Superfu	nd Record	is Center
SITE: CC	mmerce	Street
BREAK: _		
OTHER:_	550207	

Aquatic Invertebrate, Sediment, and Surface Water Sampling in Unnamed Stream Commerce Street Plume Superfund Site Williston, VT Final Technical Memo

TDF No. 2559A,B,C Task Order No. 86 Task No. 04

Submitted to the:

Task Order Project Officer Office of Environmental Measurement and Evaluation USEPA - New England Regional Laboratory 11 Technology Drive North Chelmsford, MA 01863-2431

Submitted by:

ESAT - Region I

TechLaw, Inc. 7 Technology Dr, Suite 202 North Chelmsford, MA 01863

October 4, 2012

EPA Contract EP-W-06-017

Table of Contents

1.0	PROJECT OBJECTIVES	.1
2.0	INTRODUCTION	.1
3.0	FIELD SAMPLING PROCEDURES	.2
3.1 3.2	Standard operating procedures and other support documents	2
3.3 3.4	Field notes Sampling stations Field sampling and data collection procedures	2
3.	4.1 Introduction	6
3.	4.3 Surface water sampling	7
3.	4.4 Sediment sampling	7 8
3. 4.0	4.6 Habitat assessment SAMPLE PROCESSING AND ANALYSES	9
5.0	DEVIATIONS FROM THE QAPP	

Attachments:

Attachment 1: 2010 Nobis porewater sampling locations

Attachment 2: September 2012 sampling locations

Attachment 3: Field surface water chemistry results

Appendices:

APPENDIX A: Field logbook notes

APPENDIX B: Lotic benthos field sheets

APPENDIX C: Habitat assessment field datasheet - low gradient

APPENDIX D: Physical characterization/ water quality field datasheets

APPENDIX E: Chain of Custodies

1.0 **PROJECT OBJECTIVES**

The main objectives of this project were to determine if: (a) the invertebrate community structure and function in Unnamed Stream at different sampling stations was affected by groundwater-impacted discharges from the Commerce Street Plume Superfund Site in Williston, VT, and if (b) any observed differences in the invertebrate community could be attributed directly to the presence of Site-related contaminants (particularly, Volatile Organic Compounds [VOCs]) in surface water and/or sediment. This information will serve in future ecological risk-based decision making.

The following steps were undertaken to meet the project's objectives:

- 1. Conduct a site visit on March 30, 2012 with EPA Regional Project Manager (RPM) Karen Lumino and EPA risk assessor Rick Sugatt.
- 2. Prepare a Quality Assurance Project Plan (QAPP) Addendum for use in the field sampling effort.
- During September 10, 2012 September 13, 2012, collect surface water chemistry information using a YSI sonde and sample aquatic invertebrates, sediment, and surface water at previously staked sampling stations (i.e. PW-2, PW-11, PW-17, PW-20 and an off-site reference location).
- 4. Record the GPS coordinates of each sampling station.
- 5. Take pictures of the stream and riparian habitat, record observations and fill out habitat worksheets.
- 6. Write a technical memorandum to summarize the sampling procedures used; include copies of habitat worksheets, field notes, and a table summarizing the field surface water chemistry data.

This technical memorandum is organized as follows: Section 2.0 provides an introduction; Section 3.0 describes the field sampling procedures; Section 4.0 describes the sample processing and analyses, and Section 5.0 summarizes the deviations from the QAPP addendum.

2.0 INTRODUCTION

Unnamed Stream was visited by ESAT, EPA Regional Project Manager (RPM) Karen Lumino and EPA risk assessor Rick Sugatt on March 30, 2012 to determine the overall conditions of the stream and to identify possible sampling stations.

A field sampling plan was then developed (i.e. the QAPP Addendum to a Nobis Engineering prepared QAPP). The plan was to collect aquatic invertebrates, sediment samples, and surface water samples from Unnamed Stream for analysis of the following parameters:

- Surface water: VOCs and chlorides
- <u>Sediment</u>: Total Organic Carbon (TOC), Target Analytes List (TAL) metals, mercury, VOCs, and Semi-Volatile Organic Compounds (SVOCs)
- Epifaunal and infaunal aquatic invertebrates: community structure and function

The QAPP Addendum represented an attachment to the April 18, 2012 draft QAPP Amendment 2 prepared by Nobis Engineering (an EPA contractor) to support the spring 2012 groundwater and soil sampling and analysis program at the Site. The spring 2012 samples collected by Nobis were analyzed at EPA's New England Regional Laboratory (NERL) in North Chelmsford, MA for VOCs, SVOCs, and TAL metals using the same Standard Operating Procedures (SOPs) as were used for the surface water and sediment samples collected from Unnamed Stream. All of the analytical requirements pertaining to these three chemical analyses (such as the data quality objectives, detection limits, measurement performance criteria, quality control acceptance limits, corrective actions, acceptance criteria, etc.) were identical to those summarized in the April 18, 2012 document.

3.0 FIELD SAMPLING PROCEDURES

3.1 Standard operating procedures and other support documents

New England Regional Laboratory (NERL) SOPs were followed during field sampling efforts as described in the QAPP Addendum and are referred to in Table 2 of the Addendum.

3.2 Field notes

Real-time field notes were taken to provide detailed records of all the field activities (see **Appendix A**). All notebook entries were made using a ballpoint pen. All pages were dated with the initials of all personnel present. When necessary, corrections were made by striking a line through the text, dating and initialing the correction(s).

Records included in the field notebook include the following types of information, as applicable:

- the date and time when each activity started and ended
- the weather conditions at the start of the day and significant changes in weather during the day
 - a summary of equipment maintenance or decontamination activities, when applicable
- a description of sample collection and processing activities, such as:
 - o sampling locations
 - o recording of Global Positioning System (GPS) coordinates, if applicable
 - number and type(s) of samples collected
 - o records of photographs taken, if applicable
 - field measurements and observations
- descriptions of problems encountered while in the field and corrective actions taken (if any)
 - including when deviations were made from the QAPP and why

3.3 Sampling stations

All the field activities took place at five specific sampling stations in Unnamed Stream, four of which coincide with pore water sample stations used by Nobis Engineering in July 2010. These sampling stations are listed below from furthest downstream to furthest upstream. Note that PW-2 was not mentioned in the Addendum. It was determined in the field, with the approval of Rick Sugatt (EPA technical lead), to sample PW-2 instead of PW-1 because of a lack of suitable habitat. The reference location was determined in the field as well. Both instances are discussed further below. The five sampling stations were as follows:

- o PW-20: Recovery (far); located about 1,000 ft downstream from PW-17.
- PW-17: Recovery (near); located about 900 ft downstream from PW-11.
- PW 11: site-impacted area; this location had the highest levels of trichloroethylene and dichloroethylene during the July 2010 pore water sampling event.
- PW-2: study area reference, located above the Site just downstream from PW-1, not far from the culvert underneath Route 2
- Off-site reference: located upstream from PW-1, north of Route 2 in a small wetland fed by urban runoff (just West of 209 Blair Park Rd. in Williston, VT)

Sampling stations PW-20 and PW-17 were sampled on Tuesday September 11, 2012 (see **Figure 1** and **Figure 2** for lotic habitat pictures).

2|Page

Figure 1. PW-20 (facing east)

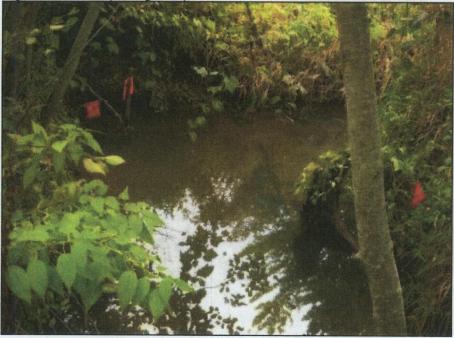


Figure 2. PW-17 (facing northeast)

Sampling Stations PW-11 and PW-2 were sampled on Wednesday September 12, 2012, (see Figure 3 and Figure 4).

Figure 3. PW-11 (facing southeast)

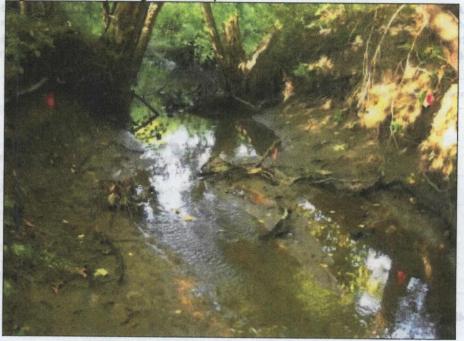


Figure 4. PW-2 (facing east)

Rick Sugatt (EPA) and Michael Ferrier (ESAT) decided not to sample PW-1, the on-site reference, as originally planned. PW-1 could not be properly sampled because the stream at this location was only a couple of inches deep and quite narrow, which made it difficult to collect a surface water sample without disturbing the sediment. In addition, the substrate consisted mostly of fine sediment (as seen in **Figure 5**).

Figure 5. PW-1 (facing northeast)

The off-site reference location was sampled on Thursday September 13, 2012, (See **Figure 6**). The sampling team received permission from Rich Watson to park in the Vermont Plastic Specialists, Inc. parking lot at 209 Blair Park Road. The stream was accessed via the Western side of the Vermont Plastics building near the loading dock. This area of the stream consisted of a small wetland fed by urban runoff. The sampling team had difficulty finding a more suitable reference location upstream of the groundwater plume without getting into more industrialized areas.

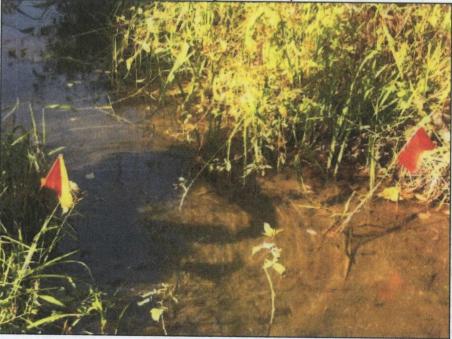


Figure 6. off-site reference (facing southwest)

 Table 1 provides the Global Positioning System (GPS) coordinates of all five sampling stations.

 These were recorded the day they were sampled.
 PW-20, PW-17 and PW-11 GPS coordinates match

those provided by Nobis (see QAPP Addendum). The coordinates for PW-2 were not provided in the QAPP addendum but the PW-2 Nobis stake was located just downstream of PW-1, confirming the team was at the correct location. It should be noted that PW-11 is located in close proximity to two buildings and is at a bend in the stream. Although it may look detached from Unnamed Stream, it is not (see **Attachment 1** for the Nobis map and **Attachment 2** for the September 2012 sampling locations map).

Table 1: GPS coordinates for the sampling stations in Unnamed Stream				
Station number	Sampling station	North	West	
1	PW-20	44.44658066	-73.12380091	
2	PW-17	44.44745849	-73.12147299	
3	PW-11	44.44938290	-73.12188230	
4	PW-2	44.45264118	-73.11935145	
5	Upstream, off-Site reference	44.45478218	-73.11757334	

3.4 Field sampling and data collection procedures

3.4.1 Introduction

The sampling effort started at the most downstream station (PW-20) on Unnamed Stream and proceeded sequentially upstream from there. On Monday September 10, 2012, an ESAT member used a Trimble GPS unit and the coordinates presented in Table 3 of the QAPP addendum to find the exact sampling stations prior to sampling. All of the Nobis stakes from the 2010 pore water sampling were found and their locations matched the coordinates provided. The off-site reference location was determined to be upstream of the plume, north of the Route 2 culvert in a small wetland fed by urban runoff. New flagging was placed on either side of the stream at each sampling station to clearly mark the banks. Steve Fiske (VT Department of Environmental Conservation) was present on Monday September 10, 2012 to show the sampling team how to use the VT method for collecting aquatic macroinvertebrates. He mentioned that Unnamed Stream was part of what VT calls Muddy Brook Tributary 4. The stream will continue to be referred to as Unnamed Stream in this report.

The YSI sonde was calibrated every morning before the start of field work. The sonde was taken to the first field sampling location of that day once all of the internal acceptability criteria were met. Sampling at each station proceeded in the following order: (1) surface water parameters were collected using the YSI sonde; (2) surface water samples were collected for VOC and chloride analysis; (3) sediment samples were collected for analysis of VOCs, SVOCs, TAL metals, mercury, and TOC; (5) benthic invertebrates were collected by two different methods; and (5) habitat assessment worksheets were filled out based on EPA's Rapid Bioassessment Protocols and the VT DEC lotic habitat assessment protocol.

The QAPP addendum noted that Unnamed Stream was quite narrow (2-4 ft) and stated that it might be necessary to collect sediment and invertebrate samples not just at the sampling station itself but also up to 15-20 ft upstream and downstream from it in order to get representative samples. The upstream and downstream portions were sampled for macroinvertebrates only at PW-2 and the reference station, both of which were located upstream from the contaminated groundwater recharge areas. On the other hand, only the downstream portions of stations PW-20, PW-17 and PW-11 were sampled for macroinvertebrates in order to follow the decreasing trend in VOC concentration and to more accurately capture where VOC-contaminated groundwater might have an effect on benthic invertebrates. Duplicate samples for all analyses were taken at sampling station PW-11, which represented the "hot spot" for the VOC-contaminated groundwater plume.

6|Page

3.4.2 Surface water parameters

The temperature (°C), pH (standard units), dissolved oxygen (mg/L and % saturation), and specific conductance (microsiemens per cm [mS/cm]) of the surface water at each sampling station were measured using the YSI Model 556 Data Logger. One set of readings was taken in the center of Unnamed Stream at each sampling station, with the probe placed halfway down the water column. All readings were recorded in the field logbook and are summarized in **Attachment 3**.

3.4.3 Surface water sampling

A set of trip blanks were prepared for VOC analysis before the sampling team left the NERL on Monday September 10, 2012. These blanks consisted of 4 Volatile Organic Analysis (VOA) vials completely filled with deionized water (no headspace), placed on ice, and kept in the field cooler until the end of the trip. Trip blanks were not mentioned in the QAPP Addendum but are standard protocol for VOA sample collection.

A surface water pH test sample was prepared in a VOA vial in the field by filling the sample bottle almost to the top with stream water and counting the number of drops of HCI it took to acidify the water to a pH < 2.0. The number of drops needed to reach a pH < 2.0 was recorded and used to quickly and accurately acidify subsequent surface water samples. The pH test sample was then properly discarded. This process was repeated as needed at other sampling stations.

Two surface water samples were collected from each sampling station. The first sample was collected in four 40 mL VOA vials for VOC analysis, while the second sample was collected in one 250 mL plastic bottle for chloride analysis. Both samples were obtained by carefully immersing the sample bottles under the surface of the water. The four VOA vials were completely filled to remove any head space and limit evaporation during transport and storage. Great care was taken to avoid touching the soft substrate while filling the bottles to avoid suspending the sediment and contaminating the samples.

The four VOA vials were acidified in the field to pH < 2 using HCI, and stored on ice for return to the laboratory. The chloride sample was stored on ice without additional preservation. A duplicate VOC and chloride surface water sample were collected at PW-11. Note that the VOC duplicate consisted of another four VOA vials filled to the rim with surface water and acidified to pH < 2.

3.4.4 Sediment sampling

Two separate sediment samples were collected at each sampling station for VOC analysis. One composite sediment sample consisting of three subsamples was also collected from each sampling station for analysis of SVOCs, TAL metals, and TOC. All samples were collected from low-energy depositional areas around each sampling station to maximize the possibility of detecting contaminants.

The two samples for VOC analysis were collected first, as follows:

• <u>VOC sample 1</u>: A 10 mL sediment plug was collected by inserting a clean, 10 mL syringe with its tip cut off directly into the sediment bed and then carefully transferring the sample into a 40 mL Teflon-lined septum vial containing 10 mL of methanol (see Table 4 in QAPP Addendum for details). The vial was then tightly closed and placed on ice.

• <u>VOC sample 2</u>: A second sediment sample was collected in the same way and placed in a separate 40 mL VOC vial (this one without methanol) to determine the % moisture of the VOC sample. This sample was collected using a clean syringe, closed and placed on ice.

An Eckman dredge was then used to collect sediment for the last set of analyses (i.e. SVOCs, TAL metals, and TOC). Three 6" deep sediment samples were collected with the dredge and placed into a clean 20 L cubitainer with the top cut off. Coarse debris such as leaves, sticks, pebbles, or vegetation were removed from the cubitainer and discarded. Extra overlying water was poured off after settling to avoid losing fines. The sediment was then thoroughly homogenized with a clean plastic scoop and

7|Page

distributed into labeled sample containers. Every effort was made to ensure that all of the sediment grabs had similar composition and were all collected in water < 1 ft deep. A duplicate composite sediment sample for SVOC, TAL metals, and TOC analyses was collected at station PW-11.

At location PW-11, the Eckman dredge was impractical to use because of excess woody debris. Instead, a clean plastic scoop was used to collect sediment within an area and depth equivalent to the Eckman dredge. This method was replicated with the duplicate sample as well.

The Eckman dredge was decontaminated between sampling stations but not between subsample collections at a given sampling station. The dredge was scrubbed with a brush and laboratory grade, non-phosphate detergent and tap water, rinsed 3 times with distilled deionized water and shook dry

The used soapy water and rinse water were captured and containerized for proper disposal at the NERL in North Chelmsford, MA.

A rinsate blank sample was collected at location PW-11 after the sediment sampling equipment was decontaminated. This sample was obtained by pouring 1 L of distilled deionized water over the cleaned equipment and collecting the runoff in a pre-labeled sample container. The rinsate blank was stored in the same cooler as all of the other samples. It will be analyzed for total metals and mercury at the NERL.

3.4.5 Invertebrate sampling

ESAT recorded the major habitat characteristics at each sample station on standardized habitat worksheets (see **Appendix B**). Additional descriptions were also recorded in the field logbook (see **Appendix A**). Several pictures of the habitats and sampling activities were also taken and can be viewed at G:\ALLSHARE\ESATBIO\Commerce Street (VT).

3.4.5.1 Collecting infaunal invertebrates by sifting sediment samples

The VT DEC noted that silt, sand or gravel substrate should not be sampled as part of their standard protocol. As outlined in the next section, however, substrate was sampled around each sampling station in an effort to link sediment contamination to benthic invertebrate community composition. This method allows for a volumetric population comparison between sample stations because each subsample (i.e. core) has a definitive volume (3" high, 2 ½" diameter cylindrical dimension = 4.73 in³ of sediment).

Four replicate sediment samples were collected in the vicinity of each sampling station using a percussion sediment corer. Each replicate sample consisted of four subsample cores collected near each other (making sure not to remove sediment from previous sediment grab sample holes). The benthic invertebrates collected from each set of four cores was combined into one replicate sample and preserved with 70% ethanol.

A 2 ½" diameter clear plastic core tube was placed into the sediment 3" deep, carefully pulled out and then emptied into a no. 30 sieve bucket. This was done four times for one replicate and all subsamples were placed into the same sieve bucket. The sieve bucket was then placed in the stream, making sure not to completely submerge it, and swirled around to rinse fines, such as clay, out of the sample. Leaf detritus was discarded. Any remaining sediment and organisms were placed into a labeled 1L plastic jar and preserved with 70% ethanol

In summary, four cores were collected from four locations per sampling station (16 cores per sampling station), resulting in at least 20 composite benthic invertebrate samples from Unnamed Stream (four composites per sampling station from five different sampling stations).

PW-11 underwent a full re-sample using the method described above in order to generate a duplicate infaunal invertebrate sample.

8 | Page

3.4.5.1 Collecting epifaunal invertebrates by sweep bottom kick net sampling

A kick net was used to collect a total of four jabs from representative habitats as described in the QAPP Addendum. Sampling was performed by jabbing the net into debris dams, vegetation, or root mats, pulling back rapidly to dislodge invertebrates, then sweeping forward again into the same area to scoop up the dislodged invertebrates. This jabbing and sweeping motion was repeated several times at the same point and considered one of four jabs. Each jab was taken in a general upstream direction from each subsequent point. All four jabs (from different points around the sample station) were combined into a single composite sample. Excess debris was first removed, and leaves and sticks were thoroughly rinsed off to prevent losing any attached bugs. The total contents were transferred to labeled sample bottle(s) and preserved in 70% - 80% ethanol. Two replicates were collected at each sample station and two replicates were collected at PW-11 as a duplicate sample.

The following habitats were sampled when present, as mentioned in the QAPP Addendum (see **Appendix A** field log notes for details of samples taken at each station):

- Vegetated margins consist of overhanging bank vegetation and submerged root mats. Sampled by jabbing vigorously, with an upward motion, brushing the net against the vegetation and roots along the bank. The entire jab was taken place underwater as much as possible to avoid collecting terrestrial organisms:
- Snags and logs consist of submerged wood, primarily dead trees, logs, branches, roots and leaf packs lodged between rocks or logs. Sampled by holding the net under the submerged wood, rubbing and shaking the area above the net and scooping organisms, bark, twigs and other dislodged organic matter into the net.
- Aquatic vegetation beds and decaying organic matter consist of beds of submerged, green/leafy plants that are attached to the stream bottom. Sampled by jabbing vigorously, with an upward motion, against or through the plant bed. The net was kept under water as much as possible to avoid collecting terrestrial organisms.

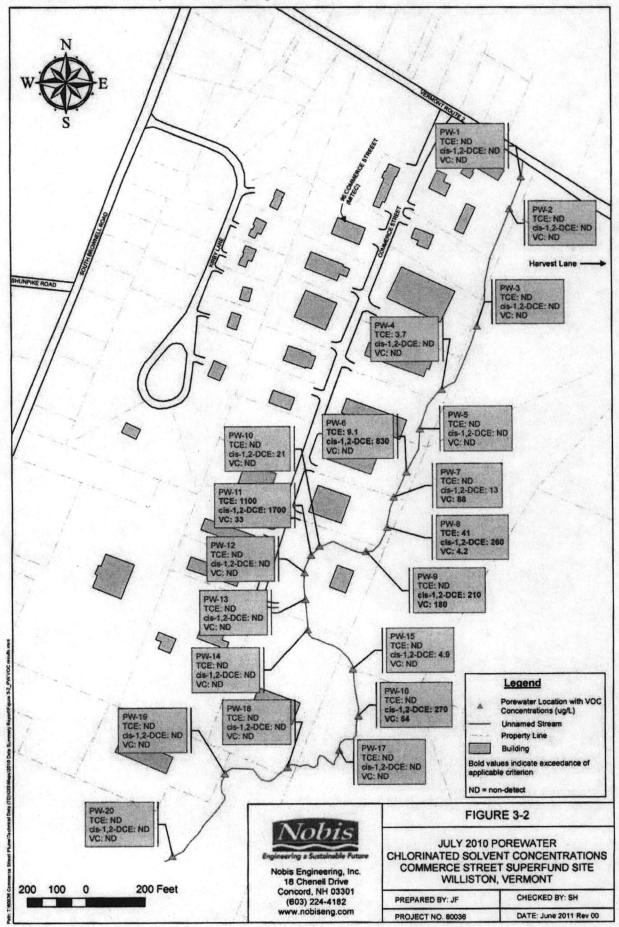
3.4.6 Habitat assessment

The stream habitat at each sampling station was photographed and then described using the Habitat Assessment Field Data Sheet – Low Gradient Streams (see **Appendix C** for completed forms) using the descriptions and definitions provided in Chapter 5 (Habitat assessment and physicochemical parameters) of the Rapid Bioassessment Protocols (see QAPP Addendum). Note that the catchment area was not estimated for each sample location.

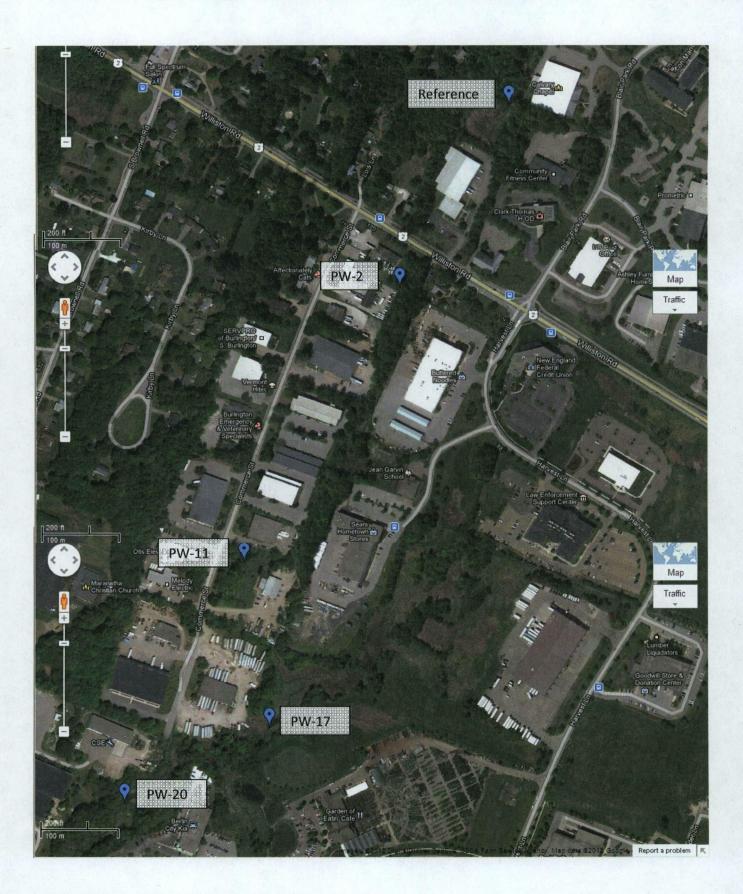
The habitat assessment field data sheet contains ten habitat parameters that were scored between a low of 1 (poorest condition) and a high of 20 (best possible condition). The data sheets were completed based on reaching a consensus between all of the field biologists participating in the sampling event.

4.0 SAMPLE PROCESSING AND ANALYSES

Proper paperwork, including labels and chain-of-custody forms, were maintained at all times during the project and follow the requirements outlined in Attachment 8 of the QAPP addendum.


Labels were completed with the initials of the person collecting the sample, the date, and the jar number, when applicable. Labels were then wrapped in clear packing tape to protect them from water or ethanol damage and to prevent the label from accidentally detaching during transport and storage. Invertebrate samples were preserved with between 70%-80% ethanol, tightly closed, then sealed with electrical tape. Sediment and water samples were placed on ice in a cooler shortly after being collected. Ice was refreshed as necessary.

5.0 DEVIATIONS FROM THE QAPP


The following table summarizes the deviations from the QAPP or QAPP Addendum that occurred during the field sampling effort:

QAPP protocol	Deviation	Reason for deviation
1. Sample PW-1 as on-site reference	Sampled PW-2 in place of PW-1	PW-1 was not sampled because the stream was only a couple of inches deep and a about a foot wide, making it difficult to sample the surface water without disturbing the sediment.
2. Use 3" diameter core tube for infauna macroinvertebrate sample collection	Used a 2 ½" diameter core tube	Only 2 ½" diameter plastic core tubes were available. This does not impact the sample collection method other than changing the overall volume of the samples collected. Regardless of the change in core tube diameter, the same volume was collected across replicates.
3. No mention of collecting VOC trip blanks	Collected VOC trip blanks (deionized water from the lab)	This step was included because it is standard protocol according to the NERL SOP (EIASOP- VOAGCMS9 Rev.9 3/31/10)
4. Collect sediment VOC samples from the Eckman grab	Collected sediment VOC samples directly from the sediment bed	Removing the VOC sediment sample directly from the sediment bed insured less loss of VOCs upon extraction as the sediment was not as disturbed initially by the Eckman dredge. The water was only up to a foot deep at each location so it was easy to insert the syringe directly into the sediment bed.
5. Use Eckman or plastic sediment core tube for sediment collection	Used a clean plastic scoop at location PW-11 and it's duplicate	This was necessary because PW-11 was covered in woody debris. The Eckman may not have been able to penetrate the soil or close completely upon retrieval if a stick was in the way. Using a clean plastic scoop enabled the sampler to work around woody debris

Attachment 1. Nobis 2010 porewater sampling locations

Attachment 2. September 2012 sampling locations (as seen on Google maps) *Note this is a combination of 3 maps placed together to show the full extent of sampling.

Attachment 3: Commerce Street: Field Surface Water Chemistry Results

Station	Analysis Date	Temperature (°C)	Conductivity (us/cm)	pH	D.O. (%)	D.O. (mg/L)
PW-20	9/11/2012	12.14	1916	7.42	73.5	7.82
PW-17	9/11/2012	15.52	, 2475	7.58	78.4	7.75
PW-11	9/12/2012	13.4	1004	7.57	76	7.92
PW-2	9/12/2012	16.83	916	7.85	88.2	8.51
Reference	9/13/2012	17.53	965	8.21	100.9	9.62

9

D.O. = dissolved oxygen

Qced: MCM 10.4.12

APPENDIX A

Field Logbook Notes

9/10/12 BGK, MCM, LB, MF, Stever BGK9.1012 Commerce St. arrival@ 1240 Part cloudy, cool, no rain. -> Met Rick (EPA) upon arrival. 9 : mem 44.44655577 9.10-12 100 NOBISTOC Upstream lunma WOOd Photos: # 810 # 81 (Red Nikon) tim PW-20: 44 44658066 N -73.12380091 W - Flagging moved up to location with Unmarked wood en stake - Entered stream near old wooden steps Met with Steve Fisk of VT DEC @ 1400 Showed VT method of sampling

(Tool Delong met crew around 11:00) 2. The service and the service of the 7 9-11-12 MF, BGK, MCM, LB, RS Commerce street Arrival (20814 9.10.12 MCM BGK MF LB RS Sunny ~ 45°F, NO rain PW-IF placed flag at stake N: 444476745907 mcm 11110m 24612 HV N: 44, 44745849 9:10:12 YSI Sonde 556 calibration: pH: 40 std : 40 W. -73 12147299 10.0 std.: 10.0 $(\pm 65 \text{ cm})$ 7.0 Check 7.00 / (chk) walked in by trucks conductivity: 100µg/cmc: CCal)1000 MS/CMC: 1000 DO: 103, 1% / antiprited at vario us/cm PW-11 placed flag at MS/cmc STAKE N: 44. 4493829 AtPW-20: 9:40 cm partly cloudy W - 73 12188230 Temp: 12.14°C 10A(SW)C0950AM CONC: 1916 115/Cm^c PH: 7.42 DO: 73.5% 7.82 mg 12 (not collibrided) walked in by large tree and woodchips PW-01 placed tragat STAKE N: 44 4529111M photos: #596+597 W: -73.11912540 L2728 JPG + 2729 JPG) walked in behind house -facing East Left @ 1700 stdiment voci collected @ 1020 sediment grabs (3) taken @ 1025-Sample jours Filled (3) All Samples taken to coder after sed cose samples

4	5
9.11.12 PW-20 (Rep1) Macroinverts (sediment) taken @ 10:42. Took	911.12 BGK, MCM, LB, RS, TD PW-20 Rep 1
H plugs, 3" deep, 21/2" diameter, Placed in 500 mm Sieve budget, Seliment noted to plug sieve so Slow to drain sample.	Hquatic onacros@11:22 (PW-ZO) > MF sampled Jabbed bank w/roots + some overhanging veg X2 - let salamander go.
-C.tentan larvae, small dam noted. Not much else. + Decaying leaf matter Fings cinsed aut	- Jabbed overhanging veg - Jabbed log jam w/lear pack (downstream of BW-20) up to 15 m downstream ofter starting C
Rep2@ 11:00 (4 plugs) 3" deep, 21/2" diam. - a few ciams	Sampling location for sed/sw/Ben. Macros. -let small fish (unidentifiable) go
Rep3@11:05(4 plugs) - gas labble releaged insertion	Pepz Aquatic macros@ 11:34 (PW-ZO) - MF sampled. 2 Jars
- afew exams, not much else	- overhanging veg/root mat = undercut root mat = noted water striders
Pep 4@11:10 (4 plugs) - slight buttling upon insertion	- log jam, no leaf pack x 2 - noted longrace dace & addrates - noted crayfish, adorates
Habitat (Ben inverts) - overhanging regotation on	- sampled a little past where repl was taken (~ 16/17m?)
Most banks. Lalders = shade, nightshade, grasses, jewelweid all aver, sensitive ferring muddy, decaying vegetation. some togst sticks	

¢	la contractiva de la contracti
9.11.12 BEX, MCM, LB, MF, TD	91112 BEK MCM LB MF
PW-17 C 1426: YSI Sonde	sediment plugs (3rdset)= Much tiner (clay) @ 1530
<u>151 20100</u> pH: 7.58 Temp: 15.52°C	Observed stikleback in ttream give
Cond: 2475 ⁴⁵ /cm DO: 78.4%, 7.75mg/L	PQ Inv Tep2:
-VOA SCIMPLE) (4) +CIXEN (H 2.30pm	-Jab #1 Zundercut rootmat -Jab #2 With overhanging -Jab #3 Vegetation
Chloride (SW) taken @ 1435	-Jab#3.) -Jab#4: Macrophyte
Sediment(VOA) token@1439	Lett site @ 1644
Sediment grab willdeman for 3 analyses taken@1436	9.12.12 MEM, BGK, LB, ME
-3 grabs. Composited in cut out cubitainer w/ Clean plastic scorp. Distributed into amber glass	<u>HSI sonde 556 calibration</u> <u>mim 9-12-12</u>
All H-204-Sed samples taken to cooler w/iceCT540	
AQINV Repl: Jab #1: Undercut cootmat	
Jab #2: under cut (overhanging veg) Jab #3: under cut with rootmat + overhanging ve	
Jab#4 overhanging veg +root mat -> All along same bank. Sediment plug 1_ (2 1500	
Sediment plug ((1500 B& plugs memaliliz	

8	9
9.12.12 MCM, BGK, LB, MF RS	9.12.12 MF, BGK, LB, MCM, RS
commerce strett Arrival@	Sediment VOCS + DUP collected
parked in Aquatec parking lot	@ 1036-MF @1038
with permission	ECKMAN Grabs taken @ 1043
YSI 556 Sonde Calibration 0851	-TOO MUCH WOOdy debris, scoop
<u>pH: 40 cal: 4.00/</u> 10.0 cal: 10.00/	area equivalent to Eckman
7.0 CHECK TOHY CM	and depth of Gin)
conductivity: 1000µm cal. V 1000µm/cm chk: 1092	DUP 4150 @ 1043 Repl
D.O. 102 1/ Cal @ 100%	Sediment plugs taken @ 1106
PW-11 @ 1010	Rtp 2 @1113 Dup 2 @ 1152
VCI sonde	Rep 3 @ 1128 Dup 3 @ 125 99 202 Rep 4 @ 1129 Dup 4 @ 1216
pH: 7.57 cond 1004 urlcm	
D0%: 76 D0mg/L: 7.92	AGINY REPI: 2 javes (to+2) JOD #1. UNIVERCUT YOUTMANT, OVER MUNGING
Temp: 1340°C	Veg, immercy nt aquetic marchites?
Q1023 -MF	Jab #2: Heat plack, Stark jam
- nubr also collected for	@12:41
surface water VOCS@ PW-11 @ 1025	→ CY(111+ISN fund
	TUD #A · VPG VN/TM(+

0 h 91212 MCM BGK, LB, MF, RS 91212 MCM, LB, BGK, MF PW2 @ 1551 Dy Ag Inv Rep #2 #2: 2 jais 2 jais 2 jais (2012) Sonde VSI Data @ 1551 JCD#1-SLOMLICHT, EMURYUNJ рн. 7.85 Cond 916µs/cm Do%. 882 -2 stilleback DOma/L 851 - ryrulfish Temp(° c): 16.83 JUD# 2 - WOLDY CLOPS JUD# 3 - WOODY CLOPS JUD# 4 - OULDATIC VCG Site switched from PWI to PW2 to provide beHer sampling conditions decision. (a) : 30confirmed with Rick sugar of Dup Ag Inv Rep #1: (102 jans) EPA JOB# 1-OVERDENMIND VECT Rihsate blank on deconed Eckman + scoop @ 1415 atter PN-11 and praced in cooler. Jab #3-rootmat JCNDHA-CUINCHING VECT New VOC pH blank -4 props of HCL added to (0, 1, 38)make sure pH still lers DupAGINV REDHZ: (2012) than 2 Don't because of ZKUS nigner pH @ thil site TOM+OOY = 1 #015C pH@2_Use 5 drops to JCHD#Z: OVERMONIUM, VEG: preserve. YOCH MCH Surface H20 VOCI collected JUD#3-MORY(U) WHN POCH MCH @ 15 57 [J VOCS))(1)(+++))(+++)

977773 S 299 13 9.12.12 MELB, BGK, MCM 9.12.12 MELBBEK, MCM Repl_Jabs: @ 1702 1chloride sample taken@1601 N10 mup 1 2758 jp 9 NW ATI (2) N10 mup 2 2760 jp 9 NW ATI (2) NHS mup 2 2760 jp 9 NW ATI (2) Sediment VOCS collected (01602 ~ 1 mup 3' 2761 jp gst jams ~ 20m up 4 2762 jp gNE) upstream crayfiln + odonatel in 1st rep of transect (and sample for % solids) 3 ECKMA prorabs taken @ 1606 (RCFr, CFr, LCTr a(ross station) Rep 2 Jabr (@ 1704 photos: 2755 jpg - PW02 transect Nom 1: Undercut hanging roots 2756 jpg - pw2 full transect wizm 2: woody debris, craytish, fish amon 3 (Small sticklæback) (both taken' to East) 3: sticki and leatpack GPS point (@ PW2 (taken by stake w/ Flagging 4: submerged woody dební N: 44 45264118 left by Nobis Fa and leatpack W: -73.11935145 Porewater semple) PW (11)(2m)2763 jpg ?(NE) sediment plugs taken @ 1629 2764. jpg) photos of tranject PWI (4 plugs) Rep! replicate2 plugi taken (21630 to verify reason tor Moving to PW2 (4 piugs) Rep 2 replicate 3 plug taken @ 1647 (4 plugs) Rep3 Deconed Ectman and replicate 4' plug taken @ 1653 -preserved samples with 80% (4 plugs) Rep 4 E+0H_ 1.ett site (2 1800

· · · · · · · · · · · · · · · · · · ·		×. 15
9.13.12 BGK, MCM, LB, MF, RS	9.13.12 BGK MCM	M, LB, MF, RS
Reference location: Arrival@ 0820. Parked in parking lot of Vermont Plastic Specialists, Inc. Rick S. opt permission	Ref GPS courd N: 44.45478	
From Rich Watson (802-879-0072)@209 Blair Park in Williston, VT	W: - 73.11757 Lin back of Ptalt	ics building
YSI Sonde Calibration:	past loading D	••••••••••••••••••••••••••••••••••••••
pH: 4.00Cal	New pH blank d hight pH @ 1037	
10.00 Cal 7.00 Cal Check: 6.991	5 drops HCL il 15 on pH pap	
Conductivity: 1000 unkern Cal 1000 uskin 1095	to VOC sample	
DO Cal % @100% v Do Cal Check: 100.8%, 9.105 ~41 L	Surface H20 VOC	na a come man company i a concer any any i and there are a construction of the second state
Walked down to reference location @ 0951	Bediment Eckm Dougland -3 grab Center channe	n down
pH: 8.17 8.21 MCM 9.13.12 cond(us/cm'): 9400 9405 D0°/0: 100.9 mcm 9.13.12	Replsediment p Rep2 sediment p Rep3 sediment p Rep4 staiment p	14 al 10 1058
DOmgle: 9.62 Temp(~c): +7-45 17.53 mm 9.13.12	Rep 2 plugs-lin t layer with sand	hick organic Dark gray

;;

	16
	IT 913-12 AACHA REFERENCE DE
	9.13.12 MCM, BGK, ME, LB SILLSANDMIX OS WELL TENTAN TARVAE
	arvae
	KEPZ.
	Repised plug-chunksot Jabi exposed aquatic
	The second standard with the second standard with the second standard standar
	Rep3 sed. plug-silt, sand, clay Some litter found in net.
	Rep3 sed plug-silt, sand, clay some litter found in net.
	water column invert samp bubblewrap) ~ 6mup
	BUBBICWIGP) ~ 6mvp
	JUDZ SURV WUUY Atbris
	larvae, odonates, snails and overlying veg ~7 mus
	N5m rootmat with overnanging found submerged (201132
	upstr. vegetation. @1116 metal can set in bank
	Moiluica + arthropoda Jab3: leat mat with
	represented phyla woody debris @1135~9mup
	JABE SUBMERGED WOODY JABY EXPOSED ODWOLLI
	debris Nom upstream cootmat reat litter and
	SUBMETHED WOODY _ WOODY debris@1136 NIDM
	debrit and overnanging upstream
	- vrgeration @ 1122 - Dace tound in rehziabs
	submitty ed lootpack caddisfly found in ren light
	Why Jab 3: submerged roofmat Stream not channelized
	WITH ARTRIFUL (N 1122 - but () OVERTION () ONDER
	ver jaby small leafpack Will become march. ver in small wood jam.@1125 - K Left site @1250
Щ.	
· .	

.

APPENDIX B

Lotic Benthos Field Sheets (ESAT & Steve Fiske copes)

LOTIC BENTHOS FIELD SHEET (2011 edition)	BioLab ID Chem LabID
Town: WILLISTON, VT D.D° Latitude: 44.44658066 Longitude	Crew MF, BGK, LB, MCM m width der: Drainage Area:Km ² Elevation:ft ::- <u>T3.1238009</u> 1 Lat/Long source (GPS - set to NAD83:) ather Previous (2 weeks/2days): HEANY CAIP LATING CLOUDY
Sampler: <u>Mr</u> Gear: <u>baders</u> Diatom Effort Time: <u>min</u> Mesh: <u>500</u> um Area: <u>m²</u> Quantitative: Y / N	PERIPHYTON COVER for each type 0-100% (See back for Periphyton Cover Form) n% Filamentous Green% and lengthin reen% Moss% Green% Other% al Trophic Rating: (0=oligo, 5=Eutroph)
EMBEDDEDNESS (5) 0-5% Excel (4) 5-25% V Good (3) 25-5 Silt Rating: 3 (0=none, 5= chocolate) Lg Woody Debris (>4"dia) #: 100m (reach)	0% Good (2) 50-75% Fair (1) 75%Poor Estimate % CPOM Rating (leaf packs): / (0= none,5=high)
B.F.Width: 25 (m) Wetted Width: 2.25 (m)	Warm Cold or Mixed Channelized: Y N Upstream Dam: Y N mi N Riffle Depth: 0,5 (m) Pool Depth:(m) and Obs: mi I (circle): (S) <0.4 ft/sec, (M) 0.4-2 ft/sec, (F) >2 ft/sec Measured: ft/sec
Riparian VEGETATION (both sides, does not need to Overstory: Softwood 0 % Hardwood 30 % Canopy %: 100 90 80 70 60 50 40 30 20 10	add up to 100%) Riparian Width (facing upstream) L718 m, R718 m Understory: Shrub (brush) 25 % Grass 0 % Herbaceous 75 % O Overhead: Open, Partly Open or Closed
Baseflow or Freshet Flow Present Flow: H - M - Temp Air <u>I</u> G °F Temp Water <u>I2.I4</u> °C fpH <u>7</u> .	
SITE SKETCH & GENERAL OBSERVATIONS (circle those A - Pollution: Sludge Sawdust Paper Fiber Sand Silt Sewage G B - Water Clarity: Clear Slightly Turbid Moderately Turbid Very Turbid Sa C - Water Color: Clear Crean Milky Brown (Tannic) L M H Gray Metall D - Odors: Musty Fishy Sewage Manure Sulfur(eggs) Aquatic Biota Observed: Mussels, Crayfish, Gastropods, Fish, Other	Oily Sheen Trash Iron Scum None ecci Tubemm lic Reddish Oily/gas r
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	see tield log book

ż

(ESAT)
Field Sheet Complete: <u>MCM</u> (initial) Photos: Y N
Fish Survey Conducted: Y /N

LOTIC BENTHOS FIELD SHEET	BioLab ID
(2011 edition) (Unnamed Stream)	Chem LabID
Site Name Muddy Brook Tributary # Site ID PW-17 Date 09-11-12 Time 1440 Crew MF, BGK Site Description Larg & riparian 2008	<u>IB</u> , MCM
Town: WILLISTON, VT Stream Order: D.D° Latitude: <u>14.44745849</u> Longitude: <u>13.1214729</u> Weather: SUNNY ~75°F Flow/Weather Previous (2 weel Surrounding Land Use: Surrounding Land Use:	Lat/Long source (GPS – set to NAD83:)
	mentous Green% and lengthin ss% Green% Other%
EMBEDDEDNESS (5) 0-5% Excel (4) 5-25% V Good (3) 25-50% Good (2) 50 Silt Rating: (0=none, 5= chocolate) CPON Lg Woody Debris (>4"dia) #: 0 /100m (reach)	-75% Fair (1) 75%Poor Estimate 100% 1 Rating (leaf packs): (0= none,5=high)
GENERAL WATER TYPE Riffle, Winder, or Other Warm, old, or B.F.Width: I.F. (m) Wetted Width: I.G. (m) Riffle Depth: Bank Stability: EX, VG, G F Velocity estimate (circle): S) <0.4 ft/s	D. L (m) Pool Depth: (m) and Obs:
	oarian Width (facing upstream) L <mark>718 m, R 718 m</mark> ry: Shrub (brush) <u>Ö</u> % Grass <u>O</u> % Herbaceous <u>100</u> % d: Open, Partly Open, or Closed
	,#) <u>YSI556</u> SONDE Annotate? Y/N
Cond 'pH Alk TP DP CI ICAnions Turb TN N02-3 Ca Mg Na K Hai	
SITE SKETCH & GENERAL OBSERVATIONS (circle those that apply) A-Pollution: Sludge Sawdust Paper Fiber Sand Silt Sewage Oily Sheen Trash Iron Scu B-Water Clarity: Clear Slightly Turbid Moderately Turbid Very Turbid Secci Tube mm C-Water Color: Clear Green Milky Brown (Tannic) L M H Gray Metallic Reddish D-Odors: Cone Musty Fishy Sewage Manure Sulfur(eggs) Oily/gas Aquatic Biota Observed: Mussels, Crayfish, Gastropods, Fish, Other Stick -	Overall Aesthetic Rating O (poor) - 5 (exc.) <u>3</u> Jm None Chack Set a Hatched fleid
	e of undercut iog book
	(ESAT)
	Field Sheet Complete:(initial) Photos: Y/ N Fish Survey Conducted: Y /N

LOTIC BENTHOS FIELD SHEET	BioLab ID
• • • • • • • • • • • • • • • • • • •	hem LabID
Site Name Muddy Brook Tributary 4 Site ID PW-11	· · · · · · · · · · · · · · · · · · ·
Date 9.12.12 Time 1113 Crew MF, BGK, M Site Description Near Street and parking	10t of Aquatec
Town: WIIIISTON, VT Stream Order: Drai D.D° Latitude: 44493829 Longitude: 73.1218823 DLat/L Weather: SUNNY, CLEAN Flow/Weather Previous (2 weeks/2days Surrounding Land Use: COmmercial/inductrial	nage Area:Km ² Elevation:ft Long source (GPS - set to NAD83:) S): <u>Clear/sunny</u> Partiy cloudy at times [
Sampler: <u>MF</u> Gear: <u>WOOLE</u> Diatom <u>%</u> Filamentous	Heavy fain past 2 wks type 0-100% (See back for Periphyton Cover Form) Green% and lengthin _% Green% Other%
EMBEDDEDNESS	<u> </u>
(5) 0-5% Excel (4) 5-25% V Good (3) 25-50% Good (2) 50-75% Fai Silt Rating: (0=none, 5= chocolate) CPOM Rating Lg Woody Debris (>4"dia) #: 100m (reach)	ir (1) 75%Poor Estimate 00% (leaf packs): 3% (0= none,5=high) mcm q. 12:12
GENERAL WATER TYPE Riffle, Winder, or Other Warm Cold, or Mixed	n) Pool Depth: (m) and Obs:
Riparian VEGETATION (both sides, does not need to add up to 100%)Riparian WOverstory: Softwood0%Hardwood55%Understory: ShrulCanopy %: 100908070605040(30)20100Overhead: Open,	b (brush) 20 % Grass 0 % Herbaceous 80 %
WATER QUALITY PARAMETERS Sampler: $Mf + \beta G K$ Meter (type, #) γS Baseflow or Freshet FlowPresent Flow: H $M - L$ Annotat	e? Ý/N
Temp Air 82 °C FTemp Water 13.40°C fpH 7.57 lab pH fCond	1004 D.O.% 7.4 D.Omg/17.92 Color clear
Cond pH Alk TP DP Cl ICAnions Turb TN N02-3 Ca Mg Na K Hardness	
SITE SKETCH & GENERAL OBSERVATIONS (circle those that apply) A - Pollution: Sludge Sawdust Paper Fiber (Sand Silt) B - Water Clarity Clear Slightly Turbid Moderately Turbid Very Turbid Secci Tubemm C - Water Color: Clear Green Milky Brown (Tannic) L M H Gray Metallic Reddish D - Odors: None Musty Fishy Sewage Manure Sulfur(eggs) Oily/gas Aquatic Biota Observed: Mussels, Crayfish, Gastropods, Fish, Other	Overall Aesthetic Rating 0 (poor) – 5 (exc.) _3
crayfish, stickleback see field log b	
see Fierd log b	OOK
· · · · · · · · · · · · · · · · · · ·	(ESAT)
· , ,	Field Sheet Complete: <u>M C M</u> (initial) Photos: Y/ N Fish Survey Conducted: Y/ N

•

۰

LOTIC BENTHOS FIELD SHEET BioLab ID (2011 edition) Chem LabID (Unnamed Stream)	
Site Name Muddy Brook Tributory 4 River Mile	
Date 9.12.12 Time 1710 Crew MCM MF. LB, BGK Site Description behind building	
Town: Williston, VT Stream Order: Drainage Area: Km ² Elevati D.D° Latitude: 44.45264118 Longitude: -73.11935145 Lat/Long source (GPS - set to NAD83:) Weather: Clear Surrounding Land Use: Commercial + industrial	
SAMPLING INFORMATION Chest for each type 0-100% (See back for Periphy Sampler: MF Gear: NFF Diatom % Filamentous Green % and length Effort Time: min Mesh: 500 um Blue Green % Moss % Green % Other Area: m² Quantitative: Y / N General Trophic Rating: (0=oligo, 5=Eutroph)	in
EMBEDDEDNESS(5) 0-5% Excel(4) 5-25% V Good(3) 25-50% Good(2) 50-75% Fair(1))75% PoorEstinSilt Rating: 2 , (0=none, 5= chocolate)CPOM Rating (leaf packs):(0= none, 5=Lg Woody Debris (>4" dia) #: 5 /100m (reach) mcm, 12, 12All sand (SILIU. (0 M)IU. (0 M)IU. (0 M)IU. (0 M)	=high)
GENERAL WATER TYPE B.F.Width: $2,1$ (m)Riffle, Winder, or Other Winder, or Other Warm Cold, or Mixed Riffle Depth: $0,17$ (m)Channelized: Y Pool Depth: Pool Depth: Warm Cold, or Mixed Riffle Depth: $0,17$ (m)Upstreeter Pool Depth: Pool Depth: Pool Depth: Pool Depth: Pool Depth: Marm Cold, or Mixed Riffle Depth: $0,17$ (m)Upstreeter 	(m) and Obs:
Riparian VEGETATION (both sides, does not need to add up to 100%)Riparian Width (facing upstream) $\mathcal{L} \not{\mathcal{L}} \not{\mathcal{L}} m$,Overstory:Softwood $\underline{0}$ %Hardwood $\underline{90}$ %Understory: Shrub (brush) $\underline{0}$ % Grass $\underline{10}$ %Canopy %:100 $\underline{90}$ 80 70 60 50 40 30 20 10 0Overhead: Open, Partly Open, or Closed MOS TR	6 Herbaceous 90 %
WATER QUALITY PARAMETERS Sampler: Bit Meter Meter (type, #) Meter (type, #) Baseflow or Freshet Flow Present Flow: H - M - L Meter (type, #) Meter (type, #) Meter (type, #)	· · · · · · · · · · · · · · · · · · ·
Temp Air <u>75</u> °C F mp Water <u>1683</u> °C fpH <u>185</u> lab pH fCond <u>916</u> D.O.% <u>88.2</u> D.Omg/ Cond pH Alk TP DP CI ICAnions Turb TN N02-3 Ca Mg Na K Hardness Metals, TNH3, TSS Other	1 <u>8.51</u> Color <u>C1C</u> Ar
SITE SKETCH & GENERAL OBSERVATIONS (circle those that apply) Overall Aesthetic Rating 0 (p	
A-Pollution: Sludge Sawdust Paper Fiber Sand Silt) Sewage Oily Sheen Trash Iron Scum None B-Water Clarity: Clear Slightly Turbid Moderately Turbid Very Turbid Secci Tubemm C-Water Color: Clear Green Milky Brown (Tannic) L M H Gray Metaillic Reddish D-Odors: None Musty Fishy Sewage Manure Sulfur(eggs) Oily/gas Aquatic Biota Observed: Mussels, Crayfish, Gastropods, Fish, Other	oor) – 5 (exc.) <u>– – –</u>
Crayfish, fish (stickleback), odonates	
see tield log book	,
(ESAT)	
Field Sheet Complete: Photos: Y/ N Fish Survey Conducted: Y	\sim

.

LOTIC BENTHOS FIELD SHEET BioLab ID	
(2011 edition) (Unnamed Stream) Chem Labl)
Site Name MUDDY BROOK Trib 4 Site ID REFERENCE. Date 9.13.12 Time 0955 Crew MF BAK LB Site Description behind loading dock @Verwont P	
Town: WILLISTON, VT Stream Order: Drainage Area D.D° Latitude: 44.45478218 Weather: Clear/sunny Flow/Weather Previous (2 weeks/2days): SUN Surrounding Land Use: industrial + Commercial	:Km ² Elevation:ft e (GPS – set to NAD83:)
SAMPLING INFORMATION Qual. PERIPHYTON COVER for each type 0-100 Sampler: MF Gear: Diatom % Filamentous Green Effort Time: min Mesh: 500 um Blue Green % Moss % Green Area: m² Quantitative: Y / N General Trophic Rating: (0=oligo, 5=Eu	% and lengthin een% Other%
EMBEDDEDNESS (5) 0-5% Excel (4) 5-25% V Good (3) 25-50% Good (2) 50-75% Fair (1) Silt Rating: (0=none, 5= chocolate) CPOM Rating (leaf pack Lg Woody Debris (>4"dia) #: 2 /100m-(reach) MC ~ 9.13.12 I ~ M), 75%Poor Estimate 00 % s): (0= none,5=high)
GENERAL WATER TYPERiffle Winder, or OtherWarm, Cold, or MixedChanneB.F.Width:2.3(m)Wetted Width:1.7(m)Riffle Depth:0.16(m)Bank StabilityEXVGGFVelocity estimate (circle):(S)<0.4 ft/sec, (M) 0.4-2 ft/	Pool Depth:(m) and Obs: sec, (F) >2 ft/sec Measured: ft/sec
Riparian VEGETATION (both sides, does not need to add up to 100%) Riparian Width (facinOverstory: Softwood0% Hardwood4 0 %Understory: Shrub (brush)Canopy %: 1009080706050403020100Overhead000000000	O % Grass <u>40</u> % Herbaceous <u>60</u> %
WATER QUALITY PARAMETERSSampler: BC_{TL} Meter (type, #) $SI 55L$ Baseflow or Freshet FlowPresent Flow: H - M - (L)Annotate? Y / N	sonde
Temp Air <u>70</u> °C, FTemp Water <u>1.53</u> °C fpH <u>8,21</u> lab pH fCond <u>965</u> D	.0.% <u>100.9</u> D.Omg/19.62 Color <u>Clea</u> r
Cond pH Alk TP DP CI ICAnions Turb TN N02-3 Ca Mg Na K Hardness Metals, T	NH3, TSS Other,,
A - Pollution: Sludge Sawdust Paper Fiber and Silt Sewage Oily Sheen Trast Iron Scum None B - Water Clarity: Clear Slightly Turbid Moderately Turbid Very Turbid Secci Tubemm C - Water Color: Clear Green Milky Brown (Tannic) L M H Gray Metallic Reddish D - Odors: None Musty Fishy Sewage Manure Sulfur(eggs) Oily/gas Aquatic Biota Observed: Mussels, Crayfish, Gastropods, Fish, Other	all Aesthetic Rating O (poor) - 5 (exc.) 3 Loading Dakin view
odonates and shalls dace species	
set field log book	
	(ESAT)
Pi Pi	eld Sheet Complete: <u>MCM</u> (initial) notos: Y/N sh Survey Conducted: Y/N

ł	
	Fish Survey Conducted: Y /N
1	

APPENDIX C

Habitat Assessment Field Datasheet - Low Gradient

HABITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (FRONT)

STREAM NAME UNNOMED Stream	LOCATION PW-20
STATION # RIVERMILE	STREAM CLASS
LAT+4.4465806LONG-73,1238009	RIVER BASIN
STORET #	AGENCYTECHLAWING ESAT
INVESTIGATORS MCM, MF, BC	TK, LB
FORM COMPLETED BY Meaghan Macri	DATE 9.11.12 TIME 0940 AM PM REASON FOR SURVEY

	Habitat	Condition Category			
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
ach	score 10	20 19 18 17 16	15.14.13.12.11.	10 9 8 7 6	5.4.3+2.10
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
lated	SCORE 14	20 19 18 17 16	<15 14 13 - 12 11 -	10 - 9 8 7 6;	5 4 3 2 1 0
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large- deep, very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
mete	score 2	20 19 18 17 16	15, 14, 13, 12, 11,	<u>,</u> 10 . 9 . 8 . 7 6	5 4 3 2 1 0
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 19	20 19 18 417 16	15 14 13 12 11	10.94.8.754.6	5 4 3 2 1 0
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0.2

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

.

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

	Habitat	Condition Category				
	Parameter	Optimal Suboptimal Marginal			Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10: 9 8 7 6	5 4 3 2 1 0	
pling reach	.7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.	
samj	score 15	20 19 18 17 16	13. 14/2130 122 11.2	10 9 8 7 6	5 4 3 2 1 0	
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing, 60-100% of bank has erosional scars.	
evalı	SCORE (LB)	L'eft Bank 10 (9)	8 7 6	5 4 3	2, 1 0	
to be	SCORE $\underline{\mathbf{q}}$ (RB)	Right Bank 10. 9	8+ 7 64	5 4 3	2 1 0	
Parameters	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.	
	SCORE (LB)	Left Bank 19 9	8:76	5 4 3	2 1 0	
	SCORE 10 (RB)	Right Bank (10) 9	8 7	<u>5</u> 43	2 1 0	
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.	
	SCORE 10 (LB)	Left Bank 10.9	8 7 6	5 4 3	2 1 0	
	SCORE 10 (RB)	Right Bank 10 9	8 7 6	4 3	2	

Total Score 154

A-10 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

HABITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (FRONT) MUDDY BYDDY (WWAMED Stream)

	dela Gritadini
STREAM NAMETRI BUT ON VH4	LOCATION DW-17
STATION # RIVERMILE	STREAM CLASS
LAT44.44745849LONG-73.12141299	RIVER BASIN
STORET #	AGENCYTECHIAN, InC. ESAT
INVESTIGATORS MF BGK, LB	MCM
FORM COMPLETED BY MEAGHAN MACTI	TIME 1435 AM PM COmmerce Street

	Habitat	l	Condition	Category		
	Parameter	Optimal	Suboptimál	Marginal	Poor	
	1. Epifaunal Substrate/ Available Cover	Greater than 50% of substrate favorable for epifaunal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and not transient).	30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat, habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	€c¥-
ach	SCORE H	20 19 18 17 16		i⊭li0', 9 ↔ 8,, ∺7,6	5 4 3 2 0	80K. 9-11-12
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay, mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom, little or no root mat, no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.	~~~~
ated	SCORE II	20, 19, 18, 17, 16	and a second	810 9 8 6	5 4 3 2 12 0	1.11.12 911
rs to be evalu	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.	
nete	score 2	20, 19, 18, 17, 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
	SCORE 20	20, 19, 18, 17, 16	15.14.13.12.11.	10 94 8 7 6	···5··4··3·2··1·0	
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
	score 17	20 19, 118	15 14 13 12 11	10 9 8: 7 6	5 4 3 2 1 0	

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

. .

PW-17

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

Т	Habitat	Habitat Condition Category			
	Parameter	Parameter Optimal Marginal Marginal		Poor	
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	score 20 (20 19 18 17 16	15,14,13,12,11	10, 9 8 7 6	5 4 3 2 1 0
oling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
samp	SCORE 14	20 19 18 17 16	151 (14) 13 12 1 11	10 (19 8) 7 6	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
to be eval	SCORE $\underline{1}$ (LB) SCORE $\underline{1}$ (RB)	Left Bank: 10 9 Right Bank 10 9	8 · (1) · 6' · · · 8 · (1) · 6	<u>5 4 3</u> <u>5 4 3</u>	2 <u>1</u> <u>0</u> 2 <u>1</u> <u>0</u>
Parameters to	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	$\frac{10}{\text{SCORE}} \frac{10}{10} \text{(LB)}$	Left Bank 10 9 Right Bank 10 9	<u>8</u> 7 6 8 7 7 6	5 4 <u>3</u> 5 4 <u>3</u>	2 1 0 2 10 0
	SCORE IV (KB)				Width of riparian zone <6
·	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	12 meters; human activities have impacted zone a great deal.	meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left Bank 10 9	8 7 6	5 4 3	
	SCORE 10(RB)	Right Bank 10 9	8	4.3	. 2

Total Score <u>152</u>

HABITAT ASSESSMENT FIELD DATA SHEET LOW GRADIENT STREAMS (FRONT) MUDDIN BYDOK (UNYOMUC) STREAM)

STREAM NAME Trib 4	LOCATION PW-11
STATION # RIVERMILE	STREAM CLASS
LAT 114. 4493829LONG-13.12188230	RIVER BASIN
STORET #	AGENCY ESAT, TECHIAW INC.
INVESTIGATORS MF, BGK MLM,	LB
FORM COMPLETED BY Meaghan Macri	DATE 9.12.12 TIME 1020 APPM REASON FOR SURVEY COMMERCE STREET

	Habitat	· · · · · · · · · · · · · · · · · · ·	Condition	Category	
,	Parameter	Optimal	Suboptimal	Marginal	Poor
	Available Cover fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags		30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
each	SCORE 17	201 19 18 17 16	$\{15, \pm 14, \pm 13, \pm 12, \pm 11\}$	10,589 n .8, 117 6	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	, ,		All muid or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
atec	SCORE 3	20. 19: 18 17 16.	12 11	10 9 8 7 6	5 4 3 2 1 0
rs to be eval	3. Pool Variability	Even mix of large- shallow, large-deep, small-shallow, small-deep pools present.	Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
mete	score 3	20 19 18 17 16	15. 14. 13 12. 11	10,9876	5 4 3 2 11 0 1
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development, more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10 9 ↔ 8 ↔ 7 * 6	5 4 3 2 1 0
	5. Channel Flow Status	5. Channel Flow Water reaches base of both lower banks, and		Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 15	20 19. 18 17 16	5 14 13 12 11	10 91 78 77 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

HABITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (BACK)

- 1	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	6. Channel Alteration			Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly. altered or removed entirely.
	SCORE 19	203 (19) 18 17 16	<u>, 15 414</u> 13 12 11	_10; . '9 · · '8 / '7 6;	<u>5</u> 4 3 2. 1 0
ing reach	7. Channel Sinuosity			The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
samj	SCORE LO	20, 19 18 17 16	15, 14, 13, 12, 11,	10:9:8:17:0:	5 4 3 2 1 0
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
to be evalu	$\frac{SCORE}{SCORE} \frac{9}{9} (LB)$	Left Bank 10 Right Bank * 10 9	8 7 6	<u>543</u> <u>543</u>	2 l 0
Parameters to	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	SCORE $\frac{10}{10}$ (LB) SCORE $\frac{9}{1}$ (RB)	Left Bank 10 9 Right Bank 10 9	8 7 6 8 7 6	5 <u>4</u> <u>3</u> 5 <u>4</u> <u>3</u>	$\frac{2}{2} = \frac{1}{1} = \frac{0}{0}$
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.
	$\frac{10}{10} (LB)$	Left Bank 10 9 Right Bank 10 9	8 7 6 8 7 6	5 4 3 5 4 3	2 1 0 2 1 0

Total Score 151

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT)

MANAN DIOUL CONTACT	
STREAM NAME TI ibutary 4	LOCATION PWZ
STATION # RIVERMILE	STREAM CLASS
LAT 44.45264118 LONG-13.11935145	RIVER BASIN
STORET #	AGENCY ESAT TPCHIQNINC
INVESTIGATORS MF. BGK, LB, M	CM
FORM COMPLETED BY Meaghan Macri	DATE 9.12.12 TIME 1631 AM PM REASON FOR SURVEY

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	1. Epifaunal Greater than 50% of Substrate/ substrate favorable for Available Cover epifaunal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).		30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
ach	SCORE 7	20 19 18 17 816	$15 \leftarrow 14 > 13 \rightarrow 12 \rightarrow 14$	<u>10, 9, 8, 9, 6</u> , 6,	<u>.54321.0</u>
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.		Mixture of soft sand, mud, or clay, mud may be dominant, some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
lated	SCORE	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6.	5 4 3 2 1 0
s to be evalu	3. Pool Variability Small-shallow, large-deep, small-shallow, small-deep pools present.		Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
mete	score ()	20 19 18 17 16	15.14.13.12.11	10 9 8 7 6	5 4 3 2 1 0
Param	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 19	20, 19, 18, 17 + 16	15, 14, 13, 12, 11	10 9 . 8 4 7 . 6	5 4 3 2 1 02
	5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
·	SCORE 10	20 19 18 17 16	15 14 13 12 11	(10) 9 8 7 6	5 4 3 2 1 0.5

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

PW-2

HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK)

Τ	Habitat	Condition Category					
	Parameter	Optimal	Suboptimal	Marginal	Poor		
	6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted Instream habitat greatly altered or removed entirely.		
	SCORE 6	20 19 18 17 16	15 14 13 12 11	:10 9 8 7 6	5 4 3 2 1 0		
ling reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.		
samp	SCORE ()	20 19 18 17 16	<u>15</u> , 14, 세3주12 ¹ 만.	(10 · · · 9) <u>8</u> · · 7/ · · 6	5 4 3 2 1 0		
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
be eva	SCORE $\frac{b}{b}$ (LB)	Left Bank 10 9 Right Bank 10 9	$ \begin{array}{c c} $	5 4 3 5 4 3	<u>2 1 0</u> 2 1 0		
Parameters to	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more	surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
	$\frac{10}{\text{SCORE}} \frac{10}{\text{(LB)}}$	Left Bank 10 9 Right Bank 10 9	<u>8</u> 76	$\frac{5}{5} + \frac{4}{4} + \frac{3}{5} + \frac{3}{5}$	2 <u>1 0</u> 2 <u>1 0</u>		
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6- 12 meters; human activities have impacted zone a great deal.	Width of riparian zone < meters: little or no riparian vegetation due t human activities.		
	SCORE 10(LB)	Left Bank 🕜 9	8 7. 6	<u> </u>	2		
	SCORE 1 (RB)	Right Bank 10 9	8	5 4 3			

Total Score <u>45</u>

A-10 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 3

, A

HABITAT ASSESSMENT FIELD DATA SHEET LOW GRADIENT STREAMS (FRONT)

STREAM NAME AND DY Brook	LOCATIONREFEVENCE SIFE
STATION # RIVERMILE	STREAM CLASS
LAT44.454782180NG-73.11757334	RIVER BASIN
STORET #	AGENCY ESAT TECHION INC
INVESTIGATORS MCM, BGK, L	
FORM COMPLETED BY	TIME 1102 AM PM REASON FOR SURVEY STRECT

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	I. Epifaunal Substrate/Greater than 50% of substrate favorable for epifaunal colonization and fish cover, mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient).		30-50% mix of stable habitat, well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 10% stable habitat, lack of habitat is obvious; substrate unstable or lacking.
ach	SCORE 15	20, 19, 18, 17, 16	14 13 12 11	-li0 9 8 7 6 s	5 4 3 2 1 0
Parameters to be evaluated in sampling reach	2. Pool Substrate Characterization	Mixture of substrate materials, with gravel and firm sand prevalent; root mats and submerged vegetation common.	Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present.	All mud or clay or sand bottom; little or no root mat; no submerged vegetation.	Hard-pan clay or bedrock; no root mat or vegetation.
uatec	score 12	20 19 18 17 16	15 14 13 🕜 11	10 9 8 7 6	5 4 3 2 1 0
rs to be eval	3. Pool Variability Shallow, large-deep, small-shallow, small-deep pools present.		Majority of pools large- deep; very few shallow.	Shallow pools much more prevalent than deep pools.	Majority of pools small- shallow or pools absent.
nete	SCORE 7	20. 19. 18. 17. 16.	15 14 13 12 11	10 9 8 7 6	5 4.3 2.1 0
Paran	4. Sediment Deposition	Little or no enlargement of islands or point bars and less than <20% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 50-80% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
	SCORE 18	20, 19 (18, 17, 16	15 14 13 12 11	10 9 8, 7 6	5 4 3 2 1 0
	5. Channel Flow . Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
	SCORE 19		15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 3

HABITAT ASSESSMENT FIELD DATA SHEET-LOW GRADIENT STREAMS (BACK)

	Habitat		Condition	Category	
	Parameter	Optimal	Suboptimal	Marginal	Poor
	5. Channel Channelization or Alteration dredging absent or minimal; stream with normal pattern.		Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	SCORE 20	20 19 18 17 16	15 14 13 12 11	10,, '9 8. 7 6,	5 4 3 2 1 0
ing reach	7. Channel Sinuosity	The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.)	The bends in the stream increase the stream length 1-to-2-times longer than if it was in a straight line. 2 +0 3 MCM 9.13.12	The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line.	Channel straight; waterway has been channelized for a long distance.
sam	SCORE 14	20' 19" 18 17 2 16	15/ 13 12 14	10 19 8 1.7 6	
Parameters to be evaluated broader than sampling reach	8. Bank Stability (score each bank)	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30- 60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
to be eval	SCORE <u>10</u> (LB) SCORE <u>10</u> (RB)	Left Bank 19 9 Right Bank 10 9	8 7 6 8 7 6	<u>5 4 3</u> <u>5 4 3</u>	2 1 0 2 2 1 0
Parameters to	9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream.	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.		Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	$\frac{10}{\text{SCORE}} \frac{10}{10} \text{(LB)}$	Left Bank (10) 9. Right Bank (10) -9.	8 7 6 8 7 6	<u> </u>	2 1 0 3 2 1 0
				S SALE STOLET AND ADDRESS OF SALES AND ADDRESS AND ADDRESS AND ADDRESS A	Width of riparian zone <6
	10. Riparian Vegetative Zone Width (score each bank riparian zone)	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12- 18 meters; human activities have impacted zone only minimally.	12 meters; human activities have impacted zone a great deal.	meters: little or no riparian vegetation due to human activities.
	SCORE (LB)	Left-Bank 10 9		5 4 3	
	SCORE <u>10</u> (RB)	Right Bank 0 9	8 7 (6)	5 4 3	2

Total Score 161

APPENDIX D

ş.

Physical Characterization/Water Quality Field Datasheets

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET

Muddy Brook (UNNOUME	Stream)
STREAM NAME UTTTIB 4	LOCATION PW-20
STATION #RIVERMILE	STREAM CLASS
LAT 44.4465506LONG-73.12380091	RIVER BASIN
STORET #	AGENCY ESAT TECHIAW INC.
INVESTIGATORS MCM, MF, BGK, L	B
FORM COMPLETED BY Meaghan Macri	TIME 0940 M PM REASON FOR SURVEY COMMETCE STIPET Plume

WEATHER CONDITIONS	Now	storm (heavy rain) rain (steady rain) showers (intermittent) %cloud cover clear/sunny	Past 24 hours	Has there been a heavy rain in the last 7 days? Yes No Air Temperature C Other
SITE LOCATION/MAP		os: (red N	iikon)	pled (or attach a photograph) Facing East
	Be	2730	jpg- nplir	East(sed.plug) ng Locations(VT)
		2732. j f 2733. j f 2734. j	pg- N pg - S	
		· .		
	Availe Con	able in : G. ¹ Inmerce st(NALLS' VT)	HARELESATBICA
STREAM CHARACTERIZATION	Stream Sul Perennial Stream Or Glacial Non-glac Swamp a	igin JiSpring- ial montane Mixtury	fed e of origins	Stream Type Coldwater D Warmwater Catchment Areakm ²

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) Pい-てい

WATERSHED FEATURES	Predominant Surrounding Landuse Forest AC commercial Field/Pasture Industrial Agricultural Other Residential	Local Watershed NPS Pollution No evidence Some potential sources Obvious sources Local Watershed Erosion None Moderate Heavy	
RIPARIAN VEGETATION (18 meter buffer)		Herbaceous OHECIENINEED	various grass tive fermining
INSTREAM FEATURES	Estimated Reach Length 16 m Estimated Stream Width 2.25 m Sampling Reach Area 36 m^2 mCM Area in km ² (m ² x1000) 360000 km^2 0.86 Estimated Stream Depth 0.6 m^2 0.5 Surface Velocity 40.1 m/sec	Canopy Cover Partly open Partly shaded Shaded High Water Mark O. O. m Proportion of Reach Represented by Stream Morphology Types Riffle % CRunted % 80 Pool 20 % Runted % 80 More 9.11.2 Channelized Yes No Dam Present Yes No	
LARGE WOODY DEBRIS	LWD <u>1</u> m ² 27- 8 2/Km ² Density of LWD 45% <u>m²Aem² (LWD/ reach mCh1 9-13,12</u>	h area)	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant Rooted emergent Floating Algae dominant species present Portion of the reach with aquatic vegetation	Noliving vegetation	
WATER QUALITY	Temperature <u>12.14</u> °C Specific Conductance 1916µ5/CM ^C Dissolved Oxygen <u>13.5</u> %, 7.82mg/1 pH <u>7.42</u> Turbidity <u></u> WQ Instrument Used <u>YS1 556</u> Son de	Water Odors Normal/None Sewage Petroleum Chemical Fishy Other Water Surface Oils Globs Slick Sheen Globs Slick Other Turbidity (if not measured) Turbid Clear Slightly turbid Other Opaque Stained Other	· · ·
SEDIMENT/ SUBSTRATE	Odors BiNormal Sewage Petroleum Chemical Anaerobic None Other Other Other Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Paper fiber Sand Relict shells Other DC dep ocities Looking at stones which are not deeply embedded, are the undersides black in color?	

INORGANIC SUBSTRATE COMPONENTS (should add up to 100%)			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)			
Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock		0	Detritus	sticks, wood, coarse plant materials (CPOM)	20	
Boulder	> 256 mm (10")	0		materials (CPOIVI)		
Cobble	64-256 mm (2.5"-10")	0	Muck-Mud	black, very fine organic (FPOM)	0	
Gravel	2-64 mm (0.1"-2.5")	0	·	(FPOM)		
Sand	0.06-2mm (gritty)	50	Marl	grey, shell fragments	0	
Silt	0.004-0.06 mm	50]		. 0	
Clay	< 0.004 mm (slick)	0]^			

A-6 Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET

(FRONT)

Muddy Brook (Uni	named Stream			
STREAM NAMETRI BUTAIN 4	LOCATION PW-17			
STATION # RIVERMILE	STREAM CLASS			
LATH	RIVER BASIN			
STORET #	AGENCY TECHLOW INC ESAT			
INVESTIGATORS MF. BGK LB.	MCM			
FORM COMPLETED BY Meaghan Macri	TIME 1430 AM PM COMMERCESTREET			

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days? PYes storm (heavy rain) Air Temperature 25°C showers (intermittent) 50% %Cloud cover 50% clear/sunny Conter
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph) <u>photos</u> : 2135.jpg 2736.jpg 2736.jpg 2737.jpg 2738.jpg 2739.jpg-NE - Sed.grableckman 2740.jpg-NE - Jab#1 2741.jpg-E - Jab#1 2742.jpg-E - Jab#2 Repl
STREAM CHARACTERIZATION	2743.jpg-SE_Jab#3 2743.jpg-SE_Jab#4) Available in G: NALLSHARE VESATBION COMMERCE St(VT) Stream Subsystem Perennial Intermittent I Tidal Stream Type Coldwater Warmwater
	Stream Origin Glacial Non-glacial montane Swamp and bog Swamp

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) PW-17

o

							1		
FEATURES G Forest		edominant Surrounding Landuse Forest Commercial Field/Pasture Industrial Agricultural Other		Local Watershed NPS P No evidence Some Obvious sources					
		C Reside	ntial		None O Moderate	n 🖸 Heavy			
RIPARIAN VEGETAT	ION	Indicate	the dominant type and	record the dor	ninant species present	baceous			
(18 meter b	ouffer)	dominar	it species present \underline{CQ}	Hails	potted jeweln	eed phragm	tes,		
INSTREAM FEATURES Estimated Reach Length 1.7 Occauje mundereur Ganopy Cover Martiy open Dertiy shaded Shaded							ie ioosestrite		
FEATURE	.S	Estimate	ed Stream Width 1.8	<u>m</u>	High Water Mark <u>Ö</u> .				
			g Reach Area $2.5.$		Proportion of Reach Re				
			$km^2 (\frac{m^2 \times 1000}{M Cm}) = 0.020$	<u>22</u> km² 2	Morphology Types Riffle %	Run 100 %			
х.			ed Stream Depth <u>0.4</u> Velocity <u>201</u> m/	<u>Z</u> _m	Channelized Q Yes	No			
		, (at thalw	veg)		Dam Present 🛛 Yes	No	· ·		
LARGE W DEBRIS	OODY	LWD	m²						
DEBRIS		Density	of LWDm ²	²/km² (LWD/ r	each area)				
AQUATIC VEGETAT			the dominant type and d emergent						
VEGETAI		G Floatin	ng Algae 🗘 Att	MCM 4.11.12					
			dominant species present $\frac{N/A}{N/A}$ NO $\frac{1}{\sqrt{1000}}$ $$						
·			ature15.52°C	ic vegetation	Water Odors Water Odors Detroleum				
WATER C	UALITY								
		Dissolved Oxygen 78.4% 7.75mg/L Fishy UOther							
		pH_7.58 Water Surface Oils Globs Flecks							
1		Turbidi							
		WQ Ins	WQ Instrument Used <u>ISI 55 (c</u> Sond C :						
SEDIMEN		Odors Norm		D Petroleum	Deposits	Paper fiber Sand			
SUBSTRA	TE :	Chem	ical 🖵 Anaerobic	None	Relict shells	Other NO Depolits			
					are the undersides blac	h are not deeply embedded, k in color?			
L		Abser	nt 🖸 Slight 📮 Moderat	e 🗅 Profus	se 🛛 Yes 🖓 No	NA (NO STO	ints j		
INORGANIC SUBSTRATE COM (should add up to 100%			COMPONENTS 100%)		ORGANIC SUBSTRATE C (does not necessarily add	OMPONENTS up to 100%)			
Substrate Diameter Type		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area				
Bedrock		0	Detritus	sticks, wood, coarse plant materials (CPOM)	40				
Boulder > 256 mm (10")		0		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	4			
Cobble 64-256 mm (2.5"-10") Gravel 2-64 mm (0.1"-2.5")				Muck-Mud	black, very fine organic (FPOM)	. 20			
Gravel Sand	0.06-2mm (grit		30	Marl	grey, shell fragments		1		
Silt	0.004-0.06 mm		60	1	-	0			
Clay			10]					

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT)

Muddy Brook (Unnamed Stream)							
STREAM NAMET FI butary 4	LOCATION PW-11						
STATION # RIVERMILE	STREAM CLASS						
LAT 44.4493829LONG-13.12188230	RIVER BASIN						
STORET #	AGENCY ESAT, techlaw inc.						
INVESTIGATORSMF, MCM, BGK, LB							
FORM COMPLETED BY Meaghan Macri	TIME 1015 AM PM REASON FOR SURVEY TIME 1015 AM PM COMMERCE STREET						

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days? Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: rain (steady rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy ra
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photographs) Photographs: 2746. jpg (SE) @transect 2746. jpg (SE) Flecks of oil 2747. jpg (S) Scoopf fediment 2748. jpg (SE) 1st Jab Rep 1 2749. jpg (SE) 2nd Jab Rep 1 2752. jpg (SE) 3nd Jab Rep 1 2753. jpg (E) 4th Jab Rep 1
	Available in G:\\ALLSHARE\ESATBIO\ Commerce St(VT)
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal Stream Origin Catchment Areakm² Glacial Mixture of origins Non-glacial montane Mixture of origins Swamp and bog Other Ut b an Ru not ft

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

ł

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) PW-11

WATERSHED FEATURES	Predominant Surrounding Landuse Forest QCommercial Field/Pasture Industrial Agricultural Other Residential	Local Watershed NPS Pollution Do evidence Some potential sources Wobvious sources Local Watershed Erosion Wone Moderate Heavy	~ 5
RIPARIAN VEGETATION (18 meter buffer)	Indicate the dominant type and record the dominant NTrees dominant species present SPOHED I PV	Grasses Various	
INSTREAM FEATURES	Estimated Reach Length $\frac{11.3}{1.0}$ m Estimated Stream Width 1.0 m Sampling Reach Area $\frac{11.3}{1.0}$ m ² Area in km ² (m ² x1000) - 0.0113 km ² Estimated Stream Depth 0.2 m Surface Velocity 40.1 m/sec (at thalweg)	Canopy Cover Partly open APartly shaded Shaded Mite High Water Mark C228 m Proportion of Reach Represented by Stream Morphology Types ARun 90 % Prool 10 % Channelized Yes No	ed decid vous
LARGE WOODY DEBRIS	LWD 0.5 m ² Density of LWD 44.25 m ² /km ² (LWD/ react	h arca)	
AQUATIC VEGETATION	Indicate the dominant type and record the dominant A Rooted emergent Floating Algae dominant species present SUBME 199 Portion of the reach with aquatic vegetation	dbroadleaf	
WATER QUALITY	Temperature <u>B.40</u> °C Specific Conductance 100 4µs/cm ^c Dissolved Oxygen <u>769</u> , 7.92 mg/l pH <u>7.57</u> Turbidity <u> </u>	Water Odors Vel Normal/None Sewage Petroleum Chemical Fishy Gother Water Surface Oils Slick Sheen Globs Flecks 20.5 W None Other Turbidity (if not measured) AClear Slightly turbid Opaque Stained Other	2
SEDIMENT/ SUBSTRATE	Odors Sewage Petroleum Chemical Anaerobic None Other Other Petroleum Oils Absent Slight Moderate Profuse	Deposits Sludge Sawdust Relict shells Looking at stones which are not deeply embedded, are the undersides black in color? Yes No NA NO Stonts	+ ,
r			1

INORGANIC SUBSTRATE COMPONENTS (should add up to 100%)			ORGANIC SUBSTRATE COMPONENTS (does not necessarily add up to 100%)			
		% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock		0	Detritus	sticks, wood, coarse plant materials (CPOM)	30	
Boulder	> 256 mm (10")	0		materiais (CrOM)		
Cobble	64-256 mm (2.5"-10")	0	Muck-Mud	black, very fine organic (FPOM)	0	
Gravel	2-64 mm (0.1"-2.5")	0			0	
Sand	0.06-2mm (gritty)	65	Marl	grey, shell fragments	0	
Silt	0.004-0.06 mm	3.0]			
Clay	< 0.004 mm (slick)	S				

Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT).

(FRONT)						
Muddy Brook (UNNOM	ed Stream)					
STREAM NAME TRIBUTARU4	LOCATION PW 2					
STATION # RIVERMILE	STREAM CLASS					
LAT44.452.64118LONG-73.11935145	RIVER BASIN					
STORET #	AGENCY ESAT TECHIAW INC					
INVESTIGATORS MF. BGK. LB.	MCM					
FORM COMPLETED BY MEAGNAN MACTI	TIME 1551 AM PM COMMERCE STREET					

WEATHER CONDITIONS	Now Past 24 hours Has there been a heavy rain in the last 7 days? Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy rain) Image: storm (heavy ra
SITE LOCATION/MAP	Draw a map of the site and indicate the areas sampled (or attach a photograph) <u>Photos</u> : 2755.jpg-PW2 Transect (E) 2756.jpg-pw2 Full Transect
	Rep 1 Jabs: 2758 jpg (NW) 7 All @ log jams 2760 jpg (NW) (woody debris) 2761 jpg (SE) (within 20m of 2762 jpg(NE)) transcct pw2
	Available in G: NALISHARE (ESATBO) Commerce St(VT)
STREAM CHARACTERIZATION	Stream Subsystem Stream Type Perennial Intermittent Tidal Stream Origin Coldwater Warmwater Glacial Spring-fed Mixture of origins Non-glacial montane Other_IPECAD Other_IPECAD Swamp and bog Other_IPECAD RUNOFF

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

PW-2

WATERSHI FEATURES	CD Predom G Fores G Field Agric Resid	Pasture Alndustria	cial	Local Watershed NPS P No evidence Some Obvious sources Local Watershed Erosic Mone Moderate	potential sources	
RIPARIAN VEGETATI (18 meter bu		e the dominant type and Shr nt species present	record the dom	Her Grasses Her	baceous	
INSTREAM FEATURES	Estimat Samplin A rea in Estimat	ted Reach Length $[4]$, ted Stream Width $[.1]$ ng Reach Area 24.8 km ² (m ² x1000) 0.0243 ted Stream Depth 0.1 velocity (0.1) m/ weg)	$\frac{m}{2}m^{2}$ $\frac{2}{2}m^{2}$ $\frac{2}{m}m^{2}$	High Water Mark () Proportion of Reach Re Morphology Types		iy shaded
LARGE WO DEBRIS	DODY LWD Density	of LWD 40 m	²/km² (LWD/ re	each area)		
AQUATIC VEGETATI	ON Contraction Roote Distribution Contraction Distribution Contraction Distribution Contraction Distribution Contraction Distribution Contraction Distribution Contraction Distribution Contraction Co	Indicate the dominant type and record the dominant species present Rooted emergent Rooted submergent Rooted floating Free floating Floating Algae Attached Algae dominant species present NONC Portion of the reach with aquatic vegetation 6.%				
WATER QU	Specific Dissolv pH <u>].</u> Turbid	· · ·	ر در	IL ^{C Fishy} Water Surface Oils	Chemical Other Globs D Flecks	
SEDIMENT SUBSTRAT	E X Norr Cher O Cher O Othe	nical 🛛 Anaerobic	Petroleum None e Profus	Looking at stones which are the undersides blac	Paper fiber Sand Other NO DEPOS h are not deeply embedded, k in color? A NA VOCKS	17
INOF	RGANIC SUBSTRATE (should add up to	COMPONENTS 100%)	•••	ORGANIC SUBSTRATE C (does not necessarily add	OMPONENTS up to 100%)	
Substrate	Diameter	% Composition in	Substrate Type	Characteristic	% Composition in Sampling Area	

Substrate Type	Diameter	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area	
Bedrock		Detritus Sticks, wood, coarse plant materials (CPOM)		110		
Boulder	> 256 mm (10")	0		materials (er eini)	TU	
Cobble	64-256 mm (2.5"-10")	0	Muck-Mud	black, very fine organic (FPOM)		
Gravel	2-64 mm (0.1"-2.5")	6			0	
Sand	0.06-2mm (gritty)	50	Marl	grey, shell fragments		
Silt	0.004-0.06 mm	45			U	
Clay	< 0.004 mm (slick)	5				

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET

		(FRONT)
MUDDANBroc	ok Winnam	ed Stream)
STREAM NAMETTIK	<u>, 4</u>	LOCATION REFERENCE
STATION # RI	VERMILE	STREAM CLASS
LAT 44.4547828LC	NG-13. 1ПS1334	RIVER BASIN
STORET #		AGENCY ESAT TECHLOW IN CI.
INVESTIGATORS MF.	BGK, LB, N	ACM
FORM COMPLETED BY		TIME OGSI (AM) PM COMMERCE STREET
Megghan	MUCH	Plume
		Past 24 Has there been a heavy rain in the last 7 days?
WEATHER CONDITIONS	Now	hours Li Yes ANO
	, 🖸 rain ((heavy rain) Air Temperature 21 ° C
		s (intermittent) loud cover
·•		ear/sunny 🕺
SITE LOCATION/MAP	Draw a map of the sit	e and indicate the areas sampled (or attach a photograph)
	Photogra	phs:
		g (SW)- Reference site
	2105.10	g (5v)- net er er er er er
	2766.j	pg (SW) - Sampling H20 VOCS
	2747.	pg (NW-bentnic sampling
	2768.1	
		V (KLPT
2		
	2770.j	pg (w) ((in order)
	2771 + 27	$12 (W) \rightarrow both jab 4$
	2773 (E	
1		
-	2774 (8) bank@2nd jab of
		rep 2
:		
• *		
The second second	Anilab	le in G: ILALISHARE VESATBIO
		erce St(VT)
Ì		
STREAM	Stream Subsystem	Stream Type
CHARACTERIZATION	Perennial 🗆 In	termittent 🗇 Tidal 🙀 Coldwater 🗅 Warmwater
	Stream Origin	Catchment Areakm ²
	 Non-glacial montar Swamp and bog 	Mixture of origins
	J	runot f
<i>b</i>		·
jų.		
.>.`` ∖		
	· · · · · · · · · ·	in Stranger and Wadaphia Piyang, Pariphyton Banthia

Rapid Bioassessment Protocols For Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition - Form 1

18.

PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK)

Reference

WATERSH FEATURE		□ Forest □ Field/I	Pasture 🕄 Industria	cial	Local Watershed NPS F O No evidence Some Obvious sources	ollution potential sources		
		Agricu Reside	ential		Local Watershed Erosic	🗅 Heavy		
RIPARIAN VEGETAT	ion	Indicate	the dominant type and	record the dou	minant species present Her	baceous grapevi	nc, bir	rch
(18 meter b	ouffer)	dominar	nt species present SPC	Hedie	enerneed, M			
INSTREAM		Estimate	ed Reach Length 14	m	Canopy Cover	shadad D Shadad	white	Oak
FEATURE	ی د		ed Stream Width	12	High Water Mark	e m vor	red m	apje
	,		g Reach Area 23.		Proportion of Reach Re			
		Area in Estimate	km ² (m ² x1000)0.023 mcm 9.13.12 ed Stream Depth 0.2	km² Cm	Morphology Types DRiffle Pool	Run_90_%		
		Surface	Velocity <u>0</u> , <u>1</u> m		/•	Хų No		•
		at thalw	elv fiowib	n 9	Dam Present 🛛 Yes	∑No road cu	Iver+s	
LARGE W DEBRIS	/OODY		< <u>0.25</u> m ²	-		•		
DEBRIS		Density	of LWD 10.5 m	²/km² (LWD/ 1	reach area)			-
AQUATIC VEGETAT		C Roote	e the dominant type and d emergent A Ro ng Algae Att	record the doubted submerger tached Algae	minant species present nt	G Free floating		
		domina	nt species present <u>V</u> C	riou	s macrophy	1-62		
		Portion	of the reach with aquati	ic vegetation _	5 %			
WATER Q	QUALITY		ature <u>17.53</u> °C	_	Water Odors	ge		
			Conductance 969		D Fieby	Chemical Other		
		· -	ed Oxygen 100.9%	9,62	Mater Surface Oils			
		р <u>н</u> _Р			Slick Sheen None Other	Globs Globs Globs	·	
		Turbidi	strument Used YS1 5	50	Turbidity (if not measu	red) ∵bid □ Turbid		:
		wQ Ius		onde	🗅 Opaque 🗅 Stained	• Other		
SEDIMEN SUBSTRA		Odors Norm	nical 🖸 Anaerobic	 Petroleum None 	Deposits Sludge Sawdust Relict shells	Deperfiber Sand Other NO dep OS	ts	
		Oile			Looking at stones whic are the undersides blac	h are not deeply embedded, k in color?		,
		Abser	nt 🗆 Slight 📮 Moderat	te 🖸 Profu		A NO FOCKS	J	
INC	DRGANIC SUB (should a	STRATE (add up to 1	COMPONENTS 100%)		ORGANIC SUBSTRATE C (does not necessarily add]	
Substrate Type	Diamet	er	% Composition in Sampling Reach	Substrate Type	Characteristic	% Composition in Sampling Area		
Bedrock			0	Detritus	sticks, wood, coarse plant materials (CPOM)	50		
Boulder	> 256 mm (10")	0		, , , , , , , , , , , , , , , , , , ,		-	
Cobble	64-256 mm (2.:	i	0	Muck-Mud	black, very fine organic (FPOM)	Ö		
Gravel	2-64 mm (0.1"-		0		and the H Comments			9
Sand	0.06-2mm (grit		10	Marl	grey, shell fragments	0	and the second se	,
Silt	0.004-0.06 mm		45	4				
Clay	< 0.004 mm (sl	ick)	45	L	<u> </u>	<u> </u>	.	

Appendix A-1: Habitat Assessment and Physicochemical Characterization Field Data Sheets - Form 1 condition

APPENDIX E

Chain of Custodies

	RE	GION	1		ECTION		CHAIN	N OF CUS	TOD	Y RE	COR	D		To Alpha Los, Call 2023
PROJ. 1 12090	NO. 019'	COMI	T NA NE	ME rle	(Wi Stre	et S	on, VT) ampling	NO.			Land Land		$\left[\right]$	
SAMPLER	RS: (Sign.	<u> </u>	÷					OF CON-		Jest.	S S S			REMARKS
STA. NO.	DATE	TIME	COMP.	GRAB		STATIC	ON LOCATION	TAINERS	11	5/			.	To: Alpha Analytical
PW-ZO	9.11.12	1025	\checkmark		PWZ	O-SE	D	1	V					Sediment Samples
PW-17	9-11-12	1436	\mathbf{V}_{\cdot}		PWI	7-51	ED	1	\checkmark					
PW-11					PWI	1-SE	Ð	1	V					
PW-1110	p)9-12-12	1043	<i>.</i> √		PWI	1 - D	UP-SEP	1	~					
PW-2					PW2	2-SE	P	. 1	\checkmark		·			
Reference	9.13.12	1044	\checkmark		Refe	ren	CE-SED	1	V					
									,					
														**
				i										
							-	+						
		,						<u></u>	·					
									ļ					
Relieswich				<u> </u>								Ļ		
Relinquish					Date	/ Time	Received by: (Signature	1 0517	Relin	nquish	ed by	::(Sigi	natura)	Date / Time Received by: (Signature)
Betha	nyfull	uj		9.	14.12	11:18	Hau							-
Relinquish	ed_by: (s	Signature)			Date	/ Time	Received by: (Signature)	1/	Relir	quish	ed by	: (Sigr	nature)	Date / Time Received by: (Signature)
Relinquish	ed by: /s	lignature)	****		Date	/ Time	Received for Laborator (Signature)	γ by:	I	Date	/Tin	18	Rema	narks
<u></u>		Distri	butio	Ori	ninet Acco		hipment: Copy to Coordina	tor Field File	<u> </u>					

PROJ. NO 120900 SAMPLERS	19 : ISigna	POJECT															
manual la la de de de de	De		Moz	res	Street (للكمللة	ton, VT) Saugh	O OF					4			,	REMARKS
STA. NO.	DATE	TIME	COMP	GRAB		STATIO		TAINERS	1	J.	a for	A COL			To: Reg	ìm	INERI
PW-17 9		1435			PW1-			<u>і</u>	\checkmark	/					Repsi-4		
Reference 9				V		eren	(e - Sw)		1							• •	
PW209	1	1040			PW2		cc = snl								Reps 1-		
PW2 9		0950 1601		✓ ✓	PW2			<u> </u>	V						Reps 1.	- 4_	•
PW119	1	1557 1023		V V	•	- 5h		<u> </u>	 _	\checkmark	•				Reps 1-	4	
PWII(Drp) 9		1023		V	PW	11-5		<u> </u>		\checkmark					Reps 1	-4	
		1025		J	pWI	1-D.	1p-52	4		~			,		Reps 1-	4	
	12-12 -10-12	0900 1412		\checkmark		Blank	Blank 5	4		V		. 🗸					
Relinquished		· ·		-	Date	/ Time	Received by: (Signature)	Reli	nquist	ned br	y: (Sig	inatura	1	Date /	Time	Received by: (Signature)
Bethan Relinquished				- 9	. <u>14.12</u> Date ,	/ 11/18 / Time	Received by: (Signature)	Reli	nquish	ned by	y: (Sig	nature m	1)	Date /	Time	Received by: (Signature)
Relinquished	l by: /s	lignature)			Date	/ Time	Received for Laborato (Signature)	7		Date 9/12	e / Tir //	me 1.18		emar	ks		I

REGIO	MENTAL P		ų	CHAIN	OF CUST	ODY	RE	COR	D		
PROJ. NO. PRO 2090019 (C AMPLERS: (Signatur	DJECT NA		heret (Lui) stor	, VT) Sompling	NO OF		7				
Mulat	There			V	CON-) A				REMARKS
STA, NO. DATE T	IME	GRAB	STATION	LOCATION	TAINERS	45	AH S		A THE		To: Region I NEPL
9.11.12	139	\checkmark	PW17-SED		<u> </u>	\checkmark	\checkmark				Preservation in \$VOAHSjar - Meoh(32
9.13.12	12.9 V ISI ₽		PWI7-SED		<u> </u>			\checkmark	~	¥	Preservative in \$VOAHSjor= MeOH(2=
	202 F 265 F √		Reteren	c = SED	· · ·			ν	V	\checkmark	
9.11.12 [6		v	PW20-SE PW20-SE	•	1	<u></u>	V				preservative in troatsjar = meot
9.12.12.11	020 V	\checkmark	PW20-SE		1		\checkmark				Preservative in \$ voath jar me
	002 V		PW2-SE		<u> </u>						preservative in \$voAHSjar-me
9.12.12 10	236		PHIL-JE	D				\vee	V.	\checkmark	
9.12.12 10	038 V	V	PW11-DU	• •	1						preservative in VOAHSjar-r
	0 201 V		PNII-PUI			1					
			c.								· · · · · · · · · · · · · · · · · · ·
Relinquished by: <i>(Sig</i>		<u>+</u>	Date / Time	Received by: (Signature	9)	Rel	inquis	hed t	y: (Si	gnature)	Date / Time Received by: (Signature)
Relinquished by: (Sig	ley inaturej		<u>1.14.12</u> 11:18 Date / Time	Received by: (Signature	•. •) ·	Reli	inquis	hed t	ογ∶ (Si	gnature)	Date / Time Received by (Signature)
Relinquished by: <i>Isi</i>	anature)		Date / Time	Received for Laborato (Signature)	ESAT	- 9	Da /14/1	te / T	ime // //8		marks

,

•

ENVIRONMENTAL PROTECTION AGENCY								
REGION 1 CHAIN	OF CUST	ODY F	RECOR	D			Po	gel of 3
PROJ. NO. PROJECT NAME			. /	_	11			
Commerce Street Sampling (Williston, VT)-	NO.		/					3.4
SAMPLERS: (Signature)	OF		/ 🖌					
Rothain Adles	CON-		Å,		· ./ ./			REMARKS
STA. NO. DATE TIME OF STATION LOCATION	TAINERS	13	A CONT					
PW-20-9-10-1-1122 V PW-20-POINV-PEPI	<u> </u>	/			_		<u> </u>	
PW-20 9.11.12 1134 / PW-20- AQJINY- FEP2	2	Ý			·			
PW-20 1042 V PW-20- BENTNY- BER 264	1	1						
PW-20 1100 V PW-20-BENTNV-REP2		1						· · · · · · · · · · · · · · · · · · ·
PW-20 1105 V PW-20-BENJINY-REP3	I.	1						
	1	V	-			7		•
		1						۰ ۱
PW-17 1600 PW17-SAQIN-REPI SUZUZ			-					
PW-17 1600 J PW17-AQJNV-REPZ	+						-	
PW-17 - 1500 V PW17-BENJINY-REPL	- <u> </u>					· · · · · · · · · · · · · · · · · · ·		
PW-17 1500 V PWI7-BENJINY-REP2	+						-	
PW-17 1530 V PW17-BENITNY-REP3	<u></u>							
PW-17 V 1530 V PW17-BENIJNV-REPH				r				
PW-11 9-12-12 HATO / PWII- AQ TNN-PEPI	2							
PW-11 1330 J PW11- AQ TNV-REP2	2		· · · ·				<u></u>	
AW-11 V 1106 J PWII-BENITNY-REPI	2	V						
Relinquished by: (Signature) Date / Time Received by: (Signature)	e)	Reling	uished b	Y: (Sign	ature)	Date	/Time	Received by: (Signature) -
RA VOD								
Belinquished by: (Signature) Date / Time Received by: (Signature)		Reling	uished b	y: (Sign	ature)	Date	/Time	Received by: (Signature)
Relinquished by; (Signeture) Date / Time Received for Laborate	ry by?	1	Date / Ti	me	Remar	ks		
(Signatury)		9/13	10. 1	· · · · · · ·				
	1-	17/15	112 1	670	-			

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

	RONMENTAL	PROTI	ECTION AG	ENCY	CHAIN	OF CUST	OD	Y RE	COR	<u>D</u>		P (agez	2 0 1	• 3	
	PROJECT NA COmme		stre	et (Williston, VT)	NO.			1/1/2	$\left \right\rangle$.				1.4.
SAMPLERS: (Sig			•	<u>ر</u>		OF		. /	\mathbf{S}	/	/	/	//			REMARKS
Botham	1/ Killey					CON-	ľ,	, o	7,	/ /	/ /	/ /	/ /		·	NEMANNO
STA, NO. DATE	TIME OS	GRAB		STATION		TAINERS	1		\angle	4	4	\square	<u> -</u>	-		
PW-2 9.12.1	277732 V		PH2-	AQIN	W-REPI		V	_	 		•		<u> </u>			
PW-2 1	1494 1		PW2-	AQI	VY-REP2 MCM	1 12	V		├ ──┤		├───┤	_ 				
PW-7	1629 1				INV-REPI		LV_		┟──┤		·	<u> </u>				
PW-Z	1630 V		PW2-	BEN	HNY-REP2	<u> </u>	↓ ∠	·	┠			┟───┨				
PN-2	1647 V		pni2-	BEN	INV-REP3	<u> </u>	<u>V</u> .		┠}							
PN-2	1653 1	_	PM2-	BEA	HNV-REPH	<u> </u>	₩.	ļ.	 							
PW-11	1113 1	, 	PW11-	BEN	UNV-REP2	<u> </u>	Į√_		┼─┤							
PW-II	1128 1	·	PWI1-	BEN	INV-REP3	<u> </u>	Įν_	<u> </u>	 		$\left \right $					
PW·II	1129 1		PMIT=	BEN	INV-REP4	<u> </u>	↓ ✓	┿	<u> </u>		 		ا			
PW-11(DUP)	1338 /	<u>'</u>	PMILDI	1P-A1	QINV-REPL	<u> </u>	<u> </u> ↓↓	+	╂───┥		 					
PM-11(DUP)	1345 1	·	PWIID	UP-A	QINV-REP2	2	<u>↓</u> √_	+	↓		ļ	<u> </u>				
PM-11(pp)	1146 1	<u>/ </u>	PWILD	UP-F	BENINY-REPI	<u></u>	Į∕_	+	↓ '							
PW-11(DUp)	1152 /		PNILD	UP-P	FNINV-REP2	2	╎╱	+	_		<u> </u>	<u> </u> !				
PW-IV DUP)	1214 1	<u>'</u>	PWILD	UP-F	BENINV-REP3	<u>} </u>	V	,				 				
PN-11/DUP	1216 1	\square			BENINY-REPH		$\downarrow \checkmark$	<u> </u>	<u> </u>			<u> </u>	L	Date /	Time	Received by: (Signature)
Relinquished by:	: (Signature)		Date /	Time	Received by: (Signature	<i>i</i> .	Rei	inquis	shed b	¥: {Sı	gnatur	"0			1000	Hereiten of the Brancest
Rothow	Kellers	c	7.13.12	1620						••••••						
Relinquished by			Date /		Received by: (Signature	1	Reli	inquis	shed b	y: (Si	gnatur	·e)		Date /	Time	Received by: (Signature)
								•							1	
Relinguished by	: (Signeture)		Date /	Time	Received for Laborato	ry by:	5,	<u></u> ра (13/0	te /Ti	me (2 2 (Remar	ks		-	•

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

A REPORT		GION 1		HUIZ	ECTION AG		CHAIN		ODY	RE	COR	D	P	a 9	e 3	o F	3	
PROJ. N	IO. P	COMM	rr	ce.	strei	er so	1 mpling	NO.				7 5	/				/	'i ga
MPLER		ature)						OF			~/		· /	' /		/		REMARKS
Belly	pus j	fulley		1			-	CON-		$\sqrt{3}$	/ /	/ /	/ /					
TA, NO.	DATE	TIME	COMP.	GRAB		STATION			1		\square	\square	\square	\square				
ef	9.13.12	1116	V		Refer	ence	-AQINV-REPI	2	V								,,	
e f		1130	V	ļ!	Refer	ence	- AQINV-REP2	2 2	V		 		 					
ef	• * .	1058			Reter	enc	C-BENINV-REPI	<u> </u>						 		~		
e f		1058		1 1	-		-BENINV-REP.		V		 							
ef		1111	V	1 1	1		-BENINV-REP		V									
ef	V	1115	V	1 1	1		C-BENINV-REPU		V							-		*
		1																
		1												 	L			
		1																
	· ·	1													[
		1		<u>i</u>						_								
		1			1	-	<u></u>					[t		
					1		<u></u>											
		+		+	1			1	1									· ·
		·		<u> </u>					1					1				
elinquish	l ied by: ((Signature)	,;	<u>+</u>	Date	/Time	Received by: (Signature	- <u> </u> 9)	Reli	nquis	hed b	γ: (Si	ignatu	rej		Date	/ Time	Received by: (Signature)
- AA	,	11 00			1				<u> </u>									
Betho	they i	Fulley (Signature)		-19		1(0.70 / Time	Received by: (Signature		Reli	nguis	hed b	y: (Si	ignatu	re)		Date	/Time	Received by: (Signature)
Binquisii	led Official	3191101010		\downarrow														
elinquish	ned by: ((Signeture)	=		Date ,	/ Time	Received for Laborate	STY DY.	\	Dat /	te / Ti	me	1	Remar	 'ks		1	

Distribution: Original Accompanies Shipment; Copy to Coordinator Field Files

 \sim