Colt administ. File Legel

PETERSON / PURITAN OU2 SLOPE STABILITY ANALYSIS

CERCLA Docket No. 1-87-1064 CUMBERLAND, RHODE ISLAND

Prepared for:

Shield Environmental Associates, Inc 2456 Fortune Drive, Suite 100 Lexington, Kentucky 40509

Prepared by:

4301 Taggart Creek Road Charlotte, NC 28208 Project Number 1030105

January 29, 2004

1.0 LIMITATIONS

This report has been prepared in accordance with generally accepted geotechnical and environmental engineering practices for the exclusive use of Shield Environmental Associates, Inc, its agents, and/or clients. This report may not be reproduced, in whole or in part, without the permission of Shield Environmental Associates, Inc. and Shield Engineering Inc.

Our conclusions and recommendations are based upon our site observations, provided survey and provided field data. We have assumed that information provided to us by others is correct and true, unless otherwise noted. If additional information or changes in information is available in the future, we request the chance to review and change our recommendations, if necessary.

The Slope Stability Analysis was prepared under my direct supervision:

By:

Thomas M. Vick, P.E.

Principal Engineer

I assisted with the preparation of this project:

By:

Staff Engineer

Confinition, Interrupt, 1980) SIGN, 201 - Inclused REPORT STREET, Street, 1997

TABLE OF CONTENTS

1.0	LIMITATIONS	1
2.0	INTRODUCTION	2
3.0	FIELD TESTING	3
4.0	ANALYSIS	4
	CONCLUSIONS AND RECOMMENDATIONS	~
REF	FERENCES	8

FIGURES

Figure 1:	Site Map
Figure 2:	CPT Location Map
Figure 3:	Cross Section Location Map

ATTACHMENTS

Attachment A: Attachment B: Slope Stability Geometry Slope Stability Data and Graphical Output

1.0 LIMITATIONS

This report has been prepared in accordance with generally accepted geotechnical and environmental engineering practices for the exclusive use of Shield Environmental Associates, Inc, its agents, and/or clients. This report may not be reproduced, in whole or in part, without the permission of Shield Environmental Associates, Inc. and Shield Engineering Inc.

Our conclusions and recommendations are based upon our site observations, provided survey and provided field data. We have assumed that information provided to us by others is correct and true, unless otherwise noted. If additional information or changes in information is available in the future, we request the chance to review and change our recommendations, if necessary.

The Slope Stability Analysis was prepared under my direct supervision:

By: JAN 29 2004 Thomas M. Vick, P.E.

Principal Engineer

I assisted with the preparation of this project:

By: ohn M. Long

Staff Engineer

2.0 INTRODUCTION

Shield Engineering, Inc. (Shield) is pleased to provide slope stability analysis of the J. M. Mills Landfill located in the Peterson/Puritan OU2 site in Cumberland, Rhode Island. The slope-stability analysis was preformed on both sides (slopes) of the landfill using GSTABL 7 with STEDwin©. In-situ testing was performed by CONETEC of West Berlin, New Jersey. The results were presented in their "Field Report for the Peterson/Puritan OU2 Superfund Site, Cumberland, Rhode Island" dated September 18, 2003. We understand this report is included elsewhere in the DBSR. Nine (9) cone penetration tests (CPTs) were performed at various locations around the landfill. The primary purpose of this testing was to establish strength and lithologic characteristics of native (including alluvial and/or fill materials in and near the landfill) and waste materials found onsite. Figure 1 illustrates the site layout and general orientation of the landfill and Figure 2 illustrates the location of the CPT test borings.

ender vond der sonder bestehen im Die Belden under die von der State und der State von der State och der State Aufsche Union der sonder bestehen einen geschen und geschen und Beltend von anderen Bernend. Nach einer von der Aufste von Stätenen sonder der schwerten geschen bestehen State von State von der State och der State von der St Mitte von Stätenen sollte einer der State schwerten geschen Beltenen bestehen State von der State och der State Mitte von Stätenen sollte einer State och der State von State och der State von State och der State

The incorporation in a reprint in expension of a mount of the mount of the second problem in the second se second seco

3.0 FIELD TESTING

CPT testing indicated that native lithology was relatively homogeneous. Native material consists of predominately sand with some silt. There appears to be some minor bedding in the sand and silty sand layers. Layers are thin and the strength of the bulk material relies on the larger grained matrix material, sand. The material is likely alluvial in origin, based on the close proximity of the Blackstone River. This is consistent with the boring logs provided to us by Shield Environmental Associates, Inc., of Lexington Kentucky. The material in the landfill itself appeared to be heterogeneous, as expected. Shear strength values for the landfill materials were very erratic resulting in a range of engineering properties.

Onsite observations provided insight to the stability of the landfill. A few of the observations made onsite were:

- The landfill is standing without any lateral support (it is free standing)
- The landfill had little to no cover soil (varies by location)
- The slopes range from an estimated 2:1 to 3:1
- The landfill seems to contain large voids, consistent with anticipated conditions
- Materials included in the landfill appear to be a combination of construction and demolition (C&D) waste and municipal solid waste (MSW)
- High temperatures at the bottom of the landfill indicated that organic degradation is occurring, this could be confirmed by methane monitoring
- Surface failure was not clearly identified (due to heavy vegetation) however, topographic data indicates that localized failures may have occurred
- No cracks were observed at the top of the landfill

Soil and landfill testing by CONETEC consisted of approximately 355 linear feet of boring data. In each location probes were pushed until refusal was encountered. Pore pressure dissipation tests were performed in each of the applicable locations. The water table was intersected during six of the nine tests. The CONETEC report includes basic principles of cone technology, testing results in graphical form, results in numeric form along with calculations and pore pressure dissipation test data.

The locations of the borings are depicted on Figure 2. Boring locations were chosen based on the geometry of the landfill. Site restrictions did not allow for a CPT sample to be collected along the railroad tracks. Subsurface strata were assumed to be continuous from data collected northwest and southeast of the landfill, CPT-7 and CPT-9, respectively.

4.0 ANALYSIS

In order to perform the stability analysis it was necessary to make assumptions, based on site-specific project information and on-site observations. A sensitivity analysis was preformed on the phi angle (ϕ , also known as the internal friction angle) and the unit weight (γ) of the landfill material. The result of the sensitivity analysis indicated that the unit weight was less of an influential factor than the phi angle in the stability of the landfill. Experience, engineering judgement and comparison to observed field conditions were used whenever possible to establish the most representative analysis.

In this case, two modes of slope failure are likely. The first is global failure of the landfill. Global failure typically occurs along deep circular failure surfaces and is characterized by massive slope failures. The second failure mode is surface failure. Evidence of surface failure is typically seen in the form of slumping and/or subsidence along the surface of the slope. Evidence exists for surface failure based on topographic data and field observations. Saturation of the upper layer of waste materials during a precipitation event may cause the material to become heavier than the underlying material causing surface instability.

The slope stability analysis was performed using the *Simplified Bishop Method* of slices to discretize the soil mass to establish the minimum factor of safety of the slope. The method satisfies vertical force equilibrium for each slice. The moment is then calculated about the center of the trial surface. One of the main assumptions of the Bishop method is zero interslice shear force. The failure surface is also assumed to be circular. The Bishop method is one of the most widely used slope stability methods. Factors of safety (FS) have been calculated to be within 5% of Janbu's formulation (a more rigorous set of assumptions).

In order to assess the stability of the slope, made of unknown materials, data was taken from the results of the CPT testing and compared to hypothetical conditions. Sensitivity of the parameters γ and ϕ was assessed. Data indicated that as unit weight increased the factor of safety increased. It should be noted that dry and wet unit weight affect the stability differently. Typically saturated materials have less strength than like dry materials. The sensitivity analysis also indicated that as the internal friction angle increased the factor of safety increased. This is consistent with previously held notions. Table 3.1 below presents the sensitivity of the dry/wet unit weight and Table 3.2 shows the sensitivity of the internal friction angle.

To access a conservative, likely range for the unit weight and internal friction angle the values of $\gamma_{dry} = 55$ pcf, $\gamma_{sat} = 65$ psf and 22.5° were used, respectively as an overall indicator of stability. Using these values, a factor of safety of approximately 1.1 is realized. The FS of 1.1 should not be considered comprehensive as the waste material is heterogeneous and will certainly vary from location to location. A range of FS should be considered in this situation along with a range of the parameters γ and ϕ . Likely ranges of phi vary between 20° and 45°, making the FS vary between 1.0 and 2.3.

Peterson/Puritan OU2 - Stability Analysis	December 2003
Shield Engineering, Inc.	Page 5 of 8

Figure 3 illustrates the location of the two (2) slope sections that were analyzed for slope stability. The slopes were chosen based on proximity to boring locations and also areas of steep slope to yield worst case scenario conditions. The first section runs from the top of the landfill towards Blackstone River. The second section line runs from the top of the landfill into the wetlands or swampy area. The water table was assumed to somewhat follow the topography in the landfill. Attachment 1 includes the landfill slope sections analyzed. Attachment 2 contains the slope stability data and graphical outputs.

Table 3.1

Yd/Yw (psf)	φ (degrees)	Factor of Safety
25/35	21	0.48
35/45	21	0.75
45/55	21	0.88
55/65	21	0.96
65/75	21	1.02
75/85	21	1.03
85/95	21	1.03
105/115	21	1.03

Table 3.2

Yd/Yw (pst)	φ (degrees)	Factor of Safety
45/55	5	0.20
45/55	10	0.40
45/55	15	0.61
45/55	20	0.83
45/55	25	1.07
45/55	30	1.32
45/55	35	1.57
45/55	40	1.80
45/55	45	2.02
45/55	50	2.23
45/55	55	2.45

4.0 CONCLUSIONS AND RECOMMENDATIONS

Slope strength is traditionally gauged by the resulting factor of safety (FS). Due to the inherent nature of landfill-type material, engineering judgement was considered throughout the project. The fact that the landfill appeared to be relatively stable was considered along with the fact that the strength of the slope directly depends on the material contained within. Interlocking steel beams could provide significant increases in the FS, however, organic materials may appear strong until degradation occurs, then lowering the FS. Since this landfill appears to be a combination of materials it is necessary to consider both scenarios.

The results of the analysis, using conservative input values to the model indicate that the overall landfill slopes are stable and may be for some period, however, some localized failures have likely occurred. These rather conservative input values do result in FS(s) lower than typical minimum FS of 1.5 required for water retention by earthen embankments. However, acceptable FS(s) of mounds of solid material such as landfills typically are in the range of 1.2 to 1.3. Since the landfill is free standing, the factor of safety must be equal to at least 1.0. Due to the high variability of the unit weight and the internal friction angle inherent to waste materials, it is likely that localized failure will occur in some location sometime in the future. The high temperatures near the bottom of the landfill indicate that degradation is occurring. Factors of safety will decrease with time as the organic material degrades and weakens. The native sand and silty sand appear strong enough to provide sufficient support for the landfill. Failure surfaces are most likely to occur along the interface between the waste material and the native materials and also along the surface of the slope (depending on the chosen phi angle).

Geographic considerations must be taken into account for this particular site. The close proximity of the Blackstone River could influence the global and surface stability of the landfill. During flood or other high water conditions, the erosion of the bank could scour the toe of the slope compromising the stability of the landfill. The river channel should be stabilized and scour protections should be installed to reduce this potential.

To help maintain the integrity of the landfill slopes, a few remediation techniques should be considered. One technique would be to reduce the overall side slopes of the landfill. To do this, material would have to be removed from the top of the landfill and deposited at another location or along an extended landfill embankment. A capping system should then be designed for the waste material to minimize water infiltration thus controlling the piezometer surface in the landfill material and reducing leachate generation potential (and degradation of the waste materials). Minimum slopes should be maintained to prevent sliding of the cap. If heavy equipment is used during the remediation process thought should be given to the type and weight of the equipment. Dynamic loading as a result of the heavy equipment could reduce the strength of the slope. Stability of the waste materials should be reassessed once a remedial plan is devised to ensure that the design has an adequate FS and that construction proceeds in a safe manner. Further investigation could provide specific construction details and specifications on capping systems, slope gradients and remedial alternatives. Peterson/Puritan OU2 – Stability Analysis Shield Engineering, Inc.

Based on the evidence presented herein the landfill is not likely to experience global failure. However, localized surface failures are likely, as they may have already occurred in some locations. Although the landfill materials may exhibit appreciable strength properties because of reinforcement by interlocking debris, these properties will likely decrease with time. If capping is used as a remedial technique the current steepness of the slope will cause sliding of the cover unless modifications are made.

(in address of the second state in provident of the log of a line in the second state of the second biological to the second state and second state in the second biological state is an interval of the second state in the second state is a se

¹ In the product of the second second second second by the second s

We are represented in response of the second of an appeal of the emphasion and tempting administration of the property of the second second

REFERENCES

- Kulhawy, F.H. and P.W. Mayne. (1990), Manual on estimating soil properties for foundation design. Final Report 1493-6, EL-6800, Electric Power Research Institute, Palo Alto, CA.
- Robertson, P.K. and R.G. Campanella. (1983), Interpretation of cone penetration tests -Part I: sand. *Can. Geotech. Journ.*, 20:718-733.

Presser Parine CD2 - Millelitz Analysis Deale Producting, Inc.

2005 webicecer() Flor A sign?

1

(

ZUNCH NITED

Sultanic, E.G. and F.W. Meyner, (1993), Manual an efficiency and properties for Production configst Front Report (499-6, EE officit, Fourier Research). - Yourness, Paper May 200.

Fraincrean, C.R. And R.G. Cherry (Really) (1995), Internet edition of cherry presentation and a Part in gravit, Conc. Physics & Access, 20:7115–7.

Figures:

Attachment A:

*** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) ***************** SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 11/24/03 Time of Run: 09:37AM Run By: Shield Engineering, Inc Input Data Filename: H:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan OU2\CPT\Puritan #1.in Output Filename: H:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan OU2\CPT\Puritan #1.OUT English Unit System: Plotted Output Filename: H:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan OU2\CPT\Puritan #1.PLT PROBLEM DESCRIPTION: Cross Section #1 Petterson/Puritan OU2 BOUNDARY COORDINATES Note: User origin value specified. Add 10.00 to X-values and 0.00 to Y-values listed. 7 Top Boundaries 9 Total Boundaries Y-Left X-Right Boundary X-Left Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 10.00 56.00 63.00 51.00 1 56.00 63.00 51.00 116.00 2 1 3 116.00 56.00 133.00 62.00 1 62.00 4 133.00 207.00 64.00 2 5 207.00 64.00 261.00 70.00 2 70.00 521.00 6 261.00 140.00 2 140.00 7 521.00 579.00 140.00 2 8 133.00 62.00 163.00 52.00 1 9 163.00 52.00 579.00 52.00 1 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 2 Type(s) of Soil Total Saturated Cohesion Friction Soil Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Pressure Constant Surface Angle (psf) No. (pcf) (pcf) (deg) Param. (psf) No. 0.0 37.0 0.00 0.0 1 1 86.0 111.4 2 55.0 65.0 0.0 22.5 0.00 0.0 1 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.46 (pcf) Piezometric Surface No. 1 Specified by 5 Coordinate Points Pore Pressure Inclination Factor = 0.50 Point X-Water Y-Water No. (ft) (ft) 10.00 56.00 1 156.00 56.00 2 3 261.00 60.00 100.00 4 521.00 579.00 100.00 5 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 2000 Trial Surfaces Have Been Generated.

1 Surface(s) Initiate(s) From Each Of 2000 Points Equally Spaced

Along The Ground Surface Between X = 10.00 (ft) and X = 510.00 (ft) Each Surface Terminates Between X = 521.00 (ft) Each Surface Terminates Between X = 579.00(ft)and Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 10.00(ft) 15.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method * * Total Number of Trial Surfaces Attempted = 2000 Number of Trial Surfaces With Valid FS = 2000 Statistical Data On All Valid FS Values: FS Max = 34.260 FS Min = 1.181 FS Ave = 2.543 Standard Deviation = 2.008 Coefficient of Variation = 78.97 % Failure Surface Specified By 22 Coordinate Points Y-Surf X-Surf Point (ft) (ft) No. 71.986 268.377 1 2 282.306 66.420 61.750 296.561 3 311.083 57.994 4 55.167 325.814 5 340.695 53.281 6 52.343 7 355.666 8 370.666 52.358 9 385.634 53.324 400.512 55.238 10 415.238 58.093 11 429.752 61.877 12 66.574 13 443.998 72.166 457.917 14 78.631 85.941 471.452 15 484.550 16 94.068 497.158 17 102.979 18 509.224 112.637 19 520.701 531.541 123.005 20 21 541.702 134.040 140.000 546.528 22 288.143 ; and Radius = 235.925 362.913 ; Y = Circle Center At X = Factor of Safety *** *** 1.181 24 slices Individual data on the Tie Tie Earthquake Water Water Force Surcharge Force Force Force Force Tan Hor Ver Load Bot Norm Slice Width Weight Top (lbs)(lbs) (lbs) (lbs) (lbs) (lbs) (lbs)(ft) (1bs)No. 0.0 0.0 0.0 0.0 0. 0. 0.0 3568.5 1 13.9 0.0 0. 0.0 0.0 0.0 0. 4043.4 0.0 6.5 2 0.0 0. 0.0 934.0 0. 0.0 7.7 6737.3 0.0 3 0.0 6219.3 0. 0.0 0. 0.0 0.0 14.5 18261.6 4 0. 0.0 0. 0.0 0. 0. 0.0 0.0 0.0 11351.4 5 14.7 25189.0 0.0 15643.1 0. 0.0 0.0 31317.9 6 14.9 0. 0. 0.0 0.0 0.0 7 15.0 36526.7 0.0 19077.2 0. 0.0 0. 0.0 0.0 0.0 21639.8 15.0 8 40718.1 0. 0.0 43819.8 0.0 23320.7 0. 0.0 0.0 9 15.0 0. 0.0 0.0 0.0 0.0 24112.9 0. 45786.6 10 14.9 0.0 24013.4 0. 0.0 0. 0.0 0.0 46600.9 11 14.7 0. 0.0 0.0 0.0 0. 46272.5 0.0 23022.4 12 14.5 0. 0. 0.0 0.0 0.0 44838.9 0.0 21144.2 13 14.2 0.0 0. 0. 0.0 0.0 18386.1 0.0 13.9 42364.2 14 0. 0.0 14759.3 0. 0.0 0.0 0.0 15 13.5 38938.1 0.0 10278.4 0.0 0.0 0. 0. 0.0 13.1 34674.2 16 4961.6 0. 0. 0.0 0.0 29707.7 0.0 0.0 12.6 17 0.0 336.5 0.0 0. 0. 0.0 3.9 8265.9 0.0 18

8.2	16	121.5		0.0	0.	0.	0.0	0.0	0.0
11.5		293.8	0.0	0.0	0.	0.	0.0	0.0	0.0
0.3		447.3	0.0	0.0	0.	0.	0.0	0.0	0.0
10.5		775.5	0.0	0.0	0.	0.	0.0	0.0	0.0
10.2		413.9	0.0	0.0	0.	0.	0.0	0.0	0.0
4.8		791.1	0.0	ied By 26 Co				0.0	
			Surf	Y-Surf	orun	lare rom			
	oint No.		Et)	(ft)			- L		
	1		.104	65.567					
	2		5.657	61.932					
	3).338	58.856					
	4 .		5.126	56.343					
	5		9.999	54.398					
	6	294	1.936	53.022					
	7	305	9.915	52.219					
	8	324	1.913	51.990					
	9	339	9.909	52.333					
	10	354	1.881	53.250					
	11	369	9.807	54.739					
	12		1.665	56.798					
	13		9.433	59.423					
	14		1.091	62.610					
	15		3.615	66.356					
	16		2.986	70.655					
	17		7.182	75.500					
	18		1.183	80.884					
	19		1.967	86.800 93.238					
	20		8.515	100.189					
	21		1.807 4.823	107.644					
	22 23		7,545	115.591					
	24		9.954	124.019					
	25		2.031	132.915					
	26		0.918	140.000					
Cir		enter A		323.413 ; 1	(==	443.975	; and Ra	dius =	391.994
	F	actor of	f Safet	у					
	**	• 1.3		**					
				ied By 26 Co	ordi	nate Poin	nts		
E	oint		Surf	Y-Surf					
	No.		Et)	(ft)					
	1		3.855	65.873 62.247					
	2		8.410 3.098	59.204					
	3 4		7.896	56.748					
	4 5		2.780	54.885					
			7.726	53.616					
	6 7		2.711	52.943					
	8		7.711	52.868					
	9		2.702	53.391					
	10		7.660	54.511					
	11		2.561	56.226					
	12	38	7.383	58.533					
	13	403	2.101	61.429					
	14		6.691	64.909					
	15		1.132	68.968					
	16		5.399	73.599					
	17		9.470	78.795					
	18		3.323	84.548					
	19		6.936	90.848					
	20		0.287	97.686					
	21		3.355	105.050					
	22	(To 1) (Do 1)	6.119	112.928 121.310					
	23		8.559 0.655	130.180					
	24		2.389	139.525					
	25 26		2.938	140.000					
	20	504		110.000					

10.00

:

					H:Purit	tan #1.00T	Page
			322.089 ; Y =	420 120 · and E	adius =	376.296	
	Circle Cen	ter At X = tor of Safet	322.089 ; I ~	429.120 , and r	aurus	3.0.250	
	***		***				
	Failure Su	rface Specif	fied By 24 Coordi	inate Points			
	Point	X-Surf	Y-Surf				
	No.	(ft)	(ft)				
a shirth and	1	239.863	67.651				
	2	254.337	63.714				
	3	268.974	60.434 57.816				
	4	283.744 298.616	55.866				
	5	313.562	54.588				
	7	328.550	53.985				
	8	343.550	54.058				
	. 9	358.531	54.807				
	10	373.463	56.230				
	11	388.316	58.324				
	12	403.060	61.085				
	13	417.664	64.508				
	14	432.099	68.586 73.310				
	15	446.336	78.670				
	16 17	460.346 474.099	84.656				
	18	487.569	91.256				
	19	500.728	98.456				
	20	513.550	106.242				
	21	526.007	114.597				
	22	538.075	123.505				
	23	549.730	132.948				
	24	557.673	140.000	and the second se	adine -	332.559	
	Circle Cen	ter At X =	334.421 ; Y =	380.484 ; and R	adius -	552.557	
	Fac	tor of Safet 1.201	.y ∗∗∗			10 C	
			fied By 22 Coordi	inate Points			
	Point	X-Surf	Y-Surf				
	No.	(ft)	(ft)				
	1	252.369	69.041				
	2	266.436	63.834				
	3	280.807					
	4	295.421	56.155				
	56	310.221	53.714				
	67	325.147 340.137	52.219 51.677				
	8	355.131	52.090				
	9	370.069	53.455				
	10	384.889	55.769				
	11	399.533	59.021				
	12	413.939	63.198				
	13	428.051	68.283				
	14	441.811	74.255				
	15	455.163	81.091 88.763				
	16 17	468.052 480.428	97.239				
	18	492.239	106.485				
	19	503.438	116.464				
	20	513.979	127.136				
	21	523.820	138.456				
	22	524.999	140.000			000 500	
	Cinala Con	ter At X =	341.144 ; Y =	287.171 ; and R	adius =	235.503	
	Fac	tor of Safet					
	Fac	tor of Safet	***	nate Points			
	Fac *** Failure Su	tor of Safe 1.222 rface Specif	fied By 24 Coordi				
	Fac *** Failure Su Point	tor of Safe 1.222 rface Specia X-Surf	fied By 24 Coordi Y-Surf				
	Fac *** Failure Su Point No.	tor of Safe 1.222 rface Specif X-Surf (ft)	fied By 24 Coordi	inate Points			
	Fac *** Failure Su Point	tor of Safe 1.222 rface Specia X-Surf	fied By 24 Coordi Y-Surf (ft)	inate Points			

:

:

1

269.632 55.812 4 5 284.491 53.761 299.430 52.408 6 7 314.416 51.756 51.806 8 329.415 9 52.557 344.397 10 359.326 54.008 56.157 374.172 11 58.997 12 388.900 13 403.480 62.524 417.878 66.729 14 71.603 15 432.064 446.007 77.135 16 83.314 17 459.675 90.125 18 473.039 97.555 19 486.070 105.586 498.739 20 21 511.019 114.201 123.381 22 522.882 133.105 23 534.302 24 541.670 140.000 371.909 ; and Radius = 320.227 Circle Center At X = 320.846 ; Y = Factor of Safety *** * * * 1.227 Failure Surface Specified By 24 Coordinate Points Y-Surf Point X-Surf (ft) (ft) No. 1 262.124 70.303 65.865 276.452 2 3 290.976 62.115 59.061 305.662 4 5 320.477 56.711 55.070 335.387 6 7 350.358 54.142 53.928 8 365.356 380.348 54.429 9 55.645 10 395.299 410.174 57.572 11 424.941 60.205 12 63.540 13 439.566 67.568 454.015 14 72.280 15 468.256 77.665 482.256 16 495.983 83.712 17 90.406 18 509.406 522.495 97.733 19 105.675 20 535.220 114.215 547.552 21 22 559.463 123.332 133.007 570.926 23 140.000 24 578.451 362.322 ; Y = 368.232 ; and Radius = 314.327 Circle Center At X = Factor of Safety *** *** 1.233 Failure Surface Specified By 24 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 64.289 209.598 1 61.016 224.237 2 58.358 238.999 3 56.319 253.860 4 268.793 54.904 5 6 283.773 54.115 53,953 298.772 7 313.764 54.418 8 328.725 55.510 9 343.626 57.226 10

11	358.443	59.564			
12	373.149	62.520			
13	387.718	66.088			
14	402.126	70.263			
15	416.346	75.036			
16	430.354	80.400			
17	444.126	86.345			
18	457.637	92.860			
19	470.863	99.935			
20	483.783	107.557			
21	496.372	115.713			
22	508.609	124.387			
23	520.472	133:566			
24	528.105	140.000			
	hter At $X =$	295.145 ; Y =	412.217 ; and	Radius =	358.291
1984 (SOL) -	tor of Safet				
***		**			
		ied By 26 Coord	inate Points		
Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
1	230.859	66.651 63.205			
2	245.457 260.177	60.318			
3 4	274.996	57.995			
5	289.893	56.238			
6	304.846	55.051			
7	319.833	54.435			
8	334.833	54.391			
9	349.824	54.918			
10	364.783	56.017			
11	379.690	57.686			
12	394.523	59.922			
13	409.259	62.722			
14	423.878	66.082			
15	438.358	69.997			
16	452.678	74.461			
17	466.818	79.468			
18	480.757	85.010			
19	494.474	91.080			
20	507.949	97.669			
21	521.164	104.766			
22	534.098	112.363			
23	546.733	120.447			
24	559.051	129.007			
25	571.033	138.031 140.000			
26 Cinala Car	573.450	328.487 ; Y =	447.402 ; and	Radius =	393.069
	ter At X =		111.102 / und	nourus	
***		y **			
	1.210	ied By 27 Coord	inate Points		
Point	X-Surf	Y-Surf			
No.	(ft)	(ft)			
1	214.851	64.872			
2	229.506	61.677			
3	244.263	58.983			
4	259.102	56.794			
3 4 5 6 7	274.007	55.112			
6	288.961	53.939			
7	303.947	53.277			
8	318.946	53.127			
9	333.942	53.488			
10	348.916	54.360			
11	363.853	55.742		•	
12	378.733	57.633			
13	393.540	60.030			
14	408.257	62.930			
15	422.866	66.331			

.

16	437.351	70.228				
17	451.695	74.617				
18	465.881	79.492				
19	479.892	84.848				
20	493.712	90.679				
21	507.326	96.978				
22	520.716	103.737				
23	533.869	110.949				
24	546.768	118.605				
25	559.398	126.697				
26	571.745	135.214				
27	578.200	140.000				
Circle Ce	nter At X =	315.862 ; Y =	492.934	; and	Radius =	439.818
Fa	ctor of Safet	y				
***	1.241 *	**				
	**** END OF	GSTABL7 OUTPUT	****			

.

STREET, AND AND AND ADDRESS OF ADDRESS OF ADDRESS ADDR

.

36		

PROFIL H:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan OU2\CPT\Puritan #1.in Versi Cross Section #1 Petterson/Puritan OU2 97 10. 56. 63. 51. 1 63. 51. 116. 56. 1 116. 56. 133. 62. 1
 133.
 62.
 207.
 64.
 2

 207.
 64.
 261.
 70.
 2

 261.
 70.
 521.
 140.
 2

 521.
 140.
 579.
 140.
 2
 133. 62. 163. 52. 1 163. 52. 579. 52. 1 0. 0. 0. SOIL Silt Trash 2 85.96 111.43 0. 37. 0. 0. 1 55. 65. 0. 22.5 0. 0. 1 WATER 1 62.46 5 0.5 10. 56. 156. 56. 261. 60. 521. 100. 579. 100. CIRCL2

Cross Section #2 Petterson/Puritan OU2

*** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. Analysis Run Date: 11/24/03 Time of Run: 01:48PM Run By: Shield Engineering, Inc Input Data Filename: h:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan OU2\CPT\puritan #2.in h:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan Output Filename: OU2\CPT\puritan #2.OUT Unit System: English Plotted Output Filename: h:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan OU2\CPT\puritan #2.PLT PROBLEM DESCRIPTION: Cross Section #2 Petterson/Puritan OU2 BOUNDARY COORDINATES Note: User origin value specified. Add 10.00 to X-values and 0.00 to Y-values listed. 8 Top Boundaries 12 Total Boundaries Y-Left X-Right Y-Right Boundary X-Left Soil Type (ft) No. (ft) (ft) (ft) Below Bnd 10.00 1 62.00 451.50 62.00 3 62.00 66.00 2 451.50 452.50 3 66.00 3 452.50 66.00 455.50 3 64.00 72.00 456.50 455.50 66.00 1 4 491.00 5 456.50 64.00 2 491.00 72.00 703.60 136.00 6 2 760.60 140.00 7 703.60 136.00 2 140.00 8 760.60 140.00 798.60 2 54.00 9 456.60 64.00 466.00 1 466.00 54.00 798.60 54.00 10 1 1 10.00 52.00 440.00 52.00 11 440.00 52.00 451.50 62.00 1 12 Default Y-Origin = 0.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface (pcf) (psf) (pcf) (psf) (deg) Param. No. No. 37.0 1 86.0 111.4 0.0 0.00 0.0 1 0.0 22.5 0.00 2 55.0 65.0 0.0 1 0.00 0.0 43.0 89.0 0.0 15.0 1 3 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.46 (pcf) Piezometric Surface No. 1 Specified by 4 Coordinate Points Pore Pressure Inclination Factor = 0.50 Point X-Water Y-Water No. (ft) (ft) 10.00 61.00 1 63.00 2 456.50 85.00 703.60 3 798.60 85.00 4

A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 2000 Trial Surfaces Have Been Generated.

1 Surface(s) Initiate(s) From Each Of 2000 Points Equally Spaced

Along The Ground Surface Between X = 210.00(ft)

and X = 700.00(ft)

Each Surface Terminates Between X = 710.00(ft) and X = 798.00(ft)

Unless Further Limitations Were Imposed, The Minimum Elevation

At Which A Surface Extends Is Y = 10.00(ft)

15.00(ft) Line Segments Define Each Trial Failure Surface.

**** ERROR - RC11 ****

>>200 attempts to generate failure surface have failed. Revise limitations The Factor Of Safety For The Trial Failure Surface Defined By The Coordinates Listed Below Is Misleading.

Failure Surface Defined By 25 Coordinate Points

ailure	Surface Defined	By 25 Coordina
Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	454.63	66.00
2	456.37	55.39
3	476.54	45.82
4	488.90	37.32
5	501.97	29.97
6	515.66	23.83
7	529.85	18.96
8	544.42	15.40
9	559.25	13.17
10	574.23	12.29
11	589.22	12.77
12	604.11	14.61
13	618.77	17.78
14	633.08	22.28
15	646.92	28.04
16	660.19	35.04
17	672.77	43.22
18	684.56	52.49
19	695.45	62.80
20	705.38	74.05
21	714.24	86.15
22	721.96	99.01
23	728.50	112.51
24	733.78	126.55
25	737.03	138.35
	E C.E. has Dear ML	

Factor Of Safety For The Preceding Specified Surface = 2.766 Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are

Ordered - Most Critical First.

* * Safety Factors Are Calculated By The Modified Bishop Method * *
Total Number of Trial Surfaces Attempted = 2000
Number of Trial Surfaces with Misleading FS = 1
Number of Failed Attempts to Generate Trial Surface = 1001
Number of Trial Surfaces With Valid FS = 998
Percentage of Trial Surfaces With Non-Valid FS Solutions
of the Total Attempted = 50.1 %
Statistical Data On All Valid FS Values:

FS Max = 3.894 FS Min = 1.172 FS Ave = 2.265 Standard Deviation = 0.373 Coefficient of Variation = 16.46 % Failure Surface Specified By 22 Coordinate Points

Point	X-Surf	Y-Surf
No.	(ft)	(ft)
1	433.302	62.000
2	448.003	59.020
3	462.824	56.711
4	477.735	55.078
5	492.705	54.125
6	507.702	53.853

	7	5	22.696	54.	262				
	8		37.657	55.					
					333				
	9	5	52.552	57.	166				
	10	5	67.352	59.	567				
				62.					
	11		82.025		001				
	12	5	96.541	66.	2				
	13	6	10.871	70.	893				
	14		24.984	75.	312				
	15	6	38.852	81.	691				
	16		52.446	88.	032				
	17	6	65.737	94.	304				
	18	6	78.699	102.	534				
			91.304	110.	EEA				
	19								
	20	7	03.527	119.	359				
	21	7	15.342	128.	600				
				137.					
	22		25.778						
	Circl	e Center	At X =	506.191	; Y =	383.709	; and Ra	idius =	329.863
			of Safet						
		*** 1	.172	***					
		Individua	1 data o	on the	34 slid	COS			
162				Water	Tie	Tie	Earthqu	ake	
			Water				-		
			Force	Force	Force	Force	Ford		charge
Slice	Width	Weight	Top	Bot	Norm	Tan	Hor	Ver	Load
						(lbs)	(lbs)	(1bs)	(lbs)
No.	(ft)	(lbs)		(108)	(lbs)				
1	14.7	1949.5	853.0	2266.4	0.	0.	0.0	0.0	0.0
	0.1	15.8	3.6	14.9	0.	0.	0.0	0.0	0.0
2							0.0	0.0	0.0
3	3.4	1132.4	208.2	918.5	0.	0.			
4	1.0	451.7	0.0	289.7	0.	0.	0.0	0.0	0.0
		1697.5	0.0	929.8	0.	0.	0.0	0.0	0.0
5	3.0								0.0
6	1.0	754.2	0.0	330.2	0.	0.	0.0	0.0	
7	0.1	40.1	0.0	33.5	0.	0.	0.0	0.0	0.0
					0.	0.	0.0	0.0	0.0
8	0.9	584.1	0.0	294.1					
9	5.4	3380.3	0.0	2092.5	0.	0.	0.0	0.0	0.0
	0.7	400.5	0.0	303.0	0.	0.	0.0	0.0	0.0
10									0.0
11	14.2	10115.4	0.0	7472.6	0.	0.	0.0	0.0	
12	13.3	12962.2	0.0	8952.0	0.	0.	0.0	0.0	0.0
					0.	0.	.0.0	0.0	0.0
13	1.7	1898.0	0.0						
14	6.9	8222.8	0.0	5334.0	0.	0.	0.0	0.0	0.0
15	8.1	10874.6	0.0	6706.7	0.	0.	0.0	0.0	0.0
									0.0
16	5.4	7861.8	0.0	4659.2	0.	0.	0.0	0.0	
17	9.6	15077.7	0.0	8563.3	0.	0.	0.0	0.0	0.0
				13766.9	0.	0.	0.0	0.0	0.0
18	15.0	26048.5							
19	14.9	28430.2	0.0	13672.7	0.	0.	0.0	0.0	0.0
20	14.8	30054.8	0.0	12940.1	0.	0.	0.0	0.0	0.0
				11570.6	0.	0.	0.0	0.0	0.0
21	14.7	30920.5							
22	14.5	31036.0	0.0	9567.0	0.	0.	0.0	0.0	0.0
23	14.3	30419.8	0.0	6933.5	0.	0.	0.0	0.0	0.0
						0.	0.0	0.0	0.0
24	14.1	29100.3	0.0						
25	6.3	12482.0	0.0	427.5	0.	0.	0.0	0.0	0.0
26	7.6	14726.1	0.0	0.0	0.	0.	0.0	0.0	0.0
							0.0	0.0	0.0
27	13.6	25191.0	0.0			0.			
28	13.3	22730.1	0.0	0.0	0.	0.	0.0	0.0	0.0
29	13.0	19814.4	0.0		0.	0.	0.0	0.0	0.0
									0.0
30	12.6	16502.1	0.0	0.0	0.	0.	0.0	0.0	
31	12.2	12858.1	0.0	0.0	0.	0.	0.0	0.0	0.0
32	0.1	66.4	0.0	0.0	0.	0.	0.0	0.0	0.0
									0.0
33	11.7	8010.7	0.0		0.	0.	0.0	0.0	
34	10.4	2360.0	0.0	0.0	0.	0.	0.0	0.0	0.0
3.4			a Grand					1	
		re Surfac				lace Foll	CD .		
	Poi	nt X	-Surf	Y-Sur	t				
	No		(ft)	(ft)					
	1		89.181		000				
	2	4	03.943	59.	340				
	3		18.792		221				
	4		33.709		645				
	5	4	48.674	54.	614				
	-								

6	463.666	54.130		
7	478.666			
8	493.654	54.805		
9	508.609			
10	523.512			
11	538.343			
12	553.082			
13	567.710			
14	582.207			
15	596.554			
16	610.731			
17	624.720			
18	638.502			
	652.059			
19	665.373			
20				
21	678.426			
22	691.200			
23	703.679	127.384		
24	715.846	136.157		
25		136.929		410 000
	ter At X =		465.082 ; and Radius =	410.992
	tor of Safet			
***		**		
Pas Luma Su		ied By 21 Coord	inale Points	
Point	X-Surf			
No.	(ft)		4.24	
1	434.772			
2	449.672			
3	464.629			
4	479.620	58.613		
5	494.620	58.701		
6	509.603			
7	524.547	60.704		
	539.424	62.616		
9	554.212	65.131		
10	568.885			
11	583.420			
10				
13				
14				
15				
16				
17				
10		113.884		
10		122.040		
20				
20	711.772			
Circle Con	tor At Y -	484 947 · V =	427.715 ; and Radius =	369.141
	tor of Safet		aprivas ; una naurus -	
***		**		
	stage Creat		inate Points	
			inace formes	
Point	X-Surf	Y-Surf		
No.	(ft)	(ft)		
1	444.577	62.000		
2	459.441	59.982		
3		58.557		
4	489.350	57.725		
5	504.348	57.489		
6	519.344	57.850		
7	534.313	58.805		
8	549.233	60.354		
9	564.080	62.495		
	578.829	65.223		
10	310.023			
10 11	593.459	68.535		

Par

14	636.398				
15	650.320				
16	664.008	93.637			
17	677.442	100.311			
18	690.600	107.512			
19	703.462	115.230			
20	716.007	123.453			
21	728.216	132.168			
22	736.096	138.280			
Circle Cen	ter At X =	502.803 ; Y =	434.667 ; a	nd Radius =	377.188
Fac	tor of Safet				
***		**			
Failure Su	rface Specif	ied By 25 Coordi	nate Points		
Point	X-Surf	Y-Surf			
No.	(ft)	(TT)			
1	392.122	62.000			
2	406.928	34.340			
3	421.809	57.709			
4	436.747	50.54.5			
5	451.723	55 498			
6	466.719	22.1/0			
7	481.718	55.3//			
8	496.701	56.101			
9	511.649	57.347			
10	526.544	59.113			
11	541.369	61.398			
12	556.106	64.198			
13	570.735	67.511			
14	585.241	71.331			
15	599.604	75.655			
16	613.808	80.477			
17	627.835	85.792			
18	641.668	91.592			
19	655.291	97.871			
20	668.686	104.621			
21	681.838	111.835			
22	694.730	119.502			
23	707.347				
24	719.673	136.162			
25	721.102	137.228 468.454 ; Y =	405 205	nd Radius -	130 122
	ter At X =		405.295 ; a	ind Radius -	** JU.122
	tor of Safet	Y **			
***	T		ante Deinte		
		ied By 23 Coordi	inace Points		
Point	X-Surf	Y-Surf			
No.	(ft)	(ft) 62.000			
1	442.126	59.011			
2	456.825	56.666			
3	471.641 486.545	54.970			
4	501.508	53.926			
5	516.503	53.536			
7	531.501	53.800			
8	546.473	54.719			
9	561.390	56.290			
10	576.225	58.511			
11	590.948	61.377			
12	605.533	64.883			-
13	619.951	69.022			
14	634.174	73.786			
15	648.176	79.166			
16	661.930	85.152			
17	675.409	91.733			
18	688.589	98.896			
19	701.443	106.627			
20	713.948	114.911			
20	113.940	4411744			

٠

a it reports that and from of

123.733 21 726.079 133.077 737.813 22 744.469 138.868 23 517.941 ; Y = 397.185 ; and Radius = 343.652 Circle Center At X = Factor of Safety 1.246 *** *** Failure Surface Specified By 25 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 62.000 401.682 1 2 416.497 59.653 57.809 3 431.383 446.323 56.469 4 5 461.300 55.635 476.296 55.308 6 491.295 55.488 7 56.176 506.279 8 57.370 9 521.232 59.069 10 536.135 61.271 550.973 11 565.727 63.973 12 580.382 67.173 13 594.920 70.866 14 75.050 609.325 15 79.717 16 623.580 84.865 17 637.670 90.486 651.577 18 96.574 19 665.286 678.781 103.122 20 21 692.047 110.122 705.069 117.568 22 23 717.831 125.449 730.320 133.758 24 25 736.703 138.323 478.463 ; Y = 498.785 ; and Radius = 443.482 Circle Center At X = Factor of Safety *** *** 1.247 Failure Surface Specified By 26 Coordinate Points Point X-Surf Y-Surf (ft) (ft) No. 385.749 62.000 1 59.591 400.554 2 3 57.665 415.430 56.225 4 430.361 5 445.331 55.272 54.806 6 460.323 54.829 7 475.323 8 490.315 9 505.281 56.339 57.824 10 520.208 11 535.078 59.795 12 549.875 62.249 65.183 13 564.586 579.193 68.595 14 72.480 15 593.681 76.836 16 608.034 81.656 17 622.239 636.279 86.936 18 92.670 19 650.140 663.806 98.852 20 21 677.264 105.476 112.535 22 690.500 703.498 120.021 23 127.926 716.246 24 25 728.730 136.242 137.929 26 731.092

	tor of Safety		
***	1.258 **		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Failure Su	rface Specif:	ied By 25 Coord	inate Points
Point	X-Surf	Y-Surf	
No.	(ft)	(ft)	
1	384.278	62.000	
2	398.993	59.089	
3	413.807	56.736	
		54.944	
4	428.700		
5	443.650	53.715	
6	458.635	53.052	
7	473.635	52.956	
8	488.627	53.425	
9	503.591	54.461	
10	518.506	56.061	
11	533.349	58.223	
12	548.100	60.944	
13	562.738	64.221	
	577.242	68.047	
14			
15	591.591	72.419	
16	605.764	77.329	
17	619.742	82.771	
18	633.505	88.738	
19	647.032	95.219	
20	660.305	102.207	
21	673.304	109.691	
22	686.012	117.661	
23	698.410	126.104	
10.1 EV	710.480	135.010	
24			
25	712.503	136.625	450 064 . and Dadius - 207 17
	ter At X =		450.064 ; and Radius = 397.13
		v	
	tor of Safety		
***	1.258 *	* *	
***	1.258 * rface Specif	** ied By 24 Coord	inate Points
***	1.258 *	* *	inate Points
*** Failure Su	1.258 * rface Specif	** ied By 24 Coord	inate Points
*** Failure Su Point	1.258 * rface Specif X-Surf	** ied By 24 Coord Y-Surf	inate Points
*** Failure Su Point No. 1	1.258 ** rface Specif: X-Surf (ft) 406.094	** ied By 24 Coord Y-Surf (ft) 62.000	inate Points
*** Failure Su Point No. 1 2	1.258 * rface Specif: X-Surf (ft) 406.094 420.949	** ied By 24 Coord Y-Surf (ft) 62.000 59.919	inate Points
*** Failure Su Point No. 1 2 3	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341	inate Points
*** Failure Su Point No. 1 2 3 4	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268	inate Points
*** Failure Su Point No. 1 2 3 4 5	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701	inate Points
*** Failure Su Point No. 1 2 3 4 5 6	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641	inate Points
*** Failure Su Point No. 1 2 3 4 5 5 6 7	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088	inate Points
*** Failure Su Point No. 1 2 3 4 5 5 6 7 8	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.258 * fface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054 682.434	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896 101.222 108.003	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054 682.434 695.576	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896 101.222 108.003 115.233	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054 682.434 695.576 708.467	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896 101.222 108.003 115.233 122.902	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054 682.434 695.576 708.467 721.092	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896 101.222 108.003 115.233 122.902 131.003	inate Points
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054 682.434 695.576 708.467 721.092 731.127	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896 101.222 108.003 115.233 122.902 131.003 137.932	
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Circle Cen	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054 682.434 695.576 708.467 721.092 731.127 ter At X =	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.701 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896 101.222 108.003 115.233 122.902 131.003 137.932 475.104 ; Y =	inate Points 500.232 ; and Radius = 443.63
*** Failure Su Point No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Circle Cen	1.258 * rface Specif: X-Surf (ft) 406.094 420.949 435.865 450.827 465.816 480.816 495.810 510.779 525.708 540.579 555.376 570.080 584.677 599.148 613.477 627.649 641.646 655.453 669.054 682.434 695.576 708.467 721.092 731.127	** ied By 24 Coord Y-Surf (ft) 62.000 59.919 58.341 57.268 56.641 57.088 58.041 59.499 61.461 63.924 66.886 70.343 74.291 78.725 83.642 89.034 94.896 101.222 108.003 115.233 122.902 131.003 137.932 475.104 ; Y =	

2

PROFIL h:\Geo-Environmental (0 Cross Section #2	Pett	erson/Puritan	002	
2 8 0. 62. 451.5 62. 3				
0. 62. 451.5 62. 3				
51.5 62. 452.5 66. 3				
52.5 66. 455.5 66. 3 55.5 66. 456.5 64. 1				
55.5 66. 456.5 64. 1				
56.5 64. 491. 72. 2				
91. 72. 703.6 136. 2				
03.6 136. 760.6 140. 2				
60.6 140. 798.6 140. 2				
56.6 64. 466. 54. 1				
66. 54. 798.6 54. 1				
0. 52. 440. 52. 1				
40. 52. 451.5 62. 1				
. 0. 0.				
OIL SandSiltTrash Organic				
5 06 111 42 0 27 0 0 1				
5.96 111.43 0. 37. 0. 0. 1				
5. 65. 0. 22.5 0. 0. 1				
3. 89. 0. 15. 0. 0. 1				
62.46				
0.5				
0. 61.				
56.5 63.				
03.6 85.				
98.6 85.				
IRCL2				
000 1				
10. 700. 710. 798.				
0. 15. 0. 0.				
0. 15. 0. 0.				
*				
*				
*				
*				
*				
*				
*				
*				
*				
The restlet him is the lower				

ř

1

Cross Section #2 Petterson/Puritan OU2

12		Boundaries Boundaries						
Bounda		X-Left	Y-Left	X-Right	Y-Right	soil	Туре	
No.	-	(ft)	(ft)	(ft)	(ft)	ALC: NOT	w Bnd	
1		10.00	62.00	451.50	62.00		3	
2		451.50	62.00	452.50	66.00		3	
3		452.50	66.00	455.50	66.00		3	
4		455.50	66.00	456.50	64.00		1	
5		456.50	64.00	491.00	72.00		2	
6		491.00		703.60	136.00		2	
7		703.60	136.00	760.60	140.00		2	
8		760.60	140.00	798.60	140.00		2	
9		456.60	64.00	466.00	54.00)	1	
10		466.00	54.00	798.60	54.00)	1	
11		10.00	52.00	440.00	52.00)	1	
12		440.00	52.00	451.50	62.00)	1	
Defaul	t Y-Or	igin = 0.00	(ft)					
		us Value =						
		us Value =						
		L PARAMETER						
		f Soil	,o					
			Or bender	Dest and an				
		Saturated				ressure	Piez.	
		. Unit Wt.						
	(pcf)	(pcf)		(deg)	Param.	(psf)	No.	
1	86.0	111.4	0.0	37.0	0.00	0.0	1	
2	55.0	65.0	0.0		0.00	0.0	1	
3	43.0	89.0	0.0	15.0	0.00	0.0	1	
1 PIEZ	OMETRI	C SURFACE (S) SPECIFIF	SD				
		of Water =						
		Surface No.			Coordinat	e Points		
		e Inclinati						
Poin		X-Water		- 0.50				
No.		(ft)	(ft)					
1		10.00	61.00					
2		456.50	63.00					
3		703.60	85.00					
4		798.60	85.00					
A Crit	ical F	ailure Surf.	ace Search	ing Metho	d, Using A	Random		
Techni	que Fo:	r Generatin	g Circular	Surfaces	, Has Been	Specific	ed.	
2000 T	rial S	urfaces Have	e Been Gen	erated.		100		
1 5	urface	(s) Initiat	e(s) From	Each Of	2000 Point	s Equally	/ Spaced	
		ound Surface					Furna	
ALONG		build builde		X = 610.				
Along		and the second second		X = 690.				
	urface	Pormination	DOCAGGII					
	urface	Terminates						
Each S			and	X = 710.	00(ft)	P1 + +	6.084	
Each S Unless	Furth	er Limitatio	and ons Were I	X = 710. mposed, T	00(ft) he Minimum	Elevatio	on	
Each S Unless At White	Furth ch A Si	er Limitatio urface Exten	and ons Were I nds Is Y	X = 710. mposed, T = 10.	00(ft) he Minimum 00(ft)		on	
Each So Unless At Whit 15.00(Furth ch A Su ft) Lin	er Limitatio urface Exten ne Segments	and ons Were I nds Is Y Define Ea	X = 710. mposed, T = 10. ch Trial	00(ft) he Minimum 00(ft) Failure Su	rface.	n	
Each S Unless At Whi 15.00(Follow	Furth ch A Si ft) Lin ing Are	er Limitatio urface Exten ne Segments e Displayed	and ons Were I nds Is Y Define Ea The Ten M	X = 710. mposed, T = 10. ch Trial ost Criti	00(ft) The Minimum 00(ft) Failure Su cal Of The	rface.	n	
Each S Unless At Whi 15.00(Follow	Furth ch A Si ft) Lin ing Are	er Limitatio urface Exten ne Segments	and ons Were I nds Is Y Define Ea The Ten M	X = 710. mposed, T = 10. ch Trial ost Criti	00(ft) The Minimum 00(ft) Failure Su cal Of The	rface.	n	
Each S Unless At Whit 15.00(Follow	Furth ch A Su ft) Lin ing Arc Failure	er Limitatio urface Exten ne Segments e Displayed	and ons Were I nds Is Y Define Ea The Ten M Evaluated.	X = 710. mposed, T = 10. ch Trial ost Criti They Are	00(ft) The Minimum 00(ft) Failure Su cal Of The	rface.	on	
Each S Unless At Whit 15.00(Follow	Furth ch A So ft) Lin ing Arc Failure Ordered	er Limitatio urface Externe Segments e Displayed e Surfaces I d - Most Cri	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir	X = 710. mposed, T = 10. ch Trial ost Criti They Are st.	00(ft) The Minimum 00(ft) Failure Su cal Of The	rface. Trial		* *
Each S Unless At Whi 15.00(Follow	Furth ch A Si ft) Lin ing Aro Failur Ordered * * Sat	er Limitatio urface Externe Segments e Displayed e Surfaces I d - Most Cri fety Factors	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc	X = 710. mposed, T = 10. ch Trial tost Criti They Are st. ulated By	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif	rface. Trial ied Bisho		* •
Each S Unless At Whi 15.00(Follow	Furth ch A Si ft) Lin ing Aro Failur Ordered * * Saj Total I	er Limitatio urface Exten ne Segments e Displayed e Surfaces 1 d - Most Cri fety Factors Number of Tr	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa	X = 710. mposed, T = 10. ch Trial tost Criti They Are st. ulated By ces Attem	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 20	rface. Trial ied Bisho		* *
Each S Unless At Whi 15.00(Follow	Furth ch A S ft) Lin ing Arc Failur Ordered * * Saf Total 1 Number	er Limitatio urface Exten ne Segments e Displayed e Surfaces 1 d - Most Cri fety Factors Number of Tr of Trial Su	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfac	X = 710. mposed, T = 10. ch Trial tost Criti They Are st. ulated By ces Attem th Valid	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000	rface. Trial ied Bisho		* *
Each S Unless At Whi 15.00(Follow	Furth ch A Si ft) Lin ing Aro Failuro Ordered * * Saf Total I Number Statist	er Limitatio urface Exten ne Segments e Displayed e Surfaces 1 d - Most Cri fety Factors Number of Tr of Trial Su tical Data (and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa urfaces Wi On All Val	X = 710. mposed, T = 10. ch Trial tost Criti They Are st. ulated By ces Attem th Valid id FS Val	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues:	rface. Trial ied Bishc 00	op Method	* *
Each S Unless At Whi 15.00(Follow	Furth ch A So ft) Lin ing Arc Failure Ordered Ordered Stal Iotal I Number Statist FS 1	er Limitatio urface Exten ne Segments e Displayed e Surfaces I d - Most Cri fety Factors Number of Tr of Trial Su tical Data (Max = 2.77	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calcor rial Surfa urfaces Wi On All Val 74 FS Min	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Ave	rface. Trial ied Bishc 00 e = 2.0	op Method 039	
Each S Unless At Whi 15.00(Follow	Furth ch A So ft) Lin ing Arc Failure Ordered * * Saf Total I Number Statist FS I Star	er Limitatio urface Exten ne Segments e Displayed e Surfaces I d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa- urfaces Wi On All Val 74 FS Min tion =	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Avo oefficient	rface. Trial ied Bishc 00 e = 2.0 of Varia	op Method 039	
Each S Unless At Whi 15.00(Follow	Furth ch A So ft) Lin ing Arc Failure Ordered * * Saf Total I Number Statist FS I Star Failure	er Limitatio urface Exten ne Segments e Displayed e Surfaces 1 d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa urfaces Wi On All Val 74 FS Min tion =	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Avo oefficient	rface. Trial ied Bishc 00 e = 2.0 of Varia	op Method 039	
Each S Unless At Whi 15.00(Follow	Furth ch A So ft) Lin ing Arc Failure Ordered * * Saf Total I Number Statist FS I Star	er Limitatio urface Exten ne Segments e Displayed e Surfaces 1 d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Sur	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa- urfaces Wi On All Val 74 FS Min tion = pecified B rf Y-	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor Surf	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Avo oefficient dinate Poin	rface. Trial ied Bisho 00 e = 2.0 of Varia nts	op Method 039 ntion =	
Each S Unless At Whi 15.00(Follow	Furth ch A So ft) Lin ing Arc Failure Ordered * * Saf Total I Number Statist FS I Star Failure	er Limitatio urface Exten ne Segments e Displayed e Surfaces 1 d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Sur	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa- urfaces Wi On All Val 74 FS Min tion = pecified B rf Y-	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Av oefficient dinate Poin	rface. Trial ied Bisho 00 e = 2.0 of Varia nts	op Method 039	
Each S Unless At Whi 15.00(Follow	Furth ch A So ft) Lin ing Arc Failur Orderse * * Saf Total I Number Statist FS I Star Failur Point	er Limitatio urface Exten ne Segments e Displayed e Surfaces 1 d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Sur	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa- urfaces Wi On All Val 74 FS Min tion = pecified B rf Y-	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor Surf	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Av oefficient dinate Poin	rface. Trial ied Bisho 00 e = 2.0 of Varia nts	op Method 039 ntion =	
Each S Unless At Whi 15.00(Follow	Furth ch A Su ft) Lin ing Arc Failure Ordered * * Sai Total 1 Number Statist FS 1 Star Failure Point No.	er Limitatio urface Exten ne Segments e Displayed e Surfaces D d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Su (ft) 605.5	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa- urfaces Wi On All Val 74 FS Min tion = pecified B rf Y- 0 (1 510 10	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor Surf ft)	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Avo oefficient dinate Poin	rface. Trial ied Bisho 00 e = 2.0 of Varia nts	op Method 039 ntion =	
Each S Unless At Whi 15.00(Follow	Furth ch A Su ft) Lin ing Ard Failurd Ordered * * Sai Total I Number Statist FS I Stat Failurd Point No. 1 2	er Limitatio urface Exten ne Segments e Displayed e Surfaces D d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Sup (ft) 605.5	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa- urfaces Wi On All Val 74 FS Min tion = pecified B rf $Y-2$ (1) (1) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	X = 710. mposed, T = 10. ch Trial tost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor Surf ft) 06.472 09.490	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Avo oefficient dinate Poin	rface. Trial ied Bishc 00 e = 2.0 of Varia nts	op Method 039 ation =	
Each S Unless At Whi 15.00(Follow	Furth ch A Su ft) Lin ing Arc Failurd Ordered Total I Number Statist FS N Star Failurd No. 1 2 3	er Limitatio urface Exten ne Segments e Displayed e Surfaces D d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Suu (ft) 605.5 620.2 634.7	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa urfaces Wi On All Val 74 FS Min tion = pecified B rf Y-1 (510 10 204 10 787 12	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor Surf ft) 06.472 09.490 13.000	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Avo oefficient dinate Poin	rface. Trial ied Bishc 00 e = 2.0 of Varia nts	op Method 039 ntion =	
Each S Unless At Whi 15.00(Follow	Furth ch A Su ft) Lin ing Arc Failure Ordered Total I Number Statist FS N Star Failure No. 1 2 3 4	er Limitatio urface Exten ne Segments e Displayed e Surfaces D d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Su (ft) 605.5 620.2 634.7 649.2	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa urfaces Wi On All Val 74 FS Min tion = pecified B rf Y-1 (510 10 204 10 787 11 244 12	X = 710. mposed, T = 10. ch Trial lost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor Surf ft) 06.472 09.490 13.000 16.999	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Av oefficient dinate Poin	rface. Trial ied Bishc 00 e = 2.0 of Varia nts	op Method 039 ation =	* * 21.43
Each S Unless At Whi 15.00(Follow	Furth ch A Su ft) Lin ing Arc Failurd Ordered Total I Number Statist FS N Star Failurd No. 1 2 3	er Limitatio urface Exten ne Segments e Displayed e Surfaces D d - Most Cr: fety Factors Number of Tr of Trial Su tical Data (Max = 2.77 ndard Deviat e Surface Sp t X-Suu (ft) 605.5 620.2 634.7	and ons Were I nds Is Y Define Ea The Ten M Evaluated. itical Fir s Are Calc rial Surfa urfaces Wi On All Val 74 FS Min tion = pecified B rf Y-1 (510 10 204 10 787 11 244 11	X = 710. mposed, T = 10. ch Trial ost Criti They Are st. ulated By ces Attem th Valid id FS Val n = 1.3 0.437 C y 8 Coor Surf ft) 06.472 09.490 13.000	00(ft) The Minimum 00(ft) Failure Su cal Of The The Modif pted = 200 FS = 2000 ues: 83 FS Avo oefficient dinate Poin	rface. Trial ied Bishc 00 e = 2.0 of Varia nts	op Method 039 ation =	

Lagert 250, 18 millioned

۰.

.

691.695131.878695.939133.694 131.878 7 8 Circle Center At X = 524.163 ; Y = 540.505 ; and Radius = 441.591 Factor of Safety *** 1.383 *** 7 slices Individual data on the Water Water Tie Tie Barthquake Force Force Surcharge Force Force Force Norm Tan Hor (lbs) (lbs) (lbs) Weight Top Bot (1bs) (1bs) (1bs) Load Ver Slice Width (1bs) (1bs) No. (ft) 0.0 0.0 0.0 567.7 1 14.7 0.0 1479.6 14.6 2 0.0 3 14.5 1956.9 0.0 14.3 2008.4 0.0 0.0 4 1646.1 0.0 5 14.2 885.4 0.0 6 14.0 0.0 62.8 4.2 Failure Surface Specified By 8 Coordinate Points X-Surf Y-Surf Point (ft) (ft) No. 603.178 105.770 1 2 617.893 108.681 632.502 112.082 3 4 646.991 115.966 5 661.342 120.331 115.500 120.331 125.170 125.170 6 675.539 8 130.480 135.139 689.568 700.741 Circle Center At X = 523.683 ; Y = 546.573 ; and Radius = 447.914 Factor of Safety
*** 1.384 *** 1.384 *** Failure Surface Specified By 8 Coordinate Points Y-Surf (ft) Point X-Surf No. (ft) (ft) 105.571 108.504 111.980 1 602.517 2 617.228 4 646.273 111.980 5 660.567

 5
 660.567
 120.541

 6
 674.683
 125.614

 7
 688.601
 131.206

 8
 690.532
 132.066

 Circle Center At X = 531.295 ; Y = 501.596 ; and Radius = 402.379 Factor of Safety *** 1.384 *** Failure Surface Specified By 8 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 605.045 106.331 1 619.775 109.166 634.378 112.591

 634.378
 112.591

 648.832
 116.603

 663.112
 121.194

 677.196
 126.357

 691.059
 123.001

 2 3 4 5 6 691.059 132.084 7 691.942 132.490 8 Circle Center At X = 542.418 ; Y = 471.781 ; and Radius = 370.776 Factor of Safety *** 1.385 *** Failure Surface Specified By 8 Coordinate Points X-Surf Y-Surf Point (ft) (ft) No. 1 608.683 107.427 110.240 2 623.417 113.606 3 638.035 652.515 117.520 A

5 666.837 121.978 126.972 680.982 6 7 694.928 132.495 701.347 135.322 8 542.414 ; Y = 495.423 ; and Radius = 393.615 Circle Center At X = Factor of Safety 1.385 *** *** Failure Surface Specified By 8 Coordinate Points Y-Surf X-Surf Point No. (ft) (ft) 608.258 107.299 1 622.975 110.197 2 113.580 3 637.589 652.082 117.445 4 121.788 5 666.440 126.603 680.646 6 7 694.685 131.886 136.085 704.811 8 549.839 ; and Radius = 449.602 Circle Center At X = 528.888 ; Y = Factor of Safety *** *** 1.385 Failure Surface Specified By 8 Coordinate Points X-Surf Y-Surf Point (ft) No. (ft) 609.489 107.669 1 110.475 624.224 2 113.821 638.847 3 117.702 4 653.336 122.112 667.673 5 127.047 681.838 6 132.499 7 695.812 136.025 703.952 8 505.796 ; and Radius = 403.896 541.469 ; Y = Circle Center At X = Factor of Safety *** *** 1.385 Failure Surface Specified By 8 Coordinate Points X-Surf Y-Surf Point (ft) No. (ft) 602.472 105.557 1 617.224 108.278 2 111.557 3 631.861 115.387 4 646.363 5 660.710 119.765 6 674.881 124.684 688.855 130.136 7 699.531 134.775 8 538.676 ; Y = 493.298 ; and Radius = 392.954 Circle Center At X = Factor of Safety 1.386 *** *** Failure Surface Specified By 7 Coordinate Points Point X-Surf Y-Surf (ft) No. (ft) 106.109 604.304 1 619.051 108.851 2 3 633.665 112.232 116.246 648.118 4 5 662.383 120.885 676.432 126.140 6 690.044 131.919 7 446.255 ; and Radius = 344.665 548.681 ; Y = Circle Center At X = Factor of Safety *** *** 1.387 Failure Surface Specified By 8 Coordinate Points Y-Surf Point X-Surf (ft) No. (ft) 600.350 104.918 1

2 615.118 107.548 3 629.769 110.766 4 644.279 114.568 5 658.625 118.947 672.785 123.897 6 129.409 7 686.736 134.152 8 697.462 Circle Center At X = 542.569 ; Y = 472.776 ; and Radius = 372.368 Factor of Safety **** END OF GSTABL7 OUTPUT ****

PROFIL h:\Geo-Environmental (0120)\2003\1030105-01 Peterson-Puritan OU2\CPT\puritan #2.in V Cross Section #2 Petterson/Puritan OU2 12 8 10, 62. 451.5 62. 3 451.5 62. 452.5 66. 3 452.5 66. 455.5 66. 3 455.5 66. 456.5 64. 1 456.5 64. 491. 72. 2 491. 72. 703.6 136. 2 703.6 136. 760.6 140. 2 760.6 140. 798.6 140. 2 456.6 64. 466. 54. 1 466. 54. 798.6 54. 1 10. 52. 440. 52. 1 440. 52. 451.5 62. 1 0. 0. 0. SOIL SandSiltTrash Organic 3 85.96 111.43 0. 37. 0. 0. 1 55. 65. 0. 22.5 0. 0. 1 43. 89. 0. 15. 0. 0. 1 WATER 1 62.46 4 0.5 10. 61. 456.5 63. 703.6 85. 798.6 85. CIRCL2 2000 1 600. 610. 690. 710.

10. 15. 0. 0.

· •

Transis between Postsonanotal (0120)/1003/1000120 of Postaneon Postson and/CHTV:pastram 23.1s V Croam Develop 83 13 9

12 * 10. 42. 411.1 *0. 3 400.5 *6. 411.1 *0. 3 400.5 *6. 475.5 *6. 1 400.5 *6. 475.5 *6. 2 400.5 *6. 475.5 *6. 2 400.7 *0.90 * 125. 2 123.4 *0.8 * 140.8 *6. 3 123.4 *0.8 * 140.8 *6. 3 123.4 *0.8 * 140.8 *6. 3 123.4 *0.9 * 125.4 * 1 10. 52 *62 * 42. 1 10. 52 *62 * 42. 1 10. 52 *62 * 52 * 52 * 5 10. 52 *62 * 5 10. 52 *62 * 5 10. 52 *62 * 5 10. 52 *62 * 5 10. 52 *62 * 5 10. 52 *62 * 5 10. 5 10