

December 9, 2009

Mr. Richard Goehlert United States Environmental Protection Agency, Region 1 1 Congress Street, Suite 100 Boston, MA 02114-2023

RE: Results of the Indoor Air Sampling Event; South Municipal Water Supply Well Superfund Site in Peterborough, New Hampshire; NHB033.200.0087.

Dear Mr. Goehlert:

Pursuant to discussions among the United States Environmental Protection Agency (USEPA), the New Hampshire Department of Environmental Services (NHDES), New Hampshire Ball Bearings, Inc. (NHBB), and Hull & Associates, Inc. (Hull), Hull has prepared this correspondence presenting the analytical results of the October 2009 Indoor Air sampling event for the evaluation of vapor intrusion potential at the NHBB and Staff Development for Educators (SDE) structures at the South Municipal Water Supply Well Superfund Site in Peterborough, New Hampshire (Site). Figure 1 presents a Site plan.

The air samples were collected on October 30, 2009 by Hull personnel in accordance with the Vapor Intrusion Screening and Work Plan Letter for Indoor Air Sampling Strategy (Hull document NHB033.200.0071Rev1 dated November 11, 2008 and the Work Plan Letter for Vapor Intrusion Screening at the Residence and Staff Development for Educators Building (Hull Document NHB033.200.0075 dated July 21, 2009).

The vapor intrusion screening discussed in the latter document with respect to the residential property located in the dilute plume has not been completed. The residence was to be evaluated through the installation and sampling of groundwater wells and comparing the results to non-truncated groundwater screening numbers developed by the USEPA. At this time, the property owner has denied NHBB and Hull access to the property.

BACKGROUND

Since 1994 NHBB has operated a multi-well groundwater extraction and treatment system at the Site (Plate 1) pursuant to the requirements of the 1989 Record of Decision (ROD) and CERCLA Administrative Order # I-90-1074 (Order). The extraction system initially operated to remediate to health-based standards all groundwater impacted by volatile organic compound (VOC) sources (primarily chlorinated solvents) originating from the NHBB property. In 1997 USEPA issued an Explanation of Significant Differences (ESD) which recognized the technical impracticability of remediating all groundwater to health-based standards, in particular due to the presence of dense non-aqueous phase liquids (DNAPL) at locations within aquifer materials on NHBB property and established a requirement for containment of groundwater, such that contamination would not migrate beyond NHBB's property boundaries. Since that time, concentrations of VOCs have been detected in groundwater samples collected along and beyond the compliance boundary. The detected constituents include tetrachloroethene (PCE),

Mr. Richard Goehlert NHB033.200.0087 December 9, 2009 Page 3 of 7

trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA) and 1,1,1trichloroethane (1,1,1-TCA). In addition, groundwater is monitored for other common breakdown constituents of PCE and TCE, including cis-1,2-dichloroethene (CIS), trans-1,2dichloroethene (TRANS) and vinyl chloride (VC), but these constituents have been very rarely, if ever, detected at locations beyond NHBB's property boundary. As the performance of the containment system continues to deteriorate, NHBB has evaluated alternative remedial options which have recently been presented to the USEPA in a focused feasibility study (FFS). As part of the FFS evaluations, the conceptual model for the Site identified vapor intrusion as a potentially complete exposure pathway and as such, discussions between USEPA, NHDES,, NHBB and Hull have determined that further investigations are needed to evaluate the exposures from this potentially complete pathway.

The NHBB building is located over a known source area where groundwater concentrations are indicative of residual source mass and where free phase DNPAL has been detected. Two buildings are located proximate to the leading edge of the groundwater plume east of Route 202 as depicted on Figure 1, which shows locations of these structures and an outline of the generalized groundwater VOC plume. The residential structure (#1) is located above the plume. Structure #2 is a commercial structure, the southern end of which is currently located over the leading edge of the plume. The original commercial building footprint was located at least 200 feet north of the dilute plume. The original building housed Valley Chevrolet Olds, which was owned by Robert Korpi prior to Staff Development for Educators (SDE). According to the waste notification form contained in NHDES One-Stop records, the facility was a generator of D001 and F002/F004 wastes (see Appendix A). SDE purchased the building from Korpi and in 2004 began construction on a large warehouse addition to the south side of the existing structure. The expansion caused portions of the new building to be located proximate or over portions of the plume. In the southwest quadrant of the warehouse addition, an approximate 5,000 sq. ft. storage space is constructed with a dirt floor; a small office is also located within the storage space.

To assess the potential for vapor intrusion from the VOC plume, sub-slab vapor data from the NHBB property and groundwater analytical data in dilute portions of the plume were evaluated and compared to screening numbers obtained from the NHDES Vapor Intrusion Guidance, Table 1 Revised February 2007.

As part of the work scope associated with the source area delineation project (2006-2007), high concentrations of VOCs were detected in groundwater and sub-slab vapor samples obtained from locations advanced within the Microball and Highbay areas of the NHBB manufacturing facility. The detected VOC concentrations in both groundwater and sub-slab samples were in excess of NHDES screening values. Tables 1 and 2 provide analytical summaries of sub-slab and groundwater sampling results for samples collected beneath the NHBB building. Because of the analytical results and observations of DNAPL within close proximity to the building, further investigation with respect to vapor intrusion was deemed necessary and prompted the indoor air sampling protocol outlined in the November 2008 work plan document.

For the dilute plume evaluation, groundwater analytical data collected since 2005 were compiled for wells located in this portion of the plume. Table 3 presents a summary of these data

Mr. Richard Goehlert NHB033.200.0087 December 9, 2009 Page 4 of 7

compared to the NHDES- and USEPA-recommended Groundwater Screening Levels for the vapor intrusion pathway. The criteria were obtained from USEPA Region 1 letter Re: South Municipal Water Supply Well Superfund Site, Peterborough, NH Review and Response to Vapor Intrusion Issues, dated April 1, 2009. The levels included in the aforementioned document were obtained by USEPA from the following sources:

- 1. The screening levels for residential land use were obtained from Table 2c of the Draft USEPA 2002 Guidance for the Evaluation the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils, except for the levels for PCE, TCE and VC. The screening levels for PCE, TCE and VC were calculated by USEPA via the same methodology used for the derivation of the draft 2002 Table 2c criteria, but were not truncated at each constituent's respective maximum contaminant level (MCL).
- 2. The screening levels for commercial land use were calculated by USEPA Region 1 assuming a decreased exposure frequency and duration for an On-Site Worker receptor population.

As shown on Table 3, none of the detected VOCs exceed the NHDES screening criteria; however, PCE was detected at several sampling locations at concentrations greater than the USEPA screening criteria for residential land use (0.55 ug/L) and commercial land use (3.47 ug/L). Additionally, some reporting limits for PCE are greater than the USEPA screening criteria. TCE was detected within the dilute plume at concentrations exceeding the screening criterion for residential land use (2.89 ug/L); however, TCE has not been detected at a concentration in exceedance of its criterion for commercial land use (18.21 ug/L). Although VC was not detected in any sample analyzed from the dilute plume from 2005 to present, the detection limit of 1 ug/L exceeds the residential groundwater-to-indoor air screening level of 0.5 ug/L. Due to the noted exceedances compared to the non-truncated screening levels, USEPA required further investigation with respect to vapor intrusion in the dilute plume.

SAMPLING PROGRAM

The objective of the indoor air sampling was to determine if target VOCs found within the plume beneath the buildings may be migrating into and adversely affecting the air quality within the structures.

The sampling event was conducted over three days from October 19 through October 21, 2009. The first day of the event consisted of preparation, building reconnaissance and placement of summa canisters; a total of 19 canisters were situated for sample collection. Of the 19 canisters, 12 were placed at the NHBB facility with the remaining canisters deployed at the SDE building. Figures 2 and 3 present the sampling locations within and proximate to the NHBB and SDE buildings, respectively.

The positioning of the canisters was biased at the breathing zone height of each work station where possible. An outdoor ambient air sample and duplicate sample were collected from each building location. All canisters were equipped with laboratory calibrated flow regulators to collect 24-hour composite samples except one. One canister was equipped with a regulator

Mr. Richard Goehlert NHB033.200.0087 December 9, 2009 Page 5 of 7

calibrated to collect an 8-hour sample; this can was place in the SDE office space in addition to a 24-hour canister. The 8-hour canister was activated during normal business hours to provide a representative sample, collected during typical working conditions and hours of operation.

The sampling was initialed on October 20, 2009. The morning of the event was dedicated to completing a pre-collection sample inspection. The inspection was aimed at identifying products stored in the work zones that could cause possible interference with the sampling event by contributing VOC. The results of the sampling inventory are contained in Appendix B.

With the exception of the 8-hour sample which was initiated at 0840, USEPA and NHDES personal were provided an opportunity to inspect sample locations and canister placement prior to initiating sample collection. Canisters were activated at 1132, following the inspection and approval of sampling locations by USEPA and NHDES. Following completion of sample collection, the canisters were couriered to Spectrum Analytical Services, Inc. in Agawam, Massachusetts for low-level VOC analysis by USEPA Method TO-15 SIM.

In general, winds were calm over the duration of the sampling event, with the predominating wind pattern originating from the south and west at average speeds of up to 3 mph with no recorded precipitation. Temperatures ranged from a low of 29 degrees F (October 20, 2009) to a high of 65 degrees F (October 21, 2009) and an average humidity and barometric pressure of 68% and 30.15 inches of mercury, respectively. Attachment C contains weather information obtained from the weather underground website <u>www.wunderground.com</u>.

SAMPLING RESULTS

Tables 4 and 5 provide summaries of the analytical results from both the NHBB and SDE buildings, respectively. As discussed in the work plan documents, the VOC reporting list was modified to include only the parent compounds PCE, TCE and 1,1,1-TCA and the associated daughter compounds of DCE, DCA, CIS, TRANS and VC which comprise the groundwater plume. A copy of the laboratory analytical report and chain of custody are presented as Attachment D. As shown on tables and discussed in the laboratory report case narrative, the low-level reporting limits associated with the TO-15 SIM method were not achievable due to non-target analyte interference and sample dilutions.

Table 4 provides a summary of the indoor air analytical results for samples collected within and proximate to the NHBB building. A total of twelve samples were collected; included in the sample set were one duplicate sample and one ambient air sample collected proximate to the GZH-4 cluster. Seven of the eleven samples collected from within the NHBB building detected PCE. The concentrations generally ranged from 13.56 to 96.29 ug/m³, although there was one anomalously high detection of 227.85 ug/m³. Both the quantified PCE concentrations and the reporting limits (for samples with non-detects) are greater than the established NHDES and USEPA screening values. TCE was detected in only one sample at 16.39 ug/m3; however, all of the remaining samples had reporting limits for TCE greater than the screening values. 1,1,1-TCA was detected in one sample at a concentration less than its screening values; all reporting limits were less than the screening values for this VOC. Neither DCA nor VC was quantified in samples collected from the NHBB building, but the reporting limits for these constituents exceed the indoor air screening values. Although DCE had elevated reporting limits, the constituent

Mr. Richard Goehlert NHB033.200.0087 December 9, 2009 Page 6 of 7

was not detected in any sample and the elevated reporting limits do not exceed the screening values. Screening values have not been developed for either daughter compound CIS or TRANS. CIS was not detected in any sample; however, TRANS was detected in all samples collected from within the NHBB facility at concentrations ranging from 856.42 to 1,237.15 ug/m³. Although the detected PCE and TCE concentrations exceeded vapor instruction screening levels, none of the detected concentrations exceed the 8-hour time weighted average (TWA) Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs).

The ambient air sample collected outside of the NHBB building near the GZH-4 well cluster had positive detections of PCE, TCE, 1,1,1-TCA and TRANS. PCE was the only constituent detected in the outside air sample that exceeded the indoor air screening levels. DCE, DCA, TRANS and VC were not detected in this sample.

Table 5 presents a summary of indoor air analytical results for samples collected at the SDE facility. Five of the six samples collected from within the warehouse space exhibited PCE concentrations greater than indoor air screening levels. PCE concentration generally ranged from 11.53 to 12.75 ug/m3 although there was one anomalous detection of 161.39 ug/m3. All of the SDE samples detected TCE concentrations greater than the screening levels. No other target VOCs were detected at concentrations greater than screening levels; only one sample had an elevated reporting limit for VC that exceeded the screening value.

PCE, TCE and 1,1,1-TCA were detected in the outside ambient air sample collected from the eastern side of the SDE building. The PCE concentration in the outdoor air sample exceeded the indoor air screening criteria. Comparison of the ambient air sample to those collected in the SDE building demonstrates that all samples except one (SDE-2) contain fairly consistent concentrations of PCE, ranging from 11.53 to 15.46 ug/m³. The outlier, SDE-2, quantified PCE at 161.39 ug/m³. Similar to PCE, detected TCE concentrations were fairly consistent in magnitude, ranging from 46.97 to 62.34 ug/m³.

DISCUSSION

Because the NHBB facility is located over a known source area, VOC detections in the indoor air samples were expected. Though the samples had exceedances of vapor intrusion screening numbers, the results do not exceed OSHA PELs. The source mass beneath the building will be addressed when source area reduction measures are implemented as part of the revised Site remedy.

The ambient air sample for the NHBB building was collected from a location up- to cross- wind from the groundwater treatment building proximate to a location with known high groundwater concentrations and observable DNAPL (GZH-4 cluster). At this time, it is unknown if the VOCs concentrations detected in the NHBB ambient sample are measuring VOCs resulting from the wind current interaction with the building creating a concentration sink (from the stripper tower) along the front of the building, VOC volatilization from the operating extraction well EX-1, or VOC volatilization from subsurface sources to outdoor air. Based upon the predominant southerly to westerly wind directions during the sampling event, the detected concentrations of VOCs in the SDE ambient air sample could be a result of cross contamination from the NHBB

Mr. Richard Goehlert NHB033.200.0087 December 9, 2009 Page 7 of 7

groundwater treatment system. The location of the SDE sample was directly downwind of the treatment facility when the winds originate from the west/southwest. The PCE concentration detected in the SDE ambient air sample was greater than the PCE concentration detected in the sample collected adjacent to the NHBB facility. Other target VOCs detected in both samples (TCE and 1,1,1-TCA) were of similar magnitude and were less than screening values.

Excepting the most recent groundwater analytical results from EX-5A during the 2009 sampling events, groundwater VOC concentrations within the dilute plume continue to demonstrate low detections of target VOCs (see Table 6). Samples which contain VOC concentrations greater than MCLs are typically collected from wells screened across the lower portion of the aguifer; wells set within the shallow portions of the aquifer generally have concentrations less than MCLs and provide a "buffer" between the deeper water with higher VOC concentrations and any potentially complete exposure pathways for vapor intrusion. The groundwater concentrations measured in the dilute plume do not suggest the resultant indoor air impacts such as those noted in the analytical results of the indoor air samples, particularly since "clean" water is located between the lower zones of higher impact and the buildings. Using methods similar to the Draft USEPA guidance in developing the groundwater to indoor screening levels, a generic groundwater calculation was derived from the indoor air values using an attenuation factor of 0.001. The resultant generic screening numbers would suggest groundwater concentration ranging from 1,750 to 1,880 ppb for PCE (and up to 23,800 for the anomalously high hit) and TCE concentrations in groundwater ranging from 8,740 to 11,600 ppb to yield the noted concentrations detected in the SDE indoor air samples.

Because the magnitude of the VOCs found within the SDE building samples were unexpected given the low VOC concentrations in groundwater proximate to the building, a preliminary evaluation of the pre-sampling inventory was further investigated though an on-line MSDS inspection. The pre-sampling inventory noted the storage of many products such as spray paint, adhesives and lubricants that may contain VOCs which could contribute to the noted VOCs in the indoor air samples. Moreover one product in particular, Carbo-Sol, manufactured by Sunnyside Corporation, contains TCE; the MSDS sheet for Carbo-Sol is located in Attachment E. Furthermore, as previously discussed, the property has a history as a known generator of F002 wastes.

ACTION ITEMS

Because there is uncertainty if the detected VOCs in the SDE samples originated from the groundwater plume, cross contamination from the NHBB stripper tower or from storage of VOC containing products within the work zone, NHBB and Hull suggest additional sampling at the SDE facility.

The sampling will pair additional indoor air sampling (from both the warehouse and storage areas) with soil gas sampling. As with the initial sampling, ambient air samples will be collected from positions in areas both the up and down-wind of the SDE building. The proposed scope of work will be outlined in a letter work plan to be submitted under separate cover. Additionally, to better understand the effects of the SDE heating, ventilation and air conditioning (HVAC) system, Hull will request mechanical drawings of the HVAC system as well as interview the SDE personal with respect to typical operations of the system. Pressure gauges may be used during

Mr. Richard Goehlert NHB033.200.0087 December 9, 2009 Page 8 of 7

the sampling event to identify if the operation of the HVAC induces negative pressure in either the warehouse or storage areas.

Since there are detections of low-level VOCs proximate to the residential structure, interactions and discussions with the Strang Trust will be continued in an attempt to gain access to the residential property. Given the results of the initial indoor air sampling, Hull suggests installing soil gas implants on the north, west and south sides of the residence in-lieu of groundwater wells.

As proposed in the July 2009 EX-5A Memorandum (Hull document NHB033.200.0078), Hull suggests the installation of two well clusters between the east side of Route 202 and the SDE building. NHBB, Hull and USEPA should come to an agreement with respect to location of the wells and the wells should be installed.

PROJECT SCHEDULE

Hull will prepare the work plan for the next phase of sampling at locations proximate to the dilute plume and will submit the work plan before the end of the calendar year. Both NHBB and Hull will continue contact with the Strange Trust to negotiate access. These discussions may require some assistance by NHDES and USEPA. Following approval of the work plan and assuming all access issues are resolved, a minimum of three weeks notice to proceed is necessary to prepare, clean and certify the summa canisters and schedule subcontractors.

Please contact either of the undersigned with questions or comments concerning the content of this summary letter report.

Sincerely,

Fracy L. Edwards Digitally signed by Tracy L. Edwards, o=Hull & Associates, Inc., ou, email=tedwards@hullinc.com, c-US Date: 2009.12.09 14:56:39-05:00'

Tracy L. Edwards Project Manager

W. Jane Jurlez

W. Lance Turley, P.G. Principal

ct. w/attachments

Thomas Andrews, NHDES Patti Carrier, NHBB Chris Rawnsley, NHBB Hull File NHB033

TABLES

TABLE 1

SUMMARY OF SUB-SLAB VAPOR SAMPLES BENEATH NHBB BUILDING COLLECTED DURING SOURCE AREA INVESTIGATION

			SUB-SLAB V	APOR SAMP	LES				
			24-HOUR	COMPOSITE	1				
			TO-	15 ug/m³					
	NH								
	Commercial								
	Soil Gas								
	Screening								
Analyte	Level ug/m ³	SSV-1	SSV-2	SSV-3	SSV-4	SSV-5	SSV-6	SSV-7	SSV-8
Probe Installed		12/11/2006	12/11/2006	12/11/2006	12/11/2006	12/11/2006	12/11/2006	12/11/2006	12/11/2006
Sample Collected		12/12/2006	12/12/2006	12/12/2006	12/12/2006	12/12/2006	12/12/2006	12/12/2006	12/12/2006
Vinyl Chloride	140	<970	<2,800	<4,100	<5,900	<660	<660	<1,100	<2,000
1,1-Dichloroethene	2,900	2,900	6,700	13,000	24,000	2,200	6,700	17,000	19,000
trans-1,2-Dichloroethene	no std	<1,500	<4,400	<6,300	<9,100	<1,000	<1,000	<1,700	<3,100
cis-1,2-Dichloroethene	no std	<1,500	<4,400	<6,300	<9,100	<1,000	<1,000	<1,700	<3,100
1,1-Dichloroethane	7,300	<1,500	<4,400	<6,500	<9,300	<1,100	<1,100	<1,700	<3,100
1,1,1-Trichloroethane	32,000	29,000	60,000	98,000	180,000	16,000	11,000	21,000	31,000
Trichloroethene	54	97,000	260,000	500,000	970,000	33,000	42,000	97,000	180,000
Tetrachloroethene	100	350,000	880,000	1,600,000	2,900,000	200,000	210,000	410,000	750,000

Notes:

Bolded

-Sample result exceeds the NHDES Commercial Soil Gas Screening Level, February 1, 2007. Constituent detected at the reported concentration.

TABLE 2

SUMMARY OF VERTICAL PROFILING SAMPLES^{a.} LOCATED BENEATH NHBB BUILDING COLLECTED DURING SOURCE AREA INVESTIGATION

	VP-17 ug/l														
	MOBILE LABORATORY														
Depth of Screened Interval	NHDES Groundwater to Indoor Air Screening Levels GW-2 ^{b.} uo/	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Occupational ^{c.} uo//	10-11 1/15/07	15-16 1/15/07	20-21 1/15/07	25-26 1/15/07	30-31 1/15/07	35-36 1/15/07	40-41 1/15/07	45-46 1/15/07	50-51 1/15/07	55-56 1/15/07	60-61 1/15/07	65-66 1/15/07	70-71 1/15/07
Vinyl Chloride	10	3.15	<2	<2	<2	7.4	<2	<2	<2	<2	<2	<2	<2	<2	<2
1,1-Dichloroethene	1,000	1,197	<0.5	3.9	5.3	34	12	1.9	2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	no std	no std	<2.5	<2.5	<2.5	1.0J	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
cis-1,2-Dichloroethene	no std	no std	<2.5	14	19	83	20	7.7	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1-Dichloroethane	10,000	13,860	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1,1-Trichloroethane	20,000	19,530	<0.5	170D	370D	1,400D	480D	52D	7.6	3.9	3.9	<0.5	<0.5	0.2J	3
Trichloroethene	90	18.21	0.12J	120D	300D	1,300D	400D	50D	2.9	2.1	0.22J	<0.5	<0.5	0.14J	0.2J
Tetrachloroethene	80	3.47	1.3	1,600D	2,200D	13,000D	3,200D	860D	110D	12	2.1	0.9	0.7	5.9	550D

					MOBILE L	ABORATO	RY								
Depth of Screened Interval	NHDES Groundwater to Indoor Air Screening Levels GW-2 uo/	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Occupational ug/l	26-27 12/31/06	31-32 12/31/06	36-37 12/31/06	41-42 12/31/06	46-47 12/31/06	51-52 12/31/06	56-57 12/31/06	61-62 12/31/06	66-67 12/31/06	71-72 12/31/06	76-77 12/31/06	81-82 12/31/06	
Vinvl Chloride	10	3.15	3.1	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	
1,1-Dichloroethene	1,000	1,197	11.5	10.3	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	
trans-1,2-Dichloroethene	no std	no std	3	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	Ľ
cis-1,2-Dichloroethene	no std	no std	4.5	4.4	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	MF
1,1-Dichloroethane	10,000	13,860	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	SP
1,1,1-Trichloroethane	20,000	19,530	32D	30D	1.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2 N
Trichloroethene	90	18.21	350D	250D	8	0.1J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Tetrachloroethene	80	3.47	260D	370D	20	3	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.3J	<0.5	

TABLE 2

SUMMARY OF VERTICAL PROFILING SAMPLES^{a.} LOCATED BENEATH NHBB BUILDING COLLECTED DURING SOURCE AREA INVESTIGATION

VP-19 ug/l														
					MOBILE L	ABORATO	RY							
Depth of Screened Interval	NHDES Groundwater to Indoor Air Screening Levels GW-2	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Occupational	26-27	31-32	36-37	41-42	46-47	51-52	56-57	61-62	66-67	71-72	76-77	
	ug/i	ug/i	12/30/31	12/30/31	12/30/31	12/30/31	12/30/31	12/30/31	12/30/31	12/30/31	12/30/31	12/30/31	12/30/31	
Vinyl Chloride	10	3.15	<2	6.4	<2	<2	<2	<2	<2	<2	<2	<2	<2	
1,1-Dichloroethene	1,000	1,197	1.1	0.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
trans-1,2-Dichloroethene	no std	no std	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	L L
cis-1,2-Dichloroethene	no std	no std	4.3	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	M
1,1-Dichloroethane	10,000	13,860	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	Š
1,1,1-Trichloroethane	20,000	19,530	6.5	4.3	0.43J	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	9 N
Trichloroethene	90	18.21	18	7.9	1	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Tetrachloroethene	80	3.47	29	16	4.7	0.95	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

	VP-20 ug/l														
					MOBILE L	ABORATO	RY								
Depth of Screened Interval	NHDES Groundwater to Indoor Air Screening Levels GW-2	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Occupational	15-16	19-20	22-23	24-25	29-30	34-35	39-40	44-45	49-50	54-55	59-60	64-65	69-70
	ug/l	ug/l	12/28/06	12/28/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06	12/29/06
Vinyl Chloride	10	3.15	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1,1-Dichloroethene	1,000	1,197	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethene	no std	no std	1.5	1	0.96	0.96	<5	1	0.93	1.1	1	0.99	1	0.92	<2.5
cis-1,2-Dichloroethene	no std	no std	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1-Dichloroethane	10,000	13,860	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5
1,1,1-Trichloroethane	20,000	19,530	2.9	25D	8.6	10	<0.5	<0.5	<0.5	9.7	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene	90	18.21	4.8	8.6D	14	4.7	0.2J	<0.5	<0.5	17	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene	80	3.47	14	30,000D	30,000D	28,000D	1,200D	150D	140D	37D	26	20	5.6	3.4	0.84
Notes															

Groundwater samples were analyzed by modified USEPA Method 8021.

New Hampshire Department of Environmental Services, Vapor Intrusion Screening Levels, Table 1 Revised February 1, 2007.

USEPA Groundwater Screening Level for Vapor Intrusion - Occupational obtained from USEPA Region 1 letter Re: South Municipal Water Supply Well Superfund Site, Peterborough, NH Review and Response to Vapor Intrusion Issues, dated A Constituent not detected at values greater than the indicated reporting limit.

< Constituent not de J Estimated Value

D. Concentration reported as a result of a dilution.

-- Not Sampled

Bolded Constituent detected at the reported concentration.

Constituent concentration exceeds either the residential or occupational screening level for volatile emissions from groundwater-to-indoor air.

a. b.

c.

TABLE 3

PRELIMINARY SCREENING OF GROUNDWATER RESULTS FOR VAPOR INTRUSION POTENTIAL OF RESIDENTIAL AND COMMERCIAL STRUCTURES LOCATED WITHIN THE DILUTE PLUME

							ROUTINE GROU	JNDWATER SAMPLES	ıg/L							
							CLP OLC V	DA AND USEPA 8260B ^a								
Well	Well Location	Relevant Screening Level	Target VOC	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Residential ^{b.}	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Occupational ^{c.}	NHDES Groundwater to Indoor Air Screening Levels GW-2 ^{e.}	April-05	June-05	December-05	March-06	July-06	December-06	October-07	April-08	August-08	December-08
			DOF		0.47				•						-	
EM-3U	Southeast of Commercial Structure 2	Occupational	TCE 1,1-DCA 1,1-DCE 1,1,1-TCA VC	2.89 ^{d.} 2,200 190 3,100 0.5 ^{d.}	3.47 18.21 13,860 1,197 19,530 3.15	90 90 10,000 1,000 20,000 10	<1 0.3J <1 <1 0.4J <1	2 0.5J <1 <1 0.4J <1	2 0.2J 0.2J 1 <	 		 			5 6.4 0.8J 1.6 6.3 <1	
EM-3L	Southeast of Commercial Structure 2	Occupational	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA VC	0.55 ^{3.} 2.88 ^{d.} 2,200 190 3,100 0.5 ^{d.}	3.47 18.21 13,860 1,197 19,530 3.15	80 90 10,000 1,000 20,000 10	0.4J 0.8J <1 <1 0.2J <1	2 1 <1 <1 0.2J <1	2 8 2 0.9J 0.4J <1		 		 		5.4 10.8 1.6 2.1 3.6 <1	
EX-5A	Southeast of Commercial Structure 2	Occupational	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA VC	0.55 ^{4.} 2.89 ^{4.} 2,200 190 3,100 0.5 ^{4.}	3.47 18.21 13,860 1,197 19,530 3.15	80 90 10,000 1,000 20,000 10	0.5 0.7 <1 0.3 <1	2 2 0.2J 0.5J 1	3 4 0.3J 0.5J 1	3 4 0.3J 0.5J 1	3 4 0.4J 0.4J 1	4 4 0.4J 0.6J 2	7.2 6.1 0.6J 0.7J 4.4	3.8 <1 <1 <1 <1 <1	29.4 9.6 <1 19.1 <1	1.2 <1 <1 <1 <1 <1
MW-7U	East of Commercial Structure 2	Occupational	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA	0.55 ^{d.} 2.89 ^{d.} 2,200 190 3,100 0.5 ^{d.}	3.47 18.21 13,860 1,197 19,530 2.15	80 90 10,000 1,000 20,000	<1 <1 <1 <1 <1 <1	1 <1 <1 <1 <1		<1 <1 <1 <1 <1		 	 		<1 <1 <1 <1 <1	
MW-7L	East of Commercial Structure 2	Occupational	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA	0.55 ^d 2.89 ^d 2,200 190 3,100	3.13 3.47 18.21 13,860 1,197 19,530 2.15	80 90 10,000 1,000 20,000		1 1 1 1 1 1 1		0.2J 0.4J <1 <1 <1						
P-3	Northeast of Residential Structure 1 / Southwest of Commercial Structure 2	Residential / Occupational	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA VC	0.55 ^d 2.89 ^d 2,200 190 3,100 0.5 ^d	3.15 3.47 18.21 13,860 1,197 19,530 3.15	80 90 10,000 1,000 20,000 10		<1 11 6 1 <1 2 <		<1 6 7 1J 1J 34 <2	2 2 0.3J 0.3J 11 <1	3 2 0.5J 0.3J 6 <1	 1.7 1.7 0.6J <1 3.9 <1	 0.9J <1 <1 <1 1.6 <1		
GZ-13U	Southeast of Residential Structure 1	Residential	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA VC	0.55 ^{d.} 2.89 ^{d.} 2,200 190 3,100 0.5 ^{d.}	3.47 18.21 13,860 1,197 19,530 3.15	80 90 10,000 1,000 20,000 10	 	1 <1 <1 <1 <1 <1		<1 <1 <1 <1 0.2J <1	<1 <1 <1 <1 0.5J <1	<1 <1 <1 (1 0.8J <1	বা বা বা বা বা		<1 <1 <1 <1 <1 <1	
GZ-13M	Southeast of Residential Structure 1	Residential	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA VC	0.55 ^{d.} 2.89 ^{d.} 2,200 190 3,100 0.5 ^{d.}	3.47 18.21 13,860 1,197 19,530 3.15	80 90 10,000 1,000 20,000 10	4 1 0.4J <1 1	18 7 1 1 22 <1		0.7J 0.7J <1 <1 4 4	0.3J 0.3J <1 <1 1	0.6J 0.3J <1 <1 0.7J <1	ব ব ব ব ব ব		<1 <1 <1 <1 <1 <1	
GZ-13L	Southeast of Residential Structure 1	Residential	PCE TCE 1,1-DCA 1,1-DCE 1,1,1-TCA VC	0.55 ^{d.} 2.89 ^{d.} 2,200 190 3,100 0.5 ^{d.}	3.47 18.21 13,860 1,197 19,530 3.15	80 90 10,000 1,000 20,000 10	 	13 4 0.6J 0.8J 14 <1	 	2 2 0.2J 0.4J 5 <1	0.9J 0.9J <1 <1 2 <1	2 1 0.2J <1 4 <1	0.9J 0.6J <1 <1 <1 <1	 	0.7J 1 <1 <1 1.8 <1	

TABLE 3

PRELIMINARY SCREENING OF GROUNDWATER RESULTS FOR VAPOR INTRUSION POTENTIAL OF RESIDENTIAL AND COMMERCIAL STRUCTURES LOCATED WITHIN THE DILUTE PLUME

	ROUTINE GROUNDWATER SAMPLES ug/L CLP OLC VOA AND USEPA 8260B ^{2.}															
Well	Well Location	Relevant Screening Level	Target VOC	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Residential ^{b.} ug/l	USEPA Draft Groundwater Screening Level for Vapor Intrusion - Occupational ^c ug/l	NHDES Groundwater to Indoor Air Screening Levels GW-2 ^{e.} ug/L	April-05	June-05	December-05	March-06	July-06	December-06	October-07	April-08	August-08	December-08
			PCE	0.55 ^{d.}	3.47	80		1			<1	<1	1	- 1	1 J	
	Southeast of		TCE	2.89 ^{d.}	18.21	90		2			0.9J	0.9J	1.2		1.2	
GZ-13R	GZ-13R Residential Structure 1	Residential	1,1-DCA	2,200	13,860	10,000		0.6J			0.5J	0.6J	0.6J		0.6J	
Str	Structure 1		1,1-DCE	190	1,197	1,000		0.6J			<1	0.5J	0.7J		0.7J	
			1,1,1-1CA	3,100	19,530	20,000		<1	-		<1	<1	<1	-	<1	
				0.5	3.15	10		<1			<1	<1	<1		<1	
			PCE	0.55	3.47	80				<1	0.3J	0.2J			<1	
	Southwest of			2.89	18.21	90				<1	<1	<1			<1	
MW-11U	Residential	Residential	1,1-DCA 1.1-DCE	2,200	1 197	1 000				<1	<1	<1			<1	
	Structure 1		1.1.1-TCA	3.100	19.530	20.000				<1	<1	<1			<1	
			VC	0.5 ^d	3.15	10				<1	<1	<1			<1	
			PCE	0.55 ^{d.}	3.47	80		1		<1	<1	0.3J			<1	
	Southwort of		TCE	2.89 ^{d.}	18.21	90		0.4J		<1	<1	<1			<1	
MW-111	Southwest of MW-111 Residential	Residential	1,1-DCA	2,200	13,860	10,000		<1		<1	<1	<1			<1	
	Structure 1	Residentia	1,1-DCE	190	1,197	1,000		<1		<1	<1	<1			<1	
			1,1,1-TCA	3,100	19,530	20,000		0.7J	-	<1	<1	<1			<1	
			VC	0.5 ^{d.}	3.15	10		<1		<1	<1	<1			<1	

<u>Notes</u>

b.

C.

Groundwater samples collected prior to October 2007 were analyzed by CLP OLC VOA; samples collected including and after October 2007 were analyzed by USEPA Method 8260B.

USEPA Draft Groundwater Screening Level for Vapor Intrusion - Residential obtained from USEPA Region 1 letter Re: South Municipal Water Supply Well Superfund Site, Peterborough, NH Review and Response to Vapor Intrusion Issues, dated April 1, 2009. The screening level was obtained from Table 2c of the Draft USEPA 2002 Guidance for the Evaluation the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils, except where indicated.

USEPA Groundwater Screening Level for Vapor Intrusion - Occupational obtained from USEPA Region 1 letter Re: South Municipal Water Supply Well Superfund Site, Peterborough, NH Review and Response to Vapor Intrusion Issues, dated April 1, 2009. USEPA Groundwater Screening Level for Vapor Intrusion - Residential obtained from USEPA Region 1 letter Re: South Municipal Water Supply Well Superfund Site, Peterborough, NH Review and Response to Vapor Intrusion Issues, dated April 1, 2009. New Hampshire Department of Environmental Services, Vapor Intrusion Screening Levels, Table 1 Revised February 1, 2007.

e. New Hampshire Department of Environmental Serv Bolded Constituent detected at the reported concentration.

Bolded Constituent detected at the reported concentration.

Constituent not detected at values greater than the indicated reporting limit.

J Estimated Value.

-- Not Sampled.

Constituent concentration exceeds either the residential or occupational screening level for volatile emissions from groundwater-to-indoor air.

TABLE 4

SUMMARY OF INDOOR AIR SAMPLING RESULTS, NHBB BUILDING OCTOBER 2009

				NHBB E	BUILDING				
			NHB033:IA1:	NHB033:IA2:	NHB033:IA3:	NHB033:IA4:	NHB033:IA4:	NHB033:IA5:	NHB033:IA6:
Target	NHDES	EPA Regional	040:A102009	055:A102009	055:A102009	050:A102009	050:A102010A	055:A102009	055:A102009
VOC	Commercial	Screening Level	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09
	Indoor Air	for Industrial	4 feet above ground	5.5 feet above ground	5.5 feet above ground	5 feet above ground	5 feet above ground	5.5 feet above ground	5.5 feet above ground
	Screening Level ^{1.}	Air ^{2.}	24-hour composite	24-hour composite	24-hour composite	24-hour composite	24-hour composite	24-hour composite	24-hour composite
	(ug/m ³)	(ug/m ³)				ug/m ³			
Tetrachloroethylene	2.1	2.1	<16.95	227.85	<13.56	56.28	96.29	30.18	<33.91
Trichloroethene	1.1	6.1	<13.44	16.39	<10.75	<13.44	<21.50	<13.44	<26.87
1,1-dichloroethane	150	7.7	<10.12	<10.12	<8.10	<10.12	<16.20	<10.12	<20.25
1,1-dichloroethene	58	880	<9.92	<9.92	<7.93	<9.92	<15.87	<9.92	<19.84
1,1,1-trichloroethane	640	22,000	<13.64	18.55	<10.91	<13.64	<21.82	<13.64	<27.28
Vinyl Chloride	2.8	2.8	<6.39	<6.39	<5.11	<6.39	<10.22	<6.39	<12.78
trans-1,2-dichloroethene	no std	no std	1,015.10	864.42	856.49	1,066.65	1,007.17	1,141.99	1,181.64
cis-1,2-dichloroethene	no std	no std	<9.91	<9.91	<7.93	<9.91	<15.87	<9.91	<19.83

				NHBB B	UILDING		
			NHB033:IA7:	NHB033:IA8:	NHB033:IA9:	NHB033:IA10:	NHB033:IA11:
Target	NHDES	EPA Regional	050:A102009	045:A102009	010:A102009	010:A102009	040:A102009
VOC	Commercial	Screening Level	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09
	Indoor Air	for Industrial	5 feet above ground	4.5 feet above ground	on ground surface	on ground surface	4 feet above ground
	Screening Level ^{1.}	Air ^{2.}	24-hour composite	24-hour composite	24-hour composite	24-hour composite	24-hour composite
	(ug/m ³)	(ug/m ³)				ug/m ³	
Tetrachloroethylene	2.1	2.1	<33.91	27.8	27.67	13.56	5.15
Trichloroethene	1.1	6.1	<26.87	<13.44	<21.50	<10.75	0.59
1,1-dichloroethane	150	7.7	<20.25	<10.12	<16.20	<8.10	<0.40
1,1-dichloroethene	58	880	<19.84	<9.92	<15.87	<7.93	<0.40
1,1,1-trichloroethane	640	22,000	<27.28	<13.64	<21.82	<10.91	0.93
Vinyl Chloride	2.8	2.8	<12.78	<6.39	<10.22	<5.11	<0.26
trans-1,2-dichloroethene	no std	no std	1,237.15	1,209.40	1,038.89	1,078.54	6.27
cis-1,2-dichloroethene	no std	no std	<19.83	<9.91	<15.86	<7.93	<0.40

NOTES:

High concentrations of non-target analytes prevented analysis by low-level reporting methods/limits.

62.34	
62.34	
62.34	
NHB033:IA11:	

Exceeds both the NHDES and USEPA Screening Values.

Exceeds both the USEPA Screening Value.

Constituent detected at the reported concentration.

11: Ambient Outside Air sample

1. NHDES Vapor Intrusion Guidance, Vapor Intrusion Screening Levels Table 1, Revised February 1, 2007.

2. Screening Levels provided by Region 1 Risk Team for 1E-06 cancer risk or Hazard Quotient =1 (from EPA Regional Screening Level Table)

(EPA. 2002.OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004.

Screening level for workers is 6.3 times higher than for residents due to: shorter exposure frequency (250 vs. 350 days/yr), shorter exposure duration (20 vs. 30 yrs), and shorter exposure time (8 vs. 24 hr/day)

RPD between IA-4 and	
IA-4 Duplicate	
52%	
13%	

TABLE 5

SUMMARY OF INDOOR AIR SAMPLING RESULTS, SDE BUILDING OCTOBER 2009

					SDE BUILDING					
			NHB033:SDE1:	NHB033:SDE2:	NHB033:SDE3:	NHB033:SDE3:	NHB033:SDE4:	NHB033:SDE4-8:	NHB033:SDE5:	RPD Between SDE3
Target	NHDES	EPA Regional	010:A102009	010:A102009	010:A102009	010:A102009A	040:A102009	040:A102009	040:A102009	and SDE3 Duplicate
VOC	Commerical	Screening Level	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	20-Oct-09	
	Indoor Air	for Industrial	on ground surface	on ground surface	on ground surface	on ground surface	4 feet above ground	4 feet above ground	4 feet above ground	
	Screening Level ^{1.}	Air ^{2.}	24-hour composite	8-hour composite	24-hour composite					
	(ug/m ³)	(ug/m ³)				ug/m ³				
Tetrachloroethylene	2.1	2.1	11.87	161.39	11.53	12.00	12.75	<16.95	15.46	4%
Trichloroethene	1.1	6.1	46.97	50.73	50.52	53.15	47.08	62.34	0.54	5%
1,1-dichloroethane	150	7.7	<2.02	<2.02	<2.02	<2.02	<2.02	<10.12	<0.40	
1,1-dichloroethene	58	880	<1.98	<1.98	<1.98	<1.98	<1.98	<9.92	<0.40	
1,1,1-trichloroethane	640	22,000	<2.73	13.86	<2.73	<2.73	<2.73	<13.64	0.87	
Vinyl Chloride	2.8	2.8	<1.28	<1.28	<1.28	<1.28	<1.28	<6.39	<0.26	
trans-1,2-dichloroethene	no std	no std	<1.28	3.33	<1.98	<1.98	<1.98	<9.91	<0.40	
cis-1,2-dichloroethene	no std	no std	<1.98	<1.98	<1.98	<1.98	<1.98	<9.91	<0.40	

NOTES:

High concentrations of non-target analytes prevented analysis by low-level reporting methods/limits.

62.34	Exceeds both the NHDES and USEPA Screening Values.
62.34	Exceeds both the USEPA Screening Value.
62.34	Constituent detected at the reported concentration.
NHB033:IA11:	Ambient Outside Air sample

1. NHDES Vapor Intrusion Guidance, Vapor Intrusion Screening Levels Table 1, Revised February 1, 2007.

 Screening Levels provided by Region 1 Risk Team for 1E-06 cancer risk risk or Hazard Quotient =1 (from EPA Regional Screening Level Table) (EPA. 2002.OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPA530-D-02-004.

Screening level for workers is 6.3 times higher than for residents due to: shorter exposure frequency (250 vs. 350 days/yr), shorter exposure duration (20 vs. 30 yrs), and shorter exposure time (8 vs. 24 hr/day)

TABLE 6

SUMMARY OF ANALYTICAL RESULTS FOR THE DILUTE PLUME WELLS, AUGUST 2009 SAMPLING EVENT SELECTED COMPOUNDS

			ANALYTICAL RESULTS (ug/l)									
PARAMETER / SAMPLE NUMBER	Cleanup Level	NHB033:EM3U:G081909	NHB033:DP1:G081910	NHB033:EM3L:G081909	NHB033:EM109:G081809	NHB033:EX5A:G081909		NHB033:EX8:G082109	NHB033:GZ13U:G081809			
WELL ID	NA	EM-3U	EM-3U DUP	EM-3L	EM-109	EX5A	EX7	EX8	GZ-13U			
Date Collected	NA	8/19/2009	8/19/2009	8/19/2009	8/18/2009	8/19/2009	2009	8/21/2009	8/18/2009			
1,1-dichloroethane	81	<1	<1	2.0	<1 1.	<1		2.6	<1			
1,1-dichloroethene	7	0.9J	0.8J	2.1	<1	<1		6.3	<1			
cis-1,2-dichloroethene	70	<1	<1	1.6	<1	0.6J	0	12.4	<1			
trans-1,2-dichloroethene	100	<1	<1	<1	<1	<1	mplu	1.9	<1			
Tetrachloroethene	5	2.9	3.0	7.5	<1	135	11 5 ⁸¹	8.4	<1			
Toluene	1,000	<1	<1	<1	<1	<1	blait	<1	<1			
Trichloroethene	5	3.8	3.8	12.7	0.1J ^{2.}	14.8	100	24.4	<1			
1,1,1-trichloroethane	200	1.8	1.9	1.7	<1	13.8	aple	6.2	<1			
Vinyl Chloride	2	<1	<1	<1	<1	<1	UIL.	0.9	<1			

		ANALYTICAL RESULTS (ug/l)										
PARAMETER / SAMPLE NUMBER	Cleanup Level	NHB033:GZ13M:G081809	NHB033:GZ13L:G081809	NHB033:MW7U:G081809	NHB033:MW7L:G081809	NHB033:MW11U:G081809	NHB033:MW11L:G081809	NHB033:P6:G081909	NHB033:RP1:G081809			
WELL ID	NA	GZ-13M	GZ-13L	MW7U	MW7L	MW11U	MW11L	P6	RP1			
Date Collected	NA	8/18/2009	8/18/2009 8/18/2000 8/18/20000 8/18/20000000000000000000000000000000000		8/18/2009	8/18/2009	8/19/2009	8/18/2009				
1,1-dichloroethane	81	<1	<1	<1	<1	<1	<1	0.7J	3.1			
1,1-dichloroethene	7	<1	<1	<1	<1	<1	<1	<1	2.2			
cis-1,2-dichloroethene	70	<1	<1	<1	<1	<1	<1	<1	4.5			
trans-1,2-dichloroethene	100	<1	<1	<1	<1	<1	<1	<1	1.4			
Tetrachloroethene	5	<1	<1	<1	<1	<1	<1	4.2	2.4			
Toluene	1,000	<1	<1	<1	<1	<1	<1	<1	<1			
Trichloroethene	5	<1	<1	<1	1.1	<1	<1	2.3	12.2			
1,1,1-trichloroethane	200	<1	<1	<1	<1	<1	<1	2.4	<1			
Vinyl Chloride	2	<1	<1	<1	<1	<1	<1	<1	<1			

Notes: All samples were analyzed using U.S. EPA Method 8260.

Analytical results for QA/QC samples including field blanks, trip blanks, matrix spike and matrix spike duplicates are contained within the laboratory data packages located within the report appendices.

< indicates concentrations less than the reporting limit.
 "J" indicates an estimated value.

3. Resultant concentration from sample re-analysis at a higher dilution factor.

BOLD indicates detected parameter. Shading indicates a detected concentration or elevated detection limit which exceeds cleanup level.

FIGURES

					N	, I
	LEGEND	•			0 25 50 SCALE II	D 100 N FEET
			אירס כעדנ	• • • •		
	т ү _А		ATER MON	אע ידר	DINC WELL	
	₩ ₩		R	ΠC	KING WELL	
/	+	MINI-PIEZ	OMETER			
	-	INDOOR A	IR SAMPLI	NG	LOCATION	
	- -	AMBIENT	AIR SAMPI	IN	G LOCATION	
				T I II		
\			AL SIRUC		RE DILUTE PL	
	2	(STAFF DE	EVELOPME	NT	FOR	
		EDUCATOR	RS BUILDIN	IG)		
	3	COMMERCI (NEW HAN	AL STRUC IPSHIRE B	TU ALI	RE SOURCE A _ BEARINGS F	AREA FACILITY)
		TECHNICA WAIVER A	L IMPRAC ⁻ REA	ГIС,	ABILITY	
	53	LOCATION APPROXIM	OF 5,000 ATE DIMEI	N F NSI	T ² STORAGE / ONS	AREA —
	[]	LOCATION STORAGE	OF OFFIC	E : Apf	SPACE ADJAO PROXIMATE DI	CENT TO IMENSIONS
		VOC (CONCENTR	ATI	ONS (ppb):	
			>100,00	0ι	ug/L	
			10,000			_
			1.000 -	1(0.000 ua/L	
_			100 - 1	.00	0 ug/L	
			10 - 10	, , ,)0	ua/L	
			1 - 10	un.		
/	NOTES: THE TI W/ EXPLANAT SECOND 5	AIVER IS INFER 10N OF SIGNIF 5-YEAR REVIEN	RED FROM TI ICANT DIFFER	HE Y	VERBIAGE OF THE ES AND AS DEPI	1997 CTED IN THE
	APPROXIM	ATED PLUME	AS INTERPRE	ED	FROM OCTOBER 2	2007 AND APRIL
	SAMPLING BASED ON SDE BUILI	LOCATIONS W N THE ACTUAL DING, UNDERGF	ILL BE ADJUS SITE CONDIT ROUND UTILITI	STEE IONS ES,) IN THE FIELD A 5 SUCH AS THE I AND WIND DIREC	S NECESSARY _AYOUT OF THE TION.
		SOUTH MUNICI	PAL WATER SU	PPL	Y WELL SUPERFUND	SITE
			IA SAMPLI	NG S	UMMARY	
			FIGU	RE	3	
		SDE INDOC	OR AIR SA	۹MF	LING LOCAT	IONS
		PE	TERBOROUGH,	NEW	HAMPSHIRE	
	PROJECT NO) NHB033	.00.0115		SUBMITTAL DATE: PLOT DATE:	NOVEMBER 2009

ATTACHMENTS

ATTACHMENT A

Valley Chevrolet Olds Waste Notification From

k and a second		154 155 600 Hemporary #
		NHD 000002333
		NEW HAMPSHIRE DIVISION OF PUBLIC HEALTH SERVICES RECEIVED OFFICE OF WASTE MANAGEMENT BUREAU OF HAZARDOUS WASTE COMPLIANCE & ENFORCEMENT 6 Hazen Drive, Concord, N.H. 03301-6527 FEB 11/987
		NOTIFICATION FORM Division of Public Health Services
	[No req ide abo	ote: Section He-P 1905.02(c)(l) of the New Hampshire <u>Hazardous Waste Rules</u> Juires notification of hazardous waste activity. To obtain an EPA Entification number, complete and return this form to the address listed Ove. Please type or print using black ink.]
. •	1.	Company Name: <u>VALEY</u> CHEVEROLET-OLDS
	2.	Mailing Address: P.O. Box 3083 RTE 2025
		PETERBOROUGH NIH, 03458
۲۵ [.]	31.	Location: (if different: from above):
OLD.	4.	Company's Principal Activity (brief written description): Service /sales
L E E		OF CAEVEROLET AND OCDSMOBILES
VROJ	5.	First or subsequent notification:
Y CHE		A. First Notification (company has never been issued an EPA I.D. #) B. Subsequent Notification EPA I.D. #: NHD
ALLE	6.	Name of Principal Contact: <u>PAY BAUMAN</u>
Δ		title: Service DIRECTOR phone: (603) 924-9231
	7.	Name(s) of legal company owner: <u>Robert KorP</u>
	8.	Name(s) of property owner: <u>SAME</u> .
· · · .		P (Mars)
	9.	Type of ownership (see instructions for appropriate code)
	10	.Type of regulated waste activity (enter X in all appropriate blocks)
		A Generator (hazardous wastes are accumulated for up to 90 days)
•	(less than 100 kg (220 lb) per month 100 to 1000 kg per month more than 1000 kg per month
	Ļ	NONC OF THE ABOVE, WASTE is recucled By SAFETY KICCN
		CORP every wine weeks, it is less THAN 100 RG. And we
		DON'T HAVE A BODY SHOP SO WE GENERATE NO OTHER TYPES OF HAZARDOUS GASTES, SAFETY KILLA CORP REQUIRES All THER ACCOUNTS TO HAVE EPA ID #

.

ļ

10 B.

Transporter (Note: transporter permits must be secured by all persons prior to transporting hazardous waste into or within the state of NH [He-P 1905.11(a)])

highway _____air ____rail ____water ____ other (specify on back)

Treatment/Storage/Disposal Facility (TSDF) (Note: permit required)

LWaste rec'd from off-site: Waste generated on-site:

storage for more than 90 days treatment other on-site disposal

Hazardous Waste Fuel (Hazardous wastes burned for energy recovery) [see instruction sheet] ____1) fuel is burned on-site

> 2) fuel is marketed to another company which burns it 3) fuels is marketed to another company - not for burning.

11. Does your company produce used oil? (see instructions) yes \swarrow no If no, skip to # 12.

A. If the used oil exceeds the allowable levels listed in the instructions-

- it is burned on-site

it is marketed to another company - not for burning

it is marketed to another company which burns it

B. If the used oil does not exceed the allowable limits in the instructions-

it is burned on-site

it is marketed to another company which burns it

it is marketed to another company - not for burning

C. Who is the first to claim that the oil meets the specifications (does not exceed the allowable limits listed in the instructions)?

generator

company who has purchased the oil for burning company who has purchased the oil - not for burning

page 2

utility boller	industri	al boiler	111	dustrial I	irnace
Description of hazardo	us waste gener	ation (use	addition	al sheets	if need
Waste Name		EPA Wast	te Code≭	Monthly	Volume
• Petroleum Naphtha, Co	mbustible	- D001		•	•
. Compound Cleaning Liq	uid, Corrosive	F002,	/F004		
	,,, <u>,</u> , , , , , , , , , , , , , , , , ,	······		••••••••••••••••••••••••••••••••••••••	
	<u> </u>	· <u>····</u> ···	<u></u>		
			· · ·		
·		······	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·		•	
There and Discourse	el Wathad (acc				
Transporter and Dispos Waste Name	al Method (see Tra	instructio nsporter	ons) for Dispos	wastes lis al/Treatmen	ted abc nt/Recy
Transporter and Dispos Waste Name a and b	al Method (see Tra Safety H	instructio nsporter Kleen Corp.	ons) for Dispos Sol	wastes lis al/Treatmen vent Recyc	ted abo nt/Recy ling
Transporter and Dispos Waste Name a and b	al Method (see Tra Safety H	instructio nsporter Kleen Corp.	ons) for Dispos Sol	wastes lis al/Treatmen vent Recyc	ted abo nt/Recy Ling
Transporter and Dispos Waste Name a and b	al Method (see Tra Safety H	instructio nsporter Kleen Corp.	ons) for Dispos Sol	wastes lis al/Treatmen vent Recyc.	ted abo nt/Recy ling
Transporter and Dispos Waste Name a and b	al Method (see Tra Safety H	instructionsporter Kleen Corp.	ons) for Dispos Sol	wastes lis al/Treatmen vent Recyc	ted abo nt/Recy Ling
Transporter and Dispos Waste Name a and b	al Method (see Tra Safety H	instructionsporter	ons) for Dispos Sol	wastes lis al/Treatmen vent Recyc	ted abo nt/Recy ling
Transporter and Dispos Waste Name a and b	al Method (see Tra Safety H	instructionsporter	ons) for Dispos Sol	wastes lis al/Treatmen vent Recyc	ted abo nt/Recy Ling
Transporter and Dispos Waste Name a and b	al Method (see Tra Safety H	instructionsporter	ons) for Dispos Sol	wastes lis al/Treatmen vent Recyc	ted abo

sign official documents for my organization.

Signature

printed or typed name and title

date

 \pm see He+P 1905.03(c) and appendices of the <u>Rules</u> SAY/5743j/0003j/6-86

page 3

HEN HAMPSHIRE DIVISION OF PUBLIC HEALTH SERVICES-OFFICE OF HASTE MANAGEMENT BUREAU OF HAZARDOUS WASTE COMPLIANCE & ENFORCEMENT

Instructions for preparing Hotification form

<u>NOTE</u>: Please use black ink and type/print all items except for the signature required in Item 14.

- Item 1. <u>Company Name</u>: Enter the full name of the company for which an EPA identification number is required.
- Item 2. Mailing address: Enter the complete mailing address of the company.
- Item 3. Location: Enter the physical address (actual location) of the company.
- Item 4. <u>Principal activity</u>: Enter a brief description of the company's business activities (manufacturing of a product, etc...).
- Item 5. <u>First or Subsequent Notification</u>: Place an <u>X</u> in the appropriate block to indicate' whether this is your first or a subsequent notification. If you have previously filed a notification, enter your EPA identification number in the space provided.
- Item 6. <u>Principal contact</u>: Enter the name and telephone number of the person who should be contacted regarding your company's hazardous waste activities.
- Item 7. Legal owners: Enter the name of the legal owner(s) of the company.
- Item 8. <u>Property owners</u>: Enter the name of the owner(s) of the property on which your company is located.
- Item 9. Using the codes listed below, indicate the legal status of property ownership.

Type of hazardous waste activity

- Item 10A <u>Generator</u>: If your company produces a hazardous waste, place an <u>X</u> after letter A and mark the appropriate category based on the monthly amount of hazardous waste.
- Item 10B <u>Transporter</u>: This activity requires your company to obtain a permit. If your company will 'transport hazardous waste, place an \underline{X} after letter B and indicate each method of transportation that will be used.
- Item 10C <u>Treater/Storer/Disposer</u>: If you treat or dispose of hazardous waste on-site, if you store your company's hazardous waste on-site more than 90 days or if you accept hazardous waste from off-site for treatment, storage or disposal, place an X after letter C and in the appropriate blank(s).
- Item 100 <u>Markel or Burn Hazardous Waste Fuel</u>: If your company markets or burns hazardous waste fuel, place an <u>X</u> in the appropriate section. [Hazardous Waste fuel is hazardous waste which is burned for energy recovery. This does <u>not</u> include waste oil <u>unless</u> the oil is contaminated with a hazardous waste(s) listed under He-P 1905.03(b).]

Instructions for preparing Notification form, page 2

Item 11. "Used oil" means any oil that has been refined from crude oil, used, and as a result of such use, is contaminated by physical or chemical impurities. Place an X in the appropriate space.

Item 11A. and 11B.

The allowable levels for used	oil are as follows:
arsenic5 ppm	cadmium2 ppm
chromium10 ppm	lead100 ppm
total halogens 4000 ppm	flash point1000 F.

' Used oil that exceeds any specification level listed above is termed "off-specification used oil fuel."Used oil that does <u>not</u> exceed these levels is termed "specification used oil fuel."

Item 11C. Indicate the first person to claim that the used oil does not exceed the allowable levels.

- Item 12. Refer to the enclosed definition sheet to determine the type of combustion device used to Durn the hazardous waste fuel or off-specification used oil fuel.
- Item 13. <u>Description of Hazardous Haste</u>: Companies that <u>generate</u>, <u>treat</u>, <u>store</u> or <u>dispose</u> of hazardous waste must complete this section. Enter the appropriate waste name, the EPA waste code listed in He-P 1905.03(c) and appendices of the <u>Rules</u>, and the monthly volume (in gallons) or weight (in pounds or kilograms).
- Item 14. <u>Transporter and method of disposal/treatment</u>: For each waste listed above, enter the transporter, and the ultimate disposition of the waste (landfill, incineration, solvent recovery, etc...)

Item IS. <u>Certification</u>: This certification must be signed by the owner, operator or authorized representative of your company. An "authorized representative is a person responsible for overall operation of the company" (i.e. plant manager, superintendent or a person with equal responsibility). The notification must include the certification to be complete.

5AY/6-86/4624j/0003j

ATTACHMENT B

Pre-Sample Inspection Inventory Sheets

											× .
	associates, inc.		INDOOR	AIR SAMF	PLING PRESAM	IPLING I	NSPECT	ION FORM	D, WEA	ATE: ATHER: PEED/DIR [.]	10/20/09 30's Sun
) 								No observable Wind 20°C
Mico Ball 1	Area NHRB E.	ACILITY INFO	RMATION						Ουτρο	OR TEMP:	<u> </u>
SITE: South Munic	Tigel Water Sugaly Sugarfund Site	ury.			Solvents lookuding P	CE TOE 1	11 104				
CLIENT New Hamps	hire Ball Bearings, Inc.	-	AGE OF REI	LEASE:	Solvenis including P	00, 100, 1	,1,1-104				
ADDRESS: Rt 202 S, Pr	eterborough, NH	-	LOCATION	OF RELEASE:					INSPI	ECTOR:	5. Soida
CONTACT: Patti Carrier		-	ANY OBSER	WED ODORS:					ļ		
		-	DESCRIBE I	HVAC SYSTEM		<u></u>	,	<u></u>	TIME OF I	NSPECTION	0700
BUILDING AGE:									1		
NUMBER OF FLOORS:		•							1		
TYPE OF FOUNDATION:											
		THIN THE C									
	WAT CONTRIBUTE TO VOC SOURCES WI	THIN THE BUI	LUING	12-14-14-14-14-14-14-14-14-14-14-14-14-14-	BARDER STREET	Statution and a	arr siddi at	d'Enter	the law of The Setting	S. A. Straw	and the second second second
t=Costrol				2011 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -							
				nio			PHOTO	- BUOTO #	1995 - T		
	PRESENT	LUCA		1 9 7 1 9 7	STORAGE CONL		17 17	F 1010.#			Comments
Gas powered equipment	Celegrare Surg	STT	PAL.L.	3.2	GODA		<u></u>				···· •
Gasoline cans	Nyspin ANS 46 - hural 2 (11)			<u>├──/</u> ──				<u>├- </u>		<u> </u>	
Cleaning Solvents	Svatila 9951 011										
Furniture Polish	Rustile DW 924 011										
Moth Balls/Urinal Cakes	Fenella 011 (44401 (364)									L	
Fuel Tanks	Custilo 4143			┟──┟────	 			┝┣			
*	HUSPIN VG46		<u> </u>	┟╌╍┠╌╌╍╌╌	┝╌╌┨─────	<u> </u>		<u>├</u>		<u> </u>	
	WERNSOR MGI			┟─┼───	<u>├</u>						
Y	Mabil Garacille Artic 155		·		├ ── V .───		1				
	LOW THICK OF			WHERE IS THE SHA	State State Section	Street Service	ALC: BAR		1	D. M. A.	
	ee hast page for add	trainer 1									
	PRESENT		TION	PID	STORAGE CONN	ITION	TY/N)	PHOTO #			Comments
						<u></u> _	<u> </u>		<u>ور حمایت کے شرحت</u>	<u>ٽ شينيز خديا</u> ا	
FOUNDATION PENETRATION IN	FLOUR INTACT	NA		NA	NA		NA	MA			
CRACKS IN FOUNDATION FLOOR	None	NA							>		
	1 Jone	A 14	~	<u> </u>						<u>├───</u>	
FLOOR DRAINS	Nous	NA									
					·····	Ŧ					

HULL & ASSOCIATES, INC. MASON, OHIO .

NHOB MICOball

·~• • • •

.

.

••

A associates, inc.		SITE: CLIENT DATE: TIME: INSPECTOR:	South Municipal Water Supply Superfund Site New Hampshire Ball Bearings, Inc. 10/20/09 0700 5.5024
VAS THE BUILDING VENTED PRIOR TO SAMPLED COLLECTION? RE VAPOR CONTROL METHODS IN EFFECT (I.E. HOODS, OPEN DOORS) DESCRIBE:	N N NA	HOW LONG?	¢
it any relevant information which will aid in the accurate inte Notes: Statuined 3.3 PID Accelin Continued List	RPRETATION OF THE INDOOR AIR QUALITY SAMPLING RESULT	S.	S. " Joine (Pri
mobil #28 Grease mobil Velocite oil #3	eil 3.3 Storage 3.3 -Atlantic RP -Evention - Cean -Krylon spri + - Kleen 300	416 - Atlantic Specia r Compound EP IS my paint 25	154 chemicals co. storage 3.3 0 460

NHBB MICROBURD

.

									Maria
		INDOOF	INDOOR AIR SAMPLING PRESAMPLING INSPECTION FORM						10/00/09
	associates, inc.	ll ll				• •	1		JUS JUN
4770 1	Duke Dr., Sulls 300 J Mason, Oteo 45040						WIND SF	PEED/DIR:	No Observable Wind
High Bay Ar	rea NHBB Facility						ουτοο	OR TEMP:	32° F
SITE: South Munic	cizal Water Supply Superfund Site	TYPE OF R		Solvents including PCE, TCE	1 1 1 1 TCA		BAROM	ETRIC P.	
CLIENT New Hamps	CLIENT New Hamzshire Ball Bearings, Inc.			Solventa Including FOE, TOE	, I, I, I-TOM				
ADDRESS: Rt 202 S, Pe	elerborough, NH	LOCATION	OF RELEASE:				INSPE	ECTOR:	5 Soida
CONTACT: Patti Carrier		ANY OBSER	RVED ODORS:	·····					
PHONE:		DESCRIBE	HVAC SYSTEM:				TIME OF IN	SPECTION	<u> </u>
BUILDING TYPE:								•	
BUILDING AGE:		-							
NUMBER OF FLOORS:		_							
TYPE OF FOUNDATION:		_							
LIST PRODUCTS OR ITEMS WHICH	MAY CONTRIBUTE TO VOC SOURCES W	THIN THE BUILDING	-		والمراجع المراجع				
					РНОТО				
POTENTIAL VOC SOURCE	PRESENT	LOCATION	PID	STORAGE CONDITION	(Y/N) i	НОТО #			Comments
Paint or Paint Thinner	Cestral Syntilo 9913		4.0	Acred	$ \nu $	n.14			
Gas powered equipment	LOCITITO 404	work station	_ <u></u>	1		1			
Gasoline cans	DYICEM STUTPINE laying fluid	Warkstation	11					j	
Cleaning Solvents	Castual Ruztila 41/67		1 1						
Furniture Polish	Kimtech Lens Cleaver Suichim								
Moth Balls/Urinal Cakes	Simer Clean	Florer by 10+4							
Fuel Tanks		everywhere							
	Mineral Spir, 15								
	DYILLEVA Steel Red			<u> </u>					
			ļ			V			
<u></u>		<u> </u>	L		<u></u>	<u> </u>			
			10.00			Section Section	and the second second		
					PHDTO	5,55			
POTENTIAL VAPOR ENTRY POINTS	PRESENT	LOCATION	PID	STORAGE CONDITION	(Y/N) P	ното #	and the second second		Comments
		<u>na ann an Chuiseann an Aisean</u> I	<u> </u>		t the second	ا من منخبه ا	ا <u>مة دى بنار تنترين</u>		أنصيب ويستحد والتقاعة فالمحتم والمتقد والتقاطي
FOUNDATION PENETRATION IN	None	NA	NA	NA	NA	NA			
CRACKS IN FOUNDATION FLOOR OR WALLS	None								
SUMPS	Wone								
FLOOR DRAINS	None								
			- V	<u> </u>	L W	1/			
						v			
	1				1 - 1	- 1	-1		

HULL & ASSOCIATES, INC. MASON, OHIO

NHAB thigh ba

Hull & associates, inc.	SITE: CLIENT DATE: TIME: INSPECTOR:	South Municipal Water Supply Superfund Site New Hampshire Ball Bearings, Inc. 10/20/09 09/0 S. Sojdey
WAS THE BUILDING VENTED PRIOR TO SAMPLED COLLECTION? ARE VAPOR CONTROL METHODS IN EFFECT (I.E. HOODS, OPEN DOORS) DESCRIBE:	HOW LONG?	MA
LIST ANY RELEVANT INFORMATION WHICH WILL AID IN THE ACCURATE INTERPRETATION OF THE INDOOR AIR QUALITY SAMPLING RESULTS. NOTES: SUSTAINED 4.0 on PID stranghant area		

NHOB HOGHBAY

. 2

							1	ATE:	
					UNSPECT			MIE.	10/20109
	associates inc						WE4	ATHER:	30's Sur
4770	Duke Dr., Stulle 300 J Meson, DNo 45040						WIND S	PEED/DIR:	No observable Wind
Storage Port	in of SDE R	ACILITY INFORMATION					ουτρο	OR TEMP:	32* <i>F</i> :
SITE: South Munic	cipal Water Supply Superfund Site	TYPE OF RE	LEASE;	Solvents including PCE, TCE	. 1.1.1-TCA		BARON	AETRIC P:	
CLIENT New Hamps	hire Ball Bearings, Inc.	AGE OF RE	EASE:						Ccide
ADDRESS: Rt 202 S, Pr	elerborough, NH	_ LOCATION (OF RELEASE:				INSP	ECTOR:	2.30104
PHONE			WED ODURS:					NSPECTION	6830
BUILDING TYPE:			WING CITOTEM.						
BUILDING AGE:		-		· · · · · · · · · · · · · · · · · · ·					
NUMBER OF FLOORS:		-]		į
TYPE OF FOUNDATION:		-				<u> </u>	ł		
}							Ľ		
LIST PRODUCTS OR ITEMS WHICH	MAY CONTRIBUTE TO VOC SOURCES W	ITHIN THE BUILDING							
	Internet and the second second		6		A Frederic	a an		S. States	AND STRATES
					nuo-to				
POTENTIAL VOC SOURCE	PRESENT	LOCATION	PID	STORAGE CONDITION	(Y/N)	PHOTO #			Comments
Paint or Paint Thinner	Siller 77 Spran Glut	Torrett forme Al side		Gend	V	7.8		ilition of the second	
Gas powered equipment	Sunny side Carbo-sol		[1-4,8-		1	
Gasoline cans	- Solvent (eleaning)	H	0.3	Gové					
Cleaning Solvents	PAP silicome sealout		0.0					ļ	
Furniture Polish	DAP Auxliz Coull	<u> </u>	0.0	 	╆╌╄───	├		<u> </u>	
Moth Balls/Urinal Cakes	DAY Wallboard Third Conyund	1	0.0	 	┟╌┟╌╌╸	+ <u>- </u>			
Fuel Tanks	Various Varints		0.0	┝ ┈ ─ <u></u>	<u>{</u> }	<u> </u>		<u> </u>	
<u>}</u>	Prercures clear PVC Frinary	SNOLD NE Side		 	┝╍┠╌╌╼	1		<u> </u>	······
}	Minwax Urethand	11		·····	<u>├ - </u>			<u> </u>	
	Minwax Stains Relvere House	11	V.		V	L			
	cer port the T				1	A STATE	Harles-Pre-		
					- рното				
POTENTIAL VAPOR ENTRY POINTS	PRESENT	LOCATION	PID 👘	STORAGE CONDITION	(Y/N) -	PHOTO #		e produktion and a set	Comments
FOUNDATION PENETRATION IN FLOOR OR WALLS	NA Dirt Floor -						シ		
CRACKS IN FOUNDATION FLOOR OR WALLS	NA						Э		
SUMPS									
FLOOR DRAINS									
					ļ				
}						{		<u>}</u>	
L					L				

SDESTURAGE

SEPTEMBER 2008 NHB033,200.0081

Hull & associates, inc.		SITE: CLIENT DATE: TIME: INSPECTOR:	South Municipal Water Supply Superfund Site New Hampshipe Ball Bearings, Inc. 16/20/09 0830 5.5024
WAS THE BUILDING VENTED PRIOR TO SAMPLED COLLECTION? ARE VAPOR CONTROL METHODS IN EFFECT (I.E. HOODS, OPEN DOORS) DESCRIBE:	No	HOW LONG?	NA
· · · · · · · · · · · · · · · · · · ·			
LIST ANY RELEVANT INFORMATION WHICH WILL AID IN THE ACCURATE INTE	RPRETATION OF THE INDOOR AIR QUALITY SAMPLING RESULTS.		
	· · · · · · · · · · · · · · · · · · ·		

Continued List X-0 rust spray paint - shelf NE side PID Instaleum spray paint - shelf NE side 0.0 Renetted Paint Conditioner - 11 themacour with Storage Photo Lucation Shelves he porting condition 9 6002 thompsons Water seal - 11 Watco Danish Oil Finish - 11

HULL & ASSOCIATES, INC. MASON, OHIO

& associates, inc. 4770 Dute Dr., Suite 300 J. Mason, Otho 45040 WIND SPEED/DIR:
WIND SPEED/DIR: 4770 Didda Dr., Suile 300 J Mason, Ohio 45040
he osserative ping
OLD OUTDOOR TEMP: 32°F
OTTICE allea of sub Building
STIE: South Municipal Water Supply Superfund Site TYRE OF RELEASE: Solvents including PCE, TCE, 1,1,1-TCA BAROMETRIC P:
ADDRESS: Rt. 202 S, Peterborough, NH LOCATION OF RELEASE:
CONTACT: Patti Carrier ANY OBSERVED ODORS:
PHONE: DESCRIBE HVAC SYSTEM: TIME OF INSPECTION: 0500
BUILDING TYPE:
LIST PRODUCTS OR ITEMS WHICH MAY CONTRIBUTE TO VOC SOURCES WITHIN THE BUILDING
POTENTIAL VOC SOURCE PRESENT Comments
Paintor Paint Dinner Logic C /VCc. 15 Stalf N wall CO Orcod Y 1, 31.5
Gaspiowered equipment 5-in-time hulf-evrapse gil II
Cleaning Solvents Copiling Gluce
Furniture Polish
Moth Balls/Urinal Cakes OD Fisher The Internet II
Fuel Tanks WD - 4 C ''
Bissell Fabriz a with pistory circular in
Kilz-interior cil Pardspray 11
Krylon sping saint "
Clerck Arienbechny spury Pesk V V 5
Kee back
PHOTO
POTENTIAL VAPOR ENTRY POINTS PRESENT LOCATION PID STORAGE CONDITION (Y/N) PHOTO# Comments
FLOOR OR WALLS NONE NA
CRACKS IN FOUNDATION FLOOR
OR WALLS NON
SUMPS None
FLOOR DRAINS None
╟╴╾╾╾╶╴╸┥╼┈╴┥╼╴╴╴╴┝╴┈┼╴╌╴┼┈┈┼╹╴╴╴╴╴╴╴╴╴
╟─────┼───┼───┼──┼──┼──┼───┼───┼

JUNE 2009 NHB033.200.0103

SDE OFFICE

Hull & associates, inc.	SITE: CLIENT DATE: TIME: INSPECTOR:	South Municipal Water Supply Superfund Site New Hampshire Ball Bearings, Inc. 10130109 0800 S. Sojder
WAS THE BUILDING VENTED PRIOR TO SAMPLED COLLECTION? ARE VAPOR CONTROL METHODS IN EFFECT (I.E. HOODS, OPEN DOORS) DESCRIBE:	HOW LONG?	A
LIST ANY RELEVANT INFORMATION WHICH WILL AID IN THE ACCURATE INTERPRETATION OF THE INDOOR AIR QUALITY SAMPLING RESULTS.		

Continued List

ortho Hernet + Wasp Killer - Floor near desk -Board gear - dry erase Fluid - shelf 5 side Krylan fosim - shelf 5 side Premium Rust Preventituve Enamel - shelf 5 side Terro Liquid Ant balls - shelf 5 side Oust Air sanither - shelf 5 side CB-80 Extra - inscriticide - Floor rear dask

HULL & ASSOCIATES, INC. MASON, OHIO

2 OF2
ATTACHMENT C

Weather Information from October 20-21, 2009 from Weather Underground

Stony Brook Farm, Peterborough, NH - Current Conditions

Daily Summary for October 20, 2009

	Current:	High:	Low:	Average:	
Temperature:	31.8 °F	59.8 °F	35.8 °F	48.1 °F	
Dew Point:	31.0 °F	42.4 °F	21.4 °F	34.4 °F	
Humidity:	97%	75%	45%	59%	
Wind Speed:	11.0mph	8.0mph	-	2.1mph	
Wind Gust:	11.0mph	13.0mph	-	-	
Wind:	ENE	-	-	West	
Pressure:	29.48 in	30.14i n	30.04 in	-	
Precipitation:	0.00in			******	

	High:	Low:	Average:
Temperature:	68.4 °F	27.2 °F	45.6 °F
Dew Point:	59.9 °F	16.1 °F	38.2 °F
Humidity:	99.0%	25.0%	76.9%
Wind Speed:	16.0mph from the SW		2.4mph
Wind Gust:	21.0mph from the SW	-	-
Wind:	-	-	SSW
Pressure:	30.42in	29.35 in	-
Precipitation:	2.60i n		

Tabular Data for October 20, 2009

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
00:14	41.1 °F	21.9 °F	30.13 in	Calm		0.0 mph	46%	0.00 in
00:23	41.2 °F	21.4 °F	30.12 in	Calm		0.0 mph	45%	0.00 in
00:33	39.5 °F	22.4 °F	30.11 in	Calm		0.0 mph	50%	0.00 in
00:43	38.8 °F	23.1 °F	30.11 in	Calm		0.0 mph	53%	0.00 in
00:53	38.9 °F	22.8 °F	30.11 in	Calm		0.0 mph	52%	0.00 in
01:13	35.8 °F	28.6 °F	30.11 in	Calm		0.0 mph	75%	0.00in
01:23	38.0 °F	24.5 °F	30.11 in	Calm		0.0 mph	58%	0.00 in
01:33	39.8 °F	24.0 °F	30.12 in	Calm		3.0 mph	53%	0.00 in
01:43	39.2 °F	24.8 °F	30.12 in	SE	1.0 mph	1.0 mph	56%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
01:53	37.9 °F	26.4 °F	30.12 in	Calm		0.0 mph	63%	0.00 in
02:13	37.9 °F	25.6 °F	30.12 in	Calm		0.0 mph	61%	0.00 in
02:23	39.3 °F	25.3 °F	30.12 in	Calm		1.0 mph	57%	0.00 in
02:34	39.8 °F	25.4 °F	30.11 in	Calm		0.0 mph	56%	0.00 in
02:43	40.2 °F	25.3 °F	30.11 in	SW	1.0 mph	5.0 mph	55%	0.00 in
02:53	40.5 °F	25.1 °F	30.10 in	SSW	1.0 mph	5.0 mph	54%	0.00 in
03:24	40.5 °F	25.6 °F	30.09 in	SSW	1.0 mph	1.0 mph	55%	0.00 in
03:33	39.5 °F	25.9 °F	30.10 in	Calm		0.0 mph	58%	0.00 in
03:43	39.1 °F	26.0 °F	30.10 in	SSW	1.0 mph	1.0 mph	59%	0.00 in
03:53	39.1 °F	26.4 °F	30.10 in	Calm		0.0 mph	60%	0.00 in
04:13	39.5 °F	26.3 °F	30.10 in	South	1.0 mph	1.0 mph	59%	0.00 in
04:24	40.2 °F	26.6 °F	30.10 in	SSW	2.0 mph	2.0 mph	58%	0.00 in
04:33	40.8 °F	26.7 °F	30.08 in	SSW	1.0 mph	1.0 mph	57%	0.00 in
04:44	41.6 °F	26.6 °F	30.08 in	SSW	1.0 mph	1.0 mph	55%	0.00 in
05:14	40.9 °F	27.2 °F	30.09 in	SW	1.0 mph	1.0 mph	58%	0.00 in
05:23	40.9 °F	26.8 °F	30.09 in	SW	2.0 mph	2.0 mph	57%	0.00 in
05:33	41.1 °F	27.0 °F	30.09 in	SW	1.0 mph	1.0 mph	57%	0.00 in
05:43	41.1 °F	26.6 °F	30.09 in	SSW	1.0 mph	1.0 mph	56%	0.00 in
05:53	41.5 °F	27.0 °F	30.09in	SW	1.0 mph	3.0 mph	56%	0.00 in
06:13	41.2 °F	26.7 °F	30.10 in	SSW	2.0 mph	2.0 mph	56%	0.00 in
06:23	39.9 °F	27.1 °F	30.11 in	Calm		1.0 mph	60%	0.00 in
06:33	39.8 °F	27.0 °F	30.12 in	SSW	2.0 mph	2.0 mph	60%	0.00 in
06:44	39.8 °F	26.6 °F	30.12 in	SSW	2.0 mph	2.0 mph	59%	0.00 in
06:53	39.9 °F	27.1 °F	30.12 in	SSW	2.0 mph	2.0 mph	60%	0.00 in
07:13	39.9 °F	27.9 °F	30.12 in	Calm		0.0 mph	62%	0.00 in
07:23	39.5 °F	28.7 °F	30.12 in	SSW	1.0 mph	2.0 mph	65%	0.00 in
07:33	39.5 °F	28.3 °F	30.12 in	SW	2.0 mph	3.0 mph	64%	0.00 in
07:43	39.9 °F	28.7 °F	30.12 in	SW	2.0 mph	3.0 mph	64%	0.00 in
07:53	40.8 °F	28.4 °F	30.11 in	SW	2.0 mph	3.0 mph	61%	0.00 in
08:13	41.8 °F	29.3 °F	30.13 in	SW	1.0 mph	2.0 mph	61%	0.00 in
08:23	41.8 °F	29.3 °F	30.12 in	Calm		0.0 mph	61%	0.00 in
08:33	42.1 °F	29.6 °F	30.11 in	SW	1.0 mph	1.0 mph	61%	0.00 in
08:43	43.1 °F	30.1 °F	30.11 in	SSW	2.0 mph	3.0 mph	60%	0.00 in
08:53	43.8 °F	30.4 °F	30.11 in	SSW	2.0 mph	4.0 mph	59%	0.00 in
09:13	44.6 °F	31.1 °F	30.11 in	SW	3.0 mph	5.0 mph	59%	0.00 in
09:23	44.6 °F	31.1 °F	30.12 in	SW	2.0 mph	4.0 mph	59%	0.00 in
09:43	44.6 °F	31.6 °F	30.11 in	SW	3.0 mph	5.0 mph	60%	0.00 in
09:53	45.1 °F	32.0 °F	30.11 in	SW	2.0 mph	2.0 mph	60%	0.00 in
10:13	46.1 °F	32.6 °F	30.12 in	SW	2.0 mph	2.0 mph	59%	0.00 in
10:23	47.0 °F	34.2 °F	30.11 in	SW	2.0 mph	3.0 mph	61%	0.00 in
10:33	47.6 °F	34.0 °F	30.11 in	WSW	3.0 mph	5.0 mph	59%	0.00 in
10:43	48.6 °F	34.0 °F	30.11 in	SW	3.0 mph	5.0 mph	57%	0.00 in
10:53	48.8 °F	33.8 °F	30.10 in	SW	3.0 mph	3.0 mph	56%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
11:13	48.5 °F	34.4 °F	30.10 in	WSW	1.0 mph	1.0 mph	58%	0.00 in
11:23	49.1 °F	34.1 °F	30.10 in	WSW	2.0 mph	2.0 mph	56%	0.00 in
11:33	49.8 °F	35.2 °F	30.09in	WSW	2.0 mph	2.0 mph	57%	0.00i n
11:43	50.4 °F	36.6 °F	30.09 in	WSW	2.0 mph	2.0 mph	59%	0.00 in
11:53	51.0 °F	36.3 °F	30.09 in	West	2.0 mph	2.0 mph	57%	0.00 in
12:13	53.6 °F	37.3 °F	30.08 in	SSW	2.0 mph	5.0 mph	54%	0.00in
12:23	53.5 °F	37.3 °F	30.08in	West	5.0 mph	5.0 mph	54%	0.00 in
12:33	54.7 °F	37.4 °F	30.08 in	SW	4.0 mph	4.0 mph	52%	0.00 in
12:43	55.3 °F	38.0 °F	30.08 in	WSW	3.0 mph	6.0 mph	52%	0.00 in
12:53	56.7 °F	38.3 °F	30.07 in	WNW	3.0 mph	3.0 mph	50%	0.00 in
13:03	57.5 °F	37.9 °F	30.06in	WSW	4.0 mph	6.0 mph	48%	0.00 in
13:13	58.0 °F	38.4 °F	30.06 in	WNW	5.0 mph	5.0 mph	48%	0.00 in
13:23	57.6 °F	37.0 °F	30.06in	WNW	8.0 mph	8.0 mph	46%	0.00 in
13:33	58.1 °F	38.0 °F	30.06 in	WSW	7.0 mph	13.0 mph	47%	0.00 in
13:43	58.6 °F	40.0 °F	30.06in	WNW	7.0 mph	7.0 mph	50%	0.00 in
13:53	58.6 °F	40.0 °F	30.05 in	WNW	6.0 mph	8.0 mph	50%	0.00 in
14:13	58.6 °F	38.4 °F	30.05 in	WNW	8.0 mph	8.0 mph	47%	0.00 in
14:23	58.9 °F	39.8 °F	30.04in	WSW	7.0 mph	7.0 mph	49%	0.00 in
14:33	59.5 °F	39.8 °F	30.04 in	West	7.0 mph	7.0 mph	48%	0.00 in
14:43	59.8 °F	41.6 °F	30.04 in	WNW	6.0mph	12.0 mph	51%	0.00 in
14:53	59.3 °F	40.1 °F	30.04 in	West	8.0mph	8.0 mph	49%	0.00 in
15:13	57.8 °F	40.8 °F	30.04 in	West	6.0 mph	13.0 mph	53%	0.00 in
15:23	57.6 °F	40.1 °F	30.04 in	SW	6.0 mph	13.0 mph	52%	0.00 in
15:33	57.5 °F	41.0 °F	30.04 in	WSW	7.0 mph	7.0 mph	54%	0.00 in
15:43	57.5 °F	40.5 °F	30.04 in	WSW	8.0mph	8.0mph	53%	0.00 in
15:53	57.5 °F	40.5 °F	30.04 in	NW	7.0 mph	11.0 mph	53%	0.00 in
16:13	58.6 °F	40.5 °F	30.05 in	WNW	4.0 mph	4.0 mph	51%	0.00 in
16:23	58.7 °F	41.1 °F	30.05 in	WNW	4.0 mph	7.0 mph	52%	0.00 in
16:33	58.6 °F	41.0 °F	30.05 in	WNW	4.0 mph	4.0 mph	52%	0.00 in
16:43	58.3 °F	41.2 °F	30.05 in	WNW	4.0 mph	4.0 mph	53%	0.00in
16:54	58.0 °F	42.4 °F	30.06in	WNW	4.0 mph	4.0 mph	56%	0.00 in
17:13	56.6 °F	42.4 °F	30.06in	West	5.0 mph	6.0 mph	59%	0.00 in
17:23	56.0 °F	42.3 °F	30.07 in	West	6.0 mph	6.0 mph	60%	0.00 in
17:33	55.4 °F	41.7 °F	30.08in	WNW	4.0 mph	4.0 mph	60%	0.00 in
17:43	54.8 °F	41.6 °F	30.08in	WSW	2.0 mph	2.0 mph	61%	0.00 in
17:53	54.2 °F	41.5 °F	30.08in	WSW	1.0 mph	4.0 mph	62%	0.00 in
18:13	53.2 °F	41.7 °F	30.09 in	West	1.0mph	1.0 mph	65%	0.00 in
18:23	52.6 °F	41.2 °F	30.09 in	Calm		0.0 mph	65%	0.00 in
18:33	52.0 °F	41.0 °F	30.10 in	Calm		0.0 mph	66%	0.00 in
18:43	51.7 °F	40.7 °F	30.10 in	Calm		0.0 mph	66%	0.00 in
18:54	51.6 °F	40.6 °F	30.10 in	Calm		0.0 mph	66%	0.00 in
19:13	50.8 °F	40.2 °F	30.10 in	Calm		0.0 mph	67%	0.00 in
19:23	50.4 °F	40.2 °F	30.11 in	Calm		0.0 mph	68%	0.00 in
				•••••		·····		

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
19:33	49.1 °F	40.1 °F	30.12 in	Calm		0.0 mph	71%	0.00 in
19:43	49.1 °F	39.7 °F	30.12 in	Calm		0.0 mph	70%	0.00 in
19:53	49.1 °F	40.1 °F	30.12 in	Calm		0.0 mph	71%	0.00 in
20:13	49.1 °F	39.7 °F	30.13 in	West	1.0 mph	1.0 mph	70%	0.00 in
20:23	49.4 °F	40.0 °F	30.13 in	West	1.0 mph	6.0 mph	70%	0.00in
20:33	50.4 °F	40.2 °F	30.13 in	WNW	2.0 mph	2.0 mph	68%	0.00in
20:43	50.2 °F	40.4 °F	30.13 in	SW	1.0 mph	2.0 mph	69%	0.00 in
20:53	50.4 °F	40.2 °F	30.13 in	NW	2.0 mph	2.0 mph	68%	0.00 in
21:13	49.6 °F	39.8 °F	30.13 in	NW	1.0 mph	1.0 mph	69%	0.00 in
21:23	49.5 °F	40.1 °F	30.13 in	NW	1.0 mph	1.0 mph	70%	0.00 in
21:33	49.6 °F	39.8 °F	30.13 in	Calm		3.0 mph	69%	0.00 in
21:43	49.6 °F	40.2 °F	30.13 in	Calm		0.0 mph	70%	0.00 in
21:53	49.4 °F	40.4 °F	30.14 in	NW	1.0 mph	1.0 mph	71%	0.00 in
22:13	49.6 °F	40.2 °F	30.14 in	Calm		2.0 mph	70%	0.00 in
22:23	49.9 °F	40.5 °F	30.14 in	WNW	1.0 mph	3.0 mph	70%	0.00 in
22:33	49.9 °F	40.5 °F	30.13 in	West	1.0 mph	1.0 mph	70%	0.00 in
22:43	49.8 °F	40.8 °F	30.13 in	Calm		0.0 mph	71%	0.00 in
22:53	50.1 °F	40.7 °F	30.14 in	Calm		2.0 mph	70%	0.00 in
23:13	49.8 °F	40.8 °F	30.14 in	Calm		0.0 mph	71%	0.00 in
23:23	49.8 °F	40.8 °F	30.13 in	Calm		2.0 mph	71%	0.00 in
23:33	49.9 °F	40.9 °F	30.13 in	Calm		0.0 mph	71%	0.00 in
23:43	49.9 °F	40.9 °F	30.13 in	West	1.0 mph	1.0 mph	71%	0.00 in
23:53	49.9 °F	40.9 °F	30.13 in	WSW	1.0 mph	1.0 mph	71%	0.00 in

Stony Brook Farm, Peterborough, NH --- Current Conditions

Daily Summary for October 21, 2009

	Current:	High:	Low:	Average:	
Temperature:	31.8 °F	62.7 °F	46.7 °F	53.2 °F	
Dew Point:	31.0 °F	47.5 °F	40.9 °F	44.4 °F	
Humidity:	97%	85%	54%	73%	
Wind Speed:	11.0mph	7.0 mph	-	0.9mph	
Wind Gust:	11.0 mph	10.0mph	-	-	
Wind:	ENE	-	-	West	
Pressure:	29.48 in	30.20 in	30.09 in	-	
Precipitation:	0.00in			************************************	

	High:	Low:	Average:	
Temperature:	68.4 °F	27.2 °F	45.6 °F	
Dew Point:	59.9 °F	16.1 °F	38.2 °F	
Humidity:	99.0%	25.0%	76.9%	
Wind Speed:	16.0mph from the SW	-	2.4mph	
Wind Gust:	21.0mph from the SW	-	-	
Wind:	-	_	SSW	
Pressure:	30.42 in	29.35 in	-	
Precipitation:	2.60 in			

Tabular Data for October 21, 2009

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
00:03	49.6 °F	40.9 °F	30.14 in	Calm		0.0 mph	72%	0.00 in
00:13	49.2 °F	40.9 °F	30.14 in	Calm		0.0 mph	73%	0.00 in
00:23	49.4 °F	41.1 °F	30.12 in	Calm		0.0 mph	73%	0.00 in
00:33	48.9 °F	41.0 °F	30.13 in	Calm		0.0 mph	74%	0.00 in
00:43	49.2 °F	41.3 °F	30.13 in	Calm		0.0 mph	74%	0.00 in
00:53	48.8 °F	41.2 °F	30.13 in	Calm		0.0 mph	75%	0.00 in
01:13	48.9 °F	41.3 °F	30.13 in	Calm		0.0 mph	75%	0.00 in
01:23	49.1 °F	41.5 °F	30.13 in	Calm		0.0 mph	75%	0.00 in
01:33	48.8 °F	41.2 °F	30.14 in	Calm		0.0 mph	75%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
01:43	48.5 °F	41.3 °F	30.14 in	Calm		0.0 mph	76%	0.00 in
01:53	48.6 °F	41.0 °F	30.14 in	Calm		0.0 mph	75%	0.00 in
02:13	47.6 °F	41.1 °F	30.15 in	Calm		0.0 mph	78%	0.00 in
02:23	47.4 °F	41.2 °F	30.15 in	Calm		0.0 mph	79%	0.00 in
02:33	47.6 °F	41.4 °F	30.15 in	Calm		0.0 mph	79%	0.00 in
02:43	47.6 °F	41.4 °F	30.15 in	Calm		0.0 mph	79%	0.00 in
02:53	47.4 °F	41.2 °F	30.14 in	Calm		0.0 mph	79%	0.00 in
03:13	47.7 °F	41.5 °F	30.15 in	Calm		0.0 mph	79%	0.00 in
03:23	47.7 °F	41.5 °F	30.15 in	Calm		0.0 mph	79%	0.00 in
03:33	47.3 °F	41.4 °F	30.15 in	Calm		0.0 mph	80%	0.00 in
03:43	47.1 °F	41.2 °F	30.15 in	Calm		0.0 mph	80%	0.00 in
03:53	47.7 °F	41.8 °F	30.15 in	Calm		0.0 mph	80%	0.00 in
04:04	47.7 °F	41.8 °F	30.15 in	Calm		0.0 mph	80%	0.00 in
04:13	48.0 °F	41.8 °F	30.15 in	Calm		0.0 mph	79%	0.00 in
04:23	47.4 °F	41.5 °F	30.15 in	Calm		0.0 mph	80%	0.00in
04:33	47.0 °F	41.8 °F	30.16 in	Calm		0.0 mph	82%	0.00in
04:43	47.0 °F	41.8 °F	30.16 in	Calm		0.0 mph	82%	0.00 in
04:53	47.4 °F	41.9 °F	30.15 in	Calm		2.0mph	81%	0.00in
05:13	47.1 °F	41.9 °F	30.16 in	WSW	1.0 mph	1.0 mph	82%	0.00 in
05:23	46.8 °F	41.9 °F	30.17 in	Calm		0.0mph	83%	0.00 in
05:33	46.8 °F	41.9 °F	30.17 in	Calm		0.0 mph	83%	0.00in
05:43	46.8 °F	41.9 °F	30.17 in	Calm		0.0 mph	83%	0.00 in
05:53	46.8 °F	42.2 °F	30.17 in	Calm		0.0 mph	84%	0.00in
06:04	47.1 °F	42.2 °F	30.17 in	Calm		0.0 mph	83%	0.00 in
06:13	47.3 °F	42.4 °F	30.17 in	Calm		0.0 mph	83%	0.00 in
06:23	47.1 °F	42.2 °F	30.17 in	Calm		0.0 mph	83%	0.00 in
06:33	46.7 °F	41.8 °F	30.17 in	Calm		0.0 mph	83%	0.00in
06:43	46.7 °F	42.1 °F	30.17 in	Calm		0.0 mph	84%	0.00in
06:53	46.7 °F	42.1 °F	30.17 in	Calm		0.0 mph	84%	0.00 in
07:13	47.0 °F	42.4 °F	30.18 in	Calm		0.0 mph	84%	0.00 in
07:23	47.0 °F	42.4 °F	30.19 in	Calm		0.0 mph	84%	0.00 in
07:33	47.0 °F	42.1 °F	30.20 in	Calm		0.0 mph	83%	0.00 in
07:43	46.8 °F	42.2 °F	30.20 in	Calm		0.0 mph	84%	0.00 in
07:53	47.0 °F	42.4 °F	30.20 in	Calm		0.0 mph	84%	0.00 in
08:13	47.3 °F	42.4 °F	30.19 in	WSW	1.0 mph	1.0 mph	83%	0.00in
08:23	46.8 °F	42.5 °F	30.20 in	Calm	• • • • • • • • • • • • • • • • • • •	0.0mph	85%	0.00 in
08:33	47.0 °F	42.7 °F	30.20 in	Calm			85%	0.00 in
08:44	47.6 °F	43.0 °F	30.20 in	Calm			84%	0.00 in
08:53	48.2 °F	43.3 °F	30.20 in	WSW	1.0 mph	1.0 mph	83%	0.00in
09:13	50.1 °F	44.2 °F	30.20 in	WSW	1.0 mph	1.0 mph	80%	0.00 in
09:23	50.8 °F	44.5 °F	30.20in	WSW	1.0mph	3.0 mph	79%	0.00 in
09:33	51.4 °F	44.4 °F	30.20 in	WSW	1.0 mph	1.0 mph	77%	0.00in
09.43	51.9 °F	44.6 °F	30.20in	WSW	1.0mph	1.0mph	76%	0.00in
57.75								

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
09:53	52.5 °F	45.2 °F	30.20 in	WSW	1.0 mph	1.0 mph	76%	0.00 in
10:13	52.6 °F	44.5 °F	30.19 in	WSW	2.0 mph	3.0 mph	74%	0.00 in
10:23	53.6 °F	45.5 °F	30.19 in	WSW	1.0 mph	2.0 mph	74%	0.00 in
10:33	54.4 °F	45.2 °F	30.18 in	WSW	2.0 mph	2.0 mph	71%	0.00 in
10:43	55.1 °F	45.5 °F	30.18 in	WNW	2.0 mph	3.0 mph	70%	0.00 in
10:53	55.3 °F	45.3 °F	30.18 in	WSW	4.0 mph	4.0 mph	69%	0.00 in
11:13	56.2 °F	46.2 °F	30.17 in	SW	5.0 mph	5.0 mph	69%	0.00 in
11:23	56.9 °F	46.1 °F	30.17 in	WNW	4.0 mph	7.0 mph	67%	0.00 in
11:33	57.8 °F	46.5 °F	30.17 in	WSW	4.0 mph	4.0 mph	66%	0.00 in
11:43	58.6 °F	46.0 °F	30.17 in	WNW	4.0 mph	5.0 mph	63%	0.00 in
11:53	58.7 °F	46.1 °F	30.17 in	NW	5.0 mph	10.0 mph	63%	0.00 in
12:13	58.6 °F	45.6 °F	30.17 in	NW	5.0 mph	8.0 mph	62%	0.00 in
12:23	58.7 °F	46.1 °F	30.17 in	NW	5.0 mph	5.0 mph	63%	0.00 in
12:33	59.5 °F	47.3 °F	30.17 in	WNW	5.0 mph	7.0 mph	64%	0.00in
12:43	59.5 °F	46.0 °F	30.17 in	West	6.0 mph	6.0mph	61%	0.00in
12:53	60.4 °F	47.3 °F	30.16 in	WNW	3.0 mph	4.0 mph	62%	0.00 in
13:03	61.2 °F	46.8 °F	30.15 in	NW	6.0 mph	9.0 mph	59%	0.00 in
13:13	61.5 °F	46.6 °F	30.15 in	WNW	5.0 mph	9.0 mph	58%	0.00 in
13:43	61.6 °F	45.7 °F	30.14 in	NW	3.0 mph	5.0 mph	56%	0.00 in
13:53	62.3 °F	45.9 °F	30.14 in	West	7.0 mph	7.0 mph	55%	0.00 in
14:13	62.0 °F	45.6 °F	30.13 in	WNW	1.0 mph	1.0 mph	55%	0.00 in
14:23	62.7 °F	45.8 °F	30.12 in	NW	4.0 mph	7.0 mph	54%	0.00 in
14:33	61.6 °F	44.8 °F	30.12 in	WNW	4.0 mph	4.0 mph	54%	0.00 in
14:43	61.8 °F	45.9 °F	30.12 in	WNW	3.0 mph	4.0 mph	56%	0.00 in
14:52	61.3 °F	45.0 °F	30.12 in	West	3.0 mph	3.0 mph	55%	0.00in
15:13	61.3 °F	46.4 °F	30.12 in	West	1.0 mph	1.0 mph	58%	0.00 in
15:22	61.2 °F	46.8 °F	30.12 in	West	1.0 mph	1.0 mph	59%	0.00 in
15:32	61.0 °F	46.1 °F	30.11 in	West	2.0 mph	2.0 mph	58%	0.00in
15:42	61.0 °F	45.7 °F	30.11 in	Calm		0.0 mph	57%	0.00 in
15:52	60.9 °F	46.9 °F	30.11 in	West	1.0 mph	1.0 mph	60%	0.00 in
16:12	60.5 °F	46.5 °F	30.11 in	West	1.0 mph	1.0 mph	60%	0.00 in
16:22	60.4 °F	46.4 °F	30.12 in	Calm		0.0 mph	60%	0.00 in
16:32	60.2 °F	46.3 °F	30.12 in	Calm		0.0 mph	60%	0.00in
16:42	59.9 °F	46.8 °F	30.12 in	Calm		0.0 mph	62%	0.00 in
16:52	59.8 °F	47.2 °F	30.11 in	Calm		0.0 mph	63%	0.00 in
17:12	59.3 °F	47.5 °F	30.12 in	Calm		0.0 mph	65%	0.00 in
17:22	59.5 °F	46.0 °F	30.11 in	Calm		0.0 mph	61%	0.00 in
17:32	59.2 °F	46.2 °F	30.12 in	Calm		0.0 mph	62%	0.00 in
17:42	59.0 °F	46.8 °F	30.12 in	Calm		0.0 mph	64%	0.00in
17:52	58.7 °F	46.1 °F	30.12 in	Calm		0.0 mph	63%	0.00 in
18:12	58.4 °F	46.7 °F	30.12 in	WSW	2.0 mph	2.0 mph	65%	0.00 in
18:22	58.0 °F	47.1 °F	30.13 in	Calm		0.0 mph	67%	0.00 in
18:32	58.0 °F	47.1 °F	30.13 in	WSW	1.0 mph	1.0 mph	67%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
18:42	58.0 °F	47.5 °F	30.13 in	WSW	1.0 mph	1.0 mph	68%	0.00 in
18:52	57.5 °F	47.0 °F	30.14 in	Calm		0.0 mph	68%	0.00 in
19:02	57.5 °F	47.4 °F	30.13 in	Calm		1.0 mph	69%	0.00 in
19:12	57.5 °F	47.4 °F	30.13 in	Calm		5.0 mph	69%	0.00 in
19:22	57.3 °F	47.2 °F	30.13 in	Calm		0.0 mph	69%	0.00 in
19:32	57.3 °F	47.2 °F	30.13 in	Calm		3.0 mph	69%	0.00 in
19:42	57.2 °F	47.1 °F	30.13 in	Calm		0.0 mph	69%	0.00 in
19:52	56.9 °F	46.8 °F	30.13 in	Calm		0.0 mph	69%	0.00 in
20:12	56.2 °F	46.9 °F	30.13 in	Calm		0.0 mph	71%	0.00 in
20:22	55.9 °F	46.6 °F	30.11 in	WSW	1.0 mph	2.0 mph	71%	0.00 in
20:32	55.1 °F	46.6 °F	30.12 in	Calm		0.0 mph	73%	0.00 in
20:42	54.1 °F	46.3 °F	30.12 in	Calm		0.0 mph	75%	0.00 in
20:52	53.5 °F	46.5 °F	30.13 in	Calm		0.0 mph	77%	0.00 in
21:12	53.1 °F	46.1 °F	30.12 in	Calm		0.0 mph	77%	0.00 in
21:22	52.9 °F	45.9 °F	30.13 in	Calm		0.0 mph	77%	0.00 in
21:32	52.8 °F	45.8 °F	30.11 in	Calm		0.0 mph	77%	0.00 in
21:41	52.0 °F	45.4 °F	30.11 in	Calm		0.0 mph	78%	0.00 in
21:52	51.3 °F	45.3 °F	30.13 in	Calm		0.0 mph	80%	0.00 in
22:11	51.7 °F	45.1 °F	30.12 in	Calm		0.0 mph	78%	0.00 in
22:22	52.2 °F	44.9 °F	30.11 in	Calm		0.0 mph	76%	0.00 in
22:31	51.9 °F	45.3 °F	30.12 in	Calm		0.0 mph	78%	0.00 in
22:41	51.9 °F	45.3 °F	30.12 in	Calm		0.0 mph	78%	0.00 in
22:51	51.7 °F	45.1 °F	30.11 in	Calm		0.0 mph	78%	0.00 in
23:11	51.9 °F	45.9 °F	30.10 in	Calm		0.0 mph	80%	0.00 in
23:21	51.9 °F	45.6 °F	30.09in	Calm		0.0 mph	79%	0.00 in
23:31	52.2 °F	46.2 °F	30.09 in	Calm		0.0 mph	80%	0.00 in
23:41	51.9 °F	45.9 °F	30.09in	Calm		0.0 mph	80%	0.00in
23:51	51.7 °F	46.1 °F	30.09in	Calm		0.0 mph	81%	0.00in

Region 14 ATC/ConVal HS, Peterborough, NH --- Current Conditions

Daily Summary for October 20, 2009

	Current:	High:	Low:	Average:	
Temperature:	31.9 °F	62.1 °F	29.0 °F	44.2 °F	
Dew Point:	31.9 °F	41.2 °F	26.3 °F	33.9 °F	*********
Humidity:	100%	91%	39%	70%	*****
Wind Speed:	5.0 mph	5.0mph	-	1.2mph	
Wind Gust:	-	0.0mph	-	-	
Wind:	North	-	-	WSW	
Pressure:	29.50 in	30.13 in	30.03in	-	
Precipitation:	0.01in			***************************************	******

	High:	Low:	Average:	
Temperature:	71.5 °F	23.3 °F	45.8 °F	
Dew Point:	64.0 °F	11.2 °F	38.4 °F	
Humidity:	100.0%	18.0%	77.7%	
Wind Speed:	13.0mph from the SW	-	2.0 mph	
Wind Gust:	0.0mph from the North	-	-	
Wind:	-	-	SSW	
Pressure:	30.39in	29.34 in	-	
Precipitation:	5.51 in			

Tabular Data for October 20, 2009

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
00:00	30.4 °F	27.0 °F	30.13 in	Calm		-	87%	0.00 in
00:05	30.3 °F	26.9 °F	30.13 in	Calm		-	87%	0.00 in
00:10	30.3 °F	27.2 °F	30.13 in	Calm		-	88%	0.00 in
00:15	30.1 °F	27.0 °F	30.13 in	SSW	1.0 mph	-	88%	0.00 in
00:20	30.1 °F	27.0 °F	30.12 in	SSW	1.0 mph	-	88%	0.00in
00:25	30.1 °F	27.0 °F	30.12 in	SSW	1.0 mph	-	88%	0.00 in
00:30	30.1 °F	27.0 °F	30.12 in	SSW	1.0 mph	-	88%	0.00 in
00:35	30.0 °F	26.9 °F	30.11 in	Calm		-	88%	0.00 in
00:40	30.0 °F	26.9 °F	30.11 in	Calm		-	88%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
00:50	29.8 °F	27.0 °F	30.11 in	Calm			89%	0.00 in
01:00	29.5 °F	26.7 °F	30.11 in	Calm		-	89%	0.00 in
01:10	29.5 °F	26.7 °F	30.11 in	Calm		-	89%	0.00 in
01:20	29.7 °F	26.9 °F	30.11 in	Calm		-	89%	0.00 in
01:30	29.7 °F	26.9 °F	30.11 in	Calm		-	89%	0.00in
01:40	29.4 °F	26.6 °F	30.12 in	Calm		-	89%	0.00in
01:45	29.4 °F	26.6 °F	30.12 in	Calm		-	89%	0.00 in
01:50	29.4 °F	26.6 °F	30.12 in	Calm		-	89%	0.00in
02:00	29.3 °F	26.5 °F	30.12 in	Calm		-	89%	0.00 in
02:10	29.1 °F	26.5 °F	30.12 in	Calm			90%	0.00 in
02:25	29.4 °F	26.8 °F	30.12 in	SW	1.0 mph	-	90%	0.00 in
02:30	29.5 °F	26.7 °F	30.12 in	SW	1.0 mph	-	89%	0.00 in
02:40	29.3 °F	26.7 °F	30.11 in	SW	1.0 mph	-	90%	0.00 in
02:50	29.3 °F	26.7 °F	30.11 in	Calm		-	90%	0.00 in
03:00	29.4 °F	26.8 °F	30.11 in	Calm		-	90%	0.00 in
03:05	29.5 °F	26.7 °F	30.10 in	SW	1.0 mph	-	89%	0.00 in
03:15	29.4 °F	26.8 °F	30.10 in	SW	1.0 mph		90%	0.00 in
03:20	29.4 °F	26.6 °F	30.10 in	Calm		-	89%	0.00 in
03:30	29.3 °F	27.0 °F	30.10 in	Calm		_	91%	0.00 in
03:40	29.1 °F	26.3 °F	30.10 in	Calm		-	89%	0.00 in
03:50	29.0 °F	26.4 °F	30.10 in	Calm		-	90%	0.00 in
04:00	29.3 °F	26.7 °F	30.10 in	Calm		-	90%	0.00 in
04:10	29.7 °F	26.9 °F	30,10 in	Calm		-	89%	0.00 in
04:15	29.8 °F	27.0 °F	30.10 in	Calm		-	89%	0.00 in
04:20	30.1 °F	27.0 °F	30.10 in	West	1.0 mph	-	88%	0.00 in
04:30	31.0 °F	27.0 °F	30.10 in	SW	2.0 mph	-	85%	0.00 in
04:40	31.0 °F	27.0 °F	30.08 in	SW	1.0 mph	-	85%	0.00 in
04:50	31.2 °F	27.5 °F	30.08 in	Calm		-	86%	0.00in
04:55	31.0 °F	27.3 °F	30.08in	Calm		-	86%	0.00 in
05:00	31.2 °F	27.2 °F	30.08in	Calm		-	85%	0.00 in
05:10	30.7 °F	27.3 °F	30.08 in	Calm		-	87%	0.00 in
05:20	30.9 °F	27.5 °F	30.09in	SW	1.0 mph	-	87%	0.00 in
05:30	30.7 °F	27.3 °F	30.09in	Calm	***********	-	87%	0.00 in
05:40	31.3 °F	27.6 °F	30.09 in	SW	1.0 mph	-	86%	0.00 in
05:45	31.6 °F	27.6 °F	30.09 in	Calm		-	85%	0.00 in
05:55	32.2 °F	27.6 °F	30.09 in	Calm			83%	0.00ín
06:05	31.9 °F	27.6 °F	30.09 in	Calm		_	84%	0.00 in
06:10	31.9 °F	27.6 °F	30.09 in	Calm		-	84%	0.00 in
06:20	32.1 °F	27.8 °F	30.11 in	Calm			84%	0.00 in
06:25	32.7 °F	27.8 °F	30.11 in	SW	1.0 mph	-	82%	0.00 in
06:35	31.9 °F	27.9 °F	30.11 in	SW	1.0 mph	-	85%	0.00 in
06:40	31.9 °F	27.9 °F	30.11 in	SW	1.0 mph		85%	0.00 in
06:50	33.8 °F	28.0 °F	30.11 in	SW	2.0 mph	-	79%	0.00 in
	• • • • • • • • • • • • • • • • • • • •			••••••	·········			

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
06:55	33.7 °F	28.2 °F	30.11 in	SW	2.0 mph	-	80%	0.00 in
07:00	33.2 °F	28.3 °F	30.11 in	SW	2.0 mph		82%	0.00 in
07:10	34.1 °F	28.3 °F	30.11 in	SW	2.0 mph	-	79%	0.00in
07:20	34.0 °F	28.5 °F	30.12 in	SW	1.0 mph	-	80%	0.00 in
07:30	34.1 °F	28.6 °F	30.12 in	SW	1.0 mph	-	80%	0.00in
07:40	33.8 °F	28.9 °F	30.12 in	SW	1.0 mph	-	82%	0.00in
07:50	33.8 °F	29.2 °F	30.12 in	SW	1.0 mph	-	83%	0.00 in
07:55	34.0 °F	29.1 °F	30.12 in	SW	1.0 mph	-	82%	0.00 in
08:00	34.4 °F	29.2 °F	30.12 in	Calm		-	81%	0.00in
08:10	35.3 °F	29.7 °F	30.13 in	Calm		-	80%	0.00 in
08:15	35.6 °F	29.7 °F	30.13 in	Calm	****	-	79%	0.00 in
08:20	35.9 °F	29.7 °F	30.12 in	Calm		-	78%	0.00 in
08:30	37.0 °F	30.1 °F	30.12 in	SSW	1.0 mph	-	76%	0.00 in
08:40	37.2 °F	30.0 °F	30.11 in	SW	2.0 mph	-	75%	0.00 in
08:50	37.6 °F	30.4 °F	30.11 in	SW	1.0 mph	-	75%	0.00 in
09:00	38.5 °F	30.9 °F	30.11 in	SW	1.0 mph	-	74%	0.00in
09:10	39.5 °F	30.9 °F	30.11 in	SW	1.0 mph	-	71%	0.00 in
09:20	40.1 °F	31.1 °F	30.12in	SW	1.0 mph	-	70%	0.00 in
09:25	40.5 °F	31.8 °F	30.12 in	SW	1.0 mph		71%	0.00 in
09:35	41.3 °F	31.9 °F	30.11 in	SSE	1.0 mph		69%	0.00in
09:40	41.6 °F	31.8 °F	30.11 in	South	1.0 mph	-	68%	0.00 in
09:45	41.9 °F	31.7 °F	30.11 in	SSW	2.0 mph	••	67%	0.00 in
09:50	42.2 °F	31.6 °F	30.11 in	South	3.0 mph	-	66%	0.00 in
10:00	42.8 °F	32.2 °F	30.11 in	SW	2.0 mph	-	66%	0.00 in
10:10	43.6 °F	32.6 °F	30.12 in	SSW	1.0 mph	••	65%	0.00in
10:20	45.1 °F	33.6 °F	30.11 in	SSW	2.0 mph	-	64%	0.00in
10:30	46.2 °F	33.5 °F	30.11 in	SSW	2.0 mph	-	61%	0.00in
10:40	47.0 °F	33.8 °F	30.11 in	South	2.0 mph	-	60%	0.00in
10:50	47.6 °F	33.1 °F	30.10in	SSW	3.0 mph	-	57%	0.00 in
11:00	47.6 °F	33.5 °F	30.10 in	SSW	2.0 mph	-	58%	0.00in
11:10	48.0 °F	33.9 °F	30.09in	SSW	2.0 mph	-	58%	0.00 in
11:20	48.8 °F	34.7 °F	30.09in	SSW	2.0 mph	-	58%	0.00 in
11:30	49.9 °F	34.4 °F	30.09in	SSW	1.0 mph	-	55%	0.00 in
11:35	50.5 °F	34.5 °F	30.09in	SSW	2.0 mph	-	54%	0.00 in
11:45	52.2 °F	34.1 °F	30.09 in	South	3.0 mph	-	50%	0.00 in
11:50	53.3 °F	34.6 °F	30.08 in	SE	3.0 mph		49%	0.00 in
12:00	54.5 °F	34.1 °F	30.08in	SE	3.0 mph		46%	0.00 in
12:05	55.1 °F	34.7 °F	30.07 in	SE	3.0 mph	-	46%	0.00in
12:10	55.7 °F	34.7 °F	30.07 in	ESE	3.0 mph	-	45%	0.00 in
12:20	55.9 °F	34.3 °F	30.07 in	ESE	4.0 mph	-	44%	0.00 in
12:25	56.6 °F	34.9 °F	30.07 in	SE	3.0 mph	-	44%	0.00 in
12:30	57.2 °F	34.9 °F	30.07 in	SE	2.0 mph	-	43%	0.00 in
12:40	58.6 °F	36.2 °F	30.07 in	WNW	2.0 mph	-	43%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
12:50	59.6 °F	35.2 °F	30.05 in	WSW	3.0 mph	-	40%	0.00 in
13:00	60.1 °F	36.3 °F	30.05 in	WSW	3.0 mph	-	41%	0.00in
13:10	60.7 °F	36.2 °F	30.05 in	WSW	3.0 mph	-	40%	0.00 in
13:20	60.5 °F	36.0 °F	30.05 in	SW	4.0 mph		40%	0.00in
13:25	60.7 °F	36.2 °F	30.05 in	NNW	4.0 mph	-	40%	0.00in
13:35	60.5 °F	36.0 °F	30.05 in	West	4.0 mph	-	40%	0.00in
13:40	60.2 °F	35.8 °F	30.05 in	WSW	4.0 mph	-	40%	0.00in
13:50	60.2 °F	35.8 °F	30.04 in	NNW	5.0 mph	-	40%	0.00in
14:00	60.7 °F	37.5 °F	30.04 in	WNW	4.0 mph	-	42%	0.00 in
14:10	60.9 °F	36.4 °F	30.04 in	NW	4.0 mph	-	40%	0.00 in
14:20	61.3 °F	36.1 °F	30.04 in	NW	3.0 mph	-	39%	0.00 in
14:30	61.8 °F	37.2 °F	30.04 in	SW	4.0 mph	-	40%	0.00 in
14:35	61.8 °F	37.2 °F	30.03 in	SSW	5.0 mph	-	40%	0.00 in
14:45	61.6 °F	38.3 °F	30.03 in	WSW	4.0 mph	-	42%	0.00in
14:50	61.0 °F	38.3 °F	30.03 in	WSW	3.0 mph	-	43%	0.00 in
14:55	60.5 °F	37.9 °F	30.03 in	NW	4.0 mph	-	43%	0.00 in
15:05	60.1 °F	38.1 °F	30.03 in	WSW	3.0 mph	-	44%	0.00 in
15:10	59.8 °F	39.0 °F	30.03 in	WSW	4.0 mph	-	46%	0.00 in
15:15	59.6 °F	38.8 °F	30.03 in	WNW	5.0 mph	-	46%	0.00 in
15:20	59.6 °F	38.8 °F	30.03 in	NW	4.0 mph	-	46%	0.00 in
15:30	60.4 °F	38.9 °F	30.03 in	SSW	3.0 mph		45%	0.00 in
15:40	61.8 °F	39.6 °F	30.03 in	WNW	4.0 mph	-	44%	0.00 in
15:50	62.1 °F	38.7 °F	30.04 in	WSW	3.0 mph	-	42%	0.00 in
16:00	62.1 °F	38.7 °F	30.04 in	WSW	2.0 mph	-	42%	0.00 in
16:05	62.0 °F	39.2 °F	30.04 in	NW	2.0 mph	-	43%	0.00in
16:10	61.8 °F	39.1 °F	30.04 in	West	2.0 mph	-	43%	0.00 in
16:20	61.8 °F	39.6 °F	30.04 in	NW	1.0 mph	-	44%	0.00 in
16:25	61.6 °F	40.0 °F	30.04 in	WNW	2.0 mph	-	45%	0.00 in
16:30	61.6 °F	40.6 °F	30.04 in	SW.	1.0 mph	-	46%	0.00 in
16:40	61.2 °F	40.8 °F	30.04 in	North	2.0 mph	-	47%	0.00 in
16:45	61.0 °F	40.6 °F	30.04 in	WNW	1.0 mph	-	47%	0.00 in
16:50	60.7 °F	40.9 °F	30.04 in	West	1.0 mph	-	48%	0.00 in
17:00	59.9 °F	40.7 °F	30.04 in	WSW	2.0 mph		49%	0.00 in
17:10	59.0 °F	40.9 °F	30.06in	WNW	3.0 mph	-	51%	0.00 in
17:20	58.3 °F	41.2 °F	30.06in	WSW	2.0 mph	-	53%	0.00 in
17:30	57.5 °F	41.0 °F	30.06 in	WNW	1.0 mph	-	54%	0.00in
17:40	56.7 °F	40.7 °F	30.06in	NW	2.0 mph	-	55%	0.00 in
17:50	56.0 °F	40.5 °F	30.07 in	NW	1.0 mph	-	56%	0.00 in
17:55	55.9 °F	40.4 °F	30.07 in	NW	1.0 mph		56%	0.00 in
18:05	55.6 °F	40.1 °F	30.08 in	NNW	1.0 mph	-	56%	0.00 in
18:10	55.3 °F	39.9 °F	30.08 in	Calm		-	56%	0.00 in
18:20	54.8 °F	39.4 °F	30.08 in	Calm		_	56%	0.00 in
18:30	54.2 °F	39.7 °F	30.08 in	Calm		-	58%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
18:40	53.8 °F	39.8 °F	30.08in	Calm		-	59%	0.00in
18:45	53.5 °F	39.5 °F	30.08 in	Calm		-	59%	0.00 in
18:55	52.8 °F	39.7 °F	30.09 in	Calm		-	61%	0.00in
19:05	52.3 °F	40.1 °F	30.09 in	Calm		-	63%	0.00in
19:15	51.0 °F	40.8 °F	30.09 in	Calm		_	68%	0.00in
19:20	49.9 °F	40.5 °F	30.09 in	Calm		-	70%	0.00 in
19:30	48.6 °F	40.3 °F	30.09 in	Calm			73%	0.00in
19:35	48.0 °F	40.8 °F	30.10 in	Calm		-	76%	0.00 in
19:40	47.3 °F	40.8 °F	30.10 in	Calm		-	78%	0.00 in
19:50	46.1 °F	40.3 °F	30.11 in	Calm		-	80%	0.00 in
20:00	45.7 °F	40.2 °F	30.11 in	Calm			81%	0.00 in
20:10	45.4 °F	40.2 °F	30.11 in	Calm			82%	0.00 in
20:15	45.1 °F	39.9 °F	30.11 in	Calm		-	82%	0.00 in
20:20	45.4 °F	39.9 °F	30.11 in	Calm		-	81%	0.00in
20:30	45.7 °F	40.2 °F	30.11 in	Calm		-	81%	0.00 in
20:40	45.4 °F	40.2 °F	30.11 in	Calm		-	82%	0.00 in
20:50	45.7 °F	40.2 °F	30.12 in	SSW	1.0 mph	-	81%	0.00in
21:00	45.5 °F	40.0 °F	30.12 in	SW	2.0 mph	-	81%	0.00in
21:10	45.2 °F	40.0 °F	30.12 in	Calm		-	82%	0.00 in
21:20	45.1 °F	39.9 °F	30.12 in	Calm		-	82%	0.00 in
21:25	44.9 °F	40.0 °F	30.12 in	Calm		-	83%	0.00 in
21:30	44.6 °F	39.8 °F	30.12 in	Calm		-	83%	0.00 in
21:40	44.5 °F	40.0 °F	30.12 in	Calm			84%	0.00 in
21:50	44.3 °F	39.8 °F	30.13 in	Calm		-	84%	0.00in
22:00	44.3 °F	40.1 °F	30.13 in	Calm		-	85%	0.00 in
22:10	44.5 °F	40.0 °F	30.13 in	Calm		-	84%	0.00in
22:20	44.3 °F	40.1 °F	30.12 in	Calm		-	85%	0.00 in
22:30	44.1 °F	40.2 °F	30.12 in	Calm		-	86%	0.00 in
22:35	44.2 °F	40.3 °F	30.12 in	Calm		-	86%	0.00 in
22:40	44.6 °F	40.1 °F	30.12 in	Calm		-	84%	0.00 in
22:50	45.7 °F	40.2 °F	30.13 in	SW	1.0 mph		81%	0.00 in
22:55	46.1 °F	40.3 °F	30.13 in	Calm		-	80%	0.00 in
23:05	45.5 °F	40.0 °F	30.13 in	Calm		-	81%	0.00 in
23:10	44.9 °F	39.7 °F	30.13 in	Calm		-	82%	0.00 in
23:20	45.4 °F	40.2 °F	30.12 in	Calm		-	82%	0.00 in
23:30	46.1 °F	40.3 °F	30.12 in	Calm		-	80%	0.00 in
23:40	45.8 °F	40.0 °F	30.12 in	Calm		-	80%	0.00 in
23:45	45.5 °F	40.3 °F	30.12 in	Calm		-	82%	0.00 in
23:55	44.9 °F	40.0 °F	30.12 in	Calm		-	83%	0.00 in

Region 14 ATC/ConVal HS, Peterborough, NH — Current Conditions

Daily Summary for October 21, 2009

	Current:	High:	Low:	Average:	
Temperature:	31.9 °F	65.2 °F	38.8 °F	51.9 °F	
Dew Point:	31.9 °F	49.7 °F	36.7 °F	43.0 °F	
Humidity:	100%	93%	45%	74%	
Wind Speed:	5.0mph	4.0 mph	-	0.8mph	
Wind Gust:	-	0.0mph	-	-	
Wind:	North	-	-	WSW	
Pressure:	29.50 in	30.20i n	30.08in	-	
Precipitation:	0.00in	e atorene atorenete districtedentiefente entre entre entre			

	High:	Low:	Average:	
Temperature:	71.5 °F	23.3 °F	45.8 °F	
Dew Point:	64.0 °F	11.2 °F	38.4 °F	
Humidity:	100.0%	18.0%	77.7%	
Wind Speed:	13.0mph from the SW	-	2.0 mph	
Wind Gust:	0.0mph from the North	-	-	
Wind:	-	-	SSW	
Pressure:	30.39 in	29.34 in		
Precipitation:	5.51in			

Tabular Data for October 21, 2009

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
00:00	44.5 °F	40.0 °F	30.12 in	Calm		-	84%	0.00 in
00:05	44.2 °F	40.0 °F	30.12 in	Calm		-	85%	0.00 in
00:10	44.1 °F	39.9 °F	30.12 in	Calm		-	85%	0.00 in
00:15	43.9 °F	39.7 °F	30.12 in	Calm		-	85%	0.00 in
00:20	44.1 °F	39.9 °F	30.11 in	Calm		-	85%	0.00 in
00:25	44.2 °F	39.7 °F	30.11 in	Calm		-	84%	0.00 in
00:30	44.5 °F	40.0 °F	30.11 in	Calm		-	84%	0.00 in
00:40	44.8 °F	40.0 °F	30.12 in	Calm		-	83%	0.00 in
00:50	43.8 °F	39.6 °F	30.13 in	Calm		-	85%	0.00 in

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
00:55	43.3 °F	39.4 °F	30.13 in	Calm		-	86%	0.00 in
01:00	43.1 °F	39.5 °F	30.13 in	Calm		-	87%	0.00in
01:10	42.8 °F	39.2 °F	30.13 in	Calm		-	87%	0.00 in
01:20	43.8 °F	39.9 °F	30.13 in	Calm		-	86%	0.00in
01:30	44.1 °F	39.6 °F	30.13 in	Calm		-	84%	0.00 in
01:35	43.6 °F	39.4 °F	30.13 in	Calm		-	85%	0.00in
01:40	43.3 °F	39.4 °F	30.13 in	Calm		-	86%	0.00 in
01:50	42.8 °F	39.2 °F	30.13 in	Calm		-	87%	0.00 in
02:00	41.9 °F	38.9 °F	30.13 in	Calm		-	89%	0.00 in
02:10	41.8 °F	38.8 °F	30.15 in	Calm		-	89%	0.00 in
02:20	41.2 °F	38.5 °F	30.15 in	Calm		-	90%	0.00 in
02:30	41.5 °F	39.1 °F	30.15 in	Calm		-	91%	0.00 in
02:40	41.6 °F	38.9 °F	30.15 in	SW	1.0 mph	-	90%	0.00 in
02:50	41.5 °F	38.8 °F	30.14 in	Calm		-	90%	0.00 in
03:00	40.9 °F	38.2 °F	30.14 in	Calm		-	90%	0.00 in
03:05	40.8 °F	38.4 °F	30.15 in	Calm		-	91%	0.00 in
03:10	40.6 °F	37.9 °F	30.15 in	Calm		-	90%	0.00 in
03:20	40.5 °F	38.1 °F	30.14 in	Calm		-	91%	0.00in
03:30	40.9 °F	38.5 °F	30.14 in	SW	1.0 mph	-	91%	0.00 in
03:45	39.8 °F	36.8 °F	30.14 in	Calm		-	89%	0.00 in
03:50	39.3 °F	36.9 °F	30.14 in	Calm		-	91%	0.00 in
04:00	39.3 °F	37.2 °F	30.14 in	Calm		-	92%	0.00 in
04:10	39.2 °F	37.1 °F	30.15 in	Calm		-	92%	0.00 in
04:20	38.9 °F	36.8 °F	30.15 in	Calm		-	92%	0.00 in
04:30	38.8 °F	36.7 °F	30.15 in	SW	2.0 mph	-	92%	0.00 in
04:40	39.9 °F	38.0 °F	30.15 in	South	3.0 mph	-	93%	0.00 in
04:50	40.5 °F	38.4 °F	30.15 in	South	1.0 mph	-	92%	0.00in
05:00	39.9 °F	37.5 °F	30.15 in	Calm		-	91%	0.00 in
05:05	39.9 °F	37.8 °F	30.15 in	Calm		-	92%	0.00 in
05:10	39.6 °F	37.2 °F	30.15 in	North	2.0 mph	-	91%	0.00in .
05:20	39.3 °F	37.2 °F	30.16 in	Calm		-	92%	0.00 in
05:25	39.5 °F	37.4 °F	30.16 in	Calm			92%	0.00 in
05:30	39.5 °F	37.4 °F	30.16 in	North	1.0 mph	-	92%	0.00 in
05:40	39.5 °F	37.4 °F	30.17 in	North	1.0 mph	-	92%	0.00in
05:50	39.9 °F	37.8 °F	30.17 in	Calm	***************************************	-	92%	0.00in
05:55	40.2 °F	38.1 °F	30.17 in	Calm		-	92%	0.00 in
06:05	40.5 °F	38.4 °F	30.16 in	Calm		-	92%	0.00 in
06:10	40.3 °F	38.2 °F	30.16 in	Calm		-	92%	0.00 in
06:15	40.2 °F	38.1 °F	30.16 in	Calm		-	92%	0.00 in
06:25	40.3 °F	38.2 °F	30.16 in	Calm		-	92%	0.00 in
06:30	40.3 °F	38.2 °F	30.16 in	Calm		-	92%	0.00 in
06:40	40.3 °F	38.2 °F	30.16 in	Calm		-	92%	0.00 in
06:45	40.2 °F	38.1 °F	30.16 in	Calm		-	92%	0.00 in
	• • • • • • • • • • • • • • • • • • • •			••••••	·····			

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
06:55	40.2 °F	38.1 °F	30.16 in	Calm		-	92%	0.00 in
07:00	40.3 °F	38.2 °F	30.16 in	Calm		-	92%	0.00 in
07:05	40.5 °F	38.4 °F	30.17 in	Calm		-	92%	0.00 in
07:10	40.5 °F	38.4 °F	30.17 in	Calm		-	92%	0.00 in
07:20	40.6 °F	38.5 °F	30.18 in	Calm		-	92%	0.00 in
07:30	41.1 °F	39.0 °F	30.18 in	Calm		-	92%	0.00 in
07:35	41.3 °F	39.2 °F	30.19 in	SE	1.0 mph	-	92%	0.00 in
07:45	42.1 °F	39.7 °F	30.19 in	South	2.0 mph	-	91%	0.00 in
07:50	42.3 °F	39.6 °F	30.20 in	SW	2.0 mph	-	90%	0.00 in
08:00	43.3 °F	40.3 °F	30.20 in	WSW	3.0 mph	-	89%	0.00 in
08:10	44.5 °F	40.9 °F	30.19 in	South	3.0 mph	-	87%	0.00 in
08:20	44.6 °F	40.7 °F	30.19 in	SSW	2.0 mph	-	86%	0.00 in
08:30	44.8 °F	41.2 °F	30.19 in	SSW	1.0 mph	-	87%	0.00 in
08:40	45.4 °F	41.5 °F	30.20 in	SSW	1.0 mph	-	86%	0.00 in
08:50	46.8 °F	42.2 °F	30.19 in	SSW	2.0 mph	-	84%	0.00 in
09:00	48.2 °F	42.6 °F	30.19 in	SSW	2.0 mph	-	81%	0.00 in
09:10	49.2 °F	43.0 °F	30.19 in	SW	2.0 mph	-	79%	0.00 in
09:20	50.2 °F	43.6 °F	30.19 in	South	1.0 mph	-	78%	0.00 in
09:30	51.1 °F	43.4 °F	30.19 in	SSW	1.0 mph	-	75%	0.00 in
09:40	52.2 °F	43.8 °F	30.20 in	SSW	1.0 mph	-	73%	0.00 in
09:50	53.2 °F	44.4 °F	30.19 in	SW	2.0 mph	-	72%	0.00 in
09:55	54.1 °F	44.5 °F	30.19 in	SW	1.0 mph	-	70%	0.00 in
10:05	55.6 °F	44.4 °F	30.18 in	SSE	2.0 mph	-	66%	0.00 in
10:10	56.3 °F	44.7 °F	30.18 in	SSE	2.0 mph	-	65%	0.00 in
10:20	57.2 °F	44.7 °F	30.18 in	SW	2.0 mph	-	63%	0.00 in
10:30	57.5 °F	44.6 °F	30.18 in	SW	2.0 mph	-	62%	0.00 in
10:40	57.8 °F	45.7 °F	30.17 in	SSW	2.0 mph	-	64%	0.00 in
10:50	58.3 °F	45.3 °F	30.16 in	SW	3.0 mph	-	62%	0.00 in
11:00	59.5 °F	45.6 °F	30.16 in	South	1.0 mph	-	60%	0.00 in
11:05	59.9 °F	45.5 °F	30.16 in	SSW	1.0 mph	-	59%	0.00 in
11:10	60.4 °F	46.0 °F	30.16 in	South	2.0 mph		59%	0.00 in
11:20	61.2 °F	44.9 °F	30.16 in	NW	1.0 mph	-	55%	0.00 in
11:30	61.0 °F	45.2 °F	30.16 in	WSW	2.0 mph	-	56%	0.00 in
11:40	61.6 °F	45.3 °F	30.16 in	WSW	2.0 mph	-	55%	0.00 in
11:50	62.0 °F	45.2 °F	30.16 in	West	2.0 mph	-	54%	0.00 in
12:00	61.5 °F	45.2 °F	30.16 in	WSW	3.0 mph	-	55%	0.00 in
12:05	61.8 °F	45.5 °F	30.16 in	WSW	3.0 mph	-	55%	0.00in
12:10	61.8 °F	45.0 °F	30.16 in	SW	3.0 mph	_	54%	0.00 in
12:20	61.8 °F	45.0 °F	30.16 in	SW	3.0 mph		54%	0.00 in
12:30	62.0 °F	44.7 °F	30.16 in	NW	4.0 mph		53%	0.00 in
12:40	62.6 °F	44.7 °F	30.16 in	NW	3.0 mph	-	52%	0.00 in
12:45	62.9 °F	44.5 °F	30.16 in	WSW	4.0 mph	-	51%	0.00 in
12:55	62.9 °F	44.5 °F	30.15 in	WNW	3.0 mph	-	51%	0.00 in
• • • • • • • • • • • • • •			••••••••••••••••	••••••				

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
13:00	63.5 °F	44.0 °F	30.15 in	NNW	2.0 mph	-	49%	0.00 in
13:10	64.3 °F	44.7 °F	30.14 in	West	2.0 mph	-	49%	0.00in
13:15	64.2 °F	44.6 °F	30.14 in	West	2.0 mph	-	49%	0.00 in
13:20	64.3 °F	44.7 °F	30.14 in	WSW	2.0 mph	-	49%	0.00 in
13:30	64.7 °F	44.0 °F	30.14 in	West	2.0 mph	-	47%	0.00 in
13:35	64.3 °F	44.2 °F	30.13 in	NW	2.0 mph	-	48%	0.00 in
13:45	64.5 °F	43.8 °F	30.13 in	West	2.0 mph	-	47%	0.00 in
13:55	65.2 °F	43.3 °F	30.12 in	WSW	2.0 mph	-	45%	0.00in
14:00	64.7 °F	44.0 °F	30.12 in	NW	3.0 mph	-	47%	0.00 in
14:10	64.2 °F	44.1 °F	30.12 in	NW	1.0 mph	-	48%	0.00 in
14:20	64.3 °F	44.2 °F	30.11 in	WNW	1.0 mph	-	48%	0.00 in
14:30	64.3 °F	43.6 °F	30.11 in	SW	2.0 mph	-	47%	0.00in
14:40	64.2 °F	44.1 °F	30.11 in	WNW	2.0 mph		48%	0.00 in
14:45	64.3 °F	44.2 °F	30.11 in	NW	2.0 mph	-	48%	0.00in
14:50	64.2 °F	44.1 °F	30.11 in	WNW	1.0 mph	-	48%	0.00 in
15:00	64.2 °F	44.1 °F	30.11 in	SW	1.0 mph	-	48%	0.00 in
15:05	64.2 °F	44.1 °F	30.11 in	SW	1.0 mph	-	48%	0.00 in
15:10	64.0 °F	44.4 °F	30.11 in	West	1.0 mph	-	49%	0.00 in
15:20	63.7 °F	44.2 °F	30.11 in	WSW	2.0 mph	-	49%	0.00 in
15:30	63.7 °F	44.2 °F	30.11 in	SW	1.0 mph	-	49%	0.00 in
15:35	63.5 °F	44.5 °F	30.10 in	SW	2.0 mph	-	50%	0.00 in
15:40	63.5 °F	44.0 °F	30.10 in	SW	2.0 mph	-	49%	0.00 in
15:50	63.2 °F	44.8 °F	30.10 in	SW	2.0 mph	-	51%	0.00in
16:00	63.4 °F	43.9 °F	30.10 in	SW	1.0 mph	-	49%	0.00 in
16:10	63.4 °F	44.9 °F	30.10 in	SW	1.0 mph	-	51%	0.00 in
16:15	63.2 °F	44.8 °F	30.10 in	SW	1.0 mph	-	51%	0.00 in
16:25	63.1 °F	44.7 °F	30.10 in	Calm		-	51%	0.00 in
16:30	63.1 °F	44.7 °F	30.10 in	Calm		-	51%	0.00in
16:40	63.1 °F	45.2 °F	30.10 in	Calm		-	52%	0.00 in
16:50	62.9 °F	46.0 °F	30.10 in	Calm		-	54%	0.00 in
16:55	62.9 °F	46.0 °F	30.10 in	Calm		-	54%	0.00 in
17:00	62.9 °F	45.5 °F	30.10 in	Calm		-	53%	0.00 in
17:10	62.7 °F	45.3 °F	30.10 in	Calm		-	53%	0.00 in
17:20	62.6 °F	46.7 °F	30.10 in	Calm		-	56%	0.00 in
17:30	62.3 °F	46.4 °F	30.10 in	Calm		-	56%	0.00 in
17:40	61.8 °F	46.9 °F	30.10 in	Calm		-	58%	0.00 in
17:50	61.2 °F	46.8 °F	30.11 in	Calm		-	59%	0.00 in
18:00	60.7 °F	47.2 °F	30.11 in	Calm		-	61%	0.00 in
18:05	60.5 °F	47.8 °F	30.11 in	Calm		-	63%	0.00 in
18:15	59.3 °F	47.9 °F	30.11 in	Calm		-	66%	0.00in
18:25	59.3 °F	47.5 °F	30.11 in	Calm		-	65%	0.00 in
18:35	59.2 °F	47.4 °F	30.12 in	Calm			65%	0.00 in
18:40	59.0 °F	47.2 °F	30.12 in	Calm			65%	0.00 in
• • • • • • • • • • • • • •				******				*******

Time	Temp.	Dew Point	Pressure	Wind	Wind Speed	Wind Gust	Humidity	Rainfall Rate (Hourly)
18:50	59.2 °F	47.0 °F	30.12 in	Calm		-	64%	0.00in
19:00	59.0 °F	46.8 °F	30.12 in	Calm		-	64%	0.00in
19:10	58.9 °F	47.2 °F	30.12 in	Calm		-	65%	0.00in
19:15	58.6 °F	47.7 °F	30.12 in	Calm		-	67%	0.00in
19:25	58.0 °F	48.6 °F	30.12 in	Calm		-	71%	0.00in
19:30	57.6 °F	49.7 °F	30.12 in	Calm		-	75%	0.00 in
19:40	57.0 °F	49.5 °F	30.12 in	Calm		-	76%	0.00 in
19:50	56.3 °F	49.5 °F	30.12 in	Calm		-	78%	0.00 in
20:00	55.7 °F	48.9 °F	30.12 in	Calm		-	78%	0.00 in
20:10	55.0 °F	48.6 °F	30.12 in	Calm		-	79%	0.00 in
20:20	54.5 °F	48.8 °F	30.10 in	Calm		-	81%	0.00 in
20:30	53.6 °F	47.9 °F	30.10 in	Calm		-	81%	0.00 in
20:40	54.1 °F	47.4 °F	30.11 in	Calm		-	78%	0.00in
20:50	53.2 °F	48.2 °F	30.10 in	Calm		-	83%	0.00 in
21:00	52.5 °F	47.5 °F	30.10 in	Calm		-	83%	0.00in
21:05	52.5 °F	47.5 °F	30.10 in	Calm		-	83%	0.00 in
21:15	52.0 °F	47.0 °F	30.10 in	Calm		-	83%	0.00in
21:20	51.9 °F	46.9 °F	30.11 in	Calm			83%	0.00 in
21:30	51.9 °F	46.6 °F	30.11 in	Calm		-	82%	0.00 in
21:40	51.3 °F	46.9 °F	30.10 in	Calm		-	85%	0.00in
21:50	51.4 °F	46.4 °F	30.11 in	Calm		-	83%	0.00 in
22:00	51.1 °F	46.7 °F	30.11 in	Calm			85%	0.00 in
22:10	50.7 °F	46.7 °F	30.11 in	Calm		-	86%	0.00 in
22:20	50.5 °F	46.8 °F	30.10 in	Calm		-	87%	0.00 in
22:30	50.4 °F	46.7 °F	30.10 in	Calm		-	87%	0.00 in
22:40	50.4 °F	46.7 °F	30.11 in	Calm		-	87%	0.00 in
22:50	50.4 °F	46.7 °F	30.09 in	Calm		-	87%	0.00 in
23:00	50.4 °F	46.7 °F	30.09 in	Calm		-	87%	0.00 in
23:10	49.9 °F	46.5 °F	30.08 in	Calm		-	88%	0.00 in
23:20	49.6 °F	46.2 °F	30.08in	Calm		-	88%	0.00 in
23:25	49.6 °F	46.5 °F	30.08in	Calm		-	89%	0.00 in
23:30	49.6 °F	46.5 °F	30.08in	Calm			89%	0.00 in
23:40	49.4 °F	46.3 °F	30.08 in	Calm		-	89%	0.00 in
23:45	49.4 °F	46.6 °F	30.08in	Calm		-	90%	0.00 in
23:55	49.4 °F	46.6 °F	30.08in	Calm			90%	0.00 in

ATTACHMENT D

Laboratory Analytical Report and COC

Report Date: 04-Nov-09 09:51

□ Final Report
 □ Re-Issued Report
 ☑ Revised Report

SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

Hull & Associates, Inc. 4770 Duke Drive, Suite 300 Mason, OH 45040 Attn: Tracy Edwards

Project: NHBB South Well-Peterborough, NH Project #: NHB033

Laboratory ID	Client Sample ID	Container	<u>Matrix</u>	Date Sampled	Date Received
SB02803-01	NHB033 SDE4-8:040	Summa canister	Air	20-Oct-09 08:12	21-Oct-09 17:30
	A102009	~ .			
SB02803-02	NHB033 IA1:040	Summa canister	Air	20-Oct-09 11:32	21-Oct-09 17:30
GD00000 00	A102009			20.0.10.11.26	21.0.17.20
SB02803-03	NHB033 IA2:055	Summa canister	Aır	20-Oct-09 11:36	21-Oct-09 17:30
GD02002.04	A102009		• •	20.0 + 00.11.27	21 0 4 00 17 20
SB02803-04	NHB033 IA3:055	Summa canister	Aır	20-Oct-09 11:37	21-Oct-09 17:30
SD03803 05	A102009	Summer annistan	A :	20.0 + 00.11.29	21 Ord 00 17.20
SB02803-05	NHB033 IA4:050	Summa canister	Alr	20-Oct-09 11:38	21-Oct-09 17:30
5002002 04	A102009	Summa conjetar	A :	20 Opt 00 11.42	21 Opt 00 17:20
5602805-00	NHB033 IA5:055	Summa camster	All	20-001-09 11.42	21-001-09 17.50
SB02803-07	A102009 NUID022 146:055	Summa conister	٨ir	20 Oct 00 11:41	21_Oct_09 17:30
5002805-07	NHB033 IA0.033 A 102000	Summa camster	All	20-001-09 11.41	21-001-07 17.50
SB02803-08	NHB033 IA 7:050	Summa canister	Air	20-Oct-09 11:41	21-Oct-09 17:30
5002005 00	Δ102009	Summa camster	7 111	20 000 09 11.11	21 000 07 17.50
SB02803-09	NHB033 IA8:045	Summa canister	Air	20-Oct-09 11:40	21-Oct-09 17·30
5002003 07	A 102009			20 000 09 11.10	21 000 09 17:50
SB02803-10	NHB033 IA9·010	Summa canister	Air	20-Oct-09 11:42	21-Oct-09 17:30
	A102009				
SB02803-11	NHB033 IA10:010	Summa canister	Air	20-Oct-09 11:38	21-Oct-09 17:30
	A102009				
SB02803-12	NHB033 IA11:040	Summa canister	Air	20-Oct-09 11:44	21-Oct-09 17:30
	A102009				
SB02803-13	NHB033 SDE1:010	Summa canister	Air	20-Oct-09 11:52	21-Oct-09 17:30
	A102009				
SB02803-14	NHB033 SDE2:010	Summa canister	Air	20-Oct-09 11:51	21-Oct-09 17:30
	A102009				
SB02803-15	NHB033 SDE3:010	Summa canister	Air	20-Oct-09 11:51	21-Oct-09 17:30
	A102009				
SB02803-16	NHB033 SDE4:040	Summa canister	Air	20-Oct-09 11:50	21-Oct-09 17:30
~~ ~ ~ ~ ~ ~ ~	A102009				
SB02803-17	NHB033 SDE5:040	Summa canister	Aır	20-Oct-09 11:58	21-Oct-09 17:30
GD00000 10	A102009			20.0.11.20	21.0.17.20
SB02803-18	NHB033 IA4:050	Summa canister	Aır	20-Oct-09 11:38	21-Oct-09 17:30
SD02002 10	A102009A	C	A •	20.0+00.11.51	$21.0 \pm 00.17.20$
SB02803-19	NHB033 SDE3:010	Summa canister	Air	20-000-09 11:51	21-Oct-09 17:30
	A102009A				

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011/MA012 New York # 11393/11840 Pennsylvania # 68-04426/68-02924 Rhode Island # 98 USDA # S-51435 Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Technical Reviewer's Initial:

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes.

Please note that this report contains 27 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supercedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report is available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our "Quality" web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (NY-11840, FL-E87936 and NJ-MA012).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Required site-specific Matrix Spike/Matrix Spike Duplicate (MS/MSD) must be requested by the client and sufficient sample must be submitted for the additional analyses. Samples submitted with insufficient volume/weight will not be analyzed for site specific MS/MSD, however a batch MS/MSD may be analyzed from a non-site specific sample.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

<u>EPA TO-15</u>

EPA TO-15

Samples: SB02803-01 NHB033 SDE4-8:040 A102009 Elevated Reporting Limits due to the presence of high levels of non-target analytes. SB02803-02 NHB033 IA1:040 A102009 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample. SB02803-03 NHB033 IA2:055 A102009 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample. SB02803-04 NHB033 IA3:055 A102009 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample. SB02803-05 NHB033 IA4:050 A102009 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample. SB02803-06 NHB033 IA5:055 A102009 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample. SB02803-07 NHB033 IA6:055 A102009 Elevated Reporting Limits due to the presence of high levels of non-target analytes. SB02803-08 NHB033 IA7:050 A102009 Elevated Reporting Limits due to the presence of high levels of non-target analytes. SB02803-09 NHB033 IA8:045 A102009 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample. SB02803-10 NHB033 IA9:010 A102009 Elevated Reporting Limits due to the presence of high levels of non-target analytes. SB02803-11 NHB033 IA10:010 A102009 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample.

SB02803-13 NHB033 SDE1:010 A102009

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

EPA TO-15

Samples:

 SB02803-14
 NHB033 SDE2:010 A102009

 This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample.

 SB02803-15
 NHB033 SDE3:010 A102009

 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

 SB02803-16
 NHB033 SDE4:040 A102009

 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

 SB02803-16
 NHB033 SDE4:040 A102009

 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

 SB02803-18
 NHB033 IA4:050 A102009A

 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

 SB02803-18
 NHB033 IA4:050 A102009A

 Elevated Reporting Limits due to the presence of high levels of non-target analytes.

 SB02803-19
 NHB033 SDE3:010 A102009A

Elevated Reporting Limits due to the presence of high levels of non-target analytes.

Sample I NHB033 SB02803	dentification SDE4-8:040 A102009 3-01	<u>Client Project #</u> NHB033			<u>/latrix</u> Air	Col	Collection Date/Time 20-Oct-09 08:12			Received 21-Oct-09	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.	
Air Quali	ity Analyses										
Chlorinat	ed VOCs by EPA TO-15	ppbv	Prepare	d 27-Oct-09 Dilu	ition: 5	R05	Can pressur	<u>e: -4</u>			
75-01-4	Vinyl chloride	BRL	2.50	BRL	6.39		EPA TO-15	27-Oct-09	9102067	Х	
75-35-4	1,1-Dichloroethene	BRL	2.50	BRL	9.92		"	"	"	Х	
156-60-5	trans-1,2-Dichloroethene	BRL	2.50	BRL	9.91		"	"	"	Х	
75-34-3	1,1-Dichloroethane	BRL	2.50	BRL	10.12		"	"	"	Х	
156-59-2	cis-1,2-Dichloroethene	BRL	2.50	BRL	9.91		"	"	"	Х	
71-55-6	1,1,1-Trichloroethane	BRL	2.50	BRL	13.64		"	"	"	Х	
79-01-6	Trichloroethene	11.6	2.50	62.34	13.44		"	"	"	Х	
127-18-4	Tetrachloroethene	BRL	2.50	BRL	16.95		"	"	"	Х	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	91	70	-130 %			"	"	"		

Sample I NHB033 SB02803	dentification IA1:040 A102009 -02	<u>Cli</u>	Client Project # NHB033			Col	Collection Date/Time 20-Oct-09 11:32			Received 21-Oct-09	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.	
Air Quali	ty Analyses										
Chlorinat	ed VOCs by EPA TO-15	ppbv	Prepare	<u>d 27-Oct-09 Dilu</u>	<u>ition: 5</u>	GS	Can pressur	<u>e: -6</u>			
75-01-4	Vinyl chloride	BRL	2.50	BRL	6.39		EPA TO-15	27-Oct-09	9102067	х	
75-35-4	1,1-Dichloroethene	BRL	2.50	BRL	9.92		"	"	"	х	
156-60-5	trans-1,2-Dichloroethene	256	2.50	1015.10	9.91		"	"	"	х	
75-34-3	1,1-Dichloroethane	BRL	2.50	BRL	10.12		"	"	"	х	
156-59-2	cis-1,2-Dichloroethene	BRL	2.50	BRL	9.91		"	"	"	Х	
71-55-6	1,1,1-Trichloroethane	BRL	2.50	BRL	13.64		"	"	"	Х	
79-01-6	Trichloroethene	BRL	2.50	BRL	13.44			"	"	Х	
127-18-4	Tetrachloroethene	BRL	2.50	BRL	16.95		"	"	n	Х	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	102	70	-130 %			"	"	"		

Sample Ic NHB033 SB02803	<u>lentification</u> IA2:055 A102009 -03	<u>Cli</u>	<u>Client Project #</u> NHB033			Matrix AirCollection Date/Time 20-Oct-09 11:36			Received 21-Oct-09		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.	
Air Qualit	y Analyses										
Chlorinate	ed VOCs by EPA TO-15	ppbv	Prepare	<u>d 27-Oct-09 Dilu</u>	<u>ition: 5</u>	GS	Can pressur	<u>e: -2</u>			
75-01-4	Vinyl chloride	BRL	2.50	BRL	6.39		EPA TO-15	27-Oct-09	9102067	х	
75-35-4	1,1-Dichloroethene	BRL	2.50	BRL	9.92		"	"	"	х	
156-60-5	trans-1,2-Dichloroethene	218	2.50	864.42	9.91		"	"	"	х	
75-34-3	1,1-Dichloroethane	BRL	2.50	BRL	10.12		"	"	"	х	
156-59-2	cis-1,2-Dichloroethene	BRL	2.50	BRL	9.91		"	"	"	Х	
71-55-6	1,1,1-Trichloroethane	3.40	2.50	18.55	13.64		"	"	"	х	
79-01-6	Trichloroethene	3.05	2.50	16.39	13.44		"	"	"	х	
127-18-4	Tetrachloroethene	33.6	2.50	227.85	16.95		"	"	"	Х	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	98	70	-130 %			"	"	"		

Sample I NHB033 SB02803	<u>dentification</u> IA3:055 A102009 -04	<u>Cli</u>	Client Project # NHB033			Collection Date/Time 20-Oct-09 11:37			Received 21-Oct-09	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinat	ed VOCs by EPA TO-15	ppbv	Prepare	<u>d 27-Oct-09 Dilu</u>	ution: 4	GS	Can pressur	<u>e: -5</u>		
75-01-4	Vinyl chloride	BRL	2.00	BRL	5.11		EPA TO-15	27-Oct-09	9102067	х
75-35-4	1,1-Dichloroethene	BRL	2.00	BRL	7.93		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	216	2.00	856.49	7.93		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	2.00	BRL	8.10		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	2.00	BRL	7.93		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	2.00	BRL	10.91		"	"	"	Х
79-01-6	Trichloroethene	BRL	2.00	BRL	10.75			"	"	Х
127-18-4	Tetrachloroethene	BRL	2.00	BRL	13.56		"	"	n	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	96	70	-130 %			"	"	"	

Sample Ic NHB033 SB02803	<u>lentification</u> IA4:050 A102009 -05	<u>Cli</u>	Client Project # NHB033			<u>Col</u> 2	Collection Date/Time 20-Oct-09 11:38			Received 21-Oct-09	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.	
Air Qualit	y Analyses										
Chlorinate	ed VOCs by EPA TO-15	ppbv	Prepare	<u>d 27-Oct-09</u> <u>Dilu</u>	ution: 5	GS	Can pressur	<u>e: -2</u>			
75-01-4	Vinyl chloride	BRL	2.50	BRL	6.39		EPA TO-15	27-Oct-09	9102067	х	
75-35-4	1,1-Dichloroethene	BRL	2.50	BRL	9.92		"	"	"	Х	
156-60-5	trans-1,2-Dichloroethene	269	2.50	1066.65	9.91		"	"	"	х	
75-34-3	1,1-Dichloroethane	BRL	2.50	BRL	10.12		"	"	"	х	
156-59-2	cis-1,2-Dichloroethene	BRL	2.50	BRL	9.91		"	"	"	Х	
71-55-6	1,1,1-Trichloroethane	BRL	2.50	BRL	13.64		"	"	"	Х	
79-01-6	Trichloroethene	BRL	2.50	BRL	13.44		"	"	"	Х	
127-18-4	Tetrachloroethene	8.30	2.50	56.28	16.95		"	"	"	Х	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	109	70	-130 %			"	"	"		

Sample Id NHB033 SB02803	<u>dentification</u> IA5:055 A102009 -06	<u>Cli</u>	Client Project # NHB033			<u>Co</u>	Collection Date/Time 20-Oct-09 11:42			Received 21-Oct-09	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.	
Air Quali	ty Analyses										
Chlorinate	ed VOCs by EPA TO-15	ppbv	Prepare	<u>d 27-Oct-09</u> <u>Dilu</u>	ition: 5	GS	Can pressur	<u>re: -5</u>			
75-01-4	Vinyl chloride	BRL	2.50	BRL	6.39		EPA TO-15	27-Oct-09	9102067	х	
75-35-4	1,1-Dichloroethene	BRL	2.50	BRL	9.92		"	"	"	х	
156-60-5	trans-1,2-Dichloroethene	288	2.50	1141.99	9.91		"	"	"	х	
75-34-3	1,1-Dichloroethane	BRL	2.50	BRL	10.12		"	"	"	х	
156-59-2	cis-1,2-Dichloroethene	BRL	2.50	BRL	9.91		"	"	"	Х	
71-55-6	1,1,1-Trichloroethane	BRL	2.50	BRL	13.64		"	"	"	Х	
79-01-6	Trichloroethene	BRL	2.50	BRL	13.44		"	"	"	Х	
127-18-4	Tetrachloroethene	4.45	2.50	30.18	16.95		"	"	"	Х	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	98	70	-130 %			"	"	"		

Sample I NHB033 SB02803	dentification IA6:055 A102009 -07	<u>Cli</u>	Client Project # NHB033			Collection Date/Time 20-Oct-09 11:41			Received 21-Oct-09	
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinat	ed VOCs by EPA TO-15	ppbv	Prepare	<u>d 27-Oct-09</u> <u>Dilu</u>	ution: 10	R05	Can pressur	<u>e: -5</u>		
75-01-4	Vinyl chloride	BRL	5.00	BRL	12.78		EPA TO-15	27-Oct-09	9102067	х
75-35-4	1,1-Dichloroethene	BRL	5.00	BRL	19.84		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	298	5.00	1181.64	19.83		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	5.00	BRL	20.25		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	5.00	BRL	19.83		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	5.00	BRL	27.28		"	"	"	Х
79-01-6	Trichloroethene	BRL	5.00	BRL	26.87		"	"	"	Х
127-18-4	Tetrachloroethene	BRL	5.00	BRL	33.91		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	99	70	-130 %			"	"	"	
Sample I NHB033 SB02803	dentification IA7:050 A102009 -08	<u>Client Project #</u> NHB033		<u>et #N</u>	<u>Matrix</u> Air	<u>Col</u> 2	llection Date/Ti 20-Oct-09 11:41	ne <u>Received</u> 21-Oct-09		
-------------------------------	---	-----------------------------------	-------------------------	--------------------------	----------------------	-----------------	-------------------------------------	---------------------------------	---------	-------
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	ppbv Prepared 27-Oct-09		ition: 10	R05	Can pressur	<u>e: -4</u>		
75-01-4	Vinyl chloride	BRL	5.00	BRL	12.78		EPA TO-15	27-Oct-09	9102067	х
75-35-4	1,1-Dichloroethene	BRL	5.00	BRL	19.84		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	312	5.00	1237.15	19.83		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	5.00	BRL	20.25		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	5.00	BRL	19.83		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	5.00	BRL	27.28		"	"	"	Х
79-01-6	Trichloroethene	BRL	5.00	BRL	26.87		"	"	"	Х
127-18-4	Tetrachloroethene	BRL	5.00	BRL	33.91		"	"	n	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	98	70	-130 %			"	"	"	

Sample I NHB033 SB02803	dentification IA8:045 A102009 -09	<u>Cli</u>	ent Projec NHB033	<u>xt # N</u>	<u>Matrix</u> Air	<u>Co</u>	<u>llection Date/Ti</u> 20-Oct-09 11:40	<u>me</u>)	<u>Receive</u> 21-Oct-	<u>ed</u> 09
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinat	ed VOCs by EPA TO-15	ppbv	Prepare	<u>d 27-Oct-09</u> <u>Dilu</u>	ution: 5	GS	Can pressur	<u>e: -5</u>		
75-01-4	Vinyl chloride	BRL	2.50	BRL	6.39		EPA TO-15	27-Oct-09	9102067	х
75-35-4	1,1-Dichloroethene	BRL	2.50	BRL	9.92		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	305	2.50	1209.40	9.91		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	2.50	BRL	10.12		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	2.50	BRL	9.91		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	2.50	BRL	13.64		"	"	"	х
79-01-6	Trichloroethene	BRL	2.50	BRL	13.44		"	"	"	х
127-18-4	Tetrachloroethene	4.10	2.50	27.80	16.95		"	"	H	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	109	70	-130 %			"	"	"	

This laboratory report is not valid without an authorized signature on the cover page.

Sample Id NHB033 SB02803	dentification IA9:010 A102009 -10	<u>Cli</u>	ent Projec NHB033	<u>et #N</u>	<u>Matrix</u> Air	<u>Co</u>	llection Date/Ti 20-Oct-09 11:42	<u>me</u>	<u>Receive</u> 21-Oct-	<u>ed</u> 09
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Qualit	ty Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	Prepare	<u>d 27-Oct-09</u> <u>Dilu</u>	ution: 8	R05	Can pressur	<u>e: -2</u>		
75-01-4	Vinyl chloride	BRL	4.00	BRL	10.22		EPA TO-15	27-Oct-09	9102067	х
75-35-4	1,1-Dichloroethene	BRL	4.00	BRL	15.87		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	262	4.00	1038.89	15.86		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	4.00	BRL	16.20		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	4.00	BRL	15.86		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	4.00	BRL	21.82		"	"	"	Х
79-01-6	Trichloroethene	BRL	4.00	BRL	21.50		"	"	"	Х
127-18-4	Tetrachloroethene	4.08	4.00	27.67	27.12		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	98	70	-130 %			"	"	"	

Sample Id NHB033 SB02803	dentification IA10:010 A102009 -11	<u>Cli</u>	ent Projec NHB033	<u>xt # N</u>	<u>Matrix</u> Air	Col	llection Date/Ti 20-Oct-09 11:38	<u>me</u>	<u>Receive</u> 21-Oct-	<u>ed</u> 09
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	ppbv Prepared 27-Oct-09		ution: 4	GS	Can pressur	<u>ure: -5</u>		
75-01-4	Vinyl chloride	BRL	2.00	BRL	5.11		EPA TO-15	27-Oct-09	9102067	х
75-35-4	1,1-Dichloroethene	BRL	2.00	BRL	7.93		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	272	2.00	1078.54	7.93		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	2.00	BRL	8.10		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	2.00	BRL	7.93		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	2.00	BRL	10.91		"	"	"	Х
79-01-6	Trichloroethene	BRL	2.00	BRL	10.75			"	"	Х
127-18-4	Tetrachloroethene	2.00	2.00	13.56	13.56		"	"	n	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	114	70	-130 %			"	"	"	

Sample I NHB033 SB02803	dentification IA11:040 A102009 -12	<u>Cli</u>	ient Project NHB033	<u>t# N</u>	<u>Iatrix</u> Air	<u>Col</u> 2	lection Date/Tir 0-Oct-09 11:44	me	<u>Receive</u> 21-Oct-	<u>ed</u> 09
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
EPA TO-	15 Low Level	ppbv	Prepared	1 29-Oct-09 Dilu	ition: 1		Can pressur	<u>e: -2</u>		
75-01-4	Vinyl chloride	BRL	BRL 0.10000 BRL 0.26					29-Oct-09	9102267	х
75-35-4	1,1-Dichloroethene	BRL	0.10000	BRL	0.40		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	1.5800	0.10000	6.27	0.40		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	0.10000	BRL	0.40		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	0.10000	BRL	0.40		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	0.17000	0.10000	0.93	0.55		"	"	"	Х
79-01-6	Trichloroethene	0.11000	0.10000	0.59	0.54		"	"	"	х
127-18-4	Tetrachloroethene	0.76000	0.10000	5.15	0.68		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	102	70-	130 %			"	"	"	

Sample I NHB033 SB02803	dentification SDE1:010 A102009 -13	<u>Cli</u>	ent Projec NHB033	<u>et # N</u>	<u>/latrix</u> Air	Col	llection Date/Ti 20-Oct-09 11:52	me	<u>Receive</u> 21-Oct-	<u>ed</u> 09
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	Prepare	d 27-Oct-09 Dilu	ition: 1	R05	Can pressur	<u>e: -3</u>		
75-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		EPA TO-15	27-Oct-09	9102067	х
75-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	0.500	BRL	2.73		"	"	"	Х
79-01-6	Trichloroethene	8.74	0.500	46.97	2.69		"	"	"	х
127-18-4	Tetrachloroethene	1.75	0.500	11.87	3.39		"	"	n	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	97	70-	-130 %			"	"	"	

Sample I NHB033 SB02803	<u>dentification</u> SDE2:010 A102009 -14	<u>Cli</u>	Client Project # NHB033		<u>/latrix</u> Air	Col	llection Date/Ti 20-Oct-09 11:51	ne <u>Received</u> 21-Oct-09		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	Prepare	d 28-Oct-09 Dilu	ition: 1	GS	Can pressur	<u>e: -5</u>		
75-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		EPA TO-15	28-Oct-09	9102164	х
75-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	0.840	0.500	3.33	1.98		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	2.54	0.500	13.86	2.73		"	"	"	Х
79-01-6	Trichloroethene	9.44	0.500	50.73	2.69		"	"	"	Х
127-18-4	Tetrachloroethene	23.8	0.500	161.39	3.39		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	102	70-	-130 %			"	"	"	

Sample I NHB033 SB02803	dentification SDE3:010 A102009 -15	<u>Cli</u>	Client Project # NHB033		<u>⁄Iatrix</u> Air	<u>Co</u>	llection Date/Ti 20-Oct-09 11:51	me <u>Received</u> 21-Oct-09		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	Prepare	d 28-Oct-09 Dilu	<u>ition: 1</u>	R05	Can pressur	<u>e: -5</u>		
75-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		EPA TO-15	28-Oct-09	9102164	х
75-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	0.500	BRL	2.73			"	"	Х
79-01-6	Trichloroethene	9.40	0.500	50.52	2.69			"	"	Х
127-18-4	Tetrachloroethene	1.70	0.500	11.53	3.39		"	"	H	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	95	70-	-130 %			"	"	"	

Sample Id NHB033 SB02803	dentification SDE4:040 A102009 -16	<u>Cli</u>	<u>Client Project #</u> NHB033		<u>/latrix</u> Air	<u>Co</u>	llection Date/Ti 20-Oct-09 11:50	me <u>Received</u> 21-Oct-09		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	Prepare	d 28-Oct-09 Dilu	ition: 1	R05	Can pressur	<u>e: -5</u>		
75-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		EPA TO-15	28-Oct-09	9102164	х
75-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
75-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	0.500	BRL	2.73		"	"	"	Х
79-01-6	Trichloroethene	8.76	0.500	47.08	2.69		"	"	"	Х
127-18-4	Tetrachloroethene	1.88	0.500	12.75	3.39		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	96	70-	-130 %			"	"	"	

Sample I NHB033 SB02803	dentification SDE5:040 A102009 5-17	<u>Cli</u>	ent Project NHB033	<u>t# N</u>	<u>Iatrix</u> Air	Col	llection Date/Tir 20-Oct-09 11:58	me	<u>Receive</u> 21-Oct-	<u>ed</u> 09
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Quali	ty Analyses									
<u>EPA TO-15 Low Level</u>		ppbv	Prepared	1 29-Oct-09 Dilu	ition: 1		Can pressur	<u>e: -5</u>		
75-01-4	Vinyl chloride	BRL	0.10000	BRL	0.26		EPA TO-15	29-Oct-09	9102267	х
75-35-4	1,1-Dichloroethene	BRL	0.10000	BRL	0.40		"	"	"	Х
156-60-5	trans-1,2-Dichloroethene	BRL	0.10000	BRL	0.40		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	0.10000	BRL	0.40		"	"	"	х
156-59-2	cis-1,2-Dichloroethene	BRL	0.10000	BRL	0.40		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	0.16000	0.10000	0.87	0.55		"	"		Х
79-01-6	Trichloroethene	0.10000	0.10000	0.54	0.54		"	"	"	х
127-18-4	Tetrachloroethene	2.2800	0.10000	15.46	0.68		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	102	70-	130 %			"	"	"	

Sample Ic NHB033 SB02803	<u>lentification</u> IA4:050 A102009A -18	<u>Cli</u>	<u>Client Project #</u> NHB033		<u>Matrix</u> Air	Collection Date/T 20-Oct-09 11:33		me <u>Received</u> 3 21-Oct-09		<u>ed</u> 09
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.
Air Qualit	y Analyses									
Chlorinated VOCs by EPA TO-15		ppbv	ppbv Prepared 28-Oct-09		ution: 8	R05	Can pressur	<u>re: -1</u>		
75-01-4	Vinyl chloride	BRL	4.00	BRL	10.22		EPA TO-15	28-Oct-09	9102164	Х
75-35-4	1,1-Dichloroethene	BRL	4.00	BRL	15.87		"	"	"	х
156-60-5	trans-1,2-Dichloroethene	254	4.00	1007.17	15.86		"	"	"	х
75-34-3	1,1-Dichloroethane	BRL	4.00	BRL	16.20		"	"	"	Х
156-59-2	cis-1,2-Dichloroethene	BRL	4.00	BRL	15.86		"	"	"	Х
71-55-6	1,1,1-Trichloroethane	BRL	4.00	BRL	21.82		"	"	"	Х
79-01-6	Trichloroethene	BRL	4.00	BRL	21.50		"	"	"	Х
127-18-4	Tetrachloroethene	14.2	4.00	96.29	27.12		"	"	"	Х
Surrogate	recoveries:									
460-00-4	4-Bromofluorobenzene	108	70	-130 %			"	"	"	

Sample I NHB033 SB02803	dentification SDE3:010 A102009A -19	<u>Cli</u>	<u>Client Project #</u> NHB033		<u>/latrix</u> Air	<u>Co</u>	llection Date/Ti 20-Oct-09 11:51	me	<u>e Received</u> 21-Oct-09		
CAS No.	Analyte(s)	Result/Units	*RDL	Result ug/m ³	*RDL	Flag	Method Ref.	Analyzed	Batch	Cert.	
Air Quali	ty Analyses										
Chlorinated VOCs by EPA TO-15		ppbv	ppbv Prepared 28-Oct-09		ition: 1	R05	Can pressur	<u>ıre: -2</u>			
75-01-4	Vinyl chloride	BRL	0.500	BRL	1.28		EPA TO-15	28-Oct-09	9102164	х	
75-35-4	1,1-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	х	
156-60-5	trans-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	х	
75-34-3	1,1-Dichloroethane	BRL	0.500	BRL	2.02		"	"	"	х	
156-59-2	cis-1,2-Dichloroethene	BRL	0.500	BRL	1.98		"	"	"	Х	
71-55-6	1,1,1-Trichloroethane	BRL	0.500	BRL	2.73		"	"	"	Х	
79-01-6	Trichloroethene	9.89	0.500	53.15	2.69		"	"	"	х	
127-18-4	Tetrachloroethene	1.77	0.500	12.00	3.39		"	"	n	Х	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	90	70-	-130 %			"	"	"		

Air Quality Analyses - Quality Control

Analyte(s)	Result	*RDI	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Flag
Batch 9102067 - General Air Pren	Ttosuit	TUDE	onto	Lever	itesuit	, und e	Linit	10.0	2	1 148
Plank (0102067 DI K1)				Droparad 8	h Analyzad	27 Oct 00				
Vinyl chlorida	DDI	0.500 r	anhu	Flepaleu a	e Analyzeu.	27-001-09				
1 1 Dishlorosthana	DRL	0.500 p	opov							
trans 1.2 Dichloroothono	DDI	0.500 p	opby							
1 1 Dichloroethane	BRL	0.500 p	opby							
cis-1 2-Dichloroethene	BRI	0.500 p	opby							
1 1 1-Trichloroethane	BRI	0.500 p	opby							
Trichloroethene	BRI	0.500 p	opby							
Tetrachloroethene	BRI	0.500 p	opby							
Surrogate: 4-Bromofluorobenzene	9.83	0.500 F	opby	10.0		98	70-130			
		r		D 10		27.0 4.00				
LCS (9102067-BS1)	10.0		1	Prepared &	c Analyzed:	27-Oct-09	70.120			
	10.0	I	opbv	10.0		100	/0-130			
I,I-Dichloroethene	12.3	I	opbv	10.0		123	70-130			
trans-1,2-Dichloroethene	9.93	I	opbv	10.0		99	70-130			
I,I-Dichloroethane	9.69	I	opbv	10.0		97	70-130			
cis-1,2-Dichloroethene	9.89	I	opbv	10.0		99	70-130			
I,I,I-Irichloroethane	9.57	I	opbv	10.0		96	70-130			
Trichloroethene	9.80	I	opbv	10.0		98	70-130			
I etrachloroethene	9.34	F	opbv	10.0		93	70-130			
Surrogate: 4-Bromojulorobenzene	9.70	F	рроу	10.0		9/	/0-130			
Batch 9102164 - General Air Prep										
Blank (9102164-BLK1)				Prepared &	& Analyzed:	28-Oct-09				
Vinyl chloride	BRL	0.500 p	opbv							
1,1-Dichloroethene	BRL	0.500 p	opbv							
trans-1,2-Dichloroethene	BRL	0.500 p	opbv							
1,1-Dichloroethane	BRL	0.500 p	opbv							
cis-1,2-Dichloroethene	BRL	0.500 p	opbv							
1,1,1-Trichloroethane	BRL	0.500 p	opbv							
Trichloroethene	BRL	0.500 p	opbv							
Tetrachloroethene	BRL	0.500 p	opbv							
Surrogate: 4-Bromofluorobenzene	9.14	F	opbv	10.0		91	70-130			
LCS (9102164-BS1)				Prepared &	& Analyzed:	28-Oct-09				
Vinyl chloride	9.52	I	opbv	10.0		95	70-130			
1,1-Dichloroethene	11.5	Į	opbv	10.0		115	70-130			
trans-1,2-Dichloroethene	9.23	I	opbv	10.0		92	70-130			
1,1-Dichloroethane	9.00	I	opbv	10.0		90	70-130			
cis-1,2-Dichloroethene	9.15	Į	opbv	10.0		92	70-130			
I,I,I-Trichloroethane	8.92	I	opbv	10.0		89	70-130			
Trichloroethene	8.94	Į	opbv	10.0		89	70-130			
	8.44	Ĩ	opbv	10.0		84	70-130			
Surrogate: 4-Bromofluorobenzene	9.00	F	ороу	10.0		9/	/0-130			
Duplicate (9102164-DUP1)	Sour	rce: SB02803	3-18	Prepared &	k Analyzed:	28-Oct-09				
Vinyl chloride	BRL	4.00 p	opbv		BRL				30	
1,1-Dichloroethene	BRL	4.00 p	opbv		BRL				30	
trans-1,2-Dichloroethene	314	4.00 p	opbv		254			21	30	
1,1-Dichloroethane	BRL	4.00 p	opbv		BRL				30	
cis-1,2-Dichloroethene	BRL	4.00 p	opbv		BRL				30	
1,1,1-Trichloroethane	BRL	4.00 p	opbv		BRL				30	
Trichloroethene	BRL	4.00 p	opbv		BRL				30	
Tetrachloroethene	16.8	4.00 p	opbv		14.2			17	30	
Surrogate: 4-Bromofluorobenzene	9.89	I	opbv	10.0		99	70-130			

This laboratory report is not valid without an authorized signature on the cover page.

Air Quality Analyses - Quality Control

Analyte(s)	Result	*RDL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Flag
Batch 9102164 - General Air Prep										
Batch 9102267 - General Air Prep										
Blank (9102267-BLK1)				Prepared &	Analyzed:	29-Oct-09				
Chloromethane	BRL	0.10000	ppbv		-					
Vinyl chloride	BRL	0.10000	ppbv							
Chloroethane	BRL	0.10000	ppbv							
1,1-Dichloroethene	BRL	0.10000	ppbv							
Methylene chloride	BRL	0.10000	ppbv							
trans-1,2-Dichloroethene	BRL	0.10000	ppbv							
1,1-Dichloroethane	BRL	0.10000	ppbv							
cis-1,2-Dichloroethene	BRL	0.10000	ppbv							
Chloroform	BRL	0.10000	ppbv							
1,2-Dichloroethane	BRL	0.10000	ppbv							
1,1,1-Trichloroethane	BRL	0.10000	ppbv							
Carbon tetrachloride	BRL	0.10000	ppbv							
1,2-Dichloropropane	BRL	0.10000	ppbv							
Trichloroethene	BRL	0.10000	ppbv							
cis-1,3-Dichloropropene	BRL	0.10000	ppbv							
trans-1,3-Dichloropropene	BRL	0.10000	ppbv							
1,1,2-Trichloroethane	BRL	0.10000	ppbv							
Tetrachloroethene	BRL	0.10000	ppbv							
Chlorobenzene	BRL	0.10000	ppby							
1,1,2,2-Tetrachloroethane	BRL	0.10000	ppbv							
1,3-Dichlorobenzene	BRL	0.10000	ppbv							
1,4-Dichlorobenzene	BRL	0.10000	ppbv							
1,2-Dichlorobenzene	BRL	0.10000	ppbv							
Hexachlorobutadiene	BRL	0.10000	ppbv							
Surrogate: 4-Bromofluorobenzene	9.9500		ppbv	10.0		100	70-130			
LCS (9102267-BS1)				Prenared &	Analyzed	29-Oct-09				
Chloromethane	1.7600		ppby	2.00	e / maryzea.	88	70-130			
Vinvl chloride	1.8900		ppby	2.00		94	70-130			
Chloroethane	1.7200		ppby	2.00		86	70-130			
1 1-Dichloroethene	2.2500		ppby	2.00		112	70-130			
Methylene chloride	2.1100		ppby	2.00		106	70-130			
trans-1 2-Dichloroethene	2.2500		ppby	2.00		112	70-130			
1 1-Dichloroethane	2.0900		ppbv	2.00		104	70-130			
cis-1.2-Dichloroethene	2.3800		ppbv	2.00		119	70-130			
Chloroform	2.0200		ppbv	2.00		101	70-130			
1 2-Dichloroethane	2.1500		ppby	2.00		108	70-130			
1 1 1-Trichloroethane	2.0900		nnhv	2.00		104	70-130			
Carbon tetrachloride	1.9500		ppby	2.00		98	70-130			
1 2-Dichloropropane	2 2000		nnhv	2.00		110	70-130			
Trichloroethene	2 3200		nnhy	2.00		116	70-130			
cis-1 3-Dichloropropene	2.5200		nnhv	2.00		128	70-130			
trans-1.3-Dichloronronene	2.0000		ppbv	2.00		100	70-130			
1 1.2-Trichloroethane	2 1300		ppby	2.00		106	70-130			
Tetrachloroethene	2 2200		ppby	2.00		111	70-130			
Chlorobenzene	2.1000		ppbv	2.00		105	70-130			
1.1.2.2-Tetrachloroethane	2.0800		ppbv	2.00		104	70-130			
1 3-Dichlorobenzene	2 3600		nnhv	2.00		118	70-130			
1 4-Dichlorobenzene	2 3100		ppby	2.00		116	70-130			
1 2-Dichlorobenzene	2.2700		ppby	2.00		114	70-130			
Hexachlorobutadiene	2.0900		ppbv	2.00		104	70-130			
Surrogate: 4-Bromofluorobenzene	10 160		ppby	10.0		102	70-130			
Surroguie. +-Dromojuorovenzene	10.100		Pho.	10.0		102	/0-150			

This laboratory report is not valid without an authorized signature on the cover page.

Notes and Definitions

- R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes.
- GS This sample was not able to be analyzed for client requested reporting limits due to high concentrations of other target analytes in the sample.
- BRL Below Reporting Limit Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Leja

cis-1,d- OCE. Truns-1	T SUTT SOUTH WITH REPORT	YON; -SAB USE (MUST BE	DISTRUUT	°c	R TEMPERATURE	COOLER AS RECI
NOTES BANT-PLE, TLE, LILETC	DATE	FOR LAS BY: "	RECEIVED	DATE		RELINQUISHED B
Airbill Number: UA	TIME / 7 70	hora	11/e/	TME	Carl	1 martin
Mathed of Deliver	THE 1445	to they	Reden	THE 1345	P	TELNOUISHENI
	0/		_		*	
	/					
	/			±		
	/		_			
	A 1151	MA Mocio	1	AIDACORA	50E3 010	NHB033
	135.	With int	-	Abacera	:INH: 050	NH8033
	1158.	alochar that	-	Albacon	S0E5:040	NH6033
	1180	NA Interior	-	Alozoog	:SDE4:040	инвоз 3
	1151 .	olactor AN	-	· Albaoo?	SOE3:010	NHB033
	1151 .	WA aber	-	AIDAODA	SOEA: 010	NH8033
S	115a X	14 into	. /	· Albacoi?	SDEL: CHO	NHB033
1 1 to lo 10 10 / 21/ 2/ 20/ 20/	DATE TIME	METALS	NO. O	SAMPLE TYPE & ID	SAMPLE	PROJECT NO.
A Contraction of the second of	A. Dod and, 44 og C. F. HURSE. a. Hord and, 44 og C. F. HURSE. a. Hord and, 44 og C. HURSE. b. HORT EAT D. HORT EAT D	A AUR C - Agestrop D - Sethalayr D - Sethala		Phase: 02. RPT	UHBB HBB Peterber MHB033 5 Sejder	Client: // Site: /// Project #:/ Samplers:-
1/1/1/1/1	VUSERWITVES METHING	SAMPLE TYPES IN		dwards	TTO Tracy 6	REPOR
SERVATIVES NUR 1 1 1 1 1 1	0H Sub-Ave + 43014 19325-2010 365-6407 PRES	In Road 3401 Genv 3401 Genv 3401 Genv 3401 Genv 3413 Such 300 44139 Theebo, 04 1542555 Phone: (419) 152560 Fax: (419)	Solon, OH 6161 Cochu Suite D Solon, OH 77 Phone: (440) 5 Fax: (440) 5	A. IN Massen, OH 1. Supervise S	IParkway E335 E. 750 it 170-8777 Suite 176 2016 Indianapoli, 1 703-8777 Prone (317) 20070 Fax. (317) 58	EDublin, OH 6267 Emerad Suite 200 Dutrich, OH 42 Phone (654) 7 Fax: (614) 790
NO. C			Dr	HID Duke	s associates, inc.	
PAGE PAGE	CUSTODY RE	CHAIN OF				F

ATTACHMENT E

MSDS Sheet for Carbo-Sol, Sunnyside Corporation

864

MATERIAL SAFETY DATA SHEET

Complies with OSHA Hazard Communication Standard 29 CFR 1910.1200

Date of Prep:	2/1/00						
				SECTION 1			
SUNNYSIDE COR 225 CARPENTER WHEELING, ILLIN EMERGENCY TEL	PORATION AVENUE OIS 60090 EPHONE	(847) (800)	541-5700 424-9300	FOR INFOF - SUNNYSID - CHEM TRE	RMATION: E CORPORA C	(i TION	347) 541-5700
Product Class: Trade Name:	Chlorinated TRICHLOR((Carbo-Sol)	Hydrocarbon OETHYLENE		Manufacturer's Code: NPCA HMIS:		864 HEAI FIRE REAI	LTH: 2 : 1 CTIVITY: 0
Product Appearance an	d Odor: Clear,	colorless liquid v	with sweet odor.				
		ę	SECTION 2 -	HAZARDOUS INGR	REDIENTS	(
			OCCUPATIO	DNAL EXPOSURE	LIMITS		
INGREDIENT	CAS#	PERCENT	acgih TLV (TWA)	ACGIH TLV (STEL)	osha Pel (TWA)	OSHA PEL (STEL)	VAPOR PRESSURE
Trichloroethylene	79-01-6		50 PPM	100 PPM	100 PPM	200 PPM	73 MM Hg @ 25 ⁰ C.
		SECTION	13 — EMERG	ENCY AND FIRST A	ID PROCEDU	JRES	
Inhalation: Eye Contact: Skin Contact: Ingestion: NOTE TO PHYSICIAN:		Ren Flus Ren reus Do r Adre	nove to fresh air. I sh eyes immediate nove contaminate se. Get medical att not induce vomiting enalin should neve	f breathing has stopped, a ly with water for at least 15 d clothing and shoes. Wa ention if irritation persists. g. Contact physician or en r be given to persons over	dminister artificial minutes. Get me ash skin with soa nergency medical rexposed to Trichl	respiration. Get i edical attention. p and water. Wa facility immediate oroethylene.	medical attention immediately. ash contaminated clothing before aly.
			SECTIO	N 4 - PHYSICAL D	ATA		
The following data repre	sent approxima	ite or typical valu	ues. They do not c	onstitute product specifica	tions.		
Boiling Range:	188 ⁰ (F	⁻) - 1.B.P.	Va	oor Density:	Heavier	than air	
Evaporation Rate: Weight Per Gallon:	Slower 12.11 lt	than ether os.	%\	Volatile By Volume:	100%		
Solubility in Water:	1.11%	(By Weight)					
		S	SECTION 5 -	FIRE AND EXPLOS	ION DATA		
Flammability Classificati	on:	Non	1-Flammable.				
Flash Point		Non	ne (Tag. Closed Cu	ıp)			
Autoignition Temperatu	e:	770	1º F.				
Lower Explosive Limit:		8.0%	%				
Extinguishing Media:		Wat	ter fog, dry chemic	al, foam, carbon dioxide. I	Do not use direct	water stream. It v	vill spread fire.
Unusual Fire and Explo	sion Hazards:	Con	centrated vapors	can be ignited by high int	ensity ignition so	urce. Thermal de	ecomposition generates toxic and

irritating vapors. Special Fire Fighting Procedures: Firefighters should wear self-contained positive pressure breathing apparatus. Storage containers exp

Firefighters should wear self-contained positive pressure breathing apparatus. Storage containers exposed to fire should be kept cool with a water spray, in order to prevent pressure build-up.

l 🐨 i. Misser				D 0 6 0 1
I Irado Namo.				Page 2 of 3 4
I Hauc Maine.				I LUGO LOI O I

	SECTION 6 - HEALTH HAZARD DATA
	50 PPM TWA-8 hour (ACGIH)
Acute:	Excessive inhalation may produce symptoms of central nervous system depression ranging from light-headedness to unconsciousness and death. Ingestion may produce gastrointestinal irritation with nausea, vomiting, stomach cramps and diarrhea. Exposure of eyes and skin may produce irritation.
Chronic:	Can cause headache, mental confusion, depression, fatigue, loss of appetite, nausea, vomiting, cough,loss of sense of balance and vision disturbances. Chronic overexposure to Trichloroethylene has caused toxic effects in the liver, lymphatic, kidney and cardiovascular system of laboratory animals. Humans exposed to Trichloroethylene can become intolerant to Ethyl Alcohol, with small quantities causing inebriation and skin blotches.
ROUTES OF EXPOSURE: Inhalation:	Major route of potential exposure. Depresses the central nervous system. Symptoms of overexposure include headache, nausea, vomiting, dizziness, vertigo, fatigue, lightheadedness and coughing.
Skin:	Absorption of liquid through intact skin is a possible but unlikely route of significant exposure. Prolonged or repeated contact may cause irritation, defatting of skin, and dermatitis.
Eyes:	Liquid may cause pain, and slight temporary injury to eyes. Vapors can irritate eyes.
Ingestion:	Unlikely route of exposure. Single dose toxicity low to moderate. If vomiting occurs, Trichloroethylene can be aspirated into lungs, which can cause chemical pneumonia and systemic effects.
Medical Conditions Aggravated by Exposure:	Acute and chronic liver and kidney disease, rhythm disorders of the heart, neuritis and other nervous system disorders.
Carcinogenicity:	The International Agency for Research on Cancer (IARC) has concluded that there is sufficient evidence for the carcinogenicity of Trichloroethylene to experimental animals, and limited evidence for the carcinogenicity of Trichloroethylene to humans, resulting in a classification in Group 2A as a substance probably carcinogenic to humans. The ACGIH has classified Trichloroethylene in category A5 as an agent not suspected as a human carcinogen. Trichloroethylene is listed on the IARC carcinogen list, but not by OSHA or NTP.
Reproductive Toxicity:	Reproductive toxicity tests have been conducted to evaluate the adverse potential effects Trichloroethylene may have on reproduction and offspring of laboratory animals. Results indicate that Trichloroethylene does not cause birth defects in mice, rats or rabbits.
Note to Physician:	Adrenalin should never be given to persons overexposed to Trichloroethylene.
	SECTION 7 - REACTIVITY DATA
Stability: Conditions to Avoid: Incompatibility (Materials to Avoid): Hazardous Decomposition Products: Hazardous Polymerization:	Stable under normal conditions. Heat, open flame or electrical arcs. Avoid contacting this product with pure oxygen or alkali metals. At high temperatures this product decomposes to give off hydrogen chloride vapor and small quantities of other toxic and imitating vapors. Not known to occur.

SECTION 8 - SPILL OR LEAK PROCEDURES

Steps to be taken in case material is spilled or released: Remove ignition sources, evacuate area, avoid breathing vapor or contact with liquid. Recover free liquid or stop leak if possible. Dike large spills and use absorbent material for small spills. Keep spilled material out of sewers, ditches and bodies of water. Avoid contaminating ground and surface waters.

Waste disposal method: Send to a licensed reclaimer or incinerator. Dispose of in accordance with local, state and federal regulations.

	SECTION 9 - SAFE HANDLING AND USE INFORMATION
Respiratory Protection:	Not required under normal use. Use a NIOSH/MSHA approved respirator where mist, spray or vapor is generated and exceeds TLV.
Ventilation:	Do not use in closed or confined space. Open doors and/or windows. Use ventilation to maintain exposure levels below 50 PPM (TWA).
Protective Gloves:	Wear solvent-resistant gloves such as Viton, Polyvinyl Alcohol or Polyfluorinated Polyethylene.
Eye Protection:	Chemical goggles and/or face shield should be worn where splashing is possible. Contact lenses should not be worn.
Other Protective Equipment:	Impervious clothing or boots, if needed. Wash contaminated clothing before reuse.

Trade Name:	TRICHLOROETHYLENE	Page 3 of 3

	SECTION 10 - SPECIAL PRECAUTIONS
Dept. of Labor Storage Category: Hygienic Practices:	Non-flammable. Avoid contact with skin and avoid breathing vapors. Do not eat, drink or smoke in work areas. Wash hands prior to eating, drinking or using rest room.
Additional Precautions:	Do not store where Zinc or Aluminum are used.
Empty Container Warning:	"Empty" containers retain residue (liquid and/or vapor) and can be dangerous. Do not pressurize, cut, weld, braze, solder, drill, grind or expose such containers to heat, flame, sparks or other sources of ignition. They may explode and cause injury or death. Do not attempt to clean since residue is difficult to remove. "Empty" drums should be completely drained, property bunged and promptly returned to supplier or disposed of in an environmentally safe manner and in accordance with governmental regulations.

SECTION 11 - ADDITIONAL INFORMATION

This product contains the following toxic chemical(s) which are subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372:

TOXIC CHEMICAL	CAS#	APPROXIMATE % BY WEIGHT
Trichloroethylene	79-01-6	100.00%
SARA Title III Hazard Categories:	Immediate (Acute) Health, Delayed (Chronic) Health	
Common Names:	Ethylene Trichloride Trichloroethylene	
California Proposition 65:	The State of California has listed Trichloroethylene under Proposition 65 as a chemical known to the state to cause cancer.	
TRANSPORTATION (U.S. D.O.T. land transporta	tion in packages of 119 gallons or less)	
	Trichloroethylene	

U.S. D.O.I. Proper Shipping Name:	Trichloroethylene
U.S. D.O.T. Hazard Class & Packing Group:	6.1, PG III
U.S. D.O.T. Identification Number:	UN 1710
U.S. D.O.T. Hazardous Substance:	Trichloroethylene RQ 100 lbs.

Refer to 49 CFR for additional information. Exceptions or exemptions may exist for smaller quantities.

Since 1893 Quality has been our Philosophy!

Search:

About Us Products F.A.Q. Where to Buy MSDS Downloads

This page answers some of most commonly asked questions regarding Sunnysice products.

Frequently Asked Questions Where can I buy Carbo-Sol?

Carbo-Sol was discontinued in January, 2006 because of changes in air pollution regulations in California and other states. Sunnyside Mineral Spirits, Naphtha or other products may be used for many applications where Carbo-Sol was used. Carefully read and follow all warnings and directions on product labels.

How is Muriatic Acid used to adjust pH of swimming pool water?

Muriatic Acid should be added gradually to lower pH. The amount added depends on pool water capacity and starting pH. Always re-test pH before allowing swimmers to enter pool. Carefully read and follow all label warnings and directions.

How can Muriatic Acid be used to etch a concrete basement floor?

Usually basements cannot be properly ventilated to allow use of Muriatic Acid. Muriatic Acid and its vapors are very corrosive and can damage metal surfaces including heating and cooling systems. Muriatic Acid is also hazardous to people and it must be thoroughly rinsed after use. There are buffered or inhibited acids that are safer for indoor use.

What is the purity of Sunnyside Acetone?

Sunnyside Acetone has a minimum purity of 99.5%, as supplied in original container.

Is Sunnyside Paint Thinner 100% Mineral Spirits?

Sunnyside Paint Thinner contains only Mineral Spirits.

Can Muriatic Acid be used to remove acrylic sealers from cement patios?

Muriatic Acid is not usually effective as a remover for acrylic sealers, or as a paint remover. Whenever possible, sealer manufacturer should be contacted for a solvent recommendation. Sunnyside Xylol often works for removal of acrylic sealers.

What is the difference between Boiled and Raw Linseed Oil?

Boiled Linseed Oil contains metallic driers that accelerate its drying. Boiled Linseed Oil, if applied according to label directions, dries in approximately 24 hours, Raw Linseed Oil dries in 3-4 days. Neither product should be applied to food treatment surfaces, such as cutting boards.

Can Sunnyside Turpentine and Boiled Linseed Oil be used as artist's supplies? None of Sunnyside's products have been certified by the Consumer Product Safety Commission as artist's materials.

Can I use Acetone or Lacquer Thinner to remove floor adhesive?

No. These products are extremely flammable, and could easily result in a catastrophic flash fire if used for adhesive removal. A better choice is a non flammable product, such as Sunnyside Adhesive Remover. Carefully read and follow all label warnings and directions.

Can I use Muriatic Acid as a drain cleaner?

No. Muriatic Acid may damage plumbing systems, and it should not be used as a drain cleaner. Only products labeled as drain cleaners should be used for this purpose.

Can boiled linseed oil be used to treat a pressure-treated wood deck?

Yes, boiled linseed oil can be used to add "life" to pressure-treated wood. However, it is not a long term outdoor wood treatment. A better choice for water repellency is Sunnyside Clear Wood Protectant or Water Proofer.

What product should I use to clean bare metal surfaces prior to painting? Sunnyside Acetone will leave a residue free surface in preparation for painting. Carefully read and follow all label warnings and directions.

Can Sunnyside Paint Thinner be used for cleaning paint brushes used with latex paint?

No, Sunnyside Paint Thinner is used only with oil-based paints. Thins-It, part 2 of Sunnyside's 3-part system for use with water based coatings, is recommended.

How do I clean mortar off a new brick wall?

Use a dilute solution of muriatic acid, apply with a soft bristle plastic or rubber brush. Allow a few minutes for acid mixture to work, and then flush with running water. Muriatic Acid is corrosive, follow all label directions and warnings.

What product should I use for thinning an oil-based porch and deck enamel?

Sunnyside Xylol is commonly used for thinning this type of paint. Always consult and follow the paint manufacturer's directions before thinning.

Will linseed oil preserve my outdoor wood furniture?

Linseed Oil (Boiled or Raw) is not a wood preservative, but it will help maintain wood's natural appearance and give some protection from water damage. Outdoor applications should usually be repeated on a yearly basis.

Can Mineral Spirits be used to remove grease or wax build-up on wood surfaces? Yes, Sunnyside Mineral Spirits will work well for this purpose. Carefully read and follow all label warnings and directions.

What can I use to reduce the stickiness of Linseed Oil if I accidentally over apply it?

Wipe the surface with Sunnyside Mineral Spirits or Paint Thinner. Rags should be disposed of as described on Sunnyside Linseed Oil label; they may be a spontaneous combustion hazard.

What are petroleúm distillates?

Petroleum distillates are the fuels and solvents that are produced from the distillation of petroleum. Mineral spirits, naphtha, kerosene and gasoline are examples of petroleum distillates.

What can be used to remove heel and scuff marks from laminated or sheet goods flooring?

Sunnyside Mineral Spirits will work well for this purpose. Provide cross ventilation and follow all label warnings.

Sunnyside Corporation - 225 Carpenter Ave Wheeling, IL 60090 - (847) 541-5700