FINAL REPORT

INTENSIVE ARCHAEOLOGICAL SURVEY
PROPOSED RELOCATION AREAS FOR THE
RECHANNELIZATION OF THE SEBASTICOOK RIVER
CORINNA, MAINE

CONTRACT NO. DACW33-97-D-0003
DELIVERY ORDER NO. 0018

December 2000

Principal Investigator/Primary Author:
Edna Feighner

Principal Investigator/Secondary Author:
Suzanne G. Cherau

Prepared for:
U.S. Army Corps of Engineers
New England District
696 Virginia Road
Concord, Massachusetts 01742-2751

Prepared by:
PAL
210 Lonsdale Avenue
Pawtucket, Rhode Island 02860

PAL Report No. 1175
PAL, under contract with the U.S. Army Corps of Engineers, New England District, conducted an intensive archaeological survey within the proposed relocation areas for the rechannelization of the East branch of the Sebasticook River in Corinna, Maine. The intensive survey was conducted to determine the presence/absence of prehistoric sites. Background research and field investigations were used to identify all prehistoric archaeological resources that may have been present in these work areas. Background research consisted of a review of local geology, geography, prehistory, and history in order to develop environmental, prehistoric, and historic research contexts for the project area and any identified archaeological deposits. Field investigations consisted of the excavation of 15, 50 x 50 cm test pits placed at 10-meter intervals along judgmental transects and as judgmental test pits (JTPs). Two machine-assisted trenches, each measuring 1 x 2 m, were used to investigate areas of deep fill deposits.

The intensive survey did not identify any prehistoric cultural deposits or natural soil horizons within the archaeologically sensitive portions of the Eastland Woolen Mill Superfund Site project area. The low density of historic cultural materials noted (but not saved) within various fill deposits in the test units is most likely associated with the documented historic and modern period mill activities along this section of the Sebasticook River drainage. Due to an absence of prehistoric cultural deposits and natural soil horizons, no further archaeological investigations of the project area were recommended.
PAL, under contract with the U.S. Army Corps of Engineers-New England District (NAE), conducted an intensive archaeological survey within the proposed relocation areas for the rechannelization of the East branch of the Sebasticook River in Corinna, Maine. The intensive survey was conducted to determine the presence/absence of prehistoric sites in areas of the proposed road and river relocations and to the south along a floodplain adjacent to a soil remediation area. Background research and field investigations were used to identify all prehistoric archaeological resources that may have been present in these work areas.

Background research consisted of a review of local geology, geography, prehistory and history in order to develop environmental, prehistoric, and historic research contexts for the project area and any identified archaeological deposits. Field investigations consisted of the excavation of 15, 50 x 50 cm test pits placed at 10-meter intervals along judgmental transects and as judgmental test pits (JTPs). Two machine-assisted trenches, each measuring 1 x 2 m, were used to investigate areas of deep fill deposits.

The intensive survey did not identify any prehistoric cultural deposits or natural soil horizons within the archaeologically sensitive portions of the Eastland Woolen Mill Superfund Site project area. The low density of historic cultural materials noted (but not saved) within various fill deposits in the test units is most likely associated with the documented historic and modern period mill activities along this section of the Sebasticook River drainage.

Due to an absence of prehistoric cultural deposits and natural soil horizons, no further archaeological investigations of the project area are recommended.
TABLE OF CONTENTS

MANAGEMENT ABSTRACT

CHAPTER

1. INTRODUCTION

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope and Authority</td>
<td>1</td>
</tr>
<tr>
<td>Scope</td>
<td>1</td>
</tr>
<tr>
<td>Authority</td>
<td>1</td>
</tr>
<tr>
<td>Facility Description</td>
<td>3</td>
</tr>
<tr>
<td>Nature of Study</td>
<td>3</td>
</tr>
<tr>
<td>Personnel</td>
<td>3</td>
</tr>
<tr>
<td>Disposition of Project Materials</td>
<td>3</td>
</tr>
</tbody>
</table>

2. METHODOLOGY

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>7</td>
</tr>
<tr>
<td>Background Research/Information Sources</td>
<td>7</td>
</tr>
<tr>
<td>Geology, Geomorphology, and Soils Publications</td>
<td>7</td>
</tr>
<tr>
<td>Town Histories and Historical Maps</td>
<td>8</td>
</tr>
<tr>
<td>State Level Cultural Resource Inventory</td>
<td>8</td>
</tr>
<tr>
<td>Cultural Resources Management Reports</td>
<td>8</td>
</tr>
<tr>
<td>Informant Interviews</td>
<td>8</td>
</tr>
<tr>
<td>Archaeological Sensitivity</td>
<td>8</td>
</tr>
<tr>
<td>Prehistoric Archaeological Sensitivity</td>
<td>8</td>
</tr>
<tr>
<td>Field Methodology and Sampling Strategy</td>
<td>10</td>
</tr>
<tr>
<td>Excavation Procedures</td>
<td>10</td>
</tr>
</tbody>
</table>

3. ENVIRONMENTAL SETTING

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiography</td>
<td>13</td>
</tr>
<tr>
<td>Bedrock and Surficial Geology</td>
<td>13</td>
</tr>
<tr>
<td>Bedrock Foundation</td>
<td>13</td>
</tr>
<tr>
<td>Surficial Geology</td>
<td>13</td>
</tr>
<tr>
<td>Soils</td>
<td>15</td>
</tr>
<tr>
<td>Kennebec River Drainage and Sebasticook River</td>
<td>15</td>
</tr>
<tr>
<td>Project Area Conditions</td>
<td>15</td>
</tr>
</tbody>
</table>

4. PREHISTORIC LAND USE AND SETTLEMENT PATTERN

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Cultural Chronology</td>
<td>17</td>
</tr>
<tr>
<td>PaleoIndian Period (11,500 - 9500 B.P.)</td>
<td>17</td>
</tr>
<tr>
<td>Early and Middle Archaic Period (9500-6000 B.P.)</td>
<td>19</td>
</tr>
<tr>
<td>Late Archaic Period (6000 - 2000 B.P.)</td>
<td>19</td>
</tr>
<tr>
<td>Ceramic Period (2800 - 500 B.P.)</td>
<td>20</td>
</tr>
<tr>
<td>Known and Expected Prehistoric Resources</td>
<td>20</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. HISTORICAL LAND USE AND SETTLEMENT PATTERNS</td>
<td>23</td>
</tr>
<tr>
<td>Historical Development in Corinna (Penobscot County)</td>
<td>23</td>
</tr>
<tr>
<td>1800 - 1860 Period</td>
<td>23</td>
</tr>
<tr>
<td>1860 - 1910 Period</td>
<td>23</td>
</tr>
<tr>
<td>1910 - 1950 Period</td>
<td>23</td>
</tr>
<tr>
<td>1950 to Present</td>
<td>26</td>
</tr>
<tr>
<td>6. RESULTS OF THE FIELDWORK</td>
<td>27</td>
</tr>
<tr>
<td>Area 1</td>
<td>27</td>
</tr>
<tr>
<td>Area 2</td>
<td>27</td>
</tr>
<tr>
<td>Area 3</td>
<td>27</td>
</tr>
<tr>
<td>Area 4</td>
<td>27</td>
</tr>
<tr>
<td>7. SUMMARY AND CONCLUSIONS/RECOMMENDATIONS</td>
<td>31</td>
</tr>
<tr>
<td>Summary</td>
<td>31</td>
</tr>
<tr>
<td>Conclusions/Recommendations</td>
<td>31</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>33</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. Photograph Log</td>
<td>37</td>
</tr>
<tr>
<td>B. Site Forms</td>
<td>41</td>
</tr>
<tr>
<td>C. Project Correspondence</td>
<td>51</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1.</td>
<td>Map of Maine with the location of the town of Corinna</td>
</tr>
<tr>
<td>1-2.</td>
<td>Location of the Eastland Woolen Mill Superfund Site project area on the USGS Corinna, Maine topographic quadrangle map, 7.5 minute series</td>
</tr>
<tr>
<td>1-3.</td>
<td>Location of Areas 1, 2, and 3 subjected to intensive archaeological survey, Eastland Woolen Mill Superfund Site project area</td>
</tr>
<tr>
<td>1-4.</td>
<td>Location of Area 4 subjected to intensive archaeological survey, Eastland Woolen Mill Superfund Site project area</td>
</tr>
<tr>
<td>2-1.</td>
<td>Subsurface testing strategies employed by PAL during an intensive archaeological survey</td>
</tr>
<tr>
<td>3-1.</td>
<td>New England physiographic zones showing the location of the Eastland Woolen Mill Superfund Site project area</td>
</tr>
<tr>
<td>3-2.</td>
<td>Kennebec River Drainage Basin showing the Sebasticook River drainage and the Eastland Woolen Mill Superfund Site project area</td>
</tr>
<tr>
<td>4-1.</td>
<td>Representative diagnostic artifacts by prehistoric cultural period recognized in Maine</td>
</tr>
<tr>
<td>5-1.</td>
<td>1875 detail map of Corinna center, with the project location</td>
</tr>
<tr>
<td>5-2.</td>
<td>1875 map of the town of Corinna, with the project location</td>
</tr>
<tr>
<td>6-1.</td>
<td>Locations of subsurface testing conducted in Areas 1, 2, and 3, Eastland Woolen Mill Superfund Site project area</td>
</tr>
<tr>
<td>6-2.</td>
<td>Locations of subsurface testing conducted in Area 4, Eastland Woolen Mill Superfund Site project area</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>4-1. Maine Archaeological Study Units</td>
<td>17</td>
</tr>
</tbody>
</table>
CHAPTER 1
INTRODUCTION

Scope and Authority

Scope

This report presents the results of an intensive (locational) archaeological survey conducted within the proposed relocation areas for the rechannelization of the East Branch of the Sebasticook River in Corinna, Maine (Figure 1-1). The river is being relocated as part of the ongoing soil remediation process at the Eastland Woolen Mill Superfund Site project area (MHPC #1388). The intensive survey was conducted in order to determine the presence/absence of prehistoric sites in areas of the proposed road and river relocations and to the south along a floodplain adjacent to a soil remediation area. The goal of the survey was to identify all prehistoric archaeological sites that are present in sensitive areas identified along the East Branch of the Sebasticook River. PAL conducted the archaeological investigations for the Department of the Army, New England District, Corps of Engineers (NAE).

Archaeological Research Consultants, Inc. (ARC, Inc.) conducted a walkover survey of the project area in June 1999. This survey addressed areas north of Main Street in the vicinity of the millpond and had determined that extensive fill deposits related to twentieth century mill operations and municipal earthmoving activities were present in most areas that were considered to exhibit prehistoric sensitivity (see Appendix C). However, the walkover survey did not include an assessment of areas south of Main Street that would be impacted by the proposed rechannelization of the East Branch of the Sebasticook River or the area located on a floodplain approximately 15,000 feet (ft) south of the mill complex. Additional Phase I (intensive survey) investigations for prehistoric resources along the proposed river diversion were recommended by the Maine Historic Preservation Commission (MHPC) in a letter dated July 15, 1999 (see Appendix C).

Authority

All archaeological survey work was undertaken in accordance with the Secretary of the Interior's Standards and Guidelines for Archaeology and Historic Preservation (48 FR 44716, September 29, 1983), the Advisory Council on Historic Preservation's handbook Treatment of Archaeological Properties (1980), and the MHPC's Contract Archaeology Guidelines and Standards for Archaeological Work in Maine (7 MRSA S.509).
Figure 1-1. Map of Maine with the location of the town of Corinna.

Eastland Woolen Mill Superfund Site
Corinna, Maine
Facility Description

The Eastland Woolen Mill Superfund Site project area is located south of Main Street along the East Branch of the Sebasticook River in the town of Corinna, Maine (Figure 1-2). Four areas along the existing river channel were investigated. Area 1 is located on the east side of the river within the proposed Routes 7 and 11 re-alignment and river diversion, Area 2 is located on the east side of the river south of the elevated railroad bed and existing bridge within the area of proposed river diversion, and Area 3 is located on the west side of the river within the proposed Routes 7 and 11 re-alignment (Figure 1-3). Area 4 is located on a floodplain, on the east side of the river, at a sharp bend in the river, approximately 15,000 ft south of Main Street (Figure 1-4).

Nature of Study

PAL conducted an intensive (locational) archaeological survey for prehistoric sites in areas of proposed road relocation, planned diversion of the East Branch of the Sebasticook River, and an area of impact on a floodplain planned for soil remediation activities (see Figures 1-3 and 1-4). The survey was designed to identify all prehistoric sites that may have been present in these work areas through background research and field investigations.

Personnel

Archival research and field investigations for the project were conducted in July 2000. PAL staff involved in the project include Deborah C. Cox (project manager), Suzanne G. Cherau (co-principal investigator), Edna Feighner (co-principal investigator), and Dan Lynch (project assistant).

Disposition of Project Materials

All project information (i.e. field recording forms, maps, cultural materials, and photographs) is currently on file at PAL, 210 Lonsdale Avenue, Pawtucket, Rhode Island. PAL serves as a temporary curation facility until such time as the U.S. Government designates a permanent repository that meets the requirements under 36 CFR 79.
Figure 1-2. Location of the Eastland Woolen Mill Superfund Site project area on the USGS Corinna, Maine topographic quadrangle map, 7.5 minute series.

Eastland Woolen Mill Superfund Site
Corinna, Maine
Figure 1-3. Location of Areas 1, 2, and 3 subjected to intensive archaeological survey, Eastland Woolen Mill Superfund Site project area.
Figure 1-4. Location of Area 4 subjected to intensive archaeological survey, Eastland Woolen Mill Superfund Site project area.

Eastland Woolen Mill Superfund Site
Corinna, Maine
CHAPTER 2
METHODOLOGY

Objectives

The goal of the intensive (locational) archaeological survey was to locate and identify any potentially significant prehistoric resources that might be impacted by proposed remediation work. To accomplish this objective, two research strategies were used:

- archival research, including a prehistoric site file search, map research, and local informant interviews; and
- field investigations, consisting of a walkover survey (visual assessment) and subsurface testing.

The archival research and walkover survey provided information needed to supplement the previous archaeological sensitivity assessment (see Appendix C). Archaeological sensitivity is defined as the likelihood for prehistoric resources to be present based on various categories of information. These categories include:

- known locational, functional, and temporal characteristics of identified prehistoric sites in the project vicinity; and
- project-specific, local, and regional environmental data used in conjunction with project area conditions observed during the walkover.

Subsurface testing was conducted in areas that were determined to have moderate to high prehistoric archaeological sensitivity and where project impacts may occur. This report section describes the methods involved in each of the background research and field activities. The results of the research and field investigations are discussed and evaluated in Chapters 6 and 7.

Background Research/Information Sources

The information necessary to develop an historic context can be gathered from a number of sources. These sources include written and cartographic documents relating to past and present environmental conditions, prehistoric land use and settlement patterns, and historic land use and settlement patterns. The collection of background data assists with formulating the archaeological sensitivity of a given area and is an integral part of an archaeological inventory survey. Each category of background data can contribute attributes to the definition of the archaeological and historical context of a project area.

The following sources were reviewed as part of the archival/background research for the Eastland Woolen Mills Superfund Site project area in Corinna, Maine.

Geology, Geomorphology, and Soils Publications

Bedrock and surficial geology and the geomorphology of the project area along the East Branch of the Sebasticook River were reviewed in order to understand depositional, erosional, and drainage patterns. Information was collected on the physical structure, geological resources, and hydrology of the general area (Kendall 1993; Peterson et al. 1994). Soil information was obtained from the soil survey maps for Penobscot County (Thompson and Borns 1985).
Town Histories and Historical Maps

As previously stated, this survey was conducted to identify prehistoric site locations, therefore the background information focused on changes in the course of the East Branch of the Sebasticook River in Corinna, Maine. Historical maps and atlases helped to chronicle changes in the landscape (Walling 1859; Sherman 1875). Sources were consulted at the Corinna Public Library and the Corinna Historical Society. A brief historical overview is presented in Chapter 5. This overview has been summarized from a previously prepared Historic Survey and Inventory of the project area completed by E. Hawes for the ACOE (February 2000).

State Level Cultural Resource Inventory

The state site files maintained at the Maine Historic Preservation Commission (MHPC) were reviewed for Corinna and neighboring towns in the Sebasticook River Drainage. This review was undertaken to compile an initial prehistoric site database for the Eastland Woolen Mills Superfund Site project area. The MHPC’s site inventory also includes historic properties listed on, determined eligible, or considered eligible for listing in the State and National Registers of Historic Places. Prior to this survey, no prehistoric or historic archaeological sites had been recorded in the state site files for the project area.

Cultural Resource Management Reports

A review of published and unpublished reports of previous research in the vicinity of the Sebasticook River drainage was conducted. These included studies of the interior lakes region of central Maine (Robinson et al. 1992; Sanger et al. 1992) and of the project vicinity (Peterson et al. 1994).

Informant Interviews

Local residents and members of the Corinna Historical Society were consulted as part of the survey (see References-List of Informants/Personal Contacts).

Archaeological Sensitivity

As previously noted, an archaeological reconnaissance survey (walkover survey) was conducted in order to assess the potential for prehistoric resources to be present at the Eastland Woolen Mills Superfund Site project area (ARC letter, R. Will to A. Spiess, dated June 16, 1999) (see Appendix C). The MHPC reviewed the findings of this sensitivity assessment and requested that a Phase I (intensive) prehistoric survey be completed for areas along the east bank of the East Branch of the Sebasticook River and other areas that were not assessed during the initial reconnaissance survey. Subsurface testing would be conducted in areas that exhibited sensitivity for prehistoric resources.

Archaeological sensitivity is defined as the likelihood for prehistoric and/or historic cultural resources to be present within a given area.

Prehistoric Archaeological Sensitivity

Sets of key environmental variables used to predict the location of prehistoric sites have been compiled from decades of research conducted by academic and cultural resource management archaeologists. These studies have repeatedly shown that certain environmental and topographical settings are strongly associated with the presence of prehistoric sites. The most productive studies have been of large areas including a variety of environmental settings that were then field tested to determine the validity of the predictive model. Most large-
scale studies have been undertaken in Central and Southern New England. Over the past decade, the large-scale cultural resource management surveys have included assessments of pipeline and utility corridors (Kellogg et al. 1997; Eldridge et al. 1997; Will et al. 1998). These studies have added information to current models used in the assessment of prehistoric archaeological sensitivity. Previous archaeological work in Maine indicates proximity to water resources was a decisive factor used by prehistoric populations in selecting occupation sites (for further discussion see Chapter 4). Approximately 96 percent of the prehistoric sites in Maine have been discovered either along the coast or along interior rivers, streams, lakes, and wetlands (Spiess 1994).

Geologic data provides information on the availability of lithic resources and current and past environmental settings and climate. Bedrock geology has helped to identify where raw materials for stone tools were obtained by prehistoric groups and how far lithic materials were transported or traded. The variety and supply of available natural resources are dependent on soil composition and drainage, which also play a significant role in determining wildlife habitats and forest and plant communities (USDA soil surveys).

Geomorphology assists in reconstructing the paleoenvironment of an area and is particularly useful for early Holocene (Paleoindian and Early Archaic periods) sites in areas that are physically different than they were 10,000 years ago (Spiess 1992). In some cases recent landscape changes, such as drainage impoundments for highways and railroads, the creation of artificial wetlands to replace wetlands impacted by construction, or wetlands drained for agricultural use, make it difficult to assess an area's original configuration and current archaeological potential (Hasenstab 1991).

The final criterion in prehistoric site potential is the degree of natural or artificial subsurface disturbance that has occurred within a project area. Disturbance can affect both the potential for the presence of cultural resources and reduce the probability that they will be located within their original archaeological context. The most common type of disturbance in this area of the northeast is flooding along low-lying areas of rivers and streams. Other types of disturbance include historic land filling activities, plowing, and sand or gravel mining.

The following list of variables is used by PAL and follows Maine’s guidelines to assess the potential presence of prehistoric resources.

High Sensitivity:
- fresh and/or saltwater resources within 150 m;
- well-drained sandy soils;
- level to fairly level topography (0-3 percent slope);
- zero to minimal disturbance;
- archaeological sites in project area or immediate vicinity.

Moderate Sensitivity:
- fresh and/or saltwater resources within 150 to 300 m;
- well-drained to fairly well-drained, sandy to cobbly soils;
- moderate slopes (3 to 8 percent slope);
- zero to moderate disturbance;
- archaeological sites in vicinity of project area.

Low Sensitivity:
- no freshwater or saltwater resources for more than 300 m;
- poorly drained or inundated areas;
• steep slopes (8 percent or more);
• moderate to extensive disturbance;
• no archaeological sites in vicinity.

Field Methodology and Sampling Strategy

Close visual inspection of the current study areas was performed in order to identify any surface indications of prehistoric resources (artifact scatters, exposed hearth/pit features). Observations concerning the present physical condition of the project study areas were also noted during the walkover. The physical condition included environmental factors such as soil and vegetation types and drainage patterns, as well as the extent of previous natural (erosion) and artificial (construction, roadways, etc) disturbances.

The subsurface testing strategy consisted of excavating test pits, 50 x 50 centimeters (cm) in size, at 10-meter (m) intervals along seven judgmental linear transects and as judgmental test pits (JTPs) in areas of moderate and high archaeological sensitivity within the project area (Figure 2-1). It was originally estimated that approximately 35 test pits would be needed to adequately investigate the archaeologically sensitive portions of the four study areas. Due to the presence of modern period disturbances/fills and contaminated soils, only 15 test pits and two machine assisted trenches (each 1 x 2 meters (m) were actually excavated within the Eastland Woolen Mill Superfund Site project area during the intensive survey. The machine-assisted trenches were used to examine areas of deep fill deposits that would have been otherwise inaccessible by hand testing.

Excavation Procedures

All test pits were excavated by shovel in arbitrary 10-cm levels to sterile subsoil or rock impediments. The machine-assisted trenches were excavated by Roy F. Weston, Inc. under the supervision of PAL staff. These trenches extended to glacial subsoils. All excavated test pit soils were hand-screened through ¼-inch hardware cloth. All historic materials encountered during excavation were noted and discarded in accordance with MHPC standards for Phase I survey (Dr. Art Spiess, personal communication 2000). No prehistoric materials were recovered during the survey work, so no laboratory processing activities were needed. Soil profiles, including depths of soil horizons, colors, and textures were recorded for each test unit on standard PAL test unit profile forms. Following the excavation, all test pits and machine-assisted trenches were filled in and the ground surface was restored to its original contour. Black and white photographs were taken of the general project area and testing locations.
Figure 2-1. Subsurface testing strategies employed by PAL during an intensive archaeological survey.
CHAPTER 3
ENVIRONMENTAL SETTING

The Eastland Woolen Mills Superfund Site project area is located in central Maine on the USGS Corinna topographic quadrangle (see Figure 1-2).

Physiography

The project area lies in the central Maine portion of the Gulf of Maine within the New England Upland physiographic province (Figure 3-1). This zone is characterized by low rolling hills adjacent to broad flat regions crosscut by numerous rivers, streams, and smaller intermittent watercourses, in addition to a variety of wetland resources. The terrain of this area is generally uniform in elevation across the low-lying wetlands associated with ponds and drainages. Elevations along the river drainage are approximately 200 ft NGVD (National Geodetic Vertical Datum).

The present topography of the New England Upland region is the result of glacial, preglacial, and postglacial erosion and deposition. During the Wisconsin Period, approximately 17,500 years ago, the advance and retreat of the continental ice mass eroded and picked up bedrock, realigned drainages, and deposited till, erratics, and other glacial material along its course. The slow retreat of the ice sheet, estimated to have been about two miles thick at its maximum stage in this region, depressed, shaped, and scoured the landscape while leaving widespread glacial deposits. In upland areas this resulted in a moderately thick veneer of ice-deposited glacial till, a heterogeneous mix of clay, silt, sand, gravel, and boulders, through which bedrock occasionally outcrops. The melting of the Wisconsin ice sheet redeposited meltwater and carried stratified drift throughout the river valleys and lowland areas of the upland which resulted in a variety of small-scale landforms. The topography of the Eastland Woolen Mill Superfund Site project area is characterized by a relatively broad flat plain cross cut by the East Branch of the Sebasticook River and its associated wetlands.

Bedrock and Surficial Geology

Bedrock Foundation

The underlying bedrock of this area is called the Waterville Formation and consists of northeast-southwest oriented bands of interbedded pelite and sandstone.

Surficial Geology

The surficial geology of the project vicinity is either directly or indirectly attributable to glaciation. Glaciation has modified the bedrock formations by scouring and scraping and by depositing the glacial debris and outwash. Pockets of glacial till composed of poorly sorted silt and clay (Presumpscot Formation), sand, gravel, and boulders are interspersed throughout the area. The streambed of the East Branch of the Sebasticook River consists primarily of these glaciofluvial deposits of a heterogeneous mixture of sand, silt, clay, and stones. This may include many boulders, generally massive, but in many places contains beds and lenses of variably washed and stratified sediments (Thompson and Borns 1985).
Figure 3-1. New England physiographic zones showing the location of the Eastland Woolen Mill Superfund Site project area.
Soils

Soil is produced as a result of physical and chemical processes acting upon geological materials. Glacial ice picked up and ground bedrock that it then transported and deposited as a jumbled mixture of fresh unweathered rock particles of varying sizes. These sediments were separated and sorted by glacial meltwater and strong winds that distributed fine particles. Vegetation became established, chemical processes of weathering increased, and rock sediments developed into soils. Differences in regional soils are primarily attributed to the interaction of the five factors of soil formation: the parent material, climate, living organisms, relief, and time.

Soils have been formed in marine and lacustrine deposits. Soils are poorly drained and nearly level to level. The project vicinity exhibits soil erosion. The primary cause of erosion appears to be caused by periods of excessive flooding. Silt and fine sands are washed away, leaving the banks covered by small stones and cobbles in a type of natural riprap (Hanson and Caldwell 1985).

Kennebec River Drainage and Sebasticook River

The project area is located along the East Branch of the Sebasticook River within the eastern reaches of the Kennebec River Drainage in central Maine (Figure 3-2). The East Branch continues in a southwesterly direction below Lake Sebasticook, where it joins the Main Branch of the Sebasticook River and ultimately flows into the Kennebec River and on to the Atlantic Ocean. Many of the waterways of this region are swift flowing streams, fed by numerous swamps, ponds, and lakes. These were well suited for both prehistoric fishing stations and historic power sources.

Project Area Conditions

The project survey encompasses four noncontiguous areas along the East Branch of the Sebasticook River in downtown Corinna. These areas are situated to the south side of Main Street and to either side of the railroad easement that runs north-south through this part of the town (see Figures 1-3 and 1-4). Area 1 is located on the east side of the river, approximately 1,000 ft south of Main Street. Area 3 is opposite Area 1 on the west side of the river, about 1,000 ft east of Newport Road (Routes 7 and 11). These areas are characterized by gently sloping terrain to the rear of structures that front Main Street and Newport Road. They are presently covered by grass with a few small oak and elm trees.

Area 2 is on the opposite (east) side of the railroad tracks and the east side of the river. The railroad at this location is carried across the river by an elevated bridge. This area is also characterized by a gently sloping terrain covered by grass with scattered oak and elm trees.

Area 4 is located about 15,000 ft south of Main Street on a floodplain along the east side of the river. There is a sharp bend in the river at this location. This area is characterized by a gently sloping terrain covered by overgrown marshy grass surrounded by an overstory of mixed deciduous and coniferous trees. Several houses that front the nearby street are visible from this project area.
Figure 3-2. Kennebec River Drainage Basin showing the Sebasticook River drainage and the Eastland Woolen Mill Superfund Site project area.

Eastland Woolen Mill Superfund Site
Corinna, Maine
CHAPTER 4
PREHISTORIC LAND USE AND SETTLEMENT PATTERNS

The study of prehistoric land use and settlement patterns in New England has been traditionally divided into river drainages as units of study. The combined efforts of avocational archaeologists, academic investigators and cultural resource management studies have identified numerous sites along major river drainages in Maine. The body of data generated by these efforts provides expanding insights into the past 12,000 years of human occupation. The result has been the compilation of a regional prehistoric cultural chronology within which known and potential site types and distributions can be studied. Table 4-1 depicts the major and minor archaeological cultural divisions recognized in Maine (Spiess 1990). It is important to note that these distinctions and their assigned time periods are only archaeological constructs.

This report section presents a brief overview of the prehistory of Maine as it is interpreted from the archaeological record. Figure 4-1 illustrates the representative diagnostic artifacts by prehistoric cultural period recognized in Maine.

Regional Cultural Chronology

Paleoindian Period (11,500-9500 B.P. [before present])

The earliest evidence for human occupation of New England dates from the Paleoindian Period. Immediately after the retreat of the last Wisconsin glacier the environment underwent a transition from tundra to open spruce woodland dominated by scrub birch and alder (Funk 1972). Small highly mobile bands of hunter-gatherers moved into the Northeast at this time, roaming large territories and exploiting post Pleistocene megafauna as well as medium and small game, marine resources, and seasonally available plant foods. Classic stone tool forms include bifacially flaked projectile points with fluted bases and steep-edged endscrapers. Paleoindian tool kits are characteristically manufactured from high quality lithic materials often derived from quarry sources great distances from habitation sites (Will et al. 1998).

Over the past decade, several Paleoindian sites have been discovered in Maine and early and late Paleoindian phases have been identified, based on the presence of diagnostic projectile points in assemblages. The discovery of these sites has contributed to refining a predictive model of Paleoindian site location. This model includes location on eolian sand and gravely glacial outwash sands adjacent to some sort of a topographic feature characterized by a break in slope, such as the margins of streams, rivers, dunes, swamp margins, or former pond or lake shore (Spiess 1992).

Table 4-1. Maine Cultural Chronology Study Units.

<table>
<thead>
<tr>
<th>Major Cultural Periods</th>
<th>Time Period (in years B.P.)</th>
<th>Study Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paleoindian</td>
<td>11,500 – 10,200</td>
<td>Fluted Point Paleoindian Tradition</td>
</tr>
<tr>
<td></td>
<td>10,200 – 9500</td>
<td>Late Paleoindian Tradition</td>
</tr>
<tr>
<td>Archaic</td>
<td>9500 – 6000</td>
<td>Early and Middle Archaic traditions</td>
</tr>
<tr>
<td></td>
<td>6000 – 2000</td>
<td>Late Archaic: Small-stemmed Point</td>
</tr>
<tr>
<td></td>
<td>4500 – 3700</td>
<td>Late Archaic: Moorehead Phase</td>
</tr>
<tr>
<td></td>
<td>3900 – 2800</td>
<td>Late Archaic: Susquehanna Tradition</td>
</tr>
<tr>
<td>Ceramic (Woodland)</td>
<td>2800 – 500</td>
<td>Ceramic Period</td>
</tr>
<tr>
<td>Historic</td>
<td>less than 500</td>
<td>Contact Period and modern history</td>
</tr>
</tbody>
</table>

Source: Spiess (1990)
Figure 4-1. Representative diagnostic artifacts by prehistoric cultural period recognized in Maine.
By the end of the PaleoIndian Period, various forms of projectile points that lacked basal fluting, including lanceolate and distinctive parallel-flaked forms replaced fluted spearpoints. The environment had undergone a transformation from mixed tundra/woodland to forest that contained, among other tree species, white pine and oak (Will et al. 1998).

Early and Middle Archaic Periods (9500-6000 B.P.)

The Archaic Period is divided into Early, Middle and Late subperiods. A well-defined Early Archaic sequence demonstrating transition from Paleoindian, like that known for the lower eastern seaboard, has not been found in Maine. The Early and Middle Archaic are often considered together as one unit with increasing differentiation through time (Will et al. 1998).

The absence of recognizable Early Archaic components, coupled with paleoenvironmental reconstructions of a low productivity boreal forest, has generated debate over whether Maine was inhabited during the Early and Middle Archaic periods. Robinson et al. (1992) has provided the most comprehensive overview of this time period. During this time, forests continued to expand in Maine and changed from largely coniferous species to forests of mixed hardwoods and softwoods.

The Middle Archaic Period is better known than its predecessor. Evidence for it has been found on the coast as well as the interior. The types of flaked stone tools found in Maine are similar to Middle Archaic site collections from other parts of the Northeast, including Neville and Stark points, and ground stone assemblages. A number of possible Middle to Late Archaic sites have been identified by avocational archaeologists along the northern shore of Sebasticook Lake.

The first human burial sites known in Maine appear in this time period. They include burials sprinkled with red ochre and grave offerings of ground stone tools including woodworking gouges, slate spearpoints, and ground stone rods (Robinson 1992; Cole-Will and Will 1996).

Late Archaic Period (6000-2000 B.P.)

The Late Archaic Period is divided into several traditions, many of which are well documented in Maine from numerous sites. It is during this period that the environment experienced many changes in forest composition and in the kinds of plant and animal resources available for subsistence. The best known archaeological unit of the Late Archaic is called the Moorehead Phase. Laurentian, Vergennes, and Small Stemmed Point Tradition projectile point types are also recognized from Maine.

Numerous cemetery sites are known from this time period but interpretations of their cultural affiliation and meaning vary (Snow 1969; Sanger 1973; Bourque 1976). Habitation sites are also recorded from a variety of locations including coastal shell middens, lake margins, and along large and small waterways.

The close of the Late Archaic Period is characterized by another archaeological assemblage that suggests a different lifestyle than that practiced by Moorehead Phase peoples. During the Susquehanna Tradition the deceased were cremated rather than interred (Borstal 1982). Diagnostic tool forms include large stone spearpoints rather than ground stone tools with close similarities to diagnostic types in southern New England and the mid-Atlantic region. The economy of Susquehanna peoples appears to have been more focused on terrestrial rather than marine resources (Will et al. 1998).
Ceramic Period (2800-500 B.P.)

The introduction of pottery making signifies the beginning of the Ceramic Period. Developments in the Maine-Maritimes region do not follow closely with those to the south or west. Elsewhere, this cultural period is referred to as the Woodland Period. The kinds of changes in subsistence, settlement patterns, and social organization that differentiate the Archaic and Woodland periods elsewhere are never manifested in Maine. While ceramics were adopted and there is evidence for limited corn-bean-squash horticulture in extreme southwestern Maine, a hunter-gatherer lifestyle persisted and major reorganization of settlement, political, and subsistence patterns into hierarchical, concentrated populations does not occur (Willetal. 1998).

Ceramics first appear in the archaeological record of Maine about 3000 years ago and persisted until European contact. A well-defined aboriginal ceramic sequence has been outlined for the Maine-Maritimes region that divides the Ceramic Period into Early (3050-2150 B.P.), Middle (2150-950 B.P.), and Late (950-200 B.P.) subperiods (Petersen and Sanger 1991).

The environment during this time period contains all of the elements of the present environment (Davis and Jacobson 1985). Ceramic Period sites are abundant. The most visible are shell middens that are found along the coast. But they are also common in the interior along waterways and around ponds and lakes. Ceramic Period sites are found on smaller, less accessible drainages than preceding Archaic Period sites. This settlement pattern is interpreted to mean that the birch bark canoe was first used at this time, allowing people a higher degree of mobility.

The Ceramic Period ends with European contact around 450 years ago. Most of the kinds of material culture attributable to the prehistoric inhabitants of Maine disappear from the archaeological record at this time. This makes it difficult to trace specific cultural connections between historic Native Americans and their prehistoric ancestors in Maine.

Known and Expected Prehistoric Resources

The significance of the Sebasticook River drainage within the larger Kennebec River drainage is similar to that of other major river drainages in Maine. Native American settlement on the rivers span all prehistoric cultural periods and extend into the historic period. The drainage includes a number of important sites that have contributed to a general understanding of Maine’s prehistory. Prior to the current survey, there were no recorded prehistoric sites within the project area or immediate vicinity of Corinna.

Among these significant sites is the Sebasticook Fish Weir Site on the Sebasticook River, downstream from the project area in Corinna. This site has returned dates from the Middle Archaic to the Ceramic Periods. It is one of the oldest fish weirs in North America and documents several thousand years of continued use and maintenance of a fishing structure on an interior lake (Peterson et al. 1994). The site was discovered when archaeologists identified a number of roughly vertical, wooden, stake-like objects protruding from the water near the river mouth. Lithic artifacts were found on the rocky storm berms in the general area. The stakes were examined and it was determined that the sharpened ends were stone-axe cut, indicative of prehistoric period origins.

A number of other Archaic and Ceramic Period sites have been discovered along the northern shore of Sebasticook Lake in proximity to the fish weir. These sites consist of small to large camps where lithic manufacturing and maintenance activities occurred in conjunction with seasonal hunting, fishing, and
gathering of natural food resources. The current project area is situated less than 13 miles downstream from the Sebasticook Lake, and while the mouth of the East Branch of the Sebasticook Lake may be an expected or even typical fish weir setting, the section of river in the project vicinity is not. However, other types of prehistoric resources were expected to be present in intact, floodplain soil horizons along the river channel. These included short and long term camps containing evidence of stone tool manufacture and subsistence-related activities such as food processing and disposal.
CHAPTER 5

HISTORIC LAND USE AND SETTLEMENT PATTERNS

The information presented in this chapter has been summarized from an historic survey and inventory conducted by E. Hawes (2000) and prepared for the ACOE. A number of secondary sources, including town histories (Wood 1916; Sawtell 1984), a Penobscot County history (Ford 1882), and nineteenth and twentieth century maps of Corinna (Walling 1859; Sherman 1875; Sanborn 1912) also provided information relating to the historic land use and settlement patterns of the area.

Historical Development in Corinna (Penobscot County)

The town of Corinna is located in eastern Penobscot County. It is bounded by Newport to the north, St. Albans and Palmyra to the west, Dexter to the north, and Stetson to the east. The East Branch of the Sebasticook River runs through the center of Corinna. The industrial history of the town includes grist and saw mills, woolen and textile mills, and a cannery (away from town center) operating off the East Branch.

1800-1860 Period

The settlement of Corinna began after John Warren of Boston, surgeon and speculator, purchased the township from the State of Massachusetts in 1804 and offered incentives for development of the region. A dam with grist and sawmills on the Sebasticook Stream provided the center for a new community that developed during this period. Between 1820 and 1825 William Moore bought a mill that had been originally constructed by Daniel Ireland, nephew of John Boston.

A settlement that was known as Moore’s Mills (or Moor’s Mills) developed around the dam. The origin of the name Corinna is not known, but at some point following this initial settlement, the village acquired the name. By 1859 Corinna was little more than a crossroads settlement.

1860-1910 Period

In the early part of this period, Corinna was still known as Moore’s Mills. The mills on what is now known as the Middle Dam just above Main Street continued to be the center of the community (Figure 5-1). In 1875 there were three mills operating in the town: a shingle manufacturer, a carding wool complex, and a milling grain company. The grist and flourmill company expanded and dominated the town’s economy until 1910. The opening of the railroad to Dexter and Newport in 1869 provided the needed year-round connections with the rest of the county. The railroad marked the beginning of Corinna’s industrial and commercial development (Figure 5-2). In the 1880s, away from the center of town, a vegetable cannery was set up, and, at a dam lower down on the Sebasticook, a textile mill operation was established. Several different sets of partners owned and operated these factories through the period. The Ireland Brother’s brick block and gristmill located in the town center burned in 1904 and soon was rebuilt.

1910-1950 Period

In September, 1911, a second fire destroyed the Ireland Brother’s mill, several stores and houses. The brothers built a new gristmill to the northeast along the railroad tracks. In the place where the gristmill
Figure 5-1. 1875 detail map of Corinna center, with the project location (source: Sherman 1875).
Eastland Woolen Mill Superfund Site
Corinna, Maine
Figure 5-2. 1875 map of the town of Corinna, with the project location (source: Sherman 1875).
Eastland Woolen Mill Superfund Site
Corinna, Maine
had been located on the Middle Dam, a new woolen mill was built by the Corinna Manufacturing Company. The woolen and textile mills at both Middle and Lower Dams expanded modestly and prospered through the years, except for the Depression years. During the 1930s a family from Bangor acquired the mill on the Middle Dam and renamed it the Eastland Woolen Mill. Housing for families and single workers, and for visitors was developed. Opposite the Eastland Mill, the Realty Block was constructed in 1912 with stores, offices and a hotel.

Another major expansion occurred in the 1940s when Baxter Brothers of Brunswick developed the cannery into a year-round operation. In 1947, in cooperation with Bird’s Eye Frozen Foods, they began to produce frozen French fries.

1950 to Present

This was the era in which Corinna became a one-industry town. The mill at the lower dam burned in 1950, the potato warehouse burned about 1960, and the cannery burned in 1968. But the decline of the town’s commercial focus began with the fire that destroyed the Corinna Realty Block in 1975. It was never rebuilt. The last freight train ran down from Dover-Foxcroft in 1986. The passenger station was sold to a private collector who relocated it to his place in Belfast. Business for the Eastland Mill declined in the early nineties, and the town took over the bankrupt mill’s site in 1997.
CHAPTER 6
RESULTS OF THE FIELDWORK

Fieldwork for the intensive survey consisted of one task: investigation of archaeologically sensitive areas defined by the NAE and MHPC. A total of 15 test pits (transects and JTPs) and two machine-assisted trenches (MT-1 and MT-2) were excavated to accomplish this task.

The following chapter presents the archaeological data collected during the field investigations. The field forms showing soil profiles for all subsurface testing locations are included in Appendix B of this report.

Area 1

Two test pits (JTP 1-1 and JTP 1-2) and one machine assisted trench (MT-1) were placed on the east side of the river within the proposed road relocation and river diversion (Figure 6-1). JTP 1-1 contained layers of burnt fill to approximately 45 centimeters below the surface (cmbs) terminating on cobble rubble. JTP 1-2 was placed approximately 6 meters (m) southeast of JTP 1-1. This test pit contained the same layers of burnt fill to a depth of 80 cmbs, terminating on the cobble rubble. MT-1 was placed about 20 m northeast of these two test pits to further examine the depth of fill deposits and identify subsoils. The fill deposits were present from ground surface to 130 cmbs. Excavation terminated at 200 cmbs in glacial till deposits and Presumpscot Formation (PF) silty clay soils.

No prehistoric cultural materials were identified in this portion of the project area. Historic cultural materials were found from 0 to 80 cmbs in burnt fill deposits. These materials were noted and discarded, and included cinder, coal, glass, nails, and ceramic sherds (whiteware, ironstone).

Area 2

Two test pits (JTP 4-1 and 4-2) were placed on the east side of the river within the proposed river relocation (see Figure 6-1). This area is situated to the southeast side of the railroad tracks. Soils encountered in these test pits are comprised of glacial till and an overburden containing low densities of historic materials from 0 to 35 cmbs (all materials were noted and discarded). These materials consisted of machine cut nails, glass and brick fragments. Test pits were excavated to a depth of 45 cmbs, terminating at glacial till. No prehistoric cultural materials were recovered in this area.

Area 3

Five test pits excavated along two linear transects and one machine-assisted trench (MT-2) were placed on the west side of the river within the proposed road relocation area of impact (see Figure 6-1). These test pits and the machine trench were excavated to a depth 80 cmbs. Each test unit contained layers of organic fill, overlying glacial till. Low densities of historic cultural materials were recovered from 0 to 50 cmbs. These materials included glass, wood, roof shingles, coal, and cinder. No prehistoric materials were encountered in this area.

Area 4

Area 4 is situated on a floodplain terrace about 4500 feet south of Main Street at a sharp bend in the river (Figure 6-2). A review of historic town maps and aerial photographs indicates that this river terrace had
Figure 6-1. Locations of subsurface testing conducted in Areas 1, 2, and 3, Eastand Woolen Mill Superfund Site project area, Eastand Woolen Mill Superfund Site, Corinna, Maine.
formed in conjunction with the natural river meander-potential river alluvial deposits. Historically this area had been created as a millpond; the mill and dam were located to the south. Historic town maps show this section of the river as having been relatively straight prior to the construction of the mill complex and dam/pond (Sherman 1875).

This area also contained previous disturbances from a utility trench that runs through the center of the terrace from Maine Street south to the mill at the lower dam (see Figure 6-2). This trench contains large pipe exposed on the ground surface. A total of six test pits excavated along three parallel transects were placed along both sides of the pipe trench in proximity to the riverbank (see Figure 6-2). These test pits were excavated to a depth of 75 cmbs. Soils were identified as flood deposits containing historic materials, overlying B-horizon subsoils (yellow brown silty coarse sand and gravel), underlain by an olive brown/yellow silty clay with cobbles. The natural and historic A/topsoil horizon appears to have been removed or washed away by past flooding episodes. The historic materials included a low density of coal, cinder, bottle glass, wire nails, brick, and glass fragments. No prehistoric cultural materials were encountered in this area.
CHAPTER 7
SUMMARY AND CONCLUSIONS/RECOMMENDATIONS

Summary

The intensive archaeological survey was conducted for prehistoric sites in areas of proposed road relocation, planned diversion of the East Branch of the Sebasticook River, and an area of impact on a floodplain planned for soil remediation activities. Background research and field investigations were used to determine the presence of any prehistoric resources within the proposed work areas. Background research included a review of site files maintained at the MHPC, previous archaeological studies conducted in the Corinna vicinity, and environmental data pertaining to the Sebasticook River drainage. Information relating to the historical development of Corinna aided in reconstructing changes to the river channel and historic industrial activities that have affected the natural and prehistoric period landscapes.

The field investigations involved an initial walkover survey followed by subsurface testing to determine the presence of intact soils containing prehistoric archaeological deposits. This fieldwork determined that the proposed river and road relocations in proximity to Main Street and Floodplain Area No. 4 further to the south contain extensive natural and historic/modern period subsurface disturbances. Disturbances in the areas closest to Main Street included the excavation of water and sewer trenches, an elevated railroad bed, and filled parking areas. The riverbanks in this area are retained by cobble fill on the east side and cut stone on the west. The west side of the river is elevated behind residential and commercial buildings fronting Newport Road. According to local residents, the fires that devastated this section of Corinna in the early and mid twentieth century led to episodes of filling and regrading along this section of the river. Building rubble was pushed back to form the river terraces south of Main Street. This section of the river is also reported to have experienced a number of devastating floods throughout the historic and early modern periods. Underlying soils are identified as Presumpscot Formation glacial till, which correlates to the USDA soil survey maps.

The historic cultural materials encountered during the subsurface testing are likely associated with the documented historic and modern period mill activities along this section of the Sebasticook River drainage. Many of these materials were burnt and the fill soils also exhibited extensive burning, which corresponds to the documented twentieth century fires that occurred in this section of the town.

Conclusions/Recommendations

The field investigations conducted as part of the intensive survey did not identify any prehistoric cultural deposits or natural soil horizons within the archaeologically sensitive portions of the Eastland Woolen Mill Superfund Site project area. No further archaeological investigations of the project area are recommended.
REFERENCES CITED

Borstal, Christopher L.
1982 Archaeological Investigations at the Young Site, Alton, Maine. *Occasional Publications in Maine Archaeology, No. 2.* Maine Historic Preservation Commission, Augusta, ME.

Bourque, Bruce J.

Cole-Will, Rebecca and Richard Will

Davis, Ronald B., and George L. Jacobson, Jr.

Eldridge, Stuart, Peter Morrison, John Cross, Leslie Shaw, Margaret Hunt Helper, and Mitchell Mulholland

Ford, H.A.
1882 *History of Penobscot County, Maine; with Illustrations and Biographical Sketches.* Cleveland, Williams, Chase & Company.

Funk, Robert E.

Hanson, Lindley S. and Dabney W. Caldwell

Hasenstab, Robert

Hawes, Edward L., Ph.D.

Kellogg, Douglas C., K. Wheller, and Robert G. Kinglsey
Kendall, D.

Petersen, J.B. and D. Sanger

Peterson, James B., B. Robinson, D. Belknap, J. Stark, and L. Kaplan

Robinson, Brian S., James B. Peterson, and Ann K. Robinson (editors)

Sanborn Insurance Map Company

Sanger, D.

Sanger, D., W.R. Belcher and D.C. Kellogg

Sawtell, William R.
1983 20th Century Corinna. Corinna, ME.

Sherman, W.A.

Snow, D. R.
1969 A Summary of Excavations at the Hathaway Site in Passadumkeag, Maine, 1912, 1947, and 1968. Department of Anthropology, University of Maine, Orono, ME.

Spiess, Arthur E.

Thompson, Woodrow B. and Harold W. Borns

Walling, H.F.

Will, Richard, Julia Clark, Ellen Marlatt, Edward Moore, and Kathleen Wheeler

Wood, Lilla Eva
1916 *A Brief History of Corinna, Maine, from its Purchase in 1804 to 1916*. J.P. Bass Publishing Company, Bangor, ME.
List of Informants/Personal Contacts

Arthur Spiess, Prehistoric Archaeologist, Maine Historic Preservation Commission, Augusta, Maine.
Corinna Public Library, staff, Corinna, ME.
Everett Simpson, local resident, Corinna, ME., and member Corinna Historical Society.
APPENDIX A

PHOTOGRAPH LOG
PROJECT: Sebasticook ACOE #1175
DATE: July 13, 2000
LOCATION: Areas 1, 2, 3, and 4

B & W [x]
COLOR []

PRINTS [x]
SLIDES []

PHOTOGRAPHER: Edna Feighner
EQUIPMENT: 35 mm

<table>
<thead>
<tr>
<th>PHOTO #</th>
<th>PHOTOGRAPHER'S POSITION</th>
<th>VIEW DIRECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>STP 5-1 south wall profile</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>STP 5-1 south wall profile</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>STP 5-1 south wall profile</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SE</td>
<td>General View towards lower mill from AREA 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NW</td>
<td>General View-River and Road Relocation area</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>General View-River and Road Relocation area</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>Area 3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>Area 3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>Area 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>E</td>
<td>Area 1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>Area 1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>N</td>
<td>Area 1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>N</td>
<td>Area 1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>Area 4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

FIELD FORMS
Test Pit Profile Form

Project Name: Sebasticook ACOE
Phase: intensive
Date: 2000
Block:
Site Name: AREA 2 (located south)
Excavators: FE, OL
Unit Size: 50x50cm
Interval: 10m

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>Fill containing 0.19% sandstone</td>
</tr>
<tr>
<td>10-20</td>
<td>Discarded all artifacts</td>
</tr>
<tr>
<td>20-45</td>
<td>Discarded all artifacts</td>
</tr>
<tr>
<td>45-60</td>
<td>Discarded all artifacts</td>
</tr>
</tbody>
</table>

Notes:
- Fill contains 0.19% sandstone
- Discarded all artifacts
- Discarded all artifacts
- Discarded all artifacts
- Discarded all artifacts

Legend:
- Fill
- Cobbles
- Till
- Cleared 4 Hm from terrace edge
<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SOD</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Poorly Developed</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Presumpscot</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Sorted</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Sorted</td>
<td></td>
</tr>
</tbody>
</table>

Some historic features from Bed 2:
- Some glass from A, A, discarded
- Modern Fill
- Glass, etc...
- Decayed Cut
- Race Artifact: Dense Middle Layer
The Public Archaeology Laboratory, Inc.
Test Pit Profile Form

Project Name: Sebasticook ACOE
Phase: intensive
Site Name: AREA 2, East Side

Unit Size: 50x50cm

Excavators: ____________________________
Array: ____________________________
Interval: ____________________________

Layer 3-1
4
VOR GY RN
SCH LO

Layer 3-2
20cm
COMPACT F SD
w/ Lense Cutting

24cm
OURSERTED
GY GY RN
COMPACT

35cm
Dense Cobble

60cm
Dense Formation
Wet and Sandy

Very low density of metal

Historic Material: Discarded

Very few trash, trash in.
Machine Trench Z E-W Direction Z meter
APPENDIX C

PROJECT CORRESPONDENCE
June 16, 1999

Dr. Arthur Spiess, Prehistoric Archaeologist
Maine Historic Preservation Commission
State House Station 65
55 Capitol Street
Augusta, ME 04333

Dear Art:

I had an opportunity to meet with Mr. Scott Acone from the Army Corps of Engineers yesterday to conduct a walkover survey of the Eastland Woolen Mill Superfund Site in Corinna, Maine. The purpose of my visit was to determine whether I thought a Phase I survey for archaeological resources was necessary before clean-up work begins. The project will involve demolition of various buildings in the mill complex; removal, cleaning, and replacement of contaminated soils from several areas; and placement of wells to monitor for groundwater contaminants. I have enclosed a map showing the project area that was provided to me by Mr. Acone.

Mr. Acone and I walked over the project area paying close attention to those areas that I had previously identified on the enclosed map that might be sensitive for prehistoric archaeological sites. These areas included the west bank of the mill pond, areas along the east branch of the Sebasticook River where wells will be placed, and a large downstream dumping area that covers about 5.2 acres.

The west bank between the mill building (Lot 54) and the shore of the mill pond appears to be composed of fill. This material was probably added before the concrete pad for the mill was constructed. A number of pieces of construction debris were noted in the bank. This area is not recommended for Phase I survey due to the extensive reworking of the natural landscape.

All of the well locations along the East Branch of Sebasticook, especially in the area where an old railroad bridge crosses the river downstream form the mill, occur is places where the soil has been previous been disturbed. The disturbances are primarily related to excavations that would have taken place when trenches for the municipal water and sewage treatment lines were excavated. None of these locations are recommended for subsurface archaeological survey.

The last area, which was closely inspected, was the dump site located south of town on the east side of the river. The area is hummocky and filled with various forms of municipal waste. It appears that this landfill was set in the floodplain and has resulted in an increase in bank elevation along about 30 m of river. The surrounding areas are low and wet. This area is not recommended for subsurface Phase I archaeological testing.

71 Oak Street Ellsworth, Maine 04605 (207) 667-4055
FAX (207) 667-0485 E-Mail: willarc@midmaine.com http://www.acadia.net/arc/
In summary, a walkover inspection of the project area revealed several areas close to the banks of the East Branch of the Sebasticook River where prehistoric people might possibly have stopped to camp. Inspection of these areas demonstrated that 20th-century disturbances caused by the mill and the municipality have reduced the probability of locating intact archaeological resources to nearly zero. No further archaeological evaluation is recommended.

Best regards,

Rick Will, Ph.D.

Cc: Scott Acone, ACE
Edward M. Hathaway
United States Environmental Protection Agency
Region 1
1 Congress Street, Suite 1100
Boston, MA 02114-2023

Project: MHPC #1388 - East Woolen Mill Superfund Site
Location: Corinna, Maine

Dear Mr. Hathaway:

Thank you for your recent correspondence (received July 6, 1999) to initiate consultation with our office on the above referenced project. Per your request, we are reviewing this project pursuant to Section 106 (revised 36 CFR Part 800 regulations) of the National Historic Preservation Act of 1966, as amended.

Based upon the proposed scope of work for this project and the project location, the Commission finds that there is insufficient information to identify historic properties within the area of potential effects. Once this information is collected and there is sufficient documentation (§ 800.11), our office will forward a response regarding the results of identification, evaluation (§ 800.4 (d)) and effect. Additional information requested is outlined below:

- There are currently no properties listed in the National Register of Historic Places within the immediate vicinity of the proposed project location. Although there are currently no listed properties within the area of potential effects, this portion of the town has not been comprehensively surveyed. Therefore, as yet unidentified aboveground properties that are eligible for nomination to the National Register of Historic Places may be located within the area of potential effects. It is my understanding that this project proposes demolition of the extant buildings at this location. Please provide reconnaissance-level photographic documentation of all buildings and structures within the area of potential effects and any historical information on the development of the property. This information is required to determine whether further intensive-level architectural survey is required.

- We are aware that Dr. Richard Will performed a walkover survey of the project area on June 15th, and that he inspected the west bank of the Sebascooook River between the mill building and the mill pond, the proposed monitoring well locations, and the dump site south of town on the east bank of the river. We accept Dr. Will's conclusion that no archaeological testing is necessary in these locations because of prior disturbance.
However, we understand that the project includes excavation of a diversion channel for the Sebasticook River. Dr. Will did not inspect the area proposed for the diversion channel. We request that Phase I archaeological testing be undertaken along the proposed diversion channel to verify the presence or absence of possible National Register eligible archaeological sites.

Please contact Dana R. Vaillancourt of my staff if you require further assistance in this matter.

Sincerely,

Earle G. Shetterworth, Jr.
State Historic Preservation Officer