ENGINEERS, ENVIRONMENTAL CONSULTANTS & PLANNERS

17-67

DATE: February 20, 1990

TO:

Richard Goehlert

U.S. EPA

JFK Federal Building

HSN-CAN5

Boston, MA 02203-2211

Other:

FROM: Richard Cote

HMM Associates
196 Baker Avenue

Concord, MA 01742

RE:

Savage Well Site

JOB NO:

2176-120

SUBJECT:

Additional Soils Investigation - Subtask 2F

____ For Your Information
Per Your Request

_X For Your Review/Comments

For Your Authorization

REMARKS:

The following is a summary of the additional soils investigation undertaken by HMM Associates designed to investigate potential contaminant source areas that were not fully evaluated by the Phase II-A soil boring/soil gas program and more specifically to determine whether VOC contamination exists in the soil vadose zone beneath building slabs. Specifically the work addressed the following locations:

- 1. An area under the O.K. Tool Building floor slab in the vicinity of the former floor drain excavated by Normandeau Associates, Inc.
- 2. A storm drain and stockpiled soils located outside the O.K. Tool Building.
- 3. Areas below the Hitchiner Building in the immediate vicinity of the former location of a photographic lab dry well; and
- 4. Areas under the easternmost portions of the Hendrix Building, including any floor drains.

The actual sampling of soils/waste materials at the above mentioned locations was accomplished using split-spoon samplers and an open tube sludge sampler and other hand sampling techniques. At all the sub-slab locations, the concrete surface was penetrated using a Bosch masonry drive/percussion hammer. Samples collected were all screened immediately for volatile organic compounds with an OVA/HNu using headspace analytical techniques. The results of field screening are summarized on an attached table. Selected samples were then submitted for laboratory analysis of VOC's. All analytical results are also summarized on an attached table.

The site specific summary of the sampling techniques used and protocol followed during sampling operations for the various locations are outlined below. In addition the sampling points are indicated on the attached site maps.

2176-120/HAZ/3291 - 2/20/90

- 1. Soil samples were collected underneath the O.K. Tool Building concrete slab in an area encompassing approximately 2,000 square feet. This area is located adjacent to and hydraulically downgradient of the floor drain excavation described previously (see attached map for detailed sampling point locations). The samples were collected using a 2-foot split-spoon sampler driven by a 140-pound weight using a portable tripod and motorized winch assembly. Each split-spoon sample was divided into two portions; one for screening purposes and the other for possible laboratory analysis. All samples for laboratory analysis were immediately placed in an insulated cooler with ice to reduce the potential for volatilization of the sample. After each sample was collected the split-spoon sampler was decontaminated with Alconox soap solution, methanol solution and deionized water. At the completion of each of the 8 borings (refusal) the split-spoon sample exhibiting the highest OVA/HNu response or exhibiting visual or olfactory evidence of contamination was submitted for analysis of volatile organic compounds OVA/HNu responses ranged from 1 to 40 ppm. Continuous soil sampling was performed at each location to a depth at which penetration could not be continued. A maximum depth of 6.8' was achieved in Boring SL-2. Further depths could not be penetrated due to hole collapse and large cobbles. As indicated, a total of 8 soil samples were submitted for laboratory analysis. No samples showed visual, olfactory or other obvious evidence of contamination.
- 2. In addition to the sub-slab soil samples, soil/sludge samples were collected from three locations outside the O.K. Tool Building. One sample from each location was submitted for laboratory analysis of VOC's.
 - a. A soil/sludge sample was extracted from the storm drain of the entry ramp at the northeast corner of the building. The sample was collected using a manually operated soil/sludge tube sampler. The matrix of the sample was primarily wet sand and silt. Sample handling and decontamination procedures were as described for the sub-slab work.
 - b. One composite soil sample was also collected from each of the two stockpiled soils areas directly behind the O.K. Tool Building. These piles are the result of the excavation and treatability study work previously performed by Normandeau Associates, Inc. The composite samples were collected manually from a small auger attached to a Bosch rotary hammer.
- 3. Four sub-slab soil samples for laboratory analysis were also collected at the Hitchiner complex in the immediate vicinity of the former location of a photographic lab dry well. Four borings were completed, each extending approximately 1-2' below the ground surface. The samples were collected by manually driving the 2-foot split-spoon with a sledge hammer. All samples appeared to be sandy, gravelly fill. OVA/HNu responses ranged from .4 to 30 PPM with the HNu generally exhibiting the higher response.
- 4. A soil/sludge composite sample was extracted from a floor drain in the easternmost portion of the Hendrix facility, near MW-29. The soil/sludge was obtained from a depth of approximately 1 foot below the ground surface and consisted of sands and gravels as well as surficial layers of debris. The sample was again collected with the sludge tube sampler. OVA/HNU responses on the composite sample were 5 ppm OVA, 150 ppm HNU.

In addition, under the concrete slab in the easternmost portion of the Hendrix building, three borings were excavated and three soil samples were collected using the split spoon sampler (manual driven). Again, the samples were obtained from a depth of approximately 1-2 feet below the ground surface. OVA/HNU readings from the sand and gravel samples ranged from 2 to 100 ppm.

Analytical Results

The results of the additional soils investigation have identified higher levels of tetrachloroethylene (PCE) beneath the O.K. Tool building slab than had been previously identified in soils sampled elsewhere at the site during the RI. The eight samples collected beneath the slab had PCE levels ranging from 83 ug/l to 2,400 ug/l. The highest levels, 2,400 ug/l in SL-1 and 1,300 ug/l in SL-2, were detected in soils located immediately adjacent to the excavation. Sample SL-8, located approximately 70 feet from the excavation at the easternmost edge of the building, had PCE at a level of 900 ug/l. Trichloroethene (TCE) was detected at 19 ug/l in soil sample SL-8. The presence of methylene chloride, identified in five of the samples, has been determined to be the result of laboratory contamination.

Two of the samples collected from the stockpiles located north of the O.K. Tool building were found to contain PCE at levels below the detection limit while the third contained PCE at 44 ug/l. The sample collected from the storm drain contained PCE at 840 ug/l, TCE at 160 ug/l, and 1,2-DCE at 320 ug/l.

The four samples collected beneath the Hitchiner facility contained no detectable VOC's with the exception of Acetone, detected at 22 ug/l in SL-9.

Sampling of soils beneath the Hendrix building indicated detectable levels of PCE in three of four samples. PCE was detected at 100 ug/l in SL-16, collected from a floor drain, at 110 ug/l in SL-13, and at 5 ug/l in SL-14.

One sample from each sub-floor area was also analyzed for the complete HSL parameters including ABN's, PCB's, and metals. The results do not appear to indicate a source for these contaminant parameters at any of the locations.

Discussion

The results of the additional soils investigation do not appear to indicate the presence of VOCs in vadose zone soils at levels high enough to serve as a long-term source for groundwater contamination. Elevated levels of PCE (i.e., in the 1 to 2 ppm range) were identified in soils beneath the O.K. Tool floor slab, but these levels are significantly lower than levels of PCE detected in groundwater immediately downgradient of O.K. Tool.

There are, however, high levels of PCE contamination in groundwater downgradient from the O.K. Tool facility, and most likely, beneath the O.K. Tool building. Treatability studies including soil column flushing studies are currently being completed, and source control alternatives will be evaluated in detail in the upcoming Draft FS Report.

Signature	Date 2/2/90	
COMMENTS:		
Signature	Date	

HNV/OVA RESPONSES AREA 1 - O.K. TOOL

Area#	Boring #	Sample Depth	OVA Reading (ppm)	HNU Reading (ppm)
1	SL-1	0-2'	8	-
1	SL-2	0-2'	13	-
1	SL-2	2-4'	26	-
1	SL-2	4-6.5'	16	•
1	SL-3	0-2'	2	-
1	SL-3	2-3.5'	9.5	-
1	SL-3	3.5-5'	-	-
1	SL-4	0-2'	8	-
1	SL-4	2-4'	20	-
1	SL-4	4-6.5'	No Recovery	-
1	SL-5	0-2'	20	-
1	SL-5	2-4'	35	-
1	SL-6	0-2'	10	20
1	SL-6	2-4'	40	40
1	SL-7	0-2'	20	30
1	SL-7	2-3.5'	24	30
1	SL-8	0-2'	20	15
1	SL-8	2-4'	24	25

AREA 2 - O.K. TOOL

	OVA	HNU
	17.5	10
1	15	
ND*	20	
ND	25	
	ND*	17.5 1 15 ND* 20

^{*} ND - None detected.

AREA 3 - HITCHINER

Boring #	Sample Depth	<u>OVA</u>	HNU
SL-10	0-1'	30	25
SL-10	0-2'	0.4	20
SL-11	0-2'	5	25
SL-12	0-2'	2	25

AREA 4 - HENDRIX

Boring #	Sample Depth	OVA	HNU
SL-13	0-2'	6.6	100+
SL-14	0-2'	0.2	30
SL-15	0-2'	3	40
Floor Drain	-	5	150

^{*} ND - None detected.

	Designation: A	ldditional	Soils Inve	stigation 1	ru 12-6-89	12-6-89		
	Well Number:	SL-1	SL-2	SL-3	SL-4	SL-5	SL-6	SL-7
	∃ Depth (ft):	0 - 2	4 - 6.5	1 - 3.5	2 - 4	2 - 4	2 - 4	1 - 3
Parameter (ug/kg):								
Chloromethane		ND	ND	ND	ND	ND	ND	ND
Bromomethane		ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride		ND	ND	ND	ND	ND	ND	ND
Chloroethane		ND	ND	ND	ND	ND	ND	ND
Methylene Chloride		960	1800	360	2200	1800	ND	ND
Trichlorofluorometha	ne	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	NO	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroet	hene	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	, ND	ND	ND	ND	ND
1,2-Dichloroethane		ND	ND	MD	ND	ND	ND	ND
1,1,1-Trichloroethan	e	ND	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride		ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloroprop	ene	ND	ND	ND	ND	ND	ND	ND
Trichloroethene		ND	ND	ND	ND	ND	ND	ND
Benzene		ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethan	e	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropr		ND	ND	ND	ND	NO	ND	ND
2-Chloroethylvinyl E	•	ND	ND	ND	ND	ND	ND	ND
Bromoform		ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroe	thane	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	411401140	2400	1300	83	360	740	130	930
Toluene		ND	NO	ND	ND	ND	ND	ND
Chlorobenzene		ND	ND	ND	ND	ND	ND	ND
Ethylbenzene		NC	ND	ND	ND	ND	NO	ND
Acetone		ND ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide		NO	ND	ND	ND	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND	ND
Vinyl Acetate		MD	MD	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone		NO	ND	ND	ND	ND	ND	ND
2-Hexanone		ND	ND	ND	ND	ND	ND	ND
Styrene		ND	ND	ND	ND	ND	ND	ND
Total Xylenes		ND	MD	MD	ND	ND	ND	ND
Dibromoethane (EDB)		ND	ND	ND	ND	NO	ND	ND
Methyl-t-Butylether	(MTBE)	ND	MD	ND	ND	ND	ND	ND
Total Volatiles		3360	3100	443	2560	2540	130	930

	Designation: Additional Soils Investigation 11-17-89 thru 12-6-89								
		Well Number:	SL-8	SL-9	SL-10	SL-11	SL-12	SL-13	SL-14
		₹ Depth (ft):	2 - 4	0 - 1	0 - 2	0 - 2	0 - 2	0 - 2	0 - 2
Parame	eter (ug/kg):								
	Chloromethane		ND	ND	ND	ND	ND	ND	ND
	Bromomethane		NO	ND	ND	ND	ND	ND	NO
	Vinyl Chloride		ND	ND	NO	ND	NO	ND	ND
	Chloroethane		ND	ND	ND	ND	ND	ND	ND
	Methylene Chloride		ND	ND	ND	ND	ND	ND	ND
	Trichlorofluoromethan	ne	ND	ND	ND	ND	ND	ND	ND
	1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND
	1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND
	trans-1,2-Dichloroeth	nen e	ND	ND	ND	ND	ND	ND	ND
	Chloroform		ND	NO	ND	ND	ND	ND	ND
	1,2-Dichloroethane		ND	ND	ND	ND	ND	NO	ND
	1,1,1-Trichloroethane	•	ND	ND	ND	NO	ND	NO	ND
	Carbon Tetrachloride		ND	ND	ND	ND	ND	ND	ND
	Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND
	1,2-Dichloropropane		ND	ND	ND	ND	ND	ND	ND
	cis-1,3-Dichloroprope	ene	ND	ND	ND	ND	ND	ND	ND
	Trichloroethene		19	ND	ND	ND	ND	ND	ND
	Benzene		ND	ND	ND	ND	ND	ND	ND
	Dibromochloromethane		ND	NO	ND	MD	ND	ND	ND
	1,1,2-Trichloroethane	•	ND	ND	ND	ND	ND	ND	ND
	trans-1,3-Dichloropro	opene	NO	ND	ND	MD	ND	MD	ND
	2-Chloroethylvinyl Et	ther	NO	NO	ND	ND	ND	ND	ND
	Bromoform		NO	ND	ND	ND	ND	ND	ND
	1,1,2,2-Tetrachloroet	thane	ND	ND	ND	ND	ND	ND	ND
	Tetrachloroethene		900	ND	ND	ND	ND	110	5
	Toluene		NO	ND	ND	ND	ND	ND	ND
	Chlorobenzene		NO	ND	ND	ND	ND	ND	ND
	Ethylbenzene		ND	ND	ND	ND	ND	ND	ND
	Acetone		ND	22	ND	ND	ND	ND	ND
	Carbon Disulfide		ND	ND	ND	ND	ND	ND	ND
	2-Butanone		ND	ND	ND	MD	ND	MD	ND
	Vinyl Acetate		NO	MD	MD	ND	ND	MD	ND
	4-Methyl-2-Pentanone		ND	MD	MD	ND	ND	MD	ND
	2-Hexanone		ND	MD	NO	ND	ND	MD	ND
	Styrene		ND	ND	NO	ND	ND	MD	ND
	Total Xylenes		NO	ND	MD	ND	MD	MD	ND
	Dibromoethane (EDB)		NO	MD	ND	ND	MD	ND	ND
	Methyl-t-Butylether ((MTBE)	ND	MD	ND	MD	ND	MD	ND
Total	Volatiles		919	22	0	0	0	110	5

Designation: Additional Soils Investigation 11-17-89 thru 12-6-89

	Designation: A						22 (
	Well Number:	SL-15 0 - 2	SL-16 0 - 2	SS-1 0 - 0.5	\$\$-2 0 - 0.5	SS-3 0 - 0.5	S S -4
Danamates (we/ke):	- Depth (ft):	0 - 2	0 - 2	0 - 0.5	0 - 0.5	0 - 0.5	
Parameter (ug/kg):							
Chloromethane		ND	ND	ND	ND	ND	ND
Bromomethane		ND	ND	MD	ND	ND	ND
Vinyl Chloride		ND	ND	ND	ND	ND	ND
Chloroethane		ND.	ND	ND	ND	ND	ND
Methylene Chloride		ND	ND	ND	ND	ND	ND
Trichlorofluorometh	ane	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroe	thene	ND	ND	ND	ND	ND	320
Chloroform		ND	ND	ND	ND	ND	ND
1,2-Dichloroethane		ND	ND	ND	ND	ND	ND
1,1,1-Trichloroetha	ne	ND	ND	ND	NO	ND	ND
Carbon Tetrachlorid	le	ND	ND	ND	ND	ND	ND
Bromodichloromethan	e	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane		ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropro	pene	ND	ND	ND	ND	ND	ND
Trichloroethene		ND	ND	ND	ND	ND	160
Benzene		ND	ND	ND	ND	ND	ND
Dibromochloromethan	e	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroetha	ne	ND	ND	ND	ND	ND	ND
trans-1,3-Dichlorop	ropene	ND	ND	ND	ND	ND	ND
2-Chloroethylvinyl	Ether	ND	ND	ND	ND	ND	ND
Bromoform		ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloro	ethane	ND	NO	ND	ND	ND	ND
Tetrachloroethene		ND	100	44	ND	ND	840
Toluene		ND	ND	ND	ND	ND	ND
Chlorobenzene		ND	ND	NO	ND	ND	ND
Ethylbenzene		ND	ND	ND	ND	ND	ND
Acetone		ND	ND	87	ND	ND	ND
Carbon Disulfide		ND	ND	NO	ND	ND	ND
2-Butanone		ND	ND	ND	ND	ND	ND
Vinyl Acetate		ND	ND	MD	ND	NO	ND
4-Methyl-2-Pentanon	e	ND	ND	MD	ND	ND	ND
2-Hexanone		ND	ND	MD	ND	NC	ND
Styrene		ND	NO	ND	ND	ND	ND
Total Xylenes		ND	ND	MD	NO	ND	NO
Dibromoethane (EDB)		ND	ND	ND	ND	NO	ND
Methyl-t-Butylether		ND	NO	ND	ND	ND	ND
Total Volatiles		0	100	131	0	0	1320

	Designation: Addi	tional Soils Inves	stigation 11-17-89 thru 12	-6-89
	Well Number:	SL-4	SL-11	SL-14
	Depth(ft):	2 - 4	0 - 2	0 - 2
Parameter (ug/kg):				
bis(2-Chloroethyl)	C+bar	ND	ND	ND
1,3-Dichlorobenzer		ND	ND	ND
1,4-Dichlorobenzer		ND	ND	ND
1,2-Dichlorobenzer		ND	ND	ND
bis(2-Chloroisopro		ND	ND	ND
N-Nitroso-Di-n-Pro	• •	ND	ND	ND
Hexachloroethane	••	ND	ND	ND
Nitrobenzene		ND	ND	ND
Isophorone		ND	ND	ND
bis(2-Chloroethox)	/) Methane	ND	ND	ND
1,2,4-trichlorober	nzene	ND	ND	ND
Naphthalene		ND	ND	ND
4-Chloroaniline		ND	ND	ND
Dimethyl Phthalate	=	ND	ND	ND
Acenaphthylene		ND	ND	ND
3-Nitroaniline		ND	ND	ND
Acenaphthene		ND	ND	ND
Dibenzofuran		ND	ND	ND
2,4-Dinitrotoluene		NO	ND	ND
2,6-Dinitrotoluene		ND	ND	ND
Diethyphthalate	1 41	ND	ND	ND
4-Chlorophenyl-phe	enyletner	ND	ND	ND
Fluorene 4-Nitroaniline		ND ND	ND	ND
N-Nitrosodiphenyla	naine	ND ND	ND ND	ND ND
4-Bromophenyl-pher		ND	ND	ND
Hexach Lorobenzene	lytether	ND	ND	ND
Phenanthrene		ND	ND	ND
Anthracene		ND	ND	ND
Di-n-Butylphthalai	e e	ND	Trace	ND
Fluoranthene		ND	ND	ND
Pyrene		ND	ND	ND
Butylbenzylphthali	ite	ND	ND	ND
3,31-Dichlorobenzi		ND	ND	ND
Benzo(a)Anthracene	•	ND	ND	ND
bis(2-Ethylhexyl)	Phthalate	ND	ND	ND
Chrysene		ND	ND	ND
Di-n-Octylphthalai	ie –	ND	ND	ND
Benzo(b)Fluoranthe		ND	ND	ND
Benzo(k)Fluoranthe	ene	ND	ND	ND
Benzo(a)Pyrene		ND	ND	ND
Indeno(1,2,3-cd)P)		NO	ND	ND
Dibenz(a,h)Anthrac		NO	ND	ND
Benzo(g,h,i)Peryle	ene	ND	ND	ND
Phenol		ND	ND	ND
2-Chlorophenol		ND	ND	ND
2-Methylphenol		ND	ND	ND
4-Methylphenol		ND NO	ND	ND
2-Nitrophenol		NO NO	ND ND	ND
2,4-Dimethylphenol 2,4-Dichlorophenol		ND ND	ND ND	ND
4-Chloro-3-Methylp		NO NO	ND ND	ND ND
2,4,6-trichlorophe		NO NO	ND	NO NO
2,4,5-trichlorophe		ND	ND	ND
2,4-Dinitrophenol		ND '	ND	ND
2,4-Nitrophenol		NO	ND	ND
4,6-Dinitro-2-meth	ylphenol	NO	ND	ND
Pentachlorophenol	• • •	MD	ND	MO
Total:		0	0	0

Polychlorinated Biphenyl Hydrocarbons in Soil

	Designation: Additional	Soils Investigation 11-17-	89 thru 12-6-89	
	Well Number:	SL-4	SL-11	SL-14
	Depth(ft):	2 - 6	0 - 2	0 - 2
Parameter(mg/kg):				
Aroclor 1016		ND	ND	ND
Aroclor 1221		ND	ND	ND
Aroclor 1232		ND	ND	ND
Aroclor 1242		ND	ND	ND
Aroclor 1248		ND	ND	ND
Aroclor 1254		ND	ND	ND

ND

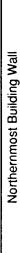
0

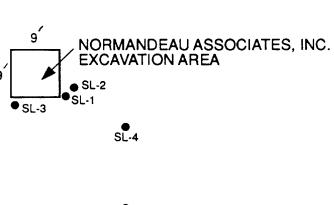
ND

0

ND

0


Aroclor 1260


Total:

Metals in Soil

Designation: Additional Soils Investigation 11-17-89 thru 12-6-89

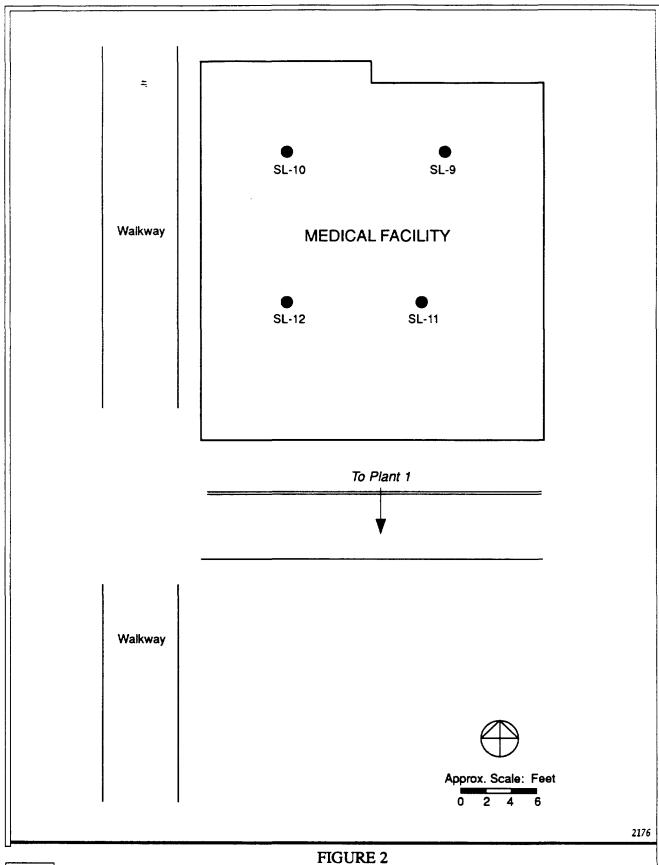
Well Number:	SL-4	SL-11	SL-14
Depth(ft):	2 - 4	0 - 2	0 - 2
arameter(mg/kg):			
Arsenic	12	9.0	13
Antimony	ND	ND	ND
Barium	22.3	15.4	25.8
Beryllium	3.12	3.02	3.97
Cadmium	ND	ND	ND
Chromium	7.74	8.17	7.68
Copper	5.61	4.15	7.74
Lead	5.2	6	11
Mercury	ND	NO	ND
Nickel	5.26	6.14	7.8
Zinc	20.9	15.6	29.1
Aluminum	7,300	4,400	7,600
Iron	10,200	7,080	10,300
Manganese	140	96.8	103
Vanadium	51	8.0	12
otal Solids (%):	86.3	94.4	92.1

SL-5

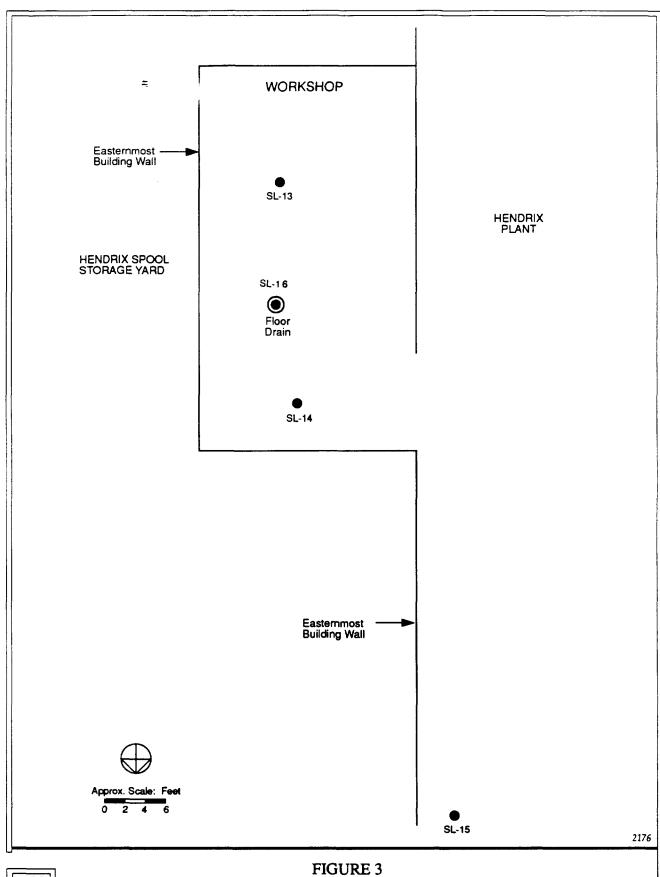
SL-6

SL-7

• SL-8


Easternmost Building Wall

Approx. Scale: Feet
0 6 12


2176

HITCHINER SUB-SLAB BORING LOCATION MAP - MEDICAL FACILITY (Former Location of Photographic Lab Dry Well)

HENDRIX SUB-SLAB BORING LOCATION MAP

STATE OF NEW HAMPSHIRE

Inter-Department Communication

DATE

FROM Patricia Bickford
DES Laboratory

Feb. 28, 1990 AT (OFFICE)

SUBJECLab Results from Savage Municipal Well Site

Environmental Services
Laboratory Unit

TO James Zeppieri, Waste Management Engineering Bureau

In response to your memo concerning samples #'s 140725,140726, 140565 and 140566, please review the following points:

- 1. All samples were run within seven days of the sampling date since no preservative was used.
- 2. Trip blanks for both sampling dates were blank.
- 3. As you know, DES lab requests samples in duplicate so that one sample can be screened by GC/FID headspace analysis to determine if dilutions are necessary for GC/MS. Sample #140725 indicated the presence of trichloroethene at 6.9ug/L on the headspace analysis although the spectrum scan showed numerous other peaks from a sample run previously which was highly contaminated. Sample #140565 indicated nothing present.
- 4. The corresponding samples were run on GC/MS using EPA method 624 and without dilution. Tune and QC calibration check reports for both analyses are attached. Sample #140726 clearly indicated (see attached chromatogram) the presence of trichloroethene. It is DES lab practice for the analyst to confirm the presence of all peaks in a chromatogram and indicate hits on the printout. A Matrix Spike run from the same sample-but not run consecutively- confirmed the hit (see attached Matrix Spike report). Sample #140566 indicated all analytes were below our detection limit.
- 5. Based on the QC reports and analysis data I am confident that trichloroethylene was present in sample #140726 at a level of 10±2ug/L. However, we should also consider that the trichloroethene could come from vial contamination or sampling error.

GC/MS PERFORMANCE STANDARD

Bromofluorobenzene

Site Insi	etrument ID	Time 1:03 pm
Samp	ole Range	Analyst mwn
Tune	• Check: 5'33'7	
m/e	Ion Abundance Criteria	% Relative Abundance
50	15 - 40% of the base peak	21.8
75	30 - 60% of the base peak	45.8
95	Base peak, 100% relative abundance	100.0
96	5 -9% of the base peak	7.6
173	Less than 1% of the base peak	68.2 0.0
174	Greater than 50% of the base peak	4.8 68.2
175	5 - 9% of mass 174	67.7 4.8 ()1
176	Greater than 95%, but less than 101% of 174	4.9 67.7
177	5 - 9% of mass 176	4.9 ()2

- 1 Value in parenthesis is % of mass 174.
- 2 Value in parenthesis is % of mass 176.

Comments:

Internal standard lot

f 1on mass 95 =	(p-fluorobromobenzene)
	i

VOA CALIBRATION CHECK

Analyst: MWR

Instrument : HP5985 Date: 01-02-90

Sample #:5337 Site:

	TRUE	l	NEW	 	% DIFF	1
1	53.1	}	51.5	- !	-3.0	1
1	39.0	1	33.8	1	-13.3	1
1	37.6	1	44.0	 	17.0	1
1	30.2	ì	33.0	l	9.2	1
1	35.6	1	35.8	l	. 4	1
l	30.2	ŀ	33.1	1	9.5	1
	29.6	1	31.6	j	6.8	1
1	47.4	1	64.4	1	35.9	1
1	32.1	1	34,3	1	7.0	1
1	24.9	1	24.8	1	- , 6	1
1	31.7	1	28.1	1	-11.5	1
1	35.1	1	33.3	1	-5.3	
1	21.3	1	24.4	1	14.5	l
1	35.1	1	37.3	ł	6,2	ł
1	39.2	1	41.4	1	5.7	1
	34.7	l	35.2	1	1.3	
1	38.9	ı	39.7	1	2.0	ı
	34.7	1	40.8	1	17.7	1
1	35.4		37.9	1	7.1	
1	34.7	1	34.1	!	-1.8	1
	33.5	1	28.8	i	-14.0	 I
1	0.0	1	0.0	×	·***	1
1	34.6		35.0	ı	1.2	1
1	34.8	1	39.0	 	12.1	
		39.0 37.6 30.2 35.6 30.2 29.6 47.4 32.1 24.9 31.7 35.1 35.1 37.2 34.7 38.9 34.7 34.7 35.4 34.7	32.1 24.9 31.7 35.1 21.3 35.1 37.2 34.7 38.9 34.7 35.4 34.7 35.4 34.7 34.7 34.7	39.0 33.8 44.0 37.6 44.0 30.2 33.0 35.8 35.8 30.2 33.1 29.6 31.6 47.4 64.4 32.1 34.3 24.9 24.8 31.7 28.1 35.1 33.3 21.3 24.4 35.1 37.3 37.3 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 34.7 35.2 41.4 35.4 37.9 40.8	39.0 33.8	

MATRIX SPIKE & SUR TE RECOVERIES

60.00ethane X 41.6 mg/L 34.57 42.1 mg/L 38.38 42.1 mg/L 38.38 42.1 mg/L 38.38 42.1 mg/L 3/.83 42.1 mg/L 3/.83 42.1 mg/L 3/.83		Trichlonoethene . 35.1 ug/l 30.67 87.4	1,1-Dichloroethene 38.8 ug/L 32.77 84.5	CONC. SPIKE CONC. \$ REC. COMMENTS	SAMPLE " 140477 FRN 5344 SAMPLE RANGE WATER? V SOIL? UNITS: V ug/L ug/kg SITE Laffrey
---	--	--	---	------------------------------------	---

	11			11			11		
				11					
				11					•
•		1 0-							
Date	1-0	(- 90) 	<u> </u>					
Ann live t	11 211	?- 90 WR					1		
Analyst	11.	- <u>-</u> -		 					
Site	Jaf	trey	<u> </u>						
	[]	477							
Sample #	1-190	9//		 			+		
PARAMETER	LEV 1	DUP	% D	LEV 1	DUP	* D	LEV 1	DUP	% 0
		1			1	i i			
chloroform		ļ	-	ļ					
1, 2-dichloroethane				 					
1,1,1-trichloroethane	_		 	-	 				
bromodichloromethane	100 (00	1	= 200	-		 	+		
★ trichloroethene	30.67			.			 		
≯ benzene	38.38	134.56	3.0/				 		
dibromochloromethane		+	1 1	 	 		-		
bromoform_		 	 				 		
tetrachloroethylene	70.60	1000	3 (4)				-		
itoluene	34.57	35.50	201	-			 		
≠ chlorobenzene	30.49	31.30	3.74	 	┦		 		
ethylbenzene		 		 	+		-		
m-xylene	 	 	 						
o-xylene		-		 					
p-xylene cis-1, 2-dichloroethane	 		 	 	 				
1,1-dichloroethane	+				 				
p-fluorobromobenzene	 	ļ			 				
1.4-dichlorobenzene					 				
T-1.2-dichloroethene	 				† +				
carbon tetrachloride					 				
1,2-dichloropropane					 				
1,3-dichloropropene									
1,1,2-trichloroethane					1				
m-dichlorobenzene				· · · · · · · · · · · · · · · · · · ·	İ				
o-dichlorobenzene									
chloromethane	1								
bromomethane		Ī					1		
dichlorodifluoromethane									
vinyl chloride									
chloroethane									
methylene chloride									
trichlorofluoromethane									
	32.77	33.88	3.39						
1,3-cis-dichloropropene					•				
2-chloroethyl vinyl ether									
1,1,2,2-tetrachloroethane									
THF									
acetone	12:					$\longrightarrow \coprod$			
2 butanone dy dictione	31.22	21,18 (412 11						
carbon disulfide	2163	2.2	()						
2 hexanone de henzene 4-methyl-2-pentanone	21.83	×-4.1/	1.43						
styrene_c28a3:	B6								
vinyl acetate p. BFB	36,383	7) /4 .	14 4/1						
diethyl ether	00,000	(()						i	
									

ť,

(

1,

FILE NUMBER 5354 140566 MILFORD 1-2-90 MWR

AREA	R. TIME	START	STOP	MAXIMA	# SUMS	MASS	BASE
8946.0	19.8	19.7	20.0	747.0	28.0	56.0	В
	17.2	17.1	17.3	177.0	18.0	63.0	B
1698.0	20.6	20.5	20.7	159.0	19.0	63.0	В
	17.2	17.1	17.4	1583.0	30.0	65.0	В
1983.0	19.9			171.0		78.0	В
1669.0	14.4	14.4		134.0		84.0	В
47824.0	19.8	19.7	20.0	3997.0	39.0	84.0	В
3108.0	25.8	25.6	26.0	150.0	34.0	84.0	В
653.0	15.8	15.8		85.0		91.0	В
2353.0	23.6	23.5	23.7	162.0	24.0	91.0	В
2343.0		15.7	15.9	241.0	20.0	95.0	В
5048.0	20.6		20.8	416.0	25.0	95.0	В
35243.5	28.2		28.6			95.0	В
51945.0	20.6		20.8	4300.0	37.0	96.0	В
3364.0	20.6	20.5	20.7	297.0	22.0	97.0	В
7082.5	25.8	25.7	26.1	413.0	45.0	97.0	В
52090.0	25.8	25.5				98.0	В
5663.0	15.8	15.7		578.0	23.0	128.0	В
7648.0	15.8			766.0		130.0	В

No. CALIB. RUNS = 1 METHOD TYPE = ISTD

TYPE	TIME	MASS	FACTOR	RESULT	NAME	1
Ci	14.4	84.0	2.3787	2.37	METHYLENE CHLORIDE -41=0.47	ΒP
C 1	15.7	96.0	1.8650	.130		
Ī 1	15.8	128.0	1.0000	19.10		
01	16.4	63.0	3.3422	. 1319	1,1-DICHLOROETHANE	
C 1	16.7	96.0	1.5694	. 130	1,2-BICHLOROETHYLENE(C&T)	
C 1	17.0	83.0	3.5562	. 130	CHLOROFORM	
C 1	17.2	65.0	1.9558	32.03		
C 1	17.4	62.0	2.2336	. 130	1,2-DICHLOROETHANE	
C 1	18.0	73.0	2.7571	. 130	METHYL-T-BUTYL ETHER	
C 1	18,2	97.0	2.5013	. 130	1,1,1-TRICHLOROETHANE	
C 1	18.6	83.0	3.3636	. 130	BROMODICHLOROMETHANE	1 47
C 1	18.4	56.0	3.3367	. 130	CYCLOHEXANE	569 NE
C2	19.7	130.0	.3221		TRICHLOROETHYLENE V	مر الم
C2	20.2	129.0	.3908	. 130	DIBROMOCHLOROMETHANE ()	1 0.
02	19.8	84.0	.9749	21.63	D6-BENZENE	animalian cell to
C2	19.9	78.0	.9811	.:39	BENZENE	0000
12	20.6	96.0	1.0000	22.90	FLUOROBENZENE	سنعفل مين کو
C2	21.7	173.0	.2601	. 130	BROMOFORM	-marian
C2	22,9	166.0	.3597	. 130	TETRACHLOROETHYLENE	
C2	23.6	91.0	1.2048	:36_	TOLUENE (DIV	prosect
C2	24.5	112.0	.7964		CHEURUBENZENE	10
13	25.8	98.0	1.0000	19.40		
СЗ	26.1	91.0	1.0487		ETHYLBENZENE	
СЗ	28.2	95.0	.4524		PARA-FLUOROBROMOBENZENE	
СЗ	29.9	106.0	.3869		META-XYLENE	
СЗ	30.8	106.0	.3496	.190	ORTHO&PARA-XYLENES	

7

HP RUN # 72

GC/MS PERFORMANCE STANDARD

Bromofluorobenzene

SiteInstrument ID_ <u>HP5985</u> DateTime						
Tune	: Check: 5358					
m/e	Ion Abundance Criteria	% Relative Abundance		-		
50	15 - 40% of the base peak	20.7				
75	30 - 60% of the base peak	42.6				
95	Base peak, 100% relative abundance	100.0				
96	5 -9% of the base peak	8.8				
173	Less than 1% of the base peak	0.0				
174	Greater than 50% of the base peak	64.1				
175	5 - 9% of mass 174	5.0	(7.81			
176	Greater than 95%, but less than 101% of 174	61.6	(96.1)			

1 Value in parenthesis is % of mass 174.
2 Value in parenthesis is % of mass 176.

5 - 9% of mass 176

Comments:

177

Internal standard lot #	63406
Internal standard: abundance of ion mass 96 =	(fluorobenzene) 52056
Tuning standard: abundance of ion mass 95 =	(p-fluorobromobenzene)
<u> </u>	

(5.5)2

VOA CALIBRATION CHECK

Analyst: MWR

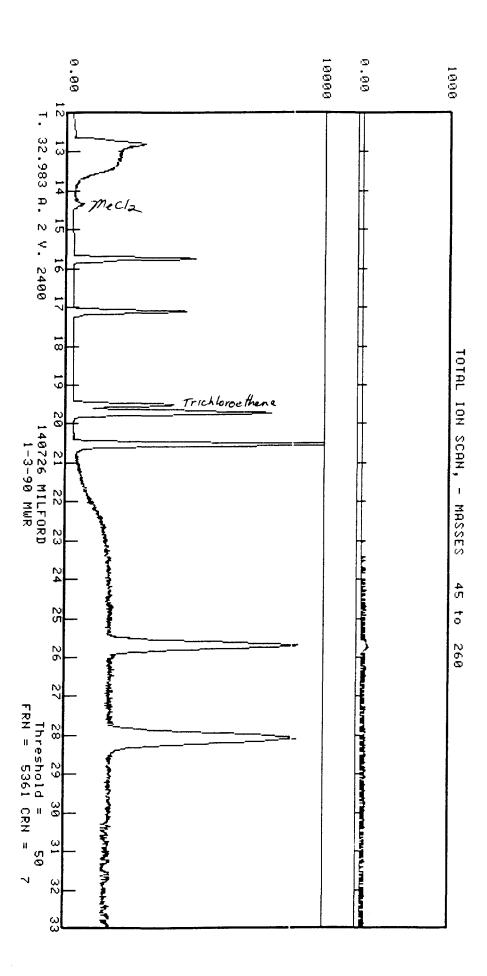
Instrument : HP5985

Date: 01-03-90

Sample #:535	Sar	nole	₽ #	: 5	35	8
--------------	-----	------	-----	-----	----	---

Site:

Sample #:5550		OT CE	•			
I COMPOUND		TRUE I	NEW	1	% DIFF	1
IMethylene Chloride	1	53.1	57.1		7.4	1
1,1-Dichloroethene	1	39.0	36.2	1	-7.1	1
1,1-Dichloroethane	1	37.6 1	46.0		22.4	W
11,2-Dichloroethene	1	30.2 1	34.6	1	14.7	1
1Chloroform		35.6	39.8	1	11.7	1
ld4-1, Dichlore hane	I	30.2	31.4	1	3,9	
11,2-Dichloroethane	1	29.6	33.9	1	14.6	
Methyl=T-Butyl Ether	1	47.4	71.0	1	49.8	1
11,1,1-Trichloroethane	1	32.1	35.8		11.6	1
Cyclohexane	1	24.9 1	26.7	1	7.3	1
Bromodichloromethane	1	31.7	37.7	1	18.9	 I
lTrichloroethene	1	35.1	35.7	1	1.7	1
ld6-Benzene		21.3	18.3	1	-14.2	1
lBenzene	1	35.1	35.5	1	1.1	1
Dibromochloromethane	1	39.2 1	39.0	1	-,4	1
IBromoform	I	34.7 1	33.2	1	-4,2	1
Tetrachloroethylene	1	38.9	35.8	1	-8.1	
IToluene		34.7 1	33.8	1	-2.6	1
	1	35.4 I	34.3	 I	-3.1	1
Ethylbenzene	1	34.7	36.9	 I	6.3	1
Ip-BFB	1	33.5	34.4	1	2.6	1
IStyrene	1	0.0 1		*	****	1
lm-Xylene	t	34.6		1	5.5	1
Ip-Xylene			32.5	 	-6.7	
			**** **** *** *** *** *** *** ***			

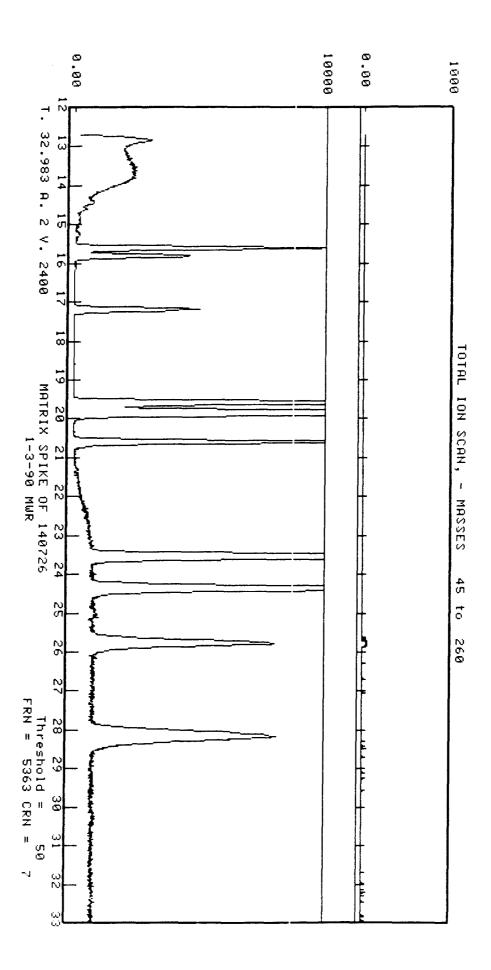

SAMPLE * 140726 WATER?	FRN 5363 UNITS:	SAMPLE RANGE ug/Lug/kg	SITE	miltord	1 1
СОМРОИМО	CONC. SPIKE ADDED	CONC. NS (ug/L)	% REC.	COMMENTS	
1,1-Dichloroethene	38.8 ug/L	36.13	93.1		
Trichloroethene .	35.1 ⴑ፬/Լ	44.55-10.6 (butground)=	96.7		
Chlorobenzene	35.5 ug/L	35.40	99.7		
Toluene	41.6 ug/L	45.15	108, 5		
Бенгене	42.1 ug/L	41.76	99. 2		
d _j -Dichloroethane X	30.2 to.0 ug/L	33.49	110.9		
Senzene-d6 X .	21.3 ug/L	20.56	96.5		
pBromofluorobenzene X	33.5 ug/L	29.95	4.68		

		ti Muremper-
		CAL # AMT 8 6.892 (R) 1 4.483 7: 2.7388 E+ 2
. Б. 23		AREA CF 18958 432 1871 AMT:
6.38	11.82	6.69 6.69 6.84 11.83 F: 1.8888 E+8
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		### #UN # # 1310

)57

and the second of the second of

GRAPHIC CONTROLS CORPORATION BUFFALO NEW YOR


J. W. W. B.

FILE NUMBER 5361 140726 MILFORD 1-3-90 MWR

AREA	R. TIME	START	STOP	MAXIMA	# SUMS	MASS	BASE
9027.0	19.7	19.6	19.9	811.0	26.0	56.0	В
1407.0	19.5	19.5	19.6	143.0	18.0	62.0	В
1604.0	17.1	17.0	17.2	208.0	17.0	63.0	В
1948.0	20.5	20.5	20.7	214.0	18.0	63.0	В
773.0	28.1	28.0	28.2	77.0	20.0	63.0	В
16999.0	17.1	17.0	17.3	1566.0	28.0	65.0	В
9395.0	32.9	27.3	33.0	73.0	584.0	83.0	F
1147.0	14.3	14.2	14.5	113.0	18.0	84.0	В
46056.0	19.7	19.6	20.0	4084.0	37.0	84.0	В
884.0	15.8	15.7	15.9	103.0	14.0	91.0	В
2487.0	15.8	15.7	15.9	256.0	20.0	95.0	В
9242.0	19.5	19.4	19.7	840.0	26.0	95.0	В
5504.0	20.6	20.4	20.7	502.0	25.0	95.0	В
55807.0	28.1	27.7	28.5	1793.0	80.0	95.0	В
59025.0	20.5	20.4	20.8	5547.0	35.0	96.0	В
5931.0	19.5	19.4	19.7	531.0	24.0	97.0	В
3925.0	20.5	20.4	20.7	369.0	23.0	97.0	В
8157.0	25.7	25.6	26.0	567.0	35.0	97.0	B
67448.0	25.7	25.4	26.0	3210.0	56.0	98.0	В
5947.0	15.8	15.7	15.9	569.0	23.0	128.0	В
7348.0	15.8	15.7	15.9	706.0	25.0	130.0	В
8800.0	19.5	19.4	19.7	906.0	25.0	130.0	B

No. CALIB. RUNS = 1 METHOD TYPE = ISTD

TYPE	TIME	MASS	FACTOR	RESULT	NAME	
C1	14.3	84.0	2.3787	1.55	METHYLENE CHLORIDE -2.79-0	B0
Ci	15.7	96.0	1.8650	.130	1,1-DICHLOROETHYLENE	
I 1	15.8	128.0	1.0000	19.10	BROMOCHLOROMETHANE	
C 1	16.4	63.0	3.3422		1,1-DICHLOROETHANE	
C 1	16.7	96.0	1.5694	. 130	1,2-DICHLOROETHYLENE(C&T)	
C 1	17.0	83.0	3.5562			
		65.0				
C 1	17.4	62.0	2.2336	. 130	1,2-DICHLOROETHANE	
C1				. 130	METHYL-T-BUTYL ETHER	
C 1	18.2	97.0	2.5013	. 130	1,1,1-TRICHLOROETHANE	
C 1		83.0		. 130		
C1	18.4	56.0		. 130		_
C2	19.5	130.0	.3221	10.50	TRICHLOROETHYLENE	10.60
C2	20.2	129.0	.3908	. 130	;	
C2	19.7	84.0	.9749	18.33	D6-BENZENE	
C2	20.0	78.0	.9811	. 130		
12		96.0	1.0000	22.90	FLUOROBENZENE	
		173.0	.2601	. 130	BROMOFORM	
		166.0	.3597		TETRACHLOROETHYLENE	
С2	23.7	91.0	1.2048	. 130	TOLUENE	
С2			.7964		CHLOROBENZENE	
13	25.7	98.0	1.0000		D-10-ETHYLBENZENE	
C3	26.1	91.0	1.0487		ETHYLBENZENE	
03		95.0			PARA-FLUOROBROMOBENZENE	
			.3869			
03	30.8	106.0	.3496	.130	ORTHO&PARA-XYLENES	_ _

(

12494.0		10.5	15.8	1098.0	∠3.0	75.U	Б
841.0	19.6	19.5	19.7	95.0	14.0	98.0	В
70365.0	25.8	25.5	26.1	3107.0	60.0	98.0	В
78051.0	24.4	24.2	24.7	95.0 3107.0 4515.0	50.0	112.0	В
5546.0	15.8	15.7	16.0	513.0	24.0	128.0	В
7486.0	15.8	15.7	16.0	700.0	23.0	130.0	В
39726.0	19.6	19.5	19.8	3869.0	33.0	130.0	В
No. C	ALIB. RUNS	= 1 1	1ETHOD TY	PE = ISTD			
TYPE TIME	MASS	FACTOR	RESULT	NAME			
C1 14.4	84.0	2.3787	2.05	METHYLENE 1,1-DICHLO BROMOCHLOR	CHLORIDE		
C1 15.6	96.0	1.8650	36.13	1,1-DICHLO	DROETHYLE	HE	
I1 15.8	128.0	1.0000	19.10	BROMOCHLOR	ROMETHANE		
C1 16.4	63.0	3.3422	. 130	1,1-DICHLO	PROETHANE		
01 16.7	96.0	1.5694	. 130	1,2-DICHLC	ROETHYLE	NE(C&T)	
C1 17.0	83.0	3.5562	. 130	CHLOROFORM	1		
C1 17.2	65.0	1.9558	33.49	d4-DICHLOR	ROETHANE		
C1 17.4	62.0	2.2336	. 130	CHLOROFORM d4-DICHLOR 1,2-DICHLO	ROETHANE		
C1 18.0	73.0	2.7571	. 130	METHYL-T-E	BUTYL ETH	ER	
C1 18.2	97.0	2.5013	. 130	1,1,1-TRI	CHLOROET	HANE	
C1 18.6	83.0	3.3636	. 130	BROMODICHL	OROMETHAL	NE	
C1 18.4	56.0	3.3367	. 139	CYCLOHEXAN	ŧΕ		
C2 19.6	130.0	.3221		TRICHLOROE			
C2 20.2	129.0	2900	. 130	DIBROMOCHL			
C2 19.8		.9749	20.56	D6-BENZENE			
	78.0	.9811	41.76	BENZENE	·		
	96.0	1.0000	22.90	FLUOROBENZ	ENE		
C2 21.7	173.0	.2601	. 130	BROMOFORM			
	166.0	.3597	. 130	TETRACHLOR	OETHYLEN	Ē	
C2 23.6	91.0	.2501 .3597 1.2048	45.15	TOLUENE			
C2 24.4	112.0		334.40	CHLOROBENZ	ENE		
I3 25.8	98.0	1.0000	19.40	D-10-ETHYL	BENZENE		
C3 26.1	91.0	1.0487	.00	ETHYLBENZE	NE		
C3 28.2	95.0	.4524	29.95	PARA-FLUOR	OBROMOBE	YZENE	
60 00 0	106.0	2060	13/3	METO VVIEN			

15.8

1098.0

28.0

В

98.0

410110

C3 29.9 106.0

C3 30.8 106.0

12494.0

15.6

15.5

.00 META-XYLENE

.00 ORTHO&PARA-XYLENES

الم ا

.3869

.3496