U.S. EPA REMOVAL ACTION WALTON AND LONSBURY SITE ATTLEBORO, MASSACHUSETTS

PERFORMANCE SPECIFICATION for SOIL MIXING FOR GROUND IMPROVEMENT

Revision 2, 7 March 2012

PART 1 – GENERAL

1.1. INTRODUCTION

- A. This specification includes requirements for Soil Mixing for Ground Improvement and related work as indicated on the drawings and as hereinafter specified. The work consists of furnishing all plant, labor, equipment, and materials, and performing all operations as required to increase the bearing strength of soils in the Ground Improvement Area using the soil mixing method. Soil conditions are further described in Paragraph 1.7.
- B. The work shall consist of Dry Soil Mixing for ground improvement, within the limits indicated on the project drawings to meet the acceptance criteria presented in these specifications. Dry Soil Mixing is the basis for this specification and bid; however, alternative proposals that use grout will be considered, and specifications for work elements involving grout and other wet mix approaches are included.
- C. It shall be the Contractor's responsibility to determine and implement the systems and criteria to ensure that the specified performance is achieved.

1.2. REFERENCES

The publications listed below form a part of this specification to the extent referenced and shall be the latest edition and revision thereof. The publications are referred to within the text by the basic designation only.

API Spec 13A	API Specification for Oil-Well Drilling-Fluid Materials
API RP 13B-1	API Recommended Practice Standard Procedure for Field Testing Water-Based Drilling Fluids
ASTM C 150	Specification for Portland Cement
ASTM D 422	Particle-Size Analysis of Soils
ASTM D 1633	Unconfined Compressive Strength of Soil-Cement

ASTM D 4832 Preparation and Testing of Soil-Cement Slurry Test Cylinders

ASTM D 5084 Hydraulic Conductivity Using a Flexible Wall Permeameter

1.3. DEFINITIONS

- A. API American Petroleum Institute
- B. ASTM American Society for Testing and Materials
- C. EPA U.S. Environmental Protection Agency
- D. COR Contracting Officer Representative
- E. ERRS Emergency Rapid Response Services the EPA Contractor assigned to the project.
- F. Field Quality Control Representative (FQCR) The individual given specific inspection tasks identified in this specification.
- G. GPS Global Positioning System
- H. Grout A stable colloidal suspension of powdered cement, bentonite, additives and/or other similar materials in water. The terms "grout" and "slurry" are used interchangeably in these specifications.
- I. Injection Ratio A volumetric ratio of grout to soils (e.g., 100 gallons/cubic yard) to be mixed in a SM column. The grout injection ratio is determined for each column based on the column dimensions, soil density, pattern of treatment, and desired application rate.
- J. Soil Mixing (SM) A soil improvement technique used to construct in situ soil structures or treat soils in place, without excavation or dewatering. Soil mixing uses an SM Machine to advance a Mixing Device into the ground while adding reagent binder materials to the soil. Stabilized soil columns are created that may be joined together by overlapping to form retaining walls, foundation elements or to treat a large block of soil or sludge.
- K. Dry Soil Mixing The mechanical homogenization of soil with a dry cementitious reagent binder to produce a physically strengthened soil "soilcrete,"
- L. Soil Mixing Specialist An individual who has had proven and successful experience in soil mixing construction.
- M. SM Cell One completed addition and mixing of the soil and treatment materials with the Mixing Device within a defined area to the design depth. This creates a

G:\PROJECTS\20114066\0556-W&L\Design\Geotech\Final_Perf_Spec\Soil_Mixing_Perf_Spec_Rev2_20120307.doc

cell of treated soil. In most cases, "cell" and "column" are used interchangeably in this specification.

- N. SM Column One completed insertion, injection and mixing of the soil with the Mixing Device to the design depth. This creates a column of treated soil. The column may be primary (through virgin soils), secondary (connecting primary columns) or tertiary, etc.
- O. Mixing Device (or Mixing Tool) The special mechanical stirring and shearing tool that attaches to the SM Machine and is inserted into the ground to mix the soils. The device may be fitted with ports for injecting grout, mixing paddles, auger blades, etc.
- P. Mixing Pass Operation of the Mixing Device from the top of the column to the bottom. Generally, a number of passes are required to completely mix a SM column.
- Q. Overlap Ratio The ratio between the overlap distance (measured along the column diameter) and the diameter of the column. For example; a pattern of columns with a 15% overlap ratio has an overlap of 1.2 ft between two 8-ft-diameter columns.
- R. Reagent Binder One or more materials including cement, flyash, slag, lime and an assortment of additives with the soil to increase its strength and stiffness.
- S. Binder Delivery System The equipment involved with storing and pneumatically pumping the dry binder materials to the mixing tool.
- T. Swell The excess material resulting from adding grout to the in situ soils. The swell is typically a mixture of soil and grout similar to the materials in the SM column.
- U. Working Platform The working platform is the surface of stable soils from which the SM equipment operates.

1.4. SYSTEM DESCRIPTION

A. Project Objectives

The soft deposits (organic silt and clay soils) in the Ground Improvement Area, shown in the attached Figure 1, need to support construction of a drainage system and soil cap. Additional area may be determined to require increased bearing strength and may be added to the Scope of Work prior to Award. The additional area is shown as Expanded Ground Improvement Area in attached Figure 1. If awarded, the additional area shall be considered part of the Ground Improvement Area as referenced in this specification.

B. Project Performance Requirements

The soft deposits shall be mixed and treated as one unit which shall achieve the following specifications after 28-day cure:

- Unconfined compressive strength, q_u, of 50 psi or greater for all treated cells or columns;
- Permeability of less than $5 \ge 10^{-6}$ cm/sec for all treated cells or columns.
- No more than 10% of the tests may be less than the design strength value.
- C. Design Requirements
 - 1. Design Mix Development laboratory work is being performed by Kemron, Inc., Atlanta, Georgia. The technical scope of work for the laboratory is included in Appendix C. Preliminary laboratory submittals indicate that admixing dry Type I Portland Cement to the organic silt will likely achieve the compressive strength requirements of this project.
 - 2. Based on preliminary design mix development, the design mix shall be the addition of Type I Portland Cement within the range of 200 to 300 kilograms per cubic <u>meter</u> of wet soil. Laboratory testing is underway to identify a more specific mix value and the laboratory report will be available as Appendix D prior to Award.

1.5. SUBMITTALS

Submit the following for review in accordance with submittal procedures specified in the Scope of Work.

- A. Bidder Submittals (submitted as part of Bid documents)
 - 1. Bidder Qualifications:
 - a. The Bidder shall submit evidence of Contractor Firm qualifications as required by Paragraph 1.6. The evidence shall include references from at least five similar and successful projects constructed over the last 5 years. Project descriptions shall include at a minimum the dimensions of work, type of mixture (grout or dry, and key components), and equipment description.
 - b. The Bidder shall submit evidence of qualifications of assigned personnel as required by Paragraph 1.6. The name and qualifications of the proposed SM Specialist and, if necessary, an alternate SM

Specialist, shall be provided with the Bid. The name and qualifications of at least two proposed Key Personnel shall be provided with the Bid.

- 2. The Bidder shall identify the equipment proposed for use on the project and indicate whether the equipment is owned and maintained by the Bidder or leased.
- 3. The Bidder shall submit a general description of any Bench-Scale Testing that the Bidder will perform as part of the work.
- 4. [Deleted].
- 5. The Bidder shall identify any site preparation requirements (to be performed by ERRS) that need to be completed prior to start of construction.
- 6. The Bid shall include a preliminary project schedule, starting from a presumed date of award, including major milestones. At a minimum, schedule shall include the following milestones: start of bench-scale tests (if performed by Bidder), submittal of bench-scale test report (if performed by Bidder), submittal of Draft Work Plan (concurrent with bench-scale testing, if performed by Bidder), submittal of Final Work Plan, mobilization to project site, completion of soil mixing, demobilization, submittal of final construction documentation.
- B. Design Mix Development (prior to pre-construction conference)
 - 1. In the event that the Contractor (successful Bidder) requires independent bench-scale testing in order to meet the performance requirements, the Contractor shall commence design mix development in accordance with the Project Schedule required in Paragraph 1.5A(6). Soil samples from the Ground Improvement Area will be provided by ERRS. Water samples (groundwater and City water) will be provided by ERRS. All other materials required for Design Mix development shall be provided by the Contractor.
 - 2. If, following completion of independent testing, the Contractor wishes to propose a revised Design Mix, the Contractor shall submit a Bench Scale Testing Report including but not limited to the following information:
 - a. Recommended SM grout mix or SM soil mixture, including raw materials binder types, and ratio and dose and injection ratios.
 - b. Laboratory report shall include unconfined compressive strength and permeability on at least two samples of the organic silt material treated with the proposed design mix.

- c. Details of anticipated binder mixture, mixing rates, flow rates, air injection pressure and volume flow rates, mixing tools rotational speed, mixing tools down pressure (if applicable), and mixing tools penetration and withdrawal rates (if applicable).
- C. Work Plan (prior to pre-construction conference)

The Contractor shall submit a detailed Work Plan describing his proposed construction equipment, procedures, and schedules. The Work Plan shall be submitted in accordance with the Project Schedule required in Paragraph 1.5A(6). The Work Plan shall include, but not be limited to, the Contractor's plan for:

- 1. Listing of supervisory personnel: Name and experience of the various persons, their role and primary responsibilities.
- 2. Equipment set-up and site use layout: including storage areas, mixing plant location, haul roads, and work platform.
- 3. Soil Mixing equipment specifications, including maximum depth capability of the SM Machine, dimensions of the Mixing Device and capacity of mixing plant.
- 4. Source of all imported material, including cement and any additives. Shipment of materials to the site shall be accompanied by the vendor's written certification of the quality or specification of the material and Material Safety Data Sheets.
- 5. Construction means and methods: Listing of equipment and capabilities, construction steps, handling of excess grout/admixtures and swell, layout, overlap control, control of drainage, spills, wastes, etc.
- 6. A layout drawing showing the location, geometry, overlaps, depths, dimensions, and sequence of the SM cells or the SM column overlapping pattern using site-specific coordinate system or other survey baselines.
- 7. A Quality Assurance/Quality Control (QA/QC) Plan describing all testing, sampling, reporting forms, methods, responsible persons, non-conformance procedures, and all other means to ensure the quality of the work and document that the finished work achieves the Project Performance Requirements. QA/QC Plan shall include:
 - a. A detailed outline of the QA/QC Program to be undertaken each day during production to confirm the soil mix achieves specified performance requirements.
 - b. Details of procedures for a test section.

- c. Measures to be implemented each day during Soil Mixing to monitor, modify, record, and control binder ratios, and injection pressures and quantities, mixing energy, mixing tool penetration and withdrawal rates, and other related aspects of the Soil Mixing process.
- d. Proposed method for Field Penetration Testing required in Paragraph 3.5C(2). Include documentation that the proposed method is in wide-spread accepted use in the industry and the correlation between the method's field test results to laboratory strength testing.
- e. Field Quality Control Plan
- f. Example formats of Daily Production Reports meeting the requirements stated herein
- 8. Schedule: A bar chart schedule showing all major activities and durations.
- 9. Work plan shall be submitted in Draft form and then re-submitted in Final form, incorporating EPA comments as necessary.
- D. Progress Submittals (submitted during the work)
 - 1. Accurate daily records of the work, including:
 - a. Area mixed (by station, offset,...) as shown on construction layout drawing(s) for each container of binder
 - b. Working grade
 - c. Mixing depth
 - d. Start time
 - e. Finish time
 - f. Binder mix details (mass per unit of untreated volume)
 - g. Binder injection rate
 - h. Total binder weight injected
 - i. Tool rpm during binder injection
 - j. Description of obstructions or other interruptions of binder injections

- k. Type of mixing tool
- 2. Any change in the predetermined Soil Mixing program necessitated by a change in the subsurface conditions.
- E. Completion Report (submitted after the work)

Documentation shall be submitted to the EPA COR or designee for the record upon completion of soil mixing activities but prior to acceptance of the work.

- 1. A report documenting the observations and results of the tests. This report will certify that the specified improvement has been achieved.
- 2. Production test results.

1.6. QUALIFICATIONS

A. Qualifications of Contractor

The Contractor firm shall be experienced and competent to construct the project using the Soil Mixing method. Experience shall include soil mixing using both dry mix and wet (grout) mix techniques with least five similar and successful projects constructed over the last 5 years. The Contractor will have sufficient competent experienced personnel and proven methods and equipment to carry out the operations specified.

- B. Qualifications of Assigned Personnel
 - 1. The SM Specialist shall supervise in the field the construction, grout preparation, soil mixing, and quality control. This individual shall be knowledgeable both dry mix and wet (grout) mix techniques including: (1) the proper mixing methods employed to mix, control and test grout, (2) SM construction equipment and tools, (3) in situ mixing injection ratios, overlaps and overlap ratios, and (4) testing for SM quality control. The SM Specialist shall have been in responsible charge of Soil Mixing for at least five completed successful construction projects similar in scope, size, and complexity to this project.
 - 2. The Bidder's Key Personnel shall have a minimum of 2 years of experience with Soil Mixing projects of similar scope. Other Key Personnel include FQCR, equipment operators, grout plant operators, and technical staff involved with the SM Machine operation.

1.7. PROJECT/SITE CONDITIONS

A. Existing Conditions

There are two general types of soil that require treatment: a dark brown organic material generally described as organic sandy silt (Stratum 1) underlain by a greenish-grey fine-grained inorganic material generally described as a clayey silt (Stratum 2). Both materials are very soft, with measured Standard Penetration Resistance (N) values which were less than 1 blow per foot (bpf) (i.e., weight of rods, weight of hammer, or 1 blow per 24 inches). The soil requiring treatment is underlain by coarse sand and gravel with N values which were at least 14 bpf. Boring logs and geotechnical test results are attached as Appendix A and Appendix B, respectively.

The thickness of the soft deposits varies significantly across the treatment area. The boring logs (locations noted on Figure 1) provide the available information regarding the thickness of the soft deposits at five locations. Note that the water content, organic content, and thickness of the soft soil deposits are highly variable in samples obtained across the Ground Improvement Area. In some portions of the Expanded Ground Improvement Area, the surface of the soft soils may lay beneath standing water at an elevation lower than the target top elevation of the soil treatment.

Based on information available, the thickness of the soil layers that require soil mixing vary from 0 feet (ft) to 14 ft in thickness across the Ground Improvement Area. Mixing shall be performed in the soft soils only. Large vegetation (stumps, roots, and vegetative mat) will be removed from the Ground Improvement Area by others prior to the start of this work; however, small quantities of these materials may remain and shall be removed during the soil mixing operation. Soft soil located at an elevation above approximately 118 ft will be removed by others prior to mixing. The estimated total in situ volume of soft soil requiring treatment is approximately 10,000 cubic yards in the Ground Improvement Area. An additional volume of approximately 3,700 cubic yards is located in the Expanded Ground Improvement Area.

PART 2 – PRODUCTS

2.1. MATERIALS

A. Type I Portland Cement

The Portland Cement used shall conform to ASTM C 150. The cement shall be adequately protected from moisture and contamination in storage on the jobsite. Reclaimed cement or cement containing lumps or deleterious matter shall not be used.

- B. Grout
 - 1. If proposed for use on this project, grout shall consist of a stable colloidal suspension of cement, and/or other additives in water. The grout shall be pumpable and workable with the SM injection equipment.
 - 2. Cement used in preparing grout shall conform to ASTM C 150. The cement shall be adequately protected from moisture and contamination in storage on the jobsite. Reclaimed cement or cement containing lumps or deleterious matter shall not be used.
- C. Water
 - 1. ERRS will provide potable water, obtained from the City public water supply and distributed via a water truck. It is the responsibility of the Contractor to provide any facilities necessary to store and pump water for its use (e.g., for mixing grout). It is the responsibility of the Contractor to provide adequate notice to ERRS regarding its water requirements, and to be prepared to receive water delivered by ERRS.
 - 2. Given the high water content of the soils to be treated at the site, use of water for soil mixing should be kept to a minimum.
- D. Additives

Admixtures were not required to meet project performance specifications in the laboratory and are not expected to be required during field implementation. If the Contractor anticipates requesting permission to use an admixture, submittals are required with the Bid. Propriety chemicals may be approved based on the results of pre-construction tests. No additives may be used without the approval of the EPA COR.

E. SM Material

The material formed by mixing the grout with the in situ soil shall have an unconfined compressive strength of 50 psi minimum at 28 days and a permeability of less than 5×10^{-6} cm/sec at 28 days.

2.2. EQUIPMENT

A. SM Machine

The SM machine may consist of any purpose-designed excavator-mounted or crane-mounted equipment. The SM Machine shall have necessary capability to deliver grout or air-conveyed solids to the Mixing Device. The Mixing Device shall be capable of delivering grout or solids into the soil matrix. The Mixing Device may be configured with mixing paddles, teeth, etc. as necessary to be capable of blending the soil and grout into a homogeneous mixture. The power source shall be sufficient to maintain the required penetration rate and mixing speed from a stopped position in up to 15 ft of mixed soil.

B. Storage Tanks for Dry Binder Materials

Dry binder materials shall be stored and delivered to the mixing points in closed pressure tanks suitable to be used as pressure vessels, for all pressures required including those to be used to load and unload the materials. Storage tanks shall be tanks or silos with adequate storage space for continuous production, and shall be equipped with air filters.

C. Grout Mixing Plant

The grout mixing plant, if required, shall include the necessary equipment including a mixer capable of producing a colloidal suspension of cement and additives in water, and pumps, valves, hoes, supply lines, and all other equipment as required to adequately supply grout to the SM Machine and Mixing Device. Positive displacement grout pumps shall be used to transfer the grout to the Mixing Device. The grout pump shall be capable of pumping the required distance and elevations to provide an adequate supply of grout to the Mixing Device. The plant shall be equipped to accept dry or liquid additives in measured amounts. Storage tanks shall be provided as needed to store to allow for an adequate supply of batches or continuously mixed grout to the SM Machine. Grout shall be agitated until fully mixed and recirculated in the storage tanks to maintain a homogeneous mix and prevent setting of the grout. Grout meters or calibrated tanks shall be provided to measure injection volumes.

D. In Situ Sampling Tool

A sampling tool shall be provided by the Contractor for obtaining samples of the wet, mixed soil, at depth in the SM column. The sampler shall consist of a weighted chamber, which can be opened and closed from the surface to obtain mixed soil and grout. The sampler may be attached to the SM Machine or supported by a second machine.

2.3. TESTS, INSPECTION, AND VERIFICATIONS

A. MATERIALS

All permanent materials shall be certified by the manufacturer to comply with the specified standard. Certificates of Compliance with the specification shall accompany each truckload of materials received on site.

PART 3 – EXECUTION

3.1. EXAMINATION

A. Pre-Bid Site Visit

Prior to submitting a bid price for the Soil Mixing, the Contractor shall attend a pre-bid site visit to examine the site. During the site visit the Contractor will become familiar with the location and condition of the soil within the Ground Improvement Area, as well as the site access, staging areas, proximity of residences, work already performed or to be performed by others, known activities requiring coordination, and expectations for interaction with EPA and other contractors at the site.

3.2. PREPARATION

A. AIR EMISSIONS

The Contractor shall control dust emissions such that the emissions tests (performed by EPA or others) meet the established project requirements.

B. RECEIVING, STORAGE, AND HANDLING OF MATERIALS

The Contractor shall coordinate all receiving, storage, and handling of treatment chemicals with the EPA COR or designee. The Contractor shall maintain at the jobsite a sufficient quantity of raw materials and other supplies such that the work can proceed uninterrupted by material shortages.

C. ALIGNMENT

- 1. ERRS shall accurately stake the Ground Improvement Area, as shown on Figure 1. If applicable, the area may exceed the area shown on Figure 1 and may include some or all of the Extended Ground Improvement Area.
- 2. ERRS shall establish two sets of control lines by survey outside the limits of the work. The Contractor shall measure (or establish by string lines between the control lines) the center of each SM column or cell from these control lines based on a drawing of the overlap pattern. Alternative proposals for use of GPS for location documentation will be considered.
- 3. The SM work shall advance stepwise, using primary, secondary, etc. columns/cells and overlapping portions of previously completed columns/cells to ensure a proper overlap and continuity.

3.3. PRE-PRODUCTION TEST SECTION

- A. Test section locations within the treatment area will be agreed upon by the Contractor and the EPA COR or designee.
- B. The test section shall consist of mixing binder elements for columnar mixing or a 10-ft by 10-ft area for mass stabilization from the ground surface to top of the coarse sand and gravel unit.
- C. If the pre-production test section indicates that the required improvement has not been achieved, the Contractor shall revise the work procedure plan and perform an additional test program.

3.4. INSTALLATION

A. General

The Ground Improvement Area shall be treated using SM such that the top elevation is as shown on Figure 1 or to the top of the existing soil elevation plus swell, whichever is lower. The SM structure shall have essentially vertical walls at the boundary, with a pattern of overlapping columns and shall extend through the soft soils to contact the sand and gravel unit. A generalized description of the soil profile through which the SM is to be constructed is provided on the boring logs attached to this specification. Actual depth of treatment shall be to the surface of the coarse sand and gravel unit

- B. Column Depth
 - 1. The depth of the SM columns/cells shall be determined in the field. The SM Specialist may observe the power usage of the SM machine as an aid in verifying the proper depth.
 - 2. The total depth of penetration shall be measured and recorded on each column and for each cell. The depth may be observed by pre-measured marks on a Kelly bar or similar feature of the SM Mixing equipment, or survey of a fixed point on the Kelly bar or equipment. Alternative proposals for use of GPS for total depth measurement will be considered. The depth of each column/cell shall be measured from the bottom of the Mixing Device to the top elevation shown on Figure 1.
- C. Tolerances.

The following tolerances shall apply to the SM dimensions and construction. Measurements and/or survey shall be by the Contractor and included as part of daily reports.

- 1. The SM columns shall be essentially vertical. The working platform and/or crane shall be leveled to be plumb within 3% of vertical and/or the Kelly bar shall be measured to be within 3% of vertical.
- 2. SM cells shall be homogeneously mixed. Where SM cells are constructed adjacent to previously-treated SM cells, mixing shall overlap into the adjacent treated SM cells.
- 3. The depth of the SM columns and SM cells shall be determined based on resistance encountered at the interface between the soft soils and the coarse sand and gravel. The top of the SM columns shall be measured or surveyed to within 6 inches of the elevation shown on Figure 1. The depth of each SM column shall be measured from the finished surface to the bottom of the Mixing Device.
- 4. The SM pattern of overlaps shall be surveyed and staked to ensure that the overlap ratio is constructed as designed.
- 5. Construction will not be permitted when the air temperature is below 20° F or when severe weather conditions may compromise the quality of the work.
- 6. For grout injection, the injection ratio shall be calculated and checked for each SM column. The injection ratio may be corrected for previous overlaps in the same column. In all cases, the minimum injection ratio shall be observed. There shall be no maximum injection ratio.
- 7. For dry soil mixing, the mix ratio shall be calculated and checked for each SM cell.
- 8. The volume of swell shall be measured at a frequency agreeable to ERRS and the Contractor.
- D. Obstructions

If obstructions including boulders, bedrock or other potentially damaging materials are encountered, the SM operator shall stop drilling and immediately notify the EPA COR or designee. The mixing tool shall be removed from the treatment area. Obstructions shall be penetrated with drilling equipment or other approved methods to remove the obstruction(s) or to loosen the obstructions, including any dense layers, sufficiently to allow the installation of the Soil Mix column / panel unless otherwise indicated by the EPA COR or designee. Obstructions, which cannot be penetrated, may be remediated by removal by ERRS, the Soil Mix column / panel may be completed to the maximum depth penetrated, or by other acceptable means as directed by the EPA COR or designee.

penetration per minute for at least 5 minutes, may be acceptable as refusal upon approval of the EPA COR or designee.

E. Grout Plant

The grout plant shall consist of a slurry mixer, transfer pumps, storage tanks, metering, proportioning or weighing equipment and other equipment, as needed. The proportioning equipment may use meters, weights or weight-volumes to ensure proper proportions. The density of the grout shall be monitored and recorded, as per the Quality Control Plan to verify grout proportion. Weighing equipment shall be calibrated to within 2% of standard at the beginning of the project and verified monthly thereafter.

- F. Soil Mixing and Penetration
 - 1. Each soil column shall be penetrated while simultaneously injecting grout or binder and then mixed by repeated passes of the Mixing Device. The number of mixing passes shall be monitored and optimized and recorded for each column to ensure adequate mixing. The mixing rotation speed shall be adjusted to accommodate drilling conditions based on the degree of drilling difficulty. Additional mixing or passes may be required to evenly distribute the grout throughout the column.
 - 2. For dry soil mixing, each cell shall be mixed until a homogeneous mix is achieved.
- G. Injection Rate
 - 1. The grout injection rate shall be monitored and recorded for each column and adjusted as necessary for minimum drilling resistance and to accommodate the design mix. The minimum injection rate shall be calculated for each stroke based on the volume of unmixed soil in the column, the density of the soil, and the volume of grout required to achieve the design mix proportions. The flow of grout to the Mixing Device shall be verified prior to each stroke by observing the flow out of the Mixing Device while it is suspended in the air above column. Any blockage shall be cleared prior to injection and mixing.
 - 2. For dry soil mixing, the total quantity of treatment material added for each cell, and the estimated volume of the cell, shall be recorded.
- H. SM Swell Management

The Contractor shall place and otherwise manage SM swell (excess materials resulting from the SM treatment). These materials shall be placed in a location designated by the ERRS Response Manager. The Contractor shall coordinate activities with the ERRS Response Manager to prevent interruptions or delays in

work progress due to SM swell. EPA shall not be responsible for retreatment of swell that is improperly managed.

3.5. FIELD QUALITY CONTROL

- A. Program
 - 1. The Contractor shall maintain his own quality control for the SM construction under the direction of the SM Specialist. The Contractor shall perform all testing required by the Work Plan and QA/QC Plan.
 - 2. All Soil Mixing operations shall be performed under the inspection of the FQCR.
 - 3. Monitoring and logging of Soil Mixing operations for both test areas and production work shall be done by the FQCR.
 - 4. Layout of the Soil Mix elements shall be by the Contractor.
 - 5. Daily records shall be maintained by the Contractor per Paragraph 1.5D.
- B. SM Treated Soil Continuity And Depth
 - 1. The Contractor shall be responsible for demonstrating to the satisfaction of the EPA COR or designee that the work is continuous and achieves the minimum specified depth. The EPA COR or designee will be available on site to verify these measurements. SM continuity shall be assured by an overlapping pattern of the SM columns constructed in accordance with these specifications.
- C. Tests
 - 1. Grout

If grout is used, a series of tests shall be conducted at the mixer or holding tank containing fresh grout ready for injection into the soil. Tests shall include density to ensure that the specified design mix is properly prepared for injection into the soils.

- 2. Soil Mixed Material Field Penetration Testing
 - a. During the course of the work, one location each day of treatment operations will be subjected to a Field Penetration Test to obtain a measure of strength. Probe testing shall be done on these selected locations to provide a record of force with depth.

- 3. Soil Mixed Material Laboratory Testing
 - a. Samples of the soil mixed materials shall be obtained with the in situ sampler, formed into test cylinders, cured and tested. A series of test cylinders shall be made once for the first 250 cubic yards treated and then once for every 1000 cubic yards treated.
 - b. Treated batch samples shall be obtained within 2 hours of completion of mixing. Samples shall be taken at two depth intervals, representing approximately 20% and 80% of the depth interval treated for the column/cell. Four test cylinders shall be prepared from the sample from each depth interval. The Soil Mixing Contractor shall perform the following quality control tests for each sample depth interval:
 - After curing for seven (7) days, one shall be subjected to an unconfined compressive strength test in accordance with ASTM D 4832
 - After curing for twenty-eight (28) days, one shall be subjected to an unconfined compressive strength test in accordance with ASTM D 4832.
 - After curing for twenty-eight (28) days, one shall be subjected to permeability testing in a triaxial type permeability cell in accordance with ASTM D 5084.
 - The fourth test cylinder shall be held for additional testing as may be required.

D. Documentation

All quality control records, tests, and inspections shall be documented by the Contractor and available for review by the EPA COR or their designee. The Contractor shall record all measurements and test results for submittal to the EPA COR each day. During construction, records shall be maintained by the Contractor for all test results, descriptions, measurements, and inspections performed to ascertain that the treated soil meets the specifications.

3.6. CLEAN-UP AND TREATMENT FOR TOP OF SM CONSTRUCTION

- A. The top surface of the treated soil shall be shaped while the material is workable, and the top elevation shall achieve the target top elevation (Figure 1) with a tolerance of + 0.5 feet. The Contractor is responsible for final shaping of the treated soil to meet this requirement.
- B. Upon completion of the SM construction, the Contractor shall remove all unused raw materials, including grout, from the site. ERRS will manage swell material that has been placed in the location designated by the ERRS Site Manager. The Contractor shall remove all swell material that has not been properly managed by the Contractor.

End of Section

ATTACHMENTS

The following documents are attached to this performance specification and considered part of the specification document:

- Figure 1 Soil Mixing Ground Improvement Area Site Plan (2/15/12)
- Appendix A Boring Logs
- Appendix B Geotechnical Laboratory Test Results
- Appendix C Soil Mixing Bench-Scale Laboratory Scope of Work
- Appendix D Soil Mixing Bench-Scale Laboratory Report Data

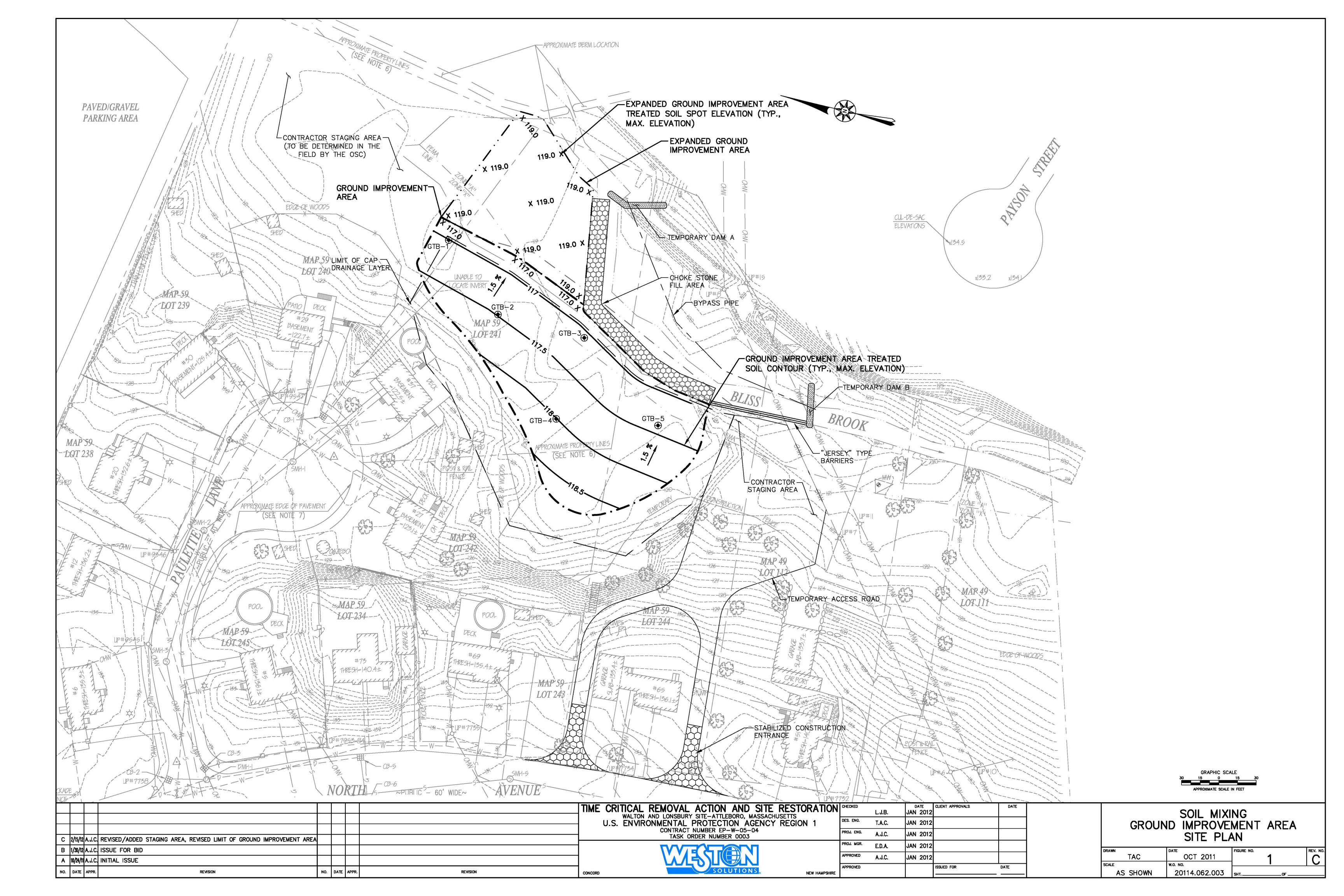
REVISION HISTORY

Revision 0, 30 January 2012 - Original issue.

Revision 1, 2 February 2012 - Miscellaneous revisions to clarify division of responsibility.

Revision 2, 7 March 2012 - Added Appendix D, Added revised Figure 1 previously distributed.

PREPARED BY:


WESTON SOLUTIONS, INC. Arthur J. Cunningham, P.E. ARTHUR ARY Walton and Lonsbury Site

Performance Specification for Soil Mixing for Ground Improvement 7 March 2012, Revision 2

18

FIGURE 1

SOIL MIXING GROUND IMPROVEMENT AREA SITE PLAN

APPENDIX A

BORING LOGS

PROJECT CLIENT:	U.S. EN	AND LON	TAL PROT	TE, ATTLE ECTION A	BORO, MAS SENCY, REG		TS			BORING Sheet No. TDD NO. 0	No. GTB- <u>1 OF 2</u> 1-09-06-00	01
		OR: NEW	HAMPSHIR	E BORING	; 					ELEVATION:		1 0014
GROUND DATE	TIME			SCREEN	TYPE	CAS.	SAMP. SS	CORE	TUBE		<mark>(ED:</mark> 10 Augu HED: 10 Augu	
8/10/11			-	NA	DIA.		2"				Walter Hoeck	
					₩ Τ.		140 lb.			ASSISTANT:	Dan Stricklar	nd
					FALL		30"			GEOLOGIST:	George Mavri	5
WELL Const.	O (FEET)	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (in.)		CLA	SSIFI) N		SOIL TYPE/ CLAY CONSISTENCY	
	- - - 2 - - 3	2	₩H/1 1-0- 1-1	9	advanced 0 –9 * Wet. P	split spo Dark = 0.25. ank to 3 Dark	feet, no s brown, CL4	AY, little s plit spoon	silt, sponç sample	y (organic) collected.	Very Soft Very Soft	100-0076
					6 -14 " Wet. P	Black,	CLAY, little	e silt and	roots (o	rganic).		
		3	NA	19	0 - 15" 15 - 19	Slough " Dark t	lically push prown, CLA) Wet. P =	', little sil			Very Soft	100-0078
		NA	NA	NA	lowered in known if therefore feet, from recovery	nto boring any soil Shelby Ti n7.65 — (organic (D feet. In: Shelby Tul went into S ube was hy 9.4 feet. clay and si nches of gi	be sank t Shelby Tub draulically Approxima It). Botto	o 7.65 fe oe as it s pushed itely 29 i om of Sh	eet. Not sank, only 1.75 nches	Very Soft	NA
	- 10 - 11 - 12	4	WR/1		-	advanced Gree	. Augers split spoo nish—gray, 0.25.	n to 12	feet.		Very Soft	NA

PROJECT CLIENT:	WALTON U.S. EN	I AND LON	ITAL PROTI	ITE, ATTLE ECTION A	EBORO, MAS GENCY, REG		TS			BORING Sheet No. TDD NO. 0	RIG BORIN No.GTB-(2 OF 2 1-09-06-00	01
		OR: NEW	HAMPSHIR	E BORING	;		L CALID	0005	7005		128.5 feet	
GROUND DATE	WATER: TIME			SCREEN	TYPE	CAS.	SAMP. SS	CORE	TUBE		TED: 4 Augus HED: 5 Augus	
8/10/11				NA	DIA.		2"				Walter Hoeck	
				141	WT.		140 lbs.				Dan Stricklar	
					FALL		30"				George Mavri	
WELL Const.	DEPTH DEPTH 15	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (in.)		CLA	A S S I F I	CATIO) N		CONSISTENCY	
	- 	5	WH/WR- 2-8-6	13	0 - 11" between 8 11- 13"	Greer 3 — 11"), Orang	t. Split sp nish-gray, (Wet. P = ge-brown, y el and silt.	CLAY, little = 0.25. very coars	: silt (mo	re silt	Medium Stiff	100–0079
	- 14 	6	9–6– 9–10	9	0 – 3 " 3 – 9" and coar Wet.	Ligi	ugh. ht brown, v ie gravel (d				Medium Dense	100-0080
		7	8-8- 7-9	8	0 — 8" trace coa gravel).	rse-to-fi	t brown, ve ne gravel (Medium Dense	100-0081
	- 18 - 19 	8	4-7- 9-9	9	0 — 4 " 4 — 9" coarse—ta	Slou Brov o-fine gro	igh. wn, very co avel, trace EOB = 20	silt. Wet.	fine SAND	, little	Medium Dense	100-0082
	- 20				2) Water 3) Collect zip-lock t 4) P = P units of K 5) WH = 6) WR = 7) NA = 8) EOB =	added to ed soil sa bag for po enetromet (ilograms Weight of Weight of Not applic	rods able	control run each inte re evaluati with foot (rval and on. attachmen	placed in t, in		71 A 2011

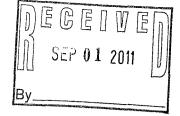
PROJEC CLIENT:	T: WALTON U.S. EN	IVIRONMEN	ISBURY SI	TE, ATTLE ECTION A	EBORO, MAS	SSACHUSET	TS			BORING SHEET No. TDD NO. O	1-09-06-00	02
		IOR: NEW	HAMPSHIR	E BORING	;	CAS.	SAMP.	CORE		ELEVATION:		+ 2011
GROUND DATE	TIME	WATER F		SCREEN	TYPE	CAS.	SANF.	CORE	TUBE		FED: 9 Augus HED: 10 Augu	
8/9/11		-	-	NA	DIA.		2"			OPERATOR:	Walter Hoeck	ele
					₩T.		140 lb.			ASSISTANT:	Dan Stricklar	nd
				i	FALL		30"			GEOLOGIST:	George Mavri	S
WELL Const.	O (FEET)	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (In.)		CL/	ASSIFI	CATIO) N		CONSISTENCY	
	- 1 	1	0-1- 0-1	2	0 –2 " roots, spi spoon.		brown and anic). Wet				Very Soft	NA
	2 	2	0-1- 0-2	0	No Recov	ery.					Very Soft	NA
	4 5 -	Shelby Tube	NA	NA	from 4 -	· 6 feet.	and hydrau			-	NA	NA
	6 7 7	3	WR-15- 16-12	24	Wet. 22 – 24	Wet. I Greeni Light br Light b	jh. c, CLAY, litt p = 0.25. sh−gray, C rown and r rown, very avel. Wet.	LAY. Wet eddish-br coarse-to	. P = (own, fine). SAND.	Dense	100-0070
		4	9–10– 15–18	5	0 – 5" fine-to-c		brown, vei avel, trace			SAND, little	Medium Dense	NA
D \ SAGEAGA	- 10 - 11 - 12	5	9–8– 7–10	4			brown, ver avel and s		-to-fine	SAND, trace	Dense	100-0071

PROJECT	: WALTON	I AND LON		ITE, ATTLI	EBORO, MA		ΠS			BORING SHEET No.	RIG BORII No.GTB-(2 OF 2 1-09-06-00	02
BORING	CONTRACT		HAMPSHIR							ELEVATION:	119.5 feet	
GROUND		T				CAS.	SAMP.	CORE	TUBE		ED: 9 Augus	
DATE 8/10/11	TIME	WAIER E	LEVATION	SCREEN NA	I TYPE DIA.		<u>SS</u> 2"				HED: 10 Augu	
				NA	WT.		140 lbs.				Walter Hoeck Dan Stricklar	
					FALL		30"				George Mavri	
WELL CONST.	DEPTH DEPTH 15	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (in.)		CLA	A S S I F I	CATIO	D N		SOIL TYPE/ CLAY CONSISTENCY	PHOTOGRAPH NUMBER
	- 	6	9–9– 14–38	12		coarse gro Light = 2.5.	brown, ver avel and sil brown, ver as 0 — 2·	t. Wet. ry fine SA	ND, trace		Medium Dense	100–0072
		7	9-8- 9-9	7	0 — 7" coarse—ta	Brow o-fine gro	n, very coc avel (angula	ırse—to—fi ır), trace	ne SAND, silt. We	some t.	Medium Dense	100-0073
		8	6-7- 12-13	0	Split spo slough).	on advanc	ced to 17.4	feet. N	lo recovei	ry (all	Medium Dense	NA
		9	4–9– 10–22	12	0 – 3" 3 – 12"	Sloug Brown, o-fine gro	red from 1 h. very coars vel, trace DB = 20 fe	se—to—find silt. Wet.	e SAND, I	ittle	Medium Dense	100–0075
					2) Water 3) Collect zip-lock 4) P = F units of F 5) WH = 6) WR = 7) NA = 8) EOB =	added to ed soil sa bag for po Penetromet	rods able.	control run each inte re evaluat with foot	erval and ion. attachmen	placed in t, in		

PROJECT CLIENT:	IFUND TECHNICA F: WALTON U.S. EN	IVIRONMEN	ISBURY SI	ITE, ATTLE	BORO, MAS		TS			BORING Sheet No. TDD NO. 0	1-09-06-00	03
GROUND		FOR: NEW	HAMPSHIR	E BORING	; I	CAS.	SAMP.	CORE	TUBE	ELEVATION:	118.5 feet [ED: 11 Augu	et 2011
DATE		WATER E		SCREEN	TYPE	043.	SS SS	CORE	TOBE		HED: 12 Augu	
8/11/11		-	-	NA	DIA.		2"				Walter Hoeck	
					₩T.		140 lb.				Dan Stricklar	
					FALL		30"			GEOLOGIST:	George Mavri i	S
WELL Const.	0 (FEET)	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (In.)		CLA	SSIFI	CATIO) N		CONSISTENCY	
	- 1	1	WR	0	Split spoo recovery.	on sank te	o 2 feet w	ith weight	of rods.	Νο	Very Soft	NA
	-2	2	WR/WH	10	0 - 10"		brown and				Very Soft	100-0083
	F				0.25.		of matter,					
	-3	Shelby			pushed S	ea, pusnea helbv Tube	d auger to e from 3 ·	ο τεετ, α - 5 feet.	Approxii	uiicaiiy matelv 14		
	-	Tube					rganic clay					
	- 4											
	Ļ	3 Shelby	WR/WH	14	0 — 14" trace roo		brown and af matter				Very Soft	100-0084
	-5	Tube			Co-locate from 4 -	ed, augere - 6 feet.	ed to 4 fe No recov	et, and in ery.	serted Sh	elby Tube		
	F				from 5 -	- 7 feet.	ed to 5 fe			-		
	-6				Approxim	ately 29 i	inches reco	ivery (orgi	anic clay	and silt).		
	-7	4	WR/WH	15	0 — 9" roots and		orown and tter,(organi				Very Soft	100-0101
	-8				9 — 15" 0.50.	Greeni	sh—gray, C	LAY and S	SILT. We	t. P =		
	-9	5	WR-WR- 2-5	7		= 0.25.		-		Y and SILT.	Very Soft	100-0102
	- 10				4 – 7" coarse-t	' Light b o-fine SA	rown and ND, trace	orange bro fine-to-c	own, very oarse gro	ivel. Wet.		
	- _ 11											
	 											
	- 12											

PROJEC	T: WALTON	I AND LON		ITE, ATTLE	EBORO, MA		ΠS			BORING SHEET No.	RIG BORII No.GTB-(2 OF 2 1-09-06-00	03
			HAMPSHIR								118.5 feet	02
	DWATER:					CAS.	SAMP.	CORE	TUBE		TED: 11 Augu	st 2011
DATE	TIME	WATER E	LEVATION	SCREEN	TYPE		SS				HED: 12 Augu	
8/12/1	1	-	-	NA	DIA.		2"				Walter Hoeck	
					₩T.		140 lbs.				Dan Stricklar	
					FALL		30"			GEOLOGIST:	George Mavri	s
WELL CONST.	LEET) FFEET	SPLIT SPOON NO.	BLOW COUNTS (N)	REC. (in.)			ASSIFI				CONSISTENCY	
		6	3–9– 22–29	13	0 – 13" fine-to-c	Light bro coarse gro	wn, fine—ta ovel (round	o-very co ed). Wet	arse SANI	D, little	Dense	100-0103
	-13	7	7-7- 14-46	8	0 — 1" 1 — 3" 3 — 8" trace, fir	Light		y coarse-	-to-fine S	silt. Wet. SAND,	Medium Dense	100-0104
	- 15	8	12–9– 7–12	10	0 — 1" 1 — 10" fine—to—	Light b	n. rown, very ravel (well :	coarse—ta sorted). W	o-fine SA /et.	ND and	Medium Dense	100-0106 100-0107
	- 17 - 18 - 18	9	11–48– 61–42	13			own, very c avel (angul EOB = 1	ar) and s		D, trace	Very Dense	100-0108
					2) Water 3) Collect zip-lock 4) P = F units of F 5) WH = 6) WR = 7) NA =	added to ed soil sa bag for po Penetromet	rods able.	control rui each inte re evaluat with foot	erval and ion. attachmer	placed in It, in		

PROJECT CLIENT:	U.S. EN	AND LON	ITAL PROT	ITE, ATTLE ECTION AC	BORO, MAS Gency, Reg		ΠS			BORING SHEET No. TDD NO. 0	RIG BORII No. GTB- 1 OF 2 1-09-06-00	04
		OR: NEW	HAMPSHIR	E BORING		CAS.	SAMP.	CORE	TUBE		119.5 feet TED: 9 Augus	+ 2011
DATE	TIME	WATER E		SCREEN	TYPE	UA3.	SS	CORE			HED: 9 Augus	
8/9/11				NA	DIA.		2"			OPERATOR:	Walter Hoeck	ele
					<u>WT.</u>		140 lb.				Dan Stricklar	
			i	i	FALL		30"			GEOLOGIST:	George Mavri	IS
WELL Const.	O (FEET)	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (In.)			ASSIFI				CONSISTENCY	PHOTOGRAPH NUMBER
	- 1 -	1	1–3– 1–0	3	0 -2 " trace roo 2 - 3" P = 2.5	ots, spong Gray	brown and y (organic) , very fine	. Wet.			Very Soft	NA
	2 	2	2-1- 2-4	7	gravel, s 4 — 7" Wet. P Augered	ilt, and c Dark = 0.75. to 2 fee	, medium— lay. Wet. gray, CLA t in co—loc be from 2	Y and SIL ation and	T, trace hydrauli	roots. cally	Very Soft	NA
	4 5 	3	1–1– 1–2	10	0 – 5" and root 5 – 10' 1.75.	ts, spongy	/, CLAY and / (organic). iish—gray, (Wet. P	= 0.	-	Very Soft	NA
	6 7 7	Shelby Tube	NA	NA	from 6	- 8 feet.	and hydra inches reco			elby Tube	NA	NA
		4	WR-WH- 3-7	24	Wet. P	2" Gray (r = 0.75. +" Light b	ish—gray, (nottled, rea rown, very	ldish-brov	wn), CLAY	and SILT.	Very Soft	NA
	- 10 - 11 - 12	5	3-6- 12-18	15	6 - 10"	. Wet. Gree d SILT. N Browr coarse gi Brown,	n, very fin P = 0.25. nish-gray Wet. P = n, very coa ravel. Wet. fine SAND	(mottled, 0.25. rse-to-fir P = 0.	ne SAND,	little	Medium Dense	NA


			nd response tea NSBURY SI		Eboro, Ma	SSACHUSF	TS			BORING	RIG BORIN	
CLIENT:	U.S. EN	VIRONMEN	ITAL PROT	ECTION A	GENCY, RE					TDD NO. O	1-09-06-00	02
		OR: NEW	HAMPSHIR	E BORING	<u>} </u>						119.5 feet	
GROUND						CAS.	SAMP.	CORE	TUBE		TED: 9 Augus	
DATE 8/9/11	TIME			SCREEN NA	DIA.		SS 2"			DATE FINIS	<u>HED: 9 Augus</u> Walter Hoeck	<u>t 2011</u>
0/9/11				NA	WT.		140 lbs.				Dan Stricklan	
					FALL		30"				George Mavri	
WELL Const.	LEEL) DEPTH 15	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (1n.)	u		ASSIFI	C A T I () N		SOIL TYPE/ CLAY CONSISTENCY	PHOTOGRAPH NUMBER
	- 13	6	9–13– 25–13	9	0 — 1" 1 — 9" coarse—t	Gray,	gh. . very coan avel. Wet.	se—to—find P = 0.50	e SAND, I).	ittle	Dense	NA
	—14 — —15	7	11–41– 29–34	2	0 — 2" trace fin tip of sp	Light e gravel. lit spoon.	brown, very Wet. Gray	coarse- crystallin	to—fine S e cobble	AND, stuck in	Very Dense	NA
					Auger re	fusal at	16.5 feet.	EOB =	16.5 fee	t.		
	-17				-							
	- 18				NOTES:							
					 Burma Water Collect Zip-lock P = units of WH = WH = WR = NA = 	added to ted soil s bag for p Penetrome Kilograms	icable.	control ru n each int ure evalua with foot	inning sar erval and tion. attachme	placed in int, in		

PROJECT	: WALTON	I AND LON	id response tea NSBURY SI	TE, ATTLE	BORO, MAS	SSACHUSET	тѕ			BORING SHEET No.	RIG BORIN No. GTB-	05
					SENCY, RE	GION I				*	1-09-06-00	02
GROUND		IUK: NEW	HAMPSHIR	E BURING	1	CAS.	SAMP.	CORE	TUBE		119.0 feet [ED: 11 Augu	et 2011
DATE	TIME	WATER F		SCREEN	TYPE		SS	OOKE			HED: 11 Augu	
8/10/11			-	NA	DIA.		2"				Walter Hoeck	
					WT.		140 lb.				Dan Stricklar	
					FALL		30"			GEOLOGIST:	George Mavri	S
WELL CONST.	O (FEET)	SP⊔T SPOON NO.	BLOW COUNTS (N)	REC. (in.)			A S S I F I				CONSISTENCY	
	- 1	1	1	3	spoon 2	split spoo feet, and foot each	n to 4 fee two additi 1.	rt: 1 blo ^s onal blows	w advance advance	ed split ad split	Very Soft	NA
	-2 - -3 -		1/1		0 — 3" (organic)		<, CLAY and	d SILT, tra	ace roots	, spongy	Very Soft	NA
	4 5 	2 Shelby Tube	WR/WH	7	Shelby T	. Wet. Gree ted and a ube from	r, CLAY and nish—gray, ugered to 5— 7 feet mately 19	CLAY and 5 feet. I :.	SILT. W Hydraulica	/et.	Very Soft	NA
		3	WR/WH- 3-5-6	13	0 — 11" 11 — 13 very coa	" Orange-	sh—gray, C -brown, ver ne gravel,	y coarse-	-to-fine		Medium Stiff	100-0109
	-8						EOB = 8	3 feet.				
	- - - - - - - - - - - - - - - - - - -				2) Water 3) P = units of 4) WH = 5) WR = 6) NA =	added to Penetrome Kilograms	cable.	control ru with foot	nning sar attachme	nt, in		
n \ 222020001 r	- 12	· · · · · · · · · · · · · · · · · · ·	• • • • •		RF 4 0440							

APPENDIX B

GEOTECHNICAL LABORATORY RESULTS

GTX NO: 11069

125 Nagog Park Acton, MA 01720 978 635 0424 Tel 978 635 0266 Fax

Transmittal

TO:

John Burton

Weston Solutions, Inc.

3 Riverside Dr.

Andover, MA 01810

RE: DAS Case 0829F

COPIES	DATE	DESCRIPTION
	8/25/2011	August 2011 Laboratory Test Report

REMARKS:

SIGNED: Joe Tømei, Laboratory Manager CC: el APPROVED BY: Nancy Hubbard, Project Manager

Boston Atlanta New York

www.geotesting.com

August 25, 2011

John Burton Weston Solutions, Inc. 3 Riverside Dr. Andover, MA 01810

RE: DAS Case 0829F, (GTX-11069)

Dear John:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received six samples from you on 8/12/2011. These samples were labeled as follows:

Boring Number	Sample Number	Depth
GTB-01	D30550	7.65-9.4 ft
GTB-02	D30551	4-6 ft
GTB-03	D30552	3-5 ft
GTB-03	D30553	5-7 ft
GTB-04	D30554	6-8 ft
GTB-05	D30555	5-7 ft

GTX performed the following tests on these samples:

4 ASTM D 2216 - Moisture Content
4 ASTM D 2974 - Organic Content
4 ASTM D 422 - Grain Size Analyses with Hydrometer
4 ASTM D 4318 - Atterberg Limits
4 ASTM D 2487 - Soil Classification
2 ASTM D 854 - Specific Gravity
2 ASTM D 2435 - Incremental Consolidation
6 ASTM D 2850 - UU Triaxial Shear

The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be returned to you for proper disposal. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

Joe Tomei Laboratory Manager

125 Nagog Park Acton, MA 01720 978 635 0424 Tel 978 635 0266 Fax

Geotechnical Test Report

8/25/2011

GTX-11069 DAS Case 0829F Project

Prepared for:

Weston Solutions, Inc.

Client: Weston Solutions, Inc. Project: DAS Case 0829F Location: Boring ID: ---Sample ID:---Depth : ---

Sample Type: ---Test Date: 08/23/11 Checked By: jdt Sample Id: ----

Project No: Tested By: jef

GTX-11069

Moisture Content of Soil - ASTM D 2216-05

Boring ID	Sample ID	Depth	Description	Moisture Content,%
GTB-01	D30550	7.65-9.4 ft	Moist, dark olive brown organic silt with sand	282.6
GTB-02	D30551	4-6 ft	Moist, very dark brown silty, clayey sand with gravel and organics	367.1
GTB-03	D30552	3-5 ft	Moist, very dark brown organic silt	424.6
GTB-04	D30554	6-8 ft	Moist, dark olive brown silty sand	40.8

Notes: Temperature of Drying : 110° Celsius

Client:	Weston Solutions, Inc.				
Project:	DAS Case 0829F				
Location:				Project No:	GTX-11069
Boring ID	*****	Sample Type	9:	Tested By:	jef
Sample II):	Test Date:	08/19/11	Checked By:	jdt
Depth :		Test Id:	215029		

Moisture, Ash, and Organic Matter - ASTM D 2974

Boring ID	Sample ID	Depth	Description	Moisture Content,%	Ash Content,%	Organic Matter,%
GTB-01	D30550	7.65-9.4 ft	Moist, dark olive brown organic silt with sand	283	82.8	17.2
GTB-02	D30551	4-6 ft	Moist, very dark brown silty, clayey sand with gravel and organics	367	32.7	67.3
GTB-03	D30552	3-5 ft	Moist, very dark brown organic silt	425	76.8	23.2
GTB-04	D30554	6-8 ft	Moist, dark olive brown silty sand	41	97.8	2.2

Notes: Moisture content determined by Method A and reported as a percentage of oven-dried mass; dried to a constant mass at temperature of 110° C Ash content and organic matter determined by Method C; dried to constant mass at temperature 440° C

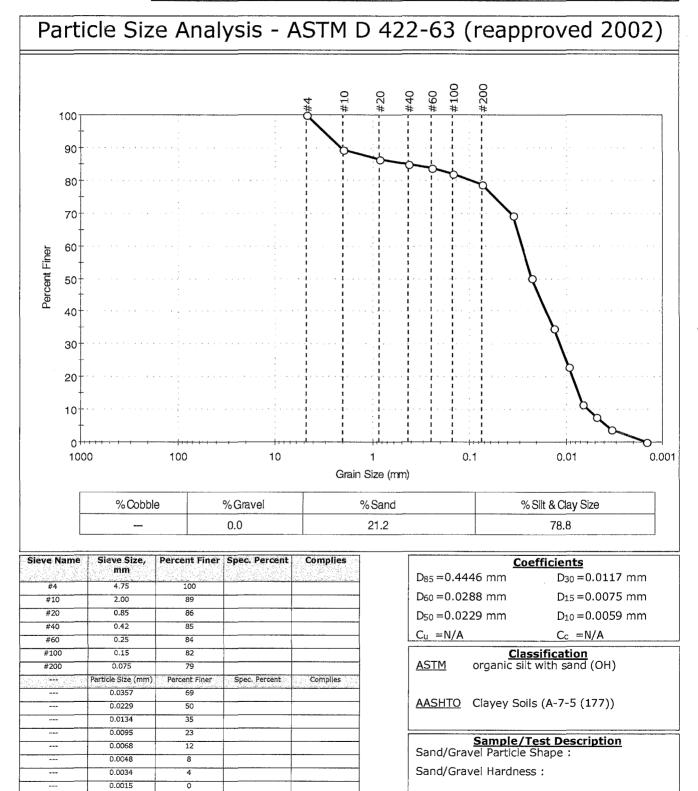
	Client: Project:	Weston Solutions, Inc. DAS Case 0829F				
	Location:				Project No:	GTX-11069
}	Boring ID:	No. 4	Sample Type	9:	Tested By:	jbr
	Sample ID	:	Test Date:	08/23/11	Checked By:	jdt
	Depth :		Test Id:	215028		

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
GTB-01	D30550	7.65-9.4 ft	organic silt with sand	ОН	0.0	21.2	78.8
GTB-02	D30551	4-6 ft	Silty, clayey sand with gravel	SC-SM	41.7	43.1	15.2
GTB-03	D30552	3-5 ft	organic silt	ОН	0.0	9.4	90.6
GTB-04	D30554	6-8 ft	Silty sand	SM	0.0	56.7	43.3

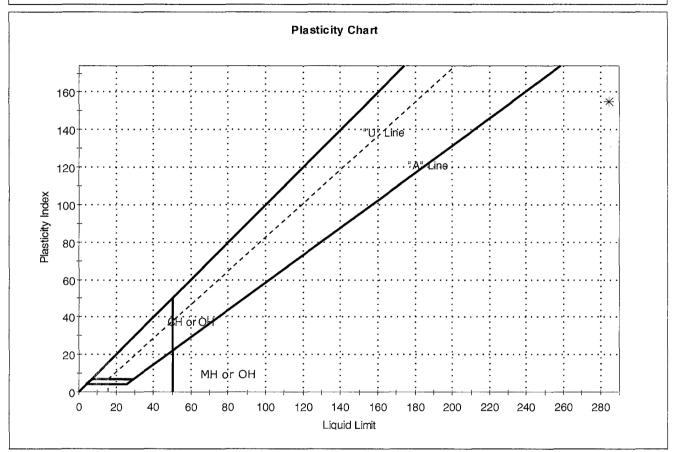
Remarks: Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

Client:	Weston Solutions, Inc.				
Project:	DAS Case 0829F				
Location:				Project No:	GTX-11069
Boring ID:		Sample Type	:	Tested By:	ema
Sample ID):	Test Date:	08/18/11	Checked By:	jdt
Depth :		Test Id:	215024		


Specific Gravity of Soils by ASTM D 854-06

Boring ID	Sample ID	Depth	Visual Description	Specific Gravity
GTB-01	D30550	7.65-9.4 ft	Moist, dark olive brown organic silt with sand	2.1
GTB-04	D30554	6-8 ft	Moist, dark olive brown silty sand	2.6

Notes: Specific Gravity performed by using method A (oven dried specimens) of ASTM D 854 Moisture Content determined by ASTM D 2216.


Client:	Weston So	lutions, Inc.				
Project:	DAS Case	0829F				
Location:					Project No:	GTX-11069
Boring ID:	GTB-01		Sample Type:	tube	Tested By:	jbr
Sample ID:	D30550		Test Date:	08/19/11	Checked By:	jdt
Depth :	7.65-9.4 ft		Test Id:	215006		
Test Comm	ient:					
Sample De	scription:	Moist, dark ol	ive brown orga	nic silt with	sand	
Sample Co	mment:					

Client:	Weston So	lutions, Inc.				
Project:	DAS Case	0829F				
Location:					Project No:	GTX-11069
Boring ID: GTB-01			Sample Type	: tube	Tested By:	cam
Sample ID	Sample ID:D30550			08/17/11	Checked By:	jdt
Depth :	7.65-9.4 ft		Test Id:	215009		
 Test Comn	nent:					
Sample De	escription:	Moist, dark ol	live brown org	anic silt with	sand	
Sample Co	mment:					

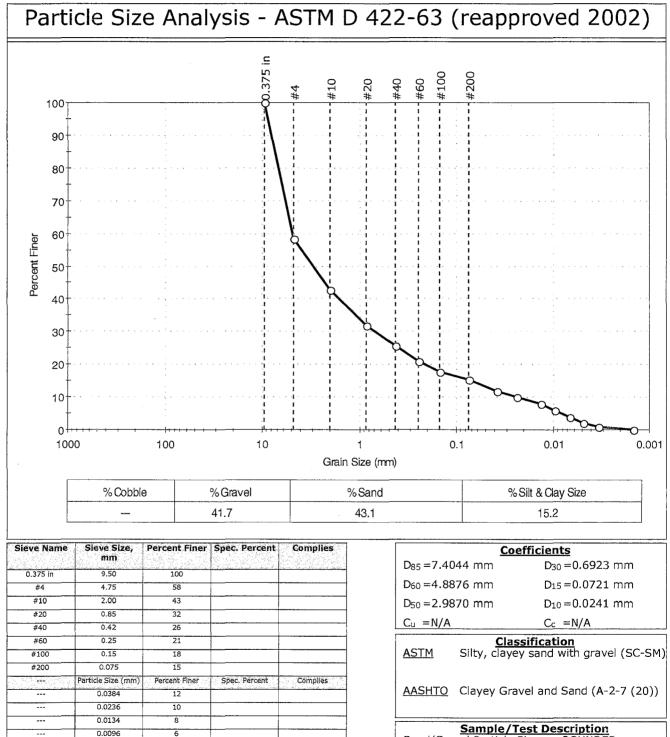
Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soll Classification
*	D30550	GTB-01	7.65-9.4 ft	283	285	130	155	1	organic silt with sand (OH)

Sample Prepared using the WET method

15% Retained on #40 Sieve

Dry Strength: MEDIUM


Dilentancy: RAPID

Toughness: MEDIUM

Due to a high organic content an Oven Dried Liquid Limit was peformed. The Oven Dried Liquid Limit was determined to be non-plastic.

]	Client:	Weston So	lutions, Inc.			· · · · · · · · · · · · · · · · · · ·	
	Project:	DAS Case	0829F				
	Location:					Project No:	GTX-11069
,	Boring ID:	GTB-02		Sample Type:	tube	Tested By:	jbr
	Sample ID:	:D30551		Test Date:	08/17/11	Checked By:	jdt
	Depth :	4-6 ft		Test Id:	215007		
	Test Comm	nent:					
	Sample De	scription:	Moist, very d	ark brown silty,	clayey san	d with gravel a	ind organics
	Sample Co	mment:					

Sand/Gravel Particle Shape : ROUNDED Sand/Gravel Hardness : SOFT

0.0068

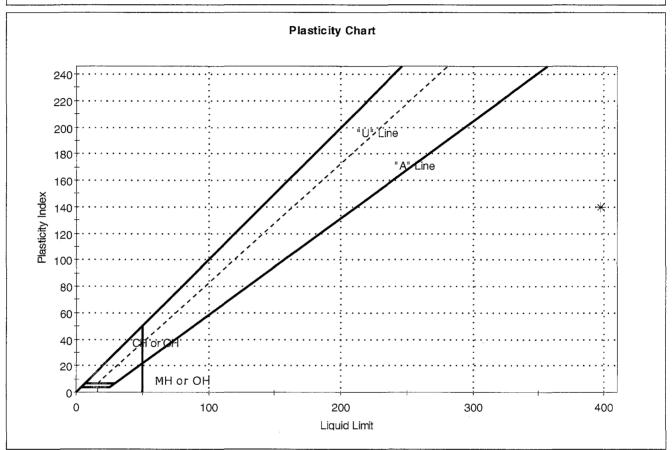
0.0048

0.0034

0.0015

4

2


1

0

	Client:	Weston Sc	olutions, Inc.				-
	Project:	DAS Case	0829F				
	Location:					Project No:	GTX-11069
/	Boring ID:	GTB-02		Sample Type	: tube	Tested By:	cam
	Sample ID	:D30551		Test Date:	08/17/11	Checked By:	jdt
	Depth :	4-6 ft		Test Id:	215010		
	Test Comm	nent:					
	Sample De	scription:	Moist, very d	lark brown silty	, clayey san	d with gravel a	ind organics
	Sample Co	mment:	~				

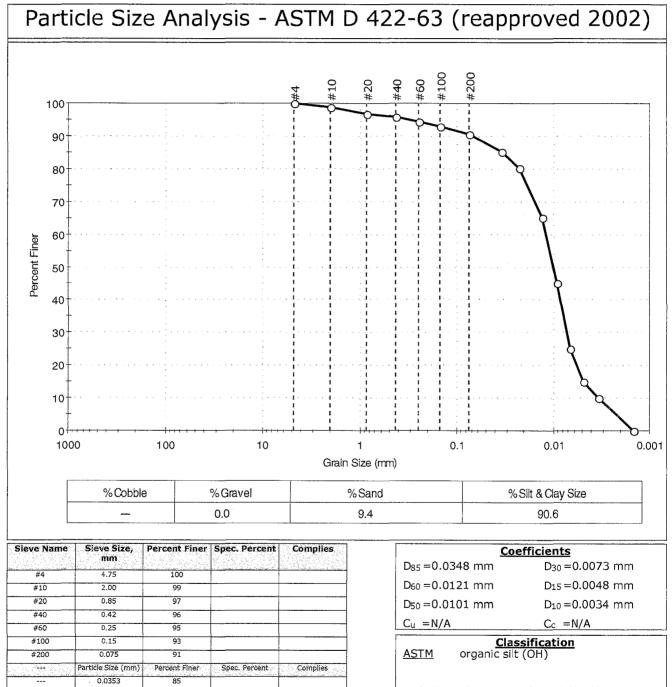
Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soll Classification
*	D30551	GTB-02	4-6 ft	367	398	258	140	1	Silty, clayey sand with gravel (SC-SM)

Sample Prepared using the WET method

74% Retained on #40 Sieve

Dry Strength: MEDIUM


Dilentancy: SLOW

Toughness: LOW

Due to a high organic content an Oven Dried Liquid Limit was peformed. The Oven Dried Liquid Limit was determined to be non-plastic.

	Client:	Weston So	lutions, Inc.				
P	Project:	DAS Case	0829F				
L	ocation:					Project No:	GTX-11069
E	Boring ID:	GTB-03		Sample Type	: tube	Tested By:	jbr .
5	Sample ID:	:D30552		Test Date:	08/19/11	Checked By:	jdt
	Depth :	3-5 ft		Test Id:	215008		
Т	Test Comm	nent:					· · · · · · · · · · · · · · · · · · ·
5	Sample De	scription:	Moist, very d	ark brown orga	anic silt		
S	Sample Co	mment:					

AASHTO Clayey Soils (A-7-5 (334))

Sample/Test Description Sand/Gravel Particle Shape : ---Sand/Gravel Hardness : ---

0.0225

0.0132

0.0093

0.0067

0.0048

0.0034

0.0015

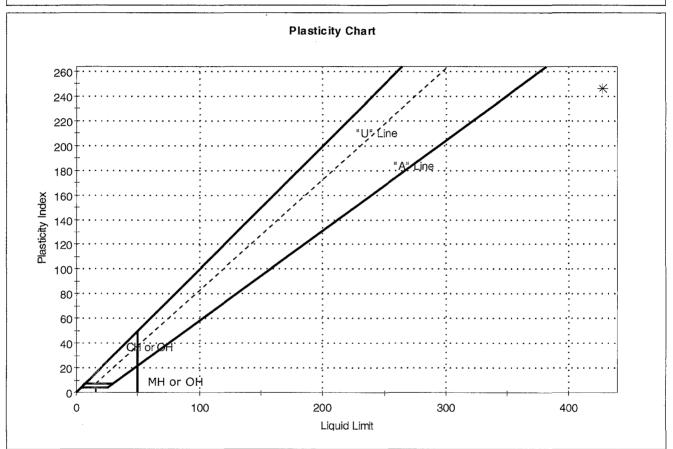
80

65

45

25

15


10

0

	Client:	Weston So	lutions, Inc.				
	Project:	DAS Case	0829F				
'n	Location:					Project No:	GTX-11069
g	Boring ID:	GTB-03		Sample Type	: tube	Tested By:	cam
	Sample ID	:D30552		Test Date:	08/17/11	Checked By:	jdt
	Depth :	3-5 ft		Test Id:	215011		
	Test Comm	nent:					
	Sample De	scription:	Moist, very da	ark brown orga			
	Sample Co	mment:	~				

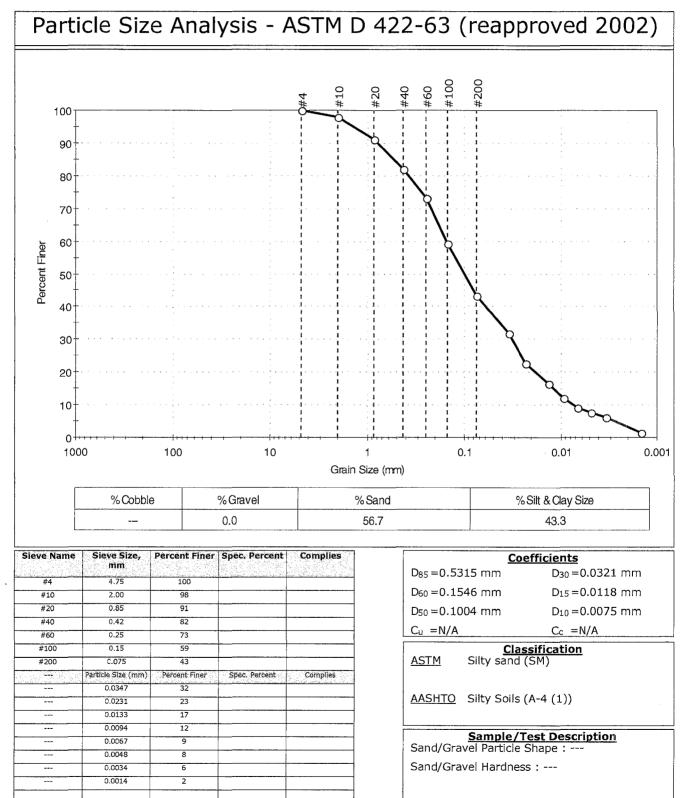
Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	D30552	GTB-03	3-5 ft	425	428	181	247	1	organic silt (OH)

Sample Prepared using the WET method

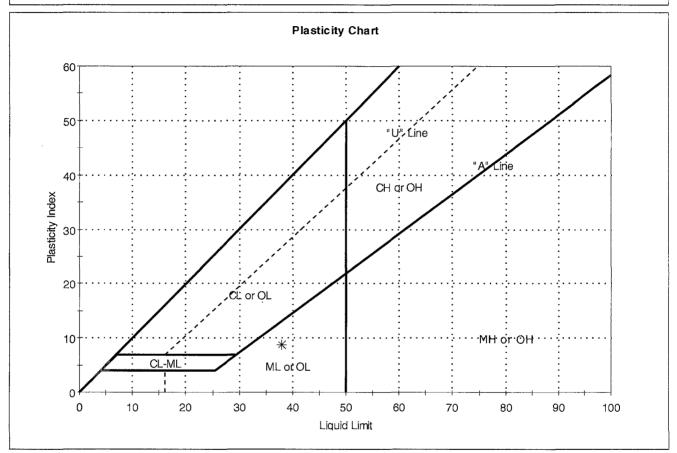
4% Retained on #40 Sieve

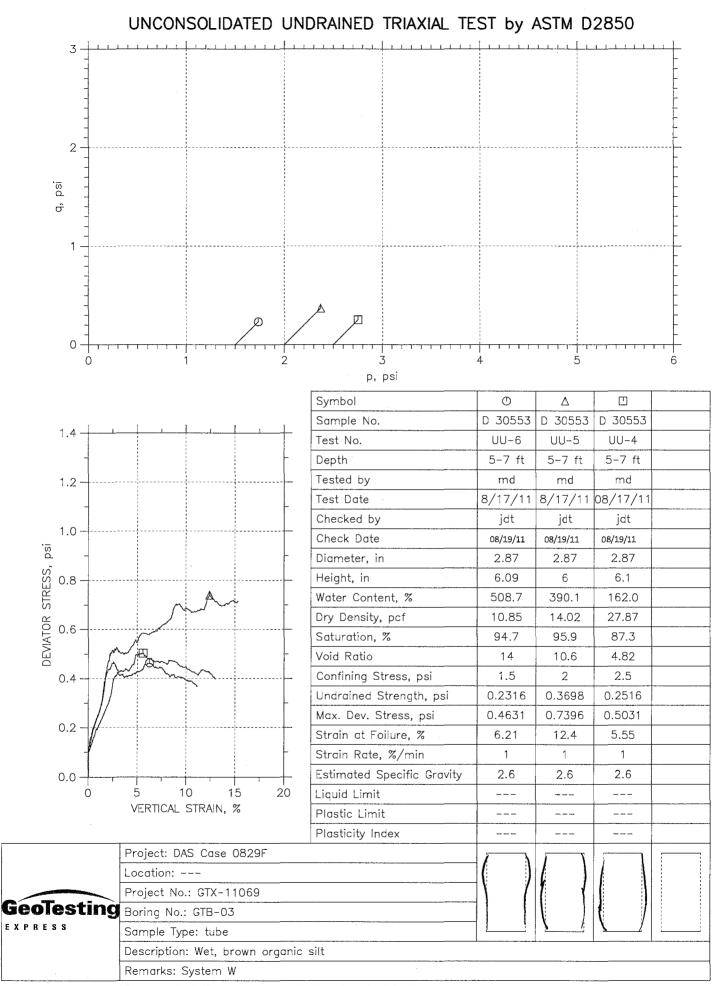
Dry Strength: MEDIUM

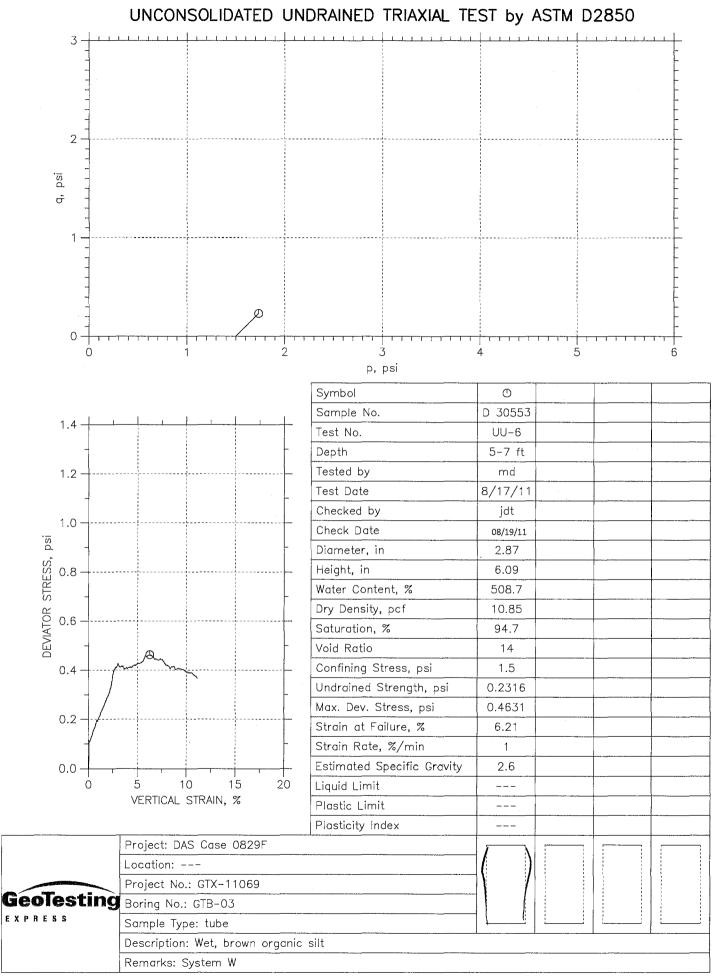

Dilentancy: SLOW

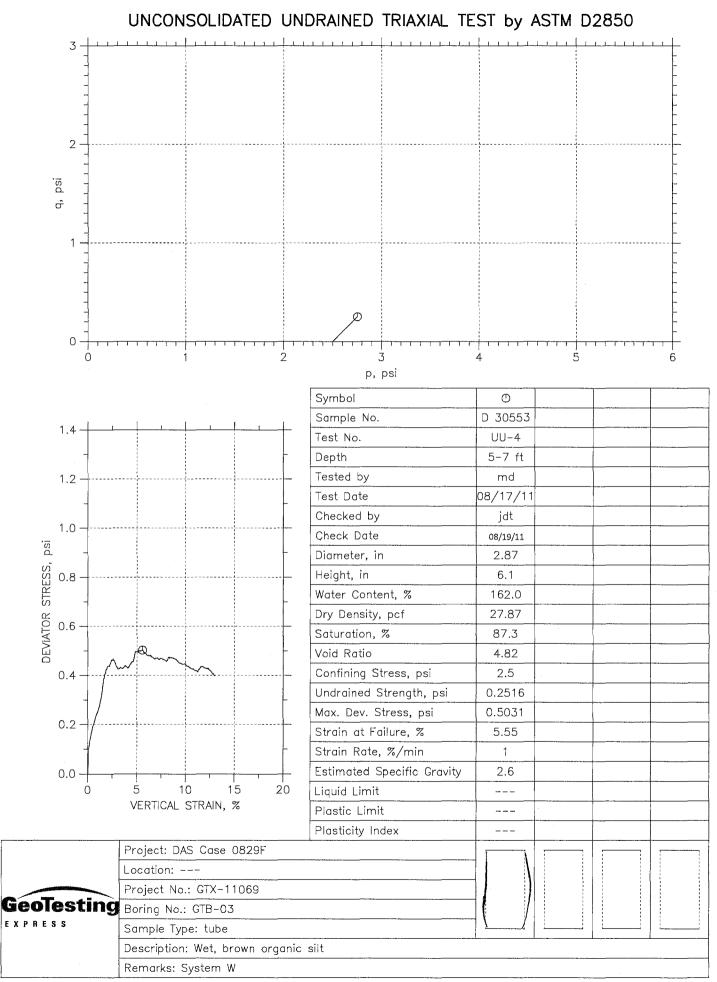
Toughness: LOW

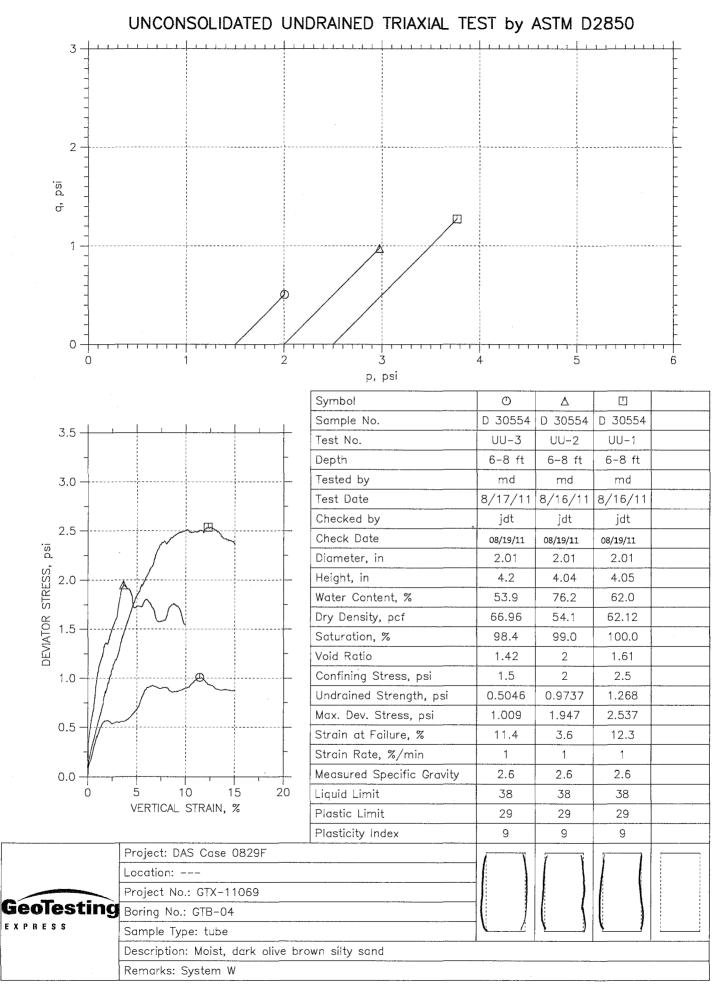
Due to a high organic content an Oven Dried Liquid Limit was peformed. The Oven Dried Liquid Limit was determined to be non-plastic.

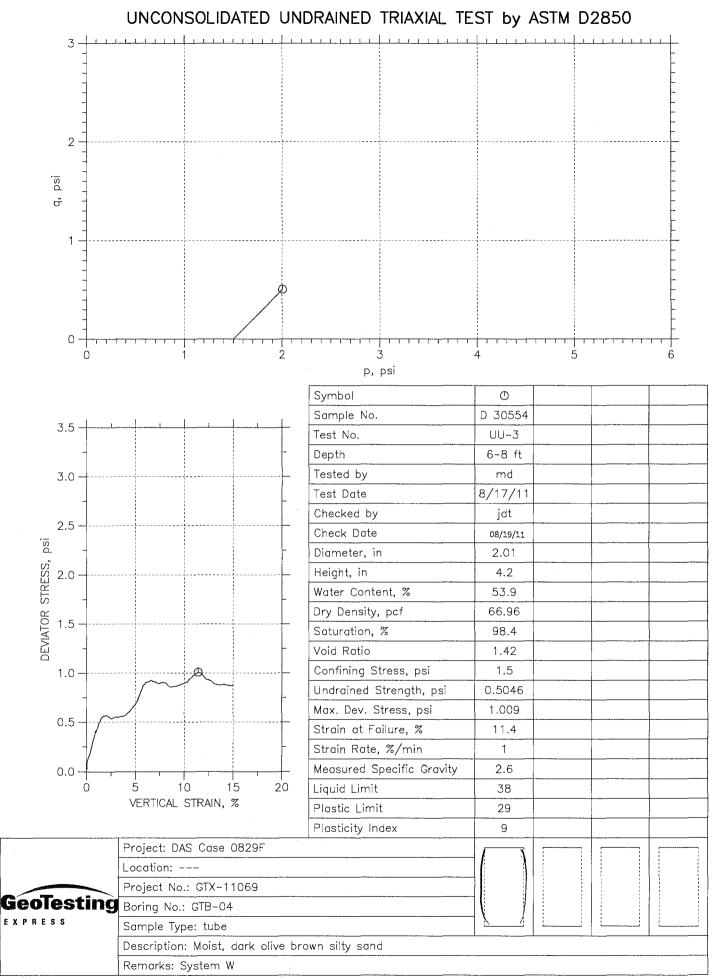

Client:	Weston Sc	olutions, Inc.				
Project:	DAS Case	0829F				
Location:					Project No:	GTX-11069
Boring ID:	GTB-04		Sample Type	: tube	Tested By:	jbr
 Sample ID	:D30554		Test Date:	08/17/11	Checked By:	jdt
Depth :	6-8 ft		Test Id:	215026		
Test Comm	nent:					
Sample De	scription:	Moist, dark d	olive brown silty	/ sand		
Sample Co	mment:					

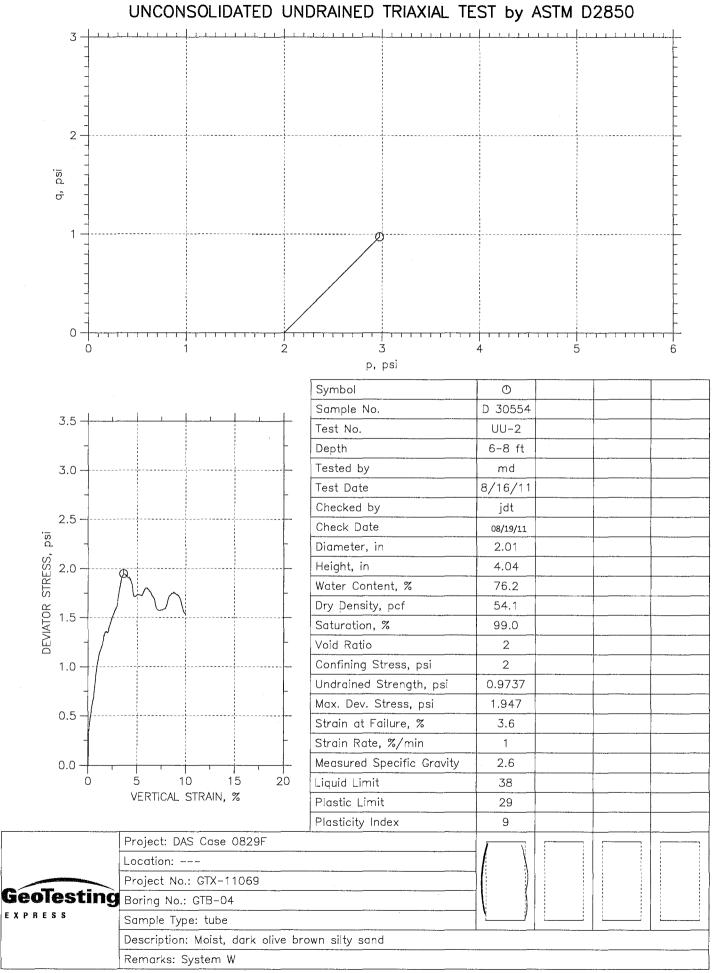

	Client:	Weston So	lutions, Inc.				
	Project:	DAS Case	0829F				
1	Location:					Project No:	GTX-11069
	Boring ID:	GTB-04		Sample Type	e: tube	Tested By:	cam
	Sample ID	:D30554		Test Date:	08/17/11	Checked By:	jdt
1	Depth :	6-8 ft		Test Id:	215027		
	Test Comm	nent:					
19	Sample De	scription:	Moist, dark ol	ive brown silt	y sand		
19	Sample Co	mment:					

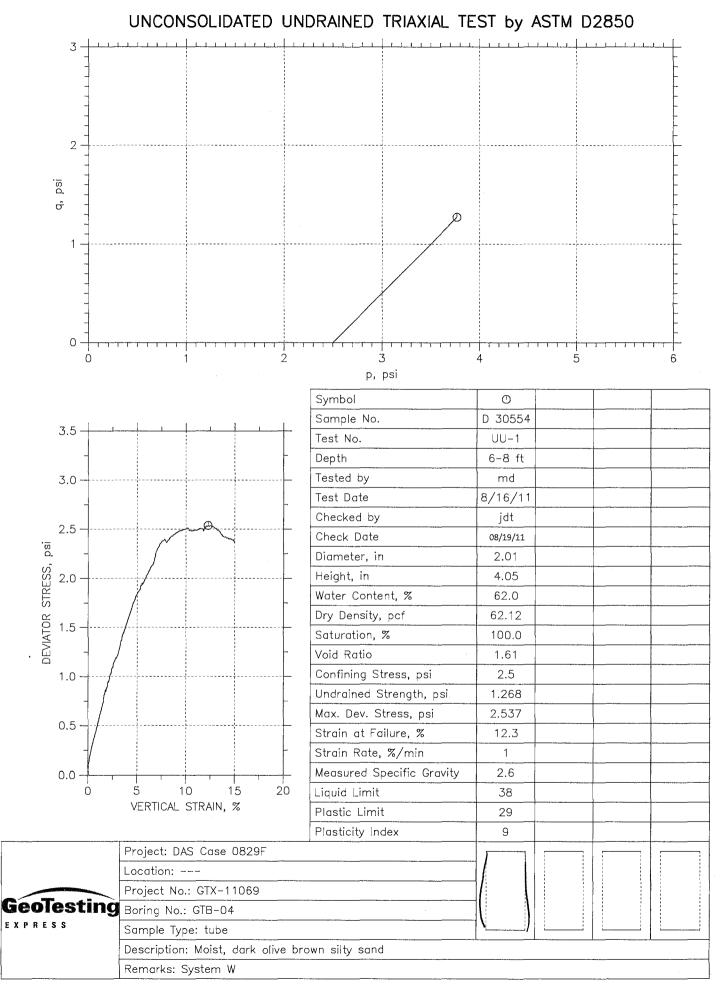

Atterberg Limits - ASTM D 4318-05

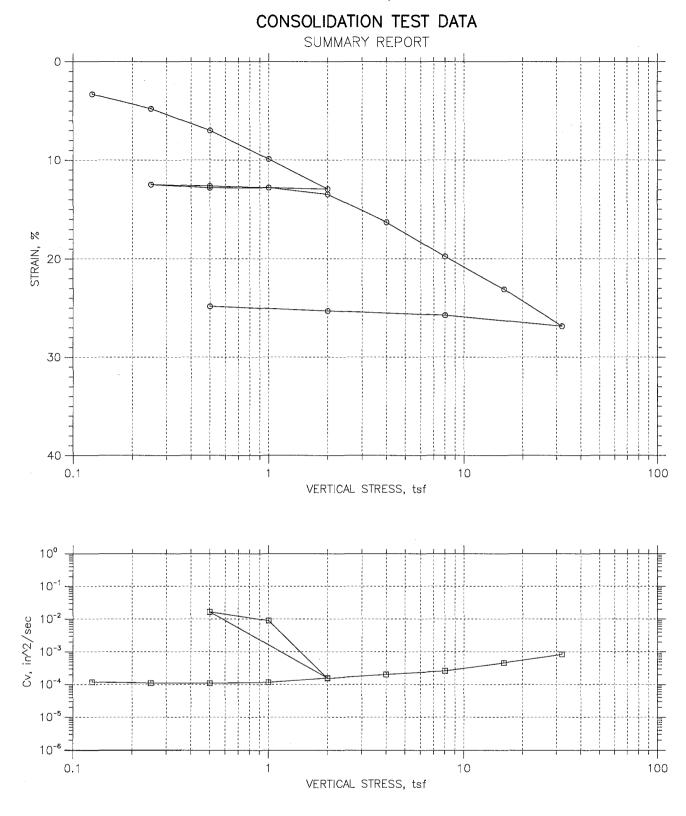

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	D30554	GTB-04	6-8 ft	41	38	29	9	1	Silty sand (SM)

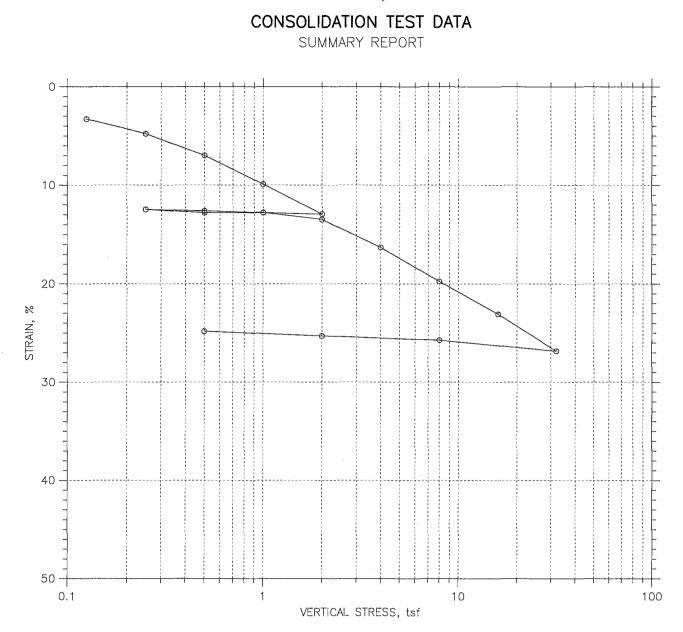

Sample Prepared using the WET method 18% Retained on #40 Sieve Dry Strength: MEDIUM Dilentancy: SLOW Toughness: MEDIUM







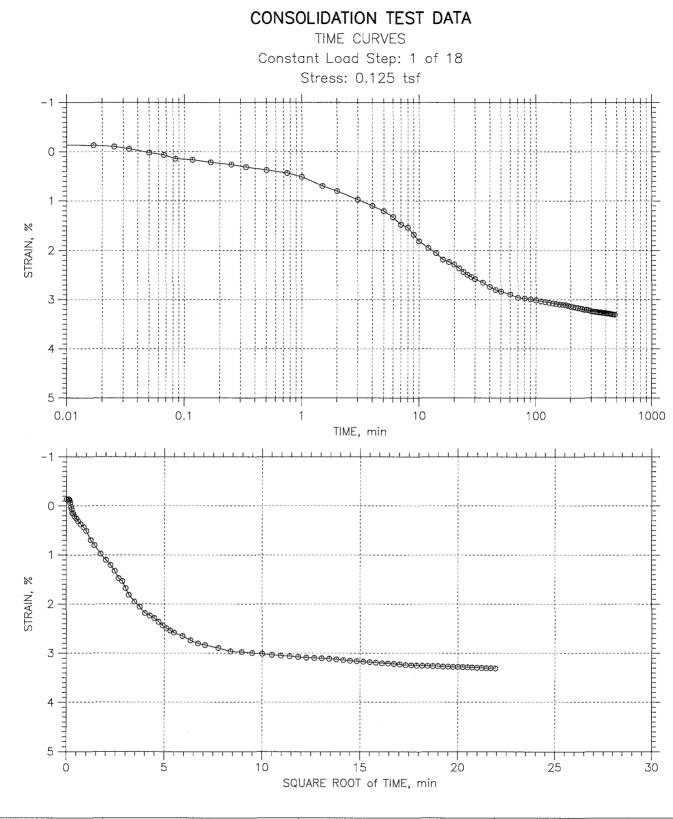




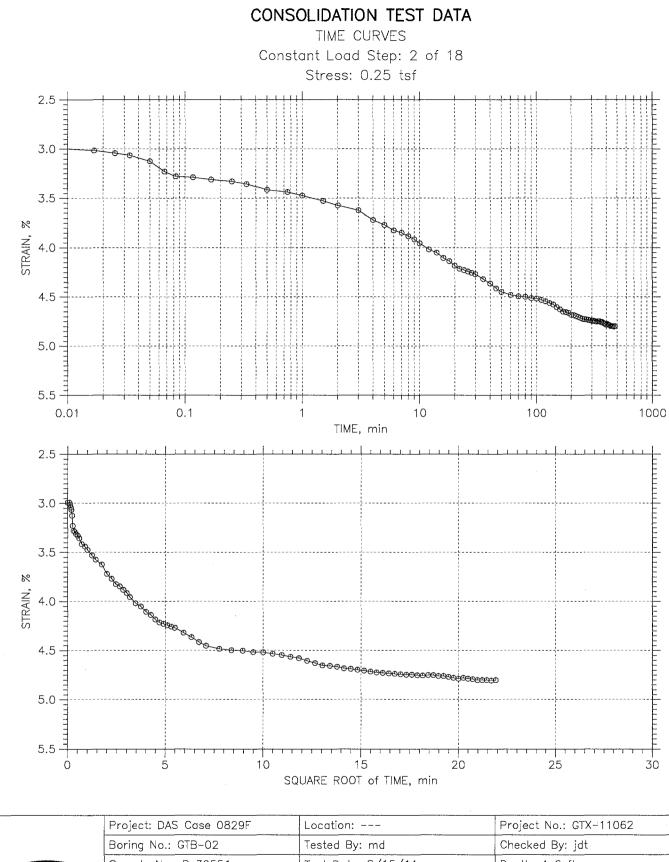
	Project: DAS Case 0829F	Location:	Project No.: GTX-11062				
	Boring No.: GTB-02	Tested By: md	Checked By: jdt				
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft				
GéoTestir	IG Test No.: C-2	Sample Type: tube	Elevation:				
EXPRESS	Description: Moist, gray clay	Description: Moist, gray clay					
	Remarks: System E	Remarks: System E					

					Before Test	After Test
Overburden Pressure:				Water Content, %	38.71	20.73
Preconsolidation Pressure:				Dry Unit Weight, pcf	83.01	110.4
Compression	Index:			Saturation, %	98.24	100.00
Diameter: 2.5	in	Height: 1 ir		Void Ratio	1.10	0.58
LL:	PL:	PI:	GS: 2.79			

	Project: DAS Case 0829F	Location:	Project No.: GTX-11062			
	Boring No.: GTB-02	Tested By: md	Checked By: jdt			
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft			
àéoTe stii	ng Test No.: C-2	Sample Type: tube	Elevation:			
XPRESS	Description: Moist, gray clay	Description: Moist, gray clay				
	Remarks: System E					


ONE-DIMENSIONAL CONSOLIDATION by ASTM D 2435-04 - Method B $_{\rm CONSOLIDATION \ TEST \ DATA}$

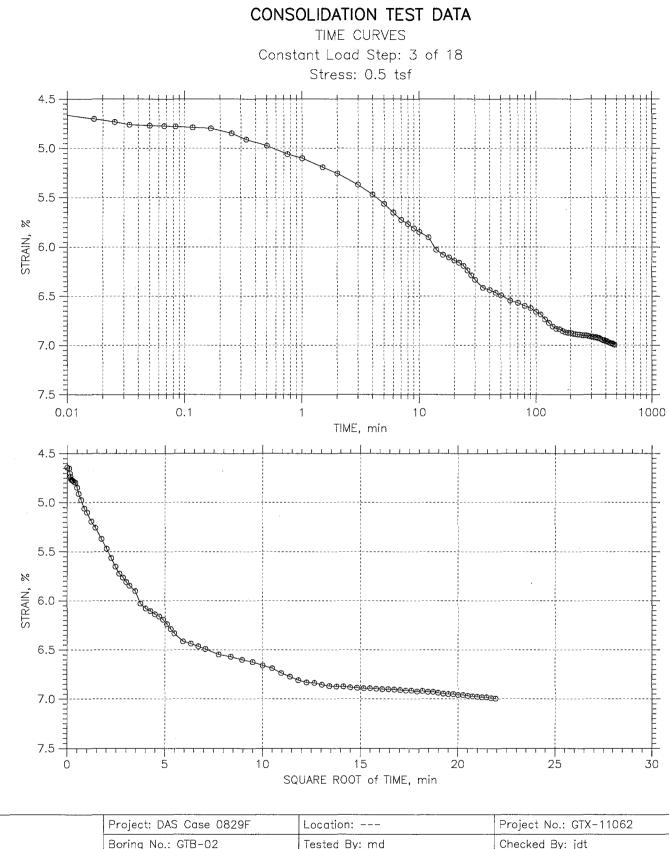
Project: DAS Case 0829F Boring No.: GTB-02 Sample No.: D 30551 Test No.: C-2	Location: Tested By: md Test Date: 8/15 Sample Type: tu		Project No.: GTX-1 Checked By: jdt Depth: 4-6 ft Elevation:	1062
Soil Description: Moist, gray clay Remarks: System E				
Estimated Specific Gravity: 2.79 Initial Void Ratio: 1.10 Final Void Ratio: 0.58	Liquid Limit: - Plastic Limit: Plasticity Inde		Initial Height: 1. Specimen Diameter:	
	Before Co	onsolidation	After Consol	Lidation
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	6951	RING		6995
Wt. Container + Wet Soil, gm	310.81	256.37	237.14	137.79
Wt. Container + Dry Soil, gm	223.14	214.96	214.96	115.66
Wt. Container, gm	8.57	108	108	8.93
Wt. Dry Soil, gm	214.57	106.96	106.96	106.73
Water Content, %	40.86	38.71	20.73	20.73
Void Ratio		1.10	0.58	
Degree of Saturation, %		98.24	100.00	
Dry Unit Weight, pcf		83.011	110.43	


Note: Specific Gravity and Void Ratios are calculated assuming the degree of saturation equals 100% at the end of the test. Therefore, values may not represent actual values for the specimen.

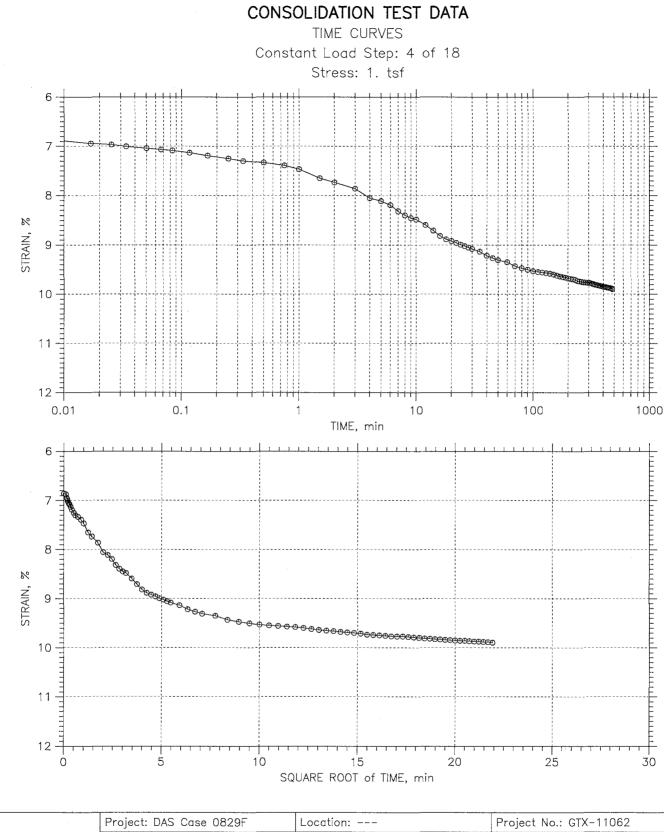
.

				CONSOLIDATI	ON TEST DAT.	A			
Boring N	DAS Case o.: GTB-02 o.: D 3055 : C-2						Project No. Checked By Depth: 4-6 Elevation:	ft	
	cription: System E	Moist, gray clay							
	Applied	Final	Void	Strain	T50 Fi	tting	Coeffic	cient of Cons	solidation
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		Qło	min	min	in^2/sec	in^2/sec	in^2/sec
1	0.125	0.03308	1.031	3.31	5.6	7.8	1.43e-004	1.01e-004	1.19e-004
2	0.25	0.048	1.000	4.80	5.8	7.8	1.29e-004	9.73e-005	1.11e-004
3	0.5	0.06995	0.954	6.99	6.2	7.1	1.18e-004	1.03e-004	1.10e-004
4	1	0.09896	0.893	9.90	5.3	6.5	1.30e-004	1.06e-004	1.17e-004
5	2	0.1295	0.829	12.95	3.4	4.7	1.89e-004	1.38e-004	1.60e-004
6	1	0.1281	0.832	12.81	0.2	0.1	3.98e-003	8.50e-003	5.42e-003
7	0.5	0.1282	0.832	12.82	0.4	0.0	1.67e-003	0.00e+000	1.67e-003
8	0.25	0.1249	0.838	12.49	2.8	0.0	2.22e-004	0.00e+000	2.22e-004
9	0.5	0.1262	0.836	12.62	0.0	0.0	1.46e-002	1.92e-002	1.66e-002
10	1	0.1279	0.832	12.79	0.1	0.0	8.98e-003	0.00e+000	8.98e-003
11	2	0.1348	0.818	13.48	4.0	0.0	1.55e-004	0.00e+000	1.55e-004
12	4	0.163	0.758	16.30	2.8	3.1	2.15e-004	1.94e-004	2.04e-004
13	8	0.1976	0.686	19.76	1.9	2.3	2.97e-004	2.36e-004	2.63e-004
14	16	0.2309	0.616	23.09	1.1	0.0	4.60e-004	0.00e+000	4.60e-004
15	32	0.2684	0.537	26.84	0.5	0.0	8.43e-004	0.00e+000	8.43e-004
16	8	0.2574	0.560	25.74	0.0	0.0	1.62e-002	0.00e+000	1.62e-002
17	2	0.2531	0.569	25.31	0.2	0.0	2.28e-003	0.00e+000	2.28e-003
18	0.5	0.2483	0.579	24.83	1.9	0.0	2.43e-004	0.00e+000	2.43e-004

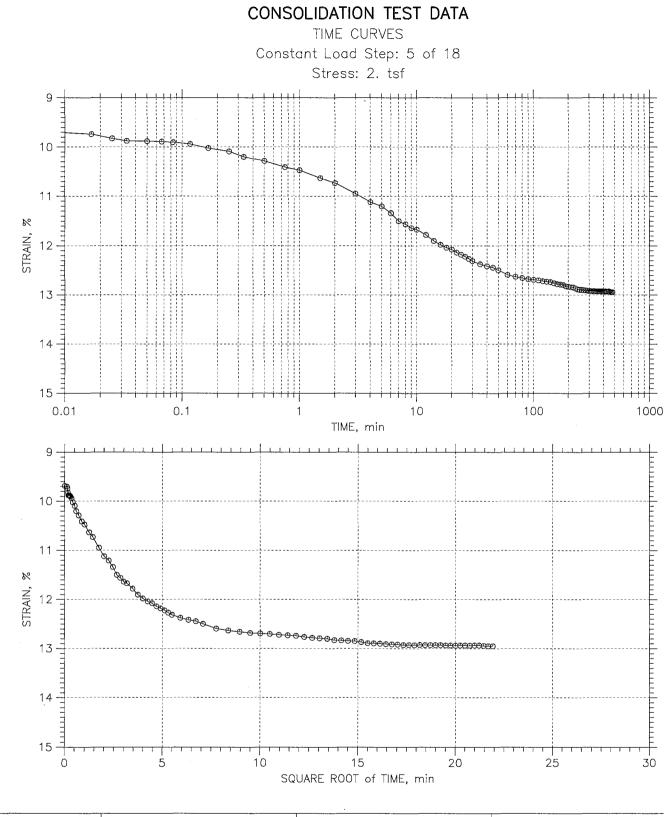
	Project: DAS Case 0829F	Location:	Project No.: GTX-11062		
	Boring No.: GTB-02	Tested By: md	Checked By: jdt		
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft		
GeoTesting	Test No.: C-2	Sample Type: tube	Elevation:		
EXPRESS	Description: Moist, gray clay				
	Remarks: System E		·····		

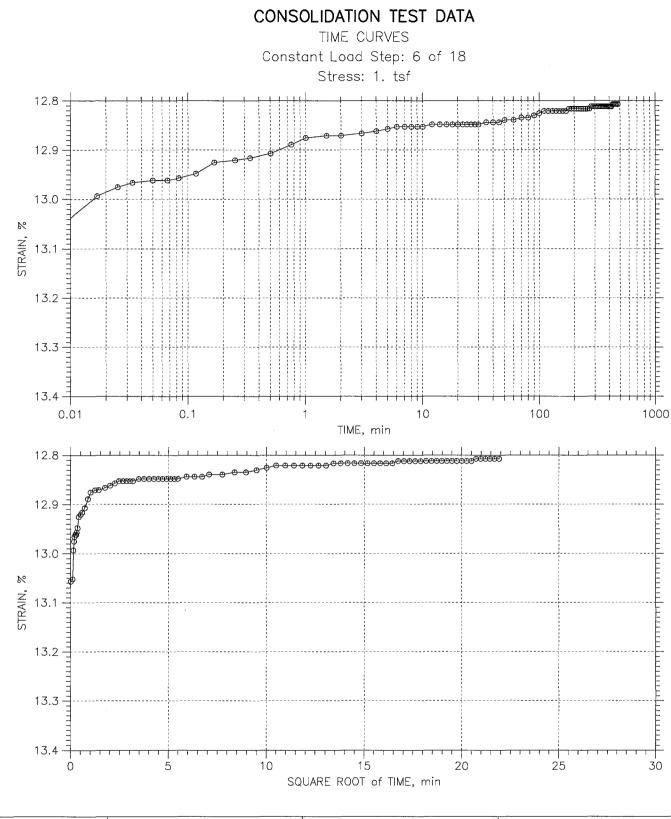


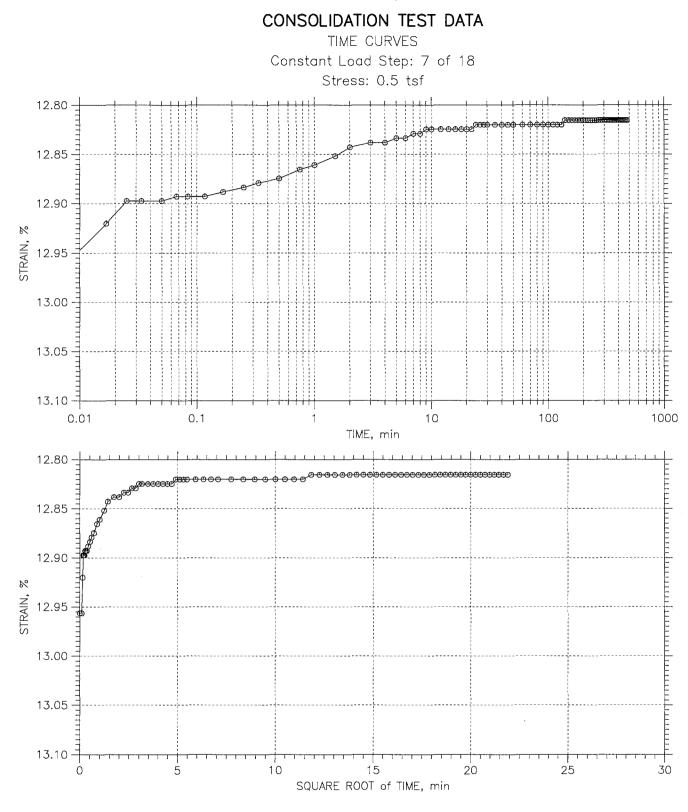
 Boring No.: G1B-02
 Tested By: Ma
 Checked By: Jat

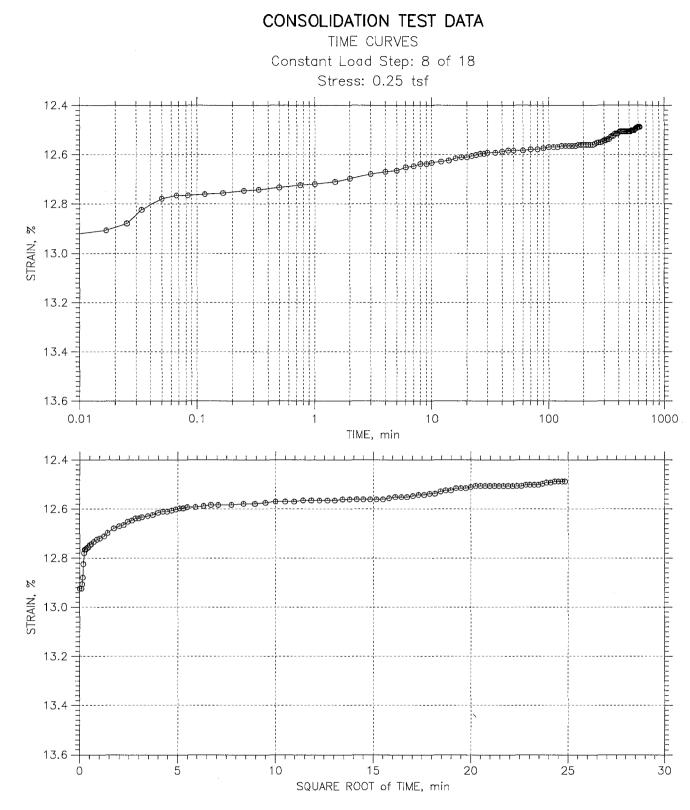

 Sample No.: D 30551
 Test Date: 8/15/11
 Depth: 4-6 ft

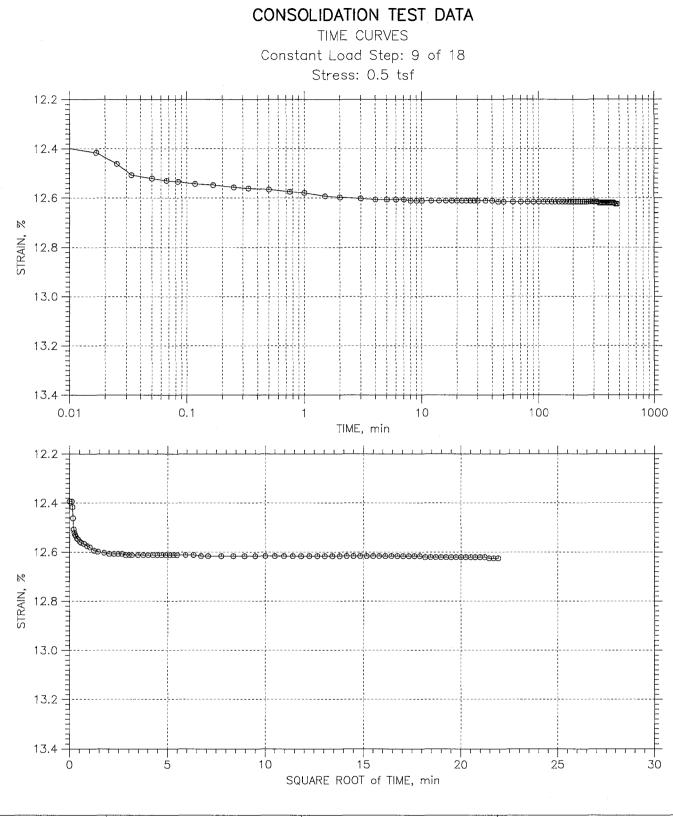
 Test No.: C-2
 Sample Type: tube
 Elevation: --

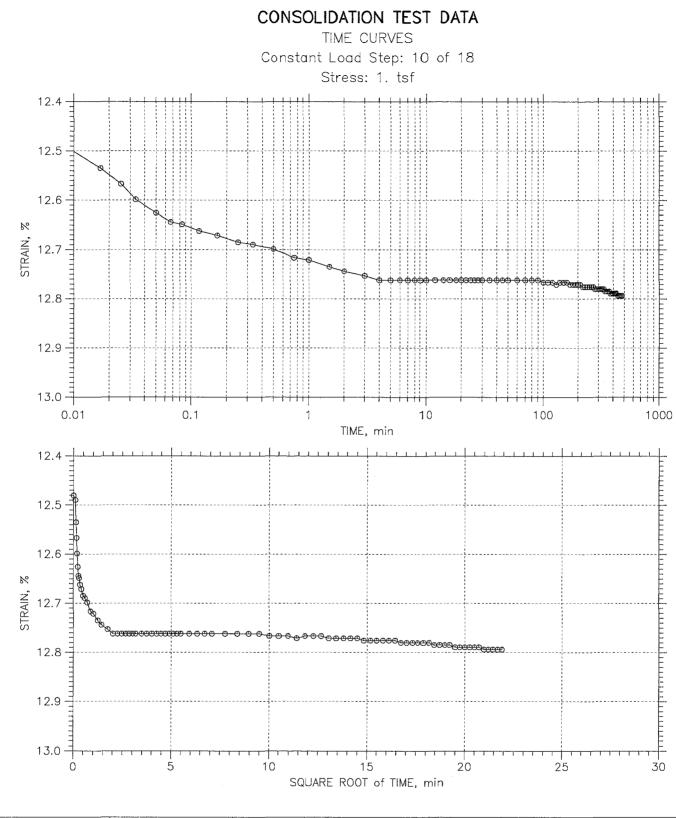

 Description: Moist, gray clay
 Remarks: System E
 Elevation: --

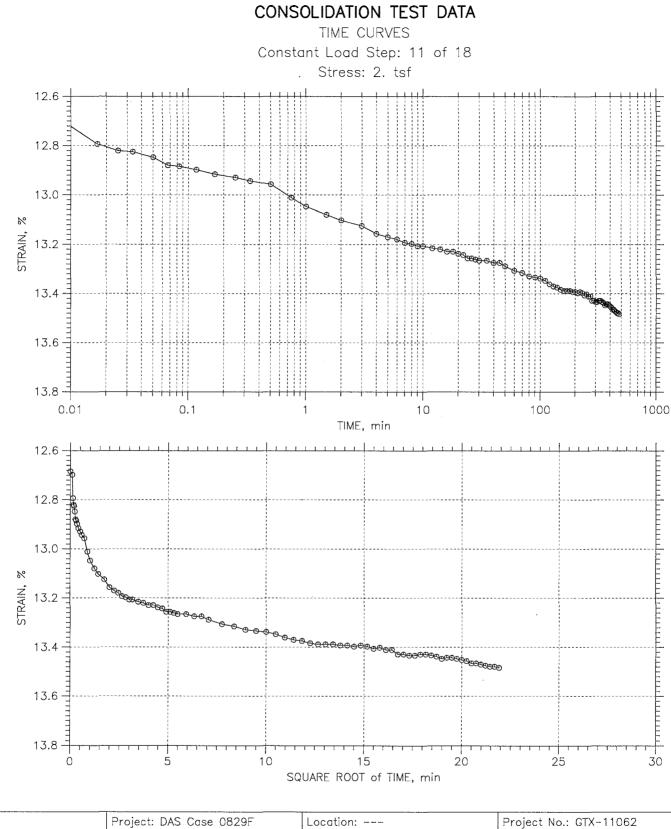

1	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTesting	Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		

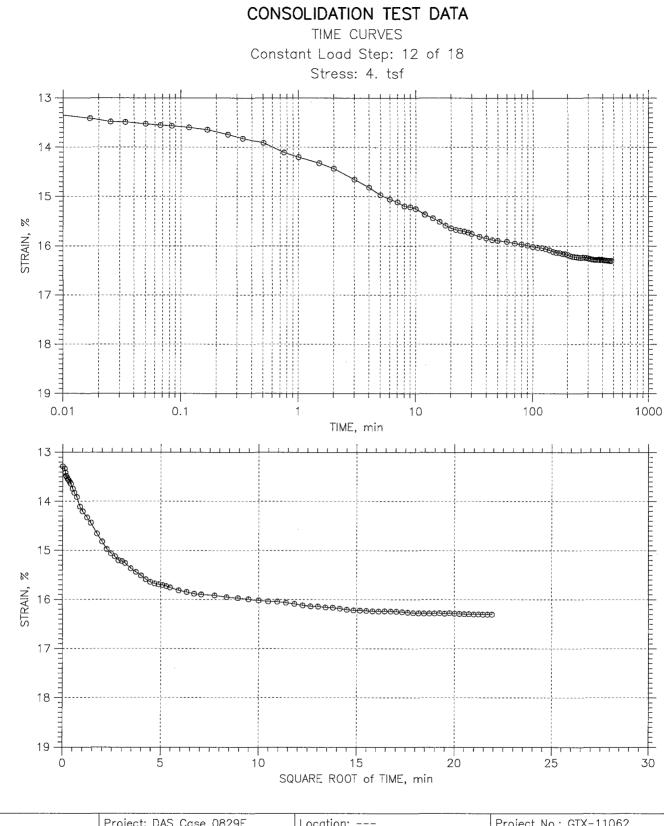

	Project: DAS Case 0829F	Location:	Project No.: GTX-11062			
	Boring No.: GTB-02	Tested By: md	Checked By: jdt			
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft			
GéoTesting	9 Test No.: C-2	Sample Type: tube	Elevation:			
EXPRESS	Description: Moist, gray clay	Description: Moist, gray clay				
	Remarks: System E					

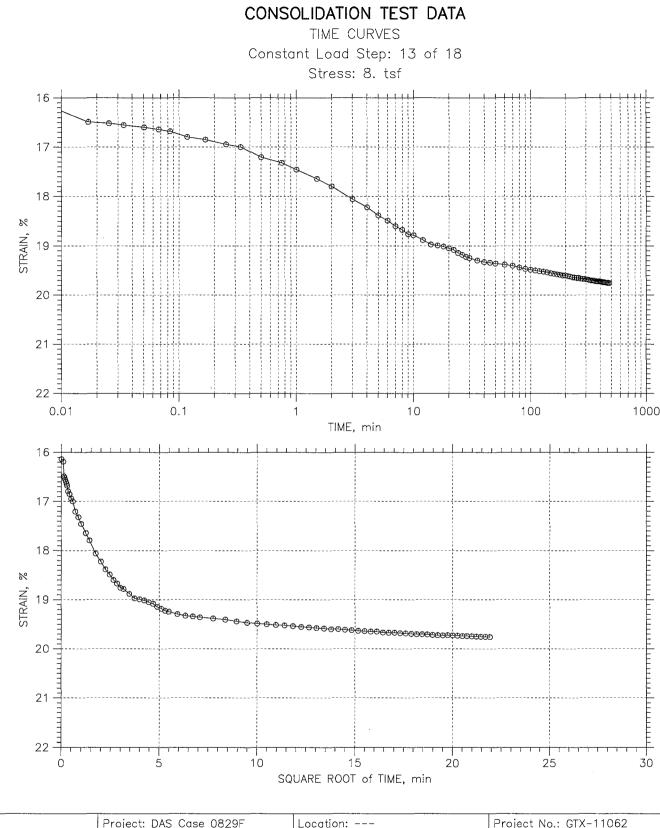

	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTesting	Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		

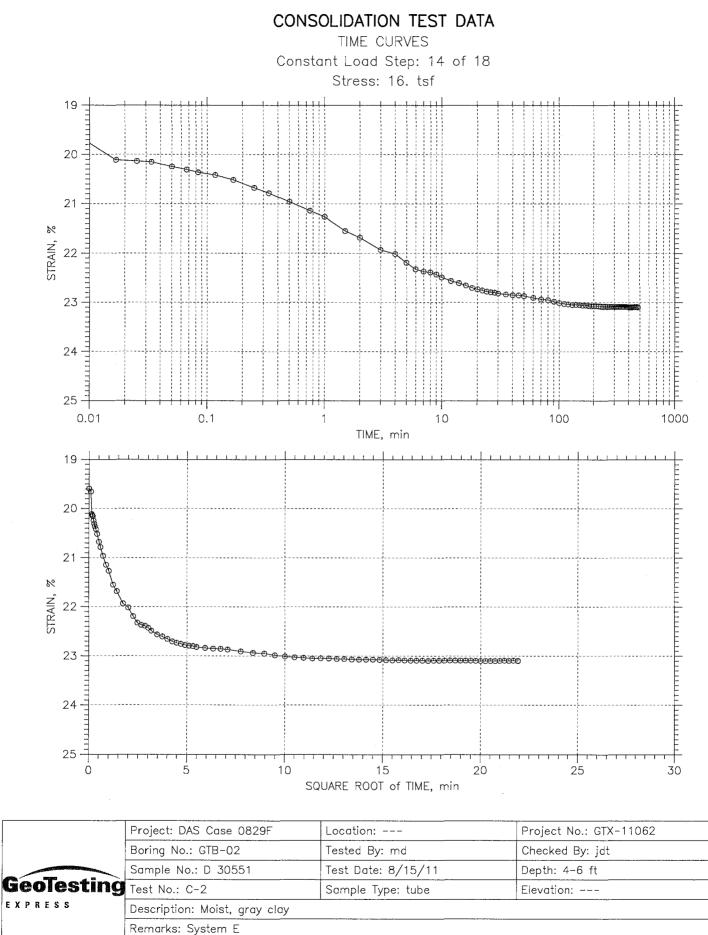

GeoTesting EXPRESS	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
	Test No.: C-2	Sample Type: tube	Elevation:
	Description: Moist, gray clay		
	Remarks: System E		

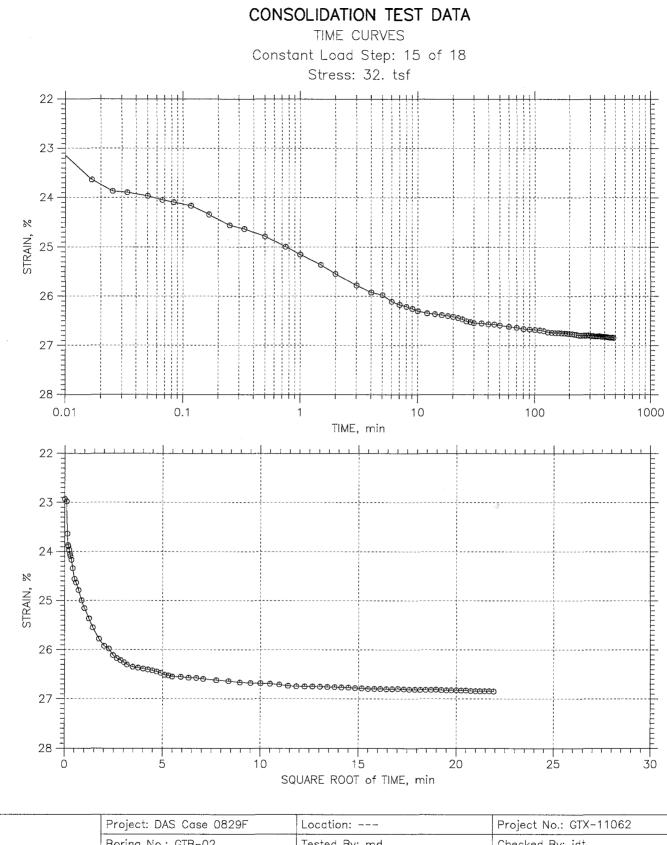

GeoTesting EXPRESS	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
	Test No.: C-2	Sample Type: tube	Elevation:
	Description: Moist, gray clay		
	Remarks: System E		


	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTestin	9 Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		

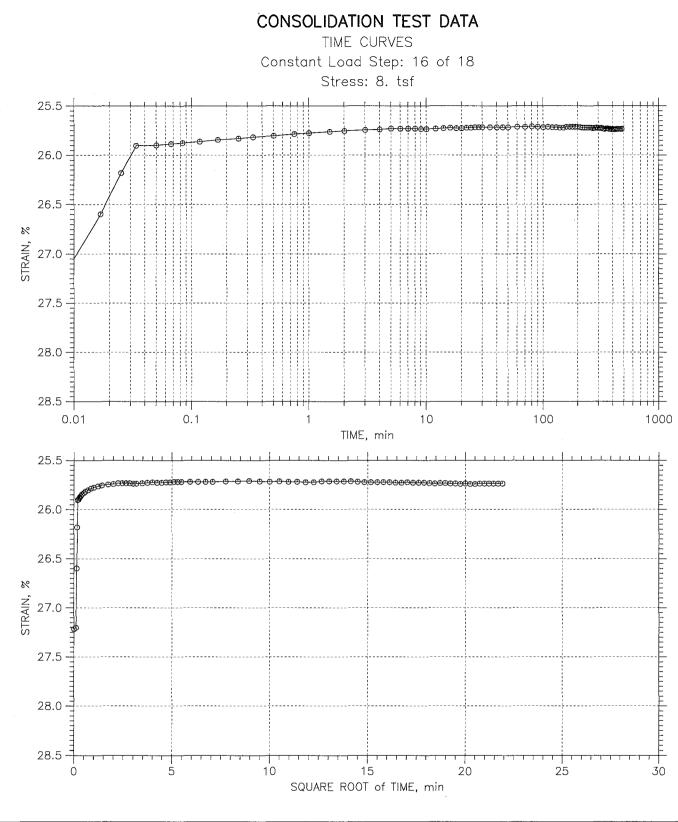

	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTesting	Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		
	· · · · · · · · · · · · · · · · · · ·		


GeoTesting EXPRESS	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
	Test No.: C-2	Sample Type: tube	Elevation:
	Description: Moist, gray clay		
	Remarks: System E		
	· · ·		

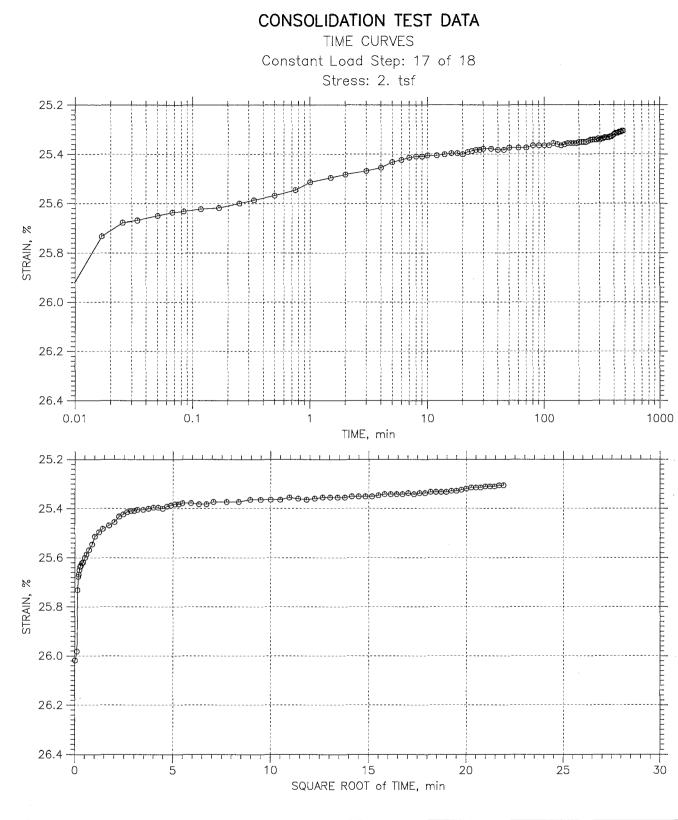

	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTesting	J Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		

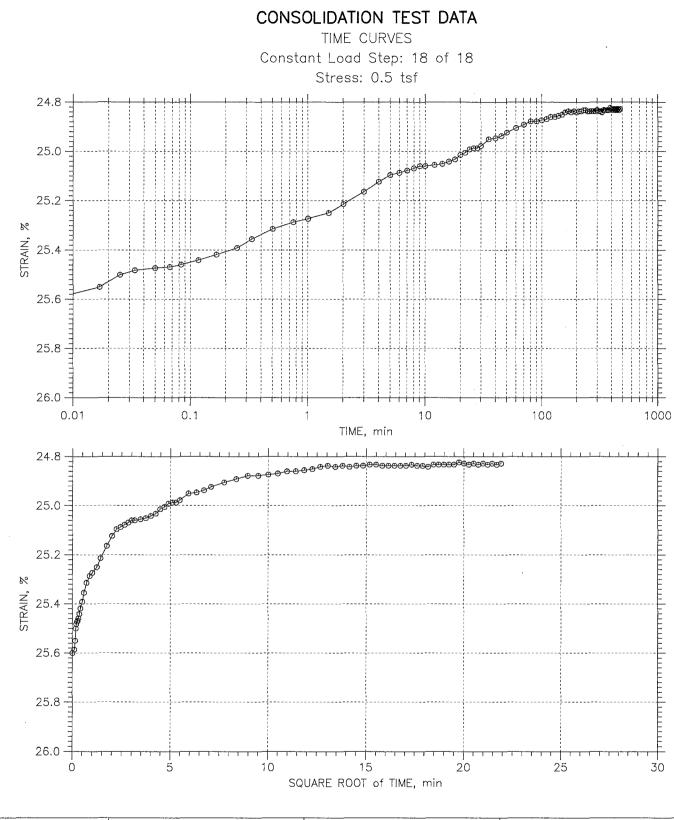


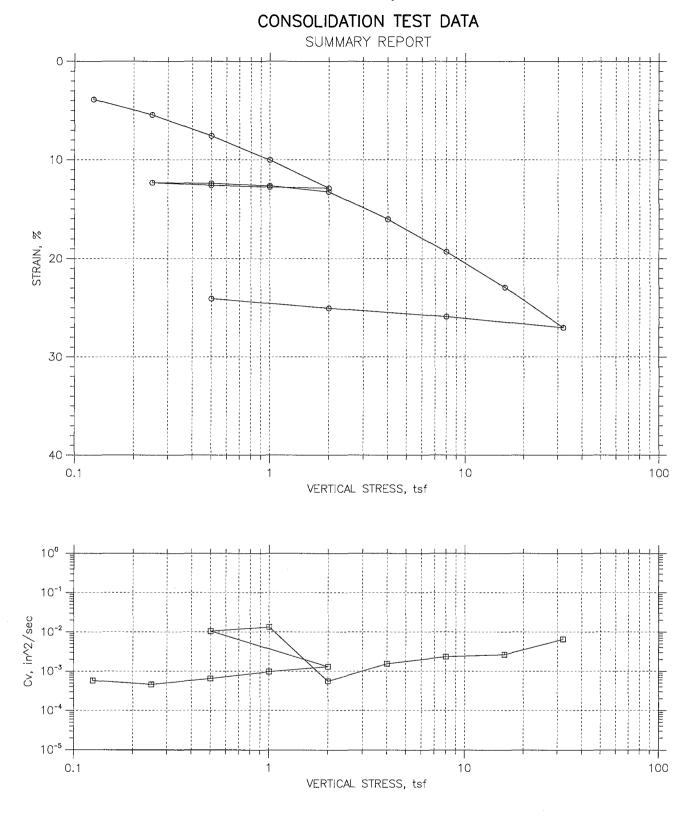
8	Project: DAS Case 0829F	Location:	Project No.: GTX-11062	
	Boring No.: GTB-02	Tested By: md	Checked By: jdt	
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft	
GeoTestin	9 Test No.: C-2	Sample Type: tube	Elevation:	
EXPRESS	Description: Moist, gray clay	Description: Moist, gray clay		
	Remarks: System E	Remarks: System E		

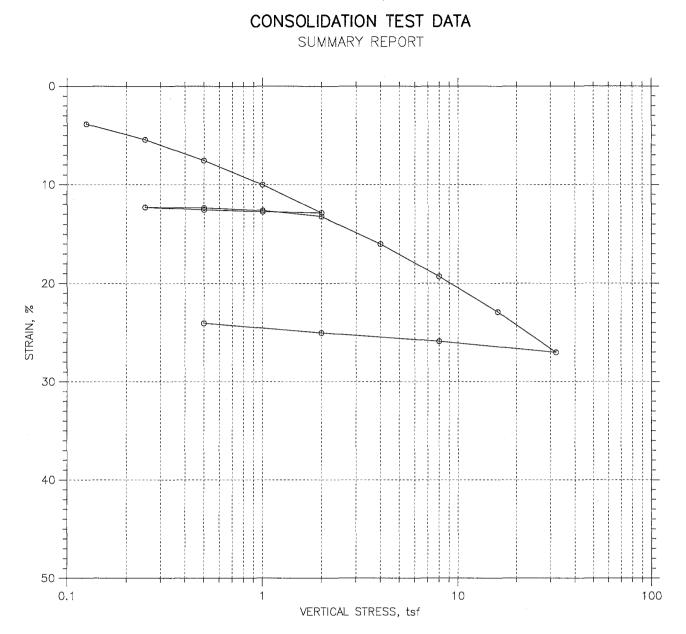


	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
GeoTesting EXPRESS	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
	9 Test No.: C-2	Sample Type: tube	Elevation:
	Description: Moist, gray clay		
	Remarks: System E		




	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTesting	9 Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		
	· · · · · · · · · · · · · · · · · · ·		


	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTesting	Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		
		· · · · · · · · · · · · · · · · · · ·	


	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GéoTestin	9 Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		
	Remarks: System E		

	Project: DAS Case 0829F	Location:	Project No.: GTX-11062
	Boring No.: GTB-02	Tested By: md	Checked By: jdt
	Sample No.: D 30551	Test Date: 8/15/11	Depth: 4-6 ft
GeoTesting	Test No.: C-2	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, gray clay		,
	Remarks: System E		

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069		
	Boring No.: GTB-04	Tested By: md	Checked By: jdt		
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft		
GeoTesting	9 Test No.: C-1	Sample Type: tube	Elevation:		
EXPRESS	Description: Moist, dark olive brown silty sand				
	Remarks: System F				
	Remarks: System P	,			

					Before Test	After Test
Overburder	n Pressure:			Water Content, %	42.06	23.01
Preconsoli	dation Pressure:			Dry Unit Weight, pcf	77.11	101.6
Compressi	on Index:	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Saturation, %	98.96	100.00
Diameter:	2.5 in	Height: 1	in	Void Ratio	1.11	0.60
LL: 38	PL: 29	PI: 9	GS: 2.60			

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069		
	Boring No.: GTB-04	Tested By: md	Checked By: jdt		
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft		
eoTestin	9 Test No.: C-1	Sample Type: tube	Elevation:		
EXPRESS	Description: Moist, dark olive brown silty sand				
	Remarks: System F				

ONE-DIMENSIONAL CONSOLIDATION by ASTM D 2435-04 - Method B $_{\rm CONSOLIDATION \ TEST \ DATA}$

Location: ---

Tested By: md Test Date: 8/15/11

Sample Type: tube

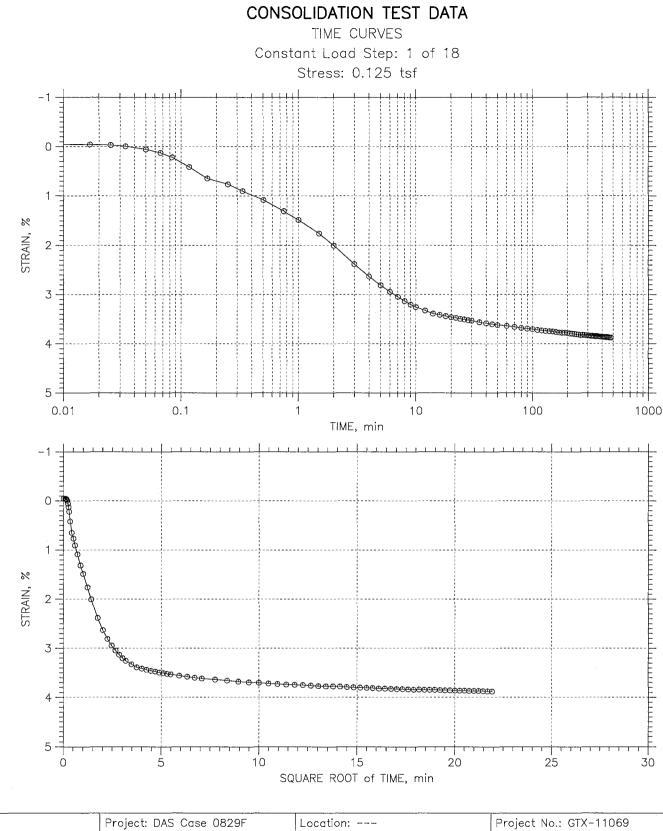
Project: DAS Case 0829F Boring No.: GTB-04 Sample No.: D 30554 Test No.: C-1

Soil Description: Moist, dark olive brown silty sand Remarks: System F

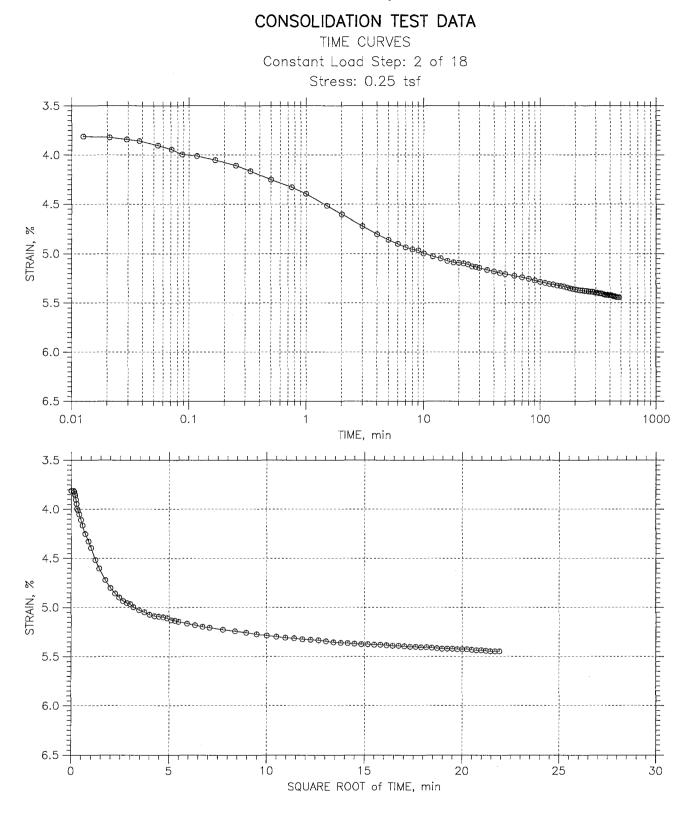
Measured Specific Gravity: 2.60 Initial Void Ratio: 1.11 Liquid Limit: 38 Plastic Limit: 29 Final Void Ratio: 0.60 Plasticity Index: 9 Project No.: GTX-11069 Checked By: jdt Depth: 6-8 ft Elevation: ---

Initial Height: 1.00 in Specimen Diameter: 2.50 in

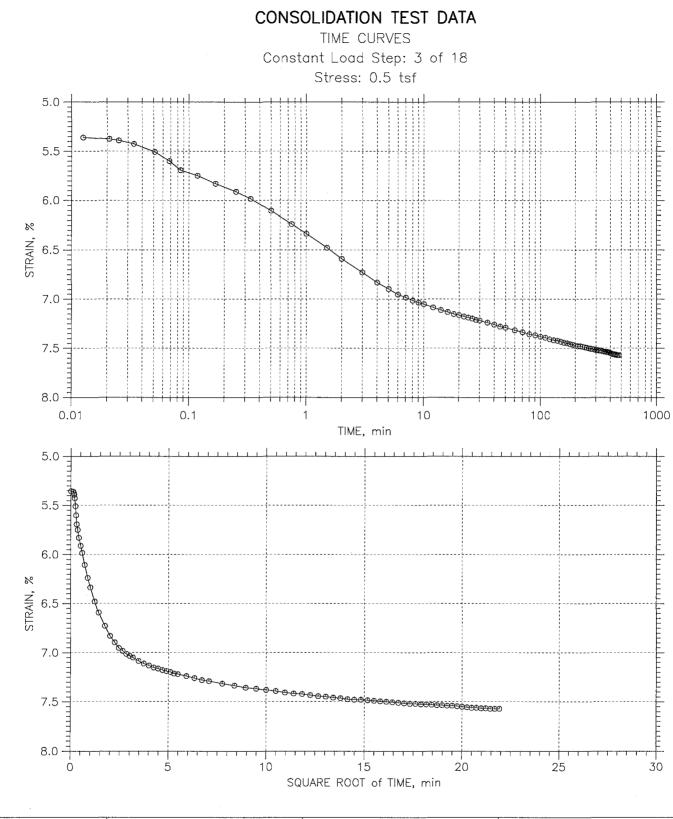
.

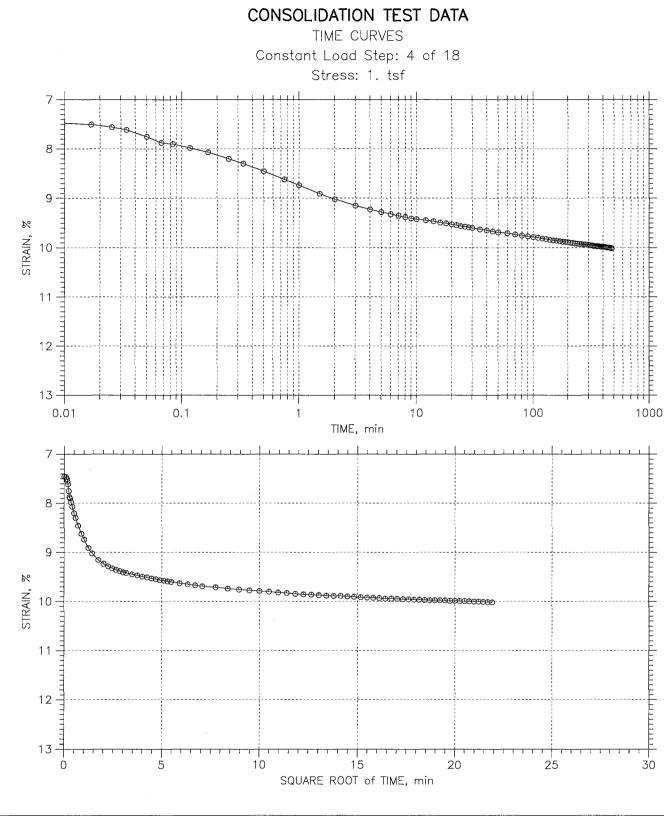

	Before Consolidation		After Consolidation	
	Trimmings	Specimen+Ring	Specimen+Ring	Trimmings
Container ID	7603	RING		8326
Wt. Container + Wet Soil, gm	250.01	250.71	231.78	128.26
Wt. Container + Dry Soil, gm	180.93	208.92	208.92	105.83
Wt. Container, gm	8.6	109.57	109.57	8.34
Wt. Dry Soil, gm	172.33	99.352	99.352	97.49
Water Content, 8	40.09	42.06	23.01	23.01
Void Ratio		1.11	0.60	
Degree of Saturation, %		98.96	100.00	
Dry Unit Weight, pcf		77.105	101.56	

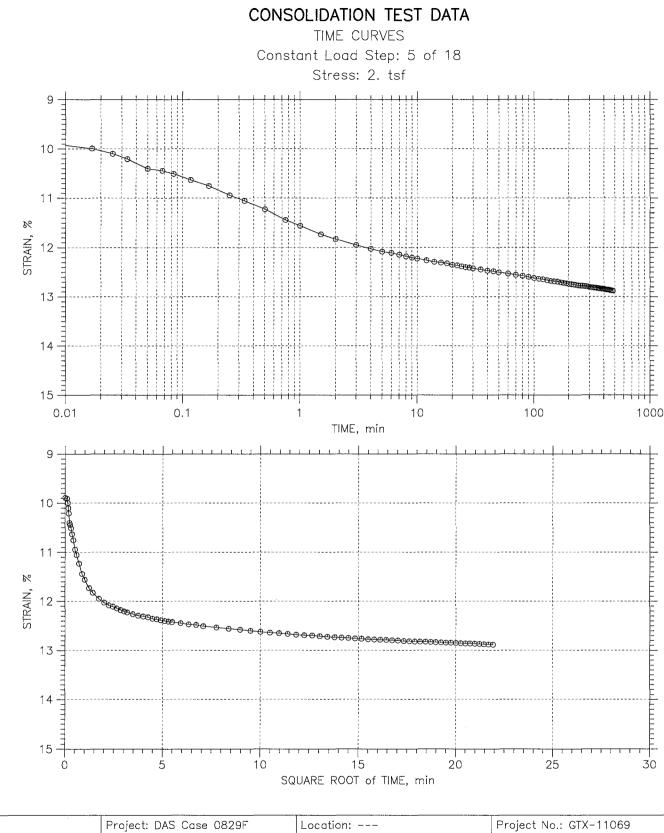
CONSOLIDATION TEST DATA

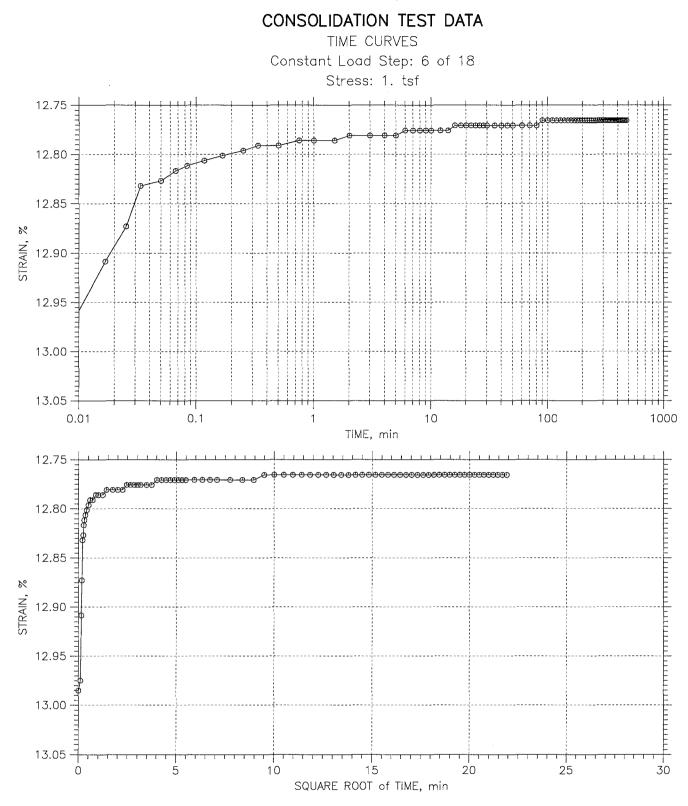

Project: DAS Case 0829F Boring No.: GTB-04 Sample No.: D 30554 Test No.: C-1 Location: ---Tested By: md Test Date: 8/15/11 Sample Type: tube Project No.: GTX-11069 Checked By: jdt Depth: 6-8 ft Elevation: ---

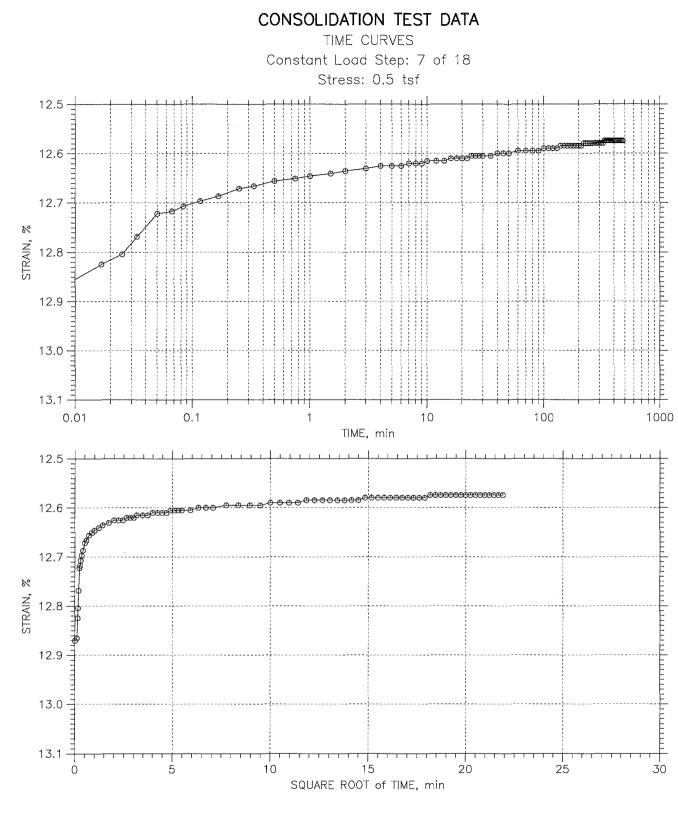
Soil Description: Moist, dark olive brown silty sand Remarks: System ${\rm F}$

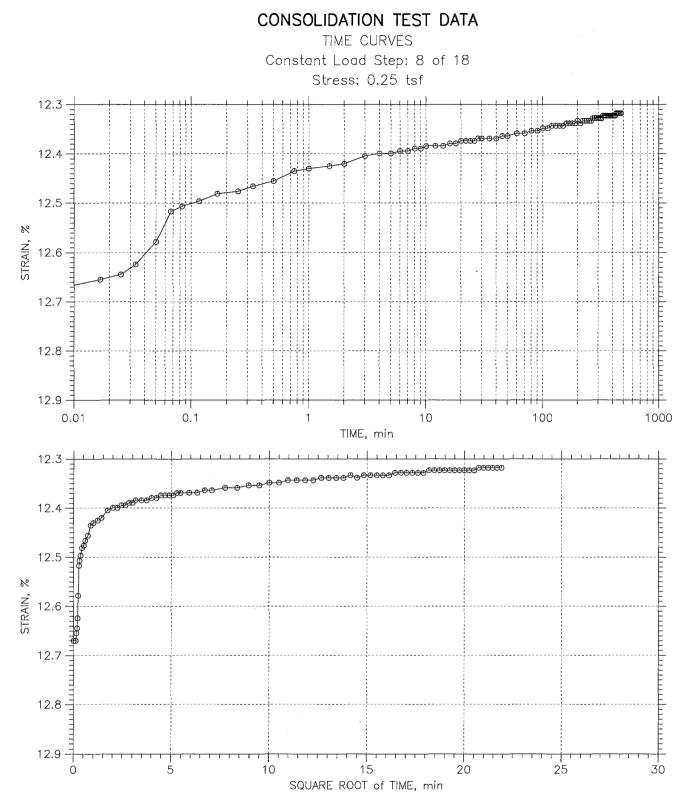

	Applied	Final	Void	Strain	т50	Fitting	Coeffi	cient of Con	solidation
	Stress	Displacement	Ratio	at End	Sq.Rt.	Log	Sq.Rt.	Log	Ave.
	tsf	in		8	min	min	in^2/sec	in^2/sec	in^2/sec
1	0.125	0.03877	1.023	3.88	1.4	0.0	5.80e-004	0.00e+000	5.80e-004
2	0.25	0.05444	0.990	5.44	1.5	1.7	4.95e-004	4.32e-004	4.61e-004
3	0.5	0.0757	0.946	7,57	1.0	1.2	7.46e-004	5.82e-004	6.54e-004
4	1	0.1002	0.894	10.02	0.8	0.6	8.16e-004	1.24e-003	9.85e-004
5	2	0.1288	0.834	12.88	0.6	0.4	1.02e-003	1.82e-003	1.31e-003
6	1	0.1277	0.836	12.77	0.0	0.0	1.94e-002	0.00e+000	1.94e-002
7	0.5	0.1257	0.840	12.57	0.1	0.0	9.00e-003	1.45e-002	1.11e-002
8	0.25	0.1232	0.846	12.32	0.3	0.1	2.46e-003	1.01e-002	3.96e-003
9	0.5	0.1239	0.844	12.39	0.1	0.0	1.05e-002	0.00e+000	1.05e-002
10	1	0.1264	0.839	12,64	0.0	0.0	1.32e-002	1.36e-002	1.34e-002
11	2	0.1326	0.826	13.26	1.1	0.0	5.57e-004	0.00e+000	5.57e-004
12	4	0.1602	0.768	16.02	0.5	0.2	1.12e-003	2.56e-003	1.56e-003
13	8	0.1931	0.699	19.31	0.3	0.2	1.78e-003	3.47e-003	2.35e-003
14	16	0.2294	0.622	22.94	0.3	0.1	1.82e-003	4.94e-003	2.66e-003
15	32	0.2703	0.536	27.03	0.1	0.0	4.99e-003	9.31e-003	6.50e-003
16	8	0.259	0.560	25.90	0.0	0.0	1.83e-002	0.00e+000	1.83e-002
17	2	0.2506	0.578	25.06	0.0	0.0	1.32e-002	1.92e-002	1.57e-002
18	0.5	0.2408	0.598	24.08	0.3	. 0.0	1.49e-003	1.09e-002	2.63e-003

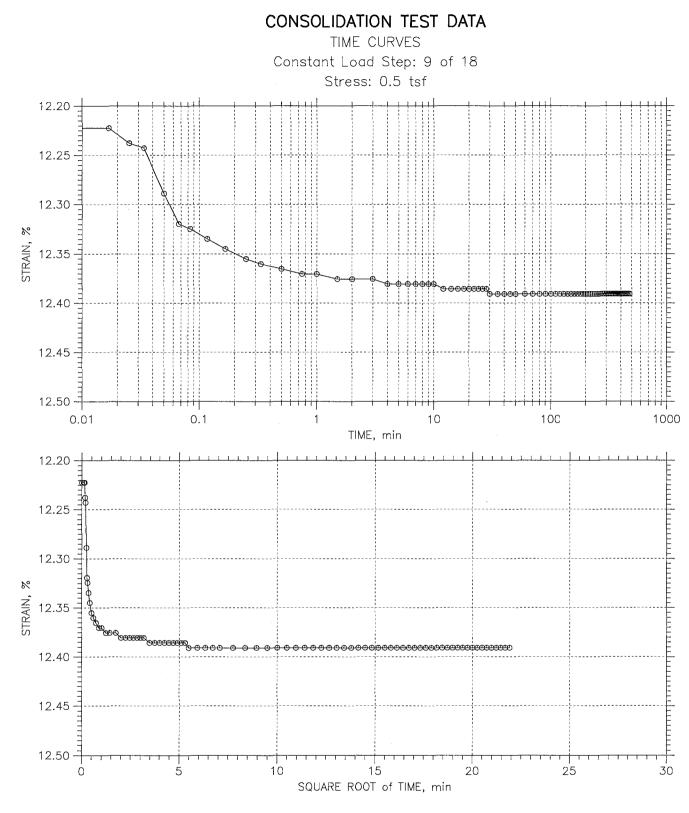

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069		
	Boring No.: GTB-04	Tested By: md	Checked By: jdt		
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft		
GeoTesting	Test No.: C-1	Sample Type: tube	Elevation:		
EXPRESS	Description: Moist, dark olive brown silty sand				
	Remarks: System F				

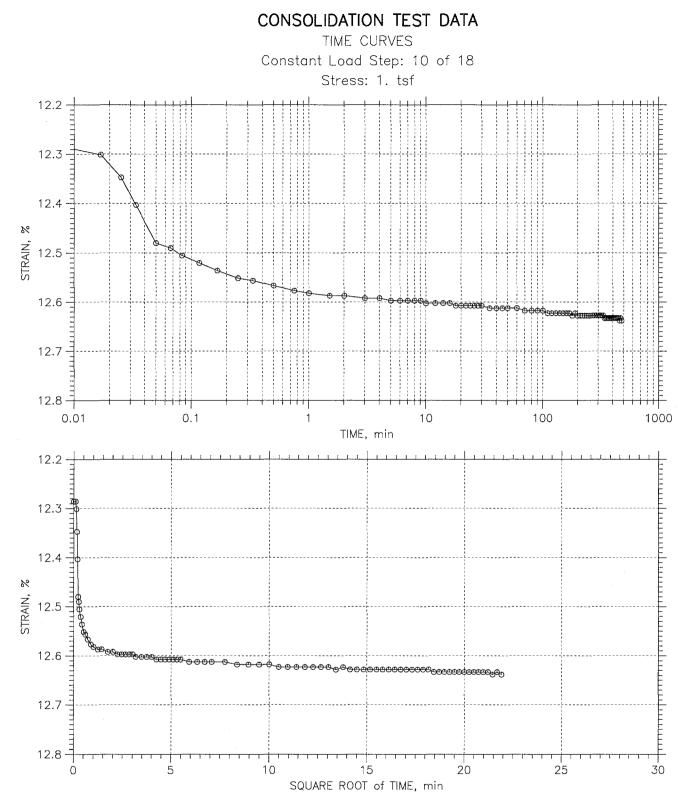

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069		
	Boring No.: GTB-04	Tested By: md	Checked By: jdt		
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft		
GeoTesting	Test No.: C-1	Sample Type: tube	Elevation:		
XPRESS	Description: Moist, dark olive brown silty sand				
	Remcrks: System F				
EXPRESS	Description: Moist, dark olive brown silty sand Remcrks: System F				

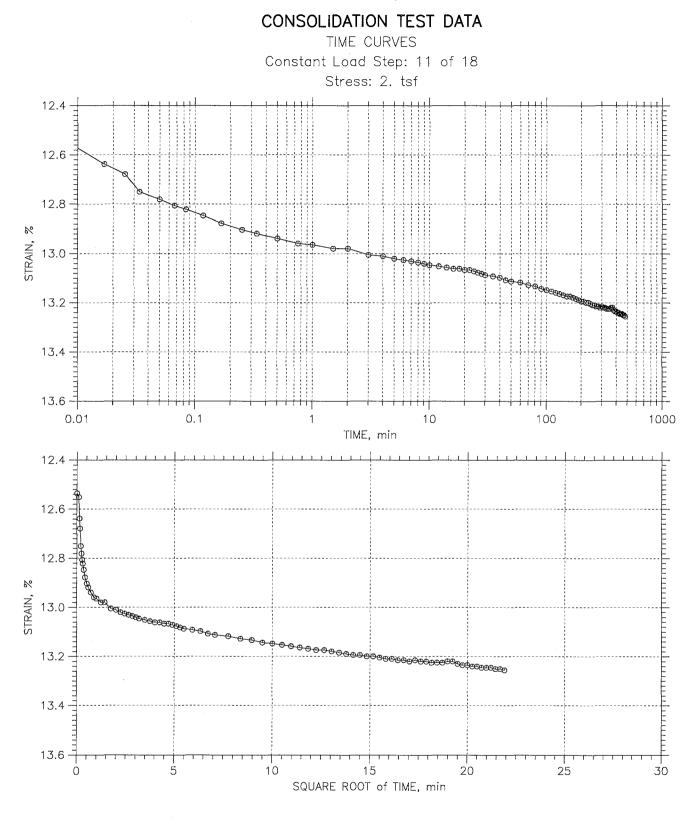

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069		
	Boring No.: GTB-04	Tested By: md	Checked By: jdt		
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft		
GeoTesting	Test No.: C-1	Sample Type: tube	Elevation:		
EXPRESS	Description: Moist, dark olive brown silty sand				
	Remarks: System F				
			and the second		

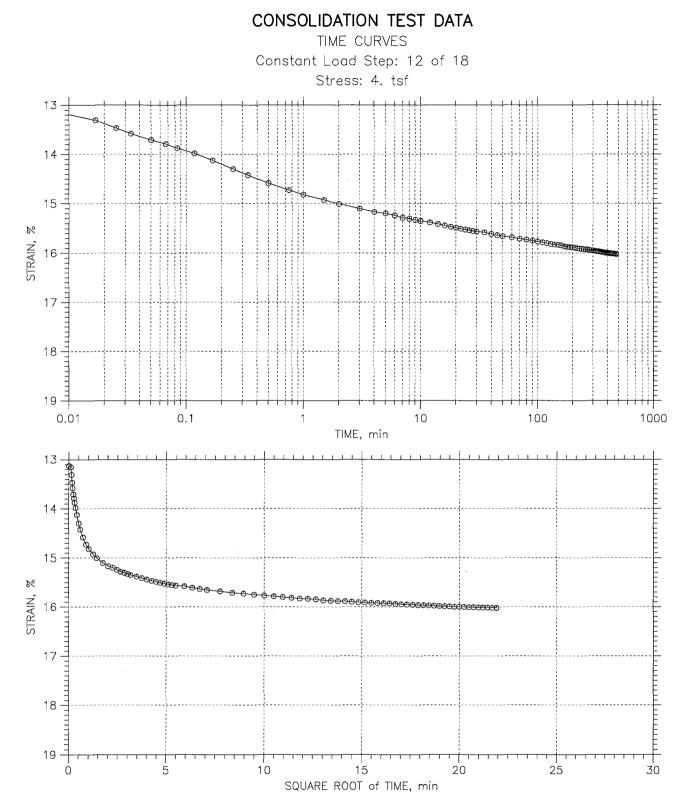

GeoTesting EXPRESS	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
	Test No.: C-1	Sample Type: tube	Elevation:
	Description: Moist, dark olive brown silty sand		
	Remarks: System F		

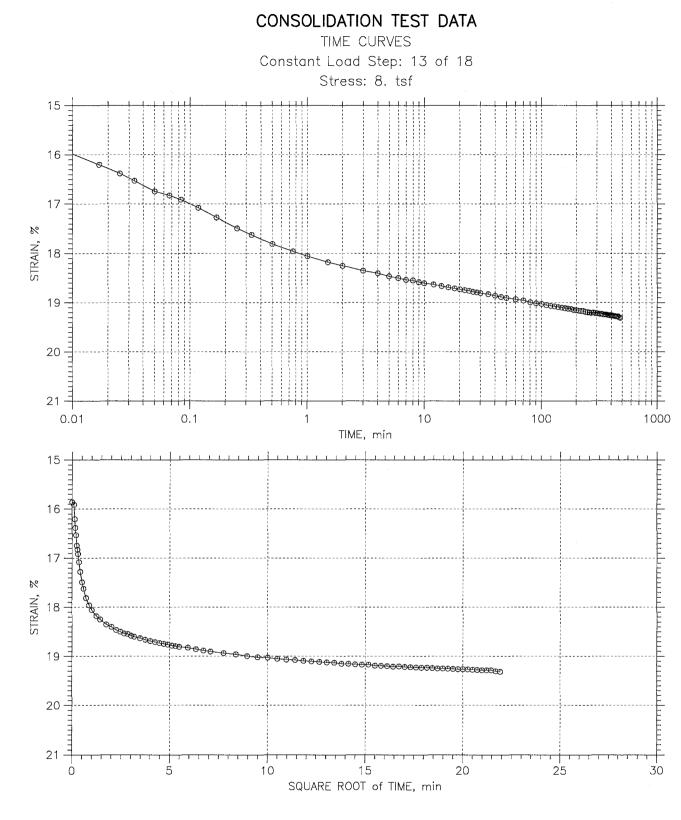

GeoTesting EXPRESS	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6~8 ft
	Test No.: C-1	Sample Type: tube	Elevation:
	Description: Moist, dark olive brown silty sand		
	Remarks: System F	· · ·	
			· · · · · · · · · · · · · · · · · · ·

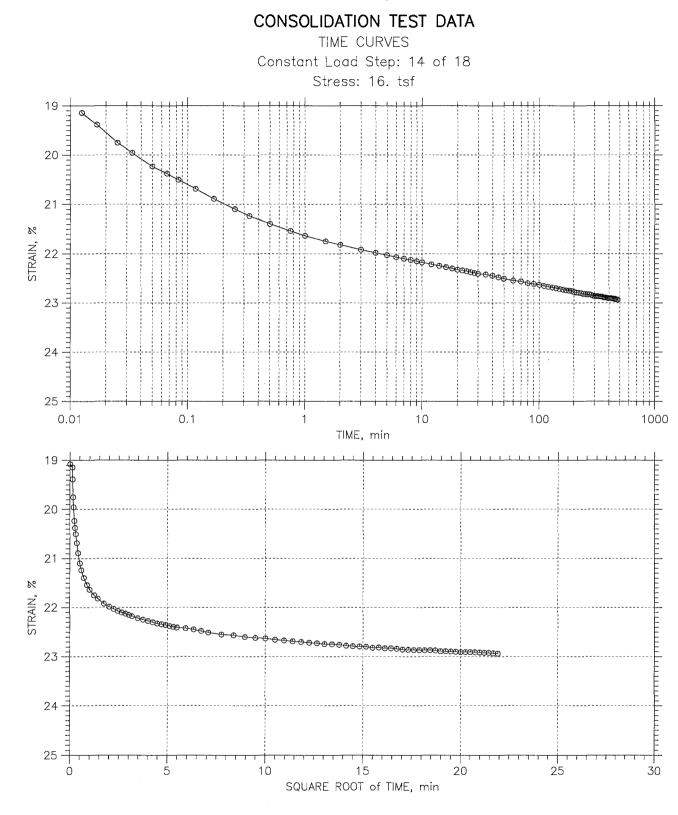

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
GeoTesting	Test No.: C-1	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, dark olive brown silty sand		
	Remarks: System F		
		· · ·	

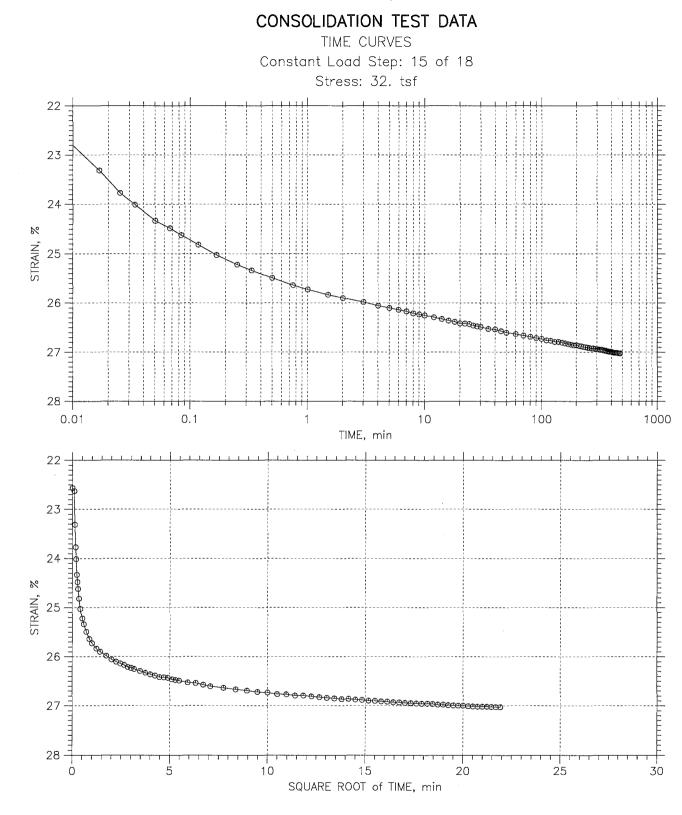

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
GeoTesting	9 Test No.: C-1	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, dark olive brown silty sand		
	Remarks: System F		
			ан ал ан

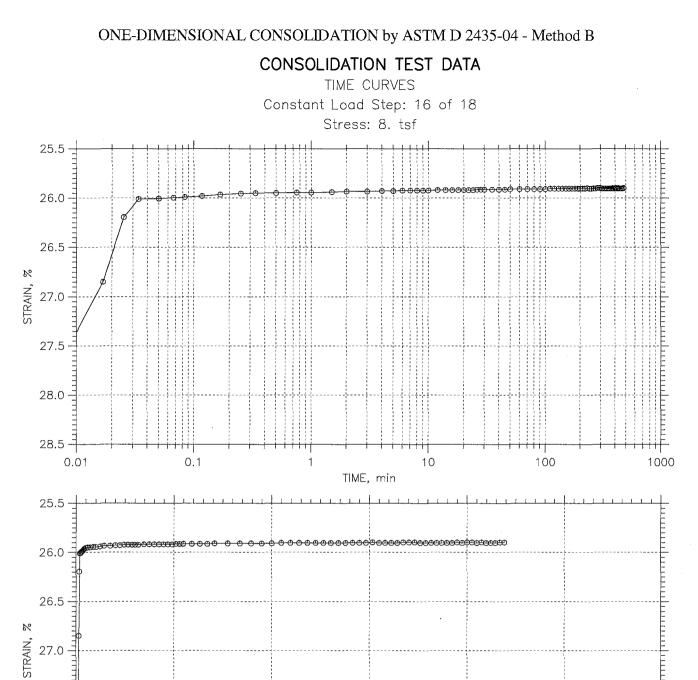

GeoTesting E X P R E S S	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
	Test No.: C-1	Sample Type: tube	Elevation:
	Description: Moist, dark olive brown silty sand		
	Remarks: System F		


GeoTesting EXPRESS	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
	Test No.: C-1	Sample Type: tube	Elevation:
	Description: Moist, dark olive brown silty sand		
	Remarks: System F		


	Project: DAS Case 0829F	Location:	Project No.: GTX-11069	
	Boring No.: GTB-04	Tested By: md	Checked By: jdt	
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft	
GeoTestin	IG Test No.: C-1	Sample Type: tube	Elevation:	
EXPRESS	Description: Moist, dark olive brown silty sand			
	Remarks: System F	Remarks: System F		


	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
GéoTestin	G Test No.: C-1	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, dark olive brown silty sand		
	Remarks: System F		


GeoTesting EXPRESS	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
	Test No.: C-1	Sample Type: tube	Elevation:
	Description: Moist, dark olive brown silty sand		
	Remarks: System F		


	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
GeoTestin	9 Test No.: C-1	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, dark olive brown silty sand		
	Remarks: System F		

GeoTesting E X P R E S S	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
	Test No.: C-1	Sample Type: tube	Elevation:
	Description: Moist, dark olive brown silty sand		
	Remarks: System F		

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069
	Boring No.: GTB-04	Tested By: md	Checked By: jdt
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft
GeoTestin	9 Test No.: C-1	Sample Type: tube	Elevation:
EXPRESS	Description: Moist, dark olive brown silty sand		
	Remarks: System F		

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069		
	Boring No.: GTB-04	Tested By: md	Checked By: jdt		
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft		
oTesti	ng Test No.: C-1	Sample Type: tube	Elevation:		
EXPRESS	Description: Moist, dark olive brown silty sand				
	Remarks: System F				

15

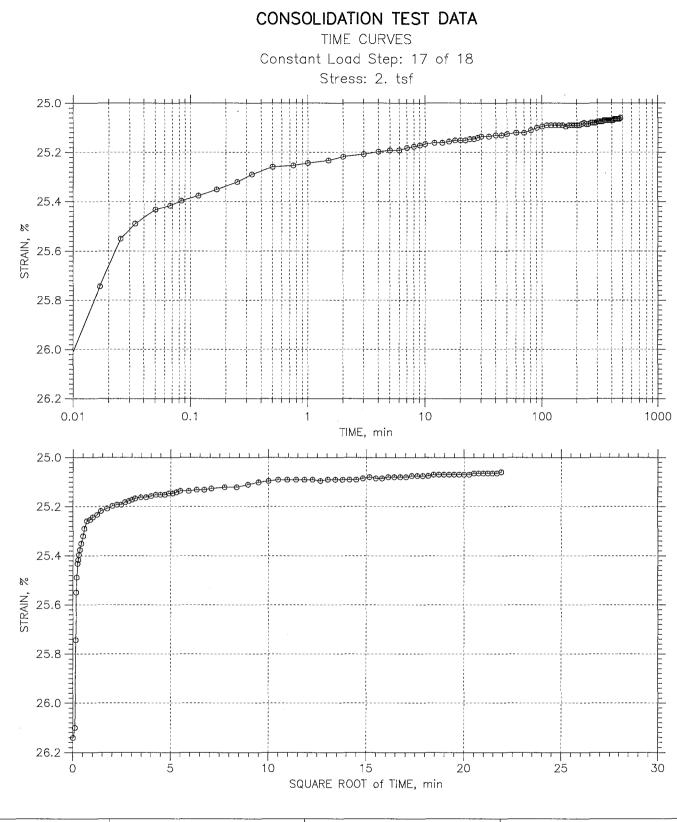
SQUARE ROOT of TIME, min

20

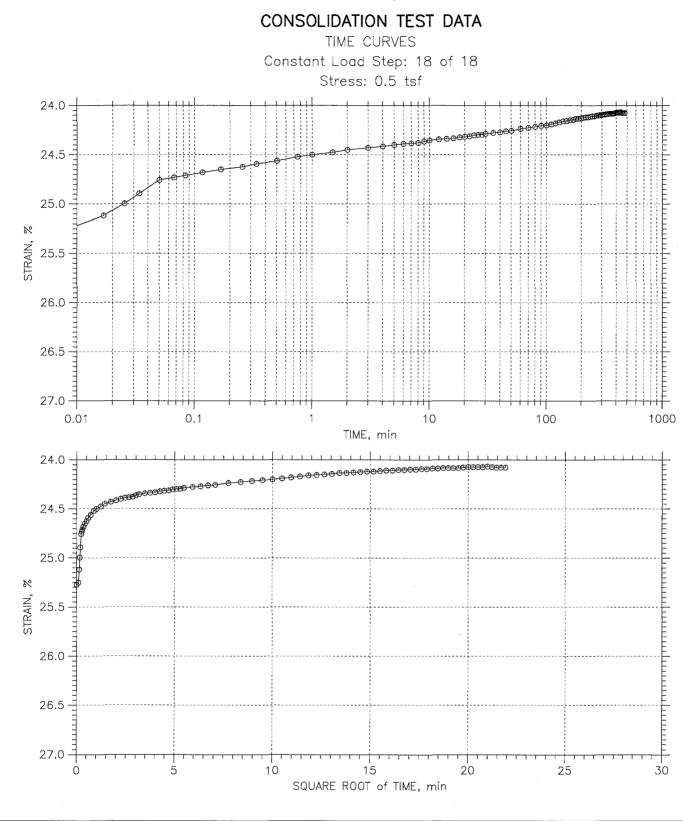
25

30

10


27.5

28.0


28.5

0

5

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069			
	Boring No.: GTB-04	Tested By: md	Checked By: jdt			
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft			
GéoTesting	Test No.: C-1	Sample Type: tube	Elevation:			
EXPRESS	Description: Moist, dark olive brown silty sand					
	Remarks: System F					

	Project: DAS Case 0829F	Location:	Project No.: GTX-11069		
	Boring No.: GTB-04	Tested By: md	Checked By: jdt		
	Sample No.: D 30554	Test Date: 8/15/11	Depth: 6-8 ft		
GéoTestin	9 Test No.: C-1	Sample Type: tube	Elevation:		
EXPRESS	Description: Moist, dark olive brown silty sand				
	Remarks: System F				

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

	· · · ·	-	
Α	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	Т	temperature
В	pore pressure parameter for $\Delta \sigma_3$	t	time
CIU	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
Cc	coefficient of curvature, $(D_{30})^2 / (D_{10} \ge D_{60})$	ua	pore gas pressure
C_u	coefficient of uniformity, D_{60}/D_{10}	u _e	excess pore water pressure
Cc	compression index for one dimensional consolidation	u, u _w	pore water pressure
C_{α}	coefficient of secondary compression	V	total volume
cv	coefficient of consolidation	, Vg	volume of gas
с	cohesion intercept for total stresses	V _s	volume of solids
c'	cohesion intercept for effective stresses	V _v	volume of voids
D	diameter of specimen	V _w	volume of water
D_{10}	diameter at which 10% of soil is finer	V _w V _o	initial volume
D_{15}	diameter at which 15% of soil is finer	-	velocity
D_{30}	diameter at which 30% of soil is finer	v W	•
\tilde{D}_{50}	diameter at which 50% of soil is finer		total weight weight of solids
D_{60}	diameter at which 60% of soil is finer	W _s	
$\tilde{\mathrm{D}}_{85}$	diameter at which 85% of soil is finer	W_w	weight of water
d_{50}	displacement for 50% consolidation	w	water content
d_{90}	displacement for 90% consolidation	Wc	water content at consolidation
d_{100}	displacement for 100% consolidation	Wf	final water content
E	Young's modulus	Wl	liquid limit
e	void ratio	Wn	natural water content
	void ratio	Wp	plastic limit
e _c	initial void ratio	Ws	shrinkage limit
e _o G	shear modulus	w _o , w _i	initial water content
Gs	specific gravity of soil particles	α	slope of q _f versus p _f
Us H		α'	slope of qf versus pf'
PI	height of specimen	γt	total unit weight
i Pi	plasticity index	γa	dry unit weight
	gradient	γ_s	unit weight of solids
K _o	lateral stress ratio for one dimensional strain	γw	unit weight of water
k	permeability	3	strain
LI	Liquidity Index	ε _{vol}	volume strain
m _v	coefficient of volume change	ϵ_h, ϵ_v	horizontal strain, vertical strain
n DI	porosity	. μ	Poisson's ratio, also viscosity
PI	plasticity index	σ	normal stress
P_{c}	preconsolidation pressure	σ'	effective normal stress
p	$(\sigma_1 + \sigma_3)/2$, $(\sigma_v + \sigma_h)/2$	σ_{c}, σ'_{c}	consolidation stress in isotropic stress system
p'	$(\sigma_1^{\prime} + \sigma_3^{\prime})/2, (\sigma_v^{\prime} + \sigma_h^{\prime})/2$	σ_h, σ'_h	horizontal normal stress
p'c	p' at consolidation	σ_v, σ_v	vertical normal stress
Q	quantity of flow	σ_1	major principal stress
q	$(\sigma_1 \cdot \sigma_3)/2$	σ_2	intermediate principal stress
q_{f}	q at failure	σ3	minor principal stress
q_o, q_i	initial q	τ	shear stress
\mathbf{q}_{c}	q at consolidation	φ	friction angle based on total stresses
S	degree of saturation	φ'	friction angle based on effective stresses
SL	shrinkage limit	φ' _r	residual friction angle
\mathbf{s}_{u}	undrained shear strength	Qult	φ for ultimate strength
Т	time factor for consolidation		

CRIESCO CRIESCO CRIESCO a subsidiary of Geocomp Corporation

1

UNDISTURBED SAMPLE LOG

CLIENT:	West	$\sim S$	olutions	LOGGED BY:	GTX#: 11069
PROJECT:	DAS	CASe	0829F	CHECKED BY:	BORINGG+B-04
LOCATION:	· · ·		SAMPLE ID:	GTB - D 30554	DEPTH: 6 8
SAMPLE SI	ZE AND '	TYPE:	287×3	0	DATE: 8-16 -11
SECTION	DEPTH		DESCRIPTION OF SAM	PLE	
	(in)	1			· · · · · · · · · · · · · · · · · · ·
		-			
		-			
		-			
		5	·		
		-			
		-		·	
a.		-	······································		
		-1			
		10			
)					
· 4	AC	-			
····					
•		15		A	
· 0	UU	-			
• >	Ű	-		///	
./					
•		-		/_(
· ~	44	20			
. 1	an	-	· · · · · · · · · · · · · · · · · · ·		
-		-		/	······································
			/		·····
	2 97 1	25		<u></u>	,
•) •	uu	25	Mul 1 and	May internet	
			Moinfult gher (My Wind	
			inal		
		ĪĪ	$\nabla \wedge I$	······································	
		30	SION	······································	
			/	· · · · · · · · · · · · · · · · · · ·	
				/	
	*/	_			
		35			
neseneration par completeren and had	angenangen verstelsen som		an a	and a subsection of the subsec	

CALL CP CALL CP CALL CP CALL CP CONTRACTOR Composition

.

UNDISTURBED SAMPLE LOG

CLIENT:	Wester	Sil	4t-URS	LOGGEI) BY: <u>MD</u>	GTX#: 11669	
PROJECT:			The function of the first state of t	CHECKE		BORING: GOT B	- at 0
LOCATION	and the second secon		SAMPLE	,ID: 3	8552	DEPTH: 3.	_ کې
THE REAL PROPERTY AND ADDRESS OF THE OWNER.	ZE AND TY	PE:	X	30	n my fan i yw arwy y skorthiganiay a' sheraff	DATE: STE	1/
SECTION	DEPTH		DESCRIPTION OF	SAMPLE		(····
	(in) 1					· · · · · · · · · · · · · · · · · · ·	
9		-					
		-					
		-		,			
		5					
		-		,			
		-	i	1 d	/		
	1	-		10/		<u> </u>	
		-					
	1(b			-	· · · · · · · · · · · · · · · · · · ·	
		_	/				
	1			······································			
					·		
		_					
	15		/			<u> </u>	
		1	· · · · · · · · · · · · · · · · · · ·	·····			
		1					
		-		· · · · · · · · · · · · · · · · ·			•
		-	WAX	<u> </u>		· · ·	
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
	20	1					- <u></u> <u>-</u>
	-						
	-			·			····
	-				;		
	-	•					
	25						
	· -					· · · · · · · · · · · · · · · · · · ·	
,	Fulex -		· · · · · · · · · · · · · · · · · · ·	1			
			Net brown F	est.	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
					·		
	-						
	1						
	-						
	-						
	35		<u> </u>				
1			·····				

CARCELLA CONTRACTOR Componention

.

UNDISTURBED SAMPLE LOG

CLIENT:	Veston	Sol	ut ons	LOGGED BY:	GTX#: //069
PROJECT	DAS (Asc	OF25F	CHECKED BY:	BORINGGTB-02
LOCATION			SAMPLE ID:	D-30551	DEPTH: 4-6
SAMPLE SI	ZE AND TY	PE:			DATE: 8-15
SECTION	DEPTH		DESCRIPTION OF SAM	IPLE	
	(in) 1			<i>j</i>	
		-			
			1	PACK-NY	
		-		- SAUCE	
-		5	11V.C		
•		-		<u> </u>	
8		-		/ · · · · · · · · · · · · · · · · · · ·	
a		-			
-	}	-			
e	11				
		-	Moist dark brown & Moist grey CBY	est	
•		-	Moist grey CBY	/	
-		-			
a		-			8
•	15	5	· · · · · · · · · · · · · · · · · · ·		
		-			
	•	-			
	•	•		· · · · · · · · · · · · · · · · · · ·	
· .	20				
	-				
			·		
	-			·	
					· ·
	25				· · · · · · · · · · · · · · · · · · ·
	-				
	-		Moist uet grey	CBY	
) ·	FC:	-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · ·		-			
	-	-			
	-	-			
	-				
	-	· -			
	35	-			
		NO CONTRACTOR			

APPENDIX C

SOIL MIXING BENCH-SCALE LABORATORY SCOPE OF WORK

U.S. EPA REMOVAL ACTION WALTON AND LONSBURY SITE ATTLEBORO, MASSACHUSETTS

SPECIFICATION for SOIL MIXING BENCH-SCALE TESTING

25 October 2011 Revision 1, 19 January 2012

PART 1 SCOPE OF WORK

This specification includes requirements for Soil Mixing Bench-Scale Testing and related work as hereinafter specified.

1.1 PROJECT OBJECTIVES

The soft deposits (organic silt and clay soils) in the Ground Improvement Area, shown in the attached Figure 1, need to support construction of a maximum 5-foot thickness of granular grading fill, including a geosynthetic drainage system and a soil cap.

1.2 PROJECT PERFORMANCE REQUIREMENTS

The soft deposits shall be mixed and treated as one unit which shall achieve the following specifications after 28-day cure:

• Unconfined compressive strength, q_u, of 3.6 tons per square foot or greater for the treated soil.

A secondary set of objectives has been developed. Targets have been set but these are not performance requirements:

- Permeability of less than 5×10^{-6} cm/sec for the treated soil.
- Reduce the compressibility of the treated soil to minimize settlement of the completed cap.
- Chromium concentration in leachate, as measured using the Synthetic Precipitation Leaching Procedure (SPLP) method, less than 100 ug/L.
- Reduce chromium flux, in ug/m²s, as measured using a flux-based mass transfer test with periodic leachant renewal (PreMethod 1315), while balancing the cost of soil mixing materials.

- Minimize the increase in treated soil volume, expressed as a percentage of untreated soil volume. The target is less than 115% (i.e. a volume increase of less than 15%).
- Given the high water content of soil in the Ground Improvement Area, minimize the addition of water.

1.3 SITE CONDITIONS

There are two general types of soil that require treatment: a dark brown organic material generally described as organic sandy silt (Stratum 1) underlain by a greenish-grey fine-grained inorganic material generally described as a clayey silt (Stratum 2). Both materials are very soft, with measured Standard Penetration Resistance (N) values which were less than 1 blow per foot (bpf) (i.e., weight of rods, weight of hammer, or 1 blow per 24 inches). The soil requiring treatment is underlain by coarse sand and gravel with N values which were at least 14 bpf. Boring logs and geotechnical test results are attached as Appendix A and Appendix B, respectively.

The thickness of the soft deposits varies significantly across the treatment area. The boring logs (locations noted on Figure 1) provide the available information regarding the thickness of the soft deposits at five locations. Note that the water content, organic content, and thickness of the soft soil deposits are highly variable in samples obtained across the Ground Improvement Area.

There are no monitoring wells within the Ground Improvement Area, however, groundwater samples obtained upgradient of the area contain up to 9 mg/L of hexavalent chromium. Pore water in the Ground Improvement Area should be presumed to contain similar concentrations of hexavalent chromium.

1.4 ABBREVIATIONS AND DEFINITIONS

- ASTM American Society for Testing and Materials
- EPA U.S. Environmental Protection Agency
- COR Contracting Officer Representative
- Dry Soil Mixture (DSM) A ground improvement technique that improves the characteristics of soft, high moisture content, weak soils using dry cementitous binder. A paddled mixing tool is used to blend the dry cement with soft, wet soil from the design depth to near-surface to form individual columns of treated soil. The process is repeated with rows of columns to achieve the desired stabilization.
- Injection Ratio A dry weight based ratio of dry admixture weight to in situ dry soil solids weight to be mixed in a DSM column. The injection ratio is determined for each column based on the column dimensions, in situ soil density, pattern of treatment, and laboratory determined mix rates.

MSDSMaterial Safety Data SheetNStandard Penetration Resistance determined by the Standard Penetration
restQCQuality ControlSOPStandard Operating Procedures

PART 2 SUBMITTALS

2.1 BID SUBMITTALS

a. Bidder Qualifications:

The Bidder shall submit evidence that the company is experienced and competent in developing soil mixes at bench scale and optimization of soil mixes to meet the project objectives. The evidence shall include references from similar bench scale studies. This evidence will ensure that the Contractor will have sufficient competent experienced personnel and proven methods and equipment to carry out the tests specified.

- b. The Bidder shall submit a general description of the Bench-Scale Testing approach, including:
 - Additives that the Bidder intends to evaluate.
 - General description of the approach to select initial screening mixes, evaluate initial mixes and optimization mixes, and prepare final or confirmation test mixes.
 - Laboratory methods to be used and data to be collected/recorded during the test.
 - Description (contents and delivery method) of proposed progress reports.
 - Contents of final Bench-Scale Testing Report.
- c. The Bid shall include a preliminary project schedule, starting from the anticipated date of award stated in the solicitation, including major milestones. At a minimum, schedule shall include the following milestones: submittal of Quality Assurance Plan and Standard Operating Procedures (SOP), start of bench-scale tests, start of final or confirmation test mixes, and submittal of Bench-Scale Test Report.

2.2 BENCH SCALE TESTING SUBMITTALS

The Contractor (successful Bidder) shall submit a Quality Assurance Plan for review and approval, to consist of the SOP used by the Contractor and any subcontracted laboratories during performance of the tests required for this contract.

The Contractor (successful Bidder) shall also submit a Final Bench Scale Testing Report for review and acceptance, including but not limited to the following information:

- a. Soil characterization data.
- b. Laboratory soil mixtures, including additives, soils mixed, and injection ratios for all screening, optimization, and confirmation mixes.
- c. Results for all tests required in this specification.
- d. Additional available product information for additives, including manufacturer's product quality certifications and Material Safety Data Sheets.

The Contractor shall make informal information submittals during the course of the project, including at a minimum:

- a. Transmittal of initial soil characterization data.
- b. Test results for initial screening mixes and optimization mixes.
- c. Recommendations for the optimization mixes and confirmation mix, to be submitted prior to preparation of the recommended mix.
- d. Unconfined strength test results for confirmation mixes.

PART 3 PROJECT REQUIREMENTS

3.1 GENERAL

The Contractor shall commence design mix development in accordance with the Project Schedule required in Subsection 2.1, and submit the Final Report in accordance with the Project Schedule.

3.2 SAMPLE COLLECTION

Soil samples from the Ground Improvement Area will be provided to the Contractor by others. Soil samples will consist of four 5-gallon soil samples, two representative of Stratum 1 and two representative of Stratum 2.

Water samples (groundwater and City water) will be provided to the Contractor by others. Samples will consist of 5 gallons of potable water obtained from the City public water supply and 5 gallons of groundwater obtained from wells upgradient of the Ground Improvement Area.

All other materials required for Design Mix development shall be provided by the Contractor.

3.3 INITIAL SAMPLE CHARACTERIZATION

Soil samples shall be homogenized to ensure that testing is performed on samples with uniform properties. Large objects (greater than 1-inch nominal diameter) shall be removed from the sample but the sample shall not be size-reduced. The homogenized soil samples shall be classified using the Unified Soil Classification System.

In order to characterize the soil used in bench-scale testing, soil samples shall be obtained after homogenization in the laboratory. One soil sample shall be obtained from homogenized sample (total of two samples, one for each Stratum) and analyzed for the following parameters:

- Natural Moisture Content.
- Gradation by sieve plus hydrometer analyses.
- Atterberg limits (Liquid Limit, Plastic Limit, Plasticity Index).
- Total (i.e., wet) unit weight as it exists within each of the four sample containers (buckets).
- Organic Content.
- Total and hexavalent chromium.
- Lead.
- SPLP leaching test for lead and total and hexavalent chromium .

In order to characterize the water used for the bench-scale testing, samples of the groundwater and City water provided shall be obtained immediately prior to the first day of use of the water. Each water sample shall be analyzed for the following parameters:

- Total and hexavalent chromium.
- Specific conductance.
- pH.

The bench-scale soil mixing trials shall proceed concurrently with the above laboratory analyses in order to expedite the project schedule.

3.4 ADDITIVES

A total of three dry additives (e.g., Portland cement, granulated blast furnace slag, cement kiln dust, lime, lime/cement, etc.) shall be selected for subsequent testing based on the Contractor's knowledge, experience, and literature searches. Additives should be selected based on effectiveness, cost, and proximity/availability to the project site. Proprietary chemicals shall only be used if approved by the EPA COR prior to the tests.

For each additive, perform quality control (QC) sampling and analysis of the material as-received. In addition to QC testing, if the following information is not provided by the manufacturer, analyze each additive for:

- Trace metals (antimony, arsenic, barium, beryllium, cadmium, total chromium, hexavalent chromium, copper, lead, mercury, nickel, selenium, vanadium, and zinc).
- Nutrients (total nitrogen, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen, and total phosphorus).
- Volatile or semivolatile hydrocarbons or other organic compounds suspected to be present in the additive.

The bench-scale soil mixing trials shall proceed concurrently with the above laboratory analyses in order to expedite the project schedule.

Material Safety Data Sheets (MSDS) shall also be obtained by the Contractor for each of the three candidate additives. Appropriate health and safety protocols shall be strictly enforced in the laboratory consistent with these documents.

3.5 PREPARATION AND EVALUATION OF INITIAL SCREENING MIXES

The first set of bench-scale mixes are referred to herein as "initial screening mixes". Initial screening mixes shall evaluate dry mix techniques. The objective of initial screening is to quickly identify the admixtures that are likely to be most successful for treating the soil to meet the high compressive strength and low permeability objectives.

Initial screening mixes will generally consist of mixing small volumes of the Stratum 1 soil with the selected admixtures at the following mix ratios, measured as dry weight of additive per volume of wet soil, in units of kilograms per cubic meter (kg/m^3) :

- 150 kg/m³ of Type I Portland Cement
- 250 kg/m³ of Type I Portland Cement
- 350 kg/m³ of Type I Portland Cement
- 150 kg/m³ of NewCem blast furnace slag cement
- 200 kg/m³ of NewCem blast furnace slag cement
- 250 kg/m³ of NewCem blast furnace slag cement
- 350 kg/m³ of cement kiln dust (CKD) plus 150 kg/m³ of Type I Portland Cement
- 350 kg/m³ of CKD plus 175 kg/m³ of Type I Portland Cement
- 350 kg/m³ of CKD plus 200 kg/m³ of Type I Portland Cement

A total of two small cylinder specimens (e.g. 2-inch diameter and 4-inch height) shall be completed for each of the three admixtures; i.e., 18 total cylinders shall be prepared. Mix preparation procedures and curing methods shall be proposed by the Contractor.

One of the two admixed soil specimens for each admixture/mix ratio shall be allowed to cure for a period of 24 hours. These specimens shall then be emptied from a drop height of 6 inches onto a horizontal flat surface and the resulting pile height measured and recorded to the nearest ¹/₄ inch.

The second of the two admixed soil specimens for each admixture/mix ratio shall be allowed to cure for a period of 7 days. The tops of these cylindrical samples shall be tested within the cylinders for unconfined compressive strength (q_u) using a pocket penetrometer equipped with the enlarged head. These nine measured values shall also be recorded.

Excess material from each of the mixtures shall be retained for possible subsequent evaluation or testing.

The pile height and compressive strength data shall be submitted to the Engineer along with a statement regarding which of the admixtures should be selected for optimization mixes.

3.6 OPTIMIZATION OF SELECTED ADMIXTURE EFFECTIVENESS (OPTIMIZATION MIXES)

The second set of bench-scale mixes to be performed under this Contract are referred to herein as the "optimization mixes". The objective of this stage of the mix design is to optimize the mix ratio for the admixture selected via the screening mix program. The optimization test mixes will generally consist of mixing small volumes of site soil with:

- The same ratios that provided favorable results in the initial screening mix.
- Variations in ratio of one or more mix components.

The optimization test shall be performed for both Stratum 1 and Stratum 2 soil because, at full-scale, mixing will occur across the interface of the two soil types.

The Contractor shall prepare three uncompacted cylindrical samples of stabilized Stratum 1 and Stratum 2 soil specimens (a total of 6 specimens). The three admixture doses to be used are:

- 200 kg Portland Cement per wet cubic meter of soil,
- 250 kg Portland Cement per wet cubic meter of soil, and
- 300 kg Portland Cement per wet cubic meter of soil.

The samples shall be prepared in 2-inch diameter, 4-inch high cylindrical cardboard or plastic molds.

Following 48-hour, 7-day, and 14-day cure times, the tops of all 6 specimens shall be tested within the molds for unconfined compressive strength (q_u) using a pocket penetrometer equipped with the enlarged head. These 18 measured values shall be recorded by the Contractor.

On day 14 of the cure period, after the unconfined compressive strength test, the molds shall be removed in their entirety. The 6 specimens shall then be tested for unconfined compressive strength using the procedures of ASTM D 1633.

The volume increase (swell) of the admixture at 14 days shall be calculated compared to the initial volume of soil.

The failed specimens from the compressive strength test shall be retained for possible subsequent evaluation or testing.

The compressive strength data (ASTM D1633 and pocket penetrometer results) shall be submitted to the Engineer along with a statement regarding which of the admixture should be selected for the confirmation mix.

3.7 CONFIRMATION TESTING PROGRAM (CONFIRMATION MIXES)

Two (2) additional sets of cylinders shall be prepared for testing two of the Stratum 1 bench-sale mixes as the "confirmation mixes". (Note that this differs from section 3.4 of the KEMRON Work Plan, which assumed one mix for each of the two soil types. The total number of sets is still two.) One set shall have an admixture of 200 kg of Portland Cement per wet cubic meter and the second set shall have an admixture of 300 kg of Portland Cement per wet cubic meter.

Each confirmation mix will generally consist of preparation of sufficient quantity of soil/additive to support the laboratory test program and to measure swell. The testing program shall include:

- 4 cylinders (2-inch diameter by 4-inch height) for performing unconfined compressive strength tests in accordance with ASTM D 1633 (one cylinder each for 7-day and 21-day testing, and two cylinders each for 28-day testing). (Note that the 14-day cylinder is not needed in section 3.7 because it is to be prepared for testing under section 3.6.)
- 1 cylinder for permeability testing by method ASTM D 5804. This test will be performed after 28-day curing time.
- 1 cylinder (2-inch diameter by 4-inch height) for storage for possible subsequent evaluation or testing.
- Additional treated soil sample for performing a one-dimensional consolidation test (ASTM D 2435-04) after 28-day curing time.
- Additional treated soil sample for performing the SPLP leaching test.
- 2 cylinders (2 inches diameter by 4 inches) for PreMethod 1315 leaching test. These tests will be performed after 28-day curing time. Leachate shall be analyzed for lead and chromium (total and hexavalent). In addition, if one or more contaminants are present in the additives at levels of concern to EPA, the Contractor may be required to analyze the leachate for these contaminants.
- Additional sample as required to measure the amount of volume increase (swell) (initial and 28-day) caused by the mix. Swell shall be measured and quantified as a percent of the initial soil volume.

The failed specimens from the compressive strength test shall be retained for possible subsequent evaluation or testing

For the purpose of developing Bid pricing, assume that two confirmation test mixes will be prepared.

The results of all compressive strength tests shall be submitted to the Engineer upon completion of the 28-day test.

PART 4 QUALITY CONTROL

The Contractor shall perform work in accordance with the SOP developed by the laboratory and, where applicable, in accordance with the EPA or ASTM method referenced in this specification. Non-standard test procedures generally should not be used when an EPA or ASTM method is available, however, non-standard procedures may be proposed by the Contractor. The SOP shall be submitted for review and approval prior to start of work.

Geotechnical testing shall be performed using the following methods:

- Natural moisture content (ASTM D2216).
- Particle Size Analysis of Soils, including Sieve and Hydrometer (ASTM D422).
- Atterberg Limits (ASTM D4318).
- Unified Soil Classification System Classification (ASTM D2487).
- Organic Content (ASTM D2974).
- Specific Gravity (ASTM D854).
- Compressive Strength of Molded Soil-Cement Cylinders (ASTM D1633).
- One Dimensional Consolidation Properties of Soils Using Incremental Loading (ASTM D2435-04).

The following geotechnical test shall be used if requested (this is an alternate method):

Preparation and Testing of Controlled Low Strength Material Test Cylinders (ASTM D4832).

Permeability testing shall be performed using the following method:

 Measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter (ASTM D 5084).

Leaching tests shall be performed using the following methods:

- Synthetic Precipitation Leaching Procedure (EPA Method 1312).
- Mass Transfer rates in Monolithic or Compacted Granular Materials Using a Semi-Dynamic Tank Leaching Procedure (EPA PreMethod 1315). (Note: This method is only to be used for the confirmation test solidified material, after 28-day cure.)

Analysis of leachate generated using the SPLP and PreMethod 1315 shall be performed using EPA methods and shall achieve the following laboratory reporting limits:

- Total chromium (Method 6010A), 5 ug/L.
- Hexavalent chromium (Method 7196A or 7199), 5 ug/L.
- Lead (Method 6010B), 5 ug/L.

Analysis of leachate generated using the SPLP method may include additional contaminants due to addition of contaminants in an additive. Analysis of additional contaminants shall be performed using an approved EPA method and shall achieve the following laboratory reporting limits: the lowest of the Massachusetts Contingency Plan GW-1, GW-2, or GW-3 standards for each contaminant.

Analysis of samples of groundwater and City water (per Section 3.3) shall be performed using EPA test methods and shall achieve the following laboratory reporting limits:

- Total chromium (Method 6010B), 5 ug/L.
- Hexavalent chromium (Method 7196A or 7199), 5 ug/L.

Analysis of samples of soil (per Section 3.3) shall be performed using EPA methods and shall achieve the following laboratory reporting limits:

- Total chromium (Method 3050B/6010B), 10 mg/kg.
- Hexavalent chromium (Methods 3060A/7196A or 3060A/7199), 10 mg/kg.
- Lead (Method 3050B/6010B), 10 mg/kg.

End of Section

ATTACHMENTS

The following documents are attached to this performance specification and considered part of the specification document:

- Figure 1 Soil Mixing Bench-Scale Testing Site Plan, Revision A, dated 24 Oct 2011.
- Appendix A Boring Logs.

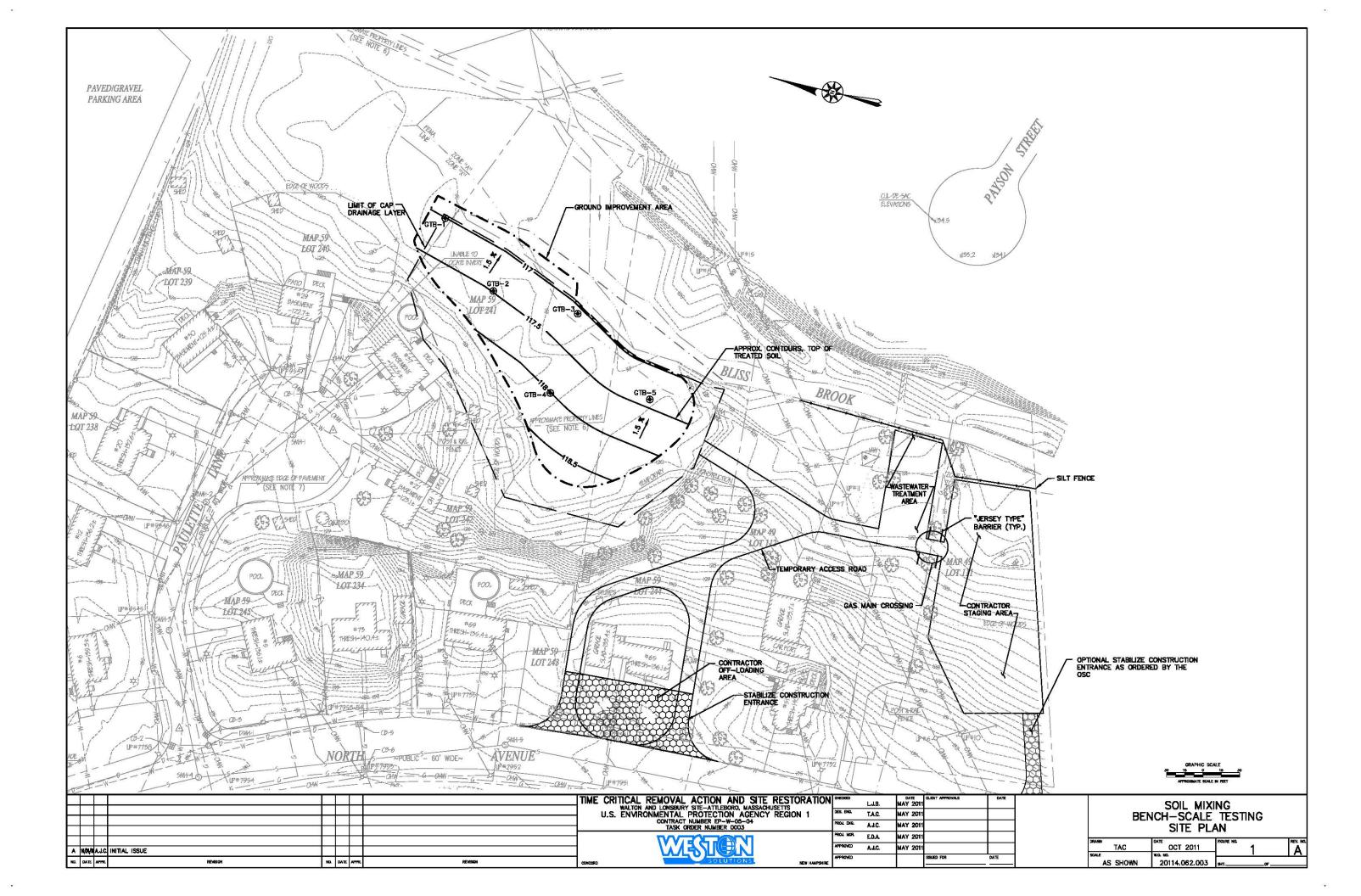
Appendix B – Geotechnical Laboratory Test Results.

REVISION HISTORY

Revision 0, 25 Oct 2011 – Original issue.

Revision 1, 19 Jan 2012 – Revisions affecting subsections 1.2, 3.3, 3.5, 3.6, and 3.7, summarized as follows:

- Subsection 1.2: to change the unconfined compressive strength target from 30 pounds per square inch to 3.6 tons per square foot.
- Subsection 3.3: to change the number of homogenized samples from 4 to 2.
- Subsection 3.5: to specify the admixtures for initial screening mixes and modify the size of cylinders.
- Subsection 3.6: to change the total number of soil mix specimens from 10 to 6; specify the admixtures; modify the size of cylinders; and specify the number of days for the swell test.
- Subsection 3.7: to specify the admixtures; modify the size of cylinders; allow plastic cylinder molds; and decrease the number of required cylinders by one (eliminating the cylinder for the 14-day unconfined compressive strength test).


PREPARED BY:

WESTON SOLUTIONS, INC. Arthur J. Cunningham, PE

"OF/ ARTHUR . CUNNINGHAN Walton and L Specification for **Bench-Scale Testing** 19 January

FIGURE 1

SITE PLAN

APPENDIX A

BORING LOGS

Same as provided with

Performance Specification For Soil Mixing For Ground Improvement

APPENDIX B

GEOTECHNICAL LABORATORY RESULTS

Same as provided with

Performance Specification For Soil Mixing For Ground Improvement

APPENDIX D

SOIL MIXING BENCH-SCALE LABORATORY REPORT DATA

Walton & Lonsbury Site Attleboro, Massachusetts Soil Mixing Bench-Scale Treatability Study SH-0405

Prepared for:

Weston Solutions, Inc. Northeast Division 3 Riverside Drive Andover, Massachusetts 01810

Prepared by:

KEMRON Environmental Services, Inc. 1359-A Ellsworth Industrial Boulevard Atlanta, Georgia 30318

March 7, 2012

Table of Contents

1.0	INTRODUCTION	1
2.0	MATERIAL RECEIPT, HOMOGENIZATION, AND CHARACTERIZATION	2
3.0	STABILIZATION EVALUATIONS	6
	3.1 PRELIMINARY STABILIZATION EVALUATIONS	6
	3.2 OPTIMIZATION STABILIZATION EVALUATIONS	8
	3.3 CONFIRMATION STABILIZATION EVALUATIONS	11
4.0	CONCLUSIONS	14

List of Tables and Appendices

- Table 1
 Untreated Physical Properties Testing
- Table 2
 Untreated Material Analytical Results
- Table 3
 Preliminary Mixture Designs Pile Slump Pocket Penetrometer Results
- Table 4Optimization/Confirmation Mixture Designs Pocket Penetrometer
Results
- Table 5Optimization/Confirmation Evaluation Summary of Unconfined
Compressive Strength Testing ASTM D1633
- Table 6Optimization/Confirmation Evaluation Summary of Permeability Testing
– ASTM D5084
- Appendix A Untreated Physical Properties Testing
- Appendix B Untreated Analytical Reports
- Appendix C Mixture Development Sheets
- Appendix D Unconfined Compressive Strength Data Sheets
- Appendix E Permeability Data Sheets

1.0 INTRODUCTION

KEMRON Environmental Services, Inc. (KEMRON), is pleased to present Weston Solutions, Inc. (Weston), with this report of the Soil Mixing Bench-Scale Treatability Study performed on materials sampled from the Walton & Lonsbury Site in Attleboro, Massachusetts. Testing was conducted in general accordance with the Project Implementation Plan submitted by KEMRON to Weston on November 8, 2011, and with Weston's Specification for Soil Mixing Bench-Scale Testing, Revision 1, 19 January 2012. This report provides the methodology and protocols used, as well as the results of testing performed on the untreated and treated site materials.

The primary objective of the bench-scale study was to identify candidate stabilization treatment alternatives for the site soil. The primary performance criteria for the treated materials is an unconfined compressive strength (UCS) of 50 pounds per square inch (psi) or greater.

A secondary set of objectives was also provided. Targets were set but these were not performance requirements:

- Permeability of less than 5×10^{-6} cm/sec for the treated soil.
- Reduce the compressibility of the treated soil to minimize settlement of the completed cap.
- Chromium concentration in leachate, as measured using the Synthetic Precipitation Leaching Procedure (SPLP) method, less than 100 µg/L.
- Reduce chromium flux, in µg/m²s, as measured using a flux-based mass transfer test with periodic leachant renewal (PreMethod 1315), while balancing the cost of soil mixing materials.
- Minimize the increase in treated soil volume, expressed as a percentage of untreated soil volume. The target is less than 115% (i.e. a volume increase of less than 15%).

2.0 MATERIAL RECEIPT, HOMOGENIZATION, AND CHARACTERIZATION

On November 23, 2011, KEMRON received three 5-gallon buckets labeled "TSS-01" (Stratum 1) and two 5-gallon buckets labeled "TSS-02" (Stratum 2) from the site for potential use in the treatability study. Additionally, one 5-gallon container of groundwater, labeled "TSL-03", and one 5-gallon container of potable water, labeled "TSL-04", were received on the same date. Immediately following sample receipt, KEMRON logged the materials into a sample tracking database and placed them in a 4-degree-Celsius (°C) walk-in cooler for storage.

KEMRON individually homogenized TSS-01 and TSS-02 by placing the contents from the shipping containers into a pre-cleaned plastic mixing pan and gently blending by hand using a stainless steel spoon until visually homogenous. Any particles measuring greater than 0.5 inches in diameter were removed in order to facilitate bench-scale treatment and adhere to particle-size limits outlined in certain ASTM and EPA test methods for UCS and permeability testing. KEMRON performed homogenization on chilled samples to minimize volatilization of organic contaminants.

PARAMETER	METHOD
Moisture Content	ASTM D2216
Bulk Density	ASTM D2937
Solid Specific Gravity	ASTM D854
Porosity	Calculated
Organic Content	ASTM D2974
Soil Classification	USCS D2487
Particle Size Analysis with Hydrometer	ASTM D422
Atterberg Limits	ASTM D4381
Total Chromium and Lead	EPA Method 6010
Hexavalent Chromium	EPA Method 3060A/7196A
SPLP Chromium and Lead	EPA Method 1312/6010
SPLP Hexavalent Chromium	EPA Method 1312/3060A/7196A

In order to assist in the development of appropriate reagent(s) and addition rates, KEMRON evaluated selected physical and chemical properties of each material by conducting the following tests:

A summary of the results of the physical properties testing are provided on **Table 1**, and physical properties data sheets for the untreated materials are included in **Appendix A**. Samples of the untreated materials were sent to ESC Lab Sciences in Mt. Juliet, Tennessee, for total chromium, lead, and hexavalent chromium analyses. In addition,

Soil Mixing Bench-Scale Testing	March 7, 2012
Walton & Lonsbury Site, Attleboro, MA	SH-0405

the Synthetic Precipitation Leaching Procedure (SPLP) for TSS-01 (Stratum 1) was performed. Laboratory analytical results are summarized on **Table 2**, and the laboratory reports are included in **Appendix B**.

The results of the untreated characterization are summarized in the following tables.

TABLE # 1

			·	<u></u>
TESTING	TEST			SAMPLE NO.
PARAMETER	METHOD	UNIT	TSS-01	TSS-02
Moisture Content ASTM Moisture Content Percent Solids	ASTM D2216	% %	434.84 18.72	65.91 60.28
Bulk Unit Weight	ASTM D2937	pcf	67.9	96.3
Solid Specific Gravity	ASTM D854	s.u.	1.89	2.56
Loss on Ignition Average Moisture Content Average Loss on Ignition	ASTM D2974	% %	492.52 38.36	69.51 2.38
Particle Size Distribution Gravel Sand Silt Clay	ASTM D422/D854	% % %	2 25.1 69.9 3	1.3 35.4 56.8 6.5
Atterberg Limits Liquid Limit Plastic Limit Plasticity Index	ASTM D4318	LL PL PI	NV NP NP	49 33 16
Sample Description			Black silt with sand	Very dark greenish gray sandy silt
Sample Classification	USCS D2487		ML	ML
Total Porosity	Calculated	%	89.2	63.7

UNTREATED PHYSICAL PROPERTIES TESTING

Notes

% = Percent pcf = pounds per cubic foot s.u. = standard units LL = Liquid Limit PL = Plastic Limit PI = Plasticity Index NV = No Value NP = Non-Plastic

Based on the results of the untreated characterization, both materials are fairly similar from a grain size and USCS classification. However, TSS-01 (Stratum 1) has significantly more organic material as well as higher moisture content. The density as well as the specific gravity of TSS-01 is lower than TSS-02.

	Sample ID			TSS-02 UNTREATED)	
Parameter	Units	Value	Qual	MDL	Value	Qual	MDL
Total Hexavalent Chromium	mg/kg	8.4	J	0.71	1.9	J	0.71
Total Chromium	mg/kg	3400		0.085	30		0.085
Total Lead	mg/kg	38		0.09	11		0.09
SPLP - Hexavalent							
Chromium	ug/L	U		3.9	NA		
SPLP - Chromium	ug/L	32		4	NA		
SPLP - Lead	ug/L	4.8	J	4.8	NA		

TABLE # 2

UNTREATED MATERIAL ANALYTICAL RESULTS

Notes MDL = method detection limit mg/kg = milligrams per kilogram ug/L = micrograms per liter U = Not Detected NA = Not Analyzed Qual = Qualifiers: J = (EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.

Soil Mixing Bench-Scale Testing	March 7, 2012
Walton & Lonsbury Site, Attleboro, MA	SH-0405

The results of the untreated chemical analysis reveal that TSS-01 is significantly more impacted with the constituents of concern.

3.0 STABILIZATION EVALUATIONS

The mixture designs were developed by Weston, including reagent selection and reagent addition rates. The reagents used by KEMRON included:

REAGENT	SUPPLIER
Type I Portland Cement	Local retail hardware store
Seattle NewCem	Lafarge Concrete Lab, Seattle WA
Cement Kiln Dust	Lafarge North America, Ravena NY

Each reagent material was homogenized individually prior to mixture development by blending each material manually until visually homogenous.

3.1 PRELIMINARY STABILIZATION EVALUATIONS

KEMRON prepared a total of nine preliminary mixture designs (mixes 0405-001 through 0405-009) using the TSS-01 material, with combinations of three different reagent types: Type I Portland Cement (PC), Seattle NewCem, and cement kiln dust (CKD).

All mixtures were prepared using a Hobart-type kitchen mixer with a paddle-type mixing arm. Mixtures were prepared by placing an aliquot of the untreated material into the mixing chamber. The appropriate reagents were then added dry to the untreated material while mixing. Each mixture was blended for a period of approximately 60 to 90 seconds at a rate of approximately 60 revolutions per minute (rpm).Treatment utilizing this mixer is intended to simulate potential full-scale remediation options, to the extent possible on the bench-scale. This approach is routinely utilized to simulate a wide range of potential full-scale remediation approaches, including both in-situ and ex-situ applications.

For the first three mixes (0405-001 through 0405-003), PC alone was added at ratios of 150, 250, and 350 kilograms per cubic meter (kg/m³) to TSS-01 (Stratum 1). Seattle NewCem was used in the next three mixes (0405-004 through 0405-006) at addition rates of 150, 200, and 250 kg/m³. The final three preliminary mixes (0405-007 through 0405-009) all contained 350 kg/m³ of CKD, with PC added at ratios of 150, 175, and 200 kg/m³. Preliminary solidification mixture designs are provided on **Table 3**. Preliminary mixture development data sheets are provided in **Appendix C**.

The following is a summary of treated material curing techniques, testing performed on the treated samples, and brief descriptions of the protocols utilized for the preliminary stabilization evaluations:

• The nine preliminary mixtures were poured into cylindrical curing molds and allowed to cure at ambient temperature (68 °F to 72 °F) in moisture-sealed

containers.

- KEMRON performed pile slump testing on each of the nine preliminary mixture designs after seven days of curing. The treated material was poured out of the mold onto a hard, flat surface from a height of six inches, and the height of the resulting pile was measured. Results of the pile slump testing are noted individually on each of the mixture design sheets provided in **Appendix C**, and are summarized on **Table 3**.
- KEMRON performed pocket penetrometer testing on each of the nine preliminary mixture designs after seven days of curing. Approximately 100 grams of each treated material was poured into a small cup, cured, and tested to evaluate the approximate strength of each sample. Results of the pocket penetrometer testing are noted individually on each of the mixture design sheets provided in **Appendix C**, and are summarized on **Table 3**.

The results of the slump pile testing and penetrometer testing are summarized below.

			Reagent Addition Rate		Curing Chara	cteristics
KEMRON	UNTREATED	REAGENT			Pile Slump (Day 1)	Penetrometer (Day 7)
Mix No	MATERIAL ID	ID	Kg/M ³ Untreated	% by Weight	(inches)	(tsf)
0405-001 0405-002 0405-003 0405-004 0405-005 0405-006 0405-007 0405-008 0405-009	TSS-01 TSS-01 TSS-01 TSS-01 TSS-01 TSS-01 TSS-01 TSS-01 TSS-01	Type I PC Type I PC Type I PC NewCem NewCem CKD / PC CKD / PC CKD / PC	150 250 350 150 200 250 350 / 150 350 / 175 350 / 200	13.8 22.9 32.1 13.8 18.4 22.9 32.1 / 13.8 32.1 / 16.0 32.1 / 18.4	5.25 - 5.75 5.75 5.75 - 6.25 2.75 3.00 3.00 5.75 5.75 5.75 5.75	2.25 (1) 2.75 (1) 4.25 (1) 0.00 (2) 0.00 (2) 1.25 (1) 2.5 (1) 3.25 (1)

 TABLE # 3

 PRELIMINARY MIXTURE DESIGNS - PILE SLUMP - POCKET PENETROMETER RESULTS

Notes

% = Percent

Kg/M3 = Kilograms per cubic meter

CKD = Cement Kiln Dust

PC = Type I Portland Cement

(1) Penetrometer strengths were taken without the aid of an expanded area foot.

(2) Penetrometer strengths were taken using an expanded area foot.

The results of the penetrometer testing revealed that the NewCem reagent could not

effectively set up with TSS-01. In addition, the penetrometer results suggest that the PC alone sets up more rapidly and at a greater strength than used with CKD. The results of the pile testing revealed similar results (approximately 5.75) for the mixtures using PC alone and PC and CKD combined.

3.2 OPTIMIZATION STABILIZATION EVALUATIONS

Results of the preliminary stabilization evaluation results indicated that the mixes using PC alone provided the greatest strength after seven days of curing. Therefore, Weston designed three additional mixture designs for TSS-01 (mixes 0405-010 through 0405-012), using 200, 250, and 300 k/m³ of PC. Three mixture designs were also created for TSS-02 (mixes 0405-013 through 0405-015) using the same PC addition ratios, because mixing will occur across the interface of the two soil types during full-scale treatment.

The following is a summary of treated material curing techniques, testing performed on the treated samples, and brief descriptions of the protocols utilized for the optimization stabilization evaluations:

- The six optimization mixtures were poured into cylindrical curing molds and allowed to cure at ambient temperature (68 °F to 72 °F) in moisture-sealed containers.
- Pocket penetrometer testing was performed by KEMRON on the optimization mixture designs, following cure times of approximately 2, 7, and 14 days. Approximately 100 grams of each treated material was put into a small cup, then cured at the above intervals and tested to evaluate the approximate cured strength of each sample. Results of the pocket penetrometer testing are noted individually on each of the mixture design sheets provided in Appendix C, and are summarized on Table 4.
- After 14 days of curing, the volumetric expansion of each of the six optimization samples was evaluated. Exactly 100 grams of untreated material was added to a plastic cylindrical mold. The height of the untreated material was measured and recorded. The reagent slurry was then added at the appropriate addition rate to the untreated material, and the mixture was allowed to cure for 14 days. At this time, the height of material was measure and recorded. The volumetric expansion of the material was then calculated and recorded on the mixture design sheet. Volumetric expansion results are noted individually on each of the mixture design sheets provided in Appendix B, and are summarized on Table 4.
- After 14 days of curing, KEMRON tested the unconfined compressive strength (UCS) of each of the six optimization mixture designs. UCS testing was performed in accordance with ASTM Method D1633 by first removing each cured sample specimen from its cylindrical mold. The weight and physical

Soil Mixing Bench-Scale Testing	March 7, 2012
Walton & Lonsbury Site, Attleboro, MA	SH-0405

dimensions of the sample were recorded on the appropriate data sheet. The specimen was then placed on the load frame and compressed at a rate of 1% strain per minute until the sample failed or 15% of the strain had been achieved. Throughout the testing, KEMRON documented the load at specific strain values. A representative aliquot of the post-test specimen was then subjected to moisture content testing. UCS test results are presented on **Table 5**, and the data sheets are provided in **Appendix D**.

The following table summarizes the Penetrometer Testing and Volumetric Expansion testing performed on the optimization mixes.

			Reagent Ac	ddition Rate		Penetrom	eter Testi	ng	Volumetric	Expansion
KEMRON Mix No	UNTREATED	REAGENT	kg/m ³ Untreated	Percent by Weight	Day 2 ⁽²⁾ (tsf)	Day 3 ⁽¹⁾ (tsf)	Day 7 ⁽¹⁾ (tsf)	Day 14 ⁽¹⁾ (tsf)	Day 14	Day 28
			Unitedleu	by weight	(131)	(131)	(131)	((31)	%	%
0405-010	TSS-01	Type I PC	200	18.4	>4.5	NT	1.5	1.5	6.6	5.5
0405-011	TSS-01	Type I PC	250	23	>4.5	2.0	3.25	3.5	4.9	NT
0405-012	TSS-01	Type I PC	300	27.6	>4.5	3.5	4.0	4.5	5.5	7.1
0405-013	TSS-02	Type I PC	200	13.0	>4.5	>4.5	>4.5	>4.5	9.4	NT
0405-014	TSS-02	Type I PC	250	16.2	>4.5	>4.5	>4.5	>4.5	9.4	NT
0405-015	TSS-02	Type I PC	300	19.4	>4.5	>4.5	>4.5	>4.5	11.8	NT
0405-016	TSS-02	Type I PC	100	6.5	NT	NT	NT	NT	NT	NT

TABLE # 4

OPTIMIZATION/CONFIRMATION MIXTURE DESIGNS - POCKET PENETROMETER RESULTS

<u>Notes</u>

% = Percent

tsf = tons per square foot

kg/m3 = Kilograms per cubic meter

NT = Not tested

(1) Penetrometer strengths were taken without the aid of an expanded area foot.

(2) Penetrometer strengths were taken using an expanded area foot.

The results of the Penetrometer and Volumetric Testing indicate that each optimization mix meets the study volumetric expansion objective of less than 15%. Pocket Penetrometer data reveals that the mixture of PC and TSS-02 sets up very effectively.

TABLE # 5

OPTIMIZATION / CONFIRMATION EVALUATION Summary of Unconfined Compressive Strength Testing – ASTM D1633

		UNCONFINED COMPRESSIVE STRENGTH				
FIELD	Cure	Moisture	Bulk	Dry		
SAMPLE	Time	Content	Density	Density	UCS	
ID	(days)	(%)	(lbs/ft ³)	(lbs/ft ³)	(lbs/in ²)	
	7	201.73	78.4	26.0	13.6	
0405-010	14	196.87	78.3	26.4	14.6	
0405-010	21	186.77	77.5	27.0	17.7	
	28	183.24	77.0	27.2	18.7	
0405 011	14	173.55	77.9	28.5	23.4	
0405-011	34	158.09	77.8	30.1	31.3	
	7	152.29	82.2	32.6	35.6	
0405-012	14	146.16	81.1	32.9	41.9	
0405-012	21	137.75	81.2	34.1	47.9	
	28	144.59	79.7	32.6	51.5	
0405-013	14	47.35	104.2	70.7	282.5	
0405-014	14	47.77	105.1	71.2	343.5	
0405-015	14	43.65	105.0	73.1	456.8	
0405-016	14	TBD	TBD	TBD	TBD	
0400-010	28	TBD	TBD	TBD	TBD	

Notes:

psi = pounds per square inch TBD = To be determined

Soil Mixing Bench-Scale Testing	March 7, 2012
Walton & Lonsbury Site, Attleboro, MA	SH-0405

The results of the UCS testing revealed that the mixture designs for TSS-02 were from 282.5 pcf to 456.8 pcf, well in excess of the 50 psi objective. In addition, mixture design 0405-10 was not able to achieve the minimum 50 psi objective for the site.

3.3 CONFIRMATION STABILIZATION EVALUATIONS

Based on optimization testing, two of the TSS-01 mixtures, 0405-010 and 0405-012, were initially chosen for confirmation stabilization evaluations. However, upon review of the 28-day UCS confirmation testing, mixture 0405-010 did not gain enough strength to meet the criteria of 30 psi. Therefore, continued testing of this mixture was abandoned, and confirmation testing was planned for TSS-01 mixture 0405-011. However, due to the modification of the UCS criteria, mixture 0405-011 failed to gain the target strength of 50 psi. Weston reviewed the data presented in the optimization evaluation and directed KEMRON to develop an additional TSS-02 mixture with a 100 kg/m³ addition ratio of PC for confirmation testing. Confirmation testing of this mixture, 0405-016 and 0405-012, is currently underway and the results will be submitted to Weston in a supplementary report.

The following is a summary of treated material curing techniques, testing performed on the treated samples, and brief descriptions of the protocols utilized for the confirmation stabilization evaluations:

- After 28 days of curing, confirmation mixture designs 0405-010 and 0405-012 were evaluated to determine the percentage of volumetric expansion. Based on the previous data of the study, the volumetric expansion testing will not be warranted for mixture 0405-016. Volumetric expansion results are noted individually on each of the mixture design sheets provided in **Appendix B**, and are summarized on **Table 4**.
- KEMRON tested the unconfined compressive strength (UCS) of confirmation mixture designs 0405-010 and 0405-012 after 7, 21, and 28 days. Additionally, mixture 0405-011 was subjected to a UCS test after 34 days. Mixture 0405-016 will be tested at a cure date of 14 and 28 days and will be reviewed by Weston. UCS test results are presented on Table 5, and the data sheets are provided in Appendix D.
- Permeability testing was conducted on mixtures 0405-11 and 0405-012 after 28 days of curing, in accordance with ASTM D5084. The mixtures were removed from the curing molds, and the weights and physical dimensions of the samples were recorded on the appropriate data sheets. The permeameter was assembled, and the samples were saturated to a minimum value of 95%, then consolidated using a standard 10-psi confining pressure. Water was then passed through the samples, and the permeabilities were determined. Permeability test results are presented on Table 6, and the data sheets are provided in Appendix E.

Soil Mixing Bench-Scale Testing	March 7, 2012
Walton & Lonsbury Site, Attleboro, MA	SH-0405

- After a minimum of 14 days, one dimensional consolidation testing will be performed on mixtures 0405-012 and 0405-016 to evaluate the ability of these mixes to minimize settlement of the completed cap. Testing will be conducted in accordance with ASTM D2435. The solidified sample will be cored using a drill press to a diameter of 2.5 inches. The core will then be cut with a fine diamond blade table saw to inch. The dimensions and weight of the cut solidified sample will be measured and placed in the consolidation ring. The sample will then be placed in consolidometer apparatus. Since both Stratum 1 and 2 are in the groundwater, the consolidation testing will be performed with the sample submerged in the site groundwater (TSL-03). The samples will be subjected to incremental loads of .25 ksf, 0.5 ksf, 1.0 ksf, 2 ksf, 4, ksf, 8 ksf, 16 ksf, and 32 ksf. No rebound component of the testing appears warranted. Testing will be conducted in accordance with ASTM D2435. The consolidation testing results will be submitted to Weston in a supplemental report.
- In addition, the Synthetic Precipitation Leaching Procedure (SPLP) for treated mixture design 0405-012 was performed after 28 days of curing. Laboratory analytical results will be submitted to Weston in a supplemental report.
- After 28 days of curing, the EPA Premethod 1315 leaching test was begun for mixture designs 0405-011 and 0405-012. The samples were removed from their cylindrical molds and placed in a deionized-water bath in airtight polypropylene containers. The leaching procedure will proceed as follows: after intervals of 2 hours and 1, 2, 7, 14, 28, 42, 49, and 63 days, each sample will be moved to a fresh bath, and the resulting eluates will be analyzed to determine pH, specific conductivity, and oxidation-reduction potential. The eluates will then be filtered through a 0.45-µm membrane, sampled, and shipped to ESC Lab Sciences for laboratory analysis of chromium, lead, and hexavalent chromium. The leaching test is in progress and will be submitted to Weston in a supplemental report.

The results of the permeability testing of mixes 0405-011 and 0405-012 are summarized below.

			PERMEABILITY (k)						
	FIELD SAMPLE ID	Cure Time (days)	Moisture Content (%)	Bulk Density (Ibs/ft ³)	Dry Density (Ibs/ft ³)	Permeability (cm/sec)			
0	405-011	34	165.70	78.3	29.5	5.2E-06			
0	405-012	28	150.90	79.5	31.7	5.6E-06			

OPTIMIZATION / CONFIRMATION EVALUATION Summary of Permeability Testing - ASTM D5084

Notes:

% = percent lb/ft³ = pounds per cubic foot cm/sec = centimeters per second

Permeability results indicate that both mixtures 0405-011 and 0405-12 meet the performance objective of 5 x 10 $^{-6}$ after a minimum curing time of 28 days.

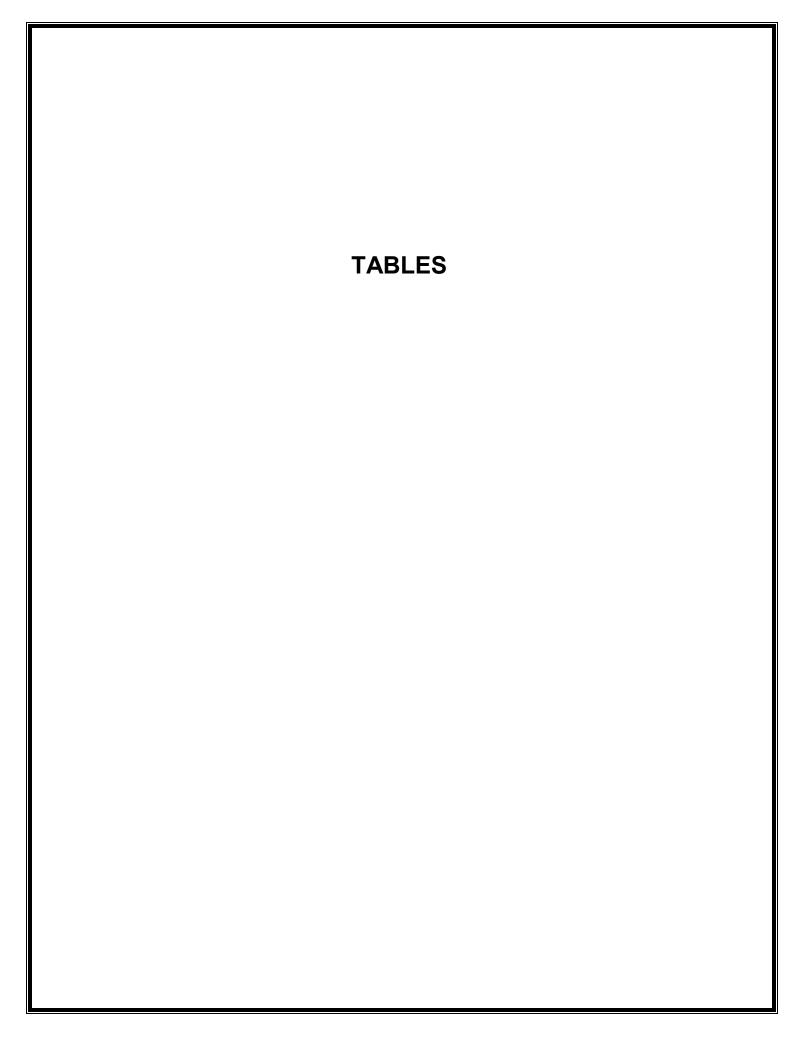
4.0 CONCLUSIONS

The results of this study indicate that, an addition rate of 300 kilograms of Portland cement per cubic meter of soil for the TSS-01 (Stratum 1) material is required to meet the specified performance criteria of 50 psi or greater. UCS testing results presented on **Table 5** show that mixture 0405-012, with a PC addition rate of 300 kg/m³, exceed the site criteria of 50 psi following approximately 28 days of curing. Addition rates of 200 kg/m³ result in UCS values greater than 282 psi after 7 days of curing. A supplemental report will be issued to Weston evaluating the 14 and 28 day cure strength of 100 kg of PC per m³ of soil.

Permeability testing, summarized on **Table 6**, indicates that both mixtures 0405-011 and 0405-012 exhibit permeability values that meet the site objective of less than 5×10^{-6} cm/sec, with permeabilities of 5.2×10^{-6} and 5.6×10^{-6} , respectively.

Volumetric expansion testing, summarized on **Table 4**, indicates that all of the mixtures tested meet the site objective of less than 15% increase in volume of the treated material.

A supplemental report is planned to be issued to provide the results of the Premethod 1315, as well as consolidation testing, and UCS strengths of selected mixture designs identified in the optimization and confirmation phases of this study. This report should be reviewed in its entirety, including all attachments and appendices, prior to making decisions concerning a remedial approach. This study is intended to suggest what will occur in the field, but does not guarantee the same results.


If you have any questions concerning the data provided in this report, please do not hesitate to contact us at 404-601-6927.

Sincerely, KEMRON Environmental Services, Inc.

Jill G. Suhm Project Engineer

27 th

Tommy A. Jordan, P.G Program Manager

TABLE # 1

UNTREATED PHYSICAL PROPERTIES TESTING

TESTING	TEST		UNTREATED SAMPLE NO.		
PARAMETER	METHOD	UNIT	TSS-01	TSS-02	
Moisture Content ASTM Moisture Content Percent Solids	ASTM D2216	% %	434.84 18.72	65.91 60.28	
Bulk Unit Weight	ASTM D2937	pcf	67.9	96.3	
Solid Specific Gravity	ASTM D854	s.u.	1.89	2.56	
Loss on Ignition Average Moisture Content Average Loss on Ignition	ASTM D2974	% %	492.52 38.36	69.51 2.38	
Particle Size Distribution Gravel Sand Silt Clay	ASTM D422/D854	% % %	2 25.1 69.9 3	1.3 35.4 56.8 6.5	
Atterberg Limits Liquid Limit Plastic Limit Plasticity Index	ASTM D4318	LL PL PI	NV NP NP	49 33 16	
Sample Description			Black silt with sand	Very dark greenish gray sandy silt	
Sample Classification	USCS D2487		ML	ML	
Total Porosity	Calculated	%	89.2	63.7	

Notes

% = Percentpcf = pounds per cubic foots.u. = standard unitsLL = Liquid LimitPL = Plastic LimitPI = Plasticity IndexNV = No Value

TABLE # 2

UNTREATED MATERIAL ANALYTICAL RESULTS

	Sample ID	TSS-01 UNTREATED			TSS-02 UNTREATED		
Parameter	Units	Value	Qual	MDL	Value	Qual	MDL
Total Hexavalent Chromium	mg/kg	8.4	J	0.71	1.9	J	0.71
Total Chromium	mg/kg	3400		0.085	30		0.085
Total Lead	mg/kg	38		0.09	11		0.09
SPLP - Hexavalent Chromium	ug/L	U		3.9	NA		
SPLP - Chromium	ug/L	32		4	NA		
SPLP - Lead	ug/L	4.8	J	4.8	NA		

Notes

MDL = method detection limit

mg/kg = milligrams per kilogram

ug/L = micrograms per liter

U = Not Detected

NA = Not Analyzed

Qual = Qualifiers:

J = (EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.

TABLE # 3

PRELIMINARY MIXTURE DESIGNS - PILE SLUMP - POCKET PENETROMETER RESULTS

			Reagent Ad	dition Rate	Curing Cha	aracteristics
KEMRON Mix No	UNTREATED MATERIAL ID	REAGENT ID	Kg/M ³ Untreated	% by Weight	Pile Slump (Day 1) (inches)	Penetrometer (Day 7) (tsf)
0405-001	TSS-01	Type I Portland Cement	150	13.8	5.25 - 5.75	2.25 (1)
0405-002	TSS-01	Type I Portland Cement	250	22.9	5.75	2.75 (1)
0405-003	TSS-01	Type I Portland Cement	350	32.1	5.75 - 6.25	4.25 (1)
0405-004	TSS-01	NewCem	150	13.8	2.75	0.00 (2)
0405-005	TSS-01	NewCem	200	18.4	3.00	0.00 (2)
0405-006	TSS-01	NewCem	250	22.9	3.00	0.00 (2)
0405-007	TSS-01	CKD / PC	350 / 150	32.1 / 13.8	5.75	1.25 (1)
0405-008	TSS-01	CKD / PC	350 / 175	32.1 / 16.0	5.75	2.5 (1)
0405-009	TSS-01	CKD / PC	350 / 200	32.1 / 18.4	5.75	3.25 (1)

Notes % = Percent Kg/M3 = Kilograms per cubic meter CKD = Cement Kiln Dust PC = Type I Portland Cement

It was necessary to cut the samples from the 3 inch diameter by 6 inch high curing molds prior to pile slump testing. The monolith was dropped onto a hard surface from a height of approximately 6 inches. The height of the resulting pile was then measured to the nearest 0.25 inch.

(1) Penetrometer strengths were taken without the aid of an expanded area foot.

(2) Penetrometer strengths were taken using an expanded area foot.

TABLE # 4

OPTIMIZATION/CONFIRMATION MIXTURE DESIGNS - POCKET PENETROMETER RESULTS

			Reagent Addition Rate Penetrometer Testing			Volumetric Expansion				
KEMRON	UNTREATED	REAGENT	kg/m ³	Percent	Day 2 ⁽²⁾	Day 3 ⁽¹⁾	Day 7 ⁽¹⁾	Day 14 ⁽¹⁾	Day 14	Day 28
Mix No	MATERIAL ID	ID	Untreated	by Weight	(tsf)	(tsf)	(tsf)	(tsf)	%	%
0405-010	TSS-01	Type I Portland Cement	200	18.4	>4.5	NT	1.5	1.5	6.6	5.5
0405-011 0405-012	TSS-01 TSS-01	Type I Portland Cement Type I Portland Cement	250 300	23 27.6	>4.5 >4.5	2.0 3.5	3.25 4.0	3.5 4.5	4.9 5.5	NT 7.1
0405-013	TSS-02	Type I Portland Cement	200	13.0	>4.5	>4.5	>4.5	>4.5	9.4	NT
0405-014	TSS-02	Type I Portland Cement	250	16.2	>4.5	>4.5	>4.5	>4.5	9.4	NT
0405-015 0405-016	TSS-02 TSS-02	Type I Portland Cement Type I Portland Cement	300 100	19.4 6.5	>4.5 NT	>4.5 NT	>4.5 NT	>4.5 NT	11.8 NT	NT NT

<u>Notes</u>

% = Percent tsf = tons per square foot kg/m3 = Kilograms per cubic meter NT = Not tested

(1) Penetrometer strengths were taken without the aid of an expanded area foot.

(2) Penetrometer strengths were taken using an expanded area foot.

TABLE # 5

OPTIMIZATION / CONFIRMATION EVALUATION Summary of Unconfined Compressive Strength Testing - ASTM D1633

		UNCONFINED COMPRESSIVE STRENGTH						
FIELD SAMPLE ID	SAMPLE Time		Bulk Density (lbs/ft ³)	Dry Density (Ibs/ft ³)	UCS (lbs/in ²)			
	7	201.73	78.4	26.0	13.6			
0405-010	14	196.87	78.3	26.4	14.6			
0405-010	21	186.77	77.5	27.0	17.7			
	28	183.24	77.0	27.2	18.7			
0405-011	14	173.55	77.9	28.5	23.4			
0405-011	34	158.09	77.8	30.1	31.3			
	7	152.29	82.2	32.6	35.6			
0405-012	14	146.16	81.1	32.9	41.9			
0405-012	21	137.75	81.2	34.1	47.9			
	28	144.59	79.7	32.6	51.5			
0405-013	14	47.35	104.2	70.7	282.5			
0405-014	14	47.77	105.1	71.2	343.5			
0405-015	14	43.65	105.0	73.1	456.8			
0405-016	14	TBD	TBD	TBD	TBD			
0405-010	28	TBD	TBD	TBD	TBD			

Notes:

psi = pounds per square inch TBD = To be determined

TABLE # 6

OPTIMIZATION / CONFIRMATION EVALUATION Summary of Permeability Testing - ASTM D5084

		PERMEABILITY (k)					
FIELD SAMPLE ID	Cure Time (days)	Moisture Content (%)	Bulk Density (Ibs/ft ³)	Dry Density (Ibs/ft ³)	Permeability (cm/sec)		
0405-011	34	165.70	78.3	29.5	5.2E-06		
0405-012	28	150.90	79.5	31.7	5.6E-06		

Notes:

% = percent

lb/ft³ = pounds per cubic foot

cm/sec = centimeters per second

APPENDIX A

UNTREATED PHYSICAL PROPERTIES TESTING

MOISTURE CONTENT DETERMINATION

REPORT FORM ASTM D 2216

PROJECT:	Walton & Lonsbury Site
PROJECT No .:	SE0405
SAMPLE No.:	TSS-01 Untreated
TESTING DATE:	11/30/11
TESTED BY:	JGS
TRACKING CODE:	7769_MC

MOISTURE CONTENT (Dry & Wet Basis)						
1. MOISTURE TIN NO.	А		В		С	
2. WT MOISTURE TIN (tare weight)	67.01	g	63.88	g	69.19	g
3. WT WET SOIL + TARE	118.59	g	111.43	g	117.79	g
4. WT DRY SOIL + TARE	76.41	g	73.22	g	78.08	g
5. WT WATER, Ww	42.18	g	38.21	g	39.71	g
6. WT DRY SOIL, Ws	9.40	g	9.34	g	8.89	g
7. ASTM MOISTURE CONTENT	448.72	%	409.10	%	446.68	%
8. PERCENT SOLIDS	18.22	%	19.64	%	18.29	%
9. AVERAGE ASTM MOISTURE CONTENT	434.84	%				
10. AVERAGE PERCENT SOLIDS	18.72	%				

MOISTURE CONTENT DETERMINATION

REPORT FORM ASTM D 2216

PROJECT:	Walton & Lonsbury Site
PROJECT No .:	SE0405
SAMPLE No.:	TSS-02 Untreated
TESTING DATE:	12/01/11
TESTED BY:	JGS
TRACKING CODE:	7771_MC

MOISTURE CONTENT (Dry & Wet Basis)						
1. MOISTURE TIN NO.	А		В		С	
2. WT MOISTURE TIN (tare weight)	111.27	g	110.60	g	113.15	g
3. WT WET SOIL + TARE	158.65	g	161.92	g	165.95	g
4. WT DRY SOIL + TARE	139.74	g	141.27	g	145.35	g
5. WT WATER, Ww	18.91	g	20.65	g	20.60	g
6. WT DRY SOIL, Ws	28.47	g	30.67	g	32.20	g
7. ASTM MOISTURE CONTENT	66.42	%	67.33	%	63.98	%
8. PERCENT SOLIDS	60.09	%	59.76	%	60.98	%
9. AVERAGE ASTM MOISTURE CONTENT	65.91	%				
10. AVERAGE PERCENT SOLIDS	60.28	%				

UNIT WEIGHT DETERMINATION DATA SHEET ASTM D7263

PROJECT:	Walton & Lonsbury Site
PROJECT No.:	SE-0405
SAMPLE No.:	TSS-01 Untreated
TESTING DATE:	11/30/11
TESTED BY:	JGS
TRACKING CODE:	7769_UW

UNIT WEIGHT (DENSITY)						
1. SAMPLE NO.	А		В		С	
2. WT OF MOLD (tare weight)	18.86	g	18.86	g	18.86	g
3. WT OF MOLD + SOIL	243.33	g	242.97	g	242.24	g
4. WT OF WET SOIL, W	224.47	g	224.11	g	223.38	g
5. DIAMETER OF SPECIMEN, D	2.00	in	2.00	in	2.00	in
6. HEIGHT OF SPECIMEN, H	4.00	in	4.00	in	4.00	in
7. VOLUME OF SPECIMEN	12.57	in³	12.57	in³	12.57	in³
8. BULK UNIT WEIGHT	68.0	pcf	67.9	pcf	67.7	pcf
9. BULK SPECIFIC GRAVITY	1.1		1.1		1.1	
10. AVERAGE BULK UNIT WEIGHT	67.9	pcf				
11. AVERAGE BULK SPECIFIC GRAVITY	1.1					

UNIT WEIGHT DETERMINATION DATA SHEET ASTM D7263

PROJECT:	Walton & Lonsbury Site
PROJECT No.:	SE-0405
SAMPLE No.:	TSS-02 Untreated
TESTING DATE:	12/1/11
TESTED BY:	JGS
TRACKING CODE:	7771_UW

UNIT WEIGHT (DENSITY)						
1. SAMPLE NO.	А		В		С	
2. WT OF MOLD (tare weight)	18.86	g	18.86	g	18.86	g
3. WT OF MOLD + SOIL	333.95	g	344.26	g	331.61	g
4. WT OF WET SOIL, W	315.09	g	325.40	g	312.75	g
5. DIAMETER OF SPECIMEN, D	2.00	in	2.00	in	2.00	in
6. HEIGHT OF SPECIMEN, H	4.00	in	4.00	in	4.00	in
7. VOLUME OF SPECIMEN	12.57	in³	12.57	in³	12.57	in³
8. BULK UNIT WEIGHT	95.5	pcf	98.6	pcf	94.8	pcf
9. BULK SPECIFIC GRAVITY	1.5		1.6		1.5	
10. AVERAGE BULK UNIT WEIGHT	96.3	pcf				
11. AVERAGE BULK SPECIFIC GRAVITY	1.5					

SOLID SPECIFIC GRAVITY ASTM D 854 DATA SHEET

PROJECT:	Walton & Lonsbury Site
PROJECT No.:	SE0405
TESTING DATE:	12/2/2011
TESTED BY:	JGS/SEM
TRACKING CODE:	7769_GS
SAMPLE NO:	TSS-01 Untreated

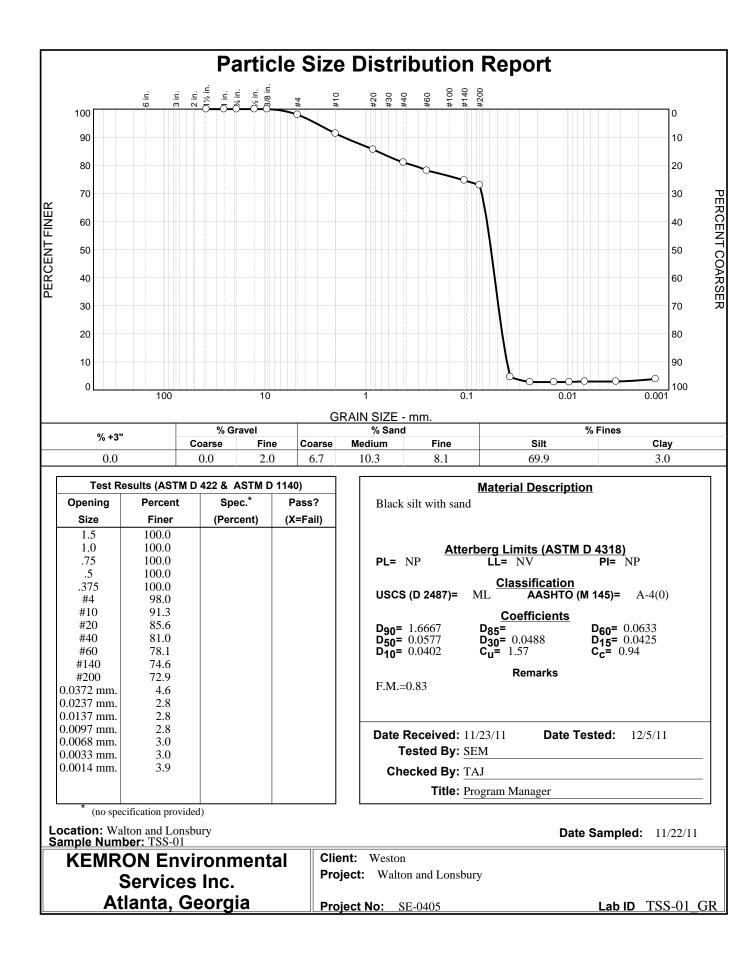
SOLID SPECIFIC GRAVITY		
1. SAMPLE NUMBER	TSS-01 Untreated	
2. FLASK NUMBER	6	
3. TEMPERATURE	24.0 °C	
4. WT. FLASK & WATER	161.50 g	
5. WT. WATER, FLASK & SOIL	183.87 g	
6. WT OF SOIL	22.37 g	
7. CALIBRATION WATER & FLASK	360.39 g	
8. DEAIRED SAMPLE	370.92 g	
9. SPECIFIC GRAVITY	1.89	
10. CORRECTION FACTOR K	0.9991	
11. Gs @ 20 °C	1.89	

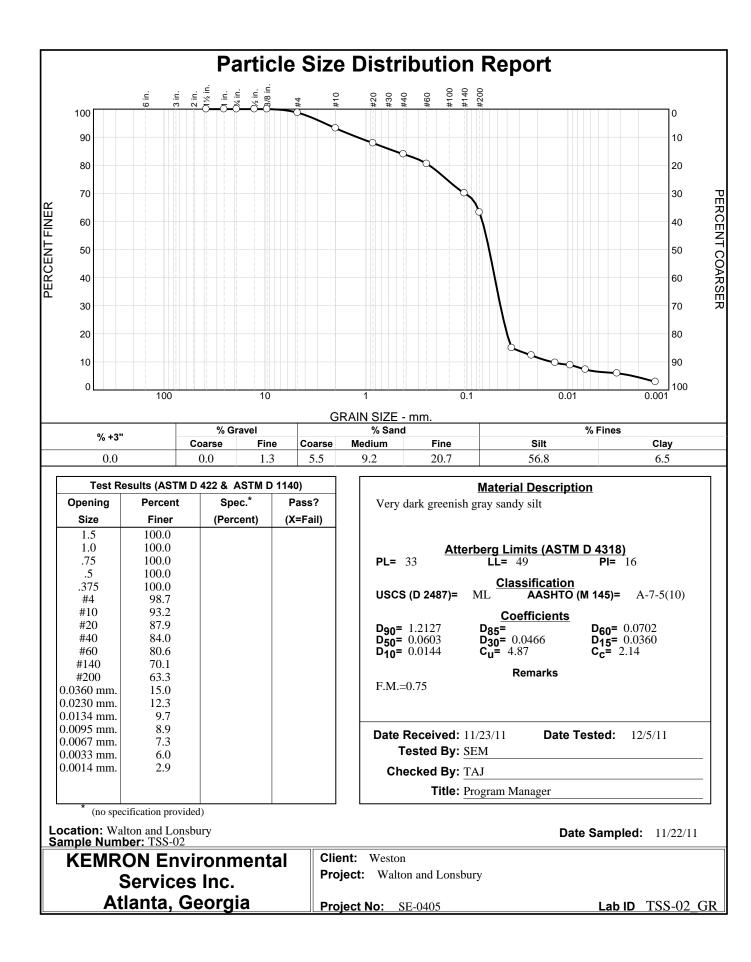
SOLID SPECIFIC GRAVITY ASTM D 854 DATA SHEET

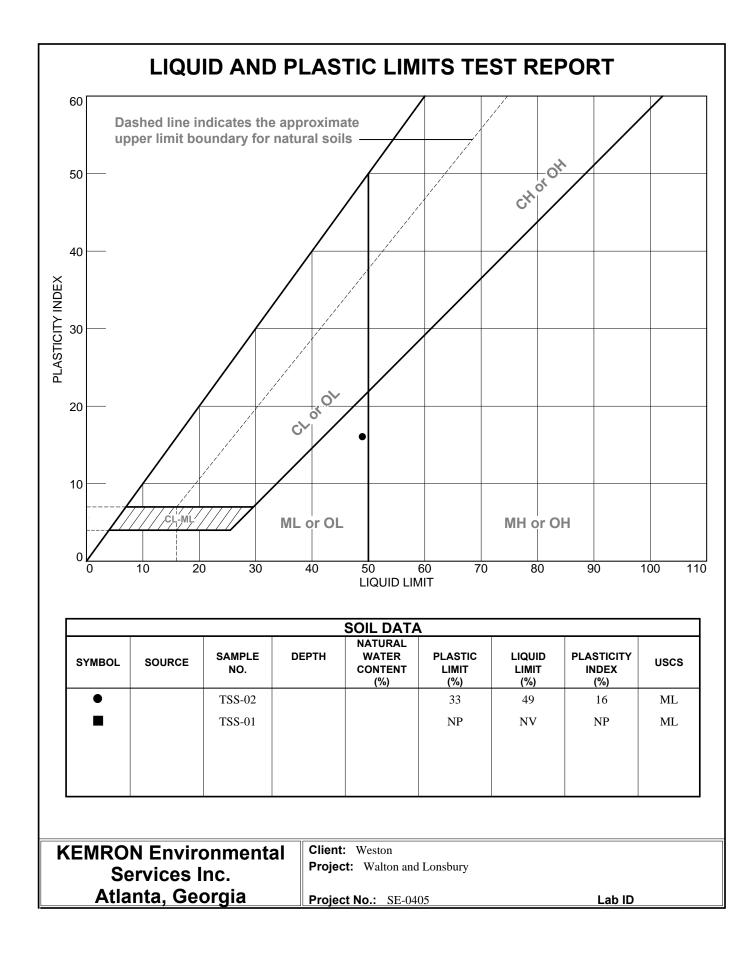
PROJECT:	Walton & Lonsbury Site
PROJECT No.:	SE0405
TESTING DATE:	12/2/2011
TESTED BY:	JGS/SEM
TRACKING CODE:	7771_GS
SAMPLE NO:	TSS-02 Untreated

SOLID SPECIFIC GRAVITY		
1. SAMPLE NUMBER	TSS-02 Untreated	
2. FLASK NUMBER	5	
3. TEMPERATURE	24.0 °C	
4. WT. FLASK & WATER	141.70 g	
5. WT. WATER, FLASK & SOIL	163.54 g	
6. WT OF SOIL	21.84 g	
7. CALIBRATION WATER & FLASK	359.77 g	
8. DEAIRED SAMPLE	373.07 g	
9. SPECIFIC GRAVITY	2.56	
10. CORRECTION FACTOR K	0.9991	
11. Gs @ 20 °C	2.56	

LOSS ON IGNITION (ORGANIC CONTENT) ASTM D2974


PROJECT:	Walton & Lonsbury
PROJECT No.:	SE0405
SAMPLE No.:	TSS-01 Untreated
TESTING DATE:	12/2/11
TESTED BY:	SEM/JGS
TRACKING CODE:	7769_LI


MOISTURE CONTENT / LOSS ON IGNITION						
1. MOISTURE TIN NO.	А		В		С	
2. WT MOISTURE TIN (tare weight)	56.996	g	59.214	g	53.553	g
3. WT WET SOIL + TARE	115.782	g	122.074	g	120.743	g
4. WT DRY SOIL + TARE	66.682	g	69.767	g	65.239	g
5. WT WATER, Ww	49.100	g	52.307	g	55.504	g
6. WT DRY SOIL, Ws	9.686	g	10.553	g	11.686	g
7. WT FINAL SOIL + TARE	62.876	g	65.617	g	60.978	g
8. WT FINAL SOIL, Wf	5.880	g	6.403	g	7.424	g
9. WT ORGANICS, Wo	3.806	g	4.151	g	4.261	g
10. MOISTURE CONTENT(ASTM)	506.94	%	495.65	%	474.98	%
11. LOSS ON IGNITION	39.30	%	39.33	%	36.47	%
12. AVERAGE MOISTURE CONTENT	492.52	%				
13. AVERAGE LOSS ON IGNITION	38.36	%				


LOSS ON IGNITION (ORGANIC CONTENT) ASTM D2974

PROJECT:	Walton & Lonsbury
PROJECT No.:	SE0405
SAMPLE No.:	TSS-02 Untreated
TESTING DATE:	12/2/11
TESTED BY:	SEM/JGS
TRACKING CODE:	7771_LI

MOISTURE CONTENT / LOSS ON IGNITION					
1. MOISTURE TIN NO.	А		В		
2. WT MOISTURE TIN (tare weight)	52.250	g	53.156	g	
3. WT WET SOIL + TARE	121.344	g	113.283	g	
4. WT DRY SOIL + TARE	93.267	g	88.406	g	
5. WT WATER, Ww	28.077	g	24.877	g	
6. WT DRY SOIL, Ws	41.017	g	35.250	g	
7. WT FINAL SOIL + TARE	92.323	g	87.536	g	
8. WT FINAL SOIL, Wf	40.073	g	34.380	g	
9. WT ORGANICS, Wo	0.944	g	0.870	g	
10. MOISTURE CONTENT(ASTM)	68.45	%	70.57	%	
11. LOSS ON IGNITION	2.30	%	2.47	%	
12. AVERAGE MOISTURE CONTENT	69.51	%			
13. AVERAGE LOSS ON IGNITION	2.38	%			

TOTAL POROSITY

Report Form By Calculation

PROJECT:
PROJECT No.:
SAMPLE No.:
TESTING DATE:
TESTED BY:
TRACKING CODE:

Walton & Lonsbury Site SE0405 TSS-1 Untreated 12/2/2011 JGS 7769_TP

Total porosity and Pore Volume Calculation				
SAMPLE No. TS	SS-01 Untreated			
1. Bulk Density	67.9 lbs/ft ³			
2. Moisture Content	434.8 %			
3. Specific Gravity	1.9 -			
4. Dry Density	12.7 lbs/ft ³			
6. Weight of Solids ₍₁₎	0.2035 g			
7. Volume of Solids ₍₁₎	0.1076 cm ³			
8. Volume of Voids ₍₁₎	0.8924 cm ³			
9. Total Porosity (<i>n</i>)	89.2 %			
10. Reactor Sample Volume	cc			
11. Pore Volume	0.0 cc			

1 Calculated for 1 cubic centimeter

TOTAL POROSITY

Report Form By Calculation

PROJECT:
PROJECT No.:
SAMPLE No.:
TESTING DATE:
TESTED BY:
TRACKING CODE:

Walton & Lonsbury Site SE0405 TSS-2 Untreated 12/2/2011 JGS 7771_TP

Total porosity and Pore Volum	ne Calculation	
SAMPLE No. T	SS-02 Untreated	
1. Bulk Density	96.3 lbs/ft ³	
2. Moisture Content	65.9 %	
3. Specific Gravity	2.6 -	
4. Dry Density	58.0 lbs/ft ³	
6. Weight of Solids ₍₁₎	0.9302 g	
7. Volume of Solids ₍₁₎	0.3634 cm ³	
8. Volume of Voids ₍₁₎	0.6366 cm ³	
9. Total Porosity (<i>n</i>)	63.7 %	
10. Reactor Sample Volume cc		
11. Pore Volume 0.0 d		

1 Calculated for 1 cubic centimeter

APPENDIX B UNTREATED ANALYTICAL REPORTS

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

YOUR LAB OF CHOICE

Tax I.D. 62-0814289

Est. 1970

Tommy Jordan Kemron Environmental 1359-A Ellsworth Industrial Blvd. Atlanta, GA 30318

Report Summary

Wednesday December 07, 2011

Report Number: L549420 Samples Received: 12/02/11 Client Project: SE0405

Description: Weston, Walton & Lonsbury Site

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Mark W. Beasley , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences. Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

VOUR LAB OF CHOICE						Mt. Jul: (615) 75 1-800-76 Fax (615	57-5859 5) 758-5859 62-081428	Э
Tommy Jordan Kemron Environmental 1359-A Ellsworth Industrial Blvd. Atlanta, GA 30318	REPORT	OF ANALY	SIS	Dece	ember 07,201	1		
Date Received : December 02, 20 Description : Weston, Walton & Sample ID : TSS-01 UNTREATED Collected By : Jill Suhm Collection Date : 11/30/11 14:10	Lonsbury Sit	e		Site	Sample # : e ID : ject # : S	L549420 E0405	-01	
Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	8.4	0.71	12.	mg/kg	J		12/07/11	
ORP	160			mV		2580	12/05/11	. 1
Н	5.9			su		9045D	12/05/11	. 1
Total Solids	17.			olo		2540G	12/07/11	. 1
Chromium Lead	3400 38.	0.085 0.090	3.0 1.5	mg/kg mg/kg		6010B 6010B	12/06/11 12/06/11	

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 12/07/11 15:44 Printed: 12/07/11 16:04 L549420-01 (PH) - 5.88@20.9c

Page 2 of 5

E SICILE NICIEIS						Mt. Juli (615) 75 1-800-76 Fax (615		
YOUR LAB OF CHOICE						Est. 197	70	
Tommy Jordan Kemron Environmental 1359-A Ellsworth Industrial Blvd. Atlanta, GA 30318	REPORT	OF ANALY	SIS	Dece	ember 07,201	1		
Date Received : December 02, 20	11			ESC	Sample # :	L549420	-02	
Description : Weston, Walton &		e		site	ID :			
Sample ID : TSS-02 UNTREATED						E0405		
Collected By : Jill Suhm Collection Date : 12/01/11 13:25				110		10105		
Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Chromium, Hexavalent	1.9	0.71	3.5	mg/kg	J	3060A/71	12/07/11	1
ORP	130			mV		2580	12/05/11	1
PH	5.8			su		9045D	12/05/11	1
Total Solids	57.			90		2540G	12/07/11	1
Chromium Lead	30. 11.	0.085 0.090	0.88 0.44	mg/kg mg/kg		6010B 6010B	12/06/11 12/06/11	

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 12/07/11 15:44 Printed: 12/07/11 16:04 L549420-02 (PH) - 5.77@21.0c

Page 3 of 5

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L549420-01	WG568504	SAMP	Chromium,Hexavalent	R1957474	J
L549420-02	WG568504	SAMP	Chromium,Hexavalent	R1957474	J

Page 4 of 5

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
	Qualifier Report Information
	and any least life and an end fourth he the DDD Contrast Tabaset and December

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods,it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions Accuracy - The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.

- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 5 of 5

YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Tommy Jordan Kemron Environmental 1359-A Ellsworth Industrial Blvd. Atlanta, GA 30318

Report Summary

Thursday January 26, 2012

Report Number: L556880 Samples Received: 01/21/12 Client Project: SH0405

Description: Walton Lonsbury

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Mul Bearly

Entire Report Reviewed By:

Mark W. Beasley , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

XESC						Mt. (61 1-8	065 Lebanon Juliet, T 15) 758-585 300-767-585 4 (615) 758	N 37122 8 9	
L·A·B S·C·I·E·N·C·E·S						Тах	x I.D. 62-0	814289	
YOUR LAB OF CHOICE						Est	. 1970		
Tommy Jordan Kemron Environmental 1359-A Ellsworth Industrial Blvd. Atlanta, GA 30318	REP	ORT OF AN	NALYSIS		January 26,	2012			
Date Received : January 21, 20 Description : Walton Lonsbury	12				ESC Sample # Site ID :	: L55	6880-01		
Sample ID : TSS-01 UNTREATED					Project # :	SH0405			
Collected By : Jill Suhm Collection Date : 01/20/12 14:52					110,000 "	5110 100			
Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.	
Chromium, Hexavalent	U	3.9	10.	ug/l		7196A	01/24/12	1	
SPLP Extraction	-					1312	01/23/12	1	
Chromium Lead	32. 4.8	4.0 1.7	10. 5.0	ug/l ug/l	J	6010B 6010B	01/24/12 01/25/12		
Water Extraction	-					1312	01/24/12	1	

U = ND (Not Detected)
RDL = Reported Detection Limit = LOQ = PQL = EQL
MDL = Minimum Detection Limit = LOD = SQL(TRRP)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 01/25/12 16:51 Revised: 01/26/12 10:07

Page 2 of 4

Attachment A List of Analytes with QC Qualifiers

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L556880-01	WG575295	SAMP	Lead	R2011593	J

Page 3 of 4

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
	Qualifier Report Information
	and any least life and an end fourth he the DDD Contrast Tabaset and December

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods,it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions Accuracy - The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.

- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 4 of 4

Summary of Remarks For Samples Printed $01/26/12 \text{ at } 10\!:\!07\!:\!10$

TSR Signing Reports: 134 R5 - Desired TAT

Sample: L556880-01 Account: KEMENVAGA Received: 01/21/12 09:00 Due Date: 01/27/12 00:00 RPT Date: 01/25/12 16:51 Rotate for SPLP CRICP, CR6, PBICP

APPENDIX C MIXTURE DEVELOPMENT SHEETS

PROJECT:	Walton and Lonsbury Site		MIX No.			
PROJECT No.:	SE-0	0405		0405	5-001	
MIXING DATE:	22-D	ec-11		MIXED BY:	SEM	
UNTREATED MATERIAL	ГҮРЕ			TS	SS-1	
WEIGHT OF UNTREATED	MATERIAL			750	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	N RATE	WE	IGHT	
Portland Cement #842		13.80	%	103.5	g	
		(%	0.0	g	
		0	%	0.0	g	
		0	%	0.0	g	
		(%	0.0	g	
Water Addition			%	0.0	g	
OBSERVATIONS / NOTES Dry Reagent Addition						

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES					
MONITORING	MONITORING TIME PERIOD							
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min			
MAXIMUM PID (ppm)								
MAXIMUM TEMP (ØC)								
OTHER:								
	PENETR	OMETER A	NALYSES					
CURE TIME (Days)	7 (with foot)	7 (no foot)						
PENETROMETER (TSF)	>4.5	3.25						
	VOLUM	ETRIC EXP	ANSION					
INITIAL HEIGHT (in):		FINAL HEIGH	HT (in):					
VOLUMETRIC EXPANSION (%):								
	PILE SLUMP TESTING							
INITIAL HEIGHT (in):	6	FINAL HEIGHT (in): 5.25 - 5.75						

PROJECT:	Walton and Lonsbury Site		MIX No.			
PROJECT No.:	SE-0	0405	0405-002			
MIXING DATE:	22-D	ec-11	MIXED BY: SEM			
UNTREATED MATERIAL T	ГҮРЕ		TSS-1			
WEIGHT OF UNTREATED	MATERIAL		750 g			
REAGENT TYPE AND LOT N	NUMBER	ADDITION RATE	WEIGHT			
Portland Cement #842		22.90 %	171.8 g			
		%	0.0 g			
		%	0.0 g			
		%	0.0 g			
		%	0.0 g			
Water Addition		%	0.0 g			
OBSERVATIONS / NOTES Dry Reagent Addition						

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

MONITORING ACTIVITIES								
MONITORING		TIME PERIOD						
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min			
MAXIMUM PID (ppm)								
MAXIMUM TEMP (ØC)								
OTHER:								
	PENETR	OMETER A	NALYSES					
CURE TIME (Days)	7 (with foot)	7 (no foot)						
PENETROMETER (TSF)	>4.5	2.75						
	VOLUM	ETRIC EXP	ANSION					
INITIAL HEIGHT (in):		FINAL HEIGH	HT (in):					
VOLUMETRIC EXPANSION (%):								
PILE SLUMP TESTING								
INITIAL HEIGHT (in):	6	FINAL HEIGH	HT (in):	5.	75			

PROJECT:	Walton and Lonsbury Site			MIX No.		
PROJECT No.:	SE-(0405		0405	5-003	
MIXING DATE:	22-D	ec-11		MIXED BY: SEM		
UNTREATED MATERIAL 7	ГҮРЕ			TS	S-1	
WEIGHT OF UNTREATED	MATERIAL			750	g	
REAGENT TYPE AND LOT N	NUMBER	ADDITIO	N RATE	WEI	IGHT	
Portland Cement #842		32.10 %	%	240.8 g		
		Q	%	0.0	g	
		0	%	0.0	g	
		ġ	%	0.0	g	
		0	%	0.0	g	
Water Addition	Water Addition		%	0.0	g	
OBSERVATIONS / NOTES Dry Reagent Addition						

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES				
MONITORING	TIME PERIOD						
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min		
MAXIMUM PID (ppm)							
MAXIMUM TEMP (ØC)							
OTHER:							
	PENETR	OMETER AN	NALYSES				
CURE TIME (Days)	7 (with foot)	7 (no foot)					
PENETROMETER (TSF)	>4.5	4.25					
	VOLUM	ETRIC EXP	ANSION				
INITIAL HEIGHT (in):		FINAL HEIGH	HT (in):				
VOLUMETRIC EXPANSION	N (%):						
	PILE	SLUMP TES	TING				
INITIAL HEIGHT (in):	6	FINAL HEIGH	HT (in):	5.75	- 6.25		

PROJECT:	Walton and Lonsbury Site		MIX No.		
PROJECT No.:	SE-0	0405	040	05-004	
MIXING DATE:	22-D	ec-11	MIXED BY:	SEM	
UNTREATED MATERIAL TYPE			Т	SS-1	
WEIGHT OF UNTREATED MATERIAL			750	g	
REAGENT TYPE AND LOT N	UMBER	ADDITION RATE	WE	EIGHT	
Seattle New Cem #920		13.80 %	103.5	g	
		%	0.0) g	
		%	0.0) g	
		%	0.0) g	
		%	0.0	g	
Water Addition		%	0.0	g	
		Addition			

OBSERVATIONS / NOTES Dry Reagent Addition

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES				
MONITORING		TIME PERIOD					
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min		
MAXIMUM PID (ppm)							
MAXIMUM TEMP (ØC)							
OTHER:							
	PENETR	OMETER A	NALYSES				
CURE TIME (Days)	7 (with foot)						
PENETROMETER (TSF)	0.0						
	VOLUM	IETRIC EXP	ANSION				
INITIAL HEIGHT (in):		FINAL HEIGI	HT (in):				
VOLUMETRIC EXPANSIO	N (%):						
	PILE	SLUMP TES	STING				
INITIAL HEIGHT (in):	6	FINAL HEIGI	HT (in):	2.	75		

PROJECT:	Walton and Lonsbury Site			MIX No.	
PROJECT No.:	SE-0405			0405-005	
MIXING DATE:	22-D	ec-11		MIXED BY: SEM	
UNTREATED MATERIAL			TS	SS-1	
WEIGHT OF UNTREATED			750	g	
REAGENT TYPE AND LOT	NUMBER	ADDITIO	N RATE	WE	IGHT
Seattle New Cem #920		22.90	%	171.8	ър
			%	0.0	a
			%	0.0	сŋ
			%	0.0	g
			%	0.0	g
Water Addition			%	0.0	g
OBSERVATIONS / NOTES	Dry Reagent	t Addition			

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES			
MONITORING	TIME PERIOD					
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min	
MAXIMUM PID (ppm)						
MAXIMUM TEMP (ØC)						
OTHER:						
	PENETR	OMETER AN	NALYSES			
CURE TIME (Days)	7 (with foot)					
PENETROMETER (TSF)	0.0					
	VOLUM	ETRIC EXP	ANSION			
INITIAL HEIGHT (in): FINAL HEIGHT (in):						
VOLUMETRIC EXPANSION (%):						
	PILE	SLUMP TES	STING			
INITIAL HEIGHT (in):	6	6 FINAL HEIGHT (in): 3.0				

PROJECT:	Walton and Lonsbury Site SE-0405 22-Dec-11		MIX No.
PROJECT No.:			0405-006
MIXING DATE:			MIXED BY: SEM
UNTREATED MATERIAI	NTREATED MATERIAL TYPE		TSS-1
WEIGHT OF UNTREATED MATERIAL			750 g
REAGENT TYPE AND LOT NUMBER		ADDITION RATE	WEIGHT
Seattle New Cem #920		32.10 %	240.8 g
		%	0.0 g
		%	0.0 g
		%	0.0 g
		%	0.0 g
Water Addition		%	0.0 g

OBSERVATIONS / NOTES Dry Reagent Addition

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES		
MONITORING			TIME PERIOI)	
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min
MAXIMUM PID (ppm)					
MAXIMUM TEMP (ØC)					
	••••••				
OTHER:					
	PENETR	OMETER AN	NALYSES		
CURE TIME (Days)	7 (with foot)				
PENETROMETER (TSF)	0.0				
	VOLUM	ETRIC EXP	ANSION		
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSIO	N (%):	-			
	PILE	SLUMP TES	TING		
INITIAL HEIGHT (in):	6	FINAL HEIGH	HT (in):	3.	.0

PROJECT:	Walton and Lonsbury Site SE-0405		MIX No.	
PROJECT No.:			0405-007	
MIXING DATE:	22-De	ec-11	MIXED BY:	SEM
UNTREATED MATERIAL TYPE			T	SS-1
WEIGHT OF UNTREATED		750	g	
REAGENT TYPE AND LOT NUMBER		ADDITION RATE	WE	EIGHT
Portland Cement # 842		13.80 %	103.5	g
Cement Kiln Dust # 841		32.10 %	240.8	g
		%	0.0	g
		%	0.0	g
		%	0.0	g
Water Addition		%	0.0	g

OBSERVATIONS / NOTES Dry Reagent Addition

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES		
MONITORING			TIME PERIOD)	
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min
MAXIMUM PID (ppm)					
MAXIMUM TEMP (ØC)					
OTHER:					
	PENETR	OMETER A	NALYSES		
CURE TIME (Days)	7 (with foot)	7 (no foot)			
PENETROMETER (TSF)	>4.5	1.25			
	VOLUM	ETRIC EXP	ANSION		
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSIO	N (%):				
	PILE	SLUMP TES	STING		
INITIAL HEIGHT (in):	6	FINAL HEIGH	HT (in):	5.	75

PROJECT:	Walton and L	onsbury Site	MIX No.		
PROJECT No.:	SE-0)405	0405-008		
MIXING DATE:	22-De	ec-11	MIXED BY:	SEM	
UNTREATED MATERIAL TYPE			TS	S-1	
WEIGHT OF UNTREATED MATERIAL			750	g	
REAGENT TYPE AND LOT NUMBER		ADDITION RATE	WEI	IGHT	
Portland Cement # 842		16.00 %	120.0	g	
Cement Kiln Dust # 841		32.10 %	240.8	g	
		%	0.0	g	
		%	0.0	g	
		%	0.0	g	
Water Addition		%	0.0	g	
Water Addition		%			

OBSERVATIONS / NOTES Dry Reagent Addition

Pile Height Testing @ 24 hrs. Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES				
MONITORING		TIME PERIOD					
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min		
MAXIMUM PID (ppm)							
MAXIMUM TEMP (ØC)				•			
OTHER:							
	PENETR	OMETER A	NALYSES				
CURE TIME (Days)	7 (with foot)	7 (no foot)					
PENETROMETER (TSF)	>4.5	2.5					
	VOLUM	ETRIC EXP	ANSION				
INITIAL HEIGHT (in): FINAL HEIGHT (in):							
VOLUMETRIC EXPANSIO	N (%):						
	PILE	SLUMP TES	STING				
INITIAL HEIGHT (in):	6	FINAL HEIGH	HT (in):	5.	75		

PROJECT:	Walton and I	Lonsbury Site	MIX No.
PROJECT No.:	SE-0405		0405-009
MIXING DATE:	22-Dec-11		MIXED BY: SEM
UNTREATED MATERIAL TYPE			TSS-1
WEIGHT OF UNTREATED MATERIAL			750 g
REAGENT TYPE AND LOT	NUMBER	ADDITION RATE	WEIGHT
Portland Cement # 842		18.40 %	138.0 g
Cement Kiln Dust # 841		32.10 %	240.8 g
		%	0.0 g
		%	0.0 g
		%	0.0 g
Water Addition		%	0.0 g
OBSERVATIONS / NOTES	Dry Reagent	t Addition	
Pile Height Testing @ 24 hrs.			

Pocket Penetrometer: Day 7

	MONIT	ORING ACT	IVITIES		
MONITORING					
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min
MAXIMUM PID (ppm)					
MAXIMUM TEMP (ØC)					
OTHER:					
	PENETR	OMETER A	NALYSES		
CURE TIME (Days)	7 (with foot)	7 (no foot)			
PENETROMETER (TSF)	>4.5	3.25			
	VOLUM	ETRIC EXP	ANSION		
INITIAL HEIGHT (in): FINAL HEIGHT (in):					
VOLUMETRIC EXPANSIO	N (%):				
	PILE	SLUMP TES	STING		
INITIAL HEIGHT (in):	6	FINAL HEIGH	HT (in):	5.	75

PROJECT:	Walton and I	Lonsbury Site		MIX No.	
PROJECT No.:	SE-	0405	-	0405	5-010
MIXING DATE:	19-Jan-12			MIXED BY:	JGS
UNTREATED MATERIAI	L TYPE			TS	S-1
WEIGHT OF UNTREATE	D MATERIAL			3,500	g
REAGENT TYPE AND LOT	Г NUMBER	ADDITIO	ON RATE	WEI	GHT
		10.40	0/	(11.0	
Portland Cement #842		18.40	%	644.0	-
			%	0.0	
			%	0.0	-
			%	0.0	
Water Addition			%	0.0	-
OBSERVATIONS / NOTES		Addition			0
Extra 2x4 inch mold 1-D Consolidation (1 3x6 inch SPLP Anslysis PreMethod 1315 (2 2x4 inch n	nolds)	n height) at 28 da ORING ACT			
MONITORING			TIME PERIOD		
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min
MAXIMUM PID (ppm)					
MAXIMUM TEMP (ØC)					
OTHER:					
	PENETR	OMETER A	NALYSES		
CURE TIME (Days)	2 (with foot)	7 (no foot)	14 (no foot)		
PENETROMETER (TSF)	>4.5	1.5	1.5		
				70	
VOLUMETRIC EXPANSION - 14 DAYS					<u></u>
INITIAL HEIGHT (in): VOLUMETRIC EXPANSIO	1.82 FINAL HEIGHT (in): 1.94			94	
	IN (70 <i>)</i> .	6.6			
	VOLUMETRI	IC EXPANSI	ON - 28 DAY	S	
INITIAL HEIGHT (in):	1.82	FINAL HEIGH	HT (in):	1.	92
VOLUMETRIC EXPANSIO	N (%):	5.5			

PROJECT:	Walton and I	Lonsbury Site		MIX No.	
PROJECT No.:	SE-0405		0405	5-011	
MIXING DATE:	19-Jan-12		MIXED BY:	JGS	
UNTREATED MATERIAL TYPE			TS	S-1	
WEIGHT OF UNTREATE	D MATERIAL			1,250	g
REAGENT TYPE AND LOT	Г NUMBER	ADDITIC	ON RATE	WEI	GHT
Portland Cement #842		23.00	%	287.5	g
			%	0.0	g
			%	0.0	g
			%	0.0	
			%	0.0	g
Water Addition			%	0.0	g
	MONIT	ORING ACT			
MONITORING ACTIVITIES	Initial	Initial Mix	TIME PERIOD 5 min	10 min	30 Min
MAXIMUM PID (ppm)					
MAXIMUM TEMP (ØC)					
OTHER:					
	PENETR	OMETER A	NALYSES		
CURE TIME (Days)	2 (with foot)	3 (no foot)	7 (no foot)	14 (no foot)	
PENETROMETER (TSF)	>4.5	2.0	3.25	3.5	
	VOLUMETRI	IC EXPANSI	ON - 14 DAY	ζS	
INITIAL HEIGHT (in):	1.82	FINAL HEIGH	HT (in):	1.	91

4.9

VOLUMETRIC EXPANSION (%):

PROJECT:	Walton and Lonsbury Site			MIX No.	
PROJECT No.:	SE-0405		<u>.</u>	0405	5-012
MIXING DATE:	19-Jan-12			MIXED BY:	JGS
UNTREATED MATERIAL TYPE				TS	S-1
WEIGHT OF UNTREATED MATERIAL				2,000	g
REAGENT TYPE AND LOT	NUMBER	ADDITIO	ON RATE	WE	GHT
Portland Comont #942		27.60	%	552.0	<i>a</i>
Portland Cement #842		27.00	%	0.0	-
			%	0.0	
			%	0.0	-
			%	0.0	
Water Addition			%	0.0	-
OBSERVATIONS / NOTES 2,7,14 day Pocket Penetromete 7, 14, 21, 28 day UCS (ASTN VE at 14 and 28 Days 28 day permeability	er with enlarged for				
Extra 2x4 inch mold 1-D Consolidation (1 3x6 inch SPLP Anslysis PreMethod 1315 (2 2x4 inch m	nolds)	n height) at 28 da ORING ACT			
MONITORING			TIME PERIOD		
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min
MAXIMUM PID (ppm)					
MAXIMUM TEMP (ØC)					
OTHER:					
	PENETR	OMETER A	NALYSES		
CURE TIME (Days)	2 (with foot)	3 (no foot)	7 (no foot)	14 (no foot)	
PENETROMETER (TSF)	>4.5	3.5	4.0	4.5	
	VOLUMETRI	IC EXPANSI	ON - 14 DAY	Ś	
INITIAL HEIGHT (in):	1.82	FINAL HEIGH	HT (in):	1.	92
VOLUMETRIC EXPANSIO	N (%):	5.5	× /		
				ZS S	
INITIAL HEIGHT (in):	VOLUMETRI 1.82	FINAL HEIGH			95
VOLUMETRIC EXPANSIO		7.1		1.	

PROJECT:	Walton and I	Lonsbury Site	Walton and Lonsbury Site		MIX No.	
PROJECT No.:	SE-0405		0405	5-013		
MIXING DATE:	19-Jan-12		MIXED BY:	JGS		
UNTREATED MATERIA	UNTREATED MATERIAL TYPE			TS	S-2	
WEIGHT OF UNTREATE	D MATERIAL	-		1,250	g	
REAGENT TYPE AND LOT NUMBER ADDITION RATE		ON RATE	WEI	GHT		
Portland Cement #842		13.00	%	162.5	-	
			%	0.0		
			%	0.0	-	
			%	0.0		
			%	0.0		
Water Addition			%	0.0	g	
Sample drier and not as worka		rss-01 Oring Act	WITTES			
MONITORING		OKINGACI	TIME PERIOD	1		
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min	
MAXIMUM PID (ppm)						
MAXIMUM TEMP (ØC)						
OTHER:						
	DENIETD	OMETER AN	IAT VOES			
CUDE TIME (Dava)	2 (with foot)	3 (no foot)		14 (no foot)		
CURE TIME (Days) PENETROMETER (TSF)	>4.5	>4.5	7 (no foot) >4.5	>4.5		
$\mathbf{I} \mathbf{L} \mathbf{V} \mathbf{L} \mathbf{I} \mathbf{K} \mathbf{U} \mathbf{V} \mathbf{I} \mathbf{L} \mathbf{I} \mathbf{L} \mathbf{K} (\mathbf{I} \mathbf{S} \mathbf{\Gamma})$	<i>≥</i> 4.J	<i>∕</i> +.J	∕ + .J	/+.J		
	VOLUMETR	IC EXPANSI	ON - 14 DAY	ΎS		
INITIAL HEIGHT (in):	1.27	FINAL HEIGH	IT (in):	1.	39	
VOLUMETRIC EXPANSIO	ON (%):	9.4				

PROJECT:	Walton and Lonsbury Site			MIX No.	
PROJECT No.:	SE-	0405		0405	5-014
MIXING DATE:	19-Jan-12			MIXED BY:	JGS
UNTREATED MATERIA	L TYPE			TS	S-2
WEIGHT OF UNTREATED MATERIAL				1,250	g
REAGENT TYPE AND LOT NUMBER ADDITION RATE		ON RATE	WEI	GHT	
		16.00	0/	202.5	
Portland Cement #842		16.20	%	202.5	-
			%	0.0	
			%		-
			% %	0.0	
Water Addition			%	0.0	
Sample drier and not as worka		rss-01 ORING ACT	IVITIES		
MONITORING			TIME PERIOD		
ACTIVITIES	Initial	Initial Mix	5 min	10 min	
MAXIMUM PID (ppm)				10 11111	30 Min
MAXIMUM TEMP (ØC)					30 Min
WAAIWUWI TENIP (ØC)					30 Min
WAANVIUWI LEWIF (ØC)					30 Min
OTHER:					30 Min
	PENETR	OMETER AN	VALYSES		30 Min
	PENETRO 2 (with foot)	OMETER AN 3 (no foot)	NALYSES 7 (no foot)	14 (no foot)	30 Min
OTHER:	=				30 Min
OTHER: CURE TIME (Days)	2 (with foot) >4.5	3 (no foot) >4.5	7 (no foot) >4.5	14 (no foot) >4.5	30 Min
OTHER: CURE TIME (Days)	2 (with foot)	3 (no foot) >4.5	7 (no foot) >4.5 ON - 14 DAY	14 (no foot) >4.5 7 S	30 Min

PROJECT:	Walton and I	Lonsbury Site	Walton and Lonsbury Site		MIX No.	
PROJECT No.:	SE-0405		0405	5-015		
MIXING DATE:	19-Jan-12		MIXED BY:	JGS		
UNTREATED MATERIA	UNTREATED MATERIAL TYPE			TS	S-2	
WEIGHT OF UNTREATED MATERIAL				1,250	g	
REAGENT TYPE AND LOT NUMBER ADDITION RATE		ON RATE	WEI	GHT		
Portland Cement #842		19.40	%	242.5	-	
			%	0.0		
			%	0.0	-	
			%	0.0		
			%	0.0		
Water Addition			%	0.0	g	
Sample drier and not as worka		rss-01 Oring Act	WITTES			
MONITORING		OKINGACI	TIME PERIOD	1		
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min	
MAXIMUM PID (ppm)						
MAXIMUM TEMP (ØC)						
OTHER:						
		OMETER AN				
CURE TIME (Days)	2 (with foot)	3 (no foot)	7 (no foot)	14 (no foot)		
PENETROMETER (TSF)	>4.5	>4.5	>4.5	>4.5		
	VOLUMETR	IC EXPANSI	ON - 14 DAY	ζS		
INITIAL HEIGHT (in):	1.27	FINAL HEIGH			42	
VOLUMETRIC EXPANSIO	ON (%):	. 11.8				

PROJECT:	Walton and	Lonsbury Site		MIX No.	
PROJECT No.:	SE-0405		040	5-016	
MIXING DATE:	23-Feb-12		MIXED BY:	JGS	
UNTREATED MATERIAL TYPE			TS	SS-2	
WEIGHT OF UNTREAT	ED MATERIAL			1,500	g
REAGENT TYPE AND LC	T NUMBER	ADDITIO	ON RATE	WE	IGHT
Portland Cement #842		6.50	%	97.5	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
			%	0.0	g
Water Addition			%	0.0	g
	MONI	FORING ACT	IVITIES		
MONITORING			TIME PERIO	D	
ACTIVITIES	Initial	Initial Mix	5 min	10 min	30 Min
MAXIMUM PID (ppm)					
MAXIMUM TEMP (ØC)					
OTHER:					
	PENETH	ROMETER AN	NALYSES		
CURE TIME (Days)					
PENETROMETER (TSF)					
	VOLUMETE	RIC EXPANSI	ON - 14 DA	VS	
INITIAL HEIGHT (in):		FINAL HEIGH			
VOLUMETRIC EXPANSIO	ON (%):	•			

APPENDIX D UNCONFINED COMPRESSIVE STRENGTH DATA SHEETS

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-010 (7 day)
TESTING DATE:	26-Jan-12
TESTED BY:	JGS

LOADING RATE: 0.04in./min. TRACKING CODE: 7854_US

MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0405-010 (7	day)		
2. WT MOISTURE TIN (tare weight)	167.24	g		
3. WT WET SOIL + TARE	256.07	g		
4. WT DRY SOIL + TARE	196.68	g		
5. WT WATER, Ww	59.39	g		
6. WT DRY SOIL, Ws	29.44	g		
7. MOISTURE CONTENT, W	201.73	%		

SOIL SPECIMEN DIMENSIONS					
	DIAMETER	LENGTH			
No. 1	1.98 in.	3.95 in.			
No. 2	1.97 in.	3.96 in.			
No. 3	1.97 in.	3.95 in.			
Average	1.97 in.	3.95 in.			

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	248.89	g		
Initial Area, Ao	3.06	in²		
Initial Volume, Vo	12.09	in³		
Initial Bulk Unit Weight,	78.4	lb/ft ³		
Initial Dry Unit Weight	26.0	lb/ft ³		
Maximum Load (Peak)	43.00	lbs.		
UCS	13.6	lb/in ²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.058	0.0000	0.0
43	0.125	0.125	3.158	0.0316	13.6

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-010 (14 day)
TESTING DATE:	2-Feb-12
TESTED BY:	JGS

 LOADING RATE:
 0.04in./min.

 TRACKING CODE:
 7861_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0405-010 (14 day	y)			
2. WT MOISTURE TIN (tare weight)	113.47	g			
3. WT WET SOIL + TARE	173.20	g			
4. WT DRY SOIL + TARE	133.59	g			
5. WT WATER, Ww	39.61	g			
6. WT DRY SOIL, Ws	20.12	g			
7. MOISTURE CONTENT, W	196.87	%			

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.01 in	۱.	3.88 in.		
No. 2	1.99 in	۱.	3.87 in.		
No. 3	1.98 in	۱.	3.87 in.		
Average	1.99 ir	۱.	3.87 in.		

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	248.45	g		
Initial Area, Ao	3.12	in²		
Initial Volume, Vo	12.09	in³		
Initial Bulk Unit Weight,	78.3	lb/ft ³		
Initial Dry Unit Weight	26.4	lb/ft ³		
Maximum Load (Peak)	47.00	lbs.		
UCS	14.6	lb/in ²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
	0 0.000	0.000	3.121	0.0000	0.0
4	7 0.125	0.125	3.225	0.0323	14.6

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-010 (21 day)
TESTING DATE:	9-Feb-12
TESTED BY:	JGS

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

 TRACKING CODE:
 0.04in./min.

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.01	in.	3.98	in.	
No. 2	1.98	in.	3.97	in.	
No. 3	2.00	in.	3.96	in.	
Average	2.00	in.	3.97	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	252.86	g			
Initial Area, Ao	3.13	in²			
Initial Volume, Vo	12.43	in³			
Initial Bulk Unit Weight,	77.5	lb/ft ³			
Initial Dry Unit Weight	27.0	lb/ft ³			
Maximum Load (Peak)	57.00	lbs.			
UCS	17.7	lb/in ²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.131	0.0000	0.0
57	0.110	0.110	3.220	0.0277	17.7

0405-010 (21 day)

115.31

196.61

143.66

52.95

28.35 186.77

g

g

g g g

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-0010 (28-day)
TESTING DATE:	16-Feb-12
TESTED BY:	SEM

LOADING RATE: 0.04in./min. TRACKING CODE: 7908_US

MOISTURE CONTENT (Dry Basis)					
1. MOISTURE TIN NO.	0405-010 (28-day)				
2. WT MOISTURE TIN (tare weight)	66.97 g				
3. WT WET SOIL + TARE	136.28 g				
4. WT DRY SOIL + TARE	91.44 g				
5. WT WATER, Ww	44.84 g				
6. WT DRY SOIL, Ws	24.47 g				
7. MOISTURE CONTENT, W	183.24 %				

SOIL SPECIMEN DIMENSIONS					
DIAMETER LENGTH					
No. 1	2.00	in.	3.93	in.	
No. 2	2.00	in.	3.93	in.	
No. 3	2.01	in.	3.94	in.	
Average	2.00	in.	3.93	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	250.74	g			
Initial Area, Ao	3.15	in²			
Initial Volume, Vo	12.40	in³			
Initial Bulk Unit Weight,	77.0	lb/ft ³			
Initial Dry Unit Weight	27.2	lb/ft ³			
Maximum Load (Peak)	60.00	lbs.			
UCS	18.7	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.152	0.0000	0.
60	0.070	0.070	3.209	0.0178	18.

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-011 (14 day)
TESTING DATE:	2-Feb-12
TESTED BY:	JGS

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

LOADING RATE: 0.04in./min. TRACKING CODE: 7862_US

SOIL SPECIMEN DIMENSIONS					
	DIAMETER	LENGTH			
No. 1	2.02 in.	3.90 in.			
No. 2	2.00 in.	3.90 in.			
No. 3	1.98 in.	3.91 in.			
Average	2.00 in.	3.90 in.			

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	250.70	g			
Initial Area, Ao	3.14	in²			
Initial Volume, Vo	12.26	in³			
Initial Bulk Unit Weight,	77.9	lb/ft ³			
Initial Dry Unit Weight	28.5	lb/ft ³			
Maximum Load (Peak)	75.00	lbs.			
UCS	23.4	lb/in ²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.142	0.0000	0.0
75	0.080	0.080	3.207	0.0205	23.4

0405-011 (14 day)

113.33

165.66

132.46

33.20

19.13 173.55 g

g

g g g %

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-011 (34-day)
TESTING DATE:	22-Feb-12
TESTED BY:	SEM

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

LOADING RATE: 0.04in./min. TRACKING CODE: 7920_US

SOIL SPECIMEN DIMENSIONS					
	DIAMET	ER	LENGTH	1	
No. 1	2.00	in.	3.96	in.	
No. 2	2.01	in.	3.97	in.	
No. 3	2.01	in.	3.97	in.	
Average	2.01	in.	3.97	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	256.17	g			
Initial Area, Ao	3.16	in²			
Initial Volume, Vo	12.54	in³			
Initial Bulk Unit Weight,	77.8	lb/ft ³			
Initial Dry Unit Weight	30.1	lb/ft ³			
Maximum Load (Peak)	100.00	lbs.			
UCS	31.3	lb/in²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.163	0.0000	0.0
100	0.045	0.045	3.199	0.0113	31.3

0405-011

69.75

128.80

92.63

36.17

22.88 158.09 g

g

g g g %

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-012 (7 day)
TESTING DATE:	26-Jan-12
TESTED BY:	JGS

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

 TRACKING CODE:
 0.04in./min.

 7854
 18

SOIL SPECIMEN DIMENSIONS					
	DIAMET	ER	LENGTH	1	
No. 1	1.99	in.	3.84	in.	
No. 2	1.99	in.	3.84	in.	
No. 3	1.98	in.	3.86	in.	
Average	1.99	in.	3.85	in.	

SPECIMEN CONDITIONS					
Initial Specimen WT, Wo	257.24	g			
Initial Area, Ao	3.10	in²			
Initial Volume, Vo	11.92	in³			
Initial Bulk Unit Weight,	82.2	lb/ft ³			
Initial Dry Unit Weight	32.6	lb/ft ³			
Maximum Load (Peak)	112.00	lbs.			
UCS	35.6	lb/in ²			

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.100	0.0000	0.0
112	0.060	0.060	3.149	0.0156	35.6

0405-012 (7 day)

160.06

233.25

189.07

44.18

29.01 152.29 g

g

g g g

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-012 (14 day)
TESTING DATE:	2-Feb-12
TESTED BY:	JGS

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

LOADING RATE: 0.04in./min. TRACKING CODE: 7863_US

SOIL SPECIMEN DIMENSIONS					
	DIAMETER LENGTH				
No. 1	2.02 in.	. <u>3.92</u> in.			
No. 2	2.00 in.	. <u>3.91</u> in.			
No. 3	1.98 in.	. <u>3.90</u> in.			
Average	2.00 in	. 3.91 in.			

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	261.51	g		
Initial Area, Ao	3.14	in²		
Initial Volume, Vo	12.28	in³		
Initial Bulk Unit Weight,	81.1	lb/ft ³		
Initial Dry Unit Weight	32.9	lb/ft ³		
Maximum Load (Peak)	134.00	lbs.		
UCS	41.9	lb/in ²		

IG DEFORMATIO (in.)	N AREA (in²)	STRAIN (in/in)	STRENGTH (lb/in ²)
0.000 0.000	3.142	0.0000	0.0
0.065 0.065	3.195	0.0166	41.9
	0.000 0.000	0.000 0.000 3.142	0.000 0.000 3.142 0.0000

0405-012 (14 day)

114.03

185.12

142.91

42.21

28.88 146.16 g

g

g

g g %

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-012 (21 day)
TESTING DATE:	9-Feb-12
TESTED BY:	JGS

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

LOADING RATE: TRACKING CODE:

0.04in./min. 7875_US

SOIL SPECIMEN DIMENSIONS					
	DIAMET	ER	LENGTH	1	
No. 1	2.00	in.	3.91	in.	
No. 2	2.01	in.	3.89	in.	
No. 3	2.02	in.	3.90	in.	
Average	2.01	in.	3.90	in.	

SPECIMEN CONDITIONS				
Initial Specimen WT, Wo	263.63	g		
Initial Area, Ao	3.17	in²		
Initial Volume, Vo	12.38	in³		
Initial Bulk Unit Weight,	81.2	lb/ft ³		
Initial Dry Unit Weight	34.1	lb/ft ³		
Maximum Load (Peak)	154.00	lbs.		
UCS	47.9	lb/in ²		

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.173	0.0000	0.0
154	0.050	0.050	3.214	0.0128	47.9

0405-012 (21 day)

114.13

162.63

134.53

28.10

20.40 **137.75** g

g

g g g %

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No.:	0405-012 (28-day)
TESTING DATE:	16-Feb-12
TESTED BY:	SEM

LOADING RATE: 0.04in./min. TRACKING CODE: 7909_US

MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0405-012 (28-0	lay)		
2. WT MOISTURE TIN (tare weight)	63.55	g		
3. WT WET SOIL + TARE	131.40	g		
WT DRY SOIL + TARE	91.29	g		
5. WT WATER, Ww	40.11	g		
6. WT DRY SOIL, Ws	27.74	g		
7. MOISTURE CONTENT, W	144.59	%		

SOIL SPECIMEN DIMENSIONS					
	DIAMET	ER	LENGTH	1	
No. 1	2.00	in.	3.91	in.	
No. 2	2.01	in.	3.91	in.	
No. 3	2.01	in.	3.91	in.	
Average	2.01	in.	3.91	in.	

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	258.83	g	
Initial Area, Ao	3.16	in²	
Initial Volume, Vo	12.37	in³	
Initial Bulk Unit Weight,	79.7	lb/ft ³	
Initial Dry Unit Weight	32.6	lb/ft ³	
Maximum Load (Peak)	165.00	lbs.	
UCS	51.5	lb/in ²	

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.163	0.0000	0.
165	0.050	0.050	3.204	0.0128	51.:

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No .:	0405-013 (14 day)
TESTING DATE:	2-Feb-12
TESTED BY:	JGS

 LOADING RATE:
 0.04in./min.

 TRACKING CODE:
 7864_US

MOISTURE CONTENT (Dry Basis)				
1. MOISTURE TIN NO.	0405-013 (14 d	ay)		
2. WT MOISTURE TIN (tare weight)	111.27	g		
3. WT WET SOIL + TARE	161.96	g		
WT DRY SOIL + TARE	145.67	g		
5. WT WATER, Ww	16.29	g		
6. WT DRY SOIL, Ws	34.40	g		
7. MOISTURE CONTENT, W	47.35	%		

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENGTH	1
No. 1	2.00	in.	3.98	in.
No. 2	2.00	in.	3.99	in.
No. 3	1.99	in.	3.98	in.
Average	2.00	in.	3.98	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	341.13	g	
Initial Area, Ao	3.13	in²	
Initial Volume, Vo	12.47	in³	
Initial Bulk Unit Weight,	104.2	lb/ft ³	
Initial Dry Unit Weight	70.7	lb/ft ³	
Maximum Load (Peak)	898.00	lbs.	
UCS	282.5	lb/in ²	

COMPRESS LOAD (lbs.)	SIVE	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
	0	0.000	0.000	3.131	0.0000	0.
	898	0.060	0.060	3.179	0.0151	282.:

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No .:	0405-014 (14 day)
TESTING DATE:	2-Feb-12
TESTED BY:	JGS

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

LOADING RATE: 0.04in./min. TRACKING CODE: 7865_US

SOIL SPECIMEN DIMENSIONS				
	DIAMET	ER	LENGTH	1
No. 1	2.00	in.	3.98	in.
No. 2	1.99	in.	3.98	in.
No. 3	1.99	in.	3.99	in.
Average	1.99	in.	3.98	in.

SPECIMEN CONDITIONS			
Initial Specimen WT, Wo	343.09	g	
Initial Area, Ao	3.12	in²	
Initial Volume, Vo	12.43	in³	
Initial Bulk Unit Weight,	105.1	lb/ft ³	
Initial Dry Unit Weight	71.2	lb/ft ³	
Maximum Load (Peak)	1091.00	lbs.	
UCS	343.5	lb/in ²	

COMPRESSIVE LOAD (lbs.)	DIAL GAGE READING (in.)	SPECIMEN DEFORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	UNCONFINED COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.121	0.0000	0.0
1091	0.070	0.070	3.177	0.0176	343.5

0405-014 (14 day)

114.26

193.85

168.12

25.73

53.86 47.77

g

g

g g g %

ASTM D 1633

PROJECT:	Walton & Lonsbury
PROJECT No.:	SH0405
SAMPLE No .:	0405-015 (14 day)
TESTING DATE:	2-Feb-12
TESTED BY:	JGS

MOISTURE CONTENT (Dry Basis)

1. MOISTURE TIN NO.

4. WT DRY SOIL + TARE

6. WT DRY SOIL, Ws 7. MOISTURE CONTENT, W

5. WT WATER, Ww

WT MOISTURE TIN (tare weight)
 WT WET SOIL + TARE

LOADING RATE: 0.04in./min. TRACKING CODE: 7866_US

SOIL SPECIMEN DIMENSIONS							
DIAMETER LENGTH							
No. 1	2.02 in.	3.98 in.					
No. 2	2.00 in.	3.98 in.					
No. 3	1.99 in.	3.98 in.					
Average	2.00 in.	3.98 in.					

SPECIMEN CONDITIONS						
Initial Specimen WT, Wo	345.94	g				
Initial Area, Ao	3.15	in²				
Initial Volume, Vo	12.55	in³				
Initial Bulk Unit Weight,	105.0	lb/ft ³				
Initial Dry Unit Weight	73.1	lb/ft ³				
Maximum Load (Peak)	1462.00	lbs.				
UCS	456.8	lb/in ²				

LOAD REAI (lbs.) (ir	-	FORMATION (in.)	CORRECTED AREA (in ²)	AXIAL STRAIN (in/in)	COMPRESSIVE STRENGTH (lb/in ²)
0	0.000	0.000	3.152	0.0000	0.0
1462	0.060	0.060	3.200	0.0151	456.8

0405-015 (14 day)

112.25

189.88

166.29

23.59

54.04 43.65 g

g

g g g %

APPENDIX E PERMEABILITY DATA SHEETS

SPECIMEN CONDITIONS Page 1 of 6

PROJECT: PROJECT No.:

Walton & Lonsbury Site SH 0405 SAMPLE No.: 0405-011 (34-Day) TEST DATE: 2/21/2012

TESTED BY:
TRACKING CODE:
EQUIPMENT No .:

SEM
7920_PM
2

MOISTURE CONTENT (Dry Basis)	INITIAL		FINAL	
1. MOISTURE TIN NO.	0405-011		0405-011	
2. WT MOISTURE TIN (tare weight)	0.00	g	232.89	g
3. WT WET SOIL + TARE	333.07	g	568.63	g
4. WT DRY SOIL + TARE	125.36	g	358.25	g
5. WT WATER, Ww	207.71	g	210.38	g
6. WT DRY SOIL, Ws	125.36	g	125.36	g
7. MOISTURE CONTENT, W	165.69	%	167.82	%

SOIL SPECIMEN DIMENSIONS						
TRIPLICATE	DIAM	HEIGHT				
ANALYSES	INITIAL	FINAL	INITIAL		FINAL	
No. 1	2.98 in.	2.98 in.	2.33	in.	2.33	in.
No. 2	2.98 in.	2.98 in.	2.33	in.	2.33	in.
No. 3	2.97 in.	2.97 in.	2.33	in.	2.33	in.
Average	2.98 in.	2.98 in.	2.33	in.	2.33	in.

SPECIMEN CONDITIONS	INITIAL	FINAL
Specimen WT, Wo	333.07 g	336.00 g
Area, Ao	6.96 in ²	6.96 in ²
Volume, Vo	16.21 in ³	16.21 in ³
Bulk Unit Weight	78.3 lb/ft ³	78.9 lb/ft ³
Dry Unit Weight	29.5 lb/ft ³	29.5 lb/ft ³

BACK-PRESSURE SATURATION

Page 2 of 6

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:
 Walton & Lonsbury Site

 SH 0405

 0405-011 (34-Day)

 2/21/2012

TESTED BY: TRACKING CODE: EQUIPMENT No.:

SEM
7920_PM
2

			TEST PRESSURES (psi)								
TEST	TIME	TIME	TIME	TESTED	APPLIED		PC	RE	PRES	SSURE CH	ANGE
DATE	(military)	BY	CELL	BACK	SAT.	TEST	CELL	PORE	B-Value		
02/22/12	10 : 18	SEM	7.0	5.0	4.8						
02/22/12	10 : 47	SEM	17.0	15.0	15.2	10.1	10.0	5.3	0.53		
02/22/12	11 : 47	SEM	27.0	25.0	25.2	22.5	10.0	7.3	0.73		
02/22/12	12 : 50	SEM	37.0	35.0	35.2	33.7	10.0	8.5	0.85		
02/22/12	13 : 53	SEM	47.0	45.0	45.1	44.3	10.0	9.1	0.91		
02/22/12	15 : 2	SEM	57.0	55.0	*	54.6	10.0	9.5	0.95		
02/22/12	15 : 3	SEM	47.0	45.0	*	*	*	*	*		

PERMEABILITY ASTM D5084 SPECIMEN CONSOLIDATION

Page 3 of 6

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:

Walton & Lonsbury Site
SH 0405
0405-011 (34-Day)
2/21/2012

SEM
7920_PM
2

CELL PRESSURE:	55	psi BAC	K PRESSURE:	45	psi	EFFECTIVE STRE	ESS:	10 psi
			ELAPSED	TOTAL	TOTAL	SPECIME	N CONSOLIDA	TION (ML)
TEST	TESTED	TIME	TIME	TIME	TIME	READING		ACTUAL
DATE	BY	(Military)	(minutes)	(minutes)	(Log)	воттом	ТОР	TOTAL (Ct)
2 / 22 / 2012	SEM	15 : 8				24.0	24.0	0.0
2 / 22 / 2012	SEM	15 : 9	1	1	0.00	23.4	23.3	1.3
2 / 22 / 2012	SEM	15 : 10	1	2	0.30	23.4	23.2	1.4
2 / 22 / 2012	SEM	15 : 12	2	4	0.60	23.4	23.2	1.4
2 / 22 / 2012	SEM	15 : 53	41	45	1.65	23.3	23.1	1.6
2 / 22 / 2012	SEM	17 : 10	77	122	2.09	23.3	23.1	1.6
2 / 23 / 2012	SEM	9 : 34	984	1106	3.04	23.3	23.1	1.6

TEST DATA

Page 5 of 6

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:
 Walton & Lonsbury Site

 SH 0405

 0405-011 (34-Day)

 2/21/2012

TESTED BY: TRACKING CODE: EQUIPMENT No.:

SEM	
7920_PM	
2	

			ELAPSED	HYDR	AULIC			GAUGE	
	TESTED	TIME	TIME	HEAD) (cm)	TEMP.		PRESSURE (psi)	
DATE	BY	(military)	(minutes)	INFLUENT	EFFLUENT	C°	CELL	INFLUENT	EFFLUENT
2 / 23 / 12	SEM	9:38		0.0	24.0	20.0	55.0	45.0	45.0
2 / 23 / 12	SEM	9 : 50	12	0.7	23.3	20.0	55.0	45.0	45.0
2 / 23 / 12	SEM	10 : 10	20	1.6	22.4	20.0	55.0	45.0	45.0
2 / 23 / 12	SEM	10 : 28	18	2.5	21.5	20.0	55.0	45.0	45.0
2 / 23 / 12	SEM	10 : 57	29	3.8	20.2	20.0	55.0	45.0	45.0
2 / 23 / 12	SEM	11 : 16	19	4.5	19.5	20.0	55.0	45.0	45.0
2 / 23 / 12	SEM	11 : 43	27	5.4	18.6	20.0	55.0	45.0	45.0
2 / 23 / 12	SEM	12 : 35	52	6.8	17.2	20.0	55.0	45.0	45.0

TEST DATA (continued) Page 6 of 6

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:

Walton & Lonsbury Site SH 0405 0405-011 (34-Day) 2/21/2012 TESTED BY: TRACKING CODE: EQUIPMENT No.:

SEM	
7920_PM	
2	

ELAPSED	HYDRAU	LIC HEAD	EFFLUENT -	HYDRAULIC	HYDRAULIC	
TIME	DIFFERE	NCE (cm)	INFLUENT	GRADIENT	CONDUCTIVITY (cm/see	
(minutes)	INFLUENT	EFFLUENT	RATIO	(cm/cm)	@ Temp.	@ 20° C
RESET				4.055		
12	0.7	0.7	1.00	3.819	5.50E-06	5.53E-06
20	0.9	0.9	1.00	3.515	4.56E-06	4.58E-06
18	0.9	0.9	1.00	3.210	5.52E-06	5.55E-06
29	1.3	1.3	1.00	2.771	5.57E-06	5.60E-06
19	0.7	0.7	1.00	2.535	5.16E-06	5.18E-06
27	0.9	0.9	1.00	2.230	5.20E-06	5.22E-06
52	1.4	1.4	1.00	1.757	5.04E-06	5.06E-06
			<u> </u>			

SUMMARY OF RESULTS

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:

Walton & Lonsbury Site SH 0405 0405-011 (34-Day) 2/21/2012

TESTED BY: TRACKING CODE: EQUIPMENT No.: SEM 7920_PM 2

TESTING PARAMETER	INITIAL	FINAL
BULK UNIT WEIGHT	78.3 lb/ft ³	78.9 lb/ft ³
DRY UNIT WEIGHT	29.5 lb/ft ³	29.5 lb/ft3
MOISTURE CONTENT	165.7 %	167.8 %
PERMEABILITY @ 20°C	5.2E-06 cm/se	ec

SPECIMEN CONDITIONS Page 1 of 6

PROJECT: PROJECT No.:

Walton & Lonsbury Site SH 0405 SAMPLE No.: 0405-012 (28-Day) TEST DATE: 2/16/2012

TESTED BY:	
TRACKING CODE:	
EQUIPMENT No.:	

SEM
7909_PM
2

MOISTURE CONTENT (Dry Basis)	INITIAL		FINAL	
1. MOISTURE TIN NO.	0405-012		0405-012	
2. WT MOISTURE TIN (tare weight)	0.00	g	225.79	g
3. WT WET SOIL + TARE	367.05	g	596.55	g
4. WT DRY SOIL + TARE	146.28	g	372.07	g
5. WT WATER, Ww	220.77	g	224.48	g
6. WT DRY SOIL, Ws	146.28	g	146.28	g
7. MOISTURE CONTENT, W	150.92	%	153.46	%

SOIL SPECIMEN DIMENSIONS						
TRIPLICATE	DIAM	ETER	HEIGHT			
ANALYSES	INITIAL	INITIAL FI		FINAL	FINAL	
No. 1	2.97 in.	2.97 in.	2.53	in.	2.54	in.
No. 2	2.97 in.	2.97 in.	2.54	in.	2.54	in.
No. 3	2.97 in.	2.97 in.	2.55	in.	2.55	in.
Average	2.97 in.	2.97 in.	2.54	in.	2.54	in.

SPECIMEN CONDITIONS	INITIAL	FINAL
Specimen WT, Wo	367.05 g	370.81 g
Area, Ao	6.93 in ²	6.93 in ²
Volume, Vo	17.60 in ³	17.62 in ³
Bulk Unit Weight	79.5 lb/ft ³	80.2 lb/ft ³
Dry Unit Weight	31.7 lb/ft ³	31.6 lb/ft ³

BACK-PRESSURE SATURATION Page 2 of 6

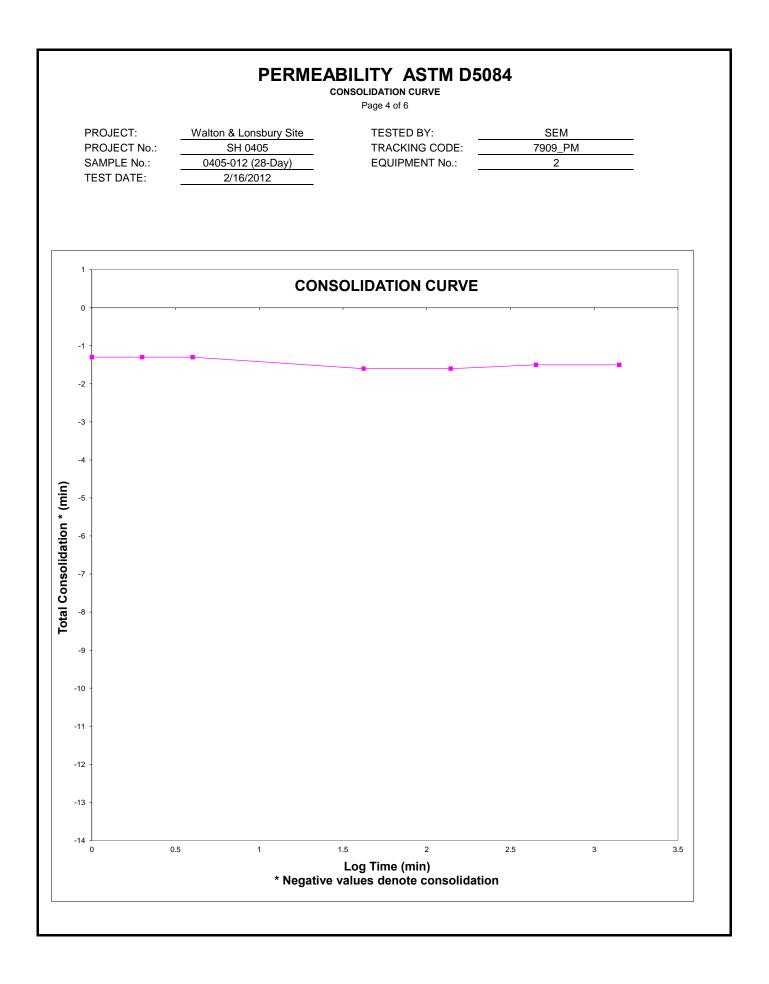
PROJECT: PROJECT No.: SAMPLE No.: TEST DATE: Walton & Lonsbury Site SH 0405 0405-012 (28-Day) 2/16/2012

TESTED BY: TRACKING CODE: EQUIPMENT No.:

SEM
7909_PM
2

			TEST PRESSURES (psi)						
TEST	TIME	TESTED	APPLIED		PORE		PRESSURE CHANG		ANGE
DATE	(military)	BY	CELL	BACK	SAT.	TEST	CELL	PORE	B-Value
02/16/12	16 : 51	SEM	7.0	5.0	5.0				
02/16/12	18 : 18	SEM	17.0	15.0	15.0	9.3	10.0	4.3	0.43
02/16/12	19:9	SEM	27.0	25.0	25.0	21.7	10.0	6.7	0.67
02/17/12	9 : 15	TAJ	37.0	35.0	35.3	34.2	10.0	9.2	0.92
02/17/12	10 : 1	TAJ	47.0	45.0	45.2	44.6	10.0	9.3	0.93
02/17/12	10 : 45	TAJ	57.0	55.0	*	54.8	10.0	9.6	0.96
02/17/12	10 : 46	TAJ	47.0	45.0	*	*	*	*	*

PERMEABILITY ASTM D5084 SPECIMEN CONSOLIDATION


Page 3 of 6

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:

Walton & Lonsbury Site
SH 0405
0405-012 (28-Day)
2/16/2012

SEM
7909_PM
2

CELL PRESSURE:	55	psi BAC	K PRESSURE:	45	psi	EFFECTIVE STRE	ESS:	10 psi
			ELAPSED	TOTAL	TOTAL	SPECIME	N CONSOLIDA	TION (ML)
TEST	TESTED	TIME	TIME	TIME	TIME	READ	READING	
DATE	BY	(Military)	(minutes)	(minutes)	(Log)	воттом	ТОР	TOTAL (Ct)
2 / 17 / 2012	TAJ	10 : 51				24.0	24.0	0.0
2 / 17 / 2012	TAJ	10 : 52	1	1	0.00	23.4	23.3	1.3
2 / 17 / 2012	TAJ	10 : 53	1	2	0.30	23.4	23.3	1.3
2 / 17 / 2012	TAJ	10 : 55	2	4	0.60	23.4	23.3	1.3
2 / 17 / 2012	TAJ	11 : 33	38	42	1.62	23.1	23.3	1.6
2 / 17 / 2012	TAJ	13 : 10	97	139	2.14	23.0	23.4	1.6
2 / 17 / 2012	TAJ	18 : 20	310	449	2.65	23.0	23.5	1.5
2 / 18 / 2012	SEM	10 : 22	962	1411	3.15	23.0	23.5	1.5

TEST DATA

Page 5 of 6

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:
 Walton & Lonsbury Site

 SH 0405

 0405-012 (28-Day)

 2/16/2012

TESTED BY: TRACKING CODE: EQUIPMENT No.:

SEM	
7909_PM	
2	

			ELAPSED	HYDRAULIC			GAUGE		
	TESTED	TIME	TIME	HEAD	D (cm)	TEMP.	PRESSURE (psi)		osi)
DATE	BY	(military)	(minutes)	INFLUENT	EFFLUENT	C°	CELL	INFLUENT	EFFLUENT
2 / 18 / 12	SEM	10 : 36		0.0	24.0	20.0	55.0	45.0	45.0
2 / 18 / 12	SEM	12 : 0	84	4.0	20.0	20.0	55.0	45.0	45.0
2 / 18 / 12	SEM	12 : 26	26	4.9	19.1	20.0	55.0	45.0	45.0
2 / 18 / 12	SEM	14 : 6	100	7.6	16.4	20.0	55.0	45.0	45.0
2 / 20 / 12	SEM	10 : 19	RESET	0.0	24.0	20.0	55.0	45.0	45.0
2 / 20 / 12	SEM	10 : 31	12	0.6	23.4	20.0	55.0	45.0	45.0
2 / 20 / 12	SEM	10 : 44	13	1.2	22.8	20.0	55.0	45.0	45.0
2 / 20 / 12	SEM	11 : 0	16	2.0	22.0	20.0	55.0	45.0	45.0
2 / 20 / 12	SEM	11 : 20	20	2.9	21.1	20.0	55.0	45.0	45.0

TEST DATA (continued) Page 6 of 6

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:

Walton & Lonsbury Site SH 0405 0405-012 (28-Day) 2/16/2012 TESTED BY: TRACKING CODE: EQUIPMENT No.:

SEM	
7909_PM	
2	

ELAPSED HYDRAULIC HEAD		EFFLUENT -	HYDRAULIC	HYDRAULIC		
DIFFERENCE (cm)		INFLUENT	GRADIENT	CONDUCTIV	TY (cm/sec)	
INFLUENT	EFFLUENT	RATIO	(cm/cm)	@ Temp.	@ 20° C	
	_	_	3.720			
4.0	4.0	1.00	2.480	5.81E-06	5.83E-06	
0.9	0.9	1.00	2.201	5.52E-06	5.55E-06	
2.7	2.7	1.00	1.364	5.76E-06	5.78E-06	
			3.720			
0.6	0.6	1.00	3.534	5.14E-06	5.17E-06	
0.6	0.6	1.00	3.348	5.00E-06	5.03E-06	
0.8	0.8	1.00	3.100	5.79E-06	5.81E-06	
0.9	0.9	1.00	2.821	5.67E-06	5.70E-06	
<u> </u>						
L						
L						
1						
1						
·						
<u></u>						
	INFLUENT 4.0 0.9 2.7 0.6 0.6 0.8	INFLUENT EFFLUENT 4.0 4.0 0.9 0.9 2.7 2.7 0.6 0.6 0.6 0.6 0.8 0.8	INFLUENT EFFLUENT RATIO 4.0 4.0 1.00 0.9 0.9 1.00 2.7 2.7 1.00 0.6 0.6 1.00 0.6 0.6 1.00 0.8 0.8 1.00	INFLUENT EFFLUENT RATIO (cm/cm) 4.0 4.0 1.00 2.480 0.9 0.9 1.00 2.480 2.7 2.7 1.00 1.364 0.6 0.6 1.00 3.534 0.6 0.6 1.00 3.348 0.8 0.8 1.00 3.100	INFLUENT EFFLUENT RATIO (cm/cm) @ Temp. 4.0 4.0 1.00 2.480 5.81E-06 0.9 0.9 1.00 2.201 5.52E-06 2.7 2.7 1.00 1.364 5.76E-06 0.6 0.6 1.00 3.534 5.14E-06 0.6 0.6 1.00 3.348 5.00E-06 0.8 0.8 1.00 3.100 5.79E-06	

SUMMARY OF RESULTS

PROJECT: PROJECT No.: SAMPLE No.: TEST DATE:

Walton & Lonsbury Site SH 0405 0405-012 (28-Day) 2/16/2012

TESTED BY: TRACKING CODE: EQUIPMENT No.: SEM 7909_PM 2

TESTING PARAMETER	INITIAL	FINAL
BULK UNIT WEIGHT	79.5 lb/ft ³	80.2 lb/ft3
DRY UNIT WEIGHT	31.7 lb/ft ³	31.6 lb/ft ³
MOISTURE CONTENT	150.9 %	153.5 %
PERMEABILITY @ 20°C	5.6E-06 cm/se	ec