS concentrated on obtaining information on the landfill site, the Torne Brook Farm property, and the existing leachate collection system. Most of the site is situated within a small aquifer tributary to Torne Brook as defined in "The Geohydrology of the Valley - Fill Aquifer in the Ramapo and Mohawk River Area, Rockland County, New York" (USGS, 1982). Hydrogeologic data obtained for the purposes of the remedial investigation should not and was not extrapolated beyond this small aquifer into the Ramapo River Aquifer, in which the Spring Valley Water Co. water supply wells are located.

The model was calibrated to water levels measured on August 26, 1990, a day for which the monitored values were available for all wells, piezometers and manholes. On this day, the potentiometric surfaces measured were similar to those measured on other days, and therefore were representative of average conditions. Stream surface water elevations used were measured on September 11, 1990. It is not anticipated that the surface water elevations in Torne Brook and the Ramapo River, which are approximately two feet and four feet deep, respectively, would greatly vary in this time span. The following provides details of the groundwater flow modeling effort.

1

001 1730

RAM

#### APPROACH

The 3-D computer model used in this study was the Modular Three-Dimensional Finite-Difference Groundwater Flow Model, prepared by the U.S. Geological Survey (McDonald and Harbaugh, 1984). The latest version (2.0) of the program was used (MODFLOW/EM). Groundwater flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined or a combination of both. Flow from external stresses, such as recharge through infiltration, withdrawal from wells. flow into drains, flow through riverbeds and evapotranspiration can be simulated. The finite-difference equation can be solved using the strongly implicit procedure, slice-successive over relaxation or a preconditioned conjugate gradient solver. The model can be used for either 2-D or 3-D simulations and is capable of analyzing both steady state and transient flow.

In this case 3-D steady state conditions were used for the calibration of the model. The process of calibration was conducted utilizing an inverse problem program, for which MODFLOW is a preprocessor. The program (MODINV) was developed by the Australian Centre for Tropical Freshwater Research. It utilizes a Gauss-Marquardt method of parameter optimization. Modeled and observed heads are matched according to the weighted least-square criterion. MODINV can be used for both steady state and transient flow and can estimate up to 3 parameters, whenever it is mathematically feasible. All features of MODFLOW, such as confined and unconfined layers, wells, drains, etc. are also supported.

#### HYDROGEOLOGY

Four hydrogeologic units were identified in Section 3.7.3 of the RI. They include:

2

Fill - mostly municipal waste

- o Shallow aquifer dense to loose sands
- o Intermediate aquifer weathered bedrock
- o Bedrock aquifer fractured bedrock.

Hydrologic properties for each of these units are summarized below from the RI and Appendices.

The fill, the shallow aquifer and the weathered bedrock were combined into one unit - the upper aquifer for modeling purposes. The weathered bedrock, although consisting of different geologic formations, displays similar hydraulic conductivities as the shallow aquifer. Also, the water levels measured in the intermediate wells were mostly similar to those recorded in the shallow wells. In addition, the weathered bedrock layer was found to have a very small thickness - from a few inches to about 5 feet.

Fill (waste layer) was included into the upper aquifer because of the limitations imposed by the model. The areal extent of the fill is smaller than the modeled area. This situation cannot be handled by MODFLOW which simulates only layers that stretch continuously over the entire modeled area. Therefore, fill had to be incorporated into the upper aquifer. This, however, does not impair the accuracy of the model as the existence of fill can be accounted for by the spacial variations of the parameters within the upper aquifer (e.g. hydraulic conductivities).

### UPPER AQUIFER

The upper aquifer is made up of dense sands in the northern portion of the site and loose sands in the southern portion, adjacent to the Ramapo River. Hydraulic conductivity values obtained from slug tests for dense sands varied between  $10^{-3}$  cm/s and  $10^{-5}$  cm/s. The conductivity of loose sands is about  $10^{-2}$  cm/s. (Values were obtained from slug tests.)

3

RAM

100

The thickness of the undisturbed portion of the upper aquifer in the modeled area is about 20 to 30 ft in the northern portion of the site and increases to about 50 ft approaching the Ramapo River. However, between Torne Valley Rd. to the northwest and the natural boundary of the aquifer to the southeast, the sandy material of the upper aquifer was largely removed and replaced with waste. In those areas, especially between piezometers P-3 and P-5 and in the vicinity of the piezometer P-2, the thickness of the waste layer reaches 70-80 ft. The hydraulic conductivity of the waste layer is not known, as no slug tests were conducted in that area. Fill in general, however, is considered fairly permeable. The US Army Corps of Engineers HELP model recommends the value of 2 X  $10^{-4}$  cm/sec to be used as a hydraulic conductivity of municipal waste.

There is a large variation in water levels measured within the upper aquifer. They range from 515 ft in piezometer P-2 to 293.5 ft in stream gauge SG-2 on the Ramapo River. Very steep water level gradients are present across the site, in some areas reaching 0.33 ft/ft.

The saturated thickness of the upper aquifer varies between 10 ft and 30 ft. in its undisturbed portion and reaches about 60 ft. in the waste layer.

#### BEDROCK AQUIFER

A number of wells were drilled into the bedrock aquifer. Hydraulic conductivity tests show a wide variation of values ranging from  $10^{-2}$  cm/s to  $10^{-6}$  cm/s. Flow through bedrock differs from the flow in the upper aquifer which is typical of porous media. Flow through bedrock in the vicinity of Ramapo Landfill is more typical of flow in a fractured media. The bedrock was included in the model because of its significant importance in the overall water budget. The thickness of the fractured bedrock was assumed as being 25 ft based on the boring logs.

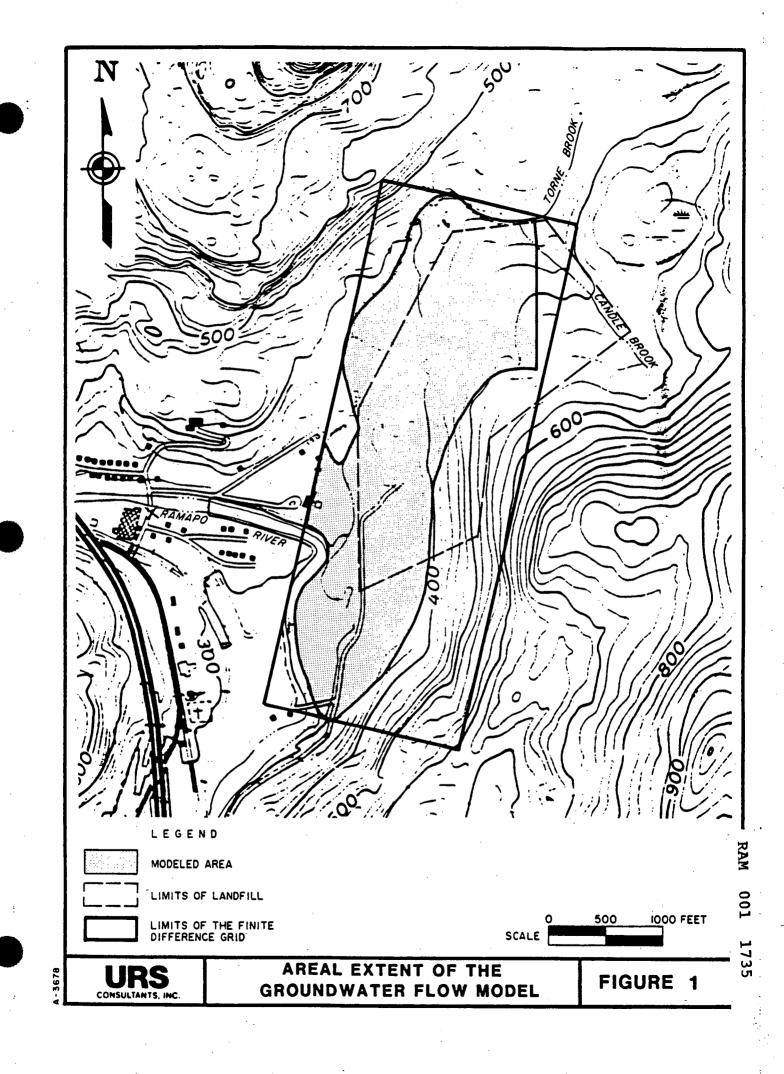
4

RAM

100

A large variation in the hydraulic heads occurs across the site within the bedrock aquifer. They range from 440.75 ft in MW-4 to 295.61 ft in MW-7.

Using the hydrogeologic information above, a three-dimensional groundwater flow model was developed as described below.


### AREAL EXTENT

The areal extent of the model was determined based on the availability of information pertaining to the hydrogeologic conditions of the site and vicinity. The modeled area was situated between Torne Brook, the natural aquifer boundaries, and the Ramapo River as shown on Figure 1. Also, an area west of Torne Brook in the vicinity of well MW-9 was included.

The grid dimensions were 1,800 ft from east to west and 4,800 ft from north to south. The selection of the modeled area was largely dictated by the general objectives of the model. Its main objective was to simulate the conditions in the area adjacent to the Torne Brook in its lower reach. Therefore, the model includes the area surrounding well URS MW-9, west of the Torne Brook. Also, the grid spacing was refined in that region to provide greater accuracy.

### FINITE DIFFERENCE CELL CONDITIONS

Conditions in each finite-difference cell in MODFLOW may be set separately to: 1) no-flow 2) general head 3) constant head 4) variable head. A no-flow boundary does not allow flow to cross the model boundary. A general head boundary allows flow to a cell in proportion to the water level specified for an external cell. A constant head cell maintains the water level specified for it. A variable head cell allows the program to



determine a hydraulic head in it. All four types were used in the Ramapo Landfill groundwater flow model.

The Ramapo River and the upper reach of Torne Brook were used as constant head cells in Layer 1 (upper aquifer). Also the northern boundary for Layer 1 (a line connecting MW-6, MW-5 and P-1) was assumed to consist of constant head cells. The natural boundary of the aquifer was considered a no-flow boundary with recharge coming from the mountains surrounding the aquifer.

For the Layer 2 (bedrock aquifer), the natural aquifer boundary was also set to no-flow and recharge. All other boundaries are modeled as general head cells.

The locations of the natural aquifer boundaries were assumed after the USGS Open-File Report 82-114 "Geohydrology of the Valley-Fill Aquifer in the Ramapo and Mahwah Rivers Area, Rockland County, New York" (Moore et al, 1982).

### EXISTING LEACHATE COLLECTION SYSTEM

The existing leachate collection system is described in Section 1.2.5 of the RI. It consists of a toe drain, an above-ground surface water collector, a shallow subsurface collector and a deep subsurface collector. As discussed in Section 3.7.5 of the RI, portions of the collection system are periodically above the water table making it difficult to estimate quantities collected within these four collectors. The Town has contracted for 80,000 gallons per day (gpd) to be treated at the Village of Suffern Wastewater Plant based on flow rates from their historical records. This equates to approximately 55 gallons per minute (gpm). This rate includes all the surface water and subsurface water collected in the system. Remediation efforts will be compared to this rate. The existing leachate collection system located along the

6

downgradient boundary of the landfill was modeled using the MODFLOW drain package. The conductance of drainage pipes was determined during the calibration process.

### TORNE BROOK

In its upper reach adjacent to the site, the Torne Brook was assumed to constitute a water divide for the Torne Valley aquifer, therefore, it was modeled as a constant head boundary (Dunn Geoscience Corp. 1988). However, in its lower reach close to the Ramapo River it was modeled using the MODFLOW river package. This was considered to more accurately reflect the nature of the lower reach since in that area the influence of the Ramapo River becomes more pronounced. Also, since remedial action simulations may likely model withdrawal wells in the immediate area, it will ensure that Torne Brook will not become an infinite source of water for those wells.

### RAMAPO RIVER

The Ramapo River was assumed to form a constant head boundary along the southwestern edge of the modeled area. This assumption is justified by the fact that the River, having the lowest water surface elevation in the modeled region, serves only as a receptor of water. This condition can be accurately simulated by the constant head boundary because it excludes the possibility of the constant head cells becoming an excessive source of water.

### INFILTRATION FOR EXISTING CONDITIONS

An average infiltration for the aquifer tributary to the Ramapo River (primary aquifer) was assumed as 0.003 ft/day ("Evaluation of Ramapo Valley Well Field Management Techniques by RVAM Simulation", LBG Inc. July 1982).

7

The infiltration to the section of aquifer tributary to the Torne Brook (secondary aquifer) was unknown at the beginning of simulation and constituted one of the calibrated parameters. This approach was chosen due to the high variability of the site's geomorphology (variable slopes, cover types, presence of gullies) that would make a before-hand assessment difficult.

### MODEL CALIBRATION FOR THE EXISTING CONDITIONS

с. 10 тыст

> Calibration of the model to existing conditions was achieved through a comparison of measured to simulated water levels in the on and off-site monitoring wells and piezometers. Table 1 provides details of this The "Best Fit" was achieved using a parameter optimization comparison. program (MODINV) with the following parameters being calibrated: horizontal hydraulic conductivity in Layer 1, transmissivity in Layer 2 and vertical conductance between Layers 1 and 2. The optimizing program was run many times using different combinations of recharge, drain conductance and river bed conductance. The resulting values of hydraulic heads differ from those observed in the field by less than 3.0 ft. This was assumed as sufficient accuracy, since the hydraulic head difference across the site was about 220 ft. This corresponds to the difference between calibrated and observed values being about 1.4% of the maximum head difference across the site.

The final values of optimized parameters are as follows:

Layer 1

o

- Primary aquifer	Kh - 3-9 ft/day
	Kv = 0.3 - 0.9 ft/day
- Secondary aquifer	Kh = 0.1 - 0.3  ft/day
<b>N</b>	Kv = 0.01 - 0.03 ft/day
- Waste	Kh = 0.04 - 0.3  ft/day
	Kv = 0.004 - 0.03  ft/day

8

RAM

100

MONITORING	LAYER	OBSERVED	MODELED	ABSOLUTE VALUE	PERCENT OF MAXIMUN
LOCATION	NO.	HEADS	HEADS	OF HEAD	HEAD DIFFERENCE ON
		-	,	DIFFERENCE	SITE
		[FT]	[FT]	[FT]	[%]
	4			•	
MW – 1	1	· 362.70	363.17	0.47	0.21
MW – 2	1	410.90	410.92	0.02	0.01
MW – 3	1	333.20	330.57	2.63	1.18
MW – 4	1	446.00	447.00	1.00	0.45
- MW – 7	1	299.20	299.55	0.35	0.16
MW – 8	1	306.20	306.30	0.10	0.05
MW – 9	1	302.00	303.09	1.09	0.49
P – 2	1	515.00	513.51	1.49	0.67
P-3	1	391.70	. 392.93	1.23	0.55
P – 4	1	386.50	387.72	1.22	0.55
P – 5	1	390.90	390.14	0.76	0.34
P – 6	1	321.60	319.68	1.92	0.86
P-8	1	307.90	308.67	0.77	0.35
MW – 2	.2	407.90	406.29	1.61	0.73
MW – 3	2	332.40	332.81	0.41	0.18
MW – 4	2	440.80	438.55	2.25	1.01
MW – 7	2	295.60	296.92	1.32	0.59
MW – 8	2	307.30	308.89	1.59	0.72
MW – 9	2	297.00	295.86	1.14	0.51

TABLE

RAM 001

### o Layer 2

Kh = 0.048 - 0.056 ft/dayKv = 7E-7 - 12E-7 ft/day.

... ...

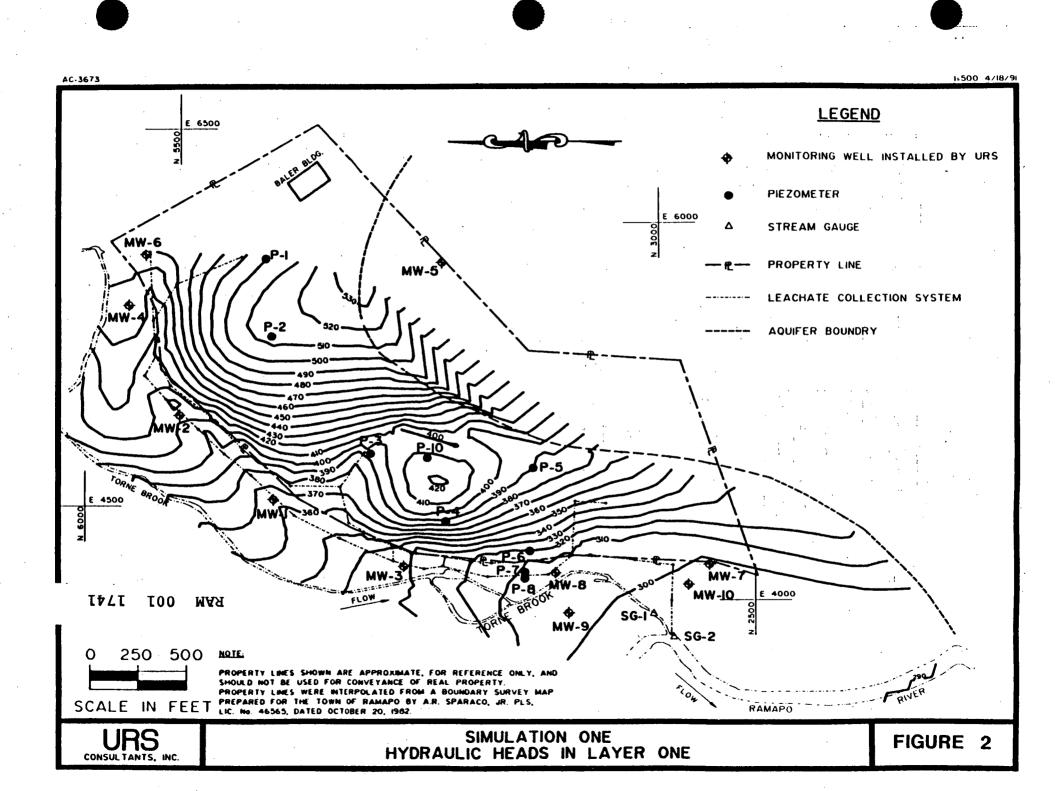
The calibrated values are generally in agreement with the field measurements. They have been converted to cm/sec from ft/day and are as shown in Table 2.

Г٨	DΤ	Ē	• 2	
1 A	ום	-E.	_ <b>Z</b>	

	Kh Calibrated [CM/S]	Kh Measured [CM/S]
Layer 1 (Primary Aquifer)	1E-3 - 3E-3	1E-4 - 1E-2
Layer l (Secondary Aquifer)	0.3E-4 - 1E-4	4E-5 - 2E-3
Layer 2	1.6E-5 - 2E-5	9E-6 - 1E-2

### GENERAL FLOW REGIME

0


The calibrated model is considered to be representative of generalized conditions at the site.

o Upper Aquifer (Layer 1)

Across the modeled area, lateral flow is generally concurrent with the slope of the terrain towards Torne Brook as shown on Figure 2. Torne Brook is a topographic low between the landfill and the land between the brook and the Ramapo River. Much of the flow in the overburden is intercepted by the leachate collection system along Torne Valley Rd.

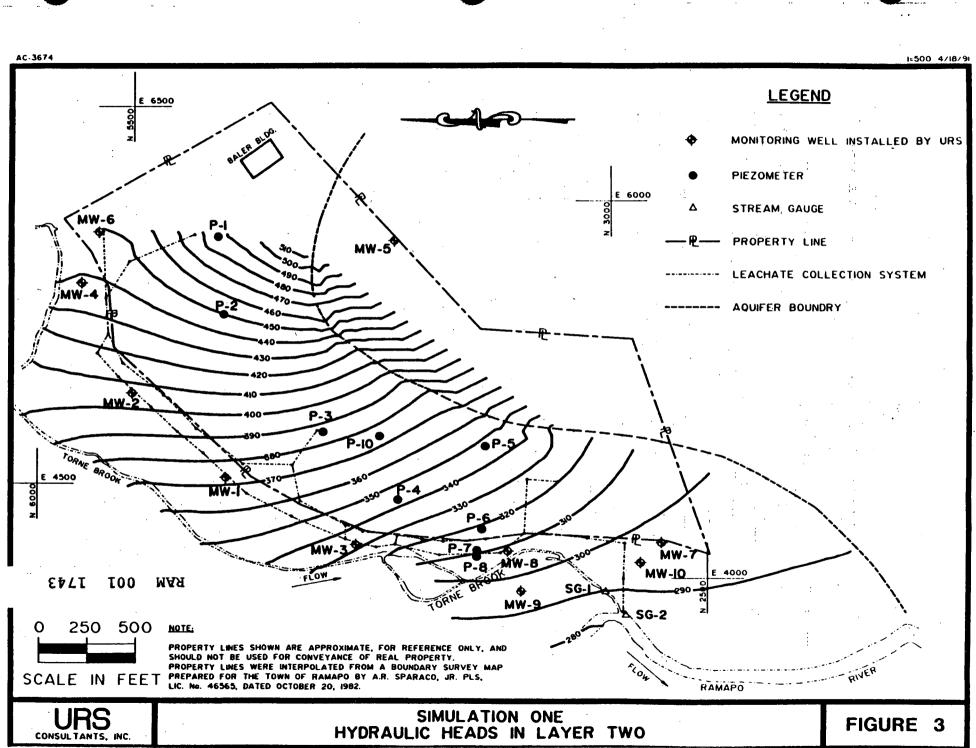
In the southern portion of the modeled area, flow is directed towards the Ramapo River. RAM

001



1 . . . .

### Bedrock Aquifer (Layer 2)


In the bedrock aquifer, flow is directed from the mountains towards the Ramapo River as shown on Figure 3. It is not influenced by Torne Brook or the leachate collection system.

o Vertical Flow

The very low vertical conductance obtained from the calibration process suggests that the two aquifers are not hydraulically connected. However, since the fractured bedrock was modeled as a porous media, vertical flow has to be regarded as an areal average. In reality it takes place through sparsely distributed fractures in the bedrock and its real velocity is much greater than the one suggested by the average flow. This is of significant importance in considering the migration of contaminants offsite, for which the real flow velocity will have to be obtained by considering the effective porosity of the fractured bedrock.

Throughout most of the site, the hydraulic heads in the upper aquifer are greater than in the bedrock aquifer. This creates downward flow by which the contaminated leachate from the waste layer can potentially enter the bedrock aquifer. Small areas of the upward flow occur in the vicinity of URS MW-8 and MW-10 and were recreated by the model.

The summary of the parameters resulting from the calibration process and the hydrogeology of the site is presented below.



				••• •
	Layer 1 (Upper Aquifer)			Layer 2 (Bedrock Aquifer)
	Primary "	Secondary	Waste	
Kh [CM/S]	1E-3 - 3E-3	0.3E-4 - 1E-4	1.4E-5 - 1E-4	1.6E-5 -2E-5
Kv [CM/S]	1E-4 - 3E-4	0.3E-5 - 1E-5	1.4E-6 - 1E-5	7E-7 - 12E-7
Saturated Thickness [ft]	10-30	10-30	up to 60	25
Recharge [in/yr]	13.1	4.4	22-44	NA

The parameters are considered to be representative of steady state conditions at the site. The calibrated model was used as the baseline for comparisons between remedial technologies. In evaluating remedial technologies, all uncertainties and sensitivities inherent in looking at one remedial technology would therefore be applied to all technologies. Remedial technologies selected in the Feasibility study were superimposed on the groundwater flow system to evaluate their impact and effectiveness for long-term, steady-state conditions:

### MODEL SIMULATIONS OF REMEDIAL TECHNOLOGIES

The purpose of this study was to assess the effect of implementing remedial technologies at the site. The remedial technologies considered were: surficial cap, withdrawal wells, and improvements to the leachate collection system. They were simulated in different combinations in order to achieve the following groundwater-related objectives.

 Prevent or reduce offsite contaminant migration via upper aquifer. RAM

100

Prevent or reduce offsite contaminant migration via the bedrock aquifer.

- Minimize the amount of groundwater to be collected and treated.

The simulations were performed for steady-state conditions.

### INFILTRATION FOR CAPPED CONDITIONS

In order to evaluate the influence of capping the site with either a NYS Part 360 cap or soil cap on the regional flow patterns and leachate quantities, an infiltration analysis was performed using the Hydrologic Evaluation of Landfill Performance (HELP) computer model. The model was developed by the United States Army Corps of Engineers Waterways Experiment Station for the USEPA (Schroeder, et al, 1984). It simulates water movement within landfills employing a quasi-two-dimensional approach. Its solution technique accounts for the effects of surface runoff, infiltration, percolation, evapotranspiration, soil moisture storage and lateral drainage. The model offers a choice of user-generated input or default values.

The HELP model was applied to the site using default climatological data for the 5-year simulation period from 1975 to 1979. Edison, New Jersey weather station was used, being the closest location to Ramapo for which a set of default climatological data was available.

The model allows for four types of layers: vertical percolation (topsoil, wastes), lateral drainage (sand), barrier soil (clay) and barrier soil with liner (such as HDPE). Soil parameters can be either user-generated or program-generated (default).

RAM

100

1745

The Part 360 cap was modeled as follows:

Layer Description	Thickness	Layer Type for Modeling Purposes
Topsoil	6"	Vertical percolation
Fill	24"	Vertical percolation or lateral drainage
Sand	12"	Lateral drainage (optional)
Clay	18"	Barrier soil (with and without liner)
Waste		Waste

Also, a potential impact of a gas venting layer consisting of 12 inches of sand was investigated.

Input parameters required for defining the layers include: thickness, hydraulic conductivity, porosity, field capacity, wilting point and initial water content. As specific details of a cap design are not finalized, default values suggested by the model documentations were used.

The following values were obtained based on the HELP simulations for capped conditions:

	Inches/Year	<pre>% of Yearly Rainfall</pre>
Runoff	0.5-8.4	1-16%
Evapotranspiration	31.3-33.9	60-65%
Lateral Drainage	6.3-18.8	12-36%
Infiltration	3.1-3.7	6-7%

The results indicate, that the amount of rainwater that would infiltrate through the cap and reach the groundwater will be reduced to 3.1-3.7 inches per year from the approximate 50 inches/yr which precipitates in areas without a liner. And it be reduced to 0.5 inches/yr in areas with a liner. The infiltration for existing conditions, based on the results of the calibrated groundwater model, displays a very high

13

displays a very high spacial variability. Throughout most of the site existing infiltration ranges from 4.4 inches per year in the areas of dense sands to 13.1 inches per year in the areas of loose sands. In several locations, however, it reaches 22 to 44 inches per year. This is due primarily to two factors: high permeabilities of refuse in the unvegetated portions of the landfill and the accumulation of offsite surface water runoff in the flatter areas. Locations of high infiltration areas are: the northern and southern lobes and the gully behind the southern lobe.

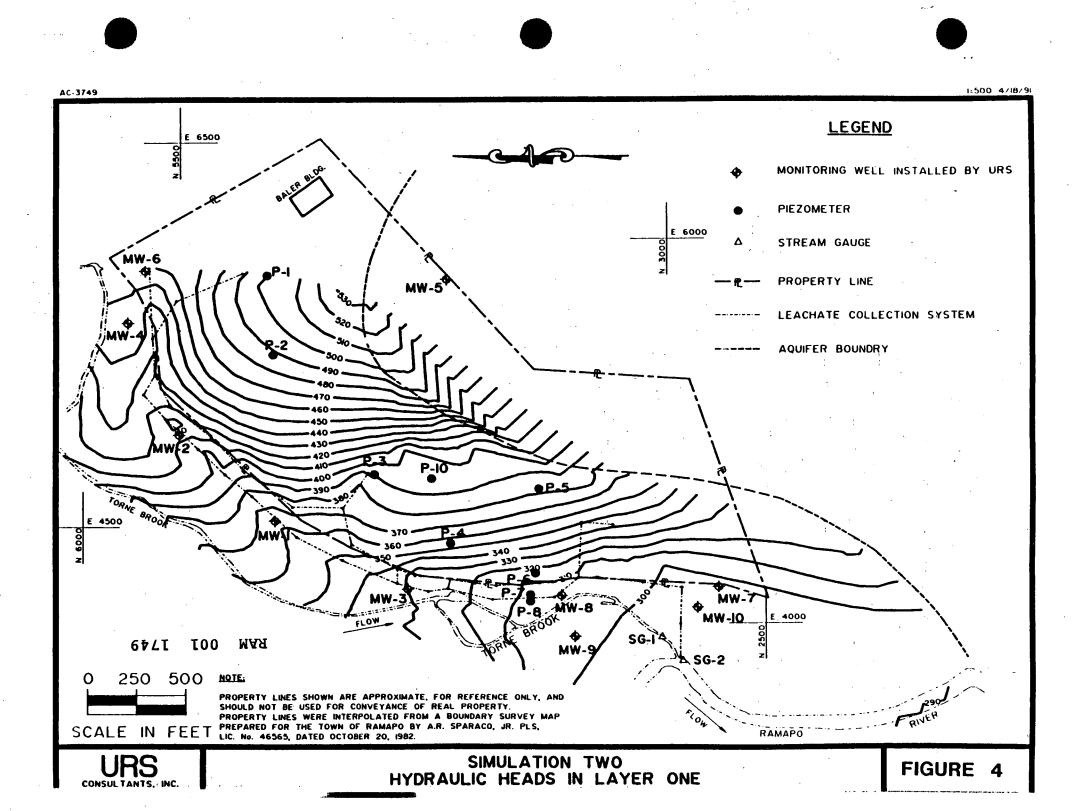
For a soil cap, which consists of the same HDPE membrane over the northern and southern lobes, and soil covering the sideslopes of the landfill, the following was estimated. Infiltration through the sideslopes would be similar to existing conditions, as a general fill material would be used, and the grading plan for the most part would remain the same. Infiltration through the HDPE would be equivalent to the Part 360 cap on the lobes.

### <u>SIMULATION 1</u> - Existing Conditions

The purpose of this simulation was to establish the regional flow pattern and point out the problem areas. The results indicate that most of the offsite flow is intercepted by the deep collector within the overburden aquifer. However, portions of the deep collector are periodically exposed above the water surface. In the vicinity of wells MW-8, MW-3, MW-4 and MW-6 the water is draining from the deep collector and flowing underneath to Torne Brook. The estimated leachate collection rate in the deep collector is 29 gpm. The estimated amount of surface water collected in the shallow subsurface collector and the surface water collector is therefore 26 gpm. The simulated water table is shown on Figure 2; the simulated potentiometric surface for the bedrock aquifer is shown on Figure 3.

001 1747

<u>SIMULATION 2</u> - Existing Drainage System, Site Capped


This simulation shows how capping the site with a Part 360 cap influences the flow patterns and leachate rates. A decrease in infiltration causes significant lowering of the water table across the entire site within the overburden aquifer. The volume of leachate being intercepted by the leachate collection system decreases as well from 29 gpm to 16 gpm. Also, the downward migration of contaminated water from the waste layer to the bedrock aquifer decreases due to the significant drop in the vertical gradients. All surface water runoff is diverted offsite.

The migration of the contaminated groundwater via the overburden aquifer underneath the exposed collectors continues as in Simulation 1. However, more pipes are exposed, especially the shallow collector in the vicinity of wells MW-2 and MW-1, which accentuates the problem. The simulated water table is shown on Figure 4.

## <u>SIMULATION 3</u> - Natural Infiltration, Withdrawal Wells In The Areas of Exposed Drains

This simulation models the combination of technologies in which nine withdrawal wells placed along the lower reach of the Torne Brook were used to intercept contaminated groundwater bypassing the exposed drains and flowing towards the lower reach of the Torne Brook. All drains in the vicinity of the withdrawal wells became exposed; however, flow of the contaminated groundwater towards the Torne Brook was reversed. The withdrawal rates necessary to achieve this result are: wells - 51 gpm and drains - 24 gpm.

RAM 001 1748



## <u>SIMULATION 4</u> - Site Capped, Withdrawal Wells In The Areas Of Exposed Drains

This simulation follows the setup of Simulation 3, however, instead of the natural infiltration, Part 360 capped conditions were used. Nine withdrawal wells placed along the lower reach of the Torne Brook reverse the direction of flow in the area of exposed collectors, intercepting contaminated groundwater before it reaches Torne Brook. As the water table onsite is lowered through capping, the withdrawal rates needed to reverse the flow direction are much lower than in Simulation 3: 14 gpm for wells and 14 gpm for drains.

SIMULATION 5 - Existing Conditions, Well PW-1 in Operation

This simulation models the existing conditions onsite with the private well PW-1 on an adjacent property in operation. Downward vertical gradients were observed in MW-9 cluster located on the adjacent property owner's land. In order for landfill contaminants to enter PW-1, which is a dug well in the overburden, upward vertical gradients must exist between the bedrock and the overburden. Under natural conditions this was not considered to be feasible given the localized influence of the Ramapo River. However, under pumped conditions this was considered potentially feasible. The purpose of the simulation was to determine whether PW-1 could have a significant influence on the vertical gradients in its vicinity.

A simulation was performed for the steady state withdrawal rate of 4,500 gpd based on 50 users at 90 gpd (Clark, et al, 1977). It indicates that the well's effect on flow patterns in its vicinity is negligible.

<u>SIMULATION 6</u> - Site Capped, 2 Withdrawal Wells in the Northern Portion of the Site in the Vicinity of Torne Brook

This simulation was designed to evaluate the possibility of installing withdrawal wells in the northern portion of the site as a means of preventing contaminant migration in that direction. The results indicate that because of the low hydraulic conductivity and small thickness of the aquifer in this area, the expected yields will be very low, that is, not sufficient to reverse the flow direction. Therefore, a leachate collection system may have to be installed in order to prevent offsite contaminant migration in that area. A Part 360 cap was used.

<u>SIMULATION 7</u> - Site Capped, Elevations of Drains Lowered, New Drains Added on Southern End of the Site, Withdrawal Wells in Both Lower and Upper Aquifer

The purpose of this simulation was to investigate the possibility of a total elimination of the offsite flow. To achieve this objective, the following remedial measures were simulated:

- Part 360 Cap
- Drain elevations in problem areas were lowered
- New drains were introduced
- Withdrawal wells in the lower and upper aquifer were modeled.

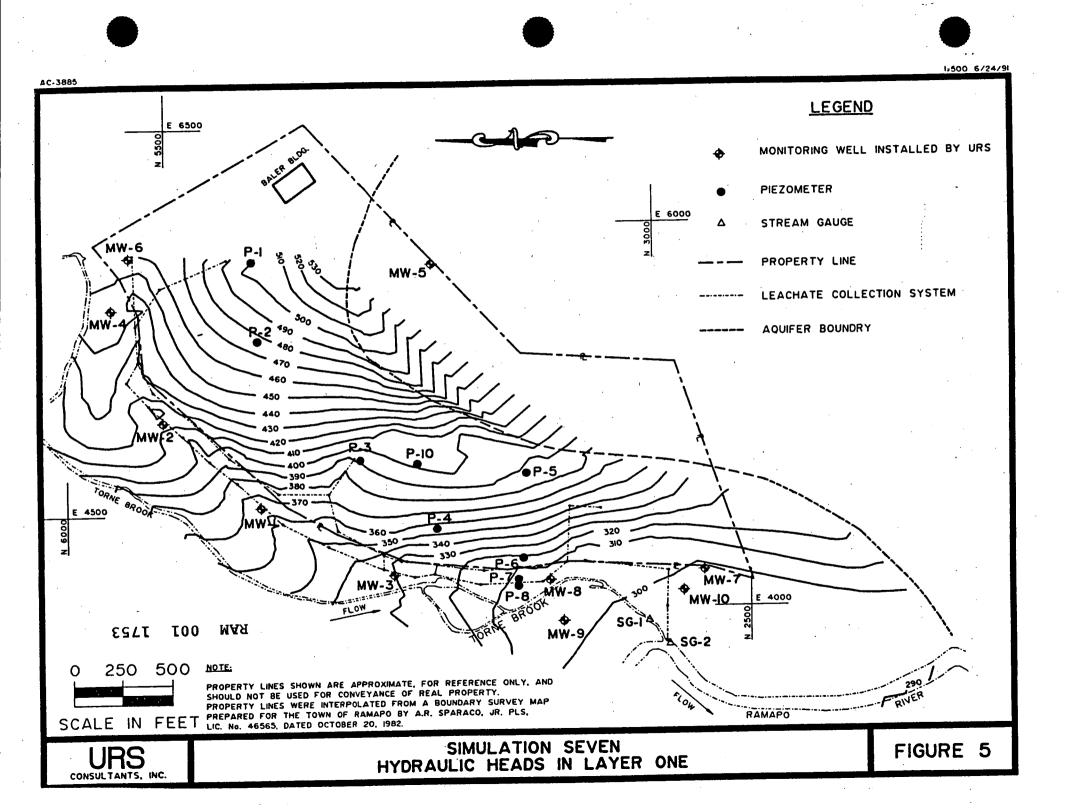
The results of the simulation indicate that it is possible to eliminate offsite flow. However, for the bedrock aquifer the effectiveness of the withdrawal well system would strongly depend on the nature of fractures. It is possible that some of the modeled well locations would have to be eliminated due to the aquifer's inability to supply water. The withdrawal rates needed to achieve the remedial objectives are: wells - 9 gpm, drains - 33 gpm.

001 1751

# <u>SIMULATION 8</u> - Existing Drainage System, Site Capped (Soil Cap and HDPE Liner)

This simulation was performed in order to assess the influence of a soil cap/HDPE liner combination on the flow patterns and leachate rates. The soil cap, covering about 45 acres, allows for the natural level of infiltration. The HDPE liner significantly decreases the infiltration in the areas of the southern and northern lobes (about 25 acres).

A sharp drop in water level (up to 25 feet) can be observed within the overburden in the areas covered by the HDPE liner. The volume of leachate being intercepted by the leachate collection system decreases from 29 gpm to 14 gpm. Also, a significant decrease in the magnitude of downward flow can be observed due to the drop in the vertical gradients. The migration of the contaminated groundwater via the overburden aquifer underneath the exposed collectors continues as in Simulation 1. The modeled water table is shown on Figure 5.


### SOLUTE TRANSPORT

In order to evaluate the potential for offsite migration of contaminants from the Ramapo Landfill to the potential receptor identified as PW-1, a contaminant transport analysis was performed. The model was based on the field observations and measurements gathered during the Remedial Investigation and the results of the groundwater flow model discussed previously.

### APPROACH

The model follows a step-by-step approach in attempting to trace the propagation of contaminants from the onsite fill to PW-1.

001 1752



- First, the groundwater contour maps generated by the flow model are analyzed in order to determine the pathways by which the contaminants can reach PW-1
  - Second, the propagation of contaminants along those pathways is traced using analytical methods of calculation.

The analytical techniques used include calculating the contaminant concentration using a steady-state 1-Dimensional mass balance and the 1-Dimensional, transient convective-dispersive equation.

Also, the effects of pumping in well PW-1 are estimated based on the constant discharge, transient, unconfined case.

### DETERMINATION OF CONTAMINANT MIGRATION PATHWAYS

The results of the groundwater flow model provided a basis for the contaminant transport model. Simulation 1 was used as representative of existing conditions to determine the groundwater flow patterns in the area.

### o Upper Aquifer

o

0

Groundwater from the landfill is flowing west towards Torne Brook and then turns south flowing to the Ramapo River. It is either intercepted by Torne Brook (in the areas where it constitutes a water divide) or is directed towards the Ramapo River. Well PW-1, located on the opposite side of the Brook than the landfill, is not influenced by that flow. Therefore, the flow pattern and lack of significant contamination in MW-90/S indicates that the contamination of PW-1 via the upper aquifer is very unlikely.

### Vertical Flows

Very high downward hydraulic gradients exist over the entire landfill area, causing a potential for migration of contaminated 001 1754

leachate from the landfill to the underlying fractured bedrock. The magnitude of the downward flow was determined based upon the maximum head difference of 60 ft and the vertical conductance of 2E-7 ft/day. (Parameters were determined by the groundwater model.) The obtained value is 1.2E-5 ft/day.

Bedrock Aquifer

0

The flow pattern in the bedrock aquifer, as determined by the groundwater model, indicates that groundwater flow is away from the natural aquifer boundaries (mountains) towards the Ramapo River. Groundwater passes underneath the landfill, receiving the contaminated leachate due to the downward flow existing over that area. As Torne Brook does not influence flow within the bedrock aquifer, the contaminated water moves southwest and can potentially reach the area of PW-1. The average magnitude of flow within the bedrock aquifer, as determined by the groundwater flow model, is  $0.13 \text{ ft}^2/\text{day}$ .

Vertical flows in the vicinity of PW-1 well

Well PW-1 is a dug well in the overburden and provides potable water for Torne Brook Estates for about 50 people. Assuming the water consumption of 90 gpd (Clark, et al, 1977), the average daily flow is 4500 gpd. Simulation 5 of the groundwater flow model indicates that for steady-state conditions this is not sufficient to cause upward flow from the bedrock aquifer to the overburden. However, the analytical calculations of well drawdown for the nonsteady-state indicate that upward flows are possible for certain sets of pumping conditions. Since the exact data for the well's operation is not available, it was assumed that this possibility had to be investigated.

RAM 001

### CALCULATION OF CONTAMINANT CONCENTRATIONS

The potential migration pathways were determined in the previous section based on the results of the groundwater flow model and the analysis of the operation of well PW-1. The contaminant concentration along these pathways was described using the analytical techniques and utilizing the aquifer parameters obtained both from the calibrated groundwater model and the RI field investigation.

Bedrock aquifer directly underneath the landfill

As determined earlier, there is a potential for leachate from the Ramapo Landfill to enter the underlying bedrock aquifer. The vertical velocity was estimated at 1.2E-5 ft/day. The contaminant concentration within the leachate was conservatively assumed to be equal to that directly in the landfill. The accumulation of the pollutant in the bedrock aquifer was modeled utilizing a 1-Dimensional steady-state mass balance approach, with the contaminated leachate treated as a distributed source over the length of 1500 ft. The results indicate the concentration of the contaminant in the groundwater within the bedrock aquifer at the downgradient end of the landfill of about 12% of the leachate concentration.

Bedrock aquifer from the downgradient end of the landfill to PW-1 In this area, contaminant propagation was modeled utilizing a l-Dimensional transient convective-dispersive equation (Bear, 1979). The downgradient end of the landfill was assumed as a starting point and PW-1 500 ft to the west was the ending point of the simulation. The properties of the aquifer were assumed after the field investigation findings for two wells in the immediate vicinity: URS MW-8 and URS MW-9. The average hydraulic conductivity of the bedrock based on the slug and pressure tests is 8E-4 cm/s, and the hydraulic gradient determined from monitoring levels in MW-8 and

21

RAM

100

MW-9 is 0.025 ft/ft. The porosity of the fractured bedrock was assumed as 5% which is an average value for fractured crystalline rock as given in "Groundwater and Wells" (Driscoll, 1987). Those parameters give an average effective velocity of the groundwater flow of 1.15 ft/day. Different values of the hydrodynamic dispersivity were used ranging from 1 meter to 100 meters (Freeze & Cherry, 1979). This was assumed to cover the possible range of values of this parameter, as no information pertaining to actual field values were available. The initial concentration of the contaminant at the starting point was assumed as 12% of the concentration in the landfill from the previous section.

The results of the model indicate that the concentration of contaminant at the ending point (directly underneath PW-1) reaches the steady-state concentration equal to that of the starting point (downgradient edge of the landfill) after 2 - 10 years, depending on the value of the hydrodynamic dispersivity used. Since the landfill has been operational for a much longer period of time, it can be assumed that the concentration of contaminant is the bedrock beneath PW-1 is equal to about 12% of the concentration of the contaminant in the landfill.

Assessment of the contamination of well PW-1 As mentioned earlier, the steady-state withdrawal rates in well PW-1 are sufficient to cause upward flow. The influence of the nonsteady pumping was also investigated.

ο

The hydrogeology in the immediate vicinity of PW-1 was based on the boring log from MW-9, about 250 ft from PW-1. The thickness of the saturated zone in the upper aquifer is about 32 ft. Since the formation consists of both dense and loose sands, the average hydraulic conductivity of 10 ft/day was used based on the

groundwater model. The effective porosity was assumed as 30% (Ref. Bear, 1979).

Using the formula for the drawdown in a pumping well screened in an unconfined aquifer, the vertical gradients were evaluated for different pumping conditions (Bear, 1979). It was determined that upward flow from the bedrock will start for pumping cycle of 15 gpm over 67 minutes. (A cycle was assumed to last as long as it takes to fill up a 1000 gallon tank, e.g., for a cycle of 20 gpm over 50 minutes, the contribution of the bedrock water will create a contaminant concentration in the well water of about 6E-5 of the concentration in the landfill reduction of 5 orders of magnitude.)

### SUMMARY

ο

<del>tan</del> an secolaria

en sento de la colo

Based on the results of the contaminant transport model, the following conclusions can be made:

across gradients prevail the Downward site and the contaminated groundwater from the landfill is infiltrating into the lower (bedrock) aquifer. Therefore, the bedrock aquifer underneath the landfill provides the potential for contaminant migration. As there is no barrier restricting groundwater movement within the bedrock aquifer, the contamination may migrate towards residential well PW-1 and the Ramapo River. It is estimated that at the present time, groundwater within the bedrock aquifer beneath well PW-1 contains a contaminant concentration of about 12% of that directly within the landfill.

ο

Estimated withdrawal rates in well PW-1 are too small to cause significant upward flow from the bedrock aquifer. It was estimated that, depending on the withdrawal rates assumed, the 001 175

concentration of contaminants in PW-1 can vary from zero to 6E-5 times the concentration of contaminants within the waste area. Therefore, it is questionable whether well PW-1 is actually being impacted by the contaminants in the bedrock aquifer.

u servite Nationalis

- 14

ţ

	Upper aquifer	Bedrock aquifer
Horizontal Hydraulic Conductivity [cm/s]	3.5 x 10 ⁻³	$1.8 \times 10^{-5}$ $8.0 \times 10^{-4}$
Vertical Hydraulic Conductivity [cm/s]	3.5 x 10 ⁻⁴	4.4 x 10 ⁻¹⁰
Effective Porosity [%]	30	5
Unit Saturated Thickness [ft]	variable	25
Horizontal Hydraulic Gradient [ft/ft]	variable	0.025 - 0.1
Dispersivity [ft]	not used	3.3 - 330

Data for Contaminant Transport Model

11.1

Difference in Hydraulic Heads between aquifers - 60 ft

## DATA FOR CONTAMINANT TRANSPORT MODEL - (Continued)

## <u>Well PW-1</u>

Discharge [gmp]	5 - 25
Time of a withdrawal cycle [min]	200 - 40
Diameter [ft]	2

. . . .

ه، ق .....

## <u>Contaminants</u>

Contaminant type	Generic
Molecular diffusivity	Not used
Adsorption coefficient	Not used
Initial solute conc. on site	Generic

### <u>Temporal</u>

Vertical flow from the upper to the	he
lower aquifer	Steady-state
Horizontal flow and cont.	
transport	Transient to steady-state
Operation of well PW-1	Transient

### REFERENCES

McDonald, M.G., and A.U Harbaugh. <u>A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model</u>. U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia, 1984.

Schroeder, P.R., J.M. Morgan, R.M. Walski, and A.C. Gibson. <u>The Hydrologic_Evaluation of Landfill Performance (HELP) Model, Volume I.</u> <u>User's Guider for Version I</u>, prepared for USEPA, 1983, EPA/530-SW-84-009; and Version II guidance documents received with HELP Version II, 1988.

Moore, R.B., D.H. Cadwell, W.G. Stelz and J.L. Belli. <u>Geohydrology of the</u> <u>Valley-Fill Aquifer in the Ramapo and Mahwah Rivers Area, Rockland County,</u> <u>New York.</u> Open-File Report 82-114, Department of the Interior, U.S. Geological Survey, Albany, New York, 1982.

Doherty, J. <u>MODINV Suite of Software for MODFLOW Pre-Processing, Post-Processing and Parameter Optimization</u>. Australian Centre for Tropical Freshwater Research, James Cook University, Townsville, Queensland, Australia, 1990.

LBG, Inc. <u>Evaluation of Ramapo Valley Well Field Management Techniques by</u> <u>RVAM Simulation</u>. Prepared for Spring Valley Water Company, Inc., Wilton, Connecticut, 1982.

Dunn Geoscience Corp. <u>Preliminary Hydrogeologic/Engineering Evaluation of</u> <u>Proposed Torne Valley Balefill</u>. Prepared for the Town of Ramapo, 1988.

Clark, J.W., W. Viessman Jr., M.J. Hammer. <u>Water Supply and Pollution</u> <u>Control, Third Edition</u>. 1977.

Driscoll, F., G. <u>Groundwater and Wells</u>, Second Edition, Johnson Filtration Systems, Inc., St. Paul, Minnesota, 1987.

Freeze, R.A., J.A. Cherry <u>Groundwater</u>, Prentice-Hall, Inc., New Jersey, 1979.

Bear, J., Hydraulics of Groundwater, McGraw-Hill Book Company, 1979.

URS CONSULTANTS, INC. PAGE OF egente e si SHEET NO. .... OF PROJECT Pamapo Landfill SUBJECT Contaminant Transport JOB NO. 35207.00 MADE BY MO. DATE 03/01/ CHKD. BY .... DATE 1.) General Comments PAGE A purpose of this calculation will be to estimate and describe the propagation of contaminants from the landfill area towards a residential well PW-1. The contaminants can reach that flow regimes in those two aquiters since the signifficantly, they will be treated separately. 2.) Upper Aquiter The area of concern is situated in the immediate vicinity of the Torne Brook which most probably serves as a groundwater divide for the upper aquifer. The well PW-1 is situated west of the Torne Brook while the landfill itself is situated east of the Torne Brook. The flow pattern in the area adjecent to the lower reach of the brook indicates that groundwater is flowing towards the Torne Broche and than turns south towards the Ramapo River. This flow pattern is very unlikely to proshice groundwater movement from the landfill area towards the well pw-1. the groundwater flow model indicates is intercepted by the torne Brook and the remaining portion is directed towards the Ramapo River. Therefore; the contamina-tion of well PW-1 via the shallow aquifer 100 is considered unlikely. 1763

...... OF PAGE URS CONSULTANTS, INC. SHEET NO. 2. ..... OF PROJECT Ramapo Landfill SUBJECT Contaminant Transport JOB NO. 35207,00. MADE BY MO DATE 03/04/ CHKD. BY ..... DATE 3.) Beolvock Aquifer. The flow pattern in the beolvock aquifer indicates the groundwater movement away from the natural aquifer boundines and turning south towards the Ramapo River. REF. PAGE the Torne Buook does not influence this flow pattern The direction of flow indicates the possibility of the contaminants migrating from the landfill area, underneath the Toure Brooke You ands the well Pw-1. The following approach will be assumed in trying to estimate the magnitude of contamination : - the flow of contaminated water from the upper aquifer (waste layer) to the lower aquifer within the landfill will be estimated - Based on that the accumulation of the contaminant in the lower (bedrocke) aquifor underneath the Anolfill will be evaluated : -The concentration at the downsfream end of the landfill will be assumed as a boundary of specified value - The migration of contaminants from that boundary downstream towards the well pw-1 will be traceoi The aquiter parameters as well as the flow patterns will be assumed after the results of field investigations and the calibrated groundwater model.

PAGE OF SHEET NO. 3 OF URS CONSULTANTS, INC. PROJECT Ramapo Lanolfill JOB NO. 35207.00. MADE BY MO DATE 03/04/ SUBJECT Contaminent Transport CHKD. BY DATE REF. +Landfill area -> ン Pw-I ふ T. waste / PPC Qu(x) CBO QB(x) 6=0 BEDR C(x)(.4.2.) q - leachate rate from the landfill to the bedrock aquiter QB-flow within the bedrack aquifer Qu-flow within the upper aquifer N - recharge (IN - concentration of the contaminant in the waste layer CBO - concentration of the contaminant within the bedrock aquifer at the downstream end undermeath the landfill (1) - concentration of the contaminant at distance "x" from the downstream end of the iandfill (within the bedrack aquifer ) Flow QB(2) will be assumed as increasing the landfill and than constant. undernerth Recharge q will be assumed constant. 100 1765 A) (ontaminant transport underneath the Isnolfill, within the beolroch aquifer.

PAGE . .. .. OF URS CONSULTANTS. INC. SHEET NO. 4 OF JOB NO. 35207.00. PROJECT Ramapo Landfill SUBJECT Contaminant Transport MADE BY MO DATE 03/041 DATE CHKD. BY REF. PAGE · FLOW underneetin the X 48 andfill within peopock agoijor 111  $Q_2 - Q_1 = Q \Delta X$ 10=91+ Q,  $\frac{\Delta Q}{\Delta x} = Q$ CONTROL  $\Delta X$  $\frac{dQ}{dr} = q_{r}$ VOLUNE  $Q = q \times + C$ ×=0 Q=Qo  $Q_0 = q \cdot O + C$ Q(x) = qx + Qo· Contaminant accumulation within the hedrock aquiter, underneath the landfill. qCin = m 6671  $M_{i} = C_{i} \cdot Q_{i}$  $\dot{M}_2 - \dot{M}_1 = \dot{m} \Delta x$  $C_2 \cdot Q_2 = M_1$  $\frac{dM}{dL} = \dot{m}$ RAM (ULTROL VOLUME [00 K AX  $\frac{\partial l(Q(C))}{\partial lx} = Q_{C,N}$ 176  $Q \frac{dc}{dx} + C \frac{dQ}{dx} = Q C in$ 

URS CONSULTANTS, INC. PROJECT Ramapo Landfill SUBJECT Contaminant Transport	PAGE OF SHEET NO. 5 OF JOB NO. 35207, 00. MADE BY MODATE 03/04 CHKD. BY DATE
$Q(x) = Q_0 + \frac{1}{2}x$	REF. PAGI
$(a_0 + q_x) \frac{dc}{dx} + q_c = q_{cm} / (R_0 + q_c)$	<u>1</u> +)
$\frac{dc}{dx} + \frac{2}{Q_0 + Q_x} c = Q c_m (Q_0 + Q_x)$	
This og is of the form	
$\frac{dc}{dx} + P(x)c = Q(x)$	
$P(+) = \frac{Q}{Q_0 + Q + Q} , Q(+) = C_{in}$	9/(Qo+Qx)
and can be solved using an inte	prating
$\varphi(+) = P + p(JP(+)o(+)$	2
$= e^{\int \frac{y}{20^{1} q^{*}} dt} = e^{\ln(Q_0 + q^{*})} =$	Qo+qx
$\frac{d}{dx}\left[c\phi(4)\right] = Q(4)\phi(4)$	
$\frac{d}{dx}\left[C\cdot(Q_0+q_*)\right] = \frac{qC_{in}}{Q_0+q_*} = (Q_0-q_*)$	19(+) RAM
$C(Q_{3}, q_{x}) = \int q c_{n} dx$	001
$((Q_0+q_X) = q_{C_{III}} X + A$	1767
$((x) = \frac{q_{in} x + A}{Q_0 + q_x}$	

ì

## URS CONSULTANTS, INC.

PROJECT Ramapo Landfill SUBJECT Contaminant Transport

PAGE OF SHEET NO. 6 .... OF JOB NO. 35207.00 MADE BY MO DATE 03 /04 CHKD. BY ... DATE

REF. PAGI

RAM

[00

Boundary (ondition -.  $\chi = 0 \rightarrow c = C_{p}$ 

 $(1/2) = C_0 = \frac{A}{Q_0}$  $A = G Q_{o}$ 

Final solution is

 $C(x) = \frac{2^{c_{in}x} + Q_0 c_0}{Q_0 + q_X} \quad (1)$ Values of coefficients assumed after the ground water model 9 = PUPPER AZ - PBEDROCK AQUIFER THICKNESS U-B VERTICAL COND.  $(\phi_{J} - \phi_{B})_{AVG} = 60 \text{ ft} (SEE SIHELETS 28, 29)$ VERT. CON = ZE-7 1/0/24 (GW MODEL)  $q_{AVG} = 60 \times 2E - 7 \qquad \left[ FT - \frac{1}{DAT} = FT/DAT \right]$ 9 AVG = 1.2 E-5 ft/day Ro = TREDROCH AR 1768  $T_{AVG} = 1.3 \quad ft^2/day \quad (GW MODEL)$  $i_{AVG} = 0.1 \quad (GEE SHEET 29)$  $Q_{0} = 1.3 \times 0.1 \ [FT^{2}/DAY]$ 

PAGE ..... . . OF URS CONSULTANTS, INC. SHEET NO. 7- OF PROJECT Ramapo Landfill SUBJECT (2412 minant Tranzport JOB NO. 3570 7.00. MADE BY MO DATE 03/04/ > CHKD. BY ..... DATE REF. Qo = 0.13 42/ day la assumed as zero ( entering uniter assymed clean ) Length of the flow path unobrueath the landfill assumed to be X= 1500 ft Therefore; the concentration in the protocle aguifer on the dourstream end unstermeath the landfill is (EQ 1 SHEET 6) 1,2E-5 × 1500 + CIN + 0.13-0.  $C_{BO} = ((x = 1500 f f) =$ 0.13 + 1.2E-5x 1500 where C, is the conc. of  $C_{BO} = 0.12 C_{IN}$ RAM contaminants within the waste layar 100 B) Contaminant transport from the edge of the landfill towards the well Pw-1, 1769 within the bookock aquifer A 1-D equation of convective - dispersive tiansport will be used. The conc. of the edge of the lawsifill (CBO) will be assumed constant. The flow Qe will also be assumed constant. The hydraulic conductivity will be assumed as measured in the field in the nearby wells (URS-9 and URS-8) utilizing slag lest method and a pressure lest method. The porosity of (SEE RI REPORT)

URS CONSULTANTS, INC. SHEET NO. 8 ..... OF JOB NO. 35207.00. PROJECT Ramapo Landfill SUBJECT (ortaminant Transport MADE BY MO DATE 03/04/ CHKD. BY ..... DATE the fractured bearock will be assumed PAGE ofter "Groundworder and shelps " Lecound Edition by T.C. Briscoll(sheet31) A value of the discound for any for the site is not known, therefore a simple of values will be fried. K, 0, 21  $C_{BO} \xrightarrow{V} C(\lambda)$ x = 0 (BD - concontration at x=0 CB0 = 0,12 C ... K - hydraulic conductivity KANG = (ZKi)/n (well URS-9) RAM  $K_{A+G} = \frac{1.6E-3 + 1.6E-3 + 5.7E-6 + 3.2E-5}{CI}$ KArG * BE-4 CM/S 1770 KANG = 2.3 FTIDAY i - hydraulic gradient  $i = \frac{\phi_{URS-B} - \phi_{URS-B}}{L_{URS-B} - URS-B}$ 1 as recorded in the field SEE RI REPORT)  $i = \frac{307 - 302}{200} = 0.025$ 

IRS CONSULTANTS, INC. ROJECT Ramapo Landfill UBJECT Contaminant Transport	PAGE OF SHEET NO. 3 OF JOB NO. 3 5 2 0 7. 00. MADE BY MO DATE 03/04 CHKD. BY DATE
V - real flow, velocity	REF. PAG
$V = Ki/n = \frac{9}{4}$	
n = 0.05 (tor a fracturea after "Grounde	, cristalline rocke Later & Vells " SHEET ?
$V = \frac{2.3 \times 0.025}{0.05} \left[ \frac{FT}{DAY} \right]$	- FIDAY]
V= 1.15 FT/DAY	· · ·
the governing eq is ( for a	conservative substance A=0
$\frac{\partial c}{\partial t} = D_{1} \frac{\partial^{2} c}{\partial t^{2}} - V \frac{\partial c}{\partial t}$	(SHEET 36)
where $D_h = \partial_v V$ , $V = \frac{9}{11}$	
The solution for the bound	by constitions
$C(x=0) = C_{BO}$ $((x=P) = 0$	RAM
and initial conditions	001
C(x70) = 0	1771
15	
$C(x,t) = \frac{C_{BO}}{2} \left\{ erfc \left[ \frac{x-vt}{2\sqrt{D_{h}t}} \right] + exp \left( -\frac{1}{2\sqrt{D_{h}t}} \right] \right\}$	Vx). erfc[x+Vt]}

(Afler "Hydraulics of Groundlaster" J. BORN p268 formula 7-134 -SEE SHEET

PROJECT Rahan			JOB NO. MADE BY	OF 0. 10 OF 227.00. MO DATE 03/04/ DATE
Assiming SOO Jt -	that the eight	xli pw-1	is loca $\frac{1}{2}$	Yed Pag
C(505,1) =	0.12C.N 2 erfc	$\left(\frac{500-1.15\cdot t}{2\sqrt{i2nt}}\right)+$	exp ( 115+50 Dh	<u>,,,</u> ).
- Cr-jc (	$\left(\frac{500+1.15\cdot t}{2\sqrt{0_{h}t}}\right)$	5	• • •	
Lhere in ft? Vahes D	t is in lolay. t all are	days and usually as	sumed a	5 021-03
1 - 100	neters. Follo 1,10,50	airing vahe	rs (Afer	be tried Freeze &
1 - 100	weters Follo	airing vahe	rs (Afer	be tried Freeze &
1 - 100	aL	$\frac{D_{4} = V \cdot a_{L}}{D_{5} = V \cdot a_{L}}$	rs (Afer	be tried Freeze & "Groundwate
1 - 100	aL [m] [FT]	Dy = V.aL [ft²/olay]	rs (Afer	be tried Freeze & "Groundwate
1 - 100	aL [m] [FT] 1 3.3	$\frac{D_{y} = \sqrt{a_{L}}}{\frac{D_{y} = \sqrt{a_{L}}}{\frac{1}{2}}}$ $\frac{D_{y} = \sqrt{a_{L}}}{\frac{1}{2}}$ $\frac{3.8}{3.8}$	rs (Afer	be tried Freeze & "Groundwater
1 - 100	aL [m] [FT] [m] 3.3 10 33	$\frac{D_{4} = \sqrt{a_{4}}}{\frac{D_{5} = \sqrt{a_{4}}}{\frac{100}{3.8}}}$	rs (Afer	be tried Freeze & "Groundwater
1 - 100	aL [m] [FT] [m] [FT] [] 3.3 [] 3.3 [] 3.3 [] 3.3 [] 3.3	$\frac{D_{y} = \sqrt{a_{L}}}{\frac{D_{y} = \sqrt{a_{L}}}{\frac{160}{3.8}}}$ $\frac{3.8}{190}$	rs (Afer	be fried Fried & "Groundwate SHEET 33
1 - 100	aL [m] [FT] [m] [FT] [] 3.3 [] 3.3 [] 3.3 [] 3.3 [] 3.3	$\frac{D_{y} = \sqrt{a_{L}}}{\frac{D_{y} = \sqrt{a_{L}}}{\frac{160}{3.8}}}$ $\frac{3.8}{190}$	rs (Afer	be tried Freeze & "Groundwate

•

## **URS CONSULTANTS, INC.**

PROJECT Ramaps Landfill SUBJECT Contaminant Transport

 $\langle / \bigcirc / \bigcirc / \bigcirc$ 

..... OF PAGE SHEET NO. 1/ OF JOB NO. 35209.00. MADE BY HO DATE 03/04 CHKD. BY DATE

REF. PAGI

 $\operatorname{erf}(x) = \frac{1}{\sqrt{H}} \cdot \int_{0}^{\infty} e^{-t^{2}} dt$ erfeix)= 1-erflas erf(-x) = -erf(+)erfc(-x) = 1 + erf(x) $erf(4) = \frac{1}{V_{\overline{1}}} - \frac{\Delta x}{3} \left( \frac{e^{-x_{\overline{1}}^{2}}}{e^{-x_{\overline{1}}^{2}}} + 4 \sum_{i=1,3,5,7}^{-x_{i}^{2}} + 2 \sum_{i=2,4,8,10}^{-x_{i}^{2}} + e^{-x_{i}} \right)$ where  $x_0=0$ ,  $x_n=x$ ,  $\Delta x=\frac{1}{N}$ ,  $x_i=i*\Delta x$ The results for erf function in the rampp <0;37 were checked spainst the tabals bol results ["Haudbook of Physics and Chemistry"] erf(tabulated) ert (computed). -842701 .842700781 . 995322251 .... . 935322 . 99 9978 .99997789. .

URS CONSULTANTS, INC. PROJECT Ramapo Landfill SUBJECT (ontaminant Fransport	PAGE OF SHEET NO. 12 OF JOB NO. 3 5 2 0 7 00. MADE BY MO DATE 03/04 CHKD. BY DATE
4.) contration in the nedrock aquife vicinity of Pw-1 as a function	
a) for $a_{1} = 1 m = 3.3 ft (D_{h} = 1.15)$	
$C(500,t) = \frac{2.12C_W}{2} \left\{ \Pr_{1}^{c} \left( \frac{500 - 1.15 - t}{2\sqrt{3.8t}} \right) + \exp\left( \frac{1.15 - 50}{3.8} \right) \right\}$	$\frac{50}{2\sqrt{3.8}t}$
$\times /_{a_{L}} = \frac{500}{3.8} = 131$	
since ×12 is large, assume that approximation is valid	f +40
$((500,t) = \frac{212c_{in}}{2} erfc \left(\frac{500-1.15t}{2\sqrt{3.8t}}\right)$	
$((500, t) = \frac{0.12C_{11}}{2} erfc(\frac{500 - 1.13}{3.83})$	t[DAYS]
t C [YEARS] Cfraction of C,	۲ ک
0.5       ~ 0.000         0.7       ^ 0.000         1.0       0.007	
1.2       0.066         1.5       0.118         2.0       0.120	RAM 001
	1 1774

URS-CONSULTANTS, INC. PROJECT Ramabo Landfill SUBJECT contaminant Fransport	PAGE OF SHEET NO. 13 OF JOB NO. 35207.00 MADE BY MO DATE 03/04/ CHKD. BY DATE
b) for 2 = 10 m -> 7+ -> Ph	= 15-33= 28 17 PAGE
$((33);t) = \frac{0.12 C_{12}}{2} \int e_{12} \left( \frac{500 - 1.15t}{2\sqrt{35t}} \right) +$	$e = p\left(\frac{1.15.395}{38}\right)$
$- evfc(\frac{500+1.15t}{2\sqrt{38t}})$	
use approximation	
$(1500, t) = \frac{0.12(10)}{2}$ end $(\frac{500}{12})$	$-1.15 \pm \frac{1}{3\sqrt{t^{\prime}}}$
t c [YEARS] [fraction of	2f (,n. ]
0.5 r0.000 1.0 0.037	
1.5 2.0 3.0 3.5 0.091 0.10 0.119 0.120	

RAM 001 1775

	BULTANTS, INC.	fill nsport			of 14 of 5707.0 date 03/0 date
()	121 az = 50	m - 2	5-130	47/000	RE PA
C(39J	$(t) = \frac{0.12(1n)}{2} \int dt$	$ifc = \frac{503 - 1.15t}{2 \sqrt{1.30t}}$	+ exp("-	$\frac{5-500}{130}$ ) erfc $\frac{50}{21}$	011.156 1 1825 -
215 (	e az rs la	rge, Use	e ynll	formula	
(503)	$(t) = \frac{0.12(in)}{2} \int er$	$fc \frac{500 - 1.15t}{27.6Vt^{2}} + $	20.5 erfc	$\frac{500+1.15t}{276Vt}$	
	t Liears]	[trai	tion of	C ]	
	0.5		026	-	
	1.0 1.5	0	.062 ,084		
	2.0 3.0	6	. 10 1		
	3,5	0	1,120		-
			ŕ.		
· .					•
	· /				
			· ·	· · · · ·	
			· · · ·		

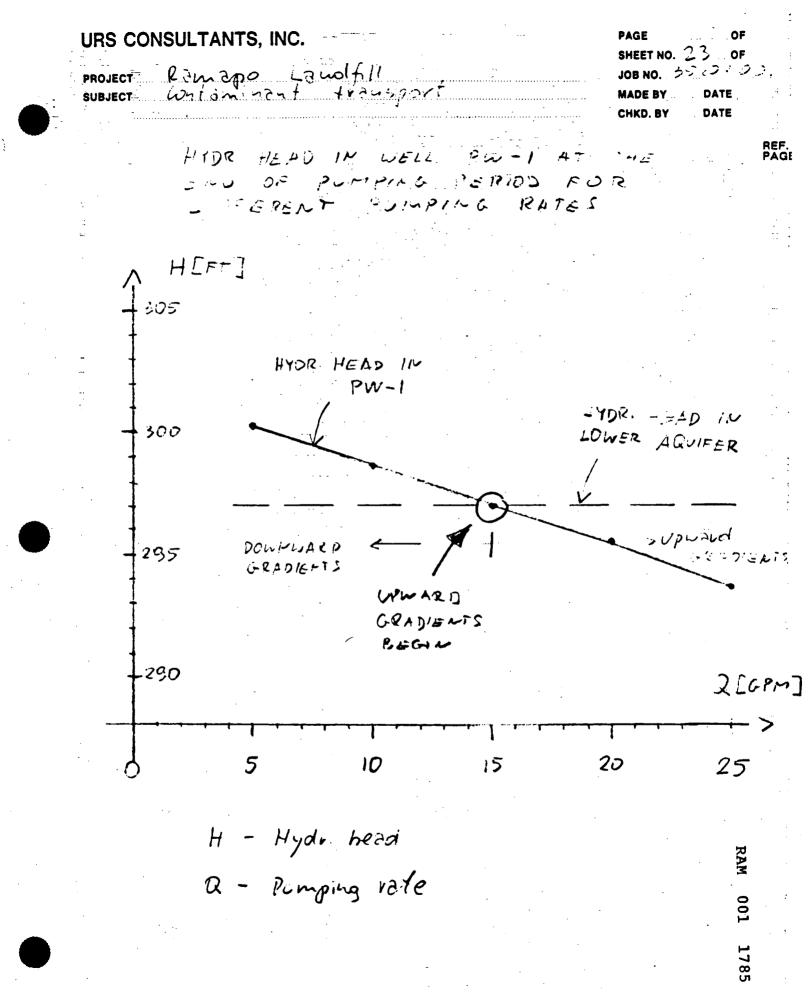
URS CONSULTANTS, INC. PROJECT Ramapo Landfill SUBJECT Costaninant Transport	£	PAGE OF SHEET NO. 15 OF JOB NO. 35207 MADE BY MO DATE 03 CHKD. BY DATE
ol) for 22=100 m	-> D4=330 ft?1	TAC
(1500 t) = <u>)12(10</u> forfe	$\frac{500-1.15t}{39.1t} + 1.5e$	$W(\frac{500+1.15t}{39VE})$
t [ rezas]	Lfraction of	( ,~ ]
0.5 1.0 2.0	0,030 0,059 0,094	
7.5 3.0 4.0	0,095 0.102 0,108	
6.0 8.0 10.0	0.114 0.117 0.120	
· · · · · · · · · · · · · · · · · · ·		
х 		· .
		· .

URS CONSULTANTS, INC. PAGE SHEET NO. 16 OF PROJECT Rimit Dissifill SUBJECT Containment Transport JOB NO. 35207.00. MADE BY MO DATE 3/04/ CHKD. BY DATE REF. PAGE PLOT OF CONCENTRATION US. TIME IN THE GEDROCK AQUITER IN THE JICINITY DE PW-1 EOR DIFFELENT VALJES OF THE HOUDDYFAMIC DISPERSIVITY [3,] 2, <1, 100> meters CONC. Grac. of CIN] C.12 0.11 where: 0.10 ( 10 - conc. of contami hants Lydin the 0,09 land fill 0.09 0,07 for a = 1m 0.06 for a = 10 m for 2= 50 m 0.05 for 2 = 100 m RAM 204 001 0.03 1778 0.02 0.01 0.00 в 9 10 11 12 4 5 2 3 time [years]

PAGE OF URS CONSULTANTS, INC. SHEET NO. 17 OF PROJECT Rimano Jandfill JOB NO. 35207 00. SUBJECT (Datomant 10342D)(1 MADE BY MO DATE CHKD. BY .... DATE REF. The examination of the contamination of the bedrock source for entire vampe of a values succes that the pollutants are reading the area immediately pelow well pw-1 in the steady state concentration of about 12% of Cin where Cin is the procentiation of contaminants on site. thesefore, the possibility of contaminants migrating upwallds towards the well pur-1 has to be investigated.

PAGE OF SHEET NO. 18 OF URS CONSULTANTS, INC. JOB NO. 35 20 7.00. PROJECT Rampo Lawolfill SUBJECT (Ontaminant transport MADE BY MO DATE CHKD. BY DATE REF. PAG 5.) Assessment of the contamination of well Yw-1 Well FW-1 is screened in the upper wy siger. The contamination from the landfill is very ohne to the regional flow pattern (see section 2.). However; the bedruck squifer underneath PU-1 is most probably heavily contaminated i see section 4.) Therefore; the local vertical gradieurs as resulting from the water with draised from PW-1. will be investigated for their influence on the contaminant migration from the bestock aquifer is the well Pw-1. the assessment will be carried out according to the following proceedule: - The inthazered rate in pw-1 will be estimated. - Based on the Lithdraval vale and the hydrogeology of the aquifers the draudiouns in the vicinity of PW-1 will be calculated. - based on the calculated drawoburs, the vertical gradients in the vicinity of PW-1 Irill be computed. - revtical gradients will be used to calculate the percentage of PW-1 of scharge that is drawn from the bedrock apurfer. - concentration of contaminants in the discharge from PW-1 will be evaluated based on the amount of water drawn from the bedroche aquitor A boring log for well URS-9, wood 250-it from PW-1, will be assumed as representathe a hyphierologic conditions in the vicinity

of PW-1.


RAM 00/ 1780

URS CONSULTANTS, INC. PAGE OF SHEET NO. 12 OF PROJECT Ramapo là voltill SUBJECT Contaminant tràniport JOB NO. 3 220 4.02. MADE BY 149 DATE CHKD. BY DATE REF. PAGE a) NA-Duarrai vate The with drawer rate of Lell 2w-1 1's not huppen. Therefore, several ous have istes will be evaluated. The obseribution take will be assumed as being 1500 gallous. It will the be and mod that the pump is activated if the volume of Laster in the isule goes about to 500 gellous. That means that the pump must fill 1000 galions at it's pumping vale. The time to fill up the 1000 gallons volume as a function of discharge is: DISCHARGE QPEAK TIME OF QPEAK [GPM7[FT3/D] [MIN] [MIN] 960 200 5 0.140 1972 100 0.070 10 67 0.047 15 2330 20 3340 25 4800 50 0.035 40 0.028  $t = \frac{1000}{Q_{\text{PEAK}}}$ { [MIH] Q[GPM]  $t = \frac{134}{Q_{PEAK}} \quad t [DATS] \\ R[F13/DAY] \\ PEAK$ 1281

URS CONSULTANTS, INC. PAGE SHEET NO. 20 OF JOB NO. 3520 2 02. PROJECT RAMADO LANDALIN SUBJECT Conta mindat 123-200rt MADE BY MO DATE CHKD. BY .... DATE REF. PAGI 0) Driv 0:00-5 D=2H (invert) 1 2 PEAK 312 302 VPPER AGJIFE Ho ~ 32' K, ne K~ ~270' BEDROCK AQUIFEL based on a boring log URS-B (750 ft from PW-1) and water level monitored on 8/30/90. RAM K = 10 ft/day (from à calibrated groundwater model, representing average K fou both deuse and isosp 001 1782 Sands)  $h_{e} = 0.3$ Effective poissily offer 3. Berr "Hyde of Groundischer" (also (sand) called spec yield) SEE SHEET 35

· .. . . . . . . URS CONSULTANTS, INC. PAGE . .. .. OF SHEET NO. 21 OF PROJECT Kanapor Landfill SUBJECT Loyiaminant tuansport JOB-NO. 2522.2.5 MADE BY-DATE CHKD. BY DATE REF. PAGE Alfer J. Beau "Hydronlies of Groundes-ler Hap division in an unconfined as viter for nonstandy state can be either material as (see the TS 37,38)  $g = \frac{Q_n}{2\pi T} (1 + C_f) \vee (g, \tau)$ avay from the 1.0  $s = \frac{2u}{2\pi T} \left[ m - \ln g_{\rm s} \right]$ extine pumping Qu- well discharge = QPEAN T = Ho * K (see figure on sheet 20 for old f of Ho, K) Cf - correction frector V(g,z) - gravity well function for phreatic aquitors g=r/Ho (ree figure on sheet 20 for ster of r, Ho)  $z = k \epsilon$ hoHo m = empirical function of T t - time The diameter of the well will be assumed 2 ft 52 T 0.05 0.2 1.0 5.0 m -.043 .087 .512 1.288 m(t)

	URS CON project subject	Rama	65 12	und fill		· · · · · · · · · · · · · · · · · · ·	PAGE SHEET NO. 2 JOB NO. 3 MADE BY MO CHKD. BY	2. of 2.9.7.0.2 date
						W-1 2: le (sec foi cheef	2 junc mula 21)	HOT PAG
		· Q _{ps} · t	Liq	(SEE - 6 (SEE - 6	5455T 19 54667 19	)	•	
						. DAY FT = -	.] (s,-e	21)
· ·		• m =	$   \int_{\tau} \frac{1}{\tau} $		GREET 2	27)		•
		• 211	Т = 2Л 2ПК	7 K H _o = H _o = 20	2-3.14-11 10. FT?/DA	0-32 [ FT/ Y	; - FT = Day	TAT ]
		• 9.,	$= r_{w}/$	Ho =	1.0/32 [	デョー]	( १८२	; 1 <del>:</del> 587 2
	. 1		ริพ	= 0, 0	3			: : : :
	Q. Park	t	τ	m	Q 2ITKH0	m-15gw	Sw	h _w =30: -s _w
	F+3/D	DAYS			FT	-	FT	FT
	960	. 140	-15	.000	.48	3.5	1.7	300.
	1920	.070	.07	043	. 96	3.5	3.4	293.
	2 930	.047	.05	043	1.43	3.5	5.0	297.
	3940	.035	•04	043	1.91	3.5	6.7	295.
	4300	.028	.03	043	2.39	3.5	8.4	293.
				L		R	AM 001 1	r 784



PAGE ... OF URS CONSULTANTS, INC. SHEET NO. 24. OF PROJECT Lamopo Land fill SUBJECT Wolamingert forminger JOB NO. C. A. C. C. L. つりぃ MADE BY M? DATE CHKD. BY ... REF. PAGE () Bused on the results of and the incruitores level of 297 FF 1 the bediece aguiter, the vertical upwoud Taking the average is 25 7 15 april.  $i = \frac{\Delta h}{\Delta}$ d & 10 ft , sh = 2 ft i = 2/10 = 0.2Taking a vertical conductivity at .1 KH, Ky=01+10 = 1 FT/DAY therefore, the flow from the posision aquifer to a well for the cone of influence r= 2re is: d) QuperAND Qu = Ky i Aire  $Q_n = 1 - 0.2 - \frac{1742}{L} \left[ \frac{1742}{DA_1} \right]$ - 572 - 573 Q1=2.5 FT 3/DAY = 0.01 GPM e) Assuming the ang chischarge at 20 3pm, the conc. of the contaminants is Cpw-1 = QPEAN C , PPER + Qu - CBEDROCK RPEAN + QU RAM 001 1786

URS CONSULTANTS, INC. PAGE SHEET NO. 25. OF JOB NO. 3520700 MADE BY MO DATE CHKD. BY . ... DATE C BEDROCH = D. 12 CIN CIN - CONC. ON SITE CUPPER = D Q_= 0.01, & PM 2 PERS = 20 SFIL  $C_{pu-1} = \frac{20 \cdot 0 + 0.01 \cdot 0.12 C_{12}}{20 + 0.01}$  $C_{pw-1} = 6E-5C_{iN}$ 

1 001 1787

RAN

# URS CONSULTANTS, INC.

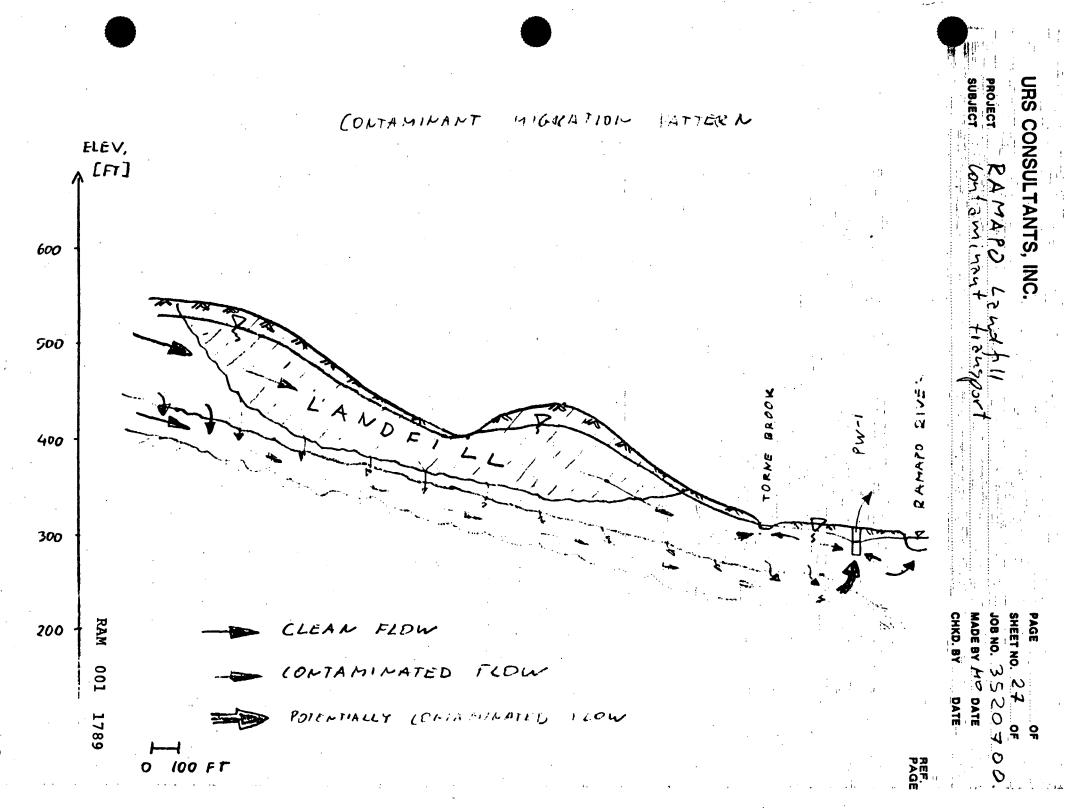
PROJECT RIME po Land fill

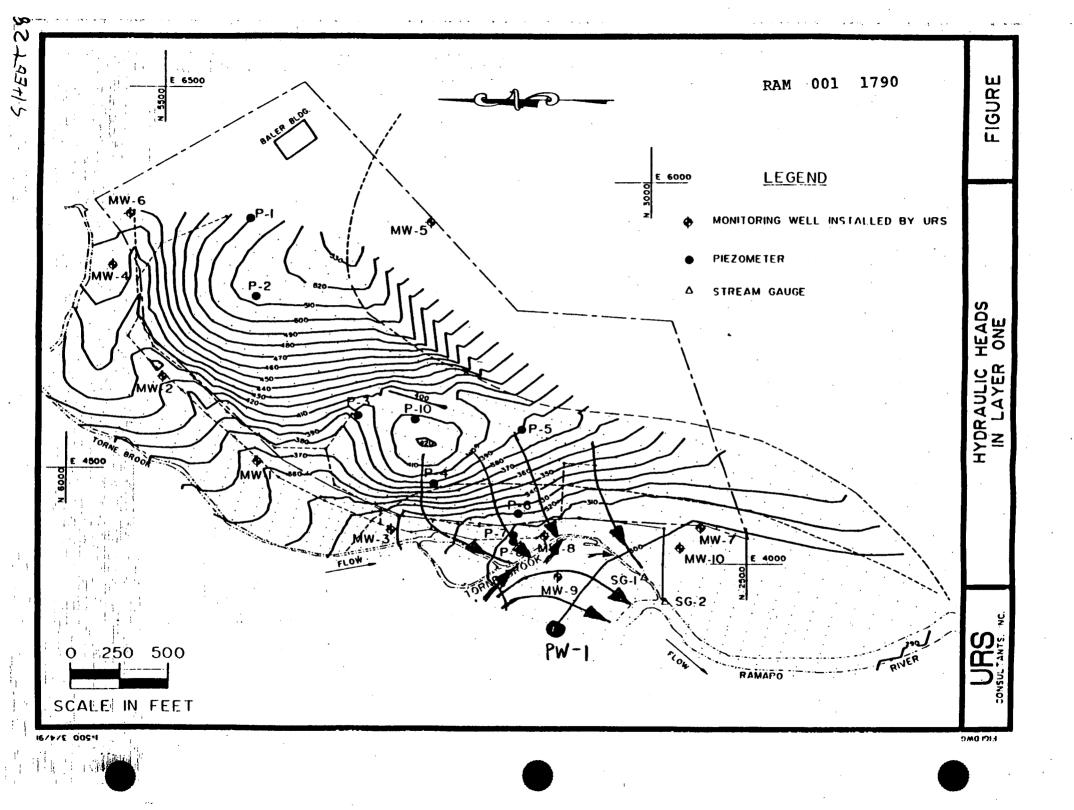
SUBJECT Contaminant transport

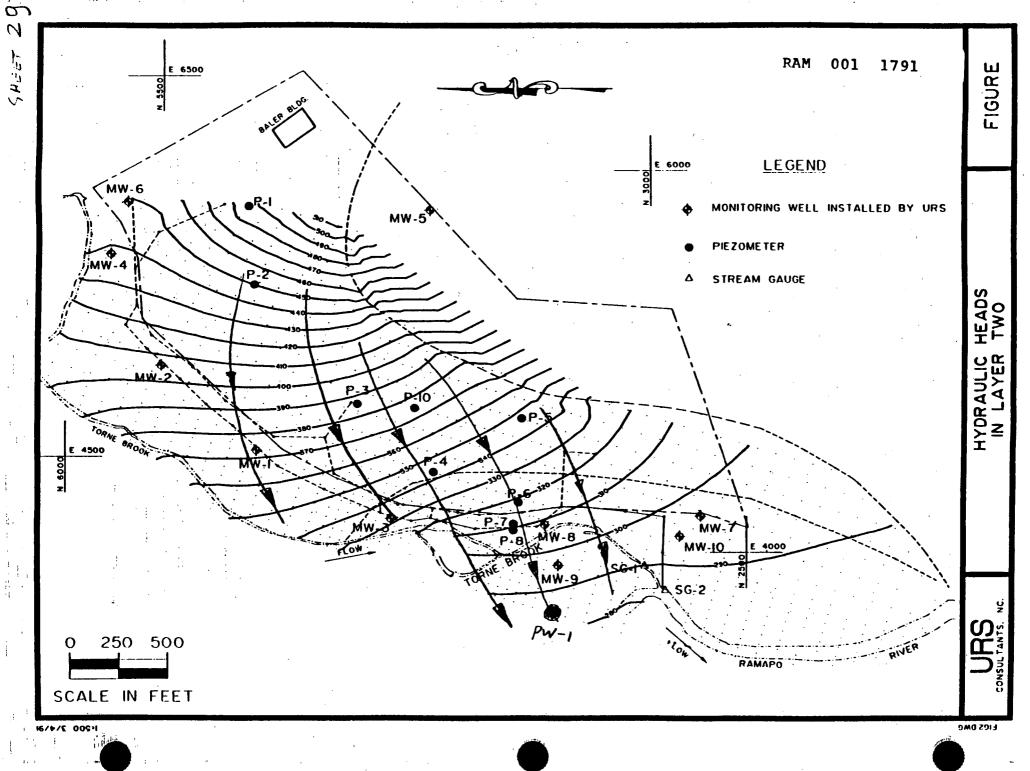
PAGE OF SHEET NO. 26 OF JOB NO. 35207.00 MADE BY 1⁴⁰ DATE CHKD. BY DATE

> REF. PAGE

# 6) SUMMARY


BASED ON THE PROCEEDING CALCULATIONS , FILE FOLLOWING PROMICLUSIONS CAN BE MADE:


- THE CONTAMINATED GROUNDATER WITHIN THE UPPER SANDY ARVIER IS INTERCEPTED BY THE FORME BROOK. FHEREFORE; THE RESIDENTIAL WELL PW-1 WHILH IS LOCATED ON THE OPPOSITE SIDE OF THE BROOK IS NOT BEING CONTAMINATED VIA THE UPPER AQUIFER.


- DOWNWARD GRADIENTS PREVAIL ACCROSS THE SITE AND THE CONTAMINATED LEDUNDUATER FROM THE LANDFILL IS INFILTRATING INTO THE LOWER (BEDROCK) AQUIFER. THERE FORE; THE BEDROCK AQUIFER UNDER NEATH THE LANDFILL IS HEAVILY (ONTAMICATED. A) THERE IS NO BARRIER RESTRIC-TING THE GLOUNDWATER MOVEMENT WITHIN THE BEDROCK AQUIFER, THE CONTAMINATION OF 15-35 TOGARDS THE RESIDENTIAL WELL PW-I AND RAMAPO RIVER. IT IS ESTIMATED THAT AT THE PRESENT TIME THE GROUNDWATER WITHIN THE BEDROCK AQUIFER RIGHT UNDERNEATH THE WELL PW-1 CARRIES A CONCENTRATION OF CONTHMINANTS OF ABOUT 12% DE THAT DIRECTLY IN THE LANDFILL.

- ESTIMATED WITHDRAWAL RATES IN LELL PW-1 ARE TO SMALL TO CAUSE SIGNIFFICANT JOUARD FLOWS FROM THE BEDROCK AQUIFER. IT WAS ESTIMATED THAT, DEPENDING ON THE WITHDRAWAL DATES ASSUMED, THE CONCENTRATION OF IONTAMINANTS IN AME WELL WATER CAN VARY FROM ZERO TO 10⁻⁵ C JUMERE CIN IS THE COMC. OF CONTAMINANTS WITHIN THE WASTE AREA. THEREFORE; IT IS QUESTIONABLE WHENTHER THE WELL PW-1 'S ACTUALLY EXPERIENCING EFFECTS OF THE COUTAMINE. NATION OF THE BEDROCK AQUIFER.

RAM 001 1788







# SHEET 30

RAM

1.00

1792

Groundwater and Wells Second Edition

> Fletcher G. Driscoll, Ph.D. Principal Author and Editor

Published by Johnson Filtration Systems Inc., St. Paul, Minnesota 55112

t by certain ... basal beds ording to the ain by an vertically juifer. Where rocks below. c rate mathun. Confined called leaky c o analyze i d aquifer

nu a conduit and are part c conduits r :ar to feet i f not used,



and gravel

i Loks. Jolomite: n interconf.

fi ction are consermined an index of ly xpressed

(5.5)

e presented

q fer is of c storage cnts the OCCURRENCE AND MOVEMENT OF GROUNDWATER

Table 5.1 Porosities for Common Consolidated and Unconsolidated Materials

Unconsolidated Sediments	η (%)	Consolidated Rocks	ŋ (%)
Clay <u>a sub</u>	45-55	Sandstone	5-30
Silt	35-50	Limestone/dolomite (original &	
Sand	25-40	secondary porosity	1-20
Gravel	25-40	Shale	0-10
Sand & gravel mixes	10-35	Fractured crystalline rock	0-10
Glacial till	10-25	Vesicular basalt	10-50
•	•	Dense, solid rock	. <1

volume of water an aquifer can hold, it does not indicate how much water the aquifer will yield.

When water is drained from a saturated material under the force of gravity, the material releases only part of the total volume stored in its pores. The quantity of water that a unit volume of unconfined aquifer gives up by gravity is called its specific yield (Figure 5.5). Specific yields for certain rocks and sediment types are presented in Table 5.2. Some water is retained in the pores by molecular attraction and capillarity. The amount of water that a unit volume of aquifer retains after gravity drainage is called its specific retention. The smaller the average grain size, the greater is the percent of retention; the coarser the sediment, the greater will be the specific yield when compared to the porosity. The surface area for different-size sand grains is shown in Table 5.3. Note the large increase in surface area for the finest sediment. As the surface area increases, a larger percentage of the water in the pores is held by surface tension or other adhesive forces. Therefore, finer sediments have lower specific yields compared to coarser sediments, even if they both have the same porosity.

Specific yield plus specific retention equals the porosity of an aquifer. Both specific yield and specific retention are expressed as decimal fractions or percentages. Specific yields of unconfined aquifers (equivalent to their storage coefficients^{*}) range from 0.01 to 0.30. Specific yields cannot be determined for confined aquifers because the aquifer materials are not dewatered during pumping.

Storage coefficients are much lower in confined aquifers because they are not drained during pumping, and any water released from storage is obtained primarily by compression of the aquifer and expansion of the water when pumped. During

Table 5.2. Representative S	pecific Yield Ranges f	or Selected Earth Mate	rials
-----------------------------	------------------------	------------------------	-------

	Sediment	Specific Yield, %	
	Clay	1-10	
	Sand	10-30	
	Gravel	15-30	
	Sand and Gravel	15-25	
	Sandstone	5-15	
	Shale	0.5- 5	
· ·	Limestone	0.5- 5	

#### (Walton, 1970)

*The coefficient of storage is fully defined in Chapter 9. Briefly, it is the volume of water taken into or released from storage per unit change in head per unit area.

001 1793

RAM

SHEET 31



Department of Geological Sciences University of British Columbia Vancouver, British Columbia

SHEET 32

John A. Cherry

Department of Earth Sciences University of Waterloo Waterloo, Ontario

GROUNDWATER

Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632 RAM 001 1794

JACOB BEAR

Haifu Israel

Department of Civil Engineering Technion – Israel Institute of Technology

#### McGRAW-HILL BOOK COMPANY

#### New York St. Louis San Francisco Auckland Bogotá Hamburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo

Toronto

.

### River

at,

### es and

f .

, Hydraulics of Groundwater

RAM 001 1795

SHEET

#### 268 HYDRAULICS OF GROUNDWATER

**Case 5.** Movement of a radioactive tracer in a semi-infinite column This is the case where the column (x > 0), initially at tracer concentration C = 0, is connected to a reservoir containing a tracer solution of constant concentration  $C_0$ . The flow in the column is maintained at a constant specific discharge q in the +x direction. The tracer continuously undergoes radioactive decay.

The partial differential equation here is

$$\frac{\partial C}{\partial t} = D_h \frac{\partial^2 C}{\partial x^2} - \frac{q}{n} \frac{\partial C}{\partial x} - \lambda C$$
(7-130)

where  $\lambda = \ln 2/T$  and T is the half-life of the radioactive tracer.

We assume, that at x = 0 the concentration immediately reaches its ultimate level  $C_0$  upon commencement of flow. This is equivalent to an assumption that at x = 0,  $\lim_{t \to 0} \partial C/\partial x = 0$ . We refer to this condition as an assumption since from (7-71) it follows that at x = 0 the boundary condition should actually be

$$C_0 q = Cq - nD_{\rm h} \hat{c}C/\hat{c}x$$

or

$$q(C_0 - C) = -nD_h \hat{c}C/\hat{c}x$$

Accordingly, the initial and boundary conditions are

$$t \le 0, \quad x \ge 0, \quad C = 0$$
  
 $t > 0, \quad x = 0, \quad C = C_0$  (7-132)

$$x = \infty, \quad C = 0$$

(7 - 131)

By applying the Laplace transform to (7-130) and (7-132), we obtain the solution (Bear, 1972, p. 630)

$$C(x,t) = \frac{C_0}{2} \exp\left\{\frac{qx}{2nD_h}\right\} \cdot \left[\exp(-x\beta) \cdot \operatorname{erfc}\frac{x - \left[(q/n)^2 + 4\lambda D_h\right]^{1/2}t}{2\left[D_h t\right]^{1/2}}\right]$$

+ 
$$\exp(\beta x) \cdot \operatorname{erfc} \frac{x + [(q/n)^2 + 4\lambda D_h]^{1/2} t}{2[D_h t]^{1/2}}$$
 (7-133)

where  $\beta^2 = q^2/4n^2D_h^2 + \lambda/D_h$ .

For  $\lambda = 0$  (i.e., without radioactive decay), (7-133) reduces to

$$C(x,t) = \frac{C_0}{2} \left\{ \operatorname{erfc} \frac{x - (q/n)t}{2[D_h t]^{1/2}} + \exp\left(\frac{qx}{nD_h}\right) \cdot \operatorname{erfc} \frac{x + (q/n)t}{2[D_h t]^{1/2}} \right\} \quad (7-134)$$

If we now introduce adsorption (see Case 2), (7-134) becomes

$$C(x,t) = \frac{C_0}{2} \left\{ \operatorname{erfc} \frac{R_d x - (q/n) t}{2[R_d D_h t]^{1/2}} + \exp\left(\frac{qx}{nD_h}\right) \operatorname{erfc} \frac{R_d x + (q/n) t}{2[R_d D_h t]^{1/2}} \right\}.$$
 (7-135)

Curves describing (7-134) are shown in Fig. 7-12. According to Ogata and Banks (1961), who also obtained (7-134), the second term in (7-134) may be neglected

by an by D

AI

5*4EE*T

0 999

0.8

 $\frac{c}{c_0}$ 

· 0.1

0.001

Figure

wher

an cr is the

simil

Whe

 $a_L q/r$ the r

which

RAM

001

AGe 743

#### 88 HYDRAULICS OF GROUNDWATER

from the volume of pore space between the two positions of the phreatic surface. The storativity of a phreatic aquifer is, therefore, sometimes referred to as specific yield,  $S_y$ ; it gives the yield of an aquifer per unit area and unit drop of the water table (see further discussion in Sec. 6-1).

Recalling that actually the water table is an approximate concept, we understand that water is actually being drained from the entire column of soil up to the ground surface. Bear (1972, p. 485) shows that when the soil is homogeneous and the fluctuating water table is sufficiently deep, the above definition for specific yield still holds (see Sec. 6-1).

One should be careful not to identify the specific yield with the porosity of a phreatic aquifer. As water is being drained from the interstices of the soil, the drainage is never a complete one. A certain amount of water is retained in the soil against gravity by capillary forces. After drainage has stopped, the volume of water retained in an aquifer per unit (horizontal) area and unit drop of the water table is called *specific retention*, S_r. Thus

$$S_n + S_r = n$$
 (5-12)

For this reason  $S_y$  (<n) is sometimes called *effective porosity*. Here, again, one should note that we have been referring to the approximate concept of a water table. However, for a homogeneous soil and a sufficiently deep water table, the above definition for S, holds (see Sec. 6-1).

Figure 5-4 shows the relationships between Sy, S, and particle size.

When drainage occurs, it takes time for the water to flow, partly under unsaturated flow conditions, out of the soil volume between two positions of a water table, at t and at  $t + \Delta t$ . This is especially true if the lowering of the water table is rapid. Under such conditions, the specific yield becomes time dependent, gradually approaching its ultimate value (Fig. 5-5). When the water level is rising or falling slowly, the changes in moisture distribution have time to adjust continuously and the time lag vanishes. This phenomenon of time dependency of the

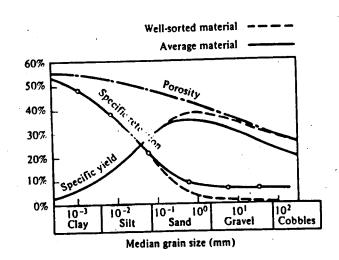



Figure 5-4 Relationship between specific yield and grain size (from Conkling et. al., 1934, as modified by Davis and DeWiest, 1966).

Never par ins an the the

RAM

100

1797

SHEET

helo

stora

How the a stora

we h

poin

rous

fron

S_a o

aqu

rive

5-2

Ma

In 🕒

sior

tion in

Groundwater Contamination / Ch. 9

SHEET

RAM

100

1798

tracer front to advance in a pattern commonly referred to as *fingering*. In this case the contaminant is transported more rapidly in the lenses or beds of higher hydraulic conductivity. Figure 9.9(c) illustrates results obtained by Skibitzke and Robertson (1963) using dye tracers in a box model packed with fine sand and long sinuous lenses of coarser sand. These authors observed that a large angle of refraction at the boundary between sand of contrasting permeability caused accelerated spreading of the tracer zone.

In one of the very few detailed three-dimensional studies of contaminant movement in sandy deposits, Childs et al. (1974) observed that "plumes migrate along zones ... that, although they are texturally similar, show subtle differences in fabric that result in slight variations in permeability. Bifurcations indicate that detection of a shallow plume does not negate the existence of the other plumes of the same constituent at depth" (p. 369).

Nearly all studies of dispersion reported in the literature Jave involved relatively homogeneous sandy materials under controlled conditions in the laboratory. These studies have indicated that the dispersivity of these materials is small. Values of longitudinal dispersivity are typically in the range of 0.1 to 10  $\mu$  with transverse dispersivity values normally lower by a factor of 5-20. Whether or not these values are at all indicative of dispersivities in field systems is subject to considerable controversy at the present time. Many investigators have concluded that values of longitudinal and transverse dispersivities in field systems are significantly larger than values obtained in laboratory experiments on homogeneous materials or on materials with simple heterogeneities. Values of longitudinal dispersivity as large as 100 m and lateral dispersivity values as large as 50 m have been used in mathematical simulation studies of the migration of large contaminant plumes in sandy aquifers (Pinder, 1973; Konikow and Bredehoeft, 1974; Robertson, 1974).

To illustrate the effect of large dispersivities on the migration of contaminants in a hypothetical groundwater flow system, a cross-sectional flow domain similar to that shown in Figure 9.8(a) and (b) will be used. Figure 9.10 shows the effect of dispersivity on the spreading of a contaminant plume that emanates from a source in the recharge area of the flow system. Although the cross sections shown in Figure 9.10 are homogeneous, dispersivities for the system are assumed to be large as a result of small-scale heterogeneities. With assigned values of dispersivity the patterns of contaminant distribution can be simulated using a finite-element approximation to the transport equation expressed in two-dimensional form for saturated heterogeneous isotropic media [Eq. (A10.13), Appendix X]:

$$\frac{\partial}{\partial s_i} \left( D_i \frac{\partial C}{\partial s_i} \right) + \frac{\partial}{\partial s_i} \left( D_i \frac{\partial C}{\partial s_i} \right) - \frac{\partial}{\partial s_i} (\tilde{v}_i C) = \frac{\partial C}{\partial t}$$
(9.8)

where  $s_i$  and  $s_i$  are the directions of the groundwater flowlines and the normals to these lines, respectively. The finite-element model used to obtain the contaminant distributions shown in Figure 9.10 is described by Pickens and Lennox (1976).

# SHEET 37

### 8-6 UNSTEADY FLOW TO A WELL IN A PHREATIC AQUIFER 333

that is, an infinitesimally narrow well with a discharge,  $Q_w$ , entering uniformly along the original depth of saturation,  $H_0$ , although the actual length of saturation at the face of the well varies during pumpage. Finally, he assumes that the contribution to the flow by water and aquifer compression may be neglected, except during the very early period of pumping, i.e., the right-hand side of (8-85) may be assumed zero. One should notice that he nevertheless solves for  $\phi = \phi(r, z, t)$ , because of the nonsteady boundary condition (8-91). Under these conditions Boulton's solution is

$$H_0 - \phi(r, z, t) = \frac{Q_w}{2\pi T} \int_0^\infty \frac{J_0(\chi r/H_0)}{\chi} \left\{ 1 - \frac{\cosh \chi z/H_0}{\cosh \chi} \exp\left[-\tau \chi \tanh \chi\right] \right\} d\chi$$
(8-91b)

and

))

11.

h.

1

ł,

ig. ...c

**H**)

as w

$$s(r,t) = H_0 - h(r,t) = \frac{Q_w}{2\pi T} V(\rho,\tau)$$
$$\equiv \frac{Q_w}{2\pi T} \int_0^\infty \frac{J_0(\chi\rho)}{\chi} \{1 - \exp(-\tau\chi \tanh\chi)\} d\chi \quad (8-91c)$$

where  $\rho = r/H_0$ ,  $\tau = Kt/n_cH_0$ ,  $T = KH_0$ . To minimize the errors involved in obtaining (8-91c), a correction factor  $C_f$  is applied to the latter

$$s = \frac{Q_w}{2\pi T} (1 + C_f) V(\rho, \tau)$$
 (8-91d)

where  $C_f$  depends on  $\rho$ ,  $\tau$ ,  $r_w/H_0$  and  $Q_w/H_0^2$ . Boulton (1954), Schoeller (1959) and Hantush (1964) give values of V and  $C_f$  (in the form of graphs and tables) which range from about -0.30 to about 0.16. The values of  $C_f$  are given separately for  $\tau > 5$  and for  $\tau < 0.05$ . In the range  $0.05 < \tau < 5$ ,  $C_f$  may be assumed zero with an error not exceeding six percent.

The values of the gravity well function for phreatic aquifers  $V(\rho, \tau)$  may also be approximated as follows

For  $\tau < 0.05$ 

$$V(\rho,\tau) \approx \sinh^{-1}(1/\rho) + \sinh^{-1}(\tau/\rho) - \sinh^{-1}[(1+\tau)/\rho]$$

For  $\tau > 5$ 

$$V(\rho, \tau) \approx \frac{1}{2} W(\rho^2/4\tau) = \frac{1}{2} W(u);$$
  $u = n_e r^2/4 I t$ 

where W(u) is the well function of a confined aquifer. For  $\tau < 0.01$ 

$$V(\rho,\tau) \approx \sinh^{-1}(\tau/\rho) - \tau/\sqrt{1+\rho^2}$$

For  $\tau < 0.01$  and  $\tau/\rho > 10$ 

 $V(\rho,\tau) \approx \ln (2\tau/\rho)$ 

RAM

100

#### 334 HYDRAULICS OF GROUNDWATER

For the drawdown in the pumped well, Boulton (1954) suggests for  $\tau < 0.05$ , to compute the drawdown by (8-91d), with  $\rho \rightarrow \rho_w = r_w/H_0$  and  $h \rightarrow h_w$ ; for  $0.05 < \tau < 5$ , the drawdown may be computed from

$$s_w = H_0 - h_w = \frac{Q_w}{2\pi T} (m - \ln \rho_w)$$
 (8-92)

らけらじて 3

RAM

100

1800

where

τ	0.05 -0.043	0.2	1.00	5.00	
m	-0.043	0.087	0.512	1.288	

and intermediate values may be obtained by interpolation. For  $\tau > 5$ , we have

$$H_0^2 - h_w^2 = \frac{Q_w}{\pi K} \ln\left(\frac{1.5\sqrt{\tau}}{\rho_w}\right) = \frac{Q_w}{2\pi K} \ln\frac{2.25Tt}{n_e r_w^2}$$
(8-93)

to be compared with (8-24) and (8-92).

The drawdown for an anisotropic aquifer may be obtained by replacing  $\tau$  by  $\tau' = K_z t/n_e H_0$  and  $\rho$  by  $\rho' = (r/H_0) (K_z/K_r)^{1/2}$ .

Hantush (1964) discusses the drawdown in observation wells at some distance from a pumping well. In the region r > 1.5H, equipotentials are practically vertical and the average drawdown in observation wells is practically equal to the drawdown of the water table given by (8-91d).

In the region  $r < 1.5H_0$ , Hantush (1964) suggests for  $(H_0 - h_w) < 0.5H_0$ and  $t > 30 r^2 n_e/T$ 

$$H_0^2 - \tilde{h}^2 = (Q_w/2\pi K) W(u);$$
  $u = n_e r^2/4Tt;$   $T \approx KH_0$  (8-94)

where  $\tilde{h}$  is the average head defined by  $\tilde{h} = (1/h) \int_0^h \phi(r, t) dz (\tilde{h} < h)$ . For u < 0.05, or  $t > 5 r^2 n_e/T$ 

$$H_0^2 - \bar{h}^2 = (Q/2\pi K) \ln \frac{2.25 T t}{n_e r^2}$$
(8-95)

Closer to a pumping well, (8-94) gives approximately the depth h of water in a piezometer open at the impervious horizontal base of an aquifer (smaller than the actual water level in an observation well located above that point).

One should note, that in (8-94) and (8-95)

$$H_0^2 - \tilde{h}^2 = (H_0 - \tilde{h})(H_0 + \tilde{h}) = s(H_0 + H_0 - s) = 2H_0 s(1 - s/2H_0)$$

which for  $s \ll 0.02H_0$  may be approximated by  $2H_0s$  so that the Theis formula (8-61) and Jacob's straight line approximation (8-62) are applicable.

Boulton (1965) solves also the case of a well pumping from an aquifer of infinite areal extent with a constant drawdown at the pumping well. Here also the exact non-linear phreatic surface boundary condition is replaced by the approximate one (8-87), so that the boundary and initial conditions may be summarized by (Fig. 8-6)

(a) A set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se



### APPENDIX P.4

### GAS EMISSIONS

RAM 001 1801

# URS CONSULTANTS, INC.

5

÷.,.

PROJECT RAMAPO LANDFILL

SUBJECT GAS EMISSIOUS

· · · · ·

. _ . .

•

• · ·

-

PAGE O OF 20 SHEET NO. OF JOB NO. MADE BY MO DATE 08/01/ CHKD. BOC DATE 2/1/71

PAGE

RAM 00

001 1802

1.) GENERAL '

The purpose of this calculation is to estimate concentrations of contaminants in air due to emissions from the Ramapo Landfill.

2.) METHODOLOGY

۱

The calculations were performed following the methodology outlined in the "New York State Air Guide – 1", draft of the 1991 edition. The process consisted of the following steps :

- A. Estimation of emission rates
- B. Determination of points of concern
- C. Calculation of contaminant concentrations in air at the points of concern
- 3.) CALCULATIONS

A.) Estimation of emission rates

According to the requirements of the "NYS Air Guide – 1 " area source method, the landfill was divided into sections that could be represented by square areas. Two sections were selected :

Area 1 – North lobe

Area 2 – South lobe

### (see Ref.1, page 7)

According to the USEPA estimates, a cubic yard of refuse generates 220 cubic feet of gas per year (see Ref.2,page 11). Based on that, if the produced gas contains concentration "C" of a particular compound, the emission rate of that compound is :

Qa = 220*V*C

(1)

Where :

- Qa annual emission rate [lb/yr]
- 220 yearly production of gas from 1 cy of refuse [ft^3/cy*yr]
  - V volume of refuse [cy]
  - C concentration of compound in emitted gas [lb/ft^3]
- B.) Determination of points of concern

The "Air Guide – 1 " methods estimate the concentrations of contaminants in air directly downwind from the source. The site was analyzed in order to determine points of potentially highest impact, located at the property boundry. The following criteria were taken into account :

- Proximity to source

- Compounding effect of emissions from both area1 and area 2 Based on that, the following points on the property line were found to have potentially high contaminant concentrations :

Point 1 – Northeast of the north lobe, due to the proximity to Area 1 and compounding effects of emissions from both Area 1 and Area 2

- Point 2 Northwest of the north lobe, due to the location at the boundry of Area 1
- Point 3 West of the south lobe, due to the location at the boundry of Area 2

Point 4 – Southwest of south lobe, due to the location at the boundry of Area 2 and compounding effects of emissions from both Area 1 and Area 2 For locations of points 1, 2, 3 and 4 <u>see page 7.</u>

C.)	Calculation of	contaminant concentrations in air at the points of co	oncern
	The area source	e method of the " NYS Air Guide - 1 " was utilized	. For the description
		<u>see Ref.3, pages 13-18.</u>	
	Explanation of	terms :	
	·D –	Distance from the center of the source area	
		to the point of concern [ft]	
	A –	Surface area of source [ft^2]	
	S –	Side length of the area source [ft]	
		S = SQRT(A)	(2)
	- Re –	Effective radius of the area source [ft]	
		Re = 0.56*S	(3)
	Ha –	Height of the area source [ft]	•
		Volume of refuse [cy]	· .
	C –	Concentration of contaminant in emitted gas [lb/ft	`3]
	Qa –	Source emission rate [lb/yr]	
		Qa = 220*V*C	(1)
	QA –	Source emission rate [lb/hr*ft^2]	
		QA = Qa/8760*A	(4)
	K –	Coefficient	
		K = 15 for 330 ft < S < 3300 ft	
		K = 30 for S > 3300 ft	(5)
	Cm –	Conversion factor from lb/hr*ft^2 to $\mu$ g/m^2*sec	
		C = 1.355e+6	
	Ca –	Maximum Annual Actual Impact conc. [µg/m^3]	

For the receptor located outside of the source area ( D > Re ) :

Ca = 104*Qa/[(D+S)^1.6*Ha^0.368]

For the receptor located inside the source area (  $\mathsf{D}<\mathsf{Re}$  ) :

Ca = K * QA * Cm

(7)

(6)

2 с гс

**RAM 001 1805** 

1		
	•	

----

· . ;

÷ • • •

	•			
			•	-

Site - specific values :

SURFACE SIDE SOURCE WASTE EFFECTIVE EMISSION EMISSION AREA VOLUME LENGTH RADIUS HEIGHT RATE RATE Α V S Re Ha ĸ Qa QA [acres] [ft] [Cy] [ft] [ft] [lb/yr] [lb/hr*ft^2] Source Ref.4 Ref.4 (2) (3) Ref.3 (5) (1) (4) Pg.20 Pg.20 Pg.15 AREA 1 32.00 1,350,000 1,181 661 3 15 2.97E+08 *C1 2.43E-02 *C1 AREA 2 16.00 618,000 835 468 3 15 1.36E+08 *C2 2.23E-02 *C2

.

-----

# MAXIMUM ANNUAL ACTUAL IMPACT CONCENTRATIONS AT POINTS OF CONCERN

_				
 D	Re	Point location	Ca	
 [ft] -	[ft]	/Method used	[µg/m^3]	
1000	661	D>Re, use (6)	9.39E+04	• C1
2100	468	D>Re, use (6)	2.67E+04	• C2

POINT 1

Source

contrib.

AREA 1

AREA 2

9.39E+04 Ca tot = C1 + 2.67E+04 * C2

: :

#### POINT 2

Source	D	Re	Point location	Ca
contrib.	[ft]	[ft]	/Method used	[µg/m^3]
AREA 1	600	661	D <re, (7)<="" td="" use=""><td>4.94E+05 * C1</td></re,>	4.94E+05 * C1

#### POINT 3

Source	D	Re	Point location	Ca
contrib.	[ft]	. [ft]	/Method used	[µg/m^3]
AREA 2	450	661	D <re, (7)<="" td="" use=""><td>4.53E+05 * C2</td></re,>	4.53E+05 * C2

#### POINT 4

Source	D	Re	Point location	Ca
contrib.	[ft]	[ft]	/Method used	[µg/m^3]
AREA 1	1700	661	D>Re, use (6)	6.01E+04 * C1
AREA 2	600	468	D>Re, use (6)	8.39E+04 * C2
	Ca tot =	6.01E+04	* C1 +	8.39E+04 * C2

C1 +

[µg/m^3]

001 1806

RAM

3 Ζ

[µg/m^3]

Based on the monitoring results of RI, the MAXIMUM concentrations of contaminants in gas emitted from the landfill are : (see Ref. 1, pages 7,8,9,10)

Parameter	Avg. Conc. for	r Area 1 (C1)	Avg. Conc. for A	Maximum	
	PSR-2,3,3	3D,4,4BT	VOC-1	,2,3	Conc.
4	[mg/m^3]	[lb/ft^3]	[mg/m^3]	[lb/ft^3]	[lb/ft^3]
2-Butanone	0.0180	1.12E-09	0.0079	4.93E-10	1.12E-09
1,1,1–Trichloroethane	0.0011	6.86E-11	0.0008	4.99E-11	6.86E-11
Carbon Tetrachloride	0.0004	2.50E-11	0.0002	1.25E-11	2.50E-11
Benzene	0.0290	1.81E-09	0.0007	4.37E-11	1.81E-09
Chlorobenzene	- 0.3700	2.31E-08	0.0005	3.12E-11	2.31E-08
Ethylbenzene	1.2000	7.49E-08	0.0026	1.62E-10	7.49E-0
Tetrachloroethylene	0.0041	2.56E-10	0.0000	0.00E+00	2.56E-10
Styrene	0.0008	4.99E-11	0.0005	3.12E-11	4.99E-1
Toluene	0.2700	1.68E-08	0.0079	4.93E-10	1.68E-0
Xylene (Total)	7.7000	4.80E-07	0.0110	6.86E-10	4.80E-0
Methylene Chloride	0.0030	1.87E-10	0.0018	1.12E-10	1.87E-1
Acetone	0.0180	1.12E-09	0.0160	9.98E-10	1.12E-0

The concentrations at points of concern were calculated based on the assumption that, for each compound, the representative concentration in the emitted landfill gas is equal to maximum concentration of that compound detected in all sampling points, i.e. C1=C2=MAX[C1,C2] (see above table). From that, and based on the results from page 3, the concentrations at the points of concern are :

Parameter		Concentrations (		
	POINT 1	POINT 2	POINT 3	POINT 4
2-Butanone	1.35E-04	5.55E-04	5.08E-04	1.62E-04
1,1,1-Trichloroethane	8.28E-06	3.39E-05	3.11E-05	9.89E-06
Carbon Tetrachloride	3.01E-06	1.23E-05	1.13E-05	3.60E-06
Benzene	2.18E-04	8.95E-04	8.19E-04	2.61E-04
Chlorobenzene	2.78E-03	1.14E-02	1.04E-02	3.33E-0
Ethylbenzene	9.03E-03	3.70E-02	3.39E-02	1.08E-0
Tetrachioroethylene	3.08E-05	1.26E-04	1.16E-04	3.69E-0
Styrene	6.02E-06	2.47E-05	2.26E-05	7.19E-0
Toluene	2.03E-03	8.33E-03	7.63E-03	2.43E-0
Xylene (Total)	5.79E-02	2.38E-01	2.17E-01	6.92E-0
Methylene Chloride	2.26E-05	9.25E-05	8.47E-05	2.70E-0
Acetone	1.35E-04	5.55E-04	5.08E-04	1.62E-0

The highest concentrations of each of the parameters, as compared to TLV and AGC standards, are :

Parameter	Highest	Location	TLV/300	AGC	Ca > TLV
	conc. (Ca)		conc.		or
<	[µg/m^3]	Point #	[µg/m^3]	[µg/m^3]	Ca > AGC
2-Butanone	5.55E-04	2	1.97E+03	3.00E+02	No
1,1,1–Trichloroethane	3.39E-05	2	6.37E+03	1.00E+03	No
Carbon Tetrachloride	1.23E-05	2	1.03E+02	7.00E-02	No
Benzene	8.95E-04	2	1.07E+02	1.20E-01	No
Chlorobenzene	1.14E-02	2	1.15E+03	2.00E+01	No
Ethylbenzene	3.70E-02	2	1.45E+03	1.00E+03	No
Tetrachloroethylene	1.26E-04	2	1.13E+03	7.50E-02	No
Styrene	2.47E-05	2	7.10E+02	5.10E+02	No
Toluene	8.33E-03	2	1.26E+03	2.00E+03	No
Xylene (Total)	2.38E-01	2	1.45E+03	3.00E+02	No
Methylene Chloride	9.25E-05	2	5.80E+02	2.70E+01	No
Acetone	5.55E-04	2	5.93E+03	1.40E+04	No

RAM 001

40/20

4,08T

URS CONSULTANTS, INC.	PAGE 5	OF Z	20
	SHEET NO.	OF	:
PROJECT	JOB NO.		
SUBJECT	MADE BY	DATE	
······································	CHKD. BY	DATE	

BASED ON THE RESULTS FROM PAGE 4 IT APPEARS THAT THE TLV AND AGC STANDARS ARE NOT SKEEDED ON THE PROPERTY BOUMDRY

# ZEFEZENCES

L) RI/FS REPORT (APRIL 91)

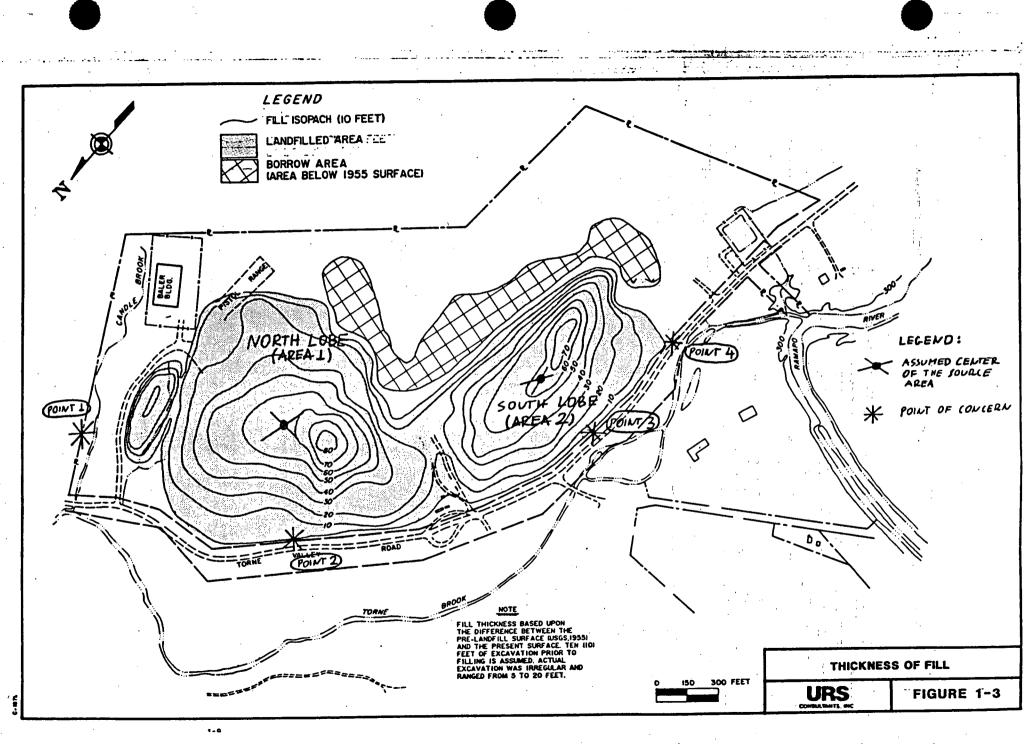
- 2) LETTER FROM NYSDEC (K.A. McCue, Project Manager, Bureau of Central Remedial Action ) TO J. LANCO, URS RECEIVED JULY 22,31
- 3) DRAFT " N'S AIR GUIDE 1 ", 91 EDITION 4) RIJES LANDFILL GAS ANALTSIS

RAM [00 1808

REF. PAG n en fooren en formen en formen. Terrego en formale generation de la companya de la companya de la companya de la companya de la companya de la

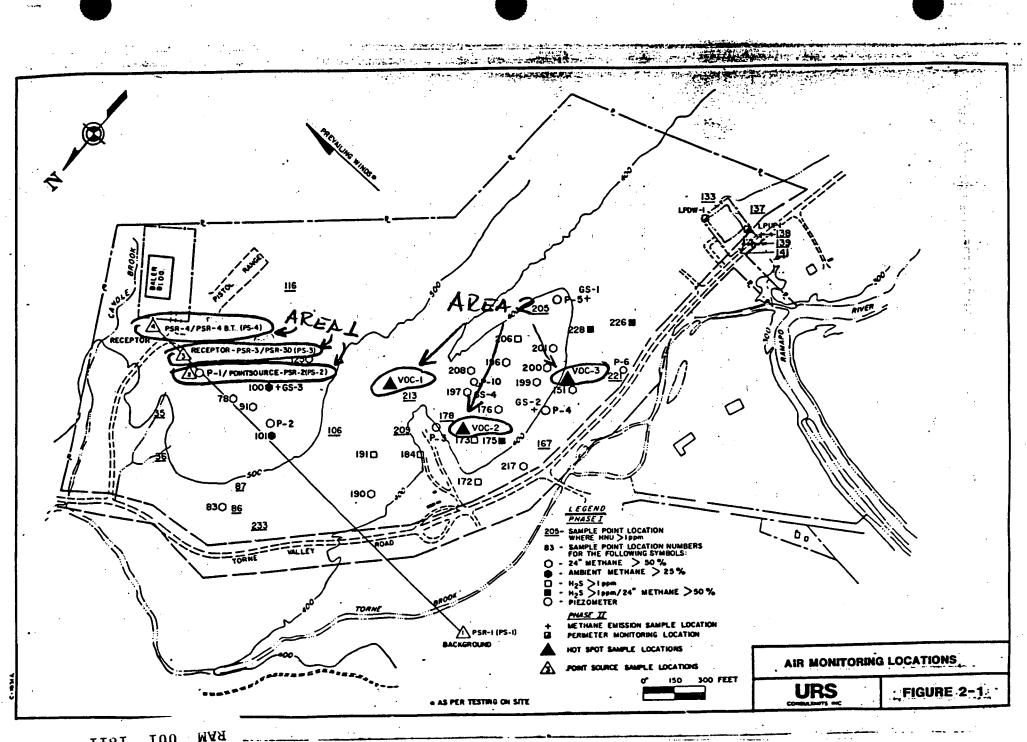
> REMEDIAL INVESTIGATION AND FEASIBILITY STUDY AT THE RAMAPO LANDFILL RAMAPO (T), ROCKLAND (C), NEW YORK

Ζ(


RAM

001 1809

April 1991


Prepared for:

TOWN OF RAMAPO, NEW YORK



#### RAM 001 1810

പ.



IISI IOO MA

TA	BL	E.	4-	-23
----	----	----	----	-----

Phase II Air Monitoring Program VOA Analytical Summary Ramapo Landfill

AREA	2

Parameter	Units	TLV	VOC-1	VOC-2	VOC-3	LPDW-1	LPUP-1	LPTB-1
2 – Butanone	mg/m^3	590	0.0054	0.0079	0.003	0.0031	ND	ND
1,1,1 - Trichloroethane	mg/m^3	1910	ND	0.0008	ND	0.0011	0.0013	ND
Carbon Tetrachloride	mg/m^3	31	ND	0.0002 J	ND	0.0007	ND	ND
Benzene	mg/m^3	32	0.0007	0.0006	0.0003 J	0.0008	0.001	ND
Chlorobenzene	mg/m^3	345	ND	0.0005	ND	ND	ND	ND
Ethylbenzene	mg/m^3	434	ND	0.0026	0.0008	ND	0.0009	ND
Tetrachloroethylene	mg/m^3	339	ND	ND	ND	ND	ND	ND
Styrene	mg/m^3	213	ND	ND	0.0005	ND	ND	ND
Toluene	mg/m^3	377	0.0079	0.0016	0.0061	0.0017	0.0038	ND
Xylene (Total)	mg/m^3	434	ND	0.011	0.007	0.0025	0.0058	ND
Methylene Chloride	mg/m^3	174	0.0018 B	0.001 B	0.0013 B	0.0023 B	0.001 B	0.0028 B
Acetone	mg/m^3	1780	0.015 B	0.013 B	0.016 B	0.011 B	0.011 B	0.0061 B

NOTE: Samples were analyzed for the complete TCL Volatiles list.

ND - None Detected

TLV - Threshold Limit Value as a Time Weighted Average; American

Conference of Industrial Hygienists, 1990 - 1991.

J - Indicates the result is less than the sample quanititation limit but greater than zero.

dmc

B - Analyte detected in the associated method blank.

#### RAM 001 1812

**TABLE 4-24** 

#### Phase II Air Monitoring Program VOA Analytical Summary Ramapo Landfill

AREAL

dmc

		1 .				And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			1
Parameter	Units	TLV	PSR-1	PSR-2	PSR-3	PSR-3D	PSR-4	PSR-4BT	PSR-TB
2 – Butanone	mg/m^3	590	ND	ND	0.0091	0.0075	0.011	0.018	ND
1,1,1 - Trichloroethane	mg/m^3	1910	ND	ND	0.001	0.0007	0.0011	. ND	ND
Carbon Tetrachloride	mg/m^3	31	ND	ND	ND	ND	0.0004	ND	ND
Benzene	mg/m^3	32	ND	0.029 E	0.0005	ND	0.0006	ND	ND
Chlorobenzene	mg/m^3	345	ND	0.37 E	0.0007	ND	ND	ND	ND
Ethylbenzene	mg/m^3	434	ND	1.20 E	0.0049	0.0012	0.0009	0.0011	ND
Tetrachloroethylene	mg/m^3	339	ND	0.0041	ND	ND	ND	ND	ND
Styrene	mg/m^3	213	ND	ND	ND	ND	ND	0.0008	ND
Toluene	mg/m^3	. 377	0.0004 J	0.27 E 🕤	0.0011	0.0007	0.0014	0.0013	0.0004 J
Xylene (Total)	mg/m^3	434	ND	7.70 E	0.016	0.0046	0.012	0.016	ND
Methylene Chloride	mg/m^3	174	0.001 B	0.002 B	0.0006 B	0.0013 B	0.0008 B	0.003 B	0.0034 B
Acetone	mg/m^3	¹⁷⁸⁰	0.01 B	0.0057 B	0.012 B	0.010 B	0.011 B	0.0 <u>1</u> 8 B	0.012 B

NOTE: Samples were analyzed for the complete TCL Volatiles list.

ND - None Detected

TLV - Threshold Limit Value as a Time Weighted Average; American

Conference of Industrial Hygienists, 1990 - 1991.

J - Indicates the result is less than the sample quanititation limit but greater than zero.

E - Estimated value due to interference.

B - Analyte detected in the associated method blank.

# EISI 100 MAA

voa.wk1

8-5926877168562545

P.01

#### New York State Department of Environmental Conservatic 50 Wolf Road, Albany, New York 12233 - 7010

Man 2 and 1/201 and Man 2 and 1/201 and Man Kathleen Helle ca N 150 Be Me 518 HST 1641 MM

JUL \$ \$ 1991

ΤŪ

Commissioner

Rocoived 7.23 CC: AMP 35207 · D.

Mr. James Lanzo Project Manager URS Consultants 282 Delaware Avenue Buffalo, New York 14202

Dear Mr. Lanzo:

#### RE: Ramapo Landfill Site No. 344004

As I mentioned during our telephone conference on July 17, 1991, a screening model for baseline air emissions from municipal landfills has been developed by NYSDEC Division of Air Resources which is based upon soil gas VOC concentrations, a landfill gas generation rate, and the area source model found on Page 21 of Air Guide-1. Although compoundspecific soil gas data were not collected, the concentrations of compounds of concern at hot spots such as piezometer P-1, which appear to represent actual subsurface gas composition, may be used in the procedure detailed below.

The recommended procedure for estimating concentrations of VOC's from landfill emissions is as follows:

- Determine a rate of landfill gas generation for the entire site using the EPA estimate of 220 cubic feet of gas per cubic yard of refuse per year. The refuse volume should include all municipal solid waste disposed of within the last 20 years (in Ramapo's case this is effectively the entire waste volume). "Landfill gas" is assumed to be a 50-50(mixture of methane and carbon dioxide with trace non-methane VOC's.
- 2. Use highest concentrations of compounds of concern detected (for a worst-case assumption) and the sitewide gas generation rate to obtain a sitewide emission rate for each compound.
- 3. Using the area-source model described on Page 21 of Air Guide-1, calculate the annual concentrations of compounds at the property line and compare these to Ambient Guideline Concentrations (AGC's). If exceedances are found using the worst-case assumption, some reasonable method of averaging compound emission rates in different portions of the landfill should be used.

RAM 001 1814

Mr. James Lanzo

Page 2

ĩ

RAM

100

107.2F

1815

P.0.

As discussed in the draft RI Report, Threshold Limit Values (TLV's) are appropriate for showing risks to workers at the landfill; however, AGC's must be used to show compliance with New York State air quality regulations off the landfill property. The above-described estimation procedure is very conservative and if no exceedances are found using worst-case emission rates or a conservative method of averaging, a good argument can be made that emissions of VOC's to off-site receptors are not of concern. Exceedances obtained using this method will indicate a need for further study, perhaps during remedial design, to verify whether noncompliance exists and what design elements will be needed to control emissions.

Please give me a call if you or your staff need clarification of the above procedure.

Sincerely,

Kathleen A. McCue Project Manager Bureau of Central Remedial Action Division of Hazardous Waste Remediation

cc: G. Ostertag

# New York State Department of Environmental Conservation

DRAFT

# New York State Air Guide-1

# GUIDELINES For The Control of Toxic Ambient Air Contaminants

# Division of Air Resources

1991 Edition

001 181

13 e1 III.A.3.

Calculate the maximum Potential Annual Impact, C , from the point source using the effective stack height, h , and the reported hourly emission rate, Q, in the equation below:

-

The second second

$$C_{p} (ug/m3) = \frac{4218}{h_{p}^{2.16}}$$

where Q is in lbs/hour; h in feet.

Permit conditions restricting the hours per year of operation should be considered if,  $C_{\rm p}$  > AGC but,  $C_{\rm a}$  < AGC.

III.A.3.a.

As an alternative, the maximum Actual and Potential Annual Impacts (C & C_p), from the point source can be calculated using Figure B-2. This figure shows the maximum potential annual impact from a 1 lb/hr source for different effective stack heights, h. As this value is on a 1 lb/hr basis, multiply by the factors below to determine the impacts.

$$C_{a} (ug/m3) = C_{p1} Q_{a}/8760$$
  
 $C_{p} (ug/m3) = C_{p1} Q$ 

where Q is the reported hourly emission rate in lbs/hour and  $Q_{a}$ , the annual emission rate in lbs/year.

III.A.4. Calculate the maximum Short-Term Impact, C_{ST}, from the point source using the equation below:

$$C_{ST} (ug/m3) - C_{p} 420$$
.

where C is the maximum Potential Annual Impact as defined above.  $\ensuremath{^{P}}$ 

III.A.4.a If the stack height to building height ratio  $(h_s/h_b)$  is greater than 2.5 then, reduce  $C_{ST}$  by half to account for the GEP stack.

#### III.B. AREA SOURCE METHOD

This method may be used to determine the maximum actual annual, potential annual and short-term impacts from an area source at a specified downwind distance. That specified downwind distance must be <u>outside</u> the area source. When there are multiple area and/or point sources, the impacts should be summed. This procedure was developed primarily for ground level sources meeting the general source characteristics specified in Section IV.G.

III.B.1. Determine the side length, S, of the area source in feet. The area source should be square. The side length, S, should be greater than 30 feet but less than 3300 feet.

AIR GUIDE-1

#### 1991 EDITION

AM 100 1817

Determine the distance, D, from the center of the area source to the desired point of impact in feet. For most permittin applications, assume D equal to the distance to the propert line, D₁. The desired point of impact must be outside th area source. More precisely, D, must be greater that th effective radius of the area source, R_e, as defined below:

where S (feet) is the side length of the area source, define above.

III.B.3. Determine the height,  $h_A$ , of the area source in feet. Assume this to be the release height of the pollutant. The are source height should be less than 100 feet. For ground leve sources assume  $h_A$  equals 3 feet.

III.B.3.a. For area source heights,  $h_A$ , greater than 3 feet, the equations below over-predict the impacts closest to t source. This conservatism is most pronounced f distances, D, less than  $D_{max}$ , where  $D_{max}$  is t approximate distance to maximum impact for a given ar source height as defined below:

where  $h_A$  is the height of the area source in feet.

If D is less than  $D_{max}$ , substitute  $D_{max}$  for D in t equations below.

III.B.4. Calculate the maximum Actual Annual Impact, C_a, from the are source at the desired point of impact (distance D), using a equation below:

С

$$a^{(ug/m3)} = \frac{104 \cdot Q_a}{(D+S)^{1.6} h_a^{0.368}}$$

where Q is the annual emission rate in lb/year, and D, S an  $h_A$  as defined above.

III.B.5.

5. Calculate the maximum Potential Annual Impact, C_p, from the area source at the desired point of impact (distance D), us the equation below:

$$C_{p} (ug/m3) = \frac{914000 Q}{(D+S)^{1.6} h_{a}^{0.368}}$$

where Q is the hourly emission rate in lb/hr, and D, S and as defined above.

RAM 001 1818

1991 EDIT

AIR GUIDE-1

III.B.5. Calculate the maximum Short-Term Impact, C_{ST}, from the area source using the equation below:

$$C_{ST}$$
 (ug/m3) -  $C_{D}$  100.

where C is the maximum Potential Annual Impact as defined above.

#### III.C. ALTERNATE AREA SOURCE METHOD

The following alternate area source method was developed specifically for remediation projects and urban scale emissions. It has the flexibility to permit the calculation of the maximum annual concentration within an area source. Annual impacts may be estimated both within and downwind from an area source. However, the method has not been modified to estimate short-term impacts. method will perform better closer the source the The characteristics and assumptions approximate those specified in Section IV.G. The contribution from nearby area sources can be calculated by the procedures outlined below. Only sources located within a distance of 3S (S is the length of a side of the area source) from the source being analyzed need be considered. The method can calculate impacts at receptor distances from the source boundary to a distance of 2.55 from the area source. This range encompasses practically all cases of interest in these types of applications.

The following procedures are valid for ground level area sources, effectively less than 10 feet in height, with side lengths greater than 330 feet:

111.C.1.

H

1

Determine the area source emission rate  $(Q_A)$  in units of  $lb/(hr-ft^2)$  by dividing the total annual emission rate,  $Q_a$  (lb/hr), by the area, A (ft²), of the source.

$$Q_A \frac{(1b)}{(hr-ft^2)} = \frac{(emission rate)}{(area)} = \frac{Q_a}{A}$$

III.C.2.

Whe

.2. Calculate the maximum Actual Annual Impact, C_a, <u>within</u> the area source as defined below:

$$C_{a}(ug/m^{3}) - K \quad Q_{A} \quad C_{m}$$
  
re: K₁ = 15 for 330 ft  $\leq$  S< 3300 ft  
K = 30 for S  $\geq_{0}$  3300 ft

 $C_m = 1.355 \times 10^6$ , a conversion factor from  $1b/(hr-ft^2)$  to ug/m²-sec).

AIR GUIDE-1

1991 EDITION

RAM

001

1819

111.C.3.

If the receptors of interest are located off-site and are from one to 2.5 times the side length of the area source away, divide the concentration calculated in Step III.C.2. by the following factors:

Receptor Downwind DistanceS1.5S2S2.5SConcentration Reduction Factor7202535

111.C.4.

If there are other area sources within 3S distances from the source being considered, (ideally contiguous to the source being analyzed) then the contribution of these sources can be determined by redefining  $Q_A$  in Step III.C.2. (lb/(hr-ft²) as:

$$Q_{A} = (Q_{A0} + .32Q_{A1} + .18Q_{A2} + .13Q_{A3})$$

Where  $Q_{AO}$  represents the emissions from the source under consideration and  $Q_{A1}$  to  $Q_{A3}$  represent emissions from sources (if they exist) which are at <u>upwind</u> distances of 1S, 2S, and 3S respectively, from the  $Q_{AO}$  source. It must be noted that the nearby sources are assumed to have about the same size as the source under consideration.

#### 111.D. AMBIENT IMPACT EVALUATION METHOD

An ambient air quality impact assessment is required as part of the Appendix B screening procedure. That assessment requires comparison of predicted worst case annual and short-term impacts t the appropriate standards or guideline values. When buildin cavity impacts exceed the ambient impacts calculated using th Section III methodologies, those cavity concentrations becom critical for determining the appropriate Environmental Rating unde 6NYCRR Part 212.

It is important to understand that the Appendix B screening method are generally conservative. This is especially true for the short-term impact hand calculation methods. When hand calculated impacts exceed the appropriate standards or guideline values, the AG-1 software program and/or SCREEN model should be used to reduce that conservatism. The SCREEN model should be used as the last step in the short-term impact screening procedure before a refined air quality impact analysis (III.D.1.) should be required.

When there are multiple sources of a contaminant and a grea separation between sources, the conservatism in the short-ter methods may be pronounced. In such a case, summing short-ter impacts may be unrealistically conservative. That level c conservatism increases with greater variations in stack heights ar source separation. Source separation becomes critical when i would be impossible for all sources to impact the point of maximu concentration for a given wind direction. When assessing annua impacts, the consideration of multiple sources is not as critica because wind direction varies <u>over a yearly period</u>. Therefore

AIR GUIDE-1

RAM 001 1820

1991 EDITIO:

# IV.F. <u>Multiple Point Source Impacts.</u>

The procedures described in Section III perform initial and conservative impact calculations followed by a source specific The calculations using source specific summation of impacts. emission parameters add the maximum impacts from each source to determine the total impact regardless of spatial considerations. These impacts could be overly conservative under such conditions as a large separation between sources (e.g. over 100 meters), a facto: of two or more variation in stack heights (especially for stack: below 30 meters) and non-alignment of all sources with th predominant wind direction for the given area. In these instance a site specific analysis may predict a significantly lower impact Additionally, if the impact of concern is not at the point o maximum concentration, but at a location where downwind distance o wind direction frequency could influence the impact, then a sit specific model may provide a more accurate and lower impac Furthermore, if it is determined that the facilit source configuration is too complex for these screening procedures a refined site specific analysis can be requested of the sourc owner. BIAM staff should be contacted for guidance on this or an other consideration.

B-16

#### IV.G. Area Sources.

An area source can be used to model many different types of source including stack emissions. However, in general, stack emission should not be modeled as area sources. Area sources best descri emissions uniformly distributed over an area, such as fugiti emissions from a coal pile or from a sewage treatment plant lagor For the purposes of this screening model, area sources can be us to model waste disposal sites, fugitive and primary facility-wi emissions and urban area sources.

Two different procedures are presented in Section III to estimat the ambient impacts from area sources. Both procedures are usefu although the impact equation in the first method is more flexible The second, alternate method has the advantage of permitting th calculation of the ambient impact within the area source.

Both these methods will perform more accurately the closer source characteristics approximate the following conditions:

- The emissions in the area source are uniformly distributed with variations not exceeding 25%.
- 2) The area source is square. If it is not square, it should be broken up into smaller square sources approximated by a square source with an equivalent ar
- The emissions are continuous and not a function of meteorological conditions.

#### RAM 001 1821

1991 EDI

Zl

AIR GUIDE-1

#### RANAPO LANDFILL RI/FS TOWN OF RANAPO, NEW YORK LANDFILL GAS ANALYSIS

#### INTRODUCTION

The Landfill Gas Analysis task of the Ramapo Landfill Feasibility Study consisted of three primary activities:

- o Detailed Review of Existing Data
- Estimation of Landfill Gas Quantity/Quality
- Evaluation/Conceptual Design of Remedial Alternatives

The work performed as part of each activity is described below, followed by a discussion of the recommended alternative, passive venting.

#### DETAILED REVIEW OF EXISTING DATA

In order to adequately assess the existing landfill gas (LFG) situation and make reasonable estimates of future conditions, the available data concerning the landfill and LFG was collected and reviewed. This material included:

- The Preliminary Draft Remedial Investigation Report
- o The Phase I & II Air Monitoring Results
- o The Preliminary Draft Feasibility Study Report
- The Landfill Gas Recovery Preliminary Site Evaluation Report (prepared previously for the National Gas & Electric Corporation of America)
- Part 360, Solid Waste Management Facilities, of Title 6, NYCRR

This data provided the basis for the calculations and analyses discussed below.

#### ESTIMATION OF LANDFILL GAS QUANTITY/QUALITY

The three primary alternatives to be considered for handling the LFG at the Ramapo Landfill were:

Passive Venting

Ú.

- Collection and Flaring
  - Recovery and Utilization
- RAM 001 1822

4/19/91

The key components of such an alternatives analysis are the quantity and quality of LFG being generated. The quantity of LFG available influences the sizes and capacities of any equipment installed and determines whether there is sufficient gas for consideration of collection or recovery. The quality of LFG being generated provides insights into the general "age" of the landfill with respect to LFG production and indicates what types of equipment may be necessary for collection and recovery purposes.

For the Ramapo Landfill site, the LFG quantity and quality was estimated using a combination of field data and theoretical The field data was generated primarily during the calculations. work to prepare the Remedial Investigation report and includes the monitoring well and air sampling results. The calculations are based on both studies and reports from actual LFG collection installations concerning the quantities of LFG to be expected from specific amounts of solid waste. The calculations were used since no actual pumping tests or other LFG quantity tests were performed at the site. The data sources used for the calculations are listed in the References.

#### LFG Quantity

quantity estimates calculated using gas were Landfill gas generation factors derived from both laboratory studies and actual field installations. The calculations are summarized below and shown completely on the calculation sheets included in the Appendix. The quantity estimates are as follows:

- North Lobe Ι.
  - 1. Size - 32 <u>A</u>cres
  - 2**.** '
  - Estimated Refuse Volume 1.350,400 yd³ Estimated Refuse Weight 6.75 x  $10^8$  lbs (@ 500 1bs/yd³) 3
  - Estimated LFG Production 250 ft³/min (@ 0.19 ft³/1b/yr) 4.

#### South Lobe II.

- 1. Size - 16 Acres
- 2. Estimated Refuse Volume 618,000 yd³ 3. Estimated Refuse Weight  $3.1 \times 10^8$  lbs (@ 500 1,55/yd³)
- Estimated LFG Production 110 ft³/min (@ 0.19 ft³/lb/yr) 4.

A total of about 330 - 400  $ft^3$ /min of LFG can, therefore, be expected from the Ramapo Landfill. This number can be expected to fluctuate based on weather conditions and the increasing age of the Since the landfill closed in 1984, appreciable landfill. quantities of LFG can be expected to exist until at least the year 2005 to 2010.

#### 1823 001 RAM

#### LFG Quality

The LFG samples taken during the Phase I & II Air Monitoring efforts provided some data concerning the quality of LFG being produced.

During Phase I, methane concentrations were monitored at a depth of 24 inches at 240 locations around the landfill site. Since methane typically makes up about 50 percent of the LFG produced, it is a good indicator of both the presence of LFG and the stage of gas generation that the landfill is in. Methane is also the primary LFG constituent of concern because of the potential damage to adjacent buildings and property.

1-

T

Ĩ

1 1

i.

Γ

Γ

τ

APPENDIX Q

# HEALTH RISK ASSESSMENT DATA

Ξ.

RAM 001 1824

#### HEALTH RISK ASSESSMENT DATA

#### <u>INDEX</u>

. ?

RAM

001

1825

- 1.1 <u>Exposure Concentrations Derived Directly From Onsite</u> <u>Monitoring Data</u>
  - Text

i fi

- Table 1
- Table 2
- Table 3

# 1.2 <u>Exposure Concentrations Derived From Contaminant</u> <u>Transport Model</u>

- Text

# 1.3 <u>Exposure Concentrations For Volatile</u> <u>Chemicals Released During Showering</u>

- Text
- Table 4
- Table 5

#### 1.4 <u>Toxicity Profiles</u>

Text

#### 1.1 Exposure Concentrations Derived Directly From Onsite Monitoring Data

<u>Purpose</u>: A number of potential exposure pathways involve direct exposure to contaminants in onsite media. Under the current use scenario, these pathways include the following: 1) ingestion of contaminated onsite soil/waste; 2) dermal absorption of contaminants in onsite soil/waste; 3) and inhalation of vapors volatilizing from the landfill. Under the future use scenario, four potential pathways, i.e. the three pathways described above and ingestion of groundwater, involve direct exposure to contamination in onsite media.

Most often, the concentration term used in the intake equation for these pathways is the arithmetic average of the concentration that is detected in the medium. However, because of the uncertainty associated with any estimate of exposure concentration, statistical methods were utilized to develop an upper bound limit on the average which was then used as the exposure concentration.

<u>Methodology</u>: In the baseline health risk assessment, the exposure concentration used to assess the risk associated with direct exposure to onsite media is the 95th percent upper confidence limit on the arithmetic average of samples collected from the media. This upper confidence value is calculated based on methodology described in <u>Statistical Methods for</u> <u>Environmental Pollution Monitoring</u> by Richard O. Gilbert utilizing the following equation:

$$UL_{95} = X + t_{95,n-1} \frac{1}{\sqrt{5}}$$

Where:

Х

UL₉₅ - 95th percent Upper Confidence Limit on the Arithmetic Average

- Arithmetic Average

t_{95,n-1} - Quantile of the t Distribution for the Probability and Degrees of Freedom Specified

001 1826

RAM

- Standard Deviation

n = Number of Measurements

To determine the upper confidence value for each analyte studied, half the sample quantitation limit was utilized for samples where the analyte was not detected. Therefore, where analytes were detected infrequently, the upper confidence value sometimes exceeded the maximum concentration detected. If the upper confidence value exceeded the maximum concentration, the maximum concentration was utilized as the exposure concentration.

<u>Results</u>: Exposure concentrations for onsite soil, using all samples except background (SPS-9) and a sample which has been removed (SPS-5), are presented in Table 1. Exposure concentrations in air calculated from air, monitoring data, are presented in Table 2. Exposure concentrations based on monitoring data from all overburden and bedrock monitoring wells used to assess exposure to groundwater under the future land use scenario are presented in Table 3.

#### 1.2 Exposure Concentrations Derived From Contaminant Transport Model

<u>Purpose</u>: Onsite groundwater is not currently being used as a potable water supply source. However, there are residential areas located near the site and downgradient of the site (within 1200 feet) that are utilizing groundwater as a potable supply source. Since there is potential for contamination of downgradient wells resulting from migration of contamination from the landfill, a transport model was developed to determine the impact of the landfill on those nearby downgradient private wells.

RAM

100

1827

<u>Methodology</u>: Horizontal flow from the landfill in the upper (overburden) aquifer is intercepted by Torne Brook and does not appear to be impacting downgradient wells. Therefore, the groundwater transport model consisted of three elements: 1) vertical migration of

# TABLE 1

# Representative Concentrations for Onsite Surficial Soil Ramapo Landfill Site

SAMPLE-ID		SPS-1	SPS-2	SPS-3	SPS-4	SPS-6	SPS-7	SPS-8	SPS-10	LSMW10	AVG	STD DEV	n	SORT n	(n-1)	t(0.95)	UL(95)	max. conc.	value used
PARAMETER	TYPE					·							-		(	((0)))	02(75)	inux. conc.	Value used
1,4-Dichlorobenzene	SEMI	190	195	200	370	185	190	195	190	210	213.889	58.990	9	3.000	8	1.860	250.463	370	250,463
1,2-Dichlorobenzene	SEMI	190	195	200	94	185	190	195	190	210	183.222	34.237	9	3.000	8	1.860	204.449	94	94.000
Benzoic Acid	SEMI	190	· 950	950	1750	900	920	940	210	1000	867.778	462.379	9	3.000	<u>′8</u>	1.860	1154.453	210	210.000
Naphthalene	SEMI	190	195	200	1100	185	190	195	190	210	295.000	301.962	9	3.000	8	1.860	482.217	1100	482.217
2-Methylnaphthalene	SEMI	. 190	195	200	200	185	190	195	190	210	195.000	7.500	9	3.000	8	1.860	199.650	200	199.650
Acenaphthene	SEMI	190	195	200	190	185	190	195	190	210	193.889	7.407	9	3.000	8	1.860	198.481	190	190.000
Dibenzofuran	SEMI	190	195	200	150	185	190	195	190	210	189.444	16.478	9	3.000	8	1.860	199.661	150	150.000
Fluorene	SEMI	190	195	200	170	185	190	195	190	210	191.667	10.897	9	3.000	8	1.860	198.423	170	170.000
N-nitrosodiphenylamine	SEMI	190	195	200	110	185	190	195	190	210	185.000	29.047	9	3.000	8	1.860	203.009	110	110.000
Phenanthrene	SEMI	190	230	81	390	90	190	195	190	66	180.222	98.756	9	3.000	8	1.860	241.451	390	241.451
Anthracene	SEMI	190	43	200	365	185	. 190	· 195	190	210	196.444	80.940	9	3.000	8	1.860	246.627	43	43.000
Fluoranthene	SEMI	190	440	160	130	150	190	195	64	130	183.222	104.695	9	3.000	8	1.860	248.133	440	248.133
Pyrene	SEMI	190	310	130	130	130	190	195	73	110	162.000	69.154	9	3.000	8	1.860	. 204.875	310	204.875
Butylbenzylphthalate	SEMI	190	195	130	365	100	190	195	160	210	192.778	73.829	9	3.000	8	1.860	238.552	160	160.000
Benzo(a)anthracene	SEMI	190	200	84	365	79	190	195	42	64	156.556	101.255	9	3.000	8	1.860	219.334	200	200.000
Chrysene	SEMI	190	230	99	365	81	190	195	64	77	165.667	97.293	9	3.000	8	1.860	225.989	230	225.989
Bis(2-ethylhexyl)phthalate	SEMI	190	195	48	480	160	190	195	320	45	202.556	133.098	9	3.000	8	1.860	285.076	480	285.076
Di-n-octylphthalate	SEMI	190	195	200	365	185	190	195	43	210	197.000	80.907	9	3.000	8	1.860	247.163	43	43.000
Benzo(b)fluoranthene	SEMI	190	170	84	77	140	190	195	73	64	131.444	56.609	9	3.000	8	1.860	166.542	170	166.542
Benzo(k)fluoranthene	SEMI	190	180	71	72	91	190	195	61	72	124.667	61.400	9	3.000	8	1.860	162.735	180	162.735
Benzo(a)pyrene	SEMI	190	160	77	365	92	190	195	62	63	154.889	97.044	9	3.000	8	1.860	215.056	160	160.000
Indeno(1,2,3-cd)pyrene	SEMI	190	140	61	365	185	190	195	93	45	162.667	95.868	9	3.000	8	1.860	222.105	140	140.000
Benzo(g,h,i)perylene	SEMI	190	130	52	365	48	190	195	100	210	164.444	97.519	9	3.000	8	1.860	224.906	130	130.000

One-half the sample quantitation limit (SQL) was used for non-detects.

All values are in ppb.

8281 100 WAR

# Representative Concentrations for Onsite Surficial Soil Ramapo Landfill Site

SAMPLE-ID		SPS-1	SPS-2	SPS-3	SPS-4	SPS-6	SPS-7	SPS-8	SPS-10	LSMW10	AVG	STD DEV	n	SQRT n	(n-1)	t(0.95)	UL(95)	max. conc.	value used
PARAMETER	TYPE														<u> </u>				
2-Butanone	voc	5.5	5.5	5.5	190	5.5	6	6	5.5	6.5	26.222	61.418	9	3.000	8	1.860	64.301	190	64.301
Benzene	voc	2.5	2.5	3	42	3	3	3	3	3	7.222	13.043	9	3.000	8	1.860	15.309	42	15.309
1,1,2,2-Tetrachloroethane	voc	2.5	2.5	2	14.5	3	3	3	3	3	4.056	3.933	9	3.000	8	1.860	6.494	1 2	2.000
Chlorobenzene	voc	2.5	2.5	3	730	3	3	3	3	3	83.667	242.375	9	3.000	8	1.860	233.939	730	233.939
Ethylbenzene	voc	2.5	2.5	3	260	3	3	3	3	3	31.444	85.709	9	3.000	8	1.860	84.584	260	84.584
Total xylenes	voc	2.5	2.5	3	570	3	3	3	3	3	65.889	189.042	9	3.000	8	1.860	183.095	570	183.095
Dieldrin	PEST	. 9	46.5	47	18	3.4	9	9.5	9	10	17.933	16.754	9	3.000	8	1.860	28.321	3.4	3.400
Chlordane	PEST	45.5	235	235	90	20	45.5	47.5	45.5	4.5	85.389	87.903	9	3.000	8	1.860	139.889	20	20.000
Heptachlor Epoxide	PEST	4.6	23.5	26	9	22.5	4.6	4.8	4.6	5	11.622	9.430	9	3.000	8	1.860	17.469	26	17.469
Beryllium	мср	180	240	180	440	170	170	180	180	450	243.333	116.297	9	3.000	8	1.860	315.437	240	240.000
Cadmium	мср	1200	680	730	1700	1700	840	730	740	3700	1335.556	977.115	9	3.000	8	1.860	1941.367	1700	1700.000
Total phenols	мср	290	280	290	3560	280	280	290	300	280	650.000	1091.272	9	3.000	8	1.860	1326.589	3560	1326.589
Mercury	мср	50	55	55	135	50	50	55	50	55	61.667	27.613	9	3.000	8	1.860	78.787	210	7.000

One-half the sample quantitation limit (SQL) was used for non-detects.

All values are in ppb.

6281 100 MAR

# TABLE 2

# Representative Concentrations for Ambient Air

Ramapo Landfill Site

SAMPLE-ID		VOC-1	VOC-2	VOC-3	LPDW-1	LPUP-1	PSR-2	PSR-3	PSR-4	AVG	STD DEV		SORT n	(n-1)	+(0.95)	UL(95)	max. conc.	value used
PARAMETER	TYPE						<b> </b>					-	UQICI II		(0.75)	02(55)	hiax. conc.	Value useu
2-Butanone	voc	5.40E-03	7.90E-03	3.00E-03	3.10E-03	5.00E-04	5.00E-04	9.10E-03	2.90E-02	4.21E-03	3.40E-03	7	2 6458	6	1 860	6 60F-03	2.90E-02	6 60E-03
1,1,1-Trichloroethane	voc	2.00E-04	8.00E-04	2.00E-04	1.10E-03	1.30E-03	2.00E-04	1.00E-03	1.30E-03	6.86E-04	4.78E-04	7	2.6458			1	1.30E-02	
Carbon Tetrachloride	voc	2.00E-04	2.00E-04	2.00E04	7.00E-04	2.00E-04	2.00E-04	2.00E-04	6.00E-04	2.71E-04	1.89E-04	7	2.6458	1			7.00E-04	
Benzene			6.00E-04													i i i i i i i i i i i i i i i i i i i	2.90E-02	
Chlorobenzene			5.00E-04														3.70E-01	
			2.60E-03														1.20E+00	
			2.00E-04												•		4.10E-03	
			2.00E-04														1.00E-03	
			1.60E-03														2.70E-01	
			1.10E-02														7.70E+00	
			1.00E-03														2.30E-03	
Acetone	voc		1.30E-02														2.90E-02	· .

34 4

One-half the sample quantitation limit (SQL) was used for non-detects

All values are in mg/m³

# 0E81 100 MAA

# TABLE 3

· · · ·

# Representative Concentrations for Groundwater Ramapo Landfill Site

SAMPLE-ID				GW-1				*	<u></u>	GW-2	2					GW-	3		
COLLECTION DATE			S		I		R		S		1		R		S ·		I	Τ	R
PARAMETER	TYPE																		
Benzene	voc	2.5	0.5	2.5	0.3	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5		· ·	2.5	0.5
Tetrachloroethene	voc	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5		1	2.5	0.5
Trichloroethene	voc	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	· 0.5	2.5	0.5	2.5	0.5			2.5	0.5
1,4-Dichlorobenzene	voc		0.5		0.5		0.5		0.5		0.5		0.5		0.5	· .			0.5
Isopropylbenzene	voc		0.5		0.5		0.5		0.5		0.5		0.5		0.5			· · ·	0.5
Total Xylene	voc	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	· ·		2.5	0.5
Dichlorodifluoromethane	voc		0.5		0.5		0.5		0.5		0.5		0.5		0.5			· ·	·0.5
Acetone	voc	5	0.5	5	0.5	5	0.5	5	0.5	5	28	5	0.5	5	0.5			5.	0.5
Toluene	voc	2.5	0.5	2.5	0.3	. 2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5			2.5	0.5
1,1-Dichloroethane	voc	2.5	0.5	2.5	0.5	2.5	0.8	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	-		2.5	0.5
1,2-Dichloroethane	voc	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5		2	2.5	0.5
p-Isopropyltoluene	voc		0.5		0.5 ⁻		0.5		0.5		0.5		0.5		0.5	•			0.5
cis-1,2-Dichloroethene	voc	2.5	0.5	2.5	0.3	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5		· .	2.5	5. <b>0.5</b>
1,2,4-Trimethylbenzene	voc		0.5		0.5		0.5		0.5		0.5		0.5	ł	0.5	1 11			<b>0.5</b> .
Carbon Disulfide	voc	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5			2.5	0.5
Propylbenzene	voc		0.5	1	0.5		0.5		0.5	ľ	0.5		0.5	· · .	0.5				0.5
Chloromethane	voc	5	0.5	5	0.5	5	0.5	5	0.5	5	2.3	5	0.5	5.	0.5	:	· · ·	· 5	0.5
Chlorobenzene	voc	2.5	0.5	2.5	0.5	. 2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5			2.5	0.5
Styrene	voc	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5	1.		2.5	0.5
1,2-Dichlorobenzene	voc		0.5		0.5		0.5		0.5		0.5		0.5		0.5	•	17	1 I	0.5
1,3,5-Trimethylbenzene	voc	н . Т	0.5		0.5		0.5		0.5		0.5		0.5		0.5				0.5
4-Methyl-2-Pentanone	voc	5	0.5	4	0.5	3	0.5	5	0.5	5	0.5	5	0.5	5	0.5	·	:	5	0.5
tert-Butylbenzene	voc		0.5	· ·	0.5		0.5		0.5	[	0.5		0.5		0.5		i se		0.5

RAM 001 1831

# Representative Concentrations for Groundwater Ramapo Landfill Site

SAMPLE-ID				GW-4				 	GW-	-6				GW-7			
COLLECTION DATE			S		I		R	S		I	R		S		I	,	R
PARAMETER	TYPE																•
Benzene	VOC	2.5	0.3	2	1	1	1	0.5		0.2	0.5	2.5	0.5	2.5	0.3	2.5	, 0.5
Tetrachloroethene	voc	2.5	0.5	2.5	0.5	2.5	0.5	0.5		0.6	0.5	2.5	0.5	2.5	0.5	2.5	0.5
Trichloroethene	voc	2.5	0.5	2.5	0.5	2.5	0.5	0.5		0.2	0.5	2.5	0.5	2.5	0.5	2.5	0.5
1,4-Dichlorobenzene	voc		0.5		0.5		0.5	0.5		0.5	0.5	·	0.5		0.5		0.5
Isopropylbenzene	voc		. 0.5		0.5		0.5	0.5		0.4	0.5	1	0.5		0.5		0.5
Total Xylene	voc	2.5	0.5	2.5	0.5	2,5	0.5	0.5		1.7	0.5	2.5	0.5	2.5	0.5	2.5	0.5
Dichlorodifluoromethane	voc		0.5		0.5		• 0.2	0.5		0.5	0.5		0.5		0.5	·	0.5
Acetone	yoc	- 5	0.5	5	0.5	5	0.5	21		0.5	0.5	5	. 0.5	5.	0.5	: 5	0.5
Toluene	voc	. 2.5	0.5	2.5	0.5	2.5	0.5	0.7		0.3	0.3	2.5	0.5	2.5	0.5	2.5	0.5
1,1-Dichloroethane	voc	2.5	0.5	2.5	2.8	5	2.1	0.5		0.5	0.5	2.5	0.5	2.5	0.5	2.5	; 0.5
1,2-Dichloroethane	voc	2.5	0.5	2.5	0.2	2.5	0.1	0.5		0.5	0.5	2.5	0.5	2.5	0.5	2.5	, 0.5
p-Isopropyltoluene	voc		0.5		0.5		0.5	0.5		1.2	0.5		0.5		0.5	• .	; 0.5
cis-1,2-Dichloroethene	voc	2.5	0.5	2.5	0.1	2.5	0.1	0.5		0.1	0.5	2.5	1 <b>0,5</b>	2.5	0,5	2.5	0.5
1,2,4-Trimethylbenzene	voc		0.5		0.8		0.5	0.5		0.5	0.5		0.5		0.5		0.5
Carbon Disulfide	voc	2.5	0.5	2.5	0.5	2	0.5	0.5		0.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5
Propylbenzene	voc		0.5		0.5		0.5	0.5		0.4	0.5		0.5		0.5		0.5
Chloromethane	voc	Ś	0.5	3	0.5	5	0.5	0.5		0.5	0.5	3	0.5	5	0.5	5	. 0.5
Chlorobenzene	voc	2.5	0.5	2.5	0.5	2.5	0.5	0.5		0.5	0.5	2.5	0.5	2.5	0.5	2.5	0.5
Styrene	voc	2.5	0.5	2.5	0.5	2.5	0.5	0.5		0.6	0.5	2.5	0.5	2.5	0.5	2.5	0.5
1,2-Dichlorobenzene	voc		0.5		0.5		0.5	0.5		0.5	0.5		0.5		0.5		0.5
1,3,5-Trimethylbenzene	voc		0.5		1.9		0.5	0.5		1.9	0.5		0.5		0.5		0.5
4-Methyl-2-Pentanone	voc	5	0.5	5	5	5	0.5	0.5		5	0.5	5	0.5	5	0.5	5	0.5
tert-Butylbenzene	voc		0.5		0.5		0.5	0.5		0.4	0.5		0.5		0.5		0.5

RAM 001 1832

.

#### Representative Concentrations for Groundwater Ramapo Landfill Site

SAMPLE-ID				GW-8	,	÷				GW-	9	;	· . '		,·	GW-	10		· · ·	GDT-1
COLLECTION DATE			S		1		R		S		I		R		S		I	Τ	R	S
PARAMETER	TYPE																			
Benzene	voc	2	0.3	2	2.9	3	0.4		0.5		0.2		0.9	. 1	0.5				0.5	0.5
Tetrachloroethene	voc	2.5	0.5	2.5	0.5	2.5	0.5		0.5		0.5		0.5	. 1	0.5				0.5	0.6
Trichloroethene	voc	2.5	0.5	2.5	0.5	2.5	0.5		0.5		0.5		0.5		0.5	ļ			0.5	0.5
1,4-Dichlorobenzene	voc		1.1		0.5	. •	0.5		0.5	•	0.5		0.5		0.5				0.5	0.5
Isopropylbenzene	voc		0.5		3.7		0.5		0.5		0.5		1		0.5				0.5	0.5
Total Xylene	voc	2.5	0.5	2.5	0.7	2.5	0.5		0.5		0.5	:	0.5		0.5				0.5	0.5
Dichlorodifluoromethane	voc		0.5		0.5		0.5		0.5		0.5	:	0.5		0.5				0.5	0.5
Acetone	voc	5	0.5	5	0.5	5	35		0.5		0.5		23		0.5				0.5	0.5
Toluene	voc	2.5	0.5	1	0.6	2.5	0.5		0.5		. 0.5		0.5	I	0.5				0.5	0.5
1, 1-Dichloroethane	voc	2.5	0.5	2.5	0.5	2.5	0.5		0.5		0.5		0.5		0.5				0.5	0.5
1,2-Dichloroethane	voc	2.5	0.5	2.5	0.5	2.5	0.5		0.5		0.5		0.5		0.5				0.5	0.5
p- <b>isopropyitoluene</b>	voc		0.5		1.7		0.5		0.5		0.5		1.2		0.5				0.5	0.5
cis-1,2-Dichloroethene	VOC	2.5	0.5	2.5	0.5	2.5	0.9		0.5	, i	0.5	. · · ·	0.5		0.5				0.5	0.5
1,2,4-Trimethylbenzene	voc		0.5		1.4		0.5		0.5	• •	0.5		0.5		0.5				0.5	0.5
Carbon Disulfide	voc	2.5	0.5	2.5	0.5	2.5	0.5		0.5		0.5		0.5		0.5				0.5	0.5
Propylbenzene	voc		0.5		0.8		0.5		0.5		: 0.5		0.5	• •	0.5				0.5	0.5
Chloromethane	voc	5	0.5	3	0.5	5	0.5	•	0.5		0.5		0.5	1 I.	0.5				0.5	0.5
Chlorobenzene	voc	. 1	1.2	3	16	2.5	1.8		0.5		0.5		2		0.5				0.5	0.5
Styrene	voc	2.5	0.5	2.5	.0.5	2.5	0.5		0.5	:	0.5		0.5	1 °	0.5				0.5	0.5
1,2-Dichlorobenzene	voc		0.5		1.2		0.5		0.5		0.5		0.9	•	0.5			1	0.5	0.5
1,3,5-Trimethylbenzene	voc		0.5		1.8		0.5	:	0.5		0.5		1.9	•	0.5		· ·		0.5	0.5
4-Methyl-2-Pentanone	voc	5	0.5	5	5	5	0.5		0.5	1	0.5	1.1	5		0.5				0.5	0.5
tert-Butylbenzene	voc	1	0.5	·	1.5		0.5		0.5		0.5	1	¹ 0.5		0.5				-0.5	0.5

**FAM 001 1833** 

### Representative Concentrations for Groundwater Ramapo Landfill Site

SAMPLE-ID		AVG	STD DEV	n	SQRT n	(n-1)	t(0.95)	: UL(95)	max conc.	value used
COLLECTION DATE										
PARAMETER	TYPE	×			· ·					
Benzene	voc	1.286	0.993	43	6.557	42	1.684	1.541	3	1.541
Tetrachloroethene	voc	1.295	0.986	43	6.557	42	1.684	1.549	0.6	0.600
Trichloroethene	voc	1.284	0. <del>9</del> 96	43	6.557	42	1.684	1.540	0.2	. 0.200
1,4-Dichlorobenzene	voc	0.523	0.118	26	5.099	25	1.708	0.562	1.1	0.562
Isopropylbenzene	voc	0.638	0.633	26	5.099	25	1.708	0.850	3.7	0.850
Total Xylene	voc	1.323	0.980	43	6.557	42	1.684	1.575	1.7	1.575
Dichlorodifluoromethane	voc	0.488	0.059	26	5.099	25	1.708	0.508	0.2	0.200
Acetone	voc	4.721	7.639	43	6.557	42	1.684	6.683	35	6.683
Toluene	voc	1.249	0.980	43	6.557	42	1.684	1.500	1	1.000
1,1-Dichloroethane	voc	1.447	1.130	43	6.557	42	1.684	1.737	5	1.737
1,2-Dichloroethane	voc	1.274	1.005	43	6.557	42	1.684	1.533	0.2	0.200
p-Isopropyltoluene	voc	0.600	0.294	26	5.099	25	1.708	0.698	1.7	· 0.698
cis-1,2-Dichloroethene	voc	1.267	1.016	43	6.557	42	1.684	1.528	0.9	0.900
1,2,4-Trimethylbenzene	voc	0.546	0.184	26	5.099	25	1.708	0.608	1.4	0.608
Carbon Disulfide	voc	1.279	0.978	43	6.557	42	1.684	1.530	• 2	1.530
Propylbenzene	voc	0.508	0.063	26	5.099	25	1.708	0.529	0.8	0.529
Chloromethane	voc	2.181	2.093	43	6.557	42	1.684	2.719	3	2.719
Chlorobenzene	voc	1.709	2.431	43	6.557	42	1.684	2.334	16	2.334
Styrene	voc	1.293	0.988	43	6.557	42	1.684	1.547	0.6	0.600
1,2-Dichlorobenzene	voc	0.542	0.155	26	5.099	25	1.708	0.594	. 1.2	0.594
1,3,5-Trimethylbenzene	voc	0.712	0.506	26	5.099	25	1.708	0.881	1.9	0.881
4-Methyl-2-Pentanone	voc	2.628	2.228	43	6.557	42	1.684	3.200	3	3.000
tert-Butylbenzene	voc	0.535	0.198	26	5.099	25	1.708	0.601	1.5	0.601

RAM 001 1834

# Representative Concentrations for Groundwater Ramapo Landfill Site

SAMPLE-ID				GW-	1					GW-2	2		:			GW-	3.		
COLLECTION DATE			S		I		R		S		I		R		S		I		R
PARAMETER	TYPE																		
Naphthalene	SEMI		0.5	·	0.5		0.5		0.5		0.5		0.5		0.5	1	÷		0.5
Diethylphthalate	SEMI	5	5	· 5	5	5	5	5	5	5	5	<mark>ِ 5</mark>	5	5	· 5		1 4	5	5
Butylbenzylphthalate	SEMI	. 5	5	5	5	5	5	5	5	5	5	5	5	5	· 5			5	5
Bis(2-ethylhexyl)phthalate	SEMI	3	5	3	2	5	5	3	5	7	. 5	2	5	5	2			5	5
Di-n-octylphthalate	SEMI	5	5	5	5	5	5	5	5	5	5	5	5	5	5			5	5
delta-BHC	PEST	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	i		0.025	0.025
gamma-BHC	PEST	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.025			0.025	0.025
Pyrene	SEMI	5	5	5	5	5	5	5	5	5	5	5	5	5	5		· ·	5	5
Aluminum	мср	18900	7130	1460	7.5	715	1520	321	19000	313	189	426	463	3060	1620			7.5	223
Arsenic	мср	2.2	2.4	2.2	2.2	2.2	2.2	2.2	4.9	1.1	2.2	2.2	2.2	1.1	2.2	• •		1.1	2.2
Barium	мср	197	100	44	43	15	22	20	139	11	8	9	9	133	61			. 47	53
Cadmium	мср	4	4	4	4	4	4	4	4	4	4	4	4	4	4			4	4
Calcium	мср	88200	78800	107000	111000	88500	95600	87200	132000	22100	13800	52100	53400	64300	8700			80100	99400
Chromium	МСР	153	57.3	280	11	39.7	17.5	180	141	20.6	24.3	16.1	5.5	587	1290			28	11.4
Cobalt	МСР	17.8	12.2	12	9.8	12	9	12	42.3	10	9	12	20	10	11			10	19.5
Copper	MCP	78.3	32	9.6	- 1.5	9.1	14.8	5.6	59.4	1.5	5.1	7.4	5.4	18	17.9	i		1.5	3.8
Iron	мср	45000	17500	5300	7180	1180	2650	912	41800	406	532	409	602	6830	9750			1930	1370
Lead	мср	11.8	6.2	3.5	2.7	2.3	3	2.5	34.1	1.4	4.2	3.9	3	5	5			1.1	2.3
Manganese	мср	3790	3700	1490	1530	144	98.5	298	4770	82.1	50.5	197	135	8700	18100			7230	12400
Mercury	мср	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	. 0.2		• :	0.2	0.2
Nickel	мср	98.7	36.6	162	19	27.4	3	61.8	99.4	28.9	17.6	3	3	331	79.7			18.2	22.2
Potassium	мср	8120	4660	3050	2640	2160	2320	1050	4820	6620	4770	1250	1260	3190	3280	:		2360	2360
Sodium	мср	57700	52900	43700	47400	15300	15000	14200	14900	44800	54600	11400	7210	47100	62300	·.		90900.	82100
Vanadium	мср	51.6	21.8	5	5	5	5	5	40	5	5	5	5	7.8	7.1		. · · ·	5	5
Zinc	мср	79.3	34.9	18.2	7.9	10.8	15.3	8.2	107	7.2	9.9	20.7	10.6	17.7	11.5	·	·	11.9	16

All values reported in ug/l(ppb).

**RAM 001 1835** 

#### Representative Concentrations for Groundwater Ramapo Landfill Site

SAMPLE-ID				GW-	4					GW-	6					GW-	7		
COLLECTION DATE			S		I		R		S		I		R		S		I		R
PARAMETER	TYPE										•			, i					
Naphthalene	SEMI		0.5		0.5	]	0.5		0.5		0.5		0.5		0.5		0.5		0.5
Diethylphthalate	SEMI	5	. 5	5	4	3	2		5		5		5	5	5	5	5	5	5
Butylbenzylphthalate	SEMI	5	5	5	5	5	5		5		5		5	5	5	5	5	5	5
Bis(2-ethylhexyl)phthalate	SEMI	5	5	3	5	5	5	Ì	5		5		5	5	5	30	2	27	5
Di-n-octylphthalate	SEMI	5	5	5	5	5	5		5		5		5	5	5	5	5	5	5
delta-BHC	PEST	0.025	0.025	1.9	0.025	0.025	0.025		0.025		0.025		0.025	0.025	0.025	0.025	0.025	0.025	0.025
gamma-BHC	PEST	0.025	0.025	0.025	0.025	0.025	0.025		0.025		0.025		0.025	0.025	0.025	0.025	0.025	0.06	0.025
Pyrcne	SEMI	5	5	5	5	5	5		5		5		5	.5	5	5	5	5	5
Aluminum	мср	2800	3640	1470	5160	765	321		2950		273		420	679	16100	722	986	154	1270
Arsenic	МСР	2.8	2.2	2.2	2.2	2.2	2.2		2.5		2.2		2.2	2.2	4.3	2.2	2.2	2.2	2.2
Barium	MCP	54	58	44	76	14	10		110		6		10	32	230	16	26	28	25
Cadmium	MCP	4	4	4	4.9	4	4		4		4;		4	4	4	4	4	4	4
Calcium	МСР	72000	81400	104000	113000	74700	66300		97800		11500		17800	40100	77600	27900	41900	74300	64900
Chromium	мср	139	40.1	. 135	70.6	35.5	13.1		40.1		28.7		31.1	33.5	40.1	106	13.1	16.2	16.8
Cobalt	мср	12	9	12	9	12	9		25.3		9		. 9	12	21.9	12	12.4	12	9
Copper	MCP	28.1	17.3	10	20.9	8	1.5		12.7		5.9		10.3	6.1	62.3	4.8	5.8	3.1	7.7
Iron	мср	15600	12400	12600	24500	8230	5290		10600		486	-	683	981	24500	1400	3000	24	1940
Lead	МСР	5.2	7.2	3.4	5.3	3	11.4		9.6		1.1		6.4	2.3	8.8	2.9	2.2	1.2	1.7
Manganese	мср	4210	5020	3500	4500	1730	1520		6770	::	33.1	•,	14.3	1240	3260	834	631	51.9	102
Mercury	мср	0.2	0.2	0.2	0.2	0.2	0.2		0.63		2.3		0.2	0.2	0.2	0.2	0.2	0.2	0.2
Nickel	мср	87.9	23	68.3	44.4	27.9	3		35		22		19.4	28.9	30.7	79.2	21.5	14.7	25.5
Potassium	МСР	2230	3170	3770	4780	1870	1490		10300		1170		1220	7180	31200	2810	1970	3170	2900
Sodium	мср	35800	56900	64500	75300	20400	15300		23900		4380		5370	61800	84100	54700	52900	21800	21500
Vanadium	МСР	6.8	10	5.3	15.2	5	5		11.1		. 5		5	5	28.5	5	5	5	5
Zinc	МСР	29.8	20.5	22.8	17.8	33.7	6.2		18.5		8.5		13.4	21	52.4	22.6	15	9.9	13.8

All values reported in ug/l(ppb)

8AM 001 1836

. ...

. .

# Representative Concentrations for Groundwater

Ramapo Landfill Site

SAMPLE-ID				GW-	8					GW-9	9			19 - L F		GW-	10			GDT-1
COLLECTION DATE			S ·		I		R		S		1		R		S		I		R	S
PARAMETER	TYPE												·*							
Naphthalene	SEMI		0.5		4.2		0.8		0.5		0.5		0.3		0.5				0.5	0.5
Diethylphthalate	SEMI	5	5	5	5	5	2		5		5		5		5				5	5
Butylbenzylphthalate	SEMI	5	5	5	5	5	2		5		5	ł	5		. 5		· ·		5	5
Bis(2-ethylhexyl)phthalate	SEMI	5	5	5	5	2	9		5	5 a.	5		5		5			*1	5	5
Di-n-octylphthalate	SEMI	5	- 5	5	5	5	130		5		5		5		5		· ·		5	_ 5
delta-BHC	PEST	0.025	0.025	0.025	0.025	0.025	0.025		0.025	٢	0.025	•.	0.025		0.025	. '			0.025	0.025
gamma-BHC	PEST	0.025	0.025	0.025	0.025	0.025	0.025		0.025		0.025	,	0.025	ι	0.025		÷		0.025	0.025
Pyrene	SEMI	5	5	5.	5	5	5		5		3		5		5	<b>-</b> -			5	5
Aluminum	мср	1960	2260	619	2550	138	1020		165	i	7.5		7.5		1730.		•		2700	122
Arsenic	мср	26.1	20.5	1.1	<u>` 11</u>	1.1	['] 2.2		2.2		2.2		3.1	- -	2.2	· ·			2.2	2.2
Barium	мср	441	122	155	559	14	19		3		3		100		50			Ì.	24	3
Cadmium	мср	4	· 4	4	4	4	4		4		• 4		:4	:	4				- 4	4
Calcium	мср	69100	31500	108000	112000	187000	219000	:	7300	•	7860		79700	-	37000				64000	9260
Chromium	мср	34.8	16.7	215	32.5	20	23.1		6.8		8.1	· ·	8.8	•	24.5				26.9	5
Cobalt .	МСР	10	10.5	10	36.2	10	13.2		9		36.2		10.9		24.7				9	9
Copper	мср	9.6	13.7	5.1	11.4	1.5	39.3		. 1.5		3.2		1.5		4.7	1.	· ·		11.4	47.4
Iron	МСР	229000	43800	15700	30500	1360	2940		249		145	ł	20200		8320				4390	64
Lead	МСР	3.3	5.1	1.4	3	3	4.5		3.8		1.1		1.1		2.2				2.2	9.2
Manganese	МСР	2830	2750	4230	1110	872	181		14.6		377		3270		31200			:	110	3
Mercury	мср	0.2	0.2	0.2	0.28	0.2	2		0.5		0.2		0.2		0.2				0.2	0.29
Nickel	мср	30	28.1	119	· 153	3	30.1		3		3		22		26.9		• :		20.6	17
Potassium	мср	22400	16100	34200	196000	3170	10500		717		807		18600		2340				2510	1070
Sodium	мср	102000	58400	166000	643000	25900	39600		2250		4460		147000		32900				10700	4360
Vanadium	мср	5	5	5	19.5	- 5	5		5.9		5		5	. • (	5				6.1	5
Zinc	мср	11.3	30.7	14.7	23.9	7.7	53.7		5		3.7		: 5.4		16.2	·			25.7	11.7

All values reported in ug/l(ppb).

المأذلية.

TEST IOO MAR

....

# Representative Concentrations for Groundwater

Ramapo Landfill Site

SAMPLE-ID		AVG	STD DEV	n	SQRT n	(n-1)	t(0.95)	UL(95)	max conc.	value used
COLLECTION DATE										
PARAMETER .	TYPE									
Naphthalene	SEMI	0.646	0.728	26	5.099	25	1.708	0.890	4.2	: 0.890
Diethylphthalate	SEMI	4.791	· 0.709	43	6.557	42	1.684	4.973	5	4.973
Butylbenzylphthalate	SEMI	4.930	0.457	43	6.557	42	1.684	5.048	27	5.048
Bis(2-ethylhexyl)phthalate	SEMI	5,698	5.276	43	6.557	42	1.684	7.053	30	7.053
Di-n-octylphthalate	SEMI	7.907	19.062	43	6.557	42	1.684	12.802	130	12.802
delta-BHC	PEST	0.069	0.286	43	6.557	42	1.684	0.142	1.9	0.142
gamma-BHC	PEST	0.026	0.005	43	6.557	42	1.684	0.027	0.06	0.027
Pyrene	SEMI	4.953	0.305	43	6.557	42	1.684	5.032	3	3.000
Aluminum	MCP	2473.116	4559.678	43	6.557	42	1.684	3644.076	19000	3644.076
Arsenic	МСР	3.416	4.728	43	6.557	42	1.684	4.631	26.1	4.631
Barium	МСР	73.093	110.452	43	6.557	42	1.684	101.458	559	101.458
Cadmium	мср	4.021	0.137	43	6.557	42	1.684	4.056	4.9	4.056
Calcium	мср	71607.442	45309.917	43	6.557	42	1.684	83243.373	219000	83243.373
Chromium	мср	94.037	212.967	43	6.557	42.000	1.684	148.732	1290	148.732
Cobalt	мср	14.009	7.916	43	6.557	42	1.684	16.042	42.3	16.042
Copper	МСР	14.551	17.737	43	6.557	42	1.684	19,106	78.3	19.106
Iron	МСР	14471.000	35635.452	43	6.557	42	1.684	23622.455	229000	23622.455
Lead	МСР	4.726	5.339	43	6.557	42	1.684	6.097	34.1	6.097
Manganese	МСР	3327.419	5666.135	43	6.557	42	1.684	4782.525	31200	4782.525
Mercury	МСР	0.312	0.420	43	6.557	42	1.684	0.419	2.3	0.419
Nickel	МСР	46.479	59.042	43	6.557	42	1.684	61.641	162	61.641
Potassium	MCP	10268.698	29982.079	43	6.557	42	1.684	17968.323	196000	17968.323
Sodium	мср	58063.488	98273.017	43	6.557	42	1.684	83300.745	643000	83300.745
Vanadium	мср	8.877	9.733	43	6.557	42	1.684	11.376	51.6	11.376
Zinc	МСР	20.993	19.762	43	6.557	42	1.684	26.068	107	26.068

All values reported in ug/l(ppb).

8E81 100 MAA

contamination, at the landfill from the upper aquifer to the bedrock aquifer; 2) horizontal transport in the bedrock aquifer to the receptor (PW-1), and 3) vertical flow upward from the bedrock aquifer to the overburden withdrawal well induced by pumping. The vertical contaminant flow at the landfill from the overburden to the bedrock aquifer was determined by a one-dimensional steady-state analytical model assuming a uniform distributed source and utilizing the vertical flow velocity derived from the calibrated MODFLOW groundwater flow model. Horizontal contaminant migration was modeled by utilizing the horizontal flow velocity determined from the calibrated MODFLOW model and a onedimensional transient. convective-dispersive analytical equation. Vertical migration was calculated based on assumed withdrawal rates and from equations for non steady-state withdrawal from unconfined aquifers. The concentration of contaminants in groundwater at the receptor is based on the relative contribution of groundwater from the bedrock aquifer. A complete description of the groundwater flow and transport models is presented in Appendix P.3.

<u>Results</u>: Modeling results show that concentrations of contaminants transported from the landfill to the nearest receptor (PW-1) will be approximately 0.01 percent of the concentrations detected onsite at the landfill.

#### Exposure Concentrations for Volatile Chemicals Released During 1.3 Showering

<u>Purpose</u>: Groundwater is currently being used by residents living near the Ramapo Landfill. Human exposure may result from ingestion of groundwater but also from inhalation of contaminants transferred from groundwater to air during showering. Consequently, a model has been developed to estimate the quantity of volatile chemicals transferred from groundwater to air during showering, and the subsequent exposure concentrations in the shower after these chemicals have been volatilized. 1839

RAM

<u>Methodology</u>: The method used for determining exposure concentrations is based on the method described in <u>Human Exposure to</u> <u>Volatile Organic Compounds in Household Tap Water</u>: <u>Indoor Inhalation</u> <u>Pathway</u> by Thomas McKone. Exposure concentrations in the shower were determined by the following equation.

$$CS = \frac{W \times \phi \times Cw}{Vs \times CF}$$

Where:

CS = Chemical Concentration in Air During Shower (mg/m³)

W = Water Used During Shower (1)

 $\phi$  = Transfer Efficiency from Water to Air (unitless)

CW = Chemical Concentration in Water (mg/l)

Vs = Volume of Shower (1)

CF = Conversion Factor for Water (1 m³/1000 1)

Values for W (300 liters) and Vs (2000 liters) are representative values specified in McKone. Transfer efficiencies are based on the transfer efficiency of radon which has been measured and are dependent on specific chemical parameters. These transfer efficiencies were calculated as follows:

$$\phi = \phi \left( \frac{2.5 + RI}{Dwr^{2/3} + Dar^{2/3} Hr} \right)$$
$$\left( \frac{2.5}{Dw^{2/3} + RT} \right)$$

Where:

where:  $\phi_R$  = Transfer Efficiency for Radon (unitless) Dwr = Diffusion Coefficient in Water for Radon (m²/s) Dar = Diffusion Coefficient in Air for Radon (m²/s) Hr = Henry's Law Constant for Radon (Torr-m³/mol) Dw = Diffusion Coefficient for Chemical in Water (m²/s) Da = Diffusion Coefficient for Chemical in Air (m²/s)

- H = Henry's Law Constant for Chemical (Torr-m³/mol)
- R = Gas Constant, 0.0624 (Torr-m³/mol-K)

T = Temperature (K)

Values for  $\phi_R$  (0.70), Dwr (1.4 EE-09 m²/s), Dar (2.0 EE-05 m²/s), and Hr (70 Torr. m³/mol) are as presented in McKone. Values for chemical specific parameters were obtained from the literature.

<u>Results</u>: Transfer efficiencies for VOCs detected in groundwater are presented in Table 4. The transfer efficiencies ranged from 0.25 (4methyl-2-Pentanone) to 0.66 (carbon disulfide). Exposure concentrations in the shower were calculated for current land use and future land use. Exposure concentrations for current use are based on onsite groundwater concentrations that have been reduced to account for attenuation resulting from transport offsite to the nearest receptor (Appendix P.3). Exposure concentrations for future use are based solely on groundwater data from onsite monitoring wells. Exposure concentrations in the shower for both current and future land use are presented in Table 5.

#### Section 1.3 References:

Ehrenfeld, J.R. et al. <u>Controlling Volatile Emissions at Hazardous Waste</u> <u>Sites</u>, Noyes Publications, New Jersey, 1986.

Hine, J. and P.K. Mookerjee, <u>The Intrinsic Hydrophilic Character of</u> <u>Organic Compounds</u>. <u>Correlations in Terms of Structural Contributions</u>. Journal of Organic Chemistry, 40:292-298, 1975.

Lyman W.J., Reehl W.F. and Rosenblatt, D.H., <u>Handbook of Chemical Property</u> <u>Estimation Methods</u>. McGraw Hill, 1982. RAM

100

McKone, T.E., <u>Human Exposure to Volatile Organic Compounds in Household</u> <u>Tap Water: The Indoor Inhalation Pathway</u>. Environmental Science

# TABLE 4

# TRANSFER EFFICIENCIES (PHI) FOR CHEMICALS VOLATILIZING FROM WATER DURING SHOWERING

ì

CHEMICAL	DIFFUSION COEFFICIENT AIR (m~2/s)	DIFFUSION COEFFICIENT WATER (m*2/s)	HENRY'S LAW CONSTANT (torr*m^3/mol)	TRANSFER EFFICIENCY(PHI) (unitless)
Benzene	9.32E-06	1.03E-09	4.2	0.5683
Tetrachloroethene	7.20E-06	8.20E-10	22	0.4897
Trichloroethene	8.75E-06	1.03E-09	6.8	0.5691
1,4-Dichlorobenzene	6.90E-06	7.90E-10	2.19	0.4743
Isopropylbenzene	7.02E-06	7.55E-10	10.64	0.4631
Total Xylene	7.00E-06	7.80E-10	··· <b>5.35</b>	0.4725
Dichlorodifluoromethane	9.44E-06	1.13E-09	2090	0.6069
Acetone	1.09E-05	1.14E-09	0.016	0.3008
Toluene	8.49E-06	9.10E-10	5.05	0.5236
1,1-Dichloroethane	9.19E-06	1.25E-09	4.14	0.6461
1,2-Dichloroethane	8.88E-06	1.04E-09	0.74	0.5608
p-Isopropyltoluene	6.46E-06	6.59E-10	4.88	0.4222
cis-1,2-Dichloroethene	7.60E-06	8.68E-10	5.76	0.5075
1,2,4-Trimethylbenzene	6.83E-06	6.59E-10	4.28	0.4221
Carbon Disulfide	1.05E-05	1.28E-09	9.12	0.6582
Propylbenzene	6.83E-06	6.59E-10	7.45	0.4228
Chloromethane	1.09E-05	1.18E-09	289	0.6247
Chlorobenzene	7.47E-06	9.31E-10	3	0.5301
Styrene	7.10E-06	8.00E-10	2.5	0.4788
1,2-Dichlorobenzene	6.90E-06	7.90E-10	1216	0.4781
1,3,5-Trimethylbenzene	6.83E-06	6.59E-10	6.99	0.4227
4-Methyl-2-Pentanone	7.48E-06	7.18E-10	0.02	0.2521
tert-Butylbenzene	6.39E-06	6.11E-10	8.74	0.4021

VARIABLE	· · · · · · · · · · · · · · · · · · ·
DIFFUSIVITY OF RADON IN AIR(m^2/s)	2.00E-05
DIFFUSIVITY OF RADON IN WATER(m ² /s)	1.40E-09
HENRY'S LAW CONSTANT FOR RADON (torr*m^3/mol)	70
TRANSFER EFFICIENCY (PHI) FOR RADON (unitless)	0.7
IDEAL GAS CONSTANT (m^3*torr/mol*K)	0.062396
TEMPERATURE (K)	298

RAM 001 1842

# TABLE 5

· .

# **EXPOSURE CONCENTRATION IN THE SHOWER**

CHEMICAL		CURRENT USE	FUTURE USE		
	CHEMICAL CONCENTRATION IN WATER (mg/l)	TRANSFER EFFICIENCY (PHI) (UNITLESS)	CHEMICAL CONCENTRATION IN AIR (mg/m ⁺³ )	CHEMICAL CONCENTRATION IN WATER (mg/l)	***************************************
Benzene	1.54E-07	0.5683	1.31E-05	1.54E-03	1.31E-01
Tetrachloroethene	6.00E-08	0.4897	4.41E-06	6.00E-04	4.41E-02
Trichloroethene	2.00E-08	0.5691	1.71E-06	2.00E-04	1.71E-02
1,4-Dichlorobenzene	5.62E-08	0.4743	4.00E-06	5.62E-04	4.00E-02
Isopropylbenzene	8.50E-08	0.4631	5.91E-06	8.50E-04	5.91E-02
Total Xylene	1.57E-07	0.4725	1.12E-05	1.57E-03	1.12E-01
Dichlorodifluoromethane	2.00E-08	0.6069	1.82E06	2.00E-04	1.82E-02
Acetone	6.68E-07	0.3008	3.02E-05	6.68E-03	3.02E-01
Toluene	1.00E-07	0.5236	7.85E-06	1.00E-03	7.85E-02
1,1-Dichloroethane	1.74E-07	0.6461	1.68E-05	1.74E-03	1.68E-01
1,2-Dichloroethane	2.00E-08	0.5608	1.68E-06	2.00E-04	1.68E-02
p-Isopropyltoluene	6.98E-08	0.4222	4.42E-06	6.98E-04	4.42E-02
cis-1,2-Dichloroethene	9.00E-08	0.5075	6.85E-06	9.00E-04	6.85E-02
1,2,4-Trimethylbenzene	6.08E-08	0.4221	3.85E-06	6.08E-04	3.85E-02
Carbon Disulfide	1.53E-07	0.6582	1.51E-05	1.53E-03	1.51E-01
Propylbenzene	5.29E-08	0.4228	3.35E-06	5.29E-04	3.35E-02
Chloromethane	2.72E-07	0.6247	2.55E-05	2.72E-03	2.55E-01
Chlorobenzene	2.33E-07	0.5301	1.86E-05	2.33E-03	1.86E-01
Styrene	6.00E-08	0.4788	4.31E-06	6.00E-04	4.31E-02
1,2-Dichlorobenzene	5.94E08	0.4781	4.26E-06	5.94E-04	4.26E-02
1,3,5-Trimethylbenzene	8.81E-08	0.4227	5.59E-06	8.81E-04	5.59E-02
4-Methyl-2-Pentanone	3.00E-07	0.2521	1.13E-05	3.00E-03	1.13E-01
tert-Butylbenzene	6.01E-08	0.4021	3.62E-06	6.01E-04	3.62E-02

VARIABLE	ADULT	CHILD
VOLUME OF WATER USED IN SHOWER (Liters)	300	300
VOLUME OF SHOWER (m ³ )	2	2

RAM 001

National Academy of Sciences, <u>The Alkyl Benzenes</u>. National Academy Press, Washington, D.C., 1980.

Perry, R.H. et al. <u>Perry's Chemical Engineer's Handbook</u>, 6th ed., McGraw Hill, 1984.

USEPA, Superfund Public Health Evaluation Manual, EPA 540/1-86/060, 1986.

USEPA, Superfund Exposure Assessment Manual, EPA 540/1-88/001, 1988.

# 1.4 <u>Toxicity Profiles</u>

Following are brief descriptions of all contaminants detected onsite with relevant information about toxicity and health effects. The characteristics of these chemicals are discussed in general terms, as are the potential toxic effects. Specific toxicological data is presented in Section 6.4 of the RI report. It should be noted that the following profiles discuss potential toxic effects of chemical in pure form, and do not imply that these effects will be experienced at the concentrations found at the Ramapo Landfill site.

RAM

100

## ACENAPHTHENE

Acenaphthene,  $C_{12}$  H₁₀, is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. Acenaphthene is found in coal tar pitch used by industry as an adhesive. It is also used as a dye intermediate, insecticide and fungicide; and in the manufacture of some plastics. People may be exposed to acenaphthene from environmental sources such as air, water, and soil, and from cigarette smoke, gasoline exhaust condensates and overcooked food. Typical exposures are not usually to acenaphthene alone, but to a mixture of similar chemicals.

#### Classification

This substance/agent has not been evaluated by the U.S. EPA for evidence of human carcinogenic potential.

## Health Effects

Acenaphthene is a skin and mucous membrane irritant. If swallowed in large quantities it may cause vomiting.

#### ACETONE

Acetone,  $C_3H_6O$ , is a colorless liquid with a sweetish odor. It has a boiling point of 56.48°C and a density of 0.7972. It is used as a solvent for waxes, oils, resins, rubber, plastic, lacquers, varnishes, and rubber cement. It is used in the production of lubricating oils, pharmaceutical and pesticides.

#### <u>Classification</u>

This chemical is classed as a group D compound, not classifiable as to human carcinogenicity due to lack of data for humans and animals.

## <u>Health Effects</u>

Acetone may irritate the eyes, skin, nose and throat. It's points of attack are the respiratory system and the skin. Inhalation may produce headache, fatigue, excitement, bronchial irritation, and in large amounts narcosis. Prolonged or repeated topical use may cause erythema and dryness.

RAM

001

1845

#### ALUMINUM

Aluminum is a common element of the natural environment comprising up to 10 percent of the content of soil and stone. Aluminum is generally not toxic to animals. Solubility increases at low pH and in acidic waters, such as bogs, aluminum concentrations can reach levels toxic to fish.

Aluminum has many uses including: corrosion-resistant chemical equipment, uses in the electrical industry, photoengraving plates, in points and protective coatings, as a catalyst, as rocket fuel, and as an ingredient of incendiary mixtures.

## Classification

The U.S. EPA classifies aluminum as a class E compound, a non-carcinogen.

#### Health Effects

Aluminum salts may cause dermatitis, eczema, conjunctivitis, and mucous membrane irritation. Inhalation of fine aluminum powder has been reported as a cause of pulmonary fibrosis. Aluminum may also be implicated in Alzheimer's disease (Sax).

## ANTHRACENE

Anthracene,  $C_6H_4(CH)_2C_6H_4$ , is one of the polycyclic aromatic hydrocarbon (PAH) compounds. It is a yellow crystal with blue fluorescence, which is insoluble in water, soluble in alcohol and ether. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and soil and onto crops. Anthracene is found in coal tar pitch used by industry as an adhesive. It is used in dyes, calico printing, as a component of smoke screens and as scintillation counter crystals.

People may be exposed to anthracene from environmental sources such as air, water, and soil, and from cigarette smoke and overcooked food. Typical exposures are not usually to anthracene alone, but to a mixture of similar chemicals.

## <u>Classification</u>

USEPA weight-of-evidence classification--D, not classifiable as to human carcinogenicity on the basis that no human data and inadequate data from animal bioassays exists.

RAM

100

1846

#### <u>Health Effects</u>

Anthracene is a skin irritant and an allergen. It is an experimental equivocal tumorigenic agent and has experimental neoplastic effects.

# <u>ARSENIC</u>

Arsenic, As, is present as an impurity in many metal ores and is produced as a by-product in the smelting of these ores, particularly copper. It is labelled as a poison and is used in a variety of industries: agricultural, insecticides, herbicides, pharmaceuticals, pigment production, and manufacturing of glass.

## Classification

This substance and certain arsenic compounds have been listed as carcinogens. The weight of evidence classification as to human carcinogenicity is listed in Group A based on observation of increased lung cancer mortality in populations exposed primarily through inhalation and an increased skin cancer incidence in several populations consuming drinking water with high arsenic concentrations.

## Health Effects

Arsenic can be inhaled or ingested through dust and fumes. Acute toxic effects are generally seen following ingestion of the compound. Symptoms may develop within one-half to four hours following ingestion and are characterized by constriction of the throat followed by dysphagia, epigastric pain, vomiting, and watery diarrhea. If large amounts are ingested, shock may develop due to severe fluid loss, and death may ensue within 24 hours. Exfoliative dermatitis and peripheral neuritis may Acute cases due to inhalation are rare. develop. Chronic arsenic poisoning due to ingestion is also rare. It can, however, be inhaled resulting in symptoms of weight loss, nausea, eruption of the skin, loss of hair, and peripheral neuritis. Horizontal white lines (striations) on the fingernails and toenails are commonly seen in chronic arsenic poisoning. Liver damage from chronic poisoning is still debated. Arsenic does have a depressant effect upon bone marrow, with evidence of also causing lung and skin cancer.

#### BARIUM

Barium, Ba, an alkaline earth metal, is a silver-white, slightly lustrous, somewhat malleable metal. It is produced by the reduction of barium oxide. The primary sources are the minerals barite (BaSo₄) and witherite (BaSo₃). Barium may ignite spontaneously in air in the presence of moisture involving hydrogen. Most barium compounds are soluble in water, although the chemical itself is not. Metallic barium is used as a carrier for radium and for the removal of residual gas in vacuum tubes and in alloys with nickel, lead, calcium, magnesium, sodium, and lithium. Barium compounds are used in several manufacturing operations: X-ray diagnostic work, glassmaking, papermaking, and animal and vegetable oil refining. They are used in brick and tile, pyrotechnics, and the electronics industries. They are found in lubricants, pesticides, glazes, textiles dyes and finishes, pharmaceuticals, rodenticides, a stabilizer and mold

RAM 001 18

lubricant in the rubber plastics industries, an extender in paints, a loader for paper, soap, rubber and linoleum, and a fire extinguisher for uranium or plutonium fires.

## <u>Classification</u>

This chemical has not been evaluated by the U.S. EPA for evidence of human carcinogenic potential.

## <u>Health Effects</u>

The soluble barium salts, such as chloride and sulfide, are poisonous when ingested (Sax/Lewis, 1987). The insoluble sulfate used in radiography is not acutely toxic. Few cases of systemic poisoning have been reported. Barium compounds, when ingested or given orally, exert a profound effect on all muscles and especially smooth muscles, markedly increasing their contractility. The heart rate is slowed and may stop in systole. Other effects are increased intestinal peristalsis, vascular constriction, bladder contraction, and increased voluntary muscle tension. The inhalation of barium sulfate dust may lead to deposition in the lungs in sufficient quantities to produce "baritosis", a benign pneumoconiosis. Barium and its compounds may affect the heart, lungs, central nervous system, skin, eyes, and respiratory system (Sittig, 1985).

#### BENZENE

The hydrocarbon benzene,  $C_6H_6$ , is a clear, volatile colorless liquid with a characteristic odor. Uses of benzene include: a constituent in motor fuels, as a solvent, imprinting, as a chemical intermediate, and in the manufacture of detergents, explosives, pharmaceuticals and dye stuffs.

## Classification

Benzene is recognized as a human carcinogen (IARC, 1982; IRIS, 1991). A weight of evidence of A, positive human carcinogen has been established based on studies of increased incidence of nonlymphocytic leukemia from occupational exposure and increased incidence of neoplasia in rats and mice exposed by inhalation and gavage (IRIS, 1991).

#### <u>Health Effects</u>

Poisoning occurs most commonly via inhalation of the vapor, though benzene can be ingested and penetrate the skin and poison in that manner. Exposure to benzene can cause irritation to the skin, eyes, and upper respiratory tract; erythema, vesiculation, and dry, scaly dermatitis can result from defatting of the skin; pulmonary edema and hemorrhage can result if the liquid gets taken into the lung. Acute benzene exposure will cause central nervous system depression, headache, dizziness, nausea, convulsions and possibly even coma and death. RAM

Benzene is a recognized leukemogen. In several studies occupational exposure has been shown to be the cause of increased incidences of nonlymphocytic leukemia. Benzene is a myelotoxic agent therefore, chronic benzene exposure may result in hypo or hyperplasia of the bone marrow, which will in turn cause changes in the peripheral blood. Anemia, leucopenia, macrocytosis, reticulocytosis, thrombocytopenia, and prolonged bleeding time may result. Other effects of chronic benzene exposure are: fatigue, headache, dizziness, nausea, loss of appetite, weight loss, weakness, pallor, nosebleeds, bleeding gums, menorrhagia, petechiae and purpura. Chronic benzene poisoning exhibits great variation in symptoms between individuals.

## ALPHA-AND DELTA-BENZENE HEXACHLORIDE (BHC)

Alpha-and delta-BHC,  $C_6H_6Cl_6$ , are isomers of 1,2,3,4,5,6-hexachlorocyclohexane, a white or yellowish powder or flake with a musty odor. [The color, odor, and melting point of the compound vary with the isomeric composition.] BHC is insoluble in water, but soluble in 100 percent alcohol, chloroform, and ether. It is used as an insecticide.

#### <u>Classification</u>

Delta-BHC is not yet classified. The alpha isomer has a weight of evidence classification of B2, a probable human carcinogen. This is based upon evidence of liver tumors in mice. Human carcinogenicity data inadequate.

#### <u>Health Effects</u>

Highly toxic by ingestion, moderately by inhalation. Absorbed by skin. Strong irritant to skin and eyes. Central nervous system depressant. When heated to decomposition, it emits toxic chloride fumes.

#### GAMMA-BENZENE HEXACHLORIDE (BHC)

Gamma-BHC (lindane),  $C_6H_6Cl_6$ , is an isomer of 1, 2, 3, 4, 5, 6hexachlorocyclohexane. It is the most insecticidally active of this compound's 8 stereoisomers and because of this the most economically important. It is a white or yellowish powder or flake with a musty odor. [Color, odor, and melting point vary with isomeric composition.] It is insoluble in water, but soluble in 100 percent alcohol, chloroform, and ether. It has been used against insects in a wide range of applications.

#### <u>Classification</u>

Lindane has a weight-of-evidence classification of B2-C a possible-toprobable human carcinogen. This is based upon evidence of liver tumors in mice. Human carcinogenicity data are inadequate. **I**00

## Health Effects

Irritation of eyes, nose, and throat, headaches, respiratory problems, muscular spasms.

## **BENZO(A)ANTHRACENE**

Benzo[a]anthracene is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Benzo[a]anthracene is found in coal tar pitch used by industry as an adhesive.

People may be exposed to benzo[a]anthracene from environmental sources such as air, water, and soil, and from cigarette smoke and overcooked food. Typical exposures are not usually to benzo[a]anthracene alone, but to a mixture of similar chemicals.

## **Classification**

The weight-of-evidence classification for benzo[a]anthracene is B2-probable human carcinogen based on no human data and sufficient data from animal bioassays.

## <u>Health Effects</u>

Benzo[a]anthracene produced tumors in mice exposed by gavage, intraperitoneal, subcutaneous or intramuscular injection, and topical application. Benzo[a]anthracene produced mutations in bacteria and in mammalian cells, and transformed mammalian cells in culture.

Although there are no human data that specifically link exposure to benzo[a]anthracene to human cancers, benzo[a]anthracene is a component of mixtures that have been associated with human cancer. These include coal tar, soots, coke oven emissions and cigarette smoke.

## **BENZO(B)FLUORANTHENE**

Benzo(b)fluoranthene (B(b)F), in its pure form, is a colorless crystalline solid at room temperature and has a molecular weight of 252.32 g/mole. It has a vapor pressure of 5 x  $10^{-7}$  and an octanol water coefficient of 1/15 x  $10^6$ , and is therefore expected to have poor mobility in the environment. B(b)F is a polycyclic aromatic hydrocarbon that is formed during combustion of fossil fuels and organic material. It is found environmentally in mixtures with other PAH compounds including B(a)P.

RAM

100

The USEPA weight of evidence classification for B(b)F is B2- probable human carcinogen. Sufficient evidence of carcinogenicity in animals exists, in the absence of positive human data.

## <u>Health Effects</u>

There are no data available to assess significant exposure levels of B(b)F alone for humans. Reports of adverse health effects such as carcinogenicity by the inhalation and dermal routes of exposure do exist for mixtures that include B(b)F thus providing some information to qualitatively assess the role of B(b)F as a human carcinogen.

No information has been found about specific levels of B(b)F that have caused harmful effects in humans after ingestion, inhalation, or dermal contact. The carcinogenicity of B(b)F has not been adequately studied, there are no reports directly correlating human B(b)F exposure and tumor development, although humans are likely to be exposed by all routes. There are a number of reports associating human cancer with exposure to mixtures of PAHs that include B(b)F. B(b)F is a skin carcinogen in animals following dermal application, and a lung carcinogen following intratracheal instillation. It is likely that B(b)F could cause cancer in humans as well.

#### BENZO(K)FLUORANTHENE

Benzo[k]fluoranthene is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Benzo[k]fluoranthene is found in coal tar pitch used by industry as an adhesive.

People may be exposed to benzo[k]fluoranthene from environmental sources such as air, water, and soil, and from cigarette smoke and overcooked food. Typical exposures are not usually to benzo[k]fluoranthene alone, but to a mixture of similar chemicals.

## Classification

The USEPA weight-of-evidence classification for benzo[k]fluoranthene is B2, a probable human carcinogen on the basis that no human data and sufficient data from animal bioassays exists.

## Health Effects

Benzo[k]fluoranthene produced tumors after lung implantation in mice and when administered with a promoting agent in skin-painting studies. Equivocal results have been found in a lung adenoma assay in mice.

100

Benzo[k]fluoranthene is mutagenic in bacteria. Although there are no human data that specifically link exposure to benzo[k]fluoranthene to human cancers, benzo[k]fluoranthene is a component of mixtures that have been associated with human cancer. These include coal tar, soots, coke oven emissions and cigarette smoke.

#### BENZO(G,H,I)PERYLENE

Benzo[g,h,i]perylene is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Benzo[g,h,i]perylene is found in coal tar pitch used by industry as an adhesive.

People may be exposed to benzo[g,h,i]perylene from environmental sources such as air, water, and soil, and from cigarette smoke and overcooked food. Typical exposures are not usually to benzo[g,h,i]perylene alone, but to a mixture of similar chemicals.

## <u>Classification</u>

USEPA weight-of-evidence classification -- D; not classifiable as to human carcinogenicity based upon no human data and inadequate animal data from lung implant, skin-painting and subcutaneous injection bioassays.

## Health Effects

Benzo[g,h,i]perylene appeared to increase lung epidermoid tumors when administered with trioctanonin in a lung implant study. In a lifetime implant study, 3-month-old female Osborne-Mendel rats received a lung implant of benzo[g,h,i]perylene. Epidermoid carcinomas in the lung and thorax were observed. The apparent increased incidence of tumors was not statistically significant and no distant tumors were seen.

#### BENZO(A) PRYRENE

Benzo(a)pyrene (B(a)P),  $C_{20}H_{12}$ , is a polycyclic aromatic hydrocarbon (PAH) compound. It is formed when any organic material burns and is usually found in smoke and soot as a combustion by-product. B(a)P is found in coal tar pitch used by industry, and is found in creosote.

## Classification

B(a)P weight of evidence is B2 because of sufficient evidence of carcinogenicity in experimental animals, but inadequate evidence of cancer in humans from epidemiologic studies.

100

# Health Effects

Short term and intermediate oral exposure to very high levels of B(a)P resulted in death in experimental animals fed B(a)P in the diet. The induction of cancer is the key endpoint of toxicity following chronic exposures to lower doses of B(a)P in the diet. Lethal effects from high doses of B(a)P were caused by bone marrow depression. There is no information available for the potential of human carcinogenicity following oral B(a)P exposure. Studies with experimental animals have produced leukemia and tumors of the forestomach and lung following intermediate exposures in mice.

No short term or intermediate inhalation exposure effects are available for B(a)P. The induction of cancer is the key long term effect. B(a)P is a moderately potent experimental carcinogen in many species by many routes of exposure. There are no reports directly correlating human B(a)Pexposure and tumor development, although humans are likely to be exposed by all routes. There are a number of reports associating human cancer and exposure to mixtures of PAHs that include B(a)P. In view of these observations and it's well established carcinogenic activity in laboratory animals, it is reasonable to conclude that B(a)P would be expected to be carcinogenic to humans by all routes of exposure.

## BERYLLIUM

Beryllium, Be, is a gray metal that combines the properties of light weight and high tensile strength. Beryllium is used as a neutron reflector and neutron moderator in nuclear reactors. It is also used in the manufacture of beryllium alloys, namely beryllium copper and beryllium aluminum. Beryllium is also used for radio components, in aerospace structures, and inertial guidance systems.

#### Classification

The U.S. EPA's weight of evidence classification for human carcinogenicity is Group B2: a probable human carcinogen based on limited evidence from studies in humans and sufficient studies in animals. Beryllium has been shown to induce lung cancer via inhalation in rats and monkeys and to induce osteosarcomas in rabbits via intravenous or intramedullary injection. Human epidemiology studies are considered to be inadequate (IRIS, 1989).

## Health Effects

Death may result from short exposure to very low concentrations of the element and its salts (Merck, 1983). Contact dermatitis, chemical conjunctivitis, corneal burns, nonhealing ulceration at site of injury, and subcutaneous nodules may occur following exposure. Acute effects include pneumonitis, which may result from single exposure to beryllium and occasionally is fatal. Pulmonary granulomatens disease may appear in

RAM 001 1853

three months to 15 years often after short exposure. The death rate is approximately 25 percent.

Studies of workers at a beryllium processing plant reported significant increases of lung cancer. There is evidence for induction of tumors by a variety of beryllium compounds via inhalation and intratracheal instillation and the induction of osteosarcomas in rabbits by intravenous or intramedullary injection in multiple studies (IRIS, 1989).

# 2 - BUTANONE

2-Butanone,  $C_4H_8O$ , otherwise known as methyl ethyl ketone (MEK), is a colorless liquid with a fragrant, mintlike moderately sharp odor. It is used as a solvent in coating industries, in the manufacturing of synthetic resins, in cements and adhesives, and in the dewaxing of lubricating oils.

## Classification

The weight of evidence classification by the U.S. EPA categorizes MEK in Group D, which does not list MEK as a human carcinogen. No data presently exist to evaluate this classification, evidence for carcinogenicity in humans and animals is inadequate.

## Health Effects

MEK may affect the central nervous system and the lungs. It may be inhaled, absorbed through the skin, ingested, or contact the eyes and skin. Headaches, dizziness, or vomiting may develop. It is moderately toxic by ingestion. MEK irritates the eyes at concentration in the range of 350 ppm. No other adverse effects have been observed.

#### **TERT-BUTYLBENZENE**

Tert-butylbenzene (2-methyl-2-phenylpropane),  $C_6H_5C(CH_3)_3$ , is a colorless, combustible liquid, insoluble in water but soluble in alcohol. It is used as a polymerization solvent and as a polymer linking agent.

RAM

100

1854

#### Classification

Not yet classified.

## <u>Health Effects</u>

Tert-butylbenzene is moderately toxic by ingestion.

## BUTYLBENZYLPHTHALATE

Butylbenzylphthalate,  $C_4H_9OOCC_6H_4OOC_7H_7$ , is a clear, oily liquid with a slight odor. It is also known as benzylbutylphthalate on BBP. It has a melting point of less than -35°C, boiling point of 370°C and density of 1.116. Butylbenzylphthalate is used as a plasticizer for polyvinyl and cellulosic resins and as an organic intermediate.

## <u>Classification</u>

Butylbenzylphthalate has a weight of evidence of C. It is considered a possible human carcinogen based on a significant increase in mononuclear cell leukemia in female rats. There is no data on human carcinogenity.

#### Health Effects

Oral administration of butylbenzylphthalate to rats resulted in decreased body weight gain, small testes, testicular lesions, and decreased hemoglobin, hematocrit and red blood cell count. Liver and kidney effects were also reported. No information on human health effects was found.

#### CADMIUM

Cadmium, Cd, is a metallic element. It is naturally occurring in zinc, copper and lead ores. Since cadmium is very corrosion resistant it is used as protective coating for iron, steel and copper. Cadmium is used in alkaline batteries, as a stabilizer for polyvinyl chloride plastics, in nickel plating, and in the manufacture of semiconductors, photocells, and jewelry. Cadmium compounds are used as pesticides, polymerization catalysts, pigments, paints and in the photographic industry.

## **Classification**

The USEPA classifies cadmium as having a weight of evidence of Bl, being a probable carcinogen. Cadmium is also a teratogen and an experimental carcinogen.

#### Health Effects

The substance may attack the respiratory system, lungs, kidney, prostate, and blood. Cadmium compounds are well absorbed by inhalation but poorly absorbed from the intestinal tract. Skin absorption appears negligible. After being absorbed cadmium has a very long half life. It is stored in the kidneys and liver.

Acute health effects are usually delayed a few hours after exposure. There is irritation of the upper respiratory tract; possibly followed by coughing, chest pain, sweating and chills. 8 to 24 hours after exposure severe pulmonary irritation may develop with shortness of breath and general weakness. Breath may become shorter as pulmonary edema develops.

RAM 001 185

There is an approximately 15% mortality rate in acute cases. Survivors may have emphysema and corpulmonale.

The chronic effects of cadmium poisoning are kidney damage and mild hypochronic anemia. In experimental animals chronic effects have included liver damage, central nervous system damage, testicular atrophy, teratogenic effects (rodents), decrease in red blood cell count, sarcomata, and testicular neoplasms.

## CALCIUM

Calcium is a common element of the natural environment. It is an alkaline earth metal which accounts for about 3.6% of the earth's crust (fifth element in order of abundance). The principal commercial source of calcium is limestone.

Calcium is used in metallurgy as a deoxidizer for copper, beryllium and steel. It is also used to harden lead for bearings, to manufacturer flints, and in the manufacture of electric vacuum tubes.

## <u>Classification</u>

Calcium is not classified by the USEPA for human carcinogenicity.

#### Health Effects

Calcium is an essential constituent of bones and teeth. Calcium metal may ignite in air if finely divided.

#### CARBON DISULFIDE

Carbon disulfide,  $CS_2$ , is a mobile, clear, or faintly yellow liquid. Pure distillates have a sweet pleasing ethereal odor. Reagent and commercial grades are foul-smelling. It is used in the manufacture of soil disinfectants, vacuum tubes, and for cleaning and extractions, especially in metal treatment and plating. It is a fumigant for commodities, a corrosion inhibitor, and a polymerization inhibitor for vinyl chlorides.

# <u>Classification</u>

This chemical has not been evaluated by the U.S. EPA for evidence of human carcinogenic potential. No weight of evidence is classified.

RAM

100

1856

#### Health Effects

Poisoning usually occurs from inhalation but also may be caused by ingestion and skin absorption. Acute toxicity exhibits euphoria, restlessness, mucous membrane irritations, nausea, vomiting, unconsciousness, and terminal convulsions. Chronic toxicity exhibits marked psychic disturbances ranging from extreme irritability to mania with hallucinations, tremors, auditory and visual disturbances, weight loss, and blood dyscrasia. Dermal contact with concentrated solutions may cause burning, pain, erythema, and exfoliation.

## CARBON TETRACHLORIDE

Carbon tetrachloride,  $CCl_4$ , is a colorless non-flammable liquid with a characteristic odor. It is also known as tetrachloromethane and perchloromethane. Carbon tetrachloride is used as a solvent for oils, fats, lacquers, varnishes, rubber, waxes and resins. It is used in the synthesis of fluorocarbons, as a dry cleaning agent, a fire extinguishing agent, and as a fumigant.

## <u>Classification</u>

Carbon tetrachloride is classified as a group B2 chemical, a probable human carcinogen.

## Health Effects

Carbon tetrachloride removes the natural lipid cover of the skin. Repeated contact may cause a dry, scaly, fissued dermatitis. Eye contact is slightly irritating. Signs and symptoms of liver and kidney damage may develop after acute exposure. Nausea, vomiting, abdominal pain, diarrhea, enlarged and tender liver, and jaundice result from toxic hepatitis. Diminished urinary volume, red and white blood cells in the urine, albuminuria, coma and death may be consequences of acute renal failure. Excessive exposure may result in central nervous system depression and gastrointestinal symptoms.

Carbon tetrachloride produces liver tumors in rats and mice after administration by various routes. Oral administration has caused liver tumors in trout and hamsters.

#### ALPHA AND GAMMA-CHLORDANE

Alpha-and gamma-chlordane,  $C_{10}$  H₆ Cl₈, are isomers of 1,2,4,5,6,7,8,8octochloro-4,7-methano-3a,4,7,7a-tetrahydroindane. Chlordane is a pale yellow, odorless, viscous (non-volatile) liquid that is soluble in many organic solvents but insoluble in water. It is miscible in deodorized kerosene, and decomposes in weak alkalies. It has been used as a broadspectrum insecticide, but is currently used mainly for termite control.

# **Classification**

Chlordane has a weight-of-evidence classification of B2, a probable human carcinogen. This is based on incidence of liver tumors in mice. Human carcinogenicity data are inadequate.

RAM 001 1857

## <u>Health Effects</u>

Chlordane isomers are an oral, intravenous, inhalation, and intrapritoneal poisons. Chlordane is also absorbed by the skin. It is implicated in aplastic anemia, and is a central nervous system stimulant, causing loss of appetite and neurological symptoms. On heat decomposition it emits highly toxic chloride fumes.

Signs and symptoms of exposure include increased sensitivity to stimuli, tremors, muscular incoordination, and convulsions with or without a coma. There are some reports of delayed development of liver disease, blood disorders, and upset stomach. Chlordane is considered to be moderately to highly toxic.

#### CHLOROBENZENE

Chlorobenzene,  $C_6H_5Cl$ , otherwise known as benzene chloride, is a clear, colorless liquid used in the manufacture of aniline, phenols, and as an intermediate of dyes and pesticides.

#### Classification

The weight of evidence for carcinogenicity by the U.S. EPA is presently being evaluated. This does not imply that chlorobenzene is necessarily a carcinogen.

#### <u>Health Effects</u>

Chlorobenzene can be inhaled, ingested, or irritate the eyes and skin. It may affect the respiratory and central nervous systems, and the liver. It may cause drowsiness, incoherence, skin irritation, and liver damage. Little is known of the effects of repeated exposures at lower concentrations, but it may also cause kidney damage. Histopathologic changes have been observed in the liver in animal studies (Monsanto, 1967).

## CHLOROMETHANE

Chloromethane (methyl chloride),  $CH_3$  Cl, is a colorless, liquidified, flammable gas with a faint, sweet odor. It is slightly soluble in water, by which it is decomposed. It is soluble in alcohol, chloroform, benzene, carbon tetrachloride, and glacial acetic acid. It attacks active metals such as aluminum, magnesium, and zinc. Chloromethane is used as a methylating and chlorinating agent, and as an extractant for greases, oils, and resins. It is also used as a solvent in the synthetic rubber industry, as a refrigerant, and sometimes as a propellant. In the past it has been used as a local anaesthetic. It is an intermediate in drug manufacture.

100

Chloromethane has a weight-of-evidence classification of C, a possible human carcinogen. This is based upon incidence of kidney tumors in mice. Human carcinogenicity data are inadequate.

# Health Effects

Points of attack are the liver, kidneys, skin, and central nervous system. Acute exposure predominantly depresses the central nervous system (causing psychiatric disturbances), but renal and hepatic damage may also occur. Bone marrow activity is depressed. Several hours after exposure such symptoms as staggering gait, nausea, and dizziness may be observed. Dangerous fire hazard. Heat decomposition causes very toxic chloride fumes to be emitted.

#### CHROMIUM

Chromium is a naturally occurring element that is found in soil and in volcanic dusts and gasses. It is found in the environment in three major states, chromium (0), chromium (III), and chromium (VI). Chromium (III) occurs naturally in the environment, while chromium (0) and chromium (VI) are generally produced by industrial processes. Chromium (0) is the metallic form and is used in steel making and for electroplating. Other chromium compounds are made by the chemical industry for use as pigments, and in leather tanning, rubber making, wood treatment, and water treatment.

#### Classification

The USEPA weight-of-evidence classification for hexavalent chromium is A, a human carcinogen by the inhalation route. Results of epidemiologic studies are consistent across investigators and locations. Dose-response relationships for lung tumors have been established. Evidence for other chromium compounds (trivalent and metallic) is inconclusive.

## Health Effects

The three forms of chromium have different effects on health. Hexavalent chromium is irritating. Acute effects may include: ulcers of the skin, irritation of the nasal mucosa, perforation of the septum and gastrointestinal irritation. Kidney and liver damage, and inflammation and ulceration of the gastrointestinal tract are also possible, as are chronic effects.

RAM

100

1859

Trivalent chromium is an essential nutrient. The minimum daily requirement for optional health is not known, but it is estimated that a daily ingestion of 50-200 micrograms/day is safe and adequate. Chromium (III) may be harmful at very high doses. The health effects of metallic chromium (chromium (0)) are not well characterized.

Epidemiologic studies of chromate production facilities in the United States, Great Britain, Japan, and West Germany have established an association between chromium exposure and lung cancer. Most of these studies did not attempt to determine whether Cr III or Cr VI compounds were the etiologic agents. Three studies of the chrome pigment industry, one in Norway, one in England, and the third in the Netherlands and Germany also found an association between occupational chromium exposure (predominantly to Cr VI) and lung cancer. Hexavalent chromium compounds were carcinogenic in animal assays producing the following tumor types: intramuscular injection site tumors, intraplural implant site tumors for various chromium VI compounds, intrabronchial implantation site tumors for various Cr VI compounds, and subcutaneous injection site sarcomas.

## CHRYSENE

Chrysene is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Chrysene is found in coal tar pitch used by industry as an adhesive.

People may be exposed to chrysene from environmental sources such as air, water, and from tobacco smoke and overcooked food. Typical exposures are not usually to chrysene alone, but to mixtures of similar compounds.

#### Classification

The USEPA weight-of-evidence classification for chrysene is B2, a probable human carcinogen on the basis that no human data and sufficient data from animal bioassays exists.

#### Health Effects

Chrysene produced carcinomas and malignant lymphoma in mice after intraperitoneal injection and skin carcinomas in mice following dermal exposure. In mouse skin painting assays chrysene tested positive in both initiation and complete carcinogen studies. Chrysene produced chromosomal abnormalities in hamsters and mouse germ cells after gavage exposure, positive responses in bacterial gene mutation assays and transformed mammalian cells exposed in culture. It was shown to be a complete carcinogen. Chrysene has produced positive results for initiating activity in several mouse strains when applied in combination with various promoting agents producing skin papillomas and carcinomas.

RAM

Although there are no human data that specifically link exposure to  $\tilde{\sigma}$  chrysene to human cancers, chrysene is a component of mixtures that hav

been associated with human cancer. These include coal tar, soots, coke oven emissions and cigarette smoke.

# <u>COBALT</u>

Cobalt is a metallic element that occurs naturally in various valences (+1, +2, +3 rarely +4, +5) and one isotope ⁵⁹ Co. Cobalt appears to be essential to life with pernicious anemia developing in it's absence.

## **Classification**

Not classified for carcinogenicity by the U.S. EPA.

#### Health Effects

Naturally occurring cobalt is essential to plant and animal life. There are numerous man-made cobalt compounds that are toxic in varying degrees.

Ingestion of soluble cobalt salts produces nausea and vomiting by local irritation. Inhalation of metallic dust may cause pulmonary symptoms. Powder may cause dermatitis (Merck, 1989)

#### COPPER

Cooper is a reddish-brown metal which occurs in the earth's crust at a concentration of 70 ppm. Copper is also present in seawater.

The uses of copper include: the manufacture of bronzes, brass, other copper alloys, electrical conductors, ammunition, copper salts, insecticides, fungicides, pigments, catalysts, analytical reagents, electroplating and paints.

## **Classification**

The USEPA weight of evidence for copper is D, not classifiable as to human carcinogenicity on the basis of inadequate evidence in humans and animals.

# Health Effects

The local effects of copper salts are irritant effects: itching and erythema. Conjunctivitis and even ulceration and turbidity of the corneas may be caused by contact of copper salts with the eyes.

The fumes and dust generated by welding copper-containing metals may cause upper respiratory irritation, a metallic taste in the mouth, nausea, metal fume fever and possibly discoloration of the hair and skin. Inhalation of dusts, fumes and mists of copper salts may result in the congestion of nasal mucous membranes, sometimes of the pharnyx and on occasion, ulceration with perforation of the nasal septum. In the GI tract copper salts act as irritants producing salivation, nausea, vomiting, gastric pain, hemorrhagic gastritis and diarrhea.

"Chronic human intoxication occurs rarely and then only in individuals with Wilson's disease. This is a genetic condition caused by the pairing of abnormal autosomal recessive genes in which there is abnormally high absorption, retention, and storage of copper by the body. The disease is progressive and lethal if untreated." (Sitting, 1985).

# <u>CUMENE</u>

Cumene (isopropylbenzene),  $C_6H_5CH(CH_3)_2$ , is a colorless, combustible liquid with a sharp, penetrating odor. It is soluble in alcohol, carbon tetrachloride, ether, and benzene, but insoluble in water. It is used as a high-octane gasoline component, and as a thinner for paints and lacquers. It is an important intermediate in the manufacture of phenol.

## **Classification**

Not yet classified.

#### Health Effects

Exposure to cumene can cause irritation of the eyes and mucous membranes, headaches, dermatitis, narcosis, and coma. It is a central nervous system depressant and may be cumulative in its action. Cumene is more toxic than benzene or toluene. It is a potent human irritant via the inhalation route, but only a moderate irritant via the oral route.

### CYMENE

Cymene (isopropyltoluene),  $CH_3C_6H_4CH(CH_3)_2$ , is a colorless, combustible liquid with an aromatic odor. Ortho-,meta-, and para- isomers are known. It is soluble in alcohol, ether, and chloroform, but insoluble in water. Cymene is used in the manufacture of synthetic resins, in metal polishes, and in organic synthesis.

#### Classification

Not yet classified.

#### <u>Health Effects</u>

Some human central nervous system effects are known at low dose rates. Low toxicity via oral and inhalation routes. RAM

100

## DIBENZOFURAN -

Dibenzofuran is formed as a by-product in the manufacture of chlorinated herbicides, and is produced during the combustion of PCBs. It is not found in a pure form, but as a component of mixtures of dioxins and furans produced in a similar fashion.

#### <u>Classification</u>

The USEPA weight-of-evidence classification of dibenzofuran is D, not classifiable as to human carcinogenicity based upon no human data and no animal data for dibenzofuran alone.

## Health Effects

There is no data on the possible carcinogenicity of dibenzofuran alone in humans. Studies have evaluated exposure to a mixture of polychlorinated biphenyls (PCBs), polychlorinated dibenzofurans (PCDFs) and polychlorinated quinones (PCQs) by consumption of contaminated rice oil. However, these studies have limited value because they do not assess dibenzofuran or correlate exposure with cancer risk. Additionally, because of the multiple exposures, the extent to which the various components contributed to the increase in cancer mortality cannot be determined.

No animal carcinogenicity data on dibenzofuran is currently available. The U.S. EPA (1986) noted that the biological activity of PCDFs varies greatly, so that risk assessment of dibenzofuran by analogy to any of these more widely studied compounds would not be recommended.

### 1,2 DICHLOROBENZENE

1,2-Dichlorobenzene,  $C_6H_4Cl_2$ , also known as 1,2-DCB, is a colorless to pale yellow liquid that is used as a process solvent in the manufacturing of toluene diisocyanate and as an intermediate in the synthesis of dye stuffs, herbicides, and degreasers.

#### <u>Classification</u>

This chemical is among those substances being evaluated by the USEPA for evidence of human carcinogenic potential. This does not imply that this chemical is necessarily a carcinogen.

RAM

001 1863

#### Health Effects

Human exposure to 1,2-DCB is reported to cause hemolytic anemia and liver necrosis. Dichlorobenzenes in general are toxic to non-human mammals, birds, and aquatic organisms and impart an offensive taste and odor to water (Sittig, 1985). Persons with pre-existing pathology (hepatic, renal, and central nervous system) or metabolic disorders and are who taking certain drugs (hormones or other metabolically active), might be considered risks from exposure to 1,2-DCB. Irritation of eyes and nose, liver and kidney damage, and skin blisters may appear upon 1,2-DCB exposure.

## 1,4-DICHLOROBENZENE

In pure form, 1,4-dichlorobenzene is a white crystalline material that is volatile at room temperatures with a characteristic penetrating odor. It is used as an insecticidal fumigant, popular for protecting clothes against moths.

#### Classification

Not classified for carcinogenicity by USEPA.

## Health Effects

Vapors may cause irritation to skin, throat, and eyes. Prolonged exposure to high concentrations may cause weakness, dizziness, and loss of weight. Liver injury may develop. (MERCK, 1989)

#### DICHLORODIFLUOROMETHANE

Dichlorodifluoromethane (Freon F-12),  $CCl_2F_2$ , is a colorless, virtually odorless, noncorrosive gas, soluble in water and in most organic solvents. It is nonflammable. It is used as a refrigerant and aerosol propellant, among other things.

#### <u>Classification</u>

Not yet classified.

#### <u>Health Effects</u>

A human eye and CNS irritant, narcotic in high concentrations. Heat decomposition emits highly toxic fumes of phosgene and fluorides.

#### 1.1-DICHLOROETHANE

1,1-Dichloroethane,  $CH_3CHCl_2$ , is also known as ethylidene dichloride and ethylidene chloride. It is a colorless, neutral, flammable liquid with an aromatic odor and saccharin taste. 1,1-Dichloroethane is used as a chemical intermediate, has limited use as a solvent, and was formerly used as an anesthetic.

RAM

100

1,1-Dichloroethane has a weight of evidence of C, it is a possible human carcinogen. This is based on no human data and limited evidence of carcinogenicity in rats and mice.

#### <u>Health Effects</u>

1,1-Dichloroethane causes central nervous system depression, skin irritation, drowsiness, unconsciousness and liver and kidney damage.

Female rats have shown an increased incidence of mammary gland adenocarcinomas and hemangiosarcomas. Mice have shown an increased incidence of hepatocellular carcinomas and benign uterine polyps.

## CIS 1,2-DICHLOROETHENE

Cis 1,2-Dichloroethene (acetylene dichloride),  $C_2H_2Cl_2$ , is a colorless, flammable liquid with a pleasant odor. It exists in two isomers: 60 percent cis and 40 percent trans. It is used as a general solvent for organic materials, especially for waxes, resins, and acetylcellulose. It is also used in the extraction of rubber, in pharmaceuticals manufacture, and in the extraction of oils and fat from fish and meat.

#### Classification

Not yet classified.

## Health Effects

Systemic health effects include principally central nervous system depression.

Symptoms of acute exposure include dizziness, nausea, frequent vomiting and central nervous system intoxication similar to that caused by alcohol. Toxic by ingestion, inhalation, and skin contact.

# 1.2-DICHLOROETHANE

1,2-dichloroethane,  $ClCH_2CL_2Cl$ , is also known as ethylene dichloride. It is a colorless flammable liquid which has a pleasant odor and sweetish taste. 1,2-dichloroethane is used in the manufacture of ethylene glycol, diaminoethylene, polyvinyl chloride, nylon, rayon and various plastics. It is a solvent, a degreaser, and an extracting agent. It is also used as an antiknock agent in gasoline, a fumigant, in dry cleaning, in photography, xerography, water softening, and in the production of adhesives, cosmetics, pharmaceuticals and varnishes.

RAM

100

1,2-Dichloroethane has a weight of evidence of B2. It is a probable human carcinogen. There is no human data. Several tumor types were induced in rats and mice treated by gavage. Lung papillomas developed in mice after topical application.

# Health Effects

Acute exposure to 1,2-dichloroethane may cause nausea, vomiting, eye damage, confusion, dizziness and pulmonary edema. Death has resulted from respiratory and circulatory failure. Chronic exposure can cause dry, scaly, fissured dermatitis; neurological changes; loss of appetite and other gastrointestinal problems; irritation of the mucous membranes; and liver and kidney damage.

#### DIELDRIN

Dieldrin,  $C_{12}H_{10}Cl_6$ , is the generic name for a cyclodiene insecticide containing 85 percent or more of 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4, 4a,5,6,7,8,8a-octahydro-1,4-endo,exo-5,8-dimethannaphthalene. It is a light-tan, flaked solid, insoluble in water, methanol, and aliphatic hydrocarbons. It is soluble in acetone and benzene. Dieldrin is used as an insecticide.

Dieldrin's environmental persistence is due to its extremely low volatility and low solubility in water. Due to its polarity, it has a high affinity for fats, resulting in progressive accumulation in the food chain.

## Classification

Dieldrin has a weight-of-evidence classification of B2, a probable human carcinogen. This is based upon evidence of liver tumors in mice. Human carcinogenic data are inadequate.

#### Health Effects

Dieldrin is highly toxic by ingestion, inhalation, and skin absorption. It is a central nervous system stimulant. Nervous symptoms or anorexia may appear first, as well as headache, nausea, vomiting, convulsions, and coma. On heat decomposition very toxic chloride fumes are emitted.

RAM

100

1866

## DIETHYLPHTHALATE

Diethylphthalate, (DEP),  $C_{12}H_{14}O_4$ , is a clear, colorless liquid used as a solvent for cellulose esters; as a vehicle in pesticidal sprays; as a fixative and solvent in perfumery; as an alcohol denaturant; and as a plasticizer in solid rocket propellants.

The weight of evidence classification, categorized in Group D, does not classify DEP as a human carcinogen. No human carcinogenic data are available, and animal carcinogenic data is inadequate.

## Health Effects

DEP can be poisonous by intravenous route (Sittig, 1985). It is also known to be an experimental teratogen and may be moderately toxic if ingested. It can be an eye irritant and a systemic irritant by inhalation. DEP is a narcotic in high concentrations (Sax, 1987).

DEP has few chronic toxic properties and seems to be devoid of any major irritating or sensitizing effects on the skin. Exposure to heated vapors may produce transient irritation of the nose and throat. Conjunctivitis, corneal necrosis, respiratory tract irritation, dizziness, nausea, and eczema are symptoms.

#### DI-N-OCTYLPHTHALATE

Di-n-octylphthalate,  $C_6H_4(COOC_8H_{17})_2$ , is a liquid which is also known as DOP. It is used as a plasticizer in the manufacture of plastics products.

## Classification

Not classified for carcinogenicity by USEPA.

# Health Effects

Di-n-octylphthalate is an eye and skin irritant. As a group, the phthalic acid esters are oily liquids used as intermediates in manufacturing or as lubricants. They are generally toxic in high concentrations and some are considered to be carcinogenic.

#### **ETHYLBENZENE**

Ethylbenzene,  $C_8H_{10}$ , is a colorless liquid with a pungent aromatic odor. It is used in the manufacture of cellulose acetate, styrene, and synthetic rubber.

## <u>Classification</u>

The U.S. EPA weight 'of evidence classification is Group D: not classifiable as a human carcinogen based on the lack of animal bioassays and human studies.

RAM 001 1867

## <u>Health Effects</u>

Ethylbenzene is moderately toxic by irritation to skin, eyes, and mucous membranes, and by ingestion and inhalation routes (Sax/Lewis, 1987). The liquid is an irritant to the skin and mucous membranes. A concentration of 0.1 percent of vapor in the air is an irritant to human eyes, and a concentration of 0.2 percent is extremely irritating at first, then causes dizziness, irritation of the nose and throat, and a sense of constriction in the chest. Exposure to 1 percent concentration has been reported as causing anoxia, loss of consciousness, tremor of the extremities, and finally death through respiratory failure. Pathological findings were congestion of the brain and lungs, with edema. Ethylbenzene is an experimental teratogen.

#### BIS(2-ETHYLHEXYL)PHTHALATE

Bis(2-ethylhexy)phthalate,  $C_6H_4(COOCH_2C_2H_5CH_2CH_2CH_2CH_3)_2$ , is as colorless oily liquid with almost no odor. It is also known a BEHP. BEHP is produced by the reaction of 2-ethylhexyl alcohol and phthalic anhydride. It is used as a plasticizer for resin and in the manufacture of organic pump fluids.

## Classification

The USEPA weight of evidence has classified BEHP in Group B2: a probable human carcinogen. This is based on studies where orally administered BEHP produced significant dose-related increases in liver tumor responses in rats and mice of both sexes.

#### <u>Health Effects</u>

BEHP can be inhaled, ingested, and be a skin and eye irritant. It may affect the upper respiratory and gastrointestinal systems. Symptoms may include irritation of the eyes and mucous membranes; nausea; and diarrhea (Sittig, 1985).

#### FLUORANTHENE

Fluoranthene is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Fluoranthene is found in coal tar pitch used by industry as an adhesive.

RAM

100

1868

People may be exposed to fluoranthene from environmental sources such as air, water, and from tobacco smoke and overcooked food. Typical exposures are not usually to fluoranthene alone, but to mixtures of similar compounds.

The USEPA weight-of-evidence classification for fluoranthene is D, not classifiable as to human carcinogenicity on the basis of no human data and inadequate data from animal bioassays.

## Health Effects

Although fluoranthene has not exhibited the properties of a mutagen or primary carcinogen, there is concern about its toxicity. This concern is based on the fact that it is widespread in the environment and that it belongs to the PAH group which includes numerous potent carcinogens.

In a 13 week mouse oral subchronic toxicity study where mice were gauged with a range of doses of fluoranthene, all treated mice exhibited nephropathy, increased salivation, increased liver enzyme levels and increased liver weights in a dose-dependent manner. Microscopic liver lesions (indicated by pigmentation) were observed in 65 and 87.5% of the mid- and high-dose mice, respectively.

#### FLUORENE

Fluorene is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when fossil fuels, garbage, or any other plant or animal material is burned, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Fluorene is found in coal tar pitch used by industry as an adhesive.

Although there is no human data that specifically links exposure to fluorene with human cancers, it is a component of mixtures that have been associated with human cancer. These include coal tar, soot, coke oven emissions, over-cooked food and tobacco smoke.

#### <u>Classification</u>

USEPA weight-of-evidence classification for fluorene is D, not classifiable as to human carcinogenicity based upon no human data and inadequate data from animal bioassays.

## <u>Health Effects</u>

Mice were exposed to fluorene suspended in corn oil by gavage for 13 weeks. Increase salivation, hypoactivity, and urine-wet abdomens in males were observed in all treated animals. The percentage of mice exhibiting hypoactivity was dose-related. Labored respiration, ptosis (drooping eyelids), and unkempt appearance were also observed. A significant decrease in red blood cell count, packed cell volume, and hemoglobin concentration was observed. Increased total serum bilirubin levels were also observed. A dose-related increase in relative liver weight was

RAM 001 1869

observed in treated mice. A significant increase in absolute and relative spleen and kidney weight was observed in mice exposed to fluorene. Increases in the absolute and relative liver and spleen weights in highdose males and females were accompanied by histopathological increases in the amounts of hemosiderin in the spleen and in the Kupffer cells of the liver. No other histopathological lesions were observed.

## HEPTACHLOR EPOXIDE

Heptachlor epoxide,  $C_{10}H_9Cl_7O$ , is a degradation product of heptachlor, which is, in turn, a generic name for 1, 4, 5, 6, 7, 8, 8-heptachloro-3a, 4, 7, 7a-tetrahydro-4, 7-methanoindene. Heptachlor is a white to lighttan, waxy solid, insoluble in water, but soluble in xylene and alcohol. Heptachlor is used as an insecticide. Heptachlor epoxide also possesses insecticidal properties.

## **Classification**

Heptachlor epoxide has a weight-of-evidence classification of B2, a probable human carcinogen. This is based upon evidence of liver tumors in mice. Human carcinogenic data are inadequate.

## Health Effects

Heptachlor epoxide is more acutely toxic than heptachlor, which is itself highly toxic to aquatic life and persistent in the environment. Its chief points of attack are the central nervous system and liver. Routes of entry include inhalation, skin absorption, ingestion, and eye and skin contact.

Acute symptoms include tremors, convulsions, kidney damage, respiratory collapse, and death. Heat decomposition causes very toxic fumes of chloride to be emitted.

#### IRON

Iron has four naturally occurring valences (+2, +3, rarely +4, +6), and four stable isotopes. After oxygen, iron is the most commonly used element in manufacturing. Iron and its compounds have numerous uses.

#### **Classification**

Not classified for carcinogenicity by the USEPA.

## Health Effects

Because of the large number of compounds, the range of toxicity by oral exposure is from non-toxic to highly toxic (MERCK, 1989). Iron is essential to most plant and animals in the naturally occurring valences (+2, +3). Inhalation of dusts can cause irritation of mucous membranes.

#### <u>LEAD</u>

Lead (Pb) is a bluish-white, silvery-gray metal. It is used as a construction material for tank linings, piping, and other equipment handling corrosive gases and liquids used in the manufacture of sulfuric acid, petroleum refining, halogenation, sulfonation, extraction, condensation for x-ray and atomic radiation protection, manufacture of tetraethyllead, pigments for paint, organic and inorganic lead compounds, bearing metal and alloys; storage batteries; in ceramics, plastics, and electronic devices; in building construction; in solder; and other lead alloys (Merck, 1989).

## **Classification**

The B2 U.S. EPA classification reflects a weight of evidence judgement of the likelihood that the agent is a human carcinogen based on sufficient animal evidence. Ten rat bioassays and one mouse assay have shown statistically significant increases in renal tumors with dietary and subcutaneous exposure to several soluble lead salts. Animal assays provide reproducible results in multiple rat strains with some evidence of multiple tumor sites. Short-term studies show that lead affects gene expression. Human evidence is considered to be inadequate to refute or demonstrate potential carcinogenicity for humans from lead exposure (IRIS, 1989).

## Health Effects

Lead poisoning is one of the commonest of occupational diseases. The presence of lead-bearing materials or lead compounds in an industrial plant does not necessarily result in exposure on the part of the worker. The lead must be in such form, and so distributed, as to gain entrance into the body or tissues of the worker in measurable quantity, otherwise no exposure can be said to exist. Some forms are experimental neoplastigens and tumorigens. The modes of entry into the body are by inhalation of dusts, fumes, mists or vapors; by ingestion of lead compounds trapped in the upper respiratory tract or introduced into the mouth on food, tobacco, fingers, or other objects; and through the skin. This route is of special importance in the case of organic compounds of lead, such as lead tetraethyl. In the case of inorganic forms of lead, this route is of no practical importance.

When lead is ingested, much of it passes through the body unabsorbed, and is eliminated in the feces. The greater portion of the lead that is absorbed is caught by the liver and excreted in part in the bile. For this reason, larger amounts of lead are necessary to cause poisoning if absorption is by this route, and a longer period of exposure is usually necessary to produce symptoms. Upon inhalation, absorption takes place easily from the respiratory tract and symptoms tend to develop more

001 1871

RAM

quickly. From the point of view of industrial poisoning, inhalation of lead is much more important than ingestion. Lead is a cumulative poison. Increasing amounts build up in the body and eventually a point is reached where symptoms and disability occur. Lead produces a brittleness of the red blood cells so that they hemolyze with slight trauma; the hemoglobin is not affected. Due to their increased fragility, the red blood cells are destroyed more rapidly in the body than normally, producing an anemia that is rarely severe. The loss of circulating red cells stimulates the production of new young cells, which on entering the blood stream, are acted upon by the circulating lead, with resultant coagulation of their basophilic material. Lead produces a damaging effect on the organs or tissues with which it comes into contact. Systemic effects include decreased physical fitness, fatigue, sleep, headache, aching bones and muscles, digestive symptoms, abdominal pains, and decreased appetite. Later findings include anemia, palloc, and "lead line" of the gums. Lead colic produces an intense periodic abdominal cramping associated with severe constipation, nausea, and vomiting. Alcohol ingestion and physical exertion may precipitate these symptoms. The peripheral nerve affected most frequently is the radial nerve. When the central nervous system is affected, it is usually due to the ingestion or inhalation of large amounts of lead. This results in severe headache, convulsions, coma, delirium, and possible death. The kidneys can also be damaged after long periods of exposure to lead with loss of kidney function and progressive azotemia.

## MAGNESIUM

Magnesium is considered to be the lightest structural metal. It is found in nature in the +2 valence. It is essential to life, especially green plants. Magnesium is used as a constituent of light alloys; in the manufacture of precision instruments, optical mirrors, and pyrotechnics; in metallurgy; in dry batteries; for flash bulbs and flares; for Grignard reagents and in the recovery of titanium.

#### Classification

Magnesium is not classified by the USEPA for carcinogenicity.

## Health Effects

Particles embedded in skin can produce gaseous blebs with a protracted course. Inhaling the dust is irritating, and fumes can cause metal fume fever.

#### MANGANESE

Manganese is a steel gray, lustrous, hard, brittle metal. It is a widely distributed element which constitutes 0.085% of the earths crust. It is

RAM

primarily used in the manufacture of steel, for rock crushers, railway points and crossings, and as a constituent of several alloys.

## Classification

The U.S. EPA weight of evidence classification is categorized as being in Group D: not classified as a human carcinogen based on limited evidence to evaluate carcinogenicity in humans and animals. No human carcinogenicity data exist.

## Health Effects

Manganese compounds can cause central nervous system and pulmonary system damage by inhalation of fumes and dust. It is an experimental tumorigen. Chronic manganese poisoning is a clearly characterized disease which results from the inhalation of fumes or dusts of manganese. Exposure to heavy concentrations of dusts or fumes for as little as three months may produce the condition, but usually cases develop after 1-3 years of The central nervous system is the chief site of damage. If exposure. cases are removed from exposure shortly after the appearance of symptoms, some improvement in the patients' condition frequently occurs, though there may be some residual disturbances in gait and speech. When well established, however, the disease results in permanent disability. Exposure to dusts and fumes can possibly increase the incidence of upper respiratory infections and pneumonia. Chronic manganese poisoning begins usually with complaints of languor and sleepiness. This is followed by weakness in the legs and the development of a stolid mask-like face. The patient speaks with a slow monotonous voice. The muscular twitchings appear, varying from a fine tremor of the hands to coarse, rhythmical movements of the arms, legs and trunk. Nocturnal cramps of the leg appear about the same time. There is a slight increase in the tendon reflexes, ankle and patillar clonus, and a typical Parkinsonian slopping gait. The handwriting may be quite minute. The systems may simulate progressive bulbar paralysis, postincephalitec Parkinsonism, multiple sclerosis. amyotropic lateral sclerosis and progressive lenticulae degeneration (Welson's Disease).

#### MERCURY

Mercury, Hg, is a silver-white, heavy, mobile, liquid metal utilized in gold, silver, and bronze tin-plating; tanning and dyeing; feltmaking; taxidermy; textile manufacturing; photography; extracting gold and silver from ores; paints and pigments; the preparation of drugs and disinfectants in the pharmaceutical industry; and as a chemical reagent. It is also used in barometers, thermometers, fluorescent lamps, as a catalyst in the oxidation of organic compounds, and in agricultural chemicals.

RAM

100

The U.S. EPA weight of evidence classification for human carcinogenicity is categorized in Group D: not being a human carcinogen. No human data are available to evaluate the evidence for carcinogenicity. Animal carcinogenicity studies are inadequate.

## Health Effects

Mercury can be inhaled, ingested, or absorbed through the skin. It is a primary irritant of skin and mucous membranes. It may be a skin sensitizer. Either acute or chronic exposure may produce permanent changes to affected organs and organ systems. Soluble mercury salts have violent corrosive effects on skin and mucous membranes, cause severe nausea, vomiting, abdominal pain, and bloody diarrhea; kidney damage, and death usually within 10 days. Chronic effects produce four classical gingivitis, sealorrhea, increased irritability, and muscular signs: Rarely are all four seen together in an individual case. tremors. Symptoms may include inflammation of the mouth or gums, excessive salivation, brasing of teeth, kidney damage, muscle tremors, personality changes, depression, irritability, and nervousness. Burning sensation is delayed several hours and thus gives no warning.

## METHYLENE CHLORIDE

Methylene chloride,  $CH_2Cl_2$ , is a nonflammable, colorless liquid with a pleasant aromatic odor. It is also known as dichloromethane. It is used as a solvent for degreasing and cleaning fluids and as a solvent for food processing.

#### Classification

The weight of evidence classification given to methylene chloride is B2, recognizing this substance as a probable human carcinogen. Human carcinogenicity data is inadequate.

## Health Effects

Methylene chloride can irritate the eyes, nose, and throat. It can be inhaled as a vapor, absorbed through the skin, or ingested. Methylene chloride is a mild narcotic. Effects from intoxication include headache, giddiness, stupor, irritability, numbness, and tingling in the limbs. Irritation to the eyes and upper respiratory passages occurs at higher dosages. In severe cases, observers have noted toxic encephalopathy with hallucinations, pulmonary edema, coma, and death. Cardiac arrhythmias have been produced in animals but have not been common in human experience. Exposure to this agent may cause elevated carboxy hemoglobin levels which may be significant in smokers, workers with anemia or heart disease, and those exposed to carbon monoxide.

RAM

100

# 2-METHYLNAPHTHALENE

2-Methylnaphthalene is a polycyclic aromatic hydrocarbon (PAH) compound. It is formed when fossil fuels, garbage, or any plant or animal material is burned, and, therefore, it is usually found in smoke and soot. 2-Methylnaphthalene is found in cigarette smoke, power plant emissions, and coal tar pitch.

## <u>Classification</u>

Although not classified by USEPA, 2-methylnaphthalene is structurally similar to non-carcinogenic PAH compounds.

## Health Effects

2-Methylnaphthalene is a component of PAH mixtures that occur in coal tar, tobacco smoke, and emissions from power plants and foundries. Although specific information on 2-methylnaphthalene is not available, these mixtures have toxicological effects including death, cancer, and reproductive failure.

## <u>4-METHYL-2-PENTANONE</u>

4-Methyl-2-pentanone,  $(CH_3)_2CHCH_2COCH_3$ , is also known as methyl isobutyl ketone and MIBK. It is a colorless, flammable liquid with a pleasant odor. It is used as a solvent for paints, varnishes and nitrocellulose lacquers; in the manufacture of methyl amyl alcohol; in extraction processes; in organic synthesis and as a denaturant for alcohol.

## <u>Classification</u>

MIBK has not been evaluated by the USEPA for evidence of human carcinogenic potential.

#### Health Effects

MIBK exposure may cause irritation of eye and mucous membranes, dermatitis, headaches, narcosis, coma, and death.

#### NAPHTHALENE

Naphthalene is one of the polycyclic aromatic hydrocarbon (PAH) compounds. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Naphthalene is found in coal tar pitch used by industry as an adhesive. It may be used as insecticide. People may be exposed to naphthalene from environmental sources such as air, water, and soil, and from cigarette smoke and overcooked food. Typical exposures are not usually to naphthalene alone, but to a mixture of similar chemicals.

## <u>Classification</u>

USEPA weight-of-evidence classification - D; not classifiable as to human carcinogenicity on the basis that no human data and inadequate data from animal bioassays exist.

## <u>Health Effects</u>

Naphthalene is a primary irritant. It will cause erythema and dermatitis upon repeated contact. It is an allergen and may cause dermatitis in hypersensitive persons. Eye contact with naphthalene dust has caused irritation and cataracts. Ingestion or inhalation of high vapor concentrations may cause intravascular hemolysis. Eye irritation, headache, confusion, excitement, malaise, profuse sweating, nausea, vomiting, abdominal pain and bladder irritation are the initial symptoms. Progressive jaundice, hematuria, hemoglobinuria, a blockage of the renal tubules and acute renal shutdown may occur. Blood effects include: red cell fragmentation, icterus, severe anemia, leukocytosis and decreases in hemoglobin, hematocrit and red blood cell count. Liver damage is another effect of naphthalene.

# NICKEL

Nickel, Ni, is a lustrous, hard ferromagnetic material. It is used for nickel plating, for various alloys, for coins, storage batteries, magnets, lightening rod tips, machinery parts, and as a catalyst for the hydrogenation of oils and other organic substances. Probably the largest use of nickel is in the manufacture of Manel metal, stainless steels, nickel-chrome resistance wires, and in alloys for electronic and space applications (Merck, 1987).

## **Classification**

The U.S. EPA weight of evidence classification is Group A: stating nickel to be a human carcinogen. This classification is based on human data in which exposure to nickel refinery dust caused lung and nasal tumors in refinery workers, and on animal data in which carcinomas were produced in rats by inhalation and injection.

RAM

100

876

Sufficient human carcinogenicity data exists. Nickel refinery dust from pyromethallurgical sulfide nickel matte refineries is considered a human carcinogen when inhaled. Evidence of carcinogenicity includes a consistency of findings across different countries in several epidemiologic studies (Clydach, Wales; Copper Cliff, Ontario; Port Colborne, Ontario; Kristiansand Norway and Huntington, West Virginia). Specific tumor sites (lung and nose), high relative risks, particularly for nasal cancer and dose response relationships by length of exposure have been examined. Excess risks are greatest in the dustier areas of the respective refineries.

## <u>Health Effects</u>

Nickel and most of its salts are generally considered not to cause acute systemic poisoning. However, ingestion of large doses of nickel compounds have been shown to cause intestinal disorders, convulsions, and asphyxia. Many nickel compounds are experimental carcinogens and some are human carcinogens by inhalation. All nickel contaminated dusts are regarded as carcinogenic by inhalation. The most common effect resulting from exposure to nickel compounds is the development of the "nickel itch". This form of dermatitis occurs chiefly in persons doing nickel-plating. There is marked variation in individual susceptibility to the dermatitis. It occurs more frequently under conditions of high temperature and humidity, when the skin is moist and chiefly affects the hands and arms. Nickel carbonyl is highly irritating to the lungs and also can produce asphyxia by decomposing with the formation of carbon monoxide. These compounds are common air contaminants (Sax/Lewis, 1987).

#### PHENANTHRENE

Phenanthrene,  $C_{14}H_{10}$ , is one of the polycyclic aromatic hydrocarbon (PAH) compounds. It is a colorless, shining crystalline solid. Because it is formed when gasoline, garbage, or any animal or plant material burns, it is usually found in smoke and soot. This chemical combines with dust particles in the air and is carried into water and onto soil and crops. Phenanthrene is found in coal tar pitch used by industry as an adhesive. It is used in dyestuffs, explosives, drug synthesis, and biochemical research.

People may be exposed to phenanthrene from environmental sources such as air, water, and soil, and from cigarette smoke and overcooked food. Typical exposures are not usually to phenanthrene alone, but to a mixture of similar chemicals.

#### <u>Classification</u>

The USEPA weight-of-evidence classification for phenanthrene is D, not classifiable as to human carcinogenicity on the basis that no human data and inadequate data from a single gavage study in rats and skin painting and injection studies in mice exists.

## Health Effects

Phenanthrene is a skin photosensitizer.

AM 001 1877

## PHENOLS (TOTAL)

Phenols are a class of aromatic organic compounds in which one or more hydroxy groups are attached directly to the benzene ring. this group includes phenol, pyrocatechol, resorcinol, hydroquinone, quinone, pyrogallol, o,m, and p-cresol, creosote, pentachlorophenol, other chlorophenols, bromo and iodophenols, o-phenylphenol, d-tertbutylmethylphenol, p-tert-butylphenol and dodecylthiophenol. Phenols are used in a large variety of organic compounds, just a few of which are: explosives, fertilizers, wood preservatives, paints, rubber, synthetic resins and pharmaceuticals.

## <u>Classification</u>

Several phenols have been found to cause papillomas and carcinomas in mice. There is no specific evidence of human cancer attributed to phenolic compounds. Phenol is classed as a group D chemical. Phenols, as a group, are not classified.

#### Health Effects

In general the health effects of the phenol group are similar to those of phenol itself. (See phenol profile.) The following are effects of some phenolic compounds which differ from the effects of phenol:

<u>Pyrocatechol</u> - large doses can cause depression of the central nervous system and a prolonged blood pressure rise. It is more toxic than phenol except by inhalation.

<u>Resorcinol</u> - intoxication symptoms similar to those of phenol but the antipyretic action is more marked.

<u>Hydroquinone</u> - more toxic than phenol. Methemoglobin formation is marked, therefore oxygen carrying capacity of the blood is greatly reduced and anoxia may result.

<u>Quinone</u> - Asphyxia is probably important in terminal cases, due to pulmonary damage caused by excretion of quinone into the alveoli, and the not well known effects of quinone on hemoglobin.

<u>Pyrogallol</u> - its strong reducing action gives it a tremendous affinity for oxygen in the blood possibly causing anoxia.

<u>Pentachlorophenol</u> - when absorbed by animals in sufficient quantity it causes accelerated respiration and blood pressure, hyperpyrexia, hyperglycemia, glycosuria and hyperperistalsis. RAM

I 0 0

# PHENOL CONTRACTOR

Phenol,  $C_6H_5OH$ , is also known as carboxylic acid and hydroxybenzene. When pure it is a white or colorless solid, but it is usually used as a liquid. It has a strong, sweet odor. Phenol has many uses including: phenolic resins; epoxy resins; 2,4-D; selective solvent for lubricating oils; germicidal paints; pharmaceuticals; laboratory reagent; dyes and indicators; slimicide; general disinfectant; wood preservatives; and fertilizer.

## <u>Classification</u>

Phenol is classed as a Group D chemical, not classifiable as to human carcinogenicity. This is based on no human data and inadequate animal data.

## <u>Health Effects</u>

The health effects of phenol include discoloration, eczema, inflammation, necrosis, sloughing and gangrene of the skin. Oral ingestion may cause the mucous membranes in the throat and esophagus to show swelling, corrosions and necrosis along with hemorrhage and serious infiltration of and infarcts surrounding Hyperemia of the lungs, the area. bronchopneumonia, purulent bronchitis, and hyperplasia of the peribronchial tissues could be caused by a severe intoxication. Myocardial degeneration and necrosis are also possible.

Symptoms of acute phenol poisoning may include: headache, dizziness, muscular weakness, dimness of vision, ringing ears, irregular rapid breathing, weak pulse and dyspnea. If enough phenol is absorbed loss of consciousness, collapse and death could occur. (Sax, 1987)

Effects of severe chronic exposure are systemic disorders such as digestive disturbances (vomiting, difficulty swallowing, ptyalism, diarrhea, and anorexia), and nervous disorders (with headache, fainting, vertigo, and mental disturbances). Kidney, liver, spleen and pancreas damage are also characteristic. (Sax, 1987; Clayton, 1982)

## POTASSIUM

Potassium, K, is an alkali metal. It is widely found in the environment. It occurs in all soils. Potassium is used in the preparation of potassium peroxide, in heat exchange alloys, as a laboratory reagent, and as a component of fertilizer.

RAM

001 1879

## Classification

Potassium is not classified by the USEPA for human carcinogenicity.

## <u>Health Effects</u>

The toxicity of potassium compounds is almost always that of the anion. Potassium is a dangerous fire and explosion hazard. Potassium metal may explode violently when cut or handled. It can ignite spontaneously in moist air. Burning potassium is difficult to extinguish.

#### PROPYLBENZENE

Propylbenzene (1-phenylpropane),  $C_9H_{12}$ , a liquid, which is only slightly soluble in water, but is soluble in alcohol and ether. It is used in textile dyeing and printing, and as a solvent for cellulose acetate.

#### Classification

Not yet classified.

#### Health Effects

Unknown

## **PYRENE**

Pyrene,  $C_{16}H_{10}$ , is a condensed ring hydrocarbon. It is a colorless solid which is derived from coal tar. Pyrene is used for biochemical research.

#### <u>Classification</u>

The USEPA weight-of-evidence classification for pyrene is D, not classifiable as to human carcinogenicity on the basis of no human data and inadequate data from animal bioassays.

## Health Effects

Pyrene is absorbed by the skin and is a skin irritant. Workers exposed to 3 to 5 mg/m³ of pyrene exhibited some teratogenic effects. Pyrene is a polycyclic aromatic hydrocarbon (PAH). The acute toxicity of pure PAHs appears low when administered orally or dermally to rats or mice. Human exposure to PAHs is almost exclusively via the gastrointestinal and respiratory tracts, and approximately 99 percent is ingested in the diet. Despite the high concentrations of pyrene to which humans may be exposed through food, there is currently little information available to implicate diet-derived PAHs as the cause of serious health effects.

## SODIUM

Sodium, Na, is a silvery white alkali metal that, in the form of its compounds, comprises three percent of the earth's crust. Sodium metal is

**100** 

highly reactive and is not likely to be found in the environment. Sodium's major source is sodium chloride, the major inorganic component of sea water. Sodium is used in the manufacture of sodium compounds, in the manufacture of tetraethyllead, in organic synthesis, for photoelectric cells and in sodium lamps.

## Classification

Sodium is not classified by the USEPA for carcinogenicity.

## Health Effects

Sodium is essential to life in its ionic form. Some compounds are toxic and are dealt with specifically rather than generally. Sodium is extremely caustic to all tissues.

## STYRENE

Styrene (phenylethene),  $C_8H_8$ , is a colorless to yellowish, very refractive, combustible oily liquid with a penetrating odor. It is insoluble in water, but soluble in alcohol and ether. Styrene readily undergoes polymerization when heated. It is used in polystyrene plastics and in various resins and protective coatings.

#### Classification

Styrene has a weight-of-evidence classification of B2, a probable human carcinogen. This is based upon evidence of leukemia in rats and mice. Human carcinogenicity data are inadequate.

#### <u>Health Effects</u>

Styrene is an irritant to eyes, nose, throat, and skin. Short-term exposure may cause prolonged reaction time and decreased manual dexterity. Acute exposure to high concentrations may produce respiratory irritation, followed by narcosis, cramps, and even death (due to respiratory center paralysis).

#### 1,1,2,2-TETRACHLOROETHANE

1,1,2,2-Tetrachloroethane (acetylene tetrachloride),  $CHCl_2$   $CHCl_2$ , is a heavy, colorless, corrosive liquid. It is nonflammable, with a sweetish, chloroformlike odor. It is soluble in alcohol and ether, and slightly soluble in water. Among a variety of uses, it is used as a dry cleaning agent, as a fumigant, in cement, and in lacquers, although it's use as a solvent is declining. 1881

RAM

1,1,2,2-Tetrachloroethane has a weight-of-evidence classification of C, a possible human carcinogen. This is based upon evidence of liver tumors in mice. Human carcinogenicity data are inadequate.

# Health Effects

Points of attack for this compound are the liver, kidneys, and central nervous system. Early systemic effects include tremors, headache, numbness of limbs, and excessive sweating. Partial paralysis and blood changes have also occurred. Other physical symptoms, such as fatigue, headache, constipation, and nausea may follow. Liver dysfunction has occurred, as has pulmonary edema and renal damage. Heat decomposition results in the emission of very toxic chloride fumes.

## **TETRACHLOROETHENE**

Tetrachloroethene,  $C_2Cl_4$ , is a colorless liquid with an ether like odor. It is also known as perchloroethylene. Tetrachloroethene is a commercially important chlorinated hydrocarbon solvent and chemical intermediate. It has been widely used as a dry-cleaning agent, textile processing solvent, heat transfer medium, in the manufacture of fluorocarbons, and for vapor degreasing in metal cleaning operations.

# **Classification**

The USEPA weight-of-evidence for tetrachloroethene is B2, a probable human carcinogen. It has been shown to cause mononuclear cell leukemia and kidney tumors in rats, and hepatocellular adenomas and carcinomas in mice. There is inadequate data for humans.

#### <u>Health Effects</u>

Tetrachloroethene is rapidly absorbed following oral and inhalation exposure, while absorption following dermal exposure is poor. It is an eye and nose irritant. Repeated contact may cause a dry, scaly and fissured dermatitis. Acute exposure to tetrachloroethene may cause central nervous system depression, hepatic injury and anesthetic death.

Animal experiments have produced cardiac arrhythmias and renal injury. Malaise, dizziness, headache, increased perspiration, fatigue, staggering gait and slowing of mental ability are symptoms of overexposure. The principal target organs of tetrachloroethene are the central nervous system, liver, and kidneys.

100

## TOLUENE

Toluene,  $C_7H_8$ , is also known as methylbenzene. It is a colorless liquid, with a sweet, pungent, benzene-like odor. It is derived from coal tar. Toluene is used in the manufacture of benzene, as chemical feed, as a solvent for paints and coatings, and as a fuel component.

• •

RAM

**1**00

1883

#### Classification

The U.S. EPA's weight of evidence classification as to human carcinogenicity is Group D: not classified as a carcinogen based on no human data and inadequate animal data.

## Health Effects

Toluene is a poison by intraperitoneal routes. It is moderately toxic by inhalation and subcutaneous routes. It is known to be a skin, eye, and respiratory tract irritant. Toluene affects the central nervous system, the kidney, the liver, and skin. Inhalation of 200 ppm of toluene for eight hours may cause impairment of coordination. With higher concentrations, these effects are increased. Acute exposure to toluene includes symptoms of headache, dizziness, fatigue, drowsiness, and lack of coordination. Chronic effects are anemia and leukopenia, with biopsies showing bone marrow hypoplasia.

#### 1,2,4-TRIMETHYLBENZENE

1,2,4-Trimethylbenzene is also known as pseudocumene. It is a colorless liquid, with a boiling point of 169°C. It is found in coal tar, many petroleums, and in diesel exhaust fumes. 1,2,4-Trimethylbenzene is used as a solvent; in the manufacture of dyes, perfumes and resins, and for sterilizing cat gut.

## **Classification**

The USEPA has not assigned a weight of evidence for 1,2,4-Trimethylbenzene.

#### Health Effects

1,2,4-Trimethylbenzene is a central nervous system depressant. Effects of exposure include: skin irritation, chemical pneumonitis if the liquid gets into the lungs, nervousness, tension, anxiety, bronchitis, hypochromic anemia, conjunctivitis, headache, fatigue, nausea, and marcosis.

#### 1,3,5-TRIMETHYLBENZENE

1,3,5-trimethylbenzene (mesistylene),  $C_6H_3(CH_3)_3$ , is one of three isomers of trimethylbenzene. It is a combustible liquid, insoluble in water, but soluble in alcohol and ether. All three isomers are found in diesel exhaust. 1,3,5-trimethylbenzene is used as a solvent in dye and perfume manufacture.

## **Classification**

Not yet classified.

#### <u>Health Effects</u>

Toxic by inhalation. Can cause nervousness, asthmatic bronchitis, hypochromic anemia, and abnormal blood coagulability. May even cause respiratory failure and death.

## 1,1,1-TRICHLOROETHANE

1,1,1-Trichloroethane,  $C_2H_3Cl_3$ , is a colorless liquid with a sweet odor. It is also known as 1,1,1-TCE and methyl chloroform. 1,1,1-TCE has found wide use as a substitute for carbon tetrachloride. It is used as a dry cleaning agent, vapor degreasing agent, in textile processing, for cleaning precision instruments, as a propellant and as a pesticide.

#### Classification

Weight-of-evidence classification by the USEPA is Group C, a possible human carcinogen. Documented evidence of carcinogenicity in animals is available. No evidence in humans is available.

## Health Effects

Acute health effects of 1,1,1-TCE may include: eye irritation, mild conjunctivitis, dizziness, incoordination, drowsiness, increased reaction time, unconsciousness, and death. It acts as a narcotic and depresses the central nervous system. Repeated skin contact may cause a dry, scaly, and fissured dermatitis. 1,1,1-TCE may be injurious to the liver and kidneys.

#### VANADIUM

Vanadium is a heavy metal used in the manufacture of rust resistant steel. It occurs naturally in mineral ores. RAM

001 1884

#### Classification

Not classified by the U.S. EPA as to human carcinogenicity potential.

## <u>Health Effects</u>

Vanadium compounds are toxic to humans and animals, and is considered to be an industrial hazard. Dust from vanadium and it's compounds is irritating to the respiratory tract, but the effects are not long lasting or cumulative.

## XYLENES (TOTAL)

Xylene  $C_8H_{10}$ , commonly known as dimethylbenzene, is used as a solvent, a raw material for production of benzoic acid, phthalic anhydride, isophthalic, and terephthalic acids, as well as their dimethyl esters used in the manufacture of polyester fibers; dyes and other organics. It is also used for sterilizing catgut. Xylene exists in three isomeric forms: ortho meta, and para-xylene.

## <u>Classification</u>

The weight of evidence classification for human carcinogenicity is Class D: not classifiable as to human carcinogenicity. No human data is available and animal data is inadequate.

#### <u>Health Effects</u>

Xylene is a poison by ingestion and inhalation. It may affect the central nervous system, eyes, gastrointestinal tract, blood, liver, kidneys, and skin. Xylene vapors may cause irritation to the eyes, nose, and throat. Repeated or prolonged skin contact with xylene may cause drying and defatting of the skin, which may lead to dermatitis. Liquid xylene is irritating to the eyes and mucous membranes, and aspiration may cause chemical pneumonitis, pulmonary edema, and hemorrhage. Repeated exposure of the eyes to high concentrations of xylene vapor may cause reversible eye damage.

Acute exposure to xylene vapor may cause central nervous system depression and minor reversible effects on liver and kidneys. At high concentrations xylene vapor may cause dizziness, staggering, drowsiness, and unconsciousness. At extremely high concentrations, breathing xylene vapors may cause pulmonary edema, anorexia, nausea, vomiting, and abdominal pain.

# <u>ZINC</u>

Zinc, Zn, is a metal with many uses in industry. It can be found in pure form or mixed with other metals to form alloys such as brass, or chemical salts such as zinc chloride. Zinc compounds are found naturally in air, soil and water, and are present in most foods.

RAM

100

The USEPA weight-of-evidence classification for zinc is D, not classifiable as to human carcinogenicity on the basis of inadequate evidence in humans and animals.

## <u>Health Effects</u>

Zinc is an essential element needed by the body in low doses. It can be harmful to the body if too much is taken in. The effects of zinc compounds are variable but generally of low toxicity.

## REFERENCES

Agency for Toxic Substances and Disease Registry, May 1989, Toxicological Profile for Aldrin/Dieldrin, ATSDR/TP-88/01.

Agency for Toxic Substances and Disease Registry, July 1989, Toxicological Profile for Chromium, ATSDR/TP-88/10.

Agency for Toxic Substances and Disease Registry, Dec. 1989, Toxicological Profile for 1,2-Dichloroethane, ATSDR/TP-89/10.

Agency for Toxic Substances and Disease Registry, Dec. 1989, Toxicological Profile for Phenol, ATSDR/TP-89/20.

Bishop, W.E., Maki, A.W., 1980. A critical comparison of two bioconcentration test methods. Aquatic Toxicology, ASTM STP 707, J.G. Eaton, P.R. Parrish, A.C. Hendricks, eds. American Society for Testing and Materials. Philadelphia, Pennsylvania.

Buckingham, J., 1984. Dictionary of Organic Compounds. Chapman and Hall. New York, New York.

Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, C. Gould, 1979.Water Related Environmental Fate of 129 Priority Pollutants. Volume I: Introduction and Technical Background, Metals and Inorganics, Pesticides, and PCBs. U.S. EPA. Washington, C.D. EPA-440/4079-029a.

Callahan, M.A., M.W. Slimak, N.W. Gabel, I.P. May, C.F. Fowler, J.R. Freed, P. Jennings, R.L. Durfee, F.C. Whitmore, B. Maestri, W.R. Mabey, B.R. Holt, C. Gould, 1979. Water Related Environmental Fate of 129 Priority Pollutants. Volume II: Halogenated Aliphatic Hydrocarbons, Halogenated Ethers, Monocyclic Aromatics, Phthalate Esters, PAHs, Nitrosamines, and Miscellaneous Compounds. U.S. EPA. Washington, D.C. EPA-440/4-79-029b.

RAM

100

## References (Continued)

Clayton, George and Florence, eds. 1982. Pattys Industrial Hygiene and Toxicology 3rd ed. Volumes 2A, 2B, and 2C. John Wiley and Sons, Inc., New York.

Hawley, Gessner G., ed., 1981. The Condensed Chemical Dictionary, 10th ed., Van Nostrand Reinhold Company, New York.

Hilsenhoff, W.L., 1988. Rapid Field Assessment of Organic Pollution with Family Level Biotic Index. J. Am. Ornithol. Soc. 7(1) 65 - 68.

International Agency for Research on Cancer (IARC). 1982. <u>IARC</u> <u>Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to</u> <u>Humans</u>. Supplement 4, Lyon, France.

Kenaga, E.E., C.A.I. Goring, 1980. Relationship Between Water Solubility, Soil Sorption, Octanol-water Partitioning, and Concentration of Chemicals in Biota. Aquatic Toxicology. ASTM STP 707. J.B. Eaton, P.R. Parrish, A.C. Hendricks, eds. American Society for Testing and Materials. Philadelphia, Pennsylvania.

Mabey, W.R., J.H. Smith, R.T. Podoll, H. Johnson, T. Mill, W. Chou, J. Gates, I.W. Partridge, D. Vandenberg, 1982. Aquatic Fate and Process Data for Organic Priority Pollutants. U.S. EPA. 440/4-81-014. Washington, D.C.

The Merck Index, 10th Ed. M. Windholz, editor, Merck and Co., Inc. Rahway, New Jersey, 1983.

The Merck Index, 11th Ed., S. Budaeveri, editor, Merck and Co., Inc. Rahway, New Jersey, 1989.

National Institute for Occupational Safety and Health, 1988. Occupational Safety and Health Guidelines, DHHS (NIOSH) Publication #88 - 118. Supplement 1 - OHG, U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, NIOSH, Cincinnati, Ohio.

Sax, I.N., R.J. Lewis, Sr., 1987. Hazardous Chemicals Desk Reference. Van Nostrand Reinhold Company, Inc. New York.

Sax, I.N., 1984. Dangerous Properties of Industrial Materials, 6th Ed. Van Nostrand Reinhold Company, Inc. New York.

RAM

100

1887

Sittig, M., 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd Ed. Noyes Publications. Park Ridge, New Jersey.

U.S. Environmental Protection Agency. (Continuously updated.) Integrated Risk Information System (IRIS).

## References (Continued)

USEPA, 1985. Chemical Emergency Preparedness Program: Chemical Profiles. U.S. EPA, Washington, D.C.

USEPA, 1986. Superfund Public Health Evaluation Manual. U.S. EPA Office of Emergency and Remedial Response, Office of Solid Waste and Emergency Response. Washington, D.C. EPA 540/1-86/060.

USEPA, 1988. Superfund Exposure Assessment Manual. U.S. Environmental Protection Agency, Office of Remedial Response, Washington, D.C. EPA/540/1-88/001.

USEPA, 1989. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual, Part A, Interim Final. U.S. EPA. Office of Emergency and Remedial Response. OSWER Directive 9285.7-01a. Washington, D.C.

Warren-Hicks, W., B.R. Parkhurst, S.S. Baker, Jr., 1989. Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference. US. EPA, Environmental Research Laboratory. Corvallis, OR. EPA/600/3-89/013.

Weast, R.C., M.J. Astle, CRC Handbook of Data on Organic Compounds. CRC Press, Inc., Boca Raton, Florida.

RAM

100