

National Grid Syracuse, New York

Human Health Risk Assessment

Niagara Mohawk Power Corporation Saratoga Springs Former Manufactured Gas Plant Site

Old Red Spring Subarea

EPA ID#: NYD980664361

Saratoga Springs, New York

January 2013

Human Health Risk Assessment Niagara Mohawk Power Corporation Saratoga Springs Former Manufactured Gas Plant Site

Old Red Spring Subarea

EPA ID#: NYD980664361

Prepared for: National Grid

Prepared by: ARCADIS of New York, Inc. 6723 Towpath Road P.O. Box 66 Syracuse New York 13214-0066 Tel 315.446.9120 Fax 315.449.0017

Our Ref.: B0036641.0000.00256

Date: January 2013

Table of Contents

1.	Introduction					
	1.1	Summary of Previous Remedial Actions				
	1.2	2				
	1.3	Report Organization	3			
2.	Data E	Data Evaluation				
	2.1	Summary of Previous Investigations				
		2.1.1 Site Investigation – July 2006	5			
		2.1.2 Supplemental Site Investigation – February/March 2008	5			
		2.1.3 Monitored Natural Attenuation Evaluation – May 2009	6			
		2.1.4 Additional Site Investigation – October 2009	6			
		2.1.5 Additional Soil Borings – January 2012	6			
	2.2	6				
	2.3 Identification of Constituents of Potential Concern					
3. Exposure Assessment						
	3.1	Conceptual Site Model	9			
3.2 Receptors						
3.3 Exposure Pathways and Exposure Routes						
3.4 Exposure Factors						
	3.5	13				
	3.6	Estimation of Chemical Intake	13			
4.	Toxicit	y Assessment 17				
5.	Risk C	characterization	19			
	5.1	Non-Carcinogenic Health Hazards	19			
	5.2	Carcinogenic Risks	21			
6.	Uncertainty Analysis					
	6.1	Future Land Use				
	6.2	2 Analytical Data				

	6.3 Toxicity Fa	actors	24		
7.	Summary and Conclusions				
8.	References				
Tal	bles				
	Table 0	Site Risk Assessment Identification Information			
	Table 1	Selection of Exposure Pathways			
	Table 2.1	Occurrence, Distribution and Selection of Chemicals of Potential Concern – Overburden Groundwater (Excelsior Avenue)			
	Table 2.2	Occurrence, Distribution and Selection of Chemicals of Potential Concern – Bedrock Groundwater (Old Red Spring)			
	Table 2.3	Occurrence, Distribution and Selection of Chemicals of Potential Concern – Overburden Groundwater (Excelsior Avenue), Vapor Intrusion Pathway (Site-Wide)			
	Table 2.4	Occurrence, Distribution and Selection of Chemicals of Potential Concern – Overburden Groundwater (Excelsior Avenue), Vapor Intrusion Pathway (Within 100 feet of Building)			
	Table 3.1	Exposure Point Concentration Summary – Overburden Groundwater (Excelsior Avenue)			
	Table 4.1.RME	Values for Daily Intake Calculations (Ingestion and Dermal Contact) – Reasonable Maximum Exposure – Groundwater – Future Resident (Child and Adult)			
	Table 4.1.CTE	Values for Daily Intake Calculations (Ingestion and Dermal Contact) – Central Tendency – Groundwater – Future Resident (Child and Adult)			
	Table 4.2.RME	Values for Daily Intake Calculations (Inhalation) – Reasonable Maximum Exposure – Groundwater – Future Resident (Child and Adult)			
	Table 4.2.CTE	Values for Daily Intake Calculations (Inhalation) – Central Tendency – Groundwater – Future Resident (Child and Adult)			
	Table 4.3	Chemical Specific Factors – Dermal Groundwater Exposure			

- Table 5.1
 Non-Cancer Toxicity Data Oral/Dermal
- Table 5.2 Non-Cancer Toxicity Data Inhalation
- Table 6.1
 Cancer Toxicity Data Oral/Dermal
- Table 6.2
 Cancer Toxicity Data Inhalation

- Table 7.1RME
 Calculation of Chemical Cancer Risks and Non-Cancer Hazards Reasonable Maximum Exposure – Groundwater – Future Resident (Adult)
- Table 7.1.CTE Calculation of Chemical Cancer Risks and Non-Cancer Hazards Central Tendency Exposure – Groundwater – Future Resident (Adult)
- Table 7.2.RME
 Calculation of Chemical Cancer Risks and Non-Cancer Hazards Reasonable Maximum Exposure – Groundwater – Future Resident (Child)
- Table 7.2.CTECalculation of Chemical Cancer Risks and Non-Cancer Hazards –
Central Tendency Exposure Groundwater Future Resident
(Child)
- Table 9.1.RME
 Summary of Receptor Risks and Hazards for COPCs Reasonable

 Maximum Exposure Groundwater Future Resident (Adult)
- Table 9.1.CTE
 Summary of Receptor Risks and Hazards for COPCs Central Tendency Exposure Groundwater Future Resident (Adult)
- Table 9.2.RME
 Summary of Receptor Risks and Hazards for COPCs Reasonable

 Maximum Exposure Groundwater Future Resident (Child)
- Table 9.2.CTE
 Summary of Receptor Risks and Hazards for COPCs Central Tendency Exposure Groundwater Future Resident (Child)
- Table 9.3.RME
 Summary of Aggregate Receptor Risks for COPCs Reasonable

 Maximum Exposure Groundwater Future Resident (Adult + Child)
- Table 9.3.CTE
 Summary of Aggregate Receptor Risks for COPCs Central Tendency Exposure Groundwater Future Resident (Adult + Child)

Figures

Figure 1	Site Location Map
Figure 2	Site and Surrounding Areas
Figure 3	Monitoring Well Locations

Appendix

A Data Usability Worksheet

ARCADIS

1. Introduction

On behalf of National Grid (formerly the Niagara Mohawk Power Corporation), ARCADIS of New York, Inc. (ARCADIS) has prepared this Human Health Risk Assessment (HHRA) for the Saratoga Springs Former Manufactured Gas Plant (MGP) Site located in Saratoga, New York (Figure 1). Specifically, this HHRA addresses the Old Red Spring subarea that encompasses approximately 0.5 acres at the intersection of Excelsior Avenue, Warren Street, and High Rock Avenue, as well as a portion of Excelsior Avenue and the Old Red Spring; this area is referred to herein as the Project Area. This HHRA has been prepared at the request of the U.S. Environmental Protection Agency's (USEPA's) May 11, 2012 e-mail and builds upon the Pathways Analysis Report (PAR) (ARCADIS, March 2011), including USEPA's comments on the PAR (USEPA, December 2011). Consistent with the USEPA's request and the PAR, this HHRA focuses on potential residential use of Project Area groundwater (i.e., drinking water exposures via ingestion, dermal contact, and inhalation of volatiles). In doing so, this HHRA evaluates potential current and future health risks to people who may be exposed to overburden and bedrock groundwater as a potable water source within the Project Area, assuming no additional remedial actions are undertaken and that land use changes in the future. In addition, at the request of USEPA, the vapor intrusion pathway from groundwater to indoor air is also evaluated in this HHRA. This HHRA presents a baseline evaluation of potential human health risks in the absence of institutional controls or remedial measures.

This HHRA has been conducted in accordance with USEPA (1989; 2004) guidance and involves the following four steps: 1) data evaluation, to identify site-related constituents of interest; 2) exposure assessment, to determine potential exposure pathways and quantify the magnitude of potential exposure; 3) toxicity assessment, to determine types of effects associated with exposures; and 4) risk characterization, to quantify potential exposures at the Project Area.

1.1 Summary of Previous Remedial Actions

Remedial actions have been performed at the former MGP site and the former Spa Steel Products Company, Inc. (Spa Steel) property in accordance with the USEPA Record of Decision (ROD), issued September 29, 1995 (USEPA, 1995). Remedial actions at the former MGP site were conducted between May 2001 and September 2002 and generally consisted of the following:

• Installing a sub-grade sheet pile barrier wall around the perimeter of the National Grid property

- Excavating and transporting MGP-source material and select surface soils off-site for treatment/disposal
- Installing a perimeter stormwater diversion/management system
- Constructing a permanent groundwater management/treatment system
- Installing an asphaltic cap across the former MGP site

Remedial actions at the Spa Steel property were conducted in 2008 as an extension of remedial actions completed at the adjacent former MGP site. Remedial actions included the installation of a sub-grade sheet pile barrier wall and an impermeable cap within a portion of the Spa Steel property.

1.2 Site Setting

The Project Area occupies approximately 0.5 acres near the intersection of Excelsior Avenue, Warren Street, and High Rock Avenue (Figure 2). The Project Area is essentially comprised of the land south of the sheet piling installed during the remediation of the former MGP site and the Spa Steel property. This area consists of parcels owned by the City of Saratoga Springs and Mill LLC (a former New York State Department of Environmental Conservation [NYSDEC] inactive hazardous waste site, known as the Van Raalte Knitting Mill Site). The western portion of the Project Area consists of a paved parking lot for the fitness gym located west of the Old Red Spring. The Project Area is bounded to the north by the Spa Steel property and former MGP site, to the south by High Rock Avenue, and to the east by Warren Street. An active groundwater spring and an associated pavilion (referred to as Old Red Spring) are located in the eastern portion of the Project Area, within a small "green space" area. This spring is located within the deep bedrock groundwater zone (deeper than 150 feet below grade), which is separated from the overburden groundwater zone by thick clay and till confining layers. Depth to overburden groundwater at the Project Area ranges between 5 and 10 feet below ground surface (bgs). The horizontal hydraulic gradient in the Project Area is generally in the southeast direction and the vertical hydraulic gradient is upward through the confining units. Surrounding land use in the vicinity of the Project Area is a mixture of commercial and residential properties.

Groundwater at the site is classified as Class GA, fresh groundwater. The best usage of Class GA waters as defined in the New York Code of Rules and Regulations (NYCRR) is as a source of potable water supply (NYCRR, 1991). According to 6 NYCRR §701.18, all freshwater groundwater in New York State is classified as Class GA. Currently, the City of Saratoga Springs receives its drinking water from three sources including surface water from the Loughberry Lake Watershed and groundwater from the Geyser Crest and

Interlaken well systems (SSCPW, 2012); these sources are not hydraulically connected to the Project Area. Although site groundwater is not used as a potable source and there are city requirements for use of municipal water supplies, this baseline HHRA was conducted in the absence of institutional controls consistent with USEPA (1989) guidance. The Project Area is currently zoned as Transect Zone 5 (T-5) Neighborhood Center. The intent of this district is a mixed-use neighborhood center meant to accommodate a variety of non-residential and residential uses, building types and lot sizes, and the district is meant to provide linkages to adjacent neighborhoods conducive to pedestrian activity (City of Saratoga, 2007).

Table 1 identifies receptor populations and potentially complete exposure pathways that were quantitatively evaluated in this HHRA. Generally, the selection of receptor populations and exposure pathways uses site-specific information based on current and reasonably anticipated future land use to identify potentially complete exposure pathways. Future land use at the site is expected to be consistent with current land use (i.e., no potable use of Project Area groundwater). However, at the request of USEPA, this HHRA evaluates hypothetical future residential use of Project Area groundwater. The exposure assessment, which discusses the selection of potential receptors and exposure pathways, is presented in Section 3 of this report. Both a Reasonable Maximum Exposure (RME) and a Central Tendency Exposure (CTE) scenario are evaluated in this HHRA for groundwater-related exposures.

1.3 Report Organization

Report Section	Description
Section 2	Data Evaluation – Discusses the analytical data used in the HHRA, identification of constituents of potential concern, and calculation of exposure point concentrations.
Section 3	Exposure Assessment – Identifies the receptors and exposure pathways evaluated in the HHRA.

The following table identifies the step-wise HHRA process conducted for the Project Area and associated report organization:

Report Section	Description
Section 4	Toxicity Assessment – Discusses the toxicity data used to determine the types of effects associated with exposures.
Section 5	Risk Characterization – Uses the information presented in the data evaluation, exposure assessment, and toxicity assessment to quantify potential human health risks and hazards.
Section 6	Uncertainty Analysis – Identifies the key assumptions used in the HHRA that lend uncertainty to the HHRA process.
Section 7	Summary and Conclusions – Presents a concise summation of the HHRA results.
Section 8	References – Lists the reference materials cited in this report.

2. Data Evaluation

2.1 Summary of Previous Investigations

A number of investigations and remedial actions of the former MGP site and surrounding properties have been conducted since Niagara Mohawk Power Corporation (now National Grid) entered into a Consent Decree with the USEPA in September 1989. Potential MGP-related impacts were evaluated within the Project Area (i.e., in the Excelsior Avenue/Old Red Spring area) as part of the following investigations.

2.1.1 Site Investigation – July 2006

The July 2006 investigation was conducted by the USEPA to assess the presence and extent of MGP-related residuals within subsurface soils in the area south of the former Spa Steel property. Activities included:

- Drilling 18 soil borings and installing 10 monitoring wells at select boring locations;
- Measuring water levels at existing and new monitoring wells; and
- Collecting and submitting soil and groundwater samples for laboratory analysis of Target Compound List (TCL) volatile organic compounds (VOCs) and TCL semivolatile organic compounds (SVOCs).

2.1.2 Supplemental Site Investigation – February/March 2008

The February/March 2008 Supplemental Site Investigation (SSI) was conducted by National Grid to further define the nature and extent of MGP-related impacts to the south and southwest of the former MGP site. Activities included:

- Drilling 16 soil borings and installing two monitoring wells at select boring locations;
- Measuring water levels at existing and new monitoring wells; and
- Collecting and submitting soil and groundwater samples for laboratory analysis of TCL VOCs and TCL SVOCs.

2.1.3 Monitored Natural Attenuation Evaluation – May 2009

The May 2009 groundwater investigations were conducted by National Grid to support an evaluation of monitored natural attenuation (MNA) as a potential remedial alternative to address MGP-related impacts to groundwater at the Project Area. Investigation activities included the collection of groundwater samples from accessible monitoring wells within the Project Area and submitting the samples for laboratory analysis of VOCs, polycyclic aromatic hydrocarbons (PAHs), and various attenuation parameters.

2.1.4 Additional Site Investigation – October 2009

The October/November 2009 Site Investigation was conducted by National Grid to further define the nature and extent of MGP-related impacts to the south and southwest of the former MGP site. Activities included:

- Drilling five soil borings and installing two monitoring wells at select locations;
- Measuring water levels at existing and new monitoring wells; and
- Collecting and submitting soil and groundwater samples for laboratory analysis of TCL VOCs and TCL SVOCs.

2.1.5 Additional Soil Borings – January 2012

The January 2012 collection of additional soil borings was completed by National Grid to characterize soil below Excelsior Avenue and confirm the quantity of visual impacts previously observed in the Old Red Spring Area. No analytical data were collected as part of this effort. This investigation did not include the collection of any groundwater data.

All of the information obtained from the above-described investigations has been previously provided to USEPA.

2.2 Analytical Data

Analytical data are available for both the shallow overburden groundwater zone and the bedrock groundwater zone. The Old Red Spring is located within the deep bedrock groundwater zone (deeper than 150 feet below grade), which is separated from the overburden groundwater zone by thick clay and till confining layers. These groundwater zones are evaluated separately in this HHRA.

As approved by USEPA (2011), this HHRA focuses on shallow overburden groundwater in the Excelsior Avenue Area and bedrock groundwater in the Old Red Spring Area. Groundwater samples from the shallow overburden in the Project Area were collected in 2006, 2008, and 2009. Samples were analyzed for VOCs, SVOCs, inorganics (iron and manganese), and miscellaneous parameters (e.g., nitrate, nitrite, sulfate). A total of 32 groundwater samples were collected from 16 monitoring wells in the shallow overburden in the Project Area during three years of sampling (2006, 2008, and 2009). An evaluation of data usability was conducted to determine if analytical data were suitable for use in this HHRA. A data usability worksheet is included as Appendix A. It was concluded that the analytical groundwater data are suitable for risk assessment purposes.

Twenty groundwater samples were collected from the Old Red Spring between January 2006 and January 2011. These samples were analyzed for VOCs and PAHs. All groundwater concentrations from the bedrock zone were non-detect, with the exception of naphthalene, which was detected at 1 microgram per liter (μ g/L) in July 2006. This isolated concentration of naphthalene was well below the NYSDEC (1998) Class GA groundwater standard and this constituent was not detected in any other groundwater samples from the bedrock zone.

Figure 3 presents the groundwater monitoring well locations.

2.3 Identification of Constituents of Potential Concern

As a first step in the HHRA process, analytical data for the Project Area are compared to appropriate screening criteria to identify constituents of potential concern (COPCs) for the Project Area. The data evaluation uses the available groundwater data for the Project Area, including data for the shallow overburden and the lower bedrock zone. The following describes the COPC screening process used to evaluate potential direct contact exposures.

As requested by USEPA (2011), COPCs for Project Area groundwater (direct contact) were identified by screening maximum groundwater concentrations against USEPA (2012b) Regional Screening Levels (RSLs) for tap water. RSLs based on a non-cancer endpoint were adjusted to reflect a hazard quotient (HQ) of 0.1 to account for potential additive effects. NYSDEC Class GA Groundwater Standards and Guidance Values from Technical and Operational Guidance Series (TOGS) 1.1.1 (NYSDEC, 1998) and USEPA (2012c) Maximum Contaminant Levels (MCLs) are presented in the COPC tables as Applicable or Relevant and Appropriate Requirements (ARARs), but are not used for COPC screening purposes. As requested by USEPA (2011), the vapor intrusion pathway was also evaluated by comparing groundwater data to USEPA (2002a) generic screening criteria (i.e., target groundwater concentrations corresponding to target indoor air concentrations at a risk level

of 1 x 10^{-6}). However, it should be noted that in a letter to National Grid on January 29, 2010, the USEPA and NYSDEC concluded that, based on the site investigation data, soil vapor intrusion south of Excelsior Avenue is not a current exposure concern (USEPA, 2010a).

Tables 2.1 and 2.2 present the COPC screening for the shallow overburden and bedrock groundwater zones, respectively. Several VOCs (benzene, ethylbenzene, toluene, and xylenes), SVOCs (1,1-biphenyl, 2-methylnaphthalene, acenaphthene, anthracene, dibenzofuran, fluorene, naphthalene, and pyrene), and inorganics (iron and manganese) were identified as COPCs for the shallow overburden groundwater zone in the Project Area. Groundwater concentrations in the Old Red Spring (bedrock groundwater zone) were all non-detect (with the exception of naphthalene discussed above) and therefore, no COPCs were identified for the bedrock groundwater zone.

Table 2.3 presents the COPC screening for vapor intrusion using all Project Area groundwater data. Maximum concentrations of benzene, ethylbenzene, 2-methylnaphthalene, and naphthalene exceeded the USEPA (2002a) generic screening criteria for the vapor intrusion pathway. However, USEPA (2002a) guidance indicates that the vapor intrusion investigation should focus on those wells that are within 100 feet horizontally or vertically of a structure (e.g., occupied building). Therefore, Table 2.4 compares groundwater data for those wells within 100 feet of the fitness gym (MW-EPA-06, MW-SS-09-06, MW-SS-09-07, and MW-EPA-03). Concentrations in these monitoring wells are below the USEPA (2002a) screening criteria, and as such, no COPCs were identified for the vapor intrusion pathway based on current land use.

3. Exposure Assessment

3.1 Conceptual Site Model

Current land use at the Project Area is commercial. Specifically, the Project Area encompasses property located adjacent to and south of the former Spa Steel property and former MGP site. The Project Area consists of a paved parking lot, a fitness center, and a small green space that includes the Old Red Spring and associated pavilion. Surrounding land use is a mixture of commercial (e.g., office building, car dealership, hotel) and residential (e.g., apartments, condominiums) properties. Future land use at the Project Area is expected to remain the same.

Groundwater in the Project Area is divided into two zones: overburden and bedrock. The overburden geologic units in the Project Area consist of 15 to 25 feet thick sequence of fill, peat/clayey silt, and fine to coarse sand underlain by approximately 50 feet low permeability lacustrine silty clay and 50 feet of low permeability glacial till. The glacial till lies on the Canajoharie Shale bedrock. Groundwater from the Old Red Spring well apparently originates from the Canajoharie Shale. At one time this well flowed under natural artesian pressure; however, due to the extensive regional groundwater usage in the Canajoharie Shale the artesian pressure is much less. As such, the City of Saratoga apparently installed a pump within the well to deliver water via mechanical means.

The water table is encountered between 5 to 10 feet bgs and occurs in the fine to coarse sand and gravel materials above the silty clay. Groundwater flow in these shallow overburden materials is generally to the southeast. Given the artesian conditions that once existed in the bedrock, an upward vertical hydraulic gradient is expected across the silty clay and till units. However, based on the relatively low permeability of the silty clay and till, the amount of groundwater flowing upward from these units into the overlying shallow overburden materials is expected to be negligible.

Sparse quantities of dense non-aqueous phase liquid (DNAPL) (i.e., coal tar) has been sporadically observed in some subsurface soil samples collected from the Project Area. The DNAPL in the Project Area is interpreted to have migrated from the Saratoga Springs former MGP site. At the MGP site, the DNAPL pooled on the silty clay at several locations and migrated in a general southerly direction along the top of the silty clay and in the direction of the Project Area. In the Project Area, DNAPL has been observed at approximately 15 to 20 feet bgs. The surface topography of the silty clay, heterogeneity of the overburden materials, and the hydraulic gradients are the mechanisms that have shaped the distribution of DNAPL observed in the Project Area.

ARCADIS

Although groundwater associated with the Project Area is classified by NYSDEC as Class GA, indicating that it's a designated drinking water source, this groundwater is not used for potable purposes. Additionally, it's also important to note that all freshwater groundwater within the State of New York is considered to be Class GA according to New York State regulations (6 NYCRR §701.18; NYCRR, 1991). Primary drinking water is currently supplied to residents in Saratoga Springs from Loughberry Lake, which is located approximately 2,000 feet upgradient of the former MGP site. Additionally, some residents in the vicinity of the former MGP site obtain their drinking water from private wells (USEPA, 2010b), but these wells are not hydraulically connected to the overburden materials at the Site. The Old Red Spring represents one of Saratoga Springs' mineral springs that is available for consumption to local residents and tourists via a fountain located within the pavilion. As previously mentioned, the Old Red Spring represents a previous artesian source that is now pumped from the bedrock groundwater zone, i.e., below the clay and till confining units. Current zoning at the Project Area restricts the use of groundwater from the overburden as a potable source. Additionally, based on telephone conversations with the City of Saratoga Springs Senior Engineer in February and September 2011, the City of Saratoga Springs Building Code requires any new building to be connected to the public water supply if constructed in the city limits and within 100 feet of a public water supply.

As requested by USEPA, this HHRA focuses solely on potential risks and hazards associated with the current and future use of Project Area groundwater from the shallow overburden (above the silty clay) and the bedrock aquifer (i.e., Old Red Spring). Table 1 (Selection of Exposure Pathways) identifies the selection of receptors and exposure pathways on which this HHRA is based.

3.2 Receptors

Potential receptors are assumed to include individuals that may be exposed to drinking water from the Project Area via consumption, dermal contact, and inhalation of vapors (i.e., during showering and/or bathing). Because there is no current potable use of Project Area groundwater from the shallow overburden, the overburden groundwater does not currently pose an unacceptable risk to human health. Based on this and consistent with the USEPA's request, the remainder of this HHRA evaluates potential risks associated with hypothetical future residential groundwater use (i.e., assuming that the shallow overburden groundwater may be used in the future as a source of water for residential purposes).

As requested by USEPA, the vapor intrusion pathway from groundwater to indoor air is also evaluated as part of this HHRA. Specifically, commercial workers employed at the on-site fitness gym (as well as members of the gym) may be exposed to vapors emanating from groundwater to indoor air.

ARCADIS

3.3 Exposure Pathways and Exposure Routes

The Project Area groundwater in the overburden materials (above the silty clay) is not currently used as a potable source (or for any other purposes). In addition, current zoning at the Project Area precludes the installation of private wells due to proximate municipal water availability. However, if deed restrictions are not implemented, future exposures could hypothetically occur if the current zoning restriction on groundwater usage was changed and if residents were to install private drinking water wells (a violation of existing building code) rather than utilize municipal water supplies. Under this hypothetical future scenario, such residents may be exposed to constituents in shallow overburden groundwater via direct ingestion of drinking water, dermal contact, and/or inhalation of volatilized constituents during showering and other household activities. However, it should be noted that this hypothetical scenario is highly unlikely in the foreseeable future given the size of the Project Area, it's location within the City of Saratoga limits, the current land use zoning, the presence of a readily available municipal water supply, and the City of Saratoga zoning and Building Code requirements regarding the municipal water supply.

Because COPCs have not been detected in groundwater from the Old Red Spring, groundwater from the Old Red Spring does not pose a human health risk. Additionally, the New York State Department of Health (NYSDOH) conducts sampling of the Old Red Spring on an on-going basis. Therefore, no further evaluation of groundwater exposures for Old Red Spring is warranted. Likewise, because groundwater concentrations in those monitoring wells located within 100 feet of the on-site fitness gym are less than USEPA (2002a) screening criteria, it is assumed that the vapor intrusion pathway does not pose a human health risk based on current land use and no further evaluation of this pathway is warranted.

3.4 Exposure Factors

This HHRA uses exposure and toxicity factors that represent site-specific conditions and reflect current scientific and regulatory policy. The RME scenario is evaluated in this HHRA and is intended to represent the "highest exposure that is reasonably expected to occur at a site" (USEPA, 1989). Likewise, a CTE scenario is also evaluated in this HHRA, which is intended to use less conservative exposure factors to reflect more typical (or realistic) exposures at the site. The exposure assumptions that will be used to evaluate potential exposure of future residents to groundwater via ingestion, dermal contact, and inhalation are presented in Tables 4.1.RME (ingestion and dermal contact), 4.1.CTE (ingestion and dermal contact), 4.2.RME (inhalation), and 4.2.CTE (inhalation). The following briefly discusses the exposure factors used to quantify potential risks and hazards for hypothetical future exposure of residents to potable groundwater from the overburden zone.

The groundwater ingestion rates used to quantify potential risks and hazards for future adult and child residents (2 liters per day [L/day] and 1 L/day, respectively) under an RME scenario reflect USEPA default values from the USEPA (1997) *Exposure Factors Handbook* (EFH), USEPA (1991a) OSWER Directive 9285.6-03 "Standard Default Exposure Factors", and USEPA (2002b) Supplemental Guidance for Development of Soil Screening Levels for Superfund Sites. CTE values for groundwater ingestion (0.5 and 1 L/day, respectively for the child and adult resident, respectively) represent one-half of the RME values. The exposure frequency used to evaluate ingestion and dermal exposures (350 days per year) represents the USEPA (2004) default for residential receptors; this value was used for both RME and CTE scenarios. The RME exposure durations used for the adult and child resident (24 and 6 years, respectively) represent USEPA (2004) default values. For the CTE scenario, an exposure duration of 9 years was used for the adult resident, which is also a USEPA (2004) default value.

To evaluate the dermal contact exposure route, the RME exposure time was assumed to be 0.25 hours per event (15 minutes), which is intended to represent the amount of a time a resident spends in the shower (USEPA, 1997). A value of 0.17 hours per event (10 minutes) was used to evaluate dermal exposures under a CTE scenario (USEPA, 1997). An event frequency of 1 was used for both the RME and CTE scenarios, which assumes one showering event per day for an individual. The exposed skin surface areas used to evaluate dermal exposures for a child and adult resident were 6,600 square centimeters (cm²) and 18,000 cm², respectively; these values represent USEPA (2004) default values for a showering/bathing scenario. Table 4.3 presents the chemical-specific factors used to quantify potential dermal absorbed doses.

The Andelman (1990) exposure model, as modified by Schaum et al. (1994), was used to quantify potential inhalation exposures to volatiles emanating from potable groundwater during showering and/or bathing. The exposure times used to quantify inhalation exposures (i.e., during showering/bathing) were the same as those used to quantify dermal exposures (0.25 and 0.17 hours per event for RME and CTE scenarios, respectively). Inhalation exposures also consider the time spent in the bathroom following showering/bathing events. The values used to account for these additional exposure times under an RME scenario were 0.33 hours (20 minutes) for a child and 0.5 hours (30 minutes) for an adult. For the CTE scenario, a value of 0.08 hours (5 minutes) was used for both the child and adult. Exposure factors used to quantify inhalation exposures were taken from USEPA's (1997) EFH and USEPA's (2004) Dermal Risk Assessment guidance.

3.5 Determination of Exposure Point Concentrations

The exposure point concentrations (EPCs) that were used to evaluate potential groundwater exposures for the overburden materials (above the silty clay) at the Project Area are based on the analytical groundwater data collected in 2006, 2008, and 2009. USEPA's ProUCL software (version 4.1.00; USEPA, 2010c) was used to derive EPCs. Specifically, the 95th percentile upper confidence limits (UCLs) on the arithmetic mean have been selected as EPCs except when the UCL exceeded the maximum concentration detected or there are insufficient data to calculate a UCL (i.e., less than 8 samples or 5 detections). In those cases, the maximum concentration was selected as the EPC.

Not all shallow overburden wells were sampled during each sampling year (i.e., 2006, 2008, and 2009), which made the dataset somewhat skewed towards those wells with more samples. Because some wells showed high variability in groundwater concentrations, to be conservative, it was assumed that all individual data points reflect concentrations in the overburden zone to which a hypothetical future receptor could be exposed. Therefore, concentrations in each well were treated as individual data points in the calculation of EPCs (rather than calculate average concentrations in each well prior to the calculation of EPCs). The exception to this was the analytical data for polycyclic aromatic hydrocarbons (PAHs), which were analyzed using two different analytical methods (USEPA Method 8270C and 8310) as requested by USEPA. Therefore, for some wells, there were two data points for the same PAH from that sampling event. The following hierarchy was used to determine the average PAH concentrations for each well prior to the calculation of EPCs:

- (1) For samples with two detectable PAH concentrations, the average of the two data points was used to represent the chemical concentration for that sampling event.
- (2) For samples with non-detectable PAH concentrations for both methods, the lowest detection limit was used to represent the well concentration for that sampling event.

Table 3.1 presents the EPCs for shallow overburden groundwater (above the silty clay) in the Project Area. Due to the high variability in COPC concentrations, the resulting EPCs are likely conservative.

3.6 Estimation of Chemical Intake

The Chronic Daily Intake (CDI) was calculated to estimate a receptor's potential daily intake from exposure to constituents in groundwater. Exposure to groundwater (i.e., drinking water) was assumed to occur via ingestion, dermal contact and inhalation of volatiles. The equations used to estimate CDIs are presented below. The human exposure parameters

used for the RME and CTE ingestion and dermal contact exposure routes are presented in Tables 4.1.RME and 4.1.CTE, respectively. The exposure parameters used for the RME and CTE inhalation exposure route are presented in Tables 4.2.RME and 4.2.CTE, respectively.

CDIs for groundwater ingestion were calculated consistent with USEPA's (1989) Risk Assessment Guidance for Superfund (RAGS) Part A as follows:

$$CDI = \frac{C_{GW} \times IR \times EF \times ED \times CF}{AT \times BW}$$

where:

CDI	=	Chronic Daily Intake due to Ingestion (mg/kg-day)
C_{GW}	=	Chemical Concentration in Groundwater (µg/L)
IR	=	Ingestion Rate of Groundwater (L/day)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
CF	=	Conversion Factor (10 ⁻³ mg/µg)
BW	=	Body Weight (kg)
AT	=	Averaging Time (days)

CDIs for dermal absorption of groundwater were calculated consistent with USEPA's (2004) RAGS Part E as follows:

$$\label{eq:cdiscrete} \begin{array}{rcl} \text{CDI} & = & \frac{\text{DA}_{\text{event}} & \times \text{EV} & \times \text{ED} & \times \text{EF} & \times \text{SA} \\ & & \text{AT} & \times \text{BW} \end{array}$$

where:

CDI	=	Chronic Daily Intake Due to Dermal Contact (mg/kg-day)
DA _{event}	=	Absorbed Dose (mg/cm ² -event)
EV	=	Event Frequency (events/day)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
SA	=	Skin Surface Area Available for Contact (cm ²)
BW	=	Body weight (kg)
AT	=	Averaging time (days)

If $t_{event} \le t^*$, then:

DA _{event} = 2 FA × K _p × C_{GW} × CF ×
$$\sqrt{\frac{6 \text{ T} × t_{event}}{\Pi}}$$

If $t_{event} > t^*$, then:

DA _{event} =
$$FA \times K_p \times C_{GW} \times CF \times \left[\frac{t_{event}}{1+B} + 2T_{event} \left(\frac{1+3B+3B^2}{(1+B)^2}\right)\right]$$

where:

DA _{event}	=	Absorbed Dose (mg/cm ² -event)
FA	=	Fraction Absorbed of Water (unitless)
K _p	=	Dermal Permeability Coefficient of Compound in Water (cm/hour)
C_{GW}	=	Chemical Concentration in Groundwater (µg/L)
CF	=	Conversion Factor (1000 L/cm ³ x 10 ⁻³ mg/µg)
T _{event}	=	Lag Time per Event (hours/event)
t _{event}	=	Event Duration (hours/event)
t*	=	Time to Reach Steady-State (hours) = 2.4 T _{event}
В	=	Dimensionless Ratio of the Permeability Coefficient of a Compound
		through the Stratum Corneum Relative to its Permeability Coefficient
		Across the Epidermis (unitless)

To evaluate the inhalation of groundwater volatiles while showering, the air concentration was calculated using the Andelman (1990) model (as modified by Schaum et al. [1994]) and intakes were calculated consistent with USEPA's (2009) RAGS Part F:

$$CDI = \frac{CA \times ET \times EF \times ED}{AT}$$

where:

CDI	=	Chronic Daily Intake due to Ingestion (mg/m ³)
CA	=	Chemical Concentration in Air (mg/m ³)
ET	=	Exposure Time (hours/day)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
AT	=	Averaging Time (hours)

ARCADIS

$$CA = \frac{(CA_{max}/2)t_1 + (CA_{max} \times t_2)}{t_1 + t_2}$$

where:

CA	=	Concentration of Constituent in Air (mg/m ³)
CA _{max}	=	Maximum Concentration of Constituent in Air (mg/m ³)
t ₁	=	Time of Shower (hours)
t ₂	=	Time After Shower (hours)

$$CA_{max} = \frac{CW \times f \times Fw \times t_1}{V_a}$$

where:

CA _{max}	=	Maximum Concentration of Constituent in Air (mg/m ³)
CW	=	Groundwater Concentration (mg/L)
f	=	Fraction Volatilized (unitless)
Fw	=	Water Flow Rate (L/h)
t ₁	=	Time of Shower (hours)
Va	=	Bathroom Volume (m ³)

4. Toxicity Assessment

The toxicity assessment identifies the potential effects that are generally associated with exposure to a given constituent. Specifically, the toxicity assessment step involves quantifying the relationship between the magnitude of potential exposure to COPCs via a particular exposure pathway and the likelihood of an adverse health effect. USEPA typically evaluates two types of toxic effects: carcinogenic effects and non-carcinogenic effects. The results of the toxicity assessment, when combined with the dose estimated in the exposure assessment, are used to estimate potential health risks.

To quantify non-carcinogenic effects, USEPA has derived reference doses (RfDs) that represent a threshold of toxicity. RfDs are expressed in units of mg/kg-day and represent "an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime" (USEPA, 1989). Oral/dermal RfDs and inhalation reference concentrations (RfCs) used in this HHRA are presented in Tables 5.1 and 5.2, respectively.

To quantify carcinogenic effects, the USEPA has derived slope factors (SFs) for those constituents found to cause a dose-related, statistically significant increase in tumor incidence in an exposed population relative to the incidence of tumors observed in an unexposed population. These dose-related incidence rates are usually determined in a laboratory study. SFs are typically developed based on oral toxicity studies and are reported as risk per dose in units of inverse milligrams per kilogram body weight per day ([mg/kg-day]⁻¹). The SFs are used to quantify the potential risk of cancer associated with a given exposure. Oral/dermal SFs and inhalation unit risk factors (URFs) used in this HHRA are presented in Tables 6.1 and 6.2, respectively.

Toxicity values are developed by USEPA, state regulatory agencies and other entities after a comprehensive scientific review of all available toxicological literature and dose-response information for a constituent. The hierarchy used to select toxicity values that were used in this HHRA was consistent with USEPA (2003a) guidance. Specifically, toxicity values were obtained from the following sources, in order of priority:

- USEPA's Integrated Risk Information System (IRIS) (USEPA, 2012d);
- USEPA's Provisional Peer-Reviewed Toxicity Values (PPRTVs) (USEPA, 2012e); and

• California Environmental Protection Agency (CalEPA, 2012), Office of Environmental Health Hazard Assessment (OEHHA), toxicity criteria database.

The oral SFs and RfDs described above are used to evaluate both ingestion and dermal contact exposure routes. Because most oral toxicity values are based on an administered dose, these toxicity values are sometimes adjusted (expressed as an absorbed dose) when evaluating dermal exposure scenarios. This adjustment is applied only when the gastrointestinal absorption of a compound is less than 50% (USEPA, 2004).

5. Risk Characterization

The risk characterization combines the results of the exposure assessment and the toxicity assessment to provide a quantitative estimate of the potential for carcinogenic and non-carcinogenic human health effects due to exposure to COPCs. This HHRA develops conservative estimates of cancer and non-cancer risks and hazards for residential receptors that may potentially be exposed to groundwater (drinking water) COPCs under a hypothetical future scenario.

Consistent with USEPA (1989) guidance, the potential for carcinogenic and noncarcinogenic effects are evaluated separately. Tables 7.1.RME through 7.2.CTE present the calculation of constituent-specific excess lifetime cancer risks and non-cancer hazard indices (HIs) for future adult and child residential receptors exposed to potable groundwater. Tables 9.1.RME through 9.2.CTE present cancer risks and non-cancer hazards for each receptor across all exposure routes (i.e., ingestion, dermal contact, and inhalation of volatiles while showering) as well as target-organ specific hazard quotients (HQs). Tables 9.3.RME and 9.3.CTE present cumulative cancer risks for the aggregate (child + adult) residential receptor.

5.1 Non-Carcinogenic Health Hazards

The HI is used to characterize potential non-carcinogenic health effects associated with exposure to multiple constituents. This approach assumes that sub-threshold chronic exposures to multiple constituents are additive. The hazard index for ingestion and dermal exposure routes is calculated as follows:

HI = E1/RfD1 + E2/RfD2 + ... + Ei/RfDi

Where:

HI = Hazard Index

E/RfD = Hazard Quotient

Ei = Exposure intake for the ith constituent (mg/kg-day)

RfDi = Reference dose for the i^{th} constituent

The hazard index for the inhalation exposure route is calculated as follows:

 $HI = E1/RfC1 + E2/RfC2 + \dots + Ei/RfCi$

Where:

HI = Hazard Index

E/RfC = Hazard Quotient

Ei = Exposure intake for the i^{th} constituent (mg/m³)

RfCi = Reference concentration for the ith constituent

A HQ value greater than 1 indicates that a calculated exposure is greater than the RfD or RfC for a given constituent and that there may be some potential for health concerns. Similarly, a HI greater than 1 indicates that overall exposure to all constituents of interest may present a concern (USEPA, 1989). Target-organ-specific HIs above the USEPA threshold of 1 can indicate potential effects on individual organs or systems. Target-organ-specific HIs are presented in Tables 9.1.RME through 9.2.CTE.

The non-cancer hazards for future adult and child residents exposed to potable groundwater from the overburden zone at Excelsior Avenue under an RME scenario are 91 and 94, respectively, which are above USEPA's threshold of 1; target-organ HIs for the adult range from 0.7 (gastrointestinal) to 41 (body weight and respiratory), and target-organ HIs for the child range from 0.2 (development) to 27 (whole body). CTE hazards for future adult and child residents are 37 and 65, respectively; target-organ HIs for the adult range from 0.05 (development) to 9 (whole body), and target-organ HIs for the child range from 0.1 (development) to 18 (whole body). Inhalation of naphthalene is the primary hazard driver for adults under an RME scenario and dermal contact with dibenzofuran is the primary hazard driver for adults under an CTE scenario. For children, ingestion of dibenzofuran and benzene in potable groundwater are the primary hazard drivers under an RME scenario, ingestion of dibenzofuran and benzene and dermal contact with dibenzene and dermal conta

Naphthalene was detected in approximately 50% of the groundwater samples from the overburden zone, with detected concentrations ranging from 0.12 to 9,600 micrograms per liter (μ g/L). The highest naphthalene concentrations were observed in wells MW-EPA-05 and MW-EPA-08 from 2009, which are located within 40 feet of the Old Red Spring (Figure 3). Dibenzofuran was only detected in 2 of 31 overburden groundwater samples, with a maximum concentration of 230 μ g/L in well MW-EPA-05. Benzene was detected in 13 of 31 samples with concentrations ranging from 0.32 to 5,800 μ g/L. The maximum benzene

concentration was observed in well MW-SS-05-01, which is located north of Excelsior Avenue (Figure 3). The occurrence of high COPC concentrations is correlated with the presence of DNAPL (ARCADIS, 2011). Based on this information, it appears that only a few constituents in a few wells are driving the non-cancer hazards. Due to the high variability in COPC concentrations, the resulting EPCs are likely conservative, which results in conservative estimates of non-cancer hazards.

5.2 Carcinogenic Risks

Excess lifetime carcinogenic risk is expressed as a probability of developing cancer over the course of a lifetime as a result of a given level of exposure (USEPA, 1989). For the ingestion and dermal contact exposure routes, carcinogenic risk is calculated as follows:

Risk = E x SF

Where:

E = Exposure Intake (mg/kg-day)

SF = Slope Factor (mg/kg-day)⁻¹

For the inhalation exposure route, carcinogenic risk is calculated as follows:

Risk = E x URF

Where:

E = Exposure Intake (mg/m³)

URF = Unit Risk Factor (mg/m³)⁻¹

USEPA uses a range of cancer risks of 1×10^{-4} to 1×10^{-6} as a "target range within which the Agency strives to manage risks as part of a Superfund cleanup" (USEPA, 1991b). The National Contingency Plan (NCP) states that "for known or suspected carcinogens, acceptable exposure levels are generally concentration levels that represent an excess upper bound lifetime cancer risk to an individual of between 1×10^{-4} to 1×10^{-6} " (USEPA, 2003b).

Excess lifetime cancer risks for a hypothetical future resident (child + adult) exposed to potable groundwater via ingestion, dermal contact, and inhalation of volatiles while

showering are 3×10^{-3} under an RME scenario and 4×10^{-4} under a CTE scenario, both of which are above USEPA's target risk range. The inhalation of naphthalene vapors while showering is the primary risk driver for the hypothetical future resident and accounts for approximately 60% of the total excess lifetime cancer risk under an RME scenario. Risks attributable to ingestion and inhalation of benzene are also above USEPA's target risk range under an RME scenario. For the CTE scenario, inhalation of naphthalene and ingestion of benzene are the primary risk drivers. Similar to the non-cancer hazards, it appears that only a few constituents in a few wells are driving carcinogenic risks. Due to the high variability in COPC concentrations, the resulting EPCs are likely conservative, which results in conservative estimates of cancer risks.

ARCADIS

6. Uncertainty Analysis

There are various sources of uncertainty inherent in the risk assessment process. These generally include uncertainties associated with exposure parameters and toxicity factors for which conservative assumptions are typically used so as not to underestimate risk. The objective of an uncertainty analysis is to present key information regarding assumptions and uncertainties in the risk assessment process to place the quantitative risk estimates in proper perspective (USEPA, 1989). The key sources of uncertainty in this HHRA include hypothetical future land use, the development of EPCs, and the use of standard toxicity values that are typically derived from animal studies.

6.1 Future Land Use

As stated previously, the anticipated future land use is expected to remain consistent with current land use (i.e., non-residential) and current restrictions regarding the use of the groundwater as a potable water supply also remaining in place. It's important to note that this HHRA evaluates the use of site groundwater in the absence of institutional controls. According to USEPA's (1989) Risk Assessment Guidance for Superfund (RAGS) Part A, the determination of potential future land use should be based on available information and professional judgment, and should consider reasonably anticipated future land use. An assumption of future residential land use may not be justifiable if the probability that the site will support residential land use in the future is exceedingly small (USEPA, 1989; 1991c). USEPA guidance also indicates that the assumption of residential land use is not a requirement of the Superfund program, but rather is an assumption that can be made based on conservative, but realistic exposures, to ensure that remedies that are ultimately selected for the site will be protective (USEPA, 1991c). USEPA's (1995) Land Use in the CERCLA Remedy Selection Process indicates that current land use and zoning laws (among other types of information) may be used to identify reasonably anticipated future land use. Based on these guidance documents, it is clear that an assumption of future residential land use is not appropriate for all sites and may not be a suitable assumption for the Project Area based on its small size, current non-residential land use, zoning laws, and the City of Saratoga requirements regarding municipal water supply. It should also be noted, that NYSDEC's 6NYCRR Part 375-1.8(g)(2) allows restrictions on the use of groundwater to be placed on "residential use" properties. This approach is consistent with the approach taken at other MGP sites in New York.

6.2 Analytical Data

The analytical groundwater data that form the basis of this HHRA were collected from various wells in the overburden zone across the Project Area at different sampling intervals

(i.e., 2006, 2008, and/or 2009). Because some of these wells were not sampled each year, the dataset for overburden groundwater is biased towards those wells with more data, especially since average concentrations for each well were not calculated prior to the calculation of EPCs. The highest concentrations of risk and hazard drivers (i.e., naphthalene, dibenzofuran, and benzene) were primarily observed in wells MW-EPA-05 and MW-SS-05-01. Well MW-EPA-05 was sampled in 2008 and 2009 and concentrations of dibenzofuran and naphthalene were significantly lower in 2008 than 2009 (based on Method 8270C). DNAPL has been observed in a few areas of the Project Area, including near well MW-EPA-05 (ARCADIS, 2009), which may explain the isolated, high concentrations of COPCs. Well MW-SS-05-01 was only sampled in 2006 for a subset of analytes, but contained the highest concentration of benzene.

EPCs based on these analytical data may overestimate the "true mean" of the data because there was such a wide variance in observed concentrations. In the case of 1,1'-biphenyl, anthracene, dibenzofuran, fluorene, and pyrene, maximum concentrations were used as EPCs due to the low frequency of detection, which precluded the calculation of UCLs. Use of maximum concentrations as EPCs in this HHRA most likely overestimates cancer risks and non-cancer hazards.

6.3 Toxicity Factors

The toxicity factors used in the quantitative evaluation of potential risks and hazards (e.g., RfDs, SFs) were primarily selected from IRIS. Secondary sources included PPRTVs and CalEPA values. For many chemicals, there is a lack of appropriate information on effects in humans (i.e., epidemiologic studies). Therefore, animal studies are generally used to develop toxicity values used in HHRAs.

Specifically, for non-cancer effects, toxicity values based on laboratory animal data are extrapolated with the use of uncertainty factors to account for factors such as: (1) variation in sensitivity among members of the human population (i.e., intraspecies variability), (2) the uncertainty in extrapolating animal data to humans (i.e., interspecies variability), (3) the uncertainty in extrapolating from less-than-lifetime data to lifetime exposure, (4) the uncertainty in extrapolating from a Lowest-Observed-Adverse-Effect-Level (LOAEL) rather than a No-Observed-Adverse-Effect-Level (NOAEL), and (5) the uncertainty associated with extrapolation from animal data when the database is incomplete (USEPA, 2002c).

A similar "margin of safety" is built into toxicity values for carcinogenic effects. The evaluation of the carcinogenicity of chemicals in this HHRA follows the USEPA (2005) Guidelines for Carcinogen Risk Assessment. SFs are based on dose-response curves and their derivation includes the use of mathematical models to extrapolate from observed high

dose data to the desired (but unmeasurable) slope at low dose (USEPA, 2012f). In order to account for the uncertainty in this extrapolation process, USEPA typically chooses to employ the upper 95th confidence limit of the slope as the SF; therefore, there is a 95 percent probability that the true cancer potency is lower than the value chosen for the SF (USEPA, 2012f). Based on the above information, the toxicity values used in this HHRA are considered to be conservative and may overestimate potential risks and hazards.

Because some chemicals do not have associated toxicity values, the potential for risks and hazards may be underestimated for some COPCs. However, it is not expected that these COPCs would add significantly to overall risks and hazards.

ARCADIS

7. Summary and Conclusions

Media of interest associated with the Project Area include overburden groundwater in the Excelsior Avenue Area and bedrock groundwater in the Old Red Spring Area; these media were the focus of this HHRA. The following presents a summary of the findings for the exposure pathways that were evaluated in this HHRA:

- Bedrock Groundwater: Water quality of the Old Red Spring has been continuously analyzed since the beginning of Superfund investigations starting as far back as 1990, and the NYSDOH continues to monitor the Old Red Spring on an on-going basis. To date, there have been no exceedances of NYSDOH drinking water standards or NYSDEC groundwater standards from water taken from the Old Red Spring. The Old Red Spring is supplied by water pumped from an artesian bedrock aquifer below the approximately 100 foot thick lacustrine clay layer underlying the Project Area. DNAPL, which has likely been present for over 100 years, has not migrated downward through the 100 feet of clay. Based on this information, there are no unacceptable human health risks from exposure to bedrock groundwater.
- <u>Overburden Groundwater (Current Condition)</u>: There is no current direct contact exposure pathway for residents to overburden groundwater in the Excelsior Avenue Area because there is no potable use of groundwater in the vicinity of the Project Area. Current zoning at the Project Area restricts the use of groundwater from the overburden as a potable source and requires use of the municipal water supply (i.e., prohibits the installation of new private wells within 100 feet of a municipal water supply). Therefore, overburden groundwater does not present a current complete exposure pathway for residents.
- Overburden Groundwater (Hypothetical Future Condition): Overburden groundwater in the Project Area represents a potential exposure medium for a hypothetical future scenario if residents in the Excelsior Avenue Area were allowed to use groundwater as a potable source. However, it is important to note that city requirements for the use of municipal water supplies preclude the use of site groundwater as a potable source. The hypothetical future residential scenario assumes the absence of institutional controls. Based on a hypothetical future residential scenario, potable use of overburden groundwater may present unacceptable risks to human health (i.e., estimated risks and hazards were above USEPA targets which include a cancer risk range of 1x10⁻⁴ to 1x10⁻⁶ and a hazard index of 1). However, this hypothetical future scenario is highly unlikely within the lifecycle of any remedy presented in the Feasibility Study (i.e., 30 years) based on the current site usage (non-residential) and zoning restrictions (which prohibits the installation of new private wells and requires new structures to utilize the municipal

water supply within the City limits if the water lines are within 100 feet). Since municipal water supply pipes are located in the streets on both sides of the site, this zoning restriction would preclude the installation of new private wells. In addition, NYSDEC's 6NYCRR Part 375-1.8(g)(2) allows restrictions on the use of groundwater to be placed on "residential use" properties. Restrictions could be placed on the groundwater as additional protection against current City zoning restrictions were to be removed. The placement of restrictions on groundwater in this type of setting is consistent with the approach taken at other MGP sites in New York.

- As requested by USEPA, this HHRA only evaluates a hypothetical future groundwater exposure scenario for a resident. Under future conditions, potential risks and hazards for an industrial scenario involving groundwater may equate to approximately one-half of that for the adult resident; however, quantification of potential industrial risks and hazards would depend on the type of worker evaluated (e.g., utility worker, construction worker), the exact use of groundwater (e.g., potable source, strict industrial use), potential exposure routes, and associated exposure factors used in the quantification of risk estimates.
- <u>Vapor Intrusion</u>: The vapor intrusion pathway does not currently pose an unacceptable risk to human health. This pathway was evaluated relative to onsite receptors such as commercial workers and members at the fitness gym. Based on a screening evaluation of groundwater data collected within 100 feet of the building, concentrations are below USEPA (2002a) target groundwater concentrations. Should the site usage change in the future, measures could be taken to mitigate this pathway if necessary. The need or scope of any potential mitigation methods would need to be evaluated once the nature of the future use was identified.

8. References

Andelman, J.B. 1990. Total exposure to volatile organic compounds in potable water. Significance and Treatment of Volatile Organic Compounds in Water Supplies. N.M. Ram, R.F. Christman, K.P. Cantor, eds. Lewis, Chelsea, MI, pp. 485-504.

ARCADIS. 2009. Focused Feasibility Study Report, Old Red Spring Area, Saratoga Springs Former Manufactured Gas Plant Site, Saratoga Springs, New York. August 2009.

ARCADIS. 2011. Feasibility Study Report, Old Red Spring Area, Saratoga Springs Former Manufactured Gas Plant Site, Saratoga Springs, New York. March 2011.

California Environmental Protection Agency (CalEPA), Office of Environmental Health Hazard Assessment (OEHHA). 2012. Toxicity Criteria Database. Available at http://www.oehha.ca.gov/risk/chemicalDB/index.asp.

City of Saratoga. 2007. Chapter 240 Zoning Ordinance: Adopted August 6, 1990, most recent amendment August 7, 2007.

City of Saratoga Springs Office of Commissioner of Public Works (SSCPW). 2012. Annual Drinking Water Report for 2011 – City of Saratoga Springs. May 2012.

New York Code of Rules and Regulations (NYCRR). 1991. Title 6 New York State Register and Official Compilation of Codes, Rules and Regulations of the State of New York, Part 701: Classifications – Surface Waters and Ground waters. August 1991.

New York State Department of Environmental Protection Agency (NYSDEC). 1998. Division of Water Technical and Operational Guidance Series 1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998.

Schaum, J., K. Hoang, R. Kinerson, J. Moya, and R.G.G. Wang. 1994. Estimating Dermal and Inhalation Exposure to Volatile Chemicals in Domestic Water. Water Contamination and Health. R.G.M. Wang, ed. Marcel Dekker, New York, pp. 305-321.

U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part A. Interim Final. EPA/540/1-89/002. December 1989.

USEPA. 1991a. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Supplemental Guidance, Standard Default Exposure Factors, Interim Final. Dated March 25, 1991.

USEPA. 1991b. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part C, Risk Evaluation of Remedial Alternatives. Interim. Publication 9285.7-01C. October 1991.

USEPA. 1991c. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive 9355.0-30. April 1991.

USEPA. 1995. Land Use in the CERCLA Remedy Selection Process. OSWER Directive 9355.7-04. May 1995.

USEPA. 1997. Exposure Factors Handbook. EPA/600/P-95/002Fa. August 1997.

USEPA. 2002a. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004. November 2002.

USEPA. 2002b. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December.

USEPA. 2002c. A Review of the Reference Dose and Reference Concentration Processes. EPA/630/P-02/002F. December 2002.

USEPA. 2003a. Human Health Toxicity Values in Superfund Risk Assessments. OSWER Directive 9285.7-53. December 5, 2003.

USEPA. 2003b. 40 CFR Part 300, National Contingency Plan, §300.430. 7-1-03 Edition.

USEPA. 2004. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. Final. EPA/540/R/99/005. July 2004.

USEPA. 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. March.

USEPA. 2009. Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part F, Supplemental Guidance for Inhalation Risk Assessment. Final. EPA-540-R-070-002. January 2009.

USEPA. 2010a. Letter to Mr. William Jones, National Grid, from Maria Jon, USEPA, regarding the Draft Focused Feasibility Study dated August 2009. Dated January 29, 2010.

USEPA. 2010b. Niagara Mohawk Power Corporation, Saratoga Springs Plant, New York. EPA ID#: NYD980664361. Available at http://www.epa.gov/region2/superfund/npl/0202182c.pdf.

USEPA. 2010c. ProUCL Version 4.1.00 User Guide (Draft). EPA/600/R-07/041. May 2010.

USEPA. 2011. Letter to Mr. William Jones, National Grid, from Maria Jon, USEPA, regarding agency review of the Pathways Analysis Report. Dated December 19, 2011.

USEPA. 2012a. Personal communication. Electronic mail from Maria Jon, USEPA, to William Jones, National Grid. Dated May 11, 2012.

USEPA. 2012b. Regional Screening Levels. May 2012. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration table/index.htm.

USEPA. 2012c. National Primary Drinking Water Regulations. Available at <u>http://www.water.epa.gov/drink/contaminants/index.cfm</u>. Last updated June 5, 2012.

USEPA. 2012d. Integrated Risk Information System (IRIS). <u>http://www.epa.gov/iris/</u>. Last updated June 1, 2012.

USEPA. 2012e. Provisional Peer-Reviewed Toxicity Values for Superfund, PPRTV Assessments Electronic Library. Available at <u>http://hhpprtv.ornl.gov/</u>.

USEPA. 2012f. USEPA Region 8 Toxicity Assessment. Available at <u>http://www.epa.gov/region8/r8risk/hh toxicity.html</u>. Last updated January 18, 2012.

Tables

Table 0

Site Risk Assessment Identification Information

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Site Name/OU:	Saratoga Springs, NY
Region:	2
EPA ID Number:	NYD980664361
State:	New York
Status:	
Federal Facility (Y/N):	Y
EPA Project Manager:	Maria Jon
EPA Risk Assessor:	
Prepared by (Organization):	ARCADIS
Prepared for (Organization):	National Grid (formerly the Niagara Mohawk Power Corporation)
Document Title:	Human Health Risk Assessment for Niagara Mohawk Power Corporation Saratoga Springs Plant
Document Date:	July 2012
Probabilistic Risk Assessment (Y/N):	N
Comments:	

Table 1

Selection of Exposure Pathways

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Current	Groundwater	Tap Water	Old Red Spring (bedrock groundwater zone)	Resident	Adult	Ingestion	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
						Dermal	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
					Child	Ingestion	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
						Dermal	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
			Excelsior Avenue (overburden groundwater zone)	Resident	Adult	Ingestion	Qualitative	Site groundwater is not currently used as a potable source. There are currently no residences on the Site. Exposure pathway is incomplete.
						Dermal	Qualitative	Site groundwater is not currently used as a potable source. There are currently no residences on the Site. Exposure pathway is incomplete.
						Inhalation (showering)	Qualitative	Site groundwater is not currently used as a potable source. There are currently no residences on the Site. Exposure pathway is incomplete.
					Child	Ingestion	Qualitative	Site groundwater is not currently used as a potable source. There are currently no residences on the Site. Exposure pathway is incomplete.
						Dermal	Qualitative	Site groundwater is not currently used as a potable source. There are currently no residences on the Site. Exposure pathway is incomplete.
						Inhalation (showering)	Qualitative	Site groundwater is not currently used as a potable source. There are currently no residences on the Site. Exposure pathway is incomplete.
				Commercial Worker	Adult	Inhalation (vapor intrusion)	Quantitative	Commercial workers at the fitness gym may be exposed to vapors in indoor air emanating from overburden groundwater. Monitoring wells within 100 feet of the building represent potential exposure points.

Table 1

Selection of Exposure Pathways

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Future	Groundwater	Tap Water	Old Red Spring (bedrock groundwater zone)	Resident	Adult	Ingestion	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
						Dermal	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
					Child	Ingestion	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
						Dermal	Quantitative	Bedrock groundwater (i.e., beneath the confining clay layer) is currently available as a potable source at the Old Red Spring.
			Excelsior Avenue (overburden groundwater zone)	Resident	Adult	Ingestion	Quantitative	Exposure pathway may be potentially complete if residential development were to occur onsite in the future and such residences installed a private drinking water well.
						Dermal	Quantitative	Exposure pathway may be potentially complete if residential development were to occur onsite in the future and such residences installed a private drinking water well.
						Inhalation (showering)	Quantitative	Exposure pathway may be potentially complete if residential development were to occur onsite in the future and such residences installed a private drinking water well.
					Child	Ingestion	Quantitative	Exposure pathway may be potentially complete if residential development were to occur onsite in the future and such residences installed a private drinking water well.
						Dermal	Quantitative	Exposure pathway may be potentially complete if residential development were to occur onsite in the future and such residences installed a private drinking water well.
						Inhalation (showering)	Quantitative	Exposure pathway may be potentially complete if residential development were to occur onsite in the future and such residences installed a private drinking water well.
				Commercial Worker	Adult	Inhalation (vapor intrusion)	Quantitative	Commercial workers at the fitness gym may be exposed to vapors in indoor air emanating from overburden groundwater. Monitoring wells within 100 feet of the building represent potential exposure points.

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area

Scenario Timeframe: Current/Future Medium: Overburden Groundwater Exposure Medium: Overburden Groundwater

									Concentration	Screening	Potential	Potential	Potential			Rationale for
	Location ID:		Minimum	Maximum	Detection	Max Detect	Minimum	Maximum	used for	Toxicity	ARAR/TBC			Potential ARAR/TBC	COPC Flag	Selection or
CAS Number	Date Collected:	Units	Detect	Detect	Frequency	Location	Non-Detect	Non-Detect	Screening [1]	Value ^[2]	Value 1	Source 1	Value 2	Source 2	(Y/N)	Deletion [3]
	VOCs by USEPA Method 8260B															
71432	Benzene	ug/L	0.32	5800	13/31	MW-SS-05-01	1	1	5800	0.39	5	MCL	1	NYSDEC Class GA	Y	ASTV
56235	Carbon tetrachloride	ug/L	2.9	2.9	1/31	MW-EPA-07	1	250	2.9	0.39	5	MCL	5	NYSDEC Class GA	N	FOD
67663	Chloroform	ug/L	0.2	0.2	1/31	MW-EPA-06	1	250	0.2	0.19	NA	MCL	7	NYSDEC Class GA	N	FOD
100414	Ethylbenzene	ug/L	1.7	920	11/31	MW-EPA-08	1	4	920	1.3	700	MCL	5	NYSDEC Class GA	Y	ASTV
75092	Methylene chloride	ug/L	28	28	1/31	MW-EPA-04	1	340	28	9.9	5	MCL	5	NYSDEC Class GA	N	FOD
108883	Toluene	ug/L	0.16	460	9/31	MW-EPA-08	1	50	460	86	1,000	MCL	5	NYSDEC Class GA	Y	ASTV
1330207	Xylenes (total)	ug/L	1.4	1100	11/31	MW-EPA-08	3	5	1100	19	10,000	MCL	5	NYSDEC Class GA	Y	ASTV
	SVOCs by USEPA Method 8270C															
92524	1,1'-Biphenyl	ug/L	19	19	1/9	MW-SS-05-01	9.4	9.6	19	0.083	NA	NA	5	NYSDEC Class GA	Y	ASTV
91576	2-Methylnaphthalene	ug/L	1	6700	8/22	MW-EPA-05	10	100	6700	2.7	NA	NA	NA	NYSDEC Class GA	Y	ASTV
83329	Acenaphthene	ug/L	0.3	3000	7/23	MW-EPA-05	9.5	100	3000	40	NA	NA	20	NYSDEC Class GA	Y	ASTV
120127	Anthracene	ug/L	2.7	1500	2/22	MW-EPA-05	10	200	1500	130	NA	NA	50	NYSDEC Class GA	Y	ASTV
56553	Benzo(a)anthracene	ug/L	690	690	1/22	MW-EPA-05	1	20	690	0.029	NA	NA	0.002	NYSDEC Class GA	N	FOD
50328	Benzo(a)pyrene	ug/L	460	460	1/22	MW-EPA-05	1	20	460	0.0029	0.2	MCL	0	NYSDEC Class GA	N	FOD
205992	Benzo(b)fluoranthene	ug/L	220	220	1/22	MW-EPA-05	1	20	220	0.029	NA	NA	0.002	NYSDEC Class GA	N	FOD
207089	Benzo(k)fluoranthene	ug/L	300	300	1/22	MW-EPA-05	1	20	300	0.29	NA	NA	0.002	NYSDEC Class GA	N	FOD
218019	Chrysene	ug/L	740	740	1/22	MW-EPA-05	10	200	740	2.9	NA	NA	0.002	NYSDEC Class GA	N	FOD
132649	Dibenzofuran	ug/L	1.6	230	2/31	MW-EPA-05	9.4	200	230	0.58	NA	NA	NA	NYSDEC Class GA	Y	ASTV
206440	Fluoranthene	ug/L	1400	1400	1/22	MW-EPA-05	10	200	1400	63	NA	NA	50	NYSDEC Class GA	N	FOD
86737	Fluorene	ug/L	12	2200	3/22	MW-EPA-05	10	100	2200	22	NA	NA	50	NYSDEC Class GA	Y	ASTV
193395	Indeno(1,2,3-cd)pyrene	ug/L	130	130	1/22	MW-EPA-05	1	20	130	0.029	NA	NA	0.002	NYSDEC Class GA	N	FOD
91203	Naphthalene	ug/L	130	9600	8/23	MW-EPA-05	9.5	10	9600	0.14	NA	NA	10	NYSDEC Class GA	Y	ASTV
85018	Phenanthrene	ug/L	10	4800	2/22	MW-EPA-05	10	200	4800	NA	NA	NA	50	NYSDEC Class GA	N	NSTV
108952	Phenol	ug/L	4	20	3/31	MW-SS-05-01	9.4	500	20	450	NA	NA	1	NYSDEC Class GA	N	BSTV
129000	Pyrene	ug/L	1.4	2000	2/23	MW-EPA-05	9.5	200	2000	8.7	NA	NA	50	NYSDEC Class GA	Y	ASTV
	PAHs by USEPA Method 8310															
91576	2-Methylnaphthalene	ug/L	16	310	2/9	MW-SS-05-01	0.95	1.2	310	2.7	NA	NA	NA	NYSDEC Class GA	Y	ASTV
83329	Acenaphthene	ug/L	1	46	3/19	MW-EPA-05	0.94	95	46	40	NA	NA	20	NYSDEC Class GA	Y	ASTV
218019	Chrysene	ug/L	0.03	0.03	1/19	MW-EPA-10	0.19	19	0.03	2.9	NA	NA	0.002	NYSDEC Class GA	N	BSTV
91203	Naphthalene	ug/L	0.12	2500	9/19	MW-SS-05-01	0.94	0.97	2500	0.14	NA	NA	10	NYSDEC Class GA	Y	ASTV
	Miscellaneous															
14808798	Sulfate	ug/L	8400	310000	7/12	MW-EPA-01	5000	5000	310000	NA	NA	NA	250000	NYSDEC Class GA	N	NSTV
	Inorganics - Total															
7439896	Iron	ug/L	99.6	27700	12/12	MW-EPA-02	NA	NA	27700	1100	NA	NA	300	NYSDEC Class GA	Y	ASTV
7439965	Manganese	ug/L	77.1	2490	12/12	LTMW-12	NA	NA	2490	32	NA	NA	300	NYSDEC Class GA	Y	ASTV
	Inorganics-Filtered															
7439896	Iron (filtered)	ug/L	89	5240	7/12	LTMW-12	150	150	5240	1100	NA	NA	300	NYSDEC Class GA	N	BSTV
7439965	Manganese (filtered)	ug/L	66.8	2520	12/12	LTMW-12	NA	NA	2520	32	NA	NA	300	NYSDEC Class GA	Y	ASTV

<u>Notes:</u>
[1] Maximum concentration was used as the screening concentration.

[2] Screening Toxicity Value represents USEPA Regional Screening Levels (RSLs) for tap water dated May 2012. RSLs based on a non-cancer endpoint were adjusted to reflect a hazard quotient of 0.1.

[3] Rationale codes:

ASTV = Retained because screening concentration is above screening toxicity value.

BSTV = Excluded because screening concentration is below screening toxicity value.

NSTV = No screening toxicity value. Constituent has no associated toxicity value that would allow quantitative evaluation; therefore, this constituent is not retained as a COPC

FOD = Frequency of detection is less than 5 percent.

Table contains detected constituents only.

ARAR/TBC = Applicable or Relevant and Appropriate Requirement / To Be Considered

COPC = Chemical of Potential Concern

MCL = Maximum Contaminant Level

NA = Not available

ug/L = micrograms per liter

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Old Red Spring Area

Scenario Timeframe: Current/Future
Medium: Bedrock Groundwater
Exposure Medium: Bedrock Groundwater

CAS Number	Location ID: Date Collected:	Units	Minimum	Maximum Detect			Minimum Non-Detect		Concentration used for Screening ^[1]	Screening Toxicity Value ^[2]	Potential ARAR/TBC Value 1	Potential ARAR/TBC Source 1	Potential ARAR/TBC Value 2	Potential ARAR/TBC Source 2	COPC Flag (Y/N)	Rationale for Selection or Deletion ^[3]
	VOCs by USEPA Method 8260B								5						. ,	
71432	Benzene	ug/L			0/20		NA	NA	ND	0.39	5	MCL	1	NYSDEC Class GA	Ν	ND
100414	Ethylbenzene	ug/L			0/20		NA	NA	ND	1.3	700	MCL	5	NYSDEC Class GA	N	ND
108883	Toluene	ug/L			0/20		NA	NA	ND	86	1000	MCL	5	NYSDEC Class GA	N	ND
1330207	Xylenes (total)	ug/L			0/20		NA	NA	ND	19	10000	MCL	5	NYSDEC Class GA	N	ND
	SVOCs by USEPA Method 8270C															
91576	2-Methylnaphthalene	ug/L		-	0/20	1	NA	NA	ND	2.7	NA	NA	NA	NYSDEC Class GA	N	ND
83329	Acenaphthene	ug/L			0/20		NA	NA	ND	40	NA	NA	20	NYSDEC Class GA	N	ND
208968	Acenaphthylene	ug/L			0/20		NA	NA	ND	NA	NA	NA	NA	NYSDEC Class GA	N	ND
120127	Anthracene	ug/L			0/20		NA	NA	ND	130	NA	NA	50	NYSDEC Class GA	N	ND
56553	Benzo(a)anthracene	ug/L		-	0/20	-	NA	NA	ND	0.029	NA	NA	0.002	NYSDEC Class GA	N	ND
50328	Benzo(a)pyrene	ug/L			0/20		NA	NA	ND	0.0029	0.2	MCL	0	NYSDEC Class GA	N	ND
205992	Benzo(b)fluoranthene	ug/L			0/20		NA	NA	ND	0.029	NA	NA	0.002	NYSDEC Class GA	N	ND
191242	Benzo(ghi)perylene	ug/L			0/20		NA	NA	ND	NA	NA	NA	NA	NYSDEC Class GA	N	ND
207089	Benzo(k)fluoranthene	ug/L			0/20		NA	NA	ND	0.29	NA	NA	0.002	NYSDEC Class GA	N	ND
218019	Chrysene	ug/L		-	0/20		NA	NA	ND	2.9	NA	NA	0.002	NYSDEC Class GA	N	ND
53703	Dibenzo(a,h)anthracene	ug/L		-	0/20	1	NA	NA	ND	0.0029	NA	NA	NA	NYSDEC Class GA	N	ND
206440	Fluoranthene	ug/L		-	0/20	-	NA	NA	ND	63	NA	NA	50	NYSDEC Class GA	N	ND
86737	Fluorene	ug/L			0/20		NA	NA	ND	22	NA	NA	50	NYSDEC Class GA	N	ND
193395	Indeno(1,2,3-cd)pyrene	ug/L		-	0/20	-	NA	NA	ND	0.029	NA	NA	0.002	NYSDEC Class GA	Ν	ND
91203	Naphthalene	ug/L		-	1/20	7/17/06	NA	NA	1	0.14	NA	NA	10	NYSDEC Class GA	N	ND ^[a]
85018	Phenanthrene	ug/L		-	0/20		NA	NA	ND	NA	NA	NA	50	NYSDEC Class GA	N	ND
129000	Pyrene	ug/L			0/20		NA	NA	ND	8.7	NA	NA	50	NYSDEC Class GA	N	ND

Notes:

[1] Maximum concentration was used as the screening concentration.

[2] Screening Toxicity Value represents USEPA Regional Screening Levels (RSLs) for tap water dated May 2012. RSLs based on a non-cancer endpoint were adjusted to reflect a hazard quotient of 0.1.

[3] Rationale codes:

ND = Constituent was not detected.

[a] The only detected concentration of naphthalene was in July 2006; all other concentrations were non-detect. Because naphthalene was not detected in recent sampling events (i.e., 2010 and 2011), this constituent was not retained as a COPC.

ARAR/TBC = Applicable or Relevant and Appropriate Requirement / To Be Considered

COPC = Chemical of Potential Concern

MCL = Maximum Contaminant Level

ND = Non-detect

NA = Not available

ug/L = micrograms per liter

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area - Vapor Intrusion Pathway (Site-Wide)

Scenario	Timeframe:	Current/Future
Medium:	Overburden	Groundwater

Exposure Medium: Overburden Groundwater

	Location ID:		Minimum	Maximum	Detection	Max Detect	Minimum	Maximum	Concentration		Screening	Potential	Potential		Rationale for
		11	Deter	Datast	-		New Detect		used for	Toxic and	Toxicity	ARAR/TBC	ARAR/TBC	COPC Flag	Selection or
CAS Number	Date Collected: VOCs by USEPA Method 8260B	Units	Detect	Detect	Frequency	Location	Non-Detect	Non-Detect	Screening ^[1]	Volitale [2]	Value [3]	Value	Source	(Y/N)	Deletion ^[4]
74.400			0.32	5000	42/24	MW 66 65 64	4	1	5800	VEC	5	NA	NA	Y	ASTV
71432 56235	Benzene	ug/L ug/L	2.9	5800 2.9	13/31 1/31	MW-SS-05-01 MW-EPA-07	1	1 250	2.9	YES YES	5	NA	NA	Y N	BSTV
67663	Carbon tetrachloride Chloroform	ug/L ug/L	0.2	0.2	1/31	MW-EPA-07 MW-EPA-06	1	250	0.2	YES	5 80	NA	NA	N	BSTV
100414	Ethylbenzene	ug/L ug/L	1.7	920	1/31	MW-EPA-08	1	230	920	YES	700	NA	NA	Y	ASTV
75092	Methylene chloride	ug/L ug/L	28	28	1/31	MW-EPA-08	1	4 340	28	YES	58	NA	NA	N	BSTV
108883	Toluene	ug/L ug/L	0.16	460	9/31	MW-EPA-04 MW-EPA-08	1	50	460	YES	1500	NA	NA	N	BSTV
1330207	Xylenes (total)	ug/L ug/L	1.4	1100	11/31	MW-EPA-08	3	5	1100	NA	NA	NA	NA	N	NSTV
NA	Total BTEX	ug/L ug/L	0.32	7700	13/31	MW-SS-05-01	NA	NA	7700	NA	NA	NA	NA	N	NSTV
na.	SVOCs by USEPA Method 8270C	uy/L	0.32	1100	13/31	10100-33-03-01	INA	INA	7700	INA.	IN/A	N/A	11/4	IN	NOTV
92524		a/l	19	19	1/9	MW-SS-05-01	9.4	9.6	19	NA	NA	NA	NA	N	NSTV
92524	1,1'-Biphenyl 2-Methylnaphthalene	ug/L ug/L	19	6700	8/22	MW-EPA-05	9.4	9.6	6700	YES	3300	NA	NA	Y	ASTV
91576		ug/L ug/L	0.4	0.4	8/22	MW-EPA-05 MW-EPA-07	9.4	500	0.4	NO	3300 NA	NA	NA	r N	NSTV
95487 106445	2-Methylphenol 4-Methylphenol	ug/L ug/L	0.4 1.2	0.4	1/31	MW-EPA-07 MW-EPA-07	9.4	500	1.2	NA	NA	NA	NA	N	NSTV
83329			0.3	3000	7/23	MW-EPA-07 MW-EPA-05	9.4	100	3000	YES	NA	NA	NA	N	NSTV
208968	Acenaphthene	ug/L ug/L	20	1300	3/22	MW-EPA-05 MW-EPA-05	9.5	100	1300	NA	NA	NA	NA	N	NSTV
1208968	Acenaphthylene	- 3	20	1300	3/22	MW-EPA-05 MW-EPA-05	10	200	1300	NA	NA	NA	NA	N	NSTV
	Anthracene	ug/L					10	200		NO					NSTV
56553	Benzo(a)anthracene	ug/L	690 460	690	1/22 1/22	MW-EPA-05	1	20	690 460	NO	NA NA	NA	NA NA	N	NSTV
50328	Benzo(a)pyrene	ug/L		460		MW-EPA-05	1	20		YES		NA		N	
205992	Benzo(b)fluoranthene	ug/L	220	220 150	1/22 1/22	MW-EPA-05	10	20	220 150	NA	NA NA	NA NA	NA NA		NSTV NSTV
191242	Benzo(ghi)perylene	ug/L	150			MW-EPA-05	-				NA	NA	NA	N	
207089	Benzo(k)fluoranthene	ug/L	300 3.7	300 13	1/22 2/31	MW-EPA-05 MW-SS-05-01	1 9.4	20 500	300 13	NO NO	NA	NA	NA	N	NSTV NSTV
86748	Carbazole	ug/L	3.7 740	740			2	200	740	-			NA		-
218019	Chrysene	ug/L	-	230	1/22	MW-EPA-05	10		-	YES	NA	NA		N	NSTV
132649	Dibenzofuran	ug/L	1.6		2/31	MW-EPA-05	9.4	200 200	230	YES NO	NA	NA	NA NA	N	NSTV NSTV
206440	Fluoranthene	ug/L	1400	1400	1/22	MW-EPA-05	10		1400	-	NA	NA		N	-
86737	Fluorene	ug/L	12	2200	3/22	MW-EPA-05	10	100	2200	YES	NA	NA	NA	N	NSTV
193395	Indeno(1,2,3-cd)pyrene	ug/L	130	130 9600	1/22	MW-EPA-05		20	130	NO	NA	NA	NA NA	N Y	NSTV
91203	Naphthalene	ug/L	130		8/23	MW-EPA-05	9.5	10	9600	YES	150	NA			ASTV
85018	Phenanthrene	ug/L	10	4800	2/22	MW-EPA-05	10	200 500	4800 20	NA NO	NA	NA	NA NA	N	NSTV
108952	Phenol	ug/L	4	20	3/31	MW-SS-05-01	9.4		-	-	NA	NA		N	NSTV
129000 NA	Pyrene Total PAHs2	ug/L	1.4 130	2000 35000	2/23 8/23	MW-EPA-05 MW-EPA-05	9.5 NA	200 NA	2000 35000	YES NA	NA NA	NA NA	NA NA	N	NSTV NSTV
NA		ug/L	130	35000	8/23	WWV-EPA-05	NA	NA	35000	NA	INA	NA	NA	IN	INSTV
04570	PAHs by USEPA Method 8310		10	010	0/0	NUM 00 05 04	0.05	10	010	2/50	0000			N	DOT! (
91576	2-Methylnaphthalene	ug/L	16	310	2/9	MW-SS-05-01	0.95	1.2	310	YES	3300	NA	NA	N	BSTV
83329	Acenaphthene	ug/L	1	46	3/19	MW-EPA-05	0.94	95	46	YES	NA	NA	NA	N	NSTV
208968	Acenaphthylene	ug/L	0.87	470	2/19	MW-SS-05-01	0.94	9.5	470	NA	NA	NA	NA	N	NSTV
120127	Anthracene	ug/L	0.026	4.2	4/19	MW-SS-05-01	0.19	1.9	4.2	NO NA	NA	NA	NA	N N	NSTV
191242	Benzo(ghi)perylene	ug/L	0.03	0.03	1/19	MW-EPA-10	0.19	19	0.03		NA	NA	NA		NSTV
218019		ug/L	0.03	0.03	1/19	MW-EPA-10	0.19	19	0.03	YES	NA	NA	NA	N	NSTV
206440	Fluoranthene	ug/L	0.034	0.25	2/19	MW-EPA-04	0.19	19	0.25	NO	NA	NA	NA	N	NSTV
86737	Fluorene	ug/L	1.2	10	2/19	MW-EPA-05	0.19	19	10	YES	NA	NA	NA	N	NSTV

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area - Vapor Intrusion Pathway (Site-Wide)

Scenario	Timeframe:	Current/Future Groundwater
Medium:	Overburden	Groundwater

Exposure Medium: Overburden Groundwater

CAS Number	Location ID: Date Collected:	Units	Minimum Detect	Maximum Detect	Detection Frequency	Max Detect Location	Minimum Non-Detect	Maximum Non-Detect	Concentration used for Screening ^[1]	Toxic and Volitale ^[2]	Screening Toxicity Value ^[3]	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion ^[4]
91203	Naphthalene	ug/L	0.12	2500	9/19	MW-SS-05-01	0.94	0.97	2500	YES	150	NA	NA	Y	ASTV
85018	Phenanthrene	ug/L	0.042	9.1	8/19	MW-EPA-05	0.19	24	9.1	NA	NA	NA	NA	N	NSTV
129000	Pyrene	ug/L	0.046	0.046	1/19	MW-08-08	0.19	19	0.046	YES	NA	NA	NA	N	NSTV
NA	Total PAHs	ug/L	0.034	3300	16/19	MW-SS-05-01	NA	NA	3300	NA	NA	NA	NA	N	NSTV
	Miscellaneous														
NA	Alkalinity	ug/L	263000	827000	12/12	MW-EPA-07	NA	NA	827000	NA	NA	NA	NA	Ν	NSTV
7664417	Ammonia	ug/L	140	3800	12/12	MW-EPA-08	NA	NA	3800	NA	NA	NA	NA	N	NSTV
124389	Carbon dioxide	ug/L	55000	430000	13/13	MW-EPA-07	NA	NA	430000	NA	NA	NA	NA	N	NSTV
74828	Methane	ug/L	2.9	9800	13/13	MW-EPA-07	NA	NA	9800	NA	NA	NA	NA	N	NSTV
14797558	Nitrate as N	ug/L	100	950	6/12	MW-EPA-06	100	100	950	NA	NA	NA	NA	N	NSTV
7727379	Nitrogen, Total Kjeldahl	ug/L	160	5400	12/12	MW-EPA-08	NA	NA	5400	NA	NA	NA	NA	N	NSTV
14265442A	Orthophosphate as P	ug/L	35	350	9/12	LTMW-12,MW-EPA-08	30	30	350	NA	NA	NA	NA	N	NSTV
7782447	Oxygen	ug/L	1900	8500	13/13	MW-EPA-01	NA	NA	8500	NA	NA	NA	NA	N	NSTV
14808798	Sulfate	ug/L	8400	310000	7/12	MW-EPA-01	5000	5000	310000	NA	NA	NA	NA	N	NSTV
	Inorganics														
7439896	Iron	ug/L	99.6	27700	12/12	MW-EPA-02	NA	NA	27700	NA	NA	NA	NA	Ν	NSTV
7439965	Manganese	ug/L	77.1	2490	12/12	LTMW-12	NA	NA	2490	NA	NA	NA	NA	Ν	NSTV
	Inorganics-Filtered														
7439896	Iron (filtered)	ug/L	89	5240	7/12	LTMW-12	150	150	5240	NA	NA	NA	NA	N	NSTV
7439965	Manganese (filtered)	ug/L	66.8	2520	12/12	LTMW-12	NA	NA	2520	NA	NA	NA	NA	N	NSTV

Notes:

[1] Maximum concentration was used as the screening concentration.

[2] Considered toxic and volatile according to USEPA (2002) Subsurface Vapor Intrusion Guidance.

[3] Screening Toxicity Value represents the target groundwater concentration corresponding to target indoor air concentration where soil gas to indoor air attenuation factor = 0.001 and partitioning across water table obeys Henry's Law. Based on risk of 1E-06. Source: USEPA (2002) OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004. November.

[4] Rationale codes:

ASTV = Retained because screening concentration is above Screening Toxicity Value.

BSTV = Excluded because screening concentration is below both Screening Toxicity Value.

NSTV = No screening toxicity value. Constituent has no associated toxicity value that would allow quantitative evaluation; therefore, this constituent is not retained as a COPC

Table contains detected constituents only.

ARAR/TBC = Applicable or Relevant and Appropriate Requirement / To Be Considered

COPC = Chemical of Potential Concern

NA = Not available, not applicable

ug/L = micrograms per liter

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area - Vapor Intrusion Pathway (Within 100 Feet of Building)^[1]

Scenario Timeframe: Current/Future Medium: Overburden Groundwater Exposure Medium: Overburden Groundwater
Medium: Overburden Groundwater
Exposure Medium: Overburden Groundwater

									Concentration		Screening	Potential	Potential		Rationale for
	Location ID:		Minimum	Maximum	Detection	Max Detect	Minimum	Maximum	Used for	Toxic and	Toxicity	ARAR/TBC	ARAR/TBC	COPC Flag	Selection or
CAS Number	Date Collected:	Units	Detect	Detect	Frequency	Location	Non-Detect	Non-Detect	Screening [2]	Volitale [3]	Value ^[4]	Value	Source	(Y/N)	Deletion [5]
	VOCs by USEPA Method 8260B														
71556	1,1,1-Trichloroethane	ug/L	ND	ND	0/5		1	1	ND	YES	3100	NA	NA	N	ND
79345	1,1,2,2-Tetrachloroethane	ug/L	ND	ND	0/5		1	1	ND	YES	3	NA	NA	N	ND
76131	1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	ND	ND	0/2		1	1	ND	YES	1500	NA	NA	N	ND
79005	1,1,2-Trichloroethane	ug/L	ND	ND	0/5		1	1	ND	YES	5	NA	NA	N	ND
75343	1,1-Dichloroethane	ug/L	ND	ND	0/5		1	1	ND	YES	2200	NA	NA	N	ND
75354	1,1-Dichloroethene	ug/L	ND	ND	0/5		1	1	ND	YES	190	NA	NA	N	ND
120821	1,2,4-Trichlorobenzene	ug/L	ND	ND	0/2		1	1	ND	YES	3400	NA	NA	N	ND
96128	1,2-Dibromo-3-chloropropane	ug/L	ND	ND	0/2		1	1	ND	YES	33	NA	NA	N	ND
106934	1,2-Dibromoethane	ug/L	ND	ND	0/2		1	1	ND	YES	0.36	NA	NA	N	ND
95501	1,2-Dichlorobenzene	ug/L	ND	ND	0/2		1	1	ND	YES	2600	NA	NA	N	ND
107062	1,2-Dichloroethane	ug/L	ND	ND	0/5		1	1	ND	YES	5	NA	NA	N	ND
78875	1,2-Dichloropropane	ug/L	ND	ND	0/5		1	1	ND	YES	35	NA	NA	N	ND
541731	1,3-Dichlorobenzene	ug/L	ND	ND	0/2		1	1	ND	YES	830	NA	NA	N	ND
106467	1,4-Dichlorobenzene	ug/L	ND	ND	0/2		1	1	ND	YES	8200	NA	NA	N	ND
78933	2-Butanone	ug/L	ND	ND	0/5		5	10	ND	YES	440000	NA	NA	N	ND
591786	2-Hexanone	ug/L	ND	ND	0/5		5	10	ND	NA	NA	NA	NA	N	ND
108101	4-Methyl-2-pentanone	ug/L	ND	ND	0/5		5	10	ND	YES	14000	NA	NA	N	ND
67641	Acetone	ug/L	ND	ND	0/5		5	10	ND	YES	220000	NA	NA	N	ND
71432	Benzene	ug/L	ND	ND	0/5		1	1	ND	YES	5	NA	NA	N	ND
75274	Bromodichloromethane	ug/L	ND	ND	0/5		1	1	ND	YES	2.1	NA	NA	N	ND
75252	Bromoform	ug/L	ND	ND	0/5		1	1	ND	YES	0.0083	NA	NA	N	ND
74839	Bromomethane	ug/L	ND	ND	0/5		1	1	ND	YES	20	NA	NA	N	ND
75150	Carbon disulfide	ug/L	ND	ND	0/5		1	1	ND	YES	560	NA	NA	N	ND
56235	Carbon tetrachloride	ug/L	ND	ND	0/5		1	1	ND	YES	5	NA	NA	N	ND
108907	Chlorobenzene	ug/L	ND	ND	0/5		1	1	ND	YES	390	NA	NA	N	ND
75003	Chloroethane	ug/L	ND	ND	0/5		1	1	ND	YES	28000	NA	NA	N	ND
67663	Chloroform	ug/L	0.2	0.2	1/5	MW-EPA-06	1	1	0.2	YES	80	NA	NA	N	BSTV
74873	Chloromethane	ug/L	ND	ND	0/5		1	1	ND	YES	6.7	NA	NA	N	ND
156592	cis-1,2-Dichloroethene	ug/L	ND	ND	0/5		1	1	ND	YES	210	NA	NA	N	ND
542756	cis-1,3-Dichloropropene	ug/L	ND	ND	0/5		1	1	ND	YES	0.84	NA	NA	N	ND
110827	Cyclohexane	ug/L	ND	ND	0/2		1	1	ND	NA	NA	NA	NA	N	ND
124481	Dibromochloromethane	ug/L	ND	ND	0/5		1	1	ND	YES	3.2	NA	NA	N	ND
75718	Dichlorodifluoromethane	ug/L	ND	ND	0/2		1	1	ND	YES	14	NA	NA	N	ND
100414	Ethylbenzene	ua/L	ND	ND	0/5		1	1	ND	YES	700	NA	NA	N	ND
98828	Isopropylbenzene	ug/L	ND	ND	0/2		1	1	ND	YES	8.4	NA	NA	N	ND
79209	Methyl acetate	ug/L	ND	ND	0/2		1	1	ND	YES	720000	NA	NA	N	ND
1634044	Methyl tert-butyl ether	ug/L	ND	ND	0/2		1	1	ND	YES	120000	NA	NA	N	ND
108872	Methylcyclohexane	ug/L	ND	ND	0/2		1	1	ND	YES	710	NA	NA	N	ND
75092	Methylene chloride	ug/L	ND	ND	0/5		1	1	ND	YES	58	NA	NA	N	ND
100425	Styrene	ug/L	ND	ND	0/5		1	1	ND	YES	8900	NA	NA	N	ND
127184	Tetrachloroethene	ug/L	ND	ND	0/5		1	1	ND	YES	5	NA	NA	N	ND
108883	Toluene	ug/L	ND	ND	0/5		1	1	ND	YES	1500	NA	NA	N	ND
156605	trans-1,2-Dichloroethene	ug/L	ND	ND	0/5		1	1	ND	YES	180	NA	NA	N	ND
542756	trans-1,3-Dichloropropene	ug/L	ND	ND	0/5		1	1	ND	YES	0.84	NA	NA	N	ND

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area - Vapor Intrusion Pathway (Within 100 Feet of Building)^[1]

Scenario Timeframe: Current/Future Medium: Overburden Groundwater Exposure Medium: Overburden Groundwater
Medium: Overburden Groundwater
Exposure Medium: Overburden Groundwater

									Concentration		Screening				Rationale for
	Location ID:		Minimum	Maximum	Detection	Max Detect	Minimum	Maximum	Used for	Toxic and	Toxicity	Potential ARAR/TBC	Potential ARAR/TBC	COPC Flag	Selection or
CAS Number	Date Collected:	Units	Detect	Detect	Frequency	Location	Non-Detect	Non-Detect	Screening [2]	Volitale [3]	Value [4]	Value	Source	(Y/N)	Deletion [5]
79016	Trichloroethene	ug/L	ND	ND	0/5		1	1	ND	YES	NA	NA	NA	Ν	ND
75694	Trichlorofluoromethane	ug/L	ND	ND	0/2		1	1	ND	YES	180	NA	NA	Ν	ND
75014	Vinyl chloride	ug/L	ND	ND	0/5		1	1	ND	YES	2	NA	NA	N	ND
1330207	Xylenes (total)	ug/L	ND	ND	0/5		3	3	ND	NA	NA	NA	NA	Ν	ND
NA	Total BTEX	ug/L	ND	ND	0/5		N/A	N/A	ND	NA	NA	NA	NA	N	ND
	SVOCs by USEPA Method 8270C														
92524	1,1'-Biphenyl	ug/L	ND	ND	0/2		9.4	9.5	ND	NA	NA	NA	NA	N	ND
120821	1,2,4-Trichlorobenzene	ug/L	ND	ND	0/3		1	1	ND	YES	3400	NA	NA	Ν	ND
95501	1,2-Dichlorobenzene	ug/L	ND	ND	0/3		10	10	ND	YES	2600	NA	NA	Ν	ND
541731	1,3-Dichlorobenzene	ug/L	ND	ND	0/3		10	10	ND	YES	830	NA	NA	N	ND
106467	1,4-Dichlorobenzene	ug/L	ND	ND	0/3		10	10	ND	YES	8200	NA	NA	N	ND
540545	2,2'-oxybis(1-Chloropropane)	ug/L	ND	ND	0/5		9.4	10	ND	NA	NA	NA	NA	N	ND
95954	2,4,5-Trichlorophenol	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	Ν	ND
88062	2,4,6-Trichlorophenol	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
120832	2,4-Dichlorophenol	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
105679	2,4-Dimethylphenol	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
51285	2,4-Dinitrophenol	ug/L	ND	ND	0/5		30	48	ND	NO	NA	NA	NA	N	ND
121142	2,4-Dinitrotoluene	ug/L	ND	ND	0/5		2	9.5	ND	NO	NA	NA	NA	N	ND
606202	2,6-Dinitrotoluene	ug/L	ND	ND	0/5		2	9.5	ND	NO	NA	NA	NA	N	ND
91587	2-Chloronaphthalene	ug/L	ND	ND	0/5		9.4	10	ND	YES	NA	NA	NA	N	ND
95578	2-Chlorophenol	ug/L	ND	ND	0/5		9.4	10	ND	YES	1100	NA	NA	N	ND
91576	2-Methylnaphthalene	ug/L	ND	ND	0/3		10	10	ND	YES	3300	NA	NA	N	ND
95487	2-Methylphenol	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
88744	2-Nitroaniline	ug/L	ND	ND	0/5		20	48	ND	NA	NA	NA	NA	N	ND
88755	2-Nitrophenol	ug/L	ND	ND	0/5		9.4	10	ND	NA	NA	NA	NA	N	ND
91941	3,3'-Dichlorobenzidine	ug/L	ND	ND	0/5		20	48	ND	NO	NA	NA	NA	N	ND
99092	3-Nitroaniline	ug/L	ND	ND	0/5		20	48	ND	NA	NA	NA	NA	N	ND
534521	4,6-Dinitro-2-methylphenol	ug/L	ND	ND	0/5		30	48	ND	NO	NA	NA	NA	N	ND
101553	4-Bromophenyl phenyl ether	ug/L	ND	ND	0/5		9.4	10	ND	NA	NA	NA	NA	N	ND
59507	4-Chloro-3-methylphenol	ug/L	ND	ND	0/5		9.4	10	ND	NA	NA	NA	NA	N	ND
106478	4-Chloroaniline	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
7005723	4-Chlorophenyl phenyl ether	ug/L	ND	ND	0/5		9.4	10	ND	NA	NA	NA	NA	N	ND
106445	4-Methylphenol	ug/L	ND	ND	0/5		9.4	10	ND	NA	NA	NA	NA	N	ND
100016	4-Nitroaniline	ug/L	ND	ND	0/5		20	48	ND	NA	NA	NA	NA	N	ND
100027	4-Nitrophenol	ug/L	ND	ND	0/5		30	48	ND	NO	NA	NA	NA	N	ND
83329	Acenaphthene	ug/L	ND	ND	0/3		10	10	ND	YES	NA	NA	NA	N	ND
208968	Acenaphthylene	ug/L	ND	ND	0/3		10	10	ND	NA	NA	NA	NA	N	ND
98862	Acetophenone	ug/L	ND	ND	0/2		9.4	9.5	ND	YES	800000	NA	NA	Ν	ND
120127	Anthracene	ug/L	ND	ND	0/3		10	10	ND	NO	NA	NA	NA	N	ND
1912249	Atrazine	ug/L	ND	ND	0/2		9.4	9.5	ND	NA	NA	NA	NA	N	ND
100527	Benzaldehyde	ug/L	ND	ND	0/2		9.4	9.5	ND	YES	360000	NA	NA	N	ND
56553	Benzo(a)anthracene	ug/L	ND	ND	0/3		1	1	ND	NO	NA	NA	NA	N	ND
50328	Benzo(a)pyrene	ug/L	ND	ND	0/3		1	1	ND	NO	NA	NA	NA	N	ND
205992	Benzo(b)fluoranthene	ug/L	ND	ND	0/3		1	1	ND	YES	NA	NA	NA	N	ND
191242	Benzo(ghi)perylene	ug/L	ND	ND	0/3		10	10	ND	NA	NA	NA	NA	Ν	ND

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area - Vapor Intrusion Pathway (Within 100 Feet of Building)^[1]

Scenario Timeframe: Current/Future
Medium: Overburden Groundwater
Exposure Medium: Overburden Groundwater

									0 :						
	Location ID:		Minimum	Maximum	Detection	Max Detect	Minimum	Maximum	Concentration Used for	Toxic and	Screening Toxicity	Potential ARAR/TBC	Potential ARAR/TBC	COPC Flag	Rationale for Selection or
CAS Number	Date Collected:	Units	Detect	Detect	Frequency	Location	Non-Detect	Non-Detect	Screening [2]	Volitale [3]	Value [4]	Value	Source	(Y/N)	Deletion [5]
207089	Benzo(k)fluoranthene	ug/L	ND	ND	0/3		1	1	ND	NO	NA	NA	NA	Ν	ND
11911	bis(2-Chloroethoxy)methane	ug/L	ND	ND	0/5		9.4	10	ND	NA	NA	NA	NA	N	ND
111444	bis(2-Chloroethyl) ether	ug/L	ND	ND	0/5		1	9.5	ND	YES	10	NA	NA	N	ND
117817	bis(2-Ethylhexyl) phthalate	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
85687	Butyl benzyl phthalate	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
105602	Caprolactam	ug/L	ND	ND	0/2		9.4	9.5	ND	NA	NA	NA	NA	N	ND
86748	Carbazole	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
218019	Chrysene	ug/L	ND	ND	0/3		10	10	ND	YES	NA	NA	NA	N	ND
53703	Dibenzo(a,h)anthracene	ug/L	ND	ND	0/3		1	1	ND	NO	NA	NA	NA	N	ND
132649	Dibenzofuran	ug/L	ND	ND	0/5		9.4	10	ND	YES	NA	NA	NA	N	ND
84662	Diethyl phthalate	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
131113	Dimethyl phthalate	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
84742	Di-n-butyl phthalate	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
117840	Di-n-octyl phthalate	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
206440	Fluoranthene	ug/L	ND	ND	0/3		10	10	ND	NO	NA	NA	NA	N	ND
86737	Fluorene	ug/L	ND	ND	0/3		10	10	ND	YES	NA	NA	NA	N	ND
118741	Hexachlorobenzene	ug/L	ND	ND	0/5		1	9.5	ND	YES	1	NA	NA	N	ND
87683	Hexachlorobutadiene	ug/L	ND	ND	0/5		2	9.5	ND	YES	0.33	NA	NA	N	ND
77474	Hexachlorocyclopentadiene	ug/L	ND	ND	0/5		10	48	ND	YES	50	NA	NA	N	ND
67721	Hexachloroethane	ug/L	ND	ND	0/5		1	9.5	ND	YES	3.8	NA	NA	N	ND
193395	Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	0/3		1	1	ND	NO	NA	NA	NA	N	ND
78591	Isophorone	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
91203	Naphthalene	ug/L	ND	ND	0/3		10	10	ND	YES	150	NA	NA	N	ND
98953	Nitrobenzene	ug/L	ND	ND	0/5		1	9.5	ND	YES	2000	NA	NA	N	ND
621647	N-Nitrosodi-n-propylamine	ug/L	ND	ND	0/5		1	9.5	ND	NO	NA	NA	NA	N	ND
86306	N-Nitrosodiphenylamine	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
87865	Pentachlorophenol	ug/L	ND	ND	0/5		30	48	ND	NO	NA	NA	NA	N	ND
85018	Phenanthrene	ug/L	ND	ND	0/3		10	10	ND	NA	NA	NA	NA	N	ND
108952	Phenol	ug/L	ND	ND	0/5		9.4	10	ND	NO	NA	NA	NA	N	ND
129000	Pyrene	ug/L	ND	ND	0/3		10	10	ND	YES	NA	NA	NA	N	ND
NA	Total PAHs2	ug/L	ND	ND	0/3		N/A	N/A	ND	NA	NA	NA	NA	N	ND
	PAHs by USEPA Method 8310														
91576	2-Methylnaphthalene	ug/L	ND	ND	0/2		0.95	0.95	ND	YES	3300	NA	NA	N	ND
83329	Acenaphthene	ug/L	ND	ND	0/4		0.94	0.95	ND	YES	NA	NA	NA	Ν	ND
208968	Acenaphthylene	ug/L	ND	ND	0/4		0.94	0.95	ND	NA	NA	NA	NA	Ν	ND
120127	Anthracene	ug/L	ND	ND	0/4		0.19	0.19	ND	NO	NA	NA	NA	N	ND
56553	Benzo(a)anthracene	ug/L	ND	ND	0/4		0.19	0.19	ND	NO	NA	NA	NA	Ν	ND
50328	Benzo(a)pyrene	ug/L	ND	ND	0/4		0.19	0.19	ND	NO	NA	NA	NA	Ν	ND
205992	Benzo(b)fluoranthene	ug/L	ND	ND	0/4		0.19	0.19	ND	YES	NA	NA	NA	Ν	ND
191242	Benzo(ghi)perylene	ug/L	ND	ND	0/4		0.19	0.19	ND	NA	NA	NA	NA	Ν	ND
207089	Benzo(k)fluoranthene	ug/L	ND	ND	0/4		0.19	0.19	ND	NO	NA	NA	NA	Ν	ND
218019	Chrysene	ug/L	ND	ND	0/4		0.19	0.19	ND	YES	NA	NA	NA	Ν	ND
53703	Dibenzo(a,h)anthracene	ug/L	ND	ND	0/4		0.19	0.19	ND	NO	NA	NA	NA	Ν	ND
206440	Fluoranthene	ug/L	0.034	0.034	1/4	MW-EPA-03	0.19	0.19	0.034	NO	NA	NA	NA	Ν	NSTV
86737	Fluorene	ug/L	ND	ND	0/4		0.19	0.19	ND	YES	NA	NA	NA	Ν	ND

Occurrence, Distribution, and Selection of Chemicals of Potential Concern

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area - Vapor Intrusion Pathway (Within 100 Feet of Building)^[1]

Scenario Timeframe: Current/Future
Medium: Overburden Groundwater Exposure Medium: Overburden Groundwater
Exposure Medium: Overburden Groundwater

CAS Number	Location ID: Date Collected:	Units	Minimum Detect	Maximum Detect	Detection Frequency	Max Detect	Minimum Non-Detect	Maximum Non-Detect	Concentration Used for Screening ^[2]	Toxic and Volitale ^[3]	Screening Toxicity Value ^[4]	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag (Y/N)	Rationale for Selection or Deletion ^[5]
193395	Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	0/4		0.19	0.19	ND	NO	NA	NA	NA	N	ND
91203	Naphthalene	ug/L	ND	ND	0/4		0.94	0.95	ND	YES	150	NA	NA	N	ND
85018	Phenanthrene	ug/L	0.042	0.044	1/4	MW-SS-09-07	0.19	0.19	0.044	NA	NA	NA	NA	N	NSTV
129000	Pyrene	ug/L	ND	ND	0/4		0.19	0.19	ND	YES	NA	NA	NA	N	ND
NA	Total PAHs	ug/L	0.034	0.044	2/4	MW-SS-09-07	N/A	N/A	0.044	NA	NA	NA	NA	N	NSTV
	Miscellaneous														
NA	Alkalinity	ug/L	320000	320000	1/1	MW-EPA-06	N/A	N/A	320000	NA	NA	NA	NA	Ν	NSTV
7664417	Ammonia	ug/L	140	140	1/1	MW-EPA-06	N/A	N/A	140	NA	NA	NA	NA	N	NSTV
124389	Carbon dioxide	ug/L	55000	55000	1/1	MW-EPA-06	N/A	N/A	55000	NA	NA	NA	NA	N	NSTV
74828	Methane	ug/L	2.9	2.9	1/1	MW-EPA-06	N/A	N/A	2.9	NA	NA	NA	NA	Ν	NSTV
14797558	Nitrate as N	ug/L	950	950	1/1	MW-EPA-06	N/A	N/A	950	NA	NA	NA	NA	Ν	NSTV
14797650	Nitrite as N	ug/L	ND	ND	0/1		100	100	ND	NA	NA	NA	NA	N	ND
7727379	Nitrogen, Total Kjeldahl	ug/L	160	160	1/1	MW-EPA-06	N/A	N/A	160	NA	NA	NA	NA	N	NSTV
14265442A	Orthophosphate as P	ug/L	ND	ND	0/1		30	30	ND	NA	NA	NA	NA	N	ND
7782447	Oxygen	ug/L	4700	4700	1/1	MW-EPA-06	N/A	N/A	4700	NA	NA	NA	NA	N	NSTV
14808798	Sulfate	ug/L	131000	131000	1/1	MW-EPA-06	N/A	N/A	131000	NA	NA	NA	NA	N	NSTV
	Inorganics														
7439896	Iron	ug/L	99.6	99.6	1/1	MW-EPA-06	N/A	N/A	99.6	NA	NA	NA	NA	N	NSTV
7439965	Manganese	ug/L	77.1	77.1	1/1	MW-EPA-06	N/A	N/A	77.1	NA	NA	NA	NA	N	NSTV
	Inorganics (filtered)														
7439896	Iron (filtered)	ug/L	ND	ND	0/1		150	150	ND	NA	NA	NA	NA	Ν	ND
7439965	Manganese (filtered)	ug/L	66.8	66.8	1/1	MW-EPA-06	N/A	N/A	66.8	NA	NA	NA	NA	Ν	NSTV

Notes:

[1] Based on groundwater wells within 100 feet of on-site building (MW-EPA-06, MW-SS-09-06, MW-SS-09-07, and MW-EPA-03).

[2] Maximum concentration was used as the screening concentration.

[3] Considered toxic and volatile according to USEPA (2002) Subsurface Vapor Intrusion Guidance.

[4] Screening Toxicity Value represents the target groundwater concentration corresponding to target indoor air concentration where soil gas to indoor air attenuation factor = 0.001 and partitioning across water table obeys Henry's Law. Based on risk of 1E-06. Source: USEPA (2002) OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004. November.

[5] Rationale codes:

BSTV = Excluded because screening concentration is below both Screening Toxicity Value.

NSTV = No screening toxicity value. Constituent has no associated toxicity value that would allow quantitative evaluation; therefore, this constituent is not retained as a COPC.

ARAR/TBC = Applicable or Relevant and Appropriate Requirement / To Be Considered

COPC = Chemical of Potential Concern

NA = Not available, not applicable

ND = non-detect

ug/L = micrograms per liter

Table 3.1

Exposure Point Concentration Summary^(1,2)

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Excelsior Avenue Area

Scenario Timeframe: Current/Future Medium: Overburden Groundwater Exposure Medium: Overburden Groundwater

Exposure	Chemical of			Maximum	Exposure Point Concentration				
Point	Potential Concern		Detections	Mean	(Distribution)	Concentration	Value	Statistic	Rationale
				(3)	(4)			(5)	(6)
Overburden	Benzene	ug/L	13 / 31	408	759.9 (NP)	5800	759.9	95% KM (t) UCL	W-Test (2)
Groundwater	Ethylbenzene	ug/L	11 / 31	127	215.2 (NP)	920	215.2	95% KM (t) UCL	W-Test (2)
	Toluene	ug/L	9 / 31	44.7	79.46 (NP)	460	79.46	95% KM (t) UCL	W-Test (2)
	Xylenes (total)	ug/L	11 / 31	115	199.9 (NP)	1100	199.9	95% KM (t) UCL	W-Test (2)
	1,1'-Biphenyl	ug/L	1 / 9	6.35	NA	19	19	Maximum	Less than 8 detects
	2-Methylnaphthalene	ug/L	10 / 31	268	646.8 (NP)	6700	646.8	95% KM (t) UCL	W-Test (2)
	Acenaphthene	ug/L	8 / 31	110	278.2 (NP)	3000	278.2	95% KM (t) UCL	W-Test (2)
	Anthracene	ug/L	2 / 22	79.8	NA	1500	1500	Maximum	Less than 8 detects
	Dibenzofuran	ug/L	2 / 31	17	NA	230	230	Maximum	Less than 8 detects
	Fluorene	ug/L	3 / 22	110	NA	2200	2200	Maximum	Less than 8 detects
	Naphthalene	ug/L	14 / 31	623	1194 (NP)	9600	1194	95% KM (t) UCL	W-Test (2)
	Pyrene	ug/L	2 / 23	98.2	NA	2000	2000	Maximum	Less than 8 detects
	Iron	ug/L	12 / 12	7380	17061 (G)	27700	17061	95% Approximate Gamma UCL	AD/KS-Test
	Manganese	ug/L	12 / 12	693	1680 (NP)	2490	1680	95% Chebyshev (Mean, Sd) UCL	W-Test (2)

Notes:

(1) Exposure point concentrations are based on all available groundwater data collected in 2006, 2008, and 2009. Concentrations in each well are treated as separate data points and are not averaged across sampling years.

(2) PAH statistics are based on the combined (averaged) data for Methods 8270C and 8310.

(3) Arithmetic means represent averages for all individual wells and use 1/2 detection limit for non-detects.

(4) Upper Confidence Level (UCL) calculations were performed using ProUCL version 4.1 (May 2010), developed by Lockheed-Martin for USEPA.

NA - not available, NP - Nonparametric, G - Gamma, LN - Lognormal, N - Normal

(5) Exposure Point Concentration calculation statistics abbreviated following ProUCL output.

(6) Shapiro-Wilk W Test used to test the normality or lognormality of the data distribution. Anderson-Darling and Kolmogorov-Smirnov Test statistics used for gamma distributions.

W - Test (1) = Shapiro-Wilk W Test indicates data are either normally or log-normally distributed.

W - Test (2) = Shapiro-Wilk W Test indicates data do not follow a discernable distribution.

AD/KS - Test = Anderson-Darling and Kolmogorov-Smirnov Test indicates data are gamma distributed.

UCL is the calculated upper confidence limit. UCLs are calculated for constituents with sample sizes of at least 8, with at least 5 detections.

The same exposure point concentration was used for both Reasonable Maximum Exposure and Central Tendency Exposure scenarios.

ug/L = micrograms per liter

NA = Not available

Table 4.1.RME

Values Used for Daily Intake Calculations

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Scenario Timeframe	e: Current/Future
Scenario Timeframe Medium: Groundw Exposure Medium:	ater
Exposure Medium:	Tap Water

172

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	Resident	Child	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF	Conversion Factor	1.00E-03	mg/ug	-	Chronic Daily Intake (CDI) (mg/kg-day) =
				IRg	Groundwater Ingestion Rate	1	L/day	USEPA 1997	CW x CF x IRg x EF x ED x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	USEPA 2004	
				ED	Exposure Duration	6	years	USEPA 2004	
				BW	Body Weight	15	kg	USEPA 1997	
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	
				ATnc	Averaging Time - Noncancer	2,190	days	USEPA 2004	
		Adult	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF	Conversion Factor	1.00E-03	mg/ug	-	CDI (mg/kg-day) =
				IRg	Groundwater Ingestion Rate	2	L/day	USEPA 1997; 2002	CW x CF x IRg x EF x ED x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	USEPA 2004	
				ED	Exposure Duration	24	years	USEPA 2004	
				BW	Body Weight	70	kg	USEPA 1997	
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	
				ATnc	Averaging Time - Noncancer	8,760	days	USEPA 2004	
Dermal	Resident	Child	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF1	Conversion Factor	1.00E-03	mg/ug		Dermal Absorbed Dose (DAD) (mg/kg-day) =
				CF2	Conversion Factor	1.00E-03	L/cm ³		DAevent x EVg x EF x ED x SAg x 1/BW x 1/AT
				FA	Fraction Absorbed Water	Chemical Specific	unitless	USEPA 2004	
				Кр	Permeability Coefficient	Chemical Specific	cm/hour	USEPA 2004	DAevent (mg/cm ² -event) =
				В	Permeability Ratio	Chemical Specific	unitless	USEPA 2004	For organics (t-event $\leq t^*$):
				ť*	Time to Reach Steady State	2.4 x tau-event	hours	USEPA 2004	2 FA x Kp x CW x CF1 x CF2 x SQRT(6 x tau-event x t-event x 1/pi)
				tau-event	Lag Time per Event	Chemical Specific	hr/event	USEPA 2004	For organics (t-event > t*):
				ETg	Exposure Time/Event Duration	0.25	hr/event	USEPA 1997	FA x Kp x CW x CF1 x CF2 x {(t-event/(1 + B)) +
				EVg	Event Frequency	1	events/day	USEPA 2004	2 x tau-event x ((1 + (3 x B) + (3 B ²)) / (1 + B) ² }
				EF	Exposure Frequency	350	days/year	USEPA 2004	
				ED	Exposure Duration	6	years	USEPA 2004	For inorganics:
				SAg	Exposed Skin Surface Area	6,600	cm ²	USEPA 2004	Kp x CW x CF1 x CF2 x t-event
				BW	Body Weight	15	kg	USEPA 1997	
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	and where t-event = ETg
				ATnc	Averaging Time - Noncancer	2,190	days	USEPA 2004	

Table 4.1.RME

Values Used for Daily Intake Calculations

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Scenario Timeframe	e: Current/Future
Scenario Timeframe Medium: Groundw Exposure Medium:	ater
Exposure Medium:	Tap Water

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
		Adult	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF1	Conversion Factor	1.00E-03	mg/ug		DAD (mg/kg-day) =
				CF2	Conversion Factor	1.00E-03	L/cm ³		DAevent x EVgx EF x ED x SAg x 1/BW x 1/AT
				FA	Fraction Absorbed Water	Chemical Specific	unitless	USEPA 2004	
				Кр	Permeability Coefficient	Chemical Specific	cm/hour	USEPA 2004	DAevent (mg/cm ² -event) =
				В	Permeability Ratio	Chemical Specific	unitless	USEPA 2004	For organics (t-event $\leq t^*$):
				t*	Time to Reach Steady State	2.4 x tau-event	hours	USEPA 2004	2 FA x Kp x CW x CF1 x CF2 x SQRT(6 x tau-event x t-event x 1/pi)
				tau-event	Lag Time per Event	Chemical Specific	hr/event	USEPA 2004	
				ETg	Exposure Time/Event Duration	0.25	hr/event	USEPA 1997	For organics (t-event > t*):
				EVg	Event Frequency	1	events/day	USEPA 2004	FA x Kp x CW x CF1 x CF2 x {(t-event/(1 + B)) +
				EF	Exposure Frequency	350	days/year	USEPA 2004	2 x tau-event x ((1 + (3 x B) + (3 B ²)) / (1 + B) ² }
				ED	Exposure Duration	24	years	USEPA 2004	
				SAg	Exposed Skin Surface Area	18,000	cm ²	USEPA 2004	For inorganics:
				BW	Body Weight	70	kg	USEPA 1997	Kp x CW x CF1 x CF2 x t-event
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	and where t-event = ETg
				ATnc	Averaging Time - Noncancer	8,760	days	USEPA 2004	

Notes:

USEPA. 1989. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual, Part A. EPA/540/1-89/002. December 1989.

USEPA. 1997. Exposure Factors Handbook. EPA/600/P-95/002Fa. August 1997.

USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24. December 2002.

USEPA. 2004. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. EPA/540/R-99/005. July 2004.

G:\Clients\National Grid\Saratoga\10 Final Reports and Presentations\HHRA\3131211222_tables

Table 4.1.CTE

Values Used for Daily Intake Calculations

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

		Current/Future
	Groundwa	
Exposure	Medium:	Tap Water

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	Resident	Child	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF	Conversion Factor	1.00E-03	mg/ug		Chronic Daily Intake (CDI) (mg/kg-day) =
				IRg	Groundwater Ingestion Rate	0.5	L/day	USEPA 1997	CW x CF x IRg x EF x ED x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	USEPA 2004	
				ED	Exposure Duration	6	years	USEPA 2004	
				BW	Body Weight	15	kg	USEPA 1997	
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	
				ATnc	Averaging Time - Noncancer	2,190	days	USEPA 2004	
		Adult	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF	Conversion Factor	1.00E-03	mg/ug		CDI (mg/kg-day) =
				IRg	Groundwater Ingestion Rate	1	L/day	USEPA 1997	CW x CF x IRg x EF x ED x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	USEPA 2004	
				ED	Exposure Duration	9	years	USEPA 2004	
				BW	Body Weight	70	kg	USEPA 1997	
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	
				ATnc	Averaging Time - Noncancer	3,285	days	USEPA 2004	
Dermal	Resident	Child	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF1	Conversion Factor	1.00E-03	mg/ug		Dermal Absorbed Dose (DAD) (mg/kg-day) =
				CF2	Conversion Factor	1.00E-03	L/cm ³		DAevent x EVg x EF x ED x SAg x 1/BW x 1/AT
				FA	Fraction Absorbed Water	Chemical Specific	unitless	USEPA 2004	
				Кр	Permeability Coefficient	Chemical Specific	cm/hour	USEPA 2004	DAevent (mg/cm ² -event) =
				В	Permeability Ratio	Chemical Specific	unitless	USEPA 2004	For organics (t-event \leq t [*]):
				ť*	Time to Reach Steady State	2.4 x tau-event	hours	USEPA 2004	2 FA x Kp x CW x CF1 x CF2 x SQRT(6 x tau-event x t-event x 1/pi)
				tau-event	Lag Time per Event	Chemical Specific	hr/event	USEPA 2004	For organics (t-event > t*):
				ETg	Exposure Time/Event Duration	0.17	hr/event	USEPA 1997	FA x Kp x CW x CF1 x CF2 x {(t-event/(1 + B)) +
				EVg	Event Frequency	1	events/day	USEPA 2004	2 x tau-event x ((1 + (3 x B) + (3 B ²)) / (1 + B) ² }
				EF	Exposure Frequency	350	days/year	USEPA 2004	
				ED	Exposure Duration	6	years	USEPA 2004	For inorganics:
				SAg	Exposed Skin Surface Area	6,600	cm ²	USEPA 2004	Kp x CW x CF1 x CF2 x t-event
				BW	Body Weight	15	kg	USEPA 1997	
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	and where t-event = ETg
				ATnc	Averaging Time - Noncancer	2,190	days	USEPA 2004	

Table 4.1.CTE

Values Used for Daily Intake Calculations

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

Scenario Timeframe: Current/Future Medium: Groundwater Exposure Medium: Tap Water

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
		Adult	Old Red Spring/	CW	Chemical Concentration in Groundwater	Chemical Specific	ug/L	See Table 3	
			Excelsior Avenue	CF1	Conversion Factor	1.00E-03	mg/ug		DAD (mg/kg-day) =
				CF2	Conversion Factor	1.00E-03	L/cm ³		DAevent x EVgx EF x ED x SAg x 1/BW x 1/AT
				FA	Fraction Absorbed Water	Chemical Specific	unitless	USEPA 2004	
				Кр	Permeability Coefficient	Chemical Specific	cm/hour	USEPA 2004	DAevent (mg/cm ² -event) =
				В	Permeability Ratio	Chemical Specific	unitless	USEPA 2004	For organics (t-event \leq t*):
				t*	Time to Reach Steady State	2.4 x tau-event	hours	USEPA 2004	2 FA x Kp x CW x CF1 x CF2 x SQRT(6 x tau-event x t-event x 1/pi)
				tau-event	Lag Time per Event	Chemical Specific	hr/event	USEPA 2004	
				ETg	Exposure Time/Event Duration	0.17	hr/event	USEPA 1997	For organics (t-event > t*):
				EVg	Event Frequency	1	events/day	USEPA 2004	FA x Kp x CW x CF1 x CF2 x {(t-event/(1 + B)) +
				EF	Exposure Frequency	350	days/year	USEPA 2004	2 x tau-event x ((1 + (3 x B) + (3 B ²)) / (1 + B) ² }
				ED	Exposure Duration	9	years	USEPA 2004	
				SAg	Exposed Skin Surface Area	18,000	cm ²	USEPA 2004	For inorganics:
				BW	Body Weight	70	kg	USEPA 1997	Kp x CW x CF1 x CF2 x t-event
				ATc	Averaging Time - Cancer	25,550	days	USEPA 1989; 2004	and where t-event = ETg
				ATnc	Averaging Time - Noncancer	3,285	days	USEPA 2004	

Notes:

USEPA. 1989. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual, Part A. EPA/540/1-89/002. December 1989.

USEPA. 1997. Exposure Factors Handbook. EPA/600/P-95/002Fa. August 1997.

USEPA. 2004. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. EPA/540/R-99/005. July 2004.

G:\Clients\National Grid\Saratoga\10 Final Reports and Presentations\HHRA\3131211222_tables

Table 4.2.RME

Values Used for Daily Intake Calculations

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Scenario Timeframe: Current/Future Medium: Groundwater Exposure Medium: Tap Water Vapors

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name (1)
Inhalation	Resident	Child	Tap Water Vapors	CA	Chemical concentration in Air	Site-specific	mg/m ³	Calculated	
				CAmax	Maximum concentration of chemical in air	Site-specific	mg/m ³	Calculated	Chronic Daily Intake (CDI) (mg/m ³) =
				t1	Time of shower/bath	0.25	hours	USEPA 1997	CA x ET x EF x ED x 1/AT
				t2	Time after shower/bath	0.33	hours	USEPA 1997	where:
				CW	Chemical concentration in groundwater	Site-specific	mg/L		$CA = [(CAmax/2) \times t1) + (CAmax \times t2)] \times 1/(t1 + t2)$
				f	Fraction volatilized	0.5	unitless	Schaum et al. (1994)	and
				Fw	Water flow rate	500	L/hr	Schaum et al. (1994)	CAmax = (CW x f x Fw x t1)/Va
				Va	Bathroom volume	16	m ³	Schaum et al. (1994)	
				ET	Exposure time	0.58	hours/day	USEPA 1997	
				EF	Exposure frequency	350	days/year	USEPA 2004	
				ED	Exposure duration	6	years	USEPA 2004	
				ATc	Averaging time, cancer	613200	hours	70 yrs x 365 d/yr x 24 hr/d	
				ATnc	Averaging time, non-cancer	52560	hours	6 yrs x 365 d/yr x 24 hr/d	
		Adult	Tap Water Vapors	CA	Chemical concentration in Air	Site-specific	mg/m ³	Calculated	
				CAmax	Maximum concentration of chemical in air	Site-specific	mg/m ³	Calculated	Chronic Daily Intake (CDI) (mg/m ³) =
				t1	Time of shower/bath	0.25	hours	USEPA 1997	CA x ET x EF x ED x 1/AT
				t2	Time after shower/bath	0.5	hours	USEPA 1997	where:
				CW	Chemical concentration in groundwater	Site-specific	mg/L		$CA = [(CAmax/2) \times t1) + (CAmax \times t2)] \times 1/(t1 + t2)$
				f	Fraction volatilized	0.5	unitless	Schaum et al. (1994)	and
				Fw	Water flow rate	500	L/hr	Schaum et al. (1994)	CAmax = (CW x f x Fw x t1)/Va
				Va	Bathroom volume	16	m³	Schaum et al. (1994)	
				ET	Exposure time	0.75	hours/day	USEPA 1997	
				EF	Exposure frequency	350	days/year	USEPA 2004	
				ED	Exposure duration	24	years	USEPA 2004	
				ATc	Averaging time, cancer	613200	hours	70 yrs x 365 d/yr x 24 hr/d	
				ATnc	Averaging time, non-cancer	210240	hours	24 yrs x 365 d/yr x 24 hr/d	

Notes:

(1) Chemical concentrations in residences resulting from volatilization from tap water during bathing or showering will be estimated using the Andelman (1990) exposure model, as modified by Schaum et al. (1994), for inhalation during bathing or showering.

Andelman, J.B. 1990. Total exposure to volatile organic compounds in potable water. Significance and Treatment of Volatile Organic Compounds in Water Supplies. N.M. Ram, R.F. Christman, K.P. Cantor, eds. Lewis, Chelsea, MI, pp. 485-504.

Schaum, J., et al. 1994. Estimating Dermal and Inhalation Exposure to Volatile Chemicals in Domestic Water. Water Contamination and Health. R.G.M. Wang, ed. Marcel Dekker, New York, pp. 305-321.

USEPA. 1997. Exposure Factors Handbook. EPA/600/P-95/002Fa. August 1997.

USEPA. 2004. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. EPA/540/R-99/005. July 2004.

Table 4.2.CTE

Values Used for Daily Intake Calculations

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

Scenario Timeframe: Current/Future Medium: Groundwater Exposure Medium: Tap Water Vapors

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name (1)
Inhalation	Resident	Child	Tap Water Vapors	CA	Chemical concentration in Air	Site-specific	mg/m ³	Calculated	
				CAmax	Maximum concentration of chemical in air	Site-specific	mg/m ³	Calculated	Chronic Daily Intake (CDI) (mg/m ³) =
				t1	Time of shower/bath	0.17	hours	USEPA 1997	CA x ET x EF x ED x 1/AT
				t2	Time after shower/bath	0.08	hours	USEPA 1997	where:
				CW	Chemical concentration in groundwater	Site-specific	mg/L		$CA = [(CAmax/2) \times t1) + (CAmax \times t2)] \times 1/(t1 + t2)$
				f	Fraction volatilized	0.5	unitless	Schaum et al. (1994)	and
				Fw	Water flow rate	500	L/hr	Schaum et al. (1994)	CAmax = (CW x f x Fw x t1)/Va
				Va	Bathroom volume	16	m ³	Schaum et al. (1994)	
				ET	Exposure time	0.25	hours/day	USEPA 1997	
				EF	Exposure frequency	350	days/year	USEPA 2004	
				ED	Exposure duration	6	years	USEPA 2004	
				ATc	Averaging time, cancer	613200	hours	70 yrs x 365 d/yr x 24 hr/d	
				ATnc	Averaging time, non-cancer	52560	hours	6 yrs x 365 d/yr x 24 hr/d	
		Adult	Tap Water Vapors	CA	Chemical concentration in Air	Site-specific	mg/m ³	Calculated	
				CAmax	Maximum concentration of chemical in air	Site-specific	mg/m ³	Calculated	Chronic Daily Intake (CDI) (mg/m ³) =
				t1	Time of shower/bath	0.17	hours	USEPA 1997	CA x ET x EF x ED x 1/AT
				t2	Time after shower/bath	0.08	hours	USEPA 1997	where:
				CW	Chemical concentration in groundwater	Site-specific	mg/L		CA = [(CAmax/2) x t1) + (CAmax x t2)] x 1/(t1 + t2)
				f	Fraction volatilized	0.5	unitless	Schaum et al. (1994)	and
				Fw	Water flow rate	500	L/hr	Schaum et al. (1994)	CAmax = (CW x f x Fw x t1)/Va
				Va	Bathroom volume	16	m ³	Schaum et al. (1994)	
				ET	Exposure time	0.25	hours/day	USEPA 1997	
				EF	Exposure frequency	350	days/year	USEPA 2004	
				ED	Exposure duration	9	years	USEPA 2004	
				ATc	Averaging time, cancer	613200	hours	70 yrs x 365 d/yr x 24 hr/d	
				ATnc	Averaging time, non-cancer	78840	hours	9 yrs x 365 d/yr x 24 hr/d	

Notes:

(1) Chemical concentrations in residences resulting from volatilization from tap water during bathing or showering will be estimated using the Andelman (1990) exposure model, as modified by Schaum et al. (1994), for inhalation during bathing or showering.

Andelman, J.B. 1990. Total exposure to volatile organic compounds in potable water. Significance and Treatment of Volatile Organic Compounds in Water Supplies. N.M. Ram, R.F. Christman, K.P. Cantor, eds. Lewis, Chelsea, MI, pp. 485-504.

Schaum, J., et al. 1994. Estimating Dermal and Inhalation Exposure to Volatile Chemicals in Domestic Water. Water Contamination and Health. R.G.M. Wang, ed. Marcel Dekker, New York, pp. 305-321.

USEPA. 1997. Exposure Factors Handbook. EPA/600/P-95/002Fa. August 1997.

USEPA. 2004. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment. EPA/540/R-99/005. July 2004.

Table 4.3

Chemical Specific Factors - Dermal Groundwater Exposure

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Scenario Timeframe: Current/Future	
Medium: Groundwater	
Exposure Medium: Tap Water	

RME DA-event for Resident, adult:

COPC	EPC	t-event	t*	is t-event < t*?	FA	Кр	CF1	CF2	tau-event	В	Pi	DA-event
	(ug/L)	(hours/event)	(hours)			(cm/hr)	(mg/ug)	(L/cm ³⁾	(hours)		(π)	(mg/cm ² -event)
Benzene	759.9	0.25	0.696	Y	1	0.015	1.00E-03	1.00E-03	0.29	0.1	3.142	8.5E-06
Ethylbenzene	215.2	0.25	1.008	Y	1	0.049	1.00E-03	1.00E-03	0.42	0.2	3.142	9.4E-06
Toluene	79.46	0.25	0.84	Y	1	0.031	1.00E-03	1.00E-03	0.35	0.1	3.142	2.0E-06
Xylenes (total)	199.9	0.25	1.008	Y	1	0.053	1.00E-03	1.00E-03	0.42	0.2	3.142	9.5E-06
1,1'-Biphenyl	19	0.25	1.873	Y	1	0.099	1.00E-03	1.00E-03	0.78	0.5	3.142	2.3E-06
2-Methylnaphthalene	646.8	0.25	1.604	Y	1	0.092	1.00E-03	1.00E-03	0.67	0.4	3.142	6.7E-05
Acenaphthene	278.2	0.25	1.873	Y	1	0.086	1.00E-03	1.00E-03	0.78	0.4	3.142	2.9E-05
Anthracene	1500	0.25	2.555	Y	1	0.142	1.00E-03	1.00E-03	1.06	0.7	3.142	3.0E-04
Dibenzofuran	230	0.25	2.244	Y	1	0.098	1.00E-03	1.00E-03	0.94	0.5	3.142	3.0E-05
Fluorene	2200	0.25	2.187	Y	1	0.110	1.00E-03	1.00E-03	0.91	0.5	3.142	3.2E-04
Naphthalene	1194	0.25	1.344	Y	1	0.047	1.00E-03	1.00E-03	0.56	0.2	3.142	5.8E-05
Pyrene	2000	0.25	3.485	Y	1	0.201	1.00E-03	1.00E-03	1.45	1.1	3.142	6.7E-04
Iron	17061	0.25				0.001	1.00E-03	1.00E-03			3.142	4.3E-06
Manganese	1680	0.25				0.001	1.00E-03	1.00E-03			3.142	4.2E-07

CTE DA-event for Resident, adult ::

COPC	EPC	t-event	t*	is t-event < t*?	FA	Кр	CF1	CF2	tau-event	В	Pi	DA-event
	(ug/L)	(hours/event)	(hours)			(cm/hr)	(mg/ug)	(L/cm ³⁾	(hours)		(π)	(mg/cm ² -event)
Benzene	759.9	0.17	0.696	Y	1	0.015	1.00E-03	1.00E-03	0.29	0.1	3.142	7.0E-06
Ethylbenzene	215.2	0.17	1.008	Y	1	0.049	1.00E-03	1.00E-03	0.42	0.2	3.142	7.8E-06
Toluene	79.46	0.17	0.84	Y	1	0.031	1.00E-03	1.00E-03	0.35	0.1	3.142	1.7E-06
Xylenes (total)	199.9	0.17	1.008	Y	1	0.053	1.00E-03	1.00E-03	0.42	0.2	3.142	7.8E-06
1,1'-Biphenyl	19	0.17	1.873	Y	1	0.099	1.00E-03	1.00E-03	0.78	0.5	3.142	1.9E-06
2-Methylnaphthalene	646.8	0.17	1.604	Y	1	0.092	1.00E-03	1.00E-03	0.67	0.4	3.142	5.5E-05
Acenaphthene	278.2	0.17	1.873	Y	1	0.086	1.00E-03	1.00E-03	0.78	0.4	3.142	2.4E-05
Anthracene	1500	0.17	2.555	Y	1	0.142	1.00E-03	1.00E-03	1.06	0.7	3.142	2.5E-04
Dibenzofuran	230	0.17	2.244	Y	1	0.098	1.00E-03	1.00E-03	0.94	0.5	3.142	2.5E-05
Fluorene	2200	0.17	2.187	Y	1	0.110	1.00E-03	1.00E-03	0.91	0.5	3.142	2.6E-04
Naphthalene	1194	0.17	1.344	Y	1	0.047	1.00E-03	1.00E-03	0.56	0.2	3.142	4.8E-05
Pyrene	2000	0.17	3.485	Y	1	0.201	1.00E-03	1.00E-03	1.45	1.1	3.142	5.5E-04
Iron	17061	0.17				0.001	1.00E-03	1.00E-03			3.142	2.9E-06
Manganese	1680	0.17				0.001	1.00E-03	1.00E-03			3.142	2.9E-07

Table 4.3

Chemical Specific Factors - Dermal Groundwater Exposure

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Scenario Timeframe	e: Current/Future
Medium: Groundw	ater
Exposure Medium:	Tap Water

RME DA-event for Resident, child:

COPC	EPC	t-event	t*	is t-event < t*?	FA	Кр	CF1	CF2	tau-event	В	Pi	DA-event
	(ug/L)	(hours/event)	(hours)			(cm/hr)	(mg/ug)	(L/cm ³⁾	(hours)		(π)	(mg/cm ² -event)
Benzene	759.9	0.25	0.696	Y	1	0.015	1.00E-03	1.00E-03	0.29	0.1	3.142	8.5E-06
Ethylbenzene	215.2	0.25	1.008	Y	1	0.049	1.00E-03	1.00E-03	0.42	0.2	3.142	9.4E-06
Toluene	79.46	0.25	0.84	Y	1	0.031	1.00E-03	1.00E-03	0.35	0.1	3.142	2.0E-06
Xylenes (total)	199.9	0.25	1.008	Y	1	0.053	1.00E-03	1.00E-03	0.42	0.2	3.142	9.5E-06
1,1'-Biphenyl	19	0.25	1.873	Y	1	0.099	1.00E-03	1.00E-03	0.78	0.5	3.142	2.3E-06
2-Methylnaphthalene	646.8	0.25	1.604	Y	1	0.092	1.00E-03	1.00E-03	0.67	0.4	3.142	6.7E-05
Acenaphthene	278.2	0.25	1.873	Y	1	0.086	1.00E-03	1.00E-03	0.78	0.4	3.142	2.9E-05
Anthracene	1500	0.25	2.555	Y	1	0.142	1.00E-03	1.00E-03	1.06	0.7	3.142	3.0E-04
Dibenzofuran	230	0.25	2.244	Y	1	0.098	1.00E-03	1.00E-03	0.94	0.5	3.142	3.0E-05
Fluorene	2200	0.25	2.187	Y	1	0.110	1.00E-03	1.00E-03	0.91	0.5	3.142	3.2E-04
Naphthalene	1194	0.25	1.344	Y	1	0.047	1.00E-03	1.00E-03	0.56	0.2	3.142	5.8E-05
Pyrene	2000	0.25	3.485	Y	1	0.201	1.00E-03	1.00E-03	1.45	1.1	3.142	6.7E-04
Iron	17061	0.25				0.001	1.00E-03	1.00E-03			3.142	4.3E-06
Manganese	1680	0.25				0.001	1.00E-03	1.00E-03			3.142	4.2E-07

CTE DA-event for Resident, child:

COPC	EPC	t-event	t*	is t-event < t*?	FA	Кр	CF1	CF2	tau-event	В	Pi	DA-event
	(ug/L)	(hours/event)	(hours)			(cm/hr)	(mg/ug)	(L/cm ³⁾	(hours)		(π)	(mg/cm ² -event)
Benzene	759.9	0.17	0.696	Y	1	0.015	1.00E-03	1.00E-03	0.29	0.1	3.142	7.0E-06
Ethylbenzene	215.2	0.17	1.008	Y	1	0.049	1.00E-03	1.00E-03	0.42	0.2	3.142	7.8E-06
Toluene	79.46	0.17	0.84	Y	1	0.031	1.00E-03	1.00E-03	0.35	0.1	3.142	1.7E-06
Xylenes (total)	199.9	0.17	1.008	Y	1	0.053	1.00E-03	1.00E-03	0.42	0.2	3.142	7.8E-06
1,1'-Biphenyl	19	0.17	1.873	Y	1	0.099	1.00E-03	1.00E-03	0.78	0.5	3.142	1.9E-06
2-Methylnaphthalene	646.8	0.17	1.604	Y	1	0.092	1.00E-03	1.00E-03	0.67	0.4	3.142	5.5E-05
Acenaphthene	278.2	0.17	1.873	Y	1	0.086	1.00E-03	1.00E-03	0.78	0.4	3.142	2.4E-05
Anthracene	1500	0.17	2.555	Y	1	0.142	1.00E-03	1.00E-03	1.06	0.7	3.142	2.5E-04
Dibenzofuran	230	0.17	2.244	Y	1	0.098	1.00E-03	1.00E-03	0.94	0.5	3.142	2.5E-05
Fluorene	2200	0.17	2.187	Y	1	0.110	1.00E-03	1.00E-03	0.91	0.5	3.142	2.6E-04
Naphthalene	1194	0.17	1.344	Y	1	0.047	1.00E-03	1.00E-03	0.56	0.2	3.142	4.8E-05
Pyrene	2000	0.17	3.485	Y	1	0.201	1.00E-03	1.00E-03	1.45	1.1	3.142	5.5E-04
Iron	17061	0.17				0.001	1.00E-03	1.00E-03			3.142	2.9E-06
Manganese	1680	0.17				0.001	1.00E-03	1.00E-03			3.142	2.9E-07

Source:

USEPA. 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005 July 2004

Kp displayed in RAGS Part E Appendix B are calculated from the spreadsheet ORG04_01.xls available under Part E Spreadsheets at:

http://www.epa.gov/oswer/riskassessment/ragse/index.htm

Table 5.1 Non-Cancer Toxicity Data -- Oral/Dermal

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Chemical of Potential	Chronic/ Subchronic	Oral RfD		Oral Absorption Efficiency for Dermal	Absorbed R	fD for Dermal	Primary Target	Combined Uncertainty/Modifying	RfD:Target Organ(s)	
Concern		Value	Units	(1)	Value	Units	Organ(s)	Factors	Source(s)	Date(s) (MM/DD/YYYY)
Benzene	Chronic	4.0E-03	mg/kg-day	> 0.5	4.0E-03	mg/kg-day	Blood	300	IRIS	4/17/2003
Ethylbenzene	Chronic	1.0E-01	mg/kg-day	> 0.5	1.0E-01	mg/kg-day	Liver, Kidney	1000	IRIS	6/1/1991
Toluene	Chronic	8.0E-02	mg/kg-day	> 0.5	8.0E-02	mg/kg-day	Kidney	3000	IRIS	9/23/2005
Xylenes (total)	Chronic	2.0E-01	mg/kg-day	> 0.5	2.0E-01	mg/kg-day	Body weight	1000	IRIS	2/21/2003
1,1'-Biphenyl	Chronic	5.0E-02	mg/kg-day	> 0.5	5.0E-02	mg/kg-day	Kidney	100	IRIS	8/1/1989
2-Methylnaphthalene	Chronic	4.0E-03	mg/kg-day	0.89	4.0E-03	mg/kg-day	heart	1000	IRIS	12/22/2003
Acenaphthene	Chronic	6.0E-02	mg/kg-day	0.89	6.0E-02	mg/kg-day	Liver	3000	IRIS	4/1/1994
Anthracene	Chronic	3.0E-01	mg/kg-day	0.89	3.0E-01	mg/kg-day	None	3000	IRIS	7/1/1993
Dibenzofuran	Chronic	1.0E-03	mg/kg-day	> 0.5	1.0E-03	mg/kg-day	Whole body	10000	PPRTV	6/11/2007
Fluorene	Chronic	4.0E-02	mg/kg-day	0.89	4.0E-02	mg/kg-day	Blood	3000	IRIS	11/1/1990
Naphthalene	Chronic	2.0E-02	mg/kg-day	0.89	2.0E-02	mg/kg-day	Body weight	3000	IRIS	9/17/1998
Pyrene	Chronic	3.0E-02	mg/kg-day	0.89	3.0E-02	mg/kg-day	Kidney	3000	IRIS	7/1/1993
Iron	Chronic	7.0E-01	mg/kg-day	> 0.5	7.0E-01	mg/kg-day	GI	1.5	PPRTV	11/2010
Manganese (non-diet)	Chronic	2.4E-02	mg/kg-day	0.04	9.6E-04	mg/kg-day	CNS	3	IRIS	5/1/1996

Notes:

(1) Source: Risk Assessment Guidance for Superfund. Volume 1: Human Health E valuation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Section 4.2 and Exhibit 4-1. As indicated in RAGS Part E, only chemicals with an oral absorption factor <50% were adjusted to account for absorbed dose in the dermal exposure pathway.

CNS = Central nervous system

GI = Gastrointestinal effects

IRIS = Integrated Risk Information System

PPRTV = Provisional Peer Reviewed Toxicity Value as cited in USEPA (November 2010) Regional Screening Levels. PPRTVs are developed by EPA's Office of Solid Waste and Emergency Response.

RfD = oral reference dose

mg/kg-day = millgrams per kilogram of body weight per day

NA = Not Available

Table 5.2

Non-Cancer Toxicity Data -- Inhalation

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Chemical of Potential	Chronic/ Subchronic	Inhalati	Inhalation RfC		ted RfD ^[1]	Target	Combined Uncertainty/Modifying	RfC : Tar	get Organ(s)
Concern		Value	Units	Value	Units	Organ(s)	Factors	Source(s)	Date(s)
									(MM/DD/YYYY)
Benzene	Chronic	3.0E-02	mg/m³	8.6E-03	mg/kg-day	Blood	300	IRIS	4/17/2003
Ethylbenzene	Chronic	1.0E+00	mg/m°	2.9E-01	mg/kg-day	Development	300	IRIS	1/1/1991
Toluene	Chronic	5.0E+00	mg/m³	1.4E+00	mg/kg-day	Neurological	10	IRIS	9/23/2005
Xylenes (total)	Chronic	1.0E-01	mg/m³	2.9E-02	mg/kg-day	CNS	300	IRIS	2/21/2003
1,1'-Biphenyl	Chronic	4.0E-04	mg/m³	1.1E-04	mg/kg-day	Liver, Kidney	3000	PPRTV	4/4/2011
2-Methylnaphthalene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	Chronic	3.0E-03	mg/m³	8.6E-04	mg/kg-day	Respiratory	3000	IRIS	9/17/1998
Pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese (non-diet)	Chronic	5.0E-05	mg/m³	1.4E-05	mg/kg-day	Neurological	1000	IRIS	12/1/1993

Notes:

[1] The inhalation RfC is used in the calculation of inhalation hazards. Extrapolated RfDs are simply shown for sake of completeness.

IRIS = Integrated Risk Information System

PPRTV = Provisional Peer-Reviewed Toxicity Value

RfD = oral reference dose

RfC = inhalation reference concentration

CNS = central nervous system

mg/m3 = milligrams per cubic meter

NA = Not available

Table 6.1 Cancer Toxicity Data -- Oral/Dermal Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Chemical of Potential	Oral Cancer	Slope Factor	Oral Absorption Efficiency for Dermal		ncer Slope Factor Dermal	Weight of Evidence/ Cancer Guideline	Ora	
Concern	Value	Units	(1)	Value	Units	Description	Source(s)	Date(s)
								(MM/DD/YYYY)
Benzene	5.5E-02	(mg/kg-day)	> 0.5	5.5E-02	(mg/kg-day)	А	IRIS	1/9/2000
Ethylbenzene	1.1E-02	(mg/kg-day) ⁻¹	> 0.5	1.1E-02	(mg/kg-day) ⁻¹	D	CalEPA	7/21/2009
Toluene	NA	NA	NA	NA	NA	NA	NA	NA
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA	NA
1,1'-Biphenyl	8.0E-03	(mg/kg-day) ⁻¹	> 0.5	8.0E-03	(mg/kg-day) ⁻¹	С	PPRTV	4/4/2011
2-Methylnaphthalene	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene	NA	NA	NA	NA	NA	NA	NA	NA
Iron	NA	NA	NA	NA	NA	NA	NA	NA
Manganese (diet)	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

(1) Source: Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Section 4.2 and Exhibit 4-1. As indicated in RAGS Part E, only chemicals with an oral absorption factor <50% were adjusted to account for absorbed dose in the dermal exposure pathway.

A - Human Carcinogen

C - Possible Human Carcinogen

D - Not classifiable as to human carcinogenicity.

CSF = cancer slope factor

CalEPA = California EPA

IRIS = Integrated Risk Information System

PPRTV = Provisional Peer-Reviewed Toxicity Value

mg/kg-day = milligrams per kilogram of body weight per day

NA = Not Available

Table 6.2

Cancer Toxicity Data -- Inhalation

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Chemical of Potential	Unit	Risk		ion Cancer Factor ^[1]	Weight of Evidence/ Cancer Guideline	URF : Inhalation CSF				
Concern	Value	Units	Value	Units	Description	Source(s)	Date(s)			
							(MM/DD/YYYY)			
Benzene	7.8E-03	(mg/m ³) ⁻¹	2.7E+01	(mg/kg-day) ⁻ '	A	IRIS	1/9/2000			
Ethylbenzene	2.5E-03	(mg/m ³) ⁻¹	8.8E+00	(mg/kg-day) ^{⁻¹}	D	CalEPA	2003			
Toluene	NA	NA	NA	NA	NA	NA	NA			
Xylenes (total)	NA	NA	NA	NA	NA	NA	NA			
1,1'-Biphenyl	NA	NA	NA	NA	NA	NA	NA			
2-Methylnaphthalene	NA	NA	NA	NA	NA	NA	NA			
Acenaphthene	NA	NA	NA	NA	NA	NA	NA			
Anthracene	NA	NA	NA	NA	NA	NA	NA			
Dibenzofuran	NA	NA	NA	NA	NA	NA	NA			
Fluorene	NA	NA	NA	NA	NA	NA	NA			
Naphthalene	3.4E-02	(mg/m ³) ⁻¹	1.2E+02	(mg/kg-day) ⁻¹	С	CalEPA	7/21/2009			
Pyrene	NA	NA	NA	NA	NA	NA	NA			
Iron	NA	NA	NA	NA	NA	NA	NA			
Manganese	NA	NA	NA	NA	NA	NA	NA			

Notes:

[1] The unit risk factor is used to calculate inhalation risks. The inhalation CSF is simply shown for sake of completeness.

A - Known Human Carcinogen

C - Possible Human Carcinogen

D - Not classifiable as to human carcinogenicity.

URF = unit risk factor

CSF = cancer slope factor

IRIS = Integrated Risk Information System

CalEPA = California Environmental Protection Agency

mg/m³ = milligrams per cubic meter

mg/kg-day = milligrams per kilogram of body weight per day

NA = Not Available

Table 7.1.RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Scenario Timeframe:	Future
Receptor Population:	Resident
Receptor Age:	Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC Cancer Risk Calculations						No	n-Cancer Haz	ard Calculations	5				
				Potential Concern	Value	Units	Intake/Exposure	Concentration		nit Risk	Cancer Risk	Percent of	Intake/Exposure			D/RfC		Percent of
							Value	Units	Value	Units		Total Risk per Route	Value	Units	Value	Units	Hazard	Total Hazard per Route
Groundwater	Overburden	Excelsior Avenue Area	Ingestion	Baazaaa	7.6E+02	ug/L	7.1E-03	mg/kg-day	5.5E-02	(mg/kg-day)-1	4.E-04	94%	2.1E-02	mg/kg-day	4.0E-03	mg/kg-day	Quotient 5.2E+00	22%
Cioundwater	Groundwater	Excelator Avenue Area	ingestion	Benzene Ethylbenzene	2.2E+02	ug/L	2.0E-03	mg/kg-day	1.1E-02	(mg/kg-day)-1 (mg/kg-day)-1	2.E-05	5%	5.9E-03	mg/kg-day	1.0E-01	mg/kg-day	5.9E-02	0.2%
				Toluene	7.9E+01	ug/L	7.5E-04	mg/kg-day	NA	NA NA	NA	NA	2.2E-03	mg/kg-day	8.0E-02	mg/kg-day	2.7E-02	0.2%
				Xylenes (total)	2.0E+02	ug/L	1.9E-03	mg/kg-day	NA	NA	NA	NA	5.5E-03	mg/kg-day	2.0E-01	mg/kg-day	2.7E-02	0.1%
				1,1'-Biphenyl	1.9E+01	ug/L	1.8E-04	mg/kg-day	8.0E-03	(mg/kg-day)-1	1.E-06	0.3%	5.2E-04	mg/kg-day	5.0E-02	mg/kg-day	1.0E-02	0.04%
				2-Methylnaphthalene	6.5E+02	ug/L	6.1E-03	mg/kg-day	NA	NA	NA	NA	1.8E-02	mg/kg-day	4.0E-03	mg/kg-day	4.4E+00	19%
				Acenaphthene	2.8E+02	ug/L	2.6E-03	mg/kg-day	NA	NA	NA	NA	7.6E-03	mg/kg-day	6.0E-02	mg/kg-day	1.3E-01	1%
				Anthracene	1.5E+03	ug/L	1.4E-02	mg/kg-day	NA	NA	NA	NA	4.1E-02	mg/kg-day	3.0E-01	mg/kg-day	1.4E-01	1%
				Dibenzofuran	2.3E+02	ug/L	2.2E-03	mg/kg-day	NA	NA	NA	NA	6.3E-03	mg/kg-day	1.0E-03	mg/kg-day	6.3E+00	26%
				Fluorene	2.2E+03	ug/L	2.1E-02	mg/kg-day	NA	NA	NA	NA	6.0E-02	mg/kg-day	4.0E-02	mg/kg-day	1.5E+00	6%
				Naphthalene	1.2E+03	ug/L	1.1E-02	mg/kg-day	NA	NA	NA	NA	3.3E-02	mg/kg-day	2.0E-02	mg/kg-day	1.6E+00	7%
				Pyrene	2.0E+03	ug/L	1.9E-02	mg/kg-day	NA	NA	NA	NA	5.5E-02	mg/kg-day	3.0E-02	mg/kg-day	1.8E+00	8%
				Iron	1.7E+04	ug/L	1.6E-01	mg/kg-day	NA	NA	NA	NA	4.7E-01	mg/kg-day	7.0E-01	mg/kg-day	6.7E-01	3%
				Manganese	1.7E+03	ug/L	1.6E-02	mg/kg-day	NA	NA	NA	NA	4.6E-02	mg/kg-day	2.4E-02	mg/kg-day	1.9E+00	8%
			Exp. Route Total								4.E-04	100%					2.4E+01	100%
			Dermal	Benzene	7.6E+02	ug/L	7.2E-04	mg/kg-day	5.5E-02	(mg/kg-day)-1	4.E-05	79%	2.1E-03	mg/kg-day	4.0E-03	mg/kg-day	5.2E-01	3%
				Ethylbenzene	2.2E+02	ug/L	8.0E-04	mg/kg-day	1.1E-02	(mg/kg-day)-1	9.E-06	18%	2.3E-03	mg/kg-day	1.0E-01	mg/kg-day	2.3E-02	0.1%
				Toluene	7.9E+01	ug/L	1.7E-04	mg/kg-day	NA	NA	NA	NA	5.0E-04	mg/kg-day	8.0E-02	mg/kg-day	6.2E-03	0.03%
				Xylenes (total)	2.0E+02	ug/L	8.0E-04	mg/kg-day	NA	NA	NA	NA	2.3E-03	mg/kg-day	2.0E-01	mg/kg-day	1.2E-02	0.1%
				1,1'-Biphenyl	1.9E+01	ug/L	1.9E-04	mg/kg-day	8.0E-03	(mg/kg-day)-1	2.E-06	3%	5.6E-04	mg/kg-day	5.0E-02	mg/kg-day	1.1E-02	0.1%
				2-Methylnaphthalene	6.5E+02	ug/L	5.7E-03	mg/kg-day	NA	NA	NA	NA	1.7E-02	mg/kg-day	4.0E-03	mg/kg-day	4.1E+00	20%
				Acenaphthene	2.8E+02	ug/L	2.5E-03	mg/kg-day	NA	NA	NA	NA	7.2E-03	mg/kg-day	6.0E-02	mg/kg-day	1.2E-01	1%
				Anthracene	1.5E+03	ug/L	2.6E-02	mg/kg-day	NA	NA	NA	NA	7.5E-02	mg/kg-day	3.0E-01	mg/kg-day	2.5E-01	1%
				Dibenzofuran	2.3E+02	ug/L	2.5E-03	mg/kg-day	NA	NA	NA	NA	7.4E-03	mg/kg-day	1.0E-03	mg/kg-day	7.4E+00	36%
				Fluorene	2.2E+03	ug/L	2.7E-02	mg/kg-day	NA	NA	NA	NA	7.8E-02	mg/kg-day	4.0E-02	mg/kg-day	2.0E+00	9%
				Naphthalene	1.2E+03	ug/L	4.9E-03	mg/kg-day	NA	NA	NA	NA	1.4E-02	mg/kg-day	2.0E-02	mg/kg-day	7.2E-01	3%
				Pyrene	2.0E+03	ug/L	5.7E-02	mg/kg-day	NA	NA	NA	NA	1.7E-01	mg/kg-day	3.0E-02	mg/kg-day	5.5E+00	27%
				Iron	1.7E+04	ug/L	3.6E-04	mg/kg-day	NA	NA	NA	NA	1.1E-03	mg/kg-day	7.0E-01	mg/kg-day	1.5E-03	0.01%
				Manganese	1.7E+03	ug/L	3.6E-05	mg/kg-day	NA	NA	NA	NA	1.0E-04	mg/kg-day	9.6E-04	mg/kg-day	1.1E-01	0.5%
			Exp. Route Total							1	5.E-05	100%		1	· · · · ·		2.1E+01	100%
			Inhalation	Benzene	2.5E+00	mg/m ³	2.5E-02	mg/m3	7.8E-03	(mg/m3)-1	2.E-04	13%	7.4E-02	mg/m3	3.0E-02	mg/m3	2.5E+00	5%
			(showering)	Ethylbenzene	7.0E-01	mg/m ³	7.2E-03	mg/m3	2.5E-03	(mg/m3)-1	2.E-05	1%	2.1E-02	mg/m3	1.0E+00	mg/m3	2.1E-02	0.05%
				Toluene	2.6E-01	mg/m ³	2.7E-03	mg/m3	NA	NA	NA	NA	7.8E-03	mg/m3	5.0E+00	mg/m3	1.6E-03	0.003%
				Xylenes (total)	6.5E-01	mg/m ³	6.7E-03	mg/m3	NA	NA	NA	NA	1.9E-02	mg/m3	1.0E-01	mg/m3	1.9E-01	0.4%
				1,1'-Biphenyl	6.2E-02	mg/m ³	6.4E-04	mg/m3	NA	NA NA	NA	NA	1.9E-03	mg/m3	4.0E-04 NA	mg/m3	4.6E+00	10%
				2-Methylnaphthalene	2.1E+00	mg/m ³	2.2E-02	mg/m3	NA		NA	NA	6.3E-02	mg/m3		NA	NA	NA
				Acenaphthene	9.1E-01 4.9E+00	mg/m ³	9.3E-03 5.0E-02	mg/m3 mg/m3	NA NA	NA NA	NA NA	NA NA	2.7E-02 1.5E-01	mg/m3	NA NA	NA NA	NA NA	NA
				Anthracene	4.9E+00 7.5E-01	mg/m ³		•			NA	NA NA		mg/m3	NA			NA
				Dibenzofuran	7.5E-01 7.2E+00	mg/m ³ mg/m ³	7.7E-03 7.4E-02	mg/m3 mg/m3	NA NA	NA NA	NA	NA	2.2E-02 2.1E-01	mg/m3 mg/m3	NA	NA NA	NA NA	NA
				Fluorene	7.2E+00 3.9E+00	mg/m mg/m ³	4.0E-02	mg/m3	3.4E-02	(mg/m3)-1	1.E-03	86%	2.1E-01 1.2E-01	mg/m3	3.0E-03	mg/m3	3.9E+01	NA 84%
				Naphthalene Pvrene	5.9E+00 6.5E+00	mg/m mg/m ³	4.0E-02 6.7E-02	mg/m3	3.4E-02 NA	(mg/m3)-1 NA	NA	00% NA	2.0E-01	mg/m3	3.0E-03	NA	NA	84% NA
			Exp. Route Total		0.02+00	mg/m	0.7 2-02	ing/ino	11/4	11/3	2.E-03	100%	2.02-01	inginio	114	11/5	4.6E+01	100%
		Exposure Point Total		R							2.E-03						9.1E+01	
h	Exposure Medium Total	,									2.E-03						9.1E+01	
Medium Total	,										2.E-03			9.1E+01				
Total of Recentor Risks/	/Hazards Across All Media	3					Total of Receptor Risks Across All Media				2.E-03		Total of Receptor Hazards Across All Media 9.					
							Percent Contribution from Ingestion					20%						26%
							Percent Contribution from Dermal					2%						23%
				n from Inhalation		77% Percent Contribution from Inhalation					51%							

Table 7.1.CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

\$	Scenario Timeframe:	Future
F	Receptor Population:	Resident
F	Receptor Age:	Adult
_		

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EPC Cancer Risk Calculations				Non-Cancer Hazard Calculations					s				
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	CSF/U	Init Risk	Cancer Risk	Percent of	Intake/Exposure	Concentration	Rf	D/RfC		Percent of
							Value	Units	Value	Units		Total Risk per Route	Value	Units	Value	Units	Hazard Quotient	Total Hazard per Route
Groundwater	Overburden	Excelsior Avenue Area	Ingestion	Benzene	7.6E+02	ug/L	1.3E-03	mg/kg-day	5.5E-02	(mg/kg-day)-1	7.E-05	94%	1.0E-02	mg/kg-day	4.0E-03	mg/kg-day	2.6E+00	22%
	Groundwater		, i i i i i i i i i i i i i i i i i i i	Ethylbenzene	2.2E+02	ug/L	3.8E-04	mg/kg-day	1.1E-02	(mg/kg-day)-1	4.E-06	5%	2.9E-03	mg/kg-day	1.0E-01	mg/kg-day	2.9E-02	0.2%
				Toluene	7.9E+01	ug/L	1.4E-04	mg/kg-day	NA	NA	NA	NA	1.1E-03	mg/kg-day	8.0E-02	mg/kg-day	1.4E-02	0.1%
				Xylenes (total)	2.0E+02	ug/L	3.5E-04	mg/kg-day	NA	NA	NA	NA	2.7E-03	mg/kg-day	2.0E-01	mg/kg-day	1.4E-02	0.1%
				1,1'-Biphenyl	1.9E+01	ug/L	3.3E-05	mg/kg-day	8.0E-03	(mg/kg-day)-1	3.E-07	0.3%	2.6E-04	mg/kg-day	5.0E-02	mg/kg-day	5.2E-03	0.04%
				2-Methylnaphthalene	6.5E+02	ug/L	1.1E-03	mg/kg-day	NA	NA	NA	NA	8.9E-03	mg/kg-day	4.0E-03	mg/kg-day	2.2E+00	19%
				Acenaphthene	2.8E+02	ug/L	4.9E-04	mg/kg-day	NA	NA	NA	NA	3.8E-03	mg/kg-day	6.0E-02	mg/kg-day	6.4E-02	1%
				Anthracene	1.5E+03	ug/L	2.6E-03	mg/kg-day	NA	NA	NA	NA	2.1E-02	mg/kg-day	3.0E-01	mg/kg-day	6.8E-02	1%
				Dibenzofuran	2.3E+02	ug/L	4.1E-04	mg/kg-day	NA	NA	NA	NA	3.2E-03	mg/kg-day	1.0E-03	mg/kg-day	3.2E+00	26%
				Fluorene	2.2E+03	ug/L	3.9E-03	mg/kg-day	NA	NA	NA	NA	3.0E-02	mg/kg-day	4.0E-02	mg/kg-day	7.5E-01	6%
				Naphthalene	1.2E+03	ug/L	2.1E-03	mg/kg-day	NA	NA	NA	NA	1.6E-02	mg/kg-day	2.0E-02	mg/kg-day	8.2E-01	7%
				Pyrene	2.0E+03	ug/L	3.5E-03	mg/kg-day	NA	NA	NA	NA	2.7E-02	mg/kg-day	3.0E-02	mg/kg-day	9.1E-01	8%
				Iron	1.7E+04	ug/L	3.0E-02	mg/kg-day	NA	NA	NA	NA	2.3E-01	mg/kg-day	7.0E-01	mg/kg-day	3.3E-01	3%
			For Device Total	Manganese	1.7E+03	ug/L	3.0E-03	mg/kg-day	NA	NA	NA 0.5.05	NA	2.3E-02	mg/kg-day	2.4E-02	mg/kg-day	9.6E-01	8%
1			Exp. Route Total Dermal		7.6E+02	ug/L	2.2E-04	ma/ka devi	5.5E-02	(ma/ka do:) 1	8.E-05 1.E-05	100% 79%	1.7E-03	maka day	4.0E-03	ma/ka do::	1.2E+01 4.3E-01	100%
			Deimai	Benzene	2.2E+02	ug/L	2.2E-04 2.5E-04	mg/kg-day mg/kg-day	5.5E-02 1.1E-02	(mg/kg-day)-1 (mg/kg-day)-1	3.E-06	18%	1.9E-03	mg/kg-day mg/kg-day	4.0E-03 1.0E-01	mg/kg-day mg/kg-day	4.3E-01 1.9E-02	3% 0.1%
1				Ethylbenzene Toluene	2.2E+02 7.9E+01	ug/L	2.5E-04 5.3E-05	mg/kg-day mg/kg-day	NA	(mg/kg-day)- i NA	3.E-06 NA	NA	4.1E-04	mg/kg-day	8.0E-02	mg/kg-day mg/kg-day	5.1E-02	0.1%
				Xylenes (total)	2.0E+02	ug/L	2.5E-04	mg/kg-day	NA	NA	NA	NA	1.9E-03	mg/kg-day	2.0E-01	mg/kg-day	9.6E-03	0.1%
				1,1'-Biphenyl	1.9E+01	ug/L	6.0E-05	mg/kg-day	8.0E-03	(mg/kg-day)-1	5.E-07	3%	4.7E-04	mg/kg-day	5.0E-02	mg/kg-day	9.3E-03	0.1%
				2-Methylnaphthalene	6.5E+02	ug/L	1.8E-03	mg/kg-day	NA	NA	NA	NA	1.4E-02	mg/kg-day	4.0E-03	mg/kg-day	3.4E+00	20%
				Acenaphthene	2.8E+02	ug/L	7.6E-04	mg/kg-day	NA	NA	NA	NA	5.9E-03	mg/kg-day	6.0E-02	mg/kg-day	9.9E-02	1%
				Anthracene	1.5E+03	ug/L	7.9E-03	mg/kg-day	NA	NA	NA	NA	6.2E-02	mg/kg-day	3.0E-01	mg/kg-day	2.1E-01	1%
				Dibenzofuran	2.3E+02	ug/L	7.8E-04	mg/kg-day	NA	NA	NA	NA	6.1E-03	mg/kg-day	1.0E-03	mg/kg-day	6.1E+00	36%
				Fluorene	2.2E+03	ug/L	8.3E-03	mg/kg-day	NA	NA	NA	NA	6.5E-02	mg/kg-day	4.0E-02	mg/kg-day	1.6E+00	9%
				Naphthalene	1.2E+03	ug/L	1.5E-03	mg/kg-day	NA	NA	NA	NA	1.2E-02	mg/kg-day	2.0E-02	mg/kg-day	5.9E-01	3%
				Pyrene	2.0E+03	ug/L	1.7E-02	mg/kg-day	NA	NA	NA	NA	1.4E-01	mg/kg-day	3.0E-02	mg/kg-day	4.5E+00	27%
				Iron	1.7E+04	ug/L	9.2E-05	mg/kg-day	NA	NA	NA	NA	7.2E-04	mg/kg-day	7.0E-01	mg/kg-day	1.0E-03	0.01%
				Manganese	1.7E+03	ug/L	9.1E-06	mg/kg-day	NA	NA	NA	NA	7.0E-05	mg/kg-day	9.6E-04	mg/kg-day	7.3E-02	0.4%
			Exp. Route Total							1	2.E-05	100%		1	1		1.7E+01	100%
			Inhalation	Benzene	1.3E+00	mg/m ³	1.7E-03	mg/m3	7.8E-03	(mg/m3)-1	1.E-05	13%	1.3E-02	mg/m3	3.0E-02	mg/m3	4.4E-01	5%
			(showering)	Ethylbenzene	3.8E-01	mg/m ³	4.8E-04	mg/m3	2.5E-03	(mg/m3)-1	1.E-06	1%	3.8E-03	mg/m3	1.0E+00	mg/m3	3.8E-03	0.05%
				Toluene	1.4E-01	mg/m ³	1.8E-04	mg/m3	NA	NA	NA	NA	1.4E-03	mg/m3	5.0E+00	mg/m3	2.8E-04	0.003%
1				Xylenes (total)	3.5E-01	mg/m ³	4.5E-04	mg/m3	NA	NA	NA	NA	3.5E-03	mg/m3	1.0E-01	mg/m3	3.5E-02	0.4%
				1,1'-Biphenyl	3.3E-02	mg/m ³	4.3E-05	mg/m3	NA	NA	NA	NA	3.3E-04	mg/m3	4.0E-04 NA	mg/m3	8.3E-01	10%
				2-Methylnaphthalene	1.1E+00 4.9E-01	mg/m ³	1.5E-03 6.3E-04	mg/m3 mg/m3	NA NA	NA NA	NA NA	NA NA	1.1E-02 4.9E-03	mg/m3 mg/m3	NA NA	NA NA	NA	NA
				Acenaphthene Anthracene	4.9E-01 2.6E+00	mg/m ³	6.3E-04 3.4E-03	mg/m3 mg/m3	NA	NA	NA	NA	4.9E-03 2.6E-02	mg/m3 mg/m3	NA	NA	NA	NA NA
1				Anthracene Dibenzofuran	2.6E+00 4.0E-01	mg/m ³	5.2E-04	mg/m3	NA	NA	NA	NA	4.0E-02	mg/m3	NA	NA	NA	NA
				Fluorene	3.9E+00	mg/m ³	5.0E-03	mg/m3	NA	NA	NA	NA	4.0E-03 3.9E-02	mg/m3	NA	NA	NA	NA
1				Naphthalene	2.1E+00	mg/m ³	2.7E-03	mg/m3	3.4E-02	(mg/m3)-1	9.E-05	86%	2.1E-02	mg/m3	3.0E-03	mg/m3	7.0E+00	84%
				Pyrene	3.5E+00	mg/m ³	4.5E-03	mg/m3	NA	NA	NA	NA	3.5E-02	mg/m3	NA	NA	NA	NA
1			Exp. Route Total		u						1.E-04	100%				·	8.3E+00	100%
		Exposure Point Total									2.E-04						3.7E+01	
	Exposure Medium Total	<u> </u>									2.E-04						3.7E+01	
Medium Total													3.7E+01					
Total of Receptor Risks	s/Hazards Across All Media	a					Total of Receptor Risks Across All Media 2				2.E-04			Total of Rece	ptor Hazards A	cross All Media	3.7E+01	
							Percent Contribution from Ingestion					39%						32%
							Percent Contribution from Dermal					8%						46%
L	Percent Contribution from Inhalation											53%	0	Perci	ent Contributio	n from Inhalation		22%

Table 7.2.RME

Calculation of Chemical Cancer Risks and Non-Cancer Hazards

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Future
Resident
Child

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	EI	°C	Cancer Risk Calculations						No	S				
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	CSF/U	Init Risk	Cancer Risk	Percent of	Intake/Exposure	Concentration	Rf	D/RfC		Percent of
							Value	Units	Value	Units		Total Risk per Route	Value	Units	Value	Units	Hazard Quotient	Total Hazard per Route
Groundwater	Overburden	Excelsior Avenue Area	Ingestion	Benzene	7.6E+02	ug/L	4.2E-03	mg/kg-day	5.5E-02	(mg/kg-day)-1	2.E-04	94%	4.9E-02	mg/kg-day	4.0E-03	mg/kg-day	1.2E+01	. 22%
	Groundwater		°	Ethylbenzene	2.2E+02	ug/L	1.2E-03	mg/kg-day	1.1E-02	(mg/kg-day)-1	1.E-05	5%	1.4E-02	mg/kg-day	1.0E-01	mg/kg-day	1.4E-01	0.2%
				Toluene	7.9E+01	ug/L	4.4E-04	mg/kg-day	NA	NA	NA	NA	5.1E-03	mg/kg-day	8.0E-02	mg/kg-day	6.3E-02	0.1%
				Xylenes (total)	2.0E+02	ug/L	1.1E-03	mg/kg-day	NA	NA	NA	NA	1.3E-02	mg/kg-day	2.0E-01	mg/kg-day	6.4E-02	0.1%
				1,1'-Biphenyl	1.9E+01	ug/L	1.0E-04	mg/kg-day	8.0E-03	(mg/kg-day)-1	8.E-07	0.3%	1.2E-03	mg/kg-day	5.0E-02	mg/kg-day	2.4E-02	0.04%
				2-Methylnaphthalene	6.5E+02	ug/L	3.5E-03	mg/kg-day	NA	NA	NA	NA	4.1E-02	mg/kg-day	4.0E-03	mg/kg-day	1.0E+01	19%
				Acenaphthene	2.8E+02	ug/L	1.5E-03	mg/kg-day	NA	NA	NA	NA	1.8E-02	mg/kg-day	6.0E-02	mg/kg-day	3.0E-01	1%
				Anthracene	1.5E+03	ug/L	8.2E-03	mg/kg-day	NA	NA	NA	NA	9.6E-02	mg/kg-day	3.0E-01	mg/kg-day	3.2E-01	1%
				Dibenzofuran	2.3E+02	ug/L	1.3E-03	mg/kg-day	NA	NA	NA	NA	1.5E-02	mg/kg-day	1.0E-03	mg/kg-day	1.5E+01	26%
				Fluorene	2.2E+03	ug/L	1.2E-02	mg/kg-day	NA	NA	NA	NA	1.4E-01	mg/kg-day	4.0E-02	mg/kg-day	3.5E+00	6%
				Naphthalene	1.2E+03	ug/L	6.5E-03	mg/kg-day	NA	NA	NA	NA	7.6E-02	mg/kg-day	2.0E-02	mg/kg-day	3.8E+00	7%
				Pyrene	2.0E+03	ug/L	1.1E-02	mg/kg-day	NA	NA	NA	NA	1.3E-01	mg/kg-day	3.0E-02	mg/kg-day	4.3E+00	8%
				Iron	1.7E+04	ug/L	9.3E-02	mg/kg-day	NA	NA	NA	NA	1.1E+00	mg/kg-day	7.0E-01	mg/kg-day	1.6E+00	3%
			Exp. Route Total	Manganese	1.7E+03	ug/L	9.2E-03	mg/kg-day	NA	NA	NA 2.E-04	NA	1.1E-01	mg/kg-day	2.4E-02	mg/kg-day	4.5E+00	8%
			Exp. Route Total Dermal		7.6E+02	ug/L	3.1E-04	ma/ka day	5.5E-02	(ma/ka dou) 1	2.E-04 2.E-05	100% 79%	3.6E-03	ma/ka dov	4.0E-03	mg/kg-day	5.6E+01 8.9E-01	100%
			Dermai	Benzene	2.2E+02	ug/L	3.4E-04	mg/kg-day mg/kg-day	1.1E-02	(mg/kg-day)-1 (mg/kg-day)-1	4.E-06	18%	4.0E-03	mg/kg-day mg/kg-day	4.0E-03	mg/kg-day	4.0E-02	3% 0.1%
				Ethylbenzene Toluene	7.9E+01	ug/L	7.3E-05	mg/kg-day	NA	(hig/kg-day)-1	NA	NA	8.5E-04	mg/kg-day	8.0E-02	mg/kg-day	1.1E-02	0.1%
				Xylenes (total)	2.0E+02	ug/L	3.4E-04	mg/kg-day	NA	NA	NA	NA	4.0E-03	mg/kg-day	2.0E-01	mg/kg-day	2.0E-02	0.1%
				1,1'-Biphenyl	1.9E+01	ug/L	8.3E-05	mg/kg-day	8.0E-03	(mg/kg-day)-1	7.E-07	3.1E-02	9.7E-04	mg/kg-day	5.0E-02	mg/kg-day	1.9E-02	0.1%
				2-Methylnaphthalene	6.5E+02	ug/L	2.4E-03	mg/kg-day	NA	NA	NA	NA	2.8E-02	mg/kg-day	4.0E-03	mg/kg-day	7.1E+00	20%
				Acenaphthene	2.8E+02	ug/L	1.1E-03	mg/kg-day	NA	NA	NA	NA	1.2E-02	mg/kg-day	6.0E-02	mg/kg-day	2.1E-01	1%
				Anthracene	1.5E+03	ug/L	1.1E-02	mg/kg-day	NA	NA	NA	NA	1.3E-01	mg/kg-day	3.0E-01	mg/kg-day	4.3E-01	1%
				Dibenzofuran	2.3E+02	ug/L	1.1E-03	mg/kg-day	NA	NA	NA	NA	1.3E-02	mg/kg-day	1.0E-03	mg/kg-day	1.3E+01	36%
				Fluorene	2.2E+03	ug/L	1.2E-02	mg/kg-day	NA	NA	NA	NA	1.3E-01	mg/kg-day	4.0E-02	mg/kg-day	3.4E+00	9%
				Naphthalene	1.2E+03	ug/L	2.1E-03	mg/kg-day	NA	NA	NA	NA	2.4E-02	mg/kg-day	2.0E-02	mg/kg-day	1.2E+00	3%
				Pyrene	2.0E+03	ug/L	2.4E-02	mg/kg-day	NA	NA	NA	NA	2.8E-01	mg/kg-day	3.0E-02	mg/kg-day	9.4E+00	27%
				Iron	1.7E+04	ug/L	1.5E-04	mg/kg-day	NA	NA	NA	NA	1.8E-03	mg/kg-day	7.0E-01	mg/kg-day	2.6E-03	0.01%
				Manganese	1.7E+03	ug/L	1.5E-05	mg/kg-day	NA	NA	NA	NA	1.8E-04	mg/kg-day	9.6E-04	mg/kg-day	1.8E-01	0.5%
			Exp. Route Total							1	2.E-05	100%		1			3.6E+01	100%
			Inhalation	Benzene	2.3E+00	mg/m ³	4.6E-03	mg/m3	7.8E-03	(mg/m3)-1	4.E-05	13%	4.6E-03	mg/m3	3.0E-02	mg/m3	1.5E-01	5%
1			(showering)	Ethylbenzene	6.6E-01	mg/m ³	1.3E-03	mg/m3	2.5E-03	(mg/m3)-1	3.E-06	1%	1.3E-03	mg/m3	1.0E+00	mg/m3	1.3E-03	0.05%
1				Toluene	2.4E-01	mg/m ³	4.8E-04	mg/m3	NA	NA	NA	NA	4.8E-04	mg/m3	5.0E+00	mg/m3	9.7E-05	0.003%
				Xylenes (total)	6.1E-01	mg/m ³	1.2E-03	mg/m3	NA	NA	NA	NA	1.2E-03	mg/m3	1.0E-01	mg/m3	1.2E-02	0.4%
1				1,1'-Biphenyl	5.8E-02 2.0E+00	mg/m ³	1.2E-04 3.9E-03	mg/m3 mg/m3	NA NA	NA NA	NA NA	NA NA	1.2E-04 3.9E-03	mg/m3 mg/m3	4.0E-04 NA	mg/m3 NA	2.9E-01 NA	10%
				2-Methylnaphthalene	2.0E+00 8.5E-01	mg/m ³ mg/m ³	3.9E-03 1.7E-03	mg/m3 mg/m3	NA	NA	NA	NA	3.9E-03	mg/m3 mg/m3	NA	NA	NA	NA
				Acenaphthene Anthracene	4.6E+00	mg/m ³	9.1E-03	mg/m3	NA	NA	NA	NA	9.1E-03	mg/m3	NA	NA	NA	NA NA
				Dibenzofuran	7.0E-01	mg/m ³	1.4E-03	mg/m3	NA	NA	NA	NA	1.4E-03	mg/m3	NA	NA	NA	NA
				Fluorene	6.7E+00	mg/m ³	1.3E-02	mg/m3	NA	NA	NA	NA	1.3E-02	mg/m3	NA	NA	NA	NA
				Naphthalene	3.7E+00	mg/m ³	7.3E-03	mg/m3	3.4E-02	(mg/m3)-1	2.E-04	86%	7.3E-03	mg/m3	3.0E-03	mg/m3	2.4E+00	84%
				Pyrene	6.1E+00	mg/m ³	1.2E-02	mg/m3	NA	NA	NA	NA	1.2E-02	mg/m3	NA	NA	NA	NA
			Exp. Route Total	1	-					•	3.E-04	100%		•	•	•	2.9E+00	100%
1	í	Exposure Point Total		······							6.E-04						9.4E+01	
	Exposure Medium Total										6.E-04						9.4E+01	
Medium Total												-					9.4E+01	
Total of Receptor Risks	/Hazards Across All Media	1					Total of Receptor Risks Across All Media				6.E-04		Total of Receptor Hazards Across All Media 9.48				9.4E+01	
							Percent Contribution from Ingestion Percent Contribution from Dermal					44%						59%
												4% 52%				tion from Dermal n from Inhalation		38% 3%
L	Percent Contribution from Lemma Percent Contribution from Inhalation											32%	1	Perce		n nom inflatation		3 /0

Table 7.2.CTE

Calculation of Chemical Cancer Risks and Non-Cancer Hazards

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

Future
Resident
Child

Medium	Exposure Medium	Exposure Point	Exposure Route	oute Chemical of EPC Cancer Risk Calculations			Non-Cancer Hazard Calculations					5						
				Potential Concern	Value	Units	Intake/Exposure	e Concentration	CSF/U	nit Risk	Cancer Risk	Percent of	Intake/Exposu	e Concentration	Rf	D/RfC		Percent of
							Value	Units	Value	Units		Total Risk per Route	Value	Units	Value	Units	Hazard Quotient	Total Hazard per Route
Groundwater	Overburden	Excelsior Avenue Area	Ingestion	Benzene	7.6E+02	ug/L	2.1E-03	mg/kg-day	5.5E-02	(mg/kg-day)-1	1.E-04	94%	2.4E-02	mg/kg-day	4.0E-03	mg/kg-day	6.1E+00	22%
	Groundwater			Ethylbenzene	2.2E+02	ug/L	5.9E-04	mg/kg-day	1.1E-02	(mg/kg-day)-1	6.E-06	5%	6.9E-03	mg/kg-day	1.0E-01	mg/kg-day	6.9E-02	0.2%
				Toluene	7.9E+01	ug/L	2.2E-04	mg/kg-day	NA	NA	NA	NA	2.5E-03	mg/kg-day	8.0E-02	mg/kg-day	3.2E-02	0.1%
				Xylenes (total)	2.0E+02	ug/L	5.5E-04	mg/kg-day	NA	NA	NA	NA	6.4E-03	mg/kg-day	2.0E-01	mg/kg-day	3.2E-02	0.1%
				1,1'-Biphenyl	1.9E+01	ug/L	5.2E-05	mg/kg-day	8.0E-03	(mg/kg-day)-1	4.E-07	0.3%	6.1E-04	mg/kg-day	5.0E-02	mg/kg-day	1.2E-02	0.04%
				2-Methylnaphthalene	6.5E+02	ug/L	1.8E-03	mg/kg-day	NA	NA	NA	NA	2.1E-02	mg/kg-day	4.0E-03	mg/kg-day	5.2E+00	19%
				Acenaphthene	2.8E+02	ug/L	7.6E-04	mg/kg-day	NA	NA	NA	NA	8.9E-03	mg/kg-day	6.0E-02	mg/kg-day	1.5E-01	1%
				Anthracene	1.5E+03	ug/L	4.1E-03	mg/kg-day	NA	NA	NA	NA	4.8E-02	mg/kg-day	3.0E-01	mg/kg-day	1.6E-01	1%
				Dibenzofuran	2.3E+02	ug/L	6.3E-04	mg/kg-day	NA	NA	NA	NA	7.4E-03	mg/kg-day	1.0E-03	mg/kg-day	7.4E+00	26%
				Fluorene	2.2E+03	ug/L	6.0E-03	mg/kg-day	NA	NA	NA	NA	7.0E-02	mg/kg-day	4.0E-02	mg/kg-day	1.8E+00	6%
				Naphthalene	1.2E+03	ug/L	3.3E-03	mg/kg-day	NA	NA	NA	NA	3.8E-02	mg/kg-day	2.0E-02	mg/kg-day	1.9E+00	7%
				Pyrene	2.0E+03	ug/L	5.5E-03	mg/kg-day	NA	NA	NA	NA	6.4E-02	mg/kg-day	3.0E-02	mg/kg-day	2.1E+00	8%
				Iron	1.7E+04	ug/L	4.7E-02	mg/kg-day	NA	NA	NA	NA	5.5E-01	mg/kg-day	7.0E-01	mg/kg-day	7.8E-01	3%
				Manganese	1.7E+03	ug/L	4.6E-03	mg/kg-day	NA	NA	NA	NA	5.4E-02	mg/kg-day	2.4E-02	mg/kg-day	2.2E+00	8%
			Exp. Route Total		1					1	1.E-04	100%			1		2.8E+01	100%
			Dermal	Benzene	7.6E+02	ug/L	2.5E-04	mg/kg-day	5.5E-02	(mg/kg-day)-1	1.E-05	79%	3.0E-03	mg/kg-day	4.0E-03	mg/kg-day	7.4E-01	3%
				Ethylbenzene	2.2E+02	ug/L	2.8E-04	mg/kg-day	1.1E-02	(mg/kg-day)-1	3.E-06	18%	3.3E-03	mg/kg-day	1.0E-01	mg/kg-day	3.3E-02	0.1%
				Toluene	7.9E+01	ug/L	6.0E-05	mg/kg-day	NA	NA	NA	NA	7.0E-04	mg/kg-day	8.0E-02	mg/kg-day	8.8E-03	0.03%
				Xylenes (total)	2.0E+02	ug/L	2.8E-04	mg/kg-day	NA	NA	NA	NA 0.15.00	3.3E-03	mg/kg-day	2.0E-01	mg/kg-day	1.7E-02	0.1%
				1,1'-Biphenyl	1.9E+01 6.5E+02	ug/L	6.8E-05 2.0E-03	mg/kg-day	8.0E-03 NA	(mg/kg-day)-1	5.E-07 NA	3.1E-02 NA	8.0E-04 2.3E-02	mg/kg-day	5.0E-02 4.0E-03	mg/kg-day	1.6E-02 5.8E+00	0.1%
				2-Methylnaphthalene		ug/L		mg/kg-day		NA	NA			mg/kg-day		mg/kg-day		20%
				Acenaphthene	2.8E+02 1.5E+03	ug/L ug/L	8.7E-04 9.1E-03	mg/kg-day	NA NA	NA	NA	NA NA	1.0E-02 1.1E-01	mg/kg-day mg/kg-day	6.0E-02 3.0E-01	mg/kg-day	1.7E-01 3.5E-01	1%
				Anthracene Dibenzofuran	2.3E+02	ug/L	9.1E-03 8.9E-04	mg/kg-day mg/kg-day	NA	NA	NA	NA	1.0E-02	mg/kg-day mg/kg-day	1.0E-03	mg/kg-day mg/kg-day	3.5E-01 1.0E+01	1% 36%
					2.3E+02 2.2E+03	ug/L	9.5E-04	mg/kg-day	NA	NA	NA	NA	1.1E-02	mg/kg-day	4.0E-02	mg/kg-day	2.8E+00	36%
				Fluorene Naphthalene	1.2E+03	ug/L	1.7E-03	mg/kg-day	NA	NA	NA	NA	2.0E-02	mg/kg-day	2.0E-02	mg/kg-day	1.0E+00	3%
				Pyrene	2.0E+03	ug/L	2.0E-02	mg/kg-day	NA	NA	NA	NA	2.3E-01	mg/kg-day	3.0E-02	mg/kg-day	7.8E+00	27%
				Iron	1.7E+04	ug/L	1.0E-02	mg/kg-day	NA	NA	NA	NA	1.2E-03	mg/kg-day	7.0E-01	mg/kg-day	1.7E-03	0.01%
				Manganese	1.7E+03	ug/L	1.0E-05	mg/kg-day	NA	NA	NA	NA	1.2E-04	mg/kg-day	9.6E-04	mg/kg-day	1.3E-01	0.4%
			Exp. Route Total					5 5 ,		1	2.E-05	100%		5 5 4 7		5.5.5	2.9E+01	100%
			Inhalation	Benzene	1.3E+00	mg/m ³	1.1E-03	mg/m3	7.8E-03	(mg/m3)-1	9.E-06	13%	1.3E-02	mg/m3	3.0E-02	mg/m3	4.4E-01	5%
			(showering)	Ethylbenzene	3.8E-01	mg/m ³	3.2E-04	mg/m3	2.5E-03	(mg/m3)-1	8.E-07	1%	3.8E-03	mg/m3	1.0E+00	mg/m3	3.8E-03	0.05%
				Toluene	1.4E-01	mg/m ³	1.2E-04	mg/m3	NA	NA	NA	NA	1.4E-03	mg/m3	5.0E+00	mg/m3	2.8E-04	0.003%
			1	Xylenes (total)	3.5E-01	mg/m ³	3.0E-04	mg/m3	NA	NA	NA	NA	3.5E-03	mg/m3	1.0E-01	mg/m3	3.5E-02	0.4%
			1	1,1'-Biphenyl	3.3E-02	mg/m ³	2.9E-05	mg/m3	NA	NA	NA	NA	3.3E-04	mg/m3	4.0E-04	mg/m3	8.3E-01	10%
			1	2-Methylnaphthalene	1.1E+00	mg/m ³	9.7E-04	mg/m3	NA	NA	NA	NA	1.1E-02	mg/m3	NA	NA	NA	NA
			1	Acenaphthene	4.9E-01	mg/m ³	4.2E-04	mg/m3	NA	NA	NA	NA	4.9E-03	mg/m3	NA	NA	NA	NA
			1	Anthracene	2.6E+00	mg/m ³	2.3E-03	mg/m3	NA	NA	NA	NA	2.6E-02	mg/m3	NA	NA	NA	NA
			1	Dibenzofuran	4.0E-01	mg/m ³	3.5E-04	mg/m3	NA	NA	NA	NA	4.0E-03	mg/m3	NA	NA	NA	NA
			1	Fluorene	3.9E+00	mg/m ³	3.3E-03	mg/m3	NA	NA	NA	NA	3.9E-02	mg/m3	NA	NA	NA	NA
			1	Naphthalene	2.1E+00	mg/m ³	1.8E-03	mg/m3	3.4E-02	(mg/m3)-1	6.E-05	86%	2.1E-02	mg/m3	3.0E-03	mg/m3	7.0E+00	84%
			ļ	Pyrene	3.5E+00	mg/m ³	3.0E-03	mg/m3	NA	NA	NA	NA	3.5E-02	mg/m3	NA	NA	NA	NA
			Exp. Route Total	l							7.E-05	100%					8.3E+00	100%
		Exposure Point Total									2.E-04						6.5E+01	
	Exposure Medium Total										2.E-04						6.5E+01	
Medium Total											2.E-04		6.5E+0					
Total of Receptor Risks	s/Hazards Across All Media	а									2.E-04							
							Percent Contribution from Ingestion Percent Contribution from Dermal					58%	Percent Contribution from Ingestion 43% Percent Contribution from Dermal 45%					
							Percent Contribution from Dermal Percent Contribution from Inhalation					8% 34%						45% 13%
	Percent Contribution from Inhalation											0 1 /0	u	1 3166				

Table 9.1.RME

Summary of Receptor Risks and Hazards for COPCs

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential			Ca	rcinogenic R	isk				Non-C	arcinogenic H	azard Quotie	nt	
			Concern	Ingestion	Inhalation	Dermal	External (Radiation)	Exposure Routes Total	Percent Contribution to Total Risk	Primary Target Organ(s), RfD	Primary Target Organ(s), RfC	Ingestion	Inhalation	Dermal	Exposure Routes Total	Percent Contribution to Total Hazard
Groundwater	Overburden	Excelsior Avenue Area	Benzene	4.E-04	2.E-04	4.E-05		6.E-04	31%	Blood	Blood	5.2E+00	2.5E+00	5.2E-01	8.2E+00	9%
	Groundwater		Ethylbenzene	2.E-05	2.E-05	9.E-06		5.E-05	2%	Liver, Kidney	Development	5.9E-02	2.1E-02	2.3E-02	1.0E-01	0.1%
			Toluene	NA	NA	NA		NA	NA	Kidney	Neurological	2.7E-02	1.6E-03	6.2E-03	3.5E-02	0.04%
			Xylenes (total)	NA	NA	NA		NA	NA	Body weight	CNS	2.7E-02	1.9E-01	1.2E-02	2.3E-01	0.3%
			1,1'-Biphenyl	1.E-06	NA	2.E-06		3.E-06	0.1%	Kidney	Liver, Kidney	1.0E-02	4.6E+00	1.1E-02	4.7E+00	5%
			2-Methylnaphthalene	NA	NA	NA		NA	NA	heart	NA	4.4E+00	NA	4.1E+00	8.6E+00	9%
			Acenaphthene	NA	NA	NA		NA	NA	Liver	NA	1.3E-01	NA	1.2E-01	2.5E-01	0.3%
			Anthracene	NA	NA	NA		NA	NA	None	NA	1.4E-01	NA	2.5E-01	3.9E-01	0.4%
			Dibenzofuran	NA	NA	NA		NA	NA	Whole body	NA	6.3E+00	NA	7.4E+00	1.4E+01	15%
			Fluorene	NA	NA	NA		NA	NA	Blood	NA	1.5E+00	NA	2.0E+00	3.5E+00	4%
			Naphthalene	NA	1.E-03	NA		1.E-03	67%	Body weight	Respiratory	1.6E+00	3.9E+01	7.2E-01	4.1E+01	45%
			Pyrene	NA	NA	NA		NA	NA	Kidney	NA	1.8E+00	NA	5.5E+00	7.3E+00	8%
			Iron	NA		NA		NA	NA	GI	NA	6.7E-01		1.5E-03	6.7E-01	1%
			Manganese	NA		NA		NA	NA	CNS	Neurological	1.9E+00		1.1E-01	2.0E+00	2.2%
			Chemical Total	4.E-04	2.E-03	5.E-05		2.E-03				2.4E+01	4.6E+01	2.1E+01	9.1E+01	
		Exposure Point Tota	al					2.E-03							9.1E+01	
	Exposure Medium Total							2.E-03							9.1E+01	
Medium Total								2.E-03							9.1E+01	
Receptor Total	Receptor Total Receptor R						r Risk Total	2.E-03					Rece	eptor HI Total	9.1E+01	

Total Blood HI Across All Media =	1.2E+01
Total Liver HI Across All Media =	5.0E+00
Total Kidney HI Across All Media =	1.2E+01
Total Development HI Across All Media =	1.0E-01
Total Neurological HI Across All Media =	2.1E+00
Total Whole Body HI Across All Media =	1.4E+01
Total Heart HI Across All Media =	8.6E+00
Total Body Weight HI Across All Media =	4.1E+01
Total Gastrointestinal HI Across All Media	6.7E-01
Total CNS HI Across All Media =	2.3E+00
Total Respiratory HI Across All Media =	4.1E+01

Table 9.1.CTE

Summary of Receptor Risks and Hazards for COPCs

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential			Ca	rcinogenic R	isk		Non-Carcinogenic Hazard Quotient						
			Concern	Ingestion	Inhalation	Dermal	External (Radiation)	Exposure Routes Total	Percent Contribution to Total Risk	Primary Target Organ(s), RfD	Primary Target Organ(s), RfC	Ingestion	Inhalation	Dermal	Exposure Routes Total	Percent Contribution to Total Hazard
Groundwater	Overburden	Excelsior Avenue Area	Benzene	7.E-05	1.E-05	1.E-05		1.E-04	50%	Blood	Blood	2.6E+00	4.4E-01	4.3E-01	3.5E+00	9%
	Groundwater		Ethylbenzene	4.E-06	1.E-06	3.E-06		8.E-06	4%	Liver, Kidney	Development	2.9E-02	3.8E-03	1.9E-02	5.2E-02	0.1%
			Toluene	NA	NA	NA		NA	NA	Kidney	Neurological	1.4E-02	2.8E-04	5.1E-03	1.9E-02	0.05%
			Xylenes (total)	NA	NA	NA		NA	NA	Body weight	CNS	1.4E-02	3.5E-02	9.6E-03	5.8E-02	0.2%
			1,1'-Biphenyl	3.E-07	NA	5.E-07		7.E-07	0.4%	Kidney	Liver, Kidney	5.2E-03	8.3E-01	9.3E-03	8.5E-01	2%
			2-Methylnaphthalene	NA	NA	NA		NA	NA	heart	NA	2.2E+00	NA	3.4E+00	5.6E+00	15%
			Acenaphthene	NA	NA	NA		NA	NA	Liver	NA	6.4E-02	NA	9.9E-02	1.6E-01	0.4%
			Anthracene	NA	NA	NA		NA	NA	None	NA	6.8E-02	NA	2.1E-01	2.7E-01	0.7%
			Dibenzofuran	NA	NA	NA		NA	NA	Whole body	NA	3.2E+00	NA	6.1E+00	9.2E+00	25%
			Fluorene	NA	NA	NA		NA	NA	Blood	NA	7.5E-01	NA	1.6E+00	2.4E+00	6%
			Naphthalene	NA	9.E-05	NA		9.E-05	46%	Body weight	Respiratory	8.2E-01	7.0E+00	5.9E-01	8.4E+00	22%
			Pyrene	NA	NA	NA		NA	NA	Kidney	NA	9.1E-01	NA	4.5E+00	5.4E+00	15%
			Iron	NA		NA		NA	NA	GI	NA	3.3E-01		1.0E-03	3.3E-01	1%
			Manganese	NA		NA		NA	NA	CNS	Neurological	9.6E-01		7.3E-02	1.0E+00	2.8%
			Chemical Total	8.E-05	1.E-04	2.E-05		2.E-04				1.2E+01	8.3E+00	1.7E+01	3.7E+01	
]		Exposure Point Total						2.E-04							3.7E+01	
	Exposure Medium Total							2.E-04							3.7E+01	
Medium Total								2.E-04							3.7E+01	
Receptor Total						Receptor	r Risk Total	2.E-04					Rece	eptor HI Total	3.7E+01	

Total Blood HI Across All Media =

Table 9.2.RME

Summary of Receptor Risks and Hazards for COPCs

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: , Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential			Ca	rcinogenic F	Risk				Non-C	arcinogenic H	azard Quotien	ıt	
			Concern	Ingestion	Inhalation	Dermal	External (Radiation)	Exposure Routes Total	Percent Contribution to Total Risk	Primary Target Organ(s), RfD	Primary Target Organ(s), RfC	Ingestion	Inhalation	Dermal	Exposure Routes Total	Percent Contribution to Total Hazard
Groundwater	Overburden	Excelsior Avenue Area	Benzene	2.E-04	4.E-05	2.E-05		3.E-04	51%	Blood	Blood	1.2E+01	1.5E-01	8.9E-01	1.3E+01	14%
	Groundwater		Ethylbenzene	1.E-05	3.E-06	4.E-06		2.E-05	4%	Liver, Kidney	Development	1.4E-01	1.3E-03	4.0E-02	1.8E-01	0.2%
			Toluene	NA	NA	NA		NA	NA	Kidney	Neurological	6.3E-02	9.7E-05	1.1E-02	7.4E-02	0.08%
			Xylenes (total)	NA	NA	NA		NA	NA	Body weight	CNS	6.4E-02	1.2E-02	2.0E-02	9.6E-02	0.1%
			1,1'-Biphenyl	8.E-07	NA	7.E-07		1.E-06	0.3%	Kidney	Liver, Kidney	2.4E-02	2.9E-01	1.9E-02	3.3E-01	0%
			2-Methylnaphthalene	NA	NA	NA		NA	NA	heart	NA	1.0E+01	NA	7.1E+00	1.7E+01	18%
			Acenaphthene	NA	NA	NA		NA	NA	Liver	NA	3.0E-01	NA	2.1E-01	5.0E-01	0.5%
			Anthracene	NA	NA	NA		NA	NA	None	NA	3.2E-01	NA	4.3E-01	7.5E-01	0.8%
			Dibenzofuran	NA	NA	NA		NA	NA	Whole body	NA	1.5E+01	NA	1.3E+01	2.7E+01	29%
			Fluorene	NA	NA	NA		NA	NA	Blood	NA	3.5E+00	NA	3.4E+00	6.9E+00	7%
			Naphthalene	NA	2.E-04	NA		2.E-04	45%	Body weight	Respiratory	3.8E+00	2.4E+00	1.2E+00	7.5E+00	8%
			Pyrene	NA	NA	NA		NA	NA	Kidney	NA	4.3E+00	NA	9.4E+00	1.4E+01	15%
			Iron	NA		NA		NA	NA	GI	NA	1.6E+00		2.6E-03	1.6E+00	2%
			Manganese	NA		NA		NA	NA	CNS	Neurological	4.5E+00		1.8E-01	4.7E+00	5.0%
			Chemical Total	2.E-04	3.E-04	2.E-05		6.E-04				5.6E+01	2.9E+00	3.6E+01	9.4E+01	
		Exposure Point Total						6.E-04							9.4E+01	
	Exposure Medium Total							6.E-04							9.4E+01	
Medium Total								6.E-04							9.4E+01	
Receptor Total						Recepto	r Risk Total	6.E-04					Rece	ptor HI Total	9.4E+01	

Total Blood HI Across All Media =
Total Liver HI Across All Media =
Total Kidney HI Across All Media =
Total Neurological HI Across All Media =
Total Whole Body HI Across All Media =
Total Heart HI Across All Media =
Total Body Weight HI Across All Media =
Total Gastrointestinal HI Across All Media =
Total CNS HI Across All Media =
Total Respiratory HI Across All Media =

Table 9.2.CTE

Summary of Receptor Risks and Hazards for COPCs

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: , Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential			Ca	rcinogenic R	lisk			-	Non-C	arcinogenic H	azard Quotien	ıt	_
			Concern	Ingestion	Inhalation	Dermal	External (Radiation)	Exposure Routes Total	Percent Contribution to Total Risk	Primary Target Organ(s), RfD	Primary Target Organ(s), RfC	Ingestion	Inhalation	Dermal	Exposure Routes Total	Percent Contribution to Total Hazard
Groundwater	Overburden	Excelsior Avenue Area	Benzene	1.E-04	9.E-06	1.E-05		1.E-04	66%	Blood	Blood	6.1E+00	4.4E-01	7.4E-01	7.3E+00	11%
	Groundwater		Ethylbenzene	6.E-06	8.E-07	3.E-06		1.E-05	5%	Liver, Kidney	Development	6.9E-02	3.8E-03	3.3E-02	1.1E-01	0.2%
			Toluene	NA	NA	NA		NA	NA	Kidney	Neurological	3.2E-02	2.8E-04	8.8E-03	4.1E-02	0.1%
			Xylenes (total)	NA	NA	NA		NA	NA	Body weight	CNS	3.2E-02	3.5E-02	1.7E-02	8.3E-02	0.1%
			1,1'-Biphenyl	4.E-07	NA	5.E-07		1.E-06	0.5%	Kidney	Liver, Kidney	1.2E-02	8.3E-01	1.6E-02	8.6E-01	1%
			2-Methylnaphthalene	NA	NA	NA		NA	NA	heart	NA	5.2E+00	NA	5.8E+00	1.1E+01	17%
			Acenaphthene	NA	NA	NA		NA	NA	Liver	NA	1.5E-01	NA	1.7E-01	3.2E-01	0.5%
			Anthracene	NA	NA	NA		NA	NA	None	NA	1.6E-01	NA	3.5E-01	5.1E-01	0.8%
			Dibenzofuran	NA	NA	NA		NA	NA	Whole body	NA	7.4E+00	NA	1.0E+01	1.8E+01	27%
			Fluorene	NA	NA	NA		NA	NA	Blood	NA	1.8E+00	NA	2.8E+00	4.5E+00	7%
			Naphthalene	NA	6.E-05	NA		6.E-05	29%	Body weight	Respiratory	1.9E+00	7.0E+00	1.0E+00	9.9E+00	15%
			Pyrene	NA	NA	NA		NA	NA	Kidney	NA	2.1E+00	NA	7.8E+00	9.9E+00	15%
			Iron	NA		NA		NA	NA	GI	NA	7.8E-01		1.7E-03	7.8E-01	1%
			Manganese	NA		NA		NA	NA	CNS	Neurological	2.2E+00		1.3E-01	2.4E+00	4%
			Chemical Total	1.E-04	7.E-05	2.E-05		2.E-04				2.8E+01	8.3E+00	2.9E+01	6.5E+01	
		Exposure Point Total						2.E-04							6.5E+01	
	Exposure Medium Total							2.E-04							6.5E+01	
Medium Total								2.E-04							6.5E+01	
Receptor Total						Recepto	r Risk Total	2.E-04					Rece	ptor HI Total	6.5E+01	

Total Blood HI Across All Media = Total Liver HI Across All Media = Total Kidney HI Across All Media = Total Development HI Across All Media = Total Neurological HI Across All Media = Total Whole Body HI Across All Media = Total Body Weight HI Across All Media = Total Gastrointestinal HI Across All Media = Total CNS HI Across All Media = Total Respiratory HI Across All Media =

Table 9.3.RME

Summary of Aggregate Receptor Risks for COPCs

Human Health Risk Assessment

Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Reasonable Maximum Exposure

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult + Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential			Ca	rcinogenic R	lisk		Non-Carcinogenic Hazard Quotient ^[1]						
			Concern	Ingestion	Inhalation	Dermal	External (Radiation)	Exposure Routes Total	Percent Contribution to Total Risk	Primary Target Organ(s), RfD	Primary Target Organ(s), RfC	Ingestion	Inhalation	Dermal	Exposure Routes Total	Percent Contribution to Total Hazard
Groundwater	Overburden	Excelsior Avenue Area	Benzene	6.E-04	2.E-04	6.E-05		9.E-04	35%	Blood	Blood					
	Groundwater		Ethylbenzene	4.E-05	2.E-05	1.E-05		7.E-05	3%	Liver, Kidney	Development					
			Toluene	NA	NA	NA		NA	NA	Kidney	Neurological					
			Xylenes (total)	NA	NA	NA		NA	NA	Body weight	CNS					
			1,1'-Biphenyl	2.E-06	NA	2.E-06		4.E-06	0.2%	Kidney	Liver, Kidney					
			2-Methylnaphthalene	NA	NA	NA		NA	NA	heart	NA					
			Acenaphthene	NA	NA	NA		NA	NA	Liver	NA					
			Anthracene	NA	NA	NA		NA	NA	None	NA					
			Dibenzofuran	NA	NA	NA		NA	NA	Whole body	NA					
			Fluorene	NA	NA	NA		NA	NA	Blood	NA					
			Naphthalene	NA	2.E-03	NA		2.E-03	62%	Body weight	Respiratory					
			Pyrene	NA	NA	NA		NA	NA	Kidney	NA					
			Iron	NA		NA		NA	NA	GI	NA					
			Manganese	NA		NA		NA	NA	CNS	Neurological					
			Chemical Total	7.E-04	2.E-03	7.E-05		3.E-03								
		Exposure Point Total						3.E-03								
	Exposure Medium Total							3.E-03								
Medium Total								3.E-03								
Receptor Total						Receptor	Risk Total	3.E-03					Rece	eptor HI Total		

Note:

[1] Consistent with USEPA guidance, non-carcinogenic hazards are presented separately for the adult and child in Tables 9.1 and 9.2, respectively.

Table 9.3.CTE

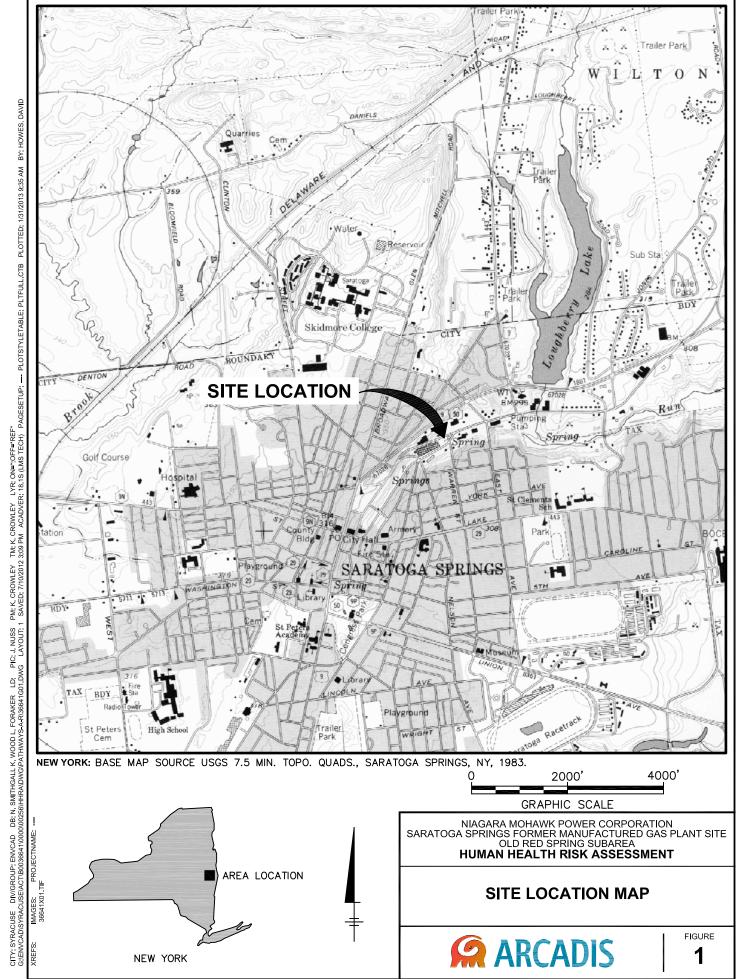
Summary of Aggregate Receptor Risks for COPCs

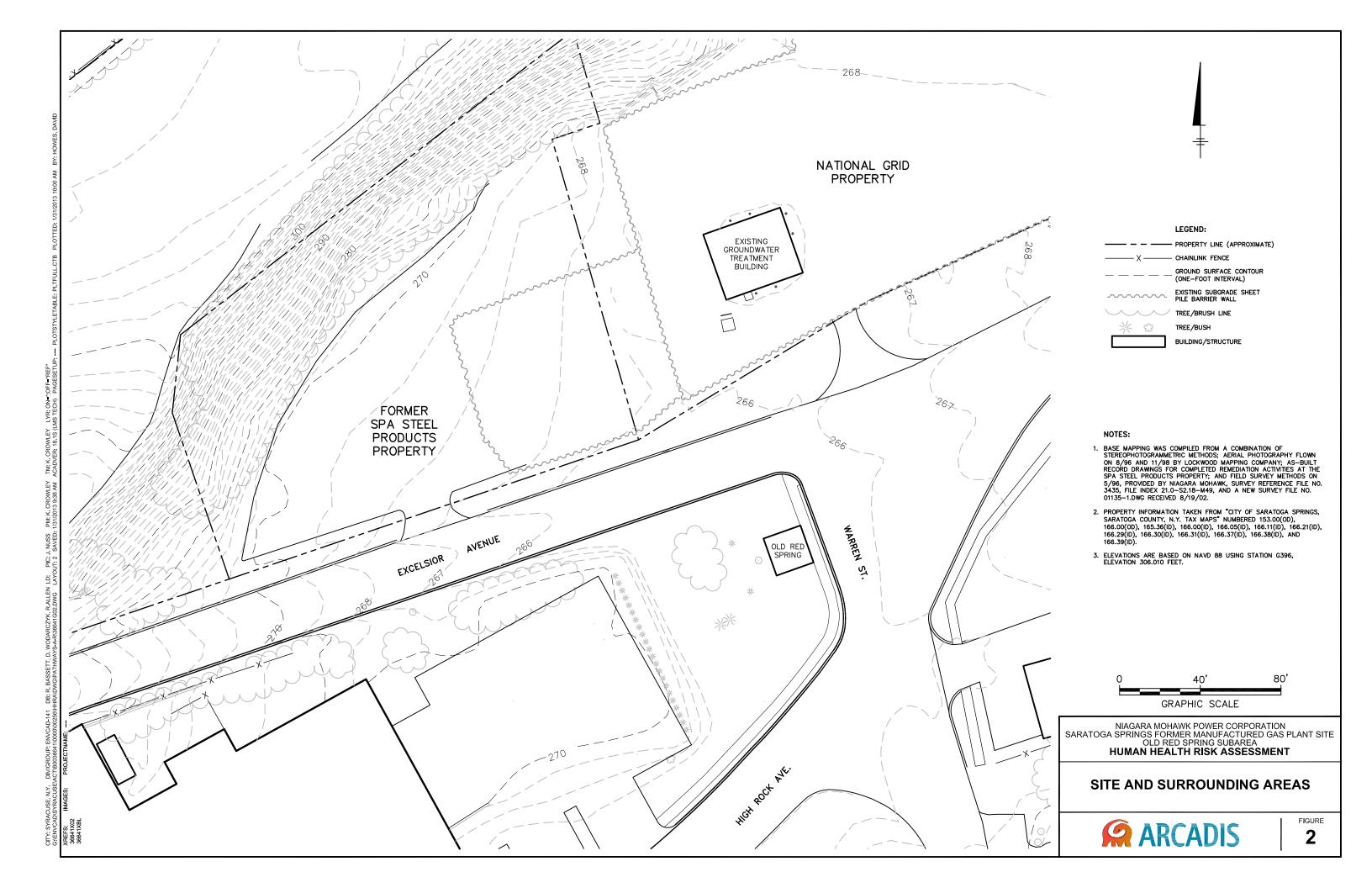
Human Health Risk Assessment

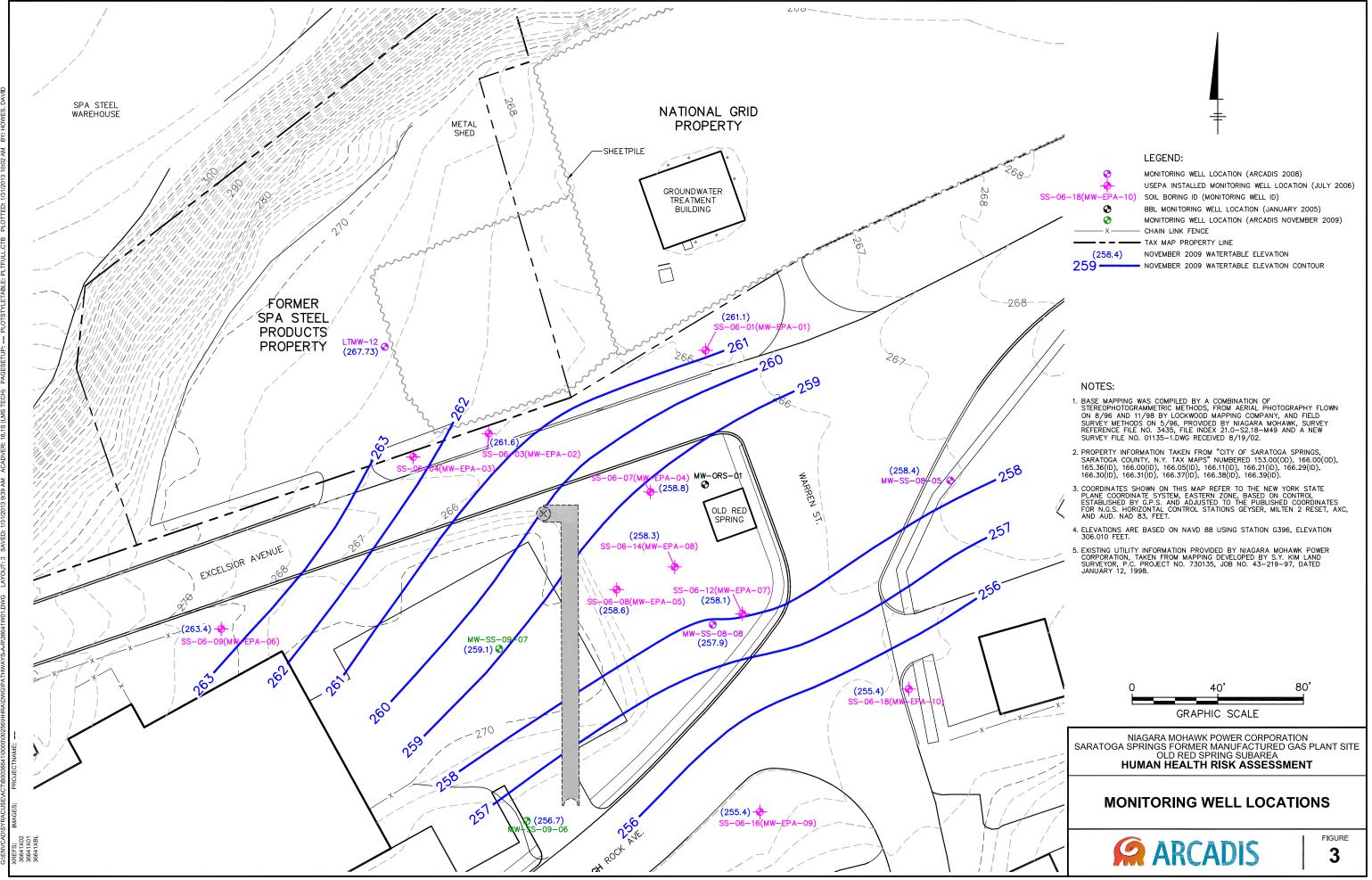
Niagara Mohawk Power Corporation - Saratoga Springs Former Manufactured Gas Plant Site - Saratoga Springs, New York

Central Tendency Exposure

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult + Child


Medium	Exposure Medium	Exposure Point	Chemical of Potential			Ca	rcinogenic R	lisk		Non-Carcinogenic Hazard Quotient ^[1]						
			Concern	Ingestion	Inhalation	Dermal	External (Radiation)	Exposure Routes Total	Percent Contribution to Total Risk	Primary Target Organ(s), RfD	Primary Target Organ(s), RfC	Ingestion	Inhalation	Dermal	Exposure Routes Total	Percent Contribution to Total Hazard
Groundwater	Overburden	Excelsior Avenue Area	Benzene	2.E-04	2.E-05	3.E-05		2.E-04	58%	Blood	Blood					
	Groundwater		Ethylbenzene	1.E-05	2.E-06	6.E-06		2.E-05	5%	Liver, Kidney	Development					
			Toluene	NA	NA	NA		NA	NA	Kidney	Neurological					
			Xylenes (total)	NA	NA	NA		NA	NA	Body weight	CNS					
			1,1'-Biphenyl	7.E-07	NA	1.E-06		2.E-06	0.4%	Kidney	Liver, Kidney					
			2-Methylnaphthalene	NA	NA	NA		NA	NA	heart	NA					
			Acenaphthene	NA	NA	NA		NA	NA	Liver	NA					
			Anthracene	NA	NA	NA		NA	NA	None	NA					
			Dibenzofuran	NA	NA	NA		NA	NA	Whole body	NA					
			Fluorene	NA	NA	NA		NA	NA	Blood	NA					
			Naphthalene	NA	2.E-04	NA		2.E-04	37%	Body weight	Respiratory					
			Pyrene	NA	NA	NA		NA	NA	Kidney	NA					
			Iron	NA	NA	NA		NA	NA	GI	NA					
			Manganese	NA	NA	NA		NA	NA	CNS	Neurological					
			Chemical Total	2.E-04	2.E-04	3.E-05		4.E-04								
		Exposure Point Total						4.E-04								
	Exposure Medium Total							4.E-04								
Medium Total								4.E-04								
Receptor Total						Receptor	Risk Total	4.E-04					Rece	eptor HI Total		


Note:


[1] Consistent with USEPA guidance, non-carcinogenic hazards are presented separately for the adult and child in Tables 9.1 and 9.2, respectively.

Figures

Appendix A

Data Usability Worksheet

Activity	Comment
Field Sampling	
Discuss sampling problems and field conditions that affect data usability.	Not all shallow overburden wells were sampled during each sampling event (2006, 2008, and 2009). This does not necessarily affect data usability, but does affect the methodology used to calculate exposure point concentrations (EPCs) in the risk assessment.
Are samples representative of receptor exposure for this medium (e.g. sample depth, grab vs composite, filtered vs unfiltered, low flow, etc.)?	Yes, the medium of interest at the site is groundwater, specifically potential future exposure to potable groundwater from wells associated with Excelsior Avenue and Old Red Spring.
Assess the effect of field QC results on data usability.	Field duplicate samples were collected with this data set. Several compounds associated with the parent sample and field duplicate exhibited relative percent difference (RPD) results greater than the control limit resulting in qualification of estimates (J/UJ flags).
Summarize the effect of field sampling issues on the risk assessment, if applicable.	None. Analytical data collected as part of field sampling activities are deemed appropriate for use in the risk assessment.
Analytical Techniques	
Were the analytical methods appropriate for quantitative risk assessment?	The analytical program used procedures consistent with EPA-approved analytical methodology.
Were detection limits adequate?	Yes.
Summarize the effect of analytical technique issues on the risk assessment, if applicable.	No issues related to analyses of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, inorganics, or miscellaneous parameters. As requested by USEPA, polycyclic aromatic hydrocarbons (PAHs) were analyzed using both Methods 8270C and 8310, which resulted in two PAH results for some samples. For these cases, the groundwater PAH data were averaged to represent a single data point for each monitoring well.

Activity	Comment
Data Quality Objectives	·
Precision - How were duplicates handled?	Precision was measured through the use of field duplicates, laboratory duplicates, matrix spike/matrix spike duplicate (MS/MSD) samples, and laboratory control sample/laboratory control sample duplicate (LCS/LCSD) samples. The sample results for benzene, toluene, ethylbenzene, and total xylenes associated with sample locations MW-EPA-07 and BD-052209 exhibited a field duplicate RPD greater than the control limit resulting in qualification of associated sample results as estimated (J/UJ). Several sample locations used in the analysis of MS/MSDs exhibited RPD results between the MS /MSD percent (%) recoveries greater than the control limit for acetone and/or phenanthrene resulting in qualification of associated sample results as estimated (J/UJ).
	LCS/LCSD % recoveries greater than the control limits resulting in qualification of associated sample results as estimated (J/UJ). Dual column analysis associated with the analysis of SW-846 Method 8310 exhibited percent difference (%D) greater than the control limit for several compounds. These exceedances resulted in qualification of associated compounds as estimated (J/UJ).
Accuracy - How were split samples handled?	Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, LCS/LCSDs, MS/MSD samples, and surrogate compound recoveries.

Activity	Comment
Data Quality Objectives	
Accuracy - How were split samples handled?	Several compounds exhibited LCS and/or LCSD % recovery greater than the control limits for various compounds resulting in qualification of associated sample results as estimated (J/UJ). Several compounds associated with sample locations used for the analysis of MS/MSD exhibited MS and/or MSD percent (%) recovery greater than the control limit. For various compounds exhibiting percent recovery greater than the control limit it resulted in qualification of
	associated sample results as estimated (J/UJ).
Representativeness - Indicate any problems associated with data representativeness (e.g., trip blank or rinsate blank contamination, chain of custody problems, etc.).	A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis.
	Sample locations MW-EPA-09, MW-EPA-10, MW-EPA-02 and MW-EPA-01 for SVOC analysis were extracted outside the method required holdtime resulting in qualification as estimated (J/UJ).
	Sample locations MW-EPA-01, MW-EPA-10, MW-EPA-09 for nitrite and/or nitrate were analyzed outside the method required holdtime resulting in qualification as estimated (J/UJ).
	Quality assurance (QA) blanks (i.e., trip blanks, rinse blanks) were included within this data set and exhibited detections greater than the method detection limit (MDL) resulting in qualification due to blank contamination (B flag).
Completeness - Indicate any problems associated with data completeness (e.g., incorrect sample analysis, incomplete sample records, problems with field procedures, etc.).	Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses the generation of a sufficient amount of valid data. This analytical data set had an overall usability of 100%.

Activity	Comment
Data Quality Objectives	
Comparability - Indicate any problems associated with data comparability.	Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the QAPP.
Were the DQOs specified in the QAPP satisfied?	Yes. Data that did not meet the DQOs were flagged appropriately (e.g., J-qualified).
Summarize the effect of DQO issues on the risk assessment, if applicable.	The analytical data are deemed appropriate for use in the risk assessment.
Data Validation and Interpretation	
What are the data validation requirements?	As stated in the QAPP, analytical results and QC documentation go through a systematic review. Data usability summary reports (DUSRs) were produced.
What method or guidance was used to validate the data?	Organics: USEPA National Functional Guidelines of October 1999; USEPA Region II SOPs associated with USEPA SW-846 Volatile Organic Compounds by SW-846 Method 8260B(SOP HW-24 Revision 2, October 2006); Validating Semivolatile Organic Compounds by SW-846 Method 8270 (SOP HW-22 Revision 3, October 2006) Inorganics: USEPA National Functional Guidelines of July 2002
Was the data validation method consistent with guidance? Discuss any discrepancies.	Yes
Were all data qualifiers defined? Discuss those which were not.	Yes
Which qualifiers represent useable data?	J, UJ, JN, UB, and N

December 2001

Activity	Comment
Data Validation and Interpretation	
Which qualifiers represent unuseable data?	R
How are tentatively identified compounds handled?	Tentatively identified compounds (TICs) were not included with the analyses by the laboratory(s).
Summarize the effect of data validation and interpretation issues on the risk assessment, if applicable.	Data validation did not preclude the use of any analytical data. All analytical data are deemed appropriate for use in the risk assessment.
Additional notes:	None.

Note: The purpose of this Worksheet is to succinctly summarize the data usability analysis and conclusions. Reference specific pages in the Remedial Investigation and/or the Risk Assessment text to further expand on the information presented here.