

October 3, 2011

Project Number G02073

Mr. Brian Helland, RPM BRAC PMO, Northeast 4911 South Broad Street Philadelphia, Pennsylvania 19112

Reference:

CLEAN Contract No. N62470-08-D-1001 Contract Task Order (CTO) No. WE11

Subject:

Signed Record of Decision

Main Gate Encroachment Area

Former Naval Air Station South Weymouth, Weymouth, Massachusetts

Dear Mr. Helland:

Enclosed is the completed Record of Decision (ROD) for the Main Gate Encroachment Area at the former Naval Air Station (NAS) South Weymouth in Weymouth, Massachusetts. The ROD was signed by Navy on September 14, 2011 and by the U.S. Environmental Protection Agency (EPA) on September 23, 2011. The Massachusetts Department of Environmental Protection (MassDEP) provided their concurrence in correspondence dated September 8, 2011. On behalf of the Navy, copies of the ROD are being distributed to Navy, EPA, MassDEP, Information Repositories, and others, as indicated on the distribution list below. The document will also be available at the Navy BRAC Program Management Office web site: http://www.bracpmo.navy.mil/basepage.aspx?baseid=71.

In accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a legal notice announcing the availability of the ROD will be published in local newspapers. If you have any questions regarding the document, please contact me at (978) 474-8403.

Very truly yours,

Phoebe A. Call Project Manager

PAC/lh

Enclosures

c: D. Barney, Navy (w/encl. - 1 paper, 1 CD)

C. Keating, EPA (w/encl. - 1 paper, 2 CD)

D. Chaffin, MassDEP (w/encl. - 1 paper, 1 CD)

A. Hilbert, Weymouth (w/encl. – 1 CD)

H. Welch, Weymouth (w/encl. - 1 CD)

D. Punchard, Rockland (w/encl. - 1 CD)

M. Smart, Weymouth (w/encl. - 1 CD)

P. Sortin, Abington (w/encl. - 1 CD)

M. Brennan, Weymouth (w/encl. - 1 CD)

M. Parsons, Rockland (w/encl. – 1 CD)

Tufts Library, Weymouth (w/encl. – 1 CD)

Public Library, Abington (w/encl. - 1 CD)

Public Library, Rockland (w/encl. - 1 CD)

Public Library, Hingham (w/encl. - 1 CD)

Executive Director, South Shore Tri-town

Development Corp. (w/encl. - 1 paper, 4 CD)

R. Daniels, LNR Property Corp. (w/encl. 1 - CD)

Transport Transport (well and)

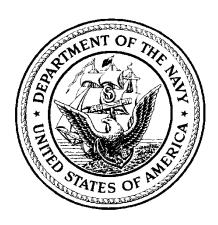
J. Trepanowski, Tetra Tech (w/o encl.)

G. Glenn, Tetra Tech (w/o encl.)

D. Straker, Tetra Tech (w/encl. - 1 paper)

G. Wagner, Tetra Tech (w/encl. 1 paper, 1 CD) File G02073-3.2 (w/o encl.); G02073-8.0 (w/encl. –

1)


Tetra Tech

RECORD OF DECISION

MAIN GATE ENCROACHMENT AREA OPERABLE UNIT 26

NAVAL AIR STATION SOUTH WEYMOUTH WEYMOUTH, MASSACHUSETTS

BRAC PMO NORTHEAST U.S. NAVY

September 2011

TABLE OF CONTENTS

SECTIO	<u>DN</u>	<u>PAGE</u>
ABBR	REVIATIONS AND ACRONYMS	iii
1.0	DECLARATION	1
	1.1 SITE NAME AND LOCATION	
	1.2 STATEMENT OF BASIS AND PURPOSE	
	1.3 DESCRIPTION OF SELECTED REMEDY	
	1.4 STATUTORY DETERMINATIONS	
	1.5 AUTHORIZING SIGNATURES	2
2.0	DECISION SUMMARY	
	2.1 SITE NAME, LOCATION, AND BRIEF DESCRIPTION	
	2.2 SITE HISTORY AND ENFORCEMENT ACTIVITIES	
	2.3 COMMUNITY PARTICIPATION	6
	2.4 SCOPE AND ROLE OF OPERABLE UNIT	7
	2.5 SITE CHARACTERISTICS	8
	2.5.1 Physical Characteristics	8
	2.5.2 Nature and Extent of Contamination	8
	2.6 CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE USES	10
	2.7 SUMMARY OF POTENTIAL SITE RISKS	11
	2.7.1 EE/CA	
	2.7.2 Non-Time Critical Removal Action	
	2.7.3 Post-Removal Groundwater Sampling Event	
	2.8 EXPECTED OUTCOMES OF SELECTED REMEDY	
	2.9 DOCUMENTATION OF SIGNIFICANT CHANGES	
	2.10 STATE ROLE	
3.0	RESPONSIVENESS SUMMARY	16
0.0	3.1 STAKEHOLDER COMMENTS AND LEAD AGENCY RESPONSES	16
	3.2 TECHNICAL AND LEGAL ISSUES	
	0.2	
ADMII	INISTRATIVE RECORD REFERENCE TABLE	
	TABLES	
NUME	<u>BER</u>	
2-1	Investigations, Removal Actions and Site Documentation	5
2-2	Soil Concentrations and Cleanup Goals	12
2-3	Sediment Concentrations and Cleanup Goals	13
3-1	Summary of Comments from Public Comment Period	16
	FIGURES	
NUME	<u>BER</u>	
1-1	Location Map	1
2-1	Main Gate Encroachment Area	
- '		т

TABLE OF CONTENTS (CONTINUED)

FIGURES

NUMBER

2-2	2008 Site Conditions, MGEA Site	5
2-3	Pre-Removal Action Soil and Sediment Exceedances	
2-4	Pre-Removal Action Groundwater Exceedances	
2-5	Removal Action Sampling Grid	.14
2-6	Post-Restoration Site Conditions, August 1, 2011	.15

APPENDICES

- A MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION LETTER OF CONCURRENCE
- B REFERENCES
- C ANALYTICAL RESULTS
- D ADMINISTRATIVE RECORD INDEX
- E TRANSCRIPT OF PUBLIC HEARING AND COMMENT LETTER RECEIVED ON THE PROPOSED PLAN FOR MAIN GATE ENCROACHMENT AREA

ABBREVIATIONS AND ACRONYMS

AOC Area of Concern

BRAC Base Realignment and Closure

bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COC Chemical of Concern
DQL Data Quality Level

EBS Environmental Baseline Survey

EE/CA Engineering Evaluation/Cost Analysis

EPA United States Environmental Protection Agency

EPH extractable petroleum hydrocarbons

Massachusetts Department of Environmental Protection

MCL Maximum Contaminant Level
MCP Massachusetts Contingency Plan

NAS Naval Air Station

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NFA No Further Action

NPL National Priorities List

NTCRA non-time-critical removal action
PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PPA Potentially Productive Aquifer
RAB Restoration Advisory Board

RIA Review Item Area
ROD Record of Decision

RSL Regional Screening Level

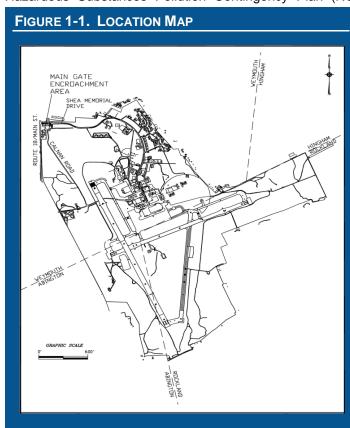
SSL Soil Screening Level
SI Site Investigation
TAL Target Analyte List
TCL Target Compound List

U.S.C. United States Code

USGS United States Geological Survey

VOC volatile organic compound

VPH volatile petroleum hydrocarbons


1.0 DECLARATION

1.1 SITE NAME AND LOCATION

The Main Gate Encroachment Area (MGEA) site is Operable Unit 26, an Area of Concern (AOC) at the former Naval Air Station (NAS) South Weymouth, Weymouth, Massachusetts, United States Environmental Protection Agency (EPA) ID number MA2170022022.

1.2 STATEMENT OF BASIS AND PURPOSE

This Record of Decision (ROD) presents the No Further Action (NFA) decision at the Main Gate Encroachment Area at the former NAS South Weymouth (see Figure 1-1). The decision was made in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, 42 United States Code (U.S.C.) §9601, et seq, and the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This decision is based on information

contained in the Administrative Record for the site, which is available for review at the Navy's Caretaker Site Office located at the former NAS South Weymouth and also at public Information Repositories maintained at libraries in the abutting towns of Wevmouth. Abington, Rockland, and Hingham. The Navy and EPA have agreed on the NFA decision for this site and the Massachusetts Department Environmental Protection (MassDEP) concurs (see Appendix A for MassDEP concurrence letter).

1.3 DESCRIPTION OF SELECTED REMEDY

The Navy and EPA, in consultation with MassDEP, have determined that no further CERCLA remedial action is necessary at the Main Gate Encroachment Area to protect the public health and welfare or the environment from actual or threatened releases of hazardous substances, pollutants, or contaminants into the environment. NFA under CERCLA is the Selected Remedy for the MGEA site.

1.4 STATUTORY DETERMINATIONS

Potential threats to human health and the environment have been removed at the MGEA site; therefore, no further remedial action is required. This NFA determination meets the requirements of CERCLA Section 121 and the NCP. Under CERCLA, if no unacceptable risks to human health or the environment are identified, then no further action, investigation, or monitoring is required. Because no hazardous substances, pollutants, or contaminants remain at the site in excess of levels that allow for unlimited use and unrestricted exposure, five-year reviews are not required.

The Selected Remedy will allow for the reasonably anticipated future land use, which is primarily commercial with open space along the eastern site boundary. This ROD documents the final remedy for the MGEA site and does not include or affect any other sites at former NAS South Weymouth.

1.5 AUTHORIZING SIGNATURES

This ROD documents that No Further Action is necessary to ensure protection of human health and the environment at the Main Gate Encroachment Area at the former NAS South Weymouth. MassDEP's statement on the selected decision is presented in Appendix A.

Concur and recommend for implementation:

David A. Barney

BRAC Environmental Coordinator

Former Naval Air Station South Weymouth

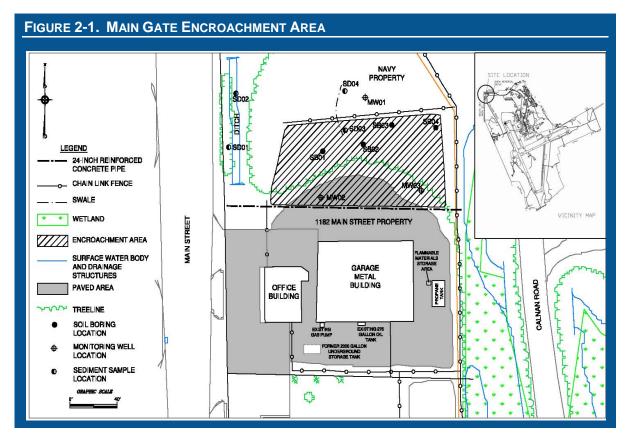
U.S. Navy

Date

9/14/11

Concur and recommend for implementation:

James T. Owens, III Director, Office of Site Remediation and Restoration


EPA Region 1 - New England

Date

2.0 DECISION SUMMARY

2.1 SITE NAME, LOCATION, AND BRIEF DESCRIPTION

The former NAS South Weymouth (the Base), EPA ID number MA2170022022, is located primarily in the Town of Weymouth, Massachusetts. Portions of the Base extend into the adjacent Towns of Abington and Rockland, Massachusetts. The MGEA site is located within the Weymouth portion of the Base (Figures 1-1 and 2-1). The Base was developed during the 1940s for dirigible aircraft used to patrol the North Atlantic during World War II. The facility was closed at the end of the war and was reopened in 1953 as a Naval Air Station for aviation training. The Base was in continuous use from that time until it was operationally closed on September 30, 1996, and was administratively closed on September 30, 1997. NAS South Weymouth was placed on the National Priorities List (NPL) in May 1994 by EPA, pursuant to CERCLA.

The site occupies about 0.36 acres in the northwest corner of the base, approximately 250 feet south of the intersection of Main Street (Route 18) and Shea Memorial Drive, which is the main entrance to the former NAS South Weymouth. In 2007 and 2008 when the Navy conducted an investigation of the MGEA site, equipment (trucks, cement mixer, roll-off containers, etc.) and debris piles (brick, sand, asphalt, and piping) from an abutting property were stored, without the Navy's permission, on Navy property (Figure 2-2). This apparent **encroachment** onto the Base was associated with business activities at 1182 Main Street, Weymouth, Massachusetts (Figure 2-1). Past and current businesses at that location include a tree and landscaping service, roofing contractor, and maintenance company that does property maintenance for condominiums, apartments and office buildings, in addition to sewer infrastructure, concrete pad, and bituminous repair work. A records review (conducted as part of the investigation) indicated that materials used or stored on the 1182 Main Street property included paints, lacquers, adhesives, pesticides, wood preservatives, motor oil and concrete sealer.

Based on visual observations, encroachment onto Navy property extended approximately 100 feet north from the 1182 Main Street/Navy property line. The encroachment area is bounded by Navy property to the north and east, a drainage ditch and Main Street to the west, and by an underground reinforced concrete pipe and newly-installed (2011) fence along the property line to the south (Figure 2-1).

2.2 SITE HISTORY AND ENFORCEMENT ACTIVITIES

Surface and subsurface soil, sediment, and groundwater samples were collected at the MGEA site as part of a 2007 to 2008 Site Investigation (SI). The debris and equipment were removed from the site by the abutting property owner, after which a removal action was implemented by the Navy to remove impacted soil and sediment from the MGEA site. Table 2-1 provides brief summaries of investigations and removal actions performed at the site.

Table 2-1. Investigations, Removal Actions, And Site Documentation										
INVESTIGATION	DATE	ACTIVITIES								
SI	2007 - 2008	During redevelopment and landscaping of the main entrance to the Base, the Navy was notified of encroachment of a nearby business onto Navy property. The Navy performed a file review and site inspection in 2007 to research ownership history and past site activities and to determine possible impacts from the encroachment. Surface and subsurface soil samples from seven soil boring locations (three of which were completed as monitoring wells), groundwater samples from the three wells, and sediment samples from four locations were collected in 2008. All samples were analyzed for the Target Compound List (TCL) volatiles, semi-volatiles (including low-level polycyclic aromatic hydrocarbons (PAHs)), pesticides, and polychlorinated biphenyls (PCBs), Target Analyte List (TAL) metals, cyanide, and extractable and volatile petroleum hydrocarbons (EPH/VPH). The results were compared to human health and ecological risk-based benchmarks and were summarized								

5

Table 2-1. Investigations, Removal Actions, And Site Documentation									
Investigation	DATE	ACTIVITIES							
		in a 2008 field report (Tetra Tech, 2008). PAHs, and to a lesser extent pesticides, metals and EPH, were detected in soil and sediment at concentrations that exceeded screening criteria.							
Engineering Evaluation/Cost Analysis (EE/CA)	2010	Based on the elevated concentrations of SVOCs, primarily PAHs, and pesticides in soil and sediment, the Navy, in consultation with the regulatory agencies, decided to conduct a removal action and prepared an EE/CA (Tetra Tech, 2010a). The EE/CA compared the cost and effectiveness of three alternatives: (1) no action; (2) excavation and off-site disposal of soil and sediment; and (3) limited sediment excavation, installation of an asphalt cap, and monitoring. The report recommended excavation and off-site disposal, which included post-excavation confirmatory sampling, site restoration, and construction of a berm and fence to prevent reencroachment. Cleanup goals for the recommended removal action were selected based on ecological and human health risk-based values and Base background values.							
Action Memorandum	2010	The Action Memorandum documented the Navy's decision to conduct a non-time-critical removal action (NTCRA) at the MGEA site (Tetra Tech, 2010b).							
NTCRA	2011	Soil from the encroachment area was removed to a minimum depth of 3.5 feet at 11 grid locations. Sediment from the swale grid was removed to a depth of 1 foot; and sediment was removed from two grids covering the drainage ditch. Post-excavation samples were collected; based on confirmatory sample results additional excavation was conducted at some grids to achieve cleanup goals. Once the excavation activities were completed, the excavated areas were backfilled with clean fill and topsoil and reseeded. Approximately 1,700 cubic yards of stockpiled soil and sediment were characterized and transported off-site to a licensed disposal facility.							
Risk Screening Evaluation	2011	Because confirmatory sample results from the second round of excavation showed a few exceedances of soil and sediment cleanup goals, a risk screening evaluation was conducted using the second round of confirmation data (excluding results for sidewall locations adjacent to the abutter's property). The screening evaluation concluded that the residual chemical concentrations in soil and sediment would not result in an unacceptable risk for future residents, and although the site is not zoned for residential use, it could be considered suitable for unrestricted use. This evaluation was included in the Removal Action Completion Report (Shaw, 2011).							
Groundwater Sampling Event	2011	In June 2011, groundwater samples were collected from the three monitoring wells previously sampled in 2008 to determine groundwater quality after completion of the NTCRA. The samples were analyzed for PAHs, metals, and pesticides; the results were compared to the 2008 groundwater results, federal drinking water standards, state groundwater standards, and applicable Base background values. The 2011 results did not exceed any standards and were similar to 2008 results. The event was summarized in a Technical Memorandum (Tetra Tech, 2011).							

There have been no cited violations under federal or state environmental law or any past or pending enforcement actions pertaining to the cleanup of the MGEA site.

2.3 COMMUNITY PARTICIPATION

The Navy performs public participation activities in accordance with CERCLA and the NCP throughout the CERCLA site cleanup process at the former NAS South Weymouth. The Navy has kept the community and other interested parties apprised of environmental activities through informational meetings, fact sheets, press releases, public meetings, regular contact with local officials, and a public website. Also, the Navy meets on a regular basis with the Restoration Advisory Board (RAB), which is composed of community leaders, government agency representatives, and local citizens, to discuss the

progress of the environmental cleanup activities at former NAS South Weymouth. Representatives from the Navy, EPA Region 1, MassDEP, and local government attend public meetings and hearings. A brief summary of public outreach efforts for the MGEA site is provided below.

The RAB has met frequently since its inception in 1995 and currently meets bi-monthly. A presentation on the NTCRA was given at the July 2010 RAB meeting, and the April 2011 RAB meeting presented the results and next steps to close out the MGEA site. Other RAB meetings included brief updates of site investigation activities, results, and the progress of the removal action, as they occurred. The Navy has generated an index of the Administrative Record to identify the documents used in the decision-making process for this ROD. The index is provided in Appendix D of this ROD. The Administrative Record files are available for public review at several locations, where Information Repositories for the former NAS South Weymouth have been established. These include the Tufts Library in Weymouth, Massachusetts; the Abington Public Library in Abington, Massachusetts; the Hingham Public Library in Hingham, Massachusetts; the Rockland Memorial Library in Rockland, Massachusetts; and the United States Department of the Navy, Caretaker Site Office, Weymouth, Massachusetts.

The Navy distributed copies of the Proposed Plan to approximately 320 community members, local elected officials, and the local Information Repositories. In accordance with Sections 113 and 117 of CERCLA, the Navy provided a public comment period from July 25 to August 25, 2011, for the proposed NFA decision described in the Proposed Plan for the MGEA site. A public meeting to present the Proposed Plan was held on August 2 2011, at the New England Wildlife Center in Weymouth. **Public notice** of the meeting and availability of documents was published in the *Patriot Ledger* on July 25, 2011, *Weymouth News* on July 27, 2011, and *Rockland Mariner/Standard* on July 29, 2011.

2.4 SCOPE AND ROLE OF OPERABLE UNIT

The Navy is the lead agency and EPA is the lead regulatory agency for CERCLA activities at former NAS South Weymouth. MassDEP also comments on environmental site activities. The United States Department of Defense is the sole source of cleanup funding for the property under the Navy Base Realignment and Closure (BRAC) program. There are several Operable Units at former NAS South Weymouth that the Navy is addressing under CERCLA, all of which progress through the CERCLA cleanup process independent of one another. This ROD pertains to the Main Gate Encroachment Area, Operable Unit 26.

The MGEA site was investigated and the results evaluated in accordance with the Environmental Baseline Survey (EBS) process. In the EBS program, sites are designated as CERCLA AOCs when CERCLA hazardous substances are detected in excess of human health or ecological risk-based benchmarks and applicable Base background values. The Navy has conducted either risk assessments or removal actions at the various AOCs. The Main Gate Encroachment Area was designated as an AOC based on the results of the SI. The Navy conducted a removal action to mitigate potentially unacceptable risks posed by elevated concentrations of SVOCs, primarily PAHs, and pesticides in soil and sediment at the site.

The ROD for the MGEA site is one component of the Superfund program at former NAS South Weymouth. The site has proceeded on an independent track from the other Operable Units and AOCs to enable the Navy to expedite site closure and property transfer. The signing of this ROD by the Navy and EPA indicates the completion of the CERCLA process for the MGEA site. No additional actions or investigations of the site are required under CERCLA. The selected NFA decision for the MGEA site is not expected to have an impact on the strategy or progress for the remaining environmental sites at former NAS South Weymouth. Additional details on the strategy and schedule for the remediation of the other Operable Units and a schedule for AOC activities at former NAS South Weymouth are available in the Navy's Site Management Plan, which is updated regularly.

2.5 SITE CHARACTERISTICS

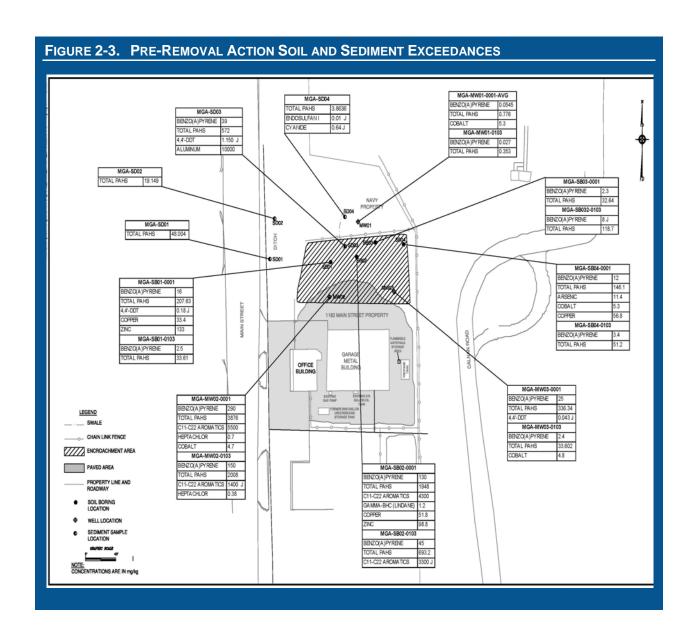
Figure 2-1 shows the area on Navy property where encroachment occurred, near the main entrance to the Base along Main Street (Route 18). Although the source of contamination in this area (the MGEA) was not definitively identified, it was suspected that the contamination was the result of business activities associated with operations at the abutting property, which had extended onto Navy property.

2.5.1 Physical Characteristics

As discussed in Section 2.1, the MGEA site is approximately 0.36 acres and is located approximately 250 feet south of the intersection of Main Street and Shea Memorial Drive. At the time of the SI, most of the site was tree-covered, except for a paved area in the southern portion. Based on visual observations, encroachment onto Navy property was evident in the southern portion, approximately 100 feet north of the 1182 Main Street property boundary. A **drainage ditch** is located in the western portion of the site, and a drainage **swale** is located in the center of the northern encroachment boundary; both are oriented north-south. The land in this area slopes gradually toward the north. **Groundwater flow** is toward the southeast.

During 2007 SI activities, various types of non-Navy equipment and material were observed on Navy property in an area covered by an asphalt parking area that was partially covered by a layer of soil and sand. The asphalt parking area extended to a chain-link fence located along the northern boundary of the encroachment area, dividing the encroachment area from other Navy property to the north. This fence was of more recent construction than the Navy property fence and did not appear to be associated with the Base infrastructure.

2.5.2 Nature and Extent of Contamination


Sediment, surface and subsurface soil, and groundwater samples were collected and analyzed during the 2007 and 2008 SI, as summarized in Table 2-1 and discussed in the Field Investigation Report (Tetra Tech, 2008) and EE/CA (Tetra Tech, 2010). Analytical results for soil and sediment were compared to Massachusetts Contingency Plan (MCP) S-1/GW-1 criteria, EPA Region 9 human health risk-based Regional Screening Levels (RSLs) for residential soil and EPA Soil Screening Levels (SSLs) for the protection of groundwater, ecological Data Quality Levels (DQLs), and applicable Base background values. Groundwater analytical results were compared to tapwater RSLs, applicable Base background values, federal drinking water standards [Maximum Contaminant Levels (MCLs)]; and state groundwater standards (MCP Method 1 GW-1) applicable to groundwater that is a current or potential drinking water resource. A complete summary of sediment, surface and subsurface soils, and groundwater results, compared to the referenced criteria, is included in Appendix C.

Soil and Sediment

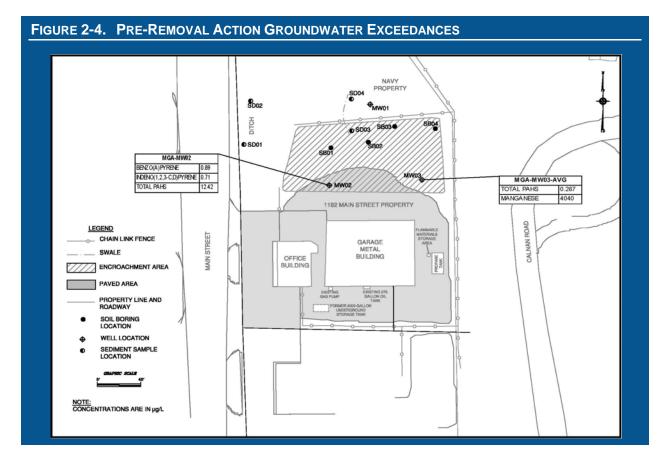
Figure 2-3 shows the locations where soil and sediment sampling results exceeded applicable Base background values and one or more human health or ecological risk-based criteria. For PAHs, maximum concentrations of benzo(a)pyrene are presented on Figure 2-3 to represent PAH concentrations because benzo(a)pyrene was detected at all soil and sediment sampling locations, and concentrations exceeded one or more human health or ecological screening criteria at all locations. The total PAH concentration at a location is the sum of all PAH concentrations detected at that location. The complete sediment, surface and subsurface soil results, compared to the referenced criteria, are included in Appendix C, Tables 2-1, 2-2 and 2-3.

Of the 17 PAHs detected at the site, concentrations of 14 in sediment and 10 in soil exceeded risk-based screening criteria and Base background values. The maximum concentrations of most PAHs in both surface and subsurface soil were detected at boring location MW02 (adjacent to the Navy/abutter's property line), and the lowest concentrations were detected at boring location MW01 (north and upgradient of the encroachment area). The concentration of one PAH, benzo(a)pyrene, exceeded the

human health RSL and the Base background value for subsurface soil at each of the seven soil sample locations and at one sediment location (SD03) within the swale. The MCP Method 1 S-1/GW-1 soil criterion for benzo(a)pyrene was also exceeded at all of the same locations except MW01. Total PAH concentrations exceeded the ecological screening criteria at all sediment locations except SD04, and at all soil locations except MW01. Concentrations of other PAHs, one EPH fraction (C11-C22 aromatics), four pesticides, cyanide, and five metals also exceeded risk-based screening criteria and applicable Base background values at various locations, as shown on Figure 2-3 and in the data summary tables included in Appendix C. Based on these results, the Navy, in consultation with EPA and MassDEP, decided to conduct a NTCRA to remove soil and sediment at the site with contaminant concentrations exceeding risk-based screening levels and applicable background values, and thereby eliminate potentially unacceptable risk.

Groundwater

Groundwater samples were collected in March 2008 from three monitoring wells installed during the SI. The results for detected analytes that exceeded federal or state drinking water standards, or applicable Base background values and RSLs when no drinking water standards exist, are presented on Figure 2-4. The groundwater results compared to the referenced criteria are included in Appendix C, Table 2-4.


Two PAHs, benzo(a)pyrene and indeno(1,2,3-cd)pyrene, were detected in MW02 (adjacent to the Navy/abutter's property line) at concentrations that exceeded the MCP Method 1 GW-1 standards. Trace concentrations of other PAHs were detected in these two wells; no PAHs were detected in the upgradient well (MW01). Manganese was the only metal detected at a concentration that exceeded the RSL and Base background level (MW03). Trace concentrations of volatile organic compounds (VOCs) were detected in MW02 and MW03; no VOCs were detected in MW01. No pesticides or PCBs were detected in any of the wells.

2.6 CURRENT AND POTENTIAL FUTURE SITE AND RESOURCES USES

The former NAS South Weymouth was designated for closure under the BRAC Act of 1990, as part of the BRAC Commission's 1995 Base Closure List (BRAC IV). In September 1996, operational closure of the former NAS South Weymouth began with the transfer of aircraft to other Navy facilities and through personnel reduction. The former NAS South Weymouth was closed administratively under BRAC on September 30, 1997. Base property will be transferred to the local redevelopment authority, the South Shore Tri-Town Development Corporation (SSTTDC) for development in accordance with the 2005 Reuse Plan.

The site remains part of the former NAS South Weymouth; however, the Navy plans to transfer the property as part of redevelopment of the Base. The site is primarily zoned as a commercial district with an area of open space located along the eastern side of the site (SSTTDC, 2005a). No residential use is planned for the MGEA site.

In accordance with MassDEP policy, all medium and high-yield **aquifers** mapped by the United States Geological Survey (USGS) are considered to be potentially productive aquifers (PPAs) or drinking water source areas unless they have been specifically excluded as such by the MassDEP. The closest mapped aquifer to the MGEA site is a medium-yield aquifer located approximately 1,000 feet south of the site. MassGIS shows that the MGEA site is located in a different drainage basin than most of the Base, including this medium-yield aquifer. Currently, there are no public water supply wells located on the Site and the Town of Weymouth supplies the water for the ongoing phase of development. SSTTDC and the developer have no plans to use groundwater as a drinking water source in the future.

2.7 SUMMARY OF POTENTIAL SITE RISKS

During the 2008 SI, soil, sediment, and groundwater samples were collected and analyzed for a wide range of contaminants. The validated laboratory results were compared to human health risk-based benchmarks, ecological risk-based benchmarks, and when available, applicable base background values. The exceedances of screening values indicated potential unacceptable risks to human health and the environment at the site associated with PAHs, pesticides, and metals in soil and with semivolatile organic compounds (mainly PAHs) and pesticides in sediment. Because of the potential for human and/or ecological exposure to these chemicals in soil and sediment, the Navy, with input from EPA and MassDEP, concluded that a removal action under CERCLA was required. An EE/CA and Action Memorandum were prepared to evaluate, select, and document a removal action alternative that would provide long-term effectiveness and permanent protection of human health and the environment.

2.7.1 EE/CA

The Navy completed an EE/CA to develop and evaluate alternatives for a NTCRA to address potentially unacceptable risks to human health and the environment. The EE/CA evaluated three alternatives: (1) no action; (2) excavation and off-site disposal; and (3) asphalt capping and selective excavation. The Navy selected excavation and off-site disposal because this alternative best satisfied the evaluation criteria and would provide a permanent solution. The removal action as described in the EE/CA included excavation, transportation, and off-site disposal of contaminated soil and sediment. Following excavation, the removal areas were backfilled, graded to the pre-existing base grade elevations present across the site, and replanted to restore the surface vegetation and protect the area from erosion. An Action Memorandum documenting the selected alternative was signed by the Navy on July 12, 2010. The EE/CA included cleanup goals for sediment and soil to be used during the NTCRA to determine the extent of excavation (see Section 2.7.2). Based on the completion of the removal action, the site is suitable for unlimited use and unrestricted exposure.

Because groundwater associated with the MGEA site is not a drinking water source, is not classified as a potential drinking water aquifer, and the two PAH exceedances were the same order of magnitude as the MCLs and MCP GW-1 standards, no action directly related to groundwater was proposed in the EE/CA. However, the EE/CA recommended that a round of groundwater samples be collected approximately three months after completion of the excavation activities to evaluate pre- and post-removal action conditions (see Section 2.7.3).

2.7.2 Non-Time-Critical Removal Action

The Navy conducted an NTCRA at the MGEA site from January to April 2011 that included the following:

- Excavation of soil with PAH, pesticide, and metals concentrations exceeding risk-based cleanup goals.
- Excavation of sediment from the western drainage ditch and central swale with PAH and pesticide concentrations greater than risk-based cleanup goals.
- Construction of a berm and permanent fence along the Navy/abutter property line to prevent further encroachment and runoff onto the site.

For the NTCRA, the cleanup goals for soil (Table 2-2) were the Base background soil values, except for fluoranthene and pyrene (the EPA risk-based SSL for groundwater protection) and phenanthrene (MCP S-1/GW-1 criteria for soil). The cleanup goals for sediment (Table 2-3) were Base background sediment values, except for dibenzofuran and acenapthene, for which risk-based ecological benchmarks were used. Tables 2-2 and 2-3 also show the maximum concentration of each COC both pre- and post-removal.

TABLE 2-2. SOIL CONCENTRATIONS AND CLEANUP GOALS										
CHEMICALS	(MG/KG)									
OF CONCERN	PRE-REMOVAL MAXIMUM CONCENTRATION	CLEANUP GOAL	SELECTION BASIS	Post-Removal Maximum Concentration						
Benzo(a)anthracene	310	0.81	Background	0.44						
Benzo(a)pyrene	290	1.83	Background	0.37						
Benzo(b)fluoranthene	280	0.77	Background	0.34						
Benzo(k)fluoranthene	280	2.7	Background	NR						
Chrysene	310	1.4	Background	0.43						
Dibenzo(a,h)anthracene	67	0.096	Background	0.08						
Fluoranthene	620	160	HH risk	0.25						
Indeno(1,2,3-cd)pyrene	150	0.175	Background	0.21						
Phenanthrene	500	10	HH risk	0.63						
Pyrene	600	120	HH risk	0.81						
Gamma-BHC (Lindane)	1.2	0.015	Background	ND						
Heptachlor	0.7	0.018	Background	ND						
Arsenic	12.2	5.31	Background	3.4						
Cobalt	5.3	3.98	Background	5.0						
Iron	13000	11300	Background	11000						

Notes:

HH - human health

ND - Not Detected

NR - Not Reported

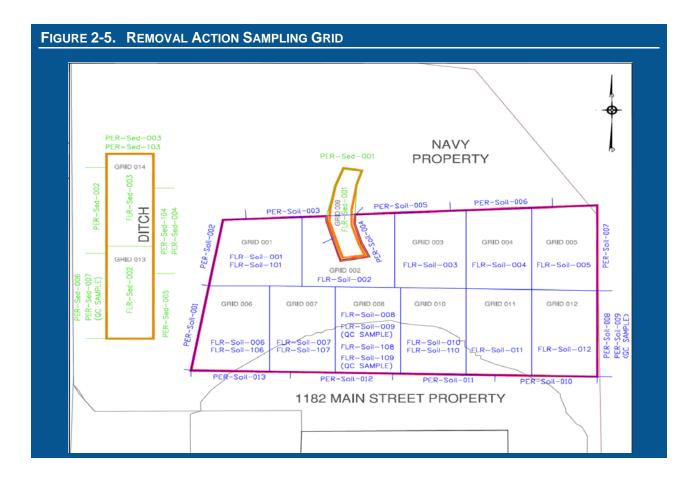

Numbers in bold and italics indicate exceedance of the cleanup goal

TABLE 2-3. SEDIMENT CONCENTRATIONS AND CLEANUP GOALS										
CHEMICALS		(M	ig/kg)							
OF CONCERN	PRE-REMOVAL MAXIMUM CONCENTRATION	CLEANUP GOAL	SELECTION BASIS	Post-Removal Maximum Concentration						
Acenaphthene	7.0	0.15	Eco risk	0.19						
Anthracene	24	0.436	Background	0.45						
Benzo(a)anthracene	46	1.4	Background	1.48						
Benzo(a)pyrene	41	3.447	Background	0.92						
Benzo(b)fluoranthene	37	2	Background	0.71						
Benzo(g,h,i)perylene	29	0.375	Background	0.33						
Benzo(k)fluoranthene	47	1.1	Background	0.74						
Chrysene	51	1.7	Background	1.41						
Dibenzo(a,h)anthracene	8.9	0.19	Background	0.22						
Dibenzofuran	4.5	0.42	Eco risk	0.11						
Fluoranthene	120	3	Background	2.56						
Fluorene	6.1	0.13	Background	0.25						
Indeno(1,2,3-cd)pyrene	26	0.49	Background	0.41						
Phenanthrene	74	1.4	Background	1.88						
Pyrene	91	2.3	Background	2.34						
Total PAHs	612.5	14.82	Background	14.12						
4,4-DDT	1.2	0.29	Background	0.099						
Endosulfan I	0.01	0.0086	Background	ND						

Notes:

Numbers in bold and italics indicate exceedance of the cleanup goal

Approximately 1,700 cubic yards of soil and sediment were removed from Navy property, characterized, and transported off site to a licensed disposal facility. Excavation of the soil removal area was to a minimum depth of 3.5 feet below ground surface (bgs), with the actual limits confirmed by sidewall and excavation floor analytical samples. Post-excavation confirmatory samples were collected every 1,000 square feet from the excavation area floors and every 40 linear feet along the sidewalls (see Figure 2-5). Additional excavation was required in five floor locations (FLR-soil-101 and 106 thru 110 on Figure 2-5) based on PAH exceedances in confirmatory samples. Excavation of sediment from the ditch along Main Street was conducted in March 2011 after the soil excavation was completed. The northern half of the ditch (Figure 2-5, Grid 014) was excavated to a depth of 1 foot bgs, and the southern half (Grid 013) was excavated to 3 feet bgs. A separate swale in the center of the encroachment area (Grid 009) was excavated to a depth of 1 foot bgs. Post-excavation samples were collected in the same manner as for the soil removal area (see Figure 2-5). Due to PAH exceedances, additional excavation was required along three sidewalls (northern, eastern, and western) of the ditch excavation area.

PAH concentrations in all four sidewall confirmation samples collected from the southern excavation boundary (along the abutter's property line) exceeded the cleanup goals. The Navy, EPA and MassDEP agreed that additional excavation or sampling in that direction was not required because the excavation was already at the extent of the Navy's property line. At a few other locations (floor along the abutter's property line, ditch floor, and ditch sidewall close to the Main Street roadway) confirmatory soil and sediment results slightly exceeded the cleanup goals following the second round of excavation. Because of the close proximity to the roadway and structural concerns with further excavation in that direction, the Navy, with input from EPA and MassDEP, agreed to perform a risk screening evaluation using post-excavation confirmatory sample analytical results. The risk screening evaluation, described in Appendix F of the Removal Action Completion Report (Shaw, 2011), included all post-removal data except that from the four sidewall samples collected along the abutter's property line (Figure 2-5, PER-Soil-010 through -013). The results of the risk screening indicated that residual concentrations on the Navy property posed no unacceptable risk; therefore, no additional excavation was necessary.

Upon completion of excavation and analysis of all confirmation samples, the excavated areas were backfilled with clean fill (1,200 cubic yards of common fill and 500 cubic yards of topsoil) to pre-excavation topographic elevations. The chain link fence that was erected along the Navy/abutter's property line was left in place, a soil berm was constructed, and the site was graded to prevent surface water runoff from the adjacent property from flowing onto Navy property. Topsoil and grass seed (covered with straw to minimize erosion) were added after other construction activities were completed. Erosion matting was added to the excavated ditches, and the temporary construction areas (access road, staging area, etc.) were removed and the area was reseeded. The removal action activities, confirmation sampling results, and risk evaluation were documented in the Removal Action Completion Report (Shaw, 2011). Post-restoration site conditions are shown in Figure 2-6.

2.7.3 Post-Removal Groundwater Sampling Event

Although no action directly related to groundwater was proposed, groundwater samples were collected from existing monitoring wells in June 2011 to evaluate post-removal conditions. As described in the EE/CA and in the Technical Memorandum Groundwater Sampling Event (Tetra Tech, 2011), these data were compared to the 2008 SI data and to various benchmarks. The comparison of the 2008 and 2011 groundwater results included the Technical Memorandum are provided in Appendix C, Table 4. The results show that there are no exceedances of federal MCLs or state MCP GW-1 standards and confirm that groundwater at the site has not been significantly impacted by activities that occurred at the encroachment area.

2.8 EXPECTED OUTCOMES OF SELECTED REMEDY

The removal action conducted at the MGEA site sufficiently reduced the elevated chemical concentrations documented in the EE/CA to eliminate potentially unacceptable risks on the Navy property. Therefore, the MGEA site poses no unacceptable risk to human health or the environment, as documented in the Removal Action Completion Report. In accordance with the current reuse plan, the site is zoned for commercial use with an area of open space along its eastern boundary. Based on the removal action and post-excavation screening results, no additional measures are required at the site to ensure protection of human health and the environment under the current or anticipated future uses; therefore, no further CERCLA action is necessary. Because no hazardous substances, pollutants, or contaminants remain at the MGEA site in excess of levels that allow for unlimited use and unrestricted exposure, five-year reviews are not required.

2.9 DOCUMENTATION OF SIGNIFICANT CHANGES

CERCLA Section 117(b) requires an explanation of significant changes from the selected remedy presented in the Proposed Plan that was published for public comment. No significant changes to the remedy, as originally identified in the Proposed Plan, were necessary or appropriate.

2.10 STATE ROLE

MassDEP has reviewed the relevant site information to determine if the selected decision is in compliance with applicable or relevant and appropriate state environmental and facility siting laws and regulations. MassDEP's concurrence on the selected decision in this ROD is presented in Appendix A.

3.0 RESPONSIVENESS SUMMARY

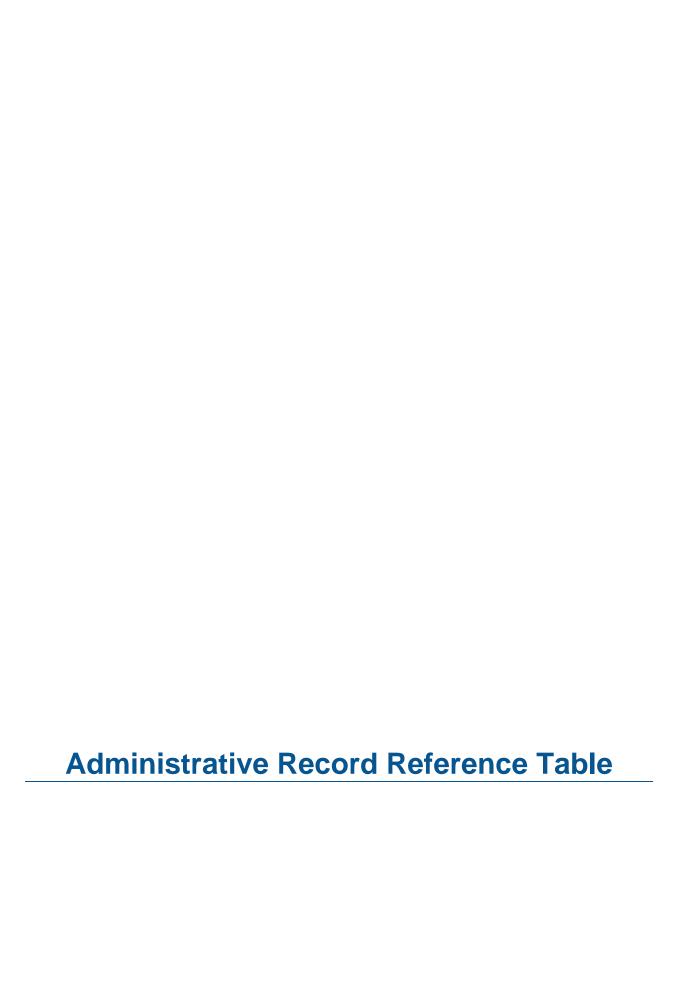

3.1 STAKEHOLDER COMMENTS AND LEAD AGENCY RESPONSES

Table 3-1. Summary of Comments from Public Comments	OMMENT PERIOD
Comment	Response
Mr. Matthew Brennan, Weymouth Health Department asked whether the risk assessment took into account exposures to workers installing piping or utilities or to people ingesting soil or tracking soil home. In addition he asked if any notification of the exceedances was required.	The risk screening evaluation included in the Removal Action Completion Report followed a procedure provided by the U.S. Environmental Protection Agency which was also consistent with other risk screenings conducted for NAS South Weymouth. The screening used a future residential exposure scenario, which is more conservative than the exposures mentioned in the comment. The evaluation, which used post-excavation confirmation sample data, showed that the concentrations remaining would not result in an unacceptable risk for a future resident. While the site is not zoned for future residential use, this receptor was used in the risk evaluation to be conservative. Based on completion of the removal action and this risk evaluation, the site can be considered suitable for unrestricted use. Since there are no restrictions on the site, there are no notifications required.
Mr. Harvey Welch, Weymouth resident, requested that the site be retested in a year to check and make sure nothing has happened.	The 2011 groundwater sample results did not exceed federal drinking water standards or state groundwater standards and were very similar to the 2007 data collected prior to the removal action. These criteria were used as a conservative means to evaluate the data even though the developer does not plan to use site groundwater as a drinking water supply. Both EPA and MassDEP accepted the groundwater sampling report without comment. While the monitoring wells at the site will remain in place until the Navy decommissions them, there are no plans for further sample collection. The Navy will take the request under consideration.
Mr. Dan Punchard, Rockland resident, expressed concerns about flooding and drainage into various towns and locations. He commented that there	As noted in the comment, Mr. Punchard's concerns about flooding relate to the drainage basins in the Weymouth area, not to the Main

Table 3-1. Summary of Comments from Public Comments	OMMENT PERIOD
Comment	Response
appears to be a lot going on in Quincy and Braintree and towns where there has been flooding in residential areas. He wondered if there are plans to change the stream or re-direct water from the drainage basin. While he noted that his concern is not specific to the Main Gate Encroachment Area, he is concerned about water flowing from the drainage basin and flooding areas of various towns during high rain flow. He asked if the water might be contaminated by a new sewerage plant or planned buildings. He suggested that an underground aqueduct be built to mitigate flooding in the area.	Gate Encroachment Area This concern is discussed in the SSTTDC/ LNR Final Environmental Impact Report (FEIR). The FEIR states that the project will reduce off-site flooding by providing on-site detention, increase groundwater recharge, and minimize impacts on wetlands and surface waters (FEIR, Section 9).
Mr. Michael Smart, Weymouth resident, asked if there are monitoring wells at the Site. He then asked if the Navy planned to re-sample the wells. He also asked how long the wells will remain in place.	There are three monitoring wells on the Site. The wells will remain in place until they are decommissioned and appropriately abandoned. However, the Navy has no current or future plans to re-sample the wells. The Navy has not yet determined whether the wells would be decommissioned before or after the Main Gate parcel is transferred.
He asked for the total volume of material removed, in cubic yards.	During the removal action a total of 1,700 cubic yards of material was excavated and transported off-site to a licensed disposal facility.
Ms. Anne Hilbert, Weymouth resident stated that she did not see any mention of a sign identifying the site as part of the base-wide Superfund site as was suggested at a RAB meeting.	Signs are not needed at the Site since the contamination that remains in the soil and sediment is at levels deemed acceptable.
While no action was required for groundwater she noted a concern about contaminants found in groundwater regardless of the amount. She stated that at a RAB meeting it was mentioned that the contaminants are not water soluble; she feels the Navy should do more to ease citizens' fears.	While PAHs, metals, and one pesticide were detected in the June 2011 groundwater samples, the concentrations did not exceed federal or state standards. EPA and MassDEP accepted the recommendation in the groundwater technical memorandum for no further groundwater sampling at the site. As noted in the minutes of the April 14, 2011 RAB meeting, the contamination at the Site adheres to the soil and is not easily dissolved in groundwater. The contamination was primarily in the soils, which were excavated and removed.
She also feels that there should be signs posted at all the Superfund sites at the Base.	The majority of the active sites at the Base either have signs or fencing. The Navy will re-evaluate installation of additional signage.

3.2 TECHNICAL AND LEGAL ISSUES

No technical or legal issues associated with the Main Gate Encroachment Area ROD were identified.

DETAILED ADMINISTRATIVE RECORD REFERENCE TABLE

Detailed site information referenced in this ROD in bold blue text can be found in the Administrative Record. For access to information contained in the Administrative Record for the Main Gate Encroachment Area, please contact the former NAS South Weymouth Caretaker Site Office, 1134 Main Street, Building 11, South Weymouth, Massachusetts, 02190.

İTEM	REFERENCE PHRASE IN ROD	Location in ROD	LOCATION OF INFORMATION IN ADMINISTRATIVE RECORD					
1	encroachment	Section 2.1	Tetra Tech (Tetra Tech NUS, Inc.), 2008. Field Investigation Report, Main Gate Encroachment Area. August. Pages 1-1 to 1-3.					
2	file review	Table 2-1	Tetra Tech, 2008.Pages 1-3 to 1-4.					
3	benchmarks	Table 2-1	Stone & Webster, 1998. Final Phase II EBS Sampling Work Plan (Rev. 1). 13 October. Pages 13 to17.					
4	recommended	Table 2-1	Navy, 2010. Action Memorandum, Non-Time Critical Removal Action, Main Gate Encroachment Area. Pages 4 to 5.					
5	non-time-critical removal action	Table 2-1	Shaw, 2011. Removal Action Completion Report, Main Gate Encroachment Area. May					
6	confirmatory sample results	Table 2-1	Shaw, 2011. Removal Action Completion Report, Main Gate Encroachment Area. May					
7	Public notice	Section 2.3	Navy, 2011. Proposed Plan, Main Gate Encroachment Area.					
8	drainage ditch	Section 2.5.1	Tetra Tech, 2008. Figure 1-2					
9	swale	Section 2.5.1	Tetra Tech, 2008. Figure 1-2					
10	Groundwater flow	Section 2.5.1	Tetra Tech, 2010. EE/CA for Main Gate Encroachment Area. January. Figure 2-3.					
11	Reuse Plan	Section 2.6	SSTTDC (South Short Tri-Town Development Corporation), 2005b. Reuse Plan for Naval Air Station South Weymouth.					
12	aquifers	Section 2.6	ENSR Corporation, 2006. Draft Hydrogeologic Investigations Technical Memorandum, Basewide Assessment. December. Figure 3-7.					

APPENDIX A: MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION LETTER OF CONCURRENCE

Refer to attached copy.

Commonwealth of Massachusetts

Executive Office of Energy & Environmental Affairs

Department of Environmental Protection

One Winter Street Boston, MA 02108 • 617-292-5500

DEVAL L PATRICK Governor

TIMOTHY P. MURRAY Lieutenant Governor RICHARD K. SULLIVAN JR. Secretary

KENNETH L. KIMMELL

Mr. James T. Owens, Director U.S. Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code: OSRR07-03 Boston, MA 02114-2023 Re: Record of Decision

Main Gate Encroachment Area (OU 26)

Former South Weymouth NAS MassDEP RTN 4-3002621

September 8, 2011

Dear Mr. Owens:

The Massachusetts Department of Environmental Protection (MassDEP) reviewed the Record of Decision, Main Gate Encroachment Area, Operable Unit 26, Naval Air Station South Weymouth, dated August 2011. The Record of Decision summarizes the results from the site investigation that was conducted to characterize the site, summarizes the results from the removal action that was conducted to address unacceptable risks to human health and the environment, and documents the Navy's rationale for selecting a No Further Action decision. MassDEP concurs with the selected decision.

If you have any questions or comments, please contact David Chaffin, Project Manager (617-348-4005), or Anne Malewicz, Federal Facilities Section Chief (617-292-5659).

Sincerety,

Paul Locke

Acting Assistant Commissioner Bureau of Waste Site Cleanup

cc:

D. Barney, USN-S. Weymouth

C. Keating, USEPA

Chief Executive Officer, SSTTDC

RAB Members

J. Naparstek, MADEP-Boston

APPENDIX B: REFERENCES

ENSR Corporation (ENSR), 2006. Draft Hydrogeologic Investigations Technical Memorandum, Basewide Assessment. Naval Air Station South Weymouth, Weymouth, Massachusetts. December.

EPA, 2009. Regional Screening Levels for Chemical Contaminants at Superfund Sites. Oak Ridge National Laboratory (ORNL). http://epa-prgs.ornl.gov/chemicals/index.shtml. April.

Shaw, 2011. Removal Action Completion Report, Main Gate Encroachment Area. Naval Air Station South Weymouth, Weymouth, Massachusetts. July.

South Shore Tri-Town Development Corporation (SSTTDC), 2005a. Zoning and Land Use By-Laws for the Naval Air Station South Weymouth. May 5, 2005.

SSTTDC, 2005b. Reuse Plan for Naval Air Station South Weymouth. May 5, 2005.

Tetra Tech, 2008. Field Investigation Report, Main Gate Encroachment Area, Naval Air Station South Weymouth, Weymouth, Massachusetts. August.

Tetra Tech, 2010a. Engineering Evaluation/Cost Analysis for Main Gate Encroachment Area, Naval Air Station South Weymouth, Weymouth, Massachusetts. January.

Tetra Tech, 2010b. Non-Time Critical Removal Action Memorandum Main Gate Encroachment Area. July.

Tetra Tech, 2011. Technical Memorandum Groundwater Sampling Event for Main Gate Encroachment Area. Former Naval Air Station South Weymouth, Weymouth, Massachusetts. June.

U.S. Navy, 2011. Proposed Plan, Main Gate Encroachment Area, Operable Unit 26, Naval Air Station South Weymouth, Weymouth, Massachusetts. June.

APPENDIX C: ANALYTICAL RESULTS

Refer to attached copy.

TABLE 2-1 SEDIMENT ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS PAGE 1 OF 2

SAMPLE ID					MGA-SD-SD01-	MGA-SD-SD02-	MGA-SD-SD03-	MGA-SD-SD03-	MGA-SD-SD03-	MGA-SD-SD04-
					0.00.5	0.00.5	0.00.5	0.00.5-D	0.00.5-AVG	0.00.5
LOCATION ID	'				MGA-SD01	MGA-SD02	MGA-SD03	MGA-SD03	MGA-SD03	MGA-SD04
TOP DEPTH					0	0	0	0	0	0
BOTTOM DEPTH	'				0.5	0.5	0.5	0.5	0.5	0.5
SAMPLE DATE	,				02/28/08	02/28/08	02/28/08	02/28/08	02/28/08	02/28/08
SAMPLE CODE	'		MCP		NORMAL	. NORMAL	ORIG	DUP	AVG	NORMAL
PARAMETER	RSL	ECODQL	S-1/GW-1	BKG						
VOLATILES (UG/KG)		U	L. L.		•	•			•	
2-BUTANONE	2800000	270	4000		18	25 U	25 UJ	25 UJ	25 UJ	26 UJ
METHYLENE CHLORIDE	11000	370	100		25 U	25 U	1 J	25 U	6.75 J	26 UJ
TOTAL CHLORINATED VOCS					5 U	5 U	1	5 U	1.75	5 U
TRICHLOROFLUOROMETHANE	80000				5 U	1 J	5 U	5 U	5 U	5 UJ
SEMIVOLATILES (UG/KG)	J				ı			I.	ı	l .
2-METHYLNAPHTHALENE	31000	65	700		84	14 J	1400 J	1500 J	1450 J	30 U
2-METHYLPHENOL	310000	12			52 U	35 UJ	31 J	30 J	30.5 J	30 U
ACENAPHTHENE	340000	150	4000	83	580	84	6800 J	7000 J	6900 J	28 J
ACENAPHTHYLENE	340000	150	1000	257.92	52 U	21 J	31 U	32 U	31.5 U	9.6 J
ANTHRACENE	1700000	57	1000000	435.6	1700	260	20000	24000	22000	54 J
BENZO(A)ANTHRACENE	150	108	7000	1400	3700	1600	41000	46000	43500	280
BENZO(A)PYRENE	15	150	2000	3446.52	3200	1800	37000	41000	39000	310
BENZO(B)FLUORANTHENE	150	1800	7000	2000	3100	1700	36000	37000	36500	330
BENZO(G,H,I)PERYLENE	170000	170	1000000	374.77	2200	1200	22000	29000	25500	260 J
BENZO(K)FLUORANTHENE	1500	240	70000	1100	3800	1800	37000	47000	42000	330
CARBAZOLE					1000 J	580 UJ	14000 J	15000 J	14500 J	490 UJ
CHRYSENE	15000	166	70000	1700	4100	1800	45000	51000	48000	340
DIBENZO(A,H)ANTHRACENE	15	33	700	190	530	230 J	6700 J	8900 J	7800 J	62 J
DIBENZOFURAN		420		57	860 U	580 U	4500	4500	4500	490 U
FLUORANTHENE	230000	420	1000000	3000	10000	3700	100000	120000	110000	800
FLUORENE	230000	77.4	1000000	130	600	110 J	5900 J	6100 J	6000 J	28 J
INDENO(1,2,3-CD)PYRENE	150	200	7000	490	2000	1100	21000	26000	23500	230 J
NAPHTHALENE	3900	176	4000		210	30 J	2400 J	3000	2700 J	4 J
PHENANTHRENE	170000	204	10000	1400	5200	1200	70000	74000	72000	310
PHENOL	1800000	48	1000		29 J	35 U	31 U	32 U	31.5 U	30 UJ
PYRENE	170000	195	1000000	2300	7000	2500	79000	91000	85000	520
TOTAL PAHS		1610		14819	48004	19149	531200	612500	572000	3895.6
EPH MADEP (MG/KG)										
C11-C22 AROMATICS			1000		180 J	57 J	980	1100	1040	30 UJ
C11-C22 AROMATICS-UNADJ			1000		180 J	57 J	980	1100	1040	30 UJ
C19-C36 ALIPHATICS			3000		140 J	35 U	460	470	465	100 J
C9-C18 ALIPHATICS			1000		52 UJ					30 UJ

TABLE 2-1 SEDIMENT ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS PAGE 2 OF 2

SAMPLE ID						MGA-SD-SD02-				
LOCATION ID	+				0.00.5 MGA-SD01	0.00.5 MGA-SD02	0.00.5 MGA-SD03	0.00.5-D MGA-SD03	0.00.5-AVG MGA-SD03	0.00.5 MGA-SD04
TOP DEPTH	+				0			0		
BOTTOM DEPTH	+				0.5	_	0.5	0.5	_	0.5
SAMPLE DATE	+				02/28/08		02/28/08	02/28/08	02/28/08	02/28/08
SAMPLE CODE	+				NORMAL	NORMAL		DUP	AVG	NORMAL
PARAMETER	RSL	ECODQL	MCP S-1/GW-1	BKG	110111111111111111111111111111111111111				70	
PESTICIDES/PCBS (UG/KG)	INOL	LCODQL	3-1/GW-1	DNG						
4.4'-DDD	2000	4.88	4000	730	5.9 J	1.2 UJ	100 UJ	100 UJ	100 UJ	9.6 J
4.4'-DDE	1400	3.16	3000	234.28	40			100 U	100 U	8 J
4.4'-DDT	1700	4.16	3000	290	26 J	1.2 UJ		1200 J	1150 J	2 UJ
ENDOSULFAN I	37000	5.5		8.6	1.8 U	0.59 U	53 U	54 U	53.5 U	10 J
HEPTACHLOR	110	68	200		1.8 U	0.59 U	53 U	64	45.2	4.9 J
METALS (MG/KG)										
ALUMINUM	7700	25500		8767.37	6130	2960	8860	11200	10000	6180
ANTIMONY	3.1	2	20	1.355	0.11 J	0.12 J	0.16 J	0.2 J	0.18 J	0.09 UJ
ARSENIC	0.39	9.79	20	8.9	2.1	2.3	6.9	7.6	7.25	3.4
BARIUM	1500	48	1000	202.48	25.4 J	18.5 J	41.4 J	54.8 J	48.1 J	16.4 J
BERYLLIUM	16		100	0.46	0.26 J	0.2 J	0.54 J	0.91 J	0.725 J	0.24 J
CADMIUM	7	0.99	2	1.95	0.27	0.36	0.49	0.7	0.595	0.09
CALCIUM				13900	2650	2160	2470	3370	2920	1380
CHROMIUM	280	43.4	30	11.92	9.7	5.8	24.7	29.4	27	19.9
COBALT	2.3	50		25.7	4	2.4	5.3	6.3	5.8	3
COPPER	310	31.6		53.3	15.8 J	10.8 J	35.2 J	43.9 J	39.6 J	20.9 J
IRON	5500	20000		24000	9870 J	6060 J	13500 J	15500 J	14500 J	10300 J
LEAD	400	35.8	300	200.86	18	19.8	65.4	76.6	71	43.6
MAGNESIUM				1683.03	1960	1290	3020	3380	3200	2050
MANGANESE	180	460		3690	150 J	73.6 J	348 J	373 J	360 J	112 J
MERCURY	0.43	0.18	20	0.28	0.07	0.03	0.15	0.17	0.16	0.06
NICKEL	150	22.7	20	11.71	8.1	4.7	11.7	15.2	13.4	7.6
POTASSIUM				603.24	237 J	230 J	1180 J	1410 J	1300 J	312 J
SELENIUM	39	1	400	0.6675	0.61 J	0.42 UJ	0.29 UJ	0.54 UJ	0.415 UJ	0.25 UJ
SILVER	39	0.5	100	0.2	0.17	0.03 UJ	0.16	0.1	0.13	0.03 UJ
SODIUM				2180	404	202	1240	1600	1420	97.6 J
VANADIUM	39	57	600	38.18	13.5	11.7	26.2	39.6	32.9	19.4
ZINC	2300	121	2500	549	68.6	66.6	109	126	118	30.8
MISCELLANEOUS PARAMETERS (MG/KG)						•				
CYANIDE	160	0.1	100		1.2 U	0.85 U	0.48 J	0.8 J	0.64 J	0.7 U

Notes:

RSL - Regional Screening Levels, EPA 2009

ECODQL - Ecological Screening Benchmarks - mainly threshold effects concentration (TEC) for sediments

MCP S-1/GW-1 - MCP Method 1 Soil Category S-1 Standards

BKG - Established Weymouth Base Background Values

TABLE 2-2 SURFACE SOIL ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE AREA ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS PAGE 1 OF 2

SAMPLE ID					MGA-SO-MW01-	MGA-SO-MW01-	MGA-SO-MW01-	MGA-SO-MW02-	MGA-SO-MW03-	MGA-SO-SB01-	MGA-SO-SB02-	MGA-SO-SB03-	MGA-SO-SB04-
					0001	0001-D	0001-AVG	0001	0001	0001	0001	0001	0001
LOCATION ID					MGA-MW01	MGA-MW01	MGA-MW01	MGA-MW02	MGA-MW03	MGA-SB01	MGA-SB02	MGA-SB03	MGA-SB04
TOP DEPTH					0	0	0	0	0	0	0	0	0
BOTTOM DEPTH					1	1	1	1	1	1	1	1	1
SAMPLE DATE					03/06/08	03/06/08	03/06/08	03/06/08	03/06/08	03/05/08	03/05/08	03/05/08	03/05/08
SAMPLE CODE			MCP		ORIG	DUP	AVG	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
PARAMETER	RSL	ECODQL	S-1/GW-1	BKG									
VOLATILES (UG/KG)		•									•		•
ACETONE	6100000		6000		37 U	28 U	32.5 U	30 UJ	1100 J	2000 J	29 U	120	220
SEMIVOLATILES (UG/KG)		•	•				•		•	•		•	
1,1-BIPHENYL	390000		50		440 U	420 U	430 U	6900	200 J	420 U	1800	360 U	420 U
2-METHYLNAPHTHALENE	31000	29000	700		26 U	26 U	26 U	26000	460	440	6600	70	150
2-METHYLPHENOL	310000	500			26 UJ	26 UJ	26 UJ	340	46 J	19 J	99 J	22 U	26 U
3&4-METHYLPHENOL					440 U	420 U	430 U	3600 U	370 U	420 U	360 J	360 U	420 U
ACENAPHTHENE	340000	29000	4000		8.8 J	9.8 J	9.3 J	99000	4400	3000	44000	410	1200
ACENAPHTHYLENE	340000	29000	1000	210	26 U	26 U	26 U	220 U	110 U	930	120 U	89	26 U
ANTHRACENE	1700000	29000	1000000	170	16 J	22 J	19 J	120000	11000	5000	66000	1100	2500
BENZO(A)ANTHRACENE	150	1100	7000	810	49	62	55.5	310000	27000	16000	160000	2700	12000
BENZO(A)PYRENE	15	1100	2000	1828.78	48	61	54.5	290000	25000	16000	130000	2300	12000
BENZO(B)FLUORANTHENE	150	1100	7000	770	51	62	56.5	280000	22000	15000	140000	2800	15000
BENZO(G,H,I)PERYLENE	170000	1100	1000000	310	36	50	43	140000	14000	11000	73000	1000	5300 J
BENZO(K)FLUORANTHENE	1500	1100	70000	2700	61	76	68.5	280000	26000	16000	100000	2100	9600
BIS(2-	35000	100	200000		440 U	420 U	430 U	3600 U	280 J	420 U	880 J	360 U	420 U
ETHYLHEXYL)PHTHALATE													
CARBAZOLE					440 U	420 U	430 U	82000	5800	3800	45000	670	2300
CHRYSENE	15000	1100	70000	1400	59	76	67.5	310000	29000	18000	160000	2700	14000
DIBENZO(A,H)ANTHRACENE	15	1100	700	96	26 UJ	13 J	13 J	67000	5900	4000	22000	360 J	1700 J
DIBENZOFURAN					440 U	420 U	430 U	51000	2200	1400	19000 J	310 J	540
FLUORANTHENE	230000	29000	1000000	2400	150	180	165	620000	56000	34000	350000	5600	27000
FLUORENE	230000	29000	1000000		7.8 J	10 J	8.9 J	59000	3700	2400	30000	450	1000
INDENO(1,2,3-CD)PYRENE	150	1100	7000	175	32	43	37.5	150000	14000	10000	73000	1100	5500 J
NAPHTHALENE	3900	29000	4000		26 U	26 U	26 U	25000	880	860	13000 J	110	180
PENTACHLOROPHENOL	3000	5000	3000		26 U	26 U	26 U	1100 UJ	570 U	20 J	26 J	110 UJ	130 UJ
PHENANTHRENE	170000	29000	10000	1500	72	88	80	500000	43000	26000	270000	4700	15000
PHENOL	1800000	30000	1000	70	26 U	26 U	26 U	380	110 U	25 U	250	22 U	26 U
PYRENE	170000	1100	1000000	1500	88	120	104	600000	54000	29000	310000	5100	24000
TOTAL PAHS		1100		12160	678.6	872.8	776	3876000	336340	207630	1947600	32689	146130
EPH MADEP (MG/KG)		ļ.	<u> </u>	<u> </u>		!	Į.		•	•	•	•	•
C11-C22 AROMATICS			1000		26 U	26 U	26 U	5500	500 J	380	4300	170 J	320
C11-C22 AROMATICS-UNADJ			1000		26 U	26 U	26 U	5500	500 J	380	4300	170 J	320
C19-C36 ALIPHATICS			3000		26 U	26 U	26 U	700	170 J	310	400	210 J	260
C9-C18 ALIPHATICS			1000		26 U	26 U	26 U	510		30	1	22 UJ	26 U
PESTICIDES/PCBS (UG/KG)		I		ı		1			1	1		1	'
	1												

TABLE 2-2 SURFACE SOIL ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE AREA ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS PAGE 2 OF 2

SAMPLE ID									MGA-SO-MW03-				MGA-SO-SB04-
LOCATION ID					0001 MGA-MW01	0001-D MGA-MW01	0001-AVG MGA-MW01	0001 MGA-MW02	MGA-MW03	0001 MGA-SB01	0001 MGA-SB02	0001 MGA-SB03	0001 MGA-SB04
TOP DEPTH					0	0	0	0	0	0	0	0	0
BOTTOM DEPTH					1	1	1	1	1	1	1	1	1
SAMPLE DATE					03/06/08	03/06/08	03/06/08	03/06/08	03/06/08	03/05/08	03/05/08	03/05/08	03/05/08
SAMPLE CODE			MCP		ORIG	DUP	AVG	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
PARAMETER	RSL	ECODQL	_	BKG									
4,4'-DDD	2000	21	4000	6.6	0.87 UJ	0.49 J	0.462 J	360 U	7.5 UJ	8.4 UJ	77 UJ	7.2 UJ	8.4 UJ
4,4'-DDE	1400	21	3000	320	0.35 J	0.64 J	0.495 J	360 U	7.5 U	8.4 U	77 U	7.2 U	8.4 U
4,4'-DDT	1700	21	3000	325.3	0.87 UJ	0.31 J	0.372 J	360 UJ	43 J	180 J	77 UJ	7.6 J	20 J
GAMMA-BHC (LINDANE)	520	0.05	3	15	0.45 U	0.44 U	0.445 U	190 U	3.9 U	4.3 U	1200	3.7 U	4.3 U
HEPTACHLOR	110		200	18	0.45 U	0.44 U	0.445 U	700	22 J	12 J	87 J	6.6	10
METALS (MG/KG)		•				•			-			•	
ALUMINUM	7700			10499.1	5320	5330	5320	5880	6690	5560	5360	4190	6880
ANTIMONY	3.1	0.27	20	1.91	0.04 UJ	0.04 UJ	0.04 UJ	0.18 J	0.09 UJ	0.25 J	0.12 J	0.09 J	0.16 J
ARSENIC	0.39	18	20	5.31	2.2	2.3	2.25	3.3	2.6	3.8	2.6	1.9	11.4
BARIUM	1500	330	1000	49.9	13	12.1	12.6	25.4	23.7	29.7	33.4	27.9	36.1
BERYLLIUM	16	21	100	0.3	0.21	0.21	0.21	0.31	0.27	0.26	0.17	0.19	0.29
CALCIUM				6360	1660	1620	1640	1880	2200	1890	5110	2700	5960
CHROMIUM	280	26	30	10.1	9.2	8.9	9.05	10.3	14.4	17.3	23.1	10.6	20.6
COBALT	2.3	13		3.98	5.2	5.4	5.3	4.7	3.8	3.5	3.9	3.4	5.3
COPPER	310	28		26.22	12	11.8	11.9	22.7	17.6	33.4	51.8	13.9	56.8
CYANIDE	160	0.9	100		0.65 U	0.6 U	0.625 U	0.55 U	0.55 U	0.6 U	0.56	0.5 U	0.6 U
IRON	5500			11300	11300	11500	11400	11500	11200	11800	10900	9040	13000
LEAD	400	11	300	301.7	6.4	5.5	5.95	64.2	43.8	88.7	114	15.3	58.4
MAGNESIUM				1963.38	2140	2200	2170	2780	2140	1960	2040	2510	3250
MANGANESE	180	220		313.83	282 J	279 J	280 J	211 J	189 J	194 J	186 J	229 J	295 J
MERCURY	0.43	0.1	20	0.49	0.02 U	0.02 U	0.02 U	0.05	0.05	0.09	0.04	0.02 J	0.06
NICKEL	150	38	20	17.2	7.7	7.9	7.8	11.3	24	8.6	11.2	6.5	11.1
POTASSIUM				630.58	300	313	306	547	614	678	609	1040	773
SILVER	39	4.2	100		0.01 UJ	0.02 UJ	0.015 UJ	0.04 J	0.05 J	0.04 UJ	0.05 J	0.03 UJ	0.05 J
SODIUM				272.14	86.1	81.2	83.6	114	191	114	560	71.1	100
VANADIUM	39	7.8	600	89.1	17.9	18.1	18	22.3	23.6	19.4	19.2	13.1	22.2
ZINC	2300	46	2500	73.8	24.1	22.7	23.4	66.4	48.7	133	98.8	37.7	73.2
MISCELLANEOUS PARAMETERS (%)													
TOTAL SOLIDS					76	78	77	91	88	79	86	92	78

TABLE 2-3 SUBSURFACE SOIL ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS PAGE 1 OF 3

SAMPLE ID					MGA-SO-MW02-					
				0103			0103	0103	0103	0103
LOCATION ID				MGA-MW01	MGA-MW02	MGA-MW03	MGA-SB01	MGA-SB02	MGA-SB03	MGA-SB04
TOP DEPTH				1	1	1	1	1	1	1
BOTTOM DEPTH				3	3	3	3	3	3	3
SAMPLE DATE				03/06/08	03/06/08	03/06/08	03/05/08	03/05/08	03/05/08	03/05/08
SAMPLE CODE		MCP		NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
PARAMETER	RSL	S-1/GW-1	BKG							
VOLATILES (UG/KG)		•			•					
2-BUTANONE	2800000	4000		25 U	42	25 U	470 J	62 J	39 U	40 U
ACETONE	6100000	6000		110	160	46 U	930 J	770 J	39 U	40 U
BTEX				5 U	5 U	5 U	9 U	3	8 U	8 U
METHYL TERT-BUTYL ETHER	39000	100		5 U	5 U	5 U	9 UJ	18 J	8 U	8 U
TOLUENE	500000	30000		5 U	5 U	5 U	9 UJ	3 J	8 U	8 U
SEMIVOLATILES (UG/KG)		1			•				•	
1,1-BIPHENYL	390000	50		380 U	4400	400 U	470 U	620	400 U	410 U
2-METHYLNAPHTHALENE	31000	700		23 U	18000	62	60	2400	480	24 J
2-METHYLPHENOL	310000			23 UJ	240 U	24 U	28 U	43	24 U	25 UJ
ACENAPHTHENE	340000	4000		2 J	52000	450	300	14000	2500	560
ACENAPHTHYLENE	340000	1000		2.7 J	240 U	24 U	28 U	27 U	24 U	25 U
ANTHRACENE	1700000	1000000		7.3 J	64000	1100	970	24000	3100	2000
BENZALDEHYDE	780000			380 UJ	3900 UJ	400 UJ	270 J	450 UJ	400 UJ	410 UJ
BENZO(A)ANTHRACENE	150	7000	600	23	160000	2700	2700	54000	9200 J	3900
BENZO(A)PYRENE	15	2000	16	27	150000	2400	2500	45000	8000 J	3400
BENZO(B)FLUORANTHENE	150	7000	810	26	140000	2500	3000	46000	8600 J	3400
BENZO(G,H,I)PERYLENE	170000	1000000	330	16 J	65000	1200	1100	25000	4200 J	1900
BENZO(K)FLUORANTHENE	1500	70000	320	32	130000	2200	2500	41000	7100 J	3200
BIS(2- ETHYLHEXYL)PHTHALATE	35000	200000		380 U	3900 U	400 U	470 U	500	400 U	410 U
CARBAZOLE				380 U	48000	710	700	17000	2200	1200
CHRYSENE	15000	70000	710	33	160000	2800	3000	55000	10000 J	4400
DIBENZO(A,H)ANTHRACENE	15	700	1.7	6.3 J	33000	380 J	510	8400 J	1300 J	600
DIBENZOFURAN				380 U	34000	280 J	260 J	6000	950	220 J
FLUORANTHENE	230000	1000000	1100	72	310000	5400	5400	120000	20000	9100 J

TABLE 2-3 SUBSURFACE SOIL ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS PAGE 2 OF 3

SAMPLE ID					MGA-SO-MW02-			MGA-SO-SB02-	MGA-SO-SB03-	MGA-SO-SB04-
				0103			0103	0103	0103	0103
LOCATION ID				MGA-MW01	MGA-MW02	MGA-MW03	MGA-SB01	MGA-SB02	MGA-SB03	MGA-SB04
TOP DEPTH				1	1	1	1	1	1	1
BOTTOM DEPTH				3	3	3	_	3	•	3
SAMPLE DATE				03/06/08			03/05/08	03/05/08	03/05/08	03/05/08
SAMPLE CODE		MCP		NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL	NORMAL
PARAMETER	RSL	S-1/GW-1	BKG							
FLUORENE	230000	1000000		3.6 J	39000	410	250	11000	1600	650
INDENO(1,2,3-CD)PYRENE	150	7000	390	18 J	71000	1300	1100	25000	4100 J	1900
NAPHTHALENE	3900	4000		23 U	16000	100	120	4400	560	50
PENTACHLOROPHENOL	3000	3000		23 U	1200 UJ	120 UJ	140 UJ	44 J	24 U	25 U
PHENANTHRENE	170000	10000	360	37	290000	4600	4300	98000	17000	7400
PHENOL	1800000	1000		23 U	140 J	24 U	28 U	100	24 U	25 U
PYRENE	170000	1000000	1000	47	310000	6000	5800	120000	21000 J	8700 J
TOTAL PAHS			5636	352.9	2008000	33602	33610	693200	118740	51184
EPH MADEP (MG/KG)					•	•	•			•
C11-C22 AROMATICS		1000		23 U	1400 J	120 J	100	3300 J	660	70
C11-C22 AROMATICS-UNADJ		1000		23 U	1400 J	120 J	100	3300 J	660	70
C19-C36 ALIPHATICS		3000		23 U	160 J	61 J	110	800 J	160	100
C9-C18 ALIPHATICS		1000		23 U	140 J	24 UJ	28 U	110 UJ	24 U	25 U
PESTICIDES/PCBS (UG/KG)			ı		. J.					
4,4'-DDD	2000	4000	4.2	1.4 J	390 U	60 J	15 J	9 UJ	8 UJ	0.81 UJ
4,4'-DDE	1400	3000	1.9	8.7	390 U	61	20	9 U	8 U	2.3 J
4,4'-DDT	1700	3000	4.6	1.1 J	390 UJ	3.7 J	24 J	9 UJ	26 J	2.9 J
HEPTACHLOR	110	200		0.39 U	380	2 UJ	3.9	59 J	11	0.84 J
HEPTACHLOR EPOXIDE	53	90		0.39 U	200 U	2 U	2.6	14 J	4.1 U	0.57
METALS (MG/KG)			ı							
ALUMINUM	7700		8518.54	5260	7020	5430	5630	6230	5620	5830
ANTIMONY	3.1	20	3.65	0.04 UJ	0.17 J	0.05 UJ	0.15 J	0.3 J	0.12 J	0.06 UJ
ARSENIC	0.39	20	1.89	0.66 U	3.6	4.3	2.8	12.2	4.2	3.1
BARIUM	1500	1000	27.03	12.6	39.2	13	20.4	60.9	30.2	16.4
BERYLLIUM	16	100	0.44	0.21	0.38	0.19	0.27	0.28	0.27	0.21
CALCIUM			1546.58	1430	2500	1880	1280	2890	1910	2870

TABLE 2-3 SUBSURFACE SOIL ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS PAGE 3 OF 3

SAMPLE ID				MGA-SO-MW01-	MGA-SO-MW02-	MGA-SO-MW03-	MGA-SO-SB01-	MGA-SO-SB02-	MGA-SO-SB03-	MGA-SO-SB04-
									0103	0103
LOCATION ID				MGA-MW01	MGA-MW02	MGA-MW03	MGA-SB01	MGA-SB02	MGA-SB03	MGA-SB04
TOP DEPTH				1	1	1	1	1	1	1
BOTTOM DEPTH				3	3	3	3	3	3	3
SAMPLE DATE				03/06/08	03/06/08	03/06/08	03/05/08	03/05/08	03/05/08	03/05/08
SAMPLE CODE		MCP		NORMAL						
PARAMETER		S-1/GW-1	BKG							
CHROMIUM	280	30	10.15	6.6	13.8	9.2	8.9	19.9	13.7	9.9
COBALT	2.3		4.74	3	3.8	4.8	2.4	2.9	3.5	4.6
COPPER	310		14.2	4	20.8	13.3	10.3	34	13.6	14.7
IRON	5500		11448.9	7810	11800	10600	7880	7440	10700	11800
LEAD	400	300	9.27	9.3	89.6	10	36.7	82.1	41.1	12.9
MAGNESIUM			2246.08	1770	2200	2200	1070	1400	1960	2490
MANGANESE	180		413.84	125 J	241 J	144 J	81.5 J	120 J	180 J	224 J
MERCURY	0.43	20	0.11	0.02 U	0.19	0.02 U	0.06	0.11	0.07	0.02 J
NICKEL	150	20	6.5	5.3	10.8	8	5.2	9.4	7.9	8.1
POTASSIUM			457.21	243	630	383	267	392	965	406
SILVER	39	100	0.28	0.01 UJ	0.07 J	0.02 UJ	0.07 J	0.08 J	0.04 J	0.03 UJ
SODIUM			144	143	174	186	87.8 J	2400	124	93.5
VANADIUM	39	600	17.08	13.8	21	18.4	16.7	17.6	18.5	20
ZINC	2300	2500	28.74	18.7	88.2	23.6	39.9	234	42.9	28
MISCELLANEOUS		-								
PARAMETERS (%)										
TOTAL SOLIDS				86	85	82	70	74	82	81

TABLE 2-4 GROUNDWATER ANALYTICAL RESULTS SCREENED AGAINST BENCHMARKS MAIN GATE ENCROACHMENT AREA NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS

OAMBLE ID			1		IMOA OW	IMOA OW	MOA 014/	IMOA OW	IMOA OW
SAMPLE ID						MGA-GW- MW02-0308	MGA-GW-	MGA-GW-	MGA-GW- MW03-0308-
					1010001-0300	1010002-0300	1010003-0300	D	AVG
LOCATION ID	1				MGA-MW01	MGA-MW02	MGA-MW03	MGA-MW03	MGA-MW03
SAMPLE DATE	1				03/13/08	03/13/08	03/13/08	03/13/08	03/13/08
SAMPLE CODE	1		MCP		NORMAL	NORMAL	ORIG	DUP	AVG
PARAMETER	RSL	MCL	GW-1	BKG					
VOLATILES (UG/L)					-	-			
ACETONE	2200		3000		5 UJ	5 UJ	8 J	10 J	9 J
BENZENE	0.41	5	5		0.5 UJ	0.7	0.5 U	0.5 U	0.5 U
BTEX					0.5 U	0.7	0.5 U	0.5 U	0.5 U
CYCLOHEXANE	1300				0.5 UJ	0.3 J	0.5 U	0.5 U	0.5 U
METHYL TERT-BUTYL	12		70		0.5 U	3	4	4	4
ETHER									
SEMIVOLATILES (UG/L)									
2-METHYLNAPHTHALENE	15		10		0.2 U	0.33	0.081 J		0.08 J
ACENAPHTHENE	220		20		0.2 U	0.94	0.077 J	0.069 J	0.073 J
ANTHRACENE	1100		2000		0.2 U	0.39	0.2 U	0.2 U	0.2 U
BENZO(A)ANTHRACENE	0.029		1	0.0475	0.2 U	0.84	0.2 U	0.2 U	0.2 U
BENZO(A)PYRENE	0.003	0.2	0.2		0.2 U	0.89	0.2 U	0.2 U	0.2 U
BENZO(B)FLUORANTHENE	0.029		1		0.2 U	0.86	0.2 U	0.2 U	0.2 U
BENZO(G,H,I)PERYLENE	110		300		0.2 U	0.71	0.2 U	0.2 U	0.2 U
BENZO(K)FLUORANTHENE	0.29		1		0.2 U	0.73	0.2 U	0.2 U	0.2 U
CHRYSENE	2.9		2		0.2 U	0.72	0.2 U	0.2 U	0.2 U
DI-N-BUTYL PHTHALATE	370				10 U	4 J	10 U	10 U	10 U
FLUORANTHENE	150		90		0.2 U	1.8	0.2 U	0.2 U	0.2 U
FLUORENE	150		300		0.2 U	0.48	0.035 J	0.035 J	0.035 J
INDENO(1,2,3-CD)PYRENE	0.029		0.5		0.2 U	0.71	0.2 U	0.2 U	0.2 U
NAPHTHALENE	0.14		140		0.2 U	0.72	0.081 J	0.076 J	0.0785 J
PHENANTHRENE	110		300		0.2 U	1.1	0.2 U	0.2 U	0.2 U
PYRENE	110		80		0.2 U	1.2	0.2 U	0.2 U	0.2 U
TOTAL PAHS				0.0775	0.2 U	12.42	0.274	0.259	0.266
METALS (UG/L)									
ALUMINUM	3700			15341.4	896	365	264 J	249 J	256 J
ARSENIC	0.045	10	10		3.3 J	1.45 U	3.3 J	4.2 J	3.75 J
BARIUM	730	2000	2000	181.32	16.6	110	104	100	102
CALCIUM				19187.1	3220	61400	42900	42300	42600
COBALT	1.1			8.5	5.1	1.8	3.4	3.4	3.4
COPPER	150	1300		13.5	14.4	0.76 UJ	1.1 U	1.1 U	1.1 U
IRON	2600			44137.5	2840	29000	38800	37900	38400
LEAD	1	15	15		3.6	2.2	1.2	1.2	1.2
MAGNESIUM	1			14205.5	1160	14200	6880	6760	6820
MANGANESE	88			2680.63	432	2430	4060	4010	4040
MERCURY	0.057		2		0.04 J	0.03 U	0.03 U	0.03 U	0.03 U
NICKEL	73		100		5.5	3 UJ	2.9		
POTASSIUM	1			6177.62					
SODIUM	1			47342.1		325000			
VANADIUM	18		30	22.6			3.3 UJ		
ZINC	1100		5000	51.7					
-	1	1	2300	J					

TABLE 4 2008 AND 2011 GROUNDWATER ANALYTICAL RESULTS - DETECTIONS ONLY MAIN GATE ENCROACHMENT AREA FORMER NAS SOUTH WEYMOUTH, WEYMOUTH, MASSACHUSETTS

SAMPLE ID				MGA-GW-	MGEA-GW-	MGA-GW-	MGEA-GW-	MGA-GW-	MGEA-GW-
OAMI EE ID								MW03-0308-	
								AVG	AVG
LOCATION ID				MGA-MW01	MGA-MW01	MGA-MW02	MGA-MW02	MGA-MW03	MGA-MW03
SAMPLE DATE				03/13/08	06/09/11	03/13/08	06/09/11	03/13/08	06/09/11
SACODE				NORMAL	NORMAL	NORMAL	NORMAL	AVG	AVG
CRITERIA	MCP GW1	MCL	BKG						
SEMI-VOLATILES &									
POLYCYCLIC AROMATIC HYDROCARBONS (UG/L)									
2-METHYLNAPHTHALENE	10			0.2 U	0.094 U	0.33	0.094 U	0.08 J	0.094 U
ACENAPHTHENE	20			0.2 U	0.094 U	0.94	0.66	0.073 J	0.094 U
ANTHRACENE	2000			0.2 U	0.094 U	0.39	0.4	0.2 U	0.0635 J
BENZO(A)ANTHRACENE	1		0.0475	0.2 U	0.094 U	0.84	0.094 UJ	0.2 U	0.052 J
BENZO(A)PYRENE	0.2	0.2		0.2 U	0.094 U	0.89	0.094 U	0.2 U	0.094 U
BENZO(B)FLUORANTHENE	1			0.2 U	0.094 U	0.86	0.094 UJ	0.2 U	0.094 U
BENZO(G,H,I)PERYLENE	300			0.2 U	0.094 U	0.71	0.094 UJ	0.2 U	0.094 U
BENZO(K)FLUORANTHENE	1			0.2 U	0.094 U	0.73	0.094 UJ	0.2 U	0.094 U
CHRYSENE	2			0.2 U	0.094 U	0.72	0.094 U	0.2 U	0.094 U
FLUORANTHENE	90			0.2 U	0.094 U	1.8	0.56	0.2 U	0.21
FLUORENE	300			0.2 U	0.094 U	0.48	0.7	0.035 J	0.125 J
INDENO(1,2,3-CD)PYRENE	0.5			0.2 U	0.094 U	0.71	0.094 UJ	0.2 U	0.094 U
NAPHTHALENE	140			0.2 U	0.094 U	0.72	0.094 U	0.0785 J	0.094 U
PHENANTHRENE	300			0.2 U	0.094 U	1.1	1.3 J	0.2 U	0.0635 J
PYRENE	80			0.2 U	0.094 U	1.2	0.27 J	0.2 U	0.135 J
PESTICIDES (UG/L)									
DIELDRIN	0.1			0.02 U	0.0097 U	0.02 U	0.0098 J	0.02 U	0.0095 U
METALS (UG/L)									
ALUMINUM			15341.4	896	337	365	26.9 J	256 J	102 J
ARSENIC	10	10		3.3 J	4 U	1.45 U	4.1 J	3.75 J	7.15
BARIUM	2000	2000	181.32	16.6	12.2	110	147	102	147
BERYLLIUM	4	4	0.77	0.05 U	0.14 J	0.05 U	0.2 U	0.05 U	0.075 J
CALCIUM			19187.1	3220	5180	61400	78400	42600	39200
COBALT			8.5	5.1	7.3	1.8	6.3	3.4	
COPPER		1300	13.5	14.4	4.8	0.76 UJ	0.5 J	1.1 U	0.845 J
IRON			44137.5	2840	2590	29000	63800	38400	33700
LEAD	15	15		3.6	1.2	2.2	0.5 UJ	1.2	1.04 J
MAGNESIUM			14205.5	1160	1840	14200	27900	6820	13300
MANGANESE			2680.63	432	1240	2430	3500	4040	2260
MERCURY	2	2		0.04 J	0.1 UJ	0.03 U	0.1 UJ	0.03 U	0.1 UJ
NICKEL	100			5.5	6.4	3 UJ	1.8 J	2.95	5.25
POTASSIUM			6177.62	345 J	553 J	5280	4070	9460	5600
SODIUM			47342.1	65400	22400	325000	161000	286000	230000
VANADIUM	30		22.6	5.9		3.7 UJ	1.3 J	3.05 UJ	
ZINC	5000		51.7	21.1	25.8	14.2	10.4	11.3	21

Notes:

MCP GW1 - Massachusetts Contingency Plan, Method 1 GW-1 Standards

MCL - Maximum Contaminant Level (U.S. EPA)

BKG - Base Background

APPENDIX D: ADMINISTRATIVE RECORD INDEX

File No.	Vol.	Document No.	Document Type ^(a)	Document Title	Document Date	Document Author	Document Recipient	Document Location	Area of Concern
1.0 SITE A	ASSESS	SMENT							
1.8 Envir	onment	tal Baseline Sເ	ırvey						
1.8		1.8-1	R	Phase I Environmental Baseline Survey	11/96	Stone & Webster	U.S. Department of the Navy	A.R. File	Basewide
1.8		1.8-2	R	Phase I EBS Report Errata	11/10/97	Stone & Webster	U.S. Department of the Navy	A.R. File	Basewide
1.9 Work F	Plans								
1.9		1.9-1	R	Final Phase II Environmental Baseline Survey Sampling Work Plan (Rev. 1)	10/13/98	Stone & Webster	U.S. Department of the Navy	A.R. File	Basewide RIAs
1.9		1.9-3	R	Final Work Plan for Initial Site Investigation Activities, Main Gate Encroachment Area, Naval Air Station South Weymouth, South Weymouth, Massachusetts	01/08	TtNUS	U.S. Department of the Navy	A.R. File	Main Gate Encroach- ment Area
3.0 REME	DIAL IN	IVESTIGATION	1						
3.2 Sampl	ling and	d Analysis Dat	a						
3.2		3.2-1	R	Final Summary Report of Background Data Summary Statistics for Naval Air Station South Weymouth	2/24/00	Stone & Webster	U.S. Department of the Navy	A.R. File	Basewide
3.2		3.2-2	R	Errata to the Final Summary Report of Background Data Summary Statistics	3/8/00	Stone & Webster	U.S. Department of the Navy	A.R. File	Basewide
3.2		3.2-3	R	Supplement to Final Summary Report of the Background Data Summary Statistics for NAS South Weymouth	11/08/02	Stone & Webster	U.S. Department of the Navy	A.R. File	Basewide
3.6 Remed	dial Inv	estigation Rep	orts	·				<u> </u>	
3.6		3.6-1	R	Field Investigation Report, Main gate Encroachment Area, Former Naval Air Station South Weymouth, Weymouth Massachusetts	08/08	TtNUS	U.S. Department of the Navy	A.R. File	Main Gate Encroach- ment Area
4.8 Propos	sed Pla	ns for Selected	d Remedial Act	ion					
4.8		4.8-1		Final Proposed Plan, Main Gate Encroachment Area, former Naval Air Station South Weymouth, Weymouth, Massachusetts	07/11	U.S. Department of the Navy	Public	A.R. File	Main Gate Encroach- ment Area

APPENDIX D: ADMINISTRATIVE RECORD INDEX (cont.)

File No.	Vol.	Document No.	Document Type ^(a)	Document Title	Document Date	Document Author	Document Recipient	Document Location	Area of Concern
5.0 RECO	RD OF	DECISION							
5.3 Respo	nsivene	ess Summarie	es						
5.3		5.3-1	L	Copy of Public Comments Received on the Proposed Plan for Main Gate Encroachment Area (included in Appendix E of the Record of Decision)	pending	Public	U.S. Department of the Navy	A.R. File	Main Gate Encroach- ment Area
5.3		5.3-2	R	Transcript of the Public Hearing on the Proposed Plan for AOC 55C(included in Appendix E of the Record of Decision)	pending	Public	U.S. Department of the Navy	A.R. File	Main Gate Encroach- ment Area
5.3		5.3-3	R	Responsiveness Summary (included as Section 3 of the Record of Decision)	pending	U.S. Department of the Navy	Public	A.R. File	Main Gate Encroach- ment Area
5.4 Recor	d of Dec	cision							
5.4		5.4-1	R	Record of Decision, Main Gate Encroachment Area, former Naval Air Station South Weymouth, Massachusetts	pending	U.S. Department of the Navy and EPA	Public	A.R. File	Main Gate Encroach- ment Area
10.0 ENF	ORCEM	ENT/NEGOTIA	ATION						
10.16 Fed	eral Fac	ility Agreeme	ents						
10.16		10.16-1	L	Federal Facility Agreement for South Weymouth Naval Air Station National Priorities List Site	4/00	EPA	U.S. Department of the Navy	A.R. File	Basewide
13.0 COM	MUNITY	RELATIONS							
13.2 Com	munity	Relations Pla	n						
13.2		13.2-1	R	Community Relations Plan Naval Air Station South Weymouth, Massachusetts	7/98	U.S. Department of the Navy	Public	A.R. File	Basewide
13.4 Publi	ic Meeti	ngs/Hearings							
13.4		13.4-1		Restoration Advisory Board Workshop Guidebook	7/94	EPA	Public	A.R. File	Basewide
13.4		13.4-2		Legal Notice: Availability of the Proposed Plan, and Notification of Public Meeting and Comment Period	pending	Tetra Tech NUS	Public	A.R. File	Main Gate Encroach- ment Area
13.4		13.4-3		Public Notice: Notification of Restoration Advisory Board Meetings	1995-2010	Tetra Tech NUS and EA Engineering, Science, and Technology	Public	A.R. File	Basewide

APPENDIX D: ADMINISTRATIVE RECORD INDEX (cont.)

File No.	Vol.	Document No.	Document Type ^(a)	Document Title	Document Date	Document Author	Document Recipient	Document Location	Area of Concern
13.4		13.4-4		Restoration Advisory Board Meeting Minutes	1995-2010	U.S. Department of the Navy	Public	A.R. File	Basewide
13.4		13.4-5		Legal Notice, Record of Decision Available For AOC 55C	pending	Tetra Tech NUS	Public	A.R. File	Main Gate Encroach- ment Area
13.5 Fact	Sheets/	Information U	Jpdates		-				
13.5		13.5-1	R	The Former Naval Air Station South Weymouth Environmental Fact Sheet	2/98	EA Engineering, Science, and Technology	Public	A.R. File	Basewide
13.6 Mailir	ng Lists								
13.6		13.6-1		Community Relations Mailing List: State, Federal and Local Agencies (including Media and Public Libraries)	N/A	U.S. Department of the Navy	N/A	A.R. File	Basewide
13.6		13.6-2		Community Relations Mailing List: Other Parties (e.g., general public) – CONFIDENTIAL (due to potential Privacy Act violations)	N/A	U.S. Department of the Navy	N/A	A.R. File	Basewide
17.0 SITE	MANAG	EMENT REC	ORDS						
17.6 Site N	/lanager	ment Plans ar	nd Reviews						
17.6		17.6-1	R	Site Management Plan Naval Air Station South Weymouth, Massachusetts	10/99	EA Engineering, Science, and Technology	U.S. Department of the Navy	A.R. File	IR Sites
17.6		17.6-2	R	Site Management Plan Revision 1.0 Naval Air Station South Weymouth, Massachusetts	10/00	EA Engineering, Science, and Technology	U.S. Department of the Navy	A.R. File	IR Sites
17.6		17.6-3	R	Site Management Plan Revision 2.0 Naval Air Station Weymouth, Massachusetts	11/01	EA Engineering, Science, and Technology	U.S. Department of the Navy	A.R. File	IR Sites
17.6		17.6-4	R	Site Management Plan Revision 3.0 Naval Air Station South Weymouth, Massachusetts	4/03	EA Engineering, Science, and Technology	U.S. Department of the Navy	A.R. File	IR Sites
17.6		17.6-5	R	Site Management Plan Revision 4.0 Naval Air Station South Weymouth, Massachusetts	12/04	EA Engineering, Science, and Technology	U.S. Department of the Navy	A.R. File	IR Sites
17.6		17.6-6	R	Draft Site Management Plan Revision 5.0 Naval Air Station South Weymouth, Massachusetts	8/05	Tetra Tech NUS	U.S. Department of the Navy	A.R. File	IR Sites

APPENDIX D: ADMINISTRATIVE RECORD INDEX (cont.)

File No.	Vol.	Document No.	Document Type ^(a)	Document Title	Document Date	Document Author	Document Recipient	Document Location	Area of Concern
17.6		17.6-7	R	Site Management Plan Revision 6.0 Naval Air Station South Weymouth, Massachusetts	10/31/06	Tetra Tech NUS	U.S. Department of the Navy	A.R. File	IR Sites
17.6		17.6-8	R	Site Management Plan Revision 7.0 Naval Air Station South Weymouth, Massachusetts	09/07	Tetra Tech NUS	U.S. Department of the Navy	A.R. File	IR Sites
17.6		17.6-9	R	Draft Site Management Plan Revision 8.0 Naval Air Station South Weymouth, Massachusetts	09/08	Tetra Tech NUS	U.S. Department of the Navy	A.R. File	IR and AOC Sites
17.6		17.6-10	R	Site Management Plan Revision 9.0 Naval Air Station South Weymouth, Massachusetts	11/09	Tetra Tech NUS	U.S. Department of the Navy	A.R. File	IR and AOC Sites
17.6		17.6-11	R	Site Management Plan Revision 10.0 Naval Air Station South Weymouth, Massachusetts	10/10	Tetra Tech NUS	U.S. Department of the Navy	A.R. File	IR and AOC Sites

(a) R = Report; L = Letter.

NOTES:

EPA = (U.S.) Environmental Protection Agency (Region 1) MassDEP = Massachusetts Department of Environmental Protection

APPENDIX E. TRANSCRIPT OF PUBLIC HEARING AND COMMENT LETTERS RECEIVED ON THE PROPOSED PLAN FOR THE MAIN GATE ENCROACHMENT AREA

Refer to attached copies.

Mr. Brian Helland Remedial Project Manager BRAC Program Management Office, Northeast 4911 South Broad Street Philadelphia, Pa 19112 August 22, 2011

Attention Manager.

Main Gate Encroachment Area

Operable Unit 26

It has been suggested at RAB meetings there should be a sign to let the community know that this site has been a part of the base-wide superfund site. I did not see this in the report.

It was stated the contamination in the groundwater did not warrent any furthur action. My concern is there is still contaminants there regardless of how little.

It was stated at a RAB meeting that the contaminents are not water soluble, I beleive the Navy should go the extra mile to ease the citizens fears.

I also beleive signs should be posted at all superfund sites on the base. We have people moving into homes who are not aware of the history of this base.

Anne Hilbert 45 Doris Drive No Weymouth Ma 02191 45 DORIS DRIVE NO WEY MOUTH MA 02191

BOSTON MA 021

22 ALKS 2011 FM 2011

MR BRIAN HELLAND

REMEDIAL PROJECT MANAGER

BRAC PROGRAM OFFICE, NORTHEAST

4911 SOUTH BROAD ST.

PHILADELPHIA, PA 19112

BRAC

19112+1303

PROPOSED PLAN FOR MAIN GATE ENCROACHMENT AREA

OPERABLE UNIT 26

FORMER NAVAL AIR STATION

SOUTH WEYMOUTH, MASSACHUSETTS

PUBLIC HEARING

Tuesday, August 2, 2011 New England Wildlife Center 500 Columbian Street South Weymouth, MA 8:00 p.m.

Leavitt Reporting, Inc.

119 Broad Street
Weymouth, MA 02188
www.leavittreporting.com

Tel. 781-335-6791 Fax: 781-335-7911 leavittreporting@comcast.net

PROCEEDINGS

MR. BARNEY: Good evening. My name is

Dave Barney. I'm the BRAC Environmental Coordinator

for the U.S. Navy at South Weymouth.

Tonight we are here to receive oral comments on the Navy's Proposed Plan for Operable Unit Number 26, the Main Gate Encroachment Area.

At this time we would be happy to receive any comments that the community may have on the Navy's Proposed Plan for no further action at this site.

If anybody would like to make a comment, please feel free to do so. Okay.

MR. BRENNAN: Matthew Brennan, Weymouth Health Department. Kind of more in the form of a question than a comment.

Now, you have exceedances along Route 18.

When you do your risk assessment, do you take into account workers putting in piping, utilities, you know, maybe even ingesting the soil, bringing the soil home? Is that taken into consideration?

MR. BARNEY: Yes, it is.

MR. BRENNAN: And do you have like a

notification procedure? Do you have to -- Mass.

Highway or utility owners or anything like that, of
the exceedances?

MR. BARNEY: For this site, even though there were continued -- there were exceedances, there are no land-use controls because of the risk assessment and the information from the risk assessment. So there wouldn't be any need for notification procedures for this area.

MR. BRENNAN: Okay.

MR. WELCH: Can this site be retested like a year from now just to see how it is, if there was any more contamination refilled -- infiltrated into this area again, just to make sure nothing happened?

MR. BARNEY: The wells will remain in place until it's necessary to decommission those, but the Navy -- So samples could be collected, but the Navy has no and plans no further sample collection and analysis.

MR. WELCH: Could I ask that they could do that? I'm asking that they could do that. In other words, I'm asking that, yes.

MR. BARNEY: We'll take it under consideration but it's still -- the Navy has no plans to do so.

MR. WELCH: Okay.

MR. PUNCHARD: Is the Navy concerned about flooding from the drainage base into the various towns and locations?

In other words, it would seem there's a lot going on in Quincy and Braintree and towns where the drainage water has really flooded the areas of homes.

And I'm just wondering a little bit about that water, if they're going to correct that stream or do anything to re-guide that water in a different way from the drainage basin.

MR. BARNEY: I'm not sure I can answer your question, but can I ask for clarification? Are you speaking specifically to this particular site or to the water?

MR. PUNCHARD: No, to that -- well, any site as far as that goes. Water that flows out of the drainage basin floods areas of various towns during a high rain flow.

And would the Navy have a concern for that? Because, after all, those waters might be contaminated either by a new sewerage plant or whatever they plan to build, high-rise buildings and so on.

And it doesn't seem right to me that property should be flooded, and maybe an aqueduct should be built underneath the ground to take the water away. I don't know.

MR. BARNEY: Thank you for your comment and question. We'll respond on the record.

MR. SMART: Dave, there are no monitoring wells at this location?

MR. BARNEY: There are three monitoring wells.

MR. SMART: There are, okay. So to Harvey's point, that would -- at least you'd be going back checking those monitoring points and monitoring wells.

MR. BARNEY: The wells will stay in place until such time as we need to abandon them appropriately, but the Navy has no current or future plans to re-sample.

MR. SMART: How long do you think the 2 wells will be in place after the abatement is 3 completed? MR. BARNEY: I'm not sure whether we 4 would do it before, prior to transfer. 5 Transfer of everything or MR. SMART: 6 7 transfer of that particular parcel? MR. BARNEY: Transfer of that particular 8 parcel, yes. 9 MR. SMART: Okay. What was the total 10 If I may, what was the total cubic yards that was 11 removed? 12 13 MR. BARNEY: 1,700 cubic yards. I think that will conclude our public comment period 14 or public hearing period, and the comment period will 15 be available until August 25th. Thank you very much 16 everybody, and we're adjourned. 17 18 (Whereupon at a 8:08 p.m. the hearing adjourned.) 19 20 21 22 23

CERTIFICATE

I hereby certify that the foregoing 6 pages contain a full, true and correct transcription of all my stenographic notes to the best of my ability taken in the above-captioned matter held at the New England Wildlife Center on Tuesday, August 2, 2011, commencing at 8:00 p.m.

Jing Krodano 8/9/11

Linda J. Modano, Registered Professional Reporter

My commission expires May 11, 2018