

New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233

Thomas C. Jorling Commissionor

DECLARATION STATEMENT - RECORD OF DECISION (ROD)

CALL TO BE AND

Pfohl Brothers Landfill Cheektowaga, Erie County Site No. 09-15-043

Statement of Purpose

The Record of Decision (ROD) sets forth the selected Remedial Action Plan for the Pfohl Brothers Landfill inactive hazardous waste site. This Remedial Action Plan was developed in accordance with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) of 1980, as amended by the Superfund Amendments and Reauthorization Act (SARA) of 1986, and the New York State Environmental Conservation Law (ECL). The selected remedial plan complies to the maximum extent practicable with the National Oil and Hazardous Substance Pollution Contingency Plan, 40 CFR Part 300, of 1985.

Statement of Basis

This decision is based upon the Administrative Record of the New York State Department of Environmental Conservation (NYSDEC) for the Pfohl Brothers Landfill site and upon public input to the Proposed Remedial Action Plan (PRAP) presented by the NYSDEC. A bibliography of the documents included as a part of the Administrative Record is included in Appendix D of the ROD.

Description of Selected Remedy

The selected remedial action plan will control the potential contaminant routes of exposure to human health and the environment through capping and containment of the source waste. The remedy is technically feasible and complies with the statutory requirements. Briefly, the selected remedial action plan includes the following:

- <u>A Slurry Wall Containment System</u> excavated through the native alluvial materials and backfilled with a low permeability bentonite clay/soil/slurry mixture. This physical containment system will encircle the waste in areas south of Aero Lake and north of Pfohl Road and will intersect with the landfill cap system at the surface.
- 2. <u>A Landfill Cap will</u> cover the entire area of the waste and will extend beyond the slurry wall containment system. The landfill cap will comply with the substantive requirements of the 6NYCRR Part 360 regulations for Solid Waste Management Facilities. The Subpart 360 - 2.13 of this regulation pertains to cap construction materials and requirements. This

- 2 -

cap will eliminate the infiltration of precipitation into the landfill waste, prevent erosion of contaminated soils and will prevent the direct contact by both people and wildlife with the waste.

3. <u>Leachate Collection and Treatment</u> will be accomplished by removing water from within the cap and slurry wall containment system and treating it as necessary to meet the appropriate permit requirements for its discharge. Discharge may be to either the Cheektowaga Sewer District No. 8 or to surface water depending on the acceptance by the local municipality. In either case all permit requirements and quality standards for discharge will be met.

4. Interim Remedial Measures (IRM)

The IRM will proceed the implementation of the final remedy at the landfill. Drums and phenolic tars in both the 100-year flood plain and at concentrated areas of the site will be collected for proper disposal or temporary stored in an on-site encapsulation cell. Those material temporarily stored on-site will be re-evaluated during the design of the final remedy with respect to their permanent disposal.

New York State Department of Health Acceptance

The New York State Department of Health (NYSDOH) concurs with the remedy selected for this site as being protective of human health.

Declaration

DATE

The selected Remedial Action Plan is protective of human health and the environment. The remedy selected will meet the substantive requirements of the Federal and State laws, regulations and standards that are applicable or relevant and appropriate to the remedial action. The remedy will satisfy, to the maximum extent practicable, the statutory preference for remedies that employ treatment that reduce toxicity, mobility or volume as a principal element. This statutory preference will be met by eliminating the mobility of contaminant pathways of exposure to human health and the environment through the installation of a cap and containment system for the source waste at this site.

2-11-92

Edward O. Sullivan Deputy Commissioner

- 3

TABLE OF CONTENTS

Pfohl Brothers Landfill Cheektowaga, Erie County, New York Site No. 09-15-043

Section

1.	Site	Location	and	Description
----	------	----------	-----	-------------

- 2. Site History
- 3. Current Status
- 4. Enforcement Status
- 5. Goals for the Remedial Actions

6. Remedial Actions Objectives

7. Summary of Evaluation of Alternatives

8. Summary of the Government's Preferred Alternative - Conceptual Design

Appendix A Screening of Technologies

Appendix B 🥣 Data Tables

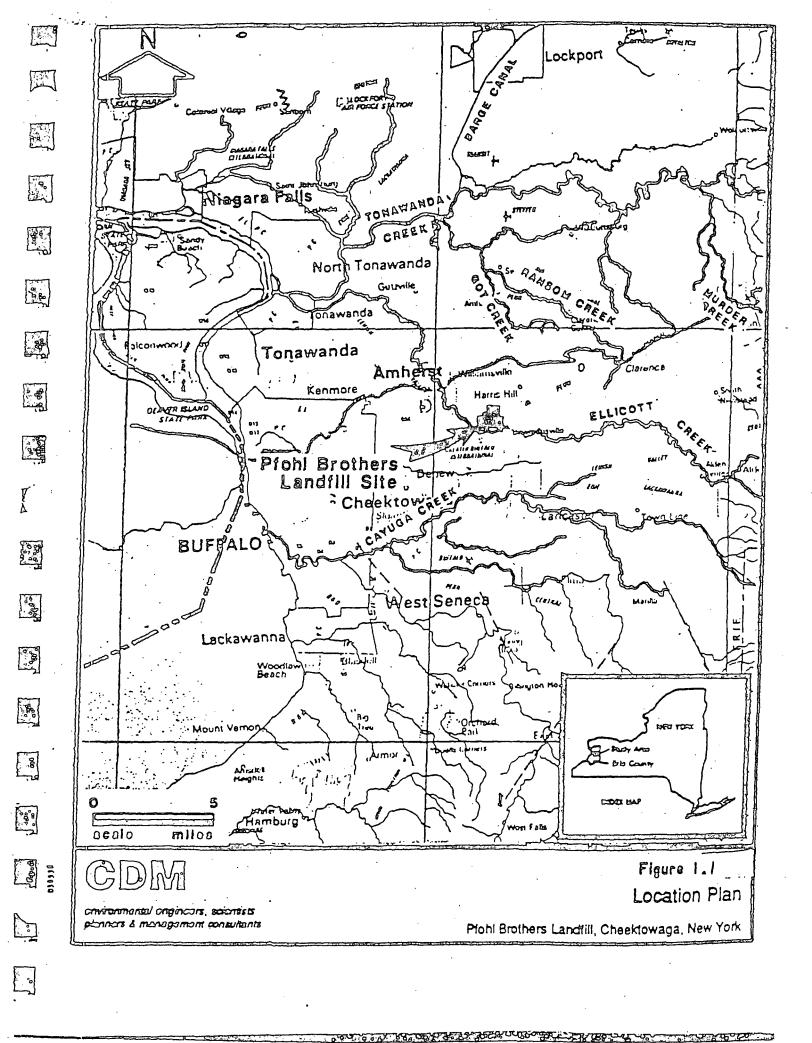
Appendix C Chemical exceeding ARARs or contributing significantly to risk.

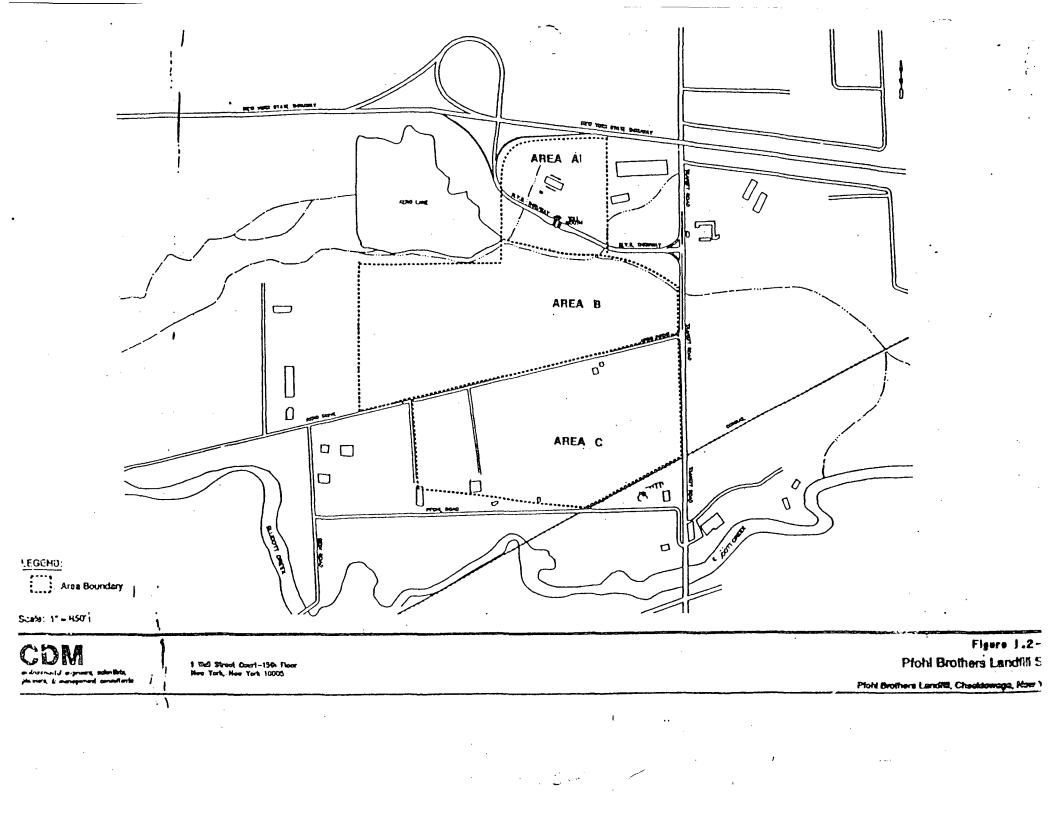
Appendix D The Administrative Record

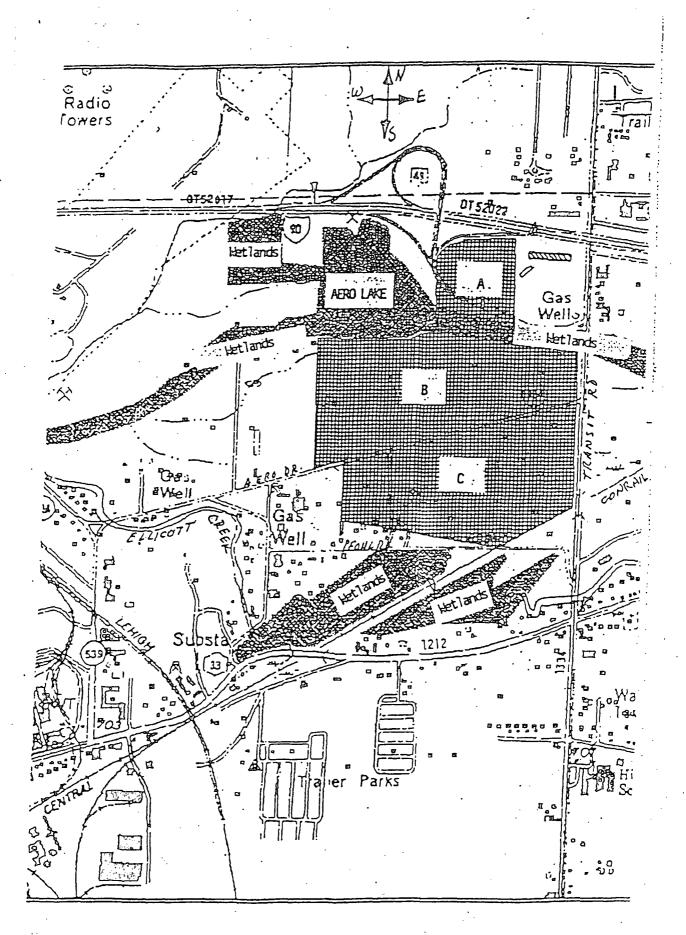
Section 1: SITE LOCATION AND DESCRIPTION

The Pfohl Brothers Landfill is a 120 acre inactive hazardous waste site (Site No. 9-15-043) located in the Town of Cheektowaga, Erie County New York approximately one mile northeast of the Buffalo International Airport. The site is bordered by wetlands and the New York State Thruway to the north. The eastern border is Transit Road. The southern border is marked by the homes along the north side of Pfohl Road and the western border is the Niagara Mohawk Power easement and the Pfohl Trucking property. Aero Drive cuts through the middle of the site before intersecting Transit Road. Figure 1.1 - 1.3 illustrate the location of the site and surrounding wetlands.

The site has been separated into three geographical areas. Area A is that portion north of Aero Creek upon which the Thruway ramp and toll booth, as well as a trucking firm are located. Area B is that portion bounded by Aero Creek to the north Aero Drive to the south and bounded by the Niagara Mohawk power lines to the west and Transit Road on the east. Area C is bounded by Aero Drive to the north Pfohl Road to the south and bounded by Pfohl Trucking to the west and Transit Road and the Conrail Railroad tracks to the southeast (see Figures 1.2 and 1.3).


Section 2: SITE HISTORY


The Pfohl Brothers Landfill was operated between 1932 and 1971 as a landfill receiving both municipal and industrial waste. Aerial photographs taken during the 1950s, 60s, and 70s, document, to some extent, the timing and location of excavation and dumping at the site. Reports indicate that, in addition to domestic and commercial waste, the site received sizable amounts of industrial waste. Among the firms whose wastes were reportedly disposed of in the landfill are steel and metal manufacturers, chemical and petroleum companies, utilities, manufacturers of optical and furnace-related materials, and other large manufacturing and processing concerns.


The landfill was operated, in general, as a cut and fill operation where drums, which were filled with substances that could be spilled out, were emptied and then salvaged. Cells were prepared by removing the topsoil and placing it in a separate storage area. A bulldozer then pushed the remaining fill and clay into a berm approximately 15 feet high, around the perimeter of the dumping area. Each excavation was approximately two feet deep and approximately 150 feet in diameter. At the end of each day, the bulldozer ran back and forth over the area to compress the material. When the area was full, fly ash and fill material were spread over it.

PREVIOUS INVESTIGATIONS: In June 1982, the United States Environmental Protection Agency (EPA) contracted with Fred C. Hart Associates to perform a hazardous ranking of the site. Ten water and four sediment samples were obtained at various seep locations, drainage ditches, and domestic wells which were analyzed for organics, inorganics, sulfide, cyanide, and ammonia. The contaminants detected in water samples obtained from a seep flowing into a drainage ditch along the south side of Aero Lake were most notably chlorobenzene, benzene and N-nitrosodiphyenylamine at concentrations of 85, 34 and 11 parts per billion (ppb), respectively.

- 5 -

PFOHL BROTHERS LANDFILL CHEEKTOWAGA, ERIE COUNTY, NEW YORK SITE NO. 09-15-043

FIGURE . 1.3

In February 1984, the property owner commissioned Ecology and Environment, Inc., to perform an additional investigation of the site. The objective of the investigation was to determine if the landfill at the time posed, or had the potential to pose, either an environmental or public health threat. As part of the investigation, groundwater, sediment, and leachate seep samples were collected and analyzed for volatile organics, semi-volatiles, inorganics, phenols, PCBs, pesticides, and oil and grease.

In the western portion of the site this study identified barium concentrations of 49,600 parts per million (ppm) in a leachate seep sample, and concentrations of chrysene, anthracene, and nickel were detected in the soil at 2.74, 2.08 and 94.1 ppm, respectively. Soil samples obtained at the northeastern part of the site had concentrations of fluoranthene and pyrene at 5.21 and 2.39 ppm, respectively. Acenaphthene was detected in the soil at the southeastern corner of the site at a concentration of 76 ppm. Phenols and oil and grease were detected, but generally at low concentrations. Metal concentrations were high in many of the monitoring wells. Elevated concentrations of barium, lead, chromium, and cadmium were detected. As a result of this work, the site was listed on the NYSDEC Registry as a Class 2 Inactive Hazardous Waste Site, in 1985.

In November 1986, samples of leachate, soil and waste from surface drums that contained a tar-like material were collected by the NYSDEC and analyzed by the New York State Department of Health (NYSDOH). The contaminants detected in the waste samples from the drums were fluorene and phenanthrene at concentrations of 5,500 and 790 ppm, respectively. Various heavy metals were also found in the soil, such as arsenic (38.9 ppm), barium (7,400 ppm), cadmium (48 ppm), chromium (60 ppm), lead (1,760 ppm), and mercury (1.4 ppm).

A Remedial Investigation/Feasibility Study (RI/FS) was initiated in 1988 by the NYSDEC consultant, Camp Dresser and McKee (CDM) under the State Superfund Program. The RI spanned the years 1988 through 1990 and consisted primarily of six major field activities. These included:

- Geophysical Survey
- Surface Water, Leachate Seep, and Sediment Sampling
- Gamma Radiation Survey Phases I and II
- Test Pit Investigation
- Soil Boring Investigation
- Groundwater Investigation

Additionally, NYSDEC and the NYSDOH collected supplemental data on groundwater radioactivity, residential basement sump groundwater samples, residential radon testing, blood lead testing, residential water well, surface water, residential surface soil and on-site surface soil and sediment quality from April 1989 through June 1991.

A number of Interim Reports were issued during the course of the Remedial Investigation (RI) by CDM, NYSDOH and NYSDEC. All of these reports were distributed to interested citizens groups, local political officials and the local document repositories in Cheektowaga and Williamsville. A complete listing of these reports is contained in the Administrative Record (Appendix D) of this document. A series of Citizen Forum meetings were held in Cheektowaga during 1990 and 1991 to discuss the results of the Interim Reports and other issues with interested citizens. Additionally, the NYSDOH held a separate meeting in March 1991 to discuss health studies related to the site.

The Remedial Investigation report was issued to the public in January 1991. A <u>public meeting</u> was held on March 7, 1991 to present the results of the investigation at this site and a Responsiveness Summary was issued on April 12, 1991 to respond to questions and comments presented to the NYSDEC regarding the investigation.

The Feasibility Study (FS), released to the public in September 1991, contains the evaluation of alternatives and the selection of the preferred remedy for this site. A Citizen Forum meeting was held on September 26, 1991 at which NYSDEC discussed the preferred remedy, remedial alternatives, remedial concepts and the selection process presented in the FS report. Future meetings will be held to discuss the selected remedy and its design.

Section 3: CURRENT STATUS

This project is proceeding towards completion in three parallel work efforts; (i) Interim Remedial Measures (IRM), (ii) an off-site Remedial Investigation (RI), as a separate operable unit and (iii) the Source Area (Landfill) remedy selection which is the subject of this document. Each of these efforts deal with a different aspect of the concerns related to this site.

INTERIM REMEDIAL MEASURES

The IRMs are intended to remediate the "hot spots" which have been discovered at the site. The "hot spots" generally consist of drums, drum remnants and identifiable concentrations of phenolic tars. These materials will be excavated, sorted and treated or disposed. If the materials cannot be treated or disposed off site in accordance with Federal and State regulations, then they will be temporarily stored on site until an applicable technology can be implemented to dispose of or treat them. The current IRM work plans also provide for further investigation to insure that the lateral extent of the "hot spots" are fully defined. This IRM effort will proceed as a separate work effort prior to implementation of the remedy proposed by this PRAP. As the IRM proceeds it will be the subject of an independent public review process.

OFF-SITE REMEDIAL INVESTIGATION

The off-site RI is intended to accomplish three objectives; (1) provide monitoring wells further away from the perimeter of the site to monitor for any off site migration, (2) the newly installed monitoring wells will serve as long term monitoring for the source remediation project at the landfill, and (3) additional samples will be taken from Area A of the site to provide additional data upon which a decision can be made to either delist this part of the site from further consideration or to remediate this area as part of the hazardous waste site.

- 7 -

SOURCE REMEDIATION

The Source Remediation, the subject of this document, consists of the remedial measures necessary to mitigate the exposures to persons or wildlife presented by contaminants in the various media at the site.

It is anticipated that the IRMs and the off-site RI will be completed in 1992. The NYSDEC will offer the Potential Responsible Parties (PRPs) the opportunity to implement the Record of Decision (ROD). The Source Remediation is currently projected for completion by 1995, however, any delays encountered in the negotiations with the PRP's will impact this schedule for completion.

3.1 REMEDIAL INVESTIGATION RESULTS - NATURE AND EXTENT OF CONTAMINATION

A RI was conducted by the NYSDEC's consultant, Camp Dresser & McKee from 1988 to 1990. The investigation included the installation of soil borings, monitoring wells, test pits and samples of surface soils, groundwater, subsurface soils, leachate seeps, phenolic tars, drum contents and radioactive materials. More detailed information on chemical composition and media at the site can be found in Appendix B of this report.

Table 3-1 illustrates those chemical compounds found in the various media that either represent a significant risk or exceed ARARs for that media.

A carcinogenic risk for a given media and pathway which were above one-ina-million chance of cancer were considered significant to the total carcinogenic risk. If the total Hazard Index was greater than 1, those media and pathways which contributed a tenth or more to the total Hazard Index were considered significant as were incremental blood levels of 5 ug/dl or greater.

A more generalized view of the data is shown in Tables 4-16 through 4-19 taken from the RI report. These tables show the categories of organic and specific inorganics detected above baseline quality and above standards in the various media. The symbols used in the tables are intended to qualitatively illustrate the frequency of exceedences by the contaminant in the specific media. The various media can be summarized as follows:

DRUMMED WASTE

The materials found in the drums do not reflect any significant pattern in waste disposal practices or source material. No drums were observed in Area A, however, drums were observed at and below the surface of the landfill throughout areas B and C.

Analysis of the waste drummed material indicates that a wide variety of organic compounds were disposed of at the landfill. Elevated levels of volatile organics, aromatic and chlorinated aliphatic hydrocarbons were observed in the waste samples. In addition, a wide variety of semi-volatile organic compounds were detected in the drums.

The most toxic isomer of chlorinated dioxin (2,3,7,8-tetrachloro dibenzop-dioxin (TCDD)) was detected at concentrations ranging from 100 to 370 ppb in the drum and waste samples collected during the test pit investigation. Of the

Table 3-1

ARAR VALUES: CHEMICALS EXCEEDING ARARS AND/OR CONTRIBUTING SIGNIFICANTLY TO RISK

Media	Exposure Pathway	Chemicals contributing to significant risk	ARAR	Chemicals exceeding ARARs (ppb)	ARAR
Surface Water (Ellicott Creek & Aero Lake)	• Ingestion of surface water and dermal contact with Aero Lake surface water while swimming			Chlorobenzene Aluminum Cadmium Iron Lead	5ª 100ª 1.7ª/7 ^b 300ª/300 ^b 6.3ª
	• Dermal adsorption of drainage ditch surface waters and Ellicott Creek surface water			Zinc Mercury	30ª 0.2ª/0.2 ^b
Leachate Seeps	• Dermal exposure by children and workers	Bis (2-ethylhexyl)phthalate	50 ^c 0.8 ^d	1,2 trans dichloroethene	5° 1°
· •	children and workers	PAHs (Carc)	0.8-	phenol 1,2 dichlorobenzene	4.7°
	· · · · ·	·		Aldrin	0.05°
				Endrin	0.05°
•				4,4 - DDD	0.05 ^c
			•	Barium	1,000°
				Beryllium	3°
				Cadmium	10 ^c
				Chromium	50°
				Copper	200 ^c
•	· · ·	•		Iron	300 ^c
				Lead	25°
				Magnesium	35,000
	•			Manganese	300 ^c
	· .			Zinc	300°

1854/PEOHL/T3-1.NEW 10/18/91 let

TABLE 3-1 (cont.)

ARAR VALUES: CHEMICALS EXCEEDING ARARs AND/OR CONTRIBUTING SIGNIFICANTLY TO RISK

Media	Exposure Pathway	Chemicals contributing to significant risk	ARAR	Chemicals exceeding ARARs (ppb)	ARAR
Drainage Ditches, Aero Creek & Ellicott Creek Sediments	 Dermal absorption Ingestion 	PAHs (carc)	1.32 ^f mg/kg		
Landfill Soils	 Dermal absorption Ingestion 	PAHs (carc) PCBs 2,3,7,8 TCDD TEQ Arsenic Lead	1.32 ^f mg/kg 1 ^g 0.001 ^g 7.5 ^g 32.5 ^g	Chlorobenzene BEHP PAHs (noncarc) b-BHC Chlordane	5.5 ⁸ 4.4 ⁸ 114.8 ⁸ 0.01 ⁸ 0.2 ⁸
Groundwater (Unconsolidated Aquifer)	 Ingestion of drinking water Dermal contact Inhalation of airborne contaminants 	Benzene 1,4 dichlorobenzene Bis(2-ethylhexyl)phthalate PCBs Arsenic Chlorobenzene 1,1,1-Trichloroethene 2,4 dimethylphenol Barium Manganese 1,4 dichlorobenzene	2° 4.7° 50° 0.1° 25° 5° 5° 5° 50° 100° 300° 4.7°	Xylenes Chromium Iron Magnesium Sodium	5° 50° 300° 35,000° 20,000°

TABLE 3-1 (cont.)

ARAR VALUES: CHEMICALS EXCEEDING ARARS AND/OR CONTRIBUTING SIGNIFICANTLY TO RISK

Media	Exposure Pathway	Chemicals contributing to significant risk	ARAR	Chemicals exceeding ARARs (ppb)	ARAR
- Bedrock Aquifer	• Ingestion of drinking	Benzene	2°		
	water	Bis(2-ethylhexyl) phthalate	50°		•
	• • Dermal contact while	Aldrin	0.05°		
	showering	Arsenic	25°		
	• Inhalation of airborne	Barium	1,000°	· •	
	contaminants while	Cadmium	10 ^c		
	showering	Nickel	100 ^h		
	· · · ·	Vanadium	14ª		
		Lead	25°		

^a Class B Standards

^b Class D Standards

^c 6NYCRR Part 703.5 Class GA Standards/BA TOGS

^d EPA 1990: Drinking Water Regs and Health Advisories

• NYSDOH MCL

^f Guideline Values from Technology Section Division of Hazardous Waste

^B Draft Soil Cleanup Guideline Values (TBC's) issued by Technology Section, Division of Hazardous Waste Remediation, NYSDEC. ^h SDWA MCLG

1856/PFOHL/TJ-1.NEW 10/18/91 kt

president and the second s	1				ندا س بر بر یدو	Hedis		فريد وتحديك		700 dayah ya sa		and the second state	7
Constituent			Grou	inchara la	H LA	achata	2 etnl	pinego Xich/ mittoni ream	1	o Laka	EISo	oti Creek	
	Druma	Sol	Shallow	Bedroch	Scops	Seciment	Surface Walker	Sectment	Burteco Water	Bodment	Surface Water	Sedment	
	Constitu Constitu	ent dete ent dete	ංසයේ ක පෙසේ ක	i a freq i a freq		of 1/3 to preater	9 2/3 ab 11han 2/3		ioline baseli	NO			
menial engineers, scientists, s & managemeni consultanis					D		ed at t	he Si	te Abo	ove E	laseli	Table Institut ne Qui a. New	ents ality

Constituent Image: second se		C O Bediment of
Image: second		0
Halogenated Hydrocarbons (w/o methylene chloride)Image: Chine in the image: Chine in the	0	0
Hydrocarbons (w/o methylene chloride)Image: Image: I		-
Chloride EB EB O O O O O O O O O O O O O O O O O	0	0
	1 1	
	00	0
	00	0
Phenois 🗄 🛛 🖓 🖓 O O O O O O O		0
dibenzofuran Image: Construction of the construction of	00	0
	00	0
$\begin{array}{c c} phthalate \\ esters \end{array} \bigcirc \square \ominus \square \ominus \bigcirc \bigcirc$	00	0
	00	0
Pesticide Image: Original of the state of t	00	0
PCBs [] 0 0 0 0 0 0 0 0 0		\mathcal{L}

environmental engineers, scientists, planners & management consultants

Summary of Organic Constituents Detected at the Site Above Baseline Quality

Plohl Brothers Landfill, Cheektowaga, New York

	1			Media	ر میں بر میں بیورز کی میں اور	<u>بد هر او المواني المواجم الم</u>
Organic	Grou	ndwa ter	Laschata	Drainage Ditch/ Intermitteent Stream	Asro Lake	Ellor Creek
Constituent	Statow	Bedrock	ස්තෙස	Surface Water	Burface Water	Surfaco Walter
Benzene	0	0	0			
Chlorobenzene	0		0			G
Trans 1,2-Dichloroethene	1	0	0			
1,1.Dichloroethene	0					
1,1-Dichloroethane	0					
1,1,1-Trichloroethane	0			ĺ		
Toluene	0					
Xylenes	0			ſ		
Phenol	0	0	0	}		
1,4 Dichlorobenzene	0		0000			ł
1,2 Dichlorobenzene	0		0			
Bis (2-ethylhexyl)	0		O			
phthalate						
Butylbenzylphthalate	0					
Di-n-octylphthalate	0				1	
Aldrin		0	0			
Dieldrin		1	0			[
Endrin			0			[
4-4'- DDD			0		{	
Arochlor - 1232	0					
Benzo (a) anthracence			0			
Chrysene			0			-
Benzo (b) fluoranthene			0			
enzo (a) pyrene			O .			
O Constituent dete	ected in	less tha	n 1/3 of the sa	imples above A	VRARs	
⊖ Constituent dete						
					<u> </u>	Table 4

CDM environmental engineers, scientists, planners & management consultants

.

ť

:

Piohi Brothers Landfill, Cheektowaga, New York

Summary of Organic Contaminants Exceeding ARARs

ł			·	Media		
inorganic	Gre		Leschats	Drainage Ditch/ internitiont Stream	Acro Loto	Elicon Cresk
Constituent	Challen State	Bedrock	Seepe	Surface Whitar	9urticeo Water	Surface Water
Aluminum						θ
Antimony	· C	0				
Arsenic						
Barlum			0			
Beryllium			0			
Cadmlum			Θ	Θ		Θ
Calcium						
Chromium	0	0	0			
Cobalt						•
Copper	0		Θ			
Iron	Ð	0	Ð	Ø		Ø
Lead	0		0			Ð
Magnesium	6	0	Ø			
Manganese	6	0	0			
Mercury	0		0	0	0	
Nickel						· ·
Potassium	· · ·				1	[
Selenium			0			1
Silver					.	
Sodium	*	1	Ø			
Thallium						
Vanadium						1
Zinc			•			
Cyanide						
ي	onstituent detected onstituent detected onstituent detected	at a freq	uency of 1/3 to	2/3 above ARA	Rs	
				· · · · ·		Table
mental engineers, scientists, s & management consultants	S	ummar	y of Inorgar	nic Constit	uents Exc	eeding AR

18 samples tested, 50 percent of the samples revealed the presence of this compound.

SOILS

The detection of low concentrations of a few organic compounds throughout Area A suggests that Area A is not a major source of organic contamination. The off-site RI will further characterize Area A of this site. However, many of the same organic compounds detected in the drums were also present in the soil samples in Areas B and C. In some cases, the organic compounds present in the drums were detected at higher concentrations in the soil samples. Most of the inorganics detected in the soil samples from Areas B and C exceeded background in one or more samples. As with the organics, several of the inorganics were detected at higher concentrations in the soil samples as opposed to the drum samples.

UNCONSOLIDATED GROUNDWATER AQUIFER

Most of the organic compounds detected in the drums and soil samples were also detected in the unconsolidated groundwater aquifer on-site landfill and many inorganic constituents were detected in the unconsolidated aquifer within the site boundary above background. Many of these are common landfill leachate inorganic parameters and were found to be elevated above background concentrations and at concentrations above New York State groundwater quality standards. Additionally the organics benzene and toluene as well as some inorganics were detected in the perimeter monitoring wells to the west and southwest of the site.

BEDROCK AQUIFER

Generally, concentrations of compounds present in the bedrock aquifer were lower than the overlying unconsolidated aquifer. The bedrock aquifer revealed the presence of the organic contaminants benzene and phenol in the perimeter bedrock wells at low concentrations.

Inorganics were detected at levels above background concentration baseline, in approximately 50 percent of the bedrock wells but only a few inorganics exceeded groundwater standards.

LEACHATE SEEPAGE AND SEDIMENTS

The leachate seep samples revealed organic contaminants similar to those found in the drums, soil, and shallow groundwater samples. Several pesticides found in one or more of the other media were also detected in the leachate seep samples. Most of the pesticides detected in the leachate seep samples were not detected in the corresponding sediment samples and many of the inorganic constituents analyzed were detected significantly above background levels.

Organic and inorganics were detected at levels in the seep water which exceeded groundwater standards.

The locations of the samples where the highest concentration of specific inorganic constituents were detected are in very different sections of the site, indicating widespread and varied contamination by inorganics.

SURFACE WATERS

Low levels of volatiles and one semi-volatile compounds were detected in a limited number of drainage ditch/intermittent stream surface water samples. None of the organics were detected at concentrations exceeding surface water standards and only a few inorganics exceeded the surface water standards.

No organics exceeded standards and only one inorganic exceeds standards in Aero Lake.

Ellicott Creek surface water analytical results from locations both upstream and downstream of the Pfohl Landfill site drainage were similar and showed no significant levels of contamination attributable to the Pfohl Landfill.

3.2 SIGNIFICANT THREAT

The hazardous waste, as defined in 6NYCRR Part 371, disposed of at this site has resulted in environmental damage at a level demonstrated by the following:

- a) Contravention of ambient surface water standards set forth in 6NYCRR Part 701 and 702.
- b) Contravention of ambient groundwater standards set forth in 6NYCRR Part 703.
- c) Contents of some drummed waste determined to be flammable.
- d) The location of this site is near private residences, business, freshwater wetlands and recreational fishing areas and there is foreseeable possibility of direct human exposure at this site.

A reasonable anticipation of environmental damage is also present due to the presence of radioactive materials and phenolic tars contaminated with dioxins, which are spread throughout the areas of waste deposition and at the surface of the site. Also of concern is that although the general nature and extent of the waste disposed at the site has been characterized, due to the large area of the site and the wide variety of materials disposed, a specific and full characterization of <u>all</u> the waste present has not been completed, therefore, the potential exists that undiscovered contaminants and concentrations are present at this site.

The setting of the site adjacent to freshwater wetlands, fishing areas and creeks, as well as the uncovered and exposed waste at the site presents a high potential for terrestrial and aquatic wild life exposure, with resultant degradation of these critical environmental areas.

The material currently contained or isolated at the site will continue to be acted on by infiltration of rainwater and corrosion of containers. The potential for future release of this material into the environment over time is high since no mechanism for containing migration of the waste currently exists.

3.3 FISH STUDY

Tables 2-27 and 2-28 of Appendix B present an abbreviated summary of concentrations of PCBs and organochlorine pesticides detected in fish and other locations in New York State. Table 2-27 presents concentrations detected in various fish species in lakes located outside of Erie County to the east and south of the site. Although these lakes are not located in Erie County, they are located in areas similar to Cheektowaga and provide a level of comparison. Table 2-28 presents concentrations detected in various fish species in rivers located within Erie County. These data were obtained by NYSDEC Division of Fish and Wildlife (NYSDEC 1987) through the Statewide Toxic Substances Monitoring Program (SWTSMP).

The SWTSMP, as well as other state programs were established in response to the fact that PCBs and pesticides are ubiquitous and persistent in the environment. For example, the detected concentration of DDT in sediment samples can range from 5 to 500 ug/kg DDT (Lowe 1986) and it is recognized that DDT has been globally transported by volatilization (Conway 1982). Rivers and sediments often act as transient reservoirs for pesticides and PCBs. Most of these compounds have low solubilities in water, high specific gravities, and high affinity for solids. This results in concentrations in sediments that are many times higher than those found in the overlying water. The overall objectives of the state sampling programs were as follows:

- To determine the degree to which aquatic and terrestrial organisms are contaminated.
- To determine how the concentrations within these organisms vary with geography.
- To assess the suitability of fish caught in the state for human consumption.

As can be seen through a comparison of Tables 2-27 and 2-28 to Tables 2-25a through 2-25 and Table 2-26 the concentrations of PCBs and pesticides detected in the fish collected from Aero Lake and Ellicott Creek are typically lower than those found in other locations within the state. Therefore, it was determined that the concentrations detected in the fish from Aero Lake and Ellicott Creek-Amherst are not significantly higher than those found elsewhere within the state with similar urban characteristics and are not necessarily indicative of wide-spread contamination from the landfill. Based on a report entitled <u>Contaminant Concentrations in Fish from the Waters Associated with the</u> Pfohl Brothers Landfill prepared by the State the following was concluded:

a) Based on samples ollected in this udy, fish in the vicinity of the Pfohl Brothers Landfill do not con in concentrations of PCB, mercury and organochlorine pesticides which exceed tolerance or action levels established by the U.S. Food and Drug Administration.

- b) Dioxin and dibenzofuran concentrations in fish are well below guidelines established by the New York State Department of Health (NYSDOH). However, the NYSDOH's general advisory to eat no more than one meal (one-half pound) per week of fish taken from the State's freshwater applies to these waters.
- c) With respect to fish eating wildlife, at least one species of fish from all four location samples, including the control station, contained PCB levels which exceeded the recommendation of 0.11 ppm PCB for the protection of those species. However, PCB concentrations did not exceed the lowest concentration documented (0.6 ppm) that caused an impact in a fish eating species (i.e., reproductive impairment in mink).
- d) Mercury, organochlorine pesticides, dioxins and dibenzofuran were not present in quantities which would impair sensitive wildlife consumers of fish.
- e) No significant differences could be determined in the spatial distribution of PCB and other compounds analyzed. The average PCB levels in fish from Aero Lake and Tributary IIb of Ellicott Creek were slightly higher than the levels in fish from Ellicott Creek near Bownmansville. The differences, however, were not statistically significant. The power of the statistical test to detail such differences was affected by the small number of samples.

. 1

3.4 RADIOACTIVITY

A two-phased approach was employed to characterize the nature and extent of radiation contamination at the site. It consists of a "walk-over" gamma survey along and parallel to the existing transits and in suspicious areas off the transit lines to obtain a better understanding of the radiation levels throughout the site. A subsurface radiation investigation included observations during the installation of test pits, the collection of gamma readings, and the identification of materials and objects causing abovebackground readings. The results of the radioactive investigation were provided in two CDM Interim Reports (CDM 1989; 1990). The results of the radiation investigation were addressed by the NYSDEC and the NYSDOH in two separate reports (NYSDEC 1990).

The NYSDOH and the NYSDEC conclusions from the radiation investigation as presented in these two reports were as follows:

- a) All water sample analyses were below the drinking water standards of 0.015 pCi for gross alpha or 1.0 pCi for gross beta.
- b) There is little impact of naturally occurring radioactive materials (NORM) on groundwater at the site since they are predominately alpha emitters and no elevated alpha readings were found in the water.
- c) Based on the groundwater monitoring results obtained to date, there is no migration of radioactive contamination in the groundwater to off-site locations.

- d) The site does not represent an immediate radiological health hazard.
- e) The radioactive waste material is stabilized on the surface and subsurface of the landfill and does not present an airborne environmental hazard.
- f) Direct contact with the radioactive materials should be discouraged.
- g) Radon exposure is expected to occur at normal levels.
- h) Since the major routes of access to the site have been fenced and posted with "Hazardous Waste" signs, the potential for direct exposure of the public from on-site contamination will be extremely remote. Therefore, remediation of the radioactive wastes is not required at this time (i.e., prior to general site remediation).
- i) Should remediation of hazardous waste occur at this site, the impact of radioactive wastes on the remedy must be taken into account in both the technology and the worker health and safety aspects.

3.5 NEW YORK STATE DEPARTMENT OF HEALTH ACCEPTANCE

The NYSDOH believes the remedial concepts discussed in the RI and FS will protect the general public from exposure to contamination associated with the Pfohl Brothers Landfill.

Section 4: ENFORCEMENT STATUS

A chronological review of the enforcement status follows:

LANDFILL OPERATION

1980	Erie County Health Department - tested 10 neighboring wells.
1982	Fred C. Hart Associates - tested 10 water and 4 sediment samples.
1983	Ecology and Environment Inc perimeter sampling of ground water, leachate seeps and sediments.
1985	Listed as a Class 2 site in the NYS Registry of Inactive Hazardous Waste Disposal Sites.
1985	NYSDEC enters into negotiation with Potential Responsible Parties (PRPs) Steering Committee regarding the performance of a Remedial Investigation and Feasibility Study.
1986	NYS Department of Health - analyzed samples of leachate, soils and surface drum contents.
1987	Negotiation with PRPs do not prove fruitful and NYSDEC proceeds with Remedial Investigation and Feasibility Study.

- 1989 Site property owners and PRPs are offered the opportunity to erect a fence around the site. They refuse and NYSDEC proceeds to erect the fence.
- 1991

The PRPs and site property owners were offered the opportunity to perform an IRM at the site.

Section 5: GOALS FOR THE REMEDIAL ACTIONS

The legal basis for the remedial program is contained in Article 27, Title 13 of the Environmental Conservation Law and Public Law 96-510, entitled, "Comprehensive Environmental Response, Compensation, and Liability Act of 1980" (CERCLA) as amended by Public Law 99-499, emtitled, "Superfund Amendments and Reauthorization Act of 1986".

Section 121(d) of CERCLA requires that remedial actions comply with applicable or relevant and appropriate requirements (ARARs). Applicable requirements are those cleanup standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under Federal or State law that specifically address a hazardous substance, pollutant, containment, remedial action, location or circumstance at an inactive hazardous waste site. Relevant and appropriate requirements are those cleanup standards, standards of control and other substantive environmental protection requirements, criteria or limitations promulgated under Federal or State law, that while not "applicable" to a hazardous substance, pollutant or containment, remedial action, location or other circumstance at an inactive hazardous waste site address problems or situations sufficiently similar to those encountered at the inactive hazardous waste site that their use is well suited to that particular site.

Remedial action objectives (RAOs) consist of media-specific goals for protecting human health and the environment and focus on the contaminants of concern, exposure routes and receptors, and an acceptable contaminant level or range of levels for each exposure route. Because RAOs are established to preserve or restore a resource, the environmental objectives are expressed in terms of the medium of interest and target cleanup levels, whenever possible. Chemicals exceeding ARARs and/or contributing significantly to risk for the Pfohl Brothers Landfill site are presented in table 3.1 of the Feasibility Study and contained in Appendix C. The compounds listed on this table are those exceeding a media-specific ARAR. Contaminants of concern (COCs) are those chemical constituents that have been identified in the Baseline (Human Health) Risk Assessment as contributing significantly to risk and which do not have corresponding ARARs for the specific media.

In order to meet the overall objective of protecting human health and the environment, RAOs have been developed for COCs for surface water, leachate seeps, sediments, landfill solids and groundwater media. RAOs specify the COCs, the exposure scenario(s), and acceptable contaminants level or range of levels for each exposure scenario. Target cleanup levels are defined in this section as the chemical-specific ARAR per guidance of NYSDEC.

COCs were identified in two ways, based on risk and based on exceedence of ARARs. Risk based COCs were determined using the exposure pathways and

compounds which contributed significantly to the total risk. As a result, a subset of those COCs evaluated in the Risk Assessment were chosen as COCs for remedial actions. ARAR based COCs were identified by comparison with chemical specific ARARs.

The current policy of the NYSDEC is to clean up to levels consistent with chemical-specific ARARs. This goal may be achieved by limiting exposure to COCs (e.g., institutional/use controls, source control) or by treatment of media to levels which are protective for all potential site uses.

Section 6: REMEDIAL ACTION OBJECTIVES:

The general remedial action objective for all inactive hazardous waste sites is to remediate the site to be protective of human health and the environment by treatment of media to protective levels and/or by limiting exposure to COCs. Specific RAO's for the Pfohl Brothers Landfill are:

- Reduce organic and inorganic contaminant loads to the surface water streams from leachate seeps and groundwater to assist in meeting Class B and D stream standards.
- Reduce carcinogenic and non-carcinogenic risks caused by dermal exposure to leachate seeps.
- Reduce carcinogenic risks caused by dermal absorption and ingestion of sediments.
- Prevent migration of contaminants from sediments that could result in surface water exceedence of Class B or D stream standards.
- Reduce carcinogenic and non-carcinogenic risks caused by ingestion and dermal contact of landfill soils.
 - Reduce risk or exposure to groundwater via ingestion and dermal contact.
- S Minimize migration of contaminants into uncontaminated groundwater.

Location specific ARARs set restrictions on activities based on the characteristics of the site or immediate environs. Location specific ARARs may restrict the conduct of activities solely because they occur in special locations. Two potential location specific ARARs for this site were identified and they pertain to the wetlands and flood plains present on or adjacent to the site. Wetlands are located along the western and northern sides of the Pfohl Brother Landfill site. All alternatives will achieve compliance with the wetland requirements by maintaining the wetland area to the extent possible and by creation of new wetland areas to replace where necessary. Overall the remedial alternatives are protective of the wetland, because they serve to eliminate the potential migration of contaminants to this control environmental areas.

Portions of the Pfohl Brothers Landfill site are located in the 100 year flood plain. Actions taken with respect to this site may encroach further into Portions of the Pfohl Brothers Landfill site are located in the 100 year flood plain. Actions taken with respect to this site may encroach further into the flood plain but are not anticipated to impact the floodway. In designing the cap for the site attempts will be made to minimize any encroachment on the floodplain and the cap will be contoured to place it above the 100 year flood plain elevation where possible or berms will be provided to prevent flooding of the landfill area. Rip rap or other erosion control techniques will be employed as needed to maintain the integrity of the cap or berms where encroachment into the flood plain cannot be avoided.

The NYCRR Part 360 landfill closure requirements are relevant and appropriate to the cap. These requirements will be achieved through proper design of the cap which provides for minimization of liquid migration, controlled surface runoff, minimization of erosion, and prevention of run-on.

Section 7: SUMMARY OF EVALUATION OF ALTERNATIVES

The NYSDEC Division of Hazardous Waste Remediation's Technology Section provided a list of technologies to be considered at the Pfohl site. Section 4 of the Feasibility Study evaluated these alternatives and this evaluation is contained in Appendix A of this report. After review of the preliminary evaluation of technologies performed by the NYSDEC consultant, Camp Dresser & McKee, the following conclusion was reached by NYSDEC:

"Due primarily to the size of the site and the presence of metal, organic, tar, radioactive, and dioxin contaminants, the only reasonable treatment technologies are containment and pumping and treating of the contaminated groundwater."

At this point in the evaluation of alternatives the technologies under consideration were reduced to consideration of cap and containment options that would achieve the general response actions. The principle general response actions at the Pfohl Brothers Landfill site are:

- solids/soils media containment
- aqueous (groundwater and leachate) media containment
- aqueous media collection/treatment/disposal

Using the yes/no matrix, presented in Table 2 it was determined that a total of eight possible combinations exist for the three general response actions. The combinations represent a range of possible actions that can be taken to remediate the site. The eight combinations listed on Table 2 became the basis for ten remedial action alternatives. The number of the alternative(s) associated with each combination of general response actions are given in the last line of the table.

The following Tables ES-1 and ES-2 are a summary comparison of the Remedial Alternatives. The first and seventh general response action combinations, (no solids containment but aqueous containment and collection/treatment/disposal) have been presented as two remedial alternatives. The two additional remedial alternatives (alternatives 2 and 8) include as key components two other general response actions - institutional

TABLE 2

CONCEPTUAL DEVELOPMENT OF REMEDIAL ALTERNATIVES

Key General Response Action ^b	Possible Combinations of General Response Actions ^a								
Solids Media Containment	No	Yes	Yes	No	Yes	No	No	Yes	
Ground water & leachate containment	No	No	No	No	Yes	Yes	Yes	Yes	
Ground water & leachate Collection, Treatment and Disposal	No	Yes	No	Yes	No	No	Yes	Yes	
Remedial Alternative Number®	1,2	3	4	5	6	7	8,9	10	
NOTES:	· · ·	<u></u>							

(a)

The yes/no designations indicate if the general response action is part of the alternative. The general response actions listed are those which can attain the remedial action objectives for one or more media, as presented (b) on Table 5.1-1.

The numbers assigned to the remedial alternatives are discussed in Section 5.2. (c)

185/FFOHL/0-1-2.61 W2W91 -4

PFOHL BROTHERS LANDFILL FEASIBILITY STUDY DESCRIPTION OF REMEDIAL ACTION ALTERNATIVES

Alternative No. 1 - No Action

- Groundwater Monitoring
- Maintenance of existing fencing

Alternative No. 2 - Institutional Controls

- On-site well prohibition, off-site well monitoring
- Zoning and deed regulations, fencing and warning signs, and public education for landfill

Alternative No. 3 - Capping, Ground Water Collection, Treatment, and Disposal, and Institutional Controls

- On-site well prohibition, off-site well monitoring
- Single Barrier Cap with off-site wetland replacement
- Select Solids/Soils Excavation with On-Site Disposal (for shallow and peripheral contamination)
- Ground Water collection, on-site metals and organics treatment, and off-site disposal
- Zoning and deed regulations, fencing and warning signs, and public education for landfill

Alternative No. 4 - Capping with Institutional Controls

- On-site well prohibition, off-site well monitoring
- Single Barrier Cap with off-site wetland replacement
- Select solids/soils excavation with on-site disposal (for shallow and peripheral contamination)
- Zoning and deed regulations, fencing and warning signs, and public education for landfill

Alternative No. 5 - Ground Water Collection, Treatment, and Disposal, and Institutional Controls

- On-site well prohibition, off-site well monitoring
- Zoning and deed regulations, fencing and warming signs, and public education for landfill
- Ground water collection, on-site metals and organics treatment, and off-site disposal

Alternative No. 6 - Capping, Ground Water Containment, and Institutional Controls

- On-site well prohibition, off-site well monitoring
 - Slurry wall containment
 - Single Barrier Cap with off-site wetland replacement
 - Select landfill solids/soils excavation and on-site disposal (for shallow and peripheral contamination)
- Zoning and deed regulations, fencing and warning signs, and public education for landfill
- Surface Runoff collection, channelization and off-site disposal

185:TS-2-2.154 8/29/91 #4

TABLE 3 - (cont'd)

PFOHL BROTHERS LANDFILL FEASIBILITY STUDY DESCRIPTION OF REMEDIAL ACTION ALTERNATIVES

Alternative No. 7 - Ground Water Containment and Ifistitutional Controls

- On-site well prohibition, off-site well monitoring
- Slurry wall containment
- Zoning and deed regulations, fencing and warning signs, and public education for landfill

Alternative No. 8 - Ground Water Containment, Leachate Seep Collection, Treatment and Disposal and Institutional Controls

- Slurry wall containment
- Leachate seep collection, treatment and off-site disposal
- On-site well prohibition, off-site well monitoring
- Zoning and deed regulations, fencing and warning signs, and public education for landfill

Alternative No. 9 - Ground Water Containment, Collection, Treatment and Disposal and Institutional Controls

- Slurry wall containment
- Ground Water collection, on-site metals and organics treatment and off-site disposal
- Off-site groundwater well monitoring
- Zoning and deed regulations, fencing and warning signs, and public education for landfill

Alternative No. 10 - Capping, Ground Water Containment Collection, Treatment and Disposal and Institutional Controls

- Slurry wall containment
 - Ground Water extraction, collection on-site metals and organics treatment, abd offsite disposal
 - Single Barrier Cap with on-site wetland replacement
 - Select landfill solids/soils excavation and on-site disposal (for shallow and peripheral contamination)
 - Zoning and deed regulations, fencing and warning signs, and public education for landfill

:,

TABLE ES-1

SUMMARY COMPARISON OF REMEDIAL ALTERNATIVES

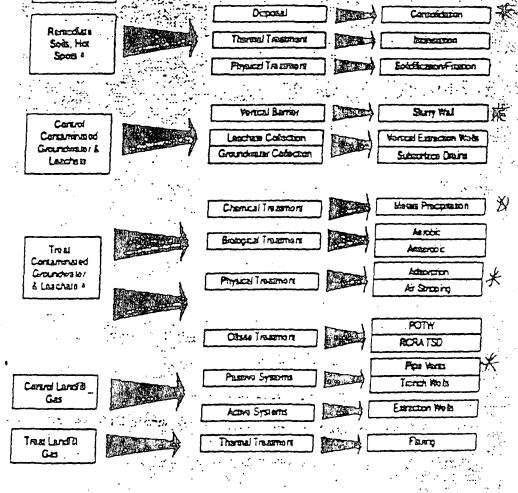
	Alternative 1	Alternative 2	Alternative 3	Alternative 4	Alternative 5
Assessment Factors	· Maintenance of existing fence	•	 Capping (single barrier) Passive ground water collection. On-oite treatment and discharge to POTW or surface waters On-oite well prohibition Long-term ground water monitoring Off-aite wetland replacement Zoning and deed restrictions, fencin and warning signs, public education Select soil excavation in peripheral areas 	 On-site well probibition Long-term ground water monitoring Off-site welland 	 Passive ground weter collection on allo treatme and discharge to POTW curface waters On-allo well prohibition Long-term ground water monitoring Zoning and dead rectrictions, forcing and warning signs, public education
Alloinment of Remedial Action Objectives	No	No	No	No	No
Short- and Long-Term Effectiveness	LOW Not effective is protecting human health and the environment.	LOW-MEDIUM Institutional controls will not reduce or eliminate the source and subsequent spread of contamination. Offers little effectiveness in eliminating possible exposure pathways.	MEDIUM Very effective in protecting human health and environment from landfill soils and moderately effective in reducing risks from all other possible exposure pathways.	MEDIUM Very effective in protecting human health and environment from landfill soils, but only moderately effort tive in proventing the migration of contaminated ground water and surface water/sediments.	MEDIUM Moderately effective in protecting human health f exposure to landfill solid ground water but is not effective for other possible exposure pathways.
Lmplementability	HIGH Easily implemented - requires long-term ground water monitoring and periodic maintenance of existing fences	HIGH Easlly implemented - as with all alternatives considered, (with exception of Alt 1) difficulties may be encountered in implementing institutional controls.	HIGH Easily implemented since required approvals for the cap are expected to be easily obtained.	HICH Easily implemented since approvals for the cap and both the ground water and landfill access institutional controls are expected to be easily obtained.	HIGH Easily implemented class approvals for ground wat restriction institutional ca and leachats collections oy are expected to be easily obtained.

2011PFOHLUES-1-1.61 9/12/91 jy

TABLE ES-1 (cont.)

SUMMARY COMPARISON OF REMEDIAL ALTERNATIVES

	Alternative 6	Alternative 7	Alternative 8	Alternative 9	Alternative 10
Auscaament Faclora	 Capping(single barrier) Ground water containment slurry wall Select soil excavation in peripheral areas Surface water collection and discharge to POTW or surface water On-site well prohibition Long-term ground water monitoring Zoning and deed restrictions, fencing and warning signs, public education Off-site wetland replacement 	 Ground water containment - slurry wall On-site well prohibition Long-term ground water monitoring Zoning and deed restrictions, fencing and warning signs, public education 	 Ground water containment-slurry wall Ground water and leachate collection, on-site treatment and discharge to POTW or surface water On-site well prohibition Long-term ground water monitoring Zoning and deed restrictions, fencing and warning signs, public education 	 Ground water containment - slurry wall and extraction wells, on -site treatment and discharge to POTW or surface water Long-term ground water monitoring Zoning and deed restrictions, fencing and warning signs, public education 	 Capping - (aingle barrier) Ground water containers slurry wall and extraction wells, on-site treatment and discharge to POTW or surface water Off-site wetland replaceme Select sell excavation in peripheral areas Zoning and deed restrictions, fencing and warning signs, public education
Full Attainment of Remedial Action Objectives	YES	NO	NO	NO I	YES
Short- and Long-Term Effectiveness	MEDIUM-HIGH Very effective in protecting human health and anvironment from landfill soils and effective in minimizing the migration of contaminated groundwater and leachato contamination of surface water.	MEDIUM Not effective in protecting human health and environment from landfill soils. Moderately effective in reducing risks from contaminated ground water and surface water sediments.	MEDIUM Moderately protective of human health and environment from ground water and leachate but not protective of continued risk from exposure to landfill soils.	MEDIUM Relatively high degree of affectivenes in protecting human health and environment from contaminated ground water. Not effective in protecting human health and environment from exposure to landfill soils	HЮH Highly effective is minimiz risks from all exposure pathways.
Implementability	MODERATE-HIGH Construction of slurry wall may encounte potential difficulties w/underground pipin, and high water table. Approvals for slurry wall and ground water are expecte to be obtained relatively easily.	g may encounter potential difficulties w/underground	MODERATE-HIGH See comments under Alternative 7.	MODERATE-HIGH See comments under Alternative 7.	MODERATE-HIGH See comment under Alternative 6.


Table ES-2

COMPARISON OF SELECTED REMEDIAL ALTERNATIVES

A LANG MATTER	Remedial Alternatives Which Underwett Douiled Evaluation		
actor	Alternative 1	Atternativo 6	Alternative 10
	 Long term ground water monitoring Maintenance of existing force 	 Capping Ground water containment Scleet soils excavation Surface runoff collection and off-site disposal Or-site langarthonal controls Off-site wetland replacement 	 Capping Groundwater containment Surface runoff collection and off-cite disposel Select colls accevation Extraction wells, on site treatment and discharge to POTW or ourface water Off-site wethand replacement On-site institutional controls
I. Compliance with ARARe	Dose not meet chemical-specifia ARARs. Action and location-specifie ARARs do not apply.	Meets chemical-specifie ARARs for all media except potable water. Heakh- based risks from landfill soils and sediesents are necespiable. Locailoc- specific ARARs for vetlands and Goodplains are met. Action-specific ARARs will be met.	Mosts all chamical-opeolite ARARs for all mode. Heath based risks from landfill poils and pediments are acceptable. Location- and action- specific ARARs are met, as in Ahamative 6.
2. Protection of Human Health and the Environment	No reduction in risks to human health and the environment.	Oreally reduces risk from all exposure pathways. The magnitude of residual risk at the site is moderate since contamination is still present and failure of the cap or shurry well could recut in exposure to contamination.	Semo es Alternetive ó.
3. Short-term effectiveness.	Only minimal risk to workers and the community during ground water sampting.	Potential risks are accordiated with airborne contaminants during construction but mitigation measures would minimize risks. Contaminated actiments entering curface waters, tampostry loss of welland habitate and possible contamination of squifer during installation of shurry wells may be anticipated. Most impacts could be mitigated.	Samo as Alternative 6. Regulaes approximately 6 months to design and 3.5 years to implement.
		Requires approximately 6 months to design and 2.5 years to implement.	
4. Long-term effectiveness and permanence.	High residual fisk, Risk control Uhrough groundwater sampling is minimal.	Risk from landfill soils would remain low since design life of cap is 30 years. Risks associated with the migration of costaminated groundwater on marginally adequate because the integrity of slurry will and bottom berrier to unknown. Long-term monitoring offers minimal risk control.	low cines design life of esp is 30 years. Control of the migration of contaminatus groundwater would be adequate due to groundwater extinction technologies. If cap or churry walls failed, purping rates
5. Reduction in Toxicity, Mobility and Volume	There is no treatment process involved and subsequently no reduction in taxicity, mobility and volume of contaminated media.	Does not roduce toxicity of the contamination; contaminant mobility is reduced by the cap and sturry walt; volume of contaminants is unaffocted.	Roduses toxicity of the contamination through groundwater treatment. Maximum roduction in contaminant mobility; considerable reduction in the volume of contaminated ground water.
6. Loplementability 1	Necessary equipmont and labor force readily available. Coordination and approvals from regulatory agencies should not be difficult to obtain.	Noceasory equipment and labor force are readily available. Success in implementation of alurry wall relies on presence of clayAll layers at the site. Specialized equipment will be required due to hummucky nature of landfill. Once in place, the cap, slurry wall and groundwater monitoring offer reliable ischnologies.	Sama as Alternativo 5, Ia addition, Installation of well points, piping collection and treatment systeme would be reasonably assy.
7. Con	\$\$60,000	\$45,194,000	\$53,789,000

HE THE I THE

Technologies Frequently Implemented for Remedial Action at CERCLA Municipal Landfills :.. . · · - 2 REHEDIAL ACTION • • REHEDULL TECHNOLOGY OBJECTIVE PROCESS OFTION Redico Sed Corror Influence Prevent Direct Eller Single Barrier Context and Mininga Dauble Barrior Ecsion < Disposal Consolication

*Other treatment technologies may be appropriate

★ - Indicates Selected Process Option

controls and leachate seep collection/treatment/disposal, respectively. These additional alternatives were added because the evaluation indicated these response actions have some benefit toward achieving remedial action objectives, even though they could not, by themselves, adequately satisfy the RAOs.

From the eight combinations of general response actions, ten remedial alternatives have been developed. The main components of the ten remedial alternative are listed in tabular form on Table 3.

Alternatives 2, 3, 4 and 5 were rejected because they do not provide for groundwater and leachate seep protection. Alternatives 7, 8 and 9 were rejected because they do not provide for solid media containment. Alternatives 6 and 10 were carried forward to a more detailed evaluation along with the No Action alternative. The only difference between alternatives 6 and 10 is the collection, treatment and disposal of groundwater in alternative 10 as opposed to simple containment of groundwater proposed by 6. Ultimately, Alternative 10 was selected as the preferred remedy due to the necessity of providing an upward groundwater gradient in the contained landfill area, to control contaminant migration from the source area into the environment.

The following chart, taken from a USEPA guidance titled "Conducting Remedial Investigation/Feasibility Studies for CERCLA Municipal Landfill Sites", further illustrates accepted closure procedures for major landfills.

The Remedial Action Objectives detailed on this chart are the same as those outlined in Section 6 for the Pfohl Brothers Landfill. The RAO's are achieved at the Pfohl Brothers Landfill in the following manner:

- A cap was selected to reduce infiltration and prevent direct contract with the waste and soils. Consistent with 6NYCRR Part 360 regulations, a single barrier cap was selected.
- The remediation of hot spots has been separated into an IRM and steps are currently being taken to implement this action.
- The control of contaminated groundwater and leachate is by a vertical barrier, in this case a slurry wall.

The pumping and treatment of contaminated groundwater is intended to provide an inward flow of clean water into the landfill area. Both chemical treatment for metals precipitation and physical treatment for adsorption of organics will be provided as necessary to meet discharge requirements.

Initially the landfill gas venting system will be a passive system of pipe vents. Should monitoring of these vents indicate a potential health or nuisance problem the system can be readily upgraded to an active system where vent gasses are collected and treated before release to the atmosphere.

Section 8: <u>SUMMARY OF THE STATES PREFERRED ALTERNATIVE</u> -CONCEPTUAL DESIGN

17 -

The remedy for this site has three major components, a low permeability slurry wall, single barrier cap and leachate collection and treatment.

<u>Slurry Wall Containment System</u>: A slurry wall is simply a trench excavated through the native alluvial materials, which will be backfilled with a low permeability bentonite clay/soil/slurry mixture. The trench will be excavated into the low permeability clay and till deposits underlying the site. To prevent lateral migration of contaminants in the groundwater the slurry wall, a physical containment system, would encircle areas B and C of the landfill and intersect with the landfill cap system at the surface. Should it be possible to consolidate the waste at this site into a smaller area, the slurry wall would surround this smaller area.

Special conditions and procedures arising from the physical location of the slurry wall will need to be incorporated into its construction. The crossing of underground pipelines; work in the high voltage transmission line right of way; as well as installation below the water table, near and across major highways, and adjacent to Aero Lake and other wetlands will require special attention during the design phase. Lateral migration prevention measures other than the slurry wall may be necessitated by the physical location of the waste boundary in certain of these areas and equivalent measures may be substituted at the approval of the NYSDEC. These alternative barriers could include grouted sheet piling, concrete walls, or barrier drains, all of which would provide a level of containment consistent with a slurry wall.

Select excavation of soils and landfill material will occur at the periphery of the landfill where practical. The objective of this excavation will be to consolidate landfill waste such that the most cost effective remedy can be implemented, while maintaining a balance with community acceptance and health and safety considerations. Special consideration will be given to moving waste away from those residences and properties adjoining the landfill as well as the adjacent wetlands, in order to minimize impacts on both areas. Future beneficial use of the site (i.e., parklands or other public access) will also be taken into account when a determination is made on the final contouring of the site surface. Consideration will be given to consolidating sediments from adjacent areas into the landfill if they exceed the Division of Fish and Wildlife Sediment Criteria and it is deemed necessary by the Division of Fish and Wildlife to protect the environment.

It is recognized, that in consolidating the waste into a smaller area, a lower cost remedy may be achieved. The slope contours could be created with the waste and steeper slopes could be constructed. The reduced surface area of the cap and reduced perimeter length would reduce both the cap and slurry wall costs. However, the trade-offs with community acceptance, visual impact, future beneficial uses of the site and the implementability of dust controls and other issues related to worker and community health and safety in the vicinity of homes and major roadways need to be balanced against these potential cost reduction measures.

Any drums, drum remnants, radioactive materials or phenolic tars encountered during construction will be consolidated, segregated and disposed or stored in accordance with the procedures implemented during the Interim Remedial Measures (IRM) at this site. Additionally, any material temporarily stored at the site will be further evaluated with respect to permanent treatment or disposal. This includes material stored during the IRM as well as any consolidated material resulting from the remedial construction activities for the landfill.

LANDFILL CAP

The landfill cap system detailed below was chosen to (1) eliminate the infiltration of precipitation into the landfilled waste materials, (2) prevent erosion of contaminated soils and (3) to prevent the direct contact by both people and wildlife with the waste.

The landfill cap will comply with the substantive requirements of the 6NYCRR Part 360 regulations for Solid Waste Management Facilities. The Subpart 360-2.13 of this regulation pertains to cap construction materials and requirements.

The landfill cap will cover the entire area of waste deposition, extending beyond the slurry wall containment system. Surface run-off and water from the drainage layer of the cap will be channeled to the north in Area B of the site and to the southeast in Area C of the site with discharge ultimately to Aero Lake and Ellicott Creek. The contouring of the landscape and placement of structures at the surface will be designed, to the extent possible, to be compatible with any future beneficial uses of the site which may be identified by local government and which will not adversely impact the landfill containment system. A barrier/buffer zone between the landfill cap and adjacent properties will be created. The limits of the cap will be determined by the area of waste consolidation possible at the site with a preference given to removing waste from areas adjacent to current residences and wetlands areas.

The components of the landfill cap will be, as required by 6NYCRR Part 360-2.13, and are presented here, in order, starting from the existing landfill surface to the surface of the cap. (also see Figure 2):

- A minimum 12 inch compacted layer. This layer may be constructed utilizing some or all of the following: consolidated waste soils, "clean fill" brought to the site or C&D material brought to the site. This material will be used to create appropriate landfill slopes and contours and may range from a minimum of 12 inches to several feet in thickness. It is likely that a combination of all of the above sources of fill will be utilized in contouring the landfill.
- b. A gas venting layer consisting of 12 inches of graded stone (or an equivalent geotextile gas venting material) combined with piping to vent the gas to the atmosphere.
- c. The low permeability barrier layer. This will consist either of an 18 inch low permeability soil layer (clay) constructed to minimize precipitation into the landfill. The clay must have a maximum remolded coefficient of permeability of 1×10^{-7} cm/second. This material must be placed on a slope of no less than four percent to promote positive drainage and at a maximum slope of 33 percent to minimize erosion.

· - 19 -

A geomembrane, typically a high density polyethylene material (HDPE), may be used as an alternative to the low permeability soil layer. It must have a maximum coefficient of permeability of 1×10^{-12} centimeters per second, chemical and physical resistance to materials it may come in contact with and accommodate the expected forces and stresses caused by installation, settlement and weather. The minimum thickness of the geomembrane will be 40 mils. It is anticipated that for this landfill cap a geomembrane system will be utilized due to the large quantity of clay otherwise required.

d. A drainage layer which will have a minimum hydraulic conductivity of 2 x 10⁻² cm/sec and a final bottom slope of two percent after settlement and subsidence will be used to drain precipitation which percolates into the soil of the cap. Water removed by this layer will be transmitted to a perimeter drain system and then discharged to surface water.

This drainage layer will consist of either a six inch layer of crushed stone and conveyance piping or a geosynthetic drainage membrane designed to perform the equivalent function of the 6 inch stone drainage layer.

e. A minimum 24 inch barrier protection layer of soil must be installed above the low permeability cover. Material specifications, installation methods and compaction specifications must be adequate to protect the geomembrane barrier layer from frost and thaw damage, root penetration, to resist erosion and to be stable on the final cover design slopes. Consideration should also be given to the prevention of burrowing by animals down to the geomembrane.

·.)

f. A minimum 6 inch topsoil layer must be designed and constructed to maintain vegetative growth over the landfill. A thicker layer of topsoil may be required if the post-closure site use warrants a thicker layer.

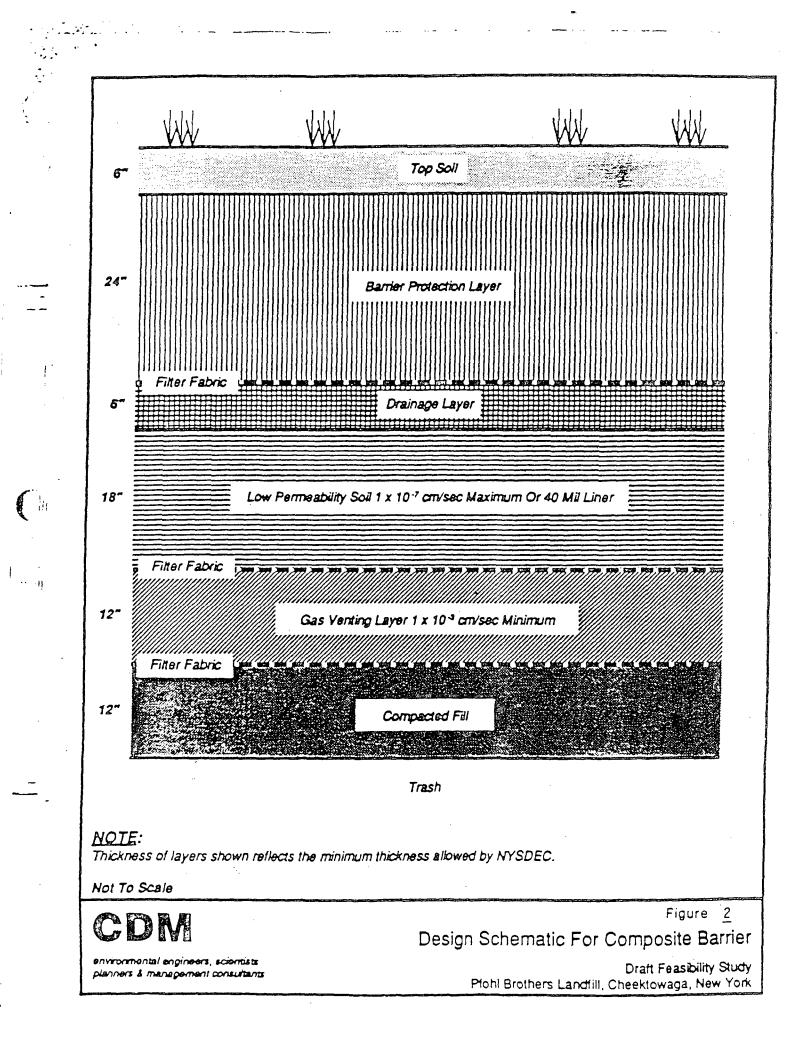
The landfill cap construction will have to take into account the important features in the neighboring physical setting. Water will have to be channeled away from adjacent residences and streets. The eastern border of the site will have to conform to the New York State Department of Transportation Transit Road improvement project. New power lines and towers are to be erected west of Area B and the cap and slurry wall need to be tailored to minimize interference with this project. The impact of the cap on the neighboring wetlands has to be minimized and should wetland area need to be reduced, they will have to be reestablished on adjacent property. Any wetland encroachment will comply with the US Army Corps of Engineers determination as to any wetlands modification, elimination or replacement.

A consideration in constructing the cap is the use of "construction and demolition debris" (C&D) for fill to create the elevations and contours required at the site for cap construction. The intent in substituting this material to replace clean soil for contouring the landfill is to reduce the cost of the cap and minimize the commitment of this natural resource. Normally a fee is charged for receiving construction and demolition debris and any fee collection could be used to offset the cost of remediation.

The technical challenge in utilizing this material will be to create stable, compact, and non-degradable slopes and elevations from the widely varying material. The desired results may be achieved by limiting some of the types of materials typically contained in construction and demolition debris.

Some materials such as debris with high percentages of vegetative material may degrade over time and cause sagging of the cap elevation or slope. Some settling of any capping system is anticipated in the design. The use of C&D will be taken into account when designing the cap and placement of the material will be limited, as necessary, to avoid any unacceptable settlements. In addition some materials, such as large amounts of vegetation or drywall, can over time emit nuisance odors. Because of potential construction, maintenance, and public health problems, use of these types of materials will be held to a minimum. Although the use of construction and demolition debris may present some technical problems, its use can be managed and implemented at a substantial benefit. Since this is the case, we consider the use of controlled volumes and compositions of construction and demolition debris to be a probable component in the contouring fill used at this site.

LEACHATE COLLECTION, TREATMENT AND DISPOSAL


Groundwater, now considered leachate, present within the site area contained by the slurry wall will be collected by a series of extraction wells or equivalent means. Due to the relatively low saturated thickness and lack of recharge available to the contained area, the extraction rates will be low. Extracting leachate from within the contained landfill area will induce groundwater flow toward the extraction wells, eliminating the outward migration of contaminants into either the bedrock or adjacent portions of the alluvial aquifer.

The extraction wells or equivalent system will be located throughout the site in order to collect the leachate uniformly across the site. The leachate will be collected from the wells to a central location and treated as necessary to meet the appropriate permit requirements for its discharge. The treatment may include a precipitation/settling/filtration process for metals removal followed by a physical/chemical process for removal of organic constituents. Other types of appropriate technologies may be considered in order to meet discharge requirements. Two options exist for discharge of the treated leachate. The treated water will be discharged either to the local Public Owned Treatment Works (POTW) or nearby surface waters. The preferred method is discharge to the Cheektowaga sewer system for conveyance to the treatment facilities of the Erie County Sewer Authority, following any necessary pretreatment on site.

INSTITUTIONAL CONTROL

Access restrictions at landfill sites are intended to prevent or reduce exposure to on-site contamination. They include actions such as fencing, signage, and property deed covenants to prevent development of the site or use

- 21 -

of groundwater below the site. Access restrictions may also be used to protect the integrity of the landfill cap system.

At the Pfohl Brothers Landfill site the objective will be to limit subsurface excavation, prevent vehicular traffic (including off-road vehicles and dirt bikes), and groundwater use. Although fencing of the entire site will not be required, it may be necessary, if areas cannot be restricted by plantings of tree barriers or use of berms. The tree barriers will be designed to limit vehicular traffic access with gates necessary to allow maintenance access to the site.

The NYCRR Part 360 landfill closure process will provide adequate protection to isolate the radioactive materials located at this site from the environment. It meets the U.S. Nuclear Regulatory Commission (USNRC) regulations for on site disposal of these materials. However, deed restrictions on subsequent land use are recommended should the landfill remedy change in the future. The NYSDEC will pursue enactment of these restrictions with the appropriate authority.

Signs will be posted on the site to advise people that intrusive activities into the soils are not allowed. This warning will serve to prevent potential damage to the buried geomembrane or filter fabric.

OPERATION AND MAINTENANCE

As a part of the long term monitoring program at this site, water level measurements as well as analyses of groundwater samples will be used to determine if the remedial action is achieving its intended goals. These measurements and groundwater samples will be taken from existing monitoring wells in the vicinity of the site. If additional monitoring wells are determined to be necessary, they will be added during the remedial design phase. The Remedial Design will include provisions for the regular Operation and Maintenance (O&M) of the components of the remedial action once it is in place. This will include regular inspections (and repair when necessary) of the soil cap to monitor for erosion and/or settling. These inspections may be incorporated into the regular maintenance of the landfill. In addition, the remedial design will include provisions for the groundwater pumping and treatment system.

FIVE YEAR REVIEW

A periodic review, at least every five years, at sites where the remedial action leaves hazardous wastes, pollutants or contaminants is required. At this site substances remain on site above levels that allow for unrestricted use and unlimited exposure for human and environmental receptors. If the periodic review shows that the remedy is no longer protective of human health and the environment, additional action will be evaluated and taken to mitigate the threat.

- 22 -

APPENDIX A

: .

4.0 DEVELOPMENT OF TECHNOLOGY TYPES AND PROCESS OPTIONS

4.1 GENERAL RESPONSE ACTIONS .

General Response Actions are exceptions of activities which are applied toward remediation of contaminated sites. The remedial action objectives developed for a site dictate which general response actions should be undertaken. Within each general response action (other than No Action) are several technology types and process options.

The general response actions identified for the Pfohl Brothers Landfill site which will meet the remedial action objectives for the site or will provide a baseline against which actions may be compared consist of the following:

<u>No Action</u> - This response is always identified for the purpose of establishing a baseline with which to compare other general response actions. There are no preventative or corrective actions taken as a result of this general response action, however, monitoring of the contamination may be prescribed.

Institutional Controls - These utilize actions which control contact with the contamination rather than remediating the contamination itself. These actions may be physical, such as fences or barriers, or legal such as deed restrictions, zoning changes or security restricted access.

<u>Containment</u> - As a general response action, containment prevents risk to human health and the environment by restricting contact to or migration of the contaminants via the soil, water or air pathways. A number of technologies and different materials are available for use in establishing migration barriers.

<u>Removal/Collection</u> - This response action physically removes or collects the existing contaminated media from the site. Other response actions are usually necessary in order to achieve remedial action goals and objectives for the removed or collected media. Collection and removal of solids/soils media is often associated with source control activities and eventually reduces contaminant concentrations in the surrounding surface water, ground water, biota and air media. Collection or removal actions in water and air media do not prevent continued migration of contaminants in those media, but do typically

4-1

0.0 BANK (BANK

דאד המפשו די ומכוים

The second second

0

<u>الم</u>

intercept the most contaminated portions of those media. Collection actions which completely intercept their respective media would be considered containment general response actions.

<u>Treatment</u> - These actions involve removal of the contaminant from the contaminated madis or alteration of the contaminant. The result is a reduction in mobility, volume or toxicity of the contaminant. This general response action is usually preferred unless she or contaminant-specific characteristics make it unrealistic.

<u>Disposel/Discharge</u> - This general response action involves the transfer of contaminated media, concentrated contaminants, related or treated materials to a site reserved for long term storage of such materials or to an appropriate location. Disposal sites are strictly regulated in operation and the types of materials that they may accept.

The general response actions presented above provide the basis for identifying technology types and process options specific for the site, which are subsequently screened for technical feasibility.

4.2 DETERMINATION OF THE VOLUMES AND AREAS OF CONTAMINATED MEDIA

In order to apply the general response actions, an initial assessment of the quantity of contaminated media is necessary. This section describes the methods used to estimate quantities of soil/solids/sediments and groundwater/leachate/surface water.

4.2.1 LANDFILL SOILS/SOLIDS/SEDIMENTS

Based on information presented in the RI Report, it appears that contaminated soils and solids are located throughout the landfill. Thus, in calculating the volume of contaminated landfill soils and solids, it was assumed that all of the fill material is contaminated.

Sheet No. 1 in the RI report shows an AutoCAD-generated contour map depicting the depth of fill in the landfill based on soil boring data collected during the installation of the monitoring wells and excavation of test pits. This map was used in developing fill volumes and areas; the AutoCAD software package was used to calculate areas. Then based on the area and average depth, volumes of fill material were

1856 154 TXT 9713/9; ist

Ø

f

PROVING IN

200

F

4-2

determined within each contour interval and then totaled. Total area for each geographical subdivision, overage thickness of fall material, and soul volumes of fall material, are presented in Table 4.1-1.

TABLE 4.1-1

Ave Thickness Volume Ares (മണ്ട) **(**R) (CY) Ares B 75 11.7 1,410,110 Area C 47 12.4 937.460 Total 122 2.347_570

ESTIMATED VOLUME OF CONTAMINATED LANDFILL SOLIDS AND SOILS

Volumes of contaminated sediments from Aero Creek and the drainage ditches are expected to be a fraction of the contaminated soils and are estimated at an additional 200 cubic yards. This volume estimate is based on assuming that sediments are contaminated to a depth of 0.5 feet and three feet wide over a combined creek and ditch length of 3,600 feet.

422 GROUND WATER/LEACHATE/SURFACE WATER

Based on ground water sampling results collected to date, no significant/concentrated ground water plumes have been identified in the area. Data collected under the proposed Phase II Remedial Investigation will allow for a determination to be made on the volume of contaminated ground water. It is currently estimated that the volume of water within the site is 15,000,000 cubic feet.

4.3 <u>CRITERIA FOR SCREENING OF GENERAL RESPONSE TECHNOLOGIES AND</u> PROCESS OPTIONS

For each of the general response actions identified in Section 4.1, there exists a number of potentially effective technologies applicable to each medium of interest. These remedial technologies and associated process options are identified in the following sections and are initially screened on the basis of technical feasibility.

4-3

18004.TXT

Ţ

100

0.0

X40 4430

The evaluation of the technical feasibility of a technology or process option is based primarily upon the site conditions and the characteristics of the waste on the site. A technology/process option that cannot be implemented based on these criteria is eliminated from further evaluation.

4.3.1 LANDFILL SOLIDS/SOILS AND SEDIMENTS

Table 4.3-1 summarizes the general response technologies and process options identified for the landfill solids/soils and sediments media, provides a brief description of each technology/process option, and lists the results of the technical feasibility screening.

4.3.2 GROUND WATER AND LEACHATE

Table 4.3-2 summarizes the general response technologies and process options identified for the ground water and leachate media, provides a brief description of each technology/process option, and lists the results of the technical feasibility screening.

4.4 IDENTIFICATION AND INITIAL SCREENING OF REMEDIAL TECHNOLOGIES AND PROCESS OPTIONS

In Section 4.3, the technical feasibility of the general response technologies were determined. In this section, the process options associated with these technically feasible technologies are evaluated relative to each other and screened in terms of their ability to meet medium-specific remedial action objectives, their short- and long-term effectiveness, and their implementability. Each of the evaluation criterion is described below:

<u>Ability to meet remedial action objectives</u> - Specific process options that have been identified should be evaluated on their ability to meet remedial action objectives relative to other process options within the same technology type.

1890 1777 1911-191 125

TABLE 4.3-1 PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remedial Technology - Process Option	Description	Screening Status	Comments
NO ACTION	No remodiation of hezards present on site. Monitoring may occur.	Technically Implementable	This option required by the NCP and is retained for comparison with other alternatives.
INSTITUTIONAL CONTROLS			
 Land Use Controls 			
- Deed Restrictions	Restrictive covenants on deads to the landfill property. Includes limitations on excavation and besements in contaminated solids/soils areas.	Technically Implementable	May be difficult to consider a for the dis.
- Zoning Change	Zoning change, edministrative consent order, or judicial order prohibiting certain land uses.	Technically Implementable	
• Feacing	Restrict general public from co-site hazards	Technically Implemented	Already in pleas crossed cases of institle.
• Written Warnings	Place warning signs in area to warn local citizens of landfill hazards	Technically Implementable	Already is place around seed of budfill.
CONTAINMENT ACTIONS			
• Capping			
- Native Soil Cap	Reduce exposure to, and migration of contaminated materials through use of a native soil cap.	Technically Implementable	Allows most of the existing infibration to reach the immiful colids. Surface resoft likely to contain high sodiment content, which would require detention begins prior to final discharge.
- Single Barrier Cap	Utilizes a cingle layer of media for the berrier; such as clay, florible membrane liner, asphalt or concrete-based material.	Technically Implementable	Allows for como la Maria Messe NYSDBC capping criteria.
- Composite Barrier Cap	Utilizes multiple layers of madia for the barrier, such as soil, synthetics, and concrete.	Technically Implementable	Minimums infiltration of entating proclectuals. Creates relatively high volume of class ranoff. Meets NYSDEC capping criteria.

TABLE 4.3-1 (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remedial Technology • Process Optica	Description	Screening Status	Cosmon
- Supercritical Water Oxidation	Breaks down suspended and discolved Oxidizable inorganic and organic materials by Oxidation in a high-temperature, high pressure, equeous environment.	Technically Uni mplementable	Wasto maai bo peninpoblo.
- Low Temperature Thormal Description	lavolves the volatilization of orgenics from coil without achieving soil combustion temporatures. Volatiles can be destroyed in ca afterhumer.	Technically Implementable	The tacknology has been developed for tracting cuils constricting PCBs and PAHs. Noz-volatile compounds are not removed. Must be used in combination with a vegar collection system.
• Physical/Chemical Trectment			
- Air Stripping/ Mechanical Aeration	Mechanical aeration of soils to remove volatile organics	Technically Unimplementedta	Non applicable to incorporates and and volatiles, which are the primery constantions of concern on the site.
- Soil Washing	Orgenic colvents are mixed with coils to extract orgenic contaminants. Liquid waste is produced.	Technically Implementable	One reasons PCRs and PAHs, however low consectations in the cold say reach is been reasonal officiencies. Non-uniform composition of leastful colds solves the process difficult to implement as corting of wests materials prior to traduced may be accessery. Traduced of baseguesons areas any be more implementable.
- Dechlorinstian	Uce of possessions polyethylane glycoleto (KPEO) and dimethyl sulfaxide to dechlorizate halogeneted organic compounds, creating large numbers of pontoxic products.	Technically Uniseptementals	Will not decoally PAHS or bargenics.

TABLE 4.3-1 (corr.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remodial Technology • Process Option	Deccription	Screening Statue	Caree 2022
• Thermal Treatmant			
- Rotory Kiln	Thermal tradmant of coatamicated coils by combuction on horizontally retains cylinder designed for uniform heat transfer.	Technically Implementable	Non-altera estavella of lande of a miss by press difficult to implant a conting of which aminist prior to become any to pressay. Tradition of homogeneous area may be more implementate.
- Circulating Fluidized Bed	Waske injected into bot bod of aand where combustion accurs.	Technically Insp ianzen tablo	المحمد الحمد معتبعتهم ها لتعاملك معلما ساعا في ومعتبعت كالمسلم له لتواسعا كا معالي ها محت المعالي وماهم له محتا كرون ها محتا المعالي وماهم له لمعاري معالي المعالي في العمر المواسعا ها.
- Multiple Hearth	Wanto injected into a vertical cylinder containing a series of colid, flat bearths.	Technically Implementable	Non-anthra comparison of humidit called anthra des proves difficult to implement as conting of wards antening prior to inclused any be accounty. Treatant of boccognization and any be anno implementation. Requires high level of antening.
- Pyrolysis	Thermal conversion of argenic material into colid, liquid, and gaessus components in an onygen deficient atmosphere.	Technically Unimplementable	المع مهمالمتكن مست مست محتية مست مترسفين عمد لنعيك فعندماني مكنعتكن
- Infrared Thorad Treetment	Ucco cilicon contrine discreto to generate abermal rediction beyond the end of the visible spectrum for thermal declarction.	Technically Implementable	Applicable and her and a contract of the process area and the process of the process area and the process of the process area and the process of the process area and the process of the p

TABLE 4.3-1 (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remodial Technology - Process Option	Decemiption	Screening Status	Coursessan
- Рьотојувів/UV	Photochannical reactions requiring the obsorption of light energy, generally from sunlight in netural conditions. Because light dues not presentate very far into coils, photodegredation of contaminated soils is limited to coil surfaces.	Technically Unimplementable	Octy applicable for surface call containation. Non-miferts compating of handfill colors and an prease difficult to implement as corting of waste materials prior to treatment may be monumer. Treatment of bounders areas may be more implementable.
 Biological Treatment 			
- Aerobic	Notricate and cocarbotrates, such as methano, are injected into soils to stimulate biological destruction of contaminants.	Technically Unincplementedda	Proves la agazaria laboretory reactory, but unproves for coils application. Will not degrade chlorinated organice.
- Anterobic	Constants and as acetate is added to subsurface. Ancerobic bacteria are stimulated to degrade chlorinated organics.	Technically Unimplementable	Will degrade chloriented organico, but incomplete degradation formo vinyl chieride. Difficant to maintain amorphic conditions insite.
DISPOSAL ACTIONS			· · ·
• Offsite			
- RCRA Sublitte C	Dispocal of contaminated soil at offsite RCRA °C° Landfill.	Technicolly Implementable	Soli may require brokened prior to disposed data to Lond Ben restrictions. Referencino and/or dioxin contaminated solid may require reports baseling and disposed.
, - RCRA Schilb D	Disposed of tracked colida/coilo at an RCRA "D" landfill.	Technically Implemantable	Requires transmit print to Caspond. Redirective and/or clocks services of cells may also require asparets bandling and dispond the to Land Ban Restrictions.
• Onsite	Involves the construction of an onsite containment vessel (RCRA lendfill) or a Subsitle D vessel for the disposal of contaminated materials.	Technically Implezantebto	Continuinted material world be separated to be excerned. Existing site structures any used to be removed. Would be difficult to implement in areas with a high water table or location within 100-year flood plain.

TABLE 4.3-1 (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remedial Technology - Process Option	Decriptica	Screening States	Correction
INSITU TREATMENT • Physical/Chemical - Vepor Entrections/end Thermally Enherced Vapor Entrection	Vertical or barizantal vests used to entract contaminant coil gas and volatilize contaminant residuals from coils. Steam/hot gas can be used to enhance volatilization.	Technically Unimplementable	المعادمة معادمة معادمة معادمة معادمة معادمة المعادمة معادمة م معادمة معادمة معاد معادمة معادمة معادمة معادمة معادمة معادم امينة معادمة مع معادمة معادمة
- Redio Frequency (RF)/ Microwave Heating	Electrodes are placed in contentiated with. RF energy field has a collected in vents or at contaminants which are collected in vents or at the surface.	Technically Unimplementable	
- Vitrification	Electrodes are placed in soil and current is peaced through coil to create resistive heating. Soil eventually melta, organics are volatilized or destroyed and inorganics are dissolved within vitrified mass.	Technically Unimplementation	Our debut canod in with teach and other demokition debuts could list? (In all other of the process. Technology allocitousses in landfill makin is suproven. Requires without composition of soil.
- Soil Flushing	Surfactors colution is percolated through contaminated coils and elutriate is brought to the surface for removal, recirculation or ca-site treatment and reinjectics. Amenable for removal of some organics.	Technically Unimplementable	Limited explicitly to verter since with tradification is contacting to the distribute collection to contacting even. Also requires effective collection system to prevent contaction effectives, incoland balandi dens not previde for chicking recovery. Bearing of the vertex of contaction prevent, no en type of enfected would recove the contact of contacting of the contact of contacting of the contact of contacts. Leak of by and contact of

TABLE 4.3-2 (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

IDENTIFICATION AND SCREENING OF REMEDIAL TECHNOLOGIES GROUND WATER AND LEACHATE

RESPONSE ACTION • Remedial Technology - Process Option	Description	Screening Status	Comments
CONTAINMENT ACTIONS			a second and a second
• Hydraulic Controls			
- Passive Drainfields	Use of an interceptor trench containing perforated pipe and gravel for collection of ground water or leachate which is pumped to the surface. Trench is located downgredient of site.	Technically Implementable	Collected water sumt be treated prior to discharge. Entraing underground willities could pose problems. May not be technically feasible to install system deep croage within coulder. Worker besits and safety may be a concern during construction.
- Extraction Wells	Capture ground water in the shallow equifer using a series of pumping wells which pump at high enough rates to reverse existing hydraulic gradient.	Technically Implementable	Collected where must be treated prior to discharge. Requires on-the studies to determine well cepture zones. Requires constant monitoring to maintain system effectiveness.
• Physical Controls	,		
- Slurry Walls	Bentonite-filled trench. Reduces permeability and restricts ground water flow.	Technically Implementable	Provides cossistent barrier to latered flow. Does not address vertical subgration of contaminants.
- Grout Curtain	Inject growt into coil to harden soils and form an impermeable wall.	Technically Implementable	Difficult to completely stell & large eres. Does not colores varified migration of contemisation.
- Sheet Piling	Metal sheets are driven into bedrock to form an impermeable wall.	Technically Implementable	Difficult to install in rocky colls or a depths greater than 30 feet.

سي ک

TABLE 4.3-2PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION	Description	Screening Status	Comments
NO ACTION	No removal or reduction of risks from ground water or leachate. Continue monitoring of ground water and leachate.	Technically Implementable	This option has been related for organized with other alternatives, as required by NCP.
INSTITUTIONAL ACTIONS			
• Water Use Controls			
- Well Permit Regulation	Regulate drilling of new wells in contaminated shallow equifer.	Technically Implementable	Applicable and featble is this area alone ellemate water enviross cales.
- Inspect and Seal Existing Wells	Voluntary abandonment of existing shallow wells in contaminated areas. Properly seal bedrock wells to prevent downward contaminant migration.	Technically Implementable	Coski chiest several private wells because off- she. Potesticity important in protecting bedrock equifer.
- Point of Use Treatment	Provide individual water treatment systems to all potentially affected well water systems.	Technically Implementable	Mood be used with other heileliged collect 10 prevent humen contact with ground weter.
• Public Education	Increase public awareness of site conditions and remedies through meetings, written notices, and news releases.	Technically Implementable	Provide forme for open discussion and any prevent unimended exposures.

TABLE 4.3-2 (com.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

.

RESPONSE ACTION • Remedial Technology - Process Option	Description	Screening Status	Commenta
TREATMENT ACTIONS			
• Biological			
- Activated Sludge	Treat ground water/leachate using bacteria and other microbes in an arrated tank with biomass recirculation.	Technically Unimplementable	Organic compound concentrations are too weak to support a visible microbial population. Does not completely address inorganic removal.
- Activeted Sludge and Powdered Activated Carbon	Treat ground water/leachate with microbes and powdered activated carbon in the same reactor.	Technically Unimplementable	Potenticily applicable for treasing organic contaminents. Does not completely address treatment of inorganic constituents.
- Aeration Tank	Biological treatment by microbes in an cerated tank with no recirculation.	Technically Unimplementable	Extremely difficult to sustain sufficient microbial population.
- Aerobic Fixed Film	Microbes ettached to an inert media provide organic contaminant removal under aerobic conditions.	Technically Implementable	Possible application even for low arrangth waters. Incidental metals removed.
- Anscrobic Fixed Film	Microbes attached to an inert media provide organic contaminant removal under anzerobic conditions.	Technically Implementable	Generally not used for nearest of low level organic compound concentrations.
- Aerobic/Anzerobic Fixed Film	Microbes etteched to an inert media provide organic contaminant removal under spatially segregated perobic and anaerobic zones.	Technically Unimplementable	Not applicable for waters with low organic compound concentrations.

TABLE 4.3-2 (com.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

IDENTIFICATION AND SCREENING OF REMEDIAL TECHNOLOGIES GROUND WATER AND LEACHATE

RESPONSE ACTION • Remedial Technology - Process Option	Description	Screening Status	Comments
- Trickling Filters	Similar to a fixed film aerobic process.	Technically Implementable	Possible application for nanovirg carro of the organics. Not applicable for inarganics.
• Physical/Chemical		· · · · · · · · · · · · · · · · · · ·	
- Activated Carbon	Granular activated carbon is used to adsorb organic contaminants. Spem carbon is regenerated and concentrated. Contaminants are destroyed or treated.	Technically Implementable	Proven technology for removed of work organics. Methylene chloride is poorly edsorbed. Metals removed is incluteded.
- Air Stri pp ing/Steam Stripping	Air or steam is used to strip volatile organic compounds from ground water/leachate. Vapor phase streams are treated for concentrated contaminant removal or destruction.	Technically Implementable	Proven technologies for removel of cartain organic compounds, especially volcille organics.
- Alkaline Destruction	Remove Inorganic constituents by raising pH to high values.	Technically Unimplementable	Not a proven technology and is not applicable for all inorganic constituents.
- Centrifugration	Remove inorganic constituents by raising pH to high values.	Technically Unimplementable	Not cyclicitle for ground when hardens with low collule outlends. One be used for alreige dewatering bet minimal shedge processing to multiplied at this size.
- Chelstion	Chelcting agents are used for heavy metal removal.	Technically Unimplementable	Technology is not proven for such applications. Only some inorganics are treated.

1858/PPCHILITA-3-2.NEW 09/17/91 64

TABLE 4.3-2 (com.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remedial Technology - Process Option	Description	Screening Status	Commentants
- Bottom Sealing	Prevent vertical migration of contaminants using a horizontal layer of impermeable material injected beneath contaminated area.	Technically Implementable	To be implemented in creas where natural clay underlying lendfill is chosen. May be difficult to implement at the site since the creas are unknown and difficult to identify.
- Capping	Install a properly designed cap over the site. Czp could be asphalt/concrete, clay, synthetic or multi-layered.	Technically Implementable	Would minimize inflitrator is is leasifill materials, thereby reducing leachers says discharge and decrease downward bydrestic gradient between allowed and bedrock equifers.
COLLECTION ACTIONS			
• Hydraulic Collection			
- Passive Drainfields	Water is collected in a trench containing perforated pipe and gravel, and is pumped to the surface.	Technically Implementable	Construction difficulty increases with depth below weter table curface. Worker besith and safety may be a concern during construction in weste meteriel.
- Extraction Wells	An array of wells is used to pump out ground water.	Technically Implementable	Can collect webs over a large area. Possping rates on individual webs can be varied to focus collection efforts in desired areas.

TABLE 4.3-2 (com.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION	Description	Screening Status	Commenta
- Anzerobic Digester/Tank	Organic contaminants are removed in an anzerobic digester.	Technically Unimplementable	Appliceble for sledge; for eppliceble for ground weigt of leechese.
- Combined Biological	Both cerobic and anaerobic microbes are used for treatment.	Technically Unimplementable	Ground weier leachede organie oomported concentrations too low to sustain a vieble population.
- Fluidized Bed Reactor	Microbes attached to a fluidized bed of inert media provide organic contaminant removal.	Technically Implementable	Potenticity applicable for ground water/leadicie incoment. Does not address incorrank constituents.
- In-situ Biodegredation	Microbes present in the soil are used for biodegredation.	Technically Unimplementable	Not applicable for four accounting writers encountered at this size. Difficult to operal environment in the fill match/coll found at this size.
- Land Treatment	Ground water/leachate is applied to land. Microbes present in soil provide treatment.	Technically Unimplementable	Potentiel for creating additional contentination. Potential RCRA Land-ban restrictions. Must be used in combination with a vapor collection system.
- Rock Read Filters	Contaminants are absorbed in $wellands$ environment (natural or artificial).	Technically Implementable	Presentially applicable as a particular same when presided provide water Academic is discharged to surface waters.
- Sequencing Beach Reactors	Ground water/leachests is treated under cerobic conditions in a sequencing batch reactor configuration.	Technically Unimplementable	Ground water and kardane characteritors are no weak to support a vielke microbial populations. Does not completely address inorganic removal.

TABLE 4.3-2 (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remedial Technology - Process Option	Description	Screening Status	Comments
- Ion Exchange	Heavy metals are exchanged with sodium or hydrogen ions and removed from water as pass through an ion exchange column.	Technically Implementable	Potentially applicable and proven technology for heavy metals removal.
- Low Temperature Stripping	Volatile organic contaminants are removed from water through addition of heat and air.	Technically Implementable	Possible application for volatile organics removel.
- Magnetic Separation	Magnetic forces are used for removal of suspended metals which are magnetic.	Technically Unimplementable	Not applicable to con-magnetic cor discrived ground water/leachede contaminants of the site. No organics removel.
- Mechanical Aeration	Organics are volatilized through aeration provided by mechanical mixers.	Technically Unimplementable	Very limited applicability to ground water/leachate at this site due to low concentrations.
- Neutralization	pH adjustment is made for treating waters outside the range of normal pH.	Technically Unimplementable	pH for ground weder/leachase ei chiz size is normel (within the range 6-9)
- Oil/Weter Separation	Free floating oil or other phases are separated from water.	Techniccily Unimplementable	Applicable caly when has product is found. No such products each at this she.
- Oxidation/Reduction	Oxidetion/reduction reactions are used to remove metals.	Technically Unimplementable	Limksd application for selective matels only. No organics removal.
- Phases Separation	Immiscible phases are separated physically.	Technically Unimplementable	Multiple phases are not present at this she.

TABLE 4.3-2 (com.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION • Remedial Technology - Process Option	Description	Screening Status	Commence	
- Coagulation/flocculation	Coagulating agents and flocculants are used for collecting precipitated metals to facilitate separation from waters.	Technically Implementable	Applicable and proven technology for assisting in removal of come inorganic constituents.	
- Dechlorination/ Dehalogenation	Organic compounds are dechlorinated or dehalogenated using chemical addition.	Technically UnImplementable	Not effective in media with 1 with many of organic constituents. No metall removels.	
- Distillation	Organic constituents are removed from ground water/leachete	Technically Unimplementable	Not explicitly to ground wear with severel conteminents and low occommentations of organics. No matche network.	
- Electrodialysis	Ion separation is achieved using electrodialysis techniques.	Technically Unimplementable	Only applicable for ine asperators. Does not remove precipitates and much arguments.	
- Electrochemical	Electrochemical properties exhibited by heavy metals are used for separating them from waters.	Technically Implementable	His been proven to pilot each certics. Potentially applicable for means removel. No organics removal.	
- Everation	Dissolved collds are reparated from water using evaporation. Volatile constituents are also removed.	Technically Unimplementable	Not applicable for watering of dilate waters in the cool, hands considered at the size.	
- Filtreaton	Precipitated collido containing metals are filtered out.	Technically implementable	Potential application as a coordiary process during matels removal.	
- Freeze Crystallization	Various organic constituents are separated from water by freezing.	Technically Unimplementable	Not proven for such large volumes and differences. Metals removed inclutences.	
- Hydrolysis	Contaminants are hydrolyzed and destroyed.	Technically Unimplementable	Not a proven lechnology.	

TABLE 4.3-2 (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION	Description	Screening Status	Comments		
- Vecuum/Vapor Extraction	Vecuum/Vapor Extraction Vecuum or vapors are used for extracting contaminants from water.		Concentration of various organics are too low to make this a visible technology.		
- Wei Air Oxidation	Thermal energy is used for destruction of contaminants.	Technically Unimplementable	Technology is too energy latensive. Not applicable for waters with insufficient organics and thermal values. Not efficient and applicable for diffute ground water/leacheste.		
 Thermal Treatment Technologies 	Heat energy is used to destroy organic and inorganic contaminants.	Technically Unimplementable			
 In-Situ Treatment Technologies 			Not proven on a large acele, nor with the suite of compounds present at the site. Certain compounds resistent to degredation.		
DISPOSAL TECHNOLOGIES					
• On-Site					
- Ground Water Reinjection	Inject treated ground weter back into aquifer using injection wells.	Technically Implementable	Ucchi la fluching out schiltonni contamination end la dilution. Pountiel plugging problema.		
- Infiltration Trenches	Recharge treated ground water/leachate into the capifer through gravel filled trenches.	Technically Implementeble	Less phagging problems then white relations wells. Needs permeetics colls. Underground willities may limit locations; verification of locations required.		
- Discharge to Surface Wners	Discharge to Elliott Creek after treatment.	Technically Implementable	Treatment standards are dictated by Class B surface water criteria. Permits needed.		

TABLE 4.3-2 (com.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

IDENTIFICATION AND SCREENING OF REMEDIAL TECHNOLOGIES GROUND WATER AND LEACHATE

RESPONSE ACTION	Description	Screening Status	Comments		
- Photolysis (UV)	UV energy is used to degrede organic contaminants.	Technically Unimplementable	Not applicable to the organic contaminants found at this site. Incomplete destruction of certain volatile organics.		
- Precipitation	Heavy metals are precipitated out using chemical addition.	Technically Implementable	Proven and applicable technology and in metals removal process.		
- Reverse Osmosis	Selective membranes utilize osmotic pressures for separation of organic and inorganic constituents.	Technically Implementable	Possible application as a polishing step depending on the treatment limits to be real. Only practical for achieving very low effluent dissolved collds.		
- RF/Microwave In-situ	Microwave energy is used for destruction of contaminants.	Technically Unimplementeble	Not epplicable for ground water/leachede.		
- Sedimentation	Settleable solids are separated from water in tanks.	Technically Implementable	Realized only as a technology in the matrix removal process. Concentration of various organics are too for to make this a viethe technology.		
- Solvent Extraction	Solvente are used for removal of contaminants from water.	Technically Unimplementable			
- Supercritical Fluid Entraction	Solvents are used under supercritical conditions for contaminant removal.	Technically Unimplementable	Concentration of vertical arganica are too for to make this a vieth's technology.		
- UV/Hydrogen Peroxide/ Ozone Reactors	Contaminants are oxidized and dechlorinated using oxidizers in the presence of UV light.	Technically Implementable	Innovative technology. Effective for record of come organic compounds.		
- Ultrafiltration	Contaminants are removed from water using ultrafiltration membranes or columns.	Technically Implementable	May be applicable as a pullahing cap depending on the level of treamant required.		

..

Long term effectiveness - This evaluation focuses on:

- 1) The performance of the remediation;
- 2) The magnitude of the remaining risk;
- 3) The adequacy of the controls implemented to manage waste left on the site; and
- 4) The long-term reliability of the controls left on site.

Short-term effectiveness - This evaluation focuses on:

- 1) The protection of the community during the remedial action;
- 2) The environmental impacts from the implementation of the remedial action;
- 3) The time until remedial action objectives are achieved; and
- 4) The protection of workers during remedial actions.

<u>Implementability</u> - The implementability criteria encompasses both the technical and institutional feasibility of implementing a technology process.

Screening of the process options using these criteria was conducted to select one process option that is representative of each remedial technology. More than one process option may be selected for a remedial technology if the processes are sufficiently different in their performance.

The screening process is presented in Tables 4.4-1 for the Landfill Solids/Soils and Sediment, and Table 4.4-2 for Ground Water and Leachate. The remedial technologies and process option that were evaluated in Section 4.3 as being technically feasible are presented. Each process options was evaluated against the four criteria and, when compared to the other process options within their technology type as presented on the tables, were given a relative High, Moderate, or Low rating based on their performance in meeting each criteria. It is important to note that the ratings are only indicative of each process option's performance relative to the other process options within each technology type that were retained in the screening tables.

The process option within each technology type receiving the highest performance ratings for the four evaluation criteria was retained for possible incorporation into one or more remedial action alternatives, and the other process options within the technology type are eliminated, unless noted otherwise in the tables. It should be noted that any of the process options contained in Tables 4.4-1 and 4.4-2 could be

4-22

1120-34 TXT 120-34 Ext

TABLE 4.3-2 (com.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

RESPONSE ACTION	Description	Screening Status	Commente
	Discharge to Aero Lake ofter treatment.	Technically Implementable	Treciment standards are dictated by Class D surface water criteria. Permits acaded.
• Off-Site	·		
- Ground Water Reinjection	Inject treated ground water back into aquifer using injection wells.	Technically Implementable	Useful la fluxhing out calditioned contamination and in dilution. Potentiel plugging problems.
- Infiltration Trenches	Recharge treated ground water/leachate into the cquifer through gravel filled trenches.	Technically Implementable	Less plugging problems then with reinfection wells. Needs parmetric soils. Underground utilities may limit locations.
- Discharge to Surface Waters	Discharge to off-site surface water.	Technically Implementable	Appropriate parmits maded. Transmit standards dictated by appropriate confece water orkeria.
- Discharge to Sewers	Discharge to Buffalo Sewer Authority sanitary sewer system.	Technically Implementable	Pretreziment criterio exizitizitad by the culturity must be met. Requires local permite.

TABLE •...=i (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

REMEDIAL ACTION PROCESS OPTIONS EVALUATION LANDFILL SOLIDS/SOIL AND SEDIMENTS

Response Action	Remedial Technology	Process Option	Achieve Remodial Action Objectives®	Long-Term Effectiveness*	Short-Term Effectivenes#	Implementation	Evelociton Result
Disposal	Oll-Sac	RCRA Sublitle "C"	High	High	Low	Low	Rotala for material requiring RCRA "C" disposal
		RCRA Sublide "D"	Moderate	Moderate	Moderate	Moderate	Retails for material execting RCRA "D" disposal requirements
	On-Sile	- .	Low	N/A ⁶	N/A*	N/A°	Retain

· Process options were evaluated relative to only other process options within the same remedial technology according to the following:

Ability to achieve remedial action objectives.

Long Term Effectiveness:

- 1) Performance of the remodulion
- 2) Magnitude of the remaining risk
- 3) Adequecy of controls
- 4) Reliability of controls

Short Term Effectiveness:

- 1) Protection of the community during remodial actions
- 2) Environmental impacts
- 3) Time until remodial objectives are achieved
- 4) Protection of workers during remedial actions

Implementability:

1) Technical Acapibility

2) Administrative feasibility

" N/A = Evaluative ranking not applicable either because only one option exists for the technology or because the options were not compareble. See text for details.

Note that all of the above process options may be incorporated into alternatives during detailed design.

TABLE 4.4-1 PFOHL BROTHERS LANDFILL PEASIBILITY STUDY

REMEDIAL ACTION PROCESS OPTIONS EVALUATION LANDFILL SOLIDS/SOIL AND SEDIMENTS

Response Action	Remedial Technology	Process Option	Achieve Remedial Action Objectives	Long-Term Effectiveness*	Short-Term Effectiveness	Implementation	Evaluation Result
No Action	Monitoring	Monitoring	Low	N/A ⁶	N/A ⁶	N/A ⁶	Rotain
Institutional Controla	Land Use Restrictions	Deed Restrictions	Low	Low	Moderate	Low	Rowln, boccase sefficiently different
. <i>1</i>		Zoning Change	Low	Moderate	Low	Modernia	Rotain, because sufficiently different
	· · · · · · · · · · · · · · · · · · ·	Pencing	Moderate	Moderate	Moderate	Moderate	Retain becauses sufficiently different
	Public Education	Written Warningo	Low	Low	Low	Nigh	Retain
Containment	Capping	Native Soil Cap	Low	Low	High	High -	Not retained
		Single Barrier	High	Moderate	High	Moderate	Retained
		Composide Barrier Cap	High	High	Low	Low	Not Retained
	Surface Controls	Grading	Low	Low	Moderate	Madarese	Not retained
		Revegetation	Low	Low	Low	High	Retain
Removal	Excevation		High	High	Moderate	Low	Retain for icoluted regions
Treatment	Stabilization/ Pixation		N/A ⁵	N/A ^b	N/A,	N/A*	Reject cince but spots being remotinical separately
	Thermal Treatment	Rotary Kiln	High	High	High	High	Reject since hat spats being resectisted separately
. · ·		Circulating Pluidized Bod	Moderate	Moderate	Moderate	Moderate	Not putitized
	· · ·	Mukiple Hearth	Moderate	Moderate	Moderate	Low	Not rotaleed
		Infrared Thermal Treatment	Modernie	Low	Low	Lorez	Not retained
•		Low Temperature Thermal Deporption	Low	Low	Low	Low	Not retained
	Physical/Chemical Treatment	Soil Washing	Low	M/AP	N/A ^L	N/A*	Reject since (ast epote being remediated coparately

TABLE - 4-2 (cont.) PFOHL BROTHERS LANDFILL FEASIBILITY STUDY

Ł

REMEDIAL ACTION PROCESS OPTIONS EVALUATION GROUND WATER AND LEACHATE

Response Action	Remodial Tochnology	Process Option	Achieve Remodial Action Objectives	Long-Term Effectiveness*	Short-Term Ellectivenzos	Implementation	Evaluation Republ
	Physics VChemical	Activated Carbon	High	High	High	High	Retain - for organica
	· .	Air Stripping/Steam Stripping	Moderate	Moderate	Moderate	Moderate	Not retained
		Congulation/Plooculation	Nigh	Moderate	High	High	Retain - for isorgenics
-		Electrochemical	Moderate	Moderate	Moderate	Moderate	Not retained
		Pitrotion	Moderate	Moderate	Moderate	Moderate	Retains - for incorporator (une effort congruintion/ flocombation)
		ion Exchange	Moderate	Moderate	Moderate	Low	Rocales - for inorganios
		Low Temperature Stripping	Moderate	Moderato	Moderate	Modornée	Not retained
		Procipitation	High	Moderate	Moderate	Modanca	Recain - for inorganics
		Reverse Osmosis	Moderate	Moderate	Moderate	Low	Not ratebrad
		Sedimentation	Moderate	Moderate	Moderate	High	Retain - for inorganios
		UV/Hydrogen Peroxide/ Ozone Reactors	Moderate	Moderate	Moderete	Modenta	Reizin - H polisizing neoded
		Utire Fibration	Moderate	Moderate	Modendo	Low	Not realed
Disposal	On-Size	Ground Water Reinjection	Low	Low	Moderets	Moderate	Net related
		Infiltration Trenches	Low	Modercas	Moderate	Moderas	Net related
		Discharge to Surface Waters	Moderato	Moderate	Moderate	High	Retain
	ON-Size	Ground Woter Reinfoction	Low	Low	Moderate	Moderesa	Not retined
•		Infilmation Trenches	Low	Moderese	Moderate	Moderate	Not realized

TABLE 4.4.2PFOHL BROTHERS LANDFILL FEASIBILITY STUDYREMEDIAL ACTION PROCESS OPTIONS EVALUATIONGROUND WATER AND LEACHATE

.

	Response Action	Remedial Technology	Process Option	Achieve Remodial Action Objectived	Long-Term Effocti ven:cos^o	Short-Term Effectiveneed	Implementation	Evolution Real
•	No Action	Monitoring	Monitoring	Low	N/A	N/A	NIA	Read
F	Institutional Controla	Water Uce Controlo	Well Permit Regulation	Low	Modernie	Low	Moder:30	Rotala Lances comicional different
•			Inspect/Seal Existing Wello	Low	Moderale	High	Modercia	Reizz excerces antidated Alfances
			Point of Uce Treatment	Moderate	Modernie	High	High	- Rainin basana a Milaian) Alfrana
		Public Education	Written Warnings	Low	Low	Low	иња	Real
	Containment	Hydraulic Controls	Droinfatte	High	Nigh	Moderate	Moderca	Real
•		•	Entroction Wello	Moderate	Moderate	High	Moderete	Not reichad
		Physical Controls	Slurry Wello	High	Modercia	High	Moderens	Retab
		``	Orona Contain	Moderate	Low	Moderica	Moderata	No. minimal
			Shoot Piling	Moderate	Low	Modernie	Modan_3	Not retained
			Bottom Scaling	Moderate	Low	Modante	Lora .	Not relation
			Capping	High	Moderate	Moderate	Moderate	Reinto baccero cofficiad different
	Collection	Hydraulic Collection	Passive Drainfields	High	High	Moderate	High	व्यक्षेस्त्र स्टब्स् व्यट्की स्वीक्यीका
			Extraction Wells	High	Moderess	High	Moderals	Reeda
	Treatment	Biological	Acrobic Placed Pilm	High	Low	Moderate	Modernia	Not Rotand
			Anscrebic Fixed Film	Moderate	Low	Low	Low	Not reintend
			Fleidized Bed Reactor	Moderate	Low	Low	Low	Kal national
			Roch Read Filters	Low	Moderete	Low	Low	Non readened
			Trickling Pitters	Low	Low	Moderate	Low	Not retained

included as part of the remedial action at the site for those technology types which are part of the selected alternative.

4.4.1 TECHNOLOGY/PROCESS OPTIONS FOR LANDFILL SOLIDS/SOILS AND SEDIMENTS

General descriptions of the technologies, appropriate comments and their technical implementability are provided in Table 4.3-1. This section provides a brief summary of these options and provides justification for eliminating certain technologies.

4.4.1.1 No Action

The "no action" response allows for conditions to remain status quo, that is, no remedial actions are taken at the site. This option typically includes long-term monitoring and is maintained as a potential response action throughout the screening process.

4.4.1.2 Institutional Control Actions

Institutional controls represent general response actions that are intended to limit exposure to contaminated landfill solids, soils, and sediments. These actions include land use controls such as deed restrictions and removal of physical structures, and public education such as written warnings. Many of these actions have already been taken at the site and are also technically implementable.

Limited response actions, such as fencing, constitute a second category of remedial technologies and may be used alone for general site restrictions or as part of other remedial measures to reduce risks to public exposure. The Pfohl Brothers Landfill is currently fenced and this technology is technically implementable for future remediation also.

4.4.1.3 Containment Actions

Containment actions are intended to reduce dispersion and leaching of a hazardous substance to otherwise uncontaminated areas. Containment actions include placement of a constructed cap over the surface of the landfill, which minimizes exposure and reduces infiltration, and surface controls which alter surface

4-28

1856 54 TXT 0/12/91 14

TABLE 5.7-2 (com).) PFOHL DROTHERS LANDPILL PEASIDILITY STUDY

REMEDIAL ACTION PROCESS OPTIONS EVALUATION GROUND WATER AND LEACHATE

Response Action	Remodial Technology	Process Option	Achieve Remodial Action Objectives	Long-Term Effectivenzoo	Short-Term Effectiveneed	brizianoniciton?	Brolesian Acarl
		Discharge to Surface Waters	Moderate	Modemie	Moderate	High	محجم ومحمد مر طحمار
· .	·	Discharge to Servers	High	High	High	ню	Rath

. Process options were evaluated relative to only other process options within the same remodial technology according to the following:

Ability to echieve remodial action objectives.

Long Term Effectiveness:

1) Performance of the remediation

2) Mognitude of the remaining risk

3) Adoquery of controls

4) Reliability of controls

Short Term Effectiveneos:

1) Protection of the community during remedial ections

2) Environmental impacto

3) Time until remodial objectives are achieved

4) Protection of workers during remedial actions

Implementability:

1) Technical feasibility

2) Administrative feasibility

• N/A = Evaluative ranking not applicable either because only one option exists for the technology or because the options ever not comparable. See that for estim.

Note that all of the above process options may be incorporated into alternatives during detailed design.

for peripheral portions of the landfill where the fill materials are less thick. It is assumed that removal of localized landfill solids and solls containing high contaminant concentrations ("hot spots") is being undertaken separately, and therefore, will not be addressed in this evaluation.

4.4.1.5 Treatment Actions

This set of technology types consists of the collection, by excavation, of landfill solids and soils, as well as sediments, and subsequent treatment either at a facility located on-site or off-site. The remedial action categories of onsite and offsite treatment include biological (aerobic and anaerobic), stabilization/fixation, physical/chemical treatment and thermal treatment.

Due to the large quantity and heterogenous nature of the material in the Pfohl Brothers Landfill, source removal would require extensive excavation, handling and processing. Offsite treatment would also require handling and transport of the contaminated material, thereby creating a risk of exposure to the workers and general public. This technology type is, however, technically feasible. Therefore, the option of excavating the landfill and treating the soils and solids on or off site will be retained for further evaluation. Treatment of localized "hot spots" is being undertaken separately, and will therefore not be addressed in this evaluation.

Biological treatment, commonly referred to as bioremediation, is a process which uses soil microorganisms to chemically degrade organic constituents. Biodegradation can occur in the presence of oxygen (aerobic) or in the absence of oxygen (anaerobic). Available data suggest that halogenated aliphatic compounds, non-halogenated organic compounds, and nitrated compounds are treated successfully using this technology. However, this technology type has no record of demonstrated effectiveness in treating PCBs, dioxins or furans. In addition, bioremediation processes are not suitable for the treatment of wastes with high levels of metals, such as those found at the PBL site and were, therefore, not retained for further evaluation.

Stabilization/fixation is a physical/chemical process in which a stabilizing material is added to a liquid or semi-liquid waste to produce a solid. In general, this technology has been successful in immobilizing volatile metals and non-volatile metals in full-scale systems. Significant reductions in mobility of the leachate have not been demonstrated for many organic compounds. Stabilization has been most

4-30

1855-34 TXT 9713-91 12 successfully demonstrated on PAHs, where 99 3 reduction in mobility has been achieved. This technology type is therefore considered technically implementable for metals and some organics if the site, and has been remined for further consideration.

Thermal treatment is a very effective technology type for treating organic and inorganic contaminants through the application of heat. With the exception of polar aromatic compounds (i.e., chlorinated phenols and methoxychlor) this process generally achieves a removal efficiency of greater than 98%. Thermal treatment does not destroy volatile metals, such as lead and mercury, or non-volatile metals, such as iron and chromium. Several process options such as roury kiln, multiple hearth, circulating fluidized bed, pyrolysis, infrared thermal treatment, supercritical water oxidation, vitrification and low temperature thermal desorption options are included in this category. Among these, pyrolysis and super critical water oxidation technologies are considered to be technically unimplementable for this site.

Physical and chemical treatment technologies, such as air stripping, soil washing and dechlorination represent another technology type which is potentially applicable to contaminants at the site. Air stripping is a process used to transfer volatile contaminants in water or soil to the gaseous phase. It is less effective in removing the heavier, less volatile compounds, such as PAHs, in the soils and is, therefore, not technically implementable on this site.

Soil washing as described in Table 4.3-1 is considered to be technically implementable at this site. Dechlorination is a destruction process which uses a chemical reaction to remove chlorine atoms in chlorinated molecules, thus converting more toxic compounds to less toxic, more soluble products. Transformation of these chemicals in the soil facilitates their removal and subsequent treatment. This process option is not expected to treat volatile and non-volatile metals. To date, no full-scale soil treatment programs have been undertaken using dechlorination, especially for mixed debris encountered at landfills. Because of the clayey nature of the soils at the PBL site and the type of contaminants present, this technology would not be technically implementable and is eliminated from further evaluation.

Insitu treatment is a subset of the treatment general response action which contains a large number of technology type/process options, so has been presented separately for discussion purposes. This includes physical/chemical or biological treatment technologies that are used to treat contaminants in soils, solids and sediments without having to excavate these materials. The category of physical/chemical treatment

4-31

1853 44 TXT (7139) 12 process options. The grout curtain, sheet piling, bottom sealing and extraction well process options of containment are more difficult to implement and less effective than other options, and so these have not been carried forward.

4.4.2.4 Collection Actions

The collection general response action for ground water and leachate consists of two hydraulic collection technology process options. These process options, passive drainfields and extraction wells, are similar to the process options described for the ground water/leachate hydraulic containment technology. Unlike the hydraulic containment process options, the hydraulic collection technology process options do not need to completely intercept the water that flows in the vicinity of the collection system. Hydraulic collection technologies are most appropriate for maintaining water levels below a specified elevision, such as in dewatering systems, or for collecting separate-phase contaminants that may be present at the top or bottom of an aquifer.

The drainfields are most effective in collecting floating contaminants and in uniformly decreasing the water table surface at the location of the drainfield. The groundwater extraction wells would be easier to install through the landfill solids, and are more effective than the drainfields in decreasing the water table surface over a larger geographical area. Both options are retained, as the drainfields could be used for near surface collection.

4.4.2.5 Treatment Actions

This general response action includes technology types that collect the ground water and subsequently treat it at an on-site facility. Technology type categories include biological (aerobic and anaerobic) and physical/chemical. On-site treatment involves construction of an on-site facility or use of a mobile treatment unit.

Biological treatment has been discussed in Section 4.4.1.5 Compounds which can be treated by this technology type are the halogenated aliphatic compounds, the Bohhalogenated organic compounds, and the nitrated compounds. PCBs, dioxins, and furans have proven recalcitrant to biotreatment. Thus, biological treatment technologies were not retained for further evaluation.

127 HUGH

422.1 No Action

The "so action" general response action allows for current conditions to remain I as remedial actions are taken in the site. This response action typically includes the technology type/procies option of longterm monitoring, and is maintained as a potential response action throughout the actualing process to provide a baseline condition upon which all of the other response actions are compared.

4.1.2.2 Institutional Control Actions

Institutional controls are implemented to control the exposure to contaminated or potentially contaminated ground water for drinking and domestic uses. Included are well permit regulation for new wells, inspection and sealing of existing wells in areas at risk of ground water contamination, point of use treatment and public education in the form of written warnings. All four institutional control options have been retained since they are sufficiently different and because each of these should be undertaken as part of this general response action.

4.4.2.3 <u>Containment Actions</u>

Containment general response actions are intended to reduce off-site migration of contaminated ground water. Technology types for containment of horizontal migration of contaminated ground water include hydraulic and physical containment. Hydraulic containment consists of the reversal of ground water gredients via pumping or passive drainfields. In aquifers with low hydraulic conductivity, drainfields are more effective than wells in intercepting groundwater. However, installation of drainfields through water materials may pose considerable difficulties and would require extreme health and safety precautions during installation. In addition, in order to completely intercept alluvial ground water leaving the site, the drainfields would need to be installed near the base of the alluvial equifer. The shallow depth to water creates additional construction difficulties. Physical containment consists of barriers such as a slurry wall, grout curtain, or sheet piling. The physical containment technologies considered for use at the site each extend from the ground surface to the base of the alluvial aquifer. Their continuous nature provides physical containment of contaminants migrating laterally in both the aqueous and gaseous phases. Lateral containment of gaseous phase contaminants, if present at the site, provides an extra degree of protection to offsite uncontaminated areas that does not exist with the hydraulic containment technology

4-33

18304 TTT 91391 H technology type, when evaluated against the four evaluation criteria: ability to meet remedial action objectives; abort-term effectiveness; long-term effectiveness; and implementability.

15534 TXT 91391 H

4-37

Physical/chemical treatment process options physically separate contaminants from the equeous water stream by precipitation, absorption, has exchange, filtration, or vepor extraction. In general, different process options are required for removal of organics and inorganics. Treatment options for removal of inorganics include congulation/flocculation followed by filtration, hon exchange, precipitation, and/or sedimentation. Physical/chemical process options for removal of organics include activated carbon followed by a polishing step using UV/Hydrogen Peroxide/Ozone reactors. These process options were respined for further analysis.

A variety of physical/chemical treatment process options were not realized. Air stripping and low temperature stripping do not effectively remove the less volatile compounds, such as PAHs. Electrochemical separation of metals from aqueous waste streams has not been tested on a full-scale basis. Reverse osmosis for removal of both organic and inorganic contaminants has potential problems with clogging of the membrane, large wastewater sidestreams and high maintenance requirements.

41.4.2.6 Disposal/Discharge Actions

Treated and untreated water that is collected at the site can be disposed of via reinjection or recharge to ground water, discharge to on- or off-site surface water bodies, or discharge to the manicipal Publicly Owned Treatment Works (POTW) sewer system. Recharge and reinjection process options are usually more effective when the source of contamination has been removed or isolated, the depth to ground water is great and the aquifer media receiving the recharge water has a relatively high hydraulic conductivity. Since removal of source materials will not be undertaken, the depth to water is so shallow, and the alluvial materials contain many low permeability deposits, reinjection or recharge to ground water is not practical, either on or off site. Due to the proximity of surface water bodies (Ellicott Creek, Aero Creek, and Aero Lake) and POTW lines to the site, the option of discharging to surface water bodies and/or to the Buffalo POTW system has been retained.

4.5 SUMMARY OF SCREENING PROCESS

Table 4.5-1 summarizes the technologies and process options that are retained for remedial action alternative development. These technologies/process options were evaluated as technically implementable in Section 4.3 and in Section 4.4 were rated the highest, relative to other process options within each

4-35

1253 WH TXT

Table 4.5-1 (costinued)

SUMMARY OF REPRESENTATIVE PROCESS OPTIONS RETAINED FOR ALTERNATIVES DEVELOPMENT

Compriment

Drainfield Hydraulic Coarrol Slurry Wall, and Capping Paysical Coarrol

Collection

Passive Drainfield Hydraulic Collection Extraction Well Hydraulic Collection

Treament

Activated Carbon Physical/Chemical Treatment for Organics Coagulation/Flocculation Physical/Chemical Treatment for Inorganics Filtration Physical/Chemical Treatment for Inorganics Ion Exchange Physical/Chemical Treatment for Inorganics Precipitation Physical/Chemical Treatment for Inorganics Sedimentation Physical/Chemical Treatment for Inorganics UV/Hydrogen Peroxide/Ozone Reactors Physical/Chemical Treatment for Polishing

A. A.

Disposal

On- and Off-Site Discharge to Surface Water Off-Site Discharge to POTW

- <u>1</u>

12577511.000 8/30/10 000

Teble 4.5-1

PFOHL BROTHERS LANDFILL FEASIBILITY STUDY SUMMARY OF REPRESENTATIVE PROCESS OPTIONS RETAINED FOR ALTERNATIVES DEVELOPMENT

Landfill Solids/Soll and Sediment

No Action

Monitoring

Institutional Monitoring Controls

Deed and Land Use Zoning Restrictions Fencing, Written Warnings

Containment

Single Barrier Cap Revegetation Surface Control, Grading

Removal

Excavation

Disposal

RCRA Subtitle D Off-Site Disposal RCRA Subtitle C Off-Site Disposal On-Site Disposal

Ground Water and Leachate

No Action

Monitoring

Institutional Control

Well Permit Regulation, Well Inspections/Sealing Point of Use Treatment

APPENDIX B

LIST OF TABLES

٠,

Table	
2-1	Sampling and Analysis Data Summary
2-2	Chemical Detected in All Media
2-3	Chemicals Detected in Soil Borings from Area A
2-4	Chemical Detected in Soil Borings in Area B
2-5	Chemicals Detected in Soil Borings in Area B
2-6	Chemicals Detected in Soil Borings in Area C
2-7	Chemicals Detected in Soil Borings Off site - Area C
2-8	Chemicals Detected in Ruptured Drums
2-9	Chemicals Detected in Exposed Drums
2-10	Chemicals Detected in Buried Drums, Waste and Stained Soil
2-11	Chemicals Detected in Test Pits in Area B
2-12	Chemicals Detected in Test Pits in Area C
2-13	Chemicals Detected in Landfill Soils
2-14	Chemicals Detected in Residential Surface Soils
2-15	Chemicals Detected in Aero Lake Path Surface Soils
2-16	Chemicals Detected in the Drainage Ditch Sediments and Aero Creek Sediments
2-17	Chemicals Detected in Aero Lake Sediments
2-18	Chemicals Detected in Ellicott Creek Sediments
2-19	Chemicals Detected in Drainage Ditch Surface Water
2-20	Chemicals Detected in Aero Lake Surface Waters
2-21	Chemicals Detected in Leachate Seeps
2-22	Chemicals Detected in Ellicott Creek Surface Waters
2-23	Chemicals Detected in the Bedrock Aquifer
2-24	Chemicals Detected in the Unconsolidated Aquifer
2-25a	PCBs/Pesticides and Mercury Detected ins Fish Collected from Ellicott Creek - Amherst
2-255	PCBs/Pesticides and Mercury Detected in Fish Collected from Ellicott Creek - Airport
2-25c	PCBs/Pesticides and Mercury Detected in Fish Collected from Ellicott Creek - Bowmansville
2-25d	PCBs/Pesticides and Mercury Detected in Fish Coll ected from Tributary 11B to Ellicott Creek
2-26	PCBs/Pesticides and Mercury Detected in Fish Collected from Aero Lake

APPENDIX

 \mathbf{B}

· · ·

TANE 2-1

• . •

ł

.

• • •

• .

. .

SAMPLING AND ANALISIS DATA SUMMARY PROFIL HEUTIGRS LANDPILL, CURPACIONAGA, NEW YORK

MEDIUM			PHASE I SAM 4/89 -		ĩA	SUPPLEMENTAL SAMPLING DATA 6/90 - 12/90						
DATA EVALUATED IN QUAN- TITATIVE RISK ASSESSMENT	VOCs	SV0Cs	Pests/POBs	Metals	Dioxins/Aurans	VOCs	SVOCs	Pests/PCBs	Metals	Diordins/Purans		
Surface Soils								•				
Area B								5	5	5 (2,3,7,8-TODD and TODF)		
Residential								14	14	14 (isomer-specific)		
On-site Truck Repair										1 (isomer-specific)		
Sediments			<u> </u>						<u></u>	<u> </u>		
Leachate Seep Sediments	19	19	19	19	18 (2,3,7,8-TCDD)							
Aero Lake Sediments	3	3	3	- 3	(2,3,7,8-TODD)							
Aero Creek Sediments					(2,5,7,67,00)	17	17	17	2	8 (isomer-specific) 17 (2,3,7,8-TCDD and TCDF)		
Drainage Ditch Sediments	12	12	11-17	11	10 (2,3,7,8-TCDD)					,		
Area C Harsh					(2,3,7,8-TOD)	5	5	5		5 (isomer-specific)		
Ellicott Creek Sediments	3	3		3	3 (2,3,7,8-TCLD)	5	5	5	5	4 (2,3,7,8-TOD and TODF)		

: 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

LIST OF TABLES (Cont'd)

Table	
2-27	PCBs/Pesticides and Mercury Detected in Fish Collected from New York States Lakes
2-28	PCBs/Pesticides and Mercury Detected in Fish collected from New York State Rivers
2-29	Physical-Chemical Properties of Chemicals Detected in Surface Samples
2-30	Comparison of FDA Action Levels to the Concentration Detected in Fish Collected in 1987 and 1990
2-31	Selected Chemicals of Concern
2.3-1	Compilation of Numerical SCGs for Soils, Sediments and Sediments
2.3-2	Observed Contaminant Ranges and Guideline Values for Soils and Sediment
2.3-3	Compilation of ARARs/SCGs for Groundwater, Leachate and Surface Waters
2.3-4	Groundwater and Leachate Seeps; Comparison of Observed
	Concentration Ranges with Class GA Standards

1

ند سلا 2-1 (Cont'd)

SAMPLING AND ANALISIS DATA SUMMARY PROFIL BROTTIPPS LANDPTLL, CLEPPRICUMAGA, NEW YORK

1

· 1

HEDIUM	PHASE I SAMPLING DATA 4/89 - 12/89						SUPPLEMENTAL SAMPLING DATA 6/90 - 12/90						
DATA EVALUATED IN QUALI- TATIVE RISK ASSESSMENT	VOCs	SINC ^E	Pests/PCBs	Hotale	Dioxins/Aurans	UDCa	cunce.	Pests/PCBs	Matala	Diordns/Furans			
	Vus	JVUS	TESIS/TUS	retais		vus	SVUS	rests/rus	netais	DIOCIEVITURES			
Surface Soil													
Aero Path								8	8	8			
Fish ^(a)										(isomer-specific)			
Ellicott Creek		·											
Amherst			13					_	•				
Boumansville			9					3		g) _			
Airport								6	1(H				
Tributary 11B								4	1(8	g) .			
Aero Lake			13 ·					5	1(H	g)			
Other				·					- <u> </u>				
Residential Sump						6	6	6	6				
Basement Floor			•					3	3				

TAPER 2-1 (Cont'd)

SAXFLINC AND ANALYSIS DATA SIRVARY FINIL BRITIPHS LANDFILL, OLERTOWAGA, NEW WORK

HEDIUM			171ASE I SAM 4/89 -		ΓA	SUPPLEMENTAL SAMPLING DATA 6/90 - 12/90					
data evaluated in support of risk assessment ^{(b}) WICs	SVOCs	Pests/POBs	Metals	Diordns/Furans	VOCs	SVOCs	Pests/POBs	Ketals	Diordns/Furans	
Subsurface Soils											
Area A	. 2	6	6	6							
Area B (on-site) (off-site)	· 21 6	21 6	21	23 6	•						
Area C (on-site) (off-site)	15 1	15 1	15 1	15 1						-	
Drums								*			
Ruptured Drums	6	6	6	6							
Exposed Drums	3	3	-	3			٠.			. ,	
Buried Drums	3	3	~	3							
Test Pits								······································			
Area B	6	5	5	5							
Area C	1	1	1	1							

(a) Phase I Fish Data collected 7/87-8/87.

(b) These data were not evaluated in qualitative or quantitative risk assessment as exposure to subsurface soils, drums and test pit materials is believed to be unlikely.

t

L. Stude

1

CREMICALS DETECTED IN ALL REDIA

PPORL BORTHERS LAROFILL, CHIRKTOWAGA, ESC. YORK

		501LS			SEDIMENT	s		SURPAC	E WATER		GROUND	WATER			
	LAND-	RESI-	AERO							LEA-	UNCON-			RESI-	BASE-
	FILL.	DENTIAL	PATH	AERO	ELLICOTT	DRAINAGE	AERO	ELLICOTT	DRAINAGE	CHATE	SOLIDATED	BEDROCK		DENTIAL	NUM
OIENICALS	5011.5	SOILS	SOILS	LAKE	CREEK	DITCHES	LAKE	CREEK	DITCHES	SEEPS	NOUTPER	NULTER	PISH	SURUP	PLOORS
VOLATILES															·
Acatone	x			x	R.	x			x						
Benzeno						X				R	x	x			
2-Butanone				x		·									
Chlorobenzene	x				X	x			X	x	n				
Chlorethane										x	X	X			
4-Chloro-J-methylphenol						x									
1,2-Dichlorobenzene	x					×			. X	x	π				
1,3-Dichlorobenzene	x									x	π				
1,4-Dichlorobenzene	x				•	x				x	X				
1,1-Dichloroothane										x	x	x			
1,1-Dichloroethene											x				
1,2-Trans-dichloroethane									X	x		x			
Ethylbenzene										x					
Methylene Chloride	x			x		x .									
1,1,1-Trichloroethano											x				
Trichloroethene	x				x					x				X	
Toluene											X	X			
Tylenes											X		,		
SEMIVOLATIES															
Benzoic Acid	x									X	n	H			
2-Chlorophonol											I				
2,4-Dimothylphonol									X	X	π				
2-Methylphenol											·π				
4-Hethylphenol				,							π				
Phonol						x			X	x	п	x			
Dibenzoluran	x					π				X	x				

TABLE 2-2 (Cont'd)

.

• • • •

CIERTICALS DETECTED ID ALL FEBIA PYCEIL SCETTERIS LAND? ILL, CIERDOWAGA, CEN POER

.

ï

•		SOILS			SEDIMENT	5		SURPA	TE MATER		GROUNT	MATER			
	LAND-	RESI-	AERO							LEA-	UTCOTA-		•	resi-	DASE-
	FILL .	DENTIAL	PATH	AERO	ELLICOTT	DRAINAGE	AEPO	ELLICOTT	DRAINAGE	CHATE	SOLIDATED	BEILZOCK	•	DIRYIAL	PERT
CHEMICALS	5011.5	\$011.5	SOILS	LARE	CREEK	DITCHES	LARE	CREEK	DITCHES	SEEPS	AQUIPER	AQUIPER	PISH	sure	PLOORS
								•							
Bis-(2-Ethylhexyl)-						•									
phthalato	n			x	X	π	x	r		X	X	I			
Dicothyl phtheleto	•					я					•				
Di-n-octyl phthalato						μ			X	. X	¥				
Di-n-butyl phthalato	X					X		X		•	ц				
Diethyl phthalato	д				X	X									
Butyl benzyl phthalato	ĸ					X					n				
N-Nitrosodiphonylamine						x				n					
PANs (carcinogonic)	x				X	u				X					
PAHs (non-carcinogonic)	X				X	R				n					
PESTICIDES/PCBa									,						
Aldrin	Д									n		X	•		
Bota-BIIC	n					X									
Chlordano (n)	д					x							ц		
Dloldrin	π									X			u		
000	x									X			n		
DOT						Ħ							n		
DDE													n		
Endrin										I			ц		
Endosullon II										Ħ	n				
Noptachier openide													n	,	
Honachlorobansono													п		
Mitod			ı										ц		
Trananonachlor											•		Π		
Aroclor-1016													n		
Aroclor-1221	X												R		
Aroclor-1232											I				
Aroclor-1248	x														
Aroclor-1254	X.												n		
Aroclor-1242	-					I									
Aroclor-1260						. ~							X		
				·						•			-		

,

TABLE 2-2 (Cont'd)

CHERKICALS DETECTED IN ALL HEDLA

PPOEL BORTHERS LARDFILL, CHERRYTHINGA, ESER FORE

... 32.

Ъ.

1

. 50

.

		sous			SEDIMENT	5		SURFAC	E WATER		GROUND	MATER			
	LAND-	RESI-	AERO							LEA-	UNCON-		•	RESI-	BASE-
	nu	DENTIAL	PATH	AERO	ELLICOTT	DRAINAGE	AE.RO	ELLICOTT	DRAINAGE	CHATE	SOLIDATED	BEDROCK	•	DENTIAL	PEDNT
CHEMICALS	5011.5	SOILS	SOILS	LAKE	CREEK	DITCHES	LAKE	CRIEX	DITCHES	SEEPS	AQUIPER	NOUIPER	FISH	SUPOP	71.00R
NORGANICS										•					
Jusinus	X			Ħ	x	x	x	и	X	X	x	Ħ		¥	X
unt leony					X	x					x	Ľ			
rsonia	X	X	X	X	x	x			n	X	X ·	R			
arium	×	. X	x	X	x	X	×	x	π	π	X	n		X	X
Beryllium	x			R	X	X			x	X	X				
Cadmi un	x	x	x	X	x	X	x	X	π	X	X	ĸ			
Celcium	x			x	X	X	X	X	x	x	A	R		X '	H
Chronius	r	X	x	· X	x	X				X	X	π			
Cobalt	x			×	×	X			I	x	x	x			
Copper	X	X	x	X	x	x	x	x	R	X	ц	X		R	I
Iron	X			X	x	X	x		Ħ	X	x	Ξ.		X	X
Lasd	π	x	x	X	x	x	x	X	x	x	x	. X			I
Magnesium	X			x	x	x	x	X	R	ж	X	R		X .	X
Manganoso	X	×	x	x	x	x	x	X	X	X	п	n		X	X
Hercury	X	X	х		x	X	x			π	X	и	X		
Nickal	x			X	x	x			X	X	X	u		X	X
Potassium	X			X		X	X	X	X	R				x	R
Selenium	X	x				· X				X	T	X			
Silver	x									X	x	A	I		
Sodium	x			I	X	x	X	n	R	X	I	H		Д	. ж
Thallium	X														
Vanadium	x			n	x	X			X .	x	x	I			I
Linc	X	x	x	x	x	X	x	π	π	x	X	X		R	X
Cyanide	x					x				n	X			X	X
Dioxins/Eurana	x	X	X		X	x									

· .

CHEMICALS DETECTED IN SOIL BORINGS FROM AREA A PFOHL BROTHERS LANDFILL, CHEEKTOHAGA, NEW YORK

CHEMICALS	FREQUENCY OF DETECTION (a)	BANCE OF DETECTED CONCENTRATIONS (b)
VOLATILES		
Acatone Hathylane Chloride	2/2 2/2	5 - 18 25 - 35
SEMIVOLATILES		
Bis(2-ethylhexyl)- phthalate Acenaphthane Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	1/5 1/6 2/6 2/6 1/6 2/6 2/6 1/6 3/6 1/6 3/6 3/6	3,0087572 - 32099 - 940170 - 61040068 - 23092 - 390150 - 60031160 - 91065 - 270120230 - 350110 - 940
PESTICIDES/PCBs	0/6	·
INDRGANICS Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanaduum Zinc Cyanide	6/6 2/66 6/66 20/66 6/66 6/66 6/66 6/66	$\begin{array}{r} 4,620 \ - \ 11,600 \\ 13.4 \ - \ 20.3 \\ 2.2 \ - \ 3.8 \\ 35.4 \ - \ 93.5 \\ 0.39 \ - \ 0.44 \\ \hline \\ 43,200 \ - \ 121,000 \\ 6.5 \ - \ 16.0 \\ 3.1 \ - \ 8.0 \\ 13.9 \ - \ 21.3 \\ 7,920 \ - \ 18,700 \\ 10 \ - \ 49.1 \\ 13,400 \ - \ 60,000 \\ 339 \ - \ 667 \\ 0.31 \ - \ 0.71 \\ 4.5 \ - \ 17.4 \\ 769 \ - \ 2,190 \\ \hline \\ \hline \\ 161 \ - \ 263 \\ \hline \\ 10.6 \ - \ 21.6 \\ 50.1 \ - \ 97.2 \end{array}$

a. The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include the data that were rejected).

b. Organics are in ug/kg and inorganics and in mg/kg.

į

- :

••••

CHENICALS	FREQUENCY OF DETECTION (a)	RANGE OF DETECTED CONCENTRATIONS (b)
VOLATILES		
Acetone Benzene Chlorobenzene Chloroethane 1,1-Dichloroethane 1,2-Dichlorethene Ethylbenzene Methylene Chloride Tetrachloroethene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Xylenes	12/21 2/21 4/21 1/21 2/21 1/21 1/21 1/21	21 - 950 $52 - 3,700$ $18 - 2,200$ 75 $110 - 2,100,000$ $910,000$ $4,600$ $590 - 89,000$ $12 - 690$ $31,000$ $12 - 15,000$ $620 - 83,000,000$ $28,000$ $31 - 30,000$ $7 - 350,000$
SEHIVOLATILES		
Benzoic Acid 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Phenol Dibenzofuran	1/18 2/18 1/18 1/18 2/18 5/21	1,800 65,000 - 110,000 4,400 36,000 1,800 - 150,000 150 - 1,900,000
bis(2-Ethylhexyl)- phthalate Butyl benzyl phthalate Diethylphthalate Acenaphthene Antracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(a)pyrene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene 2-Methylnaphthalene	7/21 4/7 1/21 1/7 3/7 4/21 4/21 1/21 2/21 3/21 8/21 1/21 8/21 8/21 8/21 8/21 8/21 1/21	120 - 100,000 140 - 31,000 150 210 150 - 1,900 550 - 24,000 480 - 32,000 300 510 - 21,000 460 - 25,000 140 - 67,000 160 390 340 - 7,500 5 - 32,000 150 - 49,000 9,900

CHEMICALS DETECTED IN SOIL BORINGS IN AREA B PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

PESTICIDES/PCBs

Aldrin

TABLE 2-4 (continued)

CHEMICALS	FREQUENCY OF DETECTION (a)	RANGE OF DETECTED CONCENTRATIONS (b)
g-Chlordane DDE DDT Dieldrin Endrin Aroclor 1242 INORGANICS	1/21 1/21 3/20 1/21 1/20 1/21	4.8 560 30 - 320 210 220 3,700
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	22/23 0/23 22/22 23/23 14/23 3/23 21/21 23/23	1,700 - 16,500 $-$ $0.77 - 29.7$ $12.6 - 5,080$ $0.06 - 1.4$ $1.5 - 5.5$ $3,190 - 74,700$ $4.7 - 82.8$ $0.99 - 44.6$ $11.5 - 573$ $5,400 - 104,000$ $10 - 633$ $1,070 - 27,300$ $146 - 728$ $0.14 - 1.3$ $5.6 - 193$ $189 - 3,560$ $0.62 - 2.0$ $1.7 - 11.2$ $174 - 837$ $0.24 - 0.34$ $6.1 - 31.0$ $63.2 - 1,000$ $0.74 - 1.3$

CHEMICALS DETECTED IN SOIL BORINGS IN AREA B PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

a. The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

b. Organics are in ug/kg and inorganics are in mg/kg.

File: PRASBB

5

)

CHENICALS	FREQUENCY OF DETECTION (A)	RANGE OF DETECTED CONCENTRATIONS (b)
Volatiles		
Acetone 2-Butanone Methylene Chloride 4-Methyl-2-Pentanone Toluene Semivolatiles	5/6 1/6 4/6 1/6 2/6	55 - 220 25 $6 - 19$ 4 $1 - 3$
Bis(2-ethylhexyl)- phthalate	5/6	140 - 1,500
Inorganics		
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	6/6 4/6 6/6 6/6 0/6 6/6 6/6 6/6 6/6 6/6 6/6 6	4240 - 13100 $4.6 - 8.6$ $1.6 - 4.9$ $38.8 - 94.7$ $0.17 - 0.59$ $-$ $65400 - 78300$ $4.5 - 16.3$ $4.3 - 11.1$ $13.9 - 17.6$ $7470 - 21400$ $11.9 - 20.8$ $23400 - 31900$ $323 - 520$ $0.17 - 0.22$ $10.3 - 22.3$ $801 - 3010$ $-$ $-$ $155 - 239$ $-$ $11.2 - 25.2$ $64 - 92.6$

. 1

CHEMICALS DETECTED IN SOIL BORINGS OFFSITE - AREA B PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

a. The frequency of detection is the number of times a chemical was detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

b. Organics are in ug/kg and inorganics and in mg/kg.

File: PRASBBOS (10-14-90)

TABLE 2-5

CHEMICALS DETECTED IN SOIL BORINGS IN AREA C PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

CREHICALS	FREQUENCY RANGE OF DETECT OF CONCENTRATION DETECTION (b) (a)	
VOLATILES		
Acetone Carbon Disulfide Methylene Chloride Toluene 1',1,1-Trichloroethane	11/15 1/15 11/13 1/15 2/15	$\begin{array}{r} 39 - 930 \\ 420 \\ 7 - 200 \\ 6 - 7 \end{array}$
SEMIVOLATILES		
Phenol Dibenzofuran Bis(2-ethylhexyl)-	3/15 2/15	310 - 3,300 140 - 170
phthalate Benzo(a)anthracene Benzo(b)fluoranthene Benzo(a)pyrene Chrysene Fluoranthene	8/15 1/15 1/15 1/15 1/15 2/15	$ \begin{array}{r} 61 - 4,700 \\ 280 \\ 240 \\ 170 \\ 210 \\ 290 - 340 \\ \end{array} $
Indeno(1,2,3-cd)pyrene Pyrene	1/15 2/15	95 310 - 340
PESTICDES/PCBs	0/15	**
INORGANICS		
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	15/15 0/15 15/15 12/15 12/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15 15/15	2,570 - 14,900 $-1.7 - 15.8$ $12.6 - 2.240$ $0.23 - 1.4$ 5.9 $7,150 - 71,400$ $4.2 - 21.6$ $2.3 - 13.5$ $9.8 - 337$ $6,250 - 33,100$ $11.7 - 882$ $1,300 - 28,500$ $202 - 508 - 0.11 - 1.2$ $7.4 - 34.8$ $563 - 3,130$ $0.59 - 2.0$ 2.40 $143 - 345$ 0.45 $8 - 36.6$ $61.1 - 1,150$

a. The frequency of detection is the number of times the chemical was detected over then number of smaples analyzed for that parameter (this does not include data that were rejected).

b. Organics are in ug/kg and inorganics and in mg/kg.

File: PRASBC (10-12-90)

:

TAB	LE	2-	7

CHEMICALS	CHEMICALS FREQUENCY OF DETECTION (a)	
VOLATILES		
Methylene Chloride	1/1	7
SEHIVOLATILES		·
Bis(2-ethylhexyl)- phthalate Fluoranthene	1/1 1/1	150 190
PESTICIDES/PCBs		
DDT	1/1	35
INORGANICS		
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	1/1 0/1 1/1 1/1 0/1 1/1 1/1 1/1 1/1 1/1	4,200

CHEMICALS DETECTED IN SOIL BORINGS OFFSITE - AREA C PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

a. The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).

b. Organics are in ug/kg and inorganics and in mg/kg.

File: PRASCBOS (10-14-90)

-

:

CHEMICALS DETECTED IN RUPTURED DRUMS PFOHL BROTHERS LANDFILL, CHEEKTOWAGA. NEW YORK

CHEHICALS	FREQUENCY OF DETECTION (a)	BANGE OF DETECTED CONCENTRATIONS (b)
VOLATILES		
Acetone Bromodichloromethane 2-Butanone Chlorobenzene Chloroform 1,2-Dichlorobenzene 1,4-Dichlorobenzene Hethylene Chloride Toluene Xylenes SEHIVOLATILES	2/6 1/6 4/6 3/6 1/6 2/6 2/6 1/6 4/6 2/6	11,000 - 79,600 1350 $159,000 - 169,000$ $920 - 6940$ 1160 $12,100 - 16,300$ $12,100 - 16,300$ 2570 $1,450 - 9,300$ $18,000 - 25,000$
Benzoic Acid 2-Methylphenol 4-Methylphenol Phenol Dibenzofuran	1/6 3/6 2/6 5/6 4/6	143,000 498,000 - 1,100,000 '69,200 - 165,000 22,000 - 27,000,000 56,000 - 97,000
Bis(2-Ethylbexyl)- phthalate Butyl benzyl phthalate Di-n-butyl phthalate Di-n-betyl phthalate N-Nitrosodiphenylamine Anthracene Fluoranthene Naphthalene Phenanthrene Pyrene	1/6 1/6 3/6 1/6 1/6 4/6 1/6 1/6 6/6 1/6	$\begin{array}{r} 69,200\\ 63,800\\ 3310 - 35,000\\ 18,600\\ 143,000\\ 8,100 - 25,400\\ 240 - 3,440\\ 1,300\\ 85 - 27,500\\ 3710\end{array}$
PESTICIDES/PCBs		
slpha-BHC	1/6	4,700
DIOXINS/FURANS	(@)	(e)
INORGANICS		
Aluminum (c) Antimony Arsenic Barium Beryllium Cadmium Calcium (c) Chromium Cobalt (d) Copper Iron	5/5 1/6 5/6 1/6 2/6 5/5 6/6 2/2 2/6 6/6 4/6	70 - 2.010 39.2 $0.56 - 15.3$ $14 - 2.820$ 0.17 $2.5 - 3.1$ $110 - 2.230$ $13 - 39.3$ $15.1 - 22.7$ $171 - 343$ $3.300 - 56.500$ $11 - 3.180$

•

ĺ

. . !

TABLE 2-8 (continued)

CHEMICALS	FREQUENCY OF DETECTION (a)	RANGE OF DETECTED CONCENTRATIONS (b)
Magnesium	4/6	48 - 541
Manganese	6/6	16 - 243
Mercury (d)	2/2	0.53 - 0.65
Nickel	3/6	4.2 - 59.8
Potassium (d)	2/2	205 - 402
Selenium (d)	1/2	0.72
Silver	4/6	1.0 - 2.1
Sodium	6/6	30 - 14,900
Vanadium	2/2	2.5 - 4.3
Zinc	2/6	30 - 2,030
Cyanide	2/6	1.2 - 2.8

CHEMICALS DETECTED IN RUPTURED DRUMS PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

a. The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

b. Organics are in ug/kg and inorganics and in mg/kg.

c. This compound was rejected in one sample.

d. Based on the data provided, it is assumed that four of these samples were not analyzed for these inorganics.

e. See Draft Remedial Investigation Report for dioxin/furan data.

CHEMICALS DETECTED IN THE EXPOSED DRUMS PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

CHEMICALS	FREQUENCY OF DETECTION (a)	BANGE OF DETECTED CONCENTRATIONS (b)
VOLATILES		
Acetone Methylene Chloride Xylenes	1/3 1/2 1/3	42 0,0 00 12,000 6200
SEHIVOLATILES		
Phanol Dibenzofuran Diethylphthalate Acenaphthene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)parylene Benzo(a)pyrane Cyrsene Dibenz(a,h)anthracene Fluoranthene Fluoranthene Fluorane Indeno(1,2,3-cd)pyrene Phananthrene Pyrene	1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 1/3 2/3 2/3 2/3	$\begin{array}{r} 2,600,000\\ 1,800,000\\ 129\\ 130\\ 590 - 84,000\\ 1,300 - 140,000\\ 2,100 - 190,000\\ 410\\ 1,400 - 120,000\\ 1,400 - 170,000\\ 200\\ 3,400 - 390,000\\ 130 - 140,000\\ 570\\ 1,600 - 350,000\\ 2,100 - 270,000\end{array}$
DIOXINS/FURANS	(c)	(c)
INORGANICS		
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selonium Silver Sodium Vanadium Zinc Cyanide	3/3 0/3 2/3 0/3 1/3 3/3 2/3 3/3 2/3 2/3 2/3 2/3 1/3 2/3 1/3 2/3 1/3 2/3 1/3 3/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2	9 - 2,120 $0.65 - 1.2$ $1.1 - 51.9$ 1.9 $42.4 - 12,000$ $1.7 - 1.4.8$ $1.7 - 1.8$ $2.6 - 131$ $162 - 22.900$ $3 - 79$ $303 - 1,020$ $51.4 - 134$ 0.77 $11.1 - 14.4$ $97.5 - 424$ 0.52 1.9 $47.6 - 2,970$ -2.7 $7.1 - 174$

a. The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

b. Organics are in ug/kg and inorganics are in mg/kg.

c. See Draft Remedial Investigation Report for dioxin/furan data.

CHEMICALS	FREQUENCY OF DETECTION (a)	RANGE OF DETECTED CONCENTRATIONS (b)
VOLATILES		
Acetone Benzene 2-Butanone Carbon disulfide Chlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichlorethene Ethylbenzene Methylene chloride Methyl-2-pentanone Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Xylene	11/38 1/38 3/38 1/38 6/38 3/38 1/38 1/38 1/38 1/38 1/38 1/38 1	150 - 11,000 13 $26 - 360$ 63 $30 - 16,000$ $190 - 310$ 300 290 $5 - 41,000$ $38 - 310,000$ $19 - 140,000$ $240,000$ $47 - 22,000$ $8 - 4,200,000$ $7 - 4900$ 150 $25 - 1,300,000$
SEMIVOLATILES Benzyl alcohol 2,4-Dimethylphenol 2-Methylphenol 4-Methylphenol Pentachlorophenol Phenol Dibenzofuran Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Dien-butyl phthalate Diethylphthalate N-Nitrosodiphenylamine 2-Methylnaphthalene Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)fluoranthene Benzo(a)fluoranthene Benzo(a)pyrene Chrysene Fluoranthene Fluorene Indeno(1,2,3-cd)pynene Naphthalene Phenanthrene Pyrene	1/38 4/38 2/38 4/38 2/38 16/38 13/38 12/38 1/38 1/38 1/38 1/38 1/38 2/38 2/38 2/38 2/38 4/38 4/38 4/38 4/38 4/38 4/38 12/38 3/38 4/38	1000 $160 - 25,000$ $190 - 120,000$ $680 - 68,000$ $560 - 29,000$ $8,500 - 4,000,000$ $18 - 49,000,000$ $4 - 28,000$ $49,000$ $170,000$ $6,500$ $5,900$ $12 - 230,000$ $2,500 - 36,000$ $4,000 - 17,000$ $1,900 - 11,000$ $3,000 - 12,000$ $750 - 4,500$ $1,700 - 7,100$ $1,700 - 7,100$ $1,700 - 10,000$ $2,000 - 39,000$ $180 - 29,000$ $820 - 5,200$ $3 - 150,000$ $150 - 86,000$ $2,000 - 11,000$

CHEMICALS DETECTED IN BURIED DRUNS, WASTE AND STAINED SOIL PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

:

:

i

CHEMICALS	FREQUENCY OF DETECTION (a)	RANGE OF DETECTED CONCENTRATIONS (b)
VOLATILES .		
Acetone 2-Butanone Chlorobenzene 1,4-Dichlorobenzene Ethylbenzene Methylene Chloride Toluene Xylenes (total)	1/6 1/5 1/6 1/5 1/6 2/6 3/6 4/6	$ \begin{array}{r} 640 \\ 150 \\ 52 \\ 3,200 \\ 4,200 \\ 40 - 46 \\ 9 - 2,100 \\ 6,700 - 17,000 \end{array} $
SEMIVOLATILES		
2,4-Dimethylphenol 2-Hethylphenol Phenol Dibenzofuran 4-Chloroaniline Bis(2-ethylhexyl) phthalate Acenaphthene Benzo(a)anthracene Benzo(a)fluoranthene Benzo(a)pyrene Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene Pyrene 2-Methylnaphthalene PESTICIDES/PCBs	2/5 1/5 3/5 1/5 2/5 1/5 2/5 1/5 2/5 1/5 1/5 2/5 1/5 2/5 2/5 2/5 2/5 2/5 2/5	330 - 7,300 $14,000$ $12,000$ $800 - 18,000$ $1,800$ $2,700 - 3,400$ 910 $1,300 - 1,400$ $890 - 1,500$ 410 $1,100$ $2,700 - 6,800$ $1,400$ $1,600 - 5,200$ $2,100 - 9,400$ $1,900 - 4,200$ $1,600 - 4,000$
Aldrin gamma-BHC DDD DDT Dieldrin Endrin Heptachlor	1/5 1/5 1/5 1/5 1/5 1/5 1/5	89 38 240 190 180 230 47
INORGANICS		
Aluminum Antimony Arsenic Barium Beryllium Cadmium	5/5 0/5 4/5 5/5 2/5 2/5	13.1 - 5,720

i

.)

(continued)

CHEMICALS DETECTED IN BURIED DRUMS, HASTE AND STAINED SOIL PFORL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

CHEMICALS	FREQUENCY OF DETECTION	BANCE OF DETECTED CONCENTRATIONS (b)
	(a)	
DIOXINS/FURANS	(c)	(c)
PESTICIDES/PCBs		
Aldrin alpha-BHC gamma-BHC Dieldrin Endrin Hoptachlor Heptachlor epoxide Hethoxychlor Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	1/38 2/38 3/38 1/38 1/38 1/38 1/38 1/38 2/38 1/38 2/38 1/38	$\begin{array}{r} 4,700\\ 680 - 430,000\\ 1,700 - 69,000\\ 1,700\\ 710\\ 1,900\\ 1,200\\ 14,000\\ 7,500 - 13,000\\ 9,600,000\\ 8,700 - 420,000\\ 31,000\end{array}$
INORGANICS Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Hercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	33/37 0/37 25/37 37/37 13/37 25/37 31/37 36/37 35/37 37/37 36/37 35/37 37/37 36/37 13/37 27/37 20/37 8/37 12/37 37/37 3/37 20/37 37/37 10/37	$\begin{array}{r} 43.3-108,000\\ \hline 0.72-575\\ 0.53-8,860\\ 0.28-2.2\\ 0.99-39.4\\ 48.5-216,000\\ 1.0-18,100\\ 2.4-378\\ 1.9-29,400\\ 155-465,000\\ 2.8-36,000\\ 11.3-28,900\\ 6.1-445\\ 0.14-4.4\\ 4.1-445\\ 75.1-33,000\\ 0.5-39.2\\ 0.92-11.9\\ 29.7-19,500\\ 0.33-1.9\\ 1.7-106\\ 13.1-35,300\\ 0.53-33.4 \end{array}$

a. The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

b. Organics are in ug/kg and inorganics and in mg/kg.

c. See Draft Remedial Investigation Report for dioxin/furan data.

TABLE 2-11 (continued)

CHEMICALS	FREQUENCY OF DETECTION (a)	RANGE OF DETECTED CONCENTRATIONS (b)
Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	1/1 5/5 2/5 5/5 5/5 4/5 5/5 1/5 2/5 2/5 2/5 1/5 1/5 5/5 0/5 1/5 5/5 2/4	396 $1.6 - 63.9$ $6.6 - 8.9$ $2.3 - 222$ $2,970 - 102,000$ $3.5 - 2,340$ $13.9 - 2,170$ $3.9 - 618$ 0.55 $21.2 - 42.8$ $658 - 918$ 120 4.4 $22.1 - 493$ $-$ 10.4 $13.6 - 5,850$ $3.1 - 5.9$

CHEMICALS DETECTED IN TEST PITS IN AREA B PFORL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

a. The frequency of detection is the number of times the chemica was detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

b. Organics are in ug/kg and inorganics are in mg/kg.

File: TPH6-20 (11-01-90)

CHEMICALS DETECTED IN TEST PITS IN AREA C PFOHL BROTHERS LANDFILL, CHEEKTOWAGA, NEW YORK

ł

.....

Ĵ.

د.

• •

CHEMICALS	PREQUENCY OF DETECTION (a)	RANGE OF DETECTED CONCENTRATIONS (b)
VOLATILES		
Acetone	1/1	30
SEMIVOLATILES	0/1	-
PESTICIDES/PCBs		
delta-BHC Methoxychlor	1/1 1/1	1.8 4.0
INORGANICS		
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	1/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1	7,250 15.3 301 0.98 3.0 $10,300$ 25.9 7.3 124 $18,400$ 485 $2,270$ 223 1.10 22.3 680 2.00 0.68 260 $-$ 26.2 422 1.20

a. The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).

b. Organic concentrations are in ug/kg and inorganics are in mg/kg.
 File: TPH6-21 (11-01-90)

TOOLO C-L

CEREFICALS DEDECTED IN LANDFILL SOILS^(G) PPOEL PROTEERS LANDFILL, CEREFICIPACA, NEW YORK

		Range of Sample		
Chemical	Frequency of Detection (b)	Quantitation Limits (c)	Range of Datacted Concentrations (c)	Background Levels (c)(d)
			(0)	
VOLATILES			·	
Acetone	7/24	14	15-770	11
Chlorobenzene	2/24	7-41	10-23	ND
Methylene Chloride	12/24	11-32	9-150	4
Trichloroethylene	2/24	7-41	8-9	NA
SEHIVOLATILES				
Benzoic Acid	1/24	2,600-55,000	740	NA
bis(2-Ethylhexyl)phthalate	5/24	530-11,000	1,500-3,000	NA
Butylbenzyl phthalate	2/24	530-11,000	38-43	NA
Dibenzofuran	3/24	530-11,000	430-13,000	ND
Diethyl phthalate	4/24	530-11,000	18-990	23
1,3-Dichlorobenzene	1/24	530-11,000	14	NA
1,4-Dichlorobenzene	1/24	530-11,000	19	NA
1,2-Dichlorobenzene	1/24	530-11,000	33	NA
Di-n-butyl phthalate	2/24	530-11,000	75-250	40
Acenapthene	2/24	530-11,000	17-720	ND
Anthracene	7/24	530-11,000	11-2,500	ND
Benzo(a)anthracene	19/24	540-8,500	26-6,000	ND
Benzo(b)fluoranthene	15/24	530-7,900	20-9,200	24
Benzo(a)pyrene	10/24	530-8,500	21-6,000	34
Benzo(g,h,i)perylene	7/24	530-11,000	50-2,500	19
Chrysene	20/24	540-7,900	16-7,500	69
Dibenzo(a,h)anthracene	2/24	530-11,000	190-480	NA
Fluoranthene	23/24	7,900	35-13,000	66
fluorene	2/24	530-11,000	23-880	NA
Indeno(1,2,3-cd)pyrene	4/24	530-11,000	30-2,000	ND
2-Hethylnaphthalene	1/24	530-11,000	120	· NA
Vaphthalene	2/24	530-11,000	44-620	
Phènan threne	12/24	540-11,000	17-10,000	NA ND
Yrene	23/24	7,900	11-15,000	57
PESTICIDES/PCBs				
ldrin	1/23	11-270	32	ND
peta-BHC	. 2/23	11-270	22-75	ND
anna-Chlordane	: 5/19	110-2,100	6.3-92	ND
	1/22	21-530	14	NĎ
Dieldrin	1/23	21-530	16	ND
roclor-1221	1/28	110-2,700	560	ND
Aroclor-1248	5/28	110-2,700	290-7.700	ND
roclor-1254	6/28	210-5,300	270-19,000	ND

PABLE 2-13 (Cont'a)

CERTICALS DEFINITION IN LANDFILL SOILS (G) PFOEL PROTEERS LANDFILL, CERTICOLAGA, NEW YORK

		Range of Sample		
Chemical	Frequency of Detection	Quantitation Limits	Range of Detected Concentrations	Background
·····	(b)	(c)	(c)	(c)(d)
TCDF AND TCDD ^(e) (GENERA	L LANDFILL)			
HxCDFs (total)	2/5	0.0059-0.015	0.11-0.5	0.011
HpCDFs (total)	3/5	0.017-0.022	0.02-0.7	0.015
1,2,3,4,6,7,8-BpCDF	3/5	0.017-0.022	0.02-0.29	0.0059
0CDF	2/5	0.034-0.079	0.32-1	0.014
PeCDDs (total)	1/5	0.011-0.014	0.13	0.0057
ExCDDs (total)	2/5	0.011-0.024	0.23-0.42	0.0037
HCDDS (total)	4/5	0.011-0.024	•	
	4/5		0.02-1.8	0.043
1,2,3,4,6,7,8-BpCDD		0.037	0.02-1.2	0.024
OCDD	5/5	NA	0.13-4	0.12
TCDF and TCDD (Truck Rep.	air Service)			
TCDF (total)	1/1	NA	17,000	0.0078
2,3,7,8-TCDF	1/1	NA	1,000	0.00086
ExCDFs (total)	1/1	NA	3,200	0.011
1,2,3,4,7,8-ExCDF	1/1	NA	1,000	<0.0 02
1,2,3,6,7,8-ExCDF	1/1	NA	490	<0.00071
1,2,3,7,8,9-HxCDF	1/1	NA	76	<0.00067
2,3,4,6,7,8-ExCDF	1/1	NA	6	<0.0016
HpCDFs (total)	1/1	NA	3,400	0.015
1,2,3,4,6,7,8-PeCDD	1/1	NA	3,100	0.0059
1,2,3,4,7,8,9-HpCDF	1/1	NA	100	<0.00045
PeCDFs (total)	1/1	NA	6,600	0.0068
1,2,3,7,8-PeCDF	1/1	NA	690	<0.00063
2,3,4,7,8-PeCDF	1/1 ·	NA	130	<0.0011
PeCDDs (total)	1/1	· NA	55,000	0.0057
1,2,3,7,8-PeCDD	1/1	NA	930	0.016
ixCDD (total)	1/1	NA	26,000	0.016
1,2,3,4,7,8-ExCDD	1/1	NA	1,500	<0.00042
,2,3,6,7,8-HxCDD	1/1	NA	3,700	<0.0018
1,3,4,6,7,8-HxCDD	1/1	NA	2,400	
pCDDs (total)	1/1	NA	23,000	0.043
,2,3,4,6,7,8-HpCDD	1/1	NA	13,000	0.024
CDD	1/1	Na	30,000	0.120
CDD (total)	1/1	NA	20,000	0.0049
2,3,7,8-TCDD	1/1	NA	110	0.00046
NORGANICS				
luminum	18/18	-	1,260-11,000	12,000
rsenic	22/23	NA NA	3-29.9	12.2
arium	20/20	-	95.9-2,220	47.9
eryllium	15/18	0.19-0.4	0.23-0.63	0.38

.

ţ

TABLE 2-13 (LODI U)

CHERICALS DITECTED IN LANDFILL SOILS^(A) PFORL PROTEIRS LANDFILL, CHERICOLACA, KHE VORK

Chemical	Frequency of Datection	Range of Sample Quantitation Limits	Range of Datacted Concentrations	Background Lavals
	(b) ·	(c)	(c)	(c)(d)
Cadrium	23/23		2.2-27.6	0.77
	18/18	-		
Calcium		-	7,900-222,000	2,980
Chromium	23/23	-	4.8-84.0	12.7
Cobalt	16/18	1.6-1.7	2.4-17.8	5.5
Copper	23/23	-	14.8-1,057	15.4
Iron	18/18	-	14,000-317,000	17,900
Lead	23/23	-	24.2-985	741
Hagnesium	18/18		2,150-19,400	2,380
Hanganese	20/20	-	132-1,770	228
Hercury	22/23	0.17	0.1-6.2	<0.08
Nickel	18/18	-	10-125	14.1
Potassium	18/18	—	351-2,420	994
Selenium	9/18	0.65-5.6	0.67-5.3	0.46
Silver	9/23	0.84-3.1	1.8-4.8	<0.55
Sodium	18/18		125-4,490	173
Thallium	1/18	0.47-1.7	0.59	0.28
Vanadium	17/18	1.3	3.8-26.4	21.7
	20/20	4.3		
Zinc		-	69.1-2,770	75.2
Cyanide	13/14	1.4	1.5-7.3	<0.67

(a) Landfill soils represent surface samples from leachate seep sediments, Area C Harsh sediments, and Area B surface soil.

- (b) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).
- (c) Organic chemical concentrations and dioxin/furan concentrations are in µg/kg; inorganics are in mg/kg.
- (d) Sample SUSL-4 collected by Dvirka and Bartilucci was used as a background sample for the landfill soils as directed by NYDEC. ND appears when the chemical was not detected in the background sample. It is not known what the detection limits were for every chemical in the sample. To provide an additional level of comparison, landfill soils were also compared to the background sediment samples SE-1 and SE-14. The lower concentration of lead and arsenic in these sediment samples were used for comparison because the concentrations in the Dvirka and Bartilucci were higher than normal.
- (e) TCDF and TCDD data were collected from the following locations: five isomer-specific samples and one 2,3,7,8-TCDD sample from Area C Marsh; five 2,3,7,8-TCDD/TCDF samples from Area B; eighteen 2,3,7,8-TCDD samples from leachate seep sediments.

NOTE: Area C (Marsh) sediment samples were collected by NYSDEC and analyzed for volatiles, semivolatiles, pesticides, PCBs, and TCDFs/TCDDs.

CERPICALS DETECTED IN RESIDENTIAL SURPACE SOILS PFOEL EROTHERS LANDFILL, CHEENTOHAKA, NEW YORK

		Range of Sample		
	Frequency	Quantitation	Range of Detected	Background
Chemical	of Detectio	n <u>Limi</u> t	Concentration	Concentrations
	(a)	(b)	(b)	(b)
DIOXINS/FURANS				
TCDFs (total)	10/10	NA	0.0053-0.052	0.0078
2,3,7,8-TODF	12/13	0.00068	0.00058-0.0051	0.00086
PeCDFs (total)	.10/10	NA	0.0027-0.055	0.0068
1,2,3,7,8-PeCDF	7/10	0.00071-0.002	0.00037-0.0047	<0.0006 3
2,3,4,7,8-PeCDF	7/10	0.001-0.0013	0.00054-0.0085	<0.0011
HxCDFs (total)	10/10	NA	0.0081-0.22	0.011
1,2,3,4,7,8-HxCDF	6/10	0.00055-0.0029	0.0012-0.0074	<0.002
1,2,3,6,7,8-HxCDF	5/10	0.00041-0.00097	0.00042-0.0033	<0.00071
2,3,4,6,7,8-HxCDF	5/10	0.00076-0.0015	0.0013-0.0059	<0.0016
1,2,3,7,8,9- <i>H</i> xCDF	5/10	0.0003-0.0074	0.0003-0.029	<0.00067
HpCDFs (total)	10/10	NA	0.01-0.85	0.015
1,2,3,4,6,7,8-HpCDF	9/10	2.2	0.0034-0.19	0.0059
1,2,3,4,7,8,9-HpCDF	5/10	0.00066-0.004	0.00067-0.0022	<0.00045
0CDF	10/10	NA	0.011-0.49	0.014
TCDDs (total)	9/10	0.00021	0.00047-0.0093	0.0049
2,3,7,8-TCDD	7/13	0.0003-0.0009	0.00031-0.00058	0.00046
PeCDDs (total)	10/10	NA	0.00086-0.019	0.0057
1,2,3,7,8-PeCDD	5/10	0.00071-0.0028	0.00033-0.0015	<0.00075
HxCDDs (total)	10/10	NA	0.009-0.59	0.016
1,2,3,4,7,8-HxCDD	5/10	0.00034-0.0025	0.00054-0.0024	<0.00042
1,2,3,6,7,8-HxCDD	6/10	0.00069-0.0019	0.0011-0.06	<0.0018
1,2,3,7,8,9-HxCDD	6/10	0.00057-0.0019	0.0011-0.054	<0.0023
HpCDDs (total)	10/10	NA	0.04-3.5	0.043
1,2,3,4,6,7,8-HpCDD	10/10	NA	0.015-0.77	0.024
OCDD	10/10	NA	0.090-21	0.120
INORGANICS				
Arsenic	12/13	1.4	2.5-21.0	3.0
Barium	13/13	NA	67.2-801	<29
Cadmium	9/13	0.6-5	1.9-6.2	3.3
Chromium	12/13	10	1.6-14.9	2.3
Copper	13/13	NA	5.4-93.8	<25
ead	13/13	NA	5.0-339	14.5
fanganese	13/13	NA	88.9-525	52.0
fercury	10/13	0.1	0.1-0.9	<0.1
Silver	1/13	1.2-10	1.4	<1.4
Zinc	13/13	NA	47.1-969	49.6

(a) The frequency of detection is the number of times the chemical vas detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

.

(b) Inorganics are in mg/kg; dioxins/furans are in ug/kg (ppb).

(c) Background data from sample SSS-55.

NOTE: Data were collected by NYSDEC and were analyzed for inorganics, PCBs and dioxins/furans.

and a second second

CERETICAL	S DETECT	ed da	ARRO	LAKB	PATE	SUR	FACE	SOILS	
	ROTHERS								

	· · · · · · · · · · · · · · · · · · ·	Range of Sample		· · · · · · · · · · · · · · · · · · ·
Chemical	Frequency of Dataction	Quantitation Limit	Range of Detected Concentration	Background Concentrations
	(a)	(b)	(b)	(b)
DIOXINS/FURANS				
	8/8	NA	0.00055-0.016	0.0078
TCDFs (total) 2,3,7,8-TCDF	5/8	0.36-0.69	0.00062-0.018	0.00086
PeCDFs (total)	7/8	0.22	0.0014-0.013	0.068
2,3,4,7,8-PeCDF	1/8	0.22-1.2	0.00041	<0.0011
ExCDFs (total)	8/8	NA	0.0032-0.014	0.011
BpCDFs (total)	8/8	NA	0.0032-0.019	0.015
1,2,3,4,6,7,8-HpCDF	6/8	0:52-1.2	0.002-0.0099	0.0059
OCDF	8/8	NA	0.006-0.017	0.014
TCDDs (total)	. 8/8	NA	0.00026-0.0068	0.0049
2,3,7,8-TCDD	2/8	0.27-0.37	0.00026-0.00052	0.00046
PeCDDs (total)	3/8	0.17-1.3	0.0014-0.0065	0.0057
ExCDDs (total)	8/8	NA	0.0022-0.014	<0.016
1,2,3,6,7,8-ExCDD	2/8	0.78-1.7	0.00076-0.0014	<0.0018
1,2,3,7,8,9-ExCDD	1/8	0.84-1.8	0.002	<0.0023
HpCDDs (total)	8/8	NA	0.026-0.057	0.043
1,2,3,4,6,7,8-HpCDD	7/8	12	0.014-0.028	0.024
OCDD	8/8	NA	0.046-0.130	0.120
INORGANICS	.*			
Arsenic	8/8	NA	1.0-10.1	3.0
Barium	7/8	25	103-323	<29
Cadmium	4/8	0.57-0.72	1.9-3.0	3.3
Chromium	7/8	1.2	4.6-7.9	2.3
Copper	8/8	NA	6.6-12.0	<25
Lead	8/8	NA	1.6-58.0	14.5
Manganese	8/8	NA	59.2-313.0	52.0
Mercury	7/8	0.1	0.1-0.2	<0.1
Zinc	8/8	NA	35.7-110.0	49.6

(a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that were rejected).

(b) Inorganics are in mg/kg; dioxins/furans are in ug/kg (ppb).

(c) Background data from sample SSS-55.

NOTE: Data were collected by NYSDEC and were analyzed for inorganics, PCBs and dioxins/furans.

TABLE 2-15

	<u> </u>	Range of		
Chemical	Frequency of Detection (a)(c)	Sample Quantitation Limit (b)(e)	Range of Detected Concentration (b)	Background Concentration: (b)(d)
VOLATILES	•			
Acetone	3/29	13-290	15-240	20
Benzene	1/29	6-45	15	<30
Chlorobenzene	3/29	6-45	5.5-87	30
Methylene Chloride	6/29	22-140	7-120	<26
1,2-Dichlorobenzene	3/17	370-11,000	10-95	(2,000
1,4-Dichlorobenzene	6/29	370-11,000	17-70	<2,000
SENIVOLATILES				
Acenaphthene	10/21	370-11,000	14-220	<2,000
Acenaphthylene	15/29	370-1,500	29-680	<2,000
Anthracene	20/29	440-11,000	18-3,100	440
Benzo(a)anthracene	21/29	370-3,100	47-1,200	1,500
Senzo(b/k)fuoranthene	22/28	370-11,000	340-5,700	2,900
Benzo(a)pyrene	20/29	370-11,000	59-1,300	1,300
Senzo(g,h,i)perylene	20/29	370-11,000	57-3,800	580
Senzoic Acid	5/29	1800-53,000	79-770	9,600
bis(2-Ethylhexyl)phthalate	18/29	370-1,500	190-4,200	780
Butylbenzylphthalate	3/29	370-11,000	23-53	<2,000
-Chloro-3-methylphenol	1/29	370-11,000	11	<2,000
hrysene	20/29	370-1,500	55-2,900	1,300
Dibenzo(a,h)anthracene	15/29	370-11,000	60-2,300	<2,000
Dibenzofuran	8/29	370-11,000	15-2,500	<2,000
)iethylphthalate	18/29	430-11,000	15-8,200	<2,000
imethylphthalate	2/29	370-11,000	26-140	<2,000
)i-n-butylphthalate	15/29	370-11,000	33-160	<2,000
)i-n-octylphthalate	1/17	370-11,000	32	<2,000
luoranthene	25/29	370-1,500	81-5,800	3,100
luorene	14/29	370-11,000	16-320	<2,000
ndeno(1,2,3-cd)pyrene	17/29	370-11,000	150-3,700	730
laphthalene	1/29	370-11,000	180	<2,000
-Nitrosodiphenylamine	4/29	370-11,000	45-1,900	<2,000
henanthrene	23/29	370-1,500	34-2,900	1,800
yrene	25/29	370-1,500	96-5,400	2,700
henol	2/29	370-11,000	74-76	<2,000

CERHICALS DETECTED IN THE DRAINAGE DITCH SEDDAENTS AND AREA CREEK SEDDAENTS^(C) PFOHL EBOTHERS LANOFTLL, CHERKTORAKA, LEFF YORK

TABLE 2-16

÷

1

TABLE 2-16 (Cont'd)

		Range of Sample		
Chemical	Frequency of Detection (a)(c)	Quantitation Limit (b)(q)	Range of Detected Concentration (b)	Background Concentrations (b)(d)
2,3,4,6,7,8-ExCDF	- 5/8	0.19-2.6	0.00057-0.0038	<0.0016
1,2,3,7,8,9-8xCDF	4/8	0.18-0.94	0.0013-0.0058	<0.00067
HpCDFs (total)	8/8	-	0.0017-0.055	0.015
1,2,3,4,6,7,8-HpCDF	8/8	- '.	0.00038-0.020	0.0059
1,2,3,4,7,8,9-BpCDF	4/8	0.17-1.6	0.00083-0.018	<0.00045
OCDF	8/8	-	0.0019-0.091	0.014
TCDD (total)	7/8	0.21	0.0037-0.020	0.0049
2,3,7,8-TCDD	6/27	0.21-0.77	0.00045-0.0018	0.00046
PeCDDs (total)	8/8	-	0.00025-0.028	0.0057
1,2,3,7,8-PeCDD	5/8	0.55-0.68	0.00025-0.0017	<0.00075
ErCDDs (total)	8/8	- *	0.0021-0.046	0.016
1,2,3,4,7,8-ExCDD	4/8	0.26-0.73	0.00047-0.0015	<0.00042
1,2,3,6,7,8-ExCDD	6/8	0.26-1.1	0.0014-0.004	<0.0018
1,2,3,7,8,9-HxCDD	6/8	0.41-2.6	0.00054-0.0044	<0.0023
HpCDDs (total)	8/8	• •	0.008-0.130	0.043
1,2,3,4,6,7,8-HpCDD	8/8	-	0.0043-0.066	0.034
OCDD	8/8		0.035-0.460	0.120

CHERICALS DITECTED IN THE DIALIZATE DITCH SEDILENTS AND ARED CHERK SEDILENTS^(C) PFOEL FEDILERS LAND/ILL, CHERETOFIAKA, LIST VIEK

NA - Not available. This data was collected by NYSDEC, detection limits were not provided.

;)

- (a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).
- (b) Organic chemical concentrations and dioxin/furan concentrations are in µg/kg; inorganic chemical concentrations are in µg/kg.
- (c) Seventeen samples were collected from Aero Creek. All samples were analyzed for volatiles, semivolatiles, pesticides and PCBs. Only two samples were analyzed for inorganics, 8 samples were analyzed for dibenzofurans (TCDF) and dioxins (TCDD) (several isomers) and 9 samples were analyzed only for the 2,3,7,8 isomer of TCDF and TCDD.
- (d) Background data were collected from sediment sample SE-1, west of Transit Road; sediment sample SE-14, an intermittent stream east of Aero Lake; and residential soil sample SSS-55 for dioxins/furans.

(e) Detection limits for Aero Creek sediment samples not available.

TABLE 2-16 (Cont'd)

		Range of Sample		
Chemical	Frequency of Detection (a)(c)	Quantitation Limit (b)(e)	Range of Detected Concentration (b)	Background Concentration (b)(d)
PESTICIDES/PCBs				
Aroclor 1242	1/29	99-670	7	<96
Beta-BEC	3/11	10-67	19–62	13
DDT	1/9	20-130	520	<19
Gamma-Chlordane	1/12	99-670	5.3	<96
INORGANICS				
Aluminum	11/11	-	5,580-12,200	7,030
Antimony	5/11	9.3-18.2	9-15	8.7
Arsenic	13/13	-	2.8-29	3.5
Barium	13/13	-	46.9-280	54.8
Beryllium	11/11	-	0.36-0.89	0.46
Cadmium	12/13	0.9	1.7-6.2	2.3
Calcium	11/11		5,230-98,300	67,400
Chromium	13/13	-	5.1-49.1	13.2
Cobalt	11/11	-	1.8-14.2	4.6
Copper	13/13	-	11.4-107	27.8
Iron	11/11	-	10,200-37,200	10,800
Lead	13/13		11.5-1,180	131
lagnesium	11/11	-	1,470-27,500	14,900
langanese	13/13	' -	111-1,100	313
fercury	9/13	0.13-0.21	0.2-0.6	<0.13
lickel	11/11	-	5.7-117	12.8
Potassium	10/10	-	368-2,830	1,060
Selenium	2/11	0.61-4	0.85-0.93	<0.6
Sodium	11/11	-	201-3,770	545
/anadium	11/11	-	10.9-33.4	14.6
linc	13/13	_	48.4-910	165
	3/11	1.3-2.2	1.1-10	<1.3
DIOXINS/FURANS				
CDFs (total)	8/8	-	0.0032-0.077	0.0078
2,3,7,8-TCDF	12/17	0.19-0.57	0.00053-0.0042	0,00086
eCDFs (total)	8/8	-	0.00071-0.047	0.0068
,2,3,7,8-PeCDF	5/8	0.62-1.0	0.00014-0.0022	<0.00063
,3,4,7,8-PeCDF	8/8	_	0.00027-0.0039	<0.0011
xCDFs (total)	8/8	_	0.0018-0.049	0.011
,2,3,4,7,8-ExCDF	8/8	-	0.00027-0.0068	<0.002
,2,3,6,7,8-ExCDF	4/8	087-1.1	0.00044-0.0025	<0.00071

CHEMICALS DETECTED IN THE DRAINAGE DITCH SEDIMENTS AND AERO CREEK SEDIMENTS (C) PFOEL EROTHERS LANDFILL, CHEEKTORAKA, NEW YORK

CERTICALS DETECTED IN ABRO LARE SEDIMENTS PPOEL ENOTEERS LARDFILL, CELEKTOPAGA, NEW YORK

	Frequency	Range of Sample Quantitation	Range of Datected	Background
Chemical	of Detection (a)	Limit (b)	Concentration (b)	Concentration: (b)(c)
VOLATILES				
Acetone	2/3	12	62-360	20
2-Butanone	1/3	12-16	54	<60
Methylene chloride	3/3		13-54	<26
INORGANICS	·			
Aluminum	3/3		4,670-11,200	7,030
Arsenic	3/3	·	1.8-5.9	3.5
Barium			43.3-117	54.8
Beryllium	3/3		0.24-0.44	0.46
Cadmium	2/3	1.3	1.3-4.7	2.3
Calcium	3/3		4,850-66,000	67,400
Chromium	3/3		8.3-18.6	13.2
Cobalt	3/3.		4.4-7	4.6
Copper	3/3		10.7-26.1	27.8
Iron	3/3		8,870 -19,8 00	10,800
Lead	3/3		10.2-73.6	131
lagnesium	3/3		2,190-16,500	14,900
langanese	3/3	·	129-438	313
Vickel	3/3		9.3-20.3	12.8
Potassium	3/3		409-1,810	1,060
Silver	2/3	0.79	1.2-1.7	<0.78
Sodium	. 3/3		177-585	545
/anadium	3/3		10.6-22.8	14.6
linc	3/3		55.2-145	165

(a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).

(b) Organics are in ug/kg and inorganics are in mg/kg.

(c) Background data from 2 stream sediment samples (SE-1 and SE-14) north of Area B.

•

. .

CHEMICALS DETECTED IN ELLICOTT CREEK SEDIMENTS PPOEL BROTHERS LANDFILL, CREEKTOWAGA, NEW YORK

an a		Range of Sample		
Chemical	Frequency of Detection (a)	Quantitation Limit (b)	Range of Detected Concentration (b)	Background Concentration (b)
VOLATILES				
Acetone	2/5	13	24-50	240
Chlorobenzene	3/5	5	13-20	<26
Trichloroethylene	2/5	-	8-9	9
SEMIVOLATILES				
Acenaphthylene	1/5	400-1,000	63	<1,500
Fluorene	1/5	400-1,000	16	33
Diethylphthalate	2/5	400-1,000	21-28	35
Phenanthrene	2/5	400-1,000	42-200	230
Anthracene	2/5	400-1,000	14-89	93
Fluoranthene	3/5	870-1,00 0	81-420	- 340
Pyrene	3/5	870-1,000	91-290	200
Chrysene	2/5	400-1,000	61-170	170
Benzo(a)anthracene	2/5	400-1,000	54-130	120
bis(2-Ethylhexyl)phthalate	2/5	400-1,000	800-950	1,600
Benzo(b,k)fluoranthene	3/5	870-1,000	28-73	370
Benzo(a)pyrene	2/5	400-1,000	53-94	140
Indeno(1,2,3-cd)pyrene	2/5	400-1,000	41-170	273
Dibenz(a,h)anthracene	1/5	400-1,000	17	257
Benzo(g,h,i)perylene	2/5	400-1,000	63-220	190
DIOXINS/FURANS				
2,3,7,8-TCDF	1/5		0.56-1.4	-
NORGANICS				-
luminum	3/3	-	5,120-9,010	7,030 (d)
rsenic	5/5	-	2.2-7.4	9.5 (c)
arium	5/5	-	21.9-301	271 (c)
eryllium	3/3	. –	0.33-0.57	0.46 (d)
admium	4/5	0.3	0.33-3.7	3.1 (c)
alcium	3 /3	-	6,480-14,000	67,400 (d)
hromium	5/5	-	4.9-14	35.6 (c)
obalt	3/3	-	4.7-5.7	4.6 (d)
opper	5/5	-	13.4-2,160	68.9 (c)
ron	3/3	-	12,600-14,500	10,800 (d)
æad	5/5	-	14.8-51	462 (c)

. :

TABLE 2-18 (Cont'd)

· · · · ·		Bange of Sample		
Chemical	Frequency of Detection (a)	Quantitation Limit (b)	Range of Detocted Concentration (b)	Background Concentrations (b)
Hagnesium	3/3	-	2,820-5,690	14,900 (d)
Hanganese	5/5		130-311	284 (c)
Mercury	5/5	-	0.10-0.25	0.57 (c)
Nickel	3/3	· ~	14.2-18.7	12.8 (d)
Potassium	3/3	-	456-1,210	1,060 (d)
Sodium	3/3	-	130-144	545 (d)
Vanadium	3/3	- 1	13.1-16	14.6 (d)
Zinc	5/5	-	61.2-144	315 (c)

CERENICALS DETECTED IN ELLICOTT CREEK SEDULERATS PFOEL BEDTEERS LANDFILL, CREEKTOVACA, NEW YOEK

(a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).

:

(

- (b) Organic chemical concentrations are in µg/kg; inorganic chemical concentrations are in mg/kg; and dioxins/furans are in ng/kg (ppt).
- (c) Background data from 3 upgradient Ellicott Creek samples collected by CDH 12/90 and NYSDOE 6/90 (SE17-001, STR-19 and STR-20). See text for discussion.
- (d) Background data from 2 stream sediment samples (SE-1 and SE-14) north of Area B collected by CDM 1987. See text for discussion.

CHEMICALS DETECTED IN DRAINAGE DITCH SURFACE FATHERS PPOEL MEDTHERS LANDFILL, CHEMICOVAGA, MEN YORK

	· · · · · · · · · · · · · · · · · · ·	Range of Sample		
Chemical	Frequency of Detection (a)	Quantitation Limit (b)	Range of Detected Concentration (b)	Background Concentration (b)(c)
VOLATILES				
Acetone	1/11	10-17	18	<10
Chlorobenzene	1/11	5-10	10	دې
1,2-Dichlorobenzene	1/11	10	4	<10
1,2-Dichloroethylene	3/11	5	3-6	ৎ
SEMIVOLATILES				
2,4-Dimethylphenol	1/11	10	4	<10
Di-n-octyl phthalate	1/11	10	14	<10
INORGANICS				
Aluminum	10/10		33.7-1,090	77
Arsenic	3/10	2.2	3.1-3.7	<2.2
Barium	10/10		18.8-393	77
Beryllium	1/10	0.4	0.46	<0.4
Cadmium	5/10	3.5	5-13.8	<3.5
Calcium	10/10		56,800-233,000	99,000
Cobalt	1/10	2.8	3	<2.8
Copper	10/10		5.4-26.8	6.8
Iron	10/10		294-4,000	5 07
lead .	9/10	2.1	2.1-20.1	10.6
lagnesium .	10/10		15,000-43,000	25,300
langanese	10/10		54.3-427	244
fercury	3/10	0.2	0.25-0.3	<0.2
lickel	1/10	12.8	13.8	<12.8
Potassium	10/10		1,680-24,200	2.740
Sodium	10/10		19,000-269,000	308,000
Vanadium	2/10	2.4	3-3.6	<2.4
Zinc	10/10		.17-98.6	33.3

- (a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).
- (b) Organics are in ug/l and inorganics are in ug/l.
- (c) Background data from surface water samples SV-1 and SV-14 were collected from the vestern side of Transit Road ditch and an intermittent stream east of Aero Lake (same locations as SE-1 and SE-14).

CHEMICALS DETECTED IN ADED LAND SURFACE PATTERS PROTEINS LANDFILL, CHEMICTOHARA, REF WORK

Chemical	Frequency of Detection (a)	Range of Sample Quantitation Limit (b)	Range of Detected Concentration (b)	Background Concentrations (b)(c)
SEHIVOLATILES				
<pre>bis(2-Ethylhexyl) phthalate</pre>	1/3	50-55	22	<10
INORGANICS				
Aluminum	3/3		58.2-62.2	77
Barium	3/3		93.6-96.4	. 77
Cadmium	1/3	3.5	. 6	3.5
Calcium	3/3		57,100-59,300	115,000
Copper	3/3		3.7-6.7	6.8
Iron	2/2		148–187	507
Lead	2/3	2.6	2.5-3.9	10.6
lagnesium	3/3		14,300-14,900	25,300
langanese	3/3	·	18.1-19.9	244
fercury	3/3		0.25-0.48	<0.2
Potassium	3/3		3,540-4.090	2,740
Sodium .	3/3	. 	132,000-138,000	308,000
Zinc	3/3		11-18.3	33.3

:)

- (a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).
- (b) Organics are in ug/l and inorganics are in ug/l.

(c) Background data from surface water samples SW-1 and SW-14 were collected from the western side of Transit Road and an intermittent stream east of Aero Lake (same locations as SE-1 and SE-14).

CHEMICALS DETECTED IN LEACHATE SEEPS PFOEL BROTHERS LANDFILL, CEEENTOVAGA, NEW YORK

-		Range of Sample		
Chemical	Frequency of Detection (a)	Quantitation Limit (b)	Range of Detected Concentration (b)	Background Concentration (b)(c)
VOLATILES			· · · ·	
Benzene	5/19	2	3-8	<2
Chlorobenzene	9/38	3.7-10	2-110	<3.7
Chloroethane	2/19	5.9	11-31	دي. 9
1,2-Dichlorobenzene	4/38	10-40	17–18	ও
1,3-Dichlorobenzene	3/38	10-40	4-89	· در
1,4-Dichlorobenzene	3/19	10-40	2-6	ও
1,1-Dichloroethylene	3/19	1.1	2.3-4.9	<1.1
1,2-trans-Dichloroethylene	2/19	1.6	64-85	<1.6
Ethylbenzene	1/19	3	6	ও
Trichloroethylene	1/19	1.4	2.2	<1.4
SEMIVOLATILES				
Benzoic Acid	1/19	50-100	. 22	٥٥>
2,4-Dimethylphenol	2/19	10-40	30	<10
Phenol	2/19	10-40	7-10	<10
Dibenzofuran	2/19	10-40	20-63	<10
pis(2-Ethylhexyl)				
phthalate	5/19	6-20	9/60	25
Di-n-octyl phthalate	2/19	. 10-40	9-11	<10
enzo(b)fluoranthene	1/19	10-40	7	<10
Benzo(a)anthracene	1/19	10-40	5	<10
enzo(b)pyrene	1/19	10-40	5	<10
hrysene	1/19	10-40	5	<10
luoranthene	3/19	10	3-9	<10
luorene	1/19	10-40	2	<10
henanthrene	2/19	10-40	2-5	<10
yrene	3/19	10	3-11	<10
PESTICIDES/PCBs			·	
ldrin	2/19	0.005-0.05	0.0074-0.0081	<0.05
Dieldrin	4/19	0.01-0.1	0.0032-0.02	<0.1
DD	1/19	0.01-0.1	0.011	<0.1
ndrin	1/19	0.02-0.1	0.028	<0.1
Indosulfan II	3/19	0.01-0.1	0.032-0.054	<0.1

TABLE 2-21 (Cont'd)

CERTICALS DETECTED DE LEACHATE SERPS PFOEL MOTHERS LANDFULL, CHERTOWAGA, NEW YORK

(· · ·	۳۰,۰۰ <u>,۰۰,۰۰,۰۰,۰۰,۰۰,۰۰,۰۰,۰۰,۰۰,۰۰</u> ,۰۰,۰۰,۰۰	Range of Sample	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	
Chemical	• • •	Frequency of Detection (8)	Quantitation Limit (b)	Range of Detected Concentration (b)	Background Concentrations (b)(c)
INORGANICS		· .			
Aluminum		19/19		39.8-303,000	227
Arsenic		12/19	2.2	3.5-16.7	<2.1
Barium		19/19		80.3-10,000	35.5
Beryllium	·	4/19	0.4	0.46-14.8	<0.1
Cadmium	i i	16/19	3.5	3.7-122	4
alcium		19/19		145,000-603,000	116,000
hromium	1	15/19	3.4	3.5-426	<3
Cobalt	•	10/19	2.8	3.4-157	<4.2
lopper'		19/19		13.9-784	14.8
ron		10/10		44,000-494,000	2,140
ead	n U	19/19		6.7-1,640	5.9
agnesium		19/19		26,500-165,000	35,600
anganese		19/19		123-16,100	1,670
ercuiry		18/19	0.2	0.75-4.7	<0.2
ickel	* 1	14/19	12.8	20.4-521	20.00
otassium		19/19		5,500-54,200	3,350
elenium	:	2/19	2.4-24	12-12.8	<2.3
ilver	, '	9/19	3.1	3.4-16.6	<2.8
odium		19/19		16,600-209,000	130,000
anadium		6/19	. 2.4	33-471	<3.2
inc		18/18		66-8,270	9.9
yanide	ì	3/10	10	18-31	<10

- (a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed, including duplication, analyzed for that parameter (this does not include the data that were rejected). For chlorobenzene and the dichlorobenzenes, the denomenator is equal to the number of samples times the number of analysis performed.
- (b) Organics are in ug/l and inorganics are in ug/l.
- (c) Background data derived from upgradient well MW-6S.

· · ·		Range of Sample		
Chemical	Frequency of Detection (a)	Quantitation Limit (b)	Range of Detected Concentration (b)	Background Concentrations (b)
SEHIVOLATILES				
Di-n-butylphthalate	2/3	10	1	6(c)
Bis(2-ethylhexyl)phthalate	2/3	10	11-17	13(c)
INORGANICS				
Aluminum	1/1	-	190	77(d)
Barium	3/3	-	38.5-8 70	670(c)
Cadmium	2/3	5	8.6-9	8(c)
Calcium	1/1	-	133,000	115,000(d)
Copper	1/3	25	6.7	<25(c)
Iron	1/1	-	462	5 07(d)
Lead	1/3	5	4.8	(c)ک
Magnesium	1/1	-	16,600	25,300(d)
langanese	3/3		37-46	37(c)
Potassium	1/1	-	2,840	2,740(d)
Sodium	1/1	-	33,600	308,000(d)
Zinc	1/3	20	48	59(c)

CHEMICALS DETECTED IN ELLICOTT CREEK SURFACE VATERS PFOEL BROTHERS LANDFILL, CREEKTOWAGA, NEW YORK

- (a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).
- (b) Organic and inorganic chemical concentrations are in µg/l.
- (c) Background data from 5 upgradient Ellicott Creek samples (SV-17-001, SV-18-001, SV-19-001, SVT-45 and SVT-46). See text for discussion.
- (d) Background data from 2 stream samples (SV-1 and SV-14) north of Area B. See text for discussion.

CHEFTICALS DETECTED IN THE HEDROCK AQUITER PFUEL PROTEINS LANDVILL, CHEFTOFACA, NET YOEK

	<u></u>	Range of	······	· · · · · · · · · · · · · · · · · · ·
Chemical	Frequency of Detection (a)	Sample Quantitation Limit (b)	Range of Dotocted Concentration (b)	Background Concentration (b)(c)
VOLATILES				
	1/15	2.0		
Benzene			23	<2
Chloroethane	1/15	5.9	3.7	<5.9
1,1-Dichlorœthane	1/15	1.1	4.1	<1.1
1,2-trans-Dichloroethylene	1/14	1.6	9.2	<1.6
Toluene	1/13	3.0	3	<3
SEHIVOLATILES				
Benzoic Acid	1/10	50	8	<50
Phenol	1/10	10	16	<10
pis(2-Ethylhexyl)		~	20	140
	9/12	16-24		~
phthalate	9712	10-24	3-42	<3
PESTICIDES/PCBs		• •		
ldrin	1/11	0.05-0.25	0.05	<0.05
NORGANICS	· ·		•	
luminum	11/11	-	56.1-1,630	326
ntimony	1/11	24-53.1	35.1	<53.1
rsenic	5/11	1.9-2	2.4-4.7	<2
arium	11/11	**)-2	24.9-240	60
		1 2 6		
admium	6/11	1-3.6	1.1-4.2	4
alcium	11/11	. -	30,300-244,000	118,000
hromium	10/11	1	2.4-728	191
obalt	1/11	2-4.2	7.1	<4.2
opper	8/11	1-2.6	3.7-28.4	13
ron	11/11	-	161-5,270	1,200
ead	5/9	2	2.3-6.8	<2
agnesium	11/11	-	156-44,400	26,700
anganese	.7/8	0.5	5.9-428	17.3
ercury	1/8	0.2	0.48	<0.2
	7/11	10.7-20	17.4-198	
ickel		10.7-20		33
otassium	11/11	-	2,670-23,300	5,110
ilver	1/11	2-2.8	2	<2.8
odium	11/11		34,300-354,000	127,000
anadium	4/11	1-3.2	1.4-35.3	<3.2
inc	8/8	_	1.1-4.4	"R"

(a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected).

(b) Organics are in ug/l and inorganics are in ug/l.

). _____

.....

(c) Background data from MV-6D located offsite of Area A east of Transit Road.

TABLE 2-24 (Cont'd)

		Range of Sample		
Chemical	Frequency of Detection (a)	Quantitation Limit (b)	Range of Detected Concentration (b)	Background Concentrations (b)(c)
Calcium	26/26	-	28,200-593,000	116,000
Chromium	22/26	1-3	2-196	<3
Cobalt	7/26	2-5	2-46.9	<4.2
Copper	26/26	-	2.7-3.070	14.8
Iron	26/26	-	160-176,000	2,140
Lead	20/21	2	2.8-369	5.9
Kagnesium	26/26	-	20,300-203,000	35,600
Hanganese	26/26	-	62.1-3,450	1,670
Mercury	6/26	0.2	0.23-3.3	<0.2
Nickel	16/26	10.7-23	11.8-141	13.1
Potassium	26/26	-	761-83,500	3,350
Silver	7/26	2-3	2.1-23.7	<2.8
Sodium	26/26	-	12,700-287,000	130,000
Vanadium	18/26	1-4	1.4-124	<3.2
linc	17/17	-	7.5-1,490	9.9
Cyanide	1/25	10-20	30	<10

CHEMICALS DETRICTED IN THE UNCONSOLIDATED AQUIPER PPOHL EROTHERS LANDFILL, CHERTOWAGA, NEW YORK

(a) The frequency of detection is the number of times the chemical was detected over the number of samples analyzed for that parameter (this does not include data that was rejected). For chlorobenzene and the dichlorobenzenes, the denomenator is equal to the number of samples times the number of analyses performed.

⁽b) Background data derived from MV-6S.

CARPHICALS DETECTED IN THE UNCONSOLIDATED AQUIDAEN FFORL ENOTHERS LAND/ILL, CHERKIOHAGA, NEW YORK

		Range of Sample		
Chemical	Frequency of Detection (a)	Quantitation Limit (b)	Range of Datocted Concentration (b)	Background Concentration (b)(c)
VOLATILES				
Benzene	4/31	2.0	2.7-290	. <2
Chlorobenzene	2/58	3.0-3.7	1,200-11,000	3
Chloroethane	1/31	5.9	900	دي. 9
1.3-Dichlorobenzene	1/56	5.0-100	82	2
1,4-Dichlorobenzene	3/56	5.0-100	2-240	دې
1.2-Dichlorobenzene	1/50	5.0-100	4	ৎ
1,1-Dichloroethane	2/21	1.1	5.6-4,900	<1.1
1,1-Dichloroethene	1/31	1.8	240	<1.8
1,1,1-Trichloroethane	2/31	1.3	26-15,000	<1.3
Toluene	3/31	3.0	4.1-43	3
Xylenes (m-, p-)	1/31	3.0-6.0	400	3
SEMIVOLATILES				
Benzoic Acid	1/12	50-500	3	<50
2-Chlorophenol	1/11	10-100	13	<10
2,4-Dimethylphenol	2/11	10-50	630-940	<10
2-Methylphenol	1/11	10-50	72	<10
4-Hethylphenol	1/11	10-50	75	<10
Phenol	2/11	10-50	6-4,000	<10
Dibenzofuran	2/27	10-100	15-20	<10
Bis(2-ethylhexyl)		· · ·		
phthalate	11/26	10-100	3-840	25
Di-n-octyl phthalate	3/27	10-100	30-73	<10
Di-n-butyl phthalate	1/27	10-100	2	<10
Butyl benzyl phthalate	1/27	10-100	150	<10
PESTICIDES/PCBs	· ·		· -	
Endosulfan II	1/24	0.05-0.1	0.69	<0.05
Aroclor-1232	2/21	0.5	110	<0.5
INORGANICS		•		
Alumínum	26/26	-	59,5-74,000	227
Antimony	2/26	24-53.1	24.4-33	<53.1
Arsenic	19/26	1.9-2	2.3-22.3	<2.1
Barium .	-26/26	-	52.2-1,530	35.5
Beryllium	3/26	0.1-1	1.5-1.7	<1.0
Cadmium	10/26	1-4	1.3-12	4

.

TABLE 2-25a

PCBS/PESTICIDES AND MERCURY DETECTED IN FISH COLLECTED FROM ELLICOTT CREEK - AMMERST PFOML BROTHERS LANDFILL, CHEEKTOVAGA, NEW YORK

Location/Compound	Frequency of Detection (a)	Range (ug/g)	Arithmetic Mean (ug/g)
ELLICOTT CREEK - AMMERST			
Aroclor - 1016	12/13	0.01-0.02	0.0096
Aroclor - 1254	13/13	0.05-0.33	0.12
Aroclor - 1260	13/13	0.03-0.29	0.85
TDD	13/13	0.0005-0.0091	0.0036
DDE	13/13	0.0062-0.0622	0.0034
ססס	13/13	0.0031-0.0349	0.015
Alpha - Chlordane	13/13	0.001-0.0101	0.004
Gamma - Chlordane	11/13	0.001-0.0045	0.0019
Oxychlordane	13/13	0.001-0.005	0.0018
Transnonachlor	13/13	0.0022-0.0195	0.0086
Beptachlor epoxide	11/13	0.001-0.0038	0.0015
Hirex	1/13	0.001	0.007
Endrin	6/13	0.001	0.0074
Dieldrin	13/13	0.001-0.0140	0.0046
Hexachlorobenzene	3/13	0.001	0.0006

a) The frequency of detection is equal to the number of times the chemical vas detected over the number of samples analyzed for that parameter.

TABLE 2-25b

PCBS/PESTICIDES AND MERCURY DETECTED IN PISE COLLECTED FROM BLLICOTT CREEK - AIRPORT PPOHL BROTHERS LANDFILL, CHEEKTOFAGA, MET YORK

Location/Compound	Frequency of Detection (a)	Range (vg∕g)	Arithmati Haan (ug/g)
ELLICOTT CREEK - AIRPORT			
Aroclor - 1254/1260	4/6	0.026-0.232	0.095
Alpha - BHC	NA	NA	NA
Beta - BHC	NA	· NA	NA
Gamma - BHC (lindane)	NA	NA	NA
Delta - BBC	NA	NA	NA
DDT	4/6	0.004-0.008	0.0047
DDE	6/6	0.01-0.056	0.0335
DDD	4/6	0.002-0.015	0.0067
Alpha - Chlordane	1/6	0.006	0.0031
Gamma - Chlordane	0/6	<0.005	-
Dxychlordane	0/6	<0.005	-
Fransnonachlor	4/6	0.008-0.013	0.008
deptachlor epoxide	NA	NA	NA
firex	0/6	<0.002	-
Endrin	NA	NA	NA
Dieldrin	0/6	<0.005	.
lexachlorobenzene	0/6	<0.002	-
lercury	3/6	0.133-0.177	0.0903

a) The frequency of detection is equal to the number of times the chemical was detected over the number of samples analyzed for that parameter.

b) NA indicates samples from this location were not analyzed for this chemical.

TABLE 2-25c

6.,

PCBs/PESTICIDES AND MERCURY DETECTED IN FISE COLLECTED FROM BLLICOTT CREEK - BOWMANSVILLE PFOHL BROTHERS LANDFILL, CHERKTOWAGA, NEW YORK

Location/Compound	Frequency of Detection (a)	Range (ug/g)	Arithmetic Hean (ug/g)
ELLICOTT CREEK - BOWMANSVILLE	5		
Aroclor - 1016	8/9	0.01	0.01
Aroclor - 1254	9/9	0.04-0.10	0.07
Aroclor - 1260	9/9	0.04-0.08	0.051
Aroclor - 1054/1260	2/3	0.041-0.124	0.0583
TDC	12/12	0.001-0.008	0.0025
DDE	12/12	0.001-0.0242	0.0109
ססכ	9/12	0.0017-0.0070	0.0028
Alpha - Chlordane	9/12	0.001-0.0025	0.0019
Samma – Chlordane	9/12	0.001-0.0019	0.0015
Fransnonachlor	10/12	0.0017-0.009	0.0026
Heptachlor epoxide	5/9	0.001	0.00078
Indrin	5/9	0.001	0.00078
Dieldrin	9/12	0.0012-0.0024	0.0019
fercury	3/3	0.088-0.357	0.191

a) The frequency of detection is equal to the number of times the chemical vas detected over the number of samples analyzed for that parameter.

TABLE 2-25d

PCBs/PESTICIDES AND MERCURY DETECTED IN FISH COLLECTED FROM TRIBUTARY 11B TO ELLICOTT CREEK PFOHL BROTHERS LANDFILL, CHERTOVAGA, NEW YORK

Location/Compound	Frequency of Detection (a)	Range (ug/g)	Arithmeti , Mean (ug/g)
TRIBUTARY 11B TO ELLICOTT C	REEK		•
Aroclor - 1016/1248	1/4	0.121	0.0378
Aroclor - 1254/1260	.4/4	0.0028-0.165	0.098
Alpha - BBC	NA(b)	NA	NA
Beta - BHC	NA NA	ŇA	NA
Gamma - BHC (lindane)	NA	NA	NA
Delta - BHC	NA	NA	NA
DDT	1/4	0.002	0.0013
DDE	4/4	0.003-0.021	0.011
ססס	3/4	0.002-0.006	0.0035
Heptachlor epoxide	NA	NA	NA
Endrin	NA	NA	NA
Mercury	1/4	0.055	0.0325

a) The frequency of detection is equal to the number of times the chemical vas detected over the number of samples analyzed for that parameter.

b) NA indicates samples from this location were not analyzed for this chemical.

PCBS/PESTICIDES AND MERCURY DETECTED IN FISE COLLECTED FROM AERO LARE PPOHL BROTHERS LANDFILL, CHEEKTOVAGA, NEV YORK

Location/Compound	Frequency of Detection (a)	Range (ug/g)	Arithmeti Hean (ug/g)
AERO LAKE			
Aroclor - 1016	8/13	0.01-0.05	0.0119
Aroclor - 1254	13/13	0.02-0.17	0.07
Aroclor - 1260	13/13	0.04-0.033	0.13
Aroclor - 1254/1260 ^(b)	5/5	0.097-0.393	0.22
Alpha - BHC	2/13	0.0013-0.0021	0.00069
DDT	11/18	0.001-0.0033	0.00126
DDE	18/18	0.0036-0.046	0.019
DDD	18/18	0.0027-0.0369	0.009
Alpha - Chlordane	10/18	0.001-0.0019	0.00142
Gamma - Chlordane	4/18	0.001-0.0023	0.00148
Oxychlordane	4/18	0.001-0.0018	0.00122
Transnonachlor	13/13	0.001-0.0029	0.0019
Septachlor epoxide	4/13	0.001-0.0062	0.00125
lirex	3/18	0.001	0.00128
Dieldrin	7/18	0.001-0.0017	0.00133
lexachlorob enzene	2/18	0.001-0.0036	0.00084
fercury	1/5	0.176	0.0552

- (a) The frequency of detection is equal to the number of times the chemical was detected over the number of samples analyzed for that parameter.
- (b) PCB data collected 7/87 8/87 were reported as Aroclor 1016/1248 and Aroclor 1254/1260.

TAULE 2-27

PCH4/PESTICIDES DETECTED IN FISH COLLECTED FEDA NEW YORK STATE LARES (D)

Lato and Doto	Plan		Avg. PCD	PCB Renys	Avg. DDî	001 גריינים	Avg. Dioldrica	Dioldrin Danca	Avg. Endrin	Endr In Renys	AVB. NCD	ILB Acnes
CAMADICE LADE	·····						······································					
1900	. 1.7	4	4.44	1.37-9.18	0.17	0.09-0.34	0.03	<.01~0.12	<0.01	-	<0.01	· _
1205	07	, p	2.71	0.24-4.14	0.22	0.02-0.1	0.01	<0.01-0.01		<0.01-0.01	<0.01	-
1205	ណ	2	8.44	0.40-2.20	0.12	0.05-0.2	0.01	<0.01-0.01		<0.01-0.01	<0.01	-
CAMANDIADIA LAN	2											
1980	a f	1	0.047	. –	0.29	-	<0.01	-	<0.01	<0.01	· <0.01	<0 01
1703	L.T	D	1.43	1.2-2.91	0.97	0.79-2.46	0.01	0.01-0.02	<0.01	<0.01	<q. 01<="" td=""><td><0.01</td></q.>	<0.01
1001	LT	4 D	8.45	0,31-5,07	1.02	0.10-1.41		<0.01-0.07	-	-	<0.01	-
1001	LT	30	9.49	0.07-1.49	0.14	0.03-1.72	0.01	<0.01-0.01	<0.01	-	<0.01	-
COMPANY LANCE												
1932	Lies	1	0.15	-	0.14	· _	<0.01	-	<0.01	~	<0.01	-
1002	VEE	2	0.14	0.12-0.17	0.09	0.09-0.1			<0.01		<0.01	-
1502	2	1	Q. 8.3	-	8.85	-	<0.01	-	<0.01		<0.01	-
ATTEM												
1900	ព្	1	0.12	-	2.5	-	0.02	-	<0.01	-	<0.01	-
1200	LT	D	6.44	D. 03-1.97	6.20	2.04-19.75	0.04	0.01-0.09	<0.01	-	<0.01	-
1931	LT-63	. 5	0.34	0,19-0.42	3.63	1.61-6.91	0.03 -	0.01-0.04		·	<0.01	-
193)	1.8-P	4	0.49	0.22-0.07	6.25	2.10-14.17	0.04	0.02-0.04	-		<0.01	-
055C. 1931	LT-#	3 D	0.15	0.05-0.09	4.80	0.42-14.10	50.0	<0.01-0.04	-	·	<0.01	-
rat. 1931	28-6	Q	D.41	0.18-0.74	6.41	1.7-16.54	0.02	0.91-0.01			<0.01	-
1893	18	27	Q. 17 ·	0.04-0.52	2.54	0.7-0.09		<0.01-0.01		<0.01-0.02	<0 01	-
act. 1639	01	10	0.19	Q. 11-Q. DI	2.20	0.54-3.83	0.01	<9.01-9.02	<9.01	-	<q. 03<="" td=""><td>-</td></q.>	-
Secret Page												
1900	er.	ຂ່	0.13	0,12-0,14	0.19	0 10-0 2	2 0.02	0.01-0.02	<0.01	-	<0 01	-
1900	LT-	۵	0.64	0.15-2.17	8.10	0.21-2.0/	0.04	9.01-0.08	<0.01	-	<0.01	· -
1631	LT	Ð	0.59	0.20-1.12	0.36	0.17-0.54	0.02	<0.01-0.0)			<0.01	
1031	LT-P	10	6.64	0.28-1.20	0.40	0.20-0.61	0.02	<0.01-0.03	-		<0 01	-
8028	17	27	9,40	0.08-1.05	0.21	0.04-0.74	0.01	<0.01-0 .04	0.01	<0.01~0.03	0.01	<0.01-0.0
CAVIES LADE				,								مر. ا
1900	LT	4	0.44	0,23-0,60	0.35	0 14-0.4	3 0 01	0.01-0.02	<0.0	ı -	<0_01	-
1935	Â.T	27	0.7	0.13-1.06	0.20	0.04-0.0		<0.01-0.01	<0.0		<0.01	-
· · ·												

ı.

(a) CMSDEC 1907 : Concontrations are in ug/green (ppes) LT • Less Treut

AT . Dolmon Trout

LND · Lerm Nouth Doss DT · Drock Treat

WZ = Wolloyo

- -

LT-F - Las Trais - Feede LT-M - Las Trais - Molo

.

٢,

TABLE 2-27 (continued)

PCB+/PESTICIDES DETECTED IN FISH COLLECTED FROM NEW YORK STATE LAKES (+)

Leise and Dote	P L cá		Avg Lindens	Lindana Pango	Avg. Hiron	Miros Renge	Ave. Hei	Hg Range	Avg Chiordene	Chlordane Renge
CAMADICE LANCE	<u> </u>									
1930	LT	4	<0.01	-	<0.01	-	0.27	0.18-0.36	0.05	0.03-0.08
965	BI	9	-	-	-	-		-	0.07	0.01-0.1
PSS .	a r	ż	-	. –	-	-	-	-	0.04	0.02-0.04
AMANDIAGUA LAKE										
1960	BT	1	<0.01	<0.01	<0.01	-	0.25	-	0.02	-
960	LŤ	3	<0.01	<0.01	<0.01	-	0.31	0.28-0.54	0.06	0.05-0.16
1983	LT	43			_	-	-	-	-	-
1965	LT	50	-	-	-	-		-	0.09	0.02-0,24
CHAUTAUGUA LASIZ										•
1982	LIES	8	<0.01	-	<0.01	-	0.3	-	0.03	-
1902	ME	2	<0.01	-	<0.01	• -	0.45	0.62-0.60		0.02-0.02
982	640	8	<0.01	· -	<8.01	-	0.1)	·	0.02	-
OELEKA										
1780	A I	2	<0.01	-	<0.01	Ξ	0.22	-	0.01	-
988	LT	В	<8.01	-	<0.01		0.37	0.23-0.57	0.03	0.03-0.32
1933	1.1-14	5	-	-	-	-	-	-	· -	-
983	L1-P	- 4	-	-	-	-	-	-	· -	-
EC. 1981	LT-M	53	-	-	· · · -	-	-	· -	· -	-
XBC. 1983	L1-6	9	-	-	+	-	-	-		-
1985	LT	27	-	-	-	-	-	-		0.04-0.24
DCT. 1985	DŢ	10	-	-	-	-	-	-	0.12	0.04-0.16
SENECA LANS										
1980	er	2	<0.01	-	<0.01	-	0.16	0.16-0.16		0.02-0.0
1980	LT	8	<0.01	-	<0.01	-	0.45	0.10-0.64	0.11	0.03-0.1
198 B	L1-#	P	-	-	-	-	-	-		
1983	LT-P	10	-	-	-	-	-	-		
1983	LT	27	-	-	-	-	-	-	• Q.D6	0.01-0.1
CATUGA LAKE										
1960	LT	4	<0.01	-	<0.0L	-	0.34	0.26-0.41	9 O U7	0.04-0.0
1965	LT	21	-	-	-	-			0.09	0.03-0.2

1

(o) MYSDEC 1987: Concentrations are

in ust/grace (pp∞)

LT + Lake Trout

RT . Rainbow Trout

LAS - Lorge Mouth Bass BT - Brock Treat

ME = Volleye LT-P = Lake Trout - Femole LT-H = Lake Trout - Male

	• 					IDES DETECT	ED IM FISH TATE RIVERS ((@)				
ಟಿಟ್ ಡಾವೆ ರಿಶೀಲ	Fles		A∨g. FCD	PC3 Renga	A∨© . 009	100 പ്രണ്യാ	Avg. Diolærin	Dialdrin Gança	Avg. Endr in	Endr In Renco	A∨8. MCD	KCØ ಗಿದ್ರಾವ
NINGOA BINDO COLON	CULLE		``````````````````````````````````````	······································		······································						
1631	\$ *0	2	1.01	0.59-1.29	0.14	0,06-0.19		0.01-0.02	<0.01	<0.01	<0.01	<0.01
1021	CASS	8	2.91	3.01-0.49	0.21	0.14-0.26	0.03	0.01-0.05	0.01	<0.01-0.02	0.01	<0.01-0.0
Bolar Louisian												
1931	\$ # @	2	0.9	0.82-1.07	0.1	0.09-0.14	0 01	0.01-0.01	<0.01	-	<0.01	-
1001	CAS?	8	4.44	-	0.95	-	Q.02	-	0.02		0.02	-
CALFFALO DIVER				• .								
1930	CAE?	2	0.75	0.49-0.02	0.3	0.29-0.3	<0.01	10.0>	<0 01	-	<0.01	
1931	P\$	2	0.4	0.39-0.41	0.04	0.03-0.04		<0.01	<0.01		<0.01	
1001	CARP	2	4.72	D.6D-14.5	0.5	0.46-0.00		0.01-0.02	<0.01		<0.01	
1936	CAEP	8	6.67		1.63		0.04	· · ·	<0.01		<0.01	
1004	8	ß	8.87		0.3		0.01	-	<0.01	-	<0.01	
CINCOL DIVER LEVIS	1021											
1904	SkC)	2	3.16	2.09-4.25	0.36	0.22-0.55	0.02	0.01~0.02	<0.01	· -	<0.01	•
1604	2	6	8.25	-	0.12	-	<0.01	-	<0.01	-	<0.01	
ICHAMANDA CREEK AN	DVE KCP					· •						
1905	2	2	0.27	0.26-0.28	0.02	0.01-0.02	×0.01.	-	<0.01	-	<0.01	
1005	ස	5	0.92	0.04-1.00	0.03	0.07-0.10) <0.01	· _	<0.01	-	<0.01	
Coler KCP								· .				
1985	23	2	0.3	0.29-0.32	0.01	0.01-0.01	<0.01		<0.01	1	<0 01	
1935	3	2	0.75	0.64-0.06	0.04	0.05-0.04			<0.01		<0.01	

1

(a) ENSEE 1907 : Concentrations are in ug/gree (pps).

SHO . Sooll couth boos

PS . Propa Incood

CO - Drown builtmed

Ca = Dect Boos

Cab . Cab

PH-DVF15

TABLE 2-28 (continued)

20

1

PCB&/PESTICIDES DETECTED IN FISH COLLECTED PRON NEW YORK STATE RIVERS (.)

River and Dote	8° i ak		Avg Lindono	Lindana Ranga	Avg. Hires	Mires Bango	A∨g. Hg	Hy Rango	A∨g Chiordano	Chiordണ്ട് ജണും
NIAGRA CIVER CELON	CLEVALO									
1901	5468	2	<0.01	<0.01	<0.01		0.34	0.24-0.4	0.03	0.02-0.03
1931	CARP	3	0.01	<0.01-0.01	<0.01		0.20	0.12-0.38	0.04	6.04-0.04
Dolar Louistan										
1981	SPG8	2	<0.01	~	0.02	0.02-0.02	0.32	0.24-0.4B	0.04	0.04-0.0
1 76 1	CARP	8	0.01	-	0.04	-	0.36	-	0.1	
SUFFALO BIVES								•		
1980	CARP	2	<0.01	-	<0.01	_	0.15	0.14-0.16	0.05	0.05-0.0
1993	PS	2	<0.01	~	<0.01	-	0.16	0.14-0.17	0.01	0.01-0.0
1981	CARP	2	<0.01	~	<0.01	-	0.10	0.1-0.12	0.12	0.11-0.1
1984	C ARP	A	<0.01	-	<0.01	-	HA.	NA	0.53	
1984	24	8	<0.01	~	<0.01	-	MA	MA	Q. 10	
HINGRA BIVER LEVIS	1021 -	-						•		
1934	SHE	2	0.01	-	g.07	0.03-0.11	HA	MA	0.09	0.06-0.1
1994	. 83	8	<0.01	-	0.03	-	MA	НА	0.03	
tomahanda cefer ar	ove wop									
1985	208	2	<0.01	-	<0.01	-	NA	на	<0.01	
1905	60	2	<0.01	-	<q.01< td=""><td>-</td><td>Ma</td><td>HA.</td><td>0.04</td><td>0.0)-0.0</td></q.01<>	-	Ma	HA.	0.04	0.0)-0.0
Bales HOP										
1965	R9	2	<0.01		<0.01		MA	ы	<0.01	
1985	200	2	<0.01		<0.01		HA	bLA	0.04	0.02-0.0

(a) MISDEC 1967 : Concentrations are

in ug/grate (pp=)

SHOP - Small mouth base

PS = Pumph inseed

DS - Brown builthand

BR . Boch Dass

Cerp ·· Cerp

1

PIFAVEIS

PHYSICAL - CHEMICAL PROPERTIES OF CHEMICALS DETECTED IN SURFACE SAMPLES

	Holocular Kolghi (Cl/col)	Yalor Solubility (ag/1)	Vapor Procoure (as K3)	Honry's Low Constant (pta-a3/col)	KOC (⇔1∕g)	LOC (XD¥)		ርF /ኳይ)
HELORIMATED ALIPHATICS								
horoothene (a)	. 64.52	5.74 E+3	1.00 E+3	2.0 E-3		15	1.43	
.1-Dichiorosthems	98.97	5.5 E.)	1.02 E+2	4.3E E-3		30	1.79	
, 2-Dichieroshans	96.94	6.] E+]	3.24 E+2	6.56 E-3		59	0.40	1.6
bhylons chlorids	84.93	2.0 E+4				88	1.3	5
, 1, 1-Trichierosthana	133.41	1.5 E+3		-		152	2.5	56
Ir ichier es thans	131.29	1.50 E+3	5.79 E+1	9.1 E-J		126	2,42	10.6
SINPLE ARONATIC COMPOUNDS								
cnosnoC	70.12	1.75 E+3				81	2.12	5.7
Ehylbonzeno	106.17					1100	3.15	37.5
Concuto	92.15					300	2.73	10.7
Bylan (total)	105.17	1.98 E+2	1.0 &+1	7.04 E-1)	240	3.26	
CIELOGIMATED ACONATICS						•		
Chlorcoonzono	112.56					3 30	2.84	10
1,2-Dichlorabonzono	147	1.0 E+2	! I.O & +O			1700	3.6	54
anos nodo relation 2010 - C , I	847	• • • • •			-	1700	3.6	5
1,4-Dickiorobonzono	147	7.9 E•1	1.10 E+0	2.09 E-1		1700	. 3.6	· 54
KETONES								
Acalana	se	1.0 E+6			•	2 2	-0 24	-
2-Dutiona	72.12	2.60 E+5	7.75 E+1	5.14 E-5	5	4.51	0.59	
PIEXOLIC CORPOLDOS		. :	-			•		
Phonol	. 94	9.3 6+0	3.41 E-1	4.54 E-	,	14 2	. 1 46	· • •
2-Chi or optional								
2,4-Doosthylphenol	322.10				-	10 4	23	15
2-Mathylphanol 4-Mathylphanol	104	3.1E+4	4 2.4 E-I	1 1.1 C=(5	500	1.97	

TABLE 2-29 (CONTINUED)

ı

1

Ł

PHYSICAL - CHEMICAL PROPERTIES OF CHEMICALS DETECTED IN SURFACE SAMPLES

	Kolecular Veight (gi/moi)	Kater Solubility (ag/1)	Vapor Pressure (ma Hg)	Henry's Lau Constant (atemo]/eol)	KQC (@1/g)	LOG (KOH)	BCF (\$/kg)
HITROGEN COMPOUNDS							
Fairrosodiphonyisaina (b)	193.23	3.5 E+1	6.69 E-4	5.0 E-6		3.13	
PHATHALATE ESTERS							
Bis(2-sthylhesyl)phthalato (s)	391	4.0 E-1	2.0 E-7	4.4 E-7	87,400	5.11	
Di-n-butylphthalato (a)	278	9.2 E+0	1.0 E-S	1.3 E-6	1, 390	3 75	
Diethylphthalato (a)	222.2	6.8 E+2	3.5 E-3	1.5 E-6	69	2 46	
Di-n-octylphthalate (a)	391	3.4 E-1	8.4 E-4	5.5 E-6	19,000		
Beneyl butyl patheloto	312					> 4.42	
DRGAMIC ACIDS							
Deniole Acid (a)	122.4	2.9 E+]	7.05 E-1	3.92 E-7	54.4	1.67	
POLYARDHATIC HYDROCAEBONS (c)							
Dibenzofuran							
Acenaphthylona	154.21			-	4,600		
Anthracena	176.2				•		
Benzo(a) anthracens	228.29						
Benzo(b) fluoranthema	252.1						-
Benzo(g,h,i) perviena	274.34				• •		
Bonzo(s) pyreno	228.3						
Chrysens El uor antheres	202.24				•		
Fluorent	116.2						
Indeno (1,2,3-cd) pyrame	274.3						
Haphthalens (B)	128.16						
Phonenthrene	178.2						
Pyrone	202.3						
POLYCIELORINATED BIPIELNYLS	321	1 31 C-1	2 116-	5 1.UZ-E-	3 530,00	ن ۵۰ د	· 100,00

TABLE 2-29 (CONTINUED)

PHYSICAL - CHEMICAL PROPERTIES OF CHEMICALS DETECTED IN SURFACE SAMPLES

	Holocular Volght (gl/col)	₩¤tor Solubility (ლე/i)	Vарог Ргозенго (С КЗ)	llenry's Low Constant (atama)/col)		(KDW)	υ() (1∕¤g)
01021138/1102A25					•		
2.3.7.0 1000	322	2.01-04	1.7E-06	\$.6E-03	3, 300, 000	6.12	5000
CIRCOINATED PESTICIDES							
Aldrin	364.93	1.0 E-1	4 O E-6	1.6 E-5	i 96,000	5.)	26
Dota-CMC (d)	291	2.4 E-0	2.0 E-7	4.47 E-1	008.1	39	
Chlerdens	409.01	5.6 E-1	1.0 E-5	9.63 E-6	140,000	31.35	14,000
000	320.05	1.0 E-1	1.89 E-4	7 96 E-0	770,000	6.2	
00T	354.49	5.0 E-1	5.5 E-4	5 13 E-	243,000	6.19	54,00
Dioldrin	380.93	1.95 E-1	1.78 E-7	4.58 E-1	1,700	3.5	4,76
Endr In	300.91	1	2.0 E-1		•	•	
Endooutten 11	406.95						

Source: Encopt on noted, data were abtained from EPA 1986.

o. Source: Clemento 1989.

b. Source: ADSTO 1987 (D)

c: Searco: ATSOR 1909. Vepor pressure is in terr for temperatures ranging from 20 to 25 C.

d: Source: Clamento 1968.

o. Sourco: March 1981.

FILE: I'II CIISUA

COMPARISON OF FOR ACTION LEVELS TO THE CONCENTRATION DETECTED IN FISH COLLECTED IN 1987 AND 1998

		_	Aoro Lake		Ellicott	Crock - Bowe	unsvillo	Ellicutt Crook - Amhorst		
Compound	7DA Action Lovel (pps)	Arithmotic Maan (ppm)	Maximum Conc. (ppm)	Minimum Conc. (ppm)	Arithmotic Moan (ppm)	Maxizum Conc. (pps)	Minicus Conc. (pps)	Arithmotic Mean (ppm)	Masimus Conc. (pps)	Hinimum Conc. (ppm
otal PCBs (a)	2	0.253	0.259	0.07	0.131	0.19	0.09	0.22	0.64	0.09
lipha - ceac)#EL (0)	0.00069	0.0021	0.0013	-	-	(0.001	0.007	0.001	9.001
alto ~ 800C	250	-	-	<0.001	~	-	(0.001	-	-	c0.001
otal ODT (b)	5	0.0293	0.0862	0.0063	0.0162	0.0392	0.0037	0.0532	0.101	0.0098
Mlordane (c)	0.3	9.006	0.0089	0.001	0.006	0.0134	0.00)7	0.0163	0.0391	0.0052
eptechlor openide	0.3	0.00125	0.0062	0.001	0.00070	0.001	0.001	0.0015	Q.Q038	0.001
Li ren	0.1	0.00128	0.001	0.001	-	-	<0.001	0.007	0.001	0.001
ædr i a	0.3	-	-	(0.001	0.00078	0.001	0.001	0.0074	0.0011	0.001
ldrim/Dieldrin (d)	0.3	0.00133	9.9017	0.001	0.0019	0.0024	0.0012	0.0065	0.014	0.0011
кв	ME	0.00004	9.0036	0.001	-	-	(0.002	0.00062	0.0011	0.001
latoury	1.0	0.0552	0.176	(0.05	0.191	0.357	0.048	NA	NA ·	MA ·

(a) Total PCDs equals the sum of the following three Areclor: Areclor 1016; Areclor 1254; Areclor 1260.

(b) Total DDF equals the sum of DDF and its matabolites (DDE and DDD).

(c) Chlordene concentrations are the sum of the detected concentrations of cis- and trans- chlordene, omychlordene, and trans-nonachlordene.

(d) The concentrations above equal the concentrations for dialdrin.

(e) EZ = Home ostablished.

(f) Because the compound was detected only one time, a mean could not be established.

DA - Est Available

.

TABLE 2-30 (Cont'd)

CORPARISON OF PEA ACTION LEVELS TO THE CONCENTRATION DESIGNTED IN FISH COLLECTED IN 1907 AND 1990

			colt Crook - Air			ry 11B to Ellic	ott Crook
	PDA Action Lovol	Arithootic	Monteuro	Minima	Arithmetic	Masiaua	Minimus
Cocpound	(PP2)	(ogg) ased	Conc. (pps)	Conc. (pp=)	Moan (ppo)	Conc. (ppa)	Conc. (pps)
rotal aces (a)	2	0.005	0.232	0.026	0.1350	0.206	0.020
Alpha - CCC	623 (o)	224	LIA.	МА	NA	на	MA
Bolto - ECC	1	64	LIA.	Ма	NA .	AM	АМ
Potal DDR (b)	\$	0.045	0.079	0.01	0.0150	0.029	0.003
Calerdane (c)	0.3	9.011	0.019	0.014	-		(0.005
Eegeochlor Epoxide	9.3	AB	NA	AM	NA ·	NA	NA
Rison	9.1	-	-	<0.002	. –	-	<0.002
linds in	9.3	EIA.	MA	NA	NA	MA	NA
Aldrin/Dioldrin (d)	9.3		- '	(0.005	· -	-	(0.005
203	C21	~		(0.002	-	-	(0.002
Katoury	1.0	9.09	0.177	0.133	0.0325	0.055	0.055

(a) Total PCBs equals the sum of the following Arocler 1016/1248 and Arocler 1254/1260.

(b) Total DDF equals the sum of DDF and its matabolitos (DDE and DDD).

(c) Chlordone concentrations are the our of the detected concentrations of cis- and trans- chlordone, suchlardone, and trans- chlordone, suchlardone, and trans- consecutive date.

(d) The concentrations shows equal the concentrations for dioldrin.

(o) L3 = Daco established.

(f) Concesso the compound was detected only one time, a man could not be established.

MA - Mot Avoilable

1

SPLECTED CLEMICALS OF CONCERN - SOILS LANDFILL SOILS, RESIDENTIAL SOILS, APRO PATH SOILS PROFEL EROTHERS LANOFILL, CREEKTOMACA, NEW YORK

	LANDFTIL	REASON FOR SELECTION (a)	RESIDENTIAL	REASON FOR
HEMICAL CLASS	<u> 9011.5</u>	SELECTION (a)	SOIL	SELECTION (a)
RGANICS				
A h	v	F		
Acetone	X	-		
Chlorobenzene	X	0		
Hethylene Chloride	X	P		
bis(2-Ethylhexyl)phthalate	X	F		
Dibenzofuran	X	F		
Diethyl phthalate	X	F		
Anthracene	X	F		
Benzo(a)anthracene	X	F		
Benzo(b) fluoranthene	X	- F		
Benzo(g,h,i)perylene	x	F	,	
Benzo(a)pyrene	x	F		
Chrysene	x	F.		
Dibenzofuran	x	F		,
Fluoranthene	x		<i>,</i>	
Indeno(1,2,3-ed)pyrene	x	F		1.
Remanthrene	x	F		
_	x	F		
Pyrene	A	r .		
PCBs	X	F		
PESTICIDES				
Aldrin	X	0		
beta-BiC	x	F		
gama-Chlordane	x	F		

SELECTED OLEMICALS OF OUNCHEN - SUILS LANDFILL SOLLS, RESIDENTIAL SOLLS, AFRO PAIN SOLLS FRUEL BRUTHERS LANDFILL, OLEXCIONACA, NEW YORK (CONTINUED)

	•		•	
· · · · · · · · · · · · · · · · · · ·	LANDFILL	REASON FOR SELECTION (a)	RESIDENTIAL	REASON FUR
CHEMICAL CLASS	SOILS	SELECTION (")	SOIL	SELECTION ("
INDRCANICS				
Arsenic	X	F,B	X	F,B
Barium	X	F,B	X	F,B
Beryl)iu:	X	F,B		
Cartalum	X ·	· F,B		
Chroaius	Х	F,B	· X	F,B
Lead	X	F,B	X	F,B
Manganese	X	F,B	Х	F,B
Mercury	X	F,B	Х	F,B
Nickel	X	F,B		
Silver	X	F,B		
Zinc	X	F,B	X	F,B
Cyanide	X	F,B		
DIOXINS/FURANS	X	B	X	B

ı.

SPLECTED CIEMICALS OF CONCERN - SETEMENTS ERAINCE DETCH AND APRO CREEK SETEMENTS APRO LAKE SETEMENTS AND ELLICOTT CREEK SETEMENTS PROFE, BECTHERS LANDFILL, CHERTCHACA, NEW YORK

	DRAINAGE DITCH AND	REASON FOR SELECTION ^(a)	AERO LAKE	REASON FOR SELECTION	ELLICOTT CREEK	REASON POR
OPERALCAL CLASS	AERO OREEK	SELECTION	SEDIMENTS	SELECTION	SEDIMENTS	SELECTION ^(a)
ORCANICS						
Acetone	X	F	X	P	X ·	F
Chloroby izere	X	P			Х	F
1,2-Dichlorobenzene	X	P				
1,4-Dichlorobenzene	X	F	X	F		
Methylene Chloride	X	F				· .
Trichloroethylene		• •			x	F
Diethylphthalate	X	F			x	F
bis(2-Ethylhexyl)phthalate	X	F			X	P
Butylbenzyl phthalate	¥ -	F				
Di-n-butylphthalate	X	P			X	F ·
N-Nitrosodiphenylamine	x	F				
Acenaph thene	x	F				
Acenaphthylene	X	P				
Anthracene	X	P			X ·	F
Benzo(a)anthracene	X	F			X	F
Benzo(b)fluoranthene	X	F	•		Х	F
Benzo(g,h,i)perylene	X	F			X	F
Benzo(a)pyrene	X	F			X	F
Chrysene	X	F			X	F
Dibenzo(a, h)anthracene	X	F				
Dibenzofuran	X ·	F				
Pluoranthene	X	P			X	F
Pluorene	X	F				
Indeno(1,2,3-ed)pyrene	X	F			X	F
Naphthalene						
Phenanthrene	X	F			X	F

SZI PICTED ODEATICALS OF ORSCHEN - SHEREMIS URAINER INTOH AND AAND OREEK SHEREMIS AERO LASE SEDIMENIS AND ELLIOITT OREEK SHEREMIS FROM BRONDAS LANDFILL, ODEETIVALA, NEH WIKK (OONTINLED)

**************************************	DRAINACE			
	DIA HOLID	REASON FOR	ELLICOTT CREEK	REASON FOR
OHEMICAL CLASS	AERO OREEK	SELECTION	SEDIKENIS	SELECTION
DRGANICS (Cont'd)	÷ .			· · ·
•				
Prenol	X	0		
Pyrene	· X	P	X	F
PESTICIDES				
beta-BiC	X	F		
POBs			•	
INDRGANICS			•	·
1. 1.	,	·		
Arsenic	X	F,B	•	· .
Barium	. A	F,B	X	. F,B
Cadaium	X	F,B	X	F,B
Chronius	· X	F,B		
Copper				
Lead	X	F,B	X	F,B
Manganese	X	F,B		
Kercury	X	F,B	X	F,B
Nichel	X	F,B		
Varedium				
Zinc	X	F,B	X	F,B
Cyanide	r	F,B		
DIOXINS/FURANS	x	8		

•

SELECTED CHEMICALS OF CONCERN - SURFACE WATER IRAINCE DITCH, AERO LARE, LEACHATE SEEPS, ELLICUTT CREEK FRUEL BRUTHERS LANDFILL, CHERNICHACA, NEW YORK (CONTINED)

CHEMICAL CLASS	DRAINAGE DITCH	REASON FOR SELECTION (a)	AERO LAKE	REASON FOR SELECTION (a)	LEACHATE SEEPS	REASON FOR SELECTION (a)	ELLICOIT CREEK	REASON POR SELECTION (a)
ORCANICS							······································	
Benzene					X	F		
Chlorobenzene					X	F		
1,2-Dichlorobenzene	Х	0			X	F		
1,3-Dichloroberzene					Х	F		
1,4-Dichlorobenzene					х	F		
1,1-Dichloroethane					x	F		
1,2-Dichloroethylene	X	0						
1,2-trans-Dichloroethane	-	-			х	F		
1,2-Dichloroethane	X	F			X	F		
Trichloroethylene		-		,	X	Т		
bis(2-Ethylhexyl)phthalate			Х	T.	X	F	X	F
Diethyl phthalate								
Di-n-butylphthalate								
2,4-Disethylphenol	х	0			X	F		
N-Nitrosodiphenylazine								
Phenol					X	0		
Dibenzofuran					X	F		
Fluoranthene					X	F		
Pluorene					X	F.		•
Pyrene					X	F		
PCBs	1							
PESTICIES								
Dieldrin					x	F		
Endosul fan					Х.	F		,

TAPLE 2-31

SMECTED CHEMICALS OF OUNDERN - SURFACE WATER DRAINEE LETTOE, APRO LAZE, LEACHATE SEEPS, ELLIOUTT CREEX FRILL BRUTHERS LANDFILL, CHERENOWACA, NEW WIRX (CONTINUED)

OHENICAL CLASS	DRAINACE DITCH	REASON FOR SELECTION	AERO LAKE	REASON FOR SELECTION	LEACHATE SEEPS	REASON FOR SELECTION	ELLIQUIT CREEK	REASON FOR
INURCAMICS								
Arsenic								·
Bartus				· .				
Beryllics								
Cardentum			X	F,B				
Ohronium				·	-			
Lead								
Manganese				•				
Kenoury			X	F,B				
Nickel		•		-				
Vanadlum								
Zinc								
Cyanida	ч. -	•						

. . .

SELECTED CHEMICALS OF CONCERN - GROUNDWATER URCONSOLIDATED AQUIFER, BEDROCK AQUIFER PFOHL BROTHERS LANDFILL, CHERETOWAGA, NEW YORK (CONTINUED)

CHEHICAL CLASS	LENCONSOLIDATED AQUIFER	REASON FOR SELECTION (a)	BEDROCK AQUI FER	REASON FOR SELECTION (a)
ORGANICS				
Benzene	x	G, O	X	G,0
Chlorobenzene	x	G,0		
1,3-Dichlorobenzene	X	G,0		
1,4-Dichlorobenzene	X	G,0		
1,1-Dichloroethane	X	G,0	X	G,0
1,1-Dichloroethylene	X	G,0	Х	G, 0
1,2-trans-Dichloroethylene			Х	G,0
Toluene	. 1	· X	G,0	
1,1,1-Trichloroethane	Х	G,0		
Xylene	X	G,0		
bis-(2-Ethylhexyl)phthalate	X	G,O	Х	G,0
2-Chlorophenol	Х	6,0		-
2,4-Dimethylphenol	Х	G,0		
2-Methylphenol	x	C , O		
4-Methylphenol	X	G,0		
Phenol	X	G,0	X	G,0
PESTICIDES		, · ·		
Aldrin			Х	G,P
Endosulfan II	X	C,P		
PCBs	X	G,PCBs		

1 e ,

SELECTED CHEMICALS OF CONCERN - CROENDYATER UNDENSCH I DATED AGUI PER, BAURDOX AGUI PER PFORE ERMITEERS LANDFILL, CHEEDITOVACA, NEV FORK (CONTINUED)

	UNCONSOLIDATED	REASON FOR	BEDROCK	REASON FOR
CHEMICAL CLASS	AQUIFER	SELECTION	AQUI FER	SELECTION
INDRGAMICS			• .	
Arsenic	X	В	· x	B
Barium	X	B	X	B -
Cadaiua	X	В	X	B
Chroziwa	X	B	X	B
Lead	X	B	X	B
Hanganese	X	B	X	В
Hercury	X	B	. X	B
Nichel	X	· B	Х	В
Silver	X	B		
Vanadlum	X	· B	Х	B
Zinc	X	B	х	B

(a) Reasons for selection are as follows (see text for further descriptions of selection criteria):

P = Frequency

0 = Other Media

B - Background

T = Toxicity

C,0 - Groundvater, organic

G,P = Groundwater, pesticide

G,PCBs - Groundwater, PCBs

TABLE 2.3-1

COMPILATION OF NUMERICAL SCOR FOR SOILS, SEDIMENTS AND LANDFILL SOLIDS

PARAMETER	
PARAMETER	SCG 🧟
Acetone	c
Chlorobenzene	5.5
1,2-Dichlorobenzene	1.0
1,4-Dichlorobenzene	1.0
Methylene Chloride	-
Trichloroschylene	1.0
Bis(2-ethyl hexyl) phthalate	4.35
Butylbenzyl phthalate	2.0
Di-n-butyl phthalate	8.0
Diethyl phthalate	7.0
N-nitrosodiphenylamine	
Acenaphthene	1.6
Acenaphthylene	•
Anthracene	7.0
Benzo(a) anthracene	•
Benzo(b) fluoranthene	0.33
Benzo(b,k) fluoranthene	0.33
Benzo(g,h,i) perylene	\$0.0
Benzo(a) pyrene	0.33
Chrysene	0.33
Dibenzo(a,h) anthracene	0.33
Dibenzofuran	2.0
Fluoranthene	19.0
Indeno(1,2,3-cd) pyrene	0.33
Naphthalene	1.0
Phenanthrene	2.2
Pbenol	0.33

~

105047041.177-21.54 621291 55

COMPILATION OF NUMERICAL SCOR FOR SOILS, SEDIMENTS AND LANDFILL SOLIDS

PARAMETER	SCG:
Pyreae	6.65
Aldrin	0.041
Deta - BHC	0.010
Gamme-chlordane	0.20
Dioxins/Furans	•
PCBs	10 a
Arsenic	7.5
Barium	300 or S.B.
Beryllium	0.14
Cadmium	1.0
Chromium	10.0
Copper	25.0
Lead	32.5 or S.B.
Manganese	S.B.
Mercury	0.1
Nickel	13.0
Silver	200.0
Vanadium	150 or S.B.
Zinc	20.0
Cyanide	-

NOTES:

5

Land Land

أعتله

1

لمحتفظ

No. of Concession, Name

The second

1

ביק גיק

المناقبة الم

5

 \mathbb{E}

All units in mg/kg or ppm.

a Value shown is subsurface soil guideline values. Value for surface soil criteria is 1 ppm.

S.B. Site Background

SCGs shown are based on draft soil cleanup criteria issued by Technology Section, Bureau of Program Management, Division of Hazardous Waste Remediation, NYSDEC and are guideline values, only.

1850770HL\T>>1.81 89/129: br

TABLE 2.3-2

OBSERVED CONTAMINANT RANGES AND GUIDELINE VALUES POR SOILS AND SEDIMENTS

Percenter	Range of Decestral A. Concentrations In Landfill Soils	Range of Descent	X Sugar
Actor	21 - 950	15 - 770	aliana Anto Anna Antonio Anton
Calorobeausae	18 - 2300	10 - 23	5.5
Methylane Chloride	§ - 🕬	Ð - 150	
Bis(2-sthyl beryl) phthelate	51 - 100,000	C 19	4.95
Disthyl phthahte	150	<i>a</i> w	7.0
Di-o-butylphthalate		250	8.0
Aconsphilitylione	gini,	910	-
Anthreogne	39 - 1900	370 - 2,500	7.0
Benzo(a) anthracenz	\$5 - 24,000	150 - 6,000	
Benzo(b) fluoranihene	70 - 32,000	· ==	0.33
Benzo(g.h.i) perylene	62 - 200	1,500 - 2,500	©0.0
Benzo(a) pyrene	92 - 21,000	280 - 6,000	0.33
Chrysene	53 - 25,000	170 - 7,500	0.33
Dibenzofuran	120 - 1,900,000 👘	2,400 - 13,000	2.0
Fluoranthene	120 - 67,000	160 - 13,000	19.0
Indeno(1,2,3-od) pyrene	65 - 390	200	0.33
Phenanthrene	5 - 32,000	200 - 10,000	2.2
Pyrene	100 - 49,000	240 - 15,000	6.65
Aldrin	5-9		0.0 41
Beta - BHC	9.0	22 - 75	0.010
Gamma-chlordane	4.8 - 9		0.20
Dioxins/Furans		<u> </u>	من میں ایک میں ایک میں میں ایک ایک میں ایک میں ایک میں ایک میں
PCB:	3,700 - 8,700	4,000 - 7,700	10 a
Альепіс	3.1 - 375	3.0 - 29.9	7.5
Banum	34.9 - 12,500	95.5 - 2,220	300 or S.B.
Beryllium	0.17 - 2.3	0.23 - 0.63	0.14
Cadmium	1.3 - 39.4	2.2 - 18.5	1.0

84.3

TABLE 2.3-2 (0001.)

OBSERVED CONTAMINANT RANGES AND GUIDELINE VALUES POR SOILS AND SEDIMENTS

Punancer	Concention in Local Solution	Concention b * 10	1
Chrowium	7.8 - 18,100	9.4 - 49.1	10.0
Соррег	ç ₁	14.8 - 270	25.0
Las	12 - 55,200	27.8 - 53.5	32_5 67 8.B .
Maagamese	198 - 4,430	132 - 1,770	S.D.
Mercury	0.14 - 4.4	9.18 - 1.2	0.1
Nickel	0.0061 - 565	10.0 - 125	13.0
Silver	9.69 - 11.2		200.0
Zinc	64 - 35,300	69.1 - 2.770	20.0
Cyanide	0.74 - 33.4	15-8	

NOTES: All units in mg/kg or ppm.

SCGs shows are based on draft coil cleanup criteria issued by Technology Section, Bureau of Program Management, Division of Hazardous Waste Remediation, NYSDEC.

14- - **1**4

ł

2

^a Value shown is subsurface soil guideline values. Value for surface coil criteria is 1 ppm.

- AL

Ì

TABLE 2.3-3

PFOHL BROTHERS - FEASIBILITY STUDY COMPILATION OF NUMERICAL ARARS/SCGS FOR GROUND WATER, LEACHATE AND SURFACE WATERS

PARAMETER	NYSDEC CLASS DA OW	NYSDEC CLASS B SW	NYSDEC CLASS D SW	NY3DOH MCLs (C)	epa Nipowr	SDWA MCLQ	MYS MCL	7-DAY NAS	PWQC (W & PISH BYORST.)
Benzene	ND(2)	6	ð	5	•	ZERO	ND(5)	259	0.66
Chlorobenzene	5	5	50	5	-	•	5	•	•
Chloroethane	-	-	-	5	-	-	-	•	•
1,2-Dichlorobenzene				5	-	600	-	300	•
1,4-Dichlorobenzene	4.7	5	50	5		75	-	369	490
1,) Dichlorobenzenz	5			5		600	-	300	483
1,1-Dichloroethans	5	-	-	5	-	-		-	460
1,1-Dichloroethylene	5	-	-	5	-	7	-	-	•
trans-1,2-Dichloroethylens	5	•	-	5		-	-	•	-
Elhylbonzone	5	-	-	5	-	700	•	•	1400
Trichloroethylene	5		81	5 ·		ZERO		19620	2.7
1,1,1-Trichloroethane	-	•	-	S,	-	200	-	76000	0.6
Tohere	5	-	•	5	•	2000	-	-	14309
Xylence	5	-	-	S(each)	-	10000	-	11269	-
2-Chlorophonol	-	-	· •	30	-	-	-	0	
2,4-Dimahylphasol	-	-	-	50	•	-	-	a •.	-
2-Methylphenol	-	-	-	50	•	-	-	-	-
4 Methylphenol	-	-	-	50	-		-	-	-
N-nitrosodiphenylamine	50	-	-	50	-	-	-	-	0.0008

125-1770741.173 3-3.784.

TABLE 2.3-3 (Com.)

1

0 3

1

C.F.

¥3

577

PFOHL BROTHERS - FEASIBILITY STUDY COMPILATION OF NUMERICAL ARARS/SCGS FOR GROUND WATER, LEACHATE AND SURFACE WATERS

PARAMETER	NYSDEC CLASS GA GW	NYSDEC CLASS B SW	NYSDEC CLASS D SW	NYSDOH MCL0 (C)	epa Nipowr	SDWA MCLG	NYS'MCL	7-Day NAS GNADLO :	PURCE (17 A PERH ENGEST.S.)
Phonol	• 10	5 6	56	50	•	•	•	-	59
Dibenzofuran	-	-	-	50	-		-	-	- .
Dicthylineaylphtholose (DENP)	50	0.6	-	50	-	ZERO	-		-
Aldria	ND(0.05)			-	-	. •	•	• ,	0.074
Dicklin	ND(0.05)	0.001	0.001	-		-	-	•	.022371
DDD	ND(0.05)	0.001	0.001	•	•	-	-	•	•
Endrin	NC(0.009)	0.002	0.002	0.0002	Ø.2	2	0.0002	•	. B
Endocullan II	-	0.007	. @.22	30	-	-	. .		-
РАНо	~	•	-	-	-	-	· •	-	0.@926
PCBs	0.1	0.601	0.001	•	-	•		5 0	CEEEFF
Aluminum	•	100	-	-	•	•	•	5000	-
Arvenie	25	190	360	-	5 9	ZERO	3 70 -	-	2.2
Doriwa	1000	•	-	-	1610	5000	1C2D	47700	1639
Beryllium	3	11,1100	-	-	•	ZERO	-	•	0.C&3
Codmium	. 10	9.7	7	-	10	10	10	3	10
Chromium	50	3187	-	- .	50	100	· \$9	• ••	. s
Coball	-	S	29	-	-	-	•		-
Соррег	200	18.5	2698	-	-	1300	1000		170309
Land	25	6.3	160.5	-	50	ZERO	50	-	50

105-10000L172-3-3.TEL

00V12/01 Ha

TABLE 2.3-3 (Com.)

PFOHL BROTHERS - FEASIBILITY STUDY COMPILATION OF NUMERICAL ARARS/SCGS FOR GROUND WATER, LEACHATE AND SURFACE WATERS

PARAMETER	NYSD&C CLASS UA OW	NYSDEC CLASS E SW	NYSDEC CLASS D SW	Hysdon McLo (C)	epa neodu	SOWA MICLO	NTS LCL	7-DAY MAS SMARLS	PSH POEST.
Eadoadfee D	•	9.009	0.22	50	•			-	-
PANo		·		-	-	-	-	-	0.5323
PCDo	0.1	0.001	0.001		-	-	-	\$ 70 .	<u>Less</u> tr
Abation		100	<u> </u>		-	-	.	£300	•
Areaale	25	190	360	-	90	ZIERO	50	•	2.2
Borisca	1000	•	-	-	1000	3000	1000	6769	5309
Beryllicon	3	11,1109	-		-	ZERO	-	-	0.054
Codmian	10	1.7	7	-	10	10	10	S	10
Chroaten	50	3187	-	-	50	103	50		<u>62</u>
Celecia	-	5	. 29	- .	•		-		•
Серрог	200	10.5	2480	-	•	1363	1900	•	176553
Lazd	25	6.3	169.5	-	50	ZIERO	50	·	50
Mezgoorea	900			-		-	300		50
Moreury	2	0.2	0.2	-	2	2	2	-	0.141
Nichel	<u> </u>	142	2748	<u> </u>		169	·		03.4
Sela sinca	10	1.0		·	10	50	10		10
Silver	50	0.1	10	. <u> </u>	50	<u> </u>	<u>52</u>		90
Vcmdesca		14	190		-	· · · · · · · · · · · · · · · · · · ·		•	<u> </u>
Zbar	000	20	497	-	*	-	9359		9253
Cyasle	100	5.2	n	-	-	200	-	-	183

NOTES:

a - Inchector points and 2,4-dichlores Scapio
 b - Total vachiorizzied phonois
 c - Total vachiorizzied phonois
 c - Total organics not to encode 100 pg/L.
 d - New Fersety DEP criterie for total volatile argents compounds - 10 pg/L.
 ZERO - Employ and sector criteries
 FWQC - Federal Water Quality Criteries
 Effluent limits from 6NYCRR, Parto 702 and 703
 MCLGI - Maximum Conterminana Limit Goal
 MARE S - Supervision Conterminana Limit Goal

SNARLS - Sugger No Adveres Response Levels

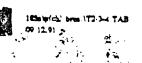
TABLE 2.3-4

GROUND WATER AND LEACHATE SEEPS: COMPARISON OF OBSERVED CONCENTRATION RANGES WITH CLASS GA STANDALDS

.

Contraction of the second s		A NEW YORK WATCHING THE PARTY OF T		Seame and
Panartar :	Alargo of Decision Concentration In Decision Congress	Berrel Deseri. Commenton la Constración la	The second states of the secon	a Jom a
Parcent:	2.7 - 20	2	J - B	*1. 0000170 ND(2)
Chlorobenesez	1,200 - 11,000		2 - 149	5
Chlorocthase	£00	S.7	1 • 91	
1,2-Dichlorobenzene	4		4 - 57	ang
1,4-Dichlorobenzene	2 - 240		2-6	4.7
1.3-Dichlorobaazane	82		4 - 69	S
1,1-Dichlorosthane	5.6 - 4900	4.1	2.9 - 4.9	S
1,1-Dichlorosthylene	240			5
truns-1,2-Dichlorosthylene	9.2	9.2	ک ا - ک	5
Ethylbenzene	-		G .	5
1,1,1-Trichloroethane	26 - 15,000		G	
Toluene	3 - 43	g .	·	5
Xylenes	400		-	5
2-Chlorophenol	13			
2,4-Dimethylphenol	630 - 940	_	30	
2-Methylphenol	72	a-		~ >
4-Methylphenol	75			
Phenol	6 - 4,000	16	7 - 10	1 a
Dibenzofuran	15 - 20		22 - ସେ	
Dischylhexylphihalaie (DEHP)	3 - 66	3 - 42	୨ - ୫୦	50
Eodosulfan II	0.69		0.032 - 0.054	دینہ مرکب پر اندر زیر کر ہے ہ
РСВ:	110	9.05		0.1
PAH			2 - 39	
Aldrin			0.007 - 0.003	ND(0.05
Dieldrin		6234 	0.007 - 0.028	ND(0.05
000	- 1		0.011	ND(0.05
DDD				

科論


TABLE 2.3-4 (0001.)

GROUND WATER AND LEACHATE SEEPS: COMPARISON OF OBSERVED CONCENTRATION RANGES WITH CLASS GA STANDARDS

Panasa	Rungo of Detected Concentrations in Shallow Ground T Water Arts	Concentrations in	Pange of Dictained Concentrations In Lanchese Seepe	Čies GA Suderis
Ahminum	224-74,000	56.1 - 1,630	39 - 303,000	
Aromic	2.1 - 22.3	2.4 - 4.7	- 2-2 - 16.7	25
Bariom	\$2.2 - 1,530	24.9 - 240	69.3 - 10,000	1000
Codmium	1.3 - 12	1.1 - 4.2	3.7 - 122	10
Chromium	2 - 198	2.4-728	3.5 - 626	S 0
Cobalt	2 - 46.9	7.1	3.4 - 157	-
Copper	2.7 - 3,060	3.7 - 28.4	19.9 - 784	200
Lead	2.3 - 369	2.3 - 6.8	6.7 - 1,640	25
Manganese	62.1 - 3450	5.9 - 4 28	123 - 16,100	300
Mercury	0.23 - 3.3	0.48	0.25 - 4.7	2
Nickel	11.8 - 141	10.7 - 198	20.4 - 521	
Silver	2.1 - 23.7 .	2	3.4 - 16.6	5 0
Vanadium	1.4 - 124	1.4 - 35.3	3.3 - 471	
Zinc	7.5 - 1490	1.4 - 44	66 - 8,270	300
Cyanide	30		18 - 31	100

A CONTRACTOR OF A CONT

NOTES: Effluent limits from 6NYCRR Parts 702 and 703. All units in micrograms per liter (ag/L).

「日本の

Distant in

1

APPENDIX C

.

ARAR VALUES: CHEMICALS EXCEEDING ARAR: AND/OR CONTRIBUTING SIGNIFICANTLY TO RISK

Media	Exposure Pathway	Chemicals contributing to significant risk	ARAR	Chemicals exceeding ARARs (ppb)	ARAR
Surface Water (Ellicott Creek & Aero Lake)	 Ingestion of surface water and dermal contact with Aero Lake surface water while swimming Dermal adsorption of drainage ditch surface waters and Ellicott Creek 			Chlorobenzene Aluminum Cadmium Iron Lead Zinc Mercury	5° 100° 300°/300° 6.3° 30° 0.2°/0.2°
	surface water			•	
Leechate Soeps	• Dermal exposure by	Bis (2-ethylhexyl)phthalste	50°	1,2 trans dichloroethene	5°
	children and workers	PAHs (Carc)	0.8 ^d	phenol	10
				1,2 dichlorobenzena	4.70
				Aldrin	0.05°
				Endrin	0.05°
	·			4,4 - DDD	0.05*
				Bartum	1,000°
			ė	Beryilium	3°
				Cedmium	10°
				Chromium	50°
				Copper	200°
				Iron	300°
	· · · ·			Lead	25°
				Magnesium	35,000°
				Manganese	300°
				1 I III I III I III I III I III I III I I	

TABLE 3-1 (comt.)

ARAR VALUES: CHEMICALS EXCEEDING ARARS AND/OR CONTRIBUTING SIGNIFICANTLY TO RISK

Media	Exposure Patheray	Chemicals contributing to significant risk	ARAR	Chemicals enceeding ARARs (ppb)	ARAR
Drainage Ditches, Aero Creek & Ellicott Creek Sediments	 Dermal absorption Ingestion 	PAHs (carc)	1.32 ^f mg/tg		
Landfill Soils	 Dermal absorption 	PAHs (carc)	1.32 ^f mg/kg	Chlorobenzene	5.58
	• Ingestion	PCBs	18	BEHP	4.4 ^B
		2,3,7,8 TCDD TEQ	0.0018	PAHs (noncarc)	114.80
		Arsenic	7.5 ⁸ 32.5 ⁸	b-BHC Chlordana	0.018
. ,		Lead	J 2 ,J ²		0.28
Growndwater	• Ingestion of drinking	Benzene	2°	Xylenes	5°
(Unconsolidated	water	1,4 dichlorobenzene	4.7°	Chromium	50°
Aquifer)	 Dermai contect 	Bis(2-chylhexyl)phthalate	50°	Iron	300°
	 Inhalation of airborne 	PCBs	0.1°	Magnes hum	35,000
	contaminants	Arsenic	25° .	Sodium	20,000
		Chlorobenzene	5°		•
		1,1,1-Trichloroethene	5°		
· ·		2,4 dimethylphenol	50°		
		Barium	100°		
		Manganese	300°		
		1,4 dichlorobenzene	4. 7 °		

105=\PFOHL\T3-1.NEW 10/10/01 km

1

12

私

TABLE 3-1 (cont.)

ARAR VALUES: CHEMICALS EXCEEDING ARARs AND/OR CONTRIBUTING SIGNIFICANTLY TO RISK

Media	Esposurø Pethway	Chemicals contributing to significant risk	ARAR	Chemicals exceeding ARARs (ppb)	ARAR
- Bedrock Aquifer	• Ingestion of drinking	Benzene	2°		
	weict	Bis(2-ethylhexyl) phthalste	50°		
	 Dermal contact while 	Aldrin	0.05°		
	showering	Arsenic	25°		
	Inhaiation of airborne	Barium	1,000°		
	contaminants while	Cedmium	10°		
	showering	Nickel	100 ^h	•	
	2	Vanadium	14*		
		Lead	25°		

^a Class B Standards

₹. µ

414

12 3

- ^b Class D Standards
- * 6NYCRR Part 703.5 Class GA Standards/BA TOGS
- ^d EPA 1990: Drinking Water Regs and Health Advisories
- NYSDOH MCL
- ¹ Guideline Values from Technology Section Division of Hazardous Waste
- B Draft Soil Cleanup Guideline Values (TBC's) issued by Technology Section, Division of Hazardous Waste Remediation, NYSDEC.

10

h SDWA MCLG

APPENDIX D

ADMINISTRATIVE RECORD

1. CAMP DRESSER AND MCKEE REPORTS

- a) Phase I Radiation Walkover Survey, 1988
- b) Leachate Surface Water and Sediment Report, 1990
- c) Geophysical Investigation, 1990
- d) Phase II Radiation Investigation, 1990
- e) Soil Borings and Groundwater Investigation, 1990
- f) Exposed Drum Investigation, 1990
- q) Baseline Human Health Risk Assessment, 1991
- h) Remedial Investigation Report, 1991
- i) Feasibility Study Report, 1991
- j) Project Operations Plan
- Modified Brossman QA/CC Short Form for the Collection of Environmental Samples

2. NYSDEC AND NYSDOH REPORTS

- a) Radiochemical Analysis Report 1989 and Addendum 1 Groundwater 1990 Addendum 2 Soil/Waste 1990 b) June 1990 Supplemental Sample Report . . 1991 c) Contaminant Concentrations in Fish from Waters Associated with Pfohl Brothers Landfill d) Pfohl Brothers Landfill Residential Sump Sampling Report . . . 1990 e) Surficial Soil Sampling 1990 - June f) NYSDOH Summary of Survey Results . . . 1991 - March q) Cancer Incidence in the Cheektowaga/ Ellicott Creek Area, Erie Co., N.Y. h) Public Participation Plan 1988 (Revised '89) GUIDANCE DOCUMENT OSWER Directive 9355.3-11, February 1991, "Conducting Remedial Investigations/Feasibility Studies for CERCLA Municipal Landfill Sites.
- 4. POLICY DOCUMENTS

3.

Technical and administrative Guidance Memorandum (TAGM)

5. ANALYTICAL DATA RESULTS, DATA VALIDATION AND QA/QC REPORTS

6. PREVIOUS SITE INVESTIGATION REPORTS

- 25 -