Appendix 3: Field Testing

Standard method for falling head permeability field tests.

8.5 Measurement of Parameters : Piezometer Tests

It is possible to determine *in situ* hydraulic conductivity values by means of tests carried out in a single piezometer. We will look at two such tests, one suitable for point piezometers that are open only over a short interval at their base, and one suitable for screened or slotted piezometers that are open over the entire thickness of a confined aquifer. Both tests are initiated by causing an instantaneous change in the water level in a piezometer through a sudden introduction or removal of a known volume of water. The recovery of the water level with time is then observed. When water is removed, the tests are often called *bail tests*; when it is added, they are known as *slug tests*. It is also possible to create the same effect by suddenly introducing or removing a solid cylinder of known volume.

The method of interpreting the water level versus time data that arise from bail tests or slug tests depends on which of the two test configurations is felt to be most representative. The method of Hvorslev (1951) is for a point piezometer, while that of Cooper et al. (1967) is for a confined aquifer. We will now describe each in turn.

Groundwater.

271959

The simplest interpretation of piezometer-recovery data is that of Hvorslev (1951). His initial analysis assumed a homogeneous, isotropic, infinite medium in which both soil and water are incompressible. With reference to the bail test of Figure 8.20(a), Hvorslev reasoned that the rate of inflow, q, at the piezometer tip at any time t is proportional to the hydraulic conductivity, K, of the soil and to the unrecovered head difference, H - h, so that

$$q(t) = \pi r^2 \frac{dh}{dt} = FK(H-h)$$
(8.31)

where F is a factor that depends on the shape and dimensions of the piezometer intake. If $q = q_0$ at t = 0, it is clear that q(t) will decrease asymptotically toward zero as time goes on.

Figure 8.20 Hyorslev plezometer test. (a) Geometry; (b) method of analysis.

Hvorslev defined the basic time lag, T_0 , as

ģ

$$T_{\bullet} = \frac{\pi r^2}{FK} \tag{8.32}$$

When this parameter is substituted in Eq. (8.31), the solution to the resulting ordinary differential equation, with the initial condition, $h = H_0$ at t = 0, is

$$\frac{H-h}{H-H_0} = e^{-i/T_0} \tag{8.33}$$

340

0 317

Groundwater Resource Evaluation / Ch. 8

A plot of field recovery data, H - h versus *t*, should therefore show an exponential decline in recovery rate with time. If, as shown on Figure 8.20(b), the recovery is normalized to $H - H_0$ and plotted on a logarithmic scale, a straight-line plot results. Note that for $H - h/H - H_0 = 0.37$, $\ln (H - h/H - H_0) = -1$, and from Eq. (8.33), $T_0 = t$. The basic time lag, T_0 , can be defined by this relation; or if a more physical definition is desired, it can be seen, by multiplying both top and bottom of Eq. (8.32) by $H - H_0$, that T_0 is the time that would be required for the complete equalization of the head difference if the original rate of inflow were maintained. That is, $\overline{T_0} = V/q_0$, where V is the volume of water removed or added.

To interpret a set of field recovery data, the data are plotted in the form of Figure 8.20(b). The value of T_0 is measured graphically, and K is determined from Eq. (8.32). For a piezometer intake of length L and radius R [Figure 8.20(a)], with L/R > 8, Hvorslev (1951) has evaluated the shape factor, F. The resulting expression for K is

$$K = \frac{r^2 \ln (L/R)}{2LT_0}$$
 (8.34)

Hvorslev also presents formulas for anisotropic conditions and for a wide variety of shape factors that treat such cases as a piezometer open only at its basal cross section and a piezometer that just encounters a permeable formation underlying an impermeable one. Cedergren (1967) also lists these formulas.

In the field of agricultural hydrology, several *in situ* techniques, similar in principle to the Hvorslev method but differing in detail, have been developed for the measurement of saturated hydraulic conductivity. Boersma (1965) and Bouwer and Jackson (1974) review those methods that involve auger holes and piezometers.

For bail tests of slug tests run in piezometers that are open over the entire thickness of a confined aquifer, Cooper et al. (1967) and Papadopoulos et al. (1973) have evolved a test-interpretation procedure. Their analysis is subject to the same assumptions as the Their solution for pumpage from a confined aquifer. Contrary to the Hvorslev method of analysis, it includes consideration of both formation and water compressibilities. It utilizes a curve-matching procedure to determine the aquifer coefficients T and S. The hydraulic conductivity K can then be determined on the basis of the relation, K = T/b. Like the Their solution, the method is based on the solution to a boundary-value problem that involves the transient equation of groundwater flow, Eq. (2.77). The mathematics will not be described here.

For the bail-test geometry shown in Figure 8.21(a), the method involves the preparation of a plot of recovery data in the form $H - h/H - H_0$ versus *t*. The plot is prepared on semilogarithmic paper with the reverse format to that of the Hvorslev test; the $H - h/H - H_0$ scale is linear, while the *t* scale is logarithmic. The field curve is then superimposed on the type curves shown in Figure 8.21(b). With the axes coincident, the data plot is translated horizontally into a position where the data best fit one of the type curves. A matchpoint is chosen (or rather, a vertical axis is matched) and values of *t* and *W* are read off the horizontal scales

at the matched axis of the field plot and the type plot, respectively. For ease of calculation it is common to choose a matched axis at W = 1.0. The transmissivity T is then given by

$$T = \frac{Wr^2}{t} \tag{8.35}$$

0 349

where the parameters are expressed in any consistent set of units.

In principle, the storativity, S, can be determined from the a value of the matched curve and the expression shown on Figure 8.21(b). In practice, since the slopes of the various a lines are very similar, the determination of S by this method is unreliable.

The main limitation on slug tests and bail tests is that they are heavily dependent on a high-quality piezometer intake. If the wellpoint or screen is corroded or clogged, measured values may be highly inaccurate. On the other hand, if a piezometer is developed by surging or backwashing prior to testing, the measured values may reflect the increased conductivities in the artificially induced gravel pack around the intake.

It is also possible to determine hydraulic conductivity in a piezometer or single well by the introduction of a tracer into the well bore. The tracer concentration decreases with time under the influence of the natural hydraulic gradient that exists in the vicinity of the well. This approach is known as the borehole dilution method, and it is described more fully in Section 9.4.