Record of Decision

Garfield Groundwater Contamination Superfund Site

Operable Unit 1: Basements, Source Area, and Overburden Groundwater

City of Garfield Bergen County, New Jersey

United States Environmental Protection Agency

Region 2

September 2016

DECLARATION STATEMENT RECORD OF DECISION

SITE NAME AND LOCATION

Garfield Groundwater Superfund Site (NJN0000206317), City of Garfield, Bergen County, New Jersey. Operable Unit 1 – Basements, Source Area, and Overburden Groundwater.

STATEMENT OF BASIS AND PURPOSE

This decision document presents the selected remedy to address contaminated groundwater in the overburden aquifer at the Garfield Groundwater Contamination Superfund Site in the City of Garfield, Bergen County, New Jersey. The selected remedy was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended, and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This decision is based on the Administrative Record established for this Site.

The State of New Jersey concurs with the selected remedy.

ASSESSMENT OF THE SITE

The remedy selected in the Record of Decision (ROD) is necessary to protect public health or the environment from actual or threatened releases of hazardous substances from the Site into the environment.

DESCRIPTION OF THE SELECTED REMEDY

The selected remedy described in this document represents the first of two planned remedial phases, or operable units, for the Garfield Groundwater Contamination Superfund Site.

The selected remedy for groundwater is comprised of *in situ* treatment using geochemical fixation; extraction, treatment, and reinjection of groundwater; and institutional controls.

The major components of the selected remedy include:

- Geochemical fixation through injection of a reducing agent to treat groundwater containing concentrations of total chromium greater than the New Jersey Groundwater Quality Standard of 70 parts per billion (ppb) throughout the Site;
- Extraction, treatment, and discharge of groundwater containing concentrations of total chromium greater than the New Jersey Groundwater Quality Standard of 70 ppb at the EC Electroplating property;

- Implementation of a long-term groundwater monitoring program to assess the effectiveness of the action over time;
- Institutional controls, such as designation of a Classification Exception Area, to restrict the installation of wells and the use of groundwater in areas of chromium contaminated groundwater; and
- Inspection and mitigation as necessary of residential and commercial basements in the areas impacted by contaminated groundwater.

DECLARATION OF STATUTORY DETERMINATIONS

Part 1: Statutory Requirements

The selected remedy is protective of human health and the environment, complies with Federal and State requirements that are applicable or relevant and appropriate to the remedial actions, is cost effective, and utilizes permanent solutions and treatment technologies to the maximum extent practicable.

Part 2: Statutory Preference for Treatment

Geochemical fixation of the groundwater's chromium contamination satisfies the statutory preference for treatment as a principal element of the remedy (i.e., reduces the toxicity, mobility, or volume of hazardous substances, pollutants, or contaminants as a principal element through treatment).

Part 3: Five-Year Review Requirements

Because the remedy will not result in hazardous substances, pollutants, or contaminants remaining above levels that allow for unlimited use and unrestricted exposure, a statutory five-year review will not be required. However, because it will take more than five years to attain remedial action objectives and cleanup goals, policy reviews are required. The first review will be conducted within five years of construction completion for the site to ensure that the remedy is, or will be, protective of human health and the environment.

ROD DATA CERTIFICATION CHECKLIST

The following information is included in the Decision Summary section of this ROD. Additional information can be found in the Administrative Record for the site.

- Chemicals of concern and their respective concentrations may be found in the "Site Characteristics" section.
- Baseline risk represented by the chemicals of concern may be found in the "Summary of Site Risks" section.

- A discussion of remediation goals may be found in the "Remedial Action Objectives" section.
- A discussion of source materials constituting principal threats may be found in the "Principal Threat Waste" section.
- Current and reasonably anticipated future land use assumptions are discussed in the "Current and Potential Future Site and Resource Uses" section.
- Estimated capital, annual operation and maintenance (O&M) and total present worth costs are discussed in the "Description of Alternatives" section.
- Key factors that led to selecting the remedy (i.e., how the selected remedy provides the best balance of tradeoffs with respect to the balancing and modifying criteria, highlighting criteria key to the decision) may be found in the "Comparative Analysis of Alternatives" and "Statutory Determinations" sections.

September 20, 2016 Date

Walter E. Mugdan, Director Emergency & Remedial Response Division EPA – Region 2

Decision Summary

Garfield Groundwater Contamination Superfund Site

Operable Unit 1: Basements, Source Area, and Overburden Groundwater

City of Garfield Bergen County, New Jersey

United States Environmental Protection Agency

Region 2

September 2016

TABLE OF CONTENTS

PAGE

SITE NAME, LOCATION AND DESCRIPTION	1
SITE HISTORY AND ENFORCEMENT ACTIVITIES	1
HIGHLIGHTS OF COMMUNITY PARTICIPATION	2
SCOPE AND ROLE OF THIS OPERABLE UNIT	3
SITE CHARACTERISTICS	3
CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE USES	5
SUMMARY OF SITE RISKS	5
REMEDIAL ACTION OBJECTIVES	11
DESCRIPTION OF REMEDIAL ALTERNATIVES	12
COMPARATIVE ANALYSIS OF ALTERNATIVES	16
PRINCIPAL THREAT WASTE	
SELECTED REMEDY	
STATUTORY DETERMINATIONS	
DOCUMENTATION OF SIGNIFICANT CHANGES	

APPENDICES

APPENDIX I	TABLES & FIGURES
APPENDIX II	ADMINISTRATIVE RECORD INDEX
APPENDIX III	STATE LETTER
APPENDIX IV	RESPONSIVENESS SUMMARY

SITE NAME, LOCATION, AND DESCRIPTION

The Garfield Groundwater Contamination Superfund Site (the Site) is located in a mixed commercial and residential neighborhood in the City of Garfield, Bergen County, New Jersey. The Site is defined by the location of chromium-contaminated groundwater at concentrations at or greater than the New Jersey Groundwater Quality Standard of 70 parts per billion (ppb). The source of groundwater contamination has been identified as the former EC Electroplating (ECE) facility at 125 Clark Street in Garfield that is located within the Site. The ECE property covers approximately 0.65 acres and is bounded by Clark Street to the north, Lincoln Place to the west, Sherman Place to the east, and residential properties to the south (Figure 1).

The U.S. Environmental Protection Agency (EPA) is the lead agency, and the New Jersey Department of Environmental Protection (NJDEP) is the support agency for this Site.

SITE HISTORY AND ENFORCEMENT ACTIVITIES

EC Electroplating was founded in the late 1930s and operated until March 2009. The facility was used as a custom metal plating shop that electroplated chromium, copper, and nickel onto machined parts. One large cylindrical storage tank and three additional vertical tanks were used to store chromic acid plating solution. There were two documented spills at the facility that may have been sources of contamination. In December 1983, the large tank failed, releasing chromic acid directly to the shallow groundwater. One groundwater pumping well was installed to recover the spilled chromium, but was shut down after only 29% of the mass of chromic acid was recovered. In May 1996, a spill of process wastewater was mitigated by the Bergen County Hazardous Materials team. The results of EPA's groundwater investigation suggest that other spills or leaks of chromic acid may have occurred at the facility.

In October 2002, NJDEP requested EPA assistance to assess and mitigate chromiumcontaminated groundwater infiltrating into basements of buildings in Garfield. From 2008 to 2015, EPA surveyed properties and sampled dust in the basements of residential and commercial properties. Properties where basement dust samples exceeded the Site-specific removal action level (RAL) for hexavalent chromium were decontaminated and the basements were sealed and/or had drainage systems installed to prevent groundwater infiltration.

EPA documented a need for removal action for the Site based on basement dust sampling results in the 2010 "E.C. Electroplating (Garfield Groundwater Contamination Site) - Determination of Significant Threat Memorandum." It was determined that exceedances of the RALs, as well as the potential for future contamination at levels exceeding these RALs, represented an unacceptable risk to individuals who may be exposed to hexavalent chromium dust on basement surfaces. Potentially contaminated surfaces in the basements were sampled by wiping a 10 centimeter x 10 centimeter area and analyzing the hexavalent chromium mass on the wipe. For basements used as a living space ("high use"), EPA developed a RAL of 1.1 micrograms of hexavalent chromium per wipe. For basements used for laundry and storage ("low use"), a RAL of 8.7 microgram per wipe of hexavalent chromium was developed. As of 2015, more than 500 properties were inspected and 14 of the properties required removal actions to address chromium-contaminated dust in the basements.

In April 2010, the New Jersey Department of Health and the US Agency for Toxic Substances and Disease Registry (ATSDR) issued a health consultation which assessed the potential chromium exposures to area residents based on previous sampling investigations conducted by EPA in residential and commercial properties. Both agencies concluded that there is evidence of a complete exposure pathway regarding ingestion of and dermal contact with surface dust containing chromium. Both agencies also concluded that past, present, and future exposures represented a public health hazard via the ingestion of chromium dust in some basements. In September 2010, ATSDR issued a Public Health Advisory for the Site, recommending that EPA take immediate measures to dissociate residents and others from the basement area of the properties showing the highest chromium levels in surface dust.

In June 2011, EPA conducted a site assessment of the abandoned ECE facility. EPA's assessment identified hazardous materials within vats, tanks and drums at the facility that presented an immediate threat to the surrounding community, and further identified the facility as the source of chromium contamination in groundwater. EPA removed all hazardous materials from the facility and disposed the materials at appropriate facilities. In 2012, all buildings and above-ground structures at the ECE facility were demolished by EPA.

Following the removal of the buildings, EPA conducted a comprehensive soil investigation on the ECE property to determine the extent of chromium contamination in the soils and substructures of the former facility. In October 2013, EPA mobilized at the ECE property to excavate soils and concrete contaminated with levels of hexavalent chromium above 20 parts per million (ppm), the NJDEP residential soil cleanup criteria. A total of 1,180 tons of concrete were removed from the property, including 897 tons that were disposed of as hazardous waste. A total of 5,686 tons of soil were removed from the property, including 2,701 tons that required disposal as hazardous waste. Only soil above the water table was addressed in this action. Postexcavation samples were collected and all excavated areas were backfilled and compacted with certified clean fill. The surface of the property was then covered with clean backfill and capped with asphalt in May 2014.

EPA initiated a shallow groundwater study in 2010 and then expanded the investigation to overburden and bedrock groundwater, residential soils, surface water, and sediments. The groundwater investigation included installation of conventional and multiport wells, downhole geophysical profiling, packer testing, a matrix diffusion study, and a groundwater-surface water interaction study. There are currently 52 overburden and bedrock wells in EPA's monitoring network. The results of this investigation were used to complete the human health and ecological risk assessments. EPA also conducted additional studies on aquifer testing, *in situ* reduction of hexavalent chromium in groundwater, and an ecological risk assessment of sediments in the Passaic River.

The Site was placed on EPA's National Priorities List in September 2011. The listing was based upon the ATSDR Public Health Advisory that recommended dissociation of individuals from the release, EPA's determination that the release is a significant threat to public health and that EPA anticipates it will be more cost-effective to use its remedial authority rather than its removal authority to respond to the release.

HIGHLIGHTS OF COMMUNITY PARTICIPATION

EPA has worked closely with local residents, public officials, and other interested members of the community since NJDEP requested assistance with the Site in the early 2000s. At the completion of the Remedial Investigation and Feasibility Study (RI/FS) for OU1, EPA prepared a Proposed Plan presenting remedial alternatives as well as EPA's preferred remedy for the source area, overburden groundwater, and basements. The Proposed Plan and supporting documentation for OU1 were released to the public for comment on May 9, 2016. The Proposed Plan and index for the Administrative Record were made available to the public online, and the Administrative Record files were made available at the EPA Administrative Record File Room, 290 Broadway, 18th Floor, New York, New York; and the Garfield Public Library, 500 Midland Avenue, Garfield, New Jersey.

On May 9, 2016, EPA published a Public Notice in the *Bergen Record* newspaper that provided information about the public comment period, the public meeting for the Proposed Plan, and the availability of the administrative record for the Site. EPA also published a press release on May 9, 2016, to announce the release of the Proposed Plan. The public comment period closed on June 8, 2016.

A public meeting was held on May 19, 2016, at the Garfield Senior Center, 480 Midland Avenue, Garfield, New Jersey. The purpose of this meeting was to inform residents, local officials, and interested members of the public about the Superfund process, present details about EPA's remedial plan, receive comments on the Proposed Plan, and respond to questions from area residents and other interested parties. Responses to the comments received at the public meeting, and in writing during the public comment period, are included in the Responsiveness Summary, attached as Appendix IV to this ROD.

SCOPE AND ROLE OF THIS OPERABLE UNIT

This action, referred to as OU1, will be one of two actions for the Site. OU1 addresses the basements and the chromium contaminated groundwater at the ECE property and in the overburden groundwater.

The overburden aquifer is a source of hexavalent chromium contamination to the deeper bedrock aquifer. Operable Unit 2 (OU2) will address chromium contaminated groundwater in the deep bedrock aquifer and will be the focus of a future ROD for this Site.

SITE CHARACTERISTICS

The former ECE property is located in the City of Garfield approximately 0.6 miles east of the Passaic River (Figure 1). The topography of the 0.65-acre ECE property is flat and the property is enclosed by an 8 feet high screened chain link fence. The neighborhood immediately surrounding the ECE property consists of a mixture of residential and commercial properties. The ECE property is currently zoned residential.

Groundwater occurs within two hydrogeologic systems in Garfield - the unconsolidated overburden materials and fractured sedimentary bedrock. The overburden material underlying the region consists of a thick layer of unconsolidated glacial sediments and fill material. Groundwater flow in the overburden materials is predominantly controlled by local topography. The depth to groundwater in Garfield is generally less than 20 feet below ground surface.

The bedrock at the Site consists of interbedded siltstones, mudstones, and fine- to coarse-grained sandstones. Groundwater flow in the bedrock aquifer is controlled by fractures and bedding planes. At the ECE property source area, there is limited groundwater flow upward from the bedrock aquifer into the overburden. Outside the source area, the overburden groundwater generally flows downward into the bedrock aquifer.

Groundwater from the overburden aquifer discharges to the Passaic River. The Passaic River on Garfield's western border is tidally influenced and its width is generally 200 to 300 feet, with an estimated depth of 5 to 10 feet in the center. The river sediments are principally composed of sand and have low levels of organic carbon.

Nature and Extent of Contamination

Source Area

The ECE property is considered the source area of the Site based on the known releases of chromic acid and the chromium impacts to soil and groundwater at the property (Figure 2). Although EPA removed contaminated soils above the water table, there is still a zone of high chromium concentrations immediately below the water table that is a source of groundwater contamination. During a 2014 sampling event, the maximum hexavalent chromium concentration detected in groundwater was 269,000 ppb at monitoring well EPA-32-OB, near the historical location of the chromic acid tanks at the former ECE facility. High levels of hexavalent chromium were also detected in the shallow bedrock aquifer beneath the ECE property at 1,370 ppb at EPA-13-BR. The dominant form of chromium in the groundwater across the Site is hexavalent chromium, but trivalent chromium is also present.

Groundwater Downgradient of Source Area

Outside the source area, the greatest concentration of hexavalent chromium detected in an overburden well was 14,900 ppb at well EPA-06-OB (Figure 3). The average concentration of hexavalent chromium in the overburden plume is estimated to be 3,420 ppb.

The hexavalent chromium groundwater plume extends north of the ECE property to Van Winkle Avenue and south to Commerce Street. In the area of the plume, shallow groundwater that infiltrates into basements can transfer hexavalent chromium to the floor or walls.

The overburden plume flows to the west and discharges to the Passaic River. Hexavalent chromium and total chromium in samples from the surface water of the Passaic River do not exceed the NJDEP Ecological Screening Criteria in the area of the plume. However, the Passaic River sediment samples from this area are elevated in hexavalent chromium and total chromium.

Basements

Groundwater containing hexavalent chromium has infiltrated some basements of residences located within the boundaries of the downgradient overburden plume. Visual inspections were conducted at 512 properties potentially impacted by contaminated groundwater. Based on the visual inspection, sampling was deemed necessary at 324 properties (Figure 4). Concentrations of hexavalent chromium presenting an unacceptable risk to occupants were detected in wipe samples collected from the basements of 14 residences infiltrated by contaminated groundwater. The highest concentration of hexavalent chromium detected was 15,600 μ g/wipe, above the RAL of 8.7 μ g/wipe. Air samples collected at 21 properties with measurable concentrations of hexavalent chromium dust measured in air were orders-of-magnitude below the screening level of 1.1E-05 μ g/m³.

CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE USES

Groundwater Uses: Groundwater underlying the Site is considered by New Jersey to be Class II-A, a source of potable water; however, no complete exposure pathways to chromiumcontaminated groundwater are known. All residents in the area of the Site are currently using public supply water, which is treated to assure all drinking water standards are met for contaminants. If chromium contaminated groundwater is used as drinking water in the future, significant health risks would exist.

Basement Uses: The majority of structures in the area of chromium-contaminated groundwater have basements. Basements of commercial buildings are primarily used for storage. The use of basements of residential buildings varies from low use such as utility, storage, and laundry rooms to high use as living space. It is expected that the use of commercial and residential basements for storage, laundry, and living spaces will continue. Removal actions have mitigated or eliminated current complete exposure pathways to chromium-contaminated dust in basements. However, if an individual is exposed to future contamination on basement surfaces at levels exceeding the RALs, an unacceptable health risk would exist.

SUMMARY OF SITE RISKS

As part of the RI/FS, EPA conducted a baseline risk assessment to estimate the current and future effects of contaminants on human health and the environment. A baseline risk assessment is an analysis of the potential adverse human health and ecological effects of releases of hazardous substances from a site in the absence of any actions or controls to mitigate such releases, under current and future land uses. The baseline risk assessment includes a human health risk assessment (BHHRA) and an ecological risk assessment (BERA). It provides the basis for taking action and identifies the contaminants and exposure pathways that need to be addressed by the remedial action. This section of the ROD summarizes the results of the baseline risk assessment for the Site.

Human Health Risk Assessment

A four-step process is utilized for assessing site-related human health risks for a reasonable

maximum exposure scenario:

- *Hazard Identification* uses the analytical data collected to identify the contaminants of potential concern (COPC) at the site for each medium, with consideration of a number of factors explained below;
- *Exposure Assessment* estimates the magnitude of actual and/or potential human exposures, the frequency and duration of these exposures, and the pathways by which humans are potentially exposed;
- *Toxicity Assessment* determines the types of adverse health effects associated with chemical exposures, and the relationship between magnitude of exposure (dose) and severity of adverse effects (response); and
- *Risk Characterization* summarizes and combines outputs of the exposure and toxicity assessments to provide a quantitative assessment of site-related risks. The risk characterization also identifies contamination with concentrations which exceed acceptable levels, defined by the National Oil and Hazardous Substances Contingency Plan (NCP) as an excess lifetime cancer risk greater than 1 x 10⁻⁶ 1 x 10⁻⁴ or a Hazard Index greater than 1.0; contaminants at these concentrations are considered chemicals of concern (COCs) and are typically those that will require remediation at the site. Also included in this section is a discussion of the uncertainties associated with these risks.

Hazard Identification

In this step, COPCs in each medium were identified based on such factors as toxicity, frequency of occurrence, fate and transport of the contaminants in the environment, concentrations, mobility, persistence and bioaccumulation. The HHRA began with selecting COPCs in groundwater that could potentially cause adverse health effects in exposed populations. Although the groundwater is currently not used for drinking water purposes, the HHRA assumed groundwater could be used as a source of drinking water in the future. As listed in Table 1, the COC, the only contaminant requiring remediation at the Site, is hexavalent chromium. Several other contaminants, namely arsenic, trichloroethylene, dieldrin and cyanide were also associated with unacceptable risk and/or hazard. However, these contaminants are not considered Site-related based on their distribution and frequency within the hexavalent chromium groundwater plume.

Exposure Assessment

Consistent with Superfund policy and guidance, the BHHRA assumes no remediation or institutional controls to mitigate or remove hazardous substance releases. Cancer risks and noncancer hazard indices were calculated based on an estimate of the reasonable maximum exposure (RME) expected to occur under current and future conditions at the site. The RME is defined as the highest exposure that is reasonably expected to occur at a site.

The BHHRA evaluated potential risks to populations associated with both current and potential future land uses. Exposure pathways were identified for each potentially exposed population and each potential exposure scenario for groundwater. Based on the current zoning and anticipated future use, the risk assessment focused on residential exposure to groundwater (ingestion, dermal

contact and inhalation), which would be considered to be protective of any other users of groundwater, such as workers at commercial facilities. Risks from exposure to chromium residue in basements is currently being addressed through ongoing removal actions, so this pathway was not considered further in the BHHRA.

Following the excavation of soil and concrete from the ECE property, EPA performed a risk assessment on the remaining soil that was separate from the BHHRA for groundwater. The risk assessment considered both residential and commercial exposure to hexavalent chromium (no other constituents exceeded screening levels) in the remaining soil. Because the cancer risks and noncancer hazards were well below EPA's target levels, the removal action of soil excavation is considered protective of human health for current and future commercial/industrial, as well as residential uses.

A summary of the exposure pathways included in the BHRRA can be found in Table 2. Typically, exposures are evaluated using a statistical estimate of the exposure point concentration, which is an upperbound estimate of the average concentration for each contaminant, but in some cases may be the maximum detected concentration. The exposure point concentration for hexavalent chromium can be found in Table 1. A comprehensive list of the exposure point concentrations for all COPCs can be found in the BHHRA.

Toxicity Assessment

In this step, the types of adverse health effects associated with contaminant exposures and the relationship between magnitude of exposure and severity of adverse health effects were determined. Potential health effects are contaminant-specific and may include the risk of developing cancer over a lifetime or other noncancer health effects, such as changes in the normal functions of organs within the body (*e.g.*, changes in the effectiveness of the immune system). Some contaminants are capable of causing both cancer and noncancer health effects.

Under current EPA guidelines, the likelihood of carcinogenic risks and noncarcinogenic hazards due to exposure to site chemicals are considered separately. Consistent with current EPA policy, it was assumed that the toxic effects of the site-related chemicals would be additive. Thus, cancer and noncancer risks associated with exposures to individual COPCs were summed to indicate the potential risks and hazards associated with mixtures of potential carcinogens and noncarcinogens, respectively.

Toxicity data for the human health risk assessment were provided by the Integrated Risk Information System (IRIS) database, the Provisional Peer Reviewed Toxicity Database (PPRTV), or another source that is identified as an appropriate reference for toxicity values consistent with EPA's directive on toxicity values. This information is presented in Table 3 (noncarcinogenic toxicity data summary) and Table 4 (cancer toxicity data summary). Additional toxicity information for all COPCs is presented in the BHHRA.

Risk Characterization

Noncarcinogenic risks were assessed using a hazard index (HI) approach, based on a comparison of expected contaminant intakes and benchmark comparison levels of intake (reference doses,

reference concentrations). Reference doses (RfDs) and reference concentrations (RfCs) are estimates of daily exposure levels for humans (including sensitive individuals) which are thought to be safe over a lifetime of exposure. The estimated intake of chemicals identified in environmental media (*e.g.*, the amount of a chemical ingested from contaminated drinking water) is compared to the RfD or the RfC to derive the hazard quotient (HQ) for the contaminant in the particular medium. The HI is obtained by adding the HQs for all compounds within a particular medium that impacts a particular receptor population.

The HQ for oral and dermal exposures is calculated as below. The HQ for inhalation exposures is calculated using a similar model that incorporates the RfC, rather than the RfD.

$$HQ = Intake/RfD$$

Where: HQ = hazard quotient Intake = estimated intake for a chemical (mg/kg-day) RfD = reference dose (mg/kg-day)

The intake and the RfD will represent the same exposure period (i.e., chronic, subchronic, or acute).

As previously stated, the HI is calculated by summing the HQs for all chemicals for likely exposure scenarios for a specific population. An HI greater than 1.0 indicates that the potential exists for noncarcinogenic health effects to occur as a result of site-related exposures, with the potential for health effects increasing as the HI increases. When the HI calculated for all chemicals for a specific population exceeds 1.0, separate HI values are then calculated for those chemicals which are known to act on the same target organ. These discrete HI values are then compared to the acceptable limit of 1.0 to evaluate the potential for noncarcinogenic health effects on a specific target organ. The HI provides a useful reference point for gauging the potential significance of multiple contaminant exposures within a single medium or across media. A summary of the noncarcinogenic hazards associated with these chemicals for each exposure pathway is in Table 5.

As seen in Table 5, the potential for adverse, noncarcinogenic health effects from future use of groundwater was indicated for hexavalent chromium in groundwater. The HI for noncancer effects is 141 for the adult resident and 355 for the child resident.

For carcinogens, risks are generally expressed as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to a carcinogen, using the cancer slope factor (SF) for oral and dermal exposures and the inhalation unit risk (IUR) for inhalation exposures. Excess lifetime cancer risk for oral and dermal exposures is calculated from the following equation, while the equation for inhalation exposures uses the IUR, rather than the SF:

$$Risk = LADD \times SF$$

Where: Risk = a unitless probability (1×10^{-6}) of an individual developing cancer LADD = lifetime average daily dose averaged over 70 years (mg/kg-day) SF = cancer slope factor, expressed as [1/(mg/kg-day)] These risks are probabilities that are usually expressed in scientific notation (such as $1 \ge 10^{-4}$). An excess lifetime cancer risk of $1 \ge 10^{-4}$ indicates that one additional incidence of cancer may occur in a population of 10,000 people who are exposed under the conditions identified in the assessment. Again, as stated in the National Contingency Plan, the acceptable risk range for site-related exposure is $1 \ge 10^{-6}$ to $1 \ge 10^{-4}$.

As shown in Table 6, the total carcinogenic risk for a future resident exposed to hexavalent chromium in drinking water is 5×10^{-1} , which is greater than 1×10^{-4} threshold.

The results of the BHHRA indicate that there are significant carcinogenic risks and noncarcinogenic health hazards to potentially exposed future residential receptors from ingestion and dermal contact with hexavalent chromium.

As stated previously, risks from exposure to chromium residue in basements is currently being addressed through ongoing removal actions. EPA documented a determination of significant threat for the Site based on basement dust sampling results in the 2010 "E.C. Electroplating (Garfield Groundwater Contamination Site) – Determination of Significant Threat Memorandum." It was determined that exceedances of the RALs, as well as the potential for future contamination at levels exceeding these values represented an unacceptable risk to individuals who may be exposed to hexavalent chromium dust on basements surfaces. Dust on potentially contaminated surfaces in the basements was sampled by wiping an area (10 centimeter x 10 centimeter) and analyzing the hexavalent chromium mass on the wipe. For basements used as a living space (high use), EPA developed a RAL of 1.1 micrograms of hexavalent chromium per wipe. For basements used for laundry and storage (low use), a RAL of 8.7 micrograms of hexavalent chromium per wipe was developed. As of 2015, more than 500 properties were inspected and 14 of the properties required removal actions to address chromium-contaminated dust in the basements.

Ecological Risk Assessment

A SLERA and Step 3A BERA were conducted as part of the RI to evaluate the potential for risk to ecological receptors from contamination in the absence of any remedial action. Potential complete exposure pathways for ecological receptors included areas where groundwater discharges to the Passaic River. Potential ecological receptors using the Passaic River include benthic macroinvertebrates, water column-dwelling aquatic life, mammals, and fish-eating birds. The potential ecological risk to these receptors from exposure to surface water and sediment along the Passaic River was evaluated in the SLERA and Step 3A BERA. The following summarizes the findings and conclusions for each receptor group following completion of the Step 3A BERA:

The Step 3A BERA indicated a potential for adverse effects to benthic macroinvertebrates from the presence of chromium in surface sediment at the location of groundwater discharge. The later BERA conducted in 2014 demonstrated no significant ecological risk to the benthic invertebrate community.

Chromium concentrations in surface water do not represent a potential risk to aquatic life and this receptor/exposure pathway does not warrant further evaluation.

There is negligible potential for chromium in sediment and surface water to represent a risk to mammalian and avian wildlife.

The SLERA indicated a potential for adverse effects to wildlife from the ingestion of chromium in food items. Although appropriate for the SLERA evaluation, the highly conservative assumptions used in the SLERA (for example, 100 percent of food derived from the site, and 100 percent bioavailability of chromium for accumulation and uptake) will overestimate actual risk. The refined food web models used in the Step 3A BERA incorporate less conservative (but more realistic) assumptions and additional methods relative to those used in the SLERA. The Step 3A BERA indicated a negligible potential for chromium in sediment and surface water to represent a risk to mammalian and avian wildlife.

In 2014, in order to further define the potential risk to the community of benthic organisms in the Passaic River, a BERA was completed. The BERA evaluated the potential exposure and consequent risk of chromium contamination to the benthic organisms inhabiting the eastern side of the river bottom in the city of Garfield. Based on a 42-day Hyalella azteca survival, growth, and reproduction sediment toxicity test, chromium levels in sediments located along the eastern side of the Passaic River between Faber Place and Monroe Street pose no ecological significant risk to survival and reproduction in the benthic invertebrate community inhabiting the area (Avatar Environmental 2015). Based on the results of the BERA, groundwater impacted with hexavalent chromium from the ECE property discharging to the Passaic River poses no threat to the benthic community.

The response action selected in the Record of Decision is necessary to protect the public health or welfare of the environment from actual or threatened releases of contaminants into the environment.

Uncertainties

The procedures and inputs used to assess risks in this evaluation, as in all such assessments, are subject to a wide variety of uncertainties. In general, the main sources of uncertainty include:

- environmental chemistry sampling and analysis
- environmental parameter measurement
- fate and transport modeling
- exposure parameter estimation
- toxicological data.

Uncertainty in environmental sampling arises in part from the potentially uneven distribution of chemicals in the media sampled. Consequently, there is significant uncertainty as to the actual levels present. Environmental chemistry-analysis error can stem from several sources including the errors inherent in the analytical methods and characteristics of the matrix being sampled.

Uncertainties in the exposure assessment are related to estimates of how often an individual would actually come in contact with the chemicals of concern, the period of time over which such exposure would occur, and in the models used to estimate the concentrations of the

chemicals of concern at the point of exposure.

Uncertainties in toxicological data occur in extrapolating both from animals to humans and from high to low doses of exposure, as well as from the difficulties in assessing the toxicity of a mixture of chemicals. These uncertainties are addressed by making conservative assumptions concerning risk and exposure parameters throughout the assessment. As a result, the risk assessment provides upper-bound estimates of the risks to populations near the site, and is highly unlikely to underestimate actual risks related to the site.

More specific information concerning public health risks, including a quantitative evaluation of the degree of risk associated with various exposure pathways, is presented in the risk assessment report which is included in the Administrative Record for this Site.

REMEDIAL ACTION OBJECTIVES

Remedial action objectives (RAOs) are specific goals to protect human health and the environment. These objectives are based on available information and standards such as applicable or relevant and appropriate requirements (ARARs) and risk-based levels established in the risk assessment.

The following remedial action objectives address the human health risks posed by contaminated groundwater at the Site:

- Restore the chromium-contaminated groundwater to levels acceptable for future beneficial use as a drinking water resource.
- Prevent exposure to chromium concentrations in groundwater above acceptable levels.
- Minimize the potential for infiltration of contaminated groundwater into basements and transfer of hexavalent chromium onto basement surfaces.
- For basement surfaces contaminated by groundwater infiltration, prevent direct contact with and ingestion of hexavalent chromium concentrations above acceptable levels.

There are currently no complete exposure pathways to contaminated groundwater. However, significant health risks would exist if contaminated groundwater were to be used as a drinking water source in the future or if contaminated groundwater were used in industrial processes. Additionally, there is the potential for recontaminated groundwater exacerbated by weather conditions. Remedial actions must minimize the potential for human exposure to contaminated groundwater.

The cleanup of this Site is based on remediating the chromium contaminated groundwater to the NJ Groundwater Quality Standard for total chromium, 70 ppb. This is more conservative than EPA's Maximum Contamination Level (MCL) for total chromium, 100 ppb. Cleanup is also based on RALs developed to determine whether basements have been remediated to levels that are within the acceptable risk range for exposure to hexavalent chromium. The RAL for basements used as a living space (high use) is 1.1 micrograms of hexavalent chromium per 10 cm x 10 cm wipe, and 8.7 micrograms of hexavalent chromium per wipe for basements used for

laundry and storage (low use). The chromium cleanup goals were selected to both reduce the risk associated with exposure to this contaminant to an acceptable level and to ensure minimal migration of chromium.

DESCRIPTION OF REMEDIAL ALTERNATIVES

CERCLA requires that each remedial alternative be protective of human health and the environment, be cost-effective, comply with other statutory laws, and utilize permanent solutions and alternative treatment technologies and resource recovery alternatives to the maximum extent practical. In addition, CERCLA includes a preference for the use of treatment as a principal element for the reduction of toxicity, mobility, or volume of the hazardous substances.

Potential technologies applicable to groundwater remediation were identified and screened by effectiveness, implementability, and cost criteria, with emphasis on effectiveness. In addition, institutional controls (e.g., a deed notice, an easement or a covenant) to limit the use of portions of individual properties may be required. These use restrictions are discussed below in each alternative as appropriate. The type of restriction will need to be determined after completion of the remedial alternative selected in the ROD. Consistent with expectations set forth in the NCP, none of the remedies rely exclusively on institutional controls to achieve protectiveness.

The cost estimates of each alternative assume 30 years of implementing the remedy. However, the time required to achieve the RAO for restoration of groundwater would be greater than 30 years for all of the alternatives. Based on EPA's groundwater modeling, restoration of chromium-contaminated groundwater to levels acceptable for use as a drinking water source is expected to take at least 80 years. The time frames below for construction are estimated and do not include the time for designing a remedy or the time to procure necessary contracts. Because each of the action alternatives are expected to take longer than 5 years, a site review will be conducted every 5 years until remedial goals are achieved.

Alternative 1 - No Action

The NCP requires that a "No Action" alternative be evaluated to establish a baseline for comparison with other remedial alternatives. Under the no action alternative, no remedial actions would be taken to reduce the levels of contamination in the source area or downgradient plume. Additionally, this option does not include the continuation of any existing institutional controls, nor the implementation of any new institutional controls. Any improvement of groundwater quality would be through natural attenuation.

Total Capital Cost:	\$0
Operation and Maintenance:	\$0
Total Present Net Worth:	\$0
Construction Timeframe:	0 years

Alternative 2A – Source Area Soil Mixing, with Pump and Treat

Under Alternative 2A, the focus of the remedial action would be confined to the saturated soils, weathered bedrock material, overburden aquifer, and shallow bedrock aquifer within the

confines of the ECE property. A backhoe or auger would be used to distribute a chemical reagent to the soil. The reagent would be a reducing amendment that converts hexavalent chromium to the less toxic and less mobile form of trivalent chromium. Source mixing can be completed within one year. The optimal mixing locations and reagent selection would be developed during the remedial design.

Below the zone of soil mixing, contaminated groundwater would be extracted from the shallow bedrock at the source area. Extraction wells would be installed along the west side of the ECE property to maximize capture of the highest hexavalent chromium concentrations. The extracted groundwater would be treated and reinjected through wells along the east side of the ECE property.

Additional monitoring wells would be installed to assess concentration trends, establishment of reducing conditions, and overall performance of the remedy within the boundary of the ECE property. Monitoring would be performed within the existing downgradient plume well network to evaluate the fate of the plume after the source has been treated and institutional controls would also be implemented to reduce the risk of ingesting contaminated groundwater. Additionally, basement investigations and remedial actions including decontamination, the application of sealants, and/or the installation of drainage trenches and sumps would be carried out in areas that continue to be impacted by elevated concentrations of hexavalent chromium in groundwater.

This alternative is expected to reach the New Jersey Ground Water Quality Standard at the source area, but it would not address downgradient groundwater contamination. EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost:	\$8,000,000
Operation and Maintenance:	\$5,900,000
Total Present Net Worth:	\$13,900,000
Construction Timeframe:	2 years

Alternative 2B – Source Area In situ Reduction and Pump and Treat

Under Alternative 2B, the focus of the remedial action would be confined to the saturated soils, weathered bedrock material, overburden aquifer, and shallow bedrock aquifer within the confines of the ECE property. *In situ* injections would be performed in the contaminated groundwater in the source area. A grid of injection wells would be installed and a reducing amendment would be periodically injected into the wells to convert hexavalent chromium to trivalent chromium.

Contaminated groundwater would be extracted from the shallow bedrock at the source area. Extraction wells would be installed along the west side of the ECE property to maximize capture of the highest hexavalent chromium concentrations. The extracted groundwater would be treated and then reinjected through wells along the east side of the ECE property. Additional monitoring wells would be installed to assess concentration trends and reducing conditions across the source area. The optimal injection locations and reagent selection would be developed during the remedial design phase. Four new permanent monitoring wells would be installed to assess concentration trends, establishment of reducing conditions, and overall performance of the remedy within the boundary of the ECE property. Monitoring would be performed within the existing downgradient plume well network to evaluate the fate of the plume after the source has been treated and institutional controls would also be implemented to reduce the risk of ingesting contaminated groundwater. Additionally, basement investigations and remedial actions including decontamination, the application of sealants, and/or the installation of drainage trenches and sumps would be carried out in areas that continue to be impacted by elevated concentrations of hexavalent chromium in groundwater.

This alternative is expected to reach the New Jersey Ground Water Quality Standard at the source area, but it would not address downgradient groundwater contamination. EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost:	\$3,300,000
Operation and Maintenance:	\$6,900,000
Total Present Net Worth:	\$10,200,000
Construction Timeframe:	2 years

Alternative 3 – Source Area Treatment and In situ Reduction

Under this alternative, one of the two source treatment alternatives as described in Alternative 2A or 2B would be implemented.

Overburden plume treatment would be implemented downgradient of the EC Electroplating property with a series of *in situ* reduction barriers arranged perpendicular to the flow of the groundwater plume. The reduction barriers would be established by injecting a reducing agent into an array of permanent injection wells across the overburden plume every 3 years for the first 10 years, and then as needed to maintain reducing conditions. The wells would be installed in the most contaminated areas of the plume; primarily within the City of Garfield streets or right-of-ways. The optimal injection well layout and reagent selection would be developed during the remedial design phase. The timeframe for *in situ* barrier injections is assumed to be 30 years.

To provide monitoring within the overburden plume, additional overburden monitoring wells would be installed throughout the plume to monitor concentration trends, establishment of reducing conditions, and overall performance of the remedy. Monitoring would be used to manage the lower concentration fringes of the plume and institutional controls would be implemented to reduce the risk of ingesting contaminated groundwater.

This alternative also includes basement investigations and remedial actions including decontamination, the application of sealants, and/or the installation of drainage trenches and sumps would be carried out in areas that continue to be impacted by elevated concentrations of hexavalent chromium in groundwater.

EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost:	\$14,100,000
Operation and Maintenance:	\$23,200,000
Total Present Net Worth:	\$37,300,000
Construction Timeframe:	2 years

Alternative 4 – Source Area Treatment and Pump and Treat

Under this alternative, one of the two source treatment alternatives as described in Alternative 2A or 2B would be implemented.

A pump and treat system would be installed to extract and treat the highest concentrations of hexavalent chromium within the overburden plume downgradient of the EC Electroplating property. Groundwater extraction wells installed primarily within the City of Garfield streets and right-of-ways would be designed to maximize removal of the hexavalent chromium mass from the overburden groundwater. The extracted water would be conveyed to a treatment plant to be treated by ion exchange or chemical reduction and precipitation. Following treatment, extracted groundwater would be discharged into the sanitary sewer or into the Passaic River. The well field design and treatment process options would be developed during the remedial design phase.

To provide monitoring within the overburden plume, additional overburden monitoring wells would be installed throughout the plume to assess concentration trends and long-term fluctuations in the water table because of extraction and overall performance of the remedy. Monitoring would be used to manage the lower concentration fringes of the plume, and institutional controls would be implemented to reduce the risk of ingesting contaminated groundwater.

This alternative also includes basement investigations and remedial actions including decontamination, the application of sealants, and/or the installation of drainage trenches and sumps would be carried out in areas that continue to be impacted by elevated concentrations of hexavalent chromium in groundwater.

EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost:	\$5,200,000
Operation and Maintenance:	\$16,900,000
Total Present Net Worth:	\$22,100,000
Construction Timeframe:	2 years

Alternative 5 – Source Area Treatment and Combined Pump and Treat with *In situ* Reduction

Under this alternative, one of the two source treatment alternatives as described in Alternative 2A or 2B would be implemented.

The *in situ* reduction barriers described in Alternative 3 and the pump and treatment system in Alternative 4 would both be implemented to combine hexavalent chromium mass removal with *in situ* reduction. The combination of pumping and *in situ* treatment would maximize flow of hexavalent chromium through the *in situ* reduction barriers, and allow the pump and treatment system to be operated intermittently to optimize removal of hexavalent chromium. The well field design, treatment process options, and reagent selection would be developed during the remedial design phase.

As in Alternatives 3 and 4, additional overburden monitoring wells would be installed throughout the plume to monitor concentration trends, establishment of reducing conditions, and overall performance of the remedy. Monitoring would be used to manage the lower concentration fringes of the plume, and institutional controls would be implemented to reduce the risk of ingesting contaminated groundwater.

This alternative also includes basement investigations and remedial actions including decontamination, the application of sealants, and/or the installation of drainage trenches and sumps would be carried out in areas that continue to be impacted by elevated concentrations of hexavalent chromium in groundwater.

EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost:	\$15,900,000
Operation and Maintenance:	\$33,200,000
Total Present Net Worth:	\$49,100,000
Construction Timeframe:	2 years

COMPARATIVE ANALYSIS OF ALTERNATIVES

In selecting a remedy, EPA considered the factors set out in CERCLA §121, 42 U.S.C. §9621, by conducting a detailed analysis of the viable remedial response measures pursuant to the NCP, 40 CFR §300.430(e)(9) and OSWER Directive 9355.3-01. The detailed analysis consisted of an assessment of each of the individual response measures per remedy component against each of nine evaluation criteria and a comparative analysis focusing upon the relative performance of each response measure against the criteria.

Threshold Criteria – The first two criteria are known as "threshold criteria" because they are the minimum requirements that each response measure must meet in order to be eligible for selection as a remedy.

1. Overall Protection of Human Health and the Environment

Overall protection of human health and the environment addresses whether each alternative provides adequate protection of human health and the environment and describes how risks posed through each exposure pathway are eliminated, reduced, or controlled, through treatment, engineering controls, and/or institutional controls.

Alternative 1, No Action, would not provide overall protection of human health and the environment. This alternative would not achieve the RAOs for the source area or overburden plume within a reasonable timeframe. The contaminated source area soils would remain within the ECE property boundaries, and groundwater monitoring would not be performed to track plume migration and growth. Potential exposure to groundwater through basement infiltration and future use of the aquifer would continue to pose human health risks.

Alternatives 2, 3, 4, and 5 are protective of human health and the environment. These alternatives would meet the RAOs by treating the source area and downgradient groundwater, and by implementing the basement remedies and institutional controls in the overburden plume. By implementing source zone treatment on the ECE property, each of the alternatives would target and treat the highest hexavalent chromium concentrations in the overburden and shallow bedrock groundwater. Additionally, by implementing the basement remedies, health risks associated with groundwater infiltration into basements would be mitigated. These alternatives all result in decreases in concentration within the plume, which also would reduce the risk associated with groundwater infiltration into basements. The use of institutional controls would mitigate potential risks from exposure to groundwater through pathway elimination.

2. Compliance with applicable or relevant and appropriate requirements (ARARs)

Section 121(d) of CERCLA and NCP §300.430(f) (ii) (B) require that remedial actions at CERCLA sites at least attain legally applicable or relevant and appropriate Federal and State requirements, standards, criteria, and limitations which are collectively referred to as "ARARs," unless such ARARs are waived under CERCLA section 121(d)(4).

<u>Applicable</u> requirements are those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under Federal environmental or State environmental or facility siting laws that specifically address a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance found at a CERCLA site. Only those State standards that are identified by a state in a timely manner and that are more stringent than Federal requirements may be applicable. <u>Relevant and appropriate</u> requirements are those cleanup standards, standards of control, and other substantive requirements, criteria, or limitations promulgated under Federal environmental or State environmental or facility siting laws that, while not "applicable" to a hazardous substance, pollutant, contaminant, remedial action, location, or other circumstance at a CERCLA site, address problems or situations sufficiently similar to those encountered at the CERCLA site that their use is well-suited to the particular site. Only those State standards that are identified in a timely manner, and are more stringent than Federal requirements, may be relevant and appropriate.

Compliance with ARARs address whether a remedy will meet all of the applicable or relevant and appropriate requirements of other Federal and State environmental statutes or provides a basis for invoking a waiver.

Under Alternative 1, No Action, no cleanup measures will be taken and ARARs will not be achieved in a reasonable timeframe. Alternatives 2, 3, 4, and 5, would comply with all applicable ARARs and achieve remedial goals in the long term.

A complete list of ARARs can be found in Table 7 in Appendix I.

Primary Balancing Criteria – The next five criteria, criteria 3 through 7, are known as "primary balancing criteria." These criteria are factors by which tradeoffs between response measures are assessed so that the best options will be chosen, given site-specific data and conditions.

3. Long-Term Effectiveness and Permanence

Long-term effectiveness and permanence refers to expected residual risk and the ability of a remedy to maintain reliable protection of human health and the environment over time, once cleanup levels have been met. This criterion includes the consideration of residual risk that will remain on-site following remediation and the adequacy and reliability of controls.

Alternative 1 would not be effective or permanent, since the contaminants would not be monitored and there would be no mechanism to prevent future exposure to contaminated groundwater. The proposed source zone treatment in Alternatives 2, 3, 4, and 5 would be effective, and permanently treats hexavalent chromium mass within the source area, the ECE property. Alternative 2 achieves the PRGs downgradient of the source area primarily by dilution and dispersion as the hexavalent chromium plume migrates downgradient. Under Alternatives 3 and 5, *in situ* reduction injections would achieve PRGs by permanently reducing hexavalent chromium to trivalent chromium in the overburden plume. Under Alternatives 4 and 5, the pump-and-treat system would achieve PRGs by extracting groundwater and providing treatment *ex situ*.

Alternative 3 requires injections of a reducing amendment once every three years for approximately 10 years to establish permanent reduction barriers to reduce hexavalent chromium mass in the source overburden and overburden plume. The long-term effectiveness of the pump-and-treat system under Alternatives 4 and 5 relies on routine repair and replacement of pumps and rehabilitation of wells to maintain removal of hexavalent chromium mass.

Alternatives 2, 3, 4, and 5 would all rely on long-term monitoring to evaluate the effectiveness of the implemented remedy. Basement monitoring would be implemented until RAOs are achieved, and institutional controls would be used to mitigate risks until long-term effectiveness is achieved.

4. Reduction of Toxicity, Mobility, or Volume through Treatment

Reduction of toxicity, mobility, or volume through treatment refers to the anticipated performance of the treatment technologies that may be included as part of a remedy.

Alternative 1 would not reduce the toxicity, mobility, and volume (TMV) through treatment, as no active treatment of contaminated groundwater occurs. *In situ* reduction under Alternatives 2, 3, and 5 would result in a reduction in both the toxicity and mobility of hexavalent chromium by reducing hexavalent chromium to trivalent chromium, which should be permanent. Under Alternatives 2, 3, 4, and 5, toxicity and mobility reduction through *in situ* reduction is achieved through source treatment.

Alternative 2 does not reduce TMV in the overburden plume through active treatment; reduction in toxicity and volume of the plume is achieved primarily through dilution and dispersion as groundwater flows downgradient. Under Alternatives 3 and 5, reduction of toxicity and mobility is achieved in the overburden plume through *in situ* barrier treatment to convert hexavalent chromium to trivalent chromium. Overburden plume pump-and-treat under Alternatives 4 and 5 would result in a reduction in both the toxicity and volume by decreasing hexavalent chromium concentrations and by shrinking the overall size of the plume.

5. Short-Term Effectiveness

Short-term effectiveness addresses the period of time needed to implement the remedy and any adverse impacts that may be posed to workers, the community and the environment during construction and operation of the remedy until cleanup levels are achieved.

For Alternative 1, protection of the community and workers during remedial activities would not be applicable as no remedial action is occurring. Air monitoring, engineering controls and appropriate worker personal protective equipment (PPE) would be used to protect the community and workers for Alternatives 2 through 4.

Soil mixing and *in situ* injections in the source overburden may result in exposure to harmful chemicals, based on the reducing agent chosen. Soil mixing could be implemented within one year and would begin providing source zone treatment within 1 year of installation. However, soil mixing activities would generate a higher degree of noise and dust impacting nearby residents, compared to *in situ* injections. *In situ* injections would remediate source area overburden, but will require multiple injections over approximately 6 years.

Alternative 2 would have the least impact on the community or risk to workers, since no active remediation would be implemented in the plume downgradient of the source area. During implementation, Alternative 2A would have a greater impact on the community than Alternative 2B due to the use of multiple pieces of equipment needed to implement soil mixing. Additionally, the implementation time needed to carry out soil mixing would result in an extended period of disruption to the community as opposed to the installation of wells for injections. The risk of exposure to workers is greater under Alternative 2A, based on the process involved with soil mixing in which contaminated soils are brought to the surface and handled. Under Alternative 2A more chemicals would need to be transported and stored onsite at one time; however, under Alternative 2B, chemicals would need to be transported multiple times over the course of 6 years.

Because well drilling is generally limited to the City of Garfield right-of-ways, traffic may be disrupted for a long period. Additionally, during injections, large quantities of substrate will have to be transported, stored, and handled onsite. Treatment of the overburden plume will not begin until injections are completed and reducing conditions are established within the aquifer.

Under Alternatives 2, 3, 4, and 5, the implementation of source zone treatment could be carried out rapidly and be effective in the short term. The source area property is readily accessible and located in a mixed use industrial and residential neighborhood. The overburden plume pump-and-treat system under Alternative 4 would take less time to implement, but would have a greater

impact on the community during installation of pump-and-treat system piping and wells and construction of the treatment plant. The short term effectiveness of the pump-and-treat system under Alternative 5 would be restricted by the time needed to install the *in situ* barriers, and therefore, would have similar short-term effectiveness as Alternative 3. Once implemented, the pump-and-treat systems under Alternatives 4 and 5 would provide immediate removal of hexavalent chromium.

Treatment of the overburden plume through any of the active alternatives would not result in short-term reduction in plume size, and thus a reduction in the number of basements with potential exposure risk. A 90 percent reduction in overburden plume area is estimated to take 180, 111, 117, and 84 years, under Alternatives 2, 3, 4, and 5, respectively. The time to achieve RAOs 3 and 4 would be the same for Alternatives 2, 3, 4, or 5, since the RAOs would be largely met through the basement inspections and remediation.

6. Implementability

Implementability addresses the technical and administrative feasibility of a remedy from design through construction and operation. Factors such as availability of services and materials, administrative feasibility, and coordination with other governmental entities are also considered.

The source remediation component of all alternatives could readily be implemented using commonly available technologies and local contractors. Implementation of the source area remedy would generally be feasible because all aboveground structures have been removed; however, soil mixing may be constrained due to the limited space within the ECE property and site traffic control issues.

Alternative 2 would be easier to implement than Alternatives 3, 4, or 5, since it does not involve active remediation in the downgradient overburden plume. The presence of the overburden plume beneath the highly urbanized and densely populated city areas and the abundance of utilities in the streets pose severe constraints on performing groundwater remediation under Alternatives 3, 4, and 5.

Implementation of Alternative 4 would result in disturbance of the community over a large area because of the installation and maintenance of the pump-and-treat system piping and wells and construction of the treatment plant. Alternatives 3 and 5 would result in disturbance of the community during plume remedy implementation because of the large number of injections wells required. Additionally, large volumes of substrate to facilitate the injections would need to be transported and stored onsite for Alternatives 2, 3, and 5. Permit equivalents needed to carry out the plume injections under Alternatives 3 and 5 include an Underground Injection Control (UIC) for injections and a right-of-way permit equivalent during well installation and injections. Right-of-way permit equivalents would also be required under Alternatives 4 and 5 for installing extraction wells, as well as New Jersey Pollutant Discharge Elimination System, UIC, or Publicly Owned Treatment Works (POTW) permit equivalents for discharge of treated groundwater. Alternatives 4 and 5 would require continued operation and maintenance (O&M) of the pump-and-treat system over a long period. This may require operator attention at least weekly. Alternative 3 would only require attention every 3 years when substrate would be injected.

7. Cost

Includes estimated capital and O&M costs, and net present worth value of capital and O&M costs.

The cost of <u>Alternative 1</u> is \$0. This Alternative provides no protection of human health or the environment.

The estimated present worth cost of <u>Alternative 2A</u> is \$13,937,000, which includes O&M costs over a 30-year period.

The estimated present worth cost of <u>Alternative 2B</u> is \$10,197,000, which includes O&M costs over a 30-year period.

The estimated present worth cost of <u>Alternative 3</u> is \$37,334,000, which includes the cost of Alternative 2A and O&M costs over a 30-year period.

The estimated present worth cost of <u>Alternative 4</u> is \$22,088,000, which includes the cost of Alternative 2A and O&M costs over a 30-year period.

The estimated present worth cost of <u>Alternative 5</u> is \$49,112,000, which includes the cost of Alternative 2A and O&M costs over a 30-year period.

For the purposes of cost estimating, soil mixing was assumed as the overburden source treatment option for Alternatives 3, 4, and 5. The cost estimates for each alternative are order-of-magnitude estimates with an accuracy range of plus 50 to minus 30 percent. A detailed cost estimate for the selected remedy, Alternative 3, is provided in Table 8 of Appendix I. The final costs will depend on actual labor and material costs, competitive market conditions, final project scope, implementation schedule, and other variables. The specific details of the selected remedial alternative and the corresponding cost estimate will be refined during the remedial design phase of the project.

Modifying Criteria – The final two evaluation criteria, criteria 8 and 9, are called "modifying criteria" because new information or comments from the state or the community on the Proposed Plan may modify the preferred response measure or cause another response measure to be considered.

8. State Acceptance

Indicates whether based on its review of the RI/FS reports and the Proposed Plan, the state supports, opposes, and/or has identified any reservations with the selected response measure.

The State of New Jersey concurs with all components of the selected remedy.

9. Community Acceptance

Summarizes the public's general response to the response measures described in the Proposed Plan and the RI/FS reports. This assessment includes determining which of the response measures the community supports, opposes, and/or has reservations about.

EPA solicited input from the community on the remedial response measures proposed for the site. Oral comments presented at the public meeting were recorded, and EPA received written comments during the public comment period. The Responsiveness Summary addresses all public comments received by EPA during the public comment period. Overall, the community members, elected officials, and stakeholders were in favor of EPA's recommended alternative.

PRINCIPAL THREAT WASTE

Principal threat wastes are considered source materials, *i.e.*, materials that include or contain hazardous substances, pollutants or contaminants that act as a reservoir for migration of contamination to groundwater, surface water, or as a source for direct exposure. EPA's removal actions at the ECE property addressed hazardous materials, buildings, subsurface structures, and soils. These actions removed all of the "principal threat" wastes at the Site.

SELECTED REMEDY

Based upon consideration of the results of the Site investigations, the requirements of CERCLA, the detailed analysis of the response measures, and public comments, EPA has determined that Alternative 3, source area treatment and *in situ* reduction, is the appropriate remedy for the chromium contaminated groundwater at the Site. The remedy best satisfied the requirements of CERCLA Section 121 and the NCP's nine evaluation criteria for remedial alternatives, 40 CFR § 300.430(e)(9). The major components of the selected remedy include:

- Geochemical fixation through injection of a reducing agent to treat groundwater containing concentrations of total chromium greater than the New Jersey Groundwater Quality Standard of 70 parts per billion (ppb) throughout the Site;
- Extraction, treatment, and discharge of groundwater containing concentrations of total chromium greater than the New Jersey Groundwater Quality Standard of 70 ppb at the EC Electroplating property;
- Implementation of a long-term groundwater monitoring to assess the effectiveness of the action over time;
- Institutional controls, such as designation of a Classification Exception Area, to restrict the installation of wells and the use of groundwater in areas of chromium contaminated groundwater; and;
- Inspection and mitigation as necessary of residential and commercial basements in the areas impacted by contaminated groundwater.

The selected remedy alternative for the Garfield Site was selected over the other alternatives because it is expected to achieve substantial and long-term risk reduction through chemical conversion of hexavalent chromium to a less toxic form in the source overburden and downgradient overburden plume and removal of hexavalent chromium in the shallow bedrock beneath the source area. Though Alternatives 3 and 4 are similar in most respects, Alternative 3 was selected because it will effectively remove and reduce hexavalent chromium mass over the long term with less disruption of the community and in less time. In addition, Alternative 3 will reduce the mobility of the hexavalent chromium contamination and the risk of contamination of residential basements.

The selected remedy creates an *in situ* treatment zone using a geochemical fixation process that uses reducing agents within the chromium-contaminated plume area (Figures 5 and 6). The chemical reducing agent would reduce hexavalent chromium to trivalent chromium in the contaminated aquifer, allowing the chromium to precipitate out of solution. Geochemical fixation would be used to treat the entire area of groundwater that contains chromium above the cleanup goal of 70 ppb.

The remedy also includes a groundwater extraction and treatment system to reduce levels of hexavalent chromium at the ECE property (Figure 7). Once contaminated groundwater is extracted and treated through *ex situ* treatment, it would be discharged through injection wells installed to the base of the shallow bedrock. Injecting treated water into the zone of contaminated groundwater flushes the bedrock and helps expedite remediation of the plume.

To minimize infiltration of chromium contaminated groundwater into basements, and prevent exposure to hexavalent chromium transferred onto basement surfaces, the remedy will involve dewatering, cleaning, and waterproofing of basements. This approach will be implemented at the Site where needed.

The estimated cost of the selected remedy for OU1 is \$37,334,000; a detailed cost estimate is provided in Table 8 in Appendix I. The cost estimates are based on the best available information regarding the anticipated scope of the overall remedy. Changes in the cost elements are likely to occur as a result of new information and data collected during the engineering design of the remedy. These are order-of-magnitude engineering cost estimates that are expected to be within plus 50 to minus 30 percent of the actual project costs.

Based on the information available at this time, EPA and the State of New Jersey believe the selected remedy provides the best balance of trade-offs among the response measures with respect to the nine evaluation criteria. EPA believes that the selected remedy will be protective of human health and the environment, will comply with ARARs, will be cost effective, and will utilize permanent solutions and alternative treatment technologies to the maximum extent practicable.

Summary of the Rationale for the Selected Remedy

The selection of Alternative 3 is believed to provide the best balance of trade-offs among the alternatives with respect to the evaluation criteria. EPA and NJDEP concur that the selected

alternative will be protective of human health and the environment, complies with Federal and State requirements that are legally applicable or relevant and appropriate to the remedial action, is cost-effective, and will utilize permanent solutions and treatment technologies to the maximum extent practicable.

Green Remediation

Consistent with EPA Region 2's Clean and Green policy, EPA will evaluate the use of sustainable technologies and practices with respect to implementation of all components of the selected remedy.

STATUTORY DETERMINATIONS

As was previously noted, CERCLA §121(b)(1) mandates that remedial actions must be protective of human health and the environment, cost-effective, and utilize permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable. Section 121(b)(1) also establishes a preference for remedial actions which employ treatment to permanently and significantly reduce the volume, toxicity or mobility of the hazardous substances, pollutants, or contaminants at a site. CERCLA §121(d) further specifies that a remedial action must attain a degree of cleanup that satisfies ARARs under federal and state laws, unless a waiver can be justified pursuant to §121(d)(4).

Protection of Human Health and the Environment

The selected remedy, Alternative 3, will be protective of human health and the environment through the treatment of chromium contaminated groundwater, inspection and mitigation of basements, and institutional controls. Groundwater monitoring and institutional controls will further ensure that chromium-contaminated groundwater will not impact human health and the environment.

The selected remedy will, over time, eliminate all significant risks to human health and the environment associated with the chromium contaminated groundwater. This action will result in the reduction of potential exposure levels to chromium contaminated groundwater to within EPA's generally acceptable risk for non-carcinogens. Implementation of the selected remedy will not pose unacceptable short-term risks or adverse cross-media impacts.

Compliance with ARARs

The selected remedy for chromium-contaminated groundwater will comply with ARARs.

The selected remedy for groundwater has been developed to meet Federal and State ARARs for drinking water. Pursuant to the New Jersey Ground Water Quality Standards, N.J.A.C. 7:9-6 et seq., the groundwater at the Site is classified as IIA, which means it is a current or potential source of drinking water. The more restrictive of Federal or New Jersey standards is being used as the cleanup level for chromium in groundwater. A comprehensive ARAR discussion is included in the final Feasibility Study and a complete listing of ARARs is included in Table 7.

Cost Effectiveness

EPA has determined that the selected remedy is cost-effective and represents a reasonable value. In making this determination, the following definition was used: "A remedy shall be costeffective if its costs are proportional to its overall effectiveness." (NCP §300.430 (f) (1) (ii) (D)). EPA evaluated the "overall effectiveness" of those alternatives that satisfied the threshold criteria (i.e., were both protective of human health and the environment and ARAR-compliant). Overall effectiveness was evaluated by assessing three of the five balancing criteria in combination (long-term effectiveness and permanence; reduction in toxicity, mobility, or volume through treatment; and short-term effectiveness). Overall effectiveness was then compared to costs to determine cost-effectiveness. The relationship of the overall effectiveness of the selected remedy was determined to be proportional to costs and hence, this alternative represents a reasonable value for the money to be spent.

The selected remedy is cost effective as it has been determined to provide the greatest overall protectiveness for its present worth costs.

Utilization of Permanent Solutions and Alternative Treatment Technologies

EPA has determined that the selected remedy represents the maximum extent to which permanent solutions and treatment technologies can be utilized in a practicable manner at the Site. Of those alternatives that are protective of human health and the environment and comply with ARARs to the extent practicable, EPA has determined that the selected remedy provides the best balance of trade-offs in terms of the five balancing criteria, while also considering the statutory preference for treatment as a principal element and State and community acceptance.

The selected remedy will provide adequate long-term control of risks to human health and the environment through treatment of the chromium-contaminated groundwater, inspection and mitigation of basements, and long-term monitoring and institutional controls. The selected remedy does not present short-term risks different from the other alternatives. The selected remedy employs innovative technologies that have proved successful at other sites having chromium contaminated groundwater.

Preference for Treatment as a Principal Element

EPA's removal actions at the EC Electroplating property removed all of the principal threats at the Site. Treatment of chromium contaminated groundwater through geochemical fixation will reduce the toxicity, mobility, and volume of hexavalent chromium at the Site.

Five-Year Review Requirements

Because this remedy will not result in hazardous substances, pollutants, or contaminants remaining above levels that would allow for unlimited/unrestricted use, it will not be necessary to perform a statutory review within five years after initiation of the remedial actions to ensure that the remedies are, or will be, protective of human health and the environment. However,

because it will take more than five years to attain remedial action objectives and cleanup goals, policy five-year reviews are required.

DOCUMENTATION OF SIGNIFICANT CHANGES

The Proposed Plan for the Site was released for public comment on May 9, 2016. The comment period closed on June 8, 2016. The Proposed Plan identified Alternative 3 (source area treatment and *in situ* reduction) as the preferred alternative to address chromium groundwater contamination at the Site. Upon review of all comments submitted, EPA has determined that no significant changes to the preferred alternative, as it was presented in the Proposed Plan, are warranted.

APPENDIX I Tables & Figures

Scenario Timefram Medium: Groundw Exposure Medium:	ater			•	of Chemicals of Concer ic Exposure Point Conc		
Chemical of Concern	Concentration Concentration Frequency of Exposure Point Exposure Point Detected Units Detection Concentration Concentration Units Min Max Max Min Max Min Max		•	Statistical Measure			
Hexavalent chromium	0.015	87000	ug/L	140/146	10900	ug/L	97.5% Kaplan-Meier (Chebyshev) UCL
	sure and r	isk from e	ncern (COC) and expo each COC in these me	osure point concenti edia). The table incli	ration (EPC) for hexaval udes the range of conce	0	iter (i.e., the concentration that will be used to avalent chromium, as well as the frequency of

	TABLE 2 SELECTION OF EXPOSURE PATHWAYS									
Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	On-Site/ Off-Site	Type of Analysis	Rationale for Selection or Exclusion Of Exposure Pathway	
			Tap Water from Overburden & Bedrock Groundwater	Residents	Adult/Child	Dermal, Ingestion	On-site	Quant	Residents may use groundwater as a future potable water source. Dermal exposures are assumed to occur from bathing/showering.	
Future	Groundwater	Groundwater	Tap Water from Overburden & Bedrock Groundwater	Industrial Workers & Commercial Workers	Adult	Dermal, Ingestion	On-site	Qual	Industrial/commercial workers may use groundwater as a future potable water source. Dermal exposures are assumed to occur from hand and face washing. Adult resident risk estimates will be used as a conservative estimate of industrial/commercial worker risks.	
			Pooled Groundwater in Excavation/Trench	Construction Workers	Adult	Dermal	On-site	None	Future construction workers may occasionally contact standing water within an excavation. However, because of the limited extent of exposed skin, exposure frequency, and exposure time, potential exposures will not be quantified.	
		Surface Water	Passaic River	Recreational User	Adult/Child	Dermal, Fish Ingestion	Off-site	None	Although the site conceptual model indicates that contaminated groundwater is discharging to the river, hexavalent chromium was not detected in surface water. Additionally, this metal is expected to be reduced to trivalent chromium in fish tissue that might be consumed. Therefore, this pathway was not evaluated further.	
Current/Future	Groundwater	Sediment	Passaic River	Recreational User	Adult/Child	Dermal	Off-site	None	Surface sediments that would be available for contact by a fisher or recreational user show limited hexavalent chromium contamination. Additionally, based on the information provided in the Data Quality Evaluation Report in Appendix E, hexavalent chromium is unstable in site sediment and the concentrations are expected to be variable in this medium. Because of the uncertainty associated with the hexavalent chromium concentrations and the limited contamination in sediment, potential exposures to hexavalent chromium in site sediment were not quantified in the risk assessment.	
		Surface Dust	Basements in Garfield	Residents	Adult/Child	Dermal, Ingestion, Inhalation	On-site	None	USEPA removal action addressed the majority of known properties requiring remediation. However, some homes did not allow access, either for inspection of basements or remediation. These properties will continue to be addressed by USEPA on a case-by-case basis to the extent possible.	

		Surface Soil	Garfield Properties	Residents	Adult/Child	Dermal, Ingestion, Inhalation	On-site	None	USEPA remedial action addressed all known properties where basement sumps discharged to surface soil. Sumps were re- routed to the sanitary sewer.
Notes: Quant- Quantitative Qual - Qualitative USEPA = United State HHRA = Human Healt		0,	<u> </u>		<u> </u>		1	1	
Summary of Selection of Exposure Pathways The table describes the exposure pathways associated with the media that were evaluated for the risk assessment, and the rationale for the inclusion of each pathway. Exposure media, exposure points, and characteristics of receptor populations are included.									

Pathway: Ingestion/De	rmal									
Chemicals of Concern	Chronic/ Subchronic	Oral RfD Value	Oral RfD Units	Absorp. Efficiency (Dermal)	Adjusted RfD (Dermal)	Adj. Dermal RfD Units	Primary Target Organ	Combined Uncertainty /Modifying Factors	Sources of RfD Target Organ	Dates of RfD
Hexavalent chromium	Chronic	3.00E-03	mg/kg-day	2.5	7.50E-05	mg/kg-day	No observed effects	300/3	IRIS	9/3/1998
Pathway: Inhalation										
Chemicals of Concerr		Chronic/ Subchronic	Inhalation RfC	Inhalation RfC Units	Inhalation RfD (If available)	Inhalation RfD Units (If available)	Primary Target Organ	Combined Uncertainty /Modifying Factors	Sources of RfD Target Organ	Dates of Rf0
Hexavalent chromium			NA		NA	N/A	NA	NA	N/A	N/A
This table provides no N/A: Not Applicable	n-carcinogenic	risk informati		elevant to the	e contaminan		nt When available, the chro ncentrations (RfCs).	onic toxicity data h	ave been used	to develop ora

		Can	Table 4 cer Toxicity Da						
Pathway: Ingestion/ Dermal									
Chemical of Concern	Oral Cancer Slope Factor	Units	Adjusted Cancer Slope Factor (for Dermal)	Slope Factor Units	Weight of Evidence/ Cancer Guideline	Source	Date		
Hexavalent chromium	5.00E-01	(mg/kg-day) ⁻¹	2.00E+01	(mg/kg-day) ⁻¹	D (1)	NJDEP	6/1/2009		
Pathway: Inhalation									
Chemical of Concern	Unit Risk	Units	Inhalation Cancer Slope Factor	Slope Factor Units	Weight of Evidence/ Cancer Guideline	Source	Date		
Hexavalent chromium	N/A	(mg/m ³) ⁻¹							
Key: IRIS: Integrated Risk	Information Syst	tem. U.S. EPA							
(1) In the absence of a developed by the New used in Superfund ris	w Jersey Departi					-			
This table provides			mmary of Toxicity		c of concorr T	wisity data are	provided for		
This table provides	carcinogenic ris		oral and inhalation			Districtly data are	e provided for		

	Table 5 Risk Characterization Summary - Non-Carcinogens									
	eframe: Future pulation: Resident e: Adult									
Medium	Exposure Medium	Exposure	Chemical Of	Primary target Organ	Non-Carcinogenic Hazar			d Quotient		
		Point	Concern		Ingestion	Inhalation	Dermal	Exposure Routes Total		
Groundwater	Groundwater	Groundwater	Hexavalent chromium	No observed effect	99	N/A	42	141		
-		Chemical Total								
Exposure Point Total										
Exposure Medium Total								141		
Medium Total								141		
Receptor Pop Receptor Age										
Medium	Exposure Medium	Exposure Point	Chemical Of Concern	Primary target Organ	N	on-Carcinoge	enic Hazar	l Quotient		
		Tomt	Concern		Ingestion	Inhalation	Dermal	Exposure Routes Total		
Groundwater	Groundwater	Groundwater	Hexavalent chromium	No observed effect	234	N/A	123	355		
-			Chemical Total					355		
		Exposure Point	Total					355		
	Exposure Medium Tota							355		
Medium Total								355		
The table pr			n route of exposure a	isk Characterization - Non-Carcinoge and the hazard index (sum of hazard index (HI) greater than 1 indicates th	quotients) for a					

Table 6 Risk Characterization Summary - Carcinogens										
	eframe: Future Julation: Resident :: Adult/Child									
Medium	Exposure Medium	Exposure Point	Exposure Point Chemical Of Concern			Carcinogenic Risk				
				Ingestion	Inhalation	Dermal	Exposure Routes Total			
Groundwater	Groundwater	Groundwater	Hexavalent chromium	3E-01	N/A	1E-01	5E-01			
-			Chemical Total				5E-01			
		Exposure Point T	otal				5E-01			
Exposure Medium Total							5E-01			
Medium Total							5E-01			

Summary of Risk Characterization - Carcinogens

The table presents cancer risks for each route of exposure and for all routes of exposure combined. As stated in the National Contingency Plan, the acceptable risk range for site-related exposure is 1×10^{-6} (1 in 1 million) to 1×10^{-4} (1 in 10,000).

Act/Authority	Criteria/Issues	Citation	Brief Description	Applicability	Action to Be Taken on Selected Remedy to Attain Requirement
Chemical-Specific					
Federal Safe Drinking Water Act	National Primary Drinking Water Standards - Maximum Contaminant Level Goals (MCLGs) and Maximum Contaminant Levels (MCLs)	40 CFR 141.62 and NJAC 7:10	Establishes health- based standards for public drinking water systems. Also establishes drinking water quality goals set at levels at which no adverse health effects are anticipated, with an adequate margin of safety. The NCP specifically states that MCLs will be used as ARARs for useable aquifers rather than the more stringent MCLGs.	Applicable to the selected remedy. New Jersey classifies all groundwater as Class IIA groundwater, considered suitable for drinking water, The MCLs were considered when selecting the Preliminary Remedial Goal (PRG) for Cr(VI). The Federal MCL for total chromium is 100 µg/L. New Jersey sets the State MCL for total chromium at the federal MCL.	The cleanup standard for Cr(VI) in groundwater has been established below the Federal and state MCL of 100 µg/L – see the NJAC 7:9C ARAR.
New Jersey Statutes and Rules	Groundwater Quality Standards	NJAC 7:9C	Defines groundwater classifications and establishes groundwater quality standards for various compounds. The site groundwater is classified as Class IIA suitable for drinking water.	The New Jersey Class IIA groundwater quality standards are applicable to the selected remedy. The PRG for Cr(VI) at the Garfield Superfund Site is set at the New Jersey Class IIA groundwater quality standard for total chromium of 70 µg/L.	The cleanup standard for Cr(VI) in groundwater has been established at the NJ Class IIA groundwater quality standard of 70 μg/L.
NJDEP Chromium Workgroup	Chromium and No Further Action in Soils	Chromium Moratorium Memorandum from Commissioner Jackson (NJDEP 2007b).	Describes conditions under which no further action letters can be issued when 20 mg/kg of chromium can remain in unsaturated soils.	To be considered	Chromium in unsaturated soils may remain after implementation of the remedy at concentration greater than 20 mg/kg, therefore the conditions in the NJDEP memorandum will be

Act/Authority	Criteria/Issues	Citation	Brief Description	Applicability	Action to Be Taken on Selected Remedy to Attain Requirement
					incorporated into the remedial and design and remedial action.
Action-Specific					
Treatment and Discha	rge of Groundwater				
New Jersey Pollutant Discharge Elimination System (NJPDES) Discharges to Surface Water and POTWs	Surface Water and Groundwater Discharge Criteria	NJAC 7:14A-6.5, 12.11(d), 13	Establishes discharge standards for discharges to Publicly Owned Treatment Works (POTWs) and surface water. The nearest surface water body is the Passaic River, which is classified as an FW2- NT/SE2 water. Discharges to surface water from contaminated groundwater cleanup substantive requirements of the Category BGR- NJ0155438 would apply.	The discharge to surface water or discharge to POTW regulations are applicable if these discharges are pursued.	The design will comply with applicable standards for discharge limits and substantive requirements such as monitoring requirements. The design also will require compliance with BGR substantive requirements for treated construction dewatering, generally short term in nature (less than 6 months in duration), which may relate to the basement remediation portion of the remedy.
New Jersey Pollutant Discharge Elimination System (NJPDES) Underground Injection	Class V Underground Injection	NJAC 7:14A-6.5, 7.5(b)3(vii), 7.8, 8.5, 8.5, 8.10(a), 8.12(a), 8.12(c), 8.12(d), 8.16(b)1, 8.16(c)1, 8.16(f)	Requirements for discharge to groundwater through underground injection wells.	The UIC regulations are applicable to the reinjection of water. Because this is a CERCLA site with USEPA lead and NJDEP review, it is considered that the permit- by-rule applicability criteria in 7.5(b)3(vii) are met through NJDEP review of this FS and future Remedial Action Work Plan.	The permit-by-rule applicability criteria in 7.5(b)3(vii) will be met through NJDEP review of the Remedial Action Work Plan. Substantive permit-by-rule requirements such as monitoring will be defined in the remedial design or the associated

Act/Authority	Criteria/Issues	Citation	Brief Description	Applicability	Action to Be Taken on Selected Remedy to Attain Requirement
				Substantive permit-by-rule requirements such as monitoring would be adhered to, as proposed in an EPA-approved and NJDEP-reviewed work plan or remedial design.	EPA-approved and NJDEP-reviewed Remedial Action Work Plan.
New Jersey Pollutant Discharge Elimination System (NJPDES) Treatment Works Approval and Licensed Operator	Groundwater Treatment Ex Situ	NJAC 7:14-22.4(b)5 and NJAC 7:10A- I.IO(c)1.	Treatment works approval and licensed operator are not required for discharges authorized under NJAC 7:14-7.5, per NJAC 7:14A-22.4(b)5	Not applicable; not an ARAR	Not an ARAR.
Water Supply Management Act and Implementing Rules	Extraction or Diversion of Groundwater or Surface Water Exceeding 70 gpm (100,000 gpd)	NJSA 58:1A-1 and NJAC 7:19	Rules governing the establishment of privileges to divert water, and the management of water quantity and quality. Includes schedule and reporting procedures.	NJSA 58:1-1A is applicable only if extraction of groundwater may exceed a rate of 70 gpm; however, the implementing rule (NJAC 7:19) is to be considered, as it applies administrative mechanisms through which objectives of the Water Supply Management Act can be achieved. Substantive requirements include conducting hydrogeologic testing, maintaining the passing flow at or above the 7-day, 10-year flow established by the United States Geologic Survey, mitigating adverse impacts on groundwater or surface water or there users, and use of a totalizer	The NJDEP Bureau of Water Allocation (BWA) uses a CERCLA Permit- Equivalency application form for CERCLA site actions and does not typically require all substantive requirements in the rule. The appropriate substantive requirements from the rule will be determined by EPA and will be described in the design which will undergo NJDEP review.

Act/Authority	Criteria/Issues	Citation	Brief Description	Applicability	Action to Be Taken on Selected Remedy to Attain Requirement
				flowmeter. Refer to Discharge to Surface Water and Discharge to Groundwater above for construction-related dewatering of less than 70 gpm.	
Well Drillers and Pump Installers Act	Drilling Contractor Requirements	NJSA 58:4A-5 et seq. and NJAC 7:9D	Requirements for drilling and installing wells, licensing of well driller and pump installer, construction, and well casing specifications.	Applicable.	The remedial design will require compliance with these regulations for the installation of monitoring wells, extraction wells, or reinjection wells.
Preparation and Dispo	sal of Waste			-	
New Jersey Solid and Hazardous Waste Regulations	Generation and Management of Solid and Hazardous Wastes	NJAC 7:26 Solid Waste and NJAC 7:26G Hazardous Waste	Establishes requirements for generators, transporters, and facilities that manage nonhazardous solid waste and hazardous waste	Applicable to solid and hazardous wastes generated during implementation of the remedial actions. Water treatment systems that are operated under NJDPES are exempt from RCRA waste regulations.	The design will require that solid waste be managed in accordance with substantive requirements of solid waste generator rules, and that waste which is tested and found to be characteristically hazardous will be managed in accordance with substantive requirements of hazardous waste generator rules.
New Jersey Transportation Regulations (related to handling)	Onsite Preparation for Offsite Transportation	NJAC 16:49-2.1(a)1, 2, 3, 5,6	Rules for labeling of hazardous materials, packaging, and loading unloading.	The waste preparation requirements are applicable to the onsite management of the waste in anticipation of shipping offsite.	The design will require compliance.

Garfield Groundwater Contamination Superfund Site

Act/Authority	Criteria/Issues	Citation	Brief Description	Applicability	Action to Be Taken on Selected Remedy to Attain Requirement
Remedial Action - General					
Noise Control Act	Restrictions of Noise	NJSA 13:1G-1 et seq. and NJAC 7:29-1	Prohibits and restricts noise that unnecessarily degrades the quality of life. Sets maximum limits of sound from any industrial, commercial, public service or community service facility.	Relevant and appropriate.	The final design will address compliance with this regulation to the extent practicable.
Soil Erosion and Sediment Control Act	Standards for Soil Erosion and Sediment Control	NJAC 2:90	The New Jersey Department of Agriculture, Bergen County Soil Conservation District governs all soil disturbances greater than 5,000 ft ² .	Applicable to alternatives that would disturb greater than 5,000 ft ² .	The design will require compliance with the Bergen County Soil Conservation District, which follows the Seventh Edition, NJ Standards for Soil Erosion and Sediment Control, January 2014. Typical measures for shallow soil excavations include installation of silt fences, hay bales, and protection of storm drains. Implementation will comply with substantive requirements.
NJDEP Bureau of Non-Point Source Control	Stormwater Management	NJAC 7:8	Establishes requirements for best management practices and stormwater protection. The general permit for construction (5G3) substantive	Applicable if greater than 1 acre is disturbed.	The acreage to be disturbed will be determined during the design. The design will require compliance if clearing, grading, and excavation (generally,

Act/Authority	Criteria/Issues	Citation	Brief Description	Applicability	Action to Be Taken on Selected Remedy to Attain Requirement
			requirements would likely apply.		construction activities) that disturb 1 acre or more of land.
Location-Specific	·		·		
National Historic Preservation Act	Protects historic places	16 USC 470 Section 106 et. seq.	Requires federal agencies to take into account the effect of any federally-assisted undertaking or licensing on any district, site, building, structure, or object that is included in or is eligible for inclusion in the National Register of Historic Places.	Applicable if the portions of the site to be disturbed by remediation include historic or cultural resources.	The injection well locations will be determined during the design. Any adverse effects on historic and cultural resources that may be present will be identified, evaluated, and addressed during the design. The design will require compliance and coordination once the injection well locations are known.

Act/Authority	Criteria/Issues	Citation	Brief Description		Applicability	Action to Be Taken on Selected Remedy to Attain Requirement
New Jersey Register of Historic Places Act	Protects historic places	NJSA 12:1B-15.128 et seq.	Official list of New Jersey's historic resources of local, state, and national interest. Closely modeled after the National Register program. Both Registers have the same criteria for eligibility, nomination forms, and review process. Intended to protect properties significant in architecture, history, archaeology, engineering and/or culture.	the ren or pro the Co of- Hu Co Lir (ID Za Fu ne are	pplicable if the portions of the site to be disturbed by emediation include historic roultural resources. A reliminary search indicates that the properties listed elow are in Bergen bunty: Erie Railroad Right- F-Way westward from udson, Jersey City at oles; Erie Railroad Main ne Historic District D#218); Remains of abriskie's dock (ID#513). urther evaluation is eeded to determine if they re within the site bundaries.	The injection well locations will be determined during the design. Any adverse effects on historic and cultural resources that may be present will be identified, evaluated, and addressed during the design. The design will require compliance and coordination once the injection well locations are known.
Notes:μg/L=microgram per literMCL=maximum contaminant levelARARs=applicable or relevant and appropriate requirementsmg/kg=milligram per kilogramBWA=Bureau of Water AllocationNCP=National Oil and Hazardous Substance Pollution Contingency PlanCERCLA=Comprehensive Environmental Response, Compensation, and Liability Act of 1980NJDEP=New Jersey Department of Environmental ProtectionCr(VI)=hexavalent chromiumNJPDES=New Jersey Pollutant Discharge Elimination System			EPA POTW ft ² ppb FS PRG gpd RAO gpm UIC MCLG	 square feet parts per billion feasibility study preliminary remed gallons per day remedial action ob gallons per minute underground inject 	eatment Works iation goal jective tion control	

Garfield Groundwater Contamination Superfund Site

Record of Decision

includes monthly effluent discharge monitoring.

– DESIGN

DESIGN					
Pump and Treat System			Source In situ Injections		
<u>Plume</u>			<u>Treatment zone</u>		
Extraction wells	0		Area	18,000	sf
Extraction well depth	50	ft	Depth	19	ft
Reinjection wells	0		Depth to water	12	ft
Reinjection well depth	50	ft	Injection Well Spacing	20	ft
Monitoring wells	6		Injection Wells	45	
Monitoring wells depth	50	ft			
Extraction piping	0	ft	<u>Reagents</u>		
Reinjection/discharge piping	0	ft	Cr6 mass	3,496	lbs
			Calcium polysulfide	67,227	lbs, 3.3x stoichiometric demand to reduce Cr(VI) to Cr(III), based on reaction:
<u>Source</u>		_	Calcium polysulfide (30 wt%)	224,090	lbs, $2CrO_4^{2-} + 3CaS_5 + 10H^+> 2Cr(OH)_3 + 15S + 3Ca^{2+} + 2H_2O$
Extraction wells	3				
Extraction well depth	45	ft	In situ Reduction Barriers		
Reinjection wells	6		<u>Wells</u>		
Reinjection well depth	45	ft	Injection wells	290	5,800 ft of boundary with 20-ft well spacing
Monitoring wells	4		Injection well depth	50	ft
Monitoring wells depth	45	ft			
Extraction piping	250	ft	Injections		
Reinjection piping	250	ft	EVO (60%) per well per event	5,656	lbs, based on EVO Design Tool for 100% oil (see Attachment D-1), divided by 0.6
P&T monitoring & reporting			In situ reduction monitoring & re	porting	
Annual cost (estimated from current monitoring costs), includes monthly effluent	\$165,000		Additional annual cost routine monitoring & reporting	\$25,000	Engineer's estimate

Garfield Groundwater Contamination Superfund Site

				Total Cost	
Item Description	Qty	Units	Unit Cost (\$)	(\$)	NOTES
CAPITAL COSTS					-
Pump and Treat System					
Pre-Construction					
Subcontractor Submittals	1	LS	\$87,500	\$87,500	Engineer's estimate, see Table D6 of FS
Utility Clearance	5	day	\$1,200	\$6,000	Engineer's estimate
Surveying	5	day	\$1,500	\$7,500	Engineer's estimate
Well Installation					
Mobilization (HSA)	1	LS	\$9,285	\$9,285	Based on 2012 Garfield project rates escalated 3% per year, assumes 1 mobilization
Install Wells (HSA)	300	FT	\$109	\$32,700	Based on 2012 Garfield project rates escalated 3% per year, includes permitting and development, assumes 4" wells and flush-mounted monuments.
Mobilization (Rotary)	1	ea	\$8,723	\$8,723	Based on 2012 Garfield project rates escalated 3% per year, assumes 1 mobilization
Install Wells (Rotary)	585	FT	\$315	\$184,275	Based on 2012 Garfield project rates escalated 3% per year, includes permitting and development, assumes 4" wells and flush-mounted monuments
T&D Soil - Non-hazardous	27	TON	\$225	\$6,075	Based on 2012 Garfield project rates escalated 3% per year
IDW water - Non-hazardous	2,250	GAL	\$0.68	\$1,530	Based on 2012 Garfield project rates escalated 3% per year, assumes 50 gal per overburden well and 150 gal per bedrock well

Garfield Groundwater Contamination Superfund Site

				Total Cost	
Item Description	Qty	Units	Unit Cost (\$)	(\$)	NOTES
Trenching, Piping, Pumps					
Trenching	83	СҮ	\$50	\$4,150	Engineer's estimate (labor, equip, and materials for 1.5-ft wide trench). Assumes saw-cutting and repairing asphalt, backfilling
Piping (+15% for fittings and risers)	575	FT	\$12.49	\$7,182	Cost for 2" Schedule 80 PVC from 2012 Cost Book, escalated 3% per year
Sand	44	TON	\$31.56	\$1,389	2015 quote from Braen Supply, escalated 3% per year: \$22.27/ton + \$92 delivery charge for each 16 tons. This is equal to \$28.54/Ton
T&D Soil - Non-hazardous	70	TON	\$225	\$15,750	Based on 2012 Garfield project rates escalated 3% per year
Extraction pumps	3	еа	\$2,500	\$7,500	Grundfos Red-Flo4, internet pricing
Electrical Subcontractor					
Connect extraction well pumps, power to system building	1	LS	\$50,000	\$50,000	Engineer's estimate
<u>System</u>					
50 gpm treatment plant	1	LS	\$872,511	\$872,511	Based on vendor quote (Siemens 2010, see Table D11 of FS), escalated 3% per year
System Startup	1	LS	\$25,000	\$25,000	Engineer's estimate
Source In situ Injections					
Pre-Construction					
Subcontractor Submittals	1	LS	\$83,500	\$83,500	Engineer's estimate, see Table D6
Utility Clearance	1	day	\$1,200	\$1,200	Engineer's estimate
Surveying	1	day	\$1,500	\$1,500	Engineer's estimate

Garfield Groundwater Contamination Superfund Site

Item Description	Qty	Units	Unit Cost (\$)	Total Cost (\$)	NOTES
Well Installation	~1			(+)	
Mobilization (HSA)	1	LS	\$9,285	\$9,285	Based on 2012 Garfield project rates escalated 3% per year, assumes 1 mobilization
Install Wells (HSA)	855	FT	\$109	\$93,195	Based on 2012 Garfield project rates escalated 3% per year, includes permitting and development, assume 4" wells and flush-mounted monuments
T&D Soil - Non-hazardous	21	TON	\$225	\$4,725	Based on 2012 Garfield project rates escalated 3% per year
IDW water - Non-hazardous	2,300	GAL	\$0.68	\$1,564	Based on 2012 Garfield project rates escalated 3% per year, assumes 50 ga per overburden well and 150 gal per bedrock well
In situ Reduction Barriers					
Pre-Construction					
Subcontractor Submittals	1	LS	\$83,500	\$83,500	Engineer's estimate, see Table D6
Utility Clearance	5	day	\$1,200	\$6,000	Engineer's estimate
Surveying	5	day	\$1,500	\$7,500	Engineer's estimate
Well Installation					
Mobilization (HSA)	0	ea	\$9,285	\$0	Included in P&T wells costs
Install Wells (HSA)	14,500	FT	\$109	\$1,580,500	Based on 2012 Garfield project rates escalated 3% per year, includes permitting and development, assume 4" wells and flush-mounted monuments.
T&D Soil - Non-hazardous	435	TON	\$225	\$97,875	Based on 2012 Garfield project rates escalated 3% per year

Garfield Groundwater Contamination Superfund Site

			Total Cost	
Qty	Units	Unit Cost (\$)	(\$)	NOTES
87,000	GAL	\$0.68	\$59,160	Based on 2012 Garfield project rates escalated 3% per year, assumes 50 gal per overburden well and 150 gal per bedrock well
1,674,176	lb	\$2.37	\$3,967,797	2012 Cost Book, escalated 3% per yea
224,090	lb	\$0.43	\$96,359	Based on 2012 project pricing (FRx, W ANG), escalated 3% per year
1	LS	\$445,578	\$445,578	Based on vendor quote (Vironex 5/2/14, see Table D10), escalated 3% per year
1	LS	\$88,098	\$88,098	RACER Version 11.2.16
18%		\$7,954,406	\$1,431,793	Markup added to Total Capital Cost
2%		\$9,386,199	\$187,724	P&P Bond on Subcontractor Total Pric
5%		\$9,573,923	\$478,696	Based on USEPA Guidance Document 540-R-00-002
6%		\$9,573,923	\$574,435	
6%		\$9,573,923	\$574,435	Based on USEPA Guidance Document 540-R-00-002
1	LS	\$75,000	\$75,000	Engineer's estimate
25%		\$11,276,490	\$2,819,122	Based on USEPA Guidance Document
	1,674,176 224,090 1 1 18% 2% 5% 6% 6% 6% 1	87,000 GAL 1,674,176 lb 224,090 lb 1 LS 1 LS 18% 2% 5% 6% 6% 6% 1 LS	xy xy<	QtyUnitsUnit Cost (\$)(\$)87,000GAL\$0.68\$59,1601,674,176lb\$2.37\$3,967,797224,090lb\$0.43\$96,3591LS\$445,578\$445,5781LS\$88,098\$88,09818%\$7,954,406\$1,431,7932%\$9,386,199\$187,7245%\$9,573,923\$478,6966%\$9,573,923\$574,4351LS\$75,000

Garfield Groundwater Contamination Superfund Site

Record of Decision

				Total Cost	
Item Description	Qty	Units	Unit Cost (\$)	(\$)	NOTES
PERATION AND MAINTENANCE					
In situ Injection YR 3 (includes source BR P&T, source OB, o	and plume OB)				
Purchase & deliver EVO	1,674,176	lb	\$2.37	\$3,967,797	2012 Cost Book, escalated 3% per yea
Purchase & deliver Ca polysulfide	224,090	lb	\$0.43	\$96,359	Based on 2012 project pricing (FRx, W ANG), escalated 3% per year
Injection Subcontractor	1	LS	\$445,578	\$445,578	Based on vendor quote (Vironex 5/2/14, see Table D10 of FS), escalate 3% per year
Subcontractor Fee (G&A, OH, and Fee)	18%		\$4,509,734	\$811,752	
Payment and Performance Bond	2%		\$4,509,734	\$90,195	
Professional/Technical Services					
PM	5%		\$5,411,681	\$270,584	
СМ	6%		\$5,411,681	\$324,701	
Reporting	1	LS	\$25,000	\$25,000	Engineer's estimate
Contingency (15% scope + 10% bid)	25%		\$6,031,965	\$1,507,991	Based on USEPA Guidance Document 540-R-00-002

SUBTOTAL IN SITU INJECTION - YR 3

\$7,540,000 (Rounded)

Garfield Groundwater Contamination Superfund Site

Item Description	Qty	Units	Unit Cost (\$)	Total Cost (\$)	NOTES
In situ Injection YR 6 (includes source BR P&T, source OB, and plu	<u>те ОВ)</u>				
Purchase & deliver EVO	1,674,176	lb	\$2.37	\$3,967,797	2012 Cost Book, escalated 3% per year
Purchase & deliver Ca polysulfide	224,090	lb	\$0.43	\$96,359	Based on 2012 project pricing (FRx, WY ANG), escalated 3% per year
Injection Subcontractor	1	LS	\$445,578	\$445,578	Based on vendor quote (Vironex 5/2/14, see Table D10 of FS), escalated 3% per year
Subcontractor Fee (G&A, OH, and Fee)	18%		\$4,509,734	\$811,752	
Payment and Performance Bond	2%		\$4,509,734	\$90,195	
Professional/Technical Services					
PM	5%		\$5,411,681	\$270,584	Based on USEPA Guidance Document 540-R-00-002
CM	6%		\$5,411,681	\$324,701	
Reporting	1	LS	\$25,000	\$25,000	Engineer's estimate
Contingency (15% scope + 10% bid)	25%		\$6,031,965	\$1,507,991	Based on USEPA Guidance Document 540-R-00-002
SUBTOTAL IN SITU INJECTION - YR 6				\$7,540,000	(Rounded)
In situ Reagent Injection YR 1, 2, 4, 5 (includes source OB)					
Purchase & deliver Ca polysulfide	224,090	lb	\$0.43	\$96,359	Based on 2012 project pricing (FRx, W ANG), escalated 3% per year
				Total Cost	
Item Description	Qty	Units	Unit Cost (\$)	(\$)	NOTES
Injection Subcontractor	1	LS	\$19,096	\$19,096	Based on vendor quote (Vironex 5/2/14, see Table D10 of FS), escalated 3% per year

Garfield Groundwater Contamination Superfund Site

Subcontractor Fee (G&A, OH, and Fee)	18%			\$115,455	\$20,782	
Payment and Performance Bond	2%			\$115,455	\$2,309	
Professional/Technical Services						
PM	8%			\$138,546	\$11,084	Based on USEPA Guidance Documen 540-R-00-002
СМ	10%			\$138,546	\$13,855	
Reporting	1		LS	\$15,000	\$15,000	Engineer's estimate
Contingency (15% scope + 10% bid)	25%			\$178,484	\$44,621	Based on USEPA Guidance Documer 540-R-00-002
SUBTOTAL IN SITU INJECTION - YR 1, 2, 4 ,5					\$223,000	(Rounded)
In situ Injection YR 10, 15, 20, 25 (includes plume OB)						
Year 10		75%	of barrie	r injection scope	\$5,538,000	Engineer's estimate
Year 15		50%	of barrie	r injection scope	\$3,692,000	Engineer's estimate
Year 20		50%	of barrie	r injection scope	\$3,692,000	Engineer's estimate
Year 25		25%	of barrie	r injection scope	\$1,846,000	Engineer's estimate
Item Description	Qty		Units	Unit Cost (\$)	Total Cost (\$)	NOTES
Pump and Treat System O&M						
Annual O&M Labor (50 gpm treatment plant)	1		LS	\$328,074	\$410,092	Based on vendor quote (Siemens 20 see Table D11 of FS), escalated 3% p year, with 25% contingency
Injection Well Rehabilitation	1		LS	\$17,000	\$21,250	Engineer's estimate (annual rehabilitation, \$2000 mobilization a \$2500 per well, with 25% contingen

Garfield Groundwater Contamination Superfund Site

Groundwater Monitoring					
Pump and Treat and In situ Monitoring	1	LS	\$190,000	\$237,500	Engineer's estimate, with 25% contingency
Long-Term Monitoring (YR 11+)	1	LS	\$165,000	\$206,250	Engineer's estimate, with 25% contingency
Residential Basement Inspection and Remediation					
Inspections (YR 1-20)	5	ea	\$3,000	\$18,750	Based on EPA estimate, with 25% contingency
Remediation (YR 1-20)	2	ea	\$10,000	\$25,000	Based on EPA estimate (removal or impacted sediments, decontamina and polymer sealing of floors, and walls, installation of french drain/s system), with 25% contingency
Institutional Controls					
IC monitoring, enforcement, and biennial certification (every 2 yrs)	1	LS	\$24,832	\$31,040	RACER Version 11.2.16 , with 25% contingency
				Total Cost	
Item Description	Qty	Units	Unit Cost (\$)	(\$)	NOTES
RIODIC COSTS					
System Abandonment		371	WELLS		Assumes 327 overburden wells and bedrock wells, including existing w
Well Abandonment	371	ea	\$5,300	\$1,966,300	Estimate from RACER, escalated 39 per year
Pump and Treat System Abandonment	1	ea	\$100,000	\$100,000	Engineer's estimate
System piping	1	ea	\$100,000	\$100,000	Engineer's estimate
Professional/Technical Services					

Garfield Groundwater Contamination Superfund Site

Record of Decision

СМ	6%	\$2,166,300	\$129,978	Based on USEPA Guidance Document 540-R-00-002
Contingency (15% scope + 10% bid)	25%	\$2,404,593	\$601,148	Based on USEPA Guidance Document 540-R-00-002
SUBTOTAL SYSTEM ABANDONMENT			\$3,006,000	

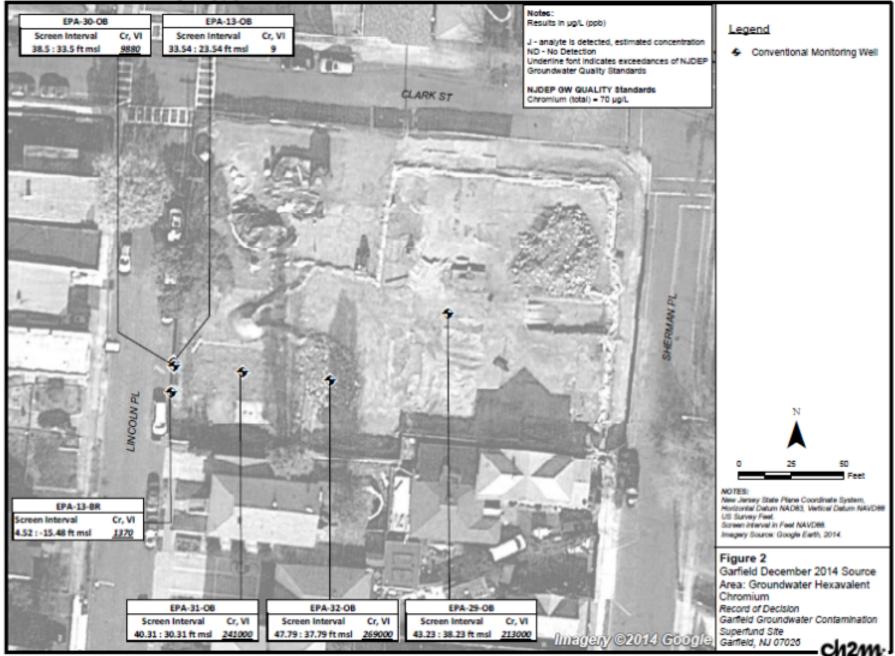
PRESENT VALUE ANALYSIS			7.0%	
Year	Cost Type	Cost	Discount Rate	Present Value
0	Capital Cost	\$14,096,000	1.00	\$14,096,000
1	O&M, Monitoring/Reporting	\$712,592	0.93	\$665,974
1	In situ Injection	\$223,000	0.93	\$208,411
2	O&M, Monitoring/Reporting	\$743,632	0.87	\$649,517
2	In situ Injection	\$223,000	0.87	\$194,777
3	O&M, Monitoring/Reporting	\$712,592	0.82	\$581,688
3	In situ Injection	\$7,540,000	0.82	\$6,154,886
4	O&M, Monitoring/Reporting	\$743,632	0.76	\$567,314
4	In situ Injection	\$223,000	0.76	\$170,126
5	O&M, Monitoring/Reporting	\$712,592	0.71	\$508,069
5	In situ Injection	\$223,000	0.71	\$158,996
6	O&M, Monitoring/Reporting	\$743,632	0.67	\$495,514
6	In situ Injection	\$7,540,000	0.67	\$5,024,220
7	O&M, Monitoring/Reporting	\$281,250	0.62	\$175,148
8	O&M, Monitoring/Reporting	\$312,290	0.58	\$181,756

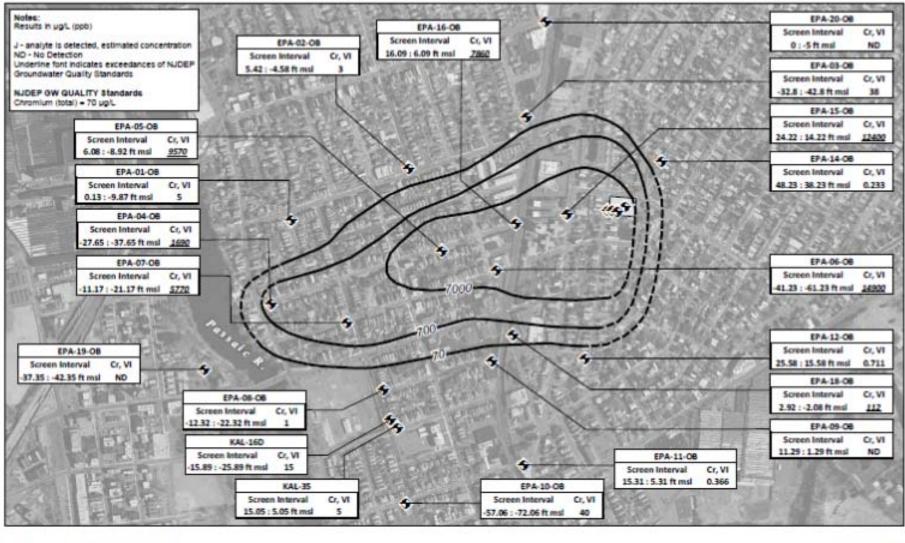
Garfield Groundwater Contamination Superfund Site

9	O&M, Monitoring/Reporting	\$281,250	0.54	\$152,981	
10	O&M, Monitoring/Reporting	\$312,290	0.51	\$158,752	
10	In situ Injection	\$5,538,000	0.51	\$2,815,238	
11	O&M, Monitoring/Reporting	\$250,000	0.48	\$118,773	
Year	Cost Type	Cost	Discount Rate	Present Value	
12	O&M, Monitoring/Reporting	\$281,040	0.44	\$124,785	
13	O&M, Monitoring/Reporting	\$250,000	0.41	\$103,741	
14	O&M, Monitoring/Reporting	\$281,040	0.39	\$108,992	
15	O&M, Monitoring/Reporting	\$250,000	0.36	\$90,612	
15	In situ Injection	\$3,692,000	0.36	\$1,338,151	
16	O&M, Monitoring/Reporting	\$281,040	0.34	\$95,198	
17	O&M, Monitoring/Reporting	\$250,000	0.32	\$79,144	
18	O&M, Monitoring/Reporting	\$281,040	0.30	\$83,150	
19	O&M, Monitoring/Reporting	\$250,000	0.28	\$69,127	
20	O&M, Monitoring/Reporting	\$281,040	0.26	\$72,626	
20	In situ Injection	\$3,692,000	0.26	\$954,083	
21	O&M, Monitoring/Reporting	\$206,250	0.24	\$49,812	
22	O&M, Monitoring/Reporting	\$237,290	0.23	\$53,559	
23	O&M, Monitoring/Reporting	\$206,250	0.21	\$43,508	

Garfield Groundwater Contamination Superfund Site

Record of Decision


ceord of Decision					
24	O&M, Monitoring/Reporting	\$237,290	0.20	\$46,781	
25	O&M, Monitoring/Reporting	\$206,250	0.18	\$38,001	
25	In situ Injection	\$1,846,000	0.18	\$340,124	
26	O&M, Monitoring/Reporting	\$237,290	0.17	\$40,860	
Year	Cost Type	Cost	Discount Rate	Present Value	
27	O&M, Monitoring/Reporting	\$206,250	0.16	\$33,192	
28	O&M, Monitoring/Reporting	\$237,290	0.15	\$35,689	
29	O&M, Monitoring/Reporting	\$206,250	0.14	\$28,991	
30	O&M, Monitoring/Reporting	\$237,290	0.13	\$31,172	
30	System Abandonment	\$3,006,000	0.13	\$394,890	
OTAL PRESENT VALUE ANAL	YSIS			\$37,334,000	
			CLASS 4	RANGE	
			50%	\$56,001,000	
			-30%	\$26,133,800	


This construction cost estimate is not an offer for construction and/or project execution. The construction cost estimate for this Design is an Association for the Advancement of Cost Engineering (AACE) Class 4 estimate and is assumed to represent the actual total installed cost. The estimate above is considered control-level cost estimating, suitable for use in project budgeting and planning. This estimate has been prepared with partial design and engineering calculations. The level of accuracy for the class of estimate defines the upper and lower ranges of the cost estimate. It is based upon the level of design detail and uncertainty associate with that level of detail. For a Class 4 estimate, the accuracy range is +50% to -30%. It would appear prudent that internal budget allowances account for the highest cost indicated by this range as well as other site specific allowances. The cost estimate has been prepared for guidance in project evaluation and implementation from the information available at the time of the estimate. The final costs of the project will depend on actual labor and material costs, competitive market conditions, implementation schedule, and other variable factors. As a result, the final project costs will vary from the estimates presented herein. Because of this, project feasibility and funding needs must be carefully reviewed prior to making specific financial decisions to help ensure proper project evaluation and adequate funding.

C:WorkWJO/Garfield/G/SWrcMap/PropPlan/Garfield_PropPlan_Fig01_SitePlan.mxd CH monitarb 3/7/2018 15:17:47

C:WorkINUO/Garfield/G/S/ArcMap/PropPlari/Garfield_PropPlan_Fig02_Her/Source.mxd CH mcotterb 3/10/2016 15:47:51

Conventional Monitoring Weil

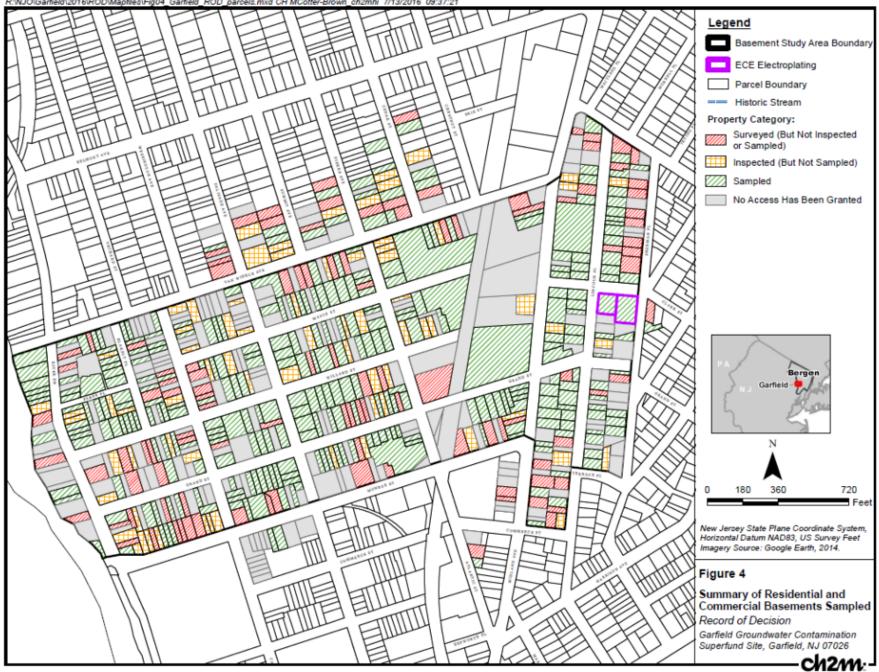
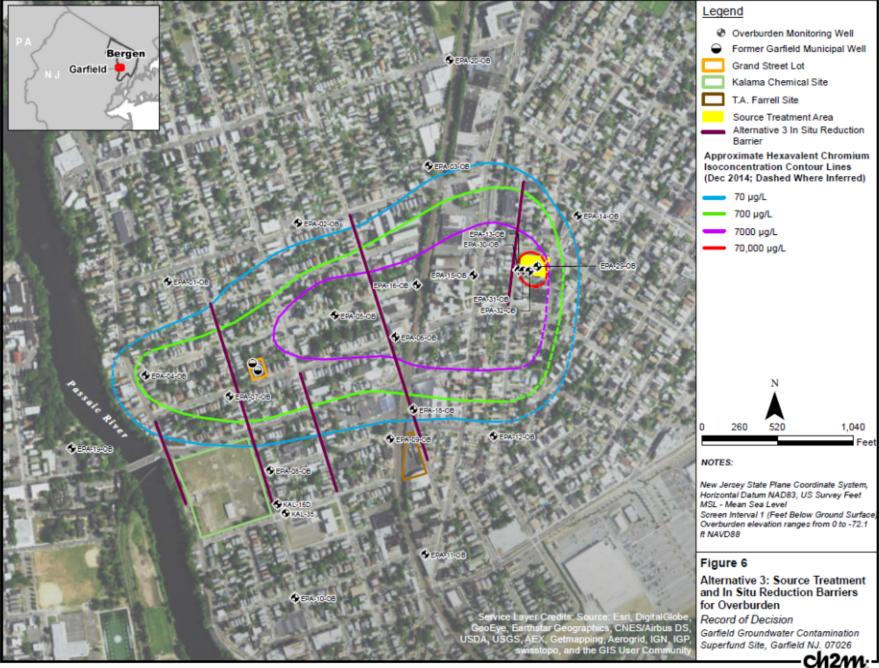

 Approximate Hexavalent Chromium Isoconcentration Contour (µg/L) (Dashed Where Inferred) E.C. Electoplating Site (125 Clark St., Garfield, NJ) 0 250 500 750 1,000 Feet NOTES: New Jersey State Plane Coordinate System Horizontal Datum NAD83, Vertical Datum NAV088 US Survey Feet. MDL - Mean Sea Level ND - Not Detected Imagery Source: National Aerial Imagery Program, 2010 Screen Interval In Feet NAVD88 Overburden elevation ranges from 48.23 to -72.1 ft NAVD88

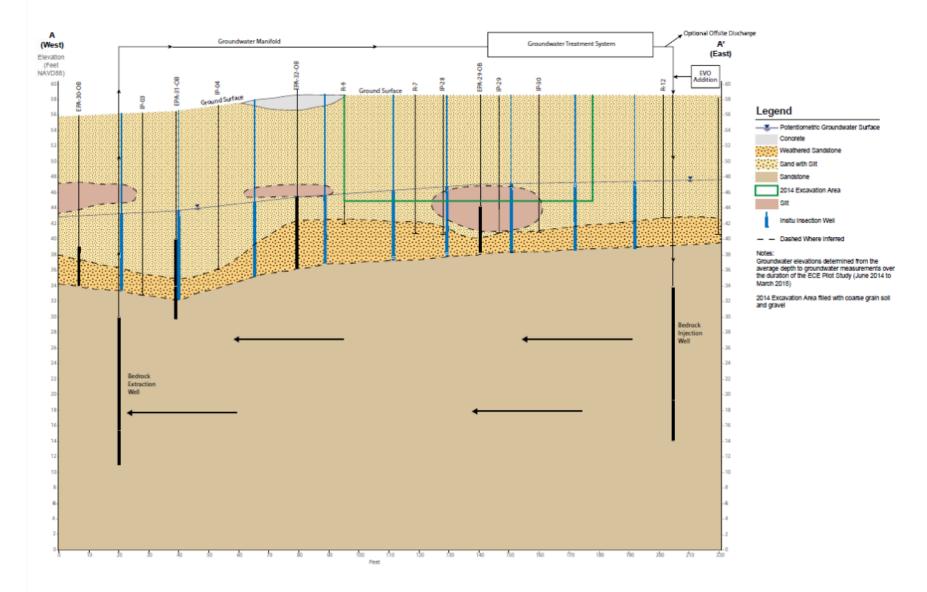
Figure 3 Garfield December 2014 Overburden

Hexavalent Chromium Record of Decision Garfield Groundwater Contamination Superfund Site Garfield, NJ 07026

C1WorkVUOlGarfeit/GISArcMapPropPenGarfeit_PropPen_Fig63_PercDromeCTR.nud



R:\NJO\Garfield\2016\ROD\Mapfiles\Fig04 Garfield ROD parcels.mxd CH MCotter-Brown ch2mhi 7/13/2016 09:37:21


R:WJO(Garfield\2016\ROD\Mapfiles\Fig05_Garfield_ROD_Alt2b.mxd CH MCotter-Brown_ch2mhi 7/7/2016 11:16:39

R:WJO\Garfield\2016\ROD\Mapfiles\Fig06_Garfield_ROD_Alt03.mxd CH MCotter-Brown_ch2mhi 7/12/2016 10:43:36

ch2m

VFRO.ECTRC158 GARFELDFROLRERFg_7-(JR_JR_Source_Textment_G_RB 15-35-15 EVIDENTIOTORI

Figure 7 Atternative 28: Source Treatment -In situ Injection, Cross Section View Record of Decision Garfield Groundwater Contamination Superfund Site Garfield, NJ 07026 APPENDIX II Administrative Record Index

ADMINISTRATIVE RECORD INDEX OF DOCUMENTS

FINAL

05/02/2016

REGION ID: 02

Site Name: GARFIELD GROUND WATER CONTAMINATION CERCLIS ID: NJN000206317

OUID: 01

SSID: A227

Action:

DocID:	Doc Date:	Title:	Image Count:	Doc Type:	Addressee Name/Organization:	Author Name/Organization:
395804	5/2/2016	ADMINISTRATIVE RECORD INDEX FOR OU1 FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	2		Autressee Name/Organization.	R02: (US ENVIRONMENTAL PROTECTION AGENCY)
363134	9/29/2010	CDC CORRESPONDENCE REGARDING A PUBLIC HEALTH ADVISORY FOR HEXAVALENT CHROMIUM EXPOSURES ASSOCIATED WITH THE THE E.C. ELECTROPLATING SITE	1	LTR / Letter		
363161	11/9/2010	STATE NOMINATION FOR NATIONAL PRIORITIES LIST (NPL) FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	2	PUB / Publication		
379178	4/1/2014	FINAL REMEDIAL INVESTIGATION REPORT APRIL 2014 VOLUME I: REPORT, TABLES, FIGURES AND APPENDIX A FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	768	RPT / Report		
379179	4/1/2014	FINAL REMEDIAL INVESTIGATION REPORT APRIL 2014 VOLUME II: APPENDIX B-I FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	4749	RPT / Report		
379177	4/1/2014	FINAL REMEDIAL INVESTIGATION REPORT APRIL 2014 VOLUME II: APPENDIX J FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	30774	RPT / Report		
377055	3/30/2015	BENTHIC BASELINE ECOLOGICAL RISK ASSESSMENT FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	90	RPT / Report	R02: (US ARMY CORPS OF ENGINEERS)	R02: (AVATAR ENVIRONMENTAL)
376326	8/25/2015	RESULTS OF THE IN SITU REDUCTION PILOT TEST FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	158	MEMO / Memorandum	R02: (US ENVIRONMENTAL PROTECTION AGENCY), R02: (US ARMY CORPS OF ENGINEERS)	R02: (CH2M HILL)
376350	9/25/2015	2014 SITEWIDE GROUNDWATER SAMPLING TECHNICAL MEMORANDUM FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	32	MEMO / Memorandum	R02: (US ENVIRONMENTAL PROTECTION AGENCY)	R02: (CH2M HILL)
396383	2/1/2016	FINAL FEASIBILITY STUDY REPORT OU1, PART 1 OF 2 FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	132	RPT / Report	R02: (US ENVIRONMENTAL PROTECTION AGENCY), R02: (US ARMY CORPS OF ENGINEERS)	R02: (CH2M HILL)

ADMINISTRATIVE RECORD INDEX OF DOCUMENTS

FINAL

05/02/2016

REGION ID: 02

Site Name: GARFIELD GROUND WATER CONTAMINATION

CERCLIS ID: NJN000206317

OUID: 01

SSID: A227

Action:

DocID:	Doc Date:	Title:	Image Count:	Doc Type:	Addressee Name/Organization:	Author Name/Organization:
396384	2/1/2016	FINAL FEASIBILITY STUDY REPORT OU1, PART 2 OF 2 APPENDICES FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	1730	RPT / Report	R02: (US ENVIRONMENTAL PROTECTION AGENCY), R02: (US ARMY CORPS OF ENGINEERS)	R02: (CH2M HILL)
396443	3/1/2016	FINAL REMOVAL ACTION REPORT, REMOVAL ACTION 2 FOR THE E.C. ELECTROPLATING INCORPORATED SITE	1067	RPT / Report	R02: (US ENVIRONMENTAL PROTECTION AGENCY)	R02: (WESTON SOLUTIONS, INC.)
396421	4/5/2016	CORRESPONDENCE REGARDING RISK EVALUATION OF REMAINING SOILS AT THE FORMER E. C. ELECTROPLATING FACILITY, SOURCE OF CONATMINATION AT THE GARFIELD GROUND WATER CONTAMINATION SITE	25	LTR / Letter	R02: Flynn, Kathleen (NORTH MASSAPEQUA RESIDENT)	R02: Metz, Chloe (US ENVIRONMENTAL PROTECTION AGENCY), R02: Kiernan, Meghan (US ENVIRONMENTAL PROTECTION AGENCY)
396453	5/2/2016	PROPOSED PLAN FOR OU1 FOR THE GARFIELD GROUND WATER CONTAMINATION SITE	16	WP / Work Plan		R02: (US ENVIRONMENTAL PROTECTION AGENCY)

Page 2 of 2

APPENDIX III State Letter

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION SITE REMEDIATION PROGRAM Mail Code 401-06 P. O. Box 420 Trenton, New Jersey 08625-0420 Tel. #: 609-292-1250 Fax. #: 609-777-1914

BOB MARTIN Commissioner

September 7, 2016

Mr. Walter Mugdan, Director Emergency and Remedial Response Division U.S. Environmental Protection Agency Region II 290 Broadway New York, NY 10007-1866

Re: Garfield Groundwater Contamination Superfund Site Record of Decision Operable Unit 1 EPA ID# NJN0000206317 DEP PI# 004097

Dear Mr. Mugdan:

The New Jersey Department of Environmental Protection (DEP) completed its review of the "Record of Decision, Garfield Groundwater Contamination Superfund Site, Operable Unit 1: Basements, Source Area, and Overburden Groundwater, City of Garfield, Bergen County, New Jersey" prepared by the U.S. Environmental Protection Agency (EPA) Region II in August 2016 and concurs with the selected remedy to address contaminated groundwater in the overburden aquifer.

The selected remedy included in this Record of Decision covers the first of two planned remedial operable units for the Garfield Groundwater Contamination Superfund Site. DEP supports the selected remedies to address the source of chromium contamination affecting shallow groundwater and that has infiltrated into area basements. The primary remedial actions for contaminated groundwater are *in situ* treatment using geochemical fixation and, in addition, extraction, treatment, and reinjection of groundwater.

The components of the selected Operable Unit 1 remedy include:

• Geochemical fixation through injection of a reducing agent to treat groundwater containing concentrations of total chromium greater than the New Jersey Groundwater Remediation Standard of 70 parts per billion (ppb) throughout the Site;

CHRIS CHRISTIE Governor

÷.,

KIM GUADAGNO Lt. Governor

- Extraction, treatment, and discharge of groundwater containing concentrations of total chromium greater than the New Jersey Groundwater Remediation Standard of 70 ppb at the EC Electroplating property;
- Implementation of a long-term groundwater monitoring program to assess the effectiveness of the action over time;
- Institutional controls, such as designation of a Classification Exception Area, to restrict the installation of wells and the use of groundwater in areas of chromium contaminated groundwater; and
- Inspection and mitigation as necessary of residential and commercial basements in the areas impacted by contaminated groundwater.

DEP appreciates the opportunity to participate in the decision making process to select an appropriate remedy for this site. Further, DEP is looking forward to future cooperation with EPA in remedial actions for Operable Unit 2 to ensure the deep groundwater also is protected at this site.

If you have any questions, please call me at 609-292-1250.

Sincerely

Mark J. Pedersen Assistant Commissioner Site Remediation & Waste Management Program

C: Kenneth J. Kloo, Director, Division of Remediation Management, DEP Edward Putnam, Assistant Director, Publicly Funded Response Element, DEP Carole Petersen, Chief, New Jersey Remediation Branch, EPA Region II APPENDIX IV Responsiveness Summary

RESPONSIVENESS SUMMARY Garfield Groundwater Contamination Superfund Site Garfield, New Jersey

INTRODUCTION

This Responsiveness Summary provides a summary of the public's comments and concerns regarding the Proposed Plan for the Garfield Groundwater Contamination Superfund Site's (Site) Operable Unit 1 preferred remedy, and EPA's responses to those comments. All comments summarized in this document have been considered in EPA's final decision for the selection of remedial alternatives for the Site.

This Responsiveness Summary is divided into the following sections:

- I. BACKGROUND ON COMMUNITY INVOLVEMENT AND CONCERNS This section provides the history of community involvement and interests regarding the Site.
- II. COMPREHENSIVE SUMMARY OF MAJOR QUESTIONS, COMMENTS, CONCERNS AND RESPONSES This section contains summaries of oral comments received by EPA at the public meeting, EPA's responses to these comments, as well as responses to written comments received during the public comment period.

The last section of this Responsiveness Summary includes attachments, which document public participation in the remedy selection process for this Site. These attachments are:

Attachment A contains the Proposed Plan that was distributed to the public for review and comment;

Attachment B contains the public notices that appeared in the Courier Post;

Attachment C contains the transcripts of the public meeting, and

Attachment D contains the written comments received by EPA during the public comment period.

I. BACKGROUND ON COMMUNITY INVOLVEMENT AND CONCERNS

EPA has worked closely with local residents, public officials, and other interested members of the community since NJDEP requested assistance with the Site in the early 2000s. On May 9, 2016, EPA released the Proposed Plan and supporting documentation for the groundwater remedy to the public. The Proposed Plan and index for the Administrative Record were made available to the public online, and the Administrative Record files were made available at the EPA Administrative Record File Room, 290 Broadway, 18th Floor, New York, New York; and the Garfield Public Library, 500 Midland Avenue, Garfield, New Jersey.

On May 9, 2016, EPA published a Public Notice in the Bergen Record newspaper that provided

information about the public comment period, the public meeting for the Proposed Plan, and the availability of the administrative record for the Site. EPA also published a press release on May 9, 2016, to announce the release of the Proposed Plan. The public comment period closed on June 8, 2016.

A public meeting was held on May 19, 2016, at the Garfield Senior Center, 480 Midland Avenue, Garfield, New Jersey. The purpose of this meeting was to inform residents, local officials, and interested members of the public about the Superfund process, present details about EPA's remedial plan, receive comments on the Proposed Plan, and respond to questions from area residents and other interested parties.

II. <u>COMPREHENSIVE SUMMARY OF MAJOR QUESTIONS, COMMENTS,</u> <u>CONCERNS, AND RESPONSES</u>

Part 1: Verbal Comments

This section provides a summary of verbal comments received from the public during the public comment period and EPA's responses.

A. SUMMARY OF QUESTIONS AND EPA'S RESPONSES FROM THE PUBLIC MEETING CONCERNING THE GARFIELD GROUNDWATER CONTAMINATION SITE - May 19, 2016

A public meeting was held on May 19, 2016, at the Garfield Senior Center, 480 Midland Avenue, Garfield, New Jersey. In addition to a presentation of the investigation findings, EPA presented the Proposed Plan and preferred alternatives for the Site, received comments from meeting participants, and responded to questions regarding the remedial alternatives under consideration. A transcript of the public meeting is provided in Attachment C.

A summary of comments raised by the public following EPA's presentation are categorized by relevant topics and presented below:

Current Site Conditions

Comment 1: A commenter asked for information on the depth of the contamination associated with the Garfield Site on the Passaic side (west) of the Passaic River.

EPA response: Contamination associated with the Site was discovered 120 feet below ground surface.

Comment 2: A commenter asked if additional contamination would be released into the groundwater now that the EC Electroplating buildings have been removed and the Site capped with asphalt.

EPA response: EPA's excavation at the former EC Electroplating property removed the contaminated soil that was the source of the existing hexavalent chromium contamination in

the overburden groundwater. The contamination in the groundwater beneath the EC Electroplating property is still mobile, and the movement is influenced by lateral groundwater flow and water entering the ground at the EC Electroplating property. EPA constructed an asphalt cap to prevent stormwater infiltration and impede the movement of the hexavalent chromium in the groundwater. Once implemented, EPA's selected remedy will reduce the toxicity and mobility of hexavalent chromium in the overburden groundwater.

Basements and Infiltration of Groundwater

Comment 3: A commenter asked if weather events such as heavy rain would result in contaminated water infiltrating additional residential basements.

EPA response: Heavy rain would temporarily raise the level of the water table, which increases the chances of water infiltrating basements that were not previously impacted. Heavy rain would not increase the amount of hexavalent chromium contamination in the groundwater.

Comment 4: A commenter asked if the water pumped from basements is discharged to city sewers.

EPA response: Yes. Water pumped from basements is discharged to the sanitary sewer and the Passaic Valley Sewage Commission treatment system.

Comment 5: A commenter asked if homes with below-grade basements could be constructed on land within the boundaries of the area of the overburden groundwater plume.

EPA response: Yes. The groundwater infiltration into basements is a function of two things: depth to the water table and how the basement is constructed. Shallow basements, higher quality construction, and newer basements have been found to better resist infiltration of water. As a best practice, basements in new construction should be sealed.

Comment 6: A commenter asked about the likelihood of contamination from groundwater if the water table rises.

EPA response: A higher water table increases the volume of water infiltrating basements. However, the amount of the hexavalent chromium contamination in the groundwater would not increase.

Comment 7: A commenter asked if it is possible that a residence previously found not to be contaminated can become contaminated.

EPA response: The potential for contamination of other properties is low. After extensive study of the approximately 40-year old contaminant plume, EPA has concluded that the extent of contamination is unlikely to change. In addition, excavation of contaminated soils at the EC Electroplating property has removed the source of the groundwater contamination. Once a source of contamination is removed, levels of contaminants tend to decrease, further

reducing the potential for additional contamination.

Exposure to Contamination

Comment 8: A commenter asked how the community could be exposed to the hexavalent chromium contamination.

EPA Response: The risks of exposure are limited to dermal contact with and incidental ingestion of hexavalent chromium contamination in residential basements. Hexavalent chromium was deposited on basement surfaces as contaminated groundwater evaporated. Residents working in their basements could come into dermal contact with the hexavalent chromium and accidentally ingest it when touching their mouths. Results of air sampling in basements that were heavily contaminated indicate that the hexavalent chromium is not airborne, which eliminates inhalation as a pathway of exposure.

Comment 9: A commenter asked if there is a risk of exposure to hexavalent chromium from eating vegetables grown in residential soils.

EPA response: No. Plants do not have any specific mechanism for uptake of chromium, and any chromium that is taken up by plants accumulates mainly on roots and not in leaves or fruit. At the Garfield Site, groundwater contaminated with hexavalent chromium in exceedance of target levels is 14 feet below the ground surface, which is deeper than the reach of the roots of vegetable plants.

Comment 10: A commenter asked if local road renovation would contaminate nearby homes with chromium.

EPA response: No. The hexavalent chromium contamination is found only in groundwater at the Site, approximately 14 feet below ground surface.

Comment 11: A commenter asked what the potential risks are to children who might be exposed to future chromium contamination.

EPA response: The potential for exposure is extremely low. Hexavalent chromium contamination has not been found in drinking water in Garfield and no pathway exists for direct contact with contaminated overburden groundwater. EPA has removed the contaminated soil at the EC Electroplating property that was the source of the groundwater contamination and mitigated hexavalent chromium contamination in residential basements.

Superfund Process and Funding

Comment 12: Several commenters asked if adequate funding was available to continue the inspections and mitigation of basements and remediate the Site.

EPA response: CERCLA is an "enforcement first" program that enables EPA to pursue viable Potentially Responsible Parties (PRPs) to perform or pay for cleanup work. No viable PRPs have been identified for the Garfield Site. Funding for basement inspections and mitigation is EPA's priority. Additional funding is in place for the design of the remedy. As the remedy design process concludes, EPA Region 2 will request funding for the remedial action from EPA Headquarters. A priority panel will evaluate Region 2's request, along with requests for other Superfund sites across the U.S., and prioritize which sites receive the limited funding available for remedial actions.

Comment 13: A commenter asked if the Superfund program is funded through the Right to Know Act.

EPA response: No. Superfund is funded through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), enacted by Congress in 1981. CERCLA put in place two mechanisms for ensuring the cleanup of sites contaminated with hazardous substances: broad liability provisions to require the "responsible parties" to pay for and implement cleanups themselves and a dedicated trust fund (or "Superfund") to provide funds for the government to clean up sites where those responsible did not have needed funds, had gone out of business, or were recalcitrant. The majority of the Superfund originally came from excise taxes on petroleum and chemical feedstocks and the corporate environmental income tax. Funding has been provided through general appropriations and settlements with PRPs since the authority for the Superfund taxes expired in 1995.

Comment 14: A commenter asked if EPA would be transparent in its process to remediate the site and inform the City of Garfield of the progress of the project.

EPA response: Yes. EPA will apprise the City Manager and community stakeholders of project milestones during meetings and via telephone, email, and community updates posted on the Garfield Site web page. EPA expects to continue to have meaningful public input throughout the implementation of the remedy.

Real Estate

Comment 15: Several commenters asked if EPA provides assistance to residents attempting to sell properties.

EPA response: Yes. EPA continues to inspect properties within the residential basement study area and sample for hexavalent chromium as necessary. EPA provides the results of inspections and sampling in letters to the owners of the properties. EPA has offered to participate in information sessions to educate realtors and other members of the community on the chromium contamination in Garfield.

Preferred Alternative

Comment 16: A commenter asked if the emulsified vegetable oil is the material that reduces the hexavalent chromium to trivalent chromium.

EPA response: Yes, indirectly. Emulsified Vegetable Oil, or EVO, is used to stimulate the growth of microbes in the groundwater. This microbial growth alters the chemistry of the groundwater and creates an environment where hexavalent chromium is converted to trivalent chromium. Other food-grade reagents as well as calcium polysulfide, ferrous sulfate, or sodium dithionite have been used successfully at other Sites, and will be evaluated during the remedial design phase for use in Garfield.

Comment 17: A commenter asked if the 30- and 140-year time frames identified in the Proposed Plan and presentation refer to the time to complete construction or remediation.

EPA response: The 30-year time frame is the standard used to estimate comparative costs for the remedial alternatives. Construction of the remedy will begin once the remedial design is complete, and is expected to last 2 years. All of the alternatives considered for the Site are expected to complete remediation in excess of 140 years. However, EPA will evaluate new and existing technologies that can improve or accelerate remediation of the groundwater at the Site.

Future Use of the Site

Comment 18: A commenter asked if the EC Electroplating property would be available for *municipal use in the future.*

EPA response: Yes. Source treatment at the EC Electroplating property requires installation of 45 wells through which reducing amendment will be injected over a period of approximately 6 years. The property will be available when the series of injections is complete and access to the wells is no longer needed.

Part 2: Written Comments

This section provides a summary of written comments received from the public during the public comment period and EPA's responses.

B. COMMENTS FROM THE NEW JERSEY SIERRA CLUB

<u>Comment 1</u>: The New Jersey Sierra Club believes the U.S. Environmental Protection Agency plan to address groundwater contaminated with hexavalent chromium at the Garfield Groundwater Contamination Superfund site is not an appropriate response at the site. We believe it may not go far enough to remedy all of the toxic contamination because it is an experimental way of monitoring and selective site remediation. <u>EPA Response</u>: The remedy EPA has selected for the Garfield Site provides the best balance of trade-offs among the response measures with respect to the nine evaluation criteria. EPA believes that the selected remedy will be protective of human health and the environment, will comply with applicable and relevant and appropriate requirements, will be cost effective, and will utilize permanent solutions and alternative treatment technologies to reduce the toxicity and mobility of hexavalent chromium.

The technologies proposed in the remedy have been used successfully to remediate groundwater contamination at other Superfund sites. Pump and treat of contaminated groundwater is an industry standard. The EPA guidance document "In Situ Treatment of Soil and Groundwater Contaminated with Chromium. October 2000" (EPA/625, R-00/005) presents several examples of successful *in situ* treatment of chromium contaminated groundwater at sites in Indiana, California, and South Carolina.

<u>Comment 2</u>: We need a real clean-up plan to adequately address the extent of this pollution, which includes removing all of the toxic contamination—not just monitoring and conducting selective remediation in some people's basements.

<u>EPA Response</u>: EPA's proposed remedial action at the Garfield Site is a comprehensive approach to addressing the hexavalent chromium contamination in the source area, the EC Electroplating property; the overburden groundwater plume downgradient of the source area; and the residential basements. In the source area, the overburden groundwater will be treated with *in situ* injections and the shallow bedrock groundwater will be pumped to the surface, treated, and reinjected. The overburden plume outside of the source area will also be treated *in situ*, using injection barriers installed downgradient of the source area to the Passaic River. A reducing solution would be injected periodically into the wells to convert hexavalent chromium to trivalent chromium, which is the less toxic and less mobile form of chromium. The remedy includes long-term groundwater monitoring of the source area and downgradient overburden contaminant plume to evaluate the effectiveness of the remedy. EPA will continue to inspect, sample, and mitigate hexavalent chromium contamination in the basements of residential and commercial properties as necessary.

EPA expects the remedial action to meet the four Remedial Action Objectives (RAOs) for the Site identified in the Proposed Plan. These RAOs are to restore the chromium-contaminated groundwater to levels acceptable for future beneficial use as a drinking water resource; prevent exposure to chromium concentrations in groundwater above acceptable levels; minimize the potential for infiltration of contaminated groundwater into basements and transfer of hexavalent chromium onto basement surfaces; and, for basement surfaces contaminated by groundwater infiltration, prevent direct contact with and ingestion of hexavalent chromium concentrations above acceptable levels.

<u>Comment 3</u>: Chromium is a toxic chemical that becomes more toxic when it mixes with drinking water. The chromium at this site is seeping into basements and drinking water wells.

<u>EPA Response</u>: The comment that chromium at the site is seeping into drinking water wells is unsupported by the data gathered during the remedial investigation and sampling results of

drinking water conducted by the City of Garfield. Hexavalent chromium has not been detected in the municipal water supply, but was discovered above acceptable levels in the basements of 14 residential properties in Garfield located above the groundwater contamination plume. From 2003 to 2015, EPA inspected or obtained information on over 500 residential and commercial properties in Garfield, and collected samples at over 300. Samples exceeded the Site-specific removal action level for hexavalent chromium in the basements of 14 properties. The basements were decontaminated and sealed and/or had drainage systems installed to prevent groundwater infiltration. EPA will continue to inspect, sample, and mitigate hexavalent chromium contamination in the basements of residential and commercial properties as necessary.

The commenter stated that chromium becomes more toxic when it mixes with drinking water. Chromium is a naturally occurring element found in rocks, animals, plants, and soil. Trivalent chromium occurs naturally in the environment. According to the Institute of Medicine of the National Research Council, trivalent chromium is an essential nutrient for normal energy metabolism. In contrast, the toxicity of hexavalent chromium is of much greater concern than trivalent chromium. Hexavalent chromium is rarely found in nature and is the contaminant of concern released from the EC Electroplating property. The objective of the remedial action is to restore the chromium-contaminated groundwater to levels acceptable for future beneficial use as a drinking water resource.

<u>Comment 4</u>: The EPA must ensure adequate funding and an appropriate clean-up of the Garfield site to protect the human health of people who have been suffering for far too long.

<u>EPA Response</u>: Funding is in place for remedial design and continuing basement inspections and mitigation. As the remedial design process concludes, EPA Region 2 will submit a request for funding for the remedial action at the Garfield Site to the Superfund National Risk-Based Priority Panel. Upon expiration of the Superfund taxing authority, EPA established the Priority Panel to evaluate the risk to human health and the environment at National Priorities List sites and establish funding priorities for all new cleanup construction projects in the Superfund program. The Priority Panel will evaluate Region 2's request, along with requests for other Superfund sites across the U.S., and prioritize which sites receive the limited funding available for remedial actions. The five criteria and associated weighting factors used to compare projects include risks to human population exposed, contaminant stability, contaminant characteristics, threat to a significant environment, and program management considerations.

Attachment A Proposed Plan

Superfund Program Proposed Plan

U.S. Environmental Protection Agency Region 2

Garfield Groundwater Contamination Superfund Site Garfield, New Jersey

May 2016

EPA ANNOUNCES PROPOSED PLAN

This Proposed Plan describes the remedial alternatives that the United States Environmental Protection Agency (EPA) considered to remediate contaminated groundwater at the Garfield Groundwater Contamination Superfund site (site) identifies EPA's preferred alternative along with the reasons for this preference.

The preferred alternative calls for in-situ treatment of the remaining chromium contamination at the original source, in-situ reduction of contamination in the overburden groundwater, and restrictions on groundwater use until the overburden groundwater is restored. The preferred alternative would also continue basement monitoring and mitigation until the overburden groundwater is restored, to prevent exposure to chromium that could enter basements with contaminated groundwater.

This document is issued by EPA, the lead agency for site activities, and the New Jersey Department of Environmental Protection (NJDEP), the support agency. EPA, in consultation with NJDEP, will select the final remedy for the site after reviewing and considering all information submitted during a 30-day public comment period. EPA, in consultation with NJDEP, may modify the preferred alternative or select another action presented in this Proposed Plan based on new information or public comments. Therefore, the public is encouraged to review and comment on all alternatives presented in this document.

EPA is issuing this Proposed Plan as part of its community relations program under Section 117(a) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, or Superfund). This Proposed Plan summarizes information that can be found in greater detail in the Remedial Investigation (RI) Report - Garfield Groundwater Contamination Superfund Site and the Garfield Groundwater Contamination Superfund Site Feasibility (FS) Study, as well as in other documents contained in the Administrative Record for this site.

MARK YOUR CALENDARS

Public Comment Period May 9, 2016 to June 8, 2016

EPA will accept written comments on the Proposed Plan during the public comment period.

Public Meeting

May 19, 2016 at 7:00 P.M.

EPA will hold a public meeting to explain the Proposed Plan and all of the alternatives presented in the Feasibility Study. Oral and written comments will also be accepted at the meeting. The meeting will be held at the Garfield Senior Center, 480 Midland Ave., Garfield, NJ.

The Administrative Record files are available for public review at the following information repositories:

EPA Region 2 Records Center 290 Broadway, 18th Floor New York, New York 10007-1866 (212) 637-4308 Hours: Monday-Friday – 9 A.M. to 5 P.M.

Garfield Public Library 500 Midland Ave., Garfield, NJ (973) 478-3800

SITE DESCRIPTION

The site is located in a mixed commercial and residential neighborhood in the City of Garfield, Bergen County, New Jersey. The extent of the site is defined by the presence of chromium in the groundwater at concentrations at or greater than the New Jersey Groundwater Quality Standard of 70 micrograms per liter (μ g/L). The source of groundwater contamination has been identified as the former EC Electroplating (ECE) facility at 125 Clark Street in Garfield. The ECE property covers approximately 0.65 acres. It is bounded by Clark Street to the north, Lincoln Place to the west, Sherman Place to the east, and residential properties to the south (Figure 1).

SITE HISTORY

EC Electroplating was founded in the late 1930s and operated until March 2009. The facility was used as a custom metal plating shop that electroplated chromium, copper, and nickel onto machined parts. One large cylindrical storage tank and three additional vertical tanks were used to store chromic acid plating solution. There were two documented spills at the site that may have been sources of contamination. In December 1983, the large tank failed, releasing chromic acid directly to the shallow groundwater. One groundwater pumping well was installed to recover the spilled chromium, but the complete mass was not recovered before the pumping shut down in 1985. In May 1996, a spill of process wastewater was mitigated by the Bergen County Hazardous Materials team. The results of EPA's groundwater investigation suggest that other spills or leaks of chromic acid may have occurred at the facility.

In October 2002, NJDEP requested EPA assistance to assess and mitigate chromium-contaminated groundwater infiltrating into basements of buildings in Garfield. From 2008 to 2015, EPA surveyed properties and sampled dust in the basements of residential and commercial properties. Properties where basement dust samples exceeded the sitespecific removal action level (RAL) for hexavalent chromium were decontaminated and the basements were sealed and/or had drainage systems installed to prevent groundwater infiltration. EPA documented a determination of significant threat for the site based on basement dust sampling results in the 2010 E.C. Electroplating (Garfield Groundwater Contamination Site) - Determination of Significant Threat Memorandum. It was determined that exceedances of the RALs, as well as the potential for future contamination at levels exceeding these values represented an unacceptable risk to individuals who may be exposed to hexavalent chromium dust on basements surfaces. Dust on potentially contaminated surfaces in the basements was sampled by wiping an area (10 centimeter x 10 centimeter) and analyzing the hexavalent chromium mass on the wipe. For basements used as a living space (high use), EPA developed a RAL of 1.1 micrograms of hexavalent chromium per wipe. For basements used for laundry and storage (low use), a RAL of 8.7 micrograms of hexavalent chromium per wipe was developed. As of 2015, more than 500 properties were inspected and 14 of the properties required removal actions to address chromium-contaminated dust in the basements.

In April 2010, the New Jersey Department of Health and the US Agency for Toxic Substances and Disease Registry issued a health consultation which assessed the potential chromium exposures to area residents based on previous sampling investigations conducted by EPA in residential and commercial properties. Both agencies concluded that there is evidence of a complete exposure pathway regarding ingestion of and dermal contact with surface dust containing chromium. Both agencies also concluded that past, present and future exposures represent a public health hazard via the ingestion of chromium dust in some basements. In September 2010, ATSDR issued a Public Health Advisory for the site, recommending that EPA take immediate measure to dissociate residents and others from the basement area of the properties showing the highest chromium levels in surface dust to prevent exposures from continuing.

In June 2011 EPA conducted a site assessment of the abandoned EC Electroplating facility. EPA's assessment identified hazardous materials within vats, tanks and drums at the facility which presented and immediate threat to the surrounding community, and further identified the facility as the source of chromium contamination in groundwater. EPA removed all hazardous materials from the facility and disposed the materials at appropriate facilities. In 2012 all buildings and above-ground structures on the ECE property were demolished by EPA.

Following the removal of the building and its contents, EPA conducted a comprehensive soil investigation on the ECE property to determine the extent of chromium contamination present in the soils and substructures of the former facility. EPA mobilized to the ECE property in October 2013 to excavate contaminated soils and concrete which exceeded 20 milligrams per kilogram (mg/kg) of hexavalent chromium (NJDEP soil cleanup criteria). A total of 1,180 tons of concrete was removed from the site, including 897 tons that was disposed of as hazardous waste. The total soil removed from the site was 5,686 tons. Of the soil removed, 2,701 tons required disposal as hazardous waste. Only soil above the water table was addressed in this action. Post-excavation samples were collected and all excavated areas were backfilled and compacted with certified clean fill. The surface of the site was then covered with clean backfill and capped with asphalt in May 2014.

The Garfield Groundwater Contamination Superfund Site was placed on EPA's National Priorities List in September 2011.

EPA initiated a shallow groundwater study in 2010 and then expanded the investigation to overburden and bedrock groundwater, residential soils, surface water, and sediments. The groundwater investigation included installation of conventional and multiport wells, downhole geophysical profiling, packer testing, a matrix diffusion study. and a groundwater-surface water interaction study. There are currently 52 overburden and bedrock wells in EPA's monitoring network. The results of this investigation were used to complete the human health and ecological risk assessments. EPA also conducted additional studies on aquifer testing, insitu reduction of hexavalent chromium in groundwater, and an ecological risk assessment of sediments in the Passaic River. EPA continues to investigate and mitigate exposure to chromium caused by the intrusion of contaminated

groundwater into the basements of buildings located in Garfield.

SITE CHARACTERISTICS

Physical Setting of the Site

The former ECE property is located in Garfield approximately 0.6 miles east of the Passaic River (Figure 1). The topography of the 0.65-acre ECE property is flat and the property is enclosed by an eight foot high screened chain link fence. The neighborhood immediately surrounding the ECE property consists of a mixture of residential and commercial properties. The ECE property is currently zoned residential.

Site Geology and Hydrogeology

Groundwater occurs within two hydrogeologic systems in Garfield — the unconsolidated overburden materials and fractured sedimentary bedrock. The overburden material underlying the region consists of a thick layer of unconsolidated glacial sediments and fill material. Groundwater flow in the overburden materials is predominantly controlled by local topography. The depth to groundwater in Garfield is generally less than 20 feet below ground surface.

The bedrock at the site consists of interbedded siltstones, mudstones, and fine- to coarse-grained sandstones. Groundwater flow in the bedrock aquifer is controlled by fractures and bedding planes. At the ECE property source area, there is limited groundwater flow upward from the bedrock aquifer into the overburden. Outside the source area, the overburden groundwater generally flows downward into the bedrock aquifer.

Groundwater from the overburden aquifer discharges to the Passaic River. The Passaic River on Garfield's western border is tidally influenced and its width is generally 200 to 300 feet, with an estimated depth of 5 to 10 feet in the center. The river sediments are principally composed of sand and have low levels of organic carbon.

Nature and Extent of Contamination

The ECE property is considered the source area of the site based on the known releases of chromic acid and the chromium impacts to soil and groundwater at the property (Figure 2). Although EPA removed contaminated soils above the water table, there is still a zone of very high chromium concentrations immediately below the water table that is a source of groundwater contamination. The maximum hexavalent chromium concentration found in groundwater in 2014 was 269,000 µg/L at monitoring well EPA-32-OB, near the historical location of the chromic acid tanks at the former ECE facility. The shallow bedrock aquifer beneath the ECE property also has high levels of hexavalent chromium, $1,370 \mu g/L$ at EPA-13-BR in 2014. The dominant form of chromium in the groundwater across the site is hexavalent chromium, but there is also trivalent chromium present.

Outside the source area, the greatest concentration of hexavalent chromium in an overburden well was 14,900 μ g/L at well EPA-06-OB in 2014 (Figure 3). The average hexavalent chromium concentration in the overburden plume is estimated to be 3,420 μ g/L.

The hexavalent chromium groundwater plume extends north of the ECE property to Van Winkle Avenue and south to Commerce Street. In the area of the plume, shallow groundwater that infiltrates into basements can transfer hexavalent chromium to the floor or walls.

The overburden plume flows to the west and discharges to the Passaic River. Hexavalent chromium and total chromium in samples from the surface water of the Passaic River do not exceed the NJDEP Ecological Screening Criteria in the area of the plume. However, the Passaic River sediment samples from this area are elevated in hexavalent chromium and total chromium.

SCOPE AND ROLE OF ACTION

The overall strategy for the Garfield Groundwater Contamination site is to remove principal threat waste, protect residents from exposure to hexavalent chromium contamination, and restore groundwater to levels acceptable for beneficial use. EPA is addressing the cleanup in two phases, called Operable Units. This Proposed Plan addresses Operable Unit 1 (OU1): the basements, ECE property source area, and overburden groundwater. The overburden aquifer is a source of hexavalent chromium contamination to the deeper bedrock aquifer. The groundwater in the bedrock aquifer will be addressed as Operable Unit 2.

PRINCIPAL THREAT WASTE

EPA's removal actions addressed hazardous materials, buildings, subsurface structures, and soils at the former ECE facility. These actions removed all of the "principal threat" wastes at the site (see inset box).

WHAT IS A "PRINCIPAL THREAT"?

The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes an expectation that EPA will use treatment to address the principal threats posed by a Site wherever practicable (NCP Section 300.430(a)(1)(iii)(A)). The "principal threat" concept is applied to the characterization of "source materials" at a Superfund Site. A source material is material that includes or contains hazardous substances, pollutants or contaminants that act as a reservoir for migration of contamination to ground water, surface water or air, or acts as a source for direct exposure. Contaminated ground water generally is not considered to be a source material; however, Non-Aqueous Phase Liquids (NAPLs) in ground water may be viewed as source material. Principal threat wastes are those source materials considered to be highly toxic or highly mobile that generally cannot be reliably contained, or would present a significant risk to human health or the environment should exposure occur. The decision to treat these wastes is made on a site-specific basis through a detailed analysis of the alternatives using the nine remedy selection criteria This analysis provides a basis for making a statutory finding that the remedy employs treatment as a principal element.

SUMMARY OF SITE RISKS

The purpose of the risk assessment is to identify potential cancer risks and noncancer health hazards at the site assuming that no further remedial action is taken. As part of the RI/FS, a baseline human health risk assessment (HHRA) was conducted to estimate the risks and hazards associated with the current and future effects of contaminants on human health and the environment (see adjoining box "What is Risk and How is it Calculated"). A screening-level ecological risk assessment (SLERA) and baseline ecological risk assessment (BERA) were also conducted to assess the risk posed to ecological receptors due to site-related contamination.

Human Health Risk Assessment

Groundwater

The HHRA began with selecting chemicals of potential concern (COPCs) in groundwater that could potentially cause adverse health effects in exposed populations. Although the groundwater is currently not used for drinking water purposes, the HHRA assumed groundwater could be used as a source of drinking water in the future.

In this assessment, exposure point concentrations were estimated using the 95% upper-confidence limit (UCL) of the average concentration of the contaminant. Chronic daily intakes were calculated based on the reasonable maximum exposure (RME), which is the highest exposure reasonably anticipated to occur at the site. The RME is intended to estimate a conservative exposure scenario that is still within the range of possible exposures.

Cancer risks and noncancer health hazards from exposure to contaminated groundwater were evaluated for adult and child residents. The excess lifetime cancer risk estimate is 5 x 10-1. The calculated hazard index (HI) is 141 for adult and 355 for the child. The contaminant associated with the elevated risk and hazard is hexavalent chromium. For these receptors, exposure to hexavalent chromium in groundwater results in an excess lifetime cancer risk that exceeds EPA's target risk range of 1 x 10-4 to 1 x 10-6 and an HI above the acceptable level of 1. Several other contaminants, namely arsenic, trichloroethylene, dieldrin and cyanide were also associated with unacceptable risk and/or hazard. However, these contaminants are not considered site-related based on their distribution and frequency within the hexavalent chromium groundwater plume.

Soil

None of the residential soil samples exceeded the 20 mg/kg hexavalent criteria. Following the excavation of soil and concrete from the ECE property, EPA performed a risk assessment on the remaining soil that was separate from the baseline HHRA for

WHAT IS RISK AND HOW IS IT CALCULATED?

A Superfund baseline human health risk assessment is an analysis of the potential adverse health effects caused by hazardous substance releases from a site in the absence of any actions to control or mitigate these under current- and future-land uses. A four-step process is utilized for assessing site-related human health risks for reasonable maximum exposure scenarios.

Hazard Identification: In this step, the chemicals of potential concern (COPCs) at the site in various media (*i.e.*, soil, groundwater, surface water, and air) are identified based on such factors as toxicity, frequency of occurrence, and fate and transport of the contaminants in the environment, concentrations of the contaminants in specific media, mobility, persistence, and bioaccumulation.

Exposure Assessment: In this step, the different exposure pathways through which people might be exposed to the contaminants identified in the previous step are evaluated. Examples of exposure pathways include incidental ingestion of and dermal contact with contaminated soil and ingestion of and dermal contact with contaminated groundwater. Factors relating to the exposure assessment include, but are not limited to, the concentrations in specific media that people might be exposed to and the frequency and duration of that exposure. Using these factors, a "reasonable maximum exposure" scenario, which portrays the highest level of human exposure that could reasonably be expected to occur, is calculated.

Toxicity Assessment: In this step, the types of adverse health effects associated with chemical exposures, and the relationship between magnitude of exposure and severity of adverse effects are determined. Potential health effects are chemical-specific and may include the risk of developing cancer over a lifetime or other noncancer health hazards, such as changes in the normal functions of organs within the body (*e.g.*, changes in the effectiveness of the immune system). Some chemicals are capable of causing both cancer and noncancer health hazards.

Risk Characterization: This step summarizes and combines outputs of the exposure and toxicity assessments to provide a quantitative assessment of site risks for all COPCs. Exposures are evaluated based on the potential risk of developing cancer and the potential for noncancer health hazards. The likelihood of an individual developing cancer is expressed as a probability. For example, a 10⁻⁴ cancer risk means a "one in ten thousand excess cancer risk;" or one additional cancer may be seen in a population of 10,000 people as a result of exposure to site contaminants under the conditions identified in the Exposure Assessment. Current Superfund regulations for exposures identify the range for determining whether remedial action is necessary as an individual excess lifetime cancer risk of 10⁻⁴ to 10⁻⁶, corresponding to a one in ten thousand to a one in a million excess cancer risk. For noncancer health effects, a "hazard index" (HI) is calculated. The key concept for a noncancer HI is that a "threshold" (measured as an HI of less than or equal to 1) exists below which noncancer health hazards are not expected to occur. The goal of protection is 10⁻⁶ for cancer risk and an HI of 1 for a noncancer health hazard. Chemicals that exceed a 10⁻⁴ cancer risk or an HI of 1 are typically those that will require remedial action at the site.

groundwater. The risk assessment considered both residential and commercial exposure to hexavalent chromium (no other constituents exceeded screening levels) in the remaining soil.

The HIs for the residential adult and the residential child from exposure to surface soil are 0.003 and 0.04, respectively, and the excess lifetime cancer risk is 3 x 10-5. For the worker, the HI from exposure to surface soil is 0.002 and the excess lifetime cancer risk is 1 x 10-6. For the excavation worker, assuming an exposure duration of 250 days, the HI is 0.4 and the cancer risk is 8 x 10-6. Because the cancer risks and noncancer hazards were well below EPA's target levels, the removal action of soil excavation is considered protective of human health for current and future commercial/industrial, as well as residential uses. Therefore, no further action for soils is necessary.

Ecological Risk Assessment

During the Remedial Investigation, a SLERA and a BERA were conducted to evaluate the potential for risk to ecological receptors from contamination. Potentially complete exposure pathways for ecological receptors included areas where groundwater discharges to the Passaic River. Ecological receptors evaluated included benthic organisms and water column-dwelling aquatic life within the Passaic River along with mammals and birds. The ecological risk assessments demonstrated that chromium concentrations in surface water do not represent a potential risk to aquatic life, and that there is negligible potential for chromium in sediment and surface water to represent a risk to mammalian and avian wildlife.

EPA completed an additional risk assessment in 2014 to further define the risk from chromium to benthic organisms inhabiting the eastern shoreline of the Passaic River. Based on a 42-day *Hyalella azteca* survival, growth, and reproduction toxicity test, chromium levels in sediments pose no ecological significant risk to survival and reproduction in the benthic invertebrate community and the effects on growth are expected to be minimal. Therefore, based on the results of this bioassay, ecological impacts are not expected in the benthic invertebrate community.

Risk Assessment Summary

It is EPA's judgement that the Preferred Alternative identified in this Proposed Plan is necessary to limit potential human health risks from actual or threatened releases of hazardous substances into the environment.

REMEDIAL ACTION OBJECTIVES

Before developing cleanup alternatives for a Superfund site, EPA establishes remedial action objectives (RAOs) to protect human health and the environment. The human health risk assessment showed that the site-related contaminants are total chromium and hexavalent chromium. Chromium may pose a risk to human health through groundwater ingestion, and hexavalent chromium may pose risks through groundwater use and contact with hexavalent chromium dust. The following RAOs address the human health risks posed by contaminated groundwater at the site:

RAO 1. Restore the chromium-contaminated groundwater to levels acceptable for future beneficial use as a drinking water resource.

RAO 2. Prevent exposure to chromium concentrations in groundwater above acceptable levels.

RAO 3. Minimize the potential for infiltration of contaminated groundwater into basements and transfer of hexavalent chromium onto basement surfaces.

RAO 4. For basement surfaces contaminated by groundwater infiltration, prevent direct contact with and ingestion of hexavalent chromium concentrations above acceptable levels.

For RAOs 1 and 2, the New Jersey Ground Water Quality Standards for Class II-A Ground Water apply. The RALs will be used to determine whether basements have been remediated to levels that are within the acceptable risk range for RAO 4.

SUMMARY OF REMEDIAL ALTERNATIVES

CERCLA requires that each selected site remedy be protective of human health and the environment, be cost-effective, comply with other statutory laws, and utilize permanent solutions and alternative treatment technologies and resource recovery alternatives to the maximum extent practicable. In addition, the statute includes a preference for the use of treatment as a principal element for the reduction of toxicity, mobility, or volume of the hazardous substances. Potentially applicable technologies were identified and screened with emphasis on the effectiveness of the remedial action. Those technologies that passed the initial screening were then assembled into five remedial alternatives. The timeframes below for construction do not include the time for designing the remedy or the time to procure necessary contracts. In addition they do not include timeframes to reach remediation goals. Because each of the action alternatives are expected to take longer than five years to achieve remediation goals, a site review will be conducted every five years (five-year reviews) until remediation goals are achieved.

Groundwater modeling performed during the RI/FS indicates that high chromium concentrations at the ECE property are a source to the overburden aquifer, and addressing the source area will accelerate restoration of the overburden aquifer can only be achieved by first addressing this source area. Alternatives 2A and 2B would be applied to the source area at the ECE property, including the contaminated groundwater in the overburden and shallow bedrock. Alternatives 3, 4, and 5 would include source treatment (either Alternative 2A or 2B) and address overburden groundwater contamination beyond the ECE property.

Common Elements for Alternatives 2A, 2B, 3, 4, and 5

To prevent exposure to hexavalent chromium in basements, inspections and mitigation actions will continue in the area impacted by contaminated groundwater. Actions including decontamination, the application of sealants, and/or the installation of drainage trenches and sumps would be executed as necessary.

The aquifer recovery timeframes for the remedial alternatives are long, on the order of decades. Until the remediation goals can be met, potential exposure to contaminated groundwater will be eliminated by the designation of an institutional control. The institutional control will be a New Jersey Ground Water Classification Exception Area that restricts the use of the contaminated aquifer. Groundwater monitoring would be performed in the source area and overburden plume to evaluate the hexavalent chromium concentrations and the effects of the remedy.

For the cost estimates of each alternative, EPA assumed 30 years of implementing the remedy. However, the time required to achieve groundwater restoration in RAO 1 would be greater than 30 years for all of the alternatives. Based on EPA's groundwater modeling, it is expected to take at least 80 years to restore the groundwater.

Alternative 1 - No Action

The No Action alternative was retained for comparison purposes as required by the NCP. Under this alternative, no action would be taken to remediate the contaminated groundwater at the site, and no institutional controls would be implemented.

Total Capital Cost: \$0 Operation and Maintenance: \$0 Total Present Net Worth: \$0 Estimated Construction Timeframe: 0 years

Alternative 2A – Source Area Soil Mixing, with Pump and Treat

Soil mixing would be applied to the contaminated zone of soils in the source area on the ECE property. A backhoe or auger would be used to distribute a chemical reagent to the soil. The reagent would be a reducing amendment that converts hexavalent chromium to the less toxic and less mobile form of trivalent chromium. Source mixing can be completed within one year.

Below the zone of soil mixing, contaminated groundwater would be extracted from the shallow bedrock at the source area. Extraction wells would be installed along the west side of the ECE property to maximize capture of the highest hexavalent chromium concentrations. The extracted groundwater would be treated by ion exchange or chemical reduction and then reinjected or discharged to surface water. Additional monitoring wells would be installed to assess concentration trends and reducing conditions across the source area. The optimal mixing locations and reagent selection would be developed during the remedial design.

This alternative is expected to reach the New Jersey Ground Water Quality Standard at the source area, however it would not address downgradient groundwater contamination. EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost: \$8.0 million Operation and Maintenance: \$5.9 million Total Present Net Worth: \$13.9 million Estimated Construction Timeframe: 2 years

Alternative 2B – Source Area In-Situ Reduction and Pump and Treat

In-situ injections would be performed in the contaminated groundwater in the source area. A grid of injection wells would be installed and a reducing amendment would be periodically injected into the wells to convert hexavalent chromium to trivalent chromium. In 2014, EPA carried out a pilot study using emulsified vegetable oil with magnesium sulfate injections in the source area groundwater. Hexavalent chromium concentrations significantly decreased in two monitoring wells. The results of this 2014 work would be applied to a design for this alternative.

Contaminated groundwater would be extracted from the shallow bedrock at the source area. Extraction wells would be installed along the west side of the ECE property to maximize capture of the highest hexavalent chromium concentrations. The extracted groundwater would be treated and then reinjected or discharged. New monitoring wells would be installed to assess concentration trends and reducing conditions across the source area. The optimal injection locations and reagent selection would be developed during the remedial design phase.

As in the case of Alternative 2A, this alternative is expected to reach cleanup levels within the source area beneath the ECE property; however, it would not address downgradient groundwater contamination. EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost: \$3.3 million *Operation and Maintenance:* \$6.9 million *Total Present Net Worth:* \$10.2 million *Estimated Construction Timeframe:* 2 years

Alternative 3 – Source Treatment and In-Situ Reduction

Under this alternative, basement actions and source treatment as described in Alternative 2A or 2B would be implemented.

Overburden plume treatment would be implemented with a series of in-situ reduction barriers arranged perpendicular to the flow of the groundwater plume. The reduction barriers would be established by injecting a reducing agent into an array of permanent injection wells. The wells would be installed in the most contaminated areas of the plume; however the location of the barriers would be limited to the City of Garfield streets or right-ofways. The optimal injection well layout and reagent selection would be developed during the remedial design phase. The timeframe for in-situ barrier injections is assumed to be 30 years. EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost: \$14.1 million Operation and Maintenance: \$23.2 million Total Present Net Worth: \$37.3 million Estimated Construction Timeframe: 2 years

Alternative 4 – Source Treatment and Pump and Treat

Under this alternative, source treatment as described in Alternative 2A or 2B would be implemented.

A pump and treat system would be installed to extract and treat the highest concentrations of hexavalent chromium within the overburden plume. Groundwater extraction wells located within the City of Garfield streets and right-of-ways would be designed to maximize removal of the hexavalent chromium mass from the overburden groundwater. The extracted water would be conveyed to a treatment plant to be treated by ion exchange or chemical reduction and precipitation. Following treatment, extracted groundwater would be discharged into the sanitary sewer or into the Passaic River. The optimal well field design and treatment process options would be developed during the remedial design phase. EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost: \$5.2 million Operation and Maintenance: \$16.9 million Total Present Net Worth: \$22.1 million Estimated Construction Timeframe: 2 years

Alternative 5 – Source Treatment and Combined Pump and Treat with In-Situ Reduction

Under this alternative, source treatment as described in Alternative 2A or 2B would be implemented.

The in-situ reduction barriers described in Alternative 3 and the pump and treatment system in Alternative 4 would both be implemented to combine hexavalent chromium mass removal with in-situ reduction. The combination of pumping and in-situ treatment would maximize flow of hexavalent chromium through the in-situ reduction barriers, and allow the pump and treatment system to be operated intermittently to optimize removal of hexavalent chromium. The well field design, treatment process options, and reagent selection would be developed during the remedial design phase. EPA would review this action at least every five years until the RAOs are achieved.

Total Capital Cost: \$15.9 million Operation and Maintenance: \$33.2 million Total Present Net Worth: \$49.1 million Estimated Construction Timeframe: 2 years

EVALUATION OF ALTERNATIVES

EPA uses nine criteria to assess remedial alternatives individually and compare them in order to select a remedy. The criteria are described in the box on the following page. This section of the Proposed Plan profiles the relative performance of each alternative against the nine criteria, noting how it compares to the other options under consideration. A detailed analysis of each of the alternatives is in the FS report. A summary of those analyses follows:

Overall Protection of Human Health and the Environment

Alternative 1 would not meet the RAOs and would not be protective of human health and the environment since no action would be taken. Contamination would remain for a long time into the future, while no mechanisms would be implemented to prevent exposure to contaminated groundwater. The toxicity, mobility, or volume (T/M/V) of contamination would not be reduced except through natural attenuation processes that would not be monitored.

Alternatives 2 through 5 would meet the RAOs 2, 3, and 4 for protection of human health through basement mitigation, monitoring, and institutional controls. A combination of Alternative 2A or 2B with Alternatives 3 through 5 would meet RAO 1 by achieving the remediation goal for the shallow aquifer.

Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)

Alternative 1 would not comply with the chemicalspecific ARAR for groundwater, which is the New Jersey Ground Water Quality Standard of 70 μ g/L chromium (Table 1). Location and action-specific ARARs do not apply for Alternative 1 since no remedial action would be conducted. A combination of a source area Alternative (2A or 2B) with an aquifer restoration alternative (Alternatives 3 through 5) would meet the groundwater standard. Alternatives 2 through 5 will also meet location and action-specific ARARs, such as New Jersey Pollution Discharge System/Discharge to Ground Water regulations for *in-situ* injections and discharge of treated groundwater.

Long-Term Effectiveness and Permanence

Alternative 1 would not be effective or permanent since there would be no measures to prevent exposure to contamination. Alternatives 2A, 2B, 3, 4, and 5 would provide adequate control of risk by implementing basement mitigation actions and institutional controls. The basement mitigation actions in the remaining alternatives would be effective in the long-term since exposure would be controlled, but these measures would not be permanent since there is the potential for recontamination until groundwater is restored. Institutional controls on groundwater use would also be effective until the RAOs are met.

EVALUATION CRITERIA FOR SUPERFUND REMEDIAL ALTERNATIVES

Overall Protectiveness of Human Health and the

Environment evaluates whether and how an alternative eliminates, reduces, or controls threats to public health and the environment through institutional controls, engineering controls, or treatment.

Compliance with ARARs evaluates whether the alternative meets federal and state environmental statutes, regulations, and other requirements that are legally applicable, or relevant and appropriate to the site, or whether a waiver is justified.

Long-term Effectiveness and Permanence considers the ability of an alternative to maintain protection of human health and the environment over time.

Reduction of Toxicity, Mobility, or Volume of Contaminants through Treatment evaluates an alternative's use of treatment to reduce the harmful effects of principal contaminants, their ability to move in the environment, and the amount of contamination present.

Short-term Effectiveness considers the length of time needed to implement an alternative and the risks the alternative poses to workers, the community, and the environment during implementation.

Implementability considers the technical and administrative feasibility of implementing the alternative, including factors such as the relative availability of goods and services.

Cost includes estimated capital and annual operations and maintenance costs, as well as present worth cost. Present worth cost is the total cost of an alternative over time in terms of today's dollar value. Cost estimates are expected to be accurate within a range of +50 to -30 percent.

State/Support Agency Acceptance considers whether the State agrees with the EPA's analyses and recommendations, as described in the RI/FS and Proposed Plan.

Community Acceptance considers whether the local community agrees with EPA's analyses and preferred alternative. Comments received on the Proposed Plan are an important indicator of community acceptance.

Long-Term Effectiveness and Permanence

Alternative 1 would not be effective or permanent since there would be no measures to prevent exposure to contamination. Alternatives 2A, 2B, 3, 4, and 5 would provide adequate control of risk by implementing basement mitigation actions and institutional controls. The basement mitigation actions in the remaining alternatives would be effective in the long-term since exposure would be controlled, but these measures would not be permanent since there is the potential for recontamination until groundwater is restored. Institutional controls on groundwater use would also be effective until the RAOs are met.

Alternatives 2A and 2B would be effective and permanently treat the highest concentrations of hexavalent chromium located in the source area in a relatively short period of time; however, they would not address the hexavalent chromium plume outside of the source area. Alternatives 3 and 5 would permanently reduce hexavalent chromium to trivalent chromium and so would be effective in the long-term. Alternatives 4 and 5 would achieve RAO 1 by extracting groundwater and permanently decreasing the mass of hexavalent chromium in groundwater.

Reduction in Toxicity, Mobility, or Volume (T/M/V) through Treatment

Alternative 1 would not reduce the contaminant T/M/V since no remedial action would be conducted. The total volume of contaminated groundwater might increase if the plume expands beyond its current area.

Alternatives 2A, 2B, 3, 4, and 5 would all be effective in reducing the toxicity and mobility of hexavalent chromium in the source area. Alternatives 3 and 5 would be the most effective in reducing the toxicity and mobility of hexavalent chromium. In-situ reduction of hexavalent chromium to trivalent chromium significantly decreases the toxicity and mobility of chromium. Alternatives 4 and 5 would be the most effective in reducing the volume of hexavalent chromium contamination because it would be extracted and removed from the overburden aquifer.

Short-Term Effectiveness

Short-term effectiveness includes an evaluation of the adverse effects a remedy may pose to the community, workers, and the environment during implementation. Alternative 1 would require no time to implement, and would cause no short-term impact to workers, the community or the environment. Continued infiltration into basements would cause potential hexavalent chromium exposures, and no active groundwater cleanup would reduce the groundwater plume mass. Alternatives 2A, 2B, 3, 4, and 5 could have shortterm impacts to workers and the community during the remedial actions due to construction and maintenance operations. However, EPA would work with the community to reduce these impacts. Alternatives 2A and 2B would have fewer impacts on the community, because the actions would be contained in the former EC facility area. The excavation and stockpiling of soil and mechanical mixing of overburden soils below the water table in Alternative 2A would pose more short-term impacts to workers and the community than Alternative 2B which utilizes injections. Alternatives 3, 4, and 5 would have significant impacts on the Garfield community due to construction associated with the installation of injection or pumping wells and other infrastructure in the streets, especially considering Garfield's population density. A combination of Alternatives 2A and 5 would have the most shortterm impacts on the community, whereas a combination of Alternative 2B and 4 would have the least.

Short-term effectiveness also considers the amount of time until the remedy effectively protects human health and the environment at the site. Alternatives 2A, 2B, 3, 4, and 5 would achieve RAOs 2, 3, and 4 quickly and therefore protect human health through the basement work and the institutional control.

The time to achieve RAO 1 is long for all of the active alternatives, with restoration times for the groundwater estimated in decades. Groundwater modeling was used to estimate the time needed to reach the remediation goal of 70 μ g/L for chromium (the New Jersey Groundwater Quality Standard) throughout the entire overburden aquifer. For Alternative 1, groundwater modeling indicated that the remediation goal would achieved after 270 vears. If either Alternative 2A or 2B alone were implemented, the groundwater model indicated that the restoration time would be 220 years. A combination of one of the source area alternatives (Alternative 2A or 2B) and Alternative 3 would achieve the RAO in 177 years, and the combination of a source area alternative with Alternative 4 would achieve the RAO in 174 years. Alternative 5 combined with a source area alternative would achieve the RAO in the least amount of time, estimated at 144 years.

Groundwater modeling has a limited capacity to accurately predict restoration timeframes at the RI/FS stage, and the timeframes discussed here and in the RI/FS Report are meant to evaluate the relative performance of the remedial alternatives. The timeframes of a source area alternative combined with Alternatives 3, 4 or 5 are similar whereas selection of a source area alternative alone would take substantially longer to achieve RAO 1.

Implementability

Alternative 1 would be the easiest technically and administratively to implement as no additional work would be performed at the site. Alternatives 2A, 2B, 3, 4, and 5 could all be implemented using locally available technologies and contractors.

Implementation of the source area alternatives would generally be feasible because all structures have been removed from the ECE property. However, the soil mixing component of Alternative 2A would require the removal of up to 14 feet of clean soil to access the contamination, which would make this alternative more difficult to implement compared to Alternative 2B, in-situ injection. In addition, the small size of the site would greatly inhibit the ability to mix the soil properly.

The setting of the site would be a challenge for implementing Alternatives 3, 4, and 5. The overburden plume is located in a densely populated area of Garfield, and there are extensive subsurface and above-ground utilities that may limit the location or number of potential injection or extraction wells. Alternatives 3 and 5 would require a greater number of wells than Alternative 4, but Alternatives 4 and 5 have greater implementability challenges due to the installation of piping needed to convey the extracted groundwater to a treatment system. The discharge of treated groundwater would require installation of additional subsurface piping which reduces implementability for Alternatives 4 and 5 compared to Alternative 3.

Costs

For the source area alternatives, Alternative 2A costs \$13.9 million and Alternative 2B costs \$10.2 million. The Alternative 2B cost is included in the

cost estimates for Alternatives 3, 4, and 5. The cost of Alternative 3 is \$37.3 million and the cost of Alternative 4 is \$22.1 million. Alternative 5 has a total cost of \$49.1 million.

State/Support Agency Acceptance

The State of New Jersey concurs with EPA's preferred alternative as presented in this Proposed Plan.

Community Acceptance

Community acceptance of the preferred alternative will be evaluated after the public comment period ends and will be described in the Record of Decision, the document in which EPA formally selects the remedy for the site.

PREFERRED ALTERNATIVE

The preferred alternative for cleanup of OU1 groundwater at the site is Alternative 2B with Alternative 3, Source Treatment and In-Situ Reduction.

In the source area, the overburden groundwater would be treated with in-situ injections and the shallow bedrock groundwater will be pumped and treated. The overburden plume outside of the source area will also be treated in-situ, using injection barriers installed downgradient of the source area. A reducing solution would be injected periodically into the wells to convert hexavalent chromium to the less toxic and less mobile form trivalent chromium.

The preferred alternative was selected over the other alternatives because it will be effective in addressing the groundwater contamination and is the most implementable at the site.

EPA expects that the Preferred Alternative will satisfy the statutory requirements of CERCLA §121(b): 1) be protective of human health and the environment; 2) comply with ARARs; 3) be costeffective; and 4) utilize permanent solutions and alternative treatment technologies or resource recovery technologies to the maximum extent practicable.

Consistent with EPA Region 2's Clean and Green

policy, EPA will evaluate the use of sustainable technologies and practices with respect to implementation of the selected remedy.

COMMUNITY PARTICIPATION

EPA and NJDEP provided information regarding the cleanup of the Garfield Groundwater Contamination Superfund Site to the public through meetings, the Administrative Record file for the Site, and announcements published in the local newspaper. EPA and NJDEP encourage the public to gain a more comprehensive understanding of the Site and the Superfund activities that have been conducted there.

The dates for the public comment period; the date, location, and time of the public meeting; and the locations of the Administrative Record files are provided on the front page of this Proposed Plan.

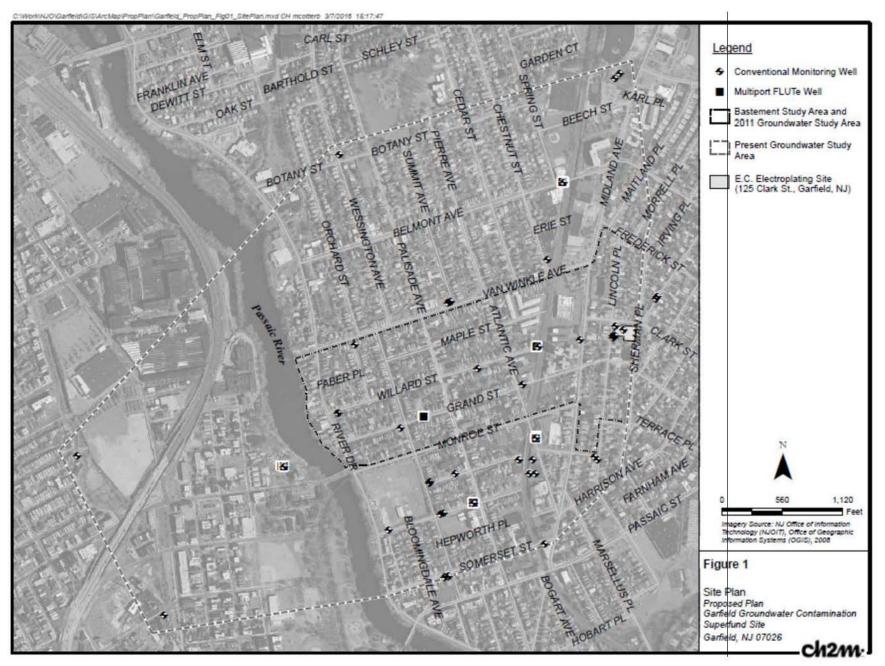
For additional information on EPA's Preferred Alternative for the Garfield Groundwater Superfund Site contact:

> Shane Nelson Remedial Project Manager (212) 637-3130

> > Pat Seppi Community Liaison (212) 637-3679

U.S. EPA 290 Broadway, 19th Floor New York, New York 10007-1866

On the Web at: www.epa.gov/superfund/garfield-groundwater


Table 1. Preliminary Remediation Goals for Groundwater, Garfield GroundwaterContamination Superfund Site OU1, Garfield, New Jersey.

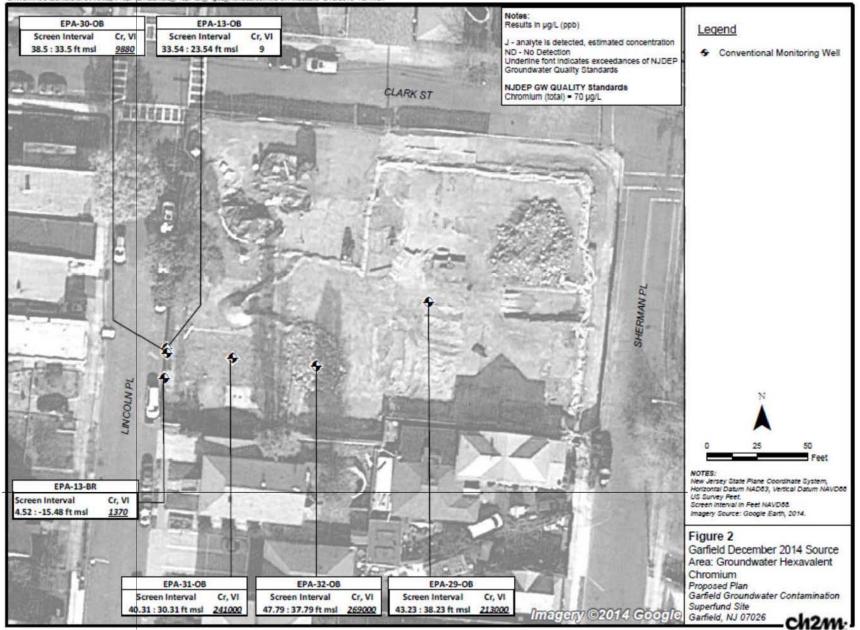
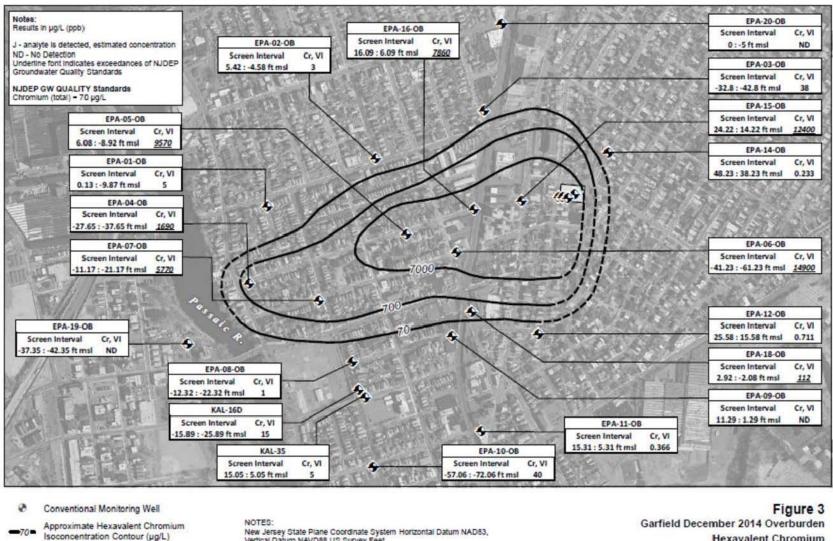

CAS Number	Chemical Name	Unit	NJ Groundwater Quality Standard Class IIA	EPA National Primary Drinking Water Standard	Preliminary Remediation Goal
7440-47-3	Chromium	µg/L	70	100	70

 Table 2. Preliminary Remediation Goals for Basement Surfaces, Garfield Groundwater


 Contamination Superfund Site OU1, Garfield, New Jersey.

Basement Use	Removal Action Level, Hexavalent Chromium
High	110 μg/m ² or 1.1 μg/wipe
Low	870 μg/m ² or 8.7 μg/wipe

C:WorkWUC/Gartleid/GIS/ArcMap/PropPlan/Gartleid_PropPlan_Fig02_HexSource.mxd CH mcotterb_3/10/2016_16:47:61

Vertical Datum NAVD88 US Survey Feet.

Imagery Source: National Aerial Imagery Program, 2010

Overburden elevation ranges from 48.23 to -72.1 ft NAVD88

MSL - Mean Sea Level

Screen Interval In Feet NAVD88

ND - Not Detected

Hexavalent Chromium Proposed Plan Garfield Groundwater Contamination Superfund Site Garfield, NJ 07026

Ch2m

C:WorkNJOIGarfieldIGISIArcMapiPropPlaniGarfield_PropPlan_Flg03_HexChromeLTR.mxd

(Dashed Where Inferred)

(125 Clark St., Garfield, NJ)

250 500 750 1,000 Feet

E.C. Electoplating Site

LIIIIIIIIIIIIIIIII

0

Attachment B Public Notice L-g THE RECORD

Garfield

PO# Proposed Plan-G **US EPA REGION 2**

Client Name:

4029192-01

Insertion Number

Ad Number:

The Recor

Advertiser:

Major sewer project just about complete

But Pequannock residents anxious about cost By CENE MYERS SPACE WRITER

"I have been apprached by Septistanton," and Hollow, who conserves that shell to control added by worki go back to the scars that spirits and shell be to the scars that spirits and shell be to set when a start of the start of the start of the decision is control program that The consect is looking into a time face to be arbitron and through Monte sent need/submet of address and spirits and the start of the scars the spirit through the set of the start of the scars the spirit through Monte sent need/submet of address and through the set of the start of the start of the scars the spirit through Monte sent need/submet of the scars the spirit through the set of the start of the start of the scars the spirit through the set of the start of the start of the scars the spirit through the start of the start of the start of the scars the start of the start of the start of the start of the scars the start of the start of the start of the start of the scars the start of the start of the start of the start of the scars the start of the start of the start of the start of the scars the start of the start of the start of the start of the scars the start of the scars the start of the st

CHE INTES of HENTES to the HENTES of HENTES to the total to the HENTES to the total to the HENTES to the total to the HENTES total to the total to the HENTES to the HENTES total to the HENTES to the HENTES total to the HENT

Make-A-Wish®

New Jersey

and Beat, Mai

connected to see to Hollberg. After the council data tax lovy based on the r

alicai dat e

aveid ape weighted hmin hav that 2 w

O.

A third man is sought after alleged robbery at gunpoint minut and order five women to placed the the Boor at gampoint, Chief said. Michael Folgno said in a news Police release

son's Firehou

other's Day

1, which

r

201.499.4124 | book.shelfgenie.com Canfield USEFA-Test; NY

Per mens information, gis a side JaiR 00will or argent paid

expert installation - lifeti

All three you with campacity with carjacking per stolen property and r nut by Right, Speniale

DONATE YOUR CAR Two held in Elmwood Park home invasion Wheels For Wishes

By ANDREW WYRICH ELMWOOD JARK - Bor-cost posts simulal two man, and my marching for a third ma-ped, who allogicity forced that way hato an spatiment on Dence Average and threatmeed those to-ide on Searchy morning autoo-tice and

Attachment C Public Meeting Transcripts

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY 1 REGION 2 2 3 GARFIELD GROUNDWATER CONTAMINATION SUPERFUND SITE PUBLIC MEETING 4 5 6 Garfield Senior Center 480 Mi dl and Avenue 7 Garfield, New Jersey 8 May 19, 2016 9 7:00 p.m. 10 PRESENT: 11 12 KATHRYN FLYNN, EPA, Hydrogeologist 13 PAT SEPPI, 14 EPA Community Involvement Coordinator 15 CHLOE METZ, EPA, Human Health Risk Assessor 16 SHANE NELSON, 17 EPA, Project Manager RI CHARD PUVOGEL, 18 EPA, Former Project Manager 19 ELIAS RODRIGUEZ, 20 EPA, Public Affairs 21 22 23 24 25

1	MR. DUCH: Good evening, Ladies
2	and gentlemen. Can everyone hear me?
3	My name is Tom Duch. I'm the
4	city manager. I speak to you tonight
5	on behalf of the mayor and council.
6	Mayor Raymond will joint us during the
7	eveni ng.
8	I want to thank, first of all,
9	publicly the United States EPA for
10	being here this evening. I will tell
11	you in the time that they have come
12	here to work with us, they have been
13	exceptional. Anything that we have
14	asked for, anything that they have
15	represented, anything that we have
16	discussed, they really have come
17	through.
18	By way of example, I had the
19	opportunity to go to Washington and
20	testify before a congressional
21	committee. Shortly after that, we did
22	receive funding which allowed the
23	demolition of the EC Electroplating
24	plant with all the appropriate
25	environmental protections and

1 control s.

2 After that, Mayor Delaney went 3 and testified before a Senate 4 committee. Shortly after that, 750 truckloads filled with drums of 5 contaminated soil were removed from 6 7 the old EC Electroplating site and 8 replaced with clean soil. 9 The problem that still remains 10 is that the chromium that wasn't 11 recovered, the hexavalent chromium, 12 remains in the ground and remains 13 hazardous if it were to come in 14 contact with people. The EPA will 15 talk tonight a little about what the 16 hazards might be and what the cleanup 17 might be. 18 But to all of you who are 19 present, I'd would say this, and I'd 20 like to thank -- the representative of 21 Congressman Pascrell's office is 22 here -- I'd like to thank those 23 representatives who have been to 24 Garfield and who have taken an 25 interest in this process. The late

1 Senator Lautenberg came to the site a 2 number of times, Congressman Pascrell 3 has been there many times, Senator 4 Menendez has also been there many 5 times, and now Senator Booker has 6 joined us. And Senator Booker, in 7 fact, made the arrangements for Mayor 8 Delaney to testify before the Senate. 9 I'd also like to thank Judith 10 Enck, who is the Regional 11 Administrator of EPA. She has been 12 exceptional in making sure that we in 13 Garfield have a great team. 14 What's been nice about the team 15 that's been assigned to us is that 16 they have taken a real personal 17 interest in us and in our people. 18 It's not just a job. I feel very 19 comfortable that they are -- they have 20 a real feel for our community and they 21 understand that we have some people 22 that are scared and we have people 23 that are looking for what can be done. 24 So, before I finish, I just want 25 to make a couple of introductions. We 4

1	have with us former mayor, Councilman
2	Frank Calandriello. Thank you for
3	being here.
4	(Appl ause)
5	MR. DUCH: We have at that same
6	table Mr. Tom Barckett, president of
7	our Board of Education.
	(Appl ause)
9	MR. DUCH: Next to him is his
10	wife, who is the Housing Authority
11	Commissioner, Marie Barckett.
12	(Appl ause)
13	MR. DUCH: And next to her is
14	Jack Mazzola, who is a recently
15	re-elected school board member.
16	(Appl ause)
17	MR. DUCH: Thanks for being
18	here.
19	What can we do?
20	The EPA can't really say this; I
21	can say it the members of the
22	governing body can say it. Tell your
23	friends, tell your neighbors, tell
24	anyone who is not here, tell anyone
25	who has an interest, write to your

1	congressman, write to our senators:
2	The EPA needs the funding.
3	Congress, unfortunately, there
4	are too many congressmen that are too
5	interested in their own personal
6	political careers. Congressman
7	Pascrell happens to be an exception.
8	He's a great representative, he's
9	available whenever we call him. But
10	it is really incumbent on us to lobby
11	our legislators. Write to them.
12	The EPA needs the money. If
13	they have the money you will find
14	out later during this evening if
15	they have the money, we can address
16	the cleanup that needs to be done.
17	So, with that, I'd like to
18	introduce Pat Seppi from the EPA.
19	(Appl ause)
20	MS. SEPPI: Thank you, Jim.
21	We're not used to hearing so many nice
22	thi ngs.
23	(Laughter)
24	MS. SEPPI: We certainly do
25	appreciate that.

6

1	That goes both ways. The City
2	of Garfield
3	Richard, we're just getting
4	started, so you didn't miss anything.
5	The City of Garfield has just
6	been more than cooperative with us
7	al so.
8	MR. DUCH: I'm sorry, Pat, two
9	more introductions.
10	MS. SEPPI: Okay.
11	MR. DUCH: Congressman Louis
12	Aloia, also a former mayor.
13	(Appl ause)
14	MR. DUCH: And Darlene Reveille
15	is our administrator over at our
16	health department and our public
17	health nurse.
18	MS. SEPPI: Again, thank you
19	very much for the kind introductions.
20	As I said, the City has been more than
21	cooperative with us. It makes a big
22	difference when we're trying to do the
23	job that we need to do.
24	Thank you, everybody, for coming
25	tonight. I want to have the people

1	that are here from EPA introduce
2	themselves and how they're related to
3	the project.
4	So, Shane, do you want to start?
5	MR. NELSON: I'm Shane Nelson.
6	I'm the new project manager for the
7	Garfield site.
8	MS. SEPPI: Thank you.
9	Ri ch?
10	MR. PUVOGEL: I'm Rich Puvogel.
11	I'm the previous project manager for
12	the site.
13	MS. SEPPI: Kathryn?
14	MS. FLYNN: I'm Kathryn Flynn.
15	I'm the hydrogeologist on the site.
16	MS. SEPPI: Chloe?
17	MS. METZ: I'm Chloe Metz. I'm
18	the human health risk assessor for the
19	site with EPA.
20	MS. SEPPI: And Elias?
21	MR. RODRIGUEZ: Elias Rodriguez,
22	public affairs.
23	MS. SEPPI: Again, the reason
24	we're here is to present to you our
25	Proposed Plan to clean up contaminated

1 groundwater at the site. We're kind 2 of in the middle of a 30-day public 3 comment period which will end on 4 June 8. 5 Now, you'll notice this is a 6 formal public meeting because this is 7 the Proposed Plan public meeting. So, 8 we have Linda Marino, a stenographer, 9 here tonight, and she will be taking 10 down all the questions, responses, all 11 the information. And then we will 12 finally have a transcript, which we 13 will post on our web page, along with 14 Shane's presentation from tonight. 15 So, I can give everybody the 16 information. 17 So, once the comment period is 18 over, then Shane's job is to write our 19 legally-binding document, which is 20 called a Record of Decision. And 21 he'll talk a little bit more about the 22 time frame for that. 23 And, also, all the comments that 24 are given tonight from the transcript 25 will be included as a part of that

Record of Decision in what's called a 1 2 Responsi veness Summary. So, you'll be 3 able to look at that and go over any 4 comments or questions that we receive 5 tonight and find the answers there. So, Shane does have a 6 7 It's not very long. I presentation. love it because it has a lot of 8 9 pictures and I think that makes things 10 qo a little bit faster. But I would 11 ask one thing, and I know we hate to 12 do this, but we would appreciate if 13 you could hold your questions or 14 comments until the end because what 15 happens is once we get off track it's 16 kind of hard to get back on. 17 But we'll certainly do our best 18 to get through the presentation and 19 then get to your questions, which is the most important part of this 20 21 evening for us, your questions and 22 We look at them and we concerns. 23 value them. 24 So, you have until the 8th of 25 June. Anybody who could not make the

1	meeting tonight, they're certainly
2	welcome to send written comments or
3	e-mail comments to Shane. And his
4	information will be up there on one of
5	the slides, so you can get that
6	information too.
7	And I think with that, I'm going
8	to turn it over to Shane.
9	MR. NELSON: I just got my first
10	pair of readers recently, so I'm still
11	getting used to needing them.
12	(Laughter)
13	MR. NELSON: As Pat said, I'm
14	Shane Nelson. I'm the project manager
15	for the Garfield site.
16	EPA released the Proposed Plan
17	for cleanup on May 9, and we're here
18	tonight to share a little of that
19	information with you.
20	I'm going to start the
21	presentation with an overview of the
22	Superfund process, go on to a little
23	history of the Garfield site, EPA's
24	activities at the site over the past
25	how many years, discuss the

alternatives and then the remedy EPA 1 2 is proposing for the site, and then 3 we'll finish up with questions. 4 The Superfund process begins with discovery of the site, somebody 5 finds a site. Either the state or EPA 6 7 steps in and does a site assessment or 8 investigation of the site. From 9 there, the site is placed on the 10 National Priority List. 11 This is important because this 12 is what releases the federal funding 13 for us to actually investigate and 14 study the site. 15 From there, we go to Remedial 16 Investigation, which includes the 17 human health and ecological risk 18 assessment and also helps us determine 19 what the site conditions are; what the 20 contaminants are, how it's getting on 21 the site, what the receptors are, 22 things like that. 23 And from there, we go to the 24 feasibility study where we evaluate 25 the alternatives for cleaning up the

1 si te. These are the nine criteria, 2 which I will share with you later in 3 the presentation. 4 From there, we go to proposing a 5 remedy. This is where we are now with the Garfield site. We release the 6 7 Proposed Plan and we solicit comments 8 from the community via a 30-day public 9 comment period. From there, like Pat said, we 10 11 write the Record of Decision. This is 12 important because this is what we use 13 to request the funding to clean up the 14 We have to have this in place. si te. From there, we go to remedy --15 16 I'm sorry, Record of Decision will be 17 finished before the end of September 18 of this year for the Garfield site. 19 And then we do design of the remedy, which we think will take about 20 21 a year and a half at the site. 22 And then we do action: 23 Construction and operation of the 24 remedy. 25 A little history of the Garfield

1	si te.
2	In 1983, 1984, 3,600 gallons of
3	chromium plating solution were
4	released from a tank at the site.
5	A groundwater recovery well was
6	installed in 1985. After a thousand
7	gallons of chromic acid was removed,
8	the well was turned off.
9	And this is actually a
10	photograph of EC Electroplating in
11	Garfield. This is the tank here we
12	believe ruptured.
13	Given the amount of chromium we
14	found in the groundwater here, we
15	believe it was much more than just
16	this tank that spilled. Probably with
17	the operation of the facility, quite a
18	bit was released.
19	1996, there was a spill of
20	250 gallons of processed wastewater at
21	the site.
22	In 2000, chromium was discovered
23	in the basements in Garfield.
24	In 2002, the NJ DEP asked for
25	EPA to help evaluate and address the

1	si te.
2	And in 2011, EPA placed the
3	Garfield site on the National Priority
4	List.
5	MS. SEPPI: NJ DEP is New Jersey
6	Department of Environmental
7	Protection. They're our state
8	partners.
9	MR. NELSON: What did EPA
10	discover at the site?
11	We discovered hexavalent
12	chromium in the soils at the EC
13	Electroplating property. We
14	discovered hexavalent chromium in the
15	groundwater plume downgradient at the
16	site. And we discovered hexavalent
17	chromium in 14 basements in Garfield.
18	2010 to 2014, EPA conducted a
19	removal action at the EC
20	El ectroplating property. This
21	included removal of the waste,
22	demolition of the buildings, removal
23	of contaminated concrete slabs and
24	basements, and excavation of the soil.
25	We backfilled the site and we capped

1	it in asphalt.
2	This is a photograph in 2011.
3	This is EPA staff actually removing
4	waste from the EC Electroplating
5	buildings. EPA removed 233 drums of
6	industrial waste and over
7	6,000 gallons of chromium-contaminated
8	wastewater from the site.
9	In 2012, EPA demolished the
10	buildings at the EC Electroplating
11	property.
12	In 2013 and '14, EPA removed the
13	contaminated basement slabs, basement
14	material, and began excavating the
15	soil at the site.
16	This is just a couple
17	photographs that show you the
18	excavation of the basement material
19	and the start of the excavation.
20	This is an overview of the
21	excavation plan for the site. Just to
22	orient you, this is Lincoln Place,
23	Clark is here, and Sherman is here.
24	We had a lot of data to work
25	with at the site. The white boxes

1 here are all data points where we did 2 sampling, so we had a lot of guidance 3 on where to dig and how deep to dig. 4 The colors here are just various 5 concentrations of contaminants and levels we dug to. The purple is the 6 7 deepest, down to the water table 8 around 14 feet. 9 EPA removed 5,700 tons of 10 contaminated soil from the site. 11 Anything over 20 parts per million 12 hexavalent chromium, which is a level 13 that's protective of human health, 14 were removed from the site. 15 This is another photograph to 16 show you how deep we dug at the site. 17 We dug pretty far. 18 And this is the site backfilled. 19 And this is the site with the 20 asphalt cap. If you drive by, this is 21 what you would see now behind the 22 fence. 23 EPA also conducted removal 24 action in 14 basements in Garfield. 25 That work included installation of

1	sump pumps to remove the water and
2	then application of epoxy paint and
3	sealant to keep water from coming in
4	the basement.
5	Out of a study area of 17 homes,
6	EPA inspected 400 homes and found
7	contamination in 14 500 homes out
8	of a study area of 700 and found
9	contamination in the 14.
10	We were reviewing a lot of
11	numbers this afternoon in some of the
12	reports.
13	2011 to 2014, we conducted a
14	Remedial Investigation at the site.
15	Through this, we identified the
16	cleanup area as the basements,
17	residential basements; the source
18	area, which is the EC Electroplating
19	property; and the overburden
20	groundwater.
21	And in 2016, EPA completed a
22	feasibility study of the site.
23	Through the Remedial
24	Investigation process, we created this
25	conceptual model of the plume in

1	Garfield. The red circle is the EC
2	Electroplating property and the Monroe
3	Street Bridge is here. The purple,
4	green, and blue lines are the
5	concentrations of the hexavalent
6	chromium in the groundwater. The
7	purple is the highest concentration.
8	And the plume is pretty much bound by
9	VanWinkle and Monroe Street.
10	This is the nine criteria for
11	remedy evaluation I mentioned earlier.
12	The first two, the threshold
13	criteria, every alternative we look at
14	has to meet these two.
15	The next five are balancing
16	criteria, what EPA uses to compare and
17	evaluate the alternatives and select
18	the remedy.
19	And then the last two, the
20	modifying criteria, are what we use to
21	tweak whatever remedy we selected.
22	The alternatives for the
23	Garfield site. There are five of
24	them; six if you Count 2A and B
25	separatel y.

1	The first one, the no action
2	alternative, is always included. It's
3	what would happen at the site if EPA
4	took no action, did no cleanup of the
5	si te.
6	2A and 2B address the
7	contamination only at the EC
8	Electroplating property.
9	And 3, 4, and 5 address the
10	contamination at the EC Electroplating
11	property as well as the downgradient
12	plume that goes down towards the
13	Passai c.
14	There are common elements of all
15	the alternative. The first one is a
16	New Jersey classification exception
17	area, which restricts use of the
18	groundwater at the site. You wouldn't
19	be able to install a residential well.
20	The shallow bedrock groundwater
21	treatment. The shallow bedrock at the
22	EC Electroplating property, treatment
23	of that.
24	And then all the basement
25	inspections and treatment will

1	continue as necessary.
2	What we're proposing as the
3	remedy is Alternative 3, source
4	treatment and in-situ reduction.
5	There are two parts to this:
6	The first is the cleanup of the EC
7	Electroplating property, the source of
8	the contamination; and the second is
9	the downgradient plume.
10	The cost of this alternative
11	will be \$37 million.
12	MR. MAZZOLA: That's what the
13	EPA is suggesting, Remedy No. 3?
14	MR. NELSON: This is the one
15	we're proposing. Out of the five/six,
16	this is the one we're proposing. In a
17	few slides, I'll get to why it was
18	sel ected.
19	For the remedy of the source,
20	this includes in-situ reduction
21	barriers, pump and treat, source
22	treatment. "In-situ" is that we're
23	treating the groundwater at the site
24	at the aquifer. So, it's treated at
25	the site.

1	There will be injection wells to
2	the base of the overburden, so through
3	the soil to the top of the shallow
4	bedrock.
5	Reducing amendment, possibly
6	emulsified vegetable oil, will be
7	injected every three years for ten
8	years and after that as needed to
9	maintain the condition.
10	And then there will be a
11	pump-and-treat system installed at EC
12	Electroplating to work sort of a flush
13	at the shallow bedrock at the site.
14	This is an example of how the
15	in-situ reduction barriers work.
16	Material is injected here, it creates
17	permeable barrier which the
18	chromium-contaminated water will pass
19	through, and it's converted to
20	trivalent chromium, which is a much
21	less toxic form of chromium.
22	This is an overview of the
23	remedy at the EC Electroplating
24	property. Again, you see here this is
25	Lincoln, Clark, Sherman here.

1 The pump-and-treat system here 2 in the yellow boxes, these will the 3 injection wells, these are the 4 extraction wells, and then wastewater 5 treatment system would be installed here where the green box is. 6 7 There's also the in-situ 8 injection points. There's 45 9 injection points here in the orange 10 hexagon. This will be where the 11 amendment would be injected to create 12 the barriers there. 13 The two systems kind of work 14 You're looking at an together. 15 overview and it's sort of like all the 16 maps are together, but the 17 pump-and-treat system is actually at a 18 lower level in the shallow bedrock and 19 in-situ system is above it, kind of 20 like a layer cake. They look like 21 they're working together, but they're 22 really in different layers, addressing 23 contaminants at different layers. 24 The remedy for the plume is the 25 in-situ reduction barriers, just like

1 at EC Electroplating property. Ιt 2 includes reducing amendment injected 3 every three years for ten years and 4 then as needed to maintain the 5 condition and monitoring the levels of chromium, hexavalent chromium. 6 7 And this is a conceptual model 8 of what the installation of 9 Alternative 3 would look like 10 downgradient of the site. The red 11 circle, the yellow, the EC 12 Electroplating property, again here's 13 Monroe, Monroe Street Bridge. The purple, green, and blue, again, are 14 15 the concentrations of the contaminants 16 down in the groundwater. 17 And the maroon lines here are 18 actually the injection lines that we 19 installed, the 290 injection points 20 installed to check the material. 21 The benefits of the proposed 22 remedy selected here: Overal I 23 protection of human health and 24 environment is one of the first 25 criteria, and in-situ reduction and

1	pump-and-treat helps reduce the
2	toxicity and mobility of the
3	hexavalent chromium.
4	We will face some challenges in
5	Garfield. The first one is the wells
6	are installed in right-of-ways. So,
7	that's a lot of utilities, trees,
8	power lines. That limits where we can
9	put the wells.
10	This is the drill rig they use
11	to install the wells. And I took this
12	the last time I was in Garfield; you
13	see the power line, you see the trees.
14	These are the difficulties we will
15	have installing them in Garfield.
16	We also have another challenge.
17	The groundwater treatment will take
18	time. It does take time. We're using
19	best available technology. We'll
20	continue to explore new technologies
21	that will help speed it up or make it
22	better. Of the five alternatives,
23	none of the five alternatives clean up
24	the site in less than 140 years. So,
25	it's a long-term project. We'll

continue to improve it as time goes on.

1

2

3 Just to summarize the treatment: 4 Use of reduction barriers; pump and 5 treat; the injection wells in the plume to inject the material there; 6 7 monitoring throughout the groundwater plume; basement inspections and 8 9 mitigation will continue through any 10 plan we do; and New Jersey 11 classification exception area to 12 control the use of the groundwater on 13 the site. Again, that's restricting 14 the installation of residential wells. Questions? 15 16 MS. SEPPI: A couple of things. 17 I think everybody probably knows, but 18 I just want you to be sure that this 19 does not effect their drinking water. 20 And we say that over and over again, 21 but a lot of people don't understand 22 there's a difference between drinking 23 water and groundwater. But we 24 certainly say that here it has no 25 effect on the drinking water

whatsoever.

1

2 I guess we're still kind of 3 amazed: We get calls every week from 4 people who are within that study area, 5 that original area of concern, who maybe after all this time they want to 6 7 sell their house, they didn't have it 8 sampled when we were doing it, and, 9 so, we're still going out there. 10 We have Don Graham, our removal 11 person, who will go out there and kind 12 of do a visual first. And if he 13 thinks there's a reason, then he will go ahead and sample. So, that's 14 15 something still ongoing too, and I 16 think that's very important for people 17 to know that. 18 MR. NELSON: And if you find 19 that your property has been sampled 20 but you don't have the paperwork from 21 that, please let us know, and we'll 22 see what we have and get copies of the 23 sampling letter back to you. 24 MS. SEPPI: We do have a 25 database. It should have all the

information in it as far as the sample 1 2 results and any letters that have gone 3 out to people. But you know, 4 sometimes they get lost on the way 5 too, so we're certainly always willing to look and see what we have and share 6 7 that with you. If somebody wants to sell their 8 9 house, we can't give that letter that 10 may have been sent to the homeowner to a prospective buyer. We would have to 11 12 have the homeowner's permission to do 13 that just to protect their privacy. 14 But we do that all the time too 15 and that seems to work. We've dealt 16 with a lot of realtors in Garfield who 17 are interested in properties that they 18 have up for sale and want more 19 information. So, anybody out there, 20 if they mention anything to you, just

21 tell them to give us a call and we'll22 certainly do that.

23 Mayor, you've come in. We'll24 say hello.

25 MAYOR RAYMOND: I have a

1 questi on.

2 MR. DUCH: Introductions. 3 MAYOR RAYMOND: Oh, I'm Mayor 4 Raymond; Deputy Mayor Glenn Mati; and 5 of course everybody knows our City Manager, Tom Duch --6 7 You introduced everybody. Okay. 8 I have a question that somebody 9 just told me last night, that when 10 this is pumped out of their basements, 11 that it's being pumped into our 12 sewers. 13 Is that correct? 14 MS. SEPPI: Rich, do you want 15 to --16 MR. PUVOGEL: Yes, that's 17 correct. 18 MAYOR RAYMOND: So, wouldn't we 19 be contaminating the river? 20 MR. PUVOGEL: No. It goes to 21 the sewage treatment plant. The 22 Passaic Valley Sewage Commission 23 receives that. It goes to their 24 treatment plant for treatment. 25 We've talked to them to have

1	this set up and this arrangement set
2	up that we can discharge to their
3	system.
4	MAYOR RAYMOND: Are we sure that
5	it's coming out
6	MR. PUVOGEL: Yes. We're
7	discharging to the sanitary lines, not
8	the storm lines. So, it goes to the
9	Passaic Valley Sewage Commission.
10	MS. SEPPI: Good question.
11	Yes?
12	MR. MATI: I know we removed the
13	building and we capped the ground
14	there. My question is this: Will any
15	more pollution go into the ground?
16	And the second part of the
17	question is: Waiting for funding,
18	will conditions from weather and
19	things like that continue to move the
20	contamination further down into other
21	people's homes?
22	MS. SEPPI: Good questions.
23	Before we go any further, I
24	would just ask for the purpose of our
25	stenographer if you could just give

1 your name. We want to make sure that 2 your comments are responded to in the 3 Responsi veness Summary. 4 MR. MATI: I'm Deputy Mayor Glenn Mati. 5 MS. SEPPI: Thank you. 6 7 Do you want to speak to that, 8 Ri ch? 9 MR. PUVOGEL: After the EC 10 Electroplating plant was dismantled 11 and demolished and taken away, we dug 12 down about 14 feet to the water table 13 and removed the contaminated soil 14 which was a source of groundwater 15 contami nati on. 16 After that work, we placed a 17 cap, asphalt cap, that was a fairly 18 impermeable structure, on top to 19 impede the movement of the groundwater 20 or water infiltrating into the ground 21 and moving it away. 22 The chromium in the groundwater 23 beneath the EC Electroplating site is 24 still mobile, so it still will move. 25 But by removing the source, we took a

big chunk or a big bite out of the 1 2 source, but there's still source 3 material in groundwater that we plan 4 to address. 5 From our groundwater sampling -we've done about three rounds of 6 7 groundwater sampling site-wide, from 8 the EC Electroplating site all the way 9 down to the Passaic River and on the 10 other side of the Passaic River, as a 11 study of the whole plume as itself, 12 and we don't believe that plume is 13 very mobile. 14 It's too early to tell for sure. 15 We only have three rounds of 16 groundwater monitoring under our 17 Groundwater is a long-term belts. 18 You want to study over a long thi ng. 19 period of time to really get a good 20 picture. 21 So, I think we have two more 22 rounds of samplings down the road at 23 least through the whole network of 24 monitoring wells we have out there 25 before we can say for sure if it's

1	staying. But taking out the source,
2	that's a big start right there.
3	It's still mobile and that's why
4	we want to address it within this type
5	of remedy that we're proposing
6	toni ght.
7	MR. MATI: Thank you.
8	MS. SEPPI: Yes, sir.
9	MR. RIGOGLIOSO: Rich
10	Ri gogl i oso.
11	You were saying the years, I
12	heard the years. I read in the paper
13	it takes about 30 years to clean up.
14	Then you said 140.
15	Is it 30 to put the wells in and
16	then 140 years to prevent everything
17	or
18	MR. NELSON: The wells are
19	installed much faster than that.
20	MR. RI GOGLI OSO: Okay.
21	MR. NELSON: The estimates that
22	we did for each alternative was done
23	on that sort of 30-year time scale.
24	There was a groundwater model that
25	sort of showed that that's the correct

1	way the groundwater model showed
2	it's a longer time frame for cleanup
3	of the site. So, the 30-year time
4	frame is sort of pretty standard in
5	remediation rhetoric.
6	In this particular case, we know
7	based on the modeling that it will
8	take longer than that.
9	MR. PUVOGEL: The 30-year time
10	period is based on how that's we
11	compare all remedies together. We use
12	a 30-year period to cut the cost to
13	make them all equal.
14	But as Shane said, the
15	installing injection systems, it will
16	take a few years to get that up and
17	running. And the wells once they're
18	installed will be permanent wells in
19	the rights-of-way, and the thinking is
20	we can go back an inject as we need to
21	and establish try to establish
22	barriers that are workable.
23	It will be some adjustment as we
24	go, but time periods to clean up are
25	over 30 years, well over 30 years.

1 It's well-embedded in the groundwater 2 and the overburden of the groundwater, 3 so we'll be tweaking as we go, trying new things, perhaps different 4 5 amendments and see which ones work 6 right. 7 Shane pointed out on the front end after we get our decision made to 8 9 perform this work, we'll be doing 10 design work. That will take a year 11 and a half. And that design work will 12 be looking at what type of injection 13 wells to install, how big of an area 14 they'll be able to inject to. So, 15 we'll be studying those issues. 16 We'll also be studying different 17 types of reactants that we'll be 18 putting in the groundwater. Vegetable

18putting in the groundwater.Vegetable19oil was used in the pilot study that20we did earlier.It seemed to have21very favorable results downgradient of22the EC Electroplating property, so23we're looking towards that and several24other amendments that we can inject25directly into the groundwater.

1	MAYOR RAYMOND: I have another
2	questi on.
3	Is there going to be enough
4	funding available to continue this
5	program, this cleanup?
6	I mean, 30 years down the road,
7	will Garfield be forgotten?
8	Is there a plan that goes into
9	effect that has to be followed
10	through?
11	What's the process?
12	MR. PUVOGEL: The process is
13	once we get through remedial design or
14	close to the finish of the remedial
15	design, that's when we request the
16	funding from Washington to apply to
17	the remedial action, get the
18	contractors out there.
19	So, when we apply for that, they
20	look at our requests. And it goes
21	through a priority panel, who looks at
22	all the other sites across the country
23	waiting for funding as well, and they
24	prioritize which site gets the funding
25	first.

1	And there's criteria used to
2	make that grade: The types of
3	contaminants, the threat to human
4	health, the mobility I just talked
5	about, the contamination, if it's
6	still mobile. There are very high
7	scores that this site would have, so
8	I'm optimistic that it will score very
9	hi ghl y.
10	MAYOR RAYMOND: There's really
11	no guarantee.
12	MR. PUVOGEL: There are no
13	guarantee.
14	MAYOR RAYMOND: Would it be
15	helpful for us to contact our
16	representatives that are in
17	Washington?
18	Should we start on them now and
19	just keep going?
20	MS. SEPPI: Well, you won't hear
21	any answer about that from us, but Tom
22	did say in the beginning in his
23	introduction that that's something you
24	that you all certainly have the
25	opportunity to do if you chose to do

1	that.
---	-------

2	MR. PUVOGEL: We have funding
3	that's ready to go to design, so that
4	will keep us busy for the next year
5	and a half as we run through design.
6	After that, that's when we don't have
7	money.
8	MS. GRI NDROD: Jacky Grindrod,
9	office of Congressman Bill Pascrell.
10	So, is that what it's called, a
11	priority panel?
12	What department is it?
13	What's the name of the person
14	who's in charge of deciding that right
15	now?
16	MR. PUVOGEL: I don't know the
17	particular name of the person who's in
18	charge of that panel, but it's called
19	EPA Priority Panel.
20	If you put that into internet,
21	you'll find a website on it. It will
22	describe the criteria of how sites are
23	funded and what criteria are used to
24	select sites for funding.
25	MS. SEPPI: The panel has people

1	all across different regions of EPA
2	who get together. And they switch in
3	and out too, so at different times
4	it's different people.
5	MAYOR RAYMOND: Who appoints
6	these people?
7	MS. SEPPI: I actually have no
8	idea who appoints them.
9	MAYOR RAYMOND: How do they get
10	there?
11	How did they get to be on that
12	panel?
13	MR. PUVOGEL: The Priority Panel
14	was established in 1995 to address
15	just this issue. When the Superfund
16	was running low on money, they
17	established this panel. There's
18	limited funding to go into remedial
19	actions.
20	I don't know who is on it. I
21	don't know if they're appointees. I
22	couldn't answer that question.
23	MS. GRINDROD: That's EPA people
24	though, they're not outsiders?
25	MR. PUVOGEL: Yes.

1	MS. SEPPI: One thing I wanted
2	to mention, Rich, because you had a
3	question to, why did we chose this
4	remedy.
5	MR. RI GOGLI OSO: Yeah.
6	MS. SEPPI: The actual Proposed
7	Plan goes into much, much more detail
8	about each remedy as far as the costs,
9	risks, and all that kind of
10	information. So, if you're interested
11	in looking at that, I would suggest
12	you take a look at the Proposed Plan.
13	I don't know how many pages it
14	is, Shane.
15	MR. NELSON: 17.
16	MS. SEPPI: So, it's not
17	MR. NELSON: Not horrible. A
18	good read.
19	MS. SEPPI: You might want to
20	compare the remedy that we chose
21	against other remedies that you find
22	there just to see.
23	MR. RIGOGLIOSO: Well, remedy
24	number one was the worst choice.
25	MS. SEPPI: Right.

1	MS. GRINDROD: I have one other
2	questi on.
3	The emulsified vegetable oil, is
4	that what breaks it down to the
5	trivalent chromium?
6	MR. PUVOGEL: Indirectly.
7	Emulsified vegetable oil, I look at it
8	this way: It's basically a food for
9	microbes that live underground.
10	MS. GRINDROD: Right.
11	But do they break it down to the
12	tri val ent?
13	MR. PUVOGEL: Yes, indirectly
14	they do.
15	What happens to the microphones
16	is they get fed by the emulsified
17	vegetable oil and that population
18	starts to grow. Life is good, they
19	have plenty of food, so they have baby
20	microbes, population explodes or grows
21	very quickly. Microbes then get to a
22	certain point where they consume all
23	the oxygen in the groundwater,
24	dissolved oxygen in groundwater. And
25	there's a certain group of microbes

that prefer low oxygen levels or 1 2 anaerobic conditions in the 3 groundwater, and those are the 4 microbes we really like to grow there. 5 Once they start growing -- I 6 won't get into the chemistry, but 7 chrome six has six electrons on it and 8 it wants to get reduced to chrome 9 three. It's a fairly unstable 10 compound. It doesn't want to be 11 chrome six. As the microbes break 12 down and ferment, hydrogen is 13 released, and then you have -- the 14 electrons want to get off of chrome 15 si x. 16 The conditions are just such 17 that chrome six breaks down and forms 18 chrome three. Chrome six is in the 19 solution in the groundwater between 20 the soil particles, and that breaks 21 down to chrome three. Chrome three 22 falls out of the groundwater. lt's 23 less toxic chromium. 24 And that's, in a sense, how it 25 works, in a very general sense. We

1 can get a lot more detailed in some of 2 our plans you'll find on our internet 3 site and in the Proposed Plan. 4 MS. GRINDROD: It will never 5 get -- it will always be at least at that level of toxicity, the chrome 6 7 three? 8 MR. PUVOGEL: Chrome three is 9 very less toxic. I can't say --10 nothing is nontoxic. It doesn't exit. 11 MR. NELSON: It contains some 12 trace nutrients, like iodine, that 13 your body needs little bit of. lt's 14 that less toxic that it's actually 15 something your body actually needs a 16 little of. 17 MR. PUVOGEL: You will find it 18 in some vitamins. 19 MR. RI GOGLI OSO: The funding, I 20 know it's a long process and it's 21 complicated and takes years, but, you 22 know, in the meantime our town, you 23 know, that side of town is still a 24 contaminated area over the years. You 25 don't -- you'll get a different type

1	of people moving into that area
2	because you wouldn't move into
3	contaminated, just like I wouldn't go
4	move up to Ringwood where it's
5	contami nated.
6	Will the funding always be in 30
7	years from now?
8	Because in 30 years, none of you
9	are going to be there; hopefully,
10	you'll still be alive, but
11	(Laughter)
12	MR. RIGOGLIOSO: Knock on wood.
13	MR. PUVOGEL: It's our
14	experience that once we initiate
15	funding and the project is starting
16	and operating, it's not turned off, is
17	our usually experience.
18	MR. RIGOGLIOSO: So, the money
19	will always be there, that
20	\$36 million.
21	MR. PUVOGEL: I can't say that
22	in the next 30 years, but it's our
23	experience on other sites we've
24	cleaned up.
25	MR. CALANDRIELLO: Frank

1	Calandriello, Councilman, City of
2	Garfi el d.
3	In my opinion, there's two
4	different types of treatment: You're
5	treating the source, and now we're
6	treating the basements of the victims
7	that have been contaminated.
8	The money that's available now
9	for the basements, is there adequate
10	funding to continue this process?
11	MR. PUVOGEL: Absolutely.
12	That's the priority. That gets
13	funding first. That's not going to go
14	anywhere.
15	MR. CALANDRIELLO: Regardless of
16	getting any major funding, that will
17	continually you'll be there for the
18	residents of this town whose basements
19	have been contaminated?
20	MR. NELSON: Absolutely.
21	MS. SEPPI: Yes.
22	MR. PUVOGEL: Yes.
23	MR. CALANDRIELLO: That's on the
24	short term. And that's on the people
25	that have children and are worried

1	about their basements. And, as you
2	say, there's more that are being
3	uncovered as far as the testing aspect
4	because some people were never tested.
5	MS. SEPPI: And some people are
6	renting and people are selling so,
7	yes, there's always a pretty big
8	turnover in that area.
9	MR. CALANDRIELLO: I just want
10	to compliment, too, the EPA.
11	Obviously, years ago the State
12	didn't handle this the proper way.
13	And the City, going way back, thought
14	they were handling it. It became our
15	nightmare right around the year 2000
16	or in that neighborhood.
17	And I've got to say, right from
18	back then to now, EPA, you have really
19	done everything you said you were
20	going to do.
21	I thank our legislators for
22	trying to get the funding and I think
23	I they're going to be successful,
24	especially Mr. Pascrell. He's been
25	really leading the charge.

1	This is a real disaster for the
2	City. And what's even worse is that
3	the perception that everybody has,
4	it's really not the truth.
5	MS. SEPPI: That's right.
6	MR. CALANDRIELLO: And there are
7	neighborhoods that have been
8	devastated by value, there's
9	neighborhoods that have been where
10	their properties are perfectly clean.
11	And I think that's the message that
12	has to get out to the public because
13	it's, you know, tragic.
14	And we also have our and I
15	even ask Tom of the most of the
16	time our Fire Company No. 3 that
17	was contaminated, you know, we have a
18	situation where that has to
19	something has to be done over there.
20	We're looking for the EPA to in some
21	way, shape, or form help us, you know,
22	because it's a building that is
23	boarded up and it's in real dire
24	straits and there's chromium
25	contamination under the ground.

1	So, I think we could really use
2	some help on that.
3	MS. SEPPI: I think we've been
4	talking about that too.
5	MR. CALANDRIELLO: But the
6	building has been there a number of
7	years. It's a nuisance to the
8	neighborhood. The police have to
9	constantly watch it that children
10	don't break in.
11	And if they do break in, are we
12	negligent by not having that building
13	razed or completely you know, the
14	ground seal ed?
15	And I'm asking if you could help
16	us in some way get it done because
17	it's really a hazard.
18	MS. SEPPI: Thank you, Frank.
19	Yes, Mayor?
20	MAYOR RAYMOND: Is there any
21	help for the residents that are in
22	that area that are having problems?
23	I know of one. She can't sell
24	her house. Is there anything
25	available to help these people?

1	Their property values went way
2	down and now they're kind of stuck
3	with this house, you know, that had a
4	contaminated basement.
5	What do they do?
6	MS. SEPPI: One of the things
7	we've been doing is trying to work
8	with the realtors to educate them,
9	give them a better understanding of
10	what the situation is, because we just
11	don't want them going and saying: I
12	don't want to put this house on the
13	market because it's contaminated.
14	That's absolutely not true, as
15	Shane and Rich said. There are 14
16	homes that we've remediated, and
17	that's doing I guess almost 500
18	samples.
19	MR. NELSON: 500 inspections, 14
20	were found to be
21	MS. SEPPI: But anything
22	monetary, all we can do it talk to a
23	prospective buyer, which we do all the
24	time, to a seller, and try to educate
25	them as to what's going on and,

hopefully, they can make an informed
 decision after that.

3 MR. PUVOGEL: We provide each 4 property owner that we do the sampling 5 or inspection, we provide them a letter from EPA that the property has 6 7 been inspected. Either it's had a 8 problem and has been addressed and 9 cleaned up and will be monitored over 10 the long term or the sampling showed 11 that there is no problem and this is your documentation. So, that helps a 12 13 lot of people. 14 And as Pat mentioned before, 15 some people either lose letters or 16 We're right there to help whatever. 17 them out and talk to the realtors.

18 That's how we can we can help.
19 MR. MATI: Can I ask something?
20 Do you guys have any idea how
21 much of a fund there is in Washington
22 for the whole country for the
23 Superfund cleanups?
24 MR. PUVOGEL: Right now, the

25 Superfund is fairly well depleted. I

don't know the exact dollar amount. 1 2 It gets recharged from settlements 3 from polluters that we have. 4 The Superfund tax is no longer It's lapsed. 5 being collected. MR. NELSON: The settlements and 6 7 general appropriations every year. 8 Congress puts money in escrow. 9 MR. MATI: In Garfield, we're 10 looking at right now \$37 million. 11 Just in New Jersey alone, as I read in 12 the paper regularly, there's so many 13 sites in New Jersey alone that are 14 probably all competing for the same 15 money then. 16 Well, some of them MS. SEPPI: 17 are sites where we have responsible 18 parties already who are responsible 19 for paying for the cleanup. If it's a 20 Fund-led site like this is, yes, those 21 sites are kind of in a competition to 22 get that money. 23 One other thing is MR. PUVOGEL: 24 we don't stop looking for polluters 25 through the life of the project.

1	We'll be looking at that again as we
2	move through design and starting our
3	remedial action we'll be looking at a
4	responsible party search again. We
5	don't stop that. Whenever that turns
6	up
7	MR. MATI: I'm just saying the
8	\$37 million is not something that's
9	going to be easily obtained just for
10	Garfield alone.
11	MR. PUVOGEL: Right.
12	MR. MATI: In the meantime, we
13	just have to live with the way it is
14	until we can come across some money.
15	Once they start pumping money
16	into the City, it will continue,
17	you're saying?
18	MR. PUVOGEL: Yes, in general,
19	my experience has been that once
20	funding starts for remedial action,
21	you don't want to shut it off. It
22	usually keeps going.
23	MS. SEPPI: And we do have
24	money, as Rich said, for design, so
25	we're okay for that.

1	MR. ALOIA: Louis Aloia. I have
2	just one question with regard to the
3	14 homes.
4	They are sellable houses at this
5	poi nt?
6	Is that the point we're trying
7	to convey to the public, that they've
8	been remediated properly and addressed
9	with whatever their circumstance may
10	have been with regard to cracked
11	basements or unfinished basements?
12	So, those homes are now
13	sel l abl e?
14	Full disclosure, of course, but,
15	in your opinion, that's what we've
16	accomplished with these 14 homes?
17	MR. PUVOGEL: What we've
18	accomplished is we've cleaned them up.
19	Whether they're sellable is a relevant
20	thing to a prospective purchaser
21	MR. ALOIA: Right.
22	The thing is you've made an
23	unsafe circumstance now a safe,
24	livable home.
25	MR. PUVOGEL: Correct.

1	MS. SEPPI: There's no
2	environmental reason that these homes
3	cannot be sold.
4	MR. ALOLA: That was the point
5	that I was trying to clarify. So
6	that's the 14.
7	With regard to the original
8	site, will that ever be usable for a
9	municipal purpose in the future?
10	Thirty years is a long time to
11	be looking at the brown fence.
12	MR. PUVOGEL: For the EC
13	Electroplating property itself with
14	the injections that Shane has
15	introduced here, the injection program
16	there is estimated to take six years
17	to reach cleanup goals on that
18	property.
19	That's just a rough estimate, we
20	have to see how this stuff works, but
21	since we're attacking the source very
22	aggressively, we just want to get that
23	major bulk of contamination out as
24	quickly as possible. We believe that
25	the system that we've proposed here

1	with the injection wells, the pumping
2	system on one end, and the
3	re-injection wells on the other side,
4	that's roughly about six years.
5	MR. ALOLA: About six years out.
6	Thank you.
7	MR. BARCKETT: Tom Barckett,
8	President, Board of Education. I have
9	two questions.
10	We're three houses away. I
11	don't have any contamination in my
12	basement. Thank God for that, but I
13	still can't sell my house even if I
14	wanted to. I don't want to leave
15	Garfield. If I wanted to, I'd have a
16	hard time because it's all around me.
17	We're having road renovation
18	being done right now extensively.
19	Will that cause possibly a
20	problem with houses that are not
21	contaminated maybe getting
22	contami nated.
23	MR. PUVOGEL: From road
24	renovations? No.
25	MR. BARCKETT: They're digging

1	up the streets, putting in new lines.
2	MR. PUVOGEL: The water table is
3	about down 12 feet.
4	MR. BARCKETT: So, the area that
5	Councilman Aloia was talking, about
6	five houses away from there is a
7	school, School No. 7.
8	Can't this area be used for
9	parking?
10	Because the parking in that area
11	is horrendous. There's not enough
12	parking for people that live here.
13	Can we ever use that?
14	MR. PUVOGEL: Eventually you
15	will be able to use it, but for the
16	short term, while these wells are in
17	place, it would not be usable for
18	parki ng.
19	Once we get done using the
20	system and we can abandon the wells
21	and seal them up and move on
22	MR. BARCKETT: That's the six
23	years you were talking about,
24	possi bl y?
25	MS. SEPPI: Yes, ma'am.

1	MS. BOYER: Years ago, our
2	neighbor was planting vegetables every
3	year, about 75 feet, a good length.
4	And over the years this was after
5	the chromium spilled his teenage
6	daughter died of leukemia and no one
7	made any connection whatsoever.
8	But the thought comes to your
9	mind, is that possible?
10	Because now there are immigrants
11	coming in from Poland and on the same
12	block, up the street, I saw them
13	planting vegetables again. And I was
14	wondering
15	MS. METZ: Hexavalent chromium
16	just because of what Rich talked
17	about, it being so unstable, doesn't
18	actually go into plants very well.
19	So, we've had that question over
20	the years as we've worked in Garfield,
21	and that's really not a concern. The
22	groundwater is fairly deep. The plant
23	roots wouldn't necessarily be getting
24	down there. And on top of that, the
25	hexa chrome is not really well taken

1	up into the plants.
2	MR. PUVOGEL: Plus, we have done
3	some soil sampling and it didn't show
4	up in the soils, the surface soils,
5	where people garden.
6	MS. SEPPI: Mayor?
7	MAYOR RAYMOND: How would a
8	person become contaminated?
9	ls it airborne?
10	lfit doesn't go into plants,
11	it's not in the drinking water, how
12	could our population be contaminated?
13	MS. METZ: It's really just the
14	basements where we found it. The
15	groundwater that has the contamination
16	in it coming through the walls of the
17	basement and depositing this
18	hexavalent chromium on the walls.
19	That's how people come in contact with
20	it, when they go to their basement to
21	clean or move things around
22	MAYOR RAYMOND: You mean through
23	ski n?
24	MS. METZ: Through skin that is
25	accidently you know, not washing

1	your hands, getting it into your
2	mouth, that kind of thing.
3	So, we did air testing in a lot
4	of the basements that were heavily
5	contaminated. We didn't find it
6	airborne. And that makes sense
7	because basements are kind of wet and,
8	so, it's really not getting up into
9	the air.
10	It's really mostly from the
11	derma contact and getting that into
12	your mouth. It's very is limited
13	MAYOR RAYMOND: I have a
14	question for our City health nurse.
15	Darlene, I'm happy to see you
16	here.
17	Have we had any cancer clusters
18	reported in that area?
19	MS. REVEILLE: Well, you know,
20	New Jersey as a whole has a high
21	incidence of cancer. But the cancer
22	that's reported in Garfield is
23	different types of cancer. None of it
24	can be attributed to one specific
25	carcinogen.

What we did with NYU when we did 1 2 the toenail clippings study, the good 3 news with that is -- we had over 50 4 people that volunteered to participate 5 in the study. And of those sampled there were no samples that were 6 7 elevated to a point that -- there were some very minor elevations, but not to 8 9 the point where it caused any type of 10 health concern or harm. 11 So, there was one sample that 12 was taken, and you always have like --13 it was an outlier. And that person 14 actually worked in an industry that 15 uses -- that is exposed to hexavalent 16 chromium. It's a type of a metal 17 plating company. So, he did have an 18 elevated and still after further 19 testing had no health pathology 20 associated with it. 21 So, that was the good thing,

22

23

24

25

MR. RIGOGLIOSO: Is it safe to say that if you go and build a house

that -- of all the people that came

out of the toenail clipping study.

1	in that area or knock a house down, it
2	should be built on slab, no more
3	underground basements?
4	MR. PUVOGEL: You can build a
5	basement.
6	The groundwater infiltration
7	into basements is a function of two
8	things: The depth of the water table
9	and, also, how the basement is
10	constructed. Some basements are a
11	little shallower than others, others
12	are better built, and newer basements
13	seem to be a bit tighter, so they seem
14	to be better waterproof.
15	So, it's no problem with putting
16	a basement in if you're doing new
17	construction as long as you seal it.
18	MS. SEPPI: Sir, in the back.
19	MR. MAZZOLA: Jack Mazzola, 250
20	Midland Avenue.
21	You said that it's 12 feet
22	groundwater on the site. That's what
23	you said. Now, I have a wall by me
24	that's about 10 feet and I have a
25	basement which is about another

1	5 feet, and I don't have groundwater
2	coming up.
3	So, how do you have it up there
4	and it's not by me?
5	MR. PUVOGEL: The 12 feet depth
6	of the groundwater, it varies where
7	you are in the whole plume area.
8	MR. MAZZOLA: I'm about 150 feet
9	away from the site.
10	So, if I'm 150 feet away and
11	you're saying that it's 12 feet, the
12	groundwater, that you already dug it
13	up and seen it, how don't I have it?
14	And then I have another property
15	across the street that goes down
16	another 7 feet, so now we're talking
17	17 feet all together, and I have no
18	water there.
19	How is that?
20	MR. PUVOGEL: A property across
21	the street on Lincoln Place has a
22	basement about 8 feet deep and they
23	have groundwater infiltration in the
24	basement. It's very variable where
25	you are. We can't say 12 feet across

1	the whole plume area. It's going to
2	vary as you move down the hill towards
3	the Passaic River. Groundwater just
4	works that way.
5	It depends on how much fill has
6	been placed on these properties before
7	built. Some properties were filled
8	more than others, some are lower to
9	the water table than others. There's
10	a lot of variability that comes with
11	each property.
12	So, the 12 feet number I put out
13	there is a general average number. It
14	does not represent the entire site.
15	MR. MAZZOLA: How deep are the
16	wells?
17	MR. PUVOGEL: The wells go down
18	to over 400 feet.
19	MR. MAZZOLA: 400 feet?
20	MR. PUVOGEL: For our monitoring
21	wells. The injections wells on the EC
22	Electroplating property would be
23	the ones in the shallow on the
24	property would be about 20 feet deep
25	to inject material.

1	MR. MAZZOLA: So, 20 feet is
2	about so, all the basements, like,
3	down Grand Street would be 7 feet
4	below mine, so you're talking that
5	it's 10, 17, like 24.
6	MR. PUVOGEL: You're talking
7	7 feet lower than yours in elevation
8	as far as the ground slopes?
9	MR. MAZZOLA: We're talking
10	about grounds. I know the height of
11	grounds. I can tell you that.
12	MR. PUVOGEL: Okay.
13	MR. MAZZOLA: The grounds are
14	definitely about 24 feet once they
15	start changing.
16	We're talking about basement
17	apartments that have basements 7 feet
18	down on average.
19	MR. PUVOGEL: Right.
20	MR. MAZZOLA: So, you're going
21	to have the wells 20 feet deep.
22	MR. PUVOGEL: Right.
23	MR. MAZZOLA: And we got 24 feet
24	on this side.
25	MR. PUVOGEL: The well depth is

That's the bottom of the 1 20 feet. 2 well. The wells are screened, they're 3 slotted, come up to a certain -- to 4 the top of the water table. 5 So, when the injection goes in the well, it just doesn't come out to 6 7 20 feet deep, it comes out the length of that screen. Wherever we find the 8 9 water table in that one position, 10 we'll be drilling a well down, looking 11 at the water table depth, and putting 12 a screen or a slotted screen in the 13 well, and constructing that well so 14 the injectant goes through the entire 15 length of that water column in the 16 overburden before it hits bedrock. 17 That's going to vary where we 18 are, like across the street and on the 19 property EC Electroplating itself. 20 MR. MAZZOLA: Who determined the 20 feet? 21 22 MR. PUVOGEL: Design engineers. 23 And that's conceptual. It's 24 going to be different wherever you are 25 on the area that we inject. It's not

1	a rock solid 20 feet across the whole
2	plume area. It's going to have to
3	vary just by design.
4	MR. MAZZOLA: The bottom line is
5	it's on a hill, it's on an incline,
6	and it's a 24-foot drop. That's the
7	bottom line. So, if you've got a
8	20-foot well, I don't think it's going
9	go to the 24. I could be wrong.
10	MS. FLYNN: I'm the
11	hydrogeologist of the cite. I worked
12	on the Remedial Investigation with our
13	team, and that's where we wanted to
14	studdie the groundwater throughout
15	Garfield at every depth.
16	So, at the EC Electroplating
17	site, the tanks were pretty shallow
18	and the contamination there is the
19	most shallow. And then as the
20	groundwater flows very slowly away
21	from the site, it descends the
22	contamination, so we looked for it
23	everywhere.
24	So, we have a very good idea
25	from our 55 wells in Garfield of the

1 depth of contamination and the 2 concentration of chromium that we can 3 find there. So, that's why when we go 4 into design, we'll continue the 5 process of adding on to that information, but we are confident that 6 7 we can find the contamination and 8 treat those areas aggressively to 9 reduce the chromium concentrations. 10 I understand your concern 11 because there is contamination at 12 different depths throughout the site. 13 But we have that very well 14 characterized in our investigation. 15 We have wells at 400 feet that aren't 16 contaminated, we have wells at 20 feet 17 that are contaminated, but we have the 18 whole plume delineated very well. 19 MR. MAZZOLA: The tank that 20 leaked was not an in-ground, first 21 thing. It was aboveground. 22 MS. FLYNN: Right. 23 MR. MAZZOLA: That's the first 24 thing. It was aboveground, that's the 25 first thing.

1	MS. FLYNN: We took samples
2	below the property. We found very
3	high concentrations of chromium, so
4	that's what we need to go after.
5	MR. PUVOGEL: And that tank that
6	leaked was semi-aboveground and built
7	into the ground about seven feet deep.
8	MR. MAZZOLA: I know exactly the
9	thing. We seen it every day. As you
10	pass by, you see it.
11	MS. SEPPI: Not anymore. Now
12	it's just a paved parking lot since we
13	demolished it.
14	Do we have any more questions?
15	Good questions. And if
16	everybody would please sign in if you
17	haven't, I would appreciate it. We're
18	trying to get together a better
19	mailing list than we have already.
20	MR. RIGOGLIOSO: I have one more
21	question.
22	What Councilman Calandriello was
23	saying before, when you were talking
24	about the realtors and trying to
25	educate them about how safe the area

1 is, but the perception is it's still a 2 contaminated area. And when you're a 3 homebuyer or looking for a home, you 4 know, as a realtor, that may be the 5 last place you bring them unless there's where the money is. 6 7 And Councilman Calandriello said 8 maybe the EPA could put out something 9 saying that it's not contaminated --10 well, you can't lie, but it's a safe 11 area, it's a place that you could put 12 a family out there, so maybe the home 13 values do go up a little. 14 Because as far as everyone is 15 concerned in the neighboring towns 16 it's a contaminated area. And people 17 are moving out, you're getting Section 18 8s there, the renters there, or 19 whatever it is, but you're not getting homeowners there or they're letting 20 21 the house go because they can't get 22 their value. 23 So, is there some kind of 24 bulletin you could put out there, 25 something you put out in the paper?

1	You know, because that's all we
2	hear, contamination, contamination, in
3	a populated area.
4	MS. SEPPI: It's not just here.
5	This is comment at all the sites we
6	have. Once that stigma gets attached
7	to them, it's really hard to change
8	that.
9	We can talk and see what we can
10	do. I don't know if one article in
11	the newspaper would help. Maybe a
12	fact sheet that we could put together.
13	Do you have a Board of Realtors
14	here?
15	We've met with Passaic County
16	Board of Realtors. You might have the
17	same thing here. We can meet with
18	them as a group to talk about this a
19	little more and help educate them.
20	Any suggestions you have, we're
21	certainly willing to listen.
22	MR. CALANDRIELLO: Can I say one
23	thing? I think Mr. Aloia kind of
24	brought it out, I just want to say it
25	again: The sites that you've treated

1	are not hazardous to someone's health
2	at this time.
3	MS. SEPPI: No.
4	MR. CALANDRIELLO: And I think
5	that's something that needs to be
6	highlighted because that alone helps
7	the perception of what's really being
8	done here. Really, the work that you
9	do, you go in and you clean up the
10	site, you wipe the walls, you seal the
11	basements. I've seen the work and
12	it's really good work and it makes
13	something that maybe was hazardous
14	into something that's now safe.
15	And that's why the continuation
16	of the money to be there to maintain
17	it, to change sump pumps when the
18	pumps go, and if there's cracks that
19	develop and water starts coming back,
20	even if it probably will never, it's
21	reassuring that EPA will be there, and
22	that's important.
23	MAYOR RAYMOND: I have a
24	question to follow up that one.
25	I know the EPA is part of the

1 federal budget. What happens if they 2 decide to start cutting the federal 3 budget and they cut your funds to 4 where you can't really treat all these Superfund sites? 5 I mean, that's a concern. We 6 7 don't have a guarantee that money is 8 always going to be there. 9 MR. NELSON: I'm a big budget 10 nerd. Our budgets have been cut over 11 the years and I think EPA made a focus 12 of making sure the money is there for 13 Superfund sites even with budget cuts 14 that have come through in the past ten 15 or so years. 16 MS. SEPPI: And we've become 17 even more aggressive in looking for 18 responsible parties so they can help 19 defray costs that would be our costs. We know there's 20 MAYOR RAYMOND: 21 one homeowner on Monroe Street, she 22 just abandoned her house. She didn't 23 even try and sell it. It was like a 24 hopeless situation. 25 So, I understand, Frank, what

1	you said, and it's been cleaned up and
2	it's been remediated, but I don't
3	know, I think I, myself, would be
4	leary if I knew it was in the
5	Superfund site.
6	You know, could it happen again?
7	Could this water table come up again
8	with this contaminant in it?
9	But there really are no
10	guarantees. I think you should be
11	complimented for the work you're
12	doing. It seems to be it's
13	thorough.
14	But is there a guarantee?
15	ls this really where you would
16	want to buy a house?
17	I feel sorry for the homeowners
18	in that areas because, one, I know one
19	that's on the Garfield Police
20	Department just sold his house down
21	there, he took a big loss. But just
22	to get out of the area, he sold the
23	house. He had a buyer and he figured
24	might as well grab it, better than
25	nothi ng.

1	So, I'm concerned about those
2	people, their property values, and
3	what they're going to do.
4	MS. BISHOP: Maryann Bishop.
5	I'm here for one reason: I have a 13
6	year old and a 17 year old.
7	Down the road, can they end up
8	getting cancer?
9	MS. SEPPI: Do you live within
10	the area that we're looking at?
11	MS. BI SHOP: No.
12	MS. METZ: There'd really be no
13	way for them to come in contact with
14	this material.
15	It's in the groundwater and the
16	only place where it's becoming
17	available for exposure are in those
18	basements that are getting wet. We've
19	thoroughly surveyed the area, we've
20	remediated the 14 that had problems
21	and we're going to continue with that.
22	As conditions change, people
23	should call us if their basement
24	starts getting wet when it didn't
25	before or if they were remediated and

1	the system isn't working the way it's
2	supposed to. We have our removal
3	folks in place, so they can come out
4	on very quick notice and make sure
5	things are okay.
6	So, you know, we have a system
7	in place to address those basement
8	exposures, which is really where
9	people would come in contact with the
10	chromium. But if you're outside of
11	the study area, there's no way
12	MS. BISHOP: There's no way. I
13	know. I call you guys all the time, I
14	call you all the time, and I ask
15	questions.
16	MS. METZ: It's okay.
17	MS. BISHOP: It isn't for me,
18	it's for my two kids.
19	MS. METZ: It's scary, I totally
20	understand.
21	But you're outside. You should
22	feel comfortable that they're okay.
23	MS. SEPPI: That there's no
24	exposure to the chromium. Who knows
25	what else is out there that people are

1	exposed to, but it's not the chromium
2	for you.
3	MS. BISHOP: It's just in that
4	area.
5	MS. METZ: Yes.
6	MR. MAZZOLA: Do you know the
7	depth on the Passaic side of the water
8	table or the spill or whatever had the
9	chromium.
10	MS. FLYNN: We have wells
11	installed in the City of Passaic
12	MR. MAZZOLA: I know where it
13	is.
14	MS. FLYNN: and there's no
15	contamination in the very shallow
16	groundwater there, it's in the deeper
17	groundwater in Passaic. So, I can
18	show you
19	MR. MAZZOLA: How deep is it.
20	MS. FLYNN: that information.
21	I think it's greater than
22	80 feet
23	MR. MAZZOLA: 80 feet.
24	MS. FLYNN: in the bedrock
25	aquifer. So, we did investigate that

1	area of the contaminated plume.
2	MR. MAZZOLA: What do you do
3	with the banks?
4	I mean, the banks don't want to
5	touch nobody's property. What is the
6	deal with that?
7	Meaning that if you go for a
8	loan, somebody sells a property,
9	somebody has to buy it, they don't
10	have the money, they have to go to the
11	bank.
12	MR. PUVOGEL: We have been
13	contacted by some banks that have
14	questions about the situation in
15	Garfield. We've provided them
16	information about the status of the
17	home that they're discussing and the
18	area in general and what we have done
19	out there.
20	That's what we can do. We can
21	provide them with the information that
22	they need to make decisions.
23	MR. MAZZOLA: Well, they look at
24	a circle and they see how far you are
25	and if it's contaminated and they

1	don't give you a loan, how do you
2	resolve that problem?
3	MR. PUVOGEL: Well, we can talk
4	to the banks and educate them on the
5	situation, that we're here, we're
6	cleaning up the site, we're addressing
7	the properties that are effected,
8	they've been cleaned up, there are no
9	exposure at present, and the bank can
10	make their decision. I can't tell you
11	what a bank's decision will be.
12	MR. MAZZOLA: Most of the time,
13	they drop you. They don't want to be
14	near it. The property cannot be sold
15	afterwards. The banks don't want to
16	be stuck with a million dollar
17	property.
18	MR. PUVOGEL: And the bank
19	becomes the owner, you mean?
20	MR. MAZZOLA: By default, the
21	bank becomes the owner.
22	MR. RIGOGLIOSO: Is it possible
23	that a house that's contaminated and
24	then years down the line my house
25	was never contaminated, five, six

1	years down the line
2	MR. MATI: That's what I said.
3	MR. PUVOGEL: Okay.
4	That house becomes contaminated?
5	MR. RIGOGLIOSO: It's fairly
6	it's possible but not likely.
7	MR. RIGOGLIOSO: Okay.
8	MR. PUVOGEL: This contaminant
9	plume is a fairly old plume. It's
10	been around for quite a while, 40
11	years.
12	MR. RIGOGLIOSO: So, it won't
13	splinter off into other home areas.
14	MR. PUVOGEL: We don't think
15	S0
16	MR. RIGOGLIOSO: Or the chance
17	is unlikely.
18	MR. PUVOGEL: especially now
19	that the source has been removed. We
20	think we'll see things receding just
21	from the source being removed itself.
22	Once we start the system on the
23	property, the problems start to go
24	away; very slowly, but it's on the
25	mend.

1	MS. SEPPI: Tom?
2	MR. DUCH: Yes, just one
3	comment.
4	Over the last several years, I
5	have received ten, twelve calls from
6	people who were selling their homes
7	and who were looking for an update
8	from the EPA. I've referred them to
9	the EPA, and those closings took
10	pl ace.
11	So, as long as they issue a
12	letter no one has come back to me
13	and said: Oh, I can't sell. Oh, I
14	have a problem.
15	You know, I don't
16	MR. MAZZOLA: For a home?
17	MR. DUCH: if everyone has
18	reached out to me, but those who have,
19	I referred them right over.
20	MR. MAZZOLA: Any commercial
21	property
22	MR. DUCH: Commercial, I have
23	not received any calls, any
24	commercial, none.
25	MR. MAZZOLA: You're going ing

1	to receive one now.
2	(Laughter)
3	MR. MATI: As a member of the
4	city government, working with your
5	agency and all, I think we can safely
6	say that we have done everything we
7	can now on this project, it all
8	depends on the funds, correct?
9	I mean there's nothing else the
10	city could have done, any more, with
11	this pending the money, right?
12	MS. SEPPI: Absolutely. You've
13	been more than cooperative, as I said
14	before. And the money is an issue,
15	it's a major issue.
16	And all we can do is get through
17	the design, we have the money for
18	that, and then, you know, go to our
19	headquarters and bring it before the
20	board, and, hopefully, we'll be able
21	to get the money to do the work too.
22	MR. MATI: I just don't want the
23	perception of the town to think that
24	we're not doing what we can to fix the
25	problem.

1 You know what I'm saying? 2 MS. SEPPI: You've been a 3 pl easure. 4 MR. PUVOGEL: You' ve done a This is a town that's 5 great deal. rolled out the red carpet for EPA to 6 7 help us. With the well installations, 8 Tom has been very accommodating in 9 pulling the resources of the City 10 together to help us out, from the 11 traffic officers to the Department of 12 Public Works. We've had just great 13 cooperation. 14 And we look forward to that 15 cooperation as we move forward with 16 designing this placement of the wells 17 and the City's input on certain 18 positions, what works best for the 19 remedy and the City. This is not 20 over. This is just the beginning. 21 We're looking forward to a working 22 relationship with the City of Garfield 23 and to continue a very good 24 rel ati onshi p. 25 MR. RI GOGLI OSO: Will everything

1	being transparent as you go along with
2	the remediation, like let the council
3	know what's going on, if you hit any
4	snags, there's a delay, or is it going
5	to be kept in-house?
6	MR. PUVOGEL: No, no, we'll be
7	working with the council.
8	MR. NELSON: As much as we know,
9	we'll let you know, whether it's a
10	community bulletin or a phone call to
11	Tom. Somebody is going to know.
12	MS. SEPPI: We've had lots of
13	meetings with Tom and other members of
14	the Council and City government and
15	we'll continue to do that.
16	MR. PUVOGEL: If the council
17	wants us to come to brief them from
18	time to time, we're more than happy to
19	do that.
20	MS. SEPPI: Another question?
21	MR. MAZZOLA: The funding that
22	you get, is it from the Right to Know
23	Act?
24	Isn't that the same?
25	MS. SEPPI: No.

1	MR. PUVOGEL: No. It's the
2	general fund.
3	MR. NELSON: This is CERCLA,
4	that's RCRA. Two different laws.
5	MR. MAZZOLA: A lot of companies
6	pay a fund for EPA. Gas stations pay
7	a fund and the Right to Know Act
8	definitely pays there's money that
9	you pay.
10	MR. NELSON: I don't think it's
11	going into our Superfund, the
12	Superfund for this cleanup.
13	MR. MAZZOLA: Well, does it go
14	into Superfund or no?
15	MR. PUVOGEL: No. The tax has
16	not been renewed for the Superfund
17	MR. NELSON: 1995 was the last
18	time
19	MS. SEPPI: In 1995, that
20	stopped.
21	MR. PUVOGEL: So, any money that
22	we get to perform this remedy comes
23	from general tax revenues.
24	The Superfund tax was a levy
25	placed on petrochemical companies and

1 chemical companies. That lapsed. 2 MR. MAZZOLA: Only the big guys. 3 MS. SEPPI: They're trying to 4 have that reinstated, a lot of our 5 congressional people and our senators. We keep hoping that somehow that will 6 7 pass and we'll be able to up our 8 appropriation, which would certainly 9 be helpful for us all; not just for 10 Garfield, but other sites too. 11 MR. DUCH: Just a final comment. 12 Councilman Delaney was unable to 13 be here this evening because of work 14 obligations, but I would like to say 15 thi s: We've been very fortunate in 16 that Judith Enck, the Regional 17 Administrator of the EPA, has been 18 very supportive of the City of 19 Garfield and has always considered us 20 a priority. 21 I indicated before that we went 22 and testified before Congress and 23 before the Senate. And that was 24 really at her request. She felt that 25 Garfield should be a great living,

breathing example of why Superfund 1 2 funding is so important. 3 We have an election in November. 4 There will be a new President in 5 January. It is very important to us that Judi th Enck stays as the Regional 6 7 Administrator; we're fine, we have a 8 We don't know who the next supporter. 9 regional administrator will be, 10 depending on who the President is. 11 So, from the City's perspective, 12 we're going to have to keep an eye on 13 who that is and make sure that if it's 14 someone else we really, the Mayor and 15 Council and I, have to make it known 16 to that individual how important this 17 is. We obviously would rely on our 18 Congressmen and our Senators to get 19 that message across. But that's the only political 20 21 fear that I have, that a national 22 election could actually impact where 23 we stand in the whole process. That's

25 MR. NELSON: The EPA team

reality.

24

1	working on the Garfield site will
2	certainly impress that message from
3	inside as well. We'll certainly let
4	them know how important the site is
5	and the cooperation we've gotten that
6	we should give back to the City.
7	We'll make sure whoever gets it
8	gets that message.
9	MR. DUCH: Great. Thank you.
10	MS. SEPPI: Any more questions?
11	Thank you all. We really
12	appreciate you being here tonight.
13	(Appl ause)
14	MS. SEPPI: Good questions.
15	Don't hesitate to call any time. Our
16	numbers are there.
17	
18	(Time noted: 8:15 p.m.)
19	
20	
21	
22	
23	
24	
25	

1	CERTIFICATE
2	STATE OF NEW JERSEY)
3) SS.
4	COUNTY OF HUDSON)
5	I, LINDA A. MARINO, RPR,
6	CCR, a Shorthand (Stenotype)
7	Reporter and Notary Public of the
8	State of New Jersey, do hereby
9	certify that the foregoing
10	transcription of the public meeting
11	held at the time and place aforesaid
12	is a true and correct transcription
13	of my shorthand notes.
14	I further certify that I am
15	neither counsel for nor related to
16	any party to said action, nor in any
17	way interested in the result or
18	outcome thereof.
19	IN WITNESS WHEREOF, I have
20	hereunto set my hand this 6th day of
21	June, 2016.
22	
23	LINDA A. MARINO, RPR, CCR
24	
25	

Attachment D Written Comments

NEW JERSEY CHAPTER

145 West Hanover St., Trenton, NJ 08618 TEL: [609] 656-7612 FAX: [609] 656-7618 www.SierraClub.org/NJ

June 7, 2016 Shane Nelson, Remedial Project Manager U.S. EPA, Region 2 290 Broadway New York, NY 10007-1866 (212) 637-3130 nelson.shane@epa.gov

Dear Mr. Nelson:

The New Jersey Sierra Club believes the U.S. Environmental Protection Agency plan to address groundwater contaminated with hexavalent chromium at the Garfield Groundwater Contamination Superfund site is not an appropriate response at the site. We believe it may not go far enough to remedy all of the toxic contamination because it is an experimental way of monitoring and selective site remediation. Even if it is a good plan, it may not work because the EPA doesn't have the funding. We believe no matter how good the plan is they might not have the funding to actually implement it because there is very little funding left for Superfund sites and for this site in particular.

The people of Garfield will continue to suffer at this site because this plan may not go far enough. This is one of the most toxic sites in New Jersey that directly affects hundreds of people who live above contaminated groundwater. We need a real clean-up plan to adequately address the extent of this pollution, which includes removing all of the toxic contamination—not just monitoring and conducting selective remediation in some people's basements.

Chromium is a toxic chemical that becomes more toxic when it mixes with drinking water. The chromium at this site is seeping into basements and drinking water wells. In 2010, hexavalent chromium exposure in Garfield was confirmed as a hazard to public health, primarily if people are exposed to chromium dust in basements. It may even be causing cancer and damage the nervous system for people in the community.

The Sierra Club has been involved since the chromium first appeared at a school in Garfield and now it is clear the chromium is contaminating the whole community, up to 500 properties and hundreds of people. The 2011 Department of Health report on Garfield's contamination should have been a warning bell that there is a problem that has to be dealt with and five years later we need immediate action.

The EPA must ensure adequate funding and an appropriate clean-up of the Garfield site to protect the human health of people who have been suffering for far too long. The state of New Jersey has dragged their feet on this site for years is still down playing the threat from chromium in Garfield. We need a real clean-up plan, but we also need the funding.

NEW JERSEY CHAPTER

145 West Hanover St., Trenton, NJ 08618 TEL: [609] 656-7612 FAX: [609] 656-7618 www.SierraClub.org/NJ

Sincerely, n & Tittl 0, Jeff Tittel