	Superfund Records Center
<u></u>	$\frac{311E: _____}{34:}$ $\frac{34:}{957264}$ $\frac{34:}{957264}$
	REPORT TO HALLIBURTON NUS
	BENCH-SCALE LOW TEMPERATURE THERMAL DESORPTION TREATABILITY STUDY
	AT THE
	RAYMARK INDUSTRIES SITE STRATFORD, CONNECTICUT

SUBMITTED BY:

KIBER ENVIRONMENTAL SERVICES, INC. 3786 DEKALB TECHNOLOGY PARKWAY, N.E. ATLANTA, GEORGIA 30340 (404) 455-3944

MAÝ, 1994

RAYMARK INDUSTRIES SITE LOW TEMPERATURE THERMAL DESORPTION TREATABILITY STUDY REPORT

100 abuand bashmen

• A

......

TABLE OF CONTENTS

1.0	INTRODUCTION			
	 1.1 TERMS OF REFERENCE 1.2 SCOPE OF WORK 1.3 TECHNOLOGY DESCRIPTION 1.4 REPORT ORGANIZATION 	1 1 2 3		
2.0	UNTREATED WASTE CHARACTERIZATION	5		
	2.1 OVERVIEW2.2 MATERIAL SAMPLING AND RECEIPT2.3 UNTREATED WASTE CHARACTERIZATION	5 5 7		
3.0	THERMAL DESORPTION TREATMENT	12		
	 3.1 OVERVIEW 3.2 INTERMEDIATE TREATMENT AND ANALYSES 3.2.1 Intermediate Treatment 3.2.2 Intermediate Treatment Monitoring and Analys 3.2.3 Discussion of Results 3.2.4 Additional Intermediate Testing 3.2.5 Recommendations for Final Treatment 3.3 FINAL TREATMENT AND EVALUATIONS 3.3.1 Final Treatment and Monitoring 3.3.2 Treated Analyses and Discussion of Results 	12 13 13 13 13 13 14 15 16 17 18 18 20		
4.0	CONCEPTUAL DESIGN AND COST ESTIMATIONS	23		
	4.1 OVERVIEW4.2 EQUIPMENT SELECTION4.3 ESTIMATED OPERATING COSTS	23 23 24		
5.0	QUALITY ASSURANCE / QUALITY CONTROL	26		
6.0	CONCLUSIONS			
TABI FIGU	LES JRES			

APPENDICES

854_TOC

LIST OF TABLES

Table I-1	Summary of Untreated Volatile Analyses
Table I-2	Summary of Untreated Semivolatile Analyses
Table I-3	Summary of Untreated Pesticide/PCB Analyses
Table I-4	Summary of Untreated RCRA Metals Analyses
Table I-5	Summary of Untreated Dioxin Analyses
Table I-6	Summary of Additional Untreated Analyses
Table II-1	Summary of Intermediate Testing Conditions
Table II-2	Summary of Temperature Monitoring - TS*B-10*1.5-4
Table II-3	Summary of Temperature Monitoring - TS*B-68*2-4
Table II-4	Summary of Temperature Monitoring - TS*B-7*4-6
Table II-5	Summary of Temperature Monitoring - TS*B-68*6-8
Table II-6	Summary of Visual Observations
Table II-7	Summary of Treated PCB Analyses - TS*B-10*1.5-4
Table II-8	Summary of Treated PCB Analyses - TS*B-68*2-4
Table II-9	Summary of Treated PCB Analyses - TS*B-7*4-6
Table II-10	Summary of Treated PCB Analyses - TS*B-68*6-8
Table II-11	Summary of Soil Temperatures and PCB Analyses
Table III-1	Summary of Final Testing Conditions
Table III-2	Summary of Temperature Monitoring - Final Treatment
Table III-3	Summary of Treated Volatile Analyses
Table III-4	Summary of Treated Semivolatile Analyses
Table III-5	Summary of Treated Pesticide/PCB Analyses
Table III-6	Summary of Treated RCRA Metals Analyses
Table III-7	Summary of Treated Dioxin Analyses
Table III-8	Summary of Additional Treated Analyses

LIST OF FIGURES

Figure 1 Figure 2 Soil Temperature Versus PCB Concentrations Conceptual Design Diagram

LIST OF APPENDICES

Appendix A	RMT / Four Nines, Inc Final Report
Appendix B	Untreated Data
Appendix C	Intermediate Treatment Data Sheets
Appendix D	Intermediate Treatment Analytical Data
Appendix E	Final Treatment Data Sheets
Appendix F	Final Treatment Photographic Documentation
Appendix G	Final Treatment Analytical Data

854_TOC

RAYMARK INDUSTRIES SITE LOW TEMPERATURE THERMAL DESORPTION TREATABILITY STUDY REPORT

1.0 INTRODUCTION

1.1 TERMS OF REFERENCE

Kiber Environmental Services, Inc. (Kiber) prepared this report as a final presentation of the results for the low temperature thermal desorption (LTTD) treatability study conducted for Halliburton NUS Corporation (Halliburton NUS). The treatability study was performed on soil sampled from the Raymark Industries site (the site) located in Stratford, Connecticut. All treatability testing was performed at Kiber's facilities located in Atlanta, Georgia. Conceptual engineering design and additional technical assistance was provided by RMT / Four Nines, Inc. (Four Nines). The work was performed in accordance with the scope of work outlined in Kiber's proposal dated 14 December 1993, and authorized in the subcontract awarded to Kiber by Halliburton NUS numbered S93-117-055 and dated 18 February 1994.

1.2 SCOPE OF WORK

The testing program implemented by Kiber provided a systematic and cost-effective approach to evaluating the effectiveness of low temperature thermal desorption treatment. The evaluation criteria included organic analyses for volatiles, semivolatiles, PCBs and pesticides, as well as inorganic analyses. All testing performed as a part of the treatability study was in accordance with the Work Plan developed by Halliburton NUS for the Raymark site, dated March 1994. Specifically, the scope of work for the project included:

- Characterize the four soil samples for organic and inorganic contamination.
- Conduct bench-scale studies to evaluate the effectiveness of Low Temperature Thermal Desorption (LTTD), including any pretreatment to obtain a homogeneous blend.
- Perform chemical analyses of treated materials.
- Provide engineering design criteria for full-scale treatment.

In order to perform the scope of work as outlined above, Kiber proposed a project team that included both Kiber and Four Nines. While Kiber performed all testing associated with the treatability study, Four Nines provided the design and operation criteria for treatment using low temperature thermal desorbers (LTTD), equipment and operating costs, and interpretation of the treatability study results as they apply to full-scale treatment.

The primary objective of the treatability study was to evaluate the feasibility of using LTTD to reduce the concentrations of PCBs to less than 2 mg/kg in the treated soils. Additionally, the treatability study was designed to evaluate the effect of LTTD treatment on other organic and inorganic compounds found in the site soils. The testing program implemented by Kiber to achieve the study objectives included: 1) characterization of the untreated soil, 2) intermediate LTTD treatment and screening analyses of the treated soils, and 3) final treatment and comprehensive evaluations of selected treatment parameters as identified by Halliburton NUS.

1.3 TECHNOLOGY DESCRIPTION

Thermal desorption is an ex-situ process that uses either direct or indirect heat exchange to vaporize organic contaminants from soil or sludge. Air, combustion gas or inert gas can be used as the transfer medium from the vaporized components. Thermal desorption

SZ592\854 101

systems are physical separation processes and are not specifically designed to destroy organic contaminants. This section presents a brief overview of the treatment technology. For a complete description of full-scale LTTD technology, refer to the Four Nines report included as Appendix A.

Full scale LTTD treatment equipment can be divided into two types of systems composed of either: 1) direct fired rotary desorbers which vaporize organics and then burn the organic vapors in a secondary combustion chamber or 2) indirectly heated desorbers followed by condensers which cool and condense the organic vapors for further treatment, typically followed by activated carbon for final cleansing of the vent gas. While there are many variations in LTTD systems, they all share a requirement of having to treat off gases generated from the treatment process. Thermal desorption processes can be operated at a range of temperatures, determined by contaminant type and concentration, as well as site specific requirements. While temperature is an important process consideration, another parameter is retention time, or the time for which the soil is subjected to the treatment temperature. Soil type, level and type of contaminants, and moisture content will also affect LTTD treatment processes.

Full-scale LTTD treatment requires excavation and transportation of the contaminated materials to the treatment unit. Generally, LTTD treatment systems will have some type of screening/pretreatment prior to being transferred to the desorption unit. Oversize contaminated materials can be separated by a power screen or crushed to reduce top size, and then either placed in the LTTD unit or treated using an alternate treatment method.

1.4 REPORT ORGANIZATION

This report presents the sample tracking information, the test methods and conditions, and the test results for all analyses and testing conducted by Kiber for the Raymark treatability study. All full-scale recommendations and design criteria, as developed by Four Nines, are presented in the report developed by Four Nines and included as Appendix A of this

SZ592\854_101

report. The information presented herein pertains to the testing and protocols associated with all phases of the treatability study. Section 2.0 presents the results and testing protocol associated with the soil receipt and untreated waste characterization. The testing protocols and test results for the LTTD treatment study, for both the intermediate and final testing phases, are presented in Section 3.0. A summary of the conceptual design and cost estimations developed by Four Nines is presented in Section 4.0. Kiber's Quality Assurance (QA) and Quality Control (QC) procedures is presented in Section 5.0. Conclusions and recommendations pertaining to the LTTD treatment process and treatability study are included in Section 6.0.

Kiber and Four Nines worked together throughout the treatability study to evaluate the available data and to develop recommendations for further testing and potential full-scale treatment. Upon completion of the laboratory testing, Four Nines developed a detailed report presenting their recommendations and design criteria for full-scale treatment. The report developed by Four Nines, included as Appendix A, presents a complete discussion of the treatment effectiveness and the applicability of full-scale LTTD treatment. The report developed by Four Nines also includes a detailed discussion of potential full-scale treatment equipment and a preliminary design for treatment of the Raymark site. Note that the Four Nines report is separate and distinct from Kiber's report, and is intended to augment this report. Again, a summary of the conceptual design and cost estimations developed by Four Nines is presented in Section 4.0.

SZ592\854 101

2.0 UNTREATED WASTE CHARACTERIZATION

2.1 OVERVIEW

Untreated waste characterization is an essential component of the treatability study. The establishment of the baseline level of contamination is important for comparing and determining the effectiveness of LTTD treatment. The characterization analyses allowed Kiber to determine the extent of contamination in the materials received from Halliburton NUS and to confirm that the soils were similar to that expected.

2.2 MATERIAL SAMPLING AND RECEIPT

Halliburton NUS was responsible for sampling of the untreated material from the site. Eight 5-gallon plastic buckets were received by Kiber in good condition on 24 February 1994. Two buckets were received for each of the following soils:

> TS*B-7*4-6 TS*B-10*1.5-4 TS*B-68*2-4 TS*B-68*8-10

Upon receipt, Kiber homogenized each contaminated soil, separately, to better ensure a homogeneous material. All soil was emptied from the two buckets for each material into a large tub and composited. The soil was thoroughly and gently blended until visually homogeneous. This process was repeated for each of the four untreated materials. Samples were then taken of each homogenized material for particle-size distribution analyses of the as-received soils.

SZ592\854_101

Prior to initiating laboratory testing, Kiber and Four Nines performed visual evaluations of the untreated soils. The following discussions summarize observations performed on each of the untreated materials:

TS*B-7*4-6: Soil was black and clay-like with gravel. The soil was fairly moist and appeared oily. There was a significant amount of straw and paper-like fibrous material. No significant odor was noticed. Oversized pieces were unknown black fibrous material.

<u>**TS*B-10*1.5-4:**</u> Soil was reddish brown in color and fairly moist throughout. The soil was coarse sand through gravel, with small rocks spaced throughout. No significant odor was noticed. Oversized material was composed of smooth river stone.

<u>**TS*B-68*2-4:</u>** Soil was brown in color, fine sand through gravel, with small clay-like chunks throughout. The soil was very moist. No significant odor was noticed. Oversized material was composed of smooth river stone.</u>

<u>**TS*B-68*6-8:</u>** Soil was black and sandy with black chunks of rubber-like material spaced throughout. The soil was moist, with chunks of organic matter visible. No significant odor was noticed. The soil is more friable than the other soils.</u>

Prior to bench-scale testing, any large and agglomerated particles were broken into smaller, more manageable sizes. Kiber removed all particles and debris larger than 1 inch in diameter which could not be reduced in size. This process was performed in order to 1) simulate potential full-scale particle size reduction, and 2) ensure that the material is practical for laboratory analysis. The following represents the percentage, by weight, of over-sized particles removed from each as-received material:

- TS*B-7*4-6
- TS*B-10*1.5-4
- TS*B-68*2-4
- TS*B-68*6-8

21% Over-sized Particles29% Over-sized Particles5% Over-sized Particles4% Over-sized Particles

SZ592\854 101

Kiber's experience indicates that contaminants are generally concentrated on the finegrained particles; therefore, laboratory testing on material of less than 1 inch in diameter typically presents a worst-case contamination scenario.

2.3 UNTREATED WASTE CHARACTERIZATION

Upon completion of the homogenization process, a representative aliquot of each soil was selected for characterization testing. All untreated characterization testing was conducted in accordance with test methods approved by the U.S. Environmental Protection Agency (EPA) and the American Society for Testing and Materials (ASTM). The following analyses were conducted in accordance with the referenced test method:

Total TCL Volatiles Total TCL Semivolatiles Total Pesticides / PCBs Total RCRA Metals Total Dioxin Total Organic Carbon Material pH Moisture Content Bulk Density Particle-Size Distribution EPA Method 8260 EPA Method 3550/8270 EPA Method 3550/8080 EPA Method 6010/3051/7471 EPA Method 8280 EPA Method 9060 EPA Method 9045 ASTM D 2216 ASTM D 2937 ASTM D 422

The results for the untreated waste characterization testing are summarized on Tables I-1 through I-6. Each of these tables include the Halliburton NUS sample number, the analytical parameter, the corresponding detection limit for each target, and the detectable concentration. Complete data reports pertaining to all untreated analyses are included as Appendix B.

Initially, Kiber performed untreated waste characterization on each soil prior to initiation of the treatment process. This data provided the initial characterization of the as-received soils. However, in order to better estimate the variability of the untreated soils, and to

SZ592\854_101

estimate any potential contaminant reduction due to storage and material handling, Kiber performed additional waste characterization analyses of the four untreated soils prior to initiation of the final treatment process. All untreated analyses were performed for this additional testing, with the exception of dioxin and particle-size distribution. Results from these additional analyses, performed prior to initiation of the final treatment phase, are also presented on Tables I-1 through I-6.

Table I-1 presents the results of total volatiles analyses performed on each of the untreated soils. The work plan provided by Halliburton NUS stated that volatiles analyses be performed in accordance with EPA Method 8240. However, based on experience analyzing similar types of contaminated soils, Kiber performed all volatiles analyses in accordance with EPA Method 8260. This change in the work plan was noted in Kiber's original proposal provided to Halliburton NUS. Review of the data reveals significant variation between the four untreated soils. The primary contaminants included benzene, carbon disulfide, chlorobenzene, 1,2-Dichloroethene, ethylbenzene, tetrachloroethene, toluene, trichloroethene, and xylenes at concentrations from 0.6 ug/kg to 120 ug/kg. Detectable concentrations of both acetone and methylene chloride, which often represent typical laboratory contamination, were also observed at concentrations from 6.0 to 290 ug/kg. Analysis of the untreated soil labeled TS*B-68*2-4 revealed no volatiles contamination, with the exception of acetone and methylene chloride. Good reproducibility was noted for the two sets of analyses performed on each of the four untreated soils.

Results of semivolatile analyses are presented on Table I-2. This data reveals significantly higher levels of contamination than was observed for the volatiles analyses. The highest levels of contamination were observed for benzo(a)anthracene, benzo(b)fluoranthene, chrysene, 2,4-dimethylphenol, fluoranthene, phenanthrene, and pyrene. In general, the untreated soils labeled TS*B-68*2-4 and TS*B-7*4-6 revealed slightly higher levels of semivolatile contamination, than did the other two soils. Review of the analyses performed prior to the final treatment phase indicates that fairly good reproducibility was observed. However, a slight reduction was observed in the

SZ592\854 101

concentrations of contaminants for the second set of analyses performed on soils labeled TS*B-7*4-6 and TS*B-68*6-8. This apparent reduction is attributed primarily to the elevated detection limits observed for the duplicate analyses of these materials. Note that all detection limits are included on Table I-2. The increased detection limits observed for these semivolatile analyses reflect the high organic contents of some of the untreated soils. Review of the TOC data summarized below indicates that certain aliquots of the untreated materials contain high levels of organic material. While there appears to be a significant variation in the organics content of each material, those aliquots of untreated material containing elevated levels of organics will contribute to increased detection limits for semivolatile analyses. Therefore, many of the target compounds detected in the original analysis were not detected in the additional testing.

Table I-3 presents the results of pesticide and PCB analyses of the untreated soils. This data indicates that no pesticides were present in any of the untreated soils. High levels of PCB contamination were observed for all untreated materials. PCB contamination ranged from 8,600 to 140,000 ug/kg of Aroclor-1262 and Aroclor-1268. While good reproducibility was observed for most analyses, some variation was observed for the analyses of soil labeled TS*B-7*4-6. Kiber attributes this variation to the heterogeneity of the untreated material. Visual observations of the waste material, presented in Section 2.2, indicate the waste had a black, clay-like consistency. The soil was moist and appeared oily. The soils also contained a black, fibrous material. The TS*B-7*4-6 exhibited the greatest heterogeneity based on these visual observations. Kiber cannot conclude as to the potential distribution of the PCB compounds throughout the soil and waste material. Based on comparison of the material consistencies, the LTTD treatment results presented in later sections of this report, and the untreated soil characterizations for all four sampling locations, Kiber believes that the PCB concentrations are more likely in the range of 50,000 to 150,000 ug/kg. However, without further PCB characterization analyses, Kiber cannot confirm the variability of the TS*B-7*4-6 waste material. The concentrations obtained by Kiber are comparable to the untreated data supplied by Halliburton NUS which ranged from 2,000 to 300,000 ug/kg of total PCBs in untreated soil samples.

SZ592\854_101

As noted on Table I-3, all results of PCB analyses are reported as estimated values. The estimated values are due to the similarity between Aroclor-1262 and Aroclor-1268 based on gas chromatography analyses. Review of the chromatographs resulting from PCB analyses indicates that coeluting interference was observed for these two aroclors. That is, the peaks defining Aroclor-1262 and Aroclor-1268 overlap, requiring estimations of the individual areas by the GC chemist. While there are peaks unique to each of the two target aroclors, it was not possible to utilize these peaks for quantitation due to the relatively weak response observed during analyses. As such, these peaks were used only as a tool to aid in identification of the individual aroclors. Also, the GC chemist relied upon pattern recognition for identification of the specific aroclors and estimations of the specific concentrations. This process allows for interpretation of numerous peaks which, although individually are insufficient for identification, can be interpreted based on the pattern in which they appear.

The results of RCRA metals analyses of the untreated soils are summarized in Table I-4. The highest levels of contamination were observed for lead, ranging from 23 to 15,000 mg/kg. Barium was also observed at levels as high as 2,400 mg/kg. This data also reveals detectable levels of cadmium, chromium and silver. A detailed discussion of the metals results, as they apply to potential full-scale LTTD treatment, is presented in the report developed by Four Nines and included as Appendix A. Note that data supplied by Halliburton NUS revealed lead concentrations of from 100 to greater than 10,000 mg/kg in untreated soil samples.

Table I-5 reveals the results of dioxin analyses performed on the untreated soils. This data reveals that no dioxin was present in the soil labeled TS*B-10*1.5-4. The other three soils revealed that TCDD through HpCDD dioxins were below the method detection limits, however, the TCDF through HpCDF furans ranged from 1.3 to 25 ug/kg, including TCDF, PeCDF, HxCDF, and HpCDF. As previously noted, no additional analyses were performed for dioxin on the untreated soils.

SZ592\854_101

All additional untreated analyses are summarized on Table I-6. The Work Plan provided by Halliburton NUS stated that total organic carbon (TOC) analyses be performed in accordance with MSA 20.3.5.2. Kiber's experience in analyzing similar types of soils indicated that EPA Method 9060 was often a more practical and effective method of analysis. This modification was also noted in Kiber's original proposal and scope of work. TOC analyses of the untreated soils revealed concentrations from 1,000 to 40,000 mg/kg. While Kiber has no explanation for the apparent variability of the TOC analyses, Kiber has experienced considerable variability due to heterogeneity of similar material types. Kiber's experience also indicates that variation in the TOC results are observed in soils containing high concentrations of 1) total organics, and 2) petroleum and other oilbased hydrocarbon compounds. Material pH of the soil was in the range of 5.6 to 6.7. Moisture content and unit weight results are also presented on this table.

11

3.0 THERMAL DESORPTION TREATMENT

3.1 OVERVIEW

Upon completion of the untreated waste characterization, Kiber performed low temperature thermal desorption treatment on the site soils. The initial LTTD treatability testing was performed to determine if PCBs can be thermally desorbed using this technology. Generally, treatment was performed at three different residence times at temperatures of 700°F, 1000°F and 1200°F. Specifically, the process is intended to provide Halliburton NUS with a basis for valid comparison between the different treatment temperatures and residence times. The testing program was also developed in order to provide Four Nines with sufficient information to develop recommendations for full-scale LTTD treatment of the site soils.

While the bench-scale testing procedures were intended to evaluate the potential effectiveness of LTTD treatment, the results only correlate to the specific testing conditions outlined herein. The residence times identified during the bench-scale testing cannot be directly applied to design of full-scale LTTD equipment since the muffle furnace tests do not accurately simulate the solid/gas dynamics of full-scale equipment.

In the muffle furnace tests, heat is transferred to the soil samples in the stainless steel trays by natural convection and radiation. The LTTD system assumed for this project is a direct-fired rotary co-current desorber, where heat transfer is primarily by forced convection, plus radiation and conduction from the flights and wall of the drum. Heat transfer is not well modeled by the treatability study muffle furnace; however, experience has shown that monitoring soil temperature in a muffle furnace test does provide guidance on appropriate processed soil temperatures which must be achieved using a low-temperature desorber.

SZ592\854_101

This parameter is critical to design and operation of an LTTD. Moreover, the muffle furnace tests produced clean (<2 mg/kg PCB) soil samples at temperatures expected for vaporization of PCBs. More information on application of the treatability study data to LTTD design can be found in the RMT/Four Nines section of the report.

3.2 INTERMEDIATE TREATMENT AND ANALYSES

3.2.1 Intermediate Treatment

The low temperature thermal treatability testing was conducted using a Fisher Scientific Series 750 muffle furnace capable of reaching temperatures of 2000°F. A stainless steel pan, measuring approximately 6 inches in width by 10 inches in length was cleaned, dried and weighed. For each test, a 1,000 gram aliquot of untreated soil was placed in the pan in a shallow layer, approximately 1 inch deep. Visual observations were performed on the soil, prior to treatment. These observations were performed in order to evaluate the material characteristics, including consistency, texture, color, odor and any other distinguishing properties. The tray and soil were weighed prior to LTTD treatment.

Treatment was performed by placing the tray in the muffle furnace at a steady target temperature. The preliminary treatment was performed at 700°F, 1000°F and 1200°F. For each of the three temperatures, treatment was performed on distinct 1000 gram aliquots of soil for each of three residence times, including 10, 20 and 40 minutes. The residence time was defined as the length of time that the soil remained in the pre-heated oven. Note that, during treatment, no mixing or agitation of the soil was performed.

Upon completion of the treatment process, the soil was removed from the muffle furnace. The pan and treated soil were then weighed, immediately, to determined the total weight of the treated soil. Each treated soil was then placed in a laboratory fume hood and allowed to cool to room temperature. Table II-1 presents a summary of the preliminary treatment performed on the site soils. This table includes the material type, the treatment

SZ592\854 101

temperature and residence times for each treatment process. This table also includes the weight of the untreated and treated soils, and the weight loss due to the treatment process.

During treatment of TS*B-7*4-6, Kiber observed flaming of the soil as a result of treatment at temperatures of 1000°F and higher. The problem was discussed with Four Nines and a decision was made to continuously purge the furnace with nitrogen in order to minimize the likelihood of combustion occurring during future treatment tests and to better model the LTTD process where combustion of organics does not occur in the primary chamber. Purging was performed by pumping nitrogen through a stainless steel tube to the center of the furnace. This process allowed for continuous testing without combustion of the soils being treated. Kiber has noted those treatment processes which were performed with the nitrogen purge on Table II-1.

3.2.2 Intermediate Treatment Monitoring and Analyses

Throughout the testing process, monitoring was performed for the temperature of the soil using a digital thermocouple. The thermocouple was placed directly in the soil during treatment, via a vent in the top of the muffle furnace. Monitoring of the soil temperature was performed at regular intervals throughout the testing procedure. Due to equipment problems, however, Kiber was unable to monitor the soil temperature during intermediate treatment performed at 700°F. All data pertaining to the temperature monitoring during treatment is presented on Tables II-2 through II-5. These tables present the data for each of the four materials, at each treatment temperature and residence time. Temperature monitoring was also performed, at regular intervals, throughout the cooling process. This temperature data is also presented on Tables II-2 through II-5. Complete data sheets pertaining to the treatment process are included as Appendix C.

After each soil had cooled to near room temperature, visual observations were again performed on each material. These observations are included in the data sheets presented in Appendix C. Table II-6 presents a summary of the observations performed on each soil. The following conclusions were drawn based on the observations presented in Table II-6:

- Treated soil became lighter in color, especially on the surface layer.
- Treated soil was fairly homogeneous throughout; however, at lower residence times, the bottom layer of soil appeared somewhat darker and wetter than the surface.
- Treated soil was visually dry and more friable than the untreated soils.
- No crusting was evident on the treated soils; however, some of the organic matter appeared charred or ashed.

After cooling to near room temperature, each treated soil was sampled for total PCB analyses in accordance with EPA Method 8080.

3.2.3 Discussion of Results

Tables II-7 through II-10 present the results of PCB analyses performed on the treated soils. These tables present information pertaining to each soil, treated at the specified temperatures and residence times. Complete data sheets for all treated analyses are included as Appendix D.

Table II-7 presents the results of treatment performed on material labeled TS*B-10*1.5-4. Review of this data reveals slight reduction for all treatment temperatures and residence times. Treatment performed at 700°F resulted in slight reduction in the concentrations of PCBs at the shortest residence times of 10 and 20 minutes. Treatment at 700°F for 40 minutes achieved the best reduction in PCB concentrations for treatment at that temperature. Similarly, treatment at 1000°F and 1200°F achieved the best reductions in PCB concentrations at the longest residence times. PCB concentrations in the TS*B-10*1.5-4 material were reduced to concentrations below the treatment criteria, for treatment performed at 1000°F for 40 minutes and at 1200°F for both 20 and 40 minute residence times.

Table II-8 presents the results of treatment performed on material labeled TS*B-68*2-4. Review of this information indicates that the most effective treatment was achieved at the

longest residence times for each treatment temperature. Treatment performed at 700°F and 1000°F achieved only slight reduction in PCB concentrations at residence times of 10 and 20 minutes. While slightly better reduction was noted for 40 minutes of treatment at 700°F, significant reduction was noted for 40 minutes of treatment at 1000°F. Similar results were observed for treatment at 1200°F, in which longer residence times resulted in lower PCB concentrations. PCB concentrations in the TS*B-68*2-4 material were reduced to below the method detection limit for treatment performed at 1200°F for a period of 40 minutes.

Table II-9 presents the results of treatment performed on untreated material labeled TS*B-7*4-6. This data indicates that treatment performed at a temperature of 700°F achieved little reduction in PCB concentrations. Treatment performed at 1000°F achieved significant reduction only at a residence time of 40 minutes. Similarly, treatment at 1200°F achieved significant reduction only at a residence time of 40 minutes. The only treated PCB concentrations which achieved the treatment objectives were achieved with a residence time of 40 minutes at temperatures of 1000°F and 1200°F.

The results of treatment performed on material labeled TS*B-68*6-8 are presented on Table II-10. Review of this data indicates that no treatment succeeded in reducing the PCB concentrations to below the method detection limits, for residence times up to 40 minutes. The most effective treatment was achieved at 1200°F for a residence time of 40 minutes.

3.2.4 Additional Intermediate Testing

Based on the data presented herein, and discussions between Kiber, Halliburton NUS and Four Nines, additional intermediate testing was outlined for the TS*B-68*6-8 material. This material was selected due to the difficulty encountered in effectively reducing the PCB contamination at the residence times outlined. Review of the data, however, reveals that treatment effectiveness is improved by longer residence times and higher temperatures. Therefore, additional testing was performed at 1000°F with residence times of 60 and 90 minutes and at 1200°F with residence times of 60, 75 and 90 minutes.

SZ592\854 101

Upon completion of the additional intermediate testing, aliquots of each treated soil were submitted for PCB analyses. Results of these analyses are included with the previous intermediate test results presented on Table II-10. This data indicates that all treatment performed at residence times of greater than 60 minutes, for treatment at 1000°F and 1200°F, was effective at reducing the PCB concentrations to below the method detection limit.

3.2.5 <u>Recommendations for Final Treatment</u>

Table II-11 presents a summary of the basic testing parameters for all the preliminary and intermediate testing. This table includes the furnace temperature, the residence time and the maximum soil temperature achieved during the treatment process. Also presented on this table are the results of PCB analyses of the treated soils.

Kiber estimates that the distillation temperature for PCB compounds is in the approximate range of 660 to 840°F (THE MERCK INDEX, Tenth Edition, 1983). Review of the temperatures achieved for each test as presented on Tables II-2 through II-5 and the corresponding PCB concentrations presented on Tables II-7 through II-10 shows that any soils which achieved maximum temperatures above the approximate distillation range produced PCB concentrations below the method detection limits. Also, Kiber feels that good correlations or trends between the treatment temperature and the residence times were observed, given that separate 1000 gram aliquots were used for each test run. Often, erratic test results or trends are observed when comparing testing or treatment performed on discrete aliquots due to the potential heterogeneity of the contamination. Figure 1 presents a graphical presentation of the correlations of PCBs remaining in the treated soils.

As outlined in the initial work plan, one treatment temperature and residence time was to be evaluated for the final treatment testing. This process was intended to identify the single treatment process which would effectively treat all of the site soils, regardless of

SZ592\854 101

potential heterogeneity of the site soils. The final treatment selected included a temperature of 1000°F at a residence time of 60 minutes for all laboratory testing.

As indicated in Four Nines' report included in Appendix A, some parameters from laboratory muffle furnace tests cannot be applied directly to design of a desorber since the testing does not adequately represent the heat transfer and soil-gas dynamics achieved with full-scale equipment. However, the testing does provide an indication of the processed soil temperatures which must be achieved for effective treatment. Based on review of the laboratory results, Four Nines recommended that full-scale treatment be performed using a direct-fired desorber and indicated that direct-fired desorbers will process the Raymark soils to temperatures of more than 900 °F within the typical operating residence time of 15 minutes.

3.3 FINAL TREATMENT AND EVALUATIONS

3.3.1 Final Treatment and Monitoring

The low temperature thermal treatability testing performed during final treatment and evaluations was conducted using identical protocols as outlined in Section 3.2. A stainless steel pan, measuring approximately 6 inches in width by 10 inches in length was cleaned, dried and weighed. For each test, a 1,000 gram aliquot of untreated soil was placed in the pan in a shallow layer, approximately 1 inch deep. Visual observations were performed on the soil, prior to treatment. These observations were performed in order to evaluate the material characteristics, including consistency, texture, color, odor and any other distinguishing properties. The tray and soil were weighed prior to LTTD treatment.

Treatment was performed by placing the tray in the muffle furnace at a steady target temperature. The treatment was performed at 1000°F for a residence time of 60 minutes. Note that, during treatment, no mixing or agitation of the soil was performed. Upon completion of the treatment process, the soil was removed from the muffle furnace. The

SZ592\854_101

pan and treated soil were then weighed, immediately, to determined the total weight of the treated soil. Each treated soil was then placed in a laboratory fume hood and allowed to cool to room temperature. Table III-1 presents complete information pertaining to the testing procedure, including oven temperature, the weight of material treated, the residence time, and the material loss due to the treatment process.

As a result of flaming observed during the intermediate testing phase, all final testing was performed with nitrogen purging the muffle furnace. Temperature monitoring was performed throughout the treatment and cooling process. A summary of the temperature monitoring performed during the final treatment process is presented in Table III-2.

After each soil had cooled to room temperature, visual observations were again performed on each material. These observations are included in the data sheets presented in Appendix E. Note that the treatment process as outlined herein was performed on each of the four untreated materials. However, in order to better estimate potential variation in the treatment process, one additional aliquot of TS*B-7*4-6 was treated in accordance with the identical treatment protocols. The information pertaining to this additional testing is also included on Table III-1.

In addition to the visual observations outlined above, Kiber also took photographic documentation of each material, both before and after treatment. These photographs are included as Appendix F. Review of these photographs, as well as the visual observations performed by Kiber, indicates that the untreated soils are similar to the as-received untreated material, as well as the soil samples utilized for the intermediate phase of testing. Comparison of the untreated and treated photographs reveals that LTTD treatment resulted in a significant change in material characteristics. The following observations were made on the treated and untreated soils:

Treated materials were lighter in color than the corresponding untreated soils.

SZ592\854 101

Treated materials were visually extremely dry and friable.

- Treated material was homogeneous throughout the depth of the soil.
- No heavy crusting was observed as a result of the treatment process.
- Organic material appeared visually charred as a result of treatment.

3.3.2 Treated Analyses and Discussion of Results

A series of analytical characterization analyses were performed on each of the treated soils in order to confirm the effectiveness of the treatment process. Specifically, the following analyses were performed on each final mixture after LTTD treatment:

Total TCL Volatiles Total TCL Semivolatiles Total Pesticides / PCBs Total RCRA Metals Total Dioxin Total Organic Carbon Material pH Moisture Content EPA Method 8260 EPA Method 3550/8270 EPA Method 3550/8080 EPA Method 6010/3051/7471 EPA Method 8280 EPA Method 9060 EPA Method 9045 ASTM D 2216

The test results for each of these analyses are summarized on Tables III-3 through III-8. These tables include the results for each analysis, as well as the corresponding detection limit. Complete data sheets pertaining to each analysis are presented in Appendix G. Note that, although not specified in the original scope of work, Kiber performed additional untreated waste characterizations to further identify the contamination present in the materials prior to initiation of the final testing phase. All untreated waste characterization testing has been previously discussed and presented in Section 2.3.

Table III-3 presents a summary of the total volatiles analyses performed on the treated soils. This data indicates that the primary volatile contamination is composed of benzene, 2-butanone and xylene, for all treated soils. Methylene chloride and acetone was detected

in several samples, but is attributed to laboratory contamination. Due to the extremely low levels of volatile organics, a discussion of contaminant reduction is inappropriate. Review of the results does indicate the presence of volatile organics in the treated material; however, Kiber believes that these contaminants may have absorbed into the soil from the laboratory and fume hood air, during the cooling and monitoring following LTTD treatment.

Table III-4 presents the results of semivolatile analyses performed on the treated soils. The only detectable concentrations of semivolatile compounds were bis(2ethylhexyl)phthalate for TS*B-7*4-6, and 1,2 dichlorobenzene for TS*B-68*6-8. All other compounds were at levels below the method detection limit for each treated soil. These values represent a complete reduction in contaminant concentrations over the untreated values presented in Table I-2. Based on review of this data, LTTD is effective at eliminating the concentrations of semivolatile organics in the site soils.

Pesticide and PCB analyses performed on the treated soils are summarized on Table III-5. As in the untreated analyses, no pesticides were detected in any of the treated soils. Treated analyses revealed that LTTD treatment reduced the concentrations of PCBs from the range of 8,000 to 140,000 ug/kg in the untreated soils to less than the detection limit for the treated soils. Based on this data, LTTD is effective at reducing the concentrations of PCBs to below the site specific limit of 2 mg/kg.

Table III-6 includes complete results of RCRA metals analyses of the treated soils. This data indicates that lead is the primary inorganic contaminant, at levels of from 35 to 18,000 mg/kg. Other metals include barium, cadmium, chromium and silver. Comparing this data with the untreated analyses presented in Table I-4 reveals no significant change in the concentrations of metals due to the LTTD treatment process. Kiber had anticipated a slight increase in metals concentrations due to the reduction in organic content of the treated soil.

SZ592\854 101

Dioxin analyses performed on the treated soils are summarized on Table III-7. This data reveals that, as in the untreated analyses, no dioxin was present in the treated soil for material labeled TS*B-10*1.5-4. Treatment performed on soil labeled TS*B-68*2-4 resulted in a reduction in dioxin contamination to below the method detection limit for all compounds. The other two treated soils revealed that TCDD through HpCDD dioxins were below the method detection limits, however, the TCDF through HpCDF furans ranged from 0.2 to 3.0 ug/kg, including TCDF, PeCDF, HxCDF, and HpCDF. This data indicates that, for sample number TS*B-7*4-6, concentrations of both HxCDF and HpCDF were significantly reduced to less than 1 ug/kg. No significant change was observed for TCDF and PeCDF concentrations as measured for sample TS*B-7*4-6. Review of the untreated data for sample TS*B-68*6-8 indicates that the only dioxin contamination was for HxCDF at a level of 17 ug/kg. It should be noted that elevated detection limits were observed for the untreated analyses performed on this material. Treated analyses revealed that the only dioxin contamination for treated sample TS*B-68*6-8 was at levels of less than 1.0 ug/kg for both TCDF and PeCDF. While these compounds were not detected in the untreated analyses, Kiber attributes this to the elevated detection limits observed during untreated waste characterization testing.

Table III-8 presents a summary of additional analyses performed on the treated soils, including total organic carbon and moisture content determination testing. Total organic carbon data reveals concentrations of from less than the detection limit to 38,000 mg/kg. Due to the variability observed in the untreated soils, however, a discussion of the potential reduction in TOC levels is inappropriate. No reduction can be attributed specifically to the LTTD treatment process. The moisture content of the treated materials was reduced to less than 1% due to the treatment process.

SZ592\854_101

4.0 CONCEPTUAL DESIGN AND COST ESTIMATIONS

4.1 **OVERVIEW**

Based on the data obtained throughout the treatability study, Four Nines developed recommendations and conceptual design criteria for full scale treatment of the site soils. The following presents a summary of the conclusions prepared by Four Nines upon completion of the treatability testing program. In general, the results of the treatability study indicate that full scale LTTD treatment will be effective in treating the site soils.

4.2 EQUIPMENT SELECTION

Typically, full-scale LTTD equipment falls into two categories, including 1) modified asphalt batch plants which desorb organics and burn the organic vapors, and 2) desorbers/condensers which vaporize the organics, then cool and condense for later offsite incineration. The modified asphalt batch plants have a high capacity, relatively low capital cost, and moderate operating costs. They are capable of processing greater than 40 tons of untreated soil per hour (tph) at costs significantly below high-temperature incinerators or desorber/condensers. The desorber/condensers typically provide limited capacity, high capital cost and moderate to high operating costs. Four Nines noted that a low temperature desorber/condenser is strictly a separation device, which will produce an organic waste which requires off-site treatment via incineration or firing as a waste-derived fuel in a cement kiln or other BIF combustion systems. A direct-fired desorber has been recommended for treatment of the Raymark soils.

The brown, sandy soils, typical of TS*B-10*1.5-4 and TS*B-68*2-4, present no material handling or particulate emission problems for the LTTD. The black cohesive soil samples, typical of TS*B-7*4-6 and TS*B-68*6-8, which appear to contain asbestos and

SZ592\854_101

other fibrous material, may require some additional handling considerations. All soils contain a variety of metals which may present problems for some LTTD systems which work at higher temperatures in the primary chamber and may volatilize light metals. Systems equipped with a baghouse are expected to remove metals, except for mercury, and asbestos and should keep particulate levels low. The performance of the baghouse is dependent on particle size, however, and better definition of fines content and particle size would be necessary prior to selecting a system. Based on the metals contamination found in the untreated soils, some modifications may be required for full-scale treatment. However, with some partitioning in the primary chamber and a taller stack, the metals can be made to pass limits for stack emissions, as long as complex terrain is not a factor.

Based on the treatability testing, a direct-fired 40 tph desorber has been identified for treatment of the site soils. This unit is a direct-fired, co-current LTTD with dual cyclones after the desorber to remove most of the fly ash, a secondary combustion chamber, quench tower, baghouse and acid gas absorber. This design is expected to offer the best capacity and cost for this project. This type of system is available and has been used on several Superfund sites. A flow diagram of the conceptual system, as outlined by Four Nines, is included as Figure 2.

As noted in the Four Nines report, the wide range of organics plus cellulosic waste could cause corrosion and fouling problems with condensers. If a desorber/condenser is to be considered, Four Nines suggests that additional muffle furnace or larger bench-scale tests be performed to vaporize and condense the organics, and then assess the pH, reactivity, viscosity and moisture content.

4.3 ESTIMATED OPERATING COSTS

The cost to purchase a LTTD system, as outlined above, has been estimated at \$2.45 million. This cost includes instrumentation and temperature rating required for TSCA

waste processing. To allow for upgrading and customizing, and the cost of engineering consulting, a cost of \$3 million is more appropriate for budgeting purposes.

Operating costs have been estimated based on discussions with thermal treatment remediation vendors. The costs are limited to "chute-to-chute" operations and do not include excavation, material preparation or other site activities. Based on 450,000 tons of contaminated soil, a unit price of \$94 per ton has been estimated for LTTD treatment of the site soils. This assumes an average organics contaminant concentration of less than 2 percent by weight. Detailed information pertaining to the price estimations is included in Four Nines report presented in Appendix A.

5.0 QUALITY ASSURANCE / QUALITY CONTROL

Kiber Environmental Services, Inc. maintains strict Quality Assurance (QA) and Quality Control (QC) programs as part of Kiber's Standard Operating Procedures. Kiber's QA/QC plan has been developed in accordance with EPA Level III and IV standards. Kiber's QA/QC program for the Raymark Industries treatability study has two primary objectives; 1) validate the quality of each analysis conducted in accordance with EPA and/or CLP protocols, and 2) evaluate the effectiveness and/or variability of the various treatment processes on the chemical treatment of the site soil.

The primary objective of the treatability QA/QC program was to validate the quality of each analysis and treatment evaluation, and to evaluate the effectiveness and variability of the solidification process on the site soil. These objectives were achieved for the treatability testing through 1) calibration of the associated equipment, and 2) supervision and review by qualified technical personnel.

The primary objective of the analytical QA/QC program was to ensure that the data generated was comparable, accurate, reproducible, valid and defensible. All QA/QC testing was applied to the Raymark Industries treatability study on a batch-specific basis. The program included analyses of method blanks, duplicates, blank spikes and surrogate recoveries, as appropriate. Complete QA/QC data is reported with the full data reports presented in each of the referenced appendices. Any sample-specific observations are either reported on the appropriate data reports or with the corresponding case narrative included in the respective reports.

As identified by Halliburton NUS, the primary contaminants of concern included Aroclor-1262 and Aroclor-1268. As these represent aroclors not typically included in Kiber's standard calibration procedures, additional protocols were implemented for the Raymark project. Prior to analyzing soils developed as a part of the Raymark project, Kiber

performed a standard five-point calibration for each aroclor, including Aroclor-1262 and Aroclor-1268. The Quality Control criteria established for each aroclor was in accordance with the protocols outlined in EPA Methods 8000 and 8080.

Review of the chromatographs resulting from PCB analyses indicates that coeluting interference was observed for these two aroclors. That is, the peaks defining Aroclor-1262 and Aroclor-1268 overlap, requiring estimations of the individual areas by the GC chemist. While there are peaks unique to each of the two target aroclors, it was not possible to utilize these peaks for quantitation due to the relatively weak response observed during analyses. Pattern recognition was also relied upon for identification of the specific aroclors and estimations of the specific concentrations. This process allows for interpretation of numerous peaks which, although individually are insufficient for identification, can be interpreted based on the pattern in which they appear.

Throughout the interpretation process, the GC chemist attempted to isolate those peaks, or patterns of peaks, which were specific to each individual aroclor. However, due to the coeluting interference, it is possible that some peaks were attributed to both target aroclors. Therefore, the reported values are believed to be worst-case estimations of the actual concentrations. While each aroclor value is presented as estimated, Kiber feels confident that the values are accurate for evaluating the treatment of the PCB contaminated soils.

SZ592\854 101

6.0 CONCLUSIONS

The following conclusions are presented for the low temperature thermal desorption treatability study performed on soils sampled from the Raymark site:

Generally, multiple untreated characterization analyses revealed good reproducibility. Review of the data indicates that the PCB concentrations associated with TS*B-7*4-6 are highly variable. Visual observations of this material reveals a black, oily and clay-like consistency with large amounts of a black fibrous material. Due to the heterogeneity and the limited analyses, Kiber cannot make any conclusions as to the potential distribution of the PCB compounds. Based on review of the data presented by Halliburton and all treatability testing, Kiber feels that the analyses do represent potential variability of the PCB concentrations at the Raymark site. Also, the total organic carbon concentrations exhibited extensive variation in the range of 1,000 to 40,000 mg/kg, further indicating heterogeneity of the site soils.

- Low temperature thermal desorption treatment was effective at reducing the concentrations of PCBs in the treated soils to below the site specific limit of 2.0 mg/kg.
- 3. The optimum treatment parameters, based on available data, included treatment at 1000°F in a muffle furnace with a residence time of 60 minutes. Analysis of corresponding soil temperature data showed that the PCB goal of <2 mg/kg was achieved at soil temperatures above 768° F. A processed soil temperature of 900°F has been chosen for a full scale LTTD system to allow for complete heating of larger soil agglomerates.</p>

SZ592\854 101

1.

4. Four Nines recommends a direct-fired 40 ton per hour desorber equipped with dual cyclones, secondary combustion chambers, quench tower, and baghouse and acid absorbers.

5. The capital equipment costs are estimated at \$3 million.

Operating costs of a chute-to-chute process on a subcontract basis are estimated at
 \$94 per ton of material processed, based on 450,000 tons of contaminated soil.

The treatability study performed provided important information pertaining to the effectiveness of low temperature thermal desorption (LTTD) for treatment of the Raymark soils. If LTTD treatment is selected as the candidate process for the Raymark soils, additional testing is recommended in order to provide the data necessary to engineer the thermal systems. These additional analyses may include higher heating value determination; ultimate and proximate analyses; ash major, minor and fusion analyses; total petroleum hydrocarbon concentrations; and organic chlorine and sulfur content. Additional tests using a bench-scale rotary desorber are also recommended in order to assess removal efficiency requirements for the air pollution control systems.

DISCLAIMER

When performing treatability studies, Kiber Environmental Services, Inc. is typically provided with samples from a given site. These samples usually have been collected by site personnel and are intended to be representative of the site materials. The treatability study, however, is constrained by the accuracy of the samples taken in the field. Since Kiber has no control over the sample collection, the results of the study are assumed to be only estimations of the anticipated full-scale results.

Kiber Environmental Services, Inc. has applied their best technical and scientific knowledge to the performance of the work under the economic parameters of the study. The information contained in the report in no way guarantees the same results in full scale adaptation and is only meant to be used as a guideline for operational procedures.

Furthermore, the study period defined by the client, limits the evaluation of technologies to a specified, limited time frame. Kiber can evaluate the technologies based on this time frame; however, Kiber cannot comment on the long term effects.

ENGINEERING REPORT RAYMARK SUPERFUND SITE CONTAMINATED SOIL TREATABILITY STUDY

FOR

KIBER ENVIRONMENTAL SERVICES, INC. 3786 DEKALB TECHNOLOGY PKWY. NE ATLANTA, GA 30340

by

RMT/FOUR NINES, INC. 125 E. Trinity Pl., Suite 249 Decatur, GA 30030 404-370-0490

400 Stenton Ave. Plymouth Meeting, PA 19462 215-834-0490

May 18, 1994

Project 69206.01

TABLE OF CONTENTS

.

<u>Sectior</u>						Page
EXECUTI	VE SUMMARY	•••••••		•••	•	. 1
TREATAE	ILITY STUDY SAMPL	ES		• •	•	. 2
LTTD EQ	UIPMENT DESCRIPTI	ON FOR ON-SITE R	EMEDIATION .	• •	•	. 8
LTTD CA	PITAL AND OPERATI	NG COSTS	• • • • • •	• •	•	14

APPENDIX A -- Incineration is Going Mobile APPENDIX B -- Heat and Mass Balance APPENDIX C -- Detailed LTTD System Description

EXECUTIVE SUMMARY

This project is a treatability study for Superfund soils from the Raymark site in Stratford, CT. RMT/Four Nines, Inc. provided assistance in planning for the treatability tests; review of existing data on the contaminated soil; input/oversight of selected tests; interpretation of results; selection of a flow sheet to accomplish clean-up of the soil; assessing the fate of metals (such as lead) and inert materials (such as asbestos); production of a preliminary heat and mass balance; capital and operating cost estimates for thermal treatment equipment; and soil treatment services by remediation vendors.

The major findings are:

- A low-temperature thermal desorber (LTTD) can remove the organics from the soil to the required <2 ppm level.
- Throughput and costs are highly dependent on the process flowsheet.
- Use of a low-temperature desorber equipped with a secondary combustion chamber (SCC) and an air pollution control system is proven technology. Use of a desorber/condenser system without further tests is risky due to the wide range of chemical compounds, boiling points, halogen and oxygen content in the waste. Some waste decomposition is expected and polymerization and reaction have not been ruled out.
- Capital cost for a 40-tph desorber/afterburner/APC system is approximately \$3MM.

1

 Operating costs, on a chute-to-chute thermal treatment subcontract basis are projected to be \$94/ton.

The report and appendices which follow define the basis and limitations of the above findings.
TREATABILITY STUDY SAMPLES

The treatability study test was designed to answer the question of whether a low-temperature desorber can clean the Raymark soil by removal of organic contaminants to the intended contract level of <2 ppm PCB. Tests were also run to assess the fate of metals (such as lead) and inert materials (such as asbestos).

The soil samples were subjected to lab tests per the request for proposal (RFP) requirements. Some additional tests were run in the lab, such as the propane torch test on waste in crucibles.

Review of Lab Data from Halliburton NUS March 1994 Work Plan

Data from Table 1-1 of the work plan shows maximum concentrations of contaminants. Notable organics are toluene at 2,569 ppm, xylenes at 114 ppm, chlorinated herbicides (with Silvex, an herbicide, at 1.7 ppm being the highest concentration), pesticides ≤1 ppm, sulfide 250 ppm, cyanide 8 ppm, and metals (with lead at 57,230 ppm and chromium 317 ppm), PCBs 190 ppm, dioxin 0.007 ppm, and asbestos from 1-100%.

These values are "maximums" and as such are not very useful in designing a thermal system for soil which will be excavated and homogenized prior to treatment. The data on high levels of contaminants is useful in identifying and isolating hot spots for off-site treatment or intensive mixing to decrease their concentration.

Data from Table 4-1, p. 12 of the work plan, produces an average PCB concentration of 98 ppm by taking the mid-range of the values given and assuming the <50 ppm is actually zero. Due to "more than" designations on the lead content, no average value can be estimated. However, it is obvious that the average must be above 5,000 ppm. Asbestos contents in the same table averages approximately 45% when the <25% value is ignored.

Visual Observation of Lab Samples

RMT/Four Nines personnel examined soil samples in 5-gallon buckets on 3/15/94.

General Observations

Four samples were examined, each in a 5-gallon pail. The samples had been screened and homogenized prior to examination. The oversize had been a significant fraction of the original sample, about 4-29% by weight. The oversize was +1" to 3" top size. For samples TS*B-10*1.5-4 and TS*B-68*2-4, it was smooth river stone. For TS*B-7*4-6, it was black fibrous material. The oversize

included one ~6"x8" piece which appeared to be gasket paper or 30-lb roofing felt, a small piece (~2x2x1/4") of riveted automotive brake shoe lining, and assorted rocks and debris.

The visual appearance of the samples is summarized in Table 1.

Table 1 Visual Appearance of Raw Samples

<u>Sample</u>	Appearance
TS*B-10*1.5-4	Light brown, coarse sand through coarse
	gravel
TS*B-68*2-4	Light brown, fine sand through gravel
TS*B-7*4-6	Black, fibrous, cohesive clumps, clay-like
·	with gravel
TS*B-68*6-8	Very black, more friable than TS*B-7*4-6

Sample TS*B-10*1.5-4 appeared damp and was not cohesive. It had very low odor.

Sample TS*B-68*2-4 looked damp, and had no discernable odor. It contained less gravel than TS*B-10*1.5, and had smaller gravel.

Sample TS*B-7*4-6 had low odor but looked oily and wet. It had a significant amount of straw and cellulosic material. There were frequent agglomerates which had a fudge-like consistency. They could be torn apart easily, and contained fibers or multiple layers of paper-like material.

Sample TS*B-68*6-8 was similar to but more friable than TS*B-7*4-6.

Crucible Test and Observation of Muffle Furnace Tests

On 3/18/94, RMT/Four Nines personnel examined samples which had been heated in the muffle furnace to the lowest temperature level, 700 F (371 C). The brown sandy soils appeared to be dry and visually clean. The black samples were not visually clean and had tar-like bubbles and blisters on some of the lumps. There were tar deposits on the side wall of the stainless pan used in the muffle furnace test. Based on visual observations and confirmed by lab tests, 700 F is not a high enough temperature to produce soil with <2 ppm PCBs.

In order to assess the amount of fuel in the waste and what the ash would look like, RMT/Four Nines personnel placed two samples of the black fibrous soil from TS*B-7*4-6 in 2" ceramic crucibles. After placement in the crucibles, the samples were directly heated with a propane torch in a lab hood. Photos were

-3

taken of the test.

The first sample burned well (no visible steam or smoke) while the torch flame impinged on the surface of the sample. Initially, when the propane flame was removed, it smoked, likely a combination of steam and hydrocarbon fog droplets. Upon further heating, the sample continued to burn briefly with a yellow/orange flame when the propane flame was removed.

The second sample exhibited the same properties, but had significantly more fuel value. It was quite capable of supporting combustion with the propane flame removed. It bubbled while burning with and without the torch. The second sample was weighed before and after firing. It went from 11.82 to 5.06 gr, showing a 57% volatile content. The volatiles are assumed to be water plus organics. Assuming 10% moisture content and 47% organic (at 20,000 Btu/lb), the sample has a higher heating value in the range of 9,400 Btu/lb.

The ash was gray in color, fibrous, with a sand crust appearance. There was some black residue (presumably carbon) on the crucible and in the ash.

Review of Kiber Lab Data

Organics and Metal in Untreated Soil

Table I-3, Summary of Pesticide/PCB Analyses - EPA Method 8080 for contaminated (untreated) soil, shows PCB concentrations of 11-140 ppm (estimated). Table I-4, Summary of RCRA Metal Analyses - EPA Method 6016/7471, shows lead at 23-15,000 ppm, chromium (estimated) 6.2-85 ppm. Barium was high, 34-3,900 ppm; however, it has low toxicity. Cadmium was low, with the highest value 2.3 ppm, as was silver, with the highest level 2.5 ppm. Mercury, selenium and arsenic were below detection limits. Table I-5, Summary of Dioxin Analysis - EPA Method 8280, shows TCDD through HpCDD dioxins to be below detection limits. The TCDF through HpCDF Furans ranged from below detection limits to 0.025 ppm.

Muffle Furnace Tests by Kiber

The untreated soils are lightly contaminated with volatile and semi-volatile organics. PCBs are found in higher concentration than other organics. In general, they are above the TSCA 50 ppm "non-PCB" limit, but would average below the 500 ppm TSCA "PCBcontaminated" limit and were slightly higher in PCBs than earlier tests by Halliburton NUS.

Some RCRA/BIF metals had significant concentrations. This is discussed in more detail in a later section.

Regarding the organic lab tests performed by Kiber and summarized in Table II-11, it is obvious that the 700 F tests did not show full organic removal. The 1,000 F and 1,200 F tests did show PCB removal to below the detection limit of 0.033 ppm.

•		Tab]	le 2
	Soil	Temp	peratures
	for	PCB	Removal

	Muffl	Le				
	Furna	ace	Soil		Res.	
	Temp	•	Temp.		Time,	
<u>Sample No.</u>	<u> </u>	_ <u>C</u> _	<u>F</u>	<u>C</u>	<u>min.</u>	<u>PCB<nd< u=""></nd<></u>
TS*B-10*1.5-4	1,000	538	925	496	40	Yes
	1,200	649	907	486	20	Yes
TS*B-68*2-4	1,000	538	558	292	40	No
	1,200	649	990	532	40	Yes
TS*B-7*4-6	1,000	538	667	353	40	No
	1,200	649	950	510	40	Yes
TS*B-68*6-8	1,000	538	768	409	60	Yes
	1,200	649	1090	588	60	Yes

Based on the data from Kiber lab muffle furnace tests, the ash quality goal of <2 ppm total PCB was achieved at soil temperatures exceeding 768 F (409 C) in the intermediate tests, and 743 F (395 C) in the final test. Residence times for tests which succeeded in reducing PCBs to below detection limits were 40-60 min. The residence time in these tests cannot be directly applied to design of a desorber as the muffle furnace tests do not well represent the heat transfer and solid/gas dynamics in full-scale equipment. Soil temperature can be used as the parameter for scale-up, and we expect that the PCB ash quality goal can be achieved at soil outlet temperature of >900 F. The higher temperature allows for heat penetration to the center of larger particles and provides a margin for error in scale-up. Normal soil residence times for direct-fired desorbers are in the range of 15 minutes. The 900 F soil temperature assumes that the soils are lightly contaminated and have less than 15% moisture. The time and temperature of 900 F and 15 minutes applies to direct-fired desorbers; significantly higher residence time is required for indirectly-heated desorbers.

Particle Size of Samples

The soil samples were sieved for particle size analysis. Results below are for samples after homogenization and removal of >1" oversize.

	Dp, avg.,	than,
<u>Sample #/Raw Sample Appearance</u>	<u>microns</u>	<u>microns</u>
TS*B-10*1.5-4 (light brown/sandy)	1,200	300
TS*B-68*2-4 (light brown/sandy)	350	40 (estimated)
TS*B-68*6-8 (very black)	400	15 (estimated)
TS*B-7*4-6 (black)	1,000	17 (estimated)

For the last three entries in the table, the particle size corresponding to 10% by weight was estimated by extrapolating the particle size vs. weight curve as a straight line and is a rough estimate only.

10% less

The particle size varies from 3/4-1" top size to 15 microns at the 10% by weight "less than" level. In general, the size range is good, with a moderate level of very fine material indicative of find sand or clay. However, after thermal treatment, the soil may liberate more fines than were found in the sieve test.

Implications for Thermal Treatment

The brown sandy soils will work well with a wide variety of material handling and LTTD systems. The black samples contain enough cohesive material that use of screw feeders would be illadvised; belt feeders and chutes would work well. The amount of oversize is large, and specification of an LTTD with 2" maximum feedstock size would significantly cut the amount of oversize debris which would have to be landfilled or washed free of contamination. The multilayered cohesive material may not break down in many of the LTTD systems and could pass through the system without being stripped of all the organic contaminants. Hence, some feed preparation is advisable to turn the black cohesive soil into a friable state. An example of such a system would be a pugmill mixing dry ash or sand with the cohesive soil.

From visual observation, the black samples have a small cellulosic fraction composed of grass and straw. At soil temperatures expected in a LTTD, this material will be charred. Wood is 78% volatile material, and this can be used as a guide as to the amount of organic material which will be devolatilized from the cellulosic fraction of the soil. The volatiles from the cellulose will be similar to "blue haze" emitted from plywood and oriented strand board dryers in the wood products industries. These volatiles are a complex mixture of PAH and oxygenated compounds typical of destructive distillation of wood and can be expected to be acidic and reactive if condensed. They will burn well, however, in an SCC.

Additional Lab Tests

The lab tests performed offer good insight into the organic contamination and major waste constituents. However, we recommend that the following additional tests be performed to provide engineering data for thermal system design.

Parameter	<u>Test</u>	Protocol
Higher heating value	ASTM	E711
Ultimate and proximate analysis	ASTM	D5142
Ash major and minor analysis	ASTM	D3682
Ash fusion (oxidative and reactive)	ASTM	D1857
Total recoverable petroleum hydrocarb.	ASTM	418.1
Organic chlorine	(1)	
Organic sulfur	(1)	

Note (1): Method selection must be discussed with the laboratory; total chlorine (or sulfur) minus inorganic chlorine (or sulfur) is used to determine the organic concentration.

In addition to the lab tests, the average concentration of organic contaminants should be estimated for use in cost estimation. The average concentration would result if the waste is mixed to the point where it is homogeneous, thereby eliminating rich and lean soils. While this cannot actually be achieved (it would take infinite mixing), it represents the goal for good material handling and mixing practices.

In addition to lab tests, material handling tests are advisable. The goal would be to define how much dry additive would be needed to blend the cohesive tarry soils and produce a friable, soillike consistency. Defining equipment capable of breaking up the fibrous lumps would also be worthwhile. LTTD EQUIPMENT DESCRIPTION FOR ON-SITE REMEDIATION Review of Low-Temperature Thermal Desorber Technology

LTTD equipment falls into two categories:

- Modified asphalt batch plants which desorb organics in a direct fired desorber and then burn the organic vapors.
- Desorbers/condensers which cool and condense the organic vapors for off-site incineration.

The former has high capacity, relatively low capital cost and moderate operating costs, while the latter has limited capacity, high capital cost and moderate to high operating costs. More information on these systems, as well as a comparison with hightemperature incinerators for soil treatment is found on pages 53 through 55 in a paper in Appendix A.

The modified asphalt batch plants using direct fired desorbers are capable of processing 40+ tph at costs significantly below high-temperature incinerators or desorber condensers. Many contractors are using modified asphalt batch plants to treat UST soils contaminated with gasoline, diesel, lube oil and other petroleum products. These systems are capable of processing Superfund waste when their control and instrumentation systems are upgraded and secondary combustion chambers (SCC) are designed for higher temperatures. They have processed wastes which are similar to or identical in chemistry to RCRA/CERCLA wastes. In some cases, this has occurred under state air permits when the waste concentrations were low or the source of the waste was not designated in 40 CFR 261.32, Hazardous Waste from Specific In other cases, it has been done under ARARs Sources. (Applicable, Relevant and Appropriate Requirements) for CERCLA sites.

If the waste has organic chlorine which would produce >4 lb/hr of HCl, an acid gas absorber or lime slurry spray tower is required for acid gas removal.

Waste Properties and Equipment Suitability

The brown, sandy soil samples present no material handling or particulate emission problems for the LTTD. The black soils samples appear to contain asbestos. The soils contain a variety of metals which may present problems for some LTTD systems which work at higher temperatures in the primary chamber and may volatilize light metals.

Can the LTTD handle this waste? <u>The answer is a qualified yes</u>. Those equipped with a baghouse (considered best available control technology for particulates and most metals) are expected to

remove metals and asbestos and should keep particulates below 0.015 gr/dscf. The performance of the baghouse is dependent on particle size, however, and better definition of fines content and particle size (especially for asbestos) is required to make a definitive judgment.

Superfund projects have been subjected to the BIF/RCRA metal emission limits. In order to provide an idea of magnitude, these are listed below for a 50' stack height in flat, rural terrain.

Table 3 EPA Tier I & II Metals Limits and Raymark Metals Data

Tier I & Tier II limits <u>lb/hr</u>	Kiber Lab Data Avg. Conc., <u>ppm</u>	Metals Feedrate @ 40 tph capacity, <u>lb/hr</u>
49	1970	160
2.9	1.25	0.10
0.29	No data	
0.29	ND	
0.29	No data	
0.088	762	61
0.0055	1.15	0.09
0.0041	No data	
0.0023	ND	
0.00082	46	3.7
	Tier I & Tier II limits <u>lb/hr</u> 49 2.9 0.29 0.29 0.29 0.29 0.29 0.29 0.088 0.0055 0.0041 0.0023 0.00082	Tier I & Kiber Tier II Lab Data limits Avg. Conc., lb/hr ppm 49 1970 2.9 1.25 0.29 No data 0.29 ND 0.29 No data 0.088 762 0.0055 1.15 0.0041 No data 0.0023 ND 0.0082 46

Note:

Based on Kiber lab data, Table 4, Summary of RCRA Metal Analysis - Method 6010/7471, using an average of the range of values.

No conclusion can be drawn for metals which were not tested or were below detection limits.

For barium, lead, cadmium and chromium, the amount of metals is sufficient to fail on the Tier I BIF feedstock screening limits for a 40-tph LTTD if it were equipped with a 50' stack located in a rural area with flat terrain. With a 99% efficient baghouse, all but lead and chromium would pass on Tier II stack test limits. With some partitioning in the primary chamber (the majority of most metals, including lead, will leave with the bottom ash in an LTTD system) and with a taller stack, the metals can be made to pass Tier II BIF limits for stack emissions as long as complex terrain is not a factor at the site.

LTTD EQUIPMENT DESCRIPTION FOR ON-SITE REMEDIATION

LTTD System for Raymark Site

A direct-fired 40 tph desorber has been chosen for this analysis. The process and major components are as shown in the process flow sheet, Figure 1. It is a direct-fired, co-current LTTD with dual cyclones after the desorber to remove most of the fly ash, an SCC, quench tower, baghouse and acid gas absorber. This design is capable of doing the job at a reasonable cost in a reasonable amount of time.

Other systems have been considered, such as a desorber followed by a condenser. However, only two such systems have been developed commercially for Superfund waste -- the CWM X*TRAX and the Weston LT³. The CWM externally-fired retort system has a capacity limited to 7.5 tph. Such a retort system can be built with a capacity of 15 tph in a single alloy shell (private communication with John Lees, equipment vendor, Allis Mineral Systems, Inc., 3/25/94). Above that, multiple systems or twostage desorbers could be used. The Weston LT³ uses indirect heating via multiple decks of screw augers. It also has limited hroughput of 7.5 tph. Weston is planning a second larger unit with two stage desorption (private communication with Luis Velasquez, Weston, 3/28/94).

Since these systems are one-of-a-kind, little hard cost data exists. More important, condensation of vapors from the Raymark site may be hindered by the wide range of organics and their potential for decomposition and polymerization. The condensing systems work best with well-defined, stable organics. The Raymark site does not fit this profile.

As noted above, a direct-fired LTTD system equipped with an SCC and scrubber was chosen for cost analysis, and is available and in use for Superfund sites. It is expected to offer the best capacity and cost for this project.

LTTD with a direct-fired desorber and SCC is limited to approximately 2% organic (assuming non-chlorinated organics with a higher heating value of about 20,000 Btu/lb). This is required to keep the vapor leaving the primary chamber below 25% of LEL (lower explosion limit) as required by NFPA for standard combustion systems. This limit can be raised to about 4% organic by weight if more sophisticated combustion controls are added. At this level, the SCC chamber will have reached full capacity based on the organic vapor from the primary chamber.

In comparison, a high-temperature rotary kiln incinerator run in the excess air mode can burn up to 100% organics; however, capacity drops as heating value rises above 1,000 Btu/lb.

Assuming that there are isolated hot spots of highly-contaminated organics, those above a certain organic concentration (e.g., 10%) could be excavated and shipped for off-site treatment. This could leave soil of 0-<10% organic concentration on site to be blended prior to processing. Since the soil to be treated will be excavated and stockpiled, there are ample opportunities to test and remove "hot" waste and blend the remaining to <2-4% organic, by weight, prior to treatment.

The low-temperature systems utilized in this study are capable of 750 F soil outlet temperature with carbon steel primary chambers, and when using Corten steel or stainless steel alloys, can reach 800-1,000 F soil temperatures. Data from other sites, pilot and lab tests suggests that at 750 F, and more certainly at 1000 F soil temperature, these systems can clean the soil to the ash quality goal of 2 ppm. A service contractor may allow for some re-burn of waste not passing the ash quality goal when using a low-temperature unit. This would raise the cost per ton slightly, and this has not been factored into the cost analysis for the site.

There have been multiple Superfund projects, generally burning PCBs and dioxins and their surrogates, where equipment by Ogden, Vesta, Weston, Ensco and others have passed on 99.9999% DRE. While these units had high-temperature primary chambers, the SCCs are responsible for most of the destruction; hence, achieving the desired DRE on this project is not a significant concern as long as appropriate temperatures are employed in the SCC.

LTTD Performance Specifications

The information in the table is based on blending PCBs to less than 50 ppm to remove the waste from TSCA regulation. Similarly, it is assumed that the Silvex and associated dioxin concentrations are low enough that there is no regulatory need to impose a destruction and removal efficiency (DRE) requirement of 99.9999%. The average organic chlorine content is low and if the soil is well-blended, the stack gas will contain <4 lb/hr of HCl. In addition, most soils contain some lime, or it could be added to the feed stock. This will reduce HCl and SO₂ emitted from the stack and could conceivably eliminate the need for an acid gas absorber. Metals are governed by the BIF regulations which use stack height and dispersion to set limits. In some cases, HCl may be governed by similar dispersion models.

Line items appearing in italics are for items which would change if PCBs are above 50 ppm and TSCA requirements (including 99.9999% DRE) must be met and if HCl removal is required.

Table 4 Design Criteria -- Thermal Treatment System Raymark Superfund Site, Stratford, CT Basis of Design (1) ITEM/PARAMETER Feed Stock -- Contaminated soil, primarily sand, gravel, debris, and asbestos Moisture Content (design value) 10% 88% Ash Content Combustible Organics (basic low-temp system) <2% Chlorine Content (total) Sulfur Content (total) Higher Heating Value Btu/lb* Ash Fusion Temperature >2,600 F* PCB Concentration, range 0-2,300 ppm PNA/BNA and Semi-vol. Concen., range 0-50 ppm Dioxins, range 0-0.027 ppm Wet Bulk Density (approx.) 110 pcf Approx. amount to be treated 300,000 cu yds 11 405,000 tons <2" Particle Size (2) Regulatory Requirements <u>>99.99</u>% POHC DRE (Destruction & Removal Efficiency) " " If TSCA Waste <u>></u>99.9999% · Treated Soil Quality <2 ppm PCBs. HCl Stack Gas Emissions (if required) <4 lb/hr or >99% removal Particulate Emissions from Stack <u><</u>0.08 gr/dscf corr. to 7% 0, Metals Emissions from Stack Per BIF regs <100 ppm, corr. Carbon Monoxide to 7% O_2 , 1 hr RA Combustion Efficiency, if TSCA Waste <u>></u>99.9% Process Parameters 24 hr/day Operating Schedule Capacity in Tons per Hour, Assumed 40 tph Primary Chamber Processed Soil Outlet Temp 900 F Low-Temp System Primary Chamber Soil Residence Time 15 minutes Low-Temp System SCC (Secondary Combustion Chamber) Minimum Outlet Temp (3) >1,800 F ", If TSCA 11 >1,850 F SCC Residence Time (4) >1 second Ash Quality, Total PCBs <2 ppm

Notes follow:

NOTES FOR TABLE 4

Data is not available for the soil.

- (1) Soil data is from Kiber test results. It is from grab samples and composites and should be used as a guide to feedstock properties. Actual properties of excavated soil may vary from the design criteria.
- (2) The table is based on contaminated soil being pre-screened by others to a maximum of two inches. The thermal treatment contractor may need to re-screen to break up consolidated material.
- (3) This requirement applies to systems with SCCs. The SCC must be capable of operating at or above the temperature shown in order to achieve the desired DRE. Good engineering practice would provide for refractory and system design to achieve 250 F over the minimum shown in the table. Lower operating temperatures may be allowed if existing data shows (and the trial burn proves) that the required DRE capability exists at lower temperatures.
- (4) Lower SCC residence time may be allowed if existing data shows (and the trial burn proves) that the required DRE capability exists at lower residence time.

LTTD CAPITAL AND OPERATING COSTS

<u>Capital Cost</u>

The cost to purchase a LTTD has been estimated, based on the detailed description found in Appendix C.

The base cost, provided by ASTEC, an equipment vendor, is \$2.45 MM. This includes instrumentation and temperature rating required for TSCA waste processing. To allow for upgrading and customizing, and the cost of engineering consulting for system specification, a cost of \$3MM is appropriate for budgeting purposes.

Operating Costs

Operating cost estimates have been produced based on thermal treatment equipment and soil treatment services being provided by a remediation vendor. The costs will be limited to "chute-to-chute" operations which exclude excavation and other site activities.

Cost estimates includes fixed and variable costs. Fixed costs apply to items done once, such as the trial burn, consultants fees and mobilization/demobilization. The low-temperature system used in this analysis was assumed to be mobile, with short mobe/demobe time and cost.

No costs were assigned for standby time (as may occur if a shutdown was required between the trial burn and final approval of the trial burn report). This cost could be significant. A value of 70% capacity utilization factor was used throughout the analysis. This factor is conservative for long projects (in excess of six months production burn duration) with good equipment and well-trained operators.

TRANSPORTABLE INCINERATION SYSTEM COST ESTIMATION PROGRAM For: Kiber/Raymark Site Filename: 1FILES\TISKIB1A By: Tom McGowan and Barney Spratt, RMT/Four Nines, Inc. Revised: 20-May-94

DATA INPUT COLUMN		COST SUMMARY CO	LUMN	
ITEM	VALUE	ITEM	. \$/ton	% Ttl
Rated capacity, wet tph	.40	Fuel cost, \$/ton	20.75	39%
Availability, %	70%	Power cost, \$/ton	2.40	5%
Waste @ site, tons	450000	} Total labor, \$/ton	7.11	13%
Capital cost, \$MM	3.00	Cst of cap, \$/ton.	8.15	15%
Site/placement costs, \$MM	0.50	Placement/constr, \$/ton *	1.11	2%
Amortization period, yrs **	1.50	Maintenance, \$/ton	0.86	2%
Primary fuel input MM Btuh	44.66	Taxes & eq. insur, \$/ton	1.22	2%
Secody, fuel input MM Bruh	52.19	Soil loader, \$/ton	1.25	·2%-
Fuel cost, \$/MM Btu	\$6.00	Ash carts, \$/ton	0.54	1%
Power required, hp	600	Overhead, \$/ton	0.00	0%
Electricity cost, \$/kwh	\$0.12	Sampling	5.00	9%
Contingency, % of subttl 1	20%	Travel and lodging	4.27	8%
Profit margin, % subttl 2	30%	Subtotal 1	52.66	100%
Subcontr. & non prod. operatio	ons:	i Contingency, \$/ton	10.53	
Trial burn testing, total	\$150,000	Conting., + 10% on fuel	2.08	
Con. startup&shutdown, tti	\$46,286	Subtotal 2	65.27	
Permits, Consult., ttl	\$125,000	Profit, \$/ton	27.97	
Total Mobe/Demob Cost	\$500,000			· · · ·
		Total price per ton	\$93.24	
Startup and shutdown labor:		Subtotal 2	\$37,392,523	
Number of personnel	3	ŀ .		
Time, days	45	Con. startup&shutdn labr *	0.10	
Avg rate, inc. fringe, \$/hr	30 .	Trial burn testing *	0.33	
Subtotal	32400	Consultants *	0.28	,
Margin, at rate used above	13886	Total price per ton	\$93.96	
Total	\$46,286	Total job price	\$42,280,731	

Costing for tonnage above the base amount: \$/ton values below assume trial burn, Con. startup, placement/constr., consultant costs are paid for in the first tonnage increment. These fixed costs are marked by an * in the summary column. The margin, amortiz.

period & base tons are i	n the input col.
Tons	Avg \$/ton Ttl cost
400000	94.28 37713808
425000	94.11 39997270
450000	93.96 42280731
475000	93.82 44564192
500000	93.70 46847653
525000	93.58 49131115
550000	93.48 51414576
575000	93.39 53698037
600000	93.50 55981498
Increment, tons:	25000
ariable cost per ton:	91.34

\$2,283,461

15

Increment price:

LTTD INSTRUMENTATION AND CONTROL

Major variables monitored are the soil feed rate, gas temperatures, chamber pressures and process gas stream constituents. The principal process variables to be monitored are shown in Table 5.

The feed rate of the soil to the LTTD is monitored by a weigh belt scale located on the inclined feed conveyor. The readout in the control room gives instantaneous feed rate in tons per hour plus integrated totals. The following data will be continuously recorded: waste soil feed rate, combustion gas velocity, temperature at the exit of the primary treatment unit and SCC, stack gas carbon monoxide concentration, opacity and primary thermal unit draft. This data is recorded by multi-pen strip chart recorders and printed out on a data logger every 15 minutes and when an alarm condition occurs.

Table 5 Principal Process Variables Monitored

Feed rate of contaminated soil via weigh belt scale

Temperatures via thermocouples

PTU (primary treatment unit) exit gas SCC exit gas Venturi scrubber or baghouse inlet gas Stack gas

Pressures

PTU feed end draft Venturi scrubber or baghouse pressure drop

Process Water Flow Venturi scrubber water flow rate

Baghouse Particulate Outlet Triboelectric broken bag detector

Stack gas velocity Via ID fan amps

Stack gas composition CO, $CO_2 \& O_2$

Pressures are registered on standard industrial pressure and vacuum gauges for low pressures and draft and registered on industrial Bourdon tube gauges for high pressures. Temperatures are measured by K-type thermocouples installed in standard industrial thermowells. These must be installed well into the combustion gases and away from burners to obtain accurate temperature measurement.

Emissions Monitoring

The LTTD will be equipped with continuous gas analyzers. An extractive flue gas sampling and conditioning system will be employed to remove gases downstream from the stack for analysis of O_2 , CO_2 and CO. A back-up monitor is provided for CO.

The control strategy for the system is straightforward. The desorber exit gas temperature is controlled manually by the primary combustion air damper, which in turn is linked with the burner fuel control valve to maintain the desorber temperature. The SCC exit temperature is automatically maintained by modulation of the combustion air flow rate and the burner fuel control valve. For venturis, the clearance of the venturi throat is varied to maintain constant draft on the system. For baghouses, bags are cleaned periodically via a pulse jet of compressed air to maintain appropriate pressure drop and dust cake thickness.

Safety interlocks and shutdown features comprise a major portion of the control system. These interlocks are tied to combustion safety logic and regulatory imposed process limits.

APPENDIX A INCINERATION IS GOING MOBILE

Incineration is an increasingly popular choice for contaminated soils. Mobile units improve overall economics

HAZARDOUS

WASTE

NCINERATION

Thomas McGowan and **Richard Ross,** Four Nines, Inc.

or hazardous waste generators, the main advantage of incineration is that it makes a long-term problem disappear. Incineration tends to be expensive, but those costs have become more predictable, and in some cases lower, than they were several years ago.

The finality of hazardous waste incineration in solving contamination problems is now showing up in a new area: soil decontamination. These soils are very often the surrounding materials where hazardous wastes of the past were improperly disposed.

Incineration can thoroughly decontaminate the soil, ending what could be a longterm liability. This technique is now becoming useful for soils that are not contaminated with a legallydefined hazardous waste, but with other wastes, such as hydrocarbon fuels that leaked from underground storage tanks (USTs). For this reason, such soils are sometimes called UST wastes, and are state regulated.

One of the ways that treatment costs with incineration are being reduced is through the use of mobile incinerators. Superfund wastes are shipped to a non-mobile, commercial incinerator when the amounts are small (below 2,000 tons). For many projects, especially remedial actions at Superfund sites, the preferable solution is to bring the incinerator to the waste. Mobile and transportable incinerators are routinely burning hazardous wastes at contaminated sites in the 2,000- to 100,000-ton range.

When to incinerate

The decision to use incineration as a treatment and disposal technology is based on cost and regulations. An integrated waste-management study should be conducted first, to measure the volume and types of wastes, and to determine where source reduction and recycling can lower the waste generation. For some organic wastes, incineration is officially designated as BACT (Best Available Control Technology) and is required by the U.S. Environmental Protection Agency (EPA) [sidebar, p. 116]. In other cases, the generator must weigh the costs of alternative disposal options and their future liability.

For a waste generator, owning and 'operating an incinerator can have a number of benefits:

• Low liability, as wastes never leave the site

• Generator familiarity with the chemistry of the waste

• Less expensive relative to a commercial facility

• The possibility of energy recovery

Despite such compelling benefits, few generators own and operate their own incinerators' because the permitting process is time-consuming and expensive. If the materials are listed as hazardous wastes, for example, a RCRA Part B permit is required. This can take upwards of 18 months to complete and can cost several hundred thousand dollars. Applicants are often turned down. A major hurdle is the public review process — a required part of the permitting - and many a planned facility has been abandoned due to public protest. Table 1 presents the levels of permits required for various wastes. Generally, as the toxicity of the waste goes up, so does the difficulty in obtaining permits.

Soil treatment

Regulations form a critical part of the decisionmaking process when considering thermal treatments for con-

Waste	Permits	Permitting Difficulty
Solid, non-hazardous	State air, solid waste permit	low
Slorage-tank-contaminated soil, nonhazardous petroleum products	State air permit	low
Listed or characteristic hazardous wastes, burned in a cement kiin, boller or specified industrial furnace under "Burning and Blending Rules"	State air permit Boller and Industrial Furnace (BIF) permit	iow
Listed or characteristic hazardous wastes, burned in an incinerator	RCRA Part B permit, "ARARS" for Super- fund waste (see below)	high
TSCA (Toxic Substances Control Act) waste; e.g., PCBs, dioxins	TSCA permit	high

IS GOING MOBILE

taminated soil. Other factors are:Size of the job

- Type of contamination
- Future liability
- Other treatment options

Taking a hypothetical example, a specialty chemical manufacturer has a 10-acre lagoon that must be closed. The lagoon contains organic contaminants, including still bottoms. They are a RCRA-listed waste; hence, they are an EPA hazardous waste. What are the treatment options? Can the waste be excavated and trucked to a landfill, or is this precluded by the land ban? If not, will stabilization or other treatment be required before landfilling? What is BACT for this waste?

As these types of questions are answered, the choices narrow, and the optimum solution appears. In some cases, especially at Superfund sites, EPA may unilaterally make the decision as to the treatment method.

The two primary disposal options

for organics are landfilling and incineration. Landfilling has been cheaper in the past, but with the new toxicityleaching (known as TCLP) tests, stabilization may now be required, pushing costs above \$100/ton and sometimes as high as \$250/ton.

The incineration option has lower liabilities, as the organic compounds of concern will be burned out of the soil. If the job is less than 2,000 tons, incineration at a fixed (non-mobile) facility is usually best. While costs are high there — about \$500/ton - nopermits are required by the generator and the job can proceed as rapidly as excavation can be approved and implemented.

A mobile incinerator should be considered when the job is larger than 2,000 tons. When the project exceeds 5,000 tons, a wide variety of cost-effective equipment becomes available, and prices become more attractive. Costs are in the \$60-100/ton range for "nonhazardous" (UST) wastes, and \$150-

 TABLE 1.

 The type of waste
 determines what

 laws are applicable,
 and how difficult

 treatment permits
 are to obtain

250/ton for RCRA solvents and chlorinated materials. The project will take longer, however, due to the time required to receive regulatory approvals and perform the required tests.

When a Superfund project is being done with a mobile incinerator only, it is bound by Superfund regulations, but the incinerator is approved by EPA under RCRA guidelines. Instead, "ARARs" — Applicable, Relevant and Appropriate Requirements — are used. This speeds the regulatory review process and reduces documentation costs significantly.

What to use

Once the determination has been made to use incineration to handle a waste, the choice of equipment is relatively straightforward. If atomizable liquids are the only waste to be burned, use a liquid-injection incinerator. It has a burner that fires directly into a refractory-lined chamber, which is followed by an air-pollution control system. If the liquid waste contains salts or metals (e.g., sodium or potassium) a downfired liquid-injection incinerator is used with a submerged quench to capture the molten material.

For solids and sludges, rotary kilns are used, with feed systems designed to handle the wastes' physical properties. Ram feeders are used for boxes or drummed solids. Bulk solids are fed via chutes or screw feeders, and sludges via lances — or by mixing

CHEMICAL ENGINEERING/FEBRUARY 1992 49

ENGINEERING PRACTICE

RCRA RECULATIONS LIMIT **OPTIONS**

ronter to time, value of conterminate and the second of the second Environmentalis, Protections, Agency (EPA)/ and smost states. The Syne of permit varies according to the toxicity. permit varies according to the toxicity or the waster and the difficulty mole and m the incidential of all indirections taking permits varies in roughly the semissions could by a or discussion fuegas or limit same manner. Table Ushows these dev. that define the wastes: LEPA further required that to burn a "LEPA further required that to burn a "LEPA further required that to burn a "LEPA further required that to burn a "Lest available control over emissions (Lest available control ov cnerator destroy a selected principal applications as organic hazardous constituent? Carbon monoxide in the fluegas is (POHC) that is in the waste or which has been added to it as a marker. The as a 1-h rolling average corrected to 7% POHC must be destroyed to a level oxygen Sulful and hitrogenoxides are defined as the "destroyed to a level oxygen Sulful and hitrogenoxides are ficiency." (DRE) of at least 99.99% (This is formance Standards (NSPS), but many

amenta internation (Chroman and The Condition of the Poly of t TAVRORATED TWO CONTRACTS OF THE STREET ST

with dry solids (pre-bulking) to reduce them to a solid consistency.

An alternative to rotary kilns for these feedstocks is the fluidized-bed incinerator. These work best when the physical properties of the waste are consistent and well-established. They are less "omnivorous" than the rotary kiln, and more attention must be paid to the physical size of the feedstock and how it is fed into the bubbling combustion bed. An important asset of fluidized-bed units is the ability to use limestone or other solid reagent in the bed to remove hydrochloric acid and sulfur dioxide.

While many other types of incinerators exist, such as flares or switchedbed regenerative incinerators (both used for gases and volatile organics), they are not applicable to RCRA or Superfund wastes. They have limitations as to the completeness of destruction of toxic chemicals, and they do not apply to solids, sludges or liquids.

Cost estimating

Along with the waste type, the cost of the incineration equipment is an important design factor. This cost is related to the unit's thermal capacity or

CHEMICAL ENGINEERING/FEBRUARY 1992 50

"heat release," which in turn dictates the incineration capacity. Since organic wastes usually have good heating values (about 20,000 Btu/lb for most solvents, and 8,000-18,000 Btu/lb for chlorinated compounds), most of the heat is supplied by the waste itself, with little auxiliary fuel consumed once the system is in operation. For example, a 10-million-Btu/h liquid-injection incinerator burning a spent solvent such as benzene (with a heating value of 19,068 Btu/lb) can consume 520 lb/h of solvent.

For rotary kiln systems, little auxiliary fuel is required if the waste entering the kiln is above 1,200 Btu/lb and if liquid waste is used to fuel the secondary combustion chamber. If not,

the waste capacity must be calculated based on the chemical composition and heating value of the waste.

The capital costs shown in Table 2 are for equipment purchases only. It includes "chute to stack" equipment, from the feed system through air pollution control, ash handling, controls and instrumentation. Civil works, utilities, erection and installation of the equipment are typically in the range of 50-100% of equipment cost. The cost of engineering, permitting, commissioning and testing usually equals 10-20% of the equipment cost.

These estimates are for owner-operated facilities. Specifics of the types of wastes being handled, and the incinerator site, can change total cost signifi-

CAPITAL COST FOR INCINERATORS Thermal Soll Capital
capacity, capacity, cost, Type million Btu/hr* ton/h million \$**
Rotary klin Rotary klin Rotary klin Rotary klin 20 5 2.2
Liquid injection 50 N/A 2.3 Liquid injection 20 N/A 1.2
Combined primary and secondary chamber heat release capacity. *Ref. 7.

TABLE 2. These costs are typical for purchasing incineration equipment

Construction of the second sec gives fathem + the same force as regul

Heat inputs occur

at the kiln and the secondary combustion chamber; heat outputs are at those units and the stack

FIGURE 1.

cantly. Commercial facilities that others' accept wastes cost far more, due to the need for larger and more-sophisticated receiving and storage facilities, and the wide range of

chemical and physical properties of the wastes received.

Air pollution control

Besides solving an environmental problem, an incinerator must be designed to avoid causing further environmental damage. This means that extra attention must be given to the air-pollution control system that follows the incinerator. There are two basic types of control systems used with incinerators: dry or wet. Dry sys-

SUSAN COHEN

tems use a baghouse for removal of particulates. For acid gas absorption, dry reagents are blown into the baghouse or are injected as a slurry in a spray tower preceding the baghouse.

Wet systems use a venturi scrubber for particulate removal and an acid gas absorber — typically a vertical, counterflow packed tower - to remove the acid gases. More recently, multistage ionizing wet-scrubber (IWS) systems have been used for the removal of particulates.

His har more thing will limit and be holding and for the bound of the bound will be demonstrated of the bound of the bound will be demonstrated of the bound of the bound will be demonstrated of the bound of the bo concentrations in the sure sulfar inchercenes under the

> Baghouses have a reputation for excellent particulate removal, down to 0.01 to 0.02 grains/ft³(dry). For wastes with high chlorine content, such as chlorinated solvents, wet scrubbers are more economical for acid-gas removal. They reliably attain 99% removal, or emit less than 4 lb/h of HCl in the stackgas, thereby satisfying RCRA requirements.

> Hybrid dry-wet systems are now being used, in the arrangement of a baghouse followed by a wet acid-gas absorber. These systems work well, produce excellent particulate and acidgas removal, and are in favor with regulators. However, a well-insulated baghouse (as well as proper preheating on startup) is a must to prevent acid gas condensation and severe corrosion.

System design

Process design of an incinerator starts with calculating the capacity, followed by overall heat and mass balances. Incinerator consultants, equipment vendors and incineration service contractors use proprietary computer programs for developing designs. The basic concepts can be seen in Figure 1, which presents the components of

CHEMICAL ENGINEERING/FEBRUARY 1992 , 51

PROCESS DESIGN FOR GENERATOR-OPERATED
RCRA HAZARDOUS WASTE INCINERATORS

Type of system Waste	Rotary Kiln Still bottoms, sludge and solids	Liquid Injection High heating value liquid waste		
Disposal cap.	1,000 lb/h	1,000 lb/h		
Heating value	15,000 Btu/Ib	20,000 Btu/Ib		
Incinerator Heat and Mass Balance Summary				

Operation (h/day)	24	24
Capacity utilization factor	85%	90%
Design capacity (lb/h)	1,180	1,110
Kiin heat release (million Btu/h)	18	N/A
Kiin water injection (gal/min)	4	N/A
Secondary chamber heat release	4	22
(million Btu/h)		
Kiln temperature (°F)	1,700	N/A
SCC temperature (°F)	1,800	2,000
SCC residence time (s)	2	2
Kiln size, I x i.d. (ff)	36 x 6.5	N/A
SCC size, I x i.d. (ff)	38 x 6	32 x 7
Baghouse iniet (actual fl³/min)	19,000	. N/A
Scrubber outlet (actual ft ³ /min)	15,000	21,000
Stack O ₂ dry %	10%	12%

TABLE 3. Rotary kilns are able to process lower-heating value materials such as solids,

 while liquid-injection units can process higher volumes

the overall heat and mass balances.

The values produced by the heat and mass balances are required when sizing and costing incinerators. These figures are also useful when evaluating the capabilities of an incineration service vendor's equipment to do a job. The temperatures used in Table 3 are typical of those used for hazardous (RCRA) and nonhazardous UST wastes. Solid TSCA wastes (polychlorinated biphenyls -PCBs, dioxins, furans) require higher DREs (99.9999%, or six nines), so secondary-combustion-chamber temperatures are usuallv raised 50-100°F over those of RCRA wastes. If liquid PCBs are burned in the secondary combustion chamber. a temperature of over 2,200°F is required by the regulations.

The computer programs noted above are used to do an accurate job of sizing the equipment and estimating process flows. The heat balance around the primary and secondary chambers must be solved by iteration, a time-consuming process when calculated by hand. However, the overall validity of the calculation can be checked by some rules of thumb.

For each million Btu of fuel or waste

52 CHEMICAL ENGINEERING/FEBRUARY 1992

burned, approximately 725 lbs of air are required for stoichiometric combustion. Assuming an excess air level of 100%, 2×725 or 1,450 lbs of air are required. Add to that about 50 lbs for the weight of the million Btu of fuel, and a total weight of stack gas (postcombustion, pre-pollution-control-treatment) per million Btu is 1,500 lb.

A 50-million-Btu/h system would therefore produce about 75,000 lb/h of stack gas having a dry oxygen content of 10%. If no waste-heat boiler is used and the gas is quenched adiabatically via water sprays, the stack gas will saturate at about 180°F, and will be 40% water by weight, producing a wet stack-gas flow of 125,000 lb/h. The mass values can be easily converted to actual or standard ft³/m (acfm or scfm) using the appropriate gas density at prevailing conditions.

Examples

A design example for two types of hazardous waste incinerators is detailed in Table 3. One burns sludges and solids in a rotary kiln. The other is a liquid-injection incinerator designed for high heating-value liquid wastes.

As mentioned previously, the total

heat release is the primary factor in sizing the equipment. The secondary factor is the excess air level, which is proportional to the stack-gas oxygen content. The kiln system has a total heat release of 22 million Btu/h, the same as the liquid-injection system. However, the liquid-injection unit's stack volume is 40% greater, due to the higher excess air levels used to keep outlet temperatures at 2.000°F. The rotary kiln also employs a water spray to provide thermal ballast to limit temperatures in the kiln. This can also be done with a liquid-injection incinerator, but more care must be taken to ensure that the water does not quench combustion.

Thermal treatment of soil

The use of incinerators for onsite cleanups is relatively recent. Superfund regulations prompted the development of mobile or transportable units, complete with air pollution control, to provide onsite treatment and disposal. The term "mobile" usually refers to lower-capacity systems comprising two or three truckloads that can be set up in less than two weeks. "Transportable" systems take 5-30 truckloads to transport to a site, and 4-10 weeks to set up.

Much can be learned by studying the history of onsite soil-remediation projects, which began in 1984 with the ENSCO project at the Sydney Mines site in Florida. Prices have decreased since then as operators have gained experience, and as new and more efficient equipment has been developed.

Figure 2 represents cost-vs.-tonnage data for 20 major Superfund sites. "Chute-to-chute" incineration refers to the cost of thermally treating the soil, but does not include site preparation or backfilling the soil. While there is some variation in the data, costs for chute-to-chute incineration only are \$100-250/ton, while total costs, including excavation, permitting and the rest, are in the \$200-650/ ton range. The curves drawn through the data points are the authors' judgment of current costs for typical Superfund projects.

One way to categorize Superfund projects is by the level and type of contamination present, especially of

Four Nines above in an dress It i servic sugg speed vende migh relati

> such materials as PCBs, dioxins and other chlorinated hydrocarbons. If the waste contains materials that require high temperatures for destruction, or if the wastes have heating values above 1,000 Btu/lb, the system will have to be designed for high-temperature operation. In this case, a fluidized-bed incinerator might be used, or a rotary kiln lined with refractory materials.

For sites with less difficult contaminants — low-heating-value, nonchlorinated hydrocarbons — a less complex system can be used. Often a modified asphalt batch plant will suffice, in which the primary chamber is an unlined dryer used to volatilize the hydrocarbons from the soil. The offgases are then destroyed in a secondary combustion chamber running at higher temperatures. Table 4 shows some typical chute-to-chute soil-decontamination costs, for a project of greater than 30,000 tons. Total job costs including excavation and engineering may double the cost for RCRA or TSCA projects. The selection of the proper equipment is predicated more on the concentration and volatility of the contaminant than its toxicity. Generally, organic concentrations up to 2% in soil can be handled in a volatilizer (such as the asphalt plant) if the boiling point of the compounds is below 450°F.

The scale of soil cleanup projects underway or completed ranges widely, from as low as 200 tons to over 300,000 tons. Equipment is matched to the job size. Highly mobile, high-temperature incinerators with capacities of 2 ton/h handle jobs up to 10,000 tons. In the mid-size range, systems with 3- to 7-ton/h capacity are matched to jobs in the 5,000- to 25,000ton range.

The largest transportable systems have capacities of 15-25 tons/h, and are used on jobs of 15,000 tons and

TABLE 4. Treatment cost rises as the toxicity of the waste increases

above. There is a considerable overlap in any size range which can be addressed by a given system.

It is not unusual to find incineration service vendors with small equipment suggesting the use of multiple units to speed completion of a project, or a vendor with a large system, which might be currently idle, bidding on a relatively small job.

Trends in onsite services

The major trends in mobile or transportable incineration services are a growing market, and more partnering between prime contractors and incineration-service subcontractors. The technology is also evolving, with subcontractors developing such innovations as oxygen injection for extended capacity and reduced operating cost, or wider use of low-temperature volatilization for lightly contaminated soils containing UST wastes.

Most states require afterburners for gasoline, diesel fuel and other "virgin" oil-contaminated soils, although a few allow operation without an afterburner if the soil contamination can be shown to limit VOC emissions. When properly designed and instrumented, these low-temperature systems can burn many RCRA wastes.

Most states require 95% destruction and removal efficiency (DRE) for non-RCRA organics, while California requires 99.99%. The organic-content limit in the ash also varies. Some states have a two-tier limit: for example, a concentration of < 5 ppm residual organics is considered clean soil; a concentration between 5 and 50 ppm can be used for road fill or other specified purposes.

Although the size of the equipment varies, incinerators for onsite cleanups all have the same major components:

• Feed and ash-handling gear

• Primary reactor

• Secondary combustion chamber (SCC)

- Air pollution control system
- Instrumentation and controls

Primary-reactor designs have been undergoing steady evolution. The usual design is now the high-temperature rotary kiln. A lower-temperature alternative is the rotary desorber. To a

lesser extent, fluidized-bed systems have been used by some, as well as belt furnaces with infrared heating.

SCCs raise gas temperature to burn out the volatiles. The best SCC designs are vertical, using a side-mounted highswirl vortex-type burner. These produce high DREs, even on heavily chlorinated species, at low retention times and moderate temperatures. On a recent project, such a design yielded a >99.999% DRE when operating at 1,850°F, with a 0.5-s residence time, for the destruction of trichlorobenzene.

Air pollution control systems are either dry or wet, just as in conventional, fixed incinerators. Feed and ash sytems use conventional conveyors and metering sytems (such as screw conveyors, belt conveyors, live-bottom bins, and so on), and either a wet ash quench or rotating product coolers for the ash.

Systems that are used to incinerate soils, particularly those containing fine clays, incorporate a refractorylined cyclone after the primary chamber to reduce particulate carryover to the SCC. When not so equipped, fines build up in the SCC, and slagging and other problems increase.

Figure 3 shows a typical equipment configuration for mobile soil decontamination. These drawings are based on an

54 CHEMICAL ENGINEERING/FEBRUARY 1992

incinerator originally fielded by Envirite Field Services (Plymouth Meeting, Pa.) and now owned by Chemical Waste Management (Oak Brook, Ill.). It is a 15ton/h, 82-million Btu/h unit using a baghouse for particulate collection, followed by an acid-gas absorber.

Operating problems

The operating procedures for onsite cleanups are different from those of fixed-site incineration. Mobilization, demobilization and startup are conducted similarly to how a contractor would handle a contruction project, while soil burning is a blend of construction and process-plant operations.

The most frequently encountered problems are soil preparation and solids handling and, to a lesser degree, ash handling. Free-flowing sandy soils are the easiest to handle; however, most sites contain some clay or are entirely clay. The clay may be native soil, or may have been imported to line a lagoon or landfill. Clays are hydroscopic (water-retaining), are prone to slagging, and are relatively heavy. They are sticky when wet, and dusty when dry. Soil feeders designed for free-flowing solids frequently bridge over, clog or form ratholes when processing clays.

To mitigate these problems, the incinerator operator should keep at least five days of prepared soil under rain cover at all times, and should screen all materials before feeding to remove oversized objects. Air drying of thin lifts of soil before feed preparation can reduce moisture to a manageable level. When all else fails, raw soil can be mixed with dry bulking agents or recycled ash to reduce the moisture content and stickiness.

Some contractors have failed stack particulate tests. Systems with high

TABLE 5. RCRA-regulated hazardous

decontamination than soil polluted with

soil requires a greater degree of

fuel leakage

takes care of itself as the bugs are worked out of the equipment and operators gain more experience with the waste, process and instrumentation. As with other types of mobile-incin-

erator systems, those designed for soil decontamination can be optimized for either RCRA hazardous-waste projects or for UST wastes. Table 5 shows these two arrangements: a high-temperature rotary kiln and a lower-tem-

waste-metal concentrations and short

stack heights have the greatest chance of failing emissions tests. In particular,

lead chloride and other volatile metal

compounds have caused problems on

high temperature systems, especially

with wet scrubbers, while hydrochloric

acid emissions are rarely a problem for

wet acid-gas absorbers or well-de-

sional problem, although it is usually

resolved by checking the combustion

system and raising temperatures in the SCC. All too often, a failure on a single

DRE test is due to a brief process upset

related to insufficient experience with a

new system or waste. This problem

Meeting the DRE has been an occa-

signed dry scrubber systems.

PROCESS DESIGN FOR	SOIL-TREATMENT INC	NERATORS
Job	Requirements	
Soil type	RCRA hazardous	"UST" non-hazardous
Tons of soli (tons)	30,000	30,000
Contamination	< 5% RCRA solvents	< 2% petroleum
Chiorine (%)	<1	0
Moisture content (%)	10	- 1 0
Regul	atory Requirements	
DRE	99.99%	95%
Ash quality (ppm)	< 10	< 50
incinerator neat a	ing mass balance sum	mary and a second provide Let the second second
Operation (h/day)	24	12
Capacity utilization factor (%)	60	75
Soli design capacity (ton/h)	10	30
Kiin temp (E)	1600	4 850
SCC temp ('F)	1800	4400
SCC residence time (s)	2	
Klin/dryer size I x i.d. (ft)	38 x 7	22 x 5
SCC size i x i.d. (ff)	38 x 8	26 x 6
Baghouse outlet (actual ft³/min)	35,000	30,000
Scrub. outlet (actual ft³/min)	27,000	24,000
Total neat input (million Btu/h)	47	47
SIGCK U, GIY %	77 0	076

perature devolatilizing kiln. Both are followed by SCCs and related pollution-control gear.

Over the past 20 years, incineration of RCRA-type hazardous wastes has matured as an industry, and is now used by virtually all chemical process industries for disposal of wastes. Installation of generator-owned and -operated incinerators is an option that can reduce costs and eliminate the liability of shipping wastes offsite.

Edited by Nicholas Basta

References

- Schaefer, C.F. and Albert, A.A., "Rotary Kilns," section 8.2 in Freeman's Standard Handbook of Hazardous Waste Disposal, (New York, McGraw-Hill Co., 1988).
- Pirages, S., "Incineration's future: muddy but strong," Waste Age, May 1989.
- Santoleri, J.J., "Rotary kiln incineration systems," Third International Conference on New Frontiers of Hazardous Waste Management, Pittsburgh, Pa., September 1989.
- McGowan, T.F. and Santoleri, J.J., "Fixed and transportable incineration for industrial and Superfund wastes; trends and case studies," HAZMAT, Atlantic City, June 1990.
- Santoleri, J.J., "Incinerator performance: posttrial-burn importance of monitors," AWMA, Pittsburgh, Pa., June 1990.
- Santoleri, J.J., "Design and operating problems of hazardous waste incinerators,' Environmental Progress, November 1985.
- 7 Four Nines, Inc., files and data supplied by equipment vendors, January 1991.

The authors

Richard Ross is a principal with Four Nines, Inc. (400 Stenton Ave., Plymouth Meeting, PA 19462; tel: 215 834 0490). He received his B.S.Ch.E. from Drexel University (Philadelphia), and is a member of AIChE and the American Waste Management Assn. Previously, he was president of Thermal Research and Engineering Corp., and later worked for Air and Waste Managem

Waste Management as director of processing. He is the author or editor of three books on waste disposal and air pollution control. His current areas of interest include air pollution control, hazardous waste incineration and combustion.

Thomas McGowan, P.E., is a principal with Four Nines Inc., and is currently involved in the development of new thermal processes, solids han-dling and incineration technologies. He received his B.S. and M.S.Ch.E degrees from Manhattan College, and an M.S. in industrial management from the Georgia Institute of Tech-nology. Previously, he was vice president of thermal destruction at Envirite

Field Services. He is a licensed engineer in six states, and a member of AIChE, the Air and Waste Management Assn., and the Scientific Research Society of North America.

APPENDIX B HEAT AND MASS BALANCE

HEAT AND MASS BALANCE FOR THERMAL TREATMENT

By: Tom McGowan and Barney Spratt, RMT/Four Nines, Inc. Program Date: 12-Dec-89 Filename: 1FILES\HTKIEOL Date Printed: 31-Mar-94 For: Kiber Enviro. Ser., Raymark Superfund Site Overview: Low Temp Thermal Desorption of Contaminated Soils. Excess air (XCS) includes leakage air. All flow values (mass or volume) are per hour basis. No POHC used for sixing maximum SCC burner capacity. Propane gas is auxiliary fuel.

Major Parameters:					Solids Chr	Feed	Radiatn	Wet Wgt	Gas Cp,
Primary Burner XCS	SCC XCS	POHC XCS	Prim. Temp	SCC Temp	lb/hr b	loisture	Loss	DEC	Btu/1b
50%	50%	08	900	1850	80000	10.00%	10%	0.00%	0.279
			(+50 degre	es over ash	temp)		(0.5xfor	SCC)	0.355
Stage 1, Primary Kiln	Burner			•					Fuel
		THAT	LHV	Sensible	Flame				Balance
Item	lb/hr	HMBtuh	MMBtuh	Heat MMBtub	Temp				% Diff.
Auxiliary fuel	2075	44.66	41.04						0.23%
Air	48876			-					
Total	50951	44.66	41.04	41.04	2947				

Concible

Stage 2, Solids Injected in Primary Furnace

		441 ·	444	DETITIE
en	lb/hr	MMBtuh	MMBtuh	Heat MMBtuh
Solids	72000			14.22
Moisture	8000		-8.47	1.87
POHC	O	0.00	0.00	0.00
Air	0			0.00
Total	80000	0.00	-8.47	18.09

UU17

1 11 17

Primary Chamber Outlet Gas Stream Plus Clean Ash

		HHV	LHY	Sensible
Item	lb/hr	MMBtuh	MMBtuh	Heat MMBtuh
Total gas	58951			13.82
Total solids	72000			14.22
Rad. loss			-4.47	
Total input			28.10	28.04

Stage 3, Primary Chamber Outlet Gas Stream

		Sensible SCC Inlet	XCS air or
Item	lb/hr	Heat MMBtuh Gas temp	02, dry
Total gas	58951		•
Solids		0.00	50%
Total	58951	13.82 900	7.2%

Stage 4, Secondary	Compuscion	Chamber						
		HHV	LHV	Sensible	Flame	Scfm	Acfm	
Item	lb/hr	HMBtuh	MMBtuh	Heat MMBtuh	Temp			Fuel
Total inlet gas	58951		13.82				•	Balance
Auxiliary fuel	- 2425	52.19	47.96					% Diff.
POHC in SCC	0	0.00	0.00					-0.02
Air .	57120							
Rad. loss	·		-2.61					·
Total	118495			59.18	2947	24972	110932	
Stage 1-3+stg4			59.17					

Stage 5, Quench and Baghouse

•	ł	LHV	Sensible	Stack		X	CS air or
Item	lb/hr	MMBtuh	Heat MMBtuh	Gas Temp	Scfm	Acfm	02, dry
Total gas	118495		59.18				
Water added	41500	-43.95					
Total stack gas	159995	•			40670	67353	
Approx. XCS'%							50%
Approx. 02 % dry							7.2%
Gas temp, F				401	,		
					```		

Stage 6, Scrubber

		LEV	Sensible	Stack		X	CS air or
Item	lb/hr	MMBtuh	Heat MMBtu	h Gas Temp	Scfm	Acfm	02, dry
Total gas	118495		59.18	-			-
Water added	50700	-53.69					
Total stack gas	169195				43009	52621	
Approx. ICS \$			•				50%
Approx. 02 % dry							7.2%
Gas temp, P				176			

#### APPENDIX C DETAILED LTTD SYSTEM DESCRIPTION

. . . .

Process and material flows begin with mixed and pre-screened soil from covered storage being delivered to the TIS hopper via a frontend loader. The soil is extracted from the bottom of the hopper by a horizontal variable speed belt which controls the feed rate and delivers the soil to the inclined belt conveyor which takes it to the chute on the primary treatment unit. The inclined belt has a weigh cell which provides instantaneous and totalized soil tonnage data.

After the soil enters the feed chute, it drops into the rotating direct fired co-current desorber. The rotary drum is lined with flights which lift the soil and drop it into the hot air stream provided by the external burner and furnace. The flights aid in breaking up the soil and opening up surface area to the heat to remove moisture and the organic contaminants. The heated solids exit the end of the primary treatment unit and are cooled by water sprays in an ash cooling auger (or are mixed with water in a pug mill).

The hot gas stream from the primary treatment unit passes through steel ductwork to dual cyclones in parallel which remove most of the particulate. The particulate is taken by screw conveyor to the ash cooling auger.

The cleaned gases are then transported to the inlet of the SCC via steel ductwork. The SCC is lined with high-temperature refractory and has a burner which raises the temperature of the gases to burn off and oxidize the organic vapors generated in the desorber.

The hot gases are taken from the SCC by insulated ductwork to a quench tower. Water sprays reduce the gas temperature to approximately 400 F before they enter the baghouse for particulate removal. An ID (induced draft) fan follows the baghouse and moves the gas stream into an acid gas absorber which contains caustic (NaOH, sodium hydroxide) for HCl and SO, removal.

The entire system is mounted on truck frames for easy transport and set-up at multiple sites.

## ANALYTICAL CASE NARRATIVE FOR:

#### Raymark Industries

#### Project No. 854-40310

Four soil samples were submitted for analysis on 3/2/94 at 1205 hours. The samples arrived at room temperature and in good condition.

The requested analyses and corresponding methods are as follows:

Analysis	Method	Instrument
Total Semivolatiles	SW-846 Methods: 3550 and 8270	Hewlett Packard 5890 GC/MSD
Total Volatiles	SW-846 Method 8260	Hewlett Packard 5890 GC/MSD
Total RCRA Metals	SW-846 Methods: 6010 and 3051	Thermo Jarrell ASH ENVIRO 61E ICAP
Total Mercury	SW-846 Method 7471	Bacharach Mercury Analyzer
Dioxins	SW-846 Method 8280	Hewlett Packard 5890 GC/MSD
Total Organic Carbon	SW-846 Methods: 9060	Carbonaceous Analyzer
, Total Pesticides and PCBs	SW-846 Methods: 3550 and 8080	Hewlett Packard 5890 GC/ECD

#### Total RCRA Metals (except mercury)

The QC recoveries were within the method recommended limits except for the following:

 The matrix spike performed on sample TS*B-68*2-4 was outside the method specified recovery limits for Barium (30%) and Chromium (28%) and the Lead recovery was diluted out. The bench spike recoveries for Barium and Chromium were both at 76% and within the method specified limits. However, the Lead recovery was 49%. This indicates that a matrix interference is occurring. The bench spike is performed on an aliquot of the

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

#### ANALYTICAL CASE NARRATIVE FOR:

#### Raymark Industries

#### Project No. 854-40310

#### Continued

reported sample and not a second digested sample. This eliminates the possibility of sample nonhomogeneity contributing to the bench spike recovery.

The Laboratory Control Standard (LCS) recovered Silver and Chromium out of the method recommended limits. Silver is usually low for microwave digestion due to silver precipitation and the subsequent filtration of the digestate prior to analysis.

Chromium was slightly outside of the recommended recovery range. Since the magnitude of the Chromium recovery in the sample is at least ten times the Chromium LCS error then the Chromium error is negated for samples 40310-2, 40310-3, and 40310-4. Since the Chromium recovery is in the estimated range (E) for 40310-1, the Chromium LCS variation is already acknowledged in the estimated status of the result.

There were no further difficulties during the analyses.

#### Total Mercury

2)

The QC recoveries were within the method recommended limits. There were no difficulties during the analyses.

#### Total Volatiles

The QC recoveries were within the method recommended limits. There were no difficulties during the analyses.

#### Total Semivolatiles

The QC recoveries were within the method recommended limits except for the following:

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

#### ANALYTICAL CASE NARRATIVE FOR:

#### Raymark Industries

#### Project No. 854-40310

#### Continued

1)

The matrix spike duplicate analysis recovered 2,4-Dinitrotoluene and Pentachlorophenol above the QC limits. However, the Extraction Blank Spike contained all matrix spike and surrogate compounds within the method recommended limits. This indicates that the matrix of the sample interfered with the recovery of these compounds in the matrix spike duplicate as well as the consistency between the matrix spike and matrix spike duplicate recoveries for these two compounds.

There were no further difficulties during the analyses.

#### Total Pesticides

The samples required a dilution prior to sample analysis due to the oily nature of the matrix. As a result, the surrogate and matrix spike recoveries were unable to be determined and the report is flagged "DO" for diluted out. There were no difficulties during the analyses.

#### Total PCBs

The samples required a dilution prior to sample analysis due to the oily nature of the matrix. As a result, the surrogate and matrix spike recoveries were unable to be determined and the report is flagged "DO" for diluted out. Also, aroclors 1262 and 1268 were found to coelute. Therefore, the reported results for aroclors 1262 and 1268 are flagged with an "E" for estimated. There were no further difficulties during the analyses.

#### Dioxins

The QC recoveries were within the method recommended limits. The TCDF/TCDDs analytes are flagged with an "X" to indicate the presence of contamination from the standard. The contamination was detected within the analyte retention time window, however there is no indication that the sample results were affected. There were no further difficulties during the analyses.

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

## ANALYTICAL CASE NARRATIVE FOR:

**Raymark Industries** 

Project No. 854-40310

Continued

#### Total Organic Carbon

The QC recoveries were within the method recommended limits. There were no difficulties during the analyses.

Authorization

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

LAB SAMPLE # 40310-1 PROJECT #854

#### RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4

SAMPLED (Date/Time/Init) : 3/2/94, 1000, SH ICP ANALYSIS (Date/Init) : 3/3/94, LD CV ANALYSIS (Date/Init) : 3/7/94, KK

#### DATE REPORTED: 3/7/94

#### MATRIX : SOIL Digestion Method : 3051 Quant Factor : 104

				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	13.6	54.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.208	0.832	34	0.003 E
Total Cadmium (Cd)	6010	0.312	1.25	<dl< td=""><td>0.003 E</td></dl<>	0.003 E
Total Chromium (Cr)	6010	1.98	7.90	6.2 E	<dl< td=""></dl<>
Total Lead (Pb)	6010	3.85	15.4	23	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.55	26.2	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.312	1.25	0.56 E	<dl< td=""></dl<>

MDL : Method Detection Limit PQL : Practical Quantitation Limit

E : Estimated

*Blank Values As Reported By Instrument





LAB SAMPLE # 40310-2 PROJECT # 854

### RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8

SAMPLED (Date/Time/Init) : 3/2/94, 1000, SH ICP ANALYSIS (Date/Init) : 3/3/94, LD CV ANALYSIS (Date/Init) : 3/7/94, KK

### DATE REPORTED : 3/7/94

#### MATRIX : SOIL Digestion Method : 3051 Quant Factor : 156

				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L_
Total Arsenic (As)	6010	20.4	81.7	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.312	1.25	2,400	0.003 E
Total Cadmium (Cd)	6010	0.468	1.87	<dl< td=""><td>0.003 E</td></dl<>	0.003 E
Total Chromium (Cr)	6010	2.96	11.9	47	<dl< td=""></dl<>
Total Lead (Pb)	6010	28.9	115	11,000	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010 `	9.83	39.3	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.468	1.87	1.3 E	<dl< td=""></dl<>

MDL : Method Detection Limit

PQL: Practical Quantitation Limit

E : Estimated

*Blank Values As Reported By Instrument
LAB SAMPLE # 40310-3 . PROJECT #854

## RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4

SAMPLED (Date/Time/Init) : 3/2/94, 1000, SH ICP ANALYSIS (Date/Init) : 3/3/94, LD CV ANALYSIS (Date/Init) : 3/7/94, KK

#### DATE REPORTED : 3/7/94

#### MATRIX : SOIL

#### Digestion Method : 3051 Quant Factor : 152

	·		•	Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	19.9	79.6	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.304	1.22	3,900	0.003 E
Total Cadmium (Cd)	6010	0.456	1.82	0.49 E	0.003 E
Total Chromium (Cr)	6010	2.89	11.6	85	<dl< td=""></dl<>
Total Lead (Pb)	6010	28.1	112	8,800	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	9.58	38.3	<dl ,<="" td=""><td><dl< td=""></dl<></td></dl>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.456	1.82	1.6 E	<dl< td=""></dl<>

MDL : Method Detection Limit

PQL : Practical Quantitation Limit

E : Estimated

*Blank Values As Reported By Instrument

#### LAB SAMPLE # 40310-4 PROJECT #854

#### RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6

SAMPLED (Date/Time/Init) : 3/2/94, 1000, SH ICP ANALYSIS (Date/Init) : 3/3/94, LD CV ANALYSIS (Date/Init) : 3/7/94, KK

#### DATE REPORTED : 3/7/94

#### MATRIX : SOIL Digestion Method : 3051

Quant Factor: 141

·				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	18.5	73.9	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.282	1.13	2,200	0.003 E
Total Cadmium (Cd)	6010	0.423	1.69	2.3	0.003 E
Total Chromium (Cr)	6010	2.68	10.7	69	<dl< td=""></dl<>
Total Lead (Pb)	6010	52.2	209	15,000	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	8.88	35.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.423	1.69	2.5	<dl< td=""></dl<>

MDL : Method Detection Limit

PQL : Practical Quantitation Limit

E : Estimated

*Blank Values As Reported By Instrument

#### LAB SAMPLE # LCSS 0303A

## METALS LABORATORY CONTROL SAMPLE

#### RAYMARK INDUSTRIES BATCH# 495

#### MATRIX: SOIL

	CERTIFIED MEASURED		ACCEPTABLE
· · ·	VALUE	VALUE	RANGE
TARGET ANALYTE	mg/Kg	mg/Kg	mg/Kg
Total Arsenic (As)	150	150	75-224
Total Barium (Ba)	247	240	173-321
Total Cadmium (Cd)	79.1	79	40-126
Total Chromium (Cr)	66.2	94	30-93
Total Lead (Pb)	101	110	45-146
Total Mercury (Hg)	0.50	0.47	0.37-0.63
Total Selenium (Se)	73.5	69	37-118
Total Silver (Ag)	88.1	6.6*	44-123

*Silver Values Are Typically Low In Microwave Digestion Environmental Resource Associates Quality Control Standards Inorganics in Soil Lot Number 217

# LAB SAMPLE # 40310-3R

## METALS REPLICATE RESULTS

#### RAYMARK INDUSTRIES BATCH# 495

#### MATRIX: SOIL

	RELATIVE	ACCEPTABLE
	% DIFF	RPD LIMIT
TARGET ANALYTE LIST	(RPD)	(%)
Total Arsenic (As)	<pql< td=""><td>25</td></pql<>	25
Total Barium (Ba)	21	25
Total Cadmium (Cd)	<pql< td=""><td>25</td></pql<>	25
Total Chromium (Cr)	4	25
Total Lead (Pb)	15	25
Total Mercury (Hg)	<pql< td=""><td>25</td></pql<>	25
Total Selenium (Se)	<pql< td=""><td>25</td></pql<>	25
Total Silver (Ag)	<pql< td=""><td>25</td></pql<>	25

#### LAB SAMPLE # 40310-3S -

METALS MATRIX SPIKE RESULTS

#### RAYMARK INDUSTRIES BATCH# 495

#### MATRIX: SOIL

		ACCEPTABLE
	% RECOVERY	% RECOVERY
TARGET ANALYTE	]	RANGE
Total Arsenic (As)	97	75 - 125
Total Barium (Ba)	30*	75 - 125
Total Cadmium (Cd)	89	75 - 125
Total Chromium (Cr)	28*	75 - 125
Total Lead (Pb)	D.O.**	75 - 125
Total Mercury (Hg)	90	75 - 125
Total Selenium (Se)	100	75 - 125
Total Silver (Ag)	85	75 - 125

l

*Due To Matrix Interference: See Case Narrative

**Diluted Out

SPEX Industries, Inc.

Multi-Element Plasma Standard

Spike-1

Lot # 5-154AS

#### GC/MS VOA RESULTS

LAB SAMPLE # 40310-1

RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4 SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/03/94, 13:05, ALH

DATE REPORTED: 3/4/94

Dilution Factor: 1.027 %Solids: 96



				walk a	
			<b>D</b> OI	ug/Ng	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL 11 20	Concentration	Blank Conc.
Acetone	67-64-1	2.70	. 11.30	9.1 E	7.6 E
Benzene	71-43-2	0.30	1.20	< <u>MDL</u>	<mdl< td=""></mdl<>
Bromodichloromethane	75-27-4	0.60	2.30		ND
Bromotorm	/5-25-2	0.60	2,60	<u>ND</u>	ND
Bromomethane	74-83-9	1.80	7.20	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	12.30	48.30	ND	ND
Carbon Disulfide	75-15-0	1.10	4.60	ND	ND
Carbon Tetrachloride	56-23-5	0.70	2.70	ND	ND
Chlorobenzene	108-90-7	0.60	2.10	57	<mdl< td=""></mdl<>
Chloroethane	75-00-3	1.30	5.40	ND	ND
Chloroform	67-66-3	0.70	2.90	ND	ND
Chloromethane	74-87-3	1.70	7.00	<u>ND</u>	ND
Dibromochloromethane	124-48-1	0.60	2.50	ND	ND
1,1-Dichloroethane	75-34-3	0.80	3.10	<u>ND</u>	ND
1,2-Dichloroethane	107-06-2	0.50	2.00	ND	ND
1,1-Dichloroethene	75-35-4	0.90	4.00	ND	ND
1,2-Dichloroethene (total)	540-59-0	1.30	5.10	12	ND
1,2-Dichloropropane	78-87-5	0.50	2.20	ND	ND
cis-1,3-Dichloropropene	10061-01-5	0.80	3.10	ND	ND
trans-1,3-Dichloropropene	10061-02-6	0.70	2.90	ND	ND
Ethylbenzene	100-41-4	1.00	4.00	2.9 E	<mdl< td=""></mdl<>
2-Hexanone	591-78-6	1.30	5.50	ND	ND
Methylene Chloride	75-9-2	2.90	11.30	6.0 E	3.2 E
4-Methyl-2-pentanone (MIBK)	108-10-1	2.30	9.10	ND	ND
Styrene	100-42-5	0.40	1.40	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	0.70	2.80	ND	<mdl< td=""></mdl<>
Tetrachloroethene	127-18-4	0.90	3.60	2.4 E	ND
Toluene	108-88-3	0.90	3.60	4.1	<mdl< td=""></mdl<>
1,1,1-Trichloroethane	71-55-6	0.40	1.50	ND	ND
1,1,2-Trichloroethane	79-00-5	0.90	3.50	ND	ND
Trichloroethene	79-01-6	0.60	2.50	96	ND
Vinvl Acetate	108-05-4	0.80	3.20	ND	ND
Vinyl Chloride	75-01-4	1.70	6.90	ND	ND
Xylene (total)	10061-01-5	0.70	2.90	14	0.4 E
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		102	96
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		108	87
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		85	87

E: Estimated, ND: Not detected MDL: Method Detection Limit

#### GC/MS VOA RESULTS

LAB SAMPLE # 40310-2

RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8 SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/03/94, 15:51, ALH

				Sample Matrix	SOLID
DATE REPORTED: 3/4/94	Dilution F	actor: 7.975		Analysis Method:	8260
	%S	olids: 67		Dry-weight Basis	Apparent
	•			ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
Acetone	67-64-1	20.70	87.70	190	59 E
Benzene	71-43-2	2.50	' 9.60	6.2 E	<mdl< td=""></mdl<>
Bromodichloromethane	75-27-4	4.40	17.50	ND	ND
Bromoform	75-25-2	4.90	19.90	ND	ND
Bromomethane	74-83-9	14.40	55.80	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	95.70	374.80	<mdl< td=""><td>ND</td></mdl<>	ND
Carbon Disulfide	75-15-0	8.80	35.90	53	ND
Carbon Tetrachloride	56-23-5	5.30	20.70	ND	ND
Chlorobenzene	108-90-7	4:90	15.90	ND	<mdl< td=""></mdl<>
Chloroethane	75-00-3	10.40	42.30	ND	ND
Chloroform	67-66-3	5.60	22.30	ND	ND
Chloromethane	74-87-3	13.60	54.20	ND	ND
Dibromochloromethane	124-48-1	4.80	19.10	ND	ND
1,1-Dichloroethane	75-34-3	6.10	23.90	ND	ND
1,2-Dichloroethane	107-06-2	3.90	15.20	ND	ND
1,1-Dichloroethene	75-35-4	7.20	31.10	ND	ND
1,2-Dichloroethene (total)	540-59-0	10.40	39.90	ND	ND
1,2-Dichloropropane	78-87-5	4.10	16.70	ND	ND
cis-1,3-Dichloropropene	10061-01-5	5.90	23.90	ND	ND
trans-1,3-Dichloropropene	10061-02-6	5.70	22.30	ND	ND
Ethylbenzene	100-41-4	7.80	31.10	23 E	<mdl< td=""></mdl<>
2-Hexanone	591-78-6	10.40	43.10	ND	ND
Methylene Chloride	75-9-2	22.30	87.70	48 E	25 E
4-Methyl-2-pentanone (MIBK)	108-10-1	17.50	71.00	ND	ND
Styrene	100-42-5	2.80	11.20	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	5.30	21.50	ND	<mdl< td=""></mdl<>
Tetrachloroethene	127-18-4	7.00	27.90	ND	ND
Toluene	108-88-3	6.90	27.90	8.1 E	<mdl< td=""></mdl<>
1,1,1-Trichloroethane	71-55-6	3.00	12.00	ND	ND
1,1,2-Trichloroethane	79-00-5	6.80	27.10	ND	ND
Trichloroethene	79-01-6	4.70	19.10	ND	ND.
Vinyl Acetate	108-05-4	6.10	24.70	ND	ND
Vinyl Chloride	75-01-4	13.60	53.40	ND	ND
Xylene (total)	10061-01-5	5.70	22.30	35	3.0 E
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		95	96
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		<b>98</b>	87
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		71	87

E: Estimated, ND: Not detected

MDL: Method Detection Limit

#### GC/MS VOA RESULTS

#### LAB SAMPLE # 40310-3

RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4 SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/04/94, 14:06, ALH

DATE REPORTED: 3/8/94

Dilution Factor: 7.019 %Solids: 67 Sample Matrix SOLID Analysis Method: 8260 Dry-weight Basis Apparent ug/Kg ug/Kg

	ug/Kg	ug/Kg			
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acetone	67-64-1	18.30	77.20	96	57 E
Benzene	71-43-2	2.20	8.40	ND	ND
Bromodichloromethane	75-27-4	3.90	15.40	ND	ND
Bromoform	75-25-2	4.30	17.50	ND	ND
Bromomethane	74-83-9	12.60	49.10	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	84.20	329.90	ND	ND
Carbon Disulfide	75-15-0	7.70	31.60	ND	ND
Carbon Tetrachloride	56-23-5	4.60	18.30	ND	ND
Chlorobenzene	108-90-7	4.30	14.00	ND	ND
Chloroethane	75-00-3	9.10	37.20	ND	ND
Chloroform	67-66-3	4.90	19.70	ND	ND
Chloromethane	74-87-3	11.90	47.70	ND	ND
Dibromochloromethane	124-48-1	4.20	16.80	ND	ND
1,1-Dichloroethane	75-34-3	5.30	21.10	ND	ND
1,2-Dichloroethane	107-06-2	3.40	13.30	ND	ND
1,1-Dichloroethene	75-35-4	6.30	( 27.40	ND	ND
1,2-Dichloroethene (total)	540-59-0	9.10	35.10	ND	ND
1,2-Dichloropropane	78-87-5	3.70	14.70	ND	ND
cis-1,3-Dichloropropene	10061-01-5	5.20	21.10	ND	ND
trans-1,3-Dichloropropene	10061-02-6	5.00	19.70	ND	ND
Ethylbenzene	100-41-4	6.90	27.40	ND	<mdl< td=""></mdl<>
2-Hexanone	591-78-6	9.10	37.90	ND	ND
Methylene Chloride	75-9-2	19.70	77.20	290	37 E
4-Methyl-2-pentanone (MIBK)	108-10-1	15.40	62.50	<mdl< td=""><td>ND</td></mdl<>	ND
Styrene	100-42-5	2.50	9.80	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	4.70	19.00	ND	ND
Tetrachloroethene	127-18-4	6.20	24.60	<mdl< td=""><td>ND</td></mdl<>	ND
Toluene	108-88-3	6.10	24.60	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
1,1,1-Trichloroethane	71-55-6	2.70	10.50	ND	ND
1,1,2-Trichloroethane	79-00-5	6.00	23.90	ND	ND
Trichloroethene	79-01-6	4.10	16.80	ND	ND
Vinyl Acetate	108-05-4	5.40	21.80	ND	ND
Vinyl Chloride	75-01-4	11.90	47.00	ND	ND
Xylene (total)	10061-01-5	1.60	10.50	ND	2.6 E
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		102	90
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		105	99
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		98	94

E: Estimated, ND: Not detected

MDL: Method Detection Limit

## GC/MS VOA RESULTS

LAB SAMPLE # 40310-4

**RAYMARK INDUSTRIES** SAMPLE # TS*B-7*4-6

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/04/94, 15:28, ALH

		•		Sample Matrix	SOLID
DATE REPORTED: 3/8/94	Dilution F	actor: 6.872	· ·	Analysis Method:	8260
	%S	olids: 68		Dry-weight Basis	Apparent
				ug/Kg	11g/Kg
TARGET COMPOUND LIST	CAS Number	MDI	POL	Concentration	Blank Conc
Acetone	67-64-1	17 90	75.60	160	56 F
Benzene	71-43-2	2 10	8 20	71E	ND
Bromodichloromethane	75-27-4	3 80	15 10	ND	ND
Bromoform	75-25-2	4.20	17.20	ND	ND
Bromomethane	74-83-9	12.40	48.10	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	82.50	323.00	<mdl< td=""><td>ND</td></mdl<>	ND
Carbon Disulfide	75-15-0	7.60	30.90	17 E	ND
Carbon Tetrachloride	56-23-5	4.50	17.90	ND	ND
Chlorobenzene	108-90-7	4.20	13.70	16	ND
Chloroethane	75-00-3	8.90	36.40	28 E	ND
Chloroform	67-66-3	4.80	19.20	ND	ND
Chloromethane	74-87-3	11.70	46.70	ND	ND
Dibromochloromethane	124-48-1	4.10	16.50	ND	ND
1,1-Dichloroethane	75-34-3	5.20	20.60	ND	ND
1,2-Dichloroethane	107-06-2	3.40	13.10	ND	ND
1,1-Dichloroethene	75-35-4	6.20	26.80	ND	ND
1,2-Dichloroethene (total)	540-59-0	8.90	34.40	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichloropropane	78-87-5	3.60	14.40	ND	ND
cis-1,3-Dichloropropene	10061-01-5	5.10	20.60	ND	ND
trans-1,3-Dichloropropene	10061-02-6	4.90	19.20	ND	ND
Ethylbenzene	100-41-4	6.70	26.80	14 E	<mdl< td=""></mdl<>
2-Hexanone	591-78-6	8.90	37.10	ND	ND
Methylene Chloride	75-9-2	19.20	75.60	260	36 E
4-Methyl-2-pentanone (MIBK)	108-10-1	15.10	61.20	ND	ND
Styrene	100-42-5	2.40	9.60	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	4.60	18.60	ND	ND
Tetrachloroethene	127-18-4	6.00	24.10	<mdl< td=""><td>ND</td></mdl<>	ND
Toluene	108-88-3	6.00	24.10	37	<mdl< td=""></mdl<>
1,1,1-Trichloroethane	71-55-6	2.60	10.30	ND	ND
1,1,2-Trichloroethane	79-00-5	5.80	23.40	ND	ND
Trichloroethene	79-01-6	4.10	16.50	5.1 E	ND
Vinyl Acetate	108-05-4	5.30	21.30	ND	ND
Vinyl Chloride	75-01-4	11.70	<b>46.00</b>	ND	ND
Xylene (total)	10061-01-5	4.90	19.20	110	2.5 E
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		108	90
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		108	<b>99</b>
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		92	94

E: Estimated, ND: Not detected MDL: Method Detection Limit

## KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 40310-BS

#### ANALYSIS (Date/Time/Init): 3/3/94, 10:49, ALH

#### DATE REPORTED: 3/4/94

Analysis Method: 8260 (SOLID)

		QC LIMITS	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	115
Trichloroethene	79-01-6	62-137	102
Benzene	71-43-2	66-142	105
Toluene	108-88-3	59-139	97
Chlorobenzene	108-90-7	60-133	99
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	101
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	, 92
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	92

# KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 40310-BS

# ANALYSIS (Date/Time/Init): 3/04/94, 13:11, ALH

#### DATE REPORTED: 3/ 4/94

Analysis Method: 8260 (SOLID)

		<b>QC LIMITS</b>	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	95
Trichloroethene	79-01-6	62-137	92
Benzene	71-43-2	66-142	104
Toluene	108-88-3	59-139	88
Chlorobenzene	108-90-7	60-133	100
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	101
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	94
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	100







#### KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 40310-3 MS

RAYNARK INDUSTRIES SAMPLE #: TS*B-68*2-4 SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/04/94, 14:33, ALH

DATE REPORTED: 3/ 14/94

Sample Matrix: SOLID Analysis Method: 8260 (SOIL)

		QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	109
Trichloroethene	79-01-6	62-137	86
Benzene	71-43-2	66-142	÷ 108
Toluene	108-88-3	59-139	100
Chlorobenzene	108-90-7	60-133	100
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	109
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	112
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	101

ANALYSIS (Date/Time/Init):

3/04/94, 15:00, ALH

		OC L D GTC	A -4 -1 X (C	
		QULIMITS	Actual MS	
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	RPD
1,1-Dichloroethene	75-35-4	59-172	113	4
Trichloroethene	79-01-6	62-137	88	2
Benzene	71-43-2	66-142	106	2
Toluene	108-88-3	59-139	101	1
Chlorobenzene	108-90-7	60-133	98	2
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	107	
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	106	
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	93	

#### **CI: COELUTING INTERFERENCE**

RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4

#### GC/MS SVO RESULTS

LAB SAMPLE # 40310-1

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/07/94, 21:37, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

DATE REPORTED: 3/11/94	Dilution Factor: 34.21		Sample Matrix:	SOLID	
	Extract Method: 3550			Analysis Method:	8270
	%Sol	lids: 96.0		Dry-weight Basis	Apparent
			· ·	ug/Kg	υς/Κα
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc
Acenaphthene	83-32-9	27.40	109.50	ND	ND
Acenaphthylene	208-96-8	27.40	106.00	<mdl< td=""><td>ND</td></mdl<>	ND
Anthracene	120-12-7	17.10	71.80	ND	ND
Benzo(a)anthracene	56-55-3	20.50	78.70	<mdl< td=""><td>ND</td></mdl<>	ND
Benzo(b)fluoranthene	205-99-2	30.80	119.70	42 E	ND
Benzo(k)fluoranthene	207-08-9	30.80	126.60	ND	ND /
Benzoic acid	65-85-0	260.00	1046.80	ND	ND
Benzo(g,h,i)perylene	191-24-3	17.10	71.80	ND	ND
Benzo(a)pyrene	193-39-5	17.10	68.40	ND	ND
Benzyl alcohol	100-51-6	20.50	85.50	ND	ND
bis(2-Chloroethoxy)methane	111-911	34.20	133.40	ND	ND
bis(2-Chloroethyl)ether	111-44-4	27.40	102.60	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	71.80	283.90	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	30.80	119.70	550	ND
4-Bromophenyl-phenylether	101-55-3	23.90	92.40	ND	ND
Butylbenzylphthalate	85-68-7	27.40	112.90	ND	ND
4-Chloroaniline	106-47-8	17.10	68.40	ND	ND
4-Chloro-3-methylphenol	59-50-7	23.90	95.80	ND	ND
2-Chloronaphthalene	91-58-7	27.40	116.30	ND	ND
2-Chlorophenol	95-57-8	23.90	99.20	ND	ND
4-Chlorophenyl-phenylether	59-50-7	27.40	109.50	ND	ND
Chrysene	218-01-9	17.10	65.00	<mdl< td=""><td>ND</td></mdl<>	ND
Dibenz(a,h)anthracene	53-70-3	20.50	78.70	ND	ND
Dibenzofuran	132-64-9	27.40	102.60	<mdl< td=""><td>ND</td></mdl<>	ND
Di-n-butylphthalate	84-74-2	23.90	102.60	150	ND
1,2-Dichlorobenzene	95-50-1	27.40	106.00	ND	ND
1,3-Dichlorobenzene	541-73-1	23.90	95.80	ND	ND
1,4-Dichlorobenzene	106-46-7	23.90	102.60	ND	ND
3,3'-Dichlorobenzidine	91-94-1	30.80	126.60	ND	ND
2,4-Dichlorophenol	120-83-2	30.80	116.30	ND	ND
Diethylphthalate	84-66-2	20.50	85.50	ND	ND
2,4-Dimethylphenol	105-67-9	47.90	184.70	280	ND
Dimethylphthalate	131-11-3	23.90	99.20	<mdl< td=""><td>ND</td></mdl<>	ND
4,6-Dinitro-2-methylphenol	534-52-1	20.50	85.50	ND	ND
2,4-Dinitrophenol	51-28-5	841.50	3362.80	ND	ND
2,4-Dinitrotoluene	121-14-2	47.90	198.40	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

#### GC/MS SVO RESULTS

#### LAB SAMPLE # 40310-1

**RAYMARK INDUSTRIES** SAMPLE # TS*B-10*1.5-4

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): .3/07/94, 21:37, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

DATE REPORTED: 3/11/94	Dilution Factor: 34.21		Sample Matrix:	SOLID	
· .	Extract Met	hod: 3550		Analysis Method:	8270
	%So	lids: 96.0		Dry-weight Basis	Apparent
·			-	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	23.90	88.90	ND	ND
Di-n-octylphthalate	117-84-0	44.50	174.50	<mdl< td=""><td>ND</td></mdl<>	ND
Fluoranthene	206-44-0	23.90	92.40	<mdl< td=""><td>ND</td></mdl<>	ND
Fluorene	7782-41-4	23.90	102.60	ND	ND
Hexachlorobenzene	118-74-1	20.50	88.90	ND	ND
Hexachlorobutadiene	87-68-3	27.40	112.90	ND	ND
Hexachlorocyclopentadiene	77-47-4	20.50	82.10	ND	ND
Hexachloroethane	67-72-1	23.90	95.80	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	20.50	78.70	ND	ND
Isophorone	78-59-1	30.80	119.70	ND	ND
2-Methylnaphthalene	91-57-6	34.20	130.00	64 E	ND
2-Methylphenol	95-48-7	30.80	123.20	ND	ND
3-,4-Methylphenol	106-44-5	13.70	51.30	730	ND
Naphthalene	91-57-6	30.80	123.20	42 E	ND
2-Nitroaniline	88-74-4	20.50	82.10	ND	ND
3-Nitroaniline	99-09-3	82.10	335.20	ND	ND
4-Nitroaniline	100-01-6	34.20	133.40	ND	ND
Nitrobenzene	98-95-3	30.80	119.70	ND	ND
2-Nitrophenol	88-75-5	23.90	99.20	110	ND
4-Nitrophenol	100-01-6	253.10	1012.60	620 E	ND
N-Nitrosodiphenylamine*	86-30-6	34.20	130.00	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	27.40	27.40	ND	ND
Pentachlorophenol	87-86-5	20.50	88.90	ND	ND
Phenanthrene	85-01-8	23.90	88.90	92	ND
Phenol	108-95-2	13.70	65.00	ND	ND
Ругепе	129-00-0	23.90	99.20	<mdl< td=""><td>ND</td></mdl<>	ND
1,2,4-Trichlorobenzene	120-82-1	27.40	112.90	ND	ND
2,4,5-Trichlorophenol	95-95-4	27.40	116.30	ND	ND
2,4,6-Trichlorophenol	88-06-02	27.40	102.60	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-1]	21]	61	67
Phenol-d6 (surrogate std)	%Recovery	[OK=24-1]	13]	60	65
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	20]	66	.77
2-Fluorobiphenyl (surrogate std)	%Recovery	- [OK=30-1]	15]	82	67
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	22]	89	70
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-1]	37]	101	77
E: Estimated, ND: Not detected	*as Diphenylamine		CI: Coeluting	Interference	
MDL: Method Detection Limit	DO Diluted Out		•		

PQL: Practical Quantitation Limit

Page 2

RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8

DATE REPORTED: 3/11/94

GC/MS SVO RESULTS

LAB SAMPLE # 40310-2

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/10/94, 4:53, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

Dilution Factor: 250.4

Extract Method: 3550

Sample Matrix: SOLID Analysis Method: 8270

	%Solids: 66.7			Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acenaphthene	83-32-9	200.30	801.20	<mdl< td=""><td>ND</td></mdl<>	ND
Acenaphthylene	208-96-8	200.30	776.20	ND	ND
Anthracene	120-12-7	125.20	525.80	210 E	ND
Benzo(a)anthracene	56-55-3	150.20	575.90	460 E	ND
Benzo(b)fluoranthene	205-99-2	225.30	876.30	910	ND
Benzo(k)fluoranthene	207-08-9	225.30	926.40	<mdl< td=""><td>ND</td></mdl<>	ND
Benzoic acid	65-85-0	1902.90	7661.50	ND	ND
Benzo(g,h,i)perylene	191-24-3	125.20	525.80	ND	ND
Benzo(a)pyrene	193-39-5	125.20	500.80	350 E	ND
Benzyi alcohol	100-51-6	150.20	625.90	ND	ND
bis(2-Chloroethoxy)methane	111-911	250.40	976.50	ND	ND
bis(2-Chloroethyl)ether	111-44-4	200.30	751.10	ND .	ND
bis(2-Chloroisopropyl)ether	108-60-1	525.80	2078.10	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	225.30	876.30	440 E	ND
4-Bromophenyl-phenylether	101-55-3	175.30	676.00	ND	ND
Butylbenzylphthalate	85-68-7	200.30	826.20	ND	ND
4-Chloroaniline	106-47-8	125.20	500.80	ND	ND
4-Chloro-3-methylphenol	59-50-7	175.30	701.10	ND	ND
2-Chloronaphthalene	91-58-7	200.30	851.30	ND	ND
2-Chlorophenol	95-57-8	175.30	726.10	ND	ND
4-Chlorophenyl-phenylether	59-50-7	200.30	801.20	ND	ND
Chrysene	218-01-9	125.20	475.70	420 E	ND
Dibenz(a,h)anthracene	53-70-3	150.20	575.90	ND	ND
Dibenzofuran	132-64-9	200.30	751.10	<mdl< td=""><td>ND</td></mdl<>	ND
Di-n-butylphthalate	84-74-2	175.30	751.10	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichlorobenzene	95-50-1	200.30	776.20	ND	ND
1,3-Dichlorobenzene	541-73-1	175.30	701.10	ND	ND
1,4-Dichlorobenzene	106-46-7	175.30	751.10	ND	ND
3,3'-Dichlorobenzidine	91-94-1	225.30	926.40	2800	ND
2,4-Dichlorophenol	120-83-2	225.30	851.30	ND	ND
Diethylphthalate	84-66-2	150.20	625.90	ND	ND
2,4-Dimethylphenol	105-67-9	350.50	1352.00	380 E	ND
Dimethylphthalate	131-11-3	175.30	726.10	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	150.20	625.90	ND	ND
2,4-Dinitrophenol	51-28-5	6159.20	24611.90	ND	ND
2,4-Dinitrotoluene	121-14-2	350.50	1452.20	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

**RAYMARK INDUSTRIES** SAMPLE # TS*B-68*6-8

GC/MS SVO RESULTS

LAB SAMPLE # 40310-2

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/10/94, 4:53, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

DATE REPORTED: 3/11/94	Dilution Factor: 250.4			Sample Matrix:	SOLID
	Extract Met	hod: 3550		Analysis Method:	8270
	%So	lids: 66.7		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc
2.6-Dinitrotoluene	606-20-2	175.30	651.00	ND	ND
Di-n-octylphthalate	117-84-0	325.50	1276.90	ND	ND
Fluoranthene	206-44-0	175.30	676.00	780	ND
Fluorene	7782-41-4	175.30	751.10	270 E	ND
Hexachlorobenzene	118-74-1	150.20	651.00	ND	ND
Hexachlorobutadiene	87-68-3	200.30	826.20	ND	ND
Hexachlorocyclopentadiene	77-47-4	150.20	600.90	ND	ND
Hexachloroethane	67-72-1	175.30	701.10	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	. 150.20	575.90	ND	ND
Isophorone	78-59-1	225.30	876.30	ND	ND
2-Methylnaphthalene	91-57-6	250.40	951.40	760 E	ND
2-Methylphenol	95-48-7	225.30	901.40	ND	ND
3-,4-Methylphenol	106-44-5	100.20	375.60	ND	ND
Naphthalene	91-57-6	225.30	901.40	880 E	ND
2-Nitroaniline	88-74-4	150.20	600.90	ND	ND
3-Nitroaniline	99-09-3	600.90	2453.70	ND	ND
4-Nitroaniline	100-01-6	250.40	976.50	ND	ND
Nitrobenzene	98-95-3	225.30	.876.30	ND	ND
2-Nitrophenol	88-75-5	175.30	726.10	ND	. ND
4-Nitrophenol	100-01-6	1852.80	7411.10	ND	ND
N-Nitrosodiphenylamine*	86-30-6	250.40	<u>951.</u> 40	770 E	ND
N-Nitroso-di-n-propylamine	621-64-7	200.30	200.30	ND	ND
Pentachlorophenol	87-86-5	150.20	651.00	ND	ND
Phenanthrene	85-01-8	175.30	651.00	1200	ND
Phenol	108-95-2	100.20	475.70	ND	ND
Pyrene	129-00-0	175.30	726.10	890	ND
1,2,4-Trichlorobenzene	120-82-1	200.30	826.20	ND	ND
2,4,5-Trichlorophenol	95-95-4	200.30	851.30	ND	ND
2,4,6-Trichlorophenol	88-06-02	200.30	751.10	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	1]	91	67
Phenol-d6 (surrogate std)	%Recovery	[OK=24-11	3]	106	65
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	[0]	101	77
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-11	5]	119	67
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	2]	88	70
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	7]	126	77
E: Estimated, ND: Not detected	*as Diphenylamine	(	CI: Coeluting	Interference	
MDL: Method Detection Limit	DO: Diluted Out				

PQL: Practical Quantitation Limit

Page 2

RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4 GC/MS SVO RESULTS

LAB SAMPLE # 40310-3

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/10/94, 5:33, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

DATE REPORTED: 4/13/94	Dilution Factor: 247.4			Sample Matrix:	SOLID
•	Extract Meth	nod: 3550		Analysis Method:	8270
	%Sol	ids: 67.2		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
Acenaphthene	83-32-9	197.90	791.50	<mdl< td=""><td>ND</td></mdl<>	ND
Acenaphthylene	208-96-8	197.90	766.80	440 E	ND
Anthracene	120-12-7	123.70	519.40	410 E	ND
Benzo(a)anthracene	56-55-3	148.40	568.90	1700	ND
Benzo(b)fluoranthene	205-99-2	222.60	865.70	4700	ND
Benzo(k)fluoranthene	207-08-9	222.60	915.20	ND	ND
Benzoic acid	65-85-0	1879.90	7569.10	ND	ND
Benzo(g,h,i)perylene	191-24-3	123.70	519.40	ND	ND
Benzo(a)pyrene	193-39-5	123.70	494.70	2200	ND
Benzyl alcohol	100-51-6	148.40	618.40	ND	ND
bis(2-Chloroethoxy)methane	111-911	247.40	964.70	ND	ND .
bis(2-Chloroethyl)ether	111-44-4	197.90	742.10	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	519.40	2053.10	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	222.60	865.70	280 E	ND
4-Bromophenyl-phenylether	101-55-3	173.10	667.90	ND	ND
Butylbenzylphthalate	85-68-7	197.90	816.30	ND	ND
4-Chloroaniline	106-47-8	123.70	494.70	ND	ND
4-Chloro-3-methylphenol	59-50-7	173.10	692.60	ND	ND
2-Chloronaphthalene	91-58-7	197.90	841.00	ND	ND
2-Chlorophenol	95-57-8	173.10	717.30	ND	ND
4-Chlorophenyl-phenylether	59-50-7	197.90	791.50	ND	ND
Chrysene	218-01-9	123.70	470.00	2500	ND
Dibenz(a,h)anthracene	53-70-3	148.40	568.90	ND	ND
Dibenzofuran	132-64-9	197.90	742.10	<mdl< td=""><td>ND</td></mdl<>	ND
Di-n-butylphthalate	84-74-2	173.10	742.10	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichlorobenzene	95-50-1	197.90	766.80	ND	ND
1,3-Dichlorobenzene	541-73-1	173.10	692.60	ND	ND
1,4-Dichlorobenzene	106-46-7	173.10	742.10	ND	ND
3,3'-Dichlorobenzidine	91-94-1	222.60	915.20	500 E	ND
2,4-Dichlorophenol	120-83-2	222.60	841.00	ND	ND
Diethylphthalate	84-66-2	148.40	618.40	ND	ND
2,4-Dimethylphenol	105-67-9	346.30	1335.70	ND	ND
Dimethylphthalate	131-11-3	173.10	717.30	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	148.40	618.40	ND	ND
2,4-Dinitrophenol	51-28-5	6085.00	24315.10	ND	ND
2,4-Dinitrotoluene	121-14-2	346.30	1434.70	ND ·	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

#### GC/MS SVO RESULTS

LAB SAMPLE # 40310-3

RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4 SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/10/94, 5:33, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

DATE REPORTED: 4/13/94	Dilution Factor: 247.4			Sample Matrix:	SOLID
	Extract Meth	nod: 3550		Analysis Method:	8270
	%So	lids: 67.2		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	173.10	643.10	ND	ND
Di-n-octylphthalate	117-84-0	321.60	1261.50	<mdl< td=""><td>ND</td></mdl<>	ND
Fluoranthene	206-44-0	173.10	667.90	3500	ND
Fluorene	7782-41-4	173.10	742.10	220 E	ND
Hexachlorobenzene	118-74-1	148.40	643.10	ND	ND
Hexachlorobutadiene	87-68-3	197.90	816.30	ND	ND
Hexachlorocyclopentadiene	77-47-4	148.40	593.70	ND	ND
Hexachloroethane	67-72-1	173.10	692.60	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	148.40	568.90	780	ND
Isophorone	78-59-1	222.60	865.70	ND	ND
2-Methylnaphthalene	91-57-6	247.40	940.00	<mdl< td=""><td>ND</td></mdl<>	ND
2-Methylphenol	95-48-7	222.60	890.50	ND	ND
3-,4-Methylphenol	106-44-5	98.90	371.00	ND	ND
Naphthalene	91-57-6	222.60	890.50	<mdl< td=""><td>ND</td></mdl<>	ND
2-Nitroaniline	88-74-4	148.40	593.70	ND	ND
3-Nitroaniline	99-09-3	593.70	2424.10	ND	ND
4-Nitroaniline	100-01-6	247.40	964.70	ND	ND
Nitrobenzene	98-95-3	222.60	865.70	ND	ND
2-Nitrophenol	88-75-5	173.10	717.30	ND	ND
4-Nitrophenol	100-01-6	1830.40	7321.70	ND	ND
N-Nitrosodiphenylamine*	86-30-6	247.40	940.00	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	197.90	197.90	ND	ND
Pentachlorophenol	87-86-5	148.40	643.10	ND	ND
Phenanthrene	85-01-8	173.10	643.10	2300	ND
Phenol	108-95-2	98.90	470.00	ND	ND
Рутепе	129-00-0	173.10	717.30	3500	ND
1,2,4-Trichlorobenzene	120-82-1	197.90	816.30	ND	ND
2,4,5-Trichlorophenol	95-95-4	197.90	841.00	ND	ND
2,4,6-Trichlorophenol	88-06-02	197.90	742.10	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	21]	88	67
Phenol-d6 (surrogate std)	%Recovery	[OK=24-1]	13]	104	65
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	20]	101	77
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-11	[5]	116	67
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	22]	90	70
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	37]	119	77
E: Estimated, ND: Not detected	*as Diphenylamine		CI: Coeluting	Interference	
MDL: Method Detection Limit	DO: Diluted Out	•	•		

PQL: Practical Quantitation Limit

Page 2

RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6 GC/MS SVO RESULTS

LAB SAMPLE # 40310-4

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/10/94, 6:13, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

Extract Method: 3530 Analysis Method: 8270   %Solids: 68.0 Dry-weight Basis Apparent   Ug/Kg Ug/Kg Ug/Kg   Acenaphthene 83-32-9 195.60 782.50 870 ND
%Solids: 68.0 Dry-weight Basis Apparent   ug/Kg ug/Kg ug/Kg   TARGET COMPOUND LIST CAS Number MDL PQL Concentration Blank Con   Acenaphthene 83-32-9 195.60 782.50 870 ND
ug/Kgug/KgTARGET COMPOUND LISTCAS NumberMDLPQLConcentrationBlank ConAcenaphthene83-32-9195.60782.50870ND
TARGET COMPOUND LISTCAS NumberMDLPQLConcentrationBlank ConAcenaphthene83-32-9195.60782.50870ND
Acenaphthene 83-32-9 195.60 782.50 870 ND
Acenaphthylene 208-96-8 195.60 758.00 1100 ND
Anthracene 120-12-7 122.30 513.50 1400 ND
Benzo(a)anthracene 56-55-3 146.70 562.40 2700 ND
Benzo(b)fluoranthene 205-99-2 220.10 855.80 4300 ND
Benzo(k)fluoranthene 207-08-9 220.10 904.80 1200 ND
Benzoic acid 65-85-0 1858.40 7482.50 ND ND
Benzo(g,h,i)perylene 191-24-3 122.30 513.50 1600 ND
Benzo(a)pyrene 193-39-5 122.30 489.10 2900 ND
Benzyl alcohol 100-51-6 146.70 611.30 ND ND
bis(2-Chloroethoxy)methane 111-911 244.50 953.70 ND ND
bis(2-Chloroethyl)ether 111-44-4 195.60 733.60 ND ND
bis(2-Chloroisopropyl)ether 108-60-1 513.50 2029.60 ND ND
bis(2-Ethylhexyl)phthalate 117-81-7 220.10 855.80 520 E ND
4-Bromophenyl-phenylether 101-55-3 171.20 660.20 ND ND
Butylbenzylphthalate 85-68-7 195.60 806.90 ND ND
4-Chloroaniline 106-47-8 122.30 489.10 ND ND
4-Chloro-3-methylphenol 59-50-7 171.20 684.70 ND ND
2-Chloronaphthalene 91-58-7 195.60 831.40 ND ND
2-Chlorophenol 95-57-8 171.20 709.10 ND ND
4-Chlorophenyl-phenylether 59-50-7 195.60 782.50 ND ND
Chrysene 218-01-9 122.30 464.60 2700 ND
Dibenz(a,h)anthracene 53-70-3 146.70 562.40 430 E ND
Dibenzofuran 132-64-9 195.60 733.60 1100 ND
Di-n-butylphthalate 84-74-2 171.20 733.60 <mdl nd<="" td=""></mdl>
1.2-Dichlorobenzene 95-50-1 195.60 758.00 ND ND
1.3-Dichlorobenzene 541-73-1 171.20 684.70 ND ND
1.4-Dichlorobenzene 106-46-7 171.20 733.60 ND ND
3.3'-Dichlorobenzidine 91-94-1 220.10 904.80 ND ND
2.4-Dichlorophenol 120-83-2 220.10 831.40 ND ND
Diethylphthalate 84-66-2 146 70 611 30 ND ND
2 4-Dimethylphenol 105-67-9 342 30 1320 40 20000 ND
Dimethylphthalate 131-11-3 171 20 709 10 1400 ND
4 6-Dinitro-2-methylphenol 534-52-1 146 70 611 30 ND ND
2 4-Dinitronbenol 51-28-5 6015 40 24037 10 ND ND
2 4-Dinitrotoluene 121-14-2 342.30 1418.30 ND ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

#### GC/MS SVO RESULTS LAB SAMPLE # 40310-4

RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6 SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH ANALYSIS (Date/Time/Init): 3/10/94, 6:13, TAG EXTRACTION (Date/Init): 3/3/94, JG & KK

DATE REPORTED: 3/11/94	Dilution Factor: 244.5			Sample Matrix:	SOLID
	Extract Met	hod: 3550	,	Analysis Method:	8270
	%So	lids: 68.0		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	171.20	635.80	ND	ND
Di-n-octylphthalate	117-84-0	317.90	1247.10	NĎ	ND
Fluoranthene	206-44-0	171.20	660.20	6000	ND
Fluorene	7782-41-4	171.20	733.60	2100	ND
Hexachlorobenzene	118-74-1	. 146.70	635.80	ND	ND
Hexachlorobutadiene	87-68-3	195.60	806.90	ND	ND
Hexachlorocyclopentadiene	77-47-4	146.70	586.90	ND	ND
Hexachloroethane	67-72-1	171.20	684.70	ND ~	ND
Indeno(1,2,3-cd)pyrene	193-39-5	146.70	562.40	1200	ND
Isophorone	78-59-1	220.10	855.80	ND	ND
2-Methylnaphthalene	91-57-6	244.50	929.20	2000	ND
2-Methylphenol	95-48-7	220.10	880.30	880 E	ND
3-,4-Methylphenol	106-44-5	97.80	366.80	7100	· ND
Naphthalene	91-57-6	220.10	880.30	2000	ND
2-Nitroaniline	88-74-4	146.70	586.90	ND	ND
3-Nitroaniline	99-09-3	586.90	2396.40	ND	ND
4-Nitroaniline	100-01-6	244.50	953.70	ND	ND
Nitrobenzene	98-95-3	220.10	855.80	ND	ND
2-Nitrophenol	88-75-5	171.20	709.10	ND	ND
4-Nitrophenol	100-01-6	1809.50	7238.00	ND	ND
N-Nitrosodiphenylamine*	86-30-6	244.50	929.20	830 E	ND
N-Nitroso-di-n-propylamine	621-64-7	195.60	195.60	ND	ND
Pentachlorophenol	87-86-5	146.70	635.80	ND	ND
Phenanthrene	85-01-8	171.20	635.80	5900	ND
Phenol	108-95-2	97.80	464.60	ND	ND
Pyrene	129-00-0	171.20	709.10	5700	ND
1,2,4-Trichlorobenzene	120-82-1	195.60	806.90	ND	ND
2,4,5-Trichlorophenol	95-95-4	195.60	831.40	ND	ND
2,4,6-Trichlorophenol	88-06-02	195.60	733.60	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	21]	94	67
Phenol-d6 (surrogate std)	%Recovery	[OK=24-1]	[3]	103	65
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	20]	97	77
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-1]	15]	138	67
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	22]	9 <b>8</b> .	. 70
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	37]	126	77
E: Estimated, ND: Not detected	*as Diphenylamine		CI: Coeluting	Interference	
MDL: Method Detection Limit	DO: Diluted Out				

PQL: Practical Quantitation Limit

Page 2

[.] 

## GC/MS SVO RESULTS

LAB SAMPLE # 40310-BS

# EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

3/3/94, JG & KK 3/3/94, 22:17, ALH

DATE REPORTED: 3/11/94

Analysis Method: 8270

		QC LIMITS	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
Phenol	108-95-2	29-90	58
2-Chlorophenol	95-57-8	25-102	64
1,4-Dichlorobenzene	106-46-7	28-104	73
N-Nitroso-di-n-propylamine	621-64-7	41-126	75
1,2,4-Trichlorobenzene	120-82-1	38-107	68
4-Chloro-3-methylphenol	59-50-7	26-103	63
Acenaphthene	83-32-9	31-137	70
4-Nitrophenol	100-02-7	11-114	84
2,4-Dinitrotoluene	121-14-2	28-89	79
Pentachlorophenol	87-86-5	17-109	96
Рутепе	129-00-0	35-142	77
2-Fluorophenol	% Recovery	[OK=25-121]	66
Phenol-d6	% Recovery	[OK=24-113]	63
Nitrobenzene-d5	% Recovery	[OK=23-120]	67
2-Fluorobiphenyl	% Recovery	[OK=30-115]	67
2,4,6-Tribromophenol	% Recovery	[OK=19-122]	. 82
Terphenyl-d14	% Recovery	[OK=18-137]	80





#### KIBER Environmental Services GC/MS SVO RESULTS LAB SAMPLE # 40310-1MS

RAYMARK SAMPLE #: TS*B-10*1.5-4 SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

3/2/94, 10:00, SH 3/3/94, JG & KK 3/7/94, 22:17, TAG

#### Sample Matrix: SOLID Analysis Method: 8270

DATE REPORTED: 3/11/94			Analysis Method:
** SEE CASE NARRATIVE	· .	QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Phenol	108-95-2	29-90	58
2-Chlorophenol	95-57-8	25-102	66
1,4-Dichlorobenzene	106-46-7	28-104	66
N-Nitroso-di-n-propylamine	621-64-7	41-126	69
1,2,4-Trichlorobenzene	120-82-1	38-107	75
4-Chloro-3-methylphenol	59-50-7	26-103	68
Acenaphthene	83-32-9	31-137	76
4-Nitrophenol	100-02-7	11-114	92
2,4-Dinitrotoluene	121-14-2	28-89	95***
Pentachlorophenol	87-86-5	17-109	108
Pyrene	129-00-0	35-142	82
2-Fluorophenoi	% Recovery	[OK=25-121]	62
Phenol-d6	% Recovery	[OK=24-113]	60
Nitrobenzene-d5	% Recovery	[OK=23-120]	68
2-Fluorobiphenyl	% Recovery	[OK=30-115]	73
2,4,6-Tribromophenol	% Recovery	[OK=19-122]	. 90
Terphenyl-d14	% Recovery	[OK=18-137]	86

ANALYSIS (Date/Time/Init):

3/7/94, 22:57, TAG

		QC LIMITS	Actual MSD	
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	%RPD
Phenol	108-95-2	29-90	63	8
2-Chlorophenol	95-57-8	25-102	72	9
1,4-Dichlorobenzene	106-46-7	28-104	73	9.
N-Nitroso-di-n-propylamine	621-64-7	41-126	76	10
1,2,4-Trichlorobenzene	120-82-1	38-107	76	2
4-Chloro-3-methylphenol	59-50-7	26-103	73	. 7
Acenaphthene	83-32-9	31-137	80	5
4-Nitrophenol	100-02-7	11-114	98	6
2,4-Dinitrotoluene	121-14-2	28-89	111**	16
Pentachlorophenol	87-86-5	17-109	123**	12
Pyrene	129-00-0	35-142	77	7
2-Fluorophenol	% Recovery	[OK=25-121]	66	· · · ·
Phenol-d6	% Recovery	[OK=24-113]	65	
Nitrobenzene-d5	% Recovery	[OK=23-120]	71	
2-Fluorobiphenyl	% Recovery	[OK=30-115]	78	
2,4,6-Tribromophenol	% Recovery	[OK=19-122]	. 94	
Terphenyl-d14	% Recovery	[OK=18-137]	89	

CI: Coeluting Interference

· .

#### LAB SAMPLE # 40310-1 PROJECT # 854

SOLID

#### SAMPLE # TS*B-10*1.5-4 RAYMARK INDUSTRIES

DATE REPORTED: 3/14/94

#### GC-ECD CHLORINATED PESTICIDE RESULTS

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

Quant Factor: 3.49

3/2/94, 10:00, SH 3/10/94, JG 3/10/94, 16:00, DLL

Sample Matrix:

	Extract Method: 3550			Analysis Method:	8080
	% Solids:	96.0		Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·	·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	70	279	ND	ND
alpha-BHC	319-84-6	70	279	ND	ND
beta-BHC	319-85-7	70	279	ND	ND
gamma-BHC (Lindane)	58-89-9	70	279	ND	ND
delta-BHC	319-86-8	70	279	ND	ND
alpha-Chlordane	5103-71-9	70	279	ND	ND
gamma-Chlordane	5103-74-2	70	279	ND	ND
4,4'-DDD	72-54-8	140	558	ND	ND
4,4'-DDE	72-55-9	140	558	ND	ND
4,4'-DDT	50-29-3	140	558	ND	ND
Dieldrin	60-57-1	140	558	ND	ND
Endosulfan I	959-98-8	.70	279	ND	ND
Endosulfan II	33213-65-9	140	558	ND	ND
Endosulfan sulfate	1031-07-8	140	558	ND	ND
Endrin	72-20-8	140	558	ND	ND
Endrin aldehyde	7421-93-4	140	558	ND	ND
Endrin ketone	53494-70-5	- 140	558	ND	ND
Heptachlor	76-44-8	70	279	ND	ND
Heptachlor epoxide	1024-57-3	70	279	ND	ND
Methoxychlor	72-43-5	698	2,792	ND	ND
Toxaphene	8001-35-2	3,490	13,959	ND	NĎ

Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO	127

E: Estimated , ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit PQL: Practical Quantitation Limit

#### LAB SAMPLE # 40310-2 PROJECT # 854

#### **CD CHLORINATED** Ğ **STICIDE RESULTS**

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH EXTRACTION (Date/Init): 3/10/94, JG ANALYSIS (Date/Time/Init): 3/10/94, 16:37, DLL

SAMPLE > TS*B-68*6-8

**RAYMARK INDUSTRIES** 

DATE REPORTED: 3/14/94	Quant Factor: 95.25 Extract Method: 3550		Sample Matrix: Analysis Method:	SOLID 8080	
	% Solids:	66.7	1	Dry-weight Basis	Apparent
	· · · ·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	1,905	7,620	ND	ND
alpha-BHC	319-84-6	1,905	7,620	ND	ND
beta-BHC	319-85-7	1,905	7,620	ND	ND
gamma-BHC (Lindane)	58-89-9	1,905	7,620	ND	ND
delta-BHC	319-86-8	1,905	7,620	ND	ND
alpha-Chlordane	5103-71-9	1,905	7,620	ND	ND
gamma-Chlordane	5103-74-2	1,905	7,620	ND	ND
4,4'-DDD	72-54-8	3,810	15,240	ND	ND
4,4'-DDE	72-55-9	3,810	15,240	ND	ND
4,4'-DDT	50-29-3	3,810	15,240	ND	ND
Dieldrin	60-57-1	3,810	15,240	ND	ND
Endosulfan I	959-98-8	1,905	7,620	ND	ND
Endosulfan II	33213-65-9	3,810	15,240	ND	ND
Endosulfan sulfate	1031-07-8	3,810	15,240	ND	ND
Endrin	72-20-8	3,810	15,240	ND	ND
Endrin aldehyde	7421-93-4	3,810	15,240	ND	ND
Endrin ketone	53494-70-5	3,810	15,240	ND	ND
Heptachlor	. 76-44-8	1,905	7,620	ND	ND
Heptachlor epoxide	1024-57-3	1,905	7,620	ND	ND
Methoxychlor	72-43-5	19,050	76,201	ND	ND
Toxaphene	8001-35-2	95,251	381,004	ND	ND
· · · · · · · · · · · · · · · · · · ·					

Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO	127

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit PQL: Practical Quantitation Limit

SAMPLE **#** TS*B-68*2-4

**RAYMARK INDUSTRIES** 

#### LAB SAMPLE # 40310-3 PROJECT # 854

#### GC-ECD CHLORINATED PESTICIDE RESULTS

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

3/2/94, 10:00, SH 3/10/94, JG 3/10/94, 17:15, DLL

	Quant Factor	06 25	·	Sample Matrix	
DATE REPORTED: 3/14/94	Qualit Factor:	90.25		Sample Matrix:	SOLID
	Extract Method:	3330		Analysis Method:	8080
	% Solids:	67.2		Dry-weight Basis	Apparent
	· · ·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	1,925	7,700	ND	ND
alpha-BHC	319-84-6	1,925	7,700	ND	ND ·
beta-BHC	319-85-7	1,925	7,700	ND	ND
gamma-BHC (Lindane)	58-89-9	1,925	7,700	ND	ND
delta-BHC	319-86-8	1,925	7,700	ND	ND
alpha-Chlordane	5103-71-9	1,925	7,700	ND	ND
gamma-Chlordane	5103-74-2	1,925	7,700	ND	ND
4,4'-DDD	72-54-8	3,850	15,401	ND	ND
4,4'-DDE	72-55-9	3,850	15,401	ND	ND
4,4'-DDT	50-29-3	3,850	15,401	ND	ND
Dieldrin	60-57-1	3,850	15,401	ND	ND
Endosulfan I	959-98-8	1,925	7,700	ND	ND
Endosulfan II	33213-65-9	3,850	15,401	ND	ND
Endosulfan sulfate	1031-07-8	3,850	15,401	ND	ND
Endrin	72-20-8	3,850	15,401	ND	ND
Endrin aldehyde	7421-93-4	3,850	15,401	ND	ND
Endrin ketone	53494-70-5	3,850	15,401	ND	ND
Heptachlor	76-44-8	1,925	7,700	ND	ND
Heptachlor epoxide	1024-57-3	1,925	7,700	ND	ND
Methoxychlor	72-43-5	19,251	77,004	ND	ND
Toxaphene	8001-35-2	96,255	385,018	ND	ND

Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO	127

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit PQL: Practical Quantitation Limit

SAMPLE # TS*B-7*4-6

**RAYMARK INDUSTRIES** 

DATE REPORTED: 3/14/94

#### LAB SAMPLE # 40310-4 PROJECT # 854

Sample Matrix: SOLID

#### GC-ECD CHLORINATED PESTICIDE RESULTS

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

Quant Factor: 97.00

3/2/94, 10:00, SH 3/10/94, JG 3/10/94, 17:52, DLL

•

	Extract Method: 3550			Analysis Method:	8080
	% Solids:	68.0		Dry-weight Basis	Apparent
~~	·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	1,940	7,760	ND	ND
alpha-BHC	319-84-6	1,940	7,760	ND	ND
beta-BHC	319-85-7	1,940	7,760	ND	ND
gamma-BHC (Lindane)	58-89-9	1,940	7,760	ND	ND
delta-BHC	319-86-8	1;940	7,760	ND	ND
alpha-Chlordane	5103-71-9	1,940	7,760	ND	ND
gamma-Chlordane	5103-74-2	1,940	7,760	ND	ND
4,4'-DDD	72-54-8	3,880	15,521	ND	ND
4,4'-DDE	72-55-9	3,880	15,521	ND	ND
4,4'-DDT	50-29-3	3,880	15,521	ND	ND
Dieldrin	60-57-1	3,880	15,521	ND	ND
Endosulfan I	959-98-8	1,940	7,760	ND	ND
Endosulfan II	33213-65-9	3,880	15,521	ND	ND
Endosulfan sulfate	1031-07-8	3,880	15,521	ND	ND
Endrin	. 72-20-8	3,880	15,521	ND	ND
Endrin aldehyde	7421-93-4	3,880	15,521	ND	ND
Endrin ketone	53494-70-5	3,880	15,521	ND	ND
Heptachlor	76-44-8	1,940	7,760	ND	ND
Heptachlor epoxide	1024-57-3	1,940	7,760	ND	ND
Methoxychlor	72-43-5	19,401	77,604	ND	ND
Toxaphene	8001-35-2	97,005	388,018	ND	ND
				1	
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 6	0-150]	DO	127

E: Estimated , ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit PQL: Practical Quantitation Limit

LAB SAMPLE # 854-40310-1 MS & MSD

#### PESTICIDE MATRIX SPIKE RESULTS

#### SAMPLE # TS*B-10*1.5-4 RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH EXTRACTED (Date / Init): 3/10/94, JG ANALYSIS (Date/Time/Init): 3/10/94, 18:29, DLL

#### DATE REPORTED: 3/14/94

Sample Matrix: SOLID Analysis Method: 8080

· · · · · ·	·	<b>QC LIMITS</b>	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
gamma-BHC (Lindane)	58-89-9	56-123	DO
Heptachlor	76-44-8	40- 131	DO
Aldrin	309-00-2	40- 120	DO
Dieldrin	60-57-1	52-126	DO
Endrin	72-20-8	56-121	DO
4,4'-DDT	50-29-3	38-127	DO
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

#### ANALYSIS (Date/Time/Init): 3/14/94, 19:06, DLL

		QC LIMITS	Actual MSD	
MATRIX SPIKE DUP	CAS Number	% Recovery	% Recovery	RPD
gamma-BHC (Lindane)	58-89-9	56-123	DO	DO
Heptachlor	76-44-8	40-131	DO	DO
Aldrin	309-00-2	40-120	DO	DO
Dieldrin	60-57-1	52-126	DO	DO
Endrin	72-20-8	56-121.	DO	DO
4,4'-DDT	50-29-3	38-127	DO	DO

Tetrachloro-m-xylene (surrogate std) % Recovery [OK = 60-150] DO

DO: Diluted Out

LAB SAMPLE # 40310-1 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

#### SAMPLE # TS*B-10*1.5-4 **RAYMARK INDUSTRIES**

#### SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH EXTRACTED (Date / Init): 3/2/94, JG ANALYSIS (Date/Time/Init): 3/11/94, 10:20, DLL

D

Quant Factor:	35.23	Sample Matrix:	SOLID
Extract Method:	3550	Analysis Method:	8080
% Solid:	96.0	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	3523	ND	ND
11104-28-2	7045	ND	ND
11141-16-5	3523	ND	ND
53469-21-9	3523	ND	ND
12672-29-6	3523	ND	ND
11097-69-1	3523	. ND	ND
11096-82-5	3523	ND	ND
37324-23-5	3523	19,000E	ND
11100-14-4	3523	11,000E	ND
	Quant Factor: Extract Method: % Solid: CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor: 35.23   Extract Method: 3550   % Solid: 96.0   CAS Number MDL   12674-11-2 3523   11104-28-2 7045   11141-16-5 3523   53469-21-9 3523   12672-29-6 3523   11097-69-1 3523   11096-82-5 3523   37324-23-5 3523   11100-14-4 3523	Quant Factor: 35.23 Sample Matrix:   Extract Method: 3550 Analysis Method:   % Solid: 96.0 Dry-weight Basis   CAS Number MDL ug/Kg   12674-11-2 3523 ND   11104-28-2 7045 ND   11141-16-5 3523 ND   53469-21-9 3523 ND   12672-29-6 3523 ND   11097-69-1 3523 ND   11096-82-5 3523 ND   37324-23-5 3523 11,000E

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

99

DO

#### LAB SAMPLE # 40310-2 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8 **RAYMARK INDUSTRIES** 

#### SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH EXTRACTED (Date / Init): 3/2/94, JG ANALYSIS (Date/Time/Init): 3/11/94, 05:41, DLL

DATE REPORTED: 3/14/94	Quant Factor:	252.0	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	66.7	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	25197	ND	ND
Aroclor-1221	11104-28-2	50395	ND	ND
Aroclor-1232	11141-16-5	25197	ND	ND
Aroclor-1242	53469-21-9	25197	ND	ND
Aroclor-1248	12672-29-6	25197	ND	ND
Aroclor-1254	11097-69-1	25197	ND	ND
Aroclor-1260	11096-82-5	25197	ND	ND
Aroclor-1262	37324-23-5	25197	96,000E	ND
Aroclor-1268	11100-14-4	25197	60,000E	ND

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	99

LAB SAMPLE # 40310-3 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*2-4 **RAYMARK INDUSTRIES** 

#### SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH EXTRACTED (Date / Init): 3/2/94, JG ANALYSIS (Date/Time/Init): 3/11/94, 06:37, DLL

D

ATE REPORTED: 3/14/94	Quant Factor:	100.6	Sample Matrix:	SOLID
	Extract Method:	<b>35</b> 50	Analysis Method:	8080
	% Solid:	% Solid: 67.2		Apparent
	· · · ·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	10062	ND	ND
Aroclor-1221	11104-28-2	20123	ND	ND
Aroclor-1232	11141-16-5	10062	ND	ND
Aroclor-1242	53469-21-9	10062	ND	ND
Aroclor-1248	12672-29-6	10062	ND	ND
Aroclor-1254	11097-69-1	10062	ND	ND
Arocior-1260	11096-82-5	10062	ND	ND
Aroclor-1262	37324-23-5	10062	54,000E	ND
Aroclor-1268	11100-14-4	10062	35,000E	ND
			,	
Tetrachloro-m-xylene (surrogate std)	% Recovery $OK = 60-1$	50]	DO DO	99

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

#### LAB SAMPLE # 40310-4 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

#### SAMPLE **#** TS*B-7*4-6 **RAYMARK INDUSTRIES**

#### SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH EXTRACTED (Date / Init): 3/2/94, JG ANALYSIS (Date/Time/Init): 3/11/94, 07:33, DLL

E

Quant Factor:	247.7	Sample Matrix:	SOLID
Extract Method:	3550	Analysis Method:	8080
% Solid:	68.0	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	24766	ND	ND
11104-28-2	49531	ND	ND
11141-16-5	24766	ND	ND
53469-21-9	24766	ND	ND
12672-29-6	24766	ND	· ND
11097-69-1	24766	ND	ND
11096-82-5	24766	ND	ND
37324-23-5	24766	140,000E	ND
11100-14-4	24766	90,000E	ND
	Quant Factor:   Extract Method:   % Solid:   2   11674-11-2   1104-28-2   11141-16-5   53469-21-9   12672-29-6   11097-69-1   11096-82-5   37324-23-5   11100-14-4	Quant Factor: 247.7   Extract Method: 3550   % Solid: 68.0   CAS Number MDL   12674-11-2 24766   11104-28-2 49531   11141-16-5 24766   53469-21-9 24766   11097-69-1 24766   11096-82-5 24766   37324-23-5 24766   11100-14-4 24766	Quant Factor: 247.7 Sample Matrix:   Extract Method: 3550 Analysis Method:   % Solid: 68.0 Dry-weight Basis   Concentration ug/Kg   12674-11-2 24766 ND   11104-28-2 49531 ND   11104-28-2 49531 ND   11141-16-5 24766 ND   53469-21-9 24766 ND   12672-29-6 24766 ND   11097-69-1 24766 ND   11096-82-5 24766 ND   37324-23-5 24766 ND   11100-14-4 24766 90,000E

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	99

LAB SAMPLE # 854-40310-3

#### MS & MSD

#### PCB MATRIX SPIKE RESULTS

#### SAMPLE # TS*B-68*2-4 RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/2/94, 10:00, SH EXTRACTED (Date / Init): 3/2/94, JG ANALYSIS (Date/Time/Init): 3/11/94, 08:28, DLL

DATE REPORTED: 3/14/94

Sample Matrix: SOLID Analysis Method: 8080

	7	<b>QC LIMITS</b>	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Aroclor-1254	11096-82-5	39-154	DO
		······	
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

#### ANALYSIS(Date/Time/Init): 3/11/94, 09:24, DLL

<u>.</u>		<b>QC LIMITS</b>	Actual MSD	]
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	RPD
Aroclor-1254	11096-82-5 39-154		DO	NA
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO	

DO: Diluted Out, NA: Not Applicable

# PROJECT: P013082 BATCH: B001024S FILE: MA03195

ODFOULLO ANAL VIEL

# PCDD/PCDF ANALYSIS REPORT SAMPLE: DFBLK1024 BLANK

QUOTE NO: 39856 DATE COLLECTED: NA ACCESSION NO. DFBLK. PROJECT ID: 854 140310 DATE RECEIVED NA RETCHECK: MA03187 PROJECT P.O.:. 532 DATE EXTRACTED: 3/3/94 CONCAL: MA03186 SAMPLE ORIGIN B001024S DATE ANALYZED: 3/10/94 ICAL: 1000107A SAMPLE MATRIX: SOIL. DATE PROCESSED: 3/11/94 INSTRUMENT: HP MSD A GC COLUMN DB-5 SAMPLE SIZE: 10.03 DETECTION LIMIT: MDL G 0.25 mm DILUTION FACTOR: 1 METHOD: 8280 GC COLUMN SN: #39

ONO (DDD

2,3,7,8-TCDD 320/322 ND 0.069 -	U
1,2,3,7,8-PeCDD 356/358 ND 0.12	- U
1,2,3,4,7,8-HxCDD 390/392 ND 0.2 -	U
1,2,3,6,7,8-HxCDD 390/392 ND 0.099	- `\ U
1,2,3,7,8,9-HxCDD 390/392 ND 0.17 -	<u> </u>
1,2,3,4,6,7,8-HpCDD 424/426 ND 0.2	- U
OCDD 458/460 ND 0.26	¢≄ s de Unie
2,3,7,8-TCDF 304/306 ND 0.06	- U

1,2,3,7,	8-PeCDF	340/342	ND	0.094	-	-	-	U
2,3,4,7,	8-PeCDF	340/342	ND	0.098	-			U
1,2,3,4,	7,8-HxCDF	374/376	ND	0.11	-	-	-	Ū Ū
1,2,3,6,	7,8-HxCDF	374/376	ND	0.086				U
2,3,4,6,	7,8-HxCDF	374/376	ND	0.16	-	-	-	- U
1,2,3,7,	8,9-HxCDF	374/376	ND	0.2		-		U
1,2,3,4,	6,7,8-HpCDF	408/410	ND	0.16		¥ <u>-</u> 1	-	U
1,2,3,4,	7,8,9-HpCDF	408/410	ND	0.18			ig di <b>≟</b> /3/ k	U
OCDF		442/444	ND	0.33	-		-	U
Containe -	Castano ( Argania Ara	u bar i di tarra ay u ai			Tenner i Angelski	a at shigh deal . I	teach da Shéria	an i waank

OTAL ANALYTES NUMBE	R CONC (PPB)	DL (PPB) EMPC	(PPB) RT WIN	DOW (min)	FLAGS

TOTAL TCDD	0	ND	0.07	0.677	21.17 25.01	X
TOTAL PeCDD	0	ND	0.12	0.543	26.75 - 30.58	X
TOTAL HxCDD	0	ND	0.2	-	33.02 - 35.97	U SA SA
TOTAL HPCDD	. 0	ND	0.2	-	38.60 - 39.97	U
TOTAL TCDF	0	ND	0.06	0.0683	20.06 - 25.06	X
TOTAL PeCDF	0	ND	0.098		25.12 - 30.83	. U
TOTAL HXCDF	0	ND	0.2	-	31.95 - 36.59	Ū.
TOTAL HpCDF	0	ND	0.18	0.483	38.46 - 40.32	X

NOTE: Concentrations, EMPCs, and EDLs are calculated on a WET weight basis.

Reviewed by: MARISTELLA PARTIN 3/11/94

TRIANGLE LADS

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

Page 38

02:47 PM 3/15/94

#### **KIBER ENVIRONMENTAL SERVICES** PCDD/PCDF QUALITY CONTROL REPORT **PROJECT: P013082** BATCH: B001024S SAMPLE: DFBLK1024 FILE: MA03195 **BLANK** ACCESSION NO: DFBLK QUOTE NO: DATE COLLECTED NA 39856 PROJECT ID: 854 140310 RETCHECK: MA03187 DATE RECEIVED NA: PROJECT P.O.: CONCAL MA03186 532 DATE EXTRACTED: 3/3/94

SAMPLE ORIGIN	B001024S DATE ANALYZED: 3/10/94 ICAL 1000107A
SAMPLE MATRIX	SOIL DATE PROCESSED 3/11/94 INSTRUMENT HP MSD A
SAMPLE SIZE:	10.03 G DETECTION LIMIT: MDL GC COLUMN DB-5 0.25 mm
DILUTION FACTOR	1 METHOD 8280 GC COLUMN SN #39
이 이 것을 수 없는 것을 했다.	
INTERNAL STAND	ARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

13C12-2,3,7,8-TCD	F 316/318	4	80%	40%-120%	<ul><li>○ 0.81 </li></ul>	23.00	
13C12-2,3,7,8-TCD	D 332/334	4.19	84%	40%-120%	0.79	23.77	-
13C12-1,2,3,6,7,8-H	IxCDD 402/404	4.26	86%	40%-120%	1.25	35.39	
13C12-1,2,3,4,6,7,8	-HpCDF 420/422	6.72	67%	40%-120%	1.09	38.47	-
13C12-OCDD	470/472	3.89	39%	25%-120%	0.92	43.90	

CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS RECOVERY STANDARDS IONS

13C12-1,2,3,4-TCDD 332/334	NA	NA	NA	0.81	23.55		
13C12-1,2,3,4,7,8,9-HxCDD 402/404	NA	NA	NA	1.26	35.90	-	
	eller i Streamer		u singestaar.		1.1.2.4.4.4.4	6	· · · ·

CLEAN-UP STANDARD IONS CONC (PPB) % REC. QC LIMITS RATIO RT 🗌 FLAGS

37CI4-TCDD 328/NA 2.39 96% 40%-120% NA 23 79

#### Flags:

SAMPLE ORIGIN

80010245

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

CONC - The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

- DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- The estimated maximum possible concentration, EMPC which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- The ratio of the low- to high-mass ion areas for the RATIO confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.
  - NO The total number of peaks identified as analytes within the retention time window.

% REC - The percent recovery of the indicated standard.

## TRIANCHE LABS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

Page 39

02.47 PM 3/15/94

# PROJECT: P013082 PCDD/PCDF TOXICITY EQUIVALENTS REPORT BATCH: B001024S SAMPLE: DFBLK1024 FILE: MA03195 BLANK

l sa tit só feada		같이 이번 동생님이?	이 것 집 집 않는 것 같아? 한 것 않는 것 같 것 같 것 같 것 같 것 같 것 같 것 같 것 같 것 같 것	
QUOTE NO	39856	DATE COLLECTED:	NA ACCESSION NO:	DFBLK
PROJECT ID	854 140310	DATE RECEIVED	NA RETCHECK:	MA03187
PROJECT P.O.	532	DATE EXTRACTED:	3/3/94 CONCAL:	MA03186
SAMPLE ORIGIN:	B001024S	DATE ANALYZED:	3/10/94 ICAL	1000107A
SAMPLE MATRIX:	SOIL	DATE PROCESSED	3/11/94 INSTRUMENT	HP MSD A
SAMPLE SIZE:	10.03 G	DETECTION LIMIT	MDL GC COLUMN	DB-5 0.25 mm
DILUTION FACTOR.	1	METHOD:	8280 GC COLUMN SN:	#39
				an a

SPECIFIC ANALYTES	CONC (PPI	3)	TEF	TEF-ADJUSTED CONC (PPB)
·				
2,3,7,8-TCDD	ND	× ×	<u>1</u>	
1,2,3,7,8-PeCDD	ND	×	0.5	=
1,2,3,4,7,8-HxCDD	ND	× .	0.1	
1,2,3,6,7,8-HxCDD	ND	×	0.1	= ·
1,2,3,7,8,9-HxCDD	ND	<u>9 (</u> 💌 : :	0.1	
1,2,3,4,6,7,8-HpCDD	ND	×	0.01	Ξ -
OCDD	ND	×	0.001	n na sense na sense de la companya d
				·
2,3,7,8-TCDF	ND		0.1	
1,2,3,7,8-PeCDF	ND	×	0.05	=
2,3,4,7,8-PeCDF	ND _	×	0.5	
1,2,3,4,7,8-HxCDF	ND	×	0.1	=
1,2,3,6,7,8-HxCDF	ND	×	0.1	a sa <mark>=</mark> i a intera sa
2,3,4,6,7,8-HxCDF	ND	×	0.1	= -
1,2,3,7,8,9-HxCDF	ND	*	0.1	
1,2,3,4,6,7,8-HpCDF	ND .	×	0.01	=
1,2,3,4,7,8,9-HpCDF	ND	×	0.01	
OCDF	ND	×	0.001	= _

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

Definitions:

**CONC** - The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

**TEF** – The toxicity equivalency factors, adopted from the 1989 international values.

# TRIANCLE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341 Page 51

02.47 PM 3/15/94

PROJECT:	B001025S		PCDD/PCDF ANALYSIS REPORT					
BATCH:	B001025S				SAMPLE: DEBLK102			
	MA03211				<u> </u>	BLAN		
1 km km r			12					
UOTE NO:	NA	DATE COLLECTED	NA		ACCESSION NO	DFBLK		
	NA	DATE RECEIVED	NA		RETCHECK	MA03201		
ROJECT P.O.	NA	DATE EXTRACTED	3/5/94		CONCAL	MA03200		
AMPLE ORIGIN:	B001025S	DATE ANALYZED:	3/11/94		ICAL	1000107A		
AMPLE MATRIX	SOIL	DATE PROCESSED	3/14/94		INSTRUMEN	F HP MSD A		
AMPLE SIZE:	3.04 G	DETECTION LIMIT:	EDL		GC COLUMI	N DB-5 0.25 mm		
ILUTION FACTOR	a the block of the set	METHOD	8280		GC COLUMN SI	<b>1: #36</b>		
2,3,7,8-TCDD 1 2 3 7 8-PeCDC	320/322	ND ND	6.9 8 9	- -	<u></u>	- U		
1,2,3,7,8-FECDE	300/302	NO NO	0.3 74	-	-	- U		
123678-HVC	390/392	ND	23		<u>. *. *8</u>	<u></u>		
1 2 3 7 8 9-HyC	D 390/392	ND	20	-		<u> </u>		
1234678-Hp	CDD 424/426	ND	30	<u></u>		- U		
OCDD	458/460	ND	78			- U		
2,3,7,8-TCDF	304/306	ND	4.8			- U		
1,2,3,7,8-PeCDF	340/342	ND	5.9	-	- 	- <u>U</u>		
2,3,4,7,8-PeCDF	340/342	NU	5.9			<u>U</u>		
1,2,3,4,7,8-HxCI	<u>)⊢ 3/4/3/6</u>	ND	18	-	-	- U		
1,2,3,6,7,8-HxCl	<u>)</u> ⊱ 3/4/3/6		10		•	<u> </u>		
	JF 3/4/3/0		10 	- 		- U		
	2F 3141310		1.9	<u> </u>	<u>. 278 ji 2 2 2 2 4 1 1</u>	<u></u>		
1,2,3,4,0,7,0-mp	CDF 400/410		25	- 	- 			
0CDF	400/4/0	ND	54	<u></u>	<u></u>	<u>- 11</u>		
						Ŭ		
OTAL ANALYTI	S NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPI	3) RT WINE	OW (min) FLAG		
TOTAL TCDD	0	ND	6 90	56.7	21.16	- 25.00 X		
TOTAL PeCDD		ND	8.9	64	26.76	<u>- 30.59 X</u>		
	0	ND	24		33.06	- 35.98 U		
TOTAL HXCDD	· 0	ND	30	-	38.61	– 39.97 U		
TOTAL HXCDD	—	alah waa ah ili ti taga alak ka di 1920	en vivea i	1994 X 2 X 1995	a tiñgealt is teo	김 가 적속성 집을 가지 않는		
TOTAL HXCDD		ND	<u></u>	<u></u>	<u> </u>	05.00		
TOTAL HXCDD	0	ND	4.80	5.58	20.08	– 25.08 X		
TOTAL HCDD TOTAL HPCDD TOTAL TCDF TOTAL PeCDF	0	ND ND	4.80 5.9	5.58	20.08 25.12 21.07	- 25.08 X - 30.85 U		

NOTE: Concentrations, EMPCs, and EDLs are calculated on a WET weight basis.

Reviewed by: MARK JONES 3/14/94

TRIANCLE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341 Page 40

08:30 PM 3/15/94
				KIE	BER EN	<b>VIRON</b>	MENTA	L SER	VICES
PROJ	ECT:	P01308	82	PCDD/	PCDF Q	UALITY	CONTR	OL RE	PORT
BATC	H:	B00102	25S	· · · · ·			SAMPL	E: DFBI	LK1025
FILE.		IVIAU32						· 1	
OUDTEN	<b>~</b>	30856			ED NA			O DEBLY	
PROJECT	J	854 140310	0	DATE RECEIVED			RETCHEC	WA03201	
PROJECT	PO	532	<u>•</u>		FD 3/5/94		CONCA	MA03200	
SAMPLE C		B0010255		DATE ANALYZEI	3/11/94		IC/	L: 1000107A	
SAMPLE N	ATRIX:	SOIL		DATE PROCESS	ED: 3/14/94		INSTRUME	T HP MSD A	
SAMPLE S	IZE:	3.04	G	DETECTION LIM	IT EDL		GC COLUN	AN: DB-5	0.25 mm
DILUTION	FACTOR:	at the states of		METHOD	8280		GC COLUMN S	SN: #36	
INTERNA		DARDS	IONS	CONC (PPB)	% REC.		S RATIO	RT	FLAGS
13C12-2	2,3,7,8-T	CDF	316/318	286	87%	40%-120	% 0.80	23.02	
13C12-2	2,3,7,8-T	CDD	332/334	280	85%	40%-120	% 0.80	23.78	-
13C12-1	2,3,6,7	8-HxCDD	402/404	286	87%	40%-120	% 1.29	35.40	
13C12-1	,2,3,4,6,	7,8-HpCDF	420/422	454	69%	40%-120	% 1.08	38.48	-
13012-0	DCDD		470/472	300	46%	25%-120	% 0.91	43.90	
ILLUVE		······································	i de desetie de		/# NLV;				
13C12-1 13C12-1 CLEAN-L	1,2,3,4-T( 1,2,3,4,7, IP STAN	DD 8,9-HxCDD DARD	332/334 402/404 IONS 328/NA	NA NA CONC (PPB) 146	NA NA % REC.	QC LIMI 40%-120	0.80 1.28 IS RATIO	23.57 35.91 RT 23.80	FLAGS
13C12-1 13C12-1 CLEAN-L 37CI4-T	.,2,3,4-T( , 2,3,4,7, IP STAN CDD	CDD 8,9-HxCDD DARD	332/334 402/404 IONS 32B/NA	NA NA CONC (PPB) 146	NA NA % REC. 89%	40%-120	0.80 1.28 IS RATIO	23.57 35.91 RT 23.80	FLAGS
13C12-1 13C12-1 CLEAN-L 37Cl4-T Flags:	1,2,3,4-T( 1,2,3,4,7, IP STAN CDD	DDD 8,9-HxCDD DARD	332/334 402/404 IONS 32B/NA	NA NA CONC (PPB) 146	NA NA % REC. 89% Definitio	QC LIMI 40%-120	0.80 1.28 IS RATIO % NA	23.57 35.91 RT 23.80	FLAGS
13C12-1 13C12-1 CLEAN-L 37CI4-T Flags: U -	2,3,4-T( 1,2,3,4,7, 1P STAN CDD The comp above the	CDD 8,9-HxCDD DARD	332/334 402/404 IONS 32B/NA alyzed for but no	NA NA CONC (PPB) 146 ot detected at or	NA NA % REC. 89% Definitio CONC	QC LIMI A0%-120 ns: - The conce	0.80 1.28 (S RATIO % NA	23.57 35.91 RT 23.80 arts per billion (	FLAGS ppb) or
13C12- 13C12- 13C12- 37C14-T 5lags: U - J -	1,2,3,4-T( 1,2,3,4,7, IP STAN CDD The comp above the The analy	CDD 8,9-HxCDD DARD	332/334 402/404 IONS 32B/NA alyzed for but no it.	NA NA CONC (PPB) 146 ot detected at or	NA NA % REC. 89% Definitio CONC	QC LIMI A0%-120 ns: - The conce parts per tr - The detect	0.80 1.28 S RATIO % NA htration, given in pr illion (ppt).	23.57 35.91 RT 23.80 arts per billion ( a 2.5:1 signal-to	FLAGS ppb) or
13C12- 13C12- 13C12-1 37Cl4-T 5lags: U - J -	1,2,3,4-T( 1,2,3,4,7, IP STAN CDD The comp above the The analy calibrated	CDD 8,9-HxCDD DARD	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentrat e detection limit	NA NA CONC (PPB) 146 ot detected at or tions between the	NA NA % REC. 89% Definitio CONC	QC LIMI A0%-120 ns: - The conce parts per tr - The detect criteria, giv	0.80 1.28 <b>IS RATIO</b> <b>% NA</b> Intration, given in parts illion (ppt). ion limit based on a en in parts per billi	23.57 35.91 RT 23.80 arts per billion ( a 2.5.1 signal-to on (ppb), parts	FLAGS ppb) or proise per
13C12- 13C12- 13C12-1 CLEAN:L 37Cl4-T Flags: U - J - E -	1,2,3,4-T( 1,2,3,4,7, 19 STAN CDD The comp above the The analy calibrated The analy	CDD 8,9-HxCDD DARD DOUND WAS ANA e detection limit fe was detected frange and the fre was detected	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra	NA NA CONC (PPB) 146 of detected at or tions between the tions greater than	NA NA % REC. 89% Definitio CONC DL	QC LIMI A0%-120 ns: - The conce parts per tr - The detect criteria, giv trillion (ppt)	0.80 1.28 <b>S</b> RATIO <b>%</b> NA Intration, given in parts inlion (ppt). ion limit based on a en in parts per billi , or in nanograms	23.57 35.91 RT 23.80 arts per billion ( a 2.5.1 signal-to on (ppb), parts (ng).	Ppb) or ppb) or per
13C12- 13C12- 13C12-1 CLEAN-L 37Cl4-T Flags: U - J - E -	1,2,3,4-T( 1,2,3,4,7, 2)P STAN CDD The comp above the The analy calibrated The analy the calibr	CDD 8,9-HxCDD DARD DARD Dound was and e detection limi r/te was detected f range and the r/te was detected ated range.	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra	NA NA CONC (PPB) 146 of detected at or tions between the tions greater than	NA NA % REC. 89% Definitio CONC DL EMPC	AC LIMIT NA NA AO%-120 ns: - The conce parts per tr - The detect criteria, giv trillion (ppt) - The estima	0.80 1.28 S RATIO % NA htration, given in pri illion (ppt). ion limit based on a en in parts per billi n, or in nanograms ited maximum poss	23.57 35.91 RT 23.80 arts per billion ( a 2.5.1 signal-to on (ppb), parts (ng). sible concentral	FLAGS ppb) or phoise per tion,
13C12- 13C12- 13C12- CLEAN-L 37Cl4-T Flags: U - J - E - B -	2,3,4-T( 1,2,3,4,7, 2)P STAN CDD The comp above the The analy calibrated The analy the calibr the calibr	CDD 8,9-HxCDD DARD DARD Dound was and e detection limi r/te was detected f range and the r/te was detected ated range. r/te was found	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra in the associate	NA NA CONC (PPB) 146 of detected at or tions between the tions greater than d blank.	NA NA % REC. 89% Definitio CONC DL EMPC	AC LIMIT NA NA A0%-120 ns: - The conce parts per tr - The detect criteria, giv trillion (ppt) - The estima which is th	0.80 1.28 <b>S RATIO</b> % NA htration, given in parts illion (ppt). ion limit based on a en in parts per billi o, or in nanograms ited maximum poss e concentration of	23.57 35.91 <b>RT</b> 23.80 arts per billion ( a 2.5.1 signal-tc on (ppb), parts (ng). sible concentrat an interference	Ppb) or p-noise per tion, or
13C12- 13C12- 13C12- CLEAN-L 37Cl4-T Flags: U - J - E - B - D -	1,2,3,4-T( 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7, 1,2,3,4,7,4,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7	CDD 8,9-HxCDD DARD DARD Dound was ana e detection limi rte was detected i range and the rte was detected ated range. rte was found i rte was identifi	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra in the associate ied in the analys	NA NA CONC (PPB) 146 of detected at or tions between the tions greater than d blank.	NA NA % REC. 89% Definitio CONC DL EMPC	AC LIMIT NA NA NA AO%-120 ns: - The conce parts per tr - The detect criteria, giv trillion (ppt) - The estima which is th interferenc	0.80 1.28 <b>S RATIO</b> <b>% NA</b> Intration, given in particular illion (ppt). Ion limit based on a en in parts per billi o, or in nanograms ited maximum pose e concentration of es expressed equil	23.57 35.91 RT 23.80 arts per billion ( a 2.5.1 signal-to on (ppb), parts (ng). sible concentrat an interference valent to an ana	Ppb) or p-noise per tion, or lyte
13C12- 13C12- 13C12- CLEAN-L 37Cl4-T Flags: U - J - E - B - D -	2,3,4-T( ,2,3,4.7, <b>IP STAN</b> CDD The comp above the The analy calibrated The analy the calibr The analy The analy dilution fa	CDD 8,9-HxCDD DARD DARD DOUND WAS ANA e detection limit r/te was detected at range and the r/te was detected ated range. r/te was found r/te was identifi- inctor.	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentrat e detection limit ed at concentrat in the associate ied in the analys	NA NA CONC (PPB) 146 of detected at or tions between the tions greater than d blank. sis at a secondary	NA NA % REC. 89% Definitio CONC DL EMPC	AC LIMIT NA NA NA A0%-120 ns: - The conce- parts per tr - The detect criteria, giv trillion (ppt) - The estima which is th interferenc concentrati	0.80 1.28 <b>S</b> RATIO <b>%</b> NA Intration, given in particular (illion (ppt)) ion limit based on a en in parts per billi i, or in nanograms ited maximum posse e concentration of es expressed equition, given in parts p	23.57 35.91 RT 23.80 arts per billion ( a 2.5.1 signal-to on (ppb), parts (ng). sible concentrat an interference valent to an ana per billion (ppb)	Ppb) or ppb) or proise per tion, or lyte , parts
13C12- 13C12- 13C12- CLEAN-L 37Cl4-T Flags: U - J - E - B - D - S -	2,3,4-T( 2,3,4,7, PSTAN PSTAN CDD The comp above the The analy calibrated The analy the calibr the calibr the calibr the analy the analy dilution fa The analy	CDD 8,9-HxCDD DARD DARD Darb Darb Darb Darb Darb Darb Darb Dar	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra in the associate ied in the analys is, in the opinio	NA NA CONC (PPB) 146 of detected at or tions between the tions greater than d blank. sis at a secondary n of the reviewer, a	NA NA % REC. 89% Definitio CONC DL EMPC	AC LIMI NA NA NA AO%-120 ns: - The concer parts per tr - The detect criteria, giv trillion (ppt) - The estima which is th interferenc concentrati per trillion (	0.80 1.28 <b>S</b> RATIO <b>S</b> RATIO <b>%</b> NA Intration, given in particular (lilion (ppt)) ion limit based on a en in parts per billi or in nanograms ted maximum poss ted maximum poss ted maximum poss ted concentration of es expressed equin on, given in parts p ppt), or in nanograms	23.57 35.91 RT 23.80 arts per billion ( a 2.5:1 signal-to on (ppb), parts (ng). sible concentral an interference valent to an ana per billion (ppb) ims (ng).	Ppb) or ppb) or proise per tion, or lyte , parts
13C12- 13C12- 13C12- CLEAN-L 37Cl4-T Flags: U - J - E - B - D - S -	2,3,4-T( 2,3,4,7, <b>IP STAN</b> <b>CDD</b> The comp above the The analy calibrated The analy the calibr The analy the calibr The analy CDD/Pereception The analy CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Pereception CDD/Perece	CDD 8,9-HxCDD DARD DARD DARD Dard Are was detected ated range and the rare was detected ated range. re was detected ated range. re was found i re was found i re was identifi- inctor. re in question CDF, even tho	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra in the associate ied in the analys is, in the opinio bugh the fragme	NA NA CONC (PPB) 146 of detected at or tions between the tions greater than d blank. is at a secondary in of the reviewer, a int ion due to the loss	NA NA % REC. 89% Definitio CONC DL EMPC RATIO	AC LIMI NA NA NA AO%-120 ns: - The concer parts per tr - The detect criteria, giv trillion (ppt) - The estima which is the interference concentration per trillion ( - The ratio o	0.80 1.28 <b>S</b> RATIO <b>S</b> RATIO <b>%</b> NA Intration, given in particular (illion (ppt)). ion limit based on a en in parts per billi o, or in nanograms ted maximum poss ted maximum poss	23.57 35.91 RT 23.80 arts per billion ( a 2.5:1 signal-to on (ppb), parts (ng). sible concentral an interference valent to an ana per billion (ppb) ims (ng). nass ion areas f	ppb) or proise per tion, or lyte , parts for the
13C12-7         13C12-7         13C12-7         37C14-T         37C14-T         J -         J -         E -         B -         D -         S -	2,3,4-T( 2,3,4,7, 3P STAN CDD The comp above the The analy calibrated The analy the calibr the calibr the calibr the analy the analy dilution fa The analy cDD/P( of COC) of	CDD 8,9-HxCDD DARD DARD DARD DARD DARD Cound was ana e detection limit fe was detected ated range and the fe was detected ated range. fe was detected ated range. fe was found i fe was identifi- actor. fe in question CDF, even tho did not meet th	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentrative e detection limit ed at concentrative in the associate led in the analys is, in the opinio bugh the fragme he signal- to-noi	NA NA CONC (PPB) 146 146 146 146 146 146 146 146 146 146	NA NA % REC 89% Definitio CONC DL EMPC RATIO	AC LIMI NA NA NA A0%-120 ns: - The conce parts per tr - The detect criteria, giv trillion (pt) - The estima which is th interferenc concentrati per trillion ( - The ratio o confirmatio	0.80 1.28 <b>S</b> RATIO <b>S</b> RATIO <b>%</b> NA Intration, given in particular (pt). Intration, given in particular (pt). Intration (pt). Intration (pt). Intra	23.57 35.91 RT 23.80 arts per billion ( a 2.5.1 signal-to on (ppb), parts (ng). sible concentral an interference valent to an ana per billion (ppb) ms (ng). nass ion areas f ions.	ppb) or p-noise per tion, or lyte , parts for the
13C12- 13C12- 13C12- 37Cl4-T 37Cl4-T J - J - E - B - D - S - X -	2,3,4-T( 1,2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7,7, 2,4,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,	CDD 8,9-HxCDD DARD DARD DARD DOUND WAS ANA e detection limit fe was detected frange and the fe was detected ated range. re was found in fe was identification cter was identification cter and the second in the was identification cter and the second in the second the second the second conditional second the second the second conditional second the seco	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra in the associate led in the analys is, in the opinio pugh the fragme he signal- to-noi peaks were obse	NA NA CONC (PPB) 146 146 146 146 146 146 146 146 146 146	NA NA % REC. 89% Definitio CONC DL EMPC 1 RATIO	AC LIMI NA NA NA A A0%-120 ns: - The concer parts per tr - The detect criteria, giv trillion (ppt) - The estima which is th interferenci concentrati per trillion ( - The ratio o confirmatio - The retenti	0.80 1.28 <b>S</b> RATIO <b>S</b> RATIO <b>%</b> NA Intration, given in parts illion (ppt). ion limit based on a en in parts per billi i, or in nanograms ted maximum pose e concentration of es expressed equir on, given in parts p ppt), or in nanograms f the low- to high-m n and quantitation on time of an analy	23.57 35.91 RT 23.80 arts per billion ( a 2.5:1 signal-to on (ppb), parts (ng). sible concentrat an interference valent to an ana per billion (ppb) ms (ng). nass ion areas f ions. te, given decim	Ppb) or ppb) or proise per tion, or lyte , parts for the al minutes.
13C12- 13C12- 13C12- 37Cl4-T 37Cl4-T J - J - E - B - D - S - X -	2,3,4-T( 1,2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7, 2,4,7,7,7, 2,4,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,	CDD 8,9-HxCDD DARD DARD DARD DOUND WAS ANA e detection limit fe was detected frange and the fe was detected ated range. fe was detected ated range. fe was detected ated range. fe was identification for a substitution for a	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra in the associate led in the analys is, in the opinio bugh the fragme he signal- to-noi beaks were obse nay obscure othe	NA NA CONC (PPB) 146 146 146 146 146 146 146 146 146 146	NA NA NA 89% Definitio CONC DL EMPC RATIO 1 RT S. NO	AC LIMI NA NA NA A A0%-120 ns: - The concer parts per tr - The detect criteria, giv trillion (ppt) - The estima which is the interference concentrati per trillion ( - The ratio o confirmatio - The retenti - The total m	0.80 1.28 <b>S</b> RATIO <b>S</b> RATIO <b>%</b> NA Intration, given in parts illion (ppt). ion limit based on a en in parts per billi i, or in nanograms ted maximum pose e concentration of es expressed equir on, given in parts p ppt), or in nanograms f the low- to high-m n and quantitation on time of an analy umber of peaks ide	23.57 35.91 RT 23.80 arts per billion ( a 2.5:1 signal-to on (ppb), parts (ng). sible concentrat an interference valent to an ana per billion (ppb) ims (ng). nass ion areas f ions. te, given decimentified as analy	Ppb) or ppb) or proise per tion, or lyte , parts for the al minutes. tes
13C12- 13C12- 13C12- 37Cl4-T Flags: U - J - E - B - D - S - X - Y -	2,3,4-T( 1,2,3,4,7, 2,3,4,7, 2,3,4,7, 2,3,4,7, 2,4,4,7, 2,4,4,7, 2,4,4,7,4,7,4,7,4,7,4,7,4,7,4,7,4,7,4,7,	CDD 8,9-HxCDD DARD DARD DOUND WAS ANA e detection limit re was detected frange and the rete was detected ated range rete was detected ated range rete was identifi- actor che was identifi- actor cDF, even tho did not meet the event peak or p window that m very of the indi	332/334 402/404 IONS 32B/NA alyzed for but no it. ed at concentra e detection limit ed at concentra in the associate ied in the analys is, in the opinio bugh the fragme he signal- to-noi beaks were obse nay obscure othe icated standard	NA NA CONC (PPB) 146 146 146 146 146 146 146 146 146 146	NA NA 89% Definitio CONC DL EMPC RATIO	AC LIMI NA NA NA A A A A A A A A A A A A A A A	0.80 1.28 <b>S</b> RATIO <b>S</b> RATIO <b>S</b> NA Intration, given in parts illion (ppt). ion limit based on a en in parts per billi i, or in nanograms ted maximum pose e concentration of es expressed equiv on, given in parts p ppt), or in nanograms f the low- to high-rr n and quantitation on time of an analy umber of peaks ide etention time window	23.57 35.91 RT 23.80 arts per billion ( a 2.5:1 signal-to on (ppb), parts (ng). sible concentrat an interference valent to an ana oper billion (ppb) ims (ng). mass ion areas f ions. te, given decim entified as analy pw.	Ppb) or ppb) or proise per tion, or lyte , parts for the al minutes. tes

TRIANCLE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341 Page 41

PROJECT:	P013082	PCDD/PCD	OF TOXICIT	Y EQUIN	ALENTS	REPORT
BATCH:	B001025S		· .	5	SAMPLE: D	FBLK102
FILE:	MA03211		<b>.</b>		· · · · · ·	BLAN
	39855		CIED: NA	AC	CESSION NO: DEB	LK
ROJECT DO	532				CONCAL MAD	13201
	B0010255		7FD 3/11/94		ICAL 1000	1074
	SOIL	DATE PROCE	SSED 3/14/94		INSTRUMENT HP	MSD A
SAMPLE SIZE	3.04 G	DETECTION	IMIT EDI		GC COLUMN DB-	5 0.25 mm
DILUTION FACTOR	a <b>1</b> .	METHOD	8280	G	C COLUMN SN #36	
			an de la company de la com			
SPECIFIC ANAL	/TES	CONC (PPB)	TEF	TEF-AD	JUSTED CONC (P	PB)
SPECIFIC ANAL 2,3,7,8-TCDD 1,2,3,7,8-PeCDE	(TES	CONC (PPB) ND ND	<b>TEF</b> ★ 1 ★ 0.5	TEF-AD = =	JUSTED CONC (P	PB)
2,3,7,8-TCDD 1,2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE	TES	CONC (PPB) ND ND	TEF × 1 × 0.5 × 0.1	TEF-AD = = =	JUSTED CONC (P	PB)
5PECIFIC ANAL 2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE 1,2,3,6,7,8-HxCE	(TES )) )D )D	CONC (PPB) ND ND ND ND	×         1           ×         0.5           ×         0.1           ×         0.1	TEF-AD = = =	JUSTED CONC (P	PB) () () () () () () () () () () () () ()
SPECIFIC ANALY 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCI 1,2,3,6,7,8-HxCI 1,2,3,7,8,9-HxCI 1,2,3,7,8,9-HxCI	/TES	CONC (PPB) ND ND ND ND ND	×         1           ×         0.5           ×         0.1           ×         0.1           ×         0.1	TEF-AD = = = =	JUSTED CONC (P	PB) () () () () () () () () () () () () ()
SPECIFIC ANAL 2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE 1,2,3,6,7,8-HxCE 1,2,3,7,8,9-HxCE 1,2,3,4,6,7,8-Hp 0CDD	/TES ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	CONC (PPB) ND ND ND ND ND ND ND	×         1           ×         0.5           ×         0.1           ×         0.1           ×         0.1           ×         0.1           ×         0.01           ×         0.01	TEF-AD = = = = =	JUSTED CONC (P	PB)
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCD 1,2,3,4,7,8-HxCD 1,2,3,6,7,8-HxCD 1,2,3,7,8,9-HxCD 1,2,3,4,6,7,8-Hp OCDD	YTES	CONC (PPB) ND ND ND ND ND ND ND ND ND	×         1           ×         0.5           ×         0.1           ×         0.1           ×         0.1           ×         0.1           ×         0.1           ×         0.1           ×         0.1           ×         0.01           ×         0.01	TEF-AD = = = = = =	JUSTED CONC (P	PB)
2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE 1,2,3,6,7,8-HxCE 1,2,3,7,8,9-HxCE 1,2,3,4,6,7,8-Hp 0CDD 2,3,7,8-TCDF	TES DD DD DD DD CDD	CONC (PPB) ND ND ND ND ND ND ND ND ND	TEF × 1 × 0.5 × 0.1 × 0.1 × 0.1 × 0.01 × 0.01 × 0.01 × 0.01	TEF-AD = = = = = = =	JUSTED CONC (P	PB)
2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE 1,2,3,6,7,8-HxCE 1,2,3,7,8,9-HxCE 1,2,3,4,6,7,8-Hp OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF	TES	CONC (PPB) ND ND ND ND ND ND ND ND ND ND	TEF × 1 × 0.5 × 0.1 × 0.1 × 0.1 × 0.01 × 0.001 × 0.001 × 0.05	TEF-AD = = = = = = = = = = = = = = = = = = =	JUSTED CONC (P	PB)
SPECIFIC ANALY 2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE 1,2,3,4,7,8-HxCE 1,2,3,7,8,9-HxCE 1,2,3,7,8,9-HxCE 1,2,3,7,8-PHXCE 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	CTES	CONC (PPB) ND ND ND ND ND ND ND ND ND ND ND ND ND	TEF × 1 × 0.5 × 0.1 × 0.1 × 0.1 × 0.01 × 0.001 × 0.001 × 0.05 × 0.5	TEF-AD = = = = = = = = = = = = = = = = = = =	JUSTED CONC (P	PB)
SPECIFIC ANALY 2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCI 1,2,3,6,7,8-HxCI 1,2,3,7,8,9-HxCI 1,2,3,7,8,9-HxCI 1,2,3,7,8-PHXCI 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCI	ATES	CONC (PPB) ND	×     1       ×     0.5       ×     0.1       ×     0.1       ×     0.01       ×     0.01       ×     0.001       ×     0.001       ×     0.05       ×     0.1	TEF-AD = = = = = = = = = = = = = = =	JUSTED CONC (P	PB)
SPECIFIC ANALY 2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE 1,2,3,6,7,8-HxCE 1,2,3,7,8,9-HxCE 1,2,3,7,8,9-HxCE 1,2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,6,7,8-HxCE 1,2,3,6,7,8-HxCE	CTES	CONC (PPB) ND	×     1       ×     0.5       ×     0.1       ×     0.1       ×     0.1       ×     0.01       ×     0.01       ×     0.01       ×     0.01       ×     0.05       ×     0.1       ×     0.05       ×     0.1       ×     0.1	TEF-AD	JUSTED CONC (P	PB)
2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,4,7,8-HxCE 1,2,3,4,7,8-HxCE 1,2,3,6,7,8-HxCE 1,2,3,7,8,9-HxCE 1,2,3,4,6,7,8-HxCE 1,2,3,7,8-PeCDF 2,3,7,8-PeCDF 1,2,3,4,7,8-HxCE 1,2,3,6,7,8-HxCE 1,2,3,6,7,8-HxCE 1,2,3,4,6,7,8-HxCE	CTES	CONC (PPB) ND	×     1       ×     0.5       ×     0.1       ×     0.1       ×     0.1       ×     0.01       ×     0.01       ×     0.01       ×     0.01       ×     0.01       ×     0.05       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1	TEF-AD	JUSTED CONC (P	PB)
SPECIFIC ANALY 2,3,7,8-JCDD 1,2,3,7,8-PeCDE 1,2,3,7,8-PeCDE 1,2,3,7,8-PeCDE 1,2,3,7,8-PHxCE 1,2,3,7,8-9-HxCE 1,2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1,2,3,7,8,9-PECDF 1	CTES	CONC (PPB)	×     1       ×     0.5       ×     0.1       ×     0.1       ×     0.1       ×     0.01       ×     0.01       ×     0.001       ×     0.05       ×     0.1       ×     0.05       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1	TEF-AD = = = = = = = = = = = = = = = = = = =	JUSTED CONC (P	PB)
SPECIFIC ANALY 2,3,7,8-TCDD 1,2,3,7,8-PeCDE 1,2,3,7,8-PeCDE 1,2,3,7,8-PeCDE 1,2,3,7,8-9-HxCI 1,2,3,7,8-9-HxCI 1,2,3,7,8-PeCDF 2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF 1,2,3,4,7,8-PECDF	CTES	CONC (PPB) ND	×     1       ×     0.5       ×     0.1       ×     0.1       ×     0.1       ×     0.01       ×     0.01       ×     0.01       ×     0.05       ×     0.5       ×     0.5       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1       ×     0.1	TEF-AD = = = = = = = = = = = = = = = = = = =	JUSTED CONC (P	PB)

# TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

СĘ!

Definitions:

**CONC** – The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

TEF – The toxicity equivalency factors, adopted from the 1989 international values.

TRIANALE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

		KIB	ER EN	VIRONME	NTAL S	ERVICES
PROJECT:	P013082	· · · · · · · · · · · · · · · · · · ·	PCDE	PCDF AN	ALYSIS	REPORT
BATCH:	B001024S			SA		B-10-1 5-4
FILE:	MA03208			0/1		-
			। जनसंख्यान्द्रस्य हेल्	NARSON NET A		
QUOTE NO:	39856	DATE COLLECTE	D: <u>3/2/94</u>	ACCI	SSION NO: 26-9	5-1
PROJECT ID:	854 140310	DATE RECEIVED	3/3/94		RETCHECK MAC	3201
PROJECT P.O	532	DATE EXTRACTE	D <u>3/3/94</u>		CONCAL MAG	3200
SAMPLE ORIGIN	B001024S	DATE ANALYZED:	3/11/94		ICAL 1000	107A
SAMPLE MATRIX:	SOIL	DATE PROCESSE	D: 3/15/94	💼 🖓 🖓 👘 🖓 🚺	STRUMENT HP	MSD A
SAMPLE SIZE:	<u>9.81691</u> G	DETECTION LIMIT	MDL	<u> </u>	C COLUMN DB-	5 0.25 mm
DILUTION FACTOR	. <u>1</u>	METHOD	8280	GC (	OLUMN SN: # 3	$\underline{\mathcal{I}}$
	<u>a alli di menala sectet</u> r				67 311¢/	ALGER OF THE
SPECIFIC ANALY	TES		01 /0001	FMOC (DDB)		(min) FLACE
GREOTIN ANALT		JUNU (FFD)	OUL(FED)			(min) FLAGS
2 3 7 8-TCDD	320/322	ND	0.07			
1.2.3.7.8-PeCDD	356/358	ND	0.12	<u>. et 121.000, 100.00 (2</u>	<u></u> -	- U
123478-HxCE	D 390/392	ND	0.2			<u></u>
1.2.3.6.7.8-HxCC	DD 390/392	ND	0.1		<u>-</u>	- U
1 2 3 7 8 9-HxCE	D 390/392	ND	0.17		<u> </u>	****** <b>U</b>
1.2.3.4.6.7.8-Hp	CDD 424/426	ND	0.2	-		- U
OCOD	458/460	ND	0.27	•		
				······		
2,3,7,8-TCDF	304/306	ND	0.061	-		- U
1,2,3,7,8-PeCDF	340/342	ND	0.096	-	_	,- U
2,3,4,7,8-PeCDF	340/342	ND	0.1			~ U
1,2,3,4,7,8-HxCE	DF 374/376	ND	0.11			- U
1,2,3,6,7,8-HxCD	)F 374/376	ND	0.088			- V
2,3,4,6,7,8-HxCE	DF 374/376	ND	0.16	-	-	- U
1,2,3,7,8,9-HxCE	)F 374/376	ND	0.21			
1,2,3,4,6,7,8-Hp0	CDF 408/410	ND	0.17.	-	-	- U
1,2,3,4,7,8,9-Hp	CDF 408/410	ND	0.18			4.800 CU
OCDF	442/444	ND	0.33	-	-	- <u> </u>
						•
TOTAL ANALYTE	S NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDOW (	min) FLAGS
TOTAL COD	<u> </u>	ND NC	0.07	4,99	21.14 - 24.9	X
TOTAL PeCUD	U		0.12	5.39	20.73 - 30.	
TOTAL HEOD	<u> </u>	ND NO	<u> </u>		33:05 - 35.	
	U 		U.2	-	30.00 - 39.5	
TOTAL TODE	<u></u>		0.06	0.0764	20.06 25.0	
TOTAL ICUP	U 			0.0764	20.00 - 20.0	
TOTAL HUODE	<u> </u>		0.21	<u></u>	23.08 - 30.0	
TOTAL HXUDE	U 0		0.21	- •	31.90 - 30.	
I UTAL HOUL	<u> </u>	INL)	U.18	V. <b>DO</b> (	30.41 - 40.	<b>NO</b> > <b>A</b>

NOTE: Concentrations, EMPCs, and EDLs are calculated on a DRY weight basis.

Reviewed by: MARK JONES 3/15/94

13

TRIANCLE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

# KIBER ENVIRONMENTAL SERVICES PROJECT: P013082 PCDD/PCDF QUALITY CONTROL REPORT BATCH: B001024S SAMPLE: TSB-10-1.5-4 FILE: MA03208

QUOTE NO:	39856 DATE COLLECTED	3/2/94 ACCESSION NO:	26-95-1
PROJECT ID:	854 140310 DATE RECEIVED:	3/3/94 RETCHECK:	MA03201
PROJECT P.O.	532 DATE EXTRACTED	3/3/94 CONCAL:	MA03200
SAMPLE ORIGIN	B001024S DATE ANALYZED	3/11/94 ICAL:	1000107A
SAMPLE MATRIX	SOIL DATE PROCESSEI	3/15/94 INSTRUMENT	HP MSD A
SAMPLE SIZE	9.81691 G DETECTION LIMIT	MDL GC COLUMN	DB-5 0.25 mm
DILUTION FACTOR:	1 METHOD	8280 GC COLUMN SN	# 37
	ta ka sa mula ka sa	ि <u>स्टिल</u> े 🕹 🖓 आ	ITTI Y DE BANAN

## INTERNAL STANDARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

13C12-2,3,7,8-TCDF	316/318	4.49	88%	40%-120%	0.82	22.99	
13C12-2,3,7,8-TCDD	332/334	4.56	90%	40%-120%	0.79	23.75	-
13C12-1,2,3,6,7,8-HxCDD	402/404	4.14	81%	40%-120%	1.28	35.39	ist e <del>n</del> disk
13C12-1,2,3,4,6,7,8-HpCDF	420/422	5.28	52%	40%-120%	0.92	38.47	-
13C12-OCDD	470/472	4.23	42%	25%-120%	0.91	43 89	-

### RECOVERY STANDARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

13C12-1,2,3,4-TCDD 332/334	NA	NA	NA	0.80	23.54	
13C12-1,2,3,4,7,8,9-HxCDD 402/404	NA	NA	NA	1.20	35.90	-
	and the second second second	vede uit, dat ein die gedaart totel dat, een	Ne Sandrich Saleria	The actual offering and a	69. mentalar	5

CLEAN-UP STANDARD IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

37CI4-TCDD 328/NA 2.22 87% 40%-120% NA 23.77 -

#### Flags:

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

- **CONC** The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).

EMPC - The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).

- **RATIO** The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.
  - NO The total number of peaks identified as analytes within the retention time window.

% REC - The percent recovery of the indicated standard.

# TRIANALE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

		K	IBER	ENVIRO	NMENTA	<b>SERVICES</b>
PROJECT:	P013082	PCDD/PC	DF TO)	(ICITY EC	QUIVALEN	TS REPORT
BATCH: FILE:	B001024S MA03208				SAMPLE:	TSB-10-1.5-4
QUOTE NO: PROJECT ID: PROJECT P.O. SAMPLE ORIGIN SAMPLE MATRIX: SAMPLE SIZE DILUTION FACTOR	39856 854 140310 532 8001024S SOIL 9.81691 C 1	DATE COLLE DATE RECEI DATE EXTR/ DATE ANALY DATE PROC DETECTION METHOD	ECTED 3/2/94 VED 3/3/94 ACTED 3/3/94 (ZED: 3/11/6 ESSED 3/15/6 LIMIT: MDL 8280	4 4	ACCESSION NO RETCHECK CONCAL ICAL INSTRUMENT GC COLUMN SN	26-95-1 MA03201 MA03200 1000107A HP MSD A DB-5 0.25 mm #
SPECIFIC ANAL	/TES	CONC (PPB)	1	EF	EF-ADJUSTED CO	NC (PPB)
2,3,7,8-TCDD		ND	×	1 <u> </u>		
1,2,3,7,0-PECDL	י אראי מייאנע מיילי אראי מ <b>רו</b> ר		 	.o ~ 	· -	anderski se of the Alice Alice
	<u>ר היא אין אייר די</u> חר	ND	<u> </u>	<u> </u>	<u>a a alat do 10 400 8004</u> •	
123789-HXC	<u>מ</u> נ	NĎ	× ~ ~ õ	•	****	
1234678-Hp		ND	× 0	01 =	<u> </u>	
OCDD		ND	× 01	>01 =		
2,3,7,8-TCDF		ND	<u> </u>	1		
1,2,3,7,8-PeCDF		ND	× 0.	05 =	. <b>-</b>	
2,3,4,7,8-PeCDF		ND	× 0	5 =	· · · · · · · · · · · · · · · · · · ·	
1,2,3,4,7,8-HxCL	)F	ND	× C	.1 =	-	
1,2,3,6,7,8-HxCE	)F	ND	× 0	1 =		
2,3,4,6,7,8-HxCE	DF	ND	<u> </u>	1 =	-	
1,2,3,7,8,9-HxCE	<b>)</b> F	ND	* 0	1 =		
1,2,3,4,6,7,8-Hp	CDF	ND	<u>× 0.</u>	01 =	- 	
1,2,3,4,7,8,9-Hp		ND	<u> </u>	U1 =	<u></u>	
		ND	× 0,0		- - 	
	antiningal sup (Author) (sp.			aperend defended. T		

## TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - **TEF** The toxicity equivalency factors, adopted from the 1989 international values.

# TRIANCLE LADS

## 12823 Park One Drive • Sugar Land, Texas 7,7478

Phone: (800) 765-9026 • FAX: (713) 240-5341

02.47 PM 3/15/94

PROJECT: P013	082		PCDD	/PCDF /	ANALYS	IS REF	PORI
	0245				SAMPLE	TSR.	68-2-
	0243		• • •		SAMPL	130-	-2-00
ILE: MAU	3209						
		1. That is and the construction of the state of the			<u></u>		
UQTE NO: 39856		DATE COLLECTED	): 3/2/94		CCESSION NO	26-95-3	den se
ROJECT ID: 854 140	310	DATE RECEIVED	3/3/94		RETCHECK	MA03201	
ROJECT P O 532		DATE EXTRACTED	3/3/94		CONCAL	MA03200	
AMPLE ORIGIN: B001024	15	DATE ANALYZED:	3/11/94		ICAL	1000107A	
AMPLE MATRIX SOIL		DATE PROCESSE	D. 3/15/94		INSTRUMENT	HP MSD A	
AMPLE SIZE: 8.90506	G S S S	DETECTION LIMIT	MDL		GC COLUMN	DB-5	0.25 mm
ILUTION FACTOR: 1		METHOD	8280	T	3C COLUMN SN	#37	an a
	nn _{en} nés <mark>260 (</mark>				31	164	valiti și
	IONS	CONC (PPB)	DL (PPB)	EMPC (PPB)	RATIO	RT (min)	FLAGS
2.2.7.0.TCOD			<u> </u>	and the states of the state			
2,3,7,8-1000	320/322	ND	0.12		÷	<u>(11)                                     </u>	
1,2,3,7,8-PECDD	300/308		0.13	<del>-</del> रे. र काल र एक्स क	- 11	- 	<u> </u>
1,2,3,4,7,8-HXCDD	390/392	ND	0.22		<u>alagie = (184</u> )	<u></u>	<u> </u>
1,2,3,6,7,8-HxCDD	390/392		0.11	- 	-	- Contractorem	U
1,2,3,7,8,9-HXCDD	424/426		0.19				<u> </u>
	458/460	1.56	0.22	-	- 077	43.92	<u> </u>
			<u></u>		<u></u>		
2,3,7,8-TCDF	304/306	ND	0.067				ິບ
1,2,3,7,8-PeCDF	340/342	0.177	0.11	•	1 43	28.07	J
2,3,4,7,8-PeCDF	340/342	0.618	0.11		1.40	29.12	<u></u>
1,2,3,4,7,8-HxCDF	374/376	3.59	0.12	-	1.25	34.00	
1,2,3,6,7,8-HxCDF	374/376	ND	0.097	<u> </u>			<u> </u>
2,3,4,6,7,8-HxCDF	374/376	1.74	0.18		1.13	35.10	J.
1,2,3,7,8,9-HxCDF	374/376	ND	0.23	<u> </u>			<u> </u>
1,2,3,4,6,7,8-HpCDF	408/410	8.91	0.18		1.08	38.49	<u>-</u>
1,2,3,4,7,8,9-HpCDF	408/410	ND	0.2		<u> </u>	-	U
OCDF	442/444	0.771	0.37	-	0.80	44.12	J
	<u> </u>			<u> </u>	<u> </u>	<u>- Xix (1872)</u>	
OTAL ANALYTES	NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB	RT WIND	OW (min)	FLAGS
TOTAL TCDD	0	ND	0.08	0.434	21.17 -	25.01	X
TOTAL PeCDD	0	ND	0.13	15.3	26.77 -	- 30.60	X
TOTAL HXCOD	D	ND	0.22	1.63	33.07 -	- 36.00	X
TOTAL HpCDD	0	ND	0.22		38.63 -	- 39.99	U
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				<u>.</u>		1	23722
TOTAL TCDF	0	ND	0.07	0.511	20.08 -	- 25.08	X
TOTAL PeCDF	4	2.26	0.11	2.54	25.12 -	- 30.85	
TOTAL HxCDF	3	15.9	0.23	16.5	31.98 -	- 36.61	
TOTAL LA CONT		<u> </u>					

NOTE: Concentrations, EMPCs, and EDLs are calculated on a DRY weight basis.

Reviewed by: MARK JONES 3/15/94





Page 44

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

# PROJECT:P013082PCDD/PCDF QUALITY CONTROL REPORTBATCH:B001024SSAMPLE:TSB-68-2-4FILE:MA03209-

QUOTE NO:	39856 DATE COLLECTED	3/2/94 ACCESSION NO:	26-95-3
PROJECT ID:	854 140310 DATE RECEIVED:	3/3/94 RETCHECK:	MA03201
PROJECT P.O.:	532 DATE EXTRACTED	3/3/94 CONCAL	MA03200
SAMPLE ORIGIN	B001024S DATE ANALYZED:	3/11/94 ICAL	1000107A
SAMPLE MATRIX:	SOIL DATE PROCESSED	: 3/15/94 INSTRUMENT	HP MSD A
SAMPLE SIZE:	8.90506 G DETECTION LIMIT:	MDL GC COLUMN	DB-5 0.25 mm
DILUTION FACTOR	1. METHOD	8280 GC COLUMN SN	#37
		γ s	1519.4. Commerciae

INTERNAL	STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT FLA	GS
								·
13C12-2,3	1,7,8-TCDF	316/318	5.33	95%	40%-120%	0.89	- 23.02	
13C12-2,3	3,7,8-TCDD	332/334	6	107%	40%-120%	0.75	23.79 -	-
13C12-1,2	2,3,6,7,8-HxCDD	402/404	5.11	91%	40%-120%	1.29	35.42 -	
13C12-1,2	2,3,4,6,7,8-HpCDI	F 420/422	6.96	62%	40%-120%	1.08	38.49 -	-
13C12-OC	CDD	470/472	3.87	35%	25%-120%	0.92	43.93 -	

RECOVERY STANDARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

 13C12-1,2,3,4-TCDD
 332/334
 NA
 NA
 NA
 0.82
 23.57

 13C12-1,2,3,4,7,8,9-HxCDD
 402/404
 NA
 NA
 NA
 1.26
 35.93

CLEAN-UP STANDARD IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

37Cl4-TCDD 328/NA 2.84 101% 40%-120% NA 23.82 -

#### Flags:

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).

EMPC - The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).

**RATIO** – The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.

RT - The retention time of an analyte, given decimal minutes.

NO - The total number of peaks identified as analytes within the retention time window.

% REC - The percent recovery of the indicated standard."

# TRIANCLE LADS

## 12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

PROJECT: P0130 BATCH: B0010 FILE: MA03 QUOTE NO: 39856 PROJECT ID: 854 1403 PROJECT ID: 854 1403 PROJECT PO: 532 SAMPLE ORIGIN B0010243 SAMPLE ORIGIN B0010243 SAMPLE SIZE: 8.90506 DILUTION FACTOR 1. SPECIFIC ANALYTES 2;3,7,8-TCDD 1,2,3,7,8-PeCDD	082 PCDD/PCI 024S 209 DATE COLLE DATE COLLE DATE RECEI DATE EXTRA S DATE ANALY	DF TOXICIT	Y EQUIVALEN SAMPL	TS REPORT .E: TSB-68-2-4 -
BATCH: B001( FILE: MA03	D24S 209 DATE COLLE DATE COLLE DATE RECEI DATE EXTRA S DATE ANALY	ECTED: 3/2/94		.E: TSB-68-2-4
QUOTE NO:         39856           PROJECT ID:         854 1403           PROJECT P O:         532           SAMPLE ORIGIN         B0010241           SAMPLE MATRIX:         SOIL           SAMPLE SIZE:         8.90506           DILUTION FACTOR         1.           SPECIFIC ANALYTES         2;3,7;8-TCDD           1,2,3,7;8-PCDD         1,2,3,7,8-PCDD	DATE COLLE DATE COLLE DATE RECEI DATE EXTRA S DATE ANALY	CTED: 3/2/94	ACCESSION N	
<b>SPECIFIC ANALYTES</b> 2;3,7;8-TCDD 1,2,3,7,8-PeCDD	G DATE PROCI G DETECTION METHOD	ACTED 3/3/94 (ZED: 3/11/94 ESSED: 3/15/94 LIMIT: MDL 8280	RETCHEC CONCA ICA INSTRUMEN GC COLUM GC COLUMN S	D: 28-95-3 K: MA03201 L: MA03200 L: 1000107A HP MSD A HN: DB-5 0.25 mm SN: #
1,2,3,7,8-PeCDD	CONC (PPB)	) TEF	TEF-ADJUSTED CO	DNC (PPB)
	ND	× 0.5		
123478-HxCDD	ND	× 0.1		
1,2,3,6,7,8-HxCDD	ND	× 0.1	=	
1,2,3,7,8,9-HxCDD	ND	× 0.1		
1,2,3,4,6,7,8-HpCDD	ND	× 0.01		
	1.56	× 0.001	= 0.0016	<u> 1886 - 1886 - 199</u>
2,3,7,8-TCDF	ND	0.1	-	
1,2,3,7,8-PeCDF	0.177	× 0.05	= 0.0089	
2,3,4,7,8-PeCDF	0.616	× 0.5	= 0.31	
1,2,3,4,7,8-HxCDF	3.59	× 0.1	= 0.36	
1,2,3,6,7,8-HxCDF	ND	× 0.1	= -	
2,3,4,6,7,8-HxCDF	1.74	× 0.1	_ =0.17	
1,2,3,7,8,9-HxCDF	ND	× 0.1	=	
1,2,3,4,6,7,8-HpCDF	8.91	× 0.01	= 0.089	
1,2,3,4,7,8,9-HpCDF	· · · · · · · · · · · · · · · · · · ·	× 0.01		
OCDF	ND			2 Second Charles and Second States (Second

## TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 0.94 PPB

**Definitions:** 

**CONC** – The concentration, given in parts per billion (ppb) or - parts per trillion (ppt).

**TEF** – The toxicity equivalency factors, adopted from the 1989 international values.

# TRIANCLE LABS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

		KIBER ENVIRONMENTAL SERVICES					
PROJECT:	P013082		PCDD	PCDF AN	ALYSIS	REPORT	
DATCU	D0040250			· · ·			
BAICH:	B0010255			3	SAIVIPLE: I	28-00-0-0	
FILE:	HH06436						
		Ne astrony zakol					
QUOTE NO	39856	DATE COLLECT	ED: 3/2/94	ACC	ESSION NO: 26-9	5-2	
PROJECT ID:	854 140310	DATE RECEIVE	D: <u>3/3/94</u>	<u>- an </u>	RETCHECK HHO	5432	
PROJECT P O	532	DATE EXTRACT	FED: 3/5/94	<u>-</u>	CONCAL HHO	3431	
SAMPLE ORIGIN	GA	DATE ANALYZE	D: <u>3/11/94</u>	· · · · · · · · · · · · · · · · · · ·	ICAL 1000	105H	
SAMPLE MATRIX	SOIL	DATE PROCES	SED. 3/14/94		ISTRUMENT VG 7	OH	
SAMPLE SIZE:	<u>3.09</u> G	DETECTION LIN	AIT: EDL		GC COLUMN: DB-5	0.25 mm	
DILUTION FACTOR	2 <u>11030,5766,66</u>	METHOD:	8280	GC	COLUMN SN: #36	1	
1949,23777777777777777777777777777777777777	<u> </u>	<u></u>		ny na kata <u>a</u> <u>a</u> A.			
SPECIFIC ANALY	TES IONS			FMDC (DDD)			
CILCHIC MINAL	10143	JUNU (FFD)	VL (EED)	LINE V (EFD)		many PEAGO	
2 3 7 8-TCDD	320/322	ND	18	-		The second second	
1.2.3.7.8-PeCDD	) 356/358	ND	45	-	-	- U	
1 2 3 4 7 8-HxC	DD 390/392	ND	16				
1.2.3.6.7.8-HxC	DD 390/392	ND	14	<u></u>	-	- U	
1 2 3 7 8 9-HxC	D 390/392	ND	16				
1.2.3.4.6.7.8-Hp	CDD 424/426	ND	24	- -	-	- U	
OCOD	458/460	ND	18	•		- 4 3 8 6 2 U 2 5 7 1	
ing and a state of the	· · · · · · · · · · · · · · · · · · ·		······································			· · · · · · · · · · · · · · · · ·	
2,3,7,8-TCDF	304/306	ND	11			- <u> </u>	
1,2,3,7,8-PeCDF	340/342	ND	20	-	-	- U	
2,3,4,7,8-PeCDF	340/342	ND	24	•			
1,2,3,4,7,8-HxCE	DF 374/376	ND	12	-	. –	- U	
1,2,3,6,7,8-HxCE	DF 374/376	ND	10				
2,3,4,6,7,8-HxCE	OF 374/376	ND	11	-	-	- U	
1,2,3,7,8,9-HxCE	OF 374/376	ND	13	-		- U	
1,2,3,4,6,7,8-Hp	CDF 408/410	ND	16	•	-	- U	
1,2,3,4,7,8,9-Hp	CDF 408/410	ND	20	÷		- U	
OCDF	442/444	ND .	13	-	-	- U	
						한 제외 수도 관계에 가 관람	
TOTAL ANALYTE	S NUMBEI	K CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDOW (1	nin) FLAGS	
TOTAL	<u></u>	1. COM	48 88	10 I	<u></u>	ere en el el en Sen di si el el	
TOTAL LCDD	<u></u>	ND	18.00	40.4	21,03 - 25.5		
TOTAL PECUD	U		45	-	21.33 - 31.2	0 U	
TOTAL HEODO	<u> </u>	ND ND			33.50 - 30./ 20.59 44 0	<b>3</b>	
	U	UNI		- • 1938 - 2039 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019	39.08 - 41.0	u U	
TOTAL TODE		ND	11 00		20.50 25 6	<u>are 5 1 - 12 A 6 14</u>	
TOTAL ICUP	U		11.00	- 	20.00 - 20.0	S U	
TOTAL HUCDE	<u></u>	18.6	12	-	32 72 - 27 4	2	
TOTAL HACDE	<u>ا</u>		10 00	- 	32.72 - 37.4	∠ - Ωrove s contractions	
		이 것이 같아요. 이 것 같아요. 것 같아?	<b>_</b>			<b>a</b>	

NOTE: Concentrations, EMPCs, and EDLs are calculated on a WET weight basis.

Reviewed by: ALEX VILLALOBOS 3/14/94

TRIANICUE LABS

## 12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

. 02:47 PM 3/15/94

# KIBER ENVIRONMENTAL SERVICESPROJECT: P013082PCDD/PCDF QUALITY CONTROL REPORTBATCH:B001025SSAMPLE: TSB-68-6-8FILE:HH06436-

QUOTE NO:	39856 DATE COLLECTED: 3/2/94 ACCESSION NO: 26-95-2
PROJECT ID.	854 140310 DATE RECEIVED: 3/3/94 RETCHECK: HH06432
PROJECT P.O.:	532 DATE EXTRACTED: 3/5/94 CONCAL: HH06431
SAMPLE ORIGIN	GA DATE ANALYZED: 3/11/94 ICAL ID00105H
SAMPLE MATRIX.	SOIL DATE PROCESSED: 3/14/94
SAMPLE SIZE:	3.09 GCCOLUMN DB-5 0.25 mm
DILUTION FACTOR:	1 METHOD 8280 GC COLUMN SN: #36

### INTERNAL STANDARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

13C12-2,3,7,8-TCDF	316/318	225	70%	40%-120%	0.83	23,52	
13C12-2,3,7,8-TCDD	332/334	206	64%	40%-120%	0.81	24.28	-
13C12-1,2,3,6,7,8-HxCDD	402/404	174	54%	40%-120%	1.30	36.20	lest est
13C12-1,2,3,4,6,7,8-HpCD	F 420/422	295	46%	40%-120%	1.08	39.40	<u> </u>
13C12-OCDD	470/472	374	58%	25%-120%	0.93	45.57	

RECOVERY STANDARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

13C12-1,2,3,4-TCDD 332/334	NA	NA	NA	0.82	24.08	·····
13C12-1,2,3,4,7,8,9-HxCDD 402/404	NA	NA	NA	1.27	36.70	-
[7] How West, J. W. M. West, M. W. W. W. W. Will, Phys. Rev. Lett.	a da la construit	e gale o sector glie de la comencia	od di alayan Ar	erial States in the	1 p. 384 133 - 2 - 4	C) 999 301 a 1

CLEAN-UP STANDARD IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS

37CI4-TCDD 328/NA 112 69% 40%-120% NA 24.30

#### Flags:

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- EMPC The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- **RATIO** The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.
  - NO The total number of peaks identified as analytes within the retention time window.

% REC - The percent recovery of the indicated standard.

# TRIANICLE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341 Page 47

# **KIBER ENVIRONMENTAL SERVICES**

SAMPLE: TSB-68-6-8

# PROJECT: P013082 PCDD/PCDF TOXICITY EQUIVALENTS REPORT

BATCH: B001025S FILE: HH06436

QUOTE NO	39856 DATE COLLECTED	3/2/94 ACCESSION NO: 26-95-2
PROJECT ID:	854 140310 DATE RECEIVED	3/3/94 RETCHECK: HH06432
PROJECT P.O.	532 DATE EXTRACTED	3/5/94 CONCAL HH06431
SAMPLE ORIGIN	GA DATE ANALYZED	3/11/94 ICAL 1000105H
SAMPLE MATRIX	SOIL DATE PROCESSED	3/14/94 INSTRUMENT VG 70H
SAMPLE SIZE	3.09 G DETECTION LIMIT:	EDL GC COLUMN: DB-5 0.25 mm
DILUTION FACTOR	1 METHOD	B280 GC COLUMN SN: #36
이 이렇게 잘 하는 것을 수 있다.		

SPECIFIC ANALYTES	CONC (P	PB)	TEF	TEF	ADJUSTED C	ONC (PPB)	
2,3,7,8-TCDD	ND						
1,2,3,7,8-PeCDD	ND	×	0.5	2	-		
1,2,3,4,7,8-HxCDD	ND	×	0.1	=			- Jack der j
1,2,3,6,7,8-HxCDD	ND	×	. 0.1	=	· -		
1,2,3,7,8,9-HxCDD	ND	- <b>x</b>	0.1	=		witter	
1,2,3,4,6,7,8-HpCDD	ND	×	0.01	=	-	·	
OCDD	ND	×	0.001	<b>_</b>		r . A Ballin	
							1
2,3,7,8-TCDF	ND		0.1				
1,2,3,7,8-PeCDF	ND	×	0.05	=	-		
2,3,4,7,8-PeCDF	- ND	×	0,5	=			
1,2,3,4,7,8-HxCDF	ND	×	.0.1	=	· -		
1,2,3,6,7,8-HxCDF	ND	×	0.1	-			a an Angli (an Angli) Nation
2,3,4,6,7,8-HxCDF	ND	×	0.1	=	-		·
1,2,3,7,8,9-HxCDF	ND	×	0.1	=			19 <u>23 ( 77</u> 0
1,2,3,4,6,7,8-HpCDF	ND	×	0.01	=	-		
1,2,3,4,7,8,9-HpCDF	ND	· / * .	0.01		1		t stradigae
OCDF	ND	. ×	0.001	=	<u>+</u>		
			(0.0.1.7.9.0.			1999 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 20	
	· · ·						

## TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

#### **Definitions:**

**CONC** - The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

**TEF** - The toxicity equivalency factors, adopted from the 1989 international values.

# TRIANCLE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341 Page 55

教育、学们推动性

4 William Ste allela

PROJECT:	P013082		PCDL	D/PCDF A	NALYSIS	S REPORT
BATCH	B001024S					• TSB-7-4-
FILE:	MA03210					
· · · · · · · · · · · · · · · · · · ·		<u> </u>				·
UOTE NO	39856	DATE COLLECTED	3/2/94	AC	CESSION NO	8-95-4
ROJECT ID:	854 140310	DATE RECEIVED	3/3/94		RETCHECK	A03201
ROJECT P O	532	DATE EXTRACTED	3/3/94		CONCAL	AA03200
AMPLE ORIGIN	B001024S	DATE ANALYZED:	3/11/94		ICAL I	000107A
AMPLE MATRIX:	SOIL	DATE PROCESSED	3/15/94		INSTRUMENT	IP MSD A
AMPLE SIZE:	6.81351 G	DETECTION LIMIT:	MDL		GC COLUMN:	0.25 mm
ILUTION FACTOR		METHOD	8280	G	C COLUMN SN: 1	39
<u>i den gan in del per su s</u> T	<u>i kan sentan sentan</u>	<u>ani multa a a a a a a a</u>	<u> 1997 - State State State</u> 1997 - State Stat	<u>lun ni siya si shasun s</u>	<u> 2009 - 2010 - 2019 - 20</u>	233-13-4 (a. 16 1 1 1 1 1 1 1
PECIFIC ANALY	TES	CONC (PPB)	DL (PPB)	EMPC (PPB)	RATIO	RT (min) FLAGS
2,3,7,8-TCDD	320/322	ND	0.1	-		<u>.</u>
1,2,3,7;8-PeCDD	356/358	ND	0.18		-	- U
1,2,3,4,7,8-HxCE	D 390/392	ND	0.29		<u> </u>	- <u>-</u>
1,2,3,6,7,8-HxCE	D 390/392	<u>ND</u>	0.15		-	<u>- U</u>
1,2,3,7,8,9-HxCE	D 390/392	ND	0.25			<u></u> U
1,2,3,4,6,7,8-Hp0	DD 424/426	<u>ND</u>	0.29	-	-	<u>- · U</u>
OCDD	458/460	2.63	0.39	-	0 78	43.96 J
2,3,7,8-TCDF	304/306	0.922	0.088		0.86	23.05 J
1,2,3,7,8-PeCDF	340/342	ND	0.14	0.452	0.87	28.07 X
2,3,4,7,8-PeCDF	340/342	1.14	0.14	<u> </u>	1.47	29.12 J
1,2,3,4,7,8-HxCE	0F <u>374/376</u>	7.45	0.16	-	1.35	34.00 -
1,2,3,8,7,8-HXCL	0F 3/4/3/6	1.16	0.13		1.42	<u>34.19</u>
2,3,4,6,7,8-HXCL	0F 3/4/3/0	3.19	0.23	. <mark>-</mark> 	1.35	<u>35.10</u> J
1,2,3,7,8,9-HXCL		11.2	0.3		1.00	
		11.2 NID	0.24	- 		
(,2,3,4,7,0,9~HPA	400410	ND	0.20	<u></u>	<u></u>	<u> </u>
OTAL ANALYTE	S NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDO	N (min) FLAGS
TOTAL TODB	0	٨IŪ		0 00B	21 18	5 07
TOTAL POCOD	<u> </u>	ND	0 18	8.03	26 78 -	30.61 X
TOTAL HYCOD	<u> </u>	ND	0.10	241	33 07 -	36 00 X
	<u> </u>	ND	0.29		38.63 - 3	39.99 U
TOTAL TCDF	2	1.33	0.09	3.29	20.10 - 1	25.10 -
	$\overline{2}$	3.47	0.14	5.61	25 14 -	30.88
TOTAL PeCDF	4	24.6	0.3	27	31.98 –	36.61 -
TOTAL PeCDF						
TOTAL PeCDF TOTAL HxCDF TOTAL HpCDF	1	11.2	0.26	JZ D	38.49 - 4	40.35

TRIANCLE LADS

Page 48

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

#### **KIBER ENVIRONMENTAL SERVICES** PCDD/PCDF QUALITY CONTROL REPORT PROJECT: B001024S **BATCH:** B001024S SAMPLE: TSB-7-4-6 FILE: MA03210 QUOTE NO: 200001209 DATE COLLECTED 3/2/94 ACCESSION NO: 26-95-4 PROJECT ID: NA DATE RECEIVED: 3/3/94 RETCHECK MA03201 PROJECT P.O. 532 DATE EXTRACTED: 3/3/94 CONCAL MA03200 SAMPLE ORIGIN 8001024S 3/11/94 ICAL 1000107A DATE ANALYZED: INSTRUMENT HP MSD A SAMPLE MATRIX: SOIL DATE PROCESSED: 3/15/94 SAMPLE SIZE 6.81351 G DETECTION LIMIT: MDL GC COLUMN: DB-5 0.25 mm DILUTION FACTOR: METHOD: 8280 GC COLUMN SN: #37 .1 INTERNAL STANDARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS 13C12-2.3.7.8-TCDF 316/318 92% 40%-120% 0.86 23.03 -6.77 13C12-2,3,7,8-TCDD 332/334 162% 40%-120% 0.66 23.80 11.9 Y 402/404 6.36 87% 35.42 13C12-1,2,3,6,7,8-HxCDD 40%+120% 1.35 ۰<u>۱</u>., 13C12-1,2,3,4,6,7,8-HpCDF 420/422 g 61% 40%-120% 1.05 38.49 13C12-OCDD 470/472 5.06 35% 25%-120% 0.95 43 93 . RECOVERY STANDARDS IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS 0.82 23.59 13C12-1.2.3.4-TCDD 332/334 NA NA NA 13C12-1.2.3.4.7.8.9-HxCDD 402/404 NA NA 1.26 35.93 NA CLEAN-UP STANDARD IONS CONC (PPB) % REC. QC LIMITS RATIO RT FLAGS 328/NA 89% 40%-120% 37CI4-TCDD 3.25 NA 23.82 Flags: Definitions: CONC -The concentration, given in parts per billion (ppb) or U - The compound was analyzed for but not detected at or above the detection limit. parts per trillion (ppt). DL ~ The analyte was detected at concentrations between the The detection limit based on a 2.5:1 signal-to-noise J – calibrated range and the detection limit. criteria, given in parts per billion (ppb), parts per Ε-The analyte was detected at concentrations greater than trillion (ppt), or in nanograms (ng). the calibrated range. EMPC -The estimated maximum possible concentration, which is the concentration of an interference or B -The analyte was found in the associated blank. D - The analyte was identified in the analysis at a secondary interferences expressed equivalent to an analyte

- dilution factor. S - The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss
- of COCI did not meet the signal- to-noise ratio criterion of 2.5:1 X - An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits
- concentration, given in parts per billion (ppb), parts
- per trillion (ppt), or in nanograms (ng). RATIO -The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions. RT - The retention time of an analyte, given decimal minutes
  - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

TRIVAVNIAUE LAVIS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

		<b>新</b> 车辆的 15 年27	n A	(Ale and a	e e		
		K	IBE	REN	VIRON	MENTAL	SERVICES
PROJECT:	P013082	PCDD/PC	DF T	OXICI	TY EQU	IVALENTS	S REPORT
BATCH: FILE:	B001024S MA03210			· · ·		SAMPLE	: TSB-7-4-6 -
QUOTE NO: PROJECT ID: PROJECT P O: SAMPLE ORIGIN SAMPLE MATRIX: SAMPLE SIZE: DILUTION FACTOR	39856 854 140310 532 B001024S SOIL 6.81351 C 1	DATE COLLE DATE RECEI DATE EXTRA DATE ANALY DATE PROC DETECTION METHOD	CTED VED: CTED ZED: ESSED LIMIT	3/2/94 3/3/94 3/3/94 3/11/94 3/15/94 MDL 8280		ACCESSION NO 2 RETCHECK N CONCAL N ICAL II INSTRUMENT F GC COLUMN E GC COLUMN SN #	6-95-4 IA03201 IA03200 D00107A IP MSD A IB-5 0.25 mm
SPECIFIC ANAL	/TES	CONC (PPB		TEF	TEF-/	ADJUSTED CONC	(PPB)
2,3,7,8-TCDD		ND	*	* <b>1</b> *	=		
1,2,3,7,8-PeCDL	)	ND	<b>×</b> `	0.5	= 	. <del>.</del> Taan - 1977 taan - 1977 taan	· · · · · · · · · · · · · · · · · · ·
1,2,3,4,7,8-HxCL		ND	<u></u>	<u></u>		<u> </u>	
1,2,3,6,7,8-HxCL		ND	×	0.1	=	-	
1,2,3,7,8,9-HXCL	<u> </u>	ND	<u>848 8497</u> •	0.01	<u></u>		
		263		0.01	-	-	en al service de la de la service de la
	<u>. 19 19 19 19 19 19 19 19 19 19 19 19 19 </u>	<u></u>	<u></u>	0.001		0.0020	<u>. 19 an 2, 19 19 a 2 3 a .</u>
2 3 7 8-TCDF		0.922	e de la composition de la comp	01		0.092	
12378-PeCDF	<u></u>	ND	×	0.05	<u></u>	-	<u>, Algunna a tribunna a digu</u> tri
2.3.4.7.8-PeCDF		1,14	× .	0,5		0.57	
1.2.3.4.7.8-HxC	<b>DF</b>	7.45	×	0.1	= 	0.75	
1.2.3.6.7 8-HxC	)F	1.16	×	0.1	=	0.12	
2,3,4,6,7,8-HxC	DF	3.19	×	0.1	=	0.32	
1,2,3,7,8,9-HxCI	DF	ND	×	0,1	=		9-6-12-9-9-9-2-9-2
1,2,3,4,6,7,8-Hp	CDF	11.2	×	0.01	. =	0.11	
1,2,3,4,7,8,9-Hp	CDF	ND	×	0.01		14.2 <i>6.</i> 3.4 <u>4</u> 8.634.	
OCDF		NĎ	×	0.001	=	-	

# TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 2 PPB

**Definitions:** 

**CONC** – The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

**TEF** – The toxicity equivalency factors, adopted from the 1989 international values.

# TRIANISTE LADS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

# KIBER ENVIRONMENTAL SERVICES

# PROJECT # 854-40310

# ANALYTICAL RESULTS

PROJECT NAME:	Raymark Industries
MATRIX :	Soil
SAMPLED (Date/Time/Init) :	3/2/94, 1000, SGH
PARAMETER:	Total Organic Carbon
EPA METHOD:	9060
ANALYSIS (Date/Init):	3/16/94, MCB

# DATE REPORTED:

# 3/17/94

SAMPLE ID #	LAB ID #		Result	Units
TS*B-10*1.5-4	40310-1	1100	2,100	mg/Kg
TS*B-68*6-8	40310-2	1300	1,900	mg/Kg
TS*B-68*2-4	40310-3	820	1,200	mg/Kg
TS*B-7*4-6	40310-4	1300	1,900	mg/Kg

DL : Detection Limit

# KIBER ENVIRONMENTAL SERVICES

## PROJECT # 854-40310

# QA/QC DATA

PROJECT NAME:	Raymark Industries
MATRIX :	Soil
SAMPLED (Date/Time/Init) :	3/2/94, 1000, SH
PARAMETER:	Total Organic Carbon
EPA METHOD:	SW 846-9060
ANALYSIS (Date/Init):	3/16/94, MCB

# DATE REPORTED:

3/17/94

			Matrix Spike	M S Duplicate
SAMPLE ID #	LAB ID #	DL	% Recovery	% Recovery
TS*B-68*2-4	40310-3	820	98.5	91.3

DL: Detection Limit

MATERIAL pH EPA METHOD 9045 DATA SHEET

PROJECT:	RAYMARK INDUSTRIES
PROJECT No.:	854
TESTING DATE:	13 April 1994
TESTED BY:	SGH
TRACKING CODE:	1580_PH

	KIBER SAMPLE No.	MATERIAL pH
1.	TS*B-10*1.5-4	6.65
2.	TS*B-68*2-4	5.58
З.	TS*B-7*4-6	6.38
4.	TS*B-68*6-8	6.00
5.	1	
6.		
7.		
8.		
9.	· 、 、	
10.		

PROJECT:	RAYMARK INDUSTRIES
PROJECT No.:	854
SAMPLE No.:	TS*B-68*6-8
TESTING DATE:	13 April 1994
TESTED BY:	SGH
PROJECT:     RAYMARK INDUSTRIES       PROJECT No.:     854       SAMPLE No.:     TS*B-68*6-8       TESTING DATE:     13 April 1994       TESTED BY:     SGH       TRACKING CODE:     1579 UW	

MOISTURE	CONTENT (Dry	Basis	)	_	· · · · · · · · · · · · · · · · · · ·	
1. MOISTURE TIN NO.	1		2		3	
2. WT MOISTURE TIN (tare weight)	1.01	9	0.99	g	1.00	9
3. WT WET SOIL + TARE	20.39	g	24.25	g	25.56	g
4. WT DRY SOIL + TARE	14.87	g	18.17	g	19.08	g
5. WT WATER, Ww	5.52	9	6.08	9	6.48	8
6. WT DRY SOIL, Ws	13.86	g	17.18	g	18.08	9
7. ASTM MOISTURE CONTENT, W	39.83	%	35.39	%	35.84	%

UNIT WEIGHT (DENSITY)				
1. SAMPLE NO.	TS*B-68*6-8			
2. WT OF MOLD (tare weight)	21.09 g	9	9	
3. WT OF MOLD + SOIL	366.83 g	8	9	
4. WT OF WET SOIL, W	345.74 g	g	9	
5. WT OF DRY SOIL, Ws	252.33 g	9	9	
6. DIAMETER OF SPECIMEN	2.00 in	in	in	
7. HEIGHT OF SPECIMEN	4.00 in	in	in	
8. SOIL VOLUME, V	0.0073 ft ³	ft ³	ft ³	
9. BULK DENSITY	104.8 pcf	pcf	pc	
10. DRY DENSITY	76.5 pcf	pcf	pc	
11. BULK SPECIFIC GRAVITY	1.7			

PROJECT:	RAYMARK INDUSTRIES		
PROJECT No .:	854		
SAMPLE No.:	TS*B-7*4-6		
TESTING DATE:	13 April 1994		
TESTED BY:	SGH		
TRACKING CODE:	1578_UW		

MOISTURE	CONTENT (Dry Basis	3)	· · · · ·
1. MOISTURE TIN NO.	1	2	. 3
2. WT MOISTURE TIN (tare weight)	0.99 g	0.98 g	0.99 g
3. WT WET SOIL + TARE	33.46 g	31.23 g	36.41 g
4. WT DRY SOIL + TARE	22.20 g	21.41 g	26.08 g
5. WT WATER, Ww	11.26 g	9.82 g	10.33 g
6. WT DRY SOIL, Ws	21.21 g	20.43 g	25.09 g
7. ASTM MOISTURE CONTENT, W	53.09 %	48.07 %	41.17 %

UNIT WEIGHT (DENSITY)			
1. SAMPLE NO.	TS*B-7*4-6		
2. WT OF MOLD (tare weight)	21.09 g	9	9
3. WT OF MOLD + SOIL	379.39 g	9	9
4. WT OF WET SOIL, W	358.30 g	9	9
5. WT OF DRY SOIL, Ws	243.01 g	9	. 9
6. DIAMETER OF SPECIMEN	2.00 in	in	in
7. HEIGHT OF SPECIMEN	4.00 in	in	in
8. SOIL VOLUME, V	0.0073 ft ³	ft ³	ft ³
9. BULK DENSITY	108.6 pcf	pcf	pci
10. DRY DENSITY	73.6 pcf	pcf	pci
11. BULK SPECIFIC GRAVITY	1.7		

/

PROJECT:	RAYMARK INDUSTRIES
PROJECT No .:	854
SAMPLE No .:	TS*B-68*2-4
TESTING DATE:	13 April 1994
TESTED BY:	SGH
TRACKING CODE:	1577 UW

MOISTUF	RE CONTENT (Dry	Bas	is)		
1. MOISTURE TIN NO.	1	T	2		3
2. WT MOISTURE TIN (tare weight)	~ 0.99	9	0.98	9	0.98 g
3. WT WET SOIL + TARE	19.04	g	17.10	9	17.79 g
4. WT DRY SOIL + TARE	16.32	g	14.57	9	15.23 g
5. WT WATER, Ww	2.72	g	2.53	g	2.56 g
6. WT DRY SOIL, Ws	15.33	ġ	13.59	g	14.25 g
7. ASTM MOISTURE CONTENT, W	17.74	%	18.62	%	17.96 %

UN	IT WEIGHT (DENSITY)		
1. SAMPLE NO.	TS*B-68*2-4		
2. WT OF MOLD (tare weight)	21.10 g	8	9
3. WT OF MOLD + SOIL	387.87 g	9	g
4. WT OF WET SOIL, W	366.77 g	9	9
5. WT OF DRY SOIL, Ws	310.54 g	9	g
6. DIAMETER OF SPECIMEN	2.00 in	in	in
7. HEIGHT OF SPECIMEN	4,00 in	in	∽ in
8. SOIL VOLUME, V	0.0073 ft ³	ft ³	ft ³
9. BULK DENSITY	111.1 pcf	pcf	pct
10. DRY DENSITY	94.1 pcf	pcf	pct
11. BULK SPECIFIC GRAVITY	1.8		

PROJECT:	RAYMARK INDUSTRIES
PROJECT No :	854
SAMPLE No .:	TS*B-10*1.5-4
TESTING DATE:	13 April 1994
TESTED BY:	SGH
TRACKING CODE:	1576 UW

MOISTURE CONTENT (Dry Basis)						
1. MOISTURE TIN NO.	1		2		3	
2. WT MOISTURE TIN (tare weight)	0.98	9	0.99	9	0.99	g
3. WT WET SOIL + TARE	37.02	g .	33.24	g	24.95	9
4. WT DRY SOIL + TARE	35.65	g	31.89	g	24.03	g
5. WT.WATER, Ww	1.37	g	1.35	g	0.92	g
6. WT DRY SOIL, Ws	34.67	9	30.90	g	23.04	g
7. ASTM MOISTURE CONTENT, W	3.95	%	4.37	%	3.99	%

UNI	T WEIGHT (DENSITY)		
1. SAMPLE NO.	TS*B-10*1.5-4		
2. WT OF MOLD (tare weight)	21.05 g	9	9
3. WT OF MOLD + SOIL	416.24 g	g	. 6
4. WT OF WET SOIL, W	395.19 g	9	9
5. WT OF DRY SOIL, Ws	379.61 g	g	6
6. DIAMETER OF SPECIMEN	2.00 in	in	ir
7. HEIGHT OF SPECIMEN	4.00 in	in	ir
8. SOIL VOLUME, V	0.0073 ft ³	ft ³	ft
9. BULK DENSITY	119.7 pcf	: pcf	pc
10. DRY DENSITY	115.0 pcf	pcf	- pc
11. BULK SPECIFIC GRAVITY	1.9		

















# THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

PROJECT:
PROJECT No.:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYMARK IND.
854
TS+B-10 * 15-4:1A
3-17-94
JSD

SET-UP, MONITORING and TES		
1. SAMPLE No.	Tst B-10#1.5-4:14	
2. OVEN TEMPERATURE	371	•c
3. WEIGHT OF PAN (tare weight)	357.75	9
4. WEIGHT OF UNTREATED SOIL + TARE	1357.47	8
5. WEIGHT OF UNTREATED SOIL	999.72	9
5. WEIGHT OF TREATED SOIL + TARE	1329.75	9
7. WEIGHT OF TREATED SOIL	972.00	9
8. WEIGHT LOSS	27.72	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
		•c
2 MINUTES		•c
3 MINUTES		•c
5 MINUTES		•c
10 MINUTES	. IDI	•c
15 MINUTES		•c
20 MINUTES		, •c
30 MINUTES		•c
40 MINUTES	· · ·	•c
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	93.	•c
2 MINUTES	NA	•c
3 MINUTES	85	•c
5 MINUTES	79	•c
10 MINUTES	67	•c
15 MINUTES	58	•c
20 MINUTES	5/	•c
30 MINUTES	40	•c
40 MINUTES	36	•c
	31	•c
	28	•c

115



# THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

PROJECT:	RAYMARK INT
PROJECT No.:	854
MATERIAL TYPE:	TS#3-10+1.5-
TESTING DATE:	3-17-94
TESTED BY:	JSO

SET-UP, MONITORING and T		
1. SAMPLE No.	TS* B-10 * 15-4:24	
2. OVEN TEMPERATURE	3710	•c
3. WEIGHT OF PAN (tare weight)	334.19 353 341.15	-
4. WEIGHT OF UNTREATED SOIL + TARE	-1340.26350 1340.93	
5. WEIGHT OF UNTREATED SOIL	999.78	9
6. WEIGHT OF TREATED SOIL + TARE	1302.69	g
7. WEIGHT OF TREATED SOIL	961.54	. 9
8. WEIGHT LOSS	38.24	
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
		•••
2 MINUTES		•0
3 MINUTES		•
5 MINUTES		•
10 MINUTES	-	•(
15 MINUTES		•
20 MINUTES	182	. •0
30 MINUTES		•(
40 MINUTES		•(
11. SOIL TEMPERATURE - WHILE COOLING		
	163	• •(
2'MINUTES	154	. •(
3 MINUTES	14B	•(
5 MINUTES	136	•
10 MINUTES	114	•
15 MINUTES	100	•
20 MINUTES	85	•
30 MINUTES	67	•
40 MINUTES	57	•
	48	•
60 MINUTES	42	•
		····-

90 MINUTES TO REACH 300

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 PROJECT: EAV MARK IND. PROJECT No .: 854 MATERIAL TYPE: 75#3-10 #15-4:24 3-17-94 TESTING DATE: TESTED BY: JSD VISUAL OBSERVATIONS - BEFORE TREATMENT Reddish Brown sandy soil. Small rocks throughout Slightly moist. VISUAL OBSERVATIONS - AFTER TREATMENT More brown in eder (reddish tint gove). Visibly dry . Slight Crust to middle portion. Gritty poudary texture. ALMOST COMPLETELY DRY.

# THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

<u>RAYMALK INS.</u> 854 TS# B-10#15-4:3A 3-17-94 JSD

1. SAMPLE No. 2. OVEN TEMPERATURE 3. WEIGHT OF PAN (tare weight)	75 x B-10 +1.5 -4:3A 371 334.23 1334.23	•c
2. OVEN TEMPERATURE 3. WEIGHT OF PAN (tare weight)	371 334.23 1334.23	•c
3. WEIGHT OF PAN (tare weight)	<u>334.23</u> 1334.23	
	1334.23	6
4. WEIGHT OF UNTREATED SOIL + TARE		
5. WEIGHT OF UNTREATED SOIL	1000.00	g
6. WEIGHT OF TREATED SOIL + TARE	1293.26	
7. WEIGHT OF TREATED SOIL	959.03	
8. WEIGHT LOSS	40.97	ç
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	· · · · · · · · · · · · · · · · · · ·	••
2 MINUTES		•(
3 MINUTES		•
5 MINUTES	· · · ·	•(
10 MINUTES		•
15 MINUTES		•
20 MINUTES		
30 MINUTES		•(
40 MINUTES	276	•
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	273	•(
2 MINUTES	266	•
3 MINUTES	255	. •
5 MINUTES	237	•
10 MINUTES	190	•
15 MINUTES	160	· · · · ·
20 MINUTES	138	•
30 MINUTES	104	
40 MINUTES	77	•
GOMINUTES	52	
	31	•

	PAGE 2 O	F 2		
	PROJECT: PROJECT No.:	RAY MARK IND. 854		
	MATERIAL TYPE:	TS* B-10 #1.5-4:3A		
	TESTING DATE:	3-17-94	_	
· · · ·	IESIED BY:		_	
		1		
VISUAL OBSERVATIONS - BEFC	RE TREATMENT	<u></u>		
		·		
0.11.1 D	1 1 1			

VISUAL OBSERVATIONS - AFTER TREATMENT

Brown in Color (Reddish first is grue, Looks darker than it or ZA) MATERIAL HAS CRUSTED SLIGHTING, BUT IS EASING BROKEN UP => CRUST PRUMBLES UP TO SAME.

MATERIA IS COMPLETELY DRY.

# THERMAL DESORPTION DATA

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

<u>Раумя</u>к IND. <u>854</u> <u>тъж В-10 ж 1.5-4:</u>4 В <u>3-21-94</u> <u>JSD</u>

SET-UP, MONITORING and TESTING INFORMATION						
1. SAMPLE No.	TS*B-10* 1.5-4:48					
2. OVEN TEMPERATURE	538	•c				
3. WEIGHT OF PAN (tare weight)	341.22	g				
4. WEIGHT OF UNTREATED SOIL + TARE	1341.07	9				
5. WEIGHT OF UNTREATED SOIL	999.85	9				
6. WEIGHT OF TREATED SOIL + TARE	1301.13	g				
7. WEIGHT OF TREATED SOIL	959.91	g				
8. WEIGHT LOSS	39.94	g				
9. LENGTH OF TREATMENT (RESIDENCE TIME)	(0	Min.				
10. SOIL TEMPERATURE - WHILE IN OVEN	· · · ·					
1 MINUTE	54	•c				
2 MINUTES	73	•c				
3 MINUTES	94	•c				
5 MINUTES	112	•c				
10 MINUTES	165	•c				
15 MINUTES		•c				
20 MINUTES		•c				
30 MINUTES		•c				
40 MINUTES		•c				
11. SOIL TEMPERATURE - WHILE COOLING						
1 MINUTE	157	•c				
2 MINUTES	162	•c				
3 MINUTES	160	•c				
5 MINUTES	153	•C				
10 MINUTES	131	•c				
15 MINUTES	118	. •c				
20 MINUTES	136	•0				
30 MINUTES	79	•0				
40 MINUTES	63	•0				
60 MINUTES	49	•0				
	32_	•0				
	THERM	AL DESOR REPORT FOI PAGE 2 OF		<b>TA</b>	· .	
---	---------------------------------------	-------------------------------------	-----------------	-------------	--------	-----
	PF PF M	OJECT: OJECT No.:	RAY MACK 854	(N) .		
	TE	STING DATE: STED BY:	<u>JSD</u>	<u>/</u> 6		
	VISUAL OBSERVATIONS - BEFORE TF				~	· .
	Reddish brown sandy s Moist	σι.	-			
	Small rocks through	ord		•	• •	
				1	2	
				۰. ۱		
				- 1 -		
	Small dovk spot on a forsanic mate	arment surface (a	prears to L	oc Small	cheme	
	Very by in appearance	and texture				
	Light far in Color					
1						

.

PROJECT:	RAYMAR
PROJECT No .:	854
MATERIAL TYPE:	75× B-10.
TESTING DATE:	3-21-9
TESTED BY:	JSD

K IND × 1.5-11:33 4

SET-UP, MONITORING and T	ESTING INFORMATION	
1. SAMPLE No.	TS+K B-10 + 1.5-4:53	
2. OVEN TEMPERATURE	538	•c
3. WEIGHT OF PAN (tare weight)	354.60	9
4. WEIGHT OF UNTREATED SOIL + TARE	1355.01	9
5. WEIGHT OF UNTREATED SOIL	1000.41	9
6. WEIGHT OF TREATED SOIL + TARE	1313.20	9
7. WEIGHT OF TREATED SOIL	958.6	9
8. WEIGHT LOSS	41.81	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Mìn.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	NA	•0
2 MINUTES	66_	•0
3 MINUTES	84	•0
5 MINUTES	115	•0
10 MINUTES	176	•0
15 MINUTES	250	•0
20 MINUTES	326	•0
30 MINUTES	·	•0
40 MINUTES		•0
11. SOIL TEMPERATURE - WHILE COOLING		·
1 MINUTE	288	•
2 MINUTES	NA	•(
3 MINUTES	271	
5 MINUTES	249	•(
10 MINUTES	225	•(
15 MINUTES	197	•(
20 MINUTES	174	•(
	(33	•
40 MINUTES	106	•(
60 MINUTES	62	•
155MINUTES	30	•

TH	IERMAL DESC REPORT PAGE 2	PRPTION DAT	A	
	PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:	RAYMACK 1. 854 TS K B-10 K 1. 3-21-94 TSD	5-4:5B	
	· · · · · · · · · · · · · · · · · · ·			
VISUAL OBSERVATIONS - B Reddish brown s	EFORE TREATMENT			
Swall Rocks +	houghout			
	· · · ·			
				•
SAN BY SOIL IS V LIGHT TAN IN LILO VERY BRANMAR D JSD	EGY DEY THE IN APPEARANCE	OUGHOUT (JUE TO ABSE	NCE OF MOI	sture)
• •		· · · .		
		·		

PROJECT:
PROJECT No .:
MATERIAL TYPE
TESTING DATE:
TESTED BY:

RAYMARE IND 854 TS# B-10#1.5-41:63 3-21-94 TSA

SET-UP, MONITORING and TE	STING INFORMATION	
1. SAMPLE No.	TS+& B-10 * 1.5-4:	63
2. OVEN TEMPERATURE	538	•c
3. WEIGHT OF PAN (tare weight)	357.84	9
4. WEIGHT OF UNTREATED SOIL + TARE	1358:00	9
5. WEIGHT OF UNTREATED SOIL	1000.16	g
6. WEIGHT OF TREATED SOIL + TARE	1314.15	g
7. WEIGHT OF TREATED SOIL		 g
8. WEIGHT LOSS		g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	NA	•0
2 MINUTES	86	•0
	92	•c
5 MINUTES	116	· •c
10 MINUTES	204	••
15 MINUTES	302	•c
20 MINUTES	390	•
30 MINUTES	155 456 468	•(
40 MINUTES	496	. •c
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	491	•0
2 MINUTES	473	•(
3 MINUTES	447	•0
5 MINUTES	NA	•(
10 MINUTES	307	•(
15 MINUTES	270	•(
20 MINUTES	228	•(
30 MINUTES	166	•
40 MINUTES	135	
60MINUTES	75	•
12 MINUTES	31	•,

	REPORT P					Ţ
	PROJECT:	RAYMAC	K INS.			
• • •	PROJECT No.: MATERIAL TYPE: TESTING DATE:	854 T5* B-10 3-21	<u>*1.5-4:0</u> 8 -94			
}	TESTED BY:					
Reddish brown s Moist Small rocks f	andy soil hroughout			•	•	
				-		
			)	•		
	· · · · ·					
: .					·	
VISUAL OBSERVATIONS. SAUDY SOIL IS DAG DEY ALL THE WA	AFTER TREATMENT EXER ON TOP, ACTU 174 Callott.	any A (16	wrthe Color	THROUG:	LOUT.	
Mole Blandiac	IN APPEARANCE.					
· .						

ł

PROJECT:	
PROJECT No.:	
MATERIAL TYPE:	
TESTING DATE:	
TESTED BY:	

<u>PAYMARK IND</u> 854 <u>TSKB-10¥1.5-4:</u>7C 3-22.94 JSD

â

SET-UP, MONITORING and TI		'
1. SAMPLE No.	TS*B-10*1.5-4:7C	
2. OVEN TEMPERATURE	649	•c
3. WEIGHT OF PAN (tare weight)	341.85	g
4. WEIGHT OF UNTREATED SOIL + TARE	/341.98	9
5. WEIGHT OF UNTREATED SOIL	1000.13	9
6. WEIGHT OF TREATED SOIL + TARE	1299.86	g
7. WEIGHT OF TREATED SOIL	958.01	g
8. WEIGHT LOSS	42.12	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	82	•c
2 MINUTES	100	•c
3 MINUTES	112	•c
5 MINUTES	142	•c
10 MINUTES	225	•c
15 MINUTES	-	•c
20 MINUTES		•c
30 MINUTES		•c
40 MINUTES		•c
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	148	•c
2 MINUTES	167	•c
3 MINUTES	180	•c
5 MINUTES	195	•c
10 MINUTES	205	•c
15 MINUTES	195	•C
20 MINUTES	179	•c
30 MINUTES	125	•c
40 MINUTES	100	•c
	62	•c
LOS MINUTES	34	•c

THERMAL DESORPTION DATA REPORTFORM PAGE 2 OF 2 RAYMARK IND PROJECT: PROJECT No .: 854 75 K B-10 ¥1.5-4:7C 3-22-94 MATERIAL TYPE: TESTING DATE: 550 TESTED BY: VISUAL OBSERVATIONS - BEFORE TREATMENT Reddish brown soundy soil. Small rooks throughout Monst-VISUAL OBSERVATIONS - AFTER TREATMENT Soil is competely dry. Light ton Color on Surface.

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

SET-UP, MONITORING and TE	STING INFORMATION	
1. SAMPLE No.	TS-KB-10-K1.5-4:8C	
2. OVEN TEMPERATURE	649	•c
3. WEIGHT OF PAN (tare weight)	36012	ġ
4. WEIGHT OF UNTREATED SOIL + TARE	1360.12	9
5. WEIGHT OF UNTREATED SOIL	1000.00	 9
6. WEIGHT OF TREATED SOIL + TARE	1314.71	9
7. WEIGHT OF TREATED SOIL	954.59	g
8. WEIGHT LOSS	45.41	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN	TEP	
1 MINUTE	82.53	•0
2 MINUTES	100 8 95	•0
3 MINUTES	105	*c
5 MINUTES	148	•c
	265	•c
15 MINUTES	396	_•c
20 MINUTES	486	
30 MINUTES		•0
40 MINUTES		•0
11. SOIL TEMPERATURE - WHILE COOLING		(
1 MINUTE	430	•(
2 MINUTES	449	•(
3 MINUTES	442	•
5 MINUTES	417	•0
10 MINUTES	341	•
15 MINUTES	276	•
20 MINUTES	229	•(
30 MINUTES	162	•
40 MINUTES	116	•
60 MINUTES	67	•
/( D MINUTES	34	•

( 1 13

ine	REPORT F	RPTION DA	IA	· .	(
	PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:	RAYMACK BS-4 TS-4 B-10 X 3. 22-94 JSD	[N]	· · · · · ·	
	•				
VISUAL OBSERVATIONS - BEFO Reddish brown S	CORE TREATMENT				· · ·
Small rocks the	roughout		age i i		
Moist.			*		
			· · ·		
			• •		
VISUAL OBSERVATIONS - AFT	ER TREATMENT	* i 			
Complexily dry.					

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

<u>E44MACY</u> IND <u>854</u> <u>75#13-10 #(1.5-4:</u>9C <u>3-22-94</u> <u>550</u>

SET-UP, MONITORING and TESTING INFORMATION				
1. SAMPLE No.	TS# B-10 # 1.5-4:9C			
2. OVEN TEMPERATURE	649	•c		
3. WEIGHT OF PAN (tare weight)	36062	g		
4. WEIGHT OF UNTREATED SOIL + TARE	1367.29	. 9		
5. WEIGHT OF UNTREATED SOIL	1000.67	9		
6. WEIGHT OF TREATED SOIL + TARE	1321.15	9		
7. WEIGHT OF TREATED SOIL	954.53	9		
8. WEIGHT LOSS	46.14	9		
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.		
10. SOIL TEMPERATURE - WHILE IN OVEN				
1 MINUTE	59	•c		
2 MINUTES	80	•c		
3 MINUTES	106	•c		
5 MINUTES	145	•c		
10 MINUTES	254	•c		
15 MINUTES	402	•c		
20 MINUTES	481	•c		
30 MINUTES	573	• •c		
40 MINUTES	605	•c		
11. SOIL TEMPERATURE - WHILE COOLING				
	525	•c		
2 MINUTES	560	•c		
3 MINUTES	550	•c		
5 MINUTES	514	•c		
10 MINUTES	428	•c		
15 MINUTES	352	•c		
20 MINUTES	290	•c		
30 MINUTES	Zoo	•c		
40 MINUTES	132	•c		
OUMINUTES	75	•0		
MINUTES /2 مع	35	.•c		

	PAUMARK IA		
PROJECT: PROJECT No.:	854		
MATERIAL TYPE: TESTING DATE: TESTED BY:	TS# B-10#1 	1.5-4:9C 14	
SUAL OBSERVATIONS - BEFORE TREATMENT			
Reddish brown sandy soil			• •
Small rocks Anaugloott			
Morab.	· .		
			· · · ·

VISUAL OBSERVATIONS - AFTER TREATMENT

Completely dry, Light ten throughout, as thought the color was burned off.

KAY MACE IND
854
TSKR-68K2-4:14
3-18-94
JSD

~

SET-UP, MONITORING and TESTING INFORMATION				
1. SAMPLE No.	TS* B-68 * 2-4:14			
2. OVEN TEMPERATURE	371	•c		
3. WEIGHT OF PAN (tare weight)	354.57	9		
4. WEIGHT OF UNTREATED SOIL + TARE	1355.04	g		
5. WEIGHT OF UNTREATED SOIL	1000.47	g		
6. WEIGHT OF TREATED SOIL + TARE	1316.82	9		
7. WEIGHT OF TREATED SOIL	962.25	g		
8. WEIGHT LOSS	. 38.22	g		
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.		
10. SOIL TEMPERATURE - WHILE IN OVEN				
1 MINUTE		•c		
2 MINUTES		•c		
3 MINUTES		•c		
5 MINUTES		•c		
10 MINUTES	95	*c		
15 MINUTES		•c		
20 MINUTES		•c		
30 MINUTES		•c		
40 MINUTES.		•c		
11. SOIL TEMPERATURE - WHILE COOLING	·			
	88	•c		
2 MINUTES	05	·•c		
3 MINUTES	81	•c		
5 MINUTES	76	•c		
10 MINUTES	64	•c		
15 MINUTES	55	•c		
20 MINUTES	49	•c		
30 MINUTES	41	•0		
40 MINUTES	N/A-	•0		
	28	•0		
MINUTES		•0		

[						]
	THEF	RMAL DESOF		Γ <u>A</u>		
		PROJECT: PROJECT No.: MATERIAL TYPE:	RAYMALY IND 854 TS * B-68 *	2-4:14	· .	
		TESTING DATE: TESTED BY:	<u>3-18-94</u> Js <u>5</u>			
· ·	VISUAL OBSERVATIONS - BEFOR					
	DALK BROWN SHNOY ; MOIST ,	SOL of Small	CLAY-LIEE	CHUNKS	· .	
	· .					
	:	• : • •				
			·   · · · · · · · · · · · · · · · · · ·			T
	VISUAL OBSERVATIONS - AFTER	TREATMENT				
	SLIGHT CRUST HAS EUSILY CRUMBLED. VISIDLY MUTH MART	S FORMED ALONG DEY THAN REFS	THE TOP WHILL BE TESTING	4 IS		
	TISIBLY MUCH MOLE	l:				
					*	
		• 				
		: :				
· · · ·						

· · ·

#### IAL DESORPTION DATA

'ROJECT:
PROJECT No .:
IATERIAL TYPE:
ESTING DATE:
FESTED BY:

ン

( Virg

20. 1

5 Ê (), ~~~~

٢

NO Flash hims

.

mE

wrong

. M

۲

Seri

1

Raymarn Ind
854
TSY 12-68+2-4:21
-2/19/94
sart

)

1 5	tech wing				
TING INTORING and TESTING INFORMATION					
	,		- TSXB-68X2-4:2A		
., ) (	Conect.		371	•c	
う、	Carl	·	341.18	g	
,		- TARE	1341.22	9	
5. WEIG	SHT OF UNTREATED SO	L	1000.04	g	
6. WEIC	SHT OF TREATED SOIL +	TARE	126418	9	
7. WEI	GHT OF TREATED SOIL		923.00	9	
8. WEIG	GHT LOSS		7704		
9. LEN	GTH OF TREATMENT (RE	SIDENCE TIME)	20	Min.	
10. SO	IL TEMPERATURE - WHIL	E IN OVEN			
	1 MINUTE			•c	
	2 MINUTES			•c	
	3 MINUTES		· · · · · · · · · · · · · · · · · · ·	•c	
	5 MINUTES			•c	
	TO MINUTES			•c	
	15 MINUTES			•c	
	20 MINUTES		96	•c	
	30 MINUTES			•C	
	40 MINUTES			•c	
11. SO	IL TEMPERATURE - WHIL	E COOLING			
	1 MINUTE		90	•c	
	2 MINUTES		88	•c	
	3 MINUTES		85	•c	
	5 MINUTES	· · · · · · · · · · · · · · · · · · ·	80	•c	
	10 MINUTES		70	•c	
	15 MINUTES '	-	6	•c	
	20 MINUTES		56	•C	
	30 MINUTES		4.7	•c	
	40 MINUTES		41	•c	
	50 MINUTES		36	•c	
	MINUTES			•0	



· . · ·

. *

PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:
MATERIAL TYPE: TESTING DATE: TESTED BY:
TESTING DATE: TESTED BY:
TESTED BY:

Ruymark 554 Ind : JA TSX 13-68 × 2-4 3 19/94

SET-UP, MONITORING and TESTING INFORMATION				
1. SAMPLE No.	TS+B-68+2-4:3	, 4		
2. OVEN TEMPERATURE	371	•c		
3. WEIGHT OF PAN (tare weight)	354.60	9		
4. WEIGHT OF UNTREATED SOIL + TARE	1355.01	9		
5. WEIGHT OF UNTREATED SOIL	1000.41	9		
6. WEIGHT OF TREATED SOIL + TARE	1211.17	g		
7. WEIGHT OF TREATED SOIL	\$56.57	g		
8. WEIGHT LOSS	143.84	g		
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	· Min.		
10. SOIL TEMPERATURE - WHILE IN OVEN	· ·			
1 MINUTE		•c		
2 MINUTES		•c		
3 MINUTES		•c		
5 MINUTES		•c		
10 MINUTES		•c		
15 MINUTES		•c		
20 MINUTES	,	•c		
30 MINUTES		•c		
40 MINUTES	99	•c		
11. SOIL TEMPERATURE - WHILE COOLING				
1 MINUTE	98	•c		
2 MINUTES	95	•c		
3 MINUTES	51	•c		
5 MINUTES	88	•c		
10 MINUTES	80	•c		
15 MINUTES	75	•c		
20 MINUTES	70	•c		
30 MINUTES		•c		
40 MINUTES )	53	•c		
<u>∑</u> ⁰ minutes	47	•c		
) C MINUTES	38	•0		

PAGE 2 OF 2

PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:

Raymark Ind TS+B-68+ 2-4: 3/19/94 501-1

VISUAL OBSERVATIONS - BEFORE TREATMENT

Park Brown sandy soil with Small, Clay like Chunkis Muist

VISUAL OBSERVATIONS - AFTER TREATMENT

Material	Was	smothing upon removal from
fornace.	Sever	purficles in material were
twining 56H	red hu	thank snowing. Material is
lishti	r i h	Color than before testerationent.
Specks	or a	citystalline material (tetlects lisht)
Can	hin s	Fon throughout murc than 2A.

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

PAYMACK ING. <u>B54</u> <u>T5* 3-68*2-4:48</u> 3-21-941 JSD

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	T5# B-68 #2-4	:4 <u>5</u>
2. OVEN TEMPERATURE	538	•c
3. WEIGHT OF PAN (tare weight)	341.23	9
4. WEIGHT OF UNTREATED SOIL + TARE	1340.98	
5. WEIGHT OF UNTREATED SOIL	999.75	. 9
6. WEIGHT OF TREATED SOIL + TARE	1256.55	9
7. WEIGHT OF TREATED SOIL	915.32	5
8. WEIGHT LOSS	84.43	ç
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
	63	•(
2 MINUTES	78	•(
3 MINUTES	85	•(
5 MINUTES	99	•0
10 MINUTES	1/3	•(
15 MINUTES		•(
20 MINUTES		•(
30 MINUTES		•(
40 MINUTES		•(
11. SOIL TEMPERATURE - WHILE COOLING		
	/02	•
2 MINUTES	99	•
3 MINUTES	97	•
5 MINUTES	92	•
10 MINUTES	80	•
15 MINUTES	70	•
20 MINUTES	61	
JO MINUTES	48	•
40 MINUTES	39	
6 OMINUTES	31	· ·



Some dork spots in surface.

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYMARK ND. 854 75* 13-68-*2-4:58 3-21-94 525

Û

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS * B-68 * 2-4	:5B
2. OVEN TEMPERATURE	538	•c
3. WEIGHT OF PAN (tare weight)	354.69	9
4. WEIGHT OF UNTREATED SOIL + TARE	1354.52	g
5. WEIGHT OF UNTREATED SOIL	999.83	· g
6. WEIGHT OF TREATED SOIL + TARE	1203.45	g
7. WEIGHT OF TREATED SOIL		 
8. WEIGHT LOSS		g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min
10. SOIL TEMPERATURE - WHILE IN OVEN	· · · · · · · · · · · · · · · · · · ·	
1 MINUTE	56	•0
2 MINUTES	66	•0
.3 MINUTES	77	•(
5 MINUTES	93	•(
10 MINUTES	102	•(
15 MINUTES	116	•(
20 MINUTES	143	•(
30 MINUTES		••••
40 MINUTES		•(
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	122	•(
2 MINUTES	N/4	· •(
3 MINUTES	109	•(
5 MINUTES	/04	•
10 MINUTES	97	•
15 MINUTES	89	
20 MINUTES	BZ	•
30 MINUTES	68	
40 MINUTES	56	•
60 MINUTES	44	•
20MINUTES	30	•

.

PAGE 2 OF 2

PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:

Ray mark IND
854
TS# B-68#2-4:5B
3-21-94
JID

VISUAL OBSERVATIONS - BEFORE TREATMENT

DALK BROWN, SANSY SOIL SMALL, PLAY-LIKE PHUNKS THEONDALINT PIECES OF GLASS GOTHER ORGANIK MATERIAL PRESENT MOIST

VISUAL OBSERVATIONS - AFTER TREATMENT

Several dark spots on surface. Saudy Soil is light tan in color. Some of the or janic material prescut have peen partially incurerated, and other naturial is extremely dry and crumby. Soil dry throughout.

PROJECT
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYMACE /NB 854 TS# B-68 # 2-4:68 3-21-74 JSD

а,

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS* B-68 + 2-4:6	3
2. OVEN TEMPERATURE	538	•c
3. WEIGHT OF PAN (tare weight)	357.95	9
4. WEIGHT OF UNTREATED SOIL + TARE	1357.95	9
5. WEIGHT OF UNTREATED SOIL	1000.00	g
6. WEIGHT OF TREATED SOIL + TARE	1177.80	. g
7. WEIGHT OF TREATED SOIL		g
8. WEIGHT LOSS	· ·	8
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	50	•c
2 MINUTES	64	•c
3 MINUTES	70	•c
5 MINUTES	95	•c
10 MINUTES	99	•c
15 MINUTES	1/2	•c
20 MINUTES	143	•c
30 MINUTES	211	•c
40 MINUTES	292	•c
11. SOIL TEMPERATURE - WHILE COOLING	· · · · · · · · · · · · · · · · · · ·	
1 MINUTE	205	•c
2 MINUTES	N(4	•c
3 MINUTES	238	•c
5 MINUTES	263	•c
10 MINUTES	323	•c
15 MINUTES	257	•c
20 MINUTES	257	•c
30 MINUTES	258	•c
40 MINUTES	231	•0
60 MINUTES	134	•c
120 MINUTES	34	•0

F		
	THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2	
	PROJECT: RAYMARK NO PROJECT NO.: B54 MATERIAL TYPE: T5K B-68 K Z-4:63 TESTING DATE: 3-21-94 TESTED BY: JSD	
	VISUAL OBSERVATIONS - BEFORE TREATMENT	
	DACK BROWN, SANDY Som SMALL, CLAY-LIKE (HUNKS THROUGHLOW T	
	MUIST SMALL PIECES OF DEGANGE MOTERIAL	
	VISUAL OBSERVATIONS - AFTER TREATMENT	
	it gained in temperature for 10 min. It then held a high	
	cool down.	•
	Appearance and characteristics very much the	
	Some as TSY B-62 the 2-11:53 with more	· · ·
	incinerated organic material	• •

PROJECT:
PROJECT No.:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

Raymack IND <u>854</u> <u>7548-6842-4:</u>7C <u>3-23-74</u> <u>335</u>

l

SET-UP, MONITORING and		
1. SAMPLE No.	TS + B-68 + 2-4:7C	
2. OVEN TEMPERATURE	649	•c
3. WEIGHT OF PAN (tare weight)	85.08	g
4. WEIGHT OF UNTREATED SOIL + TARE	807 3477. 59 1365.92	. 9
5. WEIGHT OF UNTREATED SOIL	843+000.65 1000.84	g
6. WEIGHT OF TREATED SOIL + TARE	1267.41	. g
7. WEIGHT OF TREATED SOIL	902.33	g
8. WEIGHT LOSS	<u> </u>	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
	NA	۰c
2 MINUTES	87	. •c
3 MINUTES	94	•c
5 MINUTES	//9	•0
10 MINUTES	173	•0
15 MINUTES		•0
20 MINUTES		•0
30 MINUTES		•0
40 MINUTES		•0
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	112	•0
2 MINUTES	/09	•
3 MINUTES	N/A-	••
5 MINUTES	100	•(
10 MINUTES	87	•(
15 MINUTES	171	•(
20 MINUTES	67	•(
30 MINUTES	53	•(
40 MINUTES	43	•(
50MINUTES	37	•(
6 OMINUTES	32	•(

Ř.

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 RAYMARE IND PROJECT: PROJECT No .: קקי MATERIAL TYPE: TS# 13-68 # 2-4:7C TESTING DATE: 3-23-94 TESTED BY: TSD VISUAL OBSERVATIONS - BEFORE TREATMENT DALK BROWN SANDY SOIL! SMALL, CLAY-LIKE CHUNKS THROUGHOWT Moist. ۵ VISUAL OBSERVATIONS - AFTER TREATMENT Comparty Dey. TOP LAYER IS LIGHT TAN. LOWEL LAMER IS RELATIVELY UN AFFECTES (VISUALLY) EXCEPT FOR BEING DRY. BLACK SRITS ON SURFACE (OCGUNICS BURNING OFF)

PROJECT: •
PROJECT No.:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

<u>PAY MACE</u> ND <u>854</u> TS¥ B-08-¥2-4: BC 3-23-94 <u>ISD</u>

á

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS*KB-68 * 2-4:80	-
2. OVEN TEMPERATURE	649	•c
3. WEIGHT OF PAN (tare weight)	360.23	g
4. WEIGHT OF UNTREATED SOIL + TARE	13 <b>6</b> 0.B1	9
5. WEIGHT OF UNTREATED SOIL	1000.58	9
6. WEIGHT OF TREATED SOIL + TARE	1211.48	g
7. WEIGHT OF TREATED SOIL	851.25	9
8. WEIGHT LOSS	149.33	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	58	•c
2 MINUTES	83	•c
3 MINUTES	95	•c
5 MINUTES	105	•c
10 MINUTES	. 158	•c
15 MINUTES	220	•c
20 MINUTES	276	•c
30 MINUTES		•c
40 MINUTES		•c
11. SOIL TEMPERATURE - WHILE COOLING	· · · · · · · · · · · · · · · · · · ·	
	203	•c
2 MINUTES	200	•0
3 MINUTES	191	•0
5 MINUTES	175	•0
10 MINUTES	151	•0
15 MINUTES	141	•0
20 MINUTES	134	•0
30 MINUTES	115	•0
40 MINUTES	94	•(
60 MINUTES	61	•(
100 MINUTES	33	•

	PAGE 2 C	0F 2	
	PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:	KAYMARK IND 854 75457-68422-0 3-23-94 35D	4:BC
VISUAL OBSERVATIONS - BEFO		· · ·	
DARK BROWN SANDY	Sal .		
SMALL, CLAY-LIKE	CHINKS THROUG	ноит.	
MOIST.	1.		
			·
· · ·	1		
VISUAL OBSERVATIONS - AFTE			
Completely dry.			
Light fam Color o	n Sur face, b	at more than To	- 1
Soil on very los	Hom Velatieh	unabertal (	nsually (
Park sports where	organics usare	earnes (Charris).	
		· · · · · · · · · · · · · · · · · · ·	
	[   . 		

۰.

PROJECT:
PROJECT No.:
· MATERIAL TYPE
TESTING DATE:
TESTED BY:

<u>Raymark / NJ</u> <u>354</u> <u>TS¥ B-68 ¥2-4:9</u> <u>3-23-92</u> <u>JSD</u>

SET-UP, MONITORING and TESTING INFORMATION			
1. SAMPLE No.	TS*3-68*2-41:	90	
2. OVEN TEMPERATURE	649	•0	
3. WEIGHT OF PAN (tare weight)	348.44	9	
4. WEIGHT OF UNTREATED SOIL + TARE	1349.33	9	
5. WEIGHT OF UNTREATED SOIL	1000.89	. 9	
6. WEIGHT OF TREATED SOIL + TARE	1165.95	 g	
7. WEIGHT OF TREATED SOIL	817.51	9	
8. WEIGHT LOSS	183.38		
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.	
10. SOIL TEMPERATURE - WHILE IN OVEN			
1 MINUTE	65	•c	
2 MINUTES	7	•c	
3 MINUTES	95	•c	
5 MINUTES	1/2	•0	
10 MINUTES	<u> </u>	•0	
15 MINUTES	238	•c	
20 MINUTES	292	•	
30 MINUTES	414	•0	
40 MINUTES	532	•0	
11. SOIL TEMPERATURE - WHILE COOLING			
1 MINUTE	400	•(	
2 MINUTES	422	•	
3 MINUTES	423	•(	
5 MINUTES	417	•(	
10 MINUTES	397	•(	
15 MINUTES	376	•(	
20 MINUTES	352	•(	
30 MINUTES	313	•(	
40 MINUTES	281	•(	
6_0 MINUTES	163	•(	
/ZOMINUTES	33	•	

THER	REPORT FOR PAGE 2 OF			
	PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:	<u>Вачтанк</u> ND <u>854</u> <u>75-к В-68-к 2-4</u> : <u>3-23-94</u> <u></u> <u>3</u> 50	9C.	
VISUAL OBSERVATIONS - BEFOR				
DARK BLOWN SANDY	Soil	-		
SMALL, CLAY-LIKE	CHUNKS THEORE	MONT		
Møist.	: • .		е К. 1	
· · ·	:			
· · ·				
VISUAL OBSERVATIONS - AFTER Completely dy		· 		
Appears well - freater	d Organic mat	erial has chorad,	sand is	
10 Ser car (ser e				
	 :			
·. · · · · · · · · · · · · · · · · · ·	•			
	·	• •		(

ğ

PROJECT:	EANMARK_IND.
PROJECT No .:	854
MATERIAL TYPE:	75*13-7* 4-6:1A
TESTING DATE:	3-17-94
TESTED BY:	JSD

s

SET-UP, MONITORING and T	ESTING INFORMATION	· <u> </u>
1. SAMPLE No.	75*13-7*4-6:14	
2. OVEN TEMPERATURE	3710	•c
3. WEIGHT OF PAN (tare weight)	358.60	g
4. WEIGHT OF UNTREATED SOIL + TARE	1356.53	9
5. WEIGHT OF UNTREATED SOIL	998.53	9
6. WEIGHT OF TREATED SOIL + TARE	1287.61	g
7. WEIGHT OF TREATED SOIL	929.61	g
8. WEIGHT LOSS	68.92	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE		•c
2 MINUTES		•c
3 MINUTES		•c
5 MINUTES		•c
10 MINUTES	83	•c
15 MINUTES		•c
20 MINUTES		•c
30 MINUTES		•0
40 MINUTES		•0
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	79	•0
2 MINUTES	74	•0
3 MINUTES	72	•0
5 MINUTES	63	•0
10 MINUTES	N/A-	•0
15 MINUTES	46	•0
20 MINUTES	44	•0
30 MINUTES	35	•(
40 MINUTES	31	. •(
MINUTES	· · · · ·	•(
MINUTES		•(
	· · · · · · · · · · · · · · · · · · ·	

ĩ

THERMAL	<b>DESORPTION DATA</b>

REPORTFORM PAGE 2 OF 2

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYMACK IND.
854
TSK B-7* 4-6:11
3-17-94
120

#### VISUAL OBSERVATIONS - BEFORE TREATMENT

BLACK SILTY CLAY W BCHNULAR MATERIAL THROUGHTONT. WHITE SPECS AND SAND CAYSTALS. MODERATELY MOIST.

#### VISUAL OBSERVATIONS - AFTER TREATMENT

Soil STEAMED UPON REMOLAR FROM OVEN. SMALL BETLANS OF TOPLAYED DEY, THE EEST W/ SomE RESIDNAL MOISTREE. (LAY MATELIAL BALLED UP SOME WHAT. TAR-LIKE ODDR.

RAYMARK IND
854
TS-KE-7-K 4-6:24
3-18-94
JSD

Č.

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS* B-7*4-6= 24	
OVEN TEMPERATURE 371		
3. WEIGHT OF PAN (tare weight)	344.25 560 334.27 0	
4. WEIGHT OF UNTREATED SOIL + TARE	/333.85	
5. WEIGHT OF UNTREATED SOIL	999.58	
6. WEIGHT OF TREATED SOIL + TARE	1186.5/	
7. WEIGHT OF TREATED SOIL	85224	
8. WEIGHT LOSS	147.34	
9. LENGTH OF TREATMENT (RESIDENCE TIME)	Zo Min.	
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	•c	
2 MINUTES	•c	
3 MINUTES	•c	
5 MINUTES	•c	
10 MINUTES	•c	
15 MINUTES	•c	
20 MINUTES	95	
30 MINUTES	•c	
40 MINUTES	•c	
11. SOIL TEMPERATURE - WHILE COOLING		
	<b>EB</b> •c	
2 MINUTES	84 ·c	
3 MINUTES	19 ·c	
5 MINUTES	74 •c	
10 MINUTES	60	
15 MINUTES	49	
20 MINUTES	45	
30 MINUTES	37	
40 MINUTES	32 .	
MINUTES	•••	
MINUTES	•°	

THERMAL DESORPTION DATA
REPORTFORM
PAGE 2 OF 2

PROJECT:	
PROJECT No .:	
MATERIAL TYPE:	
TESTING DATE:	
TESTED BY:	

RAY MARK WD.
854
TS-K 8-7 + 4-6:2A
378-94
TSD

#### VISUAL OBSERVATIONS - BEFORE TREATMENT

BLACK SILTY PLAY W BRANULAR MATERIAL THEONEWORT. WHITE SPECS AND SAND CRYSTALS. MODERATELY MOIST. Some SMALL RICES WIN MATERIAL

#### VISUAL OBSERVATIONS - AFTER TREATMENT

VISIBLY	MUCH DELEL	THAN	10 MW	R-710	E		
TAC-LIN	E OILY SU	SSTIMNCE	IN CORNER	oc	PAN.	HOTE	Bubblinh
The o	w					į.	
MATER	a) Molt	CLUMBLY	AND LES	5 61	HESINE	i	

PROJECT:	KAY MARK IND.
PROJECT No .:	854
MATERIAL TYPE:	TS# B-7# 4-6:34
TESTING DATE:	3-18-94
TESTED BY:	Jso

SET-UP, MONITORING and TI	STING INFORMATION	
1. SAMPLE No.	TS* B-7* 4-6:3A	
2. OVEN TEMPERATURE	371	•c
3. WEIGHT OF PAN (tare weight)	357.74	9
4. WEIGHT OF UNTREATED SOIL + TARE	1358.12	g
5. WEIGHT OF UNTREATED SOIL	1000.38	g
6. WEIGHT OF TREATED SOIL + TARE	1101.15	g
7. WEIGHT OF TREATED SOIL		g
8. WEIGHT LOSS		g
9. LENGTH OF TREATMENT (RESIDENCE TIME)		Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
		•c
2 MINUTES		•c
3 MINUTES		•c
5 MINUTES		•c
10 MINUTES		•c
15 MINUTES		•c
20 MINUTES		•c
30 MINUTES		•c
40 MINUTES	194	•c
11. SOIL TEMPERATURE - WHILE COOLING		
- 1 MINUTE	113	•c
2 MINUTES	93	•c
3 MINUTES	80	•c
5 MINUTES	62-	•c
10 MINUTES	50	•0
15 MINUTES	49	•0
20 MINUTES	40	•0
30 MINUTES	34	·•c
40 MINUTES	31	•0
MINUTES		•0
MINUTES		•
		~ <b></b> `

REPORT FORM PAGE 2 OF 2

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

Ray MARK INS.
854
TS# B-7 # 4-6:3A
3-18-94
Jsb

#### VISUAL OBSERVATIONS - BEFORE TREATMENT

Beder	SILTY	CLAY	W BRANULAR MATERIAL	THROUGHOVI
Wate	SPECS	1 sm	ALL BOLES	
SomE	PIECES	OF	FIBRIUS MATERIAL .	· ·
MOIST.			, , , , , , , , , , , , , , , , , , ,	I

#### VISUAL OBSERVATIONS - AFTER TREATMENT

Shoke	Cominto	FRom	SAMPLE	UPON	REMOVIL	FROM	RULNACE
The	obor, But	roh	BUBBLY	THE A	S NOTICAS	Eou	PALOR TEST
MA	ECIAL VISI	BLY D	RIER TH	AN lo	0£ 70	mon	

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYMARK IND 854 <u>TS # B- 7 +4-6:48</u> <u>3-22-94</u> <u>JSD</u>

	· · · · · · · · · · · · · · · · · · ·			
SET-UP, MONITORING and T				
1. SAMPLE No.	TSK B-7K4-6:43			
2. OVEN TEMPERATURE	538	•c		
3. WEIGHT OF PAN (tare weight)	363.67	g		
4. WEIGHT OF UNTREATED SOIL + TARE	1361.12	9		
5. WEIGHT OF UNTREATED SOIL	997.45	9		
6. WEIGHT OF TREATED SOIL + TARE	1232.33	9		
7. WEIGHT OF TREATED SOIL	868.66	ទ		
B. WEIGHT LOSS	128.79	9		
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.		
10. SOIL TEMPERATURE - WHILE IN OVEN				
1 MINUTE	50	•c		
2 MINUTES	68	•0		
3 MINUTES	79	•0		
5 MINUTES	94	•0		
10 MINUTES	100	•0		
15 MINUTES		•0		
20 MINUTES		•0		
30 MINUTES		•0		
40 MINUTES		•0		
11. SOIL TEMPERATURE - WHILE COOLING				
	95	•0		
2 MINUTES	92	•0		
3 MINUTES	89	•(		
5 MINUTES	84	•(		
	70	•(		
15 MINUTES	61	•		
20 MINUTES	54	•		
30 MINUTES	42	•		
	35	 •		
	30	 •/		
		`		
MINUIED				
	PBO.IECT	PAYMORK		
-------------------	---------------------------------------------------------------	------------------------------------	---------------	-------------
	PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:	854 T5# B-7# 3. 22-94 TSD	<u>4-6-4B</u>	· · ·
			,	
		:	· · ·	
River			• • • •	
BLACK SI	LTY CLAY (VERY	GRAINY S		
Some Pie	ECES OF ORGANIC MA	TERIAL.		
FIBROUS MOIST.	MATERIAL & Smy	LL ROCKS	- - -	
	· .			•
	· ·		,	
			· · ·	
	· · · · · · · · · · · · · · · · · · ·		: :	
		•		1
			•	
				·
		·		
	ONS - AFTER TREATMENT			
	( ADD ARA			· "

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:
/

Paymalk IND 854 TS * B-7* 46:58 3-22-94 JSD

â

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS* B-7* 4-6:58	
2. OVEN TEMPERATURE	538	•c
3. WEIGHT OF PAN (tare weight)	347.33	9
4. WEIGHT OF UNTREATED SOIL + TARE	1348.18	9
5. WEIGHT OF UNTREATED SOIL	1000.85	9
6. WEIGHT OF TREATED SOIL + TARE	1082.52	9
7. WEIGHT OF TREATED SOIL	735: (9,	9
8. WEIGHT LOSS	265.66	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	57	•c
2 MINUTES	57	•c
3 MINUTES	65	•0
5 MINUTES	82	•c
10 MINUTES	100	•c
15 MINUTES	100	•0
20 MINUTES	/00	•0
30 MINUTES		•0
40 MINUTES		•c
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	5-550 98	•0
2 MINUTES	95	·
3 MINUTES	93	•0
5 MINUTES	68	•(
10 MINUTES	78	•(
15' MINUTES	69	•(
20 MINUTES	61	•(
30 MINUTES	50	•(
40 MINUTES	40	•
50minutes	35	
60 MINUTES	31	•(

REPORT FORM PAGE 2 OF 2

PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:

RAYMARE INS
854
TS* B-7* 4-6:5B
3-22-94

VISUAL OBSERVATIONS - BEFORE TREATMENT

Black silty clay (grainy)

SMALL CLAY-LIKE CHUNKS OF OCGANIC MATERIAK THROUGHPOT FISLOUS MATERIAL & SMALL Rocks MOIST.

VISUAL OBSERVATIONS - AFTER TREATMENT

"Hume present upon removal from furnace. Soil is Completely dry and stuck together. Hard to the fouch.

Fibrous organic natival oozes tar-like substance which burns. Eibrons substance is left over.

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYMARK INS <u>854</u> TSK B-7 K 41-6:68 <u>3-22-94</u> JSD

-

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS* B-7*4-6:6B	
2. OVEN TEMPERATURE	538	•c
3. WEIGHT OF PAN (tare weight)	340.23	9
4. WEIGHT OF UNTREATED SOIL + TARE	1339.70	g
5. WEIGHT OF UNTREATED SOIL	999.47	9
6. WEIGHT OF TREATED SOIL + TARE	955.34	9
7. WEIGHT OF TREATED SOIL	615:11	. 9
8. WEIGHT LOSS	384.36	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	4 6	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	48	•0
2 MINUTES	56	•0
3 MINUTES	69	•0
5 MINUTES	85	•0
10 MINUTES	99	•
15 MINUTES	99	•0
20 MINUTES	100	•
. 30 MINUTES	195	••
40 MINUTES	353	•0
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	255	•0
2 MINUTES	300	•(
3 MINUTES	328	•
5 MINUTES	380	•(
10 MINUTES	450	•(
15 MINUTES	475	•(
20 MINUTES	481	•(
30 MINUTES	474	. •(
40 MINUTES	4/21	•
60MINUTES	152	•
125 MINUTES	28	•,

REPORT FORM PAGE 2 OF 2

PROJECT:	KAY M
PROJECT No.:	6
MATERIAL TYPE:	TSKR
TESTING DATE:	3-22
TESTED BY:	Jž

ARK INS 7744-6:63

**VISUAL OBSERVATIONS - BEFORE TREATMENT** 

Black Siller (lag (graing) Small clay-libe chunts of organic material Small Tocks Most.

VISUAL OBSERVATIONS - AFTER TREATMENT

Heat increased for the first 20 min. out. Soil much more ashen or cinder-like in a preasance Completely duy.

* NITROBEN PUEDE

PROJECT: PROJECT No .: MATERIAL TYPE: TESTING DATE: TESTED BY:

RAYMACK INS 1854 TS <u>*</u> B-7 <u>*</u> 4-6:7C <u>3-24-94</u> JSD

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS * B-7* 4-6:7C	
2. OVEN TEMPERATURE	649	•c
3. WEIGHT OF PAN (tare weight)	364.24	9
4. WEIGHT OF UNTREATED SOIL + TARE	1364.99	9
5. WEIGHT OF UNTREATED SOIL	1000.75	g
6. WEIGHT OF TREATED SOIL + TARE	1182.04	9
7. WEIGHT OF TREATED SOIL	817.8	9
8. WEIGHT LOSS	182.95	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	64	•0
2 MINUTES	88	•
3 MINUTES	96	•0
5 MINUTES	102	•0
10 MINUTES	101	•
15 MINUTES	·	•0
20 MINUTES		•0
30 MINUTES		•(
40 MINUTES		•(
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	96	•(
2 MINUTES	92	•(
3 MINUTES	88	•(
5 MINUTES	80	•(
10 MINUTES	68	· •(
15 MINUTES	58	•,
20 MINUTES	50	•
30 MINUTES	39	
40 MINUTES	33	•
MINUTES		•
MINUTES		•

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 LAYMACK IND PROJECT: PROJECT No .: TS#B-7 #4-6:7C MATERIAL TYPE: TESTING DATE: 3-24-94 TESTED BY: **VISUAL OBSERVATIONS - BEFORE TREATMENT** Black, sitty clay w/ clay-like chanks of organic material. Small locks theroughout. Most VISUAL OBSERVATIONS - AFTER TREATMENT Smoking stightly upon removal from over. Visibly more day. Bottom layer relatively una ficked. Still moist and organic materials are still pliable. Top layer day & brittle. Oragania material charred on Surface.

KNITROBEN PURTE

PROJECT: PROJECT No .: MATERIAL TYPE: TESTING DATE: TESTED BY:

PAYMARK IND 854 TS K 13-7-V 4-6: BC 3-24-94 JSD

SET-UP, MONITORING and TES	TING INFORMATION	
1. SAMPLE No.	TS + B-7 + 4-6:1	80
	649	•c
3. WEIGHT OF PAN (tare weight)	361.38	· · · ·
4. WEIGHT OF UNTREATED SOIL + TARE	1362.26	·
5. WEIGHT OF UNTREATED SOIL	1000.88	 
6. WEIGHT OF TREATED SOIL + TARE	1068.405.324	1068.24
7. WEIGHT OF TREATED SOIL	706.86	
8. WEIGHT LOSS	294.02	ç
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	55	•(
2 MINUTES	72	•(
3 MINUTES	82	•(
5 MINUTES	97	•(
10 MINUTES	101	•(
15 MINUTES	103	•(
20 MINUTES	133	•(
30 MINUTES		••(
40 MINUTES	·	•
11. SOIL TEMPERATURE - WHILE COOLING	<u></u>	
1 MINUTE	112	•
2 MINUTES	109	•
3 MINUTES	105	•,
5 MINUTES	101	•
10 MINUTES	96	•
15 MINUTES	93	•
20 MINUTES	87	•
30 MINUTES	71	•
40 MINUTES	57	•
	40	
	32	

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2
PROJECT: PROJECT NO.: PROJECT NO.: MATERIAL TYPE: TESTING DATE: TESTED BY: TESTED BY
VISUAL OBSERVATIONS - BEFORE TREATMENT
Black, sutty clay up clay-like duraks of organic material. Small works Harone wit.
Moist.
VISUAL OBSERVATIONS - AFTER TREATMENT
Dry throughout. Organic moterials on Surface charred & those on the Jostom are dry and brittle.

Ċ,

KNitrogen Purse

PROJECT: PROJECT No .: MATERIAL TYPE: TESTING DATE: TESTED BY:

RAYMACK IND 854 TSK B-7K4-6:9C 3-24-94 TSD

ŝ

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS*B-7*4-6:9C	
2. OVEN TEMPERATURE	649	•C
3. WEIGHT OF PAN (tare weight)	347.54	g
4. WEIGHT OF UNTREATED SOIL + TARE	1348.09	ġ
5. WEIGHT OF UNTREATED SOIL	1000.55	g
6. WEIGHT OF TREATED SOIL + TARE	955.83	9
7. WEIGHT OF TREATED SOIL	(203.29	g
8. WEIGHT LOSS	392.26	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN	<u>.</u>	
1 MINUTE	49	•c
2 MINUTES	66	•c
3 MINUTES	80	•c
5 MINUTES	94	•c
10 MINUTES	101	•c
15 MINUTES	101	•c
20 MINUTES	117	•c
30 MINUTES	298	•c
40 MINUTES	510	•C
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	405	•c
2 MINUTES	510	•c
3 MINUTES	530	. •c
5 MINUTES	533	•c
10 MINUTES	576	•c
15 MINUTES	481	•c
20 MINUTES	459	•c
30 MINUTES	390	•c
40 MINUTES	353	
6 QUINUTES	226	•c
	28	

THERMAL DESORPTION DATA			
REPORT FORM			
PAGE 2 OF 2			
PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:	<u>E44MALK</u> INB <u>854</u> <u>75 K B-7 K 4-6</u> :9 <u>3-24-94</u> SSD		

ISUAL OBSERVATIONS - BEFORE TREATMENT

Black, silty day of clay-like chunks of organiz material. Small rocks throughout Moist .

VISUAL OBSERVATIONS - AFTER TREATMENT

Soil Completelydry. Glowing eubers apparent upon remaral from furnace. Appears lighter in color and charred throughout.

PROJECT:
PROJECT No.:
MATERIAL TYPE
TESTING DATE:
TESTED BY:

R 17 Mark In/ T3* B-66×6-8: 3119194 SOH 14

**66** 

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS+B-68+6-8:1A	
2. OVEN TEMPERATURE	3710	•c
3. WEIGHT OF PAN (tare weight)	341.35	g
4. WEIGHT OF UNTREATED SOIL + TARE	1341.88	g
5. WEIGHT OF UNTREATED SOIL	1000.53	9
6. WEIGHT OF TREATED SOIL + TARE	1257.58	g
7. WEIGHT OF TREATED SOIL	9-16.53	g
8. WEIGHT LOSS	54 00	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE		•c
2 MINUTES		•c
3 MINUTES		•c
5 MINUTES		•c
10 MINUTES	75	· •c
15 MINUTES		•c
20 MINUTES		•c
30 MINUTES	······································	•c
40 MINUTES		•c
11. SOIL TEMPERATURE - WHILE COOLING	· · · · · · · · · · · · · · · · · · ·	
1 MINUTE	71	•c
2 MINUTES	71	•c
3 MINUTES	71	•c
5 MINUTES	69	•c
10 MINUTES	504 400-65	•c
15 MINUTES	59	• <b>c</b>
20 MINUTES	53	•c
30 MINUTES	46	•c
40 MINUTES	40	•0
50MINUTES	36	•c
MINUTES		•c

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 PROJECT: 1 nil inna K PROJECT No .: #554 TS+B-68+6-8:1A MATERIAL TYPE: TESTING DATE: 3/13/34 TESTED BY: VISUAL OBSERVATIONS - BEFORE TREATMENT Malerial is very dark brown / black color. Appears to be moist and Irels muist. Small, grander piers of soil with lasse, cling-like Chanks throushout, Some debiis ( rochsf. (smallrocks and orsanic material) VISUAL OBSERVATIONS - AFTER TREATMENT Vnuteral is grey with black chunks throughout Approves to be dryer than before treatment

Ciystal-live objects are visible.

;

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

.

Raymark Ind	
$\frac{\# 554}{F 5 + 16 - 5}$	ЗĤ

SET-UP, MONITORING and TESTING INFORMATION				
1. SAMPLE No.	TS+13-68+6-8:2A			
2. OVEN TEMPERATURE	3710	•c		
3. WEIGHT OF PAN (tare weight)	357 84	g		
4. WEIGHT OF UNTREATED SOIL + TARE	1355.65	. 9		
5. WEIGHT OF UNTREATED SOIL	1000.8	a	· .	
6. WEIGHT OF TREATED SOIL + TARE	1220.16	g		
7. WEIGHT OF TREATED SOIL	\$62.32	g		
8. WEIGHT LOSS	138.49	g		
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.		
10. SOIL TEMPERATURE - WHILE IN OVEN				
1 MINUTE		•c		
2 MINUTES		•c		
3 MINUTES	·	•c		
5 MINUTES		•c		
10 MINUTES	· · · · · · · · · · · · · · · · · · ·	•c		
15 MINUTES	( 15 )	•c	->F h	
20 MINUTES	(96) 97	•c	paran	
30 MINUTES	×	•c	themscoup	C
40 MINUTES		•c	price used	tu
11. SOIL TEMPERATURE - WHILE COOLING			prove Te	mp
1 MINUTE	94	•c	yn castre cuil	10
2 MINUTES	42	•c	0+30	I.
3 MINUTES	5.8	•c	the out	<b>^</b> .
5 MINUTES	84	•c	t was not	T ~ ~ ?
10 MINUTES	71	•c	5+-618-	lum
15 MINUTES	64	•c	Varier	Γ,
20 MINUTES	57	•c	\$8 -> 10	þ
30 MINUTES	48	•c	(20 min	#Ŧ
40 MINUTES	43	•c	Var ad f	1m
50 MINUTES	37	•c	45-77	ł
MINUTES		•c		1

#### THERMAL DESORPTION DATA REPORT FORM AGE 2 OF 2 Kingmark In PROJECT: 4554 PROJECT No .: TS+B-68 x-6-8: MATERIAL TYPE: TESTING DATE: 3)19/97 TESTED BY: SUrl VISUAL OBSERVATIONS - BEFORE TREATMENT Phatinkl is very dark/black in Color with grig patches throughout. Soil is moist, with small granular pirces and histor prices ut Chay like material. Small crystal like pirces can be seen throughout; as well as bits of debris.

VISUAL OBSERVATIONS - AFTER TREATMENT

Material mus smoking after remove from over. Material is mostly grey incolor, with a few black chunchs. Crystal like objects are still visible.

## THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

44
7.
, ¥

mark Ind # 554 13-10-57-6-8:3A 3/19/9-1 501-1

SET-UP, MONITORING and TE		
1. SAMPLE No.	TSXB-66+6-5:3A	
2. OVEN TEMPERATURE	37/	. •c
3. WEIGHT OF PAN (tare weight)	35469	g
4. WEIGHT OF UNTREATED SOIL + TARE	1355 441	8
5. WEIGHT OF UNTREATED SOIL	1000.75	9
6. WEIGHT OF TREATED SOIL + TARE	1113.60	9
7. WEIGHT OF TREATED SOIL	758 41	g
8. WEIGHT LOSS	241.84	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
IMINUTE (Thruthoup)C	( 3 4°)	•c
2 MINUTES IN UVIN)	[4'a']	•c
3 MINUTES	(48)	•c
5 MINUTES	$(56^{\circ})$	•c
10 MINUTES	(97)	•c
15 MINUTES	()())	•c
20 MINUTES	(100)	•c
30 MINUTES	(100))	•c
40 MINUTES	$(100^{\circ}) - 98^{\circ}$	•c ⁻⁷
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	91	•c
2 MINUTES	89	• •c
3 MINUTES	86	•c
5 MINUTES	82	•c
10 MINUTES	74	•c
15 MINUTES	66	•c
20 MINUTES	60	. •c
30 MINUTES	51	•c
40 MINUTES	43	•c
5 UMINUTES	39	•c
MINUTES		•c

م، روه مرارید بولیروزار ts. Ac

ren)



PROJECT:
PROJECT No.:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

Раумаек /ND В54 Т.S. B-68 ж 6-8: 43 3-22-94 JSD

â

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS* B-68*6-8:43	2
2. OVEN TEMPERATURE	5 38	•c
3. WEIGHT OF PAN (tare weight)	364.28	g
4. WEIGHT OF UNTREATED SOIL + TARE	1364.14	8
5. WEIGHT OF UNTREATED SOIL	979.86	9
6. WEIGHT OF TREATED SOIL + TARE	1235.56	9
7. WEIGHT OF TREATED SOIL	871.28	g
8. WEIGHT LOSS	128.58	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	52	•c
2 MINUTES	69	•c
3 MINUTES	77	•c
5 MINUTES	95	•c
10 MINUTES	/02	•c
15 MINUTES		•c
20 MINUTES		•c
30 MINUTES		•c
40 MINUTES		•c
11. SOIL TEMPERATURE - WHILE COOLING		
1. MINUTE	97	•c
2 MINUTES	94	•c
3 MINUTES	972	•c
5 MINUTES	88	•c
10 MINUTES	76	•c
15 MINUTES	68	•c
20 MINUTES	60	•c
30 MINUTES	49	•c
40 MINUTES	41	•c
50 MINUTES	35	•c
6 OMINUTES	31	•c

REPORT FORM PAGE 2 OF 2

PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:

RAY MARK IND
85-1
TS# 13 -68 # 6-8:48
3-22-94
TSD

VISUAL OBSERVATIONS - BEFORE TREATMENT

RACE, SANDY SOIL WITH THR-LIKE FIBROUS WHITERIAL. MOIST. OTHER OR GANIC WHITERIAL (WHEAT STRAW) PRESENT. WHITE SPECS.

VISUAL OBSERVATIONS - AFTER TREATMENT

APPEALS MOLE DRY, BUT HAS BETAHAED SOME MOISTURE ORGANNIC MATERIAL RELATINELY UNAFFECTED

PROJECT:	RAYMACK IND
PROJECT No.:	854
MATERIAL TYPE:	75-K B-68-K6-E
TESTING DATE:	3-22-94
TESTED BY:	JSD

SB

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS# 13-68 * 6-8:51	3
2. OVEN TEMPERATURE	528	•c
3. WEIGHT OF PAN (tare weight)	346.90	g
4. WEIGHT OF UNTREATED SOIL + TARE	1346.80	9
5. WEIGHT OF UNTREATED SOIL	999.90	. 9
6. WEIGHT OF TREATED SOIL + TARE	1123.68	g
7. WEIGHT OF TREATED SOIL	781.78	g
8. WEIGHT LOSS	218.12	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
	49	•c
2 MINUTES	63	•0
3 MINUTES	75	•0
5 MINUTES	93	•0
10 MINUTES	101	•0
15 MINUTES	101	•0
20 MINUTES	104	•c
30 MINUTES		••
40 MINUTES		· •c
11. SOIL TEMPERATURE - WHILE COOLING		
t MINUTE	10/	•(
2 MINUTES	99	•(
3 MINUTES	96	•
5 MINUTES	92	•(
10 MINUTES	81	•(
15 MINUTES	70	•
20 MINUTES	bl	•(
30 MINUTES	49	
40 MINUTES	40	. •
50 MINUTES	36	•,
60 MINUTES	30	•

THERMAL	DESORP	TION	DATA

REPORT FORM PAGE 2 OF 2

PROJECT:
PROJECT No.:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

LAY MALK IND
854
TS# B-68 # 6-8:53
3-27-94
550

#### VISUAL OBSERVATIONS - BEFORE TREATMENT

BLACK,	SANDY	Sar	WITH	TAK-LIKE	FIBRAIS	M4 TERIAL
Mast.	·					
OTHER	ORGANIC	MA	TERIAL	PRESENT.		
WHITE	SPECS.					· · .

#### VISUAL OBSERVATIONS - AFTER TREATMENT

APPEARS MORE DRY BUT HAS RETAINED SOME MOISTURE. TAR-LIKE FUBROUS MUTTERIAL HAS BELOME VERY DRY & HACD.

# THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

	PROJECT:
	PROJECT No.:
	MATERIAL TYPE
•	TESTING DATE:
	TESTED BY:

<u>Раумаек (NB</u> <u>854</u> ТS# B-68 ¥6 8:68 <u>3-27-94</u> JSD

SET-UP, MONITORING and T	ESTING INFORMATION	
1. SAMPLE No.	TS* B-68 * 6-8:68	
2. OVEN TEMPERATURE	538	
3. WEIGHT OF PAN (tare weight)	360.39	
4. WEIGHT OF UNTREATED SOIL + TARE	1360.09	9
5. WEIGHT OF UNTREATED SOIL	999.70	g
6. WEIGHT OF TREATED SOIL + TARE	1051.27	g
7. WEIGHT OF TREATED SOIL	690.88	g
8. WEIGHT LOSS	308.82	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	40	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	45	•0
2 MINUTES	63	•
3 MINUTES	74	•0
5 MINUTES	92	•0
10 MINUTES	101	•
15 MINUTES	102	•0
20 MINUTES	//0	•0
30 MINUTES	167	•0
40 MINUTES	233	•(
11. SOIL TEMPERATURE - WHILE COOLING		
	149	•
2 MINUTES	150	•(
3 MINUTES	148	•(
5 MINUTES	143	•(
10 MINUTES	129	•(
15 MINUTES	4955 N/A	•(
20 MINUTES	IA.	•,
30 MINUTES		•
40 MINUTES	100	•
6.0MINUTES	70	
95 MINUTES	30	•
	<u>_</u>	

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 RAY MACK ND PROJECT: PROJECT No .: 254 B-68 +6-8:63 MATERIAL TYPE: TESTING DATE: 27-94 TESTED BY: TSD VISUAL OBSERVATIONS - BEFORE TREATMENT BLACK, SANDY SOIL WITH THE-LIKE FISHOUS MATERIAC Moist. OTHER OLGANIC MATERIAL PRESENT. WHITE SPECS VISUAL OBSERVATIONS - AFTER TREATMENT APPELLES Dey THROUGHOUT. TOP LAYER IS LIGHT TAN. ORBANIC MATERIAL VERY DRY & SLIBHTLY PALMERY SUGHT SMOKE UPON FULNACE REMOVAL

TH	ERMAL DESO	RPTION DATA
	PAGE 1 0	DRM F 2
1	PROJECT:	KAYMARK IND
	PROJECT No.:	854
	MATERIAL TYPE:	TS* B-68 * 6-8:7C
	TESTING DATE:	3-23-94
	TECTED BY.	TEN

0

SET-UP, MONITORING and T	ESTING INFORMATION	
1. SAMPLE No.	TS# B-68 + 6-8:7C	
2. OVEN TEMPERATURE	649	•c
3. WEIGHT OF PAN (tare weight)	360.63	9
4. WEIGHT OF UNTREATED SOIL + TARE	1360 81	g
5. WEIGHT OF UNTREATED SOIL	1000.18	g
6. WEIGHT OF TREATED SOIL + TARE	1203.01	9
7. WEIGHT OF TREATED SOIL	842.33	9
8. WEIGHT LOSS	157.80	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	10	Min,
10. SOIL TEMPERATURE - WHILE IN OVEN		
	79	•C
2 MINUTES	93	•c
3 MINUTES	99	•c
5 MINUTES	101	•c
10 MINUTES	112	•c
15 MINUTES		•c
20 MINUTES		•c
30 MINUTES		•c
40 MINUTES		•c
11. SOIL TEMPERATURE - WHILE COOLING		
	100	•0
2 MINUTES	98	.•c
3 MINUTES	96	•c
5 MINUTES	90	•c
10 MINUTES	78	•c
15 MINUTES	68	•c
20 MINUTES	60	•0
30 MINUTES	48	•c
40 MINUTES	41	•0
5Quinutes	36	•0
60 MINUTES	37	•0

* NITROBEN PURGE

Ð THERMAL DESORPTION DATA GE 2 OF 2 PAY MARK IND PROJECT: PROJECT No .: K B-68 × 6-8:7C MATERIAL TYPE: 3-23-94 TESTING DATE: TESTED BY: VISUAL OBSERVATIONS - BEFORE TREATMENT BLACK, SANDY SOL W/ TAC-LIKE FIBROUS MATTERIAL WHUTE SPECS . " Moist. Some EXTLANEORIS OCCAMIC MATERIAL. Visibly more day, but has retained moisture Desunic chundes still pliable (not too dried out) Slight spots of the on very top Surface. Not very effective treatment (visually).

PROJECT:
PROJECT No .:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYMARK INS 854 TS* B-68*6-8:8C 3-23-94 JSN

2

*NITROBEN PUPLOE

SET-UP, MONITORING and TE	STING INFORMATION	
1. SAMPLE No.	TS+XB-68+X6-8:8	
	649	•c
3. WEIGHT OF PAN (tare weight)	364.41	9
4. WEIGHT OF UNTREATED SOIL + TARE	1364.63	g
5. WEIGHT OF UNTREATED SOIL	1000.22	9
6. WEIGHT OF TREATED SOIL + TARE	1088.54	g
7. WEIGHT OF TREATED SOIL	724.13	g
8. WEIGHT LOSS	276.09	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	20	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	72	•c
2 MINUTES	88	•c
3 MINUTES	96	•C
5 MINUTES	102	•c
10 MINUTES	103	•c
15 MINUTES	136	•c
20 MINUTES	184	•c
30 MINUTES		•c
40 MINUTES		•c
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	105	•c
2 MINUTES	104	•c
3 MINUTES	//3	•c
5 MINUTES	10/	•c
10 MINUTES	89	•c
15 MINUTES	81	•c
20 MINUTES	70	•c
30 MINUTES	58	•c
40 MINUTES	47	•c
	42	•c
6 Sminutes	32	•C

ſ

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 RAYNACK IND PROJECT: PROJECT No .: 854 5 * B-68 * 6-8: 8C MATERIAL TYPE: TESTING DATE: 3-23-94 TESTED BY: ھک **VISUAL OBSERVATIONS - BEFORE TREATMENT** KLACE, SANDY SOIL N/ THE-LIKE FIBROUS MATERAL WHITE SPECS. Mors7. SOME EVTRANEOUS OR 64NIC MATERIAL VISUAL OBSERVATIONS - AFTER TREATMENT Appears dry throughout. Fight tan color on servface (indicative of high key exposed Organie material dig & hrittle

TH	ERMAL DESOR	PTION DATA	
17Rober	PROJECT: PROJECT No.:	RAYMARK IND 854	
Pucbe	MATERIAL TYPE: TESTING DATE: TESTED BY:	<u>75* 13-68 + 6-6</u> .9 <u>3-23-94</u> <u>TSD</u>	
SET-L	IP, MONITORING and TE		· <u> </u>
1. SAMPLE No.		TS # R-68 + 6-8:90	
2. OVEN TEMPERATURE	V	649	 •c
3. WEIGHT OF PAN (tare wei	ght)	341.02	 g
4. WEIGHT OF UNTREATED	SOIL + TARE	1341.95	g
5. WEIGHT OF UNTREATED	SOIL	1000 93	.9
6. WEIGHT OF TREATED SO	IL + TARE	986.37	g
7. WEIGHT OF TREATED SO	IL	645.35	9
8. WEIGHT LOSS		355.58	g
9. LENGTH OF TREATMENT	(RESIDENCE TIME)	40	Min.
10. SOIL TEMPERATURE - W	HILE IN OVEN		
1 MINUTE		78	•0
2 MINUTES		88	•0
3 MINUTES		96	•0
5 MINUTES		101	••
10 MINUTES		101	•
15 MINUTES	·	1.31	•c
20 MINUTES		196	•
30 MINUTES	· · · · · · · · · · · · · · · · · · ·	5 86	•
40 MINUTES		363	•
11. SOIL TEMPERATURE - W	HILE COOLING	· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	125	•(
2 MINUTES		180	•(
3 MINUTES		198	•
5 MINUTES	·	235	•(
10 MINUTES	•	287	•(
15 MINUTES	l	307	•
20 MINUTES	<u> </u>	314	•
	l	320	•,
40 MINUTES	3	336	•
60MINUTES	i	204	•
150 MINUTES	3	32	•

.

Ţ.

THERMAL DESORPTION DATA REPORTFORM PAGE 2 OF 2 KAYMARK INS PROJECT: 8541 PROJECT No .: TS* B-68 × 6-8:9C MATERIAL TYPE: TESTING DATE: 3-23-94 TESTED BY: TSD **VISUAL OBSERVATIONS - BEFORE TREATMENT** BLACK, SANDY SOL W THE-LIKE FIBROUS MATERIAL. WHITE SPECS. Moist. SOME EXTERNEDUS ORGANIC MATERIAL. VISUAL OBSERVATIONS - AFTER TREATMENT Much nove ten exteriol soit than 8c. Arganic material channed, dry & brittle. Consplatiety dry,

#### THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2 KYMARK IND PROJECT: 854 PROJECT No .: TS# 13-68-46-8 MATERIAL TYPE: 4-7-94 TESTING DATE: Initial Treatment TESTED BY: JSD SET-UP, MONITORING and TESTING INFORMATION TS*8-68*6-8:FT-860 1. SAMPLE No. 2. OVEN TEMPERATURE 538 347.69 3. WEIGHT OF PAN (tare weight) 1347.90 4. WEIGHT OF UNTREATED SOIL + TARE 1000.21 5. WEIGHT OF UNTREATED SOIL 006.80 6. WEIGHT OF TREATED SOIL + TARE 7. WEIGHT OF TREATED SOIL 8. WEIGHT LOSS 60 9. LENGTH OF TREATMENT (RESIDENCE TIME) Min. 10. SOIL TEMPERATURE - WHILE IN OVEN 60 1 MINUTE •c 76 2 MINUTES •c 88 **3 MINUTES** •c 100 •c **5 MINUTES** 102 10 MINUTES •c 109 15 MINUTES •c 138 20 MINUTES •c 167 30 MINUTES •c 232 40 MINUTES •c 11. SOIL TEMPERATURE - WHILE COOLING NA 1 MINUTE •c 322 2 MINUTES •c 328 **3 MINUTES** •c **32** 8. **5 MINUTES** •C 31 B 10 MINUTES •c 30 B 15 MINUTES •c 297 20 MINUTES •c 274 •0 **30 MINUTES** 257 •0

233

२२

۰c

•c

40 MINUTES

35 MINUTES

ð:

DESORPTION DATA PAGE 2 OF 2 KAVMAER IND PROJECT: PROJECT No .: TSK B-68 + 6-8 MATERIAL TYPE: TESTING DATE: 4-7-54 TESTED BY: **VISUAL OBSERVATIONS - BEFORE TREATMENT** Brok, saudy soil w/ black, spongey rubber (tur)-like meterial. White space. Extraneous organic material Monit. VISUAL OBSERVATIONS - AFTER TREATMENT Temp ( 60 min : 409°C Soil did not barn or suche upon removal from over. Completely dry. Light ten on top layer, dark brown herearth. highthy channed on top.

PROJECT:
PROJECT No .:
MATERIAL TYPE
TESTING DATE:
TESTED BY:

RAYMALK IND <u>854</u> TS# B-68 # 6-8: FT-BQO <u>4-7-94</u> JSD

SET-UP, MONITORING and T	ESTING INFORMATION	
1. SAMPLE No.	TS# 8-68 # 6-8:	F7-B90
2. OVEN TEMPERATURE	538	•0
3. WEIGHT OF PAN (tare weight)	364.53	g
4. WEIGHT OF UNTREATED SOIL + TARE	1365.33	
5. WEIGHT OF UNTREATED SOIL	1000.80	g
6. WEIGHT OF TREATED SOIL + TARE	1627.17	, ,
7. WEIGHT OF TREATED SOIL	662.64	ç
8. WEIGHT LOSS	33 <b>8</b> .16	ç
9. LENGTH OF TREATMENT (RESIDENCE TIME)	90	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	60	•(
2 MINUTES	72	•(
3 MINUTES	83	•ر
5 MINUTES	101	•(
10 MINUTES	102	•(
15 MINUTES	105	•(
20 MINUTES	119	•(
30 MINUTES	/66	•(
40 MINUTES	245	•
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	445	•
2 MINUTES	462	. •,
3 MINUTES	460	•
5 MINUTES	448	•
10 MINUTES	411	•
15 MINUTES	384	•
20 MINUTES	357	•
30 MINUTES	320	•
MINUTES	300	•
	197	•
135 MINUTES	35	· •

e)

L

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 KAYMARK INS PROJECT: PROJECT No .: TS* B-68*6-8 4-7-94 MATERIAL TYPE: TESTING DATE: TESTED BY: VISUAL OBSERVATIONS - BEFORE TREATMENT Black, sundy soil of black, sponsy to (rabber) -like material. white specs. Extraneous organic material. Maist. **VISUAL OBSERVATIONS - AFTER TREATMENT** Temp @ to min: 446 Temp ? 75 min: 519 Temp? 90 min: 547 Soil did not burn or smoke upon removal from over. Completer dry fight for Color mostly, but bottom layer is dark. Charled bet not incinerated.

PROJECT:
PROJECT No.:
MATERIAL TYPE
TESTING DATE:
TESTED BY:

RAYMARK INS 854 TS* B-68*6-8 4-6-94 JSD

SET-UP, MONITORING and T	ESTING INFORMATION	
1. SAMPLE No.	TS* B-68 * 6-8	: FT-C60
2. OVEN TEMPERATURE	6490	•0
3. WEIGHT OF PAN (tare weight)	340. <b>E</b> 1	
4. WEIGHT OF UNTREATED SOIL + TARE	1341.57	
5. WEIGHT OF UNTREATED SOIL	100.96	
6. WEIGHT OF TREATED SOIL + TARE	942.90	
7. WEIGHT OF TREATED SOIL	607.29	· · ·
8. WEIGHT LOSS	393.67	
9. LENGTH OF TREATMENT (RESIDENCE TIME)	60	Min
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	81	•
2 MINUTES	94	•
3 MINUTES	101	o
5 MINUTES	102	•
10 MINUTES	/27	•
15 MINUTES	158	
20 MINUTES	220	٥
30 MINUTES	270	o
40 MINUTES	398	
11. SOIL TEMPERATURE - WHILE COOLING	· ·	
1 MINUTE	421	
2 MINUTES	433	
3 MINUTES	439	•
5 MINUTES	4/39	
10 MINUTES	406	· · ·
15 MINUTES	375	· ·
20 MINUTES	350	
30 MINUTES	316	
40 MINUTES	29B	
	237	······
190 MINUTES	31	

THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 AN WACK IND. PROJECT: PROJECT No .: TS* B-68*6-8 MATERIAL TYPE: 4-6-94 **TESTING DATE:** TESTED BY: TSD VISUAL OBSERVATIONS - BEFORE TREATMENT BLACK, SHANDY SOIL W/ BLACK SPONLAY, TAC-LIKE MA, ERIAL. WHITE SPECS. Some EPTRANEOUS ORGANIC MUTTERIAL Moist. VISUAL OBSERVATIONS - AFTER TREATMENT Temp in Oven @ 60 minutes: 500 Clowing red cubers upon removal from over . No smoking or s'on burning as noticed before. Material is completing day. Channed in appearance ( does not appear fully incinerated though ) Mostly light tun in color we dark spits through out ( storage undering)

# THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

RAYMACK IND 854 TS* B-68*6-8 4-6-94 JSA

SET-UP, MONITORING and TESTING INFORMATION			
1. SAMPLE No.	TS# B-68*6-8: FT	-675	
2. OVEN TEMPERATURE	649	•c	
3. WEIGHT OF PAN (tare weight)	348.20	9	
4. WEIGHT OF UNTREATED SOIL + TARE	1348.36	ġ	
5. WEIGHT OF UNTREATED SOIL	1000.16	ġ	
6. WEIGHT OF TREATED SOIL + TARE	982.54	 g	
7. WEIGHT OF TREATED SOIL	634.36	g	
8. WEIGHT LOSS	365.80	 2	
9. LENGTH OF TREATMENT (RESIDENCE TIME)	75	Min.	
10. SOIL TEMPERATURE - WHILE IN OVEN	· · ·		
1 MINUTE	85	•(	
2 MINUTES	97	•(	
3 MINUTES	101	•(	
5 MINUTES	102	•(	
10 MINUTES	117	•(	
15 MINUTES	168	•	
20 MINUTES	227	•(	
30 MINUTES	382	*(	
40 MINUTES	517	•(	
11. SOIL TEMPERATURE - WHILE COOLING			
1 MINUTE	502		
2 MINUTES	501	. •	
3 MINUTES	501	•,	
5 MINUTES	474	•,	
10 MINUTES	401	•	
15 MINUTES	274	•	
20 MINUTES	37/ 339	•	
. 30 MINUTES	296	•	
40 MINUTES	269	•	
60 MINUTES	187	•	
135 MINUTES	31	•	

ŵ
THERMAL DESORPTION DATA REPORT FORM PAGE 2 OF 2 RAY MARK IND PROJECT: 854 PROJECT No .: 75* R-68-K 6-2 MATERIAL TYPE: 4-6-94 TESTING DATE: 550 TESTED BY: **VISUAL OBSERVATIONS - BEFORE TREATMENT** BLACK, SANDY SOIL W/ BLACK SPONTY RUBBER-LIKE MATERIAL WHITE SPECS. EXTRANEOUS OLGANIC MATERIAC. MOIST. VISUAL OBSERVATIONS - AFTER TREATMENT Temp (a) bomin: 616 Temp () 75 min: 636 Gowing redembers upon removal from over. No smoking or star burning. Completely Ory. Charred, but not fully successful. Mostly light tan but dark in sports where organic material was.

# THERMAL DESORPTION DATA

PROJECT:
PROJECT No.:
MATERIAL TYPE:
TESTING DATE:
TESTED BY:

RAYNARK WD 854 75* 8-68*6-8 4-6-94 JSD

G

SET-UP, MONITORING and TI	ESTING INFORMATION	
1. SAMPLE No.	TS# 13-68 # 6-8	3: FT-(90
2. OVEN TEMPERATURE	649	°c
3. WEIGHT OF PAN (tare weight)	361.88	g
4. WEIGHT OF UNTREATED SOIL + TARE	1362.44	
5. WEIGHT OF UNTREATED SOIL	1000.56	g
6. WEIGHT OF TREATED SOIL + TARE	986.95	9
7. WEIGHT OF TREATED SOIL	625.07	g
8. WEIGHT LOSS	375.49	·
9. LENGTH OF TREATMENT (RESIDENCE TIME)	90	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	86	°C
2 MINUTES	97	°C
3 MINUTES	101	°(
5 MINUTES	102	°(
10 MINUTES	115	
15 MINUTES	152	•(
20 MINUTES	202	• •(
30 MINUTES	282	•(
40 MINUTES	355	•(
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	515	•
' 2 MINUTES	540	
3 MINUTES	535	. •,
5 MINUTES	515	•
10 MINUTES	461	•
15 MINUTES	428	•
20 MINUTES	390	
30 MINUTES	344	· •
40 MINUTES	214	 •
60minutes	107-	
137 MINUTES	35	

THERMAL DESORPTION DATA PAGE 2 OF 2 KAYMOCH IND PROJECT: PROJECT No .: T5* B-68*6-8 MATERIAL TYPE: TESTING DATE: 4-6-94 JSD TESTED BY: **VISUAL OBSERVATIONS - BEFORE TREATMENT** BLACK, SANSY SOIL W/ BLACK, SPONGY BEIBBER-LIKE MIATERIAL -WHITE SPECS EMPANEOUS OR GHNIC MATERIAL Moist. VISUAL OBSERVATIONS - AFTER TREATMENT Temp @ 60 min: 582 Temp @ 75 min: 628 Temp ?? 90 min : 640 Glowing red carbors upon reasonal from over. No Denoteing on slow burning Completely day Channed more fluence C75 or C60, but still not fully in cinerated. Mostly light tan up some dark areas from organic material.

# ANALYTICAL CASE NARRATIVE FOR:

# **Raymark Industries**

#### Project No. 854-40362

Seven soil samples were submitted for analysis on 3/18/94 at 1655 hours. The samples arrived at room temperature and in good condition.

The requested analyses and corresponding methods are as follows:

Analysis	Method	Instrument
Total PCBs	SW-846 Methods: 3550 and 8080	Hewlett Packard 5890 GC/ECD

#### Total PCBs

A dilution was required prior to sample analysis due to the nature of the sample extracts. As a result, the surrogate and matrix spike recoveries were unable to be determined and the report is flagged "DO" for diluted out. Also, aroclors 1262 and 1268 were found to coelute. Therefore, the reported results for aroclors 1262 and 1268 are flagged with an "E" for estimated. There were no further difficulties during the analyses.

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

LAB SAMPLE # 40362-1 PROJECT # 854

DO

83

11

# GC/ECD-PCB RESULTS

SAMPLE # TS*B-10*1.5-4, 1A RAYMARK INDUSTRIES

 SAMPLED (Date/Time/Init):
 -3/18/94, 16:45, JD

 EXTRACTED (Date / Init):
 3/23/94, JG

 ANALYSIS (Date/Time/Init):
 3/25/94, 12:58, DLL

DATE REPORTED: 3/29/94

Quant Factor:33.28Sample Matrix:SOLIDExtract Method:3550Analysis Method:8080% Solid:99.8Dry-weight BasisApparent

·······	·	]	Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	3328	ND	ND
Aroclor-1221	11104-28-2	6656	ND	ND
Aroclor-1232	11141-16-5	3328	ND	ND
Aroclor-1242	53469-21-9	3328	ND	ND
Aroclor-1248	12672-29-6	3328	ND	ND
Aroclor-1254	11097-69-1	3328	ND	ND
Aroclor-1260	11096-82-5	3328	ND	ND
Aroclor-1262	37324-23-5	3328	27,000E	ND
Aroclor-1268	11100-14-4	3328	12,000E	ND
				· · · · · · · · · · · · · · · · · · ·

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

# LAB SAMPLE # 40362-2 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-10*1.5-4, 2A **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 16:56, DLL

3/18/94, 16:45, JD

DATE REPORTED: 3/29/94	Quant Factor:	66.12	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
· · ·	% Solid:	100	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	6612	ND	ND
Aroclor-1221	11104-28-2	13223	ND	ND
Aroclor-1232	11141-16-5	6612	ND	ND
Aroclor-1242	53469-21-9	6612	ND	ND
Aroclor-1248	12672-29-6	6612	ND	ND
Aroclor-1254	11097-69-1	6612	ND	ND
Aroclor-1260	11096-82-5	6612	ND	ND
Aroclor-1262	37324-23-5	6612	37,000E	ND
Aroclor-1268	11100-14-4	6612	21,000E	ND
	<u></u>		······································	
Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-1	50]	DO	83

LAB SAMPLE # 40362-3 PROJECT # 854

83

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-10*1.5-4, 3A **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 3/18/94, 16:45, JD EXTRACTED (Date / Init): ANALYSIS (Date/Time/Init):

3/23/94, JG 3/24/94, 13:01, DLL

DATE REPORTED: 3/29/94	Quant Factor:	3.35	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
•	% Solid:	100	Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	335	ND	ND
Aroclor-1221	11104-28-2	670	ND	ND
Aroclor-1232	11141-16-5	335	ND	ND
Aroclor-1242	53469-21-9	335	ND	ND
Aroclor-1248	12672-29-6	335	ND	ND
Aroclor-1254	11097-69-1	335	ND	ND
Aroclor-1260	11096-82-5	335	ND	ND
Aroclor-1262	37324-23-5	335	1,600E	ND
Aroclor-1268	11100-14-4	335	900E	ND
	· · ·		1	L

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DC

# LAB SAMPLE # 40362-4 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-7*4-6, 1A **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 3/18/94, 16:45, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/25/94, 14:50, DLL

D

ATE REPORTED: 3/29/94	Quant Factor:	208.4	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	79.8	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	20844	ND	ND
Aroclor-1221	11104-28-2	41688	ND	ND
Aroclor-1232	11141-16-5	20844	ND	ND
Aroclor-1242	53469-21-9	20844	ND	ND
Aroclor-1248	12672-29-6	20844	ND	ND
Aroclor-1254	11097-69-1	20844	ND	ND
Aroclor-1260	11096-82-5	20844	ND	ND .
Aroclor-1262	37324-23-5	20844	120,000E	ND
Aroclor-1268	11100-14-4	20844	65,000E	ND

	Tetrachloro-m-xyler	ne (surrogate std)	% R
--	---------------------	--------------------	-----

ecovery [OK = 60-150]

83

DO

#### LAB SAMPLE # 40362-5 PROJECT # 854

**GC/ECD-PCB RESULTS** 

SAMPLE # TS*B-7*4-6, 2A RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): ' 3/18/94, 16:45, JD EXTRACTED (Date / Init) : 3/23/94, JG ANALYSIS (Date/Time/Init): 3/25/94, 15:46, DLL

DATE REPORTED: 3/29/94

Г

Quant Factor: 210.4 Sample Matrix: SOLID Extract Method: 3550 Analysis Method: 8080 Dry-weight Basis % Solid: 79.6 Apparent Concentration Blank Conc. יור CAS Number MDL 11**0/K**0 11**0/K**0

TARGET COMPOUND LIST	CAS Number		ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	21043	ND	ND
Aroclor-1221	11104-28-2	42086	ND	ND
Aroclor-1232	11141-16-5	21043	ND	ND'
Aroclor-1242	53469-21-9	21043	ND	ND
Aroclor-1248	12672-29-6	21043	ND	ND
Arocior-1254	11097-69-1	21043	ND	ND
Aroclor-1260	11096-82-5	21043	ND	ND
Aroclor-1262	37324-23-5	21043	140,000E	ND
Aroclor-1268	11100-14-4	21043	85,000E	ND

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	83

#### LAB SAMPLE # 40362-6 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

# SAMPLE # TS*B-7*4-6, 3A RAYMARK INDUSTRIES

#### SAMPLED (Date/Time/Init): -3/18/94, 16:45, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/25/94, 16:42, DLL

Г

DATE REPORTED: 3/29/94	Quant Factor:	167.3	Sample Matrix:	SOLID
· · · · ·	Extract Method:	3550	Analysis Method:	8080
	% Solid:	98.5	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	16731	ND	ND
Aroclor-1221	11104-28-2	33462	ND	ND
Aroclor-1232	11141-16-5	16731	ND	ND
Aroclor-1242	53469-21-9	16731	ND	ND
Aroclor-1248	12672-29-6	16731	ND	ND
Aroclor-1254	11097-69-1	16731	ND	ND
Aroclor-1260	11096-82-5	16731	ND	ND
Aroclor-1262	37324-23-5	16731	110,000E	ND
Aroclor-1268	11100-14-4	16731	64,000E	ND
	· · · · · · · · · · · · · · · · · · ·			
Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-1	.50]	DO	83

KIBER ENVIRONMENTAL SERVICES			LAB SAMPLE # PROJECT # 854	40362-7
SAMPLE # TS*B-68*2-4, 1A RAYMARK INDUSTRIES	GC/ECD-PCB REST SAMPLED (Date/Time EXTRACTED (Date / ANALYSIS (Date/Time	ULTS e/Init): Init) : e/Init):	] -3/18/94, 16:45, JD 3/23/94, JG 3/25/94, 17:38, DI	L
DATE REPORTED: 3/29/94	Quant Factor: Extract Method: % Solid:	180.7 3550 91.6	Sample Matrix: Analysis Method: Dry-weight Basis Concentration	SOLID 8080 Apparent Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	18075	ND	ND
Aroclor-1221	11104-28-2	36149	ND	ND
Aroclor-1232	11141-16-5	18075	ND	ND
Arocior-1242	53469-21-9	18075	ND	ND
Aroclor-1248	12672-29-6	18075	ND	ND
Aroclor-1254	11097-69-1	18075	ND	ND
Aroclor-1260	11096-82-5	18075	ND	ND
Aroclor-1262	37324-23-5	18075	57,000E	ND
Aroclor-1268	11100-14-4	18075	34,000E	ND

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	83

KIBER Environmental Services

LAB SAMPLE # 854-40362-1 MS & MSD

# PCB MATRIX SPIKE RESULTS

SAMPLE # TS*B-10*1.5-4, 1A RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/18/94, 16:45, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 08:32, DLL

DATE REPORTED: 3/29/94

Sample Matrix: SOLID Analysis Method: 8080

		<b>QC LIMITS</b>	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Aroclor-1254	11096-82-5	39-154	DO
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

# ANALYSIS(Date/Time/Init): 3/26/94, 09:28, DLL

MATRIX SPIKE DUPLICATE	CAS Number	QC LIMITS % Recovery	Actual MSD % Recovery	RPD
Aroclor-1254	11096-82-5	39-154	DO	NA

DO: Diluted Out, NA: Not Applicable

# ANALYTICAL CASE NARRATIVE FOR:

#### **Raymark Industries**

#### Project No. 854-40368

Eight soil samples were submitted for analysis on 3/21/94 at 1415 hours. The samples arrived at room temperature and in good condition.

The requested analyses and corresponding methods are as follows:

Analysis	Method	Instrument
Total PCBs	SW-846 Methods: 3550 and 8080	Hewlett Packard 5890 GC/ECD

# Total PCBs

A dilution was required prior to sample analysis due to the nature of the sample extracts. As a result, the surrogate and matrix spike recoveries were unable to be determined and the report is flagged "DO" for diluted out. Also, aroclors 1262 and 1268 were found to coelute. Therefore, the reported results for aroclors 1262 and 1268 are flagged with an "E" for estimated. There were no further difficulties during the analyses.

The project manager approved the Batch matrix spike and matrix spike duplicate analyses. Raymark projects 40362 and 40368 were extracted in one batch. The Batch QC were performed on project 40362.

MClemons

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

#### LAB SAMPLE # 40368-1 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

# SAMPLE # TS*B-68*2-4, 2A RAYMARK INDUSTRIES

#### SAMPLED (Date/Time/Init): 3/21/94, 13:55, JD EXTRACTED (Date / Init) : 3/23/94, JG ANALYSIS (Date/Time/Init): 3/25/94, 18:34, DLL

DATE REPORTED: 3/29/94

Quant Factor: 176.5 Sample Matrix: SOLID Extract Method: 3550 Analysis Method: 8080 % Solid: 93.5 Dry-weight Basis Apparent Concentration Blank Conc. TARGET COMPOUND LIST CAS Number MDL ug/Kg ug/Kg Aroclor-1016 12674-11-2 17649 ND ND Aroclor-1221 11104-28-2 35298 ND ND Aroclor-1232 11141-16-5 17649 ND ND Aroclor-1242 53469-21-9 17649 ND ND Aroclor-1248 12672-29-6 17649 ND ND Aroclor-1254 11097-69-1 17649 ND ND

17649

17649

17649

#### Tetrachloro-m-xylene (surrogate std)

Aroclor-1260

Aroclor-1262

Aroclor-1268

% Recovery [OK = 60-150]

11096-82-5

37324-23-5

11100-14-4

DO

ND

ND

ND

83

ND

57,000E

32,000E

#### LAB SAMPLE # 40368-2 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*2-4, 3A **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 3/21/94, 13:55, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/25/94, 19:30, DLL

Quant Factor	r: 6/.12	Sample Matrix:	SOLID
Extract Method	1: 3550	Analysis Method:	8080
% Solid	i: 98.8	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	6712	ND	ND
11104-28-2	13424	ND	ND
11141-16-5	6712	ND	ND
53469-21-9	6712	ND	ND
12672-29-6	6712	ND	ND
11097-69-1	6712	ND	ND
11096-82-5	6712	ND	ND
37324-23-5	6712	35,000E	ND
11100-14-4	6712	20,000E	ND
	Quant Factor           Extract Method           % Solid <b>CAS Number</b> 12674-11-2           11104-28-2           11141-16-5           53469-21-9           12672-29-6           11097-69-1           11096-82-5           37324-23-5           11100-14-4	Quant Factor:         67.12           Extract Method:         3550           % Solid:         98.8           CAS Number         MDL           12674-11-2         6712           11104-28-2         13424           11141-16-5         6712           53469-21-9         6712           12672-29-6         6712           11097-69-1         6712           11096-82-5         6712           37324-23-5         6712           11100-14-4         6712	Quant Factor:       67.12       Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       98.8       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       6712       ND         11104-28-2       13424       ND         11141-16-5       6712       ND         53469-21-9       6712       ND         12672-29-6       6712       ND         11097-69-1       6712       ND         11096-82-5       6712       ND         37324-23-5       6712       35,000E         11100-14-4       6712       20,000E

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

83

DO

#### LAB SAMPLE # 40368-3 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, 1A RAYMARK INDUSTRIES

#### SAMPLED (Date/Time/Init): 3/21/94, 13:55, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 01:05, DLL

DATE REPORTED: 3/29/94	Quant Factor:	204.4	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
:	% Solid:	81.4	Dry-weight Basis	Apparent
	· · · · · · · · · · · · · · · · · · ·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	20441	ND	ND
Aroclor-1221	11104-28-2	40882	ND	ND
Aroclor-1232	11141-16-5	20441	ND	ND
Aroclor-1242	53469-21-9	20441	ND	ND
Aroclor-1248	12672-29-6	20441	ND	ND
Aroclor-1254	11097-69-1	20441	ND	ND
Aroclor-1260	11096-82-5	20441	ND	ND
Aroclor-1262	37324-23-5	20441	160,000E	ND
Aroclor-1268	11100-14-4	20441	84,000E	ND
Tetrachloro m wiene (surrogate std)	% Recovery IOK - 60.	1501		83

#### LAB SAMPLE # 40368-4 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

# SAMPLE # TS*B-68*6-8, 2A **RAYMARK INDUSTRIES**

#### SAMPLED (Date/Time/Init): 3/21/94, 13:55, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 02:01, DLL

D

DATE REPORTED: 3/29/94	Quant Factor:	201.8	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	82.4	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	20179	ND	ND
Aroclor-1221	11104-28-2	40359	ND	ND
Aroclor-1232	11141-16-5	20179	ND	ND
Aroclor-1242	53469-21-9	20179	ND	ND
Aroclor-1248	12672-29-6	20179	ND	ND
Aroclor-1254	11097-69-1	20179	ND	ND
Aroclor-1260	11096-82-5	20179	ND	ND
Aroclor-1262	37324-23-5	20179	190,000E	ND
Aroclor-1268	11100-14-4	20179	100,000E	ND
	· · · · · · · · · · · · · · · · · · ·			
Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-1:	50]	DO	83

E: Estimated, ND: Not Detec	ted, DO: Diluted Out	

MDL: Method Detection Limit

# LAB SAMPLE # 40368-5 PROJECT # 854

# **GC/ECD-PCB RESULTS**

# SAMPLE # TS*B-68*6-8, 3A **RAYMARK INDUSTRIES**

# SAMPLED (Date/Time/Init): 3/21/94, 13:55, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 02:57, DLL

D

ATE REPORTED: 3/29/94	Quant Factor:	180.2	Sample Matrix:	SOLID
· · ·	Extract Method:	3550	Analysis Method:	8080
	% Solid:	92.3	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	18021	ND	ND
Aroclor-1221	11104-28-2	36042	ND	ND
Aroclor-1232	11141-16-5	18021	ND	ND
Aroclor-1242	53469-21-9	18021	ND	ND
Aroclor-1248	12672-29-6	18021	ND	ND
Aroclor-1254	11097-69-1	18021	ND	ND
Arocior-1260	11096-82-5	18021	ND	ND
Aroclor-1262	37324-23-5	18021	150,000E	ND
Aroclor-1268	11100-14-4	18021	83,000E	ND
· · · · · · · · · · · · · · · · · · ·			,	

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	83

### LAB SAMPLE # 40368-6 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-10*1.5-4, 4B **RAYMARK INDUSTRIES** 

# SAMPLED (Date/Time/Init): 3/21/94, 13:55, JD EXTRACTED (Date / Init) : ANALYSIS (Date/Time/Init): 3/26/94, 03:53, DLL

1-

3/23/94, JG

#### DATE RI ושדתסמי 2/20/04

ME KEPOKIED: 3/29/94	Qualit Factor:	0.75	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid: 9	9.2	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	umber	MDL	ug/Kg	ug/Kg
Arocior-1016	4-11-2	675	ND	ND
Aroclor-1221	±±104-28-2	1350	ND	ND
Aroclor-1232	11141-16-5	675 ⁵	ND	ND
Aroclor-1242	53469-21-9	675	ND	ND
Aroclor-1248	12672-29-6	675	ND	ND
Aroclor-1254	11097-69-1	675	、 ND	ND
Aroclor-1260	11096-82-5	675	ND	ND
Aroclor-1262	37324-23-5	675 ¹	4,500E	ND
Aroclor-1268	11100-14-4	675	2,300E	ND
Tetrachloro, m. wiene (surrogate std)	ecovery [OK - 60.15			83
Aroclor-1262 Aroclor-1268 Tetrachloro-m-xylene (surrogate std) % I	3/324-23-5 11100-14-4 Recovery [OK = 60-15	675 675 0]	4,500E 2,300E	NL NE 83

# LAB SAMPLE # 40368-7 PROJECT # 854

# **GC/ECD-PCB RESULTS**

# SAMPLE # TS*B-10*1.5-4, 5B RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): -3/21/94, 13:55, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 04:49, DLL

DAT

ATE REPORTED: 3/29/94	Quant Factor:	0.67	Sample Matrix:	SOLID
			Dry-weight Basis	Apparent
	<i>70</i> 50110.	100	Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	67	ND	ND
Aroclor-1221	11104-28-2	133	ND	ND
Aroclor-1232	11141-16-5	67	ND	ND
Aroclor-1242	53469-21-9	67	ND	ND
Aroclor-1248	12672-29-6	67	ND	ND
Aroclor-1254	11097-69-1	67	ND	ND
Aroclor-1260	11096-82-5	67	ND	ND
Aroclor-1262	37324-23-5	67	360E	ND
Aroclor-1268	11100-14-4	67	170E	ND
Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-1	50]	97	83

E: Estimated, ND: Not Detected MDL: Method Detection Limit

#### LAB SAMPLE # 40368-8 PROJECT # 854

104

83

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-10*1.5-4, 6B RAYMARK INDUSTRIES

#### SAMPLED (Date/Time/Init): 3/21/94, 13:55, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 05:45, DLL

DATE

TE REPORTED: 3/29/94	Quant Factor	: 0.34	Sample Matrix:	SOLID
	Extract Method	: 3550	Analysis Method:	8080
	% Solid	: 99.8	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	34	ND	ND
Aroclor-1221	11104-28-2	67	ND	ND
Aroclor-1232	11141-16-5	34	ND	ND
Aroclor-1242	53469-21-9	34	ND	ND
Aroclor-1248	12672-29-6	34	ND	ND
Aroclor-1254	11097-69-1	34	ND	ND
Aroclor-1260	11096-82-5	34	ND	ND
Aroclor-1262	37324-23-5	34	ND	ND
Aroclor-1268	11100-14-4	34	ND	ND

		_
		cor
$1 \Delta T T \Delta T T \Delta T T \Delta T \Delta T \Delta T \Delta T \Delta T $	/ SINFF/AGULA SI/11	
	i sui i i ivale sie i	
I CH demoi O-m-Ayiono	(Surrogate Sta)	л

E: Estimated , ND: Not Detected MDL: Method Detection Limit

**KIBER** Environmental Services

LAB SAMPLE # 854-40362-1 MS & MSD

# PCB MATRIX SPIKE RESULTS

SAMPLE # TS*B-10*1.5-4, 1A RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/18/94, 16:45, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 08:32, DLL

DATE REPORTED: 3/29/94

Sample Matrix: SOLID Analysis Method: 8080

· · ·	·	QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Aroclor-1254	11096-82-5	39-154	DO
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

ANALYSIS(Date/Time/Init): 3/26/94, 09:28, DLL

MATRIX SPIKE DUPLICATE	CAS Number	QC LIMITS % Recovery	Actual MSD % Recovery	RPD
Aroclor-1254	11096-82-5	39-154	DO	NA
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO	ן

DO: Diluted Out, NA: Not Applicable

# ANALYTICAL CASE NARRATIVE FOR:

#### **Raymark Industries**

#### Project No. 854-40381

Twelve soil samples were submitted for analysis on 3/23/94 at 1050 hours. The samples arrived at room temperature and in good condition.

The requested analyses and corresponding methods are as follows:

Analysis	Method	Instrument
Total PCBs	SW-846 Methods: 3550 and 8080	Hewlett Packard 5890 GC/ECD

### Total PCBs

For some of the sample extracts a dilution was required prior to analysis due to the nature of those extracts. As a result, the surrogate and matrix spike recoveries were unable to be determined and the report is flagged "DO" for diluted out. Also, aroclors 1262 and 1268 were found to coelute. Therefore, the reported results for aroclors 1262 and 1268 are flagged with an "E" for estimated. There were no further difficulties during the analyses.

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

# LAB SAMPLE # 40381-1 PROJECT # 854

# **GC/ECD-PCB RESULTS**

# SAMPLE # TS*B-68*2-4, 4B RAYMARK INDUSTRIES

#### SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 06:41, DLL

T

Eastern at Mathematic		_	
Extract Method:	3550	Analysis Method:	8080
% Solid:	96.8	Dry-weight Basis	Apparent
•.		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	17019	ND	ND
11104-28-2	34038	ND	ND
11141-16-5	17019	ND	ND
53469-21-9	17019	ND	ND
12672-29-6	17019	ND	ND
11097-69-1	17019	ND	ND
11096-82-5	17019	ND	ND
37324-23-5	17019	33,000E	ND
11100-14-4	17019	19,000E	ND
	% Solid: <u>CAS Number</u> <u>12674-11-2</u> <u>11104-28-2</u> <u>11104-28-2</u> <u>11104-28-2</u> <u>11104-28-2</u> <u>1104-28-2</u> <u>11097-69-1</u> <u>11096-82-5}</u> <u>37324-23-5}</u> <u>11100-14-4</u>	% Solid: 96.8           CAS Number         MDL           12674-11-2         17019           11104-28-2         34038           11141-16-5         17019           53469-21-9         17019           12672-29-6         17019           11097-69-1         17019           11096-82-5         17019           37324-23-5         17019           11100-14-4         17019	% Solid: 96.8         Dry-weight Basis Concentration           CAS Number         MDL         ug/Kg           12674-11-2         17019         ND           11104-28-2         34038         ND           111141-16-5         17019         ND           53469-21-9         17019         ND           12672-29-6         17019         ND           11097-69-1         17019         ND           11096-82-5         17019         ND           37324-23-5         17019         33,000E           11100-14-4         17019         19,000E

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	83

### LAB SAMPLE # 40381-2 PROJECT # 854

# GC/ECD-PCB RESULTS

SAMPLE # TS*B-68*2-4, 5B RAYMARK INDUSTRIES

 SAMPLED (Date/Time/Init):
 3/22/94, 18:30, JD

 EXTRACTED (Date / Init):
 3/23/94, JG

 ANALYSIS (Date/Time/Init):
 3/26/94, 07:36, DLL

DATE REPORTED: 3/31/94

Quant Factor: 168.0 Sample Matrix: SOLID Extract Method: 3550 Analysis Method: 8080 % Solid: 99.1 Dry-weight Basis Apparent

		Concentrat		n Blank Conc.	
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg	
Aroclor-1016	12674-11-2	16796	ND	ND	
Aroclor-1221	11104-28-2	33591	ND	ND	
Aroclor-1232	11141-16-5	16796	ND	ND	
Arocior-1242	53469-21-9	16796	ND	ND	
Aroclor-1248	12672-29-6	16796	ND	ND	
Aroclor-1254	11097-69-1	16796	ND	ND	
Aroclor-1260	11096-82-5	16796	ND	ND	
Aroclor-1262	37324-23-5	16796	28,000E	ND	
Aroclor-1268	11100-14-4	16796	16,000E	ND	

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

83

DO

! |

### LAB SAMPLE # 40381-3 PROJECT # 854

ିହ

## GC/ECD-PCB RESULTS

# SAMPLE # TS*B-68*2-4, 6B RAYMARK INDUSTRIES

# SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init) : 3/23/94, JG ANALYSIS (Date/Time/Init): 3/28/94, 12:50, DLL

DATE REPORTED: 3/31/94

Quant Factor: 0.33 Sample Matrix: SOLID Extract Method: 3550 <u>Analysis Method: 8080</u>

	% Solid: 100		Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	33	ND	ND
Aroclor-1221	11104-28-2	. 67	ND	ND
Aroclor-1232	11141-16-5	33	ND	ND
Aroclor-1242	53469-21-9	33	ND	ND
Aroclor-1248	12672-29-6	33	ND	ND
Aroclor-1254	11097-69-1	33	ND	ND
Aroclor-1260	11096-82-5	33	ND	ND
Aroclor-1262	37324-23-5	33	160E	ND
Aroclor-1268	11100-14-4	33	36E	ND

Tetrachloro-m-xylene (surrogate std) % Recovery [OK = 60-150]

102

83

E: Estimated , ND: Not Detected MDL: Method Detection Limit

# LAB SAMPLE # 40381-4 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, 4B **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 15:04, DLL

D

Quant Factor:	206.5	Sample Matrix:	SOLID
Extract Method:	3550	Analysis Method:	8080
% Solid:	80.0	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	20654	ND	ND
11104-28-2	41309	ND	ND
11141-16-5	20654	ND	ND
53469-21-9	20654	ND	ND
12672-29-6	20654	ND	ND
11097-69-1	20654	ND	ND
11096-82-5	20654	ND	ND
37324-23-5	20654	150,000E	ND
11100-14-4	20654	82,000E	ND
	Quant Factor: Extract Method: % Solid: CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:         206.5           Extract Method:         3550           % Solid:         80.0           CAS Number         MDL           12674-11-2         20654           11104-28-2         41309           11141-16-5         20654           53469-21-9         20654           12672-29-6         20654           11097-69-1         20654           11096-82-5         20654           37324-23-5         20654           11100-14-4         20654	Quant Factor:       206.5       Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       80.0       Dry-weight Basis         Concentration       MDL       ug/Kg         12674-11-2       20654       ND         11104-28-2       41309       ND         11104-28-2       41309       ND         11141-16-5       20654       ND         53469-21-9       20654       ND         12672-29-6       20654       ND         11097-69-1       20654       ND         11096-82-5       20654       ND         37324-23-5       20654       150,000E         11100-14-4       20654       82,000E

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

83

DO

# LAB SAMPLE # 40381-5 PROJECT # 854

7.50

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, 5B **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 16:00, DLL

Г

DATE REPORTED: 3/31/94	Quant Factor	: 179.6	Sample Matrix:	SOLID
	Extract Method	: 3550	Analysis Method:	8080
	% Solid	: 92.2	Dry-weight Basis	Apparent
· · ·	·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	17963	ND	ND
Aroclor-1221	11104-28-2	35926	ND	ND
Aroclor-1232	11141-16-5	17963	ND	ND
Aroclor-1242	53469-21-9	17963	ND	ND
Aroclor-1248	12672-29-6	17963	ND	ND
Aroclor-1254	11097-69-1	17963	· ND	ND
Aroclor-1260	11096-82-5	17963	ND	ND
Aroclor-1262	37324-23-5	17963	130,000E	ND
Arocior-1268	11100-14-4	17963	73,000E	ND
		•	<u>.</u>	· · · · · · · · · · · · · · · · · · ·

Tetrachloro-m-xylene (surrogate std) % Recovery [OK = 60-150] DO 83

# LAB SAMPLE # 40381-6 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, 6B RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 11:07, DLL

D

Quant Factor:	169.3	Sample Matrix:	SOLID
Extract Method:	3550	Analysis Method:	8080
% Solid:	<b>99.7</b>	Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	16926	ND	ND
11104-28-2	33851	ND	ND
11141-16-5	16926	ND	ND
53469-21-9	16926	ND	ND
12672-29-6	16926	ND	ND
11097-69-1	16926	ND	ND
11096-82-5	16926	ND	ND
37324-23-5	16926	110,000E	ND
11100-14-4	16926	46,000E	ND
	Quant Factor: Extract Method: % Solid: CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:         169.3           Extract Method:         3550           % Solid:         99.7           CAS Number         MDL           12674-11-2         16926           11104-28-2         33851           11141-16-5         16926           53469-21-9         16926           12672-29-6         16926           11097-69-1         16926           11096-82-5         16926           37324-23-5         16926           11100-14-4         16926	Quant Factor:       169.3 Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       99.7       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       16926       ND         11104-28-2       33851       ND         11141-16-5       16926       ND         53469-21-9       16926       ND         12672-29-6       16926       ND         11097-69-1       16926       ND         11096-82-5       16926       ND         37324-23-5       16926       110,000E         11100-14-4       16926       46,000E

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

100

DO

# LAB SAMPLE # 40381-7 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-7*4-6, 4B RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): ³/22/94, 18:30, JD EXTRACTED (Date / Init) : 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 16:18, DLL

D

DATE REPORTED: 3/31/94	Quant Factor:	213.6	Sample Matrix:	SOLID
ι	Extract Method:	3550	Analysis Method:	8080
· · ·	% Solid:	78.9	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	21359	ND	ND
Aroclor-1221	11104-28-2	42717	ND	ND
Aroclor-1232	11141-16-5	21359	ND	ND
Aroclor-1242	53469-21-9	21359	ND	ND
Aroclor-1248	12672-29-6	21359	ND	ND
Aroclor-1254	11097-69-1	21359	ND	ND
Aroclor-1260	11096-82-5	21359	ND	ND
Aroclor-1262	37324-23-5	21359	110,000E	ND
Aroclor-1268	11100-14-4	21359	61,000E	ND

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

100

DO

# LAB SAMPLE # 40381-8 PROJECT # 854

# **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-7*4-6, 5B RAYMARK INDUSTRIES

³/22/94, 18:30, JD SAMPLED (Date/Time/Init): EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 17:10, DLL

D

DATE REPORTED: 3/31/94	Quant Factor:	366.8	Sample Matrix:	SOLID
· · · · ·	Extract Method:	3550	Analysis Method:	8080
· .	% Solid:	92.1	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	36682	ND	ND
Aroclor-1221	11104-28-2	73363	ND	ND
Aroclor-1232	11141-16-5	36682	ND	ND
Aroclor-1242	53469-21-9	36682	ND	ND
Aroclor-1248	12672-29-6	36682	ND	ND
Aroclor-1254	11097-69-1	36682	ND	ND
Aroclor-1260	11096-82-5	36682	ND	ND
Aroclor-1262	37324-23-5	36682	280,000E	ND
Aroclor-1268	11100-14-4	36682	170,000E	ND

Tetrachloro-m-xylene (surrogate std) % Recovery [OK = 60-150] DO

100

# LAB SAMPLE # 40381-9 PROJECT # 854

3.Z.G

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-7*4-6, 6B **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 18:54, DLL

DATE REPORTED: 3/31/94

Quant Factor: 0.33 Sample Matrix: SOLID Extract Method: 3550 Analysis Method: 8080 Dry-weight Basis % Solid: 100 Apparent Concentration Blank Conc. TARGET COMPOUND LIST CAS Number MDL ug/Kg ug/Kg Aroclor-1016 12674-11-2 ND ND 33 11104-28-2 66 ND Aroclor-1221 ND Aroclor-1232 11141-16-5 33 ND ND Aroclor-1242 53469-21-9 33 ND ND Aroclor-1248 12672-29-6 33 ND ND 33 Aroclor-1254 11097-69-1 ND ND Aroclor-1260 11096-82-5 33 ND ND Aroclor-1262 37324-23-5 33 44E ND Aroclor-1268 11100-14-4 33 <MDL ND

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	132	100

E: Estimated, ND: Not Detected MDL: Method Detection Limit

LAB SAMPLE # 40381-10 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-10*1.5-4, 7C **RAYMARK INDUSTRIES** 

#### SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 19:47, DLL

I

DATE REPORTED: 3/31/94	Quant Factor	r: 3.37	Sample Matrix:	SOLID
	Extract Method	l: 3550	Analysis Method:	8080
	% Solid	l: 99.6	Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	337	ND	ND
Aroclor-1221	11104-28-2	674	ND	ND
Aroclor-1232	11141-16-5	337	ND	ND
Aroclor-1242	53469-21-9	337	ND	ND
Aroclor-1248	12672-29-6	337	ND	ND
Aroclor-1254	11097-69-1	337	ND	ND
Aroclor-1260	11096-82-5	337	ND	ND
Aroclor-1262	37324-23-5	337	3,200E	ND
Aroclor-1268	11100-14-4	337	1,400E	ND
· · · · · · · · · · · · · · · · · · ·	· · ·		• • • • • • • • • • • • • • • • • • •	•

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	100

LAB SAMPLE # 40381-11 PROJECT # 854

#### GC/ECD-PCB RESULTS

# SAMPLE # TS*B-10*1.5-4, 8C RAYMARK INDUSTRIES

# SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 20:38, DLL

DATE REPORTED: 3/31/94

Quant Factor: 0.34 Sample Matrix: SOLID Extract Method: 3550 Analysis Method: 8080 % Solid: 100 [Dry-weight Basis] Apparent

			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	34	ND	ND
Aroclor-1221	11104-28-2	67	ND	ND
Aroclor-1232	11141-16-5	34	ND	ND
Aroclor-1242	53469-21-9	34	ND	ND
Aroclor-1248	12672-29-6	34	ND	ND
Aroclor-1254	11097-69-1	34	ND	ND
Aroclor-1260	11096-82-5	34	ND	ND
Aroclor-1262	37324-23-5	34	ND	ND
Aroclor-1268	11100-14-4	34	ND	ND

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

100

134

E: Estimated , ND: Not Detected MDL: Method Detection Limit

#### LAB SAMPLE # 40381-12 PROJECT # 854

# **GC/ECD-PCB RESULTS**

# SAMPLE # TS*B-10*1.5-4, 9C **RAYMARK INDUSTRIES**

SAMPLED (Date/Time/Init): 3/22/94, 18:30, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 21:30, DLL

Ι

Qualit Pactor.	0.33	Sample Matrix:	SOLID
Extract Method:	3550	Analysis Method:	8080
% Solid:	100	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	33	ND	ND
11104-28-2	67	ND	ND
11141-16-5	. 33	ND	ND
53469-21-9	33	ND	ND
12672-29-6	33	ND	ND
11097-69-1	33	ND	ND
11096-82-5	.33	ND	ND
37324-23-5	33	ND	ND
11100-14-4	33	ND	ND
	Extract Method: % Solid: CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Extract Method:         3550           % Solid:         100           CAS Number         MDL           12674-11-2         33           11104-28-2         67           11141-16-5         33           53469-21-9         33           12672-29-6         33           11097-69-1         33           11096-82-5         33           37324-23-5         33           11100-14-4         33	Extract Method:       3550       Analysis Method:         % Solid:       100       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       33       ND         11104-28-2       67       ND         11104-28-2       67       ND         11141-16-5       33       ND         53469-21-9       33       ND         12672-29-6       33       ND         11097-69-1       33       ND         11096-82-5       33       ND         37324-23-5       33       ND         11100-14-4       33       ND

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

100

128

E: Estimated, ND: Not Detected MDL: Method Detection Limit

**KIBER-Environmental Services** 

LAB SAMPLE # 854-40362-1 MS & MSD

# PCB MATRIX SPIKE RESULTS

SAMPLE # TS*B-10*1.5-4, 1A RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/18/94, 16:45, JD EXTRACTED (Date / Init): 3/23/94, JG ANALYSIS (Date/Time/Init): 3/26/94, 08:32, DLL

DATE REPORTED: 3/29/94

Sample Matrix: SOLID Analysis Method: 8080

· · · · · · · · · · · · · · · · · · ·		QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Aroclor-1254	11096-82-5	39-154	DO
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

ANALYSIS(Date/Time/Init): 3/26/94, 09:28, DLL

· · · · · · · · · · · · · · · · · · ·		<b>QC LIMITS</b>	Actual MSD	
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	· RPD
Arocior-1254	11096-82-5	39-154	DO	NA
				-
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO	

DO: Diluted Out, NA: Not Applicable
KIBER Environmental Services

SAMPLE # TS*B-68*2-4, 7C RAYMARK INDUSTRIES LAB SAMPLE # 854-40392-1 MS & MSD

#### PCB MATRIX SPIKE RESULTS

SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/30/94, 09:37, DLL

#### DATE REPORTED: 3/31/94

Sample Matrix: SOLID Analysis Method: 8080

	CAS Number	QC LIMITS	Actual MS
MAINIA SPINE	CAS Nulliber	70 Recovery	<u>70 Recovery</u>
Aroclor-1254	11096-82-5	39-154	DO
· · · · · · · · · · · · · · · · · · ·			
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

#### ANALYSIS(Date/Time/Init): 3/30/94, 10:29, DLL

·		<b>QC LIMITS</b>	Actual MSD	
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	RPD
Aroclor-1254	11096-82-5	39-154	DO	NA
		· · · · · · · · · · · · · · · · · · ·		· · ·
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO	

DO: Diluted Out, NA: Not Applicable

## ANALYTICAL CASE NARRATIVE FOR:

#### Raymark Industries

#### Project No. 854-40392

Nine soil samples were submitted for analysis on 3/24/94 at 1530 hours. The samples arrived at room temperature and in good condition.

The requested analyses and corresponding methods are as follows:

Analysis	Method	Instrument
Total PCBs	SW-846 Methods: 3550 and 8080	Hewlett Packard 5890 GC/ECD

#### Total PCBs

For some of the sample extracts a dilution was required prior to analysis due to the nature of those extracts. As a result, the surrogate and matrix spike recoveries were unable to be determined and the report is flagged "DO" for diluted out. Also, aroclors 1262 and 1268 were found to coelute. Therefore, the reported results for aroclors 1262 and 1268 are flagged with an "E" for estimated. There were no further difficulties during the analyses.

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

#### LAB SAMPLE # 40392-1 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

#### SAMPLE # TS*B-68*2-4, 7C RAYMARK INDUSTRIES

# SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init) : 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 22:22, DLL

Γ

Quant Factor	<b>::</b> 71.9	Sample Matrix:	SOLID
Extract Method	: 3550	Analysis Method:	8080
% Solid	l: 93.6	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	7192	ND	ND
11104-28-2	14384	ND	ND
11141-16-5	7192	ND	ND
53469-21-9	7192	ND	ND
12672-29-6	7192	ND	ND
11097-69-1	7192	ND	ND
11096-82-5	7192	ND	ND
37324-23-5	7192	45,000E	ND
11100-14-4	7192	21.000E	ND
	Quant Factor Extract Method % Solid CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:         71.9           Extract Method:         3550           % Solid:         93.6           CAS Number         MDL           12674-11-2         7192           11104-28-2         14384           11141-16-5         7192           53469-21-9         7192           12672-29-6         7192           11097-69-1         7192           11096-82-5         7192           37324-23-5         7192           11100-14-4         7192	Quant Factor:       71.9       Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       93.6       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       7192       ND         11104-28-2       14384       ND         11141-16-5       7192       ND         53469-21-9       7192       ND         12672-29-6       7192       ND         11097-69-1       7192       ND         11096-82-5       7192       ND         37324-23-5       7192       45,000E         11100-14-4       7192       21,000E

Tetrachloro-m-xylene (surrogate std)	% Recovery $[OK = 60-150]$	DO	100
	·· ·		

#### LAB SAMPLE # 40392-2 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

#### SAMPLE # TS*B-68*2-4, 8C RAYMARK INDUSTRIES

# SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init) : 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 23:14, DLL

DATE REPORTED: 3/31/94	EPORTED: 3/31/94 Quant Factor: 33.4		Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	<b>99.7</b>	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	3337	ND	ND
Aroclor-1221	11104-28-2	6673	ND	ND
Aroclor-1232	11141-16-5	3337	ND	ND
Aroclor-1242	53469-21-9	3337	ND	ND
Aroclor-1248	12672-29-6	3337	ND	ND
Aroclor-1254	11097-69-1	3337	ND	ND
Aroclor-1260	11096-82-5	3337	ND	ND
Aroclor-1262	37324-23-5	3337	19,000E	ND
Aroclor-1268	11100-14-4	3337	8,100E	ND
· · · · · · · · · · · · · · · · · · ·				
Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-1	150]	DO	100

#### LAB SAMPLE # 40392-3 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*2-4, 9C **RAYMARK INDUSTRIES** 

#### SAMPLED (Date/Time/Init): EXTRACTED (Date / Init): ANALYSIS (Date/Time/Init):

-3/24/94, 13:55, JD 3/25/94, JG 3/30/94, 04:26, DLL

Dł

Quant Factor	·: 0.34	Sample Matrix:	SOLID
Extract Method	: ' 3550	Analysis Method:	8080
% Solid	: 100	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	34	ND	ND
11104-28-2	67	ND	ND
11141-16-5	34	ND	ND
53469-21-9	34	ND	ND
12672-29-6	34	ND	ND
11097-69-1	34	ND	ND
11096-82-5	34	ND	ND
37324-23-5	34	ND	ND
11100-14-4	34	ND	ND
	Quant Factor Extract Method % Solid CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:         0.34           Extract Method:         3550           % Solid:         100           CAS Number         MDL           12674-11-2         34           11104-28-2         67           11141-16-5         34           53469-21-9         34           12672-29-6         34           11097-69-1         34           11096-82-5         34           37324-23-5         34           11100-14-4         34	Quant Factor:       0.34       Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       100       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       34       ND         11104-28-2       67       ND         11141-16-5       34       ND         53469-21-9       34       ND         12672-29-6       34       ND         11097-69-1       34       ND         37324-23-5       34       ND         11100-14-4       34       ND

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

100

120

#### LAB SAMPLE # 404020-6 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, UNT RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 4/7/94, 14:25, JD EXTRACTED (Date / Init) : 4/11/94, JG ANALYSIS (Date/Time/Init): 4/12/94, 09:36, DLL

#### Г

DATE REPORTED: 4/12/94	Quant Factor	227.3	Sample Matrix:	SOLID
·	Extract Method	3550	Analysis Method:	8080
	% Solid	72.8	Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·	· · ·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	22727	ND	ND
Aroclor-1221	11104-28-2	45454	ND	ND
Aroclor-1232	11141-16-5	22727	ND.	ND
Aroclor-1242	53469-21-9	22727	ND	ND
Aroclor-1248	12672-29-6	22727	ND	ND
Arocior-1254	11097-69-1	22727	ND	ND
Aroclor-1260	11096-82-5	22727	ND	ND
Aroclor-1262	37324-23-5	22727	92,000E	ND
Aroclor-1268	11100-14-4	22727	56,000E	ND
			·	•

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	133

#### **KIBER** Environmental Services

LAB SAMPLE # 854-404020-1 MS & MSD



#### PCB MATRIX SPIKE RESULTS

#### SAMPLE # TS*B-68*6-8, FT-C60 RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 4/7/94, 14:25, JD EXTRACTED (Date / Init): 4/11/94, JG ANALYSIS (Date/Time/Init): 4/12/94, 11:19, DLL

#### DATE REPORTED: 4/12/94

Sample Matrix: SOLID Analysis Method: 8080

		<b>QC LIMITS</b>	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Aroclor-1254	11096-82-5	39-154	115
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	132

## ANALYSIS(Date/Time/Init): 4/12/94, 12:10, DLL

		QC LIMITS	Actual MSD	]	· ·
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	RPD	
Aroclor-1254	11096-82-5	39-154	108	6.3	

	07 December	10V - (0.150)	126
	% Recovery	OV = 00.120	120

#### LAB SAMPLE # 40392-4 PROJECT # 854

## GC/ECD-PCB RESULTS

SAMPLE # TS*B-68*6-8, 7C **RAYMARK INDUSTRIES** 

#### SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/30/94, 05:18, DLL

D

ATE REPORTED: 3/31/94	Quant Factor:	195.2	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	84.9	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	19520	ND	ND
Aroclor-1221	11104-28-2	39041	ND	ND
Aroclor-1232	11141-16-5	19520	ND	ND
Aroclor-1242	53469-21-9	19520	ND	ND
Aroclor-1248	12672-29-6	19520	ND	ND
Aroclor-1254	11097-69-1	19520	ND	ND
Aroclor-1260	11096-82-5	19520	ND	ND
Aroclor-1262	37324-23-5	19520	170,000E	ND
Aroclor-1268	11100-14-4	19520	91,000E	ND
			•	•

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	100

#### LAB SAMPLE # 40392-5 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, 8C **RAYMARK INDUSTRIÉS** 

SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/30/94, 06:10, DLL

DATE REPORTED: 3/31/94	Quant Factor	:: 173.6	Sample Matrix:	SOLID
	Extract Method	l: 3550	Analysis Method:	8080
	% Solid	1:96.4	Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	17364	ND	ND
Aroclor-1221	11104-28-2	34729	ND	ND
Aroclor-1232	11141-16-5	17364	ND	ND
Aroclor-1242	53469-21-9	17364	ND	ND
Aroclor-1248	12672-29-6	17364	ND	ND
Aroclor-1254	11097-69-1	17364	ND	ND
Aroclor-1260	11096-82-5	17364	ND	ND
Aroclor-1262	37324-23-5	17364	140,000E	ND
Aroclor-1268	11100-14-4	17364	77,000E	ND

Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-150]	DO	100

#### LAB SAMPLE # 40392-6 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, 9C RAYMARK INDUSTRIES

#### SAMPLED (Date/Time/Init): ⁻3/24/94, 13:55, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/29/94, 07:30, DLL

D

DATE REPORTED: 3/31/94	Quant Factor:	3.33	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	100	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	333	ND	/ ND
Aroclor-1221	11104-28-2	666	ND	ND
Aroclor-1232	11141-16-5	333	ND	ND ·
Aroclor-1242	53469-21-9	333	ND	ND
Aroclor-1248	12672-29-6	333	ND	ND
Aroclor-1254	11097-69-1	333	ND	ND
Aroclor-1260	11096-82-5	333	ND	ND
Aroclor-1262	37324-23-5	333	3,200E	ND
Aroclor-1268	11100-14-4	333	1,000E	ND
		,		

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

100

DO

#### LAB SAMPLE # 40392-7 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

#### SAMPLE # TS*B-7*4-6, 7C **RAYMARK INDUSTRIES**

SAMPLED (Date/Time/Init): -3/24/94, 13:55, JD EXTRACTED (Date / Init) : 3/25/94, JG ANALYSIS (Date/Time/Init): 3/30/94, 07:02, DLL

D

Quant Factor:	206.1	Sample Matrix:	SOLID
Extract Method:	3550	Analysis Method:	8080
% Solid:	79.9	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	20605	ND	ND
11104-28-2	41211	ND	ND
11141-16-5	20605	ND	ND
53469-21-9	20605	ND	ND
12672-29-6	20605	ND	ND ·
11097-69-1	20605	ND ·	ND
11096-82-5	20605	ND	ND
37324-23-5	20605	160,000E	ND
11100-14-4	20605	94,000E	ND
	Quant Factor: Extract Method: % Solid: CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:         206.1           Extract Method:         3550           % Solid:         79.9           CAS Number         MDL           12674-11-2         20605           11104-28-2         41211           11141-16-5         20605           53469-21-9         20605           12672-29-6         20605           11097-69-1         20605           11096-82-5         20605           37324-23-5         20605           11100-14-4         20605	Quant Factor:       206.1 Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       79.9       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       20605       ND         11104-28-2       41211       ND         11141-16-5       20605       ND         53469-21-9       20605       ND         12672-29-6       20605       ND         11097-69-1       20605       ND         11096-82-5       20605       ND         37324-23-5       20605       160,000E         11100-14-4       20605       94,000E

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

100

DO

LAB SAMPLE # 40392-8 PROJECT # 854 ØÅ.

#### GC/ECD-PCB RESULTS

SAMPLE # TS*B-7*4-6, 8C RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init) : 3/25/94, JG ANALYSIS (Date/Time/Init): 3/30/94, 07:54, DLL

DATE REPORTED: 3/31/94

Quant Factor: 187.6 Sample Matrix: SOLID Extract Method: 3550 Analysis Method: 8080

	70 SUIU: 07.5		Dry-weight basis	Apparent
·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	18760	ND	ND
Aroclor-1221	11104-28-2	37520	ND	ND
Arocior-1232	11141-16-5	18760	ND	ND
Aroclor-1242	53469-21-9	18760	ND	ND
Aroclor-1248	12672-29-6	18760	ND	ND
Aroclor-1254	11097-69-1	18760	ND	ND
Aroclor-1260	11096-82-5	18760	ND	ND
Aroclor-1262	37324-23-5	18760	160,000E	ND
Aroclor-1268	11100-14-4	18760	93,000E	ND

Tetrachloro-m-xylene (surrogate std)% Recovery [OK = 60-150]DO100

#### LAB SAMPLE # 40392-9 PROJECT # 854

### GC/ECD-PCB RESULTS

#### SAMPLE # TS*B-7*4-6, 9C **RAYMARK INDUSTRIES**

SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/30/94, 08:45, DLL

Quant Factor	r: 0.34	Sample Matrix:	SOLID
Extract Method	l: 3550	Analysis Method:	8080
% Solid	l: 100	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	34	ND	ND
11104-28-2	67	ND	ND
11141-16-5	34	ND	ND
53469-21-9	34	ND	ND
12672-29-6	34	ND	ND
11097-69-1	34	ND	ND
11096-82-5	34	ND	ND
37324-23-5	34	<mdl< td=""><td>ND</td></mdl<>	ND
11100-14-4	34	<mdl< td=""><td>ND</td></mdl<>	ND
	Quant Factor Extract Method % Solid CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:         0.34           Extract Method:         3550           % Solid:         100           CAS Number         MDL           12674-11-2         34           11104-28-2         67           11141-16-5         34           53469-21-9         34           12672-29-6         34           11097-69-1         34           11096-82-5         34           37324-23-5         34           11100-14-4         34	Quant Factor:       0.34       Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       100       Dry-weight Basis         CAS Number       MDL       ug/Kg         12674-11-2       34       ND         11104-28-2       67       ND         11141-16-5       34       ND         53469-21-9       34       ND         12672-29-6       34       ND         11097-69-1       34       ND         37324-23-5       34 <mdl< td="">         11100-14-4       34       <mdl< td=""></mdl<></mdl<>

Tetrachloro-m-xylene	(surrogate std)	% Recovery [OK =	60-150]

100

135

**KIBER** Environmental Services

LAB SAMPLE # 854-40392-1 MS & MSD

#### PCB MATRIX SPIKE RESULTS

SAMPLE # TS*B-68*2-4, 7C RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 3/24/94, 13:55, JD EXTRACTED (Date / Init): 3/25/94, JG ANALYSIS (Date/Time/Init): 3/30/94, 09:37, DLL

DATE REPORTED: 3/31/94

Sample Matrix: SOLID Analysis Method: 8080

		<b>QC LIMITS</b>	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Aroclor-1254	11096-82-5	39-154	DO
Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

#### ANALYSIS(Date/Time/Init): 3/30/94, 10:29, DLL

		<b>QC LIMITS</b>	Actual MSD	
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	RPD
Aroclor-1254	11096-82-5	39-154	DO	NA

Tetrachloro-m-xylene (surrogate std)	% Recovery	[OK = 60-150]	DO

DO: Diluted Out, NA: Not Applicable

#### ANALYTICAL CASE NARRATIVE FOR:

#### **Raymark Industries**

#### Project No. 854-4034020

Six soil samples were submitted for analysis on 4/7/94 at 1500 hours. The samples arrived at room temperature and in good condition.

The requested analyses and corresponding methods are as follows:

Analysis	Method	Instrument
Total PCBs	SW-846 Methods: 3550 and 8080	Hewlett Packard 5890 GC/ECD

#### Total PCBs

The QC recoveries were within the method specified limits. Aroclors 1262 and 1268 were found to coelute. Therefore, the reported results for aroclors 1262 and 1268 are flagged with an "E" for estimated. There were no further difficulties during the analyses.

The above referenced data has been reviewed for compliance with all applicable portions of Kiber Environmental Services, Inc. QA/QC Program and all methodologies. Any anomalies encountered during analyses are noted by the analyst above.

#### LAB SAMPLE # 404020-1 PROJECT # 854

<u>24</u>

#### **GC/ECD-PCB RESULTS**

### SAMPLE # TS*B-68*6-8, FT-C60 **RAYMARK INDUSTRIES**

#### SAMPLED (Date/Time/Init): ⁴/7/94, 14:25, JD EXTRACTED (Date / Init): 4/11/94, JG ANALYSIS (Date/Time/Init): 4/11/94, 20:35, DLL

#### D

Quant Factor	: 0.33	Sample Matrix:	SOLID
Extract Method	: 3550	Analysis Method:	8080
% Solid	l: 100	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	33	ND	ND
11104-28-2	66	ND	ND
11141-16-5	33	ND	ND
53469-21-9	33	ND	ND
12672-29-6	. 33	ND	ND
11097-69-1	33	ND	ND
11096-82-5	33	, ND	ND
37324-23-5	33	ND	ND
11100-14-4	33	ND	ND
	Quant Factor Extract Method % Solid CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:       0.33         Extract Method:       3550         % Solid:       100         CAS Number       MDL         12674-11-2       33         11104-28-2       66         11141-16-5       33         53469-21-9       33         12672-29-6       33         11097-69-1       33         11096-82-5       33         37324-23-5       33         11100-14-4       33	Quant Factor:       0.33       Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       100       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       33       ND         11104-28-2       66       ND         11141-16-5       33       ND         53469-21-9       33       ND         12672-29-6       33       ND         11097-69-1       33       ND         11096-82-5       33       ND         37324-23-5       33       ND         11100-14-4       33       ND

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

128

133

#### LAB SAMPLE # 404020-2 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, FT-C75 **RAYMARK INDUSTRIES** 

#### SAMPLED (Date/Time/Init): 4/7/94, 14:25, JD EXTRACTED (Date / Init): 4/11/94, JG ANALYSIS (Date/Time/Init): 4/11/94, 21:27, DLL

D

DATE REPORTED: 4/12/94	Quant Factor:	0.33	Sample Matrix:	SOLID
:	Extract Method:	3550	Analysis Method:	8080
	% Solid:	100	Dry-weight Basis	Apparent
· ·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	33	ND	ND
Aroclor-1221	11104-28-2	65	ND.	ND
Aroclor-1232	11141-16-5	33	ND	ND
Aroclor-1242	53469-21-9	. 33	ND	ND
Aroclor-1248	12672-29-6	33	ND	ND
Aroclor-1254	11097-69-1	33	ND	ND
Aroclor-1260	11096-82-5	33	ND	ND
Aroclor-1262	37324-23-5	33	ND	ŇD
Aroclor-1268	11100-14-4	33	ND	ND

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

133

133

#### LAB SAMPLE # 404020-3 PROJECT # 854

ಪಡಿ

### GC/ECD-PCB RESULTS

SAMPLE # TS*B-68*6-8, FT-C90 **RAYMARK INDUSTRIES** 

#### SAMPLED (Date/Time/Init): 4/7/94, 14:25, JD EXTRACTED (Date / Init) : 4/11/94, JG ANALYSIS (Date/Time/Init): 4/11/94, 22:19, DLL

DA

Quant Factor	r: 0.33	Sample Matrix:	SOLID
Extract Method	l: 3550	Analysis Method:	8080
% Solid	l: 100	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	33	ND	ND
11104-28-2	66	ND	ND
11141-16-5	33	ND	ND
53469-21-9	33	ND	ND
12672-29-6	33	ND	ND
11097-69-1	33	ND	ND
11096-82-5	33	ND	ND
37324-23-5	33	ND	ND
11100-14-4	33	ND	ND
	Quant Factor Extract Method % Solid CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Quant Factor:       0.33         Extract Method:       3550         % Solid:       100         CAS Number       MDL         12674-11-2       33         11104-28-2       66         11141-16-5       33         53469-21-9       33         12672-29-6       33         11097-69-1       33         11096-82-5       33         37324-23-5       33         11100-14-4       33	Quant Factor:       0.33       Sample Matrix:         Extract Method:       3550       Analysis Method:         % Solid:       100       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       33       ND         11104-28-2       66       ND         11141-16-5       33       ND         53469-21-9       33       ND         12672-29-6       33       ND         11097-69-1       33       ND         11096-82-5       33       ND         37324-23-5       33       ND         11100-14-4       33       ND

Tetrachloro-m-xylene (surrogate std)

% Recovery [OK = 60-150]

133

132

#### LAB SAMPLE # 404020-4 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, FT-B90 RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): EXTRACTED (Date / Init) : ANALYSIS (Date/Time/Init): 4/7/94, 14:25, JD 4/11/94, JG 4/11/94, 23:11, DLL

DATE REPORTED: 4/12/94	Quant Factor:	0.33	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	<b>99.7</b>	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Arocior-1016	12674-11-2	33	ND	ND
Aroclor-1221	11104-28-2	67	ND	ND
Aroclor-1232	11141-16-5	33	ND	ND
Aroclor-1242	53469-21-9	33	ND	ND
Aroclor-1248	12672-29-6	33	ND	ND
Aroclor-1254	11097-69-1	33	ND	ND
Aroclor-1260	11096-82-5	33	ND	ND
Aroclor-1262	37324-23-5	33	ND	ND
Aroclor-1268	11100-14-4	33	ND	ND
Tetrachloro-m-wlene (surrogate std)	% Recovery [OK = 60-	1501	134	133

#### LAB SAMPLE # 404020-5 PROJECT # 854

#### **GC/ECD-PCB RESULTS**

#### SAMPLE # TS*B-68*6-8, FT-B60 **RAYMARK INDUSTRIES**

#### SAMPLED (Date/Time/Init): .4/7/94, 14:25, JD EXTRACTED (Date / Init): 4/11/94, JG ANALYSIS (Date/Time/Init): 4/12/94, 00:03, DLL

DATE REPORTED: $4/12/94$	Quant Factor	: 0.33	Sample Matrix:	SOLID
	Extract Method	: 3550	Analysis Method:	8080
	% Solid	: 100	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	33	ND	ND
Aroclor-1221	11104-28-2	66	ND	ND
Aroclor-1232	11141-16-5	33	ND	ND
Aroclor-1242	53469-21-9	33	ND	ND
Aroclor-1248	12672-29-6	33	ND	ND
Aroclor-1254	11097-69-1	33	ND	ND
Aroclor-1260	11096-82-5	33	ND	ND
Aroclor-1262	37324-23-5	33	ND	ND
Aroclor-1268	11100-14-4	33	ND	ND
Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-	150]	132	133

E: Estimated, ND: Not Detected

MDL: Method Detection Limit

## THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

NITROGEN PURE

PROJECT: PROJECT No .: MATERIAL TYPE: TESTING DATE: TESTED BY:

<u>Raymark</u> MD <u>854</u> <u>T-5 * B-10 *1.5-4</u> <u>4-18-94</u> <u>JSD | SGH</u>

**3**75

	TS# P-INKIP-11.FT	~
	- JA 15-10- 1.5-4 . FI-	560
	250	•0
3. WEIGHT OF PAN (tare weight)		0
	1562.34	9
5. WEIGHT OF UNTREATED SOIL	1001.51	. 0
6. WEIGHT OF TREATED SOIL + TARE	/3/6.32	9
7. WEIGHT OF TREATED SOIL	755.55	9
8. WEIGHT LOSS	46.02	G
9. LENGTH OF TREATMENT (RESIDENCE TIME)	60	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	65	•
2 MINUTES	80	•
3 MINUTES	96	
5 MINUTES	114	•0
10 MINUTES	179	•0
15 MINUTES	260	•
20 MINUTES	348	.•c
30 MINUTES	449	•c
40 MINUTES	486	.•c
11. SOIL TEMPERATURE - WHILE COOLING		_
1 MINUTE	NA	· •c
2 MINUTES	N/A .	••
3 MINUTEB	406	•0
5 MINUTES	420	•(
10 MINUTEB	349	•(
15 MINUTEB	307	•(
20 MINUTEB	264	•
	198	•
40 MINUTE8	150	•
	90	•
1 45 MINUTES	30	•,

REPORT FOR	M
PAGE 2 OF 2	2
	0
PROJECT:	KAYMSER IND
PROJECT No .:	854
MATERIAL TYPE:	TS * B-10 * 1.5-4
TESTING DATE:	4-18-94
TESTED BY:	JSS/SGH

THERMAL DESORPTION DATA

VISUAL OBSERVATIONS - BEFORE TREATMENT

Reddish brown sandy soil. Small rocks throughout. Morst.

VISUAL OBSERVATIONS - AFTER TREATMENT

Temp @ 60 Minutes: 506 Soil is. completely day. More reddish in appearance.

## THERMAL DESORPTION DATA REPORT FORM PAGE 1 OF 2

NITROGEN PURCE

PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:

RAYMHER IND 854 TSYB-BY - 41 4-18-94 JSD/SGH

ыsa

······································	<u> </u>		
SET-UP, MONITORING and TESTING INFORMATION			
1. SAMPLE No.	TS*B-68*2-4:FT-	- 860	
2. OVEN TEMPERATURE	538	•0	
3. WEIGHT OF PAN (tare weight)	347.60	9	
4. WEIGHT OF UNTREATED SOIL + TARE	1348.15		
5. WEIGHT OF UNTREATED SOIL	1000.55	6	
6. WEIGHT OF TREATED SOIL + TARE	1173.44	5	
7. WEIGHT OF TREATED SOIL	825.84		
8. WEIGHT LOSS	174.71		
9. LENGTH OF TREATMENT (RESIDENCE TIME)	60	Min.	
10. SOIL TEMPERATURE - WHILE IN OVEN			
	59	•(	
2 MINUTES	73	•(	
3 MINUTES	87	•(	
5 MINUTES	101	•(	
10 MINUTES	13/	•(	
15 MINUTES	185	. •(	
20 MINUTES	228	•(	
30 MINUTES	303	•(	
40 MINUTES	405	•(	
11. SOIL TEMPERATURE - WHILE COOLING			
1 MINUTE	446	•(	
2 MINUTES	442	•(	
3 MINUTES	N/a-	•(	
5 MINUTES	424	•	
10 MINUTEB	397	. •	
15 MINUTES	368	•,	
20 MINUTES	342	•	
30 MINUTES	301		
40 MINUTES	746	•	
GO MINUTES	139	•	
165 MINUTES	31	•	

THERMAL DESOR	RPTION DATA
REPORT FO	DRM
PAGE 2 O	F 2
PROJECT: PROJECT No.:	Raymace WD 854
MATERIAL TYPE:	TS¥8-68 × 2-4
TESTING DATE:	4-18-94
TESTED BY:	JSD S64

VISUAL OBSERVATIONS - BEFORE TREATMENT

Marsz. Marsz.

VISUAL OBSERVATIONS - AFTER TREATMENT

Temp @ 60 minutes : 522 Light tan at the surface, and dark brown under headh Completely dry. Sucall chunks have become brittle & frichole.

## THERMAL DESORPTION DATA

NITROGEN PURE

PROJECT: PROJECT No .: MATERIAL TYPE: TESTING DATE: TESTED BY:

PAN MACK WD 54 7 * 4-6 4-18-94 JED / 564

SET-UP, MONITORING and TESTING INFORMATION		
1. SAMPLE No.	TS * B-7* 4-6: FT-360	
2. OVEN TEMPERATURE	538	۰c
3. WEIGHT OF PAN (tare weight)	365.29	9
4. WEIGHT OF UNTREATED SOIL + TARE	1365.25	9
5. WEIGHT OF UNTREATED SOIL	999.96	g
6. WEIGHT OF TREATED SOIL + TARE	994.82	a
7. WEIGHT OF TREATED SOIL	629 53	ç
8. WEIGHT LOSS	370.43	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	60 м	in.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	47	•c
2 MINUTES	58	•c
3 MINUTES	66	•0
5 MINUTES	80	•c
10 MINUTES	87	۰c
15 MINUTES	87	۰c
20 MINUTES	92	•c
30 MINUTES	270	•c
40 MINUTES	474	۰c
11. SOIL TEMPERATURE - WHILE COOLING		·
1 MINUTE	464	۰ç
2 MINUTES	502	•0
3 MINUTES	512	•0
S MINUTES	512	•0
10 MINUTES	494	•0
15 MINUTES	472	•0
20 MINUTES /	450	•0
30 MINUTES	414	•0
40 MINUTES	394	•
60 MINUTES	304	•
1.35 MINUTES	34	•

DESOR	PTION DATA
REPORT FOR	M
PAGE 2 OF 2	2
CT: CT No.:	RAYMARK WD 854
AL TYPE:	TS+KB-7+K 4-6
G DATE:	4-18-94
) BY:	JSD /SGH

VISUAL OBSERVATIONS - BEFORE TREATMENT

Black silty clay (grainy). Small rocks throughout Some extraneous organ: a material

THERMAL

PROJECT: PROJECT N MATERIAL 1 TESTING D TESTED BY

moist.

VISUAL OBSERVATIONS - AFTER TREATMENT

Temp & 60 minutes: 596. Light ten grey in appearance. Completely day. Onzamie matriel frikle.

Note: sample showed low numbers while heating up, but recovered towards he end of testing time.

## THERMAL DESORPTION DATA

NITROBEN

	PROJECT:	Paymack IND	
	MATERIAL TYPE:	TS+B-68+6-8	2
Puebe	TESTED BY:	<u> </u>	JUTSGH
•			Final Treatment

6

SET-UP, MONITORING and T		
1. SAMPLE No.	TS# B-68 # 6-8: FT-260.	HUZ GUG-
2. OVEN TEMPERATURE	538	
3. WEIGHT OF PAN (tare weight)	340.80	
4. WEIGHT OF UNTREATED SOIL + TARE	1340.99	
5. WEIGHT OF UNTREATED SOIL	1800.19	9
6. WEIGHT OF TREATED SOIL + TARE	97B.24	
7. WEIGHT OF TREATED SOIL	637.44	9
8. WEIGHT LOSS	362.75	g
9. LENGTH OF TREATMENT (RESIDENCE TIME)	60 Min	
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	47	c ·
2 MINUTES	59	c
3 MINUTES	/۲	c
5 MINUTES	ଟ୍ .	c
10 MINUTES	101 •	c
15 MINUTES	101 .	c
20 MINUTES		c
30 MINUTES		c
40 MINUTES	243	c
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	318	c
2 MINUTES	• الم	c
3 MINUTES	316	c
5 MINUTES	3.6	c
10 MINUTES	2.90	<b>°C</b> .
15 MINUTES	280	Ċ
20 MINUTES	272	·c
30 MINUTES	256	<b>'</b> C
40 MINUTES	246	·c
	228	·c
	34	•c

-

· · · ·	THERMAL DESC REPORT PAGE 2	PRPTION DATA	·
•	PROJECT: PROJECT No.: MATERIAL TYPE: TESTING DATE: TESTED BY:	<u>Раумаек</u> IND 854 Т <u>54 B-68 4 6-8</u> 4-18-94 JSD [SG4	· · ·
Rank cash	Gil W black some	in alle the met of	·
White specs.	sea wy the opting	(7) upper the mention	
Extraneous Moist.	organic material		
· · · · · ·			
VISUAL OBSERVATIO	ns - AFTER TREATMENT 50 minutes · 395 dry .	 	
Light tem All organi	contop dark un contaria brit	ides reals. the & Griable.	
		: : ,	

. . . . . . . .

## THERMAL DESORPTION DATA

PROJECT:	RAYMARK 1
PROJECT No .:	854
MATERIAL TYPE:	TS* B-7* "
TESTING DATE:	4-19-94
TESTED BY:	JSD

NITROGEN PURGE

MA TES TE

ND -6

ŝ

SET-UP, MONITORING and	TESTING INFORMATION	
1. SAMPLE No.	T54 8-7# 4-6 : FT - 860	DUP
2. OVEN TEMPERATURE	538	•0
3. WEIGHT OF PAN (tare weight)	360.84	9
4. WEIGHT OF UNTREATED SOIL + TARE	1361.59	g
5. WEIGHT OF UNTREATED SOIL	1000.75	9
6. WEIGHT OF TREATED SOIL + TARE	1012.67	9
7. WEIGHT OF TREATED SOIL	651.83	g
8. WEIGHT LOSS	348.92	9
9. LENGTH OF TREATMENT (RESIDENCE TIME)	60	Min.
10. SOIL TEMPERATURE - WHILE IN OVEN		
1 MINUTE	62	•c
2 MINUTES	- 77	•c
3 MINUTES	87	•0
5 MINUTES	100	••
10 MINUTES	102	•0
15 MINUTES	102	•0
20 MINUTES	116	•c
30 MINUTES	268	•c
40 MINUTES	447	•0
11. SOIL TEMPERATURE - WHILE COOLING		
1 MINUTE	442	•c
2 MINUTES	478	•c
3 MINUTES	482	•0
5 MINUTES	476	•c
10 MINUTES	442	••
15 MINUTES	408	•0
20 MINUTEB	376	•0
30 MINUTES	326	••
40 MINUTES	260	•0
	112	•
150MINUTES	28	•(

	<u> </u>	
	THERMAL DESORPTION DATA         REPORT FORM         PAGE 2 OF 2         PROJECT:       RAYMALK (ND         PROJECT No.:       854         MATERIAL TYPE:       TSK R-744-6         TESTING DATE:       4-19-44	
VISUAL OBSERVATION Black Sitt	S-BEFORE TREATMENT g Clay (Very grainy).	
Swall rock Extraneor Moriet	hs throughout no organice material	
VISUAL OBSERVATION TEMP & 60 Lutet tem Completete d	s. AFTER TREATMENT MINUMES: 538 /grey in appearance.	
Organie ,	material has become brittle and very friable	



## RAYANING A AND BATT Construction Tenning A The Film Report The Tenning A The A

CACK TELLS SIE C.

MERCE TESTAL

SAMPLE NUMBER: TS*B-10*1.5-4:FT-B60 BEFORE LTTD TREATMENT



SAMPLE NUMBER: TS*B-10*1.5-4:FT-B60 AFTER LTTD TREATMENT





SAMPLE NUMBER: TS*B-68*2-4:FT-B60 BEFORE LTTD TREATMENT



SAMPLE NUMBER: TS*B-68*2-4:FT-B60 AFTER LTTD TREATMENT

SAMPLE NUMBER: TS*B-7*4-6:FT-B60 BEFORE LTTD TREATMENT

5



SAMPLE NUMBER: TS*B-7*4-6:FT-B60

AFTER LTTD TREATMENT



## KIBER ENVIRONMENTAL SERVICES, INC. ANALYTICAL CASE NARRATIVE

#### KIBER - Raymark 854-404039

Nine soil samples were submitted for analysis on 4/19/94 at 1350. The samples arrived at 25°C and in good condition.

Analysis	Method
Total Volatiles	SW-846 Method 8260
Total BNA Semivolatiles	SW-846 Methods: 3550 and 8270
Total Pesticides	SW-846 Methods: 3550 and 8080
Total PCBs + 1262 & 1268	SW-846 Methods: 3550 and 8080
Total RCRA Metals (except Mercury)	SW-846 Methods: 3051 and 6010
Total Mercury	SW-846 Method 7471
Total Organic Carbon (TOC)	SW-846 Method 9060
Total Dioxin Semivolatiles	SW-846 Methods: 3550 and 8270

The requested analyses and corresponding methods are as follows:

#### Total Volatiles:

The QC recoveries were within the method specified limits. Samples TS*B-68*2-4 FT-B60, TS*B-7*4-6 FT-B60, TS*B-68*6-8 FT-B60, and TS*B-7*4-6 FT-B60 DUP had a very dry matrix which made analysis very difficult and almost impossible. When the surrogate and internal spiking standards were added to the sample, the dry matrix absorbed them almost immediately. As a result, quantitation by the internal standard method was not accurate. To circumvent the dry sample matrix, a high level methanol extraction was performed. The analyses did not exhibit the same problems as the initial analyses and quantitation was accurate. There were no further difficulties during the analyses.

#### KIBER ENVIRONMENTAL SERVICES, INC. ANALYTICAL CASE NARRATIVE

#### KIBER - Raymark 854-404039

#### Total BNA Semivolatiles:

The QC recoveries were within the method specified limits. The extracts of samples TS*B-68*2-4, TS*B-7*4-6, and TS*B-68*6-8 were very oily and therefore a dilution was necessary prior to analysis. There were no further difficulties during the analyses.

#### Total Pesticides:

The QC recoveries were within the method specified limits. There were no difficulties during the analyses.

#### Total PCBs:

The QC recoveries were within the method specified limits. The analyses exhibited coelution of Aroclors 1262 and 1268. Therefore, the reported results for aroclors 1262 and 1268 are flagged with an "E" for estimated. There were no further difficulties during the analyses.

#### Total RCRA Metals:

The QC recoveries were within the method specified limits except for the following:

1) The Silver Laboratory Control Standard (LCS) recovery was low. This is typically the case for Silver. Silver precipitates when combined with Hydrochloric acid. This acid is used in the metals glassware cleaning procedures. Any trace levels will cause Silver precipitation and is therefore the likely cause for the low recovery.

There were no further difficulties during the analyses.

#### Total Organic Carbon (TOC):

The QC recoveries were within the method specified limits. There were no reported difficulties during the analyses.

#### Total Dioxins:

The TLH reports contains flags to note the following items:
## KIBER ENVIRONMENTAL SERVICES, INC. ANALYTICAL CASE NARRATIVE

#### KIBER - Raymark 854-404039

1) Flag Y:

indicates that the recoveries of the QC standard are only slightly below the suggested QC advisory limit and that they meet the required 10:1 signal to noise ratio for the peak and therefore TLH regards the data as valid.

2) Flag X:

indicates that TCDD and TCDF compounds contained interferants during analysis from the labeled internal or recovery standards that were apparent within the respective retention time windows.

The QC recoveries were within the method specified limits except for those note above for flag Y. There were no other difficulties reported by THL.

3

MINS

**4**870

## GC/MS VOA RESULTS

LAB SAMPLE # 404039-1

#### RAYMARK IND. SAMPLE # TS*B-10*1.5-4

## SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/22/94, 17:00, ALH

-				Sample Matrix	SOLID
DATE REPORTED: 4/28/94	Dilution F	actor: 1.050		Analysis Method:	8260
	%S	olids: 96		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acetone	67-64-1	2.70	11.60	ND	ND
Benzene	71-43-2	0.30	1.30	0.6 E	<mdl< td=""></mdl<>
Bromodichloromethane	75-27-4	0.60	2.30	ND	ND
Bromoform	75-25-2	0.60	2.60	ND	ND
Bromomethane	74-83-9	1.90	7.40	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	12.60	49.40	ND	ND
Carbon Disulfide	75-15-0	1.20	4.70	ND	ND
Carbon Tetrachloride	56-23-5	0.70	2.70	ND	ND
Chlorobenzene	108-90-7	0.60	2.10	1.0 E	ND
Chloroethane	75-00-3	1.40	5.60	ND	ND
Chloroform	67-66-3	0.70	2.90	ND	ND
Chloromethane	74-87-3	1.80	7.10	ND	ND
Dibromochloromethane	124-48-1	0.60	2,50	ND	ND
1,1-Dichloroethane	75-34-3	0.80	3.20	ND	ND
1,2-Dichloroethane	107-06-2	0.50	2.00	ND	ND
1,1-Dichloroethene	75-35-4	0.90	4.10	ND	ND
1,2-Dichloroethene (total)	540-59-0	1.40	5.30	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichloropropane	78-87-5	0.50	2.20	ND	ND
cis-1,3-Dichloropropene	10061-01-5	0.80	3.20	ND	ND
trans-1,3-Dichloropropene	10061-02-6	0.70	2.90	ND	ND
Ethylbenzene	100-41-4	1.00	4.10	ND	ND
2-Hexanone	591-78-6	1.40	5.70	ND	ND
Methylene Chloride	75-9-2	2.90	11.60	6.5 E	6.9 E
4-Methyl-2-pentanone (MIBK)	108-10-1	2.30	9.30	ND	ND
Styrene	100-42-5	.0.40	1.50	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	0.70	2.80	ND	ND
Tetrachloroethene	127-18-4	0.90	3.70	1.8 E	ND
Toluene	108-88-3	0.90	3.70	ND	ND
1,1,1-Trichloroethane	71-55-6	0.40	1.60	ND	ND
1,1,2-Trichloroethane	79-00-5	0.90	3.60	ND	ND
Trichloroethene	79-01-6	0.60	2.50	56	ND
Vinyl Acetate	108-05-4	0.80	3.30	ND	ND
Vinyl Chloride	75-01-4	1.80	7.00	ND	ND
Xylene (total)	10061-01-5	0.20	1.60	ND	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		89	94
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		104	104
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		81	94

E: Estimated, ND: Not detected

MDL: Method Detection Limit

## GC/MS VOA RESULTS

LAB SAMPLE # 404039-2

RAYMARK IND. SAMPLE # TS*B-68*2-4 SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/22/94, 17:28, ALH

DATE REPORTED: 4/28/94

Dilution Factor: 1.149 %Solids: 87 Sample Matrix SOLID Analysis Method: 8260

	Dry-weight Basis	Apparent			
•				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acetone	67-64-1	3.00	12.60	ND	ND
Benzene	71-43-2	0.40	1.40	ND	<mdl< td=""></mdl<>
Bromodichloromethane	75-27-4	0.60	2.50	ND	ND
Bromoform	75-25-2	0.70	2.90	ND	ND
Bromomethane	74-83-9	2.10	8.00	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	13.80	54.00	<mdl< td=""><td>ND</td></mdl<>	ND
Carbon Disulfide	75-15-0	1.30	5.20	ND	ND
Carbon Tetrachloride	56-23-5	0.80	3.00	ND	ND
Chlorobenzene	108-90-7	0.70	2.30	ND	ND
Chloroethane	75-00-3	1.50	6.10	ND	ND
Chloroform	67-66-3	0.80	3.20	ND	ND
Chloromethane	74-87-3	2.00	7.80	ND	ND
Dibromochloromethane	124-48-1	0.70	2.80	ND	ND
1,1-Dichloroethane	75-34-3	0.90	3.40	ND	ND
1,2-Dichloroethane	107-06-2	0.60	2.20	ND	ND
1,1-Dichloroethene	75-35-4	1.00	4.50	ND	ND
1,2-Dichloroethene (total)	540-59-0	1.50	5.70	ND	ND ·
1,2-Dichloropropane	78-87-5	0.60	2.40	ND	ND
cis-1,3-Dichloropropene	10061-01-5	0.90	3.40	ND	ND
trans-1,3-Dichloropropene	10061-02-6	0.80	3.20	ND	ND
Ethylbenzene	, 100-41-4	1.10	4.50	ND	ND
2-Hexanone	591-78-6	1.50	6.20	ND	ND
Methylene Chloride	75-9-2	3.20	12.60	130	7.6 E
4-Methyl-2-pentanone (MIBK)	108-10-1	2.50	10.20	ND	ND
Styrene	100-42-5	0.40	1.60	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	0.80	3.10	ND	ND
Tetrachloroethene	127-18-4	1.00	4.00	ND	ND
Toluene	108-88-3	1.00	4.00	ND	ND
1,1,1-Trichloroethane	71-55-6	0.40	.1.70	ND	ND
1,1,2-Trichloroethane	79-00-5	1.00	3.90	ND	ND
Trichloroethene	79-01-6	0.70	2.80	ND	ND
Vinyl Acetate	108-05-4	0.90	3.60	ND	ND
Vinyl Chloride	75-01-4	2.00	7.70	ND	ND
Xylene (total)	10061-01-5	0.30	1.70	ND	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		89	94
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]	ς	137	104
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]	<u></u>	79	94

E: Estimated, ND: Not detected

MDL: Method Detection Limit

# GC/MS VOA RESULTS

## LAB SAMPLE # 404039-3

RAYMARK IND. SAMPLE # TS*B-7*4-6 SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/22/94, 17:56, ALH

-				Sample Matrix	SOLID
DATE REPORTED: 4/ 28/94	Dilution F	factor: 1.634		Analysis Method:	8260
	%5	Solids: 61		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
Acetone	67-64-1	4.20	18.00	ND	ND
Benzene	71-43-2	0.50	2.00	1.9 E	<mdl< td=""></mdl<>
Bromodichloromethane	75-27-4	0.90	3.60	ND	ND
Bromoform	75-25-2	1.00	4.10	ND	ND
Bromomethane	74-83-9	2.90	11.40	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	19.60	76.80	ND	ND
Carbon Disulfide	75-15-0	1.80	7.40	33	ND
Carbon Tetrachloride	56-23-5	1.10	4.20	ND	ND
Chlorobenzene	108-90-7	1.00	3.30	11	ND
Chloroethane	75-00-3	2.10	8.70	11	ND
Chloroform	67-66-3	1.10	4.60	ND	ND
Chloromethane	74-87-3	2.80	11.10	ND	ND
Dibromochloromethane	124-48-1	1.00	3.90	ND	ND
1,1-Dichloroethane	75-34-3	1.20	4.90	ND	ND
1,2-Dichloroethane	107-06-2	0.80	3.10	ND	ND
1,1-Dichloroethene	75-35-4	1.50	6.40	ND	ND
1,2-Dichloroethene (total)	540-59-0	2.10	8.20	7.0 E	ND
1,2-Dichloropropane	78-87-5	0.80	3.40	ND	ND
cis-1,3-Dichloropropene	10061-01-5	1.20	4.90	ND	ND .
trans-1,3-Dichloropropene	10061-02-6	1.20	4.60	ND	ND
Ethylbenzene	100-41-4	1.60	6.40	10	ND
2-Hexanone	591-78-6	2.10	8.80	ND	ND
Methylene Chloride	75-9-2	4.60	18.00	150	11 E
4-Methyl-2-pentanone (MIBK)	108-10-1	3.60	14.50	ND	ND
Styrene	100-42-5	0.60	× 2.30	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	1.10	4.40	ND	ND
Tetrachloroethene	127-18-4	1.40	5.70	ND	ND
Toluene	108-88-3	1.40	5.70	8.9	ND
1,1,1-Trichloroethane	71-55-6	0.60	2.50	ND	ND
1,1,2-Trichloroethane	79-00-5	1.40	5.60	ND	ND
Trichloroethene	79-01-6	1.00	3.90	6.5	ND
Vinyl Acetate	108-05-4	1.30	5.10	ND	ND
Vinyl Chloride	75-01-4	2.80	10.90	ND	ND
Xylene (total)	10061-01-5	1.20	4.60	60	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		94	94
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		129	104
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]	<u>.</u>	75	94

E: Estimated, ND: Not detected

MDL: Method Detection Limit

12

## GC/MS VOA RESULTS

LAB SAMPLE # 404039-4

RAYMARK, IND. SAMPLE # TS*B-68*6-8 SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 15:28, ALH

				Sample Matrix	SOLID
DATE REPORTED: 4/28/94	<ul> <li>Dilution Factor: 6.206</li> </ul>			Analysis Method:	8260
	%S	%Solids: 75			Apparent
	•			ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acetone	67-64-1	16.10	68.30	ND	ND
Benzene	71-43-2	1.90	7.40	4.4 E	ND
Bromodichloromethane	75-27-4	3.40	13.70	ND	ND
Bromoform	75-25-2	3.80	15.50	ND	ND
Bromomethane	74-83-9	11.20	43.40	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	74.50	291.70	ND	ND
Carbon Disulfide	75-15-0	6.80	27.90	120	ND
Carbon Tetrachloride	56-23-5	4.10	16.10	ND	ND
Chlorobenzene	108-90-7	3.80	12.40	ND	ND
Chloroethane	75-00-3	8.10	32.90	ND	ND
Chloroform	67-66-3	4.30	17.40	ND	ND
Chloromethane	74-87-3	10.60	42.20	ND	ND
Dibromochloromethane	124-48-1	3.70	14.90	ND	ND
1,1-Dichloroethane	75-34-3	4.70	18.60	ND	ND
1,2-Dichloroethane	107-06-2	3.00	11.80	ND	ND
1,1-Dichloroethene	75-35-4	5.60	24.20	ND	ND
1,2-Dichloroethene (total)	540-59-0	8.10	31.00	ND	ND
1,2-Dichloropropane	78-87-5	3.20	13.00	ND	ND
cis-1,3-Dichloropropene	10061-01-5	4.60	18.60	ND	ND
trans-1,3-Dichloropropene	10061-02-6	4.40	17.40	ND	ND
Ethylbenzene	100-41-4	6.10	24.20	ND	ND
2-Hexanone	591-78-6	8.10	33.50	ND	ND
Methylene Chloride	75-9-2	17.40	68.30	130	92
4-Methyl-2-pentanone (MIBK)	108-10-1	13.70	55.20	ND	ND
Styrene	100-42-5	2.20	8.70	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	4.20	16.80	ND	ND
Tetrachloroethene	127-18-4	5.50	21.70	ND	ND
Toluene	108-88-3	5.40	21.70	8.1 E	ND
1,1,1-Trichloroethane	71-55-6	2.40	9.30	ND	ND
1,1,2-Trichloroethane	79-00-5	5.30	21.10	ND	ND
Trichloroethene	79-01-6	3.70	.14.90	ND	ND
Vinyl Acetate	108-05-4	4.80	19.20	ND	ND
Vinyl Chloride	75-01-4	10.60	41.60	ND	ND
Xylene (total)	10061-01-5	4.40	17.40	50	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		106	103
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		119	-94
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		86	104

E: Estimated, ND: Not detected

MDL: Method Detection Limit



#### GC/MS VOA RESULTS

## LAB SAMPLE # 404039-5

RAYMARK IND.

SAMPLE # TS*B-10*1.5-4 FT-B60

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/22/94, 18:52, ALH

DATE REPORTED: 4/ 28/94

Dilution Factor: 0.995 %Solids: 99 Sample Matrix SOLID Analysis Method: 8260

	7630Hus. 33				Apparent
	· · · · · · · · · · · · · · · · · · ·			ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acetone	67-64-1	2.60	10.90	16	ND
Benzene	71-43-2	0.30	1.20	0.7 E	<mdl< td=""></mdl<>
Bromodichloromethane	75-27-4	0.50	2.20	ND	ND
Bromoform	75-25-2	0.60	2.50	ND	ND
Bromomethane	74-83-9	1.80	7.00	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	11.90	46.80	27 E	ND
Carbon Disulfide	75-15-0	1.10	4.50	ND	ND
Carbon Tetrachloride	56-23-5	0.70	2.60	ND	ND
Chlorobenzene	108-90-7	0.60	2.00	ND	ND
Chloroethane	75-00-3	1.30	5.30	ND	ND
Chloroform	67-66-3	0.70	2.80	ND	ND
Chloromethane	74-87-3	1.70	6.80	ND	ND
Dibromochloromethane	124-48-1	0.60	2.40	ND	ND
1,1-Dichloroethane	75-34-3	0.80	3.00	ND	ND
1,2-Dichloroethane	107-06-2	0.50	1.90	ND	ND
1,1-Dichloroethene	75-35-4	0.90	3.90	ND	ND
1,2-Dichloroethene (total)	540-59-0	1.30	5.00	ND	ND
1,2-Dichloropropane	78-87-5	0.50	2.10	ND	ND
cis-1,3-Dichloropropene	10061-01-5	0.70	3.00	ND	ND
trans-1,3-Dichloropropene	10061-02-6	0.70	2.80	ND	ND
Ethylbenzene	100-41-4	1.00	3.90	1.4 E	ND
2-Hexanone	591-78-6	1.30	5.40	<mdl< td=""><td>ND</td></mdl<>	ND
Methylene Chloride	75-9-2	2.80	10.90	28	6.5 E
4-Methyl-2-pentanone (MIBK)	108-10-1	2.20	8.90	ND	ND
Styrene	100-42-5	0.30	1.40	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	0.70	2.70	ND	ND
Tetrachloroethene	127-18-4	0.90	3.50	<mdl< td=""><td>ND</td></mdl<>	ND
Toluene	108-88-3	0.90	3.50	1.9 E	ND
1,1,1-Trichloroethane	71-55-6	0.40	1.50	ND	ND
1,1,2-Trichloroethane	79-00-5	0.80	3.40	ND	ND
Trichloroethene	79-01-6	0.60	2.40	- ND	ND
Vinyl Acetate	108-05-4	0.80	3.10	ND	ND
Vinyl Chloride	75-01-4	1.70	6.70	ND	ND
Xylene (total)	10061-01-5	0.70	2.80	7.7	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		92	94
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		103	104
Bromofluorobenzene (surrogate	%Recoverv	[OK=59-113]		83	94
	,				

E: Estimated, ND: Not detected

MDL: Method Detection Limit

GC/MS VOA RESULTS

]LAB SAMPLE # 404039-6

RAYMARK IND. SAMPLE # TS*B-68*2-4 FT-B60 SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 16:33, ALH

				Sample Matrix	SOLID
DATE REPORTED: 4/ 28/94	Dilution F	actor: 49.46		Analysis Method:	8260
	%S	olids: 100		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc
Acetone	67-64-1	128.60	544.00	ND	ND
Benzene	71-43-2	15.30	59.30	21 E	ND
Bromodichloromethane	75-27-4	27.20	108.80	ND	ND
Bromoform	75-25-2	30.20	123.60	ND	ND
Bromomethane	74-83-9	89.00	346.20	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	593.50	2324.50	780 E	<mdl< td=""></mdl<>
Carbon Disulfide	75-15-0	54.40	222.60	ND	ND
Carbon Tetrachloride	56-23-5	32.60	128.60	ND	ND
Chlorobenzene	108-90-7	30.20	98.90	<mdl< td=""><td>ND</td></mdl<>	ND
Chloroethane	75-00-3	64.30	262.10	ND	ND
Chloroform	67-66-3	34.60	138.50	ND	ND
Chloromethane	74-87-3	84.10	336.30	ND	ND
Dibromochloromethane	124-48-1	29.70	118.70	ND	ND
1,1-Dichloroethane	75-34-3	37.60	148.40	ND	ND
1,2-Dichloroethane	107-06-2	24.20	94.00	ND	ND
1,1-Dichloroethene	75-35-4	44.50	192.90	ND	ND
1,2-Dichloroethene (total)	540-59-0	64.30	247.30	ND	ND
1,2-Dichloropropane	78-87-5	25.70	103.90	ND	ND
cis-1,3-Dichloropropene	10061-01-5	36.60	148.40	ND	ND
trans-1,3-Dichloropropene	10061-02-6	35.10	138.50	ND	ND
Ethylbenzene	100-41-4	48.50	192.90	ND	ND
2-Hexanone	591-78-6	64.30	267.10	ND	ND
Methylene Chloride	75-9-2	138.50	544.00	400 E	<mdl< td=""></mdl<>
4-Methyl-2-pentanone (MIBK)	108-10-1	108.80	440.20	ND	ND
Styrene	100-42-5	17.30	69.20	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	33.10	133.50	ND	ND
Tetrachloroethene	127-18-4	43.50	173.10	<mdl< td=""><td>ND</td></mdl<>	ND
Toluene	108-88-3	43.00	173.10	<mdl< td=""><td>ND</td></mdl<>	ND
1,1,1-Trichloroethane	71-55-6	18.80	74.20	ND	ND
1,1,2-Trichloroethane	79-00-5	42.00	168.20	ND	ND
Trichloroethene	79-01-6	29.20	118.70	ND	ND
Vinyl Acetate	108-05-4	38.10	153.30	ND	ND
Vinyl Chloride	75-01-4	84.10	331.40	ND	ND
Xylene (total)	10061-01-5	11.40	74.20	ND	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]		101	98
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		97	88
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		100	103

E: Estimated, ND: Not detected

MDL: Method Detection Limit

# GC/MS VOA RESULTS

## LAB SAMPLE # 404039-7

К£

RAYMARK IND.

SAMPLE # TS*B-7*4-6 FT-B60

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 17:01, ALH

DATE REPORTED: 4/ 28/94

Dilution Factor: 50.25 %Solids: 100 Sample Matrix SOLID Analysis Method: 8260

Dry-weight Basis Apparent

				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acetone	67-64-1	130.70	552.80	ND	ND
Benzene	71-43-2	15.60	60.30	65	ND
Bromodichloromethane	75-27-4	27.60	110.60	ND	ND
Bromoform	75-25-2	30.70	125.60	ND	ND
Bromomethane	74-83-9	90.50	351.80	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	603.00	2361.80	800 E	<mdl< td=""></mdl<>
Carbon Disulfide	75-15-0	55.30	226.10	ND	ND
Carbon Tetrachloride	56-23-5	33.20	130.70	ND	ND
Chlorobenzene	108-90-7	30.70	100.50	<mdl< td=""><td>ND</td></mdl<>	ND
Chloroethane	75-00-3	65.30	266.30	ND	ND
Chloroform	67-66-3	35.20	140.70	ND	ND
Chloromethane	74-87-3	85.40	341.70	92 E	ND
Dibromochloromethane	124-48-1	30.20	120.60	ND	ND
1,1-Dichloroethane	75-34-3	38.20	150.80	ND	ND
1,2-Dichloroethane	107-06-2	24.60	95.50	ND	ND
1,1-Dichloroethene	75-35-4	45.20	196.00	ND	ND
1,2-Dichloroethene (total)	540-59-0	65.30	251.30	ND	ND
1,2-Dichloropropane	78-87-5	26.10	105.50	ND	ND O
cis-1,3-Dichloropropene	10061-01-5	37.20	150.80	ND	ND
trans-1,3-Dichloropropene	10061-02-6	35.70	140.70	NĎ	ND
Ethylbenzene	100-41-4	49.20	196.00	ND	ND 1
2-Hexanone	591-78-6	65.30	271.40	ND	ND
Methylene Chloride	75-9-2	140.70	552.80	560	<mdl< td=""></mdl<>
4-Methyl-2-pentanone (MIBK)	108-10-1	110.60	447.20	ND	ND
Styrene	100-42-5	17.60	70.40	ND	ND
1,1,2,2-Tetrachloroethane	<u>7</u> 9-34-5	33.70	135.70	ND	ND
Tetrachloroethene	127-18-4	44.20	175.90	ND	ND
Toluene	108-88-3	43.70	175.90	<mdl< td=""><td>ND</td></mdl<>	ND
1,1,1-Trichloroethane	71-55-6	. 19.10	75.40	ND	ND
1,1,2-Trichloroethane	79-00-5	42.70	170.90	ND	ND
Trichloroethene	7 <mark>9-01-6</mark>	29.60	120.60	ND	ND
Vinyl Acetate	108-05-4	38.70	155.80	ND	ND
Vinyl Chloride	75-01-4	85.40	336.70	ND	ND
Xylene (total)	10061-01-5	11.60	75.40	32 E	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]	· · · · · · · · · · · · · · · · · · ·	96	98
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		98	88
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		97	103
E: Estimated, ND: Not detected					

MDL: Method Detection Limit

## GC/MS VOA RESULTS

LAB SAMPLE # 404039-8

#### RAYMARK IND.

SAMPLE # TS*B-68*6-8 FT-B60

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 17:29, ALH

· .		¥		Sample Matrix	SOLID
DATE REPORTED: 4/28/94	Dilution F	actor: 50.05		Analysis Method:	8260
	%S	olids: 100		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acetone	67-64-1	130.10	550.60	ND	ND
Benzene	71-43-2	15.50	60.10	540	ND
Bromodichloromethane	75-27-4	27.50	110.10	ND	ND
Bromoform	75-25-2	30.50	125.10	ND	ND
Bromomethane	74-83-9	90.10	350.40	ND	ND
2-Butanone (Methyl ethyl ketone)	78-93-3	600.60	2352.40	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Carbon Disulfide	75-15-0	55.10	225.20	ND	ND
Carbon Tetrachloride	56-23-5	33.00	130.10	ND	ND
Chlorobenzene	108-90-7	30.50	100.10	150	ND
Chloroethane	75-00-3	65.10	265.30	ND	ND
Chloroform	67-66-3	35.00	140.10	ND	ND
Chloromethane	74-87-3	85.10	340.30	ND	ND
Dibromochloromethane	124-48-1	. 30.00	120.10	ND	ND
1,1-Dichloroethane	75-34-3	38.00	150.20	ND	NĎ
1,2-Dichloroethane	107-06-2	24.50	95.10	ND	ND
1,1-Dichloroethene	75-35-4	45.00	195.20	ND	ND
1,2-Dichloroethene (total)	540-59-0	65.10	250.30	ND	ND
1,2-Dichloropropane	78-87-5	26.00	105.10	ND	ND
cis-1,3-Dichloropropene	10061-01-5	37.00	150.20	ND	ND
trans-1,3-Dichloropropene	10061-02-6	35.50	140.10	⁷ ND	ND
Ethylbenzene	100-41-4	49.00	195.20	<mdl< td=""><td>ND</td></mdl<>	ND
2-Hexanone	591-78-6	65.10	270.30	ND	ND
Methylene Chloride	75-9-2	140.10	550.60	2100	<mdl< td=""></mdl<>
4-Methyl-2-pentanone (MIBK)	108-10-1	1,10.10	445.40	ND	ND
Styrene	100-42-5	17.50	70.10	ND	ND
1,1,2,2-Tetrachloroethane	79-34-5	33.50	135.10	ND	ND
Tetrachloroethene	127-18-4	44.00	175.20	ND	ND .
Toluene	108-88-3	43.50	175.20	93 E	ND
1,1,1-Trichloroethane	71-55-6	19.00	75.10	ND	ND
1,1,2-Trichloroethane	79-00-5	42.50	170.20	ND	ND
Trichloroethene	79-01-6	29.50	120.10	ND	ND
Vinyl Acetate	108-05-4	38.50	155.20	ND	ND
Vinyl Chloride	75-01-4	85.10	335.30	ND	ND
Xylene (total)	10061-01-5	11.50	75.10	33 E	ND
1,2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-121]	······································	92	98
Toluene-d8 (surrogate std)	%Recovery	[OK=84-138]		96	88
Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]	·	96	103

E: Estimated, ND: Not detected

MDL: Method Detection Limit

## GC/MS VOA RESULTS

LAB SAMPLE # 404039-9

#### RAYMARK, IND.

SAMPLE # TS*B-7*4-6 FT-B60 DUP

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/27/94, 11:11, ALH

DATE REPORTED: 4/28/94         Dilution Factor: 49.80 %Solids: 100         Analysis Method: 8260           TARGET COMPOUND LIST         CAS Number         MDL         PQL         Concentration ug/Kg         Blank Con           Acetone         67-64-1         129.50         547.80         ND         ND           Benzene         71-43-2         15.40         59.80         37 E         ND           Bromodichloromethane         75-27-4         27.40         109.60         ND         ND           Bromonethane         74-83-9         89.60         348.60         ND         ND           2-Butanone (Methyl ethyl ketone)         78-93-3         597.60         2340.60         740 E         ND           Carbon Disulfide         75-15-0         54.80         224.10         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chlorobenzene         108-90-7         30.40         39.40         ND         ND           Chlorobenzene         75-34-3         34.70         338.60         ND         ND           Dibromochloromethane         74-47-3         84.70         338.60         ND         ND           1.1-Dichloropethane</mdl<>	-				Sample Matrix	SOLID
%Solids: 100         Dry-weight Basis ug/Kg         Apparent ug/Kg           TARGET COMPOUND LIST Acetone         67-64-1         129.50         547.80         ND         ND           Benzene         71-43-2         15.40         59.80         37 E         ND           Bromodichloromethane         75-27-4         27.40         109.60         ND         ND           Bromodichloromethane         75-27-2         30.40         124.50         ND         ND           Bromodichloromethane         75-25-2         30.40         124.50         ND         ND           S-butaone (Methyl ethyl ketone)         78-93-3         597.60         2340.60         740 E         ND           Carbon Disulf.de         75-15-0         54.80         224.10         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chloroform         67-66-3         34.90         139.40         ND         ND           Chloromethane         74-87-3         84.70         338.60         ND         ND           1,1-Dichloroethane         170-62-2         24.40         94.60         ND         ND           1,2-Dichloroethane         75-35.4         &lt;</mdl<>	DATE REPORTED: 4/28/94	Dilution F	actor: 49.80		Analysis Method:	8260
Ug/Kg         Blank Con-         Blan		%8	Solids: 100	·	Dry-weight Basis	Apparent
TARGET COMPOUND LIST         CAS Number         MDL         PQL         Concentration         Blank Concentration           Acetone         67-64-1         129.30         347.80         ND         ND           Benzene         71-43-2         15.40         59.80         37 E         ND           Bromodichoromethane         75-27-4         27.40         109.60         ND         ND           Bromomethane         74-83-9         89.60         348.60         ND         ND           2-Butanone (Methyl ethyl ketone)         78-93-3         597.60         2340.60         740 E         ND           Carbon Disulfide         75-12-0         54.80         2241.10         ND         ND           Carbon Disulfide         75-10-3         64.70         2639.0         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chloroform         67-66-3         34.90         139.40         ND         ND           Chloromethane         72-47-3         84.70         338.60         ND         ND           1,1-Dichloroethane         107-06-2         24.40         94.60         ND         ND           1,2-Dichloropeth</mdl<>				2	ug/Kg	ug/Kg
Acetone         67-64-1         129.50         547.80         ND         ND           Benzene         71-43-2         15.40         59.80         37 E         ND           Bromodichloromethane         75-27-4         27.40         109.60         ND         ND           Bromodichloromethane         75-25-2         30.40         124.50         ND         ND           Bromomethane         74-83-9         89.60         348.60         ND         ND           2-Butanone (Methyl ethyl ketone)         78-93-3         597.60         2340.60         740 E         ND           Carbon Disulfide         75-15-0         54.80         224.10         ND         ND           Carbon Chromethane         75-00-3         64.70         263.90         ND         ND           Chlorochane         75-00-3         64.70         263.90         ND         ND           Chlorochane         75-00-3         64.70         263.90         ND         ND           Chlorochane         74-87-3         84.70         338.60         ND         ND           Dibromochloromethane         124-48-1         29.90         119.50         ND         ND           1,-Dichloroethane         75-34-3	TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Benzene         71-43-2         15.40         59.80         37 E         ND           Bromodichloromethane         75-27-4         27.40         109.60         ND         ND           Bromoform         75-25-2         30.40         124.50         ND         ND           Bromomethane         74-83-9         89.60         348.60         ND         ND           2:Butanone (Methyl ethyl ketone)         78-33-3         597.60         2340.60         740 E         ND           Carbon Disulfide         75-15-0         54.80         224.10         ND         ND           Carbon Tetrachloride         56-23-5         32.90         129.50         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chlorobenzene         175-00-3         64.70         263.90         ND         ND           Chlorobethane         75-00-3         64.70         338.60         ND         ND           Dibromochloromethane         124-48-1         29.90         119.50         ND         ND           1,1-Dickloroethane         75-34-3         37.80         149.40         ND         ND           1,2-Dickloroethane</mdl<>	Acetone	67-64-1	129.50	547.80	ND	ND
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzene	71-43-2	15.40	59.80	37 E	ND
Bromodorm         75-25-2         30.40         124.50         ND         ND           Bromomethane         74-83-9         89.60         348.60         ND         ND           2-Butanone (Methyl ethyl ketone)         78-93-3         597.60         2340.60         740 E         ND           Carbon Disulfide         75-15-0         54.80         224.10         ND         ND           Carbon Tetrachloride         56-23-5         32.90         129.50         ND         ND           Chlorobnzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chlorobtanzene         75-00-3         64.70         263.90         ND         ND           Chloromethane         74-87-3         84.70         338.60         ND         ND           Dibromochloromethane         124-48-1         29.90         119.50         ND         ND           1,1-Dichloroethane         175-34-3         37.80         149.40         ND         ND           1,2-Dichloroethene         75-35-4         44.80         194.20         ND         ND           1,2-Dichloroethene         76-35-4         45.90         104.60         ND         ND           1,2-Dichloroethene</mdl<>	Bromodichloromethane	75-27-4	27.40	109.60	ND	ND
Bromomethane         74-83-9         89.60         348.60         ND         ND           2-Butanone (Methyl ethyl ketone)         78-93-3         597.60         2340.60         740 E         ND           Carbon Disulfide         75-15-0         54.80         224.10         ND         ND           Carbon Tetrachloride         56-23-5         32.90         129.50         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chlorobenzene         108-90-7         30.40         99.60         <mdl< td="">         ND           Chlorobenzene         75-00-3         64.70         263.90         ND         ND         ND           Chlorobentane         75-43-3         84.70         338.60         ND         ND         ND           Dibromochloromethane         124-48-1         29.90         119.50         ND         ND         ND           1,1-Dickloroethane         107-06-2         24.40         94.60         ND         ND         ND           1,2-Dickloroethene (total)         540-59-0         64.70         249.00         ND         ND         ND           1,2-Dickloropropene         10061-01-5         36.90</mdl<></mdl<>	Bromoform	75-25-2	30.40	124.50	ND	ND
2-Butanone (Medhyl ethyl ketone)         78-93-3         597.60         2340.60         740 E         ND           Carbon Disulfide         75-15-0         54.80         224.10         ND         ND           Carbon Tetrachloride         56-23-5         32.90         129.50         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chlorobenzene         75-00-3         64.70         263.90         ND         ND           Chlorobenzene         74-87-3         84.70         338.60         ND         ND           Chloromethane         74-87-3         84.70         338.60         ND         ND           Dibromochloromethane         174-84-1         29.90         119.50         ND         ND           1,1-Dickloroethane         107-06-2         24.40         94.60         ND         ND           1,2-Dickloroethene         75-35-4         444.80         194.20         ND         ND           1,2-Dickloropropane         78-87-5         25.90         104.60         ND         ND           1,2-Dickloropropene         10061-01-5         36.90         149.40         ND         ND           1,2-Dick</mdl<>	Bromomethane	74-83-9	89.60	348.60	ND	ND
Carbon Disulfide         75-15-0         54.80         224.10         ND         ND           Carbon Tetrachloride         56-23-5         32.90         129.50         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chloroethane         75-00-3         64.70         263.90         ND         ND           Chloroethane         74-87-3         84.70         338.60         ND         ND           Dibromochloromethane         124-48-1         29.90         119.50         ND         ND           1,1-Dichloroethane         75-34-3         37.80         149.40         ND         ND           1,2-Dichloroethane         107-06-2         24.40         94.60         ND         ND           1,2-Dichloroethane         107-06-2         24.40         94.60         ND         ND           1,2-Dichloroethene (total)         540-59-0         64.70         249.00         ND         ND           1,2-Dichloropropane         78-87-5         25.90         104.60         ND         ND           1,2-Dichloropropene         10061-01-5         36.90         149.40         ND         ND           1,2-Dichloroprope</mdl<>	2-Butanone (Methyl ethyl ketone)	78-93-3	597.60	2340.60	740 E	ND
Carbon Tetrachloride         56-23-5         32.90         129.50         ND         ND           Chlorobenzene         108-90-7         30.40         99.60 <mdl< td="">         ND           Chlorobenzene         75-00-3         64.70         263.90         ND         ND           Chloroform         67-66-3         34.90         139.40         ND         ND           Chloromethane         74-87-3         84.70         338.60         ND         ND           Dibromochloromethane         124-48-1         29.90         119.50         ND         ND           1,1-Dichloroethane         75-34-3         37.80         149.40         ND         ND           1,2-Dichloroethane         107-06-2         24.40         94.60         ND         ND           1,2-Dichloropthane         78-35-5         25.90         104.60         ND         ND           1,2-Dichloroptopene         10061-01-5         36.90         149.40         ND         ND           1,2-Dichloroptopene         10061-02-6         35.40         139.40         ND         ND           1,2-Dichloroptopene         10061-02-6         35.40         139.40         ND         ND           2-Hexanone</mdl<>	Carbon Disulfide	75-15-0	54.80	224.10	ND	ND
Chlorobenzene108-90-7 $30.40$ $99.60$ $<$ MDLNDChloroethane $75-00-3$ $64.70$ $263.90$ NDNDChloroform $67-66-3$ $34.90$ $139.40$ NDNDChloromethane $74.87-3$ $84.70$ $338.60$ NDNDDibromochloromethane $124.48-1$ $29.90$ $119.50$ NDND1,1-Dichloroethane $107-06-2$ $24.40$ $94.60$ NDND1,2-Dichloroethane $107-06-2$ $24.40$ $94.60$ NDND1,2-Dichloroethane $107-06-2$ $24.40$ $94.60$ NDND1,2-Dichloroethane $75-35-4$ $44.80$ $194.20$ NDND1,2-Dichloroethene $75-35-4$ $44.80$ $194.20$ NDND1,2-Dichloropopane $78-87-5$ $25.90$ $104.60$ NDND1,2-Dichloropropene $10061-01-5$ $36.90$ $149.40$ NDNDtrans-1,3-Dichloropropene $10061-02-6$ $35.40$ $139.40$ NDNDEthylbenzene $100-41-4$ $48.80$ $194.20$ NDND2-Hexanone $591-78-6$ $64.70$ $268.90$ $160$ $<$ MDLMethylene Chloride $75-9-2$ $139.40$ $547.80$ $800$ $270$ 4-Methyl-2-pentanone (MIBK) $108-10-1$ $109.60$ $443.20$ NDNDNDStyrene $100-42-5$ $17.40$ $69.70$ NDND1,1,2,2-Tetrachloroethane $79-34-5$ $33.40$ <	Carbon Tetrachloride	56-23-5	32.90	129.50	ND	ND
Chloroethane75-00-3 $64.70$ $263.90$ NDNDChloroform $67-66-3$ $34.90$ $139.40$ NDNDChloromethane $74-87-3$ $84.70$ $338.60$ NDNDDibromochloromethane $124+48-1$ $29.90$ $119.50$ NDND1,1-Dichloroethane $107-06-2$ $24.40$ $94.60$ NDND1,2-Dichloroethane $107-06-2$ $24.40$ $94.60$ NDND1,2-Dichloroethene $75-35-4$ $44.80$ $194.20$ NDND1,2-Dichloroethene $75-35-4$ $44.80$ $194.20$ NDND1,2-Dichloroethene $75-35-4$ $44.80$ $194.20$ NDND1,2-Dichloroethene $75-35-4$ $44.80$ $194.20$ NDND1,2-Dichloropropane $78-87-5$ $25.90$ $104.60$ NDND1,2-Dichloropropane $10061-01-5$ $36.90$ $149.40$ NDNDtrans-1,3-Dichloropropene $10061-02-6$ $35.40$ $139.40$ NDND2.Hexanone $591-78-6$ $64.70$ $268.90$ $160$ $< MDL$ 2.Hexanone $591-78-6$ $64.70$ $268.90$ $160$ $< MDL$ Methylene Chloride $75-9-2$ $139.40$ $547.80$ $800$ $270$ 4.Methyl-2-pentanone (MIBK) $108-10-1$ $109.60$ $443.20$ NDNDNDStyrene $100-42-5$ $17.40$ $69.70$ NDNDNDToluene $102-88-3$ $43.3$	Chlorobenzene	108-90-7	30.40	99.60	<mdl< td=""><td>ND</td></mdl<>	ND
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chloroethane	75-00-3	64.70	263.90	ND	ND
Chloromethane74-87-384.70338.60NDNDDibromochloromethane124-48-129.90119.50NDND1,1-Dichloroethane75-34-337.80149.40NDND1,2-Dichloroethane107-06-224.4094.60NDND1,1-Dichloroethane107-06-224.4094.60NDND1,1-Dichloroethene75-35-444.80194.20NDND1,2-Dichloroethene(total)540-59-064.70249.00NDND1,2-Dichloropropane78-87-525.90104.60NDND1,2-Dichloropropene10061-01-536.90149.40NDNDtrans-1,3-Dichloropropene10061-02-635.40139.40NDND2-Hexanone591-78-664.70268.90160 E $<$ MDL2-Hexanone591-78-664.70268.90160 E $<$ MDLMethylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50 $<$ MDLNDToluene108-88-343.30174.30NDND1,1,1-Trichloroethane79-00-542.30169.30NDND1,1,2-Trichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride7	Chloroform	67-66-3	34.90	139.40	ND	ND
Dibromochloromethane124-48-129.90.119.50NDND1,1-Dichloroethane75-34-337.80149.40NDND1,2-Dichloroethane107-06-224.4094.60NDND1,1-Dichloroethane75-35-444.80194.20NDND1,2-Dichloroethane(total)540-59-064.70249.00NDND1,2-Dichloropropane78-87-525.90104.60NDND1,2-Dichloropropane10061-01-536.90149.40NDNDcis-1,3-Dichloropropene10061-02-635.40139.40NDNDtrans-1,3-Dichloropropene10061-02-635.40139.40NDND2-Hexanone591-78-664.70268.90160 E $<$ MDLMethylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50 $<$ MDLNDToluene108-88-343.30174.30NDND1,1,1-Trickloroethane79-00-542.30169.30NDND1,1,2-Trickloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDND1,2-Dichloroethane-d4 (surrogat%Recovery [OK=70-121]1031011,2-Dichloroet	Chloromethane	74-87-3	84.70	338.60	ND	ND
1,1-Dichloroethane75-34-337.80149.40NDND1,2-Dichloroethane107-06-224.4094.60NDND1,1-Dichloroethane75-35-444.80194.20NDND1,2-Dichloroethene (total)540-59-064.70249.00NDND1,2-Dichloroptopene78-87-525.90104.60NDND1,2-Dichloropropene10061-01-536.90149.40NDNDtrans-1,3-Dichloropropene10061-02-635.40139.40NDNDEthylbenzene100-41-448.80194.20NDND2-Hexanone591-78-664.70268.90160 E <mdl< td="">Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50<mdl< td="">NDToluene108-88-343.30174.30NDND1,1,1-Trichloroethane71-55-618.9074.70NDND1,1,2-Trichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70<td< td=""><td>Dibromochloromethane</td><td>124-48-1</td><td>29.90</td><td>.119.50</td><td>ND</td><td>ND</td></td<></mdl<></mdl<>	Dibromochloromethane	124-48-1	29.90	.119.50	ND	ND
1,2-Dichloroethane107-06-224.4094.60NDND1,1-Dichloroethene75-35-444.80194.20NDND1,2-Dichloroethene (total)540-59-064.70249.00NDND1,2-Dichloropropane78-87-525.90104.60NDND1,2-Dichloropropane78-87-525.90104.60NDNDcis-1,3-Dichloropropene10061-01-536.90149.40NDNDtrans-1,3-Dichloropropene10061-02-635.40139.40NDNDEthylbenzene100-41-448.80194.20NDND2-Hexanone591-78-664.70268.90160 E <mdl< td="">Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDNDStyrene100-42-517.4069.70NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50<mdl< td="">NDToluene108-88-343.30174.30NDND1,1,1-Trichloroethane71-55-618.9074.70NDND1,1,2-Trichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-511.507</mdl<></mdl<>	1,1-Dichloroethane	75-34-3	37.80	149.40	ND	ND
1,1-Dichloroethene75-35-444.80194.20NDND1,2-Dichloroethene (total) $540-59\cdot0$ $64.70$ $249.00$ NDND1,2-Dichloropropane $78-87-5$ $25.90$ $104.60$ NDNDcis-1,3-Dichloropropene $10061-01-5$ $36.90$ $149.40$ NDNDtrans-1,3-Dichloropropene $10061-02-6$ $35.40$ $139.40$ NDNDEthylbenzene $100-41-4$ $48.80$ $194.20$ NDND2.Hexanone $591-78-6$ $64.70$ $268.90$ $160$ $Methylene Chloride75-9-2139.40547.808002704-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50NDTetrachloroethane71-55-618.9074.70NDND1,1,1-Trichloroethane79-00-542.30169.30NDND1,1,2-Trichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-4<$	1,2-Dichloroethane	107-06-2	24.40	94.60	ND	ND
1,2-Dichloroethene (total)540-59-064.70249.00NDND1,2-Dichloropropane78-87-525.90104.60NDNDcis-1,3-Dichloropropene10061-01-536.90149.40NDNDtrans-1,3-Dichloropropene10061-02-635.40139.40NDNDEthylbenzene100-41-448.80194.20NDND2-Hexanone591-78-664.70268.90160 E <mdl< td="">Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDNDStyrene100-42-517.4069.70NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50<mdl< td="">NDTetrachloroethane127-18-443.80174.30NDND1,1,1-Trickloroethane71-55-618.9074.70NDND1,1,2-Trickloroethane79-00-542.30169.30NDND1,1,2-Trickloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70&lt;</mdl<></mdl<>	1,1-Dichloroethene	75-35-4	44.80	194.20	ND	ND
1,2-Dichloropropane78-87-525.90104.60NDNDcis-1,3-Dichloropropene10061-01-536.90149.40NDNDtrans-1,3-Dichloropropene10061-02-635.40139.40NDNDEthylbenzene100-41-448.80194.20NDND2-Hexanone591-78-664.70268.90160 E <mdl< td="">Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDNDStyrene100-42-517.4069.70NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50<mdl< td="">NDTetrachloroethane127-18-443.80174.30NDND1,1,1-Trichloroethane71-55-618.9074.70NDND1,1,2-Trichloroethane79-00-542.30169.30NDNDNDNDNDNDNDNDND1,1,2-Trichloroethane75-01-488.30154.40NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDXylene (total)10061-01-511.5074.7041 END1,2-Dichloroethane-d4 (surrogat%Recovery[OK=70-121]103101Tobuene d8 (surrogat%Recovery[OK=70-121]103101</mdl<></mdl<>	1,2-Dichloroethene (total)	540-59-0	64.70	249.00	ND	ND
cis-1,3-Dichloropropene10061-01-536.90149.40NDNDtrans-1,3-Dichloropropene10061-02-6 $35.40$ $139.40$ NDNDEthylbenzene100-41-448.80194.20NDND2-Hexanone $591-78-6$ $64.70$ $268.90$ $160 E$ $Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDNDStyrene100-42-517.4069.70NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50NDTetrachloroethane127-18-443.80174.30NDNDToluene108-88-343.30174.30NDND1,1,2-Trichloroethane71-55-618.9074.70NDND1,1,2-Trichloroethane79-00-542.30169.30NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDXylene (total)10061-01-511.5074.7041 END1,2-Dichloroethane-d4 (surrogat\%Recovery[OK=70-121]103101$	1,2-Dichloropropane	78-87-5	25.90	104.60	ND	ND
trans-1,3-Dichloropropene10061-02-6 $35.40$ $139.40$ NDNDEthylbenzene100-41-448.80194.20NDND2-Hexanone $591-78-6$ $64.70$ $268.90$ $160 E$ $Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDNDStyrene100-42-517.4069.70NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50NDTetrachloroethane108-88-343.30174.30NDNDToluene108-88-343.30174.30NDND1,1,1-Trichloroethane79-00-542.30169.30NDND1,1,2-Trichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDVinyl Chloride75-01-484.70333.70NDNDXylene (total)10061-01-511.5074.7041 END1,2-Dichloroethane-d4 (surrogat\%Recovery[OK=84.138]9088$	cis-1,3-Dichloropropene	10061-01-5	36.90	149.40	ND	ND
Ethylbenzene100-41-448.80194.20NDND2-Hexanone $591-78-6$ $64.70$ $268.90$ $160 E$ $Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDNDStyrene100-42-517.4069.70NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50NDTetrachloroethane127-18-443.80174.30NDNDToluene108-88-343.30174.30NDND1,1,1-Trichloroethane71-55-618.9074.70NDND1,1,2-Trichloroethane79-00-542.30169.30NDNDTrichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDXylene (total)10061-01-511.5074.7041 END1,2-Dichloroethane-d4 (surrogat\%Recovery[OK=70-121]103101$	trans-1,3-Dichloropropene	10061-02-6	35.40	139.40	ND	ND
2-Hexanone $591-78-6$ $64.70$ $268.90$ $160 E$ $Methylene Chloride75-9-2139.40547.80800270 E4-Methyl-2-pentanone (MIBK)108-10-1109.60443.20NDNDStyrene100-42-517.4069.70NDND1,1,2,2-Tetrachloroethane79-34-533.40134.50NDTetrachloroethane127-18-443.80174.30NDNDToluene108-88-343.30174.30NDND1,1,1-Trichloroethane71-55-618.9074.70NDND1,1,2-Trichloroethane79-00-542.30169.30NDNDTrichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDXylene (total)10061-01-511.5074.7041 END1,2-Dichloroethane-d4 (surrogat\%Recovery[OK=70-121]103101$	Ethylbenzene	100-41-4	48.80	194.20	ND	ND
Methylene Chloride         75-9-2         139.40         547.80         800         270 E           4-Methyl-2-pentanone (MIBK)         108-10-1         109.60         443.20         ND         ND           Styrene         100-42-5         17.40         69.70         ND         ND           1,1,2,2-Tetrachloroethane         79-34-5         33.40         134.50 <mdl< td="">         ND           Tetrachloroethane         127-18-4         43.80         174.30         ND         ND           Toluene         108-88-3         43.30         174.30         ND         ND           1,1,1-Trichloroethane         71-55-6         18.90         74.70         ND         ND           1,1,2-Trichloroethane         79-00-5         42.30         169.30         ND         ND           Trichloroethane         79-01-6         29.40         119.50         ND         ND           Vinyl Acetate         108-05-4         38.30         154.40         ND         ND           Vinyl Chloride         75-01-4         84.70         333.70         ND         ND           Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4</mdl<>	2-Hexanone	591-78-6	64.70	268.90	160 E	<mdl< td=""></mdl<>
4-Methyl-2-pentanone (MIBK)       108-10-1       109.60       443.20       ND       ND         Styrene       100-42-5       17.40       69.70       ND       ND         1,1,2,2-Tetrachloroethane       79-34-5       33.40       134.50 <mdl< td="">       ND         Tetrachloroethene       127-18-4       43.80       174.30       ND       ND         Toluene       108-88-3       43.30       174.30       <mdl< td=""> <mdl< td="">         1,1,1-Trichloroethane       71-55-6       18.90       74.70       ND       ND         1,1,2-Trichloroethane       79-00-5       42.30       169.30       ND       ND         1,1,2-Trichloroethane       79-01-6       29.40       119.50       ND       ND         Vinyl Acetate       108-05-4       38.30       154.40       ND       ND         Vinyl Chloride       75-01-4       84.70       333.70       ND       ND         Xylene (total)       10061-01-5       11.50       74.70       41 E       ND         1,2-Dichloroethane-d4 (surrogat       %Recovery       [OK=70-121]       103       101</mdl<></mdl<></mdl<>	Methylene Chloride	75-9-2	139.40	547.80	800	270 E
Styrene $100-42-5$ $17.40$ $69.70$ NDND $1,1,2,2$ -Tetrachloroethane $79-34-5$ $33.40$ $134.50$ $NDTetrachloroethene127-18-443.80174.30NDNDToluene108-88-343.30174.301,1,1-Trichloroethane71-55-618.9074.70NDND1,1,2-Trichloroethane79-00-542.30169.30NDND1,1,2-Trichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDXylene (total)10061-01-511.5074.7041 END1,2-Dichloroethane-d4 (surrogat%Recovery[OK=70-121]103101$	4-Methyl-2-pentanone (MIBK)	108-10-1	109.60	443.20	ND	ND
1,1,2,2-Tetrachloroethane79-34-533.40134.50 <mdl< th="">NDTetrachloroethene127-18-443.80174.30NDNDToluene108-88-343.30174.30<mdl< td=""><mdl< td="">$1,1,1$-Trichloroethane71-55-618.9074.70NDND$1,1,2$-Trichloroethane79-00-542.30169.30NDNDTrichloroethane79-01-629.40119.50NDNDVinyl Acetate108-05-438.30154.40NDNDVinyl Chloride75-01-484.70333.70NDNDXylene (total)10061-01-511.5074.7041 END1,2-Dichloroethane-d4 (surrogat %Recovery[OK=70-121]103101Toluene-d8 (surrogat etd)%Recovery[OK=84.138]9988</mdl<></mdl<></mdl<>	Styrene	100-42-5	17.40	69.70	ND	ND
Tetrachloroethene         127-18-4         43.80         174.30         ND         ND           Toluene         108-88-3         43.30         174.30 <mdl< td=""> <mdl< td="">           1,1,1-Trichloroethane         71-55-6         18.90         74.70         ND         ND           1,1,2-Trichloroethane         79-00-5         42.30         169.30         ND         ND           Trichloroethane         79-01-6         29.40         119.50         ND         ND           Vinyl Acetate         108-05-4         38.30         154.40         ND         ND           Vinyl Chloride         75-01-4         84.70         333.70         ND         ND           Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4 (surrogat         %Recovery         [OK=70-121]         103         101</mdl<></mdl<>	1,1,2,2-Tetrachloroethane	79-34-5	33.40	134.50	<mdl< td=""><td>ND</td></mdl<>	ND
Toluene         108-88-3         43.30         174.30 <mdl< th=""> <mdl< th="">           1,1,1-Trichloroethane         71-55-6         18.90         74.70         ND         ND           1,1,2-Trichloroethane         79-00-5         42.30         169.30         ND         ND           Trichloroethane         79-01-6         29.40         119.50         ND         ND           Vinyl Acetate         108-05-4         38.30         154.40         ND         ND           Vinyl Chloride         75-01-4         84.70         333.70         ND         ND           Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4 (surrogat         %Recovery         [OK=70-121]         103         101</mdl<></mdl<>	Tetrachloroethene	127-18-4	43.80	174.30	ND	ND
1,1,1-Trichloroethane       71-55-6       18.90       74.70       ND       ND         1,1,2-Trichloroethane       79-00-5       42.30       169.30       ND       ND         Trichloroethane       79-01-6       29.40       119.50       ND       ND         Vinyl Acetate       108-05-4       38.30       154.40       ND       ND         Vinyl Chloride       75-01-4       84.70       333.70       ND       ND         Xylene (total)       10061-01-5       11.50       74.70       41 E       ND         1,2-Dichloroethane-d4 (surrogat       %Recovery       [OK=70-121]       103       101	Toluene	108-88-3	43.30	174.30	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
1,1,2-Trichloroethane         79-00-5         42.30         169.30         ND         ND           Trichloroethene         79-01-6         29.40         119.50         ND         ND           Vinyl Acetate         108-05-4         38.30         154.40         ND         ND           Vinyl Chloride         75-01-4         84.70         333.70         ND         ND           Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4 (surrogat         %Recovery         [OK=70-121]         103         101           Toluene-d8 (surrogate ctd)         %Recovery         [OK=84,138]         99         88	1,1,1-Trichloroethane	71-55-6	18.90	74.70	ND	ND
Trichloroethene         79-01-6         29.40         119.50         ND         ND           Vinyl Acetate         108-05-4         38.30         154.40         ND         ND           Vinyl Chloride         75-01-4         84.70         333.70         ND         ND           Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4 (surrogat         %Recovery         [OK=70-121]         103         101           Toluene d8 (surrogate ctd)         %Recovery         [OK=84,138]         99         88	1,1,2-Trichloroethane	79-00-5	42.30	169.30	ND	ND
Vinyl Acetate         108-05-4         38.30         154.40         ND         ND           Vinyl Chloride         75-01-4         84.70         333.70         ND         ND           Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4 (surrogat         %Recovery         [OK=70-121]         103         101           Toluene d8 (surrogate ctd)         %Recovery         [OK=84,138]         99         88	Trichloroethene	79-01-6	29.40	119.50	ND	ND
Vinyl Chloride         75-01-4         84.70         333.70         ND         ND           Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4 (surrogat         %Recovery         [OK=70-121]         103         101           Toluene-d8 (surrogate ctd)         %Recovery         [OK=84,138]         99         88	Vinyl Acetate	108-05-4	38.30	154.40	ND	ND
Xylene (total)         10061-01-5         11.50         74.70         41 E         ND           1,2-Dichloroethane-d4 (surrogat         %Recovery         [OK=70-121]         103         101           Toluene-d8 (surrogate std)         %Recovery         [OK=84,138]         99         88	Vinyl Chloride	75-01-4	84.70	333.70	ND	ND
1,2-Dichloroethane-d4 (surrogat %Recovery [OK=70-121]103101Toluene-d8 (surrogate std)%Recovery [OK=84,138]9988	Xylene (total)	10061-01-5	11.50	74.70	41 E	ND -
Tolyana dg (surrogata std) $\%$ Recovery [OK= $g_{A}$ 12 $g_{I}$ 00 $g_{Q}$	1 2-Dichloroethane-d4 (surrogat	%Recovery	[OK=70-1211		103	101
	Toluene-d8 (surrogate std)	%Recoverv	[OK=84-138]		99	88
Bromofluorobenzene (surrogate %Recovery [OK=59-113] 95 100	Bromofluorobenzene (surrogate	%Recovery	[OK=59-113]		95	100

E: Estimated, ND: Not detected MDL: Method Detection Limit

KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 404039 -BS

## ANALYSIS (Date/Time/Init): 4/22/94, 12:49, ALH

## DATE REPORTED: 4/ 27/94

Analysis Method: 8260 (SOLID)

· · · · · · · · · · · · · · · · · · ·		QC LIMITS	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	96
Trichloroethene	79-01-6	62-137	94
Benzene	71-43-2	66-142	98
Toluene	108-88-3	59-139	94
Chlorobenzene	108-90-7	60-133	103
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	99
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	102
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	97

KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 404039-5MS

RAYMARK IND.SAMPLED (Date/Time/Init): 4/18/94, JDSAMPLE #: TS*B-10*1.5-4 FT-B60ANALYSIS (Date/Time/Init): 4/22/94, 19:48, ALH

DATE REPORTED: 4/ 28/94

Sample Matrix: SOLID Analysis Method: 8260 (SOIL)

DATE REFORTED. 4/ 20/34	·		Thiarysis Michieu.
		QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	104
Trichloroethene	79-01-6	62-137	95
Benzene	71-43-2	66-142	97
Toluene	108-88-3	59-139	93
Chlorobenzene	108-90-7	60-133	102
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	93
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	106
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	81

CI: COELUTING INTERFERENCE

KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 404039-BS

## ANALYSIS (Date/Time/Init): 4/25/94, 11:17, ALH

## DATE REPORTED: 4/27/94

Analysis Method: 8260 (SOLID)

		<b>QC LIMITS</b>	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	84
Trichloroethene	79-01-6	62-137	85
Benzene	71-43-2	66-142	94
Toluene	108-88-3	59-139	95
Chlorobenzene	108-90-7	60-133	93
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	106
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	95
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	108

## KIBER Environmental Services BATCH GC/MS VOA RESULTS

## LAB SAMPLE # 404043-8MS

## SAMPLED (Date/Time/Init): 4/20/94, JV ANALYSIS (Date/Time/Init): 4/25/94, 15:56, ALH

Sample Matrix: SOLID

#### DATE REPORTED: 4/ 27/94

Analysis Method: 8260 (SOIL)

·		QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	148
Trichloroethene	79-01-6	62-137	90
Benzene	71-43-2	66-142	92
Toluene	108-88-3	59-139	97
Chlorobenzene	108-90-7	60-133	92
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	92
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	104
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	87

## ANALYSIS (Date/Time/Init): 4/25/94, 16:24, ALH

		QC LIMITS	Actual MS	]
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	RPD
1,1-Dichloroethene	75-35-4	59-172	105	34
Trichloroethene	79-01-6	62-137	90	0
Benzene	71-43-2	66-142	95	3
Toluene	108-88-3	59-139	96	1
Chlorobenzene	108-90-7	60-133	95	3
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	105	
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	102	1
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	95	

KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 404039-BS

# ANALYSIS (Date/Time/Init): 4/26/94, 16:06, ALH

DATE REPORTED: 4/27/94

Analysis Method: 8260 (SOLID)

		QC LIMITS	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	92
Trichloroethene	79-01-6	62-137	101
Benzene	71-43-2	66-142	102
Toluene	108-88-3	59-139	98
Chlorobenzene	108-90-7	60-133	102
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	- 95
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	97
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	97

## KIBER Environmental Services

## BATCH GC/MS VOA RESULTS

LAB SAMPLE # 404042-3MS

SAMPLED (Date/Time/Init): 4/20/94, 10:29, JF ANALYSIS (Date/Time/Init): 4/26/94, 19:49, ALH Sample Matrix: SOLID

#### DATE REPORTED: 4/27/94

Analysis Method: 8260 (SOIL)

		QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	86
Trichloroethene	79-01-6	62-137	94
Benzene	71-43-2	66-142	98
Toluene	108-88-3	59-139	106
Chlorobenzene	108-90-7	60-133	99
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	87
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	100
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	88

## ANALYSIS (Date/Time/Init): 4/26/94, 20:16, ALH

		OC LIMITS	Actual MS		
			Actual MIS		
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	RPD	
1,1-Dichloroethene	75-35-4	59-172	93	8	
Trichloroethene	79-01-6	62-137	84	11	
Benzene	71-43-2	66-142	95	3	
Toluene	108-88-3	59-139	94	12.	i
Chlorobenzene	108-90-7	60-133	99	0	
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	97		
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	103		
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	91		

KIBER Environmental Services GC/MS VOA RESULTS LAB SAMPLE # 404039-BS

# ANALYSIS (Date/Time/Init): 4/27/94, 10:15, ALH

#### DATE REPORTED: 4/28/94

Analysis Method: 8260 (SOLID)

		QC LIMITS	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	89
Trichloroethene	79-01-6	62-137	90
Benzene	71-43-2	66-142	95
Toluene	108-88-3	59-139	
Chlorobenzene	108-90-7	60-133	100
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	99
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	97
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	100

## KIBER Environmental Services

## BATCH GC/MS VOA RESULTS

LAB SAMPLE # 404054-4MS

## SAMPLED (Date/Time/Init): 4/46/94, 08:00, JV ANALYSIS (Date/Time/Init): 4/27/94, 14:03, ALH

Sample Matrix: SOLID

DATE REPORTED: 4/28/94

Analysis Method: 8260 (SOIL)

		QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
1,1-Dichloroethene	75-35-4	59-172	116
Trichloroethene	79-01-6	62-137	92
Benzene	71-43-2	66-142	101
Toluene	108-88-3	59-139	106
Chlorobenzene	108-90-7	60-133	105
1,2-Dichloroethane-d4 (surrogate)	% Recovery	[OK=70-121]	93
Toluene-d8 (surrogate)	% Recovery	[OK=84-138]	115
Bromofluorobenzene (surrogate)	% Recovery	[OK=59-113]	85

**CI: COELUTING INTERFERENCE** 

# GC/MS SVO RESULTS

LAB SAMPLE # 404039-1

#### RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 1:25, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 34.64			Sample Matrix:	SOLID
	Extract Meth	nod: 3550		Analysis Method:	8270
	%Sol	ids: 96.0		Dry-weight Basis	Apparent
			-	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acenaphthene	83-32-9	27.70	110.90	ND	ND
Acenaphthylene	208-96-8	27.70	107.40	ND	ND
Anthracene	120-12-7	17.30	72.70	ND	ND
Benzo(a)anthracene	56-55-3	20.80	79.70	ND	ND
Benzo(b)fluoranthene	205-99-2	31.20	121.20	ND	ND
Benzo(k)fluoranthene	207-08-9	31.20	128.20	ND	ND
Benzoic acid	65-85-0	263.30	1060.00	ND	ND
Benzo(g,h,i)perylene	191-24-3	17.30	72.70	ND	ND
Benzo(a)pyrene	193-39-5	17.30	69.30	ND	ND
Benzyl alcohol	100-51-6	20.80	86.60	ND	ND
bis(2-Chloroethoxy)methane	111-911	34.60	135.10	ND	ND
bis(2-Chloroethyl)ether	111-44-4	27.70	103.90	<u>ND</u>	ND
bis(2-Chloroisopropyl)ether	108-60-1	72.70	287.50	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	31.20	121.20	510	ND
4-Bromophenyl-phenylether	101-55-3	24.20	93.50	ND	ND
Butylbenzylphthalate	85-68-7	27.70	114.30	ND	ND
4-Chloroaniline	106-47-8	17.30	69.30	ND	ND
4-Chloro-3-methylphenol	59-50-7	24.20	97.00	ND	ND
2-Chloronaphthalene	91-58-7	27.70	117.80	ND	ND
2-Chlorophenol	95-57-8	24.20	100.50	ND	ND
4-Chlorophenyl-phenylether	59-50-7	27.70	110.90	ND	ND
Chrysene	218-01-9	17.30	65.80	ND	ND
Dibenz(a,h)anthracene	53-70-3	20.80	79.70	ND_	ND
Dibenzofuran	132-64-9	27.70	103.90	ND	ND
Di-n-butylphthalate	84-74-2	24.20	103.90	27 E	ND
1,2-Dichlorobenzene	95-50-1	27.70	107.40	ND	ND
1,3-Dichlorobenzene	541-73-1	24.20	97.00	ND	ND
1,4-Dichlorobenzene	106-46-7	24.20	103.90	ND	ND
3,3'-Dichlorobenzidine	91-94-1	31.20	128.20	ND	ND
2,4-Dichlorophenol	120-83-2	31.20	117.80	ND	ND
Diethylphthalate	84-66-2	20.80	86.60	ND	ND
2,4-Dimethylphenol	105-67-9	48.50	187.10	55 E	ND
Dimethylphthalate	131-11-3	24.20	100.50	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	20.80	86.60	ND	ND
2,4-Dinitrophenol	51-28-5	852.20	3405.20	ND	ND
2,4-Dinitrotoluene	121-14-2	48.50	200.90	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

11

#### RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4

## GC/MS SVO RESULTS

## LAB SAMPLE # 404039-1

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 1:25, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 34.64			Sample Matrix:	SOLID
	Extract Met	hod: 3550		Analysis Method:	8270
	%So	lids: 96.0		Dry-weight Basis	Apparent
					ug/s
TARCET COMPOUND LIST	CAS Number		POI	Concentration	
1 ARGET COMPOUND LIST				Concentration	Blank Conc.
Di p convintitate	117.94.0	45.00	176 70	ND	
Elucranthana	206 44 0	45.00	93.50		ND
Fluorene	7782 41-4	24.20	103.90		
Heyechlorobenzene	118-74-1	29.20	90.10	ND	
Hexachlorobutadiene	87-68-3	20.80	114 30		
Hexachlorog volopentadiene	07-08-3	27.70	83.10		
Havashlasosthana	67 72 1	20.80	07.00		
Indepo(1.2.3 ad)pygene	102.20.5	24.20	70.70	ND	
	78 50 1	20.80	121.20		
2 Mathulaenhthalana	01 57 6	24.60	121.20		
2-Methylnaphulaiene	05 49 7	21.20	131.00		
2-Methylphenol	106 44 5	12.00	52.00	120	
	01 57 6	21.20	124.70		
	91-57-0	31.20	124.70		
2-Nitroaniline	88-74-4	20.80	83.10		
3-INITOANIINE	99-09-3	83.10	339.30		ND
	08.05.2	34.00	133.10		ND
Nitrophenol	98-93-3	31.20	121.20		
	88-73-3	24.20	100.50		
	100-01-0	230.30	1023.40		
N-Nitrosodipnenylamine*	80-30-0	34.60	131.00		
N-Nitroso-di-n-propylamine	621-64-7	27.70	27.70		
Pentachiorophenol	87-86-5	20.80	90.10	ND 1 (D)	
Phenanthrene	85-01-8	24.20	90.10	< <u>MDL</u>	ND
Phenol	108-95-2	13.90	65.80	ND	
Pyrene	129-00-0	24.20	100.50		ND ND
1,2,4-1 nchlorobenzene	120-82-1	27.70	114.30		
2,4,5-1 richlorophenol	95-95-4	27.70	117.80	ND	
2,4,6-1 richlorophenol	88-06-02	27.70	103.90	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12		75	· 56
Phenol-d6 (surrogate std)	%Recovery	[OK=24-11	.3]	79	60
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	20]	75	60
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-11	5]	74	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	2]	92	73
Terphenyl-d14 (surrogate std)	%Recoverv	[OK=18-13	7]	106	99
E: Estimated, ND: Not detected	*as Diphenvlamine	(	CI: Coeluting	Interference	
MDI Method Detection Limit	DO: Diluted Out				

PQL: Practical Quantitation Limit

## GC/MS SVO RESULTS

# LAB SAMPLE # 404039-2

RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4

## SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 0:43, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 770.0		Sample Matrix:	SOLID	
•	Extract Meth	Extract Method: 3550		Analysis Method:	8270
	%Sol	lids: 86.7	-	Dry-weight Basis	Apparent
			•	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
Acenaphthene	83-32-9	616.00	2463.90	ND	ND
Acenaphthylene	208-96-8	616.00	2386.90	ND	ND
Anthracene	120-12-7	385.00	1616.90	ND	ND
Benzo(a)anthracene	56-55-3	462.00	1770.90	1100 E	ND
Benzo(b)fluoranthene	205-99-2	693.00	2694.90	2000 E	ND.
Benzo(k)fluoranthene	207-08-9	693.00	2848.90	<mdl< td=""><td>ND</td></mdl<>	ND
Benzoic acid	65-85-0	5851.70	23560.80	ND	ND
Benzo(g,h,i)perylene	191-24-3	385.00	1616.90	ND	ND
Benzo(a)pyrene	193-39-5	385.00	1539.90	1200 E	ND
Benzyl alcohol	100-51-6	462.00	1924.90	ND	ND
bis(2-Chloroethoxy)methane	111-911	770.00	3002.80	ND	ND
bis(2-Chloroethyl)ether	111-44-4	616.00	2309.90	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	1616.90	6390.70	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	693.00	2694.90	ND	ND
4-Bromophenyl-phenylether	101-55-3	539.00	2078.90	ND	ND
Butylbenzylphthalate	85-68-7	616.00	2540.90	ND	ND
4-Chloroaniline	106-47-8	385.00	1539.90	ND	ND
4-Chloro-3-methylphenol	59-50-7	539.00	2155.90	ND	ND
2-Chloronaphthalene	91-58-7	616.00	2617.90	ND	ND
2-Chlorophenol	95-57-8	539.00	2232.90	ND	ND
4-Chlorophenyl-phenylether	59-50-7	616.00	2463.90	ND	ND
Chrysene	218-01-9	385.00	1462.90	1400 E	ND
Dibenz(a,h)anthracene	53-70-3	462.00	1770.90	ND	ND
Dibenzofuran	132-64-9	616.00	2309.90	ND	ND
Di-n-butylphthalate	84-74-2	539.00	2309.90	ND	ND
1,2-Dichlorobenzene	95-50-1	616.00	2386.90	ND	ND
1,3-Dichlorobenzene	541-73-1	539.00	2155.90	ND	ND
1,4-Dichlorobenzene	106-46-7	539.00	2309.90	ND	ND
3,3'-Dichlorobenzidine	91-94-1	693.00	2848.90	ND	ND
2,4-Dichlorophenol	120-83-2	693.00	2617.90	ND	ND
Diethylphthalate	84-66-2	462.00	1924.90	ND	ND
2,4-Dimethylphenol	105-67-9	1077.90	4157.80	ND	ND
Dimethylphthalate	131-11-3	539.00	2232.90	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	462.00	1924.90	ND	ND
2,4-Dinitrophenol	51-28-5	18941.00	75687.10	ND	ND
2,4-Dinitrotoluene	121-14-2	1077.90	4465.80	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

## GC/MS SVO RESULTS

LAB SAMPLE # 404039-2

#### RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 0:43, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 770.0			Sample Matrix:	SOLID
	Extract Method: 3550			Analysis Method:	8270
	%So	lids: 86.7		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	539.001	2001.90	ND	I ND
Di-n-octylphthalate	117-84-0	1000.90	3926.80	ND	ND
Fluoranthene	206-44-0	539.00	2078.90	2200	ND
Fluorene	7782-41-4	539.00	2309.90	ND	ND
Hexachlorobenzene	118-74-1	462.00	2001.90	ND	ND
Hexachlorobutadiene	87-68-3	616.00	2540.90	ND	ND
Hexachlorocyclopentadiene	77-47-4	462.00	1847.90	ND	ND
Hexachloroethane	67-72-1	539.00	2155.90	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	462.00	1770.90	ND	ND
Isophorone	78-59-1	693.00	2694.90	ND	ND
2-Methylnaphthalene	91-57-6	770.00	2925.80	ND	ND
2-Methylphenol	95-48-7	693.00	2771.90	ND	ND
3-,4-Methylphenol	106-44-5	308.00	1154.90	ND	ND
Naphthalene	91-57-6	693.00	2771.90	ND	ND
2-Nitroaniline	88-74-4	462.00	1847.90	ND	ND
3-Nitroaniline	99-09-3	1847.90	7545.60	ND	ND
4-Nitroaniline	100-01-6	770.00	3002.80	ND	ND
Nitrobenzene	98-95-3	693.00	2694.90	ND	ND
2-Nitrophenol	88-75-5	539.00	2232.90	ND	ND
4-Nitrophenol	100-01-6	5697.70	22790.80	ND	ND ¹
N-Nitrosodiphenylamine*	86-30-6	770.00	2925.80	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	616.00	616.00	ND	ND
Pentachlorophenol	87-86-5	462.00	2001.90	ND	ND
Phenanthrene	85-01-8	539.00	2001.90	1100 E	ND
Phenol	108-95-2	308.00	1462.90	ND	ND
Рутепе	129-00-0	539.00	2232.90	2100 E	ND
1,2,4-Trichlorobenzene	120-82-1	616.00	2540.90	ND	ND
2,4,5-Trichlorophenol	95-95-4	616.00	2617.90	ND	ND
2,4,6-Trichlorophenol	88-06-02	616.00	2309.90	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	21]	77	56
Phenol-d6 (surrogate std)	%Recovery	[OK=24-11	3]	82	.60
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	20]	66	60
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-11	.5]	94	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	22]	77	73
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	7]	99	<u>99</u>
E: Estimated, ND: Not detected	*as Diphenylamine		CI: Coeluting	Interference	
MDL: Method Detection Limit	DO: Diluted Out				

PQL: Practical Quantitation Limit

RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6

#### GC/MS SVO RESULTS

LAB SAMPLE # 404039-3

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 0:01, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 2/39		•	Sample Matrix:	SOLID
	Extract Met	hod: 3550	~	Analysis Method:	8270
	%So	lids: 61.2	-	Dry-weight Basis	Apparent
. · ·		· · ·		ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acenaphthene	83-32-9	2191.00	8764.20	ND	ND
Acenaphthylene	208-96-8	2191.00	8490.30	ND	ND
Anthracene	120-12-7	1369.40	5751.50	<mdl< td=""><td>ND</td></mdl<>	ND
Benzo(a)anthracene	56-55-3	1643.30	6299.20	3100 E	ND
Benzo(b)fluoranthene	205-99-2	2464.90	9585.80	4800 E	ND
Benzo(k)fluoranthene	207-08-9	2464.90	10133.60	ND	ND
Benzoic acid	65-85-0	20814.90	83807.30	ND	ND
Benzo(g,h,i)perylene	191-24-3	1369.40	5751.50	ND	ND
Benzo(a)pyrene	193-39-5	1369.40	5477.60	ND	ND
Benzyl alcohol	100-51-6	1643.30	6847.00	ND	ND
bis(2-Chloroethoxy)methane	111-911	2738.80	10681.30	ND	ND
bis(2-Chloroethyl)ether	111-44-4	2191.00	8216.40	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	5751.50	22732.00	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	2464.90	9585.80	ND	ND
4-Bromophenyl-phenylether	101-55-3	1917.20	7394.80	ND	ND
Butylbenzylphthalate	85-68-7	2191.00	9038.00	ND	ND
4-Chloroaniline	106-47-8	1369.40	5477.60	ND	ND
4-Chloro-3-methylphenol	59-50-7	1917.20	7668.60	ND	ND
2-Chloronaphthalene	91-58-7	2191.00	9311.90	ND	ND
2-Chlorophenol	95-57-8	1917.20	7942.50	ND	ND
4-Chlorophenyl-phenylether	59-50-7	2191.00	8764.20	ND	ND
Chrysene	218-01-9	1369.40	5203.70	3200 E	ND
Dibenz(a,h)anthracene	53-70-3	1643.30	6299.20	ND	ND
Dibenzofuran	132-64-9	2191.00	8216.40	ND	ND
Di-n-butylphthalate	84-74-2	1917.20	8216.40	ND	ND
1,2-Dichlorobenzene	95-50-1	2191.00	8490.30	ND	ND
1,3-Dichlorobenzene	541-73-1	1917.20	7668.60	ND	ND
1,4-Dichlorobenzene	106-46-7	1917.20	8216.40	ND	ND
3,3'-Dichlorobenzidine	91-94-1	2464.90	10133.60	ND	ND
2,4-Dichlorophenol	120-83-2	2464.90	9311.90	ND	ND
Diethylphthalate	84-66-2	1643.30	6847.00	ND	ND
2,4-Dimethylphenol	105-67-9	3834.30	14789.50	20000	ND
Dimethylphthalate	131-11-3	1917.20	7942.50	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	1643.30	6847.00	ND	ND
2,4-Dinitrophenol	51-28-5	67374.50	269224.00	ND	ND
2,4-Dinitrotoluene	121-14-2	3834.30	15885.00	ND	ND
		the second s			

E:Estimated, ND: Not detected

MDL: Method Detection Limit

RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6

## GC/MS SVO RESULTS

LAB SAMPLE # 404039-3

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/26/94, 0:01, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fa	ctor: $2/39$	Sample Matrix:	SOLID		
. :	Extract Met	hod: 3550		Analysis Method: 8270		
	%So	lids: 61.2		Dry-weight Basis	Apparent	
			-	ug/Kg	ug/Kg	
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.	
2,6-Dinitrotoluene	606-20-2	1917.20	7120.90	ND	ND	
Di-n-octylphthalate	117-84-0	3560.40	. 13967.90	ND	ND	
Fluoranthene	206-44-0	1917.20	7394.80	5900 E	ND	
Fluorene	7782-41-4	1917.20	8216.40	<mdl< td=""><td>ND</td></mdl<>	ND	
Hexachlorobenzene	118-74-1	1643.30	7120.90	ND	ND	
Hexachlorobutadiene	87-68-3	2191.00	9038.00	ND	ND	
Hexachlorocyclopentadiene	77-47-4	1643.30	6573.10	ND	ND	
Hexachloroethane	67-72-1	1917.20	7668.60	ND	ND	
Indeno(1,2,3-cd)pyrene	193-39-5	1643.30	6299.20	ND	ND	
Isophorone	78-59-1	2464.90	9585.80	ND	ND	
2-Methylnaphthalene	91-57-6	2738.80	10407.40	<mdl< td=""><td>ND</td></mdl<>	ND	
2-Methylphenol	95-48-7	2464.90	9859.70	ND	ND	
3-,4-Methylphenol	106-44-5	1095.50	4108.20	3800 E	ND	
Naphthalene	91-57-6	2464.90	9859.70	<mdl< td=""><td>ND</td></mdl<>	ND	
2-Nitroaniline	88-74-4	1643.30	6573.10	ND	ND	
3-Nitroaniline	99-09-3	6573.10	26840.20	ND	ND	
4-Nitroaniline	100-01-6	2738.80	10681.30	ND	ND	
Nitrobenzene	98-95-3	2464.90	9585.80	ND	ND	
2-Nitrophenol	88-75-5	1917.20	7942.50	ND	ND	
4-Nitrophenol	100-01-6	20267.10	81068.50	ND	ND	
N-Nitrosodiphenylamine*	86-30-6	2738.80	10407.40	ND	ND	
N-Nitroso-di-n-propylamine	621-64-7	2191.00	2191.00	ND	ND	
Pentachlorophenol	87-86-5	1643.30	7120.90	ND	ND	
Phenanthrene	85-01-8	1917.20	7120.90	5500 E	ND	
Phenol	108-95-2	1095.50	5203.70	ND	ND	
Pyrene	129-00-0	1917.20	7942.50	6400 E	ND	
1,2,4-Trichlorobenzene	120-82-1	2191.00	9038.00	ND	ND	
2,4,5-Trichlorophenol	95-95-4	2191.00	9311.90	ND	ND	
2,4,6-Trichlorophenol	88-06-02	2191.00	8216.40	ND	ND	
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	21]	DO	56	
Phenol-d6 (surrogate std)	%Recovery	[OK=24-1]	13]	DO	60	
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	20]	DO	60	
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-1]	15]	DO	62	
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	22]	DO	73	
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	37]	DO	99	
E: Estimated, ND: Not detected	*as Diphenylamine		CI: Coeluting	Interference		
MDI · Method Detection Limit	DO: Diluted Out			•		

PQL: Practical Quantitation Limit

RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8 GC/MS SVO RESULTS

LAB SAMPLE # 404039-4

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 23:19, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 906.3			Sample Matrix:	SOLID
	Extract Met	hod: 3550		Analysis Method:	8270
%Solids: 74.6				Dry-weight Basis	Apparent
			-	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acenaphthene	83-32-9	725.10	2900.30	ND	ND
Acenaphthylene	208-96-8	725.10	2809.70	ND	ND
Anthracene	120-12-7	453.20	1903.30	ND	ND
Benzo(a)anthracene	56-55-3	543.80	2084.60	ND	ND
Benzo(b)fluoranthene	205-99-2	815.70	3172.20	ND	ND
Benzo(k)fluoranthene	207-08-9	815.70	3353.50	ND	ND
Benzoic acid	65-85-0	6888.20	27734.00	ND	ND
Benzo(g,h,i)perylene	191-24-3	453.20	1903.30	ND	ND
Benzo(a)pyrene	193-39-5	453.20	1812.70	ND	ND
Benzyl alcohol	100-51-6	543.80	2265.80	ND	ND
bis(2-Chloroethoxy)methane	111-911	906.30	3534.70	ND	ND
bis(2-Chloroethyl)ether	111-44-4	725.10	2719.00	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	1903.30	7522.60	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	815.70	3172.20	ND	ND
4-Bromophenyl-phenylether	101-55-3	634.40	2447.10	ND	ND
Butylbenzylphthalate	85-68-7	725.10	2990.90	ND	ND
4-Chloroaniline	106-47-8	453.20	1812.70	ND	ND
4-Chloro-3-methylphenol	59-50-7	634.40	2537.80	ND	ND
2-Chloronaphthalene	91-58-7	725.10	3081.60	ND	ND
2-Chlorophenol	95-57-8	634.40	2628.40	ND	ND
4-Chlorophenyl-phenylether	59-50-7	725.10	2900.30	ND	ND
Chrysene	218-01-9	453.20	1722.00	ND	ND
Dibenz(a,h)anthracene	53-70-3	543.80	2084.60	ND	ND
Dibenzofuran	132-64-9	725.10	2719.00	ND	ND
Di-n-butylphthalate	84-74-2	634.40	2719.00	ND	ND
1,2-Dichlorobenzene	95-50-1	725.10	2809.70	ND	ND
1,3-Dichlorobenzene	541-73-1	634.40	2537.80	ND	ND
1,4-Dichlorobenzene	106-46-7	634.40	2719.00	ND	ND
3,3'-Dichlorobenzidine	91-94-1	815.70	3353.50	ND	ND
2,4-Dichlorophenol	120-83-2	815.70	3081.60	ND	ND
Diethylphthalate	84-66-2	543.80	2265.80	ND	ND
2,4-Dimethylphenol	105-67-9	1268.90	4894.20	ND	ND
Dimethylphthalate	131-11-3	634.40	2628.40	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	543.80	2265.80	ND	ND
2,4-Dinitrophenol	51-28-5	22296.00	89093.20	ND	ND
2,4-Dinitrotoluene	121-14-2	1268.90	5256.80	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

## GC/MS SVO RESULTS

LAB SAMPLE # 404039-4

## RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 23:19, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fa	ctor: 906.3		Sample Matrix:	SOLID
	Extract Method: 3550			Analysis Method:	8270
· .	%So	lids: 74.6		Dry-weight Basis	Apparent
			-	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	634.40	2356.50	ND	ND
Di-n-octylphthalate	117-84-0	1178.20	4622.30	ND	ND
Fluoranthene	206-44-0	634.40	2447.10	900 E	ND
Fluorene	7782-41-4	634.40	2719.00	ND	ND
Hexachlorobenzene	118-74-1	543.80	2356.50	ND	ND
Hexachlorobutadiene	87-68-3	725.10	2990.90	ND	ND
Hexachlorocyclopentadiene	77-47-4	543.80	2175.20	ND	ND
Hexachloroethane	67-72-1	634.40	2537.80	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	543.80	2084.60	ND	ND
Isophorone	78-59-1	815.70	3172.20	ND	ND
2-Methylnaphthalene	91-57-6	906.30	3444.10	<mdl< td=""><td>ND</td></mdl<>	ND
2-Methylphenol	95-48-7	815.70	3262.80	ND	ND
3-,4-Methylphenol	106-44-5	362.50	1359.50	ND	ND
Naphthalene	91-57-6	815.70	3262.80	<mdl< td=""><td>ND</td></mdl<>	ND
2-Nitroaniline	88-74-4	543.80	2175.20	ND	ND
3-Nitroaniline	99-09-3	2175.20	8882.10	ND	ND
4-Nitroaniline	100-01-6	906.30	3534.70	ND	ND
Nitrobenzene	98-95-3	815.70	3172.20	ND	ND
2-Nitrophenol	88-75-5	634.40	2628.40	ND	ND
4-Nitrophenol	100-01-6	6706.90	26827.70	NĎ	ND
N-Nitrosodiphenylamine*	86-30-6	906.30	3444.10	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	725.10	725.10	ND	ND
Pentachlorophenol	87-86-5	543.80	2356.50	ND	ND
Phenanthrene	85-01-8	634.40	2356.50	1000 E	ND
Phenol	108-95-2	362.50	1722.00	ND	ND
Pyrene	129-00-0	634.40	2628.40	1200 E	ND
1,2,4-Trichlorobenzene	120-82-1	725.10	2990.90	ND	ND
2,4,5-Trichlorophenol	95-95-4	725.10	3081.60	ND	ND
2,4,6-Trichlorophenol	88-06-02	725.10	2719.00	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-1]	21]	77	56
Phenol-d6 (surrogate std)	%Recovery	[OK=24-1	13]	82	60
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	20]	67	60
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-1]	15]	102	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	22]	85	<b>7</b> 3
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	37]	142	99
E: Estimated, ND: Not detected	*as Diphenylamine	· · ·	CI: Coeluting	Interference	
MDL: Method Detection Limit	DO: Diluted Out				

PQL: Practical Quantitation Limit

## GC/MS SVO RESULTS

LAB SAMPLE # 404039-5

RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4 FT-B60 SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 22:37, TAG EXTRACTION (Date/Init): 4/21/94, JG

Extract Method: 3550         Analysis Method: 8270           %Solids: 99.3         Dry-weight Basis         Apparent           ug/Kg         ug/Kg         Ug/Kg         Blank Conc.           Acenaphthene         83-32-9         26.90         107.50         ND         ND           Acenaphthylene         208-96-8         26.90         104.20         ND         ND           Antracene         120-12-7         16.80         70.60         ND         ND           Benzo(a)nthracene         56-55-3         20.20         77.30         ND         ND           Benzo(b)fluoranthene         207-08-9         30.20         112.43         ND         ND           Benzo(c),fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(c),fluoranthene         191-24-3         16.80         67.20         ND         ND           Benzo(c),fluoranthene         110-51-6         20.20         84.00         ND         ND           Benzo(c),fluoranthene         100-51-6         20.20         84.00         ND         ND           Benzo(c),fluoranthene         10-6         17.05         27.89         ND         ND           Benzo(c),fluoranthene	DATE REPORTED: 4/28/94	Dilution Factor: 33.60			Sample Matrix:	SOLID
%Solids:         99.3         Dry-weight Basis         Apparent ug/Kg           TARGET COMPOUND LIST         CAS Number         MDL         PQL         Concentration         Blank Conc.           Acenaphthene         83-32-9         26.90         107.50         ND         ND           Acenaphthylene         208-96-8         26.90         107.50         ND         ND           Acenaphthylene         205-97-2         30.20         177.30         ND         ND           Benzo(b)luoranthene         205-99-2         30.20         117.60         ND         ND           Benzo(b)luoranthene         207-98-9         30.20         124.30         ND         ND           Benzo(c)(luoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(c)(luoranthene         193-39-5         16.80         67.20         ND         ND           Benzo(a)pryrene         193-39-5         16.80         131.00         ND         ND           bis(2-Chioroethoxymethane         111-91-1         33.60         131.00         ND         ND           bis(2-Chioroethoxymethane         117-81-7         30.20         117.60         ND         ND           bis(2-Chioroethoxymeth		Extract Meth	nod: 3550		Analysis Method:	8270
ug/Kg         ug/Kg         ug/Kg           TARGET COMPOUND LIST         CAS Number         MDL         PQC         ND         Blank Conc.           Acenaphthene         208-96-8         26.90         107.50         ND         ND           Acenaphthylene         208-96-8         26.90         104.20         ND         ND           Antracene         120-12-7         16.80         70.60         ND         ND           Benzo(a)fluoranthene         205-95-2         30.20         117.60         ND         ND           Benzo(k)fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(g,h.j)perylene         191-24-3         16.80         70.60         ND         ND           Benzo(g,h.j)perylene         193-39-5         16.80         67.20         ND         ND           Benzo(g,h.j)perylene         110-51-6         20.20         84.00         ND         ND           bis(2-Chloroethylymethane         111-91-1         33.60         131.00         ND         ND           bis(2-Chloroethylypether         108-60-1         70.60         278.90         ND         ND           bis(2-Chloroethylypethete         108-60-7         25.30		%Sol	ids: 99.3	-	Dry-weight Basis	Apparent
TARGET COMPOUND LIST         CAS Number         MDL         PQL         Concentration         Blank Cone.           Acenaphthene         83:32-9         26:50         107:50         ND         ND         ND           Acenaphthylene         28:96-8         26:50         104:20         ND         ND         ND           Acenaphthylene         120:12-7         16:80         70:60         ND         ND         ND           Benzo(a)anthracene         56:55:3         20:20         17:30         ND         ND         ND           Benzo(k)fluoranthene         207:08:9         30:20         124:30         ND         ND           Benzo(gh.j)perylene         191:24:3         16:80         67:20         ND         ND           Benzo(gh.j)perylene         191:39:5         16:80         67:20         ND         ND           Benzo(gh.j)perylene         111:44:4         26:90         100:80         ND         ND           bis(2-Chloroethylylether         111:44:4         26:90         100:80         ND         ND           bis(2-Chloroethylylphthalate         85:68:7         26:90         110         ND         ND           bis(2-Chloroethylphthalate         85:68:7         26:90					ug/Kg	ug/Kg
Acenaphthene         83-32-9         26.90         107.50         ND         ND           Acenaphthylene         208-96-8         26.90         104.20         ND         ND           Anthracene         120-12-7         16.80         70.60         ND         ND           Benzo(a)anthracene         56-55-3         20.20         77.30         ND         ND           Benzo(b)fluoranthene         205-99-2         30.20         124.30         ND         ND           Benzo(k)fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(a)hyperylene         191-24-3         16.80         70.60         ND         ND           Benzo(a)pyrene         193-39-5         16.80         67.20         ND         ND           Benzo(a)pyrene         110-51-6         20.20         84.00         ND         ND           bis(2-Chloroethysymethane         111-911         33.60         131.00         ND         ND           bis(2-Chloroethysymethane         111-44-4         26.90         100.80         ND         ND           bis(2-Ethythexyl)phthalate         117-81-7         30.20         117.60         ND         ND           4-Bromophenyl	TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
Acenaphthylene         208-96-8         26.90         104.20         ND         ND           Anthracene         120-12-7         16.80         70.60         ND         ND           Benzo(a)anthracene         56-55-3         20.20         77.30         ND         ND           Benzo(k)fluoranthene         205-99-2         30.20         117.60         ND         ND           Benzo(k)fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(k,j)perylene         191-24-3         16.80         70.60         ND         ND           Benzo(a)pyrene         193-39-5         16.80         67.20         ND         ND           Benzol alcohol         100-51-6         20.20         84.00         ND         ND           bis(2-Chloroethoxy)methane         111-91-1         33.60         131.00         ND         ND           bis(2-Chlorosthylpether         101-55-3         23.50         100.80         ND         ND           bis(2-Chlorosthylphthalate         117-81-7         30.20         117.60         ND         ND           4-Bromophenyl-phenylether         106-47-8         16.80         67.20         ND         ND           2-	Acenaphthene	83-32-9	26.90	107.50	ND	ND
Anthracene         120-12-7         16.80         70.60         ND         ND           Benzo(s)anthracene         56-55-3         20.20         77.30         ND         ND           Benzo(k)fluoranthene         207-98-9         30.20         117.60         ND         ND           Benzo(k)fluoranthene         207-08-9         30.20         117.60         ND         ND           Benzo(g,h,i)perylene         191-24-3         16.80         70.60         ND         ND           Benzo(g)pyrene         193-39-5         16.80         70.60         ND         ND           Benzo(a)pyrene         100-51-6         20.20         84.00         ND         ND           bis(2-Chlorothy)pethen         111-911         3.60         131.00         ND         ND           bis(2-Chloroisopropyl)ether         108-60-1         70.60         278.90         ND         ND           bis(2-Ethylhexyl)phthalate         117-81-7         32.50         90.70         ND         ND           4-Broroaphenyl-phenylether         106-47-8         16.80         67.20         ND         ND           4-Chloroaniline         10-58-7         23.50         97.40         ND         ND           2	Acenaphthylene	208-96-8	26.90	104.20	ND	ND
Benzo(a)anthracene         56-55-3         20.20         77.30         ND         ND           Benzo(b)fluoranthene         205-99-2         30.20         117.60         ND         ND           Benzo(a)fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(a,h)perylene         191-24-3         16.80         70.60         ND         ND           Benzo(a)pyrene         193-39-5         16.80         77.20         ND         ND           Benzo(a)pyrene         193-39-5         16.80         67.20         ND         ND           Benzo(a)pyrene         191-24-3         16.80         70.60         ND         ND           Benzo(a)pyrene         193-39-5         16.80         67.20         ND         ND           Benzo(b)         100-51-6         20.20         84.00         ND         ND           bis(2-Chloroethy)pether         111-44-4         26.90         100.80         ND         ND           bis(2-Ethylnexyl)phthalate         117-81-7         30.20         117.60         ND         ND           4-Bromophenyl-phenylether         101-55-3         23.50         90.70         ND         ND           4-Chloronaphthalen	Anthracene	120-12-7	16.80	70.60	ND	ND
Benzo(b)fluoranthene         205-99-2         30.20         117.60         ND         ND           Benzo(k)fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(k)fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(k)fluoranthene         191-24-3         16.80         70.60         ND         ND           Benzo(a)pyrene         193-39-5         16.80         67.20         ND         ND           Benzyl alcohol         100-51-6         20.20         84.00         ND         ND           bis(2-Chloroethoxy)methane         111-911         33.60         131.00         ND         ND           bis(2-Chloroethoxy)methane         111-744-4         26.90         100.80         ND         ND           bis(2-Chloroethoxy)methane         117-81-7         30.20         117.60         ND         ND           bis(2-Chloroethoxy)phthalate         85-68-7         26.90         110.90         ND         ND           4-Bromophenyl-phenylether         101-55-3         23.50         90.70         ND         ND           4-Chloroanithine         106-47-8         16.80         67.20         ND         ND	Benzo(a)anthracene	56-55-3	20.20	77.30	ND	ND
Benzo(k)fluoranthene         207-08-9         30.20         124.30         ND         ND           Benzo(a,b,i)perylene         191-24-3         16.80         70.60         ND         ND           Benzo(a,b,i)perylene         191-33-5         16.80         67.20         ND         ND           Benzo(a)pyrene         193-39-5         16.80         67.20         ND         ND           Benzyl alcohol         100-51-6         20.20         84.00         ND         ND           bis(2-Chloroethoxy)methane         111-91-1         33.60         131.00         ND         ND           bis(2-Chlorosipropyl)ether         108-60-1         70.60         278.90         ND         ND           bis(2-Ethylhexyl)phthalate         117-81-7         30.20         117.60         ND         ND           4-Bromophenyl-phenylether         101-55-3         23.50         90.70         ND         ND           4-Chloroaniline         106-47-8         16.80         67.20         ND         ND           4-Chloroaniline         106-47-8         16.80         67.20         ND         ND           2-Chloronaphthalene         91-58-7         26.90         107.50         ND         ND	Benzo(b)fluoranthene	205-99-2	30.20	117.60	ND	ND
Benzoic acid         65-85-0         255.40         1028.20         ND         ND           Benzo(a)pyrene         191-24-3         16.80         70.60         ND         ND           Benzo(a)pyrene         193-39-5         16.80         67.20         ND         ND           Benzyl alcohol         100-51-6         20.20         84.00         ND         ND           bis(2-Chloroethoxy)methane         111-911         33.60         131.00         ND         ND           bis(2-Chloroethyl)ether         111-44-4         26.90         100.80         ND         ND           bis(2-Chloroisopropyl)ether         108-60-1         70.60         278.90         ND         ND           bis(2-Ehrylhexyl)phthalate         117-81-7         30.20         117.60         ND         ND           4-Bromophenyl-phenylether         101-55-3         23.50         90.70         ND         ND           4-Chloro-asmethylphenol         59-50-7         26.90         110.90         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           2-Chlorophenol         95-57-8         20.20         77.30         ND         ND <t< td=""><td>Benzo(k)fluoranthene</td><td>207-08-9</td><td>30.20</td><td>124.30</td><td>ND</td><td>ND</td></t<>	Benzo(k)fluoranthene	207-08-9	30.20	124.30	ND	ND
Benzo(g,h,i)perylene191-24-316.8070.60NDNDBenzo(a)pyrene193-39-516.8067.20NDNDBenzyl alcohol100-51-620.2084.00NDNDbis(2-Chloroethoxy)methane111-91133.60131.00NDNDbis(2-Chloroethyl)ether111-44-426.90100.80NDNDbis(2-Chloroethyl)ether108-60-170.60278.90NDNDbis(2-Ethylhexyl)phthalate117-81-730.20117.60NDNDButylbenzylphthalate85-68-726.90110.90NDND4-Chloroaniline106-47-816.8067.20NDND4-Chloroa-initine195-57-823.5094.10NDND2-Chloronphthalene91-58-726.90114.20NDND2-Chloronphthalene91-58-726.90107.50NDND2-Chloronphthalene53-50-726.90107.50NDND0Chrysene218-01-916.8063.80NDND0Dibenz/a_h)anthracene53-70-320.2077.30NDND0Dibenz/alpanthracene95-57-126.90100.80NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,3-Dichlorobenzene541-73-123.50100.80NDND1,3-Dichlorobenzene </td <td>Benzoic acid</td> <td>65-85-0</td> <td>255.40</td> <td>1028.20</td> <td>ND</td> <td>ND</td>	Benzoic acid	65-85-0	255.40	1028.20	ND	ND
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Benzo(g,h,i)perylene	191-24-3	16.80	70.60	ND	ND
Benzyl alcohol         100-51-6         20.20         84.00         ND         ND           bis(2-Chloroethoxy)methane         111-911         33.60         131.00         ND         ND           bis(2-Chloroethyl)ether         111-44-4         26.90         100.80         ND         ND           bis(2-Chloroisopropyl)ether         108-60-1         70.60         278.90         ND         ND           bis(2-Ehrylhexyl)phthalate         117-81-7         30.20         117.60         ND         ND           4-Bromophenyl-phenylether         101-55-3         23.50         90.70         ND         ND           4-Chloroaniline         106-47-8         16.80         67.20         ND         ND           4-Chloroa-3-methylphenol         59-50-7         23.50         94.10         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           Diberz(a,h)anthracene         53-70-3         20.20         77.30         ND         ND	Benzo(a)pyrene	193-39-5	16.80	67.20	ND	ND ·
bis(2-Chloroethoxy)methane111-91133.60131.00NDNDbis(2-Chloroethyl)ether111-44-426.90100.80NDNDbis(2-Chloroisopropyl)ether108-60-170.60278.90NDNDbis(2-Ethylhexyl)phthalate117-81-730.20117.60NDND4-Bromophenyl-phenylether101-55-323.5090.70NDNDButylbenzylphthalate85-68-726.90110.90NDND4-Chloroaniline106-47-816.8067.20NDND4-Chloroaniline91-58-726.90114.20NDND2-Chloronaphthalene91-58-726.90107.50NDND2-Chlorophenol95-57-823.5097.40NDNDChrysene218-01-916.8063.80NDNDDibenz(a,h)antracene53-70-320.2077.30NDNDDibenzofuran132-64-926.90100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND3,3'-Dichlorobenzene541-73-123.5094.10NDND3,3'-Dichlorobenzene541-73-123.5094.10NDND3,3'-Dichlorobenzene541-73-123.5094.10NDND3,3'-Dichlorobenzene541-73-123.5094.10NDND3,3'-Dichlorobenzene541-73-1	Benzyl alcohol	100-51-6	20.20	84.00	ND	ND
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	bis(2-Chloroethoxy)methane	111-911	33.60	131.00	ND	ND
bis(2-Chloroisopropyl)ether108-60-170.60278.90NDNDbis(2-Ethylhexyl)phthalate117-81-730.20117.60NDND4-Bromophenyl-phenylether101-55-323.5090.70NDNDButylbenzylphthalate85-68-726.90110.90NDND4-Chloroaniline106-47-816.8067.20NDND4-Chloroaniline91-58-723.5094.10NDND2-Chloronaphthalene91-58-726.90114.20NDND2-Chlorophenol95-57-823.5097.40NDND2-Chlorophenol95-57-726.90107.50NDND4-Chlorophenyl-phenylether59-50-726.90107.50NDND0Chrysene218-01-916.8063.80NDNDDibenz(a,h)anthracene53-70-320.2077.30NDNDDibenzofuran132-64-926.90100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND3,3'Dichlorobenzene541-73-123.50100.80NDND3,3'Dichlorobenzene102-64-723.50100.80NDND3,3'Dichlorobenzene102-67-947.00181.50NDND2,4-Dichlorobenzene105-67-947.00181.50NDND2,4-Dichlorophenol105-67-9	bis(2-Chloroethyl)ether	111-44-4	26.90	100.80	ND	ND
bis(2-Ethylhexyl)phthalate         117-81-7         30.20         117.60         ND         ND           4-Bromophenyl-phenylether         101-55-3         23.50         90.70         ND         ND           Butylbenzylphthalate         85-68-7         26.90         110.90         ND         ND           4-Chloroaniline         106-47-8         16.60         67.20         ND         ND           4-Chloro-3-methylphenol         59-50-7         23.50         94.10         ND         ND           2-Chloronaphthalene         91-58-7         26.90         114.20         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           2-Chlorophenyl-phenylether         59-50-7         26.90         107.50         ND         ND           0-Chrysene         218-01-9         16.80         63.80         ND         ND           Dibenz(a,h)anthracene         53-70-3         20.20         77.30         ND         ND           0-Dibenzofuran         132-64-9         26.90         100.80         ND         ND           1,3-Dichlorobenzene         95-50-1         26.50         104.20         ND         ND           1,3-	bis(2-Chloroisopropyl)ether	108-60-1	70.60	278.90	ND	ND
4-Bromophenyl-phenylether         101-55-3         23.50         90.70         ND         ND           Butylbenzylphthalate         85-68-7         26.90         110.90         ND         ND           4-Chloroaniline         106-47-8         16.80         67.20         ND         ND           4-Chloro-3-methylphenol         59-50-7         23.50         94.10         ND         ND           2-Chloronaphthalene         91-58-7         26.90         114.20         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           2-Chlorophenol         95-50-7         26.90         107.50         ND         ND           Chrysene         218-01-9         16.80         63.80         ND         ND           Dibenz(a,h)anthracene         53-70-3         20.20         77.30         ND         ND           Dibenzofuran         132-64-9         26.90         100.80         ND         ND           1,2-Dichlorobenzene         95-50-1         26.90         104.20         ND         ND           1,3-Dichlorobenzene         541-73-1         23.50         94.10         ND         ND           1,4-Dichlorobenzene	bis(2-Ethylhexyl)phthalate	117-81-7	30.20	117.60	ND	ND
Butylbenzylphthalate         85-68-7         26.90         110.90         ND         ND           4-Chloroaniline         106-47-8         16.80         67.20         ND         ND           4-Chloro-3-methylphenol         59-50-7         23.50         94.10         ND         ND           2-Chloronaphthalene         91-58-7         26.90         114.20         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           4-Chlorophenyl-phenylether         59-50-7         26.90         107.50         ND         ND           4-Chlorophenyl-phenylether         59-50-7         26.90         107.50         ND         ND           Chrysene         218-01-9         16.80         63.80         ND         ND           Dibenz(a,h)anthracene         53-70-3         20.20         77.30         ND         ND           Dibenzfuran         132-64-9         26.90         100.80         ND         ND           1,2-Dichlorobenzene         95-50-1         26.90         104.20         ND         ND           1,3-Dichlorobenzene         541-73-1         23.50         94.10         ND         ND           3,3'-Dichloroben	4-Bromophenyl-phenylether	101-55-3	23.50	90.70	ND	ND
4-Chloroaniline106-47-816.8067.20NDND4-Chloro-3-methylphenol59-50-723.5094.10NDND2-Chloronaphthalene91-58-726.90114.20NDND2-Chlorophenol95-57-823.5097.40NDND4-Chlorophenyl-phenylether59-50-726.90107.50NDND4-Chlorophenyl-phenylether59-50-726.90107.50NDNDChrysene218-01-916.8063.80NDNDDibenz(a,h)anthracene53-70-320.2077.30NDNDDibenzofuran132-64-926.90100.80NDNDDi-n-butylphthalate84-74-223.50100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorobenzidine91-94-130.20114.20NDND2,4-Dimethylphenol105-67-947.00181.50NDND2,4-Dimethylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	Butylbenzylphthalate	85-68-7	26.90	110.90	ND	ND
4-Chloro-3-methylphenol         59-50-7         23.50         94.10         ND         ND           2-Chloronaphthalene         91-58-7         26.90         114.20         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           4-Chlorophenyl-phenylether         59-50-7         26.90         107.50         ND         ND           Chrysene         218-01-9         16.80         63.80         ND         ND           Dibenz(a,h)anthracene         53-70-3         20.20         77.30         ND         ND           Dibenzofuran         132-64-9         26.90         100.80         ND         ND           Di-n-butylphthalate         84-74-2         23.50         100.80         ND         ND           1,2-Dichlorobenzene         95-50-1         26.90         104.20         ND         ND           1,3-Dichlorobenzene         541-73-1         23.50         94.10         ND         ND           3,3'-Dichlorobenzene         106-46-7         23.50         100.80         ND         ND           3,3'-Dichlorobenzidine         91-94-1         30.20         124.30         ND         ND           2,4-Dinthrophe	4-Chloroaniline	106-47-8	16.80	67.20	ND	ND
2-Chloronaphthalene         91-58-7         26.90         114.20         ND         ND           2-Chlorophenol         95-57-8         23.50         97.40         ND         ND           4-Chlorophenyl-phenylether         59-50-7         26.90         107.50         ND         ND           Chrysene         218-01-9         16.80         63.80         ND         ND           Dibenz(a,h)anthracene         53-70-3         20.20         77.30         ND         ND           Dibenzofuran         132-64-9         26.90         100.80         ND         ND           Di-n-butylphthalate         84-74-2         23.50         100.80         ND         ND           1,2-Dichlorobenzene         95-50-1         26.90         104.20         ND         ND           1,3-Dichlorobenzene         541-73-1         23.50         94.10         ND         ND           3,3'-Dichlorobenzene         106-46-7         23.50         100.80         ND         ND           2,4-Dichlorobenzidine         91-94-1         30.20         124.30         ND         ND           2,4-Dinethylphthalate         131-11-3         23.50         97.40         ND         ND           Dimethylphthalat	4-Chloro-3-methylphenol	59-50-7	23.50	94.10	ND	ND
2-Chlorophenol95-57-823.5097.40NDND4-Chlorophenyl-phenylether59-50-726.90107.50NDNDChrysene218-01-916.8063.80NDNDDibenz(a,h)anthracene53-70-320.2077.30NDNDDibenzofuran132-64-926.90100.80NDNDDi-n-butylphthalate84-74-223.50100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND3,3'-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzene106-46-723.50100.80NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrooluene121-14-247.00194.90NDND	2-Chloronaphthalene	91-58-7	26.90	114.20	ND	ND
4-Chlorophenyl-phenylether59-50-726.90107.50NDNDChrysene218-01-916.8063.80NDNDDibenz(a,h)anthracene53-70-320.2077.30NDNDDibenzofuran132-64-926.90100.80NDNDDi-n-butylphthalate84-74-223.50100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzene91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	2-Chlorophenol	95-57-8	23.50	97.40	ND	ND
Chrysene218-01-916.8063.80NDNDDibenz(a,h)anthracene53-70-320.2077.30NDNDDibenzofuran132-64-926.90100.80NDNDDi-n-butylphthalate84-74-223.50100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorobenzidine120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	4-Chlorophenyl-phenylether	59-50-7	26.90	107.50	ND	ND
Dibenz(a,h)anthracene53-70-320.2077.30NDNDDibenzofuran132-64-926.90100.80NDNDDi-n-butylphthalate84-74-223.50100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	Сһгуѕепе	218-01-9	16.80	63.80	ND	ND
Dibenzofuran132-64-926.90100.80NDNDDi-n-butylphthalate84-74-223.50100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	Dibenz(a,h)anthracene	53-70-3	20.20	77.30	ND	ND
Di-n-butylphthalate84-74-223.50100.80NDND1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDND0Diethylphthalate131-11-323.5097.40NDND2,4-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol121-14-247.00194.90NDND	Dibenzofuran	132-64-9	26.90	100.80	ND	ND
1,2-Dichlorobenzene95-50-126.90104.20NDND1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDNDDimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	Di-n-butylphthalate	84-74-2	23.50	100.80	ND	ND
1,3-Dichlorobenzene541-73-123.5094.10NDND1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDNDDimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	1,2-Dichlorobenzene	95-50-1	26.90	104.20	ND	ND
1,4-Dichlorobenzene106-46-723.50100.80NDND3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDNDDimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	1,3-Dichlorobenzene	541-73-1	23.50	94.10	ND	ND
3,3'-Dichlorobenzidine91-94-130.20124.30NDND2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDNDDimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	1,4-Dichlorobenzene	106-46-7	23.50	100.80	ND	ND
2,4-Dichlorophenol120-83-230.20114.20NDNDDiethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDNDDimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	3,3'-Dichlorobenzidine	91-94-1	30.20	124.30	ND	ND
Diethylphthalate84-66-220.2084.00NDND2,4-Dimethylphenol105-67-947.00181.50NDNDDimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	2,4-Dichlorophenol	120-83-2	30.20	114.20	ND	ND
2,4-Dimethylphenol105-67-947.00181.50NDNDDimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	Diethylphthalate	84-66-2	20.20	84.00	ND	ND
Dimethylphthalate131-11-323.5097.40NDND4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	2,4-Dimethylphenol	105-67-9	47.00	181.50	ND	ND
4,6-Dinitro-2-methylphenol534-52-120.2084.00NDND2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	Dimethylphthalate	131-11-3	23.50	97.40	ND	ND
2,4-Dinitrophenol51-28-5826.603303.10NDND2,4-Dinitrotoluene121-14-247.00194.90NDND	4,6-Dinitro-2-methylphenol	534-52-1	20.20	84.00	ND	ND
2,4-Dinitrotoluene 121-14-2 47.00 194.90 ND ND	2,4-Dinitrophenol	51-28-5	826.60	3303.10	ND	ND
	2,4-Dinitrotoluene	121-14-2	47.00	194.90	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4 FT-B60

DATE REPORTED: 4/28/94

GC/MS SVO RESULTS

## LAB SAMPLE # 404039-5

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 22:37, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 33.60			Sample Matrix:	SOLID
	Extract Method: 3550			Analysis Method:	8270
	%Solids: 99.3			Dry-weight Basis	Apparent
			-	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
2.6-Dinitrotoluene	606-20-2	23.50	87.40	ND	ND
Di-n-octylphthalate	117-84-0	43.70	171.40	ND	ND
Fluoranthene	206-44-0	23.50	90.70	ND	ND
Fluorene	7782-41-4	23.50	100.80	ND	ND
Hexachlorobenzene	118-74-1	20.20	87.40	ND	ND
Hexachlorobutadiene	87-68-3	26.90	110.90	ND	ND
Hexachlorocyclopentadiene	77-47-4	20.20	80.60	ND	ND
Hexachloroethane	67-72-1	23.50	94.10	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	20.20	77.30	ND	ND
Isophorone	78-59-1	30.20	117.60	ND	ND
2-Methylnaphthalene	91-57-6	33.60	127.70	ND	ND
2-Methylphenol	95-48-7	30.20	121.00	ND	ND
3-,4-Methylphenol	106-44-5.	13.40	50.40	ND	ND
Naphthalene	91-57-6	30.20	· 121.00	ND	ND
2-Nitroaniline	88-74-4	20.20	80.60	ND	ND
3-Nitroaniline	99-09-3	80.60	329.30	ND	ND
4-Nitroaniline	100-01-6	33.60	131.00	ND	ND
Nitrobenzene	98-95-3	30.20	117.60	ND	ND
2-Nitrophenol	88-75-5	23.50	97.40	ND	ND
4-Nitrophenol	100-01-6	248.70	994.60	ND	ND
N-Nitrosodiphenylamine*	86-30-6	33.60	127.70	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	26.90	26.90	ND	ND
Pentachlorophenol	87-86-5	20.20	87.40	ND	ND
Phenanthrene	85-01-8	23.50	87.40	ND	ND
Phenol	108-95-2	13.40	63.80	ND	ND
Рутепе	129-00-0	23.50	97.40	ND	ND
1,2,4-Trichlorobenzene	120-82-1	26.90	110.90	ND	ND
2,4,5-Trichlorophenol	95-95-4	26.90	114.20	ND	ND
2,4,6-Trichlorophenol	88-06-02	26.90	100.80	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	<u>.1]</u>	46	56
Phenol-d6 (surrogate std)	%Recovery	[OK=24-11	3]	48	60
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	.0]	47	60
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-11	5]	48	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	2]	59	73
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	7]	74	99
E: Estimated, ND: Not detected MDL: Method Detection Limit	*as Diphenylamine DO: Diluted Out	(	CI: Coeluting	Interference	

PQL: Practical Quantitation Limit

Diluted Out

Page 2

es.

RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4 FT-B60

## GC/MS SVO RESULTS

### LAB SAMPLE # 404039-6

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 21:55, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 33.02			Sample Matrix:	SOLID
	Extract Meth	10d: 3550		Analysis Method:	8270
	%Sol	ids: 99.9	-	Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acenaphthene	83-32-9	26.40	105.60	ND	
Acenaphthylene	208-96-8	26.40	102.30	ND	ND
Anthracene	120-12-7	16.50	69.30	ND	ND
Benzo(a)anthracene	56-55-3	19.80	75.90	ND	ND
Benzo(b)fluoranthene	205-99-2	29.70	115.60	ND	ND
Benzo(k)fluoranthene	207-08-9	29.70	122.20	ND	ND
Benzoic acid	65-85-0	250.90	1010.30	ND	ND
Benzo(g,h,i)perylene	191-24-3	16.50	69.30	ND	ND
Benzo(a)pyrene	193-39-5	16.50	66.00	ND	ND
Benzyl alcohol	100-51-6	19.80	82.50	ND	ND
bis(2-Chloroethoxy)methane	111-911	33.00	128.80	ND	ND
bis(2-Chloroethyl)ether	111-44-4	26.40	99.00	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	69.30	274.00	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	29.70	115.60	ND	ND
4-Bromophenyl-phenylether	101-55-3	23.10	89.10	ND	ND
Butylbenzylphthalate	85-68-7	26.40	108.90	ND	ND
4-Chloroaniline	106-47-8	16.50	66.00	/ ND	ND
4-Chloro-3-methylphenol	59-50-7	23.10	92.40	ND	ND
2-Chloronaphthalene	91-58-7	26.40	112.30	ND	ND
2-Chlorophenol	95-57-8	23.10	95.70	ND	ND
4-Chlorophenyl-phenylether	59-50-7·	26.40	105.60	ND	ND
Chrysene	218-01-9	16.50	62.70	ND	ND
Dibenz(a,h)anthracene	53-70-3	19.80	75.90	ND	ND
Dibenzofuran	132-64-9	26.40	99.00	ND	ND
Di-n-butylphthalate	84-74-2	23.10	99.00	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichlorobenzene	95-50-1	26.40	102.30	ND	ND
1,3-Dichlorobenzene	541-73-1	23.10	92.40	ND	ND
1,4-Dichlorobenzene	106-46-7	23.10	99.00	ND	ND
3,3'-Dichlorobenzidine	91-94-1	29.70	122.20	ND	ND
2,4-Dichlorophenol	120-83-2	29.70	112.30	ND	ND
Diethylphthalate	84-66-2	19.80	82.50	ND	ND
2,4-Dimethylphenol	105-67-9	46.20	178.30	ND	ND
Dimethylphthalate	131-11-3	23.10	95.70	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	19.80	82.50	ND	ND
2,4-Dinitrophenol	51-28-5	812.20	3245.40	ND	ND
2,4-Dinitrotoluene	121-14-2	46.20	191.50	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

## GC/MS SVO RESULTS

## LAB SAMPLE # 404039-6

RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4 FT-B60 SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 21:55, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fa	ctor: 33.02		Sample Matrix:	SOLID
	Extract Met	hod: 3550		Analysis Method:	8270
·	%Solids: 99.9			Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
2.6-Dinitrotoluene	606-20-2	23.10	85.80	ND	
Di-n-octylphthalate	117-84-0	42,90	168.40	ND	ND
Fluoranthene	206-44-0	23.10	89.10	ND	ND
Fluorene	7782-41-4	23.10	99.00	ND	ND
Hexachlorobenzene	118-74-1	19.80	85.80	ND	ND
Hexachlorobutadiene	87-68-3	26.40	108.90	ND	ND
Hexachlorocyclopentadiene	77-47-4	19.80	79.20	ND	ND
Hexachloroethane	67-72-1	23.10	92.40	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	19.80	75.90	ND	ND
Isophorone	78-59-1	29.70	115.60	ND	ND
2-Methylnaphthalene	91-57-6	33.00	125.50	ND	NE
2-Methylphenol	95-48-7	29.70	118.90	ND	ND I
3-,4-Methylphenol	106-44-5	13.20	49.50	ND	ND
Naphthalene	91-57-6	29,70	118.90	ND	ND
2-Nitroaniline	88-74-4	19.80	79.20	ND	ND
3-Nitroaniline	99-09-3	79.20	323.50	ND	ND
4-Nitroaniline	100-01-6	33.00	128.80	ND	ND
Nitrobenzene	98-95-3	29.70	115.60	ND	ND
2-Nitrophenol	88-75-5	23.10	95.70	ND	ND
4-Nitrophenol	100-01-6	244.30	977.20	ND	ND
N-Nitrosodiphenylamine*	86-30-6	33.00	125.50	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	26.40	26.40	ND	ND
Pentachlorophenol	87-86-5	19.80	85.80	ND	ND
Phenanthrene	85-01-8	23.10	85.80	ND	ND
Phenol	108-95-2	13.20	62.70	ND	ND
Pyrene	129-00-0	23.10	95.70	ND	ND
1,2,4-Trichlorobenzene	120-82-1	26.40	108.90	ND	ND
2,4,5-Trichlorophenol	95-95-4	26.40	112.30	ND	ND
2,4,6-Trichlorophenol	88-06-02	26.40	99.00	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	21]	55	- 56
Phenol-d6 (surrogate std)	%Recoverv	[OK=24-11	31	56	60
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-12	201	57	60
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-11	5]	56	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	2]	66	73
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	7]	91	99
E: Estimated, ND: Not detected	*as Diphenylamine	(	CI: Coeluting	Interference	<u></u>
MDL: Method Detection Limit	DO: Diluted Out		•		

PQL: Practical Quantitation Limit

RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6 FT-B60

# GC/MS SVO RESULTS

## LAB SAMPLE # 404039-7

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 19:50, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fac	tor: 33.07		Sample Matrix:	SOLID
· .	Extract Meth	od: 3550		Analysis Method:	8270
	%Sol	ids: 99.5	-	Dry-weight Basis	Apparent
					ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
Acenaphthene	83-32-9	26.50	105.80	ND	ND
Acenaphthylene	208-96-8	26.50	102.50	ND	ND
Anthracene	120-12-7	16.50	69.40	ND	ND
Benzo(a)anthracene	56-55-3	19.80	76.10	ND	ND
Benzo(b)fluoranthene	205-99-2	29.80	115.70	ND	ND
Benzo(k)fluoranthene	207-08-9	29.80	122.40	ND	ND
Benzoic acid	65-85-0	251.30	1012.00	ND	ND
Benzo(g,h,i)perylene	191-24-3	16.50	69.40	ND	ND
Benzo(a)pyrene	193-39-5	16.50	66.10	ND	ND
Benzyl alcohol	100-51-6	19.80	82.70	ND	ND
bis(2-Chloroethoxy)methane	111-911	33.10	129.00	ND	ND
bis(2-Chloroethyl)ether	111-44-4	26.50	99.20	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	69.40	274.50	ND	ND -
bis(2-Ethylhexyl)phthalate	117-81-7	29.80	115.70	ND	ND
4-Bromophenyl-phenylether	101-55-3	23.10	89.30	ND	ND
Butylbenzylphthalate	85-68-7	26.50	109.10	ND	ND
4-Chloroaniline	106-47-8	16.50	66.10	ND	ND
4-Chloro-3-methylphenol	59-50-7	23.10	92.60	ND	ND
2-Chloronaphthalene	91-58-7	26.50	112.40	ND	ND
2-Chlorophenol	95-57-8	23.10	95.90	ND	ND
4-Chlorophenyl-phenylether	59-50-7	26.50	105.80	ND	· ND
Chrysene	218-01-9	16.50	62.80	ND	ND
Dibenz(a,h)anthracene	53-70-3	19.80	76.10	ND	ND
Dibenzofuran	132-64-9	26.50	99.20	ND	ND
Di-n-butylphthalate	84-74-2	23.10	99.20	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichlorobenzene	95-50-1	26.50	102.50	ND	ND
1,3-Dichlorobenzene	541-73-1	23.10	92.60	ND	ND
1,4-Dichlorobenzene	106-46-7	23.10	99.20	ND	ND
3,3'-Dichlorobenzidine	91-94-1	29.80	122.40	ND	ND
2,4-Dichlorophenol	120-83-2	29.80	112.40	ND	ND
Diethylphthalate	84-66-2	19.80	82.70	ND	ND
2,4-Dimethylphenol	105-67-9	46.30	178.60	ND	ND
Dimethylphthalate	131-11-3	23.10	95.90	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	19.80	82.70	ND	ND
2,4-Dinitrophenol	51-28-5	813.50	3250.90	ND	ND
2,4-Dinitrotoluene	121-14-2	46.30	191.80	ND	ND

E:Estimated, ND: Not detected MDL: Method Detection Limit

RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6 FT-B60 GC/MS SVO RESULTS

LAB SAMPLE # 404039-7

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 19:50, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fa	ctor: 33.07		Sample Matrix:	SOLID
	Extract Met	hod: 3550		Analysis Method:	8270
	%Solids: 99.5			Dry-weight Basis	Apparent
			-	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	PQL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	23.10	86.00	ND	ND
Di-n-octylphthalate	117-84-0	43.00	168.70	ND	ND
Fluoranthene	206-44-0	23.10	89.30	ND	ND
Fluorene	7782-41-4	23.10	99.20	ND	ND
Hexachlorobenzene	118-74-1	19.80	86.00	ND	ND
Hexachlorobutadiene	87-68-3	26.50	109.10	ND	ND
Hexachlorocyclopentadiene	77-47-4	19.80	79.40	ND	ND
Hexachloroethane	67-72-1	23.10	92.60	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	19.80	76.10	ND	ND
Isophorone	78-59-1	29.80	115.70	ND	ND
2-Methylnaphthalene	91-57-6	33.10	125.70	ND	ND
2-Methylphenol	95-48-7	29.80	119.10	ND	ND
3-,4-Methylphenol	106-44-5	13.20	49.60	ND	ND
Naphthalene	91-57-6	29.80	119.10	ND	ND
2-Nitroaniline	88-74-4	19.80	79.40	ND	ND
3-Nitroaniline	99-09-3	79.40	324.10	ND	ND
4-Nitroaniline	100-01-6	33.10	129.00	ND	ND
Nitrobenzene	98-95-3	29.80	115.70	ND	ND
2-Nitrophenol	88-75-5	23.10	95.90	ND	NU
4-Nitrophenol	100-01-6	244.70	978.90	ND	ND
N-Nitrosodiphenylamine*	86-30-6	33.10	125.70	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	26.50	26.50	ND	ND
Pentachlorophenol	87-86-5	19.80	86.00	ND	ND
Phenanthrene	85-01-8	23.10	86.00	ND	ND
Phenol	108-95-2	13.20	62.80	ND	ND
Рутепе	129-00-0	23.10	95.90	ND	ND
1,2,4-Trichlorobenzene	120-82-1	26.50	109.10	ND	ND
2,4,5-Trichlorophenol	95-95-4	26.50	112.40	ND	ND
2,4,6-Trichlorophenol	88-06-02	26.50	99.20	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12]	1]	71	56
Phenol-d6 (surrogate std)	%Recovery	[OK=24-11]	3]	73	60
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-120		69	60
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-11	5]	67	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-122	2]	69	73
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	7]	89	99
E: Estimated, ND: Not detected	*as Diphenylamine	C	I: Coeluting	Interference	
MDL: Method Detection Limit	DO: Diluted Out				•

PQL: Practical Quantitation Limit

RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8 FT-B60

#### GC/MS SVO RESULTS

## LAB SAMPLE # 404039-8

1

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 19:08, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fac	ctor: 32.29		Sample Matrix:	SOLID
	Extract Meth	nod: 3550		Analysis Method:	8270
	%Sol	lids: 99.7	· -	Dry-weight Basis	Apparent
				ησ/Κσ	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POI	Concentration	Blank Conc
Acenaphthene	83-32-9	25.801	103 30	ND	ND
Acenaphthylene	208-96-8	25.80	100.10	ND	
Anthracene	120-12-7	16 10	67.80	ND ND	ND
Benzo(a)anthracene	56-55-3	19 40	74 30	ND	ND
Benzo(h)fluoranthene	205-99-2	29.10	113.00	ND	ND
Benzo(k)fluoranthene	207-08-9	29 10	119.50	ND	ND
Benzoic acid	65-85-0	245.40	988.00	ND	ND
Benzo(g,h,i)pervlene	191-24-3	16.10	67.80	ND	ND
Benzo(a)pyrene	193-39-5	16.10	64.60	ND	ND
Benzyl alcohol	100-51-6	19.40	80,70	ND	ND
bis(2-Chloroethoxy)methane	111-911	32.30	125.90	ND	ND
bis(2-Chloroethyl)ether	111-44-4	25.80	96.90	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	67.80	268.00	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	29.10	113.00	<mdl< td=""><td>ND</td></mdl<>	ND
4-Bromophenyl-phenylether	101-55-3	22.60	87.20	ND	ND
Butylbenzylphthalate	85-68-7	25.80	106.60	ND	ND
4-Chloroaniline	106-47-8	16.10	64.60	ND	ND
4-Chloro-3-methylphenol	59-50-7	22.60	90.40	ND	ND
2-Chloronaphthalene	91-58-7	25.80	109.80	ND	ND
2-Chlorophenol	95-57-8	22.60	93.60	ND	ND
4-Chlorophenyl-phenylether	59-50-7	25.80	103.30	ND	ND
Chrysene	218-01-9	16.10	61.30	ND	ND
Dibenz(a,h)anthracene	53-70-3	19.40	74.30	ND	ND
Dibenzofuran	132-64-9	25.80	96.90	<mdl< td=""><td>ND</td></mdl<>	ND
Di-n-butylphthalate	84-74-2	22.60	96.90	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichlorobenzene	95-50-1	25.80	100.10	27 E	ND
1,3-Dichlorobenzene	541-73-1	22.60	90.40	, ND	ND
1,4-Dichlorobenzene	106-46-7	22.60	96.90	ND	ND
3,3'-Dichlorobenzidine	91-94-1	29.10	119.50	ND	ND
2,4-Dichlorophenol	120-83-2	29.10	109.80	ND	ND
Diethylphthalate	84-66-2	19.40	80.70	ND	ND
2,4-Dimethylphenol	105-67-9	45.20	174.40	ND	ND
Dimethylphthalate	131-11-3	22.60	93.60	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	19.40	80.70	ND	ND
2,4-Dinitrophenol	51-28-5	794.30	3174.00	- ND	ND
2,4-Dinitrotoluene	121-14-2	45.20	187.30	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

÷È,

#### RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8 FT-B60

## GC/MS SVO RESULTS

LAB SAMPLE # 404039-8

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 19:08, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fa	ctor: 32.29		Sample Matrix:	SOLID
	Extract Met	hod: 3550		Analysis Method:	8270
	%Solids: 99.7			Dry-weight Basis	Apparent
			-	ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	22.60	84.00	ND	ND
Di-n-octylphthalate	117-84-0	42.00	164.70	ND	ND
Fluoranthene	206-44-0	22.60	87.20	ND	ND
Fluorene	7782-41-4	22.60	96.90	ND	ND
Hexachlorobenzene	118-74-1	19.40	84.00	ND	ND
Hexachlorobutadiene	87-68-3	25.80	106.60	ND	ND
Hexachlorocyclopentadiene	77-47-4	19.40	77.50	ND	ND
Hexachloroethane	67-72-1	22.60	90.40	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	19.40	74.30	ND	ND
Isophorone	78-59-1	29.10	113.00	ND	ND
2-Methylnaphthalene	91-57-6	32.30	122.70	ND	ND
2-Methylphenol	95-48-7	29.10	116.20	ND	ND
3-,4-Methylphenol	106-44-5	12.90	48.40	ND	ND
Naphthalene	91-57-6	29.10	116.20	<mdl< td=""><td>ND</td></mdl<>	ND
2-Nitroaniline	88-74-4	19.40	77.50	ND	ND
3-Nitroaniline	99-09-3	77.50	316.40	ND	ND
4-Nitroaniline	100-01-6	32.30	125.90	ND	ND
Nitrobenzene	98-95-3	29.10	113.00	ND	ND
2-Nitrophenol	88-75-5	22.60	93.60	ND	ND
4-Nitrophenol	100-01-6	238.90	955.80	ND	ND
N-Nitrosodiphenylamine*	86-30-6	32.30	122.70	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	25.80	25.80	ND	ND
Pentachlorophenol	87-86-5	19.40	84.00	ND	ND
Phenanthrene	85-01-8	22.60	84.00	ND	ND
Phenol	108-95-2	12.90	61.30	ND	ND
Pyrene	129-00-0	22.60	93.60	ND	ND
1,2,4-Trichlorobenzene	120-82-1	25.80	106.60	ND	ND
2,4,5-Trichlorophenol	95-95-4	25.80	109.80	ND	ND
2,4,6-Trichlorophenol	88-06-02	25.80	96.90	ND	ND
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12	21]	61	56
Phenol-d6 (surrogate std)	%Recovery	[OK=24-11	3]	62	60
Nitrobenzene-d5 (surrogate std)	%Recovery	OK=23-12	201	63	60
2-Fluorobiphenyl (surrogate std)	%Recoverv	[OK=30-11	5]	62	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-12	[2]	<b>75</b>	73
Terphenyl-d14 (surrogate std)	%Recovery	[OK=18-13	7]	74	99
E: Estimated, ND: Not detected	*as Diphenylamine	(	CI: Coeluting	Interference	
MDL: Method Detection Limit	DO: Diluted Out		-		

PQL: Practical Quantitation Limit

1991年3月1日

Kiber Environmental Services

#### GC/MS SVO RESULTS LAB SAMPLE # 404039-9

RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6 FT-B60 DUP SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 18:26, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Fac	ctor: 32.87		Sample Matrix:	SOLID
	Extract Meth	nod: 3550		Analysis Method:	8270
	%Sol	ids: 100.0		Dry-weight Basis	Apparent
				ug/Kg	ug/Kg
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
Acenaphthene	83-32-9	26.30	105.20	ND	
Acenaphthylene	208-96-8	26.30	101.90	ND	ND
Anthracene	120-12-7	16.40	69.00	ND	ND
Benzo(a)anthracene	56-55-3	19.70	75.60	ND	ND
Benzo(b)fluoranthene	205-99-2	29.60	115.10	ND	ND
Benzo(k)fluoranthene	207-08-9	29.60	121.60	ND	ND
Benzoic acid	65-85-0	249.80	1005.90	ND	ND
Benzo(g,h,i)perylene	191-24-3	16.40	69.00	ND	ND
Benzo(a)pyrene	193-39-5	16.40	65.70	ND	ND
Benzyl alcohol	100-51-6	19.70	82.20	ND	ND
bis(2-Chloroethoxy)methane	111-911	32.90	128.20	ND	ND
bis(2-Chloroethyl)ether	111-44-4	26.30	98.60	ND	ND
bis(2-Chloroisopropyl)ether	108-60-1	69.00	272.80	ND	ND
bis(2-Ethylhexyl)phthalate	117-81-7	29.60	115.10	800	ND
4-Bromophenyl-phenylether	101-55-3	23.00	88.80	ND	ND
Butylbenzylphthalate	85-68-7	26.30	108.50	ND	ND
4-Chloroaniline	106-47-8	16.40	65.70	ND	ND
4-Chloro-3-methylphenol	59-50-7	23.00	92.00	ND	ND
2-Chloronaphthalene	91-58-7	26.30	111.80	ND	ND
2-Chlorophenol	95-57-8	23.00	95.30	ND	ND .
4-Chlorophenyl-phenylether	59-50-7	26.30	105.20	ND	ND
Chrysene	218-01-9	16.40	62.50	ND	ND
Dibenz(a,h)anthracene	53-70-3	19.70	75.60	ND	ND
Dibenzofuran	132-64-9	26.30	98.60	ND	ND
Di-n-butylphthalate	84-74-2	23.00	98.60	<mdl< td=""><td>ND</td></mdl<>	ND
1,2-Dichlorobenzene	95-50-1	26.30	101.90	ND	ND
1,3-Dichlorobenzene	541-73-1	23.00	92.00	ND	ND
1,4-Dichlorobenzene	106-46-7	23.00	98.60	ND	ND
3,3'-Dichlorobenzidine	91-94-1	29.60	121.60	ND	ND
2,4-Dichlorophenol	120-83-2	29.60	111.80	ND	ND
Diethylphthalate	84-66-2	19.70	82.20	ND	ND
2,4-Dimethylphenol	105-67-9	46.00	177.50	ND	ND
Dimethylphthalate	131-11-3	23.00	95.30	ND	ND
4,6-Dinitro-2-methylphenol	534-52-1	19.70	82.20	ND	ND
2,4-Dinitrophenol	51-28-5	808.70	3231.40	ND	ND
2,4-Dinitrotoluene	121-14-2	46.00	190.70	ND	ND

E:Estimated, ND: Not detected

MDL: Method Detection Limit

PQL: Practical Quantitation Limit

**.** 

## GC/MS SVO RESULTS

LAB SAMPLE # 404039-9

#### RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6 FT-B60 DUP

SAMPLED (Date/Time/Init): 4/18/94, JD ANALYSIS (Date/Time/Init): 4/25/94, 18:26, TAG EXTRACTION (Date/Init): 4/21/94, JG

DATE REPORTED: 4/28/94	Dilution Factor: 32.87			Sample Matrix:	SOLID
	Extract Method: 3550		Analysis Method: 8270		
	%Solids: 100.0			Dry-weight Basis	Apparent
				ug/Kg	υς/Κα
TARGET COMPOUND LIST	CAS Number	MDL	POL	Concentration	Blank Conc.
2,6-Dinitrotoluene	606-20-2	23.00	85.50	ND	ND
Di-n-octylphthalate	117-84-0	42.70	167.70	ND	ND
Fluoranthene	206-44-0	23.00	88.80	ND	ND
Fluorene	7782-41-4	23.00	98.60	ND	ND
Hexachlorobenzene	118-74-1	19.70	85.50	ND	ND
Hexachlorobutadiene	87-68-3	26.30	108.50	ND	ND
Hexachlorocyclopentadiene	77-47-4	19.70	78.90	ND	ND
Hexachloroethane	67-72-1	23.00	92.00	ND	ND
Indeno(1,2,3-cd)pyrene	193-39-5	19.70	75.60	ND	ND
Isophorone	78-59-1	·29.60	115.10	ND	ND
2-Methylnaphthalene	91-57-6	32.90	124.90	ND	ND
2-Methylphenol	95-48-7	29.60	118.30	ND	ND
3-,4-Methylphenol	106-44-5	13.10	49.30	ND	ND
Naphthalene	91-57-6	29.60	118.30	ND	ND
2-Nitroaniline	88-74-4	19.70	78.90	ND	ND
3-Nitroaniline	99-09-3	78.90	322.20	ND	ND
4-Nitroaniline	100-01-6	32.90	128.20	ND	ND
Nitrobenzene	98-95-3	29.60	115.10	ND	ND
2-Nitrophenol	88-75-5	23.00	95.30	ND	ND
4-Nitrophenol	100-01-6	243.30	973.00	ND	ND
N-Nitrosodiphenylamine*	86-30-6	32.90	124.90	ND	ND
N-Nitroso-di-n-propylamine	621-64-7	26.30	26.30	ND	ND
Pentachlorophenol	87-86-5	19.70	85.50	ND	ND
Phenanthrene	85-01-8	23.00	85.50	ND	ND
Phenol	108-95-2	13.10	62.50	ND	ND
Pyrene	129-00-0	23.00	95.30	ND	ND
1,2,4-Trichlorobenzene	120-82-1	26.30	108.50	ND	ND
2,4,5-Trichlorophenol	95-95-4	26.30	111.80	ND	ND
2,4,6-Trichlorophenol	88-06-02	26.30	98.60	ND	
2-Fluorophenol (surrogate std)	%Recovery	[OK=25-12]	1]	67	56
Phenol-d6 (surrogate std)	%Recovery	[OK=24-113	3]	70	60
Nitrobenzene-d5 (surrogate std)	%Recovery	[OK=23-120	0]	65	60
2-Fluorobiphenyl (surrogate std)	%Recovery	[OK=30-115	5]	65	62
2,4,6-Tribromophenol (surrogate std)	%Recovery	[OK=19-122	2]	78	7 <u>3</u>
Terphenyl-d14 (surrogate std)	<u>%Recovery</u>	[OK=18-137	7]		99
E: Estimated, ND: Not detected MDL: Method Detection Limit	*as Diphenylamine DO: Diluted Out	C	I: Coeluting	Interference	

PQL: Practical Quantitation Limit
# GC/MS SVO RESULTS

### LAB SAMPLE # 404039-EBS

**a**.a

EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init): 4/21/94, JG 4/25/94, 16:11, TAG

DATE REPORTED: 4/27/94

Analysis Method: 8270

	<u>.</u>	QC LIMITS	Actual BS
BLANK SPIKE	CAS Number	% Recovery	% Recovery
Phenol	108-95-2	29-90	50
2-Chlorophenol	95-57-8	25-102	58
1,4-Dichlorobenzene	106-46-7	28-104	59
N-Nitroso-di-n-propylamine	621-64-7	41-126	73
1,2,4-Trichlorobenzene	120-82-1	38-107	63
4-Chloro-3-methylphenol	59-50-7	26-103	51
Acenaphthene	83-32-9	31-137	62
4-Nitrophenol	100-02-7	11-114	70
2,4-Dinitrotoluene	121-14-2	28-89	70
Pentachlorophenol	87-86-5	17-109	73
Рутепе	129-00-0	35-142	74
2-Fluorophenol	% Recovery	[OK=25-121]	58
Phenol-d6	% Recovery	[OK=24-113]	58
Nitrobenzene-d5	% Recovery	[OK=23-120]	61
2-Fluorobiphenyl	% Recovery	[OK=30-115]	59
2,4,6-Tribromophenol	% Recovery	[OK=19-122]	73
Terphenyl-d14	% Recovery	[OK=18-137]	71

### GC/MS SVO RESULTS

RAYMARK INDUSTRIES SAMPLE #: TS*B-7*4-6 FT-B60

### SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

4/18/94, JD 4/21/94, JG 4/25/94, 20:31, TAG

DATE REPORTED: 4/27/94

Sample Matrix: SOLID Analysis Method: 8270

		QC LIMITS	Actual MS
MATRIX SPIKE	CAS Number	% Recovery	% Recovery
Phenol	108-95-2	29-90	60
2-Chlorophenol	95-57-8	25-102	65
1,4-Dichlorobenzene	106-46-7	28-104	72
N-Nitroso-di-n-propylamine	621-64-7	41-126	73
1,2,4-Trichlorobenzene	120-82-1	38-107	64
4-Chloro-3-methylphenol	59-50-7	26-103	71
Acenaphthene	83-32-9	31-137	70
4-Nitrophenol	100-02-7	11-114	67
2,4-Dinitrotoluene	121-14-2	28-89	70
Pentachlorophenol	87-86-5	17-109	60
Pyrene	129-00-0	35-142	84
2-Fluorophenol	% Recovery	[OK=25-121]	68
Phenol-d6	% Recovery	[OK=24-113]	66
Nitrobenzene-d5	% Recovery	[OK=23-120]	64
2-Fluorobiphenyl	% Recovery	[OK=30-115]	66
2,4,6-Tribromophenol	% Recovery	[OK=19-122]	74
Terphenyl-d14	% Recovery	[OK=18-137]	78

ANALYSIS (Date/Time/Init):

4/25/94, 21:13, TAG

		QC LIMITS	Actual MSD	· ·
MATRIX SPIKE DUPLICATE	CAS Number	% Recovery	% Recovery	%RPD
Phenol	108-95-2	29-90	57	6
2-Chlorophenol	95-57-8	25-102	69	5
1,4-Dichlorobenzene	106-46-7	28-104	78	7
N-Nitroso-di-n-propylamine	621-64-7	41-126	83	12
1,2,4-Trichlorobenzene	120-82-1	38-107	68	6
4-Chloro-3-methylphenol	59-50-7	26-103	75	6
Acenaphthene	83-32-9	31-137	79	12
4-Nitrophenol	100-02-7	11-114	78	15
2,4-Dinitrotoluene	121-14-2	28-89	81	14
Pentachlorophenol	87-86-5	17-109	66	10
Pyrene	129-00-0	35-142	79	6
2-Fluorophenol	% Recovery	[OK=25-121]	72	
Phenol-d6	% Recovery	[OK=24-113]	70	2
Nitrobenzene-d5	% Recovery	[OK=23-120]	68	
2-Fluorobiphenyl	% Recovery	[OK=30-115]	67	
2,4,6-Tribromophenol	% Recovery	[OK=19-122]	78	
Terphenyl-d14	% Recovery	[OK=18-137]	94	

CI: Coeluting Interference

#### LAB SAMPLE # 404039-1 PROJECT # 854

#### SAMPLE # TS*B-10*1.5-4 **RAYMARK INDUSTRIES**

### **GC/ECD-PCB RESULTS**

12672-29-6

11097-69-1

11096-82-5

37324-23-5

11100-14-4

% Recovery [OK = 60-150]

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init) : ANALYSIS (Date/Time/Init): 4/21/94, 20:40, DLL

4/20/94, KK, JG

ND

ND

ND

18,000E

10.000E

DO

ND

ND

ND

ND

ND

119

DATE REPORTED: 4/25/94

Quant Factor: 34.0 Sample Matrix: SOLID Extract Method: 3550 Analysis Method: 8080 Dry-weight Basis % Solid: 96.0 Apparent Concentration Blank Conc. TARGET COMPOUND LIST CAS Number MDL ug/Kg ug/Kg 12674-11-2 3404 ND ND 11104-28-2 6808 ND ND 11141-16-5 3404 ND ND 53469-21-9 ND 3404 ND

3404

3404

3404

3404

3404

E. Eastmand	ND: Not Detected	DO: Diluted Ou	
E: Estimated	ND: NOT Detected.	DO: Duniea Ou	L

Aroclor-1016

Aroclor-1221

Aroclor-1232

Aroclor-1242

Aroclor-1248

Aroclor-1254

Aroclor-1260

Aroclor-1262

Aroclor-1268

Decachlorobiphenyl (surrogate std)

MDL: Method Detection Limit

#### LAB SAMPLE # 404039-2 PROJECT # 854

### GC/ECD-PCB RESULTS

SAMPLE # TS*B-68*2-4 RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init) : 4/20/94, KK, JG ANALYSIS (Date/Time/Init): 4/21/94, 21:32, DLL

DATE REPORTED: 4/25/94

Quant Factor: 75.9 Sample Matrix: SOLID Extract Method: 3550 <u>Analysis Method: 8080</u> % Solid: 86.7 [Dry-weight Basis] Apparent

	. 70 SOIL	1.00.7	DI y-weight Dasis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	7586	ND	ND
Aroclor-1221	11104-28-2	15171	ND	ND
Aroclor-1232	11141-16-5	7586	ND	ND
Aroclor-1242	53469-21-9	7586	ND	ND
Aroclor-1248	12672-29-6	7586	ND	ND
Aroclor-1254	11097-69-1	7586	ND	ND
Aroclor-1260	11096-82-5	7586	ND	ND
Aroclor-1262	37324-23-5	7586	36,000E	ND
Aroclor-1268	11100-14-4	7586	23,000E	ND
· · · · · · · · · · · · · · · · · · ·		· · · ·		
Decachlorobiphenyl (surrogate std)	% Recovery $[OK = 60]$	-150]	DO	119

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit

### LAB SAMPLE # 404039-3 PROJECT # 854

### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-7*4-6 **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init): 4/20/94, KK 4/20/94, KK, JG ANALYSIS (Date/Time/Init): 4/21/94, 22:24, DLL

DATE REPORTED: 4/25/94	Quant Factor:	53.6	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	61.2	Dry-weight Basis	Apparent
	·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	5361	ND	ND
Aroclor-1221	11104-28-2	10722	ND	ND
Aroclor-1232	11141-16-5	5361	ND	ND
Aroclor-1242	53469-21-9	5361	ND	ND
Aroclor-1248	12672-29-6	5361	ND	ND
Aroclor-1254	11097-69-1	5361	ND	ND
Aroclor-1260	11096-82-5	5361	ND	ND
Arocior-1262	37324-23-5	5361	13,000E	ND
Aroclor-1268	11100-14-4	5361	8,600E	ND
Decachlorobiphenyl (surrogate std)	% Recovery [OK = 60-1	50]	DO	119

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit

### LAB SAMPLE # 404039-4 PROJECT # 854

### GC/ECD-PCB RESULTS

SAMPLE # TS*B-68*6-8 **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init): 4/20/94, KK, JG ANALYSIS (Date/Time/Init): 4/21/94, 23:16, DLL

D

ATE REPORTED: 4/25/94	Quant Factor:	223.3	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	74.6	Dry-weight Basis	Apparent
	· · · · · · · · · · · · · · · · · · ·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	22326	ND	ND
Aroclor-1221	11104-28-2	44653	ND	ND
Aroclor-1232	11141-16-5	22326	ND	ND
Aroclor-1242	53469-21-9	22326	ND	ND
Aroclor-1248	12672-29-6	22326	ND	ND
Aroclor-1254	11097-69-1	22326	ND	ND
Aroclor-1260	11096-82-5	22326	ND	ND
Aroclor-1262	37324-23-5	22326	77,000E	ND
Aroclor-1268	11100-14-4	22326	47,000E	ND
Decachlorobiphenyl (surrogate std)	% Recovery [OK = 60-1	1501	DO	119

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit

#### LAB SAMPLE # 404039-5 PROJECT # 854

### GC/ECD-PCB RESULTS

### SAMPLE # TS*B-10*1.5-4, FT-B60 **RAYMARK INDUSTRIES**

SAMPLED (Date/Time/Init): EXTRACTED (Date / Init): ANALYSIS (Date/Time/Init): 4/22/94, 00:08, DLL

4/18/94, JD 4/20/94, KK, JG

D

ATE REPORTED: 4/25/94	Quant Factor:	0.33	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid:	99.3	Dry-weight Basis	Apparent
		]	Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	33.0	ND	ND
Aroclor-1221	11104-28-2	66.1	ND	ND
Aroclor-1232	11141-16-5	33.0	ND	ND
Aroclor-1242	53469-21-9	33.0	ND	ND
Aroclor-1248	12672-29-6	33.0	ND	ND
Aroclor-1254	11097-69-1	33.0	ND	ND
Aroclor-1260	11096-82-5	33.0	ND	ND
Aroclor-1262	37324-23-5	33.0	ND	ND
Aroclor-1268	11100-14-4	33.0	ND	ND
Decachlorobiphenyl (surrogate std)	% Recovery [OK = 60-1]	50]	118	119

### LAB SAMPLE # 404039-6 PROJECT # 854

### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*2-4, FT-B60 **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init) : 4/20/94, KK, JG ANALYSIS (Date/Time/Init): 4/22/94, 01:01, DLL

Quant Factor	: 0.33	Sample Matrix:	SOLID
Extract Method:	3550	Analysis Method:	8080
% Solid:	99.9	Dry-weight Basis	Apparent
		Concentration	Blank Conc.
CAS Number	MDL	ug/Kg	ug/Kg
12674-11-2	32.7	ND	ND
11104-28-2	65.4	ND	ND
11141-16-5	32.7	ND	ND
53469-21-9	32.7	ND	ND
12672-29-6	32.7	ND	ND
11097-69-1	32.7	ND	ND
11096-82-5	32.7	ND	ND
37324-23-5	32.7	ND	ND
11100-14-4	32.7	ND	ND
	Extract Method: % Solid: CAS Number 12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5 11100-14-4	Extract Method:         3550 % Solid:           2010         MDL           12674-11-2         32.7           11104-28-2         65.4           11141-16-5         32.7           53469-21-9         32.7           12672-29-6         32.7           11097-69-1         32.7           11096-82-5         32.7           37324-23-5         32.7           11100-14-4         32.7	Extract Method:       3550       Analysis Method:         % Solid:       99.9       Dry-weight Basis         Concentration       ug/Kg         12674-11-2       32.7       ND         11104-28-2       65.4       ND         11141-16-5       32.7       ND         53469-21-9       32.7       ND         12672-29-6       32.7       ND         11097-69-1       32.7       ND         11096-82-5       32.7       ND         37324-23-5       32.7       ND         11100-14-4       32.7       ND

Decachlorobiphenyl (surrogate std)	% Recovery [OK = 60-150]	122	119

#### ·LAB SAMPLE # 404039-7 PROJECT # 854

### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-7*4-6, FT-B60 **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init): 4/22/94, KK ANALYSIS (Date/Time/Init): 4/22/94, 17:52, DLL

DATE REPORTED: 4/25/94	Quant Factor:	0.33	Sample Matrix:	SOLID
	Extract Method:	3550	Analysis Method:	8080
	% Solid: 9	9.5	Dry-weight Basis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	33.0	ND	ND
Aroclor-1221	11104-28-2	66.1	ND	ND
Aroclor-1232	11141-16-5	33.0	ND	ND
Aroclor-1242	53469-21-9	33.0	ND	ND
Aroclor-1248	12672-29-6	33.0	ND	ND
Aroclor-1254	11097-69-1	33.0	ND	ND
Aroclor-1260	11096-82-5	33.0	ND	ND
Aroclor-1262	37324-23-5	33.0	ND	ND
Aroclor-1268	11100-14-4	33.0	ND	ND
		· · · · ·		
Tetrachloro-m-xylene (surrogate std)	% Recovery [OK = 60-15	0]	133	128

#### LAB SAMPLE # 404039-8 PROJECT # 854

### **GC/ECD-PCB RESULTS**

SAMPLE # TS*B-68*6-8, FT-B60 **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init): ANALYSIS (Date/Time/Init): 4/22/94, 02:44, DLL

4/20/94, KK, JG

DATE REPORTED: 4/25/94	Quant Factor: Extract Method	0.33	Sample Matrix: Analysis Method:	SOLID
	% Solid:	99.7	Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	33.2	ND	ND
Aroclor-1221	11104-28-2	66.3	ND	ND
Aroclor-1232	11141-16-5	33.2	ND	ND
Aroclor-1242	53469-21-9	33.2	ND	ND
Aroclor-1248	12672-29-6	33.2	ND	ND
Aroclor-1254	11097-69-1	33.2	ND	ND
Aroclor-1260	11096-82-5	33.2	ND	ND
Aroclor-1262	37324-23-5	33.2	<mdl< td=""><td>ND</td></mdl<>	ND
Aroclor-1268	11100-14-4	33.2	ND	ND
	······			
Decachlorobiphenyl (surrogate std)	% Recovery [OK = 60-3	150]	127	119

#### LAB SAMPLE # 404039-9 PROJECT # 854

SOLID

#### **GC/ECD-PCB RESULTS**

### SAMPLE # TS*B-7*4-6, FT-B60, DUP **RAYMARK INDUSTRIES**

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTED (Date / Init): 4/20/94, KK, JG ANALYSIS (Date/Time/Init): 4/22/94, 07:03, DLL

DATE REPORTED: 4/25/94

Quant Factor: 0.33 Sample Matrix: Extract Method: 3550 Analysis Method: 8080

	70 0011	u. 100	Diy-weight Dasis	Apparent
			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	ug/Kg	ug/Kg
Aroclor-1016	12674-11-2	33.0	ND	ND
Aroclor-1221	11104-28-2	66.0	ND	ND
Aroclor-1232	11141-16-5	33.0	ND	ND
Aroclor-1242	53469-21-9	33.0	ND	ND
Aroclor-1248	12672-29-6	33.0	ND	ND
Aroclor-1254	11097-69-1	33.0	ND	ND
Aroclor-1260	11096-82-5	33.0	ND	ND
Aroclor-1262	37324-23-5	33.0	- ND	ND
Aroclor-1268	11100-14-4	33.0	ND	ND

Decachlorobiphenyl (surrogate std)	% Recovery [OK = 60-150]	119	119

#### LAB SAMPLE # 404039-1 PROJECT # 854

98

DO

### SAMPLE # TS*B-10*1.5-4 **RAYMARK INDUSTRIES**

### GC-ECD CHLORINATED PESTICIDE RESULTS

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

4/18/94, JD 4/20/94, KK, JG 4/22/94, 17:10, DLL

DATE REPORTED: 4/25/94	Quant Factor:	34.0		Sample Matrix:	SOLID
	Extract Method: 3550			Analysis Method:	8080
	% Solids:	96.0		Dry-weight Basis	Apparent
				Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin /	309-00-2	681	2,723	ND	ND
alpha-BHC	319-84-6	681	2,723	ND	ND
beta-BHC	319-85-7	681	2,723	ND	ND
gamma-BHC (Lindane)	58-89-9	681	2,723	ND	ND
delta-BHC	319-86-8	681	2,723	ND	ND
alpha-Chlordane	5103-71-9	681	2,723	ND	ND
gamma-Chlordane	5103-74-2	681	2,723	ND	ND
4,4'-DDD	72-54-8	1,362	5,447	ND	ND
4,4'-DDE	72-55-9	1,362	5,447	ND	ND
4,4'-DDT	50-29-3	1,362	5,447	ND	ND
Dieldrin	60-57-1	1,362	5,447	ND	ND
Endosulfan I	959-98-8	681	2,723	ND	ND
Endosulfan II	33213-65-9	1,362	5,447	ND	ND
Endosulfan sulfate	1031-07-8	1,362	5,447	ND	ND
Endrin	72-20-8	1,362	5,447	ND	ND
Endrin aldehyde	7421-93-4	1,362	5,447	ND	ND
Endrin ketone	53494-70-5	1,362	5,447	ND	ND
Heptachlor	76-44-8	681	2,723	ND	ND
Heptachlor epoxide	1024-57-3	681	2,723	ND	ND
Methoxychlor	72-43-5	6,808	27,233	ND	ND
Toxaphene	8001-35-2	34,041	136,166	ND	ND
	<u></u>			······································	

Decachlorobiphenyl (surrogate std)

% Recovery [OK = 60-150]

E: Estimated, ND: Not Detected, DO: Diluted Out

MDL: Method Detection Limit

PQL: Practical Quantitation Limit

SAMPLE # TS*B-68*2-4

**RAYMARK INDUSTRIES** 

#### LAB SAMPLE # 404039-2 PROJECT # 854

### **GC-ECD CHLORINATED** PESTICIDE RESULTS

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init): 4/22/94, 17:48, DLL

4/18/94, JD 4/20/94, KK, JG

DATE REPORTED: 4/25/94	Quant Factor: Extract Method:	75.9		Sample Matrix: Analysis Method:	SOLID 8080
	% Solids:	86.7		Dry-weight Basis	Apparent
				Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	1,517	6,069	ND	ND
alpha-BHC	319-84-6	1,517	6,069	ND	ND
beta-BHC	319-85-7	1,517	6,069	ND	ND
gamma-BHC (Lindane)	58-89-9	1,517	6,069	ND ND	ND
delta-BHC	319-86-8	1,517	6,069	ND	ND
alpha-Chlordane	5103-71-9	1,517	6,069	ND	ND
gamma-Chlordane	5103-74-2	1,517	6,069	ND	ND
4,4'-DDD	72-54-8	3,034	12,137	ND	ND
4,4'-DDE	72-55-9	3,034	12,137	ND	ND
4,4'-DDT	50-29-3	3,034	12,137	ND	ND
Dieldrin	60-57-1	3,034	12,137	ND	ND
Endosulfan I	959-98-8	1,517	6,069	ND	ND
Endosulfan II	33213-65-9	3,034	12,137	ND	ND
Endosulfan sulfate	1031-07-8	3,034	12,137	ND	ND
Endrin	72-20-8	3,034	12,137	ND	ND
Endrin aldehyde	7421-93-4	3,034	12,137	ND	ND
Endrin ketone	53494-70-5	3,034	12,137	ND	ND
Heptachlor	76-44-8	1,517	6,069	ND	ND
Heptachlor epoxide	1024-57-3	1,517	6,069	ND	ND
Methoxychlor	72-43-5	15,171	60,685	ND	ND
Toxaphene	8001-35-2	75,857	303,427	ND	ND

Decachlorobiphenyl (surrogate std)	% Recovery	[OK = 60-150]	DO	98
			······	

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit PQL: Practical Quantitation Limit

#### LAB SAMPLE # 404039-3 PROJECT # 854

### GC-ECD CHLORINATED PESTICIDE RESULTS

SAMPLED (Date/Time/Init): 4/18 EXTRACTION (Date/Init): 4/20 ANALYSIS (Date/Time/Init): 4/22

4/18/94, JD 4/20/94, KK, JG 4/22/94, 18:25, DLL

DATE REPORTED: 4/25/94

SAMPLE # TS*B-7*4-6

RAYMARK INDUSTRIES

Quant Factor: 53.6 Extract Method: 3550 % Solids: 61.2 Sample Matrix: SOLID Analysis Method: 8080

	% Sonds: 01.2			Dry-weight Basis	Apparent
				Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	1,072	4,289	ND	ND
alpha-BHC	319-84-6	1,072	4,289	ND	ND
beta-BHC	319-85-7	1,072	4,289	ND	ND
gamma-BHC (Lindane)	58-89-9	1,072	4,289	ND	ND
delta-BHC	319-86-8	1,072	4,289	ND	ND
alpha-Chlordane	5103-71-9	1,072	4,289	ND	ND
gamma-Chlordane	5103-74-2	1,072	4,289	ND	ND
4,4'-DDD	72-54-8	2,144	8,577	ND	ND
4,4'-DDE	72-55-9	2,144	8,577	ND	ND
4,4'-DDT	50-29-3	2,144	8,577	ND	ND
Dieldrin	60-57-1	2,144	8,577	ND	ND
Endosulfan I	959-98-8	1,072	4,289	ND	ND
Endosulfan II	33213-65-9	2,144	8,577	ND	ND
Endosulfan sulfate	1031-07-8	2,144	8,577	ND	ND
Endrin	72-20-8	2,144	8,577	<mdl< td=""><td>ND</td></mdl<>	ND
Endrin aldehyde	7421-93-4	2,144	8,577	ND	ND
Endrin ketone	53494-70-5	2,144	8,577	ND	ND
Heptachlor	76-44-8	1,072	4,289	ND	ND
Heptachlor epoxide	1024-57-3	1,072	4,289	ND	ND
Methoxychlor	72-43-5	10,722	42,887	ND	ND
Toxaphene	8001-35-2	53,609	214,434	ND	ND

				the second s
Decachlorobiphenyl (surrogate std)	% Recovery	[OK = 60-150]	DO	98

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit PQL: Practical Quantitation Limit



#### LAB SAMPLE # 404039-4 PROJECT # 854

#### SAMPLE # TS*B-68*6-8 **RAYMARK INDUSTRIES**

### **GC-ECD CHLORINATED** PESTICIDE RESULTS

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

4/18/94, JD 4/20/94, KK, JG 4/22/94, 19:03, DLL

DATE REPORTED: 4/25/94	Quant Factor:	223.3		Sample Matrix:	SOLID
•	Extract Method:	3550		Analysis Method:	8080
	% Solids:	74.6	•	Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·	·	·		Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	4,465	17,861	ND	ND
alpha-BHC	319-84-6	4,465	17,861	ND	ND
beta-BHC	319-85-7	4,465	17,861	ND	ND
gamma-BHC (Lindane)	58-89-9	4,465	17,861	ND	ND
delta-BHC	319-86-8	4,465	17,861	ND	ND
alpha-Chlordane	5103-71-9	4,465	17,861	ND	ND
gamma-Chlordane	5103-74-2	4,465	17,861	ND	ND
4,4'-DDD	72-54-8	8,931	35,722	ND	ND
4,4'-DDE	72-55-9	8,931	35,722	ND	ND
4,4'-DDT	50-29-3	8,931	35,722	ND	ND
Dieldrin	60-57-1	8,931	35,722	ND	ND
Endosulfan I	959-98-8	4,465	17,861	ND	ND
Endosulfan II	33213-65-9	8,931	35,722	ND	ND
Endosulfan sulfate	1031-07-8	8,931	35,722	ND	ND
Endrin	72-20-8	8,931	35,722	ND	ND
Endrin aldehyde	7421-93-4	8,931	35,722	ND	ND
Endrin ketone	53494-70-5	8,931	35,722	ND	ND
Heptachlor	76-44-8	4,465	17,861	ND	ND
Heptachlor epoxide	1024-57-3	4,465	17,861	ND	ND
Methoxychlor	72-43-5	44,653	178,612	ND	ND
Toxaphene	8001-35-2	223,265	893,060	ND	ND
		•			

Decachlorobiphenyl (surrogate std)	% Recovery	[OK = 60-150]	DO	98

E: Estimated, ND: Not Detected, DO: Diluted Out MDL: Method Detection Limit **PQL: Practical Quantitation Limit** 

#### LAB SAMPLE # 404039-5 PROJECT # 854

### **GC-ECD CHLORINATED** PESTICIDE RESULTS

SAMPLE # TS*B-10*1.5-4, FT-B60 **RAYMARK INDUSTRIES** 

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

4/18/94, JD 4/20/94, KK, JG 4/22/94, 19:40, DLL

DATE REPORTED: 4/25/94

ATE REPORTED: 4/25/94	Quant Factor:	0.33		Sample Matrix:	SOLID
	Extract Method:	3550		Analysis Method:	8080
	% Solids:	99.3		Dry-weight Basis	Apparent
	<u> </u>			Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	6.6	26	ND	ND
alpha-BHC	319-84-6	6.6	26	ND	ND
beta-BHC	319-85-7	6.6	26	ND	ND
gamma-BHC (Lindane)	58-89-9	6.6	26	ND	ND
delta-BHC	319-86-8	6.6	26	ND	ND
alpha-Chlordane	5103-71-9	6.6	26	ND	ND
gamma-Chlordane	5103-74-2	6.6	26	ND	ND
4,4'-DDD	72-54-8	13	53	ND	ND
4,4'-DDE	72-55-9	13	53	ND	ND
4,4'-DDT	50-29-3	13	53	ND	ND
Dieldrin	60-57-1	13	53	ND	ND
Endosulfan I	959-98-8	6.6	26	ND	ND
Endosulfan II	33213-65-9	13	53	ND	ND
Endosulfan sulfate	1031-07-8	-13	53	ND	ND
Endrin	72-20-8	13	53	ND	ND
Endrin aldehyde	7421-93-4	13	53	ND	ND
Endrin ketone	53494-70-5	13	53	ND	ND
Heptachlor	76-44-8	6.6	26	ND	ND
Heptachlor epoxide	1024-57-3	6.6	26	ND	ND
Methoxychlor	72-43-5	66	264	ND	ND
Toxaphene	8001-35-2	330	1,322	ND	ND

Decachlorobiphenyl (surrogate std)	% Recovery	[OK = 60-150]	97	98

E: Estimated, ND: Not Detected MDL: Method Detection Limit PQL: Practical Quantitation Limit

#### LAB SAMPLE # 404039-6 PROJECT # 854

### GC-ECD CHLORINATED PESTICIDE RESULTS

SAMPLE # TS*B-68*2-4, FT-B60 RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

4/18/94, JD 4/20/94, KK, JG 4/22/94, 23:27, DLL

DATE REPORTED: 4/25/94

Quant Factor: 0.33 Extract Method: 3550 % Solids: 99.9 Sample Matrix: SOLID Analysis Method: 8080

· · · ·	% Solids: 99.9			Dry-weight Basis	Apparent
· · · · · · · · · · · · · · · · · · ·			· · ·	Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	6.5	26	ND	ND
alpha-BHC	319-84-6	6.5	26	ND	ND
beta-BHC	319-85-7	6.5	26	ND	ND
gamma-BHC (Lindane)	58-89-9	6.5	26	ND	ND
delta-BHC	319-86-8	6.5	26	ND	ND
alpha-Chlordane	5103-71-9	6.5	26	ND	ND
gamma-Chlordane	5103-74-2	6.5	26	ND	ND
4,4'-DDD	72-54-8	13	52	ND	ND
4,4'-DDE	72-55-9	13	52	ND	ND
4,4'-DDT	50-29-3	13	52	ND	ND
Dieldrin	60-57-1	13	52	ND	ND
Endosulfan I	959-98-8	6.5	26	ND	ND
Endosulfan II	33213-65-9	13	52	ND	ND
Endosulfan sulfate	1031-07-8	13	52	ND	ND
Endrin	72-20-8	13	52	ND	ND
Endrin aldehyde	7421-93-4	13	52	ND	ND
Endrin ketone	53494-70-5	13	52	ND	ND
Heptachlor	76-44-8	6.5	26	ND	ND
Heptachlor epoxide	1024-57-3	6.5	- 26	ND	ND
Methoxychlor	72-43-5	65	261	ND	ND
Toxaphene	8001-35-2	327	1,307	ND	ND

_				
	Descriptionshimber of (anone sease and)		102	· ^ OO
	LIPC%CDUATADIADPAVI (SUTTAGATP STAL			96
			100	20
_				

E: Estimated , ND: Not Detected MDL: Method Detection Limit PQL: Practical Quantitation Limit

SAMPLE # TS*B-7*4-6, FT-B60 RAYMARK INDUSTRIES

DATE REPORTED: 4/25/94

; >

#### LAB SAMPLE # 404039-7 PROJECT # 854

SOLID

### GC-ECD CHLORINATED PESTICIDE RESULTS

S. 1874 - 7-812 | 1-4

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

Quant Factor: 0.33

4/18/94, JD 4/22/94, KK 4/23/94, 00:05, DLL

Sample Matrix:

	Extract Method: 3550			Analysis Method: 8080		
	Extract Method. 5550			Analysis Method.	0000	
	% Solids: 99.5			Dry-weight Basis	Apparent	
				Concentration	Blank Conc.	
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg	
Aldrin	309-00-2	6.6	26	ND	ND	
alpha-BHC	319-84-6	6.6	26	ND	ND	
beta-BHC	319-85-7	6.6	26	ND	ND	
gamma-BHC (Lindane)	58-89-9	6.6	26	ND	ND	
delta-BHC	319-86-8	6.6	26	ND	ND	
alpha-Chlordane	5103-71-9	6.6	26	ND	ND	
gamma-Chlordane	5103-74-2	6.6	26	ND	ND	
4,4'-DDD	72-54-8	13	53	ND	ND	
4,4'-DDE	72-55-9	13	53	ND	ND	
4,4'-DDT	50-29-3	13	53	ND	ND	
Dieldrin	60-57-1	13	53	ND	ND	
Endosulfan I	959-98-8	6.6	26	ND	ND	
Endosulfan II	33213-65-9	13	53	ND	ND	
Endosulfan sulfate	1031-07-8	13	53	ND	ND	
Endrin	72-20-8	13	53	ND	ND	
Endrin aldehyde	7421-93-4	13	53	ND	ND	
Endrin ketone	53494-70-5	. 13	53	ND	ND	
Heptachlor	76-44-8	6.6	26	ND	ND	
Heptachlor epoxide	1024-57-3	6.6	26	ND	ND	
Methoxychlor	72-43-5	66	264	ND	ND	
Toxaphene	8001-35-2	330	1,321	ND	ND	
			/			

Decachlorobiphenyl (surrogate std)	% Recovery	[OK = 60-150]	130	100

E: Estimated , ND: Not Detected MDL: Method Detection Limit PQL: Practical Quantitation Limit

SAMPLE # TS*B-68*6-8, FT-B60

**RAYMARK INDUSTRIES** 

DATE REPORTED: 4/25/94

### LAB SAMPLE # 404039-8 PROJECT # 854

### GC-ECD CHLORINATED PESTICIDE RESULTS

SAMPLED (Date/Time/Init): EXTRACTION (Date/Init): ANALYSIS (Date/Time/Init):

Quant Factor: 0.33

4/18/94, JD 4/20/94, KK, JG 4/23/94, 00:43, DLL

Sample Matrix: SOLID lethod: 8080

Extract Method: 3550 % Solids: 99.7			Analysis Method: 8080			
			Dry-weight Basis	s Apparent		
			Concentration	Blank Cond		
CAS Number	MDL	PQL	ug/Kg	ug/Kg		
200.00.2	60	27	ND	ND		

			Concentration	I Blank Conc
CAS Number	MDL	PQL	ug/Kg	ug/Kg
309-00-2	6.6	27	ND	ND
319-84-6	6.6	27	ND	ND
319-85-7	6.6	27	ND	ND
58-89-9	6.6	27	ND	ND
319-86-8	6.6	27	ND	ND
5103-71-9	6.6	27	ND	ND
5103-74-2	6.6	27	ND	ND
72-54-8	13	53	ND	ND
72-55-9	13	53	ND	ND
50-29-3	13	53	ND	ND
60-57-1	13	53	ND	ND
959-98-8	6.6	27	ND	ND
33213-65-9	13	53	ND	ND
1031-07-8	13	53	ND	ND
72-20-8	13	53	ND	ND
7421-93-4	13	53	ND	ND
53494-70-5	13	53	ND	ND
76-44-8	6.6	27	ND	ND
1024-57-3	6.6	27	ND	ND
72-43-5	66	265	ND	ND
8001-35-2	332	1,327	ND	ND
	CAS Number         309-00-2         319-84-6         319-85-7         58-89-9         319-86-8         5103-71-9         5103-74-2         72-54-8         72-55-9         50-29-3         60-57-1         959-98-8         33213-65-9         1031-07-8         72-20-8         7421-93-4         53494-70-5         76-44-8         1024-57-3         72-43-5         8001-35-2	CAS Number         MDL           309-00-2         6.6           319-84-6         6.6           319-85-7         6.6           319-85-7         6.6           319-86-8         6.6           319-86-8         6.6           5103-71-9         6.6           72-54-8         13           72-55-9         13           60-57-1         13           959-98-8         6.6           33213-65-9         13           1031-07-8         13           72-20-8         13           7421-93-4         13           76-44-8         6.6           1024-57-3         6.6           72-43-5         66           8001-35-2         332	CAS Number         MDL         PQL           309-00-2         6.6         27           319-84-6         6.6         27           319-85-7         6.6         27           319-85-7         6.6         27           319-85-7         6.6         27           319-86-8         6.6         27           5103-71-9         6.6         27           5103-74-2         6.6         27           72-54-8         13         53           72-55-9         13         53           60-57-1         13         53           60-57-1         13         53           959-98-8         6.6         27           33213-65-9         13         53           72-20-8         13         53           72-20-8         13         53           7421-93-4         13         53           76-44-8         6.6         27           1024-57-3         6.6         27           72-43-5         66         265           8001-35-2         332         1,327	CAS Number         MDL         PQL         ug/Kg           309-00-2         6.6         27         ND           319-84-6         6.6         27         ND           319-85-7         6.6         27         ND           319-85-7         6.6         27         ND           319-85-7         6.6         27         ND           319-85-7         6.6         27         ND           319-86-8         6.6         27         ND           5103-71-9         6.6         27         ND           5103-74-2         6.6         27         ND           72-54-8         13         53         ND           72-55-9         13         53         ND           50-29-3         13         53         ND           60-57-1         13         53         ND           959-98-8         6.6         27         ND           33213-65-9         13         53         ND           72-20-8         13         53         ND           7421-93-4         13         53         ND           76-44-8         6.6         27         ND           72-43-5

	0 December	10V - (0.150)	100	00
Decachiorodipnenyi (surrogate sta)	% Recovery	JOK = 00-100	100 IU	90

E: Estimated, ND: Not Detected MDL: Method Detection Limit PQL: Practical Quantitation Limit





#### LAB SAMPLE # 404039-9 PROJECT # 854

### **GC-ECD CHLORINATED** PESTICIDE RESULTS

### SAMPLE # TS*B-68*7*4-6, FT-B60, DUP RAYMARK INDUSTRIES

SAMPLED (Date/Time/Init): 4/18/94, JD EXTRACTION (Date/Init): 4/20/94, KK ANALYSIS (Date/Time/Init): 4/23/94, 01:21, DLL

4/20/94, KK, JG

DATE REPORTED: 4/25/94	Quant Factor: 0.33			Sample Matrix:	SOLID
	Extract Method: 3550 A			Analysis Method:	8080
	% Solids: 100			Dry-weight Basis	Apparent
				Concentration	Blank Conc.
TARGET COMPOUND LIST	CAS Number	MDL	PQL	ug/Kg	ug/Kg
Aldrin	309-00-2	6.6	26	ND	ND
alpha-BHC	319-84-6	6.6	26	ND	ND
beta-BHC	319-85-7	6.6	- 26	ND	ND
gamma-BHC (Lindane)	58-89-9	6.6	26	ND	ND
delta-BHC	319-86-8	6.6	26	ND	ND
alpha-Chlordane	5103-71-9	6.6	26	ND	ND
gamma-Chlordane	5103-74-2	6.6	26	ND	ND
4,4'-DDD	72-54-8	13	53	ND	ND
4,4'-DDE	72-55-9	13	53	ND	ND
4,4'-DDT	50-29-3	13	53	ND	ND
Dieldrin	60-57-1	13	53	ND	ND
Endosulfan I	959-98-8	· 6.6	26	ND	ND
Endosulfan II	33213-65-9	13	53	ND	ND
Endosulfan sulfate	1031-07-8	13	53	ND	ND
Endrin	72-20-8	13	. 53	ND	ND .
Endrin aldehyde	7421-93-4	13	53	ND	ND
Endrin ketone	53494-70-5	13	53	ND	ND
Heptachlor	76-44-8	6.6	26	ND	ND
Heptachlor epoxide	1024-57-3	6.6	26	ND	ND
Methoxychlor	72-43-5	66	264	ND	ND
Toxaphene	8001-35-2	330	1,319	ND	ND
Descelorobishasul (sugrages and)	% Decover	IOK - 4	0.1501	116	08

E: Estimated , ND: Not Detected MDL: Method Detection Limit PQL: Practical Quantitation Limit



### LAB SAMPLE # 404039-1 PROJECT # 854

### RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4

### SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/21/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

### DATE REPORTED : 4/25/94

#### MATRIX : SOIL

Digestion Method : 3051 Quant Factor : 109

				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	14.3	57.1	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.218	0.872	41	0.003 E
Total Cadmium (Cd)	6010	0.327	1.31	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Chromium (Cr)	6010	2.07	8.28	7.5 E	<dl< td=""></dl<>
Total Lead (Pb)	6010	4.03	16.1	30	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.87	27.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.327	1.31	0.74 E	<dl< td=""></dl<>

MDL: Method Detection Limit

PQL: Practical Quantitation Limit

E: Estimated

#### LAB SAMPLE # 404039-2 PROJECT # 854

### RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4

SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

#### DATE REPORTED : 4/25/94

#### MATRIX : SOIL

Digestion Method : 3051 Quant Factor : 105

	· · · · ·			Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	13.8	55.0	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.210	0.840	2,200	0.003 E
Total Cadmium (Cd)	6010	0.315	1.26	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Chromium (Cr)	6010	2.00	7.98	40	<dl< td=""></dl<>
Total Lead (Pb)	6010	3.89	15.5	4,000	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.62	26.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.315	1.26	0.89 E	<dl< td=""></dl<>

MDL : Method Detection Limit

PQL : Practical Quantitation Limit

E: Estimated

#### LAB SAMPLE # 404039-3 PROJECT # 854

### RCRA METALS RESULTS

### RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6

SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

### DATE REPORTED: 4/25/94

MATRIX : SOIL Digestion Method : 3051 Quant Factor : 157

		<u> </u>		Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	20.6	82.3	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.314	1.26	1,800	0.003 E
Total Cadmium (Cd)	6010	0.471	1.88	1.2 E	<dl< td=""></dl<>
Total Chromium (Cr)	6010	2.98	11.9	69	<dl< td=""></dl<>
Total Lead (Pb)	6010	5.81	23.2	14,000	<dl< td=""></dl<>
Total Mercury (Hg)	.7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	9.89	39.6	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.471	1.88	2.5	<dl< td=""></dl<>

÷

MDL: Method Detection Limit

PQL: Practical Quantitation Limit

E : Estimated

#### LAB SAMPLE # 404039-4 PROJECT # 854

### RCRA METALS RESULTS

### RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8

### SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

#### DATE REPORTED: 4/25/94

#### MATRIX : SOIL

Digestion Method : 3051 Quant Factor : 129

				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	<b>16.9</b> t	67.6	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.258	1.03	1,400	0.003 E
Total Cadmium (Cd)	6010	0.387	1.55	0.39 E	<dl< td=""></dl<>
Total Chromium (Cr)	6010	2.45	9.80	63	<dl< td=""></dl<>
Total Lead (Pb)	6010	4.77	19.1	13,000	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	8.13	32.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.387	1.55	1.3 E	<dl< td=""></dl<>

MDL : Method Detection Limit PQL : Practical Quantitation Limit

E : Estimated

LAB SAMPLE # 404039-5 PROJECT # 854

### RCRA METALS RESULTS

### RAYMARK INDUSTRIES SAMPLE # TS*B-10*1.5-4, FT-B60

SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

### DATE REPORTED : 4/25/94

### MATRIX : SOIL Digestion Method : 3051 Quant Factor : 101

			•	Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L_
Total Arsenic (As)	6010	13.2	52.9	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.202	0.808	37	0.003 E
Total Cadmium (Cd)	6010	0.303	1.21	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Chromium (Cr)	6010	1.92	7.68	4.9 E	<dl< td=""></dl<>
Total Lead (Pb)	6010	3.74	14.9	35	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.36	25.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.303	1.21	0.44 E	<dl< td=""></dl<>

Ĵ

MDL : Method Detection Limit

PQL : Practical Quantitation Limit

E : Estimated

#### LAB SAMPLE # 404039-6 PROJECT # 854

### RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-68*2-4, FT-B60

SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

### DATE REPORTED: 4/25/94

#### MATRIX : SOIL Digestion Method : 3051

Quant Factor: 104

· · ·				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	13.6	54.5	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.208	0.832	1,100	0.003 E
Total Cadmium (Cd)	6010	0.312	1.25	0.47 E	<dl< td=""></dl<>
Total Chromium (Cr)	6010	1.98	7.90	49	<dl< td=""></dl<>
Total Lead (Pb)	6010	3.85	15.4	6,300	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.55	26.2	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.312	1.25	0.80 E	<dl< td=""></dl<>

MDL : Method Detection Limit PQL : Practical Quantitation Limit E : Estimated

### LAB SAMPLE # 404039-7 PROJECT # 854

### RCRA METALS RESULTS

#### RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6, FT-B60

SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

### DATE REPORTED: 4/25/94

### MATRIX : SOIL

Digestion Method : 3051 Quant Factor : 103

	Results	Blank*			
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	13.5	54.0	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.206	0.824	670	0.003 E
Total Cadmium (Cd)	6010	0.309	1.24	1.8	<dl< td=""></dl<>
Total Chromium (Cr)	6010	1.96	7.83	75	<dl< td=""></dl<>
Total Lead (Pb)	6010	7.62	30.5	18,000	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.49	26.0	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.309	1.24	2.8	<dl< td=""></dl<>

MDL: Method Detection Limit

PQL: Practical Quantitation Limit

E: Estimated

### LAB SAMPLE # 404039-8 PROJECT # 854

### RCRA METALS RESULTS

### RAYMARK INDUSTRIES SAMPLE # TS*B-68*6-8, FT-B60

### SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

### DATE REPORTED: 4/25/94

#### MATRIX : SOIL

Digestion Method : 3051 Quant Factor : 102

· · · · · · · · · · · · · · · · · · ·				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	13.4	53.4	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.204	0.816	830	0.003 E
Total Cadmium (Cd)	6010	0.306	1.22	0.75 E	<dl< td=""></dl<>
Total Chromium (Cr)	6010	1.94	7.75	68	<dl< td=""></dl<>
Total Lead (Pb)	6010	7.55	30.2	17,000	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.43	25.7	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.306	1.22	1.5	<dl< td=""></dl<>

MDL: Method Detection Limit

PQL: Practical Quantitation Limit

E : Estimated

### LAB SAMPLE # 404039-9 PROJECT # 854

### RCRA METALS RESULTS

### RAYMARK INDUSTRIES SAMPLE # TS*B-7*4-6, FT-B60 DUP

SAMPLED (Date/Time/Init) : 4/18/94, JD ICP ANALYSIS (Date/Init) : 4/25/94, LD CV ANALYSIS (Date/Init) : 4/22/94, EC

### DATE REPORTED: 4/25/94

### MATRIX : SOIL Digestion Method : 3051 Quant Factor : 100

				Results	Blank*
ANALYTE	EPA Method	MDL	PQL	mg/Kg	mg/L
Total Arsenic (As)	6010	13.1	52.4	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Barium (Ba)	6010	0.200	0.800	820	0.003 E
Total Cadmium (Cd)	6010	0.300	1.20	1.3	<dl< td=""></dl<>
Total Chromium (Cr)	6010	1.90	7.60	56	<dl< td=""></dl<>
Total Lead (Pb)	6010	3.70	14.8	9,200	<dl< td=""></dl<>
Total Mercury (Hg)	7471	0.521	2.08	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Selenium (Se)	6010	6.30	25.2	<dl< td=""><td><dl< td=""></dl<></td></dl<>	<dl< td=""></dl<>
Total Silver (Ag)	6010	0.300	1.20	2.1	<dl< td=""></dl<>

MDL: Method Detection Limit

PQL : Practical Quantitation Limit

E : Estimated

### PROJECT # 854-404039

### ANALYTICAL RESULTS

PROJECT NAME:Raymark IndustriesMATRIX :SoilSAMPLED (Date/Time/Init) :4/18/94, JDPARAMETER:Total Organic CarbonEPA METHOD:9060ANALYSIS (Date/Init):4/22/94, MCB

### DATE REPORTED:

#### 4/22/94

SAMPLE ID #	LAB ID #	DL	Result	Units
TS*B-10*1.5-4	404039-1	450	1,000	mg/Kg
TS*B-68*2-4	404039-2	990	30,000	mg/Kg
TS*B-7*4-6	404039-3	820	40,000	mg/Kg
TS*B-68*6-8	404039-4	700	38,000	mg/Kg
TS*B-10*1.5-4:FT-B60	404039-5	560	<dl< td=""><td>mg/Kg</td></dl<>	mg/Kg
TS*B-68*2-4:FT-B60	404039-6	625	6,100	mg/Kg
TS*B-7*4-6:FT-B60	404039-7	1195	38,000	mg/Kg
TS*B-68*6-8:FT-B60	404039-8	1555	35,000	mg/Kg
TS*B-7*4-6:FT-B60 dup	404039-9	1275	28,000	mg/Kg

DL: Detection Limit

# PROJECT: P027698

ξ

TRIANGLE LABS.

801 Capitola Dr. • Durham, NC 27713 Phone: (919) 544-5729 • FAX: (919) 544-5491 KABER & ASSOCIATIES

# SUMMARY REPORTS

_____

Page 2

03:32 PM 5/10/94

KIBER & ASSOCIAT

## PCDD/PCDF SUMMARY REPORT SAMPLE: 404039-5 PROJECT ID: 570

SPECIFIC ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	Definitions:	
		· ·		]	
2,3,7.8-TCDD	. ND	0.066	ND	CONC -	The concentration, given in
1,2,3,7,8-PeCDD	ND	0.12	ND		parts per billion (ppb) or parts
1,2,3,4,7,8-HxCDD	ND	0.19	ND		per trillion (ppt).
1,2,3,6,7,8-HxCDD	ND	0.095	ND		
1,2,3,7,8,9-HxCDD	ND	0.16	ND	DL -	The detection limit, given in
1,2.3,4,6,7,8-HpCDD	ND	0.1 <u>9</u>	ND		parts per billion (ppb), parts
OCDD	ND	0.25	ND	· .	per trillion (ppt), or in
					nanograms (ng).
2,3.7.8-TCDF	• ND	0.058	ND		
1,2,3,7,8-PeCDF	ND	0.091	ND	BLANK -	The concentration of the
2,3,4,7,8-PeCDF	ND	0.094	ND		method blank.
1,2,3,4,7,8-HxCDF	ND	0.11	ND		<u>.</u>
1,2,3,6,7,8-HxCDF	ND	0.083	ND	ND -	(Non-Detect) The con-
2,3,4,6,7,8-HxCDF	ND ·	0.15	ND		centration of the analyte is
1,2,3,7,8,9-HxCDF	ND	0.2	ND		less than the detection limit.
1,2,3,4,6,7,8-HpCDF	ND	0.16	ND		. ·
1,2,3,4,7,8,9-HpCDF	ND	0.17	ND	NR -	(Non-Reportable) The con-
OCDF	ND	0.32	ND		centration is not reportable due
	· ·			1	to a matrix effect or interference

TOTAL ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)		
					ι
TOTAL TCDD	ND	0.07	ND		•
TOTAL PeCDD	ND	0.12	ND	1	• •
TOTAL HxCDD	ND	0.19	ND		
TOTAL HpCDD	ND	0.19	ND		
TOTAL TCDF	ND	0.06	ND		
TOTAL PeCDF	ND	0.09	ND		
TOTAL HxCDF	ND	0.20	ND		х х х
TOTAL HpCDF	ND	0.17	ND		

#### TOTAL DIOXINS/FURANS: ND

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

For information, please reference the following when contacting our Technical Services Department:

TLH Project: P027698 TLH Batch:

B027698S TLH File: T942089



801 Capitola Dr. • Durham, NC 27713 Phone: (919) 544-5729 · FAX: (919) 544-5491

Page 3

Page

ŝ

KIBER & ASSOCIATE

# PCDD/PCDF SUMMARY REPORT

SAMPLE: 40439-6 PROJECT ID: 570

SPECIFIC ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	Definitions	
2,3,7,8-TCDD	ND	0.064	ND	CONC -	The concentration, given in
1,2,3,7,8-PeCDD	ND	0.11	ND		parts per billion (ppb) or parts
1,2,3,4,7,8-HxCDD	ND	0.18	ND		per trillion (ppt).
1,2,3,6,7,8-HxCDD	ND	0.092	ND		
1,2,3,7,8,9-HxCDD	ND	0.15	ND	DL -	The detection limit, given in
1,2,3,4,6,7,8-HpCDD	ND	0.19	ND		parts per billion (ppb), parts
OCDD	ND	0.24	ND		per trillion (ppt), or in
	· · ·				nanograms (ng).
2,3,7,8-TCDF	ND	0.056	ND		- ,
1,2,3,7,8-PeCDF	ND	0.087	ND	BLANK -	The concentration of the
2,3,4,7,8-PeCDF	ND	0.091	ND	· ·	method blank.
1,2,3,4,7,8-HxCDF	ND	0.1	ND	1	
1,2,3,6,7,8-HxCDF	ND	0.08	ND	ND -	(Non-Detect) The con-
2,3,4,6,7,8-HxCDF	ND	0.15	ND		centration of the analyte is
1.2.3.7.8.9-HxCDF	ND	0.19	ND		less than the detection limit.
1,2,3,4,6,7,8-HpCDF	ND	0.15	ND		
1,2,3,4,7,8,9-HpCDF	ND	0.16	ND	NR -	(Non-Reportable) The con-
OCDF	ND	0.3	ND		centration is not reportable due
					to a matrix effect or interference

TOTAL ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	-		
	ND	0.06				
TOTAL PeCDD	ND	0.11	NÐ	1		
TOTAL HxCDD	ND	0.18	ND			
TOTAL HpCDD	ND	0.19	ŅD		N.	
		Ì	1			
TOTAL TCDF	ND	0.06	· ND	)	,	
TOTAL PeCDF	ND	0.09	ND			
TOTAL HxCDF	ND	0.19	ND		•	
TOTAL HpCDF	ND	0.16	ND			
н. Г						

#### TOTAL DIOXINS/FURANS: ND

### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

For information, please reference the following when contacting our Technical Services Department:

TLH Project: P027698 TLH Batch: **TLH File:** 

B027698S T942090

# TRIANGLE LABS.

801 Capitola Dr. • Durham, NC 27713 Phone: (919) 544-5729 • FAX: (919) 544-5491

03:32 PM 5/10/94

9

.

KIBER & ASSOCIATES

# PCDD/PCDF SUMMARY REPORT SAMPLE: 404039-7

1.

PROJECT ID: 570

SPECIFIC ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	Definitions	
2,3,7,8-TCDD	ND	0.067	ND	CONC -	The concentration, given in
1,2,3,7,8-PeCDD	ND	0.12	ND		parts per billion (ppb) or parts
1,2,3,4,7,8-HxCDD	ND	0.19	ND		per trillion (ppt).
1,2,3,6,7,8-HxCDD	ND	0.096	ND		
1,2,3,7,8,9-HxCDD	ND	0.16	ND	DL -	The detection limit, given in
1,2,3,4,6,7,8-HpCDD	ND	0.1 <del>9</del>	ND		parts per billion (ppb), parts
OCDD	ND	0.26	ND		per trillion (ppt), or in
2,3,7,8-TCDF	0.438	0.058	ND		nanografiis (ng).
1,2,3,7,8-PeCDF	0.115	0.091	ND	BLANK -	The concentration of the
2,3,4,7,8-PeCDF	0.299	0.095	ND		method blank.
1,2,3,4,7,8-HxCDF	0.37	0.11	ND		
1,2,3,6,7,8-HxCDF	ND	0.083	ND	ND -	(Non-Detect) The con-
2,3,4,6,7,8-HxCDF	ND	0.15	ND		centration of the analyte is
1,2,3,7,8,9-HxCDF	ND	0.2	ND	<b>1</b>	less than the detection limit.
1,2,3,4,6,7,8-HpCDF	0.731	0.16	ND	1	
1,2,3,4,7,8,9-HpCDF	ND	0.17	ND	NR –	(Non-Reportable) The con-
OCDF	ND	0.32	ND	-	centration is not reportable due to a matrix effect or interference

TOTAL ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)
	ND	0.07	ND
TOTAL PeCDD	ND	0.12	ND
TOTAL HxCDD	ND	0.19	ND
TOTAL HpCDD	ND	0.19	ND
TOTAL TCDF	1.91	0.06	ND
TOTAL PeCDF	3.02	0.10	ND
TOTAL HxCDF	0.71	0.20	ND
TOTAL HpCDF	0.731	0.17	ND
			· · ·
L	-		

#### TOTAL DIOXINS/FURANS: 6.371 PPB

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 0.24 PPB

For information, please reference the following when contacting our Technical Services Department:

 TLH Project:
 P027698

 TLH Batch:
 B027698S

 TLH File:
 T942091

TRIANGLE LABS.

801 Capitola Dr. • Durham, NC 27713 Phone: (919) 544-5729 • FAX: (919) 544-5491 Page 4

KIBER & ASSOCIATE

# PCDD/PCDF SUMMARY REPORT SAMPLE: 404039-8 PROJECT ID: 570

SPECIFIC ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	Definitions:	٦
2.3.7.8-TCDD	ND	0.068	ND	CONC - The concentration, given in	
1,2,3,7,8-PeCDD	ND	0.12	ND	parts per billion (ppb) or parts	1
1,2,3,4,7,8-HxCDD	ND	0.19	ND	per trillion (ppt).	
1,2,3,6,7,8-HxCDD	ND	0.098	ND		
1,2,3,7,8,9-HxCDD	ND	0.17	ND	DL – The detection limit, given in	
1,2,3,4,6,7,8-HpCDD	• ND	0.2	ND	parts per billion (ppb), parts	
OCDD	ND	0.26	ND	per trillion (ppt), or in	
			·	nanograms (ng).	1
2,3,7,8-TCDF	0.141	0.059	ND ·		
1,2,3,7,8-PeCDF	ND	0.093	ND	BLANK – The concentration of the	
2,3,4,7,8-PeCDF	ND	0.097	ND	method blank.	
1,2,3,4,7,8-HxCDF	ND	0.11	ND		
1,2,3,6,7,8-HxCDF	ND	0.085	ND	ND - (Non-Detect) The con-	1
2,3,4,6,7,8-HxCDF	ND	0.16	ND ·	centration of the analyte is	
1,2,3,7,8,9-HxCDF	ND	0.2	ND	less than the detection limit.	
1,2,3,4,6,7,8-HpCDF	ND	0.16	ND		
1,2,3,4,7,8,9-HpCDF	ND	0.17	ND	NR - (Non-Reportable) The con-	
OCDF	ND	0.33	ND	centration is not reportable due	ļ
				to a matrix effect or interference	ľ

TOTAL ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)
1			
TOTAL TCDD	ND	0.07	ND
TOTAL PeCDD	ND	0.12	ND
TOTAL HxCDD	ND	0.19	ND
TOTAL HpCDD	ND	0.20	ND
TOTAL TCDF	0.576	0.06	· ND
TOTAL PeCDF	0.216	0.10	ND
TOTAL HxCDF	ND	0.20	ND
TOTAL HpCDF	ND	0.17	ND

#### TOTAL DIOXINS/FURANS: 0.792 PPB

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 0.014 PPB

For information, please reference the following when contacting our Technical Services Department:

TLH Project: P027698 TLH Batch: B027698S TLH File: T942092

TRIANGLE LABS.

801 Capitola Dr. • Durham, NC 27713 Phone: (919) 544-5729 • FAX: (919) 544-5491 8

Page 5

KIBER&ASSOCIATES

# PCDD/PCDF SUMMARY REPORT SAMPLE: 40439-6 PROJECT ID: 570

SPECIFIC ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	Definitions:
2.3.7,8-TCDD	ND	0.064	ND	CONC - The concentration, given in
1,2,3,7,8-PeCDD	ND	0.11	ND	parts per billion (ppb) or parts
1,2,3,4,7,8-HxCDD	ND	0.18	ND	per trillion (ppt)
1,2,3,6,7,8-HxCDD	ND	0.092	ND	
1,2,3,7,8,9-HxCDD	ND	0.15	ND	DL – The detection limit, given in
1,2,3,4.6.7,8-HpCDD	ND	0.19	ND	parts per billion (ppb), parts
OCDD	ND	0.24	ND	per trillion (ppt), or in
		· .	· .	nanograms (ng).
2,3,7,8-TCDF	ND	0.056	ND	
1,2,3,7,8-PeCDF	ND	0.087	ND	BLANK - The concentration of the
2,3,4,7,8-PeCDF	ND .	0.091	ND	method blank.
1,2,3,4,7,8-HxCDF	ND	0.1	ND	
1,2,3,6,7,8-HxCDF	ND	0.08	ND	ND - (Non-Detect) The con-
2,3,4,6,7,8-HxCDF	ND	0.15	ND	centration of the analyte is
1,2,3,7,8,9-HxCDF	ND	0.19	• ND	less than the detection limit.
1,2,3,4,6,7,8-HpCDF	ND	0.15	ND	
1,2,3,4,7,8,9-HpCDF	ND	0.16	ND	NR - (Non-Reportable) The con-
OCDF	ND	0.3	ND ·	centration is not reportable due
			· ·	to a matrix effect or interference

TOTAL ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	_
TOTAL TCDD	ND	0.06	ND	
TOTAL PeCDD	ND	0.11	ND	
TOTAL HxCDD	ND	0.18	ND	
TOTAL HpCDD	ND	0.19	ND	
TOTAL TCDF	ND	0.06	ND	
TOTAL PeCDF	ND	0.09	ND	
TOTAL HxCDF	ND	0.19	ND	
TOTAL HpCDF	ND	0.16	ND	
•				
		•		

#### TOTAL DIOXINS/FURANS: ND

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

For information, please reference the following when contacting our Technical Services Department:

TLH Project:P027698TLH Batch:B027698STLH File:T942090

TRIANGLE LABS.

801 Capitola Dr. • Durham, NC 27713 Phone: (919) 544-5729 • FAX: (919) 544-5491 .

Page 6

03:32 PM 5/10/94

9
# PCDD/PCDF SUMMARY REPORT SAMPLE: DFBLK27698 BLANK PROJECT ID: 570

SPECIFIC ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	Definitions:	
2,3,7,8-TCDD	ND	0.069	-	CONC -	The concentration, given in
1,2,3,7,8-PeCDD	ND	0.12	•	_	parts per billion (ppb) or parts
1,2,3,4,7,8-HxCDD	ND	0.2			per trillion (ppt).
1,2,3,6,7,8-HxCDD	ND	0.099	-		
1,2,3,7,8,9-HxCDD	ND	0.17	-	DL -	The detection limit, given in
1,2,3,4,6,7,8-HpCDD	ND	0.2	· _		parts per billion (ppb), parts
OCDD	ND	0.26	-	· ·	per trillion (ppt), or in
					nanograms (ng).
2,3,7,8-TCDF	ND	0.06	•		
1,2,3,7,8-PeCDF	ND	0.094	-	BLANK -	The concentration of the
2,3,4,7,8-PeCDF	ND	0.098	-		method blank.
1,2,3,4,7.8-HxCDF	ND	0.11	1 <u>1</u> 1		
1,2,3,6,7,8-HxCDF	ND	0.086	· - ·	ND -	(Non-Detect) The con-
2,3,4,6,7,8-HxCDF	ND	0.16	· •		centration of the analyte is
1,2,3,7,8,9-HxCDF	ND	0.21	-		less than the detection limit.
1,2,3,4,6,7,8-HpCDF	ND	0.16	-		
1.2.3.4.7.8.9-HpCDF	ND	0.18	<b>_</b>	NR –	(Non-Reportable) The con-
OCDF	ND	0.33	-		centration is not reportable due
					to a matrix effect or interference

TOTAL ANALYTES	CONC (PPB)	DL (PPB)	BLANK (PPB)	
	· · ·		- ·	
TOTAL TCDD	ND	0.07	-	
TOTAL PeCDD	ND	0.12	-	
TOTAL HxCDD	ND	0.20	-	
TOTAL HpCDD	ND	0.20	-	
TOTAL TCDF	ND	0.06	-	
TOTAL PeCDF	ND	0.10	-	
TOTAL HXCDF	ND	0.21	•	
TOTAL HpCDF	ND	0.18	· •	
				·

#### TOTAL DIOXINS/FURANS: ND

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

For information, please reference the following when contacting our Technical Services Department:

TLH Project: P027698 TLH Batch: B027698S TLH File: T942073

# TRIANGLE LABS.

801 Capitola Dr. • Durham, NC 27713 Phone: (919) 544-5729 • FAX: (919) 544-5491 Page 7

10

# PROJECT: P027698

**TRIANGLE LABS** 

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

51

**SAMPLE REPORTS** 

03:32 PM 5/10/94

# PROJECT: P027698 BATCH: B027698S FILE: T942089

# PCDD/PCDF ANALYSIS REPORT

SAMPLE: 404039-5

QUOTE NO: 200001209 DATE COLLECTED: 4/18/94 ACCESSION NO: 80-83-1 PROJECT ID: 570 DATE RECEIVED: 4/20/94 RETCHECK: T942088 PROJECT P.O.: 570 DATE EXTRACTED: 5/10/94 CONCAL: T942087 SAMPLE ORIGIN: GA DATE ANALYZED: 5/7/94 ICAL: 1000115T DATE PROCESSED 5/10/94 SAMPLE MATRIX: SOIL INSTRUMENT: VG 70T SAMPLE SIZE: 10.3766 G DETECTION LIMIT: MDL GC COLUMN: DB-5 0.25 mm 8280 **DILUTION FACTOR:** 1 METHOD: GC COLUMN SN: #32

SPECIFIC ANALYTES	IONS	CONC (PPB)	DL (PPB)	EMPC (PPB)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	320/322	ND	0.066	-	-	-	U
1,2,3,7,8-PeCDD	356/358	ND	0.12	-	-	•	U
1,2,3,4,7,8-HxCDD	390/392	ND	0.19	-	· •	•	U
1,2,3,6,7,8-HxCDD	390/392	ND	0.095	•	• -	•	U
1,2,3,7,8,9-HxCDD	390/392	ND	0.16	•		-	U
1,2,3,4,6,7,8-HpCDD	424/426	ND	0.19	•	•	•	U
OCDD	458/460	ND	0.25	•	•		Ū
2,3,7,8-TCDF	304/306	ND	0.058	•	-	•	U
1,2,3,7,8-PeCDF	340/342	ND	0.091	-	•	•	U
2,3,4,7,8-PeCDF	340/342	ND	0.094	•	-	-	U
1,2,3,4,7,8-HxCDF	374/376	ND	0.11	•	-	•	U
1,2,3,6,7,8-HxCDF	374/376	ND	0.083	· •	•	•	U
2,3,4,6,7,8-HxCDF	374/376	ND	0.15	•	•	-	·U
1,2,3,7,8,9-HxCDF	374/376	ND	0.2		•	•	U
1,2,3,4,6,7,8-HpCDF	408/410	ND	0.16	-	-	•	U
1,2,3,4,7,8,9-HpCDF	408/410	ND	0.17	•	•	•	U
OCDF	442/444	ND	0.32	-	•	-	U
· · · · · · · · · · · · · · · · · · ·							

TOTAL ANALYTES	NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDOW (min)	FLAGS
	0	ND	0.07	0.402	22 11 26 21	
TOTAL PeCDD	0	ND ND	0.12	1.81	28.11 - 32.26	<u> </u>
TOTAL HxCDD	0	ND	0.19	-	30.71 - 33.39	U
TOTAL HpCDD	0	ND	0.19	•	36.17 - 37.63	Ŭ
TOTAL TCDF	0	ND	0.06	0.198	20.91 - 26.24	x
TOTAL PeCDF	0	ND	0.094	•	26.30 - 32.47	U
TOTAL HxCDF	0	ND	0.2		33.74 - 38.61	U
TOTAL HpCDF	0	ND	0.17	-	40.89 - 43.25	U

NOTE: Concentrations, EMPCs, and EDLs are calculated on a DRY weight basis.

Reviewed by: AMANDA LESLIE 5/10/94

Page 36

03:32 PM 5/10/94

52

**TRIANGLE LABS** 

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

### PROJECT: P027698 BATCH: B027698S

# PCDD/PCDF QUALITY CONTROL REPORT

SAMPLE: 404039-5

FILE: T942089

QUOTE NO:	200001209	)	DATE COLLECTED:	4/18/94	ACCESSION NO:	80-83-1
PROJECT ID:	570		DATE RECEIVED:	4/20/94	RETCHECK:	T942088
PROJECT P.O.:	570		DATE EXTRACTED:	5/10/94	CONCAL:	T942087
SAMPLE ORIGIN:	GA		DATE ANALYZED:	5/7/94	ICAL:	1000115T
SAMPLE MATRIX:	SOIL		DATE PROCESSED	5/10/94	INSTRUMENT:	VG 70T
SAMPLE SIZE:	10.3766	G	DETECTION LIMIT:	MDL	GC COLUMN:	DB-5 0.25 mm
DILUTION FACTOR:	1 .		METHOD:	8280	GC COLUMN SN:	#32

IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
316/318	1.65	34%	40%-120%	0.79	24.03	·Y
332/334	1.9	39%	40%-120%	0.77	24.87	Y
402/404	2.31	48%	40%-120%	1.25	37.42	
420/422	4.32	45%	40%-120%	1.05	40.88	
470/472	4.87	51%	25%-120%	0.90	48.17	-
· · ·	IONS 316/318 332/334 402/404 420/422 470/472	IONS         CONC (PPB)           316/318         1.65           332/334         1.9           402/404         2.31           420/422         4.32           470/472         4.87	IONS         CONC (PPB)         % REC.           316/318         1.65         34%           332/334         1.9         39%           402/404         2.31         48%           420/422         4.32         45%           470/472         4.87         51%	IONS         CONC (PPB)         % REC.         QC LIMITS           316/318         1.65         34%         40%-120%           332/334         1.9         39%         40%-120%           402/404         2.31         48%         40%-120%           420/422         4.32         45%         40%-120%           470/472         4.87         51%         25%-120%	IONS         CONC (PPB)         % REC.         QC LIMITS         RATIO           316/318         1.65         34%         40%-120%         0.79           332/334         1.9         39%         40%-120%         0.77           402/404         2.31         48%         40%-120%         1.25           420/422         4.32         45%         40%-120%         1.05           470/472         4.87         51%         25%-120%         0.90	IONS         CONC (PPB)         % REC.         QC LIMITS         RATIO         RT           316/318         1.65         34%         40%-120%         0.79         24.03           332/334         1.9         39%         40%-120%         0.77         24.87           402/404         2.31         48%         40%-120%         1.25         37.42           420/422         4.32         45%         40%-120%         1.05         40.88           470/472         4.87         51%         25%-120%         0.90         48.17

RECOVERY STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	332/334	NA	NA	NA	0.78	24.65	
13C12-1,2,3,4,7,8,9-HxCDD	402/404	NA	NA	NA	1.27	37.93	

CLEAN-UP STANDARD	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RŤ	FLAGS
37CI4-TCDD	328/NA	1.05	44%	40%-120%	NA	24.88	-

#### Flags:

- U The compound was analyzed for but not detected at or above the detection limit.
- J --The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL -The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- EMPC -The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.
  - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

**TRIANGLE LABS** 

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 · FAX: (713) 240-5341

53

# PCDD/PCDF ANALYSIS REPORT

PROJECT: P027698 BATCH: B027698S FILE: T942090

200001209

570

570 GA

SOIL

10.7943

G

QUOTE NO:

PROJECT ID:

PROJECT P.O.:

SAMPLE ORIGIN:

SAMPLE MATRIX:

DILUTION FACTOR: 1

SAMPLE SIZE:

SAMPLE: 40439-6

0.25 mm

DATE COLLECTED: 4/18/94 ACCESSION NO: 80-83-2 DATE RECEIVED: 4/20/94 **RETCHECK: T942088** DATE EXTRACTED: 5/10/94 CONCAL: T942087 DATE ANALYZED: 5/7/94 ICAL: 1000115T DATE PROCESSED 5/10/94 INSTRUMENT: VG 70T DETECTION LIMIT: MDL GC COLUMN: DB-5 METHOD: 8280 GC COLUMN SN: #32

SPECIFIC ANALYTES	IONS	CONC (PPB)	DL (PPB)	EMPC (PPB)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	320/322		0.064	÷	•	<u> </u>	
1,2,3,7,8-PeCDD	356/358	ND	0.11			•	U
1,2,3,4,7,8-HxCDD	390/392	NŅ	0.18	•	-	` <b>-</b> .	U
1,2,3,6,7,8-HxCDD	390/392	ND	0.092 ·	-		•	Ų
1,2,3,7,8,9-HxCDD	390/392	ND	0.15	-	•	-	U
1,2,3,4,6,7,8-HpCDD	424/426	ND	0.19	· •	-		U
OCDD -	458/460	ND	0.24	-		•	U
2,3,7,8-TCDF	304/306	ND	0.056	+	-		U
1,2,3,7,8-PeCDF	340/342	ND	0.087	-	•	-	υ
2,3,4,7,8-PeCDF	340/342	ND	0.091	•	•	-	U
1,2,3,4,7,8-HxCDF	374/376	ND	0.1	-	•	-	U
1,2,3,6,7,8-HxCDF	374/376	ND	0.08		-		U
2,3,4,6,7,8-HxCDF	374/376	ND	0.15	-	•	-	U
1,2,3,7,8,9-HxCDF	374/376	ND	0.19	•	-	-	U
1,2,3,4,6,7,8-HpCDF	408/410	ND	0.15		• .	-	υ
1,2,3,4,7,8,9-HpCDF	408/410	ND	0.16	•	•	-	U
OCDF	442/444	ND	0.3	• .	-	-	U

TOTAL ANALYTES	NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	ND	0.06	0.526	22.09 - 26.19	x
TOTAL PeCDD	0	ND	0.11	2.33	28.09 - 32.24	X
TOTAL HxCDD	0	ND	0.18		30.71 - 33.39	U
TOTAL HpCDD	0	ND	0.19	•	36.17 - 37.63	U
TOTAL TCDF	0	ND	0.06	0.524	20.91 - 26.24	x
TOTAL PeCDF	0	ND	0.091	0.102	26.30 - 32.47	X
TOTAL HxCDF	0	ND	0.19	-	33.76 - 38.63	U
TOTAL HpCDF	0	ND	0.16	-	40.91 - 43.27	U

NOTE: Concentrations, EMPCs, and EDLs are calculated on a DRY weight basis.

Reviewed by: AMANDA LESLIE 5/10/94

**TRIANGLE LABS** 

Page 42

58 03:32 PM 5/10/94

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

# PROJECT: P027698 BATCH: B027698S FILE: T942090

# PCDD/PCDF QUALITY CONTROL REPORT

SAMPLE: 40439-6

DILUTION FACTOR:	1	METHOD:	8280	GC COLUMN SN:	#32		
SAMPLE SIZE:	10.7943 G	DETECTION LIMIT:	MDL	GC COLUMN:	DB-5	0.25 mm	
SAMPLE MATRIX:	SOIL	DATE PROCESSED	5/10/94	INSTRUMENT:	VG 70T		
SAMPLE ORIGIN:	GA	DATE ANALYZED:	5/7/94	. ICAL:	1000115T	000115T	
PROJECT P.O.:	570	DATE EXTRACTED:	5/10/94	_ CONCAL:	T942087		
PROJECT ID:	570	DATE RECEIVED:	4/20/94	RETCHECK:	<: T942088		
QUOTE NO:	200001209	200001209 DATE COLLECTED: 4/18/94		ACCESSION NO:	80-83-2		

INTERNAL STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDF	316/318	1.3	28%	40%-120%	0.79	24.03	
13C12-2,3,7,8-TCDD	332/334	1.47	32%	40%-120%	· 0.79	24.85	Y
13C12-1,2,3,6,7,8-HxCDD	402/404	1.93	42%	40%-120%	1.26	37.42	•
13C12-1,2,3,4,6,7,8-HpCDF	420/422	3.85	42%	40%-120%	1.05	40.90	
13C12-OCDD	470/472	4.27	46%	25%-120%	0.89	48.20	

RECOVERY STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
· · · · · · · · · · · · · · · · · · ·							
13C12-1,2,3,4-TCDD	332/334	NA	NA	NA	0.78	24.65	•
13C12-1,2,3,4,7,8,9-HxCDD	402/404	NA	NA	NA	1.26	37.92	-

CLEAN-UP STANDARD	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
		·					
37CI4-TCDD	328/NA	0.841	36%	40%-120%	NA	24.87	Y

#### Flags:

- U The compound was analyzed for but not detected at or . above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- EMPC The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.
  - NO The total number of peaks identified as analytes , within the retention time window.
- % REC The percent recovery of the indicated standard.

# **TRIANGLE LABS**

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341 59

				KIB	RI& A	SSOC	JATE
PROJECT: P027	698		PCDL	PCDF A	NALYS	IS RE	PORT
BATCH: B027	698S	2-			SAMP	LE: 40	4039-7
FILE: T942	091						-
QUOTE NO: 2000012	109	DATE COLLECTE	D: 4/18/94	A	CCESSION NO:	80-83-3	
PROJECT ID: 570	·,	DATE RECEIVED:	4/20/94		RETCHECK:	T942088	
PROJECT P.O.: 570		DATE EXTRACTE	D: 5/10/94		CONCAL:	T942087	
SAMPLE ORIGIN: GA	· · · ·	DATE ANALYZED:	5/7/94		ICAL:	1000115T	
SAMPLE MATRIX: SOIL		DATE PROCESSE	D 5/10/94		INSTRUMENT:	VG 70T	
SAMPLE SIZE: 10.3133	G	DETECTION LIMIT	MDL	_	GC COLUMN:	DB-5	0.25 mm
DILUTION FACTOR: 1		METHOD:	8280	G	C COLUMN SN:	#32	
SPECIFIC ANALYTES	IONS	CONC (PPB)	DL (PPB)	EMPC (PPB)	RATIO	RT (min)	FLAGS
2.3.7.8-TCDD	320/322	ND -	0.067				U
1.2.3.7.8-PeCDD	356/358	ND	0.12		•		
1.2.3.4.7.8-HxCDD	390/392	ND	0.19				<u>U</u>
1.2.3.6.7.8-HxCDD	390/392	ND	0.096		. •		U
1,2,3,7,8,9-HxCDD	390/392	ND	0.16	<u> </u>	-		U
1,2,3,4,6,7,8-HpCDD	424/426	ND ND	0.19				
OCDD	458/460	ND	0.26	-	•	•	U
2,3,7,8-TCDF	304/306	0.438	0.058	-	0.75	24.08	J
1,2,3,7,8-PeCDF	340/342	0.115	0.091		1.64	29.43	J
2,3,4,7,8-PeCDF	340/342	0.299	0.095	-	1.52	30.60	J
1,2,3,4,7,8-HxCDF	374/376	0.37	0.11	<u> </u>	1.24	35.83	J
1,2,3,6,7,8-HxCDF	374/376	ND	0.083	<u> </u>	• •	-	<u> </u>
2,3,4,6,7,8-HxCDF	374/376	ND	0.15	• • •		•	U
1,2,3,7,8,9-HxCDF	374/376	ND	0.2		· •	-	<u> </u>
1,2,3,4,6,7,8-HpCDF	408/410	0.731	0.16	•	1.02	40.88	J
1,2,3,4,7,8,9-HpCDF	408/410	ND	0.17	-	-	-	U
OCDF	442/444	ND ⁻	0.32		<b></b>	-	<u> </u>
	NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)		OW (min)	FLAGS

TOTAL ANALYTES	NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDOW (min)	FLAGS
	·					
TOTAL TCDD	0	ND	0.07	0.544	22.11 - 26.21	X
TOTAL PeCDD	0	ND	0.12	1.71	28.11 - 32.26	X
TOTAL HxCDD	0	ND	0.19	•	30.71 - 33.39	U
TOTAL HpCDD	0	ND	0.19	• • • • • • • • •	36.17 - 37.63	U
TOTAL TCDF	12	1.91	0.06	2.43	20.91 - 26.24	-
TOTAL PeCDF	11	3.02	0.095	-	26.30 - 32.47	• ·
TOTAL HxCDF	2	0.71	0.2	•	33.74 - 38.61	-
TOTAL HpCDF	1	0.731	0.17	-	40.89 - 43.25	•

NOTE: Concentrations, EMPCs, and EDLs are calculated on a DRY weight basis.

Reviewed by: AMANDA LESLIE 5/10/94

Page 38

03:32 PM 5/10/94

54

# **TRIANGLE LABS**

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341



### PROJECT: P027698 BATCH: B027698S FILE: T942091

# PCDD/PCDF QUALITY CONTROL REPORT

SAMPLE: 404039-7

QUOTE NO:	200001209	DATE COLLECTED:	4/18/94	ACCESSION NO:	80-83-3		
PROJECT ID:	570	DATE RECEIVED:	4/20/94	RETCHECK:	T942088		
PROJECT P.O.:	570	DATE EXTRACTED: 5/10/94		CONCAL:	T942087		
SAMPLE ORIGIN:	GA	DATE ANALYZED: 5/7/94		ICAL: 100		1000115T	
SAMPLE MATRIX:	SOIL	DATE PROCESSED	5/10/94	INSTRUMENT	VG 70T		
SAMPLE SIZE:	10.3133 G	DETECTION LIMIT:	MDL	GC COLUMN:	DB-5	0.25 mm	
DILUTION FACTOR:	1	METHOD:	8280	. GC COLUMN SN	#32		

INTERNAL STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDF	316/318	1.85	38%	40%-120%	0.79	24.03	Y
13C12-2,3,7,8-TCDD	332/334	2.11	44%	40%-120%	0.78	24.87	
13C12-1,2,3,6,7,8-HxCDD	402/404	2.77	57%	40%-120%	1.26	37.42	•
13C12-1,2,3,4,6,7,8-HpCDF	420/422	5.06	52%	40%-120%	1.05	40.88	-
13C12-OCDD	470/472	5.8	60%	25%-120%	0.91	48.15	

RECOVERY STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	332/334	NA	NÁ	NA	0.78	24.65	
13C12-1,2,3,4,7,8,9-HxCDD	402/404	NA	NA	NA	1.26	37.93	•

CLEAN-UP STANDARD	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
37CI4-TCDD	328/NA	1.29	53%	40%-120%	NA	24.87	-

#### Flags:

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- EMPC The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.
  - NO The total number of peaks identified as analytes within the retention time window.

% REC - The percent recovery of the indicated standard.

### **TRIANGLE LABS**

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

55

# PCDD/PCDF ANALYSIS REPORT

 PROJECT:
 P027698

 BATCH:
 B027698S

 FILE:
 T942092

SAMPLE: 404039-8

QUOTE NO:	200001209	DATE COLLECTED:	4/18/94	ACCESSION NO:	80-83-4	
PROJECT ID:	570	DATE RECEIVED	4/20/94	RETCHECK:	T942088	
PROJECT P.O.:	570	DATE EXTRACTED:	5/10/94	CONCAL:	T942087	
SAMPLE ORIGIN:	GA	DATE ANALYZED:	5/7/94	ICAL:	1000115T	
SAMPLE MATRIX:	SOIL	DATE PROCESSED	5/10/94	INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10.0862 G	DETECTION LIMIT:	MDL	GC COLUMN:	DB-5 0.25 mm	
DILUTION FACTOR:	1	METHOD:	8280	GC COLUMN SN:	#32	

SPECIFIC ANALYTES	IONS	CONC (PPB)	DL (PPB)	EMPC (PPB)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	320/322	ND	0.068	-	-	•	U
1,2,3,7,8-PeCDD	356/358	ND	0.12		-	•	U
1,2,3,4,7,8-HxCDD	390/392	ND	0.19	-	-	•	U
1,2,3,6,7,8-HxCDD	390/392	ND	0.098	- <u>·</u>	•	•	Ū
1,2,3,7,8,9-HxCDD	390/392	ND	0.17	-	•	-	U
1,2,3,4,6,7,8-HpCDD	424/426	ND	0.2	-	-	-	U
OCDD	458/460	ND	0.26	-	• ·		Ū
2,3,7,8-TCDF	304/306	0.141	0.059	-	0.75	24.07	J
1,2,3,7,8-PeCDF	340/342	ND	0.093	-	•	-	U
2,3,4,7,8-PeCDF	340/342	ND	0.097	•	•	-	U
1,2,3,4,7,8-HxCDF	374/376	ND	0.11	•	-	-	U
1,2,3,6,7,8-HxCDF	374/376	ND	0.085	•	•	-	U
2,3,4,6,7,8-HxCDF	374/376	ND	0.16	-	•	-	U
1,2,3,7,8,9-HxCDF	374/376	ND	0.2		•	-	U
1,2,3,4,6,7,8-HpCDF	408/410	ND	0.16	-	-	-	U
1,2,3,4,7,8,9-HpCDF	408/410	ND	0.17	-	-	•	U
OCDF	442/444	ND	0.33	•	•	•	U

TOTAL ANALYTES	NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDOW (min)	FLAGS
			0.07	0.510	22.00 26.10	<b>v</b>
TOTAL TODD		NU	0.07	0.519	22.09 - 20.19	<u> </u>
TOTAL PeCDD	0	ND	0.12	2	28.09 - 32.24	X
TOTAL HxCDD	0	ND	0.19	-	30.71 - 33.39	U
TOTAL HpCDD	0	ND	0.2	-	36.17 - 37.63	U
TOTAL TCDF	6	0.576	0.06	0.839	20.91 - 26.24	-
TOTAL PeCDF	1	0.216	0.097	0.34	26.30 - 32.47	•
TOTAL HxCDF	0	ND	0.2	-	33.76 - 38.63	U
TOTAL HpCDF	0	ND	0.17	· •	40.91 - 43.27	U

NOTE: Concentrations, EMPCs, and EDLs are calculated on a DRY weight basis.

Reviewed by: AMANDA LESLIE 5/10/94

**TRIANGLE LABS** 

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341



PROJECT: P027698 BATCH: FILE:

B027698S T942092

# PCDD/PCDF QUALITY CONTROL REPORT

SAMPLE: 404039-8

-1°

QUOTE NO:	200001209	DATE COLLECTED:	4/18/94	ACCESSION NO:	80-83-4	
PROJECT ID:	570	DATE RECEIVED:	4/20/94	RETCHECK:	T942088	
PROJECT P.O.:	570	DATE EXTRACTED:	5/10/94	- CONCAL:	T942087	, ,
SAMPLE ORIGIN:	GA	DATE ANALYZED:	5/7/94	ICAL:	1000115T	
SAMPLE MATRIX:	SOIL	DATE PROCESSED	5/10/94	- INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10.0862 G	DETECTION LIMIT:	MDL	GC COLUMN	DB-5	0.25 mm
DILUTION FACTOR:	1	METHOD:	8280	GC COLUMN SN	#32	

INTERNAL STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDF	316/318	1.5	30%	40%-120%	0.79	24.03	Y
13C12-2,3,7,8-TCDD	332/334	1.8	36%	40%-120%	0.77	24.85	Y
13C12-1,2,3,6,7,8-HxCDD	402/404	2.04	41%	40%-120%	1.27	37.42	•
13C12-1,2,3,4,6,7,8-HpCDF	420/422	4.02	41%	40%-120%	1.05	40.90	
13C12-OCDD	470/472	5.01	51%	25%-120%	0.90	48.22	-

RECOVERY STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	332/334	NA	NA	NA	0.78	24.63	 •
13C12-1,2,3,4,7,8,9-HxCDD	402/404	NA	NA	NA	1.27	37.93	-

CLEAN-UP STANDARD	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
37CI4-TCDD	328/NA	1.05	42%	40%-120%	NA	24.87	

#### Flags:

- U The compound was analyzed for but not detected at or above the detection limit
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### **Definitions:**

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL -The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- EMPC The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.

57

- NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

### **TRIANGLE LABS**

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

Page 41

# PROJECT: P027698 BATCH: B027698S FILE: T942073

# PCDD/PCDF ANALYSIS REPORT SAMPLE: DFBLK27698

SAMPLE. DFBLR2/09

BLANK

	200001209		DATE COLLECTED:	NA	ACCESSION NO:	DFBLK	
PROJECT ID:	570		DATE RECEIVED:	NA	RETCHECK:	T942065	
PROJECT P.O.:	570		DATE EXTRACTED:	5/10/94	CONCAL:	T942064	
SAMPLE ORIGIN:	8027698S		DATE ANALYZED:	5/6/94	ICAL:	1000115T	
SAMPLE MATRIX:	SOIL		DATE PROCESSED	5/10/94	INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10	G	DETECTION LIMIT:	MDL	GC COLUMN:	DB-5	0.25 mm
DILUTION FACTOR:	1		METHOD:	8280	GC COLUMN SN:	#32	

SPECIFIC ANALYTES	IONS	CONC (PPB)	DL (PPB)	EMPC (PPB)	RATIO	RT (min)	FLAGS
2,3,7,8-TCDD	320/322	ND	0.069	-	-	-	U
1,2,3,7,8-PeCDD	356/358	ND	0.12	· ·	•	-	U
1,2,3,4,7,8-HxCDD	390/392	ND	0.2	-	•	•	U
1,2,3,6,7,8-HxCDD	390/392	ND	0.099		-	•	U .
1,2,3,7,8,9-HxCDD	390/392	ND	0.17	-	-	-	U
1,2,3,4,6,7,8-HpCDD	424/426	ND /	0.2	• •	-	-	
OCDD	458/460	ND	0.26	•	-	•	.U
·····				<u>.</u>			
2,3,7,8-TCDF	304/306	ND	0.06	-	-	•	U
1,2,3,7,8-PeCDF	340/342	ND	0.094		-	-	U
2,3,4,7,8-PeCDF	340/342	ND	0.098	-	-	-	U
1,2,3,4,7,8-HxCDF	374/376	ND	0.11	-	-	-	U
1,2,3,6,7,8-HxCDF	374/376	ND	0.086	•	-	•	U
2,3,4,6,7,8-HxCDF	374/376	ND	0.16	-	-	•	U
1,2,3,7,8,9-HxCDF	374/376	ND	0.21	-	•	•	U
1,2,3,4,6,7,8-HpCDF	408/410	ND	0.16	<u> </u>	•	-	U
1,2,3,4,7,8,9-HpCDF	408/410	ND	0.18	-	•	-	Ū
OCDF	442/444	ND	0.33	-	•	-	U
							-

TOTAL ANALYTES	NUMBER	CONC (PPB)	DL (PPB)	EMPC (PPB)	RT WINDOW (min)	FLAGS
TOTAL TCDD	0	ND	0.07	0.606	21.94 - 25.99	X
TOTAL PeCDD	0	ND	0.12	1.78	27.84 - 31.96	X
TOTAL HxCDD	0	ND	0.2	-	30.53 - 33.24	U
TOTAL HpCDD	0	NĎ	0.2	-	35.95 - 37.41	U
TOTAL TCDF	0	ND	0.06	0.52	20.76 - 26.00	X
TOTAL PeCDF	0	ND	0.098	-	26.05 - 32.16	
TOTAL HxCDF	0	ND	0.21	-	33.55 - 38.41	U
TOTAL HpCDF	0	ND	0.18	-	40.65 - 42.96	U

I NOTE: Concentrations, EMPCs, and EDLs are calculated on a WET weight basis.

Reviewed by: AMANDA LESLIE 5/10/94

**TRIANGLE LABS** 

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 · FAX: (713) 240-5341

60

Page 4

**这一个人员进行的联邦** 

# KIBER & ASSOCIATES

PROJECT: P027698 BATCH: B027698S FILE: T942073

# PCDD/PCDF QUALITY CONTROL REPORT SAMPLE: DFBLK27698 BLANK

53

QUOTE NO:	200001209	)	DATE COLLECTED:	NA		ACCESSION NO:	DFBLK	
PROJECT ID:	570		DATE RECEIVED:	NA		RETCHECK.	T942065	
PROJECT P.O.:	570	<u> </u>	DATE EXTRACTED:	5/10/94		CONCAL.	T942064	
SAMPLE ORIGIN:	B027698S		DATE ANALYZED:	5/6/94		ICAL:	1000115T	
SAMPLE MATRIX:	SOIL		DATE PROCESSED	5/10/94	· .	INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10	G	DETECTION LIMIT:	MDL		GC COLUMN:	DB-5	0.25 mm
DILUTION FACTOR:	1		METHOD:	8280		GC COLUMN SN	#32	

INTERNAL STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-2,3,7,8-TCDF	316/318	1.5	30%	40%-120%	0.79	23.82	
13C12-2,3,7,8-TCDD	332/334	1.74	35%	40%-120%	0.78	24.67	Y
13C12-1,2,3,6,7,8-HxCDD	402/404	1.91	38%	40%-120%	1.27	37.18	Y
13C12-1,2,3,4,6,7,8-HpCDF	420/422	4.15	42%	40%-120%	1.06	40.65	
13C12-OCDD	470/472	4.41	44%	25%-120%	0.90	47.78	· -

RECOVERY STANDARDS	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
13C12-1,2,3,4-TCDD	332/334	NA	NA	NA	0.78	24.45	
13C12-1,2,3,4,7,8,9-HxCDD	402/404	NA	NĂ	NÁ	1.27	37.70	-

CLEAN-UP STANDARD	IONS	CONC (PPB)	% REC.	QC LIMITS	RATIO	RT	FLAGS
37CI4-TCDD	328/NA	0.889	36%	40%-120%	NA	24.67	Y

#### Flags:

- U The compound was analyzed for but not detected at or above the detection limit.
- J The analyte was detected at concentrations between the calibrated range and the detection limit.
- E The analyte was detected at concentrations greater than the calibrated range.
- B The analyte was found in the associated blank.
- D The analyte was identified in the analysis at a secondary dilution factor.
- S The analyte in question is, in the opinion of the reviewer, a PCDD/PCDF, even though the fragment ion due to the loss of COCI did not meet the signal- to-noise ratio criterion of 2.5:1
- X An interferent peak or peaks were observed within the retention window that may obscure otherwise detectable peaks.
- Y The recovery of the indicated standard is outside of QC advisory limits.

#### Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - DL The detection limit based on a 2.5:1 signal-to-noise criteria, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- EMPC The estimated maximum possible concentration, which is the concentration of an interference or interferences expressed equivalent to an analyte concentration, given in parts per billion (ppb), parts per trillion (ppt), or in nanograms (ng).
- RATIO The ratio of the low- to high-mass ion areas for the confirmation and quantitation ions.
  - RT The retention time of an analyte, given decimal minutes.
  - NO The total number of peaks identified as analytes within the retention time window.
- % REC The percent recovery of the indicated standard.

# **TRIANGLE LABS**

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 · FAX: (713) 240-5341

61

# PROJECT: P027698

# TRIANGLE LABS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341

**TOXICITY EQUIVALENCE REPORTS** 



03:32 PM 5/10/94

PROJECT: P027698 BATCH: B027698S

# PCDD/PCDF TOXICITY EQUIVALENTS REPORT

SAMPLE: 404039-5

FILE: T942089

QUOTE NO:	200001209	· .	DATE COLLECTED:	4/18/94	ACCESSION NO:	80-83-1	
PROJECT ID:	570		DATE RECEIVED:	4/20/94	RETCHECK:	T942088	
PROJECT P.O.:	570		DATE EXTRACTED:	5/10/94	CONCAL:	T942087	
SAMPLE ORIGIN:	GA		DATE ANALYZED:	5/7/94	ICAL:	1000115T	
SAMPLE MATRIX:	SOIL		DATE PROCESSED	5/10/94	INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10.3766	G	DETECTION LIMIT:	MDL	GC COLUMN:	D8-5	0.25 mm
DILUTION FACTOR:	1.		METHOD:	8280	GC COLUMN SN:	#32	

SPECIFIC ANALYTES	CONC (PPB	)	TEF	TEF-AD	JUSTED CON	C (PPB)	
2,3,7,8-TCDD	ND	- x	1	=	<u> </u>		
1.2.3.7.8-PeCDD	ND	×	0.5	=	-		
1,2,3,4,7,8-HxCDD	ND	×	0.1	=	-		
1,2,3,6,7,8-HxCDD	ND	×	0.1	=	-	· · · · · · · · · · · · · · · · · · ·	
1,2,3,7,8,9-HxCDD	ND	×	0.1	=	•	· · · · · · · · · · · · · · · · · · ·	
1,2,3,4,6,7,8-HpCDD	ND	×	0.01	=	-		
OCDD	ND	×	0.001	=			
2,3,7,8-TCDF	ND		0.1	=	•		;
1,2,3,7,8-PeCDF	ND	×	0.05	· =			
2,3,4,7,8-PeCDF	ND	×	0.5	=	-		
1,2,3,4,7,8-HxCDF	ND	×	0.1	=	-	-	
1,2,3,6,7,8-HxCDF	ND	×	0.1	=	•		
2,3,4,6,7,8-HxCDF	ND	×	0.1	=	-		
1,2,3,7,8,9-HxCDF	Ý ND	. ×	0.1	. =	-		
1,2,3,4,6,7,8-HpCDF	ND	×	0.01	=	-		
1,2,3,4,7,8,9-HpCDF	ND	×	0.01	. =	-	·····	
OCDF	ND	×	0.001	=	-		

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

Definitions:

CONC - The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

TEF - The toxicity equivalency factors, adopted from the 1989 international values.

TRIANGLE LABS

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

63

PROJECT: P027698 BATCH: B027698S T942090 FILE:

-33

### PCDD/PCDF TOXICITY EQUIVALENTS REPORT

SAMPLE: 40439-6

QUOTE NO:	200001209	DATE COLLECTED:	4/18/94	ACCESSION NO:	80-83-2
PROJECT ID:	570	DATE RECEIVED:	4/20/94	RETCHECK:	T942088
PROJECT P.O.:	570	DATE EXTRACTED:	5/10/94	CONCAL:	T942087
SAMPLE ORIGIN:	GA	DATE ANALYZED:	5/7/94	ICAL:	1000115T
SAMPLE MATRIX:	SOIL	DATE PROCESSED	5/10/94	INSTRUMENT:	VG 70T
SAMPLE SIZE:	10.7943 G	DETECTION LIMIT:	MDL	GC COLUMN:	DB-5 0.25 mm
DILUTION FACTOR:	1	METHOD:	8280	GC COLUMN SN:	#32

SPECIFIC ANALYTES	CONC (PPB)		TEF	TEF-AD	JUSTED CONC (PPB)	
2,3,7,8-TCDD	ND	x	1	=		<u> </u>
1,2,3,7,8-PeCDD	ND	×	0.5	= .	-	
1,2,3,4,7,8-HxCDD	ND	×	0.1	= ·	-	
1,2,3,6,7,8-HxCDD	ND	×	0.1	=	•	
1,2,3,7,8,9-HxCDD	ND	×	0.1	=	-	
1,2,3,4,6,7,8-HpCDD	ND	×	0.01	=	-	······
OCDD	ND	×	0.001	=	•	
,				·		
2,3,7,8-TCDF	ND		0.1		•	
1,2,3,7,8-PeCDF	ND	×	0.05	=		,
2,3,4,7,8-PeCDF	ND	×	0.5	= =	•	
1,2,3,4,7,8-HxCDF	ND	<b>X</b> :	0.1	=	-	
1,2,3,6,7,8-HxCDF	ND	×	0.1	=	-	
2,3,4,6,7,8-HxCDF	ND	×	0.1	=	-	
1,2,3,7,8,9-HxCDF	ND	<b>X</b> .	0.1	=	•	
1,2,3,4,6,7,8-HpCDF	ND	×	0.01	=	•	
1,2,3,4,7,8,9-HpCDF	ND	×	0.01	= .	-	
OCDF	ND	×	0.001	=	-	
	· · ·					

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

#### Definitions:

- CONC The concentration, given in parts per billion (ppb) or parts per trillion (ppt).
  - TEF The toxicity equivalency factors, adopted from the 1989 international values.

66

# **TRIANGLE LABS**

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 · FAX: (713) 240-5341

					KIB	ER&AS	SO	JATE
PROJECT:	P027698	PCDD/PC	DF	TOXICI	TY EQU	IVALENT	S RE	PORT
BATCH:	B027698S					SAMPL	.E: 40	04039-7
	T942091							
				• • •				
	200001209		CTED	A/18/9A			80-83-3	,
	570	- DATE RECEN		4/10/94		RETCHECK	T942088	
	570		CTED	- 5/10/94	<b>-</b> .	CONCAL	T942087	
	GA	DATE ANALY	ZED	5/7/94	_	ICAL	1000115T	
SAMPLE MATRIX:	SOIL	DATE PROCE	ESSED	5/10/94	<b>—</b>	INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10.3133 G	DETECTION	LIMIT:	MDL	_ `	GC COLUMN:	DB-5	0.25 mm
DILUTION FACTOR	: 1	METHOD:		8280		GC COLUMN SN:	#32	
	/TES				TEE		· (PPR)	
SPECIFIC ANALI							<u>(() ()</u>	<u></u>
2.3.7.8-TCDD		ND	. ×	1		•		·
1,2,3,7,8-PeCDD	)	ND	×	0.5	=	-		
1,2,3,4,7,8-HxCE	D	ND	×	0.1	=	-		
1,2,3,6,7,8-HxCE	D	ND	×	0.1	=	-		
1,2,3,7,8,9-HxCD	D	ND	×	0.1	= .	•		
1,2,3,4,6,7,8-Hp	CDD	ND Y	×	0.01	=	•		
OCDD		ND	×	0.001	=			<u>.</u>
2,3,7,8-TCDF		0.438		0.1	=	0.044		
1,2,3,7,8-PeCDF		0.115	×	0.05	=	0.0058		
2,3,4,7,8-PeCDF		0.299	×	0.5		0.15		
1,2,3,4,7,8-HxCE	)F	0.37	×	0.1	=	0.037	·····	
1,2,3,6,7,8-HxCD	)F	ND	×	0.1	= * *			
2,3,4,6,7,8-HxCD	)F	ND	×	0.1	=			=
1,2,3,7,8,9-HxCD	)F	ND	×	0.1	=	-		
1,2,3,4,6,7,8-HpC		0.731	×	0.01	=	0.0073		
1,2,3,4,7,8,9-HpC		ND	<u>×</u>	0.01	. =			
OCDE		ND	×	0.001	=	-		

198 N.

4

### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 0.24 PPB

#### **Definitions:**

CONC - The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

TEF - The toxicity equivalency factors, adopted from the 1989 international values.

TRIANGLE LABS

12823 Park One Drive • Sugar Land, Texas 77478

Phone: (800) 765-9026 • FAX: (713) 240-5341

64

03:32 PM 5/10/94

Page 48

<u> 
</u>

					KIB	ER & A	<u>SSO</u>	CIATES
PROJECT:	P027698	PCDD/PC	DF	TOXICIT	TY EQU	<b>IVALEN</b> 7	SR	EPORT
BATCH:	B027698S					SAMPL	_E: 4	404039-8
FILE:	T942092	· ·						-
QUOTE NO:	200001209	DATE COLLE		: 4/18/94	#		80-83-4	
PROJECT ID:	570	DATE RECEIV	/ED:	4/20/94		RETCHECK:	T942088	B
PROJECT P.O.:	570	DATE EXTRA	CTED	: 5/10/94		CONCAL:	T94208	7
SAMPLE ORIGIN:	GA	DATE ANALY	ZED:	5/7/94	_	ICAL:	1000115	т
SAMPLE MATRIX:	SOIL	DATE PROCE	SSEC	5/10/94	<b>—</b>	INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10.0862 G	DETECTION L	IMIT:	MDL	_	GC COLUMN:	DB-5	0.25 mm
DILUTION FACTOR:	1	METHOD:		8280	- (	GC COLUMN SN:	#32	· · · · · · · · · · · · · · · · · · ·
SPECIFIC ANALY	TES	CONC (PPB)		TÉF	TEF-A	DJUSTED CON	C (PPB	)
2,3,7,8-TCDD		ND	×	1	=	<u> </u>		
1,2,3,7,8-PeCDD		ND	×	0.5	=			
1,2,3,4,7,8-HxCD	D	ND	×	0.1	=	•		· · ·
1,2,3,6,7,8-HxCD	D	ND	×	0.1	=			
1,2,3,7,8,9-HxCD	D	ND	_ <u>×</u>	0.1	=	-		
1,2,3,4,6,7,8-HpC		<u>ND</u>	×	0.01	=		<u> </u>	
		ND	×	0.001	=			
2,3,7,8-TCDF		0.141		0.1	=	0.014		
1,2,3,7,8-PeCDF		ND	×	0.05	=	-		
2,3,4,7,8-PeCDF		ND	×	0.5	=	-		
1,2,3,4,7,8-HxCD	F .	ND	×	0.1	=	-		
1,2,3,6,7,8-HxCD	F	ND	×	0.1	=			
2,3,4,6,7,8-HxCD	F	ND	×	0.1	=	-		
1,2,3,7,8,9-HxCD	F	ND	×	0.1	=	-		
1,2,3,4,6,7,8-HpC	DF	ND	×	0.01	=			
1,2,3,4,7,8,9-HpC	DF	ND	×	0.01	=	•		
OCDF		ND	×	0.001	=	•		

### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: 0.014 PPB

#### Definitions:

CONC - The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

TEF - The toxicity equivalency factors, adopted from the 1989 international values.

# TRIANGLE LABS

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341



Page 49

03:32 PM 5/10/94

**G**L

# PROJECT:P027698PCDD/PCDF TOXICITY EQUIVALENTS REPORTBATCH:B027698SSAMPLE:FILE:T942073BLANK

QUOTE NO:	200001209		DATE COLLECTED:	NA	ACCESSION NO:	DFBLK	
PROJECT ID	570	1	DATE RECEIVED:	NA	RETCHECK:	T942065	
PROJECT P.O.:	570		DATE EXTRACTED:	5/10/94	CONCAL:	T942064	
SAMPLE ORIGIN:	B027698S		DATE ANALYZED:	5/6/94	ICAL:	1000115T	
SAMPLE MATRIX:	SOIL		DATE PROCESSED	5/10/94	INSTRUMENT:	VG 70T	
SAMPLE SIZE:	10 0	<u> </u>	DETECTION LIMIT:	MDL	GC COLUMN:	D8-5	0.25 mm
DILUTION FACTOR:	1		METHOD:	8280	GC COLUMN SN:	#32	

SPECIFIC ANALYTES	CONC (PPB)		TEF	TEF-AD	JUSTED CONC (PPB)	
2378-TCDD	ND	×	<u>1</u>			
1,2,3,7,8-PeCDD	ND	×	0.5	=		
1,2,3,4,7,8-HxCDD	. ND	×	0.1	=		
1,2,3,6,7,8-HxCDD	ND	×	0.1	=		
1,2,3,7,8,9-HxCDD	ND	x	0.1	=	•	
1,2,3,4,6,7,8-HpCDD	ND	×	0.01	=	•	
OCDD	ND	×	0.001	=		
2,3,7,8-TCDF	ND	-	0.1	=		
1,2,3,7,8-PeCDF	ND.	×	0.05	=	•	
2,3,4,7,8-PeCDF	ND	×.	0.5	=	•	
1,2,3,4,7,8-HxCDF	ND	×	0.1	=	<u> </u>	
1,2,3,6,7,8-HxCDF	ND	×	0.1	=	•	
2,3,4,6,7,8-HxCDF	ND	×	0.1	=	*	
1,2,3,7,8,9-HxCDF	ND	×	0.1	=	•	
1,2,3,4,6,7,8-HpCDF	ND	×	0.01	=	•	
1,2,3,4,7,8,9-HpCDF	ND	×	0.01	=		
OCDF	ND	×	0.001	2	•	

#### TOTAL 2,3,7,8-TCDD TOXICITY (1989 ITEF) EQUIVALENTS: ND

#### Definitions:

CONC - The concentration, given in parts per billion (ppb) or parts per trillion (ppt).

TEF - The toxicity equivalency factors, adopted from the 1989 international values.

# TRIANGLE LABS

ſ

.

12823 Park One Drive • Sugar Land, Texas 77478 Phone: (800) 765-9026 • FAX: (713) 240-5341 Page 51

67