ORNL--6251
DE86 010063

$\because+\cdots$
ORNL-6251
Dist. Category UC-11

ENVIRONMENTAL SCIENCES DIVISION
USER'S MANUAL FOR ECCLOGICAL RISK ASSESSMENT
Editors

L. W. Barnthouse
G. W. Suter II

Other Contributors
S. M. Bartell
J. J. Beauchamp
R. H. Gardner
E. Linder
R. V. O'Neill
A. E. Rosen

ORNL Project Manager
S. G. Hiidebrand

Environmental Sciences Division
Publication No. 2679
EPA Projert Officers
A. A. Moghissi
F. Kutz

Date of Issue -- March 1986
Prepared for
Office of Research and Development
U.S. Environmental Protection Agency washington, O.C. 24060

Interagency Agreement No. OW 8993 0292-01-0
(DOE 40-740-78)
Prepared by the
OAK RIDGE NATIONAL LABDRATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the
U.S. DEPARTMENT OF ENERGY under Contract NO. DE-ACOS-840R21400

A major purpose of the Techni-

 cal Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

CONTENTS

PageCONTENTS ifi
LIST OF FIGURES vii
LIST OF TABLES ix
ABSTRACT $x i$

1. INTROOUCTION 1
1.1 Concepts and Definitions 2
1.2 Elements and Rationale for Risk Assessment Methodology 4
1.2.1 End Points for Environmental Risk Assessment 6
1.2.2 Methods for Ecological Effects Assessment 9
1.3 Organization of Users' Manual 16
REFERENCES (Section 1) 18
2. EXPOSURE ASSESSMENT 20
2.1 Surface Water Transport and Transformation 23
2.2 Atmospheric Transport, Transformation, and Deposition 26
REFERENCES (Section 2) 29
3. TOXICITY QUOTIENTS 31
3.1 Definition 31
3.2 Factors 31
3.3 Implementation 32
3.3.1 Matching Exposure and Effects 33
3.3.2 Benchmark Selection 36
3.4 Discussion 44
REFERENCES (Section 3) 46
4. ANALYSIS OF EXTRAPOLATION ERROR 49
4.1 Definition . 49
4.2 Implemıntation . 54
4.2.1 Risk Calculation. 55
4.2.2 Extrapolation 56
4.2.3 Double Extrapolation 58
4.3 An Example: Aquatic Invertebrates and Fish 58
4.3.1 Data Sets £i
4.3.2 Extrapolation Results 60
4.3.3 A Demonstration 70
4.4 Risk Withnut Regression. 71
4.5 Comparison of Methods 73
4.6 Discussion . 76

REFERENCES (Section 4) . 80
5. EXTRAPOLATION OF POPULATION RESPONSES 82
5.1 Formulation of Concentration-Response Model 83
5.2 Fitting the Logistic Model to
Concentration-Response Data 84
5.3. Extrapolation of Concentration-Response Functions and
Confidence Bands for Untested Species 87
5.3.1 Extrapolation of B and LC_{25}. 87
5.3.2 Calculation and Verification of Synthetic.
Concentration-Response Furiction 88
5.4 Calculating Reduction in Reproductive Potintia? 89
5.5 Application of the Model to Rainbow Trout and
Largemouth Bass 92
5.5.1 Comparison of Fitted and Extrapoiated Concentration-Response Functions and Uncertainty Bands 96
5.5.2 Comparisun of Extrapolated Concentration-Response Functions and Prediction litervais for Different Species 102
5.6 Discussion 106
REFERENCES (Section 5) 111
6. ECOSYSTEM LEVEL RISK ASSESSMENT 113
6.1 Introduction 113
6.2 Ecosystem Risk Methods 114
6.2.1 Description of the Standard Water Co?umn Model (SWAC.OM) 114
6.2.2 Organizing Texicity Data 117
6.2.3 General Stress Syndrome 119
6.2.4 Microcosm Simulation 122
6.3 Uncertainties Associated with Extrapolation 123
6.4 Results of Ecosystem Risk Ássessments 124
6.4.1 Risk Assessment for Direct and Indirect Liquefaction 125
6.4.2. Risk Assessment of Ciloroparaffins 128
6.4.3 Patterns of Toxicological Effects in SWACOM 130
6.4.4 Using SWACOM to Extrapolate Bioassays 134
6.5 Monte Carlo Methods and Analysis 136
6.6 Discussion 139
REFERENCES (Section 6) 142
7. GENERAL OISCUSSION 145
7.1 Spatiotemporal Scale in the Integration of Exposure and Effects 145
7.2 Interpreting Uncertainty 146
7.2.1 Inherent Variability 148
7.2.2 Parameter Uncertainty 148
7.2.3 Model Error 149
7.3 Interpreting Ecologica: Significance 151
7.4 Other Applications of Ecological Risk Assessment 155
7.5 Critical Research Needs 158
REFERENCES (Section 7) 162
APPENDIX A. Acute and Chronic Effects Data Used in Analysis of Extrapolation Error 165
APPENOIX B: Concentration-Response Data Sets from Chronic Toxicity Experiments 171

LIST OF FIGURES

Figure Page
1.1 Flow chart for ecological risk assessmentof toxic chemicals5
4.1 Logarithms of Lr. 50 values for Salyelinus plotted against salmo 51
4.2 Logarithms of MATC values from life-cycle or partial life-cycle tests plotted against logarithms of $96-h C_{50}$ values determines for the same species and chemical in the same laboratory 52
4.3 Probability density functions for a predicted Salvelinus MATC and an expected environmental concentration 53
5.1 Uncertainty band for the logistic model fitted tc concentration-response data 86
5.2 Example of the procedure used to verify the synthetic concentration-response modeling technique 90
5.3. Fitted concentration-response function and uncertainty band for the reduction in female reproductive potential of brook trout (Salvelinus fontinalis) exposed to methylmercuric chloride 97
5.1 Synthetic concentration-responj: function and uncertainty' band for the reduction fr: femile reproductive pitential of rainbow trout (siamo gairdneri) exposed to methylmercur? chloride. Chronic LC_{25} s for the three life stages were obtained thy single-step extrapolation from an acute LC_{50} for rainbow trout 58
5.5 Synthetic concentration-response function and unc: artainty band for the reduction in female reproductive poxential of rainbow trout (Salmo gairdneri) exposed to methy? chloride. Chronic $L_{25} C_{25}$ for the three life stages jere obtained by two-step extrapolation from an acute IC_{50} for fathead minnow (Pimephales promelas) 100
5.6 Synthetic concentration-response function and uncertainty band for the reduction in female reproductive potential of rainbow trout (Salmo gairdneri) exposad to methylmercuric chloride. Chrontc LC_{25} s were obtained as in Fig. 5.4. Uncertainty concerning the curvature of the function was eliminated by setting the curvature parameter (B) constant at its median value 101

Figure

Page

5.7 Synthetic concentration-response function and uneertainty
barid for the reduction in female reproductive potential
of rainbow trout (Salmo gairdneri) exposed to cadmium.
Chronic LC_{25} s were obtained is single-step extrapolation
from an acute L_{50} for rainbow trout. 103
5.8 Synthetic concentration-response function and uncertainty band for the reduction in female reproductive potential of largemouth bass (Mierspterus salmoides) exposed to cadmium. Chronic LC_{25} s were obtained by two-step extrapolation from an acute LC_{50} for bluegill (Lepomis macrochirus) 104
6.1 A schematic illustration of SWACOM (Standard Water Column Model) 115
6.2 A typical simulation of SWACOM showing seasonal dynamics of phytoplankton, zooplankton, and forage fish 116
6.3 Risk estimates for liaphthalene over a range of environmental concentrations 126
6.4 Comparison of risks among direct coal liquefaction technologies 127
6.5 Comparison of risks for two indirect coal liquefaction technolonies 129
7.1 Four applications of ecological risk functions 156
Table Page
4.1 Taxonomic extrapolations 61
4.2 Summary of aquatic taxonomic extrapolations 63
4.3 Acute-chronic extrapolations 66
4.4 Pooled variances of $\log L C_{50}, E C_{50}$, and MATC values from replicate tests 76
4.5 Comparison of methods for estiniating the MATC for a species other than fathead minnow 75
5.1 Life table for rainbow trout (Salmo gairdneri), modified from Boreman (1978) 93
5.2 Life table for largemouth bass (Micropterus salmoides). modified from Coomer (1976) 94
6.1 Risks of increased algal production and decreased game fish production in systematic alteration of the General Stress Syndrome 121
6.2 Toxicological data used in examination of patterns of effects for cadmium 131
6.3 Comparisons of responses to different patterns of sensitivity to cadmium 133
7.) Contaminant ciisses determined to pose potentially significant risks to fisi populations by one or more of three risk analysis meihods: Quotient method (QM), analysis of extrapolation error (AEE). and ecosystem uncertainty analysis (EUA) 154

ABSTRACT

BARNTHOUSE, L. W., and G. W. SUTER II. 1986. Users' manual for ecological risk assessment. ORNL-6251. Oak Ridge National Laboratory, Dak Ridge, Tennessee. 220 pp.

This report presents the results of a four-year project on environmental risk analysis of synfuels technologies, funded by the Office of Research and Development (ORD), U.S. Environmental Protection Agency. The overall objective of the project was to support the ORD's synfuels research program by developing a risk assessment methodology? capable of (1) ranking the waste streams in a process by risk to the environment, (2) estimating the change in environmental risk that would be achieved using alternative control technology options, (3) estimating the sensitivity of risk estimates to site-dependent variables, and (4) identifying research problems contributing the greatest uncertainty to risk estimates.

At the time the project was initiated, the kinds of environmental risk analyses desired by ORD had never been performed, and proven, quantitative methods analagous to the methods used to perform human health risk assessments or engineering safety assessments did not exist. Consequently, methods for quantifying ecological risks had to be developed de novo and/or borrowed from other fields. An initial suite of five potentially useful techniques was applied in a preliminary risk analysis of indirect coal liquefaction technclogies. As a result of this application, it, was determined that two of the original five techniques were unsuitable for synfuels risk assessments. The remaining three were developed further and applied in a unit-release
risk assessment, a revised indirect liquefaction risk assessment, a direct liquefaction risk assessment, and an ofl shale risk assessment.

The methodology used in the synfuels environmental risk assessments has many potential applications, in addition to the specific purpose for which it was developed. This users' manual is intended to faciiitate wider use of ecological risk analysis techniques by (1) presenting the rationale for the approach developed in this project, (2) describing the derivation and mechanics of the three techniques used in the synfuels risk assessments, and (3) discussing the limitations and other potential applications of ecological risk. assessment methods.

1. INTROOUCTION

L. W. Barnthouse and G. W. Suter II

This report presents the metinodological results of a 4-year project on an environmenta! risk assessment of synfuels technologies, funded by the Office of Research and Development (ORD), U.S. Environmentai Protection igency. The overall objective of the project was to support the ORD's synfue's research program by developing a risk assessment methodology cafatle of (1) ranking waste stream components in a process by risk to the environment, (2) estimating the change in environmental risk that would be achieved by alternative control technology options. (3) estimating the sensitivity of risk estimates to site-dependent variables, and (4) identifying areas of research most likely to reduce uncertainty in the risk estimates. The methodology would be required to address both atmospheric and aqueous releases of chemical contaminants, but would not be required to address nonchemical effects such as thermal pollution or habitat disturbance. In addition, the methodology would be required to produce best estimâes of environmental risk rather than worst-case estimates, and to explicitly quantify uncertainties concerning magnitudes of risk. The methodology would be demonstrated by using it to perform risk assessments for three classes of synthetic liquid fuels technologies: direct coal lir:sefaction, indirect coal liquefaction, and surface oil shale retorting.

At the time the project was initiated, environmental. risk assessments of the type desired by ORD had never been performed, and. proven quantitative methods analogous to the methors used to perform
human health risk assessments or engineering safety assessments did not exist. Consequently, methods for quantifying ecological risks had to De developed de novo or bcrowed from other fields. An-initial suite of five potentially useful techniques were described by Barnthouse et al. (1982). These five were applied in a preliminary risk assessment for indirect coal liquefaction technologies. As a result of this application, it was determined that two of the original five techniques, specifically fault tree analysis and the analytic hierarchy process, were unsuitable for synfuels risk assessments. The remaining three were further developed and applied in a unit-release risk assessment (Barnthouse et al. 1995a), a revised indirect coal liquefaction risk assessment (Barnthouse et al. 1985b), a direct coal liquefaction risk assessment (Suter et al. 1984), and an oll shale risk assessment (Suter et al. 1986).

The meihodology used in synfuels environmental risk assessments has many potential applications in addition to the specific purpose for which it was developed. This users' manual is intended to facilitate wider use of ecological risk assessment techniques by (1) presenting the rationale for the approach developed in this project, (2) describing the derivation and mechanics of the three techniques used in synfuels risk assessments, and (3) discusing the limitations and other potential applications of ecological risk assessment methods.

1.1 CONCEPTS AND DEFINITIONS

The approach described here is based on the concepts of risk assessment and risk management, as defined by Ruckelshaus (1983) and

Mogrissi (1984). The stimulus for adopting risk assessment as a fundamental component of environmental regulation is the recognition that (1) the cost of eliminating all environmental effects of technology is prohibitively high, and (2) reguiatory decisions must usually be made on the basis of incomplete scientific information. The objective of risk-based environmental regulation is to balance the degree of risk permitted against the cost of risk reduction, against competing risks, or against risks that are generally accepted by the public. Scientific risk assessment has two roles in this process. First, it provides the quantitative bases for balancing and comparing risks. Second, it provides a systematic means of improving the understanding of risks by comparing the relative magnitudes of uncertainties concerning different steps in the causal chain between initial event (e.g.. release of a toxic chemical) and ultimate consequence (cancer in humans or extinction of a bird population).

Risk assessment may be defined as the process of assigning magnitudes and probabilities to adverse effects of human activities (or natural catastrophes). This process involves identifying the adverse effects to be addressed in the assessment and using mathematical or statistical models to quantify the relationship between initiating events and ultimate effects. Idealiy, although not aiways in practice, the results of a risk assessment reflect both the inherent uncertainty of events (e.g., probabilities of pipe ruptures or frequencies of rainstoms) and the scientific uncertainty resulting from an inadequate understanding of cause/effect relationships.

A risk-based approach to ecological effects assessment arid

 management differs fundamentally from conventional impact or hazard assessment. In ecological risk assessment, uncertalinties concerning potential effects must be explicitly recognized and, if possible, quantified. It is recessary to consider not only uncertainty regarding the biological effects of environmental stressors, but also the inherent variability of natural populations and ecosystems. Moreover, ecological risk assessments used in decision making should be based, to the greatest extent possible, on objective estimates of ecological damage (e.g., probabilities of population extinction or reductions in abundance of plants and animals). Such assessments require more information about the environments and organisms potentially affected than is used in current hazard assessment schemes for effluent discharges or toxic chemical releases.
1.2 ELEMENTS ANO RATIONALE FOR RISK ASSESSMENT METHOOOLOGY

The ecological risk assessment scheme adopted for this project consists of the components outlined in Fig. 1.1. First, the specific adverse effects to be evaluated, known as "end points," are selected. Second, the environment within which the technology being assessed. is located (the "reference environment") is described. Third, a technical description of the facility that is the source of potential impacts is developed, and estimates of effluent magnitudes and compositions, or "source terms," are developed. Fourth, appropriate environmental transport models are used to perform an "exposure assessment," i.e., to estimate patterns of contaminant distribution in time and space.

ORNL-OWG 85-1 7070

Fig. 1.1. Flow chart for ecological risk assessments of toxic chemicals.

Fifth, in the "effects assessment," avallable toxicological data are analyzed to determine the effects of the released contaminants on the organisms exposed. Finally, all of the previous steps are combined to produce the final risk assessment, which expresses the ultimace effects of the source terms on the end points in the reference environment.

The above scheme closely parallels risk assessment schemes used in human health risk assessments. The components that are unique to ecological risk assessment, and for which no previous guidance was available, include the selection of (1) end points and (2) methods for effects assessment. Rationales for the decisions made regarding these two components are presented here.

1.2.1 End Points for Environmental Risk Assessment

There are no obvious ecological equivalents of cancer or core meltdown, hence, there can be no standardized list of universally applicable ecological end points for risk assessment. To be useful in risk assessment, however, any end point should (1) have biological relevance, (2) be of importance to society. (3) have an unambiguous operational definition, and (4) be accessible to prediction and
measurement. for synfuels risk assessments, it was concluded that the most appropriate rind points were impacts on biological populations of importance to society. Societal importance was emphasized because assessments of risks to insects, zooplankton, or other organisms not perceived by society as being valuable are not likely to influence decision making unless they can be clearly shown to indicate risks to fish, wildife, crops, or forest trees. Biological populations were

- emphasized because (1) the death of an individual organism is usually biologically meaningless, and (2) current scientific understanding of higher levels of organization (communities and ecosystems) is insufficient to support the use of higher-level end points.

Specific descriptions and rationales for the five classes of end points used in synfuels risk assessments are presented here. They were chosen on the basis of their perceived importance and the availability of methods for quantifying population-level effects, without regard to any known or hypothesized vulnerability to synfuels-derived environmental contaminants. The existence and quantity of toxicity data relating to the end point biota were not considered.
1.2.1.1 Reductions in abundance and production of commercial or game fish populaticns. Impacts on fish species harvested by man are among the most socially important impacts on aquatic ecosystems. These species are also important indicators of the ecological health of aquatic ecosystems. Many harvested fish, especially game fish, are predators at the top of aquatic food chains; these top predators are frequently among the first species to disajpear as a result of disturbances.

1.2.1.2 Development of algal populations that detract from water

 use. Undesirable blooms of algae commonly occur as consequences of nutrient additions to lakes or reservoirs. These blooms are a nuisance to shoreline residents and recreational lake users; they can affect fish populations and cause taste and odor problems in drinking water. Although changes in the abundance and relative concentrations of inorganic nutrients are responsible for most such blooms, they can alsobe caused by reductions in grazing pressure from 200plankton that are sensitive to toxic chemicals, and they could, at least in theory, be caused by species-specific differences in sensitivity to toxic chemicals.

1.2.1.3 Reductions in timber yield and undesirablechanges in

 forest composition. Forests have direct economic, aesthetic, and recreational values as well as indirect values. Direct economic values are the easiest to quantify. Aesthetic and recreational values of forests can be related to primary production because of the general preferences for mature forests with large irees, however, pollution-induced chlorosis and necrosis of tree leaves is also an important aestheti: impact, even when reductions in yield cannot be detectrd. The indirect values of forests are possibly the most. important; but they are difficult to analyze. These values include erosion and flood control, removal and detoxification of pollutants, and climate moderation. Although production has been used as an index of indirect values, community structure and composition are also clearly important.1.2.1.4 Reductions in agricultural production. The value of agriculture is self-evident. For the purpose of synfuels risk assessment, agriculture is assumed to refer only to crop production. Livestock and poultry are considered with wildife, because assessments of risks to all vertebrate animals are based on the same toxicological data base.
1.2.1.5 Reductions in wildife populations. Wildife is valued as game and as an object of various forms of nondestructive
appreciation. Hunting, bird watching, and other wildiffe-oriented forms of outdoor recreation are economically and psychologically important. Effects of pollutants on wildilfe may result from direct toxicity, habitat modification, or food-chain dynamics.

1.2.2 Methods for Ecological Effects Assessment

Direct information on risks to populations in nature, comparable to human epidemiological data, is rarely available and of ten unobtainable even in principle. For the case of ecological efferts of toxic chemicals, it is inevitably necessary to extrapolate risk estimates from laboratory toxicity test data or from limited field experiments. The quantity, quality, and applicability of available test data varies vastly among chemicals and end point biota. In addition, extrapolations from even the best laboratory data are compromised by incomplete characterization of the species compositions of affected environments, biotic interactions among the exposed populations, and interactions with other stresses (e.g.. exploitation by man) that affect the exposed populations.

Given the diversity of end points and the variety of data types that must be accommodated, it is clear that no single method can be adequate for making all of the necessary extrapoiations for all chemicals and end points of interest. Moreover, confidence in the conclusions from any risk assessment is increased if similcr conclusions can be reached using several independent nethods. Consequently, at the initiation of the project, it was determined that five distinctly different methods for assessing ecological effects of
toxic chemicais for risk assessment would be investigated. The following subsections briefly describe the major characteristics of the five methods and present the rationales for their choice. As previously noted, fault tree analysis and the analytic hierarchy process were abandoned following application in a preliminary risk assessment for indirect coal liquefaction. To illustrate the difficulty of applying methods borrowed from other fields to ecological assessment problems, the reasons for faflure of our appifcations of these two methods are discussed.
1.2.2.1 Fault tree analysis. Fault tree analysis is a standard method used in engineering safety assessments to identify events and system states that can lead to disastrous fallures of complex systems
such as nuclear power plants and space shuttles. A fault tree is a model that graphically and logically represents these events and states. When the probabilities of each of the possible initiating events are specified, the fault tree can be used to calculate the probability of fallure of the whole system.

There is an appealing analogy between complex engineering systems and complex ecosystems, and it is even possible to define ecological "failures," such as population extinctions, that are analogous to bofler explostons or core meltowns. Based on this analogy, fault trees were developed for (1) racruitment fallure in a fish population and (2) local extinction of a bird population. These fault trees proved useful in illustrating the various possible direct and indirect pathways through which toxic chemicals can affect populations; however. it is clearly impossible to performi quantitative analyses of ecological
. fault trees. One major problem is the difficulty of estimating probabilities for the various initial states that make populations vulnerable to additional stresses (e.g., habitat restrictions). More fundamentally, the continuous responses and cumulative effects that characterize responses of biological systems to stress cannot be represented using the binary logic of fault trees. However, even Without quantification, construction of ecological fault trees can serve important heuristic functions.

1.2.2.2 Analytic hierarchy process. The analytic hierarchy

 process (Saaty 1980) is a decision-making technique developed for use in economic planning, Its two basic components are (l) the ordering of the elements of a decision into a hierarchy and (2) the use of expert opinion to rank the elements of each level in the hierarchy. This approach was intended to be used in situations where qualitatively different attributes must be compared, quantitative measurement scales are unavailable, and/or subjective judgments are necessary. Because all of these characteristics are typical attributes of environmental assessment problems, it seemed possible that the analytic hierarchy process could be fruitfully used as an alternative to quantitative assessment models. For example, the decision about the relative hazard of 17 components of a complex effluent mixture can be hierarchically ordered into comparisons of the relative importance of different fish populations that may be exposed, the relative importance of direct and indirect effects of chemicals on each fish population, and so forth down to the effects of each effluent component on the exposed organisms.When this approach was applied using expert ecologists and toxicologists, interesting results were. in fact, obtained. Taking into account information and opinions that could not be objectified with any of the strictly quantitative methods used in the preliminary risk assessment for indirect coal liquefaction (egg., microbic? degradation of contaminants in soils), both aquatic and terrestrial experts rated organic contaminants as substantially less hazardous than would be predicted based on toxicity alone. However, the analytic hierarchy process proved to be prohibitively cumbersome when applied to the synfuels risk assessment problem because of the necessity for large numbers of pairwise comparisons among classes of chemicals. For example, applying the method to 17 contaminant classes requires 136 pairwise comparisons of relative toxicity for each type of organism exposed. Although the method appears promising, adapting its use with synfuels risk assessment was judged to be beyond the scope of this project.
1.2.2.3 Quotient method. The quotient method entails a direct comparison of the estimated concentration of a chemical in the ambient environment with a measured toxicological benchmark concentration (egg., an $L C_{50}$) for that chemical. No attempt is made to quantify uncertainties or to extrapolate to population-level effects. As such, the quotient method is not a quantitative risk assessment technique according to the definition used in this project. However, this method is nonetheless an important component of any risk assessment scheme for toxic chemicals. There are two major reasons for this. First, the quotient method is a valuable screening technique because environmental

concentrations of chemicals that are several orders of magnitude below concentrations that affect laboratory test organisms are unlikely to have serious ecological consequences. Second, direct comparisons

 between environmental concentrations and laboratory test data are the basis for all existing chemical hazard assessment protocols. Thus, the quotient method provides a means of comparing results obtained using more sophisticated, quantitative risk assessment techniques with results obtained using conventional procedures.Not all toxicological benchmarks are equally useful in applying the quotient method; moreover, substantial care must be used in comparing toxicity test data obtained under differing experimental conditions. These issues, as well as (1) criteria for interpieting values of quotients and (2) procedures for evaluating complex effiuents using the toxic units apprejch, are discussed in detail in Section 3 of this report.
1.2.2.4 Analysts of extrapolation error. The classical approach to assessing potential ecological effects of toxic chemicals is based on laboratory testing using one or a few standard species and life stages. Variability among species, life stages; and exposure durations is accounted for by using corraction factors, supposedly sensitive test species, and subjertive judgment. The usual objective of this approach is to estimate a "safe" level, below which no effects will occur. It is not possible, using this approach, to estimate the consequences of exceeding the safe level; moreover, it is still possible, because of the sources of variability previously mentioned, that effects will occur even if the safe level is not exceeded.

Section 4 of this report presents a method for explicitly quantifying uncertainty resulting from (1) interspecies differences in sensitivity and (2) the variable relationship botween acute and chronic eftects of chemicals. The method, known as analysis of extrapolation error, is based on statistical analysis of acute ano chronic toxicity test data sets collected using uniform experimental protocols. At the time technology risk assessments for this project were performed, adequate data sets were avallable only for fish.

Given a chemical and species of interest, regression equations derived from the data base can be used to estimate a chronic effects threshold for the species of interest from a $96-h L C_{50}$ for either (1) the species itself or (2) any other species that has been tested. Residual errors from the regressions are used to estimate the prediction error of the estimated effects threshold and, consequently, the risk that a given environmental concentration of the chemical being assessed exceeds the chronic effects threshold of the species of interest.

Section 5 presents an extension of analysis of extrapolation error that enables extrapolation of individual-level effects of toxic chemicals to effects on populations. This extrapolation involves estimating concentration-response functions, with confidence bands, and linking these functions to a life-cycle model of the species of interest. The objective of this extension of the original methodology is to enable extrapolation to the level of ultimate end-points, that is, reductions in valued populations. Development of the population-level assessment model was not completed in time for use in the four synfuels technology assessments.

- 1.2.2.5 Ecosystem uncertainty analysis: As heretofore noted, effects of environmental stresses on real populations depend on complex biotic and abiotic processes that cannot be reproduced in the laboratory. Although many stresses can be usefully studied in field experiments, such experiments are impossible for some risk assessment problems. Mathematical models of the biological systems of interest provide an alternative means of incorporating environmental complexity in ris! assessments. In particular, ecological models can incorporate biological phencmena, such as competition and predation, that can magnify or cffset the direct effects of contaminants on organisms. for the synfuels risk assessment project, recent developments in systems er.ology were exploited to develop an assessment method known as ecosystem uncertainty analysis.

In ecosystem uncertainty analysis, efiects of stress on individual organisms are extrapolated to net effects on populations and trophic leveis using an ecosysten simulation model. Estimates of uncertainties associated with individual-level effects are translated into estimates of risks of significant adverse changes in the model populations. An existing ecosystem model, the Standard Water Column Model (SWACOM), was used for the synfuels risk assessment, however, it was necessary to develop a procedure for translating laboratory test results, such as L_{50}, into changes in model parameters, such as photosynthesis and respiration rates.

In Section 6 of this report, the basic concepts used in ecosystem uncertainty analysis are described, and several applications of the method are presented and discussed. The fundamental components of the
method include (l) the linking of toxicity data to changes in ecological rate processes and (2) the use of efficient uncertainty analysis techniques to extrapolate from parameter uncertainties to ultimate risks. The specific ecological model used in an assessment can be selected to meet the needs of the problem at hand. It is expected that in many future applications SWACOM will be replaced by a more appropriate model.

1.3 ORGANIZATION OF USERS' MANUAL

The remaining sections of this report describe the steps in an ecological risk assessment for a synfuels facility, any other facility producing chemical effluents, or an individual chemical. It is assumed that source terms, in units of mass per unit time, have been provided to the risk assessor.

Section 2 describes the process of modeling the transport and transformation of contaminants in air, surface water, and groundwater. Because of the large number of existing models avallable for use in exposure assessments, the emphasis in this section is on criteria for selecting models that are properly matched to the available information concerning (1) the environmental chemistry of the contaminant(s) being modeled, (2) the spatiotemporal resolution of data on the characteristics of the reference environment, and (3) the requirements of the effects assessment methods being used.

Sections 3 through 6 document the effects assessment methods used in the synfuels risk assessments. Throughout theje sections, the emphasis is on explanation and documentation of biological assumptions,
statistical/mathematical methods, and data sources. No attempt was made to document the computer codes used by the project staff in implementing the methods. It is expected that, because offiffering computing configurations and assessment needs, the code modifications required by most users of the risk assessment methodology would render any such documentation effectively useless.

Section 7 discusses the integration of exposure and effects assessments to produce overall ecological risk assessments for toxic chemicals. In addition, Section 7 discusses the application of the methods documented in this report to problems other than technology risk assessment and also outlines the project staff's views on the research needed to increase current utility and scientific credibility of ecological risk assessment.

REFERENCES (SECTION 1)

Barnthouse, L. W., D. L. Deangelis, R. H. Gardner, R. V. O'Nefll. C. D. Powers, G. W. Suter II, and D. S. Vaughan. 1982. Methodology for Environmental Risk Analysis. ORNL/TM-8167. Oak Ridge National laboratory, Oak Ridge, Tenn.

Barnthouse, L. W., G. W. Suter II, C. F. Baes III, S. M. Bartell, R. H. Gardner, R. E. Millemann, R. V. O'Nei?l, C. D. Powers, A. E. Rosen, L. L. Sigal, and D. S. Vaughan. 1985a. Unit Release Risk Analysis for Environmental Contaminants of Potential Concern in Synthetic Fuels Technologies. ORNL/TM-9070. Oak Ridge National Laboratory, Oak Ridge, Tenn.

Barnthouse, L: W., G. W. Suter II, C. F. Baes III, S. M. Bartell, M. G. Cavendish, R. H. Gardner, R. V. O'Nelll, and A. E. Rosen. 1985b. Environmental Risk Analysis for Indirect Coal Liquefaction. ORNL/TM-9120. Oak Ridge National Laboratory, Oak Ridge, Tenn.

Moghissi, A. A. 1984. Risk management - practice and prospects: Mech. Eng. 106(11):21-23.

Ruckelshaus, W. D. 1983. Science, risk, and public policy. Science 221:1026-1028.

Saaty, T. L. 1980. The Analytic Hierarchy Process. McGraw Hill, N.Y.
Suter, G. W. II, L. W. Barnthouse, C. F. Saes III, S. M. Bartell, M. G. Cavendish, R. H. Gardner, R. V. O'Nelll, and A. E. Rosen. 1984. Environmental Risk Analysis for Direct Coal Liquefaction. ORNL/TM-9074.: Oak Ridge National Laboratory, Dak Ridge, Tennessee.

Sutèr, G. W. II, L. W. Barnthouse, S. R. Kraemer, M. E. Grismer, D. S. Durnford, D. B. McWhorter. F. D'Donnell, and A. E. Rosen. 1986. Environmental Risk Analysis for 0il Shale Extraction Technologies. ORNL/TM-9808. Dak Ridge National Laboratory, Oak Ridge, Tenn.

2. EXPOSURE ASSESSMENT

L. W. Barnthouse

For the purpose of risk assessments for toxic chemicals, exposure assessment may be defined as the "determination of the concentration of toxic materials in space and time at the interface with target populations" (Travis et al. 1983). Before an exposure assessment can be performed, it is necessary to develop (1) source terms for the technology (or other contaminant scurce) being assessed and (2) a description of the environment into which contaminants will be released. The source terms are simply estimates of the quantity and composition of contaminant releases. They may be either time dependent, as in accidental spills or upset events, or time independent, as in continuous routine emissions. Reference environmental descriptions are those of (1) the bfota that may be exposed to contaminant releases and (2) the hydrological, topographical, geological, and meteorologisal characteristics of the environment that affect the transport and transformation of contaminants. Environmental characteristics may vary in time and space. Given source terms and a reference environment, the key step in exposure assessment is the use of a model of contaminant transport and transformation to quantify the movement of contaminants from the source, through the environment, to the target populations.

Many atmospheric, surface water, groundwater, and multimedia models have been developed for quantifying the environmental fate of radionuclides and toxic contaminants. Rather than developing entirely
. new models for the synfuels risk assessments, existing models that appeared appropriate were selected and, where necessary, modified. Only general descriptions of the models are presented here; detailed documentation is provided elsewhere (Travis et al. 1983). Only the atmospheric and surface water pathways are discussed in this section, because these are the primary routes of exposure for aquatic and terrestrial biota. The particular models chosen for the synfuels ioisk assessments were selected based on the following considerations:

1. Risk assessments were to be performed for technologies and processes rather than specific plants and sites. Only engineering judgments of routine emission compositions were available.
2. Exposure assessments were needed for a large number of complex effluent components, both organic and inorganic. The environmental chemistry of most of the organic chemicals to be assessed was poorly understood.
3. Both acute and chronic ecological effects were to be considered.
4. For ecological effects at the screening level, near-field exposure assessments should be sufficiert. The concentrations of toxic contaminants would be experted to decline with. decreasing distance from the source; therefore, if risks are minimal in the near field, they should also be minimal in the far field.
5. Both the inherent variability of environmental processes and scientific uncertainty concerning the fate of synfuels-derived contaminants should be explicitly modeled.
6. Models used in synfuels risk assessment should rely, to the extent appropriate, on models that have proved useful in other types of environmental assessments.

The above considerations suggested that relatively simple but flexible environmental transport models would be best suited for synfuels risk assessmerits. Because of the lack of specificity of the
source terms and the generic nature of the assessment, it was determined that generalized site descriptions characteristic of broad regions in which synfuels facilities might te shed, rather than detailed descriptions of particular sites, would be used. Given the use of generalized site descriptions, high spatiotemporal resolution in the models would be irrelevant. Moreover, because of the large number of chemicals involved and the poor understanding of the environmental chemistry of most of them, it seemed prudent to limit the modeling of chemical transformations and mass transfers to simple, first-order rates based on direct measurements or structure-activity relationships: Whatever information exists should be incorporated to avoid undue conservatism (e.g., by assuming complete solubility and no degradation of organic chemicals); however. censideration of higher-order processes and multistep transformations could be deferred to subsequent assessments focused on those contaminants identified in initial assessments to be potentially hazardous.

Because of the need to corisider both acute effects of short-duration, high-level exposures and chronic effects of long-term, low-level exposures, the models would have to operate on time scales ranging from hours to months and years. Uncertainty and variability are important aspects of risk analysis; therefore, it was desirable for the models to be amenatle to error analysis (Gardner et al. 1981), both to quantify scientific uncertainty regarding transport processes and to model hydrological and meteorological variability that affects the transport and fate of chemicals.

Because of the many similarities between the transport of radionuclides from power plants and the transport of chemical contaminants from industrial facilities, the models used in radiological impact assessments performed for the U.S. Nuclear Regulatory Commission and the U.S. Environmental Protection Agency were taken as the starting points for choosing environmental transport models for synfuels risk assessinents.

2.1 SURFACE WATER TRANSPORT AND TRANSFORMATION

The surface water transport model used in the synfuels environmental risk assessment project is a steady-state model similar in concept to the sXAMS model (Baughman and Lassiter 1978) but simpler in terms of process chemistry and environmental detail. This model is also similar to the radionuclide transport model described by Niemczyk, Adams, and Murfin (1980). It is intended as a flexible descriptor of the transport and fate of contaminants in streams and rivers. Rivers, rather than lakes, were chosen as model environments because the most common proposed sites for synfuels plants are on rivers. As in EXAMS, a river is represented as a connected series of completely mixed reaches. Within each reach, steady-state contaminant concentrations are estimated based on dilition and on physical/chemical removal from the water column. The steady-state contaminant concentration ($\overbrace{w, 1}$) in the first reach downstream from a continuous effluent discharge is given by

$$
\begin{equation*}
c_{w, 1}=\left(1 / v_{1}\right) /\left[\left(0_{1} / V_{1}\right)+k_{t, 1}\right] . \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
I= & \text { contaminant input rate }(\mathrm{kg} / \mathrm{s}) \\
V_{1}= & \text { volume of first reach }\left(\mathrm{m}^{3}\right) \\
Q_{1}= & \text { stream discharge of first reach }\left(\mathrm{m}^{3} / \mathrm{s}\right) \text {, and } \\
k_{t, 1}= & \text { first-order contaminant removal rate for } \\
& \text { the first reach. }
\end{aligned}
$$

The steady-state concentration for the $n^{\text {th }}$ reach downstream from the first is given by

$$
\begin{equation*}
c_{w, n}=\left[\left(c_{w, n-1} / Q_{n-1}\right) / V_{n}\right] /\left[\left(Q_{n} / V_{n}\right)+k_{t, n}\right] \tag{2.2}
\end{equation*}
$$

The first-order removal rate $\left(k_{t, n}\right)$ is equal to the sum of first-order rates due to volatilization, setting, direct photolysis, and biological/chemical degradation. With the exception of biological/chemical degradation, all of the above rates are modeied as functions of environmertal parameters and physical/chemical properties of the contaminants. Procedures for estimating rate constants for volatilization, settling, adsorption, and photolysis are presented in Section 2.3.2 of Travis et al. (1983).

For the purpose of ecological risk assessment, only a 1 -km stream reach immediately downstream from the assumed contaminant release point was modeled. In effect, the released contaminants were assumed to be completely diluted within a "box" 1 km in length. This reach size was selected on the basis of biological/social significance. It is unlikely that adverse ecological consequences would ensue from the killing of one.fish at the end of a discharge pipe. However, the
biological degradation of a $1-k m$ river segment could significantly reduce siological production or disrupt local fish populations (either through direct mortality or through indirect effects such as interference with migration). An impact on this scale would also likely be considered unacceptable by local residents.

The requirement to assess both short-term and long-term effects was met by modeling the effects of stochastically varying hydrologic parameters such as stream discharge, temperature, and sediment load. Realistic distributions for these parameters were obtained from U.S. Geological Survey water resources monitoring data for streams typical of those on which synfuels plants might be sited (Travis et al. 1983, Sect. 3). Frequency distributions for contaminant concentrations were computed as functions of the distributions of hydrologic parameters, according to the procedure of Gardner et al. (1981): For assessing chronic effects, the median daily concentration was chosen as the best estimator of the long-term average concentration to which organisms would be exposed. For assessing acute effects, the concentration chosen was the upper 95 th percentile concentration, that is, the concentration expected to be met or exceeded on only 5% of days.

In practice, it was found that an even simpler model would have been sufficient for the purpose of ecological risk assessment Estimated water-column half-lives for contaminants of interest in synfuels risk assessment were on the order of 10^{2} to $10^{4} \mathrm{~h}$ (Barnthouse et al. 1985a). Processes operating at these rates have negligible effects on water-column concentrations in the near field.

Near-field concentrations suitable for ecological risk assessment can be obtained by modeling only (1) dilution, as determined by stochastically varying stream discharges; and (2) essentially instantaneous chemical processes such as ionization and complexation.

2.2 ATMOSPHERIC TRANSPORT, TRANSFORMATION, AND DEPOSITION

Many computer codes exist for calculating the transport, transformation, and deposition of radionuclides and toxic contaminants within 50 km of a pollutant source. Most are variants of a single underlying model, the Gaussian plume. In its simplest form, the Gaussian plume predicts the diffusion and dispersion of a conservative, gaseous substance from a continuous point source elevated above the ground, under constant wind speed and homogeneous atmospheric conditions, and over uniformly flat terrain. The basic model can be modified to account for such phenomena as plume buoyaricy, atmospheric stratification, contaminant degradation or decay, and wet and dry deposition of particles and aerosols.

Because of the relative ease of application of Gaussian plume models and the large accumulated experience with these models, a Gaussian plume model was used to calculate atmospheric exposures for synfuels risk assessment. The specific code chosen was AIRDOS-EPA (Moore et al. 1979). This model was chosen over five eiternatives because it (1) incorporates first-order degradation rates for pollutants, (2) can estimate surface deposition rates, and (3) provides output in a form suitable for calculating exposures to human populations. The equations for estimating plume dispersion,
contaminant degradation, dry deposition, and wet deposition in AIRDOS-EPA are presented in Section 2.2.2 of Travis et al. (1983). The AIRDOS-EPA code calculates average ground-level atmospheric concentrations and surface deposition rates for sixteen 22.5° sectors surrounding the plume source.

Adverse meteorological conditions (such as inversions) can lead to high ground-level concentrations that cause acute toxicity to exposad plants and animals. Such conditions occur on time scalas of rom 8 h to a few days. Unfortunately, Gaussian plume models are relatively poor predictors of short-term plume behavior (Hoffman et al. 19?8). These models are much better predictors of annual average concentrations. As a substitute for short-term exposure estimates, annual average concentrations were calculated at 500 m intervals over the 16 sectors modeled in AIRDOS-EPA, and the highest of these averages was used in the synfuels risk assessments (Barnthouse et al. 1985b. Sect. 2.3).

Deposited contaminants, when dissolved in soll water, can cause toxic effects on exposed plant roots. To provide root exposure estimates for ecological risk assesiment, the deposition rates from AIRDOS-EPA were used to estinate accumulation of contaminants in soil over an assumed 35 -year operational lifetime of a synfuels plant. As with ground-level atmospheric concentrations, accumulation was estimated at the point of greatest annual deposition. The soil solution exposure estimates incorporate both degradation of contaminants in soil and partitioning of contaminants between soil particles and solution (Barnthouse et al. 1985b, Sect. 2.3).

The atmospheric exposure assessments performed using AIRDOS-EPA did not meet all of the requirements for ecological risk assessments described in the introduction to this section. Specifically, short-term exposures were not addressed, only worst-case exposures were estimated, and no error analyses were performed. These deficiencies result in part from the use of a computer code designed for estimating long-term exposures to human populations, however, any Gaussian plume model would have been of uncertatn util?ty for estimating short-term exposures. Although other classes of models are more suitable for this purpese, such models require far more site-specific meteorological data than are appropriate for technology-level risk assessments. Given necessary code modifications, error analyses of AIRDOS-EPA or any other similar code could be performed. It was not deemed necessary to perform such analyses for the synfuels risk assessment project, because preliminary screening using worst-case exposure estimates suggested that the majority of synfuels-related chemicals present regilgible risks to terrestrial plants and animals (Suter et al. 1984, Barnthouse et al. 1985b). Future ecological risk assessments could, however, benefit from the development of atmospheric exposure assessment models designed specifically for ecological risk assessment, with capabilities for modeling short-duration events and incorporating error analyses.

REFERENCES (SECTION 2)

Barnthouse, L. wi., G. W. Suter II, C: F. Baes III, S: M. Bartell, R. H. Gardner, R. E. Millemann, R. V. O'Neill, C. D. Powers', A. E. Rusen, L. L. Sigal, and D. S. Vaughan. 1985a. Unit Release Risk Analysis for Environmental Contaminants of Potential Concern in Synthetic Fuels Technologies. ORNL/TM-9070. Oak Ridge National Laboratory, Cax pidge, Tenn.

Barnthouse, L. W., G. W. Suter II, C. F. Baes III, S. M. Bartell, M. G. Cavendish, R. H. Gardner, R. V. $0^{\prime} N e i l l$, and A. F. Rosen. 1985b. Environmental Risk Analysis for Indirect Coal Liquefaction. ORNL/TM-9120. Oak Ridge National Laboratory, Dak Ridge, Tenn.

Baughman, G. L., and R. R. Lassiter. 1978. Prediction of environmental pollution concentration. pp. 35-44. IN J. Cairns, K. L. Dickson, and A. W. Maki (eds.), Estimating the Hazard of Chemical Substances to Aquatic Life. ASTM STP 657. American Society for Testing and Materials, Philadelphia, Penn.

Gardner, R. H., R. V. O'Neill, J. B. Mankin, and J. H. Carney. 1981. A comparison of sensitivity and error analysis based on a stream ecosystem model. Ecological Modelling 12:173-190.

Hoffman, F. D., D. L. Schaeffer, C. W. Miller, and C. T. Garten, Jr. (eds.) 1978. Proceedings of a Workshod on the Evaluation of Models Used for the Environmental Assessment of Radionuclide Releases. CONF-770901. Oak Ridge National Laboratory, Oak Ridge, Tenn.

Moore, R. E., C. F. Baes III, L. M. McDowell-Boyer, A. P. Watson, F. O. Hoffman, J. C. Pleasant, and C. W. Miller. 1979. AIRDOS-EPA: A Computerized Methodology for Estimating Environmental Concentrations and Dose to Man from Airborne Releases of Radionuclides. EPA-520/1-79-009. U.S. Environmental Protection Agency Office of Radiation Programs, Washington, D.C.

Niemczyk, S. J., K. G. Adams, and W. B. Murfin. 1980. Groundwater and surface water transport and dispersion. Appendix B IN The Consequences from Liquid Pathways After a Reactor Meltdown Accident. NUREG/CR-1596 (SAND80-1669), Sandia National Laboratories, Albuquerque, N.M.

Suter, G. W. II, L. W. Barnthouse, C. F. Baes III, S. M. Bartell; M. G. Cavendish, R: H. Gardner, R. V. O'Neill, and A. E. Rosen. 1984. Environmental Risk Analysis for Direct Coal Liquefaction. ORNL/TM-9074. Oak Ridge National Laboratory, Oak Ridge, Tenn. Travis, C. C., C. F. Baes III, L. W. Barnthouse, E. L. Etnier. G. A. Holton, B. D. Murphy, G. P. Thompson, G. W. Suter II, and A. P. Watson. 1983. Exposure Assessment Methodology and Reference Environments for Synfuels Risk Analysis. ORNL/TM-8672. Ock Ridge National l.aboratory, Oak Ridge, Tenn.

3. TOXICITY QUOTIENTS

G. W. Suter II

3.1 DEFINITION

The quotient method is simply the direct arithmetic comparison of a benchmark concentration ($8 C$) from a toxicity test with an expected environmental concentration (EEC). It is typically calculated as the quotient of the ratio EEC/BC. It is the basis for nearly all assessments of the environmental hazards of chemicals. In this basic form, the method amounts to an assumption that the test benchmark is a good model of the assessment end point (i.e., the level of toxic effect that is not to be exceeded in the ambient ecosystem). This assumption is most likely to hold when the toxicity tests have been performed for the particular assessment, using the anticipated temporal nattern of exposure and dilution water and organisms from the site. Wher it is recognized that this assumption may not hold, multiplicative factors are often applied to the quotients.

3.2 FACTORS

The most common method of ailowing for imperfect correspondence between the benchmark concentration and the end point is to multiply the quotient or either of its components by factors. These are variously referred to as safety factors, uncertainty factors; or correction factors, depending on whether the goal is to ensure safety, account for a recognized source of uncertainty, or correct for proportional differences between types of data. Traditionally, a
single number was used that incorporated all of the assessor's knowledge and beliefs about the relationship between the test result and the anticipated effect in the field (Mount 1977). More recently, it has become common to use multiplicative strings of factors, each of which accounts for a different correction or source of uncertainty (e.g., EPA 1985). These multiplicative chains imply an assumption that everything will go wrong at once. For example, the most sensitive life stage or the most sensitive species will be exposed to the most concentrated effluent at low-flow conditions while debilitated by stress, and the actual response is at the limit of our range of uncertainty. If carried out consistently, this approach would be extremely conservative. In actual apolications, only a fraction of the possible uncertainties and corrections are included, so that the product of the factors will not be unacceptably large. To avoid the problems of subjectivity and conservatism, we have user unadorned quotients in our assessments and left the consideration of uncertainty and data extrapolation to methods that use more appropriate statistical models.

3.3 IMPLEMENTATION

The critical decisions in implementing the quotient method are (1) selection of expressions of the expected environmental concentration that reflect the pattern of exposure in the field, (2) selection of toxicological benchmarks that correspond to the effect of concern in the field, and (3) matching the benchmarks and environmental concentrations
so that they logically correspond. The selection and derivation of estimates of the expected environmental concentration is discussed in Sect. 2. The other two decisions are discussed here.

3.3.1 Matching Exposure and Effects

If the quotient is to be consistent, the toxicological benchmark must bear a logical relationship to the expected environmental concentration. The first major problem is ensuring that the medium and mode of exposure are cor:jistent. For example, the environmental concentration that should be estimated for benthic infauna is the pore water concentration rather than the free water concentration, and per cutaneous toxicities should be compared with concentrations in films on traversed surfaces rather than with bulk concentrations.

The second major problem is ensuring that the response of the organism to the toxicant does not change the exposure. The most conspicuous example is avoidance of polluted food or media. However, toxicants may also reduce feeding, thereby reducing the oral dose, or may cause aquatic organisms to lose contact with the substrate and drift out of the area. Since behavioral data are lacking for most chemicals, this problem is relatively seldom addressed, but it should be kept in mind.

The third major problem is duration, which is a major source of confusion, largely because of ambiguities concerning the terms acute and chronic. The ambiguity arises from the use of these terms to describe severity as well as duration. Acute exposures and
toxicities are assumed to be both of shorter duration and more severe than chronic exposures and toxicities. The implicit model behind this assumption is that chronic effects are sublethal responses that occur because r : the accumulation of the toxicant or of toxicant-induced injuries over long exposures. Conversely, it has become clear that the most sensitive responses in chronic toxicity tests for aquatic organisms are typically effects on sensitive life stages or processes that occur fairly quickly, do not require long prior exposures, and may be quite severe (McKim 1985). As a result, duration is now often defined both in temporal terms and in terms of the life cycle of an organism (i.e., a chronic exposure is one that potentially involves all life stages).

The resulting confusion is fllustrated by the standard toxicological benchmarks for fish. : The standard acute benchmark is the 96-hour median lethal concentration (L_{50}) for adult or juvenile fish (EPA 1982, ASTM 1984, OECD 1981). The duration of this test was selected because most mortality in most such tests occurs in the first four days; in fact, this acute benchmark is considered a good estimate of the time-independent or incipient $L C_{50}$ (Ruesink and Smith 1975). The standard chronic benchmark is the maximum acceptable toxicant concentration (MATC), which is the threshold for significant effects on survival, growth, or reproduction (EPA 1982, ASTM 1984). Since this benchmark is based on only the most sensitive response, life stages that are generally less sensitive have been dropped from chronic tests so that those tests have been reduced from life cycle (l2 to 30 months)
to early life stages (28 to 60 days) (Mciim 198S). Tests that expose larvae only for 11 (Birge et al.1981) or 7 days (Norberg and Mount, 1985) have now been proposed as equivalent to the longer chronic tests. As a result, the chronic benchmark for fish is now tied to events of short duration (the presence and response of sensitive larvae), whereas the acute benchmark is applicable to exposures of indefinite duration and life stages that are continuously present. Even the severity distinction is not clear. Although the L_{50} clearly indicates a severe effect, the fact that the MATC is tied to a statistical rhreshold rather than a specified magnitude of effect means that it too can correspond to severe effects (e.g., fallure of more than half of the females to spawn at the MATC for chlordane in Cardwell et al. 1977).

The solution for the assessor is to disaggregate the concept of duration from severity when categorizing exposures. In the simplest case the temporal pattern of exposure falls into distinct categories, based on characteristics of the source and its interactions with the environment. If the aqueous dilution volume is relatively constant, exposures may be divided into those that result from spilis and other short-term upsets and those that result from routine releases. Exposures to an atmospheric release might be divided into plume strikes (an hour or less), stagnation events (a week or less), and the growing season average exposure. In these cases the durations are determined by the exposure, and the toxicological benchmarks must be selected to match.

In other cases it may not be possible to identify distinct and relatively constant categories of exposure; there may simply be a continuous spectrum of fluctuations in exposure concentrations. In such cases the biology of the toxicological responses must be used to select durations, and the exposure must be selected to match. For example, if the most sensitive response to chemical is mortality of larval fish, which begins within a day of the beginning of exposure, then the appropriate exposure concentration could.be based on dilution of the effluent in the $24-h$ low flow that recurs at an average interval of 10 years during the months in which larval fish are present at the site. In any case, the matching of exposure with a toxicological benchmark should be based on an analysis of the situation being assessed rather than on preconceptions about acute and chronic toxicity.

3.3.2 Benchmark Selection

In many zases the selection of toxicological benchmarks for an assessment is largely constrained by the availability of published data, by differences in the quality of avallable data, or by the need to match the benchmark to the mode and duration of exposure. However, when data are abundant or when testing can be prescrioed by the assessor, toxicological benchmarks should be selected on the basis of their statistical form and their expression of the important responses of the organism of interest.

3.3.2.1 Statistical form. There are two statistical types

 of toxicological benchmarks: (1) those that are based on a concentration-response function and prescribe a level of effect and(2) those that are based on hypothesis testing. The first type is obtained by fitting a function to sets of points relating the level of response (proportion dying, mean weight, etc.) to an exposure concentration (dose, concentration in water, concentration in food, etc.). The concentration causing a particular level of effect is then ottained by inverse regression. Examples of this type of benchmark include the $L C_{50}$, median lethal dose $\left(L_{50}\right)$, median effective conceniration ($E C_{50}$), and lethal threshold concentration (LC. $)$.

The other statistical category of benchmarks consists of those that are derived by hypothesis testing techniques. Responses at the exposure concentrations are compared with control (unexposed) responses to test the null hypothesis that they are the same as the control responses. Benchmarks of this type include the no observed effect level (NOEL), the lowest observed effect level (LOEL) and the MATC, which is assumed to lie between the LOEL and the NOEL.

The disadvantages of benchmarks based on hypothesis testing relative to those based on curve fitting have been discussed by Stephan and Rogers (in press). They include (1) the use of conventional hypothesis testing procedures (with $\alpha=0.05$ and β unconstrained) implies that it is very important t 0 avoid declaring that a concentration is toxic when it is not, but it is not so important to declare that a concentration is not toxic when it is; (2) the threshold for statistical significance does not correspond to a toxicological threshold or to any particular level of effect; (3) poor testing procedures increase the variance in response and therefore reduce the apparent toxicity of the chemical in a hypothesis test; and (4) the
results are relatively sensitive to the design of the test. The advantages of hypothesis testing benchmarks are that they can be calculated even when the test data are too poor or meager for curve fitting and they allow the assessor to avoid specifle decisions about What constitutes a signiffcant level of effect. We feel that hypothesis testing is generally an inappropriate way to calculate benchmarks; however, in many cases, the use of such benchmarks by the assessor is unavoidable.
3.3.2.2 Taxon-specific factors. We discuss here benchmarks currently used to express toxic effects on the four end point taxa in our risk analyses: fish, planktonic algae, terrestrial vascular plants: and vertebrate wildife.

1. Fish

The most abundant toxicological benchmark for fish is the $96-h$ $L C_{50}$ for adult or juvenfle (post-larval) individuals; for most chemicals, it is the only type of data available. As previousiy described, it is acute in terms of severity but is often applicable to extended durations. Since it does not protect early life stages and implies mortality in all life stages; it can be thought of as a benchmark for conspicuous fish kills (large numbers of large dead fish). Although the median response was chosen for the benchmark because of its small variance relative to other levels of mortality, a correction factor must be applied if the assessor is interested in preventing low-level mortality (EPA 1985), a process that adds considerable variance.

Another problem with this benchmark is that in most cases only the response at $96 h$ is reported. Many assessments involve transient events, and the time to mortality is more important than the percent mortalitiy. However, despite the suggestions of Sprague (1973), Alabaster and Lloyd (1982) and others, the time course of mortality is seldom reported. In defense of the $96 \mathrm{~h}_{\mathrm{LC}}^{50}$, it might be argued that it is only meant to be used for comparative purposes and not for assessment of effects. However, assessments have been conducted and criteria have been set on the basis of this benchmark because it is avallable and better numbers are generally not.

The standard benchmark for chronic effects on fish is the MATC. As previously discussed. MATCs have all of the considerable faults of benchmarks that are derived from hypothesis tests. In this context, it is importani to refterate that assessments based on MATCs do not provide a consistent level of protection, and the industry that performs the poorest tests will, on average, be the least regulated.

The most generally useful benchmarks for assessing effects on fish by the quotient method would be a set of $L C_{1}$ values for each of the life stages that will be exposed at $1,24,48$, and 96 h (or longer if mortality continues). plus EC ${ }_{f}$ values for growth and fecundity in suitably long exposures. Individual thresholds could then be selected for each assessment, depending on the life stages that will be exposed and the duration of the exposure.

If all life stages will be exposed to a relatively constant concentration of the toxicant, then a global benchmark [one that integrates the individual measured effects (Javitz, 1982)] may be
preferred as an expression of chronic effects. The simplest such benchmark is the standing crop of fish at the end of the test. More commonly, the weight of young per initial female (or initial egg, in the case of early life stage tests) is calculated as

$$
\Sigma S_{1} S_{2} \ldots S_{n}^{M W}
$$

where S_{x} is the s:Irvivorship of life.stage x, M is fecundity, and W is the weight of the final cohort (e.g., Eaton et al. 1978). A third global benchmark (which can only be used with life-cycle results) is the intrinsic rate of increase r which is calculated from:

$$
\sum 1_{x} m_{x} e^{-r x}=1
$$

where 1 is the proportion surviving to age x, and m is the number of female offspring produced by a female of age x during the next interval (e.g., Daniels and Allan 1981). The intrinsic rate of increase, r, is a more appropriate benchmark for invertebrates than fish, since life-cycle tests are still routinely performed with invertebrates, and effects on growth (which are not included in the formula for r) are reflected in fecundity in invertebrate chronic tests.

The main advantage of global benchmarks is that they combine a diversity of individual responses, some of which haye little intuitive significance, intc a parameter that has the form of a population-level response. Global responses may be more sensitive than individual responses when a number of small toxic effects are combined into one large global response; however, sensitivity can also be reduced if
toxic effects are combined with hormetic or pseudo-hormetic effects or (if hypothesis testing is used) with highly variable effects.

2. Algae

Benchmarks for effects on algae have been poorly standardized. Reported responses included mortality, growth, CO_{2} fixation, cell numbers, chlorophyll content, and others. Durations were various, and a variety of statistical expressions derived from both hypothesis testing and curve fitting were used. There is now some agreement on the use of $96-h E C_{50}$ values for some measure of productivity. However, there is still no agreement on whether the appropriate measure is weight, number of cells, chlorophyll, or carbon assimilation, and whether the benchmark should be based on the final value, the time-integrated value, or the maximum rate of increase. The EPA calls for the use of final cell weight, cell number, or an equivalent indirect measurement, whereas OECD calls for the use of the maximum growth rate based on cell number (EPA 1982 3ind OECD 1981). If, as is often the case, planktonic algae are limited by nutrient availabilicy, then equilibrium biomass or cell numbers may be more refevant. However, if algae are limited by herbivory, the ability of a population to replace losses (i.e., maximum growth rate) may be more relevant.

Since the life cycles of microalgae in a rapidly growing culture are much shorter tinan test durations ir nost effluent releases, these test results can be used in most assessments. However, it should be remembered that algal communities are generally nutrient linited, and, over the course of chronic exposures, resistant algal species will tend
to replace sensitive spe:ies. The implications of these changes in community composition depend on the effects of the algae on water quality and their palatability to herbivores (Sect. 6).

3. Terrestrial plants

Existing toxicity data for terrestrial plants are even more diverse and nonstandard than for aquatic algae. Although (as with algae) production is measured and statistically analyzed in a variety of ways, terrestrial plants also have long life cycles with distinct stages and organs, and they can be exposed through the stomates, leaf surfaces, or roots. We have confronted this chaotis situation by limiting the benchmarks used to those such as yield, growth, or numbers of particular organs that directly express productivity (visible injury and changes in gas exchange rates are commonly reported responses that do not correlate with production), and by trying to match the duration and route of exposure in the test to the exposure being assessed.

The most common general type of phytotoxicity test is the seeding growth test. This type of test can be conducted in soll or hydroponic systems arid can be adapted to test chemicals in air, sprays, soil, or irrigation water. There is little agreement on durations or responses, but the EPA (1982) recommends the determination of EC 10 and $E C_{50}$ values for weight and height after 14 days. Tests for effects on seed germination and hypocotyi elongation have been used as quicker and less-expensive phytotoxicity tests, as well as indicators of effects on those particular life stages (EPA 1982); however, their relationship to other plant responses has not been established. A definitive test
would include the entire life cycle from seed germination to germination of daughter seeds, but such tests are rarely performed. A life-cycle test using Arabadopsis is being developed by the EPA.
4. Wildlife

The most common benchmark available for assessing fiffects on wildife is the acute, oral, median lethal dose $\left(\mathrm{LD}_{50}\right)$ for laboratory rodents. Avian toxicologists have followed the mammalian example by relying largely on acute LD_{50} s for adults (e.g., Hudson et al. 1984), but subacute median lethal dietary toxicities for young birds ($\operatorname{LC}_{50}{ }^{5}$) have become more common (e.g., Hill et al. 1975) and have been adopted by the 〔PA (1982) and ASTM (1984). These benchmarks are applicable to short-term exposures such as result from application of nonpersistent pesticides. In most such cases, the concentration in food is the primary expression of exposure; therefore, oral $L C_{50} s$ are directly applicable, whereas intake must be estimated to calculate doses before LD_{50} s can be used (Kenega 1973). In a few cases, notably when the exposure results from consimption of granular pesticides or cleaning pelt or plumage, an oral LD_{50} is more directly applicable. Since the relative sensitivities of aduits and young and the effects of exposure duration are less well known for birds than fish (iucker and Leitzke 1979), the comparaoi;ity and usability of these benchmarks are uncertain.

The other standard wildlife benchmark is the threshold for effects in the avian reproduction test (EPA 1982, ASTM 1985). This test resembles the MATC for chronic and subchronic effects on fish. in that the benchmark is usually derived by applying hypothesis testing statistics to an array of measured parameters. Like the MATC. it would
be more useful for assessment if curve fitting were used to estatish a consistent level of effect, and if a global parameter. (such as the weight of young per female) were calculated along with the individual measured responses. The duration of exposure in this test ($6-10$ weeks) can be considered to represent a ihronic adult exposure for all but the most persistent and bioaccumulated chemicals; however; since the young are not exposed, this cannot be considered a full chronic (i.e.. life-cycle) test.

There are very few data available for assessing the toxic effec:s of nompesticide chemicals and effluents on wildife. It is generaliy necessary to resort to the use of the health literature for such assessments. We have used rodent $L D_{50}$ values as a relatively consistent benchmark for comparative purposes and the lowest-reported toxic effect as a benchmark for suggesting where hazards may exist.

3.4 OLSCUSSION

The chief advantages of the quotient method are that it is quick, easy, generally accepted, and can be applied to any data. Because the effects benchmark is directly compared with the expected snvironmental concentration, the burden of ensuring realism in the description of the effects and their relationship to exposure falls largely on the toxicologist rather than the assessur. As previously discussed, the use of multiplicative factors to modify quotients amounts to treating uncertainty in a deterministic manner, and this logical inconsistency has resulted in incomplete and inconsistent treatments of corrections and uncertiointies. However, without the factors, the assumptions

Abstract

concerning the appropriateness of the toxicological benchmark and the estimated environmental concentration are not incorporated in the analysis. Therefore, this method is useful when (1) a large number of chemicals must be screened to find potent i hazards, (2) the toxicity data are unconventional, or (3) the data .i belfeved to be.completely appropriate to the asses sment, or at least cannot be improved by available analytical techniques.

REFERENCES (SECTION 3)

Alabaster, J. S., and R. Lioyd. 1982. Water Quality Criteria for Fresinwater Fish, 2nd ed. Butterworth Scientific, London.

ASTM. 1994. 1984 Book of ASTM Standards, Vol. 11.04. American Society for Testing and Materials, Philadelphia.

Birge, W. J., J. A. Black, and B. A. Ramney. 1981. The reproductive toxicology of aquatic contaminants. pp. 59-110. IN J. Saxena and F. Fisher (eds.), Hazard Assessment of Chemicals, Vol. 1. Academic Press, New York.

Cardwell, R. D., I. G. Formeman, T. R. Payne, and D. J. Wilbur. 1977. Acute and chronic toxicity of chlordane to fish and invertebrates. EPA-600/3-77-019. U.S. Environmental Protection Agency, Duluth, Minn.

Daniels, R. E., and J. D. Allan. 1981. Life table evaluation of chronic exposure to a pesticide. Can. ․ Fish. Aquat. Sci. 38:485-494.

Eaton, J. G., J. M. McKim, and G. F:. Holcombe. 1978. Metal toxicity to embryos and larvae of seven freshwater fish species-I. Cadmium. Bul1. Environ. Contam. Toxicol. 1978:95-103.

EPA. 1982. Environmental effects test guidei'nes, EPA-560/6-82-002. U.S. Environmental Protection Agency, Washington, D.C.

EPA. 1985. Technical support document for water quality-based toxics control, U.S. Environmental Protection Agency, Washington, D.C.

Hill. E. F., R. G. Heath. J. W. Spann, and J. D. Williams. 1975. Lethal dietary toxicities of pollutants to birds, Special Scientific Report-Wildife No. 191. U.S. Fish and Wildife Service, Washington, D.C.

Hudson, R. H., R. K. Tucker, and M. A. Heagele. 1984. Handbook of toxicity of pesticides to wildife, Resource Publication 153. U.S. Fish and Wildiffe Service, Washington, D.C.

Javitz, H. S. 1982. Relationship between response parameter hierarchies, statistical procedures, and biological judgment in the NOEL determination. pp: 17-31. IN J. G. Pearson, R. B. (-END-), and W. E. Bishop (eds.), Aquatic Toxicology and Hazard Assessment, Fifth Conference, ASTM STP 766. American Socfety for Testing and Materials, Philadelphia.

Kenega, E. E. 1973. Factors to be considered in the evaluation of the toxicity of pesticides to birds in their environment. pp. 166-181. IN F. Coulston and F. Court (eds.), Environmental Quality and Safety, Vol. Il. Academic Press; New York.

McKim, J. M. 1985. Early life stage toxicity tests. pp. 58-97. IN G. M. Rand and S. R. Petrocelli (eds.), Fundamentals of Aquatic Toxicology, Hemisphere Publishing Corp., Washington, D.C.

Mount. D. I. 1977. An assessment of application factors in aquatic toxicology. pp. 183-190. IN R. A. iubb (ed.), Recent Advances in Fish Toxicology, EPA-600/3-77-085. U.S. Environmental Protection Agency, Corvallis, Washington.

Norberg, T. J., and D. 1. Mount. .1985. A new fathead minnow (Pimephales promelas) subchronic toxicity test. Environ. Toxicol. Chem. 4:711-718.

OECD. 1981. OECD guidelines for testing of chemicals, Organization for Economic Cooperatton and Development, Paris.

Ruesink, R. G., and L. L. Smith, Jr. 1975. The relationship of the 96 -hour $L C_{50}$ to the lethal threshold concentration of hexavalent chromium, phenol, and sodium pentachlorophenate for fatnead minnows (Pimephales promelas Rafinesque). Trans. Am. Fish. Soc. 1975:567-570.

Sprague, J. B. 1973. The ABC's of pollutant bioassay using fish. pp. 6-30. IN J. Cairns, jr., and K. L. Dickson (eds.), Biological Methods for the Assessment of Water Quality, ASTM STP 528, American Society for Testing and Materials, Philadelphia.

Stephan, C. E., and J. W. Rogers. in press. Advantages of lising regression analysis to calculate results of chronic toxicity tests. IN Aquatic Toxicity and Hazard Assessment, Eighth Symposium, American Society for Testing and Materials, Philadelphía.

Tucker, R. K., and J.S. Leitzke. 1979. Comparative toxicology of insecticides for vertebrate wildife and fish. Pharmacol. Therap. 6:167-220.

4. ANALYSIS OF EXTRAPOLATION ERROR

G. W. Suter II, A. E. Rosen, and E.: Linder

4.1 DEFINITION

Analysis of extrapolation error (AEE) is a method of calculating the probability of exceeding assessment end points to be used in those cases where the end points can be expressed as standard toxicological benchmarks. The method has two components: (1) the extrapolation component that, like the factors used with the quotient method (Sect. 3.2), is used to estimate the value of the assessment end point from the available test data and to account for the uncertainty in the estirate; and (2) the risk component that calculates the probability of exceeding the assessment end point using the results of the extrapolations. Since the extrapolation component treats extrapolation and uncertainty in a more rigorous and conceptually appropriate manner trian does the use of chains of multiplicative factors, it can be used in place of such factors in hazard assessment. However, it is the calculation of the probability that an expected environmental concentration will exceed the end point (rather than simply comparing them arithmetically as in the quotient method) that makes AEE a true risk assessment method.

In the following sections. we will explain the assumptions and statistical procedures for $A E E$ and provide numerical examples; however. the method can be best introduced by presenting an example graphically. Assume that we wish to estimate the probability that the expected environmental concentration of a chemical will exceed the
threshold for life-cy:le effects on survival, growth, or reproduction of brook trout (Salvelinus fontinalis) and that we only have an $L C_{50}$ for rainbow trout (Salmo gatrdneri). In that case we must extrapolate between the genera Salmo and Salvelinus, and we must extrapolate between the $L C_{50}$ and the chronic thrashold. The relationship between the two genera is illustrated ir Fig. 4.1. Each of the points represents an individual chemical for which a member of both genera has been tested using a common protocol and with the results expressed as $96-h L C_{50}$. The relationship between $L C_{50} s$ and life-cycle effects thresholds (expressed as MATCs) is shown in Fig. 4.2. The points here represent different species-chemical combinations for which both an $L C_{50}$ and a life-cycle or partial life-cyle MATC have been cetermined in the same laboratory. If we use the rainbow trout $L C_{50}$ as the x value in the fig. 4.1 relationship, we can estimate a brook trout LC_{50} and an associated variance that can be used in the fig. 4.2 relationship to estimate a brook trout MATC and associated variance. The estimated MATC and its total variance can be represented as a probability density function, as in Fig. 4.3. The risk that the MATC will in fact be exceeded is the probability that a realization of the MATC, chosen at random from that probability density function, will be less thar a similarly chosen value from the probability density function for the expected environmental concentration.

AEE differs from previous approaches to extrapolating environmental toxicology data in its emphasis on the uncertainty associated with the extrapolations and the contribution of that uncertainty to the risk. The traditional approach is to ask whether

ORNL-DWG 85-16999

Fig. 4.1. Logarithms of $L C_{50}$ values for Salvelinus plotted against Salmo. The lirie is determined by an errors-in-variables regression; the parameters are presented in Table 4.l.

Fig. 4.2. Logarithms of MATC values from life-cycle or partial life-cycle tests plotted against logarithms of $96-h L_{50}$ values determined for the same species and chemical in the same laboratory. The line is derived by an errors-in-variables regression; the parameters are presented in line 4 of Table 4.3.

Fig. 4.3. Probability density functions for a predicted Salvelinus MATC (solid line) and an expected environmental concentration (dashed line).
one particular species, life stage, or test duration is an acceptable surrogate for another. When this question is asked, it is invariably discovered that no two tests give identical results, and that the results are not consistently proportional across test chemicals. This discovery can lead to the pessimistic conclusion that toxicity data should not be extrapolated (Tucker and Heagele 1971), which implies that only tested species can be protected. However, since no test is perfectly precise or accurate, even test results have associated uncertainty that can prevent fine discrimination between effective and ineffective exposures. Thus, the relevant question is: Does a particular benchmark, whether derived by testing alone or by testing and extrapolation, provide sufficient accuracy so that an accoptable level of risk can be determined?

4.2 IMPLEMENTATION

AEE consists of five steps: (1) define the end point of the risk assessment (e.g., the probability of causing reductions in brook trout productivity) in terms of a toxicological benchmark (e.g., the probability of exceeding the brook trout MATC); (2) identify the existing datum for the chemical of interest that is most closely related to the end point (e.g., a rainbow trout 96 n at $L C_{50}$); (3) break the relationship between the datum and the end point into logical steps (e.g., rainbow trout to brook trout and $L^{C}{ }_{50}$ to MATC): (4) calculate the distribution parameters of the end point extrapolated from the datum; and (5) calculate the risk that the expected environmental concentration (EEC) will exceed the end point concentration. Step 1
is dependent on the assessment situation and on the assessor's and decision-maker's conceptualization of environmental values; however, steps 1,2 , and 3 are severely constrained by the state of the science of environmental toxicology as reflected in the available benchmarks and data for the organisms in question (Sect. 3.3).

4.2.1. Risk Calculation

In this method, risk is defined as

$$
\begin{equation*}
\text { Risk }=\operatorname{Prob}(E E C>B C) \text {. } \tag{4.1}
\end{equation*}
$$

where 8 C is the benchmark concentration that is used as the estimator of the assessment end point. If we assume that the EEC and BC are independent and log-normally distributed, then

$$
\begin{align*}
\text { Risk } & =\operatorname{Prob}(\log B C-\log E E C<0) \tag{4.2}\\
& =\operatorname{Prob}\left[z<\left[0-\left(\mu_{b}-\mu_{e}\right)\right] /\left(\sigma_{b}^{2}+\sigma_{e}^{2}\right)^{1 / 2}\right] \tag{4.3}\\
& =\Phi_{z}\left[\left(\mu_{e}-u_{b}\right) /\left(\sigma_{b}^{2}+\sigma_{e}^{2}\right)^{1 / 2}\right] \tag{4.4}
\end{align*}
$$

where $\left(\mu_{b}, \sigma_{b}^{2}\right)$ and $\left(\mu_{e}, \sigma_{e}^{2}\right)$ are the mean and variance of the $\log B C$ and $\log E E C$, respectively and

$$
\begin{equation*}
Z=\left[(\log B C-\log E E C)-\left(\mu_{b}-\mu_{e}\right)\right] /\left(\sigma_{b}^{2}+\sigma_{e}^{2}\right)^{1 / 2}, \tag{4.5}
\end{equation*}
$$

a standard normal random variable with Φ_{2} as its cumulative distribution function. If it is assumed that the EEC is constant and certain, then the risk calculation reduces to

$$
\begin{align*}
\operatorname{Risk} & =\operatorname{Prob}\left\{Z<\left[\left(\log E E C-\mu_{b}\right) / \sigma_{b}\right]\right\} \tag{4.6}\\
& =\Phi_{2}\left[\left(\log E E C-\mu_{b}\right) / \sigma_{b}\right] . \tag{4.7}
\end{align*}
$$

Given this definition, risk depends on the definitions of the EEC and $B C$ and their associated uncertainties (i.e., on $\mu_{e}, \mu_{b}, \sigma_{e}^{2}$, and σ_{b}^{2}). For the $B C$, the mean and variance can be estimated by statistical extrapolation of the toxicity data:

4.2.2 Extrapolation

The choice of extrapolation model for this method was based on the following characteristics of toxicity data:

1. the observed values X and Y are subject to error of measurement and to inherent variability,
2. X is not a controlled variable (like settings on a thermostat),
3. values assumed by X and Y are open-ended and non-normally distributed.

These characteristics suggest that an ordinary least-squares model would be inappropriate and an errors-in-variables model should be used. Since we can estimate the value of λ, the ratio of the point variances of Y to X, a functional modei provides maximum likelihood estimators of the regression parameters.

The estimators of the slope (β) and intercept (α) are

$$
\begin{align*}
& b=\left\{\Sigma y^{2}-\lambda \Sigma x^{2}+\left[\left(\Sigma y^{2}-\lambda \Sigma x^{2}\right)^{2}+4 \lambda(\Sigma x y)^{2}\right]^{1 / 2}\right\} / 2 \Sigma x y \text { and } \tag{4.8}\\
& a=\bar{y}-b \bar{x} \tag{4.9}
\end{align*}
$$

where $x=x_{i}-\bar{x}$ and $y=y_{i}-\bar{y}$ for $1=1 \ldots n$. The variance of a single predicted Y-value for a given X-value $\left(X=X_{0}\right)$ is given in Mandel (1983) as

$$
\begin{gather*}
\operatorname{var}\left(y \mid X_{0}\right)=s_{e}^{2}\left\{1+1 / n+\left[1+\left(D^{2} / \lambda\right)\right]\left\{\left(x_{0}-\bar{x}^{2} / \Sigma u^{2}\right]\right\}\right. \text {, where } \tag{4.10}\\
s_{e}^{2}=\left(D^{2} \sum x^{2}-2 b \Sigma x y+\left[y^{2}\right) /(n-2),\right. \text { and } \\
\sum u^{2}=\left[x^{2}+2 b / \lambda \sum x y+(b / \lambda)^{2} \sum y^{2} .\right.
\end{gather*}
$$

This variance is the appropriate value to use in calculating confidence intervals and risk estimates because the interest in this case is the certainty concerning an individual future observation of Y, such as a toxic threshold, for an untested species-chemical combiration. This variance is larger (by a factor of s_{e}^{2}) than the variance of the mean of a $Y \mid X_{0}$, which is in turn larger than the variance of the regression coefficient--the number provided by most programable calculators. Confidence intervals calculated from this variance are larger than those that are conventionally reported and are referred to as prediction intervals.

For ease in using this method we reduce the variance formula to

$$
\begin{equation*}
\operatorname{var}\left(Y ; X_{0}\right)=F_{1}+F_{2}\left(X_{0}-\bar{X}\right)^{2} \tag{4.11}
\end{equation*}
$$

and provide values for F_{1} and F_{2} in the tables.
All of the data used in our extrapolations are log transformed. and the reported variances and prediction intervals are for the transformed values. The log transformation was used to increase the homogeneity of the variances and the linearity of the relationships.

4.2.3 Double Extrapolation

In some cases it is necessary to make multiple extrapolations; the most common example is the combination of acute/chronic and taxonomic extrapolations. In those cases the y from the first extrapolation becomes the "independent" variable in the second extrapolation, and the parameters of the second regression ($2=c+d y$) are determined as for the first, that is substituting y for x and z for y : The total variance for the two extrapolations is

$$
\begin{equation*}
\operatorname{var}\left(Z \mid X_{0}\right)=\operatorname{var}\left(Z \mid y_{0}\right)+d^{2} \operatorname{var}\left(y \mid X_{0}\right) . \tag{4.12}
\end{equation*}
$$

4.3 AN EXAMPLE: AQUATIC INVERTEBRATES ANO FISH

4.3.1 Data Sets

The data set for the taxonomic extrapolations of $L C_{50}$ s is based on an expansion of the Columbia National fisheries Research Laboratory data set in Johnson and Finley (198); the expansion was prepared by Mayer and Ellersieck (in press). Tais is the largest and most taxonomically diverse set of publicly available aquatic toxictty data that is reasonably uniform with respect to test prosedures. We have created a more uniform subset of the data by limiting it to tests performed in soft water (except for those organisms such as oaphnia that are not tested in soft water), with post-larval fish weighing between 0.4 and 2.0 g , or with invertebrates belonging to the most often-tested life stage. Tests with aged test solutions, results expressed as >or < values, nonstandard temperatures or PHs ; or
forms of a chemical other than the most often-tested form were not
used. If, after these criteria were applied, there were still replicate $L C_{50}$ s for a combination of species and chemical, one of the replicates was chosen at random. This subset contains 61 species and 327 chemicals.

The data sets for the extrapolations involving chronic effects on fish are presented in Appendices A and B. The chronic fish data are a complation of published results of life cycle, partial life cycle, and early life-stage tests of freshwater fish. The concentration-response data for hatch of normal larvae, larval survival, early juvenile weight, eggs produced per female, and adult survival (Appendix B) were extracted from the tests listed in Appendix A. In Appendix B replicate results were averaged, and relationships were not used if there was not at least a 25% reduction in performance at the highest concentration, if there was greater than 30% mortality in the controls, or if there was not a significant positive siope to a fitted logit function. Since these studies were designed for calculating MATCs rather than for curve fitting; most of the responses did not pas; these lenient criteria. However, they are the only chronic data available for fish and they serve to illustrate the use of benchmarks based on chronic effects leveis and population models (Sect. 5).

The invertebrate chronic data are limited to life-cycle tests with Daphnia SpD., since there are few good chronic data for any other freshwater invertebrate. Those data are from the 1980 and 1984 EPA ambient water quality criteria support documents and are not reproduced here.

4.3.2 Extrapolation Results

The taxonomic extrapolations of acute data are presented in Table 4.1: The extrapolations were performed between taxa having the next higher taxonomic level in common rather than simply matching all possible species combinations. For example, the extrapolation between the fathead minnow (Pimephales promelos) and largemouth bass (Micropterus salmoides) constitutes an extrapolation between the Cypriniformes and Perciformes. This system allows extrapolation to spectes that have rarely or never been tested by assuming that they are represented by tested species that are members of some common higher taxonomic level. The taxonomic hierarchy is based on the concept that greater evolutionary distance implies greater mo:phological and physiological dissimilarity, which implies greater dissimilarity in response to toxicants. It is the basis for preferring mammals over nonmamals and primates over nonprimate mammals in testing for effects cn humans. It will not hold if the traits that determine sensitivity are extremely evolutionarily labile or conservative. The concept has been shown to hold on average for aquatic organisms (Suter et al. 1983, Suter and Vaughan 1984, and LeBlanc 1984).

As shown in Table 4.2, most extrapolations between taxa within the same family (i.e., between congeneric species and between confamiifal genera) can be made with fair certainty, but extrapolations between orders of arthropods, classes of chordates or arthropods, and between the phyla Chordata and Arthrupoda are highly uncertain: We use the prediction interval rather than the correlation coefficient (r),

Table 4.1. Taxonomic extrapolations [units are $\log (\mu g / L)$].

Level ${ }^{\text {a }}$. Taxon $\mathrm{x}^{\text {b }}$	Jaxon ${ }^{\text {'c }}$	$N^{\text {d }}$ Icept ${ }^{\text {e }}$ Slope ${ }^{\text {f }}$ Xbar ${ }^{\text {g }}$	$E 1^{\text {n }}$	F2 ${ }^{\text {n }}$ Ybar ${ }^{1}$	G1 ${ }^{1}$	G2 ${ }^{\text {J }}$	P1 ${ }^{k}$

SPECIES

CUTIHROAT TROUT	RAIMBOW TROUT	18	0.04	0.98	2.47	0.24	0.0.	2.45	0.25	. 01	析
CUTIHROAI IROUT	ATLANTIC SALMON	6	-0.25	1.00	2.99	0.16	0.01	2.74	0.16	0.01	0.78
CUTIMROAT TROUT	BROWM TROUT	8	-0.20	1.02	$2.42{ }^{\circ}$	0.14	0.01	2.26	0.14	0.01	0.74
Rainbow trout	ATLANTIC SALmon	10	-0.51	1.20	2.61	0.20	0.01	2.62	0.14	0.01	0.87
RAINBOW TROUT	BROWN TROUT	15	-0.21	1.09	2.16	0.08	0.00	2.15	0.07	0.00	0.56
ATLANIIC SALMON	BROWN TROUT	7	0.09	1.01	2.53	0.13	0.01	2.65	0.13	0.01	0.70
BLACK BULLH:AD	Channel cattish	12	-0.11	1.00	2.23	0.11	0.00	2.13	0.11	0.00	0.66
GREEN SUNFISH	Bluegill	14	-0.62	1.09	2.39	0.17	0.01	1.99	0.14	0.00	0.80
D. MAGNA	D. Pulex	9	0.26	0.81	0.68	0.59	0.07	0.81	0.90	0.16	1.51
G. FASCIATUS	6. LACUSTRIS	11	-0.06	0.84	1.32	0.15	0.01	1.05	0.21 .	0.03	0.76

GENUS

ONCORHYNCHUS	SALMO		56	-0.13	1.02	2.63	0.11	0.00	2.56	0.10	0.00
ONCORHYNCHUS	SALYELINUS	13	-0.47	1.09	2.40	0.08	0.00	2.15	0.07	0.00	0.57
SALMO	SALVELINUS	56	-0.33	1.10	2.86	0.14	0.00	2.82	0.11	0.00	0.73
CARASSIUS	CYPRIMUS	8	-0.47	1.05	5.04	0.09	0.01	2.73	0.08	0.01	0.58
CARASSIUS	PIMEPHALES	19	-0.27	1.03	2.79	0.17	0.00	2.61	0.16	0.00	0.82
CYPRINUS	PIMEPHALES	10	0.24	0.93	2.90	0.11	0.01	2.95	0.20	0.01	0.82
LEPOMIS	MICROPIERUS	30	-0.20	1.05	2.33	0.22	0.00	2.24	0.20	0.00	0.92
LEPOMIS	POMOXIS	8	-0.01	0.82	1.28	0.23	0.01	1.04	0.34	0.02	0.94
DAPHNIA	SIMOCEPHALUS	51	0.35	0.92	1.48	0.16	0.00	1.71	0.19	0.00	0.78
PTERONARCELLA	PTERONARCYS	8	-0.05	1.03	1.34	0.15	0.01	1.33	0.14	0.01	0.75

fanily

BUFONIDAE	HYLIDAE	6	1.26	0.56	2.34	0.34	0.14	2.58	1.06	1.37	1.14	
CEMTRARCHIDAE	PERCIDAE		47	-0.02	0.95	1.96	0.27	0.00	1.85	0.29	0.00	1.01
CENTRARCHIDAE	CICHLIDAE	6	0.93	0.40	0.90	0.08	0.04	1.29	0.51	1.67	0.56	
PERLIDAE	PJERONARCYIDAE	11	0.21	1.11	0.17	0.40	0.19	0.39	0.32	0.12	1.24	
PERLODIDAE	PTERONARCYIDAE	9	0.54	0.75	1.12	0.22	0.01	1.39	0.39	0.05	0.92	
SALMONIDAE	ESOCIDAE	11	-0.49	1.40	1.05	0.23	0.13	0.99	0.12	0.03	0.94	
PERCIDAE	CICHLIDAE	-5	0.15	1.43	1.42	0.33	0.13	2.19	0.16	0.03	1.12	
ASTACIDAE	PALAEMONIDAE	6	0.27	0.54	1.89	1.37	0.05	1.29	4.67	0.55	2.30	

Table 4.1. (Cont inued)

Level ${ }^{\text {a }}$	taxon $x^{\text {b }}$	Iaxon y^{c}	$\mathrm{N}^{\text {d }}$	LCedt ${ }^{\text {e }}$	lope ${ }^{\text {f }}$	Xbar ${ }^{\text {g }}$	81^{n}		Ybar ${ }^{\dagger}$	615	62^{j}	$P l^{k}$
OROER												
	SALMONIFORMES	CYPRINIFORMES	225	0.90	0.87	2.32	0.45	0.00	2.92	0.59	0.00	1.31
	SALMONIFORAES	SILURIFORMES	203	0.87	0.85	2.35	0.66	0.00	2.86	0.91	0.00	1.59
	SALMONIFORMES	PERCIFORMES	443	0.33	0.94	2.34	0.31	0.00	2.53	0.35	0.00	1.09
	CYPRINIFORMES	SILURIFORMES	111	0.23	0.93	2.59	0.28	0.00	2.63	0.33	0.00	1.04
	CYprimiforams	PERCIFORMES	219	-0.39	0.94	2.66	0.59	0.00 .	2.24	0.61	0.00	1.51
	SILURIFORMES	PERCIFORMES	190	-0.74	1.08	2.67	0.82	0.00	2.15	0.71	0.00	1.78
	Cladocera	OSIRACDDA	22.	0.79	0.62	1.05	0.96	0.04	1.44	2.53	0.28	1.92
	Cla	AMPMIPCOA	105	0.21	0.91	1.14	0.63	0.00	1.31	0.76	0.00	1.56
	ostracooa	ISOPOOA	7	-1.10	2.05	1.26	1.23	0.61	1.49	. 0.29	0.03	2.17
	- osiracoda	AMPHIP POA	14	-2.74	2.30	1.62	2.07	0.33	0.99	0.39	0.01	2.82
	ISOPOOA	AMPMIMODA	20	-0.22	0.45	1.92	0.92	. 0.04	0.66	4.45	0.87	1.88
	ISOPODA	decapoda	5	-2.31	1.85	2.00	4.42	2.09	1.39	1.29	0.18	4.12
	AMPMIPOOA	decapoda	14	0.65	1.67	0.39	2.73	0.25	2.14	0.98	0.03	3.24
	PLECOPIERA	Odonata	13	0.60	0.53	0.55	0.61	0.10	0.89	2.15	1.26	1.53
	plecopiera	gipiera	18	0.77	2.46	0.18	3.15	1.68	1.22	0.52	0.05	3.48
	SALMONIF ORMES	ATHERINIFORMES	6	0.37	0.66	0.17	0.10	0.00	0.48	0.24	0.02	0.63
	CYPRIMIFORMES	ATHERINIFORMES	5	0.02	0.74	0.95	0.06	0.00	0.72	0.12	0.01	0.50
	SILURIFORMES	ATHERINIFORMES	5	-0.48	0.85	0.84	0.91	0.09	0.23	1.25	0.17	1.87
	ATheriniformes	PERCIFORMES	10	-0.10	1.03	0.17	0.21	0.01	0.70	0.20	0.01	0.91
	OSTEACODA	decapoda	9	-1.05	1.37	1.86	1.34	0.13	1.51	0.71	0.04	2.27
Class												
:	Anfinle!	OSTEICHIHYES	206	-6.97	3.34	2.57	3.84	0.16	1.63	0.34	0.00	3.84
	cristacea	INSECTA	373	0.01	0.83	. 1.19	1.33	0.00	0.99	1.94	0.01	2.26
PhYLUA												
	chordata	ARTHROPOOA	2103	-0.55	0.71	2.35	1.76	0.00	1.27	2.94	0.00	2:60
SPECIAL												
	FATHEAL MINNOW	CYPRINIFORMES	30	0.26	0.95	2.63	0.19	0.00	2.71	0.21	0.00	0.85
:	bluegill	PERCIFORMES	65	0.16	0.95	2.13	0.22	0.00	2.19	0.24	0.00	0.91
	RAINBOW TROUT	SALMONIF DRMES	88	-0.11	1.04	2.59	0.17	0.00	2.59	0.16	0.00	0.81
	fathead minnow	OSIEIChIRyES	354.	-0.30	1.01	2.71	0.45	0.00	2.49	0.44	0.00	1.31
	BLUEGILL	OSTEICHIHYES	500	0.17	0.96	2.52	0.49	0.00	2.60	0.53	3.00	1.37
	RAINBOW IRDUI	os:EIChihyes	480	0.29	0.99	2.42	0.38	0.00	2.67	0.39	0.00	. 1.20

ataxononic level at which the extrapolation is made.
0laxon from which values of the indecendent variable are drawn.
ctaxon from which values af the dependent variable are drawn.
ONumber of points in the regression.
esstimated intercept (a).
festimated slope (b).
Imean of x.
$h_{\text {factors }}$ used in calculating the variance of an individual y.
imean of Y.
Jfactors used with the inverse regressions to calculate the
variance of an individual x.
*The 95% prediction interval on the point X8AR is YBAR $+P 1$.

Table 4.2. Summary of aquatic taxonomic extrapolations

aNumber of pairs of taxa at that taxonomic level.
because we are interested in the precision of the estimate rather than the ability of the model to "explain" the data. In addition, the r values for this regression model are considerably higher than those for ordinary least squares; therefore they could not be used for comparison with other results.

Because these extrapolations are made between identical benchmarks (96-h LC C_{50}) determined at a single laboratory, λ was set to 1. This assumption was tested by pair-wise compartsons of the 95% confidence intervals reported by Johnson and Finley (1980). Average ratios of confidence interval widths on $L C_{50}$ s for pairs of taxa at each taxonomic level were all found to be very close to 1.

Table 4.1 can be used to extrapolate between taxon X and taxon Y, as previously explained (Sect. 4.2.1). Since we are using an errors-in-variables model, the inverse regression (X from Y) can be calculated as $x=(y-a) / b$. Variance for this inverse regression (Mandel 1983) reduces to $\operatorname{var}\left(X \mid Y_{0}\right)=G_{1}+G_{2}\left(Y_{0}-\bar{Y}\right)^{2}$, with G_{1} and G_{2} provided in the table.

Four special taxonomic extrapolations are presented at the end of Table 4.1. These are extrapolations between the three most common test species of fish [fathead minnow, bluegill (Lepomis macrochirus), and rainbow trout], and both the Order to which they belong and the entire Class Osteichthyes. The extrapolations are useful for assessments in which members of an entire higher taxon are to be protected or for which an appropriate lower-level extrapolation is not available. This type of extrapolation also serves to indicate how well these species serve as representatives for the taxa as a whole. The measure of
predictive power provided by the prediction intervals for these equations is a better guide to the selection of test species than relative sensitivity, importance of the species, or its similarity to currently used species (Suter and Vaughan 1989). By this criterion; the three fish species are about equally good representatives; but the rainbow trout is slightly better.

A variety of acute-chronic extrapolations are presented in Table 4.3 for different chronic benchmarks and subsets of the data. The values of λ for these extripolations are estimated from the ratios of the mean variances of benchmarks from replicate tests in Appendix A. The choice of extrapolation dipends on the input data and on the end point desired, that is, MATC vs effects levels, all chronics vs life-cycle, or specific categories vs all chemicals. Clearly the extrapolations presented are only a fraction of those that could be created from different subsets of data.

The first extrapolation in Table 4.3 relates fathead minnow MATCs to those of all other freshwater Osteichthyes. Although the predicted Y for this type of extrapolation is meaningless (there is no mean fish), this relationship can be used to estimate the risk that the MATC (for some species of fish) will be exceeded, given: a fathead minnow MATC and an expected environmental concentration. The prediction interval for this extrapolation is similar to that for the analogous extrapolation in Table 4.1 between fathead minnow $L C_{50}$ s and those for all ocher Osteichthyes; however, the interval is slightly smaller, possibly due to the smaller array of species that have been used in chronic tests. One might expect that there would be greater variance

Table 4.j. Acute-Chronic Extrapolations. Units are log(ug/L).

$085^{\text {a }}$	$x^{\text {b }}$	$\mathrm{r}^{\text {c }}$	Condition ${ }^{\text {d }}$		Lamda ${ }^{\text {e }}$	$M^{\text {f }}$	Icept ${ }^{\text {g }}$	Slope ${ }^{\text {h }}$	Xbar ${ }^{1}$	$f 1{ }^{\mathrm{j}}$	F2 ${ }^{\text {j }}$	YDar ${ }^{k}$	P1 ${ }^{1}$
1	FM MAIC	All fish matc	All		1.0	52	-0.04	0.79	1.80	0.33	0.01	1.37	1.13
2	FA MATC	Salmoniformes MAIC	All		1.0	21	-0.10	0.80	1.87	0.39	0.02	1.38	1.22
3	FA MATC	Perciformes MATC	All		1.0	8	-0.26	0.93	1.97	0.45	0.11	1.56	1.31
4	LC50	MATC	lype $=$ LC		1.5	55	-1.16	0.90	2.75	0.51	0.01	1.31	1.40
5	LC50	MATC	Al:		1.5	98	-1.51	1.07	3.13	0.59	0.00	1.85	1.50
6	LC50	MATC	Class $=N$		1.5	23	0.42	0.90	3.87	0.09	0.00	3.05	C. 59
1	$L_{\text {L }}^{50}$	MATC	Class $=$ M		1.5	25	-0.70	0.73	3.25	0.31	0.02	1.68	1.19
8	LC50	EC25 Mortl	Type $=$ LC		1.0	15	-1.46	0.96	2.71	0.53	0.03	1.14	1.43
9	LC50	EC25 Mort2	All		1.0	30	-1.69	1.21	2.98	1.10	0.03	1.91	2.06
10	LC50	EC_{25} Mort2	Species = FA	IYPE $=$ ELS	1.0	16	-2.33	i. 33	3.35	1.52	0.06	2.12	2.42
11	LC50	EC_{25} Hatch	All		1.0	13	-2.24	1.34	3.40	1.46	0.06	2.33	2.37
12	LC50	E. $_{25}$ Eggs	Type $=$ LC		1.0	26	-2.43	1.19	2.83	0.75	0.04	0.94	1.10
13	$L^{\text {LC50 }}$	EC25 Weight	All		1.0	31	-2.03	1.24	3.40	0.71	0.01	2.18	1.72
14	LC50	EC2, Weight	Species $=$ FM.	TYPE = ELS	1.0	24	-1. 72	1.18	3.70	0.84	0.02	2.66	1.19
15	$L^{\text {LC50 }}$	EC25 Wt of Juveniles/Egg	All		1.0	14	-1.88	1.10	3.20	1.49	0.04	1.66	2.39
16	LC50	EC25 Wt of Juveniles/Egg	Spectes = FM	TYPE = ELS	1.0	11	-2.00	1.16	3.18	1.60	0.05	1.68	2.48
17	LC50	Daphnta MATC	All		1.3	51	-1.30	1.11	2.73	0.48	0.01	1.72	1.35
18	LC50	Oaphnia MATC	Class $=\mathrm{M}$		1.3	21	-1.08	0.96	2.44	0.63	0.02	1.26	1.56

dOBS = Observation number.

bIndependent variable. FM MATC - MATC values for fathead minnows. $L C_{50}=L C_{50}$ values for the species and chemical corresponding to those of the dependent variable.
Dependent variable. All fish MATC = values for all freshwater fish other than fathead minnows. Salmoniformes
MATC = values for members of the order Salmoniformes. Perciformes MATC = values for members of the order Percirormes. MATC = Values for fish. EC25 Mortl a corcentration estimated to cause a $25 x$ increase in mortality of parental fish. EC $\mathbf{2 5}^{25}$ Mort2 = a concentration estimated ca cause a 25% increase in mortality of larval fish. EC25 Hatch $=$ a
concentra, ion estimated to cause a 25% decrease in normal hatches of fish eggs. EC25 Eggs = a concentration estimated to cause a 25x decrease in the number of eggs produced per female fish. EC25 weight $=$ a concentration estimated to cause a 258 decrease in the weight of fish at the end of the larval stage. Daphnid MAIC = values for members of the genus Daphnia.
dSubset of the data used in the extrapolation. All = all pairs of x and y points are used. Type a types of tests
Included: LC = life cycle or partial life cycle. ELS = early life stage. Species = Species of test organism: FM = fathead minnow. Class $=$ Chemical class: $M=$ metal. $N=$ narcotic.
eRatio of the variances of the Y and X variables.
fumber of points in the regression.
gestimated intercept (a).
hestimated slope (b).
Mean of x.
Factors used in calculating the variance of an individual Y.
Mean of Y.
The 95% prediction interval at the doint XBAR is YBAR \pm PI.
among species in chronic toxicity than in acute toxicity because of the greater variety of responses potentially involved, particularly in life-cycle tests. However, this analysis does not support that idea, and the substitution of larval mortality or growth for life-cycle responses in chronic tests suggests that acute and threshold chronic responses may be equaily simple; therefore the true vartances may be equal. Extrapolations 2 and 3 are analogous but extrapolate to specific orders. There is no gain in precision by this increased specificity. All extrapolations have negative intercepts and slopes less than 1 , indicating that fathead minnows are a little less sensitive than most other fish in chronic tests.

The next four extrapolations in Table 4.3 predict MATCs from $L C_{50} s$ for the same spectes. Extrapolations 4 and 5 include all species and chemical types, but 4 includes only life-cycle tests (which are somewhat more reliable than early life-stage tests), whereas 5 includes all MATCs for which there is a corresponding $L C_{50}$. Extrapolations 6 and 7 include all species and test types but are limited to narcotics and metals, respectively. The chemicals identified as narcotics belong to the classes of chemicals identified as such by Veith et al. (1983) and Call et al. (1985). The particularly narrow prediction interval for this extrapolation reflects the precision of the quantitative structure-activity relationships (OSARs) for narcotics presented in those reports, thus reinforcing the idea that the action of these chemicais is highly predictable. In fact, the fathead minnow $L C_{50}{ }^{5}$ and MATCs generated by the QSARs in these reports, or by any other QSAR with precision as good as that of replicate tests, could be used in the
extrapolations between fathead minnow benchmarks and those for other taxa, if there is reasonable certainty that the chemical in question belongs to the correct category. QSARs can be more precise than individual tests because they summarize large amounts of information, and because chemical measurements are generally much more prectse than Diological tests (Craig and Enslein 1981).

The next nine extrapolations (8-16) constitute an examination of the predictability of particular levels of chronic effects (LC ${ }_{25}$ s and $E C_{25} s$) from acute $L C_{50} s$ for the same species. Mortl is mortality of parental fish; Mort2 is mortality from hatching to the early juvenile stage: Hatch is the proportion of eggs failing to successfully hatch; Eggs is the reduction in the number of eggs produced per female relative to controls; Weight is the proportional reduction in the average weight of early juveniles relative to controls; and wt of Juveniles/Egg is the proportional reduction in the weight of early juveniles per initial egg. We used a 25\% reduction in performance in this exercise largely as a matter of convenience in dealing with this data set rather than as a proposed assessment end point, but 25% could be defended as a level of effect that would be barely detectable in tire field. These extrapolations are more imprecise than those from acute $L C_{50} s$ to MATCs. This result is surprising since we expected that an acute median lethal concentration would be a better predictor of a chronic quartile lethal concentration than of a hypothesis-testing-derived benchmark that is not indicative of any particular type or level of effect. Limitation of the data set $\because n$ only early life-stage tests with fathead minnows does not reduce the uncertainty. The most ouvious
explanation is that the chronic $L C_{25} s$ and $E C_{25} s$ contain much extraneous variance because of the poor data from which they were derived. Nearly all of the chronic concentrat 10 on-response data would fall to pass conventional requirements for canculating acute $L_{50}{ }^{s}$ and $E C_{50}$ s because of the lack of partial ki'hs, lack of effects levels of 50% or greater, or high control mortality. In addition, many of the chronic results show apparent hormesis at low concentrations, which complicates curve fitting.

The last two extrapolations in Table 4.3 are for predicting life-cycle MATCs for Daphnia from $48-h C_{50} s$, first for all chemicals and then for metals only. These extrapolations have about the same uncertainty as the corresponding LC_{50} to MATC extrapolations for fish (Nos. 4 and 7. in Table 4.3). These LC ${ }_{50}$ to MATC extrapolations for fish and Daphnia have about the same average level of uncertainty as the extrapolations of $L C_{50} s$ between families of arthropods or orders of fish (Table 4.2).

One potential source of bias in these extrapolations is the fact that investigators will sometines report results as being greater than or less than some value because the highest or lowest concentration tested was not high or. low enough to allow. the benchmark to be determined. Since the true value of the benchmark is unknown, these results cannot be used in the extrapolations. However, since these are likely to be chemicals with extreme application factors (MATC/LC ${ }_{50}$ values), they would presumably increase the variance in the extrapolations if their true values were known and included. In addition, there may be bias in the centroids because there are more
< than > values for MATCs in the data set (i) vs. 6, - ApD. A). However, this does not appear to be a significant problem since all but one of the > or < estimates of the MATC fall within the 95\% PI for extrapolation 5, Table 4.3. In addition, an examination of these studies indicates that the failure to show a statistically significant effect at the highest concentration tested is due primarily to high variance in the test data rather than extremely low chronic toxicities. These observations suggest that the true application factors for these chemicals may not be extremely high or low.

4.3.3 A Demonstration

As an example of the use of these extrapolations, consider the estimation of the risk of exceeding the threshuld for chroiic efferts on brook trout beginning with a rainbow trout L_{50} of $5300 \mu \mathrm{~g} / \mathrm{L}$ for the chemical of concern. Substituting the \log of that ${L C_{50}}$ into thie Salmo-Salvelinus extrapolation (Table 4.1) gives a \log brook trout $L C_{50}$ of 3.77; using iq. (4.11), the variance is 0.14 (the second term of the variance equation, $F 2\left(X_{0}-\bar{X}\right)^{2}$, is trivial in this case). Substituting 3.77 into extrapolation 4, (Table 4.3), gives an estimate of 2.22 for the \log brook trout life-cyile MATC, with a variance for this extracolation of 0.53 . Using. Eq. $(4-12)$, the total variance for the ccuble extrapolation is $0.14+(0.81 \times 0.53)=0.57$.

If the \log of the expected environmental concentration (EEC) is 2.0 with a variance of 0.5 , then the probability that a realization of the brook trout MATC is less than a realization of the EEC is determined from Eq. (4.4), by calculating

$$
(2.0-2.22) /(0.57+0.5)^{1 / 2}=-0.21
$$

The cumulative probability for this Z value (obtained from a Z table) is 0.42 . Thus, the risk that the threshold for chronic effects on brook trout would be exceeded is 0.42 , or we are 58\% certain that chronic effects would not occur.

4.4 RISK WITHOUT REGRESSION

In a few rases the assessor will have in hand the benchmark that corresponds to his assessment end point; for example, he is interested in chronic effects on rainbow trout and he has a rainbow trout MATC for the chemical of concern. In that case uncertainty (as a result of the variance between replicate tests) must be accounted for, because the assessor will be uncertain as to the representativeness of the sample of fish used in the test and the biases introduced by variation in procedures and conditions. This variance is net accounted for separately when regressions are used for extrapolaticn, because it contributes to the total uncertainty in the regression estimates.

Pooled variances for particular test types and taxa are presented in Table 4.4. These are averages of the variances of replicate benchmark values; weighted by the degrees of freedom for each set of replicate tests. The sets are drawn from Appendix A and the EPA ambient water quality criteria support documents. Since we have determined the variances to be homogeneous, this pooled variance can be applied to unreplicated data. If we assume that an individually measured toxicological benchmark is the best estimate of the mean of such benchmarks, then that benchmark and the appropriate pooled variance can be used to estimate the risk that the benchmark will be exceeded by a particylar distribution of environmental concentrations (Sect. 4.2).

Table 4.4. Pooled variances of $\log L C_{50}, E C_{50}$, and MATC values from replicate tests

Taxon	Benchmark	Pooied variance	
Osteichthyes	LC $_{50}$	$27 / 333$	0.018
MATC	$15 / 66$	0.22	
Daphnia	EC		$11 / 81$
	MATC	$10 / 33$	0.15

anumber of species-chemical combinations/total number of tests.
bmean variance of \log values weighted by the degrees of freedom.

If in our example the rainbow trout MATC for the chemical of interest is $20 \mu \mathrm{~g} / \mathrm{L}$. then the mean and variance of the \log MATC are $1.3(\log 20)$ and 0.22 , respectively. If the environmental concentration is known with certainty to be $10 \mu \mathrm{~g} / \mathrm{L}$, then the cumulative Z value calculated from Eq. (4.7) is $\mathbf{- 0 . 6 4}$; the probability (risk) that this concentration is higher than the MATC is 0.26 . In other words, we are 74\% certain that the environmental concentration will not exceed the rainbow trout MATC.

We have limited ourselves to empirically derived estimates of variance in this section, thereby implicitly assuming that the variance in response between the laboratory and the field is no greater than the variance between one laboratory and the next. The assessor who does not believe that the toxicological benchmark adequately represents his assessment end point may readily incorporate that subjective uncertainty by adding an increment of variance before calculating the risk. It is important to clearly document such judgments, including who made them and on what basis, and to separate the judgment from the calculation of end point values and: risks so as to avoid the temptation to fidde with the conclusion.

4.5 COMPARISON OF METHOOS

We examine here the efficacy of AEE by comparing its ability to predict the MATC for particular fish species from a fathead minnow $L C_{50}$, with the ability of an untransformed fathead minnow MATC, a fathead minnow MATC with an application factor, and $L_{50}{ }_{50}$ with acute/chronic correction factors to predict the MATC for that species.

Although the double extrapolation used as an example of AEE is not intended to be used if a measured MATC is available (one would use extrapolations from the fathead minnow MATC to MATCs for the taxa of interest), it does provide an instructive comparison of the predictive power of $A E E$ "using a double extrapolation to that of the quotient method and the quotient method with factors.

The results of this comparison are presented in Table 4.5. All of the numbers in the table are derived from data in Appendix A. The measured fathead minnow MATC is in error by at least a factor of 2 in 71\% of the cases and by a factor of 10 in 10\% of the casss. The application factor MATC [(true $\left.L_{50} / F M L C_{50}\right) \times F M$ MATC] is in error by a factor of 2 in 57% of the cases and by a factor of 10 in 19\% of the cases. The extrapolation MAT心 is in error by a factor of 2 in 71\% of the cases and by a factor of 10 in 19\% of the cases. In pair-wise comparisons of the methods, the extrapolated MATC was closer to the true MATC than the fathead minnow MATC in 44% of the cases. The extrapolation MATC was closer than the application factor MATC in 43\% of the cases. Thus, the use of AEE with acute fathead minnow data is approximately as accurate in predicting the chronic toxicity to a particular species (other than the fatnead :ainnow) as is fathead minnow chronic data, with or without an application factor.

The use of $L C_{50} s$ with the most common acute/chronic correction factors (1/20 and $1 / 100$) gives somewhat worse results. When these correction factors are applied to the fathead minnow $L C_{50}$, the $1 / 20$ factor fails to predict the true MATC within a factor of 2 in 80% of the cases and within a factor of 10 in 39% of the cases; the $1 / 100$

Table 4.5. Comparison of methocs for tsitmating the MATC for a species other than fathead minnow (all values are $\mu g / L$)

ameasured fathead minriow $1 . C_{50}$: only $L C_{50}$ from the same study as the FM mall determination
are used.
Dmeasured Ltsos for the listed spectes: only $L C_{50}$ from the same stuty as the Malc
determination are used.
CThe measured mAlC for the listed spectes. Life-cycle malcs are preferred over early
life-stage MAICs, otherwice the geometric mean of replicate MAlCs, is used.
d_{A} measured malC for fatheda minnows: replicates. are treated as in note (C).
e(True IC50/1M LC5O) a tM MAIC.
fmalc calculated from a fathead minnow $L C_{50}$ using taxonomic and acutefcheonic
extrapolations.
gestimates that differ from the true MAlC by a factor of 2 or greater.
Hestimates : inat differ from the true malc by a factor of 10 or greater.
factor falls to predict within a factor of 2 in 76% of cases and within a factor of 10 in 29% of cases. When applied to the true L_{50}, the 1/20 factor fails to predict the true MATC within a factor of 2 in 81% of the cases and within a factor of 10 in 24% of the cases; the $1 / 100$ factor fails to predict within a factor of 2 in 86% of cases and within a factor of 10 in 38% of cases. These factors and $L C_{50} s$ are poorer predictors of MATCs than the methods previously discussed, and neither correction factor does significantly better than the other in this exercise.

AEE has the advantage over the other methods of indicating how inaccurate it is likely to be.. In this exercise the 95\% prediction intervals (PIs) for the extrapolated MATCs inclucies the true MATC. in all but one of the 41 cases; therefore, using the lower 95\% PIs as standards would have prevented exceeding the true MATC in 98\% of the cases. This result suggests the reasonableness of the variance terms used in this version of the method.

While this exercise does not constitute a validation of AEE, it does indicate that it is a good predictive tool relative to methods that are currently used. It also demonstrates that all of the methods have large associated errors: therefure, it is important to explicitly account for uncertainty in predictions, as is done with AEE.

4.6 DISCUSSION

The chief advantage of the analysis of extrapolation error method is that it provides an objective, quantitative estimate of risk without departing from the generally accepted practice of defining assessment
end points in terms of toxicological benchmarks. Compared with the quotient method, the extrapolation error method has the advantaçes of making assumptions concerning the relationship of the data and the end point explicit, treating the relationship as a set of quantitative extrapolations, estimating the uncertainty in the relationship, and producing an estimate of risk based on estimates of the end point and of the associated uncertainty. If the data available for an assessment are not from the needed test type and species; the quotient method requires that one use the data available and pretend that they are appropriate, use correction factors without considering the associated uncertainty, or aggregate the uncertainty factors with the correction factors and treat the assessment deterministically. Compared with population and ecosystem models (Sects. 5 and 6). AEE has the advantage of using as its end point the toxicological benchmarks that constitute the end points for all existing regulatory assessment schemes and environmental quality criteria.

The limitations of AEE are that the method (1) is limited to end points that can correspond to standard toxicological benchmarks; consequently, unless subjective corrections and uncertainties are used, it cannot address effects on entities or processes that occur on spatial or temporal scales beyond the range of toxicity testing: (2) is computationally difficult relative to the quotient method and conceptually opaque to decision-makers who lack statistical training; and (3) assumes that existing data sets are representative of future toxicity data. . The problem of the representativeness of existing data sets is characteristic of any method that attempts to extrapolate
beyond the existing data. However, it is important to pay close attention to the potential biases in avallable data sets and to be aware of which sources of variability (e.g., water chemistry, interlaboratory variability, or different strains of tie test species) are represented in the data set and which are implicit in the assessment (e.g., should data from laboratories of unknown reliability be used, and should the results of the assessment apply to a variety of sites). In some cases, the extrapolations can be inappropriately precise as the result of using a highly standardized data set. For example, studies of the actite effects of narcotic chemicals in Lake Superior water on the Duluth population of fathead minnows (Veith et a1. 1983) are used in QSARs that generate predicted $L C_{50}{ }^{s}$ that are more precise than replicate tests in different laboratories using different waters and fish populations. More often, there will be sources of variance in the data sets that are extraneous to the assessment but cannot be avoided because a more appropriate data set is not available. In those cases the extraneous variance is simply part of the uncertainty associated with performing assessments with limited knowledge, which is similar to the uncertainty concerning future emission rates or dilution volumes.

While the $A E E$ method was developed to provide estimates of risk, it has a variety of other potential uses. The regression and error propagation portions can be used to estimate toxic effects for population and ecosystem models and to generate the parameter distributions used in Monte Carlo simulations. This use is described in Sect. 5 and 6. Another potential use is in designing testing
programs. Decisions about the need for additional testing of a chemical could be made on the basis of the expected reduction in the total uncertainty concerning the true value of the end point, the expected reduction in risk, or the probability thint the test will cause a change in a regulatory decision. In addition to making decisions for testing individual chemicals, AEE could be used to elucidate the implications of the decision ruies in tiered testing schemes or to devise new decision rules.

REFERENCES (SECTION 4)

Call. D. J., L. T. Brook, M. L. Knuth, S. H. Poirier, and M. D. Hoglund. 1985. Fish subchronic toxicity prediction model for industrial organic chemicals that produce narcosis. Environ. Toxicol. Chem. 4:335-342.

Craig, P. N., and K. Enslein. 1981. Structure-activity in hazard assessment. DD: 389-420. IN Hazard Assessment of Chemicals, Vol 1. Academic Press, N.Y.

Johnson. W. W., and M. T. Finley. 1980. Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Resource Publication 137. U.S. Fish and Wildife Service, Washington, D.C.

LeBlanc, G. A. 1984. Interspecies relationships in acute toxicity of chemicals to aquatic organisms. Environ. Toxicol. Chem. 3:47-50. Mandel, J. 1984. Fitiing straight lines when both variables are subject to error. ${ }^{\text {J. Qual. Technol. 16:1-14. }}$

Mayer, F. L., Jr. and M. R. Ellersieck (in press). Manual of acute toxicity: Interpretation and data base for 410 chemicals and 66 species of freshwater organisms. U.S. Fish and Wildife Service/Resource Publication, Washington, D.C.

Suter, G. W., II, D. S. Vaughan, and R. H. Gardner. 1983. Risk assessment by analysis of extrapolation error: A demonstration for effects of pollutants on fish. Environ. Toxicol. Chem. 2:369-378.

Sutér, G. W., II, and D. S. Vaughan. 1984. Extrapolation of ecotoxicity data: Choosing tests to suit the assessment. IN K. E. Cowser (ed.). Synthetic Fuel Technologies, Results of Health and Environmental Studies. Butterworth Putlishers, Boston. Tucker, R. K., and M. A. Heagele. 1971. Comparative acute oral toxicity of pesticides to six species of birds. Toxtcol. Appl. Pharmacol. 11:57-65.

Veith, G. D., D. J. Call, arid L. T. Brook. 1983. Structure-toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals. Can. J. Fish. Aguat. Sci. 40:743-748.
5. EXTRAPOLATION OF POPULATION RESPONSES
L. W. Barnthouse, G. W. Suter II, A. E. Rosen, and J. J. Beauchamp

As noted in section 1 of this report, the end points of uitimate interest in ecological rifi assessment are effects of long-term exposures on the persistence, abundance, and/or production of populations. In contrast. the data available for assessing ecological risks of toxic contaminants are nearly always restricted to effects of contaminants on individual organisms. If assessments of ecological efferts of toxic contaminants are ever to reach the same level of sophistication as assessments of nontoxicological stresses, such as fishing and power plants, it will be necessary to develop analytical techniques for extrapolating from individual-level responses to population-level responses.

Many of the components necessary for this task already exist. Section 4.1 of this report showed that statistical relationships (1) among $9 \in-h L C_{50} s$ for different fish taxa and (2) between $96-h$ $L C_{50}$ s and maximum acceptable toxicant concentrations (MATCs) can be used to extrapolate chronic effects thresholds for untested fish species from acute $\mathrm{LC}_{50} \mathrm{~s}$ for tested species. The literature on fish population modeling contains a variety of technioues for estimating population-level responses to age-specific changes in mortality, fecundity, and growth.

In this section we describe a method of generating life-stagespecific concentration-response functions for either tested or untested fish species. We demonstrate the linking of the estimated
concentration-response functions, together with their associated uncertainties, to simple fish population models that have proved useful in other problems involving anthropogenic stresses on fish populations. Our objectives are, first, to quantify the uncertainty resulting from extrapolation from bioassay results to population responses, and second, to express effects of toxic contaminants in common units with effects of nther anthropogenic stresses on fish populations.

5.1 FORMULATION OF CONCENTRATION-RESPONSE MOOEL

The concentration-response function used in this study is the logistic model

$$
\begin{equation*}
P=\left(e^{\alpha+\beta x}\right) /\left(1+e^{\alpha+\beta x}\right), \tag{5.1}
\end{equation*}
$$

where
$P=$ fractional response of the exposed population,
$X=$ exposure concentration, and
$\alpha, \beta=$ fitted parameters with no biological interpretation.

When fitted to concentration-response data, the logistic function has a sigmold shape similar to the probit model. Because ecological risk assessment does not irivolve extrapolation to extremely low doses, it does not matter which model is used. The logistic model has convenient properties that can be seen by reformulating it as

$$
\begin{equation*}
x_{p}=[\ln [P /(1-p)]-\alpha] / \beta \text {, } \tag{5.2}
\end{equation*}
$$

where
$X_{p}=$ concentration producing a fractional response equal to P.

If α and β are specified, then x_{p} can be directly calculated from Eq. (5.2). Alternatively, if x_{p} and β are specified, then α can be calculated from

$$
\begin{equation*}
\alpha=\ln \left[P /(1-P)-\beta x_{p}\right] \tag{5.3}
\end{equation*}
$$

In other words, the complete concentration-response function can be obtained by specifying efther α and β or β and the concentration associated with a single response level (e.g.. the $L C_{25}$). The parameter β specifies the curvature of the logistic furiction and is independent of the position of the curve on the concentration axis. If two logistic functions have different $L C_{25}$ s but the same curvature, their B parameters will be equal.
if a chronic concentration-response data set is availabie for a species and contaminant of interest, then a logistic concentration-response function and assoctated corfidence bands can be obtained by fitcing the logistic model to the data. If, however, directly applicable data are not avallatle, a function and confidence bands can be obtained using extrapolated values of B and $L C_{25}$. The following subsections describe methods for calculating concentration-response functions and confidence bands directly from data and by extrapolation.

5.2 FITTING THE LOGISTIC MODEL TO CONCENTRATION-RESPONSE DATA

Concentration-response data sets can be fitted to Eq. (5.1) using nonlinear least squares regression. This section describes the procedure for fitting chronic concentration-response data sets from
whole ilfe cycle experiments to the logistic model. Although a variety of test end points can be used (e.g., growth or fecundity), only the method used to model mortality is described here. The data required are (1) the number of replicates tested at each concentration (inciuding the controls), (2) the number of organisins in each replicate, and (3) the number of organisms dying in each replicate (including the controls). As in the extrapolation models described in Section 4, test concentrations are entered as $\log _{10}($ concentration $i n . \mu g / L)$ so that the units represent orders of magnitudes of concentrations. The fraction of organisms dying in each replicate is corrected for control mortality using Abbott's formula (Abbott 1925), as described in Section 4. We use the SAS procedure NLIN to produce estimates of a and B and a variance-covariance matrix for α and β.

Uncertainty concerning the shape and position of the concentration-response function, as reflected in the variances and cuvariances of α and β, can be represented graphically as a confidence band surrounding the fitted function, as illustrated in Fig. 5.7. Brand et al. (1973) described a procedure for calculating confidence band functions for the logistic model from the elements of the variance-covariance matrix. Alternatively, confidence bands can be calculated numerically by iterative random sampling (i.e., Monte Carlo simulation from the bivariate normal distribution defined by the variance-covariance matrix. Published data from full life cycle tests for fish are cominonly broken out by life stage (e.g., eggs. larvae, and juveniles). To perform a population-level assessment using these data.

Fig. 5.1. Uncertainty band for the logistic model fitted to concentration-response data. For any contaminar: concentration, there is a 90% probability that the fraction of organisms responding will lie within the shaded region.
concentration-response curves must be calculated separately for each life stage and then combined. We use Monte Carlo simulation for analysis of these data sets.

5.3 EXTRAPOLATION OF CONCENTRATION-RESPONSE FUNCTIONS AND CONFIDENCE BANDS FOR UNTESTED SPECIES

Because full life cycle concentration-response data are rarely available for species-contaminant combiations of interast in risk assessments, we developed a method for extrapolating logistic functions and confidence bands using data sets presented in Appendix B. We used data sets for mortality to three life stages (eggs, larvae, juvenfles)
that together encompass the fish life cyrle from egg to first reproduction. The data were screened, and sets for which (1) mean control mortality was 30% or larger or (2; the range of test concentrations did not span the $L C_{25}$ were deleted.

5.3.1 Extrapolation of B and L_{25}

The chronic $L C_{25}$, rather than the $L C_{50}$, was chosen as a benchmark because, in the majority of avallable data sets, the range of concentrations used (usually 5-7 values per experiment, excluding controls) did not span the $L C_{50}$. The logistic model was fitted to the data sets that satisfied the exclusion criteria using the procedure described th Section 5.1. Data sets for which confidence intervals for the fitted β values included zero were excluded from further analysis. When the fitted B values for the remaining 77 data sets were examined, they were found to fit a lognomal distribution
with a median of 6.08 , a 5 th percentile of 1.87 , and a 95 th percentile of 16.43. No significant difference was found between the distributions of β^{\prime} 's for the three life stages, and no correlation was found hetween the $\beta^{\prime} s$ and the L_{25}.

Equations for estimating chronic L_{25} s (with associated confidence intervals) from acute $L C_{50}$ s were derived using the procedure described in Section 4. Separate equations were developed for each of the three life stages represented in the chronic concentration-response data sets.

5.3.2 Calculation and Verification of Synthetic Concentration-Response Functions

Given extrapolated estimates of $B\left(\beta^{*}\right)$ and $L C_{25}\left(L C_{2,,^{*}}\right)$, an extrapolated estimate of $\alpha\left(\alpha^{*}\right)$ can be obtained from

$$
\begin{equation*}
\alpha^{\star}=\ln (1 / 3)-\beta^{\star} L C_{25^{\star}} \tag{5.4}
\end{equation*}
$$

When substituted into Eq. (5.1), the extrapolated values of α^{*} and
 contaminant concentration. Uncertainty concerning the expected response is quantified, using Monte Carlo simulation, from (1) the observed. distribution of fitted values of β and (2) the extrapolated error around the estimated $L C_{25}$ (Sect. 4). Each distribution is sampled 1000 times; and the randomly chosen paired values of β^{*} and $L C_{25}$ * are used to calculate a statistical distribution for the response associated with a given contaminant concentration. When this procedure is repeated for a range of concentrations, the plotted values form a confisence band around the extrapolated concentration-response function (Fig. 5.1).

Of the 77 chronic concentration-response data sets used in this analysis, corresponding $96-h L_{50}$ (i.e.. same species, contaminant, and experimental conditions) were available for 60 . We used this subset of 60 data sets to verify the extrapolation method. First, one data set was arbitrarily deleted from the subset. A distribution of β 's and a set of acute-chronic regression equations were then calculated using the remaining 59 sets. A synthetic concentration-response function and 90% confidence bands for the contaminant-species life-stage combination represented in the deleted data set were then extrapolated from the appropriate acute LC_{50}. Finally, the logistic model was fitted to the deleted data set and overlaid on the extrapolated uncertainty band. An example is presented in Fig. 5.2.

This process was repeated for each of the 60 data sets in the verification subset. The number of times the empirically estimated $L C_{10} s, L C_{25} s$, and $L C_{50}$ s fell outside the extrapolated 90% confidence bands were counted. There were seven "misses" at each of the three response levels. These compare favorably with the expected number, six.

5.4 CALCULATING REDUCTION IN REPRODUCTIVE PPOTENTIAL

The population-level variable chosen as a response variable is the reproductive potential of a female recruit, defined here as a l-year-old fish. The reproductive potential of a female recruit is defined as the expected contribution of that fenale to the next generation of recruits, taking into account her annual probability of survival at different ages; her expected fecundity at different ages, provided that

Fig. 5.2. Example of the procedure used to verify the synthetic concentration-response modeling technique. A logistic model fitted to an actual concentration-response data set is overlaid on the uncertainty band of a synthetic concentration-response model constructed for the same chemical, species, and life stage. When many such comparisons are made, 90% of the fitted functions should fall within the uncertainty bands of the synthetic functions.
she survives; the probability that a spawned egg will hatch; and the probability that a newly hatched fish will survive to age 1 . The ability of a fish population to sustain exploitation (harvesing) by man and to persist in a variable environment is directly related to the reproductive potential of female fish.

Models based cin reproductive potential have been used to assess the effects of fishing and of power plant cooling systems sir inis risk of catastrophic declines in fish populations (Goodyear 1977). Toxic contaminants, like fishing, reduce the reproductive potential of a female recruit. Mortality rates for fish exposed to toxic contaminants can be translated into changes in reproductive potential, thus allowing comparisons between the population-level consequences of fishing and toxic contaminants. The reproductive potential of a 1 -year-old female recruit is given by:

$$
\begin{equation*}
P=S_{0} \sum_{j=1}^{n} S_{j} E_{i} M_{i} \tag{5.5}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{0}= & \text { probability of survival of eggs from spawning to } \\
& \text { age year, } \\
S_{i}= & \text { probability of survival of female fish from age } 1 \\
& \text { to age } i, \\
E_{i}= & \text { average fecundity per mature female at age } i, \\
M_{i}= & \text { fraction of age }\{\text { females that are sexually mature, } \\
n= & \text { number of age classes in the population. }
\end{aligned}
$$

Toxic contaminants may reduce the survival of fish at all ages. The reproductive potential of a female recruit exposed to a toxic contaminant throughout her life cycle is given by

$$
\begin{equation*}
P_{S}=S_{0}\left(1-m_{0}\right) \sum_{i=1}^{n} S_{i}\left(1-m_{r}\right)^{i-1} m_{i} E_{i} \tag{5.6}
\end{equation*}
$$

where
$m_{0}=p r o b a b i l i t y$ of contaminant-induced mortality during the first year of life, and $m_{r}=$ probability of contaminant-induced mortality for 1-year-old and older fish, assumed equal for all age classes.

The fractional reduction in reproductive potertial because of toxic contaminants $\left(R_{s}\right)$ is given by

$$
\begin{equation*}
R_{s}=(P-0,1 / P \tag{5.7}
\end{equation*}
$$

Note that natural young-of-the-year survival $\left(S_{0}\right)$. for which reliable estimates are almost never available, cancels out of Eq. (5.7) and is not required for the assessment.

5.5 APPLICATION OF THE MODEL TO RAINBOW TROUT ANO LARGEMOUTH BASS

The rainbow trout (Salmo gairdneri) and largemouth bass (Aicropterus salmoides) were chosen as examples for fllustrating the amave extrapolation techniques. Tables 5.1 and 5.2 present life tables for representative populations of these species. The life-stage-specific mortality estimates obtained from the

Table 5.1. Life table for rainhow trout (Salmo gairdneri), modified from Boreman (1978).

Age	M^{a}	E^{b}	$S_{i} C$	
1	0.151		207	1.0
2	0.234		850	0.31
3	0.995	1.00	2787	0.090
4	1.00	4685	0.073	
5	1.00	5424	0.0020	
6			0.00030	

${ }^{\text {a }}$ Proportion of mature females.
$b_{\text {Fecundity per mature female. }}$
${ }^{\text {C Cumulative probability of survival from age } 1 \text { to age } 1 . ~ . ~ . ~}$

Table 5.2. Life table for largemouth bass (Micropterus salmoides), modified from caomer (1976).

Age	M^{3}	$E{ }^{\text {b }}$	$S j^{c}$
1	0.0	0	1.0
2	0.17	5,243	0.52
3	1.00	10,830	0.19
4	1.00	16,190	0.085
5	1.00	24. 500	0.039
6	1.00	29,973	0.018
7	1.00	36,287	0.0073
8	1.00	42,600	0.0029
aproportion of mature females.			
$\mathrm{b}_{\text {Fecundity per mature female }}$			
Cum	(1it	1 from	1.

concentration-response model are translated into age-specific survival probabilities using the following equation:

$$
\begin{equation*}
\left(1-m_{0}\right)=\left(1-n_{e}\right)\left(1-m_{1}\right)\left(1-m_{j}\right) \tag{5.8}
\end{equation*}
$$

where
$m_{e}=$ probability of mortality for the egg stage,
$m_{1}=$ probability of mortality for the laryal stage, and
$m_{j}=$ probability of mortality for post-larval stages.

In the chronic toxicity tests, m_{j} applies roughly to the period from the end of the larval stage to the age of first reproduction. The total duration of the egg and larval life stages is only a few months, whereas juvenile females in both example populations do not reach sexual maturity until two years of age. In theory, therefore, some fraction of juvenile mortality should be allocated to older age classes. However, if mortality due to contaminants is restricted to prereproductive fish, then the allocation of a given fractional mortality ($1-m_{j}$) among prereproductive age classes does not affect the predicted population response. It is common practice in life-cycle toxicity tests to sacrifice the test fish after one spawning; thus, there is normally no information on the effects of toxic contaminants on adult age classes. It can be assumed efther that (l) adults suffer the same mortality as juventle fish; or (2) all susceptible fish are killed during the first reproductive cycle; therefore, fish surviving their first spawning will not suffer excess mortality for the remainder of their lives (i.e., $m_{r}=0$). Assumption (2) is adopted here.

We note that EqS. (5.6) and (5.7) are highly sensitive to errors in estimates of adult mortality because of the cumulative effect of applying ($1-m_{r}$) to each successive age class.

5.5.1 Comparison of Fitted and Extrapolated Concentration-Response Functions and Uncertainty Eands

Full life cycle toxicity data are not available for either the rainbow trout or the largemouth bass for any chemical. However, full life cycle toxicity data exist for brook trout (Salvelinus fontinalis) exposed io methylmercuric chloride (Appendix B). Figure 5.3 shows a concentration-response function and confidence bands constructed by using the brook trout as a surrogate for rainbow trout. The logistic model was fitted to egg, larval, and juvenile test data for brank trout. The reproductive potential index was then calculated using the ife-table data for rainbow trout (Table 5.1). The brook trout MATC for methylmercuric chloride, as calculated from the same data set used to construct the concentration-response functions, is plotted on the concentration axis. The median value of the $E C_{10}$ is $0.07 \mu \mathrm{~g} / \mathrm{L}$, and the prediction interval (i.e., the 90\% confidence interval around the median) is approximately 0.03 to $0.1 \mathrm{\mu g} / \mathrm{L}$. The brook trout MATC for methylmercury, $0.53 \mu \mathrm{~g} / \mathrm{L}$, corresponds to a 60 to 78% (median 68\%) reduction in reproductive potential.

A methylmercuric chloride acute $L C_{50}$ is avallable for rainbow trout. Figire 5.4 shows a concentration-response function constructed from a single-step extrapolation, from rainbow trout acute L_{50} to chronic LC_{25}, using the method described in Section 5.3. The inedian

Fig. 5.3. Fitted concentration-response function and uncertainty band for the reduction in female reproductive potentiai of brook trout (Salvelinus fontinalis) exposed to methylmercuric chlortde. The dashed line denotes the 10\% : effects level (EC_{10}).

Fig. 5.4.. Synthetic concentration-response function and uncertainty band for the reduction in female reproductive potential of rainbow trout (Salmo gairdneri) exposed to methylmercuric chloride. Chronic $L C_{25}$ s for the three life stages were obtained by single-step extrapolation from an acute $L C_{50}$ for rainbow trout.
responses from the extrapolated model (Fig. 5.4) are very close to the median responses (Fig. 5.3) from the fitted model (median $E C_{10}=0.09 \mu \mathrm{~g} / \mathrm{L}$ for the fitted model and $0.10 \mu \mathrm{~g} / \mathrm{L}$ for the extraplated model). The prediction intervals, however, are much wider. The prediction interval for the EC 10 in Fig: 5.4, for example, ranges from 0.003 to $1.2 \mu \mathrm{~g} / \mathrm{L}$. The rainbow trout MATC for methylmercuric chloride ($1.2 \mu \mathrm{~g} / \mathrm{L}$, extrapolated from brook trout using the method described in Section 4), corresponds to a 10-100\% reduction in reproductive potential.

If no acute LC_{50} had been avallable for rainbow trout, it would have been necessary to extrapolate a value from an acute $L C_{50}$ for another species. Figure 5.5 shows a concentration-response function constructed from a two-step extrapolation (Section 4), from fathead minnow (Pimephales E-omelas) to rainbow trout acute $L C_{50}$ to chronic LC_{25}. The prediction interval for the EC ${ }_{10}$ obtained from the two-step extrapolation ranges from $0.0002-0.56 \mu \mathrm{~g} / \mathrm{L}$, with a median of $0.015 \mathrm{\mu g} / \mathrm{L}$. Thus, compared to the single extrapolation, the two-step extrapolation produces median effects about a factor of five lower and prediction intervals about an order of magnitude wider.

Comparisons of Figs. 5.3, 5.4, and 5.5 suggests that, as is true in extrapolation of MATC's (Section 4). in extrapolation of concentration-response functions the acutt-chronic extrapolation is dominant source of uncertainty. As a means of confirming this inference, we examined the importance of uncertainty concerning β in determining the widths of prediction intervals obtained in the single-step extrapolation (Fig. 5.4). Figure 5.6 presents a

Fig. 5.5. Synthetic concentration-response function and uncertainty band for the reduction in female reproductive potential of rainbow trout (Salmo gairdneri) exposed to methylmercuric chloride. Chronic $L C_{25}$ s for the three $11 f e$ stages were obtained by two-step extrapolation from an acute. LC50 for fathead minnow. (Pimephales promelas).

Fig. 5.6. Synthetic concentration-response function and uncertainty band for the reduction in female reproductive potential of rainbow trout (Salmo gairdnert) exposed methylmercuric chloride. Chronic L_{25} s were obtained as in Fig. 5.4. Uncertainty concerning the curvature of the function was eliminated by setting the curvature parameter (B) constant at its median value.
concentration-response function constructed similarly to Fig. 5.4, but assuming the value of β to be constant at its median value. Because B is constant, the width of the prediction interval in Fig: 5.6 is determined solely by the confidence intervals around the extrapolated $L C_{25} s$ for the three life stages. Within the effects interval of 10 to 90\%, Figs. 5.4 and 5.6 are nearly identical. Thus, within this range, uncertainty accumulated in the acute-chronic extrapolation dominates all other sources.

5.5.2 Comparison of Extrapolated Concentration-Response Functions and Prediction Intervals for oifferent Species

Figures 5.7 and 5.8 show extrapolated concentration-response functions and uncertainty bands for rainbow trout and largemouth bass exposed to cadmium. For rainbow trout, a single extrapolation was required, from rainbow trout acute $L C_{50}$ to chronic $L C_{25}$. A double extrapolation, including a genus-level taxonomic extrapolation from Lepomis spp. to Micropterus Spp. and an acute-chronic extrapolation was necessary for largemouth bass. Despite the double extrapolation, the uncertainty band for largemouth bass is noticeably narrower than the uncertainty band for rainbow trout. The explanation for this result is the relatively high sensitivity of salmonids to cadmium. The rainbow trout acute $L C_{50}$ is near the low end of the range of $L C_{50}$ s (Appendix A) used in the acute-chronic regression; as in all linear regression models, preuiction intervals for extrapolated chronic $L C_{2!}$ s increase in wioth with increasing distance from the mean $L C_{50}$. Otherwise, the two sets of bands are qualitatively similar.

Fig. 5.7. Synthetic concentration-response function and uncertainty band for the reduction in female reproductive potential of rainbow trout (Salmo gairdneri) exposed to cadmium. Chronic $L_{25}{ }^{s}$ were obtained by single-step extrapolation from an acute L_{50} for rainbow trout.

Fig. 5.8. Synthetic concentration-response function and uncertainty band for the reduction in female reproductive potential of largemouth bass (Micropterus salmoides) exposed to cadmium. Chronic L_{25} s were obtained by too-step extrapolation from an acute LC 50 for bluegill (Lepomis macrochirus).

For both species, the range of cadmium exposure concentrations can be divided fairly precisely into three segments: a region of no significant reduction, a region of certain extinction, and a region of indeterminate reduction. The curves defining the upper and lower limits of the predicted responses are quite steep. The upper limit of the predicted response, for example, falls to near zero at concentrations only a factor of 2 lower than the lower limit of the $E C 10^{\circ}$ Similarly, the lower limit of the predicted response rises to a 100% reduction within an order of magnitude of the upper limit of the E_{10}. These limits provide useful operational definitions for qualitative identification of low, high, and indeterminate impacts. For example, based on Fig. 5.8 it might be concluded that a long-term average canmium exposure concentration of $0.01 \mathrm{ug} / \mathrm{L}$ would have no impact on a largemouth bass population, because, at that level, the upper limit of the predicted response interval is less than 1%. However, no inference could be made regarding the effect of this same concentration on rainbow trout, because the predicted response interval at $0.01 \mu \mathrm{~g} / \mathrm{L}$ spans the full range from 0 to 100\%.

For both species, cadmium MAics correspond to predicted reductions in reproductive potential ranging from 10 to 100%. In fact, for all Figs. 5.4 through 5.8 , the MATC's fall within the range of maximum uncertainty concerning population response. In Fig. 5.3, the MATC corresponds to a 60 to 80% reduction in female reproductive potential. This result is especially noteworthy because the concentration-response function and confidence bands plotted in Fig. 5.3 were obtained without taxonomic or acute-chronic extrapolation by fitting the logistic model
to the same data set used to estimate the MATC for brook trout. Although no firm conclusions are possible from the limited number of comparisons presented here, the consistent pattern displayed suggests that it may inappropriate to interpret the MATC, either calculated or extrapolated, as a chronic effects threshold for fish.

5.6 DISCUSSION

Waller et al. (1971) and Wallis (1975) proposed the use of fisheries-derived population models for quaniffying the effects of contaminants on populations; although experimenta! or observational data on model applicability was nut provided. We do not propose that the methods described in this report can be used to directly predict the long-term responses of fish populations to toxic contaminants. We have noted elsewhere (Barnthouse et al. in press) that fisheries scientists are still unable to predict the long-term effects of exploitation on fish populations to an accuracy and precision that would be useful for management decisions. However, we believe it is feasible to use population-level assessment methods to perform risk assessments in the same way that these methods are used by fishertes managers: as indicators of stress to be supplemented by expert judgment. We consider three applications to be currentiy feasible: (1) identification of data collection priorities, (2) setting of water quality standards, and (3) quantitative comparison of contaminant-related risks to risks associated with fishing or other environmental stresses.

We noted in Section 5.5.1 that the dominant source of uncertainty in estimating reductions in female reproductive potential (due to toxic
contaminants) is the uncertainty accumulated in extrapolating from acute $L C_{50}$ s to chronic $L C_{25}$ s. This result, and the fact that only acute data are available for most chemicals, suggests the great importance of obtaining a better understanding of relationships between acute and chronic effects in risk assessment. The sensitivity of population-level indices to estimates of contaminant effects on adult fish in iteroparous species, noted in Section 5.4, indicates the need to evaluate the effects of contaminants on older fish, at least to the extent of testing the hypothesis that mortality is restricted primarily to early life stages.

Currently, water quality criteria are derived from MATCs, the geometric means of no observed effects and lowest observed effects concentrations (NOECs and LOECS). A NOEC is the highest concentration used in a toxicity test at which no statistically significant (conventional 95\% confidence level) difference is observed between experimental and control mortality and the LOEC is the next higher concentration in the dilution series. As noted by Gelber et al. (1985), HOECs have the undesirable property that the likelihood of observing an effect at a given concentration is as much a function of experimental design as of contaminant toxicitiy. In particular, NOECs are nonconservative in that factors resulting in lower test precision (e.g., low number of organisms per replicate, low number of replicates, and high between-replicate variability) tend to increase the observed NOEC and reduce the level of environmental protection afforded by water criteria derived from the NOEC. In Section 5.5.2, it was shown that MATCs for rainbow trout and largemouth bass are conststently greater
than estimated population-level $E C_{10}$, even when the logistic model is fitted directly to the same concentration-response data used to derive the MATC. It seems possible, if the results in Section 5.5.2 are confirmed by further research, that an approach to water quality criteria based on concentration-response relationships would be superior to one based on MATCs. In this connection, it is significant that, when concentrations are plotted logarithmically, all of the concentration- response functions developed in this section approximate step functions. When uncertainty bands are considered, the plots can be divided into nearly rectangular regions of no expected effect, high expected effect, and indeterminate effect. If this observation is generally true of concentration-response relationships for toxic chemicals, then the response regions could be used to define ambient water quality criteria that reflect the degree of scientific uncertainty concerning concentrations having adverse effects on populations.

Expression of the effects of toxic contaminants in the same units used to assess other forms of mortality permits comparison of the effects of contaminants with the effects of exploitation by fishermen. Many coastal fish stocks, for example, are subject both to intense fishing pressure and to environmental pollution. Successful management of these populations depends on determining the relative importance of these stresses. The reproductive potential index used in section 5 is similar to indices that have been used to compare the entrainment and impingement by power plants to the impact of fishing (Goodyear 1977, Dew 1981), thus; the index appears suitable for this purpose.

The utility of comparing/combining estimates of effects of contaminants and of exploitation depends on whether populations exposed to toxic contaminants respond in a manner similar to exploited populations. Some evidence exists that these responses are at least qualitatively similar. In a review of the effects of exploitation on fish populations, McFadden (1977) concluded that exploitation typically causes increased growth and fecundity and sometimes causes decreased maturation time. These responses have the effect of compensating for the increased moriality associated with fishing, thus allowing the populations to persist and ststain exploitation. Macfarlane and Franzin (1978) noted these same changes in a population of white suckers (Catastomus commersoni) in a metal-contaminated lake. Jensen and Marshall (1983) noted that laboratory populations of Daphnia galeata mendotae exhibit responses to cadmium stress that are qualitatively similar to the responses described by McFadden. They proposed that effects of toxic contaminants on zooplankton populations could be quantified using models developed to describe fisheries.

At least for fish populations, population-level risk assessment models appear to haye several important uses. We believe that the reproductive potential index used in this report is the simplest such index that integrates data on effects of toxic contaminants on all life stages; however, it is by no means the only. possible index that could be used. Several authors, notably Gentile et al. (1983) and Daniels and Allan (1981), have used the intrinsic rate of natural increase (r) to integrate data on mertality, growth, and reproduction obtained from chronic toxicity tests for zooplanktion. Models of growth could be used
to assess the effects of contaminants on biomass production, where the primary effect of chemicals is reduced growth rather than increased mortality. All of these approaches are applicable to invertebrate populations as well as to fish. The extent to which the use of population-level risk assessment model's can supplement or supplant currently used individual-level approaches remains to be determined.

REFERENCES (SECTION 5)

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18\%265-267.

Barnthouse, L. W., R. V. O'Neill, S. M. Bartell, and G. W. Sıter II. Population and ecosystem theory in ecological risk assessment. IN Aquatic Ecology and Hazard Assessment, gth Symposium. American Society for Testing and Materials, Philadelphia, Penn. (in press). Boreman, J. 1978. Life history and population dynamics of Cayuga In?et rainbow trout (Salmo gairdneri Richardson). Ph.D. Dissertation, Cornell University, Ithaca: N.Y.

Brand, P. J., D. E. Pinnock, and K. L. Jackson. 19.73. Large sample confidence bands for the logistic response curve and its inverse. Am. Stat. 27(4):157-160.

Coomer, E. C.., Jr. 1976. Population dynamics of black bass in Center Hill Reservoir. Tennessee. TWRA Technical Report No. 76-54. Tennessee Technological University, Cookeville, Tenn.

Daniels, R. E., and J. D. Allan. 1981. Life table evaluation of chronic exposure to a pesticide. Can. 3. Fish. Aquat. Sci. 38:485-494.

Dew, C. B. 1981. Impact perspective based on reproductive value. DP. 251-256. IN L. D. Jensen (ed.), Issues Associated with impact Assessment. EA Communications, Sparks, Md.

Gelber. R. D., P. T. Lavin, C. R. Mehta, and D. A. Schoenfeld. 1985. Statistical analysis. pp. 110-123. IN G. M. Rand and S. R. Petrocelli (eds.). Fundamentals of Aquatic Toxicology. Hemisphere Publishing Co., Washington, D.C.

Gentile, J. H., S. M. Gentile, and G. Hoffman. 1983. The effects of a chronic mercury exposure on survival, reproduction and population dyriamics of Mysidopsis bahia. Environ. Toxicol. and Chem. 2:61-68. Goodyear, C. P. 1977. Assessing the impact of power plant mortality on the compensatory reserve of fish populations. pp. 186-195. IN W. Van Winkle (ed.), Assessing the Effects of Power-plarit-Induced Mortality on Fish Populations. Pergamon Press, N.Y.

Jensen, A. L., and J.S. Marshall. 1983. Toxicant-induced fecundity compensation: A model of population responses. Environ. Manage. 7:171-175.

McFadden, J. T. 1977. An arounent supporting the reality of compensation in fisn populations and a plea to let them exercise it. pp. 153-id3. \ln W. Van Winkle, (ed.), Assessing the Effects of Power-Plant-Induced Mortality on Fish Populations. Pergamon Press, N.Y.

KcFarlane, G. A., and W. G. Franzin. 1978. Elevated heavy metals: A stress on a population of white suckers, Catastomus cummersoni, in Hamme 11 Lake, Saskatchewan. J. Fish. Res. Board Can. 35:963-970. Wailer, W. T., M. L. Dahluerg, R. E. Sparks, and J. Cairns, Jr. 1971. A computer simulation of the effects of superimposed mortality dur: to pollutants on populations of fathead minnows (Pimephales promelas). J. Fish. Res. Board Can. 28:1107-1112.

Wallis, I. G. 1975. Modelling the impact of waste on a stable fish population. Water Res. 9:1025-1036.

6. ECOSYSTEM LEVEL RISK ASSESSMENT

R. V. O'Nefll, S. M. Bartell, and R. H. Gardner

6.1 INTRODUCTION

Environmental toxicology is in a period of rapid transition. The need to predict toxic effects in natural ecosystems is pressing, yet our ability to extrapolate from laboratory to field is limited by our inability to describe mechanisms controlling natural systems. Thus, the science is experiencing rapid evolution in laboratory measurements and in methods for extrapolation to the field.

Particularly critical is the need to predict higher-order effects aí concentrations well below acute toxicity ($L_{5} C_{50}$). Synergistic effects result from biotic interactions, such as competition and predation, and abiotic constraints, such as temperature and limited nutrients. These processes alter the response of organisms in the ecosystem and cause effects that would not be anticipated from laboratory measurements of single species.

Development of a credible predictive ability logically begins with the extrapolation of toxicological data collected in the laboratory to more complicated systems. O'Neill et al. (1982) introduced ecosystem ? uncertainty analysis (EUA) as one potential method for extrapolating toxicity data in aquatic systems. The objective of this section is (1) to review the methodology that has been developed, (2) to illustrate results obtained with EUA using the Standard Water Column Model (SWACOM), and (3) to briefly discuss the methodolugy with regard to future modifications and refinements.

6.2 ECOSYSTEM RISK METHOOS

Because most of our work has centered 0π SWACOM, it is convenient to begin by describing this model. This will permit us to describe the methods in the context in which they were developed and permit us to use SWACOM to jllustrate methodological details.

6.2.1 Description of the Standard Water Column Model (SWACOM)

SWACOM was modified from an earlier model known as CLEAN (Park et al. 1974). The model (Fig. 6.1) is designed to mimic the pelagic portions of a lake ecosystem, including ten phytoplankton populations. five zooplankion populations, three planktivorous fish, and a top carnivore. The populations within a trophic level are described by stimlar equations but with different parameter values. Thus, each phytoplankton population is characterized by its maximum photosynthetic rate, light saturation constant, Michaelis-Menten constant, temperature optimum, and susceptibility to grazing.

The abiotic driving variables mimic the environment of a northern dimictic lake (Fig. 6.2). The temperature describes an annual sinusoidal curve with late turnover occurring at $4^{\circ} \mathrm{C}$ in the spring and fall. Radiant eriergy follows a similar curve, with light greatly reduced under ice cover. External sources add nutrients each day of the year. Remineralized nutrients are added to the water column f:on the hypolimnion at spring and fall overturn.

Phytoplankton grow in response to light, temperature, and avallable nutrients. Self-shading effects are accounted for by integrating photosynthesis over the $10-\mathrm{m}$ deep euphotic zone. Each phytoplankton

Fig. 6.1. A schematic illustration of SWACOM (Standard Water Column Model). Daily levels of nutrients, light, and temperature serve as model input. SWACOM considers the trophic relationships of 10 phytoplankton, 5 zooplankton, 3 forage fish, and a single carnivorous fish population (From O'Neill et al. 1982).

Fig. 6.2. A typical simulation of SWACOM showing seasonal dynamics of phytoplankton, zooplankton, and forage fish. Values shown on the graph are summed over the component popuiations (from O'Neill et al. 1982).
population has an optimal temperature at which its photosynthetic rate is maximum. Total fixation of biomass is primarily limited by available nutrients that are exhausted in periods of rapid growth.

Grazing and predation are described by a nonlinear interaction function (DeAngelis et al. 1975). This function considers both limited food supply and competition with other grazers. The consumer populations are limited by their individual metabolic and mortality rates and by predation. Both grazing and respiration rates are affected by temperature, with each population characterized by an optimal temperature.

SWACOM can describe a number of higher-order effects. Effects on one population can be altered by competition with other populations in the same trophic level. For example, stress on one phytoplankton population permits other phytoplankton populations to increase until the nutrient pool limits growth. Effects of a toxicant on one trophic level can precipitate effects elsewhere in the system. For example. increased mortality in the forage fishes releases zooplankton from predat: in, which results in increased grazing on phytoplankton. Effects on all populations are influenced by seasonal variations in light, temperature and available nutrients. All these indirect effects are consequences of the dynamic relationships included in SWACOM.

6.2.2 Organizing Toxicity Data

Ecosystem uncertainty analysis was derived to extrapolate toxic chemical effects measured on laboratory populations to likely effects on ecological production in aquatic systems. Laboratory test species
are not comprehensive in their representation of inhabitants of aquatic environments. Thus, an important aspect of performing EUA lies in associating assay species with their ecological equivalents as expressed in SWACOM.

The first step in implementing EUA is to select of appropriate toxicity data and to associate that data with specific components of SWACOM. Toxicity data on phytoplankton are sparse. It is possible to find values for green algae, such as Selenastrum capricornutum, and these data arz used for all ten algal populations if no other information is available. If data are avallable on diatoms and bluegreens, then a further division is possible based on physiological parameters in the model and past experience with SWACOM. Like diatoms, species 1 to 3 appear early in the spring and are associated with low temperatures and hiyh nutrient concentrations. Species 4 to 7 dominate the spring bloom and are associated with intermediate temperatures and light. Specie: 8 to 10 appear in the summer and are tolerant of high temperatures and low nutrient concentrations.

The identification of zonfiankzon is more tenuous. Based on model behavior and physiological parameters, species 12 and 13 are identified with Cladocerans. The ubiquitous data for Daphnia magna are used for species 12. When data are available for Daphnia pulex, they are used for species 13. The remaining zooplankters (species 11,14 and 15, and species 12 when no data were available for \underline{D}. pulex) are simply identiffed as crustaceans. Of the avallable data, the smallest $L C_{50}$ is assigned to 15 and the largest to 11 . Spectes 14 (and 13 when necessary) is assigned an intermediate value between these extremes.

To assume species 15 to be the most sensitive is conservative. Since an fincrease in bluegreen algae is one of our end points, we assign the greatest sensitivity to the consumer (i.e., 15), which is most abundar: during the summer of the simulated year.

Acute toxicity data for fathead minnow (Pimephales promelas). bluegill (Leponis macrochirus), and guppy (Poecilia reticulata) are assigned to forage fish (species 16, 17, and 18). When data on these species are not available, others are substituted, such as goldfish or mosquitofish. The top carnivore or game fish (species 19) is usually identified as rainbow trout (Salmo gairdneri).

The general paucity of acute toxicity data can complicate the assignment of SWACOM populations to assay species. Therefore, it has been prudent to determine the sensitivity of risk estimates to different patierns of assigning assay species to model populations (0'Nefll et at. 1983).

6.2.3 General Stress Syndrome

Typical toxicity data provide information on mortality (or similar end point) but provide little insight on the mode of action of the chemicals. Thus, some assumptions must be made about how the toxicant affects the physiological processes in SWACOM. In an application that focuses on a single chemical, it may be possible to obtain detalled information on modes of action. However, in general, such information is not available, and it is necessary to make a single overall. as sumption.

We assumed that organisms respond to all toxicants in a uniform manner, that is, the General Stress Syndrome (GSS). For phytoplankton, this invoived decreased maximum photosynthetic rates (Ps), an increased Michaelis-Menten constant $(X k)$, increased susceptibility to grazing (W), and decreased light saturation (Si). For zooplankton, forage fish, and game fish, the syndrone involved increased respiration (R), decreased grazing rates (G), increased susceptibility to predation (W), and decreased assimilation (A).

The GSS defines the direction of change of each parameter in SWACOM. It is also nece;sary to make an asiumption about the relative change in each parameter. He have assumed that all parameters are changed by the same percentage.

To test the effects of the GSS on estimates of risk, the signs on the growti parameters were systematically varied, and EUA was performed for two chemicals characterized by very different patterns of sensitivity among assay species: naphthalene and mercury. The signs on the effects parameters for photosynthesis and consumption must be negative or no toxic effects are possible. Results of biologically reasonable variation in the remaining growth parameters showed the GSS to be conservative in its estimation of the risk of blue green algal production (Table 6.1). Effects syndromes other than the GSS always produced griater estimates of risk to game fish. However, these syndromes involved a decrease in optimal temperatures for growth in response to toxicant exposure, for which little experimental evidence is likely to be avallable from current bioassays. If information concerning the physiological mode of chemical action is available for a

Table 6.1. Risks of increased algal production and decreased game fish production in systematic alteration of the General Stress Syndrome. The optimal temperature for growth (To), prey preference (W), assimilation efficiency (A), and grazing rate (G) were either increased (+), decreased (-), or unchanged (0) in the associated estimates of risk for exposure to naphthalene ($0.0408 \mathrm{mg} / \mathrm{L})$.

To	W	A	G	Algae increase	Game fish decrease
$\overline{0}$	+	-	\bigcirc	43.6	1.6
0	-	+	$+$	0.4	0
0	0	0	0	9.4	. 4.0
-	-	-	-	0.2	31.0
4	+	+	+	9.4	0
$+$	1	+	-	7.0	0.2
$+$	1	-	$+$	0	13.2
1	+	-	-	42.4	1.0
1	-	+	$+$	0	0
4	-	+	-	0	0.2
$+$	-	-	$+$	0	14.8
$+$	-	-	-	0	1.6
-	$+$	+	+	11.2	0
-	+	+	-	14.4	1.8
-	$+$	-	+	0	30.6
-	t	-	-	31.6	33.8
-	-	+	$+$	0	0
-		-	+	0	29.2
-	-	+	-	1.8	0.4

[^0]specific toxicant, the GSS may be appropriately modified. For example, chemicals with a narcotizing effect could be represented by decreasing respiration in the GSS. Similarly, photosynthetic enhancers or inhibitors can be more explicitly depicted. The development of alternative stress syndromes is limited only by the basic bioenergetic formulation of the growth equations in SWACOM.

In the absence of information that detalls the mode of action, the GSS appears as a conservative choice in the application of EUA for evaluating the likely effects of potentially toxic chemicals.

6.2.4 Microcosm Simulations

The key to changing parameters in the model is simulation of the experiments used to generate toxicity data. This involved simulating the production dynamics of each species in isolation, as it might occur in a laboratory under ideal constant conditions. The parameters of that species were then altered to duplicate the end point used in the original experiment. Thus, for an LC 5_{50} of 96 h . we would find the percentage change that halved the population in $4 . d$.

At the conclusion of the MICROCOSM simulations, we have the percentage change in the parameters that matches the experimental end point: that $i s$, we can match the response of the population to the specific concentration that represents the $L C_{50}$ and $E C_{50^{\circ}}$ We must now make an additional assumption to arrive at the level of response to be expected for other concentrations that lie below the $L C_{50}$ or EC $_{50}$. We assumed a linear concentration-response relationship. Thus, an environmental concentration one-fifth of the $L C_{50}$ would
cause a 10\% reduction in the population over the same time intervil as the original test. MICROCOSM simulations are then repeated with this new end point to arrive at the percentage change in the parameter resulting in a 10% reduction. The linear assumption can be removed if a concentration-response curve is available for the toxicant. Because most concentration-response curves are concave, our assumption should result in choosing a level of effect larger than would actually result if the test were conducted at that concentration. Therefore, the linear assumption is conservative. In addition, EUA emphasizes the implications of interacting ecosystem components on modeling the response of the system to toxicant exposure. It is not the intent to model concentration-response relationships for individual organisms.

6.3 :NACERTAINTIES ASSOCIATEO WITH EXTRAPOLATION

To implement EUA, it is necessary to know not only the percentage change in parameters but also the uncertainty to be associated with this change. Monte Carlo simulation (Sect. 6.5) is used to translate uncertainties regarding individual parameters into uncertainty regarding system responses. We have assumed that all parameter changes have an associated uncertainty of plus or minus 100\%. This assumption seemed sufficiently conservative. In a specific assessment, one might wish to adopt a more complex strategy that would combine greater information on modes of action with statistical extrapolation procedures (Seci. 4) or a survey of experienced researchers to arrive at more specific estimates of uncertainty.

Because of the relatively large uncertainties, the possibility. exists that risks are due to the uncertainties rather than the actual effect of the chemicals. In such a case, the risk is due to our ignorance of the system rather than the poteltial toxic effect of the chemicals.

To test for the effect of large uncertainties, we analyzed the deterministic response of the model to several toxic substances. The deterministic response assumes no uncertainties in the parameters. This response is approximately the average response of the system to that level of toxicant. The response can be expressed as the percentage change in the mean population relative to the "no toxicant" case. If the percentage change is close to zero. then the risk can be attributed to uncertainty alone. If the mean populations are significantly changed. the risks are attributed to toxic effect plus uncertainty.

Analysis of the deterministic solution for nine chemicals associated with the production of synthetic fuels from direct (Table 3.3.2 in Suter et al. 1984) and indirect (Table 3.3.2 in Barnthouse et al. 1985) coal liquefaction indicates that the toxicity of mercury, cadmium, nickel, ammonia, naphthalerie, and phenol contributes sigifficantly to estimates of risk. Risks posed by arsenic and lead result more from uncertainties in extrapolation in these porticular applications.
6.4 RESULTS OF ECOSYSTEM RISK ASSESSMENTS

Having described the methods to be used in setting up EUA, we will now present four example applications. Our primary purpose is to
demonstrate the utility of the method in routine assessments. However, we will alsc make it a point to show how the results of EUA differ from population-oriented assessments.

6.4.1 Risk Assessment for Direct and Indirect Liquefaction

The results of risk assessments for real liquefaction technologies are shown in fig. 6.3 (Suter et al. 1984). Two end points were considered: A quadrupiing of the peak biomass of noxious bluegreen algae and a 25\% decrease in game fish biomass. These end points were chosen as indicative of minimal effects that could be noticed in the field. Risk values i.e., probabilities of exceeding the above end points, were calculated across a range of environmental concentrations. The range of exposures for each technology is shown at the bottom of the figure.

Results for naphthalene are shown in fig. 6.3. There is an upturn in the risk surves, showing significant risks at the higher concentrations reached by at least one of the technologies. The increased risk to game fish populations seems intuftively reasonable. However, the increasing risk of a bluegreen algal bloom with increasing concentration is counterintuftive. This is an example of the indirect effects that EUA is capable of showing. Even though each of the chamicals is toxic to the algae, the reduction in sensitive grazing organisms more than compensates for the direct effect on phytoplankton.

Ecosystem uncertainty analysis can be used to compare risks estimated for different classes of chemicals for different direct liquefaction technologies (Fig. 6.4). Here the four technologies all

Fig. 6.3. Risk estimates for naphthalene over a range of environmental concentrations. The 5 th percentile, mean, and 95 th percentile concentrations associated with four direct coal liquefaction technologies are shown at the bottom of the graph. The notations $/ 8$ and /G refer to two alternative wastewater treatment options. The plotted values are the probability of a fourfold increase in algal biomass and a 25% reduction in game fish biomass (From Suter et al. 1984).

Fig. 6.4. Comparison of risks among direct coal liquefaction technologies. Risks at the 95th percentile concentration are shown first for algae and then for game fish for each of nine contaminant categories $(5=$ ammonia, $12=$ benzene, $14=$ mono- and diaromatic hydrocarbons, 21 = phenols, $31=$ arsenic, $32=$ cadmium, $33=$ nickel, 34 = mercury, and 35 = lead; from Suter et al. 1984).
show considerable risks of increased algal production for chemical class 5 (ammonia). The Exxon and H coal processes also suggest similar risks associated with class 34 (cadmium). Other similarities and differences among the technologies are readily apparent from these presentations. Risks posed by chemical classes 5 and 34 are also notable tor indirect liquefactor technologies (Fig. 6.5).

6.4.2 Risk Assessment of Chloroparaffins

SWACOM has also been applied. (Bartell 1984) in an assessment of risk for chlcroparaffins (CPS). In this case, the risk of increased algal production is 14 to 33% at concentrations of $0.0001 \mathrm{mg} / \mathrm{L}$. These risks increase at intermediate exposure concentrations and then decrease to near zero at the highest concentrations tested.

The risk of decreased production of zooplankton, forage fish, and game fish increase monotonically with exposure concentrations. At the nighest test concentrations, the likelihood of a 50% decrease in forage fish and game fish approaches 1.0. The highest estimates of risk to game fish result at exposure concentrations that lie at the upper range of expected ambient concentrations (Zapotsky et al. 1981).

Risks of decreased game fish biomass appear to result from the combined direct toxic effects and the effects of decreases in zosplankton and forage fish biomass at intermediate chloroparaffin concentrations.

The relative importance of direct and indirect effects on the responses of each trophic level to chloroparaffins was analyzed. The

Fig. 6.5. Comparison of risks for two indirect coal liquefaction technologies. Risks and contaminant categories defined as in Fig. 6-4 (from Suter et al. 1984).
results indicated that indirect effects contribute more to risk that do direct effects on individual growth processes within trophic levels.

At exposure concentrations that approach the highest measured concentrations of CPs, the risk of a 100\% increase in bluegreen algae blooms ranges from 70 to 76%. At this concentration, the risks of a 50\% decrease in forage fish or game fish might reasonably be expected.

6.4.3 Patterns of Toxicological Effects in SWACOM

In another study (O!Neill et al. 1983). SWACOM was used to investigate how different aggregations of ecosystem .omponents might alter conclusions drawn from laboratory data. We compiled data for cadmium, as shown in Table 6.2. The distribution of sensitivities in the first column of Table 6.2 will be referred to as the standard or "population" pattern.

The first step was to remove the differences in sensitivity among populations in the same trophic level. The standard approach would be to take the geometric means of $L C_{50}$; however, the data represent a variety of test durations and end points (E.g., EC C_{50} s and EC 20^{s}). To correct for differences in test conditions, we assumed a simple mortality process described by $x\{t)=x(0)$ expi-dt), where $x(0)$ is the initial population size, $x(t)$ is the size at time t, and d is the mortality rate. We assume that mortality is a function of concentration, $d=a C$. We know the fraction, $F_{1}=x(t) / x(0)$, that survives at one concentration, C_{j}, measured over one time period, t_{1}. Since $\ln F_{1} / C_{1} t_{1}=-a=\ln F_{2} / C_{2} t_{2}$. we can then estimate the concentration, C_{2}, thai would result in a different

Table 6.2. Toxicological data used in examination of patterns of effects for cadmium

fraction, P_{2}, measured over a different time period, t_{2}. By simple rearrangement we find

$$
\begin{equation*}
C_{2}=\left(C_{1} t_{1} \ln F_{2}\right) /\left(t_{2} \ln F_{1}\right) \tag{6.1}
\end{equation*}
$$

Using Eq. 6.1 we arrived at a single $L C_{50}$ for each trophic level. The distribution of sensitivities shown in the secand column of. Table 6.2 will be referred to as the "trophic" pattern. In addition, we applied this approach once again to equate the trophic value and arrived at a single $L C_{50}$ that removes even the trophic pattern. This value is shown in the last column of Table 6.2 and will be referred to as "no-pattern.". By beginning with the no-pattern case, we can progressively add elements of toxic pattern into the simulations.. In this way, we can analyze for the effect of the pattern of differential sensitivities.

Comparing the trophic with the no-pattern case, the upper half of Table 6.3 shows the perient difference in annual blomass of each trophic level. The results indicate the kind of indirect effect that one could reasonably expect to find in che ecosystem. The game fish is more sensitive than the ro-pattern $L C_{50}$ would indicate. The other trophic levels are relatively insensitive. Therefore, the toxicant reduces game fish population and has relatively less direct effect on other organisms. Because game fish are reduced, the forage fish experience less predation and show an increase. Because there are more forage fish, there are fewer zooplankton. Because there is less grazing, the phytoplankton increase.

Table ‥3. Comparisons of responses to different patterns of sensitivity to cadmium

Trophic vs no pattern
Percent difference

Phytoplankto
Zooplankton
Forage fish
Game fish
19.
-19.
25.
-33.
Population vs trophic pattern

Phytoplankton	1.0
Zooplankton	-6.0
forage fish	-4.0
Game fish	-4.0

The next step is to compare the trophic pattern with the full population pattern of toxic sensitivities. The percent difference between trophic and population response is shown in the lower portion of Table 6.3. The average phytoplankton population is larger, and the consumer trophic levels are always smaller when population-specific patterns of toxic sensitivity are ignored. Thus, the interactions that occur among differentially sensitive populations within a trophic level can affect the way the system responds to chemical stress.

Biotic interactions are important determinants of how the ecosystem will respond to stress. The results emphasize that predator-prey and competitive interactions are important determinants of system response to toxicants. Ignoring the way ecosystem processes interact with toxic stress can bias estimates of environmental risk.

6.4.4 Using SWACOM to Extrapolate Bioassays

An alternative to standard algal bioassay methods measures short-term effects on physiological processes. Photosynthesis can be measured simply and precisely and is more sensitive to low concentrations of some toxicants than population growth. In the study described here (Giddings et al. 1983), photosynthetic inhibition in algae was extrapolated to the ecosystem level. using SWACOM to fllustrate the potential risk of photosynthetic inhibition for the ecosjetem as a whole. We considered a toxic impact of 7-d duration, introduced at various times during the year. On each date, we simulated a toxicant that caused a 50% reduction in the maximum photosynthetic rate and a 10% mortality on all consumer populations.

Mortality alone had little effect on the simulated pelagic ecosystem. When 50\% inhibition was included in the deterministic solution of the model, the effects were much more pronounced with average changes approaching 25% if the stress began in day 170. Thus, the model indicates that even a temporary inhibition of photosynthesis can have an important effect on other populations in the ecosystem. The exercise demonstrates that the interdependence of populations in an ecosystem makes it possible for even temporary inhibition of algal photosynthesis to have a measurable impact on other organisms. particularly if the other organisms are also experiencing toxic effects.

Another implication of the ecosystem simulation is that the net effects of releasing a toxicant into the whole ecosystem depend on the state of the ecosystem at the time of release. The authors also infer that the effects on a population are, to a large extent, functions of the ecosystem of which the populations are a part. A single toxicological response may have a variety of expressions, depending on the ecosystem context. For example. the death of a fraction of a population may be inconsequential if the growth of the population is iimited by iritraspecific competition; reduced compeiftion may compensate for the additional mortality, Conversely, a slight toxic effect may lead to complete elimination of the population by increasing its vulnerability to predators or reducing its abllity to compete with other populations.

6.5 MONTE CARLO METHDOS FND ANALYSIS

The essential feature of the ecosystem approach to risk analysis is to use models such as SWACOM to extrapelate information on toxic substances to the ecosystem level. There are many numerical techniques available to quantify the effect of uncertainties associated with such extrapolations (Rose and Swartzman 1981). Monte Carlo methods are particularly useful because they are easily implemented, and they provide the necessary information to estimate confidence intervals (Gardner et al. 1983).

Monte Carlo methods involve the iterative selection of random values for model parameters from specified frequency distributions. simulation of the model for each set of parameters, and analysis of the combined set of inputs and outputs (McGrath et al. 1975, Rubinstein 1981). Systematic sampling methods are more efficient than simple random sampling. We use quasi-orthogonal stratified random sampling methods (referred to as Latin Hypercube sampling) because (1) the estimates of output parameters (e.g., mean, median, and mode) are more prectse (see Mckay et al. 1979), (2) lew rates of spurious relationships between randomly generated values are ensured (Iman and Conover 1982), and (3) computer codes exist for generating values from a variety of distributions.

We have implemented a program, PRISM. (Gardner et al. 1983), especially written to perform Monte Carlo simulations for the estimation of risk indices. The program requires a FORTRAN subroutine of the model and an input file listing model parameters and their frequency distrihutions (e.g., normal, uniform, lognormal, etc.).

Multiple regression analysis of the Monte Carlo results provides an analysis of how the index is affected by assumptions required in extrapolating from laboratory to the ecosystem level (Downing et al. 1985). The contribution of each parameter to the regression sum of squares (i.e., the amount of the variability of y explained by a particular parameter) divided by the total sum of squares and multiplied by 100 forms an index, U, representing the percent variability of the model prediction explained ty each parameter. The values of U range from 0.0 to 1.0 , thus allowing a comparison between parameters. The adequacy of each index can be determined by comparison and by inspection of the R^{2} statistic.

The classical sensitivity index, S (Tomovic 1963) analytically examines the relationships between model predictions: and modei parameters: This approach is limited by the difficulty of obtaining an analytical solution for many models and by its assumption of small instantaneous changes (Gardner et al. 1981). These difficulties have resulted in the proliferation of numerical and statistical approaches to uncertainty analysis (Hoffman and Gardner 1983).

If a single parameter is randomiy varied from a prespecified probability distribution, then the slope of the regression of the model prediction on the parameter is the least-squares estimate of S if the parameter perturbations are very small (Gardner et al. 1981). If several parameters are simultaneously and independently varied, then a multiple regression on all the parameters simultaneousiy estimates all the sensitivities. The adequacy of this method of estimating linear relatioriships between model predictions and parameters can be evaluated
by inspection of R^{2}, the ratio of regression sum of squares to total sum of squares. If R^{2} is nearly 1.0 , then linear methods are adequate to describe the relationship between parameters and predirtions. The divergency of R^{2} from 1.0 indicates that nonlinear effects and interactions between parameters are important.

Any analysis that relates the importance of an input to a prediction without first removing the effects of the variability of other inputs (e.g., simple regression or correlations) is not very useful. Partial sum of squares (Draper and Smith 1966) determined. by regression techniques are particularly useful because they quantitatively express relationships between each model input and output, with the effects of the variability of the remaining inputs statistically removed.

The partial sum of squares (PSS) represents the unique effect of each input on each prediction after correction of the total sum of squares because of the variability in all the other input variables. The PSS has the property that (1) the estimated effect does not involve other model inputs, (2) the estimates are invariant to the ordering of the calculation, and (3) the sums of squares calculated in this way do not add up to the total regression sum of squares, unless the inputs are orthogonal to each other.

If there are a large number of inputs. it is natural to ask if these could be replaced by a smaller number of inputs or some linear function of them, with a minimal loss of information in explaining the output. Inis problem was first investigated by Rao (1364) and termed principal components of instrumental variables.

Principal components of instrumental variables reduce to multiple regression in the case where there is only one main variable to predict. The coefficients of the multiple regression equation, when the variailes are standardized, can be looked upon as importance coefficients, indicating which input variables are most important in influencing the output. Principal components are thus an extension of the multiple regression techniques when more than one output is examined simultarieously. The coefficients of the eigenvector indicate which input variables are most important, and the size of the eigenvalue determines how important that eigenvector is in explaining the variation we observe in the outputs.

6.6 DISCUSSION

The physiologica? process formulation of the growth equations in SWACOM provides the framework for extrapolation of acute toxicity data to estimates of likely effects of chemicals in aquatic ecosystems. Translation of mortality measurements to reductions in biomass production through the use of the General Stress Syndrome permits investigation of the implications of sublethal chemical effects on population dynamics calculated in an ecosystem context. The role of competitive and predator-prey interactions in mitigating or amplifying chemical effects can be examined through EUA (O'Neill et al. 1982, 1983). Statistical analyses of simulations used to estimate risk can identify the relative importance of direct vs indirect ehemical effects as components of risk. Application of the methods to date encourage further evaluation and refinement of EUA.

Jeveral areas for improvement in EUA are evident from our results. A more comprehensive collection of acute toxicity data could aid in the refinement of risk estimation. An examination of the relative contributions to risk identifies physiological proresses that determine risk in specific applications. Risk estimates could be refined if bioassay protocols were modified to measure effects on physiological processes. For example, modification of acute assays for Daphnia, fathead minnows, or bluegills to measure changes in oxygen consumption during the course of the assay would provide direct data to test the GSS and estimate corresponding effects parameters for SWACOM.

The accuracy of risks estimated with EUA is a function of the applicability of SWACOM or other models to the systems of interest. SWACOM was designed to mimic the behavior of a northern dimictic lake. As the particular system of interest departs in its characteristics from those of a lake. SWACOM becomes less appropriate for risk estimation. In the case of chloroparaffins (CPs), low estimates of risk might underestimate the potential hazard of these chemicals. The propensity of CPs to accumulate in sediments might pose potential effects to benthic populations. SWACOM does not directly consider benthic populations or sediments. Again. SWACOM can be replaced with a more site-specific model to further refine estimates of risk. Even though absolute magnitudes of risk might be in error when the system of interest deviates substantially from a dimictic lake, SWACOM might still be used to compare relative risks for several different chemicals.

In EUA, risk is a function of both toxicity and the uncertainty in extrapolation from bioassay to natural systems. In the cases we have examined, the toxic effect has been more important than the uncertainty associated with the effects paramezers (Bartell 1984). Nevertheless, the analyses would be considerably improved if more information were available on the field effects of toxicants. Future emphasis should focus on reducing the uncertainties associated with extrapolation so that attention can focus on the risks involved in ecosystem effel:ts due directly to the toxicants.

REFERENCES (SECTION 6)

Barnthouse, L. W.. G. W. Suter II, C. F. Baes III, S. M. Bartell, M. G. Cavendish, R. H. Gardner, R. V. O'Neill, and. A. E. Rosen. 1985. Environmental Risk Analysis for Indirect Coal Liquefaction. ORNL/TM-9120: Oak Ridge National Laboratory, Dak Ridge, Tenn.

Bartell, S. M. 1984. Ecosystem uncertainty analysis: Potential effects of chloroparaffins on aquatic systems. Report to the Office of Toxic Substances, U.S. Environmental Protection Agency, Washington, D.C.

DeAngelis, D. W., R. A. Goldstein, and R. V. O'Neill. 1975. A model for trophic interaction. Ecology 56:881-892.

Downing, D. J., R. H. Gardner, and F. O. Hoffman. 1985. An examination of response-surface methodologies for uncertainty analysis in assessment modelis. Technometrics 27:151-163.

Draper, N. R., and H. Smitt. 1966. Applied regression analysis. John Wiley and Sons, N.Y.

Gardner, R. H., R. V. O'Neill, J. B. Mankin and J. H. Carney. 1981. A comparison of sensitivity analysis and error analysis based on a stream ecosystem model. Ecological Modelling 12:177-194.

Gardner, R. H., B. Rojder, and U. Bergstrom. 1983. PRISM: A systematic method for determining the effect of parameter uncertainties on model predictions. Studsvik Energiteknik AB report/NW-83/555, Nykoping, Sweden.

Giddings, J. M., A. J. Stewart, R. V. $O^{\prime} N e i l l$, and R. H. Gardner. 1983. An efficient algal bioassay based on short-term photosynthetic response. Aquatic Toxicology and Hazard Assessment: Sixth Symposium, ASTM STP 802, W. E. Bishop, R. D. Cardwell, and B. B. Heidolph (eds.), American Society for Testing and Materials, Philadelphia.

Hoffman, F. O., and R. H. Gardner. 1983. Evaluation of uncertainties in environmental radiological assessment models. pD. 11-1 to 11-55. IN Radiological Assessment: A Textbook on Environmental Dose Assessment, J. E. Till and H. R. Meyer (eds.), U.S. Nuclear Regulatory Commission, Washington, D.C. NUREG/CR-3332 (ORNL-5968).

Iman, R. L., and W. J. Conover. 1982. A distribution-free approach to inducing rank correlation among input variables for simulation studies. Comm. Stat., 811(3).

Mckay, M. D., W. J. Conover, and R. J. Beckman. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 21:239-245.

McGrath, E. G., S. L. Basin, R. W. Burton, D. C. Irving, S. C. Jaquette, and K. R. Ketler. 1975. Techniques for efficient Monte Carlo simulation. Vol. 1. Selected probability distribicions. ORNL/RSIC-38. Oak Ridge National Laboratory, Oak Ridge, Tenn.

O'Neill, R. V., R. H. Gardner, L. W. Barnthouse, G. W. Suter, S. G. Hildebrand, and C. W. Gehrs. 1982. Ecosystem risk analysis: A new methodology. Environ. Toxicol. and Chem. 1:167-177. O'Neill, R. V., S. M. Bartell, and R. H. Gardner. 1983. Patterns of toxicological effects in ecosystems: a modeling study. Environ. Toxicol. and Chem. 2:451-461.

Park. R. A. and 24 others. 1974. A generalized model for simulating lake ecosystems. Simulation 23:33-50.

Rao, C. R. (1964). The use and interpretation of principal component analysis in applied research. Sankhya A26:329-358.

Rose, K. A., and G. L. Swartzman. 1981. A review of parameter sensitivity methods applicable to ecosystem models. NUREG/CR-2016. U.S. Nuclear Regulatory Commission, Washington, D.C.

Rubinstein R. Y. 1981. Simulation and Monte Carlo Method. John Wiley and Sons, N.Y.

Suter, G. W. IJ, L. W. Barnthouse, C. F. Baes III, S. M. Bartell, M. G. Cavendish, R. H. Gardner, R. V. O'Nelll, and A. E. Rosen. 1984. Environmental risk analysis for direct coal liquefaction. ORNL/TM-9074. Oak Ridge National Laboratory, Oak Ridge, Tenn.

Tomovic. R. 1963. Sensitivity Analysis of Dynamic Systems. McGraw-H\{11, N.Y.

Zapotsky, J. E., P. C. 8rennan, and P. A. Benioff. 1981. Environmental fate and ecological effects of chlorinated Daraffins. Report to the Environmental Assessments Branch, Office of Pesticides and Toxic Substances, U.S. Environmental Protection Agency, Washington, D.C.

7. GENERAL DISCUSSION

L. W. Barnthouse and G. W. Suter II

Combining exposure and efiects estimates and interpreting the results requires considerable judgment on the part of the analyst. Among the xey issues are maxching spatiotemporal scales of exposure and effects models, interoreting uncertainties, and identifying "signfficant" risks. We cannot provide explicit procedures for addressing these issues because they will vary with each application. A discussion of how issues were addressed in the synfuels risk assessments should, however, provide some tseful guidance. In addition to discussing the application of our approach in technology assessment. this section presents our views on (1) other potential applications to regulatory and resource minagement problems, and (2) critical research needs for the future development of ecological risk assessment.

7.1 SPATIOTEMPORAL SCALE IN THE INTEGRATION OF EXPOSURE AND EFFECTS

Superficially, integrating exposure and effects models appears to be a simple matter of estimating an environmental concentration and then comparing it with a toxicslogical benchmark or a concentration-response curve. However, the risk assessment may be meaningless if the spatfotemporal scale of the exposure assessment is improperly matched to the scale of the ecological effects or interest (and vice versa). Both short-term and long-term exposure assessments were used in synfuels risk assessments to address, respectively, acute effects and chronic effects of contaminant releases: A stochastic surface water fate modil (Sect. 2) was used to estimate frequency distributions of
contaminant concentrations as functions of daily variability in important hydrological parameters. To assess risks of acute mortality during high-concentration episodes, $96-h \quad L C_{50}$ s (both measured and extrapolated) were compared with 95 th percentile contaminant concentrations (i.e., concentrations expected to be exceeded on 5% of days). To assess risks of chronic toxicity, MATCs and ecosystem risk functions were compared to seasonal average contaminant concentrations. In a site-specific assessment, seasonal dilution volumes could be matched to chronic benchmarks for the species and life stages present at the site.

Spatial scaling was not a significant problem in the synfuels risk assessments we performed. In the absence of detalled information on the spatial distribution of vilnerable resources, it was appropriate to use spatially homogeneous exposure and effects models. In site-specific risk assessments, however, spatial scales of both exposure estimates (deposition rates, surface concentrations) and effects measures (number or fraction of organisms affected, reduction in system productivity) must match the spatial resolution of distributional data for the exposed organisms. For reasons of scale, the models used in the synfuels risk assessment project may not be appropriate for site-specific assessments.

7.2 INTERPRETING UNCERTAINTY

As noted in Section 1, a major objective of risk assessment is to identify and quantify the uncertainties involved in extrapolating from experimental data on the environmental chemistry and toxicology of
contaminants to expected fate and effects in the field. We could not quantify all of these uncertainties. In risk assessment, there must always be a trade-off between uncertainties that are explicitly modeled and uncertainties that are consigned to expert judgment. At one extreme, it is possible to base assessments on simple toxicity quotients and safety factors without explicit treatment of uncertainty (Sect. 3): Although feasible, this approach provides no information about either the reliability of the assessment or the feasibility of improving it through research. At the other extreme, one can imagine developing an explicit model of all the physicochemical, physiological, and ecological processes that determine the fate and effects of a chemical and then assigning parameter distributions to each. We have argued elsewhere (Barnthouse $2 \ddagger$ 11. 1984, Suter et al. 1985, Barnthouse et al. in press) that current scientific understanding of natural populations and ecosystems is insufficient to support such an approach. In the synfuels risk assessment project, we attempted to idencify the major classes of uncertaintles involved in ecological risk assessment and to develop methods of addressing them without exceeding the limits of feasibility or scientific credibility.

We distinguish three i'ialitatively distinct sources of uncertainty in ecological risk assessment: inherent variability, parameter uncertainty, and model error. It is important to distinguish between these three sources, because they differ with respect to (1) feasibility of quantification and (2) degree of possible reduction through research or environmental monitoring:

7.2.1 Inherent Variability

Limits on the precision with which variable properties of the environment can be quantified limit the precision with which it is possible to predict the ecological effects of stress. The concentration of a contaminant in air or water varies unpredictably in space and time because of essentially unpredictable variation ir. meteorological parameters such as precipitation and wind direction. The spatiotemporal distributions and sensítivities to stress of organisms in nature are similarly variable. This variability can be quantified for many characteristics of iiie physical environment that influence the environmental fate of contaminants. For the synfuels risk assessment project, long-term hydrological records were used to estima'e' frequency distributions of contaminant concentrations in rivers (Sect. 2) as functions of daily variability in stream discharge, sediment load, and temperature.

Variable biological aspects of the environment are more difficult to quantify. Little is typically known, for example, about the variability of sensitivities among individuals in natural populations. and long-term records of variations in the abundance and distribution of organisms are uncommon. We did not quantify biological variability among individual organisms for the synfuels risk assessment project.

7.2.2 Parameter Uncertainty

Errors in parameter estimates introduce ddditional uncertainties into ecological risk estimates. ?arameter values of interest may have to be estimated from structure-activity relationships (e.g.; Kenaga and

Goring 1980, Veith et al. 1984) or from taxonomic correlations (e.g., Suter et al. 1983, Calabrese 1984). Even direct laboratory measurements are subject to errors (e.g., confidence limits on $L C_{50}$ s and variation between replicate tests), although these are often unreported. Major efforts in the synfuels risk assessment project were devoted to quantifying uncertainties from this source. The methods described in Sections 4 and 5 , for example, were specifically developed to quantify uncertainty due to (1) variations in sensitivity between taxonomic groups of organisms and (2) the variahle relationship between acute and chronic toxicity. The ecosystem uncertainty analysis described in Section 6 was designed to translate uncertainties concerning effects of contaminants on individual species into uncertainties regarding ultimate ecological effects.

Unlike inherent variability, uncertainties due to parametar error can be reduced by fincreasing the precision of measurements or by replacing extrapolated parameter estimates with direct measurements. Comparisons of the relative contributions of different uncertainties to overall risk estimates provide guidance as to which parameters should be refined. The analyses described in Sections 4 and 5 show, for exampie, that uncertainty accumulated in predicting chronic effects of contaminants from acute $L C_{50}$ s is far more important than is uncertainty resulting from interspecies extrapolation of acute $L C_{50} s$.

7.2.3 Model Error

Model errors constitute the least tractable source of uncertainty in risk assessment. Major types of model errors that have been
identified include (1) using a small number of variables to represent a. large number of complex phenomena (termed aggregation error), (2) choosing incorrect functional fcrms for inceractions among variables, and (3) setting inappropriate boundaries for the components of the world to be included in the model. The most serious problem associated with model error is that these errors frequently involve systematic bfases whose magnitudes and directions may be difficult to determine. One might naively think that the solution to model error is to disaggregate variaijles and increase the boundaries of the system until errors are eliminated. However, as has been noted by o'keill (1973), there is a trade-off oetween model error and parameter error such that, the more variables and processes represented in a model, the greater the cost of data aquisition and the greater the opportunity for parameter error. For any model, a point is reached where adding additional variables and parameters reduces, rather than increases, the accuracy of model predictions.

Although model errors can never be completely eliminated, they can be bounded and reduced. The most straightforward method is to test the model against independent field data. However, the data necessary to perform such tests are difficult to collect and, when collected, are difficult to interpret. No matter how well a model performs for one set of environmental conditions, it is never possible to predict with certainty its applicability to a new set of conditions.

Empirical testing, although crucial in the long run for improving the models used in risk assessment (Mankin et al. 1975, National Research Council 1981), is unsuitable as a routine method of assessing
model errors. However, it is still possible to evaluate model assumptions by comparing of different models (Gardner et al. 1980). By comparing model's that use different sets of assumptions, it is possible to assess how assumptions alter model output. This was the principal rationale for developing both statistical (Sects. 4 and 5) and ecological process (Sect. 6) models for the synfuels risk assessment project. Although this proceuice does not ensure that model results will correspond to effects in the field, it can be used to distinguish between predictions that are robust to model assumptions and predictions that are highly sensitive to assumptions, and therefore susceptible to serious model errors (Levins 1966, Gardner et al. 1980). The strategy of comparing different risk models was used to identify potentially hazardous contaminants in the environmental risk assessments for indirect (Barnthouse et al. 1985a) and direct (Suter et al. 1984) coal liquefaction (see Sect. 7.3).

7.3 INTERPRETING ECOLOGICAL SIGNIFICANCE

The question of how large an ecological impact is significant has statistical, ecological, and societal components (Beaniands and Duinker 1983). In the synfueis risk assessment project, we considered statistical and societal components, respective?y, by usir. 9 probabilistic risk models and by defining end points in terms of soctetally valued environmental attributes. No generally applicable definition of ecological significance has ever been formulated (Beanlande and Duinker 1983); therefore, definitions must be developed
in the context of particular assessment objectives. We developed operational definitions of ecological significance based on the primary objective of the project, that is, the identification of synfuels-related contaminant classes having the greatest potential for adverse ecological effects. Dur strategy for assessing significance involved (1) defining, for each effects method used, a criterion below which risks would be considered insignificant, (2) counting, for each contaminant class studied, the number cf methods by which it was judged "significant"; and (3) explaining, where possible, the failures of the three methods to agree.

For the quotient method (Sect. 3), the significance criterion used was an acute-effects quotient greater than 0.01 , that is, a lowest observed L_{50} less than two orders of magnitude greater than the estimated environmental concentration. This criterion has sometimes been used in hazard assessments for toxic chemicals. For anaiysis of extrapolation error, potential ecological effects of a contaminant were considered significant if the risk that the environmental concentration may exceed the MATC of one or more reference fish species is greater than 0.1. This value was chosen to avoid (1) being overly conservative and (2) relying on risk estimates obtained from the tails of the prutatility distributions for MATCs, where the reliability of extrapolation is most questionable. For ecosystem uncertainty analysis, contaminants were considered to pose significant risks if the risk of a 25\% reduction in game fish biomass is greater than 0.1. This value was selected on the basis that risks should be at least twice as high as
the background risk resulting from environmental variability incorporated in SWACOM (about 0.04) before they are considered significant.

Assessments of the aquatic end points in indirect coal liquefaction (Barnthouse et al. 1985a) provide an lllustration of our procedure (only toxicity quotients were used to assess terrestrial end points). For the fish end point, comparisons between risk estimates obtained from all three risk methods were possible. Using at least one of the three methods (Table 7.1). nine contaminant categories were determined to pose potential risks to fish populations. The nine were identified as the classes most appropriate for refined risk assessments and/or further research. Four contaminant classes, all trace elements or conventional industrial pollutants (hydrogen sulfide and ammonia), were found significant by two or more methods and identified as the contaminants of greatest concern.

For the phytoplankton end point, only nickel and cadmium were judged significant using toxicity quotients. However, using ecosystem uncertainty analysis, these eiements, along with three other heavy metals, and amonia were all judged significant this result required explanation in that, although all of the contaminants studied are potentially toxic to phytoplankton, the end point in ecosystem uncertainty analysis is defined as a fourfold increase in peak phytoplankton biomass. An inspection of the model output revealed that indirect effects of contaminants on fish and zooplankton, rather than direct effects on phytoplankton, were responsible for the results.

Table 7.1. Contaminant classes determined to pose potentially significant risks to fish populations by one or more of three risk analysis methods: quotient method (DM), analysis of extripolation error (AEE), and ecosystem uncertainty analysis (EJA). Separate lists were developed for treated aqueous waste streams from two indirect coal liquefaction processes. From Barnthouse et al. (1985)

Lurgi/Fischer-Tropsch process	Xoppers-Totzek/Fischer-Tropsch process
(acid gases) - QM, AEE	(acid gases) - QM, AEE
(alkaiine gases) - QM, AEE, EUA	(alkaline gases) - QM, AEE, EUA
(volatile carboxylic acids) - AEE	(volatile carboxylic acids) - QM, AEE
(carboxylic acids, excluding	(cadmium) - QM, AEE, E!IA
volatiles) - AEE	
(arsenic) - AEE	
(mercury) - AEE, EUA	
(nfckel) - EUA:	
(cadmium) - QM, AEE, EUA	

7.4 OTHER APPLICATIONS OF ECOLOGICAL RISK ASSESSMENT

We have not claimed to accurately predict the magnitudes of ecological risks associated with toxic chemicals, whether or not associated with synfuels production. However, even without such predictions, applications of the concept of risk and, in some cases, the methods described in this report can substantially improve current approaches to environmental decision-making. By il) emphasizing probabilities and frequencies of events and (2) explicitly quantifying uncertainty, risk assessment can provide a more rational basis for decisions that may otherwise be highly subjective.

For example, frequency distributions of ambient contaminant concentrations can be used to forecast water quality impacts or compliance with standards. For any given benchmark concentration (e.g., an ambient air or water quality criterion), the probability of exceeding the benchmark can be read from the cumulative distribution function in Fig: 7.1(a). The presentation of such functions would enhance the quality of environmental impact assessments, which commonly are based on worst-case analyses (e.g., 7-d, 10 -year low flow) of questionable ecological significance. If the benchmark concentration is an action level above which contaminant discharges are not permitted, then Fig. $7.1(a)$ could be used to estimate the frequency of days on which action would be required. Probabilistic environmental fate models that could be used for this purpose already exist (e.g., Parkhurst et al. 1981, Travis et al. 1983).

Fig. 1.1. Four applications of ecological risk functions. In (a), a cumulative frequency function is used to estimate the frequency with which the environmental concentration of a contaminant will exceed an "action" concentration. In (b), a cumulative probability function for the effects threhsold of a hypothetical organism is used to select an action concentration with a 5% chance of exceeding the true effects threstiold. In (c), probability density functions for two components of a risk estimate are compared to identify the component with the greater uncertainty. In (d), the risks of adverse effects of different magnitudes are compared for two alternative facility designs. The expected effects of the two alternatives are the same, but alternative B presents greater risks of severe adverse effects.
: Risk estimates could also be used to set standards based on probabilities of exceeding effects thresholds. Section 4 of this report describes a method for calculating probability distributions for acite $L C_{50}$ s and MATCs. Figure $7.1(\mathrm{D})$ presents such a distribution plotted as a cumulative probability function. Using this curve, the allowable ambient concentration of contaminant might be set so that the risk of excaeding the threshold level is 5%. Figure $7.1(\mathrm{~b})$ could also be used to define the decision points in tiered hazard assessment schemes. In this application, the decision to perform further tests on a chemical would be determined by the risk of exceeding an $L C_{50}$ or MATC, and by the reduction in uncertainty expected to result from acquisition of additional test data.

If the contributions to total uncertainty of different components of a risk estimate can be compared, then research effort can be concentrated on the component(r.) contributing the greatest uncertainty. For example, in Fig. 7.l(c), uncertainty about the environmental concentration of a contaminant is compared with uncertainty concerning its effects threshold. The relative variances of the two distributions correspond roughly to the variances estimated by Suter et al. (1983) for largemouth bass exfosed to mercury released from a hypothetical indirect coal liquefaction plant. Barnthouse et al. (1985b) used comparisons between variances of MATCs and of environmental concentrations estimated for 23 synfuels-related contaminants to argue that, in general, uncertainty concerning effects thresholds for contaminants is much larger than uncertainty concerning environmental fate.

Decisions concerning alternative plant sites and mitigating technologies could be facilitated by using risk curves like those shown in fig. 7.1(d). Such curves provide information about both the expected effects of an action (e.g., building a plant or licensing a chemical) and the risk of extremely large effects. Risk curves are commonly used to assess safety-related risks (e.g., comparing automobile travel to airplanes or earthquakes to nuclear power plant accidents): we see no reason why they could not also be used to assess ecological risks.

7.5 CRITICAL RESEARCH NEEDS

Given the immaturity of the art of risk assessment, it would be possible to list dozens of research topics that would enhance our capabilities. Through the application of risk assessment concepts to synfuels terhnologies, we have identified four deficiencies that we think are esperially critical: (l) insufficient understanding of chronic effects of toxic chemicals, (2) insufficient data on effects of contaminants on invertebrates, (3) poor standardizztion of toxicity test systems for aquatic and terrestrial plants; and (4) insufficient validation of ecological risk models.

Most exposures of organisms to toxic contaminants are chronic rather than acute. However, most research and toxicity testing to date has been directed at acute exposures. We have shown in Sections 4 and 5 of this report that, at least for fish and probably also for aquatic invertebrates, it is possible to extrapolate from acute effects to

MATCs and even to population-level effects of chronic exposures. The uncertainties associated with this extrapolation are very large, presumably because the relationship between effective concentrations for acute vs chronic effects is highly variatie. Significant reductions in uncertainty could be obtained if more effort were devoted to chronic toxicity testing and to understanding the physiological mechanisms responsible for chronic toxicity. In contrast, acute effects of contaminants on fish are well studied, and our research (Sect. 4) has shown that acute effects of contaminants on one fish species can be extrapolated to other fish species with a rolatively low degree of uncertainty (i.e., within an order of magnitude).

A redressing of the imbalance in testing effort between fish and invertebrates is needed. Modeling studies performed using SWACOM (Sect. 6) suggest that differences in sensitivity between and within trophic levels in aquatic ecosystems can cause responses that are qualitatively different from those predicted on the basis of a few standard spectes. Although invertebrates are both taxonomically and physfologically more diverse than fish, more aquatic toxicity data is avallable for fisin than for invertebrates. Moreover, most testing of invertebrate responses is restricted to a small set of standard organisms (e.g., Daphnia magna).

Lack of comparability of test systems limits the possibility of any meaningful risk assessments for plants and especially terrestrial vegetation. Suitable test systems for phytoplankton are available, all that is required is a standardization of end points. For terrestrial plants, interpretability is an even greater problem than comparability.

Many systems are of severely limited utility for risk assessment because of the near impossibility of relating the test end points (e.g., reductions in root elongation rates) to meaningful ecological end points. Readily interpretable data are available only for major combustion products, such as ozone and SO $_{x}$.

Lack of validation of ecological risk models; especially ecosystem models, is perhaps the greatest single limitation on the future development of ecological risk assessment. The Standard Water Column Model, a model of the pelagic zone of a northern dimictic lake, was used to develop ecosystem uncertainty analysis (Sect. 6), not because such lakes are relevant to synfuels risk assessment, but because northern dimictic lakes are by far the best understood aquatic ecosystems. The model itself has not been rigorously validated, but the functional components of the model have been validated through more than a century of limnological research. Because of the great expense and difficulty of site-specific modeling efforts. it is likely that ecosystem-level risk assessments will aiways be limited primarily to site-independent purposes, such as identifying particular contaminants or contaminant classes with the potential for causing indirect ecological effecis. Even for this more limited purpose, validation studies are needed. At a minimum, the existing case studies on ecological effects of toxic chemicals should be synthesized to determine how frequently indirect effects have been observed and to Identify the ecological processes (e.g., prey switching or reductions in primary production) responsible.

```
Ecological risk assessment methods inevitably represent a compromise between the ideal and the possible. Ideally, we would like to quantily effects of toxic contaminants on valued ecosystem comp rents in any environment of interest, based on an understanding of fundamental chemical, physiological, and ecological processes. Statistical models and generic ecosystem models, such as those described in this report, would then be unnecessary. Until breakthroughs in fundamental understanding are achieved, however, we believe that the most appropriate strategy for improving our capability in ecological risk assessment is the strategy pursued in the synfuels risk assessment project, that is, incremental extension of the existing state of the art in ecotoxicology and ecology.
```


REFERENCES (SECTION 7)

Barnthouse, L. W., J. Boreman, S. W. Christensen, C. P. Goodyear, W. Van Winkle, and D. S. Vaughan. 1984. Population biology in the courtroom: The Hudson River controversy. BioScience 34:14-19.

Barnthouse, L. W., G. W. Suter II, C. F. Baes III, S. M. Bartell, M. G. Cavendish, R. H. Gardner, R. V. O'Neill, and A. E. Rosen. 1985a. Environmental Risk Analysis for Indirect Coal Liquefaction. ORNL/TM-9120. Oak Ridge National Laboratory, Oak Ridge, Tenn.

Barnchouse, L. W., G. W. Suter II, C. F. Baes III, S. M. Bartell, R. H. Gardner, R.E. Millemann, R. V. O'Neill, C. D. Powers, A. E. Rosen, L. L. Sigal, and D. S. Vaughan. 1985b. Unit Release Risk Analysis for Environmental Contaminants of Potential Concern in Synthetic Fuels Technologies. ORNL/TM-9070. Oak Ridge Nationai Laboratory, Oak Ridge, Tenn.

Barnthouse, L. W., R. V. O'Neill, S. M. Bartell, and G. W. Suter Il. Population and ecosystem theory in environmental risk assessment. IN Proc. 9th ASTM Symposium on Aquatic Toxicology and Hazard Assesisment. American Society for Testing and Materials, Philadelphia, Penn. (in pressi.

Beanlands, G. E., and P. M. Duinker. 1983. An ecological framework for environmental impact assessment in Canada. Institute for Resources and Environmental Studies, Dalnousie University, Halifax, Nova Scotia, Canada.

Calab'rese, E. J. 1984. Principles of animal extrapolation. John Wiley and Sons, N.Y.
Gardner, R. H., R. O'Nefll, J. B. Mankin, and K. D. Kumar. 1980. Comparative error analysis of six predator-prey models. Ecology 61:323-332.

Kenaga, E. E., and C. A. I. Goring. 1980. Relationship between water solubility, soil sorption, octanol-water partitioning, and concentrations of chemicals in biota. DD. 78-115. IN J. G. Eaton, P. R. Parrish, and A. C. Hendricks (eds.) Aquatic Toxicology. ASTM STP 707. American Society for Testing and Materials. Philadelphia, Penn.

Levins, R. 1966. The strategy of model building in population biology. Am. Sct. 54:421-431.

Mankin, J. B., R. V. O'Meill, H. H. Shugart, and B. W. Rust. 1975. The importance of validation in ecosystem analysis. pp. 63-72. IN G. S. Innis (ed.), New Directions in the Analysis of Ecological Systems. Simulation Councils Proc. Ser. 1(1). Simulation Councils, Inc., La Jolla, Calff.

National Research Council. 1981. Testing for $£ f:=: t s$ of Chemicals on Ecosystems. National Academy Press, Washington, D.C.

O'Neill, R. V. 1973. Error analysis of ecological models. DD. 898-908. IN D. J. Nelson (ed.), Radionuclides in Ecosystems. CONF-710501. National Technical Information Service, Springfield, Va.

Parkhurst. M. A., Y. Onishi, and A. R. Olsen. 1981. A risk assessment of toxicants to aquatic life using environmental exposure estimates and laboratory toxicity data. pp. 59-71. IM D. R. Branson and K. L. Dicrison (eds.), Aquatic Toxicology and Hazard Assessment. ASTM STP 737. Anerican Society for Testing and Materials, Philadelphia, Penn.

Suter, G. W. II, D. S. Vaughan, and R. H. Gardner. 1983. Risk assessment by analysis of extrapolation error, a demonstration for effects of pollutants on fish. Environ. Toxicol. Chem. 2:369-378.

Suter, G. W. II, L. W. Barnthouse, C. F. Baes III, S. M. Bartell, M. G. Cavendish, R. H. Gardner, R. V. O'Meill, and A. E. Rosen. 1984. Environmental Risk Analysis for Oirect Coal Liquefaction. ORNL/TM-9074. Oak Ridge National Laboratory, Oak Ridge, Tenn. Suter, G. W. II, L. W. Barnthouse, J. E. Breck, R. H. Gardner, and R. V. O'Neill. 1985. Extrapolating from the laboratory to the field: How uncertain are you? DD. 400-413. IN R. D. Cardwell, R. Purdy, and R. C. Bahner (eds.), Aquatic Toxicology and Mazard Assessment: Seventh Symposium. ASTM STP 854. American Society for Testing and Materials, Philadelphia, Penn.

Travis, C. C., C. F. Baes III. L. W. Barnthouse, E. L. Etnier. G. A. Holton, B. D. Murphy, G. P. Thompson, G. W. Suter II, and A. P. Watson. 1983. Exposure assessment methodology and reference environments for synfuels risk analysis. ORNL/TM-8672. Oak Ridge National Laboratory, Oak Ridge, Tenn.

Veith, G. D., D. J. Call; and L. T. Brook. 1983. Structure-toxicity relationships for fathead minnow, Pimephales promelas: Narcotic industrial chemicals. Can. J. Fish. Aguat. Sci. 40:743-748.

APPENDIX A
Acute and Chronic Effects Data Used in Analysis of Extrapolation Error
lable A.1. ICsoimaic data set (units are $\mu \mathrm{g} / \mathrm{L}$)

08S	CHEMICAL	source	SPECIES	class	IYPL	LCso	motc	Locc	valc
1	AC 222.105	SPEHAR Et AL. 1983	f	Pr	cts	0.22	0.03	0.01	0.0
2	ace maphimeme	Calrws and mebeker 1982	FH	PA	ELS	608	345	495	413.2
3	acemaphimeme	LEMKE [1 AL. 1983	fr	PA .	ELS		139.5	214	195.5
4	acrole in	mate el at. 1976C	+M	HC	:C	84	11.4	41.7	21.8
5	${ }^{46}$	davies Ef AL. 1978	RI	M	ELS	6.5	0.09	0.11	0.1
6	A6	meberea el al. 1983	11	-	ELS	9.2	<0.1		
1	ag surfial getl	LfBlame el At. 1984	FM		cis	>240		211000	
0	ag thiosulfate complex	Lealanc el al. 1984	FM		Cls	>280	16000	35000	23664.3
9	alachisa	CALL Et AL. 1983	FH	OC	cis	5000	520	1100	756.3
10	aloicara	PICKLRIMG AND GILIAA 1982	fr	C8	ELS	1370	18	156	110.3
11	AROCLORI:42	meatker el al. 1974	FM	OC	LC	300	5.4	15	9.0
12	AROCLOR1240	OfFOE [I AL. 1978	in	OC	LC		0.1	0.4	0.2
13	AROCLOR124*	mereker el Al. 1974	Ff	OC	tC		2.2	5.1	3.3
14	Aroctionizs	meaerer eit al. 1914	FM	OC	LC	233	0.5 ?	1.8	1.0
15	afcelioalizo	Defce El AL. 1938	f	oc	LC		8.1		
16	As	BIDOIMEf 1981	JM		15	30200	2500	5000	3535.5
11	as	Call el Al. 19838	ff		CLS	14400	2130	4120	2962.4
18	As	CALL EI AL. 19838	$F_{\text {F }}$;		ELS	14200	2130	4300	3026.4
19	atrallme	mece [1 AL. 19768	86	Ow	LC	6760	95	500	211.9
20	alralime	macek el Al. 19768	81	O*	LC	4900	65	120	88.3
21	atralime	maCEK [I AL. 19768	f	Ow	16	15000	213	810	430.5
22	BEM2OPHEMOME	CALL Et Al. 1985	Fh	W	ELS	14800	540	990	731.2
23	bromacil	CALL ET AL. 1983	FM	ON	ELS	182000	<1000		
24	Captam	hermantil it Al. 1973	FM	OS	LC	65	16.5	39.5	25.5
25	carbantl	CARLSOM 1871	FA		15	9000	210	680	371.9
26	co	Benoll el Al. 1976	81	M	LC		1.7	3.4	2.4
21	CO	CARLSOW [I AL. 1982	FF	n	I.C		3.3	1.4	4.9
28	Cs	EArom i: M. 1978	BMI	M	ELS		3.8	11.7	6.7
29	co	EALOW ET AL. ${ }^{2918}$	81	n	ELS		1.1	3.8	2.0
30	CO	EAIOM EI AL. 1918	cos	M	ELS		4.1	12.5	1.2
31	co	EAIOW E1 AL. 1918	t	N	ELS		4.4	12.3	1.4
32	CO	falow el Al. 1978	MP	n	ELS	.	4.2	12.9	1.4
33	co	CAIOM Et AL. 1918	58	n	CLS		4.3	12.1	1.4
34	CO	EAION E1 AL. 1918	us	\cdots	ELS		4.2	12.0	1.1
35	CO	CAIOW 1974	86	n	LC	21100	31	80	49.8
36	0	pickering amo gasi 1972	:A	n	LC	1200	31	51	45.9
$3)$	CB	Shuter Eit Al. 1976	81	W	ELS		1	3	1.7
39	CD	SAUIER EI AL. 1976	cc	\cdots	ELS		11	11	13.7
39	CO	SAUIER EI M. 1976	HE	N	[LS		9	25	15.0
40	co	SPEMAR 1976	Ff	n	LC	2500	4.1	8.1	5.8
41	Chloranime	ARTHUS MDO [ATOM 1971	FM		LC	114	16	35	23.1
42	chlordane	CAROMLL EI AL. 1971	86	OC	LC	59	. 1.22	2.20	1.6
43	Chlordame	CARDMELL EI AL. 1971	81	OC	LC	47	<0.32		
44	CM	LSDuc 1978	AS		15		<0.01		
45	CM	SMITM EI AL. 1919	86		LC	120	<5.2		

[^1]Jable A. 1 (Continued)

085	chenical		SOURCE	SPECIES	CLASS	TYPE	Lcso	noE ${ }^{\text {c }}$	LJEC	matc.
	${ }^{\circ} \mathrm{CM}$		SWIIM [IAL. 1979	81		PLS.	68.3	5.1	11.2	8.0
			SHITH EIAL. 1879	In		16	129	12.9	19.6	15.9
48	CMSO4		hazel and milit i970	CHS		ELS		80.02		
49	CR		Bemoll 1976	81	N	LC	59000	200	350	264.6
so	CR		BEMOII 1976	11	n	15	69000	200	350	204.6
	CR		PICxERIMG 1980	FM	n	$t C$	36900	1000	3950	1983: 5
52	Ca		SAjler ti at. 1976	86	N	ELS		522	1122	163.3
53	CR		sauler el al. 1976	CC	\cdots	ELS		150	305	213.9
			sauler el al. 1976	11	N	CLS		105	194	142.7
55	cx		SAUIER [1 AL. 1936	WP	n	ELS		538	963	119.8
	CR		SAuter il Al. 1976	01	N	cts		51	105	73.2
	Ca		SAUIER CI AL. 1976	WE	H	ELS			>2167	
58	Ca		SAuter ct Al. 1976	us	H	Eis		290	538	395.0
59	Ca		SIEVEMS ANO CMAPMAM 1984	RI	n	ELs	4400	48	89	65.4
60	CU		BEMOII 1975	86	n	IC	1100	21	40	29.0
61	CU		HOKMIMG AMD MEIMCISEL 1919	$8 \mathbf{8}$	H	LC	230	4.3	18	8.8
6	Cu		mCKIM ANO EENOII 1971	81	N	LC	100	9.5	17.4	12.9
63	CU		WCKIM AMO BEHOIT 1974	81	M	IC			>9.4	
	CU		MCK1M EI AI. 1978	801	H	ELS		22.3	44.5	31.5
65	CU		mexim EI AL. 1978	ar	M	ELS		21.5	43.5	30.6
66	Cu		MCKIN EI AL. 1978	LI	N	ELS		22.0	42.3	30.5
61	CU		mekin et Al. 1978	MP	-	ELS		34.9	104.4	60.4
68	CU		MCKIA E: A! 1978	Q ${ }^{\text {d }}$	n	Ets		11.4	31.7	19.0
69	CU		mexim El Al. 1918	W	/	[LS		12.9	33.8	20.9
10	CU		MOUHI MND STEPHAN 1969	FM	\cdots	tc	15	10.6	18.4	14.0
	Cu		mounl 1968	FM	M	LC	470	14.5	33	21.9
12	CU		Pickerimg EI AL. 1971	FM	H	LC	460	38	60	47.7
13	Cu		SAutertit al. 1976	81	\cdots	ELS		3	5	3.9
14	CU		SAuter el al. 1976	CC	H	ELS		12	18	14.7
15	CU		Sauter [l Al. 1976	WE	\cdots	ELS		13	21	16.5
16	CU		SEIM [1 Al. 1984	11	M	ELS	80	16	31	22.3
71	001		japlimen El Al. 1971	FM	OC	LC	48	0.5	2.0	1.0
18	DI-m-buiti	Phibalhie	nccarihy and whilmore 1985	8\%		EtS		560	1000	748.3
79	DI-N-OCIYL	Phithalate	MCCARTHY AND WHIIMORE 1985	FM	\cdots	ELS		3200	10000	5656.9
80	dialimom		allisom ano hermanutl 1911	81	OP	-PLC	170	<C. 55		
81	dialinom		allisom ano hermantil 1917			IC	7800	3.2	13.5	6.6
82	dialimam		jarvimem and tameer 1982	Fn	OP	ELS	690	50	90	67.1
83	Dimoses		CALL EI AL. 1983	fr	Ow	ELS	100	14 a	48.5	26.5
84	Dimoses		mo00waro 1976	(i)	ON	MS	19	<0.5		
85	0lurow		CALL EI AL. 1983	FM	Ow	EtS	14200	33.4	18	51.0
86	didmac		LEWIS AMO Wet 1983	FM	5	ELS		53	90	69.1
81	oursbam		jaryimen and tammer 1982	f f	Op	ELS	140	1.6	3.2	2.3
88	Endosulfan		CARLSON [1 AL. 1982	fM	OC		0.86			
89	endosulfan		macex [f Al. 1916C	fm	OC	LC	0.86	0.2	0.4	0.3
	EMDRIN		CARLSOW [I AL. 1982	FM	OC	MS				

Table A．I（Continued）

	chemizal	source	Spicies	Class	IYPL	LCso	NOEC	106C	maic
	Imarin	hermamutl 1918	f	OC	1 C	0.85	0.22	0.3	0.3
	Embrim	jarvimea and tro 1918	In	OC	1 C		＜0．1）		
	こinylbemilam	EPA 1980a	in	N	ELS	45300		2440	
	fimltúothiom	hlilmer fl al． 1984	in	$C \times$	［LS		130	300	197.5
	：omafos	P！CKEPING AnC Glliam 1982	H	OP	［LS	1090	16	33	23.0
	furan	CALL EI AL． 1985	FH	M	Ets	60676	8210	12200	10044：6
	cuthion	ADELTAN EI AL． 1976	IM	OP	ic		0.33	0.51	0.4
	hepiachlor	macek［l Al．1916C	in		IC	1	0.86	1.84	1.3
99	he xachl orobutadieme	Benuli ll Al． 1982	f ${ }^{\text {H }}$	OC	ets	102	6.5	13	9.2
	hixachl orocyclohexame	macik 61 AL．1916a	8G	H	tc	30	9.1	12.5	10.1
	HExachl orocyclohe xame	macek［1 AL．1976A	BI	N	IC	26	8.8	16.6	12.1
	hexachl Oroc y Clohe xane	macek［1 AL．1916a	FM	N	t	69	9.1	23.5	14.6
	he xachl oroe ihame	Ahat o il Al． 1984	In	＊	cts	1510	69	201	119.5
	HEXACHL OROPENTADIEME	fPA 19808.	FH	N	EtS	1.0	3.1	1.3	5.2
		CALL ET AL．19838	IH	H	Els	150	＜0．23		
	H6	SMARSKI ANO OLSON 198？	FM	M	LC	168	＜0．26		
	ISOPhorcme	［AIRNS AMD ME日EKER 1902	IH	HC	its	145000	56000	112000	79196.0
	ISOPHOROME	LEAKE［1 AL．1983	IM	he	ELS	145000	8535	15610	11542.6
	KELIHRAE	SPEHAR EI AL． 1982	FH	OC	tLS		19	39	27.2
	kepone	suckier It Al． 1981	F	OC	LC	340	1.2	3.1	1.9
	las mixiure	pickering and thaicher 1970	f\％	5	IC	4350	630	1200	869.5
	LAS 11.2	hotman and macek 1980	IH	S	Ets	12300	5100	8400	6545.2
	LAS 11.7	holman and macek 1980	FM	S	tc	4100	480	490	485.0
	LAS 13.3	holman and macek 1980	F ${ }^{\text {H }}$	S	1 C	860	110	250	165.8
115	malathiom	CAIOW 1970	日	OP	LC	110	3.6	1.4	5.2
	malathion	EAIOM 1970	FM	OP	LC	10500	210	580.	340.6
11	malathiom	hermixuli 1978	Ff		LC	349	8.6	10.9	9.7
118	me limi parathiow	Jarvinim and tammer 1982	FM	OP．	ELS		310	380	343.2
	me thythercuric．Chlorioe	mCKIM Et Ai． 1976	BI		tc	15	0.29	0.93	0.5
120	methytmercuric chlorlag	mckim 1917	FF	OM	tC	240	0.17	0.33	0.2
121	methylmercuric chloride	mCKIM 1917	FH	0 OH	－LC	65	0.07	0.13	0.1
122	miagx	BUCKLER EI AL． 1981	FH	0 C	IC	750	7	13	9.5
	mapinaleme	DEGRAEVE EI AL． 1982	FH	HC	ELS	1900	450	850	618.5
	Ml	PICKIRING 1974	FM	H	Ic	21000	380	730	526.7
125	P8	－DAVILS ET AL． 1976	RT	H	ELS	1170	4.1	1.6	5.6
126	P8	HOLCOMBE EI AL． 1976	$8:$	M	IC	4100	58	119	83.1
	P8	NCKIn 19］）	FF	\％	ti	2750	31.2	62.5	44.2
128	P8	Sauler el al． 1976	86	H	［ts		70	120	91.7
129	P8	SAUIER EI AL． 1976	CC	M	［LS		75	136	101.0
130	P8	SAUIER EI AL． 1976	11	\cdots	ELS		48	83	63.1
131	PO	SAuIER EI AL． 1976	HP	\cdots ．	Its		253	483	349.6
	${ }^{\text {PG }}$	SAUIER EI AL． 1976	RI	H	［15		11	146	101.8
133	P8	SAuIER EI Al． 1975	ws	H	Ets		119	253	173.5
134	pentachl oroe thane	AHMED EI AL． 1984	fM	N	［LS	1340	900	1400	1122.5
135	PEMIACHLOROPHEMOL	HOLCOKBE EI AL． 1982	FH	OC	ItS		44.9	13.0	51.3

Iable A. 1 (Continued)

	CHEEICAL	souate	Splelis	class	17PI	teso	wotc	1056	milt
136	pernetmain	SPCMAR 11 AL. 1983	$1 \times$	PY	cts	15.6	0.66	1.4	1.0
131	putmal	deganeve it Al. 1980	$1 \times$	H	[15	24900	150	2500	1369.3
138	3-MED	diguatit Et at. 1980	81	Mc	ILS	8900	<200		
139	MEMOL	not conde il Al. 1982	FM	HC	fis		1830	3510	2556.0
146	Mimols	dauste [1 AL. 1993	\%	HC	[15,		130	250	180.1
	PMEMOLS	qauble it Al. 1903	11	HC	(is		<130		
142	picloram	ncoumato 1916	11	C	Its	1850	<3s		
143	propamil	gall 11 Al . 1583	F\|	\%	tis	8600	0.4	0.6	0.3
144	pronim	Strsma [1. AL. 1988	F/	PY	Lis		. 19	. 33	0.3
145	sooim mitrilutalacliate	artmun [1 Al. 1914	${ }^{\text {f }}$	s	ic	114000		254000	
is6	1-1,2-ricmionocrcloneraike	CALL EI At. 1985	FM	N	ats	18400	610	980	113.2
141	iltrachloroithyleme	Amelo El AL. 1984	F/	*	dis	13400	- 1400	2800	1979.9
198	titrahyutof uaam	CALE [I AL. Igas	F\%	W	[15	2160000	216000	361000	281552.8
149	TOXAPHCNE	maref (1) Al. 1975	81	OC	tc	10.8	<0.039		
150	tcxaphtul	muref [t At. 1917	cc	oc	LC	16.5	0.129	0.299	0.2
131	TOXAPheme	mure ह1 Al. 1911	8M		IC	1.2	0.025	0.054	0.0
152	irifluralim	macer il at. ligbe	F\%	On	LC	115	1.95	5.1	3.2
153	vamatiom	malowar amo speagul 1919	If	,	It	11200	80	170	116.6
154	1EOLIE, TYP A	maki matomete 1978	IN		ats	2860500		>86700	
158	${ }^{14}$	Bemolt and holcomet 1918	FM	\cdots	LC	600	18	145	106.3
156	${ }^{17}$	crumbs 1969	IM	/	LC	9200	30	180	13.5
151	20	MOLCOM8E EIAL. 1979	81	\cdots	LC	2000	534	1360	852.2
150	2M	PlCrsom 198)	6	N	LC	5800	<1]		
	-i1	SIMCEY [Jal. 1914	R1	"	1 C	430	140	260	190.8
160	1"	jptmat 9916	FF	n	IC	1500	26	31	36.4
101	1,1.2-tichlosocthamt	Amato Et AL. 1984	Im	*	Its	81600	6000	14800	9423.4
162	1.1.2.2-1EIEAEMLOROE imant	Amed © AC. 1984	PM	N	fls	20400	1400	4000	2366.4
163	1.2-81CMLOACEM2EME	(PA 1980C	fr	\cdots	tis		1600	2500	2000.0
164	1.2-0ichlogoc imant	demoll if Al. 1902	f\%	N	tis	118000	29000	59000	41364.2
165	1.2-DISMLOROPROPAME	Ecmolt it Al. 1982	FM	K	(ts	139000	6000	11000	8124.0
168		amece et Al. 1904	$1 / \mathrm{m}$	M	Ets	1010	245	412	311.7
161	1.2.4-TCICNLOROEEM2E	amele Et AL. 1984	FM	N	Ets	2760	499	1001	106.0
160	1.3-0ichlonotmzene	ammo el At. 1964.	fn	W	th	1190	2261	1000	1505.7
169	1.J-DICHL Dodpappame	Memolt if Ml. 1982	FM	M	ELS	131000	8000	16000	11313.1
110	1,3-DICXL OROPROPEME	EPA 19800	Fh	M	Ets		180	336	243.7
11	1.4-DICHIOROESMEEME	ANEOEI AL. 1984	FM	\cdots	tLs	4160	565	1040	166.6
	1.4-DIME Imoxreemzem	CALL It Al. Isas	f(\cdots	[ts	111600	16600	21400	21321.0
113	2.4-0ichlomopueme	moxcomat ti Al. 1982	in	$\boldsymbol{\alpha}$	Its		290	460	365.2
114	3.4-0ime Thyl pmemot	molcomer el ai. 1982	IM	M	C15		1970	3110	2475.2
115	3,4-DiCML OLOTOL UEME	call 11 Na. I 1985	FM	,	(15	2910	10	148	101.4
118	4-EROMOPHE WYLPHENYL ITMEA	EPa 1880 K	18	*	115		89	161	121.9
	4-HETHYL-2-PCNTANOME	Call cl Al. Ines	FM	-	[13	505000	57000	105000	11362.8

Class - Chemical class: CB - carbamate pesticide. CX - carbozylate heiblcide. HC - Mydrocardon, M- metal.
M - narcatic, oc organochloride, of - organophosphate pesticide. os - organosulfur. PA - Dolycyclic aromitic
pydrocarbon. and ir - pyrethyrote pesticiof.

APPENDIX B
Concentration-Response Data Sets from
Chronic Toxicity Experiments

1abi: 8.1 Concentration Kesponse Data Sel

085	ChEmical		SplCIES	Param	DOSE	miesico	RESPONSE	EGGS	WEIGHT	SOURCE	
55	${ }^{16}$		$R 1$	M0912	0.13	62	11			mebeker	EI AL 1983
56	${ }^{16}$		RT	MORTL	0.20	52	5			MEBEKER	[1 Al 1983
57	AG		RI	moriz	0.24	46	5			mebeker	Ef AL 1983
58	46		R1	MORI2	0.36	39	13			meberer	EJ. AL 1983
59	A6		RI	MOR 12	0.51	36	14			mebeker	Ef AL 1983
60	A6		RI	MOR 12	0.70	44	21			mebeker	EI AL 1983
61	A6		Q 1	MOR 12	1.06	61	39			mebextr	[1 AL 1983
62	${ }^{46}$		RI	morit	1.32	33	33			mebexer	E1 AL 1983
63	${ }^{\text {A }}$		81	MOR12	1.95	38	36			mebeker	Ei AL 1983
64	A6		RT	WE1GH1	0.03				31.76	nebextr	[1 AL 1983
65	${ }^{16}$		RT	WEIGHI	0.10				29.50	mebeker	[I AL 1983
66	${ }^{16}$		81	Welghi	0.13				29.40	mebekea	E1 AL 1983
67	16		Qt	WEIGHI	0.20 .				30.00	mibeker	11 Al 1983
68	${ }_{*}$		Q 21	WEIGHI	0.24				29.80	hf bexer	E1 AL 1983
59	${ }^{\text {AG }}$		RT	WEIGHI	0.36				28.60	MEBEKE?	[I AL 1983
10	${ }^{16}$		Q1	WEIGHI	$0.5 i$				28.90	meblekr	$E l l_{1}^{\text {Al }} 1983$
11	${ }^{\text {AG }}$		81	Welich	0.70				28.10	MLEEKER	E1 AL 1983
12	${ }_{\text {AG }}$		R1	WE!CH,	1.06				24.70	MLbexer.	11 AL 1983
13	${ }^{\text {A }}$ G		RT	We! 6 It	1.32					mebeacr	Et AL 1983
74	${ }^{1} 6$		RT	MEIGHT	1.93					miberea	E1 AL 1983
75	A6 TMIOSULFAIE	COMPL	fM	MATCH	0.00	120	13			leblanc	If AL 1984
76	a iniosulfale	COMPL	F\%	hatch	10.00	120	,			leblamc	\# AL :984
17	ag iniosulfale	COMPL	fM	maich	16.00	120	6			leglatic	E1 AL 1984
78	ag iniosulfale	COMPL	+ ${ }_{\text {M }}$	HAICH	35.00	120	10			LEBLAAC	E1 Ai 1984
19	ag imiosulfale	COMPL	F ${ }^{\text {H }}$	HAICH	64.00	120	12			leblame	E1 AL ! 984
80	ag thiosulfate	COMPL	f ${ }_{\text {H }}$	MATCH	140.00	120	102			leblanc	E1 Al 1984
81	ag iniosulfale	COMPL	${ }_{\text {F }}$	moal 12	0.00	80	5			leblanc	[1 Al 1989
82	as iniosulfale	COMPL	FM	moal2	10.00	80	5			LEBLANC	E1 Al 1984
83	as iniosulfale	COMPL	${ }_{\text {f }}$	monl2	16.00	80	5			leblanc.	(1)AL 1984
84	ag thicsulfate	COMPL	\%	mos 12	35.00	80	10			liblamic	Et Al 1984
85	ag iniesulfale	COMPL	${ }^{\text {F }}$	morl?	64.00	80	58			LEBLAMC	EI AL 1984
86	ag iniosulfale	COMPL	${ }_{\text {FM }}$	montz	140.00	80	80			LEBLAMC	Et AL 1984
87	AG iniosulfale	COMPl	${ }_{\text {FM }}$	WIGHI	0.00				0.10	lEalamc	E1 AL 1984
88	ag iniosulatil	COMPL	FM	micht	10.00				0.12	LEBLANC	EI AL 1984
89	ag iniosulfale	COMPL	FM	WIGH!	16.00				0.12	leblamc	E1 AL 1984
90	ag iniosutfale	COMPL	${ }_{\text {f }}$	WIGHt	35.00				0.08	LEBLAMC	It Al 1934.
91	ag thiosuliale	COMP:	${ }_{\text {F }}$ (Weight	64.00				0.04	leblamc	(1) AL 1984
92	ag iniosulfale	COMPL	${ }^{+N}$	Weicat	140.00					LfBLANC	El Al 1984
93	alachlog		fa	HAICH	0.00	200	58			CALL EI	al 1983
94	alachlor		f\%	HaICH	60.00	200	60			Call ${ }^{\text {el }}$	al 1,83
95	alachloa		+ ${ }^{\text {H }}$	HAICH	140.00	200	68			CALL E!	AL 1783
96	ALACHLOR		FM	HAICH	260.00	200	51			CALL Et	AL 1983
91	alachlor		FM	HAICH	520.00	200	48			CAll I!	AL 1983
98	alachlor		FH	Malch	1100.00	200	53			call il	AL 1983
99	alachlor		FM	morl?	0.00	60	11		.	CALL LI	AL 1983
100	alachloa		f\%	Mos 12	60.00	60	7			CALL EI	AL 1983
101	alachlor		+	mor 12	140.03	60	4			Call il	AL 1983
102	alachlor		FM	MOR 12	260.00	60	4			CAlt El	AL 1983
103	Alachios		FM	MORI2	520.00	60	1			call fi	AL 1983
104	alachlos		FM	morlt	1100.00	60	10			CALL © 1	AL 1983
105	Alachlor		IM	Welgh	0.00				0.48	CALL 11	AL 1983
166	Alachlon		FA	meight	60.00				0.43	CAll $\mathrm{El}^{\text {d }}$	AL 1983
107	alachlom		1 m	WeIGM	140.00				0.42	CALL II	AL 1983
100	alachlon		f\%	MEIGMT	260.00				0.40	CALL II	AL 1983

Table B.1 (Continued)

Table B.I (Continued)

OBS CHEMICAL SPECIES Param DOSE NTESIED RESponse egGS WEIGHT SOURCE

Table B.I (Continued)

Table 8.1 (Continued)

Table B.I (Continued)

Table B.I. (Continued)

Table B.1. (Continued)

Table 8.1. (Cont inued)

cas Chemical	SPECIES	Param	- OOSE	ntesteo	Respowis	[GGS	WEIGHI	SOURCE		
103 CU	81 :	66G5	1.40			328		MCKIM	AMO	Benalt 1971
104 CU	В1	E665	3.40			364		MCEIM	AND	8ENOII 19\%1
105 CL	81	E66S	5.70			296		mexim	and	benoti 1971
106 Cu	81	egas	9.50			209		MCKIM	Amb	bendit 197
101 CU	81	[665	17.40			315		mCKIn	A.MO	Benolt 1971
108 CU	BI	6665	32.50			158		MCXIM	AMD	benolt 1971
109 tu	BT	hatch	1.90	200	38			mexim	Ano	BENOIT 1971
110 CU	81	Harch.	3.40	200	2			nckim	amd	bemoit 1971
111 CU	81	HATCH	5.10	200	30			mCKIM	AND	genolt 1911
712 Cu	81	HATCH	9.50	200	4			MCXIM	ano	BENOIT 1971
713 ©	BT	HATCH	17.40	200	10			ncxim	AND	Benolt 1911
114 Cu	B1	hatch	32.50	200	148			nckim	ano	benoit ient
115 CU	81	WORII	1.90	14	1			mexim	ANO	aEnoly 1971
116 CU	81	MORII	5.70	14	1			MCKIM.	AMO	Benoit 1971
111 CU	Bi	MORII.	9.50	28	4			MCXIM	Ano	Benolt 1971
118 CU	81	MORTI	17.40	14	3			MCxIM	and	8EMOIT 1971
119 CU	81	MORIT	32.50	14	B			mexim	ANO	8EnOIT 1971
120 CU	Qt	MORI2	1.90	50	4			MCKIM	amo	eemolt 1971
	81	MOR 12	3.40	50	4			mCKIM	AND	日enolt 1971
122 CU	81	MOR 12	5.70	50	10			HCKIM	AND	Bemolt 1971
123 CU	81	MOR12	9.50	50	11			HCXIM	AND	BEMOIT 1971
124 CU	81	mori2	17.40	50	50			mexim	ANC	BEmOIT 1971
125 CL	BT	*ORI2	32.50	50	50			mexim	AMD	benolt 1971
126 CU	FM	E66S	4.40			504		mount	AMO	Stephan 1969
127 CU	FM	EGGS	5.00			148		HOUNT	AND	STEPHAN 1969
128 CU	FM	EG6S	1.10			186		Houmt	ANC	SIEPHAK 1969
729 CU	${ }_{\text {f }}$	EGGS	10.60			766		mount	ANO	STEPHAN 1969
730 CU	${ }_{\text {f }}$	EG6S	18.40			0		mount	and	STEPHAM 1969
731 CU	FM	HATCM	4.40	250	80			HOUMT		STEPHAN 1969
332 CU	FM	HAICH	5.00	500	175			maunt	AND	STEPHAN 1969
133 CU	${ }_{\text {F }}$	HAICH	7.10	400	212			mount	AMD	STEPHAN 1969
734 CU	FM	HATCH	10.60	650	195			mount	AMO	STEPHAN 1969
	FM	MORII	4.40	40	8			MOUNT	AND	STEPHAN 1969
$136 \mathrm{cu}$	${ }_{\text {fr }}$	MORII	5.00	40	2			mount	AMD	STEPHAM 1969
$737 \text { CU }$	FM	MORTI	7.70	40	2			mosut	AMO	STEPHAN 1969
138 Cu	FM	MORTI	10.60	40	6			mount	AMD	StEphan 1969
1:9 Cu	FM	MnRtI	18.40	40	20			mount	ANO	STEPHAN 1969
140 CU	FM	moxil	4.40	50	27			mount	AnO	Stephan 1969
141 CU	FA	mort?	5.00	50	3			MOUnT	AMO	STEP4AM 1969
742 CU	FM	morli	7:70	50	23			MOUNT	AMO 5	STEPHAN 1969
743 CU	${ }_{5} \mathrm{~F}$	MOR12	10.60	50	28			mount	ANO 5	STEPHAN 1969
744 CU	FM	¢665	4.40			524		MOUWT 1	1968	
745 CII	${ }^{\text {F }}$	EGGS	5.30			397		MOUnI	1968	
746 CU	fn	EGGS	6.30			481		MOUNT	1968	-
747 CU	FM	E66S	15.00			201		MOUNT	1968	:
748 CU	${ }^{\text {F }}$ N	¢665	14.00		-	528		MOUNT	1968	
749 CU	FM	E66S	32.00			0		mount	1968	
750 Cu	FM	EG6S	34.00			0		MOUM1 1	1968	
751 CU	FM	f.66S	95.00			0		mount 1	1968	
752 CL	FM	hatch	4.40	200	15			mount 1	1968	
753 cu	$f(1)$	Hatch	5.30	200	35			mount 1	1968	
754 CU	FM	HAICH	6.30	200	11			MOUN1	1968	
755 CU	FM	HATCH	14.00	200	11	.		mouni 1	1968	
756 Cu	FM	HAICH	15.00	200	12			mount	1968	

lable B.l. (Continued)

OBS	chemical		param	Dose	mtested	Respowse	EG6S	WEIGHI	SOURCE		
919	diuron	${ }^{\text {F }}$	weighi.	14.50				0.62	call et al	1983	
920	CIJROM	fn	WEIGHT	33.40				0.56	call el al	1983	
$\bigcirc 21$	a iuron	FM	weight	79.00				0.50	Call el al	1983	
322	didac	f/	WEIGHT	0.00				0.09	lewis and	WEE 1983	
923	giluac	${ }^{\text {FH }}$	wetcir	6.00				0.08	cewis and	WEE 1983	
924	dromac	FM	weight	13.00				0.08	Lewis ano We	WEE 1983	
925	diomac	FA	weiomi	24.00				0.07	lewls ano	WEE 1983	
920	diomac	FM	Weight	53.00				0.08	lewis ano w	WEE 1983	
921	dromet	${ }^{\text {FH}}$	Weight	90.00				0.03	lewls and w	WEE 1983	
928	emmsulfam	FM	hatch	0.00	1900	323			carlson et	AL 1982	
929	eroosiblan	FM	hatch	0.04	200	28			cartsom Ei	Al 1982	
930	emerisulfah	${ }^{\text {F/ }}$	hatch	0.06	1850	231			cartson. et	al 1982	
931	endosulfan	fm	hatch	0.10	1150	161			cablsom et	AL 1982	
932	emjosulfan	${ }^{\text {fr }}$	hatch	0.20	1850	425			cartson et	Al 1982	
933	emousulfan	f/	hatch	0.40	150	148			carlsom et	AL 1982	
934	emposulfan	fm	MORTI	0.00	30	8			cartsom et	Al 1982	
935	endosulfan	F\%	morti	0.04	30	18			carlson et	AL 1982	
936	emoosut fan	- F	MORII	0.06	30				carlsom et	AL 1982	
931	emodsulfam	${ }_{\text {fm }}$	morti	0.10	30				carlson et	AL 1982	
938	emososula	${ }_{\text {FM }}$	meril	0.20	30	13			Cartson et	AL 1982.	
939	emoosij fan	${ }_{\text {ch }}$	morit	0.40	15	15			carlsom et	AL 1982	
940	endosulfan	fm	MOR 12	0.00	360	11			Carlsoun eT	Al 1982	
941	emoosulfan	FH	MORT2	0.04	80	21			cartson et	AL 1982	
942	emoosulfan	fm	morri2	0136	320	83			cartsom et	at 1982	
943	enoosulfan	FH	M0912	0.10	320	73			cartsom et	al 1982	
944	emoosulfan	FH	Mort?	0.20	280	70			carlsom et	AL 1982	
945	Emorim	Ff	mort2	0.00	S0	,			carlsom et	AL $1982{ }^{\circ}$	
946	Emorim	FF	MORT2	0.04	90	- 3			carlsom et	AL 1992	
947	Emorin	FF	MORT2	0.07	90	- 4			carlsow et	AL 1982	
948	EnORIM	ff	mort2	0.15	90	- 2			carlsom el	AL 1982	
949	emopin	ff	MORT2	0.30	90	12			cartsom et	AL 1982	
950	Emorim	FF	MOR12	0.60	90	90			CARISOW ET	AL 1982	
951	femilrothion	FM	mont2	0.00	60	15			kleimer et	Al 1984	
952	femitrothiom	${ }_{\text {F }}$	MURI2	20.00	60	10			ktesmer et	AL 1984:	
953	FEMITROTHIOM	${ }_{\text {f }}$	MORT2	60.00	60	11			xLeimer et	AL 1984	
954	femitrothion	${ }_{\text {f }}$	MORI2	130.00	60	14			xLeimer et	AL 1984	
955	FEmitrothiom	FH	MORT2	300.00	60	24			kLEIMER ET	161984	
956	femitrcthiom	${ }^{\text {FM }}$	mort?	140.00	60	43			PESm¢ ¢ ¢	AL 1984	
957	FEMIIROTHIOM.	${ }_{\text {FH }}$	WELGHT	0.00				0.14	KLE:MER ¢T	AL 1984	
958	femitrothlon	FM	WELGHT	20.00				0.14	xleimer et	AL 1984	
959	fentipothiom	f\%	weight	60.00				0.15	kteimer et	AL 1984	
960	femitrothion	F\%	Weight	130.00				0.14	kleimer et	Ai 1984	
967	fenitrothion	FM	WEIGHT	300.00				0.10	xleimer et	al 1984	
962	fenitrothion	FM	weight	140.00				0.06	kleiner et	AL 1984	
963	fomof os	FM	hatch	0.00	100	6			pickering a	ano gilin	1982
964	fowofos	${ }_{\text {f }} \mathrm{M}$	hatch	4.90	100	- 5			picxering a	ano gilian	1982
965	fomof OS	FM	haich	9.20	100	. 3			pickerimg a	and gilin	1982
966	Fowof os	${ }_{\text {FM }}$	haich	16.00	100	4			pickering a	ano gilian	1982
967	comofos	$\mathrm{F}^{\text {n }}$	haich	33.00	100	1			pickering a	and gilia	1982
968	fomor os	${ }_{5} \mathrm{FM}$	Hatch	66.00	100	5			pickerimg a	and gilian	- 1982
969	foworos	FM	MORT2	0.00	60	5			pickering a	and gilla	1982
976	fowofos	FM	mori?	4.90	60	. 5			pickering a	and silian	1982
971	FOMOFOS	FM	MORT2	9.20	60	. 4			pickerimg a	amo gilia	1982
912	f(wofos	FM	mort2	16.00	60	- 5			pickering a	and glliam	1982

085	CHEMICAL	SPECIES	Patam	DOSt	NTESIEO	RESPONSE	EGGS	WEIGHT	SOLRCE		
973	FONOFOS	FM	morti	33.00	60	20		-	PICKERING	and glliam	1982
974	FOMOFOS	FM	MORI2	66.00	60	40			pickering	and giliam	1982
975	FOMOFOS	fm	WEIGHT	0.00				0.11	PICKERING	and giliam	1982
976	fovofos	FM	WEIGHT	4.90				0.20	Pickering	and giliam	1982
971	FOMOFOS	FM	Weight	9.20				0.18	Pickering	and glliam	1982
978	fomofos	FM	Weight	16.00				0.15	pickering	amd giliam	1982
979	FONOFOS	FM	WEIGHI	33.00				0.12	PICKERING	ANO GILIAM	1982
980	fowofos	FM	WEIGHT	66.00				0.04	Pickering	and glliam	1982
981	GUTHISN	FM	EGGS	0.04	15		1691		adelman et	T AL 1976	
982	GUTHIOM	FM	EGGS	0.10			1220		adelman et	I AL 1976	
983	GUTHIOM	FM	cGes	0.16			1611		adelman et	AL 1976	
984	guthion	FM	EGGS	0.24			1239		adelman et	AL 1976	
985	guthion	fin	EGGS	0.33			1718		adelman et	A AL 1976	
986	GUTHION	FM	EGGS	0.51			256		adelman et	I AL 1976	
981	GUTHION	FM	egGs	0.72			782		ADELMAN ET	AL 1376	
988	heptachlor	FM	EGGS	0.00			772		macex et a	AL 1976A	
989	heptachlor	FM	EGGS	c. 11			385		macex et a	AL 1975s.	
990	heptachlor	FM	EG6S	0.20			697		macek et a	Al 19761	
991	heptachlur	FM	EGGS	0.43			733		macek et a	Al 1976a	
932	heprachlor	f m	E665	0.86			1558		macer et a	al 1976a	
993	HEPTACHLOR	FA	egas	1.84			0		macek ei a	Al 1976a	
994	HEPTACHLOR	FM	HATCH	0.11	650	91			MACEK ET A	Al 1976A	
995	HEPTACHLOR	FM	HATCH	0.20	900	112			Macex ET A	AL 1976a	
996	HEPTACHLOR	FM.	HATCH	0.43	1550	276			macex et a	AL 1976a	
997	HEPTACHLOR	FM	HATCH	0.86	2350	245			Macek et a	AL 1976A	
998	HEPTACHLOR	FM	MORTI	0.00	30	6			macex et a	Al 1976A	
999	HEPTACHLOR	FM	mortl	0.11	30	13			MACES ET A	AL 1976a	
1000	HEPTACHLOR	FM	MORTI	0.20	30	6			MACEX ET A	AL 1976A	
1001	HEPTAEHLOR	FM	WCRT	0.43	30	9			macek et a	AL 1916a	
1002	HEPTACHLOR	FM	MORTI	0.86	30	13			macek et a	AL 1976A	
1003	HEPTACHLOR	$f(1$	MORII	1.84	30	30			Macex et a	AL 1976A	
1004	HEPTACHLOR	FM	MORT2	0.00	320	107			macek et a	Al 1976a	
1005	HEPTACHLOR	FM	mort?	0.11	320	71			MACEK ET A	AL 1976a	
1006	MEPTACHLOR	$\mathrm{FM}^{\text {H }}$	MORT2	0.20	320	198			macex ei a	AL 1976A	
1007	HEPTIACHLOR	FM	MORT2	0.43	320	54			MACEK ET A	Al 1976a	
1008	Heplachlop.	FH	morl2	0.86	320	114			macek et a	Al 1976a	
1009	hexachiukobutadiene.	Fm	HATCH	0.08	120	25			BEMOIT ET	AL 1982	
1010	HEXACHL ORDBUIADIEME	FM	HAICH	1.70	120	40	.		BEMOIT ET	AL 1982	
1011	hexachl orobuinalene	FH	HAICH	3.20	120	39			BENOIT ET	AL 1982	
1012	HEXACHL OROBUTADIEME	FM	HATCH	6.50	120	43			bemoit et	AL 1983	
1013	hexachlorobutaolene	FM	HATCH	13.00	120	42			BENOIT ET	AL 1982	
1014	hexachl	FH	HaICH	27.00	120	34			BENOITET	AL 1982	
1015	HEXACHLOROBUTAOIEME	FH	MORI2	0.08	60	0			benoit es	AL 1982	
1016	hexachloroautadiene	FH	MORI2	1.70	60	1			bemoit et	AL 1982	
1017	hexachl jrobutadiene	FH	MOR12	3.20	60	2			BENOIT ET	AL 1982	
1018	HEXACHLOROBUTADIENE	FH	MOR12	6.50	60	9			Benoit er al	AL 1982	
1019	HEXACHLOROBUTADIENE	FM	MORT2	13.00	60	28			BENOIT ET	AL 1982	
1020	hexachlorobutadieme	FM	MORT2	27.00	60	21			benoit et	AL 1982	
1021	HEXACHLOROBUTADIENE	FM	WEIGHT	0.08				0.13	BEMOIT ET	AL 1982	
1022	hexachlorobutadiene	FM	WEIGHT	1.70				0.13	BEMOIT ET	AL 1982	
1023	hexachlorobutadieme	FH	WEIGHT	3.20				0.13	bemoit et	AL 1982	
1024	hexachl orobutadiene	FM	WEIGHT	6.50				0.13	BENOIT ET	AL 1982	
1025	HEXACHLOROBUTADIENE	FM	WEIGHT	13.00				0.10	benolt et	AL 1982	
1026	hexachlorobutadieme	FM	WEIGHT	21.00				03	BENOIT ET	AL 1982	

1027	HEXACHLORJCYTLOHEXAM	86	NITCH	0.60	600	60		macek	Et A	AL 19768
1028	HEXACHLOROCICLOHEXAN	8G	HATCH	1.10	200	24		MACEK	E] A	AL 19768
1029	HEXACHL OROCYCLOHEXAH	86	HAICH	2.30	2200	770		MACEK	E1 A	AL 19768
1 C 30	HEXACHLOROC YCLOHEXAN	8G	HATCH	4.40	400	120		MACEK	EI A	AL 19769
1031	HEXACHLOROC YCLOHEXAM	8 C	MORII	0.00	20	3		MACEX	E1 A	AL 19768
1032	UEXACHLOROCYCLOHEXAM	BG	MORTI	0.60	20	1		MACEK	EI A	AL 1976B
1033	KEXACHLOKOCYCLOHEEAN	86	MORY	1.10	20	3		MACEX	E1 A	AL 19768
1034	HEXACHLORCCYCLOHEXAM	B6	MORTI	2.30	20	5		MACEK	ET A	AL 19768
1035	MEXACHL OROCYCLOHEXAN	86	MORII	4.40	20	4		macek	ET A	A 19768
1036	MEXACHLOROCYCLOHEXAM	86	MGRII	9.10	20	3		MACEK	ET A	AL 19768
1031	HEXACHLOROCYCL OHEXA.Y	86	HORT2	0.60	30	30	-	MACEK	EI A	AL 19768
1038	HEXACHL OROC YCL OHEXAN	86	MORI2	1.10	30	26		MACEK	ET A	Al 19768°
1039	HEXACHLOROCYCLOHEXAK	86	MOR 12	2.30	120	49		MACEK	Ei A	AL. 19768
1040.	HEXACHLOROCYCLOHEXAN	8 G	MOR 12	4.40	30	26		macek	Et A	AL 19768
1041	MEXACHLOROCYCLOHEXAM	81	HATCH	0.00	100	75		MACEK	ET A	AL 19768
1042	HEXACHLOROCYCLOHEXAN	8 T	HATCH	1.10	50	7		MACEK	ET A	AL 19768.
1043	HEXACHLOROCYCLOHEXAN	81	HATCH	2.10	200	6		MACEK	ET A	AL 19768
1044	HE XACHL JROCYCL OHEXAN	BI	HATCH	$4.10{ }^{\circ}$	150	33		MACEK	ET A	AL 19768
1045	HEXACHLOROCYCL OHEXAM	81	HATCH	8.80	50	' 2		MACEK	ET A	AL 19768
1046	HEXACHL OROCYCLOHEXAH	81.	HATEH	16.60	50	36		MACEK	ET A	AL 19768
1047	HEXACHLOROCYCLOHEXAM	BT	MORT2	0.00	50	23		MACEK	ET A	AL 19768
1048	HEXACHLOROC YCL OHEXAN.	81	MOR 12	1.10	50	49		MACEK	ET A	AL 19768
1049	HEXACHLOROCYCLOHEXAH	BT	MORT2	2.10	50	25		MACEX	ET A	AL 19768
1050	HEXACHL OROCYCLCHEXAN	81	MORI2	4.10	50	34		macei	ET A	AL 19768
1051	HEXACHLOROCYCLOHEXAM	81	MORT2	8.80	50	39		MACEK	ET A	AL. 19768
1052	HEXACHLOROC YCLOHEXAN	81	MORI2	16.60	25	23.		MACEK	ET A	AL 19768
1053	HEXACHLOROCICLOHEXAM	FM	HATCH	0.00	200	26		MACEK	ET A	AL 19768
1054	HEXACHLOROCYCLOHEXAM	FM	HATCH	1.40	900	81		MACEX	ET A	AL 19768
1055	HEXACHLOROCYCLOHEXAN	F\%	HATCH	2.40	1600	192		MACEK	ET A	AL 19768
1056	HEXACHLOROC. YCLOHEXAM	FH	HATCH	5.60	1600	176		MACEK	ET A	AL 19768
1057	HEXACHLOROCYCLOHEXAN	FM	HATCH	9.10	1550	186		MACEK	ET A	AL 19768
1058	HEXACHLOROCYCLOMEXAM	FM	HATCH	23.40	1350	189		MaCEK	ET A	AL 19768
1059	HEXACHL OROCYCLOHEXAM	FM	MORII.	0.00	15	.1	-	MACEK	ET A	AL 19768
1060	HEXACHLOROCYCLOHEXAM	FM	MORTI	1.40	15	0		macek	ET A	AL 19768.
1061	HEXACHLOROCYCLOHEXAN	FM	MOR!	2.40	15	0		MACEK	ET A	AL 19768
1062	HEXACHL OROCYCLOHEXAN	FM	- MORII	5.60	15	1		MACEK	ET A	AL 19768.
1063	HEXACHLOROC YCLOHEXAM	FM	MOR I 1	9.10	15	1		MACEK	ET A	AL 19768
1064	HEXACHL OROCYCL OHEXAN	FM	HORII	23.50	15	4		MACEK	ET A	AL 19768
1065	HEXACHL DROCYCLOHEXAN	FM	MORI2	0.00	40	10		MACEK	ET A	AL 1976
1066	HEXACHLOROCYCLOHEXAN	FM	\%0RT2	1.40	160	26		MACEK	ET A	AL 19768
1067	HEXACHL OROCYCLOHEXAN	FM	MORI2	2.40	160	48		macek	ET A	AL 19768
1068	HEXACML OROCYCLOHEXAM	FR	MORI2	5.60	160	53		MACEK	EI A	AL 19768
1069	HEXACHL OROCYCLOHEXAN	FM	MOR12	9.10	30	24		MACEK	ET A	AL 19768
1070	HEXACHLOROCYCLOHEXAN	FM	MOR 12	23.40	80	14	:	MACEK	ET A	AL 19768
1071	HEXACHL OROE THANE	FM	MORT2	0.90	120	: 5		AHMED	ET A	AL 1984
1072	HEXACHLOROE IHANE	F/ ${ }_{\text {m }}$	MORT2	28.00	120	33		AHMED	EI A	AL 1984
1073	HEXACHL OROE IHANE	FM	MORI2	69.00	120	30		AHMED	ET A	AL 1984
1074	HEXACHL OROE THAME	FM	MOR 12	207.00	120	21		AHMED	ET A	AL 1984
1075	HE FACHLOROE I HAME	FM	MOR 12	608.00	120	12		AHME ${ }^{\text {O }}$	II A	AL 1984
1076	HEXACHLOROE THANE	FM	MOR 12	1604.00	120.	120		AHMED	E 1	AL 1984
1077	HEXACHL OROE IHANE	FM	WEIGHT	0.90			0.17	AHMED	ET A	AL 1984
1078	HEXACHL OROE THAME	fM	WE IGHT	28.00			0.19	AHMED	EI A	AL 1984
1079	HEXACHLOROE THAME	¢ M $^{\text {H }}$	WEIGH!	69.00			0.16	AHME ${ }^{\text {A }}$	Et A	AL 1984
1080	HEXACHLOROE THAME	fM	WEIGHI	207.00			0.12	AHMED	E1 A	AL 1984

Table 8.1. (Continued)

OBS	CHEMICAL	SPECIES PARAM		DOSE NIESTED		RESPONSE	EGGS	WE IGHT	SOURCE		
1081	hexachloroe thane	FM	WEIGHT	608.00				0.04	AHMEO ET	T AL 1984	
1082	HEXACHLOROE THANE	FM	WEIGHT	1604.00				0.00	AHMEO ET	J AL 1984	
1083	HG	FH	HATCH	0.01	200	71			CALL ET	AL 19838	
1084	HG	FM	HATCH	0.23	200	61			CALL ET	AL 19838	
1085	HG	FM	HATCH	0.48	200	66			CALL ET	AL 19838	
1086	HiG	FM	HATCH	1.85	200	88			CALL ET	AL 19838	
1081	HG	FM	HATCH	0.87	200	54			CALL ET	AL 1983B	
1088	HG	FM	HATCH	0.67	200	200			CALL ET	AL 13838	
1089	HG	FM	MORI2	0.01	60	0			CALL ET	AL 19838	
1090	HG	F*	MOR 12	0.23	60	0			CALL ET	AL 19838	
1091	HG	; M	MORT2	0.48	60	0			CALL ET	AL 19838	
1092	HG	FM	MURT2	0.87	60	0			CALL ET	AL 1983B	
1093	HG	FM	MORT2	1.85	60	26		- -	CALL ET	AL 19838	
1094	HG	FM	MORT2	3.70	60	53			CALL ET	AL 1983B	
1095	HG	FM	WEIGHT	0.01				0.21	CALL ET	AL 1983B	
:096	HG	F.M	WEIGHI	0.23				0.19	CALL ET	AL 19838	
1097	HG	FM	WEIGHT	0.48				0.19	CALL ET	AL 19838	
1098	H6	FM	WEIGHT	0.87					CALL EI	AL 1983B	
1099	HG	FM	WEIGHT	1.85					CALL ET	AL 19838	
1100	H6	FM	WEIGHT	3.70				0.01	CALL ET	AL 19838	
1101	HG	FM	EGGS	$=0.00$			1204		SNARSKI	ANO OLSON	1982
1102	HG	FM	EGGS	0.26			557		SNARSKI	AND OLSON	1982
1103	H6	FM	E6G5	0.50			646		SMARSKI	AHO OLSON.	1982
1104	46	FM	[GG5	1.02			0		SMARSKI	AND OLSOM	1982
1105	HG	FM	E66S	2.01			0		SHARSKI	ANO OLSON	1982
1106	HG	FM	EGGS	3.59			0		SHARSK1	AND OLSON	1982
1107	HG	FM	WEIGHT	0.00				0.26	SNARSKI	AND OLSON	1982
1108	H6	FM	WEIGHT	0.26	.			0.19	SMARSKI	AND OLSON	1982
1109	HG	FM	WEIGHT	0.50				0.23	SNARSKI	AND OLSON	1982
1110	HG	FM	WEIGHT	1.02				0.19	SHARSKI	AND OLSON	1982
1111	H6	FH	WEIGHI	2.01				0.15	SHARSKI	AND OLSON	1982
1112	H6	FM.	WEIGHT	3.69				0.09	SMARSKI	AND OLSON	1982
1113	ISOPHOROME	FH	MORTS	0.00	31	4			CAIRNS A	AND NEBEKER	1982
1114	ISOPHORONE	FH	MORTS	11.00	33	5			CAIRNS A	ANO MEBEKER	1982
1115	I SOPHORONE	FM	MORT5	19.00	37	5			CAIRNS A	AND NEBEKER	1982
1116	ISOPHORONE	FM	MORTS	30.00	33	6			CAIRNS	ANO NE8EKER	1982
1117	I SOPHORONE	FM	MORTS	56.00	32	0			CAIRNS A	ANO MEBEXER	1982
1118	I ISOPHORONE	FM	MORTS	112.00	32	29			CAIRNS A	AND MEBEKER	1982
1119	I SOPHORONE	FM	WE ! GHT	0.00				0.03	CAIRNS A	ANO MEBEKER	1982
1120	I SOPHORONE	FM	WEIGHT	11000.00				0.02	DAIRNS A	AHD NEBEKER	1982
1121	1SOPHJRONE	FH	WEIGHT	19000.00				0.02	CAIRNS A	ANO MEBEKER	1982
- 1122	ISOPHORONE	FM	WEIGHT	30000.00				0.01	CAIRNS A	AND NEBEKER	1982
1123	ISOPHORONE	FM	WEIGHT	56000.00				0.91	CAIRNS A	ANO NEBEKER	1982
1124	ISOPHORONE.	FM	WEIGHI	0.00				0.17	LEMKE ET	I AL 1983	
1125	ISOPMORONE	FH	WEIGHT	2160.00				0.18	LEMKE ET	T AL 1983	
1126	ISOPHORONE	FH	WEIGHT	4165.00				C. 17	LEMKE ET	T A! 1983	
1127	15OPHORONE	FH	WEIGHT	8535.00				0.16	1.EMKE ET	T AL 1993	
1128	ISOPLIORONE	FH	WEIGHT	15610.00				0.15	L. EMKE ET	T AL 1983	
1129	ISOPHOROME	FM	WEIGHT	25145.00				014	i, MKK ET	T AL 1983	
1130	KELTHANE	FM	MORI2	0.00	30	0			SPEHAR E	ET AL 1982	
1131	KELTHANE	FH	MORT2	8.90	30	6			SPEMAR E	CI AL 1982	
1132	KELTHANE	FM	MORT2	19.00	30	6			SPEHAR E	ET AL 1982	
1133	KELTHANE	FM	MORT2	39.00	30	16			SPEHAR E	ET AL 1982	
1134	KELTHANE	FM	MORT 2	73.00	30	30			SPEHAR E	Et AL 1982	

Table B.I. (Continued)

Table B.I (Continued)

Table 8.1. (Cont inued)

Table 8.1. (Continued)

OBS ChEmICAL	SPEC	PARAM	DOSE	MTESTED	RESPOMSE	cG6S	WEIGH1	SOURCE
1291 M1	fM	EGGS	180.00			1320		PICKERING 1914
1298 M	FM	¢GGS	380.00			1398		PICXERING 1974
1299 WI	FM	EGES	130.00			498		pickerimg 1974
1300 W!	FM	EG6S	1600.00			36		PICKERING 1974
$\cdot 1301$ W1	FM	hatich	0.00	1000	12			PICKERING 1974
- 1302 w1	F\%	HATCM	82.00	1100	45			PICXERING 1974
1303 M1	FM	HATCH	180.00	1200	50			PICXENIHG 1874
1304 MI	FM	HATCH	380.60	1300	75			PICKERING 1914
. 1305 Ml	FM	HATCH	730.00	2300	1325			Pickeaing 1974
1306 Mt	f/	MORI2	0.00	50	7			PICKERIMG 1974
1307 Ml	FM	MORT2	82.00	50	4			PICKERING 1874
1308 WI	FM	MORT2	180.00	50	3			PICKERIMG 1974
1309 ml	FM	MOR12	380.00	50	4			PICXERING 1974
1310 MI	FM	MORTI	730.00	50	3			PICKERING 1974
1311 P8	81	EGGS	0.85			478		HOLCOMBE ET AL 1876
1312 P8	BT	EGGS	33.40			491		HOLCOMBE ETAL 1976
1313 P8	81	E665	57.60			233		HOLCOKAE ET AL 1976
1314 98	85	E6GS	119.20			480		holcombe et al 1976
1315 P8	81	E665	235.20			555		HOLCOMBE ET AL 1976
1316 P8	BT	E66S	475.40			183		HOLCOMEE ET AL 1976
1317 P88	87	HATCH	0.90	124	13			holcombe et al 1976
1318 P8	87	MATCH	34.00	110	140			HOLCOMBE ET AL 1976
1319 P8	85	MATCH	58.00	250	52			HOLCOMAE ET AL 1976
1329 P8	$8{ }^{8 T}$	HATCH	119.00	687	99			HOLCOMBE ET AL 1976
122198	85	HATCH	235.00	192	264			holcombe et Al 1976
1322 Pa	8 T	MATCH	474.00	202	189			HOLCOMAE ET AL 1976
1323 P8	87	morts	0.85	10	3			HOLCOMBE ET AL 1978
1324 P9	87	MORTI	33.45	10	0			HOLCOMBE ET AL 1976
1325 988	87.	morti	57.90	5	0			HOLCOMBE ET AL 1976
112688	87	MORTI	119.20	10	3			holcombe et Al 1976
1327 P8	81	moril	235.00	10	2			holcombe et Al 1976
$1328 \mathrm{P8}$	87	motil	472.60	10	2			holcombe et al 1976
1329 P8	81	moit	0.90	200	31			HOLCOMBE ET AL 1976
1330 P8	81	MORT2	34.00	200	23			HOLCSABE ET AL 1976
133198	85	morit	58.00	150	9			Holcombe Ef Al 1976
$1332 \mathrm{P8}$	8T	MORT2	119.00	150	3			HOLCOMBE ET AL 1976
ij33 p8	87	MORT2	235.00	100	6			HOLCOMBE ET AL 1976
. 1334 P8	BT	mortz	474.00	50	40			HOLCOMEE ET AL 1976
1335 P8	86	WEIEHT	0.00				0.38	Sautea et al 1976
1336 : P8	86	WEIEHT	12.00				0.42	sauter et al 1976
1333 \%9	86	WEIGAT	33.00				0.41	SAuter ej al 1976
1338 P8	86	WEIGHT	70.00				0.49	Sauter et al 1976
1339 P8	86	WEIGHT	120.00				0.25	SAUTER ET AL 1976
1340.88	86	WEIGHT	217.00				0.00	SAuter et al 1976
1341 P8	86	WEIGHT	447.04				0.00	sauter et al 1976
$1342 . \mathrm{PB}$	${ }_{6} \mathrm{C}$	WEIGHT	7.00				0.24	SAuter et al 1976
1343 P8	${ }^{\text {ct }}$	WEIGHT	17.00				0.23	SAUTER ET Al 1976
1344 PB	${ }^{\text {ch }}$	WEIGHT	33.00				0.24	Sauter et Al 1976
- 1345 PB	${ }^{\text {ct }}$	WEIGHT	- 73.00				0.23	Sauter et al 1976
1346 PB	${ }_{\text {cc }}^{\text {cc }}$	WEICHT	136.00				0.15	SAuter et al 1976
1347 P8	${ }_{\text {cc }}$	MEIGHT	280.00				0.00	Sauter et al 1976
1348 PB	cc	WEIGHT	460.00				0.00	SAuter et al 1976
1349 PB	11	weleht	0.00				0.18	Sauter et al 1976
1350 P8	LI	WEIGHT	48.00				0.19	SAuter et al 1976

OBS	CHEMICAL	SPECIES	param	dose	hIESTEO	RESPONSE	EGGS	WEIGHT	SOURCE	
					.					
1352	P8 P8	11	WEIGHT	83.00 120.00		\%		0.16 0.15	sauter	ET AL 1976
1353	$P 8$	LT	WEIGHT	198.00		9		0.13	sauter	ET AL 1976
1354	P8	LT	WEIGHT	404.00		9		0.00	Sauter	ET AL 1976
1355	P日	LT	WE16HT	483.10		\%		0.00	sauter	Et AL 1976
1356	P8	RT	haich	0.00	400	\% 62			Sauter	Et Al 1976
1357	$P B$	RT	hatch	49.00	400	126			Sauter	Et AL 1976
1358	PB	RT	HATCH	11.00	400	46			Sauter	Et Al 1976
1359	P8	RT	HATCH	146.00	400	34			sauter	ET AL 1976
1360	P8	R1	Hatce	250.00	400	50			sauter	ET AL 1976
1351	$P B$	RT	HATCH	443.00	400	34			sauter	Et al 1976
1362	PB	RT	HATCH	672.00	400	286			SAUTER	ET. AL 1976
1363	P8	81	MORT2	0.00	200	20			SAUTER	ET AL 1976
1364	PB	RT	MOR12	49.00	200	24			SAuter	et al 1976
1365	PS	RT	MORT2	71.00	200	24			SAUTER	ET AL 1976
1368	P8	R 1	MORT2	146.00	200	109			sauter	ET AL 1976
1367	Pa	RT	MORT2	250.00	200	199			SAUTER	ET AL 1976
1368	P8	RT	MORT2	443.00	200	200			SAUTER	ET AL 1976
1369	P8	QT	MORT2	671.00	200	200			Sauter	ET AL 1976
1370	P8	RT	WEIGHT	0.00				0.71	Sauter	ET AL 1976
1311	i8	RT	WEIGHT	49.00				0.67	SAuter	ET AL 1976
1372	P8	RT	WEIGHT	11.00				0.73	SAuter	Et Al 1976
1373	${ }^{98}$	${ }^{27}$	WEIGHT	146.00				0.70	sauter	ET AL 1976
1374	P8	RT	WEIGHT	250.00				0.70	sauter	ET AL 1976
1375	P8	RT	Weigat	443.00				0.00	sauter	ET AL 1976
1376	P8	RT	WEITHT	672.00				0.00	Sauter	ET AL 1976
1377	P8	WS	WEIGMT	0.00				0.19	Sauter	Et AL. 1976
1378	P8	WS	HEIGHT	33.00				0.26	sauter	ET AL 1976
1379	P8	WS	WEIGHT	67.00		.		0.19	sauter	ET AL 1976
1380	P8	WS	HEIGHT	119.00				0.18	SAUTER	ET AL 1976
1381	P8	WS	WEIGHT	253.00				0.07	sautier	ET AL 1976
1382	P8	WS	WEIGHT	483.00				0.00	SAUTE:	ET AL 1976
1383	pemtachlorde thane	FM	MORT2	10.00	120	18			AMAED ET	I AL 1984
1384	PENTACHLORGE ThanE	FM	MORT2	$\therefore 900.00$	120	21			SHETED ET	T AL 1984
. 1385	PE WTACHLOROE THAME	FM	MORI2	1400.00	120	27.			AHMED ET	T AL 1984
1386	PEWTACHLOROE THAME	$f \boldsymbol{H}$	MORT 2	2900.00	120	9			AMHED ET	T AL 1984
1287	PENTACHL OROE THAME	FM	MORI?	4100.00	120	66			AHMED ET	T AL 1984
1388	PEMTACHLOROE THAME	$\mathrm{FM}^{\text {\% }}$	MORT?	13900.00	120	120			AMMED ET	T AL 1984
1389	PEMTACHLOROETHAME	FM	WEIGHT	10.00				0.22	AMMED E1	T AL 1984
1390	PEMTACHLOROE THANE	FM	WEIGHT	900.00				0.23	AMMED ET	I AL 1984
1391	PENTACHL DROE THAME	FH	WEIGHT	1400.00				0.15	AHMED ET	I Al 1984
1392	PENTACHL OROE ThaHE	FH	WEIGHT	2900.00				0.09	ahmed et	t al 1984
1393	PEMTACHL OROE Thane	FH	WEIGHT	4100.00				0.05	AMMED EI	I AL 1984
1394	PENTACHLOROE THAHE	FM	WEIGHT	13900.00				0.00	AHMED ET	t AL 1984
1395	PENTACKLOROPHENOL	FM	HATCH	0.00	200	73			HOLCOM8E	E ET AL 1982
1396	PEWTACHLOROPHENOL	${ }_{\text {F }} \mathrm{H}$	HATCH	27.20	200	73			HOLCOMBE	E ET AL 1982
1397	PENTACHLOROPHENOL		HATCH	44.90	200	65			hol combe	E ET AL 1982
1398	PENTACHLOROPHEMOL	FH	KATCH	13.00	200	81			HOL COMBE	E ET AL 1982
1399	PENTACHLOROPHENOL	FM	HATCH	128.00	200	74			HOL COMBE	E ET AL 1982
1400	PENTACHLORDPHENOL	FM	HATCH	223.00	200	200			hOLCOMBE	E ET AL 1982
1401	PENTACHLOROPI: ${ }^{\text {PMOL }}$	FH	MORT2	0.00	100	6			HOLCOMBE	E ET AL 1982
1402	PENTACHLOROPHENOL.	FM	MORT2	27.20	100	8			HOLCOMBE	¢ EI AL 1982
1403	PENTACHLOROPHE NOL.	fr	MORT2	44.90	100	8			holcombe	E ET AL 1982
1404	PENTACHLOROPHEMOL	fr	MORT2	73.00	100	13			hol Comes	E EI AL 1982

- 1405	PENTACHLOROPHENOL	FM	MOR12	128.00	100	79		HOLCOMBE	Et Al 1982
1406	PENTACHLOROPHENOL	FM	MORI2	223.00	100	100		HOLCOMAE	ET AL 1982
1401	Pemtachlorophenol	FM	WEIGHI	0.00	100		0.13	HOLCOM8E	ET AL 1982
1408	PEMTACHLOROPHENOL	FM	WEIGHT	21.20	100		0.14	holcombe	Ef AL 1982
1409	PENTACHLOROPHE NOL	FM	WEIGHT	44.90	100		0.13	holcorat	Ef AL 1982
1410	PENTACHLOROPHENOL	FM	WEIGHI	73.00	100		0.11	holcombe	Et AL 1982
1411	PENTACHLOROPHENOL	FM	WEIGHT	128.00	100		0.11	halcomae	et al 1982
1412	PEntachlorophenol	FM	WEIGHT	223.00	100		0.00	holcombe	ET AL 1982
1413	PERMETHRIN	FM	hatch	0.00	100	10		spehar et	(AL 1983
1414	PERMETHRIM	FM	HATCH	0.11	100	3		Spehar et	AL 1983
1415	PERMETHRIM	FM	MaICH	0.18	100	B		SPEHAR EI	Al 1983
1416	PERMETHRIN	FM	HATCH	0.33	100	10		SPEHAR ET	T AL 1983
. 117	Perme thain	FM	HATCH	0.66	100	14		spehar et	I AL 1983
1418	Permethrin	FM	HATCH	1.40	100	10		SPEMAR ET	AL 1983
1419	perme thrin	FM	morta	0.00	60	5		SPEMAR ET	AL 1983
1420	PERMETHRIN	FM	MORT2	0.11	60	2		SPEHAR ET	A AL 1983
1421	perme thrim	FM	MORT2	0.18	60	2		SPEMAR ET	AL 1983
1422	permethrin	FM	MORT2	0.33	60	2		SPEMAR ET	AL 1983
1423	Perme thrin	FM	MORT2	0.66	60	4		SPEHAR ET	AL 1983
1424	PERME THRIM	FM	MORT2	1.40	60	59		SPEMAR EI	AL 1983
1425	? PRMETHRIM	FM	WEIGHT	0.00			0.10	SPEMAR E1	AL 1983
1426	PERMETHRIN	FM	WEIGHT	0.11			0.09	SPEHAR Et	F AL 1983
1421	PERMETHRIM	FM	WEIGHT	0.18			0.10	Spehar et	AL 1983
1428	PERME THRIM	FM	WEIGHT	0.33			0.09	Spehar et	AL 1983
1429	PERME THRİ	FM	Weighi	0.66			0.09	SPEHAR.ET	AL 1983
1430	PERME THRIM	FM	WEIGHT	1.40			0.11	SPEHAR EI	AL 1983
1431	PHENOL	FM	HAICH	0.00	500	91		ofgraeve	ET AL 1980
1432	PHENOL	FM	HAICH	230.00	500	87		degraeve	Et AL 1980
1433	PHEMOL	$\stackrel{F}{\text { H }}$	HAICH	. 750.00	500	93		degraeve	ET AL 1980
1434	PHENOL	FM	HATCH	2500.00	500	109		degraeye	Et Al 1980
1435	PHEMOL	$\mathrm{FH}^{\text {H }}$	HATCH	6100.00	500	114		degaaeve	Et AL 1980
1436	PHEMO'.	FM	HAICH	14500.00	500	139		oegratve	Et Al 1980
1437	PHENOL	FM	HATCH	33200.00	500	111		degraeve	Et Al 1980
1438	PHENOL	FM	HATCH	68500.00	500	274		degraeve	EI AL 1980
1439	PHEMOL	FM	MORT2	0.00	30	14		degraeve	Et AL 1980
1440	PHENOL	FM	MORT 2	230.00	30	21		degraeve	E1 AL 1980
1441	PHENOL	FM	MORT2	750.00	30	11		degraeve	Et Al 1980
1442	PHENOL	FM	MOR12	2500.00	30	15		degraeve	Et AL 1980
1443	PHENOL	FM	MORT2	6100.00	30	16		degraeve	ET Al 1980
1444	PKENOL.	FM	MORT2	14500.00	30	22		degraeve	Et AL 1980
1445	FHENOL	FM	Morit	33200.00	30	30		degrasve	E1 Al 1980
1446	PHENOL	FM	riuki2	68500.00	30	30		degraeve	Et Al 1980
1447	PHENOL	FM	WEIGHT	0.00			0.27	degraeve	et Al 1980
1448	Phémol	FM	WEIGHT	230.00			0.18	degraeye	ET AL 1980
1449	PHENOL	FM	WEIGHT	750.00			0.25	degraeve	Et AL 1980
1450	Phenol	FM	WEIGHT.	2500.00			0.19	degraeve	ET AL 1980
1451	PHENOL	FM	WEIGHT	6100.00			0.15	degraeve	ET. AL 1980
1452 P	PHENOL	FM	WEIGHT	14500.00			0.18	degraeve	Et AL 1980
1453	PHENOL	FM	WEIGHT	33200.00				degraeve ef	Ef AL 1980
1454	PHENOL	FM	WEIGHT	68500.00				degraeye ef	Et AL 1980
1455	PHEMOL	RT	MORT2	0.00	200	19		degraeve et	Et AL 1980
1456	Phenol	RT	MORI2	340.00	200	23		degraeve et	Et AL 1980
1457 P	PHENOL	$8 T$	MORT2	540.00	200	14		degraeve ef	Et Al 1980
1458 P	PHEMOL	RT	MORI2	1100.00	200	69		degraeve et	et al 1980

Table 8.1. (Contlnuey)

Table e.l. (Continued)

OBS	CHEMICA!	. SPECIES	PARAM		- DOSE	NTESTED	RESPONSE	EGGS	WEIGHI	SOURCE	
1513	PROPANIL	FM	MORT2		0.60	60	30			CALL ET	$\text { T AL } 1983$
1514	PROPANIL	FM	MOR12		1.20	60	50			CALL ET	T AL 1983
1515	PROPANIL	FM	MOR 12		2.40	60	60			CALL ET	T AL 1983
1516	PROPANIL	FM	MOR 12		3.80	60	60			CALL ET	T AL 1983
.1517	PROPANIL	FM	WEIGHT		0.00				0.59	CALL ET	T AL 1983
1518	PROPANIL.	Fin	WEIGHJ		0.40				0.56	CALL ET	T AL 1983
1519	PROPANIL	FM	WEISHT		0.60				0.49	CALL ET	T AL 1983
1520	PROPANIL	FH	WE1GHI		1. 20				0.45	CALL ET	T AL 1983
1521	PROPANIL	FM	WEIGHT		2.40					CALL ET	I AL 1983
1522	PROPAMIL	FM	WEIGHI		3.80					CALL ET	T AL 1983
1523	PYORIN	FH	MORT2		0.00	30	3			SPEHAR	ET AL 1982
1524	PYORIM	FM	MORT2		0.14	30	8			SPEHAR	ET AL 1982
1525	PYORIN	FM	MORT2		0.11	30	3			SPEHAR	ET AL 1982
. 1526	PYDRIN	FM	MOR 12		0.19	30	2			SPEHAR	EJ AL 1982
1521.	PYOAIN	FM	MORT2		0.33	30	7			SPEMAR	ET AL 1982
1528	PYORIN	FM	HORI2		0.43	30	22			SPEHAR	ET L 1982
1529	TETRACHLOROE THYLENE	FM	MORT2		0.00	120	6			AHMED E	ET Ai ? 984
1530	TETRACHLOROE THYLENE	FM	HORI2		1400.00	120	20			AHMEO E	ET AL 1984
$153!$	JETRACHL OROE THYLENE	FM	MOR I2		2800.00	120	74			AHMED E	ET AL 1984
1532	IETRACHLOROE THYLENE	FH	MORI2		4100.00	120	120			AHMED E	ET AL 1984
1533	TE ThACHL OROE THYLENE	FM	MORT2		8600.00	120	120			AHMED E	ET AL 1984
. 1534	TETRACHLOROE THYLENE	FM	WEIGHT		0.00				0.26	AMMED E	Et AL 1984
1535	TETRACIFLOROE THYLENE	FM	WEIGHT		500.00				0.25	AMMED E	ET Ai 1984
1536	TETRACFLOROE THYLENE	HM	WEIGHT		1400.00				0.18	AHMED E	ET AL 1984
1537	TE TRACHL OROE THYLENE	FM	WEIGHT		2800.00			-	0.12	AHMED E	ET AL 1984
1538	TETRACHI OROE THYLENE	FM	WEIGHT		4100.00				0.00	AHMED	ET AL 1984
1539	- IE TRACHLOROE THYLENE	FH	UEIGHT		8600.00				0.00	AHMED E	ET AL 1984
1540	TOXAPHEME	81	EGGS		0.00			855		MAYER E	ET AL 1975
1541	TOXAPHEME	BT	E6GS		0.04			541		Mayer et	ET AL 1975
1542	TOXAPHENE	81	E66S		0.07			516		Mayer et	ET AL 1975
1543	TOXAPHENE	81	EEGS		0.13			542		MAYER E	ET AL 1975
1544	TOXAPHENE	81	c66S		0.27			462		MAYER E	ET AL 1975
1545	TOXAPHENE	87	EGGS		0.50			617		MAYER E	ET AL 1975
1546	TOXAPHENE	BT	MORTI		- 0.00	34	0			MAYER E	E1 AL 1975
1547	TOXAPHENE	8 T	MORTI		0.04	24	2.			mayer e	EI AL 1975
1548	TOXAPHENE	8 BT	MORTI		0.07	24	2			Mayer e	EI AL 1975
1549	TOXARHENE	81	MORTI		0.13	24	2			Maycr e	ET AL 1975
1550	TOXAPHEME	BT	MORTI		0.27	24	12			Mayer E	ET AL 1975
1551	TOXAPHEAE	BT	MORTI		0.50	24	24			Mayer e	Et AL 1975
1552	TOXAPINEME	81	MORI2		0.00	200	128			MAYER E	ET AL 1975
1553	TOXAPHENE	B1	MORT2		0.04	200	166			MAYER E	ET AL 1975
1554	TCXAPHENE	81	MORT2		0.07	200	156	.		MAYER E	ET AL 1975
1555	TOXAPHENE	BT	MORT2		0.13	200	164			MAYEK E	ET AL 1975
1556	TOXAPHENE	81	HCRT2		. 0.27	200	200			MAYER E	ET AL 1975
1557	TOXAPMCNE	81	MORT2		0.50	200	200			MAYER E	ETAL 1975
1558.	TOXAPPİME	81	HEIGHT		0.00				0.70	Mayer e	ET AL 1975
1559	TOXAPHENE	81	WEIGHT		0.04	\because			0.37	MAYER E	ET AL 1975
1560	TOXAPHENE	81	WEICHI		0.07			-	0.51	MAYER E	Et AL 1975
1561	TOXAPHENE	81	WEIGHT		0.13			.	0.40	MayER E	E) AL 1975
1562	TOXAPHENE	81	WEIGHT		0.27		.		0.00	Mayer e	ET AL 1975
1563	TOXAPHENE	81	WEIGHT		0.50				0.00	MayER E	Et AL 1975
1564	TOXAPHENE	CC	HATCH		0.00	1800	126			MayER E	Et AL 1971
1565	TOXAPHENE	CC	HATCH		0.05	1500	75		-	Mayer e	Et AL 1971
1566	TOXAPHENE	CC	HATCH		0.07	1200	84			mayer e	ET AL 1977

lable B.I. (Continued)

lable B.I: (cantinund)

OBS	CHEMICAL	SPECIES	Param	DOSE	NTESIED	RESPOWSE	EGGS	WE1GHI	SOURCE	
1129	1.2-OICHLOROE I IAME	FM	WEIGHI	59000.00				0.05	BENOIT	Et Al 1982
1730	1,2-0ICHLOROPROPANE	FM	HATCH	100.00	120	4			BEMOIT	ET AL 1982
1731	1,2-DICHLOROPROPAHE	FM	HATCH	6000.00	120	5			SEMOIT	Et AL 1982
1732	1,2-OICHLOROPRUPAHE	FM	HATCH	11000.00	120	3			YENOIT	ET AL 1982
1733	1.2-DICHLOROPROPANE	FH	HATCH	25000.00	120	3			BENOIT	EI AL 1982
1734.	1.2-DICHLOROPROPANE	FM	HATCH	51000.00	120	43			BEMOIT	ET AL 1982
1735	1.2-DICHLOROPROPANE	FM	HATCH	110000.00	120	120			EENOIT	ET AL 1982
1136	1,2-DICHLOROfROPAHE	FM	MORI2	- 100.00	60	3		.	BENOIT	ET AL 1982
1731	:.2-DICKLOROPROPAME	FM	MORT 2	6000.00	60	- 5			BENOIT	ET AL 1982
1738	1.2-DICHLOROPROPAME	FH	MOR 12	11000.00	60	3			BENOIT	ET AL 1982
1739	1,2-DLCHLOROPROPANE	FM	MORT2	25000.00	60	25			BENOIT	ET AL 1982
1740	1.2-DICHLOROPROPAME	FM	MORT2	51000.00	60	44			BENOIT	ET AL 1982
1741	1.2-DICHLOROPROPANE	FM	MORI2	110000.00	120	120			BENOIT	ET AL 1982
1742	1.2-DICHL.OROPROPANE	FM	WEIGHI	100.00				0.14	8ENOIT	ET. AL 1982
1743	1,2-DICHLOROPROPANE	FM	WEIGHI	6000.00				0.14	BENOIT	ET AL 1982
1744	1.2-OICHLOROPROPANE	FM	WEIGHI	11000.00				0.13	8EMOIT	EI AL 1982
1745	1,2:OICHLOROPROPAME	FM	WEIGHI	25000.00				0.08	8ENOIT	ET AL 1982
1746	1.2-OICHLOROPROPANE	FM	WEIGHT	51000.00				0.02	BENOIT	Et AL 1982
1747	1,2-DICHLOROPROPAME	FM	WEIGHT	110000.00				0.00	BEMOIT	Et AL 1982
1748	1,2.3.4-IETRACHLORO8	FM	$\text { MOR } 12$	0.34	120	10			AMMED	ET AL 1984
1749	1,2,3.4-TETRACHLOROB	FM	MORT2	19.06	120	20			AHMED E	Et AL 1984
1750	1,2,3,4-IEIRACHLOROB	$F M$	MORI2	39.00	120	12			AHMEO E	Et AL 1984
1751	1,2,3,4-IETRACHL ORO8	FW	morle	110.00	120	8			AHMED	ET AL 1984
1752	1,2,3,4-TETRACHLORO8	FM	MORT?	245.00	120	22		-		Et Al 1984
1753	1,2,3,4-TETRACHi 3 OOO	FM	MORT2	412.00	120	48			AHMED E	ET AL 1984
1754	1,2,3,4-TETRACHLORO8	fM	WEIGHT	0.35			-	0.11	AHMED E	ET AL 1984
1755	1,2,3,4-TETRACHLORO8	FM	WEIGHT	19.00				0.11	AHMED E	ET AL 1984
1756	1.2.3.4-TETRACHLORO8	FM	WEIGHT	39.00				0.11	AHMED E	ET AL 1984
1757	1.2,3,4-TETRACHL OROB	$F M$	WEIGHT	110.00				0.10	AHMEO	ET AL 1984
1758	1,2,3,4-TEIRACHLOROB	FM	WEIGHT	245.00				0.10	AHMED E	ET AL 1984
1759	1.2.3.4-IEIRACHLOROB	FM	WEIGHT	412.00				0.06	AHMED	ET AL 1984
1760	1.2,4-TRICHLOROBEN2E	FM	MORT2	15.00	120	10			AHMEO E	ET AL 1984
1761	1,2,4-TRICHLORO8EN2E	FH	MORT 2	75.00	120	20		.	AHMED E	ET AL 1984
1762	1,2,4-TR1CHLOROBEN2E	FM	MORT2	134.00	120	10			AHMED E	Et AL 1984
1763	$1,2,4 \text {-TRICHLOROBE W゙2E }$	FM	MORT2	304.00	120	10			AHMED E	ET AL 1984
1764	1,2,4-1R1CHLOROREM2E	F\%	MORT?	499.00	120	14			AHMED E	ET Al 1984
1765	1.2.4-IRICHLOROBEN2E	FM	MOR T2	1001.00	120	46			AHMED E	ET AL 1984
1766	$1,2,4-\text { TRICHLOROBENLE }$	FM	WEIGHT	15.00		.		0.09	AHMED	ET AL 1984
1767	1,2,4-TRICHLOROBENZE	FH	WE IGHT	75.00				0.10	AHMED	ET AL 1984
1768	1.2.4-TRICHLOROBEN2E	FH	WEIGHT	134.00				0.09	AHMED E	ET AL 1984
1769	1,2,4-TRICHLOROBENZE	FM	WEIGHT	304.00				0.08	AHMED E	Et Al 1984
1770	1,2,4-TRICHLOROBENZE	F ${ }^{\text {H }}$	WE IGHT	499.00				0.09	AHMED E	Et AL 1984
1171	1,2,4-TRICHLOROBEN2E	FM	WEIGHI	1001.00				0.07	AKMED E	Et AL 1984
1712	1:3-01CHLORS8EMZENE	FM	most2	31.00	120	4			AHMEO E	ET AL 1984
1773	1.3-DICHLOROBENZENE	FM	MOR 12	304.00	120	2		,	AHMED E	ET AL 1984
1774	1.3-DICHLOROBENLEME	FM	MORI2	555.00	120	4			AHME ${ }^{\text {d }}$ E	ET AL 1984
1775	1.3-DICHL OROBENZEAE	Fn	MJRT2	1000.00	120	6			AHME D E	ET AL 1984
1776	1.3-DICHLOROBENZENE	F ${ }^{\text {H }}$	MORT2	2267.00	120	8			AHMED E	ET.AL 1984
1771	1,3-OICHLOROBENZENE	FM	MORT2	3913.00	120	112	-		AHME ${ }^{\text {d }}$ E	Et AL 1984
1718	1.3-DICHLOROBENZENE	FM	WEIEMT	31.00				0.10	AHMED E	Ef. AL 1984
1779	1,3-0ICHLOROBEnLEHE.	FM	HEIGHT	304.00				0.10	AHMED E	E] AL 1984
1780	1.3-OICHLOROBENZENE	FM	WEIGHT	555.00				0.10	AHMED E	EI AL 1984
1781	1,3-OICHLOROBENZEME	FM	WEIGHI	1000.00				0.10	AMMED E	EI AL 1984
1782	1,3-OICHLOROBENLENE	FM	WEIGHT	2267.00				0.07	AHME O E	ET AL 1984

Table B.I. (Cont Inued)

SPECIEJ = Specties of test organism: AS = atlantic salmon, BG = bluegill, BM = bluntnose minnow. BMT = brom trout. $B T=$ brook trout, CC = channel catfish, CHS = chinook salmon, COS = coho salmon, fF = flagfish. $F M=$ fathead .minnow, $6=$ guppy. $J M=$ Japanese medaka, $L T$ - lake trout, $M P=$ northern pike, RT = rainbow trout, 58 = smalimouth bass, WE = walleye, and WS - white sucker.
PARAM = Response parameter: MORII = mortality of parental fish, EGGS = number of eggs per fenale, HATCH = proportion of eggs faling to produce normal larvae, moriz = mortality of larval fish, and WEIGMI $=$ mean weight of individual fish at the end of larval exposure.
DOSE = Exposure concentration.
MTESTED = Kumber of test organisas per concentration.
RESPONSE - Number of organisms per concentracion.
E66S = Humber of eggs per female.
WEIGHT = Fean weight of individual fish at the end of larval exposure in grams.

Adelman, I. R., L. L. Smith, and G. D. Siesennop. 1976. Chronic toxicity of Guthion to the fathead minnow (Pimephales promelas Rafinesque). Bull. Environ. Contam. Toxicol. 15:726-733.

Ahmed, N., D. Benoit, L. Brook, D. Call, A. Carlson, D. DeFoe, H. Huot,
A. Moriarity, J. Richter, P. Shubat, G. Veith, and C. Wallbridge. 1984. Aquatic toxicity tests to characterize the hazard of volatile organic chemicals in water: A toxicity data summary -Parts I and II, EPA-600/3-84-009. U.S. Environmental Protection Agency, Duluth, Minn.

Allison, D. T., and R. O. Hermanutz. 1977. Toxicity of Diazinon to brook trout and fathead minnows. EPA-600/3-77-060. U.S. Environmental Protection Agency, Duluth, Minn. Arthur, J. W., and J. G. Eaton. 1971. Chloramine toxicity to the amphipod Gammarus pseudolimnaeus and the fathead minnow (Pimepnales promelas). 1. Fish. Res. Board Canada 28:1847-1845. Arthur, J. W., A. E. Lemke, V. R. Mattson, and B. \therefore. Halligan. 1974. Toxicity of sodium nitrilotriacetate (NTA) to the fathead minnow and an amphipod in soft water. Water Res. 8:187-193.

Benoit, D. A. 1975. Chronic effects of copper on survival, growth, and reproduction of the bluegill (Lepomis macrochirus). Trans. Am. Fish. Soc. 104:353-358.

Benoit, D. A. 1976. Toxic effects of hexavalent chromium on brook trout (Salvelinus fontinalis) and rainbow trout (Salmo gairdneri). Water Res. 10:497-500.

Benoit. U. A., and G. W. Holcombe. 1978. Toxic effects of zinc on fathead minnows Pimephales promelas in soft water. $\underline{\text { J. Fish Biol. }}$ 13:701-708.

Benoit, D. A., E. N. Leonard, G. M. Christenjen, and J. T. Fiandt. 1976. Toxic effects of cadmium on three generations of brook trout (Salvelinus fontinalis). Trans. Amer. Fish. Soc. 105:550-560.

Benoit, D. A., F. A. Puglisi, and D. L. Olson. 1982. A fathead minnow Pimephales promelas early life stage toxicity test method evaluation and exposure to four organic chemicals. Environ. Pollut. (Ser. A) 28:189-197.

Biddinger, G. R. 1981. Effects of sodium arsentte on the growth, development, and reprociuction of the Japanese medaka, Orezias latipes. Doctoral dissertation. University Microfilms, Ann Arbor, Mich.

Brungs, W. A. 1969. Chronic toxicity of zinc to the fathead minnow Pimephales promelas Rafinesque. Trans. Am. Fish. Soc. 98:272-279. Brungs, W. A., J. R. Geckler, and M. Gast. 1976. Acute and chronic toxicity of copper to the fatheac minnow in a surface water of variable quality. Hater Res. 10:37-43.

Bickler, D. R., A. Witt, Jr., F. L. Mayer, and J. N. Huckins. 1981. Acute and chronic effects of kepone and mirex on the fathead minnow. Trans. Am. Fish. Soc. 110:270-280.

Cairns, M. A., and A. V. Nebeker. 1982. Toxicity of acenaphthene and isophorone to early life stages of fathead minnows. Arch. Environ. Contam. Toxicol. 11:703-707.

Call. D. J., L. T. Brook, and R. J. Kent. 1983. Toxicity, bioconcentration, and metabolism of five herbicides in freshwater fish, EPA-600/3-83-096. U.S. Environmental Protection Agency, Duluth, Minn.

Call, D. J., L. T. Brook, N. Ahmed, and J. E. Richter. 1983b. Toxicity and metabolism studies with EPA priority pollutants and related chemicals in freshwater organisms, EPA-600/3-83-095.
U.S. Environmental Protection Agency, Duluth, Minn.

Call, D. J., L. T. Brook, M. L. Kriuth, S. H. Poirier, and
M. D. Hoglund. 1985. Fish subchronic toxicity prediction model for industriai organic chemicals that produce narcosis. Environ. Toxicol. Chem. 4:335-342.

Cardwell, R. D., D. G. Foreman, T. R. Payne, and D. J. Wilbur. 1977. Acute and chronic toxicity of chlordane to fish and invertebrates, EPA-600/3-77-019. U.S. Environmental Protection Agency, Duluth, Minn.

Carlson, A. R. 1971. Effects of long-term exposure to carbaryl

-

 (Sevin) on suryival, growth, and reproduction of the fathead minnow (Pimephales promelas). J. Fish. Res. Board Can. 29:583-587.Carlson, A. R., J. A. Tucker, V. R. Mattson, G. L. Phipps, P. M. Cook, G. F. Olson, and F. A. Puglisi. 1982. Cadmium and endrin toxicity to fish in waters containing mineral fibers, EPA-600/3-82-053. U.S. Environmental Protection Agency, Duluth, Minn.

Dauble, O. D., S. A. Barraclough, R. M. Bean, and W. E. Fallon. 1983. Chronic effects of coal-liquid dispersions on fathead minnows and rainbow trout. Irans. Amer. Fish. Soc. 112:712-719.

Davies, P. H., J. P. Goettl, Jr., J. R. Sinley. 1978. Toxicity of silver to rainbow trout (Salmo gairdneri). Water Res. 12:113-117. Davies, P. H., J. P. Goettl, Jr., J. R. Sinley and Smith. 1976. Acute and chronic toxicity of lead to rainbow trout Salmo gairdneri, in hard and soft water. Water Res. 10:199-266.

Defoe, D. L., G. D. Veith, and R. L. Carlson. 1978. Effects of Aroclor 1248 and 1260 on the fathead minnow (Pimephales promelas). J. Fish. Res. Board Can. 7:997-1002.

DeGraeve, G. M., R. G. Elder, D. C. Woods, and H. L. Bergman. 1982.
Effects of naphtialene and benzene on fathead minnows and rainbow trout. Arch. Environ. Contam. Toxicol. 11:478-490.

DeGraeve, G. M., D. L. Geiger, J. S. Meyer, and H. L. Bergman. 1980. Acute and embryo-larval toxicity of phenolic compounds to aquatic biota. Arch. Environ. Contam. Toxicol. 9:557-568.

Eaton, J. G. 1970. Chronic malathion toxicity to the bluegill
(Lepomis macrochirus Rafinesque). Water Res. 4:673-684.
Eaton, J. G. 1974. Chronic cadmium toxicity to the bluegill (Lepomis macrochirus Rafinesque). Trans. Am. Fish. Soc. 4:729-735.

Eaton, J. G., J. M. Mckim, and G. W. Holcombe. 1978. Metal toxicity to embryos and larvae of seven freshwater fish species--I. cadmium. Bull. Environ. Contam. Toxicol. 19:95-103.

EPA. 1980a. Ambient water quality criteria for ethylbenzene, EPA 440/5-80-048. U.S. Environmental Protection Agency, Washington, O.C.

EPA. 1980b. Ambient water quality criteria for hexachlorocyclopentadiene, EPA 440/5-80-055. U.S. Environmental Protection Agency, Washington, O.C.

EPA. 1980c. Ambient water quality criteria for dichlorobenzenes, EPA 440/5-80-039. U.S. Environmental Protection Agency, Washington, D.C.

EPA. 1980d. Ambient water quality criteria for dich?oropropane and dichloropropene, EPA 440/5-80-043. U.S. Environmental Protection Agency; Washington. D.C.

EPA. 1980e. Ambient water quality criteria for haloethers, EPA 440/5-80-050. U.S. Environmental Protection Agency, Washington, D.C.

Haze?, C. R., and S. J. Meith. 1970. Bioassay of king salmon eggs and sac fry in copper solutions. Calif. Fish Game 2:121-124.

Hermanutz, R. O. 1978. Endrin and malathion toxicity to flagfish (Jordanella floridae). Arch. Environ. Contam. Toxicol. 7:159-168.

Hermanutz, R. O., R. H. Mueller, and K. N. Kempfer. 1973. Captan toxicity to fathead minnows (Pimephales promelas), bluegills (Lepomis macrochirus), and brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 30:1811-1817.

Holcombe, G. W., D. A. Benoit, and E. N. Leonard. 1979. Long-term effects of $z i n c$ exposures on brook trout (Salvelinus fontinalis). Trans. Amer. Fish. Soc. 108:76-87.

Holcombe, G. W., D. A. Benoit, E. N. Leonard, and J. M. Mckim. 1976. Long-term effects of lead exposure on three generations of brook trout (Salvelinus fontinalis). 3. Iish. Res. Board Can. 33:1731-1741.

Holcombe, G. W., G. L. Phipps, and J. T. Fiandt. 1983. Eifects of phenol. 2.4-dimethylphenol, 2.4-dichlorophenol, and pentachlorophenol on embryo, larval, and early-juvenile fathead minnows (Pimephales promelas). Arch. Environ. Contan. Toxicol. 11:73-78.

Holdway, D. A., and J. B. Sprague. 1979. Chronic toxicity of vanadium to flagfish. Water Res. 13:905-910.

Holman, W. F., and K. J. Macek. 1980. An aquatic safety assessment of linear alkylbenzsulfonate (LAS): Chronic effects on faithead minnows. Trans. Am. Fish. Soc. 109:122-131.

Horning, W. B., and T. W. Neineisel. 1979. Chronic effects of copper on the bluntnose minnow, Pimephales notatus (Rafinesque). Arch. Environ. Contam. Toxicol. 8:545-552.

Jarvinen, A. W., M. J. Hoffman, and T. W. Thorslund. 1977. Long-term toxic effects of ODT food and water exposure on fathead minnows (Pimephales promelas). J. Fish. Res. Board Can. 34:2089-2103. Jarvinen, A. W., and D. K. Tanner. 1982. Toxicity of selected controlled release and corresponding formulated technical grade pesticides to the fathead minnow Pimephales promelas. Environ. Pollut. (Ser. A) 27:179-195.

Jarvinen, A. W., and R. M. Tyo. 1978. Toxicity to fathead minnows of endrin in water and food. Arch. Environ. Contam. Toxicol. 7:409-421.

Kleiner, C. F., R. L. Anderson, and D. K. Tanner. 1984. Toxicity of fenitrothion to fathead minnows (Pimephales promelas) and alternate exposure duration studies with fenitrothion and endosulfan. Arch. Environ. Contam. Toxicol. 13:573-578.

LeBlanc, G. A., J. D. Mastone, A. P. Paradice, B. F. Wilson, H. B. Lockhart, Jr., and K. A. Robillard. 1984. The influence of speciation on the toxicity of silver to fathead minnow (Pimephales promelas). Environ. Toxicol. Cinem. 3:37-46.

Leduc, G. 1978. Deleterious effects of cyanide on early life stages of atlantic salmon (Salmo salar). 2. Fish. Res. Board Can. 35:166-174.

Lemke, A. E. , E. Duran, and T. Felhaber. 1983. Evaluation of a fathead minnow (Pimephales promelas) embryo-larval test guideline using acenaphthene and isophorone, EPA-600/3-83-062. U.S. Environmental Protection Agency, Duluth, Minn.

Lewis. M. A., and V. T. Wee. 1983. Aquatic safety assessment for cationic surfactants. Environ. Toxicol. Chem. 2:105-118.

Macek, K. J., K. S. Buxton, S. K. Derr, J. W. Dean, and S. Sauter. 1976a. Chronic toxicity of lindane to selected aquatic invertebrates and fish, EPA-600/3-75-046. U.S. Environmental Protection Agency, Duluth, Minn.

Macek, K. J., K. S. Buxton, S. Sauter, S. Gnilka, and J. W. Dean. 1976b. Chronic toxicity of atrazine to selected aquatic invertebrates and fishes, EPA-600/3-76-047. U.S. Environmental Protection Agency; Duluth, Minn.

Macek, K. J., M. A. Lindberg, S. Sauter, K. Buxton, and P. A. Costa. 1976c. Toxicity of four pesticides to water fleas and fathead minnows, EPA-600/3-76-099. U.S. Environmental Protection Agency, Duluth, Minn.

Maki, A. H., and K. J. Macek. 1978. Aquatic environmental safety assessment for a nonphosphate detergent builder. Environ. Sci. Technol. 12:573-580.

Mayer, F. L., Jr., P. M. Mehrle, Jr., and W. P. Dwyer. 1975. Toxaphene effects on reprodurtion, growth, and mortality of brook trout, EPA-600/3-75-0i3. U.S. Environmental Protection Agency, Ouluth, Minn.

Mayer, F. L. Jr., P. M. Mehrle, Jr., and W. P. Dwyer. 1977. Toxaphene: chronic toxicity to fathead minnows and channel catfish; EPA-600/3-77-069. U.S. Environmental Protection Agency, Duluth, Minn.

McCarthy, J. F., and D. K. Whitmore. 1985. Chronic toxicity of di-n-butyl and di-n-octyl phthalate to Daphnia magna and the fathead minnow. Environ. Toxicol. Chem. 4:167-179.

Mckim. J. M. 1977. Evaluation of tests with early life stages of fish for predicting long-term toxicity. J. Fish. Res. Board Can. $34: 1148-1154$.

McKim, J. M., and D. A. Benoit. 1971. Effects of long-term exposures to copper on survival, growth, and reproduction of brook trout . (Salvelinus fontinalis). J. Fish. Res. Board Can. 28:655-662. Mickim, J. M., and D. A. Benoit. 1974. Duration of toxicity tests for establishing "no effect" concentrations for ropper with brook trout (Salvelinus fontinalis). J. Fish. Res. Board Canada 31:449-452.

McKim, J. M., J. G. Eaton, and G. W. Holcombe. 1978: Metal toxicity to embryos and larvae of eight freshwater fish - II: Copper. Bull. Environ. Contam. Toxicol. 19:608-616.
McKim, J. M. G. F. Olson, G. W. Holcombe, and E. P. Hunt. 1976. Long-term effects of methylmercuric ciloride on three generations of brook trout (Salvelinus fontinalis): toxicity, accumulation, distribution, and elimination. j. Fish. Res. Board Can. 33:2726-2739.

Merna, J. W., and P. J. Eisie. 1973. The effects of methoxychlor on aquatic biota, EPA-R3-73-046. U.S. Environmental Protection Agency, Washington; D.C.

Mount. D. I. 1968. Chronic toxicity of copper to fathead minnows (Pimephales promelas, Rafinesque). Water Res. 2:215-223.

Mount, D. I.; and C. E. Stephan. 1969. Chronic toxicity of copper to the fathead minnow (Pimephales promelas) in soft water. J. Fish. Res. Board Can. 26:2449-2457.

Nebeker, A. V., C. K. McAuliffe, R. Mshar, and D. G. Stevens. 1983.
Toxicity of silver to steelhead and rainbow trout, fathead minnows, and Daphnta magna. Envirnn. Toxicol. Chem. 2:95-104.

Nebeker. A V.. F. A. Puglisi, and D. L. DeFoe. 1974. Effect of polychlorinated Dipheryl compounds on survival and reproduction of the fathead minnow and flagfish. Trans. Am. Fish. Soc. 103:562-568.

Pickering, Q. H. 1974. Chronic toxicity of nickel to the fathead minnow. J. Water Pollut. Control Fed. 46:760-765.

Pickering, Q. H. 1980. Chronic toxicity of hexayalent chromium to the fathead minnow (Pimephales promelas). Arch. Environ. Contam. Toxicol. 9:405-413.

Pickering, Q., W. Brungs, and M. Gast. 1977. Effects of exposure time and copper concentration on the reproduction of the fathead minnow (Pimephales promelas). Water Res. 11:1079-1083.

Pickering, Q. H., and M. H. Gast. 1972. Acute and chronic toxicity of cadmium to the fathead minnow (Pimephales promelas). J. Fish. Res. Board Can. 29:1099-1106.

Pickering, Q. H., and W. T. Giiliam. 1982. Toxicity of aldicarb and fonofos to the early life-stage of the fathead minnow. Arch. Environ. Contam. Toxicol. 11:699-702.

Pickering, Q. H., and T. O. Thatcher. 1970. The chronic toxicity of linear alkylate sulfonate (LAS) to Pimephales promelas, Rafinesque. ' J. Water Pollut. Control Fed. 42:243-254.

Pierson, K. B. 1981. Effects of chronic zinc exposure on the growth. sexual maturity, reproduction, and bioaccumulation of the guppy, Poecilia reticu!zta. ian. J. Fish. Aquat. Sci. 38:23-31.

Sauter, S.. K. S. Buxton, K. J. Macek, and S. R. Petrocelli. 1976. Effects exposure to heavy metals on selected freshwater fish, EPA-600/3-76-105. U.S. Environmental Protection Agency, Duluth; Minn.

Seim, W. K., L. R. Curtis, S. W. Glenn, and G. A. Chapman. 1984. Growth and survival of developing steelhead trout (Salmo gairdneri) continuousiy or intermittently exposed to copper. Can. J. Fish. Aquat. Sci. 41:433-438.

Sinley, J. R., J. P. Goettl, Jr., and P. H. Davies. 1974. The effects of zinc on rainbow trout (Salmo gairdnerí) in hard and seft water. Bull. Environ. Contam. Tuxicol. 12:193-201.

Smith, L. L., S. J. Broderius, D. M. Oseid, G. L. Kimball, H. M. Koenst, and D. T. Lind: 1979. Acute and chronic toxicity of HCN to fish and invertebrates, EPA-600/3-79-009. U.S. Environmental Protection Agency, Duluth, Minn.

Snarski, V. M., and G. F. Olson. 1982. Chronic toxicity and bioaccumulation of mercuric chloride in the fathead minnow (Pimephales promelas). Aquat. Toxicol. 2:143-156.

Spehar. R. L. 1976. Cadmium and zinc toxicity to flagfish, Jordanella floridae. J. Fish. Res. Board Can. 33:1939-1945.

Spehar, R. L., E. N. Leonard, and D. L. Defoe. 1978. Chronic effects of cadmium and zinc mixtures on the flagfish (Jordanella floridae). Trans. Am. Fish. Soc. 107:354-360.

Spehar, R. L., D. K. Tanner, and J. H. Glbson. 1982. Effects of kelthane and pydrin on early life stages of fathead minnows (Pimephales promelas) and amphipods (Hyalella azteca). IN J. G. Pearson, R. B. Foster, and W. E. Bishop (eds.), Aguatic Toxicology and Hazard Assessment, Fifth Conference, ASTM STP 766. American Society for Testing and Materials, Philadelphia, Penn. Spehar, R. L., D. K. Tanner, and B. R. Nordling. 1983. Toxicity of the syathetic pyrethroids, permethrin, and $A C 222,705$ and their accumulation in early life stages of fathead minnows and snails. Aquatic Toxicol. 3:171-182.

Stevens, D. G., and G. A. Chapman. 1984. Toxicity of trivalent
chromium to early life stages of steelhead trout. Environ. Toxicol: Chem. 3:125-133.

Woodward, D. F. 1976. Toxicity of the herbicides dinoseb and picloram to cutthroat trout (Salmo clarki) and lake trout. ㄹ. Fish. Res. Board Can. 33:1671-1676.

INTERNAL DISTRIBUTION LIST

1.	S. I. Auerbach
2.	C. F. Baes III
3-12.	L. W. Barnthouse
13.	S. M. Bartell
14.	J. E. Sreck
15.	S. W. Christensen
16.	C. C. Coutant
17.	L. D. Eyman
18.	R. H. Gardner
19.	S. G. Hildebrand
20.	S. V. Kaye
21.	R. M. Reed

1. S. 1. Auerbach
2. C. F. Baes III

3-12. L. W. Barnさhouse
S. M. Bartel
J. E. Breck
18. R. H. Gardner
19. S. G. Hildebrand
20. S. V. Kaye
21. R. M. Reed
22. D. E. Reichle
23. A. E. Rosen
24. M. J. Sale
25-34. G. W. Suter II
35. C. C. Travis
36. H. E. Zittel
37. Central Research Library
38-52. ESD Library
53-54. Labor3tory Records Department
55. Laboratory Record:, RC
56. ORNL Patent Office,
57. ORNL Y-12 Techrical Library22. O. E. Reichle
23. A. E. Rosen
24. M. J. Sale

5-34. G. W. Suter II
35. C. C. Travis
36. H. E. Zittel
37. Central Research Library

38-52. ESD Library
53-54. Labor3tory Records Department
55. Laboratory Records. RC
56. ORNL Patent Office
57. ORNL Y-12 Techrical Library

EXTERNSL DISTRIBUTION

58. W. J. Adams, Monsanto Industrial Chemicals Company, 800 North Lindberg Boulevard, St. Louis, MO 63166
59. J. Frances Allen, Science Advisory Board, U.S. Environmental Protection Agency, Washingtcn, DC 20460
60. J. K. Andreasen, CNFRL, Field Research Station, U.S. Fish and Wildiffe Service, Box 2087, Victoria, TX 77902-2087
61. John Barker, Director, Office of Environmental Adult and Compliance, EH-24, U.S. Department of Energy, 1000 Independence Ave.. NW, Washington, DC 20585
62. Nathaniel F. Barr, Office of Health and Environmental Research, U.S. Department of Energy, Washington, DC 20545
63. Tim Barry, U.S. Environmental Protection Agency, PM-219, 401 M Street, SW, Washington, DC 20460
64. Gordon Beanlands, Research Director. Federal Environmental Assessment Review Office, 1318 Robie Street, Halifax, Nova Scotia B3H 3E2 Canada.
65. Judy Bellin, U.S. Environmental Protection Agency, WH-5628, 401 M Street, SW, Washington, DC 20460
66. Frank Benenati, Office of Toxic Substances, U.S. Environmental Protection Agency, 401 M Street, SW, Wastington, DC 20460
67. D. A. Bennett, Acid Deposition Research Staff, U.S. Environmental Protection Agency, 401 M Street, SW, RD-676, Washington, DC 20460
68. Harold Bergman, Department of Zoology and Physiology, The University of Wyoming, Laramie, WY 82071
69. Wesley Birge, School of Biological Sciences, 101 Morgan Bidg., University of Kentucky, Lexington, KY 40506
70. H. A. Birnbaum, Manager, Toxicology and Environmental Science, Calgon Corporation, P.C. Box 1346, Pittsburgh, PA 15230
71. F. B. Blood, Radian Corporation, 8501 Mo-Pac Boulevard, P.O. Box 9948, Au:tin, TX 78766.0948
72. Harold Bond, U.J. Environmental Protection Agency, RO-682, 401 M Street, SW, Washing.ton, DC 20460
73. D. B. Botkin. Environmental Studies Program, The University of California. Santa 8arbara, CA 93106
74. William Brungs, Environmental Research Laboratory, U.S. Environmental Protection Agency, South Ferry. Rd, Narragansett, RI 02882
75. J. D. Buffington, Director, Office of Biological Services, U.S: Fish and Wildife Services, 1730 K Street, NW, Washington, DC 20240
76. J. Cairns, Center for Environmental Studies, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
77. J. Thomas Callahan, Associate Director, Ecosystems Studies Program, Room 336, 1800 G Street. NW, National Science Foundation, Washington, DC 20550
78. Michael Callahan, U.S. Environmental Protection Agency, TS-798, 401 M Street, SW, Washington, DC 20460
79. Melvin W. Carter. Georgia Institute of Technology, School of Nuclear Engineering and Health Physics, Atlanta, GA 30332
80. Michael A. Champ, Senior Science Advisor, OPPE/OSR-PM-223 LGA, U.S. Environmental Protection Agency, 401 M Street, SW, Washington, OC 20460
81. Paul Cho, Health and Environmental Risk Analysis Program. HHAD/OHER/ER, U.S. Departiment of Energy, Washington, DC 20545
82. Lawrence Cook, U.S. Environmental Protection Agency, LE-132P. 401 M Street, SW, Washington, OC 20460
83. C. E. Cushing, Ecosystems Department, Battelle-Northwest Laboratories, Richland. WA 99352
84. R. C. Danlman, Carbon Dioxide Research Division, Office of Energy Research. Room J-311, ER-12, U.S. Department of Energy, Washington, DC 20545
85. K. L. Dickson, North Texas State University, P.0. Box 13078, Denton. TX 76201
86. Sidney Draggan, Office of Polar Programs, National Science Foundation, Washington, DC 20550
87. Keith Easton, Associate Solicitor, CERCLA 301 Project Director. Room 4354, Department of the Interior, 1801 C Street. NW, Washington. OC 20240
88. Stephen J. Ells, U.S. Environmental Protection Agnncy, 401 M Street, SW, Washington, OC 20460
89. Thomas L. Englert, Lawler, Matusky \& Skelly Engineers, One Blue Hill Plaza, Pearl River, NY 10965
90. Environmental Protection Technical Reference Library, 17th Floor, Fulton Building, P.0. Box 2063, Marrisburg, PA 17120
91. B. J. Finkle, Western Regional Research Center. U.S. Department of Agriculture, 800 Euchanan Street. Albany, CA 94710
92. G. J. Foley, Office of Environmental Process and Effects Research, U.S. Environmental Protection Agency, 401 H Street. SW, RD-682. Washington, DC 20460
93. Leroy Folmar. U.S. Environmental Protection Agency, WH-527. 401 M Street, SW, Washington, DC 20460
94. Jack Gentile, U.S. Environmental Protection Agency, Environmental Research Laboratory, South Ferry Road, Narragansett, RI 02881
95. J. W. Gilford, U.S. Environmental Protection Agenry, OPTS/OTS/HERD/EEB (TS-796), 401 M Street. SW, Washington, DC 20460
96. J. W. Gillett, Department of Natural Resources, 1114 Fernow Hall, Cornell University, Ithaca; NY 14853
97. Norman R. Glass, National Ecological Research Laboratory, U.S. Environmental Protection Agency, 200 SW 35 th Street, Corvallis. OR 97330
98. C. R. Coldman, Professor of Limnology, Director of Tahoe Researcll Group, Division of Environmental Studies, University of California, Davis, CA 94616
99. R. A. Goldstein, Electric Power Research Institute, P.O. Box 10412, 3412 Hillview Avenue, Palo Alto, CA 94303
100. Michael Gruber, U.S. Environmental Protection Agency, PM-219, 401 M Street, SW, Washington, DC 20460
101. D. Heyward Hamilton, Office of Health and Environmental Research, U.S. Department of Enerny, Washington, DC 20545
102. Leonard Hamilton, Department of Energy and Environment, Brookhaven National Laboratory, Upton, NY 11973
103. W. F. Harris, Deputy Division Director, Division of Biotic Systems and Resources. National Science Foundation, 1800 G Street. NW. Room 1140 . Washington. DC 20550
104. Robert Hitch, U.S. Environmental Protection Agency, TS-769C, 401 M Street, SW, Washington, DC 20460
105. Har ey Holme, I.S. Environmental Protection Agency, Environmental. Research Laboratory, Athens, GA 30613
106. Robert Holst, U.S. Environmental Protection Agency, TS-769C. 401 M Street, SW, Washington, DC 20460
107. K. Hood, office of Research and Development. U.S. Environmental Protection Agency, 401 M Street, SW, Wastington, OC 20460
108. F. F. Hooper, Ecology, Fisheries, and Wildife Program, School of Natural Resources, The University of Michigan, Ann Arbor, MI 48109
109. J. W. Huckabee, Manager, Ecological Studies Program, Electric Power Research Institute, 3412 Hillview Avenue. P.O. Box 10412 , Palo Alto, CA 94303
110. Norbert Jaworski, Environmental Research Laboratory-Duluth, 6201 Congdon Boulevard, Duluth, MN 55804
111. Donald Johnson, Gas Research Institute, 8600 West Bryn Mawr Avenue, Chicago, IL 60631
112. George Y. Jordy. Director, Office of Program Analysis, Office of Energy Research, ER-30, G-226, U.S. Department 6 : Energy, Washington, DC. 20545
113. David E: Ketcham, USDA-Forest Service, P.0. Box 2411, Washington, OC 20013
114. Hal Kibby, U.S. Environmental Protection Agency, Environmental Research Laboratory, 20 SW 35th Street, Corvallis, OR y7330
115. Richard Kimerle. Monsanto Industrial Chemicals Company, 800 North Lindberg Boulevard, St. Louis, MO 63166
116. P. R. Kleindorfer, Center for the Study of Drganizational Innovation. The Wharton School, The University of Pennsylvania, 1307 Sn. DH-CC, 3620 Locust Walk; Prilladelphia, PA 19104
117-136. Frederick Kutz, U.S. Environmental Protection Agency, RD-682, 401 M Street. SW, Washington, DC 20460
117. Ted LaRoe, Chief, Division of Biological Services, U.S. Fish and Wildife Service, Room 527, Matomic Bldg., Washington, DC 20240
118. Raymond Lassiter, U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA 30613
119. G. A. LeBlanc, EG\&G Bionomics, Aquatic Toxicology Laboratory, 790 Main Street, Wareham, MA 02571
120. Simon A. Levin; Department of Ecology and Systematics, Biological Sciences Bldg., E-347, Cornell University, Ithaca, NY 14853
121. Library, Bureau of Sport Fisheries and Wildiffe, Department of the Interior, Washington, DC 20240
122. Library, Food and Agriculture, Organization of the United Nations, Fishery Resources and Environment Division, via delle Termi di Caracalla 001000, Rome, Italy
123. Library. Western Fish Toxicology Laboratory,
U.S. Environmental Protection Agency, Corvallis, OR 97330
124. Phil Lightner, Biology Department, St. Mary's College, Moraga, CA 94575
125. Ernst Linder, Statistics Department, 318 Pond Laboratory, Pennsylvania State University, University Park, PA 16802
126. Ronald R. Loose, U.S. Department of Energy, Washington, DC 20545
127. O. L. Loucks, Director, Holcomb Research Institute, Butler University, 4600 Sunset Avenue, Indianapolis, IN 46208
128. Thomas R. Lynch, Department of Blology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
149.. Alan Maki. EXXON Corporation, Research and Environmental Health Division, P.O. Box 235, East Millstone, NJ 08873
129. Helen McCammon, Director, Ecological Research Division, Office of Health and Environmental Research, Office of Energy Research, MS-E201; ER-75, Room E-233, U.S. Department of Energy, Washington, DC 20545
130. Peter Melifinger. Battelle Northwest Laboratory, P.O. Box 999, Richland, WA 99352
131. Foster L. Meyer. Environmental Research Laboratory, U.S. Environmental Protection Agency, Sabine Island, Guli: Breaze. FL 32561
132. A. Alan Moghissi, P:0. Box 7: 66, Alexandria, VA 22307
133. Dario M. Monti, Division of Technology Overview. U.S. Department of Energy, Washington, OC . 20545
134. Robert J. Moolenaar, Dow Chemical Company, 1803 Building, Midland, MI 48640
135. Richard Moraski, U.S. Environmentai Pritection Agency, RD-689, 401 M Street, SW, Washington, DC 20460
136. Sam Morris, Brookhaven National Laboratory, Associated Universities, Inc., Building 475. Upton, NY 11973
137. Paul Moskowitz, Brookhaven National Laboratory, Associated Universities, Inc., Building 475, Upton, NY 11973
i59. Donald Mount, Environmental Research Laboratory-Duluth, 6201 Congdon Boulevard, Duluth, MN 55804
138. J. Vincent Nabholz, Health and Environmental Review Oivision, Office of Toxic Substances, U.S. Environmental. Protection Agency, 401 M.Street, SW; Washington, DC 20460
139. Ellintt A. Norse, The Ecological Society of America, 1601 linnecticut Ave., NW, \#201, Washington, OC 20009
140. Joel $\dot{3}$. 0^{\prime} Connor, NOAA Ocean Assessments Division, 11400 Rockville Pike, Rockville, MO 20852
141. Thomas P. O'Connor, Ocean Assessmerits Division, Office of Oceanography and Marine Services, National Ocean Service N/OMS 33, Rockville, MD 20852
142. Goetz Dertel, Waste Management Oivision, U.S. Department of Energy, Washington, DC 20545
143. R. A. Park, Department of Geology, Rensselaer Polytechnic Institute, Troy, NY 12181
144. F. L. Parker, College of Engineering, Vanderbilt University, Nashville, TN 37235
145. David Parknurst, Sctiool of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405
146. Robert Pastorok. Tetra Tech, Inc., 11820 Northup Way, Suite El00, Bellevue, WA 98005
147. G. P. Patil, Statistics Department, 318 Pond Laboratory, Pennsylvania State University, University Park, PA 16802
148. Raloh Perhac, Electric Power Research Institute, 3412 Hillview Avenue, P.O. Box 10412, Palo Alto, CA 94303
149. Donna Perla, Office of Solid Waste (WH-565), Room 2817. U.S. Environmental Protection Agency, 401 M Street, SW, Washington, DC 20460
150. Keith Phillips, U.S. Army Corps of Engineers, Seattle District, Environmental Resource Branch, P.O. Box C-3755, Seattle, WA 98124
151. J. C. Randolph, School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405.
152. Irwin Remson, Department of Applied Earth Sciences, Stanford University, Stanford, CA 94305
153. William Rish, Envirosphere. Co., Suite 250, 2000 W. Henderson Rd. Columbus, OH 43220
154. Donald J. Rodier, Environmental Protection Agency, TS-796. 401 M Street, SW, Washington, DC 20460
155. Abe Silvers, Electric Power Research Institute, 3412 Hillview Avenue, P.O. Box 10412, Palo Alto. CA 94303
156. David Slade, Office of Health and, Environmental Research, U.S. Department of Energy, Washington, DC 10545
157. Michael Slimak, Office of Pesticide Programs (TS-796). U.S. Environmental Protection Agency, 401 M Street SW, Washington, OC 20460
158. Eusene Stakhiv, U.S. Army Engineers. Institute for Water Resources, Casey Building, Ft. Belvoir, VA 22060-5586
159. Charles E. Stephan, U.S. Environmental Protection Agency, National Water quality Laboratory, 6201 Congdon Boulevard, Duluth, MN 55804
160. Robert J. Stern; Director, Office of Environmental Compliance, MS PE-25, FORRESTAL, U.S. Department of Energy, 1000 Independence Avenue, SW, Washington, DC 20585
183.: Harlee Strauss, Center for Technology Policy and Industrial Development, Room E40-243, Massachusetts Institute of Technology, Cambridge, MA 02139
161. Frank Swanberg, Jr., U.S. Nuclear Regulatory Commission, Washington, DC 20555
162. R. V. Thomann, Civil Engineering Department, Manhattan College, 8ronx, NY 10471
186.. Douglas Urban, office of Pesticide Programs, TS-769, U.S. Environmental Protection Agency, 401 M Street, SW, Washington, OC 20460
163. Burt Vaughan, Battelle-Pacific Northwest Laboratories, Richland, WA 99352
164. D. S. Vaughan, Southeast Fisheries Center, National Marine fisheries Service, Beaufort, NC 28516
165. Gilman Veith, Environmental Research Laboratory-Duluth, 6201 Congdon Boulevard, Duluth, MN 55804
166. Marian B. Vinegar, National Distillers and Chemical Corporation, 4900 Este Avenue, Cincinnati, OH 45232
167. Richard Walentowicz, U.S. Eridironmental Protection Agency, RD-683, 401 M Sireet, SW, Washington, DC 20460
168. John Walker. Assessment Division, Office of Toxic Substances, TS 178, U.S. Environmental Protection Agency, $401 \mathrm{M} \mathrm{Street}$, SW, Washington, OC 20460
169. Robert L. Watters, Ecological Research Division, Office of Health and Environmental Research, Office of Energy Research, MS-E201, ER-75, Room F-226, U.S. Department of Energy, Washington, DC 20545
170. D. E. Weber, Office of Energy, Minerals, and Industry, U.S. Environmental Protection Agency, Washington, DC 20460
171. A. M. Weinberg, Institute of Energy Analysis, Dak Ridge Associated Universities, Oak Ridge, TN 37830
172. Leonard H. Weinstein. Program Director of Environmental Biology, Cornell University, Boyce Thompson Institute for Plant Research, Ithaca, NY 14853
173. Raymond G. Wilhour, Chief, Air Pollution Effects Branch, Corvallis Environmental Research Lab, U.S. Environmental Protection Agency, 200 SW 35th Street. Corvallis, OR 97330
174. Ted Williams, Division of Policy Analysis, U.J. Department of Energy. Washington, DC 20545
175. Frank J. Wobber, Division of Ecological Research, Office of Health and Environmental Research, Office of Energy
Research, MS-E201, U.S. Department of Energy, Washington, DC 20545
176. M. Gordon Wolman, The Johns Hopkins University, Department of Geography and Environmental Engineering, Baltimore, MD 21218
177. Bill Wood, U.S. Environmental Protection Agency, TS-798, 401 M Street, Sh, Washington, $O C 20460$
178. Darwin Wright, U.S. Environmental Protection Agency, RD-681, 401 H Street, SW, Washington, DC 20460
179. R. Wyzga, Manager, Health and Environmental Risk Department, Electric Power Research Institute, 3412 Hillview Avenue, P.O. Box 10412. Palo Alto, CA 94303
180. Craig Zamuda, U.S. Environmental Protection Agency, WH-5480, 401 M Street. SW, Washington, DC 20460
181. Rodert Zeiler. U.S. Environmental Protection Agency, WH-556, 401 M Street, SW, Washington, DC 20460
182. Office of Assistant Manager for Energy Research and Development. Dak Ridge Operations, P.O. Box E, Department of Energy, Oak Ridge, TN 37831
207-409. Given distribution as shown in DOE;IIC-4500 under category UC-11, Environmental Control Technology and Earth Sciences.

（a）各

270*:
U. E. ENThonitnithe photection Rgency gutr ereate gnvigonhental. mesearch. Laboratory SAETEE Blave

[^0]: ${ }^{\text {a }}$ Used in the General Stress Syndrome

[^1]: 167

 ORNL-6251

