

November 19, 2010 Nobis File No. 80013

Mr. Darryl Luce U.S. Environmental Protection Agency New England Region I 5 Post Office Square Suite 100. Mailcode OSRR07-4 Boston, MA 02109-3912

Nobis Engineering, Inc. 585 Middlesex Street Lowell, MA 01851 Tel (978) 683-0891 Fax (978) 683-0966 www.nobisengineering.com

BREAK: OTHER:

Re: Contract No.: EP-S1-06-03 Task Order No. 0013-RI-CO-01BQ Case No.: 40517; Sample Delivery Group (SDG) No. MA41B3 Bonner Analytical Testing Company, Hattiesburg, MS Chlor-Alkali Facility (Former) Superfund Site Berlin, New Hampshire CERCLIS No.: NHN000103313 Tier II Inorganic Data Validation

> Metals: 12/Soil/ MA4165, MA4166, MA4167, MA4174, MA4186, MA4196, MA41A2, MA41A3; MA41A4, MA41B3, MA41B4, MA41B5 Equipment blank: N/A Field Duplicates: N/A PE sample: N/A

Dear Mr. Luce:

Nobis Engineering, Inc. performed a Tier II data validation in accordance with the "Part IV. Inorganic Data Validation Functional Guidelines", November 2008 of the Region I. EPA New-England Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996" on the inorganic analytical data for 12 soil samples collected by Nobis Engineering, Inc. at the Chlor-Alkali Facility (Former) Superfund Site in Berlin, New Hampshire, The samples were analyzed for total metals, under the Contract Laboratory Program (CLP) Routine Analytical Services (RAS) according to the ILM05.4 Statement of Work (SOW). This SDG includes Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Vanadium and Zinc results analyzed by ICP-AES and Mercury analyzed by CV.

The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness
- Preservation and Technical Holding Times
- NA ICP-MS Tune Analysis
 - Initial and Continuing Calibrations
 - Quantitation Limit Check Standard (CRI)
 - Blanks
 - ICP Interference Check Results
 - Matrix Spike Recoveries
 - Laboratory Duplicates
 - Field Duplicates
- Lab Control Sample Results
- NA Furnace AA Results
- NA Method of Standard Addition (MSA)
- ICP Serial Dilution Results
- NA ICP-MS Internal Standards
- CRQL/Method Detection Limit (MDL) Results
- PE Samples/Accuracy Check
- Sample Quantitation
- * All criteria were met for this parameter.

Note: Worksheets, except for Worksheet XIII – Sample Quantitation, are not included for parameters that have met criteria or for criteria that are not applicable (NA) to the method.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - Summarizes validation recommendations

Table II: Overall Evaluation of Data - Summarizes site DQOs and potential usability issues

Data Summary Table: Summarizes accepted, qualified, and rejected data

Overall Evaluation of Data and Potential Usability Issues

Following is a summary of the site DQOs:

- Accurate identification of environmental bioaccumulation risks from site contamination.
- Determination of where and what magnitude of risk applies for:
 - Humans, likely from incidental ingestion and dermal contact with sediments and
 - surface waters, as well as consumption of fish;
 - Ecological assessment endpoints
 - Filling of existing data gaps throughout the study area.

Matrix Spike failed for Antimony, Copper and Zinc; a post spike was analyzed for antimony at twice the CRQL and twice the indigenous level for Copper and Zinc. The post spike sample recoveries were within the QC acceptance criteria.

Sample MA4166 failed during the initial analysis for metals due to inconsistent IS concentrations; the sample was re-analyzed with a separate set of QC samples.

Three calibration curves failed for mercury, the instrument was re-calibrated. The calibration check standard, CRI03, failed and the CRI was reanalyzed. MA4196 was over the linear range and the sample was reanalyzed at appropriate dilution.

The data was qualified due to non-compliant ICP interference analysis, matrix spike and lab duplicate sample results.

Data Completeness

Sample MA4174 was not included in the cooler sent with the samples on 9/23/10 and received by the lab on 9/24/10. The sample was sent on 9/24/10 and received by the lab on 9/25/10.

Quantitation Limit Check Standard (CRI)

The QL Check Standard recovery for iron was 172% and 136% which is greater than the upper limit of the acceptance criteria (70-130%) but less than 180%. All iron results were greater than 2X the QL Check Standard true value (2x10mg/kg=20mg/kg), therefore professional judgment was used that no action was necessary.

The QL Check Standard recovery for mercury was 40% which is less than the lower limit of the acceptance criteria (50-150%). Only one mercury result was affected and the result was greater than 2X the QL Check Standard true value (2x 0.02mg/kg= 0.04mg/kg). Also, another CRI sample was run consecutively and 8 minutes apart from the sample with the poor recovery and had a recovery of 115%. Professional judgment was used that no action was necessary.

<u>Blanks</u>

£

Positive Blank Results were detected in the following metals at various concentrations: Barium, Potassium, Sodium and Vanadium. Negative Blank Results were detected in the following metals at various concentrations: Calcium, Cobalt and Mercury.

No action was necessary for any of the metal results since all results were above the blank action level or non-detected.

ICP Interference Check Sample Results

Selenium was recovered in all the ICSAB samples at 135%, 133% and 132% which is above the acceptance criteria (80-120%), however below 150%. Selenium was also recovered above the acceptance criteria in the ISCA samples. All positive Selenium results were estimated (J).

Beryllium was recovered in the ICSA samples above the acceptance criteria. All beryllium results were either non-detected or the positive results were already estimated. No further action was necessary.

Cadmium and cobalt were recovered in the ICSA samples above the acceptance criteria. All positive cadmium and cobalt sample results were estimated (J). Results may be biased high.

Lead was recovered in the ICSA samples below the acceptance criteria. However, since the ICSAB recoveries were compliant, professional judgment was used to qualify only those lead sample results that were less than the ISCAB True value (6.1 mg/kg). All lead results were positive, however, only those lead sample results less than 6.1 mg/kg were estimated (J). Results may be biased low.

Zinc was recovered in the ICSA samples above the acceptance criteria. However, since the ICSAB recoveries were compliant professional judgment was used to qualify only those zinc sample results that were less than the ISCAB True value (103.0 mg/kg). Therefore, all zinc sample results less than 103.0 mg/kg were estimated (J). Results may be biased high.

Potassium was recovered in the ICSAB samples outside the acceptance criteria and Sodium was recovered in the ICSAB and ICSA samples at concentrations outside the acceptance criteria. All sodium results were already estimated (J), therefore, no action was necessary. Positive detect samples for potassium were qualified as estimated (J). Results may be biased high.

Sample MA4166 was not analyzed during the initial analysis, the sample was analyzed on a separate analysis, therefore, a separate set of ICSA and ICSAB samples was analyzed. Cobalt was recovered in the ICSA samples above the acceptance criteria; however, the cobalt result in sample MA4166 was already estimated (J). No further action was necessary. Manganese was recovered in the ICSA samples above the acceptance criteria. However, since the ICSAB recoveries were compliant for manganese and the manganese results for sample MA4166 was above the ISCAB True value (50.2 mg/kg), professional judgment was used not to qualify the result. Potassium was recovered in the ICSAB and ICSA samples at concentrations outside the acceptance criteria. The potassium and sodium results for Sample MA4166 were already estimated (J), therefore, no action was necessary. Zinc was recovered in the ICSA samples above the acceptance criteria. The Zinc result in sample MA4166 was estimated (J). Results may be biased high.

Matrix Spike Recoveries

The matrix spike failed for Antimony, Copper and Zinc; a post spike was analyzed for antimony at twice the CRQL and twice the indigenous level for Copper and Zinc. The post spike sample recoveries were within the QC acceptance criteria. The antimony matrix spike result was below the lower limit of the QC acceptance criteria, therefore, professional judgment was used to estimate (J/UJ) all antimony results. Copper and zinc matrix spike results were above the upper limit of the QC acceptance criteria, therefore, professional judgment was used to estimate (J) all copper and zinc matrix spike results.

In addition, aluminum, iron and lead did not meet the QC acceptance criteria; the spike recoveries were either below the the lower limit or above the upper limit of the QC acceptance criteria. However, the matrix spike analytes in the field sample that was chosen for the matrix spike for aluminum, iron and lead were at high concentrations before spiking (4x higher than the spike concentrations). Therefore, professional judgment was used not to qualify the data.

Lab Duplicates

The results for lab duplicate samples for barium and calcium were outside of the acceptance criteria. All results for calcium were positive and, therefore, estimated (J) due to lab duplicate data.

	Sample MA4165		Sample MA4165D		RPD or Abs.		
Analyte	Sample Conc. (mg/kg)	SQL/5xSQL (mg/kg)	Sample Conc. (mg/kg)	SQL/5xSQL (mg/kg)	Diff.	RPD or Abs. Diff. Criteria	Action
Barium	52.5	20/100	84.3	20/100	31.8 mg/kg	<2*QL (40mg/kg)	NONE
Calcium	1928.54	500/2500	3165.23	500/2500	1,236.69 mg/kg	<2*QL (1,000 mg/kg)	J

Sample results which required gualifications are summarized below.

PE Samples

No PE sample was included with this SDG.

Please contact Gail DeRuzzo at (978) 703-6021 should you have any questions or comments regarding this information.

Very truly yours,

NOBIS ENGINEERING, INC.

Gail DeRuzzo Lead Chemist

lane

Izabela Zapisek Subcontractor Data Validator WESTON SOLUTIONS, INC.

Tables:Table I:Overall Evaluation of Total Metals DataData Summary Table

Enclosures: Data Validation Worksheets PE Score Reports (NA) CCS Reports Region Electronic Correspondence Field Sampling Notes CSF Audit (DC-2 Form) DQO Summary

cc:

Ms. Cynthia Gurley USEPA Region IV (w/PE Scores and ORDA)

TABLE I

Overall Evaluation of Total Metals Data Chlor-Alkali Facility (Former) Superfund Site Case 40517; SDG MA41B3

	<u> </u>	Met	als	•.	
	Sampling and/or	Measureme	ent Error		
DQO (list all DQOs)	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*	Sampling Variability**	Potential Usability Issues
Accurate identification of environmental bioaccumulation risks from site contamination. Determination of where and what magnitude of risk applies for: -Humans, likely from incidental ingestion and dermal contact with sediments and surface waters, as well as consumption of fish; -Ecological assessment endpoints -Filling of existing data gaps throughout the study area.	Yes, ILM05.4 analytical methods and sampling procedures according to the requirements of the QAAP are appropriate for all samples.	Refer to qualifi- cations in R/S key: J ¹ J ² J ³ J ⁴ J ⁵ J/UJ ¹ J ⁶ J ⁷	Refer to qualifi- cations in R/S key:		J ¹ - Estimate positive selenium results due to ICSAB and ICSA recoveries above the acceptance criteria. Results may be biased high. J ² – Estimate all positive cadmium and cobalt results due to ICSA recoveries above the acceptance criteria. Results may be biased high. J ³ – Estimate positive lead results that were less than the ISCAB True value (6.1 mg/kg due to ICSA recoveries below the acceptance criteria. Results may be biased low. J ⁴ – Estimate positive zinc results that were less than the ISCAB True value (103.0 mg/kg due to ICSA recoveries above the acceptance criteria. Results may be biased low. J ⁴ – Estimate positive zinc results that were less than the ISCAB True value (103.0 mg/kg due to ICSA recoveries above the acceptance criteria. Results may be biased high. J ⁵ – Estimate positive

			potassium results due to poor ICSAB recoveries. Results may be biased high.
			J/UJ ¹ – Estimate all antimony results due to matrix spike result below the acceptance criteria.
·			J ⁶ – Estimate all positive copper and zinc results due to matrix spike result above the acceptance criteria.
		(J ⁷ – Estimate positive calcium results due to lab duplicate sample results outside the acceptance criteria.

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation. * **

-8-

DATA SUMMARY TABLE Tier II Validated Data Metals Analysis Soil - mg/kg

SITE: Chlor-Alkali Facility (Former) - Berlin, NH CASE NO.: 40517 SDG NO.: MA41B3

1

							•	-		
	Sample Name	MA	4165	^ MA	4166	MA	\4167	N	IA4174	
	Sample Location		/-3501	SB-	1701	SB	-1701	S	B-23O1	
	Lab Sample ID	1009	313-04	1009313-05		1009	9313-06	1009313-07		
	Station ID	FSA-MW-350	01-0204-091710	FSA-SB-170	FSA-SB-17O1-0406-091710		FSA-SB-1701-1012-091710		FSA-SB-2301-0001-091610	
	Dilution Factor		1	÷	1		1	1		
	Sample Date	17	Sep 10	17 5	17 Sep 10		Sep 10	16	Sep 10	
	Date Hg Analyzed	06	Oct 10	06 0	Oct 10	06	Oct 10	6	Oct 10	
4	Date Analyzed	05	Oct 10	05 (Oct 10	05	Oct 10	5	Oct 10	
Chemical	CRQL									
ALUMINUM	20	5715		1719		7109		5958		
ANTIMONY	6	1	J	0.64	J	6.8	UJ	0.62	J	
ARSENIC	1	2.6		2.8		1.5		3.4		
BARIUM	20	52.5		52	-	65.6		59.2		
BERYLLIUM	0.5	0.57	U	0.083	J	0.57	U	0.57	U	
CADMIUM	0.5	0.51	J	0.12	J	0.33	J ·	0.37	J	
CALCIUM	500	1929	J ~	1466	J	1241	J ,	2184	J	
CHROMIUM	1	9.6		5.9		11.3		6.7		
COBALT	5	5	J	2.4	J	5.8	J	4.4	J	
COPPER	2.5	93.2	J	18.7	J	22.3	J	18.9	J	
IRON	10	12281		4027		11720		10662		
LEAD	1	126		33.6		3.8	J	12.7		
MAGNESIUM	500	2936		366	J	3037		2723		
MANGANESE	1.5	200		62.4		143		158		
MERCURY	0.1	1		1.6		0.11	υ	0.079	J	
NICKEL	4	15		7.4		11.1		4.8		
POTASSIUM	500	819	J	343	J	1204	·J	1154	J	
SELENIUM	3.5	2.2	J	0.75	J	2.3	1 ·	2.1	J	
SILVER	1	1.1	U	1.4	U	1.1	U	1.1	U	
SODIUM	500	84.5	J	117	J	109	J	35	J	
THALLIUM	2.5	2.8	U	3.5	U	2.8	U	2.9	U	
VANADIUM	5	16.1		10.9		21		18.6		
ZINC	6	173	J	52.9	J	29.2	J	30.8	J	

DATA SUMMARY TABLE Tier II Validated Data Metals Analysis Soil - mg/kg

SITE: Chlor-Alkali Facility (Former) - Berlin, NH CASE NO.: 40517 SDG NO.: MA41B3

	Sample Name	MA	4186 -	MA	4196	MA	41A2	MA	41A3
	Sample Location	SB-	2201	SB-	1701	SB-	2201	SB	08O1
	Lab Sample ID		313-08	1009	313-09	1009313-10		1009313-11	
	Station ID	FSA-SB-220	1-0001-091710	FSA-SB-170	1-0001-091710	FSA-SB-220	1-0204-091710	FSA-SB-080	1-0204-091710
	Dilution Factor		1		1		1		1
	Sample Date	17 S	ер 10	17 S	ep 10	17 5	Sep 10	17 \$	Sep 10
	Date Hg Analyzed		Dct 10	06 0	Dct 10	06 0	Dct 10		Dct 10
	Date Analyzed		Oct 10	05 0	Oct 10	05 (Oct 10	05 (Oct 10
Chemical	CRQL						· · · ·		
ALUMINUM	20	4959		3822		8811		2911	
ANTIMONY	6 ·	6.9	UJ	2.8	J	0.45	J	0.82	J
ARSENIC	1	1.2	U	67.8		2 ·		7.2	
BARIUM	20	41.6		223		36.6		213	
BERYLLIUM	0.5	0.58	υ	0.078	J	0.56	U	0.08	J
CADMIUM	0.5	0.074	J	1.7	J	0.31	J	1	J
CALCIUM	500	1117	J	2469	J	963	J	7751	J
CHROMIUM	1	9.4		13.1		19.8		10.2	
COBALT	5	3.6	J	7.5	J	5.5	J	6.4	J
COPPER	2.5	17.3	J	165	J	52.4	J	33.5	J
IRON	10	10432		24887		11290		12418	
LEAD -'	1	37.1		401		21.3		103	
MAGNESIUM	500	2133		849		4083		1089	
MANGANESE	1.5	150		238		117		1675	
MERCURY	0.1	0.61		4.4		0.11	U	3.2	
NICKEL	4	8		22.7		11		96.8	
POTASSIUM	500	1095	J	519	J	1232	J	688	J
SELENIUM	3.5	5.9	J	5	J	2.2	J	3.2	Ĵ
SILVER	1	1.2	U	1.2	U	1.1	U	1.5	U
SODIUM	500	77.8	J	140	J	92.3	J	290	J
THALLIUM	2.5		U	3	U	2.8	U	3.7	U
VANADIUM	5	16.5		17.9		24.6		12.4	-
ZINC	6	34	J	260	J	21.1	J	158	J

DATA SUMMARY TABLE Tier II Validated Data Metals Analysis Soil - mg/kg

SITE: Chlor-Alkali Facility (Former) - Berlin, NH CASE NO.: 40517 SDG NO.: MA41B3

	Sample Name	MA	A41A4	1	MA41B3		MA41B4	1	MA41B5	
	Sample Location		-0801		SB-3301		SB-38O1		SB-18O1	
	Lab Sample ID		9313-12	-	1009313-01		009313-02	1009313-03		
	Station ID		01-1416-091710		301-0204-091610		3801-0204-091610		1801-0810-091610	
	Dilution Factor		1		1		1		1	
,	Sample Date		Sep 10	1	16 Sep 10		16 Sep 10	16 Sep 10		
	Date Hg Analyzed		Oct 10		6 Oct 10		06 Oct 10		06 Oct 10	
······································	Date Analyzed		Oct 10		15 Oct 10		05 Oct 10		05 Oct 10	
Chemical				*		1				
ALUMINUM	20	5678		8419		6147		7691		
ANTIMONY	6	6.8	UJ	8	UJ	0.53	j	6.7	UJ	
ARSENIC	1	2		1.8		1.3		0.93	J	
BARIUM	20	44.8		100		45.5		39.4		
BERYLLIUM	0.5	0.57	U	0.67	U	0.55	U	0.56	U	
CADMIUM	0.5	0.32	J	0.49	J	0.36	J ·	0.28	J	
CALCIUM	500	1227	J	19349	J	9386	J	1271	J	
CHROMIUM	1	8.6		11.9		27.6		8.1		
COBALT	5	6.2	J	3.8	J	5.4	J	4.4	J	
COPPER	2.5	38.4	J.	14.6	J	17	J	12.3	J	
IRON	10	11961		8077		9197	,	8924		
LEAD	1	3	J	9.4		9.5		4	J	
MAGNESIUM	500	2767	N	1783		3089		3078		
MANGANESE	1.5	174	1	433		220		149		
MERCURY	0.1	0.057	J.	0.13	U	0.13		0.11	U	
NICKEL	4	7		6.6		9.4		8.7		
POTASSIUM	500	949	J	852	J	1256	J	1209	J	
SELENIUM	3.5	2.3	J	1.9	J	2	J	1.7	J	
SILVER	1	1.1	U	1.3	U	1.1	U	1.1	Ü	
SODIUM	500	152	J	176	J	118	J	81.3	J	
THALLIUM	2.5	2.8	U	3.3	U	2.8	U	2.8	U .	
VANADIUM	5	17.1		19		19.5		13.4		
ZINC	6	22.7	J	48.8	J	38.1	J	33.3 ·	J	

REGION I, EPA-NE INORGANIC REGIONAL DATA ASSESSMENT (IRDA)*

CASE #: 40517	SITE NAME: Chlar Alkall
LAB NAME: BONNEN Analytical	# OF SAMPLES/MATRIX: 12/ Soil
SDG #:	VALIDATION CONTRACTOR: Nobis/Weston
SOW #/CONTRACT #: ILMOS.4/EPW08064	VALIDATOR'S NAME: Zapisek
EPA-NE DV TIER LEVEL:	DATE DP REC'D BY EPA-NE:
PO: **ACTION FYI	DV COMPLETION DATE: 11910

ANALYTICAL DATA QUALITY SUMMARY

		ICP-AES	ICP- MS	HG R	<u>CN</u>
I.	Preservation and Technical Holding Times	0	<u>\</u> 1		1
II.	ICP-MS Tune	NIM	$\sum I$	NA	
III.	Calibrations				
IV.	Blanks	<u> </u>		\Box	
V.	ICP-AES Interference Check Sample (ICS)			NA	
VI.	ICP-MS Interference Check Sample (ICS)	_NA		NIA	
VII.	ICP-MS Internal Standards	NIA		MA	
VIII.	Matrix Spikes	<u>'02</u>	<u> </u>	_0	
IX.	Laboratory Duplicate Samples	03		A_	
X . '	Field Duplicates	<u>NH</u>	<u> </u>	NIT	_4
XI.	ICP Serial Dilutions		-1	MA	$-\Delta$
XII.	Sensitivity Check	<u> </u>		_0	
XIII.	Performance Evaluation Samples/Accuracy Check			<u> </u>	
XIV.	Analyte Quantitation and Reported Quantitation Limits			_0	
XV.	System Performance			<u> </u>	$\downarrow \rightarrow$
XVI.	Overall Evaluation of Data	<u> </u>			$\underline{/}$

Data had no problems or were qualified due to minor contractual problems. 0 =

Data were qualified due to major contractual problems. m =

Data were rejected as unusable due to major contractual problems. z ≃

ACTION ITEMS: (z items)

AREAS OF CONCERN: (m items)

COMMENTS: 0, - Selenium, 1	roudmium, cobalt.	lead and + popessium	due to you- can pherent
TOP-AES NUMBER !!	22 - Qinghally	antimous, wisher +	ZINC, dre to
TCP - AES results	a Oz - Oinshi	M calcian dre	to two dipticate regults
	////		

* This form assesses the analytical data quality in terms of contractual compliance only. It does not assess sampling errors and/or non-contractual analytical issues that affect data quality.

.

** Check "ACTION" only if contractual defects resulted in reduced payment/data rejection recommendations.

Zapiseh Validator:

~

Date:

INSTRUCTIONS ON REVERSE SIDE

EPA-NE

Data Validation Worksheet Cover Page - Page 1

Chlor Alkali Site Name Reference No.

REGION I INORGANIC DATA VALIDATION

The following data package has been validated:

5 1 5	
Lab Name <u>BONNER Avelyfical</u> Case/Project No. <u>40517/</u> <u>80013</u> SDG No. <u>MA41B3</u> No. of Samples/Matrix <u>13. Soil</u>	SOW/Method No. $I(NO5, 4/AES + Hg by CV)$ Sampling Date(s) $\frac{9}{23} + \frac{9}{24} + \frac{9}{16} + \frac{9}{17}$ Shipping Date(s) $\frac{9}{24} + \frac{9}{24} + \frac{9}{25}$ Date Rec'd by lab $\frac{9}{24} + \frac{9}{25}$
Traffic Report Sample Nos. <u>MA4165</u> MA4196; MA41A2; MA41A	MA4166; MA4167; MA4174; MA4186; 3; MA41A4; MA41B3; MA41B4; MA41B5
Equipment Blank No. NA Bottle Blank No. NA Field Duplicate Nos. NA PES Nos. NA	
revision 11/2008 was used to evaluate the d Functional Guidelines were used to evaluate th criteria from EPA approved QAPP or amendm A Tier II or Tier III evaluation was used to vali	onal Guidelines for Evaluating Environmental Analyses, ata and/or approved modifications to the EPA-NE e data and are attached to this cover page: (attach modified ent to QAPP). idate the data (circle one). If a Tier II validation with a , parameters, etc., that received partial Tier III validation.
The data were evaluated based upon the follow	ing parameters:
 Overall Evaluation of Data Data Completeness (CSF Audit - Tier I) Preservation and Technical Holding Times ICP-MS Tune Calibrations Blanks ICP-AES Interference Check Sample (ICS) ICP-MS Interference Check Sample (ICS) ICP-MS Internal Standards 	 Matrix Spikes Laboratory Duplicate Samples Field Duplicates ICP Serial Dilutions Sensitivity Check Performance Evaluation Samples/Accuracy Check Analyte Quantitation and Reported Quantitation Limits System Performance
Region I Definitions and Qualifiers:	
A - Acceptable Data	

J - Numerical value associated with analyte is an estimated quantity.
 R - The data are rejected as unusable. The R replaces the numerical value or sample quantitation limit.
 U - Analyte not detected at that numerical sample quantitation limit.
 UJ - The sample quantitation limit is an estimated quantity.

BB, EB - Analyte detected in aqueous bottle blank or aqueous equipment blank associated with soil/sediment samples.

Validator's Name _	Zunisele	Company Name Nobis/Westby	_Phone Number	978-703-6	50Z)
Date Validation Sta	arted 11/15/10	Date Validation	n Completed	11/ 19/10	

EPA-NE

Data Validation Worksheet Cover Page - Page 2

Check if all criteria are met and no hard copy worksheet is provided. Indicate NA if worksheet is not applicable to the analytical method. Note: there is no standard worksheet for System Performance; however, the validator must document all system performance issues in the Data Validation Memorandum.

INORG Worksheets:

INORG	COMPLETE SDG FILE (CSF) AUDIT	
INORG-I	PRESERVATION AND TECHNICAL HOLDING TIMES	
INORG-II	ICP-MS TUNE	NA
INORG-III-A/B	CALIBRATIONS	
INORG-IV-A/B	BLANKS	
INORG-IV-C.1	BLANKS	
INORG-IV-C.2	BLANKS	
INORG-V-A	ICP-AES INTERFERENCE CHECK SAMPLE - ICSAB	
INORG-V-B.1	ICP-AES INTERFERENCE CHECK SAMPLE - ICSA	
INORG-V-B.2	ICP-AES INTERFERENCE CHECK SAMPLE - ICSA	
INORG-VI-A	ICP-MS INTERFERENCE CHECK SAMPLE - ICSAB	NIA
INORG-VI-B	ICP-MS INTERFERENCE CHECK SAMPLE - ICSA	MA
INORG-VII	ICP-MS INTERNAL STANDARDS	<u>দা</u> ব্দ
INORG-VIII	MATRIX SPIKES	
INORG-IX	LABORATORY DUPLICATE SAMPLES	
INORG-X	FIELD DUPLICATES	NIA
INORG-XI	ICP SERIAL DILUTIONS	
INORG-XII-A/B	SENSITIVITY CHECK	
INORG-XIII-A	PE SAMPLES/ACCURACY CHECK-LCS	
INORG-XIII-B	PE SAMPLES/ACCURACY CHECK- PE RESULTS	TH
INORG-XIV	ANALYTE QUANTITATION AND REPORTED	
	QUANTITATION LIMITS	
TABLE II-WORKSHEET	OVERALL EVALUATION OF DATA	

I certify that all criteria were met for the worksheets checked above.

Signature: D 11 Date:

Lapisek Name:

EPA-NE - Data Validation Worksheet Overall Evaluation of Data - Data Validation Memorandum - Table II

chlov Alkali Site:

Case: 40517

SDG:

MAYIB3

1	INORGANICS													
	Sampling and/or	Measure	ement Error	Sampling Variability**	Potential									
DQO (List all DQOs)	Analytical Method Appropriate? (Yes or No)	Analytical Error	Sampling Error*	Variability**	Usability Issues									
500														
Sel -														
		· · ·												

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation. ¥

**

Lapte Validator:

Date:

DRAFT 11/08

EPA-NE - Data Validation Worksheet **INORG**

	COMPLETE SDG F	ILE (CSF) AUDIT			
Inorganic Parameters:	AED webels +	the by a			
<u>Missing Information</u> NONE	Date Lab	• Contacted		Date Recei	ived
Awolit	Campleted	11 15 10	Sel	Form	DC-J
	· <u>·····························</u> ········				
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				
			<u>,</u>		
	~ ^	· ·			,
Validator:	isel		D	ate:	5/10

j

wolevs@ 6,9 +3,6°C

EPA-NE - Data Validation Worksheet INORG-I

I. PRESERVATION AND HOLDING TIMES

Circle sample numbers with exceeded technical holding times or omitted preservation. Circle all exceeded technical holding times. λ

		Pres. (Code			eeded technica =6(WNM etals		Hg (λ	CN /	
Sample No.	Matrix	Metals	CN	Date Sampled	Date Analyzed	# of Days from Samp. to Analysis	Date Analyzed	# of Days from Samp. to Analysis	Date Analyzed	# of Days from Samp. to Anatysis	Action
MAUIGS	soil	1,4		9/17	10/5	18	10/6	19			WONE
66	ſ	1	$\left \right $	·)		1				/	1
67			\mathcal{V}								
74			1	9 16		19		X	\\	·/	
86				9/17		18		19	\\	/	
46					 	<u> </u>	┠		/	\	
A2		- -			<u> </u>				/	<u> </u>	
A3 A4		+-+				<u> </u>	<u> </u>		/		<u> </u>
B3		+ - + - + +	\rightarrow	111	<u> </u>		┟			\	
<u>р</u> 2 Вч		┼╌┼─┤	┽╾┼╌	9/16	┝╌╌┼╌╌╌╌╸	19.	┠──┤───	20			<u>}</u>
154 BS			+ +		<u>├</u>					·	
V2			1			·		,	•		
		<u> </u>	· · ·								
						·	<u> </u>				
		<u> </u>					 				
								· · ·			· · ·
	•	1					<u> </u>			<u> </u>	

Preservation Code:

- 1. Cool ($\leq 6^{\circ}$ C)
- 5: Freeze
- 2. pH < 2 with HNO₃
- Reducing agent (for oxidants) 6. 3. pH > 12 with NaOH 7. Treated for sulfides
- 4. Room Temperature 8. Other -

Sampler:

Company:

Validator:

Action Code:

- Estimate (J) Detected Values] -
- UJ Estimate (ÚJ) Non-Detected Values

Date:

R - Reject (R) Non-Detected Values

Contacted: - N Y

Date

DRAFT 11/08

EPA-NE - Data Validation Worksheet INORG-III-A/B/C

III. CALIBRATIONS

A. Instrument Calibration - List all calibration correlation coefficients that are outside the method QC acceptance criteria. Calibration correlation QC acceptance criteria:

Date/Time	Instr.	Analyte 🥢	Corr. Coef.	Samples Affected	Action

B. Initial and Continuing Calibration Verifications - List all ICV and CCV analyte recoveries that are outside the method QC acceptance criteria. ICV method QC acceptance criteria: <u>100 90-10%</u> CCV method QC acceptance criteria:

Date	Instr.	Analyte	ICV/CCV #	% R	Samples Affected	Action
					HU LOUISU	
	·		·			•

C. Quantitation Limit Check Standard - List all QL Check Standard analytes that are outside method QC acceptance criteria. QL Check Standard method QC acceptance criteria: $\frac{90-30\%}{50}$, $\frac{50}{5}$, $\frac{10}{5}$, $\frac{10}{5}$, $\frac{10}{5}$

Date	Instr.	Analyte	QL Check Std. #	~ % R	Affected Range	Samples Affected	Action
		Irou	CKI2	163%		All except MAU166>	NONE, AL
						0	results >
		mercum	CRI3	40%		MA4165+ MA41655	than dx
		1-0	(KI4	115%		Ľ –	BL True
						None result > than dxgl	Value.
				_	·	Time value (>. 04 me/ko)	(> 2 Duno Ka
							013

Comments:

Validator:

DRAFT 11/08

EPA-NE - Data Validation Worksheet INORG-IV-A/B

IV. BLANKS - List the blank contamination and negative blank results below.

Sampler: _____

Contacted: Y Ν

Date:

Laboratory: Preparation (Method) and Calibration (Instrument) Blanks А.

Сотралу: ___

Date Prepared	Date Analyzed	Blank Type (ICB/CCB#/Prep Blank)	Matrix	Instrument	Analyte	Conc. (units)
10/4	10/5	cebd -	Soil	ICAPP6500	Bayun	. 0828
- I	ł	C(B3 /	[(. 1348
		C(B4 -			L	.0594
		AWAP /			Cobalt	053
		IB /			Potossium	11.38
		CUB3 -			Sodium	4.429
	·	CCB4 /				3.6404
		PWID -				- 6.064
		C(B) -			Vanadime	. 0616
	·	E Julp -			Ĺ	066
1015	10 6	ICB	Seil	MOL	nevering	-,0077
		CIB3			D	00 59

B. Field: Equipment (Rinsate) and Bottle Blanks

Dat Samp		Sample No. (Blank Type)	Matrix	Instrument	Analyte	Conc. (units)
					· · · · · · · · · · · · · · · · · · ·	
				\square		
J						
· · ·	/			/	<u> </u>	
			· `		`	<u>`</u>
Were the proper r	number of blanks analyze	ed at the proper frequency?	ÝY) N			
For ICP MS - Are	e internal standard respoi	nses in all blanks within metho	od QC acceptance criteri	ia? YNN	IA-	
Comments:		·	•			
	2 · · · · · · · · · · · · · · · · · · ·					
alidator:	Zapille		Page 1 of 2		Dat	e: 11/15/10

DRAFT 11/08

For Sample MA4166 only

Ν

EPA-NE - Data Validation Worksheet **INORG-IV-A/B**

IV. BLANKS - List the blank contamination and negative blank results below.

Sampler: _____

Company: ____

Contacted: Y Date:

Laboratory: Preparation (Method) and Calibration (Instrument) Blanks **A**.

Date Prepared	Date Analyzed	Blank Type (ICB/CCB#/Prep Blank)	Matrix	Instrument	Analyte	Conc. (units)
10 4	105	CLB1	Spil	JUAPP 6500	Malcun	-10.96
) .	(È	C(B2)	1		+	-10.47
		TCB			Patiessium	130117
		CCBI			1	509418
		GBZ				6.8289
		ICB			Saoluum	- 4.7162
	·	CCBI			1	7,934
		CCBA				30646
		liner				- 6064
	· 7		· ·			<u>+</u>
		······································				
					1	

Field: Equipment (Rinsate) and Bottle Blanks В.

	Date - Sampled	Date Analyzed	Sample No. (Blank Type)	Matrix	Instrument	Analyte	Conc. (units)
					\times		
	-						
		\langle					
-	S - Are interna	•	at the proper frequency? (Y	-	ia? Y N	A)(A	
lidator:	2	apiel		•		Dat	e: 11/15/10
		V .	Page	2 2 0 2	~		DRAFT 11/(

EPA-NE - Data Validation Worksheet INORG-IV-C.1 IV. BLANKS

C.1 Blank Contamination Worksheet

Circle the highest concentration of each contaminant.

Analyte	Date	ICB				ССВ				PBW	PBS	EB	BB	Max.	Action
Analyte	Analyzed	ICD	1	2	3	4	5	6	7		120			Conc.	Level
Aluminum										[
Antimony				<u> </u>									 		
Arsenic		[
Barium	1015		(0858	:1348)	.0594]	.0858.1348	
Beryllium]	. /	
Cadmium]		
Calcium]]		
Chromium				<u>.</u>]	1	
Cobalt	105									1 (1.053)]	1.053	
Copper												[
Iron		[•								,
Lead										_					
Magnesium															
Manganese													<u> </u>		
Mercury	1116	0077)		0059)								<u> </u>	-0077/005	
Nickel	,		h												•
Potassium	10[5/(11.38	/											11.38	
Selenium			 							ļ				<u> </u>	
Silver														.	
Sodium	10 5	.•·			4.429	3.6404				.	6,064			4.429	
Thallium	}	<i>h</i>								.			.	<u> </u>	}
Vanadium	105	l	0616)	 							066		.	·P616	
Zinc					 					.				.	
Cyanide		.				ļ			`					.	· · · · · · · · · · · · · · · · · · ·
		 							····	+	••••••••••••			+	
	L	L.	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>]	1	<u> </u>	<u>l</u>]	<u> </u>	<u> </u>
Validator:		apil	li								`.		Dat	ie://	15/10
		V												DRAFT 11/	/08

EPA-NE - Data Validation Worksheet INORG-IV-C.1 IV. BLANKS

MAY166 ouly

C.1 Blank Contamination Worksheet

Circle the highest concentration of each contaminant.

Analyte	Date	ICB		• • • • • • • • • • • • • • • • • • •		CCB	1999			PBW	PBS	EB	BB	Max.	Action
	Analyzed	100	1	2	3	4	5	6	7	1.5 %	120			Conc.	Level
Aluminum				2											
Antimony	1														
Arsenic						[
Barium														[
Beryllium											[
Cadmium						· ·									[
Calcium	1015		-10.96	(-10.47)										-10,47	[
Chromium				\bigcirc											[
Cobalt]						
Copper									}						
Iron		[]				}		
Lead															
Magnesium					· ·]]		[
Manganese										[1		
Mercury]	[[
Nickel		E]						
Potassium	105	13.117	59418	6,8289		Ι]				1	13117	
Selenium		$ \bigcirc$								I					[
Silver]					T	
Sodium	10/5	4.716/	7.934)3,646		Ţ			}	Ţ	-6.064		1	7.934	
Thallium				Y		Ī			1	1					
Vanadium						T								T	
Zinc		[Ι]	[]	T	
Cyanide		I				Ι	[]	Ι				T	-
		Ι	[T				T	[[·····	1	T	
			[<u> </u>			[[<u> </u>	Ι	
Validator:	1	apil	li_										Dat	e://	15/10
		V						~						DRAFT 11	/08

EPA-NE - Data Validation Worksheet INORG-IV-C.2

IV. BLANKS

C.2 Blank Actions - List the maximum concentrations of each analyte among all blanks associated with each sample.

	Analyte	Type of Blank	Date Blank Originated	Max. Conc. (units) Wug (Ky	<u>S</u> Blank Action Level	Sample QL	Samples Affected	Action
1	Barium	CCB2/CCB3	10/4	0858/. 1348	.4247.674	20	Results > pAL	MANE
	Capalt	PWP		053	265	5		
	perany	IUB/CCB3	10/5		.0385/.0295			
-	Palossin	IB	10/4	11.38	56.9	500	· · · · · · · · · · · · · · · · · · ·	
-	Sadine	IB3	Ì	4.429	22.145	200		
/	Variadin	CBI	<u> </u>	.0616	.308	5		1
						<u></u>	·	
MV44166	· · · · · · · · · · · · · · · · · · ·			,	·	·		
MAYIN	calcum	CBZ	10/4	-10.u7	52.35	500	NONE, of vesult > BAL	NONE
	Polesin	FCB		13,117	65.585	500		
OWN	Salm	(CB)	-+	7.934	39.67	500		1
						·		
			<u> </u>			·		
				<u>1</u>			1	L
	Comments:			-				
			-					
	Validator:	Zapie	h				Date:_	1/15/0
		U					DI C	A ET 11/00

80 -120%

EPA NE - Data Validation Worksheet INORG-V-A

V. A. ICP-AES INTERFERENCE CHECK SAMPLE - ICSAB

1. List all analytes in the ICSAB that are outside ICSAB percent recovery criteria.

Date	Analyte	%R	Conc	of Interfer ICSAB	ents Obser (ug/L)	ved in	Samples Affected	Action
			Al	Ca	Fe	Mg		
	Selumini	135%					· · · · · · · · · · · · · · · · · · ·	
	÷	1330						
		132%						
							N	
	·		/			· ·		
<u> </u>					[1		
- <u></u>	`	\mathbf{k}						
		$\left \times \right $		· · · · · · · · · · · · · · · · · · ·	<u>}</u>			
	/				<u>}</u>			
	/			<u>```</u>			· · · · · · · · · · · · · · · · · · ·	
	···/		1		<u> </u>			
	{							
						+		
		L						fin houte
omments:	(x)	XXX	Pote	SSIUM	+ >(odlum	wave the verne of 0.0	with from month
			Pot	esseum		rever act	wave The Value of 0.0 were - 50.5 and 2.8 yp/ - 766 and 800 yr	
<u> </u>		- 1	X	<u>ourun</u>			166 4mol 800 by	
lidator:	Zan	iel	-					1/15/10
		<u> </u>					· · · · · · · · · · · · · · · · · · ·	Date: $l/(1)/100$
	v						-	DRAFT 11/08

EPA NE - Data Validation Worksheet INORG-V-B.1

V. B.1 ICP-AES INTERFERENCE CHECK SAMPLE - ICSA

1. List all analytes in the ICSA that are outside ICSA criteria.

Date	Analyte	MDL	ICSA Observed	ICSA True Value	Criteria: 80-120% R	Conc.		rents Obsei (ug/L)	rved in	Action Associated Samples
		(ug/L)	Conc. (ug/L)	(ug/L)	or TV±2xMDL	Al	Ca	Fe	Mg	
	Autinout	3.9	,83	0.0	7.8 107.8					NONE, results w/in TV=24 WL
	0		a16		· · ·					
·	1		1.7							
	Arsenic	2.1	57	0.0	4.2 10 412	· · ·				
			48							
ļ	<u> </u>		1.0							
	barrin	1.3	.96	2.0 -	6 to 1.6					48%
	· 	<u> </u>	1.2							60%
			.97	L					· · · ·	49%
 	Beryllin	-4	.99	0,0	8 to .8		 			(7) and results
			.82		<u> </u>					Ether ND or alveragy
_			.80					-		
	Condución	.2	2.5	0.0	- 4 40.4					$\left \left(f \right) \right $
Comments		- +	2.4		1					
								- - 		
Validator:	W	pile	L			·				Date: (1/15/40

laze 1 0/3

DRAFT 11/08

C

EPA NE - Data Validation Worksheet INORG-V-B.1

V. B.1 ICP-AES INTERFERENCE CHECK SAMPLE - ICSA

1. List all analytes in the ICSA that are outside ICSA criteria.

Date	Analyte	MDL (ug/L)	ICSA Observed Conc.	ICSA True Value	Criteria: 80-120% R	Conc.		rents Obser (ug/L)	rved in	Acfib U Associated Samples	
1		(ug/L)	(ug/L)	(ug/L)	or TV±2xMDL	Al	Са	Fe	Mg		
	Colorett	.43	4.9	42	\$ 4.86					1236 - TV	
	lead	2.3	-2.5		45.410 14.6					-25% They results < THU	R
			-4.3				_			-43% Juy results < THIN -43% Volue ICHB (6144	g)
			-64	L	-					-64% / · ·	Y/
	Polessin	53	-521	0.0	TOG 40106					WONE, we sult = w/in TV=2+MDI	L
			- GA.8	{					·		
		+	-41.3								
	Selenin	3.4	17.1	0.0-	6.4 20 6.4					V(7) abendy I benuse	
		j	18.6	ì	(·					1 ICSAB	
	1	1	20.6								
	Silver	٩،١	. 61	O, O	-8.2 68.2					NONE results w/in	
	1		.90	(/ TV ± 2×MBL	
	L	J	(.	L			-				
Comments	: :		•••••••••••••••••••••••••••••••••••••••				• <u>•••••</u> ••••••••••••••••••••••••••••••	<u> </u>	<u> </u>		
L		-									

2 0 3

lage

Long Validator:___

DRAFT 11/08

Date: 11/19/10

EPA NE - Data Validation Worksheet INORG-V-B.1

V. B.1 ICP-AES INTERFERENCE CHECK SAMPLE - ICSA

1. List all analytes in the ICSA that are outside ICSA criteria.

Date	Analyte	MDL (ug/L)	ICSA Observed Conc.	ICSA True Value	Criteria: 80-120% R	Conc.	of Interfer ICSA	rents Obse (ug/L)	rved in	Associated Samples
		(""")	(ug/L)	(ug/L)	or TV±2xMDL	Al	Ca	Fe	Mg	
	Sadium	28.7	764	0.0	57.4 657.4				·	Vy All vesults
			812							alreardy estimated
		+	796	<u> </u>		 				
	Theetine	300	-1.0	0.0	76 60 6					results w/in TUI 2×MPL
			-1.5	(· ·			
	<u>↓</u> +	L	-,50							
	Veroditin	4.2	www.692	0.0	8.4 10 8.4					
	<u> </u>		18							
			- 1.4							
	Zinc	.44		28,0	28.88					
]	33.8		1		÷.,			121/3 Presults CTIME
		\downarrow	34.4	<u> </u>						123% Kalne ILSAB (103)
										æ í
Comments	5:									
				·						
	1.45.5. <u></u>								` 	
Validator:	2	apil	L							Date: 11/19/10
		v			Playe	3	2]	3		DRAFT 11/08

DRAFT 11/08

EPA NE - Data Validation Worksheet INORG-V-B.1

only For MA4166

V. B.1 ICP-AES INTERFERENCE CHECK SAMPLE - ICSA

1. List all analytes in the ICSA that are outside ICSA criteria.

Lapil

Date	Analyte	MDL (ug/L)	ICSA Observed	ICSA True Value	Criteria: 80-120% R	Conc.	of Interfer ICSA	ents Obse (ug/L)	rved in	Associated Samples		
		(ug/L)	Conc. (ug/L)	(ug/L)	or TV±2xMDL	Al	Ca	Fe	Mg			
	authinon	3.9	4.4	0.0	-7.8 to 7.8					None, we sults of in TV = 2+	41	
	L	1	1.2	T	1		<u>.</u>					
	Arsunic	2.1	-1.3	00	4.2204.2							
-	+	+	· 18	Ţ	\bot							
	Banin	1.3	1.1	20	-6 to 4.6					· ·		
		-	1.	1	. 1							
	Beryliny	· , 4	.35	O.O	-840,8		-					
,	1	T	.60	Ţ.	1						·	
	Cadim	•2	082	O.D	-4 10.4							
-	t	+.	10	4	T							
	Glast	:43	5.1	4.0	314 10 4.86					Alverendy		
	+	J	5.0		L					/ estimated		
	lead	d.3	7.4	10.D	54 1014,6					74% None resultw/in		
Comments	S:				· · · ·					* TV = 2×MDL		
			•	· ·								

Validator:

Peage 10/ 2

DRAFT 11/08

EPA NE - Data Validation Worksheet INORG-V-B.1

only for MA4166

V. B.1 ICP-AES INTERFERENCE CHECK SAMPLE - ICSA

1. List all analytes in the ICSA that are outside ICSA criteria.

Date	Analyte	MDL (ug/L)	ICSA Observed Conc.	ICSA True Value	Criteria: 80-120% R	Conc.	of Interfer ICSA	ents Obse (ug/L)	rved in	Associated Samples
		(ug/L)	(ug/L)	(ug/L)	or TV±2xMDL	Al	Ca	Fe	Mg	NOT
	manpiares	10/0	2301	19.0	2.2.2					(I) result less than The
		1.	23.5	Ť		-				valle Issto (50. 2 mg mg) Hetiol
	Palassius	53	4.2	O.O	106 20 106					> NO ACTION
	+	L	- 14.1	1	1					result w/in TVIZ+HOL
	Selenin	3.4	-,37	0.0 '	6.4-106.4					
		Ť	-2.9	+	. 1					
	Silver	4,1	.79,	0.0	8.268.2					
		1	,53	•	1					
	Sodium	28.7	776	0.0	52.4 657.4					Destructed estimated
	T	1	721	-(T					
	thallin	3.0	-2,5	0.0	-6 +0 6					results whin Ntarmpl
	Ĭ.	1	-2.1	L	-					1
	Vanalin	4.2	101	0.0	-8.4408.4					
Comments	1	+	-0.69 + 34.7 9 34.9	28	opto 28.8					E .

Page 20/2

Lan Validator:

DRAFT 11/08

19

10

EPA-NE - Data Validation Worksheet INORG-VIII

VIII. MATRIX SPIKES - List all matrix spike analytes that are outside method QC acceptance criteria.

Use a separate worksheet for each matrix spike sample.

Sample No.:	MAUL	655	Matrix:	Soil				
Method	Analyte .	Spiked Sample Result	Sample Result	Amount of Spike Added	MS % Recovery	Method QC Limits % Recovery	Post-Digest Spike % Recovery	Action
	Autimon	10.91	1.02	22.65	4470	75-12510		Huy
	Copper	177,6	93.2	56.6	149%	1		tro.
	zinc	326,2	173.13	113.25	135%	L.		Je in the second
								0
				•				
				,	-			
		· .						
								×
					· · · · · · · · · · · · · · · · · · ·			
Comments:						, ,		

10 Mu Validator:

DRAFT 11/08

EPA-NE - Data Validation Worksheet INORG-IX

IX. LABORATORY DUPLICATE SAMPLES - List all analytes that are outside method QC acceptance criteria for the specific matrix.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lethod	Analyte	Sample Conc.	Sar	nple	Duplicate Conc.	Dup	Duplicate		QC Acceptance Criteria	Action
			Colic.	SQL	5xSQL	Couc.	SQL	5xSQL	Abs. Diff.	(RPD or Abs. Diff.)	
	·	Bamin	52.5	20	100	والمدير المتحدث المتحدث المحدث المحدث	20	100	Abs Diff		
			1928.54	590	2500	3165.23	500	2500	Too	=2×500=>(1000)	7/mg
Image: Sector of the sector						<i>5</i>				· · · · · · · · · · · · · · · · · · ·	
Image: Section of the section of th		<u> </u>									
Image: Second					ļ			 			
Image: Second		ļ		<u></u>						·	
Image: Second				<u>.</u>							
Image: Second	······································							ļ	· · · ·		
Image: Second	<u> </u>	++			<u> </u>			}			
								 	· · ·		
		<u>}</u>						}	. 		
						· · ·		<u> </u>			
	<u> </u>	+	<u> </u>			· · · · · ·		<u> </u>			
										l A second se	
field duplicate sample data indicate acceptable field precision? Y NO Field UVPS		-		-	-		,	1100	d Dups		

DRAFT 11/08

1.1

EPA-NE - Data Validation Worksheet **INORG-X**

X. FIELD DUPLICATES - List all field duplicate analytes that are outside criteria.

Use a separate worksheet for each field duplicate pair.

Sample No.:		<u>.</u>	Dı	plicate Sam	ole No.:		<u> </u>	_	Matrix:	
Method	Analyte	Sample	Sa	mple	Duplicate	Duj	olicate	RPD or	QC Acceptance Criteria	Action
		Conc.	SQL	SYSQL	Conc.	SQL	5xSQL	Abs. Diff.	(RPD or Abs. Diff.)	
					•			·	+	
		/	ľ			ļ				
	· · · · · · · · · · · · · · · · · · ·	<u> </u>								<u> </u>
		\times				<u> </u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·
		/ -							<u></u>	
		<u>_</u>	<u> </u>		•		· · · · · · · · · · · · · · · · · · ·		· 	<u> </u>
										<u> </u>
	/									
	1.									· · · · · · · · · · · · · · · · · · ·
				\backslash						
	tory duplicate s						Y N			
Sampler Nam	e:			_Contractor	Name:			Date	e Contacted:	
Reason for co	ntact and resol	ution obtained	: <u>·</u>							
	2	` ^			·	•			I	Date: 11/15/10
		v						· ·		DRAFT 11/08

EPA-NE - Data Validation Worksheet **INORG-XI**

XI. ICP SERIAL DILUTIONS

Use a separate worksheet for each serial dilution sample.

Sample No.: MA4165L	Matrix:	Method: AES
---------------------	---------	-------------

List all serial dilution analytes that are outside method QC acceptance criteria.

% Difference method QC acceptance criteria:

SO YMDI Minimum concentration required to apply the % D criteria (e.g., 50x MDL):

~ 10%

Analyte	MDL Well	Min. Conc. Required ンSつ	Sample Result	Serial Dilution Sample Result (corrected for dilution)	% D	Action
Cadmium	.2	10	4.54	3.44	24%	result < Min Carcertuelius
						tren have
Selemure	3.4	. 170	19.37	24.83.	28%	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·						NO ACTION
Sodim	28.7	1435	746.14	666.18	11%	
		/				
Comments:		<u> </u>		.	<u> </u>	L
	Trepisel		، بریکرینی کی وروکی میکرینی ، بر		<u>- Angene and Grander and Angene and Ange</u>	Date: $1/15/0$

151(Date:

EPA-NE - Data Validation Worksheet INORG-XIII-A

XIII. PERFORMANCE EVALUATION SAMPLES/ACCURACY CHECK

A. Laboratory Control Samples - List all analytes that are outside criteria.

SDG No.:____1A41B3____Case:___40517

Are more than one-half of the LCS analytes within criteria for each parameter and method?

Date Prepared	Date Analyzed	Parameter/ Method	Matrix	Analyte	% Recovery (or Observed Conc.)	Method QC Acceptance Criteria	Samples Affected	Action
						·		
			à	· · · · · · · · · · · · · · · · · · ·				
					·	•		
								-
						,	Δ	
Comments:			All	Com	phy, v	vlinl	imits set	
Validator:	2	apiel	-				Date:]	1/15/10 DRAFT 11/08

Ν

Y

EPA-NE - Data Validation Worksheet **INORG-XIII-B**

XIII. PERFORMANCE EVALUATION SAMPLES/ACCURACY CHECK

B. Performance Evaluation Results - List all analytes that are outside criteria.

MA41B3 40 Case: SDG No.:

Indicate the source of the PES:

Region 1 EPA PES

Non-EPA PES

Are more than one-half of the PES analytes within criteria for each parameter and method? Y N

PE Sample Number	Ampule Number	Parameter/ Method	Type of PES	Matrix	Analyte	Conc.	PES Score*	Samples Affected	Action
									,
	·								
									· .
			·						

* For Region I PESs indicate the Region I PES Score Report Result: Action High, Action Low, Analyte Missed, Contaminant. For Non-EPA PESs indicate the Non-EPA PES Score: PES Analyte Missed; PES Analyte Contaminant; PES Analyte Hit (% Recovery Limits).

\S (Comments: Zram Validator: Date: **DRAFT 11/08**

EPA-NE - Data Validation Worksheet INORG-XIV

XIV. ANALYTE QUANTITATION AND REPORTED QUANTITATION LIMITS

Recalculate, from the raw data, the concentrations for one positive detect and one reported sample quantitation limit for a non-detect in a diluted sample or soil sample per analytical method. (Note: Although Section XIV, C.2.a, requires that one calculation for each method in each sample be performed, the validator is only required to reproduce an example, for each method, of one positive detect and one sample quantitation limit calculation on this worksheet.)

N

Do all soil/sediment samples have % solids greater than 30%? Y

- Indicate the action and list the affected sample nos.:

Method		Calculation
ICP-AES		Be 367.78 1/ * 11 * 100% * 0000 * 1mg = 52 019 M
Sample No.:	NA4166	5° 367.78 1/ * 11 * 100 * 1000 * 114 1000 = 52.019 M
Reported Analyte:	Bomun	9 70.1/0 113 10009
Reported Value:	52	AQ , WY + 100% - 11 mg
Non-Detected Analyte:	Sher	
Reported Quantitation Limit:	. 104 U	- My 70.7
ICP-MS		
Sample No.:		
Reported Analyte:		
Reported Value:		
Non-Detected Analyte:		
Reported Quantitation Limit:		
Mercury		Hg -66 2,193 4 11 + 100% 10008 + 1 mg = 1 551 mg
Sample No.:	MA4166	
Reported Value:	1.6	.23 70.7% Ing work Tf
Sample No.:	MA4167	140-67 1 × 100%
Reported Quantitation Limit:	.11 U	1 \$ 27.8% = .119 91
Cyanide		
Sample No.:		
Reported Value:		
Sample No.:		
Reported Quantitation Limit:		
Validator: <u>72,0(</u>	il	$Date: \qquad \qquad$

Trisha Aiken

From: Arthur, Lana [larthur@fedcsc.com] Monday, September 27, 2010 10:39 AM Sent: To: Chris Bonner; taiken@batco.com FW: Region 01 | Case 40517 | Lab BONNER | Issue Multiple Subject: Trisha, Please confirm that sample MA4174 was received on 9/25 for Issue 1 below. -Samples listed on TR/COC but not received at laboratory-Issue 1: The TR/COC lists samples MA4174 and MA4178, however they were not present in the shipment. Resolution 1: Per Region 1, the laboratory will note that sample MA4174 was shipped on 9/24 for receipt on 9/25. One container labeled as sample MA4188 with MW-3501 written on the lid is for sample MA4178. Please note and proceed. -Discrepancies with tags, jars, and/or TR/COc-Issue 2: Sample MA4188 is listed on the TR/COC as having only 1 container, however there are 2 containers both with sample tag number 312. Resolution 2: Per Region 1, the laboratory will note that the one container labeled as sample MA4188 with MW-3501 written on the lid is for sample MA4178. Please note and proceed. -Non-standard matrix-Issue 3: Sample MA41B2 contains approximately 2 mLs of standing water, should the lab decant or homogenize? Resolution 3: Per Region 1, the laboratory will homogenize the excess liquid before taking an aliquot for analysis. Please note and proceed. Thank you, Lana Arthur Environmental Coordinator - Regions 1 & 4 CSC 15000 Conference Center Drive Chantilly, VA 20151 | Civil Division | w: 703.818.4852| f: 703.818.4602 | larthur@fedcsc.com | www.csc.com This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose. ______ ------_____ ----Original Message-----From: Clark.Christine@epamail.epa.gov [mailto:Clark.Christine@epamail.epa.gov] Sent: Monday, September 27, 2010 10:44 AM To: Arthur, Lana Subject: RE: Region 01 | Case 40517 | Lab BONNER | Issue Multiple Hi Lana See below and let me know if you need anything else. Thanks Christine Clark US EPA, Region One, 11Technology Drive, N. Chelmsford, MA 01863-2431 Phone: 617/918-8615, Fax: 617/918-8515 or 617/918-8397, Email: Clark.Christine@epa.gov

---- Forwarded by Christine Clark/R1/USEPA/US on 09/27/2010 10:42 AM

From: "Gail Deruzzo" <GDeruzzo@nobiseng.com>

To: Christine Clark/R1/USEPA/US@EPA, "Denis McGrath" <DMcGrath@nobiseng.com>

Date: 09/27/2010 10:30 AM

Subject: RE: Region 01 | Case 40517 | Lab BONNER | Issue Multiple

Issue 1: Sample MA4174 was identified as not being shipped the day of shipment. It was shipped on 9/24 for receipt on 9/25. Issue 1 & 2: Sample MA4178 should be marked on the lid as MW-3501 to distinguish it from Sample MA4188, which will be marked SB-3501 on the lid. Please re-label the second jar now labeled as MA4188 but having MW-3501 on the lid as MA4178. Issue 3: Please homogenize the excess liquid before taking an aliquot for analysis. Thank you, Gail

----Original Message----From: Clark.Christine@epamail.epa.gov [mailto:Clark.Christine@epamail.epa.gov] Sent: Monday, September 27, 2010 10:04 AM To: Gail Deruzzo; Denis McGrath Subject: Region 01 | Case 40517 | Lab BONNER | Issue Multiple

Hi Gail

See below and get back to me as soon as possible.

Thanks

Christine Clark US EPA, Region One, 11Technology Drive, N. Chelmsford, MA 01863-2431 Phone: 617/918-8615, Fax: 617/918-8515 or 617/918-8397, Email: Clark.Christine@epa.gov

----- Forwarded by Christine Clark/R1/USEPA/US on 09/27/2010 10:03 AM

~~~~

From: "Arthur, Lana" <larthur@fedcsc.com>

To: Christine Clark/R1/USEPA/US@EPA

Date: 09/27/2010 10:00 AM '

Subject: Region 01 | Case 40517 | Lab BONNER | Issue Multiple

Chris,

BONNER is reporting the following issues for Case 40517 (Nobis), please advise:

-Samples listed on TR/COC but not received at laboratory-Issue 1: The TR/COC lists samples MA4174 and MA4178, however they were not present in the

shipment. -Discrepancies with tags, jars, and/or TR/COc-Issue 2: Sample MA4188 is listed on the TR/COC as having only 1 container, however there are 2 containers both with sample tag number 312. -Non-standard matrix-Issue 3: Sample MA41B2 contains approximately 2 mL's of standing water, should the lab decant or homogenize? Thank you, Lana Arthur Environmental Coordinator - Regions 1 & 4 CSC 15000 Conference Center Drive Chantilly, VA 20151 | Civil Division | w: 703.818.4852| f: 703.818.4602 | larthur@fedcsc.com | www.csc.com This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose. \_\_\_\_\_ From: Trisha Aiken [mailto:taiken@batco.com] Sent: Saturday, September 25, 2010 2:56 PM To: Arthur, Lana Cc: Chris Bonner Subject: Region 1 | Case 40517 | Sample Receipt Lana; On September 24, 2010 we received 19 soils and 1 PE soil via FedEx air bill 8714 6534 5485. Custody seals were present and intact. Cooler temp was determined to be 3.6oC. Samples were in good condition except for the following discrepancies. The TR lists 21 soils and 1 PE soil; however samples MA4174 1. and MA4178 were not present in the shipment. Please advise. 2. Sample MA4188 is listed on the TR as having only 1 container of sample; however there are 2 containers both with sample tag number 312. Please advise. Sample MA41B2 contains approximately 2 ml's of standing 3. water shall we decant or homogenize? Thanks; Tricia Aiken Bonner Analytical

167

# Trisha Aiken

|   | From:    | Arthur, Lana [larthur@fedcsc.com]                                                                             |
|---|----------|---------------------------------------------------------------------------------------------------------------|
|   | Sent:    | Wednesday, September 29, 2010 2:37 PM                                                                         |
|   | To:      | Chris Bonner; taiken@batco.com                                                                                |
|   | Cc:      | Jarosz, Margaret; Christine Clark; Jennie Han-Liu                                                             |
|   | Subject: | Region 01   Case 40517   Lab BONNER   Issue Sample listed on TR/COC but not received at<br>laboratory   FINAL |
| Т | ricia,   |                                                                                                               |
| * | **Summa  | iry Start***                                                                                                  |

Issue: Sample MA4179 is listed on the TR/COC, but it was not received at the laboratory with the rest of the shipment on 9/25.

Resolution: Per Region 1, Per Region 1, the laboratory will receive the sample on 10/1. The sample was found on site and will be shipped to the laboratory tomorrow

\*\*\*Summary End\*\*\*

Please let me know if you have any questions or problems. To waive any defect(s) associated with this issue, please contact your PO.

Thank you,

Lana Arthur Environmental Coordinator - Regions 1 & 4 CSC

15000 Conference Center Drive Chantilly, VA 20151 | Civil Division | w: 703.818.4852 | f: 703.818.4602 | larthur@fedcsc.com | www.csc.com

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

From: Jarosz, Margaret
Sent: Wednesday, September 29, 2010 3:45 PM
To: Arthur, Lana
Subject: FW: Region 01 | Case 40517 | Lab BONNER | Issue Sample listed on TR/COC but not received at laboratory | FINAL

Tricia,

\*\*\*Summary Start\*\*\*

Issue: Sample MA4179 is listed on the TR/COC, but it was not received at the laboratory with the rest of the shipment on 9/25.

Resolution: Per Region 1, the sample was found on site and will be shipped to the laboratory tomorrow for Friday delivery (10/1).

10/8/2010

## \*\*\*Summary End\*\*\*

Please let me know if you have any questions or problems. To waive any defect(s) associated with this issue, please contact your PO.

Thank you,

Margaret Jarosz Environmental Coordinator CSC

15000 Conference Center Drive, Chantilly VA 20151 Civil Division | (p) 703-818-4351 | (f) 703-818-4602 | mjarosz@fedcsc.com | www.csc.com

From: Clark.Christine@epamail.epa.gov [mailto:Clark.Christine@epamail.epa.gov] Sent: Wednesday, September 29, 2010 2:25 PM To: Arthur, Lana; Jarosz, Margaret Subject: Fw: Region 01 | Case 40517 | Lab BONNER | Issue Sample listed on TR/COC but not received at laboratory

See below and let me know if you need anything else.

Thanks,

Christine Clark US EPA, Region One, 11Technology Drive, N. Chelmsford, MA 01863-2431 Phone: 617/918-8615, Fax: 617/918-8515 or 617/918-8397, Email: Clark.Christine@epa.gov

----- Forwarded by Christine Clark/R1/USEPA/US on 09/29/2010 02:23 PM -----

From: "Gail Deruzzo" <GDeruzzo@nobiseng.com>

To: Christine Clark/R1/USEPA/US@EPA, "Denis McGrath" <DMcGrath@nobiseng.com>

Date: 09/29/2010 02:20 PM

Subject: RE: Region 01 | Case 40517 | Lab BONNER | Issue Sample listed on TR/COC but not received at laboratory

We found the sample on site and will ship it out tomorrow for Friday delivery.

From: Clark.Christine@epamail.epa.gov [mailto:Clark.Christine@epamail.epa.gov] Sent: Wednesday, September 29, 2010 12:51 PM To: Gail Deruzzo; Denis McGrath Subject: Fw: Region 01 | Case 40517 | Lab BONNER | Issue Sample listed on TR/COC but not received at laboratory

Hi Gail

See below and let me know as soon as possible.

## Thanks

Christine Clark US EPA, Region One, 11Technology Drive, N. Chelmsford, MA 01863-2431 Phone: 617/918-8615, Fax: 617/918-8515 or 617/918-8397, Email: Clark.Christine@epa.gov

----- Forwarded by Christine Clark/R1/USEPA/US on 09/29/2010 12:50 PM -----

| From:    | "Arthur, Lana" <larthur@fedcsc.com></larthur@fedcsc.com>                                           |   |
|----------|----------------------------------------------------------------------------------------------------|---|
| To:      | Christine Clark/R1/USEPA/US@EPA                                                                    | 1 |
| Cc:      | "Jarosz, Margaret" <mjarosz@fedcsc.com></mjarosz@fedcsc.com>                                       |   |
| Date:    | 09/29/2010 12:14 PM                                                                                |   |
| Subject: | Region 01   Case 40517   Lab BONNER   Issue Sample listed on TR/COC but not received at laboratory |   |

Chris,

BONNER is reporting the following issue with Case 40517 (Nobis). Please advise the laboratory how to proceed.

Issue: Sample MA4179 is listed on the TR/COC, but it was not received at the laboratory with the rest of the shipment on 9/25.

Please let me know if you need any additional information.

Thank you,

Lana Arthur Environmental Coordinator - Regions 1 & 4 CSC

15000 Conference Center Drive Chantilly, VA 20151 | Civil Division | w: 703.818.4852 | f: 703.818.4602 | larthur@fedcsc.com | www.csc.com

······

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by email of the mistake in delivery. NOTE: Regardless of content, this e-mail shall/not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose. From: Trisha Aiken [mailto:taiken@batco.com] Sent: Wednesday, September 29, 2010 10:51 AM. To: Arthur, Lana Cc: Chris Bonner Subject: Region 1 | Case 40517 | Sample Receipt

Lana;

On September 25, 2010 we received 9 soils, 1 PE soil and 1 water via FedEx air bill 8714 6534 5533. Custody seals were present and intact. Cooler temp was determined to be 6.9°C. Samples were in good condition except for the following discrepancy.

1. Sample MA4179 is listed on the TR but is not present in this shipment. Please advise.

Thanks; Tricia Aiken Bonner Analytical

\

| CASE:     | 40517    | LAB RECEIPT DATE: | 1            |
|-----------|----------|-------------------|--------------|
| SDG:      | MA41B3   | DATA RECEIPT DATE | : 10/11/2010 |
| LAB:      | BONNER   | MAIL DATE:        | 10/14/2010   |
| CONTRACT: | EPW08064 | SUBMISSION:       | ORIGINAL     |

# SAMPLE SUMMARY

| NO. OF  |         |               |        | FRACTION |
|---------|---------|---------------|--------|----------|
| SAMPLES | SAMPLE  | CONCENTRATION | MATRIX | (S)      |
|         |         |               |        |          |
| 1       | LCSS    | LOW           | SOIL   |          |
| 2       | MA41A2  | LOW           | SOIL   |          |
| 3       | MA41A3  | LOW           | SOIL   |          |
| 4       | MA41A4  | LOW           | SOIL   |          |
| 5       | MA41B3  | LOW           | SOIL   |          |
| 6       | MA41B4  | . LOW         | SOIL   | •        |
| 7       | MA41B5  | LOW           | SOIL   |          |
| 8       | MA4165  | LOW           | SOIL   |          |
| 9       | MA4165D | LOW           | SOIL   |          |
| 10      | MA4165S | LOW           | SOIL   |          |
| 11      | MA4166  | LOW           | SOIL   |          |
| 12      | MA4167  | LOW           | SOIL   |          |
| 13      | MA4174  | LOW           | SOIL   |          |
| 14      | MA4186  | LOW           | SOIL   |          |
| 15      | MA4196  | LOW           | SOIL   |          |
|         |         |               |        |          |

|                                        |                                       |                                                                     |                                             | 0 |  |
|----------------------------------------|---------------------------------------|---------------------------------------------------------------------|---------------------------------------------|---|--|
|                                        |                                       |                                                                     | ,                                           |   |  |
| CASE :<br>SDG :<br>LAB :<br>CONTRACT : | 40517<br>MA41B3<br>BONNER<br>EPW08064 | LAB RECEIPT DATE:<br>DATA RECEIPT DATE<br>MAIL DATE:<br>SUBMISSION: | 2<br>: 10/11/2010<br>10/14/2010<br>ORIGINAL |   |  |

|       | FREQUENCY REPORT                        |   |
|-------|-----------------------------------------|---|
| ***** | * * * * * * * * * * * * * * * * * * * * | * |
| *     | NO DEFECTS FOUND                        | * |
| ***** | * * * * * * * * * * * * * * * * * * * * | * |

. .

*۲* 

/ ·

.

| CASE:     | 40517    | LAB RECEIPT DA | .TE: 3                |
|-----------|----------|----------------|-----------------------|
| SDG:      | MA41B3   | DATA REC       | EIPT DATE: 10/11/2010 |
| LAB:      | BONNER   | MAIL DAT       | 'E: 10/14/2010        |
| CONTRACT: | EPW08064 | SUBMISSION:    | ORIGINAL              |

# SAMPLE DETAIL

٨

| *****     | ****       | *****                                   | ****  |
|-----------|------------|-----------------------------------------|-------|
| *         | NO DEFECTS | FOUND                                   | *     |
| ********* | *****      | * * * * * * * * * * * * * * * * * * * * | ***** |

ł

| CASE :     | 40517    | LAB RECEIPT DATE: | 4                |
|------------|----------|-------------------|------------------|
| SDG:       | MA41B3   | DATA RECEIPT      | DATE: 10/11/2010 |
| LAB:       | BONNER   | MAIL DATE:        | 10/14/2010       |
| CONTRACT : | EPW08064 | SUBMISSION:       | ORIGINAL         |

# SCREENER'S COMMENTS

#### COMMENT

NO COMMENTS WERE ASSIGNED

| 9 6 0                                                                                 | ବ୍ଷ                                   | 9/17/10                                               | (29)                       |
|---------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|----------------------------|
| OGTO BUSINE, 45-50° F Parts SUA                                                       | ng; Cal                               | 0650. Oneik; rain, \$ 50° F ; (                       | W PIU+Jenn                 |
| Jeom + PBD. # 07456 Cal                                                               | les 2 = 99.6                          | 07456 PEO Cul rendo = 10                              | 0 ppm                      |
| The According to D. Mex; the repla                                                    | cent part for                         | 07045 PEO 62 1360 3 11                                | Dem-                       |
|                                                                                       |                                       | 0710- Mobo drilling la ation 513                      | -2201 & Wait               |
| the hydrouling is being driven<br>800 - Dary (EPA) mile; we ch<br>Kino - Dang oppile. | at awhich                             | + Suttes                                              |                            |
| Viso- Dans oppile.                                                                    | man                                   | 0735- Ornor marke                                     |                            |
| 200 - Drillers onsite w/a bypass to                                                   | 50 ASTRONOM The                       | 0740 Mob 113 to 502201                                | 6 + Lave troubs            |
| - LIAKA MUCH IN MOLARANNA                                                             | Acres and the second                  | due to the rain soaked                                | wood change cours          |
| to the shop, not the hotel in (                                                       | nhan Tank                             | the nig to get streke. Dill                           | ty to not the              |
| 220 - Repair undering -                                                               |                                       | rep in/ mied mote                                     |                            |
| 1215 Unilly Deapor See bo in /09 0                                                    | or Londyn assemption                  | 08th Rip is set up, but need 9                        | o chay & bit               |
| and scales collected.                                                                 | 700                                   | for the lead auge                                     |                            |
| 163.9- B1801 completed to a depter                                                    | 17 bp; Becon                          | 0850- Anillis begin. See born lo                      | for details                |
| & denot from the location .                                                           | - 10                                  | 1123 - Danie fin 80 - 2207                            | At dilly to a 9 Bys        |
| 1645- PM Cil dech 07452 PZ0=94                                                        | . S Klyn The Verons                   | - Mob to 58-1701 cloy -                               | the acces how to           |
| 17:00-00000                                                                           | · · · · · · · · · · · · · · · · · · · | print the sig from olting s                           |                            |
|                                                                                       |                                       | 1345 Da 16 @ 50-1701 ~                                | 7600                       |
|                                                                                       |                                       | 1255 - Dallas 14 2 . On 11                            | 1 1 C                      |
| lay                                                                                   |                                       | 355 - Dilles fpet; Phen cel e<br>07456 PJ0= 102000 0: | and a clight scons         |
|                                                                                       |                                       | 1430 043172                                           | <u> 103 pp - 103 pp - </u> |
| X                                                                                     | = · · · · · · · · · · · ·             |                                                       |                            |
|                                                                                       |                                       | 5-12-                                                 |                            |
|                                                                                       |                                       | 7-17-10- any                                          |                            |
|                                                                                       |                                       |                                                       |                            |
|                                                                                       |                                       |                                                       |                            |
| . *<br>. *                                                                            |                                       |                                                       |                            |

`

---

80013.03/0334 Personnal Refer to Sign Infar Log Weather Overcast w/breaks of Sun, cold in the AM 50-65 F. 5700 Nobis on-Site Instrument \_ collibration. JAS TRACK Rig CREW GRRIVEN Dr-Site waiting for Truck Rig cremy Keys Jocked in Taboe Rental Vehicle.

SO13.03/0335 80013.03/0335 Personnel. Refer to Sign In/at Log ESAT Surface Soil samples Neather Overcast WRain in the AM. Jabeled and tagged Waiting For COI 50-65 F 2700 Instrument culibration, fail- 1230 TRACK Rig Robusel on bed-gate meeting. 2730 Condition @ MW-3301/B1 wet for bedrock Truck Rig work is & middy, postpone work in I on SB locations w/ firm surface, these 12 cetions intil drive weather difficulty today w/ soft terrain. TRACK RIG Relacate to sathern FSA locations Conducting Meecky Survey, cootion on Rock during net vse weather. Prep Samples toe Shipment, Ixate Fidex location on Rate to fice instead of pickup @ site 2630 FZL issue noted field DUPDI is associated of sample 58-2901 and Not 58-310 1033 Completed Mercury Surry - GR day, No merciny collected, River Mas Jonie than Thirds 9/16/10. CI)2 DF 9/17/10 CTZ 9/17/10 2 05

|                  |                                                                                   | sting Co.          |                      |                          |                         | Utorio 6                   |
|------------------|-----------------------------------------------------------------------------------|--------------------|----------------------|--------------------------|-------------------------|----------------------------|
| DG/ESAT          | LABORATORY HANE BOTTLET Analytical Tes<br>CITY/STATE Hatticeburg, MS              | ting Co            |                      |                          |                         | g-                         |
| 10/12/10         | J.                                                                                | .1 7               |                      |                          |                         | Chlos-Altari<br>NOBIS/PACZ |
|                  | CASE NO. 40517 SDG NO. MA41<br>SDG NOB. TO FOLLOR MA4171, 30                      |                    | A8494                | 010                      | 77110                   | NOBIS/PACZ                 |
|                  | NRAS NO. NIA                                                                      | <i>µ</i> _         |                      | U+U                      |                         |                            |
|                  | CONTRACT NO. EPWOROLU                                                             |                    |                      |                          |                         |                            |
|                  | SON NO. ILMOS.                                                                    |                    |                      |                          |                         |                            |
|                  | All documents delivered in the Complete<br>where possible. (Reference - Exhibit B |                    |                      | lginal docu              | ments                   |                            |
|                  |                                                                                   | <u>PAC</u><br>FROM | <u>SE NQø.</u><br>To |                          | <u>HEÇK</u>             |                            |
| 1. 0             | Cover Page                                                                        |                    | _/                   |                          | REGION                  |                            |
| <b>2</b> . s     | DG Narrative                                                                      | -A-                | _3_                  | ~                        | $\overline{\checkmark}$ |                            |
| 3. s             | ample Log-In Sheet (DC-1)                                                         | 4                  | 5                    |                          | $\searrow$              |                            |
| <b>4</b> . I     | nventory Sheet (DC-2))                                                            | le                 | _7_                  | _ <u>/</u> _             | $\sim$                  |                            |
| 5. T             | raffic Report/Chain of Custody Record(s)                                          | 8                  | 12                   |                          | $\sim$                  |                            |
| 1:<br>6. d       | norganic Analysis IA-IN<br>ata Sheet (Form <del>I-IN/00</del><br>1906             | 13                 | 24                   | ~                        | $\checkmark$            |                            |
| 7. In<br>Ve      | nitial & Continuing Calibration<br>srification (Form IIA-IN)                      | 25                 | 29                   | <u> </u>                 | $\underline{N}$         |                            |
| 8. CF<br>(1      | RQL Standard<br>Form IIB-IN)                                                      | 30                 | 35                   | /                        | $\sim$                  |                            |
| . 9. Bl          | anks (Form III~IN)                                                                | 36                 | 40                   |                          | $\checkmark$            |                            |
| 10. IC<br>IV     | P-AES Interference Check Sample (Form<br>A-IN)                                    | 41                 | 43                   | <u></u>                  | $\checkmark$            |                            |
| 11. IC<br>(F     | P-NS Interference Check Sample<br>orm IVB-IN                                      | ΔŲÂ                | N/A                  | $\checkmark$             | $\underline{\vee}$      |                            |
| -12. Nat<br>(F   | trix Spike Sample Recovery<br>orm VA-IN)                                          | 44                 | 45                   | <u> </u>                 | $\frac{}{}$             |                            |
| 13. Por<br>(Fo   | st-Digestion Spike Sample Recovery<br>Srm VB-IN)                                  | 46                 | <u>41</u> ·          | $\underline{\nu}$        | $\frac{}{}$             |                            |
| 14. Dup          | ollcates (Form VI-IN)                                                             | 48                 | 49                   | <u> </u>                 |                         |                            |
| 15. Lat<br>(Fo   | poratory Control Sample<br>Drm VII-IN)                                            | 50                 | 51                   | ~                        | $\rightarrow$           |                            |
| 16. ICP<br>(Fo   | P <b>-AES and I</b> CP-MS Serial Dilutions<br>rm VIII←IN)                         | 52                 | 52                   | ~                        | $\underline{\vee}$      |                            |
| 17. Met<br>IX-   | hod Detection Limits (Annually) (Form<br>IN)                                      | 53                 | 56                   | $\underline{\checkmark}$ | $\underline{\vee}$      |                            |
|                  | -AES Interelement Correction Factors<br>arterly) (Form XA-IN)                     | 57                 | <u>57</u>            | V                        | $\frac{\vee}{}$         |                            |
|                  | -AES Interelement Correction Factors<br>arterly) (Form XB-IN)                     | 58                 | 59                   | ~                        | $\sim$                  |                            |
| 20. ICP-<br>(Qua | -AES and ICP-MS Linear Ranges<br>arterly  (Form XI-IN)                            | 60                 | 60                   |                          | <u> </u>                |                            |
| <b>21.</b> Prep  | paration Log (Form XII-IN)                                                        | 61                 | 63                   | $\checkmark$             | $\Delta $               |                            |

FORM DC-2-1

1

ILM05.4

| 22. Analysis Run Log (Form XIII-IN)                                                                                                                             | EROM<br>(e4                        | 10<br>68            |               |                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|---------------|--------------------------|
| 23. ICP-MS Tune (Form XIV-IN)                                                                                                                                   | N/A                                | NIA                 | $\checkmark$  | $\checkmark$             |
| <ul> <li>24. ICP-MS Internal Standards Relative<br/>Intensity Summary (Form XV-IN)</li> <li>25. ICP-AES Raw Data</li> </ul>                                     | N/A<br>69                          | <u>N//}</u><br>1.3p |               |                          |
| 26. GFAA Raw Data (If Applicable)                                                                                                                               | N/A                                | NLA                 | /             | <u> </u>                 |
| 27. ICP-MS Raw Data                                                                                                                                             | NA                                 | MA                  | <u>/</u><br>/ | $\sim$                   |
| 28. Mercury Raw Data                                                                                                                                            | 131                                | 136                 | ~             | $\underline{\checkmark}$ |
| 29. Cyanide Raw Data                                                                                                                                            | NA                                 | NA                  | /             | $\checkmark$             |
| 30. Preparation Logs Raw Data                                                                                                                                   | 137                                | 138                 | ~             | $\checkmark$             |
| 31. Percent Solids Determination Log                                                                                                                            | 139                                | 139                 | _             | $\checkmark$             |
| 32. USEPA Shipping/Receiving Documents<br>Airbill (No. of Shipments)                                                                                            | 140                                | <u>141</u>          | ~             |                          |
| Sample Tags                                                                                                                                                     |                                    |                     |               | $\sim$                   |
| Sample Log-In Sheet (Lab)                                                                                                                                       | - 142                              | 145                 |               | $\sim$                   |
| 33. Misc. Shipping/Receiving Records<br>(list all individual records)<br>Telephone Logs<br>NA                                                                   | Altı<br>Altı                       | वाम<br>वाम          |               | $\bigvee$                |
| Ala                                                                                                                                                             | AlH                                | <u>الم</u>          |               |                          |
| 34. Internal Lab Sample Transfer Records (<br>Tracking Sheets (describe or list)                                                                                | C C                                |                     |               | ,                        |
| In bouse Chain of Custody                                                                                                                                       | 146                                | 148                 | /             | $\checkmark$             |
| <u>HIA</u>                                                                                                                                                      | аlн                                | طلع                 | ~             | $\overline{\checkmark}$  |
| 35. Internal Original Sample Prep 6<br>Analysis Records (describe or list)<br>Prep Records <b>Charder Propert Log</b><br>Analysis Records <b>Dun Log Dow Do</b> | ta ilel                            | 160<br>164          |               | $\frac{}{}$              |
| Description NIA                                                                                                                                                 | Alk                                | Alh                 |               |                          |
| 36. Other Records (describe or list)<br>Telephone Communications Log<br><u>E-mail</u>                                                                           | NIA<br>165                         | <u>N A</u>          |               | $\frac{}{}$              |
| Corrective Action Forms                                                                                                                                         | 172                                | 173                 |               | $\searrow$               |
| 37. commontation Supporting Documentation                                                                                                                       | ]                                  |                     |               |                          |
|                                                                                                                                                                 |                                    | ~ <del>~</del>      |               |                          |
|                                                                                                                                                                 |                                    |                     |               |                          |
| (Signature)                                                                                                                                                     | Chris Bonner, J<br>(Print Name 6   |                     | <u> </u>      | 0-8-10<br>atel           |
| Audited by:<br>(USBPA) <u>UDLAU</u><br>(Signature)                                                                                                              | <u>Za pisel</u><br>(Print Name 6 1 | <u>(DV</u> )        | /<br>(Da      | 1/15/10<br>Itel          |

•

(Print Mame & Title) /

FORM DC-2-2

T LM05 . 🧲

# EPA-NE - DQO SUMMARY FORM

A separate Form should be completed for each sampling event. Refer to Attachment A for instructions on completing this form, Attachment B for a complete list of the parameter codes and Attachment C for an example of a completed form.

| 1.EPA Program: TSCA CERCLA RCRA DW NPDES CAA       | Site Name Chlor-Alkali Facilitiy (Former)                          |
|----------------------------------------------------|--------------------------------------------------------------------|
| Other: CERCLA                                      | Site Location_Berlin, New Hampshire                                |
| Projected Date(s) of SamplingJuly 2009-Spring 2010 | Assigned Site Latitude/Longitude                                   |
| EPA Site Manager Darryl Luce                       | CERCLA Site/Spill Identifier No. 0103313/NA(Include Operable Unit) |
| EPA Case Team Members                              | Phase: ERA SA/SI pre-RI RI (phase I, etc.) FS RD RA post-RA        |
| Christine Clark                                    | (circle one) Other:RI                                              |
| · · · · · · · · · · · · · · · · · · ·              |                                                                    |

#### 2.QAPjP Title and Revision Date\_Draft Quality Assurance Project Plan\_

\_\_\_\_\_Chlor-Alkali Facility (Former), Berlin, New Hampshire\_\_\_\_\_\_ Approved by: \_\_\_\_Datryl Luce\_\_\_\_\_Date of Approval: \_\_\_\_TBD\_\_\_\_\_ Title of Approving Official: \_\_Task Order Project Officer \_\_\_\_Organization\*: \_\_\_EPA\_\_\_\_ \*If other than EPA, record date approval authority was delegated:

EPA Oversight Project (circle one) Y N Confirmatory Analysis for Field Screening Y N

Are comparability criteria documented? Y N

Type of EPA Oversight (circle one) PRP or FF Other:\_\_\_FF\_\_\_\_\_ If EPA Oversight or Confirmatory: % splits\_\_\_\_\_

| a. | Matrix Code <sup>1</sup>       | FF            | FF         | SW/SE                                | SW/SE         | FF            | FF              | SW/SE         | SW/SE    |
|----|--------------------------------|---------------|------------|--------------------------------------|---------------|---------------|-----------------|---------------|----------|
| b. | Parameter Code <sup>2</sup>    | 8270/8081     | 1631       | ILM05.4                              | Divalent      | DLM02.        | CBC0.10         | 1630          | 300/9060 |
|    |                                | SVOC,<br>Pest |            | Total<br>SW/SED<br>Dissolved<br>(SW) | Hg            | 0             | ·               | MeHg          | SO4/TOC  |
| c. | Preservation Code <sup>3</sup> | 8             | 8          | 2, 5                                 | 5             | 8             | 8               | 2, 5          | 5, 4     |
| d. | Analytical Services Mechanism  | DAS           | DAS        | RAS                                  | DAS           | Non-<br>RAS   | Non-RAS         | DAS           | DAS      |
| e. | No. of Sample Locations        |               |            |                                      |               |               |                 |               |          |
|    | Field QC:                      |               |            |                                      |               |               |                 |               |          |
| f. | Field Duplicate Pairs          | 1/20          | 1/20       | 1/20                                 | 1/20          | 1/20          | 1/20            | 1/20          | 1/20     |
| g. | Equipment Blanks               | 1/20          | 1/20       | 1/20                                 | 1/20          | 1/20          | 1/20            | 1/20          | 1/20     |
| h. | VOA Trip Blanks                | 1/cooler      |            |                                      | 1             |               |                 |               |          |
| i. | Cooler Temperature Blanks      | 1/cooler      | 1/cooler   | 1/cooler                             | 1/cooler      | 1/cooler      | 1/cooler        | 1/cooler      | 1/cooler |
| j. | Bottle Blanks                  | NA            | NA         | NA                                   | NA            | NA            | NA              | NA            | NA       |
| k. | Other:                         |               |            |                                      |               |               |                 |               |          |
| 1. | PES sent to Laboratory         |               |            | 1/20                                 |               |               |                 |               | •        |
|    | Laboratory QC:                 |               |            |                                      |               |               |                 |               |          |
| m. | Reagent Blank                  | 1/20          | 1/20 `     | 1/20                                 | 1/20          | 1/20          | 1/20            | 1/20          | 1/20     |
| n. | Duplicate                      |               |            | 1/20                                 |               |               |                 | 1/20          | 1/20     |
| 0. | Matrix Spike                   | 1/20          | 1/20       | 1/20                                 | 1/20          |               |                 | 1/20          | 1/20     |
| p. | Matrix Spike Duplicate         | 1/20          |            |                                      | 1/20          |               | -               |               | 1/20     |
| q. | Other:                         |               | 1/20 - LCS | 1/20 -<br>LCS                        | 1/20 -<br>LCS | 1/20 -<br>LCS | , 1/20 -<br>LCS | 1/20 -<br>CRM | 1/20     |

| Soil Type                                                                                                                                                                                                                                                                                                                                                                                           | Depth to Groundwater                                                            | nd subsurface<br>her:NAE;               | xpected Soil/Sediment | Moisture Con                            | tent: High Low                                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------|--------------------------------------------------------|--|--|
| Matrix Co                                                                                                                                                                                                                                                                                                                                                                                           | Itiple matrices will be sampled during a samplode <sup>1</sup> SW/SE/FF/PW      |                                         | or each matrix.       |                                         |                                                        |  |  |
| 5. Data Use (circle all that apply)       Site Investigation/Assessment       PRP Determination       Removal Actions         Nature and Extent of Contamination       Human and/or Ecological Risk Assessment       Remediation Alternatives         Engineering Design       Remedial Action       Post-Remedial Action (quarterly monitoring)       Other:                                       |                                                                                 |                                         |                       |                                         |                                                        |  |  |
| Da                                                                                                                                                                                                                                                                                                                                                                                                  | rize DQOs:                                                                      |                                         | nan health and ecolo  | ogical risks e                          | xist throughout the Androscoggin                       |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                   | Accurate identification of environmenta<br>Determination of where and what magr |                                         | te contaminants.      |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                               |                                         | sediments and surf    | ace waters,                             | as well as consumption of fish; and                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Ecological assessment endpoints</li> </ul>                             |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Filling of existing data gaps throug</li> </ul>                        | hout the study area.                    |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                         |                       |                                         |                                                        |  |  |
| Complete                                                                                                                                                                                                                                                                                                                                                                                            | Table if applicable                                                             |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | COCs                                                                            | Action Level                            | s .                   | Analytical Method-Quantitation Limits   |                                                        |  |  |
| See tables                                                                                                                                                                                                                                                                                                                                                                                          | s 4-8 through 4-11 in ARI QAPP                                                  | See tables 4-8 through 4-11 in A        | RI QAPP               | See tables 4-8 through 4-11 in ARI QAPP |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | .:•**                                                                           |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                         |                       |                                         |                                                        |  |  |
| 7.Sampling Method (circle technique)Bailer       Low flow pump (Region I method: Yes No)       Peristaltic Pump         7.Sampling Method (circle technique)Bailer       Low flow pump (Region I method: Yes No)       Peristaltic Pump         Positive Displacement Pump       Faucet or Spigot       Other:Sonic fishing         Split Spoon       Dredge       Trowel       Other:Dipper Bottle |                                                                                 |                                         |                       |                                         |                                                        |  |  |
| List Back<br>Circle: G                                                                                                                                                                                                                                                                                                                                                                              | Procedures (SOP name, No., Rev. #, and date<br>ground Sample Locations          |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | ata (circle) ORP pH Specific Conducta                                           | Disselved O Town                        | ·                     | · · ·                                   |                                                        |  |  |
| Other:                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 | ice Dissolved O <sub>2</sub> Temperatur | -                     | v                                       |                                                        |  |  |
| · 9.Analyti                                                                                                                                                                                                                                                                                                                                                                                         | cal Methods and Parameters                                                      | ·                                       |                       |                                         | · · · ·                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | Method title/SOP name                                                           | Method/SOP<br>Identification number     | Revisio               | n Date                                  | Target Parameters<br>(VOA, SV, Pest/PCB, Metals, etc.) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     | See Table 7-2 from ARI QAPP                                                     |                                         |                       |                                         |                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 | •                                       |                       | •                                       | Ň                                                      |  |  |

|                                                                                                                                                         |                                           |                                       | ·                   |   |   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|---------------------|---|---|--|--|
|                                                                                                                                                         |                                           |                                       |                     |   |   |  |  |
|                                                                                                                                                         | · ·                                       |                                       | I                   |   |   |  |  |
| 10. Validation Criteria (circle one)1. Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, Part II, III or IV |                                           |                                       |                     |   |   |  |  |
| 2. Other Approved Validation Criteria:                                                                                                                  |                                           |                                       |                     |   |   |  |  |
| Validation Tier (circle one) I II III Partial Tier III: _D/F, PCB=Tier III, %Lipids, % Moisture – Tier I, All other 90% Tier II, 10% Tier III           |                                           |                                       |                     |   |   |  |  |
|                                                                                                                                                         | y/Organization Performing Data Validation |                                       |                     |   |   |  |  |
| •                                                                                                                                                       |                                           |                                       |                     |   |   |  |  |
|                                                                                                                                                         |                                           | · · · · · · · · · · · · · · · · · · · |                     |   |   |  |  |
| 11.Com                                                                                                                                                  | any NameNobis Engineering, Inc            | Contract NumberEP-S                   | 1-06-03             |   |   |  |  |
| Contract                                                                                                                                                | Name (e.g. START, RACS, etc.)RAC2         | 2Work Assignment No                   | 0013-RI-CO-01BQ     | · | , |  |  |
| Person C                                                                                                                                                | ompleting Form/Title_Gail DeRuzzo/Lead Cl | hemistDate of DQO Summary For         | m Completion11/5/09 |   |   |  |  |
|                                                                                                                                                         |                                           |                                       |                     |   |   |  |  |

Matrix Codes<sup>1</sup> - Refer to Attachment B, Part I Parameter Codes<sup>2</sup> - Refer to Attachment B, Part II

.

,

Preservation Codes³1.HCl to  $pH \le 2$  $7.K_2Cr_2O_7$ 2.HNO38.Freeze3.NaHSO49.Room Temperature (avoid excessive heat)4.H\_2SO410.Other (Specify)5.Cool @ 4°C ( $\pm$  2°)N.Not preserved6.NaOH/\* - To supplement Matrix Codes and/or Parameter Codes contact the QA Unit

Draft DQO Summary Form 11/96