			305	09674
A Halliburton Company	ESD/LEX	1º 5 92	53	· · · · · · · · · · · · · · · · · · ·
	SDMS DOCID 56	7870		
PERF REMI UNC	JECT FOR ORMANCE OF EDIAL RESPONS ONTROLLED HA TANCE FACILIT	SITE: <u>A</u> BREAK: OTHER: <u></u>	VITIES AT OUS	
	ORPORATION FUND DIVISION			

D-583-11-5-9 Revision 0

AUBURN ROAD LANDFILL REMEDIAL INVESTIGATION REPORT TDD NO. F1 8402-07 NUS JOB NO. 0293 EPA SITE NO. NHD \$89 324 086 CONTRACT NO 68-01-6699 VOLUME III: APRENDIX 1-Q FOR THE REGIONI US EPA SUPERFUND BRANCH FEBRUARY 14, 1986 NUS CORPORATION SUBMITTED BY

Xaurence Fitzgerald LAWRENCE FITZGERALD PROJECT MANAGER

APPROVED BY

12 RICHARD-G. DINITTO FIT I MANAGER

UWU THOMAS PLANT QUALITY ASSURANCE

NUS CORPORATION CUSTODY ASSIGNMENT

The Quality Assurance Representative for Region I/FIT has authorized the assignment of the noted copy of this document to the custody of the person listed below:

Controlled Copy Number: 05

Name: Chet Janowski

Organization: Region I, EPA

Date of Assignment: February 14,/1986

The following is a list of persons who have been assigned a copy of this document and their respective controlled <u>copy</u> numbers:

i

Master, NUS, Region I Project File, NUS, Region I Chet Janowski, Region I, ERA Don Smith, Region I, ERA Joan Knapp, NUS, REMRO George Latollippe, NUS, REMPO Paul Clay, NUS, Zone

NOTICE

The information in this document has been funded wholly by the United States Environmental Protection Agency (EPA) under Contract Number 68-01-6699 and is considered proprietary to the EPA.

This information is not to be released to third parties without the express written consent of the EPA and the NUS Corporation.

APPENDIX SUMMARY (VOLUME III)

I. VLF and EM-34

This section describes the methodologies and procedures involved in the electromagnetic surveys conducted as part of the Remedia Novestigation.

J. Magnetometer

Description of methodologies and procedures used to conduct the magnetometer survey by NUS/FIT. Results of this study are discussed in Section 4.1. The vertical gradient and corrected total field readings are presented in this appendix.

K. Borehole Geophysics

Description of methodologies and procedures are presented in this section along with an interpretation of the data and the geophysical well logs.

L. Seismic

This section presents the report prepared by K & M Associates of the seismic survey conducted of the study area

M. Air Monizoring

Air monitoring methodologies are described in detail. NUS/FIT and EPA sample results are presented.

N. Surface Water/Sediment Sampling

Descriptions of surface water/sediment sampling methods are followed by data from NUS/FIT and other contractors.

O. Soil Sampling

Soil sampling methodology is presented for test pit and grab samples. Results for NUS/FIT and other contractors are included.

P. Groundwater Sampling

Groundwater sampling methodologies for monitoring and residential wells are described. Data are presented for sampling conducted by NUS/FIT, GZA, E & E, EPA, and the State of New Hampshire.

Q. Analytical Protocols

Analytical procedures are detailed for the Photovac 10A10 Gas Chromatograph (GC) and the Foxboro Organic Vapor Analyzer (OVA-128), used in NUS/FIT screening. An explanation of Contract Laboratory Program (CLP) and Data Validation (quality control data review) follows.

· ·

APPENDIX

.

VLF AND EM-34

SECTIONS IN APPENDIX I

METHODOLOGIES AND PROCEDURES

VLF (VERY LOW FREQUENCY) RESISTIVITY SURVEY

Because there was some question with regard to the interpretation of groundwater contaminant plume locations defined by previous studies, NUS/FIT developed an approach to more completely characterize contaminant plume distribution.

Groundwater contaminant plumes typically exhibit a different capacity to conduct electromagnetic (EM) fields, than is associated with the surrounding "less-contaminated" ground water, due to the presence of conductive or resistive chemicals. This electromagnetic property was used by NUS/FIT to characterize and track groundwater contaminant plumes. Electromagnetic (EM) surface geophysical methods were identified as a rapid, cost effective way to define the location of contaminant plumes and ensure that a significant source area or contaminant plume was not overlooked. A VLF (Very bow Frequency) survey was conducted at the site for this purpose

Because VLF resistivity techniques were not commonly used for plume delineation, and are often considered to be experimental in application, the VLF survey was conducted under a separate research project (TDD No. F1-8409-06) as part of an evaluation of the method for the U.S.EPA.

Very Low Frequency (VLF) electromagnetic waves in the United States are constantly produced by U.S. Navy transmission stations located in Cutler, Maine; Annapolis, Maryland: Seattle, Washington; and Lualualei, Hawaii. Other VLF stations are operated by several different organizations and governments throughout the world. A dozen stations are located such that at least two are detectable anywhere on the globe. These VLF transmissions are used primarily for submarine navigation, although recently mineral exploration firms have been utilizing this constant signal network for reconnaissance geophysical surveys. The VLF resistivity survey was conducted in-house by NUS/FIT geophysics and geology staff utilizing Geonics Limited Model EM-16R equipment (EM-16 unit with a resistivity attachment). The EM-16R differs from the EM-16 unit in that the former measures the VLF <u>electrical</u> field and the latter measures the VLF <u>magnetic</u> field. The EM-16R utilizes the EM-16 unit by adapting an optional console to the side of the instrument. To permit direct electrical field measurements, two ground contacting electrodes separated by 10 meters of cable are attached to the EM-16R console.

The actual field operation starts by using the EM-16 (mode switch) to locate the direction to the transmitter, by using the audible null as a direction indicator. Once the direction to the station is determined, the two electrodes are placed in the ground so that the front electrode, the console unit, and the rear electrode are on a line pointing towards the transmitter. Then the mode switch is changed to EM-16R. A phase angle control knob is then retated until a minimum in the audible tone is located. The next step is similar to a fine tuning by using the resistivity index ring to minimize the tone further.

The two readings generated by the EM-NR unit are apparent electrical resistivity and phase angle. The range of resistivity readings is 10 to 30,000 ohm-meters. The range of the phase angle is from 0° to 90°. The apparent electrical resistivity is the total resistivity to the depth of penetration. If the earth is electrically homogeneous down to the depth of penetration, the phase angle will be about 45°. If a two (or more) layered earth case exists within the zone of penetration, a phase angle reading at that point will be either above or below 45°, depending upon the particular characteristics of the layers. If the upper layer in a two layer case is more conductive than the lower, the phase angle will be less than 45°. This case is typical of a conductive overburden overlying a more resistive bedrock. If the lower layer in a two layer case is more conductive, the phase angle will be greater than 45°. This could be encountered with semi-conductive sands being underlain by highly conductive marine clay.

Eight roughly parallel lines (1, 1A, 1B, 2, 2A, 3, 4, 5) were surveyed utilizing the Em-16R with readings spaced at approximately ten meter spacings along each line. These lines, while generally oriented east to west, did take advantage of cultural features such as trails and roads for ease of access (Plate 2). In designing the survey lines, efforts were made to keep the unsaturated overburden thickness nearly constant along each line. This minimized any change in apparent resistivity due to a fluctuating depth to water table, which would make interpretation difficult. A few resistivity readings were taken near a phyllite outcrop, presumed to be upgradient of all source areas. Survey lines were designed to cross cut groundwater flow directions, to enable the site to/be more fully characterized and to define plume source areas and flow directions. Two background lines (1A and 1B) were run upgradient of any known disposal areas on site to ensure that there was no significant upgradient, off-site, source area that was responsible for contamination plumes on site. All other lines were placed to intersect potential or known contaminant plumes emanating from the site. The data from each line are represented as resistivity profiles in Section 5.4 of this report.

The EM-16R readings indicated that the probable true resistivity for the bedrock unit was approximately 8,000 to 2,000 ohm meters. Background <u>apparent</u> resistvity values fluctuated across the site depending upon geological and hydrological influences but generally ranged from 700 ohm-meters to over 4,000 ohm-meters. Where the background resistivity was high (several thousand ohm-meters), it could be inferred that either the thickness of unsaturated (resistive) overburden increased, or resistive bedrock was near the surface.

To minimize variations in background values, and to accentuate anomalous areas of low resistivity (such as within a conductive plume), the apparent resistivity profiles were plotted using a semi-logarithmic scale due to factors, such as the phase angle, profile shape, trends, and background values varied drastically, making data interpretation quite subjective. As a rule, however, the values below 500 ohm-meters were further examined to determine whether they represented an

FIELD DATA VLF RESISTIVITY (EM-16R) AND EM-34

NUS CORP. EM-16R RESISTIVITY SURVEY

PROJECT NO. <u>NA-08-MI</u>	PAGE_1
DATE	SITE Auburn
OPERATOR LJF - AKA	GRID
STATION NAA/*NSS	

LINE	STATION	RESISTIVITY	MULTIPLIER	PHASE ANGLE	REMARKS
TEST	1	4	x 1000 = 4000	30	SSE of landfill (near Phylite outcrop)
TEST	2	5	x 1000 = 5000	32	
TEST	3	3	x 1000 = 3000	36	
ILF- LINE 1	11	20	x 100 = 2000	25	SE of Landfill Near 2Boulders
	2	8.5	x 100 = 850	32	
	3	6	x 100 600	28	
	4	6.5	x 100 = 650	22	
	5	8	x 100 = 800	18	By Well A · 38
	6	8,5	A 100 \$850	22	
······	7	21	x 100 = 2100	12	in line w/well A·5
	8	3.5	71090 - 2500	10	
	9		1000 = 10.000	8	
	10	- y	x 1000 = 11,000	7	
	11	14	x 1000 = 14,000	8	measurement straddle
	12	11	x 1000 = 11,000	8	dirt access road
	13	\sim_{8}	x 1000 = 8000	10	, and the second s
	14	5.5	x 1000 = 5500	10	
	15	8	x 1000 = 8000	10	
	16	8	x 1000 = 8000		
	18		8 2000 - 8000	10	

PROJECT NO. NA-08-MI PAGE 2 NUS CORP. **DATE** <u>9-10</u> Oct. 84 **EM-16R** SITE Auburn OPERATOR ______ RESISTIVITY GRID_ STATION _______ PHASE MULTIPLIER STATION LINE REMARKS RESISTIVITY ANGLE **VLF #1** 21 Pavement problems no measurement 22 10 x 1000 = 10,00034 23 4 x 1000 = 400037 24 13 x 100 = 130040 25 13 x 100 = 120036 26 x 100 € 750 7.5 32 27 4 x 100 = 40034 East of well GZ-1 28 21 x 10 = 21019 x 100 ₹ 400 29 4 15 30 x 1 = 190<u>19</u> 12 By small Beaver Pond 31 x-1Q = 130 18 before (culvert) 32 10 = 1512 33 18 x 10 = 18020 New Day *33 82 \mathbf{x} 10 = 220 15 *84 3 x 100 = 300 17 ± 2 34 x 100 = 30025 35 9 x 100 = 90020 36 27 x 100 = 270025 *36 17 x 100 = 170022 27

NUS CORP. EM-16R RESISTIVITY SURVEY

PROJECT NO. NA-08-MI	PAGE
DATE	SITE Auburn
OPERATORAKA	GRID
STATION NAA/*NSS	

	Approx. 10 met	r spacing RESISTIVITY	MULTIPLIER	PHASE ANGLE	REMARKS
VLF #1	41	10.5	x 100 = 1050	<u>~28</u>	
	42	13	x 100 = 1300	25	
	43	. 17	x 100 = 1700	25	
	44	18	x 100 = 1800	30	
	45 West	17	x 100 = 1700	28	
- 	<u> </u>		\square		
			$\sum \nabla \Delta L$		
	ļ	/ a	L/		
		$\langle \nabla$			
			2		
		$)) \top$			
		\leq /T			
		$\sqrt{1}$			
				·····	
				·	

-11

NUS	CORP.		PROJECT N	O. <u>NA-08</u>	
	16P	· _	DATE	84	SITE Auburn
	CTIV/I	FV	OPERATOR	LJF-AKA-F	
SUR	STIVI7		STATION	*NSS*	
LINE	STATION	RESISTIVITY		PHASE	
VLF - 1A	East *1	3 x 1	000 = 3000	126	100 feet South of magnetometer grid 500 + 0
	*2	skip	ed due to creek	\square	
· · · · · · · · · · · · · · · · · · ·	*3	14.x	100 = 1400	28	
	*4	16 x	100 = 1600	33	
	*5	13 x	100 = 1300	30	
	*6	18 x	100 = 1880	28	
	*7	16 x	100 = 1600	32	
	*8	14 x	100 = 1400	34	
	*9	8.5 x	180 = 880	34	
	10	6	00 = 600	28	
·	*11	10 ×	100-1000	32	
	*12		00 = 700	37	
	*13	5 x	90 = 500	36	
	*14	7.5	1,80 = 750	32	crossed Pond Station 15
	*15	6 x 1	00 = 600	37	of Pond
	*16		00 = 500	38	
	*17	8 x 10	00 = 800	34	
	*18		00 = 1200	····	
	*19		00 = 1000	<u>34</u> 28	
			2000	40	i

0;3,0.9,6;**9**,0

NUS CORP. EM-16R RESISTIVITY SURVEY

PROJECT NO. NA-08-MI	PAGE_
DATE	SITE _Auburr
OPERATOR B. Ross, J. Balo	
STATION NAA/NSS*	

LINE	STATION	RESISTIVITY	MULTIPLIER	PHASE ANGLE	REMARKS
VLF-1B	1	8 x	1000 = 8000	<u></u>	Beginning point East
	2	4.5 x	1000 = 4500	20	
• • • • • • • • • • • •	3	3 x	1000= 3000	18	
	4	4 x	1000 = 4000	Ne	5
	5	3.5 x	1000 = 3500	20	Water (swampy area)
	6	3.5 x	1000 = 3500	22	
	7	3 x	1000 = 3000	24	At bend in Road
	8		1000 = 3080	22	Wet
	9	K	000 - 2390	20	between scales
	10	18 x	100 = 1800	20	
	11	18 x		22	Fnd of swamp
	12		100 = 1750	24	End of swampy area
	13	3 ×	1000 = 3000	22	
	14	3 1	2000 = 3000	22	
			1000 = 3000	24	Re-shot
	*15		1000 = 4000	26	
	15		1000 = 5000		West end
					END OF LINE
					·

NUS CORP. EM-16R RESISTIVITY SURVEY

PROJECT NO. <u>NA-08-MI</u>	PAGE
DATE	SITE Aubur
OPERATOR LJF - AKA	GRID
STATION <u>NAA/*NSS*</u>	

LINE	STATION	RESISTIVITY	MULTIPLIER	PHASE ANGLE	REMARKS
VLF #2	West 9 End	7.	x 100 = 700	12	(Tree Line) Stake
	8	9	x 100 = 900	49	
	7	7	x 100 = 700	36	
	6	9.5	x 100 = 950	29	\geq
	5	7.5	x 100 = 750	30	
	4	7	x 100 = 700	22	Next to Well A-33 (Front Probe)
	3	7	x 100 = 700	22	flag - Rx
	2 East	10	x 100 = 1000	28	
	1 End	8.5	100 - 850	30	staked near edge of wo
· · · · · ·			h		
		$\langle \cdot \rangle$	\sim		
			<u>\</u>		
		\rightarrow			· · · ·
	$-\langle \langle$	\rightarrow			
		~/+			
		\searrow			

NUS CORP. EM-16R RESISTIVITY SURVEY

t a starte

. and the second

PROJECT NO	NA-08-MI	
DATE	4	SITE Auburn
OPERATOR_	LJF - AKA	GRID
STATION_	NAA	

 $0\,3\,0.9\,6\,9\,2$

LINE	STATION	RESISTIVITY	MULTIPLIER	PHASE ANGLE	REMARKS
VLF #2A	East 9 End	9	x 100 = 900	<u>36</u>	moist, silty
	10	14	x 100 = 1400	34	overgrown area
	11	13	x 100 = 1300	27	Roadway
	12	24	x 100 = 2400	33	Excavated Area
	13	3.5	x 1000 = 3500	30	
	14	4,5	x 1000 4500	28	Dry fine sand
	15	22	x 100 = 2200	35	silt
	16 West	21	× 100 = 2100	23	
			$\langle \nabla \rangle$		
					·
·		$-/ \neg$	h/		
		$\langle \lor $	\sim		
			>		
	-//				
	$-\langle \cdot \rangle$	\rightarrow			
	$ \longrightarrow $	~/+	· · · · · · · · · · · · · · · · · · ·		
		\searrow \downarrow			

PROJECT NO. _____ PAGE NUS CORP. EM-16R SITE Aubien OPERATOR LJF - AKA RESISTIVITY GRID. STATION NAA/*NSS PHASE MULTIPLIER STATION LINE REMARKS RESISTIVITY ANGLE **VLF #3** 37 West 3.5 x 1000 = 3500100' SE to Town Dur 23 edge 36 19 x 100 = 1900Wet Area 24 35 20 x 100 = 200026 along Small 19 x 100 = 190024 34 **V**dirt 9 33 x 100 = 90026 32 4.5 x 100 = 45034 31 21 x 10 = 21043 30 8 10 = 8048 29 x 10 = 909 45 28 x 10 = 60 37 Truck Turnaround 27 34 Staked 26 **r−10** = 64 Stated (@ Rx) 34 25 $\kappa 10 = 50$ 32 across ponded area 24 to conductive can't read 27* (7) x 10 = (70)(30)26* (9.5) x 10 = 9532 25* (9) x 10 = 9028 24* (23)x 10 = 23038

23*

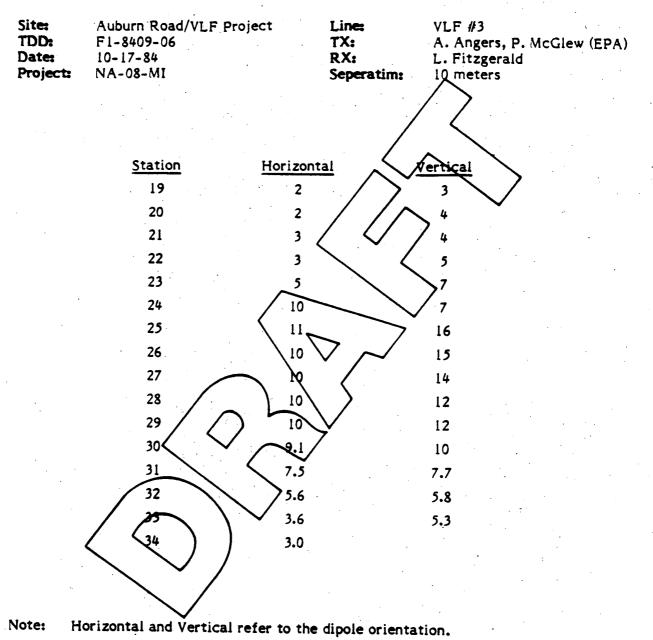
(23)

x 10 = 230

NUS CORP. EM-16R RESISTIVITY SURVEY

PROJECT NO. NA-08-MI	PAGE_
DATE	SITE Aubur
OPERATOR	GRID
STATION	

LINE	STATION	RESISTIVITY	MULTIPLIER	PHASE ANGLE	REMARKS
VLF #3	17*	(15)	x 100 = 1500	16	
	16*	(9)	x 100 = 900	A.	crossed stream change
• • • • • • • • • • • • • • • • • • •	15*	(8.5) ± 2	x 100 = 850	20	in overburden - silty sand - marshy flood
	14*	(6)	x 100 = 600	21	plain highly organic
- 1	13*	(6)	x 100 = 600	22	
	12*	No rea	ding heavy brush	7	
· · ·	11*	(7)	x 100 = 700	27	
	10*	(5)	x 100 = 500	23 ± 2	
	9*	4	× 100 × 400	23 ± 2	
	8*	5	x 100 = 500	25 ± 2	
	7*	15	-10 = 150	34	
	6*	13 2	x 10 = 1 30	45	Brown leachate
	5*	10	x 10 = 100	36	ZONE
	4*	18	x 10 = 100	35	* oily sheen
	<u>k</u> ·		x 10 = 110	32	on surface water
	2*		x 10 = 140	28	
	East	19	x 10 = 190	- 26	10/10/04
			ds and 15° - 20° mag.		10/15/84 end of day
	Sta #24	too cond		to end of fine	1rom well #A - 33
					· · · · · · · · · · · · · · · · · · ·


EM-	CORP. 16R STIVIT	'Y	PROJECT N DATE <u>10-16</u> OPERATOR STATION _	SITE Aub	
LINE	STATION	RESISTIVITY	MULTIPLIER	PHASE ANGLE	REMARKS
	Start 10-17-84		w Present) Wo	odegArea	
VLF #4	East En 1	r1 9	x 100 = 900	45	south side
	2	4	x 100 = 400	37	of pond
•	3	11	x 100 = 1100	37	\triangleright
	4	15	x 100 = 1500	35	
~	5	18	x 100 1800	31	10 meters E of A-46
· · ·	6	20	× 100 = 2000	30	10 ft. W of Well A-40
	7	15	x 100 = 1500	31	
	8	9.5	¥ 100 = 950	36	
	9		x 100 = 1100	37	
	10	10	1900	37	
	11	$\langle \nabla $	100 - 700	47	25' S of GZ-9
	12	4.5	x 100 = 450	41 ± 1	
	13	10	x 10 = 160	36	
	14	3	x 100 = 300	43	in between scales
	15		x 100 = 500	43	F.P. in H ² O/Sharp in- crease in slope
	16	skipped	due to severe slope &		
	17	5	x 100 = 500	12	GZ-10 veriations in slope
	18	6	x 100 = 600	16	

NUS CORP. EM-16R RESISTIVITY SURVEY

PROJECT N	O. <u>NA-08-MI</u>	PAGE
DATE		SITE Auburn
OPERATOR	LJF, AKA, PJM	GRID
STATION_	NAA	

LINE	STATION	RESISTIVITY	MULTIPLIER	PHASE	REMARKS
VLF #5	East End 1	5.5	x 100 = 550	/28	Between the 4 Whispering Pines Wells
· · · · · · · · · · · · · · · · · · ·	2	7.5	x 100 = 750	27	
	3	7.5	x 100 = 750	22	
	4	7.5	<u>x 100 = 750</u>	22	\square
	5	66	x 100 = 600	24	by GZ-11
· ·	6	5	x 100 = 500	27	
	8	5	x 100 = 500	27	by NUS-1
	9		x 100 = 350 x $x = 120$	26	
	10		x 10 = 120	30 26	surface
	11		x 100 = 350	34	by NUS-3
	12		x 100 = 1/200	30	
	13 West	8	×100 = 800	32	
	14		x 100 = 900	34	
	$-\langle \uparrow$	$\rightarrow \mathcal{H}$			
		<u> </u>			
					· · · · · · · · · · · · · · · · · · ·

EM-34-3 Data

This page contains all the data from the limited EM-34-3 survey.

. .

APPENDIX J

MAGNETOMETER

SECTIONS IN APPENDIX J

METHODOLOGIES AND PROCEDURES

TABLES IN APPENDIX J/

RECONNAISSANCE MAGNETOMETER DATA (COPRECTED)

- J-1 (AREA A)
- J-2 (AREA B)
- J-3 (AREA C)
- J-4 (AREA D)
- J-5 (AREA E)

DETAILED MAGNETOMETER DATA (CORRECTED)

- J-6 GRID NO. 1 SOLID WASTE LANDFILL AREA
- J-7 GRID NO. 2 TIRE DUMP AREA
- J-8 GRID NO. 3 JOWN DANDFILL AREA

FIGURES IN APPENDIX J

J-1 RECONNAISSANCE MAGNETOMETER SURVEYS

MAGNETOMETER

A detailed magnetometer geophysical survey was conducted over each of the four main source areas on site. The survey locations were based on data collected by NUS/FIT during the excavation of test pits, reconnaissance magnetic surveys, interpretations of aerial photographs and visual observations of ground disturbance. The main objective of the survey was to define areas likely to contain buried drums and to provide data on which to base estimates of the number of possible buried drums. This information had not been generated by previous studies, but was deemed necessary for the Feasibility Study and any remeval type actions.

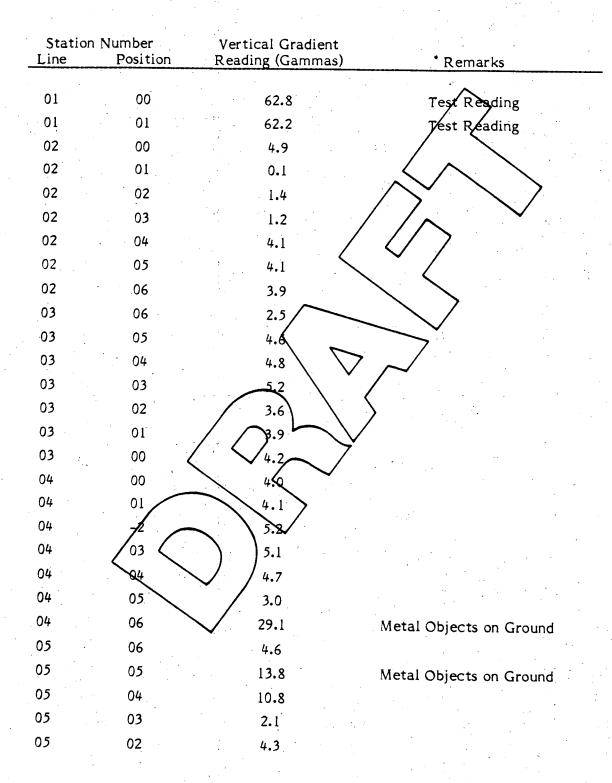
At each of the four major source areas (town landfill tire dump area, solid waste landfill and septage lagoon area), a grid was established using a transit to locate the perimeter lines. The remaining inner lines were established by using a tape measure and measuring in from the surveyed perimeter lines. Each grid consisted of a series of parallel lines spaced at twenty foot intervals. The magnetometer grid over the town landill was approximately 2.6 acres in size and the grid over the tire dump was approximately 5.0 acres. The grid established over the solid waste landfill, including the septage lagoon area, was approximately 6.0 acres in area (Plate 2).

The magnetometer field survey was conducted using an EDA Instruments PPM-500 as a portable field magnetometer, and an EDA Instruments PPM-400 as a stationary magnetic base station. These instruments are sensitive to magnetically susceptible materials such as, steel, iron and magnetite which can enhance the local magnetic field. The Proton Procession Magnetometers (PPM-500 and PPM-400) are capable of measuring this enhancement (anomaly) with two parameters: Total Field and Vertical gradient readings. Total field measurements are indicative of the combined enhancement of the magnetically anomalous features in the proximity of the instrument, diurnal variations due to solar wind, and micropulsations. Vertical gradient readings are indicative of the density of magnetic flux and are considered to be free from the effect of diurnal variations and micropulsations.

J-1 .

Prior to conducting the field magnetometer survey the stationary base station magnetometer (PPM-400) was set up in a pre-established non-anomalous area (near 0 vertical gradient or background total field readings). The PPM-400 was programmed to continuously record (twice every minute) the diurnal magnetic variations and micropulsations occurring on the day of the survey. Information obtained from the PPM-400 was used to electronically correct for the undesired variations of the field data (PPM-500).

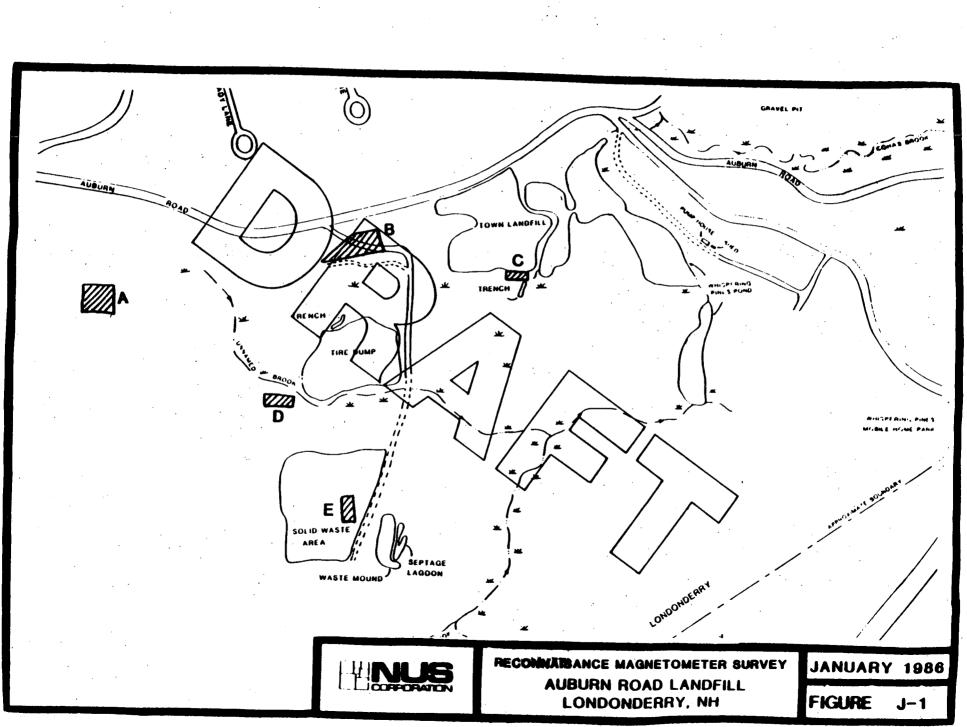
To ensure the collection of reproducible results, the field survey was conducted with the PPM-500 always oriented to magnetic north. Total field and vertical gradient readings were recorded at twenty foot intervals along each line and electronically stored within the instrument (PPM-500). In addition to recording the total field and vertical gradient readings, the PPM 500 also recorded the date, time, station location (line and position number) and estimated error for each station location. Field observations of metalliferous objects exposed on the ground surface were recorded in a project logbook to enable burled anomalous magnetic sources to be distinguished from surface anomalous magnetic sources. The field survey and data interpretation were conducted by trained geophysics personnel and according to NUS SOG No. 31, Revision 0.


To more fully characterize the magnetic characteristics of the major source areas with respect to shallow and deep anomalies, a total field and vertical gradient survey of gridded areas onsite was conducted. The survey identified numerous areas, shallow and deep possessing magnetic characteristics which appear anomalous. These anomalous areas are due to magnetic materials, the identity of which cannot be discerned using this technique. Buried metallic waste containers (55 gallon drams) will alter the earth's magnetic field at locations where it is buried.

The magnitude and configuration of the alteration will be dictated by the condition and quantity of disposed magnetically susceptible materials and its spatial distribution. The magnetic geophysical method does not by itself enable the distinction between metallic 55 gallon drums and other metalliferous debris, and this fact is an important limitation of the method. Magnetic contour plots of the survey areas are presented in Section 4.1 of this report along with an interpretation of the results.

TABLE J-1

RECONNAISSANCE MAGNETOMETER DATA


(AREA A)*

See Figure J-1 for location.

RECONNAISSANCE MAGNETOMETER SURVEY (CORRECTED DATA)

ク

TABLE J- 2

RECONNAISSANCE MAGNETOMETER DATA (AREA B)*

PPM500 #20030 8=75			•				
10/03 15:04:00					•		
10/03 10:28:47							
10/09 11:56:24	,	÷					
10/03 15:04:00							
10/03 10:13:43			•		~ ~	· · · · -	
10/09 11:56:27		777	7.1 54961.1	1.0	60	140	#13
0P#4365			3.4	>12	6 0	148	33
55000.0		. 775	P & RADER d				
0000.0		0	· · · · · · · · · · · · · · · · · · ·	.12	60	120	33
775.3 54961.2 .12		0 #1 777		\mathbf{N}			
	9	9 38 💔	·6 £4368.3	· 12	60	199	33
-5.4							•••
775.4 54955.4 .12	0 2(8 38 🗥	~~~~~????.?	<u>, 18</u>	60	30	33
			/29.1	\sim /		••	~~
775.1 54964.0 .14	ି ପି କର୍	a 38 ⁷⁷ / ⁹		.23	60	50	38
4.3			/ / 91.0		•••		90
774.8 54971.7 .12	0 58	33 / 73	· \$ \$4347.4	.21	50	40	33
5.2	· · · · ·		✓ -1,86.1			. 70	33
778 8 8 4 8 4 8	20 30	*5			38	30	
775.5 54964.9 .12	20 30		.3 54939.9	.12	30		#24
2.4					99	80	33
775.5 54966.0 .14	20 60	730	1 \$4354.2	.14	38	100	
16.6				• • •		iee	83
775.7 54929.7 .17	20 40	(₃₈ 730	. 0 54363.0	.12			
-55.0		38	7 3.3	• • •	30	120	39
775.5 54950.6 .12	20 20	1 20 738	A \$4352.1	• •			
-4.3	20 20	38 🗸 38	3.5	. 1 1	38	148	33
775.7 54925.0 .12	30	732	• • • • • •				· ·
-4.6	20 8	∖ 3 8 ∕3∕8		.14	38	160	38
· • •		1 738	3.9 2 54954 d				
775.2 54954.7 .13	40 0			. 14	38	139	38
775.2 54954.7 .13 0.3	A0 00	- 3 3 🗸	3.2				••
		~ 730.	-		100	200	#38
- //J.I 54392.0 .12	< 48 √28,	~30.		.14	100	200	33
774.9 55132.1 .20	\sim (\sim	3.3				
106.5	40 40	38 731.		.12	100	130	33
		<u> </u>	4.9				00
	48 58	38 730.		.12	100	160	33
31.0	\frown		4.8			100	00
776.3 54947.9 .12			5 54967.5	. 14	100	140	
-4.6	49 30	.33	4.5			140	2 3
776.5 54378.3		730.	C # 45 + 1	. 14	100		• •
3.5	40 100	33	3.8		100	120	33 -
		730.	2 84524	. 1 1	100		
	40 / 120	38	4.7	• • •	199	100	38
5.7 776.3 54962.6 .15	\times /						
	ः 46 ा 140	33		15	100	30	33
4.5	•	- -	4.1				

See Figure J-1 for location.

TABLE J-2 (cont.) (AREA B)

	•							_
	120 14 120	30 30	*37 38	780.5 54944.3		160 160	100	*5
3.0	· · · ·	100	38.	730.1 54957.3	3.12	160	120	L,
4.7	15 120 13 120	120	33	730.2 54960.3		150	140	ß
7.3	12 120	140	33	4.0 730.4 54970.5	5 .12	150	160	3
4.2	14 120	160	33	730.6 54953.		150	180	
4.1	12 120	130	38	780.5 5496	5.13	160	. 200	g
4.3	14 120	200	3 3	738 3 54935.	.12	150	228	ŝ
5.2	12 120	220	33	788.5 54971.	.13	160	248	3
4.2	14 120	240	38	738 4 54979.3	3.Y3	168	260	ι B
2.2	12 120	260	33	730/3 52000.		160	230	3
5.1	16 120	230	38	730.2 55022.0	.13	168	388	11 13
3.4° 780.3 54889.9 .1	•	300	83	738 3 55987.5	.14	168	328	3
-21.2	140	340 <	#43	50.3 54330.	9.12	160	340	
730.2 54972.4 .1 3.2	140	340	38	\bigtriangledown 3.3		130	348	
730.0 54981.1 .1 6.3	12 140	320	૩ેક્ષ	✓ 7/07/6 54999.1 -25.3		180	340	3
780.1 54995.5 .1 10.0	14 140	300	/ 38 /	730.6 55029.7	.12	180	320	
730.1 54991.3 .1	4 149	230	38	730.5 55035.8	5	130	300	3
730.0 54975.6 .1	3 48	360		730.3 54338.1	.13	130	230	
779.9 54974.1 .1 5.6	2 140	248	38	730.5 54979.3	•	130	260	30
730.0 54970.3 .1 5.3	2 148	228	88	730.6 54371.1 2.7	15	130	240	8 8
730.3 54967.9 .1	1 140	290	38	780.9 54972.6		200 200	240 240	* 8:
730.4 54962.8 .5	40	130	3 8 (4.2 780.5 54980.0	.14	200	250	3
738.4 54968.4 .1 7.5	4 148	.50	3 8	4.0 730.3 54992.5	.14	200	280	
730.3 54967.8 .1	•	140	38	3.3 731.0 55025.3	5 . 14	200	300	3
730.3 54966.6 .1; 5.6	2 140	120	38		.14	200	328	
730.1 54933.0 .19	5 140	100	38	13.9 730.3 55008.5	.14	200	340	3
				5.4				

TABLE J- 2 (cont.)

Š. y

(AREA B)

779.8 55038.	0.14	220	32 0 320	#37 39	/ 779.3 54966		320 320	240 #1 240	111 39
14. 730.4 55000.	.9 .3.14	220	300	33	5 779.3 54957	.2 .7 .14	320	260	33
1. 730.1 54982.	71.11	220	230	88	1 779.9 54959		320	238	33
3. 780.1 54973.		220	260	33	279.3 54973	.1 .0.14	320	300	36
2. 730.4 54967. -0.		220	240	33	4.				
780.6.54990.	7.15	240 240	24 0 24 0	*92 33		ζ.	• •		
-20. 730.4 54363.	1.14	240	260	38		$\langle \ \rangle$		•	
779.3 54978.	2.12	240	238	33			>		
	3 2.15	240	308	88	$ \sim$				
730.0 55013.0 1.0	0.12	240	320	38 ,	[[]				
779.3 54979.1 -7.1	5.14	260 260	320 320	*97 38	\searrow \lt		ч. ,		
730.0 54989.2	2.12	260	300	38	\sim				
730.3 54977.0	5 8 .14 ···	260	230	38		· .			
	2.14	260	260	्र ३ २	\checkmark \sim	· · · ·			
-3.5 779.5 54964.6 -19.1	5.15	260	240	38	\leq		•		
773.6 54967.0 4.3		230	240	38	\sum_{i}	•	•		
773.7 54972.3 5.4		230	260	38/	· · ·				
779.4 54972.0 3.1	.13	-268	230	>38	· .	·	·	· .	. •
780.0 54969.7	.15	230	300/	88	•			·	
779.5 54968.3	14 (289	520	38	·		. · · · ·	•	
730.0 54971.2	.16	300	300 #	107 38		. •			
773.8 54971.6	.12	389	230	3 3					
773.3 54363.3	.14	300	260	33					
1.8 779.7 54966.2 5.0	.12	300	240	3 8	· · · ·				
						•			

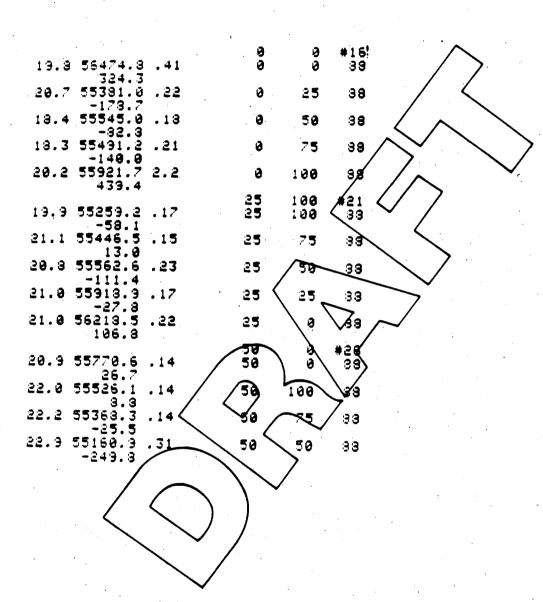


TABLE J-3 RECONNAISSANCE MAGNETOMETER DATA (AREA C) *

See Figure J-1 for location.

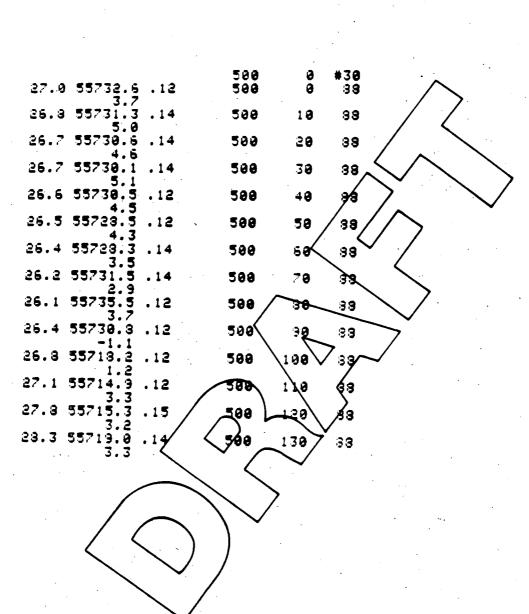
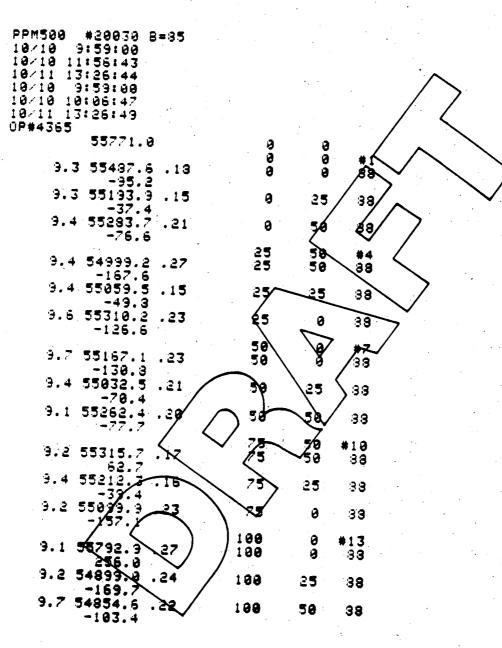



TABLE J- 4 RECONNAISSANCE MAGNETOMETER DATA (AREA D)*

See Figure J-1 for location.

* See Figure J-1 for location.

DETAILED MAGNETOMETER SURVEY (CORRECTED DATA)

 \bigtriangledown

TABLE J-6 CORRECTED DATA SOLID WASTE LANDFILL AREA (GRID No. 1)

			\wedge		
				<	
PFM500 #20030 B=66		<			
09/13 3:41:00 09/13 8:33:18		\wedge	$\sum_{i=1}^{n}$	\sim	\geq
09/24 15:47:41 09/13 8:41:00			\sim		/
09/13 8:36:09 09/13 15:50:20					
UA#4765 55700.0					
08:33:15			$\mathbf{\nabla}$		
90.4 · · · · · · · · · · · · · · · · · · ·	े र	47**			
-38.8 55417.0 .18			/ 88		
-37.2 55551.7		\sim	88		
	\sim	20	88		•
	\checkmark	40	88		
-37.0.55591.9.14	()	60	- 88		
-39.4 55611.6 .14	\diamond	80	88	•	
-39.7 (5630.9) . 14 13.7) . 1	0	100	88		
-39.8 55648 . 17	• Q	120	88		
-39.4 55363.3 .14	. Q	140	88		
•					

÷

	•	an an the second se	• • •					
	:*.1	 5	, 1, 4		<u>,</u> .	<u>t is o</u>	- 	
TABLE J-6 page 2 of 19		12.0				i na s		
page 2 of 19	- 37. 4	8870a.0 11.5				200	88	
·	• •				20	200	₩1回	•
	-39.2	55674.3	.12	,	201	200	යට	. ·
·	-39.9	12.1 55465.5	. 24		20	180	88	. `
		-66.4			20	160	<u>.</u>	
		55961.4 380.6		· · · ·		3. C2 V2	. Gar.	
-	-39.8	55662.9			<u>.</u>	j 4 O	88	
· · · ·		6.4 55610.1			20	120	88.	
• •		17.1						>
	-40 . 0	79569.J 19.S	 Esset 		20	100		ζ.
	-39,8	55548.4	. 15	· •	\bigcirc	80 /	-98 -	
	-30.9	35.0 55534.2	.15.		\mathbb{R}^{0}			\mathbf{i}
	•	43.1	•			$\langle \rangle$)	
	- 7.	55523.5 57.4	.15.		20	/ 40/	98	
	-40.2	55414.8	.17		~2Q	4	1 S / S	
•	-40.2	64.3 55532.1	n n eur Hain suit		20		L 28	
		246.7 54988.2	17	. ~	 ?0		\sim	
	17 27 • G	44.0	• 1					· ·
		55674.1 512.1	÷, 97.		20	-40	788.	•
·		and the same of th			4		/ #28	
	-40,7	5 48 02.4			$\mathbf{X}^{40^{+}}$	10	38	
		0.629 1 .05056		-	∂_0	> 20	88	
	-37.3	245/2			\searrow	10		
	114217 • 13	- K - 7		\sim	17	40	. 88	
	-4 <u>0</u> -3	5250.6	.25 -	ζ.	Y 40	40 	88	
	sality of	55180.1		$\cdot >$	40	Sto	±8	
	- a:			\checkmark	a na	4 2323		•
		58.4			40	100	8 8	. •
	-474 1 S	5488.¢	· · 1/7		40	120	88	
	-40.4	S606.0	.15	•••	4 0×	140	88	•
	-40.5.5	5722.1	.15		a	• 7 25	· · · ·	
•	n in the second s	27.4	s. J. 43		40	160	88	
	-40.5 %	55637.4	.15		40	1801	88	
	-40.5 3	55667.8	.13		40	200	88	
		10.7			20	279 J. 1. 274	470	
: ·	-40.2 \$	55673.8	.12		50 60	200 200	#39 88	
	d6 / 4	19.2	4 /~1		1. 176			
		22.8			60 _.	180	38	
•	-40.7 5	55496.6 34.1	.15		60	160	8 8	
	-40.7 5	54864.8	.21		50	140	88	
•	<u>a</u>	-101.3		•				· ·

しには、 一時の、その気味であて、1000日 - 1001日 - 100日日	1.101.1	- 1 - 1	39	
-137.5 -41.0154844,44,33			98	
-41.4 54324.8 .29	60	έQ	88	
-173.9 -41.0 54416.9 .24	60	40	88	
-215.1 -41.1 53780.6 2.9	SÒ	20	88	
-437.1 -41.5 54444.1 .28	, 60	Ó	áa .	
-260.3 -41.3 55462.6 .34	ട	20	88	
-2.5 -41.3 55298.6 .33	6 0	-40		
-41.8 57648.6 .81	s o `	-40	* <u>5</u> 7	
-41.4 56399.3 .21	80			
-41.5 56312.4 .18	80		88	
-2.7	80	$\sum_{i=1}^{\infty}$	88	
-42.4 56556.8 .20	, ≢°	$\langle \rangle$	98 9	
-42.5 55853.9 .14	80	~ <u>4</u> 5/	88	
-42.2 56244.7 .23	8)	6ð	> ==	,
-42.2 55666.7 .22	80)%¢/	98	
-42.7 55506.0 .12 -43.4			88	
159		120	88	
-42.0 554/7.9 .22		140	88	
129.7		160	88	
-43.2.94965.6 .77	~ eo	180	88	
-47.5 55657.7 .15	80	200	88	
-47.4 55623.0 .15	100 100	200 200	#65 88	
43.2 55202.4.14	1.00	180	88	
-43. 55091.8.22	100	160	88	
-43.6 54683.8 .25	100	140	88	
-192.8 -43.6 55763.1 .25	100	120	98	
117.7 -43.9 56042.5 .24	100	100 .	38	
180.8 -44.3 55548.4 .23				
-43.8 56384.0 .21	100	80	88	
147.8	100	60	38	
134.3	100	40	88 -	
-49.6 57714.7 .86 532.5	100	20	88	
-43.8 57676.0 .25	100	O	88	

•

TABLE J-6 page 3of 19

. .

. .

. .

-44.8 37770.3	1.1.2			476 39	
158.0 -44.2 58140.1		1201	20	88	
513.7 -43.8 57490.1	. 26	120	45	88	
296.7 -43.3 57137.9		120	([])	38	
331.9 443.7 56595.6		1.20	80	88	
172.3 -44.2 35638.8		120	100	83	
-200.3 -44.5 55840.4	.17	120	120-	88	
-44.5 56069.2		1120	1.4		
-44.5 55719.3	• 21 L	120	1.50	(ae	
150.3 -44.8 55068.4	.20	120	192	82	
-48.5 -44.8 55615.0	.14		200	S.J.	
20.0		140	્ર	#87	/
	.15		290	83	
-44.9-55330.7 -211.5	. 30	140	180	-68	
-44.7 35403.3 7 8. 4	1	140	167	88	
-44,3 55780.1. 239.2	A 3 1 A	140	1 40 ·	88	
-44.3 55751.3 104.4			120	88	
-44.7 55642.	.23	140	100	88	
-45.1 66244 5	L	140	90	98	
-45 57 57.5		7 - 140	60 .	88	
-45.0 2314.6	<u> 22</u>	140	40	- 5 8 , .	
-44.9 57903.7	, 40 ⁺	140	20	88	
45.7 37475.0	.25	140		88	
45.2 55482.6	.23	160 160	1 Q Q	#98 3 8	
-45.0 4712.1	1.2	160	20	88	
-45.9 55183.3	.38	160	40	88	
-319.1	.23	160	60		
-171.5 -45.1 55143.7				88	
-151.3	.28	140	80	88	
-45.5 55279.8		160	100	88	
-45.2 55281.7 -112.9	.21	160	120	88	
-45.0 55472.7 -66.2	.17	160	140	88	
-45.3 55437.6	. 14	160	160	88	

2.4

TABLE J - 6 page 4 of 19

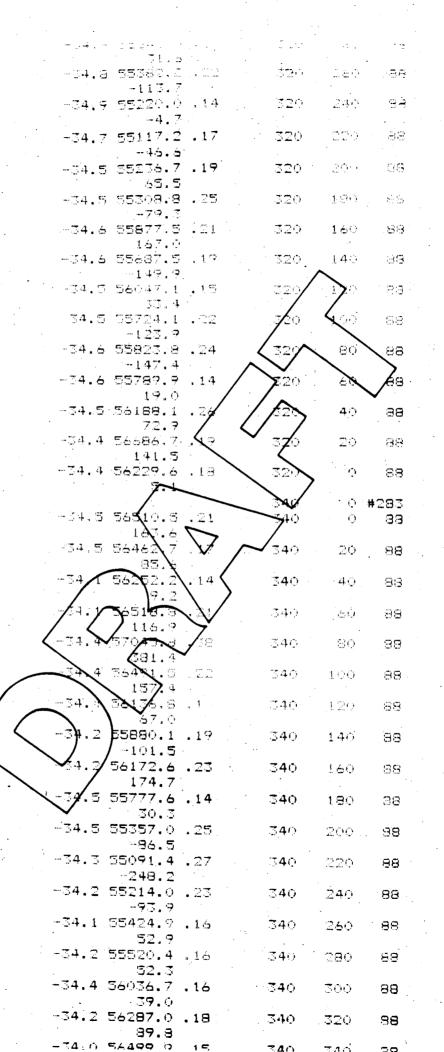
	41.10121014424-001 	· · ·	<u>.</u>	3 t	
TABLE J - 6	45.7 55593.9 .14 (* 10.6	550 114		38	
page 5 of 19		180		#109	
•	-45.2 55713.0 .15 40.4	130	()	93	
	-45.3 55749.9 .17 -54.9	180	$\mathbb{Z}\mathbb{Q}$. 88 .	
	-45.3 88574 .8 .17 53 . 1	180	4 +)	58	
	-45.2 55346.3 .17 -22.1	180	6 0	88	
	-44.7 55396.1 .16 -21.3	180	80	38	
	-45.2 55439.7 .14 -15.1	180	100	∼ 88	
	-45.5 55425.0 .17 -35.3	180	120		
	-45.3 55477.4 .26 1.0	190	40	83	
···.	-45.2 55514.9 .15	180		88	
	-45.1 55561.7 .15	190		88	/
	-44.7 55579.2 .15	180	200	38	
	-44.7 55575.6 .14 9.6	180	20	88	
	-44.9 55580.5 .12	180	240	88	
	-45.4 55586.3 .4	180		88	
	-45.2 55585.2 .14		280	88	
	-44.8 35569.7 7	160	300	88	
	945.0.59552 4 .1		320	-38	
	-45.1 5555	7180	340	88.	
	-14.5 <u>5507.2</u> . 5	180	Jeo	88	
	44.7 55460 0.19	180	380	- - 	
	-46.3 55391.4 .14	180	400	àe	
	-44.8 5289 8 .14	180	420	88	
	-7.5	200	.420 #	131	
	-44.5 5017.3 .26 -145.5	200	420	88	
	-44.3 55259.4 .23 -111.2	200	400	88	
	-44.6 35400.6 .14 -25.0	200	30 1	89	
	-44.4 55424.6 .12 2.4	200	360	88	
	-44.4 55433.8 .14 4.1	200	340	88	
	-44.5 55492.8 .14	200	320	88	
	6.3 -44.6 55513.9 .14	200	300	38	
	7.8 -44.7 55521.2 .14	200	280	88	
	12.8			• •	•

	الأراب والمتحد والمتحد		. ಇದು ಬೆಡೆ
	10 E		
TABLE J - 6	-44.3 55554.3 .14 10.3		40 8 8 .
page 6 of 19	-44.7 55525.3 .14 7.8	200	220 88
	-44.6 55520.4 .12 12.5	200 0	200 88
	-44.5 55502.3 .17	200	180 98
	12.8 44.1 35468.2 .14	200 1	.40 98
	10.6 -43.7 55439.2 -14	200 1 1	40 98
	0.7 -43.8 35444.9 .14	200 1	20 88
· ·	4.0 -44.0 55429.3 .15	200 1	
	5.0 -44.2 55367.1 .16	200	80, 88
	-44.4 55338.6 .25	20	N 38
•	-72.8 -44.5 55532.9 .19	200	40
	-43.4 -44.4 55490.0 .17		20 88
د	-16.7	200	ଁ ଶ୍ ଞ
•	-12.2		\ 0_#153
	-43.5 55474.9	220	Zo 198
	-43.6 55472 15	220	20. 88
	-43.8 53544.8 1.6	n <u>per</u> te	40 88
· · · ·	43. 9 -411. 4.14	5 220	<u>க</u> ் 88
		220	3° 38
	45 55352.	, 220 1	00 88
		020-j- 1	20 88.
	-42 4 55 32 15	220 1	40 88
	43.5)55345.6.15	220 1	60 88
, · ·		220 1	80 58
	8.6	· .	00 88
	-43.8 55441.6 .15		· · · ·
	-43.6 55449.4 .14	•	
	3.9		40 88
· ·	-43.3 55461.6 .14 14.1	220 2	60 88 -
	-43.0 55353.4 .16 -51.4	220 2	80 88
	-43.1 55432.1 .14 5.5	220 3	00 88
	-43.4 55416.1 .14	220 3	20 8 8
	-43.2 55283.0 .14	220 3	40 88
	-1.3		· · · · ·

:

	٠. د			
- 4 🗍 .				ud j
	-138.J	·		•
TABLE J - 6	5 98937.5 .la	e ne	alayer's provide	58
	49.3. 1 55678.8 - 23	220	4 <u>2</u> 0 (36
page 1 of 19	-103.0		· /= . · ·	en tami
		240	.420 #17	- 53
-43.1	2 56732.6 .30	240		3.3
	318.5			•
-+ 3 , 5	5 56923.9 .61	$\mathbb{Z}4^{\circ}$	- COO - E	8
	449.5			
	9 55981.2 .79	240	380 8	38
-47 5	-493.7 7 55376.9 .24	240	340 · S	58
· · · · · · · · · · · · · · · · · · ·	-68.6	4 "T %	· · · · · · · · · · · · · · · · · · ·	-
-43.2	55060.6 .24	240	/40 - 5	38
	-216.9			
-43.J		240/	- 321 🔨 🦷	1.
	97.7 155361.6 .12	-		
··· ··· ₽ 2 ● · 7	9.7 - 55361.6 - 7.7		<u>/%)</u> }	
-43.2			280 S	is /
	21.0	/ / /		\sim
-42.a	55361.3 .15		<u></u> 50 8	18
· · · · · · · · · · · · · · · · · · ·	11.1	$\langle \rangle$	1	
-42,9	55360.0 .12	_ 24 0 /	240 E	18
	: 10.8 55291.2.15			
in the second	-4.5 🗻	240	<u>>20</u> в	18
-42.5	55224.7,16	240	200 s	8
	-27 45		and the set of the	
······································	55160. 18	240/	180 8	8
, 	-50.0\	\sim		
-42.7	25082.1 .VA	240	160 8	8
- 413 - C				_
) 240	140 8	8
- 4 2 . 🗢	(46) · · · · · · · · · · · · · · · · · · ·	<u>_</u> 40	120 8	а. Э
ζ.			ana na sa	C
	54564.91.13	\mathbb{R} (17)	100 j 8	8
	1137.X			
· · · · · · · · · · · · · · · · · · ·		$[]4^{+}]$		8 .
		240		
	· · · · 21.4		60 8	
	55/13.5 .17	240	140 B	A
	-44.8	- · ·,	1	••
	5198.0 .14	240	20 8	9
	4.1	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		
	55165.2 .15	240	08	8
	-34.8		, .	. · · · ·
-42.3	24951.7 .28	260 260	0 #19	
	-130.3	an tao 177	0 8	3
-41.7	54752.0 .19	260	20. 9	8
-41.5	55024.8 .14	260	40 8	8
	-40.6 Sicos st pelo			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54903.3 .25 [\] -149.2	260	50 8	3
-41.6	54895.4 .24	250	80. 8	- • •
	-89.7		80. 8	.
-41.6	55053.9 .22	260 -	100 86	3
· · · · · · · · · · · · · · · · · · ·	-115.2			-
-41_4	55459 7 10	240	120 00	>

TABLE J - 6 page 8 - 19

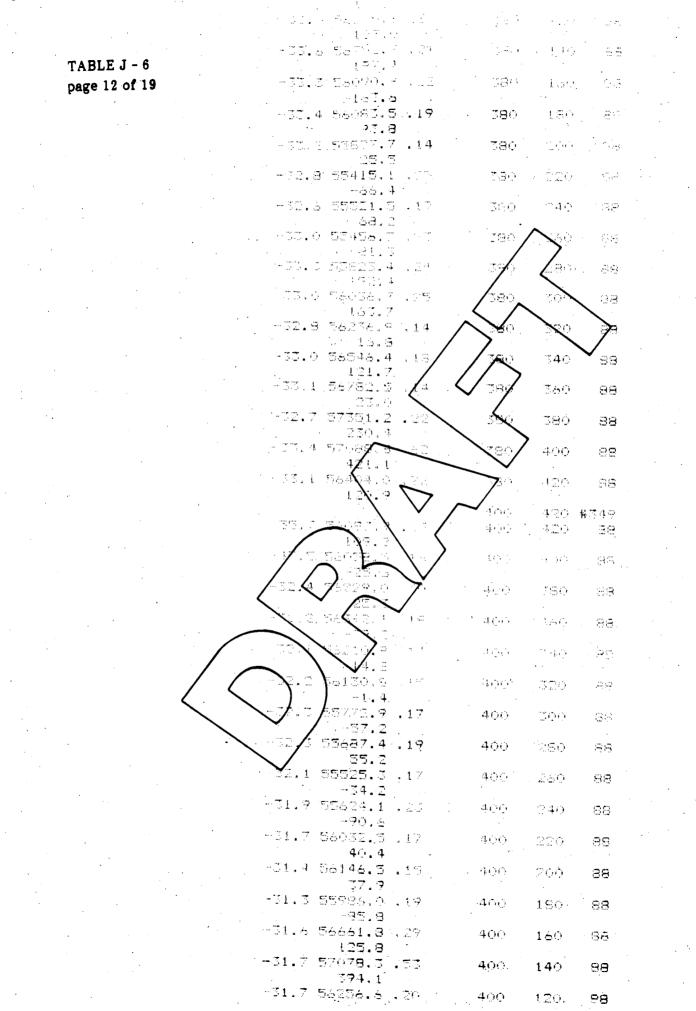

--.

	· .			
+1.+ +41.5 110(2519-14)		् किस्ट्रे	-9 8 :	
30.5 -41.5 54729.5 .25		160	. 98	·
-137.9 -41.1 54996.1 .23	260	180	88	
-112.5 -41.5 55099.3 .21	260	7.00	. 38	
-75.1 -41.4 55104.1 .25	260	- 720	SS	
-91.6 -41.4 35068.4 .17 -114.1	260	240	88	
-41.2 55190.0 .15 9.4	260	260	88	
-41.1 55141.7 .17 41.4	150	ेर्	85	
-40.5 55081.4 .23 -47.5	266	200		
-40,7 55179.2 .18	250	-Jo	38	
-40.1 55210.5 .20 -244.5	. 260	380	88	
-40.2 56308.8 .26	260	400	88	
-40.2 56459 1 .20	\mathcal{T}^{50}	420	88	
-39.9 56459.5 .26		420 420	#217 88	
	280	400	88	
	280	380	88	
59.2 53829.7 5	280	360	38	
3 332 5 , 26	280	(547) -	98	
	280	320	88	
53.9 5446.6 1.0	280	100	88	
-39-74925.2 .28	280	280	<u>98</u>	
-38.4 35519.7 .14	280	260	38	
-37.5 55813.5 .25	280	240	38	
-38.2 55541.5 .24 90.8	280	220	38	
-37.7 55322.8 .17 -46.2	280	200	88	
-37.9 54832.7 .19 -104.6	280	180	88	
-38.1 55236.5 .21 128.5	280	160	88	
-38.1 85512.5 .19 50.6	280	140	88	
-37.7 35844.9 .25 178.0	280	120	88	
-37.4 95233.6 .22	260	100	98	
-37.1 54954.9 .19	280	80	88	
-37.2 55056.8 .14	280	<u> 50</u>	98 -	<u>,</u>

į

	11		•		
	-36.8 F4395.3 .	1990 - 19 1 949	- 	88	
TABLE J - 6		ະເ <u>2</u> 90	· ()	38	
page 9 of 19	-233.0	300	Ó	#239	
	-34.0 55735 .8 .1 102.4	24 6 300	, ô	58	
	-36.8 55922.6 .	18 300		88	
	-36.5 54018.3 -	27 300	40	88, .	
	97.3 -35.6 55368.3	15 <u>300</u>	× 50	88	
	-8.5 -36.2 56043.1 .	¥3 30∕o		88	
	-36.1 95720.6 .:	2.2 500		- Se	
	98.7 -36.0 55878.6	300	120		
		19 300	140	88.	
	-	24 300	150	88	
			280	88	
	-35.9 5476 .8 .2	\sim \sim \sim	200.	88	
	-35.0.55112.7	$\gamma \sim \gamma \gamma$	220	38	
	- 1 - 35. 3 55 56 2 275. 2	300	`⊇ 4 ⊖	88	
	-35 - 50-50, 1 . 3	3 🔪 300	260	88	
		.a 200	280	88	1
		n <u>so</u> o	200	88	
•••		4 300	320	89	
\wedge		a - '200	34 0	88	
	35.6 5603.2 .B -101.6	9 / 300	Téo	3 8	
	-34,7 55872.7 .1	4 300	380	88	
	-34.8 55989.5 .1	5 300	400	88	
	-10.2	7 300	420	88	
	76.3	320		#261	
	-35.0 56280.2 .2		420	88	
	-34.9 56349.1 .2 87.4	· · · · · ·	400	38	
	-34.6 56765.7 .3 322.7		380 1	88	
	-34.8 56339.9 .1	9 320	ెకర	88	
	-35.0 56017.7 .1 11.1	4 320	340	. '8 8	
	-35.3 55870.1 .1	4 320	320	88	
	-35.5 55923.9 .1	5 320	300 (88	
	· · · · · · · · · · · · · · · · · · ·			*	

TABLE J - 6 page 10 of 19


	·			
		- 1	· · · ·	<u>-</u>
	-34,4 77042 UP	2 1 • •		46
	131.3 34.3 56522.5 .14	4.⊖ ⇔	$\frac{1}{4}(y_i)$	的现
	-15.7 -34.4 56544.0 .20 157.6	340	4.222	68
	to sub-single teachers	····	· •	
	······································	360		4795
	-74.4 56767.4 .27	. 360	4110	88
•	311.4 33.7 87207.1,.27	760 760	400	88
	274.3 (- 07423.0 .03 - 774 1	360	380	58
	275,1 -33,5 57015.5 .1. (/ 114.7	360	[54:50]	> ==
	-33.7 94875.11,06 312.2	- San	T at ()	8 8
	-34.1 86609.7 ,48			68
	-34.1 55706.6 .17 -27.4	/ 361)	700	<u>∖</u> ,
	-33.8 54975.8 .39		$>_{80}$	88
		360 X	260	88
	-33,4 55235,1 .21		20	88
	-33.5 55418.2 .13	- <u>ze</u>	220	88
			200	88
		360	180	88
		> 350	160	88
		360	140	88
	33, 56135, 6, 14	₫£0	120	88
	-33.6 3.43.57.17.17	360	e <u>t</u> egna - e	38
/	56758.7 .11	360	80	58
$\overline{\ }$	35.8 35.8	360	ъÖ	88
•	33.5 7 6582.4 .19 177.6	360	4.C)	88
	-33.2 56292.0 .19 -74.4	360	20	38
	-33.4 56448.3 .21 190.1	360 j	с 1	88
	~	330		<u>ידי רי ידי ו</u>
	-33.3 55609.4 .23 -203.4	380 380	0 ¥ 0	1327 8 8
·	-33.5 56094.3 .20	350	20	88
. '	-33.1 26173.9 .14 26.6	ឹនឲ្	40	89
	32.9 26252.7 .17 53.8	380	60	98
	-33.3 95985.8 .21 -74.8	280	80	88

14

21 J - - - -

.

TABLE J - 6 page 11 of 19

		• • • •	· · · · ·	-			•	
			, ES.) . tesser :			• • • • •	en tel	
TABLE J - 6		- 11, 4	-126. 156034. -136.		4,000	± 0	65	•
page 13 of 19	• . •	-Ti.i	56111.	9.18	4QU	(\mathbf{k})	99.	
		• 20,9	54. : 35752.: -72.	9.21	400		. 1. }	
		-31.1	. 55796. ?.	3 .14	$\mathcal{A}\left(\left[i ight) ^{n} ight)$	1 (j.	d ist	
					1 20	· ·	林371	
		-30.1	'.66366. ⊋5.0		4(24)	(')	98 j	
		- <u></u> •.e	56308.4 148.4		aco.			
		-27.0	55722.×	4 , 4 1	423		28	
	*	29.5	-Z19.1 56454.8	825	100	- in	63	
		-29.6	130.5 36381.3			୍ ବ୍ରତ୍ମ		
		-19.7	75.4			100		
		-27,7	0.3 55263.7			120		
		-27.7	-21917	7 ° Z ° –			58	
			-30.C			140	68	
		-2.7	-55864 s -57.4		4201	7 160	88	
	•	-29.5	- 558 (9.7	14		160	88	
		~27.4	55920) 4		A20	200	-38 	<u>.</u>
		-29.7	5.5	_38` (420	-220	88.	
			$\gamma_{161.6}$		4.20	$\mathbb{C}^{\mathbf{a}}$ ()	8°	•
	· ·	<u> </u>			4.20	260	. 88	
			550			1120 1120	. 89	
)		. 1	4 <u>20</u> -		88	
· .	$\langle \langle \rangle$	- 23 , 24	5991.8 -61.8		, 420	C20	88	
•	$\overline{}$	\sim 4	56141.8		420	-340	58	
		-29/6	40.1 56493.1	.19	420	360	Sa	
· · ·		-29.4	101.2	. 21	420	3 8 0	<u>88</u>	
			-158.6		420			
			-118.8		· ·	400	88	
			56073.5 166.5	•	420	420	88	·.
		-28.8	55857.5	.38	440 440	420 # 420	ड 9 ड 88	
		-28.3	87.3 56235.2	. 48	440	400		
		-29.1	. 340,5 56074,4	.19	440	380	88	
		-28.8	-124.4 56763.1	.20	440		·	•
			195.3	• += `+'	• 9 • † {_}	360	88	

725									
· ·				v sie ∘∃⊺v∃	· · ·		L .		. •
	• • •		-28.4	85599.8 -108.5		FUD -	1110	58	•
TABLE J -		•	-26.1	-35601.2 -18.7	.19	44() ⁻	Jene)	88	
page 14 of	19	•	-38.1	56267.6	.36	440	380 [°]	8 3 (
			-28.2	318.3 56039.2 45.8	.15	440	260	38	
	•	•	-29.2	90.0 55912.6 28.1	. 1.4	440		66 19	
	-		-27.7		- 1 -5	440	220	8 8	
			-27.5	55121.6	•	440	200	Ş8	
			-23.0	.95639.3 .95639.3 . ~17.7		440	1.87	93	
		••	-28.2	55691.9		440		88.	
•			~28.3	55299.4 -200.4	a vituali	440	140	28	
· · ·	• • •		-27,9			and -	120	6 7	
	·		-27.5	56255.3		/4 <i>4</i> ~	100	88 -	· .
			-28.0		. 1.	440	80	38	
		•	-28.1	56834.3 170.2	., 21	440	> 50	-88	
			-27.8	56408.5	.12	44	40	88	
			-27.9	-5678 8 197.5		4.70	: <u>20</u>	3 8	
	·	· .	· 17,8	56097.2	\	440	tj)	88	
		· · ·		47		440 · 460	े # ०	415 88 /	
						360	20	8°	
				567 .8 .3	1 (57	க்கும் கைற	4()	88	
			-27.8		- 15 - 15	4 6 0		88	
		$Z \leq$	-27)s	5482.1	• 20	460	$\Theta(r)$	83	
				103.4	.14	460	100	38	. •
				18.8	.15	460	120	88	
			-27.8	-14.5 35751.1		460	140	88	
			-27.4	21.2 55415.9		460	160	58	
		:	-27.5	54995.4		460	180	88	
			-27.7	-237.7		460	200	88	•
			~2 8. 0	-125.0		460.	220	88	
•	•	× .	-27.7	-110.2- 55098.4		460	240	88	
			-27.1	-236.5	.18	460	260	88	
	•••			59.8 54174.4		460	<u> 280 –</u>	69	

-Li.s Bail			. T err	. F5	
-27,7 5598:		440	720	88	
-27.2 56595		460	740	38	
-27.5 56324		460	760	88	
-26.7 25840		460	380	୍ୱ	
-140 -27.2 55992	2.8 .22	460	400	<u></u> . 88	
-27.6 55032 -97		460	420	88	
-27.4 54113		480 480	47		
-27.1 55137	2.7	480 /	400	× 88 -	
-27.3 55664	2.5				
	.5 .	486	1980	58) \	\mathbf{i}
-27.6 56603		480	360	ોલ	
-27.8 56075		450	30	88	
-27.7 56666 50	.9.15 ⁽ .9	480 4	320	88	
-27.6 57271 565	_	শন্থ	ेष्	8 8 -	
-27.5 56692 167	1	480	1 30	9 8 -	
-27.6 56052 -127		7 480	260	88	
-27.4 56233		480	240	88	
	4 . 17	480	220	89	
	$.3^{71}$	7 480	200	88	
26.9 55774		480	180	88	
	.7 20	480	140	88	
	•7 •14 •8	480	140	38	
-27 2 55876	.4.21	480	120	- 38	
27.2 36882		480	100	88	
-27,1 × 56677 99		480	80	88	
-26.9 56640. 189		480	60	88	
-27.0 56412. 125	,	480	40	88	
-27.0 56378. 107.	.1 .21	480	20	88	
-27.1 55868.	.3.24	480	Ō	88	
• •		500	. • •	459	
-26.8 54555. 216.		500	Q	88	
-27.0 56051. -34.	6.15	500	20	88	
-79 7 54110		Eac			

TABLE J - 6 page 15 of 19

.

4			
-20:3 55447.7 .2: -23.0	. Televier	· ••••	88
-28.9 55803.2 .21 -105.3	500	30	88
-27.0 55795.2 (19	200	1.00	88
-76.4 -26.7 55743.6 .19	500	120	88
-93.3 -26.4 55960.9 .15	500	140	-88
4.3 -25.0 56251.0 .15	500	160	88
2.2 5 5 -26.3 56797.3 .66 427.1	500	· jao	88
-26.2 56781.5 .19	500	/207	88
-26.2 56774.8 .19 · · · 122.1	500	22	88
-25.4 56896.3 .19		~	BR
-26.2 57351.8 .20	50	260	88
H25.7 57414.4 .18 115.7	50	> 230	88
-25.6 57194.7 .19	్రంగ	300	88
-26.1 56505.0 ,19	500	>320	88
-26.4 56547.4 .21	<u> </u>	340	88
-25.9 563752 103.4	্ৰ-চ্ৰা	360	88
	500	3 8 0	88
-25.0 55134 - 13	500	400	88
	500	420	88
	520	420	#491
	520	420	68
	$\mathbb{D}(\underline{\mathbb{D}})$	३००	98
-25,2 65755.5 14	520	38 0	88
-25.3 56532.1 .26	520	.360	88
-30.3	520	340	88
-25.2 56569.7 .14 -19.7	520	320	88
-25.4 56956.3 .13 -6.1	520	300	88
-25.5 57501.7 .19	520	280	88
-25.6 57648.6 .22 256.1	520	260	88
-25.6 56564.0 .21	520	240	8 8
-25.5 56094.2 .24 -172.2	520	220	9 8
-25.0 55849.6 .19 -100.7	520	200	88
-25.0 35880.1 .14	520	180	- 88

TABLE J - 6 page 16 of 19

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ین با ۲۰۰۵ ۲۰۰۶ همچنسه به ۲۰۰۱ در سر		•	7 4 j
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.40) -	Вð
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-25.3 56425.4 .39	豊富の	120	28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-25.4 56485.2 .64	e 520	100.	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· .	25.7 55907.9 .15	520	80	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-25.8 56068.0 .25	520	± 0	3 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-26.1 55638.7 .22	520	40	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-26.4 55911.8 .25	520		88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• *	-26.0 56198.4 .14	520		88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			=40 540	∧ ·	503 502
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-25.5 56248.2 .14	· / 50	20	×
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· -25.5 55999.4 .16/		> 40	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• .	-25.0 55397.4 .22	54	60	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-24.9 55861.5 .25	540	> 80	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	. 88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				120	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-23.8 -23.9	540	140	'88 '
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	27. 6 56690 7 . X 258. 4	540	160	38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			54⊙	180	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-24, 55152.4 .25	() ()		88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. / /		. 540	220	<u>88</u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\langle \langle \langle \rangle$	-125.4	•	240	.89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		222.7		260	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		192.3		280	. 98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		154.2		300	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-105.3		320	88
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		21.6		- 340	88
215.0 -24.0 55051.9.50 540 400 88 -102.1 -24.3 54267.5.31 540 420 88 -313.5 -23.3 53782.9.83 560 420 88		70.4	540	360	88
-102.1 -24.3 54267.5 .81 540 420 88 -313.5 560 420 #525 -23.3 53782.9 .83 560 420 88	· · ·.	215.0	540	380	88
-313.5 -23.3 53782.9 .83 560 420 #525	· · ·	-102.1	540	400	88
-23.3 53782.9 .83 560 420 88				420	88
			_		

. ...

TABLE J - 6 page 17 of 19

0309729

TABLE J - 6 page 18 of 19

1		•		
n na standar Maria e na standar	an a la calla da	1. ± 17	10^{10}	tė į
-23,4 500		5o()	380	98.
-23.8 368		560	360	88
-24.0 556		560	340	88
-24.3 570		560	320	88
-24.5 570	52.0 47.8 .21 .	560	300	88
-24.2 576	46.1 41.8 .17 =7 7	560	280	88
-24.2 5730	57.7 64.9 .27 00.8	560	260	S8
-24.3 5636		540	640	88
-24.5 554	12.0 .72 08.5	550	230	88
-24.8 5524	72.3 .22 43.3		000	3 8
-24.8 5544	· · · · /	500	180	V 88 -
-24.6 3595		🗸 ःकृ	160	88
-36 .9 565 0		560	140	88
-33.9 556	22.	560	120	88
-24.9 5508	30.9.25	550	100.	88
-24.8 5587		✓ 560 ℓ	90 ·	88
-27.6 35.8	57.3.27	<u> </u>	60	58
-24 7 58	5. 4	. 540	40	98
	.24	560	20	88
	1.8 .20 . 4.1	560	O	88
24, 4 5741	8.1 .26	580 580	. O O	#547 88
\	5.0	580	20	88
	9.6	580	40	88
	5.1	580	60	. 88
	3. 9	580	80	88
	2.0	580	100	88
	9.3	580	120	88
	1.1	580	140	88
• •	6.1.	580	140	88
	9.2	580	180	88
-24.6 5534	4.5	580		
	5.4	080	200	88

	a			
•	40,2 	т. <u>щ</u> ,	<u>.</u>	84
TABLE J - 6	15.1 57796.J. 129	58-) 18-)	260 [°]	88 (
page 19 of 19	332./ -24.7 57534.5 .24	580	280	88
	152.7 -24.4 57287.9 .18	580	$\mathbb{E}(\theta)$	88
	137.0 -04.4 56947.4 .19	580	320	88
	74.3 -24.4 56723.7 .14	580	. 340	88
	1.2 -24.5 56697.4 .13	580	<u>360</u>	88
	11.3 -24.6 56370.3 .21 -27.4	580	337	88
	-24.5 55292.8 .27 -122.4	್ರಾಂ	400	88
	-24.4 54498.6 .35 -177.0		4 20	8
	-23.7 55428.0 .23 /		420 %5 420	49 88
м. М	100.9 -24.5 56040.5 .15			88
	-29.7	5		
	-73.9		•	88
	-23.7 56699.6 .47			88 .
	-43 9 -24.0 57235. X . 34	A00		88
	-24 2 5700	5 00	300	88
		500 	280	88
•	263 6	600 j.	240	88
	-2-2-55962.5.22	600	240	88
	3 4.0 5627.3 .20	. 500	220	38
$\langle \rangle$	-24.1 95343.6 .22	500	200	38.
	-23.9 56052.3 .14 25.4	600	180	88
· · · · ·	240.9	600	160	98
· · · ·	-23.5 57068.0 .27 300.2	600	140	58
	-23.3 36145.4 .19 -54.7	500	120	38
	-34.7 -23.8 56261.5 .17 81.1	500	100	38
	-27.2 56665.7 .25 292.3	600	80 (38
	-32.4 56084.4 .21 -24.8	600	60 (38
	-24.8 -35.0 55780.1 .21 -125.8	5 00	40 8	38
	-29.6 56224.4 .25 -43.1	600	20 8	38
· · · · · · · · · · · · · · · · · · ·	+24.6 56501.7 .27	600	်န	38

TABLE J-7 CORRECTED DATA TIRE DUMP AREA (GRID No. 2)

-				/			
- 10 10 10 10 10	202 9:0 202 9:1 209 9:1	20030 B- 20:00 21:01 49:51 00:00 20:55 50:14				>	
	体体适应管	54000.0			• • •	· .	
· ·	-341.3 e		. 14		0 1 0 1	#2 88	• .
	-341.2 5	5768 , 97		~ ~ ~	20	88	
	341.40	5762.51	.14	$\leq i_{\rm e}^{\rm o}$	40	88	
	™4[.7 	576 5 7.5		Ģ.	60	88	
	541.87		Jan di	. ()	80	88	
~		3987.6 3987.6	14	()	<u>1</u> (N)	88	
	341.7\3	×	1.4	Ų,	120	88	
$\langle \langle \langle \cdot \rangle$	34 i) 5 7	5948.3 . 7.3	14	<i>(</i>)	140	38	
	M. 7 /55		15	Ö	Lén)	88	•
	\$41 9 58	956.1 . 9.0	12	0	180	88	

· · · · ·		1		•				
		-042.0	- 255-721.7	·	• •	an e	- - #	
TABLE J - 7		-341.9	-1979.J		,	24 0	- HE	-
page 2 of 16		-341.3	0.0 55968.5	.12	, i o	.240	-8	
	м	-341.7		.14	Q	289)	188	
		-341.7		. 14	;;	B ajata	.993) (*)	
· · ·		341.8		- 1-3	0.1	- 320	88	
		-241.7	5.5	.14	\sim	340	99	
		- 341.9	54001.5 3.3			140 1	88	
· · .		-142.0	56004.1 5.3	.15		ેલ્ં	88	
· · · ·		34 1. 3	56002.7 5. 7		20 × 20 >		#23 88	
		-342.1	55999.0	. 15	20	360	88	
		<u>,</u> 342.2	55997.5		$\sum 20$	340	8 8	
		- 342.5	55992.4		20 1	320	98	
		-342,5	<u>∕==</u>	. 14	20	300	88	
· .			55 92.9	. 1.4	20	280	88	
		-342.3) 14	20	260	88	
	<	(• 1 5	(and and and and and and and and and and	240	88	
	\sim	-342.	55948,4	. 1.57	`Ω()	220	88.	
				. [3	<u> </u>	200	38	
	$\langle \rangle$	-342.5		a 1.5 ¹	<u>-</u>	180	88.	
	$\mathbf{\nabla}$	-3/2.5		• 1 2	20	160	- 88	
· · · ·	\searrow	-342.5		. 14	20	140	88	
	• •	-342.6 :		.13	20	120	88	
· •		-342.4		.1Ξ	20	too	່ອອ	
		-342.1 3		• 1 7	20	80	88	
		-342.0 5		. 1.4	20 ->	60j	88	
		-342.4 (-19	- 20	40	8 8	
· · · ·		-342.3 s	5600 8. 4 / 74.7	• 200	20	· 20	8 8	
	•	-342.8 5	35758.6	. 14	20	Ō	98 .	·
· · · · · · · · · · · · · · · · · · ·	•	342.6 5	5.7 5917.5 (. 17	40 40		#44 .88	

· · · · · · · ·	,	· .		•••	
- 3 4 2. 9	e,t:. alferer	. 1.5.		46	ee Se
	· · · · ·	1 E 1.2			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	55888.0	.1.5	s <u>‡</u> €je s s	50	88
-342.1	55770.6 21.8	.15	40	190 190	- 11
	65787.7 62.9	.17	4 <u>(</u> )	100	<b>95</b>
······································	55776.7 37.5	. 1 <u>6</u>	40	打印	石 <b>名</b> -
-142.4	55741.5	.20 .	<i>3</i> , , , , , , , , , , , , , , , , , , ,	140	88
-342.3	55647.3 -47.6	<b>, 1</b> ,17		160	<del>58</del>
342.3	55471-1 -235.2	2004, 2005, 1. 1. 1. 1. 1. 1. 1. 1.	a.	180	3 <b>R</b> .
	556(6.2) -73.6	.27	40	200	88
-Ţ4Z.Z	55739.4 -53.9			22	88
-342.5	55859.9 13.0/	1.4.	40	26	88
-342.8	55944		- <b>7</b> 40 - 1	260	88
	55768.8	15	40	280	- 3 <b>9</b>
-342.6	3.6	. 14	40	200	88
-342.2	55988.7	.15	7 40	320	88
-342.0	5 7 7 5 V		40	340	88
42.8		<b>Š</b> 14	$10^{-1}$	360 -	88
		. 1.4	1. s ()	<b>38</b> 0	88
$\langle \langle \vee \rangle \rangle$	$\sim$		$\dot{c}$	380.	#64
-342.6	56002.7	.1.4	- 60 -	3 <b>8</b> 0 (	88
		; (a	<u>-</u> 	760	88
		. [4	$\Delta O^{+}$ :	340	88 -
		.15	ЪÒ	329	88
×42.8		. 14	5Ó	200	88
-343.0		.15	,° 40 °,	280	88
~342.9 :		.17	<b>≜</b> (0) - }	260	88
-342.5		5,4	$\oplus O_j$	≊40	88
-342.2	·	.17	- <b>6</b> 0,	220	88
-342,8-1		. 26	60	200	88
-343.4		. 25	, <b>5</b> 0	180	88
~342.0		17	60	160	88
-342.5 :		.24	- 60 -	140	88
- 40.0	79.V Starp 1			4. (***)	

TABLE J - 7 page 3 of 16

 $\langle$ 

.03097734

	та <b>с</b> т				
	一方,一方有有"""。"你们是这个事情,不是不是不是不是。"	•• •	÷	÷:5	
	-211.8 -342.7 35781.4 .21 -145.4		細心		
TABLE J - 7 page 4 of 16	-342.5 55869.7 ·/5 1.1	02/1/	<u></u>	58) (58)	
	-342.9 55938.5 .14 14.4	60	• <b>1</b> 0) -		
,	-347.1 558 <b>88.5 .17</b> ·	<u>40</u>		<u></u>	
	) - 042.8 55 <b>728.4</b> 14 -11.2	<u>6</u> 0	Ô	83	
	-343.2 55942.8 .14	80 80,	0 0	₩84 88	
	2 	s./	$\sum_{i=1}^{n}$	38	
	-27.2 -342.3 55673.3 .(4	60	40	83	
	-7.8 -342.8 56067.6 .21	$\langle e \rangle$	. 50	<b>_</b> 88	
•	70.6 343.9 56012.2 .16 23.4	≫്േ	89		
	-343.5 56103.2 17		100	.88	
•	-343.2 36131.4	- fo	120.	88	
•	-343.0 56103.3 .14		140	88	
	-343.4 553 <u>1.8 .34</u> 41.7		160	88	·
· .		80	180.	88	
	-345.5 55.5 .16	<b>.</b>	200	83	
· · ·		20	an an Co	88	
		80	<u>240</u>	58	
		80	260	,38 1	
		. 50	() 得心 ()	38	
		80	300 -	-98 -	
• • •	-345.2 55908.5 .15 13.0 -742.7 55975.1 .14	80 /	320	88	
	-742.7 55775.1 .14 3.3 -342.8 55785.1 .15	. 80	340	88	
	-342.5 56004.2 .15	80	360	88	
	13.9	80 1 20	380	88	. ·
. · · .	-343.4 55996.1 .14 6.1	$1 \odot \odot$ $1 \odot \odot$	280- #	104 38	
· · · · ·	-343.1 55980.9 .14 4.3	100	360	3 <b>8</b>	
	-342.9 <b>55961.1</b> .15 -23.9	100.	$\mathbb{R}^{dC}$	38	
	-342.4 55943.3 . <u>15</u> 27.5	100	320	88	
	-344.7 55805.0 .17 .42.5	100	300	88	
	-TAA o saids i and				

erx... seleele dri ::: ,**-**1 .... <del>.</del>.... 48.1 -342.6 56067.4 2005 1.1.1 و دري و -109.1 -342.4 56203.7 ... 20 ्रः य 100 220 29.0 -342,2 54007.5.14  $1 \odot \odot$ 200 -33 23.5 -342.7 55907.3 .17 100 150 <u>, a p</u> -21.4 . ~542.6 55884.4 .15 100 22 15013.3 -342.9 55946.2 a **1** 7 100 140 88 -51.1 041.8 56217.6 027 120 10 (= 1)81.3 -347,5286694.8 . 1 🖓 00 100 88 73.å -342.9 05979.1 10030 **C** (2) -113.3 -342.4 55799.8 .23 100 60 88 ٠. -88.2 -342.3 55853.1 6 100N 88 -30.4-342.5 85862.7 .15 ಂ 2038 -24.9 -342.8 55844.3 100 О ദ -16.5 -342.5 55 Ą, .15 110  $\cdot 20$ 88 -3. C, 1.200  $\odot$ #125 -342.6 391 23 120 ()33 34215 en en e 12000 88 42. 895 120 40  $\mathcal{O}(\mathcal{O})$ 55859. 26 120 60 38 342 56055. 8 190 12090 88 . T. j 24 7 120 100  $\otimes B$ 1 . 6087. - 1 = . 120 -120 -35-6 36.6 36091.6 .15 1 20140 63 -4.4 3.2 56046.4 .19 120 88 160 -28.6 342.2 56344.4 .29 120 88 130200.5 -342.1 56001.0 .17 120200 88 4.4 -342.3 56214.6 .27 120 22088 96.4 -342,5 55701.0 .21 120 240 38 -151.6 -342.5 56070.4 ... 17 12088 260 13.5 -342.8 56033.2 .17 120280 88 -45.5 ~342.5 55909.4 .19 120300 88 -25.0 -342.6 55894.0 .20 120 320

88

TABLE J - 7 page 5 of 16

	41.12 CT (41.11 18)		े केंद्र क	e i
	-12.4 -342.7 55985.4 .16	120	360 8	8
TABLE J - 7	-21.2 -342.9 55987.1 .12	120	380 8	9
page 6 of 16	5.3			•
	-342.5 55987.9 .16	. 140 140	- 380 #14 - 380 - 8	
	7.0	· .		
	7.5	140	340 S	8
	-342.3 55939.0j.16 9.9	140	340 8	8
	→ -342.9 55876.1 .15 11.1	140	320 8	8
	-342.4 55736.2 118	140	300 80	8
	-36.9 -342.3 56003.1 .18	1,0	280 98	8.
	22.8 -342.5,56011.7 .18	140	<b>56</b> 0 BE	3
	43.8 -342.3 56266.4 .26		240 88	<b>3</b>
· · · ·	-342.2 56272.5 .29/		220 88	
··· •	135.2 -342.1 55935.0 27		, ,	
	-141.7 🗸	$\sim$ /		
	-341.8 56241.9 .X 45.0	440	190 88	3
	-341.8 56134 1 .17	140	160 98	3
· · · · · · · · · · · · · · · · · · ·	-342.3 56118.2 .15	<b>1</b> 40	140 88	3
	-342.6 56094.4 73	140	120 86	3
· · · · ·	-342 5 5 12.8 .21 58.2	140	100 88	9.
	-742. 559 2.4	140	80 86	3
	-342. 561 5.7 .21	140	60 8 <u>8</u>	3
	-242.5 55873.7 .15	140	40 88	)
	-342.	140	20 38	}
	-342.4 56039.6 .17	140	0 88	
	32.4			•
	36.0	140	-20 88	
	42.2 56021.6 .17	160 160	0 #166 0 89	
	37.8 -342.3 55996.8 .20	160	20 88	
	74.6			
	-38.6	160	_40 _ 88	
	-342.7 56133.2 .23 124.5	- 160	<u> 60</u> 88	
•	-342.8 55831.7 ,22 -75.6	160	80 88	
	-342.4 56034.0 .22 77.5	160	100 88	
	-341.8 55921.7 .20 -42.8	160	120 88	
• • • •	-42.8	160	140 88	

TABLE J - 7 page 7 of 16

1921 Taiter B 1921	31-5	: =::	=-ā:	
-341.9 56246.6 .01	160	180	85	
-341.6 56161.8 .17	160	200	88	
-14.8 -341.6 56069.7 .15	160	220	88	
-11.1 -341.6 56392.4 .26	160	240	88	
244.8 -341.7 56170.5 .22	160	250	88	
75.2 -342.1 55856.5 .19	160	280	88	
-76.2 -342.4 56102.5 .23	160	300.	98	
84.7 -342.2 55997.1 .27	í i 🎢	.320	88	
130.2 -342.2 55869.0 .15	150	340	88	
3.9 -342.1 55945.3 .14	160	560	88	
-341.9 55983.2 .14	160	380	88	
-340.5 55985.8 14	180		186	
-340.6 55977.4.12	180	380	- 88 - 00	
-340.9 55938.3 .14		360	.88	
-341.3 55845.5 .14		340 	88	
-340.9 53678.0 25	,	320	88	
- 353 - 55772.2 . 72	180	300	98	
	180	280	88	
	180	260	88	
	180	240	88	
340.2 56451.2 .30	180	220	88	
-3 9 96947.1 .14	180	200	88	
$\begin{array}{c} 340 \\ 56320.3 \\ 57.3 \\ 57.3 \end{array}$	180	180	88	
-340, 2 56447.3 .24 223.2	180	160	88	
-340.6 56159.0 .16 31.0	180	140	88	
-341.0 55860.4 .21 -79.6	180	120	88	
-340.8 55886.1 .17 14.1	180:	100	- 88	
-340,7 55723.2 .23 . -133.7	180	80	88	
-340.4 55956.6 .19 -69.9	180	60	88	
-340.3 55830.9 .16 -45.6	180	40	88	
-340.1 55961.0 .14 18.3	180	20	88	
-339.8 55972.0 .17 70.1	180 .	Q.	88	
		~ u	<u></u>	

			e.			·		0309738
		• • •		• • • • •	1 	÷	11	0303(38
		-340.2		5 . 28		20	88	
TABLE J - 7	·• ·	-339.9	9 55883.1 -60.6	. 19]	. 200	40	88.	· · · · ·
page 8 of 16		-340.0	55985.9	.19	200	60	80	
		-340.4	-85.4 - 55848.4	.16	200	80	88	
		-340.6	-14.1 55753.4		200	100	88	· · · ·
		-340.6	-83.2 55813.4		200	120	88	· · · · · ·
			-70.1 556116.3	•	200	140	38	
	·		21.2		200 /			
			85.4 56053.9				88	
		* .	-27.6		250	180	88	
			56180.2	1		500	88	• •
	•		56323.8 229.3	/		220	<b>7</b> 88	
	• •	-337.2	56026.7 31.5		720	240	88	•
		-339.0	55888.5		(* 20p -	260	88	
		-339.0	55953.8 185.7		200	280	88	ч.
		-339.2	5548	32	200	300	8 <b>8</b>	. · · ·
		-340.4	35456.5	.16		320	88	
■ .	· · ·	-340.1		$\sum$	$\sim_{200}$	340	88	
		-339,5	285.7	.15	2001	360	88	
			359 4.5		200	380	38	
		$\langle \langle \langle \rangle$	9.2	7	220	380 +		
		3.9.6	55.70.2	.14	220	380	38 (	
		-339 <b>.</b> }	59422	. 14	220	360	88	
		-335.6	55881.3	.15	220	340	88	
		~/	9.1	.17	220	320	<b>38</b> - 1	
		-339/3	-53.1 56126.6	.55	220	300	88	
		-339.2	334.5 35999.6	.15	220	280	88	
	• •	-339.3	5.2 56024.1	.14	220	2601	88	·
	••		9.5 56283.0		. 220	240		: ·
			154.2				58	
			184.1		220	220	88	
		•	66155.5 15.5		220	200	88	
	•		55942.1 -23.7		220	180	88	
	-: : *		55805.3	•	220	160	88	
		-338.4	55862.2	.20	. 220 _	140	88	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 6 2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-778.2				17.0	35
-338.0 $56171.6$ .27 10.7 -337.5 $56067.8$ .14 220 60 88 11.0 -338.2 $56111.2$ .23 220 40 88 -79.4 -338.5 $5597.9$ .18 220 20 88 -337.7 $5511.3$ .24 240 0 4246 -337.7 $55311.3$ .22 240 0 88 -337.7 $55591.6$ .19 -142.5 -338.1 $56096.7$ .16 240 0 88 -772.3 -337.7 $5591.8$ .21 440 60 88 -337.7 $5591.8$ .21 440 60 88 -337.7 $5591.8$ .21 440 60 88 -337.7 $5591.8$ .21 440 60 88 -337.9 $56607.4$ .35 240 100 89 -337.9 $56607.4$ .35 240 100 89 -337.9 $56607.4$ .35 240 100 89 -337.9 $56607.4$ .35 240 120 88 -337.9 $56607.4$ .35 240 160 88 -336.1 $55795.4$ .21 240 209 88 -336.2 $5604.3$ .29 240 180 98 -336.2 $5604.3$ .29 240 180 98 -336.2 $5604.3$ .29 240 209 88 -336.2 $5604.3$ .29 240 209 88 -336.4 $5587.2$ .23 240 180 98 -336.5 $5607.7$ .7 240 220 88 -336.5 $5607.7$ .7 240 220 88 -336.5 $5607.7$ .7 240 220 88 -335.4 $55872.7$ .23 240 240 89 -335.5 $577.8$ .25 240 240 89 -335.4 $55872.7$ .23 240 240 89 -335.5 $5577.4$ .240 240 89 -335.4 $55872.7$ .25 240 320 98 -335.5 $5577.4$ .26 240 320 98 -335.4 $56272.3$ .29 240 320 98 -335.5 $5597.4$ .25 240 320 98 -335.5 $5597.7$ .17 240 320 98 -335.3 $5599.2$ .15 260 320 88 -335.3 $5597.4$ .25 260 320 88 -335.3 $5597.4$ .25 260 320 88 -335.4 $56272.3$ .29 260 320 88 -335.5 $5597.4$ .25 260 320 88 -335.4 $56272.3$ .29 260 280 88 -334.4 $5597.56.8$ .21 260 260 88 -91.0 -334.4 $5577.6$ .27 260 220 88 -91.0 -334.4 $5577.6$ .27 260 220 88 -91.0 -334.4 $5577.6$ .27 260 220 88 -91.0 -334.4 $55745.6$ .21 260 260 88 -91.0 -334.4 $55745.6$ .27 260 220 88 -91.0 -334.4 $55745.6$ .27 260 220 88 -91.0 -334.5 $54462.5$ .29 260 200 88 -91.0 -334.5 $54462.5$ .29 260 200 88 -91.0 -334.5 $54462.5$ .29 260 200 88 -91.0 -92.0 -92.0 -92.0 -92.0 -92.0 -92.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0 -93.0		-338.2	55971.	5.19	220	100	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-338.0	56171.	6.27	220	. 80	S <b>S</b>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-337.8	56067.	8.14	220	60	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-338.2	56111.	2.23	220	40	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-338.4	55957.	9 - 18	220	,20	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-338.2	55819.	3.24	220	0	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			i Taiant≉iana∎ I	1	740	· •	40344
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-337.7				-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-337.8	55850.0	5 19	40	20	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-338.1	56096.	7.16	240	- A	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-337.7	55891.8	3.21		60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-337.8	56022.0	5.27	240	80	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-338.1	55785.4	4 / 21 -		100	83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-337.9	56607.4	≠ . <del>]</del> ₹	240	120	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-337.3			249	140	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-336,9	· · ·	.33	240	160	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	-336.2	V			180	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-35/.2		<u> </u>	240	200	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		/536 (S)	56047.		240	220	88 .
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-336.2	5577		240	240	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		35.5	55872.9		240	260	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-335 <b>.</b> }`	35,759.7	.17	240	280	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- <b>3</b> 6.)	55893.7		240	200	88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-335 /7 /	56055.C	.19	240	320	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			/ 4 • 1	. •	240	300	#247
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-335.8 ·					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-335.3 (	55989.2	.15	260	300	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-335.2 :	56079.4	.26	260.	280	88
-334.6 55945.8 .21 260 240 88 -91.0 -334.4 56317.6 .29 260 220 88 208.5 -334.5 56462.5 .29 260 200 88 296.3		-335.3 :	55870.9	.23	260	260	<b>38</b>
-334.4 56317.6 .29 260 220 88 208.5 -334.5 56462.5 .29 260 200 88 296.3		-334.6 5	35945.8	.21	260	240	88
-334.5 56462.5 .29 260 200 88 296.3		334.4 5	56317.6	. 29	260	220	88
	· · · · · · · · · · · ·	334.5 5	56462.5	.29	260	200	88
	· · · · · · · · · · · · · · · · · · ·	334.4 5			260	180	99

TABLE J - 7 page 9 of 16

TABLE J - 7 page 10 of 16       -334.4       55726.5       -11       140       89         -334.4       55726.2       2.21       260       120       99         -354.4       55728.2       2.21       260       120       99         -354.4       55728.2       2.21       260       100       83         -374.4       55728.4       4.16       260       100       83         -374.5       55794.8       2.25       260       30       99         -354.5       55897.2       1.7       260       60       98         -354.5       55897.2       2.77       260       20       88         -354.5       55897.2       2.77       260       60       98         -354.5       55897.2       2.77       260       60       98         -354.7       56897.2       17       260       60       98         -354.2       55897.2       2.72       280       60       98         -354.4       555897.1       3.22       280       60       98         -354.5       55857.2       17       260       140       98         -354.5       56284.2       1		<u>.</u>	·				
TABLE J - 7 page 10 of 16 $-334.4 = 55226.2 \cdot 21$ $260$ $140$ $98$ -734.4 = $55726.2 \cdot 21$ $260$ $106$ $68$ -334.2 = $5724.4$ $116$ $260$ $106$ $68$ -334.2 = $5724.4$ $116$ $260$ $90$ $98$ -334.2 = $5724.4$ $8.25$ $260$ $90$ $98$ -334.4 = $55690.2$ $117$ $260$ $60$ $98$ -334.5 = $5599.2$ $219$ $260$ $60$ $98$ -334.7 = $5606.4$ $117$ $240$ $98$ -334.7 = $5606.4$ $117$ $240$ $98$ -334.2 = $55890.7$ $217$ $260$ $9290$ -334.4 = $55871.3$ $217$ $260$ $9290$ -334.4 = $558942.3$ $117$ $790$ $98$ -334.4 = $55871.3$ $227$ $280$ $88$ -334.4 = $55871.3$ $227$ $280$ $88$ -334.4 = $55871.3$ $227$ $280$ $88$ -334.4 = $55871.3$ $227$ $280$ $88$ -334.4 = $55871.3$ $227$ $280$ $88$ -334.4 = $55871.3$ $217$ $290$ $88$ -334.4 = $55871.3$ $217$ $290$ $88$ -334.4 = $55871.4$ $5571.4$ $250$ $140$ $88$ -334.4 = $55871.4$ $277$ $280$ $200$ $89$ -334.4 = $55871.4$ $572.4$ $280$ $290$ $88$ -334.4 = $55871.4$ $572.4$ $280$ $290$ $88$ -334.7 = $5628.4$ $7.19$ $280$ $240$ $88$ <th></th> <td></td> <td></td> <td></td> <td>te0</td> <td>āā.</td> <td></td>					te0	āā.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				26() -	140	88	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		334.4 55728.2		250	120	88	• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.2 55724.4		260	100	83	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.4.55794.8		260 1	30	99	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.6 55899.2	.19	260	60	38	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.7 56068.4	.17	260	40	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	-334.3 55978.2		260	20	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.0 56116.1		250 /	$\sum$	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		indian e		290	<u>د</u> ک	#290	
$\begin{array}{c} -121.6 \\ -334.4 55942.3 .17 \\ -36.7 \\ -36.7 \\ -374.4 55718.2 .27 \\ -98.7 \\ -374.4 55571.3 .24 \\ -94.1 \\ -374.4 55571.3 .24 \\ -94.1 \\ -374.4 55571.4 \\ -74.1 \\ -374.4 55571.4 \\ -94.1 \\ -374.5 556512 .2 .17 \\ -42 \\ 28 \\ -374.5 556512 .2 \\ -17 \\ -42 \\ 28 \\ -374.5 5565 .4 \\ -37 \\ -351 \\ 0 \\ -374.8 \\ -355 \\ 0 \\ -374.8 \\ -355 \\ 0 \\ -374.8 \\ -355 \\ 0 \\ -374.8 \\ -355 \\ 0 \\ -374.8 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -517 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507 \\ -507$			417	790		88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			.21		20	39	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.4 55942.3	. 17		40	V88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.4 55718.2	₹ <	/280/	60	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.4 55571.3		280	80	88	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-16	230	<b>&gt;</b> 100 '	83	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		· <b>\</b>	+17	250	120	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · ·	-334.7 56261.9	X	<b>J</b> 280	140	88	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-334.7 55596.4	37	280	160	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-374.8 3283.9		280	180	38	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·		. <b>.</b> .	280	200	88 -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			.17	280	220	. 98	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			.1 <b>♀</b> ´	280	2401	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			. 27	280	260	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-34.9/55986.3	.22	280	2 <b>8</b> 0	88	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-334.9 56030.5	.20	280	200	88	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-335.0 55634.6	. 29	280	320	- 88	
121.2 $-334.6 56077.5 .26 300 300 88$ $-99.1$ $-334.5 56121.7 .22 300 280 88$ $40.9$ $-335.0 56073.5 .14 300 260 88$ $6.3$ $-334.8 56254.5 .28 300 240 88$ $186.2$						#297	
$\begin{array}{rrrrr} -99.1 \\ -334.5 \ 56121.7 \ .22 & 300 \ 280 \ 88 \\ 40.9 \\ -335.0 \ 56073.5 \ .14 & 300 \ 260 \ 88 \\ 6.3 \\ -334.8 \ 56254.5 \ .28 & 300 \ 240 \ 88 \\ 186.2 \end{array}$		121.2		300	320	88	
-334.5 56121.7 .22 300 280 88 40.9 -335.0 56073.5 .14 300 260 88 6.3 -334.8 56254.5 .28 300 240 88 186.2			.26	300	300	88	
-335.0 56073.5 .14 300 260 88 6.3 -334.8 56254.5 .28 300 240 88 186.2		-334.5 56121.7	.22	300	280	88	
-334.8 56254.5 .28 300 240 88 186.2		-335.0 56073.5	.14	300	260	88	
		-334.8 56254.5	.28	300	240	88	
	· · · · · · · · · · · · · · · · · · ·		. 20	700	<u>, 'uč.</u>	88	

TABLE J - 7 page 11 of 16

	-734.9	9 56176.9 100 1	-, 27	300	100 Å	88
	-335.0	88.4 55797.0 -29.2	. 18		180	88
	-334.5	55767.8 -52.8	.15	300	140	88
	-335.0	-52.8 55725.9 -23.3	.16	300	140	88
•	-335.6	55615.9	.14	.300	120	.83
	-335.3	55436.5 -194.7		300	100	88
	-335.0	55953.7		300	80	88
•	-335.1	56137.9 -23.3	. 14	300	60 ₁	88
	-335.4	-56041.1 -27.9	• 17	309		88
	-335.5	56417.3	- 23	200	20	88
	-335.2	56424.4 9.0	.27	<u> </u>	$\sim 2$	88
•	-334,9	56147.7	. 13/	320		#14 88
•	-336.3	-40.8	16	370	20	88
,	-336.1	55927.0 -109.4	.25	620	40	88
	-335.5	56285 8	.25	320	60	88
	-335.1	41.7	.16	320	80	88
	-334.8	55744.9 33 3	Vs∕	~ 320	100	88
÷.,	~335.0	59032.4 515.0	, 74 , 75	320	120	88
÷	-\$35 [	55548.		320	140	88
	<-335 <b>.                                   </b>	55757	.14	320	160	88
			.15	320	180	.88
	-335.)5	3 <b>6045.8</b> 62.3	.19	320	200%	88
	/ /	-32.0	.17	320	220	88
	×335.A	्ठ.5	.16	320	240	88
	$\mathbf{V}_{\mathbf{i}}$	-111.4	.23	320	250	88
		-79.6	.24	320	280	88
		56201.7 51.5		320	300	88
	-334.6	55897.3 -35.8	.18	3201	320	88
	ৰ্জ্ঞা ক		• ~	340	320 #	
		-50.7	.17	340	320	83
	•	91.7	.20	340	300	•
	-	56145.0 84.4	•	. 340	280	88
	-334.9	56066.5	.17	340	260	88

		11 - 43.4 Ser		્રેક્ટ છે. જે જે					df
				·•				03097	42
	: .	-334.0	3 55943. -34.		3 <b>4</b> 0).	240	88		
		-334.3	7 55987.; 		C40	220	88		
TABLE J - 7 page 12 of 16	2	-334.1	2 55948.	1.20	340	200	88	• •	
	2 1	-333.8	61. 3 55669.	7.15	340	180	88		•
· .		-334.5	16. 5 55265.4		340	160	88		
		-333.7	-33.0 7 55174.3	*	340	140	88		
		-333.7	-172.4 7 55898.4		340	120	88		
		-333.7	81.3 7 56030.2		340	100			· · ·
			3.8 9 56265.4	5	346	80	.58	•	
		• ,·	43.8 ) 56343.7	5	540	50	88		
		-334.1	11.8	3	340	40			
			114.9	7		40	88	. •	
			) 55920.6 -143.5	5 /	340	.20	88		
	•	-333.4	562 <b>98.1</b> 78.6			0	88	· · ·	
		-334.3	56200.6		760	0 1 0	#348 88		
		-334.3	-67.3 5597 <b>/3~</b> 5		369	20	88		-
. <u>.</u>		-333.9	-128.2 56038.6		<b>Z</b> 60	40	88		
		-333.2	314.5 55449.3		- 360	50	88		
•		-337.0	<u> </u>	÷ /.	360	80	88		
	. ·	-	<b>F</b> 6286.0		360	100			
	•		13.9				88		
	· ·		54450.5		360	120	88		
: 			<u> -4</u> 36.5	i.	360	140	78		
	~/ (	-332.8	5 <b>50</b> 92.5 -51.7	, ,	360	160	88		
	$\langle \rangle$	-333.4	55516.6	1	360	180	88		
		-333.2	55769.7		360	200	88		
		-373.0	55840.3	.17	360	220	88	•	
		-332.8	55980.5	.15	360	240	88		
		-332.5	55850.5	. 26	360	260	88		
		-332.5	-235.8	. 89	360	280	88		
	• • • • •	-331.9	-287.9 55773.3	.22	360	300	88		•
	· · · ·	-332.3	-174.4		360	320	88	·	
	:		32.3	· · · · ·	380	320 (		•	
		-332.2	55857.7		380	320	88		
		-332.1	54904.4		790	700	00		

.

1. 第一部時代								
0309743	•	-332.3	6,38.3 56337.2	. 1 🕫	380	280	. 88	
	an a	-332.0	24.2 55947.6	. 23	380	.260	88	
TABLE J - 7	:	-331.4	78.3 55816.0	. 14	380	240	9 <b>8</b> .	•
page 13 of 18		-331.3	4.6	.18	380	220	88	
•	12	-332.1	42.9 55295.3	.22	380	200	88	
		-332.7	56.8 54387.1	.69	380	180	88	•
	•	-332.9	-425.5 55317.0	2.2	380	160	88	
		-331.7	-426.4 58288.1	10.	380.	140	88	
		-331.8	162.7 57453.3	.87	380	1/20	88	
		-331.9	413.7 56197.2	.22	780	500	.88	
		-332.ì	-103.4 56230.7	.19		80	88	
	· · ·	-332.5	45,2 56813.8	.20	380	-50		
· .		-332.6	111.3	. 1	100	40	88	
n na	· · ·	-332.1	-123.8 56800.1 93.3		2 zeo -	20	88	
-		-332.3	56795.5	.21	380	0	88	• .
			55N15.4	. 16	400	0	#382	
		-331.8	-3 <b>2.</b> 3	$\bigtriangledown$	400		88.	
· · · ·		-331/5	224.5	. 15	400	20 40	88	
	- · ·		37157.0		400	- 40	88	
		331.7	55866.0	$\sum_{n=1}^{\infty}$	400	- 80	88 88	
			56123,1	. 25 (	400	100	88-	
•		<u> </u>	<u>-15</u> <b>Z</b> .8	.28	400	120	88	
			290.1 57981.6		400	140	88	·
			1015.8		400	140	88	
		336.7	173.6		400	180	78	
		•	-465.7		420		#392	
· · · · · · · · · · · · · · · · · · ·		-330.4	54263.2	.85	420	180	#372 88	
		-329.8	54987.8 -765.7	1.1	420	160	88	
		-330.0	57911.8 297.7	13.	420	140	78	
		-330.0	57609.6 20.2	.29	420	120	88	
		-329.5		.14	420	100	88	
		-329.0	55916.2	.21	420	80	88	
		-37A. A	54194 4	17	470	40	00	1.

.

.

.

.

۰.

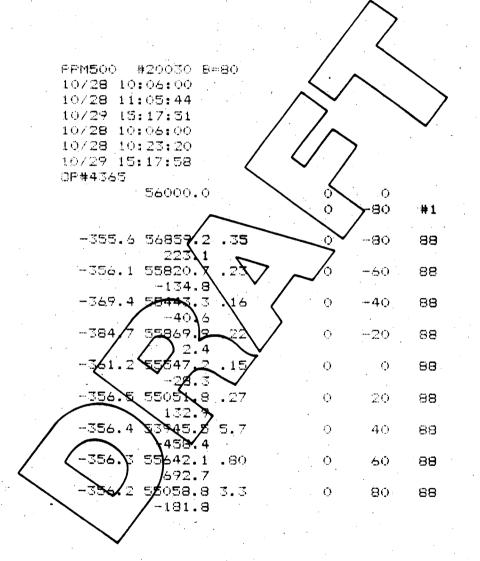
T en

· · · · · · · · · · · · · · · · · · ·	-328.9	- 19.7 56117.9	.16	. 420	40	<u>88</u>	
· ·	-329.0	-54.6 56236.6		420	20	88	
TABLE J - 7	-329.0	-7.6 56129.4	· · ·	420	O	-88	•
page 14 of 16		6.0		420	-20	88	
		56111.3					
	-329.3	55971.3 -6.2		420	-40 ·	88 .	
· · · · · · · · · · · · · · · · · · ·	-329.3	56327.7		440 440	-40 -40	#404° 38	
	-330.2	286.3 56118.9	.14	440	-20	88	
	-329.7	2.7	.19	440	<b>~-</b> o`	88	
	-329.8	75.7	.19	440	20	88	•
:	-329.5	45.1 55861.1 -128.6	.24	440	419	88	
	-329.8	56073.4 	.21		50	98	
	-329.5	55877.6	.24/	940	80	✓ 88	
	-330.5	56571.7 56.0	./8	( 44g	100	88	· .
	-330.4	57305.1	.21	440	120	88	
	-330.1	5785	<u> </u>	440	140	88	
		$\langle$	~	460	140	#414	
	-330.6	57270.1	$\mathbf{V}$	~/460	140	88	
·	-331.0	57080. a 186.4	. 20	.460	120	88	·
	-376.4	56544.3	.17	460	100	88	
	£329.60	26436.0	, Ž	460	80	88	
	<u>-35</u> 9.2	57017.7	.51	460	60	88	•,
	-330.2	56148.9	.18	460	. 40	88	
	-329.8	55789.8 -138.0	.20	460	20	88	,
	379.2	/55927.0 -57.4		460	Ō	38	•.
	-329.0		.15	460	-20	88	
	-328.9	56326.1		460	-40	88	
	-700 0	56296.6		480	-40		
· · ·		121.2		480	-40	88	
		56123.3		480	-20	8 <b>8</b>	.'
		55936.9 -55.8	. 17	480	-0	88	
	•	78.3	.21	480	20	88	
	-328.8	56053.8	.14	480	40	88	
	-329.0	56157.9	.17	480	60	88	

•.

.

-. •


**TABLE J - 7** page 15 of 16

-127.9 54160,8 () -57.9	4 ( <u>5</u> 4)	e.	65
-328.8 56354.1 .21 151.7	480	1,001	88
-328.3 56328.9 .14	480	120	88
-4.1 -327.9 56546.9 .17	480	140	88
-14.5 -328.2 56370.8 .22	480	160	88
-102.6	500	160 -	-
-328.4 56921.3 .20 158.5	500	140	88
-328.1 56756.9 .14 17.3	500	140	88
-329.0 56392.1 .14	500	120	88
-329.0 56031.6 .21 -162.6		<b>*1</b> 00	88
-328.6 56162.4 .15 32.6	500	80	88
-328.8 56119.6 .23		<u> </u>	88
-328.9 55843.6 .26	500 ~	40/	88
-328.9 55866.3 .16	500	20	88
-328.9 5592722	500	o o	88
-328.9 56135.3 .1	50	20	9 <b>8</b>
	<b>V5</b> 00 -	-40	88
-327.2 56367.2 .27	7		00
	<b>7</b> 520 520	-40 4 -40	
-329.5 56133. -329.5 56133. -1.2 -328.9 56060.2.5	7 520	-40	#446
131.0 -329.5 56.83.4.14 -328.9 56060.2.16 -48.2 -328.8 5579 2.21	<b>7</b> 520 520	-40 -40	#446 88
131.0 -329.5 56183.0.14 -328.9 56060.2.16 -48.2 -328.7 5579 2.21 -81. -328.7 5514.5.21	<b>7</b> 520 520 520	-40 + -40 -20	#446 88 88
$\begin{array}{r} 131.0 \\ -329.5 56183.4.14 \\ -1.2 \\ -328.9 6060.2 .16 \\ -48.2 \\ -328.5 5579 2 21 \\ -81.7 \\ -328.7 5579 2 21 \\ -81.7 \\ -328.7 5579 2 .21 \\ -182.0 \\ -192.0 \\ -529.1 55994.9 .15 \end{array}$	<b>7</b> 520 520 520	-40 4 -40 -20 -0	#446 89 98 88
$\begin{array}{r} 131.0 \\ -329.5 56133.3.14 \\ 1.2 \\ -328.9 56060.2 .16 \\ -48.2 \\ -328.5 5579 2 21 \\ -81. \\ -328.7 5579 2 21 \\ -81. \\ -328.7 5579 4.6 .21 \\ -182.0 \\ -529.1 55994.9 .15 \\ -0.2 \\ -328.3 56455.4 .14 \end{array}$	<b>7</b> 520 520 520 520 520	-40 + -40 -20 -0 20	#446 89 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56193.4.14 \\ -328.7 56060.2.16 \\ -48.2 \\ -328.7 5579 2.21 \\ -81.7 \\ -328.7 5579 2.21 \\ -81.7 \\ -328.7 5579 2.21 \\ -192.0 \\ -328.3 56455.4.14 \\ -0.2 \\ -328.3 56455.4.14 \\ 0.4 \\ 329.2 56860.4.21 \end{array}$	<b>7</b> 520 520 520 520 520 520	-40 -40 -20 -0 20 40	#446 89 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56193.4.14 \\ -1.2 \\ -1.2 \\ -328.9 6060.2 .16 \\ -48.2 \\ -328.5 5579 2 21 \\ -81. \\ -328.7 5579 2 21 \\ -81. \\ -328.7 5579 2 21 \\ -81. \\ -328.5 5679 2 21 \\ -192.0 \\ -328.4.5 .21 \\ -192.0 \\ -328.4.5 .4 \\ -15994.9 \\ -15 \\ -0.2 \\ -0.2 \\ -328.3 56365.4 \\ .16 \end{array}$	<b>7</b> 520 520 520 520 520 520 520	-40 -40 -20 -0 20 40 60	#446 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56133.4.14 \\ 1.2 \\ -328.9 56060.2 .16 \\ -48.2 \\ -328.5 5579 2 21 \\ -81. \\ -328.7 5579 2 21 \\ -81. \\ -328.7 55974.9 .15 \\ -0.2 \\ -328.4 55.4 .14 \\ 0.4 \\ -329.2 56860.4 .21 \\ 168.4 \\ -328.3 56365.4 .16 \\ -31.1 \\ -328.9 55971.2 .32 \end{array}$	<b>7</b> 520 520 520 520 520 520 520 520 520 520	-40 -40 -20 -0 20 40 60 <b>80</b>	#446 89 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56133.4.14 \\ 1.2 \\ -328.9 56060.2.16 \\ -48.2 \\ -328.5 5579 2.21 \\ -81. \\ -328.7 5579 2.21 \\ -81. \\ -328.7 55974.9.15 \\ -0.2 \\ -0.2 \\ -328.3 56455.4.14 \\ 0.4 \\ -329.2 56860.4.21 \\ 168.4 \\ -328.3 56365.4.16 \\ -31.1 \\ -328.9 55971.2.32 \\ -287.1 \\ -329.2 56468.7.15 \end{array}$	<ul> <li>520</li> </ul>	-40 -40 -20 -0 20 40 60 80 100	#446 89 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56183.4.14 \\ -1.2 \\ -1.2 \\ -1.2 \\ -328.7 56060.2.16 \\ -48.2 \\ -328.5 5579 2.21 \\ -81.7 \\ -328.7 5579 2.21 \\ -81.7 \\ -328.7 55974.5.21 \\ -182.0 \\ -328.4 57081.5.20 \end{array}$	<ul> <li>520</li> </ul>	-40 -40 -20 -0 20 40 60 80 100 120	#446 88 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56193.4.14 \\ 1.2 \\ -328.9 56060.2 .16 \\ -48.2 \\ -328.5 5579 2 21 \\ -81. \\ -328.7 5579 2 21 \\ -81. \\ -328.7 5594.5 .21 \\ -192.0 \\ -328.7 55974.9 .15 \\ -0.2 \\ -328.3 56455.4 .14 \\ 0.4 \\ -329.2 56860.4 .21 \\ 168.4 \\ -328.3 56365.4 .16 \\ -31.1 \\ -328.9 55971.2 .32 \\ -287.1 \\ -329.2 56468.7 .15 \\ -7.8 \\ -328.4 57081.5 .20 \\ -30.0 \\ \end{array}$	<ul> <li>520</li> </ul>	-40 -40 -20 -0 20 40 60 80 100 120 140 160	#446 89 88 88 88 88 88 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56133.4.14 \\ 1.2 \\ -328.9 56060.2.16 \\ -48.2 \\ -328.5 5579 2 21 \\ -81. \\ -328.7 5579 2 21 \\ -81. \\ -328.7 55974.6 .21 \\ -182.0 \\ -328.7 55974.9 .15 \\ -0.2 \\ -328.3 56455.4 .14 \\ 0.4 \\ -329.2 56860.4 .21 \\ 168.4 \\ -328.3 56365.4 .16 \\ -31.1 \\ -328.9 55971.2 .32 \\ -287.1 \\ -328.9 55971.2 .32 \\ -287.1 \\ -329.2 56468.7 .15 \\ -7.8 \\ -328.4 57081.5 .20 \\ -30.0 \\ -329.2 56860.5 .19 \\ 92.3 \end{array}$	<ul> <li>520</li> </ul>	-40 -40 -20 -0 20 40 60 80 100 120 140 140	#446 89 88 88 88 88 88 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56183.4.14 \\ 1.2 \\ -328.9 56060.2.16 \\ -48.2 \\ -328.5 5579 2.21 \\ -81. \\ -328.7 5579 2.21 \\ -81. \\ -328.7 55974.6.21 \\ -182.0 \\ -9.2 \\ -328.7 55974.9 \\ .15 \\ -0.2 \\ -0.2 \\ -0.2 \\ -328.3 56455.4 \\ .14 \\ 0.4 \\ -329.2 56860.4 \\ .21 \\ 168.4 \\ -328.3 56365.4 \\ .16 \\ -31.1 \\ -328.3 56365.4 \\ .16 \\ -31.1 \\ -328.9 55971.2 \\ .32 \\ -287.1 \\ -329.2 56468.7 \\ .15 \\ -7.8 \\ -328.4 57081.5 \\ .20 \\ -30.0 \\ -329.2 56860.5 \\ .19 \\ 92.3 \\ -328.6 56922.9 \\ .66 \\ 440.9 \\ \end{array}$	<ul> <li>520</li> </ul>	-40 -40 -20 -0 20 40 60 80 100 120 140 160	#446 89 88 88 88 88 88 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56183.4.14 \\ 1.2 \\ -328.7 56060.2.16 \\ -48.2 \\ -325.5 55777 2.21 \\ -81. \\ -328.7 55777 2.21 \\ -81. \\ -328.7 55774.5 .21 \\ -182.0 \\ -9.2 \\ -328.7 55974.7 .15 \\ -0.2 \\ -328.3 56455.4 .14 \\ 0.4 \\ -329.2 56860.4 .21 \\ 168.4 \\ -328.3 56365.4 .16 \\ -31.1 \\ -328.9 55971.2 .32 \\ -287.1 \\ -328.9 55971.2 .32 \\ -287.1 \\ -329.2 56468.7 .15 \\ -7.8 \\ -328.4 57081.5 .20 \\ -30.0 \\ -329.2 56860.5 .19 \\ 92.3 \\ -328.4 56922.9 .66 \\ 440.9 \\ -328.8 56544.3 .13 \\ -14.0 \end{array}$	<ul> <li>520</li> <li>520</li></ul>	-40 -40 -20 -0 20 40 60 80 100 120 140 120 140 120 120	*446 88 88 88 88 88 88 88 88 88 88 88 88 88
$\begin{array}{c} 131.0 \\ -329.5 56183.4.14 \\ a1.2 \\ -328.7 56060.2.16 \\ -48.2 \\ -328.7 5577 2.21 \\ -81. \\ -328.7 5577 2.21 \\ -81. \\ -328.7 5577 2.21 \\ -182.0 \\ -9.2 \\ -328.7 55974.9 \\ -15 \\ -0.2 \\ -0.2 \\ -328.4 56455.4 \\ .14 \\ 0.4 \\ -329.2 56860.4 \\ .21 \\ 168.4 \\ -328.3 56365.4 \\ .16 \\ -31.1 \\ -328.9 55971.2 \\ .32 \\ -287.1 \\ -328.8 56366.5 \\ .19 \\ -7.8 \\ -328.4 57081.5 \\ .20 \\ -30.0 \\ -329.2 56860.5 \\ .19 \\ 92.3 \\ -328.6 56922.9 \\ .66 \\ 440.9 \\ -328.8 56544.3 \\ .13 \\ \end{array}$	<ul> <li>520</li> <li>520</li></ul>	-40 -40 -20 -0 20 40 60 80 100 120 140 160 120 120 120 100	<ul> <li>#446</li> <li>88</li> </ul>

					•			
	•	- 308 5	-3 55356.8	1	340	2.0	38	
			-234.7	•		њ		
		-328.7	55871.4	.23	540	1 O	88	
· · · · ·			-87.8					
table J - 7		-328.4	56102.4	.14	540	-20	88	
page 16 of 16			-1.1					
		-328.2	56095.8	.18	540	-4O	88	
			-36.5		560	40.4		
		-309 0 1	56156.0	20	360 560	-40 <b>‡</b> -40	88 	
			-68.5					
		-327.7	56426.5	.21	560	-20	88	
			98.4					
		-328.3 \	56466.2	.27	560	. <b>-</b> -O	88	
			283.5			•		
		-327.7	55230.1	.39	560	<u> </u>	88	
•		-327.2 5	-335.4	· " 4	560			
		an dan 1	-155.1	• 25 H		$\zeta^{\circ}$	98	
	•	-327.4 5	56840.6	.34	760	5	88	
			340.4		$\langle \rangle$			
r.		-327,4 5		.19	<u>^₹ð%</u>	98	89	
			-81.0		2		$\checkmark$	
		-327.4 5		.14	194	100	,88	
		±326.9 5	19.6	14	(560)	120	00	
			31.9	<u> </u>		1.2.0	88	
					584	100 #	475	
		-326.7 5	56093.5	.20	580	100	88	
			47		$\sim$ /			
		-338.715		.23	580	80	88	
		-326.8 5	-62.9	5	- 2			
			-145.3	$\cdot \sim /$	<b>_</b> 560	60	88	
		-326.4 5	sezo. J	. 14	580	40	88	
			33.4		~~ <b>~~</b> ~	ΤŴ	90	,
		-326/4 5	5785 7	. 🕆 🖊	580	20	88	
	. ·		-742.0				,	
		-726. <b>i</b> S	649.8	12/	580	0	86	
· · · · ·			17.1	$\checkmark$	•			
•								
			$\langle \rangle$	•				

 $\langle \bigcirc \rangle$ 

TABLE J-8 CORRECTED DATA TOWN LANDFILL AREA (GRID No. 3)



. ....

		n an the The	673.7					
		-356.0	56095.7		()* =	120	38	•
		-356.1	285.2		о О	140	38	•
TABLE J - 8			-179.0			4. (***a)	·	
page 2 of 11		-356.4	54979.7 -131.5		Q	160	88	
	· ·	-356.6	54123.5 	.85	Ō	180	88	
· .	·				20	180	#16	
			54793.2 -17.1	. 27	20	130	. 88	
		-356.1	-55139.9 -82.6	.23	,20	160	88	. <b>.</b>
		-356.1	55623.3 41.5	. 21	20.	140	88	
		-356.1	56049.7 314.3	.40	20/	170	88	
•		-356.6	55388.0 7-142.4	, 24	20	৲	88	
	• •	-356.5	55642.5	.29	× 29/	^{.80}	88	
· .	•	-356.0	55662.9	.25 /	<b>2</b> 0	60		•
		-356.0	250.1 55587.3	.39	125	40	<b>~</b> 88	
	•,	-355.8	332.6 55141.4	.5		20	88	
· ·		-355.3	-62.8 54838.9	. 28	2	0	88	
		-355.7	· · · · ·	.45		-20	88	
		-356.4	· · · · · ·	1 Bray	$2^{20}$	-40	88	
		-356.6	-482)2 55783.4 -448.1	.64	20	-60	88	
		- <u>55</u> 6.4	58147.1	>	20	-80	88	
- -		<b>1</b> 356.	2	X		-80	#30	
			269.9	y.i	40	-80	- 68	
			5847.7	.85	40	-60	88	
	11	-356.7	56467.8	.20	40	-40	88	
•	$\langle \langle \rangle$	-35).8	\$4795.2 -449.9	2.7	40	-20	78	. <i>1</i>
	,	-356.4	54356.5 -454.8	. 68	40	O	88	
· · ·		35%.0	54539.4	.33	40	20	88	
		-356.8	55092.9	.28	40	40	88	
	· · · ·	-356.7	55465.0	• 27	40	60	8 <b>8</b>	
· · ·		-356.3		. 31	40	80	88	:
		-356.3	-94.3 55482.7 219.6	.38	40	100	88	
• • • •		-356.8	217.6 54880.5 -293.3	.27	40	120	88	
		-356.8	55527.5	.19	40	140	88	
		-359.4	-153.8 55830.5 46.5	.18	40	160	88	
					•			<u> </u>

ļ

J 3 1 4 J	· . •	-878.9	r		· · · ·		
	-355.6	55063.0 119.6	.23	40	200	. <b>38</b>	
TABLE J - 8	-355.3	54738.4 -172.6	.43	40	220 .	88	. •
page 3 of 11	-355.5	55793.9 830.3	1.3	40	240 -	88	
	-355.5	54771.0	. 24	4Q	260	88	
	-355.7	54892.2 237.0	.40	40	280	68	
	-355.0	53942.4	. 33	. 40	300	88	
	-357.6	53779.2	. 31	40	320	88	
	-354.2	53673.0 -570.2	1.0	40	340	88	
	-368.5	35739.1	. 47	50	840 340	#52 88	
	-354.5	191.6 54923.0	.35	6	329	88	
	-354.2	-287.4	.23	×60 `	500	>88	÷
	-354.5	-39,9 55118.5 -79.2	.16	/~~ <u>~</u> ~	280	88	
	-354.5	55785.6 837.0	4.0 ×	50	260	8 <b>8</b>	
	-353.9	55253.2 164.7	. 42		240	88	
ž	-353.9	55440.5			220	8 <b>8</b>	
· · ·	-357.7	5600.3		J 60	200	88	
	-358.3	56227.4	.63/	60	180	88	
	-375.5	56302. A		60	160	88	
	$\langle \cdot \rangle \sim$	)56938.4 /+4	757	50	140	88	
	353.9	<b>5</b> 638. 47.1	.28	<u>40</u>	120	88	
		<b>\-f</b> 31.1	.88	<u> </u>	100	88	
		55155.5 -310.1	.31	60	80	.88	
		57606.9		50	60	88 -	
		55795.2 346.1	· · ··	<b>60</b>	40	88	
		55998.5 375.2 55857.9		60 60	20 0	88	
		54.2		- 60 - 60		- 58 - 58	
	• •	144.5 56317.1	•	60	-20 -40	-90 88	·
		40.9		60 60	-40	88	· .
		-13.9		50	-80	88	
		-164.9	• • •	60	-100	88	
		205.7		80	-60	#75	

				0.3.0.9.75(
	251.5		19 - <b>1</b> 94	
	-353.7 57687.2 .7 274.4	8 80 -40	o șe	• .
	-358.8 57105.3 .1	8 . 80 -20	o 8 <b>8</b>	
ABLE J - 8 age 4 of 11	-28.7 -356.1 57388.0 .1	9. 80	) 88	•
	-353.2 5684 <b>9.9</b> .2	3 ( <b>1 80</b> 20	•	· · ·
	-163.3	•		
	-352.9 56599.4 .2 -135.4		) .8 <b>8</b> . (	
	-353.0 55971.7 .6	3 80 60	) 88	
	53.2 54848.9 1. 601.7	1 80 80	98	
	-353.4 56296.9 6. 411.4	3 80 100	) 88	. *
	-353.3 56241.8 .2	7 90 120	) 8 <b>8</b>	
	227.2 -353.1 55659.4 .4	5 80 14	2 88	
	-384.0 -355.2 55999.1 .1	7 80 150	5	
	-353.6 56156.0 .2	6 80 180		
	-130.3 -351.6 56067.9 .⊉	3 89 200		•
	87.9 <	· · /		
	-751.3		•	
•	-344.5 54809.7.2 -2/0.8	$\sim$	> . 98	
· .	-344.5 54\$10.7.7	3 $30$ $260$	> 88	
	-344.6 5586 <b>9</b> 5 .>>	<b>1</b> /~ SO 280	> 88	
	-344 7 56 18.2 .2	4 5 80 300	) <b>88</b>	
	-744.7 6282.3	9 80 320	) 8 <b>8</b>	
	-343.6 56959 Z 2	7 <b>S</b> O 340	> 88	
	402.5 	3 <b>8</b> 0 340	) 88	
	501 1	100 360		
	-33.3 56180.4 .2		•	
	343.5/56389.8 .20	<b>B</b> 100 340	) 8 <b>8</b>	
	-343 1 56312.9 .14	4 100 320	) 8 <b>8</b>	
	-343.0 56017.7 .3	1 100 300	) 8 <b>8</b>	
•	-244.3 	· · · · ·	۰.	
	19.5			
•	20.7			· · · ·
	-343.7 55446.8 .38 -148.2		88	
	-343.6 55477.0 .30		88	
	-343.8 55863.6 .2° -307.4	7 100 200	88	
	-343.3 56835.8 .3	2 100, 180	88	•
	248.9 -342.9 56465.8 .30	2 100 140	99	-

TA pa 19

200 ASSAME 1								
0309751			56042.3 -124.0		1.000	140	58	
	· · · · · ·	-343.2		.18	100	120	88	
TABLE J - 8		-342.8	57347.9 455.2	and a set	100 ]	100	88	
page 5 of 1I		-343.6	57218.4	1.5	100	80	68 .	
· · ·		-343.7	602.6 55269.8	1.2	100	60	63	
		-343.4	-541.7		-100		8 <b>8</b>	
		-343.4	56438.1		100	20	88	
		-343.5	-393.5 56751.0		100	<b>O</b>	88	
		-342.9	-9.4		1/10	-20	88	
		-343.0	-63.9		$\left  \right _{100}$	-40	88	
· · · · · · ·	•	-342.8	-311.0 57173.8	.17	100	-60	88	
			24.4		100	-80	88	•
			568.5	7	120	$\searrow$	120	
	, j	-349.5	57162.9	.19	$\lambda^{20}$	-60 #	88	
		-342.1	57024.5	.16	120	-40	88	
		-342.4	57396.2	. 20	20	-20	88	-
		-242.0	57219.0	17	120	Ō	88	
:	•		37413.	7.59	120	20	88	
	•	-347-5	145.0 55357.3	1.6	120	40	88	
		-342.1	1-593.0 55564.0	78	120	60	78	
	. /		-661 A	15.	120	80	87	
		342.	56824.8	. 38	120	100	88	
			3467.9	- 25	120	120	88	
		-342.1	214.8 56762.5		120	140	88	
			191.1 57035.9	÷	120	140	88	
			455.9	.23	120	180		•
		$\checkmark$	-67.4				88	
			258.5		120	200	88	
		-341.5	295.0	.31	120	220	88	
		-341.4	-193.3	.24	120	240	88	. :
· · · · ·	,	-341.2	-82.5	.19	120	260	88	
		-341.3 !	55938.3 -96.1	.25	120	280	88	
	· · ·	-341.6	56210.5	.19	120	300	88	
· · · · · · · · · · · · · · · · · · ·	•	. =341.7 (	56337.0 129.8	.25	120	320	-98	
			147.0	,	, 	<b>*</b> .	•	· · · ·

.

۶.

			·		•	•		
	•	-341.0	5 55766.) 206.)		120	- 360	- 88	
					140	340	#142	
TABLE J - 8		-341.5	5°56010.0 77.9		140	340	38	
page 6 of 11		i≏341.2	2 55843.4 -179.0	4.24	140	320	88	
		-351.4	56091.0	.27	140	300	88	
		j <del>−</del> 340.5	-68.( 55533.2	2.23	140	280	88	
		-340.8	147.7 3 56310.2	2.52	140	260	88	
	· ·	-341.2	-379.6 56879.6	.43	140	240	88	
		-341.2	176.1	.21	1.40	>220	88	
		-341.3	-213.3	.42	140	200	88	
		-341.4	378.9 56942.4	.27	140	180	88	
	· •	-341.4	197.4 57274.0	.45/		160	) ss '	
		-340,8	372.5 56353.4	./.8	<b>A</b> 40	140	88	
•		-340.2	-112.6	K.20 `	140	120	88	·
•		-340.3	- <b>79.4</b> 56210.0	.23	140	100	88	
		-340.3	56262.6		140	80	88	
		-340.4	-268.8 58080.8 288.2		140	60	88	
		-340.4	57848.7	`.s/	140	40	88	,
		-740.5		. 🦻	140	20	88	
		-346.9	56716.4	$Y_{30}$	140	Q	88	
		341.1	198.0	.21	• 140	-20	88	
		$\nearrow$	>		160	-20	#161	
	$\sim$	-340 <b>\</b> 9	57892.3	.26	160	-20	88	
		- 40.	253.5 57881.5	.24	160	-0	88	
		-349/7	255.6 57700.7		160	20	88	•
		-367.0		2.8	160	40	88	
		► -346.7	380.6 57276.2	.22	160	<b>60</b> -	88	
		-340.0	141.7 57662.4		160	80	88	
		-340.6	180.0 56247.8	.33	160	100	88	
		-340.4	-113.0 55850.8	.22	160	120	88	
		-340.0	182.9 56131.4	.23	160	140	88	•
		-340.5	-138.7 56463.3	.14	160	160	88	
		-340.4	-28.4	.75				
	·     • •		3.6	• 4 4	160	180	88	
ş.								

常

TABLE J - 8 page 7 of 12

· · · · · · · · · · · · · · · · · · ·	<del></del>		
-339.9 59020.9 15. 594.3	160	,220	57
-340.2 57964.8 .49	160	240	88
-340.4 57325.8 .30 172.2	160	260	88
-340.2 57105.7 .23	160	280	88
-340.1 57480.0 .61 547.2	160	300	88
-340.0 57141.4 .32 294.1	160	320	88
-340.1 57150.4 .70 620.1	160	340	88
-340.2 56269.9 .20 93.2	160	360	88
-340.8 55466.5 .21	180 180	<b>7</b> 360 360	#181 88
-137.9 -340.4 55479.3 .22	1,80	340	88
-141.7 -361.1 56166.3 .16 -12.8	180	320	> 88
-339.9 56853.1 .29 69.6		300	88
-340.2 56658.6 .20	180	280	88
-340.8 57077.4 .20 27.6	180	260	88
-340.5 57711.0 22	140	240	88
-339.9 57500.2 6.6	7 180	220	88
-340.2 60958.6 3.7	180	200	78
	180	180	88
-339.4 56991. 18	180	160	88
-339.2 56925 2	180	140	88
-234.4	190	120	88
-339 1 55873.4 .26	180	100	88
-339.0 56353.9 .55	180	80	88
-334.4 58614.5 1.0 918.0	180	60	88
√339.4 5707 <b>5</b> .7 .23 -35.7	180	40	88
-339.3 56454.6 .19 -184.2	180	20	88
-339.5 56686.6 .21 -210.2	180	0	88
-339.7 57001.6 .19 -125.8	180	-20	88
	200	0 🕴	\$201
-339.4 57972.8 4.9 326.7	200	Ő	88
-338.9 56890.2 .17 -51.6	200	20	88
-339.3 56406.9 .18 -142.1	200	40	8 <b>8</b>

		1 1 N 1 1	<b>举</b>	્ય સ્ટેટ્સિસ	•			
			ц.,		, •		. ,	0309754
•		-340.0	(-171.) 5,7612.(	).16	200	<b>9</b> 0	88	0000104
		-340.1	.47.3 57499.3	2.28.	200	100	88	
TABLE J - 8 page 8 of 11		-339.1	273.1 56994.1	1.32	200	120	88	• •
		-339.9	-110.4 56102.5	5.51	200	140	88	
	2. 	-339.9	-209.4 56661.5		200	160	88	· · ·
	1	-339.6	367.5 56980.1		200	180	88	
		-339.3	117.5 57031.8		. 200	200	88	
		: 339.3	3.3 58525.6	3.52	200	220	88	
		-340.1	404.2 58551.7	.59	296	240	98	
·		-339.9	161.1 59255.2	2.3	200	260	68	• •
		-340.0	-434.7 57159.8	.28	200	280	88	<u>.</u>
	•	-340.1	-153.4 56540.7	.21/	200	300	/88	•
	. •	-340.1	-174.2 56692.1	· . Z1	200	320	88	
		-339.8	148.9 56155.8	02. 1	200	340	8 <b>8</b>	
· · · · ·		-339.3	-71.2 55670.3	.22	200	360	88	• • •
		•	-1/21.74		220	360	#220	
		-339.9	135.3		7220	360	88	
	,	-339.7	<b>~82.\</b> 5		220	340	88	
· · ·	x	-334.2	56369.0	\·25	220	320	88	
	• • •		)56621.7 - <u>4</u> 2.3		220	200	88	
		-340. ľ	5 <b>9</b> 364.1 331.7		220	280	.8 <b>8</b>	
		2.62	576 <b>28.</b> 5 -2 <b>75.</b> 8		220	260	88	
					240	340		
	$\langle \langle \rangle$	-3,40.0)	56676.2		240	340	88	•
		-7-9.7	56309.2	.14	240	320	8 <b>8</b>	
P.		-337.6	55858.7	.21	240	300	88	· · ·
		-340.3	57029.5	.25	240	280	88	
	· . · ·	-363.6	56672.2	.21	240	260	88	·
					260	260	#236	
· · · · ·		-350.3	58440.9 780.9		260	260	88	N
	•		57900.2	. 62	260	280	88	
	· · ·		56357.0 -264.3		260	300	88	
	· · · ·		56385.2 117.8		260	320	88	
	· · · · · · · · · · · · · · · · · · ·	-339.9	56459.5	. 36	260	340	88	

. ?

1309755	- · · ·			
1909499	-338.5 56205.7 .15	280 280	340 #) 340	241 - 88
	9.9 -339.6 56203.9 .24	280	320	88 88
TABLE J - 8	-261.3		,	
page 9 of 11	-338.9 57014.5 .26 165.8	280	300	88
	-338.9 57972.0 .64 495.3	280	280 -	88
	-339.2 58178.0 2.4	280	260	88
	408.9	300	260 #3	246
	-339.4 56792.7 .46 -80.5	300	260	88
	-339.5 57343.8 .21	200	280	88
	160.8 -339.3 57447.1 .26	/300	:300	88
	229.0 -339.3 56303.6 .23 /	300	320	88
	-75.2	300	340	8 <b>8</b>
	-160.1	$\sim$		251
	-339.7 56187.0 .26	320 320	<b>4</b> 0 <b>#</b>	88
	-340.9 56537/2 .43	> 320	320	88
- - 	-344.4 5689 7 .20	320	300	88
	-25.3	320	280	88
	50,0		•	
	-338.4 56008.8 .44	<b>32</b> 0	260	9 <b>8</b>
	-339.3 35912.2 26	340 340	260 <b>#</b> 2 260	256
	407.9			
		340	280	88
	-340.1 56286 0 .26	340	300	88
		340	320	88
	338.9 56724.5 .22	340	340	88
	139.0	360	. 340 <b>#</b> 2	261
	-38.3 55486.8 .95	360		88
	-739.4 57117.8 .25 -75.7	360	320	88
	-338.7 59220.5 7.2	360	300	88
	✓ 609.8 -340.2 59533.1 10.	360	280	78
	1145.3 -339.3 56202.4 .20	360		
	-35.2	000	260	88
		220	-20 #2	80
· · · · ·	-337.7 56829.0 .14 60.5	220		88
	-337.5 56792.8 .14	220	Ó	88
	50.1 -337.2 56563.9 .16	220	20	88
	30.5 -337.0 56242.7 .16	220	40	88
	-22.4		· •	

		12.9		· · ·	·	-	
	-337.4	56908.7	.78	220.	80	89	
		508.3		•			
	-337.3	56631.4	.25	220	100	88	
TABLE J - 8		e 127.5					
page 10 of 11				240	100	#287	
<b>F-B-</b>	-337.3	55605.5	. 22'	240	100	88	
•		-113.5				·.	
	-337.6	56383.0	.24	240	80	88	
	• •	-55.1					
	-338.0	56334.1	.19	240	- 60	88 -	
		12.5	0.5		• •		
	-337. <b>8</b>	55929.8	.25	240	40	88	
· · · ·	-337 3	56143.9	19	240	20	88	
· · ·		-81.8	• • /		-		
	-340.5	55908.1	.22	240		88	
		-252.6	-		/ /		
	-363.2	56428.4	.12	- 240/	- <b>z</b> o	83	
•	· ·	. 7.4					· .
		56138.3	10	- <b>26</b> 0	$\wedge$	#294	
		-85.5	.18	$\sim \sim$	<u>s</u> ć	ંકે	
· · ·	-337.0		.13	20	0		
•		7.1		Τ'n	. · ·	40	
	-336.9	56180.5	.25/	/ 260	20	. 88	
		-224.1	ζ.	$\sim$ /	•		
	-337.5	55877.7	.28	26%	40.	88	
		-254.3					
		56552.1	.24	260	7 60	88	•
	-337.4	56946.9	.37	-260	80	88	
		317\0	~	-7		00	
	-336.7	55774.	. 37	-260 -	100	88	
		- <u>2</u> 52.3`	\				
		$\frown$	$\backslash$	280	1.00	#301	
	-340:6	56695 7	·\$\\$\	280	100	88	
		78.6	$\sim$				
		C6712.9	7	280	80	88	
	-33.8	.56219.7		280	60	88	
		-1794	•		00	00	
	-336.8	36628. 4	.28	280	40	88	
	-	$\sum \frac{1}{2}$	1		•		
	~3 <b>33</b> , 9	57207.9	.23	280	20	88	
		290.7	· ·				
		54708.0	.15	280	Ō	88	
	-337.0	39.7	.18	280		~~	
	$\mathbf{X}$	-83.5	• 10	280	-20	88	
				300	-20	#308	
	336.7	36304.6	.21	300	-20	88	
•		-68.2					
	-337.0	56843.7	.25	300	õ	88	
	<b></b>	151.1			•		
	-345.9	56303.5	.21	- 300	20	88	
	-749 7	-203.1		<b>**</b> ***		~~	
· · · · ·	- <u>-</u>	56682.6	. 36	300	40	88	
	-341.9	56271.1	.26	300	60	88	
		-155.8	- <b></b>		00	00	
· · · .	-336.9	56506.4	.25	300	80	88	
				-			
		76.3	κ.	•		•	
	-337.2	76.3 56489.4 236.5		300	100	88	

. **. .** 

TABLE J - 8 page 11 of 11

) -337.6 <b>5</b> 6	162.7 .15 -4.9	320	100	38
-337.4 56	270.9.20	320	30	88
·	-85.1			•
-337.0 <b>56</b>	481.6 .31	.320	50	88
	158.7			
-336.6 56	806.9.57	320	40	88
	366.1			• ,
-336.4 56	412.2.24	320	20	88
	112.9			
	845.8 .18	320	O,	38
	146.3			
	317.6.18	320	-20	88
	-59.6	-		
		340	-20	
	410.2 .16 -18.3	393	20	. 88 .
-338.0 56		340	7	
	-49.7	~ / ³⁴⁰ /	0	88
-338,1 56		340	20	88
	145.7		$\sim$	00
-338.2 56		343	40	88
	221.0 /		$\sum$	/ 33
-337.4 56	155.2 .21	340	- X	88
-	154.8/			
-336.9 56	355.1/.19	/ 240	80	9 <b>8</b>
•.	68.5	<b>*</b> /		
-337.0 560	<b></b>	340	100	88
-	-63.9		í	
· /		$\sim$ / $\sim$	(	
		$\sim$		

ζ.

сñ

. .

L L

.

#### BOREHOLE GEOPHYSICS

#### SECTIONS IN APPENDIX K

- METHODOLOGIES AND PROCEDURES
- DATA INTERPRETATION

#### TABLES IN APPENDIX K

SUMMARY OF LOG FUNCTIONS RUN AT EACH WELLOCATION

#### FIGURES IN APPENDIX K

GEOPHYSICAL WELL LOGS NUS-3

- K-1 CALIPER AND NEUTRON (USGS)
- K-2 RESISTIVITY AND TEMPERATURE (USGS)
- K-3 CALIPER AND SINGLE POINT RESISTANCE (USOS)
- K-4 CALIPER, TEMPERATURE, SINGLE POINT RESISTANCE AND SPONTANEOUS POTENTIAL (NUS/RIT)

GEOPHYSICAL WELL LOGS W-3

- K-6 CALIPER AND NEUTRON (USGS)
- K-7 RESISTIVITY AND TEMPERATURE (USGS)
- K-8 CALIPER AND SINGLE POINT RESISTANCE (USGS)
- K-9 CALIPER, SINGLE POINT RESISTANCE AND SPONTANEOUS POTENTIAL (NUS/FIT)

GEOPHYSICAL WELL LOGS W-4

K-10 CALIPER AND NEUTRON (USGS) K-11 RESISTIVITY AND TEMPERATURE (USGS) K-12 CALIPER AND SINGLE POINT RESISTANCE (USGS)

#### BOREHOLE GEOPHYSICS

This appendix explains the objectives, procedures and data interpretation of the borehole geophysical investigation conducted by NUS/FIT and the United States Geological Survey (USGS). The main objective of these investigations was to define fracture zones within the bedrock formation and to delineate, if possible, the primary water bearing zones. This information was not provided in previous hydrogeologic investigations conducted at the site.

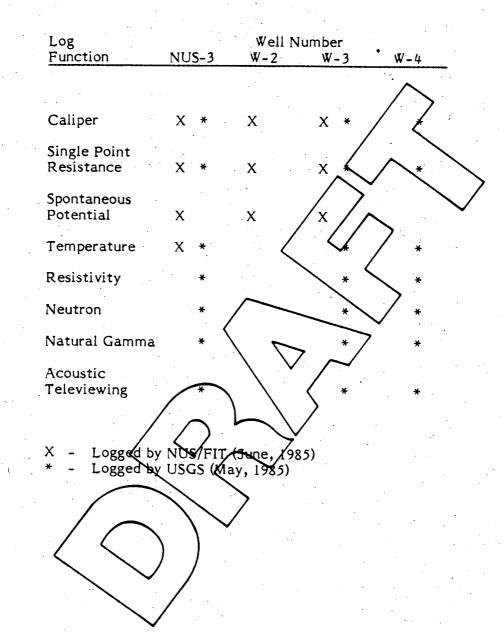
Two separate investigations were conducted, one by NJS/FIT (June, 1985) and the other by the USGS (May, 1985). The geophysical logging methods used during both investigations required open (uncased) bedrock boreholes. NUS/FIT geophysical personnel logged three open bedrock wells (NUS 3, W-2, and W-3) using a Mount Sopris Model 2500 portable borehole logger. Four geophysical logs were run at well location NUS-3; caliper, single point resistance, spontaneous potential (SP) and temperature. At well locations W-2 and W-3, only three/geophysical logs were run; caliper, single point resistance and SP. The USGS also logged three bedrock wells which included NUS-3, W-3 and W-4. The USGS borehole investigation utilized seven logging functions at each well location including; temperature, resistivity, neutron, caliper, gamma, single point resistance and acoustic televiewing. The wells NUS-3 and W-3 were each logged by the USGS and NUS/FIT to aid in an evaluation of the reliability of the data generated by the borehole logging equipment.

The logging procedures for each investigation were basically the same. Prior to logging any of the wells, all the probes were calibrated and the recording instrumentation was checked for proper operation. The appropriate probe (many of which perform two log functions) was then attached to the connecting cable which completes the circuit between the probe and the recording device. While the probe was lowered down the borehole, the appropriate scale or the log function was determined. The actual log was run and recorded while the probe was being brought uphole (Note: the temperature log was always run first and logged while being lowered into the borehole). A strip chart was used to record the log data. Different colored pens were used for recording each log function. The scale used for each log function was recorded on the corresponding chart. A brief description of each log function and its applicability to groundwater investigations is presented below.

The caliper log is a straightforward and reliable tool which provides direct information about bedrock fractures. Single hinged caliper arms (point contacts) are in direct contact with the borehole wall and provide good vertical resolution in a consolidated rock environment. Caliper logging has been used successfully by NUS/FIT in both igneous and metamorphic environments to delineate fractures and fracture zones.

The neutron log is primarily a function of the hydrogen content (therefore also water content) in the borehole environment and is quite useful in groundwater investigations, providing direct information on water bearing fracture zones in the borehole. Due to the need for an active radiation source, neutron logging can only be performed by licensed professionals (and was only performed by USGS personnel).

The temperature log is a simple straightforward tool that is also very useful in groundwater investigations. The probe senses the temperature change within the borehole environment, providing direct information on water-bearing fractures and fracture zones. The temperature log also provides information on water movement and thermal conductivity of the bedrock formation.


Acoustic televiewing has also proved to be quite useful in groundwater investigations. Acoustic televiewing has a limited radius of investigation (the borehole wall) but provides direct information about the condition of the bedrock formation. The acoustic televiewer uses sonar to create a "picture" of the borehole wall. When used in conjunction with other geophysical logs, fractures and fracture zones can be easily identified. The natural gamma log records the amount of natural gamma radiation emitted by the borehole formation. The primary use of this log is for the identification of lithology or stratigraphic changes and this function is generally not as applicable to groundwater investigations as are the other geophysical logs. Clays (possibly found in voids or fractures within the bedrock formation) and feldspar-bearing rocks emit radiation originating from radioisotopes such as potassium-40 that are detected by the natural gamma probe. Therefore, the natural gamma log can be useful when used in conjunction with other logs, and can be used to determine whether a fracture is open or closed (filled with clay).

Electrical logging techniques, including single point resistance, spontaneous potential and resistivity, have been found to be useful to identify possible water filled voids and to detect water movement within the borehole environment. The single point resistance log has a small radius of investigation which is limited to the borehole environment. The probe is sensitive to changes in borehole diameter and conductivity of the borehole fluid. The spontaneous potential probe measures the small differences in voltage between the borehole Nuid and the surrounding formation. The location of water-bearing fractures can be determined by the streaming potentials caused by groundwater movement through the borehole. The resistivity log measures the conductivity of the borehole fluid. Water bearing fracture zones can be identified by changes in the fluid conductivity. The resistivity log is also very useful in determining water quality. Electrical logs are most useful when used in conjunction with other geophysical logs such as the caliper, temperature or neutron log.

The logging functions which proved most useful during the investigation were the caliper, temperature, acoustic televiewing and neutron logs. The other log functions provided data that reinforced the information obtained from these logs. All borehole geophysical work conducted by NUS/FIT was performed in accordance to NUS SOG No. 35, Revision 0. Field data from both investigations (NUS/FIT and USGS) was recorded in an NUS/FIT logbook. The location of monitoring wells logged during both geophysical investigations are identified on Plate 2. Results are discussed in Section 5.2 of this report.

K-3

#### BOREHOLE GEOPHYSICS SUMMARY OF LOG FUNCTIONS RUN AT EACH WELL LOCATION

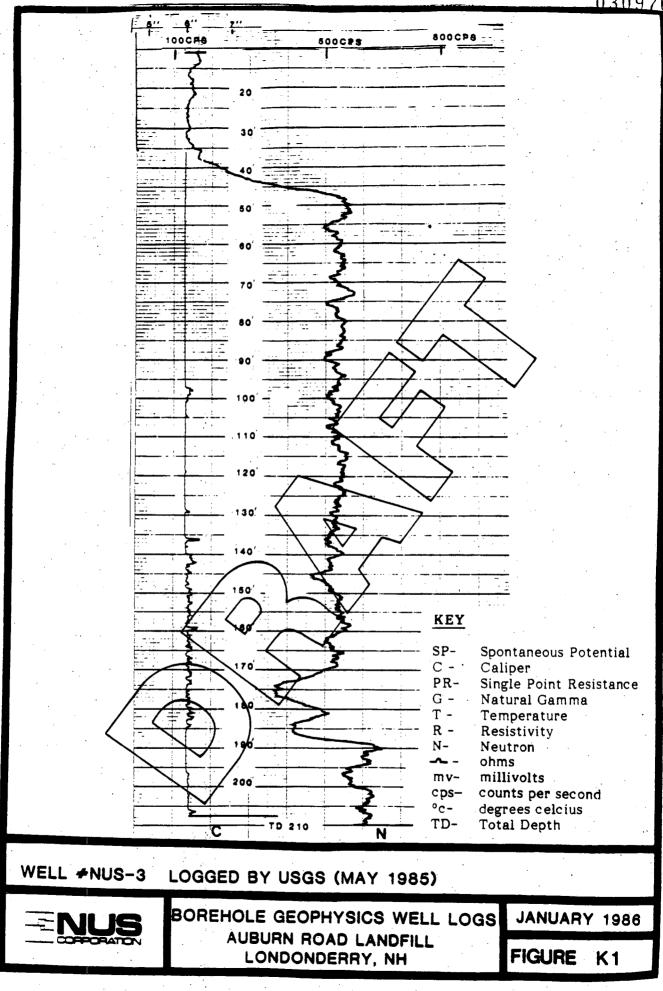


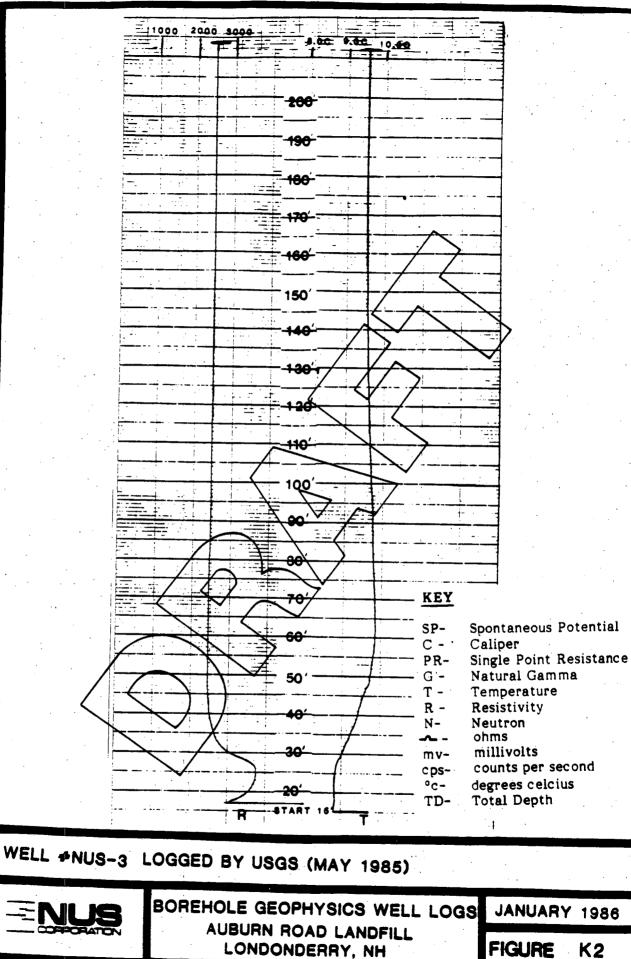
### BOREHOLE GEOPHYSICS WELL LOGS AND DATA INTERPRETATION

 $\overline{)}$ 

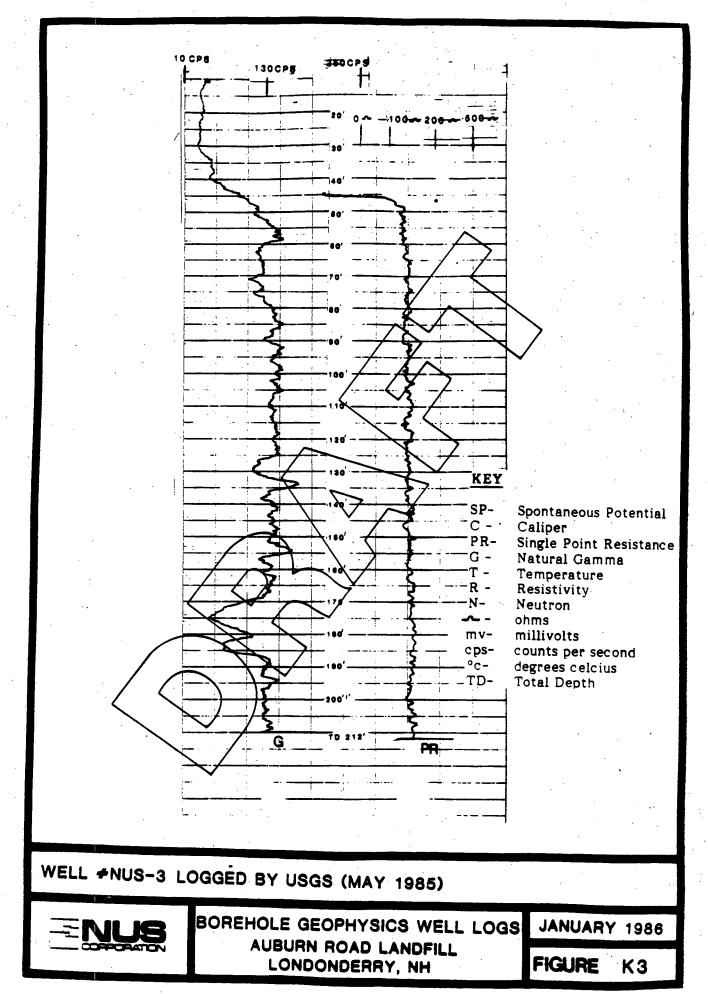
Well NUS-3 Logged by USGS (Figures K1, K2 & K3) Well Depth 215 feet Boring Log Available (Appendix A)

The caliper log identified three fracture zones and two isolated fractures in this well. The most significant fracture zone identified was a fifty foot section between 135 and 185 feet. The neutron log within the fifty foot section showed two large deflections to the left at 175 and 185 feet and a smaller deflection at 145 feet. This is an indication of an increase in hydrogen content and a possible water bearing zone. The natural gamma log also showed two large deflections to the left at 175 and 185 feet.


Two smaller fracture zones were also identified The uppermost fracture zone was an eight foot section between 97 and 105 feet. The other fracture zone identified by the caliper log was located between 196 and 208 feet. At both fracture zones, only slight deflections were noted on the neutron and natural gamma logs. The two isolated fractures were located at 119 and 129 feet. Only minor deflections were noted on the neutron log, while on the natural gamma log showed a deflection corresponding to the fracture identified at 129 feet.


The single point resistance and resistivity logs were both uniform with only slight deflections for the entire depth of the well. The temperature log showed an increase in temperature between 15 and 60 feet from 8.8°C to 9.8°C and gradually decreased and remained constant at 9.5°C below 115 feet.

The acoustic televiewing log, in comparison with the caliper log, identified two isolated fractures and one fracture zone. The two isolated fractures were located at 98 and 129 feet and the fracture zone was located between 135 and 182 feet. Several other possible fractures and fracture zones were also identified on the acoustic televiewing log. Two fracture zones were identified from 52 to 55 feet and several isolated fractures were located at 38, 44, 82, and 191 feet. These fractures may have been filled or too small to be detected by the caliper log.


The primary water-bearing zone appeared to be between 135 and 185 feet. This is based upon data from the caliper and neutron logs. The natural gamma and acoustic televiewing logs also supported this conclusion.

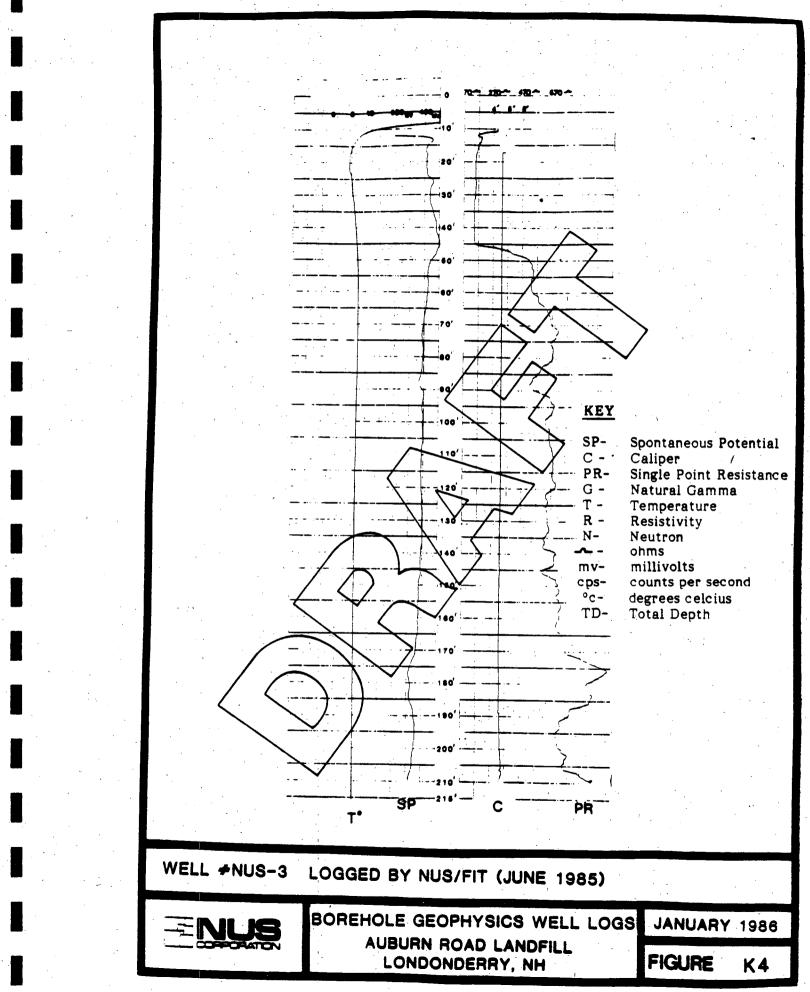






LONDONDERRY, NH



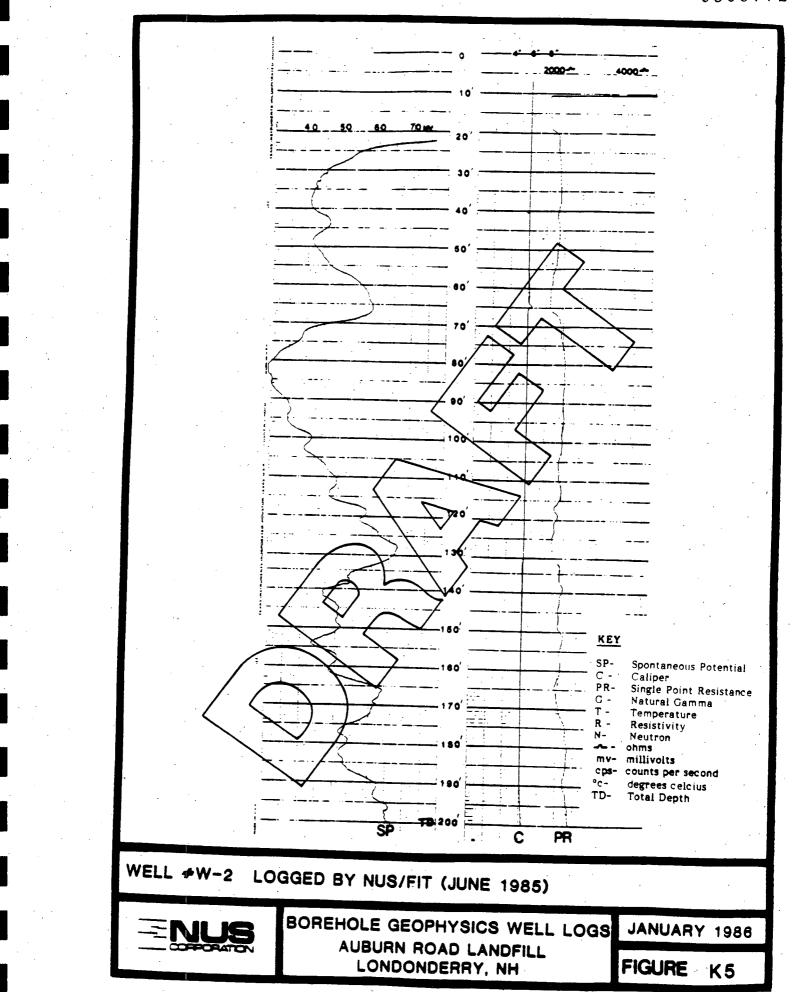

Well NUS-3 Logged by NUS/FIT (Figure K4) Well Depth 215 feet Logged Depth 210 feet Boring Log Available (Appendix A)

The caliper log identified two well defined fracture zones and one isolated fracture in this well. The uppermost fracture zone was a 20 foot section located between 131 and 151 feet below ground surface. The caliper log identified several small fractures in this section. The single point resistance log showed deflections to the left at 137 and 145 feet indicating less resistance and possible water bearing zones. The SP log in this section showed little response and was of little use in this interpretation.

Another fracture zone was also identified by the caliper log between 197 and 210 feet. The largest fracture in this zone is at 206 feet. The single point resistance log showed a slight deflection to the left at this depth indicating a less resistive section and a possible water filled void These two fracture zones correlate well with data from the USGS borehole investigation.

At 189 feet, a small isolated fracture was identified by the caliper log. The SP and single point resistance logs show only minor deflections at this depth. The caliper log from the USGS investigation did not indicate a fracture at 189 feet, but a fracture was identified on this acoustic peleviewing log at this depth.

The temperature log was also run on this well. This log indicates a uniform temperature within the well of approximately 8.7°C. The major water bearing fractures appear to be located within the fracture zones between 131 and 151 feet and from 197 to 206 feet.



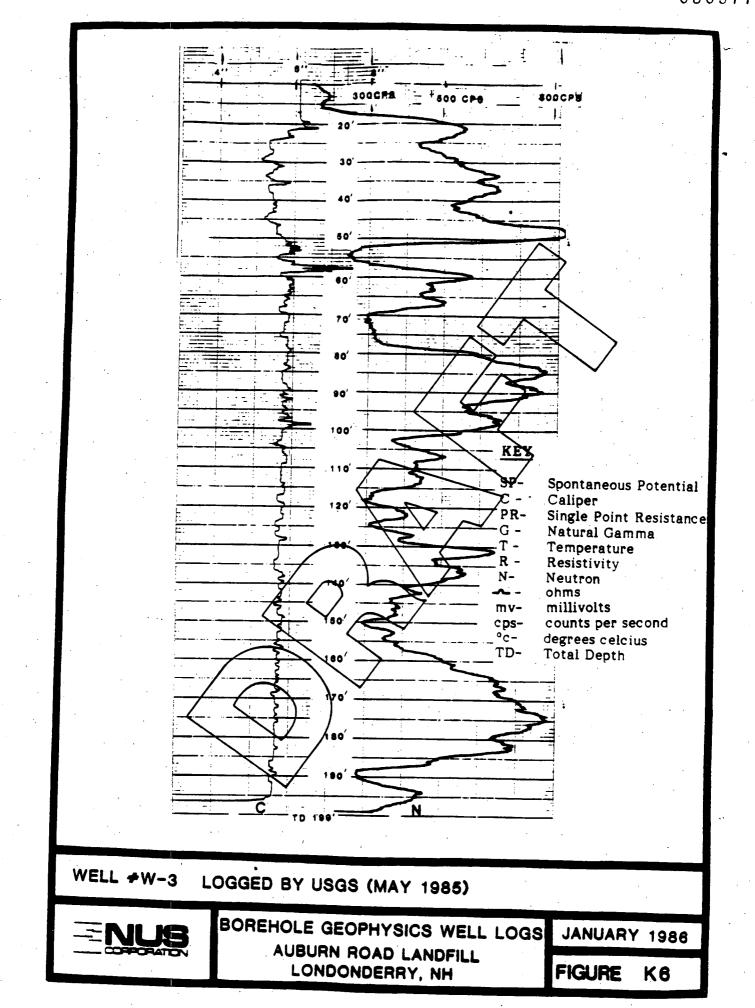

Well W-2 Logged by NUS/FIT (Figure K5) Well Depth 205 feet Logged Depth 200 feet Boring Log Available (Appendix A)

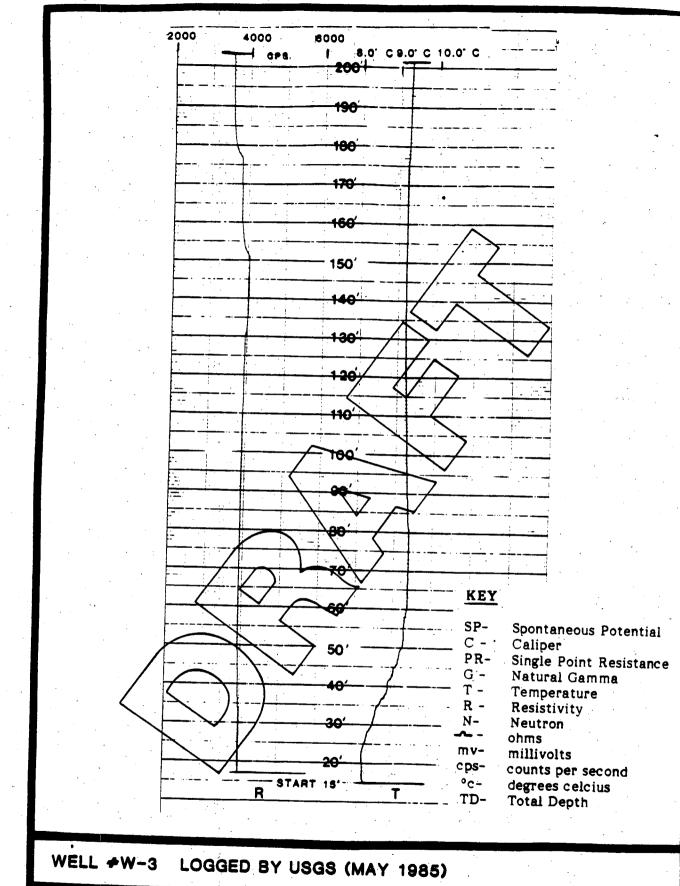
The caliper log identified a fracture zone from 54 to 63 feet in this well. The largest fracture in this zone was located at 63 feet. The single paint resistance log showed a slight deflecton to the left at 63 feet indicating less resistance and a possible water-filled void. The SP log also showed a deflection to the right at this depth.

A minor fracture zone was also identified between 128 and 141 feet below ground surface. The caliper log showed minor deflection in this zone. At 128 feet, there was a slight deflection to the left on the single point resistance log and a deflection to the right on the SP log. This would suggest that a small amount of water was entering the well at this depth.

The major water bearing zone appeared to be at 63 feet in this well. Below 141 feet, there did not appear to be any significant fracture zones. This well was not included in the USGS borehole investigation, therefore no comparison of results can be made.

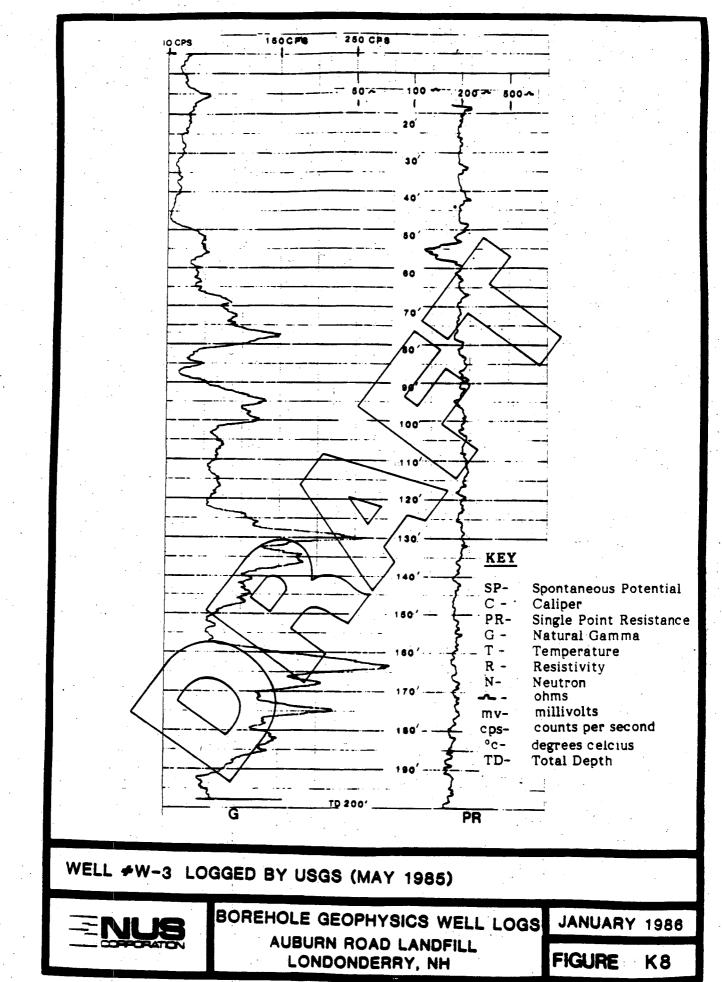



Well W-3 Logged by USGS (Figures K6, K7 & K8) Well Depth 205 feet Boring Log Available (Appendix A)


The caliper and acoustic televiewing logs from this well indicated that the well was highly fractured its entire depth. The largest fracture, between 55 and 60 feet, represented on the caliper log appeared to be five feet long and several inches deep. The acoustic televiewing log also showed a large void at this depth and a change in hydrogen content was noted on the neutron log between 50 and 60 feet. A sharp deflection was also recorded on the single point resistance log between 54 and 58 feet indicating a less resistive zone and a possible water filled void.

A 25 foot vertical fracture was identified on the acoustic televiewing log between 19 and 44 feet. This fracture was confirmed by the caliper log which showed an erratic response between 20 and 50 feet. A slight change in resistivity was noted between 30 and 50 feet on the resistivity log, and a change in temperature from 8.2°C to 9.3°C was recorded by the temperature probe between 15 and 60 feet. The neutron log showed a large change in hydrogen content within the borehole between 16 and 52 feet. This, along with the resistivity and temperature logs, is an indication of possible water movement through the well and bedrock formation.

Another fracture zone was identified between 78 and 103 feet on both the caliper and acoustic televiewing logs. Several large fractures were located within this zone. The neutron log at this depth showed a similar response as was associated with the fracture zone identified between 16 and 52 feet. The natural gamma log also showed a response between 78 and 95 feet. The temperture decreased 0.1°C between 70 and 90 feet and then remained constant at 9.3°C. Based on the acoustic televiewing log and caliper log, the remaining depth of this well appeared to be highly fractured, with the most significant fractures found between 150 and 190 feet. A drop in resistivity was noted from 150 to 177 feet and again from 177 feet to 200 feet. This corresponded well with changes in the hydrogen content as noted on the neutron log, and a slight increase in temperature which was noted between 177 and 200 feet. The natural gamma log also showed a change between 157 and 190 feet. This data again indicates possible water movement through the well within these two fracture zones. The single point resistance log remained fairly uniform through this section of the well.


Based on the interpretation of the geophysical logs from this well, there appear to be three major pathways for water to enter or pass through the borehole. The uppermost fracture zone consisted of a 25 foot vertical fracture from 19 to 44 feet and a five foot void between 55 and 60 feet. This zone showed the largest response on the neutron log and also recorded a 1.1°C increase in temperature. The most significant water-bearing zone appeared to consist of the fractures located between 150 and 200 feet. The largest change in resistivity was recorded in this zone along with large deflections on the neutron and natural gamma logs. The other fracture zone identified between 78 and 103 feet also showed large deflections on the neutron and natural gamma logs.



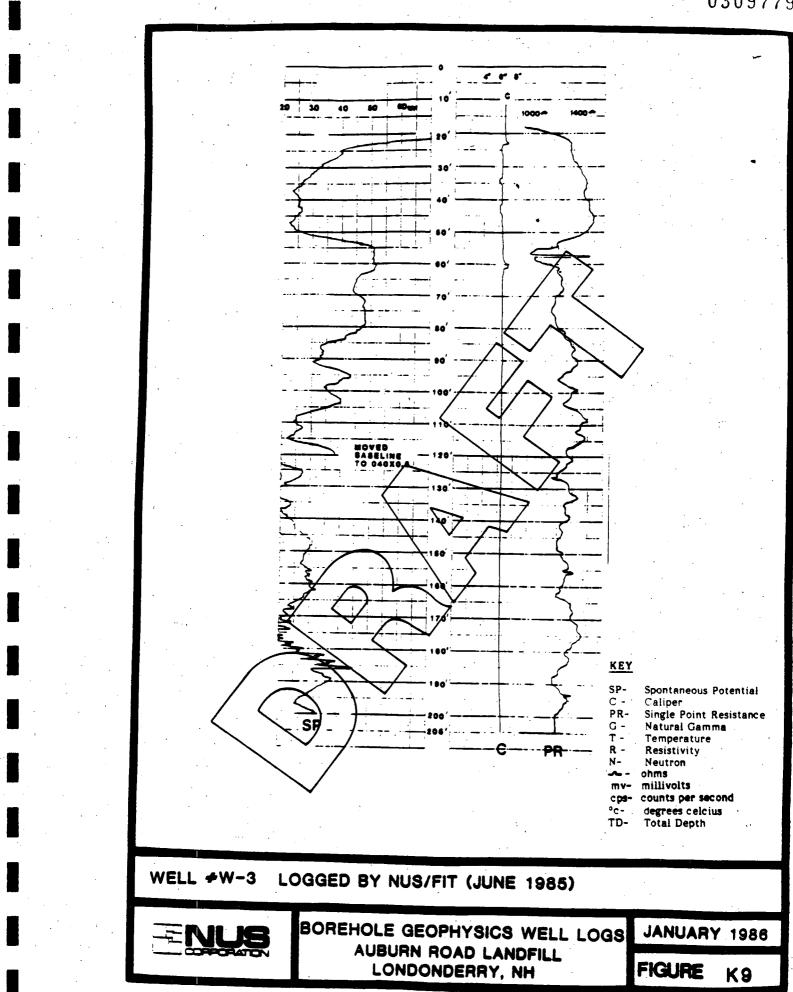


BOREHOLE GEOPHYSICS WELL LOGS JANUARY 1986 AUBURN ROAD LANDFILL LONDONDERRY, NH

FIGURE **K7** 



Well W-3 Logged by NUS/FIT (Figure K9) Well Depth 205 feet Logged Depth 205 feet Boring Log Available (Appendix A)


The caliper log identified three major fracture zones in this well. The uppermost fracture zone appeared to be a 5 foot section from 22 to 27 feet. This zone was located near the bedrock surface just below the well casing. The SP and single point resistance logs did not indicate any deflections. This was most likely due to interference caused by the steel casing.

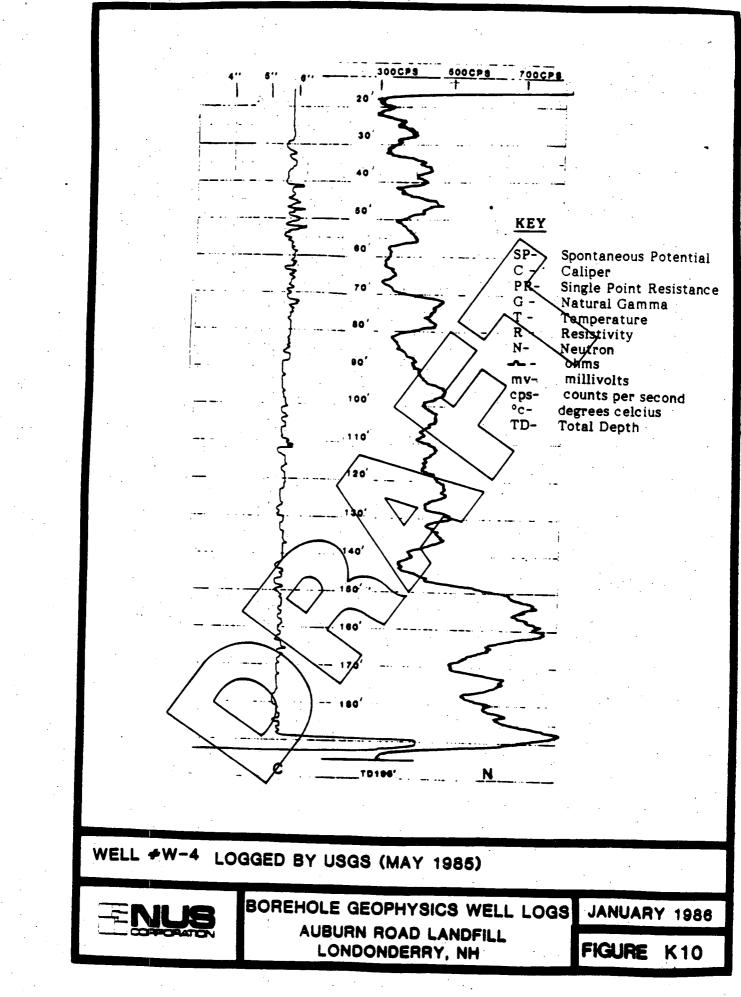
The second well defined fracture zone was a 12 foot section from 33 to 45 feet. At 34 feet and 43 feet, the caliper log identified two large fractures. The SP and single point resistance logs also showed large deflections in this segment which are an indication of a possible water-filled void.

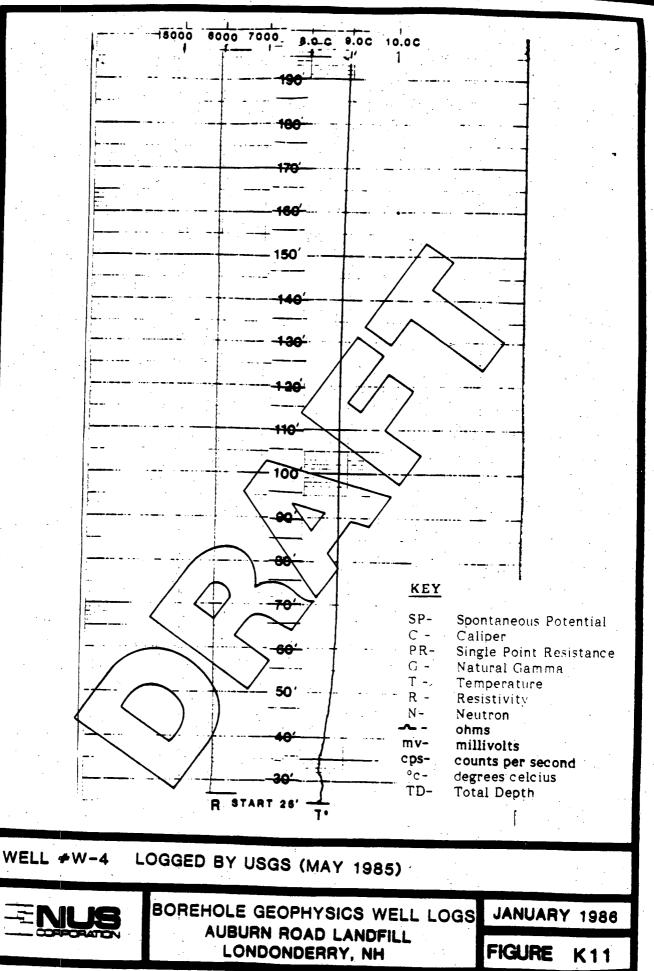
Another fracture zone identified by the caliper log was located between 58 and 63 feet. The single point resistance log at this depth deflected sharply to the left indicating less resistance and a possible water-filled void. The SP log also showed a deflection to the right at this depth.

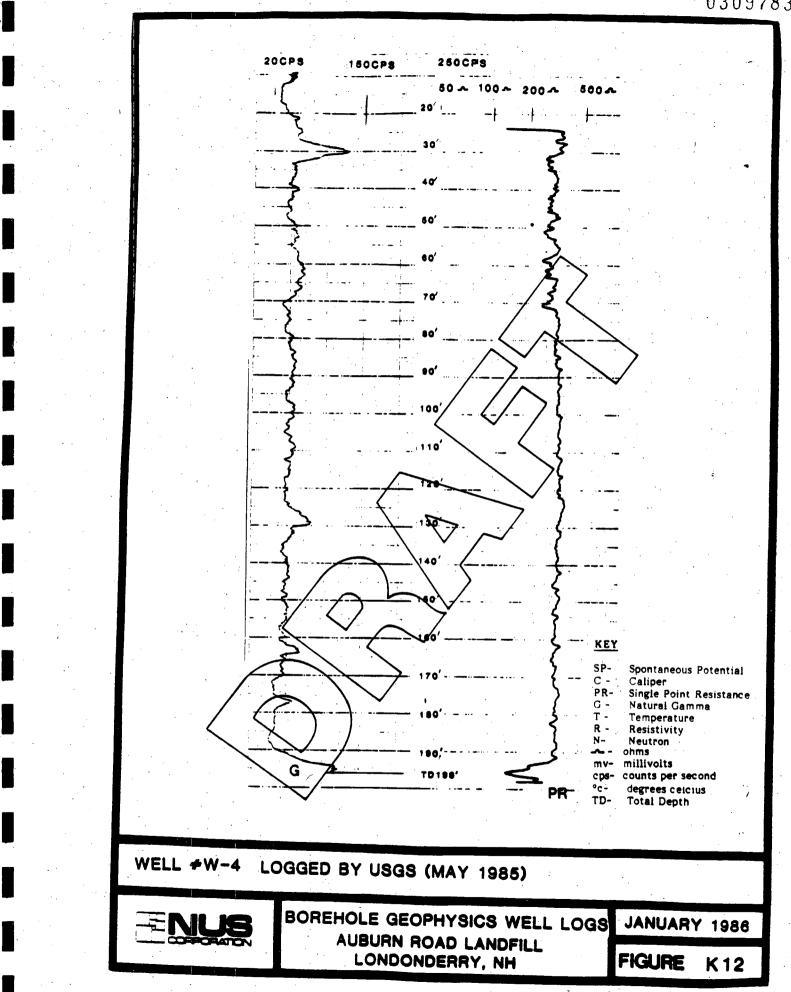
Most of the fracturing appears to be above 63 feet with the predominant water bearing zone between 58 and 68 feet. There did not appear to be any significant fractures below 63 feet based on information from the caliper log of this well.

The findings of the USGS borehole investigation correspond quite well with the data collected from the NUS/FIT investigation. The two fracture zones mentioned above from 22 to 27 feet and from 33 to 45 feet, were identified on the acoustic televiewing and caliper logs from the USGS as a 25 foot vertical fracture. The other fracture zone identified by NUS/FIT between 58 and 63 feet was also identified on the USGS geophysical borehole logs. The other fractures identified on the USGS geophysical logs were most likely detected due to the high sensitivity of the USGS borehole geophysical logging equipment.




Well W-4 Logged by USGS (Figures K10, K11, & K12) Well Depth 205 feet Boring Log Available (Appendix A)


The geophysical logs for this well indicated that the bedrock intersected by this well was highly fractured between 25 and 190 feet. The uppermost fracture zone identified on the caliper and acoustic televiewing logs was located between 28 and 87 feet. Several large fractures were identified in this zone at 41, 46, 48, 50, and 52 feet. Minor deflections were recorded on the single point resistance log and neutron log indicating a possible water bearing zone. A large deflection was noted on the natural gamma log between 25 and 33 feet. This corresponded with a change in temperature from 8.5°C to 8.8°C between 25 and 61 feet.


Between 87 and 143 feet, the caliper log indicated a high degree of fracturing, but none of the other geophysical logs showed any significant changes. The temperature within the borehole remained constant at 8.8° from 61 feet to 150 feet while the resistivity and single point resistance logs showed little response. Minor deflections were noted on the neutron and natural gamma logs. The acoustic televiewing log also showed numerous fractures within this zone.

A gradual increase in temperature of 0.1°C was recorded between 150 and 195 feet. This corresponded well with changes noted on the neutron log, where several large deflections were recorded between 144 and 193 feet. A slight decrease in resistivity was recorded on the resistivity log from 148 to 195 feet and minor deflections were noted on the natural gamma and single point resistance logs in this zone. Similar fracture patterns mentified in the upper portion of the borehole were also identified below 145 feet. The caliper log indicated the presence of a large fracture at 190 feet that corresponded to deflections recorded on the neutron, natural gamma and single point resistance logs.

The data generated from the borehole geophysical logs run at this well location indicated the presence of two major water-bearing fracture zones. The most significant zone identified was between 150 and 195 feet. The neutron log of this zone showed the largest change in hydrogen content within the borehole. The other water bearing zone was located between 28 and 87 feet. This zone showed minor deflections on the neutron log, but recorded a significant (0.3°C) increase in temperature.



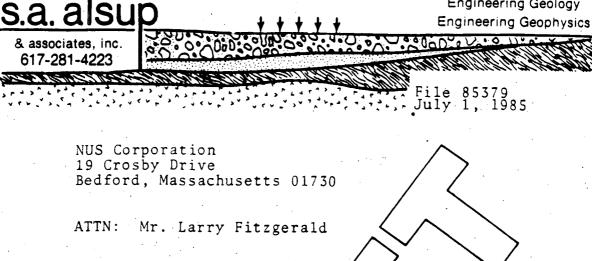




### SEISMIC

### SECTIONS IN APPENDIX L

- METHODOLOGIES AND PROCEDURES
- REPORT S.A. ALSUP & ASSOCIATES, INC.


### SEISMIC REFRACTION

To provide additional information on site stratigraphy, NUS/FIT, through the aid of - a subcontractor, K & M Associates, performed a seismic refraction survey on and around the site. This work was performed in April, 1985 and included nearly 7,000 linear feet of seismic survey on four lines (0, 0A, 1, 1A, 1B, 1C, 2, 2A, 3) (Plate 2). The purpose of conducting a seismic survey was to characterize bedrock topography (bedrock surface), bedrock competency (presence of open or water filled fault systems), and general overburden stratigraphy. It became apparent part way through the RI that information of this nature in off-site areas was critical for future evaluations of the site. Calibration for the survey was completed by running a seismic array next to several monitoring wells where depth to bedrock and stratographic information were available for comparison. It should be noted, however, that seismic refraction depth data is a remote sensing technique that is only considered accurate to within a ten percent degree of error (see attached report).

A multichannel (12-channel) seismic retraction recording system was used to conduct the survey utilizing explosive charges (gel dynamite) as an energy source. A 240 foot spread cable was used with vertical geophones spaced at 20 foot intervals. A 120 foot spread cable was used at one location where it was anticipated that shallow bedrock would be encountered. Shotpoints were established at 60 (120 foot spread) and 80 (the more common 240 foot spread) foot intervals along the spread cable. The seismic refraction data were recorded in the field on a strip chart recorder.

The location and elevation of the geophone stations were surveyed and reproduced on a base map (scale: 1 in b: 200 feet). The location of the geophone stations were surveyed to a one foot accuracy and the vertical accuracy (elevation) was surveyed to within 0.1 foot.

A detailed outline of the procedures and results are presented in the following report prepared by S.A. Alsup & Associates, Inc. Data from the seismic survey is presented in Section 5.2 of this report.



RE: Seismic Refraction Study Auburn Road Landfill

Consultants in Engineering Geology

Dear Mr. Fitzgerald:

In accordance with our telephone conversations, the data submitted with the original report of findings for the site referenced above included a reversal of the stationing for Line  $\emptyset$ , and a reinterpretation of the data from one of the shotpoints. Corrections have been made, and the appropriate data for this particular seismic line are attached

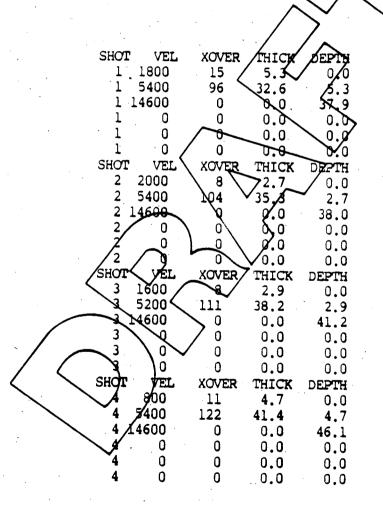
We have found no other such conditions for the other data reported. Please contact the undersigned if further information or detail is required.

Yours Very Truly, 1/

Stephen A. Alsup, Ph.D. President

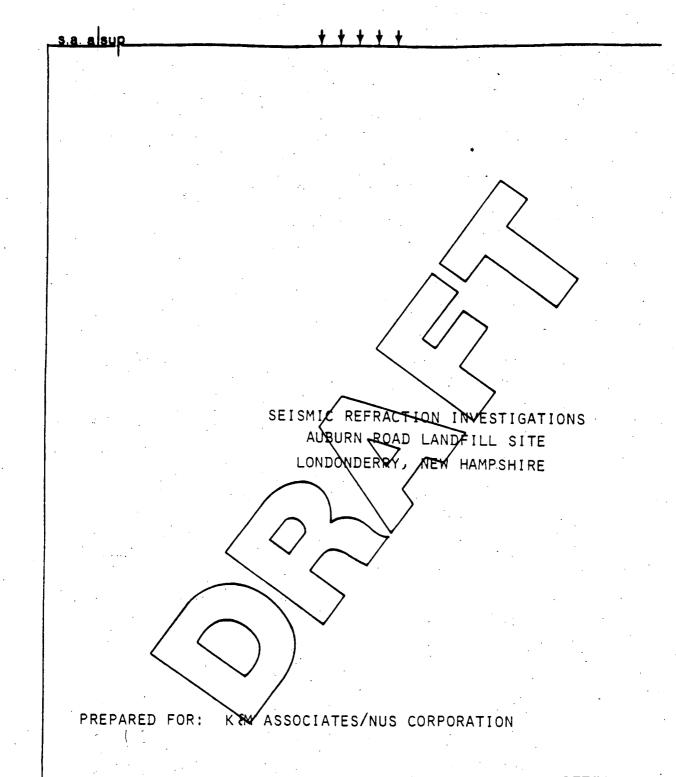
cy: K & M Associates, Javid Malek

7 PARSONS STREET


BOX 1457

GLOUCESTER, MASSACHUSETTS

#### PROJECT: AUBURN ROAD LANDFILL LOCATION: LONDONDERRY NH DATE OF FIELD SURVEY: 04/08/85


**REVISION 06/27/85** 

REFRACTION LINE NUMBER: 0



FILE NUMBER 85379

DATE OF CALCULATIONS 06/27/85



FILE 85379 April 22, 1985

File 85379 April 22, 1985

SEISMIC REFRACTION INVESTIGATIONS AUBURN ROAD LANDFILL SITE LONDONDERRY, NEW HAMPSHIRE

s.a. alsup

### 1.00 INTRODUCTION

This report presents the results of seismic refraction investigations performed by S.A.Alsup Associates, Inc. as subcontractor to K&M Associates and the NUS Corporation. Field efforts for the investigation were made on April 8, 9, 10, and 11, 1985, with subsequent analysis of data and report preparation in our offices in Gloucester, Massachusetts. Locus of the site is shown in Figure 1.

The purpose of the investigation was to determine depth to bedrock and other subsurface information beneath alignments specified by the on-site NUS representative as the field investigations were underway. Toward that end, some 6,840 linear feet of seismic refraction profiling were completed, with subsequent location and elevation of the alignments provided by K&M Associates.

Overall data quality for the investigation is good to very good, with anticipated accuracies of 10% in terms of depths and velocities in the information presented in the profiles. Minor amounts of frost in the ground were

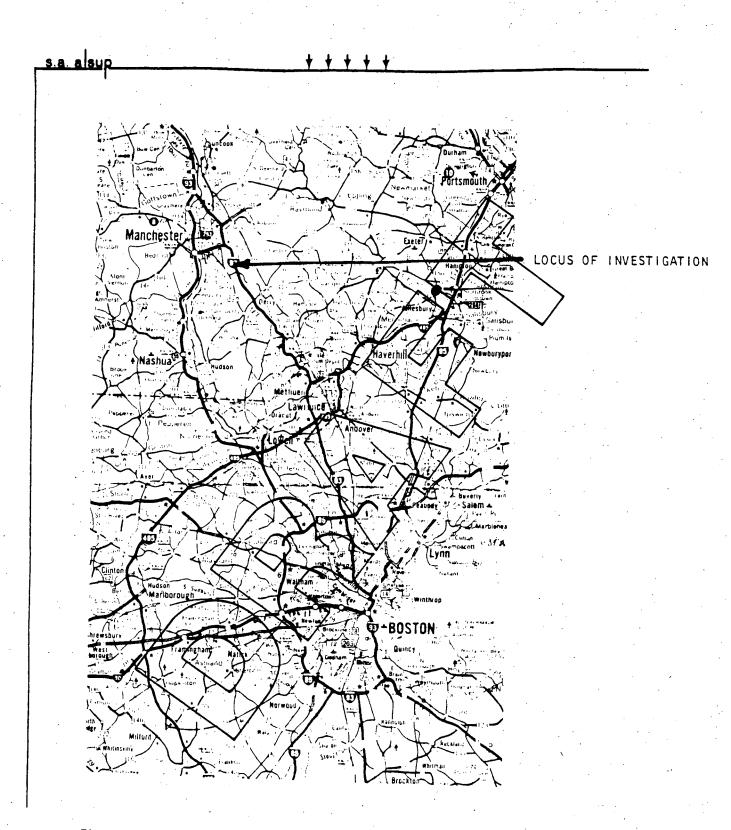



Figure 1. Locus of Investigation, Auburn Road Landfill Site.

# File 85379 ♦ ♦ ♦ ♦ April 22, 1985

encountered (3 or 4 inches), but this thickness was not sufficient to cause difficulty in analysis of data or interpretation of the analytical results.

s.a. alsup

# 2.00 EQUIPMENT AND PROCEDURES

EG&G/GEOMETRICS Model ES12105 Multiple Channel An Signal Enhancement Seismograph Coupled to a 12-element refraction spread cable was used 240-foot for the investigation, employing Mark Roducts L-15 vertical geophones as motion-voltage transducers at 20-foot intervals along the spread caple. In one location of this investigation, a 12-element 120-100t spread cable was used where shallow bedrock was present beneath the alignment. The provides permanent electrostatically written ES1210F seismograms of the 12 active data channels simultaneously, with crystal controlled tiping lines written across the seismogram at 0,001 second intervals by independent timing circuitry. All recordings were made with a pre-set 0.100 second record length, with record start at the instant of detonation of the explosive charge used for generation of the required seismic energy.

Small explosive charges (1/8 lb typical) of 40% extra gel dynamite initiated by Instadet electric blasting caps were used as an energy source, with the charge placed at

File 85379 April 22, 1985

about 1.5 foot depth in the ground. Shot points were made at the ends and at 80-foot intervals along the spread cable (60 feet for the shorter spread), providing completely reversed refraction spreads with intermediate partial reversals. All alignments with length greater than the basic 240 foot spread length were examined with end-to-end extensions of the cable along the alignment, repeating the end shot point of one spread as the beginning shot point of the next spread for continuity and data redundancy purposes.

+ + +

s.a. alsup

The data were analyzed according to the standard crossover-distance method, where the arrival times of the fastest traveling seismic wave is timed on each data channel, with such times plotted on a time-distance graph as a function of distance from the shotpoint. Straight line segments are then constructed through data points showing similar time-distance increments, with the intersections of the line segments forming the required crossover distance. The distances are then entered into standard formulations aling with the inverse slopes of the line segments (i.e., distance/time = velocit)) for calculation of depth to refracting interfaces in the subsurface. A graphical example of the procedure is shown in Figure 2.

The speeds of seismic waves of the types used in this procedure are strong functions of the bulk density of materials that the waves pass through, and this relationship

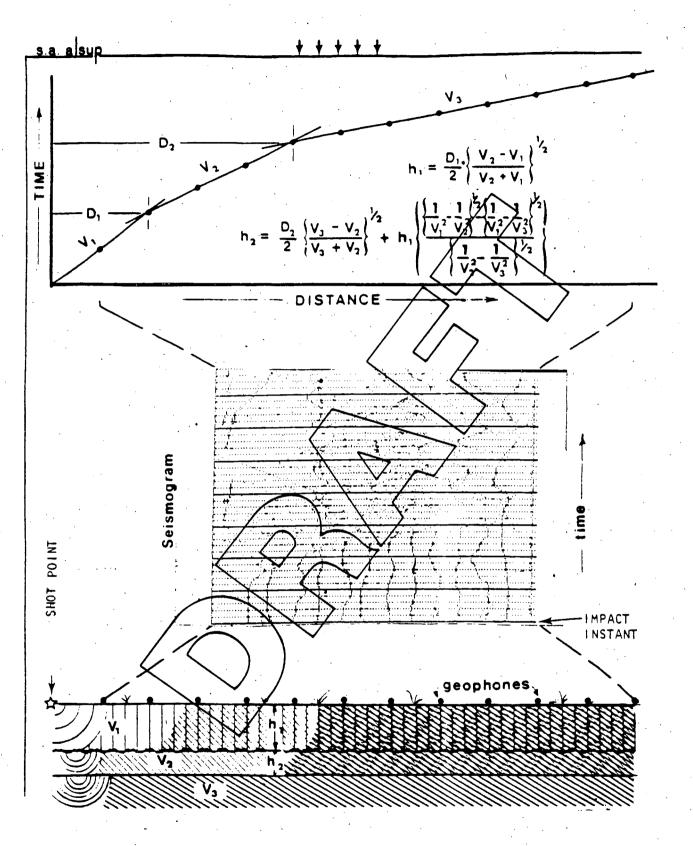



Figure 2. Seismic Refraction Analysis Method (General).

File 85379 April 22, 1985

is used to interpret the kinds of geological materials that may be present in the subsurface beneath the alignments examined. For this particular investigation, the following velocity/material relationships are expected:

<u>VELOCITY</u> (FT/SEC) 800 - 2800

s.a. alsug

4400 - 5200

6000 - 6600

ANTICIPATER GEOLOGIC TYPE

Soft and uncompart low density materials, including forest litter and marsh vegetation, and dry to moist silt, sand, grave, and cobbles. May also include random boulders on or in such/deposits. Highly permabye and readily excavated. Materials of the types above, but saturated with groundwater. The groundwater table is usually found at or near the upper surface of zones showing this velocity range in seismic refraction profiles. Usually clay or silty clay of low to very low permeability may be interlayered with tills or alluvial deposits at this site.

File 85379 April 22, 1985

7200 - 8600

s.a. alsup

10,000+

Well-graded (poorly sorted) mixture of silts, sands, and gravels with some angular-subangular cobbles and boulders (Glacial Till, Typically of low to very low permeability. Dense and competent bedrock, with low permeability overall, may have somes of high permeability where fractured or in localized zones of weathering

In the results following, profiles or cross-sections of subsurface conditions were constructed using elevation data at each shot point provided by K&M Associates to indicate ground surface, with depths to refracting interfaces plotted directly beneath the shot point providing the seismogram from which the depth velocity data were obtained. Smoothed line delineations of zones showing similar velocity ranges were then constructed between the shot points to develop a separation of velocity zones for interpretation according to the relationships above.

5

****

File 85379 April 22, 1985

#### * * * * *

#### 3.00 RESULTS OF INVESTIGATION

The results of this investigation are shown in Figures I and II (in pocket) as profiles or cross-sections of conditions beneath the alignments examined and in Appendix A, where velocities, depths, and related factors for each shot point are tabulated. Individual shot points along the alignment are indicated in the Figures as a small "v" at the ground surface elevation.

### <u>LINE O</u>

LINE OA

s.a. alsup

The seismic results for Line 0 which was conducted as a calibration line adjacent to existing borings, is shown in the lower left of Figure 1. The seismic data indicate a thin zone of unsaturated low density materials near surface, with as much as 41 feet of this or similar material above the bedrock surface. The groundwater table is indictated to range between 2.7 and 5.3 feet below ground surface in the seismic data. A deposit of glacial till is indicated at about 11 foot depth below STA 2+40.

Line OA is plotted adjacent to Line O in Figure 1, and the results show similar subsurface conditions - 4.3 to 5.1 feet of unsaturated low density materials near surface, and a saturated zone on the order of 40 to 45 feet above bedrock. A sharp rise of the bedrock surface is indicated between STA 0+00 and 0+80, with the bedrock elevation of

File 85379 April 22, 1985

less than EL 220 beneath STA 0+00 being the lowest measured during any part of this investigation. This particular measurement should be viewed with some caution because it is the ending shot point of an alignment (i.e., no continuity or redundancy for the calculated depth is available), and it marks a significant change in bedrock elevation when compared to the other Line OA and Line O results. A bedrock elevation change of about 18 feet over 80 foot distance is not unusual, however, and the indicated result may be accurate within the capability of the refraction method to resolve such features.

### LINE 1

s.a. alsup

The results for seismic Line 1, which was conducted in four separate segments to accommodate the presence of two river crossings and a segment where shallow rock is known to be present, is shown in Figure 1 as the alignment would be wiewed from left to right looking south (Lines 1, 1A, 1C, and 1B, in order). Conditions beneath Line 1 show a low density surficial zone thanning from about 17 feet (0+00) to about 2 feet in the lower elevations. Marsh conditions prevail from STA 5+60 to 7+20, and all shots were in water for this section of Line 1. Bedrock is shown to be at shallow depth from STA 0+00 to 1+60, with a thick zone of materials showing velocities typical of glacial till over bedrock between STAS 1+60 and 4+80. Faulting is suspected in this part of the site, and such velocities might represent

File 85379 April 22, 1985

fractured rock or gouge, or both. From STA 4+80 to 7+20, water saturated low density materials are indicated, and a low in the bedrock surface is indicated peneath STA 6+40.

 $\bullet$   $\bullet$   $\bullet$   $\bullet$   $\bullet$ 

s.a. alsup

NNE 2

Conditions beneath Line 1A show a thin zone of unstaturated low density deposits over the bedrock surface from STA 0+00 to 9+60, and offsets in the bedrock refraction trends indicate either narrow fault zones of abrupt changes of a few feet in the bedrock surface beneath STAS 3+60 and 6+10. The changes occur between shot points, and can only be indicated as present in the method of data analysis employed.

Line 1C shows a continuation of the trend above, excepting beneath the shot point at the edge of river (2+40), where a trend toward slightly deeper bedrock and saturated granular materials is indicated.

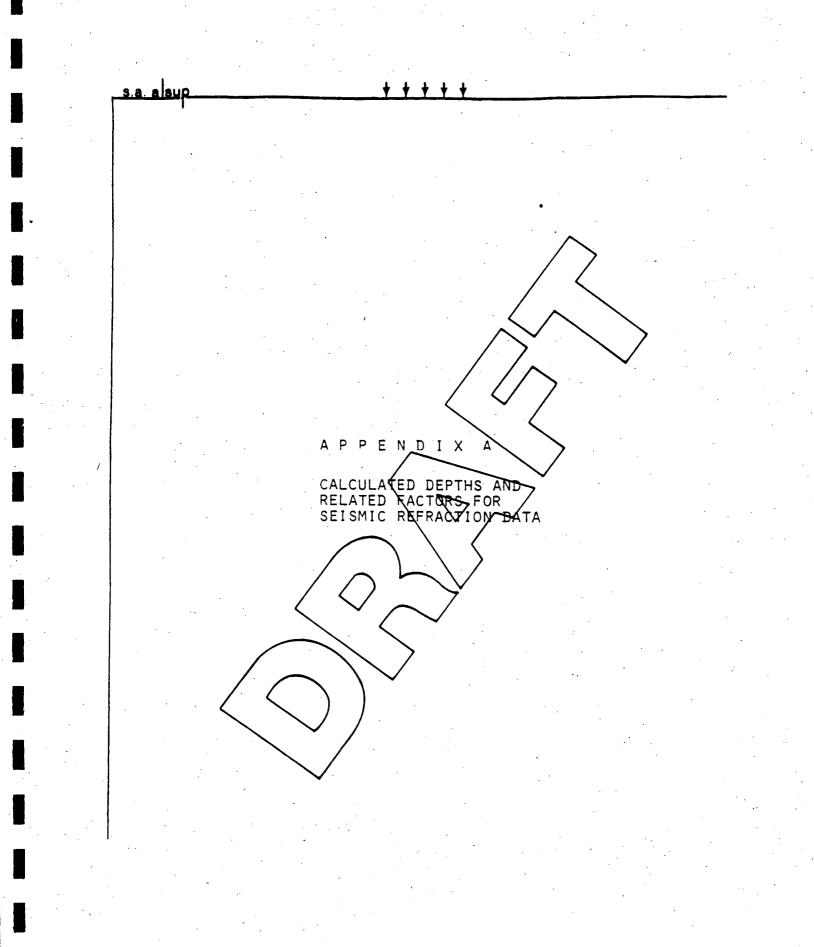
Conditions beneath Line 1B show a continuation of the trend toward deeper bedrock with a rising trend beneath the easternmost shot point (2+40). As with the Line 1 section, a fault is suspected to be present beneath Line 1B, and the materials with velocities typical of New England glacial till may represent fault zone fracturing or gouge effects.

Seismic Line 7 was also conducted in separate segments, with the break made to accomodate a zone of know shallow bedrock. Conditions beneath the alignment (Figure II) indicate a gradually rising bedrock surface from STA 0+00 to

File 85379 April 22, 1985

6+00 with an overlying zone of saturation in granular materials and a groundwater table at about Elev 268 except where the bedrock surface is very shallow.

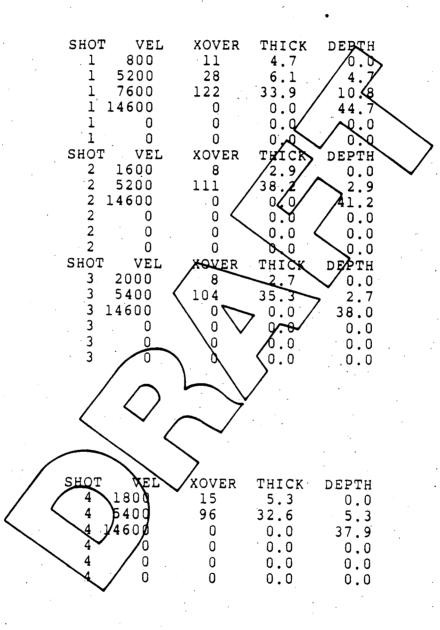
s.a. alsup


LINZ 3

Continuation along Line 2A shows a generally undulating bedrock surface elevation, with pockets of groundwater saturation in granular materials between bedrock highs and clay/till deposits. Materials immediately above the bedrock surface between STAS 6+00 and 16+80 are expected to include either clay or till with significant amounts of clay or clay layers on the basis of the refracting velocities. The granular materials above bedrock between STAS 32+00 to 33+60 are expected to be partially saturated or to include perched zones of groundwater saturation.

Two possible zones of Taulting are also indicated in the Line 2A refraction data, with a narrow zone beneath STA 20+10 and a wider zone beneath STAS 26+60 to 29+00. The bedrock velocity in the wider zone doesn't suggest highly fractured or weather rock, however, and the data may simply indicate rapid changes in bedrock surface elevation over short distances beneath the refraction spread.

The results for Seismic Line 3 are shown in the upper right of Figure I, typically showing a saturated zone of granular materials over the bedrock surface. The groundwater table is at ground surface beneath STA 2+40, with a thin zone of unsaturated materials beneath ground surface along the higher elevations of the alignment.

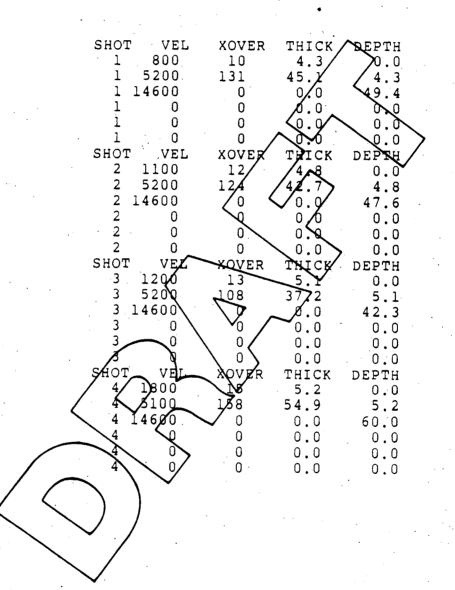

-9



### FILE NUMBER 85379 DATE OF CALCULATIONS 04/15/85

### PROJECT: AUBURN ROAD LANDFILL LOCATION: LONDONDERRY NH DATE OF FIELD SURVEY: 04/08-11/85

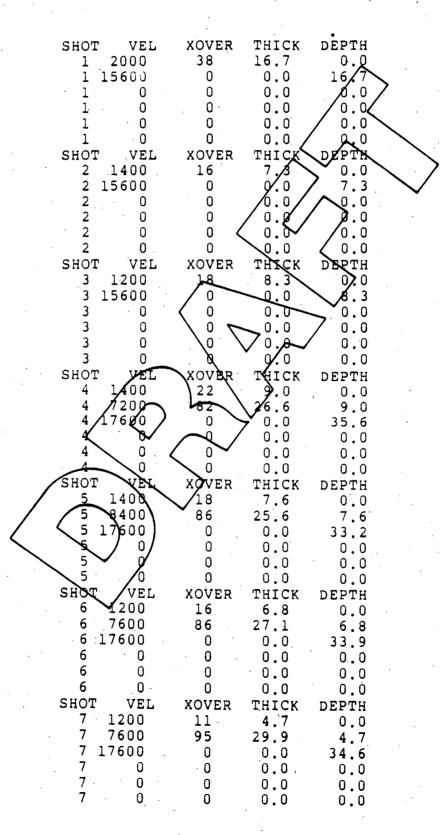
#### **REFRACTION LINE NUMBER: 0**




FILE NUMBER 85379

DATE OF CALCULATIONS 04/15/85

### PROJECT: AUBURN ROAD LANDFILL LOCATION: LONDONDERRY NH DATE OF FIELD SURVEY: 04/08-11/85

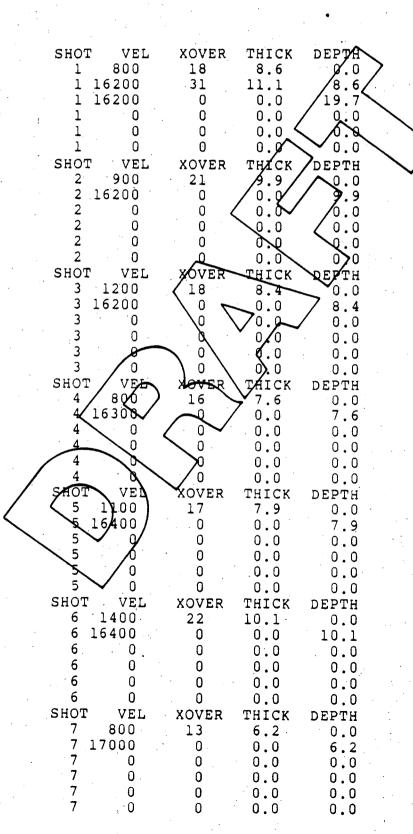

### REFRACTION LINE NUMBER: OA

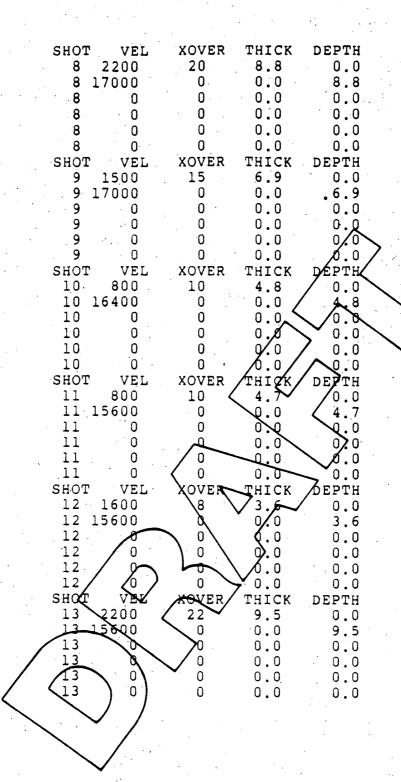


FILE NUMBER 85379 DATE OF CALCULATIONS 04/15/85

### PROJECT: AUBURN ROAD LANDFILL LOCATION: LONDONDERRY NH DATE OF FIELD SURVEY: 04/08-11/85

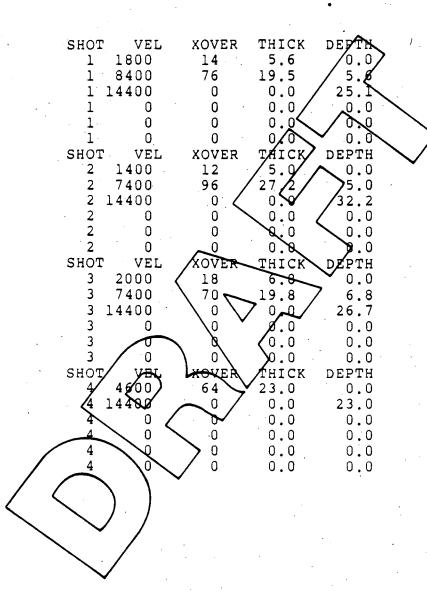
#### **REFRACTION LINE NUMBER: 1**





SHOT       VEL         8       800         8       4600         8       17200         8       0         8       0         8       0         9       800         9       4600         9       17200         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         9       0         10       1800         10       0         10       0         10       0         10       0	XOVER 5 49 0 0 0 0 XOVER 4 82 0 0 0 0 0 XOVER 10 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	THICK 2.1 18.6 0.0 0.0 0.0 THICK 1.7 31.2 0.0 0.0 0.0 0.0 THICK 3.5 17.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DEPTH 0.0 2.1 20.7 0.0 0.0 0.0 DEPTH 0.0 1.7 32.8 0.0 0.0 0.0 DEPTH 0.0 3.5 20.9 0.0 0.0	, \\

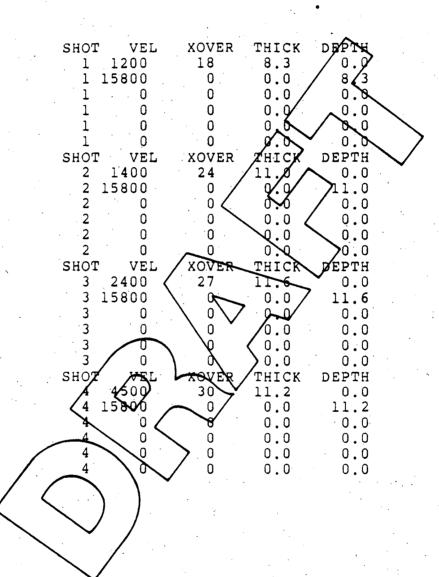
•

PROJECT: LOCATION: DATE OF FIELD SURVEY:


REFRACTION LINE NUMBER: 1A

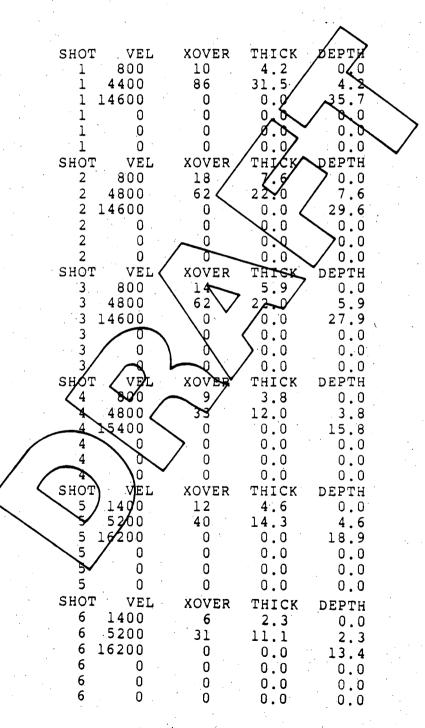





#### PROJECT: LOCATION: DATE OF FIELD SURVEY:

### REFRACTION LINE NUMBER: 1B



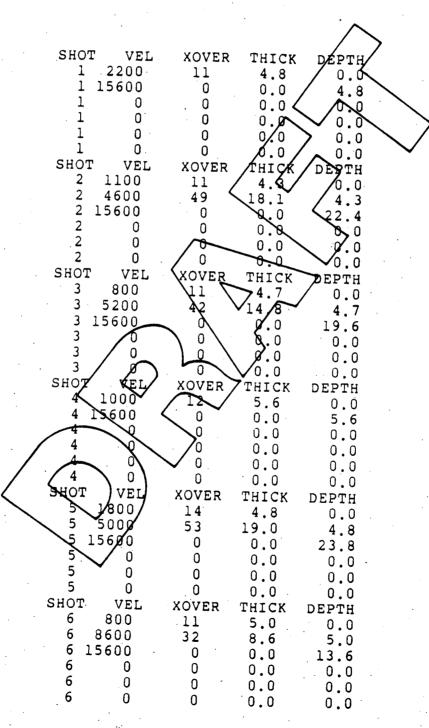

PROJECT: LOCATION: DATE OF FIELD SURVEY:

### REFRACTION LINE NUMBER: 1C



PROJECT: LOCATION: DATE OF FIELD SURVEY:

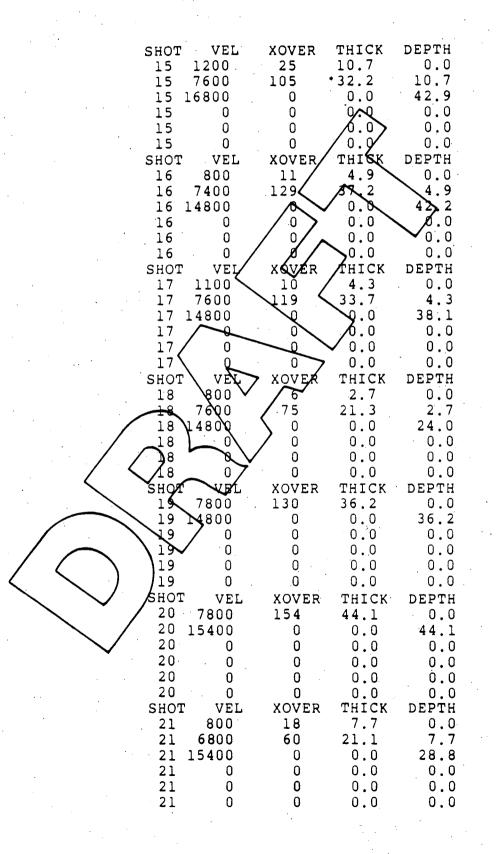
REFRACTION LINE NUMBER: 2

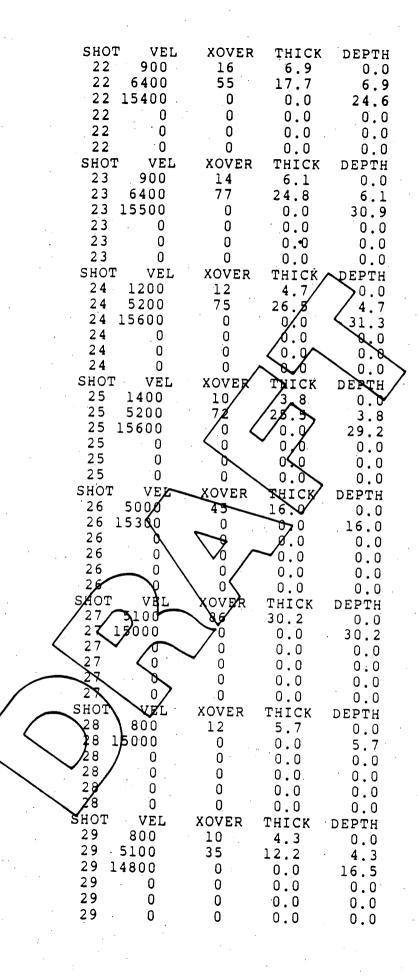


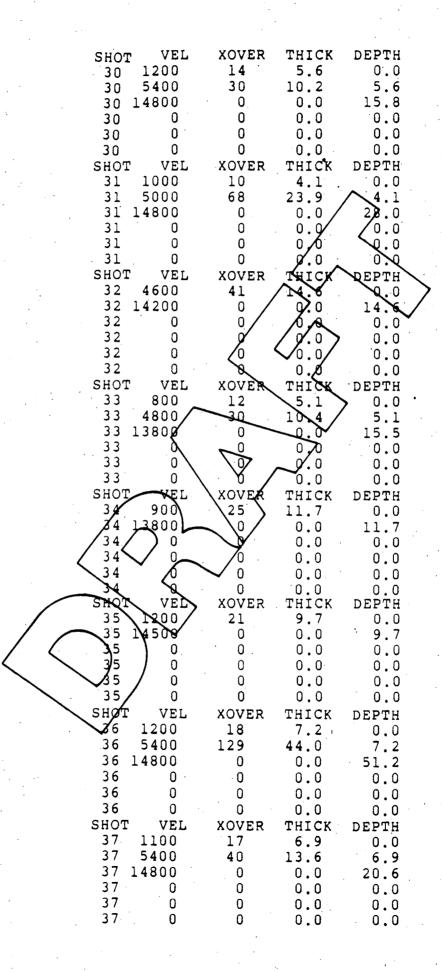

SHOT	VEL	XOVER	THICK	DEPTH	
	1400	18	8.3	0.0	
	6200	Ò	0.0	8.3	
7	0	0	0.0	0.0	
7	0	0	0.0	0.0	
7	Ō	0	0.0	0.0	
7	• 0	· 0	0.0	0.0	
SHOT	VEL	XOVER	THICK	DEPTH	
8	7600	9	2.6 •	0.0	
8 1	5500	0	0.0	2.6	
8	· 0	0	0.0	· ~Q.0	
8	0	0	0.0	/ 0,0	
8	0	0	0.0	0/.0	
8	0	0	0.0/	6,0	
SHOT	VEL .	XOVER	THICK	DEPTH	
	2800	28	11 7	$\wedge$ 0.0 $\setminus$	
	5500	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 7	$\mathbf{\Sigma}$
9	0	0	/0.0	0.0	
9	0	0		0.0	
9	0	0 /	9.9	> 0.0	
· 9	0	0/	Q / 0	0.0	
			· /		
	•		$\langle \cdot \cdot \rangle$		

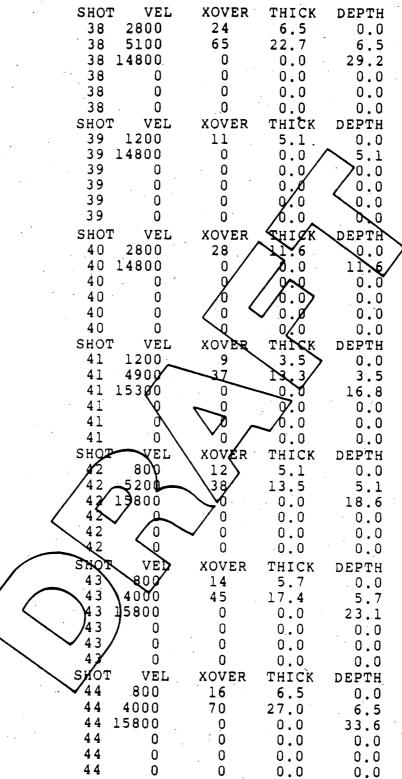
FILE NUMBER 85379 DATE OF CALCULATIONS 04/15/85

PROJECT: AUBURN ROAD LANDFILL LOCATION: LONDONDERRY NH DATE OF FIELD SURVEY: 04/08-11/85


**REFRACTION LINE NUMBER: 2A** 



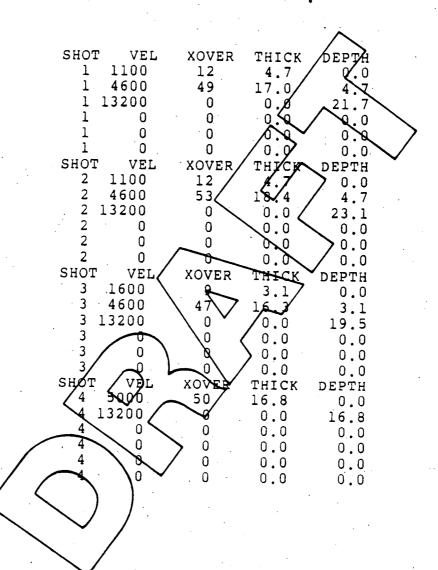


7 1100 30 7.4 0.0 7 8600 98 27.5 7.4	
7 8600 98 27.5 7.4 7 16500 0 0.0 34.9 7 0 0 0.0 0.0	
7 0 0 0.0 0.0 7 0 0 0.0 0.0 SHOT VEL XOVER THICK DEPTH	
8 800 3 1.3 0.0 8 5000 68 25.3 1.3	
	>
SHOT VEL XOVER THICK DEPTH 9 800 5 2.1 9 5200 52 19.1 2.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
9 0 0 0.0 0.0 9 0 0 0.0 SHOT VEL XOVER THICK DEPTH 10 1800 9 3 4 0.0	
10       6400       98       32.9       3.4         10       16900       0       0.0       36.3         10       0       0       0       0	
10 0 0 0.0 0.0 10 0 0 0.0 0.0 SHOT VEL XOVER THICK DEPTH	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
SHOT         VEL         XOVER         THICK         DEPTH           12         1800         10         3.5         0.0           12         5200         86         31.8         3.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
12 0 0 0.0 0.0 GHOT VEL XOVER THICK DEPTH 13 4600 66 13 9 0.0	
13       6600       106       35.0       13.9         13       16800       0       0.0       48.9         13       0       0       0.0       0.0	
13         0         0         0.0         0.0           13         0         0         0.0         0.0           SHOT         VEL         XOVER         THICK         DEPTH	
14       4800       23       4.3       0.0         14       6400       110       36.8       4.3         14       16800       0       0.0       41.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

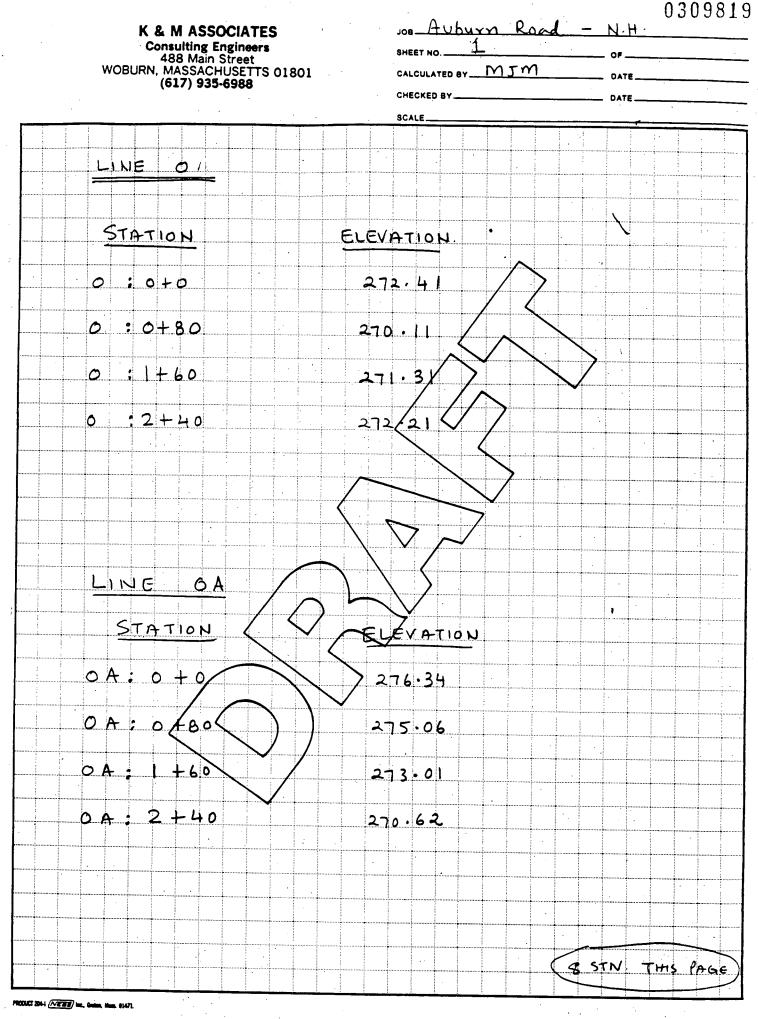

.

-








FILE NUMBER 85379 DATE OF CALCULATIONS 05/15/85

## PROJECT: AUBURN ROAD LANDFILL LOCATION: LONDONDERRY NH DATE OF FIELD SURVEY: 04/08-11/85

**REFRACTION LINE NUMBER: 3** 





## K & M ASSOCIATES Consulting Engineers 488 Main Street WOBURN, MASSACHUSETTS 01801 (617) 935-6988

v

LINE

____

1

. [

STATION

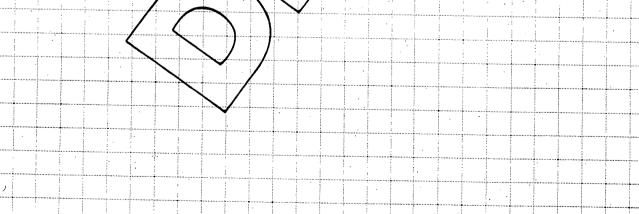
0+0

:0+80

+60

2+40

3+20


4+00

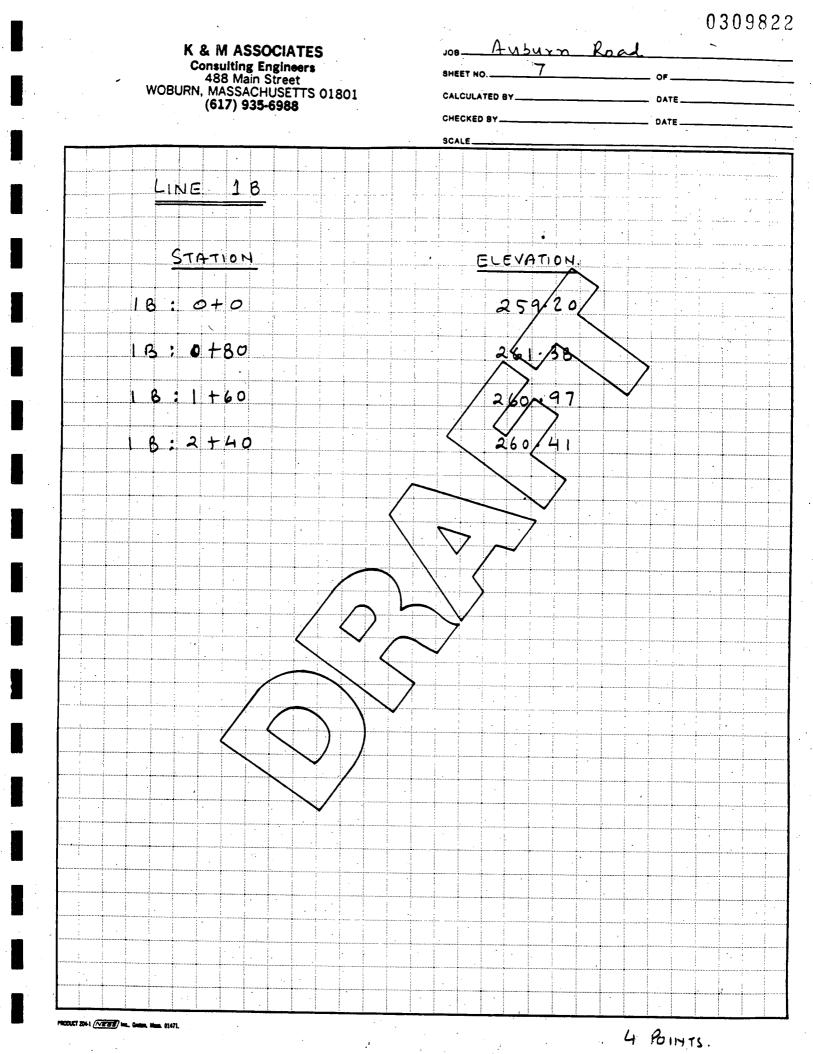
4+80

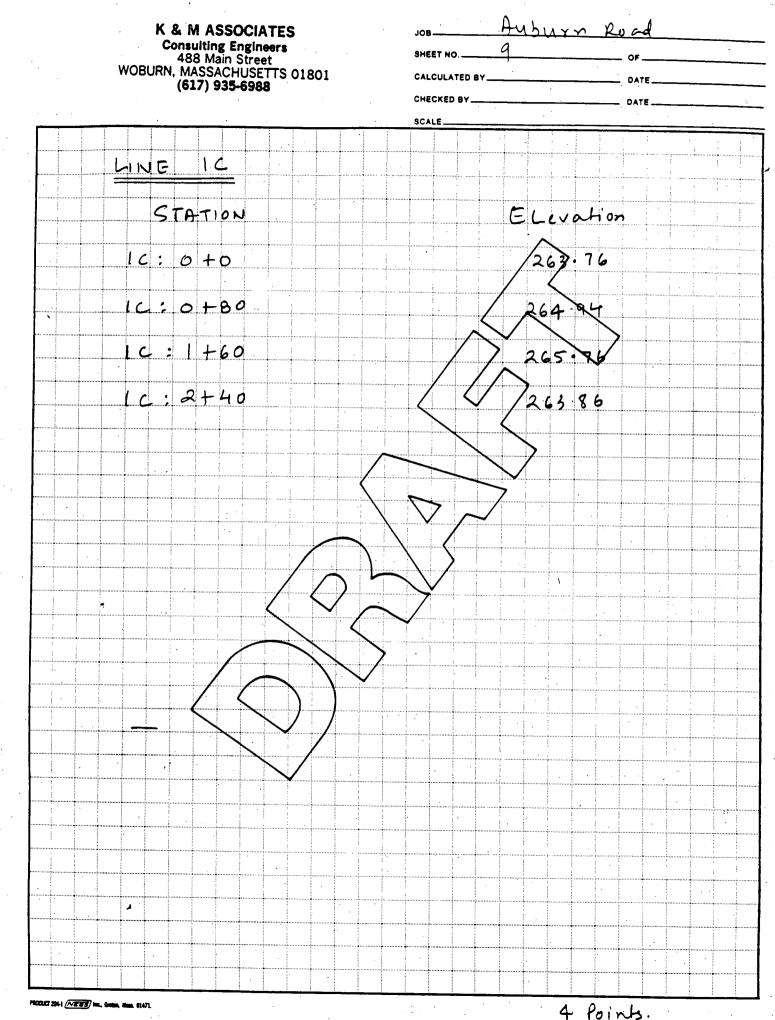
: 5+60

	JOB	Ayb	4xn_]	Ruad		030	<b>982</b> 0
	8HE	ET NO	6		_ OF		
•		CKED BY			_ DATE		
	SCA		· · ·				
•							
		ELEV	ATION				
		28	1:63				-
		272		, ·			
			/ []				
		270	.49				
			$/ \searrow$	$ \rightarrow $			
		273	•16	$\searrow$			
	1	668	28				
				·		•	
~		267	. 92		•		
			✓				
	$\bigtriangledown$	7 ~ ~	.56	·			· ·
	$\setminus$	260	.96				
		$\sum$					
		1 210	72		1	1	






MODUCT 2041 (VEBS) Inc., Greine, Mass. 61471.


10 Points.

0309821 Auburn Road K & M ASSOCIATES JOB ...... Consulting Engineers 8 SHEET NO. 488 Main Street WOBURN, MASSACHUSETTS 01801 CALCULATED BY _ DATE___ (617) 935-6988 CHECKED BY _ DATE_ SCALE_ I A LINE STATION ELEVATION A: 0+0 271 -22 A.0 +80 270.42 270.34 A:1+60 A: 2+40 270-14 A:3+20 670.17 269.75 A : 4+00 14:4+80 264.45 1A: 5+60 269.51 1A: 6+40 272.416 10:7/20 271-05 1A. 8+08 272.07 Ref. Point Х `₩ 268.98 **.** • Ref. Point * Y 265.66 Extra Points requested by NUS

MODET 2041 (VETE) Inc. Comm. Han. \$1471.

13 Points





OF

Auburn Road

S

JOB.

SHEET NO ...

## K & M ASSOCIATES Consulting Engineers 488 Main Street WOBURN, MASSACHUSETTS 01801 (617) 935-6988

WOBURN, MASSACHUSETTS 01801 (617) 935-6988	CALCULATED BY DATE DATE	
	SCALE SATE	
LINE 2A CONT.		
2A: 25+60	296.56	
	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
27;26+40	297.45	· · · · · · · · · · · · · · · · · · ·
27 : 27 +20	301.24	
		· · · · · · · · · · · · · · · · · · ·
2A: 28+00	208.84	
27 = 28 + 80	308.42	
27:29+60	313.58	
		`
2A: 30+40		
2n : 31 + 20n	$\nabla - 317 \cdot 18$	
2n: 32+00	323 - 56	
277 - 32 +86	329-25	
27:33 60	333-39	
MODUCI 2014 (NETIT) Inc. Grain, Ilan. 1147).	II Points	

0309825 Ayburn Road JOB _____ K & M ASSOCIATES **Consulting Engineers** 4 SHEET NO._ 488 Main Street WOBURN, MASSACHUSETTS 01801 CALCULATED BY MJM DATE_ (617) 935-6988 CHECKED BY DATE SCALE. CONT. LINE 2A 282.42 27: 12+80 24: 13+60 287~95 2A. 14+40 (A) 284225 B 27: 14+40 283.84 292.07 2A; 15+20 24:16+00 296.92 27 : 16+80 287.91 286.40 2A: 17+60 18+40 286.36 2A: 2A: 19+20 284.21 24: 20+00 283-78 27: 60+89 285.53 2A: 21+6Q 292-43 27:22 +40 290,99 27 ; 23 +20 292.16 24:24+00 290.98 24:24+80 299.61

17 POILATS

	K & M ASSOCIATES Consulting Engineers 488 Main Street WOBURN, MASSACHUSETTS 01801 (617) 935-6988	· ·	→ O —— OF DATE DATE				
		SCALE					
-			·····				
	LINE 2A						
	STATION	ELEVATION					
	2A: 0+0						
	24:070	272.48					
	2A; 0+80	272.51	·····				
	2A: 1+60	285048					
	24:2440	285. A1					
			•				
	24:3+20	217,92					
	2A:4+00	274,00					
		$\nabla$					
	2A:4+80	277.34					
~	2A: 5+60 / L	2717.00					
		7					
-	27.6+40	281.19					
	2A:7+20	281,79					
	27:8700	282.15					
	2A: B+B0	281.12					

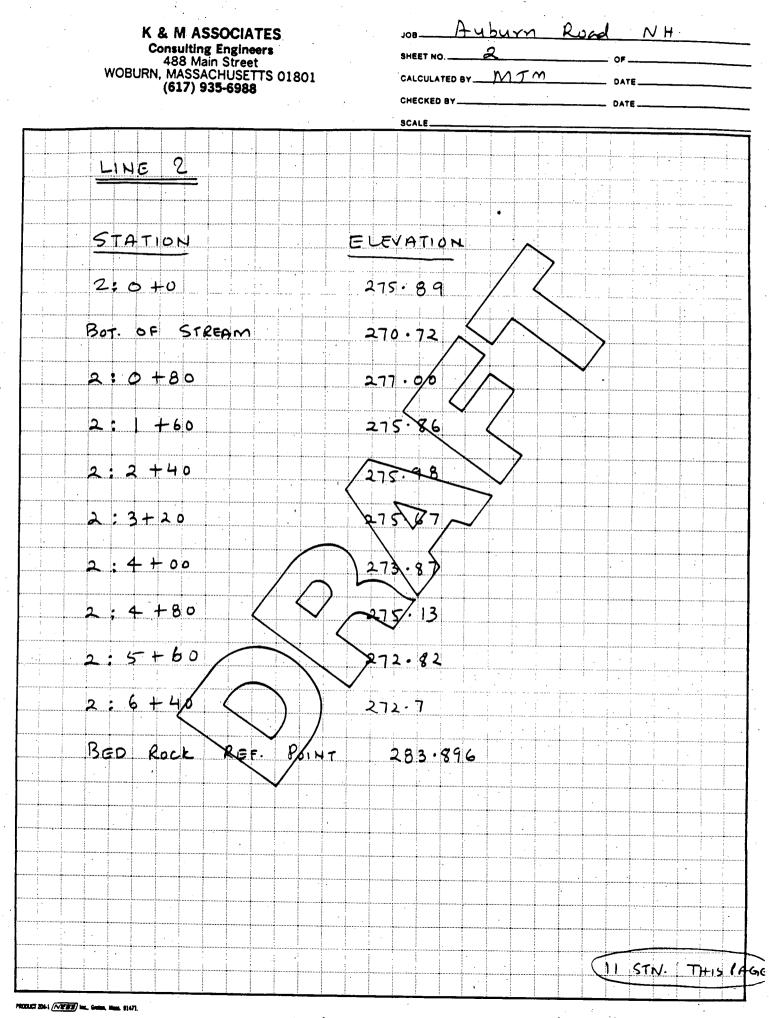
282.46

282.85

283.25

282.74

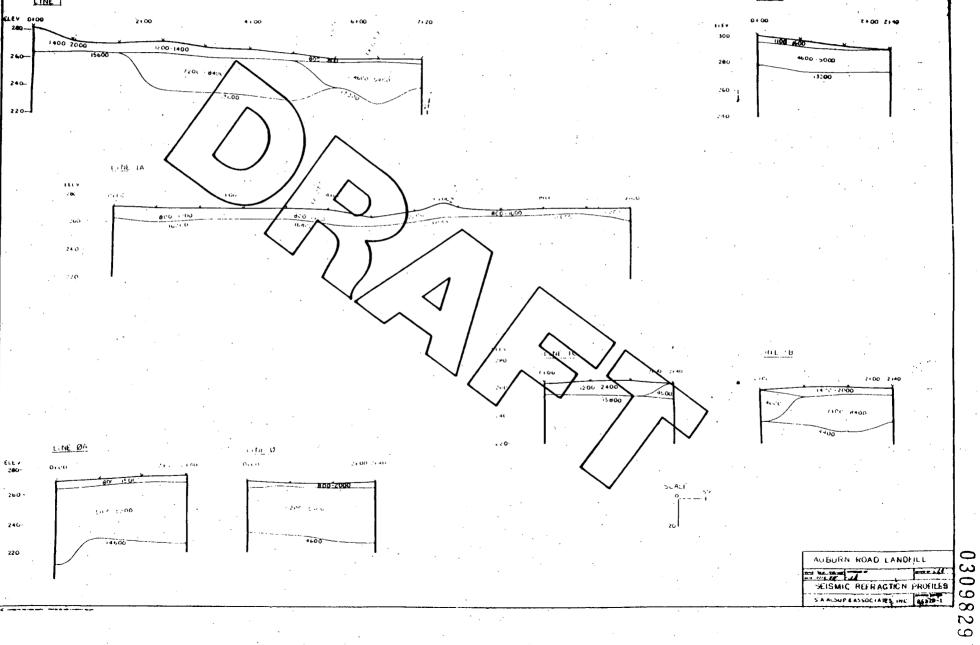
MODUCT 2041 (NETS) INC., Sevien, Mark. #1471.


277 = 9+60

24:10+40

277:11+20

27 : 12+00


16 POINTS THIS Sheet.

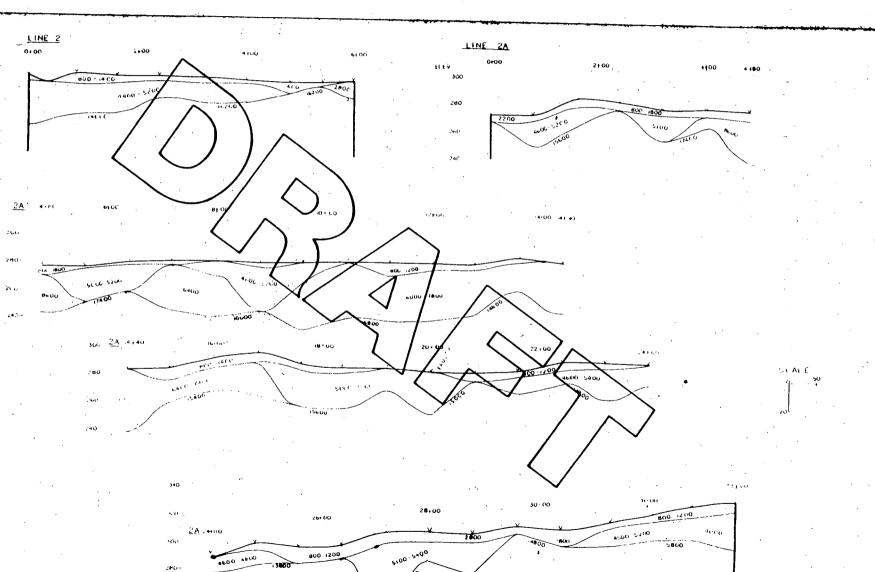


					ĸ	& 1	MA	SS	OCI	ATE	ES -					JOE	)	A	мþ		n	R	<u>~ 2 U</u>	d						
			Consulting Engineers 488 Main Street WOBURN, MASSACHUSETTS 01801 (617) 935-6988									•	SHE	ETN	0		0					- OF.								
			V	VOB	URN	, М (6)	IASS 17)	ACH 935	1USI	ETT:	S 01	801				CAL	CULA	TED	BY						DAT	E				
							,									CHE	CKÈ	38Y_							DAT	E				
	<u> </u>	•														SCA	LE_													
									•									÷				1								1
				L	IN	G		3	•					•					-			;	;						· ·····	
																				 i				 :				: <u>:</u>	··· ·· ··· ·	
					S	T۶	711	OH						ŀ		•		-		•		F I	_ م	JA				:	:	
			-	3	;		0+	- ก							1												-	: 		
				2				Y														्उ	00	) •	07			: 	······	····
				_				~	_								-			-	/	>	<u>.</u>		-		•			
				3	;	. (	) +	- 9	Ú						ļ	-						ζ.	29	7.		ļ				
ļ				-	•											-	-									ļ			: 	
			•	3		1	+	- 6	0					•				<b>_</b>	$\langle \langle \rangle$			ر٦	9	2.	<del>2</del> } •	7				
	•			-						-									$\sum$	Ī										
				3	<u>,</u>	2	2 +	- 4	o		Ļ	•	•								<b>.</b>	2	85	1.	36					
						•					:					1	/	2			>	1							•	-
									<u>.</u>	:. 				:	:	<				/	,			1		······				
					``					1								$\overline{}$					·	•		•				
							•		Î					/	$\sim$	_			$\mathbf{i}$		7							-	•	-
														1				$\sim$		$\sim$									<u> </u>	
						-	•						•	$\mathbf{i}$	•	7	>		7	7										
								Ť						<b>`</b>	<u> </u>	$\sim$	/	$\mathbf{r}$									-	1		
		-											-		$\setminus$		1	1		1									<u>.</u>	
							·	·			/		· ·			$\mathbf{h}$	$\rangle$	) 			I - T	; ;								
	-				•						<u>/</u>	$\int $	)	-		$\bigcirc$	/		: :			: . 								
	-									<		$\searrow$	/	$\sim$		/							<u>.</u>			•••		·		
	: 	-											۲ (			/				ļ				;	-				1	
							-	/	/		$\searrow$	$\mathbf{\Sigma}$			>	ļ.					:						•			1
	ļ		•				•		_			$\mathbf{N}$		$\checkmark$				1			; ·	;	-	:						:
	ļ																-	-			:	:	·							1
	:					. (							1									: .					<u>.</u>			 !
				4							/	/	•													•				
					,			ŕ			1	· ·	1	-								•	1	<u>.</u>	·····					
											$\checkmark$							•		-										
		•						÷		*		1	•		· 															
								·																<u> </u>					**	
······																•			•		•									
							-	•														-	ļ							
		1								•				· 															•	
				<b>ر</b>								<u>_</u>	ļ						•											ĺ
: 							ļ														• .				·	•				
																					-	·								
											•															•	······			

LINE 3 LINE

- 3




ELEV 280-

260

240

210

260



03098; Ω 0

an a fat

AUBURN ROAD LANDFILL

SEISMIC REFRACTION PROFILES

ta af the t as de layer and the

----- FAULI IONE /----

Υ.

## AIR MONITORING

## SECTIONS IN APPENDIX M

- AIR MONITORING METHODOLOGY
- NUS METEOROLOGICAL/SAMPLING DATA
- AIR MONITORING RESULTS (NUS)
- AIR MONITORING RESULTS (STATE OF NEW ANDSHIRE)
- AIR MONITORING RESULTS (EPA) /

## TABLES IN APPENDIX M

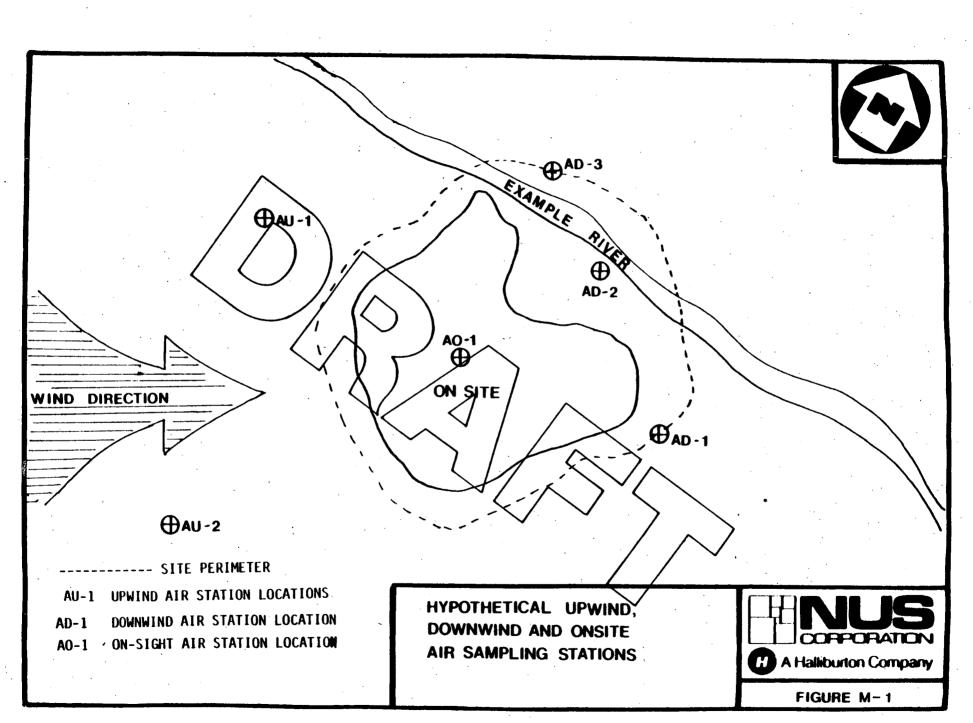
- M-1 APPROXIMATED BETENTION TIME VOLUME AT 38°C (100°F)
- M-2 NUS METEOROLOGICAL SAMPLING DATA (7-10-85)
- M-3 NUS METEOROLOGICAL/SAMPLING DATA (7-17-85)
- M-4 NUS AIR SAMPLING SUMMARY
- M-5 AIR MONTORING RESULTS (7-10-85)
- M-6 AIR MONITORING REBULTS (7-17-85)
- M-7 U.S. EPA AR MONNORING RESULTS (9-31-81)

The air sampling at the Auburn Road Landfill Site followed procedures that were established at the Region I NUS/FIT Office for the successful completion of ambient air sampling at hazardous waste sites and or waste facilities. The logic and rationale of the air sampling project that occurred at the Auburn Road Landfill Site for the detection of volatile organic compounds is described in this section.

Air sampling station locations were determined so as to provide a database for upwind, downwind, and on-site sampling stations. Ten sampling stations were established. A charcoal tube and a Tenax tube sample were taken at each station location for samples to be analyzed (by CLP) for vorstile organic compounds. Only Tenax tubes were used for NUS/FIT in-house volatile organic analyses. All of the Tenax samples consisted of main and back-up tubes attached in series, while the charcoal samples had back-up tubes attached on-site only.

When the air sampling was complete, all of the sampling tubes were recovered and preserved until shipment. Sample preservation consisted of capping both ends of the tubes with polyethylene caps, placing the tubes in a VOA vial and placing the vial in a cooler containing ice.

The contract laboratory used EPA method no. 624 to analyze the Tenax and charcoal filled steinless steel tobes. This method involved thermally desorbing each tube and subsequently injecting an aliquot into a gas chromatograph/mass spectrometer (GC/MS). The mass spectrometer is a type of instrument that is used to positively identify a peak that has been quantitated by the gas chromatograph. The instrument is designed to bring about the ionization and fragmentation of an organic molecule by bombarding it with high-energy particles, such as electrons, and the resulting mixture of molecular ionic fragments are analyzed by determining their mass/charge ratio (m/e) and measuring their relative abundances. The intensity and mass/charge ratio (m/e) is recorded as a chart called a mass spectrum.


Tenax tubes used for NUS/FIT screening of volatile organic compounds were thermally desorbed in a similar manner as those destined for a contract laboratory. Instead, aliquots were injected into a Photovac 10A 10GC, yielding qualitative results for most compounds. Separate standards were run for benzene and toluene to permit semi-quantitation of data.

The method for establishing a comprehensive air monitoring program is described below.

- Set up and activate the 2361 Wind Recording System at some central location on-site to determine upwind and downwind direction. Record in the field logbook the wind direction, speed, time of reading etc.
- With upwind direction in hand, set out to establish upwind sample location stations. At least two locations were established to maximize upwind coverage due to slight changes in wind direction. Refer to Figure M-1.
- At each upwind location, one air pump equipped with a Tenax solid sorbent tube and back-up section were installed at a height of approximately 4 to 6 feet above the ground surface (representative of the breathing zone). An air pump equipped with a charcoal solid sorbent tube (no back-up required here) was installed directly adjacent to the Tenax station.

Background samples were intended to assess the local pollutant levels in the area. It was intended that the background samples should not be affected by any of the suspected pollutants from the site of concern. Background samples were placed at least 1/4 mile upwind of the site. When setting the background stations, it was important to avoid areas which could have a negative effect on the sampling such as areas where gasoline is being stored.

The on-site or "hot spot" sample was used to monitor the concentration of pollutants on the site. It was located near a "hot spot" that had elevated levels of



the volatile organic compounds of interest. If no "hot spots" were found on the site, this station would be located in the physical middle of the site (directly adjacent to the 2361 Wind Recording System). As with all sampling stations, they were assembled at a height of 4 to 6 feet. One air pump was located there for each type of solid sorbent utilized (each adsorbant tube contained a back-up tube also).

Tenax adsorbant tubes were used because of their efficiency is collecting toluene and other volatile aromatic compounds higher in molecular weight. Charcoal tubes were utilized because of their efficiency in collecting compounds of low molecular weight. Approximately 10 liters of air were sampled when using Tonax tubes; 30 liters were sampled for charcoal tubes. Both types of samples were collected over a period of 4 to 8 hours. An attempt was made to collect/specific air volumes for the purpose of maximizing the effectiveness of the adsorbant tubes to certain groups of compounds suspected at the site. The retention volumes listed in Table M-1 were used in conjunction with the following equations to determine the flow rates required for sampling with each type of adsorbant tube at a certain temperature.

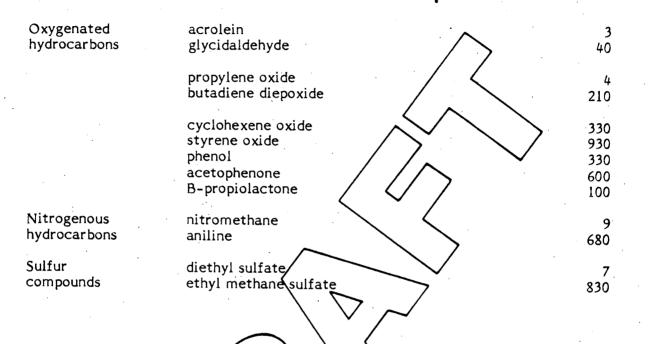
below 29 15V above 23 Q .075V

#### flow rate to be used in cubic centimeters per minute Where: 0 retention volume (individual contaminant - Table M-1) t

sampling time in/minutes

Three downwind station locations were selected in order to maximize the downrange ambient air collection, through slight changes in wind direction. When wind direction shifted significantly for longer than 15 minutes, the stations were relocated accordingly and noted in the field logbook along with rationale for the changes.

## TABLE M-1


## APPROXIMATED RETENTION VOLUME AT 38°C (100°F) (liters/gram of Tenax)

Amines	dimethylamine	0.8
	t-butylamine di-(n-butyl)amine	> 0.8 1200
<i>.</i>	pyridine aniline	56
Ethers	diethyl ether propylene oxide	4 3
Esters	ethyl acetate methyl acrylate methyl methacrylate	20 20 70
Ketones	acetone methyl ethyl ketone methyl vinyl ketone acetophenone	3 10 10 860
Aldehydes	acetaldehyde benzaldehyde	0.6 920
Alcohols	methanol n propanol allyl alcohol	0.3 4 5
Aromatics	benzene totvene ethylpenzene cumene	19 97 200 440
Hydrocarbons	n-hexane n-heptane	5 20
	1-hexene 1-heptene	5 40
	2,2-dimethylbutane 2,4-dimethylpentane	0.1 20

## TABLE M-1 APPROXIMATED RETENTION VOLUME AT 38°C (100°F) (liters/gram of Tenax) PAGE TWO

	4-methyl-1-pentene	3
	cyclohexane	8
Halogenated hydlrocarbons	methyl chloride methyl bromide vinyl chloride	2 0.8 0.5
· · · · · · · · · · · · · · · · · · ·	methyl chloride chloroform carbon tetrachloride 1,2-dichloroethane 1,1,1-trichloroethane tetrachloroethylene trichloroethylene	2 8 8 10 6 80 20
· .	1-chloro-2-mothylpropene 3-chloro-2-mothylpropene	6 7
	1,2-dichloropropane 1,3-dichlo <del>rop</del> ropane epichlorohydrin (1-chloro- 2,3-epoxypropane)	30 90 30
с. С. я.,	3-chloro-1-butene aNyl chloride 4-chloro-1-butene 1-chloro-2-butene	5 4 10 20
	Chlorobenzene o-dichorobenzene m-dichlorobenzene	1 <i>5</i> 0 300 400
	benzyl onloride bromotorm ethylene dibromide bromobenzene	500 100 60 300
Halogenated ethers	2-chloroethyl ethyl ether Bis-(chloromethyl)ether	70 120
Nitrosamines	N-nitrosodimethylamine N-nitrosodiethylamine	90 420

## TABLE M-1 APPROXIMATED RETENTION VOLUME AT 38°C (100°F) (liters/gram of Tenax) PAGE THREE



Source:

Krost, Kenneth J. and Pellizzari, Edo D "Analysis of Hazardous Organic Emissions," North Garolina: Research Triangle Park, 1982.

R.H. Brown and C.J. Purnell. Collection and Analysis of Trace Organic Vapor Pollutants in Ambient Atmospheres. London: Occupational Hygiene and Medicine Laboratories, 1979.

The time and date of each sample pump operation were recorded in the field logbook. During the run time for a survey (typically 4 to 8 hours), the flow rates of each pump were inspected when wind direction, temperature and humidity were recorded on an hourly basis.

Before air samples were collected, the sample collection tubes had been thoroughly cleaned by thermal desorption through a Century System Thermal Desorber. Each sample tube was desorbed through the instrument at approximately 200°C. This procedure was performed until a one milliliter injection into the short column of the Photovac (attenuation-50) yielded a contamination peak of 1/2 inches or less.

Following tube desorption, the sample tube was then capsed at both ends (with supplied polyethylene caps or teflon tape) and placed in a 44 ml septumed VOA vial for storage and transport to the site. The outside of the VOA vial was marked in such a way as to keep track of the tube for calibration purposes and location number. Since Tenax is easily contaminated, the tubes were not taken from their respective VOA vials until just before they were attached to the sampling pump at the desired sampling location.

Each pump required a pre-rentime and post-funtime calibration.

Pre-Runtime Calibration

The sample collection tube (front and back section) was connected to a low volume pump via tygori tubing. The flow direction was marked on the outside of the sample tube when calibrating (making sure not to use any ink containing volatile organic compounds). The opposite end of the sample collection tube was connected to a tygon tube that was also connected to 100 cc/min bubble meter.

The low volume pump was started and timing with a stopwatch began on the volume of air being collected. The time it took to initially reach a volume of 10 cc was recorded. The volume of air collected over a 1 minute time period was calculated. Then the resultant number (cc/min) was multiplied by 60 to arrive at the volume of air collected over a 1 hour time period. As mentioned earlier, the ideal collection time period for an air monitoring survey is four to eight hours.

Ideal volumes obtained during this period are approximately 30 liters for charcoal and approximately 10 liters for Tenax (if the contaminants have not been determined). Pumps were adjusted to obtain this volume accordingly.

A minimum of three calibration runs were required for pre-runtime calibration. The time, temperature and relative humidity was recorded before the initialization of sampling.

## Post-Runtime Calibration,

Immediately after sample collection, a post-funtime pump calibration was required. The post-runtime calibration was conducted in the same manner as the pre-runtime calibration exept that no final adjustments were made to pump apparatus.

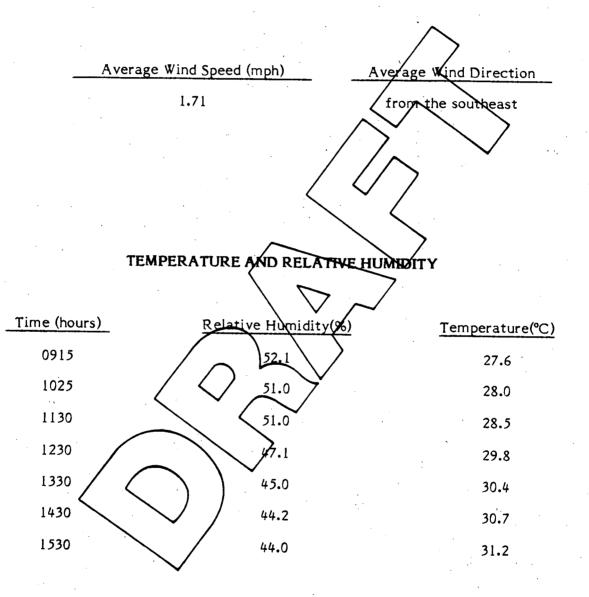
Three readings of the flow rate through the sample tube were required for post-runtime calibration. The average of the flow rates was then reported in the logbook. With the average pre-runtime calibration and the average post-runtime calibraton in hand, the average flow rate was calculated and the value was used to calculate the total flow collected over the four to eight hour run time. This value was recorded in the field logbook.

When sample collection was completed, the instrumentation was recovered and each sample tube was capped at both ends, placed in a VOA vial for storage or shipment and ized (in a coller). Wind direction, wind speed, temperature, humidity and time of pump shut down) were all recorded in the logbook.

Before shipment to the designated laboratory, the VOA vials containing the capped sample tubes were packed in a metal can with a small amount of activated charcoal on the bottom. The VOA vials were also cushioned so as to not touch each other. The metal can(s) were then placed in a cooler with ice (bagged) and cushioned with vermiculite. Since the effects of holding times on certain compounds are unknown, samples were shipped shortly after collection and analysis was performed as soon as possible after arrival at the laboratory.

M-8

When the analyses were completed (EPA method 624), the laboratory delivered the results in nanograms. The following formula was used to convert the results to parts per billion (at 20°C and 760 mm Hg):


nanograms of compound in sample x 24.042 nanoliters/nanomole (molecular weight of contaminant-nanograms/nanomole) x (volume of sample collected in liters)

24.042 nanoliters/nanomole would become 24.48 at 25°C.

Tenax tubes used for NUS/FIT in-house screening of volatile organic compounds were also capped at both ends after air samples were collected. They were immediately placed in VOA vials for storage and placed on ice in a cooler. Analyses were conducted on the day after sampling. AIR MONITORING RESULTS (NUS)

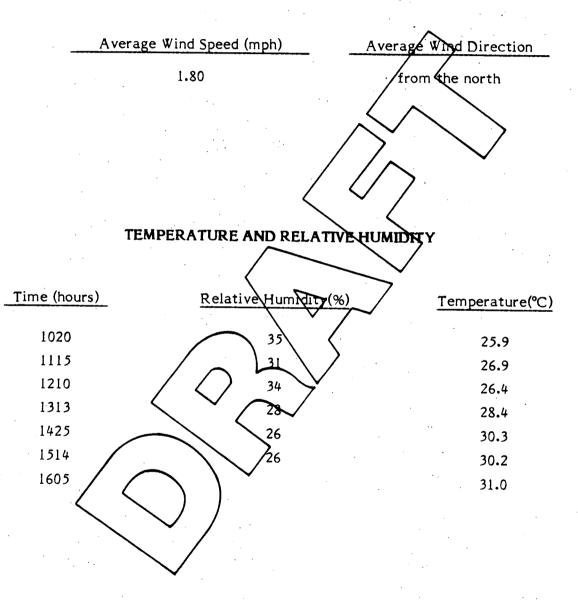


## MET STATION STRIP CHART DATA



## TABLE M-2 NUS METEOROLOGICAL/SAMPLING DATA (7-10-85) PAGE TWO

The air sampling stations were determined by the wind direction and by predetermined areas identified on the site by the NUS project manager. A total of ten sampling stations were established. Charcoal and Tenax tube samples were collected at each location. All Tenax samples consisted of main and back-up tubes attached in series, while charcoal samples had back-up tubes attached on-site only.


Sampling stations are described below and depicted in Chapter 🔨

- 1AS-1 Next to the MET station (approximately at the physical middle of the site).
- 1AS-2 At the solid waste landfill area (a predetermined source area)
- 1AS-3 At the town dump area (a predetermined source area)
- 1AS-4 Near the sand pit (a predetermined source area)
- 1AS-5 Near the gravel pit at the southeast corner of the site (a predetermined source area)
- 1AS-6 Between station 1AS-5 and the site access road. The station was located on the embandment (a predetermined source area)
- 1AS-7 Off site (downwind) near the pump house
- 1AS-8 Off site, near the dirt road gate below the trailer park (also next to the beaver pend downwind)

1AS-9 - Off site, near the site entrance - across the street between two houses (in the woods)

1AS-10 - Off site and up ind - next to Old Derry Road (southwest of site)





## TABLE M-3 NUS METEOROLOGICAL/SAMPLING DATA (7-17-85) PAGE TWO

The air sampling stations were determined by the wind direction and by predetermined areas identified on the site by the NUS project manager. A total of 11 sampling stations were established. Only Tenax tube samples were collected at each location. All Tenax samples consisted of a main and back-up tube attached in series.

Sampling stations are described below and depicted in Chapter 7,

- 2AS-1 MET station (approximate physical middle of the site).
- 2AS-2 Solid waste landfill area (a predetermined source area)
- 2AS-3 Town dump area (a predetermined source area)
- 2AS-4 Near the sand pit (a predetermined source area)
- 2AS-5 Near the gravel pit at the southeast corner of the site (a predetermined source area)
- 2AS-6 Between station No. 5 and the site access road. The station was located approximately three feet off the dirt road (a predetermined source area)
- 2AS-7 Off site (upwind) near the pump house
- 2AS-8 Off site (upwind) in the trailer park at the dirt road intersection.
- 2AS-9 Off site (downwind) approximately 100 feet east of Old Derry Road/Auburn Road intersection.
- 2AS-10 Off site (downwind) off Old Derry Road (southwest of site)
- 2AS-11 Off site (downwind) off Old Derry Road.

		Samples Collect		5	•		Samples	s Collected on	7-17-85	
Station	Sample Number	Total Flow (liters)	Number* of Tubes	Tenax	Charcoal	Station	Sample Number	Total Flow (liters)	Number* of Tubes	Tenax
				<u> </u>		Junion	Inditibet	(11(213)		Ienax
1AS-1	12510	12.00	2	X		2AS-1	13432	13.44	2	X
1AS-1	12511	32.04	$\wedge^2$		X	2AS-1	13433	12.84	2	X
IAS-2	12512	12.00		х		2AS-2	13434	13.44	2	X
1AS-2	12513	26.40	$\sim$		X	2AS-3	13435	13.80	2	X
1AS-3	12514	11.40	2	X		2AS-4	13436	12.00	. 2	х
1AS-3	12515	30.00		'/	X	2AS-5	13437	12.72	2,	×X
1AS-4	12516	12.00	2/	/ ×~		2AS-6	13438	13.32	2	X
IAS-4	12517	30.36		$\sim$	$\mathbf{x}$	2AS-7	13427	12.48	2	• <b>X</b>
1AS-5	12518	10.80	2	$\sim$	$\mathcal{I}$ $\wedge$	2AS-8	13428	11.04	2	х
IAS-5	12519	30.96	2 🗸		X	) 2AS-9	13429	10.92	2	х
IAS-6	12520	19.20	2	(x /	/ 1 /	2AS-10	13430	10.56	2	X
IAS-6	12521	31.20	2		* × / /	2AS-U	13431	11.04	Ż	X
1AS-7	12522	10.85	2	X	$\sim$ /	Blank	13439	-	2	X
1AS-7	12523	30.96	1		×	/	$\sum$			
1AS-8	12524	11.40	2	X		$\wedge$	$\sim$		н	
1AS-8	12525	31.20	1		x			<u> </u>		
1AS-9	12526	12.20	2	х	•			$\mathbf{X}$		· ·
IAS-9	12527	32.40	1		х	•		$\checkmark$	•	
1AS-10	12528	12.84	2	х		<		r		
1AS-10	12529	32.40	1		X		$\checkmark$			
Blank	12530	-	1	Х						
Blank	12531		1		Х					

# TABLE M-4 NUS AIR SAMPLING SUMMARY

Notes:

Average Winds (7-10-85) from SE at 1.7 mph (7-17-85) from N at 1.8 mph * 2 tubes indicates use of a main tube and backup tube (A & B). I tube indicates use of main tube only.

#### TABLE M-5 AIR MONITORING RESULTS (7-10-85) Tenax/Charcoal Sampling Volatile Organic Analysis All results reported in ug/l (ppb)

								•						
tation				45-1			IA	S-2			I A	S-3		
ample Number enax/Charcoal		12510A	12510B		1251 IB	12512A	12512B	12513A	12513B	12514A	12514B		12515B	
	CRDL	т	Т	C	С	Т	Т	C	С	т	т	С	С	
olatile Compounds			۷					а.				· .		
hloromethane	10	$\wedge$												
omomethane	10			-	-	-	-		-	-	-	- `	-	
yl Chloride	10	/ -	$\mathbf{N}$	-	. –	-	-	-		-		-	1 <u>-</u> 1	
loroethane	10	· -		-	-	-		-	-	-	-	-	-	۰.
thylene Chloride		- / \	<u> </u>	-	-	-	-	-	-	-	-	·	-	
tone	5		1 - 1	-	-	-	-	-	-	-	-	- '	· -	۰.
bon Disulfide	12	/-	] - ]	$\sim$		-	-	-	-	_		-		
Distante	·P	1 -	/ - /	/- N	< - ¹	-	-	-	-	3.13	-		-	
Dichloroethene			′ - /	/ -	<u>\</u> -	-	-	-	-	_	_	0.73	-	
Dichloroethane	- <b>X</b>	Ý	-/ ,	/ -	-	-	<u></u>		-	_	-	-	_	•
ns-1,2-Dichloroethene	5	-	- 7 /	- ^	<ul> <li>- \</li> </ul>	-	-	-	_	-	_	-	_	
oroform	5	<u> </u>	//		) - )	_	-	- '	-	-	-	-	-	· · · · · · · · · · · · · · · · · · ·
-Dichloroethane	· 5		· /-	- \	ノ.	_	·_ ·	-		. – .	-	-	-	
utanone	10	- '	/_	<u> </u>	- 1	1.23		-	-	-	-		-	
I-Trichloroethane	5	-	ζ.,	1 321		1.23	$\sim$	-	-		-	- 1	-	
bon Tetrachloride	5	-	$\sim$ /	<u> </u>	~	-/	~	-	-	· -	7	-	. –	•
l Acetate	10		$\sim$	7	1 -		- )	· -	-	-	-	-	-	
modichloromethane	5	-	-	. /	1- 2	/-	- / .	-	-		-	+	- '	
2,2-Tetrachloroethane	Ś	-	-	<u></u>	/ /	- 1	-/	-	-	-	-	-	-	
Dichloropropane	· )	-	-			-/1	-/	- ~	- '	-	-	-		
ns- 1,3-Dichloropropene	)		-	- N,	<u> </u>	< /	1	-/ `	<b>\</b> - ·	÷	-	-	-	* •
chloroethene	)		-	-	$\mathbf{\mathbf{n}}$	-V-	F.	<u> </u>		-	-	-	-	• •
	2	. =	<del>-</del> ,	0.93		<b>\</b> -	<i> </i> -	/-	- \		-	-	<u> </u>	
romochloromethane	2		-	-	-		1- /	/ - r	、 - ``	<b>\</b> -	-	-	-	
2-Trichloroethane	5	· <b>_</b>	-		-	· /	1 - /	- (	\ <u>-</u>	<b>)</b>	<b>_</b> '	-		*
zene	5	· -	-	0.33	0.13	0.50	1 - /	_ `	$\langle \rangle$	105	-	0.33		
- 1,3-Dichloropropene	5	-	-	-	-	- \		~	$\sim$			-	- ·	
hloroethylvinyl Ether	10	-	-	-	-		· <u>/ -</u> .					-	7	
moform	5	-	-	_ `	-	-							-	
exanone	10	-	_	-	-	· _		· · ·	• -	· ·/	- \	<u> </u>		
ethyl-2-Pentanone	10	· _	-	· _	-	_		-		1.1	~	) -	₹.	
rachloroethene	5	0.33	_	0.13	-	0.3J		-	-	7.43			-	
Jene	5 2	1.61	-	0.73	- 0.4J		-		-	/0.33	/ - V	0.23		
robenzene	ś	1.0J	· •	U./J	U.4J	1.4J	-	-	- /	1.93	0.63	15.6J	0.13	
lbenzene	5			-	-	-	-	-	/	-/	-	· -	-	
ene	ś	-	-	*	-	*	-	-	- \	. Y	*	*	-	
al Xylenes	5.	-	<b>-</b> .	-	-	*	-	-	- `	<b>V</b> 8.0J		0.33	-	,
ar Aytones	<b>)</b> ·	*	- '	•	-	*	-	-	-	*	*	*	-	·
ution Factor		1	I	1	1	. 1	i	1 .	. 1	1.	,	<b>1</b>	г ·	· .

Quantitation is approximate due to quality control review (data validation) J =

Value is rejected due to blank contamination identified in quality control review. = CRDL =

Contract required detection limit. "A"

Designation on sample number indicates main tube. "В"

Designation on sample number indicates back up tube.

Note: The following information has been established by the Contract Laboratory conducting the analyses and approved by the U.S. EPA. Quantification of all compounds may be in error by an average factor of +/- 20 percent and may be as great as a factor of five. Compounds with the highest error include acetone, 1.2-dichloroethane, 2 butanone, 2 chloroethylvinylether, 2 havenon and the mathematical acetone include

#### TABLE M-5 AIR MONITORING RESULTS (7-10-85) Tenax/Charcoal Sampling Volatile Organic Analysis All results reported in ug/l (ppb) PAGE TWO

	Station Sample Number		12516A	1A 12516B	<u>S-4</u>	100170			<u>S-5</u>			145	5-6				
•	Tenax/Charcoal		T	T	12517A C	12517B C	12518A T	12518B T	12519A C	12519B	12520A	12520B	12521A				
	Volatile Compounds	CRDL (ug/l)		· •					C	С	Т	Т	C	C			
	Chloromethane Bromomethane					· -	-		-		_	-	-	-	·	·····	
	Vinyl Chloride	iõ /	~		-	-	-	-		-	- ·	-	-	-			
	Chloroethane Methylene Chloride	19		A	-	-	-	-	-	-	-	-	-				
	Acetone	lo /	/2.33		$\overline{\mathbf{A}}$	-	-	-	-		-	-	-	-	•	,	
	Carbon Disulfide	15 6	5.43		/ \	-	-		-		11.6J	-	-	-		•	
	1,1-Dichloroethene 1,1-Dichloroethane			- 17	- `	<u>\-</u>	-	< ¥	1.33	_		-	-	-		•	
	Trans-1,2-Dichloroethene	5	-	<u> </u>	$\overline{\Lambda}$		-	-	· _	-	-	-	-	-			•
	Chioroform		Ľ	1_	~く )	) IN	-	*	-	-	-	·-	-	-			
	1,2-Dichloroethane	5	- /	/		- )	_	-	-	_ · ·		-	-	-	-		
	2-Butanone 1,1,1-Trichloroethane	10	- (	- /		-/	- ^	<u> </u>	-	-	-	- '	· - · ·	<u>_</u> .			
	Carbon Tetrachloride	5	- `		9 ¹³ 5			$\mathbf{\mathbf{X}}$	-	-	-	-	-	-			
	Vinyl Acetate	10	-	-		- /	_	1	-	-	-	-	-	-			
	Bromodichloromethane 1,1,2,2-Tetrachloroethane	5		-	く- /		-1	-	-	-	-	-	-	-			
	1,1,2,2-1 etrachioroethane 1,2-Dichloropropane	) 5	-	-	$\sim$	-	<u> </u>	/-	$\wedge$	-	<del>-</del> .	-		- ,			
	Trans- 1,3-Dichloropropene	5	-	-		-	A	1:	/- >			-	- '	-			
	Trichloroethene	5	-	· _	-	$\overline{\checkmark}$	<u></u>	/ • /				-	. <del>-</del> ±	· -			
	Dibromochloromethane 1,1,2-Trichloroethane	5	-	-	-	-	7-1	- /	-^	_ `	> -	-	-				
	Benzene	5	-	-	-		く /	1	- \	<u> </u>	$\wedge$	- ·	-	-			
	Cis- 1,3-Dichloropropene	5		-	-	-	$\sim$	/	$\sim$	$\sum $	0.23	-		-			:
	2-Chloroethylvinyl Ether Bromoform	10	-	-	-	-	· - ·	<u> </u>	· - \ _		$\mathbf{n}$	<u> </u>	- •	-			
•	2-Hexanone	5	-	-	-	-	- '		- ~	<b>-</b> '	7	\	• -	- `			
	4-Methyl-2-Pentanone	10		· -		-	-	-	· -		/	~- /	-				
	Tetrachloroethene	5	0.33	-	-	-	0.23	-	-	- /	0.33	$\sim$		-	11 I. A.		
	Toluene Chlorobenzene	5	1.43	-	-	-	1.33	-	-	-/	1.80	-	-	-			
	Ethylbenzene	5	- ·	-	-	-	-	-	-		-	-	-	- 1			
	Styrene	5	*	-	-	-	*	-	-	-	/*	· *	-	-			
	Total Xylenes	5	*	-	-	-	*	-	-	- `	* - *	<b>₩</b> .	- · .	-			
	Dilution Factor		I	1	1	i	Ĩ	I	1	1	l	-	- · ·	- . I			

= not detected

= Quantitation is approximate due to quality control review (data validation)

= Value is rejected due to blank contamination identified in quality control review.

CRDL = Contract required detection limit. "A" Designation on sample number india

Designation on sample number indicates main tube.

"B" Designation on sample number indicates back up tube.

Note: The following information has been established by the Contract Laboratory conducting the analyses and approved by the U.S. EPA. Quantification of all compounds may be in error by an average factor of +/- 20 percent and may be as great as a factor of five. Compounds with the highest error include acetone, 1,2-dichloroethane, 2-butanone, 2-chloroethylvinylether, 2-hexnone and 4-methyl-2-pentanone.

TABLE M-5

#### AIR MONITORING RESULTS (7-10-85) Tenax/Charcoal Sampling Volatile Organic Analysis All results reported in ug/l (ppb)

PAGE THREE

Station			IAS-7		•	1AS-8			IAS-9			1AS-10		<b>D</b> 1. (		
Sample Number	•		12522B	12523A	12524A		12525A	12526A	12526B	12527A	12528A	12528B	12529A	<u>Blank</u> 12530	<u>Blank</u> 12531	
Tenax/Charcoal		Т	T	; C	Т	Т	С	Т	Т	C	T	T	C	12330 T	C	
Volatile Compounds	CRDL (ug/l)		·						. •	_	• ·	•	C	(in ng		
Chloromethane	10	$\bigwedge$														•
Bromomethane	10		-	-	. –	· -	-		´ <del>-</del>	-	-	-	-		<b>-</b> ·	
Vinyl Chloride	10	-		-	-	-	-	-	-	-	-	-		-	-	
Chloroethane	10	$\overline{\mathbf{A}}$	Γ.	-	-	-	-	-	-	-		-	-	-	-	
Methylene Chloride			Ι	_	-	-	-	, <b>-</b>	-	· -	-	-	-	-	-	
Acetone	10		· •]	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	
Carbon Disulfide			. ]		-	· <b>-</b>	-	-	-	· - ·	-	· -	-	-	-	
1,1-Dichloroethene	$\langle 5 \rangle$		_1/	/ <u> </u>	-	~	-	-	-	-	-	-	-	-	-	
1,1-Dichloroethane	\ss	$\sim$	1./	_		-	-	-	-	-	-	-	-	-	-	
Trans-1,2-Dichloroethene	5			À	Ň	-	-	-		-	-	-	-	-	-	
Chloroform	5	/	· /_	$\langle C \rangle$	· []	-	-	-	-	. –	~	-	· <b>-</b>	-	· -	
1,2-Dichloroethane	5	- ·	/_		_ <u> </u>	-	-	-	<b>-</b> .	-	-	-	-	-	-	
2-Butanone	10	- /	· - ^			-	-	-	-	-	-	-	-	-	-	
1,1,1-Trichloroethane	5	- <	-/	<b>\</b> .	2		<u> </u>	-	-	-		-	-	-		
Carbon Tetrachloride	- 5 -	_ `	$\searrow$	1 7		Ζ.	$\mathbf{N}$	-	-	-	-	-	0.13	-	-	
Vinyl Acetate	10	-	×	1.	- /		1	-	-	-		-	-	-	-	
Bromodichloromethane.	5	-		/ : /		-	Γ	-	-	-			-	-	-	
1,1,2,2-Tetrachloroethane	5	-	- `	$\sum $	/	Δ			-	-	-	-	-	-		
1,2-Dichloropropane	· 5	-			-	< 1	$T_{\perp}$	$\sum$	-	-	-	-	-	-		
Trans- 1,3-Dichloropropene	5	-	-	- \		<b>∠</b>	1			-	-	-		-		
Trichloroethene	5	*	-	-	$\sim$	_	1  /		N.	-	-	• •	-	-	-	
Dibromochloromethane ···	5	- <u>-</u>	-	-	-	N - 1	· . /			-	-	-	-	-	-	
1,1,2-Trichloroethane	5	-	-		-	1.1		- 2 \		)	-	-	-	-	-	
Benzene	· 5	0.2J	-	-	-	5.1	. /.		$\times$ /	$\sim$	-	-	-	-	-	
Cis- 1,3-Dichloropropene	5	-	-	-	-		/.	$\sim$	$\searrow$		-		-	-	-	
2-Chloroethylvinyl Ether	10	-	-	-	-		( _ /		/] \		<u> </u>	•	-	· <del></del>		
Bromoform	5		-	-	-	<b>_</b> ·	$\sum I_{i}$		_ ·	$\sum$	X		-	-		
2-Hexanone	10	-	-	· _	-	-	$\mathbf{v}$	-	_			-	-	-		
4-Methyl-2-Pentanone	10	_ <b>_</b> •	-	-	-	-	-	_	_		$\sim$ $1/$	-	-	-	-	
Tetrachloroethene	5	-	-	-	0.23	-	_	0.2J			0.11	- ·		-	-	
Toluene	5	3.2J	1.23	-	2.23	0.73	· <u>-</u>	1.63	./		1.2J	-	-	533	-	
Chlorobenzene	5 -	-	-	-	-	-		-	1	Ζ	1.25	-	-		-	
Ethylbenzene	5	+	¥	-	*	-	-	*	<u>ک</u>	/_		-		-	-	
Styrene	5	*	*	<b>-</b> ,	3.93	*	-	-	*		*	-	-	1203	223	
Total Xylenes	5	-	-	-	<b>*</b>	*	<b>-</b> .	-	- *	-	-	-		3003	- 753 ·	
Dilution Factor		•			•	_						-	-	2003	121	•
		I	_ <b>I</b>	<b>_</b> _	1 -	I	- <b>1</b>	1	1	1	1	1	1	1	1	
- not detected																

= not detected

"B"

Quantitation is approximate due to quality control review (data validation) =

Value is rejected due to blank contamination identified in quality control review. Ŧ

CRDL = Contract required detection limit. "A"

Designation on sample number indicates main tube.

Designation on sample number indicates back up tube.

Note: The following information has been established by the Contract Laboratory conducting the analyses and approved by the U.S. EPA. Quantification of all compounds may be in error by an average factor of +/- 20 percent and may be as great as a factor of five. Compounds with the highest error include acetone, 1,2-dichloroethane, 2-butanone, 2-chloroethylvinylether, 2-hexnone and 4-methyl-2-pentanone.

Station	AIR MONITORI Tenax Sampling – N Volatile (	ABLE M-6 NG RESULTS (7-1 US/FIT In-House S Organic Analysis eported in ug/1 (pp	creening ^a						
ample Number	2AS-1 2AS-1 (Dup) 3432A 13432B 13433A 13433B	2AS-2 13434A 13434B	2AS-3	2A	S-4	·· 2A	S-5	24	N.S. 7
entatively Detection dentified Compounds (ug/L)		134340	13435A 13435B	13436A	13436B	13437A	13437B	13438A	13438B
richloroethene				······································					·
enzene 0.2		<del>-</del>		-			-	-	
				-	-	-	-	BDL	
etrachloroethene	- //- /			- '	·	-	-	-	-
hlorobenzene	$\sim$	-				-	. –	-	-
hylbenzene	$-1 \wedge 1$	<u> </u>	•	-	-	-	-	-	-
-Xylene		/		- 1	<b>~</b> ·	-	-	-	· _
X ylene	/ - / - /			-	-	-	-	-	<b>.</b> .
veluters ^C			,	-	-	-	· -	-	-
		$< 1 + 1^{-1}$	$\bigwedge$		-	-	х	х	_
- = not detected BDL = below detection limit	$\sim$		/ \						
X = detected		$\sim 1 /$	$\sim$					-	
a The above may be		$\zeta / Z$							
a The above results are from NUS/FIT in-hour results must be interpreted with the under technique and that the reported values ar analysis using greater sophistication and ana		A 10 clas Chromat e end product of ique is not queant	bgraph. Ali a scheening to replace	$\langle \rangle$		•			
<ul> <li>Detection Limit is based on standards specific other compounds.</li> </ul>	-				$\checkmark$				
c Coeluters represent the following group screening: 1,1-dichloroethylene, trans-1,2 chlorform, 1,2-dichloroethane, and 1,1,1-tri indicated.	of compounds which generally dichloroethylene, 1,1-dichloroe ichloroethane. The presence of c	can not be distin thane, methylene one or more of the	nguished in chloride, ese may be		·				
"A" Designation on sample number indicates mai "B" Designation on sample number indicates back	· · ·							• • •	
	<u>.</u>								

. : :

TABLE M-6 AIR MONITORING RESULTS (7-17-85) Tenax Sampling - NUS/FIT In-House Screening^a Volatile Organic Analysis All results reported in ug/l (ppb) Page Two

Station Sample Nun	nber	2AS-7 13247A 13247B	2AS-8	2AS-9	2AS-10	245 11 51	•
Tentatively Identified C	Detecti Limit compounds (ug/L)	on 1524/7 1524/B	13248A 13248B	13249A 13249B	13430A 13430B	2AS-11 Blank 13431B 13439A	
			$\sim$				
Trichloroeth	iene	$\langle . / . \rangle$				•	
Benzene	0.2	$\sim$ $//$					
Toluene	2		$\sim$	BDL BDL	- BDL		
Tetrachioroe			< )· )	BDL BDL		- BDL	
Chlorobenze	ne	- /- /	<u> </u>				
Ethylbenzene	2	- <-/				· · · · · · · · · · · · · · · · · · ·	
m-Xylene		- V	<i>(f</i> )- <i>(</i>	/)	-	- x	
o-Xylene			1-1-/	- 1	~ _	- ^	
Coeluters ^C	. * · · · ·	-		$\langle    $		- X	·
analy	not detected below detection limit detected above results are from NUS/FIT its must be interpreted with th nique and that the reported va ysis using greater sophistication ction Limit is based on standard compounds.	lues are only approximand analytical control.	mate. This techni	que is not meant	screening to replace		•
c Coelu scree	uters represent the following ning: 1,1-dichloroethylene, tra form, 1,2-dichloroethane, and 1 ated.	group of compounds	which generally	can not be distin	wished i-		• •
"A" Desig	gnation on sample number indica mation on sample number indica	ter main tut.					·

AIR MONITORING RESULTS (STATE OF NEW HAMPSHIRE)

 $\langle \ \rangle$ 

FROM: Mark H. Greenberg, Laboratory Scientist IV DATE: July 30, 1981

SUBJECT: Addendum to Londonderry LandfillAT: Air Resources AgencyStudy Report July 28, 1981

TO: Dennis R. Lunderville, Director/File

After analysis of a study just completed and performed by our Agency on the air in the Health and Welfare Building, some qualifying statements must be made on the data presented in the July 28, 1981 Londonderry report. The hydrocarbon quantities found at the Londonderry landfill are reltable and correct as shown in this memo except for the chloroform concentrations. There are some changes in concentrations of some very low level hydrocarbons due to a calculation error, but the major problem is the chloroform results. There is a certain degree of uncertainty about the values of chloroform in the zir at the landfill due to relatively higher chloroform values in the reagents, activated - charcoal, and laboratory air then first observed. Also, the variability of this chloroform concentrations make taking it into consideration as a positive bias to the reported values almost impossible. An attempt is made to calculate using the highest, lowest, and average amount of chloroform in the blank to see the range of possible chloroform concentrations at the landfill. The problem is that the chloroform background blank values are sometime 50% of the total catch at a site.

<u>c</u>	HLOROFORM RANGE UNITS PPM		
Chloroform Blank Value	Site 1 Site 2	Site 3	Provencal
Low Blank	4.605 5.017	5.321	0.0624
High Blank	2.649 3.641	3.900	0.0000
Average Blank	3.975 4.574	4.8631	0.0287

Due to this problem of background chloroform levels and the presence of many unidentifiable peaks, it is suggested that a retest of the area is warrented by our Agency and with EPA's technical assistance.

In conclusion using the OSHA standards for comparison, the values of hydrocarbons at the landfill are low except for chloroform. There seems to be no threat in the air to the environment. No conclusion could be made about chloroform until further analysis can be performed.

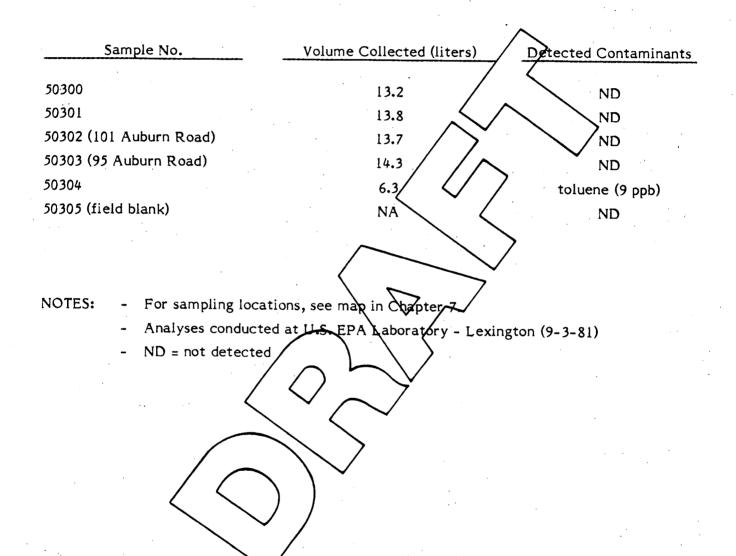
MHG/kab

LONDONDERRY STUDY

	Date:	May	20, 1981	Wind: N-NV	Temp.: 65'F	Relative	Humidity:	25%
	Site 1	. <b>-</b>	Sipin Pump Initial 610 Final 83428 Activted Cha	76 arcoal	es 1 liter/min	Tenax		
	Site 2	- - - - - -	Sipin Pump ( Initial 121) Final 15313 Activated Ch	367 3 narcoal	E of drums utes 1 liter/m	in Tenax		
	Site 3	-	Outside of C Sipin Pump C Initial 4111 Final 441939 Activated Ch	)149 169 ( )	e, 101 Auburn R	bed, south	side	
		· ·		old pump 20 minutes 1 or - by Raul Li		12	•	• • •
n an	110ven		Activated Ch	arceal 71 min	ites / liter/mi	in		
				$\bigcirc$				•
•					an sa An sa			

# 0309857

HYDROCARBON QUANTIFICATION AND QUALIFICATION (PPM)


CHEMICAL	SITE 1	<u>SITE 2</u>	SITE 3	PROVENCAL
Benzene	0.0098	0.0104	والمرد بوله منه منه بالله و	0.0180
1, 1, 2, Trichloroethylene	0.0092	0.0165	0.0078	0.0067
Chloroform	4.3213	4.8115	4.1079	0.0479
Tetrachloroethylene	0.0637	0.0802		0.0356
Methylene Chloride	0.8938	0.9353	1.7402	
Toluene	0.8249	1.0004 /	/ /1.0836	0.0615
P-Xylene		/	<	0.0203
0-Xylene			<u> </u>	0.0028
· · ·				

MHG/kab

# AIR MONITORING RESULTS (ERA)

0309859

### TABLE M-7 U.S. EPA AIR MONITORING RESULTS (9-3-81) AUBURN ROAD LANDFILL CHARCOAL TUBE SAMPLING



APPENDIX N

# SURFACE WATER/SEDIMENT SAMPLING METHODOLOGY

### SURFACE WATER/SEDIMENT SAMPLING

### SECTIONS IN APPENDIX N

- SURFACE WATER/SEDIMENT SAMPLING METHODOLOGY
- SURFACE WATER RESULTS (NUS)
- SEDIMENT RESULTS (NUS)
- SURFACE WATER RESULTS (PREVIOUS ANALYSES)

### TABLES IN APPENDIX N

N-1 SURFACE WATER RESULTS - VOLATILE ORGANICS (1984)

- N-2 SURFACE WATER RESULTS VOLATILE ØRGANICS (1985)
- N-3 SURFACE WATER RESULTS SEMIVOLATILE ORGANICS (1985)
- N-4 SURFACE WATER RESULTS PESNOIDES/PCBs (1985)
- N-5 SURFACE WATER RESULTS MORGANICS (1985)
- N-6 SEDIMENT RESULTS INORGANICS (1984)
- N-7 SEDIMENT RESULTS VOLATILE ORGANICS (1985)
- N-8 SEDIMENT RESULTS SEMIVOLATILE ORGANICS (1985)
- N-9 SEDIMENT RESULTS PESTICIDES PCBS (1985)
- N-10 SEDIMENT RESULTS INORGANICS (1985)

### Surface Water Sampling

The major objective of surface water sampling is to assess whether contaminants are migrating from the site via surface water. Analysis of surface water samples can help to establish the existence and extent of contaminant migration which may pose a risk to the human health and/or the environment.

Surface water grab samples were collected by NUS PU personnel at the Auburn Road Landfill site for analysis of compounds of the Hazardous Substance List (HSL). Surface water grab samples were collected from Sohas Brook, Whispering Pines Pond and an unnamed brook flowing through the Auburn Road Landfill Site. Surface water samples were collected by submerging the sample container below the surface of the water at mid-depth using a remote sampler according to NUS/FIT Region I Standard Operating Guideline (SQG) No. 9, Revision 0. Two 80 ounce (oz) amber glass bottles (unpreserved) were collected for extractable organic analysis of compounds on the Hazardous Substance List (HSL). Samples were also collected in two 44 milliliter glass volatile organic analysis (VOA) vials to which 100 microliters of 7,000 pm mercuric chloride (HgCl2) had been added as a preservative such that a final concentration of 16 ppm was reached in the sample for volatile organic compound analysis. One liter polyethylene bottles were utilized to collect surface water samples for inorganic analysis (metals). The surface water samples for inorganic analysis were preserved with concentrated nitric acid  $(HNO_3)$  to a final pN of less than two. A field blank and replicate sample were collected to assess field sampling and contract laboratory analytical techniques. Sample containers were decontaminated with an alconox-water rinse, and deionized water kinse. All surface water samples were labeled and stored on ice in a cooler. Samples cheduled for HSL organic contaminant analyses were analyzed according to EPA method 624 on a gas chromatograph/mass spectrometer. All information for the collection of surface water samples was recorded in the project logbook. Sample data such as sample location, time, type of sample, number of samples and container size, and were entered on a field chain

of custody form. This information was transferred to another chain of custody form and along with the samples, relinquished to Federal Express to deliver to the contract laboratory. Proper chain of custody was maintained throughout the sample collection and shipment.

### Sediment Sampling

Sediment sampling is conducted to determine the presence of pollutants of low water solubility and high soil binding affinity. Moreover, the presence of contaminants in sediment samples can indicate whether contaminants found in associated surface water samples are, in fact, the result of offsite migration. Inorganic compounds (heavy metals) and halogenated hydrocarbons are examples of contaminants which may be found in higher concentrations in sediments than in surface water.

Sediment grab samples were collected at the sample locations as most surface water samples. Surface water samples were always taken first so that removal of benthic (sediment) samples would not be distributed or dispersed in the surface water. Sediment samples were collected with a remote sampler according to NUS/FIT Region I SOG No. 10A, Revision 0. The samples were collected in two 44 milliliter VOA vials for votatile organic compound analysis. Samples were collected in an 8 ounce (oz) jar for morganic analysis. Samples for extractable organic analysis were collected in a 16 Junce (oz) jar. All samples were unpreserved and were stored on ice in a cooler. Background, blank and replicate samples were collected to assess field sampling and contract laboratory analytical techniques. Sampling equipment was decontaminated with an alconox-water rinse, methanol rinse, and deionized water rinse. Environmental sample jars were decontaminated with a alconox-water rinse and deionized water rinse prior to their storage on ice. All samples were to be analyzed (by CLP) for compounds on the Hazardous Substance List (HSL). All information concerning the collection of sediment samples was recorded in the project logbook. Information such as sample location, time, method of sample collection, number of samples and type of sample containers were entered on the field chain-of-custody form. This information was transferred to another chain-of-custody form along with the samples and relinquished to Federal Express for delivery to the contract laboratory. Proper chain of custody was maintained throughout the sample collection and shipment.

SURFACE WATER RESULTS (NUS)

			TABLE N-1	
S	URFACE	WATER	<b>RESULTS-VOLATILE</b>	ORGANICS
		1984	SAMPLING ROUND	

				•	•					
SAMPLE LOCATION	SW-1	S⊌-2	BLANK		SW-3	SW-4	SM-5	S₩-6	SW-6(DUP)	BLANK
TRAFFIC REPORT NUMBER	AA061	AA072	AA074		AA077	AA076	AA078	AA079	AAOBO	AA081
SAMPLE NUMBER	12049	12062	12073		12067	12062	12064	12069	12070	12041

CRDL (ug/1)

> 10 10 10

10 5 5

5 10 3.1

VOLATILE	CROL	
ORGANIC COMPOUNDS	(ug/1)	
CHLORDNE THANE	<b>6</b> 7 .	
BRONOMETHANE	57 10	
VINYL CHLORIDE	· 69	
CHLOROETHANE	10	
METHYLENE CHLORIDE	5	
ACETONÊ	5.	
CARBON DISULFIDE	5	
1,1-DICHLOROETHENE	5	
1,1-DICHLORDETHANE	5	
TRANS-1,2-DICHLORDETHENE	5	
CHLOROFORM	5	
1,2-DICHLORDETHANE	5	
2-BUTANDNE	10	
1,1,1-TRICHLORDETHANE	5	
CARBON TETRACHLORIDE	9	
VINYL ACETATE	13	
BRONODICHLORDNETHANE	15	
1,1,2,2-TETRACHLORDETHANE	11	
1,2-DICHLOROPROPANE	10	
TRANS-1, 3-DICHLOROPROPENE	7	
TRICHLOROETHENE	5	
DI BROHOCHLOROME THANE	8.	
1,1,2-TRICHLORDETHANE	5	
BENZENE	5	
CIS-1,3-DICHLORDPROPENE	5	
2-CHLOROETHYLVINYLETHER	10	
BROMOFORM	15	
2-HE XANONE	23	
4-METHYL-2-PENTANONE	33	
TE TRACHLOROE THENE	15	
TOLUENE	15	
CHLOROBENZENE	14	
ETHYLBENZENE	10	
STYRENE Total Xylenes	15	
IVIAL ATLENES	18 ,	

DILUTION FACTORS:

				. 5	
				10	
				10	
				5	'
;				5	
				5	
				5	•
				5	
,				5	
-	1	L	1		1

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

- J -QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW
- - VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY REVIEW
- ++ -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW
- CRDL -CONTRACT REQUIRED DETECTION LINIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LINIT).

ij

1

1

1

1

•

		SURFACE NA	TABLE N-2 Fer Results-Volatile or 1905 Sampling Rounds	SANICS		• •
SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER	AD795	SN-02 SN-03 AD796 AD797 13727 13729	SW-04 SW-05 SW-0 AD798 AD791 AD79 13731 13717 1371		70 AD789	W-01A BLANK Ad992 Ad996 13868 13895
VOLATILE ORGANIC COMPOUNDS CHLORONETHANE BROMOMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE NETHYLENE CHLORIDE ACETONE CARBOM DISULFIDE I, 1-DICHLOROETHANE I, 1-DICHLOROETHANE TRANS-1, 2-DICHLOROETHANE CHLOROFORM 1, 2-DICHLOROETHANE 2-BUTANOME I, 1, 1-TRICHLOROETHANE CARBOM TETRACHLOROETHANE I, 1, 2-ZIETRACHLOROETHANE I, 1, 2-ZIETRACHLOROETHANE I, 2-DICHLOROPROPANE TRANS-1, 3-DICHLOROPROPENE TRICHLOROETHENE DIBROMOCHLOROMETHANE	13725 CRDL 19/L1 10 10 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5					
BRONOFORM 2-he xanome	5 5 10 5 10 10 5 5 5 5 5 5 5 5	• •	• 61 15 •	5 5 1 1 1		

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

- J -QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW (DATA VALIDATION)
- -VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW
- ** -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW
- CRDL -CONTRACT REQUIRED DETECTION LIMIT INULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LIMIT)
- NOTE -DATA HAS UNDERGONE A BUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

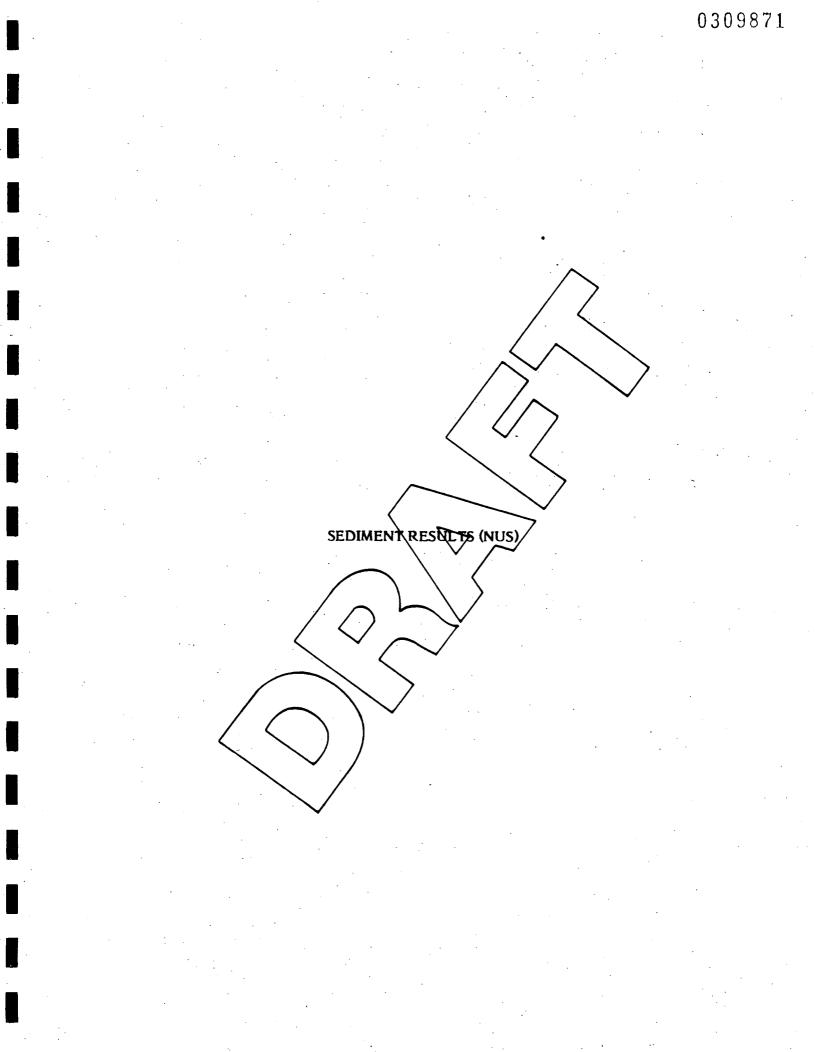
TABLE N-3 Surface water results-semivolatile organics 1905 Sampling Rounds

SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER		SW-01 Ad795 13725	SW-02 AD796 13727	5W-03 Ad797 13729	SW-04 Ad798 13731	SW-05 Ad791 13717	S₩-06 AD792 13719	SN-06(D) Ad793 13720	SW-07 AD794 13723	- SW-08 Ad790 13715	BLANK Ad7 <b>89</b> 13710	Â	i-01A 10992 .3968	BLANK AD996 13895	•	
• •	CRDL (ug/L)															
PHENOL ANIL INE 1,2-DICHLOROBENZENE 2-METHYLPHENOL 4-METHYLPHENOL ISOPHDRONE BENZOIC ACID 1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE 4-CHLOROCYLOPENTADIENE 2-NITROATILINE DIMETHYL PHTHALATE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE ACENAPHTHYLENE BISTOLFURAN DIETHYLPHTHALATE FLUORENE N-NITROSOI IPHENYLAMINE PHENATHRENE ANTHRACENE DI-n-BUTYLPHTHALATE FLUORANTHENE PYREME BUTYLBENZYLPHTHALATE BENZO(A) ANTHRACENE DI-CIYL PHTHALATE BENZO(A) FLUORANTHENE BENZO(A) FLUORANTHENE BENZO(A) FLUORANTHENE BENZO(A) FLUORANTHENE BENZO(A) PYRENE	10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	•														>
DILUTION FACTORS:		1	1	1	1	I	í	1	1	i	1	1				
· · · ·		• •	J + -7 tt CRDL NDTE	-VALUE RE -VALUE RE -CONTRACT -DATA HAS	ITION IS A Jected Du Jected Du Required Undergon	IPPROXIMAT IE TO BLAN IE TO GTHE I DETECTIO IE A QUALI	E DUE TO IF CONTAMI R CONTRAC IN LIMIT ( TY CONTRO	QUALITY CO INATION AS ITUAL REQUI INULTIPLY B N. REVIEW; 1	IDENTIFIE REMENTS I Y DILUTIO EPA APPRO	D IN QUAL DENTIFIED IN FACTOR	VALIDATION ITY CONTROL IN QUALITY TO OBTAIN S NDING	REVIEN Control R	EVIEW Ction L	INIT).		•
۹.		AF	PENDIX Q	LISTS ALL	COMPOUND	S ANALYZE	D FOR IN	THESE SAMPI	ES							

0309868

1 A.

### TABLE N-4 SUFFACE WATER RESULTS-PESTICIDES/PCBS 1985 SAMPLING ROUNDS


SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMFL: TER	5W- Ad7 137	'95 AD79	76 AD797	SW-04 Ad798 13731	SW-05 AD791 13717	SW-06 Ad792 13719	SW-06(D) Ad793 13720,	SW-07 Ad794 13723	SW-08 AD790 13715	BLANK Ad789 13710		SM-01A AD992 13968	BLAN) Ad996 13895		)
	(RDL) 1971 ()														
BETA-BHC G Delta-BHC () Gamma-BHC(Lindane) o Heptachlor () Aldrin () Heptachlor epoxide ()	. 05 . 05 . 05 . 05 . 05 . 05 . 05 . 05			$\Big\rangle$				•	•		·			•	
DIELDRIN         0.           4,4-DDE         0.           ENDRIN         0.           ENDOSULFAN 2         0.           4,4-CDD         0.           ENDOSULFAN 2         0.           6,4-CDD         0.           ENDPIN 4-DEHYDE         0.	65 10 10 10 10 10 10 10						$\sum$	)					0.004 J		
ENDRIN KETONE 0. Chlordane 0 Totaphene 1	10 .5				$\checkmark$	$\langle \rangle$	$\left \right\rangle$		1	$\left[ \right]$	<u></u>				
AROCLOR-1221         0           AROCLOR-1232         0           AROCLOR-1242         0	.5 .5 .5 .9							2				>	$\searrow$	,	
DILUTION FACTORS:	1	BLANK SP J # CRDL NOTE	VALUE RE VALUE RE CONTRACT	TION IS AN JECTED DUN JECTED DUN REDUIRED	PPROXIMAT E TO BLAN E TO OTHE Detectio	e due to Il contani R contrac N limit (	1 QUALITY COI NATION AS TUAL REQUIN MULTIPLY BY L REVIEW; E	IDENTIFIE Rements I / Dilutio	D IN QUALI Dentified N Factor t	TY CONTROL IN QUALITY O ORTAIN S	REVIEN	DEUTEN			

	• •			TABLE N- NATER RESU 185 SAMPLIN	TS-INORGANICS
	SAMPLE LOCATION TRAFFIC REPORT NUMBER Sample Number		SW-018 MAC003 13968	BLANK Ma8995 13895	
	INORGANIC ELEMENTS	IDL (ug/L)	e.		· · · · · · · · · · · · · · · · · · ·
	AL UN INUN	120	120		$\wedge$
	ANTINONY	56		80	
	ARSENIC	2.3			
	BARTUN BERYLLIUN	76			
	CADNIUN	3.0		-	
	CALCIUM	4.0	11	9 /	
	CHROMIUN	1500	2470		
	COBALT	10 30	. 21	28	
	COPPER	7.8	4		
	IRON	35	700		
	LEAD	1.4	700	240	$\searrow$ $\angle$ $\angle$ $\bigcirc$ $\bigcirc$ $\bigcirc$
•	NAGNESIUN	360	1300	1/0	
	MANGANESE	8.2	239	100	
	MERCURY	0.12	297	138	
	NICKEL	40	264	116	$\vee$ $/$ $/$ $\sim$
	POTASSIUM	3500	1300	110	· · / / /
	SELENIUM	1.7	1300	5	
	SILVER	9.2		3	
	SODIUM	630	90000	200	$\sim$
	THALLIUM	4.2		200	
	TIN	37			
	VANADIUN	22			
·	ZINC	19	92	16	· · · · /

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

- -QUANTITATION IS APPROXIMATE, DUE TO QUALITY CONTROL REVIEW (DATA VALIDATION) J
- -VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW .
- -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW ++ -

- I DL -INSTRUMENT DETECTION LIMIT
- -DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING NOTE



SAMPLE NUMBER 12050 12059 1206B 12063 12065 12066 INORGANIC • : ELEMENTS 1DL (atha) ALUMINUM 0.77 1000 600 1700 1800 1400 5500 ANTINONY 0.11 ARSENIC 0.11 0.94 4.3 0.77 1.2 BARLUM 6.2 0. 🖍 5.3 10 9.4 7.2 12 BERYLLIUM 0.07 CADMIUM 0.02 .11 14 CALCIUM -N/A N/A N/A N/A N/ N/A CHROMIUM 0.16 1.4 1.8 12 1.5 3 0.81 COBALT COPPER 0.38 IRDN 1.13 570 1600 4300 1100 2600 LEAD 0.23 3. 3.6 N 6.3 2.9 3.3 MAGNESIUM -N/A N/A N/A **NKA** MANGANESE 9.18 52 260 26 MERCURY 0.009 7.8 6.6 0.16 0.30 0.29 0.35 NICKEL 1.13 POTASSIUM -N/A N/A N/A N/G N/A N/A SELENIUM 0.09 0.15 0.12 SILVER 0.45 SODIUM -N/A N/A N/A N/A N/A N/A THALLIUM 0.23 TIN 0.45 . VANADIUM - 0.68 ZINC 0.34 . 7.9 J 9.0J 15 11 J 9. BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED -DUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL TO THE J

TABLE N-6 SEDIMENT RESULTS- INORGANICS SEPTEMBER 1984 SAMPLING ROUND

5D-03

MA-337

SD-04

MA-338

SD-05 SD-05(D)

MA-340

MA-339

SD-01

MA-335

SD-02

MA-336

SAMPLE LOCATION

TRAFFIC REPORT NUMBER

- -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW ÷
- -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW 79
- IOL -INSTRUMENT DETECTION LIMIT
- N/A -NOT ANALYZED
- NOTE -THESE SAMPLE DATA ARE REPORTED ON A NET WEIGHT BASIS

### TABLE N-7 SEDIMENT RESULTS-VOLATILE ORGANICS OCTOBER 1985 SAMPLING ROUND

	SAMPLE LOCATION TRAFFIC REPORT NUMBER Sample Number	•	SD-01 Ad821 13726	SD-02 Adb22 13728	SD-03 Ad823 13730	<b>SD-04</b> <b>AD024</b> 13732	SD-05 AD817 13718	SD-06 Adb18 13721	SD-06(D) AD019 13722	5D-07 A0820 13724	SD-08 AD016 13716	BLANK Adb15 13711		
	VOLATILE ORGANIC COMPOUNDS	CRDL (ug/kg)						1 -						
	CHĽORONE THANE BRONONE THANE	10 10												
	VINYL CHLORIDE Chloroethane	10			1	$\checkmark$		• •						
	METHYLENE CHLORIDE	10 ° 5			/		<b>\</b> .				•		•	
	ACETONE	10	•			$\mathbf{i}$	N.	.•			+	51.		
	CARBON DISULFIDE	5		/	. /		120 J	1 <u>79</u> J	•	1000		110 16		
	1,1-DICHLOROETHENE 1,1-DICHLOROETHANE	5						$\land$				10	•	
	TRANS-1, 2-DICHLORDETHENE	5 _. 5	•				1./							
	CHLORDFORM	5			$\sim$		//	~						
	1,2-DICHLORDETHANE	5								$\mathbf{N}$	•			
	2-BUTANONE 1,1,1-TRICHLOROETHANE	10				~ /	330 J	$\mathbf{i}$	)			20	·	
•	CARBON TETRACHLORIDE	5 5					$\sim$	、 · · ·		<b>)</b> .				
	VINYL ACETATE	10							~		$\wedge$		•	
	BRONOD I CHLOROME THANE	5 ·					<b>V</b> .				$\sum_{i=1}^{n}$			
	1,1,2,2-TETRACHLORDETHANE	5	•		•			/ .	1.	/.				
	1,2-DICHLOROPROPANE TRANS-1,3-DICHLOROPROPENE	5 5					4	$\leq$ /			1 1	•		
	TRICHLORDETHENE	5						$\neg$		<	1. 1			
	DIBROHOCHLOROMETHANE	5							$\searrow$	$\sim$	' /			
•	1,1,2-TRICHLORGETHANE	5							$\sim$		/ .			
	BENZENE CIS-1, 3-DICHLOROPROPENE	5								)		$^{\prime}$ $\sim$		
	2-CHLOROETHYLVINYLETHER	5 10											$ > / \land $	<
	BRONDFORM	5	•							•	$\bigvee$ /	$\sim$	$\mathbf{Y}$	$\mathbf{i}$
	2-HEIAMONE	10												
	4-METHYL-2-PENTANONE	10									$\sim$		1 <b></b>	
	TETRACHLORDETHENE	5				•	ŧ					3 J .		<b>^</b>
	TOLUENE Chlorobenzene	5 5				•	53				290			/
	ETHYLBENZENE	- 5		, i										/* * *
	STYRENE	5												
•	TOTAL IYLENES	5											$\sim$	
	•												$\checkmark$	÷

DILUTION FACTORS:

1

1

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

1

1

1

J -QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW (DATA VALIDATION) ٠

1

- -VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW
- ** -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW

1 . 20 1

1

- CRDL -CONTRACT REQUIRED DETECTION LINIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LIMIT)
- NOTE -DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

0 ŵ Ó 9873

		•		SEDIMENT RESULTS	E N-Ə Semivolatile organics Sampling Round		· · ·			•
	SAMPLE LOCATION TRAFFIC REPORT NUMBER Sample Number	SD- Ade 137	121 AD822	ADB23 ADB24 AD	-05 SD-06 SD-06(D) 817 AD016 AD019 710 13721 13722	SD-07 SD-09 AD820 AD816 13724 13716	BLANK Adø15 !3711			
Э	SEMI-VOLATILE DRGANIC COMPOUNDS	CRDL		•	:		· · ·			
, , , ,	PHENOL ANILINE 2-CHLOROPHENOL 1.4-DICHLOROBENZENE 1,2-DICHLOROBENZENE 2-METHYLPHENOL 4-METHYLPHENOL 1SOPHOROME 2,4-DINETHYLPHENOL BENZOIC ACID 1,2,4-TRICHLOROPENZENE NAPHTHALENE 4-CHLORO-3-NETHYLPHENOL 2-METHYLNAPHTHALENE HETACHLOROCYCLOPENTADIENE 2-CHLORONAPHTHALENE 2-NITROAMILINE DIMETHYLPHTHALATE ACEMAPHTHYLENE	(ug/kg) 10 10 10 10 10 10 10 10 10 10								
	ACENARNTHENE DIBENZOFURAN DIETHYLPHTHALATE FLUORENE N-MITROSODIPHENVLAMINE PENTACHLOROPHENOL PHENANTHRENE ANTHRACEME DI-n-DUTYLPHTHALATE FLUORANTHENE PYRENE BUTYLBENZYLPHTHALATE BENZO(A)ANTHRACENE DISZO(A)ANTHRACENE DI-n-OCTYL PHTHALATE CHRYSENE DI-n-OCTYL PHTHALATE BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE BENZO(b)FLUORANTHENE	16         16         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10		•					•	
	DILUTION FACTORS:	10 1	J -1 + -1 ## -1 CRDL -E	VALUE REJECTED DUE TO D VALUE REJECTED DUE TO C CONTRACT REDUTRED DETEC	NATE DUE TO QUALITY CON BLANK CONTAMINATION AS ITHER CONTRACTUAL REPUTY	IDENTIFIED IN QUALITY REMENTS IDENTIFIED IN IV DIVITION FACTOR TO (	CONTROL REVIEN QUALITY CONTROL REVIEN	LIMIT).		0.309874

.

NOTE -DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA AFPROVAL IS PENDING APFENDIX & LISTS ALL COMPOUNDS ANALYZED FOR IN THESE SAMPLES

.

•.

# 0.309875

NO COMPOUND DETECTED IN SEDIMENT SAMPLES BELOW TRAFFIC REPORT NUMBER SAMPLE NUMBER 13726 13729 13730 13732 13718 13721 1372 13/24 13716 13711

CROL-CONTRACT DETECTION LINIT NOTE-DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

TABLE N-9 SEDIMENT RESULTS-PESTICIDES/PCB'S 1985 SAMPLING ROUND

A0821

AD827

AD823

**60**824

AD817

AD918

AD819

A0820

ADB16

AD815

CRDL

(ug/Kg)

0.05

0.05

0.05

0.05

0.05

0.05

0.05

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.5

0.10

0.5

1.0

0.5

0.5

0.5

0.5

0.5

1.0

1.0

ALPHA-BHC

BETA-BHC

DELTA-BHC

HEPTACHLOR

ENDOSULFAN 1

ENDOSULFAN 2

ENDRIN ALDEHYDE

ENDOSULFAN SULFATE

ALDRIN

DIELDRIN

ENDRIN -

4,4-DDE

4,4-DDD

4.4-9DT

CHLORDANE

TOXAPHENE

AROCLOR-1016

AROCLOR-1221

AROCLOR-1232

ARDCLOR-1242

AROCLOR-1248

ARDCLOR-1254

AROCLOR-1260

METHOXYCHLOR

ENDRIN KETONE

GAMMA-BHC (LINDANE)

HEPTACHLOR EPOXIDE

SAMPLE LOCATION

SD-01

SD-02

-SD-03

SD-04

SD-05

SD-06

SD-08

BLANK

0.05 SD-06(D)

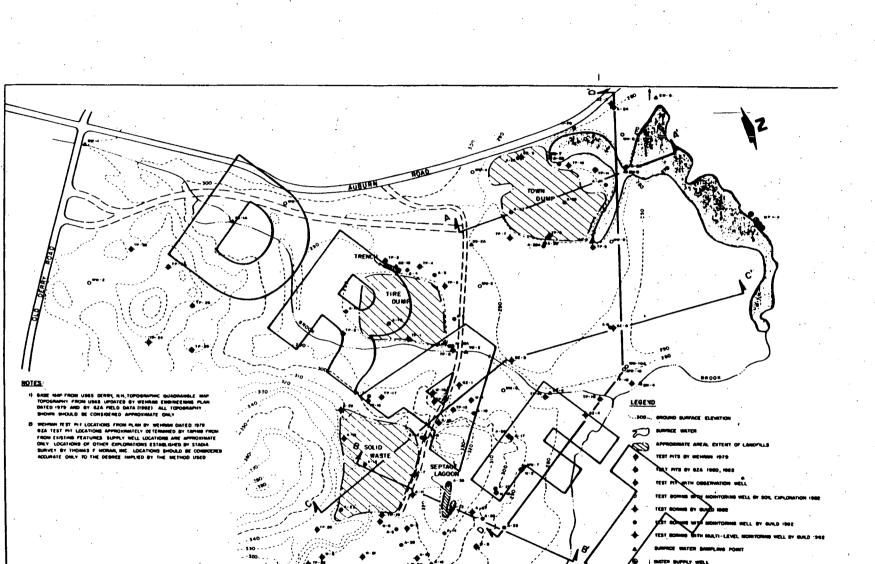
0.10 . SD-07

				1983	SAMPLIN	i RUUND								·		
SAMPLE LOCATIO TRAFFIC REPORT N SAMPLE NUMBER		SD-01 Ad-821 13721	SD-02 Ad-822 13728	5D-03 AD-823 13730	50-04 AD-874 17732	SD-65 AD-D-7 13710	AD-818	SD-06(D) AD-819 13722	50-07 Ad-820 13724	SE-00 AD-816 13716	8¥6RD Að-815 13711				·.	
INDRGANIC Elements	CRDL (mg/kg)			/	/ /	$\wedge$										
ALUNINUN ANTINONY	20	7000	<b>250</b> 0	800	9400		520	4500	6600	7200	11900			• •	•	
ARSENIC BARIUM	,1 20	15	·				/;[	΄ ζ	$\sum$		4.0 77	•.		•	·	
BERYLLIUM CADNIUN CALCIUM	0.5 . 0.5 500	2400			3400	5600	3060	2400								
CHRONIUN Cobalt Copper	1				47	3600		2100	11		12100 18 8	$\sum_{i=1}^{n}$				
IRON Lead	2.5 10 0.5	·. · 3400 21	3100 2.2	4600 1.5	10400 35	86400 4.1	3700 37	2600 18	7800	4300	< 35 P0					
MAGNESIUN MANGANESE HERCURY	500 1.5 0.02	139 0.34	205	260	363	<b>1040</b> 0	274	226	91	21	93 6600 663					
NICKEL POTASSJUM	4 500	0.34	<b>V.11</b>	0.08	0.28		û, 38		0.2?	0.21	L.19 BSD /	/	$\langle$	$\searrow$		
SELENIUM SILVER SODIUM	0.5 1 500	,	3.2 2900	7700	1150/	70//	11					$\langle \rangle$	$\frown$	>`<	$\langle \rangle$	
THALLIUM Tin	1 4	57	2700	3300	11500	3206	•			3100	2700	$\checkmark$	. ``		/ ,	
VANADIUM Zinc	5 2	. <u>.</u>	12					•			53 ·			· . /	_ / .	$\sim$
		. 1	BLANK SPAC J #	CE-INDICAT -DUANTIT -VALUE R	ATION IS	APPROX1M	ATE DUE TO	D QUALITY	" Control r S Identif	EVIEW (DA IED in Gu	ITA VALIDA Ality con	TION) TROL REVIEN				•

### TABLE N-10 SEDIMENT RESULTS-INDRGANICS 1985 SAMPLING ROUND

QUALITY CONTROL REVIEW

-VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW **


0309876

CROL -CONTRACT REQUIRED DETECTION LINIT

-DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING NOTE

SURFACE WATER RESULTS (PREVIOUS ANALYSES)

Ì



. o. == \$

EXPLORATION LOCATION PLAN

FIGURE No. 2

SEPT. 1982

AUBURN ROAD LANDFILL SITE ASSESSMENT LONDONDERRY, NEW HAMPSHIRE

### APPENDIX E.4

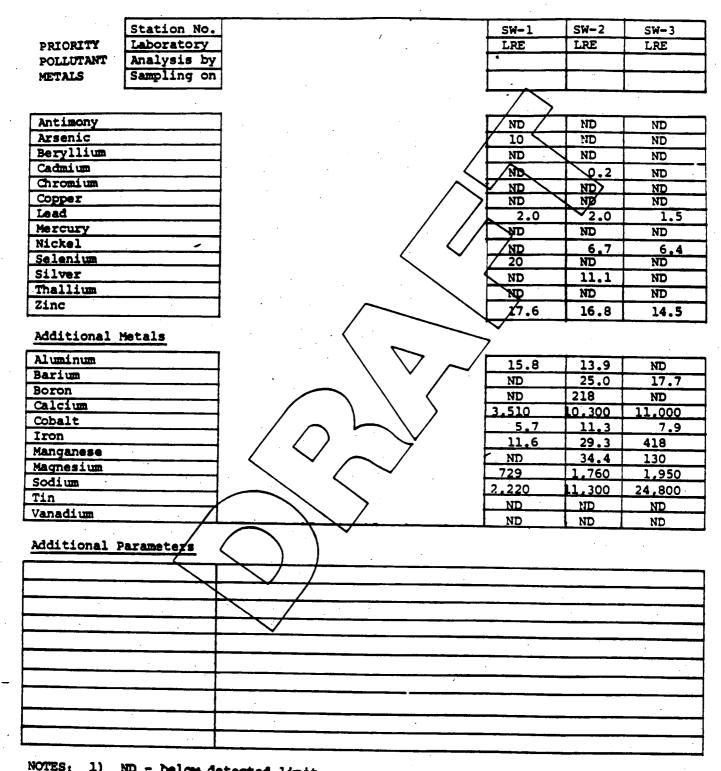
### SURFACE WATER SAMPLING DATA SUMMARY

### PURGEABLE ORGANIC ANALYSIS RESULTS

		Sample No.	SW			1-2	SW-4	SW-5	SW-6	<u>\$5-9</u>
		Laboratory		CA	_	GCA	GCA	GCA	GCA	GCA
		Analysis by		/MS		C/MS	GC/MS	GC/MS	GC/MS	GC/MS
	COMPOUNDS	Sampling Date	8/2:	3/82	8/2	23/82	8/23/82	8/23/82	8/23/82	8/23/82
1.	Chlorometha							. •	1	
2.	Bromomethan				. '	Τ		1		
3.		luoromethane								
4.	Vinyl chlor:	ide							J	<u> </u>
5.	Chloroethan	8								
6.	Methylene cl	nloride					· ·	1/		
7.	Acrylonitri	le		•					t	
8.	Trichloroflu	oromethane						Trace		
9.	1,1-dichloro	bethylene						t the second		Trace
r 0.	1,1-dichlord						Trace			
1.	Trans-1,2-di	chloroethylene					Trace /	2.1	Trace Trace	6.5
12.	Chloroform		ND				Lacace/	Trace	Trace	[
13.	1,2-dichlord	bethane	ND		N	D	/-//	$ \rightarrow $		<u> </u>
4.	1,1,1-trich1									
5.	Carbon tetra		T				<u> </u>	frace	Trace	11
16.	Bromodichlor									``````````````````````````````````````
	1,2-dichloro							$\rightarrow$		
8.		chloropropylene			<del>. A</del>			$\mathbf{k}$		
19.	Trichloroeth	vlene			$\leftarrow$					
-	Benzene				$\rightarrow$	~		<b>Trace</b>		
1.	Dibromochlor	omethane			-4	<u> </u>	7	· · · · · · · · · · · · · · · · · · ·		
2.		loropropylene			—- f					•
-	1,1,2-trich1					$\rightarrow$	-/			
	Bromoform	or of migne	-K		$\rightarrow \downarrow$					
_		achloroethane	∕╆			$\sim$	_/			
26.	Tetrachloroe		<u> </u>	←→		$- \rightarrow ]$	$\checkmark$			
No. of Concession, name	Toluene			$\checkmark$		/	<b>7</b>			
8.	Chlorobenzen	<u> </u>				$\searrow 4$				
	Ethyl benzen	<u> </u>	$\rightarrow$	—K	<u> </u>		<u> </u>			
	Bis-chlorome		$\searrow$	<del></del>						
	2-chlorosth	l winul At		$\rightarrow$						
֥	Acrolein	1 vinyl ther		77	$\checkmark$					

ADDITIONAL

NOTES: 1) All results in parts per billion (ppb).


2) ND - no volatiles detected. Blank spaces indicate not detected.

### PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	SW-1	SW-2	SW -3		
	Laboratory	Versar	Versar	Vargar	1	
	Analysis by	GC/MS	GC/MS	GC/MS	T	
COMPOUNDS	Sampling Date					
1. Chlorometha		<b></b>				
2. Bromomethan	فتحص ومصدف المتكار الأناف المتكاف المحتفي بالتبري بالتحد			•		
	fluoromethane		<u> </u>			
4. Vinyl chlos				+		
5. Chloroethau				$+ - / \cdot /$	· · · · · · · · · · · · · · · · · · ·	
6. Methylene						
7. Acrylonitr:						
8. Trichlorof	luoromethane					
9. 1,1-dichlor			· · · ·	K/X		
10. 1,1-dichlor			/	13	$\rightarrow$	
	lichloroethylene			17	N/	
12. Chloroform				VA		
13. 1,2-dichlor				1/ 7		
14. 1,1,1-trich				/20	j	· · ·
15. Carbon tetr						
6. Bromodichlo						
7. 1,2-dichlor				$\boldsymbol{\Sigma}$		
	ichloropropylene					
9. Trichloroet	hylene					
0. Benzene			2			
1. Dibromochlo						
	hloropropylene		$\land$			
3. 1,1,2-trich	loroethane	$ \rightarrow $				
4. Bromoform 5. 1,1,2,2-tet						
	rachloroethane					
6. Tetrachloro 7. Toluene	etnyiene	-				
8. Chlorobenze						
9. Ethyl benze						
0. Bis-chlorom						
1. 2-chloroeth	yl vinyl ether		≻			
2. Acrolein	vi vinyi etner	$\rightarrow$				
		<del>~~}~`</del> ]		· · · · ·		
ADDITIONAL					· ·	
					•	
· · · · · · · · · · · · · · · · · · ·				· .		
						•
		7			· · · · · · · · · · · · · · · · · · ·	
			<u></u>		· · · · · · · · · · · · · ·	
		<u></u>		·		
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	·	
·		•				

All results in parts per billion (ppb). ND = not detected. Blank spaces indicate N.D.'s.

### E & E TESTING WATER QUALITY DATA INORGANIC ANALYSES



1) ND - below detected limit.

2) LRE - Lab of Radiation Ecology, University of Washington

TABLE 17 SURFACE WATER STATION SW-5 PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.					
	Laboratory	GCA	RAI	RAI	RAI	RAI
	Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS
COMPOU	NDS Sampling Date	6/23/82	4/28/83	7/20/83	10/17/83	2/7/84
1. Chloro	methane			<b>^</b>	<b>^</b>	
2. Bromon	ethane	<u></u>				
3. Dichlo	rodifluoromethane	· ·				
4. Vinyl	chloride	·				
	ethane		Tr.		-/	6
6. Methyl	ene chloride				· / /	Tr.
7. Acrylo	nitrile	<u></u>				
	orofluoromethane	<2			-/	<u>\</u>
	chloroethylene				$\Delta \Delta$	<u> </u>
	chloroethane	2.1	8			
	1,2-dichloroethylene	<2	Tr.		<u> </u>	Tr/.
2. Chlore		L		/	- <u>/  </u>	
	chloroethane	<b></b>		A	4	
	trichloroethane	<2	15			10
	tetrachloride				<u> </u>	
	ichloromethane				<u> </u>	
	chloropropane			ND	NB	
	1,3-dichloropropylene		$ \longrightarrow $		$\searrow$ $\downarrow$ $\angle$ $\downarrow$ $\angle$	
	oroethylene	<2				
0. Benzer		<u> </u>			>	
	ochloromethane	· · · · ·	<u> </u>			
	3-dichloropropylene				$\checkmark$	
	trichloroethane			/		•
4. Bromot		$\vdash$	<u> </u>	<u> </u>		
	2-tetrachloroethane		· · ·	$\rightarrow \nu$		
6. Tetrac	hloroethylene	+ / /	$\rightarrow$ $\frac{1}{Tr}$			Tr.
7. Toluer			<u> </u>	<u> </u>		Tr.
	benzene	$\underline{K}$	$ \sim $			
	benzene			×		
	loromethyl ether					
	roethyl vinyl ether	+	$\searrow$			
2. Acrole	<u>in</u>		$\sim$		<b>Y</b>	
ADDITI						-
<u></u>		$\sim$ )				
MEK		$\nabla$				200
MIBK		1 /				
Xylenes		$\leftarrow$				
THF		$\uparrow$				50
			·····		· · · ·	
		- <u> </u>			·····	
	·····					
L			•			
		T				
	·	· · · · · · · · · · · · · · · · · · ·				
NOTES: 1)	All results in part	s per bil	lion (ppb)	• Tr. =	<5 ppb	
21	_	-				
£.,	ND - Not detected.	BIANK ST	paces repr	esent ND.		
3)	Laboratory - Resour	ce.Analve	ts: Inc.	(RAI) ; GC	A Corporati	on (GCA).

0309883

### NORMANDEAU ASSOCIATES LABORATORY REPORT

### Page <u>1</u> of <u>1</u>

Report	Date	07/22/82
Analysis	Date	Various
Report	ed By	DOD/RGD

Project 526

Date Samples Submitted _______

	SAMPLE OR STATION #							
ANALYSIS	SW-4 SW-5							
Alkalinity - total, mg CaCO ₃ /1	19.0 34.2							
BOD ₅ mg/1								
COD mg/l	8.25 10.5							
Chloride mg Cl/l	18.3 22.4 98.9% Spike Recovery							
Dissolved oxygen mg/l								
Hardness mg/1								
Ammonia mg NH ₃ -N/1								
TKN mg N/1	0.41 0.48 102 Spike Recovery							
Nitrate mg NO ₃ -N/1	0.01 0.04 100 & Spike Recovery							
Nitrite mg NO ₂ -N/1	< 0.005 ( 0.005 100 % Spike Recovery*							
Oils and Grease mg/l								
рне°С	-							
Orthophosphorus mg PO4-PA								
Total Phosphorus mg P/1								
Color - Platinum color units								
Solids								
Dissolver mg/1								
Suspended mg/								
Total mg/1								
Volatile mg/1								
Settleable mg/1								
Turbidity FTU/NTU								
Conductance umhos/cm								
* Nitrite results generat	ted during Nitrate analyses							
1								
• • • •								

- - -

# 0309883A

APPENDIX O

.

0309884

### SOIL SAMPLING

### SECTIONS IN APPENDIX O

- SOIL SAMPLING METHODOLOGY
- SOIL RESULTS (NUS)
- SOIL RESULTS (GZA)

### TABLES IN APPENDIX

- 0-1 SOIL RESULTS VOLATILE ORGANICA 1984
- 0-2 SOIL RESULTS SEMIVOLATILE OR GANIOS (1984)
- O-3 SOIL RESULTS PESTICIDES/PCBS (1984)
- 0-4 SOIL RESULTS INORGANICS (1984)
- 0-5 SOIL RESULTS COLATINE OBGANICS (1985)
- 0-6 SOIL RESULTS SEMINOLATINE ORGANICS (1985)
- 0-7 SOIL RESULTS PESTICIDES/PCBS (1985)
- 0-8 SOIL RESULTS TNORGANICS (1985)



### Soil Sampling

The chemical analysis of soils at uncontrolled hazardous waste sites can provide valuable information about the nature and extent of contaminant migration. Vertical contaminant migration may occur through soil strate to groundwater. Soil samples were generally collected at the Auburn Road Landfill site in a "grab" fashion. Grab sampling was utilized to characterize a waste or waste stream at a given time and location. The Fall 1985 Final RI Sampling Round was the only exception. These samples (Fall, 1985) were collected in a "composize" fashion. Composite sampling was utilized in some instances to provide useful data on the average concentration of contaminants or the presence or absence at different locations within the study area. The grab samples were collected with a stainless steel trowel approximately six inches below ground surface. The composite samples were collected with a stainles steel trowel and placed in a stainless steel mixing bowl. To minimize the loss of volatile organic contaminants, soil samples were not vigorously mixed. Soil samples for Volatile organic analysis were then placed, with a stainless steel scoepula, into two 44 milliliter glass VOA vials. Soil samples were also collected with a sample trow and placed in 8 ounce (oz) jars for inorganic (metals) compounds) analysis and 16 ounce (oz) jars for extractable organic compound analysis on the Hazardous Substance List (HSL). All samples were unpreserved and stored on ice in a cooler. All field sample information on sample collection was recorded in the project logbook. Information consisted of sample location, time, method of sample collection, number of samples, and container size and was entered or a field chain-of-custody form. This information was then transferred another chain-of-custody form and, along with the samples, relinquished to Federal Express for delivery to the contract laboratory. Proper chain-of-custody was maintained throughout the sample collection and shipment.

### Test Pit Sampling

Soil and sludge samples were collected from each test pit for NUS/FIT's in-house analytical screening and or Contract Laboratory Program (CLP) Hazardous Substance List Analysis (HSL). Whenever possible, the soil samples were collected from the excavation equipment bucket in order to avoid having dersonnel enter the test pit. Soil samples were collected in two 44 ml glass VOA vials for volatile organic compound analysis, one 8 ounce jar for inorganic (metal) analysis and one 16-ounce jar for extractable organic analysis. No preservation additives were required for soil samples other than storing the samples on ice in a cooler. Soil samples for in-house screening were collected in one 44 ful glass septumed VOA vial, one 4-ounce jar for inorganic (metals) analysis and one 4-ounce jar for extractable organic analysis. Soil and sludge samples for on site volatile organic contaminant screening were collected at various depths from the test pits for analysis on the OVA 128. All samples were collected in a "grab" fashion and sealed in appropriate containers. Sample containers were then decontaminated with an alconox rinse and deionized water rinse prior to storage on ice. Types of sample information recorded or referenced in the project logbook included the following: name and location of sample, date and time of excavation, surface elevation, depth of trench, sample number, sampling method, type and size of sample, and description of soil. Sample observations and measurements were recorded on sample cards and sample location, time and lot numbers were recorded on sample tags. Sample information was transferred to field chain-of-custody forms. Proper chain-of-custody procedures were followed throughout the sampling process.

0309888 SOIL RESULTS (NUS) 

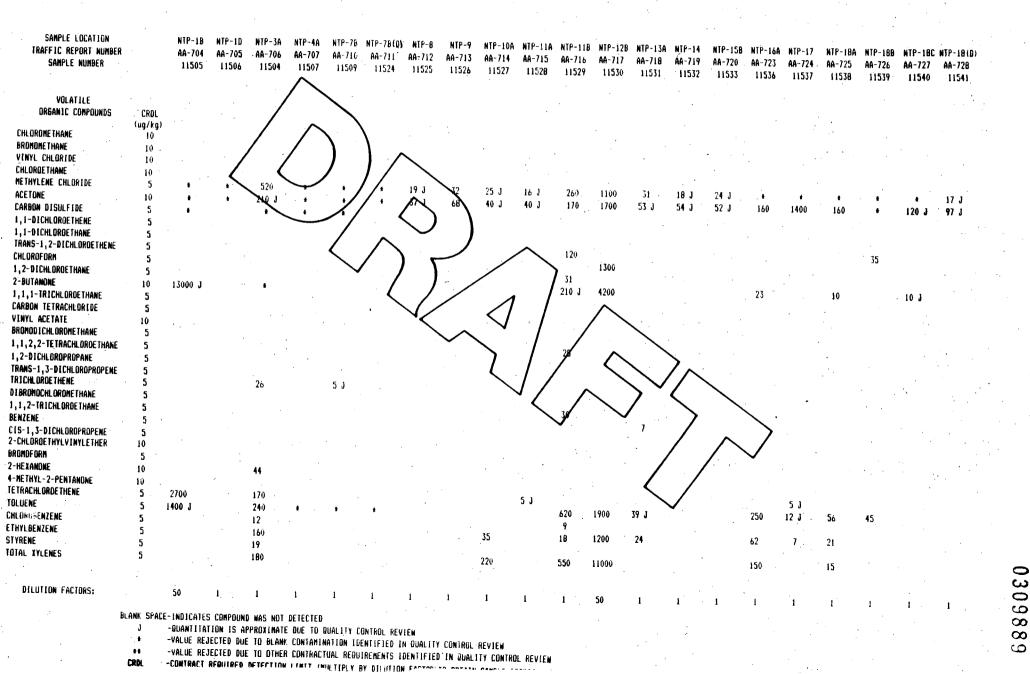
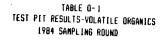




TABLE 0-1 TEST PIT RESULTS-VOLATILE DRGANICS 1984 SAMPLING ROUND



31 J 100 J

26**/**3

20 J

SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER	NTP-20 AA-721 11534	NTP-22 AA-729 11542	NTP-24A AA-730 11703	NTP-24B AA0731 11704				NTP-29 AB-101 11708	BK6RD AA-708 11508	BKGRD AA-722 11535
-----------------------------------------------------------	---------------------------	---------------------------	----------------------------	----------------------------	--	--	--	---------------------------	--------------------------	--------------------------

VOLATILE	
ORGANIC COMPOUNDS	CRDL
CHI DDOMCTHANC	(ug/kg)
CHLOROME THANE	10
BRONOMETHANE	10
VINYL CHLORIDE	10
CHLORDETHANE	10
METHYLENE CHLORIDE	5
ACETONE	10
CARBON DISULFIDE	5
1, 1-DICHLOROETHENE	5
1,1-DICHLOROETHANE	5
TRANS-1,2-DICHLORDETHENE CHLORDFORM	5
1,2-DICHLORDETHANE	5
2-BUTANONE	5
1,1,1-TRICHLORDETHANE	10
CARBON TETRACHLORIDE	5
VINYL ACETATE	5
BRONDDICHLOROMETHANE	10
1,1,2,2-TETRACHLOROETHANE	5 5
1,2-DICHLOROPROPANE	5
TRANS-1, 3-DICHLOROPROPENE	5
TRICHLORDETHENE	5
DIBRONOCHLORDNETHANE	5
1,1,2-TRICHLORDETHANE	-
BENZENE	5 5
CIS-1, 3-DICHLOROPROPENE	
2-CHLOROETHYLVINYLETHER	5 10
BROMOFORM	5
2-HEXANDHE	- 3 10
4-NETHYL-2-PENTANONE	10
TE TRACHLORDE THENE	5 ·
TOLUENE	5
CHLOROBENZENE	5
ETHYLBENZENE	ร้
STYRENE	5
TOTAL IYLENES	5

5 DILUTION FACTORS: 1

46 J

420

780

1200

5900

5 J

9.

1

5 J

19 J

17 J 39 J

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED J

1

-QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW

1

1

- -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW
- . ** CROL

1

-CONTRACT REQUIRED DETECTION LINIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LINIT).

1

- - VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW -CONTRACT REQUIRED DETECTION LIMIT (MULTIPLY BY DILUTION FACTOR TO DUTAIN SAMPLE DETECTION LIMIT). CRDL

-VALUE REJECTED DUE TO BLANY CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW

APPENDIX & LISTS ALL COMPOUNDS ANALYZED IN THESE SAMPLES

÷

...

SENT VALATILE         CPDI         Constraint	11707 113
ORGANIC CUMPUNDS         CPOL tog/tg)           PHENUL         330 1,2-95 (FM) GODENTENE         330 330           1,2-95 (FM) GODENTENE         330 330           1,2-4-1781CML GROBENTENE         330 330           2-2-CHURONDARITHENE         330 330           2-2-CHURONARITHENE         330 330           2-2-CHURONARITHENE         330 330           2-2-CHURONARITHENE         330 330           2-2-CHURONARITHENE	
Lug/Lg)         20000 K           AHILINE         330 AHILINE         330 AHILINE         330 AHILINE         330 AHILINE         2000 K           2-HEINYLPHENOL         330 AHILINE         330 AHILINE <t< td=""><td></td></t<>	
HENDL 330 MILLINE 330 MILLINE 330 AZ-DICULODOBENZENE 330 MILLINE 330 AE THYLIPHENOL 330 SOPHORONE 330 CHUDRO-S-METHYLIPHENOL 330 CHUDR	
Nill NE     330     330     120/06     2000 K       2,2-01 Cul DODENTENE     330     890     890       ME INVERVENUL     330     60%     60%       S00 MR CINVENTIALENE     330     60%     1600 K       S00 MR CINVENTIALENE     330     60%     1600 K       S00 MR CINVENTIALENE     330     50%     2000 K       S00 MR CINVENTIALENE     330     330 K     660 K       MITROANLI IVE     1600     1600 K     330 K       EMAPHTRUENE     330     330 K     660 K       UNDERVE     330     330 K     660 K       MITROANLI IVE     1600     130 K       EMAPHTRUENE     330     330 K     660 K       UNDERVE     330     330 K     660 K     330 K       MITROANLI IVE     330     330 K     660 K     330 K       UNDERVE     330     330 K     660 K     330 K       MITROANCI IVE     330 K     660 K     330 K       UNDERVE     330     330 K       UNDERVE     330 K	
NIL INE         330         20000 K           2-2 - DICHLORDENTZINE         330         330           7-2 - DICHLORDENTZINE         330         330           NET HYLPHENDL         330         330           NET HYLPHENDL         330         400           NITROANTLYLENE         330         400  <	
12 0 1 LUUDUDE NTEHE     330       AC 01 LUUDUDE NTEHEE     330       AC 01 LUUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDUDU	
-METHYLPHENOL 330 SOPHORONE 330 KNOLC ACLD 1600 SOPHORONE 330 KNOLC ACLD 5-METHYLPHENOL 330 CHLUBO 5-METHYLPHENOL 330 CHLUBO 5-METHYLPHENOL 330 CHLUBO 5-METHYLPHENOL 330 CHLUBO 5-METHYLPHENOL 330 CHLUBO 5-METHYLPHENOL 330 CHLUBO 5-METHYLPHENOL 330 KETYL ANTHALEME 330 CHLUBO 5-METHYLPHENOL 330 KETYL ANTHALEME 3	• • • • •
SDPHORONE         330           NROIC ACID         1600 K           SPRIMARCHE         330           CHURDON-S-METHYLENENGI         330           CHURDON-S-METHYLENENGI         330           CHURDON-S-METHYLENENGI         330           CHURDON-S-METHYLENENGI         330           METHYLENENGI         330           CHURDON-S-METHYLENENGI         330           METHYLENENGI         330           CHURDON-S-METHYLENE         330           METHYLENENGI         330           SIGNENGENENENGI         330           METHYLENENGI         330           SIGNENGENENENENGI         330           METHYLENEN         330           SIGNENGENENENENENGI         330 K           ENAPHTHYLENE         330           SIGNENGENENENENENENENENENENENENENENENENEN	• • • • •
INPOLE ACID       1600         YALOLE ACID       1700         YALOLE ACID       1700 <td></td>	
2,4-TRICHLOROBENZENE 330 PHTMALENE 330 CHLOROJ-3-METHYLPHENOL 330 HTWLANTHALENE 330 CHLOROJ-3-METHYLPHENOL 330 CHLORONAPHIHALENE 330 CHLORONA CHLORONAPHIHALENE 330 CHLORONA CHLORONA CHLORONAPHIHALENE 330 CHLORONA CHLORONA CHLORONAPHIHALENE 330 CHLORONA CHLORONAPHIHALENE 330 CHLORONA CHLORONAPHIHALENE 330 CHLORONA CHLORONA CHLORONAPHIHALENE 330 CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONAPHIHALENE 330 CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA CHLORONA C	· · · ·
APRITIALENE         330         20000 K           CHLORO-3-RETHYLPHENOL         330         330 K         660 K         330 K         330 K         330 K         300 K<	
CHLORO-3-METHYLPHENOL         330         330 K         330 K           CHLORO-3-METHYLPHENOL         330         330 K         330 K           CHLOROMAPHTHALENE         330         330 K         330 K           METHYLPHTHALATE         330         330 K         330 K           ENAPHTHENE         330         330 K         660 K           UDRENE         330         330 K         660 K           METHYLPHTHALATE         330         330 K         660 K           UDRENE         330         330 K         660 K           UDRENE         330 K         660 K         2000 K           METHYLPHTHALATE         330 K         660 K         2000 K           UDRENE         330 K         660 K         2000 K           UDRENE         330 K         660 K         2000 K           THROSDIPHENYLAMINE         330 K         660 K         330 K           UDRANTHENE         1700 K         330 K         660 K         330 K           UDRANTHENE         1700 K         330 K         660 K         330 K           UDRANTHENE         1700 K         320 K         330 K         460000 K	
ME INTERNATINALENE         330         330 K         46000           CHLOROMAPHTHALENE         330         330 K         660 K         330 K           ENAPHTHENE         330         330 K         660 K         330 K           UDRENE         330 K         330 K         660 K         330 K           UDRENE         330 K         330 K         660 K         330 K           UDRANTHENE         1700 K         330 K         660 K         330 K	
Chickbarn ninelene         330           NITROANILINE         1600           NITROANILINE         1600           ENAPHTHYLENE         330           S30         330 K           ENAPHTHYLENE         330           S30         330 K           BENZOFURAN         330 K           UORENE         330           S30         330 K           BENZOFURAN         330 K           UORENE         330           S30         330 K           BENZOFURAN         330 K           UORENE         330 K           S30 K         660 K           S30 K         660 K           S30 K         330 K           UORANTHRENE         330 K           S30 K         1800 40000           S30 K         50 K           S30 K         660 K           S30 K         50 K	
METHYL PHTHALATE 330 ENAPHTHYLENE 330 STORE 330 STOR	
ENAPHTHYLENE 330 330 K ENAPHTHENE 330 330 K BENZOFURAN 330 330 K UORENE 330 330 K HITROSOD IPHENYLAMINE 330 1650 K 11RAGEME 330 330 K UDRANTHENE 1700 330 K UDRANTHENE 1700 K HITROSO 1650 K 1100 K 330 K HITROSOD 19HENYLAMINE 330 1650 K 1100 K 330 K HITROSOD 19HENYLAMINE 330 1650 K HITROSOD 19HENYL	
ENAPHTHENE 330 330 K RENZOFURAN 330 330 K ETHYLPHTHALATE 330 330 K UDRENE 330 330 K HITROSOD IPHENYLAMINE 330 1650 K 330 K ENANTHRENE 330 330 K UDRANTHRENE 330 330 K UDRANTHENE 1700 K THROCEME 1700 K 1700 K 330 K 3	
BENZOFURAN         330         330 k           CTHYLPHTHALATE         330 k           UORENE         330 k           11ROSOD IPHENYLAMINE         336 k           330 k         330 k           660 k         20900 k           330 k         330 k           11ROSOD IPHENYLAMINE         336 1650 k           330 k         330 k           660 k         20900 k           330 k         330 k           1000 k         330 k           330 k         1800           330 k         660 k           330 k         330 k           330 k         330 k           330 k         1800           330 k         330 k	
ETHYLPHTHALATE 330 UDRENE 330 NI TRUSDD IPHENYLAMINE 336 HANTHRENE 330 THRACEME 33	
UDRE ME         330         330 K         660 K         20900 K           NI TROSOD IPHENYLAMINE         330         1650 K         330 K         330 K           ENANTHRENE         330         330 K         1800         40000           THRACEME         330         1650 K         330 K         20000 K           OPAGEME         330         1650 K         330 K         20000 K           UDRANTHENE         1700         K         330 K         460000           VDRANTHENE         1700         K         3400 K         330 K         460000	
Martingsouppresentation         330         K         330         K         330         K         300         K	•
THRACENE         330         330 k         1800         40000 k           -n-BUTYLPHTHALATE         330         K         660 k         330 k         710         20000 k           UDRANTHENE         1700         K         3400 k         330 k         460000         330 k         460000	
-n-BUTYLPHTHALATE, 330 1650 K UDRANTHENE 1700 K STO K	
UDRANTHENE 1700 K 3400 K 460000	
	330 K . 450
	330 K 450 1700 K 1700 I
TYLBENZYLPHTHALATE 330 . TS00 € 91000 € 1500 € 91000 € 91000 € 91000 €	1500 K 1500 I
VZD (A) ANTHRACENE 330 2000 K	
5(2-ETHYLHEXYLIPHTHALATE 330 + 2300 + 79000	330 K
15000000 J	
n-OCTYL PHTHALATE 330 330 K 2100 330 K 27000	330 K
120(b) FLUDRANTHENE 3400 27000 K	330 K
VICIAI PYRENE 1400 1200 K	
DILUTION FACTORS: 5 1 1 1 1 2 60 1 60 1 1 60 1 1 1 1 1 1 60	1 1
BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED	
J -QUANTITATION IS APPROXIMATE DUE TO BUALITY CONTROL REVIEW (DATA VALIDATION)	

-INDICATES THE MASS SPECTRA DATA MEETS IDENTIFICATION FOR THE COMPOUND DETECTED BUT THE QUANTITATIVE RESULT IS LESS THAN THE SPECIFIED DETECTION LIMIT BUT SREATER THAN ZERO

NTP-17 NTP-18A NTP-18B NTP-18C NTP-18C(D) NTP-20

AA-727

AA-728 AA-721-

AA-726

TEST PIT RESULTS-SEMIVOLATILE DREAMICS NOVEMBER 1984 SAMPLING ROUND

AA-716

NTP-9 NTP-10A NTP-11A NTP-11B NTP-12B NTP-13A NTP-14 NTP-15B NTP-16

AA-717 - AA-718

AA-719

AA-720

AA-723

AA-724

AA-725

0 309891

1

NTP-22 NTP-24A NTP-24B NTP-26

AA-729 AA-730 AA-731 AA-732

11705

TABLE D-2

AA-713 AA-714 AA-715

SAMPLE LOCATION

TRAFFIC REPORT NUMBER

SAMPLE NUMBER

NTP-18

AB-102

NTP-8

AA-712

· ,				• .		, 		
· · ·	IABLE 0-2 Test Pit Results-semivolatie Organ November 1984 Sampling Round	1055						
								· · ·
SANFLE LOCATION TRAFFIC PEFORT NUMBER Sample Number	NTP-27 NTP-288 NTP-29 4A-733 AA-734 AB-101 11706 11707 11708	BKGRD BKGRD AA-722 AB-103 11535 11710			•			•
SEMI-VOLATILE DRGANIC COMPOUNDS								
FHENOL ANILINE I, 2-DICHLOROBENZENE 2-METHYLPHENOL 4-METHYLPHENOL ISOPHORONE		))/				•		•
BENZOIC ACID 1,2,4-TRICHLOROBENZENE NAPHTHALENE 4-CHLORO-3-METHYLPHENOL 2-METHYLNAPHTHALENE 2-CHLORONAPHTHALENE			$\bigcirc$	<b>\</b>			· .	
2 -NITROANILINE 2-NITROANILINE DIMETHYL PHTHALATE ACENAPHTHYLENE ACENAPHTHENE DIBENZOFURAN			5	7~				
D LE THYLPH THALATE FLUORENE N-N I TROSOD I PHE NYLAM I NE PHENAN THRE NE AN THRACE NE			$\sim$	// <				
DI-n-BUTYLPHTHALATE Luoranthene Yrene Butylbenzylphthalate	330 K 330 K	• • • • •		$\langle \rangle$		$\geq$		
BENZO(A)ANTHRACENE BIS(2-ETHYLHEXYL)PHTHALATE HRYSENE HI-n-OCTYL PHTHALATE IENZO(L)FLUORANTHENE ENZO(L)FLUORANTHENE	390 +	· · ·				$\checkmark$		
ENZO(k)FLUORANTHENE ENZO(a)PYRENE DILUTION FACTORS:			• • • •	• • • •	~			

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

1

1

-QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW (DATA VALIDATION) J

1

K

-INDICATES THE MASS SPECTRA DATA MEETS IDENTIFICATION FOR THE COMPOUND DETECTED BUT THE QUANTITATIVE RESULT IS LESS THAN THE SPECIFIED DETECTION LIMIT BUT GREATER THAN ZERO -VALUE REJECTED DUE TO BLANK CONTANINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW ٠

**

-VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW CROL

1

-CONTRACT REQUIRED DETECTION LIMIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LIMIT)

APPENDIX @ LISTS ALL COMPOUNDS ANALYZED IN THESE SAMPLES

0 ω. 0 9  $\infty$ Ю  $\sim$ 

0
ω
0
9
$\infty$
9
ω

	•		•		
•					
				•	
			•		
			•		
	5 e				
				•	
	·				
			•		
		•			
	•		,		
				. •	

#### TABLE 0-3 TEST P1T RESULTS-PESTICIDES/PCB'S 1984 SAMPLING ROUND

	NO CONPOUND DETECTED
	CROL IN SOIL SAMPLES BELOW
	lug/Kg)
	SAMPLE LOPATION, TRAFFIC REPORT NUMBER SAMPLE NUMBER
ALPHA-BHC	0.05
BE TA-BHC	0.05 NTP-8 AA-N2 11525
DEL TA-BHC	0.05 NTPA AA-713 11526
GAMMA-BHC (LINDANE)	0.05 NJ#-10 AA-714 11527
HEPTACHLOR	0.05 ATP-118 AP-716 11529
ALDRIN	0.05 HTP-11C A-715 11528
HEPTACHLOR EPOXIDE	0.05 NIP-12 AA-717 11530
ENDOSULFAN 1	0.05 NTP-13 AA-718
DIELDRIN	0.10 NP-14 AA-719 11532
4,4-DDE	0.10 NTP-NS AA-20 11533
ENDRIN	0.10 NTP-20 AA-722 11534
ENDDSULFAN 2	0.10 BKGRD AA-722 11535
4,4-000	0.10
ENDRIN ALDEHYDE	
ENDOSULFAN SULFATE	0.10
4,4-DDT	0.10
METHOXYCHLOR	0.5
ENDRIN KETONE	0.10
CHLORDANE	0.5
TOXAPHENE	
AROCLOR-1016	0.5
AROCLOR-1221	0.5
AROCLOR-1232	· 0.5
AROCLOR-1242	0.5
AROCLOR-1248	
AROCLOR-1254	1.0
AROCLOR-1260	1.0

#### CRDL - CONTRACT REQUIRED DETECTION LIMIT

·	×	
		03
••		8608
		39 <b>4</b>

TRAFFIC REPORT NUMB SAMPLE NUMBER INDRGANIC ELEMENIS	IDL	NIP-18 NA-016 11709	1 MA-0146	NTP-8 MA-0135 11525	NTP-9 5 NA-0131 11526	<b>_</b>	NTP-11A MA-0138 11528	NTP-118 NA-0139 11529	NTP12B NA-0140 11530	NTP-13 MA-0141 11531	NTP-14 NA-0142 11532 -	NTP-15 NA-0143 11533	NTP-16 MA-0148 11536	NTP-17 NA-0149 11537			NTP-18C NA-0152 11540	NT]-18C(D) NA-0153 11541		NTP-22 Ma-0154 11542		NTP-24B NA-0156 11704	-
CELIERI J	l <b>n</b> g/kg		· · ·	. /		$\wedge$		. •															
ALUHINUN	5	5800	4900	9200	2000	5400		$\wedge$											••	· .			
ANTINOŃY Arsenić	4.5 [~] 0.5	21	8.8 J	۲,	Š	3100	4800	600	5900	2400	1400	2100	2500	3100	3500	8400	5100	3300	1700	3300	6100	3200	4300
BARTUN BERYLLTUM CADMTUM	5 0.5				1.2 5	- <del>3</del> 0 J	12/1	^B J	10 3	10 J	6.1 J	63 J	3.6 20	3.1	2.8	1.6	<b>4.4</b> 27	3.7	15 J	3.4 36	10	4.8	4.8
CALCIUM	0.5 16	700 J	600	290	740.	3600	170	7.3						0.6							280	47	26
CHRONTUN Cobal't	1.0 2.0	5.2	7.8 26	11	200	29	10	3000	560 6.3	60	600	670	5800 3.3	860 J 4.5	910 J 6.0		12000 J	3200 J 3.3	720 -	21 5000 J	*	2.2 3000 J	1700 ]
COPPER IRON	1.0 2.0	2.9 5300	4300	5400	206 2400	27	<b>V</b> .		• <b>)</b> ,	12		$\mathbf{i}$	3.9	7.5	6.0 7.9					- 14	83 47	11 7.7	8.4
LEAD MAGNESTUM	0.5 15	730				10300	3600	200	5600	3800	2400	19900	3600	4600	4300	2300	7.4 8700	4.9 3900 -	3900	6.2 8200	660 1700	54 20000	7100
MANGANESE	t	42	920 42	500 30	330 21	1100 361	590 35	990 43	1100	760 <	10	50	20	13	4.9 900	-3.2 3600	8.7 1100	19 680	415 460	360 890	1700	120	24
NERCURY NICKEL	0.02	6				35			$\sim$	45	160	200	<b>y</b>	50	49	42	98	48	70	110	1600 760	700 130	900 120
POTASSIUN Seleniun	100 0.5	430						18			· /		4.9°	580	6.1		9.4	5.5		0.13 7.8	140	30	8.9
SILVER SODIUM	0.8		:							ζ			110	2300	490	490	960	600		670	1000	500	690
THALLIUN	105 1.0	110						920	1100				A0		120	160	180				6.7		
TIN VANADIUN	3.0 2	6.1 9.7	22	26	30	48 .	25	31	26	29	21	35	3.7	5.2	5.1	<u>}</u>		1.50		150	610	300	180
ZINC	1	23 J	23 J	51 J	81 J	205 J	12 J	762 J·	20 50 J	17 J	12 J		6.4	7.3	7.8	/		7.1	31	14 9.1	630 70	70 12	15 9.9
	8	lank spac	E-INDICATE	S COMPOUN	ID WAS NOT	T DETECTED					••••	20 0	110 9	120 J (	56 V	110 3	170 JV	5,3 J	4 J	110 J 1			81 J
		J	- OHANTITA	TEON ADDO											/	/							1

NTP-8 NTP-9 NTP-10 NTP-11A NTP-11B NTP12B NTP-13 NTP-14 NTP-15 NTP-16 NTP-17 NTP-18A NTP18B NTP-18C NT]-18C(D) NTP-20 NTP-22 NTP-24A NTP-24B NTP-26

TABLE D-4 TEST PIT RESULTS-INDRGANICS NOVEMBER 1984 SAMPLING ROUNDS

-DUANTITATION APPROXIMATE DUE TO QUALITY CONTROL REVIEW (DATA VALIDATION) -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIE IN QUAL TY CONTROL REVIEW

-VALUE REJECTED DUE TO DTHER CONTRACTUAL REQUIREMENTS INDENTIFIED IN BUALITY CONTROL REVIEW

NTP-18 NTP-3A

J

ŧ

**

I DL

-INSTRUMENT DETECTION LIMIT

SAMPLE LOCATION

SAMPLE LOCATION TRAFFIC REPORT NUM SAMPLE NUMBER	YER	NTP-27 MA-0158 11706	NTP-28 MA-015 11707			BKGRD MA-0147 11508	BKGRD MA-0145 11535	BKGRD MA-0162 11710	
INDRGANIC Elements	IDL (mg/kg)		. /	/ /	$\sim$				
ALUMINUM ANTIMONY ARSENIC BARIUM DERYLLIUM CADMIUM CALCIUM CHROMIUM COBALT COPPER IROM LEAD MAGNESIUM MANGANESE MERCURY MICKEL POTASSIUM SELENIUM SILVER	5 4.5 0.5 5 0.5 16 1.0 2.0 1.0 2.0 0.5 15 1 0.02 2 100 0.5 0.8	4300 5.7 33 1000 J 4.9 5.9 5500 4.2 920 86 15 970	2000 27 23 1300 J 4.4 6.0 6300 25 700 64 0.21 6.6 540	2340 41 1600 J 3.0 3.0 3.0 3.0 3.0 3.0 0 420 61 6.5 600	2	2000 3 6 1 680 300 800 55	1600 6.5 J 2409 440 45	1800 J 21 380 J 2. 3.000 49 4.4 550	
SODIUM Thallium Tin Vanadium Zi <del>n</del> c	105 1.0 3.0 2 1 3	180 5.8 9.2 30 J	210 6.2 6.9 120 J	100 5.0 6.4 19 J	3		24 3 J	180 5.1 6.7 22 J	

#### TABLE 0-4 TEST PIT RESULTS-INDRGANICS NOVEMBER 1984 SAMPLING ROUNDS

2

BLANK SPACE-INDICATED COMPOUND WAS NOT DETECTED

J

-QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW (QATA VALIDATION) -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW ٠

-VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL **

IDL -INSTRUMENT DETECTION LIMIT

## 030989 С

#### TABLE D-5 SOIL RESULTS-VOLATILE ORGANICS OCTOBER 1985 SAMPLING ROUNDS

SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER		SS-01 AD811 13746	SS-01(DUP) AD812 13747	SS-02 Ad813 13749	SS-03 AD814 13749	SS-04 AD803 13738	SS-05 AD804 13739	55-05 (DUP) Ad805 13740	SS-06 Adb06 - 13741	SS-07 AD807 13742	SS-08 Ad808 13743	SS-09 AD809 13744	SS-10 AD810 13745	55-12 Adb02 13737	BK GRD Adbo1 13736	BLANK Ad799 13712	BLANK Ad800 13713	
VOLATILE ORGANIC COMPOUNDS	CRDL			^														
CROWNIC CONFOUNDS	(ug/kg)		· /	$\sim$												*		
CHLOROME THANE	10														· · ·			
BROMOMETHANE	10			•											•			
VINYL CHLORIDE	10		/	/													. •	
CHLDROETHANE METHYLENE CHLORIDE	10		/ /		1 1	•					•							
ACETONE	5 11					· •/			ŧ			•					15	
CARBON DISULFIDE	5	<ul> <li></li> </ul>		・/	· ' /	1				•	+	ŧ		· •	• •	13 210	15 · 220	
1, I-DICHLORDETHENE	5			$\sim$		/'				. +	•			ŧ		22	15	÷.,
1, 1-DICHLOROE THANE	5		$\mathbf{i}$				$\sim$											
TRANS-1, 2-DICHLORDETHENE	5					-13 <b>K</b>	. )	)			•							
CHLOROFORM	5						$\sim$											
1,2-DICHLORDETHANE 2-BUTANONE	5.					$\frown$			/									-
1,1,1-TRICHLORDETHANE	10 5				ヽ /	( · )	7			$\mathbf{\lambda}$						1 <b>B</b> Q		
CARBUN TETRACHLORIDE	5				$\mathbf{v}$	·/	• )	• /		)						5 J	64 7	
VINYL ACETATE	10			•													·	
BROMOD I CHLOROME THANE	5		,				//		Λ			<b>`</b>						
1,1,2,2-TETRACHLORDETHANE	5						<b>`∕</b>	•	$\langle  $			$\mathbf{i}$						•
1,2-DICHLORDPROPANE TRANS-1,3-DICHLOROPROPENE	5					•		$\sim$	v					•				
TRICHLORDETHENE	5							* \		1	/ _	•	$\mathbf{i}$					
DIBRONOCHLOROMETHANE	5				•				]	/		$\land$	<u> </u>		·			
1, 1, 2-TRICHLORDE THANE	5								$\leq 1$	/			< $/$	$\wedge$				
BENZENE	5								$\sim$		$\wedge$		~/					
CIS-1, 3-DICHLOROPROPENE	5									ζ		< /			$\mathbf{i}$		•	
2-CHLORDETHYLVINYLETHER Bromoforn	10										/	$\checkmark$	•	>		<u>``</u>		
2-HEXANONE	5 10 -				•					-				/ .	•	$\mathbf{X}$		
4-HETHYL-2-PENTANDNE	10							· ·							$\sim$	/		
TE TRACHLORDE THENE	5							· .		•						, ,		
TOLUENE	5			-	•		35	70									•	
CHLOROBENZENE	5 🦂						.1.1	78					$\langle \cdot \rangle$	/				
ETHYLBENZENE Styrene	5													•			• •	
TOTAL XYLENES	6 5													•				
	. 3							28										
DILUTION FACTORS:		1	1	1	1	I				•								
· .					•		1	1	1	1.	1	1	1	1	í	1	1	
		<b>.</b>									-			. *				
A State of the second sec		BLA	NK SPACE-I	NDICATES	COMPOUND	WAS NOT D	ETECTED											
			u , −i € -i	VALUE REJ	ECTED DUE	TO BLANK	DUE TO	QUALITY CON NATION AS II	TROL REVI Dentified	EN (DATA En Dual t	VALIDATIO	N) I DEVIEW		•				•

9686050

DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW ft

-VALUE REJECTED DUE TO DTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW CR**D**L -CONTRACT REQUIRED DETECTION LIMIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LIMIT) -DATA HAS UNDERGONE A QUALITY CONTROL REVIEW: EPA APPROVAL IS PENDING

NOTE

#### TABLE 0-6 SOIL RESULTS-SENI-VOLATILE ORGANICS OCTOBER 1985 SAMPLING ROUNDS

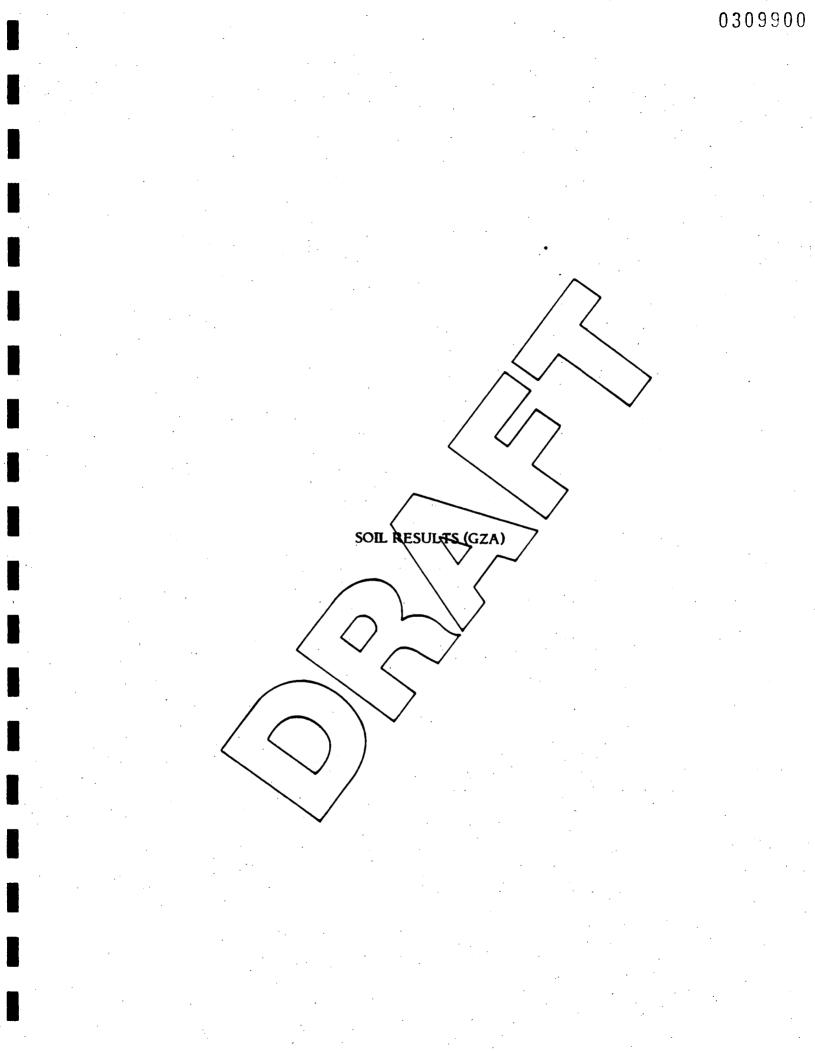
SAMFLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER		SS-01 SS-0110 AD-811 AD-812 13746 13747	AD-813	55-03 Ad-814 _ 13750	SS-04 AD-803 13708	SS-05 AD-804 13739	55-05(D) AD-805 13740	SS-06 AD-806 13741	SS-07 AD-807 13743	SS-08 Ad-808 13743	55-09 Ad-809 13744	55-10 AD-810 13745	SS-12 AD-002 13737	BKGAD Ad-Búi 13736	BLANK Ad-799 13712	BLANK Ad-800 13713	
SENI-VOLATILE ORGANIC COMPOUNDS	CRDL (ug/kg):	· · · ·	,	• .		<u>:</u> .											
	- <b>33</b> .		~														
FHENOL	170									/				•	٠.		
ANILINE	530 330		/							•		· · ·					
1,2-DICHLORDBENZENE	330		/ .		<b>\</b>												
-NETHYLPHENOL	530				$\mathbf{N}$									•			
-METHYLPHENOL	330																
SOPHORONE	330			<u> </u>		$\wedge$		۰.									
ENZOIC ACID	1600		<		1/		<b>N</b> .										
2,4-TRICHLORDBENZENE	330		$\sim$		1/		$\mathbf{N}$										•
AFHTHALENE	330			. /		$\wedge$											
-CHLORO-3-NETHYLPHENOL	330				/	$\sum$	$\backslash \rangle$										
METHYLNAPHTHALENE	330	•		~ /			)	۱.									
TACHLOROCYCLOPENTADIENE	330		1.		~	$\sim$		/									
CHLORONAPHTHALENE	330			ζ					$\wedge$								
NITROANILINE	1600					)	5	/				•					
INETHYL PHTHALATE Xenaphthylene	330				<ul> <li>.*</li> </ul>	/				)							
CENARHTHENE	330				· · /	·	ノン			Ι.	-						
IBENZOFURAN	330 330					$\smallsetminus$ /		/	1	/	~		•				
LETHYLPHTHALATE	330					- <u>Y</u> 2		<	/	/ ·							
UORENE	330				•		$\land$		'			$\mathbf{i}$					
-NITROSODIPHENYLANINE	330		•				$\sim$		- 1								
IENANTHRENE	330											· ·	$\overline{}$				
THRACENE	330							<b>L</b> .		1	- <u>C</u>	$\mathbf{i}$	_ % ~				
-n-BUTYLPHTHALATE	330									/		$ \land \land$	//				
UORANTHENE	330								$\sim$ /	· ,	~20	$\mathbf{x}$	· (				
RENE	330					•							120			•	
TYLBENZYLPHTHALATE	330									$\sim$		~	160 J 🔪	•		•	
NZO (A) AN THRACENE	330													-	)	i i	
s.(2-ETHYLHEXYL)PHTHALATE		32000 J 46000 J	ŧ							•				$\wedge$			
RYSENE	330							-	•	•	Ŧ	•	/	1	N.	1100	
n-OCTYL PHTHALATE	330						•						· .	/			
NZO(b)FLUORANTHENE	330		•														
NZO(k)FLUORANTHENE	330				•								$\langle / \rangle$				
NZO(a)PYRENE	330												$\mathbf{v}$				
•																	
• •			•														
DILUTION FACTORS:																	
ALCOLUM INCLUND:		4 1	1	1	1	1	1	1	1	1	1	1	1	· 1			

-QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW (DATA VALIDATION) J. .

- -VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW **
- -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW CRDL
- -CONTRACT REQUIRED DETECTION LIMIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LIMIT). NOTE

030989

-1


-DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

#### TABLE 0-7 Soil Results-pesticides/pcbs DCTOBER 1985 SAMPLING ROUNDS

SAMPLE LOCATION TRAFFIC REPORT NUMB SAMPLE NUMBER	ER	SS-01 AD-811 13746	SS-01(D) AD-812 13747	55-02 AD-013 13749	SS-03 AD-814 13750	SS-04 AD-803 13708	AD-804	SS-05(D) AD-805 13740	SS-06 AD-806 13741	SS-07 AD-807 13743	SS-08 AD-808 13743	SS-09 AD-809 13744	SS-10 AD-810 13745	SS-12 AD-802 13737	BK6RD AD~801- 13736	BLANK Ad-799 13712	BLANK Ad-Boo 13713
2	, CRÓL (ug/Kg)		•	· .		• •	÷										
				• /	$\sim$							•					
ALPHA-BHC BETA-BHC	0.05 0.05	. •												_			
DELTA-BHC	0.05													56			
GAMMA-BHC (LINDANE)	0.05	•			$\wedge$												
HEPTACHLOR	0.05			· .	/ \	· \											
ALDRIN	0.05	•			. )	1			•								
HEPTACHLOR EPOXIDE	0.05					/											
ENDOSULFAN 1	0.05						/										
DIELDRIN	0.10				- 		· .	~	· \						. •	•	
4,4-DDE Endrin	0.10	•		$\mathbf{i}$		//		$\sim$									
ENDOSULFAN 2	0.10 0.10	•															
4,4-DDD	0.10					/	~	$\sim$				•		•			
ENDRIN ALDEHYDE	0.10				<		/				$\sim$						· ·
ENDOSULFAN SULFATE	0.10					$\smallsetminus$ /	)	Γ	<b>-</b> .								
4,4-DDT	0.10					v			/		1						
NETHOXYCHLOR	0.5		:				1										·
ENDRIN KETONE	0.10									$\boldsymbol{\Lambda}$			~				
CHLORDANE	0.5					•		<b>۲</b>		< 1					•		
TOXAPHENE	1.0								$\wedge$	V	/ ·						
AROCLOR-1016 Aroclor-1221	0.5				•						1	<u> </u>		$\mathbf{i}$			
AROCLOR-1232	0.5 0.5	i e		, ·						)	1.	/	$\wedge$		•		
AROCLOR-1242	0.5									L	I /			< $/$			
AROCLOR-1248	0.5				÷							•		$\sim$	$/$ $\setminus$	<u>.</u>	
AROCLOR-1254	1.0		**		460					v		3/00				$\mathbf{i}$	•
AROCLOR-1260	1.0											430	$\searrow$	:	$\mathbf{b}$		
DILUTION FACTORS:		20	20	1	4 ·	1	ł	1	Ĩ	1	1	1	1	1	/ ₁	$\wedge$	$\sum_{i}$
•																	
· ·			BLANK SPAC							•							· .
			J	-QUANTI	IATION IS	APPROXIM	ATE DUE T	O QUALITY	CONTROL	REVIEW(DA	TA VALIDA	TION)		$\mathbf{\mathbf{N}}$	/		
1			•							FIED IN O				$\sim$			
· ·												ALITY CON					
			CRDL Note	-CONTRAC -DATA HA	CT REQUIRE	ID DETECTI	ION LINIT Lity cont	(MULTIPL) Rol Review	Y BY DILU 1; EPA AP	PROVAL IS	OR TO OBT PENDING.	AIN SAMPLI	E DETECTI	ON LIMIT).	•		• •

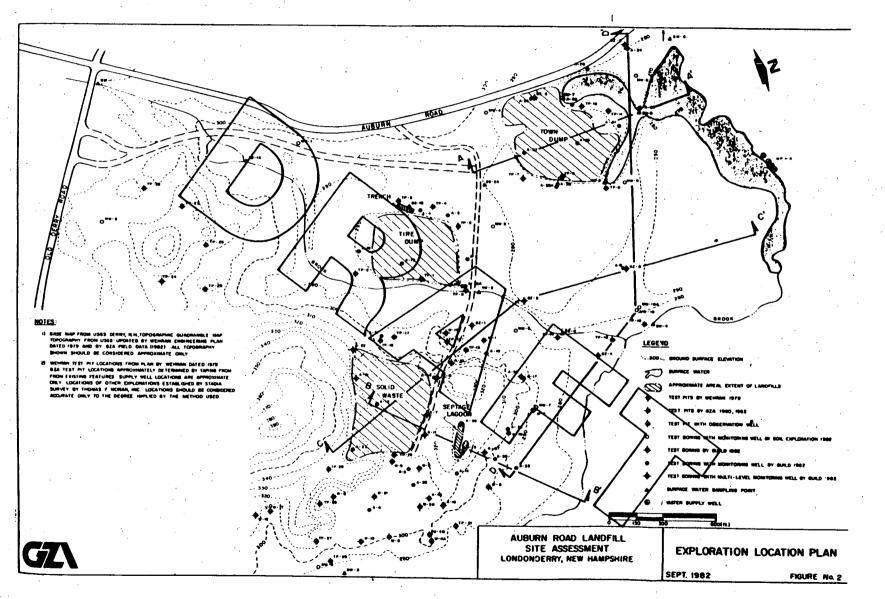

· ·					•	SOIL RES 1985 S	ULTS-INOP Ampling F	RGANICS Round	:					• •					
SAMPLE LOG TRAFFIC REPO SAMPLE NU	)RT. NUMBI Imber		SS-01 AD-811 13746	SS-01(D) AD-812 13747	SS-02 Ad-813 13749	SS-03 AD-814 13750	SS-04 AD-803 47(18	55-05 10-804 13 39	SS-05(D) Ad-805 13740	SS-06 AD-806 13741	SS-07 Ad-807 13743	<b>55-08</b> A <b>D-808</b> 13743.	SS-09 AD-B09 13744	SS-10 AD-810 13745	S5-12 Ad-802 13737	BK6RD AD-801 13736	- BLANK Ad-800 13712	BLANK Ad-795 13712	
INDRGANIC EL	EMENTS	CRDL (mg/kg)				/	´ · . )						-						
ALUMINUM ANTIMONY ARSENIC		20 6	5700	4500	4000	2900	3100	360	3700	2300	11200	5900	2700	5400	2700	5200	9100	10600	
BARTUM BERYLLTUM CADMTUM		20 0.5 0.5		5.1					$\sim$	Ľ	)		3,8. 94	3.4	9.4		83	86	
CALCIUN Chroniun Cobalt		500 5	.7	• •	900 J 7	3 810 J 10	<	910	850	5	5 1300	9	2300	2	970	900 13	29800 14	23000 18	
COPPER IRON LEAD		2.5 10 0.5	6100	4800	8200	37 15400	 410û	<b>48</b> 00	4500	3000	12200	1330	14	8000		5			
HAGNESIUN NANGANESE MERCURY		500 1.5 0.02	6.2 133	17 83	15 870 75	_ 14 91	14 47	1.7 900 55	2.1 64	26	12 1900 290	1100	50	3 1200 82	870	11000 3000 184	21000 33 6600 592	22000 28 7000	
NICKEL POTASSIUM SELENIUM		4 500 0.5		1 <b>30</b> 0	0.10		•	896	1100	2000	1900	1000	0.18	1800	920	0.01	0 16 20 2600	735 0.09 23	
SILVER Sodiun Thallium		1		•	• •	4.2 2300	•				. 9		ζ,			1000	$\mathbf{Y}$	2100	
TIN VANADIUM ZINC	·	1 5 2			26		35	•			32		47	17			7400	2100	/
			56	62	40	173		. 56 .				37	203	12		Ĕ	5	68	
· . ·	•			-	-QUANTIT/ -VALUE RE	VIION IS A Ejected du	ipproximat Ie to blat	FE DUE'TO Ne contam	QUALITY C	IDENTIEL	CO IN DU	ALTTY COM	100. 00.00	•					
	•								CTUAL REQU				LITY CONTR	REVIEW	•		•		

TABLE 0-8



#### REVIEW OF TEST PIT DATA FROM GOLDBERG, ZOINO AND ASSOCIATES, INC. (GZA)

All samples for volatile organic analysis were sollected as duplicates in eight-ounce glass containers, sealed with aluminum foll liners, and secured with silicone rubber-lined screw caps (GZA, 1983). In a letter from the state of New Hampshire (NH, 1983), GZA was notified that improper sample containers were utilized. Samples were refrigerated immediately after collection and later frozen prior to shipment to Normandeau Associates, Inc. (NAI), the laboratory contracted to conduct the analyses. Information was not presented for field blanks, duplicates, or chain of custody.



#### TABLE D-2

#### TEST PIT SOIL SAMPLES PURGEABLE ORGANIC ANALYSIS RESULTS

			TP-37	TP-44	TP 50	TP-53	TP-53
		Sample No.	7"	5'	7.	2'	6'
		Laboratory	NAI	NAI	NAI	NAI	NAI
		Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS
	COMPOUNDS	Sampling Date	1/18/83	1/18/83	1/18/83	1/18/83	1/18/83
1.	Chlorometha	ne		· ·	•		
2.	Bromomethan	6	· · ·	1			
3.		luoromethane		1	$\land$		
4.	Vinyl chlor	ide		1		$\Sigma$	1
5.	Chloroethan					1	
6.	Methylené ci	hloride	34	110	230	42	60
7.	Acrylonitri	le			7		
8.	Trichlorofly			28	6		+
9.				<u></u>	$h \vee \rightarrow$		
10.	1,1-dichlor		· ·	57 /			+
11.		ichloroethylene		40	6	34	300
12.	Chloroform				$/ \wedge$	1	
13.	1,2-dichlor	bethane					
.14.	1,1,1-trich			120		6	4
a15.							······
-16.	Bromodichlo						+
.17.	1,2-dichlore				$ \rightarrow $		
18.		ichloropropylene	/				
19.	Trichloroeth	vlene	<del>_</del>	24	Id	12	110
20.	Benzene		<u>/</u>	88	12	· · · · · · · · · · · · · · · · · · ·	110
21.	Dibromochlos	comethane					19
		loropropylene			f		
23.	1,1,2-trich1				<u> </u>	+	
.24.	Bromoform		$\neq \rightarrow$	$\vdash$		÷	···
.25.		rachloroethane				1	
.26.	Tetrachloroe		$\overline{\langle 1 \rangle}$	507			
27.	Toluene			19	220	110	1300
28.	Chlorobenzer				590	6	140
-29.	Ethyl benzer		$\overline{}$		1000	1	
	Bis-chlorome				1200	· · · · · · · · · · · · · · · · · · ·	87
31.	2-chloroethy	1 vinyl ether	$\rightarrow \rightarrow \rightarrow \rightarrow$		<u> </u>	+	+
32.	Acrolein					<u> </u>	
	ADDITIONAL			,	I	L	
	Xylenes				200	1	70
	Methyl ethy	1 ketone	/			t	1
			/			<del> </del>	<u> </u>
			<u> </u>			<b></b>	<u> </u>
						I	<u> </u>

HOTES: 1) All results in parts per billion (ppb).



#### TABLE D-2

#### TEST PIT SOIL SAMPLES

PURGEABLE ORGANIC ANALYSIS RESULTS

			TP-57	TP-58	TP-59	<b>TP-62</b>	<b>TP-7</b> 0
. *	•	Sample No.	5.5'	7.	4'	7.	8'
	-	Laboratory	NAI	NAI	NAI	NAI	NAI
		Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS
	COMPOUNDS	Sampling Date	1/28/83	1/18/83	1/18/83	1/18/83	1/18/83
1.	Chlorometha	R®	2				
2.	Bromomethan						
3.	Dichlorodif	luoromethane			•		
4.	Vinyl chlor:	ide					83
5.	Chloroethan			15		360	
6.	Methylene cl	hloride	61	43	74	> 31	60
7.	Acrylonitri	le					
8.	Trichlorofly	uoromethane	7	6	$\overline{7}$		
9.	1,1-dichlord	pethylene			1/	$\overline{\mathbf{x}}$	
10.	1,1-dichlore		220	240	320	440	63
11.	Trans-1,2-di	ichloroethylene	610	330	3400	310	550
12.	Chloroform	· •				X 7	
13.	1,2-dichlord		-	3/	6	5	
14.	1,1,1-trichl	loroethane	420	39.0	560	970	15
15.	Carbon tetra	chloride		17 6			
16.	Bromodichlor	comethane			1	1	
.7.	1,2-dichlord	opropane				-	
.8.	Trans-1,3-di	chloropropylene					
19.	Trichloroeth	ylene	260	130	870/	110	30
20.	Benzene		10	2			43
1.	Dibromochlor	comethane					
2.	Cis-1,3-dich	loropropylene			1/		
23.	1,1,2-trich]				*	-	
24.	Bromoform				†	1	- 1
25.	1,1,2,2-tetz	achloroethane			1		
6.	Tetrachloroe	thylene /	480	270	2700	78	190
27,	Toluene			11	340	160	2400
8.	Chlorobenzen		$\zeta$	7	9		
19.	Ethyl benzen			1	28	17	650
0.		thyl ether	<u> </u>		1		
1.		1 vinyl ether					
2.	Acrolein		$\overline{\mathbf{X}}$	Ŷ	1		
	ADDITIONAL	$\square$		_	• · · · · · · · · · · · · · · · · · · ·		
	Xylenes	$\leq$ $\langle$ $\rangle$		140	120	120	2600
	Matherl Stherl	Yathan V			T		111 000

- VATEIIES		140	120	120	2000
Methyl Ethyl Ketone				1	11,000
	V				
	· ·	e.			

NOTES: 1) All results in parts per billion (ppb).



#### 0309905

#### TABLE D-4

#### WATER QUALITY DATA

#### INORGANIC ANALYSES

	the second s								
	Station No.	TP-38	TP-54	TP-58	TP-60	TP-72	TP-43	TP-44	TP-47
PRIORITY	Laboratory	NAI	NAI	NAI	NAI	NAI	NAI	NAI	NAI
POLLUTANT	Analysis by	AA	AA	AA	AA	AA	AA	AA	AA
ETALS	Sampling on	1/18/83	1/18/83	1/18/83	1/18/83	1/18/83	1/18/83	1/18/83	1/18/83
	· ·					•			
Antimony		<2	<2	<2	<2	<2	. <2	<2	<2
Arsenic		<5	<5	<5	<5	<5	<u>∧ 30</u> .	<5	15
Beryllium		<1	<1	<1	<1	<1 /	71	<1	· <1
Cadmium		1.8		2.9	<0.5	4.3	×0.5	<0.5	1.8
Chromium	· · · · · · · · · · · · · · · · · · ·	11	13	<5	17	30	<<5	6	15
Copper		<5	<5	<5	<5	6	25	<5	<5_
Lead		13	< 5	<5	<5	<<5 /	<5	<5	<5
Mercury *		0.7	<0.2	<0.2	220	1.1	0.3	>0.3	330
Nickel		13	73	43	<5/	29	X	/13	52
Selenium		<5	<5	<5	<5	/<5	<5	< < 5 < ≤	<5
Silver		<1	<1	<1	/<1	$\overline{\Lambda}$	<1	<1	<1
Thallium		<2	<2	<2	/ <2 <	/<2/	<2	<2	<2
Zinc		. 210	280	2100	110	2000	17	39	270
Barium						$\rightarrow$	· · · · ·		
Aluminum Barium Boron Calcium Cobalt Iron									
Barium Boron Calcium Cobalt Iron Manganese									
Barium Boron Calcium Cobalt Iron Manganese Magnesium									
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium									
Barium Boron Calcium Cobalt Iron Manganese Magnesium									
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional	Parameters								
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/			1414	707	650	725	419	1438
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/			1414		650 5.16	725		
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/						····		
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/						····		
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/						····		
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/						····		
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/						····		
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium Additional Conductivi	/						····		
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium	/						····		

Report analyses for mercury conducted on samples from TP-47 and TP-60 on 2/14/83. Results indicated mercury levels <0.2 ppb.



# APPENDIX P

0309906

1 •

#### **GROUNDWATER SAMPLING**

#### SECTIONS IN APPENDIX P

GROUNDWATER SAMPLING METHODOLOGY

- GROUNDWATER RESULTS (NUS)
- RESIDENTIAL/SUPPLY WELL RESULTS (NUS)
- HISTORICAL DATA SELECTED WELLS
- GROUNDWATER DATA (STATE OF NEW HAMPSHIRE)
- GROUNDWATER DATA (E & E)
- GROUNDWATER DATA (EPA)
- GROUNDWATER DATA (GZA-GCA ANALYSES)
- GROUNDWATER DATA (GZA-RAI ANALYSES)
- GROUNDWATER DATA (GZA-PEL ANALYSE)

TABLES IN APPENDIX P

P-1 GROUNDWATER RESULTS - VOLATHE ORGANICS (1984) P-2 GROUNDWATER RESULTS - SEMIVOLATICE ORGANICS (1984) P-3 GROUNDWATER RESULTS - PESTICIDES/PCBS (1984) P-4 GROUNDWATER RESULTS - INORGANIOS (1984) P-5 GROUNDWATER RESULTS - VOLATILE OR CANICS (1985) P-6 GROUNDWATER RESULTS-SEMIVOLATIVE ORGANICS (1985) P-7 GROUNDWATER RESULTS - PASTICIDES/RCBS (1985) P-8 GROUNDWATER RESULTS - INDEGANICS (1985) P-9 AUBURN ROAD - BESIDEN JIAL SAMRLE SUMMARY (3-19-85) P-10 AUBURN ROAD - RESIDENTIAL WELL SAMPLING (3-19-85) P-11 AUBURN ROAD - RESIDENTIAL SAMPLE SUMMARY (7-9-85) P-12 AUBURN ROAD - RESIDENTIAL WELL SAMPLING (7-9-85) P-13 AUBURN ROAD - RESIDENTIAL SAMPLE SUMMARY (10-85) P-14 AUBURN ROAD - RESIDENNAL WELL SAMPLING (10-85) P-15 GROUNDWATER RESULTS - OC CHECK OF CLP DATA P-16 WHISPERING (INES TRAILER PARK - SUPPLY WELL SAMPLE SUMMARY P-17 AUBURN ROAD PUMP TEST SAMPLING (11-15-84) P-18 WHISPERING PINES RAILER PARK - SUPPLY WELL SAMPLING (4-11-85) P-19 WHISPERING RINES TRAILER PARK - SUPPLY WELL SAMPLING (6-20-85) P-20 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (7-9-85) P-21 WHISPERING PINES PRAILER PARK - SUPPLY WELL SAMPLING (8-23-85) P-22 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (10-9-85) P-23 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (11-20-85) P-24 HISTORICAL DATA - VOLATILE ORGANIC ANALYSIS P-25 HISTORICAL DATA (GZA) - PHYSICAL CHARACTERISTICS

### GROUNDWATER SAMPLING METHODOLOGY

0309909

#### Groundwater Sampling

The primary consideration to conducting groundwater sampling at the Auburn Road Landfill Site was to obtain representative samples of groundwater. It was important that the groundwater sample was guarded against mixing the sample with stagnant (standing) water in the well casing. In a nonpumping well, there would be little vertical mixing of water and stratification would occur. The well water in the screened section would mix with the groundwater due to normal flow patterns, but the well water above the screened section would remain isolated and become stagnant. Sampling stagnant water would thus introduce contaminated material inadvertently or deliberately introduced to the well from the surface. This would lead to nonrepresentative data and allow misleading interpretation of the results. NUS/FIT's sampling methodology for obtaining groundwater quality data from the Auburn Road Landfill Site shall be discussed below.

The groundwater monitoring wells were inspected to ensure that the cap to the wells were locked and the wells were secure. Unsecured or vandalized wells were noted and recorded in the project logbook. The monitoring wells were opened and ventilated for two to three minutes. A Poxboro Century Systems Organic Vapor Analyzer (OVA) Model 128 was utilized to monitor the well hole for volatile organic compounds above background levels. In cases where readings were obtained on the OVA above background levels, the field sampling team upgraded their respiratory protection.

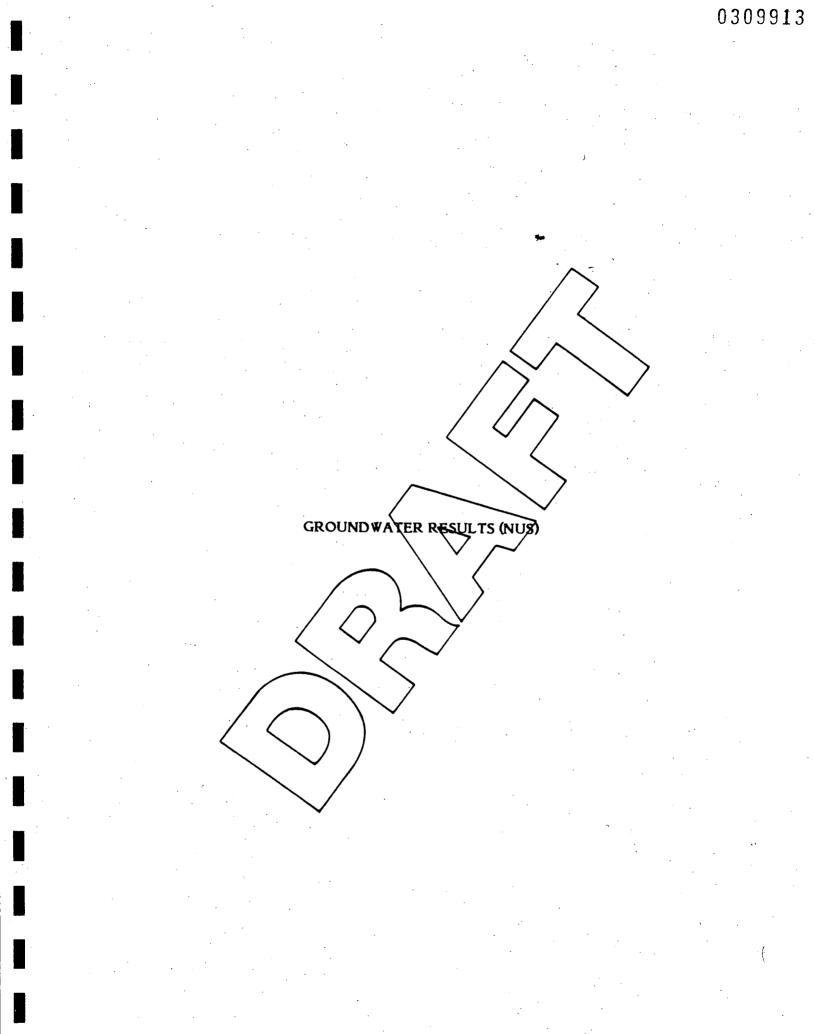
The interior diameters of the wells were measured with a tape measure and recorded in the project logbook. The total well depths were determined and recorded by dropping a plopper attached to a measuring tape and recording the depth at which the lines became slack. Static water levels were determined using an electronic water level indicator. The height of the water column in the well was determined and recorded in the project logbook by subtracting the static water level from the total well depth. The chalk steel tape method consisted of a steel measuring tape with an attached bell-shaped hollow weight plopper on the bottom.

D 1

The measuring tape was chalked (from a desired length) to the bottom of the tape. The chalk tape was then lowered into the well and measured from the top of the PVC casing (hold). The tape was withdrawn quickly and the wetted chalk area (cut) was subtracted from the hold to determine the static water level in the well. The value to evacuate (purge) one well volume of water was determined and recorded using the following equation:

 $V = R^{2}h(0.163)$ 

V = Volume of water in the well (gallons)
 R = Interior vadius of the well (inches)
 h = Height of standing water (feet)
 0.163 = a conversion factor constant which compensates for the conversion of the casing radius from inches to feet, the conversion of cubic feet to gallons and pi


The groundwater monitoring well was then purged by pumping or hand bailing with a stainless steel check value bailer, which was dependent on the availability of equipment and the depth of the static water level. Whenever possible, the well was purged with either a contrifugal, gasoline or submersible pump by placing the pump's hose at the bottom of the well and slowly moving it towards the top so as to ensure complete evacuation of the standing water. One well volume was removed from the bottom of the well, one from the middle, and approximately three well volumes were removed from the top (near the static water level). In some cases, five (5) well volumes could not be removed from the monitoring well, therefore, the well was pumped to dryness, then allowed to recharge to 75% of its initial static water level before sampling. The intent of pumping an excess of five well volumes from each well was to ensure that the standing water had been evacuated from the well and the water being sample was representative of the aquifer. PH and conductivity was measured prior to sampling with a Myron-L pH and conductivity meter until measurements had stabilized. The sampling equipment was decontaminated prior to use and between wells with a deionized water, methanol, and deionized water rinse to prevent cross contamination. Sample collection occurred after the well had recharged to a minimum of 75% of its initial static water level. Blank and duplicate samples were collected to assess field sampling and laboratory analytical quality control. Some samples were also split (duplicates) with the owner of the Whispering Pines Mobile Home Park. The groundwater samples were obtained from each well with a stabless steel check valve bailer placed at the center of the well screen and poured into the appropriate sample container depending on the analysis.

Groundwater samples collected for volatile organic analysis were collected in two 44 milliliter (ml) glass septumed VOA vials and preserved with 100 microliters (ul) of a 7,000 ppm mercuric chloride (HgCl₂) solution resulting in a final concentration in the sample of 16 ppm. Samples collected for inorganic (metal) analysis were collected in a one liter polyethylene bottle and preserved with a concentrated nitric acid (HNO₃) to a final pH of less than two. Groundwater samples were collected for extractable organic and pesticide analysis in two 80 ounce amber glass bottles. All samples were decontaminated with a deionized water, alconox, and a final deionize water rinse. The samples were stored on ice in coolers at 4°C. Proper chain of custody was maintained throughout the sampling process until relinquished to the appropriate EPA contrast laboratory or through delivery by Federal Express.

#### Residential Tap Water Sampling

Site access for the purpose of collecting residential tapwater samples was obtained by NUS/FIT via site access agreements with private landowners. Residential tap water sampling was conducted at the Auburn Road Landfill Site to assess the threat to the human health and extent of contamination migration in the overburden and bedrock aquifers which serves as a drinking water supply for the residents along Auburn Road, Old Derry Road, and Bypass 28. The Whispering Pines Supply Wells 1 and 2 serves over 250 residents in the Whispering Pines Mobile Home Park as a drinking water supply. Well depth, casing size and holding tank volume information were obtained from the private resident, if known. The system was evacuated three to five well volumes or if the well depth, casing size or holding tank were not known, then the tap was opened and allowed to run for 15 to 30 minutes. Samples were collected prior to any filtering process (water softeners or filters), aerator, or holding tank. All relevant sample information was recorded on a sequentially numbered well record form and referenced in the project logbook.

All samples were collected in a "grab" fashion. The samples were collected in two 44 milliliter (ml) glass septumed VOA vials for volatile organic analysis. All containers were preserved with a 100 misroliters of 7,000 ppm mercuric chloride (HgCl₂) solution to a final concentration of 16 ppm after sample collection. Samples were decontaminated after collection with a deionized water rinse. All field results were recorded on sample cards and tags, and then recorded in the project logbook The sample tags were attached to the VOA vials and stored on ice in a sample cooler. Proper chain of custody was maintained throughout the sampling process. Samples were analyzed for volatile organic compounds on the Hazardous Substance List by Las Chromatograph/Mass Spectrometry at the EPA's New England Regional Vaboratory in Lexington, Massachusetts. Samples designated for NUS/FIT's in-house analytical screening for volatile organic compound analysis on a Photovac 10A10 gas chromatograph were relinquished to NUS/FIT personnel at the EPA's Lexington Laboratory.



			GRDUNDWA 1984 sa	TER RESUL	BLE P-1 TS-VOLATI UND(VALUE)	LE GRGANI S IN ug/L	ES )								÷	· .			•.		
SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER REFERENCE	A-41 AA-397 11985 F	A~45 AA-064 12045 E	A-46 AA-685 12046 E	A-48 AA-067 12053 D	A~46-D AA-068 12054 D	NUS-1-1 AA-375 11949 C	NU5-1-2 AA-621 11989 F	NUS-1-3 AA-374 11940 C	NUS-2-1 .AA-373 11947 E	NUS-2-2 AA-372 11945 C	NUS-2-3 AA-385 11946 F	NUS-3 AA-371 11916 C	NUS-4 - AA-622 11650 - F	62-1-1 AA-337 12077 A	62-1-2 AA-338 12078 A	67-1-2 AA-387 11938 F	62-2-1 AA-363 12084	67-2-2 AA-363 12090	62-3-1 AA-340 12100	62-3-2 AA-341 12107	62-5-1 AA-342 12079
VOLATILE ORGANIC COMPOUNDS				. [		• .						-		"		г. ,	A	8	A .	A	A
CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE ACETONE	41 J ⁻			/	$\hat{\mathbf{C}}$		<u>/.</u>	10 1	10 J 190	10 } • 320	13 J 4 160 J	ŧ	• • •		t	82 j 26 j		•	ŧ	•	- 120
CAKBUN DIGULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHANE 7KANS-1,2-DICHLOROETHENE CHLOROFORM	8J 44J		20 3				25 520 J	310	140 3 50	5 J 43 810	48 J 760 J	32 18	16 J 290 J	* 420	* 420	71 J 450 J			*	, <b>∗</b> SjJ	# 34 73 71
1,2-DICHLORDETHANE 2-BUTANONE 1,1,1-TRICHLORDETHANE Carbon Tetrachloride VINYL ACETATE						$\checkmark$	34/3	50	5 32 310 2	7 526 38	51 J 1100 24 J	27 J	28 J 12 J	<b>#</b>		72 J 2600 J 6 J	ŧ,		•	•	• 280
BRONDDICHLORUNL THANE 1, 1, 2, 2-TETRACHLORDETHANE 1, 2-DICHLOROPROPANE TRANS-1, 3-DICHLOROPROPENE	х							5 0	51	5 J						в J					
TRICHLOROETHENE DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE BENZENE CIS-1,3-DICHLOROPROPENE			·		· .	· · · .	35 J	55	20	23	27 3	¹¹		$\swarrow$		10 J		•			66
2-CHLOROETHYLVINYLETHER BROMOFORM 2-HEXANDNE 4-METHYL-2-PENTANDNE						• .			10 J	16			v	/	] .	$\sim$	>				
CHLOROBENZENE Ethylbenzene	12 J		60 J	·			15 J 11 J	14 5 J	37 10 240 9	12 350	69 J 14 J 410 J 17 J	ίζ	61 J	500 3	500 J 4600	240 J 6500 J B J			10 J 77	10	42
STYRENE TOTAL TYLENES								5 J	24		48 J		7 J	250 J	250 J	74 J · 160 J			5 J		
DILUTION FACTOR:	1.	1	ì	Í.	1 .	1 -	1	I	1	1	1	1	1	50	50	1	1	1		1	1
		J.	-INDICATES -QUANTITAT -VALUE REJ -VALUE REJ :::DICATES	IDN IS AN ECTED DUN ECTED DUN	PPROXIMATE To blank To dther	E DUE TO E Contanin Contract	DUALITY CO NATION IDE TUAL REDUI	NTIFIED I REMENTS I	IN QUALIT	Y CONTROL D IN DUAL	REVIEW	DL REVIEN									

0309914

1.2.1.1.1.1.1.1

INDICATES THE SPECIFIC DETECTION LINIT AND BLANKS (AT END OF TABLE) ASSOCIATED WITH A SAMPLE

#### TABLE P-1 GROUNDWATER RESULTS-VOLATILE ORGANICS 1984 SAMPLING ROUND(VALUES IN ug/L)

•	SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER REFERENCE	62-5-2 AA-370 11917 C	67-8-1 AA-343 12097 A	67-8-2 AA-383 11914 F	62-9-2 AA-344 12102 A	GZ-9-3 AA-367 11911 C	62-9-4 AA-358 11913 C	67-10-1 AA-345 12100 A	62-10-2 AA-346 12101 A	67-10-3 AA-369 12912 C	67-11-1 AA-347 12083 A	GZ-11-: AA-364 12091 B	2 GZ-11-2(1 AA-365 * 12092 B		NW-3 AA-389 11944 F	HW-4 AA~349 12080 A	MW-4(D) AA-350 A	NW-6 AA-386 11986 F	MW6(D) AA-399 .11987 F	MW-7- AA-360 12087 B	MW-8 AA-388 12098 F	MW-9 AA-351 . 12104 [.] A	
	VOLATILE ORGANIC COMPOUNDS			•						•								•		-	•		
•	CHLOROMETHANE BROMUMETHANE VINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE		•	_		)	10 J 85 J	<u> </u>	_	10 J	•			•				· ·	_14 J _		•	•	
	ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHANE TRANS-1,2-DICHLOROETHENE	*	*	14 J			43	´`\ _`\	Ç	130	ŧ	• 5 J 12	5 J 14 J	•	•	* *	. •	•	• 16 J	* *	*	* *	
	CHLOROFORM 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE	 ,	39	320 J 34 J 410 J 14 J		<b>,</b>	1000 51 .190 42	140/0	55	9 2226		300 19 35	360 J 22 J		·	•		110 J 420 J	130 J 20 J 630 J	•	100 J 77 J 120 J	7	
	CARBON TETRACHLORIDE VINYL ACETATE BROMODICHLOROMETHANE 1,1,2,2-TETRACHLOROETHANE 1,2-DICHLOROPROPANE			. ,			5 J		$\langle$		$\langle \mathcal{J} \rangle$		41.3				۰,	•	-	,	170 J		
1	TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE DIBROHOCHLOROMETHANE 1,1,2-TRICHLOROETHANE	```		9 J			44	51	5 J	6		n	32 1	$\mathbb{S}$	$\swarrow$			. ·	۔ بر م	· · ·	9]		•
( 2 8	BENZENE CIS-1, 3-DICHLDROPROPENE 2-Chlordethylvinylether Bromoform 2-Hexanone		. ·				8			·	• .				/	]. 	$\sim$	>				•	
4 T T C	-NETHYL-2-PENTANONE £ Iracial ordethene Oluene Hlorobenzene	5 J	5 J	96 J			10 J 11 14 80		10 J 10 J 5 J 41	10 J 15 . 5 J 56		5	6 J					52 J 850 J	51 J 870 J	• .	31 J	10 J	
S	THYLBENZENE TYRENE DTAL XYLENES	••	i	4 J _	,		5 J 13 ·	5 J	5 J 5 J	5 J 5	•	• •						33 J 13 J	14 J,		· ·	•	
	DILUTION FACTOR:	i	1	. 1	1		1	1 2	1	1	1.	i ~	1	1	1 - ,	1 I.	<b>1</b> .	1	1	1	1	i f	:
	· · · · · · · · · · · · · · · · · · ·			·	* -V it -V	UANTITATI ALUE REJE ALUE REJE	ion is Af Ected Due Ected Due	PROXINATE TO BLANK TO OTHER	DUE TO O CONTAMIN CONTRACT	ATION AS UAL REDUI	IDENTIFIE Rements i	D IN QUA	A VALIDATI LITY CONTR ED IN QUAL	IDL REVIEW	IL REVIEN	<b>.</b> .					• •		

REFERENCE -INDICATES THE SPECIFIC DETECTION LIMIT AND BLANKS (AT END OF TABLE) ASSOCIATED WITH A SAMPLE

		· · ·					•						•						-
			Ň				GRDUNDW/ 1984 SA	ATER RESU	TABLE P- Ilts-vola Round (val	1 ITILE'ORGA VES IN UÇ	NICS J/L)	•					•		
	SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER REFERENCE	MW-9(D) AA-352 12105 A	NW-10 AA-353 12099 A	MW-10A AA-354 12103 A	N-1 AA-390 11939. F	₩-2 AA-381 12095 C	W-3 AA-382 12110 C	W-3(D) AA-366 11910 Ĉ	AA-40	0 AA-39	1 AA-36	1 AA-362				· . ·			
	VOLATILE DRGANIC COMPOUNDS				/										-* -				
	CHLOROME THANE	•																	
	BRONDNETHANE	·			/*	$\wedge$													
	VINYL CHLORIDE CHLORDETHANE				· /	$^{\prime}$ $^{\prime}$					24								
i.	METHYLENE CHLORIDE	•	• '			.)	. )	$\wedge$	~	_	10 J	· ·		·				· .	
	ACETONE CARBON DISULFIDE	ŧ	• 1	<u>/</u> .		./	::/	<i>[</i> ,	$\mathbf{X}$	•					•				•
	1,1-DICHLORDETHENE			55				/			-	•							
· 1	I, I-DICHLOROETHANE			. 33			/./	с. /		Δ.	540	32 J							
	IRANS-1,2-DICHLORDETHENE	6						- ' <b>X</b>	、)	45	1000 190	70 J 460 J	•					•	
	CHLOROFORM					. /	/ ·	$\wedge$	$\sim$	<u> </u>	170	100 J							
	-BUTANDNE		•	•		_, <	_ /	'			/	$\sim$ $^{\circ}$			÷.,	•			
	, 1, 1-TRICHLORDETHANE			5 J		••	$\checkmark$	· ]		690 L	240	730							·
	ARBON TETRACHLORIDE Invl acetate						-	1			240	130							
	ROMODICHLORONETHANE							$\mathbf{X}$			1		~						
1	, 1, 2, 2-TETRACHLORDETHANE								$\checkmark$		</th <th></th> <th></th> <th>$\overline{}$</th> <th></th> <th></th> <th></th> <th></th> <th></th>			$\overline{}$					
1	, 2-DICHLOROPROPANE									$\sim$									
	RANS-1, 3-DICHLOROPROPENÉ Richlordethene									•				~			,		
	I BRONDCHLORONE THANE		•••		• • •					370 J	440	470 3	<u>ا</u> ر ا	$\langle \setminus$	<u>)</u>				
.  1	1, 2-TRICHLORDETHANE													$\langle \rangle$	$\checkmark$ /	$\overline{}$			
	NZENE											1	$\wedge$	<u> </u>				· · ·	
2-	S-1, 3-DICHLOROPROPENE Chloroethylvinylether													$\checkmark$		>	$\mathbf{N}$ .	- ·	
BR	OMDFORM											•						• •	
	HEXANONE	•											•				$\searrow$		
TE	NE THYL -2-PENTANONE Trachlorde Thene	10 J		5 J ·		•	-	•				•.					•		
. TO	LUENE	÷		• J J	7 .	5 J		5]	11 1	630 J	170	14 J						· ·	
	LOROBENZENE								11 J	22	1	110 J			$\smallsetminus$ /				
	HYLBENZENE Yrene														$\mathbf{v}_{\mathbf{r}}$				•
	TAL XYLENES							·		·									
		-														•			
	DILUTION FACTOR:	1	1	1	1	1	1 .	1	1	1	1	ł							
	•				₽ı Δ	NE SPACE.	INDICATO	C. COM6.011											
					D.L.	нкагнис- Ј-	QUANTITAT	∋ LUMPUUN TION 19 4	NU WAS NU Verritma	OT DETECTION	בוט חוסודריי	Control Rev							
				~		• •	AUTOF UF	IFFLED DF	JE TO BLA	ink contai	MINATION A	S IDENTIFIE	D IN QUALT	TY CONTROL	REVIEN				
						** -	VALUE REJ	IFCIED DA	IE TO OTH	IER CONTRA	ACTUAL RED	UTREMENTS 1	NDENTIE 1ED	IN QUAL C	TY CONTROL	REVIEW			
•					NEF	ENENCE -	INDICATES	s THE SPE	CIFIC DE	TECTION L	INIT AND	BLANKS (AT	END OF TAB	ILE) ASSAU	TATEN WITH	A SAMPLE			

REFERENCE -INDICATES THE SPECIFIC DETECTION LIMIT AND BLANKS (AT END OF TABLE) ASSAUCIATED WITH A SAMPLE

TABLE P-1 GROUNDWATER RESULTS-DETECTION LIMITS FOR VOLATILE ORGANICS 1984 SAMPLING ROUND (VALUES IN ug/L)

D

E

F

AA621-622

C

AA301-382

A AA337-356 AA-357-365 AA086, AA366-376 AA056-075 AA076-085 AA383-400

DETECTION LIMIT REFERENCE TRAFFIC REPORT NUMBERS

VOLATILE ORGANIC

ACETONE

BENZENE

BROMOFORM

TOLUENE

STYRENE

ō Ö -1

#### TABLE P-1 GROUNDWATER RESULTS-VOLATILE ORGANICS (LAB AND FIELD BLANKS) 1984 SAMPLING ROUND (VALUES IN ug/L)

BLANK REFERENCE Sample Location Traffic Report Number Samfle Number	A FIELD BLK AA-348 12085	A Field Blk AA-356 12086	A LAB BLK L 6	A A AB BLK LAB BL 506-1 506-2		S7 BLK50G4		C FIELD BLK AA-086 11957	C LAB BLK 5066		D FIELD BLK AA-074 12073	D LAB BLK 9/26/84	D LAB BLK 10/8/84	E FIELD BLK AA-081 12041	a	E Lab Blk I 10/8/84	F FIELD BLK AA-394 11956	F FTELD BLK AA-395 12109	F LAB BLK 1	F LAB BLK 2	
VOLATILE ORGANIC COMPOUNDS			. /	$\frown$								•									
CHLOROMETHANE Bronomethane Vinyl Chloride				$\frown$										• •							
CHLOROETHANE Methylene Chloride Acetone Carbon disulfide	5 - 10	5 10	5 36	5 5 37	5 5	B North	37	5 10	5 15	7 10		1	9		1	9	1	7	Ø	· 6	
1,1-DICHLOROETHENE 1,1-DICHLOROETHANE TRANS-1,2-DICHLOROETHENE		•			/	) )	)			•		·								÷.	-
CHLOROFORM 1,2-DICHLOROETHANE 2-Butandne 1,1,1-TRICHLDROETHANE	• •	1Ú	10	10 10		10	- Marcine -		7					-						10	
CARBON TETRACHLORIDE VINYL ACETATE BROMDDICHLOROMETHANE 1,1,2,2-TETRACHLOROETHANE				·		$\langle$	$\langle$	1		$\wedge$											
1,2-DICHLOROPROPANE TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE			·			$\checkmark$	$\mathbf{r}$			$\langle$		$\rangle$					•				
DIBROMOCHLOROMETHANE 1,1,2-TRICHLORDETHANE BENZENE CIS-1,3-DICHLOROPROPENE					•						>	$\leq$		<u> </u>	1 *	•				•	
2-CHLUROETHYLVINYLETHER Bromoform 2-hexanone 4-methyl-2-pentanone	•						·						$\frown$	$\checkmark$	•					.*	
TE TRACHLORDE THENE Toluene Chloroben7 ene		· ·		· 5		` 10			-		<	$\checkmark$					·				
ETHYLBENZENE Styrene Total Xylenes																	· .	. · ·			
DILUTION FACTORS:	1	ł ·	1 1	1	1 i	1	ì	I	1 1	4 1	1	, I ·	i	:	1	1	1	1	; 1	1	
E	BLANK SPACE-	INDICATES C	OMPOUND WA	IS NOT DETECTED	)					· .		•					•				יייי

BIS(2-ETHYLHEXYL)PHTHALATE 10 202 CHRYSENE 10 D1-n-OCTYL PHTHALATE 10 BENZO(b)FLUORANTHENE 10				• • • • • • • • • • • • • • • • • • •		
SMPLE (CARION       A-3       A-15       A-15       A-15       A-15       A-157       AA-374         SMPLE WIRER       AA-344       A-372       AA-377       AA-378       AA-378       AA-377       AA-378		GPOINAMAI	TABLE P-2			
SAMPLE ISCATCOR         A-7         A-15         A-1500         A-41         G21-2         NH-2         NH-5         NUS1-2         NUS4         N-1         F-4         NS-1         F-A           SMM1 E ISCATCOR         AA-304         AA-302         AA-307         AA-307         AA-308         AA-308         AA-302         AA-309						
IB69.11. REPORT BURGER       AB.:394       AD::392       MO:397		· ·				
IB69.11. REPORT BURGER       AB.:394       AD::392       MO:397	•					
UBEGNUIC COMPOSINGS         CPRI           Leg/L3         Leg/L3           PRENDE         10           ANTLINE         10           L7.2-DICH.ROBREYZEE         10           L1.2-LT.REATER         1	TRAFFIC REPORT NUMBER	AA-384 AA-392 AA-393	AA-397 AA-387 AA-398 AA-388 AA-	-621 AA-622 AA-390 AA-400 AA-3	91 AA-394	
UBEGNUIC COMPOSINGS         CPRI           Leg/L3         Leg/L3           PRENDE         10           ANTLINE         10           L7.2-DICH.ROBREYZEE         10           L1.2-LT.REATER         1	CCM1 MON AN A					
Implement         Implement           1,2-0: IDLORDBREVZENE         10           1,2-0: IDLORDBREVZENE         10           1-7: STRUMA PREVDI         10           2-7: STRUMA PREVDI         10           DIR TUTI PREVDIA TIAL PREVDI         10           STRUMA PREVDIA         10           DIR TUTI PREVDIA TIAL PREVDIA         10           STRUMA PREVDIA         10           DIR TUTI PREVDIA TIAL PREVDIA         10           STRUMA PREVDIA         10           STRUMA PREVDIA         10           STRUMA PREVDIA         10           STRUMA PREVENTIMA ATE         10		(196)	· · · ·			
PHEROL       0         AMILINE       0         AMILINE       0         12.9-0100LD000EVEZYNE       0         150F-RODROME       0         BSKHOLC ALD       0         1-00.000EVEZYNE       0         100.0000EVEZYNE       0         100.00000EVEZYNE       0         100.00000EVEZYNE       0         100.00000EVEZYNE       0         100.000000EVEZYNE       0         100.0000000000000000000000000000000000			<b>`</b>			
ANIL INE       1,2-DICHLOROBORNERE       1         1,2-DICHLOROBORNERE       1         2-RE INTL/INERQI       1         4-RE INTL/INERQI       1         2-RE INTL/INERQI       1         4-RE INTL/INERQI       1         2-RE INTL/INERQI       1         4-RE INTL/INERQI       1         2-RE INTL/INERQI       1         0 INT WITH ALLER       1         4-RE INTL/INERQI       1         0 INT WITH ALTE       1         0 INT WITH ALTER       1         0 INT WITH ALTER       1         0 INT WITH ALTER       1         0 INT WITH ALTER </td <td>PHENOL</td> <td></td> <td></td> <td></td> <td></td> <td></td>	PHENOL					
1,2-80100000000000000000000000000000000000				:		
- нек инстрикий         10           ISDPHORDE         10           ISDPHORDE         50           I, 2, 4- TRICK BODERZENE         10           4- CRUADD-3-ME INTRUERE         10           4- CRUADD-3-ME INTRUERE         10           2- CH THIALARE         10           2- CH THIALARE<			$\mathbf{N} = \mathbf{N}^{\mathbf{r}}$			
ISDPHORONE       0         DENZIOL ACID       00         APATIALERE       0         -CHURDS-THINFURGENE       0         2-NE INFLAMMATINALENE       0         2-NITROMATINALENE       0         2-NITROMATINALENE       0         DIMESTINITURE       0         DISTINITURE       0         DISTINITURATINE       0 <t< td=""><td></td><td></td><td></td><td></td><td>,</td><td></td></t<>					,	
6 EKATOL ACID     50       1, 2, 4-TRICH BROBENZEHE     10       4-CH LONDOB-3-RETIVELER END     10       2-CH TRYLANDHALE NE     10       2-CH TRYLANDHALE NE     10       2-CH TRYLANDHALE NE     10       2-CH TRYLANDHALE NE     10       DIERTIVEL PRIMALATE     10       DIERTIVEL PRIMALATE     10       DIERTIVEL PRIMALATE     10       DI BUTYL PRIMALATE     10       BERIOLI-LIDAMATIF						
MAPTINALENE       10         2-MEINTLAPHITALENE       10         2-MEINTLAPHITALENE       10         2-MEINTLAPHITALENE       10         2-MEINTLAPHITALENE       10         DINSTITUTENE       10         ACEMARTINEE       10         DINSTITUTENE       10         ACEMARTINEE       10         DISTOFURAN       10         DISTOFURAN       10         DISTOFURAN       10         DISTOFURAN       10         DISTOFURAN       10         DISTOFURAN       10         DITTUTENTALATE       10         DITUTENTIALATE	BENZOIC ACID			•		
4-00L000-3-METWYLPNE K0L       10         2-ME ROAM-IN HALE NE       10         2-NI ROAM-IN HALE NE       10         2-NI ROAM-IN HALE NE       10         2-NI ROAM-IN HALE NE       10         ACEMAPHYLIKE       10         DIRE HYLIP PHYLALATE       10         DI- ne UTYLPHYLALATE       10         DI- ne UTYLPHYLALATE       10         DI- ne UTYLPHYLALATE       10         DI - ne UTYLPHYLALATE	1,2,4-TRICHLOROBENZENE		$// \sim $	•		
2 - MC TWYL HARPHTHALENE 10 2 - CHU DRONAPHTHALENE 10 2 - CHU DRONAPHTHALENE 10 ACEMAPHTHYL PHTARLATE 10 ACEMAPHTHYLENE 10 DI BENZOFURAN 10 DI BENZOFURAN 10 DI FUNDERE 10 A - MT TROSOD IPAENYLAHINE 10 B - NG TYL PHTHALATE 10 B - NG TYL PHTHALATE 10 B - NG TYL PHTHALATE 10 DI - B - GTYL PHTHALATE 10 DI - B - GTYL PHTHALATE 10 DI - D - D - D - D - D - D - D - D - D -						
2-CHURDRANTHALENE 10 2-NITROANILINE 50 DIKTINYL-PHTMALATE 10 ACEMAPHTWEENE 10 ACEMAPHTWEENE 10 DIENTOFURAN 10 DIENTOFURA				· .	•	
2-NITHORAHILINE 50 DINETHUL PHIHALATE 10 ACEMAPHTHENE 10 DIBENCPURALATE 10 DIENCPURALATE 10 FLUORENE 10 DI- DITUPHTHALATE 10 ANTIRACENE 10 DI- DITUPHTHALATE 10 ANTIRACENE 10 BUTVLERMINENE 10 DI- DUTVL PHIHALATE 10 BENZOLATIVLERMINENE 10 DI- DUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINENE 10 DI- DUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINENE 10 DI- DUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINENE 10 DI- DUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINENE 10 DI- DUTVLERMINENE 10 BUTVLERMINENE 10 BUTVLERMINEN	2-CHLORONAPHTHALENE		$/ \wedge /$	<b>~</b>		\$.
ACEMAPHTWELENE 10 ACEMAPHTWELENE 10 DIETWYLPHTMALATE 10 DIETWYLPHTMALATE 10 PHEMANTURENE 10 DI NUTROBODIPMENYLANINE 10 DI NUTYLPHTMALATE 10 BENZO LAIAATHENE 10 BEN	· · · · · ·	•		$\langle \rangle$		
ACEMAPHTHEME 10 DISERVOCUMAN 10 DISTIVLPHTMALATE 10 PHEMARTMERE 10 ANTIRAGEME 10 DIDUTYLPHTMALATE 10 DIDUTYLPHTMALATE 10 DIDUTYLPHTMALATE 10 DISTYLDEARYLPHTMALATE 10 DISTYLDEARYLPHTMALATE 10 DIDUTYLPHTMALATE 10				> )		• •
DI BERVZOFURAN 10 DI ETHYLPHTHALATE 10 FLUORENE 10 ANTHROSODIPHENYLAHINE 10 PHEMANTRECNE 10 DI BUTYLPHTHALATE 10 DI BUTYLPHTHALATE 10 BUTYLBENZYLPHTHALATE 10 BUTYLBENZYLPHTHALATE 10 BIS12-ETHYLHEIXYLPHTHALATE 10 DI DCTYL PHTHALATE 10 DI DCTYL PHTHALATE 10 BENZOLAFILORANTHENE 10 BENZOLAFIL						
FLUORENE       10         N-HITROSDDIPMENVLANINE       10         PHENANTHRENE       10         ANTHRACENE       10         D1-n-BUTVLPHTHALATE       10         D1-n-BUTVLPHTHALATE       10         BUTVLBENZYLPHTHALATE       10         DENZOLAJANTHRENE       10         DILOTOCTYL PHTHALATE       10         DEENZOLAJPYRENE       10         DILUTION FACTORS:       1       1				$A \downarrow \land$	·	
N-NITROSODIPHENYLANINE 10 PHENANTHHENE 10 ANTHRACENE 10 DI-n-BUTYLPHTHALATE 10 PYRENE 10 BUTYLBENZYLPHTHALATE 10 BUTYLBENZYLPHTHALATE 10 DIS(2-ETHYLHEXYL)PHTHALATE 10 DIS(2-ETHYLHEXYL)PHTHALATE 10 DI-n-OCTYL PHTHALATE 10 DI-n-OCTYL PHTHALATE 10 BENZO(b)FLUORANTHENE 10 BENZO(b)FLUORAN			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
PHENANTHRENE       10         ANTHRACENE       10         D1-n-BUTYLPHTHALATE       10         PYRENE       10         BUTYL BENYLPHTHALATE       10         BENZD (A) ANTHRACENE       10         BIS (2-ETHYLHEXYL)PHTHALATE       10         BIS (2-ETHYLHEXYL)PHTHALATE       10         BENZD (A) ANTHRACENE       10         BIS (2-ETHYLHEXYL)PHTHALATE       10         BENZO (A) ANTHRACENE       10         BENZO (A) FLUORANTHENE       10         BENZO (A) FLUORANTHENE       10         BENZO (A) FLUORANTHENE       10         BENZO (A) FLUORANTHENE       10         DILUTION FACTORS:       1       1         DI LUTION FACTORS:       1       1			$\sim$			
ANTHRACENE       10         D1-n-BUTYLPHTHALATE       10         PYRENE       10         BUTYLBENZYLPHTHALATE       10         BUTYLBENZYLPHTHALATE       10         BIS12-ETHYLMEXYL)PHTHALATE       10         BIS12-ETHYLMEXYL)PHTHALATE       10         BIS12-ETHYLMEXYL)PHTHALATE       10         BIS12-ETHYLMEXYL)PHTHALATE       10         BENZO(A)FLUORANTHENE       10         BENZO(A)FLUORANTHENE       10         BENZO(A) PYRENE       10         DILUTION FACTORS:       1         1       1	PHENANTHRENE			$\gamma / / \gamma$		
FLUORANTHENE       10         PYRENE       10         BUTYLBENZYLPHTHALATE       10         BENZO(A) ANTHRACENE       10         DIS(2)=ETHYLHEXYLPHTHALATE       10         DIS(2)=ETHYLHEXYLPHTHALATE       10         DIS(2)=ETHYLHEXYLPHTHALATE       10         DI-n-DCTYL PHTHALATE       10         DI-n-DCTYL PHTHALATE       10         BENZO(k)FLUORANTHENE       10         BENZO(k)FLUORANTHENE       10         DILUTION FACTORS:       1         1       1						
PYRENE       10         BUTYLBENZYLPHTHALATE       10         BENZO(A) ANTHRACENE       10         BIS(2-ETHYLHEXYL)PHTHALATE       10         202       01-n-OCTYL PHTHALATE         D1-n-OCTYL PHTHALATE       10         BENZO(b)FLUORANTHENE       10         BENZO(a) APYRENE       10         DILUTION FACTORS:       1	DI-n-BUTYLPHTHALATE				$\vee/$	
BUTYLBENZYLPHTHALATE 10 BENZO(A)ANTHRACENE 10 BIS(2-ETHYLHEXYL)PHTHALATE 10 202 CHRYSENE 10 D1-n-OCTYL PHTHALATE 10 BENZO(b)FLUORANTHENE 10 BENZO(b)FLUORANTHENE 10 BENZO(a)PYRENE 10 DILUTION FACTORS: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				$\sim \langle \rangle / \langle \rangle / \langle \rangle / \langle \rangle$		1
BENZD(A) ANTHRACENE       10         BIS(2-ETHYLHEXYL)PHTHALATE       10         202       .         CMRYSENE       10         D1-n-DCTYL PHTHALATE       10         BENZD(a) FLUDRANTHENE       10         BENZD(a) FLUDRANTHENE       10         BENZD(a) FPYRENE       10         DILUTION FACTORS:       1				$\sim$ $\sim$	>	
CHRYSENE 10 DI-n-DCTYL PHTHALATE 10 BENZO(b)FLUDRANTHENE 10 BENZO(k)FLUDRANTHENE 10 BENZO(a)PYRENE 10 DILUTION FACTORS: 1 1 1 1 1 1	BENZO (A) ANTHRACENE	· · · · ·	• ,	-		
D1-n-OCTYL PHTHALATE 10 BENZO(b)FLUORANTHENE 10 BENZO(k)FLUORANTHENE 10 BENZO(a)PYRENE 10 DILUTION FACTORS: 1 1 1 1 1 1 1	BIS(2-ETHYLHEXYL)PHTHALATE		. •	- -		
BENZO(b)FLUDRANTHENE 10 BENZO(k)FLUDRANTHENE 10 BENZO(a)PYRENE 10 DILUTION FACTORS: 1 1 1 1 1 1 1						
BENZO(k)FLUDRANTHENE 10 BENZO(a)PYRENE 10 DILUTION FACTORS: 1 1 1 1 1 1						
DILUTION FACTORS: 1 1 1 1 1 1	BENZO(k)FLUORANTHENE			-	$\setminus$ /	
	BENZO(a)PYRENE		· .	•	$\checkmark$	
	DILUTION FACTORS.	1			· .	
		1 1 1	1 i i i i	1 1 1 1	1.	
						· ·

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED J

-QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW(DATA VALIDATION)

-VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW ٠

CUNIRACT REQUIRED DETECTION LIMIT(CRDL X DILUTION FACTOR=SAMPLE DETECTION LIMIT) CRDL

APPENDIX O LISTS ALL COMPOUNDS ANALYZED IN THESE SAMPLES

#### TABLE P-3 GROUNDWATER RESULTS-PESTICIDES/PCBS 1984 SAMPLING ROUND

SAMPLE LOCATION
TRAFFIC REPORT NUMBER
SANDLE NUMBER

CRDL

0.86

1

J

.

-----

1

0.57

· 1

. 1

1

1

	A-9				67-1-2					₩₩-6(D)						11-4	
ER	AA-384	AA-392	AA-393	AA-397	AA-387	AA-383	AA-398	AA-389	AA-396	AA-399	AA-388	AA-621	AA385	AA-622	AA-390	AA-400	
	11915	11940	11941	11985	11938	11914	11984	11944	11786	11987	12098	11989	11946	11950	11939	11988	

.-W5-1

AA-391

11942

BI AN

AA-394

11956

**BLANK** 

AA-395

12109

	UNUL
,	(ug/L)
ALPHA-BHC	0.05
BE TA-BHC	0.05
DEL TA-BHC	0.05
GANNA-BHC (LINDANE)	0.05
HEPTACHLOR	. 0.05
ALDRIN	0.05
HEPTACHLOR EPOXIDE	0.05
ENDOSULFAN 1	0.05
DIELDRIN	0.10
4,4-DDE	<b>0.</b> 10
ENDRIN	0.10
ENDOSULFAN 2	0.10
4,4-DDD	0.10
ENDRIN ALDEHYDE	0.10
ENDOSULFAN SULFATE	0.10
4,4-DDT	0.10
HE THOXYCHLOR	0.5
ENDRIN KETONE	0.10
CHLORDANE	0.5
TOTAPHENE	1.0
AROCLOR-1016	0.5
AROCLOR-1221	0.5
AROCLOR-1232	0.5
AROCLOR-1242	0.5
AROCLOR-1248	0.5
AROCLOR-1254	1.0
AROCLOR-1260	1.0

DILUTION FACTORS:

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED -QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW(DATA VALIDATION) -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW

1

. 1

1

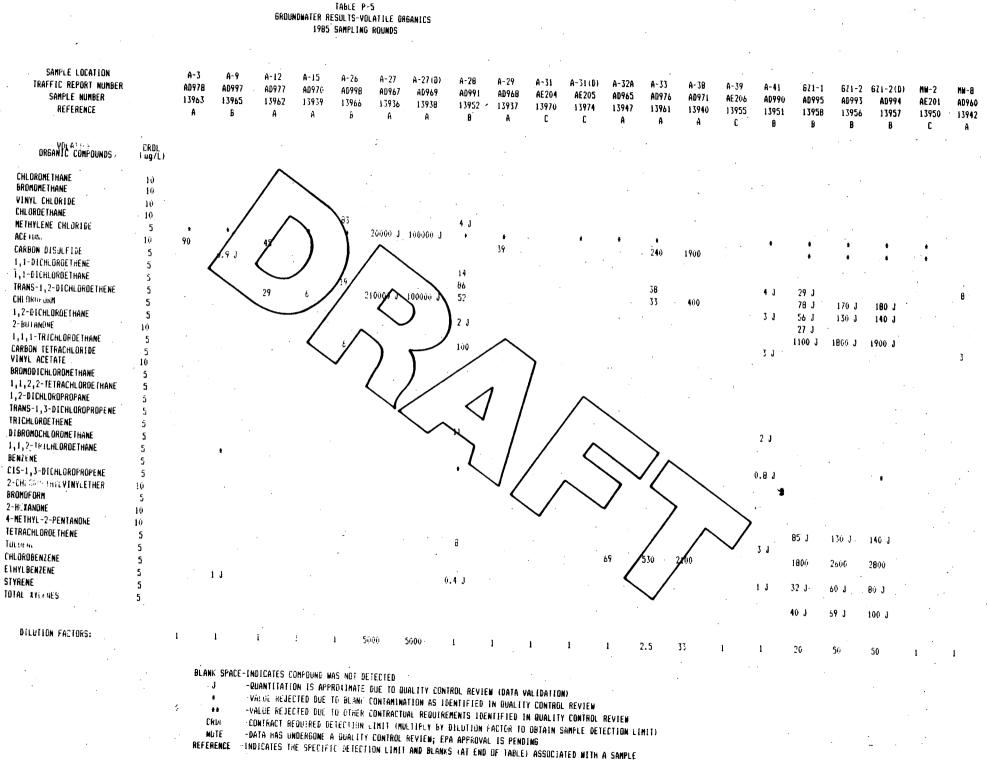
1.

-VALUE REJECTED DUE TO DIMER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW

1

-CONTRACT REQUIRED DETECTION LIMIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LIMIT). CRIN

1


#### TABLE P-4 GROUNDWATER INDRGANICS RESULTS 1984 SAMPLING ROUND

SAMPLE LOCATION TRAFFIC REPORT NUMBER Sample Number		A-9 MA-0396 11915	A-15 MA-0390 11940	A-15(D) MA-0397 11941	A-41 MA-0109 11985	62-1-2 MA-0400 11938	62-8 <u>-</u> 2 MA-0399 11914	NW-2 NA-0114 11984	MW-3 MA-0102 11944	MW-6 MA-0109 11986	MN-6(D) MA-0110 11987	MW-8 MA-0101 12098		NUS-2-3 MA-0105 11946	NUS-4 NA-0113 11950	W-1 NA-0103 11939	W-4 MA-0111 11988	N-5-1 MA-0106 11942	BLANK Ma-0341 11956	BLANK MA~0104 12109
INDRGANIC ELEMENTS		· .		. /			,													
	IDL																	•		
ALUMINUM	(ug/L)				$\wedge$															
ANTINONY	161	30000 J	/	130000 J	25000	18000 🔪	+	130000 J	91000 J	34000 J	19000 J	23000 J	38000 J	120000-1						
ARSENIC	14 4.6	72 J	14		10			20 -						120007 0	•				300	
BARIUN	7.0 19	72 J 171 J	130 J	70		64.J		X2 J	<b>.</b>	45 J	73 J	19 J	68 J	34 J	÷ .			33 J	×.	
BERYLLIUM	0.6	18	в. J	650	240	550 J		670	820 J	183	122 J	280 J	250 J	1000 J	80 J	195 J	74 J	10 J		
CADMIUN	4.0	10	··/	13	5.5	- 2.9	/	^{۹.8} ک		2.4	1.7	7.9	5.4	12						
CALCIUN	427 -	11000 J	21000 J	3400	24000 J	//	172000													
CHROMIUM	2.1	32 J	160 J	240 J	51 1	97.3	172000	2500					170000 J	214000 J	81000 J	27000 J	27000 J	18000 J	1400	1000
COBALT	6.9	21	38	60	19	106	<u> </u>	110	145 0	136 J	07 J	126 J	105 J	182 J	4	+	+		4.3	
COPPER	1.3	23	110	190	57 🗸	28	/*	141	60	91 38	<b>1</b>	54 J	65	127						
IRON	7.8	23000 J	84000 J			260000	75000	180000 J	83000 J	· · /	11000	96	183	197						
LEAD	16	34 J	87 J	112 J	44 J	62 J		81 J	102	- 36 J	. 7	47000 J 231 J		160000 J	8900 J		6700 J	1800 J	270	75
NAGNESIUM	386	3900 J	17000	27000	9300	34000	25000	65090	23000	22000	17000	231 J 14000	47 J 34000	93 J 58000	•	17000			4.7	
MANGANESE	1.2	3400	1400	2000	1600	24000	20000	2/00 /	2900	21000	23000	6100	<b>3</b> 4000	25000	14000 7000	17000	9100	4500	400	
NERCURY NICKEL	0.2	0.2									0.37 3			23900	1000	230	48 J	670	7.3	
OTASSIUM	34		103	153	66	170		275	I JB	37	4	112	90	175						
BELENIUN	503	2800 J	8200	12400	4190 J	19000	2700 J	9100	1000	5900	440 3	5500	6200	14000		+			530	
ILVER	<b>4.2</b> 2.6		11			1.1				>	1	/	$\wedge$	- #		-	-	•	330	
ODIUM	585		14600 J	- <b>++</b> 16000 J	**	**	**	ŦŦ	**	<u>/</u> ··	++ /	++	~~ `\	11 /	<b>'</b> ~		** .	**		
HALLIUN	4.1	•	1900 J	10000 0	10000 J	79000 J		106 <b>0</b> 0 J		29000 3	51000 J	30000 J	15000	29000	2000		+ 1	50000 J	. '	6.1
IN	36	•	•	••	Ŧ		ŧ	*	1	・>	1	1	( + )	>・~ く	( <b>1</b> )	N.	+		2000	1300
ANADIUN	3.5	18 J	96 J	159 J	32 J	10 J		714 1			$\langle \rangle$	/	$\smallsetminus$ /		$\overline{}$		•	•		6
INC ·	3.3	220 J		640 J	250 J	250 J	28 J				26 5	<b>5</b> 7 J	84 JY	164 J	. /		$\mathbf{n}$			-
					100 0	1 10 1	40 J	500 J	520 J	130 J	90 J	320 J	400 J	630 J	/	*	<b>?</b>	ŧ	8.4	6.3
•	1	BLANK SPACE	-INDICATE	S COMPRIN	NO WAS NOT	T DETECTE	n		,						· .	/	/			
		J					QUALITY (	'ANTRA: 05	0166			· .			. /					
		+	-VALUE RE	JECTED DI	IF TO BLAN	W CONTAN	INATION IN		****		·									

0309921

-VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW *. **

- -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS INDENTIFIED IN QUALITY CONTROL REVIEW -INSTRUMENT DETECTION LIMIT 1 DL



0.3099  $\sim$  $\sim$ 

#### TABLE P-5 GROUNDWATER RESULTS-VOLATILE ORGANICS 1905 SAMPLING ROUNDS

			·				· · ·	
	SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER REFERENCE	NUS-1-1 NUS-1-2 NUS-1-3 AE202 AE203 AD963 13953 13954 13945 C C A	NUS-2-1 NUS-2-2 NUS-2-3 AD964 AD962 AD961 13946 13944 13943 A A A	3 NUS-3 NUS-5 Ad999 Ad974 13967 13972 B A	NUS-6 NUS-7 Ad972 AE207 13941 13959 A C	AE584 AD973 AE 14046 13971 140	S-8 NUS-9-1 NUS-9-2 NUS-10-1 583 AE208 AE209 AD975 045 13960 13964 13973 D C C A	NUS-11 NUS-12 NUS-12(D) NUS-13 Ad979 Ae586 Ae587 Ae585 13948 14048 14049 14047 A D D D D
	ORGANIC COMPOUNDS (Ug/L)		: -					
	CHLOROMETHANE 10 Bromomethane 10 Vinyl Chloride 10 Chloroethane 10 Methylene Chloride 5		10					
. •	ACETONE 10 CARBON DISULFIDE 5 1,1-DICHLORDETHENE 5	* 306 * 220 250		* * 96 J 78	\$ <del>\$</del> \$	* * *	* + + + 44	· · · · · ·
	I,I-DICHLOROETHANE 5 Thans-1,2-DICHLOROETHENE 5 Chloroform 5	370	// 70~	21 68		39 31 32 1 J	•	· · · · · · · · · · · · · · · · · · ·
•	1,2-DICHLOROETHANE 5 2-BUTANONE 10 1,1,1-TRICHLOROETHANE 5	490	$1 \sim$	)7 200 J	$\sim$	1 J 23	· · · · · · · · · · · · · · · · · · ·	
	CARBON TETRACHLORIDE 5. Vinyl Acetate 10 Bromodichloromethane 5	• •	$\sim$ )	5/	$\langle \rangle$	23		
	1,1,2,2-TETRACHLOROETHANE 5 1,2-DICHLOROPROPANE 5 TRANS-1,3-DICHLOROPROPENE 5			$\langle \langle \rangle$	1	$\bigwedge$		
	TRICHLOROETHENE 5 DIBROMOCHLOROMETHANE 5 1,1,2-TRICHLOROETHANE 5 BENZENE 5	· · · ·				⁵	>	
	CIS-1,3-DICHLOROPROPENE 5 2-CHLOROETHYLVINYLETHER 10 BROMOFORM 5		. *	' \	J/ ,		$\frown$ .	*
	2-HEXANDRE 10 4-Methyl-2-Pentandne 10 Tetrachlordethene 5	38 J	· .	6 J 17 J			$\rangle$	
-	TOLINENE 5 TOLUENE 5 CHLUKGÉNZENE 5 ETHYLBENZENE 5	20 410 149 4	10 630 580 ·	2 J 180	• • •	3 J 52		
I	STYRENE 5 STYRENE 5 TOTAL XYLENES 5	· • • •		4 J 5	ſ			

₩-2

AB599

13999 B

0309923

DILUTION FACTORS:

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

10

1

5

-QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW(DATA VALIDATION) J

1

-VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW .

** -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW

· CROL -CONTRACT REQUIRED DETECTION LIMIT (MULTIPLY BY DILUTION FACTOR TO OBTAIN SAMPLE DETECTION LIMIT) NOTE

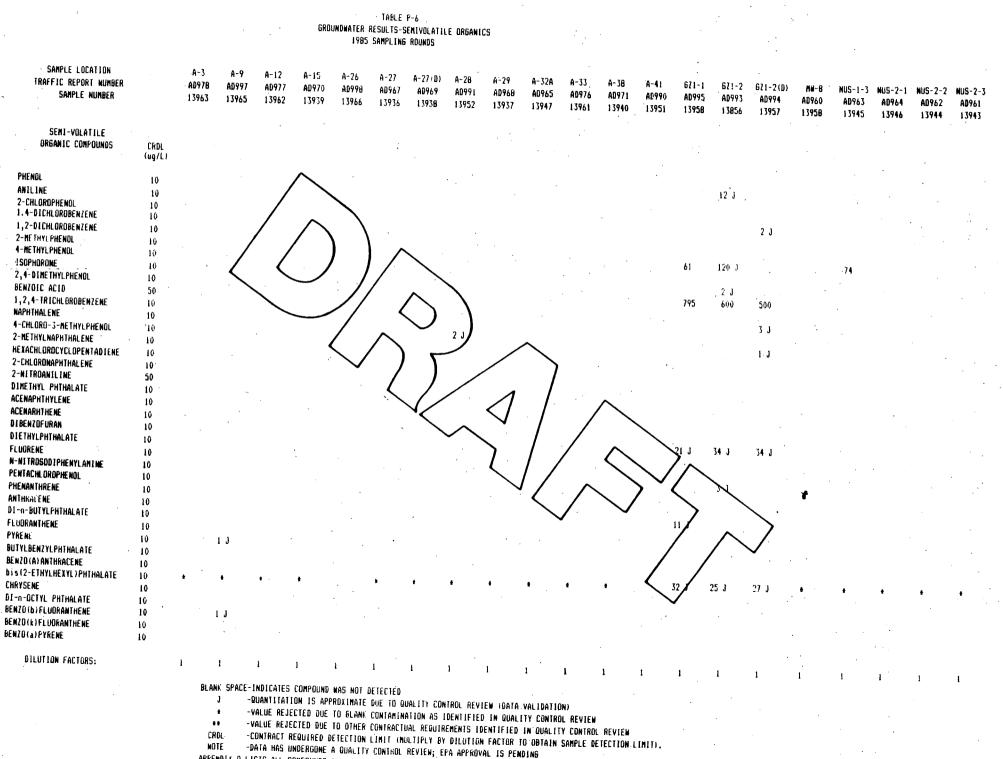
1

1

-1

i

1


-DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

1

REFERENCE -INDICATES THE SPECIFIC DETECTION LIMIT AND BLANKS (AT END OF TABLE) ASSOCIATED WITH A SAMPLE

	GR	TABLE Qundwater 'results-volatii 1985 Sampling Roi	P-5 LE ORGANICS (FIELD BLANKS) UND (VALUES IN ug/L)	
BLANK REFERENCE Sample location Traffic report number Samfle number	A FIELD BLK AD966 13949	A FIELD BLK AD996 I 3895	C FIELD BLK AE210 13894	D F1ELD BLK AE582 14050
VOLATILE ORGANIC COMPOUNDS	2 ¹ ·			
CHLOROME THANE BROMOME THANE BROMOME THANE VINYL CHLORIDE CHLOROETHANE METHYLEWE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHANE TRANS-T,2-DICHLOROETHANE 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE 2-BUTANONE 1,1,2-TETRACHLORIDE VINYL ACETATE BROMODICHLOROME THANE 1,2-DICHLOROPROPANE TRANS-1,3-DICHLOROPROPENE 1,2-TRICHLOROETHANE DIBROMOCHLOROME THANE DIBROMOCHOROETHANE 2-BITCHLOROETHANE 2-DICHLOROPROPANE TRANS-1,3-DICHLOROPROPENE 1,1,2-TRICHLOROETHANE DIBROMOCHOROME THANE DIBROMOCHOROME THANE 2-CHLOROETHYLVINYLETHER BROMOFORM 2-HE XANONE 4-ME THYL-2-PENTANONE TETRACHLOROE THENE TOLUENE CHLOROBENZENE ETHYLBENZENE SIYRENE TOTAL XYLENES				
DILUTION FACTORS:	1	1	1	Ĺ

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED NOTE -DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING



APPENDIX & LISTS AN COMPOUNDS ANALYZED FOR IN THESE CAME IS

3099.25

					GROL		RESULTS-SI 185 SAMPLII		LE ORGANI	CS	:							
•	SAMPLE LOCATION TRAFFIC REPORT NUMBER SAMPLE NUMBER		NUS-3 Ad999 13967	NUS-5 Ad974 . 13972	NUS-6 AD972 13941	NUS-8 Ad973 13971	NUS-10-1 Ad975 13973	NUS-11 Ad979 13948	W-2 Ab599 13999	· ·		•	•	,			•	
	SEMI-VOLATILE ORGANIC COMPOUNDS	CHOL																
		(ug/L)											•					
	PHENOL	10		$\wedge$			÷				. •						•	
	ANILINE	10	. /															
	2-CHLOROPHENOL	10													•			
	1.4-DICHLOROBENZENE	. 10		$\sim$														
	1,2-DICHLOROBENZENE	10	/	/	· · · · ·													
	2-METHYLPHENOL	10			1 1													
	4-NETHYLPHENOL	10	15															
	ISDPHORONE	K			/						•							
	2,4-DIMETHYLPHENOL	10		$\smile$		/												
	BENZDIC ACID	50	$\overline{}$				$\wedge$											
	1,2,4-TRICHLORDBENZENE	10			//.		()	· · <b>\</b>										
	NAPHTHALENE	10					$\sim$	}						•				
	4-CHLORO-3-METHYLPHENOL	10			/	$\wedge$				· 🔨								
	2-METHYLNAPHTHALENE Hexachlorocyclopentadiene	10			$\langle \rangle$	/			/	$^{\sim}$								
	2-CHLORONAPHTHALENE	10 10			$\sim$		/ <u>}</u>				$\mathbf{Y}$							
	2-NITROANILINE	50					)	/			1							
	DIMETHYL PHTHALATE	10							1		/							
	ACENAPHTHYLENE	10	· ·				$\checkmark$		$\langle \rangle$	/		/						
	ACENARHTHENE	10					· <b>X</b>	1	$\mathbf{N}$	- /	•							
	DIBENZOFURAN	10.						$\sim$				/						
	DIETHYLPHTHALATE	10	5 J										~					
	FLUORENE	10		. • .									$\sim$		>			
	N-NITROSODIPHENYLAMINE	10									/			$\searrow$	$^{\prime}$			
	PENTACHLOROPHENOL	10								J /		$\mathbf{\wedge}$		$\sim$				
	PHENANTHRENE	10					•			٦Z		/						
	ANTHRACENE	10									< /		$\sim$		>			
	DI-n-BUTYLPHTHALATE	10		•	•						$\mathbf{v}$							
	FLUORANTHENE	10								•								,
	FYRENE BUTVI DENTNI DUTUALATE	10													/	1		/
	BUTYLBENZYLPHTHALATE Benzd(a) anthracene	· 10														/ .		
	bis(2-ETHYLHEXYL)PHTHALATE	10 10											•					'
	CHRYSENE	10		•			*	+									,	
	DI-n-DCTYL PHTHALATE	10													$\checkmark$			
	BENZO(b)FLUORANTHENE	10								•								
	BENZO (#) FLUORANTHENE	10																
	BENZO(a)PYRENE	lů '		. '														
	DILUTION FACTORS:	1	1	1	i	1	1	1										
			BL	ANK SPACE	-INDICATE	s compou	ND WAS NOT	DETECTE	D .									
				J	-QUANTITA	TION IS I	APPROX IMAT	E DUE TO	QUALITY	CONTROL	REVIEW							
				*	-VALUE NE	JELIED DI	UE TO BLAN	K CUNTAN.	INATION I	DENTIFIE	ED IN Q	UALITY	CONTROL	REVIEN	· ·			

-VALUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW 11

-VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW -CONTRACT REQUIRED DETECTION LIMIT (CRDL X DILUTION FACTOR-SAMPLE DETECTION LIMIT -Data has undergone a quality control review; EPA Approval is pending ERDL

NOTE ..... 1010 ALC DOMESSION

0309926

TABLE P-6 GRANNAMATER SECHITE-SENTING ATHE AGGANING

#### TABLE P-1 GROUNDWATER RESULTS-PESTICIDES/FCBS 1985 SAMPLING ROUNDS

SAMPLE LOCATION TRAFFIC REPORT NUM SAMPLE NUMBER BLANK REFERENCE	IBER	A-3 AD978 13963 A	A-9 Ad997 13965 B	A-12 AD977 13962 A	A-15 AD970 13939 A	A-26 AD998 13966 B	A-27 AD967 13936 A	A-27 (D) Ad969 13968 A	A-28 AD991 13952 B	A-29 Ad960 13937 A	A-32A AD965 13947 A	A-33 AD976 13961 A	A-38 AD971 13940 A	A-41 Ad990 13951 B	671-1 A0995 13958 8	671-2 AD993 13956 B	671-2(D) Ad9994 13957 B	HH-8 AD960 13942 A	NUS-1-3 Ad963 13945 A	NUS-2-1 AD964 13946 A	NUS-2-2 Ad962 13944 A	NUS-2-3 AD961 13943 A	NUS-3 Ad999 13967 B	
ALPHA-BHC Beta-Bhc Delta-Bhc Ganma-Bhc(lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan 1	CRDL (ug/L) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0							$\sim$					• .					-				<b>.</b> .		
DIELDRIN 4,4-DDE ENDRIN ENDOSULFAN 2 4,4-DDD ENDRIN ALDEHYDE ENDOSULFAN SULFATE 4,4-DDT METHOXYCHLOR ENDRIN KETONE	0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10		•								1	$\Big]$						•	. •					
CHLORDANE JDIAPHENE AROCLOR-1016 AROCLOR-1221 AROCLOR-1232 AROCLOR-1242 AROCLOR-1248 AROCLOR-1254 AROCLOR-1254	0.5 1.0 0.5 0.5 0.5 0.5 0.5 1.0 1.0			- - -	•	•				Ĺ					Z [	\ \ /		1					.:	
DILUTION FACTORS:		1	1	20	, 1	1	200	200	1	i	1	20	1j	1		1	1	i	1	1	i	1	1 ·	

03

60

92

-3

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

- -QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW(DATA VALIDATION) J
- -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW ŧ **
- -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW CRDL
  - -CONTRACT REQUIRED DETECTION LINIT (CRDL X DILUTION=SAMPLE DETECTION LIMIT)

-DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING NOTE: ٠.

		• .		1985 S	AMPLING R	DUNDS						
SAMPLE LOCATION TRAFFIC REPORT NUM SAMPLE NUMBER BLANN REFERENCE	IBER CRDL (ug/L)	NUS-5 AD974 13972 A	NUS-6 AD972 13941 A	NUS-8 Ad973 13971 A	NUS-10-1 AD975 13973 A	NUS-11 AD979 13948 A	H-2 AB595 13999 B	BLANK Ad966 13949 A	BLANK Ad996 13895 B		:	
ALPHA-6HC BETA-BHC DELTA-BHC GAMMA-BHC(LINUANE) HEPTACHLOR ALDRIN HEPTACHLOR EPOXIDE ENDOSULFAN I DIELDRIN 4,4-DDE ENDOSULFAN 2 4,4-DDD ENDRIN ALDEHYDE ENDOSULFAN 2 4,4-DDD ENDRIN ALDEHYDE ENDOSULFAN SULFATE 4,4-DDT METHOIYCHLOR ENDRIN KETONE CHLORDANE TOTAPHENE AROELOR-121 AROCLOR-1248 AROCLOR-1254 AROCLOR-1260	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.											
									2			- []

## TABLE P-7 GROUNDWATER RESULTS-PESTICIDES/PCBS

DILUTION FACTORS:

REANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

1

1

1

1 - 1

- -QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW(DATA VALIDATION) J
- -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW .

1

- -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW ** CRDL
- -CONTRACT REQUIRED DETECTION LIMIT (CROL * DILUTION-SAMPLE DETECTION LIMIT) NDTE:
  - -DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EFA APPROVAL IS PENDING

1

030992  $\infty$ 

TABLE P-8
GROUNDWATER RESULTS-INDRGANICS
1985 SAMPLING BOUND

......

·	SAMPLE LOCATION TRAFFIC REPORT NUM Sample Number Reference		A-3 MAB961 13963 A	A-9 MAB996 13965 B	A-12 MAB960 13962 A	A-15 MA8953 13939	A-26 HAB997 13966 B	A-27 NAB950 13936 A	A-27(D) NAB952 13938 A	A-28 Macoo2 13952 8	A-29 MAB951 13937 A	A-32A . NAB968 13947 A	A-33 MAB959 13961 A	A-38 MA8954 13940 A	A-41 Macoo1 13951 B	671-1 MAA282 13958 B	671-2 MAC004 13956 B	671-2(D) Mae005 13957 B	MN-8 Mae963 13942	NUS-1-3 NAB966 13945	NUS-2-1 Hab967 13946	NUS-2-2 NAD965 13944	NUS-2-3 Mab964 13943	NUS-3 MAB998 13967
[*] •	INDHGANIC Elenents -Aluminum Antimony : Ars: Ric Barium	1DL (ug/L) 120 56 2.3		10	482	, k		1500)	783	400	08	223 6.8	10.3	ió7 3.1	240	80 60	50 60	50	<b>n</b>	<b>n</b>	н 258	A	<b>A</b>	ß
	BERYLLIUN CADHIUN CALCIUM CHRONIUN COBALT	76 3.0 4.0 1500 10	17 16800 J	110 - 2400 - 11	42200 J	10706 J	326 4 . 23100 26	116 7.1 128000 3 12.9	140 23000 J	13 20900	2 2 1 1000 J		· 34000 3	209	4 8700 19	10 - 210 25 117000 <b>45</b>	9 370 36 187000 39		26300 J	32.5 215000 J 1	11.9 20000 J	9 201000 J	7.8 147000 J	310 12 95000
•	COPPER IRON LEAD MAGNESIUM	30 7.8 35 1.4 360	56 1.5 1400	5 1800 . 500	23 J 35600 23 2700	549 1.5 1100	16 6 21000 5000	46 243000 13.4 6500	13.3 248040 9.6 6500	11	9400	4109	- 38 60900 - 1/6	B J 132000	410	88 144000 6	128 7 227000	53 129 4 286000	366 1.4	54.5 11.8 J 1200	48 8100 1.9	16 15200 1.8	32 6400 2.1	15 - 16 - 3 - 7700
•	MANGANESE MERCURY NICL'EL POTASSIUN SELENIUM	8.2 0.12 40 3500 1.7	446	1800 43 400	709 61 6200	116	1700	1730 2.54 J 6500	6300 1776 6500	58%0 487 0,08 181 3600	18800 2000 26400	1340 565	7900 11700	19800	1900 165 145 1306	15000 8700 0.11 238	23000 12500 0.08 593 26400	24000 11900 0.10 378 23800	5800 215 3500	30900 16100 103	18200 13500	28800 22600	23700	22000 5200 0.05 257
	SILVER SODIUM THALLIUM TIN	9.2 630 4.2 37	13300 . 85 J	300	32500	<b>49</b> 000 67 J	6 43000	239000	239000	40000	28200	6500	16800		4600	18 56000	84 33000	48 8900	48600	<b>1</b> 9600	24900	36100	30700	2100 13900
	VANADIUM Zinc	22 - 18	1100 J	30	1300 J	637 _. J	160 2	2600 J	1700 J	41	189 J	24 j	97 J		44	199	161	253	28 J	106 J 20 J	37 1	94 J 772 J	35 J	37

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

-QUANTITATION IS APPROXIMATE DUE TO GUALITY CONTROL REVIEW (DATA VALIDATION) J

-VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW . **

-VALUE REJECTED DUE TO OTHER CONTRACTUAL REDUTREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW

IDL -INSTRUMENT DETECTION LIMIT

-DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING NDIE

REFERENCE - INDICATES THE SPECIFIC DETECTION LIMIT AND BLANKS (AT END OF TABLE) ASSOCIATED WITH A SAMPLE

						SAMPLING	- INURGANICS I ROUND						
SAMPLE LOCATION TRAFFIC REPORT NUMB SAMPLE NUMBER REFERENCE	ER	. NUS-5 MAB957 13972 A	NUS-6 Mab955 13941 A	NUS-8 Mað956 13971 A	NUS-10-1 NAB958 13973 A	NUS-11 NAB962 13948 A	N-2 NAB999 13999 B	;	BLANK Nab959 13949 A	BLANK Mab995 13095 B			
INORGANIC Elements	IDL (ug/L)												
ALUNINUN	120	~			<b>2</b> 900								
ANTINONY	56				100	27.36							
ARSENIC	2.3			6.1	2.3	/ \	$\sum \lambda_{e}$			80			
BARIUM	76						290	$\wedge$					
BERYLLIUN	3.0						-~ [	/ `					
CADNIUN	4.0		4.6				4/1/			9			
CALCIUM	1500	8900 J	5600 J	34600	9700 J	6000 J	52900	~		<u>`</u> .			. •
COBALT	10						/11/		$\mathbf{i}$	28			
COPPER	30 7.8						je		)	7			
IRON	35	167 ·	236	170	16.7 J								
LEAD	1.4	167	230	638 2.4	-4400	2100	940	$\mathbf{i}$		240		< l>	•
MAGNESIUM	360	684	1800	4100	30.9 1700	5.8	$\sum$	)	1.5			$\mathbf{i}$	
MANGANESE	8.2	109	50	1770	857	313	23060			· 100		1	•
ERCURY	0.12		••		<b>U</b> J/ .	112	553 0.05	1	B.2	138	_		
NICKEL	40						308		/		$\boldsymbol{\nearrow}$	·/	
POTASSIUM	3500						1500	N	<u> </u>	116 🗧 <		1	
ELENIUN	1.7	:							$\mathbf{i}$	$\wedge$	V	1	$/$ $\setminus$
ILVER	9.2								$\sim$	、/		/	
SODIUM HALLIUM	630	7200	2500	22200	8000	5000	57000			200	) /		$\sim$
IN	4.2									··· [			
ANADIUM	37 22	41 J	•								$\mathbb{N}$	/	
INC	18	100 1	152 1						,		V J		$\frown$ )
	10	600 J	152 J	54 J	453 J	37 J .	20			16	. •	$\smallsetminus$ /	$\sim$

TABLE P-B GROUNDWATER RESULTS-INDRGANTES

BLANK SPACE-INDICATES COMPOUND WAS NOT DETECTED

-QUANTITATION IS APPROXIMATE DUE TO QUALITY CONTROL REVIEW (GATA VALIDATION) J

-VALUE REJECTED DUE TO BLANK CONTAMINATION AS IDENTIFIED IN QUALITY CONTROL REVIEW Ϊŧ.

-VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW **

IDL -INSTRUMENT DETECTION LIMIT

-DATA HAS UNDERGONE A QUALITY CONTROL REVIEN; EPA APPROVAL, IS PENDING NOTE

REFERENCE - INDICATES THE SPECIFIC DETECTION LIMIT AND BLANKS (AT END OF TABLE) ASSOCIATED WITH A SAMPLE



## TABLE P-9 Auburn Road Landfill Residential Sample Summary (3-19-85)

Address	Name	Property Lot #	Sample Number	Collection Time	Analysis (1
	·	· .	$\sim$		
105 Auburn Road Londonderry, NH	Alexander*	18-21-23	121/21 1/21/22	9:46 9:46	1
101 Auburn Road Londonderry, NH	Daigneault	18-21-21	12120	11:20	. 1
Lexington EPA Laboratory	Blank		11906	/2:31	1
Lexington EPA Laboratory	Blank		12119	12:31	1
<ul> <li>replicate sample taken</li> <li>EPA Lexington Laborator</li> </ul>	ry GC/MS		$\overline{\mathbf{X}}$		
	$\langle \langle \cdot \rangle$	$\checkmark$			
					<b>~~</b> .
	· · · .		• •		
	· · · ·	•			

## TABLE P-10 AUBURN ROAD - RESIDENTIAL WELL SAMPLING (3-19-85) EPA Regional Laboratory - Lexington^a Volatile Organic Analysis

Sample Location/Address Sample Number Volatile Compounds	Detection Limit (ug/L)	105AR 12121	105AR 12122 (Dup)	101AR 12120	Blank 11906	Blank 12119
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,1-Dichloroethane	6 2 4 1 5 1 1				- - - - - -	-
1,2-Dichloroethene Isomers Chloroform 1,2-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane trans- 1,3-Dichloropropene	$ \begin{array}{c} 1\\ 1\\ 5\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1 \end{array} $				-	
Trichloroethylene Dibromochloromethane Cis- 1,3-Dichloropropene 1,1,2-Trichloroethane Benzene 2-Chloroethylvinyl Ether Bromoform				- - - - - -	-	
Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Acrolein Acrylonitrile			-	-	-	-
Acetone Carbon Disulfide 2-Butanone Vinyl Acetate 2-Hexanone 4-Methyl-2-Pentanone Styrene Xylenes	$ \begin{array}{c} 15\\ 1\\ 15\\ 3\\ 3\\ 1\\ 2\\ 2\\ 2\\ \end{array} $	- - - - - - - - -		- - - - - -	- - - - -	- - - - - -

- = not detected

a analyses conducted on GC/MS

Sample Location Code: # = street number, AR = Auburn Road

## TABLE P-11

## Auburn Road Landfill (7-9-85) Residential Sample Summary

Address	Name	Property Lot #	Sample Number	Collection Time	Analysis (1,2)
105 Auburn Road Londonderry, NH	Alexander *	18-21-23	13382 13383	10:05 10:10	1
101 Auburn Road Londonderry, NH	Daigneault	18-21-21	13380	10:31	1
87 Auburn Road Londonderry, NH	Bowen	18-21-14	13374	10:55	1
95 Auburn Road Londonderry, NH	Stathas	18-21-18	13378	11:00	1
5 Hillcrest Avenue Londonderry, NH	Bouley *	18-21-53	13366 13367	11:37 11:37	. <b>. 1</b>
56 Old Derry Road Londonderry, NH	Roux	16-24 <	13363	12:55	1
160 ByPass 28 Derry, NH	Finn *	11-31-3	13410 13411	16:10 16:5	l 2
13 Prosperity Drive Derry, NH	Dunker *	11-29-9	13587 73388	9:24 9:27	l 2
Whispering Pines Trailer Park Supply Well	*	Well #1	13404 13405	13:56 14:02	l 2
Whispering Pines Trailer Park Supply Well		Well 3,4	13406	14:10	·
<ul> <li>* = replicate sample taken</li> <li>(1) EPA Lexington Laboratory GC/MS</li> </ul>					

EPA Lexington Laboratory GC/MS
 NUS/FIT In-House screening Photovac 10A10

## TABLE P-11 AUBURN ROAD LANDFILL **RESIDENTIAL SAMPLE SUMMARY** PAGE TWO

Address		Name	Property Lot #	Sample Number	Collection Time	Analysis (1,2)
Lexington EPA Lab		Blank	-	13399	8:30	1
97 Auburn Road Londonderry, NH	$\langle O \rangle$	Sullivan	18-21-19	13379	10:45	2
89 Auburn Road Londonderry, NH			18-21-15	13375	11:10	. 2
93 Auburn Road Londonderry, NH		Noore	18-21-17	13377	11:15	2
103 Auburn Road Londonderry, NH		Fusco	18-21-22	13381	10:23	2
91 Auburn Road Londonderry, NH		Saab	18/21-16	13376	11:31	2
81 Auburn Road Londonderry, NH		Lewis	18-71-12	13372	10:45	2
77 Auburn Road Londonderry, NH	· · ·	Wogan	18-21-10	13771	10:30	2
73 Auburn Road Londonderry, NH		Lindquist	18-21-8	13369	10:07	2

(1) (2) EPA Lexington Laboratory GC/MS NUS/FIT In-House Screening

## TABLE P-11 AUBURN ROAD LANDFILL **RESIDENTIAL SAMPLE SUMMARY** PAGE THREE

Address		Name	Property Lot #	Sample Number	Collection Time	Analysis (1,2)
75 Auburn Road Londonderry, NH	$\langle \rangle$	Illg	18-21-9	13370	10:22	2
74 Old Derry Road Londonderry, NH		Mondville	18-21-3	13364	12:05	2
64 Old Derry Road Londonderry, NH		Thomopoulas	16-23-1	13362	12:31	2
8 Old Derry Road Londonderry, NH	~	Picco	/16-30	13385	12:16	2
3 Shady Lane Londonderry, NH		Tuoberg	18-27-46	13365	11:50	2
7 Shady Lane Londonderry, NH		Kinney	16-21-44	19984	11:50	2
7 Prosperity Drive Derry, NH		MacIver	11-29-6	13391	10:20	2
4 Prosperity Drive Derry, NH		Bourassa	11-29-11	13386	10:24	2
11 Prosperity Drive Derry, NH		Kelly	11-29-8	13389	10:03	2

¥

(1) (2)

replicate sample taken
 EPA Lexington Laboratory GC/MS
 NUS/FIT In-House screening Photovac 10A10

## TABLE P-11 AUBURN ROAD LANDFILL **RESIDENTIAL SAMPLE SUMMARY** PAGE FOUR

Address		Name	Property Lot #	Sample Number	Collection Time	Analysis (1,2)
5 Prosperity Drive Derry, NH	$\langle \rangle$	Novia	11-29-85	13390	10:40	2
2 Prosperity Drive Derry, NH		Hatem	11-29-18	13395	15:00	2
3 Mirra Avenue Derry, NH		Vacea	11-29-2	13396	15:10	2
12 Gloria Terrace Derry, NH		Ammidown	1-29-12	13392	14:55	2
6 Gloria Terrace Derry, NH		Wiedemagn	11-79-15	13993	11:10	2
4 Gloria Terrace Derry, NH		Monahan	11-29-16	13414	11:23 ••	2
11 Hemlock Spring Road Derry, NH	<b>d</b>	Chickering	11-11-53	13497	19:55	2
38 Emerald Drive Derry, NH		Goddard	11-15-13	13415	15:30	2
162 ByPass 28 Derry, NH		Misite	11-31-4	13412	16:10	2

* = replicate sample taken
(1) EPA Lexington Laboratory GC/MS
(2) NUS/FIT In-House screening Photovac 10A10

## TABLE P-11 AUBURN ROAD LANDFILL **RESIDENTIAL SAMPLE SUMMARY** PAGE FIVE

Address		Name	Property Lot #	Sample Number	Collection Time	Analysis (1,2)
3 Al Street	$\langle \rangle$	∧ BiLotta	11-11-51	13408	15:04	2
Derry, NH	$\langle \bigcirc \rangle$		• •			
247 ByPass 28 Auburn, NH		$\left( \bigcup_{i=1}^{Day} \right)$	· · · · · ·	13417 13418	16:31 16:45	2 2
2 Gloria Terrace Derry, NH		Jones	11-29-17	13394	10:47	2
7 Mirra Avenue Derry, NH		Bilødeau	1-29-20	13397	11:47	2
Lexington EPA Laborat	ory	Blank	1/1	13400	8:30	2
Lexington EPA Laborat	or y	Blank	\/- _\	Jour /	8:30	2
Lexington EPA Laborat	or y	Blank	$\checkmark$	13402	8:30	2
Lexington EPA Laborat	ory	Blank	-	13405	8:00	2

* = replicate sample taken
(1) EPA Lexington Laboratory GC/MS
(2) NUS/FIT In-House screening Photovac 10A10

## TABLE P-12 AUBURN ROAD - RESIDENTIAL WELL SAMPLING (7-9-85) NUS/FTT In-House Screening^a Volatile Organic Analysis

I entatively	73AR 1396 Limit (ug/L)	75R 77AF 13370 1337		89AR. 13375	91AR 13376	93AR 13377	97AR 13379	103AR 13381	3AS 13408	160BP 13411	162BP 13412	247BP 13417	247BP 13418 (Dup)
Trichloroethene Benzene Toluene		).).//			-	-	- ·	-		-	`- -		
Tetrachloroethene Chlorobenzene	3 -		C.		-	-	-	- -	- -	-	-	-	-
Ethylbenzene m-Xylene o-Xylene Coeluters ^b	5 - 5 - 10 -					-		  -	-	-	-	- - · · - ·	- - -
<ul> <li>= not detected</li> <li>BDL = below detection limit</li> <li>a The above results are from N results must be interpreted v technique and that the report analysis using greater sophistic</li> </ul>	rted values are cal	and that they f	Photovac 1 represent th This tech	0A10 Gas he end prinique is r	Chromat oduct of not mean	ograpi a screen to repla	All hag ace	$\sum$			- -	-	-
<ul> <li>b Coeluters represent the foll screening: 1,1-dichloroethyle chlorform, 1,2-dichloroethane indicated.</li> <li>Sample Location Code: # = street Drive, GT = Gloria Terrace, HA = Old Derry Road, PR = Prosperity</li> </ul>	lowing group of c ene, trans-1,2-dict e, and 1,1,1-trichlo t number, AR = Au	ompounds which hloroethylene, f roethane. The p burn Road, AS =	a generally 1,1-dichlord presence of Al Street,	can not bethane, one or n BP = Bypa	be disti methylen nore of th ass 28, FI	nguished e chlori nese may	in de, be				•		
			-										

TABLE P-12 AUBURN ROAD - RESIDENTIAL WELL SAMPLING (7-9-85) NUS/FIT In-House Screening^a Volatile Organic Analysis PAGGE TIWO

۰.

Sample Location/Address Sample Number	39ED 2GT 73415 13394	4GT 13414	6GT 13393	12GT 13392	5HA 13367	11HSR 13407	3MA	7MA	80DR	640DR	740DR	2PD	4PD	
Tentatively         Detection           Identified Compounds         (ug/L)	$ \land \land$				19907		13396	1 3 3 9 7	13385	13362	13364	13395	13386	
Trichlorethene Benzene	$O_{-}$		-		 		BDL					· ·		
Toluene	<u>∖</u> //	-/	$\sim$ `	\ -		-	-	-	-	-		· _	-	
Tetrachloroethene 3		- \	J	·) · -	-		-	-	-	-	-	_	-	
Chlorobenzene 5		$\land$	-	/-		- "	BDL	· -		. –	-	· _		
Ethylbenzene 5		<pre>/ ')</pre>	$\square$	-/				-		-	- `	- :	_ ·	
m-Xylene 5		1	1		- /	-		-	-	-	-	·	-	
o-Xylene 10			$\langle \rangle$	-1	1 - /*		-	-	-	-	-	-		
Coeluters	÷ _	-	<b>`</b>	$\sim$	-/	-/	<u>\</u> .	<u> </u>	-	-	-	-	-	•
- = not detected BDL = below detection limit							$\langle \rangle$	$\sum_{i=1}^{n}$	-	-		-		
a The above results are from NUS/FIT is results must be interpreted with the technique and that the reported value analysis using greater sophistication and	les are only an	iney re	hotovac 1 present tl This tech	0A10 Gas he end pri nique is r	Chromat oduct of not mean	ograph. a screeni to repla	All Ing Ice							
b Coeluters represent the following g screening: 1,1-dichloroethylene, tran chlorform, 1,2-dichloroethane, and 1, indicated.	group of compounds	s which	generally I-dichlord esence of	can not bethane, one or m	be disti methylen hore of th	nguished e chloric iese may	in 1e, K			/				
Sample Location Code: # = street number Drive, GT = Gloria Terrace, HA = Hillcres Old Derry Road, PR = Prosperity Drive, SL	, AR = Auburn Roa t Avenue, HSR = He L = Shady Lane, Wel	d, AS = A mlock Sp l #1 = Wł	Al Street, pring Road hispering	BP = Bypa d, MA = M Pines Supp	ass 28, EI lirra Ave bly Well #	) = Emera nue, ODR 1.	ld =	$\checkmark$	•		·			
	. ·			•			,							

# TABLE P-12 AUBURN ROAD - RESIDENTIAL WELL SAMPLING (7-9-85) NUS/FIT In-House Screening^a Volatile Organic Analysis PAGGE THEREE

Sample Location/Address Sample Number Tentatively Identified Compounds (ug/t)/	5PD 7PD 17390 13391	11PD 13389	13PD 13388	3SL 13365	7SL 13384	Well #1 13405	Blank 13400	Biank 13401	Blank 13402	Blank 13403		• •	•
Trichloroethene	$\rightarrow$										. •		:
Benzene	<i>(</i> )-		-	-		· _ ·	-						
Toluene	(- · / - ·/	/		· _		-	-	_	-	-	•		
Tetrachloroethene		/ - r	\	-	-	-	-	-	-	-			
Chlorobenzene		- <	3	<b>\</b>	-	-		-	_	_			
Ethylbenzene 5	/			)-		-	-	-	-	-			
m-Xylene 5		/-\	~	- /	$\sim$		_'	-	-	<b>-</b> .			
o-Xylene 10		-/	-).	-	- 7	- ·			-	-			
Coeluters ^b		Z	1/	/- /	,/	<del>-</del> .	-	-	<b>-</b> ·	-			
<ul> <li>= not detected BDL = below detection limit</li> <li>a The above results are from NUS/FIT in- results must be interpreted with the ur technique and that the reported values analysis using greater sophistication and</li> <li>b Instrument Detection Limit</li> <li>c Coeluters represent the following grou screening: 1,1-dichloroethylene, trans- chlorform, 1,2-dichloroethylene, and 1,1,1 indicated.</li> <li>Sample Location Code: # = street number, A Drive, GT = Gloria Terrace, HA = Hillcrest A Old Derry Road, PR = Prosperity Drive, SL =</li> </ul>	are only approximanalytical control up of compounds 1,2-dichloroethyle -trichloroethane. R = Auburn Road,	which g ene, I,I- The pre AS = AI S	enerally dichloro sence of Street, B	Can not ethane, r one or m P = Bypass	be distinethylen ore of th	a screeni to repte nguished e chlorid lese may b	in e, be			> ··			

## TABLE P-13 Auburn Road Landfill Residential Sample Summary (10-85)

Address	Name	Property Lot #	Sample Number	Collection Date	Collection Time	Analysis*
					<b>)</b>	
87 Auburn Road Londonderry, NH	Bowen	18-21-14	12088	10/01/85	11:15	CLP
93 Auburn Road Londonderry, NH	Moore	18-21-17	12089	10/01/85	11,20	CLP
Lexington EPA Lab	Blank	-	12106	10/02/85	10:45	CLP
105 Auburn Road Londonderry, NH	Windham	19-21-23	.12096	10/08/85	10:05	CLP
Lexington EPA Lab	Blank		12109	10/10/85	8:30	CLP

* Analyzed as part of Contract Laboratory Program

## TABLE P-14 AUBURN ROAD - RESIDENTIAL WELL SAMPLING (10-85) Contract Laboratory Samples

· · ·					•			
Sample Location/Address Traffic Report Number Sample Number		87AR AA358 12088	93AR AA359 12089	Blank AA357 12106		AA395	Blank AA 394 11956	
Sample Number	CRDL (in ug/L)	12088	12087	12100		12107		
Voltile Compounds							······································	
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,1,2,2-Tetrachloroethane 1,2-Dichloropropane Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Benzene	$ \begin{array}{r} 10\\ 10\\ 10\\ 10\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$				57			
Cis- 1,3-Dichloropropene 2-Chloroethylvinyl Ether Bromoform 2-Hexanone 4-Methyl-2-Pentanone		<u> </u>		-	-		- -, -	
Tetrachloroethene Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes	5 5 5 5 5 5 5	-			-		-	
Dilution Factor:		1	- 1 .	I.	1	1	1	·
not detected	•							

- - not detected
- Value is rejected due to blank contamination identified in quality control review. The detection limit for blank contaminants is determined by the amount detected in blank.

CRDL - Contract required detection limit (multiply by dilution factor to obtain sample detection limit).

Note: Sample No. 12096 was also analyzed for the semi-volatile and pesticide/PCB compounds included in the Hazardous Substance List (HSL). No other compounds were detected.

					9			
	•		Monitor	ing Well	ls•		esidentia	
Sample Location/Address		A-33			NUS-9-2	3MA	3MA	Blank
Sample Number	Detestion	13961	13942	13959	13964	13975	14000	14001
Tentatively Identified Compounds	Detection Limit (ug/L)				$/ \langle$			
77-1-1-1		· .		ζ	$\wedge$			
Trichloroethene	1	*	* ·			>	-	-
Benzene	1	*	*	/ - /	- `	$\bigvee$ -	-	-
Toluene	3	*****	*/	+/	<b>∕</b> *	-	-	-
Tetrachloroethene	3	*	Ę	$\langle \rangle$	/	*	<b>*</b>	-
Chlorobenzene	5	-		<u> </u>	- 1	. 🕳	<b>_</b> .	-
Ethylbenzene	5	- ~	-	$\searrow$	>-	· • •	· _	· _
m-Xylene	- 5	-/	-		<ul> <li>✓ -</li> </ul>	· _	-	-
o-Xylene	10	-\	K	7	7 _	-	-	-
Coeluters ^b		- \	$\sum$	~~/	-	· _	-	-
	/		$\setminus$ (		·			
- = not detected				>				
* - <10 ** - 10-70		$^{-}$	$\searrow$					
*** - 70-200			7					
**** - 200-350		· / `	$\checkmark$					
***** - 350-1000				•			•	
***** - 1000-5000		$\langle \rangle$						

## TABLE P-15 GROUNDWATER RESULTS - QC CHECK OF CLP DATA NUS/FIT In-House Screening^a Volatile Organic Analysis

- a The above results are from NUS/FIT in-house screening using a Photovac 10A10 Gas Chromatograph All results must be interpreted with the understanding that they represent the end product of a screening technique and that the reported values are only approximate. This technique is not meant to replace analysis using greater sophistication and analytical control.
- b Coeluters represent the following group of compounds which generally can not be distinguished in screening: 1,1-dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethane, methylene chloride, chloroform, 1,2-dichloroethane, and 1,1,1-trichloroethane. The presence of one or more of these may be indicated.
- Notes: The residential samples were obtained from 3 Mirra Avenue. CLP refers to the Contract Laboratory Program.

## TABLE P-16 WHISPERING PINES TRAILER PARK SUPPLY WELL SAMPLE SUMMARY

Sampling Date	Location	Sample #	Collection Time	Analysis
<u></u>		<u> </u>		
11-15-84	Well #1	11502		<b>)</b>
11-1)-84	Well #3	11503	06:75	·
	Well #4	11501	06:25	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
• •	Well #1	11498 11500	\$6:25	$\mathbf{X}$
	Well #1		11:50	
	Well #1	11499	13,54	
·	wen #1	11502	<b>N:</b> 41	$\searrow$ / ²
4-11-85	Well #1*	12507	12030	✓ 2
• .		12509	/ / >	
	Well #3/#4	12506	12/30	2
	Blank	12508	1:00	2
	• .			
6-20-85	Well #1	3137	10:45	2 2
	Well #3/#4	13139	N:90	2
	Blank	( 13136		2
8-23-85	Well #4**	13105	11:15	1
• •• ••		13106	11:53	L
	Well #3	13107	12:05	. 1
		13108	12:05	· I
	Well #1		12:20	1
	Blank )	13103	10:45	1
	Blank***	$\sim$ 13102	10:45	. 1
• •			10.49	. –
10-9-85	Well Hux	13607	10:17	1
		>13608	10:20	
	Well #3	/ 13609	10:30	1
	Went #1	13610	10:40	1
	Blank	13611	9:00	1
11-20-85	Wen #1	14000	10.20	•
11-20-05	Well #3	14006	10:36	1
	Well #4*	14005	10:45	1
	WCII 74 4	14003	10:53	L .
	Blank	14004 14002	10:55 9:15	

Analysis:

EPA Lexington Laboratory - GCMS NUS/FIT Screening - Photovac 10A10 GC

(1) (2)

replicates taken replicates and splits taken blanks given with splits

0309946

## TABLE P-17AUBURN ROAD - PUMP TEST SAMPLING (11-15-84)NUS/FIT In-House Screening^aVolatile Organic Analysis

					-		
			Pre-Pump	<b>D</b> .	. Mid-	Pump	Post Pump
Sample Location		Well #1	Well #3	Well #4	Wellyll	Well #1	Well #1
Sample Number		11503	11501	11498	/11498	11500	11502
Tentatively Identified	Detection Limit			/			
Compounds	(ug/L)	•		· · /			. •
	· · · · · · · · · · · · · · · · · · ·		· · · ·			$\overline{}$	······
Trichloroethene	1	BDL	BDL	BDL	- \	<b>_</b> -	BDL
Benzene	1	-	-	/	<u> </u>	-	-
Toluene	3	-	- [	$\checkmark$	/ -	-	-
Tetrachloroethene	. 2	. –	- ^	<u> </u>		-	-
Chlorobenzene	7	-	-		>-	· _	· . -
Ethylbenzene	8	, <b>-</b>			✓ ¹ / _− ² ² / _− ²	. <b>-</b>	-
m-Xylene	9	- '		- 7	-	-	· _
o-Xylene	12	-	$\setminus - \bigvee$		-	_	· _
Coeluters ^b				/ x	-	х	-
				$\mathbf{b}$		·	· · · · ·
- = not detected		$^{\prime}$					
X = detected BDL = below detection	limit	$\sim$	$\sim 7$	•			

- a The above results are from NUS/FIT in-house screening using a Photovac 10A10 Gas Chromatograph. All results must be interpreted with the understanding that they represent the end product of a screening technique and that the reported values are only approximate. This technique is not meant to replace analysis using greater sophistication and analytical control.
- b Coeluters represent the following group of compounds which generally can not be distinguished in screening: 1,1-aichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethane, methylene chloride, chloroform, 1,2-dichloroethane, and 1,1,1-trichloroethane. The presence of one or more of these may be indicated.

## TABLE P-18 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (4-11-85) NUS/FIT In-House Screening Volatile Organic Analysis

			,,		•
Sample Location Sample Number		Well #1 12507	Well #1.(Dup.) 12509	Well #3 & 4 12506	Blank 12508
Tentatively Identified Compounds	Detection Limit (ug/L)	:			•
Trichloroethene	2	BDL .		BDL	_
Benzene	2	- · /	/ / - ``\		-
Toluene	5	- /		· <b>-</b>	_
Tetrachloroethene	2	- (	$\langle / / -$	• • • • • • •	-
Chlorobenzene	6	- \	ζ	-	_
Ethylbenzene	5	~-	$\searrow$	_	-
m-Xylene	5	-		- -	· _
o-Xylene	11 <	7-1		<b>.</b> .	_
Coeluters ^b		$\backslash $	~ _	-	-
- = not detected X = detected BDL = below detection lim					· · ·

- a The above results are from NUS/FIT in-house screening using a Photovac 10A10 Gas Chromatograph. All results must be interpreted with the understanding that they represent the end product of a screening technique and that the reported values are only approximate. This technique is not meant to replace analysis using greater sophistication and analytical control.
- b Coeluters represent the following group of compounds which generally can not be distinguished in screening: 1,1-dichloroethylene, trans-1,2-dichloroethylene, 1,1-dichloroethane, methylene chloride, chloroform, 1,2-dichloroethane, and 1,1,1-trichloroethane. The presence of one or more of these may be indicated.

## TABLE P-19 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (6-20-85) NUS/FIT In-House Screening^a Volatile Organic Analysis

	•		*		
Sample Location Sample Number	· <b>.</b>	Well #1 13137	Well #3 & 4 13139	Blank 13136	
Tentatively Identified Compounds	Detection Limit (ug/L)	· .			
	•	. *			
Trichloroethene	1	-	$\checkmark$		
Benzene	1	/	/ <b>}</b> -		
Toluene	1	- /		-	
Tetrachloroethene	1	- [	$\checkmark$ -/	-	
Chlorobenzene	2	. \	$\zeta$	-	
Ethylbenzene	2	$\sim$	× - >	-	
m-Xylene	2 /		$\sim$	. <b>-</b>	
o-Xylene	- \		7-	-	۰,
Coeluters ^b		$\langle x \rangle$	~ x	X	
- = not detected X = detected BDL = below detection * = <10	Aimit C			· .	

The above results are from NUS/FIT in-house screening using a Photovac 10A10 Gas chromatograph. All results must be interpreted with the understanding that they represent the end product of a screening technique and that the reported values are only approximate. This technique is not meant to replace analysis using greater sophistication and analytical control.

Ь

а

Coeluters represent the following group of compounds which generally can not be distinguished in screening: 1,1-dichloroethylene, trans-1,2dichloroethylene, 1,1-dichloroethane, methylene chloride, chloroform, 1,2dichloroethane, and 1,1,1-trichloroethane. The presence of one or more of these may be indicated.

## TABLE P-20 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (7-9-85) EPA Regional Laboratory - Lexington^a Volatile Organic Analysis

Sample Location Sample Number	Detection Limit	Well #1 13404	Well #3 & 4 13406	Blank 13399
Volatile Compounds	(ug/L)		<b>9</b>	
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Trichlorofluoromethane 1,1-Dichloroethene 1,2-Dichloroethene Isomers Chloroform 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane trans- 1,3-Dichloropropene Trichloroethene Dibromochloromethane Cis- 1,3-Dichloropropene 1,1,2-Trichloroethane Benzene 2-Chloroethylvinyl Ether Bromoform Tetrachloroethene 1,1,2,2-Tetrachloroethane Chlorobenzene Ethylbenzene Acrolein Acrylonitrile Acetone Carbon Disulfite 2-Butanone Vinyl Acetate 2-Hexanone 4-Methyl-2-Pentanone Styrene Xylenes	$ \begin{array}{c} 6\\ 2\\ 4\\ 4\\ 1\\ 5\\ 1\\ 1\\ 1\\ 5\\ 1\\ 1\\ 1\\ 4\\ 1\\ 4\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$			

= not detected

BDL = below detection limit

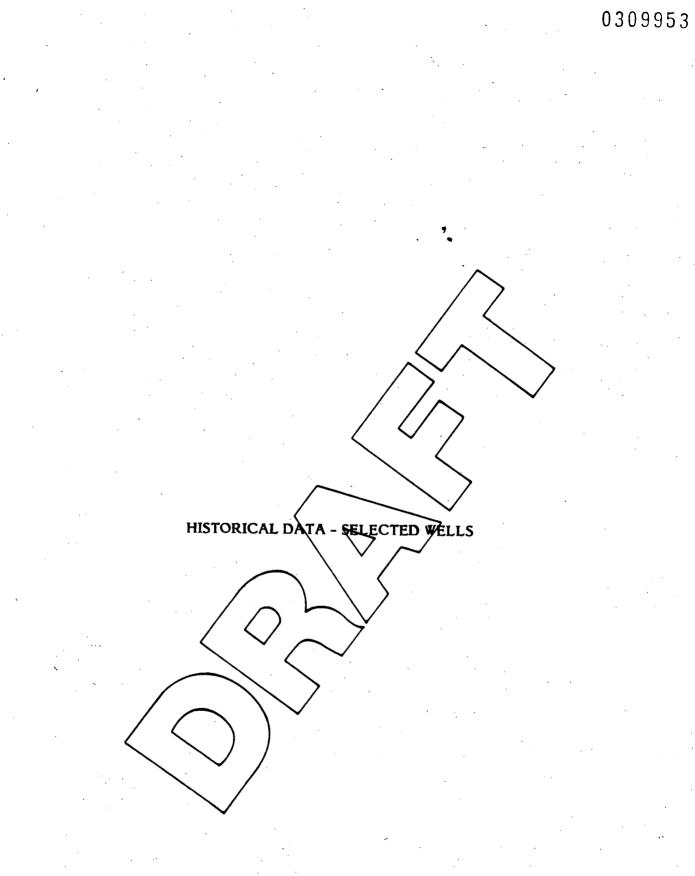
a analyses conducted on GC/MS

Note: Samples collected during residential well sampling round (7-9-85).

TABLE P-21
WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (8-23-85)
EPA Regional Laboratory - Lexington ^a

Sample Location Sample Number	Detection	Well #4 13105	₩eil #4 13106	Well #3 13107	Well #3 13108	Well #1 13109	Blank 1310 <b>3</b>	•
Volatile Compounds	Limit				•			
Chloromethane	6	-	-	-		-	-	
Bromomethane	2	-	-	-	/. >	-	-	
Vinyl Chloride	4	-	-	<b>_</b> '	1 - 1	-	-	
Chloroethane	4 '	-	-	-	1.1	-	-	
Methylene Chloride	$z \ge 1$		-	- ,	/ . \	-	-	•
Trichlorofluoromethane	. 5	-	<b>-</b> .	/		- ·	_	
1.1-Dichloroethene	Ĩ	-	-	· / .	$\sim$		·	
1,1-Dichloroethane	1	-	-					
1,2-Dichloroethene Isomers	Ĩ	3	2	/2		2	· _	· . · ·
Chloroform	ī	-		1: 7		$\sum Z$	_	
1,2-Dichloroethane	5	-	· _	1.1	•		-	
1,1,1-Trichloroethane	Ĩ	3	4	BD/	BDL	-	-	
Carbon Tetrachloride	Ĩ	-	/	7.7	7.	_	_	
Bromodichloromethane	1	-	. /			_		
1,2-Dichloropropane	1	-		_			-	
trans- 1,3-Dichloropropene	1	. <u>-</u>				-	-	
Trichloroethene	1	-	_			-	-	
Dibromochloromethane	1	_	~ .		$\Sigma$	-	-	. ·
cis- 1,3-Dichloropropene	<u> </u>	-				-	-	
1,1,2-Trichloroethane		- /				-	-	
Benzene	2	_ <	_		<b>•</b>	-	-	
2-Chloroethylvinyl Ether	2	_ `	1.1			-	-	
Bromoform	- 1	_	$\setminus 1 \setminus 7$	2 2 /	-			
Tetrachloroethene	. 1	-	$\backslash \cdot \vee$	$\sim$	-	-		· •
1,1,2,2-Tetrachloroethane	1	_	\-`		-		-	
Toluene	1	$\langle \rangle$	X X	< -	-	-	-	
Chlorobenzene	1			<u>}</u>	-	-	-	
Ethylbenzene	$\frac{1}{1}$	-			•	-	· -	
Acrolein	30			-	-	-	-	
Acrylonitrile	30	$\zeta J$		-	- ·	-	-	
Acetone	i i i i i i i i i i i i i i i i i i i	$\sim$	$\sim$ $1/$	-	-		-	٠.
Carbon Disulfide	ï			-	-	-	-	
2-Butanone	15	. \	_	_		-	· -	
Vinyl Acetate	$\frac{3}{3}$		Ń.	-	-	-		
2-Hexanone			7.	_		-	-	
4-Methyl-2-Pentanone	1 i	$\left  \right\rangle$		_	_	•	-	
Styrene	$\frac{2}{2}$	$\chi \sim$	_	_		•.	-	
Xylenes		1		-	-	-	. =	
	$\langle \cdot \rangle$		-		-		-	· .
- = not detected BDL = below detection limit		/			· · · · · · · · · · · · · · · · · · ·			
	$\mathbf{i}$							
a analyses conducted on GC,	/ms 🔪 📝			•	· .			

## TABLE P-22 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (10-9-85) EPA Regional Laboratory - Lexington^a Volatile Organic Analysis


Sample Location Sample Number Volatile Compounds	Detection Limit	Well #4 13607	Well #4 13608 (Dup)	Well #3 13609	Well #1 13610	Blani 1361
Chlorenethere		· · ·	<b>*</b> .		· ·	
Chloromethane Bromomethane	6	-	<b>-</b> .	<b>-</b> ,	-	-
	<u> </u>	-			-	-
Vinyl Chloride	4	-	- / \	> ⁻ -	-	-
Chloroethane	4	-	-/ /	-		-
Methylene Chloride	1	-	$f \zeta$	-	-	-
Trichlorofluoromethane	5	-	/- \	<u> </u>		-
1,1-Dichloroethene	1	· <del>-</del>	/ - ~	<u>\</u> -	-	-
1,1-Dichloroethane	1	. –	$\rightarrow$	~	-	-
1,2-Dichloroethene Isomers	1.	BDL	/ BDL	$\backslash 1$		-
Chloroform	1	- /	/ -		-	-
1,2-Dichloroethane	5	- /.		-	-	-
1,1,1-Trichloroethane	1	- / .	[] -7	BDL	-	-
Carbon Tetrachloride	1	- <	$\sim$ /	· _	-	-
Bromodichloromethane	` 1	- \	ζ-	. –	-	-
1,2-Dichloropropane	1	- `		· _	· •	-
trans- 1,3-Dichloropropene	- 1	~-	$\backslash . \rangle$	· _	-	_
Trichloroethylene	1	-	$\searrow$	- ·	-	
Dibromochloromethane	1 🗸			-	-	_
Cis- 1,3-Dichloropropene	4 \	7- 1	· /_	_	_	_
1,1,2-Trichloroethane	1	$\land$ - $\checkmark$	$\sim$ -	· _	-	
Benzene	2	_ <b>`</b> /	-	-	_	
2-Chloroethylvinyl Ether		$\langle \langle \rangle$	-	-	_	_
Bromoform			-			_
Tetrachloroethene	n	$ \searrow  / /$	_	· _		-
1,1,2,2-Tetrachloroethane			-	-	. –	_
Toluene		-< <u>-</u> /		_		-
Chlorobenzene	$\sum i $		_		_	-
Ethylbenzene					-	-
Acrolein	30	>_	. <b></b>	_	-	-
Acrylonitrile	30	/ _	_ ·	-	-	
Acetone		_		-	-	-
Carbon Disulfide		_			-,	-
2-Butanone			-	-	· <b>-</b>	-
Vinyl Acetate	$\sim 1$	_	-	. <b>-</b>	-	-
2-Hexanone	12	_		-	-	-
4-Methyl-2-Pentanone	$\langle 1 \rangle$		-		. –	-
Styrene	$\checkmark$	-	-	-	-	-
Xylenes	2	-	-	-	-	-
	۷.	-	-	-	-	-
- = not detected						
BDL = below detection limit			•		•	
a analyses conducted on CC/MS						

a analyses conducted on GC/MS

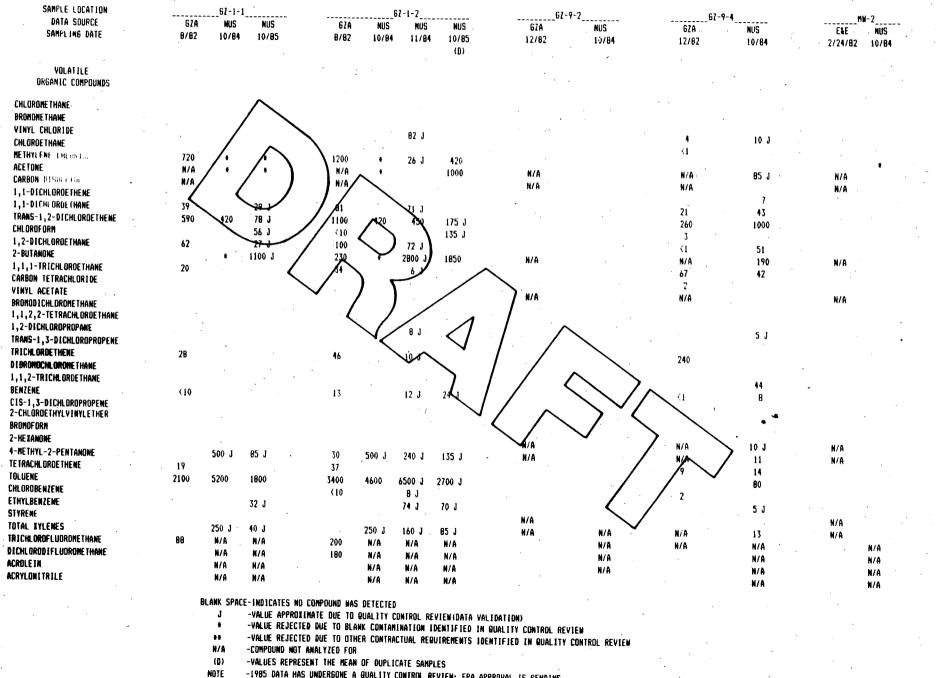
# TABLE P-23 WHISPERING PINES TRAILER PARK - SUPPLY WELL SAMPLING (11-20-85) EPA Regional Laboratory - Lexington^a Volatile Organic Analysis

Sample Location Sample Number	Detection	Well #1 14006	Well #3 14005	Well #4 14003	₩ell #4 14004	Blani 1400:
Volatile Compounds	Detection Limit		•		(Dup)	
Chloromethane	6	_				
Bromomethane	2	-	_	_	-	
Vinyl Chloride	4	-	- ^	_	-	-
Chloroethane	4		_ / `	> _	_	-
Methylene Chloride	I ·	-		_	_	-
Frichlorofluoromethane	5	-	/ <	<u> </u>	-	-
1,1-Dichloroethene	1	-				· · _
I,1-Dichloroethane	1	· •	$\langle \cdot \rangle$	-	_	_
,2-Dichloroethene Isomers	1	-	$\bigwedge$		2	_
Chloroform	1	- /	′ <u>}</u>	$\sum$	-	
1,2-Dichloroethane	5	- /		• _	_	
,1,1-Trichloroethane	. 1	- /	//17	_	· <u>-</u>	-
Carbon Tetrachloride	1	- 2	$\checkmark$ /	-	-	-
Bromodichloromethane	1	- \	[-	-	-	_
,2-Dichloropropane	1			<b>_</b> ' .	<b>-</b> ·	-
rans- 1,3-Dichloropropene	1	$\sim$	$\backslash - \rangle$	-	-	<b>.</b> .
richloroethene	1			-	-	
Dibromochloromethane	- 1 🗸	-		<b>-</b> '	-	_
Cis- 1,3-Dichloropropene	4	7-1	/-	-	-	-
,1,2-Trichloroethane	1	$\backslash - \bigvee$	~ -	<b>-</b> .	-	-
Benzene	2	\- · /	- ·	· 🗕	-	-
-Chloroethylvinyl Ether			-	-	<b>-</b> ·	· -
romoform			-	-		-
etrachloroethene	$\langle \rangle$	$\sim$	-	<b>_</b>	-	· -
,1,2,2-Tetrachloroethane	/ 4/	- >	-	-	-	-
Chlorobenzene		~-/	-	-	-	-
thylbenzene		-	· _	• -		-
crolein			_	-	-	-
Crylonitrile	1 20	/ -	· <b>-</b>	-	-	-
cetone	$\sim \frac{39}{2}$	-	-	-		
arbon Disulfide	15	-	-	-	-	
-Butanone	115	-	-		-	-
inyl Acetate	$\searrow$	-	-	- ,	-	-
-Hexanone	h	-	-	· <b>-</b>	<b>-</b> '	-
-Methyl-2-Pentanone		•	. –	<b>—</b>	` <b>-</b>	-
tyrene		-	-	. <b>-</b> '	-	-
ylenes	2	-	· -	-	-	
1	Ζ.	-	-	· _	_	

BDL = below detection limit a analyses conducted on GC/MS



### TABLE P-24 Groundwater Historical Data Volatile Organics Analysis (Values in ug/L)


SAMPLE LOCATION		A-9	A-	12														
DATA SOURCE	NUS	NUS	NUS	NUS		A-27				A-2	B					A-38		
SAMPLENT DATE	10/84		- 10/84	10/85	6ZA	NUS	NUS	6ZA	67A	GZA GZ	A 6ZA	NUS	NUS	-	GZA	NUS		
				10,05	8/82	10/84	10/85	8/3/82	<b>4/28/8</b> 3	7/20/83 10/17	/83 1/31/8	4 10/84			8/82	10/84	NUS 10/85	
							(D)									(D)	10/03	
VOLATILE																		
ORGANIC COMPOUNDS																		
CHLOROME THANE																		
BRONDNETHANE			•		•													
VINYL CHLORIDE			$\sim$															
CHLOROETHANE			26															
METHYLENE CHLORIDE	<i>e</i>		96						10	36 B-								
ACETONE	+	+	1 %		410		15000 J		N/A	36 B. ⊰5	<5		4 3					
, CARBON DISULFIDE		0.9 3	210	45	N/A				N/A	N/A			•					
1,1-DICHLORDETHENE					•		,			N/A					N/A	70	1900	
1,1-DICHLORDETHANE					<u>_</u> 2			16		13 5	· <5	•	14		N/A			
TRANS-1, 2-DICHLORDETHENE		· Z						290	260	200 140	120	153	14	· · · · ·	••			
CHLOROFORM				29 /	53000	\$30000	155000	69	47	48 37	25	99	. 86		40			
1,2-DICHLOROLTHANE											23	71	. 52		92	165 -	400	
2-BUTANONE	×	•		//									2 J		14			
1,1,1-TRICHLOROETHANE					、 <u>、</u> 58 ノ	12000			N/A	· ·			2.0		11 '	715		
CARBON TETRACHLORIDE					~ 23	)		490	310	190 100	170	132	100	•	N/A	365		
VINYL ACETATE		. `		$\langle /$			. /				••••				13			
BRONDDICHLORONETHANE			•	$\sum$	) N/A 🗸				N/A	N/A	·				N/A			
1,1,2,2-TE TRACHLORDE THANE				• •				1							N/ N			
1,2-DICHLOROPROPANE		· · · ·	•		1 /													
TRANS-1, 3-DICHLOROPROPENE					$\backslash$		Λ		•								•	
TRICHLORDE THENE			5 J		550	1600	·< / -	1	10m	N/A								
DIBROMOCHLOROMETHANE						~	V	21	/ 10 \	(5 6	10	20	11	5	(10			
1,1,2-TRICHLORDETHANE		• · · ·				$\sim$ $\sim$		1 /		$\mathbf{i}$								
BENZENE			5 J		19		)		$\wedge$			•						
CIS-1, 3-DICHLOROPROPENE									N/R	< / _ ^			ŧ		<10			
2-CHLOROETHYLVINYLETHER Browdform							$\sim$ 1			$\sum \sum$								
2-HEIANONE							$\sim$			$\mathbf{Y}$				•				•
			10 J -					$\langle /$	NA				. • T					
4-METHYL-2-PENTANONE Tetrachlordethene			10 J	,	39			$\sim$	N/A	N/A 2		$\mathbf{i}$			N/A			
TOLUERE					8700	8500	•	25	12	15	10~		· <b>n</b>		N/A			
CHLOROBENZENE			210		1600				14	·· /·	- "^	<u> </u>	8		10 .			
ETHYLBENZENE												V.		20	000	2090	2100	
STYRENE		1 J	77		650						/ .		0.4 J	·	•			
TOTAL AVIENES								N/A	N/A	N/ N/A	N/A		V.4 J					
TRICHLUHOFLUORONETHANE	N/A	N/A	320				•		•	$\sim$ 7					N/A			
DICHLORODIFLUORDNETHANE	N/A	N/A		N/A		N/A	N/A			$\sim$	(5	N/A	N/A				:	
ACROLETN	N/A	N/A		N/A		N/A	N/A	• .				N/A	N/A	(	10	N/A	N/A	
ACRYLONITRILE	N/A	N/A		N/A		N/A	N/A					N/A	N/A	6 B.		N/A	N/A	
		R/ N	97/A	NZĄ		N/A	N/A				N/A	N/A	N/A			N/A N/A	N/A	
			BLANK SPACE-I	NOTCATES NO.	COMPOUND WAS D							-				ar 9	N/A	
		,		ALLIF APPROVI	NATE DUE TO QU	EIEUTED ALTIN COM				· .								
			s -4	ALUE REJECTE	DIDE TO DIAME	CONTARIA	ATTON TOPET	UDATA VALIDATI	ON)									
			£\$ -V	ALUE REJECTE	D DUE TO BLANK D DUE TO OTHER	CONTRACT	HILUN IDEN!	FILD IN QUALS	TY CONTROL	REVIEW Ty control revi			-					
			N/A -C	OMPOUND NOT	ANALYZED		OUT MEROINE	INTO INFIIT	ED IN QUALI	IY CONTROL REVI	EW					. · .		

N/A -COMPOUND NOT ANALYZED

(D) -VALUES REPRESENT THE MEAN OF DUPLICATE SAMPLES NOTE -1985 DATA HAS UNDERSIDNE A DIALITY CONTROL POLICY

-1985 DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

## TABLE P-24 GROUNDWATER HISTORICAL DATA VOLATILE ORGANICS ANALYSIS (VALUES ug/L)



-1985 DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

10

60 ပ СЛ  $\mathbf{C}^{\mathbf{T}}$ 

0

دن

### TABLE P-24 GROUNDWATER HISTORICAL DATA VOLATILE ORGANICS ANALYSIS (VALUES IN ug/L)

SAMPLE LOCATION		W-6		NW-9		19-10A			W-5-1			₩-5-2	i.		
DATA SDURCE SAMPLING DATE	E&E 2/24/02	NUS 10/84	E&E 2/24/82		IUS ELE 1/84 2/24/0	NUS 82 10/84	67A 4/27/03	6ZA 7/20/83 10	62A 620 21/03 1/31		6ZA 4/27/B3	6ZA GZA 7/20/83 10/21/83	67A 1/31/84	NUS 10/B4	
VOLATILE ORGANIC CONPOUNDS															
CHLOROMETHANE						•									
BROMOMETHANE		•		$\wedge$		а.						· .			
VINYL CHLORIDE		7 J	/	Y				11				22	<b>(5</b> )	24	
CHLOROETHANE	<b>.</b>	I					<5	50	<5 .(5		10	13	(5	10 J	
NETHYLENE CHLORIDE Acetone	200 • N/A		NA	A/A		•	· · · · · · · · · · · · · · · · · · ·	180	7	. +		63 5		ŧ	
CARBON DISULFIDE	N/A	•	N/A	N/A	* \ N/A	. •	N/A N/A	N/A N/A	N/A N/F N/A N/F		N/A N/Ã	N/A N/A N/A N/A	N/A N/A	•	
1,1-DICHLOROETHENE				· .)		. 55	6	75	17 20	•	- 10	130 630	250	. 540	
1,1-DICHLOROETHANE	28	8 J		(10	10		. 30	1,65	92 BO	170 J	110	280 2500	740	1800	
TRANS-1,2-DICHLOROETHENE Chloroform	600	120 J					95	165	260 200	) 45 J	130	230 77	120	190 -	
1,2-DICHLOROETHANE		10 J						26		•		12		1	
2-BUTANONE	N/A	525 J	N/A	$\smile$		ノ・ト		270						••	
1,1,1-TRICHLORDETHANE	24				∧ ²⁵	5 J	660	730	340 380	690 J	1330	950 BO	110	240	
CARBON TETRACHLORIDE VINYL ACETATE	N/A		· N/A	N/A	<b>)</b> N/A						· .		•		
BROMODICHLORDNETHANE				N/ M	$\sim$ $/$ $\sim$										
1,1,2,2-TETRACHLORDETHANE 1,2-DICHLOROPROPANE				•						•					•
TRANS-1, 3-DICHLOROPROPENE		· .					$\Lambda$ $I$		~ ·						
TRICHLOROETHENE	41				<b>``</b>		380	845	310 300	370 J	690	2200 340	450	440	
DIBRONDCHLORDMETHANE						$\searrow$									
1,1,2-TRICHLOROETHANE BENZENE						·	$\sum I$								
CIS-1,3-DICHLOROPROPENE								/	$\langle \backslash \rangle$	1~			•		
2-CHLOROETHYLVINYLETHER								•		$\checkmark/$ $\land$	<				
BROMOFORM							2		< /						
2-HEXANDNE 4-Nethyl-2-pentanone	N/A N/A	52 J	N/A N/A	N/A N/A 10	N/A J N/A				$\checkmark$						
TETRACHLORDETHENE	18	JZJ	N/R			5 J	375	155	30 70	620 3	ALC A	80 59	40	170	
TOLUENE	200	860 J		· •		+	<5		100 15	<b>7</b> 22	/	5	<5	7	
CHLOROBENZENE										/ /			(5	· .	•
ETHYLBENZENE Styrene	21	14 J				•			(5	/ /		N/A 11/A	. <5		
TOTAL XYLENES	N/A N/A	17 J	N/A N/A	N/A N/A	N/A		N/A	N/A	N/A NG		N/A	N/A N/A	N/A		
TRICHLOROFLUOROMETHANE	B4	N/A	5	<10 N/		N/A				N/A				N/A	
DICHLORODIFLUOROMETHANE	· .	N/A		N/1		N/A				N/A				N/A	
ACROLEIN		N/A	· .	N/1		N/A ·				N/A	•			N/A	
ACRYLONITRILE		N/A		• <u>,</u> N/i	ĸ	N/A				. N/A.	-			N/A	

BLANK SPACE-INDICATES NO COMPOUND WAS DETECTED

- J -VALUE APPROXIMATE DUE TO QUALITY CONTROL REVIEW (DATA VALIDATION)
- -VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW
- ** -VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW
- N/A -COMPOUND NOT ANALYZED
- (D) -VALUES REPRESENT THE MEAN OF DUPLICATE SAMPLES
- NOTE -1985 DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

## TABLE P-24 GROUNDWATER HISTORICAL DATA

VOLATILE ORGANICS AWALYSIS (VALUES IN ug/L)

-----

6ZA

RO

51

270

570

60

15

N/A

J

÷

#ŧ

N/A

(D)

NDTE

GZA

10

20

NZ.

10

120

150

1400

700

890

₹5

`~-N/A

Ά/

SAMPLE LOCATION

DATA SOURCE

SAMPLING DATE

VOLATILE ORGANIC COMPOUNDS

CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE

**METHYLENE CHLORIDE** 

CARBON DISULFIDE

1,1-DICHLORDETHENE

1,1-DICHLOROETHANE

TRANS-1,2-DICHLORDETHENE

1,1,1-TRICHLORDETHANE

CARBON TETRACHLORIDE VINYL ACETATE BROMODICHLOROMETHANE 1,1,2,2-TETRACHLOROETHANE 1,2-DICHLOROPROPANE TRANS-1, 3-DICHLOROPROPENE TRICHLOROETHENE

DIBROMOCHLOROMETHANE 1,1,2-TRICHLORDETHANE

CIS-1, 3-DICHLOROPROPENE 2-CHLOROETHYLVINYLETHER

BENZENE

BROMOFORM 2-HEXANONE 4-NETHYL-2-PENTANONE TE TRACHLORDE THENE

TOLUENE

ACROLEIN

CHLOROBENZENE ETHYLBENZENE STYRENE

TOTAL XYLENES TRICHLOROFLUOROMETHANE

ACRYLONITRILE

DICHLORODIFLUOROMETHANE

ACETONE

CHLORDFORM 1,2-DICHLOROETHANE 2-BUTANONE

6ZA

4/27/83 7/20/83 10/21/83 1/31/84 10/84

20

720

870

19

N/A

67A

N/A

N/A

500

260

<5

N/A

BLANK SPACE-INDICATES NO COMPOUND WAS DETECTED

-COMPOUND NOT ANALYZED

70]

460J

730

470

14 J

110 J

N/A

N/A

N/A

N/A

-VALUE REPRESENT THE MEAN OF DUPLICATE SAMPLES

-VALUE APPROXIMATE DUE TO QUALITY CONTROL REVIEW(DATA VALIDATION)

-VALUE REJECTED DUE TO BLANK CONTAMINATION IDENTIFIED IN QUALITY CONTROL REVIEW

-1985 DATA HAS UNDERGONE A QUALITY CONTROL REVIEW; EPA APPROVAL IS PENDING

-VALUE REJECTED DUE TO OTHER CONTRACTUAL REQUIREMENTS IDENTIFIED IN QUALITY CONTROL REVIEW

0

ယ

60

Ö

СЛ

-1

NUS

W-5-3

TABLE P-25 HISTORICAL DATA (GZA) PHYSICAL CHARACTERISTICS

Sample	collection	temn		Specific conductance		screened		
Number	date	temp (- <u>C)</u>	<u>pH</u>	(umhos/cm)	depth	interval	notes	
A-1					31.7	20.0-30.0		
A-2	8/3/82	<b>x</b> 6.4	<b>b</b> ,27	289	14.1	3.2-13.2		
A-3	8/8/82	/15.3/	<u>6.</u>	186	19.0	7.8-17.8		
A-4	8/3/82	18.5	6.22	268	10.5	.5-8.6		
A-5	8/3/82	15.7	6.41	595	10.5	.3-9.7	(bottom of screen very close to W.T.)	
A-6	8/3/82	3.6	6.56	74.5	21.0	7.5-17.5		
A-7			//	$\langle \rangle$		10.0		·
A-8				$\sim$ )		20.5	•	· · · ·
A-9			$\langle \langle \rangle$		∕>Q.0	14.4-24.4		4
A-10			¥_	/ + /	15.7			
A-11				$\langle \rangle / \rangle$	7.5			
A-12					1 15.0	9.7-14.7	(bottom of screen very close to water table)	
A-13					22.0/			
A-14	8/3/82	15.3	6.19	64.1	14.8	<b>8.3-13.5</b>		•
A-15	8/12/82	16.3	6.24	124	31/.6	17.8-27.6	``````````````````````````````````````	
A-16					<b>~ (</b> 0.0 /	$\sim$ / $\sim$	*	
A-17	8/4/82	14.9	5.77	49.5	13.0/	0.5-8.6		
A-18	8/3/82	17.8	6.91	252	12.0	7.3-11.3	$\sim$ 7	
A-19	8/12/82	18.0	6.18	51	9.0	0.5-8.6		
A-20	8/26/82	21.4	6.66	448	15.1	10.1-15		
A-21					8.0			
A-22	0/5/00	10 7	( 00	0.00	8.5			
A-23	8/5/82	19.7	6.02	260	16.5	6-16		
A-24	0/2/02	11. 7	5 (1	10 F	15.0	14.04		
A-25	8/3/82 8/3/82	14.7	5.61	49.5	26.5	14-24		
A-26 A-27	8/3/82	15.0 15.2	6.46 5.39	670 2920	20.0 15.0	8.5-18.5 5.0-15.0		
A-27 A-28	8/3/82	20.0	5.97	425	15.0	3.9-13.9		
A-29	8/3/82	16.2	6.46	1440	16.5	5.8-15.8	·	
A-30	8/3/82	16.8	6.13	290	10.0	3.2-9.2		
A-30A	8/12/82	12.5	5.83	246	18.3	8.3-18.3	·. · ·	·

## TABLE P-25 HISTORICAL DATA (GZA) PHYSICAL CHARACTERISTICS PAGE TWO

Station Number	collection <u>date</u>	temp ( <u>–</u> C)	<u>рН</u>	Specific conductance (umhos/cm)	depth	screened interval	notes
A-31	8/12/82	21.5	5.95	69.5	17.0	3.1-8.1	· · · ·
A-32	8/5/82	10,0	6.62	2110	29.0	19.0-29.0	
A-32A	8/5/82	1.8.3	6.64	572		.6-10.6	•
A-33	8/4/82	20.7	6.30	857	15.0	1.0-9.2	
A-34	8/12/82	/ 12.7/	6.20	320	30.0	26.3-29.8	Bedrock
A-35	8/26/82	DR/Y		$\wedge$	19.5	9.5-19.5	bourben
A-36					19.5		
A-37		$\sim$	/ //		18.5		
A-38	8/5/82	14.8	6/1	$\wedge 114$	18.0	7.9-17.9	· · · ·
A-39	8/4/82	14.0_	6,56	()030	24.0	6.6-16.6	
A-40	8/26/82	DRY			5.5	0-5.0	
A-41	8/26/82	17.4	(6.22/	198	∕√1.5	6.3-11.3	
A-42			$\sim$	15/	8.0		
A-45					29.5	6.7-26.7	
A-46				< /	1 21/5	1.4-16.4	
A-47					6.0		
A-48				$ \searrow  $	3/5.1	21.35	
GZ-1(-1)	8/5/82	19.8	6.29	2120		2.5-7.5	
GZ-1(-2)	8/5/82	15.8	6.24	2380		(.) $(7.5)$	
GZ-1(-3)	8/5/82	15.0	6.80	301	30/2	23.6 Barcad	$\backslash$
GZ-2(-1)	8/11/82	14.0	6.04	315	$\checkmark$ /	<u>∧ 14-719 &lt; </u>	
GZ-2(-2)	8/11/82	12.6	6.42	448	35.0/	34.0 Barcad	
GZ-3(-1)	8/11/82	19.0	.6.31	1200	$\checkmark$	2.8-7.8	<b>'</b>
GZ-3(-2)	8/11/82	14.6	6.64	1050	30.0	18.3-28.3	$\wedge$ /
GZ-4(-1)	8/11/82	18.2	5.93	86.2		1.5-6.5	
GZ-4(-2)	8/11/82	12.6	6.15	450	25.0	14.2-24.2	
GZ-5(-1)	8/11/82	14.2	6.05	450		19.0-24.0	
GZ-5(-2)	8/11/82	14.8	6.87	253	37.5	37.0 Barcad	
GZ-6(-1)	8/12/82	14.1	6.66	62		8-18	
GZ-6(-2)	8/12/82	12.6	6.81	167		34.0 Barcad	
GZ-6(-3)	8/12/82	15.0	6.57	1340	52.5	50.0 Barcad	
GZ-7(-1)						14.8-24.8	
GZ-7(-2)					46.4	45.9 Barcad	, ·
GZ-8(-1)						27.4-37.4	
GZ-8(-2)	:				61.0	54.4 Barcad	

## TABLE P-25 HISTORICAL DATA (GZA) PHYSICAL CHARACTERISTICS PAGE THREE

Station Number	collection <u>date</u>	temp ( <u>-C</u> )	<u>рН</u>	Specific conductance (umhos/cm)	depth	screened interval	notes
GZ-9(-1)		~				0-2.2	
GZ-9(-2)						7.5-17.5	· ·
GZ-9(-3)			7			27.2 Barcad	
GZ-9(-4)			$\langle \rangle$		51.5	42.8 Barcad	
GZ-10(-1) GZ-10(-2)			$\mathbf{i}$			0-3.5	. 1
GZ-10(-2) GZ-10(-3)	/		11	<u>∧</u>	25.0	5.3-15.3	/ · · ·
G2-10(-))	ζ		/ //		35.8	27.4 Barcad	(seal between
GZ-11(-1)	· .			$\sim$			Barcad & refusal)
GZ-11(-2)	• •			$\langle \rangle \rangle$	46.4	2.2-22.2 43.0 Barcad	
TP-3	8/27/82	19.8	\$.05	$\sim$ $\sim$ $_{308}$	40.4	4J.0 DaiCau	
TP-12	8/12/82	17.3	6.29/	362			
TP-19	8/3/82	14.1	6.06	362			
#10							
#18				$\langle   / \rangle$	1	•	
#20	8/26/82	17.6	6.18	$\bigvee$ 34.0 $\langle$	/ / *	$\land$	
MW-1		••					· .
MW-2	0/0/100	11.0	4.95		/	$\wedge$	
M ₩-3 M ₩-4	8/26/82	14.6	6.35	50.4	. / /		<b>\</b>
MW-5	8/26/82 8/26/82	14.9	6.32	210		$\sim \sim \sim /$	$\mathbf{i}$
M₩-6	8/26/82	13.1 13.2	6.05	413	$\langle \zeta \rangle$	$^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$	••
M₩-8 M₩-7	8/26/82	15.7	6.52	1500	$\sim$		$\rightarrow$ $\sim$ $\sim$
M₩-8	8/26/82	15.7	.6.10 6.44	69 <b>.</b> 7			
M W-9	8/12/82	13.3	5.99	264 185			$/ \vee$
MW-10	8/26/82	17.3	6.42	54			
MW-10A	8/26/82	11.6	5.98	107			
	-,,		/•/0	107		$\sim$	

0309960

.

GROUNDWATER DATA (STATE OF NEW HAMPSHIRE)

		inal vs is	Trichlo-	Lerbon Terre	Trichlor	TORENVIE	chioro-	and the second	Unigenti-			Temperat.	C.0.D.	- -	5 1402+H03		Sulfate		is s	ONIN			-				1/5	Lead mo/1	Nanganese	Selenium	Copper	Hercury	Inckel	1/5	POTOSS 1um	Sod Ium	Zinc mg/l	Names tun 10/1	е	
11	h. 0		0.7	0.3	t.	T		1-	-	-		ļ	+	- -		5 <u>, 1 A</u>			VERBI	ER )	979	BY 1	WL TO	RC.		sav	(11)	158P	C-PI	<b>(</b>										
inch		-1-			1				. #.,				21		-	8	<u>þ.1</u>	. 6.	2 17	14	-	0.03	3 -	0.0		2 2		0.05	7.2	1.	0.	<u>}</u>	+				╂──	╂	┨──	
<u> </u>	[ <u> </u>		_	4.6	24	-[-	.0.	H.D	· N.	D.	$\square$		132		-	e, I	1.1	. 6.	2   14	6	-	0.02	2 -	10.0					45.4	1	0.	+			_	·	F	2.6		0256
ream	<u>1.0</u>	<u>.</u>	.0.	N.D.	N.0	). 11	.D.	N.C		Ņ	/				.	37	8	6.	1 19	3		0.0	+	0.0	0 <b>5</b>		_				10.	1	Ŀ	!	8	32	0.04	13.4		0256
									17	1		$\overline{\ }$	1-	7				-		4			1-		0.0	<u>u  1</u> .	0	0.09	0.27	<u> </u>	0.1	-	-	h.	.9	19.5	0.03	2.4		02568
						1			$\mathbf{Y}$	╈	А		)		+		-							<b> </b>							ŀ					_			'	
speri es	<b>1</b> 9	- -	- -			+-		-4	-	4	$\triangleleft$		ES	17	[n] ()	HO	EMBC	R 19	79 B	v bi	ERIL	9D Li	<b>CE</b> Y	AND :	FEP	KN D	EUD	EO	NHWS	SPCC-	H.S.	<u></u>	†-	-1-	-1					
eler urn eet	N.D.	<u>- -</u>	3 -	<u>N.D.</u>	N.D	. <u> N</u> .	<u>D.</u>	N.D.	à.a	Ł				K,		9.5		7.1	χ-		- 1	0.01	1	ŧ 0.00	6		-   -			0.01	<b>†</b>	10 0	1	-{						
eet	N.D.	N.	0 1	1. D	N.D.	. <b>N</b> .	D.	1.D.	2.0		$\downarrow$	-	-/	0.0	05 <	10 1		) 8.2	11	T				<b>† 0.0</b> 0	Þ.						j ·	10.00	·			16	0.04			0265
urn Fyl	N.D.	1	<u>.d</u>	I.D.	<u>N.D</u> .	<b>.</b>	D.	I.D.	N.D				て		T	$\overline{}$			$\mathcal{V}$	╋		0.0		0.00	0.0 K	<u>k 0.</u>	10			0.01			<u> </u> -	·		5.2	0.02	-	ł	02564
ner urn Føt Dks urn ret	N.D.	<b>n</b> .1			29	N. 1	T	0F	N.D.	1	+		<u> </u>	₩×			÷	<u>V.9</u>		*	<b>o</b> ti	0.01	BI		0.0	<u>k 0.</u>	10	.0	D. 01	0.01	<0.1	0.00	<u> </u>	-	. 3	3.4	0.03	-		0256
Bern	I.D.	N.(	<b>5</b>	D. N	.D.	<b>.</b>		.D.	N.D.					0.2	3 1	4	÷ł	1.2	Ł		9	0.01	<b>q</b> .z	0.00	k0.0	0.1	10	.05	). 03	0.01	< 0.1	0.00	h		Τ.	6.4				·
L			╋				-							0.0	<u>s</u> 1	0	<u>_</u> 4	7.4	-	Μ	2/10	0.03	6.1	0.00	0.0			- 1		0.01		0.00	-			-				<u>025</u> 6(
	ymb		- -				_	_										$\searrow$	r	K	·	Λ		7			1								- -	5.3				02563
		• 1	yrb	1d t	y li	ter	fen	ind												tt		11	7		£		-	-}	オ	—i				<b> </b>			-			
- En	.D.	- 1	gt (	Dele	er r cte	1. <b>CI</b>					1-					- -	-†			$\vdash$	┝	⊢∤	<b>_</b> -	-	_	$\rightarrow$	$\geq$	<u> </u>	- [	$\triangleleft$										. :
-r	<b>•</b> £u	<del>66</del> -	<b>n</b> -1	**/1-		<del>98)</del>	-	les	-~~*	ed-	othe	nuls	e-									_}	$\searrow$		-		<u> </u>		$\geq$		$\searrow$	、· .	•				- [-			
[·		<del></del>					╉				-		-			_ _	_		·				1			In a Lond			<b>Nie</b>	or		7			1-				-	
			<u> -</u>	- -	_ -																	Τ				Lon	bu	45	Lano		-\	-			$\vdash$	- -		-		
																					+-		-+	-					1-	-		[·				- -		_ _		
		,							_		1	- -				·	- -				-			-		_		¶/_	- -	a je				•		ľ				

_

<u>-030</u>9962

----

Site 	<i></i>	and a second	Mun I Vic result	(N	an 1581 19/1 (-	And ppb)		1 ace Resu	l ts in	- <b>199/1</b>	Dat (=ppm	unle	war ² ss oti	198 hernis											
Nell Mumber	Hydro- carbons		Trichioro- ethane •	Larbon Tetra-	Arichloro-	Methylene Chloride -	Tetrachloro- ethylene -		Ē		Tenoerature PC			TOR-N	10,+10,	Phosphorus	Hd	5p. Cond.	Chloride	5ul fate	501 fds (Total)	Eolids (Suspended)	Dids olatile	boli.is (Volatile Suspended)	
#4" well	#	ND	1	ND	157	MD	1	3	ND	20		X 490	TT -		0.29	Т	6.2	591	······	2.5	1. S. C.	182	<u>ع</u> حقا	<u>مح</u> ع	
Brooks	MO	· ND	ND	ND	7	ND	ND	5	۲D	ND		12.2			0.43		7.6	638	90	15			<u> </u>		
Bely	ND	ND	ND	NO	9	MP	ND	2	ND	ND	1 -	4.1		1	<.05		1.7	338	4	7.5			┠───		
Lindquis	ND	ND	ND	ND	/11	10	ND	2.5	ND	ND	1	4.1		1	0.72		6.9	317	31				<b> </b>		
Vn (fesel) Nell	ND	ND	ND	NO	23	ND	ND	•	ND	ND		(4.)	1		<.05	†	7.9	313	6	7.5	<b> </b>	<b> </b>	<b> </b>		
	<b> </b>	<b> </b>	<b> </b>			$\nabla$						]	T	1	1	<b> </b>	1	1		+	<u> </u>	<u>∤</u>	·	┞──┤	
	· · · ·			ľ	$\angle$			$\square$				1		1				·  - ·		<b> -</b>	<u> </u>	<b> </b>			
<b>-</b> '				L		<u>/_</u>	/_	<b>/_</b>	$\sum$					1				1	+						
			<b>_</b>	$\square$			//		K.	$\square$		]	r	Γ				1		h= / u	i				
						$\leq$	/		$\mathbf{)}$					1	!						[				
	·		<b>.</b> .					$\overline{\ }$		7							~	1		f					
				·			$\checkmark$		5	$\boldsymbol{r}$		$\Gamma$	$\mathbb{N}$				-								
		[ <b></b> ]						$\mathcal{T}$	$\Box$	Resel	ts In	eg/l	(-00m)	)	<u></u>			L	I					<u>I</u>	
Nel I Number	Arsenic	Bariu	Comise	Calctur	Chromium	Copper	Iren	Lend	agues i e	Manga mese	Zucar	Nickel	Potassium	Sel on Nue	<b>3</b> 661.m	Tin	Linc	Fecal Coliform Der 100 ml	static evel eet	Labora Nymb		N.D. S.T. N.S.	⊧Slight ⊧Net Sa	ng Dete L Trace	cted
#4" well							68		10.2		$\zeta$	7			$\square$	$\overline{}$				0444		A.H.•	•Alipha	tic ocarbo	.
rooks							0.1		54			7		$\wedge$		> 1	$\langle \ $	2		04448	 8 ₈ -4 -				
King Heli							<b>4</b> 0.1		40	,			$\bigtriangledown$		$\nabla$			~2	$\searrow$	04444					1
lindiuls t							0.2		0.49								7	.2/		04445			·		
Whitesell Well							0.1	[	0.04							k	/	1/2	$\rightarrow$	C4446					
			·									-1			┝╼╌╊	1		/					•		
	[														┝╼╌╉	$\rightarrow$	$\checkmark$							•	
· ·								[										}							
																		{	{						
					t-			†					<u> </u>					}	{						
						·																			
																		<u> </u>							
					F-		<b>k</b>					l.							<u> </u>			'_	···-		

.

							' Munic	ipal t	andfi			•		•		- - -		•					•••		
			Wicks result					Resu	lts in	-		Febro unles				ed.				·					
Nel 1 Munber Irooks	Hydro- Carbos	IR Analysis	Trichloro- ethane	Karbon Tetre-	Trichloro- ethylene	Methylene Xhloride	Tetrachloro- ethy Iene	Unidenti- fied	Chloroform	:	ri cinterature PC	C.O.D.	Alkalinity Caco,	T.DI-N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Phosphorus Total	DH Butts	59. Cond.	Chloride	Bulfate	Solids [Total)	5011ds (Suspended)	Solids [Volatile Fotal)	olids Volatile uspended)	
Al Indquis 12		<b> </b>		-		. <b> </b>		Į	<b> </b>	<b>_</b>	ļ	11.8	173.5		0.27		7.3	602	73	19.5				م_م	
ffeset 13	!	<b> </b>			<b>_</b>		<b>/</b>		J				143.5	· · •	0.20		6.9	402.8	31	12.5					
13 Ing 14		<b>↓</b>		·		$\downarrow \not \perp$		<b>k</b>	Α-	<b>_</b>			158.0	L	<.05		7.7	318.9	1 ·	6.0			1		
4		<b> </b>	<u> </u>	+		¥		Η-		+	<b> </b>	4.0	169.0		<.05	l	7.6	341,7	2	10.0					
<del></del> -					+	┨──┥	€—	$\mathcal{V}$	++-	I - I	Þ-	l			<b>_</b>			<b>-</b>		<b> </b>	<b>İ</b>				 
		†	+	<b>†</b>	<u> &gt;</u>	$\mathbf{k}$		1	$\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	1	-	<b>\</b>			<u> </u>						<b> </b>	<b> </b>		· · ·	
		<b> </b>		<u> </u>	1		$\leftarrow$	$\succ$	⊬	+	$\rightarrow$	$\left  \right\rangle$				<u> </u>								· · · ·	
	· · · · · · · · · · · · · · · · · · ·		1	†		<b> </b>	·	-/	- /	$\mathbf{k}^{-1}$	<u> </u>			 · •	j						┨				
			†		· ·						TT			$\sim$	$\mathbf{k}$	<b> </b>						<b> </b>			
			1			1			<b>ř</b>	1/-	+ + + + + + + + + + + + + + + + + + +		<u> </u>	·	++-						<b> </b>				
											//	$\mathbf{V}$		1	/ 1					1		<b> </b>			
			1				·····		· · · · · ·	Resul	ts m	-	("Ppm	)	1	Ź				<b>.</b>		<u>L</u>			
ell Iber	Arsenic	Bartu	Catta	Calciu	Chronter	(Spper	Iron	Leed	Megnestun	Manganese	Nercury	Nickel	Potagetie	Scheelle	Sodiu	et.	Ztnc/>	Colifore Colifore Der (100 ml		Labera	tory Mr	N.D. S.T. N.S.	-Slight Hot S	ng Dete t Trace empled	ecte
oks doule	<0.00	· .		Ŀ.			0.3		40	0.03					×./	0.05		त	$\sum$	06678	· · ·	<u>р</u> м.н.,	•A11ph/ Hydi	atic rocarbo	ms
2	<0.009						0.2	·	2.4	0.02						0.10		<u>d</u>	$\sum$	06679	$\sum$	r			
dquis Lesei	<0.00						<0.1		0.03	<0.01						0.06		<u>_</u> 1		96680					
<u> </u>	<0.00				<u>-</u>	<del>.</del> <b></b>	<0.1		20	0.02					38	0.18		K		06681					·
						• <del>-</del>													$\checkmark$						
															<u> </u>					 					
								·																	
<b> </b>				·													-+				·				•
	ł	<del></del>																		· .				•	
							· · • •																		
												1.		·											

-

.'

ed.		5 7.5 390 4	6 6.6 286 39	8 5.5 218 47	5 6.5 664 55						<u>†                                    </u>	<del>╏╶╌╏╶╶╏╶╸╏╺╶╏╶╶╏╶╶╏</del>	
		<0.05	0.06	0.18	<0.05								
• • • • • • • • • • • • • • • • • • •	т.о.с. точ-и												
	Temperature PC C.0.0.	7.5	15.8	15.8	99.0			pad .		$\mathbf{N}$		$\mathcal{H}$	
	Chlorofor						<u>_</u>	Auburn R	Landfill		VI		-
	Unidenti- fied Compund	┟──┟		<b> </b>	1. 1r	A-1-		frya 10	onder y	$V^{\dagger}$			·/
61	Tetrachion Chioride Tetrachion ethylene			$\lambda$	$\rightarrow$	A -	_	er acyoss	er at Lon		7/		
I. 1	Trichloro ethylene	<u>├</u> ──-}			"A	$ \downarrow $	[]		ace w		T		
	ethane Larbon Tetra- chloride				· 17			ding our	dig sur	. I .			
	IR Analysis Trichloro-								(2) Stand				· - · · · · · · · · · · · · · · · · · ·
j	Hydro- Carbons 10/1			·		· · · · · · · · ·							·
	el I nber Iham's I	1	K	1)	2)								

Site:	l By:	Ralph	Vicks	M				Resul		(	ate:_	May 7	, 1980		stated	).				:					
tia)) Number	Hyaro- cerbons mg/1	IR Analysis	Trichlord- ethene	Larbon Tetra- chloride	Trichloro- ethylene	Nethylene Chloride	Tetrachloro- Ethylene	unidenti- fied Compound	Ch laro for	•	lfemperature PC	c.o.b.	r.o.c.	T 0-8	10 ² +10 ³	Phosphorus Total	pH units	5p. Cond. Liftitios	Chloride	Sulfate	Solids [Total]	Solids (Suspended)	Solids (Volatile Total)	solids (Volatile Suspended)	Alkalinity
ing	Ŧ										<b>L</b> . <b>Z</b>	<4			0.05		7.9	354	4	15				21 <b>4</b> 2.07	152
rooks							$V^{-}$	$\overline{\ }$		·		47.4			0.14		7.7	572	57	30				1	176
Indquis			• •					Κ.	$\mathbf{N}$ .			<4			0.55		7.2	439	46	20		·			119
logan						$\overline{V}$	17	$\overline{\mathbf{N}}$				<4	··		0.77		6.7	196	21	14		·	·		42
hitesel					7		$\gamma^{-1}$	7		7		11.8			k0.05		8.1	316	5	9	-				144
rovenca							$\sim$		$\mathbb{Z}$			<b>*</b> •			0.07		7.9	364	3	25					165
indham						$\sum$			<u> </u>	:/	$\sum$	19.2			×0.05		7.8	400	2	12.5					191
											$\square$														
" Hell								$\boldsymbol{\boldsymbol{\zeta}}$		$\sum$		198		$\bigtriangleup$	0.15		6.5	67	24	<5					254
									$\sim$	1	<u> </u>				$\sum$										
							•		. <b>.</b>	$\overline{\langle}$	/			1	/.		$\sim$				· · · ·				
										Resul	ts in	mg/1	(-ppm	5		Z		$\sum$				·····			
Nel 1 Nunber	Arsen ic	Bertun	Cadarium	Calctur	Chroni un	Copper	۲.	beel	Nagnes 1 un	Nanganese	Nercury	Nickel	Potestia	Seferius	Sodiu	Ser.	Z1mc /	Col 156m		LaBor Num		N.D. S.T. N.S.	-51 igt -#ot 5 -Å1 ipt	ing Det it Trac iampled iatlc	
ing							0.2	<0.01	16.5	0.02					$\square$				$\vdash$	0976		Ъ.	Hyd	irocarb	ons
rooks						L	0.1	×0.01	28.0.										V			1 - Aug	wrn R	bed	
indquis							0.2	<0.01	15.5			<u> </u>		<b></b>				-/		0976 0976					
logan				·				<0.01		0.01								$ \leq $		·				<b>A</b>	•.
hitesel						<b> </b>	· · · · · · · · · · · · · · · · · · ·	<0.01			<u> </u>	<u> </u>							<u> </u>	0976		1			
rovenca						<u> </u>		<0.02		-		<b> </b>								0976			· .		
_							0.1	<0.01	26.0	0.02	 	<b> </b>								0976	5				
Indham						1	1.	ł		•••									L	I					
lindham						<b> </b>															-				
indham							78	<0.01	7.5	23.6										0976	7				
_					•••••		78	<0.01	7.5	23.6										0976	7 				

.

•

**.** :

<u>ki</u>

Site:	London	derry	Sanita	ry Lai	ndfill	/Whisp	ering	Pines	Trall	er Par	*														
Samp1 ed													aber i												
Organic	s Analy	ses r	esults	in yg	/1 (=p	pb)		Resul (	s In	mg/1 (	-ppm)	unles	s othe	rwise	stated	1.									
Sample Station	Hydro- carbons mg/1	IR Analysis	Trichloro- ethene	Carbon Tetra- chloride	Trichloro- athyl <b>ene</b>	Methylene Dhloride	Tetrachloro- ethylene	ilini denti- fiied Formound	Chlorofor		Teporature C	c.o.D.	B.0.D.	T701-11	ND2+HD3	Phosphorus Total	pH Lunits	Sp. Cond. Lattos	Chloride	· Sulfate	Sol 1ds (Total)	Solids (Suspended)	Solids (Volatile Fotal)	Solids (Volatile Suspended)	
Whisperic Pines Surface	ľi			. <u></u>		<u> </u>	$\rightarrow$			<u> </u>		94.4	- >5.9				-	456		40			<u> </u>		
X-2								$\sim$		ļ							6.8	153			<b>}</b>	<b> </b>	┨───		· · ·
x-1a							$  \rightarrow  $	$ \rightarrow $		<b> </b>	<b> </b>	189	>9.0				6.7			9	┨───	<b> </b>	<u> </u>		
x-1				-/		<u>/</u>			f	<b>-</b>	┨	39.4	1.7	<b> </b>		·	6.7	219				<b> </b>		}	
	ļ			5		$\succ$	<u> </u>	+	<u> </u>		$\leftarrow$								<u> </u>			<u> </u>			1
					$\sim$			K/-			$\rightarrow$		·	<u> </u>							<u> </u>			╏╌╾┥	
			<u>.</u>			$\geq$	$\vdash$	<u> </u>	<u> </u>	$\triangleright$	$ \rightarrow $		<u> </u>								<u> </u>				$\vdash$
	·					`		/	<u> </u>												+	┠			
								$\checkmark$	)·	F	F		<b>[</b>			••				┠			<u> </u>		╏───┤
			·							┞╌┵		<b>I</b>										<u>}</u>			╂
							·			$\langle$	1.	<	1	/					· ·					· .	
			<u></u>		<u></u>					Resul	in In	<b>a</b> /1	(=ppm)		7										
Sample	Aluminum	Bartum	cadmium	Calctum	Chromitum Chromitum	Copper	Iron	Levd	Nagnes i un	Ha nga nese	Mercury	Nickel	Potasstum	Selenter	sodym	zła 🖉	Zthe	Control mi		Labor Nu	ratory	N.D S.T •W.S	.=Sligt	ing Det at Trac Sampled	e
Unisperin Pines	0.10		0.009		0.11	<0.1	0.6	1	-	0.20		<0.1					0.10			1989	•	^ ^.n		irocart	ons
Surface			×0.009		0.01	<0.1	7.3	1		7.4	1	<0.1	1			1	0.03	2,100	17	1989	ý			)897 ta :e tap.	
<u>x-2</u> x-1a	0.90		×0.009		<0.01	<0.1	12			1.37		<0.1	1	1		1	0.07	9,300	V	1989	5	Grou	andwa te	er Whis	sperind
x-1	0.10		k0.00		<0.01	<0.1	0.5		<u>}</u>	0.07	1	<0.1	1	1	1	1	0.05	4,300		1989	4			iler Pa	
	<b> </b>				<b> </b>					†	1	1		<u> </u>	†	· · · · ·		M		1		Sam	oles #1 #19894	19896, I taker	#19895 h from
					<u> </u>	+	f			- <del> </del>		1	1	<u> </u>	<u> </u>		1		1	1	,,,	sta	nding :	surface bhas Bi	2
<b> </b>		<u> </u>	<u> </u>		<u> </u>	1	1	<u> </u>		1	1	1		1	1	t	ļ	<u> </u>	1	1		east	tern p	erimete	
	1	{	t		-	t	<u> </u>	1	1	1	1	1	1							1			dfil).		
<b> </b>	╣───	t	1	<b>†</b>	t	1	<u>†</u>	1	<u> </u>	1	1	1						9897 w	as		<u> </u>			le loca ned map	tions 5.)
	1	t	1	1	1	1	1	1		1	1	1	cont	ainte	in a i g Sodi	um Thi	osulf	ate.						of iron	
<b>∮</b> {		<u>†</u>	1	<u> </u>	1	1	t	1	<u>†</u>	1	1	1	1 Ther	efore	subje	ct sam	ple 1	6				baci		ioted a	
	1			1			1		1	1			1		•								tions.		

						Tomm?	arulj					ndfill Date:	Marci	h 11.	1981											
Urga	nics A	na lyse	s res	ults	10 µ	ıg∕1 (∙ 	·ppb)		Resu	Its l	n mg/1	(=ppm)	) unles	is oth	erwise	e stat	ed.									
Well <u>Number</u>	Hydro-	1/0		ethane	Tetra-	Trichlono- Bthylene	Methylene	Tetrachloro		Chloroform		fictoerature PC		.o.c.	RF.	NO,		DH units	5p. Cond.	Chloride	Sulfate	Solids (Total)	Solids (Suspended)	501ids (Volatile Total)	Solids (Volatile Suspended)	
I.P. 🖊	1									<b>1</b>	+	-[EI		<u> -r-</u>		i			· · · · · ·	5	Ē	3Ë	<u>[8</u> ]			
.P. /	2			-1		1		$\mathbf{t}$			···-		< 25			0.0		6.2	153	20	4.9					
.P. 1	3	-	-			17	1						< 25		· · · · ·	< 0.0	· · · · · · · · · · · · · · · · · · ·	6.5	164	25	-				1	
.P. #						1	1-7	$\leftarrow$	$\Lambda$				25		k0.10		· · · · · · · · · · · · · · · · · · ·	6.3	157	20	4.3				· ·	
rooks						¥—	$\vdash$	╪╌ϡ╴	++		+		<25		0.13	·	+	6.3	110	14	5.8					
tesel	1		$\uparrow$		1		(	t	++	⊬	$\mathbf{k}$	· [	< 25		× 0.10	1	-	7.5	566	63	20					
venca	1		1	+		K		1	$\mathcal{V} \mathcal{I}$		$\perp$	×	<25 . 25		· · · · · · · · · · · · · · · · · · ·	< 0.0		7.9	307	5.0	6.1					
gan					 ·				V -	-{	$\frown$	+	< 25		×0.10		╉╼╼╼╍	7.7	394	7.0	16					
ven					••••			T 7		-			<25		k0.10	•	ł	6.7	184	17.0	11					
ndham				- †-	· ··			14	/				< 25	$ \land $	<u>¢0.10</u>	1.74	<b>_</b>	6.6	198	28.3	4.4					_
		1	+-	-	• ••• ••	•			$arphi_{-}$	+	+-}		•25		·B 10	-	l	7.8	356	3.5	13.5					
	T -									e (				1	/											
						=====			<u> </u>		¥,					$  \Delta$	$\sum$									
			Γ		Τ			· · · ·					<u>19</u> 21 Y	•ppm)		<u>/-</u>		$\overline{}$		····· r						
eil Iber	Arsenic	Barium	Cedita Gette		505	Chromium	Copper	Iron	Lead	Magnes i um	Na nga ne se	Mercury	Mckel	POTSHLIM	se leviu	u i	ut t	Zinc			Labora	tory	_ <b>&gt;.</b>  .ª	lioth in Sìliaht	Irace	cte
. /1	× . 005	<b> </b>				0.01		2.5			0.20			-9	$\vec{z}$	11	5	~ 4	2		<b>_!!ump</b>	er	м.5.= А.Н.=	Not Sa Alipha	tic	
. 12	< . 005	<b></b>				0.01		9			0.91		+			13			$\mathcal{A}$		27/14			Hydr	ocarbo	
#3	< . 005		<b> </b>		<	0.01		-			0.17	<b>  </b>			}	8					277.30		₩.P.	= Whis	pering s Trai	)
. 14	< . 005		<b> </b>		<	0.01		1.1			0.38	┝──╁			{	8		-A	/		27138	[		Park	- 1161	re
ks	< . 005				]	0.01	_	0.1			0.02	┝╼┄╼╂				17		A	$\mathcal{A}$		27140		He ta'i	s sainp	les pr	e-
sell		ļ				0.01		0.1	+		0.01			+		26	{-	-+			27142			d in t		
	< . 005			_		0.01		<0.1			0.01					5					27143		W.P. prior	sample to in	s obta	ine
<u>n</u>	<.005					0.01		<0.1		· • · · · · ·	0.01		-					-		~ ~ ~ ~	27144		treati	nent.		
n	<.005	-				0.01		<0.1			0.01					15					27145					
ham	< . <b>005</b>					0.01		0.1			0.04					5			[ ¹		27146					
				1			: - · I		··- +·							-1				2	27147					

1AB* 3-2

RESULTS OF METALS ANALYSIS

METAL	LEVEL Ug/1				Brooks			Deato	4	King		1	ndquis	t
Arsenic	Standapos ₁ 50		11/0/19	1/3/00	2/27/80	5/7/80	3/1/01	11/8/79	1/3/80	2/27/80	5/7 <b>j</b> ao	1/3/80	2/10/00	s/7 /ec
		ND	ND	-	ND		ND	ND		ND		The second se	ND	
Barium	1000		200	· · ·		·		ND				+	•	+
Cadium	10	$\sum$	ND					ND				<u>}</u>		
Chromium	50	16	10				10		1		+	·		·
Lead	50	V	ND		1	ND	10	ND		-				<b> </b>
Mercury	2.0	$\square$	ND	/		ND		ND			ND	ļ		ND
Seleníum	10		NO	17				ND					ļ	
Silver	50		1/	$ \rightarrow $	$P_{-}$			ND	<b> </b>	<u> </u>				
		<u> </u>		<del>1)-</del>	F			ND						
Secondary	Standards,				$\mathbb{Z}$	1								
Copper	1000		ND		$\left\{ \cdot \right\}$	$\overline{\checkmark}$		ND	$\rightarrow$					 
Iron	300	ND	100	100	300	100	1-7					i		
langanese	50	10	30		30		100/	100	-NQ	NRO-	200	200	200	200
inc	5000		200			20	20	10	$\checkmark$	_20	20	<u> </u>	20	90
rsenic		ND						ND		-	$\bigtriangleup$			
elenium	50		ND		ND		ND	ND		ND	ĺ		ND	
	10		ND					ND	- 9	$\checkmark$				
odium	2000-25,000	15000	16400	l l	36000		7000	5300		38000				-

1State of New Hampshire primary drinking water standards.

²State of New Hampshire secondary drinking water standards.

METAL	LEVEL ug/	l Pro	ovenca]	L ·	Vagner	Wheat- ley	WPMH	P Compo	osite	WPMHT	) #1	1	JYMHP Duplica	[
Primary	Standarde1		3 pipes	10/1/01	11/0/10	11/8/79	1/12/17	11/0/70	0/10/00	R/11/01	T			te
Arsenic	50		ND	ND	ND			ND	100	ND		3/1/01	19/1 2/2	
Barium	1000					300	· <del>  ~~~~~</del>	ND	100		ND	ND	ND	
Cadium	10		<u> </u>	160	ND		ND				ND		ND	
T			<u> </u>	ND	ND	ND	ND	ND	ND		ND	_	ND	
Chromium	50	4	NO	ND	ND	10	ND	10	ND	10	NTD	10	ND	
Lead	50 /	20		ND	ND	ND	ND	ND		1	ND	1-32	ND	
Mercury	2.0	ł,		$\sqrt{2}$	ND	ND				+	1			
Selenium	10		1	ND^			ND	ND	<b> </b>		ND		ND	
Silver				$\leftarrow$	HND /	ND	ND	ND		ļ	ND	·	ND	
JAIVEL	50	+	<i>/</i>	ND	ND	ND	ND	ND			ND	Í	ND	
Secondary	Standards ₂				5		$\left  \right\rangle$		-					
Copper	1000			20	ND	ND	ND	NO	NB	100	ND			
Iron	300	ND	ND	40	ND	ND		500					ND	
Manganese	50 .	10	10 /		{		<u> </u>	4	600	30	1120	100	1010	
Zinc	5000			30	ND	10	<u>k</u> 30/	150	200	$\Delta$	170	10	170	
· · ·	5000	-		ND	ND	20		40	$\checkmark$		ND	L.	ND	
Arsenic	50		ND	ND	ND	ND	}	ND		ND	ND	ND	i	
Selenium	10			ND	ND	ND	ND	ND					_ND_	
Sodium	2000-25,000	5000		6100		5200		16000	-4	$\checkmark$	ND 11500	11000	ND 12800	

RESULTS OF METALS ANALYSIS

3-2

1State of New Hampshire primary drinking water standards.

²State of New Hampshire secondary drinking water standards.

20D

RESULTS OF METALS ANALYSIS

·····														
METAL	LEVEL ug/	L WPMI	HP #2	WPM	HP #3	WPMH	IP #4	1	White	esell		1		
	Standards1	3/1/er	10/10/01	3/11/01	10/14/81	3/1/81	10/14/01	1/3/80	2/27/80		3/11/01	<u> </u>		
Arsenic	50	ND	ND	ND	ND	ND	ND		ND		ND	-l	- <u>r</u>	
Berium	1000		ND		ND		ND	•	-		•		-	
Cadium	10		ND		ND	1	ND	-			+			-
Chromium	50	XQ	ND	ND	ND	ND	ND			1	ND			
Lead	5,0	X	) и		ND	<b></b>	ND							
Mercury	2.e			$\downarrow \rightarrow$	$\checkmark$			·		ND				
Selenium	10		TAD	17	ND		ND		<u> </u>		<u> </u>			•
Silver	50		V	$\downarrow$	7		ND			<u> </u>	<b> </b>	ļ		<u> </u>
Secondary	Standards ₂		ND	R	MB	1	ND							
Copper	1000		ND		ND			100				ļ		+
Iron	300	9000	820		4310	200	700		NID	1.00	100	 		
langanese	50	910	230	170	480	380	410	$\overline{\ }$	) D	10	100			<u> </u>
linc	5000		ND		10		ND		4	$\rightarrow$		<u> </u>		
rsenic	50		ND		ND		ND			<i>f</i>	$\sim$	K		<u> </u>
elenium	10		ND		ND		ND		ND					<u> </u>
odium	2000-25,000	12000	105.00		20500	8000	}		$-\gamma$	$\checkmark$			Í	

¹State of New Hampshire primary drinking water standards.

²State of New Hampshire secondary drinking water standards.

RESULTS	0F	METALS	ANALYSIS
---------	----	--------	----------

							1		- <u>t</u>					
METAL	LEVEL ug/1		1	lindha			Wo	gan						
	Standards1	3/27/00	4/14/00	5/7/00	3/14/01	10/14/81	5/7/80	3/11/01				· · · · ·		
Arsenic	50		ND	1	ND			ND	·1		·	· · · ·	 .T	
Barium	1000			1				1	-		+			
Cadium	10 /	$\wedge$		1			1	1		<u>-</u>			+	-
Chromium	50		$\mathbb{N}$	• •	ND			10					+	+
Lead	50	$\left\{ \right\}$	D	ND			ND	1	1	-			+	+
Mercury	2,0	$\Box$	17/			1		·	-				+	
Selenium	10		$\overline{V}$	$\left \right\rangle$		+		1	1		+	+	{	<u> </u>
Silver	50		$\int $		17		İ	· ·			<u> </u>		<u> </u>	<u> </u>
Secondary	Standards ₂			R		1	7							
Copper	1000					4	<i>f</i>	$\not \sim$				<u> </u>	<u> </u>	
Iron	300	100	100	100	100	7	ND	NB						<u> </u>
Manganese	50		20	20	40	$\bigtriangledown$	100	10	5~	$\langle \mathbf{\cdot} \rangle$	<u></u>	1	<u> </u>	
Zinc	5000					-	$\checkmark$		¥	$\overline{)}$				
Arsenic	50		ND		ND					1-7	$\checkmark$	}	   .	<u> </u>
Selenium	10			-					1		<b>}</b>			
Sodium	2000-25,000		20000		5000					¥				

¹State of New Hampshire primary drinking water standards.

²State of New Hampshire secondary drinking water standards.

GROUND WATER DATA (E & E)

### E & E TESTING

### PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.		W-1		<u>N-2</u>		MN-3		<u>MW-4</u>	MW-5
	Laboratory	V V	ersar	V	ersar		Versar		ersar	Versar
	Analysis by		C/MS		C/MS		GC/MS		C/MS	GC/MS
COMPOUNDS	Sampling Date									
1. Chloromethan	e			+			74	+		· · ·
2. Bromomethane		T			1	1		+	1	
3. Dichlorodifl		Τ	T		4				-	
4. Vinyl chlorid	le	T			1					··
5. Chloroethane		Γ	T				1/	+ -		
6. Methylene ch.	loride	Ι					1/	7		
7. Acrylonitrile							7	$\overline{\mathbf{N}}$		
3. Trichlorofluc										49
. 1,1-dichloroe							77			
. 1,1-dichloroe										5
	chloroethylene					7				
Chloroform		Ľ				$\overline{7}$	T			
1,2-dichloroe										
. 1,1,1-trichlo							17	1		·····
. Carbon tetrac		N	ID	1	VD V		NEX	1	ND	
. Bromodichloro	methane		1		1	N	T	1	·····	· · · · · · · · · · · · · · · · · · ·
. 1,2-dichlorop	ropane						$\rightarrow$		++	
Trans-1, 3-dic	hloropropylene			IZ	$\square$		K/			· ·
. Trichloroethy	lene			K				T	1	
Benzene				$\mathbf{N}$			V			
Dibromochloro				$\sum$	$\Box \nabla Z$		1			
Cis-1,3-dichl	oropropylene					$\mathbf{V}$				
. 1,1,2-trichlo Bromoform	roethane			$\mathbf{X}_{\mathbf{z}}$		4				
		$ \bot $	L	$\square$		D				······································
	cnioroethane	<u> </u>	$\left  \right\rangle$		$\mathbf{b} \mathbf{\nabla}$	1				
Tetrachloroet	nyiene		$\leftarrow$							
			$\sim$							
Chlorobenzene Ethyl benzene		_		1	$\sim$					
	will obligate	$ \ge $								
Bis-chlorometh	iyi ether	$\mathbf{N}$		$\square$				1		· · · · · · · · · · · · · · · · · · ·
2-chloroethyl Acrolein	vinyi ether		$\Delta \Delta$	$\Box \Delta$	4				T	
	$\rightarrow$	-	<u> </u>	<u>۲</u>			(			
ADDITIONAL	$\langle \langle \rangle$	)	· )							
		L								
			7-							
		7	<u> </u>			······		<del></del>		·
		+								
	F							·		
	·									
										· · ·
								<u> </u>		
and the second second second second second second second second second second second second second second second										

### E & E TESTING

### PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	MW-6	<u>MW-7</u>	<u>MW-8</u>	MW-9	MW-10	MW-10A	BSWM-
	Laboratory	Versar	Versar	Versar		Versar		
	Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS
COMPOUNDS	Sampling Date							
1. Chlorometha	16			<u>+</u>			<u> </u>	ļ
2. Bromomethane			+	+-+	<u> </u>		<u> </u>	
	luoromethane	1	+					
4. Vinyl chlor:		+		╉╼╍╊╼╼╤	<b>├───∕</b>			
5. Chloroethane		+	+-+	<u> </u>				
5. Methylene ch		200	<u>†−−</u> † −−−	╊━━┉╊━━━━				
7. Acrylonitril		1	+-+	<u>†−−</u> +−−−	-/			91
3. Trichloroflu	oromethane	84	† <b>†</b>	┢┈╌┟╴╌╸	5~			
. 1,1-dichlord	ethylene		<del>†  </del>		$\sim$		6	129
. 1,1-dichlorc	ethane	28	<u>†−−</u> †−−−−			$\rightarrow$		
	chloroethylene	600	+		·		10	35
. Chloroform	· · · · · · · · · · · · · · · · · · ·		<b>†−−†</b> −−−−				7	80
. 1,2-dichloro		f	<u>†</u> −− <u></u> †−−−−		$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$			
. 1,1,1-trich1		24		$\leftarrow + \checkmark$			9	
. Carbon tetra		T	ND	ND	-/	1	25	29
. Bromodichlor			1			ND		
. 1,2-dichloro		· ·		+->	<u>}</u>	╾╾╁──┼		
. Trans-1,3-di	chloropropylene				$\overline{}$			
. Trichloroeth	ylene	41	7		$\sim$			•
. Benzene					$\rightarrow +$			49
. Dibromochlore			4		/+	<del></del>		3
. Cis-1, 3-dich	loropropylene			× 1/7	+			
. 1,1,2-trichlo	proethane							
. Bromoform		1	- + - +					·
. 1,1,2,2-tetra	chloroethane					┍╼╍╂╼╾╌╂		
. Tetrachloroet	hylene /	18)		$\rightarrow$ +-+		┉┉┧┈┉┼		
Toluene		200				╺━╍╋╼╍╍┿		18
Chlorobenzene								585
Ethyl benzene		21						
Bis-chloromet	hyl ether					╧╋╧╋		20
2-chloroethyl	vinyl ether					──¥──┼		
Acrolein								
	$\int \zeta$							
ADDITIONAL	$\langle \cdot \rangle$			·				•
	<u> </u>					·		
						· .		
· · · · · · · · · · · · · · · · · · ·	<u> </u>							
•	\							_
						·		
		• ••••••••••••••••••••••••••••••••••••						
						•		
ZS: 1) All re	sults in parts							

-2-

### E & E TESTING

## WATER QUALITY DATA

INORGANIC ANALYSES

MN-3

MW-4

Station No.

MW-1

MW-2

4 ¹	Station NO.	<u>MW-1</u>	<u>MW-2</u>	<u>MW-3</u>	<u>MW-4</u>	MW-5	MW-E	MW-7	MW-8
PRIORITY	Laboratory	LRE	LRE	LRE	LRE	LRE '	LRE	LRE	LRE
POLLUTANT	Analysis by					•	'		
METALS	Sampling on					1	1	1	1
				•		- <b>-</b>		<u></u>	1
<b></b>								· · ·	
Antimony		8.	5	4	5	ND	ি মূৰ্ব	ND	ND
Arsenic		10	ND	8	ND	ND/	MQ	ND	ND
Beryllium		ND	36	ND	ND	36	36	ND	ND
Cadmium		1.0	0.25	0.15	0.55	0,15	Q.2	8,25	
Chromium		ND	ND	ND	ND	NOV	NB	ND	ND
Copper		ND	ND	ND	ND	ND	ND	XO	ND
Lead		10.0	8.5	4.0	4.5/	2.0	2.0	2.5	5.0
Mercury		ND	ND	2.0	NO	/ND	ND ND	ND	20
Nickel		1.7	18.4	4.4	18.9	5.6	21.2	25.3	5.60
Selenium		20	15	ND	ND	ND /	ND	ND	<u> </u>
Silver		8	ND	ND	ND	ND	19.2	ND	
Thallium		4	ND	ND	ND	ND	ND	ND	ND ND
Zinc		8.2	. 123	5,2	24.0	26.2	/ 30	40.8	ND
Additional	Metals	21.8	163			$\overline{}$			
Barium		20.9	<u>153</u> 20.9	10.5 2.3	9.8	100/8	58.8	148	531
Boron		332			49.4	20.0	23.3	7.8	19.5
Calcium		30,400	425	4,330	103	374	515	226	565
Cobalt		ND				66,000	72,000		23,800
Iron		27 /	125	24.5	12.8	73	82.7	5.7	ND
Manganese		274	99.6	19-2		54,000	59,200	85.7	17.4
Magnesium		2,890	2,490		1,080	28,600	31,700	974	3,120
Sodium		32,600		× 420		14,000	13,700	1,280	4,670
Tin			8.340 MD			29,200	28,100		29,200
Vanadium		10.7	7.8		ND	ND	ND	ND	ND
Additional B					ND		23.4	<u>. ND</u>	ND
			t + t		· · · ·				
		¥			·				

	· · · · · · · · · · · · · · · · · · ·	<del></del>	 
 •	••••••••••••••••••••••••••••••••••••		

1) ND - below detection limit

NOTES:

2) LRE - Lab of Radiation Ecology, University of Washington

### E & E TESTING

# WATER QUALITY DATA

### INORGANIC ANALYSES

	Station No.	MW-9	MW-10	MW-10A	BSMW-1
PRIORITY	Laboratory	LRE	LRE	LRE	LRE
POLLUTANT	Analysis by				
METALS	Sampling on				76

Antimony	ND	ND	ND	ND
Arsenic	ND	ND	ND	8 -
Beryllium	ND .	ND	ND	128 🖌
Cadmium	0.95	0.1	0.85	ND
Chromium	ND	ND	ND	65.24
Copper	ND	ND	ND	よう く
Lead	2.5	2.5	8.0	3,0
Mercury	ND	ND	ND	NØ
Nickel	ND	ND	ND	A4/3
Selenium	ND	20	25 /	<u> </u>
Silver	ND	ND	ND	28.8
Thallium	ND	ND	ND	ND
Zinc	7.5	42.7	18.2	58.1


Additional Metals

Aluminum	36.7	108	86.0	1257
Barium	13,4	12.5	937	206
Boron	244	200	ND	232
Calcium	11.400	5.548	12,400	113.000
Cobalt	ND	9.0	ND	70.8
Iron	15.8	~73.4	908	172,000
Manganese	263	402	393	38,500
Magnesium	Y 580	1.010	2.450	22,200
Sodium	1.860	10.700	<b>4</b> ,200	75,900
Tin	ND	ND	ND	ND
Vanadium	ND	ND	ND	39.9

Additional Parameters	$\frown$ ) $\checkmark$	
·		
·····		

NOTES: 1) ND - below detected limit

2) LRE - Lab of Radiation Ecology, University of Washington



# EPA ANALYSES

### PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	W	2-1		<b>P-2</b>	W	P-3	WP-4	Brooks	Wogan
	Laboratory	E	PA .	1	EPA	E	PA	EPA	EPA	EPA
	Analysis by	GC	MS		:/MS		/MS	GC/MS	GC/MS	GC/MS
COMPOUNDS	Sampling Date	-	25/81		/25/81		25/81		3/25/81	<u>3/25/81</u>
1. Chlorometha	ne	1		+/			20/01	1	3/23/81	3/25/81
2. Bromomethan	e	1		1				90	f	
3. Dichlorodif	luoromethane	T	1	1	1	i i	A	· ·		
4. Vinyl chlor:	ide	1	1			1	· · · · · · · · · · · · · · · · · · ·		<u>├───</u>	<b>_</b>
5. Chloroethan	2		T		1		<u> </u>	$\rightarrow$	<b>├</b> ────	
6. Methylene ch								1 1		
7. Acrylonitri						1				
8. Trichlorofly		Ι								
9. 1,1-dichlord		Γ					$\overline{\ }$			
0. 1,1-dichlord							$\overline{\nabla}$			
	chloroethylene							2.2		·····
2. Chloroform						IZ		$\wedge$		
3. 1,2-dichlord						V	$\overline{Z}$	2		
4. 1,1,1-trich1			ļ		<u> </u>	1		/1.6	1.3	
5. Carbon tetra		1	ND		ND	N	Ð			ND
6. Bromodichlor			Ļ							1
7. 1,2-dichlord		L	ļ	Ļ		·		<u> </u>		
	chloropropylene		<u> </u>	$\vdash \!\!\!\!/$						
9. Trichloroeth D. Benzene	yiene		<u> </u>	4	· · ·			<b>*</b> 3.0		
			<u> </u>	$\square$	5					
1. Dibromochlor 2. Cis-1, 3-dich							$\sim$			
3. 1,1,2-trich1					$\Delta$	[/				
4. Bromoform	oroethane					$\downarrow$				
5. 1,1,2,2-tetr	achloroethane	-		$\rightarrow$	$ \rightarrow $	$ \rightarrow $				
5. Tetrachloroe	thylene /	<u> </u>				$\leftarrow$				
7. Toluene	uly relie	-	- +			×				
3. Chlorobenzen	•		$\sim$		$\leftarrow \neq$					
. Ethyl benzen				<u> </u>	· · ·					
. Bis-chlorome	thyl ether	~	i	$\sim$						
1. 2-chloroethy	l vinvl/ether						F			¥
2. Acrolein				$\checkmark$		`				
			-							
ADDITIONAL	$\langle \ \setminus$	)								
		<u> </u>						••		
			/							
							···		•	1
					· · · · · · · · · · · · · · · · · · ·	·				
				<u> </u>						
	1									

2. ND = not detected. Blank spaces indicate N.D.'s.

-1-

### EPA ANALYSES

# PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	Whit	esell	В	ower	Pro	vencal	Windh	am
`	Laboratory	E	PA		EPA	E	PA	EPA	
	Analysis by	GC /N			C/MS		/MS	GC /M	
COMPOUNDS	Sampling Date		5/81	1	25/81	T	25/81	3/25	
. Chloromethan									
. Bromomethan					· .			· · · ·	
	luoromethane	<b>^</b>			<u>^</u>	1 ··· /	1	<u> </u>	l
Vinyl chlor:				ļ.,		$\perp \square$			
<u>Chloroethan</u>				<u> </u>	<u> </u>	$V_{}$	/		
Methylene ch		·			+	1	<u>{</u>		
Acrylonitril		·				·			·····
Trichloroflu					-/				· · · · · · · · · · · · · · · · · · ·
1,1-dichlord									
	chloroethylene			ļ	$\not\vdash$	<u> </u>		$\checkmark$	
Chloroform	cuitor de cuytene			┝/	+/	<u> </u>		└ <u></u>	
1,2-dichlord	ethane			$\vdash$	+/-	╄───	┣───		
1,1,1-trichl		ND		$\nvdash$	¥/	$V_{-}$	<u> </u>		
Carbon tetra						<u> </u>	1D	ND	
Bromodichlor					+	<u> </u>	<b> </b>		
1,2-dichloro		———	· · · ·		<u> </u>	$\sim$	<u> </u>	<b>─</b> ─ <u></u>	
Trans-1.3-di	chloropropylene				+ -	+ /			
Trichloroeth			/		$ \rightarrow $				`
Benzene			<del>(</del>		$\rightarrow$	<u> </u>			
Dibromochlor	omethane		7	7		<u> </u>			
Cis-1,3-dich			<u> </u>	$\bigvee$		+			
1,1,2-trich1	orgethane		<u> </u>		1	+	<u> </u>		
Bromoform				$- \langle \cdot \rangle$	<del> </del>				
1,1,2,2-tetr	achloroethane			$\rightarrow$	<u> </u>	+			
Tetrachloroe				$\sim$	<u> </u>	+		<b>—</b> —	
Toluene		$\leftarrow / +$	_	<u> </u>	†	+			
Chlorobenzen	e (				<u> </u>	<u> </u>			
Ethyl benzen	e	K			<u> </u>	<u> </u>			
Bis-chlorome	thyl ether	$\times +$	$\overline{}$	_	<u> </u>				·····
2-chloroethy	1 vinv2 ether		-/		1	<u> </u>			
Acrolein			<u> </u>	<u>_</u>	¥				
ADDITIONAL	$\langle \bigcirc$				<u> </u>	• <u> </u>	J	, <u>l</u> _	Ł.
		/							
		<u> </u>							
		····							
· · · · · · · · · · · · · · · · · · ·					<del></del>		• ···· — • • • • • • • • • • • • • • • •		
					<u>n</u>				
TES: 1) All									

not detected. Blank spaces indicate N.D.'s.

-2-

### EPA ANALYSES

# PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	WP #1	WP #2	WP #3	F		
	Laboratory	EPA	EPA	EPA	WP #4	Windham	
	Analysis by	GC/MS	GC/MS		EPA	EPA	EPA
COMPOUNDS	Sampling Date	10/14/81		GC/MS	GC/MS	GC/MS	GC /MS
1. Chloromethan	A	10/14/01	10/14/81	10/14/81	10/14/81	10/14/81	10/14/81
2. Bromomethane					•		· .
3. Dichlorodifl	uoromethane		-				
4. Vinyl chlori	de			,	$\uparrow \uparrow$		···· · ·
5. Chloroethane						2	
6. Methylene ch.					-A		1
7. Acrylonitril					$\prec$		
8. Trichlorofluc	promethane			/			
9. 1,1-dichloroe	thylene				- +		
0. 1,1-dichloroe	thane			$\rightarrow \rightarrow$	$\rightarrow \rightarrow \rightarrow$		
1. Trans-1,2-dic	hloroethylene			-/-/	2		
				1 1	$\sim$		
	tnane .			<del>/ / /</del>	$\rightarrow$	╾╾╁╴╾╁	
4. 1,1,1-trichlo 15. Carbon tetrac	roethane	0.5*		0.3*		ND	
16. Bromodichloro	nioride				$\overline{\langle + - + \rangle}$	ND	ND
7. 1,2-dichlorop	ropane		ND		ND	╺╼╼┼╴╼╾┼	
18. Trans-1,3-dic	blozopane					╺──┼──┼	····
19. Trichloroethy.	lene	_					
0. Benzene	rene		$\langle      $	0.4*			
1. Dibromochlorom	nethane		1 4				
22. Cis-1,3-dichlo							
3. 1,1,2-trichlor	Cethane						
4. Bromoform	oculane	-					
25. 1,1.2.2-tetrac	hloroethane						
o. Tetrachloroeth	ylene						
/. Toluene	7	<del>∕                                    </del>		z			
8. Chlorobenzene		<u> </u>	$\rightarrow$				
9. Ethyl benzene			$\leftarrow$				
0. Bis-chlorometh	yl ether		- <del>\</del>			·	
1. 2-chloroethyl	vinyl ether		<b></b>		- Y	*	J.
2. Acrolein						· · ·	
	1-1-	<del>~~~+</del>		· · · · ·			
ADDITIONAL							
						•.	
		· /					
	X			•.			
OTES: 1) All res	1)te in					· · · ·	
2) ND = 00	ults in parts pe	er billion	(ppb).	· .			
3) * Indic	t detected. Bla ates compound qu (EICP). EICP	ank spaces	indicate	N.D.'s.	*	· · · ·	
	(EICP). EICP : vity GC/MS proc	antified	úla avena				
Profile	(FT/7D)		A GALLEC	cea ion d	inroma+~~-	ramhi -	

-3-

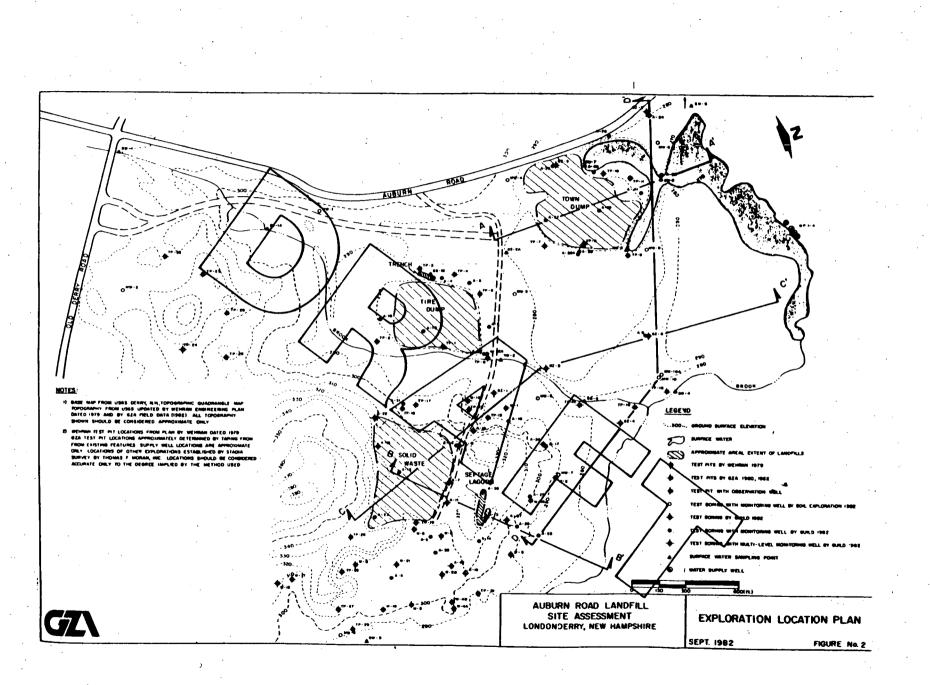
# WATER QUALITY DATA

### INORGANIC ANALYSES

PRIORITY POLLUTANT METALS

Station No.	WP#1	WP#2	WP#3	WP#4	Windham	Provencal
Laboratory	Versar	Versar	Versar	Versar	Versar	Versar
Analysis by						
Sampling on	10/14/81	10/14/81	10/14/82	10/14/81	10/14/81	10/14/81
					•	

Antimony	<20	<20	<20	<20	<20)	<20
Arsenic	<10	<10	<10	<10 /	<1/0	<10
Beryllium	< 2	< 2	< 2	< 2 /	~ X	< 2
Cadmium	< 5	< 5	< 5	< 5/	< 5	< 5
Chromium	<10	<10	<10		×10	<10
Copper	<20	<20	<20	<b>ASQ</b>	<20	> 20
Lead	<40	<40	<40	<40>	<40	<40
Mercury	< 1	< 1	< 1	1 < 1 ~	< 1	2
Nickel	<20	<20	<20 /	129	<20	<20
Selenium	<10	<10	<10/	×10 /	<10	<10
Silver	<20	<20	<20	<20	<20	<20
Thallium	<10	<10	<10	<10	<10	<10
Zinc	<10	10	<10	×10	><10	<10


# Additional Metals

<50	<50 \	< 20	<50/	< 50	< 50
<10	<10	X <10	20	110	160
10	<10	30	10	<10	<10
13,200	10,500	8,500 (	7,400	29,500	29,900
<10	<10	<10	<10	<10	<10
1,120	4,510	820/	700	80	40
1/10	480	239	470		30
2(000	N900	1,600	1,400	24,900	20,400
11,500	20,500	10,500	12,500	4,500	6,100
<20	<20	<20	<20	<20	<20
<10	<b>X</b> 10	> <10	<10	<10	<10
	<10 10 13,200 <10 1,120 2,000 11,500 <20	<10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Additional Parameters

-4-

GROUNDWATER DATA (GZA-GCA ANALYSES)



# REVIEW OF GROUNDWATER DATA FROM GOLDBERG, ZOINO, AND ASSOCIATES, INC. (GZA) - GCA ANALYSES

GCA, the laboratory conducting analyses on samples collected by NAI (subcontractor of GZA) noted the use of proper sample containers and field blanks (both supplied by GCA) for groundwater sampling (GZA, 1982). Samples were stored at 4°C and a chain of custody was maintained. No problems were noted after a data review by GCA quality control personnel.

Examination of the volatile data sheets presented to evidence of field blank contamination. Data for laboratory blanks and duplicates were not available. All samples submitted for volatile organic analysis exceeded the EPA Contract Laboratory holding time period (analysis within seven mays after receipt by the laboratory). Several analyses were also beyond the 14 day holding time specified by the Federal Register (40 CFR 136).

Extractable data included quality control information on instrument performance. However, no blank or duplicate data were presented. Extraction dates were unavailable and no assessment could be made on holding times.

### APPENDIX E.5

### DATA SUMMARY

### PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	A	-2	A-4	A-5		T	A-15_		A-18	<b>-</b> 26
	Laboratory	NZ	AI	NAI	NAI	NAI		NAI		NAI	NAI
	Analysis by	GC/	/MS	GC/MS	GC /MS	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS	GC/M
COMPOUNDS	Sampling Date		/82	8/82	8/82		8/28	8/82	8/82	8/82	
1. Chlorometh	ane	1.1						1		1	
2. Bromometha			1			1	7.				
	fluoromethane							T			
4. Vinyl chlo						1		N			1
5. Chloroetha		1.						$\sum$			Tr.
6. Methylene		1 : 1									
7. Acrylonit	ile	NI	2					$\square$			· ·
8. Trichloro:	luoromethane				53						
9. 1,1-dichlo	proethylene				Tr.			K	N		
10. 1,1-dichlo	proethane			Tr.	26	Tr.				59	72
ll. Trans-1,2-	dichloroethylene			·	43	17	2				18
12. Chloroform	<b>n</b>				10	V /					
13. 1,2-dichlo	proethane		ſ				$\langle \rangle$				
14. 1,1,1-trie	chloroethane				26/	14	T/r.	Tr.	ND	11	100
15. Carbon te	rachloride	1.				1	17				
16. Bromodich	oromethane		ŀ				$\overline{\mathbf{N}}$				
17. 1,2-dichle	propropane		1								
18. Trans-1,3-	dichloropropylene						$\mathbf{X}$				
19. Trichloro	thylene	Ţ			Tr.						Tr.
20. Benzene					Tr		7				
21. Dibromoch	oromethane					7		•			
22. Cis-1,3-d:	chloropropylene				$\mathbf{V}$						
23. 1,1,2-trie	chloroethane				$\square$	<u> </u>					
24. Bromoform			<u>/</u>			<u> </u>					
	etrachloroethane			h k		<u>X</u>					
26. Tetrachlo:	coethylene	V_	$\bot$	$\boldsymbol{\boldsymbol{\mathcal{D}}}$	12	1		_	<u> </u>		12
27. Toluene		4	$\square$		370						
28. Chloroben:		$\mathbf{Y}$									
29. Ethyl ben			<u>k</u>		Tr.						
30. Bis-chlore		$\square$	$\land$								<u> </u>
	hyl vinyl ether		$\underline{1}$	$ \searrow /$							i i i i i i i i i i i i i i i i i i i
32. Acrolein		$\mathbf{\nabla}$		$\downarrow$		_	<u> </u>	<u> </u>	<u> </u>		
ADDITIONAL			$\neq$	)							
	<b>`</b> `	*7	/								
		+							<u> </u>		
		+						<u>.</u>			
	······								<u></u>		
· · · · · · · · · · · · · · · · · · ·					•						· · · ·
NOTES: 1) A	l results in part	s pe	r bi	illion	(ppb).						•
		-				•					
<b>2)</b> T	<b>c trace</b> (3 - 10	למס (	<b>)</b> • (c	ND = <3	pph h	lank sr	ace in	ndicate	s ND.		
2) T 3) N	r trace (3 - 10 AI - Normandeau As	) ppi ssoci	); Late	ND = <3 s Inc.	ppb; b (samp	lank sp les sub	ace in contra	ndicate acted t	S ND.	Corp.)	

### DATA SUMMARY

# PURGEABLE ORGANIC ANALYSIS RESULTS

								1- 22		A-38	A-39	TP-19
		Sample No.	A-27_	A-28	A-29	A-30		A-32				
		Laboratory	NAI	NAI	NAI	NAI	NAI	NAI	NAI	NAI	NAI	NAI
		Analysis by	GC/MS	GC/MS	GC/MS	GC/MS				GC/MS		
	COMPOUNDS		8/82	8/82	8/82	8/82	8/82	8/82	8/82	8/82	8/82	8/82
1.	chloromethan			ļ	ļ	·		<u> </u>		ļ		
2.	Bromomethan	e			+			T			1	
3.	Dichlorodif:	luoromethane		ļ						<u>├</u> ───	+	
4.	Vinyl chlor:				Ļ	ļ	┼		<u></u>	<u> </u>	+	+
5.	Chloroethan	e	·	<u> </u>	140				$\rightarrow$ —	<u>+</u>	<u> </u>	
6.	Methylene c	hloride	410			ļ		810	<u> </u>	<u> </u>		+
7.	Acrylonitri	1e						4<		+	1 2 0	+
8.	Trichlorofl	uoromethane	42		1	·	+	360	27	Tr.	19	18
9.	1,1-dichlor	oethylene	62	16			$\downarrow$					12
<b>N</b> 0.	1,1-dichlor	oethane		290	14			<u> </u>	58	40	110	42
	Transal 2rd	lichloroethylene	53000	69	Tr.		$\sum$	320	76	92	120	42
1.	Chloroform		1							14	Tr.	
12.		oethane				17	$V \land$	120	26	11	36	
13.		lereethane	25	490	Tr.	Tr.	1 49	63	110	13	140	Tr
4.	1,1,1-trich	iloroechane				4						
5.	Carbon tetr	achioride	+				17					
16.	Bromodichlo	romethane	+			$+ \sim$			T			
7.	1,2-dichlor	opropane	╉────	<u></u>								
8.	Trans-1,3-d	lichloropropylene			A	$\leftarrow$	$+ \mathbf{}$	V-	10	Tr.	Tr.	
19.		thylene	5500	$\frac{21}{21}$		+>	$\leftarrow$	11		Tr.	Tr.	Tr
20.	Benzene		19	$\rightarrow$			$\rightarrow$	╧╧╌╌╧╧				
1.	Dibromochlo	promethane			7	$\rightarrow$		+	<u></u>			_
-22.	Cis-1,3-dic	chloropropylene			<u> </u>	¥/	$\overline{\mathbf{r}}$		+			
23.	1,1,2-trich	hloroethane			$\rightarrow \rightarrow$	+-/-	+		+			
4.	Bromoform	_				<u> </u>			_			
5.	1.1.2.2-te	trachloroethane								10	Tr.	T
26.	Tetrachlor	oethylene	870		1	$\mathbf{V}_{-}$	$\underline{Tr.}$	48	_			130
- <del> 7</del> .	Toluene	. /	160		25	X		440			1900	
8.	Chlorobenz	ene							Tr.	·+	_	-+
	Ethyl benz		65								-+	╾┿╼╼
		methyl ether	$\overline{\mathbf{X}}$									-+
1.	2-chloroet	hyl vinyl ether	$+ \prec$		7					_	_	
2.		hyl vinyl/culor			/	_						
	ADDITIONAL	$\neg$						•		,		
	dichlorofl	uoromethane	$\sqrt{3}$	<u> </u>				· .				
	2-propanor		17:	23	·						-+	
	dimethyl s			17				_	_ <u>_</u>			-+
	2-butanone		1.	58		<u> </u>				-+	-+	
		ne 4-methyl		39						_	-+	
										·	_	
	benzene, d	dimethyl isomers	┉┼┈╧	70			_					
			_								T .	
			1	1	1	1		1	-1	- F -	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	and the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second divisio

NOTES : 1)

All results in parts per billion (ppb).

Tr - trace  $(3 \pm 10 \text{ ppb})$ ; ND = <3 ppb; blank space indicates ND. 3) NAI - Normandeau Assoicates Inc. (samples subcontracted to GCA Corp.)

### DATA SUMMARY

### PURGEABLE ORGANIC ANALYSIS RESULTS

	ſ	Sample No.	C7-1-1	GZ-1-2	C7-1-3	<u>h</u> 2	2-2	C7-2-2	C7_ 4_ 2	07-6-2	ha -		
		Laboratory		T	1	1		1				_	
	ŀ	Analysis by	NAI	NAI	NAI		AI	NAI	NAI	NAI	NAI		NAI
	COMPOUNDS	Sampling Date	GC/MS	GC/MS				GC/MS			_		
· · · ·	Chloromethan		8/82	8/82	8/82	18/	82.	8/82	8/82	8/82	8/8	2	8/82
	Bromomethane		╂────				<b>\</b>		ļ				
	Dichlorodifl		<u> </u>			$\vdash$	<u> </u>	<u> </u>			╞╼╌┼	·	
	Vinyl chlorid		<u> </u>		<u> </u>			<u> </u>		······	┝──┼		
	Chloroethane			<u> </u>					$\checkmark$		┝╌┼	_	
	Methylene ch.	loride	720	1200	10	$\left  - \right $		71		·	┝╌┼╴		
	Acrylonitril				10	$\vdash$			$- \leftarrow$		- +	-	
	Trichloroflue		88	200	Tr.			300	30	820	┝──┼─		
	1,1-dichloro							<del>7</del> 7	<u> </u>	200-	┝──┼─		Tr
10.	1,1-dichloro		39	81	Tr.		7	32	31	34	┝─┼		Tr
		chloroethylene	590	1100	51		$\checkmark$	690	38	20/	<u>├</u>		11
	Chloroform			Tr.	<u> </u>			1	<u> </u>	Tr.	ND		-
	1,2-dichloroe	ethane	62	100		$\vdash$		A9	51	72			
	1,1,1-trichle		20	34	Tr.	NI	5		120	46			
	Carbon tetrad				K			/					
16. 1	Bromodichloro	omethane				$\mathbf{A}$		$\leftarrow$			┝╴╀╴	$\neg$	
.7	1,2-dichlorop	propane					$\sim$				+	_	
8.	Trans-1,3-dic	chloropropylene											
	Trichloroethy	/lene	28	46	Tr.		$\bigtriangledown$	56	11	42			
,	Benzene		Tr.	13	~			TrZ		Tr.			
1. 1	Dibromochloro	omethane				71		7		****····			
	Cis-1,3-dich]	loropropylene			$\overline{\langle}$		71	-					
	1,1,2-trichlo	proethane				7						-	
	Bromoform					X							
	1,1,2,2-tetra	achloroethane	/		$\sim$	1					1		
	Tetrachloroet		19	37		1		32	Tr.	Tr.			
	Toluene		2100 N	3/400	49 /			450	Tr.	49			
	Chlorobenzene			Tr	$\mathbf{\nabla}$								
	Ethyl benzene			$\sim$				24				. ]	
	Bis-chloromet				<u>&gt;</u>	Y							
		vinyl et er		$\mathbf{\Sigma}$								Τ	
32. 2	Acrolein			$\overline{1}$									
<u>A</u>	DDITIONAL			)									•
ć	lichlorofluor	omethane		180	. 1				T	1			
	2-propanone			110			· .	1				Τ	· · ·
	limethyl sulf	ide	$\bigtriangledown$	86									
	butanone			230			-			†		1	
	-pentanone,	4-methyl					-+					+	
		- MC PHYA					-+					1	
	······································						$\rightarrow$		+			+	
······							-+	+				+	
			1		1			1		1			

All results in parts per billion (ppb).
 Tr. - trace (3 - 10 ppb); ND = <3 ppb; blank space indicates ND.</li>

3) NAI - Normandeau Associates Inc. (samples subcontracted to GCA Corp.)

### APPENDIX E.6

## NAI METALS ANALYSES

### WATER QUALITY DATA SUMMARY

### INORGANIC ANALYSES

	Station No.	A-2	A-6	A-15	A-18	A-27	A-28	A-29	A-30	
PRIORITY	Laboratory	NAI	NAI	NAI	NAI	NAI	NAI	NAI		_
POLLUTANT	Analysis by	AA	AA	AA	AA				NÀI	
METALS	Sampling on	8/82	8/82			AA	• <u>AA</u>	AA	AA	_
		0/02	0/02	8/82	8/82	8/82	\$/82	8/82	8/82	
- <u> </u>										
Antimony		<1	<1	<1	<1	<1	-/ <1 /	<b>~</b>		
Arsenic		<1	<1	<1	<1				<1	
Beryllium		<3	< 3	<3	<3		<1	6	<1	
Cadmium		2	<1	<1		<3	< 3	<3	<3	
Chromium			<1		<1	<u> </u>	$\sim$	X	_1	
Copper		<1	<1	<1	<1	$-\sqrt{s}$	$\sqrt{1}$	_ <1 >	1	7
Lead		<1	$-\frac{1}{\sqrt{1}}$	<u>&lt;1</u>	<1	$- \begin{pmatrix} 1 \\ - \end{pmatrix}$	<1	$\overline{\sqrt{1}}$	2	٦
Mercury		<1	<1		<1	/ < 1/	<1	. <b>~Y</b>	<1	7
Nickel		21	8	<1	<1		<1	<1	<1	7
Selenium		-21	2	5	4/	42/	77	6	10	
Silver		<1	<1	6	<u>1</u>	<200	/ <1	<200	4	7
Thallium		<3	<3	<1	<1	$\overline{\langle 1}$	<u>&lt; &lt;1</u>	<1	<1	
Zinc				< 3	< 3	<u> </u>	3	< 3	<3	4
		29	23	5	~23	57	18	240	87	-
Additional M	Metals			7			$\checkmark$			4
							-			

# Additional Metals

Aluminum		t	T	7					
Barium			+	+	$\bigvee \frown$	<u> </u>			
Boron			1	+	<u> </u>				_
Calcium		<u> </u>				ļ			
Cobalt			<u> </u>					-	_
Iron	420	120	600				· · · · · · · · · · · · · · · · · · ·		
Manganese			1 C 000	40	230,000	1,120	23,500	80	
Magnesium				$\sim$	<b>/</b>				
Sodium	9,400	6 100	14 000	28,300					
Tin			44,000	<u> 28,300</u>	141,000	. 39,400	44,400	34,800	•
Vanadium			$\overline{}$	$\rightarrow$					

# Additional Parameters

All concentrations in parts per billion (ppb). 1. 2.

Blank spaces indicate metals not analyzed for. з.

NAI - Normandeau Associates, Inc. AA - Atomic Absorption.

____0309990 -

### WATER QUALITY DATA SUMMARY

#### INORGANIC ANALYSES

**F** 

		• •				•			
	Station No.	A-32	A-33	A-38	GZ-1-2	GZ-1-3	GZ-3-2	GZ-4-2	GZ-6-3
PRIORITY	Laboratory	NAI	NAI	NAI	NAI	NAI	NAI	NAI	NAI
POLLUTANT	Analysis by	AA	AA	AA	AA	AA	AA	AA	AA
METALS	Sampling on	8/82	8/82	8/82	8/82	8/82	8/82	8/82	8/82
	L	<b>_</b>	l	1	<u> </u>			0/02	0/ 02
							17		
Antimony		<1	<1	<1	<1	<1	/ <1 /	<1	<1
Arsenic		59	. <1	<1	14	<1 /	23	20	25
Beryllium		< 3	<3	< 3	<3	<3	<u>k</u> 3	₹3	< 3
Cadmium		.<1	<1	.<1	<1	<1	$\sqrt{1}$	<1	<1
Chromium		<1	2	4	5	/2	<1	3/	1
Copper		<1	5	2	<1	5	<1	$\mathbf{V}$	3
Lead		<1	33	1	<1	/ <1/ /	<1	<1	1
Mercury	······································	<1	. <1	<1	<1	4/	$\lambda_1$	<1	<1
Nickel		51	35	13	141	Y	/ 31	17	18
Selenium		<200	2	<200	<200	2 (	k200	<1	-4
Silver		<1	<1	<1	<1	$\searrow 1$	<1	<1	<1
Thallium		< 3	<3	< 3	<3	<3	_∽	< 3	< 3
Zinc		25	. 66	48	66	40	/38	29	46
Additional	Metals			$\langle$	7		, <u> </u>		•
Aluminum				<u> </u>			<u> </u>	<u>.</u>	r
Barium			·		<u> </u>				<u> </u>
Boron						<del>- (  </del>	<u>+</u>	<u> </u>	<u> </u>
Calcium				<u> </u>		<u> </u>			ļ
Cobalt			$\top$		$ \uparrow \uparrow \uparrow$	/	· · · · ·	+	
Iron	i.	251,000	94,500	33.50	0 265 0	00 520	113,000	2,370	860
Manganese	· · · •				$\mathbf{X}$			2,3/0	800
Magnesium				$\overline{\langle}$					
Sodium		74,000	12,100	30,40	0 113,0	00 22,200	41,400	10,300	20 400
Tin					7			10/300	20,400
Vanadium									
Additional	Parameters					······································	•		
			<del>7</del> 7	<u> </u>		····			
		1							······
							· · · · · · · · · · · ·	·	
		·····	¥:					•	·
			1	<del></del>					
					<u>.</u>			<u></u>	
		۰.	· · · · · ·						
							- <u>.</u>		
		· · · · · · · ·							
1. All con	ncentrations	in narte	nor h	1111-	(m_ h)				
2. Blank	spaces indica	to motal	e not		(Ppp).				

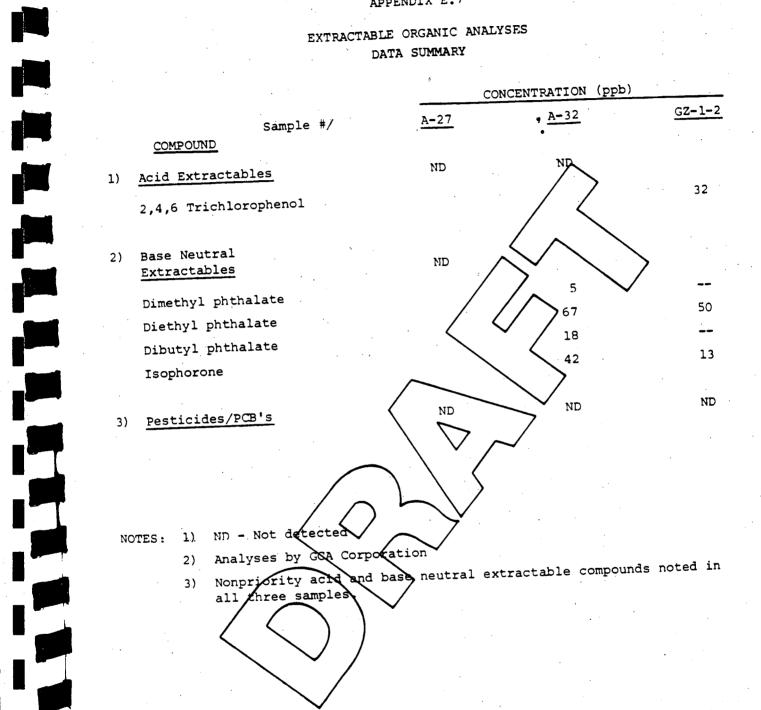
2. Blank spaces indicate metals not analyzed for. 3.

NAI - Normandeau Associates Inc. AA - Atomic Absorption.

### WATER QUALITY DATA SUMMARY

## INORGANIC ANALYSES

	the second second second second second second second second second second second second second second second s			
	Station No.	GZ-2-2	GZ-5-1	
PRIORITY	Laboratory	NAI	NAI	
OLLUTANT	Analysis by	AA	AA	
ETALS	Sampling on	8/82	( 8/82	
Antimony		<1	<1	
Arsenic		<1	<1	
Beryllium		<3	<3	
Cadmium		<1	<1	
Chromium		<1	1	
Copper		6	4	
Lead		<1	<1	
Mercury		<1	<1	
Nickel		5	74	
Selenium		4	7	
Silver		<1	<1	· { / · · / · · · · · · · · · · · · · ·
Thallium		< 3	< 3	
Zinc	· · ·	57	255	
Additional	Metals		$\sim$	
Alimiaim		· ·		
Aluminum	······		$\left  \left< - \right> \right $	
Barium	······································			
Barium Boron			$\langle \nabla$	
Barium Boron Calcium			$\langle \nabla$	
Barium Boron Calcium Cobalt		<10	20	
Barium Boron Calcium Cobalt Iron		<19	20	
Barium Boron Calcium Cobalt Iron Manganese			20	
Barium Boron Calcium Cobalt Iron Manganese Magnesium				
Barium Boron Calcium Cobalt Iron Manganese		<10 42,000	20	
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium				
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium	Parameters			
Barium Boron Calcium Cobalt Iron Manganese Magnesium Sodium Tin Vanadium				


All concentrations in parts per billion (ppb). ۰.

2.

Blank spaces indicate metals not analyzed for.
 NAI - Normandeau Associates Inc. AA - Atomic Absorption.

# APPENDIX E.7

# EXTRACTABLE ORGANIC ANALYSES DATA SUMMARY



Project_ 5-177-075

GCA Control No. 23814

DATA REPORT SHEET Base/Neutral Extractables

53152 (GZ-1-2) Sample L.D.

Analysis Date 9/12/82

Sample Matrix Water	Instrumen	t <u>нр 5985 (</u>	Date <u>9/12/82</u> GC/MS
Parameter	Ion Used to Quantitate	Concentrat of ( µg/1	en Remarks
acenaphthene	1		
acenaphthylene	+		
anthracene		ND	
phenanthrene	<u> </u>	ND	
benzo(a)anthracene	†	NO >	
chrysene		ND	
benzo(a)pyrene		ND	
benzo(b)fluoranthene	<u> </u>	ND	V
benzo(k)fluoranthene	<u> </u>	A AB	<u> </u>
benzo(g,h,i)perylene	//	ND	
indeno(1,2,3-cd)pyrene			
libenzo(a, h) anthracene	//	ND*	N
luoranthene			
yrene			
luorene		ND	
aphthalene		ND	
-chloronaphthalene		Mg	
,2-dichlorobenzene		NT	
,3-dichlorobenzene		VD	
,4-dichlorobenzene		ND	
,2,4-trichlorobenzene	$ \rightarrow  \rightarrow  \rightarrow  $	ND	
exachlorobenzene	$\rightarrow \checkmark \checkmark$	ND	
itrobenzene		ND	
,4 dinitrotoluene		NDND	
,6 dinitrotoluene		ND	
im thyl phthalate		ND	
ie.hyl phthalate		ND	
i-n-butyl phthalate	149	50	
ioctyl phthalate		ND .	
ityl benzyl phthalate	<u>}</u>	ND	
a(2-ethylhexyl) whthelate	/	ND	
s(chloromethyl) ether		ND	
s(2-chloroethv1) ether		ND	
s 2-chloroisogropyl) sthat		ND .	
oromophenyl phenyl atha		ND	
chlorophenyl phenyl ether		ND	
nicrosodimethyl amine		ND.	
nitrosodiphenvl amine		ND	
n trosodi-n-propyl amine		ND	
xichloroethane		ND	
si2-chloroethoxy) methane		ND	
ophorone		ND	
xachlorobutadiene	82	13	
J'-dichlorobenzidine		ND	
nzidine		ND*	
2-diphenylhydrazine		ND	
Accilorocyclopentediene		ND	
3,7,8-tetrachlorodibenzo-p-dioxin		ND	
< 6 up/1		ND	

 $ND = < 6 \mu g/1$ ND* = < 20 µg/1

42



### Project 5-177-075

# GCA Control No.___ 23814

# DATA REPORT SHEET

Acid Extractables

Sample 1.D. 53152 (	GZ-1-2)		Analysis Date 9/11/82
Sample Matrix Water		Instrument	HP 5885 GC/MS
Parameter	Ion Used To Quantitate	Concentration	Remarks
2-chlorophenol		ND*	
2-nitrophenol		//	$\wedge$
phenol			
2,4-dimethylphenol		ND*	<u> </u>
2,4-dichlorophenol			
2,4,6-trichlorophenol	198	ND 32	$\checkmark$
y-chloro-m-cresol	4		7
2,4-dinitrophenol		ND	/
4,6-dinitro-o-cresol		ND	
pentachlorophenol		NR	
4-nitrophenol	70	ND	
$ND = < 10 \ \mu g/1$			

ND* = Mass Spectrometer was saturated by non-priority pollutant compounds during the expected time of elution for this phenol. Detection limits, therefore, cannot be established for this compound.



GCA CORPORATION Technology Division

9/12/82

Projec	: C	5-1	77-	075

Sample I.D.

53152 (GZ-1-2)

GCA Control No. 23814

Analysis Date

DATA REPORT SHEET

Pesticides/PCBs

Sample Matrix	Water	Instrume	entHP_5985_GC/MS
Parameter	Ion Used To Quantitate	Concentration ( µg/l )	Remarks
aldrin		ND	
u-BHC		ND	
в-внс		ND	
б-вис		ND	$\sim$
Y -В НС		ND	$\bigcirc$
chlordane		ND	
4,4'-DDD		ND	
4,4'-DDE		D	
4,4'-DUT			
dieldrin		ND	
endosulfar I		ND	
endosulfan II		ND V	
endosulfan sulfate		ND	
endrin			
andrin aldehyde		ND	
neptachlor		ND	
neptachlor epoxide		ND	
oxaphene		ND	
РСВ-1016	$\frown$	ND*	
PCB-1221		ND *	
PCB-1232		ND*	
чсв-1242		ND *	
PCB-1248		ND*	
PCB-1254		ND*	
208-1260		ND*	

 $ND* = <50 \ \mu g/1$ 



GCA CORPORATION

Project_5-177-075

GCA Control No. 23815

### DATA REPORT SHEET Base/Neutral Extractables

Sample 1.D. <u>53159 (A -</u>	32)		Analysis	Date	9/11/82
Sample Matrix Water		Instrument	HP 5985	GC/MS	

Parameter	Ion Used to Quantitate	Concentration (_µg/1_)	Remarks
acenaphthene		ND	
acenaphthylene		ND ND	
anthracene		ND ND	
phenanthrene		NO	
benzo(a)anthracene		ND	
chrysene		ND	
benzo(a)pyrene		ND	
benzo(b)fluoranthene		ND	· · · · · · · · · · · · · · · · · · ·
benzo(k)fluoranthene		X /ND	<hr/>
benzo(g,h,i)perylene	/	ND*	>
indeno(1,2,3-cd)pyrene		ND*	/
dibenzo(a, h)anthracene			
fluoranthene		ND	
pyrene		ND	
fluorene		ND	
naphthalene		ND	
2-chloronaphthalene		ND	
1,2-dichlorobenzene		ND	
1,3-dichlorobenzene		ND	
1,4-dichlorobenzene		ND	
1,2,4-trichlorobenzene		ND	
hexachlorobenzene		ND ND	
nit robenzene		ND	
2,4-dinitrotoluene		ND	
2,6-dinitrotoluene		ND	
dimethyl phthalate	1697	5.0	
diethyl phthelate	149	67	
di-n-butyl phthalate	149	18	
dioctyl phthalate		ND	
butyl benzyl phtherate	$\Sigma$	ND	
bis(2-ethylhexyl) phthelate	/	ND	
bis(chloromethy1) epher		ND	
bis(2-chloroethyl) ather		ND	······································
pis(2-chloroisepropyl) ether		ND	
-bromophenyl phenyl ether		ND	······································
-chlorophenyl phenyl ether		ND	· · · · · · · · · · · · · · · · · · ·
i-nitrosodimethyl amine		ND	
-nitrosodiphenyl amine		ND	
-nitrosodi-n-propyl amine		ND	
nexachloroethane		ND	
bis(2-chloroethoxy) methane		ND	
sophorone	82	42	
nexachlorobutadiene	<u> </u>	ND ND	
3, 3'-dichlorobenzidine	<u> </u>	ND*	<u> </u>
Denzidine			
, 2-diphenylhydrazine		ND ND	
nexachlorocyclopentadiene	<u> </u>	ND ND	· · · · · · · · · · · · · · · · · · ·
2, 3, 7, 8-tetrachlorodibenzo-p-dioxin	<u> </u>	ND ND	
		ND	·



Project 5-177-075

GCA	Control	No.	23815	
			20010	

DATA REPORT SHEET

Acid Extractables

Sample 1.D. 53159	) (A-32)	Analysis Date9/11/82				
Sample Matrix Water	-	Instrument HP \$98: GC/MS				
Parameter	Ion Used To Quantitate	Concentration ( ug/1 )	Remarks			
2-chlorophenol		ND*				
2-nitrophenol		ND*	· · · · · · · · · · · · · · · · · · ·			
phenol		ND*				
2,4-dimethylphenol		NB*				
2,4-dichlorophenol		ND	- <u>-</u>			
2,4,6-trichlorophenol		ND	<u> </u>			
p-chloro-m-cresol		ND				
2,4-dinitrophenol		NO	<u> </u>			
4,6-dinitro-o-cresol		ND	◄			
pentachlorophenol		WD (				
4-nitrophenol		L ND				
· · · · · · · · · · · · · · · · · · ·	117					

 $ND = < 10 \ \mu g/1$ 

ND* = Mass Spectrometer was saturated by non-priority pollutant compounds during the expected time of elution for this phenol. Detection limits, therefore, cannot be established for this compound.



GCA CORPORATION Technology Division

Project 5-177-075

CA	Cont	ro	ι.	No.	2381	5
----	------	----	----	-----	------	---

#### DATA REPORT SHEET

Pesticides/PCBs

 Sample I.D.
 53159 (A-32)
 Analysis Date
 9/11/82

 Sample Matrix
 Water
 Instrument
 HP 5935 GC/MS

Parameter	Ion Used To Quantitate	Concentration ( µg/1 )	?. Remarks
aldrin		ND	
u-BHC		ND	
(з-внс		ND	
<u>S-внс</u>		ND	
<u> Y - В НС</u>	1	ND	
chlordane		ND /	
4,4'-DDD		ND	(/)
4,4'-DDE		ND	
4,4'-DUT		ND	
dieldrin		ND	
endosultan I		ND	
endosulfan II		ND	$\sim$
endosulfan sulfate		ND	/
endrin		ND	>
endrin aldehyde		ND	
heptachlor			
heptachlor epoxide		ND	
toxaphene		ALD .	
PCB-1016		ND*	
PCB-1221	$\langle \rangle$	ND*	
PUB-1232		ND*	
PUB-1242		ND*	
PCB-1248		ND*	
PCB-1254		ND*	
PCB-1260		ND*	

ND = <20 μg/1 ND* = <50 μg/1

GCA CORPORATION Technology Division Project 5-177-075

GCA Control No. 24144

DATA REPORT SHEET Base/Neutral Extractables

Sample L.D. 53162 (A-27)

Analysis Date 9/11/82

0309999

Sample Matrix Water			te9/11/82
	Instrumen	IL	/ms
Parameter	Ion Used to Quantitate	Concentration (µg/1)	Remarks
acenaphthene			
acenaphthy lene		*•ND	
antbracene		ND	-
phenanthrene		ND	
benzo(a)anthracene		NT	
chrysene	+	XD	
benzo(a)pyrene		ND	
benzo(b)fluoranthene	+	ND	
benzo(k)fluoranthene		NO NO	
benzo(g,h,i)perylene	+		<u>}</u>
indeno(1,2,3-cd)pyrene	+/	ND*	
dibenzo(a, h) anthracene	+/	ND*	
fluoranthene	/	Mg*	
pyrene	+	NO	
fluorene	+	ND	
naphthalene	+	ND	
2-chloronaphthalene	t}	ND	
1, 2-dichlorobenzene		ND	
1, 3-dichlorobenzene	¥	N/D	
1,4-dichlorobenzene		ND	
1,2,4-trichlorobenzene		ND	
hexachlorobenzene		ND	
nitrobenzene		ND	
2,4-dinitrotoluene	$\rightarrow \rightarrow $	ND	
2,6-dinitrotoluene		ND	
dimethyl phthalate		ND	
liethyl phthalate		ND	
li-n-butyl phthalate		ND	
lioctyl phthalate	· · · · · ·	ND	
utyl benzyl phthalare	→	ND	
is(2-ethylhexyl) onthelete		ND	
18(Chloromethyl)	×	ND	
18(2-chloroethy) ethan		ND	
Le(2-Chlorolsopconvi) Sha-/		ND	
- Urouopnenyl uhenin ether		ND	
-cniorophenyl phenyl prhes		ND	
-nitrosodimethyl amine		ND	
nitrosodiphenyl smine		ND	
-nitrosodi-n-propyl amine		ND	
xachioroethane		ND	
s(2-chloroethoxy) methane		ND	
lopnorone		ND	
xachlorobutadiene		ND	
3'-dichlorobenzidine		ND	
nzidine		ND*	
2-diphenylhydrazine		ND	
xachlorocyclopentadiene		ND	\ \
3,7,8-tetrachlorodibenzo-p-dioxin		ND	·
		ND	

 $ND = < 6 \mu g/1$ ND* = < 20 µg/1



GCA CORPORATION

jec	5-1		

		•		
CCA	Control	N-	9/1//	
	COULTOI	NO.	24144	

GCA CORPORATION. Technology Division

9/12/82

DATA REPORT SHEET

Acid Extractables

	Sample	L.D.	53162	(A-27)
--	--------	------	-------	--------

Analysis Date 115

Sample Matrix Water	·	Instrument HP 5985 SC/MS			
Parameter	Ion Used To Quantitate	Concentration ( ug/1 )	Remarks		
2-chlorophenol		ND*			
2-nitrophenol	,	ND*			
phenol		ND*			
2,4-dimethylphenol		ND*			
2,4-dichlorophenol		ND*			
2,4,6-trichlorophenol	•	N			
p-chloro-m-cresol		ND			
2,4-dinitrophenol		NA	7 _		
4,6-dinitro-o-cresol	·	ND			
pentachlorophenol		ND	5		
4-nitrophenol			/		

 $MD = < 10 \ \mu g/1 \cdots$ 

)

NI)* = Mass spectrometer was saturated by non-priority pollutant compounds during the expected time of elution for this phenol. Detection limits, therefore, cannot be established for this compound.



GCA

Project 5-177-075

GCA Control No. 24144

#### DATA REPORT SHEET

#### Pesticides/PCBs

Sample I.D. 53162 (A-27)

Analysis Date 9/11/82

Sample Matrix Water

ater

Instrument

HP	5985	GC /MS	

Parameter	Ion Used To Quantitate	Concentration ( µg/l )	Remarks
aldrin		ND	
а-внс		ND	
IS-BHC		ND	
S-BHC		ND	
Y-BHC		ND	
chlordane		ND	
4,4'-DUU		ND	
4,4'-DDE		ND	
4,4'-DUT		ND ~	
dieldrin		ND	
endosulfan I		ND T	
endosulfan II		ND	
endosulfan sulfate		NB	
endrin		ND	
endrin aldehyde		ND	Y
heptachlor		N	
heptachlor epoxide		ND	
toxaphene		ND	
PCI:-1016	$\square$	ND*	
PG5-1221		ND*	
PCII-1232	$\mathbf{n}$	ND*	
PUI-1242		ND*	
PCJ-1248		ND*	
PQ3-1254		ND*	
PCB-1260		ND*	

ND = <20 µg/1 ND* = <50 µg/1



GROUNDWATER DATA (GZA-RAI ANALYSES)

.

## REVIEW OF GROUNDWATER DATA FROM GOLDBERG, ZOINO AND ASSOCIATES, INC. (GZA) - RAI ANALYSES

Volatile organic analyses were conducted by Research Analysts, Inc. (RAI) as a subcontractor to Normandeau Associates, Inc. (NAI) from 1982 through early 1984 (GZA, 1984). Samples were collected in 40 milliliter glass VOA vials and stored on ice. Chain of custody documentation was also maintained Analyses of laboratory blanks were not included in the data sheets while field blanks and duplicate samples were limited to only two sampling rounds.

Note that the following summary sheets also present some state of New Hampshire and EPA data.

	Ω	3	1	Δ	Δ	Ω	_A
	0	9	I	σ	σ	v	म

STATION NUMBER	DESCRIPTION	WELL Depth	WELL/ SAMPLER <u>TYPE</u>
R-1	Supply Well - Windham	171 *	6" rock
R-2	Supply well - Provencal	213	6" rock
R-3	Supply well - Daigneault	257	6" rock
R-4	Supply well - Wagner	149	6" rock
<b>R-5</b>	Supply well - Sullivan	306 /	6" rock
R-6	Supply well - Shepard	192 ~	6 rock
W-1	Early warning well	205	6" rock
W-2	Early warning well	205	6 rock
W-3	Early warning well	205	6" rock
W-4	Early warning well	205	6" rock
W-5-1	Multilevel - rock	27	Gas-drive
W-5-2	Multilevel - rock	80	Gas-drive
W-5-3	Multilevel - rock	135	Gas-drive
A-28	Monitoring well	14/	1-1/2" PVC
SW-5	Surface water station $\setminus$ $\checkmark$	/	· • •
,			•

TABLE 1 SAMPLING STATION INVENTORY

Notes:

Ļ

ł

- 1. See Figure 1 for location of sampling stations.
- 2. Well depths provided by original well driller for residential wells (Mr. Phillip Brien, Manchester, New Hampshire).
- 3. "Gas drive" indicates priginal 6" rock well completed with gas-drive (Barcad brand) samplers isolated by clay seals (see log).

#### TABLE 2 RESIDENTIAL WELL R-1 PURGEABLE ORGANIC ANALYSIS RESULTS

1. C 2. B 3. D 4. V 5. C 6. M 7. A 8. T 9. 1 0. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	Vinyl chlori chloroethane tethylene ch crylonitril richloroflu .1-dichloro crans-1,2-di chloroform 1,2-dichloro 1,1-trichloro cranson tetra transon tetra transon tetra	luoromethane lide hloride le horomethane bethylene bethane lchloroethylene bethane loroethane	G	EPA C/MS 25/81	GC	PA /MS /14/81	ME7 GC/N 10/14	IS	N.H GC/M 7/15/	S	RAI GC/MS 4/28/83	
1. C 2. B 3. D 4. V 5. C 6. M 7. A 8. T 9. 1 0. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	hloromethan promomethane pichlorodifl /inyl chlori hloroethane tethylene ch crylonitril richloroflu ,1-dichloro t,1-dichloro t,2-dichloro t,2-dichloro t,1-trich carbon tetra promodichloro	Sampling Date Sampling Date Sampli	-					/81				
1. C 2. B 3. D 4. V 5. C 6. M 7. A 8. T 9. 1 0. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	hloromethan promomethane pichlorodifl /inyl chlori hloroethane tethylene ch crylonitril richloroflu ,1-dichloro t,1-dichloro t,2-dichloro t,2-dichloro t,1-trich carbon tetra promodichloro	ne Luoromethane ide nloride le noromethane bethylene bethane ichloroethylene bethane loroethane loroethane	3/	25/81				↑,	7/15/	82	4/28/8:	
2. B 3. D 4. V 5. C 6. M 7. A 8. T 9. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	romomethane bichlorodifl /inyl chlori hloroethane Actylonitril Frichloroflu .,1-dichlorof frans-1,2-di fhloroform 1,2-dichloro 1,1,1-trich Carbon tetra Fromodichloro	luoromethane lide hloride le horomethane bethylene bethane lchloroethylene bethane loroethane						··	$\overline{\gamma}$			
3. D 4. V 5. C 5. M 5. M 7. A 8. T 9. 1 0. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	hichlorodifl hioroethane thoroethane tethylene ch crylonitril richloroflu ,1-dichlorof thoroform 1,2-dichloro 1,2-dichloro 1,1-trich Carbon tetra tromodichlorof	Luoromethane ide ide inloride le ioromethane bethylene bethane ichloroethylene bethane loroethane							Ź			
4. V 5. C 6. M 7. A 8. T 9. 1 0. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	Vinyl chlori chloroethane tethylene ch crylonitril richloroflu .1-dichloro crans-1,2-di chloroform 1,2-dichloro 1,1-trichloro cranson tetra transon tetra transon tetra	ide ide ile ioromethane bethylene bethane ichloroethylene bethane loroethane					······		$\overline{2}$			
5. C 6. M 7. A 8. T 9. 1 0. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	hloroethane tethylene ch crylonitril Trichloroflu ,1-dichloro t,1-dichloro trans-1,2-di hloroform t,2-dichloro t,1,1-trich Carbon tetra Tromodichlon	e nloride le noromethane oethylene oethane ichloroethylene oethane loroethane							$\overline{\mathcal{T}}$			
6.       M         7.       A         8.       T         9.       1         10.       1         2.       C         3.       1         5.       C         6.       B	Active and a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of th	loride le loromethane bethylene bethane ichloroethylene bethane loroethane					· · · · · · · · · · · · · · · · · · ·		$\widehat{\mathbf{z}}$			
6.       M         7.       A         8.       T         9.       1         10.       1         2.       C         3.       1         5.       C         6.       B	crylonitril Frichloroflu ,1-dichlorof (1,1-dichlorof (1,1,2-dichlorof) (1,2-dichlorof) (1,1,1-trich) Carbon tetra Fromodichlorof)	le loromethane bethylene bethane lchloroethylene bethane loroethane						$\blacksquare$	$\neq$			
8.       T         9.       1         0.       1         1.       T         2.       C         3.       1         4.       1         5.       C         6.       B	Trichloroflu ,1-dichloro (,1-dichloro Trans-1,2-di hloroform (,2-dichloro (,1,1-trich) Carbon tetra Fromodichloro	bethylene bethylene bethane lchloroethylene bethane loroethane						$\swarrow$	$- \leftarrow$			
8.       T         9.       1         0.       1         1.       T         2.       C         3.       1         4.       1         5.       C         6.       B	Trichloroflu ,1-dichloro (,1-dichloro Trans-1,2-di hloroform (,2-dichloro (,1,1-trich) Carbon tetra Fromodichloro	bethylene bethylene bethane lchloroethylene bethane loroethane						$\checkmark$				
0. 1 1. T 2. C 3. 1 4. 1 5. C 6. B	1,1-dichloro Trans-1,2-di hloroform 1,2-dichloro 1,1,1-trich Carbon tetra Bromodichlon	bethane ichloroethylene bethane loroethane							<u> </u>	ļ		
1. T 2. C 3. 1 4. 1 5. C 6. B	Trans-1,2-di hloroform 1,2-dichloro 1,1,1-trich Carbon tetra Bromodichlon	ichloroethylene oethane loroethane						4				•
1. T 2. C 3. 1 4. 1 5. C 6. B	hloroform ,2-dichloro ,1,1-trich Carbon tetra Tromodichlor	Dethane Loroethane				1			$\underline{\ }$	$\square$		
2. C 3. 1 4. 1 5. C 6. B	hloroform ,2-dichloro ,1,1-trich Carbon tetra Tromodichlor	Dethane Loroethane						$\mathbf{V}_{}$		1	$\rightarrow$	
3. 1 4. 1 5. C 6. B	1,2-dichloro 1,1,1-trichl Carbon tetra Bromodichlor	loroethane		1				<u>}</u>			/	
4. 1 5. C 6. B	L,1,1-trich	loroethane	-								/	
5. C 6. B	Carbon tetra Bromodichlos		1				7					
6. B	romodichlo		+	<u> </u>		17	-77	+7		I T		
		romethane		ID	N			ND	N	ID.	ND	N
<i>1</i>	.2=dichlor	opropane		1	<b>^</b>		<u></u>	K		1	1	·
8. T	Francel 3-d	ichloropropylene	+	<u> </u>		<u> </u>	$\overline{}$	+		1		
	Trichloroet		-						7.			
	Benzene		+		<u> </u>			$\star$		1		
	Dibromochlo	romethane	+	<u> </u>	$\leftarrow$			$\mathbf{t}$		1		
		hloropropylene		+	$\overline{}$			$\star$				
	1,1,2-trich		+	+	<u> </u>	$+ \checkmark$		4				
	Bromoform	TOTOE GIANE	+	+	<u> </u>		<u> </u>	+		<u> </u>		
					<u> </u>	<del>\</del>		+		+		
		rachloroethane	$+ \cdot$	4	<u> </u>	- A	<del>}</del>	+		<u> </u>		
	Tetrachloro	ethylene	$+\!\!/$			$ \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	<u> </u>			·	+	
	Toluene		4_	$\longleftarrow$		$\mathbf{A}$					<del></del> +	
	Chlorobenze		_	₽.∕	~	+/-		+		╂───	+	······
	Ethyl benze:		$\downarrow$	<u> </u>		₩				──	<del> </del>	
		ethyl ether	4	<u> </u>	<u> </u>			+		┨───	<del>_</del>	
		yl vinyl ether	$\Rightarrow$		$\rightarrow$	<u></u>				<u> </u>	<del>_</del>	
2. A	Acrolein	/		K/		<u> </u>		¥				
А	DDITIONAL		$\mathbf{i}$		$\checkmark$				•			
			_)		•	<u></u>						
	MEK		V									
	MIBK		1									
	Xylenes		·									
	THF		V									
		<u> </u>	T									
		·····	+									
	••••••••••••••••••••••••••••••••••••••	<u> </u>	+-									
	· · · · · · · · · · · · · · · · · · ·	·	+									

TES: 1) All results in parts per billion (ppb). Tr. = <5ppb

2) ND- Not detected. Blank spaces represent ND.

3) Laboratories-Resource Analysts, Inc. (RAI); U.S. Environmental Protection Agency, Lexington, Massachusetts (EPA); Mead Compuchem, Inc. (MEAD); N.H. Water Supply and Pollution Control Commission (N.H.)

## TABLE 2 (cont.) RESIDENTIAL WELL R-1 PURGEABLE ORGANIC ANALYSIS RESULTS

•		Sample No.	
1	. •	Laboratory	RAI
	•	Analysis by	GC/MS
1		Sampling Date	10/17/83
	COMPOUNDS	Sampling Date	
	Chlorometha	ne	•
1.	Bromomethan	8	
2.	Dichlorodif	luoromethane	
3.	Vinyl chlor	ide	
4.	Chloroethan	e	
5.	Methylene c	hloride	<5
<u>6.</u>	Acrylonitri	1e	
7.	Trichlorofl	uoromethane	
9.	1,1-dichlor	oethylene	
<u> </u>	1,1-dichlor	oethane	
	Trans-1.2-0	lichloroethylene	
11.	Chloroform		
12.	1,2-dichlor	roethane	
	1 1 1_++ich	hloroethane	
14.	Carbon tet	rachloride	
15.		promethane	
16.	1,2-dichlo		
17.	1,2-010110	dichloropropylene	
18.	Trans-1,3-0		
<u>_19.</u>	Trichloroe	Ulylene	
20.	Benzene	amonathana	
21.	Dibromochl	oromeunane	
22.		chloropropylene	
23.		hloroethane	
24.	Bromoform		
25.		trachloroethane	
26.		oetnylene	4/) (/
_27.		/	
28.			
29.	Ethyl benz	zene	
30.	Bis-chloro	methyl ether	
<u>B1</u> .	2-chloroet	thyl vinyl ether	
32.	Acrolein		
	ADDITIONAL		
		<u> </u>	$\Lambda$ /
	MEK		
_	MIBK		//
_	Xylenes		<u></u>
	THF		~
	<u> </u>		
	<u> </u>	·	
			rts per billion (ppb). Tr. = <5ppb.
N			
	2)	ND - Not detected	1. Blank spaces represent ND.
	3)	Laboratory - Res	ource Analysts, Inc.
			ource Analysts, Inc.

TABLE 3 RESIDENTIAL WELL R-2 PURGEABLE ORGANIC ANALYSIS RESULTS

		Sample No.			PA	MEAD	Peck	EPA	MEAD	NĤ
		Laboratory	Peck			A & A/A	CO MS	GC/M5	GC/MS	GC/MS
		Analysis by	GC/MS	GC/1		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	GC/MS	10/14/81	10/14/81	7/15/82
œ	MPOUNDS	Sampling Date	3/6/81	3/25	/81	3/25/6	1 5/20/01	10/11/10		
đ	loromethan	18								
_	momethane			+						
Di	ichlorodif	uorometnane		+						
V	inyl chlor:	de	<u> </u>							
0	loroethan			+			3.1	$\wedge$		
M	thylene cl	nloride		+				/ <u>}</u>		
	milonitri	le	<u></u>							
-	richlorofl	uoromethane								
- 1	1-dichlor	oethylene	+							
	1-dichlor	oethane				<u></u> +	- < 7			
T	rans-1,2-d	ichloroethylene	+			+	$\overline{\nabla}$		<u> </u>	
C	hloroform		+			+	15	$\overline{\nabla}$		
1	2-dichlor	oethane	<b></b>				<u> </u>			
1	.1.1-trich	loroethane	<u></u>			<u> </u>	$\rightarrow \rightarrow $			
	arbon tetr	achloride	Tr.		<u> </u>	NE		ND	NE	) ND
	romodichlo	romethane		N	D			i		
1	2-dichlor	STADIODARE			<b></b>	<u> </u>				
	rans-1.3-0	lichloropropylene	<u></u>			f	<u> </u>		_	
	richloroet	hylene ·				+	0.3	$\rightarrow -+$		
	Benzene				¥	>4		د		
. 1	Dibromochle	promethane			4		$\geq$			
	Cie-1.3-di	chloropropylene			¥					
	1 1 2etric	hloroethane			4	<u> </u>	~			
	Bromoform				$\square$	×	/			
•	$\frac{1}{1}$	trachloroethane		$\sim$		<u> </u>	0.9			
•	Tetrachlor	oethylene	17							
		Ue di jacito	1	~			<0.5			· · ·
_	Toluene	A7A	17			$\mathbf{\nabla}\mathbf{\nabla}$		+		
-	Chlorobenz			7		7				<b> </b>
•	Ethyl benz	methyl ether		7	T	$\checkmark$				
	BIS-CRIOIC	hyl vinyl ether		- <						¥
		TIAT ATTIAT CALL	11		Y		/		,	
<u> </u>	Acrolein				7					
				$\setminus$	/			,		
	ADDITIONAL			<u> </u>						
	MEK									
	MIBK									
_		<del></del>	17							
	Xylenes	<del></del>	$+ \neq$							
	THF		$\leftarrow$							
			<u> </u>							
							,			_

OTES :

- 1) All results in parts per billion (ppb).
- 2) ND Not detected. Blank spaces represent ND.
- 3) Laboratories-Resource Analysts, Inc. (RAI); U.S. Environmental Protection Agency, Lexington, Massachusetts (EPA); Mead Compuchem, Inc. (MEAD); Peck Environmental Laboratory (Peck); N.H. Water Supply and Pollution Control Commission (NH).

#### LE 3 (cont.) ENTIAL WELL R-2 RES PURGEABLE ORGANIC ANALYSIS RESULTS

		Sample No.							RAJ		
		Laboratory	RA	I		AI	RA				
		Analysis by	GC/			/MS	GC/		GC/N		
	COMPOUNDS	Sampling Date		8/83	7/2	0/83	10/1	7/83	2/7/8	54	
1.	Chlorometha	ne		<b>^</b>		*		<u> </u>			
2.	Bromomethan	e	<u> </u>	<u> </u>							
3.	Dichlorodif	luoromethane				+		<u> </u>			
4.	Vinyl chlor	ide				<u> </u>					
5.	Chloroethan	e		-		·					
6.	Methylene c	hloride		<u> </u>				$\rightarrow$		<u></u>	
7.	Acrylonitri	le		1				¥			
8.	Trichlorofl	uoromethane					/				
9.	1.1-dichlor	oethylene						$\rightarrow$			
10.	1.1-dichlor	oethane						<u>k</u>	$\sim$		· · · · ·
1.	Trans-1,2-d	lichloroethylene				_	<u> </u>	4~	<u> </u>		
2.	Chloroform						$A^{\vee}$	┼────	$\rightarrow$		
13.	1,2-dichlor	oethane				+		<u> </u>	$\searrow$		
14.	1,1,1-trich	loroethane				+	$- \rightarrow \rightarrow$	<u> </u>			
15.	Carbon tetz	achloride		·		$\downarrow$	+-	<b>}</b>		<u> </u>	
16.	Bromodichic	promethane				<u>×</u>	$\checkmark$	/	N		
17.	1.2-dichlor	copropane		ND		NB		ND			
18.	Trans-1.3-0	lichloropropylene				$\perp$	<u> </u>			<u> </u>	
19.	Trichloroe	thylene					<u> </u>	<u>}</u>		<u> </u>	
20.	the second second second second second second second second second second second second second second second s						<u> </u>	<u>/</u>			
21.	Dibromochle	oromethane			7			1		∔	
22.	Cisel. 3-di	chloropropylene		T	$\overline{}$	· ·		_			
23.	1.1.2-tric	hloroethane		T						+	
24.	Bromoform			Τ		Y	/~				
25.	1.1.2.2-te	trachloroethane									
26.			17								
27.			7	6		V Z				<u> </u>	
28.		ene /	17	()		<u>N</u>				+	
29.	Ethyl benz				-	Χ					
30.		methyl ether			$\overline{}$						<u> </u>
31.	2-chloroet	hyl vinyl ether	K							J	
32.	Acrolein		K	V	<u> </u>	•	·			<b>v</b>	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	77							
	ADDITIONAL		<	\mathbf{N}	\checkmark			•			
			\rightarrow								
ſ	MEK	<u> </u>				Tr.					
	MIBK		4	/ 						,	
-	Xylenes	<u> </u>	_+/								
	THF	<u>`</u>	_ / _								
			\sim								
		· · ·			<u></u>						
	·										
			-+							·	

- NOTES: 1) All results in parts per billion (ppb). Tr. = <5ppb.
 - ND Not detected. Blank spaces represent ND. 2)

3) Laboratory - Resource Analysts, Inc.

TABLE 4 RESIDENTIAL WELL R-3 PURGEABLE ORGANIC ANALYSIS RESULTS

		Sample No.							· · · · · · · · · · · · · · · · · · ·		<u> </u>		
		Laboratory	N.1		R GC/	AI	RA			AI		NAI .	RA
		Analysis by	GC,	/MS	GC/	MS	GC/	MS	GC/	MS	GC/	MS	GC/1
	COMPOUNDS	Sampling Date	8/	11/82	12/	16/82	4/28	3/83	7/20	/83	10/1	7/83	2/7/8
ì.	Chlorometha	ne		<u> </u>		<u>م</u>		¢	,	.		<u> </u>	
2.	Bromomethan	6						L					
3.		luoromethane			_				1			_	
4.	Vinyl chlor	ide									<u> </u>	_	
5.	Chloroethan	e										_	
6.	Methylene c	hloride						L		<u> </u>			
7.	Acrylonitri	1e									· ·		
8.	Trichlorofl	uoromethane	1							<u> </u>			
9.	1,1-dichlor	oethylene							/	\square			
0.	1,1-dichlor								•				
μ.		ichloroethylene						$\Box \Sigma$				•	
2.	Chloroform							\mathbf{V}		\sum			
3.	1,2-dichlor	oethane		1			_7				$\overline{\mathbf{\nabla}}$		
	1,1,1-trich		1	1		T .	/						
5.	Carbon tetr			1		1		77	7	T			
6.	Bromodichlo		1 1	VD D	N	D (N	ib/	1	۹D		ND	N
	1,2-dichlor			1		1	$\overline{}$	1	7	T		1	
8.	Trans-1.3-d	ichloropropylene	+	1			7		$\overline{}$				
9.	Trichloroet		-	<u>† – – – – – – – – – – – – – – – – – – –</u>					5				
_	Benzene		+	<u> </u>		\sim				<u> </u>			
1.	Dibromochlo	romethane	+	1		<u> </u>			~				
2.		hloropropylene			<u> </u>				7	+			
	1,1,2-trich		+	 						1			
4.	Bromoform		+	+		\frown	¥7	\sim	;	+		_	
		rachloroethane			-	$ \rightarrow $	<u> </u>	<u> </u>		+			
5.			+		\rightarrow	<u> </u>	<u> </u>	<u> </u>		+			
6.	Tetrachloro	etnylene	$+ \rightarrow$	1			<u> </u>			+		-+	
7.	Toluene		+	$+ \frown$	┝───╵	$ \rightarrow $	\checkmark -	 	,	+			
8.	Chlorobenze	the second second second second second second second second second second second second second second second s	<u> </u>	K-7		`	ऱ			+			
	Ethyl benze			\perp		$\rightarrow \rightarrow$					<u> </u>		
	Bis-chlorom		\rightarrow	<u></u>	—	<u> </u>		<u> </u>		+			
		yl vinyl ether		<u>}</u>		×		<u></u>				$\overline{}$	
) <u> </u>	Acrolein ADDITIONAL	-/r	$\overline{\ }$	$\overline{}$	\checkmark	/	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·		, ,		
	MEK										•		
	MIBK		∇										
	Xylenes			1									
	THF			/									
			V										
											`		
		•	1			_							
	ES: 1) All												

- 2) ND Not detected. Blank spaces represent ND.
- 3) Laboratory Resource Analysts, Inc. (RAI); N.H. Water Supply and Pollution Control Commission (NB); Peck Environmental Laboratory (Peck).

TABLE 5

COMPOUNDS Analysis by Sampling Date GC GC/MS GC/MS <th< th=""><th>· · ·</th><th>Sample No. Laboratory</th><th>NH</th><th>NH</th><th>RAI</th><th>RAI</th><th>RA</th></th<>	· · ·	Sample No. Laboratory	NH	NH	RAI	RAI	RA
COMPOUNDS Sampling Date 11/8/79 7/15/82 4/28/83 10/17/83 2/7/ 1. Chloromethane . . . 10/17/83 2/7/ 1. Chloromethane .<						GC/MS	
1. Chloromethane 2. Bromomethane 3. Dichlorodifluoromethane 4. Vinyl chloride 5. Chloroethane 6. Methylene chloride 7. Acrylonitrile 8. Trichlorofluoromethane 9. 1,1-dichloroethylene 10. 1,1-dichloroethylene 11. 1,2-dichloroethane 12. Chloroftame 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropylene 18. Trans-1,3-dichloropropylene 19. Trichloroethylene 20. Benzene 11. Dibromochloromethane 12. Othoropropylene 13. 1,2-dichloropropylene 14. 1,1,2-trichloroethane 15. Trans-1,3-dichloropropylene 16. Bromodichloromethane 17. 1,2-dichloropropylene 18. Trans-1,3-dichloropropylene 21. 1,1,2-trichloroethane 22. Benzene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2-dichloropethane 26. Thorobenzene 27. Toluene 28. Chlorobenzene	COMPOUND	the second second second second second second second second second second second second second second second s		and the second second second second second second second second second second second second second second second			2/1/
2. Bromomethane . 3. Dichlorodifluoromethane . 4. Vinyl chloride . 5. Chloroethane . 6. Methylane chloride . 7. Acrylonitrile . 8. Trichlorofluoromethane . 9. 1,1-dichloroethylene . 10. 1,1-dichloroethane . 11. 1,2-dichloroethane . 12. Chloroform . 13. 1,2-dichloroethane . 14. 1,1.1-trichloroethane . 15. Carbon tetrachloride . 16. Bromodichloromethane ND 17. 1,2-dichloropropane . 18. Trans-1,3-dichloropropylene . 19. Trichloroethylene . 20. Benzene . 11. Dibromochloromethane . 12. 1,1,2-trichloroethane . 13. 1,1,2-trichloropthane . 21. 1,1,2-trichloropthane . 22. Benzene . 23. 1,1,2-trichloropthane . 24. Bromoform . 25. Thyl benzene . 26. Toloroethyl ene . <td></td> <td></td> <td></td> <td>•</td> <td>A</td> <td></td> <td></td>				•	A		
3. Dichlorodifluoromethane 4. vinyl chloride 5. Chloroethane 6. Methylene chloride 7. Acrylonitrile 8. Trichlorofluoromethane 9. 1,1-dichloroethane 10. 1,1-dichloroethane 11. Trans-1,2-dichloroethylene 12. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropane 18. Trans-1,3-dichloropropylene 19. Trichloroethane 10. 1,1-4_cichloropropylene 13. 1,2-dichloropropylene 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropylene 19. Trichloroethylene 20. Benzene 21. 1,3-dichloropropylene 22. 1,3-dichlororopoylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 30. Bis-chloromethyl ether 31. 2-chloroethyl ether 32. Acrolein <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
5. Chloroethane 6. Methylene chloride 7. Acrylonitrile 8. Trichlorofluoromethane 9. 1,1-dichloroethylene 10. 1,1-dichloroethylene 11. Trans-1,2-dichloroethylene 12. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropylene 19. Trichloroethylene 20. Benzene 21. Dibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethane 27. Toluene 28. Chloroethylene 29. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethyl vinyl ether 32. Acrolein		difluoromethane	·		·•	·	
6. Methylene chloride 7. Acrylonitrile 8. Trichlorofluoromethane 9. 1,1-dichloroethylene 10. 1,1-dichloroethane 11. Trans-1,2-dichloroethylene 2. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropane 18. Trans-1,3-dichloropropylene 19. Trichloroethane 10. 1,1-2-trichloropropylene 20. Benzene 21. 0ibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloropethane 24. Bromoform 25. 1,1,2-2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 30. Sis-chloromethyl ether 31. 2-chloroethyl ether 32. Acrolein	4. Vinyl ch	loride					
7. Acrylonitrile 8. Trichlorofluoromethane 9. 1,1-dichloroethylene 10. 1,1-dichloroethane 11. Trans-1,2-dichloroethylene 2. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropane 18. Trans-1,3-dichloropropylene 19. Trichloroethylene 20. Benzene 21. Dibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoofloromethane 25. 1,1,2,-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethylene 27. Toluene 28. Chlorobenzene 39. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethyl vinyl ether 32. Acrolein							
8. Trichlorofluoromethane 9. 1,1-dichloroethylene 10. 1,1-dichloroethylene 11. Trans-1,2-dichloroethylene 12. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropylene 18. Trans-1,3-dichloropropylene 19. Trichloroethylene 20. Benzene 11. Dibromochloromethane 21. Dibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 20. Bis-chloromethyl ether 21. 2-chloroethyl vinyl ether 22. Acrolein	6. Methylen	e chloride			$ \longrightarrow $	<u> </u>	
9. 1,1-dichloroethape 10. 1,1-dichloroethape 11. Trans-1,2-dichloroethape 12. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropane 18. Trans-1,3-dichloropropylene 9. Trichloroethylene 10. Benzene 11. Dibromochloromethane 12. Cis-1,3-dichloropropylene 13. 1,1,2-trichloropropylene 14. 1,1,2-trichloropropylene 15. I,1,2,2-tetrachloroethane 20. Benzene 21. J.3-dichloropropylene 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. I,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethyl vinyl ether 32. Acrolein					A	<u> </u>	
10. 1,1-dichloroethane 11. Trans-1,2-dichloroethylene 2. Chloroform 3. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropane 18. Trans-1,3-dichloropropylene 19. Trichloroethylene 20. Benzene 21. Dibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2-trichloroethane 26. Tetrachloroethane 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethyl ether 32. Acrolein					· / / \		
1. Trans-1,2-dichloroethylene 2. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropane 18. Trans-1,3-dichloropropylene 19. Trichloroethylene 20. Benzene 21. Dibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 20. Bis-chloromethyl ether 21. 2-chloroethyl vinyl ether 22. Acrolein						<u> </u>	
2. Chloroform 13. 1,2-dichloroethane 14. 1,1,1-trichloroethane 15. Carbon tetrachloride 16. Bromodichloromethane 17. 1,2-dichloropropane 18. Trans-1,3-dichloropropylene 19. Trichloroethylene 20. Benzene 11. Dibromochloromethane 21. Cis-1,3-dichloropropylene 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 15. 1,1,2,2-tetrachloroethane 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 20. Bis-chloromethyl ether 21. 2-chloroethyl vinyl ether 22. Acrolein				· ·	$ \leq $		
13. 1,2-dichloroethane <1					$\wedge \vee \mid $	<u>}</u>	
14. 1,1,1-trichloroethane <1				/	<u>··</u>	$\rightarrow / + -$	
5. Carbon tetrachloride ND ND 16. Bromodichloromethane ND ND 17. 1,2-dichloropropane ND ND 8. Trans-1,3-dichloropropylene 9. Trichloroethylene 20. Benzene 9. 1. 11. Dibromochloromethane 9. 1. 22. Cis-1,3-dichloropropylene 9. 1. 23. 1,1,2-trichloroethane 9. 1. 24. Bromoform 1. 1. 25. 1,1,2,2-tetrachloroethane 1. 1. 26. Tetrachloroethylene 1. 1. 27. Toluene 1. 1. 1. 28. Chlorobenzene 1. 1. 1. 29. Ethyl benzene 1. 1. 1. 30. Bis-chloromethyl ether 1. 1. 1. 21. 2-chloroethyl vinyl ether 1. 1. 1. 21. Acrolein 1. 1. 1. 1.				/			
16. Bromodichloromethane ND ND ND 17. 1,2-dichloropropane			<1 _		$// \rightarrow$		
17. 1,2-dichloropropane 8. Trans-1,3-dichloropropylene 9. Trichloroethylene 20. Benzene 21. Dibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 9. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethyl vinyl ether 32. Acrolein			_				
8. Trans-1, 3-dichloropropylene 9. Trichloroethylene 20. Benzene 1. Dibromochloromethane 2. Cis-1, 3-dichloropropylene 23. 1, 1, 2-trichloroethane 24. Bromoform 15. 1, 1, 2, 2-tetrachloroethane 15. 1, 1, 2, 2-tetrachloroethane 15. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 30. Bis-chloromethyl ether 1. 2-chloroethyl vinyl ether 2. Acrolein					ND	U	N
9. Trichloroethylene 20. Benzene 20. Benzene 20. Dibromochloromethane 21. Dibromochloromethane 21. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 21. Cis-1,3-dichloroethane 24. Bromoform 21. Cis-1,2-trichloroethane 25. 1,1,2,2-tetrachloroethane 21. Cis-1,3-dichloroethane 26. Tetrachloroethylene 21. Cis-1,3-dichloroethane 27. Toluene 21. Cis-1,3-dichloroethane 28. Chlorobenzene 21. Cis-1,3-dichloroethylene 29. Ethyl benzene 21. Cis-1,3-dichloroethyl ether 30. Bis-chloromethyl ether 21. Cis-1,3-dichloroethyl ether 31. 2-chloroethyl vinyl ether 22. Acrolein					<u> </u>		
20. Benzene 11. Dibromochloromethane 22. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethyl vinyl ether 32. Acrolein					\rightarrow		
1. Dibromochloromethane 2. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 5. 1,1,2,2-tetrachloroethane 6. Tetrachloroethylene 7. Toluene 18. Chlorobenzene 19. Ethyl benzene 30. Bis-chloromethyl ether 11. 2-chloroethyl vinyl ether 22. Acrolein		Dethylene		-			
2. Cis-1,3-dichloropropylene 23. 1,1,2-trichloroethane 24. Bromoform 25. 1,1,2,2-tetrachloroethane 26. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 29. Ethyl benzene 30. Bis-chloromethyl ether 21. 2-chloroethyl vinyl ether 22. Acrolein			_		\sim $-$		
23. 1,1,2-trichloroethane 24. Bromoform 35. 1,1,2,2-tetrachloroethane 46. Tetrachloroethylene 47. Toluene 48. Chlorobenzene 49. Ethyl benzene 30. Bis-chloromethyl ether 31. 2-chloroethyl vinyl ether 32. Acrolein				\rightarrow			
24. Bromoform 15. 1,1,2,2-tetrachloroethane 6. Tetrachloroethylene 7. Toluene 28. Chlorobenzene 9. Ethyl benzene 30. Bis-chloromethyl ether 1. 2-chloroethyl vinyl ether 2. Acrolein			· · · · · · · · · · · · · · · · · · ·	-+	\sim		
5. 1,1,2,2-tetrachloroethane 16. Tetrachloroethylene 27. Toluene 28. Chlorobenzene 9. Ethyl benzene 30. Bis-chloromethyl ether 11. 2-chloroethyl vinyl ether 21. Acrolein				<u>-</u>			
26. Tetrachloroethylene 27. Toluene 27. Toluene 28. Chlorobenzene 28. Chlorobenzene 29. Ethyl benzene 30. Bis-chloromethyl ether 20. Ethyl vinyl ether 21. 2-chloroethyl vinyl ether 20. Ethyl vinyl ether 22. Acrolein 20. Ethyl vinyl ether				$\rightarrow + \leftarrow$			
27. Toluene 28. Chlorobenzene 19. Ethyl benzene 30. Bis-chloromethyl ether 11. 2-chloroethyl vinyl ether 12. Acrolein				$\rightarrow \rightarrow \rightarrow$	<u></u>		
28. Chlorobenzene 9. Ethyl benzene 19. Ethyl benzene 10. Bis-chloromethyl ether 30. Bis-chloromethyl ether 11. 2-chloroethyl vinyl ether 11. 2-chloroethyl vinyl ether 12. Acrolein		broetnylene	+/-			<u></u>	
19. Ethyl benzene 30. Bis-chloromethyl ether 11. 2-chloroethyl vinyl ether 12. Acrolein		n 260 6	¥	┝──┼──╲╤──			
30. Bis-chloromethyl ether 11. 2-chloroethyl vinyl ether 12. Acrolein			{ ∕-				
1. 2-chloroethyl vinyl ether 2. Acrolein			<u> </u>				
2. Acrolein			+				
	30. Bis-chlo 1. 2-chloro 2. Acrolein	romethyl ether ethyl vinyl ether					
	MEK		JIT				
MEK	MIBK		V 7				
			1				
MIBK						· .	
MIBK Xylenes			- `/			• • • • • • • • • • • • • • • • • • •	
MIBK			+				
MIBK Xylenes							
MIBK Xylenes				·			
MIBK Xylenes							

3) Laboratories - Resource Analysts, Inc. (RAI); New Hampshire Water Supply and Pollution Control Commission (NH).

TABLE 6 RESIDENTIAL WELL R-5 PURGEABLE ORGANIC ANALYSIS RESULTS

. .

	Sample No.			Pe	ck	RAI		RAI	RAI	RAI
•	Laboratory		IH			GC/M		GC/MS	GC/MS	
1997 - 1997 -	Analysis by		C/MS	GC/			_		10/17/	
COMPOU	NDS Sampling De	te 7,	/15/82	12/1	0/82	4/28/	/83	7/20/83	10/1//	
. Chlore	nethane								↑	
Bromos	ethane	╾╾┼╋								
Dichlo	rodifluoromethane			+						
Vinyl	chloride									
Chlore	ethane			+						
Methyl	ene chloride			+				1		
Acryle	nitrile			+				/ /		
Trich.	orofluoromethane			+				- <1		
. 1,1-d	chloroethylene			+			1	K		
). 1,1-d	chloroethane			+			Y	$\overline{}$		
. Trans	1,2-dichloroethyl	ene				$\neg \neg$	\bigtriangledown			
. Chlore	oform	╾╾╾┼╾┥				-/	5			
	chloroethane					/	$\sqrt{-}$			
4. 1,1,1	trichloroethane		!			+-+				
. Carbo	tetrachloride			N			rð	ND	N	D ND
	ichloromethane	F			-		17			
7. 1,2-d	ichloropropane		 		` `	<u> </u>	d			
. Trans	-1,3-dichloropropy	lene	<u> </u>			$\overline{}$	┢╌╲			
	loroethylene						1	\rightarrow		
. Benze	ne					\leq		/		
1. Dibro	mochloromethane						て			
. Cis-1	,3-dichloropropyl	ene	+	<u> </u>			17	1		
. 1,1,2	-trichloroethane	`	+	<u> </u>	+		¥—			
4. Bromo	form		+		↓ `		+			
. 1,1,2	,2-tetrachloroeth	ane		>	<u>₩</u>	\leftarrow	+			
	chloroethylene		Å		+ -	\rightarrow —	+	î		
7. Tolue			+		\leftarrow	<u> </u>	+			
	obenzene		$\downarrow \rightarrow$		+>+>		┼───			
	benzene		┺┵		+		┼──			
. Bis-	hloromethyl ether				╇╱──		+		<u> </u>	
31. 2-ch.	oroethyl vinyl et	her		~	ـ					V V
Acro	lein			\rightarrow						
	/									
ADDI	TONAL	\frown		\checkmark						
MEK		<u>`</u>			÷					
MIBK	<u> </u>	$\leftarrow +$								
										· · · · · · · · · · · · · · · · · · ·
THF										
Xyler	es		/						· · · · · ·	
		\sim			1					
وي المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا		1					_			
	·									

OTES: 1) All results in parts per billion (ppb). Tr. = <5ppb.

2) ND - Not detected. Bank spaces represent ND.

3) Laboratory - Resource Analysts, Inc.

TABLE 7 RESIDENTIAL WELL R-6 PURGEABLE ORGANIC ANALYSIS RESULTS

Laboratory Analysis by Sampling Date thane Sampling Date thane difluoromethane loride trile ofluoromethane loroethane loroethane chloroethane ichloroethane atrachloride hloromethane loropropane dichloropropylene	NH GC/MS 7/15/	G	C/MS /17/82	RAI GC/MS 4/28/8	GC	CAI C/MS 20/83	RAI GC/MS 2/1/8/
Sampling Date thane hane difluoromethane loride hane a chloride trile ofluoromethane loroethylene loroethane 2-dichloroethylene ichloroethane a trachloride hloromethane loromethane loromethane					3 7/2		
thane hane difluoromethane loride hane a chloride trile ofluoromethane loroethylene loroethane 2-dichloroethylene ichloroethane atrachloride hloromethane loropropane		82 12	/17/82	4/28/8			
hane difluoromethane loride hane a chloride trile ofluoromethane loroethylene loroethane 2-dichloroethylene ichloroethane atrachloride hloromethane loropropane	ND				, //		
iffluoromethane loride hane a chloride trile offluoromethane loroethylene loroethane 2-dichloroethylene rm loroethane ichloroethane atrachloride hloromethane loropropane	ND				, //		
loride hane a chloride trile ofluoromethane loroethylene loroethane 2-dichloroethylene rm loroethane ichloroethane atrachloride hloromethane loropropane	ND						
hane chloride trile ofluoromethane loroethylene loroethane 2-dichloroethylene rm loroethane ichloroethane strachloride hloromethane loropropane	ND						
hane chloride trile ofluoromethane loroethylene loroethane 2-dichloroethylene rm loroethane ichloroethane strachloride hloromethane loropropane	ND						
e chloride trile ofluoromethane loroethylene loroethane 2-dichloroethylene m loroethane ichloroethane atrachloride hloromethane loropropane	ND						
trile ofluoromethane loroethylene 2-dichloroethylene m loroethane ichloroethane atrachloride hloromethane loropropane	ND						
ofluoromethane loroethylene 2-dichloroethylene m loroethane ichloroethane etrachloride hloromethane loropropane	ND						
loroethylene loroethane 2-dichloroethylene m loroethane ichloroethane etrachloride hloromethane loropropane	ND			\nearrow			
loroethane 2-dichloroethylene rm loroethane ichloroethane etrachloride hloromethane loropropane				\square	$ \land $	\searrow	
2-dichloroethylene rm loroethane ichloroethane strachloride hloromethane loropropane	ND			\nearrow		\downarrow	
rm loroethane ichloroethane strachloride hloromethane loropropane	ND			\nearrow	· · · · · · · · · · · · · · · · · · ·	V Z	
loroethane ichloroethane atrachloride hloromethane loropropane	ND						
ichloroethane strachloride hloromethane loropropane	ND					\mathbf{N}	
etrachloride hloromethane loropropane	ND				$\overline{\mathbf{X}}$		
hloromethane loropropane	ND			-77	7		
loropropane			ND	V N		ND	ND
					7		1
3-dicutoropropytene						Т	
pethylene			7		$\overline{}$		
hloromethane				\sim			
		/			7		
			$\overline{\mathbf{x}}$				
			- \ -×	-/			
		~					
	+ $+$			\rightarrow			
DIGECHYTENE	+ + +			/			
2222	+A	$ \rightarrow $		∕		_	
	+/	\checkmark	_+ 7			-1	
		<u> </u>	-\√ -		······································	-+	
						+	
		\sim	$\overline{}$		/		
	dichloropropylene ichloroethane m tetrachloroethane oroethylene nzene nzene romethyl ether ethyl vinyl ether	ichloroethane m tetrachloroethane oroethylene nzene nzene romethyl ether ethyl vinyl ether					

- NOTES :
- 1) All results in parts per billion (ppb). Tr. = <5ppb.

2) ND - Not detected. Blank spaces represent ND.

3) Laboratories - Resource Analysts, Inc. (RAI); New Hampshire Water Supply and Pollution Control Commission Laboratory (NH).

TABLE 8 MONITORING WELL W-1

PURGEABLE ORGANIC ANALYSIS RESULTS

		Sample No.									RA	Ť	
2		Laboratory		AI	RAI		RAI		RAI		GC/		
		Analysis by	GC	/MS	GC/MS	5	GC/M		GC/M				
	COMPOUNDS	Sampling Date	12/	16/83	4/28/8	33	7/20/1	83	10/1	7/83	1/31	/84	
1.	Chloromethar					<u></u>	一 不					1	
2.	Bromomethane) 	┼┼		+	<u></u>							
3.	Dichlorodif	Luoromethane	┼┼╋						*				
4.	Vinyl chlori	de	┾╋										
5.	Chloroethane	<u>}</u>	╄╋		_								
6.	Methylene ch	loride	++		<u> </u>	_	+		-1	- 5			
7.	Acrylonitri:	le	┼╌╂				+		++	-/			
8.	Trichlorofly	loromethane	┼╌╋						<u>∕</u> _+	\leftarrow			
9.	1,1-dichloro	bethylene	┼┈╄				+					+	
10.	1,1-dichlor	bethane					+	-{			$\overline{}$		
1.		ichloroethylene	┼┼				 t	$\overline{}$	≁−f	$\overline{}$	-7-		
2.	Chloroform		┿╋		 		<u> </u>	<u> </u>	+	$- \prec$	-+		
13.	1,2-dichlor	oethane	┼╶┨				/	-/					
14.	1,1,1-trich	loroethane	┼┤		+		+	++	\mathbf{H}				
5.	Carbon tetr		┿╌┥			/	<u> </u>	<u> </u>	-/+				
16.	Bromodichlo			<u> </u>	NE	<u> </u>		~)		ND	
	1,2-dichlor	opropane	N	<u></u>								1.	
.8.	Trans-1,3-d	ichloropropylene							\sim				
9.	Trichloroet	hylene			d	<u> </u>	f	\sim	<u> </u>				
	Benzene		4			\geq		~	\leftarrow				
1.	Dibromochlo		1	ļ	·<				—				
2.	Cis-1,3-dic	hloropropylene				4		\vdash					<u> </u>
23.	1,1,2-trich	loroethane					<u> </u>	\leftarrow					
24.	Bromoform					<u> </u>	$- \square$		· ·				
5.	1,1,2,2-tet	rachloroethane					$\langle -$						
26.	Tetrachloro	ethylene	L	X		\rightarrow							
27.	Toluene		V			7	/	 					
28.	Chlorobenze	ine	Δ	V Z)		×						
19.				\mathbb{N}						· · · ·			
30.		ethyl ether	X			\sim		I		· · · · ·			
31.		yl vinyl ether		*		V		<u>v</u>		×			
12.	Acrolein			77	\sum								
	ADDITIONAL	10		\sum	\checkmark								
	Xylenes			ND /	ND)	NE)	N	D		ND	·····
	MEK	<u> </u>	Ť	T7.	1					ļ			
-	MIBK	<u> </u>	1-	1/-				,	,	4		¥	
		`````\		<u> </u>							-		
	THF		\checkmark										
			1										
	· · · · · · · · · · · · · · · · · · ·						,		-				
-			<u> </u>										
NO	TES: 1) AL	l results in par	ts	per bi	llion	(ppb)	. т	r = <	5 ppl	D .			
		- not detected.							-			. •	

3) Laboratory - Resource Analysts, Inc. (RAI)

TABLE 9 MONITORING WELL W-2 PURGEABLE ORGANIC ANALYSIS RESULTS

1		Sample No.						
		Laboratory	RAI	RAI	RAI	RAI	RAI	
Ĺ		Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	GC/MS	
ľ	COMPOUNDS	Sampling Date	12/16/82	4/28/83	7/20/83	10/17/83	2/7/84	
11.	Chlorometha	ne					·····	
2.	Bromomethan	8						
3.	Dichlorodif	luoromethane				· ••		
4.	Vinyl chlor	ide						
5.	Chloroethan	e			·		\sim	
6.	Methylene c	hloride				/	_ 	
7.	Acrylonitri	le			·	/_	_/	
8.	Trichlorofl	uoromethane				/	-	
9.	1,1-dichlor	oethylene				<u>A</u>		
10.	1,1-dichlor	oethane				$ \rightarrow $	$ \longrightarrow $	
11.	Trans-1,2-d	ichloroethylene					\rightarrow	· · · · ·
2.	Chloroform		<u></u>				<u> </u>	
13.	1,2-dichlor	oethane	<u> </u>		/		¥	
14.	1,1,1-trich					-/A		
.5.	Carbon tetr					4/1/		
6.	Bromodichlo				<u> </u>	<u>~ !/</u>	ND	
17.	1,2-dichlor		ND			NZ		
18.	Trans-1,3-d	ichloropropylene				\rightarrow		
9.	Trichloroet	hylene				$\rightarrow \downarrow \rightarrow$		
20.						$ \rightarrow \downarrow $		
21.	Dibromochlo			<u> </u>				<u> </u>
2.		hloropropylene		<u> </u>				
23.	1,1,2-trich	loroethane		<u> </u>		\sim		
24.	Bromoform	-			\rightarrow			
5.		rachloroethane			<u> </u>			
26.	Tetrachloro	bethylene			\rightarrow	<u> </u>		
<u>27.</u>	Toluene			<u> </u>			<u> </u>	
28.	Chlorobenze	and the second second second second second second second second second second second second second second secon			<u> </u>			
9.	Ethyl benze		1	Vr.	/Tr.			
30.		nethyl ether			V /			
31.		yl vinyl ether		<u> </u>		¥	Y	
<u>82.</u>	Acrolein			$\rightarrow \rightarrow$				·····
	ADDITIONAL		\frown	$\backslash \sim$				
	MEK	`````````````````````````````````	(ND)			ND	. N	1D
	MIBK	<u> </u>	TV	7	40			
	Xylenes			1	Tr.	<u> </u>		V
	THF		++	······································				
ļ		<u> </u>						
<u> </u>				······································				
L				· · · · · · · · · · · · · · · · · · ·				
NO:	TES: 1) All	l results in part	s per bi	llion (pp	b). Tr.	= <5 ppb	· ·	
	2) ND	- not detected.	Blank	Daces ret	oresent NT) .		
					•			
		boratory - Resou			•	-		

TABLE 10 MONITORING WELL W-3

PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	1					
•	Laboratory		AI	RAI	RAI		AI
	Analysis by	<u>IGC</u>	MS	GC/MS	GC/MS		/MS
COMPOUNDS	Sampling Date	12	/16/83	4/28/83	7/20/83	10,	/17/83
Chlorometh							·····
Bromometha			Ľ			-7	
	fluoromethane						
Vinyl chlo							
Chloroetha	ne						\wedge
Methylene							
Acrylonitr	ile						
Trichlorof	luoromethane				· · · · · · · · · · · · · · · · · · ·	Ζ	
	roethylene				/		
1,1-dichlo	roethane				Tr. (7	
	dichloroethylene			1	$\overline{}$	\checkmark	$\langle \rangle$
hloroform				· · · ·		<u> </u>	
L,2-dichlo						•	
	hloroethane			Tr.	/Tr. / /		
	rachloride				/://	-	
	oromethane		<u>`````````````````````````````````````</u>		$\leftarrow - \times$	-/-1	
	ropropane	N	D		<u> </u>		<u> </u>
	dichloropropylene	+			<u> </u>		<u> </u>
richloroe		+		\sim	<u> </u>		·
enzene		╋┥		<i>+</i> >		$\checkmark A$	
	oromethane	\vdash				\rightarrow	
	chloropropylene	+-			<u> </u>	/ /	·····
	hloroethane	+-		<u> </u>	$\forall - \neg \checkmark$		
romoform	intorioe maile	\vdash			<u> </u>		
		\square		$\rightarrow -+$			
	trachloroethane	\vdash	·	<u> </u>	<u>_</u>		
	oethylene	╄┻┫	/		\ <i>/</i>		
oluene		$\downarrow A$			<u> </u>		
hlorobenz		K			/		
thyl benz		Р		/	,		
is-chloro	methyl ether		<u>\</u>	<u> </u>			
-cnioroet	hyl vinyl ether		\sim				(
rolein							
		~		$\overline{\nabla}$			
DDITIONAL			\setminus				
ylenes	`````````````````````````````````	1					
EK		NI	<u>y</u>			NE)
		Lľ					
IBK		J			· · · ·	T	
IF	·····	ト	1				
<u> </u>	,,	\rightarrow			·····		
		 					
		1		·			
	· ·						
		Γ					
		<u>.</u>	·				

2) ND - not detected. Blank spaces represent ND.

3) Laboratory - Resource Analysts, Inc. (RAI).

_

TABLE 11 MONITORING WELL W-4

_

PURGEABLE ORGANIC ANALYSIS RESULTS

-						
	Sample No.					
	Laboratory	RAI	RAI	RAI	RAI	
	Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	
	Sampling Date		4/28/83			
		12/10/02	-/20/03	//20/83	10/17/83	
2. Bromomethane						
	monothana	· · 		·		
		++			30	
	3					
					i	
6. Methylene chlo 7. Acrylonitrile	bride					
						· · ·
9. 1,1-dichloroe						
10. 1,1-dichloroet						
11. Trans-1,2-dich	loroethylene					
2. Chloroform	·					
13. 1,2-dichloroet						\checkmark
14. 1,1,1-trichlor						
15. Carbon tetrach				11/7	<u>∕ - }</u>	
6. Bromodichlorom			1	$\leftarrow + \checkmark$	-/	
17. 1,2-dichloropr	opane	ND	ND	NO	< ND	
18. Trans-1,3-dich	loropropylene					
9. Trichloroethyl	ene			\rightarrow		·
20. Benzene		+ +				
21. Dibromochlorom	ethane					
22. Cis-1,3-dichlo	ropropylene	+ +	- \ _ ,	\sim	7 	
23. 1,1,2-trichlor	Oethane		-+		<u>/</u>	· · · · · · · · · · · · · · · · · · ·
24. Bromoform		<u>├</u> - <u>-</u>		$\overline{\gamma}$		
25. 1,1,2,2-tetrac	hloroethane			/		
6. Tetrachloroeth	vlene	++/	-	<u> </u>		
27. Toluene	/ 40.10					
28. Chlorobenzene		A	+ -	<u> </u>		
9. Ethyl benzene		+ + + +	<u> </u>	7		
30. Bis-chlorometh	vl ether	k¦~~	\rightarrow	4		
1. 2-chloroethyl	y - CHIEL	<u> </u>	4			•
32. Acrolein	Anyi ether		<u></u>	<u> </u>	¥	
ADDITIONAL			\sim			
MEK		ND	ND	ND	177	
MIBK		k₩//-	<u> </u>	ND	ND	
Xylenes						
THF						
611 <u>6</u>		k'/		V	V	
					·····	
/						· · · · · · · · · · · · · · · · · · ·
		·				
					· · · · · · · · · · · · · · · · · · ·	
NOTES: 1) All res	•		······································			
NOTES: 1) All res	ults in parts	per bill:	ion (ppb)	. Tr. =	<5ppb	
	t detected.					,
		erant sbg(ces redre	Sent ND.		
3) Laborat	ory - Resource					

TABLE 12 MONITORING WELL W-5

PURGEABLE ORGANIC ANALYSIS RESULTS

		Sample No.	W-5
		Laboratory	RAI
	-	Analysis by	GC/MS
	COMPOUNDS		12/16/83
1.	Chloromethan		
2.	Bromomethane		
3.	Dichlorodifl		
4.	Vinyl chlori		
5.	Chloroethane		
6.	Methylene ch	loride	13
7.	Acrylonitril	.e	
	Trichloroflu		
9.	1,1-dichloro		40
10.	1,1-dichloro	ethane	52
1.		chloroethylene	
2.	Chloroform		
	1,2-dichloro	ethane	
14.	1,1,1-trichl	oroethane	1900
	Carbon tetra		
16.	Bromodichlor	omethane	
17.	1,2-dichloro	propane	
Β.	Trans-1,3-di	chloropropylene	
9,	Trichloroeth		250
20.	Benzene	•. · · · · · · · · · · · · · · · · · · ·	
	Dibromochlor	omethane	
		loropropylene	
23.	1,1,2-trich1		
24.	Bromoform		
б.		achloroethane	
26.	Tetrachloroe		520
27.	Toluene		
8.	Chlorobenzer	le /	
9.	Ethyl benzer		
	Bis-chlorome		
11.		l vinyl ether	
2.	Acrolein		
		$-+\overline{a}$	
_	ADDITIONAL		
M	EK		
M	IBK		
X	ylenes		1/
	HF	<u> </u>	₩
	-		¥
		· . · ·	
		· · · · · · · · · · · · · · · · · · ·	
NOT	ES: 1) All	results in part	s per billion (ppb). Tr. = <5ppb.
		-	
	2) ND	- not detected.	BLank spaces represent ND.
	• • • •		

3) Laboratory - Resource Analysts, Inc. (RAI).

TABLE 13 MONITORING STATION W-5-1

PURGEABLE ORGANIC ANALYSIS RESULTS

	Sample No.	,				
	Laboratory	RAI	RAI	RAI	RAI	
	Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	
COMPOUNDS	Sampling Date	4/28/83	7/20/83	10/17/83	1/31/84	
1. Chloromethan	ne ·····	+				
2. Bromomethane						
3. Dichlorodifl		+				
4. Vinyl chlori		1	11			
5. Chloroethane		Tr.	50	Tr.	A 17-	
6. Methylene ch			170		$\Delta Tr.$	
7. Acrylonitril	e	1		/		
8. Trichloroflu	oromethane			/	~~~~~	
9. 1,1-dichloro	ethylene	6	60	17/		
10. 1,1-dichloro		30	160	98	20	
1. Trans-1,2-di	chloroethylene	95	160	260	80	
2. Chloroform	· · · · · · · · · · · · · · · · · · ·				<u></u>	
13. 1,2-dichloro	ethane		21	//		
14: 1,1,1-trich1		660	710		380	
.5. Carbon tetra			/10_/_		360	
16. Bromodichlor	omethane			/_ _	· · · · · · · · · · · · · · · · · · ·	_
17. 1,2-dichloro			<u>_</u>			
	chloropropylene			/ /		
9. Trichloroeth		380	830		300	
20. Benzene	······································		/ 030	310		
21. Dibromochlor	omethane				Tr.	
	loropropylene	· · · · · · · · · · · · · · · · · · ·	1 1	/		
23. 1,1,2-trichle			$\rightarrow \rightarrow $			
24. Bromoform			<u> </u>	/		
25. 1,1,2,2-tetra	achloroethane		<u></u>	(
26. Tetrachloroet		\$75	120	}	70	· · · · · ·
27. Toluene		Tr.	$\rightarrow \checkmark \checkmark \checkmark \checkmark$	30	70 15	
28. Chlorobenzene	2		¥_	100		
9. Ethyl benzene			\sim		(The)	
30. Bis-chloromet	hyl ether		Y		Tr.	
31. 2-chloroethy1	. vinyl ether		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
32. Acrólein					· · · · · · · · · · · · · · · · · · ·	
•			/			
ADDITIONAL						
A N77			· · · · · · · · · · · · · · · · · · ·	· .	· ·	
<u>MEK</u>				·		
		· /				_
Xylenes						
THF		1				
		¥				
		<u> </u>		<u> </u>		
					•	
	······································		<u> </u>			
NOTES: 1) All re	esults in parts	per billio	n (ppb). T	$r_{\star} = < 5 \text{pph}$		

3) Laboratory - Resource Analysts, Inc. (RAI).

Þ

TABLE 14 MONITORING STATION W-5-2

;

PURGEABLE ORGANIC ANALYSIS RESULTS

÷.,						·•
)	Sample No.					
	Laboratory	RAI	RAI	RAI	RAI	
	Analysis by	GC/MS	GC/MS	GC/MS	GC/MS	
	Sampling Date	4/28/83	7/20/83	10/17/83	1/31/84	
COMPOUNDS		4/28/03	//20/00			
1. Chloromethar						
2. Bromomethane	3	<u> </u>				
3. Dichlorodif	luoromethane			22	Tr.	
4. Vinyl chlor:		10		13	Tr.	
5. Chloroethane		- 10	63	5		
6. Methylene ch	hloride		0		1 5	
7. Acrylonitri	10	<u></u>			1-1-	
8. Trichloroflu	lorome thane	10	130	630	250	
9. 1,1-dichloro	Detnylene	110	280		740	
0. 1,1-dichlor	oetnane	130	230	775	120	
	ichloroethylene	130				5
2. Chloroform				-/ 5	<u> </u>	/
3. 1,2-dichlor	Detnane	1220	950	80/0	110	
4. 1,1,1-trich.	Loroetnane	1330	930	᠆ᢪᢩ᠆ᡗ	<u></u>	· · · · · · · · · · · · · · · · · · ·
5. Carbon tetra	achioride	+	/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/	······································
6. Bromodichlo:		<u> </u>		<u> </u>	<u>/</u>	
7. 1,2-dichlor	opropane			\leftarrow		
	ichloropropylene		2200	340	450	
9. Trichloroet	nytene	690				
0. Benzene			>	$\prec \prec$	/	
1. Dibromochlo						
	hloropropylene			~ /		
3. 1,1,2-trich	Loroetnane					
4. Bromoform			}	-/		
	rachloroethane		80	59	40	
6. Tetrachloro	ethylene	81/0	_ } _ 00 \		Tr.	
7. Toluene		Tr.		/	Tr.	
8. Chlorobenze		$A \leftarrow$		<u> </u>	Tr.	
9. Ethyl benze				· · · · · · · · · · · · · · · · · · ·		
	ethyl ether	\	$\leftarrow \sim$			
1. 2-chloroeth 2. Acrolein	yl vinyl ether	+	<u> </u>			
4. ACTOLEIN					·	
ADDITIONAL			\checkmark \sim $^{\circ}$		•	
ADDITIONAL		\sum		·.		
MEK						·
MIBK					·	
Xylenes	<u> </u>	1-/-				
THF	``````\	-+-/			,	
		√/				
		<u> </u>				
NOTES: 1) AL	l results in par	ts per bil	lion (ppb)	. Tr. =` <	Sppb	
· · · ·	•		•			
2) ND	- not detected.	Blank sp	aces repre	sent ND.		•
3) Lab	oratory - Resou	rce Analys	ts, Inc. ()	RAI).		

TABLE 15 MONITORING STATION W-5-3 PURGEABLE ORGANIC ANALYSIS RESULTS

		Sample No.				RAI
		Laboratory	RAI	RAI	RAI	
		Analysis by	GC/MS	GC/MS	GC/MS	GC/MS
	COMPOUNDS	Sampling Date	4/28/83	7/20/83	10/17/83	1/31/84
	Chlorometha	ne				
	Bromomethan	8				
		luoromethane				
	Vinyl chlor	ide				
,	Chloroethan	e	10			·
	Methylene c	hloride	20	80	20	
,	Acrylonitri	1e			/-	<u> </u>
		uoromethane	<u> </u>			
•	1,1-dichlor		10		12	70
	1,1-dichlor	oethane	120	51	110	
•		ichloroethylene	150	87	290	340
•	Chloroform		· · · · · · · · · · · · · · · · · · ·			<u> </u>
	1,2-dichlor				1-1-	500
	1,1,1-trich		1400	270	720	500
	Carbon tetr		<u></u>	/	//	,
	Bromodichlo				<u> </u>	
	1,2-dichlor	opropane	ļ		<u> </u>	
		ichloropropylene	700			5 260
	Trichloroet	nylene	700	\$70	078	/ 200
_	Benzene			/>	\searrow	
	Dibromochlo	الاخد بتنصاد الشفة الأستعدين بالمتحد والتراب والمحد والمتحد والمتحد		<u> </u>		
		hloropropylene		4-4-		
	1,1,2-trich	loroethane	· · · · · · · · · · · · · · · · · · ·	$\rightarrow \rightarrow $	\sim	
,	Bromoform			<u> </u>	-/	
		rachloroethane			<u> </u>	Tr.
•	Tetrachloro	ethylene	890	60	> 19	11.
	Toluene		/Tr.		/	
•	Chlorobenze			¥		
•	Ethyl benze			\frown		
	Bis-chloron	ethyl ether		<u> </u>		······
•	2-chloroeth	yl vinyl ether	~~~	<u> </u>		
_	Acrolein	/	⊥_ `}~~			
	100702000-			\checkmark		
	ADDITIONAL		γ			
-	MEK		T			
-	MIBK	<u>`</u>	+ + - + -		·	
		<u>\</u>	<u>r</u> -/			
-	Xylenes		+/-			······································
_	THF		×/			
		·····	`			
		· · · · · · · · · · · · · · · · · · ·			-	
			1			
-			- 			
_			1			

3) Laboratory - Resource Analysts, Inc. (RAI).

.

TABLE 16 MONITORING WELL A-28

PURGEABLE ORGANIC ANALYSIS RESULTS

			-						
	•	Sample No.		L	<u></u>				
		Laboratory		RAI	RAI	RAI	RÁI	RAI	_
	İ	Analysis h		GC/MS	GC/MS	GC/MS	GC/MS	GC/MS	
	COMPOUNDS	Sampling D	ate	8/3/82	4/28/83	7/20/83	10/17/83	1/31/84	
h.	Chloromethan								
5	Bromomethane	and the second second second second second second second second second second second second second second second		<u> </u>					
3.	Dichlorodifl		2				9		_
	Vinyl chlori							<u></u>	_
5.	Chloroethane			r	10	36	8	Tr.	-
6.	Methylene ch.	loride					<u> </u>	11.	
	Acrylonitril	e ·					\longrightarrow		·
В.	Trichloroflu	oromethane						Tr.	
.	1,1-dichloro	ethylene		16	7	13	/ 5	Tr.	
10.	1,1-dichloroe	ethane		290	260	200 /	140		
1.	Trans-1,2-dic	chloroethyl	ene	69	47	48	87	120	
2.	Chloroform								
	1,2-dichloroe				······	<u>`````````````````````````````````</u>	}`	──</td <td></td>	
.				490	310	. 1/90 /	120	170	
5.	Carbon tetrac	chloride					/-```		
. 16	Bromodichloro	omethane				$\overline{}$			
	1,2-dichlorop	горале		·					
3. (Trans-1, 3-dic	hloropropy	lene	· ·		<u> </u>	<u> </u>		
<u>P.</u>	Trichloroethy	lene		21	10	Tr.	67	10	_
	Benzene					<u> </u>	$\overline{}$		
	Dibromochloro					\sim		·····	
	Cis-1,3-dich1	oropropyler	ne 🗌			<u> </u>	7		
23. 24.	1,1,2-trichlo	roethane					/		
	Bromoform		T						
р. б.	1,1,2,2-tetra	chloroethan			\sim				-
7	Tetrachloroet Toluene	nyiene		25	15	15	8	10	
	Chlorobenzene					\sum	· · · ·		
	Ethyl benzene			$+$ $\overline{-}$	\rightarrow	\checkmark		· · · · · · · · · · · · · · · · · · ·	
0.	Bis-chloromet	h]		$\leftarrow S$	40		· · · · ·		
- 1	2-chlorost	nyr ether					· · · · · · · · · · · · · · · · · · ·		
2. 1	2-chloroethyl Acrolein	vinyi ethe	r						
			\triangleleft						
E »	DDITIONAL		•	7	\backslash				
		/		\sim '	$\backslash \sim$		•		
ME			$\prec \mathbf{T}$	}_	+				
MI	BK		-+		/			· · · · · · · · · · · · · · · · · · ·	
Xy	lenes		-+	$\rightarrow \rightarrow \rightarrow$	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
TH		·······	$\rightarrow +$		· · · · · · · · · · · · · · · · · · ·				
			<u> </u>	\sim	•			· · · · · · · · · · · · · · · · · · ·	
			·	\sim					
									
			-				· · · · · · · · · · · · · · · · · · ·		
			1						
								والتهيب فيستعلم والمتحد والمتحد	

1) All results in parts per billion (ppb). Tr. = <5ppb.

2) ND - Not detected. Blank spaces represent ND.

3) Laboratory - Resource Analysts, Inc. (RAI).

GROUNDWATER DATA (GZA-PEL ANALYSES)

REVIEW OF GROUNDWATER FROM GOLDBERG, ZOINO AND ASSOCIATES, INC. (GZA) - PEL ANALYSES

Volatile organic analyses were conducted by PEL as a subcontractor to Normandeau Associates, Inc. (NAI) in December 1982 (GZA, 1983) Samples were visually inspected after receipt by the laboratory. Field blanks were provided and chain of custody was maintained.

NORMANDIAU ASSOCIATES

VOLATILE PRIORITY POLLUTANT

DETERMINATION

LAB NO.__2194/2196

AMALYST R.D. Foster DATE 12/20/82

•

IDENTIFICATION: Groundwater samples

PARAMETER	67-11-2 59001	SAMPLE DESIGN	NATION 59003	6004 Crif
Acrolein				
Acrylonitrile				·
Benzene	TR			
Bis(chloromethyl)ether	<u> </u>		$\land \searrow$	
Bromoform	<u> </u>	$\Box \longrightarrow$		
Carbon Tetrachloride				
Chlorobenzene				
Chlorodibromomethane		. TT	7	
Chloroethane			/	
2-Chloroethylvinylether				
Chloroform				
Dichlorobromomethane				
Dichlorodifluoromethane	T/		✓	
1,1-Dichloroethane	$\overline{\Gamma}$	\neg		
1,2-Dichloroethane				·
l,l-Dichloroethylene		$\sqrt{\sqrt{2}}$		
1,2-Dichloropropane				
1,2-Dichloropropylene				
Ethvlbenzene	Tak			
Methyl bromide	V			
Methyl chloride			·	
Methylene chloride		₩p	TR	
1,1,2,2-Tetrachloroethane				
Tetrachloroethylene	2	>		
Toluene		·		
1,2-trans-Dichlorgethy)ene	2 36		· ·	· · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroechane	23			18,
1,1,2-Trichloroethane	177			
Trichloroethvlene	/25	<u> </u>		1
Trichlorofluoromethane	+	· · · · · · · · · · · · · · · · · · ·		
Vinyl chloride				

NOTES:

Results	expressed	in parts per	billion.	Elank	space de	motes no	t detected.
 TD= Trac	e (לחהן)	Detecti	on Limitz	ילקר.		÷.	•

OPMANDERU ASSOCIATES

VOLATILE PRIORITY POLLUTANT

DETERMINATION

LAB NO. 2194/2196

ANALYST R.D. Foster DATE 12/20/52

٩_

IDENTIFICATION: Ground Water Samples

í.

PARAMETER		SAMPLE DESIGN		R-6
	<i>Ģ ₹ 8-2</i> 59009	FIELD BLANK 1 59000	59010	59011
Acrolein				
Acrvlonitrile				
Benzene	1		$h \rightarrow$	
Bis(chloromethyl)ether			$1 \searrow $	
Bromoform				
Carbon Tetrachloride	4			
Inlorobenzene	TR		×	,
Chlorodibromomethane			X	
Chloroethane				
2-Chloroethylvinylether				
Cnloroform	4			· · · · · · · · · · · · · · · · · · ·
Dichlorobromomethane				
Dichlorodifluoromethane				
.l-Dichloroethane				
.2-Dichloroethane	26			
l, 1-Dichloroethylene				
1,2-Dichloropropane				
1,2-Dichloropropylene				
Ethvlbenzene	5			
fethvl bromide	V /)		.	•
fethyl chloride				
fethvlene chloride				
1,1,2,2-Tetrachloroethane				
Tetrachloroethylene	1	Σ		
Toluene	3			
1,2-trans-Dichlorgethylene	350		· ·	
1,1,1-Trichloroechane	58			
1,1,2-Trichloroethane	1//		· ·	
Trichloroethvlene	1 7/1			
Trichlorofluoromethane	1 /		· · · · · · · · · · · · · · · · · · ·	
'invl chloride	\-/		1	

 Results expressed in	parts per billion.	Blank space denotes	not detected.
 TR= Trace (<1ppb).	Detection Limit~lp	rh.	<u> </u>
			· .

VOLATILE PRIORITY POLLUTANT

DETERMINATION

LAB NO. 219 4/2196 ANALYST R.D. Foster DATE 12/20/30

•

IDENTIFICATION: Ground Water Samples

PARAMETER	A 46 59005	SAMPLE DESIGNAT	10Nc 7 9-2 59007	ÇZ 10-3 59008
Acrolein		A		
Acrylonitrile		L/ +	<u> </u>	
Benzene		TR		3
Bis(chloromethyl)ether				· · · · · · · · · · · · · · · · · · ·
Bromoform	<u> </u>			
Carbon Tetrachloride	· · · ·	/2/	V	19
Chlorobenzene		$\int 2/\Lambda$		
Chlorodibromomethane	· · ·			
Chloroethane	·	TR /		TR
2-Chloroethylvinylether		$\downarrow \rightarrow \checkmark$		
Chloroform	· · · · · · · · · · · · · · · · · · ·		`	TR
Dichlorobromomethane	F		<u></u>	h
Dichlorodifluoromethane		\rightarrow		·
1,1-Dichloroethane	<u> </u>	21		33
1,2-Dichloroethane	<u> </u>			<u> </u>
1,1-Dichloroethylene				
1,2-Dichloropropane	<u> </u>	1	/	TR
1,2-Dichloropropylene		$\land \rightarrow \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $		
Ethylbenzene	Zab			
Nethyl bromide	<u>/ /)</u>			Į
Methyl chloride		1/+		<u> </u>
Methylene chloride	<u> </u>	¥	·····	. 6
1,1,2,2-Tetrachloroethane		<u></u>		ł
Tetrachloroethylene	$\rightarrow \rightarrow \rightarrow$	9		7
Toluene				l
1,2-trans-Dichlorgethylene	\sim \downarrow $\tilde{\sim}$	260	· ·	78
1,1,1-Trichloroechane		67		70
1,1,2-Trichloroebhane				
Trichloroethylene	<u> </u>	240		56
Trichlorofluoromethane	7	T		L
Vinvl chloride	7	4		4

NOTES:

 Results expressed i	in parts per	billion.	Flank	space	denotes	net	dotected.
TR= Trace (. lapb)	Detection	Limit=lppb	•				
 	· · · · · · · · · · · · · · · · · · ·	· · ·					

NORMANDEAU ASSOCIATES

VOLATILE PRIORITY POLLUTANT

DETERMINATION

LAB NO. 2194/2196

ANALYST R.D. Foster DATE 12/20/82

IDENTIFICATION: Ground Water Samples

PARAMETER SAMPLE DESIGNATION R-3 $\omega - 3$ R-S . lon 1 59012 59013 50015 Acrolein Acrvlonitrile Benzene Bis(chloromethvl)ether Bromoform Carbon Tetrachloride Cnlorobenzene Chlorodibromomethane Cnloroethane 2-Chloroethvlvinylether Cnloroform Dichlorobromomethane Dichlorodifluoromethane 1,1-Dichloroethane 1.2-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloropropane 1.2-Dichloropropylene Ethylbenzene Methvl bromide Methyl chloride Methylene chloride 1,1,2,2-Tetrachloroethape Tetrachloroethylene Toluene 1,2-trans-Dichlorgethylene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethvlene Trichlorofluoromethane Ninvl chloride

NOTES:

Results expressed in parts per billion. Blank space denotes nor detected. Detection Limit Sloob.

VOLATILE PRIORITY POLLUTANT

DETERMINATION

LAB NO. 2104/2106

1

ANALYST P.D. Foster

•

<u>-</u>____ DAT

DATE 12/20/82

PARAMETER	SAMPLE DESIGNATION W-2 W-5 BLANK 2					
	59016		<u> </u>		19273	· · · · · · · · · · · · · · · · · · ·
Acrolein				_Å_		· · ·
Acrylonitrile				4	<u> </u>	
Benzene						L
Bis(chloromethyl)ether		<u> </u>		<u> </u>		<u> </u>
Bromoform					\sum	
Carbon Tetrachloride			\sum			
Chlorobenzene					v	
Chlorodibromomethane				N		
Inloroethane				X		
2-Chloroethylvinylether				71		
Chloroform					•	
Dichlorobromomethane		-			> >	
Dichlorodifluoromethane			$\overline{}$	∇		
,l-Dichloroethane		7		Y		· ·
,2-Dichloroethane		$\overline{1}$	52	7	· · · · · · · · · · · · · · · · · · ·	1
,l-Dichloroethylene		$\overline{}$	1/40~/		······································	
,2-Dichloropropane		7	~ /			
,2-Dichloropropvlene		<u> </u>				1
thvlbenzene			$\langle \cdot \rangle$		······································	
lethyl bromide						+
lethyl chloride	\rightarrow					· · · · · · · · · · · · · · · · · · ·
ethylene chloride (13			· · · · · · · · · · · · · · · · · · ·
,1,2,2-Tetrachloroethane						1
etrachloroethylene		$\overline{}$	520		· · · · · · · · · · · · · · · · · · ·	
cluene		$\overline{}$	· ····································			
,2-trans-Dichloroerhylene		$ \frown $	5		•	
,1,1-Trichloroethane		¥	1,900			1
,1,2-Trichloroethane	\rightarrow					
richloroethvlene			250		· · ·	
richlorofluoromethane	\sim					
inyl chloride					• · · · · · · · · · · · · · · · · · · ·	<u> </u>

NOTES:

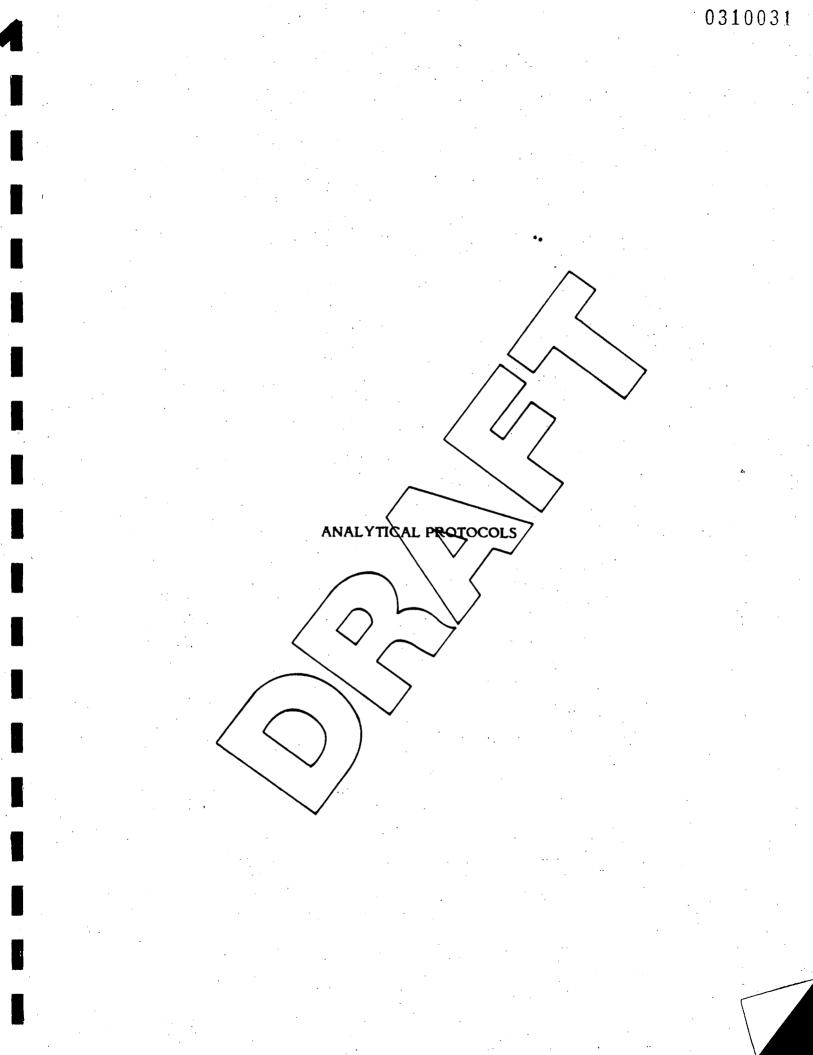
Results expressed in parts per billion. Blank space indicates not detected.

Detection Limit 2 lppb.

.

..

. .1


ANALYTICAL PROTOCOLS

SECTIONS IN APPENDIX Q

ANALYTICAL PROTOCOLS

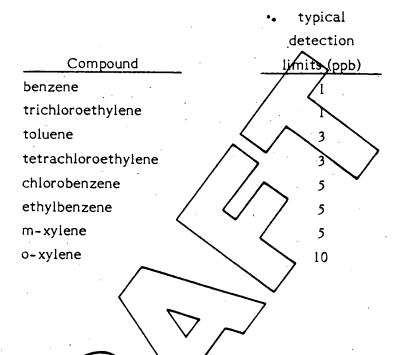
TABLES IN APPENDIXQ

- Q-1 COMPOUNDS ANALYZED FOR AND TYPICAL DETECTION LIMITS FOR THE PHOTOVAC 10A10 GC
- Q-2 COMPOUNDS INCLUDED IN CLAORGANICS ANALYSIS AND CONTRACT REQUIRED DETECTION LIMITS (CRDL)
- Q-3 ELEMENTS INCLUDED IN CLP NOR ANIOS ANALYSIS AND CONTRACT REQUIRED DETECTION LIMITS (CRDL)

VOLATILE ORGANIC ANALYSIS USING THE PHOTOVAC 10A10 CHROMATOGRAPH

The Photovac 10A10 is a portable gas chromatograph used-to screen soil, water, or air samples for volatile organic compounds. A 4' by 1/8" SE-30 gas chromatographic column is typically used for NUS/FIT screening. This instrument is generally used in the laboratory (as opposed to the field to allow greater analytical control. Soil or aqueous samples are collected in 40 to 44 milliliter (ml) septum-fitted vials and are kept on ice during transportion. Soil samples are collected leaving 25% of the vial empty; this headspace will be sampled for volatile organic vapors. Vials are completely filled with aqueous samples and a headspace is then created in the laboratory by withdrawing 10 kol of liquid with a syringe. Air samples are collected by pumping a known volume of air through adsorbent charcoal or tenax tubes. These are thermally described in the laboratory with a Foxboro Programmed Thermal Desorber (PTD). The process involves air-purging the adsorbent tubes of volatile contaminants and concentrating them in a 300 ml stainless steel chamber. A syringe is used to extract the air sample from the chamber.

All samples are allowed to equilibrate to room temperature before analysis. The instrument is also allowed to warm up for several minutes to stabilize analytical conditions. A multi-compound standard of known concentration is prepared daily by dilution of stock solution. Instrument response and technical reproducibility are verified by running standards two times prior to sample analysis. The standard run takes approximately 12 minutes to complete. A gas-tight 200 microliter (ul) syringe is used to make injections, unless high concentrations require the use of a smaller volume. The syringe is flushed with ambient air between samples, and an injection of "clean" ambient air is run to verify syringe cleanliness. The standard run is repeated every eight samples to confirm ongoing instrument stability.


Q-1

Tentative compound identification is made by comparison of peak retention time of the sample to the retention times of standard peakss. Comparison of peak height of a sample peak to the peak height of a standard peak at a known concentration yields semi-quantitative results for aqueous samples. Soil samples are reported with qualitative results only, as no standard with a soil matrix is available. Peak identification for air samples can be obtained from qualitative or semi-quantitative standards. Compound identification is tentative unless peak retention times match standard peaks on three dissimilar columns, in which case identification is considered positive. A list of compounds analyzed for and typical detection limits are given in Table Q-1.

0310034

TABLE Q-1 COMPOUNDS ANALYZED FOR AND TYPICAL

DETECTION LIMITS FOR THE PHOTOVAC 10A10 GC

VOLATILE ORGANIC ANALYSIS USING THE FOXBORO ORGANIC VAPOR ANALYZER (OVA-128)

The Foxboro Century Systems Organic Vapor Analyzer (OVA) is a portable unit equipped to detect organic vapors. It is fitted with a chromatographic column packed with a material which physically interacts with organic compounds. Since the packing material has a different affinity for each individual compound, the time it takes for each compound to pass through the column (retention time) will be different. The retention time is dependent on several parameters of the column: temperatures, length of column, type of packing, and flow rate or carrier gas (hydrogen). The OVA can be used in the field or baboratory to separate and tentatively identify volatile organic compounds. Water and soil samples for analysis on the OVA are collected in 40 to 44 milkliger (mil septum-fitted vials. Vials are filled to 75% capacity, leaving a "headspace" of air, if analysis is to be conducted at the sampling location. Aqueous samples collected for analysis in the lab are completely filled and kept on ice during transport to preserve sample integrity. A headspace is created in lab by withdrawing 10 ml of liquid with a syringe. Soil samples are always placed in sample vials leaving a headspace to avoid reopening of the vial.

The OVA is operated at ambient emperature and must therefore be allowed to equilibrate to surrounding conditions. Samples are also equilibrated to ambient temperature for analysis. The instrument is set to the chromatographic mode and a strip chart recorder is plugged into the OVA to receive output from the detector.

A 500 microliter (u) gas-tight syringe is used to inject sample vapors onto the column. The syringe is initially flushed several times and 500 ul of "clean" ambient air is injected to verify syringe cleanliness. The time of injection is noted on the strip chart and the chromatograph is allowed to run for several minutes. The backflush valve is then depressed, reversing the flow through the column, while the chart is left running to record peaks occurring from heavier compounds that may have been still on the column. When this run is through, the backflush valve is returned to the up position. Air may then be withdrawn from the headspace above a soil or water sample and analyzed in the same fashion.

Analysis can be qualitative or semi-quantitative. Standards containing individual volatile organic compounds or mixtures can be prepared. These standards can be at specific concentrations if semi-quantitative analysis is desired. Compound identification is made by comparison of sample peak.retention times to the retention times of known standards. Semi-quantitation is accomplished by comparing sample peak heights to the peak heights of the appropriate standard at a known concentration. Identifications are tentative unless peak retention times match those of the standard on three columns of dissimilar polarity, in which case identification is considered positive. Detection limits for most common volatile organic compounds are in the 0.5-1 part per million range using this method.

CONTRACT LABORATORY ANALYSIS FOR ORGANIC HAZARDOUS SUBSTANCE LIST COMPOUNDS

Full Hazardous Substance List (HSL) analysis by a contract lab includes volatile organic analysis (VOA), semivolatile (base/neutral/acid), pesticide and PCB analysis. A complete list of these compounds and their contract required detection limits is presented in Table Q-2. Samples are run according to procedures specified in the Contract Lab Program Organics Analysis Statement of Work. This document details analytical and contractual requirements and 19 based on EPA Methods 624 (purgeables), 625 (base/neutral/acids) and 608 (pesticides and PCBs).

Volatiles (or "purgeables") are analyzed utilizing a purge and trap method. In this method, 5 to 25 ml. of aqueous sample or soil extract is placed in a special enclosed chamber. Finely divided inert gas bubbles are blown through the sample to release volatile compounds into the vapor phase. A sorbent trap collects these vapors for analysis. When purging is completed, the trap is heated and backflushed onto a gas chromatograpic (GC) column. The various chemicals present will interact differently with the column and pass through it with varying retention times. The GC is interfaced with a mass spectroscopy (MS) system which is then used to identify the separated components.

Base/neutral and acid compounds are extracted into methylene chloride and analyzed using fused silisa capillary column GC/MS. Base/neutral compounds are extracted at pH 11, acids at pH 2 As with volatiles, compound separation occurs in the column. Qualitative identification is made via GC retention time and relative abundance of three or more characteristics MS ions. Quantitative analysis is accomplished using an internal standard and one characteristic ion.

TABLE Q-2 COMPOUNDS INCLUDED IN CLP ORGANICS ANALYSIS AND CONTRACT REQUIRED DETECTION LIMITS (CRDL)

Volatile OrganicsPesticides/PCBsCompoundCRDLCompound(ug/l)	CRDL (ug/l)
Chloromethane10Alpha-BHCBromomethane10Beta-BHCVinyl Chloride10Delta-BHCUinyl Chloride10Gamma-BHC (Lintane)Methylene Chloride5HeptachlorAcetone10Gamma-BHC (Lintane)Methylene Chloride5HeptachlorAcetone10Gamma-BHC (Lintane)I,1-Dichloroethene5Heptachlor epoxne1,1-Dichloroethene5Heptachlor epoxne1,1-Dichloroethane5Endsulfan I1,2-Dichloroethane5Endrin1,2-Dichloroethane5Endrin II2-Butanone10Heptachlor1,1,1-Tetrachloroethane5Endsulfan SulfateVinyl Acetate10HethoxychlorBromodichloromethane5Hethoxychlor1,2-Dichloropropane5Aroclor-121Trichloroethane5Aroclor-1221Aroclor-1016Aroclor-12482-Chloroethylvinylether10Benzene5Aroclor-12604-Methyl-2-Pentanone51,1,2,2-Tetrachloroethane51,1,2,2-Tetrachloroethane55Gordor-1260	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

TABLE Q-2 COMPOUNDS INCLUDED IN CLP ORGANICS ANALYSIS AND CONTRACT REQUIRED DETECTION LIMITS (CRDL) PAGE TWO

Semivolatile (Base/Neutral/Acid) Organics						
Compound	CRDL (ug/l)		RDL g/l)			
Phenol bis(2-Chloroethyl)Ether 2-Chlorophenol 1,3-Dichlorobenzene Benyl Alchohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-chloroisopropyl)Ether 4-Methylphenol N-Nitroso-Di-n-Propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethnoxy)Methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-Methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol 2-Nitroaniline Dimethyl Phthalate Acenaphthylene	20 20 20 20 20 20 20 20 20 20	Acenaphthene 7,4 Dinitrophenol Dilenzofuron 2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fhorene 4-Nitroariline 4,6-Dinitro-2-Methylphenol N-Nitrosodiphenylamine (1) 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3-Dichlorobenzidine Benzo (a) Anthracene bis(2-Ethylhexyl)Phthalate Chrysene Di-n-Octyl Phthalate Benzo (b) Fluoranthene Benzo (a) Pyrene Indeno(1,2,3-cd)Pyrene Dibenzo(a,h)Anthracene Benzo(g,h,i)Perylene 3-Nitroaniline	$\begin{array}{c} 20\\ 100\\ 100\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ 20\\ $			
		•				

Screening for pesticides is done using GC equipped with an electron capture detector (ECD) which is particularly sensitive to chlorinated compounds. The sample is extracted with methylene chloride, then the methylene chloride is exchanged for hexane, a GC/ECD compatible solvent. Compounds detected at high enough levels using GC/ECD are confirmed using GC/MS.

Each of the above fractions is subject to contract-required quality control measures. This involves the analysis of method blanks, duplicates, and spiked samples which are used to assess data quality. Data validation is discussed further in a following section.

CONTRACT LABORATORY ANALYSIS FOR INORGANIC HAZRADOUS SUBSTANCE LIST COMPOUNDS

Inorganics analysis by a contract lab includes screening for the 24 metals listed in Table Q-3. Analysis is conducted according to the Contract Laboratory Program Inorganics Analysis Statement of Work.

Sample preparation involves digestion by nitric acid and hydrogen peroxide. Analysis is conducted using standard atomic absorption (AA) methods. Flame, furnace, or the inductive coupled plasma (ICP) method may be used for each metal, as long as the contract required detection limit for that element is met. These limits are listed in Table Q-3. Mercury analysis is an exception; it is done by the cold vapor method and requires a persulfate digestion.

All analysis is subject to contract-required quality control measures. This involves analysis of blanks, duplicates and spiked samples to insure valid results. Data quality review is discussed further in the following section.

0310042

TABLE Q-3

ELEMENTS INCLUDED IN CLP INORGANICS ANALYSIS AND CONTRACT REQUIRED DETECTION LIMITS (CRDL)

Element	CRDL (ppb)	Element	CRDL (ppb)
1. Aluminum	200	13. Magnesium	5000
2. Antimony	60		5000
3. Arsenic	10	14. Manganese	15
4. Barium	. /	15. Mercury	0.2
	200	Nickel	40
5. Beryllium	5 .	17. Potassium	5000
6. Cadmium	5	8. Selenium	5
7. Calcium	5000	19. Silver	10
8. Chromium	10	20. Sodium	5000
9. Cobalt	50	21. Thallium	10
10. Copper	25	~ 22. Tin	. 40
11. Iron		23. Vanadium	50
12. Lead	$5 \rangle \rangle$	24. Zinc	20
		· · · · · · · · · · · · · · · · · · ·	

VALIDATION OF CONTRACT LABORATORY DATA

Contract Laboratory analysis is conducted according to EPA Methods 624 (Purgeables) and 625 (Base/Neutrals and Acids). Results are released to the public only after data validation has been completed by NUS/FIT and approved by EPA. This data review insures that the laboratory followed appropriate quality control procedures and met all contractual requirements. Data may be considered unuseable (rejected) or approximate as a result of the review. Parameters assessed in the NUS/FIT Level I data validation are as follows:

- <u>Instrument tuning and calibration</u>. The laboratory is required to verify proper and stable instrument response prior to sample analysis. Poor or fluctuating response may result in misigentification or invalid quantitation.
- <u>Sample holding times</u>. Samples must be analyzed within contract specified holding times to minimize sample degradation or cross contamination. Data will frequently be approximated for samples held beyond the specified limits.
- Surrogate spike recoveries. All samples are spiked with a known quantity of solution containing compounds not likely to occur in the samples. The laboratory determines their percent recoveries from analysis results. Poor recoveries, either high or low, result in entire fractions of data being approximated. Results may be rejected entirely if recoveries are so low that analysis is considered unuseable.

- Matrix spike recoveries. The laboratory spikes one in ten samples with a known concentration of several of the compounds that are being analyzed for. Percent recoveries of these compounds may be low if laboratory technique is poor or if the sample matrix prevents successful analysis. Recoveries outside of contract-required limits may result in approximating or rejecting data.
- <u>Laboratory duplicate</u>. The laboratory divides each matrix-spiked sample into two portions for the purpose of duplicate analysis. Comparison of the two sets of data gives an indication of the reliability of results. Values that vary greatly generally result in the approximation of data for certain compounds.
- Field ("blind") duplicates. The sample collection team collects duplicate samples that are submitted to the laboratory unidentified in order to get an unbiased duplicate comparison. Data qualifiers due to poor agreement are the same as for laboratory duplicates.
- Laboratory blanks. The laboratory is required to store, prepare, and analyze "blank" water samples with each group of samples submitted. These blanks frequently contain common laboratory solvents that have contaminated the samples as well. Data for compounds present in blanks are generally rejected.
- Field ("blind") blanks. Blank water is carried to the sampling location, stored with other samples and shipped to the laboratory unidentified. This gives unbiased blank data as well as indications of cross-contamination that may have occurred in the field. Data for compounds found in these blanks are generally rejected.

Inorganics data validation also includes assessment of the following:

- Interference Check. The laboratory is required to run a sample that has been spiked with high levels of certain elements to determine if these elevated levels interfere with analysis of unspiked elements. When recoveries of unspiked elements are poor, the corresponding data in certain samples may require approximation.
- <u>Standard additions</u>. Certain sample matrices may interfere with the analysis of inorganic constituents. A poor matrix spike recovery indicates such an interference, and requires the laboratory to quantitate that element using the method of standard additions. This method sets a new standard curve using the sample matrix in question. Data for a given element may be approximated or rejected if the spike recovery was poor and standard additions were not used.