

SDMS DocID

284098

Draft Remedial Investigation
Site Characterization Analysis
Old Southington Landfill
Old Turnpike Road
Southington, Connecticut
Volume III

Prepared For:

The Respondants
For the Old Southington Landfill
Administrative Order on Consent
Dated September 27, 1987

Prepared By:

Goldberg-Zoino & Associates, Inc. 204 Spring Hill Road Trumbull, Connecticut 06611

> December, 1990 File No. 50124.13

•	
-	
-	
-	
-	
•	TABLES
•	
-	
-	

TABLE 1
OLD SOUTHINGTON LANDFILL
SOUTHINGTON, CONNECTICUT

PREVIOUS WATER QUALITY DATA, MUNICIPAL WELL NO. 5 1977 - 1980

PARAMETER							DATE						
(PPB)	12/6/77	12/6/77	1/4/79	*/17/79	*/26/79	*/26/79	*/24/79	*/26/79	*/27/79	6/8/79	6/22/79	*/26/79	8/21/80
1,1,1 Trichloroethane	13	7.3	160	160	120	300	190	140	50	43	73	24	0.3
Trichloroethylene	7	4.5	37	37	28	45	32	42	38	24	28	<1.0	0.3
1,1,2,2 Tetrachloroethane			<1.0	1.2	<1.0	5.5		<1.0	<1.0	9.7		<1.0	0.2
Dichlorobromomethane			<1.0	1.0	<1.0	1.4		<1.0	<1.0	1.9	<1.0	<1.0	
Chlorodibromomethane	••		1.1	2.8	1.8	30		1.1	24	4.6	1.8	<1.0	
Bromoform			<1.0	3.6	1.7	13		<1.0	6.4	14	20	<1.0	••
Carbon tetrachloride					<1.0		<1.0	<1.0		8.9	<1.0		
Ethyl acetate AMN (sic)			••	5.2					••				
Trans 1,2 dichloroethylene		•-				6.0			• •				
Chloroform			•-			0.5	- -		~ *	4.9		•=	0.7
Methane	480	380								14	44	••	
Methylene chloride			••	••							0.1		

NOTES:

^{1.} Data taken from November 12, 1980 Warzyn Report; information regarding sampling and analytical techniques concerning this data was not available.

^{*} Month not available.

EXISTING POTENTIAL IMPACT SOURCES (per April, 1989 information) Page 1 of 2

Property	Materials Used	Storage Tanks	55 Gallon Drums	Septic System	Visible Contamination
Penn Equipment/ Precision Products	Oil, transmission fluid cutting oils, solvents, degreasers, metals	four 3000-gallon underground lube oil two 275-gallon aboveground - waste oil	- ± 50-empty ± 200 drums of oil sold each year ± 2 drums waste cutting oil	No, but roof run off to 10x8x4 foot depression	No
Paramount Industrial Products	Waste oil, solvents	Unknown	One	Unknown	Unknown
Federal, Inc.	Enamel, solvents	Unknown	One	Unknown	Unknown
Solomon Casket	None	1500 gallon underground - fuel oil	None	Yes, prior to 10/88 roof runoff to 4 drywells	No
Southington Metal Fabricating	Metals	None	±15 used for scrap storage	None	Но
Meriden Box Company	None	14000 gallon underground - gasoline 12000 gallon underground - diesel	None	Yes	No
Northeast Machine	Oils, solvents, degreasers, metals	2175 gallon above ground - waste oil	None	None	No
RV & Son Welding	Paint, paint thinners, metals	None	None	None	No
Chuck & Eddies Used Auto Parts	Gasoline, fuel oil, anti-freeze, other various lubricants and	None	Yes	Yes	Yes (current soils)

solvents, metals, acids

EXISTING POTENTIAL IMPACT SOURCES Page 2 of 2

Property	Materials Used	Storage Tanks	55 Gallon Drums	Septic System	Visible Contamination
Lori Corporation	Metals, oils, solvents, acids	None	±50 zinc and nickel powder	No	Yes (Former soil contamin- ation prior to 1980)
Brophy Metal Company	Oils, solvents, metals	1 - 350 gallon above ground cutting oil tank 1, 200 gallon above ground solvent tank	No	No	Yes (Drums, stained soils)
Keight	None	1, 1000 gallon above ground - fuel oil	No	No	No
Waterbury Centerless Grinding	Metals, solvents, oils	Unknown	At least 70	Unknown	Yes (Drums, stained soils)

Chemical and Physical Properties of Groundwater in the Quinnipiac River Basin⁽¹⁾

Abstracted from Water Resources Inventory of Connecticut, Part 8, Quinnipiac River Basin (USGS, 1979, Page 61)

(Concentrations of Chemical Constituents in Milligrams Per Liter)

	Strat	tified Drift	Type Sedimen	of Aquifer stary Bedrock ⁽⁴⁾	Crystalli	ne Bedrock ⁽⁵⁾
Constituent or Property	Median	Range	Median	Range	Median	Range
Iron (Fe)	0.06	0.01-9.10	0.80	0.02-4.30	0.11	0.04-2.80
Manganese (Mn)	.00	.00-5.90	.00	.0018	.00	.0043
Calcium (Ca)	46	6.0-180	33	1.0-1,080	26	7.5-92
Magnesium (Mg)	7.9	.9-44	4.4	.0-460	5.2	1.3-14
Sodium & Potassium (Na + K) ⁽²⁾	10	3.2-146	14	.9-3,800	12	3.5-47
Bicarbonate (HCO ₃)	108	20-525	118	16-318	70	25-201
Sulfate (SO ₄) ⁽²⁾	26	4.4-130	19	7.5-1,000	20	4.8-140
Chloride (Ci) ⁽²⁾	20	2.5-240	14	2.8-8,300	9.3	2.0-130
Nitrate (NO ₃) ⁽²⁾	12	.0-53	5.0	.0-66	2.4	.0-40
Dissolved Solids (residue on evaporation at 180°C)	218	50-965	207	64-16,800	141	84-501
Specific Conductance (micromhos at 25°C)	345	58-1,325	322	88-21,900	214	114-715
Hardness, as CaCO ₃ (Ca + Mg)	136	20-581	114	4-4,590	85	25-260
Hardness, as CaCO ₃ (noncarbonate)	44	0-244	24	0-4,480	20	0-154
рН	7.6	6.1-8.4	7.6	5.8-9.4	7.3	5.9-8.5
No. of wells sampled ⁽³⁾	1(3)			64		32

Notes:

- (1) Wells sampled 1970-71; complete analysis of each sample is in "Water Resources for Connecticut" U.S. Geol. Survey, 1971).
- (2) Upper limits recommended by the Connecticut Department of Health (Connecticut General Assembly, 1975(for drinking water: SO₄ (250 mg/l), C1 (250 mg/l), nitrate plus nitrite as N (10 mg/l), Na (20 mg/l).
- (3) Concentrations based on analyses of single samples from most wells, mean values of periodic samples from a few wells are included.
- (4) Some samples affected by salt water intrusion.
- (5) Includes igneous and metamorphic rocks.

TABLE 4
OLD SOUTHINGTON LANDFILL
SOUTHINGTON, CONNECTICUT
TABULATION OF WELL DATA
Page 1 of 5

Well Designation	Installed By	Intended Use	Drilling Method	Date of Installation	Construction Materials	Screened Interval (ft)	Average Depth To Water (ft)		Approximate Depth To Bedrock (ft)	Study
Solomon Cas	sket -	Industrial	Cable Percussion	1967	6" Dia. steel Casing	Open End ±110 feet	±28	Stratified Drift	•	Solomon Casket
Municipal Well No. 5	Layne-New England	Public Water Supply	Cable Tool	7/15/65	8" Dia. steel Casing	±49' to ±58' 105 slot	±5	Red fine to Medium SAND and GRAVEL, some Silt	63	Geraghty & Miller
TB-7S	Welti	Monitor Well	Hollow Stem Auger	4/2/90	2" PVC	5.5' to 15.5' 10 slot	6.8'	SAND & REFUSE	•	RI/FS
TW-16	General Borings	Monitor Well	Hollow Stem Auger	3/6/80	2" PVC	•	±58.5	-	-	Warzyn
TW-17	General Borings	Monitor Well	Hollow Stem Auger	2/27/80	2" PVC	-	±14.5	•	-	Warzyn
TW-18	General Borings	Monitor Well	Hollow Stem Auger	3/7/80	2" PVC	•	±13.9	-	-	Warzyn
TW-19	General Borings	Monitor Well	Hollow Stem Auger/ Rock Core	2/19/80	2" PVC	•	±7.5	-	7.5	Warzyn
TW-20	General Borings	Monitor Well	Hollow Stem Auger	2/18/80	2" PVC	-	±8	-	•	Warzyn
CW-20	Layne, New York	Observation Well	. •	1965	2%" Dia. steel	±48.5-50.5	±3.2	SAND & GRAVEL	50.5	Geraghty & Miller
CW-17	Layne, New York	Observation Well	, -	1965	2%" Dia. steel	±47-49	±8.2	SAND & GRAVEL	49	Geraghty & Miller
CV-16	Layne, New York	Observation Well	. •	1965	2ሤ" Dia. steel	±57-59	-	Red, fine SAND and CLAY	59	Geraghty & Miller
CW-15	Layne, New York	Observation Well	. •	1965	2% ^μ Dia. steel	£57.3-59.3	±5.1	Fine SAND and GRAVEL, trace Clo	59 By	Geraghty & Miller
CW-14	Layne, New York	Observation Well	. -	1965	2%" Dia. steel	±56.7-58.7	±10.3	Red SAND and GRAVEL, trace Cla	58.7 ay	Geraghty & Miller
CW-13	Layne, New York	Observation Well	•	1965	2½" Dia. steel	±53-55	±6.5	Red SAND, GRAVEL and CLAY	55	Geraghty & Miller

1 1

1 1

TABLE 4
OLD SOUTHINGTON LANDFILL
SOUTHINGTON, CONNECTICUT
TABULATION OF WELL DATA
Page 2 of 5

Well Designation	Installed By	Intended Use	Drilling Method	Date of Installation	Construction Materials	Screened Interval (ft)	Average Depth To Water (ft)	Screened Material	Approximate Depth To Bedrock (ft)	Study
B-1	East Coast Drilling, Inc.	Monitor Well (Methane)	Hollow Stem Auger	3/20/86	2" PVC	±3-8	± 5	Refuse	•	GZA (Methane)
B-2	East Coast Drilling, Inc.	Monitor Well (Methane)	Hollow Stem Auger Auger	3/20/86	2" PVC	±3-13	±9.5	Refuse	•	GZA (Methane)
B-3	East Coast Drilling,Inc.	Monitor Well (Methane)	Hollow Stem Auger Auger	3/20/86	2ª PVC	±3-23	±18	Refus e	-	GZA (Methane)
B-4	East Coast Drilling,Inc.	Monitor Well (Methane)	Hollow Stem Auger	3/20/86	2" PVC	±3-20	±20	Refuse	-	GZA (Methane)
GZ-1	General Borings	Monitor Well	Mud Rotary (Revert)	1/14/87	2" PVC	±66.5-86.5 20 slot	±58	fine to coarse SAND	89	GZA
GZ-2	General Borings	Monitor Well	Mud Rotary (Revert)	1/16/87	2" PVC	±70-90 20 slot	±57	Fine SAND	•	GZA
GZ-3	General Borings	Monitor Well	Hollow Stem Auger	1/19/87	2" PVC	±10-25 20 slot	±6	Fine to coarse SAND	•	GZA
GZ-4S	General Borings	Monitor Well	Mud Rotary (Revert)	1/30/87	2" PVC	±23-43 20 slot	±17	Fine SAND and SILT	•	GZA
GZ-4M	General Borings	Monitor Well	Mud Rotary (Revert)	1/30/87	2" PVC	±65-85 20 slot	±18	Fine Sand/ fine to coarse SAND and GRAVEL	-	GZA
GZ-40	General Borings	Monitor Well	Mud Rotary (Revert)	1/30/87	2" PVC	±110-130 20 slot	±18	BOULDERS/fine to coarse Sand, Gravel and Silt	•	GZA
GZ-5\$	Welti	Monitor Well	Hollow Stem Auger	5/17/90	2" PVC	±14-24 10 slot	±17	Fine SAND	•	RI/FS
GZ-5M	Welti	Monitor Well	Hollow Stem Auger	5/17/90	2" PVC	±52-62 10 slot	±17	Fine to coarse SAND and GRAVEL	-	RI/FS

TABLE 4
OLD SOUTHINGTON LANDFILL
SOUTHINGTON, CONNECTICUT
TABULATION OF WELL DATA
Page 3 of 5

Well Designation	Installed By	Intended Use	Drilling Method	Date of Installation	Construction Materials	Screened Interval (ft)	Average Depth To Water (ft)	Screened Material	Approximate Depth To Bedrock (ft)	Study
GZ-50	Welti	Monitor Well	Drive Casing	5/10/90	2" PVC	±117-127 10 slot	±17	Fine to medium SAND	135	R1/FS
GZ-7S	Velti	Monitor Well	Hollow Stem Auger	5/10/90	2" PVC	±4.5-14.5 10 slot	±5	GRAVEL, SAND and REFUSE	-	RI/FS
GZ-7M	Welti	Monitor Well	Hollow Stem Auger	4/27/90	2" PVC	±65.5-75.5 10 slot	±9	Fine to coarse SAND and GRAVEL	•	RI/FS
GZ-70	Welti	Monitor Well	Drive Casing	4/4/90	2" PVC	±135-145 10 slot	±8	GRAVEL	150	RI/FS
GZ-11S	Welti	Monitor Well	Hollow Stem Auger	4/25/90	2" PVC	±13-23	±5.5	Fine to medium SAND	•	RI/FS
GZ-11D	Welti	Monitor Well	Hollow Stem Auger	4/25/90	2" PVC	±50-60	±4	Fine to medium SAND	73	RI/FS
GZ-12M	Welti	Monitor Well	Hollow Stem Auger	4/11/90	2" PVC	±52-62	±11	GRAVEL and fine to coarse SAND	•	R1/FS
GZ-12D	Welti	Monitor Well	Hollow Stem Auger	4/10/90	2ª PVC	±79-89	±11	Fine to coarse SAND	96	R1/FS
GZ-13S	Welti	Monitor Well	Hollow Stem Auger	4/20/90	2" PVC	±28-38	±33	Fine to coarse SAND	•	RI/FS
GZ-13M	Welti	Monitor Well	Hollow Stem Auger	4/19/90	2" PVC	±98-108	±33	Fine to medium SAND	•	RI/FS
GZ-13DA	Welti	Monitor Well	Spin Casing	4/9/90	NO SCREEN SET	•	-	-	-	RI/FS
GZ-130	Welti	Monitor Well	Drive Casing	4/18/90	2" PVC	±162-172	±35	Fine to coarse SAND, COBBLES	176	RI/FS
GZ-14S	Welti	Monitor Well	Hollow Stem Auger	5/4/90	2" PVC	±26-36	±33	Fine to coarse SAND	-	RI/FS

1 1

8

.

•

. .

TABLE 4
OLD SOUTHINGTON LANDFILL
SOUTHINGTON, CONNECTICUT
TABULATION OF WELL DATA
Page 4 of 5

Well Designation	Installed By	Intended Use	Drilling Method	Date of Installation	Construction Materials	Screened Interval (ft)	Average Depth To Water (ft)		Approximate Depth To Bedrock (ft)	Study
GZ-14M	Welti	Monitor Well	Spin, Drive Casing	5/4/90	2" PVC	±85-95	±30	Fine SAND and SILT	•	RI/FS
GZ-140	Welti	Monitor Well	Spin Casing	5/1/90	2" PVC	±135-145	±31	Fine SAND and SILT	148	R1/FS
GZ-17M	Welti	Monitor Well	Hollow Stem Auger	4/5/90	2" PVC	±49-59	±10	Fine SAND	•	RI/FS
GZ-17D	Welti	Monitor Well	Hollow Stem Auger	4/4/90	2" PVC	±89~99	±10	Fine SAND	-	RI/FS
LW-19	GZA Drilling	Monitor Well	Hollow Stem Auger	11/16/84	2" PVC	±6-16	±9	Fine SAND/ Cobbles and Silt	•	GZA
LW-102S	GZA Drilling	Monitor Well	Hollow Stem Auger	11/7/84	2" PVC	±30-50	±30	Fine SAND	•	GZA
LW-102S	GZA Drilling	Monitor Well	Mud Rotary (Revert)	11/7/84	2" PVC	±51-81	±32	Fine SAND, some Gravel layers	•	GZA
LW-170	GZA Drilling	Monitor Well	Hollow Stem Augers/ Mud Rotary (Revert)	11/12/84	2" PVC	±40-100	±14	Fine SAND, some Gravel laye	- rs	GZA
LW-15D	GZA Drilling	Monitor Well	Hollow Stem Augers/ Mud Rotary (Revert)	11/21/84	2" PVC	±49-99	±6.4	Fine to coarse SAND	-	GZA
LW-15M	GZA Drilling	Monitor Well	Hollow Stem Augers	11/26/84	2" PVC	±29-59	±6.4	Fine to coarse SAND	-	GZA
LW-158	GZA Drilling	Monitor Well	Hollow Stem Augers	11/27/84	2" PVC	±7.5-27.5	±6.6	SILT/fine to coarse SAND	-	GZA
LW-101D	GZA Drilling	Monitor Well	Hollow Stem Augers/ Mud Rotary (Revert)	11/15/84	2" PVC	±51-101	±18	Fine to coarse SAND, some Gravel layers	-	GZA
LW-101S	GZA Drilling	Monitor Well	Hollow Stem Auger	11/8/84	2" PVC	±18-48	±17.5	Fine to coarse SAND	-	GZA
LW-1030	East Coast Drilling, Inc.	Monitor Well	Hollow Stem Auger/ Drive Casing	1/17/85	2" PVC	±60-80	±10.5	Fine to coarse SAND .	78	GZA

TABLE 4
OLD SOUTHINGTON LANDFILL
SOUTHINGTON, CONNECTICUT
TABULATION OF WELL DATA
Page 5 of 5

Well Designation	Installed By	Intended Use	Drilling Method	Date of Installation	Construction Materials	Screened Interval (ft)	Average Depth To Water (ft)	Screened Material	Approximate Depth To Bedrock (ft)	Study
LW-103M	East Coast Drilling, Inc.	Monitor Well	Hollow Stem Auger	1/17/85	1%" PVC Filter Fabric	±34.5-54.5	±10	Fine to coarse SAND	•	GZA
LW-103S	East Coast Drilling,Inc.	Monitor Well	Hollow Stem Auger	1/17/85	1½ጣ PVC Filter fabric	±6-31	±10	Fine to coarse SAND	-	GZA

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

WATER QUALITY PARAMETERS PREVIOUSLY REQUIRED BY DEP AND ANALYZED BY GZA

(2/17/87 - 5/4/87) Page 1 of 3

LIST A

Iron2-ChlorobutaneManaganese1,1-DichloroethyleneNitrites1,2-Dichloropropane

Nitrates Ethanol
Ammonia Ethyl Acetate
Chloride Ethyl Benzene
Alkalinity Formaldehyde
Conductivity - Field Heptane
Total Dissolved Solids Hexane
Hardness Methane

pH - Field Methanol
Sodium Methyl Acetate
Calcium Methyl iso-Butyl Ketone

Magnesium
Copper
Copper
Methyl Cyclohexane
Lead
Methyl Cyclopentane
Mercury
Methylene Chloride
Arsenic
Methyl Ethyl Ketone

Cadmium Nonane

Chromium Trichlorotrifluoroethane

Selenium Vinyl Acetate
Silver Meta-Xylene
Barium Orotho-Xylene
Acetone Para-Xylene
Benzene Octane
Bromochloromethane iso-Octane
Bromodichloromethane Pentane
Bromodichloromethane Propanol

Bromodichloromethane Propanol
Butane iso-Propanol
Butanol Propyl Acetate
Chloroform iso-Propyl Acetate

Cyclohexane Styrene

Dibromomethane 1,1,2,2-Tetrabromoethane 1,1,2-Dichloroethane 1,1,2-Tetrachloroethane iso-Butanol 1,1,2,2-Tetrachloroethane sec-Butanol Tetrachloroethylene

Butyl Acetate Toluene

iso-Butyl Acetate 1,1,1-Trichloroethane
Carbon Tetrachloride Trichloroethylene
Chlorobenzene 1-Chlorobutane

OLD SOUTHINGTON LANDFILL SOUTHINGTON. CONNECTICUT

WATER QUALITY PARAMETERS PREVIOUSLY REQUIRED BY DEP AND ANALYZED BY GZA (2/17/87 - 5/4/87) Page 2 of 3

LIST B

acenaphthene acrolein acrylonitrile benzidine 1,2,4-trichlorobenzene hexachlorobenzene 1,1-dichloroethane 1,1,2-trichloroethane chloroethane bis (chloromethyl) ether bis (2-chloroethyl) ether 2-chloroethyl vinyl ether (mixed) 2-chloronaphthalene 2,4,6-trichlorophenol parachlorometa cresol 2-chlorophenol 1,2,dichlorobenzene 1.3-dichlorobenzene 1,4-dichlorobenzene 3,3-dichlorobenzindine 1,2-trans-dichloroethylene 2,4-dichlorophenol 1,2-dichloropropylene (1,3-dichloropropene) 2,4-dimethylphenol 2.4-dinitrotoluene 2.6-dinitrotoluene 1,2-diphenylhydrazine fluoranthene 4-chlorophenyl phenyl ether 4-bromophenyl phenyl ether bis-(2-chloroisopropyl) ether bis (2-chloroethosy) methane methyl chloride (chloromethane) bromoform (tribromomethane) dichlorobromomethane trichlorofluoromethane dichlorodifluoromethane vinyl chloride (chloroethylene)

chlorodibromomethane hexachlordobutadiene hexachlorocyclopentadiene isophorone naphthanlene nitrobenzene 4-nitrophenol 2,4-dinitrophenol 4.6-dinitro-o-cresol N-nitrosodimethylamine N-nitrosodiphenylamine N-nitrosodi-n-propylamine pentrachlorophenol phenol bis(2-ethylhexyl) phthalate butyl benzyl phthalate di-n-butyl phthalate di-n-octyl phthalate diethyl phthalate dimethyl phthlate 1.2-benzanthracene (benzo(a) anthracene benzo(a)pyrene (3,4-benzopyrene) 3,4-benzofluoranthene (benzo(b) fluoranthene) 11,12-benzofluoranthene (benzo(k) fluoranthene) chrysene acenaphtylene anthracene 1,12-benzoperylene (benzo(ghi) perylene) fluorene phenanthrene 1,2,5,6-dibenzanthracene (dibenzo(a,h)anthracene) indeno(1,2,3-cd) pyrene (1,2-0-pyenylene pyrene) pyrene aldrin

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

WATER QUALITY PARAMETERS PREVIOUSLY REQUIRED BY DEP AND ANALYZED BY GZA (2/17/87 - 5/4/87) Page 3 of 3

LIST B (continued)

dieldrin chlordane (technical mixture) 4,4'- DDT 4'4 - DDE (p,p'-DDX) 4,4" - DDD (p,p'-TDE) alpha-endosulfan beta-endosulfan endosulfan sulfate endrin endrin aldehyde heptachlor heptachlor eposide (BHC = hexachiorocychohexane) alpha-BHC beta-BHC gamma-BHC (lindane) delta-BHC (PCB-polychlorinated biphenyls) PCB-1242 (Arochlor 1242) PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221) PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260) Toxaphene **Antimony Asbestos** Beryllium Cyanide Nickel Thallium Zinc 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) phosphate Cyanide Fluoride Sulfate **MBAS** Physical examination (odor, color, turbidity) MF total coliform

MF fecal coliform

TABLE 6

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT HISTORICAL DATA SUMMARY <u>DATA EXCEEDING MCL'S</u>¹ (1987 DATA) Page 1 of 2

PARAMETER	LOCATION	CONCENTRATION	STANDARD (MCL)	UNITS	SAMPLING ² ROUND
Barium	B-3	1640	1000	ug/l	1
Barium	B-3	1950	1000	ug/l	2
Barium	B-3	1590	1000	ug/l	3
Benzene	B-3	26	5	ug/l	1
Benzene	B-3	20	5	ug/l	2
Benzene	B-3	27	5	ug/l	3
Lead	SW-3	670	50	ug/l	1
Lead	MW-5	115	50	ug/l	3
Lead	CW-20	113	50	ug/l	3
Trichloroethylene	LW-102\$	6	5	ug/l	1
Trichloroethylene	LORI	14	5	ug/l	1
Trichloroethylene	LW-102S	9	5	ug/l	2
Trichloroethylene	LORI	18	5	ug/l	3
Trichloroethylene	LW-102S	14	5	ug/l	3
Vinyl Chloride	LORI	23	2	ug/l	1
Vinyl Chloride	GZ-4S	180	2	ug/l	1
Vinyl Chloride	B-3	7	2	ug/l	1
Vinyl Chloride	GZ-4S	130	2	ug/l	1
Vinyl Chloride	B-3	200	2	ug/l	2
Vinyl Chloride	GZ-4S	110	2	ug/l	2
Vinyl Chloride	B-3	540	2	ug/l	3
Vinyl Chloride	GZ-4S	150	2	ug/l	3

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT HISTORICAL DATA SUMMARY DATA EXCEEDING CONNECTICUT ACTION LEVELS (1987 DATA)

Page 2 of 2

PARAMETER	LOCATION	CONCENTRATION	ACTION LEVEL	UNITS	SAMPLING ROUND
Barium	B-3	1640	1000	ug/l	1
Barium	B-3	1950	1000	ug/l	2
Barium	B-3	1590	1000	ug/l	3
Benzene	B-3	26	1	ug/l	3
Benzene	B-3	20	1	ug/l	1
Benzene	B-3	27	1	ug/l	2
Benzene	LW-17D	5	1	ug/l	3
Manganese	GZ-3	7370	5000	ug/l	3
Manganese	GZ-2	5730	5000	ug/l	1
PCB-1248	MW-5	1.1	1	ug/l	1
Trichloroethylene	LORI	18	5	ug/l	3
Trichloroethylene	LORI	14	5	ug/l	1
Trichloroethylene	LW-102S	14	5	ug/l	3
Trichloroethylene	LW-102S	9	5	ug/l	2
Trichloroethylene	LW-102S	6	5	ug/l	1
Vinyl Chloride	B-3	540	2	ug/l	3
Vinyl Chloride	B-3	200	2	ug/l	2
Vinyl Chloride	GZ-4S	180	2	ug/l	1
Vinyl Chloride	GZ-4S	150	2	ug/l	3
Vinyl Chloride	GZ-4S	130	2	ug/l	1
Vinyl Chloride	GZ-4S	110	2	ug/l	2
Vinyl Chloride	LORI	23	2	ug/l	1
Vinyl Chloride	B-3	7	2	ug/l	1
Xylenes, mixed	B-3	330	100	ug/l	1
Xylenes, mixed	B-3	240	100	ug/l	3
Xylenes, mixed	B-3	130	100	ug/l	2

NOTES

- 1. Analytical data located in Appendix F.
- 2. Sample round dates: Round 1: 2/17-24/87, List A; 4/6/87, List B

Round 2: 4/20-23/87 Round 3: 5/1-4/87

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

DETECTED CONCENTRATION RANGE OF HSL METAL CONSTITUENTS (1987 DATA) (UG/L UNLESS NOTED) Page 1 of 2

PARAMETER	UPGRADIENT/ CROSS GRADIENT(1)	NORTHERN AREA ⁽²⁾	SOUTHERN AREA (3)	CENTRAL LANDFILL AREA ⁽⁴⁾	DOWNGRADIENT ⁽⁵⁾
Arsenic	ND	ND	ND	ND	ND
Barium	<100	<100-275	<100	<100-1950	<100
Calcium	27200-70600	28200-58700	11600-37600	15600-77200	1350-8400
Chromium	ND	ND	ND-13 ⁽⁶⁾	ND	ND
Copper	ND-46 ⁽⁶⁾	ND-39 ⁽⁶⁾	ND	ND	ND
Cyanide (mg/l)	ND	ND .	ND	ND-0.041	ND
Iron	ND-211	ND-21400	ND-9290	305-25400	145-2010
Lead	ND	ND-115 ⁽⁶⁾	ND ND	ND-5.9 ⁽⁶⁾	ND
Magnesium	5600-14600	5100-20000	3000-5500	4900-78000	ND-4700
Manganese	553-7370	ND - 1490	200-3230	33-4040	399-1340
Mercury	ND	ND-0.3 ⁽⁶⁾	ND ND	ND	ND
Nickel	ND ND	ND	ND ND	ND-57 ⁽⁶⁾	ND
Sodium	5500-40300	6200-13900	33700-76000	8300-82100	6700-12000
Zinc	ND	ND-40 ⁽⁶⁾	МО	ND-58	ND

NOTES:

- (1) Monitor wells GZ-1, GZ-2 and GZ-3.
- (2) Monitor wells LW-15S, LW-15M, LW-15D, LW-103S, LW-103M, LW-103D, CW-2O, Lori Production Well and Municipal Well 5.
- (3) Monitor wells LW-102S, LW-102D.
- (4) Monitor wells B-3, GZ-4S, GZ-4M, GZ-4D, TW-17 and LW-17D.
- (5) Monitor well TW-18.
- (6) Results above detection limits only found in one round of samples.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

DETECTED CONCENTRATION RANGE OF NON HSL METAL CONSTITUENTS (1987 DATA) (MG/L UNLESS NOTED) Page 2 of 2

PARAMETER	UPGRADIENT/(1) CROSS GRADIENT(1)	NORTHERN AREA ⁽²⁾	SOUTHERN AREA ⁽³⁾	CENTRAL LANDFILL AREA(4)	DOWNGRADIENT ⁽⁵⁾
Alkalinity	70-280	77-170	40-806	79-660	≤31
Ammonia	≤0.25	≤2.27	≤0.93	≤101	≤0.05
Chloride	≤32.8	≤69.6	≤94.5	≤264	≤29.7
Coliform (total) (#/ml)	Not tested	≤1	Not tested	0-29000	Not tested
Color ⁽⁷⁾	Not tested	≤1	Not tested	10-350	Not tested
Fluoride ⁽⁷⁾	Not tested	≤0.64	Not tested	≤3.55 ⁽⁶⁾	Not tested
Hardness	6.3-1210	100-288	58.6-150	76-330	48-61
MBAs(7)	Not tested	ND	Not tested	ND-0.30	Not tested
Nitrate	<0.05-4.46	<0.005-5.44	<0.005-5.29	<0.005-2.93	0.05
Nitrite	<0.005-0.037	<0.005-0.097	<0.005-0.039	<0.005-0.24	0.005
Odor ⁽⁷⁾	Not tested	<1-16	Not tested	<1-128	Not tested
₽Ħ	6.91-7.97	6.29-7.96	5.87-6.15	5.68-7.89	6.01-6.63
Specific Conductance	220-825	250-450	260-660	300-2010	115-130
Sulfate ⁽⁷⁾	Not tested	22.1-25.9	Not tested	24-63	Not tested
Total Dissolved Solids	133-439	116-283	159-347	166-727	61.4-93.2
Turbidity ⁽⁷⁾	Not tested	≤1.2	Not tested	4-1400	Not tested

NOTES:

- (1) Monitor wells GZ-1, GZ-2 and GZ-3.
- (2) Monitor wells LW-15S, LW-15M, LW-15D, LW-103S, LW-103M, LW-103D, CW-20, Lori Production Well and Municipal Well 5.
- (3) Monitor wells LW-102S, LW-102D.
- (4) Monitor wells B-3, GZ-4S, GZ-4M, GZ-4D, TW-17 and LW-17D.
- (5) Monitor well TW-18.
- (6) Results above detection limits only found in one round of samples.
- (7) Tested locations included MW-5, B-3, G2-4S and GZ-4D only.

TABLE 8

Old Southington Landfill Southington, Connecticut

ELEVATION DATA¹ Page 1 of 2

Water Level Measurement Location	Ground Elevation (ft)	Top of Casing Elevation (ft)	Top of PVC Elevation at Mark (ft)
B-1	151.0	153.28	153.22
B-2	156.4	158.52	158.46
B-3	157.9	160.00	160.01
B-4	166.1	167.99	167.92
CW-15	145.7	147/59	No PVC
CW-20	142.8	144.80	No PVC
GZ-1	208.9	209.02	208.58
GZ-2	204.2	204.20	204.08
GZ-3	155.2	155.21	154.91
GZ-4S	161.5	161.56	161.50
GZ-4M	161.9	161.99	161.26
GZ-4D	162.0	162.05	162.54
GZ-5S	162.9	165.20	165.01
GZ-5M	162.9	165.04	164.72
GZ-5D	162.6	164.61	164.50
GZ-7S	155.9	157.64	157.50
GZ-7M	155.9	157.66	157.57
GZ-7D	155.9	157.84	157.58
GZ-11S	148.6	150.90	150.69
GZ-11D	148.1	149.77	149.67
GZ-12M	156.3	158.10	157.79
GZ-12D	156.4	158.58	158.25
GZ-13S	179.4	181.62	181.35
GZ-13M	179.6	182.13	181.92

Old Southington Landfill Southington, Connecticut

ELEVATION DATA¹ Page 2 of 2

Water Level Measurement Location	Ground Elevation (ft)	Top of Casing Elevation (ft)	Top of PVC Elevation at Mark (ft)
GZ-13D	180.2	182.46	182.32
GZ-14S	176.6	178.42	178.92
GZ-14M	176.3	178.21	178.11
GZ-14D	176.3	177.99	177.90
GZ-17M	155.2	157.49	157.13
GZ-17D	155.3	158/75	158/25
LW-15S	149.7	149.62	149.59
LW-15M	149.6	149.52	549.45
L2-15D	149.7	146.60	149.48
L2-17D	155.5	157.82	158.04
LW-103\$	150.7	152.70	153.42
LW-103M	150.7	152.70	152.80
LW-103D	150.9	153.31	153.24
TB-7\$	159.6	161.65	161.56
TW-17	155.3	156.30	156.00
TW-18	156.3	158.70	158.53
WP-1	147.2	No Casing	151.59
WP-2	NM	No Casing	149.95
WP-3	146.7	No Casing	148.57
WP-4	148.6	No Casing	150.67
WP-5	NM	No Casing	147.50
SW-1	NA	144.75	NA
SW-2	NA	147.68	NA
SW-6	NA	147.21	NA

NOTES:

1. Elevation data recorded in feet above mean sea level.

NA Not Applicable NM Not Measured

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

AMBIENT AIR QUALITY MONITORING; PART 1 Page 1 of 7

Date	Station Number	PID (ppm)	Temperature (F)	Barometric Pressure (Inches of Hg)	Wind Direction	Maximum Wind Speed (mph)
11/16/88	1	0.3	53	30.18	None	0
	2	0.3	54	30.17	None	0
	3	0.3	54	30.18	None	0
	4	0.2	54	30.19	None	0
	5	0.2	55	30.18	None	0
11/30/88	1	0.4	52	29.81	W-SW	3
	2	0.3	50	29.68	s-sw	6
	3	0.2	49	29.68	S-SW	2
	4	0.3	47	29.67	S-SW	10
	5	0.2	48	29.67	SW	7
12/15/88	1	0.3	39	29.56	W-SW	4
	2	0.3	40	29.56	W	6
	3	0.2	39	29.58	W	3
	4	0.2	44	29.58	s-sw	4
	5	0.4	39	29.59	W-SW	8
1/4/89	1	ND	10	29.27	N-NW	3
	2	ND	5	29.25	None	0
	3	ND	3	29.24	None	0
	4	ND	8	29.33	N	7
	5	ND	3	29.26	None	0
1/16/89	1	0.2	36	29.76	NW	4
	2	0.2	35	29.80	W-NW	6
	3	0.3	37	29.80	None .	0
	4	0.2	38	29.79	None	0
	5	0.2	36	29.78	NW	4
2/1/89	1	0.2	47	29.58		0
	2	0.2	57	29.57	S-SW	2
	3	0.2	52	29.58	None .	0
	4	0.2	54	29.58	SW	3
	5	0.3	55	29.55	S-SE	1
2/15/89	1	1.0	36	30.03	None	0
	2	0.3	36	29.92	N-NW	2
	3	2.0	35	30.01	None	0
	4	1.0	36	30.01	N-NE	1
	5	0.5	36	29.97	N-NW	1

Note

- 1) 10.2 eV lamp portable HNu Model PI-101 or Photovac Tip II (10.6 eV lamp) photoionization detector to measure volatile organic compounds in the air,
- 2) Peet Brothers Ulitmeter to measure temperature, barometric pressure, wind direction, and wind speed. PID readings represent detected meter response. Listed data between ND and 1.0 ppm is considered to represent meter variability and reflects daily background data.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

AMBIENT AIR QUALITY MONITORING; PART 1 Page 2 of 7

Date	Station Number	PID (ppm)	Temperature (F)	Barometric Pressure (Inches of Hg)	Wind Direction	Maximum Wind Speed (mph)
2/28/89	1	0.6	38	29.90	None	0
	2	0.6	34	29.85	NW	2
	3	0.6	34	29.85	NU	2
	4	0.6	33	29.84	NE	3
	5	0.4	36	29.84	N₩	1
3/15/89	1	0.8	45	29.58	E	2
	2	1.1	45	29.54	S-SE	5
	3	0.7	45	29.53	S-SE	4
	4	0.8	45	29.51	s	6
	5	0.6	46	29.50	SE	10
3/31/89	1	0.2	35	29.16	None	0
	2	0.2	33	29.16	NW-NE	5
	3	0.2	34	29.14	NE	5
	4	0.2	35	29.16	NE	1
	5	0.2	33	29.16	NE	8
4/14/89	1	0.2	48	30.07	None	0
	2	0.2	49	30.08	NW	10
	3	0.2	54	30.08	None	0
	4	0.2	52	30.09	SW	3
	5	0.2	51	30.02	W- NW	3
4/27/89	1	0.8	58	29.69	SW	3
	2	0.8	59	29.68	N-NW	3
	3	0.6	56	29.71	N	5
	4	0.6	59	29.69	N	3
	5	0.6	59	29.68	WW	4
5/17/89	1	0.2	70	29.84	N	10
	2	0.2	69	29.79	N	11
	3	0.2	70	29.84	NE	5
	4	0.2	71	29.84	N-NE	7
	5	0.2	78	29.84	NE	6
6/2/89	1	ND	86	29.75	SE	4
	2	ND	87	29.75	s	4
	3	ND	88	29.75	None	0
	4	ND	90	29 .7 5	SW	6
	5	ND	86	29.74	s	7

<u>Note</u>

- 1) 10.2 eV lamp portable HNu Model PI-101 or Photovac Tip II (10.6 eV lamp) photoionization detector to measure volatile organic compounds in the air,
- 2) Peet Brothers Ulitmeter to measure temperature, barometric pressure, wind direction, and wind speed. PID readings represent detected meter response. Listed data between ND and 1.0 ppm is considered to represent meter variability and reflects daily background data.

AMBIENT AIR QUALITY MONITORING; PART 1 Page 3 of 7

Date	Station Number	PID (ppm)	Temperature (F)	Barometric Pressure (Inches of Hg)	Wind Direction	Maximum Wind Speed (mph)
6/15/89	1	ND	55	29.84	NONE	0
	2	ND	54	29.84	NONE	0
	3	ND	55	29.86	N	3
	4	ND	54	29.84	N	6
	5	ND	56	29.85	NE	1
7/6/89	1	ND	77	29.94	NONE	0
	2	ND	75	29.92	N-NE	4
	3	ND	77	29.96	N	2
	4	ND	78	29.92	N	2
	5	ND	78	29.93	N	1
7/14/89	1	NT	79	29.58	NE	2
	2	NT	87	29.58	NONE	0
	3	NT	88	29.62	N-NE	3
	4	NT	89	29.64	NONE	0
	5	NT	96	29.63	NE	5
8/18/89	1	ND	70	29.42	N-NE	2
	2	ND	72	29.41	N	1
	3	ND	66	29.43	NE	2
	4	ND	68	29.41	N	7
	5	ND	75	29.38	E	6
8/31/89	1	NT	78	29.88	N₩	4
	2	NT	78	29.84	NW	11
	3	NT	80	29.85	W-NW	7
	4	NT	80	29.84	N-NW	5
	5	NT	78	29.88	N-NE	4
9/15/89	1	ND	67	29.93	N-NW	1
	2	ND	66	29.93	N-NW	2
	3	ND	66	29.93	N	4
	4	ND	67	29.94	N-NE	2
	5	ND	66	29.92	N-NE	5
9/29/89	1	NA	67	30.01	W-SW	5
	2	NA	70	29.95	SW	3
	3	NA	70	29.99	W-SW	4
	4	NA	68	29.99	W-SW	5
	5	NA	75	30.00	SW	7

<u>Note</u>

- 1) 10.2 eV lamp portable HNu Model PI-101 or Photovac Tip II (10.6 eV lamp) photoionization detector to measure volatile organic compounds in the air,
- 2) Peet Brothers Ulitmeter to measure temperature, barometric pressure, wind direction, and wind speed. PID readings represent detected meter response. Listed data between ND and 1.0 ppm is considered to represent meter variability and reflects daily background data.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

AMBIENT AIR QUALITY MONITORING; PART 1 Page 4 of 7

Date	Station Number	PID (ppm)	Temperature (F)	Barometric Pressure (Inches of Hg)	Wind Direction	Maximum Wind Speed (mph)
10/16/89	1	NA	56	29.41	E-NE	2
	2	NA	54	29.36	N-NE	2
	3	NA	56	29.42	E-NE	1
	4	НA	55	29.43	N-NE	4
	5	NA	59	29.39	E-NE	2
10/31/89	1	ND	64	30.01	None	0
	2	ND	66	29.96	None	0
	3	ND	65	30.00	None	0
	4	ND	64	29.99	None	0
	5	ND	64	29.98	None	0
11/17/89	1	ND	48	29.27		0
	2	ND	47	29.25		0
	3	0.4	51	29.31		0
	4	0.2	49	29.29	N-NE	1
	5	0.3	53	29.33		0
11/30/89	1	0.6	37	29.67	E-NE	5
	2	0.5	38	29.62	N-NE	3
	3	0.8	38	29.65	E-NE	2
	4	0.8	38	29.64	E-NE	2
	5	0.3	39	29.60	E-NE	5
12/15/89	1	0.3	26	29.93	** **	0
	2	0.4	28	29.91		0
	3	0.5	29	29.92	=	0
	4	0.3	30	29.93		0
	5	0.4	27	29.93	••	0
12/29/89	1	ND	24	30.27		0
	2	ND	22	30.24	S-SE	1
	3	ND	21	30.26	S-SE	1
	4	ND	22	30.24	S-SE	1
	5	ND	22	30.26	S-SE	1
1/15/90	1	0.4	37	30.10		0
	2	0.4	36	30.09	••	0
	3	0.3	36	30.10		0
	4	0.3	36	30.12		0
	5	0.4	36	30.10		0

<u>Note</u>

- 1) 10.2 eV lamp portable HNu Model PI-101 or Photovac Tip II (10.6 eV lamp) photoionization detector to measure volatile organic compounds in the air,
- 2) Peet Brothers Ulitmeter to measure temperature, barometric pressure, wind direction, and wind speed. PID readings represent detected meter response. Listed data between ND and 1.0 ppm is considered to represent meter variability and reflects daily background data.

AMBIENT AIR QUALITY MONITORING; PART 1 Page 5 of 7

Date	Station Number	PID (ppm)	Temperature (F)	Barometric Pressure (Inches of Hg)	Wind Direction	Maximum Wind Speed (mph)
2/2/90	1	0.4	47	29.72		0
	2	0.3	46	29.68		0
	3	0.4	48	29.71		0
	4	0.4	46	29.70		0
	5	0.2	45	29.70	••	0
2/15/90	1	ND	30	30.27		0
	2	ND	30	30.20	N-NE	1
	3	ND	30	30.16	E-NE	1
	4	ND	30	30.17	N-NE	2
	5	ND	32	30.18	N-NW	2
3/1/90	1	ND	40	30.27	E-NE	6
	2	0.6	38	30.19	E-NE	5
	3	ND	39	30.19	E-NE	5
	4	0.4	38	30.18	Ε	3
	5	0.3	42	30.20	E-NE	3
3/15/90	1	ND	70	29.92	N-NW	3
	2	ND	73	29.93	N-NW	5
	3	ND	72	29.93	N-NW	2
	4	ND	70	29.94	N-NW	5
	5	ND	74	29.93	N-NW	6
4/2/90	1	1.2	46	29.89		0
	2	0.3	45	29.84	N-NE	1
	3	0.4	46	29.85		0
	4	0.3	45	29.87	N-NE	3
	5	0.3	49	29.84	N	4
4/17/90	1	0.6	56	29.57	N-NE	3
	2	0.4	59	29.51	N-NE	1
	3	0.4	61	29.52		0
	4	0.3	60	29.52	N-NE	4
	5	0.3	61	29.51	N-NE	3
5/1/90	1	ND	75	29.67	s-sw	2
	2	ND	77	29.67	W-SW	4
	3	ND	79	29.67	S-SE	3
	4	ND	81	29.67	W-SW	2
	5	ND	81	29.67	W-SW	3

<u>Note</u>

- 1) 10.2 eV lamp portable HNu Model PI-101 or Photovac Tip II (10.6 eV lamp) photoionization detector to measure volatile organic compounds in the air,
- 2) Peet Brothers Ulitmeter to measure temperature, barometric pressure, wind direction, and wind speed.
 PID readings represent detected meter response. Listed data between ND and 1.0 ppm is considered to represent meter variability and reflects daily background data.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

AMBIENT AIR QUALITY MONITORING; PART 1 Page 6 of 7

Date	Station Number	PID (ppm)	Temperature (f)	Barometric Pressure (Inches of Hg)	Wind Direction	Maximum Wind Speed (mph)
5/15/90	1	0.8	74	30.21	N-NE	4
	2	0.6	75	30.18	N-NE	3
	3	0.5	77	30.23	N-NE	4
	4	0.6	78	30.23	N-NE	5
	5	0.5	77	30.19	N-NE	8
6/1/90	1	0.3	81	30.08	S₩	3
	2	0.2	90	30.09	ич	4
	3	0.2	89	30.10	W-NW	4
	4	0.3	80	30.10	W-SW	7
	5	0.3	91	30.10	s-sw	6
6/15/90	1	1.3	86	29.86	s-sw	1
	2	1.6	79	29.89	S-NE	4
	3	1.4	84	29.90		0
	4	1.2	84	29.86	N-NE	3
	5	1.3	86	29.84	SE	3
7/2/90	1	1.0	80	29.75	••	
	2	0.9	76	29.74	N	2
	3	0.8	75	29.76	NE	0-2
	4	0.8	<i>7</i> 5	29.76	NE	0-3
	5	0.7	73	29.44	NE	0-2
7/16/90	1	0.8	99	30.01	u	2-6
	2	0.7	96	30.01	W-NW	4-8
	3	0.6	100	30.01	NW-SW	2-6
	4	0.6	102	29.95	SW	2-3
	5	0.6	100	29.97	WSW-NW	2-4
8/1/90	1	0.5	84	29.84	NE	0-1
	2	0.6	84	29.78	N-NW	4-8
	3	0.6	82	29.82	W-NW	3-8
	4	0.6	84	29.84	N-NW	3-5
	5	0.6	87	29.84	NW	2-3
8/15/90	1	1.3	77	29.92	sw	2-3
	2	1.2	84	29.91	W	2-3
	3	1.2	84	29.94	W	4-5
	4	1.2	82	29.95	••	0
	5	1.2	86	29.93	u	2-4

<u>Note</u>

- 1) 10.2 eV lamp portable HNu Model PI-101 or Photovac Tip II (10.6 eV lamp) photoionization detector to measure volatile organic compounds in the air,
- 2) Peet Brothers Ulitmeter to measure temperature, barometric pressure, wind direction, and wind speed. PID readings represent detected meter response. Listed data between ND and 1.0 ppm is considered to represent meter variability and reflects daily background data.

TABLE 9

AMBIENT AIR QUALITY MONITORING; PART 1 Page 7 of 7

Date	Station Number	PID (ppm)	Temperature (F)	Barometric Pressure (Inches of Hg)	Wind Direction	Maximum Wind Speed (mph)
8/31/90	1	0.4	93	30.09	N-NE	0
	2	0.2	88	30.09	E-SE	3
	3	0.2	87	30.09	E-NE	3
	4	0.3	88	30.09	E-NE	3
	5	0.2	87	30.09	E-NE	4
9/17/90	1	0.5	64	29.92	S-SE	5
	2	0.6	51	29.88	S-SE	11
	3	0.4	53	29.89	S-SE	3
	4	0.5	54	29.89	S-SE	4
	5	0.3	53	29.87	S-SE	6

Note

- 1) 10.2 eV lamp portable HNu Model PI-101 or Photovac Tip II (10.6 eV lamp) photoionization detector to measure volatile organic compounds in the air,
- 2) Peet Brothers Ulitmeter to measure temperature, barometric pressure, wind direction, and wind speed. PID readings represent detected meter response. Listed data between ND and 1.0 ppm is considered to represent meter variability and reflects daily background data.

Table 10 Old Southington Landfill Southington, Ct

MONTHLY PRECIPITATION DATA

SHUTTLE MEADOW RESERVOIR, CT

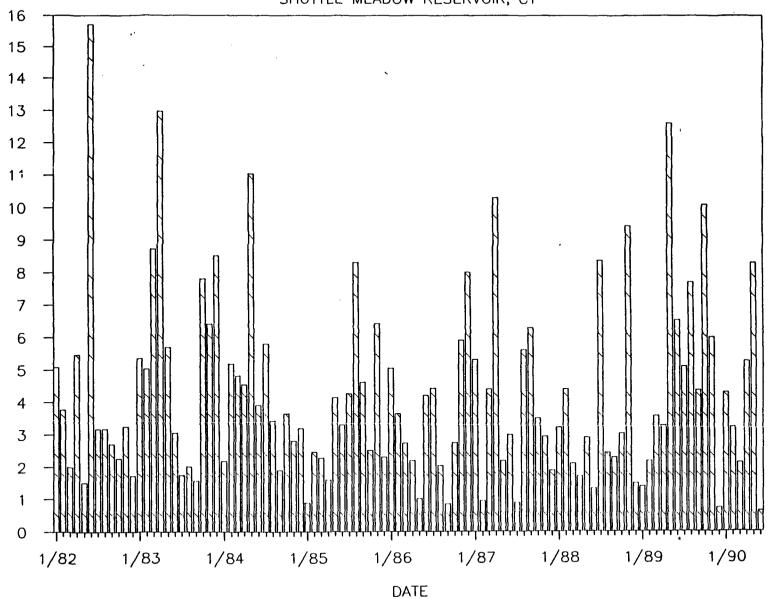


TABLE 11

SITE WALKTHROUGH SUMMARY OF RESULTS Page 1 of 5

				CGI ⁽²⁾
•	LOCATION	<u>PID⁽¹⁾</u>	%LEL	%OXYGEN
	AM-1	1.0	0	21
	AM-2	0.8	0	21
	AM-3	2.8	0	21
	AM-4	2.2	0	21
	AM-5	2.4	0	21
•	AM-6	1.2 2.2	0	21 21
	AM-7 AM-8	2.2 1.6	0 0	21
	AM-9	1.4	0	21
-	AM-10	0.4	0	21
	AM-11	2.4	Ö	21
	AM-12	ND	Ö	21
-	AM-13	ND	Ö	21
_	AM-14	2.4	0	21
	AM-15	1.8	0	21
<u> </u>	AM-16	1.0	0	21
•	AM-17	1.0	0	21
	AM-18	0.2	0	21
	AM-19	1.0	0	21
	AM-20	0.6	0	21
	AM-21	0.8	0	21
	AM-22	0.2	0	21
	AM-23	0.4	0	21
	AM-24	0.4	0	21
	AM-25	NE	0	21
_	AM-26	0.6	0	21
_	AM-27	0.6	0	21
	AM-28	1.2	0	21
	AM-29 AM-30	ND	0 0	21 21
	AM-31	0.2 0.1	0	21
	AM-32	0.6	0	21
	AM-33	0.4	0	21
	AM-34	0.6	0	21
	AM-35	1.4	Ö	21
	AM-36	0.4	Ö	21
	AM-37	ND	Ö	21
	AM-38	ND	Ö	21
	AM-39	0.4	Ö	21
=	AM-40	0.2	0	21
_	AM-41	0.2	Ō	21
	AM-42	ND	0	21
	AM-43	ND	0	21
	AM-44	1.4	0	21

TABLE 11

SITE WALKTHROUGH SUMMARY OF RESULTS Page 2 of 5

			CGI ⁽²⁾	
<u>LO</u>	CATION	PID ⁽¹⁾	%LEL	%OXYGEN
	AM-45	1.2	0	21
	AM-46	0.4	0	21
-	AM-47	0.4	0	21
	AM-48	1.2	0	21
	AM-49	1.4	0	21
	AM-50	1.0	0	21
	AM-51	1.0	0	21
	AM-52	0.2	0	21
-	AM-53	1.0	0	21
	AM-54	ND	0	21
	AM-55	0.4	0	21
	AM-56	0.6	0	21
-	AM-57	0.8	0	21
	AM-59	1.2	0	21
	AM-60	1.0	0	21
-	AM-61	ND	0	21
	AM-62	ND	0	21
	AM-63	ND	0	21
	AM-64	ND	0	21
_	AM-65	0.2	0	21
	AM-66	1.0	0	21
	AM-67	0.8	0	21
	AM-68	1.0	0	21
	AM-69	0.4	0	21
	AM-70	0.6	0	21
	AM-71	0.4	0	21
	AM-72	0.8	0	21
	AM-73	1.0	0	21
	AM-74	1.0	0	21
_	AM-75	1.4	0	21
	AM-76	0.7	0	21
	AM-77	1.6	0	21
	AM-78	1.3	0	21
	AM-79	1.6	0	21
	AM-80	0.9	0	21
	AM-81	0.7	0	21
_	AM-82	2.2	0	21
	AM-83	0.9	0	21
	AM-84	1.0	0	21
-	AM-85	0.4	0	21
	AM-86	0.4	0	21
	AM-87	ND	0	21
	AM-88	0.2	0	21
	AM-89	1.0	0	21
	AM-090	ND	0	21

TABLE 11

SITE WALKTHROUGH SUMMARY OF RESULTS Page 3 of 5

			CGI ⁽²	2)
•	<u>LOCATION</u>	<u>PID⁽¹⁾</u>	%LEL	%OXYGEN
	AM-91	2.6	0	21
-	AM-92	2.8	0	21
_	AM-93	0.8	0	21
	AM-94	3.4	0	21
	AM-95	ND	0	21
	AM-96	ND	0	21
	AM-97	ND	0	21
	AM-98	0.4	0	21
-	AM-99	ND	0	21
	AM-100	ND	0	21
	AM-101	0.8	0	21
_	AM-102	3.2	0	21
	AM-103	1.0	0	21
	AM-104	0.2	0	21
	AM-105	0.6	0	21
•	AM-106	2.6	0	21
	AM-107	1.0	0	21
	AM-108	ND	0	21
-	AM-109	1.6	0	21
_	AM-110	1.0	0	21
	AM-111	1.4	0	21
	AM-112	0.6	0	21
•	AM-113	ND	0	21
	AM-114	ND	10	21
	AM-115	2.6	0	21
•	AM-116	3.0	0	21
	AM-118	0.6	0	21
	AM-119	0.2	0	21
_	AM-120	3.5	0	21
_	AM-121	ND	0	21
	AM-122	1.4	0	21
	AM-123	0.4	0	21
#	AM-124	0.2	0	21
	AM-125	0.2	0	21
	AM-126	ND	0	21
-	AM-127	ND	0	21
_	AM-128	ND	0	21
	AM-129	ND	0	21
***	AM-130	ND	0	21
-	AM-131	0.5	0	21
	AM-132	2.2	0	21
	AM-133	3.2	0	21
	AM-134	ND	0	21
	AM-135	ND	0	21

TABLE 11

SITE WALKTHROUGH SUMMARY OF RESULTS Page 4 of 5

			CGI ⁽²⁾
LOCATION	PID ⁽¹⁾	%LEI	%OXYGEN
AM-136	ND	0	21
AM-137	1.2	0	21
AM-138	3.0	0	21
AM-139	ND	0	21
AM-140	0.6	0	21
■ AM-141	ND	0	21
AM-142	0.6	0	21
AM-143	0.8	0	21
AM-144	ND	0	21
AM-145	1.4	0	21
AM-146	ND	0	21
AM-147	0.4	0	21
AM-148	0.4	0	21
AM-149	8.0	0	21
AM-150	ND	0	21
AM-151	ND	0	21
AM-152	3.6	0	21
AM-153	1.8	0	21
AM-154	ND	0	21
AM-155	ND	0	12
AM-156	0.4	0	21
AM-157	ND	0	21
■ AM-158	0.2	0	21
AM-159	ND	0	21
AM-160	2.2	0	21
AM-163	1.8	0	21
AM-164	0.6	0	21
AM-165	2.2	0	21
AM-166	ND	0	21
AM-167	ND	0	21
AM-168	2.8	0	21
AM-169	2.4	0	21
AM-170	2.0	0	21
AM-171	1.8	0	21
AM-172	1.0	0	21
AM-173	0.4	0	21
AM-174	0.4	0	21
AM-175	1.4	0	21
AM-176	2.4	0	21
AM-177	1.2	0	21
AM-178	ND	0	21
AM-179	ND	0	21
AM-180	0.4	0	21
AM-181	ND	0	21

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SITE WALKTHROUGH SUMMARY OF RESULTS Page 5 of 5

	44	CGI ⁽²)
LOCATION	<u>PID⁽¹⁾</u>	%LEL	%OXYGEN
AM-182	3.1	0	21
AM-183	1.2	0	21
AM-184	ND	0	21
AM-185	ND	0	21
AM-186	ND	0	21
AM-187	0.6	0	21
AM-188	2.2	0	21
AM-189	0.3	0	21
AM-190	ND	0	21
AM-191	0.2	0	21
AM-192	1.4	0	21
AM-193	ND	0	21
AM-194	1.8	0	21
AM-195	ND	0	21
AM-196	2.6	0	21
AM-197	1.2	0	21
AM-198	0.2	0	21
AM-199	0.2	0	21
AM-200	0.4	0	21
AM-201	0.4	0	21
AM-202	0.2	0	21
AM-203	2.0	0	21
AM-204	2.4	0	21
AM-205	2.4	0	21
AM-206	3.2	0	21
AM-207	1.2	0	21
AM-208	2.4	0	21
AM-209	1.2	0	21
AM-210	2.6	0	21
AM-212	ND	0	21
AM-213	ND	0	21
AM-214	2.0	0	21
AM-215	ND	0	21
AM-216	1.6	0	21
AM-217	0.4	0	21
AM-218	0.4	0 .	21
AM-219	0.4	0	21
AM-220	0.8	0	21
AM-221	3.6	0	21

NOTES:

- 1) PID readings obtained with HNu Model PI 101 Photoionization Detector equipped with 11.7 eV light source.
- 2) CGI readings obtained with MSA Model 260 combustible gas indicator.
- ND = None Detected.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SOIL GAS SURVEY FIELD SCREENING RESULTS ABOVE NONE DETECTED PID RESULTS

PROBE LOCATION	PID READING (1)
SG-1	4.8
SG-1A (Duplicate)	1.2
SG-2	1.2
SG-14	1.6
SG-23	0.6
SG-31	5.2
SG-35	5.0
SG-36	5.6
SG-38	3.6
SG-39	2.0
SG-43	0.2
SG-45	0.6
SG-57	5.0
SG-62	2.0
SG-63	3.0
SG-64	4.5
SG-65	2.0
SG-66	4.0
SG-67	1.5
SG-68	1.2
SG-69	15.0
SG-69A (Replicate)	50.0
SG-69C (Replicate)	25.0
SG-69.25	5.0
SG-69.50	20.0
SG-70	50.0
SG-71	5.0
SG-72	1.0
SG-74	10.0
SG-75	2.0
SG-76	2.0
SG-78	8.0

⁽¹⁾ Readings obtained with a 11.7 ev lamp HNu model PI 101 Photoionization Detector and are reported in parts per million referenced to a benzene standard. Remaining points recorded none detected readings.

TABLE 13 OLD SOUTHINGTON LANDFILL

SOIL GAS SURVEY SUMMARY OF DETECTED COMPOUNDS RESULTS REPORTED IN UG/L OF SOIL GAS IN AIR

COMPOUND

LOCATION

	SG-1	SG-1A Duplicate	SG-1B Replicate	SG-1C Replicate	SG-3	SG-3B Duplicate	SG-4	SG-5	\$G-6	SG-9	SG-11	Minimum Detection Limits Ug/Liter
BENZENE	1.3	1,1	0.09 ⁽¹⁾ 0.36 ⁽¹⁾ 0.13 ⁽¹⁾	0.47	0.81	0.22 ⁽¹⁾	5.6	0.3 ⁽¹⁾	0.72	0.50	ND	0.5
TOLUENE	2.0	3.3	0.36(1)		1 7	0.59	0.52	ND	0.96	1.8	ND	0.5
ETHYL BENZENE	5.1	2.0	0.13(1)	0.50 1.2 ⁽¹⁾	0.44(1) 0.22(1) 0.45(1)	0.68	4.0	0.19 ⁽¹⁾ 1.9 ⁽¹⁾	ND	ND	ND	2
M.P XYLENE	23	6.8	ND	2.3	0.22(1)	0.14(1) 1.3 ⁽¹⁾	11	1.9(1)	ND	ND	ND	2
O-XYLENE	7.9	2.3	0.54(1)	3.5	0.45(1)	1.3 ⁽¹⁾	0.75	2.1	ND	ND	ND	2
TRICHLOROETHENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9(1) 3.3 ⁽¹⁾	Ī
1,1,1-TRICHLOROETHANE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.3 ⁽¹⁾	50
TRANS 1,2-DICHLOROETHYLENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
TETRACHLOROETHENE	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2
TOTAL COMPOUNDS	39.3	15.5	1.12 ⁽¹⁾	7.97	3.62	2.93	21.87	4.49	1.68	2.3	4.2(1)	•••

	SG-18	SG-18A Duplicat	\$G-20 e	SG-27	SG-34	SG-68	SG-68.5	SG-69	SG-69A	SG-69B Replicate	SG-69C Replicate	SG-70 Replicat	SG-7	71 SG-78
BENZENE	ND	ND	ND	12	0.08(1)	ND	6.1	2.4	7.8	3.3	1.8	0.2 ⁽¹⁾	ND	ND
TOLUENE	ND	ND	ND	640	0.13(1)	ND	4.8	6.9	210	310	230	43	0.47	4.1
ETHYL BENZENE	ND	ND	ND	ND	ND	ND	64	35	340	220	160	30	0.9	2.2
M,P XYLENE	ND	ND	ND	16	ND	ND	20	38	190	180	160	29	0.58	2.4
O-XYLENE	ND	ND	ND	16	ND	ND	21	5.1	45	70	66	9.5	0.19	3.6
TRICHLOROETHENE	0.1(1)	0.09(1)	0.05(1)	210	ND	0.1(1)	ND	5.1 0.8(1)	ND	ND	ND	ND	ND	ND
1,1,1-TRICHLOROETHANE	ND	ND	ND	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TRANS 1,2-DICHLOROETHYLENE	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TETRACHLOROETHENE	ND ,	ND	ND	ND	ND	0.34(1)	ND	ND 1.9 ⁽¹⁾	ND	ND	ND	ND	ND	ND
TOTAL COMPOUNDS	0.1(1)	0.09(1)	0.51(1)	1,054	0.21(1)	0.44(1)	115.9	90.1	792.8	83.3	617.8	111.7	2.14	12.3

NOTES:

ND = Not Detected above detection limits

^{(1) =} Trace, just below detection limit; the identification and quantification are less certain
Soil gas samples were screened on a Photovac 10,10 Gas Chromoatograph equipped with a heated oven and with a CPSIL-5 capillary column.

WETLANDS ASSESSMENT pH AND SPECIFIC CONDUCTANCE DATA⁽¹⁾

Sample ⁽²⁾	<u>pH⁽³⁾</u>	Specific Conductance ⁽⁴⁾ (umhos/cm)
WAS-1	7.2	400
WAS-2	6.7	230
WAS-3	7.4	250
WAS-4	7.4	220
WAS-5	8.2	210
WAS-6	7.8	235
WAS-7	7.6	185
WAS-8	7.2	90
WAS-9	7.1	100
WAS-10	7.1	100
WAS-11	6.8	350
WAS-12	6.8	240
WAS-13	6.9	240
WAS-14	7.1	210
WAS-15	7.1	130
WAS-16	7.1	215
WAS-17	7.2	240
WAS-18	7.1	245
WAS-19	6.9	285
WAS-20	7.3	280
WAS-21	7.3	280
WAS-22	7.2	280
WAS-23	7.2	255
WAS-24	7.2	255
WAS-25	7.2	250
WAS-26	7.3	245
WAS-27	7.4	230
WAS-28	7.4	245
WAS-29	7.1	245
WAS-30	7.3	240
WAS-31	7.2	240
WAS-32	7.2	240
WAS-33	7.2	265
WAS-34	7.3	270
WAS-35	7.3	265
WAS-36	7.1	250
WAS-37	6.7	700
WAS-38	6.6	900
WAS-39	6.9	500

Notes:

- (1) Samples WAS-1 through WAS-14 obtained on April 10, 1989; samples WAS-15 through WAS-38 obtained on April 11, 1989; sample WAS-39 obtained on April 14, 1989.
- (2) WAS = Wetlands Assessment Samples
- (3) pH measurements made with a Beckman \$21 pH meter.
- (4) Specific conductance measure taken using a YSI S-C-T meter.

Old Southington Landfill Southington, Connecticut

SOIL SAMPLE SUMMARY MATRIX JANUARY 1990 BORINGS Page 1 of 2

Boring No.	Sample Depth (ft) (and condition)	GZA Sample ID No.	Net Atlantic Sample ID No.	Analysis
TB2	5-7 (U) ¹	TB2A5	900135301	VOC, metals, CN
ТВЗ	7-9 (U) ¹	TB3A7	900135302	VOC, metals, CN
TB-4	5-7 (U) ¹	TB4A5	900135309	BTU
TB-4	7-9 (U) ¹	TB4B7	900135308\$	CN
TB4	9-11 (U) ¹	TB4C9	900135306A	voc
TB-4	11-13 (U) ¹	TB4D11	9001353068	metals, pH
TB-4	11-13 (U) ¹	TB34A11 (duplicate of TB4D11)	900135311	VOC,metals
TB-6	10-12 (U) ¹	TB6A10	900136801S	metals, CN
TB-6	12-14 (U) ¹	TB6B12	900136801	VOC, ABN, PCB Pest, BTU, pH
TB-7SA	15-17 (S) ²	TB7SAA15	900138907A	voc
TB7SA	15-24 (S) ² composite	TB7SAB15	900138901	metals, CN, ABN, PCB, Pest
TB7SA	30-32 (S) ²	TB7SAC30	900138913	BTU, pH
TB8	10-12 (S) ²	TB8A10	900135305	VOC, metals, CN, ABN, PCB, Pest
TB10	15-17 (S) ²	TB10A15	900138914	BTU, pH
TB10	20-22 (S) ²	TB10B20	900138905	voc
TB10	22-27 (S) ² composite	TB10C22	900138902	metals, CN, ABN, PCB, Pest
TB10	15-17 (S) ²	TB40A15 (duplicate of TB10A15)	900138915	ВТО, рН
TB10	20-22 (S) ²	TB40B20 (duplicate of TB10B20)	900138906	voc
TB10	22-27 (S) ² composite	TB40C22 (duplicate of TB10C22)	900138903	metals, CN, ABN, PCB Pest
TB11	5-7 (U) ¹	TB11A5	900135304	VOC, metals, CN, ABN, PCB, Pest
TB12	5-7 (U/S) ³	TB12A5	900135303A	VOC, metals
TB12	7-9 (S) ²	TB12B7	900135303	CN
TB13	1-4 (U) ¹ composite	TB13A1	900128701	VOC, metals, CN, ABN, Pest, PCB

NOTES:

- Unsaturated sample Saturated sample 1.
- 2.
- 3. Groundwater Interface sample

Old Southington Landfill Southington, Connecticut

SOIL SAMPLE SUMMARY MATRIX JANUARY 1990 BORINGS Page 2 of 2

Boring No.	Sample Depth (ft) (and condition)	GZA Sample ID No.	Net Atlantic Sample ID No.	Analysis
TB-15	5-7 (S) ²	TB15A5	900129801	VOC, metals, CN
TB18	5-7 (U/S) ³	TB18A5	900129802S	metals
TB18	9-11 (S) ²	TB18B9	900129802	VOC, CN
TB18	5-7 (U/S) ³	TB28A5 (duplicate of TB18A5)	900129804S	metals
TB18	9-11 (S) ²	TB28B9 (duplicate of TB18B9)	900129804	VOC, CN
TB20	7-9 (U) ¹	TB20A7	900129803	VOC, metals, CN
TB24	5-11 (U) ¹ composite	TB24A5	900136802	VOC, metals, CN ABN, PCB, Pest
TB25	10-12 (U) ¹	TB25A10	900138908	voc
TB25	13-17 (U) ¹ composite	TB25B13	900138904S	metals, CN
TB25	20-24 (U) ¹ composite	TB25C20	900138909	VOC, TOC
TB26A	12-14 (S) ²	TB26AA12	900136803C	voc
TB26B	7-11 (S) ²	TB26BA7	900136803S	metals, CN
TB26B	11-13 (S) ²	TB26BB11	900136803A	ABN, PCB, Pest, TOC
TB26A	12-14 (S) ²	TB36AA12 (duplicate of TB26AA12)	900136804C	voc
TB26B	7-11 (S) ²	TB36BA7 (duplicate of TB26BA7)	900136804S	ABN, PCB, Pest metals, CN
TB26B	11-13 (S) ²	TB36BB11 (duplicate of TB26BB11)	900136804A	ABN, PCB, Pest
TRIPBLANK A	<u>-</u>	TRIPBL A	900135312A	voc
TRIPBLANK B		TRIPBL B	900138910A	voc
DECON BLANK		DECONBL A	900138911A	voc

NOTES:

- Unsaturated sample Saturated sample 1.
- 2.
- 3. Groundwater Interface sample

GROUNDWATER ELEVATIONS* Page 1 of 7

DATE 12/28/84	WELL NUMBER	8-1	B-2	B-3	B-4	CW-20	CW-15	LW-103S	LW-103M
12/28/84 - - - - 143.10 142.50 -	DATE								
2/28/85 - - - - 142.30 141.80 142.90 142.80 3/26/85 - - - - - 142.50 142.30 143.10 142.90 6/25/85 - - - - 141.80 141.60 141.90 142.20 3/20/86 - - - - 142.80 142.50 142.50 142.70 142.70 4/1/86 142.80 146.70 146.60 150.10 142.80 142.50 142.70 142.70 7/22/86 - 144.60 144.60 148.20 141.70 - 141.70 141.70 142.70 12/30/86 146.70 146.81 146.85 150.01 142.63 142.42 142.70 142.70 3/27/87 146.70 146.70 146.81 146.85 150.01 142.63 142.42 142.75 142.75 3/27/87 146.70 146.73 147.03 147.72 151.29		-	-	-	•	143.10	142.50	-	
3/26/8/5 - - - - 142.50 142.30 143.10 142.90 5/22/85 - - - - 142.60 142.00 142.20 142.30 142.30 142.30 142.30 142.30 142.30 142.50 142.50 142.00 142.00 142.00 142.00 142.00 142.00 142.00 142.00 142.70 142.70 142.80 142.50 142.00 142.70		-	_	-	-			142.90	142.80
5/22/85 - - - - 142.40 142.00 142.20 142.00 6/25/85 - - - - 141.80 141.60 141.90 142.00 3/20/86 - - - - - 142.80 142.70 142.70 4/1/86 142.80 146.70 146.40 151.10 142.80 142.20 142.70 142.70 7/22/86 - 144.60 144.80 148.20 147.70 - 141.70 - 141.70 142.70 142.70 12/30/86 146.90 147.20 147.20 150.80 142.70 142.70 142.70 2/20/87 146.77 146.81 146.85 150.01 142.63 142.22 142.74 142.72 2/20/87 146.77 147.08 147.16 - - 143.53 142.35 4/20/87 146.77 147.03 147.16 - 141.72 143.51 142.36		-	-	-	-				
6/25/85 - - - - - 141.80 141.60 141.90 142.00 3/20/86 - - - - 142.80 142.50 143.00 142.70 4/1/86 142.80 142.80 142.80 142.50 142.70 142.70 4/14/86 142.80 147.40 146.20 150.10 142.80 142.20 142.70 142.70 7/22/86 - 144.60 144.60 148.20 141.70 - 141.70 141.70 142.70 142.20 142.70		-	•						
3/20/86 - - - 142.80 142.50 143.00 142.70 4/11/86 142.80 146.70 146.40 151.10 142.80 142.50 142.70 142.70 4/14/86 142.80 147.40 146.60 150.10 142.80 142.20 142.70 142.70 7/22/86 - 146.60 144.60 148.20 141.70 - 141.70 141.80 12/30/86 146.90 147.20 146.85 150.00 142.63 142.20 142.70 142.70 2/20/87 144.57 - 144.74 - - - 143.53 142.72 5/2/87 146.77 147.08 147.16 - 141.80 144.17 144.66 144.62 5/2/87 146.42 146.72 148.71 149.28 143.48 143.51 146.69 142.57 142.50 143.51 146.69 142.98 142.57 142.71 142.75 142.75 142.71 142.75		•	-	-					
4/1/86 142.80 146.70 146.40 151.10 142.80 142.50 142.70 142.70 142.70 146.20 150.10 142.80 142.20 142.70<		-	-	-					
4/14/86 142.80 147.40 146.20 150.10 142.80 142.20 142.70 142.70 7/22/86 - 144.60 144.60 148.20 141.70 - 141.70 141.70 141.70 142.20 142.70 142.20 142.77 142.70 142.70 142.27 142.27 142.77 142.70		142.80	146.70	146,40	151.10				
7/22/86 - 144.60 144.60 148.20 141.70 - 141.70 141.70 141.80 12/30/86 146.90 147.20 150.80 142.70 142.70 142.70 142.70 142.70 142.70 142.70 142.70 142.77 142.72 120/87 144.87 - - - - 143.53 142.74 142.72 143.53 142.36 142.76 142.76 142.76 142.76 142.76 142.75 142.36 142.75 142.36 142.75 142.35 142.35 142.36 142.35 142.36 144.66 144.62 146.67 147.08 147.16 - 141.77 143.61 143.62 146.72 148.71 149.28 143.48 143.57 143.61 143.62 146.72 148.75 148.09 142.98 142.57 142.71 142.57 142.71 142.60 - - 142.75 142.71 142.57 142.71 142.75 142.71 142.57 142.71 142.50									
12/30/86 146.90 147.20 147.20 150.80 142.70 142.20 142.70 142.70 142.70 142.70 142.70 142.70 142.70 142.70 142.70 142.70 142.70 142.74 142.72 142.74 142.72 142.72 151.29 144.80 144.71 144.66 144.62 144.66 144.66 144.62 144.66 144.66 144.66 144.66 144.66 144.66 144.66 144.66 144.66 144.66 144.66 144.66 144.66 146.62 148.71 149.28 143.48 143.57 143.51 146.49 146.72 148.71 149.28 143.48 143.57 143.51 146.49 142.75 142.75 142.75 142.77 142.75 142.77 142.75 142.75 142.77 142.75 142.75 142.77 142.77 142.77 142.77 142.77 142.77 142.77 142.75 142.77 143.56 143.58 143.68 143.58 143.68 143.58 143.6									
2/20/87 146.70 146.81 146.85 150.01 142.63 142.42 142.74 142.72 3/27/87 144.57 - 144.74 - - 143.53 142.36 4/20/87 143.75 147.03 147.27 151.29 144.80 144.17 144.66 144.66 5/2/87 146.77 147.08 147.16 - 141.72 142.57 143.61 143.62 5/4/87 - - 146.03 - 141.46 - 143.51 146.69 6/23/87 146.62 146.72 148.71 149.28 143.48 143.57 143.66 143.67 8/21/87 146.05 146.14 148.75 148.09 142.98 142.57 142.71 142.75 11/16/88 - - 147.14 - 141.66 - - - 11/16/89 - - 146.08 - 142.25 - - - 11/16/89 <									
3/27/87 144.57 - 144.74 - - - 143.53 142.36 4/20/87 143.75 147.03 147.27 151.29 144.80 144.17 144.66 144.62 5/2/87 146.77 147.08 147.16 - 141.72 142.57 143.61 143.62 5/4/87 - - 146.03 - 141.46 - 143.51 146.62 8/21/87 146.42 146.72 148.71 149.28 143.48 143.57 143.61 143.67 8/21/87 146.05 146.14 148.75 148.09 142.98 142.57 143.51 142.75 11/16/88 - - 147.14 - 141.66 - - - - 11/16/89 - - 146.08 - 142.25 - - - 2/15/89 - - 147.13 - 141.95 - - - 4/27/89									
4/20/87 143.75 147.03 147.27 151.29 144.80 144.17 144.66 144.62 5/2/87 146.77 147.08 147.16 - 141.72 142.57 143.61 143.62 5/4/87 - - 146.03 - 141.46 - 145.51 146.64 6/23/87 146.42 146.72 148.71 149.28 143.48 143.57 143.66 143.67 11/16/88 - - 147.14 - 141.66 - - - 11/16/89 - - 146.35 - 142.25 - - - 11/16/89 - - 146.55 - 142.25 - - - 11/16/89 - - 146.68 - 142.25 - - - 11/16/89 - - 147.13 - 141.95 - - - 11/16/89 - - 147.13<									
5/2/87 146.77 147.08 147.16 - 141.72 142.57 143.61 143.62 5/4/87 - - 146.03 - 141.46 - 143.51 146.49 6/23/87 146.42 146.72 148.71 149.28 143.88 143.57 143.66 143.67 8/21/87 146.05 146.14 148.75 148.09 142.98 142.57 142.71 142.75 11/16/88 - - 147.14 - 141.66 - - - - 1/16/89 - - 146.08 - 142.13 - - - - 1/16/89 - - 147.19 - 141.96 - - - - 1/16/89 - - 147.19 - 141.96 - - - - - - - - - - - - - - - -									
5/4/87 - - 141.46 - 143.51 146.49 6/23/87 146.42 146.72 148.71 149.28 143.48 143.57 143.66 143.67 8/21/87 146.05 146.14 148.75 148.09 142.98 142.57 142.71 142.75 11/16/88 - - 147.14 - 141.66 - - - 12/15/88 - - 146.03 - 142.25 - - - 1/16/89 - - 146.08 - 142.13 - - - 2/15/89 - - 147.59 - 141.95 - - - 3/15/89 - - 147.13 - 141.86 - - - 4/14/89 - - 146.67 146.98 148.0 - 142.71 142.20 142.76 142.78 5/17/89 - 147.03 148.92									
6/23/87 146.42 146.72 148.71 149.28 143.48 143.57 143.66 143.67 8/21/87 146.05 146.14 148.75 148.09 142.98 142.57 142.71 142.75 11/16/88 - - 147.14 - 141.66 - - - 12/15/88 - - 146.08 - 142.25 - - - 1/16/89 - - 146.08 - 142.13 - - - 2/15/89 - - 147.99 - 141.95 - - - 3/15/89 - - 147.13 - 141.86 - - - 4/27/89 146.74 146.98 148.40 - 142.71 142.20 142.76 142.78 5/17/89 - 147.30 148.70 150.88 144.12 143.52 143.84 143.80 6/15/89 - 147.10									
8/21/87 146.05 146.14 148.75 148.09 142.98 142.57 142.71 142.75 11/16/88 - - 147.14 - 141.66 - - - 12/15/88 - - 146.35 - 142.25 - - - 2/15/89 - - 146.08 - 142.13 - - - 2/15/89 - - 147.13 - 141.95 - - - 3/15/89 - - 147.13 - 141.86 -									
11/16/88 - - 147.14 - 141.66 - - - 12/15/88 - - 146.35 - 142.25 - - - 1/16/89 - - 146.08 - 142.13 - - - 2/15/89 - - 147.59 - 141.95 - - - 3/15/89 - - 147.13 - 141.86 - - - 4/14/89 - - 148.66 - 142.71 142.20 142.76 142.78 5/17/89 146.74 146.98 148.40 - 142.71 142.20 142.76 142.78 5/17/89 - 147.10 148.70 150.88 144.12 143.82 143.84 143.80 6/15/89 - 147.10 148.70 150.88 144.12 143.82 144.29 144.35 7/14/89 146.67 146.95 149.									
12/15/88 - - 146.35 - 142.25 - - - - 146.08 - 142.13 -									
1/16/89 - - 146.08 - 142.13 - - - 2/15/89 - - 147.59 - 141.95 - - - 3/15/89 - - 147.13 - 141.86 - - - 4/14/89 - - 148.66 - 140.57 141.34 142.61 142.60 4/27/89 146.74 146.98 148.40 - 142.71 142.20 142.76 142.78 5/17/89 - 147.10 148.70 150.88 144.12 143.82 144.29 144.35 7/14/89 146.67 146.95 149.36 149.93 143.70 143.25 143.87 143.88 8/18/89 147.09 147.23 148.56 150.33 143.97 143.52 144.38 144.20 8/31/89 146.67 147.04 147.27 149.83 143.68 143.24 143.93 143.93 9/15/89		-	•		-		-	-	•
2/15/89 - - 147.59 - 141.95 -		-	-		-		-	-	•
3/15/89 - - 147.13 - 141.86 -	2/15/89	-	-		-		•	-	-
4/14/89 - - 148.66 - 140.57 141.34 142.61 142.60 4/27/89 146.74 146.98 148.40 - 142.71 142.20 142.76 142.78 5/17/89 - 147.35 148.92 153.15 143.72 144.52 143.84 143.80 6/15/89 - 147.10 148.70 150.88 144.12 143.82 144.29 144.35 7/14/89 146.67 146.95 149.36 149.93 143.70 143.25 143.87 143.88 8/18/89 147.09 147.23 148.56 150.33 143.97 143.52 144.38 144.20 8/31/89 146.70 147.04 147.27 149.83 143.68 143.24 143.93 143.93 9/15/89 146.64 146.82 147.77 148.92 143.43 143.03 143.59 143.59 10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81	3/15/89	-	-		-		-	-	-
4/27/89 146.74 146.98 148.40 - 142.71 142.20 142.76 142.78 5/17/89 - 147.35 148.92 153.15 143.72 144.52 143.84 143.80 6/15/89 - 147.10 148.70 150.88 144.12 143.82 144.29 144.35 7/14/89 146.67 146.95 149.36 149.93 143.70 143.25 143.87 143.88 8/18/89 147.09 147.23 148.56 150.33 143.97 143.52 144.38 144.20 8/31/89 146.70 147.04 147.27 149.83 143.68 143.24 143.93 143.93 9/15/89 146.64 146.82 147.77 148.92 143.43 143.03 143.59 143.59 10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 12/15/89 146.97 147.01 <t< td=""><td>4/14/89</td><td>-</td><td>•</td><td>148.66</td><td>-</td><td></td><td>141.34</td><td>142.61</td><td>142.60</td></t<>	4/14/89	-	•	148.66	-		141.34	142.61	142.60
6/15/89 - 147.10 148.70 150.88 144.12 143.82 144.29 144.35 7/14/89 146.67 146.95 149.36 149.93 143.70 143.25 143.87 143.88 8/18/89 147.09 147.23 148.56 150.33 143.97 143.52 144.38 144.20 8/31/89 146.70 147.04 147.27 149.83 143.68 143.24 143.93 143.59 9/15/89 146.64 146.82 147.77 148.92 143.43 143.03 143.59 143.59 10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10	4/27/89	146.74	146.98	148.40	-	142.71	142.20	142.76	142.78
7/14/89 146.67 146.95 149.36 149.93 143.70 143.25 143.87 143.88 8/18/89 147.09 147.23 148.56 150.33 143.97 143.52 144.38 144.20 8/31/89 146.70 147.04 147.27 149.83 143.68 143.24 143.93 143.93 9/15/89 146.64 146.82 147.77 148.92 143.43 143.03 143.59 143.59 10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.87 147.10 147.23 150.63 144.72 144.99 144.48 144.37 4/17/90 146.87 147.17	5/17/89	-	147.35	148.92	153.15	143.72	144.52	143.84	143.80
8/18/89 147.09 147.23 148.56 150.33 143.97 143.52 144.38 144.20 8/31/89 146.70 147.04 147.27 149.83 143.68 143.24 143.93 143.93 9/15/89 146.64 146.82 147.77 148.92 143.43 143.03 143.59 143.59 10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19	6/15/89	-	147.10	148.70	150.88	144.12	143.82	144.29	144.35
8/31/89 146.70 147.04 147.27 149.83 143.68 143.24 143.93 143.69 9/15/89 146.64 146.82 147.77 148.92 143.43 143.03 143.59 143.59 10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.55 146.77	7/14/89	146.67	146.95	149.36	149.93	143.70	143.25	143.87	143.88
9/15/89 146.64 146.82 147.77 148.92 143.43 143.03 143.59 143.59 10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 145.53 145.52 7/16/90 146.56 146.77	8/18/89	147.09	147.23	148.56	150.33	143.97	143.52	144.38	144.20
10/16/89 147.00 147.32 148.88 150.00 143.35 142.94 143.50 143.50 11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32	8/31/89	146.70	147.04	147.27	149.83	143.68	143.24	143.93	143.93
11/17/89 147.24 147.44 148.81 150.97 144.45 144.15 144.76 144.76 144.76 12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03	9/15/89	146.64	146.82	147.77	148.92	143.43	143.03	143.59	143.59
12/15/89 146.77 147.01 148.14 149.86 - 143.57 144.25 144.26 1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88	10/16/89	147.00	147.32	148.88	150.00	143.35	142.94	143.50	143.50
1/15/90 146.90 146.98 147.12 148.71 - 143.34 143.88 143.90 2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	11/17/89	147.24	147.44	148.81	150.97	144.45	144.15	144.76	144.76
2/15/90 146.93 147.10 147.24 150.63 144.72 144.99 144.48 144.47 3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	12/15/89	146.77	147.01	148.14	149.86	•	143.57	144.25	144.26
3/15/90 146.87 147.10 147.23 150.13 144.06 143.73 144.31 144.30 4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	1/15/90	146.90	146.98	147.12	148.71	•	143.34	143.88	143.90
4/17/90 146.94 147.17 149.53 152.78 144.34 144.33 144.62 144.62 5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	2/15/90	146.93	147.10	147.24	150.63	144.72	144.99	144.48	144.47
5/15/90 146.97 147.19 149.65 152.30 144.45 144.07 144.74 144.77 6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	3/15/90	146.87	147.10	147.23	150.13	144.06	143.73	144.31	144.30
6/15/90 146.55 146.77 147.26 150.34 144.22 143.77 145.53 145.52 7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	4/17/90	146.94	147.17	149.53	152.78	144.34	144.33	144.62	144.62
7/16/90 146.56 146.77 146.96 149.77 143.77 143.23 143.97 143.96 8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	5/15/90	146.97	147.19	149.65	152.30	144.45	144.07	144.74	144.77
8/15/90 147.03 147.32 147.34 149.99 144.08 143.47 144.24 144.24 9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	6/15/90	146.55	146.77	147.26	150.34	144.22	143.77	145.53	145.52
9/17/90 146.78 146.88 148.60 151.04 143.56 143.11 143.70 143.70	7/16/90	146.56	146.77	146.96	149.77	143.77	143.23	143.97	143.96
	8/15/90	147.03	147.32	147.34	149.99	144.08	143.47	144.24	144.24
10/25/90 147.47 147.80 149.42 150.32 144.05 143.81 144.22 144.22	9/17/90	146.78	146.88	148.60	151.04	143.56	143.11	143.70	143.70
	10/25/90	147.47	147.80	149.42	150.32	144.05	143.81	144.22	144.22

^{*} All elevations are in feet (MSL)

^{- =} No measurement taken

D = Well destroyed

GROUNDWATER ELEVATIONS* Page 2 of 7

WELL NUMBER	LW-103D	LW-15S	LW-15M	LW-15D	TW-17	LW-17D	TW-18	LW-19
DATE								
12/28/84	-	143.90	143.80	143.60	141.90	145.50	143.00	146.30
2/28/85	142.80	143.50	143.60	143.60	143.80	143.80	142.60	142.20
3/26/85	142.70	143.40	143.70	143.00	143.30	143.20	142.50	142.10
5/22/85	141.40	143.30	143.20	143.20	143.10	142.00	142.30	141.40
6/25/85	141.60	143.00	142.70	142.60	143.30	142.30	142.20	141.40
3/20/86	142.80	143.50	143.70	143.40	143.70	145.60	145.70	145.10
4/1/86	142.70	143.20	143.50	143.30	143.50	145.30	142.70	145.00
4/14/86	142.60	143.00	143.30	143.10	143.40	145.30	143.60	-
7/22/86	141.90	142.20	142.60	143.40	138.70	144.20	-	143.20
12/30/86	142.80	143.50	143.50	143.20	141.20	145.00	142.70	144.20
2/20/87	142.79	143.34	143.41	143.20	143.23	143.31	-	144.60
3/27/87	143.05	143.38	143.54	143.31	142.48	143.52	143.15	145.12
4/20/87	144.63	144.98	145.16	145.08	143.51	146.85	144.55	147.41
5/2/87	143.53	144.36	144.63	144.44	144.49	144.95	144.06	-
5/4/87	143.34	144.15	144.26	144.22	144.49	144.67	144.20	•
6/23/87	143.68	144.29	143.94	144.09	144.28	144.52	143.70	147.55
8/21/87	142.70	143.07	143.21	143.12	143.47	143.37	142.68	146.47
11/16/88	-	142.04	142.20	142.06	142.15	142.38	141.65	D
12/15/88	-	142.73	142.84	142.72	142.81	142.91	142.22	D
1/16/89	-	142.48	142.62	142.49	142.57	142.69	142.02	D
2/15/89	-	142.33	142.39	142.26	142.40	142.50	141.83	D
3/15/89	-	142.22	142.33	142.22	142.32	142.44	141.78	D
4/14/89	142.57	142.94	143.08	142.95	142.87	142.91	142.53	D
4/27/89	142.74	143.10	143.18	143.08	143.19	143.12	142.65	D
5/17/89	143.79	144.16	144.27	144.15	144.21	144.11	143.36	D
6/15/89	144.31	144.64	144.83	144.73	144.84	144.79	144.27	D
7/14/89	143.88	144.23	144.42	144.34	144.63	144.49	143.85	D
8/18/89	144.06	144.60	144.77	144.68	144.92	144.81	144.20	D
8/31/89	143.90	144.29	144.46	144.36	144.64	144.57	143.93	D
9/15/89	143.56	143.92	144.05	143.97	144.33	144.22	143.58	D
10/16/89	143.46	143.83	143.96	143.87	144.19	144.12	143.51	D
11/17/89	144.74	145.16	145.31	145.22	145.52	145.43	144.73	D
12/15/89	144.21	144.63	144.79	144.71	145.04	144.95	144.22	D
1/15/90	143.87	144.30	144.44	144.37	144.66	144.57	143.86	D
2/15/90	144.43	144.85	144.99	144.93	145.27	145.13	144.52	D
3/15/90	144.27	144.70	144.81	144.75	145.08	144.98	144.32	D
4/17/90	144.59	145.24	145.09	144.85	145.39	145.24	144.68	D
5/15/90	144.70	145.14	145.25	145.20	145.51	145.41	144.82	D
6/15/90	144.53	144.90	145.00	144.91	145.26	145.18	144.57	D
7/16/90	143.95	144.38	144.57	144.44	143.06	156.36	144.10	D
8/15/90	144.19	144.74	144.81	144.67	144.92	145.07	144.30	D
9/17/90	143.72	144.06	144.27	144.17	144.36	144.32	143.71	D
10/25/90	140.20	144.61	144.72	144.65	144.83	144.87	144.47	D

^{*} All elevations are in feet (MSL)

^{- =} No measurement taken

D = Well destroyed

GROUNDWATER ELEVATIONS* Page 3 of 7

WELL NUMBER	LW-102\$	LW-102D	TW-16	LW-101D	LW-101S	TW-20	GZ-1	GZ-2
DATE								
12/28/84	144.20	143.40	144.00	143.80	144.40	•	-	-
2/28/85	143.50	143.30	143.80	143.40	144.40	-	-	-
3/26/85	143.00	142.60	142.80	143.60	143.00	141.20	-	-
5/22/85	142.80	142.60	143.40	143.50	142.20	140.90	•	•
6/25/85	143.10	142.80	143.40	143.20	144.90	140.90	-	-
3/20/86	143.70	143.90	•	D	D	D	-	-
4/1/86	144.00	144.00	145.50	D	D	D	-	-
4/14/86	141.00	144.00	158.80	D	D	D	-	-
7/22/86	141.40	139.60	D	D	D	D	-	-
12/30/86	142.40	138.30	D	D	D	D	-	-
2/20/87	143.69	143.81	D	D	D	D	148.97	140.69
3/27/87	143.88	144.11	D	D	D	D	149.39	146.19
4/20/87	145.59	145.47	D	D	D	D	150.53	146.11
5/2/87	-	145.81	D	D	D	D		
5/4/87	145.89	145.47	D	D	D	D	151.54	146.83
6/23/87	145.81	144.67	D	D	D	D	152.93	146.74
8/21/87	144.54	-	D	D	D	D	150.28	146.94
11/16/88	D	D	D	D	D	D	147.59	143.83
12/15/88	D	D	D	D	D	D	148.24	144.07
1/16/89	D	D	D	D	D	D	148.17	144.15
2/15/89	D	D	D	D	D	D	148.06	144.04
3/15/89	D	D	D	D	D	D	147.92	143.85
4/14/89	D	D	D	D	D	D	148.54	143.90
4/27/89	D	D	D	D	D	D	148.70	144.10
5/17/89	D	D	D	D	D	D	148.89	144.45
6/15/89	D	D	D	D	D	D	150.29	145.89
7/14/89	D	D	D	D	D	D	151.05	147.08
8/18/89	D	D	D	Ð	D	D	151.02	147.37
8/31/89	D	D	D	D	D	D	151.07	147.49
9/15/89	D	D	D	D	D	Ð	150.84	147.47
10/16/89	D	D	D	D	D	D	150.51	147.09
11/17/89	D	D	D	D	D	D	151.53	147.98
12/15/89	D	D	D	D	D	D	151.45	148.21
1/15/90	D	D	D	D	D	D	151.05	147.94
2/15/90	D	D	D	D	D	D	151.39	147.95
3/15/90	D	D	D	D	D	D	151.30	148.10
4/17/90	D	D	D	D	D	D	151.45	148.21
5/15/90	D	D	D	D	D	D	151.53	148.30
5/15/90	D	D	D	D	D	D	151.82	148.58
7/16/90	D	D	D	D	D	D	151.44	148,45
8/15/90	D	0	D	D	D	D	151.09	147.95
9/17/90	D	D	D	D	D	D	150.79	147.62
10/25/90	D	D	D	D	D	D	150.44	147,31

^{*} All elevations are in feet (MSL)

^{- =} No measurement taken

D = Well destroyed

GROUNDWATER ELEVATIONS* Page 5 of 7

WELL NUMBER	WP-1	WP-2	WP-3	WP-4	₩P-5	GZ-5S	GZ-5M	GZ-5D
DATE							• • • • • • • • •	
12/28/84	-	•	•	•	•	-	-	•
2/28/85	-	-	•	-	-	•	•	-
3/26/85	-	-	-	-	-	•	-	-
5/22/85	-	•	•	•	-	•	-	-
6/25/85	-	-	-	-	•	•	•	-
3/20/86	-	-	•	-	-	-	-	•
4/1/86	-	-	•	•	-	•	-	-
4/14/86	•	-	-	•	-	-	-	-
7/22/86	-	-	-	-	-	-	-	-
12/30/86	•	•	-	•	-	-	•	•
2/20/87	-	-	-	-	-	-	-	-
3/27/87	-	-	-	-	-	-	-	-
4/20/87	•	-	-	-	-	•	-	•
5/2/87	-	-	•	-	-	•	-	-
5/4/87	-	-	•	-	-	•	-	-
6/23/87	-	•	•	-	-		-	•
8/21/87	-	-	•	-	-		•	-
11/16/88	-	-	-	•	-	•	-	-
12/15/88	-	•	-	-	-		-	-
1/16/89	-	-	-	•	-		-	•
2/15/89	-	•	-	-	-		•	-
3/15/89	-	-	-	-	-	•	-	-
4/14/89	-	-	-	-	•	•	•	-
4/27/89	-	•	-	-	•	•	-	•
5/17/89	-	-	-	-	-	-	-	-
6/15/89	-	-	-	-	-	-	-	•
7/14/89	-	-	-	-	-	-	-	•
8/18/89	-	•	•	•	•	-	-	-
8/31/89	-	•	-	-	-	-	-	-
9/15/89	-	-	-	•	-	•	-	•
10/16/89	-	•	-	•	-	-	-	-
11/17/89	-	-	-	-	-	-	-	•
12/15/89	-	-	-	-	-	-	-	-
1/15/90	-	•	-	•	-	•	•	•
2/15/90	-	-	-	•	-	-	•	-
3/15/90	-	-	•	-	•	•	-	-
4/17/90	-	•	-	-	-	•	-	-
5/15/90	•	-	-	•	•	-	-	-
5/15/90	-	•	•	•	•	145.69	145.66	145.65
7/16/90	146.58	146.56	146.50	148.18	145.13	145.11	145.13	145.18
8/15/90	-	•	-	-	•	145.07	145.07	145.21
9/17/90	146.73	146.97	-	148.22	145.25	144.68	144.69	144.65
10/25/90	147.49	146.58	-	148.67	145.73	144.77	144.79	145.01

^{*} All elevations are in feet (MSL)

^{- =} No measurement taken

D = Well destroyed

GROUNDWATER ELEVATIONS* Page 6 of 7

WELL NUMBER	TB-7S	GZ-7S	GZ-7M	GZ-7D	GZ-11S	GZ-11D	GZ-12M	GZ-12D
DATE								
12/28/84	-	-	-	•	•	•	-	-
2/28/85	•	-	-	-	-	-	-	•
3/26/85	-	•	-	•	-	•	•	-
5/22/85	-	•	•	•	-	-	-	-
6/25/85	-	•	•	•	-	•	-	-
3/20/86	-	-	•	•	-	-	-	-
4/1/86	-	•	-	•	•	•	•	-
4/14/86	-	-	-	-	-	•	•	-
7/22/86	-	-	-	-	-	-	-	•
12/30/86	-	-	-	-	-	-	-	-
2/20/87	-	-	•	-	•	-	-	-
3/27/87	-	-	•	-	-	•	-	-
4/20/87	-	•	•	•	-	•	-	-
5/2/87	~	-	-	-	-	-	-	•
5/4/87	-	•	-	-	-	•	-	-
6/23/87	-	-	-	-	-	-	-	•
8/21/87	-	-	-	-	-	•	•	•
11/16/88	-	•	-	-	-	-	•	-
12/15/88	-	-	-	-	-	-	-	-
1/16/89	-	•	•	-	-	-	•	-
2/15/89	-	•	-	-	-	-	-	-
3/15/89	-	•	-	-	-	•	•	-
4/14/89	-	-	-	-	-	-	-	-
4/27/89	-	-	-	-	-	-	-	-
5/17/89	-	-	-	-	-	-	-	-
6/15/89	-	-	-	-	-	-	-	-
7/14/89	-	-	•	•	-	•	-	-
8/18/89	-	•	-	-	-	-	-	-
8/31/89	-	-	-	-	-	-	-	-
9/15/89	-	•	-	-	-	-	-	-
10/16/89	-	-	-	-	-	•	•	-
11/17/89	-	-	•	-	-	•	-	-
12/15/89	-	•	-	-	-	-	-	-
1/15/90	-	-	-	-	-	-	-	-
2/15/90	-	-	-	-	-	-	-	-
3/15/90	-	-	•	•	-	-	-	-
4/17/90	153.00	-	-	146.72	-	-	•	144.72
5/15/90	153.23	150.81	146.80	146.79	143.47	144.37	144.84	144.72
6/15/90	152.48	150.20	146.70	146.73	142.96	144.14	144.58	144.54
7/16/90	152.25	149.50	146.26	146.26	142.88	144.66	144.09	144.09
8/15/90	153.10	•	147.29	146.32	143.23	143.91	144.28	144.31
9/17/90	152.48	149.68	145.70	145.76	142.88	143.41	143.76	143.75
10/25/90	153.62	150.57	146.03	146.08	143.67	143.90	144.29	144.31

^{*} All elevations are in feet (MSL)

^{- ≈} No measurement taken

D ≈ Well destroyed

GROUNDWATER ELEVATIONS* Page 7 of 7

WELL NUMBER	GZ-13S	GZ-13M	GZ-13D	GZ-14S	GZ-14M	GZ-14D	GZ-17M	GZ-170
	• • • • • • • • • • • • • • • • • • • •							
DATE								
12/28/84	-	•	-	-	-	-	•	•
2/28/85	-	•	-	-	•	-	-	•
3/26/85	-	•	-	•	•	-	-	•
5/22/85	-	-	•	•	-	•	•	•
6/25/85	•	-	-	•	-	-	•	•
3/20/86	-	•	-	-	•	-	•	•
4/1/86	-	•	-	-	•	•	-	•
4/14/86	-	•	-	•	-	•	•	•
7/22/86	-	•	-	-	•	•	-	•
12/30/86	-	-	-	•	-	•	•	•
2/20/87	•	-	-	•	-	-	-	-
3/27/87	-	-	-	-	-	-	-	•
4/20/87	-	-	-	•	•	-	-	-
5/2/87	-	-	•	-	-	-	-	•
5/4/87	-	-	•	-	•	•	•	-
6/23/87	-	•	-	•	-	•	-	-
8/21/87	-	-	-	-	-	-	-	•
11/16/88	-	-	•	•	-	•	-	-
12/15/88	-	-	-	-	-	-	-	-
1/16/89	-	•	-	-	-	-	•	-
2/15/89	-	-	•	-	•	-	-	•
3/15/89	•	-	-	-	•	-	•	-
4/14/89	-	-	•	-	-	-	-	-
4/27/89	-	-	-	•	•	-	•	•
5/17/89	-	-	-	•	-	-	-	•
6/15/89	-	•	-	•	•	-	-	-
7/14/89	•	•	-	-	-	-	-	•
8/18/89	-	•	-	•	•	-	•	•
8/31/89	-	-	-	-	-	-	-	-
9/15/89	-	-	•	-	•	-	-	-
10/16/89	-	•	-	-	-	•	•	•
11/17/89	-	-	-	-	•	-	•	-
12/15/89	-	-	-	-	•	-	•	•
1/15/90	-	-	•	•	-	-	•	•
2/15/90	-	-	•	-	•	-	-	•
3/15/90	-	-	-	-	-	-	-	-
4/17/90	-	-	•	•	•	-	-	145.43
5/15/90	146.79	146.66	145.39	145.99	145.90	144.96	-	146.32
6/15/90	147.01	146.89	145.42	146.26	146.16	144.94	145.21	146.09
7/16/90	146.62	146.47	144.93	145.77	145.63	144.49	144.76	145.66
8/15/90	146.43	146.31	144.90	145.64	145.51	144.47	144.98	145.05
9/17/90	145.99	145.89	144.43	145.29	145.14	144.02	144.37	145.25
10/25/ 90	144.90	145.80	145.87	145.12	145.04	144.25	144.90	145.75

^{*} All elevations are in feet (MSL)

^{- =} No measurement taken

D = Well destroyed

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

HYDRAULIC CONDUCTIVITY SUMMARY Page 1 of 2

MONITOR WELL	SAMPLE DEPTH (FT)	LABORATORY DERIVED STRATIGRAPHIC DESCRIPTION	APPROPRIATE RANGE OF POROSITY (n) (4)	D ₁₀ (cm) ⁽⁵⁾	sieve (K ⁽¹⁾ = 470 [n ³ 1 010 ²	FIEL K	B, BATA	RA	MENTED NGE (3)
					K ⁽⁷⁾ = A	^D 10 ²				·
					(gpd/ft ²)	(cm/s)	(gpd/ft ²)	(cm/s)	(gpd/ft ²)	(cm/s)
GZ-1	45-47	f-m SAND, some Silt		.0035	₂₆ ⁽⁷⁾	1-3	••		10-10 ⁵	10 ⁻⁴ -10
GZ-2	22-22	f-m SAND, little Silt		.0055	64 ⁽⁷⁾	3 ⁻³			10-10 ⁵	10 ⁻⁴ -10
GZ-3	10-12	SILT, some Sand, Gravel		.002	8 ⁽⁷⁾	4-4			10 ⁻² -10	10 ⁻⁷ -5 ⁻⁴
GZ-4S		••					160 ⁽²⁾	8-3		
GZ-4M							410 ⁽²⁾	2-2		
GZ-4D	85-87	f-c SAND and GRAVEL, little Silt		0.0019	8 ⁽⁷⁾	4-4	98 ⁽²⁾	5 ⁻³	10-10 ⁵	10 ⁻⁴ -10
GZ-5S	20-23	f-m SAND, some Silt	.2347	.004	3-60 ⁽¹⁾	2 ⁻⁴ -3 ⁻³	42 ⁽²⁾	2-3	1-10 ³	10 ⁻⁵ -10 ⁻²
GZ-5M	55-57	f. SAND and SILT	.2347	.0055	6-110 ⁽¹⁾	3 ⁻⁴ -5 ⁻³	170 ⁽²⁾	8-3	10 ⁻² -10 ²	10 ⁻⁷ -10 ⁻³
GZ-5D	120- 125	f-m SAND, trace Silt	.1749	.0060	3-160 ⁽¹⁾	2 ⁻⁴ -8 ⁻³	20 ⁽²⁾	9 ⁻⁴	10-10 ⁴	10 ⁻⁴ -10 ⁻¹
TB-7S	15-17	f-m SAND, trace Silt	.1749	.0075	4-250 ⁽¹⁾	2 ⁻⁴ -1 ⁻²			10-10 ⁴	10 ⁻⁴ -10 ⁻¹
GZ-7M	72-77	f-c SAND and f. GRAVEL, trace Silt	.1246	.013	4-560 ⁽¹⁾	2 ⁻⁴ -3 ⁻²			10-10 ⁶	10 ⁻⁴ -100
GZ-70	140- 145	f-c SAND, some f. Gravel, trace Silt	.1749	.0045	1-90 ⁽¹⁾	5 ⁻⁵ -4 ⁻³			10-10 ⁶	10 ⁻⁴ -100
GZ-11S	20-22	f-m SAND, little Silt	.2347	.005	5-90(1)	2-4-4-3			1-10 ³	10 ⁻⁵ -10 ⁻²
GZ-11D	50-55	f-c GRAVEL and f-c SAND, trace Silt	.1246	.013	4-560 ⁽¹⁾	2 ⁻⁴ -3 ⁻²			10-10 ⁶	10 ⁻⁴ -100
GZ-12M	60-62	f-c SAND, trace Gravel, Silt	. 17 49	.0075	4-250(1)	2 ⁻⁴ -1 ⁻²			10-10 ⁴	10 ⁻⁴ -10 ⁻¹
GZ-12D	85-90	fine SAND, little Silt	.2347	.0070	10-180 ⁽¹⁾	5 ⁻⁴ -8 ⁻³			1-10 ³	10 ⁻⁵ -10 ⁻²
GZ-13S	30-36	fine SAND, trace f. Gravel, Silt	. 1749	.024	40-2600 ⁽¹⁾	2 ⁻³ -1 ⁻³	500 ⁽²⁾	2 ⁻²	10-10 ⁴	10 ⁻⁴ -10 ⁻²

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

HYDRAULIC CONDUCTIVITY SUMMARY Page 2 of 2

MONITOR WELL	SAMPLE DEPTH (FT)	LABORATORY DERIVED STRATIGRAPHIC DESCRIPTION	APPROPRIATE RANGE OF POROSITY (n) (4)	D ₁₀ (cm) ⁽⁵⁾		$\frac{n^3}{1-n)^2}$ 1 $\frac{n^2}{100}$	FIELD K	,85 ^{TA}	P1914 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SENTED NGE 3)
					K ⁽⁷⁾ = A	ND 10 ²				
.:					(gpd/ft ²)	(cm/s)	(gpd/ft ²)	(cm/s)	(gpd/ft ²)	(cm/s)
GZ-13M	105-110	f-m SAND, trace Silt	.1749	.012	10-650 ⁽¹⁾	5-4-3-2	310 ⁽²⁾	1-2	10-10 ⁴	10 ⁻⁴ -10 ⁻¹
GZ-13Da	160-165	fine SAND and SILT	.2347	.0023	1-20(1)	5 ⁻⁵ -9 ⁻⁴	300 ⁽²⁾	1-2	10 ⁻² -10 ²	10 ⁻⁷ -10 ⁻³
GZ-13D	160-165	f-c SAND, trace Silt	.1749	0045	6-400 ⁽¹⁾	3 ⁻⁴ -2 ⁻²	300 ⁽²⁾	1-2	10-10 ⁴	10 ⁻⁴ -10 ⁻¹
GZ-14S	30-35	fine SAND, little Silt	.2347	.0055	6-110 ⁽¹⁾	3 ⁻⁴ -5 ⁻³			10 ² -10 ⁴	10 ⁻³ -10 ⁻¹
GZ-14M	88-92	fine SAND and SILT	.2347	.0018	0.7-10 ⁽¹⁾	3 ⁻⁵ -5 ⁻⁴	••		10 ⁻² -10 ²	10 ⁻⁷ -10 ⁻³
GZ-14D	140-145	fine SAND and SILT	.2347	.0016	0.5-10 ⁽¹⁾	2 ⁻⁵ -5 ⁻⁴			10 ⁻² -10 ²	10 ⁻⁷ -10 ⁻³
LW-158	••				-		29(2)	1-3		
LW-15M	••						100 ⁽²⁾	5-3	••	•-
LW-150							100 ⁽²⁾	5-3		
GZ-17M	55-57	fine SAND, little Silt	.2347	.006	7.5-130 ⁽¹⁾	4-4-6-3			1-10 ³	10 ⁻⁵ -10 ⁻²
GZ-17D	95-97	f-c SAND, little Silt	.23.47	.0045	4-75 ⁽¹⁾	2 ⁻⁴ -4 ⁻³			1-10 ³	10 ⁻⁵ -10 ⁻²
CW-15							2900 ⁽⁶⁾	1-1		
CW-20							3400 ⁽⁶⁾	2-3		
LW-103D				•-			2500 ⁽⁶⁾	1-1	,	
Municipal Well No. 5	••						916 ⁽⁸⁾	4-2	••	

NOTES:

- (1) Hydraulic conductivity based on the Kozeny-Carmen equation.
- (2) Hydraulic conductivity based on in-situ slug testing (Hyorslev, 1951)...
- (3) Estimated range of hydraulic conductivity based on laboratory soil classification from Freeze and Cherry (1979).
- (4) Porosity range based on laboratory soil classification using NAVFAC DM-7.1 (1982).
- (5) Grain size diameter of 10th percentile finer based on laboratory data.
- (6)
- Hydraulic conductivity based on pump test transmissivity \div aquifer thickness. Hydraulic conductivity based on K = AD_{10}^2 from sieve analysis, where A equals 1.0 for K in cm/sec and D_{10} in mm. Estimation of K based on equilibrium equation. (7)
- (8)

Old Southington Landfill Southington, Connecticut

GROUNDWATER SAMPLE COLLECTION SEQUENCE⁽¹⁾

SAMPLE CONTAINERS AND COLLECTION SEQUENCE	SAMPLE PRESERVATIVE	PARAMETERS ANALYZED
40-ml clear glass vials	HCL	volatile organic compounds
125-ml amber glass	H ₂ SO ₄	chemical oxygen demand
1-liter plastic	HNO ₃	dissolved metals (sample pre-filtered)
1-liter plastic	HNO ₃	hardness, mg, Na
1-liter plastic	NaOH	cyanide
1-liter plastic	Unpreserved	alkalinity, chloride, conductivity, nitrate, nitrite, pH, total dissolved solids
1-liter plastic	H ₂ SO ₄	ammonia
1-liter amber glass	Unpreserved	PCBs and pesticides
2-liter amber glass	methanol rinse	acid, base, neutral semi-volatiles
1-liter plastic	HNO ₃	total metals (sample unfiltered)

Notes:

(1) Not all sample locations analyzed for all parameters listed above.

Old Southington Landfill Southington, Connecticut

MONITOR WELL PLACEMENT AND TESTING Page 1 of 3

ID No.	Purpose of Monitor Well Pa	Soil Test erameters	Screen Setting (ft below ground) and soil classification (1)(2)	Groundwater Jest Parameters ZA 1987 ⁽⁵⁾ /Previous ⁽⁴⁾ /Current ⁽⁵⁾	Rationale
■ Existing N	Monitor Wells				
GZ-1	Background quality	NA	f-c sand; 66.5-86.5	List A/HSLs,I/same	Upgradient chemistry
GZ-2	Background quality	NA	f. sand: 70-90'	List A/V,M,I/same	Upgradient chemistry
GZ-3	Background quality	NA	f-c sand; 10-25'	List A/HSLs/V,M,I	Upgradient chemistry
GZ-4S	GW quality adjacent to Landfill		f. sand & silt; 23-43'	*List A&B/ I/HSLs, I	Landfill impact; ID Remedial Technologies
GZ-4M	GW quality adjacent to Landfill	slug test	f. sand/f-c sand; 65-85'	*List A/ 1/ HSL,1	Vertical impact near source
GZ-4D	GW quality adjacent to Landfill	slug test	f-c sand gr., silt; 110-130'	*List A&B/I/HSL,I	Vertical impact near source
LW-15S	GW quality between Landfill & MW-5	slug test; cont. water level recorder	silt/f-c sand; 7.5-27.5'	List A/I/HSL,I	Northern area plume delineation
LW-15M	GW quality between Landfill & MW-5	slug test	f-c sand; 29-59	List A/I/HSL,I	Northern/vertical plume delineation
LW-15D	GW quality between Landfill & MW-5	slug test	f-c sand/f sand; 49-99'- existing Retrofit to 89-99'±	List A/I/HSL,I	Screened near Bedrock Valley
TW-17S	Near downgradient quality	NA	f-c sand; 20-31	*List A/I/V,M,I	Downgradient Quality
LW-17D	Water levels only	NA	f sand/gr. layers;40-100'-existing		Water levels only
TW-18	Downgradient plume deliniation	NA	f-c sand; 15-25'	List A/V,M,I/V,M,I	Downgradient Quality
LW-103S	Northern plume delineation	NA	f-c sand; 6-31'	List A/I/V,M,I	Site char; plume delineation
LW-103M	Northern plume delineation	NA	f-c sand; 34.5-54.5	List A/I/V.M.I	Vertical Plume; site char.
LW-103D	Northern plume delineation at depth	NA	f-c sand; 60-80'	List A/I/V,M,I	Vertical Plume; site char.
CW-15	Water levels	NA	f sand & gravel; 57.3-59.3'	None/I/V,I	Groundwater flow patterns
CW-20	Water levels	NA	sand & gravel;48.5-50.5	None/I/V,I	Groundwater flow patterns
■ Existing (Observation Points				
B-1	Observation/water levels	NA	Refuse; 3-8'	None	Groundwater flow patterns in refuse
B-2	Observation/water levels	NA	Refuse; 3-13'	None	Groundwater flow patterns in refuse
8-3	Observation/water levels	NA	Refuse; 3-23'	*List A&B/HSLs, I/same	Worst case chemistry (refuse) Risk Assessment; Remedial Technologies
B-4	Observation/water levels	NA	Refuse; 3-20'	None	Groundwater flow patterns in refuse

Old Southington Landfill Southington, Connecticut

MONITOR WELL PLACEMENT AND TESTING Page 2 of 3

ID No.	Purpose of Monitor Well	Soil Test Parameters	Screen Setting (ft below ground) and soil classification (1)(2)	Groundwater Test Parameters GZA 1987 ⁽³⁾ /Previous ⁽⁴⁾ /Current ⁽⁵⁾	Rationale
■ Others					
Lori Corp.		ontinuous water level ecorder (3 day)	Unknown; 62-721	List A/HSLs, I/I,V,M	In use supply; Risk Assessment
Municipal Well 5	Prior water supply	NA	f-m sand & gravel; 49-58'	List A&B/none/none	Not used; purge volumes excessive
Menard Well	Water supply	NA	Unknown	None/None/HSLs, I	Potable Supply; Risk Assessment
Chuck & Eddies Well	Water supply (Fire only)	NA	Unknown	None/None/V,I	Water supply (Fire only); Risk Assesement
■ Newly Install	ed Monitor Wells	See Note (6)			
GZ-5S test;TOC	Downgradient plume definit	ion PID; grain-size;	Fine sand; 14-24'± downgrad	*-/HSLs, I/same ient aquifer	Characterize shallow
GZ-5M	Downgradient plume definit	ion PID; grain-size; slug test	Fine sand; ±52-62'±	*-/HSLs, I/same	Downgradient plume
GZ-5D	Downgradient plume definit		Fine to medium sand; 117-127'±	*-/HSLs, 1/same	Downgradient plume at depth
GZ-6	Deleted from RI	None		••	Deleted
GZ-7S	Assess southern groundwate	r PID; grain-size	Gravel, sand and refuse 5.5-14.5±	-/1/HSL,I	Southern groundwater characterization
GZ-7M	Vertical flow	PID: grain-size:	Sand and gravel; 65.5-75.5'±	-/-/HSL,I	Southern plume delineation
GZ-70	Vertical flow	PID; grain-size;	Gravel; 135-145'±	-/-/HSL,I	Southern plume delineation
GZ-8	Delete from RI	[']	None	-/V,M,I/delete	Near former VOC spill area; sufficient soil borings and and shallow monitor wells to be installed in this area
GZ-9		•••	None	-/V,M,I/delete	Combine/replace with new location GZ-11 series
GZ-10S	Deleted from RI		None	-/V,M,I/delete	Delete
GZ-11S	Downgradient of Lori/relocate	PID; grain-size	Fine to Medium Sand; 13-23'±	/V,M,I/same	Between landfill, industry & former well
GZ-11D	Downgradient of Lori/relocate	PID; grain-size	Sand and Gravel; 50-60'±	-/V,M,I/same	Vertical flow patterns

TABLE 19 Old Southington Landfill

MONITOR WELL PLACEMENT AND TESTING Page 3 of 3

Southington, Connecticut

ID No.	Purpose of Monitor Well	Soil Test Parameters	Screen Setting (ft below ground) and soil classification (1)(2)	Groundwater Test Parameters GZA 1987 ⁽³⁾ /Previous ⁽⁴⁾ /Current ⁽⁵⁾	Rationale
GZ-12M	Downgradient plume definition	PID; grain-size	Sand and Gravel; 52-62±	-/V,M,1/same	Adjacent to TW-18 for vertical assessment
GZ-12D	Downgradient plume definition		Fine Sand; 79-89'±	-/V,M,I/same	Adjacent to TW-18 for vertical assessment
GZ-13S	Southern flow system delineation	PID; grain-size slug test	Fine to Coarse Sand; 28-38'±	-/V,M,I/same	Southern plume delineation
GZ-13M	Vertical flow south of landfill	PID; grain-size slug test	Fine to Medium Sand; 98-1081±	-/V,M,I/same	Southern plume delineation
GZ-13D	Vertical flow south of landfill	-	Cobbles and Sand; 162-172'±	-/V,M,I/same	Deep Aquifer effects
GZ-14S	S-W flow delineation	PID; grain-size	Sand; 26-36'±	-/-/V,M,I	Char. SW downgradient plume
GZ-14M	S-W flow delineation	PID; grain-size	Sand and Silt: 88-92'±	-/-/V,M,I	Char. SW mid-depth plume
GZ-14D	S-W Vertical flow	PID; grain-size	Sand and Silt; 135-145'±	-/-/V,M,I	Deep Aquifer effects in SW downgradient area
GZ-17M	Vertical downgradient Quality	PID; grain-size	Fine Sand; 49-59'±	*List -/-/V,M,I	Vertical downgradient quality
GZ-17D	Vertical downgradient	PID; grain-size	Fine Sand; 89-99'±	*List A/I/V,MI	Vertical downgradient quality
TB-7S the landfill	S-E flow	PID; grain-size	Sand and Refuse; 10.5-15.5'±	-/-/HSL, I	Groundwater characterization

NOTES:

- (1) Existing wells, screen setting in feet below ground, and natural materials around screen based on available data.
- (2) Currently anticipated screen setting and base material for proposed locations. All screens to be placed in soil. Shallow wells to be screened across water table interface; mid-depth wells to be screened at about mid-depth of saturated overburden preferably in coarser, less dense or possible contamination lithologies; deep wells to be screened just above bedrock. Actual settings may vary as installed based on actual conditions encountered.
- (3) Chemical testing performed in 1987 by GZA: see Table 10 for list A and B parameters.
- (4) Test parameters proposed per Work Plan.
- (5) Test parameters currently anticipated based on 12/89 EPA meeting. HSLs: Indicate all hazardous substance list compounds per Table 17.
 - V: Indicates HSL volatile compounds per Table 17.
 - M: Indicates HSL metals per Table 17.
 - I: Indicates indicator compounds per Table 17.
 - *: Filtered and unfiltered metal samples.
- (6) Up to one cation exchange capacity /Boring if silt or clay encountered.

Old Southington Landfill Southington, Connecticut

EPA Required HSL Analytical Parameters Page 1 of 3

1)	HAZARDOUS SUBSTANCE LIST METALS					
	Aluminum	Antimony	Arsenic	Barium		
	Beryllium	Cadmi um	Calcium	Chromium		
	Cobalt	Copper	Iron	Lead		
	Magnesium	Manganese	Mercury	Nickel		
	Potassium	Selenium	Silver	Sodium		
	Thatlium	Vanadium	Zinc			
2)	HAZARDOUS SUBSTANCE LIST VOLATILE ORGANIC COMPOUNDS					

(2-Butanone)

Total Xylenes

(Methyl-n-Butyl-Ketone)

Vinyl Acetate (Acetic Acid Vinyl Ester)

Thatlium	Vanadium	Zinc	
HAZARDOUS SUBSTANCE LIST VOLATILE ORGAN	1C COMPOUNDS		
Benzene	Bromodichloromethane (Dichlorobromomethane)	Bromoform (Tribromomethane)	Bromomethane (Methyl Bromide)
Carbon Tetrachloride (Trichloromethane)	Chlorobenzene	Chloroethane (Ethyl Chloride)	Chloroform (Tetrachloromethane)
Chloromethane (Methyl Chloride)	1,1-Dichloroethane (Ethylidine Chloride)	1,2-Dichloroethane (Ethylene [Di] Chloride)	trans 1,2-Dichloroethene (Acetylene Dichloride) (Total)
cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Methylene Chloride (Dichloromethane)
1,1,2,2-Tetrachloroethane	Toluene	1,1,1-Trichloroethane (Methyl Chloroform)	1,1,2-Trichloroethane
Trichloroethene	Vinyl Chloride (Chloroethylene)	Carbon Disulfide	1,2-Dichloropropane (Propylene Dichloride)
Acetone	Chlorodibromomethane (Dibromochloromethane)	1,1-Dichlorethylene (Vinylidene Chloride)	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) (Isopropylacetone) (Hexone)
2-Hexanone	Methyl Ethyl Ketone	Styrene	Tetrachloroethylene

(Vinyl Benzene)
(Phenylethylene)

Bromodichloromethane (Dichlorobromomethane)

Old Southington Landfill Southington, Connecticut

EPA Required HSL Analytical Parameters Page 2 of 3

3) OTHER HAZARDOUS SUBSTANCE LIST COMPOUNDS

Acenaphthene	Acenaphthylene	Aldrin	Anthracene
PCB - 1016	PCB - 1221	PCB - 1232	PCB - 1242
PCB - 1248	PCB - 1254	PCB - 1260	Benz(a)Anthracene
Benzo(b) Fluoranthene	Benzo(k)Fluoranthene	Benzoic Acid	Benzo(ghi)Perylene
Benzo(a)Pyrene	Benzyl Alcohol	Alpha - BHC	Beta - BHC
Delta - BHC	Gamma - BHC (Lindane)	bis-(2-chloroethoxy) Methane	bis-(2-chloroethyl) Ether (Dichlorethyl Ether)
bis(2-chloroisopropyl)Ether	bis(2-ethylhexyl)Phthalate (Di-Sec-Octyl Phthalate)	4-Bromophenyl Phenyl Ether	Butyl Benzyl Phthalate
Chlordane (Alpha & Gamma)	p-Chloroanilene	p-Chloro-m-cresol (6-chloro-m-cresol)	2-Chloronaphthalene

2-Chlorophenol

3) OTHER HAZARDOUS SUBSTANCE LIST COMPOUNDS (CONTINUED)

4-Chlorophenyl Phenyl Ether	Chrysene	o-Cresol (2-Methylphenol)	p-Cresol (4-Methylphenol)
4,4'- DDD	4,4'- DDE	4,41 - DDT	Dibenzo(a,h)anthrancene
Dibenzofuran	di-n-Butyl Phthalate	Cyanide	Phenol
3,3'- Dichlorobenzidine	2,4-Dichlorophenol	Dieldrin	Diethyl Phthalate
2,4-Dimethylphenol	Dimethyl phthalate	4,6-Dinitro-o-Cresol (4,6-Dinitro-2-Methylphenol)	2,4 - Dinitrophenol
2,4 - Dinitrotouluene	2,6 - Dinitrotoulene	di-n-Octyl Phthalate	di-n-Propylnitrosamine (N-Nitrosodipropylamine)
Endosulfan Sulfate	Endosulfan I (alpha)	Endosulfan II (beta)	Endrin
Endrin Ketone	Fluoranthene	Fluorene	Heptachlor

Old Southington Landfill Southington, Connecticut

EPA Required HSL Analytical Parameters Page 3 of 3

Heptachlor Epoxide	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene
Hexach Loroethane	Indeno (1,2,3-cd) Pyrene	Isophorone	Methoxychlor
2 - Methyl Naphthalene	Naphthalene	m-Nitroanilene	o - Nitroanilene
p - Nitroanilene	Nitrobenzene	2 - Nitrophenol	4 - Nitrophenol
N - Nitrosodiphenylamine	Pentachlorophenol	Phenanthrene	Pyrene
Toxaphene (Chlorinated Camphene)	1,2,4-Trichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol
1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	
INDICATOR PRARMETERS		•	
Sodium	chloride	alkalinity	nitrate
nitrite	hardness	ammonia	COD
Total Disolved Solids	рн	specific conductance	

4)

TABLE 21

SURFACE WATERS, SEDIMENTS, SHALLOW WELLPOINTS: TEST PARAMETERS Page 1 of 2

ID NO.	PURPOSE	FREQUENCY OF SOIL SAMPLING	ORIGINAL TESTING ⁽¹⁾	TESTING CHANGE	RATIONALE
SW-1	surface water characterization	NA	V, M, I	No	Expected minimal landfill impact downgradient of landfill near MW-5; char. surface water quality by former well.
sw-2	surface water characterization	NA	HSL, I	No	Adjacent to landfill and existing industry; assess impact, consider risk assessment and potential remedial technologies.
SW-3 (Maple S	Delete t.)	NA	V, M, I	Delete	Off-site; downgradient; closer site testing more appropriate.
SW-4	surface water characterization	NA	V, M, I	HSL,I	Upgradient of landfill; background data to ID landfill impact by comparisons.
SW-5	surface water characterization	NA	V, M, I	HSL,I	Downgradient; discharge of Black Pond for impact assessment, risk characterization, and consideration of remedial technologies.
SW-6	surface water characterization	NA	HSL, I	V,M,I	Downgradient; evaluate discharge to wetlands, surface water downstream quality for risk assessment.
sw-7	surface water characterization	NA		HSL,I	Surface water characterization in southern depression draining to Black Pond.
SED-1	sediment characterization	0-2 feet below grade	V, M	No	Sediment quality at Black Pond outfall for risk assessment.
SED-2	sediment characterization	0-2 feet below grade	V, M	No	Sediment quality due to groundwater discharge for risk assessment. Relocate to SW-6.
SED-3	sediment characterization	0-2 feet below grade	None	HSL	Adjacent to landfill and industry; assess impact, consider risk assessment.
SED-4	sediment characterization	0-2 feet below grade	HSL	No	Background datapoint; establish non-impact quality for comparison.
SED-5	sediment characterization	0-2 feet below grade	HSL	No	At Black Pond drainage for impact assessment, risk consideration and potential remedial technologies.
SED-6	sediment characterization	0-2 feet below grade	HSL	delete	Downstream/downgradient sediment characterization: Better characterized by other locations.
SED-7	sediment characterization	0-2 feet below grade	None	HSL	Sediment characterization in southern depression . draining to Black Pond.

ų (

E

1 (

. .

•

.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SURFACE WATERS, SEDIMENTS, SHALLOW WELLPOINTS: TEST PARAMETERS Page 2 of 2

ID NO.	PURPOSE	FREQUENCY OF SOIL SAMPLING	ORIGINAL TESTING ⁽¹⁾	TESTING CHANGE	RATIONALE
WP-1	shallow groundwater/ surface water characterization	NA	SL, I	VM	Adjacent to discharge of Black Pond; provide risk assessment data, and info to consider remedial technologies.
WP-2	shallow groundwater/ surface water characterization	NA	V, M, I	VM	Background upgradient chemistry of groundwater discharge and groundwater/surface water relationship.
WP-3	shallow groundwater/ surface water characterization	NA	HSL	VM	Assess potential contaminants entering Black Pond from landfill and surface water/groundwater relationship.
WP-4	shallow groundwater/ surface water characterization	NA	V, M, I	VM	Impact of landfill in southern depression draining to Black Pond; characterize groundwater as discharged to surface water.
WP-5	shallow groundwater/ surface water characterization	NA	V, M, I	VM	Assess groundwater/surface water relationship and downgradient chemistry by discharge.

Notes:

- As proposed per Work Plan.
 Modified based on Phase 1A data.

HSLs Indicates HSL compounds used for this study.

V Indicates volatile compounds.

- Indicates metals.
- Indicates indicator parameters.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SURFACE WATER AND SEDIMENT SAMPLE COLLECTION SEQUENCE

SAMPLE CONTAINERS AND COLLECTION SEQUENCE	SAMPLE PRESERVATIVE	PARAMETERS ANALYZED
	SURFACE WATER SA	MPLES
2 40-ml clear glass vials	HCL	volatile organic compounds
125-ml amber glass	H ₂ SO ₄	chemical oxygen demand
1-liter plastic	HNO ₃	total metals (sample unfiltered)
1-liter plastic	HNO ₃	hardness, mg, Na
1-liter plastic	NaOH	cyanide
1-liter plastic	Unpreserved	alkalinity, chloride, conductivity, nitrate, nitrite, pH, total dissolved solids
1-liter plastic	H₂SO₄	ammonia
1-liter amber glass	Unpreserved	PCBs and pesticides
2-liter amber glass	methanol rinse	acid, base, neutral semi-volatiles
	STREAM SEDIMENT SA	AMPLES
3 40-ml clear glass	None	volatile organic compounds
1 125-cc plastic	None	metals
1 125-cc plastic	None	cyanide
1 500-cc glass	None	PCBs and pesticides

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

APPROXIMATE BEDROCK ELEVATIONS AND CORE DESCRIPTIONS SUMMARY

LOCATION	APPROXIMATE DEPTH TO BEDROCK (FT)	APPROXIMATE BEDROCK ELEVATION (FT MSL)	DESCRIPTION CORE INTERVAL & RQD ¹
CW-15	59	86	* No RQD
CW-20	50.5	92.3	* No RQD
Municipal Well No. 5	63	87	Sandstone & Shale No RQD
LW-103D	78	73	Red-brown Sandstone 78'-85'RQD = 30%
GZ-1	89	120	* No RQD
TW-19	7.5	151	Gray Traprock RQD = 80%
GZ-5D	135	28	Red-brown Sandstone 135'-138' = 0% 138'-144': RQD = 57%
GZ-7D	150	6	Red Sandstone 150'-155': RQD = 33%
GZ-11D	73	75	Red Sandstone 76'-81': RQD = 47%
GZ-12D	96	60	Red Sandstone 96-101': RQD = 15% 181'-185: RQD = 52%
GZ-13D	176	4	Red-brown Sandstone 176'-181': RQD = 10% 181'-185': RQD = 63%
GZ-14D	148	28	Red Sandstone 151'-156': RQD = 14%

Notes:

(1) RQD = Rock Quality Designation

Bedrock not cored, no bedrock description available.

Elevation based upon drilling refusal.

MSL = Mean Sea Level

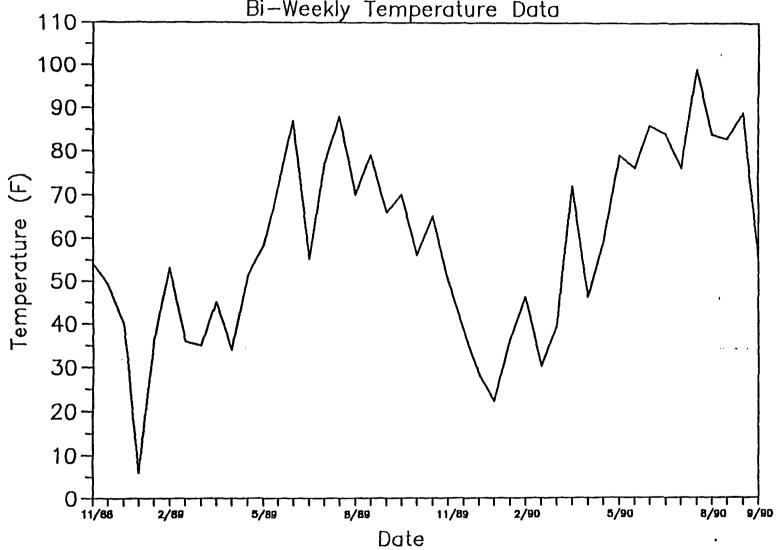
OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

NATURE AND EXTENT OF REFUSE IN BORINGS

BORING	DEPTH OF REFUSE (FT.BELOW GRADE)	THICKNESS OF REFUSE (DEPTH IN FT.)	DESCRIPTION OF REFUSE
TB-4	3-12	9	10-20% wood, rubber, plastic, metal, stained soils, paper
TB-5	5-10.2	5.2	20-25% metal, wood, stained soils
TB-7	10-41	31	20-35% paper, wood, metal, glass; oil odor
TB-10	2-14	12	30% wood, paper, glass, metal
TB-13	4-7	3	100% wood and glass
TB-14	3-11.5	8.5	100% wood; creosote odor (R.R. ties)
TB-24	2-9	7	80% wood, paper, metal, glass, plastic, rubber
TB-25	2-20	18	20-35% wood, metal, glass, plastic, paper
TB-26	3-18	15	80% wood, metal, glass, plastic, paper
B-1	6-?	Unknown	petroleum odor, metal scraps
B-2	6-?	Unknown	petroleum odor, refuse
B-3	11-?	Unknown	fibrous material, glass, metal
B-4	8-?	Unknown	wood, glass, plastic
GZ-4	8-25	17	ceramics, plastic, glass, metal
LW-101S	3-18	15	plastic, wood, metal, organic odor
GZ-7S	5-15	10	wood, styrofoam, metal, wire

TABLE 25

WATER BUDGET ANALYSIS OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT


PARAMETERS	JAN	FEB	MAR	APR	HAY	JUNE	JULY	AUG	SEP	ост	NOV	DEC	YEARLY TOTAL
Temperature ¹ (°F)	27.5	29.1	37.3	48.0	57.7	66.7	72.1	70.8	63.4	53.1	43.0	31.5	
Precipitation (P)(inches)	3.96	3.52	4.67	4.52	3.90	3.33	3.78	4.23	4.50	4.03	4.59	2.10	47.12
Potential Evapotranspiration ² (PE)(inches)	0	0	.62	1.68	3.40	4.57	5.38	5.00	3.43	2.00	0.74	0	26.82
P-PE (inches)	3.96	3.5	4.05	2.84	0.50	-1.24	-1.60	-0.77	1.07	2.03	3.84	2.10	
Soil Moisture Storage (ST)(inches) ⁴	4.0	4.0	4.0	4.0	4.0	2.76	1.16	0.39	1.46	3.49	4.0	4.0	
Soil Moisture Changes (ST)(inches) ⁴	0	0	0	0	0	-1.24	-1.60	-0.77	1.07	2.03	0.51	0	
Actual Evapotranspiration ⁵ (AE)(inches)	0	0	0.62	1.68	3.40	4.57	5.38	5.00	3.43	2.00	0.74	0	24.71
Water Deficit (D)(inches) ⁶	0	0	0	0	0	0	1.84	1.01	0	0	0	0	2.85
Water Surplus (S)(inches) ⁷	3.96	3.52	4.05	2.84	0.50	0	0	0	0	0	3.33	2.10	20.30
Runoff (inches) ⁸	1.19	1.06	1.22	0.85	0.15	0	0	0	0	0	1.00	0.63	6.10
Revised surplus (S _r)(inches) ⁹	2.77	2.46	2.83	0.99	0.35	0	0	0	0	0	2.33	1.47	13.20

NOTES:

- 1. Temp data: Mount Carmel Station; 1951-1980 data. Precipitation data: Shuttle Mountain Reservoir Station; 1951-1980 data.
- 2. Estimated based on mean monthly temperature per Mather & Rodriguez, OP.C.T.
- 3. Based on estimated soil moisutre storage of 4-inches in two feet of cover, if 4.0≥ST≥); ST₂ = ST₁ΔST₂.

 4. If P<PE and ST₁1>|(P-PI)₂|, ΔST₂ = (P-PE)₂. If P<PE and ST₁ < |(P-PE)₂|, ΔST₂ = ST₁. If P>PE and ST₁ <4.0, ΔST₂ = (P-PE) or 4.0 -ST₁, whichever is less.
- 5. If P>PE; AE=PE, if P<PE; AE-P-AST
- 6. D ≈ PE-AE
- 7. S = P-AE-AST; assumes no runoff. This represents a conservative maximum infiltration rate.
- 8. Runoff is estimated to average about 30% overall. Higher runoff rates will occur when the ground is frozen, and on paved and built upon areas. Lower runoff rates would occur in unvegitated pervious soils.
- 9. S_r = revised water surplus which could infiltrate the landsurface taking into account a 30% runoff factor from precipitation.

Table 26Old Southington Landfill
Southington, Ct
Bi—Weekly Temperature Data

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

PHYSICAL AND CHEMICAL PROPERTIES OF SITE COMPOUNDS Page 1 of 2

COMPOUND	SOLUBILITY (mg/l)	VAPOR PRESSURE (mmHg)	HENRY'S LAW CONSTANT (atm-m3/mol)	Koc (ml/g)	LOG Kow	
VOLATILE ORGANIC COMPOUNDS						
Vinyl chloride	2.67 E+03	2.66 E+03	8.19 E-02	57	1.54	
Acetone	1.00 E+06	2.70 E+02	2.06 E-05	2.2	-0.24	
Carbon disulfide	2.94 E+03	3.60 E+03	1.23 E-02	54	2.00	
Cis 1,2-dichloroethene	3.5 E+03	2.1 E+02	4.08 E-03	49	1.86	
Trans 1,2-dichloroethene	6.30 E+03	3.24 E+02	6.56 E-03	59	0.48	
Chloroform	8.20 E+03	1.51 E+02	2.87 E-03	31	1.97	
2-butanone (MEK)	2.68 E+05	7.75 E+01	2.74 E-05	4.5	0.26	
Trichloroethene	1.10 E+03	5.79 E+01	9.10 E-03	126	2.38	
Benzene	1.75 E+03	9.52 E+01	5.59 E-03	83	2.12	
Tetrachloroethene	1.50 E+02	1.78 E+01	2.59 E-02	364	2.6	
1,1,2,2-tetrachloroethane	2.90 E+03	5.00 E+00	3.81 E-04	118	2.39	
Toluene	5.35 E+02	2.81 E+01	6.37 E-03	300	2.73	
Chlorobenzene	4.66 E+02	1.17 E+01	3.72 E-03	330	2.84	
Ethylbenzene	1.52 E+02	7.00 E+00	6.43 E-03	1,100	3.15	
Styrene			•			
Total xylenes	1.98 E+02	1.00 E+01	7.04 E-03	240	3.26	
INORGANICS						
Aluminum (Al)						
Arsenic (As)		•••	•••	•		
Barium (Ba)						
Calcium (Ca)	•••					
Cadmium (Cd)						
Chromium (Cr)						
Copper (Cu)	***					
Iron (Fe)						
Potassium (K)						
Magnesium (Mg)	•••					
Manganese (Mn)	•••					
Nickel (Ni)						
Lead (Pb)					•	
Antimony (Sb)		1.00 E+00				
Vanadium (V)		***				
Zinc (Zn)			***			
Mercury (Hg) Inorganic		2.00 E-03				
Cobalt (Co)	•••				•••	

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

PHYSICAL AND CHEMICAL PROPERTIES OF SITE COMPOUNDS Page 2 of 2

COMPOUND	WATER SOLUBILITY (mg/l)	VAPOR PRESSURE (mmHq)	HENRY'S LAW CONSTANT (atm-m3/mol)	Koc (ml/g)	LOG Kow
=======================================			•		
PESTICIDES/PCBs					
Heptachlor Epoxide		***	* * *	•••	
PCB-1242	3.10 E-02	7.70 E-05	1.07 E-03	530,000	6.04
PCB-1260	6.20 E+02	4.00 E-01	1.88 E-04	20	2.81
PCB-1254	3.1 E-02	7.7 E-05	1.07 E-03	530,000	6.04
4,4-DDT	5.0 E-03	5.5 E-06	5.13 E-04	243,000	6.19
Endrin Ketone	2.5 E-01	2.7 E-07	4.0 E-07		5.6
Alpha-chlordane	5.6 E-01	3.0 E-06	4.85 E-05	44,000	5.54
Gamma-chlordane	5.6 E-01	3.0 E-06	4.85 E-05	44,000	5.54
ACID & BASE/NEUTRAL EXTRACTAB	LES				
Naphthalene	3.13 E+01	4.92 E-02	•••	•••	3.37
2-Methylnaphthalene					
Acenaphthene	3.42 E+00	1.55 E-03	9.20 E-05	4,600	4.00
Dibenzofuran					• • •
Acenaphthylene	3.93 E+00	2.90 E-02	1.48 E-03	2,500	3.70
Fluorene	1.69 E+00	7.10 E-04	6.42 E-05	7,300	4.20
Phenanthrene	1.00 E+00	6.80 E-04	1.59 E-04	14,000	4.46
Anthracene	4.50 E-02	1.95 E-04	1.02 E-03	14,000	4.45
di-n-Butyl Phthalate	1.30 E+01	1.00 E-05	2.82 E-07	170,000	3.80
Fluoranthrene	3.06 E-01	5.00 E-06	6.46 E-06	38,000	4.90
Pyrene	1.32 E-01	2.50 E-06	5.04 E-06	38,000	4.88
Butyl Benzyl Phthalate					
Benzo(a)Anthracene	5.70 E-03	2.20 E-08	1.16 E-06	1,380,000	5.60
bis(2-ethylhexyl)Phthalate	8.50 E-01	2.00 E-07	• • • •		7.00
Chrysene	1.80 E-03	6.30 E-09	1.05 E-06	200,000	5.61
Benzo(b)Fluoranthene	1.40 E-02	5.00 E-07	1.19 E-05	550,000	6.06
Benzo(k)Fluoranthene	4.30 E-03	5.10 E-07	3.94 E-05	550,000	6.06
Benzo(a)Pyrene	1.20 E-03	5.60 E-09	1.55 E-06	550,000	6.06
Indeno(1,2,3-cd)Pyrene	5.30 E-04	1.00 E-10	6.86 E-08	1,600,000	6.50
Benzo(g,h,i)Perylene	7.00 E-04	1.03 E-10	5.34 E-08	1,600,000	6.51
Acenaphthal ene		•••			•••

NOTES:

- = Data not available.

Sources:

- 1. Chemical, Physical, and Beological Properties of Compounds Present at Hazardous Waste Sites (Final Report, September 17, 1985. Prepared by Clement Associates, Inc. for U.S. EPA).
- 2. Superfund Public Health Evaluation Manual, October 1986. Prepared by ICF, Inc. for U.S. EPA. Appendix A-1.
- 3. Multimedia Environmental Goals for Environmental Assessment, August 1979, U.S. EPA, Industrial Environmental Research Lab.
- 4. Water-related Environmental Fate of 129 Priority Pollutants, December 1979, U.S. EPA, Office of Water Planning and Standards.
- 5. Controlling Volatile Emissions at Hazardous Waste Sites, Ehrenfeld, et. al., Pollution Technology Review No. 126. Noyes Publication 1986.

ANTICIPATED BACKGROUND LEVELS OF METALS IN SOILS Concentration Range in Natural Soils (ppm or %)

ELEMENT	FULLER	BOWEN	FRIBERG ET. AL.	USGS	OLD SOUTHINGTON LANDFILL BACKGROUND
Aluminum	3.2-6.9%	1-30%	-	0.7->10%	0.4-0.8%
Antimony	_	2-10		< 1-8.8	24-71
Arsenic	1-50	0.1-4.0	40	< 0.1-73	ND
Barium	100-5,000	100-3,000	_	10-1,500	NO
Beryllium	0.2-10	0.1-40		<1-7	ND
Cadmium	0.2	0.01-0.7	<1		2.5-3.5
Calcium	0.3-1.5%	0.7-50%		0.01-28%	<0.19%
Chromium	5-1,000	5-3,000	0-250	1-1,000	7-12
Cobalt	1-50	1-40		<0.3-70	ND
Copper	2-100	2-100	_	< 1-700	<10
Iron	1.4-4.2%	0.7-55%	_	0.01->10%	0.65-1.0%
Lead	2-200	2-200	2-200	< 10-300	3.0-4.2
Magnesium	0.2-0.6%	600-6,000	_	0.005-5%	0.18-0.30%
Manganese	200-5,000	100-4,000	-	<2-7,000	130-230
Mercury	0.02-0.2	0.01-0.3		0.01-3.4	ND
Nickel	5-500	10-1,000		< 5-700	<12.4
Potassium	0.75-2.4%	0.04-3%	-	0.005-3.7%	<0.13%
Selenium	0.1-2.0	0.01-2	1-10	<0.1-3.9	ND
Silver	0.1-1.0	0.01-5	0-50	-	ND
Sodium	0.15-1.5%	750-7,500		< 0.05-5%	ND
Thallium	_	-		_	ND
Vanadium	20-500	20-500	_	<7-300	14-20
Zinc	10-300	10-300	-	< 5-2,900	16-28

NOTES:

- 1. Indicates no data reported. Concentrations in ppm unless indicated as percent (%).
- References: Fuller Movement of Selected Metals, Asbestos, and Cyanide in Soil: Applications to Waste Disposal Problems by Wallace H. Fuller (EPA-600/2-77/020)/ Bowen HJ. M. Bowen, "Toxic Elements in Biochemistry," Academic Press, N.Y., 1966. Friberg et. al. Handbook on the Toxicology of Metals, Lars Friberg, Gunnar F. Nordberg and Velimir B. Vouk, eds., Elsevier/North Holland Biomedical Press, Amsterdam, 1979. USGGS Hansford Shacklette and Josephine BOergen, "Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States: (USGS Paper 1270, 1984).
- 3. USGS data from eastern U.S.
- Old Southington Landfill background levels developed from results of 3 soil samples upgradient of landfill.
- ND = Not Detected

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SURFACE WATER ANALYTICAL RESULTS TOTAL HSL METALS (in ug/l = ppb)

ELEMENT	SWS-SW1-010 SW-1	sws-sw2-010 sw-2	SW-6	sw-5	SW-5 (DUP)	sws-sw7-010 sw-7	sws-sw4-010 sw-4
Aluminum	114J	ND	203	124J	256	4810	111J
Antimony	ND	78.1J	ND	ND	ND	ND	ND
Barium	311	262	156J	171J	185J	583	84.5J
Cadmium	ND	ND	ND	ND	ND	20.7	ND
Calcium	67400J	22000	55400J	20600J	20900J	73900J	20300J
Chromium	ND	12.1J	ND	ND	ND	25.9J	ND
Copper	16.9J	15.2J	11.13	8.5J	11.4J	45.6	6.9J
Iron	9620J	1960J	1910J	2010J	2750J	70900J	666J
Lead	ND	3.8J	ND	ND	ND	65.4J	ND
Magnesium	11200	10100	8600	7920	7950	11900	5870
Manganes e	5580J	1000	733J	757J	1050J	2200J	212J
Mercury	0.90	ND	ND	ND	ND	ND	ND
Nickel	ND	ND	ND	ND	ND	58.2	ND
Potassium	4670J	8340	1780J	6880	6940	7110	5370
Silver	ND	18.1	ND	ND	ND	ND	ND
Socium	29700J	28900	12200J	26600J	26500J	29400J	24900J
Vanadium	ND	ND	ND	ND	ND	18.2J	ND
Zinc	ND	17.5J	ND	ND	ND	295J	ND

NOTES:

J = Approximate value

ND = Not detected above CRDL (or corrected to ND due to blank).

ppb = parts per billion

Old Southington Landfill Southington, Connecticut

SURFACE WATER ANALYTICAL SUMMARY HSL SEMI-VOLATILE ORGANIC COMPOUNDS

Sample Id

 Surface Water Location
 OSLSWSSW4
 OSLSWSSW9

 Sample Date
 SW-4
 SW-5 (DUP)

 06/29/90
 06/29/90
 06/29/90

PARAMETERS UNITS

Naphthalene ug/l 3j 8j

Notes:

J = Tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantitated value is less than the method quantitation limit.

ug/l = micrograms per liter = ppb, parts per billion

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SURFACE WATER ANALYTICAL SUMMARY HSL VOLATILE ORGANIC COMPOUNDS

_	Sample Id Surface Water Location Sample Date		OSLSWSSW1 SW-1 06/29/90	oslswssw2 sw-2 06/29/90	oslswssw5 sw-5 06/29/90	OSLSWSSW9 SW-5 (DUP) 06/29/90	oslswssw6 sw-6 06/29/90	OSLSWSSW7 SW-7 06/29/90
	PARAMETERS	UNITS						
	Acetone	<i>=========</i> ug/l	BMDL		13	3j	3J	21
	Carbon disulfide	ug/l	6	4J	5	23	BMDL	12
	Chlorobenzene	ug/l	BMOL	BMDL	BMOL	BMDL	BMDL	2J
_	Toluene	ug/l	BMDL	1BJ	BMDL	BMDL	BMDL	2J
_	Xylenes	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	3J

NOTES:

B = Parameter detected in laboratory blank BMDL = Below Minimum Detection Limits

J = Tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit.

ug/l = micrograms per liter = ppb: parts per billion

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SURFACE-WATER ANALYTICAL SUMMARY INDICATOR PARAMETERS

S ple Number								
Surface Water Location		OSLSWSSW1	OSLSWSSWZ	OSL SUSSW4	osl swssw5	OSLSWSSW9	OSLSWSSW6	OSLSWSSW7
Sample Date		SW-1	SW-2	SW-4	SW-5	SW-5 (DUP)	sw-6	SW-7
		06/29/90	06/29/90	06/29/90	06/29/90	06/29/90	06/29/90	06/29/90
•								
PARAMETERS	UNITS							
: :::::::::::::::::::::::::::::::::::::	*=======	**********	*********	***********		**********	**********	************
alinity as CaCO3	mg/l	190	110	66	88	90	130	210
Ammonia (N)	mg/l	0.87	8.4	0.73	4.6	5.1	0.47	1
Calcium (Ca)	mg/l	65.0	20.0	19.0	20.0	20.0	49.0	69.0
(emical Oxygen Demand (COD)	mg/l	24	150	20	28	32	8.1	77
Moride (Cl)	mg/l	38	51	46	42	46	21	33
Hardness as CaCO3	mg/l	210	88.0	69.0	80.0	82.0	160	220
l gnesium (Mg)	mg/l	11.0	9.2	5.4	7.4	7.7	8.3	11.0
trate (N)	mg/l	0.48	0.30	0.51	0.89	0.53	1.1	0.26
Sodium (Na)	mg/l	29.0	28.0	24.0	26.0	27.0	12.0	29.0
enecific conductance	uMhos/cm	670	450	320	450	420	420	720
tal Dissolved Solids (TDS)	mg/l	360	230	170	220	220	270	390
₽	SU	7.21	7.41	7 .79	7.29	7.22	7.58	6.67

TES

mq/l = milligrams per liter = ppb: parts per billion
thos/cm = micromohs per centimeter

❤️ = Standard Units

TABLE 33

Old Southington Landfill Southington, Connecticut

STREAM SEDIMENT ANALYTICAL SUMMARY HSL SEMI-VOLATILE ORGANIC COMPOUNDS

Sample Id		OSL SEDSED3	OSL SEDSED4	OSL SED SED 5	OSL SEDSED7	OSL SEDSED8
Sediment Sample		SED-3	SED-4	SED-5	SED-7	SED-7 (DUP)
Sample Date		07/03/90	07/03/90	07/03/90	07/03/90	07/03/90
PARAMETERS	UNITS					
*======================================	********		=======================================		*===========	E=====================================
Benzoic Acid	ug/kg	ND	ND	ND	ND	320J
Naphthalene	ug/kg	ND	ND	ND	1100J	3200J
2-Methylnaphthalene	ug/kg	ND	ND	ND	280J	580J
Acenaph thene	ug/kg	ND	ND	2200J	57J	310J
Acenaphthylene	ug/kg	ND	ND	450J	120J	410J
Dibenzofuran	ug/kg	ND	ND	550J	43J	160J
Fluorene	ug/kg	ND	ND	2000J	110J	370J
Phenanthrene	ug/kg	ND	370J	18000J	310J	850J
Anthracene	ug/kg	ND	ND	3700J	45J	180J
Di-n-butylphthalate	ug/kg	ND	ND	ND	ND	3900J
Fluoranthene	ug/kg	240J	660J	21000J	400J	1200J
Pyrene	ug/kg	260J	580J	22000J	370J	1400J
Butylbenzylphthalate	ug/kg	ND	ND	770J	ND	ND
Benzo(a)Anthracene	ug/kg	150J	9001A	8000J	220J	570J
Chrysene	ug/kg	160J	490J	10000J	310J	910J
bis(2-Ethylhexyl)Phthalate	ug/kg	ND	890J	930J	160J	320J
Benzo(b)Fluoranthene	ug/kg	ND	ND	6700Y	230J	910J
Benzo(k)Fluoranthene	ug/kg	ND	ND	8500J	290J	590J
Benzo(a)Pyrene	ug/kg	ND	ND	9100J	240J	870J
Indeno(1,2,3,-cd)Pyrene	ug/kg	ND	ND	7800J	210J	770J
Dibenzo(a,h)Anthracene	ug/kg	ND	ND	890J	ND	ND
Benzo(g,h,i)Perylene	ug/kg	ND	ND	5500J	180J	620J
TOTAL PAHS:		810	3590	128,090	4,675	18,440

NOTES:

ND = Compound not detected

J = Estimated value

ug/kg = micrograms per kilogram

Old Southington Landfill Southington, Connecticut

STREAM SEDIMENT ANALYTICAL SUMMARY HSL VOLATILE ORGANIC COMPOUNDS

Sample Id Sediment Sample Sample Date		OSLSEDSED1 OSLSEDSEI SED-1 SED-3 07/03/90 07/03/90		OSL SEDSED4 SED-4 07/03/90	OSLSEDSED7 SED-7 07/03/90	OSLSEDSED8 SED-7 (DUP) 07/03/90
PARAMETERS	UNITS					
*****************	*******	=======================================	2222222222222	22222222222	EEE:=========	
Acetone	ug/kg	ND	BMOL	ND	ND	ND
Benzene	ug/kg	BMDL	BMDL	BMDL	9J	32J
2-Butanone	ug/kg	BMDL	BHOL	BMDL	110J	BMDL
Carbon disulfide	ug/kg	BMDL	BMOL	210	BMDL	BMDL
Chlorobenzene	ug/kg	BMDL	BMOL	BMDL	120J	370J
Chloromethane	ug/kg	4.1	BMDL	BMDL	BMDL	57J
1,1-Dichloroethene	ug/kg	BMDL	BMDL	ND	ND	ND
1,2-Dichloroethene (total)	ug/kg	BMDL	BMOL	BMOL	81	BMDL
Methylene chloride	ug/kg	BMOL	71	BMOL	BMDL	BMDL
Toluene	ug/kg	ND	ND	ND	ND	ND
Xylene (total)	ug/kg	BMDL	BMDL	BMDL	360J	1500J
TOTAL VOCs	ug/kg	4	7	210	607	1959

Notes:

BMDL = Below Minimum Detection Limit

J = Tentatively identified compound where a 1:1 response is assumed, or when the spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit.

ug/kg = micrograms per kilogram

ND = Compound data rejected due to detection in blank or other data validation problems.

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

STREAM SEDIMENT ANALYTICAL RESULTS HSL METAL COMPOUNDS (in mg/kg)

ELEMENT	SED1	SED2	SED3	SED4	SED5	SED7	SED8 (SED7 DUP)
==========	######################################	**********	*********		:325522232555	***********	
Aluminum	3550	6000	4200	1520	6140	6030	8560
Arsenic	ND	ND	ND	ND	0.8J	1.2J	1.7J
Barium	36.1J	75.1J	40.7J	158J	36.7J	118J	156J
Beryllium	ND	0. 3 9J	0.27J	ND	0.37J	0.42J	0.62J
Cadmium	2.7J	3.7J	2.6J	ND	2.7J	8.2J	12.2J
Calcium	1510	1160J	834J	12400	612J	5880	5250
Chromium	11.0J	13.1J	7.6J	ND	12.43	24.1J	35.4J
Cobalt	ND	ND	ND	ND	4.43	ND	ND
Copper	22.7J	21.43	14.5J	21.8J	9.51	42.1J	57.2J
Iron	7980	12000	5830	8090	10500	29200	45000
Lead	67.5J	33.2J	11.2J	ND	3.61	83.2J	109J
Magnes i um	1700	2770	1690	1050J	2780	2260	3180
Manganese	145	632J	97.8J	1970J	176J	300J	449J
Nickel	7.6J	13.1J	9.5J	ND	10.3J	22.8J	33.4J
Potassium	652	927J	752J	ND	966	865J	1270J
Sodium	ND	162J	ND	5331	ND	174J	277J
Vanadium	15.3J	20.71	14.5J	ND	26.0J	23.03	31.4J
Zinc	82.7J	79.3J	35.1J	60.4J	32.3J	2443	340J

NOTES:

J = Approximate value

ND = Not detected above CRDL (or corrected to ND due to blank).

Old Southington Landfill Southington, Connecticut

Test Boring Analytical Summary Volatile Organic Compounds Reduced Data Page 1 of 2

Sample Location			DECONBLA	TB10	TB10	TB13	TB15	TB20	TB24	TB18	TB18	
Sample ID No.			DECONBLA	TB10B20	TB40B20(1)	TB13A1	TB15A5	TB20A7	TB24A5	TB1889	TB2889(2)	
Sample Date			1/27/90	01/26/90	01/26/90	01/18/90	01/19/90	1/19/90	1/25/90	1/19/90	1/19/90	
PARAMETER	UNITS	CRDL*										
1,1,2,2-Tetrachloroethane	ug/kg	5	######################################	****	42243643642		**********	********		******	********	
1,2-Dichloroethene (total)	ug/kg	5		2700J	1200J							
2-Butanone	ug/kg	10				· 14J	17J					
Chlorobenzene	ug/kg	5										
Chloroform	ug/kg	5										
Ethylbenzene	ug/kg	5		2400J	8901				3700			
Methylene chloride	ug/kg	5										
Styrene	ug/kg	5										
Tetrachloroethene	ug/kg	5		13000J	5900J							
Toluene	ug/kg	5		1400J	530J	4	11			2	3	
Trichloroethene	ug/kg	5		8900	7200	1						
Vinyl Chloride	ug/kg	10				3						
Xylene (total)	ug/kg	5		10000J	3900J				7000			
**********************		******	Z2=Z3=Z3=Z1	.=======	*========	*********		2222222			********	
TOTAL VOCS	ug/kg		ND	38,400	19,620	22	28	ND	10700	2	3	

NOTES:

- (1) Sample TB4B20 is a field duplicate of TB10B20 collected from borehole TB-10 at a depth of 20-22 feet below the ground surface.
- (2) Sample TB2889 is a field duplicate of TB1889 collected from borehole TB18 at a depth of 9-11 feet below the ground surface.
- J = Indicates an estimated value. The flag is used for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit or when variations in instrument response factor indicates that quantation may be biased high or low.

CRDL* = Contract required detection limit

Old Southington Landfill Southington, Connecticut

Test Boring Analytical Summary Volatile Organic Compounds Reduced Data Page 2 of 2

Sample Location			TB25	TB25	TB26A	TB26A	TB3	TB4	TB4	TB7SA	TRIPBLB
Sample ID No.			TB25A10	TB25C20	TB26AA12	TB36AA12(3)	TB3A7	TB34A11	TB4C9	TB7SAA15	TRIPBLB
Sample Date			1/27/90	01/27/90	01/25/90	01/25/90	01/24/90	1/24/90	1/24/90	1/27/90	1/27/90
PARAMETER	UNITS	CRDL*									
4 4 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	######################################	*******	=======================================	*********	2122222		:2525\$2525		*******	********	*********
1,1,2,2-Tetrachloroethane	ug/kg	5								_	
1,2-Dichloroethene (total)	ug/kg	5			41					2	
2-Butanone	ug/kg	10									
Benzene	ug/kg	5			51	1					
Carbon disulfide	ug/kg	5			4.1	1					
Chlorobenzene	ug/kg	5							1300	2	
Chloroform	ug/kg	5									
Ethylbenzene	ug/kg	5	15000	310000				1800	1200		
Methylene chloride	ug/kg	5									
Styrene	ug/kg	5		19000	2						
Tetrachloroethene	ug/kg	5									
Toluene	ug/kg	5	2400	48000	28J						
Trichloroethene	ug/kg	5			51	2	2			1	
Xylene (total)	ug/kg	5	18000	210000	71			11000	5900	7	
**********************	*******	*******	:::::::::::::::::::::::::::::::::::::::		========	*===**==		E228233355	=======	********	
TOTAL VOCS	ug/kg		35400	587000	55	4	2	12800	8400	12	MO

NOTES:

- (3) Sample TB36AA12 is a field duplicate of TB26AA12 collected from borehole TB-26 at a depth of 12-14 feet below the ground surface.
- J = Indicates an estimated value. The flag is used for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit.

Old Southington Landfill Southington, Connecticut Test Boring Analytical Summary Semi-Volatile Organic Compounds Reduced Data

Sample Location			TB-13	TB26	TB36	TB7SA	188	TB10	TB40	TB6	TB11	TB24
Sample ID No.			TB13A1	TB268B11	TB368811	TB7SAB15	TB8A10	TB10C22	TB40C22 (1)	TB6812	TB11A5	TB24A5
Sample Date			1/18/90	01/25/90	01/25/90	01/27/90	01/23/90	1/25/90	1/26/90	1/25/90	1/23/90	1/25/90
PARAMETER	-	CRDL*										
Acenaphthene	ug/kg	330	:=========	280J	**********		:======== 42J	********	1=32282222	ESTILISTE:	********	*********
Acenaphthylene	ug/kg	330 330	160J	2003		1400	1901					
		330 330	1201				5007 1 2 07					
Anthracene	ug/kg			5/01	(70)	2700J		740.	700.			
Benzo(a)Anthracene	ug/kg	330	6601	540J	470J	4200J	6301	310J	3001			64J
Benzo(b)Fluoranthene	ug/kg	330	440J	580J	290J	33001	660J	220J	370J			54J
Benzo(k)Fluoranthene	ug/kg	330	850J	740J	470J	4300J	480J	460J	480J			56J
Benzo(a)Pyrene	ug/kg	330	720J	5601		4400J	610					59J
Benzo(g,h,i)Perylene	ug/kg	330	500J			2600J	430					
Bis(2-ethylhexyl)phthalate	ug/kg	330				38000						
Butylbenzyl phthalate	ug/kg	330				9601		460	360	100		74
Chrysene	ug/kg	330	730J	710J	310J	5000	690	450J	5 8 0J			831
Di-n-butyl phthalate	ug/kg	330									60J	
Dibenzofuran	ug/kg	330				1100J	71J					
Fluoranthene	ug/kg	330	1400J	1200J	8901	11000	1300		910J			130J
Fluorene	ug/kg	330	70J	2401		2300J	170J	780J				
Indeno(1,2,3-cd)Pyrene	ug/kg	330	560J			30001	470					
2-Methylnaphthalene	ug/kg	330		370J		2300J	45J					
Naphthalene	ug/kg	330		1500J		7100						60
Phenanthrene	ug/kg	330	750J	740J	370J	13000	1100	5 3 0J	600J			110J
Pyrene	ug/kg	330	1200J	6 9 0J	490J	7800J	1500	520J	650J			130J
252228222222222222222222222222	:::::::::::	******	*******	*********	:========	*********	========	*******	######################################	:======	=======================================	********
TOTAL SEMI-VOCS	ug/kg		8160	8150	3290	115410	8588	3730	4250	100	60	820

NOTES:

- (1) Sample TB40C22 is a field duplicate of TB10C22 collected from borehole TB-10 at a depth of 22-27 feet below the ground surface.
- J = Indicates an estimated value. The flag is used for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit or when variations in instrument response factor indicates that quantation may be biased high or low.

Old Southington Landfill Southington, Connecticut

Test Boring Analytical Summary Metals and Cyanide Reduced Data Page 1 of 2

T811

TB12

TB13

TB15

TB18

TR18

TB10

TB10

TB20

182

Sample ID No.			TB10C22	TB40C22 (2	TB11A5	TB12A5	TB13A1	TB15A5	TB18A5	TB28A5 (3)	TB2A5	TB20A77
Sample Date			1/26/90	01/26/90	01/23/90	01/23/90	01/18/90	01/19/90	01/19/90	01/19/90	01/24/90	01/19/90
PARAMETER	UNITS	CRDL* (1)										
2222222222222222222222	**********	*******	********	*******		*********	*********	*********	********	*******	********	*******
Aluminum, total	mg/kg	7.8	5610.00J	5300.00J	8050.00	9160.00	6060.00	10100.00	4980.00	5150.00	4420.00	8030.00
Antimony	mg/kg	1.3			28.10J				71.50J	46.80J	24.00J	57.704
Arsenic, total	mg/kg	0.89										
Barium, total	mg/kg	7.8				73.30		46.00				79.40
Cadmium, total	mg/kg	0.89	5.60J	4.90J	3.50	4.20	5.80J	4.20	3.40	2.70	2.50	4.40
Calcium, total	mg/kg	16.0							1450.00J	1970.00J		2200.00J
Chromium, total	mg/kg	11.0	15.10J	13.90J	12.20	14.90	23.70	14.00	9.50	9.70	7.20	16.10
Cobalt, total	mg/kg	3.3										
Copper, total	mg/kg	1.1	44.70J	40.00	7.20	11.10	35.80	9.10	7.60	10.10		13.00
Cyanide	mg/kg	2.2		3.70								
Iron, total	mg/kg	8.9	8820.00J	8870.00J	9120.00	13300.00	11300.00	10600.00	7850.00	9590.00	6630.00	11600.00
Lead, total	mg/kg	0.44	27.60J	30.50J	41.0J	7.70J	78.80	6.40N	4.20J	2.401	2.90J	2.401
Magnesium, total	mg/kg	7.6	2270.00	2220.00	2950.00	4890.00	2790.00	3000.00	2770.00	3140.00	1770.00	4730.00
Manganese, total	mg/kg	0.67	99.20J	8.80J	229.00J	425.004	147.00	229.00	131.00J	150.00J	202.00J	299.004
Mercury, total	mg/kg	0.18	0.25									
Nickel, total	mg/kg	4.0			10.00	15.604	25.50	14.60	11.10J	12.40		17.90J
Potassium, total	mg/kg	33.0			1290.00	2320.00				1090.00		1660.00
Silver, total	mg/kg	2.0										
Vanadium, total	mg/kg	2.9	18.00	17.70	19.00	29.70	27.20	24.50	18.70	20.70	14.20	26.60
Zinc, total	mg/kg	1.6	104.00	92.70	27.40	41.90J	81.70	33.50	25.10	28.30	16.70	39.80

NOTES:

· · · .

Sample Location

- (1) CRDL values based on instrument detection limit.
- (2) Sample TB40C22 is a field duplicate of TB10C22 collected from borehole TB10 at a depth of 22-27 feet below the ground surface.
- (3) Sample TB28A5 is a field duplicate of TB18A5 collected from borehole TB18 at a depth of 5-7 feet below the ground surface.
- J = Indicates an estimated value. The flag is used for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit or when variations in instrument response factor indicates that quantation may be biased high or low.
- N = Spike sample recovery not within control limits.

Old Southington Landfill Southington, Connecticut

Test Boring Analytical Summary Metals and Cyanide Reduced Data Page 2 of 2

TB26B

TB3

TB4

TB7SA

188

TB26B

TB24

TB25

Sample ID No.			TB24A5	TB24B13	TB268A7	TB368A7 (2)	TB3A7	TB34A11 (3)	TB4011	TB6A10	TB7SAB15	TB8A10
Sample Date			1/25/90	01/27/90	01/25/90	01/25/90	01/24/90	01/24/90	01/24/90	01/25/90	01/27/90	01/23/90
PARAMETER	UNITS	CRDL* (1)										
******************		*******	********	********	********	*********	*******	**********	*******			*********
Aluminum, total	mg/kg	7.8	4210.00J	7370.00J	8150.00J	8050.001	17400.00	5850.00	7140.00	5260.00J	7260.00J	6520.00
Antimony	mg/kg	1.3					21. 8 0J	36.10J				
Arsenic, total	mg/kg	0.89				3.20						
Barium, total	mg/kg	7.8		53.00	139.00	177.00	107.00			70.40	94.90	
Cadmium, total	mg/kg	0.89	31.0J	6.30K	14.40J	17.20	6.80	6.90	13.40	4.00J	9.201	3.60
Calcium, total	mg/kg	16.0		1520.00	2820.00	7620.00		3410.00J	1530.00J	9100.00	3110.00	2490.00J
Chromium, total	mg/kg	11.0	8.20J	27.80J	87.60	53.50	17.80	232.00	62.10	11.10J	18.30J	12.40
Cobeit, total	mg/kg	3.3			18.90	23.30		46.70				
Copper, total	mg/kg	1.1	5.80	56.00	293.00	186.00	9.70	81.30	38.30	9.00	25.90	20.50
Cyanide	mg/kg	2.2										
Iron, total	mg/kg	8.9	6120.00J	12500.00J	24200.00J	21000.00J	15200.00	16600.00	12700.00	9280.00J	22600.00J	9760.00
Lead, total	mg/kg	0.44	6.90J	48.00J	153.00J	277.00J	10.504	112.00J	42.10J	1.90J	143.00J	5.90J
Magnesium, total	mg/kg	7.6	1480.00J	2290.00	3980.00	4170.00J	3770,00	2090.00	2200.00	3470.00	2860.00	3610.00
Manganese, total	mg/kg	0.67	368.00J	213.00J	312.00J	503.00J	939.00J	202.00J	172.00J	255.00J	330.00J	373.00J
Hercury, total	mg/kg	0.18	0.25	0.16J							0.291	
Nickel, total	mg/kg	4.0		28.70	91.00	77,00	18.00J	306.00	38.40			11.20J
Potassium, total	mg/kg	33.0								1310.00	1470.00	
Silver, total	mg/kg	2.0		3.10		7.50J					2.50J	
Vanedium, total	mg/kg	2.9	15.40	23.60	38.30	40.30	32.50	17.50	16.90	20.00	20.50	21.30
Zinc, total	mg/kg	1.6	32.1J	163.00	354.00	674.00J	409.00	290.00	174.00	26.50J	229.00	30.80J

NOTES:

Sample Location

- (1) CRDL values based on instrument detection limit.
- (2) Sample TB36Ba7 is a field duplicate of TB26BA7 collected from borehole TB26 at a depth of 7-9 feet below the ground surface.
- (3) Sample TB34A11 is a field duplicate of TB4D11 collected from borehole TB4 at a depth of 11-13 feet below the ground surface.
- J = Indicates an estimated value. The flag is used for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit or when variations in instrument response factor indicates that quantation may be biased high or low.
- N = Spike sample recovery not within control limits.

TABLE 39

Old Southington Landfill Southington, Connecticut

Test Boring Analytical Summary PCB/Pesticide Reduced Data

Sample Location	TB24	TB26B	TB26B	TB7SA	TB13
Sample ID No.	TB24A5	TB26BB11	TB368B11 (1)	TB7SAB15	TB13A1
Sample Date	1/25/90	01/25/90	01/25/90	01/27/90	01/18/90

PARAMETER	UNITS	CRDL*					
********************	=======================================	********	*======	. 23 2 2 2 2 2 2 2 2 2 2	=========	********	*******
4,4'-DDT	ug/kg	16	19				
Heptachlor epoxide	ug/kg	8					8.0J
Endrin ketone	ug/kg	16					5.5J
Alpha-chlordane	ug/kg	80					15.0J
Gamma chlordane	ug/kg	80					19.0J
Aroclor-1242	ug/kg	80				2000J	
Aroctor-1254	ug/kg	16				560J	
Aroclor-1260	ug/kg	16		1100J	310J		
******************	========	**********	222222	********	######################################	******	******
TOTAL PCBS	ug/kg			1100J	310	2560	
TOTAL PESTICIDES	ug/kg		19				47.5

NOTES:

- (1) Sample TB368B11 is a duplicate of sample TB268B11.
- J = Indicates an estimated value. The flag is used for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit or when variations in instrument response factor indicates that quantation may be biased high or low.

TABLE 40

Old Southington Landfill Southington, Connecticut

Test Boring Analytical Summary Btu, TOC and pH Reduced Data

Sample Location	TB10	TB10	TB25	TB26B	TB4	TB4	TB6	TB7SA
Sample ID No.	TB10A15	T840A15 (1)	TB25C20	TB26BB11	TB4D11	TB4A5	TB6812	TB7SAC30
Sample Date	1/26/90	01/26/90	01/27/90	01/25/90	01/24/90	01/24/90	01/25/90	01/27/90

PARAMETER	UNITS								
Total Organic Carbon (TOC)	mg/kg	NA NA	NA	760	2000	NA	NA	NA NA	NA
рH	su	7.2	7.1	NA	NA	7.9	NA	8.3	8.2
Btu	Btus/lb	NI	NI	NA	NA	NA	NI	NI	WI

NOTES:

mg/kg = milligrams per kilogram

SU = Standard Units NA = Not Analyzed

NI = Not Ignitable

(1) Sample TB40A15 is a field duplicate of TB10A15 collected from borehole TB10 at a depth of 15-17 feet.

TABLE 41

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SITE SOILS PHYSICAL PARMATER SUMMARY TABLE

LOCATION	SAMPLE DEPTH (ft)	TOC (ug/g)	RELATIVE SOIL MOISTURE CONTENT
	TOC (TOTAL (ORGANIC CARBON)	
TB-25	20-24	760	Unsaturated
TB-26	11-13	2000	Saturated
GZ-5S	10-12	170	Unsaturated
GZ-5S (dup)	10-12	380	Unsaturated
GZ-12D	5-10	500	Unsaturated
GZ-12D	90-93	840	Saturated
	CEC (CATION E	XCHANGE CAPACITY)	
GZ-13D	155-160	30.1	Saturated
GZ-14M	80-85	25.0	Saturated

TABLE 42

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SCREENING RESULTS FIELD GROUNDWATER SUMMARY Page 1 of 2

LOCATION	pH: S.U.	SPECIFIC CONDUCTANCE: UMHOS/CM
MENARD	7.2	245
GZ-1	8.0	215
GZ-2	6.7	155
GZ-3	7.0	270
CW-20	7.6	385
CW-15	7.9	260
GZ-11D	7.5	350
GZ-11S	5.8	290
LW-103D	7.9	220
LW-103M	7.8	315
LW-103S	7.1	320
GZ-13D	7.5	280
GZ-13M	7.9	150
GZ-13S	6.8	90
GZ-14D	8.3	200
GZ-14M	8.7	90
GZ-14S	7.1	265
GZ-12D	7.6	195
GZ-12M	7.4	290
TW-18	5.7	120
· LW-15M	7.6	280
LW-15S	6.2	440
LW-15D	8.0	260
LW-17D	7.2	230

TABLE 42

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SCREENING RESULTS FIELD GROUNDWATER SUMMARY Page 2 of 2

LOCATION	pH: S.U.	SPECIFIC CONDUCTANCE: UMHOS/CM
LW-17M	8.1	225
TW-17	6.2	360
GZ-5D	7.6	260
GZ-5M	7.2	600
GZ-5\$	5.8	75
C&E	7.5	420
GZ-4M	7.5	260
GZ-4D	7.0	400
GZ-4S	6.0	330
GZ-7D	8.2	225
GZ-7M	7.8	280
GZ-7S	6.3	700
TB-7\$	6.8	600
B-3	6.8	1650
SW-4	8.0	310
SW-1	7.1	500
SW-6	7.8	335
SW-5	7.9	350
SW-2	7.8	400
SW-7	7.0	600
· WP-4	4.8	170
WP-2	6.3	140
WP-3	6.1	500
WP-5	6.9	425
WP-1	6.5	380

<u>NOTE</u>: Although four readings were taken for each parameter, the last reading is shown, as it is most likely representative of a stabilized value.

TABLE 43

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL VOLATILE ORGANIC COMPOUNDS Page 1 of 3

Ţ

			•									
Sample Id		OSLGWSB3*	OSLGWSB13*	OSLGWSCE	OSLGWSGZ11S	OSLGWSGZ12M	OSLGWSGZ14D	OSLGWSGZ24D	OSLGWSGZ14M	GWSGZ11D	CRQL	(a)
Well Number		B-3	B-3 (DUP)	C & E	GZ-11S	GZ-12M	GZ-14D	GZ-14D (DUP)	GZ-14M	GZ-11D		
Sample Date		06/28/90	06/28/90	06/25/90	06/14/90	06/20/90	06/19/90	06/19/90	06/19/90			
PARAMETERS	UNITS	3										
Acetone	ug/l	BMDL	ND	BMDL	ND	BMDL	ND	BMDL	BMDL	ND	10	
Benzene	ug/l	663	2J	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL.	BMDL	5	
Carbon disulfide	ug/l	BMDL	3J	BMDL	BMDL	BMDL	BMDL	BMDL	8	BMDL	5	
Chlorobenzene	ug/l	9J	23	BMDL	BMDL	6	BMDL	BMDL	BMDL	BMDL	5	
Chloroethane	ug/l	96	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10	
Chloroform	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	18	21	BMDL	BMDL	5	
1,1-Dichloroethane	ug/l	15 J	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5	
1,1-Dichloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5	
1,2-Dichloroethene	ug/l	22J	BMDL	8J	BMDL	BMDL	8	10	BMDL	BMDL	5	
Ethylbenzene	ug/l	710J	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5	
Methylene Chloride	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5	
Tetrachloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	22	28	BMDL	BMDL	5	
Toluene	ug/l	120J	1J	BMDL	ND	BMDL	BMDL	BMDL	BMDL	BMDL	5	
1,1,1-Trichloroethane	e ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	2J	3J	BMDL	BMDL	5	
Trichloroeth ene	ug/l	BMDL	BMDL	2J	BMDL	BMDL	49	60	BMDL	BMDL	5	
Vinyl chloride	ug/l	160	BMDL	3J	BMDL	5J	BMDL	BMDL	BMDL	BMDL	10	
Xylenes	ug/l	480J	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5	

Old Southington Landfill Southington, Connecticut

COMPOUNDS HSL Volatile Tymir Cpds
Page 2 of 3

Sample Id Well Number Sample Date		OSLGWSGZ2 GZ-2 06/12/90	OSLGWSGZ4M GZ-4M 06/26/90	OSLGWSGZ4S GZ-4S 06/26/90	OSLGWSGZ5D GZ-5D 06/25/90	OSLGWSGZ5M GZ-5M 06/25/90	OSLGWSGZ7D GZ-7D 06/27/90	OSLGWSGZ7S GZ-7S 06/27/90	OSLGWSM MENARD 06/07/90	GWSLORI LORI	CRQL (a)
PARAMETERS	UNITS	1									
Acetone	ug/l	BMDL	BMDL	ND	======== ND	BMDL	ND	BMDL	======== BMDL	BMDL	10
Benzene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	4J	BMDL	BMDL	5
Carbon disulfide	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	2J	BMDL	BMDL	5
Chlorobenzene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	22	BMDL	ND	5
Chloroethane	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Chloroform	ug/l	BMDL	BMDL	BMDL	BMDL	86	BMDL	BMDL	2J 🕤	BMDL	5
1,1-Dichloroethane	ug/l	BMDL	2J	3J	BMDL	6J	BMDL	BMDL	BMDL	BMDL	5
1,1-Dichloroethene	ug/l	ND	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
1,2-Dichloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	540	BMDL	BMDL	(7)	BMDL	5
Ethylbenzene	ug/l	BMDL	BMDL	1J	BMDL	BMDL	BMDL	7	BMDL	BMDL	5
Methylene Chloride	ug/l	BMDL	BMDL	BMDL	BMDL	ND	BMDL	BMDL	BMDL	BMDL	5
Tetrachloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	62	BMDL	BMDL	BMDL	BMDL	5
Toluene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	2J	BMDL	BMDL	5
1,1,1-Trichloroethane	e ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Trichloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	580 ·	BMDL	BMDL	1	BMDL	5
Vinyl chloride	ug/l	BMDL	BMDL	170	BMDL	94	BMDL	BMDL	BMDL	BMDL	10
Xylenes	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	200	BMDL	BMDL	5

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL VOLATILE ORGANIC COMPOUNDS Page 3 of 3

Sample Id Well Number Sample Date		OSLGWSLW103D LW-103D 06/15/90	OSLGWSLW103S LW-103S 06/15/90	OSLWPSWP2 WP-2 07/02/90	OSLWPSWP3 WP-3 07/02/90	OSLWPSWP4 WP-4 07/02/90	OSLWPSWP5 WP-5 07/02/90	CRQL (a)
	UNITS							
Acetone	ug/l	**************************************	========== ND	ND	======== BMDL	:: 260	========= ND	10
Benzene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Carbon disulfide	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Chlorobenzene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Chloroethane	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Chloroform	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
1,1-Dichloroethane	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
1,1-Dichloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
1,2-Dichloroethene	ug/l	BMDL	BMDL	ND	1J	9J	ND	5
Ethylbenzene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Methylene Chloride	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Tetrachloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	BMD L	BMDL	5
Toluene	ug/l	BMDL	BMD L	BMDL	BMDL	ND	ND	5
1,1,1-Trichloroethane	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
~ Trichloroethene	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Vinyl chloride	ug/l	BMDL	BMDL	BMDL	BMDL	4J	BMDL	10
Xylenes	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5

NOTES:

ug/l = Micrograms per liter

BMDL = Below minimum detection limit

NS = No standard set for this parameter

ND = Compound data rejected due to detection in blank or other data validation problems.

J = Estimated value

(a) Contract Required Detection Limit

* When sample B-3 (dup) was preserved by acidification to pH2 gas bubbles were generated within the water. Since these gas bubbles could purge VOCs a second sample (B-3) was collected without acidic preservation. Sample B-3 is considered more representative of groundwater quality at this location.

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL SEMI-VOLATILE ORGANIC COMPOUNDS

Sample Id Well Number Sample Date		OSLGWSB3 B-3 06/28/90	OSLGWSB13 B-3 06/28/90	OSLGWSGZ7S GZ-7S O6/27/90	USGZ1009 GZ-1	CRQL (a)
PARAMETERS	UNITS					
=======================================			:=========	==========	-=========	
Acenaphthene	ug/l	BMDL	BMDL	31J	BMDL	50
Anthracene	ug/l	BMDL	BMDL	12J	BMDL	10
Benzo(a)anthracene	ug/l	BMDL	BMDL	5J	BMDL	10
Benzoic acid	ug/l	BMDL	BMDL	BMDL	BMDL	50
Chrysene	ug/l	BMDL	BMDL	5J	BMDL	10
Dibenzofuran	ug/l	BMDL	BMDL	28J	BMDL	10
Diethyl phthalate	ug/l	BMDL	BMDL	BMDL	BMDL	10
2,4-Dimethylphenol	ug/l	5J	5J	4J	BMDL	10
Fluoranthene	ug/l	BMDL	BMDL	23J	BMDL	10
Fluorene	ug/l	BMDL	BMDL	32J	BMDL	10
2-Methylnaphthalene	ug/l	BMDL	BMDL	42J	BMDL	10
Naphthalene	ug/l	13	10	95J	2J	10
Pyrene	ug/l	BMDL	BMDL	15 ม	BMDL	10
Phenanthrene	ug/l	BMDL	BMDL	60J	BMDL	10
Benzo(b)fluoranthene	ug/l	BMDL	BMDL	3J	BMDL	10
Benzo(a)pyrene	ug/l	BMDL	BMDL	2J	BMDL	10

NOTES:

BMDL = Below Minimum Detection Limit

J = Tentatively identified compound where a 1:1 response is assumed, or when the spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit.

ug/l = Micrograms per liter

NS = No standard set for this parameter

(a) Contract Required Detection Limit

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY PCB AND PESTICIDE COMPOUNDS

Sample Id Well Number Sample Date		OSLGWSGZ7M GZ-7M 06/27/90	OSLGWSGZ7S GZ-7S 06/27/90	OSLGWSTB7S TB-7S 06/28/90	CRQL (a)
PARAMETERS	UNITS				
Aroclor-1248	ug/l	BMDL	BMDL	1.4	0.5
Aroclor-1254	ug/l	BMDL	8.3J	BMDL	1.0
Lindane	ug/l	0.026J	BMDL	BMDL	0.05

NOTES:

BMDL ≈ Below Minimum Detection Limit

J = Tentatively identified compound where a 1:1 response is assumed, or when the spectral data indicate the presence of a compound that meets the identification criteria but the quantified value is less than the method quantitation limit.

ug/l = Micrograms per liter

NS = No standard set for this parameter.

(a) Contract Required Detection Limit

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL DISSOLVED METALS AND CYANIDE Page 1 of 7

Sample Id Well Number Sample Date		OSLGWSB3 B-3 06/28/90	OSLGWSB13 B-3 (DUP) 06/28/90	OSLGWSCE C & E 06/25/90	OSLGWSCW15 CW-15 06/13/90	OSLGWSCW20 CW-20 06/13/90	OSLGWSGZ1 GZ-1 06/12/90	OSLGWSGZ11D GZ-11D 06/14/90	CRQL (a)
PARAMETERS	UNITS								
Aluminum (Al)	ug/l	BMDL	BMDL	NA	NA	 NA	1370J	ND	200
Antimony (Sb)	ug/l	60.1J	BMDL	NA	NA	NA	BMDL	BMDL	60
Arsenic (As)	ug/l	7.20	7.43	NA	NA	NA	BMDL	BMDL	10
Barium (Ba)	ug/l	1720	1740	NA	NA	NA	268	233	200
Beryllium (Be)	ug/l	BMDL	BMDL	NA	NA	NA	BMDL	BMDL	5
Cadmium (Cd)	ug/l	6.00	5.60	NA	NA	NA	5.00	BMDL	5
Calcium (Ca)	ug/l	38400	39200	52000	50000	77000	39900	54500	5000
Cobalt (Co)	ug/l	BMDL	BMDL	NA	NA	NA	BMDL	BMDL	50
Copper (Cu)	ug/l	ND	ND	NA	NA	NA	ND	ND	25
Cyanide (CN)	ug/l	10.1	6.00	NA	NA	NA	BMDL	BMDL	10
Iron (Fe)	ug/l	23200	28400	NA	NA	NA	ND	ND	100
Lead (Pb)	ug/l	BMDL	ND	NA	NA	NA	ND	ND	3
Magnesium (Mg)	ug/l	38800	39800	11000	8000	10000	6270	7 570	5000
Manganese (Mn)	ug/l	286	304	NA	NA	NA	ND	126	15
Mercury (Hg)	ug/l	BMDL	BMDL	NA	NA	NA	BMDL	BMDL	0.2
Nickel (Ni)	ug/l	34.1J	29.9J	NA	NA	NA	BMDL	BMDL	40
Potassium (K)	ug/l	55000	55900	NA	NA	NA	BMDL	971J	5000
Silver (Ag)	ug/l	13.9J	BMDL	NA	NA	NA	BMDL	BMDL	10
Sodium (Na)	ug/l	61000	62900	18000	8800	15000	ND	12200J	5000
Thallium (Ti)	ug/l	BMDL	BMDL	NA	NA	NA	BMDL	BMDL	10
Vanadium (V)	ug/l	BMDL	BMD L	NA	NA	NA	BMDL	BMDL	50
Zinc (Zn)	ug/l	ND	ND	NA	NA	NA	ND	ND	20

TABLE 46

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL DISSOLVED METALS AND CYANIDE Page 2 of 7

Sample Id Well Number Sample Date		OSLGWSGZ11S GZ-11S 06/14/90	OSLGWSGZ12D GZ-12D 06/20/90	OSLGWSGZ12M GZ-12M 06/20/90	OSLGWSGZ13D GZ-13D 06/18/90	OSLGWSGZ13M GZ-13M 06/18/90	OSLGWSGZ13S GZ-13S 06/18/90	OSLGWSGZ14D GZ~14D 06/19/90	CRQL (a)
PARAMETERS	UNITS								
Aluminum (Al)	ug/l		BMDL	BMDL	BMDL	64.3J	BMDL	BMDL	200
Antimony (Sb)	ug/l	BMDL	60						
Arsenic (As)	ug/l	BMDL	10						
Barium (Ba)	ug/l	410	123J	252	ND	ND	ND	ND	200
Beryllium (Be)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	1.60J	BMDL	5
Cadmium (Cd)	ug/l	9.20	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Calcium (Ca)	ug/l	18400	30300	50800	51300	26800	9220	33900	5000
Cobalt (Co)	ug/l	BMDL	50						
Copper (Cu)	ug/l	ND	5.50J	10.6J	ND	ND	ND	ND	25
Cyanide (CN)	ug/l	BMDL	10						
Iron (Fe)	ug/l	21700	BMDL	20.5J	BMDL	24.3J	BMDL	63.6J	100
Lead (Pb)	ug/l	ND	BMD L	BMDL	BMDL	2.10J	BMDL	BMDL	3
Magnesium (Mg)	ug/l	5200	6880	8720	7340	2700J	2790J	4200J	5000
Manganese (Mn)	ug/l	342	50.7	1120	6.50J	3.00J	3.20J	3.80J	15
Mercury (Hg)	ug/l	BMDL	BMDL	BMDL	ND	ND	ND	ND	0.2
Nickel (Ni)	ug/l	BMDL	40						
Potassium (K)	ug/l	3000J	1460J	BMDL	BMDL	927	BMDL	BMDL	5000
Silver (Ag)	ug/l	BMDL	BMDL	BMDL	BMDL	10.8J	BMDL	BMDL	10
Sodium (Na)	ug/l	23900J	10400	12300	9970	6450	8380	9780	5000
Thallium (Tl)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	1.20J	10
Vanadium (V)	ug/l	BMDL	BMD L	BMDL	BMDL	BMDL	BMDL	BMDL	50
Zinc (Zn)	ug/l	ND	20						

TABLE 46

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL DISSOLVED METALS AND CYANIDE Page 3 of 7

Sample Id Well Number Sample Date		OSLGWSGZ24D GZ-14D (DUP) 06/19/90	OSLGWSGZ14M GZ-14M 06/19/90	OSLGWSGZ14S GZ-14S 06/19/90	OSLGWSGZ17D GZ-17D 06/22/90	OSLGWSGZ17M GZ-17M 06/22/90	OSLGWSGZ2 GZ-2 06/12/90	OSLGWSGZ22 GZ-2 (DUP) 06/12/90	CRQL (a)
PARAMETERS	UNITS								
Aluminum (Al)	ug/l	BMDL	65.4J	BMDL	BMDL	BMDL	ND	ND	200
Antimony (Sb)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	60
Arsenic (As)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Barium (Ba)	ug/l	169J	68.4J	82.6J	141J	111J	136J	178J	200
Beryllium (Be)	ug/l	BMDL	BMD1.	BMDL	BMDL	BMDL	BMDL	BMD L	5
Cadmium (Cd)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Calcium (Ca)	ug/l	33500	1890J	57800	39800	40700	22200	22200	5000
Cobalt (Co)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	50
Copper (Cu)	ug/l	ND	ND	ND	BMDL	BMDL	ND	BMDL	25
Cyanide (CN)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	8MDL	BMDL	10
Iron (Fe)	ug/l	21.3J	70.6J	BMDL	BMDL	BMDL,	ND	ND	100
Lead (Pb)	ug/l	BMDL	BMDL	BMDL	ND	BMDL	ND	ND	3
Magnesium (Mg)	ug/l	4180J	1890J	6930	753	7300	4900J	5010	5000
Manganese (Mn)	ug/l	3.90J	BMDL	10.8J	19.8	4.30	ND	ND	15
Mercury (Hg)	ug/l	BMDL	ND	BMDL	BMDL	BMDL	BMDL	BMDL	0.2
Nickel (Ni)	ug/l	BMDL	BMDL	BMDL	BMD L	BMDL	BMDL	BMDL	40
Potassium (K)	ug/l	879J	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5000
Silver (Ag)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Sodium (Na)	ug/l	9910	4260J	5410	7640	7600	ND	ND	5000
Thallium (Tl)	ug/l	BMDL	16.6J	BMDL	BMDL	BMDL	BMDL	BMDL	10
Vanadium (V)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	50
Zinc (Zn)	ug/l	ND	ND	214	ND	ND	165J	ND	20

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL DISSOLVED METALS AND CYANIDE Page 4 of 7

Sample Id Well Number		OSLGWSGZ3 GZ-3	OSLGWSGZ4D GZ-4D	OSLGWSGZ4M GZ-4M	OSLGWSGZ4S GZ-4S	OSLGWSG25D GZ-5D	OSLGWSGZ5M GZ-5M	OSLGWSGZ5S GZ-5S	CRQL (a)
Sample Date		06/13/90	06/26/90	06/26/90	06/26/90	06/25/90	06/25/90	06/25/90	
PARAMETERS	UNITS	3							
Aluminum (Al)	ug/l	ND	BMDL	BMDL	130J	BMDL	BMDL	BMDL	200
Antimony (Sb)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	60
Arsenic (As)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Barium (Ba)	ug/l	ND	73.9J	76.9J	134J	172J	1080	BMDL	200
Beryllium (Be)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Cadmium (Cd)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Calcium (Ca)	ug/l	46600	49800	42300	20500	35700	109000	9540	5000
Cobalt (Co)	ug/l	BMOL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	50
Copper (Cu)	ug/l	ND	BMDL	BMDL	ND	BMDL	ND	BMDL	25
Cyanide (CN)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Iron (Fe)	ug/l	ND	1190	103	17800	BMDL	ND	BMD L	100
Lead (Pb)	ug/l	ND	ND	ND	BMDL	BMDL	BMDL	BMDL	3
Magnesium (Mg)	ug/l	7390	9640	8140	7120	7690	20100	3040J	5000
Manganese (Mn)	ug/l	ND	320	1040	594	383	2300	33.0	15
Mercury (Hg)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	0.2
Nickel (Ni)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	40
Potassium (K)	ug/l	BMDL	4070J	916J	3580J	BMDL	ND	BMDL	5000
Silver (Ag)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	ND	BMDL	10
Sodium (Na)	ug/l	10000J	15600	8220	22500	17200	21100	3760J	5000
Thallium (Tl)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMD L	BMDL	10
Vanadium (V)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	50
Zinc (Zn)	ug/l	ND	ND	ND	ND	ND	ND	ND	20

TABLE 46

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL DISSOLVED METALS AND CYANIDE Page 5 of 7

Sample Id Well Number Sample Date		OSLGWSGZ7D GZ-7D 06/27/90	OSLGWSGZ7M GZ-7M 06/27/90	OSLGWSGZ7S GZ-7S 06/27/90	OSLGWSLORI LORI 07/05/90	OSLGWSLW103D LW-103D 06/15/90	OSLGWSLW103M LW-103M 06/15/90	OSLGWSLW103S LW-103S 06/15/90	CRQL (a)
PARAMETERS	UNITS							• • • • •	
Aluminum (Al)	ug/l	BMDL	######################################	BMDL	BMDL	*======== ND	========== BMDL	BMDL	======= 200
Antimony (Sb)	ug/l	BMDL	BMDL	BMDL	BMDL	65.6	BMDL	BMDL	60
Arsenic (As)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMD1.	10
Barium (Ba)	ug/l	135J	95.0J	312	138J	213	ND	ND	200
Beryllium (Be)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Cadmium (Cd)	ug/l	BMDL	BMDL	14.4	BMDL	BMDL	BMDL	BMDL	5
Calcium (Ca)	ug/l	34700	48000	67600	54400J	37200	55000	58200	5000
Cobalt (Co)	ug/l	BMDL	BMDL	21.8J	BMDL	BMDL	BMDL	BMDL	50
Copper (Cu)	ug/l	BMDL	ND	ND	5.10J	ND	ND	ND	25
Cyanide (CN)	ug/l	BMDL	BMDL	5.80	BMD L	BMDL	BMDL	BMDL	10
Iron (Fe)	ug/l	94.5J	31.30J	89800	2200J	BMDL	28.7J	22.8J	100
Lead (Pb)	ug/l	ND	ND	ND	ND	2.20J	BMDL	BMDL	3
Magnesium (Mg)	ug/l	6520	9020	12200	8750	6630	7560	7340	5000
Manganese (Mn)	ug/l	3.80J	1700	1640	214J	BMDL	BMDL	BMDL	15
Mercury (Hg)	ug/l	BMDL	BMDL	BMDL	BMDL	ND	ND	ND	0.2
Nickel (Ni)	ug/l	BMDL	BMDL	69.7	BMDL	BMDL	BMDL	BMDL.	40
Potassium (K)	ug/l	1320J	1390J	8570	1500J	1270J	BMDL	BMDL	5000
Silver (Ag)	ug/l	BMDL	BMDL	BMDL	BMDL	12.3J	BMDL	BMDL	10
Sodium (Na)	ug/l	8840	10000	6640	12800J	8760	8690	8970	5000
Thallium (Tl)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Vanadium (V)	ug/l	BMDL	BMDL	BMDL	BMDL	13.5J	BMDL	BMDL	50
Zinc (Zn)	ug/l	ND	ND	ND	ND	ND	ND	ND	20

TABLE 46

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL DISSOLVED METALS AND CYANIDE Page 6 of 7

Sample 1d Well Number Sample Date		OSLGWSLW15D LW-15D 06/21/90	OSLGWSLW15M LW15M 06/21/90	OSLGWSLW25M LW15M (DUP) 06/21/90	OSLGWSLW15S LW15S 06/21/90	OSLGWSM MENARD 06/07/90	OSLGWSTB7S TB-7S 06/28/90	OSLGWSTW18 TW-18 06/20/90	CRQL (a)
PARAMETERS	UNITS								
Aluminum (Al)	ug/l	BMDL	BMDL	BMDL	BMDL	ND	BMDL	BMDL	200
Antimony (Sb)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	60
Arsenic (As)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Barium (Ba)	ug/l	237	42.3J	41.1J	208	210	360	138J	200
Beryllium (Be)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Cadmium (Cd)	ug/l	BMDL	BMDL	BMDL	7.70	BMDL	10.7	BMDL	5
Calcium (Ca)	ug/l	50800	50500	49700	50700	36200	60700	12600	5000
Cobalt (Co)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	50
Copper (Cu)	ug/l	BMDL	BMDL	BMDL	ND	ND	ND	11.5J	25
Cyanide (CN)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	9.30	BMDL	10
Iron (Fe)	ug/l	BMDL	28.0J	51.4J	24300	1800	63800	1200J	100
Lead (Pb)	ug/l	BMDL	BMDL	BMDL	2.40J	10.5J	ND	ND	3
Magnesium (Mg)	ug/l	8840	8940	8800	14600	9220	5740	4320J	5000
Manganese (Mn)	ug/l	BMDL	19.3J	188J	1660	ND	1230	570	15
Mercury (Hg)	ug/l	1.60	ND	ND	ND	BMDL	BMDL	BMDL	0.2
Nickel (Ni)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	42.80	BMDL	40
Potassium (K)	ug/l	BMDL	BMDL	BMDL	ND	BMDL	4030J	BMDL	5000
Silver (Ag)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Sodium (Na)	ug/l	7930	7840	7930	9670	11600	54700	9920	5000
Thallium (Tl)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Vanadium (V)	ug/l	BMDL	BMDL	BMDL	BMDL	15.7J	BMDL	BMDL	50
Zinc (Zn)	ug/l	ND	ND	ND	ND	ND	ND	ND	20

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY HSL DISSOLVED METALS AND CYANIDE Page 7 of 7

Sample Id Well Number Sample Date		OSLWPSWP1 WP-1 07/02/90	OSLWPSWP2 WP-2 07/02/90	OSLWPSWP3 WP-3 07/02/90	OSLWPSWP4 WP-4 07/02/90	OSLWPSWP5 WP-5 07/02/90	OSLGWSTW117003 TW-17	CRQL (a)
•			01/02/90	01/02/90	07/02/90	01/02/90		
PARAMETERS	UNITS							
Aluminum (Al)	ug/l	BMDL	65.9J	99.6J	477	74.0J	BMDL	200
Antimony (Sb)	ug/l	BMDL	ND	ND	ND	BMDL	BMDL	60
Arsenic (As)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Barium (Ba)	ug/l	105J	BMDL	BMDL	BMDL	86.0J	152J	200
Beryllium (Be)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Cadmium (Cd)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	5
Calcium (Ca)	ug/l	31200J	8350J	5810J	5950J	40000J	37200	5000
Cobalt (Co)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	50
Copper (Cu)	ug/l	BMDL	5.70	11.6	30.7	BMDL	BMDL	25
Cyanide (CN)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
lron (Fe)	ug/l	15600J	419J	672J	2620J	9660J	21400J	100
Lead (Pb)	ug/l	BMDL	BMDL	BMDL	20.6J	BMDL	ND	3
Magnesium (Mg)	ug/l	6140	3840	7740	1100	8760	9120	5000
Manganese (Mn)	ug/l	1820J	210J	160J	546J	5240J	584	15
Mercury (Hg)	ug/l	BMDL	BMDL.	BMDL	BMDL	BMDL	BMDL	0.2
Nickel (Ni)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	40
Potassium (K)	ug/l	6390	3100	42300	10100	5420	BMDL	5000
Silver (Ag)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Sodium (Na)	ug/l	27400J	16900J	58700J	15300J	28200J	26700	5000
Thallium (Tl)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	10
Vanadium (V)	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	50
Zinc (Zn)	ug/l	ND	ND	ND	144J	ND	193	20

NOTES:

⁽a) Contract Required Detection Limit

BMDL = Below Minimum Detection Limit

ug/l = Micrograms per liter

NS = No standard set for this parameter

ND = Compound data rejected due to detection in blank or other data validation problems

NA = Not Analyzed

J = Estimated value

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY TOTAL METALS Page 1 of 6

Sample Id		OSLGWSB13	OSLGWSB3	OSLGWSCE	OSLGWSCW15	OSLGWSCW20	OSLGWSGZ1	OSLGWSGZ11D	OSLGWSGZ11S
Well Number		B-3 (dup)	B-3	C & E	CW-15	CW-20	GZ-1	GZ-11D	GZ-11\$
Sample Date		06/28/90	06/28/90	06/25/90	06/13/90	06/13/90	06/12/90	06/14/90	06/14/90
PARAMETERS	UNITS								
Aluminum, total	ug/l	59400J	150000J	 NA	NA NA	 NA	16500J	NA	NA
Antimony, total	ug/l	446J	841J	NA	NA	NA	BMDL	NA	NA
Arsenic, total	ug/l	38.9J	47.41	NA	NA	NA	4.30J	HA	NA
Barium, total	ug/l	11000J	19400J	NA	NA	NA	378	NA	NA
Beryllium, total	ug/l	4.401	9.901	NA	NA	NA	1.90J	NA	NA
Cadmium, total	ug/l	421J	9461	NA	NA	NA	8.20	NA	NA
Calcium (Ca)	ug/l	245000J	364000J	NA	NA	NA	53600	NA	NA
Chromium, total	ug/l	497J	1170J	NA	NA	NA	38.8J	NA	NA
Cobalt, total	ug/l	110J	25 3 J	NA	NA	NA	BMDL	NA	NA
Copper, total	ug/l	15500J	35500J	NA	NA	NA	57.5	NA	NA.
Iron, total	ug/l	517000J	1010000J	NA	NA	NA	18700	NA	NA
Lead, total	ug/l	8220J	15400J	NA	NA	NA	35.7J	NA	NA
Magnesium, total	ug/l	78200	97700	NA	NA	NA	16800	NA	NA
Manganese, total	ug/l	5220J	96001	NA	NA	NA	706	NA	NA
Mercury, total	ug/l	0.60	0.70	NA	NA	NA	BMDL	NA	NA
Nickel, total	ug/l	2000J	4890J	NA	NA	NA	45.1	NA	NA
Potassium, total	ug/l	71000	77600	NA	NA	NA	5000	NA	NA
Selenium, total	ug/l	11.1J	11.6J	NA	NA	NA	BMDL	NA	NA
Silver, total	ug/l	374J	902J	NA	NA	NA	BMDL	NA	NA
Sodium, total	ug/l	72800	73600	NA	NA	NA	8200J	NA	NA
Vanadium, total	ug/l	222J	484J	NA	NA	NA	51.8	NA	NA
Zinc, total	ug/l	17600J	38200J	NA	NA	NA	110J	NA	NA

Notes:

BMDL = Below Minimum Detection Limit
NA = Not Analyzed
ug/l = micrograms per liter

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY TOTAL METALS Page 2 of 6

Sample Id Well Number Sample Date		OSLGWSGZ12D GZ-12D 06/20/90	OSLGWSGZ12M GZ-12M 06/20/90	OSLGWSGZ13D GZ-13D 06/18/90	OSLGWSGZ13M GZ-13M 06/18/90	OSLGWSGZ13S GZ-13S 06/18/90	OSLGWSGZ14D GZ-14D 06/19/90	OSLGWSGZ14M GZ-14M 06/19/90	OSLGWSGZ14S GZ-14S 06/19/90	OSLGWSGZ24D GZ-14D (DUP) 06/19/90
PARAMETERS	UNITS						,,			
=======================================	=========	======================================	=======================================		:=============	=========	==========	=========	*******	=======
Aluminum, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium (Ca)	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver, total	ug/l	NA	NA	NA	NA	HA	NA	NA	NA	NA
Sodium, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium, total	ug/l	HA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, total	ug/l	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

NA = Not Analyzed

ug/l = micrograms per liter

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY TOTAL METALS Page 3 of 6

Sample Id Well Number		OSLGWSLW17D GZ-17D	OSLGWSLW17M GZ-17M	OSLGWSGZ2 GZ-2	OSLGWSGZ22	OSLGWSGZ3 GZ-3	OSLGWSGZ4D	OSLGWSGZ4M	OSLGWSGZ4S	OSLGWSTW17010
Sample Date		06/22/90	06/22/90	06/12/90	GZ-2 (DUP) 06/12/90	06/13/90	GZ-4D 06/26/90	GZ-4M 06/26/90	GZ-4S 06/26/90	TW-17
PARAMETERS	UNITS									
Aluminum, total	ug/l	2621	13100J	NA	NA	27300j	6880J	455J	25500J	36400J
Antimony, total	ug/l	BMOL.	BMDL	NA	NA	BMDL	BMDL	BMDL	BMDL	ND
Arsenic, total	ug/l	BMDL	BMDL	NA	NA	BMDL	BMDL	BMOL	4.60J	8.90J
Barium, total	ug/l	146J	272	NA	NA	790	160J	82.4J	299J	891
Beryllium, total	ug/l	BMOL	BMDL	NA	NA	2.00J	BMDL	BMDL	1.40J	3.00J
Cadmium, total	ug/l	BMDL	BMDL	NA	NA	15.4	BMDL	BMDL	10.4J	14.8
Calcium (Ca)	ug/l	38000	56100	NA	NA	55600	67000J	42800J	25500J	47400
Chromium, total	ug/l	BMDL	26.2J	NA	NA	51.3	19.7J	BMDL	54.5J	82.4
Cobalt, total	ug/l	BMDL	BMDL	NA	NA	25.5J	BMDL	BMOL	25.9J	33.2J
Copper, total	ug/l	BMOL	39.1	NA	NA	67.6	ND	ND	79.7J	139
Iron, total	ug/l	961J	17600J	NA	NA	37300	13200J	818J	40800J	61400J
Lead, total	ug/l	BMDL	ND	NA	NA	47.5J	6.90J	BMOL	54.1J	50.6
Magnesium, total	ug/l	7480	14800	NA	NA	20200	16800	8330	17600	23700
Manganese, total	ug/l	47.8	579	NA	NA	12800	817J	1070J	879J	1230
Mercury, total	ug/l	BMDL	BMDL	NA	NA	BMDL	BMOL	BMDL	BMDL	ND
Nickel, total	ug/l	BMDL	39.3	NA	NA	61.0	18.5J	BMDL	54.7J	61.1
Potassium, total	ug/l	BMDL	3710	NA	NA	8320	10200	ND	9020	5410
Selenium, total	ug/l	BMDL	BMDL	NA	NA	BMDL	BMDL	BMDL	BMDL	ND
Silver, total	ug/l	BMDL	BMDL	NA	NA	BMDL	9.30J	10.0J	9.30J	ND
Sodium, total	ug/l	7030	8210	NA	NA	12200J	23600	7950	25600	27200
Vanadium, total	ug/l	BMDL	42.4J	NA	NA	92.4	26.8J	BMDL	128J	282
Zinc, total	ug/l	ND	91.0	NA	NA	126J	ND	ND	218J	188

Notes:

BMDL = Below Minimum Detection Limit

NA = Not Analyzed

ug/l = micrograms per liter

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY TOTAL METALS Page 4 of 6

Sample Id		OSLGWSGZ5D	OSLGWSGZ5M	OSLGWSGZ5S	OSLGWSGZ7D	OSLGWSGZ7M	OSLGWSGZ7S	OSLGWSLORI	
Well Number		GZ-5D	GZ-5M	GZ-5S	GZ-70	GZ-7M	GZ-7S	LORI	
Sample Date		06/25/90	06/25/90	06/25/90	06/27/90	06/27/90	06/27/90	07/05/90	
PARAMETERS	UNITS								
222222222222222222									
Aluminum, total	ug/l	2050J	9430J	4090J	ND	12000J	41400J	NA	
Antimony, total	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	197J	NA	
Arsenic, total	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	9.70J	NA	
Barium, total	ug/l	210J	1210J	79.6J	159J	278J	850J	NA	
Beryllium, total	ug/l	BMDL	BMD L	BMDL	BMDL	1.10J	2.60J	NA	
Cadmium, total	ug/l	BMDL	9.30J	BMDL	BMDL	6.00J	62.9J	NA	
Calcium (Ca)	ug/l	41300J	118000J	13000J	40100J	52800J	97488J	NA	
Chromium, total	ug/l	BMDL	21.6J	14.8J	BMDL	35.2J	5931	NA	
Cobalt, total	ug/l	BMDL	BMDL	BMDL	BMDL	BMDL	1360J	NA	
Copper, total	ug/l	12.7J	29.0J	12.3J	ND	46.8J	461J	NA	
Iron, total	ug/l	2830J	12500J	5710J	773J	18300J	273000J	NA	
Lead, total	ug/l	3.10J	5.80J	5.20J	BMDL	60.4J	ND	NA	
Magnesium, total	ug/l	8980	25400	5440	7100	16000	25200	NA	
Manganese, total	ug/l	520J	2820J	279J	21.2J	2700J	6200	NA	
Mercury, total	ug/l	BMDL	BMDL	8MDL	BMDL	BMDL	BMDL	NA	
Nickel, total	ug/l	BMDL	25.1J	BMDL	BMDL	33.6J	1650J	NA	
Potassium, total	ug/l	ND	ND	ND	ND	5220	12600	NA	
Selenium, total	ug/l	BMDL	BMDL	BMDL	2.00J	BMDL	2.30J	NA	
Silver, total	ug/l	14.7J	8.00J	BMDL	ND	ND	91.50J	NA	
Sodium, total	ug/l	17300	21800	4470	7760	10500	7320	NA	
Vanadium, total	ug/l	BMDL	29.0J	12.9J	BMDL	54.4J	134ง	NA	
Zinc, total	ug/l	ND	ND	ND	ND	ND	3540J	NA	
•	-								

Notes:

BMDL = Below Minimum Detection Limit

NA = Not Analyzed

ug/l = micrograms per liter

TABLE 47

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY TOTAL METALS Page 5 of 6

;	
nei	c

Sample Id		OSLGWSLW103D	OSLGWSLW103M	OSLGWSLW103S	OSLGWSLW15D	OSLGWSLW15M	OSLGWSLW15S	OSLGWSGZ25M	OSLGWSM
Well Number		LW-103D	LW-103M	LW-103S	LW-15D	LW-15M	LW-158	LW-15M (DUP)	MENARD
Sample Date		06/15/90	06/15/90	06/15/90	06/21/90	06/21/90	06/21/90	06/21/90	06/07/90
PARAMETERS	UNITS								
	*********		=========	==========					==========
Aluminum, total	ug/l	NA	NA	NA	7200J	16800J	69500J	11200J	NA
Antimony, total	ug/l	NA	NA	NA	BMDL	BMDL	101	BMDL	NA
Arsenic, total	ug/l	NA	NA	NA	BMDL	BMDL	8.70J	BMDL	NA
Barium, total	ug/l	NA	NA	NA	383	224	776	212	NA
Beryllium, total	ug/l	NA	NA	NA	BMDL	1.30J	4.30J	BMDL	NA
Cadmium, total	ug/l	NA	NA	NA	BMDL	11.0	25 .3	9.40	NA
Calcium (Ca)	ug/(NA	NA	NA	54600	53200	63300	53100	NA
Chromium, total	ug/l	NA	NA	NA	15.2J	44.7J	138	34.5J	NA
Cobalt, total	ug/l	NA	NA	NA	BMDL	BMDL	51.1	BMDL	NA
Copper, total	ug/l	NA	NA	NA	23.3J	52.0	150	56.0	NA
Iron, total	ug/l	NA	NA	NA	15200J	51800J	107000J	45000J	NA
Lead, total	ug/l	NA	NA	NA	ND	BMDL	90.6	45.3	NA
Magnesium, total	ug/l	NA	NA	NA	12900	18100	43100	15200	NA
Manganese, total	ug/l	NA	NA	NA	359	979	2860	906	NA
Mercury, total	ug/l	NA	NA	NA	0.70J	0.90J	2.80J	BMOL	NA
Nickel, total	ug/l	NA	NA	NA	16.0J	36.8J	111	25.0J	NA
Potassium, total	ug/l	NA	NA	NA	1690J	4410J	16100	2940J	NA
Selenium, total	ug/l	NA	NA	NA	BMDL	BMDL	BMDL	BMDL	NA
Silver, total	ug/l	NA	NA	NA	BMDL	BMDL	BMDL	BMOL	NA
Sodium, total	ug/l	NA	NA	NA	7930	8420	12000	8020	NA
Vanadium, total	ug/l	NA	NA	NA	42.3J	101	303	88.40	NA
Zinc, total	ug/l	NA	NA	NA	ND	ND	352	ND	NA

Notes:

BMDL = Below Minimum Detection Limit

NA = Not Analyzed

ug/l = micrograms per liter

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY TOTAL METALS Page 6 of 6

· •								
Sample Id		OSLGWSTB7S	OSLGWSTW18	OSLWPSWP1	OSLWPSWP2	OSLWPSWP3	OSLWPSWP4	OSLWPSWP5
Well Number		TB-7S	TW-18	WP-1	WP-2	WP-3	₩P-4	₩P-5
Sample Date		06/28/90	06/20/90	07/02/90	07/02/90	07/02/90	07/02/90	07/02/90
PARAMETERS	UNITS							
Aluminum, total	ug/l	31700J	 NA	NA	NA	 NA	NA	NA
Antimony, total	ug/l	164J	NA	NA	NA	NA	NA	NA
Arsenic, total	ug/l	5.00J	NA	NA	NA	NA	NA	NA
Barium, total	ug/l	888J	NA	NA	NA	NA	NA	NA
Beryllium, total	ug/l	1.80J	NA	NA	NA	NA	NA	NA
Cadmium, total	ug/l	95.3J	NA	NA	NA	NA	NA	NA
Calcium (Ca)	ug/l	74800J	NA	NA	NA	NA	NA	NA
Chromium, total	ug/l	120J	NA	NA	NA	NA	NA	NA
Cobalt, total	ug/l	38.8J	NA	NA	NA	NA	NA	NA
Copper, total	ug/l	306J	NA	NA	NA	NA	NA	NA
Iron, total	ug/l	183000J	NA	NA	NA	NA	NA	NA
Lead, total	ug/l	894J	NA	NA	NA	NA	NA	NA
Magnesium, total	ug/i	13100	NA	NA	NA	NA	NA	NA
Manganese, total	ug/l	2700J	NA	NA	NA	NA	NA	NA
Mercury, total	ug/l	6.00	NA	NA	NA	NA	NA	NA
Nickel, total	ug/l	556J	NA	NA	NA	NA	NA	NA
Potassium, total	ug/l	6850	NA	NA	NA	NA	NA	NA
Selenium, total	ug/l	BMDL	NA	NA	NA	NA	NA	NA
Silver, total	ug/l	16.9J	NA	NA	NA	NA	NA	NA
Sodium, total	ug/l	54400	NA	NA	NA	NA	NA	NA
Vanadium, total	ug/l	93.4J	NA	NA	NA	NA	NA	NA
Zinc, total	ug/l	2030J	NA	NA	NA	NA	NA	NA

Notes:

BMDL = Below Minimum Detection Limit

NA = Not Analyzed

ug/l = micrograms per liter

TABLE 48 OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

Detected Concentration range of HSL Dissolved Metals and Cyanide Concentration Range in ppb 1990 Data

Parameter	(1)	(2)	(3)	(4)
Aluminum	ND-1,370	ND-130	ND	ND-65.4
Antimony	ND_	ND-60.1	ND-65.6	ND
Arsenic	ND	ND-7.4	ND	ND
Barium	ND-268	73.9-1,740	ND-410	ND-1,080
Beryllium	ND	ND	ND	ND-1.6
Cadmium	ND-5.0	ND-14.4	ND-9.2	ND
Calcium	22,200-39,900	20,500-67,600	18,400-77,000	1,890-109,000
Cobalt	ND	ND-21.8	ND	ND
Copper	ND	ND	ND-5.1	ND-11.5
Cyanide	ND	ND-10.10	ND	ND
Iron	ND	ND-89,800	ND-24,300	ND-1,800
Lead	ND	ND	ND-2.4	ND-10.5
Magnesium	4,900-7,390	5,740-39,800	5,200-14,600	1,890-20,100
Manganese	ND	3.8-1,700	ND-1,660	ND-2,300
Mercury	ND	ND	ND-1.6	ND
Nickel	ND	ND-69.7	ND	ND
Potassium	ND	ND-55,900	ND-3,000	ND-1,460
Silver	ND	ND-13.9	ND-12.3	ND-10.8
Sodium	ND-10,000	6,640-62,900	7,930-23,900	3,760-21,100
Thallium	ND	ND	ND	ND-16.6
Vanadium	ND	ND	ND-13.5	ND-15.7
Zinc	ND-165	ND-193	ND	ND-214

NOTES:

- Upgradient/crossgradient (GZ-1, GZ-2, GZ-3). 1.
- 2.
- 3.
- Landfill area (B-3, GZ-4S/M/D, GZ-7S/M/D, TB-7S, LW-102S/D).

 Northern area (LW-15S/M/D, LW-103S/M/D, GZ-11S/D, LW-15, LW-20, Lori, Monitor Well No. 5).

 Downgradient (TW-18, GZ-12M/D, GZ-5S/M/D, GZ-13S/M/D, GZ-14S/M/D, TW-17, GZ-17M/D, Chuck & Eddie's, Menard). 4.

TABLE 49 OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

Detected Concentration range of HSL Total Metals Concentration Range in ppb 1990 Data

Parameter	(1)	(2)	(3)	(4)
Aluminum	16,500-27,300	ND-150,000	7,200-69,500	2,050-9,430
Antimony	ND	ND-841	ND-101	ND
Arsenic	< 4.30	ND-47.4	ND-8.7	ND
Barium	378-790	82.4-19,400	224-776	79.6-1,210
Beryllium	1.90-2.00	ND-9.9	ND-4.3	ND
Cadmium	8.2-15.4	ND-946	ND-25.3	ND-9.3
Calcium	53,600-55,600	25,500-245,000	53,200-63,300	13,000-118,000
Chromium	38.8-51.3	ND-1,170	15.2-138	ND-21.6
Cobalt	<25.5	ND-1,360	ND-51.1	ND
Copper	57.5-67.6	ND-35,500	23.3-150	12.3-29.0
lron	18,700-37,300	818-1,010,000	15,200-107,000	2,830-12,500
Lead	35.7-47.5	ND-15,400	ND-90.6	3.1-5.8
Magnesium	16,800-20,200	7,100-97,700	12,900-43,100	5,440-25,400
Manganese	706-12,800	21.1-9,600	359-2,860	279-2,820
Mercury	ND	ND-6.00	0.70-2.80	ND
Nickel	45.1-61.0	ND-4,890	16.0-111	ND-25.1
Potassium	5,000-8,320	ND-77,600	1,690-16,100	ND
Selenium	ND	ND-11.6	ND	ND
Silver	ND	ND-902	ND	ND-14.7
Sodium	8,200-12,200	7,030-73,600	7,930-12,000	4,470-21,800
Thallium	ND	ND	ND	ND
Vanadium	51.8-92.4	ND-484	423-303	ND-12.9
Zinc	110-126	ND-38,200	ND-352	ND

NOTES:

- 1.
- Upgradient/crossgradient (GZ-1, GZ-3). Landfill area (B-3, TB-7S, GZ-7S/M/D, GZ-4S/M/D). Northern area (LW-15S/M/D). Downgradient (GZ-5S/M/D, TW-17, GZ-17M/D). 2.
- 3.
- 4.

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY NON-HSL INDICATOR PARAMETERS Page 1 of 6

Sample Id Well Number Sample Date		OSLGWSB13 B-3 06/28/90	OSLGWSB3 B-3 06/28/90	OSLGWSCE C & E 06/25/90	OSLGWSCW15 CW-15 06/13/90	OSLGWSCW20 CW-20 06/13/90	OSLGWSGZ1 GZ-1 06/12/90	OSLGWSGZ11D GZ-11D 06/14/90	OSLGWSGZ11S GZ-11S 06/14/90
PARAMETERS	UNITS								
Alkalinity as CaCO3	======== mg/l	:=======:: 580	560	160	120	190	87	160	66
Ammonia (N)	mg/l	100	100	0.17	BMDL	BMDL	0.11	0.19	0.13
Calcium (Ca)*	ug/l	39200.00	38400.00	52,000*	50,000*	77,000*	39900.00	54500.00	18400.00
Chemical Oxygen Demand (COD)	mg/l	270	390	BMDL	BMDL	BMDL	BMDL	19	43
Chloride (Cl)	mg/l	190	190	19	14	27	16	23	46
Hardness as CaCO3	mg/l	900	1200	180	158	233	237	825	168
Magnesium (Mg)*	ug/l	39800.00	38800.00	11,000*	8,000*	10,000*	6270.00	7570.00	5200.00
Nitrate (N)	mg/l	0.21	0.19	0.21	2.6	3.0	3.4	2.4	BMDL
Nitrite (N)	mg/l	BMDL	BMDL	BMDL	BMDL	8MD L	BMDL	BMOL	BMDL
Sodium (Na)*	ug/l	62900.00	61000.00	18,000*	8,800*	15,000*	7100.00	12200.00	23900.00
Specific conductance	uMhos/cm	1900	2000	420	370	550	210	490	340
Total Dissolved Solids (TDS)	mg/l	670	650	270	210	310	220	330	240
На	SU	6.97	6.96	7.54	7.79	7.54	7.60	7.09	5.96

NOTES:

BMDL = Below Minimum Detection Limit

mg/l - milligrams per liter

SU = Standard Units

^{*} Calcium, magnesium, and sodium values were analyzed for during dissolved metals analysis except C&E, CW-15 and CW-20 which were analyzed for during hardness analysis.

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY NON-HSL INDICATOR PARAMETERS Page 2 of 6

Sample Id Well Number Sample Date		OSLGWSGZ12D GZ-12D 06/20/90	OSLGWSGZ12M GZ-12M 06/20/90	OSLGWSGZ13D GZ-13D 06/18/90	OSLGWSGZ13M GZ-13M 06/18/90	OSLGWSGZ13S GZ-13S 06/18/90	OSLGWSGZ14D GZ-14D 06/19/90	OSLGWSGZ24D GZ-14D (DUP) 06/19/90	OSLGWSGZ14M GZ-14M 06/19/90	OSLGWSGZ14S GZ-14S 06/19/90
PARAMETERS	UNITS	33, 23, 73	33, 23, 73	33, 13, 13	33, 33, 33	33, 13, 73	,		,	30, 17,77
***************************************			44.0	400						
Alkalinity as CaCO3	mg/l	40	140	180	57	24	86	80	40	170
Ammonia (N)	mg/l	BMDL	BMDL	BMDL						
Calcium (Ca)*	ug/l	30300.00	50800.00	51300.00	26800.00	9220.00	33900.00	33500.00	1890.00B	57800.00
Chemical Oxygen Demand (COD)	mg/l	BMDL	16	BMDL	8.1	12	BMDL	24	160	73
Chloride (Cl)	mg/l	15	28	14	6.5	9.4	16	16	4.5	2.5
Hardness as CaCO3	mg/l	86	240	155	83	255	86	88	178	238
Magnesium (Mg)*	ug/l	6880.00	8720.00	7340.00	2700.00B	2790.00B	4200.00B	4180.00B	1890.008	6930.00
Nitrate (N)	mg/l	2.4	1.3	1.6	2.0	0.94	2.6	2.6	1.1	1.1
Nitrite (N)	mg/l	BMDL	BMDL	BMDL	BMOL	BMDL	BMDL	BMDL	BMDL	BMDL
Sodium (Na)*	ug/l	10400.00	12300.00	9970.00	6450.00	8380.00	9780.00	9910.00	4260.00B	5410.00
Specific conductance	uMhos/cm	260	380	410	220	140	280	250	140	340
Total Dissolved Solids (TDS)	mg/l	170	270	230	140	130	160	150	160	200
DH	SU	6.65	6.85	7.39	8.21	6.04	8.22	8.13	8.02	7.58

NOTES:

BMDL = Below Minimum Detection Limit

mg/l - milligrams per liter

SU = Standard Units

^{*} Calcium, magnesium, and sodium values were analyzed for during dissolved metals analysis except C&E, CW-15 and CW-20 which were analyzed for during hardness analysis.

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY NON-HSL INDICATOR PARAMETERS Page 3 of 6

Sample Id Well Number Sample Date		OSLGWSGZ17D GZ-17D 06/22/90	OSLGWSGZ17M GZ-17M 06/22/90	OSLGWSGZ2 GZ-2 06/19/90	OSLGWSGZ22 GZ-2 (DUP) 06/19/90	OSLGWSGZ3 GZ-3 06/13/90	OSLGWSGZ4D GZ-4D 06/26/90	OSLGWSGZ4M GZ-4M 06/26/90	OSLGWSGZ4S GZ-4S 06/26/90
PARAMETERS	UNITS								
***********************		************	=======================================	=======================================			***********		*======================================
Alkalinity as CaCO3	mg/l	96	100	36	3 5	110	110	96	32
Ammonia (N)	mg/l	BMDL	BMDL	BMOL	BMDL	BMDL	0.34	0.13	0.56
Calcium (Ca)*	ug/l	39800.00	40700.00	22200.00	22200.00	46600.00	4980.00	42300.00	20500.00
Chemical Oxygen Demand (COD)	mg/l	BMOL	140	BMDL	8.1	BMDL	4.1	BMOL	37
Chloride (Cl)	mg/l	15	14	15	0.00	22	35	17	83
Hardness as CaCO3	mg/l	120	180	93	96	215	210	140	110
Magnesium (Mg)*	ug/l	7530.00	7300.00	4900.00B	5010.00	7390,00	9640.00	8140.00	7120.00
Nitrate (N)	mg/l	3.0	3.1	5.3	5.2	3.2	2.5	0.19	BMDL
Nitrite (N)	mg/l	BMDL	BMDL	0.050	BMDL	BMDL	BMDL	BMDL	BMOL
Sodium (Na)*	ug/l	7640.00	7600.00	6080.00	5940.00	10000.00	15600.00	8220.00	22500.00
Specific conductance	uMhos/cm	290	300	200	0.00	410	480	320	360
Total Dissolved Solids (TDS)	mg/l	190	310	160	170	240	290	210	270
pH .	SU	7.67	7.80	6.57	6.62	7.55	6.91	7.59	5.82

NOTES:

BMDL = Below Minimum Detection Limit

mg/l - milligrams per liter

SU = Standard Units

^{*} Calcium, magnesium, and sodium values were analyzed for during dissolved metals analysis except C&E, CW-15 and CW-20 which were analyzed for during hardness analysis.

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY NON-HSL INDICATOR PARAMETERS Page 4 of 6

Sample Id Well Number Sample Date		OSLGWSGZ5D GZ-5D 06/25/90	OSLGWSGZ5M GZ-5M 06/25/90	OSLGWSGZ5S GZ-5S 06/25/90	OSLGWSG27D GZ-7D 06/27/90	OSLGWSGZ7M GZ-7M 06/27/90	OSLGWSGZ7S GZ-7S 06/27/90	OSLGWSLORI LORI 07/05/90	OSLGWSTW17 TW-17
PARAMETERS	UNITS								
Alkalinity as CaCO3	mg/l	**************************************	300	33	140	130	390	160	140
Ammonia (N)	mg/l	BMDL	0.39	BMDL	BMDL	BMDL	26	1.0	2.4
Calcium (Ca)*	ug/l	35700.00	109000.00	9540.00	34700.00	48000.00	67600.00	54400.00	37200
Chemical Oxygen Demand (COD)	mg/l	BMDL	BMDL	BMDL	28	BMDL.	110	BMDL	28
Chloride (Cl)	mg/l	14	43	2.2	15	22	8.1	19	68
Hardness as CaCO3	mg/l	140	370	69	120	200	360	160	220
Magnesium (Mg)*	ug/l	7690.00	20100.00	3040.00B	6520.00	9020.00	12200.00	8750.00	9120
Nitrate (N)	mg/l	0.23	1.8	0.50	4.7	1.1	0.21	0.86	0.19
Nitrite (N)	mg/l	BMDL	BMDL	BMDL	BMOL	BMDL	BMDL	BMDL	BMDL
Sodium (Na)*	ug/l	17200.00	21100.00	3760.00B	8840.00	10000.00	6640.00	12800.00	26700
Specific conductance	uMhos/cm	310	560	120	310	400	820	480	410
Total Dissolved Solids (TDS)	mg/l	210	490	82	190	280	440	260	280
рH	SU	7.72	7.07	6.01	7.84	7.54	6.18	7.15	6.27

NOTES:

BMDL = Below Minimum Detection Limit

. .

mg/l - milligrams per liter

SU = Standard Units

^{*} Calcium, magnesium, and sodium values were analyzed for during dissolved metals analysis except C&E, CW-15 and CW-20 which were analyzed for during hardness analysis.

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY NON-HSL INDICATOR PARAMETERS Page 5 of 6

Sample Id Well Number Sample Date		OSLGWSLW103D LW-103D 06/15/90	OSLGWSLW103M LW-103M 06/15/90	OSLGWSLW103S LW-103S 06/15/90	OSLGWSLW15D LW-15D 06/21/90	OSLGWSLW15M LW-15M 06/21/90	OSLGWSLW25M LW-15M (DUP) 06/21/90	OSLGWSLW15S LW-15S 06/21/90	OSLGWSM MENARD 06/07/90
PARAMETERS	UNITS								
**********************	352555555555	*==*=======	=======================================	*********	######################################			=======================================	*********
Alkalinity as CaCO3	mg/l	93	140	140	130	120	130	200	110
Ammonia (N)	mg/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Calcium (Ca)*	ug/l	37200.00	55000.00	58200.00	50800.00	50500.00	49700.00	50700.00	36200.00
Chemical Oxygen Demand (COD)	mg/l	14	19	27	BMDL	53	24	32	BMDL
Chloride (Cl)	mg/l	12	20	24	17	18	18	32	19
Hardness as CaCO3	mg/l	129	165	308	180	190	200	230	130
Magnesium (Mg)*	ug/l	6630.00	7560.00	7340.00	8840.00	8940.00	8800.00	14600.00	9220.00
Nitrate (N)	mg/l	2.5	3.3	3.2	2.6	1.6	1.7	0.23	1.3
Nitrite (N)	mg/l	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL
Sodium (Na)*	ug/l	8760.00	8690.00	8970.00	7930.00	7840.00	7930.00	9670.00	11600.00
Specific conductance	uMhos/cm	300	440	450	3 50	360	370	420	270
Total Dissolved Solids (TDS)	mg/l	190	250	360	230	220	220	220	210
Ha	SU	7.66	7.57	7.39	6.65	5.52	7.16	6.13	7.88

NOTES:

BMDL = Below Minimum Detection Limit

٠.

mg/l - milligrams per liter

SU = Standard Units

^{*} Calcium, magnesium, and sodium values were analyzed for during dissolved metals analysis except C&E, CW-15 and CW-20 which were analyzed for during hardness analysis.

Old Southington Landfill Southington, Connecticut

GROUNDWATER ANALYTICAL SUMMARY NON-HSL INDICATOR PARAMETERS Page 6 of 6

Sample Id Well Number Sample Date		OSLGWSTB7S TB-7S 06/28/90	OSLGWSTW18 TW-18 06/20/90	OSLWPSWP1 WP-1 07/02/90	OSLWPSWP2 WP-2 07/02/90	OSLWPSWP3 WP-3 07/02/90	OSLWPSWP4 WP-4 07/02/90	OSLWPSWP5 WP-5 07/02/90
PARAMETERS	UNITS							
222222222222222222222222222222222222222	=======================================	.========	=======================================	=======================================	***********	***********		
Alkalinity as CaCO3	mg/l	260	44	BMDL	BMDL	BMDL	BMOL	BMDL
Ammonia (N)	mg/l	8.8	BMDL	BMDL	BMOL	BMDL	BMDL	BMDL
Calcium (Ca)*	ug/l	60700.00	12600.00	31200.00	8350.00	5810.00	5950.00	40000.00
Chemical Oxygen Demand (COD)	mg/l	43	110	BMDL	BMDL	BMDL	BMDL	BMOL
Chloride (Cl)	mg/l	32	17	BMDL	BMDL	BMDL	BMDL	BMDL
Hardness as CaCO3	mg/l	230	81	BMDL	BMDL	BMDL	BMDL	BMDL
Magnesium (Mg)*	ug/l	5740.00	4320.00B	6140.00	3840.00B	7740.00	1100.00B	8760.00
Nitrate (N)	mg/l	0.22	0.26	BMDL	BMDL	BMOL	BMOL	BMDL
Nitrite (N)	mg/l	BMDL	BMDL	BMDL	BMOL	BMDL	BMDL	BMDL
Sodium (Na)*	ug/l	54700.00	9920.00	27400.00	16900.00	58700.00	15300.00	28200.00
Specific conductance	uMhos/cm	740	160	BMDL	BMDL	BMDL	BMDL	BMDL
Total Dissolved Solids (TDS)	mg/l	400	190	BMDL	BMOL	BMDL	BMDL	BMDL
þH	SU	6.45	5.80	BMDL	BMDL	BMDL	BMDL	BMOL

NOTES:

BMDL = Below Minimum Detection Limit

mg/l - milligrams per liter

SU = Standard Units

^{*} Calcium, magnesium, and sodium values were analyzed for during dissolved metals analysis except C&E, CW-15 and CW-20 which were analyzed for during hardness analysis.

TABLE 51

Old Southington Landfill Southington, Connecticut

DETECTED CONCENTRATION RANGE OF INDICATOR PARAMETERS IN GROUNDWATER

PARAMETER	UNITS		arm the state of			
		1	2	3	4 •	
Alkalinity as CaCO3	mg/l	35-110	32-580	66-200	33-300	
Ammonia (N)	mg/l	ND-0.11	ND-100	ND-1.0	ND-0.39	
Calcium (Ca) (dissolved)	ug/l	22,200-46,600	4,980-67,600	18,400-58,200	9,540-109,000	
Chemical Oxygen Demand (COD)	mg/l	ND-8.1	ND-390	ND-53	ND-160	
Chloride (CI)	mg/l	0.0-22	8.1-190	12-46	2.2-43	
Hardness as CaCO3	mg/l	93-237	110-1,200	129-308	69-370	
Magnesium (Mg) (dissolved)	ug/l	4,900-7,390	5,740-39,800	5,200-14,600	1,890-20,100	
Nitrate (N)	mg/i	3.2-5.3	ND-4.7	ND-3.3	0.21-2.6	
Nitrite (N)	mg/l	ND-0.05	ND	ND	ND	
Sodium (Na) (dissolved)	ug/l	5,940-10,000	6,640-62,900	7,840-23,900	4,260-21,100	
Specific Conductance	uMho/cm	0-210	290-2,000	300-550	120-560	
Total Dissolved Solids (TDS)	mg/l	160-240	190-670	190-360	82-490	
рН	S.U.	6.57-7.60	5.82-7.84	5.52-7.79	5.80-8.22	

NOTES:

- Upgradient/crossgradient (GZ-1, GZ-2, GZ-3).
- Landfill area (B-3, GZ-4S/M/D, GZ-7S/M/D, TB-7S, LW-102S/D).

 Northern area (LW-15S/M/D, LW-103S/M/D, GZ-11S/D, LW-15, LW-20, Lori, Monitor Well No. 5).
- Downgradient (TW-18, GZ-12M/D, GZ-5S,M/D, GZ-13S/M/D, GZ-14S/M/D, TW-97, GZ-17M/D, Chuck & Eddie's, Menard). ND = Not Detected

mg/l = milligrams per liter

S.U. = standard units

TABLE 52 OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

FINAL LIST OF SELECTED INDICATOR SUBSTANCES BY MEDIA

PARAMETERS	SOILS	SEDIMENTS	AIR	GROUNDWATER (Menard Well)
VOLATILE ORGANICS:				
Acetone			_	
Benzene				
Chloroform		 		
1,2 Dichloroethene				
Ethylbenzene				
Tetrachloroethene				
Toluene				
Trichloroethene				
Xylenes (total)				
Vinyl Chloride		<u></u>		
SEMIVOLATILE ORGANICS:				
Total PAHs				
Carcinogenic PAHs (as represented by Benzo(a)pyrene)				
<u>Phthalates</u>				
Bis(2-ethylhexyl)phthalate				
Butyl benzyl phthalate				
Di-n-butyl phthalate		L		
PCBs and Pesticides				
4,4-DDT				
Heptachlor epoxide			_ 	
Endrin ketone				
Alpha-chlordane				
Gamma-chlordane				
Total PCBs				
INORGANICS:				
Antimony				
Arsenic				
Barium				
Cadmium				
Chromium (+111)				
Cyanide				
Lead				
Mercury				
Vanadium				
Zinc				

TABLE 53

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SOILS DATA-RANGE OF CONCENTRATION Page 1 of 2

PARAMETER	FREQUENCY OF DETECTION	RANGE OF CONCENTRATIONS	MEAN CONCENTRATION(1)	CONTRACT REQUIRED DETECTION LIMIT	
	(#positives/#samples)	(mg/kg)	(mg/kg)	(mg/kg)	
VOLATILE ORGANICS:					
Acetone	3/20	ND - 0.08	0.05	0.01	
Benzene	1/20	ND - 0.003	0.005	0.005	
2-Butanone	2/20	ND - 0.001	0.01	0.01	
Carbon disulfide	1/20	ND - 0.003	0.005	0.005	
Chlorobenzene	2/20	ND - 1.3	0.005	0.005	
Chloroform	0/20	••	••	0.005	
1,2-dichloroethene (total)	2/20	ND - 1.95	0.005	0.005	
Ethylbenzene	6/20	ND - 310	1.74	0.005	
Styrene	2/20	ND - 19	0.005	0.005	
1,1,2,2-Tetrachloroethane	0/20			0.005	
Tetrachloroethene	1/20	ND - 9.5	0.005	0.005	
Toluene	8/20	ND - 48	0.009	0.005	
Trichloroethene	5/20	ND - 8	0.005	0.005	
Xylenes (total)	8/20	ND - 210	0.005	0.005	
Vinyl chloride	1/20	ND - 0.003	0.01	0.01	
SEMI VOLATILE ORGANICS: PAHS:					
Acenaphthene	3/20	ND - 0.95	0.2	0.33	
Acenaphthene Acenaphthylene	3/20	ND - 1.4	0.23	0.33	
Anthracene	3/20	ND - 2.7	0.29	0.33	
Benzo(a)anthracene	8/20	ND - 4.2	0.46	0.33	
Benzo(a)pyrene	5/20	ND - 4.2	0.32	0.33	
Benzo(b)fluoranthene	8/20	ND - 3.3	0.3	0.33	
Benzo(g,h,i)perylene	3/20	ND - 2.6	0.32	0.33	
Benzo(k)fluoranthene	8/20	ND - 4.3	0.49	0.33	
Chrysene	8/20	ND - 5.0	0.53	0.33	
Dibenzofuran	2/20	ND - 1.1	0.21	0.33	
Fluoranthene	7/20	ND - 11	0.94	0.33	
Fluorene	5/20	ND - 2.3	0.3	0.33	
Indeno(1,2,3-cd)pyrene	3/20	ND - 3.0	0.34	0.33	
2-methyl naphthalene	3/20	ND - 2.3	0.28	0.33	
Naphthalene	3/20	ND - 7.1	0.57	0.33	
Phenanthrene	8/20	ND - 13.0	0.96	0.33	
Pyrene	8/20	ND - 7.8	0.75	0.33	
PH					
 Bis(2-ethylhexyl)phthalate	1/20	ND - 38	2.1	0.33	
Butyl benzyl phthalate	5/20	ND - 0.96	0.23	0.33	
Di-n-butyl phthalate	1/20	ND - 0.06	0.16	0.33	

Notes:

⁽¹⁾ Geometric mean calculated for volatile organics since compounds are not evenly distributed. This averaging process is used to minimize effects of outlying data points (per EPA protocol). Arithmetic mean (average) calculated for semi volatile organics and inorganics since compounds are fairly evenly distributed.

TABLE 53

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SOILS DATA-RANGE OF CONCENTRATION Page 2 of 2

PARAMETER	FREQUENCY OF DETECTION	RANGE OF CONCENTRATIONS	MEAN CONCENTRATION(1)	CONTRACT REQUIRED DETECTION LIMIT	
		CONCENTRATIONS	·····		
	(#positives/#samples)	(mg/kg)	(mg/kg)	(mg/kg)	
PCBS AND PESTICIDES:					
Aroclor 1242	1/20	ND - 2.0	0.14	0.08	
Aroclor 1254	1/20	ND - 0.56	0.04	0.016	
Aroclor 1260	2/20	ND - 1.1	0.08	0.016	
4,4-DDT	1/20	ND - 0.019	0.017	0.016	
Heptachlor epoxide	1/20	ND - 0.008	0.004	0.008	
Endrin ketone	1/20	ND - 0.006	0.008	0.016	
Alpha-chlordane	1/20	ND - 0.015	0.039	0.08	
Gamma-chlordane	1/20	ND - 0.019	0.039	0.08	
INORGANICS:					
Aluminum	20/20	4,210 - 17,400	7221.5	7.8	
Antimony	7/20	ND - 71.5	14.7	1.3	
Arsenic	1/20	ND - 3.2	0.58	0.89	
Barium	9/20	ND - 177	44.1	7.8	
Cadmium	20/20	2.5 - 17.2	6.31	0.89	
Calcium	11/20	ND - 9,100	1865.6	16.0	
Chromium (+ III)	20/20	7.2 - 232	33.5	11.0	
Cobalt	3/20	ND - 46.7	7.3	3.3	
Copper	19/20	ND - 293	45.2	1.1	
Cyanide	1/20	ND - 3.7	2.3	2.2	
Iron	20/20	6,120 - 24,200	12,382	8.9	
Lead	20/20	1.9 - 277	48.4	0.44	
Magnesium	20/20	1,480 - 4,890	3022.5	7.6	
Manganese	20/20	88.8 - 939	283.1	0.67	
Mercury	3/20	ND - 0.29	0.19	0.18	
Nickel	14/20	ND - 306	35.3	4.0	
Potassium	6/20	ND - 2320	468.6	33.0	
Vanadium	20/20	14.2 - 40.3	23.1	2.9	
Zinc	20/20	16.7 - 674	143.7	1.6	

NOTES:

⁽¹⁾ Geometric mean calculated for volatile organics since compounds are not evenly distributed. This averaging process is used to minimize effects of outlying data points (per EPA protocol). Arithmetic mean (average) calculated for semi volatile organics and inorganics since compounds are fairly evenly distributed.

Old Southington Landfill Southington, Connecticut

SEDIMENT DATA-RANGE OF CONCENTRATION Page 1 of 2

PARAMETER	FREQUENCY OF DETECTION (#positives/#samples)		AVERAGE SEDIMENT CONCENTRATION	CONTRACT REQUIRED QUANTITATION LIMIT (ug/l)
VOLATILE ORGANICS:				
VOLATILE ORGANICS.		(ug/kg)	(ug/l)	
Benzene	1/7	ND-20.5	5.1	5
2-Butanone	1/7	ND-110	62.5	10
Carbon disulfide	1/7	ND-210	32.1	5
Chlorobenzene	2/7	ND-245	37.1	5
Chloromethane	2/7	ND-57	8.6	10
1,2-Dichloroethene (total)	1/7	ND-8	10.2	5
Methylene chloride	1/7	ND-7	11.0	5
Xylene (total)	2/7	ND-930	135.0	5
Ayrene (total)	Σ,.		.5015	-
SEMI-VOLATILE ORGANICS:				
<u> </u>		(ug/kg)	(ug/kg)	
Benzoic acid	1/7	ND-242.5	720.4	1600
Naphthalene	1/7	ND-2150	1155.7	330
2-Methylnaphthalene	1/7	ND-430	448.6	330
Acenaphthylene	2/7	ND-2200	203.0	330
Acenaphthene	2/7	ND-450	220.0	330
Dibenzofuran	2/7	ND-550	211.0	330
Fluorene	2/7	ND-2000	438.0	330
Phenanthrene	3/7	ND - 18000	2801.4	330
Anthracene	2/7	ND-3700	665.7	330
Di-n-butylphthalate	1/7	ND-2032.5	431.8	330
Fluoranthene	4/7	ND-21000	3313.6	330
Pyrene	4/7	ND-22000	3468.6	330
Butylbenzylphthalate	1/7	ND-770	251.4	330
Benzo(a)anthracene	4/7	ND-8000	1377.1	330
Chrysene	4/7	ND-10000	1679.3	330
Bis(2-ethylhexyl)phthalate	3/7	ND-930	388.6	330
Benzo(b)fluoranthene	2/7	ND-6700	1627.9	330
Benzo(k)fluoranthene	2/7	ND-8500	1395.0	330
Benzo(a)pyrene	2/7	ND-9100	1497.0	330
Indeno(1,2,3-c,d)pyrene	2/7	ND-7100	1302.0	330
Dibenzo(a,h)anthrancene	1/7	ND-890	268.6	330
Benzo(g,h,i)perylene	2/7	ND-5500	961.0	330

Old Southington Landfill Southington, Connecticut

SEDIMENT DATA-RANGE OF CONCENTRATION Page 2 of 2

PARAMETER	FREQUENCY OF DETECTION (#positives/#samples)	RANGE OF DETECTED CONCENTRATIONS	AVERAGE SEDIMENT CONCENTRATION	CONTRACT REQUIRED QUANTITATION LIMIT (ug/l)
I NORGAN I CS:				
HOROMITOO.		(mg/kg)	(mg/kg)	
Aluminum	6/6	1520-7295	5142.9	40
Arsenic	2/6	ND-1.5	0.72	2
Barium	6/6	36.1-137	88.7	40
Beryllium	4/6	ND-0.52	0.43	1
Cadmium	5/6	ND-10.2	3.7	1
Calcium	6/6	612-12400	3680.2	1000
Chromium	5/6	ND-29.8	12.48	2
Cobalt	1/6	ND-4.4	1.15	10
Copper	6/6	9.5-49.7	21.1	5
Iron	6/6	5380-37100	13583.3	20
Lead	5/6	ND-96.1	35.3	0.6
Magnesium	6/6	1050-2770	2118.3	1000
Manganese	6/6	97.8-1970	565.9	3
Nickel	5/6	ND-28.1	12.1	8
Potassium	5/6	ND-1067.5	810.8	1000
Sodium	3/6	ND-5331	378	1000
Vanadium	5/6	ND-27.2	18.1	10
Zinc	6/6	32.3-292	97.0	4

TABLE 55

OLD SOUTHINGTON LANDFILL SOUTHINGTON, CONNECTICUT

SOIL GAS DATA - RANGE OF CONCENTRATION

	CENTRAL	- AREA	
	FREQUENCY	MIN-MAX ¹	GEOMETRIC MEAN ²
BENZENE	6/10	0.2-7.8	1.63
TOLUENE	8/10	0.47-310	11.52
ETHYLBENZENE	8/10	0.9-340	16.60
XYLENES (TOTAL)	8/10	0.77-250	18.28
TRICHLOROETHENE	3/10	0.09-0.8	0.61
TETRACHLOROETHENE	1/10	ND-1.9	1.9
	SOUTHER	N AREA	
	FREQUENCY	MIN-MAX	GEOMETRIC MEAN
BENZENE	10/10	0.09-5.6	0.60
TOLUENE	9/10	0.36-3.3	1.01
ETHYLBENZENE	8/10	0.13-4.0	0.90
XYLENES (TOTAL)	8/10	0.14-23	2.88

NOTES:

Results in ug of compound/liter of soil gas.

- 1. Min-Max indicates the minimum to maximum range of compounds detected within the area of detected soil gas per Figure -.
- 2. Geometric mean = $\sqrt[N_1]{N_1 \times N_2 \times ... N_i}$

Old Southington Landfill Southington, Connecticut

GROUNDWATER DATA-RANGE OF CONCENTRATION Page 1 of 2

PARAMETER	FREQUENCY OF DETECTION (#positives/#samples)	RANGE OF CONCENTRATIONS (ug/l)	AVERAGE CONCENTRATION (ug/l)	CONTRACT REQUIRED DETECTION LIMIT (ug/l)	
VOLATILE ORGANICS:		=======================================	=======================================	2522253455¥225¥653	
Acetone	1/22	ND-260	16.6	10	
Benzen e	2/22	ND-34	4.0	5	
Carbon disulfide	3/22	ND -8	2.7	5	
Chlorobenzene	3/22	ND-22	4.2	5	
Chloroethane	1/22	ND-50.5	7.1	10	
Chloroform	3/22	ND-86	7.8	5	
1,1-Dichloroethane	4/22	ND-8.8	3.0	5	
1,2-Dichloroethene	7/22	ND-540	28.4	5	
Ethylbenzene	3/22	ND-356.3	18.7	5	
Tetrachloroethene	2/22	ND-62	6.2	5	
Toluene	2/22	ND-60.5	5.1	5	
1,1,1 Trichloroethane	1/22	ND-2.5	2.5	5	
Trichloroethene	4/22	ND-580	31.0	5	
Vinyl chloride	6/22	ND-170	22.0	10	
Xylenes	2/22	ND-241.3	22.3	5	
EMI-VOLATILE ORGANICS:					
SEMI-VOLATILE ORGANICS: Acenaphthene	1/22	ND -31	25.3	50	
	1/22 1/22	ND-31 ND-12	25.3 5.3	50 10	
Acenaphthene			· · · ·		
Acenaphthene Anthracene	1/22	ND-12	5.3	10	
Acenaphthene Anthracene Benzo(a)anthracene	1/22 1/22	ND-12 ND-5	5.3 5.0	10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene	1/22 1/22 1/22	ND-12 ND-5 ND-5	5.3 5.0 5.0	10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	1/22 1/22 1/22 1/22	ND-12 ND-5 ND-5 ND-3	5.3 5.0 5.0 5.0	10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene	1/22 1/22 1/22 1/22 1/22	ND-12 ND-5 ND-5 ND-3 ND-5	5.3 5.0 5.0 5.0 5.0	10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran	1/22 1/22 1/22 1/22 1/22 1/22	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28	5.3 5.0 5.0 5.0 5.0 6.0	10 10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol	1/22 1/22 1/22 1/22 1/22 1/22 3/22	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5	5.3 5.0 5.0 5.0 5.0 6.0	10 10 10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol Fluoranthene	1/22 1/22 1/22 1/22 1/22 1/22 3/22 1/22	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5 ND-23	5.3 5.0 5.0 5.0 5.0 6.0 5.0 5.8	10 10 10 10 10 10 10	
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol Fluoranthene Fluorene	1/22 1/22 1/22 1/22 1/22 1/22 3/22 1/22 1	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5 ND-23 ND-32	5.3 5.0 5.0 5.0 5.0 6.0 5.0 5.8 137.0	10 10 10 10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol Fluoranthene Fluorene 2-Methylnaphthalene	1/22 1/22 1/22 1/22 1/22 1/22 3/22 1/22 1	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5 ND-23 ND-32 ND-32	5.3 5.0 5.0 5.0 5.0 6.0 5.8 137.0 6.9	10 10 10 10 10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol Fluoranthene Fluorene 2-Methylnaphthalene Naphthalene	1/22 1/22 1/22 1/22 1/22 1/22 3/22 1/22 1	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5 ND-23 ND-32 ND-42 ND-42	5.3 5.0 5.0 5.0 5.0 6.0 5.0 5.8 137.0 6.9 9.6	10 10 10 10 10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol Fluoranthene Fluorene 2-Methylnaphthalene Naphthalene Phenanthrene	1/22 1/22 1/22 1/22 1/22 1/22 3/22 1/22 1	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5 ND-23 ND-32 ND-32 ND-42 ND-95 ND-60	5.3 5.0 5.0 5.0 5.0 6.0 5.0 5.8 137.0 6.9 9.6 7.5	10 10 10 10 10 10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol fluoranthene Fluorene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	1/22 1/22 1/22 1/22 1/22 1/22 3/22 1/22 1	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5 ND-23 ND-32 ND-32 ND-42 ND-95 ND-60	5.3 5.0 5.0 5.0 5.0 6.0 5.0 5.8 137.0 6.9 9.6 7.5	10 10 10 10 10 10 10 10 10	
Acenaphthene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene Dibenzofuran 2,4-Dimethyphenol Fluoranthene Fluorene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene PCBS AND PESTICIDES:	1/22 1/22 1/22 1/22 1/22 1/22 3/22 1/22 1	ND-12 ND-5 ND-5 ND-3 ND-5 ND-28 ND-5 ND-23 ND-32 ND-32 ND-42 ND-95 ND-60 ND-15	5.3 5.0 5.0 5.0 5.0 6.0 5.8 137.0 6.9 9.6 7.5	10 10 10 10 10 10 10 10 10 10	

TABLE 56

Old Southington Landfill Southington, Connecticut

GROUNDWATER DATA-RANGE OF CONCENTRATION Page 2 of 2

	FREQUENCY OF DETECTION	RANGE OF CONCENTRATIONS	AVERAGE CONCENTRATION	CONTRACT REQUIRED DETECTION LIMIT
PARAMETER	(#positives/#samples)	(ug/l)	(ug/l)	(ug/l) *
INORGANICS:	==================================	=#====================================	*************	
Aluminum	8/44	ND-1370	135.5	200
Antimony	2/44	ND-65.6	31.2	60
Arsenic	1/44	ND-7.3	5.0	10
Barium	30/44	ND-1730	8.005	200
Beryllium	1/44	ND-1.6	2.5	5
Cadmium	6/44	ND-14.4	3.36	5
Calcium	44/44	5810-109,000	39,543.0	5000
Cobalt	1/44	ND-21.8	50 .0	50
Copper	6/44	ND-30.7	12.6	25
Cyanide	3/44	ND-9.3	5.2	10
Iron	26/44	ND-89,800	6,849.0	100
Lead	5/44	ND-20.6	2.2	3
Magnesium	44/44	753-39,300	4009.0	5000
Manganese	33/44	ND-9120	509.6	15
Mercury	1/44	ND-1.6	0.13	0.2
Nickel	3/44	ND-69.7	21.9	40
Potassium	2/44	ND-42,300	4867.0	5000
Silver	3/44	ND-12.3	1.2	10
Sodium	42/44	ND-61,950	15,519.0	5000
Thallium	2/44	ND-8.3	5.0	10
Vanadium	2/44	ND-15.7	24.5	50
Zinc	4/44	ND-214	25.4	20
	· · · · · · · · · · · · · · · · · · ·			

TABLE 57

Old Southington Landfill Southington, Connecticut

SURFACE WATER DATA-RANGE OF CONCENTRATION

PARAMETER	FREQUENCY OF DETECTION (#positives/#samples)	RANGE OF CONCENTRATIONS (ug/l)	AVERAGE CONCENTRATION (ug/l)	CONTRACT REQUIRED QUANTITATION LIMIT (ug/l)
VOLATILE ORGANICS:				
Acetone	4/6	ND-21	7.2	10
Carbon disulfide	4/6	ND-14	6.8	5
Chlorobenzene	1/6	ND-2	2.4	5
Toluene	1/6	ND - 1	2.3	
Xylenes	1/6	ND-3	2.6	5
SEMI-VOLATILE ORGANICS:				
Naphthalene	2/6	ND-4	4.5	10
INORGANICS:				
Aluminum	5/6	817.0	200	
Antimony	1/6	38.0	60	
Barium	6/6	250.4	1000	
Cadmium	1/7	5.5	5	
Calcium	6/6	40,071.4	5000	
Chromium	2/6	9.7	10	
Copper	6/6	16.5	25	
Iron	6/6	12,830.9	100	
Lead	2/6	12.5	3	
Magnesium	6/6	9077.1	5000	
Manganese	6/6	1647.4	15	
Mercury	1/6	0.23	0.2	
Nickel	1/6	ND-58.2	26.4	40
Potassium	6/6	1780-8340	5870	
Silver	1/6	ND-18.1	7.2	10
Sodium	6/6	12,200-29,700	25,457	5000
Vanadium	1/6	ND-18.2	23.9	50
Zinc	2/6	ND-2195	58.8	20

APPENDIX A
BIBLIOGRAPHY

APPENDIX A

BIBLIOGRAPHY

- Goldberg-Zoino & Associates, Inc., September, 1988 "Workplan for Remedial Investigation/Feasibility Study at the Old Southington Landfill Superfund Site, Old Turnpike Road, Southington, Connecticut."
- 2. Goldberg-Zoino & Associates, Inc., May, 1989 "Memo: Assessment of Existing Information, Previous Site Studies, Old Southington Landfill, Southington, Connecticut."
- 3. Goldberg-Zoino & Associates, Inc., October, 1989 "Phase 1A Data Summary, Old Southington Landfill, Southington, Connecticut."
- 4. Warzyn Engineering, Inc., November, 1980, "Hydrogeologic Investigation, Town of Southington, Connecticut."
- 5. State of Connecticut, Department of Environmental Protection, 1983, "Precipitation in Connecticut", 1951-1980.
- 6. State Geological and Natural History Survey of Connecticut, 1965, "The Climate of Connecticut."
- 7. National Oceanic and Atmospheric Administration, Climatological Data, 1980-1990.
- 8. U.S. Geological Survey, 1979, "Water Resources Inventory of Connecticut, Part 8, Quinnipiac River Basin."
- 9. Mazzaferro, D.L., 1973, "Hydrogrologic Data for the Quinnipiac River Basin, Connecticut."
- 10. Geraghty & Miller, Inc., July, 1990, Letter Report, Pump Test of Production Well No. 5, Southington, Connecticut.
- 11. Cooper, H.H., Jr., and Jacob, C.E., 1946, "A Generalized Graphical Method for Evaluating Formation Constants and Summarizing Well Field History."
- 12. Consulting Environmental Engineers, December, 1979 Letter Report from CEE to the Water Compliance Unit of the DEP concerning the Abatement of Operations Discharges.
- 13. Consulting Environmental Engineers, September, 1979 Letter Report from CEE to the Water Compliance Unit of the DEP concerning the Investigation of Contaminated Soil on the Lori Corporation Property.

- 14. Connecticut Department of Environmental Protection, Water Compliance Unit, April 1979. Order No. 2455.
- 15. Ecology and Environment, Inc., December, 1980. "Preliminary Investigation of the Abandoned Landfill, Old Turnpike Road, Southington, Connecticut", Fit Project TDD#F1-8011-03.
- 16. Waryzn Engineering, Inc. November, 1980 "Hydrogeologic Investigation, Town of Southington, Connecticut".
- 17. The Bionetics Corporation, February, 1988. "Site Analysis, Old Southington Landfill, Southington, Connecticut".
- 18. Greiner/Goldberg-Zoino & Associates, Inc., June, 1984, "Hydrologeologic Study of the Old Turnpike Landfill", Engineering Proposal.
- 19. Fritts, C.E., 1963. "Bedrock Geology of the Southington Quadrangle, Connecticut", United States Geological Survey Map GQ-200.
- 20. Hanshaw, P.M., 1968. "Bedrock Geology of the Meriden Quadrangle, Connecticut", United States Geological Survey Map GQ-738.
- 21. Hanshaw, P.M., 1962. "Surficial Geology of the Meriden Quadrangle, Connecticut", United States Geological Survey Map GQ-150.
- 22. LaSala, Jr., H.M., 1961. "Surficial Geology of the Southington Quadrangle Connecticut". United States Geological Survey Map GZ-146.
- 23. Department of Environmental Protection, Water Compliance Discharge Permit DEP/WPC-131-120.
- 24. Freeze, R.A. and Cherry, J.A., 1979. "Groundwater". Prentice-Hall, Inc., Englewood Cliff, New Jersey, p. 604.
- 25. Southington Board of Water Commissioners, August 7, 1987, Letter stipulating abandonment of municipal well No. 5 as a municipal water supply source.
- 26. D.U. Deers, 1963, "Technical Descriptions for Rock Cores for Engineering Purposes".
- 27. NUS Corporation, January 1987, "Data Validation Guidelines for CLP Organic and Inorganic Analyses".
- 28. John Rodgers, 1985 "Bedrock Geological Map of Connecticut".

- 29. U.S. Geological Survey, 1979 "Water Resources Inventory of Connecticut, Part 8, Quinnipiac River Basin".
- 30. Davis, S.N., 1969, "Flow Through Porous Media".
- 31. Bear, J., 1972 "Dynamics of Fluids in Porous Media".
- 32. Department of the Navy, 1982 "Soil Mechanics Design Manual 7.1".
- 33. Hvorslev, M.J., 1952 "U.S. Army Corp of Engineers Waterways Exp. Sta. Bull 36".
- 34. Cooper, H.H., Jr. and Jacob, C.E., 1946 "A Graphical Method For Evalulating Formation Constants and Summarizing Wellfield History".
- 35. U.S. EPA, "National Primary Drinking Water Regulations," November, 1985.
- 36. U.S. EPA, "Health Advisories for 25 Organics," March, 1987.
- 37. U.S. EPA, "Quality Criteria for Water," 1986.
- 38. U.S. EPA, "Interim Guidance of Compliance with Applicable or Relevant and Appropriate Requirements," August, 1987.
- 39. U.S. Environmental Protection Agency, "Supplemental Risk Assessment Guidance for the Superfund Program. Part 1. Guidance for Public Health Risk Assessment. Part 2. Guidance for Ecological Risk Assessments." Boston, MA June, 1989.
- 40. U.S. Environmental Protection Agency, "Risk Assessment Guidance for Superfund Volume 1, Human Health Evaluation Manual (Part A) Interim Final," Washington, DC. December, 1989.
- 41. U.S. EPA IRIS Database, November, 1990.
- 42. U.S. Environmental Protection Agency, "Health Effects Summary Tables: Third Quarter FY-1990". July, 1990.

٠

GZ\

١.

ι.

ŗ,

APPENDIX B HAZARD RANKING SYSTEM SCORE

National Priorities List Site

Hazardous waste site listed under the Compensation, and Liability Act of 1980 (CERCLA)("Superfund")

OLD SOUTHINGTON LANDFILL Southington, Connecticut

Conditions at listing (September 1983): Old Southington Landfill covers 6 acres in Southington, Connecticut. It is suspected of contaminating the town's Production Well Number 5, which is 500 to 600 feet away and about 3,500 feet east of the Quinnipiac River. The landfill, which the town operated from 1947 to 1967 as a municipal landfill, also accepted hazardous waste. An industrial park and several homes have been built on top of the old landfill. Well Number 5 contains significant concentrations of volatile organic compounds, particularly 1,1,1—trichloroethane, according to analyses done by the State. Volatile organics are also present in nearby surface waters. A hydrogeologic investigation conducted by EPA suggests that the abandoned landfill is a source of volatile organics entering area ground water. An intensive hydrogeologic study is needed to determine flow patterns of local ground water, which will help further define the source(s) of contamination.

Status (June 1984): The State has discussed with the town issuance of an order to require the town to hire a contractor to conduct a remedial investigation/feasibility study. The work would include the intensive hydrogeologic study. The town is presently soliciting proposals for the study.

: :

Facility Name: Abandoned Landfill (Nill#5)
LOCATION: Old Turnpile Pont Southington CT
EPA Region:
Person(s) in Charge of the Facility:
Name of Reviewer: Nancy Piligian Date: 6-11-82
General Description of the Facility:
(For example: landfill, surface impoundment, pile, container; types of hazardous substances; location of the facility; contamination route of major concern; types of information needed for rating; agency action, etc.) Abandoned Sanitary landfill on Old Turnpike Road - Historically used for the disposal of liquid and solid
industrial wastes. The landfull has been
rapped and the land area is being 1. telized for an industrial make and 4 checkentral development
Scores: Su = 54.35 (Sgu = 93.88 Sgu = 5.33 Sg = 0.0)
STZ - 10.0
s _{DC} = 0.0

. Figure 1

ERS COVER SHEET

GROUND WATER ROUTE WORK SELET								
	Rating Facto	r	Assigne (Circl		Mult4-	Score	Mar. Score	Ref. (Section)
13	OBSERVED RE	LEASE	0	45	1	45	45	3.2
	If observed If observed							
3	NOVIE CRANA	CIERTELL				•		3.2
	Depth to Aq	uiier of	. 01:	2 3	2		. 4	1
	Not Precipi Permeabilit		01		1		. 3	İ
	lizazurate	d Lene	•		-		•	1
	Physical St		0 1 Route Ch		stics Score	1 1/4	25	
3			· · · · · ·			7474	3	
	THEMILATION	·	01	2 3	1	NA		3.3
	NASTE CHAM	CTERIST	ics .					3.4
	Toxicity/Pe Easardous & Quantity		0 3 0 1	6 9 12 1 2 3 4 5		. 8	18	
		Tot	al Waste C	heracter	isties Scor	: 26	26	
1	TARGETS Ground Wate Distance to est Well/! Served	%44T-	0 1(0 4) 12 3 24 3		3 1	65 401	40	3.5
		To:	al Targeti	Score		146	49]
1	If line 1 If line 2	1: 45, 1: D,	Enlithly Bultiply		A E x B	55,521	57,330	
1	Divide lim					\$ 200	93.	28

Figure 2

Ground Water Route Work Sheet

Surface water route work sweet								
	Rating Facts	98	Assigned Value (Circle One)	blier plier	Score	Max. Score	Ref. (Section	
	OBSERVED REI	least	60 45	1 .	0	43	4.1	
	If observed release is given a value of 43, proceed to line 4. If observed release is given a value of 0, proceed to line 2).							
2	ROUTE CHARACT		·				4.2	
	Facility 31d Intervening	•	③ 2.2.3	. 1	0		,	
	1-yr. 24-hr. Distance to 1	Reinfall	0 1(2) 3 0 1 2(3)	. 1 2	2	3 6		
	Surface Water Physical State		0 1 2(3)	1	3		,	
		Total &	oute Characteristic	s Score		15		
13	דובניסו אנהינס		0 123	1	2	3	4,3	
1	WASTE CEARACT	TERISTICS		-			4.4	
	Toxicity/Per: Exertions We: Quantity		0 3 6 9 12 15 0 0 1 2 3 4 5 6	1) 1 7	(B B	18	,	
		Total W	asta Characteristic	s Score	26	26		
D	TARGETS		•				4.5	
	Surface Water Distance to	a Semeitiv	. 103 123	2 2	60	. 6		
	Environment Population & Distance to Intake Down	erved/ Water	64 6 8 10 12 16 18 20 24 30 32 35 46	1	<i>O</i>	40		
		Total T	Argets Score		6	55		
6	If line 1 If line 1	is 45, mult	2691y D x D 291y D x D x	* [] [4	3/32 6	4,350		
2	Divide line	3 by \$4,35	O and multiply by 1	100 \$	sv" -	5.33		

Figure 7
Surface Water Route Work Sheet

	·	Ale route work by	YET			
ا وهادمة	actor .	Assigned Value (Circle One)	Multi- plies	Scere	Max. Score	Ref. (Section
D OBSERVE	RELEASE	(5) 43	j	0	45	5.2
Date and	Locations					<u></u>
\$azplin	Protocols	•	,			
If line If line	1 10 0, c) 1 10 45,	ben \$ - 0. Enter o	2 15° 6	•		•
WASTE CH	abacteristics					5.2
Reactivity and Incompatibility		0123	1	-	• 3	•
Toxicity Hazardou Quantity	s Wasta	0123	3 1		. :	
	Total W	aste Characteristic	s Score		20	
I TARGETS						5.3
Pepulaci	on Vichia	70 9 22 25 28	1		30	
6-Mile Distance Environ	to Sensitive	\$21 26 27 30 0 1 2 3	2		6	
Land Use		0 1 2 3	. 1		3	
		·				
	Total	Targets Score			39	
E Kulekoli	· 🗓 × 🗓 ×	ធា	-		33,100	,

Figure 9
Air Route Work Sheet

	s	s ²	
Groundwater Route Score (Sgw)	93.88	8813.45	
Surface Water Route Score (S _{SW})	5,33	28.41	
Air Route Score (Sa)	0.0	0.0	
$s_{gw}^2 + s_{gw}^2 + s_{a}^2$.	1///////	8841.86	
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		94.3	
$\sqrt{s_{gu}^2 + s_{gw}^2 + s_a^2} / 1.73$	\//////\\	s ₄ = 54.35	

Figure 10 WORKSHEET FOR COMPUTING SM

TIPE AND EXPLOSION WORK SKEET							
Rating Factor	Assiçsi (Circ)			Hilti- plier	Score	Max. Score	Ref. (Settion)
2 Containment	1	3		1		3	7.2.
Waste Characteristic	:8						7.2
Direct Evidence	0	3		1		3	
lgnicability	01	2 3		1	•	, 3	
Reactivity	0 1	2 3		1	•	. 3	
Incompatibility	D 7	2 3		1	•	3	
Magardous Waste Q.	mantity 01	2 3 4	5678	1		3	
Tot	al Wasse Cher	acter	istics Sco	re		20	
3 Targets							73
Distance to Neares	st 0 1	2 3 4	. 3	1.		3	
Distance to Reares	:t 01	2 3	•	1		3	
Distance to Sensi: Levironment	1ve 01	2 3		1		3	
Land Use	0 1	2 3		7		3	
Population Within 2-Hile Redius	0 1	234	5,	1		3	
Buildings Within 2-Mile Reddus	0 1	2 3 4	5	7		\$	
70:	al Target Sce	ra	·	··		24	
				1	1		
2 3x1x1ply [] x [] x [] x []					1,440		
Divide lines by 2,44	0 and multipl	y by :	100		STE -	0	;

Figure 11
Time and Explosion Work Sheet

	DIRECT CONTACT WORK	SALLI			
Nating Factor	Assigned Value (Circle One)	Multi- plier	Score	Max. Score	Ref. (Section)
Observed Incident	G 45	1	0	45	6.3
If line 1 is 45, p: If line 1 is 0, pr	roceed to line 4				
Accessibility	© 1 2 3	7	0	3	8.2
Containent	· (13 ¹)	1	15	15	8.3
Waste Characteristics Toxicity	0 1 2(3)	\$	15	15	2.4
Targets Population within a	0 1 2 3 🕙 5	4	16	. 20	8.5
l-11e radius Distance to & critical habitat _	6 1 2 3	4	0	1.2	
	Total Targets Store		16	32	
f lf line 1 is 45, If line 1 is 0, m	=ultiply 1 x 4 x 5	k i5∫	0	21,600	
5.7	21,600 and multiply by 10	-	2DC -	0.0)

Figure 12
Direct Centert Work Sheet

DOCUMENTATION RECORDS FOR HAZARD RANKING SYSTEM

INSTRUCTIONS: The purpose of these records is to provide a convenient way to prepare an auditable record of the data and documentation used to apply the Razard Ranking System to a given facility. As briefly as possible supportize the information you used to assign the score for each factor (e.g., "Waste quantity = 4,230 drums plus 800 cubic yards of sludges"). The source of information should be provided for each entry and should be a bibliographic-type reference that will make the document used for a given data point easier to find. Include the location of the document and consider appending a copy of the relevant page(s) for ease in review.

FACILITY RAME: Old Southington (Well #5)
LOCATION: Old Turnpite Road Southington CT

GROUND WATER ROUTE

1 DESERVED RELEASE

Contaminants detected (5 maximum):

1, 1, 1 - trichloroeThane 1, 1 - dichloroeThane

tetrachloroeThylene

fileThylene Chloride

frans 1, z-dichloroeThylene

Rationale for attributing the contaminants to the facility:

Contaminants detected between ud

and landfill - See Ref # 3

2 ROUTE CHARACTERISTICS

Depth to Acuifer of Concern

Name/description of aquifers(s) of concern:

Depth(s) from the ground surface to the highest seasonal level of the saturated zone [water table(s)] of the aquifer of concern:

Depth from the ground surface to the lowest point of waste disposal/ storage:

Net Precipitation

Mean annual or seasonal precipitation (list months for seasonal):

48 in ches

Pet: HES Ranking document

Mean annual lake or seasonal evaporation (list months for seasonal):

30 inches

Ref: HRS Ranking document

Net precipitation (subtract the above figures):

18 inches

Permeability of Unseturated Zone

Soil type in unsaturated sone:

Fine to coarse sand - small am'ts of clay, sit, and gracel ovalying sandstone

Permeability associated with soil type:

Pauge 7x10-7cm/sec to 5x10-8cm/rec (silly, peaky Soils) gravely, sandy

Pet: FIT Report

Physical State

Physical state of substances at time of disposal (or at present time for generated gases):

Liquids, 5/vidge

CONTAINMENT

Containment

Method(s) of waste or leachate containment evaluated:

uncontained waste Liquid deposited in depressions at site

Herhöft with highest score: 555 gal drums

4 WASTE CHARACTERISTICS

Toxicity and Persistence

compound(*) evaluated:

1,1,1- trichloros Thane

Chlorobenzene

Exprepyl & Ther

Carbon Tetrachloride

tetrachloro EThylene MeThylene Chloride Chloride

carbon totrachloride, chlereform

Hazardous Waste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of D (Give a reasonable estimate even if quantity is above maximum):

7,700,000 gals. Pef (D)

Basis of estimating and/or computing waste quantity:

2.7 mil gals - so gal/alrom = > 54,000 drums

5 TARGETS

Ground Water Use

Drinking water - Well #5 is 400 NW of site.

Well is currently out of service;

alternate is available

Distance to Nearest Well

Location of nearest well drawing from aguifer of concern or occupied building not served by a public water supply:

x see above

Distance to above well or building:

400 ft

Population Served by Ground Water Wells Within a 3-Mile Radius

Identified water-supply well(s) drawing from acuifer(s) of concern within a 3-mile radius and populations served by each:

Well #5 fed into distribution system perving 30,000

Computation of land area irrigated by supply well(s) drawing from acuifer(s) of concern within a 3-mile radius, and conversion to population (1.5 people per acre):

Total population served by ground water within a 3-mile radius:

30,000

SURFACE WATER ROUTE

DESERVED RELEASE

Contaminants detected in surface water at the facility or downhill from it (5 maximum):.

None

Retionale for attributing the conteminants to the facility:

ROUTE CHARACTERISTICS

Facility Slope and Intervening Terrain

Average slope of facility in percent:

1.4%

Name/description of nearest downslope surface water:

Quinnipiac Buck

Average slope of terrain between facility and above-cited surface water body in percent:

Flat, marshy, per USGS

Is the facility located either totally or partially in surface water?

No.

Is the facility completely surrounded by areas of higher elevation?

No

1-Year 24-Hour Reinfall in Inches

3.0 inche s

Distance to Nearest Downslope Surface Water

< 1000 ft. to Black Pond

Physical State of Waste

Liquid & Demiliquid

3 CONTAINMENT

Conteinment

Loudfill int completely covered; Exposed refuse along channel banks; NO diversion System.

Method with highest score:

4 WASTE CHARACTERISTICS

Toxicity and Persistence

Compound(s) evaluated

See grdut pathway

Compound with highest score:

Mezardous Weste Quantity

Total quantity of hazardous substances at the facility, excluding those with a containment score of O (Give a reasonable estimate even if quentity is above maximum):

See ground utr. pathway (200,000 gallons)

Basis of estimating and/or computing waste quantity:

FIT REport

TARGETS

Surface Water Use

Use(s), of surface water within 3 miles downstream of the hazardous substance:

Recreation

. No

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal wetland, if 2 miles or less:

N/A

Distance to 5-acre (minimum) fresh-water wetland, if I mile or less:

N/A

Distance to critical habitat of an endangered species or national wildlife refuge, if I mile or less:

N/A

Population Served by Surface Water

Location(s) of water-supply intake(s) within 3 miles (free-flowing bodies) or 1 mile (static water bodies) downstream of the hazardous substance and population served by each intake:

None

Computation of land area irrigated by above-cited intake(s) and conversion to population (1.5 people per acre):

N/A

Total population served:

· N/A

Name/description of nearest of above water bodies:

HA Quinnipiac River

Distance-to above-cited intakes, messured in stream miles.

N/A

ATR BOTTE

1 OBSERVED RELEASE

Contaminants detected:

No observed release

Date and location of detection of contaminants

NA

Methods used to detect the contaminants:

Rezionale for attributing the contaminants to the site:

2 WASTE CHARACTERISTICS

Reactivity and Incompatibility

Most reactive compound:

Most incompatible pair of compounds:

11/20/30 12:

Toxicity

Most toxic compound:

NA

Eszerdous Weste Quantity

Totalyquantity of hazardous waste:

Besis of estimating and/or computing waste quantity:

3 TARGETS

Population Within 4-Mile Radius

Circle radius used, give population, and indicate how determined:

0 to 4 mi 0 to 1 mi 0 to 1/2 mi 0 to 1/4 mi

Distance to a Sensitive Environment

Distance to 5-acre (minimum) coastal watland, if 2 miles or less:

Distance to 5-scre (minimum) fresh-water wetland, if I mile or less:

ששש

Distance to critical habitat of an endangered species, if I mile or less:

NA

Land Use

Distance to commercial/industrial area, if I mile or less:

Distance to national or state park, forest, or wildlife reserve, if 2 miles or less:

Distance to residential area, if 2 miles or less:

Distance to agricultural land in production within past 5 years, if 1 mile or less:

Distance to prime agricultural land in production within past 5 years, if 2 miles or less:

Is a historic or landmark site (National Register or Historic Places and National Natural Landmarks) within the view of the site?

NPL-111-2-2

National Priorities List Site

Hazardous waste site listed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA)("Superfund")

OLD SOUTHINGTON LANDFILL Southington, Connecticut

Did Southington Landfill covers 6 acres in Southington, Connecticut. It is suspected of contaminating the town's Production Well Number 5 about 3,500 feet east of the Quinnipiac River. The landfill, which the town operated from 1947 to 1967 as a municipal landfill, also accepted hazardous waste. Well Number 5 contains significant concentrations of volatile organic compounds, particularly 1,1,1-trichloroethane. Volatile organics are also present in nearby surface waters. A hydrogeologic investigation suggests that the abandoned landfill is a source of volatile organics entering area ground water. An intensive hydrogeologic study is needed to determine flow patterns of local ground water, which will help further define the source(s) of contamination.

11/26/90 12:37

12:37 TUFFFA HILLHNHL OR HOID VILEY

ABANDONSO LAMORILL - OLD TURNPIKE ROAD SOUTHINGTON, CT

REFERENCES

- Ecology & Environment, Inc., FIT TDD #FI-8011-03, 12/29/80, Work in Support of EPA Enforcement Case: Preft Report Preliminary Investigation of the Abandoned Landfill, old Turnpike Read, Southington, CT, USEPA Region I files.
- 3 Poleted.
- 3 Warzyn Engineening, Inc., 11/12/80, "Hydrogeological Investigation, EPA/JRB Associates, Town of Southington, CT", USEPA Region I files.
- Telephone communication by K. Boyon with Gilbert Bligh, Superintendent, Southiring ton Water Dapt, (203)628-5593, on 6/28/83.

6/28/83

APPENDIX C
SPECIES IDENTIFICATION

APPENDIX C

SPECIES IDENTIFICATION

Black Pond and Associated Wetlands and Uplands East of Old Turnpike Road

1. Altered/Disturbed Area (Wetlands/Uplands South of Black Pond

A small (± 0.05 acre) isolated wetland is located south of the dirt drive to the Meridan Box Company. The standing water supported shallow marsh (palustrine emergent wetland) vegetation including Broad-leaved Cattail (Typha latifolia) and Reed (Phragmites australis). The banks of this depression were covered with willow saplings (Salix sp.), Swamp Dogwood (Cornus amomum), and Red Maple (Acer rubrum) trees.

North of the unpaved drive is an area of open water and wetland contiguous to Black Pond. Soil moving activites at the Meridan Box company have caused erosion of the red clay and silt into the water; some refuse (tires) were noted. A cattail covered berm at the edge of Black Pond is acting as a filter, and the pond water beyond the cattail berm appeared non-turbid. Cover types included open water with a few tussocks of emergent herbaceous vegetation (3 feet wide), Reed meadow and fringing thickets of shrub swamp (i.e. lacustrine littoral emergent wetland and palustrine scrub-Species within the herbaceous layer included shrub wetland). Tearthumb Arrow-leaved (Polygonum sagittatum), (<u>Cuscutas</u> p.), Soft Rush (<u>Juncus effusus</u>), sedges (<u>Cyperaceae</u>), Reed (<u>Phragmites australis</u>), and goldenrod (<u>Solidago spp.</u>). The shrub layer contained Swamp Dogwood (Cornus amomum), Pepperbush (Clethra alnifolia), Speckled Alder (Alnus rugosa), Common Elder (Sambucus canadensis), Willow (Salix sp.), and Highbush Blackberry (Rubus occidentalis). Red Maples (Acer rubrum) formed a sparse tree canopy. Soil at the eastern edge of this wetland (soil sample location, S-1) was dark-reddish-brown, sandy loam (5 YR 3/2) to about 1.5 feet. Groundwater appeared to be at about 6 inches. Adjacent (east) altered upland habitat was an open field of grasses (Gramineae), goldenrod (Solidago spp.), Queen Annes Lace (Daucus carota), Staghorn Sumac (Rhus typhina), Hawthorn (Crataegus sp.), Red Cedar (Juniperus virginiana), Gray Birch populifolia) and Large-toothed (Populus (Betula Aspen grandidentata).

The recent construction/grading activity in the vicinity of these wetlands limits their habitat suitability. In addition, the water quality (high turbidity/tires) would preclude usage by species requiring less turbid water bodies. However, species tolerant of disturbance may utilize the wetland marsh area for feeding/breeding. The shrub thickets and dense herbaceous vegetation

present in portions of this area would provide suitable nesting habitat for various species of songbirds and food/cover for small mammal species. Various species of herptiles (amphibians and reptiles) such as the snapping turtle (Chelydra serpentina), green frog (Rana Clamitans melanota), and eastern ribbon snake (Thamnophis sauritus sauritus) may also utilize the shallow areas of water that are well-interspersed with clumps/tussocks of emergent herbaceous vegetation. Usage of the site by the northern cardinal (Richmondena cardinalis), song sparrow (Melospiza melodia), brown-headed cowbird (Molothrus ater), red-winged blackbird (Agelaius phoeniceus), and muskrat (Ondatra zibethica) was observed during the site visit.

2. Black Pond (and Associated Band of Herbaceous Wetland)

Black Pond is fringed by bands of marsh vegetation (lacustrine littoral emergent wetland) consisting of Water Willow (Decodon Broad-leaved and Cattail verticillatus) (Typha Interspersed within the cattails are Purple Loosestrife (Lythrum salicaria), Wool-Grass (Scirpus cyperinus), Sensitive Fern (Onoclea sensibilis), Reed (Phragmites australis), sedges (Cyperaceae), Dodder (Cuscuta sp.), and a few shrubs of Steeplebush (Spirea tomentosa). A soil core (S-2) taken within the band of cattails was a dark-reddish-brown organic silt (5 YR 3/4) to 6 inches; from grade 6 to 12 inches the soil was a black muck (5YR 2.5/1). Water was at the ground surface. Landward of the marsh is a narrow band of wooded swamp (palustrine forested wetland) dominated by polesized Red Maples (Acer rubrum) with Tupelo (Nyssa sylvatica) and Highbush Blueberry (Vaccinium corymbosum).

The 10± acre pond and associated wetland vegetation extending around the fringe of the pond provides habitat for various species of waterfowl and other wildlife requiring permanent open water Canada Geese (Brants canadensis) and Mallard <u>platyrhynchos</u>) were observed during the visit. The area of emergent vegetation is primarily limited to the shallow portions of the pond present along its edge. However, several small islands of vegetation are present that provide protected nesting sites for waterfowl. A pair of Canada geese were nesting on such an island during the site visit. The limited amount of emergent vegetation, due to the water depth of the pond, provides a low vegetation:water ratio. This low ratio limits the suitability of the pond for dabbling ducks that prefer shallower water interspersed with vegetation. However, diving ducks that prefer deeper water would likely utilize the site during the spring and fall migration periods.

The herbaceous vegetation and shrubs/saplings present along the fringe of the pond would provide feeding and breeding habitat for birds such as the red-winged blackbird (Agelaius phoeniceus), yellow warbler (Dendorica petechis), song sparrow (Melospiza melodia), and others. Mammals such as the muskrat (Ondatra

zibethica), meadow vole (Microtus pennsylvanicus), and raccoon (Procyon lotor) would also likely be present along the fringe of vegetation present. Amphibians (frogs and red-spotted newt, Notophthalmus viridescens viridescens) and reptiles (painted turtles, Chrysemys picta picta; snapping turtles, Chelydra serpentina, northern water snakes, Natrix sipedon sipedon; and garter snakes, Thmnophis sirtalis sirtalis) would also likely be found in this type of habitat. The pond also provides foraging habitat for species such as birds and bats that would feed upon the insects present above the pond surface. Tree swallows (Iridoprocne bicolor) were observed above the pond surface during the site visit.

Black Pond likely contains a fisheries resource, however, discussions with town officials and the Connecticut Department of Environmental Protection (Fisheries Division) did not yield any information regarding this body of water. The DEP last conducted fish sampling of water bodies throughout the state during the 1950s and early 1960s. According to personnel at the Fisheries Division of the DEP, Black Pond was either not sampled at that time or has since been renamed. A warm-water fishery comprised of sunfish (bluegill, Lepomis macrochirus; pumpkinseed, Lepomis gibbosus), pickerel (Stizostedion vitreum vitreum, bass (primarily large-mouth bass, Micropterus salmoides), yellow perch (Perca flavescens), and various smaller minnow (Cyprinidae) and dace (Rhinichthys spp.) species is likely present in the pond. Since the DEP has no recent records of trout stocking in Black Pond, it is doubtful that trout are present in the pond unless recently released by area residents.

3. Forested/Shrub Swamp Northeast of Black Pond

A shrub swamp with a sparse Red Maple (Acer rubrum) overstory (palustrine scrub-shrub wetland/palustrine forested wetland) located adjacent to marsh in the northeastern corner of Black Pond. Trees and shrubs are located on hummocks within shallow standing shrub layer contains Witch-Hazel water. The (<u>Hamamelis</u> virginiana), Highbush Blueberry (Vaccinium corymbosum), Winterberry (Ilex verticillata), saplings of Red Maple (A. rubrum), and Swamp Azalea (Rhododendron viscosum). Herbs on the hummocks were Cinnamon Fern (Osmunda cinnamomea), Sphagnum Moss (Sphagnum sp.), Tussock Sedge (Carex stricta), and Spotted Jewelweed (Impatiens capensis). Soil within the shrub swamp (S-3) was a black organic muck (10 YR 2/1) to 8 inches grade, from 8 to 12 inches was a very dark-brown-sandy silt (10 YR 2/2). Groundwater was at the surface.

Due to the hummocky topography of this area, the site contained a good interspersion of shrub thickets (with overstory Red Maples) and areas of temporary open water. These shallow water pools likely provide breeding areas for amphibians such as frogs (spring peepers, Hyla crucifer, were present in this area at the time of the visit) and possibly for several species of salamanders. The dense woody vegetation present would preclude usage by waterfowl

except in a portion of this site where emergent herbaceous vegetation was dominant.

The tree and shrub layers would provide nesting sites for various species of birds. In addition, the presence of snags (largest observed was 10 inches in diameter at breast height) would provide feeding/breeding habitat for cavity nesting birds such as the downy woodpecker (<u>Dendrocopos pubescens</u>), white-breasted nuthatch (<u>Sitta</u> carolinensis), tufted titmouse (Parus bicolor), and European starling (Sturnus vulgaris) which were all observed on the site during the visit. Highbush Blueberry (Vaccinium corymbosum) and Winterberry (Ilex verticillata) were common within the dense shrub These species provide berries for use by various understory. birds, both residents of the area and fall migrants. The presence of residential sites nearby may preclude usage of the area by species of wildlife that prefer a more isolated locale or require forested wetlands without an "edge" nearby. The area of edge (the place where different plant communities meet - in this case, forested/shrub wetland and grassed lawn) does provide suitable habitat, however, for other species of birds (northern flicker, Colaptes auratus; American robin, Tardus migratorius) and mammals (eastern cottontail, Sylvilagus floridanus). Other species, recorded during the inspection, included the gray squirrel (Sciurus <u>carolinensus</u>), mourning dove (<u>Zenaidura macroura</u>), and blue jay (Cyanocitta cristata).

4. Isolated Backwater Area of Shrub Swamp

This pool of water (0.5-1 ft deep) and shrub swamp (palustrine scrub-shrub wetland) is east of Black Pond and an upland ridge and south of the wooded swamp. It is connected to the shrub swamp described above by an intermittent drainage swale. Shrubs such as Buttonbush (Cephalanthus occidentalis), and Winterberry (Ilex verticillata) cover about 60% of the pool. Surrounding the pool and shrub swamp is a narrow band of forested swamp (palustrine forested wetland) of Highbush Blueberry (Vaccinium corymbosum, Swamp Azalea (Rhododendron viscosum), Sweet Pepperbush (Clethra Arrow-wood (Viburnum recognitum), and Withe-rod <u>alnifolia</u>), (Viburnum cassinoides) in the shrub layer, and Red Maple (Acer rubrum) and Tupelo (Nyssa sylvatica) in the overstory. herbaceous layer contained Skunk Cabbage (Symplocarpus foetidus) and Cinnamon Fern (Osmunda cinnamomea. Soil (S-4) at the edge of the pool was black sandy silt (10 YR 2/1) to 1.5 feet below grade.

This backwater pool may be a vernal pool as it appears to contain standing water for a considerable portion of the year based on the dominant shrub species (Buttonbush) that is present in this depression. Vernal pools are important breeding areas for several species of salamanders (referred to as "mole salamanders", <a href="https://doi.org/no.2016

species, however, peak breeding activity would have occurred prior to the visit. A red-back salamander (<u>Plethodon cinereus cinereus</u>) was found in the pool, however, this species does not reproduce in aquatic sites. The pool also provides breeding and hatching sites for various species of insects that can be eaten by resident birds. Mammal usage of this site would likely be limited to a drinking water source and foraging along its border.

5. Forested Oak/Beech Ridge

An upland, forested ridge with steep slopes is on the east side of Black Pond between the isolated pool area described above and Black The ridge is dominated by Red Oak (Quercus rubrum), White Oak (Quercus alba) and American Beech (Fagus grandifolia) with Red (Juniperus virginiana), American Hazelnut americana), Alternate-leaved Dogwood alternifolia), (Cornus Japanese Barberry (Berberis thunbergh) in the shrub layer. This stand of hardwoods is located between the isolated pool area described above and Black Pond. If the isolated pool to the east is indeed a vernal pool, then this wooded area would provide habitat for the various species of salamanders and frogs for the non-breeding portion of the year. Although the majority of the overstory hardwoods are pole-sized (less than 12 inches d.b.h.), there are areas of the woodland where larger oaks and beeches are These trees would provide a large seasonal food predominant. source in the form of acorns and nuts that are important to species such as the gray squirrel (<u>Sciurus carolinensis</u>) (observed on site) and birds. The tree overstory (and small snags present) provides nesting habitat for various species of birds and mammals following species were either directly observed on site or signs of their presence were recorded during the visit: black-capped (Parus atricapillus), northern flicker auratus), red-tailed hawk (Buteo jamaicensis), and American robin (Tardus migratorius).

6. Open Field and Residential Lawn

These areas would primarily provide ground foraging areas for species of mammals (eastern cottontail, Sylvilagus floridansis; voles, Microtus spp.), birds (American robin, Tardus migratorius; European starling, Sturnus vulgaris; mourning dove, Zenaidura macroura; Canada goose, Brants canadensis), amphibians (American toad, Bufo americansus sp.), and reptiles (snakes). Aerial feeders such as bats and some birds (swallows, Hirundinidae) which require open sites may also find these areas suitable. Nesting/ breeding areas would be primarily limited to the few scattered shrubs or trees present in these areas. An eastern cottontail (Sylvilagus floridansis) and mockingbird (Mimus ployglottos) were observed at the time of the site visit.

Wetlands and Adjacent Upland West of Old Turnpike Road

At the outlet of Black Pond west of Old Turnpike Road was evidence of silt accumulation. The stream was less than 6 inches in depth with a narrow zone of riparian vegetation, the stream widens and turns northeast. A large isolated shrub swamp (palustrine scrubshrub wetland) was located beyond the stream to the southwest. A pool was found at the northern limit of the auto junkyard adjacent to the riparian wetland. A ridge separates the pool from the riparian wetland except at its northwestern corner where water periodically discharges from the pool into a Red Maple swamp.

7. Riparian Wetland

The branch of the Black Pond outlet stream which flows west has disturbed areas with little vegetation along its southern banks and, therefore, only a narrow zone of riparian vegetation. water was shallow with clumps of herbaceous vegetation including hydrophytic grasses (Gramineae), Tussock Sedge (Carex stricta) and some Cinnamon Fern (Osmunda cinnamomea), Sensitive Fern (Onoclea sensibilis), Spotted Jewelweed (Impatiens capensis), and Beggars Ticks (Bidens sp.). Where the riparian zone widens and the stream course shifts there is Water Purslane (Ludwigia palustris in the slow moving waters and, clumps of herbaceous emergent vegetation Along the shoreline willows (Salix sp.), Highbush with shrubs. (Sambucus corymbosum), Common Elder Blueberry (Vaccinium canadensis), Arrow-wood (Viburnum recognitum), Swamp (Cornus amomum), Sweet Pepperbush (Clethra alnifolia), Gray Birch (Betula populifolia), and Red Maple (Acer rubrum) were common.

The stream and wetland vegetational cover types associated with it provide a variety of habitats within a narrow corridor. There are shrub thickets, herbaceous vegetation, open water, and overhanging Red Maple (<u>Acer rubrum</u>) trees within the riparian zone that may potentially provide feeding and breeding habitat for a diverse fauna of species. Although portions of the adjacent upland are disturbed, the banks of the stream are well-vegetated and provide a travel corridor for species either foraging along the stream or dispersing from nearby areas such as Black Pond.

The dense shrub thickets provide food (berries) and nesting cover for birds such as the northern cardinal (<u>Richmondena cardinalis</u>) and gray catbird (<u>Dumetella carolinensis</u>) while the overhanging trees may provide nesting sites for various warblers (Parulidae) and other bird species. Portions of the stream widen and provide a high amount of interspersion with clumps of emergent herbaceous vegetation and shrubs. These areas would be suitable for various species of dabbling ducks such as mallards (<u>Anas platyrhynchos</u>) and wood ducks (<u>Aix sponsa</u>) although the small size of this area would likely exclude nesting/brooding.

The bottom of the stream is comprised of a thick organic layer that provides cover and food for many aquatic species including insects, crustaceans, and amphibians. Although fish were not observed during the site inspection, the area may support local populations of minnows (Cyprinidae), dace (Rhinixhythys spp.), darters (Percidae, Etheostominae), etc. if the quality of the water is suitable.

Mammal usage would likely include herbivores such as muskrats (Ondatta zibethica), cottontail rabbits (Sylvilagus floridansis), meadow voles (Microtus pennsylvanicus), and white-footed mice (Peromyscus leucopus), as well as opportunistic feeders such as the raccoon (Procyon lotor), oppossum (Didelphis marsuplilis), and striped skunk (Mephitis mephitis). Eastern painted turtles (Chryssemys picta picta), snapping turtles (Chelydra serpentina), northern water snakes (Natrix sipedon sipedon), and ribbon snakes (Thamnophis spp.) are reptiles that may utilize the site. following species were observed during the site visit: song sparrow (Melospiza melodia), black-capped chickadee (Parus atricapillus), red-winged blackbird (Agelaius phoeniceus), American robin (Tardus migratorius), mourning dove (Zenaidura macroura), common grackle (Quiscalus quiscula), English sparrow (Passer domesticus), mallard (Anas platyrhynchos), European starling (Sturnus vulgaris), northern flicker (Colaptes auratus), tufted titmouse <u>bicolor</u>), bullfrog (<u>Rena catesbeiana</u>) (tadpole), eastern cottontail (Sylvilagus floridansus), and muskrat (Ondatra zibethica).

8. Shrub Swamp West of the Riparian Wetland

Common shrub species in this swamp (palustrine scrub-shrub wetland) were Buttonbush (<u>Cephalanthus occidentalis</u>), Highbush Blueberry (<u>Vaccinium corymbosum</u>), Winterberry (<u>Ilex Verticillata</u>), and Swamp Azalea (<u>Rhododendron viscosum</u>) with hydrophytic grasses and Cinnamon Fern (<u>Osmunda cinnamomea</u>) in the herb layer. Dodder (<u>Cuscuta</u> sp.) covered the Buttonbush. The surrounding habitat was forested. Soils (S-5) were black sandy silt (5YR 2.5/1) to 2 feet and dark-reddish-brown sandy silt (5YR 2.5/2) to 2.5 feet below grade. The water was at 1 inch below the soil surface.

This shrub swamp had habitat features similar to the isolated wetland east of Turnpike Road. The pool of water present in this area, however, was substantially larger and may support more aquatic species such as various species of frogs and turtles. This would be attributed to the potentially longer period of standing water, and the pool's close proximity to the stream and riparian areas that provide year-round aquatic habitat. Since this pool appears to be temporary, it may also function as a vernal pool for those species of amphibians (wood frog, Rana Sylvatica and mole salamanders, Ambystoma spp.) requiring these areas for breeding. Wood ducks (Aix sponsa) and a muskrat (Ondatra zibethica) were observed at this site.

9. Wooded Uplands

Slopes comprised of wooded uplands surround the shrub swamp and are adjacent to portions of the stream/riparian zone discussed above. These uplands may provide nesting and den areas for some species such as raccoons (<u>Procyon lotor</u>) and oppossums (<u>Didelphis</u> marsupialis) that would forage in the nearby wetland areas. Although the majority of trees in this area were small (less than 10 inches dbh), there were several larger specimens of oaks and beeches that could provide mast food during the fall as well as nesting sites for species such as the gray squirrel and American A variety of birds may be found here that are typical of woodlands in a suburban setting such as blue jays (Cyanocitta cristata), American robins (Tardus migratorius), black-capped chickadees (Parus atricapilus), and tufted titmice (Parus bicolor). These wooded areas would also provide habitat during the non-breeding season for amphibians utilizing the isolated shrub swamp.

10. <u>Disturbed Areas (Sparsely Vegetated Area South of the Stream and Auto Junkyard)</u>

These disturbed areas provide minimal habitat for wildlife. Currently, the junkyard may allow suitable foraging/ breeding areas for species such as the Norway Rat (Rattus norvegicus), English sparrow (Passer domesticus), and European starling (Sturnus vulgaris). The area containing sparse vegetative cover may potentially provide feeding sites for ground foraging birds such as the northern flicker (Colapes auratus), killdeer (Charadrius vociferus), and European starling (Sturnus vulgaris). The lack of adequate cover would likely preclude any substantial mammalian use of this area.

APPENDIX D

BORING LOGS

GERAGHTY & MILLER 44 SINTSINK DRIVE EAST PORT WASHINGTON, L. I., H. Y. 11050

WELL LOG

PROJECT Southington, Conn.
CLIENT Southington, Conn.
DATE PREPARED 7/23/65 BY D.W.M.

		OWNER Town of Southington
	A # 4 A # 1 B Y 1 A M	WELL NO. Production Well 2
DEPTH, fi	DESCRIPTION	LOCATION Height Property, Old
° C	Pina ha madisum mand and	Turnpike Road
-	Fine to medium sand and	topo settino Stream valley
	gravel, brown	GROUND ELEV. = 150 feet MSL
1 길 5		
1-1		DRILLING STARTED
	•	DRILLING COMPLETED 7/15/65
10	P!	DRILLER Layne-New England
	Fine sand, silt and clay,	TYPE OF RIG Cable_tool
-	tight, tan	
	•	WELL DATA
		HOLE DIAM. 8-inch
		FINAL DEPTH 58 feet
20 20	·	CASING DIAM. 8-inch
	Fine sand with medium	CASING LENGTH 49 feet
_! • •	gravel, red	SCREEN DIAM. 8-inch
- 25	,	SCREEN SETTING 49-58
. 7.1		SCREEN SLOT & TYPE 105-Slot, Layne
'	•	WELL STATUS Test
_ 00		WELL STATUS
		DEVELOPMENT
[-]·		Surging and pumping for
- - *		several days
[.]	Coarse sand with fine to	
40	coarse gravel, red	
40	coarse graver, red	
		TEST DATA
		STATIC DEPTH TO WATER 5 ft. below 1.5.
i- .		DATE MEASURED 7/20/65
		pumping depth to water 36 ft below 1 s. duration of test 49 hours
50		
		DATE OF TEST 7/20/ to 7/22/65
52	Fine to medium sand and	DATE OF TEST 1/20/ CO 1/22/05
- 14 <u>.</u>		TYPE OF TEST Deep-well turbine
1	gravel with some silt,	PUMP SETTING 44 feet
58	loose, red	SPECIFIC CAPACITY 12 gpm/ft.
→	70.1	
60	Fine sand and silt, red	FINAL PUMP CAPACITY
62		FINAL PUMP SETTING
		AVERAGE PUMPAGE
_	Triassic sandstone and	
	shale	WATER QUALITY
	: i	pH - 7.6
		Fe - less than O.1 ppm
		Total Hardness - 100
		(analysis of Well 16 by
•	1	Conn. Health Department)
-		
		REMARKS
_	•	Proposed site for public
	·	water-supply well

TEST WELL RECOND NEW YORK CO., INC. GROUND GURFACE 65-20 SKETCH OF LOCATION FINE MED BROWN SAND FINE MED CUALSE SAND AND GRAVEL OSS, WELL: NO. DISTANCE _ BISTANCE _ WELL SCREEN: TYPE _ LENGTH __ PUMPING DATA INVESTIGATED FROM TOP OF PIPE) ELEVATION: 023. ZK!T _ ORIFICE _____ AIR LINE LENGTH . QUALITY: PS _____ HARD. ____ IRON ____ DODG YASTE LAD. CANOLE PIPE LETT: IN WELL 52/6" FT., IN OUS. WELL 50 % Retust SEMI AN LEFT: IN WELL _____ FT., IN OSS. WELL ____

NOTE (1) EXECCH MEASUREMENTS FIRM GROUND LEVEL.

(2) ODE. WELL CORCEN IS OPPOSITE WILL GOALDS.

(3) DEPTH SHOWN IS MAXIMUM DEFTH OF NOLL

FOR LAYNE - NEW YORK CO. HELL

•	
. idli	
	· • /

210

NEW YORK Co., INC.

	 -		DATE	10.30	<u> </u>		•	TEST WE	 UL NO	17-	65
•		₹	503				<u>.</u>	774 . 3		_	
•		`~	LOCATION			11. 1. 2	<u>, , , , , , , , , , , , , , , , , , , </u>				
GROUND SURFACE	<u>oʻ</u> . [<u>·</u>	1	PROPERTY				`		.		<u></u>
PINE ME	٥	1	SKETCH OF	LOCATIO				<u> </u>	<u> ۲۶</u>	.17	<u>51</u>
COMPSE SAND					·						r.i
										• .	
AND GRATEL											
•	المدائدة	İ								•	
•				•				څاړ - د و		1516	ŗ
							» <	ري ان ک	د چينه در		
								-		•	
·											
•											
·	1 1			•						-	
	} {				·						
		1							-		
	1.				•		-				•
											•
		!									
		, to 0	es. Well:			_ DISTAN			DEPTH_		
		<u> </u>		NO	200	_ DISTAN	CE	2 .	_ אדינבם _		
		£ ,	/ELL SCREE	NO N: TYPE _		_ DISTAN	GTH		DESTH _	7	
i di particolori		Š W	I'ELL SCREE	NO N: TYPE _ TA (MEAS	SURED FA	DISTAN	GTH	ELEVATIO	DESTH _ OPENIN:	ν E	
が _{また} 機能 mal in		£ ,	VELL SCREE	NOTA (MEAS	OBS.	_ DISTAN	GTH		DESTH _	035. WELL	
하실 (경우) 하시 아		TIME	I'ELL SCREE	NO. TYPE - TA (MEAS PURP. NYELL	OBS.	DISTAN	GTH	ELEVATIO	DESTH	035.	
がない 体 がある。M		TIME	UMPING DA	NO. TYPE - TA (MEAS PURP. NYELL	OSS.	DISTAN	GTH	ELEVATIO	DESTH	035.	
engga¥n eng ni		TIME	GPM	NO. TYPE - TA (MEAS PURP. NYELL	OSS.	DISTAN	GTH	ELEVATIO	DESTH	035.	
ing parties in the second seco		TIME	GPM	NO N: TYPE _ TA (MEAS PUMP. WELL	OSS.	DISTAN	GTH	ELEVATIO	DESTH	035.	
		TIME	GPM	NO N: TYPE _ TA (MEAS PUMP. WELL	OSS.	DISTAN	GTH	ELEVATIO	DESTH	035.	
		TIME	GPM	NO N: TYPE _ TA (MEAS PUMP. WELL	OSS.	DISTAN	GTH	ELEVATIO	DESTH	035.	
		TIME	GPM	NO N: TYPE _ TA (MEAS PUMP. WELL	OSS.	DISTAN	CE	ELEVATIO	DESTH	035.	WEI
		TIME	GPM	NO N: TYPE _ TA (MEAS PUMP. WELL	OSS.	DISTAN	CE	ELEVATIO	DESTH	035.	WEI
		TIME	GPM	NO N: TYPE _ TA (MEAS PUMP. WELL	OSS.	DISTAN	CE	ELEVATIO	DESTH	035.	WEI
		TIME	GPM	NO N: TYPE _ TA (MEAS PUMP. WELL	OSS.	DISTAN	CE	ELEVATIO	DESTH	035.	WEI
		TIME	GPM	NO	OPS. WELL	DISTAN	CE	ELEVATIO	DESTH	035.	WEL
		TIME	GPM	NO	OPS. WELL	DISTANCE LENGTH OPEN	TIME	GPM	DESTH OPENING	03s. WELL	WEI
		TIME	GPM GPM TATIC LEVE	NO	OPS. WELL	DISTANCE LENGTH TOP (TIME	GPM AIR I	DESTN OPENING	CES. WELL	WEL
		TIME	GPM GPM TATIC LIVE UALITY: PN	NO. TYPE - TA (MEAS PUMP. WELL	WELL HARD.	DISTANCE LENGTH OF CORNELL COR	TIME TRON	GPM AIR I	DESTH OPENING OPENING PUMP, VYELL INCLEMENTALE RIANGAS EASIPLE	COS. WELL	WEL
		TIME OF	GPM GPM TATIC LIVE UALITY: PN	NO	WELL HARD.	DISTANCE LENGTH OF CORNELL COR	TIME TRON	GPM AIR I	DESTH OPENING OPENING PUMP, VYELL INCLEMENTALE RIANGAS EASIPLE	COS. WELL	
49' REFUSAL		TIME	TATIC LIVE	NO. TYPE - TA (MEAS PUMP. WELL 277 / NOR NO. TYPE - TA (MEAS	WELL WELL HARD.	ORIFICE	TIME TRON FT., IN O	GPM AIR I	DESTH OPENING	COS. WELL	WEL

- (2) GOS. WELL SCREEN IS OPPOSITE WELL ECREEN.
- (3) DEPTH SHOWN IS MAXIMUM DEPTH OF HOLE.

FOR LAYNE - NEW YORK CO., INS.

TIST WELL REGERD NEW YOUR GO., INC. 1.18 , Carre PROPERTY DWNER __ GROUND SURFACE EKETCH OF LOCATION 65-13 FINE MED 36 Blown SAND FINE MED COARSE RED SAND AND GRAVEL -2.5 55 AND CLAY __ DISTANCE ___ 055, WZLL: NJ. _____ WELL SCREEN: TYPE LENGTH 2 OPENING PUMPING DATA (MEASURED FROM TOP OF PIPE) ELEVATION: PU22. PUMP. ZMIT WELL WILL STATIC LEVEL 65" ORIFICE _____ AIR LINE LENGTH ____ QUALITY: PN _____ HARD, ____ IRON ____ _ MANCAHESE ___

NOTE (1) SKETCH MEASUREMENTS FROM GROUND LEVEL.

55' REFUSAL

- (2) OBE. WELL SCREEN IS OPPOSITE WELL SCREEN.
- (3) DEFTH SHOWN IS MAXIMUM DEFTH OF HOLE.

FOR LAYNE - NEW YORK CO., INC

and the second of the second o

ODOR _____ TASTE ____ LAS SAUPLE ____

PIPE LETTI IN WELL NINE FT., IN OSS. WELL

SCHOOL SEFTS IN WELL ______ FT., III OSS. WELL _____

TEST WELL RECERD New York Co., Inc. LOSATION TO THE PORT OF STATE A SEC PROPERTY OWNER 11. HEISST . 7:17 GROUND SURFACE 41-22 SPETCH OF LOCATION FINE MED 15 - SAND FINE SAND AND GRAY CLAY FINE RED SEND, COASSE GRAVEL AND CLAY FINE HED COARSE RED SAND GRAYEL, AND TRACE BOOF CLAY WELL SCREEN: TYPE PUMPING DATA (MEASURED FROM TOP OF PIPE) ELEVATION: PUND. G.ºM WELL WELL with. 27 166 STATIC LEVEL 10'3" ORIFICE AIR LINE LENGTH

NOTE (1) SKITCH MEASUREMENTS FROM GROUND LEVEL.

REFUSAL 58'8"

RETIEM OF TEST HOLE

- (2) OBS. WELL SCREEN IS OPPOSITE WILL SCREEN.
- (3) DEPTH SHOWN IS MAXIMUM DEPTH OF HOLE.

FOR LAYNE - NEW YORK CO., E.G.

___ IRON ___

__ HARD. __

SCREUR LEFT: IN WILL L

PIPE LIFT: IN WILL 60'9" FT., IN OBS. WELL

TEST WELL RECORD NEW YORK CO., INC. 16 Say in The Bucket Police LOCATION MILE S. CARTER 11575 in PROPERTY OWNER _____ GROUND SURFACE 65-16 SU SKEYCH OF LOCATION SAND AND CARTER *≟,*? ∴ ,₹., GRAVEL FINE GROWN SAND AND CLAY 1120' FINE SAND V 6500 -0 FINE MED COLESE 2 SAND & GRAVE FINE MED COARSE RED SAND AND GRAVEL FINE RED 59 SAND AND CLAY DISTANCE ... DEPTH OES, WELL: NO. __ _ DISTANCE ___ WELL SCREEN: TYPE _ LENGTH _ PUMPING DATA (MEASURED FROM TOP OF PIPE) ELEVATION: . PUMP. 023. .280 TIME GPM THE WELL WELL WELL 1 WELL WELL 1.7. STATIC LEVEL 3 3 ORIFICE AIR LINE LENGTH ____ IRON _____ MANGANESE ___ OUALITY: PH __ HARD. _ FIRE CEST: IN WELL _______ FT., IN OBS. WELL _____ LAZ. SAMPLY ___ 59' REFUSAL FT., IN OBS. WELL SCRUEN LEFT: IN WELL __ NOTE (1) SKITCH MEABUREMENTS FROM GROUND LEVEL. (2) OBS. WILL STREEN IS OPPOBLIE WALL SCREEN. FOR LAYNE - NEW YORK CO., INC. (3) DEPTH SHOWN IS MAXIMUM DEPTH OF HOLE.

TEST WELL REDUND NEW YORK CO., INC. LOCATION ZELLE 200 117 211 4 .3 .3 <u>.</u>3 GROUNG SURFACE 65-W 49 SKETCH OF LOCATION SAND AND GRAVEL SAND AND 27 GRAY CLAY FINE SAND GRAY CLAY 5 33-GRAVER FINE MED COARSE RED SAND d. GRAVEL, TRACE FINE MED COARSE RED SAME AND GRAVEL DISTANCE __ 59'0 GRAVEL PUMPING DATA (MEASURED FROM TOP OF PIPE) ELEVATION: TIME

574" REPUSAL

MOTE (1) SKETCH MEASUREMENTS FROM GROUND LEVEL.

(2) ODD. WELL SCREEN IS OPPOSITE WELL SCREEN.

(D) MEPTH SHOWN IS MAXIMUM DEPTH OF HOLD.

ORIFICE _____ AIR LIKE LEHETH _

L Las. Cample L

FT., IN OSS. WELL

____ KARD. _____ IRON ____

PIPE LIST: IN WELL 51/11

SCREAN LEFT: IN WELL ...

for Layne - New York Co., I.ic.

7	ENT: WE			ngin 4890		ng					orings			SHEET OF 1 HOLE NO TW-14			
	JOB NO.		-80		~ 1 % ~ *		PR	OJECT	NAME S		ngton	gaer (1.2) Sp. (1.3)	ulani i	LINE			
	EMAN-DI	· J.	D	M.S	• •	· j ;	. LO	CATIO		outhi	ngton, C	T.	24.5	STATION			
	PECTOR	G,	K	10.00 m	,						SAMPLER		949	OFFSET PARTIES FINISH			
L	GROUNT TT	Ĉ:FT.	AFTE	:R() M	OURS :	SIZI	E E 1.D. AMER 1	-	A.	<u>ss</u> <u>1-3/8"</u> .	DATE 2/22 2/22/80 SURFACE ELEV.					
		,	<i>J.</i> U			OURS ;	HAN	MER F	ALL		30" 6	er Bu	لين	The second second second			
1	CASING BLOWS PER FOOT		TYPE	SAM		DEPTH @ BOT.	10				OR CONSIST.	T. DEPTH WASH WATER, SEAMS IN ROCK, ETC.					
4	7001	1	SS	18"	10"		11	25			Dry Dense	.83'		st			
												4.01	11t	tle Silt with soft Shale.			
5-		2		18"		6.51		3	1		Wet Very		[2] 1	i, Gravel and Cobbles. Red-brown coarse-fine Sand,			
		3_	SS	18"	10"	9.0'	2	1	2		Loose		3) 1	e Silt, trace fine Gravel. Red-brown coarse-fine Sand,			
		4	SS	18"	12"	11.5'	1	1	1		Very ;		·4) (Silt, trace fine Gravel. Gray organic Peat.			
					,							2 2 - }	3.7.	· · · · · · · · · · · · · · · · · · ·			
15-		5	SS	18"	15"	16.5'	3	5	7		Wet Stiff	16.0	5)To	op 12" Same as sample #4. com 3" red-brown fine-coarse			
				-							50111		Sand	i, trace Silt.			
-		6	SS	18"	11"	21.5	2	1	1		Wet			Frown fine-coarse Sand, trace			
1									-		Very Loose	٠٠	Sili				
25		7	SS	18"	15"	26.5	2	4	5		Wet		7) 7	Top 12" gray fine-coarse			
	·										-		Sand	i, trace Silt. tom 3" gray Clay.			
	•											Track					
.													-	END OF BORING 26.5' Soil			
7				-							1		Inst	talled 24.58° Observation			
73.											·			1 - 1.33' stick-up			
Ţ												,	•	~			
F													•	•			
٠.	PE OF SA D= Df UNDIS	YF	W= Y	VASHE	HECK D (C= COREC	A=		R SS=			ON					
UE	D= Df UNDIS	TURB	W= V	ALL C	HECK	UP= U	NDIST	URBED	PISTON	VT=	SPOON VANE SPOO 35%, AND=3	XN 15-50%					

NT:_WE					ng					orings	-,		SHEET 1 OF 1 HOLE NO TW-15
	مبينمد	ct;	#890	9			P.O. B		35 PI	ROSPECT.	CT. C671	2.	LINE
JOB NO.	12	-80					OJEC I		outhi	ngton			•
MAN-D	AILLE	R D	M.S.			ro	CATIO		outhi	ngton, C	T.		STATION,
ECTOR							-,	· · · ·				•	OFFSET
GROUNI		TER		VATIO	XVS .	-		C.A	SING	SAMPLER	CORE	BAR.	Sian Finish
13.5 Not s	FT.	AFT	ER(٠,٠	OURS	TYP	E I.D.	<u> </u>	A 1111	SS 1-3/8"		<u> </u>	DATE 2/25 2/25/80 SURFACE ELEV.
MOC S		4			OURS		e I.U. AMER Y		2	140	LBS BI	T.	GROUND WATER ELEV.
	_					===	MER F				LOTOATAI		
CASING BLOWS		τ	SAM	PLE		OF	OWS PL N SAMP ICE ON	LER		DENSITY OR CONSIST.	CHANGE DEPTH	-	FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR, LOSS OF
PER FOOT	NO	1	PEN	REC	DEPTH # ROT	0-6	6-12	12-18		MOIST	ELEV.		WASH WATER, SEAMS IN ROCK, ETC
	1	SS	18"	6"	2.5	4	1 4	10		Dry Medium			Brown and red-brown line rse Sand, little Silt, t
											-:-	fin	e Gravel, trace Vegetati
·····	2	SS	18"	411	6.5	7	8	7		Moist			Red-brown fine-coarse Sa
	3	66	18"	ZII	9.0	R	10	7		Medium Wet			tle Silt, trace fine Gra h black fine-corse Sand,
	3_	33	10	0	9.0	-	10			Medium		11t	tle Silt in spoon tip -
	1	Ç.	18"	211	11.5	17	211			Wet			r. Red-brown coarse-fine Sa
			10	_	11.7	-/-				Very ₅	-	lit	tle Silt, trace fine Gra
		-								Soft		4) ()	Brown organic Peat.
										_			•
	5	SS	18"	16"	16.51	2	1	1		"	16.25	5) : Mid	Top 10" brown organic Ped dle 4" gray organic Peat
										1	,	som	e fine Sand. tom 2" gray fine Sand an
							 -			1		Sil	t.
	6	SS	18"	11"	21.5	1	4	4		Wet Loose	-		Red-brown coarse-fine Sa tle Silt with gray fine
										Dose			Silt varves.
		-		-						<u> </u>			•
	7	SS	18"	3"	26.51	6	6	7		Wet	~ -		Red-brown fine-coarse Sa ce Silt, trace fine Grav
										Medium	EOB	LIM	ce biit, trace line drav
										1			•
]			END OF BORING 26.5' So
		:7									3	<u></u> , •	
			: :							j ;			talled 25.0' Observation
		1								4			'Stick-up
-				,						1	35.64		Later to the Country of the Country
	-			-						-			
										1 !!			800 of the Co.
PE OF SA		لــــا					1						

T: Was				ring					orings	•	T
	iec	t #8	9 09			A CHICAGO	T NAME		ROSPECT.	C1 067	LINE
08 140. 1	2-8	n				MOJEC			Ington		LINE
JAN-DRIL	LER			•	L	OCATIO	ЭМ .				STATION
CTOR	عΩد	Ε,	<u> </u>		-			South:	Ington, C	л.	OFFSET :57:
G	K.	·									- FE
ADUND W	ATER	8SE	AVAT	IONS	77	er]	HW &]	ASING HA	SAMPLER SS	CORE	DATE 3/4 3/6/80
58.5 r	1. Ar		'ستت		SIZ	E 1.D.	4"	3+"	1-3/8"		SURFACE ELEV.
F	T. 4 <u>5</u>	129_)	HOURS	11	MMER	_		140 30"	LBS. B	GROUND WATER ELEV.
	===		40. F		====	OWS E	FALL ER 6"	 		STRATA	
SING -	T	- SAI	MPLE	T ====	네 ㅇ	N SAM	PLER 1 TUBE)		OR CONSIST.	CHANGE	HEMARKS INCL. CULUM, LUSS UP
		L PE	,	,	0-6	6-12	12-18		MOIST	ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
	ISS	18"	10.	2.5	4	9	7		Dry		1) Red-brown fine-coarse Sand,
		-			#	-			Medium		little Silt, trace fine Gravel.
	-		-	 	1		1		<u> </u>		
5	38	18"	7"	6.51	6	5	5		1 "	-	2) Same as sample #1.
- 3	-	12"	6"	8.51	 	100/	/5"		Dry		3) Same as sample #1.
		-	<u> </u>			2007			Very		Spoon refusal at 8.5' - drilled
		- 016	1.0"	33.51	1	ļ.,,	1,				same as sample #1, Gravel and Cobbles to 10.0'.
14	155	120	112	11.5'	 	11	10		Dry Medium	10.01	4) Red-brown fine-coarse Sand,
_		-	†		 }				1		little Silt, trace fine-medium
]	' -	Gravel.
5		18"	1,,,,,	16.5'	- <u>-</u> -	7	9		.,		5) Red-brown fine-coarse Sand,
-+2	133	110	+++-	1 10.5	10		- 9 -		}	-	little Silt.
 			 							ار	•
6	55	18"	17"	21.5'	14	7	7		11		6) Same as sample #5.
	1							······································		T	
	┼─	 								.]	
7	SS	18"	14"	26.51	<u> </u>	6	6		11	+	7) Same as sample #5.
	┤—				}						•
											·
	00	7811	15"	31.5'	77	8	10		tr	1	8) Same as sample #5.
	133	10	70	34.5			10		1	+	o, name as sample H).
		·								-	
9	SS	18"	9"	36,51	8	9	10		н		9) Same as sample #5.
										. T	****

10	155	18"	6"	41.5'	9	9	9		H		10) Same as sample #5.

13											·	
₩	Warz	γn_	Engi	neer	ing	- '	' Ge	her	al B	orings	s, Inc	
) #=	Proj	ac t	#89	09			P.O. 8	30X 7	135 P	ROSPECT.	CT 067	12 HOLE NO
Q.	/.				····	P	POJEC	T NAME				LINE
	1.DRILL	2-8	<u> </u>		<u></u>	-	OCATIO		Bouth	ington		STATION
. 44	-	D.	E.	Р.					South:	ington, (CT.	
ECTO	G	. x .									OFFSET	
ROUT_58	UND W.	ATE.	-385E ₹CR	RVAT	IONS HOURS	TY	PE	7 HM ₹	ASING HA	SAMPLER SS 1-3/8"	COR	DATE 3/4 3/6/80
brane	F	. A.			HOURS	HA	MMER MMER	wt			LBS. E	SURFACE ELEV
CASI	uc l			MPLE		=:===	OWS P		 	TOENSITY	STRATA	FIELD IDENTIFICATION OF FOR
, 7004	~s	7-	73~	1	DEPTH	-11 0	N SAM			OR CONSIST.	CHANGE	HEMANKS INCL. CULON, LUSS OF
FOO		TYP	E PE	HEC	₩ 801.	1		12-18	<u> </u>	MOIST	ELEV,	WASH WATER, SEAMS IN ROCK, ETC.
¥				-	 	╢	-			-		
			-							-	1	
<u></u>	111	s	18"	12	46.51	8	10	11		Dry	_	ll) Red-brown fine-coarse Sand, little Silt.
7			1	 						Medium		NOTE: Switched to HW 4" I.D.
		-	┪	-	-{	#	-	-		-{		spin with water.
ig —	12	SS	18"	7"	51.5'	25	21	26		Wet Dense	-	12) Red-brown fine-coarse Sand, little Silt.
		-		1.								
] .		
`	13	SS	18"	2"	56.51	19	29	26		Wet Very	-	13) Same as sample #12.
										Dense		·
											:	
		SS	18"	0"	61.51	26	21	29		Dense '	-	No recovery - two attempts - over drove.
}	-			-								
	14	SS	18"	6"	66.51		12	16		Wet		14) Red-brown fine-coarse Sand,
										Dense	-	little Silt.
												•
}		SS	18"	o"	71.5'	22	29	33		Very		No recovery - two attempts -
		SS	18"	0"	73.01	33	26	34		Dense	•	over drove - drilled same as
}	-									"	72.0	above to 73.0'.
										ŀ	73.0 EOB	
!									·		-	END OF BORING 73.0' Soil
				·								Installed 72.0' Observation Well
												2.0' Stick-up
PE OF S	1 1				ا			1		<u></u>		·
0-0	DRY 1	₩ • Y	VASHE	D 0	C= CORED	A=	AUGEP	SS-	SPLIT S	POON	.	
OPORTI	31URB; 10 2401	ED B SED	ALL C	HECK	UP= UN 10% LIT	DISTU TLE=	JRBED 10-20%	PISTON SOM	VT=1	VANE SPOOM	-50%	

.

... .

..

			#89		ring	-				orings		11
10.			, 40	707		- 1		NAME			01 001	LINE
		-80								ington		
IAN-DF	•		v			10	CATIC		Can+h	lambaa (~~	STATION
TOR	سلاس	•	_M_S	٠		╢—			Sou Ch.	Ington, (c.	OFFSET -
	<u></u>	<u> </u>	3000	RVATI	2015	-		_	1 C 1 1 C	CA1401 50	BAR. San Finish	
14.	SFT.		(185E) 		ons Iours	TYI	PE		asing Ha	SAMPLER BS .	CORE	DATE 2/27/80
	_	ir-	-			11	E 1.D.		3±"	1-3/8"		SURFACE ELEV.
	_FT.	آگرد درنت		٠٠	IOURS	11	MMER :	_		30"	LBS. B	GROUND WATER ELEV.
SING		<u>==</u> :		APLE		<u> </u>	OWS P		T	DENSITY	STRATA	SISI D IDENTIFICATION OF FOR
ows }		Ţ	7	T	DEPTH	네 이	N SAMI			OR CONSIST.	CHANGE	HEMARKS INCL. COLOR, LOSS OF
EA DOI	NO	7	{	REC	№ BO1.	0-6	6-12	12-18	1	MOIST	ELEV.	WASH WATEH, SEAMS IN HOCK, ETG.
	1	<u>55</u>	18"	15,	2.5	12	19	26		Dry Dense		 Red-brown fine-coarse Sand little Silt, little fine-medi
			-		 	╢	-	 	 	Dense		Gravel.
-			 	1		1		1		1		NOTE: From 0.0' drilled same
	2	SS	18"	9"	6.51	58	59	28		Dry	_	as above Gravel and Cobbles,
	٦ .		18"	12"	9.01	21	31	25		Very Dense		very dense. 2) Same as sample #1.
	ا ــــــــــــــــــــــــــــــــــــ	153	10	1==	7.5.0	1 57	2.	2		n n		3) Same as sample #1.
	4	<u>55</u>	18"	14"	11,5'	27	29	29		!"	_	4) Same as sample #1.
				 	 					1		
										1.		· .
	5		18"	0"	16.5'	25	28	20		Wet		E) Dad howen and guest same
-	2-	23	10	-	10.5	2	20	20		Dense	+	_5) Red-brown and gray coarse- fine Sand, little Silt, trace
						·						fine Gravel.
											1	
	6	55	18"	77"	21,5'	74	22	16	***************************************	н ,		6) Red-brown coarse-fine Sand,
						1.7					- +	little Silt, little fine-media
						 					•	Gravel.
	7	ss	18"	10"	26.51	6	8	9		Wet		7) Red-brown coarse-fine Sand,
	-	_								Weginm		little Silt.
						 						
											- 1	•
	3	ss	18"	16"	31.51	11	9	8		n	ال ا	8) Same as sample #7.
										-	31.5 EOB	·
											202	
	¦-											
		-								j	+	END OF BORING 31.5' Soil
										.	1	Installed 32.5' Observation We
	\bot	$\overline{}$		\Box						ſ		2.5' Stick-up
	- -	-										
	:_ PLE3					ــــــــــــــــــــــــــــــــــــــ						•

NT: W					ing	-				oring		
_ ==		ct	#890	9			P.O. 8	30X 7	135 P	ROSPECT	. CT 067	12 HOLE NO. 1W-18
JOH HO). 13	2-80	`			Pf	JOJEC.	T NAME		ington		LINE
MAN-D						LC	CATIC	N				STATION
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>J.</u>	D.	м. 5		·	-∦		,	South	Ington, (Ct.	· OFFSET STE
ECTOR	G.	Κ.										
NOON	0 WA	īĒ.	Dase	TAVE	ONS	TYF		_	ASING	SAMPLER SS	BAR. STAT FINISH DATE 3/6 3/7/8C	
زمدين	<u>is</u> ft	. AT	ER_U	P	OURS :	u - v	E I.D.	ہے نے	HA	1-3/8"		SURFACE ELEV.
	_F7	ا غد	<u>ت</u> عـــ	۲۲	IOURS	16	MMER	-		3 i. A	LBS. B	IT GROUND WATER ELEV.
		===					MER			DENSITY	STRATA	<u></u>
ASING BLOWS	-	7	SAN	IPLE	, 	4 0	OWS P	PLER	ļ	OR	CHANGE	
PER FOOT	HO.	ITP	E PEN	PEC	DEPTH W BOT.	0-5		12-18	1	MOIST	DEPTH ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
	1	SS	18"	12"	2.5'	22	34	50		Dry		1) Red-brown fine-coarse Sand
		-	 -	 	 	 		 		Very Dense		little Silt, little fine-medi Gravel.
		.{ 	 	1	 	 	 	 		Dense	1	NOTE: From 0.0' drilled Grave
	2	SS	8"	3''	5.67'	27	100/	2"		1 "	_	and Cobbles.
	2	51:	18"	1,1,11	9.01	33	27	29-		 		2) Same as sample #1.
•		133	120	1-7	7.0	ددا	-51	54,		<u>†</u>		 Red-brown fine-coarse Sand little Silt, trace fine-media
]		Gravel.
-	4	55	18"	170,	11.5'	11 59	20	30		"	10.0	4) Same as sample #3.
-			j		 		<u> </u>					NOTE: 10.0' End of Cobbles.
					·							•
		5.4	18"	211	16,5'	20	35	1,1,		wet	15.0	5) Cons of cont. #3
		23	10	1	10,5	1 201		1414		Very		_5) Same as sample #3. NOTE: 15.0' Drilled same as
										Dense	.	above Gravel, Cobbles and sma
					 					,		Boulders - very dense.
		SS	2"	0"	20.17	100	/2"			Very		Spoon refusal 20.17' - no
										Dense	T	recovery - drilling shows sam
										}	1	as above.
										j		
	6	SSI	12"	5"	26.0'	46	100/	5"		Wet	26.0	6) Same as sample #3.
	\dashv	i								Very Dense	EOB	
											1	END OF BORING 26.0' Soil
	-	<u> </u>				-)	-	Installed 26.92' Observation
										{		Well 2.0' Stick-up
			-=	 						1		·
		<u>-</u>								- 1		• •
											7	
+										{	1	•
										1		
		 5:									}	

						<u>·</u>	и						
	ENT: Wa	rzy	n E	ngin	eeri	ng	1	Ge	ner	al Bo	orings	, Inc	SHEETOF1
	PT	oje	CT }	#8909	J 	··		P.O. B	OX 71	135 PF	OSPECT.	CT 067	12 HOLE NO TW-19 .
	JOB NO.						PR	OJECT	NAME				LINE
•			-80				 	CATIO		Southi	ngton		
J	EMAN-DE			M.S.			10	CATIO		Southi	ngton, C	CT.	STATION
- 1	PECTOR												OFFSET
		G.1	<u>. </u>				ļ		· 			Er.	
	GROUND T_7.5	WA' ET	I (PA	Basen Fo	D H	OURS	TYP	Ε	ł	ASING IW	SAMPLER SS	DATE 2/18 2/19/80	
	·		-				53	E I.D.	7	+"	1-3/8"	2-1	SURFACE ELEV
u	Τ	_FT.	AFT	R	Н	OURS	1)	MER V	_		140 30" Car	LBS B	GROUND WATER ELEV.
							#===	MER F	====			STRATA	
,	BLOWS		τ	SAM	PLE	,	1 01	OWS PE	LER .		OR CONSIST.	CHANGE	FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR. LOSS OF
	PER FOOT	NO	TYPE	PEN	REC	DEPTH (e) BOT			12-18	1	MOIST	DEPTH ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
		1	SS	18"	6"	2.5'	16		12		Dry	1.0'	4
			<u> </u>		 	 	 				Medium	i l	1) Red-brown fine-coarse Sand,
		-	-			 	 	ļ			1	[trace Silt, trace fine Gravel.
_		2	SS	13"	4"	6.08	10	35	50/2	n	Wet]	2) Red-brown coarse-fine Sand,
			L	I							Very		little Silt, trace fine-medium
			 		 				 	4/6	Dense	7.5' Run	Gravel. Spoon refusal at 6.08'
			-		-			<u> </u>	 	5	ł	#1	Casing refusal at 6.08'.
		1	C	30"	24"	10.0				8	1	10.0	Advanced tricone to 7.5' it
			_							10		B	took 1 hour to drill 1.42'.
			 		 	 				8 15		Run #2	7.5'-10.0' cored with NX 2-1/8' NOTE: 6.08'-7.0' - 40 minutes
			-	-	 					20			7.0'-7.5' - 20 minutes
		2	С	60"	28''	15.0'				25		15.0	7.5'-8.0' - 3 minutes
Š			-			<u> </u>				9 13		Run	Run #1 Cored Rock 7.5'-10.0'. Recovered 24" gray Traprock
-					 	 -	-			25		#3	vertical seams.
1										26			Run #2 Cored Rock 10.0'-15.0'.
		3	C_	60"	30"	20.01	-			24		EOB	Recovered 28" gray Traprock vertical seams.
	 		-	 		 						EOD	NOTE: Run #1 & 2 Carbide-run #3
													diamond.
	 					ļ							Run #3 Cored Rock 15.0'-20.0'. Recovered 30" gray Traprock
ن							-					-	vertical seams.
													NOTE: High core times and poor
]]												recovery due to vertical seams
	 		-				 						wedging in core barrel.
S.												7	END OF BORING 20.0'
أمد			-									į i	6.08' Soil
	 		-	-	 -		₩						13.92' Rock
	<u>-</u>			-									·
ر خ د			=		,								Installed 22.0' Observation Well
	 				<u> </u>	<u> </u>							2.58' stick-up
			-	 			₩						_
4. 1 11	PE OF SA	MPL	ES:				**		_				
	D= Di B= UNDIS	RY TURR	W= V	WASHE	HECK ED (C= COREC) A=	AUGE	R SS	= SPLIT : N VT=	SPOON VANE SPOO)N	•

OPORTIONS USED TRACE=0-10% LITTLE=10-20% SOME=20-35%. AND=35-50%

۸1: <u>۳</u>					ing	· ·				oring		
		ect	#890	9	,			المستأكر أنسان	_	ROSPECT	, CT 06	712 1002 10.
OR NO		-80				PF	achec.	T NAME		Ington		LINE
MAN-D						LC	CATIC		30 u cii.	ingcon		STATION
M-211-0			M.S		• •	1			South:	ington,	CT.	
CTOR	G.										•	. OFFSET
ROUNG) WA	71	nase/	TAVE	ONS	-		_	ASING	SAMPLER	COR	E BAR. Sind Finish
_8	_ <u>-</u> FT	٠	EA	0_	OURS .	TYF	_		-W	<u>ss</u> 1-3/8"	. —	DATE 2/18 2/18/80
			-			11	E 1.0.	_		- I. A		SURFACE ELEV.
	FT.		۳۹ معد	^F	OURS	} }	MER : MER :			30"	LBS. 8	GROUND WATER ELEV.
				PLE		#===	OWS P			DENSITY	STRATA	
ASING:	 -	1	73~	T	,	10	I SAMI	PLER	1	OR CONSIST.	CHANGI	REMARKS INCL. COLOR, LOSS OF
PER	20	TYPE	PEN	REC	DEPTH & BOT.	0.6		12-18	ł	MOIST	ELEV.	WASH WATER, SEAMS IN ROCK, ETC.
	I	SS	18"	8"	2.5	13	17	12		Dry	1.17	
										Medium		1) Red-brown fine-coarse Sand
			 	 	 	 		-		4	3.0	trace fine Gravel, trace Silt
	5	दिव	18"	311	6.51	17	29	36		Wet	[NOTE: 3.0' Drilled Cobbles. 2) Red-brown fine-coarse Sand
	<u> </u>	33	120	1	1.0.			<u> </u>		Very	-	trace Silt, trace fine-coarse
	3	SS	18"	10"	9.0'	16	16	20		Dense	1	Gravel.
-										Wet		3) Red-brown fine-coarse Sand
										Dense	}	trace Silt, trace fine Gravel
	4	ISS	18"	9"	11.51	21	21	19		."	_	Quartz Gravel.
		<u> </u>								1		(14) Red-brown fix-coarse Sand, little fine-medium Gravel,
										1		TICCLE TIME-MENTUM GRAVET,
	5	SS	18"	7"	16.5'	11	11	12	 ·	Wet	_	5) Red-brown fine-coarse Sand
										Medium		Little Silt, trace fine-mediu
												Gravel.
		}								,	٠,	
	6	ss	18"	411	21.5'	19	16	12		*	1	6) Red-brown coarse-fine Sand
						-2					21.51	Little Silt, Little fine-media
											EOB	Gravel.
	ļ	_										•
		 }							{	1		•
	-	 }			<u>!</u>					į	-	END OF BORING 21.5' Soil
	_	-								{	1	. Fun of pouring ST. 2. 2011
										1	}	Installed 21.58' Observation k
				\Box						{	{	2.17' Stick-up
		}		}-						{	4	•
 -	.	37.			 }		 }	}-		. [}	• •
						 -					1	
		3		•						1		·
										1		-
		_ -		\Box		\Box				. 1	T	· · · · · · · · · · · · · · · · · · ·
	-+	}-		 -						1		
	+	- -		}							1	_
			+							j	1	•

D=DRY W=WASHED C=CORED A=AUGER SS=SPLIT SPOON
UNDISTURBED BALL CHECK UP=UNDISTURBED PISTON VT=VANE SPOON
TO TO CE=0.10% FITTLE=10-20% SOME=20-35%, AND=35-50%

PROPERTY AND PROPERTY AND PARTY.

General Borings, Inc.

P. O. BOX 7135

PROSPECT, CONNECTICUT 06712

REPORT OF AUGER BORINGS AND PIPE AND BAR PROBINGS

24M	uthingt					LINE
OJECT	NAME	Southi	ngton			PROJECT NO 12-80
REMAN	J	J.L.				PROJECT NO 12-80 DATE WORK DONE 2/28/80
; PECTO	R CO					FOR Warzyn Engineering
1		<u> </u>				CONTRACTING ENGINEER
	Offset	(Ft.)	Depth	Soil S	trata	(Include: Groundwater depth, Size of)
Ketion	From B L	From C L	Probed (Ft.)	From (Ft.)	To . (Ft.)	Remarks (Auger used, Description of Soil in) (Auger Holes, Depth of Auger Samples)
AW-4				0.0'	4.0'	4" Concrete, red-brown fine-coarse Sand,
3						little Silt, little fine-coarse Gravel and
						Cobbles.
				4.01	6.5'	Gray Silt, little fine Sand.
1				6.5'	10.0'	Gray fine-coarse Sand, some Silt.
			10.0'		EOB	END OF BORING 10.0' Water - 7.08'
AW-5				0.0	3.51	Red-brown fine-coarse Sand, Little Silt,
			٠	·		little fine-coarse Gravel and Cobbles. Very de
7				3.5'	5.0	Brown fine-coarse Sand, some Silt.
				5.0'	17.0'	Brown organic Peat, some Vegetation.
				17.0	20.0'	Grav fine Sand and Silt, trace Venetation.
7			20.01		EOB	Soft-NOTE: At 20.0' Sand ran into Auger
						to 12.0'.
						END OF BORING 20.0' Water - 4.17'
÷	T()					
4	1446					<u> </u>
			:			_
rid.			·			
•						
i						
-			•		······································	

General Borings, Inc.

P. O. BOX 7135

PROSPECT, CONNECTICUT 06712

REPORT OF AUGER BORINGS AND PIPE AND BAR PROBINGS

, Nr	Southi	ngton,	CT.			LINE						
i PoleCT I	IANE	_ Sout	hington			PROJECT NO. 12-80						
REMAN		<u> </u>				DATE FORE DONE 3/7/80						
PECTO	3.4%	•				FOR Warzyn Engineering						
	`	1100		·····		CONTRACTING ENGINEER						
tation	Ollect From B	(Ft.) From C L	Depth Soil Strats in Auger Holes From To (Ft.) (Ft.)			(Include: Groundwater depth, Size of) Remarks (Auger used, Description of Soil in) (Auger Holes, Depth of Auger Samples)						
AW-6				0.0'	2.01	Red-brown fine-coarse Sand, little Silt,						
						trace fine-coarse Gravel.						
				2.01	5.0'	Brown fine-coarse Sand, little Silt.						
			5.0'		EOB	END OF BORING 5.0' Water - 2.5'						
						,						
AW-7				0.01	15.01	Red-brown fine-coarse Sand, little Silt,						
						trace fine-coarse Gravel.						
				15.0'	25.0'	Red-brown-gray Silt, trace fine Sand.						
4			25.01		EOB	END OF BORING 25.0' Water - 18.5'						
						•						
3												
						·						
	17. 2											
9	11.11	12 4-44										
	-	*										
						Ė.						
					·							
4												

IENT:_	Warzy									orings		
Project No. 8909					P.O. BOX 7135 PROSPECT, CT 06712 PROJECT NAME					LINE		
, MAN DRILLER J.D. MS.						Southington LOCATION Southington, CT.						STATION
PECTO			<u> </u>						, o u u u u			OFFSET -
	IND WA 92_FT.	A. I	ĒŘ(<u>) H</u>		TYP		H	ASING IA	SAMPLER SS 1-3/8"	CORE	DATE _3/7 3/7/80
^ ^ I		AC II		H	OURS	HAMMER WT. 1				11.0	LBS. B	SURFACE ELEV
CASII HLOV PER	VG VS	 	SAM	T -	: DEPTH	ON	OWS PE			DENSITY OR CONSIST.	STRATA CHANGE DEPTH	FIELD IDENTIFICATION OF SOIL REMARKS INCL. COLOR. LOSS OF WASH WATER, SEAMS IN ROCK, ETC.
00	T NO.	SS	PEN 24"	8"	@ BOT.	0-6 14	34	12-18 50	43	MOIST Dry	ELEV.	1) Red-brown fine-coarse Sand,
	3		24"	10"	•	14	12 5	10	7	Very Dense Dry		little Silt, little fine-medium Gravel. 2) Red-brown coarse-fine Sand,
	4		511.				16	15	17	Medium	-	trace Silt. 3) Same as sample #2.
 	5	SS	54''	8"	10.0'	18	24	36	31	Dry Dense Wet		4) Red-brown fine-coarse Sand, little Silt, trace fine-medium Gravel.
	6	SS	24"	8"	12.0'	15	19	15	20	Very Dense	_	5) Red-brown fine-coarse Sand, little Silt, little fine-medium
-										Wet Dense	12.0' EOB	Gravel. 6) Red-brown coarse-fine Sand,
											-	little Silt, little fine-medium Gravel.
_												END OF BORING 12.0' Soil
												-
											-	•
											1	•
	 -	2	÷									•
			7,2									· • • • • • • • • • • • • • • • • • • •
	-										Ī	E
	上											
יעט •	DISTURB	W= V	ALL C	HECK	C=CORED UP=UN	IDISTU	DBURG	PISTON	= SPLIT : i VT = 4E = 20-3	SPOON VANE SPOO 5%, AND = 3:	N 5-50%	•

łC.	DRIN	∞_	East Coar	at 'Drilli	ng, Inc.				RV & Sone Veldi	<u> </u>
7	REHA	N	William H	C. Green	•		DATE STARTED	3-20-86	DATE ENDE	0_3-20-86
_			CASINO			SAMPLER			OR CURDYATES	
					TYPE:		OTHER:	3/20	5	0.0
					TALL	30 Inches	-			
7	CAS		SA	MPLE				I day z ci	EQUIPMENT	FIELD
١	al. 187.	ВК	S/ PEH./REC.	DEPTH	BLOWS/6"	SAMPLE DE	SCRIPTION	STATA CHG DESC.	INSTALLED	TESTING
ļ		S-I	18/12	0-1.5	2-2-3	Red brown, fine-to-	medium SAND,	SAND		
		-		 		trace Silt.		FILL		
]			7/3	
•		5-2	18/6	3-6.5	3-3-5	Dark grey, fine-to-	COATES SIND	6.0		
				7.7.7		little Silt, trace	fine-to-medium	REFUSE		
			 	 		Gravel, Petroleum o metal scrape.	or a sneem,	8.0 E.O.E.	ا لا نکا	
]				
		-		 		-				
						}				
						{				
•										
								1 1	}	
								1 1	İ	
								1 1	1	
									1	
									ĺ	
									1	
	\exists						تنر			
									1	
									1	
				}					1	
									1	
	-						ļ		}	
								İ	1	
•							}			•
		二					1	1		
-	+	-					- 1	Ì		
	\perp						ł	}		
_	L_) 2" PVC						1	

GE	OTEC	HNK	ONO B AS			PROJECT Did Turnpike Landfill Southington, Connecticut	REPORT OF	BORING NUMB	ER 1-2	
	MSUL MING			.Dellica	lae		ATION _ South	of RY & Sone V	elding	
FC	REMA	KN :	Villiam Hi	ckle		GROUND ELI	EV	DATE ENDE		
02	A EH	GINE	PDavid		<u> </u>			OROLHO VATIL		=
CASING SIZE HSA TYPE:						SAMPLER Solit Spage OTHER		9.3	0.0	
					IL HAMME	m 140 h.				
					FALL	30 Inches				
i E	CAS		S.	MPLE	,	SAMPLE DESCRIPTION	PESC.	EQUIPMENT	FIELD .	- 2778
<u> </u>	100.	+			ļ		<u> </u>	INSTALLED	TESTING	4
		5-1	18/2	0-1-3-	4-2-4	Red brown, fine-to-medium SAND, trace Silt.	DHAZ			1
							FILL	3		
	}	┼		 	 	1				1
		5-2	18/4	3-6.5	14-9-10	Red brown to dark brown, fine-to-	- 6.0			1
		┼		 	 	medium SAND, trace Silt.				1
,		5-3	18/12	10-11.5	2-4-2	Dark grey to dark brown, (ine-to	REFUSE			1
						medium SAND, some Silt, refuse, Petroleum odor.				1
		 			 		13.0 2.0.E.	والسكنا		
										1
		-		 				į		
1										
1										1
Ī										1
1								}		
ļ										
ŀ								1		1
ļ								1		
ŀ]		
1								1		1
1						<i>*</i> -				
F		\neg						Ì		
_							1 1			
F		\dashv								1
_										1
	-	$\overline{-}$						1		
_								1	•	1
_				—— <u>—</u>				1		
_										
_										1
_		土								
_								}		
_							1 1		1	1

			ONO B AS			Old Turnsike Land	dE	REPOR	T OF	BORING	NUMB	<u> </u>	J-)	
.2.	TENT	IANI				Southington, Con-				37 207 86		15		
83	DAING	∞.	Villiam Mi	<u>firillin</u>			BORING LOC GROUND EL			4 Tr. 70	d_Tricap	lka lo	·4	
			CR David				DATE START	NED_3/2	0/86_	DAT	E ENOC	0_1/20	1/86	
一			CASING	·		SAMPLER			DOI:	970	MOYALL	ALADI.	41	-
	425,		HSA			_ 140	OTHER:							
					<u>Th.</u> HAMMI FALL!	30 inches								
<u></u>	1648	γ		WO! 5		Υ		14	1	<u> </u>	L			7.
Œ.	BL.			MPLE	1 - 1 - 1 - 1 - 1	SAMPLE DES	CRIPTION	E	\$ 2 % S	EQUIP		1	IELD STING	MMKS.
	/FT.	+	 	 	BLOWS/6"		11 . 0.110	- "						┿
0		5_1	JA/L	10.1.3	1-2-1	Red brown, fine-to-e trace Silt.	MGIME SYND,		SHI					1
1									TO					Ì
5		_		· ·	 			s	AND					
,		S-2	18/3	5-6.3	5-8-40	Red brown, fine-to-e trace Silt.	medium Sand,							
		-				AUSEL MELDERY			}					1.
						7*			l					
						}			- 1					1
								-	}					
 								-	}		j			1
-									- 1		- }			1
ł									- 1		1			
ļ								İ	- 1					
}	}			 }		i			1		}			1
									1		1			1
}-														
t								Ì						
+	}								ı					1
									1					
-											- 1			1.1
L									- 1		- 1			
}-							20							
		二												
1											}			
													•	
}-									1		1			
		士												
-		$-\Gamma$							1				j	
		\exists							1					
-														
		士						1	1		1			
-		$-\Gamma$							- 1				1	
							-		-				1	
-		\bot						1	1		1		j	1
EM	VAKS	 _												
			l. Auge no e	r refusel qui pme nt	et 7 feet installed.	below ground, no grou	ndwater encou	untered,	•					
														- 1

BC	HISUL HISUL	<u> </u>	Fast Coas	r Drilli	e Inc.			ING LOCA	TION	SHEET DATE_			لمطلم	r-6175 Load	
			Villiam H ERDayi		ne.			UND ELE'S E STARTE		0/86	DA1	E END	20_2/	20/86	
			CASING				SAMPLER	 		Davie	940	Y-OYAL	A REAS	NUMBER OF THE PERSON	
			нсь		TY	PC1	Salir Spoon on	101·		3/20	18.	-	0		
						414ERL	30 Inches								_
Ε.	CAS	1		MPLE					13.	<u>ا</u>	F~ "6	MENT	┯┺	FIELD	7
DEF.	8L.		PEN./REG.		BLOWS/	6-	SAMPLE DESCRIPT	TON	163	P. S. S.	INSTA			ESTING .	
,						士					<u> </u>				7
-		 	ļ	 		\dashv			SAI	- 1			1		-
									FI	<u>.</u>	3	フ			-
5				ļ		н	ole offeet 6' south from	8-3		- 1			1		┥
ł		_		<u> </u>					-	- [
}						-				- 1	, ()				
,									1	- 1			1		1
1		S-1	18/1	10-11.5	6-5-2	R	ed brown, fine-to-medium race Silt, coerse Sand,	SAND,	1	.0,			}		
ł						<u> </u>			1	1					
Į										- 1			1		
t		5-2	18/8	15-16.5	2-3-4		own to black SILT AND R		j	1			1		1
ŀ						⊣"	berous meterial, glass	etc.	REFU	SE	\mathbf{V}				
ŀ												, ·			-
-		S-3	18/2	20-21.5		٦,	ala Nasana	6145			1.00				1
_		3-2	10/2	40-41-3	3-1-3		rk brown, fine-to-wediu me fine-to-medium Grave:			- 1					
-						- ST	lt, trace metal.		23 . E.	0,	خاور				}
		-				1			""						l'
F						7									1
_		_				1									
_		7				7			1						
_		_				_									1
_		_				7		<u>ن</u>		1					1
_						1						1			
-						4									1
_						1				- 1		- 1			1
_		-				-						- 1			
_						1						Ì			
_						4						į			1
_						1			1	- 1					
_						-						1			
_					·	1									1
_	-	\perp				1			1	- 1					
_						1									
	\perp	\Box	(1) 2" PV			<u> </u>								·	j

GE CO	OTEO NSUL	JANT TANT		ROLOGICA		Southington, Connecticut		SHEET	/20/86	F	<u> </u>	
FO	REMA	н	Frat Coast Villiam XI	:kle		SORING LOC	EY	67'				
σz	A EN	GINE	ER David		<u></u>	DATE START	ED 3/2	2/86			D 3/20/86	
			CASING IISA		TYPE:	SOLIT SPOOR OTHER		3/20		741	READINGS. Q.Q	
14	ANIMER:				IL HAMM	De 140						
					FALL!							
EZTH	CAS BL: VFT.	Ви		DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STHTA	F 8 9 9	EQUIP INSTA	-	FIELD TESTING	
0		5-1	18/18	0-1-5	1-2-1	Red brown, fine-to-medium SAND, trace fine-to-medium Gravel, trace	CO FI					\neg
						Silt.		_	g			
- [1	-		1/			
5		S-2	6/2	5-5.5	100/6	Red brown, fine-to-medium SAND,	-	- 1				1
			 	 	ļ	trace fine-to-medium Gravel, trac	1	.0.				
						1	1-				•	
10			18/0	10-11-5	31-21-21	No recovery	١.,	FUSE				A
1			137.	10-11-1	H-71571	, and the state of		1032				
}				ļ	 		- [
15									-	$/ \mid \mid$		1
}		5-3	18/6	15-16.5	13-18-23	Brown, fine-to-coarse SAND, trace fine-to-medium Gravel, trace Silt						
						wood, glass, etc.						
<u>.</u> }								1	20/			
ŗ		S-4	18/1	20-21.5	3-5-9	Dark brown, fine-to-medium SAND, trace fine-to-medium Gravel, trace	.		A	_		1
t						Silt, plastic etc.	- 1	3.0'				d
F		\neg					- E.	0.2.				
								1		1		1
-												
							- 1	1				
+										- }		1
						%	1	}	•	1		
-		-				,						
								1				
-		+						- 1		į		
-		-										
F												1
-							1	j				1
		\Rightarrow								.		1
-		-+-						}				1
F		二						1				
ـــــــــــــــــــــــــــــــــــــ	BK¢	_ _	<u>_</u>									ا ل
E 32	ARKS		Vell c	onalata -	of 20.0° of the screen,	et at 23.0 feet. slotted screen and 5.0' of riser p with a bentonite seal from 1.0 to	pipe vi 2.0' a	ch a 2 nd a pi	.0' stic	k-up. S	Sand ves	

FO	REMA	لىلى א	General Chair			BORING LOCATION Quaker Drive GROUND ELEY DATE STARTED 1-12-87 DATE ENOED 1-14-87
5 Z	A EN	SINE	CASING		Kobrek	SAMPLER STARTED 1-12-37 LIATE ENDED 1-15-37
•	75.	2".	DYC		TYPE:	Salir Speed Others
н	MINER				IB HAMMI	140 IL
FA	ـــ نالك				FALL:	·
	CAS. BL.		S	AMPLE		SAMPLE DESCRIPTION ENTRY FIELD TESTING
3	/FT.	Na	PEH./REC	OEPTH	BLOWS/6"	FO B INSTALLED TESTING
		5-1	24/11	0-2'	-4-7-12	Brown fine to medium SAND, some TOPSOIL HNU Silt, and organic matter: topsoil, k2
						Silt, and organic matter; topsoil. k2 O.4 ppm
ļ		1				DARSE SAND O.3 ppm
1		S-7	24/14'	5-7	20-32-67-23	Silt and medium-to-coarse Gravel,
1				ļ		trace Cobblea.
1]
ļ		5-3	24/15	10-12	0-11-10-10	Brown fine to coarse SAND, some 0.2 ppm
ļ				 	 	Silt and fine to coarse Gravel, trace Cobbles.
l			~			
	{	5-4	24/	15-17	10-8-9-13	Cobble in Split Spoon; No recovery,
t				1.2-1/	Q-Q-7-17	Coope in Spiri spoon, no recovery.
-						k17
ľ		-1	24/0	20-22	-10-0-12	Red fine to medium SAND and SILT. MEDIUM 0.5 ppm
-				 	ļ	SAND
-		-6	24/10	25-27	7 1/ 15 16	Red fine to medium SAND, some Silv
_				7,527	2-18-13-16	Red fins to medium SAND, some Silt.
-						
L						
_	 	-7	24/10	30-12	2-11-14-12	Red fine to medium SAND, some Silt. 0.4 ppm
_						
_						
_		-8	24/14	35-37	3-18-20-25	Red fine to medium SAND, some Silt.
_						O.O ppm
-		-+-		{		
_						
-	<u> </u>	9	24/15	0-42 4	-15-17-20	Red fine to coarse SAND, some Silt.
						#40 FINE TO
_		_				COARSE SAND
_	5-	10	24/15	5-47	12-13-18-15	
_	$\Box \Box$	\bot				Red fine to coarse SAND, some Silt.
-	_	_				
_		1				
_	ARKS		4/17	50-52 1	2-15-20-24	Red fine to course SAND some Silv. D.3 ppm

NOTES: I) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL, 2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THE COUNTY LOGS. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO FACTORS NOT ACCOUNTED FOR AT THE

21. C. ⁻		CASING			SAMPLER				- GAOL	HOWATER	AC/	DINGS -	_
	2'	, b.c		TYPE:	Solit Space	OTHER:		AAYI	MA	- CARLARA	4	Alaan ilai oo	
				<u>ID</u> HAMMI —— FALL:	140 30"		ł				土		
			AMPLE		Υ		14.	0			Γ^{\perp}		-
CAS IFT		PEN./REC	7	BLOWS/6"	SAMPLE DE	ESCRIPTION	FR	GEN. DESC.	EQUIPA			FIELD TESTING	1
	S-12	 	55-57		Red fine to coarse	SAND, some Silt.	+		///	7/	нии		7
_	-		-								0.5	ppe	-
			1		1				7-2-1	1.7.1	2.6	ppes	1
·	S-13	24/17	60-62	10-20-24-25	Red fine SAND and	SILT.	±60				0.6	ppe.	+
]		FINE	AND					
					4		SILT						
	S-14	24/15	64-66	14-18-21-23	Red fine SAND and	SILT.			1		0.2	p p m	1
					}		1			_	İ		
	-	2.772	(0.31	2: 10 00 00	}					-	0.2	ppe	-
	S-15	24/17	69-71	21-19-20-25	Red fine SAND and S	oitr.				-	0.7	bher.	
	- -		 	 	}			Ì		-			
					1			}		_			
	5-16	_24/16	74-76	18-18-20-28	Red CLAY and SILT,	trace fine Sand	274	{	ļ	-	0.2	•••	-
			7.5	10-10-23-10	Lee Cook and Star,	crace time Samu	CLAY	AND		_	0.2	ppm	1
	+		 	 	}								1
							±78			-			1
	<u> S-17</u>	24/13	79-81	49-34-24-19	Red fine to coarse and medium Gravel.	JAME, SOLE SIZE	FINE COARS			-	0.6	ppœ	1
							SAND			-1			1
								- 1		-			1
	S-18	24/10	84-86		Red fine to coarse and medium Gravel.	SAND, some Silt				1			1
					and medium Graver.	٠,,		- }	L	<u>ا</u> لـ	0.6	p p e	1
						,				}			1
					End of boring t 89'		Possit						þ
						Į.	BEDROC	X		[1
						1				- 1			1
										1			
								-					1
										- 1			
										- [
						1							1
						1							
						į							1
LARK	L					1							ł
CZ-1		:											
_		· · possible	hadrack										

	OTEC YSUL		L/GEOHYO	ROLOGIC	~	Old Turnpike Bond Landfill Southington, CT.		_1-15-87		E_H_6970	
80	RING	i	Cocra) D.		····	BORING LOCATI		Drive			
				ristophe	r J. Kooler			DAT	E ENDED	_lal6=82_	
			CASING			SAMPLER	NAY.	GAO	MOWATER	READINGS .	
3	ız ¢	2"	nxc			Splir Spann STHER					
					IL HAMMI	78- 140 lb.	}			-{	
F	LL				FALL:						
Ē	CAS		SA	MPLE		CALIFI & DESCRIPTION	4 45 X	EQUIP	MENT	FIELD	T
DEPTH	PL.	на	PEN./REC.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	STRTA. CHG GEN.	INSTA	LLED	TESTING	
_		S-1	24/13	0-2	2-7-10-12	Dark Brown fine to course SAND, som	FINE TO			HNU	7
ı						medium Gravel, little Silt.	COARSE	1 1	- 1 1	0.0 ppm	1
		├—	 	 		4		177			
		5-2	24/12	5-7	5-10-13-12	Red fine to coarse SAND, little	±5'				- 1
5				<u> </u>		Sile.	FINE TO	7		0.2 ppm	1
J						4	COARSE	1 1	1 1		
ļ				 	 	1	SAME		1 1		
ŀ		5-3	24-14	10-12	7-11-10-12	Red fine to coarse SAND, little	{	1 1	1 10),3 ppm	- 1
IC		-12-		10-12		Silt.	ĺ				1
Ţ							1		1 1		
				ļ	 	{	{	1 1	1 1		- 1
1		c /	24/10	15-17	7-7-12-12	Red fine to coarse SAND, little	j		1		- 1
1:†		3-4	647.10	-	y-(-(:-)/	Silt.	ĺ		0	1.4 ppm	1
							}				
							1	1 1			- {
}		· -	24/10	20-22	20 8 20 23	Red fine SAND, some Silt.	}			_	- }
20		<u>, - , </u>	797.19	20-22	10-7-10-13	THE SAND, SOME SILL	±20	-	l lo	.O ppm	1
							FINE	1 (- {
}-							SAND				1
<u>.</u> ,		5-6	24/14	25-27	7-15-15-21	Red fine SAND, some Silt.	}	1 1		4	- [
							1	}	0.	.6 ppm	1
-							1	} }	1 1		ł
-							1		1 1		Ì
,,		5-7	24/11	30-32	20-27-27-31	Red fine to coarse SAND, some Silt.	f	1 1		,	
]_							±30	1 1	1 10.	6 ррш	1
}-	}				{		FINE TO COARSE	1 1	1 1		-
1							SAND		1 1		
1	S	-8	24/12	35-37	6-20-29-22	Red fine SAND and SILT.				•	
-		}					±35	1 1	1 10.	2 ppm	1
\vdash							FINE SAND AND SILT	1	1 1		1
-		_		}		1	3.0,				1
	s	-9	24/10	40-42	4-17-16-17	ted fine SAND and SILT.		[1 1.	1	
1						ł			1 10.	2 ppm	1
1						İ	,				
-	S	-10	24/16	45-47	2-16-17-18 F	ed fine to medium SAND, some Silt.			ا ا	ppm	
-		-+					145		١ ٢٠٠	. yy=	
						}-	EDIUM	1			
		\Box				i	מאג	Į			1
	lc.	-11[24/9	50-52	9_19_24_29 i e	ed fine to medium SAND, some Silt		1	D.4	ppe	1

 Soil samples were screened for volatile organic compounds using an HNU Model PI-IOI Organic Photoionization Analyser.

3 H	12 E ·	2	CASING		J. Kopler		SAMPLER	DATE START					TEADINGS .	
F	A44ER		" פער				NA PARAS							
F	A44ER						Solit Spoon	•		111	Meta	ALIER AL	alau da	100
۶,					IL HAMM	Cr	140	.						
_					FALL:		30"			<u> </u>				
-	CAS		SA	MPLE		T	SAMPLE DE	SCRIPTION	A S	GEN. DESC.	EQUIPME	NT	FIELD)
3	BL. /F7.	NQ	l		BLOWS/6"					2 2	INSTALL	ED	TESTIN	3 •
•		S-12	24/18	65-57	16-14-19-21	Red	fine to medium	SAND, some Si	lt.				พบ	
		_				t			- 1			Y N	.2 ppm	
		<u> </u>	24.11	40.42	10 15 22 20]	fine to madium i	CLUD come CC	.			1/	.2 ppm	
İ		2-13	24/14	00-62	18-12-22-20		fine to medium	3880, SOME 31.					,,-	•
}						-				ļ				
						1				}				
-		S-14	24/17	65-67	14-12-18-16	Red	fine to medium	SAND, some Si	it.			10	.2 ppm	
Ì						1				1	~~4			
Į]			- }	- }		1 1		
ł		9-19	24/20	70-72	12-13-14-16	Red	SILT, some Clay	and fine Sand		}	1		2 ppm	
-]			± 70	SILT			pp=	•
}						1					}			
ŀ						1								
Ļ		5-16	24/15	75-77	13-14-16-19	Red	SILT, some Clay	and fine Sand	•			o.	2 ppm	
-						1			- {	1				
-										- 1				
-		S-17	24/18	80-82	16-21-24-26	Red	fine SAND and SI	LT, trace Cla	y .			0.	2 ppm	
_									± 80 Fine					
-										{		1		
-		-	24/12_	05 07	14 21 22 23	Dad	fine SAND, some	C112		{				
-		3-10	24/12	03-07	[4-21-22-2]	REU	line Skno, some	3116.		- 1		0.	4 рра	1
-	}							100		}				j
_														Ì
_	-	5-14	24/17	90-92	6-19-30-32	Red	fine SAND, some	Silt.		- 1			2 ppme	1
_									_	1			r ppm	- {
_						End	of Boring ± 92'.			1				- 1
_									1					-
_	_	-								}				1
_		_								- {				
_	\dashv									- {				- 1
_														- {
_														
_							•							- }
_	\perp	\perp	I	I				·····	<u> </u>					

NOTES: I) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES AND THE TRANSITION MAY BE GRADUAL, 2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THE ROBINGS LOGS. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO FACTORS NOT ACCOUNTED FOR AT THE

[cc	LCEE	RG-Z	OINO B A	SOCIATE	S, INC	PROJECT Old Turnpike Road Landfill			BORING				
	EDTEC MSUL		V / GEOHYD	HULDGIC	·L	Southington, CT.		DATE_	1-16-47	FIL	٤_	11-6970	<u> </u>
						BORING LOC		Rejean	Drive				
F(HEMA A EN	AH	.O. Ch	riscopher	J. Kopley	DATE START	20 1-1	5-87	DAT	E ENDED	1-	19-87	
			CASING			SAMPLER		MIL	GAOU	HOWATER	PEA	INGS -	-
			. DAC			Split Spoon oTHEN:		-			+		
,	WHITER WALL:	·			<u>ib.</u> Haume Fall:.	30"					工		
Ē	CAS	7		AMPI F		<u></u>	Į d	ا ان نہ سا	EQUIPA			FIELD	_ vi
ÆPT.	BL.	NO	PEN./REC.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	183	SEN.	INSTAL			ESTING	RMKS
<u> </u>		5-1		0-2	1-4-9-13	Brown fine to coarse SAND, little		AN FINE		1	UKI		1
	}	┼		 	 	medium Gravel, trace Silt.	SANO	DARSE			0.3	p p=	
5	-	S-2	24/9	5-7	6-7-9-17	Red fine to coarse SAND, some fin to mediumGravel. and Silt.	1 2 5		4	K-2-4	0.7	ppe	1
	[KEED 1			1 1			
				<u> </u>			SA	סא	}	i			
10		S-3	24/12	10-12	14-7-6	Red fine to coarse SAND, some fin	•).5 ₁	p pm	1
										1			
				 	 		- 1		}	1			1
15		5-4	24/16	15-17	11-22-11-10	Red fine to coarse SAND, some fin- to medium Gravel and Silt.	•	ļ			.6 ;	100	1
						to accuse of aver and Size.		J			,,,	-	
		-						- 1					
20		S-5	24/7	20-27		Red fine to comme SAND, little		- 1			.4 p	na.	
}						Silt.		- 1	-		• • •	,,-	
}							-						
25 +							1	1					12
`						End of Boring ±25'	7	- 1	1				1.
Ì													
- }													
1							1	i					1
							-	1					
}								1					
-							1	1		}			1
-}								}					
F													
-							1						1 1
-							1	- {					1 1
							}						1 1
+										}		,	
F		_											
E		\pm											
L													1
C.N	LARKS	-	<i>:</i>										
	1.	Soil Photo	samples ve ionization	re screen Analysen	ned for vola r.	tile organic compounds using an HN	U Model	PI~10	01 Organi	c			
	2. (GZ-3											- 1
	Ş	Seree:	n: 15' of ng: 10 to 1	10 slot,	threaded fl	ush joint, scheduled 40 pvc.							
	(Gravel	pack: #10	silica	sand: 5 to 2 3 to 5 feet	5 feet,							
	į	reax: Develo	pentonite peent: Air	periets;	icopinet	•							-

FO	REMA	J.	0.			BORING LOC GROUND ELE	Y							
			CASING			SAMPLER							ADINGS -	
			DVC			Salit Spoon OTHER			├					
					FALL:	30"						\neg		
Ē	CAS		S/	MPLE		SAMPLE DESCRIPTION		CHG CHG GEN.	E		KENT	Τ	FIELD	$\overline{}$
8	/FT.	NQ	PEN./REC.	DEPTH	aLOWS/6			E 0.2 A	IN	STAL	LED		TESTING	4
	 		26/18	0-2	5-6-5-34	Brown fine SAND, some Silt, Fill	.			1) INU	ppes	- [
]			H	\mathcal{A}	$H \mid$			
		E-2	24/14	5-7	8-11-11-12	Dark gray coarse SAND, some fine	to				N	þ.o	pp=]
					 	medium Gravel and little Silt, F	111		Πſ		П]		}
														-
		5-3	24/6	10-12	7-4-4-10	SAND, GRAVEL, and SILT, some					111	60	ppe -	- }
2						Ceramic and Plastic, Fill.				İ]]	٦٠٠	y y	1
				 	 	-	- 1				111			
- {		2 1	24 (12		20. 20. 20. 2			FILL	1 8	11	$\parallel \parallel \parallel$	1		
		5-4	24/10	15-17	30-29-30-30	Brown coarse SAND and SILT, Fill.	.			11		0.1	ppe	1
-						}						1		
t									H					
+		5-5	24/12	20-22	60-59-45-38	Brown fine to coarse SAND, Silt a fine to medium Gravel, some Glass		-	\Box			0.7	994	1
L						and Metal, Fill.								
1										2				
-		S-6	24/10	25-27	12-10-10-10	Brown fine SAND and SILT, some	_					0.5		1
ŀ						coarse SAND and fine Gravel, trac- Cobbles.		25 NE SAND	\dashv			0.3	pp s	
F		\Box					AN	D SILT						
L		S-7	24/5	30-32	26-13-10-8	Brown fine SAND and SILT, some		- (\exists					
-						coarse Gravel and Cobbles.						0.7	ppm	1
									-					
H	 ,	S_8	24/10	35-37	10-13-13-11	Brown fine SAND and SILT, some			7					
			••// 10			coarse Gravel and Cobbles.			\exists	1 1	1 11	0.4	ppm	1
┝									\dashv		1 11			1
_									コ		1 11			
-		5-9	24/10	40-42	11-4-4-7	Cobble in nose, no recovery.]]	\dashv r	} }		-	-	1
_									$\exists Y$	1 I				
-									-1/	1 }	1 11			1
_	S	-10	24/11	45-47		Brown fine to coarge SAND, some Silt and fine to medium Gravel.	-			1 1	1 11	0.9	ppe	1 2
_		二						NE TO	T.	1 /	1 11			
_	_	\dashv				Brown line to coarse SAND, some	SA	ARSE ND	Y.		111			
M	s	-11	24/8	50-52		Silt, fine to medium Gravel.					1 11).6	pp⊕]

End of boring ± 45 [eet Screen: 20' of 20 slot, threaded flush joint, achedule 40 pvc. Setting: 23 to 43 feet; ±2 [eet of cave-in at bottom of boring. Gravel pack: fl8 silica sand; 18 to 43 feet Seal: bentonice pellets; 13 to 16 feet and 3 to 5 feet.

Development: Airlift for ± 1 hr.

CO L	Ceneral			Southington, CT. BORING LOCA		E_1-19-57 014 LV-10		E_H-6970
N LL	2			GROUND ELEY				
SINE	R _Chris	opher.l.	Copley	DATE STARTE	:0 <u>1-19-8</u> 2			
		-		SAMPLER	100	OROL OF THE	HOWATER	READINGS
					}			
			<u></u>					
,				<u>γ</u>				1
				SAMPLE DESCRIPTION	FER	EQUIP		FIELD
NO	PEN./REC	. DEPTH	BLOWS/6			O INSTA	LUE	TESTING
S-12	29/13	55-57	5-4-6-5			ND		ИU),4 ррш
	 	 	- 					,,, ,,-
						_	-	
S-1.	24/-	60-62	 	Boulder.		R		-
				3		_	-	
		-	 	4	± 62 FINE SAI	(0)		
S-14	24/15	65-67	5-4-7-9	Brown fine SAND and SILT, little				1.5 ppm
				coarse Sand.				
			+	1	1			
			1	1				
5-17	24/14	70-72	7-9-12-10	Brown fine SAND and SILT, little		1 1-1	0	.9 ppm
_		1	1	Coarse Sand.	1	1	111	
				1	1			
		 	 	1				
5-10	_24/	13-11-		Boulder.		1	111	-
					+ 76	$\dashv \square$		
		 	 		FINE TO		111	
S-1	24/13	80-82	45-23-17-13	Brown fine to coarse SAND and				.5 ppm
				GRAVEL, some Silt.	CRAVEL			//
		 	 			1		
		-			1		111	.6 ppm
S-14	24/17	85-87	28 <u>-25-26-16</u>		į		1 110.	o ppm
				·		1	1 11	
		ļ		-^	1			
5-19	24/6	90-92	25-35-29-22	Brown fine to coarse SAND and			_	4 ppm
				GRAVEL, some Silt.	1	1//	7 7	
		 				V/	111	
\Box					± 93	1//	111	
3-2q	24/-	95-97		Boulders,	BOULDERS	Y//	1 H	-
_						V /	المالم	
\neg						1//		
	241-	100-102		Roulders	1	Y //	1 H	_
		100-197		vvu a 461 J 1			1 H	-
		ļĪ			1	1	1 11	
_								
	24/-	105-107		Boulders.)	I	1 1 1	
	N 2.1 S-1.7	N LD. SINEER _Chris CASING 2" pvc S S NO PEN./REC S-12 24/13 S-12 24/15 S-14 24/15 S-14 24/15 S-15 24/15 S-16 24/15 S-16 24/16 S-16 24/6	SAMPLE SAMPLE SAMPLE NO PEN./REC. DEPTH S-1: 24/13 55-57 S-1: 24/15 65-67 S-1: 24/15 65-67 S-1: 24/15 65-67 S-1: 24/15 65-67 S-1: 24/17 85-87 S-1: 24/17 85-87	N. J.D. SINEERChristopher J. Xopley CASING 2" pvc	CASING SAMPLE SPIT Spoon OTHER	N.D. Chemosher J. Yapley Spit Spoon OTHER TARRED L-12-Bi CASING TYPE: Spit Spoon OTHER 140 B. SAMPLE SAMPLE TARRED L-12-Bi CORRES SAMPLE SAMPLE DESCRIPTION E SAMPLE SAMPLE DESCRIPTION E SAMPLE CORRES SAMPLE SAMPLE DESCRIPTION E SAMPLE DESCR	N.	N. D. GACUNC ELEY DATE STARTED 1-19-87 DATE ENDED

CASING		J. Kopley	SAMPLER	201	- GAQUNOWATE	R READINGS	_
		TYPE:	Salit Spoon other:				_
		FALL:	30"				_
SAM	PLE			4 ouz	FOLIPMENT	FIFLO	
PEN./REG.	DEPTH	BLOWS/6"	SAMPLE DESCRIPTION	E 28 8 8	INSTALLED	TESTING	•
24/-	110-112		Boulders.			HNU	
			1			1	
24/ -	115-117		Boulders.		1 H	_	
						}	•
						-	
24/ - 12	20-122		Boulders.	}	1 H	-	
24/6 12	15-127		Brown fine to coarse SAND, Gravel				
			and Silt.			0.6 ppm	
-/- 13	0-132	CRAB	Brown fine to coarse SAND, Gravel			_	
			and Silt.			}	1
						}	-
-/- 13'	5-137	GRAB	Brown fine to coarse SAND, Gravel				1
		<u> </u>	and Silt.			_	1
			End of Boring ± 137 feet.	1			1
							1
							1
			%				1
				1			1
							1
							1
							1
					}		1
					1		
							1
			<u>.</u>		Ì		
					}		l
	24/- 13 24/- 13	SAMPLE PEN./REC. DEPTH 24/ - 110-112 24/ - 115-117 24/ - 120-122 24/6 125-127 -/- 130-132	SAMPLE PEN./REC. DEPTH BLOWS/6" 24/- 110-112 24/- 120-122 24/6 125-127 -/- 130-132 CRAB	TYPE: Splir Spoon OTHER; NAMMER 140 150	TYPE: Split Spoon	TYPE: SAITE SAIDE SAMPLE SAMPLE DESCRIPTION SAMPLE	TYPE: Salit Spoon OTHEN 140 18. 140 18. 140 18. 140 18. 140 18. 140 18. 140 18. 140 18. 18

•	7				•								
		.08	ERG.	ZOINO	a ASSOC	IATES, INC.		PROJECT		REPOR	T OF	BORING	No
		20 NE	EDHA	м \$т. <u>, к</u>	EWTON UP	PER FALLS, M	- 1.	Old Turnpike Road Landf	iii.	_	FILE	No	OF1
	G	EOTE	CHNIC	CAL/GE	OHYDROL	GICAL CONS	ULTANTS	Southington, CT			CHK). BY	
	80	ORING	Co	GZA	Drilling.	Inc.		BORING LOCATION					
	FC GZ	OREM ZA EN	AN IGINEI	ER _ A.	Jones Bjarngar	d		GROUND SURFACE DATE START 11-					
	-	AMDI	50: 1	MI ESS O	THE PWISE NO	TEO SAMPLER CO	WEISTS OF A	2" SPLIT SPOON DRIVEN USING A		GRO	UNDW/	TER R	ADINGS
	ľ		1-	OB HAN	IMER FALLING	30 h.							STABILIZATION TIME
-	} `	asing					EN USING SOC	DID HAMMER FALLING 24 in.	11-26	-84 1430	9.01	10.0	observation well
					SAMPLE			MPLE DESCRIPTION	T		L	لـــــــــــــــــــــــــــــــــــــ	
	Ē	SINC	No.	PEN.	DEPTH	BLOWS/6"			ELANG:	S	TRATL	IM DE	SCRIPTION
	_	13=	ł .	1	1			Burmister CLASSIFICATION		0.3		WOOD C	IPS
Ì		-	5-1	24/15	0-2	5-7-8-13		4 inches: Loose wood chips tom ll inches: Medium dense	1				
		-				 		-brown fine SAND, little (-)) [1			
		-			 	 	Grav		- 1				
				 			1						
-	5	 	5-2	24/18	5-7	3-4-5-7	S-2 Loos	se red-brown fine SAND, trad	.e 1.			FINE	1
•				13.4.20			Silt	•		1		SAND	
1						·			1	}			
1													
•	10								- {	}			
	10		s- 3	18/12	10-11.5	12-16-11	~	ium dense red-brown fine SAN	1 .				
1				ļ		<u> </u>	litt	tle (+) Silt, occasional	3.	1			
١,					ļ	<u> </u>	1		1	1		COBBLES	
1						ļ	1		-	1		OULDERS TRIX OF	
	15					ļ	4			1			
'			5-4	18/6	15-16.5	43-48-51		dense red-brown SILT, little Sand, trace fine to coarse		16.5			
1								el frequent cobbles			ENE	OF EX	PLORATION
İ							-						
		 				ļ	1	.•					
}:	20 }						1		1				
Į	Ì						†		ł				
1	}					ļ	1		}	}			
1	1						1						
1	f	-					ĺ		1	l			
	1							, •	}				
1	t						1	-		1			
										}			
		Ţ]							1			
	1		[
													}
	1] .				
	-	_											
	}	-			<u>:</u>								
(,	<u>_</u>	NU	AR SC	1 2 1 2	OHESIVE S	OII S Tocas		·					·
	_	S/FT		ISITY BL	.OWS/FT. D	ENSITY , S,	KS: oon moist	<u>.</u>					}
1	- 4			00SE <		90FT 2. S	oon wet.						
ļ	-Ю 0-30			OOSE 4.	6 M.	STIFF 4. AL	iger refus	er from 11 to 15 feet, very al at 16.2 feet.		=			ŀ
1	io-30			ENSE 8-		STIFF 5. Or	e 2 inch	PVC observation well install	led w	ith a scr	ened	range f	rom 6 to 16
1	>50			ENSE >		HARD	ec. Bent	onite seal from 4 to 5 feet.					}

NOTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

					JATES, INC.	ШΔ.	PROJECT		REPOR	T OF BORING	OF
			_		-		Old Turnpike Road Landfill Southington, CT		-	FILE No CHKD. BY	
80	RING	Co	G2	Drilling	i. Inc.		BORING LOCATION				
			R70	Rjarngard			GROUND SURFACE E				ATUM 21-84
										UNDWATER R	
SA	MPL	ER: U	NLESS O	THERWISE N	OTED, SAMPLER	CONSISTS OF	A 2" SPLIT SPOON DRIVEN USING A	DATI	E TIME		
CA	SING						-		84 0630	5.51 30	15 hours
C A	SING	S17 F	ues	to 70 fe	net OT		on Revert mud used to keep to open to 100 feet	1-26-	84 0845	5.6'	observation wel
			11.57	SAMPL			SAMPLE DESCRIPTION	18	T		
ΞĘ	(M/11)	No.	PEN.		BLOWS/6"		_	1 3	S	TRATUM DE	SCRIPTION
<u>-</u>	3 -	1			 		Burmister CLASSIFICATION	+*	0.7	TOPSOI	,
		S-1	24/16	0-2	3-4-9-13	S-1	Top 8 inches: Loose brown fine to coarse SAND, some Sile	ً ل	[
	 	 	 	 			trace fine to coarse Gravel	1	1		
		ļ	ļ	 		_	Bottom 8 inches: Medium dense		}		
		<u></u>	<u> </u>	<u> </u>			red-brown fine to coarse SAND little Silt, trace fine to	']	1	FILL	•
			{	}			coarse Gravel	1			
5 -		S-2	24/4	5-7	12-4-2-2	7		Ì	6.0		
		3-2	49/3	3-1-	12-4-2-2		Top 12 inches: Medium dense	-			
				 			red-brown fine to coarse SAND, little Silt little fine to	<u>'</u>	1		
				ļ		{	coarse Gravel, frequent cobble	a :			
				 			Bottom 12 inches: Soft dark	1	}	ORGANIO	3
9				ļ			brown to black SILT, trace fine Sand, organic odor		}	SILT	
	1	S-3	24/24	10-12	2-1-1-1				11.0	····	
						1	Top 12 inches: Soft dark				
1						1	brown to black SILT, trace fine Sand, trace wood organic	1 1			
İ							odor	1 1			
ł				 			Bottom 12 inches: Very soft	1 1			
+							light gray fine SAND, some Silt, trace fine Gravel trace	1 1		SILT	
ļ		<u>5-4</u>	24/24	15-17	1-2-1-1	3	wood slight organic odor	1 1		WITH FREQU	ENT
1					 			1 1		FINE SAN	D
							Very soft gray SILT, some fine SAND, trace Clay, trace Gravel			LAYERS	
1							Alternately layered 1 inch		19.0'		
I					1] :	Silt layers, 1/4 inch fine	1 I			
1		5-5	24/24	20-22	1-1-3-4	7 :	Sand layers	1 1			
T	_	•	27/27		1-1-3-4	S-5 ·	Very loose red-brown fine to	1 1			
ŀ	-				 		coarse SAND, trace fine Gravel,	1 1			
ŀ					 	{ '	trace (-) Silt	1			
-					 			1 1			
1						_		1 1			
L	_					_	fo Sample 🕜	1 1			
L		l			<u> </u>	_}		1			
Γ			1		[7					
Γ						7				Fine :	
+			 			7				CUMPSE !	201U
+	-+-				 			1			
+		S-6		30-32	14-14-14-1	_	dedium dense red-brown fine to	1			
-					ļ	ન '	oarse SAND, trace (-) Silt	- 1			
L						4		- {			
1							{	- {			
1						1					
RA	NUL	AR SC	ILS C	OHESIVE S	OILS REMA	RKS:					
) W S	VFI	DEN	SITY 84	LOWS/FT, (DENSITY		uat .				
4			SSE 4	2 √. •4		. Spoon . Five f	wet. eet of blown sands inside auge	re n	rior to =	ampling	
Ю			DOSE 4.		STIFF	, , , , , , , , , , , , , , , , , , ,	andade anye	hr	3	and Tild	
-30		M. DE	HSE 8.	15	571FF						
		06	NSE 15	-30 V	STIFF						
-50 50	,		NSE >	- .	HARD						

					ACKAL CONSUL	TANT	<u></u>		יש.	CHKD. BY
3	CASING (bi/II)		PEN.	SAMPLE	BLOWS/6"	1	SAMPLE DESCRIPTION		SPAARG	STRATUM DESCRIPTE
_		No.	(In) REC	(11)	BLDW3/6	1	BurmisterGLASSIFICATION	-+	لظم	
35				-						
0		s-7	24/8	40-42	10-11-10-11	s-7	Medium dense red-brown fine to coars SAND, little (+) Silt, trace fine to coarse Gravel, stratified	30		
5		5-8	24/24	45-47	9-10-20-29	S-8	Top 12 inches: Medium dense red-bro	own.		
0							fine to coarse SAND, little fine to coarse Gravel, trace Silt Bottom 12 inches: Dense red-brown fit to coarse SAND, some (+) Silt, trace fine to coarse Gravel	ine		
	-									
55	+						The same files he coayes			FINE TO COARSE SAND
1	+	5-9	18/10	55-57	61-12-15	S-9	Very dense red-brown fine to coarse SAND, little (+) Silt, trace fine to coarse Gravel, stratified	- 1	3.	
	1					İ	No Sample			
1	<u>+</u>									
5	+	-	+				No Sample			
	+	1					<i>></i> *			
4	5	5-10	24/7	70-72	19-33-40-38		Very dense red-brown fine to coarse SAND, little (+) Silt, Vaguely stratified			
-	#	#								

Gt 281	L DB	ERG -:	ZOINO	8 ASSOCI	ATES, INC.	cut	PROJECT Old Turnpike Road Landfill	REPO	ORT OF BORING No. LW15D (GZ SHEET3OF3 FILE NoT-6020
			_		GICAL CONSU		Parish Ingland		CHKO, BY
				SAMPLE]	SAMPLE DESCRIPTION	, lā	OTO 471.114
33	CASING (bi/i1)	No.	PEN.	OEPTH (ft)	BLOWS/6"	1	Burmister CLASSIFICATION	SAME	STRATUM DESCRIPTION
75							No Sample		•
80		s-11	24/18	80-82	22-26-31-32	S-11	Very dense red-brown fine SAND, liv Silt	ttle	
35							No Sample		FINE SAND
90		S-12	24/18	90-92	25-41-43-52	S-12	Very dense red-brown fine SAND, so (-) Silt	me	
5									
•		S-13	24/20	100-102	18-28-62-79	s-13	Very dense red-brown fine SAND, som (+) Silt, occasional Silty CLAY sea	ne um 4.	102'
									END OF EXPLORATION
							•		
	+						•		

REMARKS:

4. One 2 inch observation well installed with a screened range from 49 to 99 feet. Bentonite seal from 45 to 46 feet.

32	20 NE	EDHA	M ST.	, NEW1		PER F	, INC. ALLS, A _ CONS		тs		PH Turnp ithingt		d Lanc	16111	1	EPOR	SHEE	T	NoLW15! OF T-6020	<u>1</u> 2
FC	REM	AN	R	Jone							GR(RING LO	IRFACE	ELEVA	ATIO	N		D	ATUM 26-84	
					iarnga						POON DR			26-89 					EADINGS	
	AMPL ASING	И	OF	Анмея	FALLING	30 lm.					R FALLIN			0AT		TIME		CO STATE	STABILIZAT observation	
		SIZE				•	отн												(16 hou	
	CASING (bl/tt)			ŞA	MPL	Ε,		7			DESCR			EDIAPE	T	s	TRATU	M DE	SCRIPTION]
<u> </u>	33	No.	PEN.	£C	ແກ		.DW\$/6"		Bur	miste	r c	LASSIFIC	ATION	1.	┼-					
			 											1.						
						-		7						-				_		
	-		-			-		\dashv										P:	ILL	•
5 .															6	.01				
																	-	_		
			-	+	<u> </u>	-		-										00000		
_						 		1										UHLAN,	C SILT	
.0]						-	11.	٥٠				
					 -	 -														
						 		4							<u> </u>			SI	LT	
5														1					Lequent ID Layers	
]]												
J								-												
}				+				1							19.	٥٠				
٥]										,		
	_			-		ļ		1												
}	\dashv			-				1							•					
t	_]						1 1						
5	\Box																	FINE		
}.				 				1				مر					(COARSE	SAND	
}-				+				1												
														1 1						
,				 			 -	1						11						
-				 			 -	}												
														11						
-		$\neg I$		1										11						
SRA	NUL	VR SC	XLS I	COHE	SIVE S	OILS	REMAR	ske.												<u> </u>
	S/FT	DEN	SITY	BLOWS/	FT, C	SOFT			e	. . •		·-					_			
- 10			COSE	2-4 4-8		SOFT STIFF		1.	566 1	og fo	r bori	ng No.	FMT 2D	for so	il	sampl	e clas	s ifica	tions.	
-30		M. DE	- 4	8-15		STIFF														
)-50 50	,	V. DE	NSE	15-30	V. :	STIFF														

GO	LDE	BERG-	ZOINO 8	ASSOCI	ATES, INC.	· . •	1	PROJECT		REPO	RT OF BORING SHEET2	OF 2
			_		ION, CÓNNECTIO GICAL CONSU		Old Turnpik	e Road Lands . CT	(1)1		FILE No CHKD, BY	T-6020
						1	<u> </u>			ا ا	,	
Ξ	CASING	No.	PEN.	SAMPLE DEPTH	BLOWS/6"	1	SAMPLE Burmister	DESCRIPTIO	ON ASSIFICATION	PENARG	STRATUM	DESCRIPTION
' —	13.5	-	N"I/REC	(ft)	 	ļ -			ASSIFICATION		 	
	-	 	 		 	}				2.	ì	
	-	 	 		 	ł					<u>}</u>	•
	-	 	 		ļ	{				- 1		
		 	 		ļ						ł	
40		<u> </u>	 								}	
••		ļ								- 1		
	<u>_</u>				1						Ì	
	L										ļ	
٤	-	-									4	
7					1						ļ	
										1	1	FINE TO
Ì												COARSE SAND
- 1				·						- 1		
										}		
oj										1		
1										1		
-	_											
ł										1		
}												
5												
- {												
}												
ļ												
ŀ			ļļ.									
1								,			60'	
đ	}							•		3.	END (OF EXPLORATION
1											•	
1												
1												
1												
I	\Box											
				T				,.				
\lceil								-				
T										1 1		
Ţ	7								•			
T	_								•	11		
	\dashv											
+	7											
1										11		
1				, 						1 1		

REMARKS:

- See log for boring No. LW15D for soil sample classifications.
 One 2 inch PVC observation well installed with a screened range from 29 to 59 feet. Bentonite seal from 26 to 27.5 feet.

32	O NE	EDHA	M ST., !	& ASSONEWTON-U	PPER I	FALLS, M		Old Tu	PROJECT mpike Road Landfi	11	- F	REPOR	SHEE	No	No. <u>LW15s</u> OF 1 T-6020
FO	REM	AN	R_	GZA Drill Jones A Bjart					BORING LOCATION GROUND SURFACE DATE START 11	E ELE	VATIC	XN		0	ATUM 27-84
	JAPLI SING	14	IOID HA	MMER FALLI	46 30 in.				POON DRIVEN USING A R FALLING 24 In.		TE 7-84	GR(TIME 0930	-77	JER R	EADINGS STABILIZATION 10 minutes
		SIZE		SAMPL		отн		AMPLE	DESCRIPTION				TRATI	114 DE	SCRIPTION
ğΞ	(b1/11)	Na.	PEN.	DEPTH (IL)	8	LOWS/6"	ļ	Burmiste	CLASSIFICATION						
			 	 			-			1					
											1				
							_			}				FILL	•
5 .	-			ļ			4			}					
				 	+		1				10	.0'			
				1			1								
]			- 1			٥	RGANIC	SILT
o -				ļ			4								
i			ļ	 			-{			- }	111	٠٥٠			
				 	+		†								
]						WI	SILT TH FRE	
5					1]								LAYERS
	-			<u> </u>			┨								
}							1								
				<u> </u>			1				12.	٥,			<u> </u>
۱,	\Box				1]		.,		1				
	_			ļ			1								
}				ļ			}								
+	+			 	+		{							FINE 1	ro
ŀ	7				1		1			}			c	DARSE S	SAND
							}		,.						
1										- }					
-				· 											
}	_				 					2.	30.	٥.			
ľ											-	×	END	OF EXP	LORATION
-	_				<u> </u>										
-	-			·	╂					1					
+	+	-									1				
RA	NUL	AR SC	ILS (OHESIVE	SOILS	REMAR	KS:				<u> </u>				
9W:	S/FT	DEN	SITY	LOWS/FT.	DENSITY	1.	See log		ng LW15D for soil						
10		_	OOSE 2	-4 -8 M	SOFT I. STIFF	2.	One 2 i 27.5 fe	nch PVC c et. Bent	bservation well is onite seal from 4	nstalle .O to !	d w:	ith a feet.	screen	ed ran	ge from 7.5 to
-30 -50				- 15	STIFF										
50	,		NSE >		STIFF	i									

NGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON

32	0 N	EEDHA	M ST., A	EWTON U	CIATES, INC. PPER FALLS, I OGICAL CONS		PROJECT Old Turnpike toad landfill Southington, CT		REPOR	SHEE	BORING T1 No D. BY	No. LW17D OF 3 T-6020
				Drilling			BORING LOCATION	Sec	e Plan			
FO	REM	AN		nes			GROUND SURFACE	ELE	VATION			ATUM
GΖ	A E	NGINE	ER	A. Bjarn	ard		DATE START	-9-84	DAT	E END		12-84
SA	MPL	ER: U	NLESS O	THERWISE N	OTEO, SAMPLER O	ONSISTS O	F A 2" SPLIT SPOON DRIVEN USING A			WOWL	TER R	EADINGS
		14	IOID HAN	MER FALLIN	G 30 in.		-	<u> </u>		10.8		STABILIZATION T
۵	SING	. 0	WESS O	THERWISE N	DTED, CASING DRIN	NN C	asing to 85 feet Johnson [11.0		observation we
		SIZE	HSA	to 70 to		ER: hold	rt Drilling mud used to hold open to 99.5 feet.	A-1-A	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1
-	18 E		locu.	SAMPL		4	SAMPLE DESCRIPTION	[]		TRATI	M DE	SCRIPTION
3=	CASING (bi/ft)	No.	PEN.	DEPTH (ft)	BLDW\$/6"		Burmister CLASSIFICATION					
0)	5-1	24/12	ì	2-3-9-11	S-1	Medium dense red-brown fine t	:0				
	\Box		1			7	coarse SAND, some Silt, littl	,				
	 		 			7	fine to coarse Gravel frequen cobbles, roots	, [1			
	 		 	 			0000100, 10010	ł				
			 						1			
5	-			 	- 	-			1			
		5-2	24/11	0-5	8-11-14-14	S-2	Medium dense red-brown fine t		1			
						_	coarse SAND, some Silt, littl fine to coarse Gravel occasion	,				
					<u> </u>		al cobble		1			
ļ						_]		1	1			
						7						
10		e- 1	24/19	10-12	15-20-18-26		Dense red-brown fine to coars		ł			
		3-3	24/13	10-11	13-20 1g-20	4 - 1	SAND, some Silt, little fine					
-						┥	to coarse Gravel, frequent					
}						؍ ا	cobbles, Black stained 1 inch layer at 11.0 feet.		Ì			
)					ļ	-∤ `	Tayor at 11.0 test.				FINE	то
ر د ا	_							ł	1		COARSE	_
	[5-4	24/16	15-17	12-14-13-15	S-4	Medium dense red-brown fine to	0 1.	1	,	ITH CO	BBLES
							coarse SAND, little fine to coarse Gravel, trace Silt		1			
ſ						7	occasional cobble	1	į.			
Ţ					Ţ <u> </u>	7		}	ļ			
Ì						7	•					
20		C- 5	24/8	10- 22	9-8-11-11	٠	Medium dense red-brown SAND,	1.				
ŀ		3-3	24/8	20-22	3-8-11-11	┤ ~~~	and Gravel, little Silt,	2.	1			
ŀ					 	-{	frequent cobbles	1	1			
-	 }				 	-{		1				
-	.				}	4		1				
5	¦					_}		1	1			
	L				L	1	No Sample	1	1			
						7		1				
ſ]		1	}			
Γ						7		1	1			
1	-				 	7		1				
4	_		74 /2	20.22	2-2-2-6	1	Loose red-brown fine to coarse		1			_
}	 -	<u>s-6</u>	24/8	30-32	2-2-3-6	٠-٥	SAND, some fine to coarse	1				
}					 	-{	Gravel, little Silt		J			
+				 -	 	┨			1			
}-					 	4		1				
1		1		OUES"	000 6 7 ==	1		L	L			<u> </u>
	NUL S/FT	AR SC		OHESIVE !	NEWSTY	· · ·						
- 4			∞se <	2 V.	50FT 1.		saturated. eet of blowing sands inside au	ger=				
ю		Ų	OOSE Z		SOFT			7 ** *	-			
-30)	M. De	nee	: 8 M. : 15	STIFF							
>-50	,		ENSE 15	·30 v.	STIFF							
50		V Or	ENSE >	in.	HARO							

					OGICAL CONSUL	LTANTS			CHKD. BY
:3	CASING (bi/m)	No.	PEN.	SAMPLE	BLOWS/6"	-	SAMPLE DESCRIPTION Burmister	PENTE	STRATUM DESCRIPTION
40		S-7	V"//REC	40-42	47-44-41-35	s-7	Very dense red-brown SAND and GRAVEL		FINE TO COARSE 37' SAND SAND SAND GRAVEL WITH FREQUENT COBBLES
45			7				little Silt, frequent cobbles		43'
		S-8	24/8	45-47	31-42-45-59	S-8	No Recovery		
50		s-9	24/24	50-52	10-8-11-17	5-9	Medium dense red-brown fine SAND, little Silt		
\$5							No Sample		PINE SAND
60		S-10	24/24	60-62	9-18-22-26	s-10	Dense red-brown fine SAND, little Si	16	
65						ı	No Sample		
76		s-11	24/6	70-72	13-23-38-47		Very dense red-brown fine SAND, little Silt		

COMMISSION IN

دی ارت	_DBE	ERG-7	ONO!	A ASSOCI	ATES, INC.	** 1 T		MERC	e L	F BORING No. LW17D
					GICAL CONSUL	i	Old Turnpike Road Landfill Southingotn, CT	1	FII	LE No. T-6020
			AL/06			_1A4.0		L	,	
3	CASING (BI/II)		IPEN.	SAMPLE		1	SAMPLE DESCRIPTION	S S S S S S S S S S S S S S S S S S S	1	STRATUM DESCRIPTION
	<u>3 ē</u>	No.	PEN. (In) REC	(11)	BLOWS/6"	 :	Burmister CLASSIFICATION		4	
75				<u> </u>	 '	1			-	
}				1		1			1	•
						1		1		
						1				
						1		}		
80						j		1		
1			<u> </u>			1		Ì		
-[s-12	24/24	82-84	13-20-25-35	S-12	Dense red-brown fine SAND, little]	}	
[Í	Silt, occasional 3/4 inch seam of fine Gravel	1		
ſ						(fine Grave:		1	
85	-					ĺ				
1	\neg					í		-	}	FINE SAND
t	\dashv				 	i .				OCCASIONAL GRAVLE LAYERS
-	_				 	i		}	1	
1	7			Γ	 	l		1	-	
90	_			<u> </u>	 	i		1		
<u> </u>	-		24/18	91-93	16-24-40-46	5-13	Very dense red-brown fine SAND,	ĺ		
+	+	5-13	24/10	31-23	10-24-40	3-a-	little Silt	1		
	+			Γ		i		}	•	
}	-			/ '		i				
95	-					i]	1	
-	-+			i -		1		}	-	
}-	-			i 		í			Ì	
+	-+								}	
-	-+			,————				1	}	
۰	-+						·		 	
-	-+	5-14	24/17	99.5-101	35-38-37	S-14	Very dense red-brown fine SAND, little (-) Silt occasional 2 to 4	3.	101	
-	-						inch layer of fine to coarse	1		END OF EXPLORATION
-	-									
\vdash	+							}		
+	+								}	
-	+	-+						l		
-	- -						•			
-	+							1	}	
-								1		
+	+							1	}	
1	+								İ	
<u> </u>	+								}	
<u>_</u>	\bot							1	ì	
1	+	$-\downarrow$							}	
	- 1	1	- 1	: [1				ľ	

 One 2 inch PVC observation well installed with a screened range from 40 to 100 feet. Bentonite from 35 to 36.5 feet.

COCHIC 41 - 19170

				8 ASSOC					PROJECT			R	EPOR	T OF I	ORING	Na
32	O NE	EDHA	м st. <u>,</u>	NEWTON UP	PER F	ÄLLS, N			urnoika Road	Land	aciti	_		FILE	No	OF T-6020
				EOHYDROL		L CONS	ULTANTS	South	ington, CT			_ _		CHK	. BY	
ВС	RING	Co	GZA R. Jo	Orilling,	Inc.				BORING LOCA				e Pla	n		AT: 184
GZ	ZA EN	IGINE	R	A. Bjarng	ard				DATE START	11-	- 15-B	4	DAT	E END		ATUM_ 1-15-84
SA	AMPL.	ER: U	NLESS (THERWISE NO	TED. SA	MPLER C	ONSISTS OF	a z" SPLIT SPO	ON DRIVEN USING	A	T				TER R	EADINGS
	SING	14	OIL HA	MMER FALLING	30 in.			OID. HAMMER I						18.0	70	STABLIZATION TIME
_	_						John	son Revert	Drilling m hole open to	bu	11-26			18.0	•	observation well
		SIZE	<u></u>	SAMPLE		<u> </u>			ESCRIPTION	1 100	1 8			L		
28	CASING (DI/II)	No.	PEH.	DEPTH	BL	.DWS/6"] _		E_ CLASSIFICAT	ION	1 97		S	TRATL	M DE	SCRIPTION
]				1.	\cdot				
					↓		4			·						
			 	 	↓		4									
	-			- 	┼											•
				 	+		-				1					
	$\vdash \vdash$			 	+		4									
	$\vdash \dashv$				+		-									
				 	†		7									
_							7				-	1				
9 -]								FI	LL
]									
							1									
				ļ	 		4				1					
$\frac{1}{2}$				 	 		-				- 1					
- {				 	-		-{				1	1				
1	-			 			1					18	(±)			
Ì							1				-					
, []		.,		- }					
											-	}				
					<u> </u>				•							
1				ļ			-				1					
ŀ							}				-	-			FINE	
+	-						-				ı				Coarse	SAND
ŀ	-						-		,,		- {					
1	_						1									
1							1				1					
, [-							}				1					
`																
-							}				1					
}											1					
+		+		· · · ·								}				•
		AR SC	ILS	COHESIVE S	OILS	REMAR	RKS:					 _				·
.0W:	S/FT		SITY	LOWS/FT. C	SOF ?			og for bori	ng No. LW101s	for	soil	Sami	ole cl	assif	cation	ıs.
- 10			OSE 2	:-4	SOFT					-		= **	-			
-30		M. DE	NSE 8	- 15	STIFF STIFF											,
0-50 -50			NSE 1		STIFF											İ
쓴					HARD				BOUNDARY BETWEE							

OTES: 1) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.

2) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON

2) WATER LEVEL READINGS HAVE BEEN MADE IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE LEVEL OF THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO. 1 THE MAY OCCUR DUE TO OTHER FACTORS THAN 1000 NO

GE	OTE	CHNIC	CAL/GEO	CHYDROLOG	GICAL CONSULTAN	Southington, CT		C	HKD. BY
£ 2	C Sike	-	PEN.	SAMPLE	BLOWS/6"	SAMPLE DESCRIPTION			STRATUM DESCRIPTION
3 ~	33	No.	(In) REC	(11)	BC0#3/6	Burmister CLASSIFICATION		-	
	-	 -	 	 			2.	. }	•
			 				1	- [
	-	}	 -				1	-	
	 	 	 				- }	1	
٥.	-	 	-					1	
	 	 	 				- 1	- {	
	-						-	1	
	-						- }	1	FINE TO COARSE
			 		 				SAND
1									WITH OCCASIONAL GRAVEL LAYERS
- 1									
1								-	
Ì								1	
	_						-)	}	
† د	_						}	Ì	
							1	1	
Ì	_						- (1	
-							- 1		
							ĺ		
Į								}	
	[- {	1	
	[- [
							-		
1						•	- }	1	
1	_]	
-	-							1	
1									
F								1	
+	-								
-	-							1	
+	-					•			
1	{-						1	1	
+	+						1		
+								1	
卜							1	1	
1								Ì	
٢		_						74' (1	:)
Γ	-			•					

Ser. Al

1000		ERG-	ZOINO .	& ASSOCIA	ATES.INC.		<u>PROJECT</u>	KEPU	RT OF BORING No LW 101-D SHEET OF 1
			_		ates, inc. Pernon, conn		Old Turnpike Road Landfill		FILE No. T-6020 CHKD. BY
GE	OTE	CHNIC	AL/GE	OHYDROLO	GICAL CONSUL	TANTS	Southington, CT		CHRO. BY
11.)	(31/11)	Ho.	PEN.	SAMPLE DEPTH	8L0W5/6"		SAMPLE DESCRIPTION Burmister CLASSIFICATION	BMG	STRATUM DESCRIPTION
80		s-1	24/9*	80-82	25-28-30-20		dense red-brown SAND and GRAVEL, (+) Silt		•
90		s-2	18/6*	90-91-5	39-42-69		dense red-brown SAND and GRAVEL, (+) Silt, occasional cobble		sand And Gravel
00		5-3	18/12	1.01=1.02.5	22-25-30		red-brown SAND and GRAVEL, trace frequent cobbles	3.	LOZ.5' END OF EXPLORATION
} —-	1		- 1					1 1	

 One 2 inch PVC observation well installed with a screened range from 51 to 101 feet. Bentonite seal from 45 to 46 feet.

W LIST

ECHNI	CAL/GE GZA RICHE RICH RICHE RICH RICHE RICHE RICHE RICHE RICHE RICHE RICHE RICHE RICH	OHYDROLO Drilling, Led Jones Bjarngare THERWISE NOT THERWISE NOT SAMPLE	d TED, SAMPLER CO 30 in. TED, CASING DRIVE	ULTANT HSISTS C	BORING LOCATION GROUND SURFACE IN DATE START 11-7 F A 2" SPLIT SPOON DRIVEN USING A 3001b. HAMMER FALLING 24 In. SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	DAT 1-8-1	CHKD. BY See Plan ATION DATUM DATE END 11-8-84 GROUNDWATER READINGS TE TIME WAY CAN STABILIZATION 84 1500 18.0 70 15 min. 84 0645 17.5 * observation -84 0930 17.5 * observation STRATUM DESCRIPTION
AAN	RICHEER A. UNLESS OF A CONTROL	Bjarngare THERWISE NOT THERWISE NOT SAMPLE DEPTN (11) Q-2	TED, SAMPLER CO 30 in. TED, CASING DRIVE QTHE	R:	GROUND SURFACE IN DATE START 11-7 F A 2" SPLIT SPOON DRIVEN USING A 3001b. HAMMER FALLING 24 In. SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	DAT 1-8-1 1-9-1 1-26-1	DATUM
AAN	RICHEER A. UNLESS OF A CONTROL	Bjarngare THERWISE NOT THERWISE NOT SAMPLE DEPTN (11) Q-2	TED, SAMPLER CO 30 in. TED, CASING DRIVE QTHE	R:	GROUND SURFACE IN DATE START 11-7 F A 2" SPLIT SPOON DRIVEN USING A 3001b. HAMMER FALLING 24 In. SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	DAT 1-8-1 1-9-1 1-26-1	DATUM
G SIZE	PEN.	THERWISE NOT THERWISE NOT SAMPLE DEPTH (IL) Q-2	TED, SAMPLER CO 30 in. TED, CASING DRIVE OTHE	R:	SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	DAT 1-8-0 1-9-0 1-26-0	GROUNDWATER READINGS TE TIME
SSIZE	PEN.	SAMPLE DEPTH (IL) Q-2	30 in. TED, CASING DRIVE OTHE	R:	SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	1-8-1 1-9-1 1-26-1	### STABULIZATION ### STABULIZATION ### STABULIZATION ### STABULIZATION ### STABULIZATION #### STABULIZATION #### STABULIZATION #### STABULIZATION #### STABULIZATION ###################################
SSIZE	PEN.	SAMPLE DEPTH (IL) Q-2	30 in. TED, CASING DRIVE OTHE	R:	SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	1-8-1 1-9-1 1-26-1	### STABULIZATION ### STABULIZATION ### STABULIZATION ### STABULIZATION ### STABULIZATION #### STABULIZATION #### STABULIZATION #### STABULIZATION #### STABULIZATION ###################################
G SIZE	PEN.	SAMPLE DEPTH (11) Q-2	OTHE	R:	SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	1-8-1 1-9-1 1-26-1	84 1500 18.0 70 15 min. 84 0645 17.5 • observation -84 0930 17.5 • observation STRATUM DESCRIPTION
S-1	PEN.	SAMPLE DEPTH (II) Q-2	QTHE	R:	SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	1-26	84 0645 17.5 • Observation -84 0930 17.5 • Observation STRATUM DESCRIPTION
He.	PEN. In REC 24/8	OEPTH (II) Q-2	BLOWS/6"		SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	1-26	STRATUM DESCRIPTION
He.	PEN. In REC 24/8	OEPTH (II) Q-2	BLOWS/6"		SAMPLE DESCRIPTION Burmister CLASSIFICATION Loose red-brown fine to coars	383	STRATUM DESCRIPTION
S-1	24/B	OEPTH (II) Q-2	BLOWS/6"	S-1	Burmister CLASSIFICATION Loose red-brown fine to coars	E E	
S-1	24/B	0-2		5-1	Loose red-brown fine to coars	1 2	
S-1	24/8	Q-2	2-3-3-10	5-1			<u>: </u>
S-2	24/4	S_ 7]	SAND, little Silt, trace fine	1	
S-2	24/4	S_ 7	 	1	to coarse Gravel, trace roots trace wood		
S-2	24/4	5-7	1	1		1.	
S-2	124/4	1 5-7	 	1		1	j
			2-1-1-5	\$-2	Loose red-brown SAND and GRAVEL, trace Silt, occasional cobble, plastic, wood, metal		
·	 	 		1			
 							
S-3	24/6	9-5-11-5	2-3-3-4	S-3	Loose red-brown fine to coarse	.í	FILL
			T]		1	1
				}			
5-4	24/17	15-17	5-11-21-40	S~4	Medium dense dark red-brown	2.	
 	ļ			}	to coarse Gravel, trace (+)		18'(±)
				ĺ	Silt, slight organic odor)	
	 			1	•	1	
s-5	24/16	20-22	26-39-21-25	S-5	Very dense dark red-brown fine		
					to coarse SAND, little fine to coarse Gravel, little Silt,		
				·	occasions; copple		
							FINE TO CONCREATE SAND
s-6	24/24	25-27	7-9-38-23	S-6	top 8 inches: Medium dense red brown fine to medium SAND,	1	
					trace (-) Silt		
					dark red-brown fine to coarse		
					SAND, some (+) fine to coarse		
s-7	24/10	30-32	3-12-23-108/		•		
					SAND, some Silt, little fine		
					- · · · · - · · · · · · · · · · · · · ·		
						<u> .</u>]	<u> </u>
				KS:			
				Metal	fencing obstruction from 2 to	7 6-	_
V. (.∞se <u><</u>	۷	SOFT 2.	Spoon	refusal at 14.9 feet. nenetrate	a tec	et. ith roller his
(COZEI			End o	f first shift.	₩,	AVIATI MAL.
M. D	euce !		STIFF		•		•
	} • .	_	- 1				
	1.0		1				
	S-4 S-5 S-5 N. C	S-4 24/17 S-5 24/16 S-6 24/24 S-7 24/10 AR SOLS C DENSITY BY V. LOOSE 2 LOOSE 4 M. DENSE 8 DENSE 15 V. DENSE 5	S-4 24/17 15-17 S-5 24/16 20-22 S-6 24/24 25-27 S-7 24/10 30-32 AR SOILS COMESIVE S DENSITY BLOWS/FT D V. LOOSE LOOSE LOOSE 4-8 M. S M. DENSE 8-15 DENSE 15-30 V. S V. DENSE >30 NOTES: I)THE STRATE	S-4 24/17 15=17 5=11=21=40 S-5 24/16 20-22 26-39-21-25 S-6 24/24 25-27 7-9-38-23 S-7 24/10 30-32 8-12-23-108/5 DENSITY BLOWS/FT. DENSITY V. LOOSE 2 V. SOFT 1. COSE 4-8 M. STIFF 8-15 STIFF 8-15 STIFF 0ENSE 15-30 V. STIFF	S-4 24/17 15=17 5=11=21=40 S-4 S-5 24/16 20-22 26-39-21-25 S-5 S-6 24/24 25-27 7-9-38-23 S-6 S-7 24/10 30-32 B-12-23-108/ S-7 24/10 BLOWS/FT. DENSITY V. LOOSE 30 W. SOFT 20 Spoon 3. End of the property of	SAND, little fine to coarse Gravel, trace Silt, occasional cobble, metal S-4 24/17 15-17 6-11-21-40 S-4 Medium dense dark red-brown fine to coarse SAND, some fine to coarse Gravel, trace (+) Silt, slight organic odor S-5 24/16 20-22 26-39-21-25 S-5 Very dense dark red-brown fine to coarse SAND, little fine to coarse Gravel, little Silt, occasional cobble S-6 24/24 25-27 7-9-38-23 S-6 top 8 inches: Medium dense red- brown fine to medium SAND, trace (-) Silt bottom 16 inches: Very dense dark red-brown fine to coarse SAND, some (+) fine to coarse SAND, some Silt, little fine to coarse Gravel occasional cobble AR SOLS COMESIVE SOILS DENSITY BLOWSFT, DENSITY V. LOSSE 4-8 M. STIFF 4-9 M. STIFF V. OENSE >30 V. STIFF V. OENSE >30 NARD	SAND, little fine to coarse Gravel, trace Silt, occasional cobble, metal S-4 24/17 15-17 6-11-21-40 S-4 Medium dense dark red-brown fine to coarse SAND, some fine to coarse Gravel, trace (+) Silt, slight organic odor S-5 24/16 20-22 26-39-21-25 S-5 Very dense dark red-brown fine to coarse SAND, little fine to coarse Gravel, little Silt, occasional cobble S-6 24/24 25-27 7-9-38-21 S-6 top 8 inches: Medium dense red- brown fine to medium SAND, trace (-) Silt bottom 16 inches: Very dense dark red-brown fine to coarse SAND, some (+) fine to coarse Gravel, trace Silt, trace Clay S-7 24/10 30-32 8-12-23-1085 S-8 DENSITY BLOWAFT DENSITY V. LOOSE (-2 V. SOFT 2-4 SOFT 2-5 Spoon refusal at 14.9 feet, penetrated w M. DENSE 8-5 STIFF DENSE 15-30 V. STIFF MEDALS COMESIVE SOILS PLANT 2-5 Spoon refusal at 14.9 feet, penetrated w DENSE 15-30 V. STIFF

GO 28	LDB	ERG.	ZOINO (DRD TUI	NPIKE \	ATES, INC. VERNON, CONN	1.	PROJECT Old Turnpike Road Landfill			OF BORING	OF2	
					GICAL CONSUL		Southington, CT			FILE No. T-6020 CHKD. BY		
				SAMPLE			CANOLE DECEMENTAN		<u> </u>			
ξΞ	CASING (bi/ti)	No.	PEN.	DERM	BLOWS/6"		SAMPLE DESCRIPTION Brumister CLASSIFICATION			STRATUM	DESCRIPTION	
35	<u> </u>	s-8		35-37	18-20-22-24	s-0	Dense red-brown fine to coarse SAI some Silt, little fine to coarse	ai			•	
40		s-9	18/18	40-42	4-8-9	s-9	Medium dense red-brown fine SAND little Silt, trace fine to coarse Gravel					
5		s-10	24/24	45-47	19-9-5-6	s-10	Medium dense red-brown fine to coarse GRAVEL some fine to coarse Sand, trace Silt slight organic of	or				
50		s-11	24/8	50-52	9-14-17-18	s-11	Medium dense red-brown fine to coarse SAND some fine to coarse Gravel, trace Silt, slight organic odor			C	INE TO DARSE SAND	
5		s-12	24/16	55- 57	10-12-14-17	s-12	Medium dense red-brown fine SAND, little Silt, trace fine to coarse Gravel, slight organic odor					
							No Sample					
	s	-13	24/B	65-67	16-24-40-57	s-13	Very dense red-brown fine to mediu SAND, some Silt, trace Clay	m				
	1									•		
-	s	-14	24/	70~72	3-6-10-10	S-14	Medium dense red-brown fine SAND, some (+) Gravel frequent cobbles	5.	72'		EXPLORATION	
	#	\dashv									20141141	

5. One 2 inch PVC observation well installed with a screened range of 48 to 18 feet. Bentonite seal from 18 to 17 feet.

ē		PAER		40 & ASSOC	3.A.T.	-		PROJECT	1				No. <u>LV-1026</u> —— OF —— ²	
8	81 LA	ICHNIC.	AL-GEOM	YOROLOGICAL (EVARO	IN ES	TANTS		Old Turnpike Road Landfill			FILE	No	T-6020	
	PIOG	EPORT	. CONNE	CTICUT 08604				Southington, Connecticut	<u> </u>		CHKD	. BY		
0	RING	CO	GZA I	rilling I	nc.			BORING LOCATION See						
-	_			Biarnes	rđ			DATE START 11-6-84			E END		ATUM	
SA	MPL	ER:	INLESS	OTHERWISE N	OTED.	AMPLER C	ONSISTS OF	A 2" SPLIT SPOON DRIVEN USING A		GRO	JUNOWA	TER R	EADINGS	
	SING	1	4016 H4	MMER FALLIN	G 30 in	•		DATE	_	IME		CO.	STABLIZATION 1	
					-	ASING DRIV	VEN USING SC	001b. HAMMER FALLING 24 in. 11-7-8	_			55	16 Hrs.	
			: H.S.	SAMPL		ОТН	ER:		1,	ו מ	L			
3	CASING (bi/te)	No.	PEN.	- DE -		LOWS/6"	7	SAMPLE DESCRIPTION	1	\$	STRATUM DESCRIPT			
-	2=	1	TAE	1			- -	Burmister CLASSIFICATION	~	뾘			···	
ł		S-1	24/8	0-2	2-4-	-9-9		dense, red-brown, fine-to-coarse little fine-to-coarse Gravel, litt	10					
ł		 -	 	 				occasional Cobble.	}					
ł			╁──	+			-{		[- {				
ł			 	 	+		-{			1		FI	LL	
4		S-2	24 ()	0 5-7	3-2-	2 ,	-			1				
h		3-2	24/1	113-1	13-2-	-2=1	- 1 -	oost, red-brown, fine-to-coarse SA -) Silt, little fine-to-coarse Gra		- 1				
t			1-	 	+-			onal Cobble.	}					
r			 	1	_		7							
1	_		1	1			7		}	}				
9-	7	5-3	28/1	10-11.5	21-3	8-110	Top 4".	Dense, brown, fine-to-coarse SAND		}				
							some fi	ne-to-coarse Gravel, trace(+) Silt	. 1		12'			
							Next 4"	: Very dense, red-brown SILT, part d.	TA	2				
								6": Very dense, red-brown, fine-to	-	- 19	COBBLES TO	COARS	MATRIX OF FIRE SAND	
Ţ	\Box				1			SAND, some fine-to-coarse Gravel, ilt, frequent Cobbles.		#	4.5'		·	
L		S-4	24/15	15-17	6-9-	12-10		Medium dense, red-brown, fine-to-						
L	_				<u> </u>		coarse S	SAND, trace fine-to-coarse Gravel,						
-	\dashv			ļ	↓ —		Bottom :	5": Medium dense, red-brown, fine						
H	+			 	┼		JANU, S	ome(-) Silt.						
+	+				+		┨							
-	{-	<u>s-5</u>	24/17	20-22	110-1	1-12-9		iense, red-brown, fine SAND, trace race(-) fine-to-coarse Gravel,	(-)	- [
卜					 			brown fine Sand seams.						
1					 		1							
-	+			 	1		7						ITH OCCASIONA COBBLE LAYERS	
-	+,	S-6	24/14	25-27	8-17	-21-41	Dense.	ed-brown, fine SAND, trace (-) fi	1e J		ONATE	r vun	MDDLE FYIEKS	
	7			.= 			to-coars	se Gravel, trace Silt, occasional	_					
	T						Cobble.			1				
]							
	1						1							
_	45	5-7	24/18	30-32	16-1	5-16-14		ense, red-brown, fine-to-coarse	3					
	- -				 -			some fine-to-coarse Sand, trace equent Cobbles.						
	- -	\dashv					1			1				
	+						1		-					
AN	IULA	AR SC	ILS (COHESIVE S			RKS:				,			
	FT		SITY	LOWS/FT.	DENSITY SOFT	1		at .						
			ωsε 2	-4	SOFT	[Spoon moi				12 :	16.5	سالطمينية وا	
,		M. DE	4	- B M. - 15	STUFF	2.	Suger cha 80% cobbl	tter and very slow auger penetrati es and coarse gravel in auger cutt	on f ings		12 to	10 [¢	ec Longury .	
				-					-					
5 50 50			HSE 15		STIFF HARD	1	C	at 30 feet.						

.

		/HEL		,		1	REP	PORT OF BORING No.LV-102s SHEET 2 OF 2
			L G (0 +	ICI & ASSOCI OPOLOGICAL CO VARO TICUT 06604	ATES, INC.	Old Turnpike Road Landfill Southington. Connecticut		FILE No. T-6020 CHKO. BY
<u>ξ</u> ξ	2 C. W.	No.	PEN.	SAMPLE OFFTH	BLOWS/6"	SAMPLE DESCRIPTION Burmister: CLASSIFICATION		STRATUM DESCRIPTION
35	_		- I	35-37	14-23-23-20	Dense red-brown, fine-to-medium SAND, trace fine-to-coarse Gravel, trace (-) Silt, occasional Cobble.	e	
40.		S-9	24/28	40-42	8-8-10-18	Medium dense, red-brown, fine SAND, lfttle		•
45		S-10	24/18	45-47	4-8-16-17	Ditto	4	
io		S-11	24/24	50~52	2-5-8-11	Medium dense, red-brown, fine SAND, little Silt.		FINE SAND
i54-		S-12	24/10	55-57	3-7-9-13	Medium dense, red-brown, fine SAND, little Silt.	5	
		S-13	24/24	60-62	8-11-13-15	Medium dense, red-brown fine SAND, little Silt.	7	
						No sample/		
		i-14	24/24	70-72	3-32-35-35	Very dense, red-brown, fine SAND, some Silt, trace Clay.	(0	72'
-	-	\dashv	_					END OF EXPLORATION.

REMARKS:

- 4. Blowing sands five feet into augers after sample was taken.
- 5. Five feet of blown sand inside augers. Washed out prior to sampling.
- 6. End of first shift.

- 7. Four feet of blown sand inside augers. Washed out prior to sampling.
 8. Hole collapsed to 50 feet.
 9. One 2 1/2 inch PYC observation well installed with a screened range from 20 to 50 feet. Bentonite seal from 28 to 29 feet.

GC	LOB	ERG-	ZOINO	B AS	SOCIA	ATES	, INC. ONNECTI	}		PROJECT	-	REPORT OF BORING NoLW-1020						
			_			-		ULTANTS		npike Road	Landei	11		FILE	No	T-6020		
				A Dri					BORING LOCATION See Plan									
FQ	REM.	AN	Richa	بمتيهم	nes				GROUND SURFACE ELEVATION DATUM									
				A														
SA	MPL			THERWI			MPLER CO	MSISTS OF 4	z" SPLIT SP	XON DAIVEN USM	€ A	GROUNDWATER READINGS						
CA	SING						SING DRIVE		OID HAMMER On Revert	FALLING 24 in.		11/26/84	0945			observation w		
			HSA	to 65			ОТНЕ			hole open	to 80 f		1/2	 				
:=	CASING (11/11)		DE M	SAM	PLE	T-		4	SAMP	LE DESCRI	PTION		ENTANGE	S	(RATUN	A DESCRIPTION		
<u> </u>	3 =	No.	PEN.	111		BL.	OWS/6"	ļ	Burmi	ster	_CLASS	IFICATION	_ É					
			ļ	 -		ļ		4					1.					
			ļ	 				4										
			}	 				1								•		
				-		-		1										
5				 				1		•					i	FILL		
				 				1					- { - {					
Ì				1]				• .						
]					1 1					
													11					
LOT				ļ				1					1 {					
													1 }	12'±				
}				ļ				}					1 1					
}				 -				-								GRAVEL		
+								1					11			FREQUENT COBBLES		
}	-+			 				1					1					
 	_													8'				
_[
٥																		
-																INE SAND OCCASIONAL		
-													11		G	RAVEL AND		
┢									•						COB	BLE LAYERS		
٥t	+				-+					,,								
+													11					
-	_																	
1												•	1 1					
-																		
-																		
-	-+-		 ∤				{											
+	-				+													
_		IR SO		OHESI		DILS]	REMAR	KS:										
0w:	5/FT.		_	LOWS/F		SOFT			or boring	LW1025 for	soil :	sample cl	assifi	cation	•			
- 10		V. L.	XOSE 2	-4	:	SOFT												
- 30)	M. ÇE	NSE 8	· 8 · 15		TIFF												
-50)		NSE 15			TIFF												
₹		∨ DE	MSE >	30	H	ARO												

				SAMPLE	GICAL CONSULTA	SAMPLE DESCRIPTION		YT
33	CASHC (14/11)	No.	EN. A) REC	DEFTH (/L)	8L0W3/6"	Burmister CLASSIFICATION		STRATUM DESCRIPTE
_								
				 	 			•
							İ	
0								
	 -}	-+						
0								
}		}-						
1								FINE SAND WITH OCCASIONAL
Ī							}	GRAVEL AND COBBLE LAYERS
}								
. [
۰	_					,		
-								
						•		
-	-							
+	\dashv	-						
	工					,	2.	
-	-	_						
\mid	+	-	+					
7	工							
-	_	-	_					
-	+	\dashv						
1	+-	_	_					

GZ

BORING Na LW-1020

28	HA	RTFC	XÃO TUP	NPIKE , V	TES, INC.	·	Old Turnpike Road Landfill		SHEET OF FILE No		
GE	OTE	CHNIC			SICAL CONSU	TANTS -	Southington. CT		CHAU. BY		
3	CASING (01/11)	No.	PEN.	SAMPLE DEPTH (IL)	BLOWS/6"		SAMPLE DESCRIPTION Burmister CLASSIFICATION	Bund	STRATUM DESCRIPTION		
5	<u> </u>		N THE C	1117		No Samp		-	 		
7			11								
			 			1	•	l	FINE SAND		
			-			{			WITH OCCASIONAL		
			 		 			- }	GRAVEL AND		
١٥			} -}		 	No Samp	1.	- 1	COBBLE LAYERS		
- 1			 		ļ	}			B1'		
- }			 			}			END OF EXPLORATION		
- {			 		ļ		·	j	j		
-									}		
1								- (
								}			
Ī											
ſ											
Ī								- 1			
Ţ											
ı	_										
t											
t											
+					 {						
+	-										
-											
-											
1	}-										
1							,				
L	-										
L	_ _										
L	_ _										
L	_ _										
L	$\Box \Box$										
Γ	$\lceil \lceil$										
Γ	T							11			
Γ	$\neg \vdash$										
T	-										
卜	- -	-					-	11			
r	- -							11			
1								11			

REMARKS:

 One 2 inch PVC observation well installed with a screened range from 51 to 81 feet. Bentonite seal from 45 to 49 feet.

GE:	OTE	CHNIC	AL/GE	OHYDROLO Coast Dri Angelis	GICAL	CONSU	LTANTS		OCATION				FILE	No. <u>T</u> - BY	OF3 -6020
GZ.	A EN	IGINE	R _A,	Bjarngar				DATE STA	RTl	-13-85 T		DAT		1-	EADINGS
	SING:	14	OID HAM	IMER FALLING	30 in. TED,CAS	ING DRIVE		12" SPLIT SPOON DRIVEN US Olb. HAMMER FALLING 24 in.		DATE 1-13-8	_	IME	MATER	10.0	STABILIZATION
			hamme	r falling		OTHE	R: Hole	preaugered to 45'			1	ØI			
Ξ	CASING (bi/fi)	No.	PEN.		T	ws/6"	1	SAMPLE DESCRI Burmister				REMARKS	ST	RATUN	DESCRIPTIO
	3~		(in) REC		 					IFICATION		_	1.0'±	то	PSOIL
1	\dashv	<u>s-1</u>	24/20	0-2.0	3-6-	20-65	SAND,	Loose gray-brown f some Silt, trace Org	anics		1	-			
			 	 	 	····		14" Very dense red							
}			 	 	 			SAND, little (+) Si arse Gravel, occasion				- 1		_	
ŀ					 		1				Ì			F	ILL
5		S-2	24/26	5.0-7.0	7-5-		m 41		6:			1			
}		5-2	24/16	3.0-7.0	 /-3-	3-2		Medium dense red-b SAND, little Silt	rown ri	ne to	- 1	}	6.0'±		
ŀ				 	┼			12" Loose red-brow	n fine	to coar	se				
}			 	}	 		SAND,	little (-) Silt				}			
-				 	 		}					- 1			
10				ļ			•					- 1			
-		s-3	24/14	10.0-12.0	1-1-	1-2		oose red-brown fine (-) Silt	to coar	se SAND	•	1.			
}					 		111111	(-) 5111			- 1	- [
1				ļ	<u> </u>							- }			
1					ļ										
.5					ļ						- 1				
L		S-4	24/24	15.0-17.0	2-3-	3-9		red-brown coarse SAN			-				
					<u> </u>		1	, occasional Cobble, and, little Silt	one 5"	layer					
							line 3	und, little bilt						F	PINE
															TO
20												1			10
		s-5	24/22	20.0-22.0	12-7-	-7-7	Medium	dense red-brown, fi	ne to c	oarse		2.		CC	DARSE
							SAND,	trace Silt			ŀ	-		SZ	ANDS
Γ															
Ī					<u> </u>						- 1	1			
ا ۽											- }				
25		s-6	24/2	25.0-27.0	8-8-8	3-8	Medium	dense red-brown fin	e to co	arse					
t	-						SAND, Gravel	trace Silt, little f	ine to	coarse	}				
ľ							Graver				1	- {			
T	7										ł				
-	-				 										
30	-+	6.7	24/4	30 0 33 0	1222	19-10	Danca	red-brown fine to coa		ND.	- 1	- 1			
+	-	S-7	24/4	30.0-32.0	12-34	<u> </u>		Silt, little fine to			1				
+				ļ			Gravel	, occasional Cobble				1			
t	-+				 										
				,	 										
GR /	ויוא	AR S	OLS	COHESIVE S	SOILS	REMAR	KS: 1	Spoon wet							
	S/FT.	ΟE	NSITY E	LOWS/FT.	DENSITY	UCMINIT	_	. Spoon wet. . Five feet of blown	sands i	insid e a	ugei	cs.			•
- 4			.00SE S	2 ∨. !-4	SOFT						-				
- 10			-005E 4		STIFF										
-30)		ENSE 1	1-15	STIFF										•
0-5	_				STIFF										

	\$ =			SAMPLE		<u></u>	SAMPLE DESCRIPTION	T	T	
Ξ	CASING (bi/ft)	No.	PEN.	DEPTH	BLOWS/6"	i	Burmister CLASSIFICATION	SE PARA	STF	RATUM DESCRIPTION
	ت	 	""// PREC	(ft)		No sar	OCASSII IOATION		 	
			 	 		i			1	
-	\vdash			 		Í			1	FINE TO
		 	 	 		í				COARSE SANDS
}		 	 -	 		ı		-		
0	\vdash		<u> </u>			·		1	41.0'±	•
		s-8	24/6	40.0-42.0	13-8-5-6		m dense red-brown Clayey SILT, e fine to coarse Sand, little fine		72.0	
}		 		 			arse Gravel]	CLAYEY SILT
ŀ	-		 	 		1			43.0'±	
ŀ				 		ı				•
5			 			ı				
1		s-9	24/24	45.0-47.0	8-17-26-36		red-brown fine to medium SAND, e (-) Silt, trace fine to coarse			
-						Gravel	•			
}			 	 		ı				FINE TO
}										COARSE SANDS
٥				 					}	-
}		s-10	24/10	50.0-52.0	28-20-32-70		dense red-brown fine to coarse little Silt, trace fine to coarse			
	72					-	l, trace (-) Clay	1	1	
ŀ	87						·		}	
	198		L					1		
5 5	109							1		
	50	s-11	24/12	55.0-57.0	25-29-32-17		dense red-brown fine to coarse SAND,			
	85						fine to coarse Gravel, little Silt, (-) Clay, occasional Cobble	1	56.5'±	
L	80					-	(, 024) - 00	1		
-	95							-	1	
1	145									
		S-12	24/6	60.0-62.0	115-25-29-37		dense red-brown fine SAND, little	- ['		
	150					(+) Sı	ilt, occasional Gravel layer	1	}	
[:	184							'		
۳	128] !	}	
ر ا	112							{ /	{	
بآد	102	s-13	24/18	65.0-67.0	11-20-32-40		dense red-brown fine SAND,	'	}	
Į,	110					little	e Silt			FINE SANDS
[146								1	 -
Γ	168							1 !]	
	174									
T	92	s-14	24/24	70.0-72.0	13-12-15-23		red-brown fine SAND, some (+)	2.	1	
	100	\Box				Silt				
Г	103									
	134	\Box		$\overline{}$			•	11	1	
Г	156							11		
		RKS:							·	

BORING No. LW-103

GOLDBERG-ZOINO & ASSOCIATES, INC. 281 HARTFORD TURNPIKE, VERNON, CONN.

GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS

PROJECT

Old Turnpike Road Landfill Southington, CT

REPORT OF BORING No. LW-103S ,M, D SHEET ___ OF__ FILE No. T-6020 CHKD. BY_

- [z _	¥ =			SAMPLE		SAMPLE DESCRIPTION	18	
	5 =	(asing	No.	PEN. (in) REC	DEPTH (ft)	BLOWS/6"	BurmisterCLASSIFICATION	PERME	STRATUM DESCRIPTION
ı	Į	202					No sample	Ī	
		225							FINE SAND AND SILT
- }		380	,						
- [ſ		s-15	6/6	78.2-78.7	200	Very dense red-brown fine to coarse SAND, some (+) Silt, trace (+) Clay, little	4.	±78.21
	1					core times min/ft	fine to coarse Gravel		
1	1		C-1	82/24	78.7-79.7	1.5	Soft, slightly weathered, moderately	5.	
ļ	Į				79.7-80.7	0.2	fractured medium grained red-brown	1	
- [Ĺ				80.7-81.7	0.3	SANDSTONE, occasional 1" Siltstone Payer RQD = 30%		·
- [B1.7-82.7	0.3	KÕD ≈ 20.€	1	
- }					B2.7-83.7	0.5			BEDROCK
1	Ī				83.7-84.7	3.0		6.	85.6'±
- 1	- [84.7-85.6	3.0/0.9'		7.	END OF EXPLORATION
	j	\neg						8.	
	Ī						,	ĺ	
- {	f	\dashv							
	†	_						}	
	-	\dashv							
-	- }	+							
	}	\dashv] .	
	}	-							
1	+								
	-	+							
Ì	-	-					!		
1	-	_							
-	-	_							
	1	\perp							
	L	\dashv							
	L								
- 1	L								
- [j
1			1	Ì				1	
	T								Į.
	Γ							}	
1							}	- 1	
-		丁							
		\top							1
	+	+							
	H	\dashv							ł
	卜	+					}		
-{	\vdash	\dashv		 +				1	
	-	+							

REMARKS:

- 3. Washed ahead of casing with roller bit from a depth of 77.7' to 78.2'.
- 4. Sample 15, 100 blows with 140 lb. hammer for 3.5", then 100 blows with 300 lb. hammer for 2.5", red-brown Siltstone in tip of spoon.
- 5. 0.4' of Glacial Till recovered in core barrel.
- 6. 15' of "H" casing lost at bottom of hole.
 7. One 11" PVC well installed with a screened range from 34.8 to 54.5 feet. (Screens wrapped with filter fabric sleeves). Bentonite seal installed from 31.5 to 38 feet.
- 8. A second 11" PVC well installed with a screened range from 6.1 to 31.3 feet. (Screens wrapped with filter fabric sleeves). Bentonite seal from 0.5 to 2.5.
- 9. Clacium used to melt ice on ground surface around hole.

REPORT OF BORING No. BP-3
SHEET 1 OF 1
FILE No. 5UT24.09
CHKD. BY M.L. COLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. Clarence Welti & Associates Larry Lindenberger Dave swetland GZA ENGINEER GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. TIME CASING STABILIZATION TIME DATE WATER CASING: UNLESS OTHERWISE MOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1/18/90 1510 6' OUT O Hours CASING SIZE: 3 3/4" HSA OTHER: BLOWS D STRATUM EQUIPMENT FIELD SAMPLE SAMPLE DESCRIPTION PTH PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED Burmister CLASSIFICATION HNU BLOWS/6" No. NONE Grass Loose red brown, fine to medium SAND, some SILT, trace Organics (fill). s-1 24/11 1.0-3.0 21-5-5-4 ND 2 SAND (FILL) ND Medium dense red brown, fine to medium SAND and SILI, little Organics (fill). **S-2** 18/8 5.0-6.5 5-4-7 Top 6":Red brown fine to medium SAND and SILT, little Organics. Middle 5": Dark brown-red Organic SILT, some fine Sand.
Bottom 4":Brown fine SAND, trace Silt.
Top 10":Brown fine SAND, trace Silt.
Bottom 14":Brown fine GRAVEL some medium to coarse Sand. (Landfill odor) ND S-3 24/15 8.0-10.0 8-19-39-72 8.5' ORGANIC SILT ND 9.01 10 5-4 24/24 10.0-12.0 31-28-23-22 SAND 11.0'GRAVEL 12.01 2.8 ppm Medium dense, brown medium to coarse SAND, little fine Gravel, trace Silt. S-5 24/16 15.0-17.0 6-5-12-12 SAND 3.0 ppm 20 Medium dense, brown medium to coarse SAND, little fine Gravel, trace Silt. s-6 18/6 20.0-21.5 8-14-14 3 22.0' E.O.B. 25 30 35

REMARKS: CEMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101
Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101
photoionization detector. Recorded HNU values represent total HNU values recorded. Background ≈ 0.6 ppm.
ND = None Detected. ppm = parts per million.
Sample wet at approximately 6 feet below ground surface.
Boring ended at approximately 22 feet below ground surface. E.O.B. = End of Boring.

STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NOTES: GZA

40

REPORT OF BORING No. BP-4
SHEET 1 UF
FILE No. 50124.09
CHKD. BY H.L GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT 1 OF 50124.09 Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION East Side of OTR across from WNTY
GROUND SURFACE ELEVATION
DATE START 1/18/90 DATE END 1/18/90 BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. WATER CASING STABILIZATION TIME DATE TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1/18/90 1210 10' O Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG SAMPLE SAMPLE DESCRIPTION **STRATUM** EQUIPMENT DESCRIPTION INSTALLED PEN./ No. BLOWS/6" **Burmister CLASSIFICATION** HNU NONE FINE 8.8 ppm 24/3 2.0-4.0 4-5-2-3 Loose red-brown, fine SAND, little Silt, trace fine Gravel. S-1 4.0' 18-24-40-50 Very dense, red-brown, GRAVEL, and some medium to coarse Sand, little Silt. **S-2** 24/18 5.0-7.0 4.8 ppm GRAVEL Very dense, red-brown, GRAVEL, and fine to coarse SAND, little Silt, trace Clay. s-3 10.0-12.0 33-30-27-23 24/8 3.8 ppm 3 12.0' E.O.B. 15 20 25 30 35 KEMARKS: Spil samples field screened for volatile organic compounds with an HNU model PI-101 11.7 eV photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.8 ppm. ppm = parts per million. Sample wet at approximately 10 feet below grade. Boring ended at approximately 12 below grade. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. BP-4

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No. BP-6
SHEET 1 UF
FILE No. 5UT24.09
CHKD. BY M.L. **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER BORING LOCATION South of Lori Corporation GROUND SURFACE ELEVATION DATE START 1/17/90 UATE END 1/1 Clarence Welti & Associates Larry Lindenberger Dave SWettand **GROUNDWATER** READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1/17/90 5, 3, O Hours CASING SIZE: 3 3/4" HSA OTHER: CASUS SNG KENKS SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ H HNU BLOWS/6" **Burmister CLASSIFICATION** NONE s-1 24/7 1.0-3.0 13-12-5-5 Medium dense, red-brown, medium to coarse, SAND, little Silt. ND **S-2** 3/3 5.0-5.3 60/3" Very dense, red-brown, medium to coarse SAND, little Silt. SAND ND 2 Loose, red-brown, fine to coarse SAND, some Silt, little Organics, trace Glass. 24/24 7.0-9.0 13-5-3-2 s-3 ND Top 14":Red-brown, fine to coarse SAND, some Silt. Middle 6": Brown SILT, little Peat. Bottom4": Black-brown PEAT. 10 S-4 24/24 10.0-12.0 2-1-1-2 ND 11.1 SILT AND PEAT ND s-5 24/15 Top 8": Brown SILT, little Peat. Bottom 7": Brown-black PEAT. 15.0-17.0 1-2-2-2 16.04 20 **S-6** 18/8 20.0-21.5 2-2-2 Very loose, dark brown, PEAT. ND PEAT 25 s-7 18/9 Top 7": Dark brown, PEAT. Bottom 2": Brown, fine to medium SAND, some Silt. 25.0-26.5 2-2-4 ND 25.64 PEAT 30 Top 20": Brown, fine SAND, little 5-8 24/20 30.0-32.0 13-11-7-7 30.04 ND Bottom 4": Brown, SILT and fine SAND. FINE 35 MD Top 14": Brown, coarse SAND, trace Silt. Bottom 14": Brown, fine to coarse SAND, little fine Gravel. 35.0' FINE TO COARSE SAND 5-9 24/18 35.0-37.0 9-10-10-10 3 37.0' E.O.B. 40 REMARKS: REMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eVU HNU model PI-101
photoionization detector. Recorded HNU values represent total HNu values recorded. Background = 1.0 ppm.
ND = None Detected.
Sample wet at approximately 3 feet below ground surface.
Boring ended at approximately 37 feet below grade.

Boring ended at approximately 37 feet below grade.

E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. BP-6

REPORT OF BORING No. 8P-7
SHEET 1 UF
FILE No. 5UT24.09
CHKD. BY H.L. GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT 50124.09 Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER BORING LOCATION West side of 425 Old Turnpike Rd.
GROUND SURFACE ELEVATION DATE END 1/18/90 DATE END 1/18/90 Clarence Welti & Associates Larry Lindenberger Dave Swetland GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. TIME WATER CASING STABILIZATION TIME DATE CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1/18/90 6.5' CASING SIZE: 3 3/4" HSA OTHER: BLOWS SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED H Burmister CLASSIFICATION HNU No. BLOWS/6" NONE **GRASS** ND Very dense, red-brown, fine GRAVEL, some fine to medium Sand, little Silt. 24/18 S-1 2.4-4.0 46-35-48-36 **GRAVEL** 5 ND Medium dense, red-brown, fine GRAVEL, some fine to medium Sand, little Silt. **S-2** 24/10 5.0-7.0 14-14-11-13 2 7.5' 24/12 1-1-2-2 Loose, dark brown-black PEAT. 8.0-10.0 ND s-3 3 10 U-4 24/-10.0-12.0 **PUSH** Brown PEAT. PEAT NA Top 12": Dark brown, PEAT.
Middle 5": Olive,gray, fine SAND,
little Silt.
Bottom 7": Olive,gray SILT, some
fine Sand, laminations of medium
sand. ND S-5 24/24 13.0-15.0 1-3-4-6 14.0'SAND AND SILT ND Top 8": Olive gray, SILT, some fine Sand. Bottom 4": Light brown, fine SAND little Silt. **S-6** 18/12 15.0-16.5 4-5-9 15.0'GRAVEL 15.57 Top 5"; Red-brown, fine GRAVEL, some fine to medium SAMO. Bottom 13": Light brown, fine SAND, trace Silt. 20 7-11-8 **S-7** 18/18 20.0-21.5 ND SAND 25 ND Medium dense brown, medium to coarse, SAND, some fine GRAVEL. **S-8** 18/18 25.0-26.5 5-8-8 26.5' E.O.B. 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.6 ppm. ND = None Detected. NA = Not screened, sample collected for analysis. Sample wet at approximately 6.5 feet below grade. Sample wet at approximately 6.5 feet below grade. Undisturbed Shelby Tube sample collected 10 to 12 feet below grade. No recovery recorded. Boring ended at approximately 26.5 feet below grade. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No._BP-7

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No. BP-8
SHEET 1 UF T
FILE No. 50724.09
CHKD. BY M.L. **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Dave swettand BORING LOCATION Adjacent to LW-15s, GROUND SURFACE ELEVATION DATE START 1/17/90 DATE END 15M, 15D GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. CUIT 1/17/90 71 O Hours 1/17/90 6.5 OUT 1 Hour CASING SIZE: 3 3/4" HSA OTHER: CASNS SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD TESTING SAMPLE PEN./ REC. DESCRIPTION INSTALLED DEPTH (Ft.) H No. BLOWS/6* Burmister CLASSIFICATION NONE Medium dense, red-brown, medium SAND, little Silt. S-1 24/11 6-6-7-9 NS 1.0-3.0 SAND 5 5.51 Loose, red-brown, black PEAT, some some fine to medium Sand. 24/3 NS **S-2** 1-1-3-2 6.0-8.0 **PEAT** Top 7": Brown SILT, little fine Sand, little PEAT.
Bottom 5": Light brown, fine to medium SAND, little Silt. 4-4-1-1 **S-3** 24/12 8.0-10.0 NS 10 9.5' SAND Top 18": Fine to medium SAND little Silt. Bottom 6": Olive-brown, SILT and fine SAND. **S-4** 24/24 2-2-3-2 NS 10.0-12.0 10.5 SILT AND SAND 15 Top 12": Light, olive-brown, SILT and SAND. Bottom 6": Fine to coarse SAND, little Silt. s-5 24/18 15.0-17.0 2-3-3-3 NS 16.0 SAND 20 18/18 Medium dense, red-brown, medium SAND, trace Silt. s-6 20.0-22.0 5-6-6 NS 2 22.0 E.O.B. 25 30 35 40 REMARKS:
. Sample wet at approximately 7 feet below grade during drilling.
. Boring ended approximately 22 feet below grade. E.O.B. = End of Boring. NS = Not screened, samples removed from site by Greiner Engineering. NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE GZA BORING No. BP-8

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No. BP-9
SHEET
FILE No. 50124.09
CHKD. BY PROJECT Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER BORING LOCATION Lori Corporation entrance.
GROUND SURFACE ELEVATION DATE END 1/17/90 Clarence Welti & Associates Larry Lindenberger Dave Swettand **GROUNDWATER** READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. 9.0' 1/17/90 10' O Hours CASING SIZE: 3 3/4" HSA OTHER: CASMG STRATIM **EQUIPMENT** SAMPLE SAMPLE DESCRIPTION FIELD DESCRIPTION INSTALLED DEPTH (Ft.) PEN./ REC. HNU BLOWS/6" No. Burmister CLASSIFICATION Very dense, red-brown, fine, SAND, some Silt. 24/15 0.0-0.5 GRABS **ASPHALT** NONE 1 ND 24/15 0.5-2.5' 42-32-35-27 0.5 SAND ND S-4 24/20 5.0-7.0 1-1-2-2 Top 14": Brown SILT, some fine SAND. Bottom 6": Dark brown, PEAT. 5.04 SILT 6.5' PEAT 3 **S-5** 24/24 10.0-12.0 1-1-1-3 Top 5": Dark, brown-black PEAT. Bottom 19": Olive-gray, SILT, little fine Sand, trace Organics. ND 10.5 ND 15 **S-6** 24/24 15.0-17.0 2-3-2-2 Loose, SILT, little, fine to medium SAND. SILT 20 s-7 18/18 20.0-21.5 WOR-1-1 Top 16": Olive-brown, SILT. Bottom 2": Brown, medium SAND. ND 21.81 SAND 22.0' E.O.B. 25 30 35 40 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNu values recorded. Background = 0.6 ppm. ND = None Detected. Samples of asphalt. Samples wet at approximately 9 feet below grade. Boring ended 22 feet below grade. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. BP-9

REPORT OF BORING No. 18-1 SHEET 1 OF T FILE No. 50124.09 CHKD. BY M.L GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEONYDROLOGICAL CONSULTANTS BORING Co. Clarence Welti & Associates Larry Lindenberger Linda McKee BORING LOCATION <u>East of Penn Equipment</u>
GROUND SURFACE ELEVATION
DATE START 1/24/90 DATE END 1/2 ent Company. DATUM 1/24/90 GZA ENGINEER GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. STABILIZATION TIME DATE TIME WATER CASING CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 (b. HAMMER FALLING 24 In. 1/24/90 1330 NONE 10' O Hours CASING SIZE: 3 3/4" HSA OTHER: CASS STRATUM EQUIPMENT SAMPLE SAMPLE DESCRIPTION FIELD PEN./ DEPTH (ft.) DESCRIPTION INSTALLED H Burmister CLASSIFICATION BLOWS/64 HNU No. NONE Top 19": Red-brown, fine to coarse SAND, little Silt, trace fine Gravel. Bottom 5": Red-brown, medium to coarse SAND, little fine Gravel. FINE TO COARSE SAND S-1 24/12 1.0-3.0 22-15-18-23 ND 2.5' ND Medium dense, red-brown, medium to coarse SAND, some fine Gravel. **S-2** 24/24 5.0-7.0 3-5-6-6 MEDIUM TO COARSE SAND 10 ND Medim dense, red-brown medium to coarse SAND, some fine Gravel. S-3 24/24 10.0-12.0 6-6-7-6 2 12.0' E.O.B 20 25 30 KEMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101
photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 1.0 ppm.
ND = None Detected.
Boring ended at approximately 12 feet below grade.
E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

BORING No. TB-1

REPORT OF BORING No. TB-2
SHEET 1 UF
FILE No. 50T24.09
CHKD. BY N.C GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut 50124.09 GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION East of U.S. Chemical Corporation GROUND SURFACE ELEVATION DATUM DATE START 1/24/90 WATE END 1/24/90 Clarence Welti & Associates Larry Lindenberger Linda McKee BORING Co. GZA ENGINEER GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/24/90 1500 10' O Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD DEPTH (Ft.) DESCRIPTION Ť PEN./ INSTALLED No. BLOWS/64 Burmister CLASSIFICATION HNU NONE 24/24 S-1 1.0-3.0 3-4-4-7 Loose, red-brown fine to coarse SAND, some Gravel, little Silt. ND 5 Medium dense, red-brown medium to coarse SAND, little fine Gravel. **S-2** 24/24 5.0-7.0 4-4-4-4 ND SAND 10 Medium dense, red-brown medium to coarse SAND, little fine Gravel. **S-3** 24/24 10.0-12.0 6-6-7-7 ND 2 12.0' E.O.B. 15 20 25 30 35 REMARKS: REMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101
photologization detector. Recorded HNU values represent total HNU values recorded. Background = 0.2 ppm.
HD = None Detected.
Boring ended at approximately 12 feet below ground surface.
E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

BORING No. TB-2

REPORT OF BORING No. TB-3 GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut FILE No. CHKD. BY GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION Solomon Casket GROUND SURFACE ELEVATION DATE START 1/24/90 DATE END BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Dave SWettand DATUM 1/24/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. 1/24/90 NONE 10' O Hours CASING SIZE: 3 3/4" HSA OTHER: CASNS STRATUM SAMPLE SAMPLE DESCRIPTION **EQUIPMENT** FIELD DESCRIPTION INSTALLED PEN./ DEPTH (Ft.) Ŧ Burmister CLASSIFICATION HNU RLOUS/6" No. Loose, red-brown SAND, little Silt, little fine Gravel. GRASS NONE 1.2 ppm S-1 24/24 0-2.0 3-3-4-2 SAND 4.51 Loose, red-brown fine SAND and fine GRAVEL, trace Silt. S-2 24/2 5.0-7.0 3-2-7-7 2.2 ppm SAND AND GRAVEL Loose red-brown fine SAND and fine GRAVEL, trace Silt. S-3 24/24 7.0-9.0 2-2-3-2 NA Top 6": Red-brown, fine to coarse GRAVEL, some fine to coarse Sand, little silt. Bottom ?": Rock. 1.2 ppm S-4 7/7 10.0-10.6 20-60/1" 2 10.6' E.O.B. 20 25 KEMARKS: Soil samples field screened for volatile organic compounds with 11.7 eV HMU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background 0.8 ppm. ppm = parts per million. NA = Not analyzed, sample collected for analysis. Boring ended at approximately 10.6 feet below grade. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

GZA

BORING No. TB-3

REPORT OF BORING NO. TB-4
SHEET 1 OF
FILE NO. 50124.09
ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** 50124.09 Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Dave Swettand BORING LOCATION Eastern edge of Southington Metal Fab.
GROUND SURFACE ELEVATION DATUM
DATE START 1/24/90 VAIE ENU 1/24/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 in. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. 1/24/90 15 0 Hours None CASING SIZE: 3 3/4" HSA OTHER: CASEG EQUIPMENT FIELD SAMPLE SAMPLE DESCRIPTION STRATUM DEPTH DESCRIPTION INSTALLED PEN./ REC. BLOWS/6" Burmister CLASSIFICATION HNU No. Medium dense, red, GRAVEL, little fine Sand, little Silt. s-1 24/3 0-2.0 15-13-17-17 3.4 ppm **GRAVEL** 3.01 Loose, brown, fine SAND, little Silt, little Refuse. **S-2** 24/4 5.0-7.0 10-7-2-9 NA S-3 24/2 7.0-9.0 REFUSE Not Recorded NA 24/8 Dense, brown, fine SAND, little Silt, little Refuse. 5-4 9.0-11.0 10-10-23-11 NA 10 Dense, brown, fine SAND, little Silt, little Refuse. **S-5** 18/8 11.0-12.5 11-10-24 3.5 ppm 12.04 15 AND GRAVEL Loose, red, fine to coarse SAND and fine to coarse Gravel, little Silt. **S-6** 24/7 15.0-17.0 7-4-5-6 NS 2 17.0' E.O.B. 20 25 30 35 40-REMARKS: Spil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.9 ppm. ppm = parts per million. NS = not screened. NA = Not analyzed, sample collected for analysis. Boring ended at approximately 17 feet below ground surface. E.O.B. = End of Boring. 2. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING NO. TB-4 GZA

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING NO. TB-5
SHEET 1 OF
FILE NO. 50124.09
CHKD. BY ML **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda Mckee BORING LOCATION East of Southington Metal Fabricating GROUND SURFACE ELEVATION DATUM DATE END 1/24/90 DATE END 1/24/90 **GROUNDWATER** READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE WATER CASING STABILIZATION TIME TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1/24/90 1145 None 20' O Hours CASING SIZE: 3 3/4" HSA OTHER: BLON'S SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED H BLOWS/6" HNU No. Burmister CLASSIFICATION NONE Medium dense, brown, fine to coarse SAND, some fine Gravel. S-1 24/12 1.0-3.0 28-14-8-10 ND SAND 1.4 ppm Very dense, brown, fine to coarse SAND, some fine Gravel, some Metal chips, bolts (Refuse), strong odor. **S-2** 22/6 5.0-7.0 8-18-60/4" 5.0' REFUSE 10 3.2 ppm Top 2": WOOD.
Bottom 1": Red-brown, fine GRAVEL,
some fine to coarse Sand, little
Silt (strong odor). **S-3** 24/3 10.0-12.0 8-6-8-6 10.21 GRAVEL 15 0.6 ppm Medium dense, brown, GRAVEL, some fine to coarse Sand, trace Silt. **S-4** 24/24 15.0-17.0 13-11-14-18 17.04 SAND 20 ND s-5 24/24 20.0-22.0 11-10-13-13 Medium dense, red-brown, medium to coarse SARD, some fine Gravel. 2 22.0' E.O.B. 25 30 35 40 Soil samples field screened for volatile organic compounds with 11.7 EV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.4 ppm. ND = None Detected. ppm = parts per million.
Boring ended at approximately 22 feet below ground surface.
E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. TB-5

REPORT OF BORING No. 18-6 SHEET 1 OF T FILE No. 50724.09 CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Dave Swettand BORING LOCATION West side of Southington Metal Fabrication GROUND SURFACE ELEVATION DATUM DATE START 1/25/90 DATE END 1/25/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME ASING STABILIZATION TIME WATER CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/25/90 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG SAMPLE STRATUM **EQUIPMENT** SAMPLE DESCRIPTION FIELD TESTING DESCRIPTION PEN./ DEPTH (Ft.) INSTALLED No. 8LOWS/6# **Burmister CLASSIFICATION** Loose, red-brown, fine to medium SAND, trace Silt. s-1 24/12 0-2.0 1-5-5-4 MONE ND SAND Very loose, red-brown, fine to medium SAND, little Silt, trace fine Gravel. **S-2** 24/18 5.0-7.0 1-1-2-4 NS 10 S-3 24/16 10.0-12.0 14-12-12-10 Medium dense, red-brown, fine to medium SAND, some fine Gravel. 10.0' NA Medium dense, red-brown, fine to medium SAND, some fine Gravel. S-4 24/18 10-7-8-6 SAND NA 12.0-14.0 14.0' E.O.B. 15 20 25 30 35 Boring ended at approximately 14 feet below ground surface. E.O.B. = End of Boring. NS = Not Screened. ND = Not Detected. NA = Not screened, sample taken for laboratory analysis. REMARKS:

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE SEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE BORING No. TB-6 GZA

NOTES:

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT REPORT OF BORING NO. 1B-7S
SHEET TOF T
FILE NO. 5U124.09
CHKD. BY **PROJECT** Old Southington Landfill Southington, connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION SW corner of Meridan Box property GROUND SURFACE ELEVATION DATUM DATE START 1/26/90 UATE ENU 1/26/90 BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. WATER CASING DATE TIME STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 0830 1/27/90 12' 13' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASSG SHEKO **EQUIPMENT** STRATUM FIELD TESTING SAMPLE SAMPLE DESCRIPTION PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED No. BLOWS/6M **Burmister CLASSIFICATION** HNU **ORGANICS** NONE ND Top 5": Brown, fibrous ORGANICS. Bottom 13": Gray-brown, fine to coarse SAND, some fine GRAVEL, little Silt. 0.54 S-1 24/18 1.0-3.0 9-9-20-14 s-2 24/24 5.0-7.0 2-2-2-7 Loose, gray, brown, fine to coarse SAND, trace fine GRAVEL, little Silt. ND SAND 10 Top 2": PAPER, WOOD, METAL. Bottom 4": Red-brown, fine to coarse SAND, some fine Gravel, little Silt. s-3 24/6 10.0-12.0 8-4-5-7 10.0' REFUSE 3.6 ppm 10.14 2 SAND 15 15.0' REFUSE 5-4 24/10 15.0-17.0 17-23-9-9 Dense REFUSE. 1.6 ppm 17.0' E.O.B. 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.6 ppm. ND = None Detected. ppm = parts per million.

Sample wet at approximately 12 feet below grade.
Boring ended at approximately 17 feet below grade because HNU malfunctioned. Completed boring on 1/27/90. See boring log IB-7A. E.O.B. = End of boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-7s

REPORT OF BORING NO.
SHEET 1
FILE NO. 501
CHKD. BY TB-7SA GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT <u>50124.09 27</u> Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION Approx. 3 feet N-NE of TB-7
GROUND SURFACE ELEVATION
DATE START 1/27/90 UATE ENU 1/27/9 BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/27/90 0830 121 13/ 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG REMKS SAMPLE DESCRIPTION STRATUM SAMPLE **EQUIPMENT** FIELD TESTING DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ REC. HMII No. BLOWS/6" Burmister CLASSIFICATION **ORGANICS** NONE 2 0.51 SAND AND GRAVEL 10 10.0' REFUSE 10.14 3 SAND 1.0 ppm 15.04 S-5 24/2 15.0-17.0 40-44-18-16 Very dense, brown, fine to coarse SAND and fine GRAVEL, some Wood. NA Top 8": Brown, fine to coarse SAND and fine GRAVEL, some Wood.
Bottom 2": Brown SILT, METAL, WOOD. s-6 24/10 18.0-20.0 7-12-21-14 20 NA Medium dense, brown, fine to coarse SAND, some fine Gravel, little Wood, little Newspaper, trace Silt. s-7 24/3 20.0-22.0 5-10-6-35 Top 6": Black, fine to coarse SAND, some fine Gravel, little Silt (strong Petroleum odor).
Middle 4": REFUSE (Foam Rubber).
Bottom 8": Red-brown, fine to coarse SAND, some fine Gravel.
No Recovery. 5-8 24/18 22.0-24.0 14-16-24-18 25 NS 5-9 24/0 25.0-27.0 16-18-12-17 4.2 ppm Dense, black, fine to coarse SAND, some fine Gravel, little Glass, Metal, Wood. REFUSE AND SAND S-10 24/8 27.0-29.0 29-23-14-17 30 3 ppm Medium dense, black, fine to coarse SAND, some fine Gravel, some Glass, Metal, little Silt. 5-11 24/18 30.0-32.0 8-22-23-36 2.8 ppm Dense, black, fine to coarse SAND, some Metal, Glass, Wood, little Silt. 8-22-23-36 S-12 24/10 32.0-34.0 0.2 ppm 35 Very dense, black, fine to coarse SAND and fine GRAVEL, little Glass, little Metal. S-13 18/8 35.0-36.5 18-23-60/6" 35.04 SAND AND GRAVEL Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.6 ppm. ND = None Detected. NA = Not screened because soil samples were composited for analyses. NS = Not Screened. ppm = parts per million. See boring log TB-7. No samples taken 0-15 feet. See boring log TB-7. Sample wet at approximately 12 feet below grade. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

BORING No. TB-75A

_	GOL	DLDBERG-ZOINO & ASSOCIATES, INC. 14 SPRING HILL ROAD, TRUMBULL, CT 06611						PROJECT		REPORT OF BORING No. TB-7SA SHEET 2 OF 2		
- 1		OTECHNICAL/GEOHYDROLOGICAL CONSULTANTS						Old Southington Landfill Southington, Connecticut		REPORT OF BORING No. 18-7SA SHEET 2 UF 2 FILE No. 18-50126-U9 CHKD. BY ML		
•	DE	CB			SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT	FIELD	RE
	DEPTH	BLOWS	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	- Burmiste	r CLASSIFICATION	DESCRIPTION	INSTALLED	TESTING	REEKS
		_	S-14	24/24	40.0-42.0	5-4-3-3			SAND AND GRAVEL	NONE	ND	T
_							Glass, litt Bottom 16":	ck, fine to coarse ne GRAVEL, little le Metal. Dark brown PEAT, l (Petroleum odor).	41.0'	\dashv		
ĺ							little Meta	(Petroleum odor).				l
-	, =						1		PEAT		110	
	45		s-15	24/18	45.0-47.0	1-1-1-1	Very loose,	brown PEAT (Top 6" oil-			ND	
			-				ļ		47.0' E.O.B			4
	50										ļ	İ
			 				ļ					
		-		-			1					ļ
▄┆							1					
	55		ļ			- <u> </u>						
_							1					
							1					
╸╽	60						1					
							1					
							1				ļ	
	65]					
						·	4					
							1					
	70]					
							1					
▗▕							1					
]					
	75		_				1					
			<u> </u>				1					
]					
•							{					1
	80					· ·						
_]					
•			_			<u> </u>	-				}	
}			 				1					
	85- 4.	REMA	RKS:	rded at	approximate	ely 47 fact h	elou arada		·		 _	•
4. Boring ended at approximately 47 feet below grade. E.O.B. = End of Boring.												
.												

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

GZA

BORING No. TB-75A

REPORT OF BORING No.
SHEET 1
FILE No. 501
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 TB-8 **PROJECT** Old Southington Landfill Southington, Connecticut <u>50124.09</u> GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION Southeast portion of landfill GROUND SURFACE ELEVATION DATE END 1/23/90 DATE END 1/23/90 BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1/23/90 1300 8 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: BLOWS DEP STRATUM EQUIPMENT SAMPLE SAMPLE DESCRIPTION FIELD Ĭ PEN./ DEPTH (Ft.) DESCRIPTION INSTALLED BLOWS/6" Burmister CLASSIFICATION HNU No. NONE 4.5 ppm Dense, brown, fine to coarse SAND, some fine Gravel, some Silt, trace Clay, trace Brick (FILL). 5-1 24/24 1.0-3.0 13-18-23-27 5.9 ppm Dense, brown, fine to coarse SAND and fine to coarse GRAVEL, some Silt. **S-2** 24/24 5.0-7.0 63-25-18-21 SAND 2 10 NS Medium dense, brown, fine to coarse SAND, some fine Gravel, little Silt, trace Wood. s-3 24/18 10.0-12.0 15-7-12-7 3.1 ppm Medium dense, brown, fine to coarse SAND, some fine Gravel, little Silt, trace Clay. S-4 24/24 12.0-14.0 8-12-9-16 3 14.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.7 ppm. NS = Sample not screened. ppm = parts per million. Sample wet at approximately 8 feet below ground surface. Boring ended at approximately 14 feet below ground surface. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

BORING No. TB-8

REPORT OF BORING No. TB-9
SHEET 1 OF T
FILE No. 50124.09
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER BORING LOCATION Meridan Box GROUND SURFACE ELEVATION DATE START 1/23/90 DATE END Clarence Welti & Associates Kevin Christiania Dave Swettand GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/23/90 7.5' 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD DEPTH (Ft.) DESCRIPTION INSTALLED TH PEN./ HNU No BLOWS/6# Burmister CLASSIFICATION Very dense, GRAVEL, little fine Sand, trace Silt. 1.2 ppm S-1 7/7 0-0.6 50-60/14 GRAVEL NONE 1.04 2.6 ppm Dense, red-brown, fine SAND, some Silt, some Gravel. **S-2** 24/10 2.0-4.0 12-26-20-20 ND Loose, red-brown, fine SAND, little fine Gravel, trace Silt. 5.0-7.0 3-2-2-3 S-3 24/16 SAND 10 ND Loose, red-brown, fine SAND, trace Silt. S-4 24/10 10.0-12.0 2-3-4-6 12.0' EOB 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.5 ppm. ppm = parts per million. ND = None Detected. Sample wet at approximately 7.5 feet below grade. Boring ended at approximately 7.5 feet below ground surface. E.O.B. = End of Boring.

NOTES:
1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING No._TB-9

REPORT OF BORING NO. TB-10
SHEET 1 UF
FILE NO. 5UT24.09
CHKD. BY ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee BORING LOCATION East side of parking lot Four 93 Assoc.
GROUND SURFACE ELEVATION DATE END 1/26/90 DATE END 1/26/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1100 1/26/90 15' 151 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG REMKS SAMPLE SAMPLE DESCRIPTION EQUIPMENT FIELD STRATUM PEN./ REC. DEPTH (Ft.) **DESCRIPTION** INSTALLED H HNU Burmister CLASSIFICATION No. BLOWS/6" NONE 1 GRAVEL ND Very dense, red-brown, fine to medium SAND, little Silt little fine to coarse Gravel. 6/3 1.0-1.5 S-1 60/6H 2.0' REFUSE 1.0 ppm **S-2** 10/3 7.0-7.8 18-60/4" Very dense, WOOD, METAL, and brown fine to medium SAND, little Silt. 10 25.6 ppm Very dense, fine GRAVEL, GLASS, METAL, and WOOD, some fine to coarse Sand. **S-3** 24/2 10.0-12.0 17-30-30-20 11.6 ppm Medium dense, brown, fine GRAVEL, some fine to coarse Sand, some Glass, Wood. 5-4 24/6 12.0-14.0 3-10-18-28 12.0' GRAVEL 14.0 **S-5** 24/4 15.0-17.0 Very loose, black, SILT, WOOD, and GLASS. (Petroleum sheen). SILT AND REFUSE 70.6 ppm 1-1-1-1 NA s-6 24/6 17.0-19.0 5-14-8-8 Medium dense, brown, SILT and PEAT. 17.04 SILT AND 20 NA Top 5": Black, fine SAMD, some Silt, little fine Gravel, trace Wood. Bottom 5": Brown, fine to coarse SAND, some Silt; Dense, brown, fine to coarse SAND, little Silt. s-7 24/10 20.0-22.0 18-20-24-29 21.04 NA s-8 24/24 22.0-24.0 20-23-25-21 SAND 25 NS **S-9** 24/24 25.0-27.0 8-8-13-15 Medium dense, brown, fine to coarse SAND, little Silt. 3 27.0' E.O.B. 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.6 ppm. ND = None Detected, NA = Not screened because samples were composited for analyses. NS = Not screened. ppm = parts per million. Sample wet at approximately 15 feet below ground surface. Boring ended at approximately 27 feet below ground surface. E.O.B. = End of Boring.

STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

GZA

NOTES:

BORING No. TB-10

REPORT OF BORING NO. TB-11
SHEET 1 OF
FILE NO. 50124.09
CHKD. BY ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticus GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS Clarence Welti & Associates Larry Lindenberger Linda McKee BORING CO. FOREMAN GZA ENGINEER BORING LOCATION North of Meridan Box GROUND SURFACE ELEVATION DATE START 1/23/90 DATE END GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. 1/23/90 1015 71 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG REMKS SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD TESTING SAMPLE DESCRIPTION INSTALLED DEPTH (Ft.) PEN./ Burmister CLASSIFICATION No. BLOWS/6" HNU Medium dense, brown, fine to coarse GRAVEL, some Silt, trace Clay. 11-11-13-22 3.2 ppm S-1 24/24 0-2.0 **GRASS** NONE 0.51 SAND Top 6": Brown, fine SAND, some Silt, trace Clay.
Bottom 14": Brown, medium to coarse SAND, little Silt, little fine Gravel.
Brown medium dense, medium to coarse SAND, little Silt, little fine Gravel. 5.6 ppm 5 s-2 24/20 5.0-7.0 18-29-23-23 5.0' FINE SAND 5.5 2 16-16-18-16 S-2A 24/20 7.0-9.0 NS MEDIUM TO COARSE SAND 5.6 ppm 10 24/24 6-7-8-12 Top 18": Brown, medium to coarse SAND, little fine Gravel. Bottom 6": Brown, fine SAND, some Silt, trace Clay. s-3 10.0-12.0 11.5' FINE SAND 3 12.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.4 ppm. ppm = parts per million. NS = Not screened Sample wet at approximately 7 feet below ground surface. Boring ended at approximately 12 feet below groun surface. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-11 GZA

REPORT OF BORING No. 1B-12
SHEET 1 UF
FILE No. 5UT24.09
CHKD. BY ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Kevin Christiana Dave Swetland BORING LOCATION North of Meriden Box GROUND SURFACE ELEVATION DATE START 1/23/90 DATE END GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME 1/23/90 CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG DEPTH STRATUM **EQUIPMENT** FIELD SAMPLE SAMPLE DESCRIPTION KKS DESCRIPTION INSTALLED PEN./ DEPTH (Ft.) HNU No. BLOWS/6" Burmister CLASSIFICATION 24/18 0-2.0 10-8-7-9 Medium dense, red-brown, fine to medium SAND, some Silt, trace fine Gravel. GRASS NONE 2.4 ppm S-1 0.5' SAND 3.0' 5 1.4 ppm **S-2** 24/8 5.0-7.0 5-5-6-5 Medium dense, red-brown, fine to medium SAND and GRAVEL, trace Silt. 2 SAND AND GRAVEL 1.2 ppm **S-3** 24/12 7.0-9.0 3-3-3-4 Loose, red-brown, fine to medium SAND, some fine Gravel, trace Silt. 10 Loose to medium dense, red-brown, fine to medium SAND, some fine Gravel, trace Silt. 3-5-5-6 **S-4** 24/10 10.0-12.0 NS 3 12.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.8 ppm. NS = Not Screened. ppm = parts per million. Sample wet at approximately 6 feet below ground surface. Soring ended at approximately 12 feet below ground surface. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-12 GZA

REPORT OF BORING NO.18-13/8P-5
SHEET 1 OF T
FILE NO. 50124.09
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION North side of Pallato residence driveway GROUND SURFACE ELEVATION DATUM DATE END 1/18/90 DATE END 1/18/90 Clarence Welti & Associates Kevin Christiana Linda McKee BORING CO. FOREMAN GZA ENGINEER GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE WATER CASING TIME STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. HAMMER FALLING 24 In. 1/18/90 1445 51 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ No. BLOWS/6" Burmister CLASSIFICATION HNU Top 2": Brown SILT and CLAY, trace **S-1** 24/3 0-2.0 8-9-14-18 SILT AND CLAY 7.8 ppm Organics.
Bottom 1": Red-brown, fine GRAVEL and fine to coarse SAND, little Silt. Red-brown, fine to coarse SAND, little fine Gravel, little Silt. NONE 0.2' 6.8 ppm 5-4-7-6 SAND AND GRAVEL 5-2 24/4 2.0-4.0 3.8 ppm 2 s-3 24/6 4.0-6.0 60/4" Very dense WOOD. 4.0' 5.3 ppm Very loose, GLASS and WOOD. S-4 24/2 1/12"-1/12" REFUSE 5.0-7.0 3.8 ppm 1/12"-1/12" 7.0' S-5 24/4 7.0-9.0 Very loose, brown PEAT, little NA U-6 24/3 9.0-11.0 PEAT. **PUSH** 10 3.8 ppm **S-7** 24/24 1/12"-1/12" Very Loose PEAT. 11.0-13.0 PEAT 1.8 ppm 24/18 Top 7": Brown PEAT. Bottom 11": Green-brown PEAT. 5-8 15.0-17.0 1/12"-1/12" 1.6 ppm Top 6": Brown PEAT, Middle 3": Gray, fine to coarse SAND, little Silt. Bottom 7": Gray, SILT some CLAY. **S-9** 24/18 17.0-19.0 1/12"-1/12" 18.04 20 2.8 ppm Top 15": Gray SILT, some CLAY. Bottom 1": Red-brown, fine to medium SAND, little Silt. S-10 24/16 20.0-22.0 1/12"-1-4 SILT 22.0 FINE TO COARSE SAND 25 3.3 ppm Medium dense, red-brown, fine to coarse SAND, little Silt, trace fine Gravel. S-11 24/10 25.0-27.0 4-7-6-9 27.0' E.O.B. 30

Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.8 ppm. ppm = parts per million. NA = Not analyzed, sample collected for analysis. Sample wet at approximately 4 feet below ground surface. Boring ended at approximately 27 feet below ground surface. E.O.B. = End of Boring.

STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

REPORT OF BORING NO.
SHEET 1
FILE NO. 501
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** 1 OF 50124.09 Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION North edge of Black Pond GROUND SURFACE ELEVATION DATE START 1/19/90 DATE END 1/19 Clarence Welti & Associates Larry Lindenberger Linda McKee BORING CO. DATUM 1/19/90 GZA ENGINEER GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 (b. HAMMER FALLING 30 In. TIME STABILIZATION TIME DATE WATER CASING CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/19/90 1420 21 51 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG SNG SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT DESCRIPTION INSTALLED PEN./ REC. DEPTH (Ft.) Burmister CLASSIFICATION HNU No BLOWS/6" Loose, red-brown, fine to coarse SAND, little fine Gravel, little Silt. 24/18 NONE 0-2.0 6-5-4-5 7.4 ppm SAND 2 3.0' 7.0 ppm Very dense, black WOOD, little fine to medium Sand, little Silt (possible creosote odor, railroad ties). S-2 9/2 5.0-7.0 8-60/3" WOOD 10 5.1 ppm Top 4": Gray, fine to medium SAND, trace Silt. Middle 3": Black WOOD. Bottom 5": Red-brown, fine to medium SAND, little Silt. **S-3** 20-24-13-10 24/12 10.0-12.0 11.5' SAND 3 12.0' E.O.B. 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNu values represent total HNu values recorded. Background = 0.8 ppm. ppm = parts per million.
Sample wet at approximately 2 feet below ground surface.
Boring ended at approximately 12 feet below ground surface.
E.O.B. = End of Boring. 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

BORING No. TB-14

REPORT OF BORING No. IB-15 SHEET 1 OF FILE No. 50124.09 CHKD. BY ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT Old Southington Landfill Southington, connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION north side of Black Pond GROUND SURFACE ELEVATION DATE END 1/19/90 BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 (b. HAMMER FALLING 24 In. 51 1345 51 0 Hours 1/19/90 CASING SIZE: 3 3/4" HSA BLOWS CASEG SATEMA FIELD TESTING SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT DEPTH (Ft.) DESCRIPTION PEN./ REC. INSTALLED Ť Burmister CLASSIFICATION No. BLOWS/6" HNU 8.0 ppm 1 S-1 24/18 Dense, brown, fine to medium SAND, little fine Gravel, trace Silt. 0-2.0 10-18-18-20 **GRASS** NONE 0.5 8.2 ppm 2 Dense, brown, fine to coarse SAND, little Silt, trace Wood, trace fine Gravel. **S-2** 24/24 5.0-7.0 18-16-18-3 SAND 10 Loose, brown, fine to coarse SAND, little Silt, little fine Gravel, trace Wood. S-3 24/24 1-1-3-7 10.0-12.0 8.0 ppm 3 12.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNu values recorded. Background = 0.8 ppm. ppm = parts per million.
Sample wet at approximately 5 feet below ground surface.
Boring ended at approximately 12 feet below ground surface.
E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-15 GZA

REPORT OF BORING NO. T8-16
SHEET OF
FILE NO. 50124.09
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut 50124.09 GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION Corner of Old Turnpike and Rejean Roads
GROUND SURFACE ELEVATION
DATE START 1/23/90 DATE EMD 1/23/90 BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Dave Swettand GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 Lb. 1/23/90 91 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG D E P REEKS SAMPLE DESCRIPTION STRATUM EQUIPMENT SAMPLE FIELD DEPTH DESCRIPTION INSTALLED T H PEN./ Burmister CLASSIFICATION HNU BLOWS/6" No. Medium dense, red, fine SAND, some Silt, some fine Gravel. NONE S-1 24/8 0-2.0 3-6-5-10 GRASS 0.5 SAND 3.04 ND Loose, red, fine to coarse SAND, little Silt. **S-2** 24/10 5.0-7.0 0-3-3-2 2 SAND 10 S-3 24/0 10.0-12.0 6-12-12-18 No Recovery. NS 0.7 ppm Medium dense, red, fine to medium SAND, some fine GRAVEL, little Silt. S-4 24/6 12.0-14.0 6-12-12-16 3 14.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.5 ppm. ppm = parts per million. ND = None Detected NS = Not Screened Sample wet at approximately 9 feet below ground surface. Boring ended at approximately 14 feet below ground surface. E.O.B. = End of Boring. 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

BORING No. TB-16

REPORT OF BORING NO. TB-17
SHEET 1 OF
FILE NO. 5UT24.09
CHKD. BY ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticul GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER BORING LOCATION 101 Rejean Road GROUND SURFACE ELEVATION DATE START 1/19/90 DATE END Clarence Welti & Associates Kevin Christiana DATUM 1/19/90 Dave Swettand GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 in. 1/20/90 10' 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG REMKS SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ REC. BLOWS/6" HNU No. **Burmister CLASSIFICATION** 1 s-1 24/10 0-2.0 6-4-5-10 Loose, red, fine SAND, some Silt. **GRASS** NONE 2.4 ppm 0.5 5 19.0 ppm **S-2** 24/10 5.0-7.0 6-6-5-9 Medium dense, red, fine SAND, some Silt. SAND 3.6 ppm Loose, red, fine SAND, some Silt, some fine Gravel. s-3 24/10 7.0-9.0 3-3-3-4 2 10 Top 12": Red, fine SAND, some Silt, some fine Gravel. Bottom 12": Gray-brown, Organic SILT, some fine Sand. 5-4 24/10 10.0-12.0 1-1-1-3 ND 11.0' ORGANIC SILT 3 12.0' EOB 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNu values recorded. Background = 0.5 ppm. ND = None Detected. PPM =parts per million. Sample wet at approximately 10 feet below ground surface. Boring ended at approximately 12 feet below ground surface. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. TB-17

REPORT OF BORING No. TB-18
SHEET 1 OF T
FILE No. 50T24.09
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER BORING LOCATION North of Black Pond.
GROUND SURFACE ELEVATION
DATE START 1/19/90 DATE END Clarence Welti & Associates Kevin Christiana Dave Swettand DATUM 1/19/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/20/90 10' 0 Hours 6' CASING SIZE: 3 3/4" HSA OTHER: CASEG SAMPLE STRATUM **EQUIPMENT** FIELD TESTING SAMPLE DESCRIPTION DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ REC. No. BLOWS/6" Burmister CLASSIFICATION HNU Very loose, brown, fine SAND, some fine Gravel, little Silt. 1.4 ppm s-1 24/18 0-2.0 4-1-1-8 NONE 3.1 ppm s-2 24/8 5.0-7.0 3-4-5-3 Loose, brown, fine SAND, some Silt. SAND 2 7.0-9.0 3-3-3-2 24/0 NS No Recovery. 2.0 ppm Top 18": Very loose, fine to medium, red, SAND, little fine Grayel, little Silt. Bottom 6": PEAT. **S-3** 24/24 9.0-11.0 1/12"-1-1 10 10.5' PEAT 11.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 5.0 ppm. ppm = parts per million. NS = Not screened Sample wet at approximately 6 feet below ground surface. Boring ended at approximately 11 feet below ground surface. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-18 GZA

REPORT OF BORING NO. TB-19
SHEET 1 OF T
FILE NO. 50724.09
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee BORING LOCATION central portion of Lori Corp. site GROUND SURFACE ELEVATION DATE ENU 1/19/90 DATE ENU 1/19/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME STABILIZATION TIME WATER CASING CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/19/90 1010 91 10' O Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG DEPTH EQUIPMENT SAMPLE SAMPLE DESCRIPTION STRATUM FIELD DESCRIPTION INSTALLED PEN./ DEPTH (Ft.) HNU No. BLOWS/6" **Burmister CLASSIFICATION** Very dense, red-brown, fine to coarse SAND, some fine Gravel, little Silt. **S-1** 24/10 0-2.0 8-33-57-40 NONE 1.0 ppm 1 SAND 2.0' 7.0 ppm 5 Very dense, red-brown, fine GRAVEL and fine to coarse SAND, little Silt. s-2 24/8 5.0-7.0 38-30-32-18 GRAVEL 10 7.6 ppm Dense, red-brown, fine GRAVEL and fine to coarse SAND, little Silt. s-3 24/16 10.0-12.0 13-18-32-15 3 12.0' EOB 15 20 25 30 35 Soil samples field screened for volatile organic compounds with an HNU model PI-101 11.7 eV photoionization detector. Recorded HNU values represent total HNu values recorded. Background = 0.8 ppm ppm = parts per million.

Sample wet at approximately 9 feet below ground surface.
Boring ended at approximately 12 feet ground surface.
E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-19 GZA

REPORT OF BORING NO. TB-20 SHEET 1 OF 1 FILE NO. 50124.09 CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda McKee BORING LOCATION Lori Corporation GROUND SURFACE ELEVATION DATE START 1/19/90 DATE END 1/19/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. WATER CASING STABILIZATION TIME DATE TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. 1110 1/19/90 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: BLOWS と 子子 アン SAMPLE EQUIPMENT SAMPLE DESCRIPTION STRATUM FIELD PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED Burmister CLASSIFICATION HNU BLOWS/6" No. 24/18 0-2.0 10-25-40-30 Very dense, red-brown, GRAVEL and fine to coarse SAND, little Silt. NONE 6.4 ppm GRAVEL 2.0' 7.2 ppm **S-2** 24/2 5.0-7.0 14-16-20-19 Dense, red-brown, fine to coarse SAND, some fine Gravel, trace Silt. SAND 4.2 ppm s-3 Very dense, red-brown, fine to coarse SAND, fine to coarse GRAVEL and little Silt. 18/10 7.0-8.5 14-17-60/6" 2 10 Very dense, red-brown, fine to coarse GRAVEL, and fine to coarse SAND, little Silt. **S-4** 18/12 10.0-11.5 45-38-50 3 8.4 ppm 12.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.8 ppm. ppm = parts per million.
Sample wet at approximately 9 feet below ground surface.
Boring ended at approximately 12 feet below ground surface.
E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-20 GZA

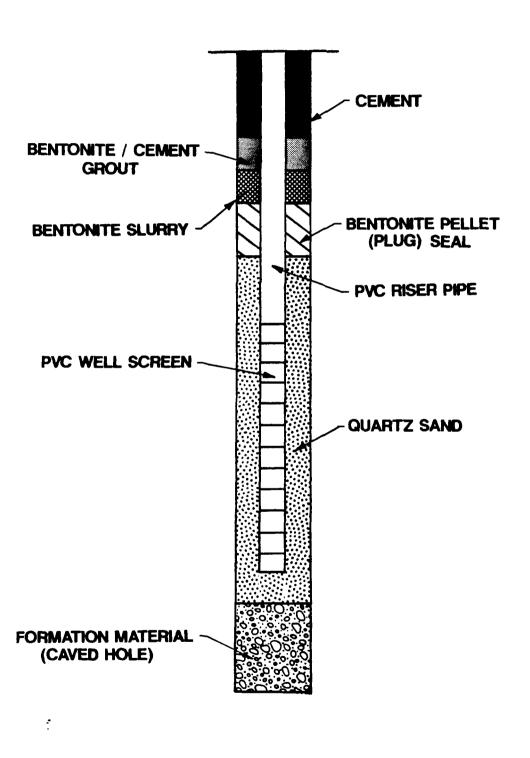
GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No. TB-21
SHEET 1 OF
FILE No. 501724.09
CHKD. BY ML **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Kevin Christiana BORING LOCATION Lori Corporation GROUND SURFACE ELEVATION DATE START 1/19/90 DATE END DATUM 1/19/90 Dave Swettand GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME 1/20/90 CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 in. 5' 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG DEPTH SHEKS SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ REC. No. BLOWS/6" **Burmister CLASSIFICATION** HNU Medium dense, red, GRAVEL, little fine Sand, trace Silt. S-1 0.5-2.5 5-6-7-8 1.9 ppm 1 24/6 NONE GRAVEL 2.51 18.0 ppm 5 Loose, red, fine SAND, some Silt, little fine Gravel. s-2 24/3 5.0-7.0 9-2-2-3 SAND 10 2.7 ppm Loose, olive-gray, fine to medium SAND, little Silt. s-3 24/24 10.0-12.0 3-3-5-6 3 12.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNu values recorded. Background = 0.7 ppm. ppm = parts per million.

Sample wet at approximately 5 feet below ground surface.

Boring ended at approximately 12 feet below ground surface.

E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING NO. TB-21

REPORT OF BORING No. 1B-22
SHEET 1 OF TO THE TOTAL TOT GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Kevin Christiania Dave swettand BORING LOCATION Lori Corporation
GROUND SURFACE ELEVATION DATUM
DATE START 1/19/90 DATE END 1/19/90 GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 lb. HAMMER FALLING 30 In. TIME STABILIZATION TIME DATE WATER CASING CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 in. 1/20/90 6.54 OUT 0 Hours CASING SIZE: 3 3/4" HSA OTHER: CASNG SHEKS SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD TESTING PEN./ DESCRIPTION INSTALLED DEPTH (Ft.) H No. BLOWS/6" Burmister CLASSIFICATION HNU Dense, gray, GRAVEL, little red fine Sand, trace Silt. ASPHALT 1 24/8 0.5-2.5 18-37-25-19 NONE ND 0.5' GRAVEL 3.2 ppm s-2 24/9 5.0-7.0 Medium dense, light red-brown, fine SAND, little Silt. 4-5-6-5 2 SAND 2.7 ppm s-3 24/12 10.0-12.0 3-4-3-5 Loose, red-gray, medium to coarse SAND, trace Silt. 3 12.0' E.O.B. 30 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.5 ppm. ND = None Detected. ppm = parts per million. Sample wet at approximately 6.5 feet below ground surface. Boring ended at approximately 12 feet below ground surface. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. TB-22


REPORT OF BORING NO. TB-23
SHEET 1 OF
FILE NO. 50124.09
CHKD. BY ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER BORING LOCATION East of Southington Metal Fabricators
GROUND SURFACE ELEVATION DATUM
DATE START 1/23/90 DATE END 1/23/90 Clarence Welti & Associates Larry Lindenberger Linda McKee GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/23/90 1430 10' 0 Hours CASING SIZE: 3 3/4" HSA OTHER: BLOWS FIELD TESTING SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT DEPTH (Ft.) DESCRIPTION H INSTALLED PEN./ REC. No. BLOWS/6" HNU Burmister CLASSIFICATION NONE 6.3 ppm Dense, brown, fine to coarse SAND, some fine Gravel, little Silt, trace Clay. 5-1 24/16 1.0-3.0 17-25-14-22 3.0 ppm **s-2** 24/14 5.0-7.0 3-4-7-8 Medium dense, red-brown, medium to coarse SAND, trace fine Gravel. SAND 10 1.8 ppm Medium dense, red-brown, medium to coarse SAND, trace fine Gravel. s-3 24/16 10.0-12.0 5-7-7-8 2 12.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 0.6 ppm. ppm = parts per million.
Boring ended at approximately 12 feet below ground surface.
E.O.B. = End of Boring. 2. 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING NO. TB-23

REPORT OF BORING NO. 18-24
SHEET 1 UF T
FILE NO. 5UT24.09
CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER BORING LOCATION Southwest edge of Four GROUND SURFACE ELEVATION DATE START ____1/25/90 DATE END ____1/ Clarence Welti & Associates Kevin Christiania Dave swettand GROUNDWATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/25/90 None CASING SIZE: 3 3/4" HSA OTHER: CASNG REMKS SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD TESTING DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ No. BLOWS/6" **Burmister CLASSIFICATION** HNU Top 16": Loose, brown, fine to coarse SAND, littler fine Gravel, little Silt: Bottom 4": Brown, fine to medium SAND and REFUSE. 24/20 S-1 0-2.0 4-2-2-3 NONE 1.6 ppm SAND 2.0' REFUSE AND SAND 13.0 ppm 24/5 Loose REFUSE and brown, fine to medium SAND. 5.0-7.0 S-2 2-3-2-2 Loose REFUSE and red-brown, fine to medium SAND. S-3 24/13 7.0-9.0 2-3-3-3 NA Loose, red, fine to medium SAND, trace Silt. 9.0' 24/20 9.0-11.0 3-3-5-6 NA 5-4 10 SAND Loose to medium dense, red, fine to medium SAND, trace Silt. 3-5-5-4 18.0 ppm **S-5** 24/24 11.0-13.0 3 13.0' E.O.B. 15 20 25 30 35 Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101 photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 1.0 ppm. ppm = parts per million. NA = Not analyzed, sample collected for analysis. Strong odor noted 5-11 feet below grade. Boring ended at approximately 13 feet ground surface. E.O.B. = End of Boring. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. TB-24 GZA

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING NO. 18-25 PROJECT 50124.09 FILE No. CHKD. BY Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS M.L. BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Larry Lindenberger Linda Mckee BORING LOCATION N. West edge of Southington Metal Fab.
GROUND SURFACE ELEVATION
DATE START 1/27/90 DATE ENU 1/27/90 GROUNDUATER READINGS SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME CASING: UNLESS OTHERWISE NOTED, CASING DRIVEN USING A 300 lb. HAMMER FALLING 24 In. 1/27/90 1300 None CASING SIZE: 3 3/4" HSA OTHER: CASNG REMKS SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD PEN./ DEPTH DESCRIPTION INSTALLED No. BLOWS/6" Burmister CLASSIFICATION HNU NONE SAND Top 4": Brown, fine to coarse SAND some fine Gravel, little Silt. Bottom 6": REFUSE, (newspaper) S-1 24/10 1.0-3.0 7-4-4-7 9.2 ppm 2.0' **S-2** 24/0 5.0-7.0 27-8-7-7 NS No recovery. 10 Very dense, black-brown, fine to coarse SANO, some fine Gravel, little Wood, little Silt. **S-3** 26 ppm 6/6 10.0-10.5 60/6% REFUSE AND SAND Dense, brown-black, fine to coarse SAND, some Refuse. 40 ppm **S-4** 24/3 13.0-15.0 43-23-18-12 15 Medium dense, brown-black, fine to coarse SAND, some Refuse. S-5 24/3 15.0-17.0 23-18-11-11 40 ppm 20 Medium dense, red-brown, fine to medium SAND, little Silt, trace fine Gravel. 24/10 20.04 S-6 20.0-22.0 9-7-8-7 NA SAND S-7 24/20 9-9-9-9 Medium dense, redpbrown, fine to coarse SAND, trace Silt. 22/0-24.0 NA 2 24.0' E.O.B. 25 30 35 REMARKS: KEMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101
Soil samples field screened for volatile organic compounds with 11.7 eV HNU model PI-101
photoionization detector. Recorded HNU values represent total HNU values recorded. Background = 1.0 ppm.
NA = Not analyzed, sample collected for analysis. NS = Not Screened. ppm = parts per million
Sample wet at approximately 24 feet below ground surface.
Boring ended at approximately 24 feet below ground surface. E.O.B. = End of Boring. 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

BORING No. TB-25

WELL LEGEND

REPORT OF BORING NO. TB-7S
SHEET 1 OF
FILE NO. 5UT24.10
CHKD. BY ML GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION East of Southington Metal Fabricators GROUND SURFACE ELEVATION 159.6 DATUM 161.56 DATE START 4/2/90 DATE END 4/2/90 Clarence Welti & Associates Don Moodie Linda McKee BORING Co. GZA ENGINEER GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 24"
SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. STABILIZATION TIME DATE TIME WATER CASING 0 hours 01 15' 1020 4/2/90 4/3/90 0805 6.8 20 hours out DRILLING METHOD: 3 3/4" HSA C A L O W S FIELD TESTING **EQUIPMENT** SAMPLE SAMPLE DESCRIPTION STRATUM INSTALLED PEN./ DEPTH DESCRIPTION BLOWS/6" Burmister CLASSIFICATION HNU (ppm) No. See boring log TB-7SA for description. SAND AND REFUSE 10 15 Brown, fine to medium SAND, little Refuse (Newspaper, Plastic), trace Silt. S-1 24/18 15.0-17.0 17.0' E.O.B. 20 25 30 35 REMARKS: REMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector.
4.8/3.8=Total HNU reading/background value prior to reading.
Sample wet at approximately 9 feet below grade.
Ten feet of 2-inch schedule 40 10-slot pvc well screen set at approximately 15.5 feet below grade.
Well completed with 2-inch schedule 40 threaded, flush-joint PVC riser to approximately 2 feet above grade.
No. 12 quartz sand placed around well from approximately 4 to 16 feet. Bentonite pellet seal placed around well from 0.5 to 4 feet, Well capped with lockeing steel pipe cemented in place. Well developed for approximately 1 hour and ten minutes.
Boring ended at approximately 17 feet below grade. No blow counts recorded. 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

GZA

BORING No. TB-75

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No. GZ-5S SHEET 1 DF FILE No. 501724.10 PROJECT Old Southington Landfill Southington, connecticut CHKD. BY GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS Clarence Welti & Associates Dave Bromley Linda McKee BORING LOCATION 10 feet south of GZ-5D GROUND SURFACE ELEVATION 162.9 DA DATE STATI 5/17/90 DATE END BORING CO. FOREMAN GZA ENGINEER DĂTUM 165.UT 5/17/90 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 36" SPLIT SPOON DRIVEN USING A 300 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME 5/17/90 1550 17' 0 hours 17.2 5/21/90 1015 out 4 days DRILLING METHOD: 3 3/4" HSA OTHER: CASNG SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED (mpq) UNH No. BLOWS/6" Burmister CLASSIFICATION See Boring GZ-5D for description FINE TO MEDIUM SAND 0.8/0.8 10 24/12 10' S-1 10.0-12.0 Red-brown fine SAND, trace Silt. FINE 15' FINE SAND AND SILT 19.51 20 5-2 36/18 20.0-23.0 Red-brown fine SAND, little Silt. 0.8/0.8 FINE 3 24' E.O.B. 25 4 30 35 REMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector.
0.8/0.8=Total HNU reading/background value prior to reading.
Sample wet at approximately 17 feet below ground surface.
Ten feet of 2-inch, schedule 40, 10-slot pvc well screen set at approximately 24 feet below grade.
Well completed with 2-inch, schedule 40, threaded, flush-joint pvc riser pipe. No. 12 quartz sand placed around well from 12 to 24 feet below grade. Bentonite seal (hole plug) placed around the well from 3 to 12 feet. Well capped with locking steel pipe cemented in place. Well developed for approximately 1 hour.
Boring ended at approximately 24 feet below grade. No blow counts recorded. 1) 4) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING NO. GZ-5S

REPORT OF BORING NO. GZ-SM SHEET 1 OF FILE NO. 5UTZ4.10 CHKD. BY ML DBERG-ZOINO & ASSOCIATES, INC.
SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION 10 feet south of GZ-50 GROUND SURFACE ELEVATION 162.9 DATUM DATE START 5/17/90 DATE END 5/17/90 RING CO. REMAN LENGINEER Clarence Welti & Associates Dave Bromley Linda Mckee GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 24" SPLIT SPOON DRIVEN USING A 300 Lb. HAMMER FALLING 30 In. STABILIZATION TIME WATER CASING DATE TIME 5/17/90 0905 17' 20' 0 hours 17.15 4 days 5/21/90 1015 out DRILLING METHOD: 3 3/4" HSA REEKS 8 L O W S STRATUM EQUIPMENT-FIELD SAMPLE DESCRIPTION SAMPLE TESTING INSTALLED DESCRIPTION PEN./ REC. DEPTH (Ft.) Burmister CLASSIFICATION BLOWS/6" No. See boring log GZ-5D for description FINE TO MEDIUM SAND 10' FINE SAND 15 15' FINE SAND AND SILT 19.54 FINE 25' FINE TO MEDIUM SAND 55 351 FINE SAND REMARKS: Sample wet at approximately 17 feet below ground surface. VOTES:

GZA

STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

	DBERG-ZOINO & ASSOCIATES, INC. SPRING HILL ROAD, TRUMBULL, CT 06611						PROJECT Old Southington Landfill Southington, Connecticut		REPORT OF BORING NO. GZ-5M SHEET Z OF Z FILE NO. 507Z4.10 CHKD. BY ML		
	C R					لـــــــــــــــــــــــــــــــــــــ			CHKD. BY ML		
	BLOWS		T	SAMPLE		SAMPL	E DESCRIPTION	STRATUM DESCRIPTION	EQUIPMENT INSTALLED	FIELD R TESTING H	
1	N W	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"		CLASSIFICATION	DESCRIPTION		HNU (ppm) K	
				-		See Boring	GZ-5D for description			2	
						1		}			
			-					FINE SAND			
		+						SAND			
_]					
		 								1 1	
				-]			
		-				1			88		
- 3]		50'	& 25.	1	
-			ļ			1		FINE TO COARSE			
	 					1		SAND AND GRAVEL		1	
35											
5 5		S-1	24/12	55.0-57.0		Red-brown	fine to medium SAND,	55′		1	
		<u> </u>	ļ			-	-	,			
						4		FINE SAND		1 1	
	-	 	 			1					
0]					
			·]		(3) 5 0 5		3	
l		 	 	 	 	4		62' E.O.E)·-	1 1	
	-	-	 	 		1				1	
65						1			ĺ	1	
-]					
		├		 	<u> </u>	-					
	 	 	 	 		-			ł		
70										1	
۲ <u>ا</u>]					
	 		 	 	 	-			1		
_	-	1	+	 	 	1					
75]					
ř	<u> </u>					4					
l	-	├	 		 	4		1			
.	-	 	 			1					
80]						
	<u> </u>					1					
Ĭ	-	-	 	 		-					
]	-	+-	+		 	1					
85 R 2	REMARKS: 2) Soil sample field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector. 1.6/0.6=Sample HNU value/background HNU value prior to reading. 3) Ten feet of 2-inch, schedule 40, 10-slot pvc well screen set at approximately 62 feet below grade. Well completed with 2-inch, schedule 40, threaded, flush-joint pvc riser pipe to approximately 2 feet above grade. No. 12 quartz sand placed around well from approximately 50 to 62 feet below grade. Bentonite. Siurry placed around well from 20 to 50 feet. Bentonite seal (hole plug) placed around well from approximately 15 to 20 feet. Well annulus backfilled with bentonite/cement grouf from 3 to 15 feet. Well capped with locking steel pipe cemented in place. Well developed for approximately 1.5 hours. 4) Boring ended at approximately 62 feet below grade. No blow counts recorded.										
_4) §	oring	ended	at approxima	stely 62 feet	below grade.	No blow counts recorde	o.			

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS

PROJECT Old Southington Landfill Southington, connecticut REPORT OF BORING No. 6Z-5D SHEET FILE No. 5UT24.10 CHKD. BY

BORING CO. FOREMAN GZA ENGINEER

Clarence Welti & Associates Don Moodie Linda Mckee

BORING LOCATION Eastern slope of Chuck and Eddies GROUND SURFACE ELEVATION 162.6 DATUM 164.50 DATE START 5/9/90 DATE END 5/16/90

SAMPLER: UNLESS OTHERWISE NOTED, SAMPLER CONSISTS OF A 2" X 60"
SPLIT SPOON DRIVEN USING A 600 LB. HAMMER FALLING
30 IN. DRILLING METHOD: 5.0" I.D. CASING DRIVEN TO 138 FEET BELOW GRADE USING A 600 LB. HAMMER FALLING 24 IN.

GROUNDWATER READINGS

ROCK CORE OBTAINED USING 4 1/4" WIRE-LINE SAMPLER HQ CORE

STABILIZATION TIME TIME WATER CASING DATE 1010 5/9/90 17.0 20' 0 hours 5/21/90 1015 16.154 out 12 days

S-1 60/26 0-5.0 Red-brown fine to medium SAND, little fine to coarse Gravel, silt. a) 0.8/1.6 b) 0.6/1.4		BAS	REL						<u> </u>			
S-1 60/26 0-5.0 Red-brown fine to medium SAND, Red-brown fine SAND, trace Sitt. S-2 60/16 5.0/10.0 Red-brown fine SAND, trace Sitt. S-4 60/39 15.0-20.0 S-35%; Red-brown fine SAND, trace Sitt. S-4 60/39 15.0-20.0 S-35%; Red-brown fine SAND, trace Sitt. S-4 60/39 15.0-20.0 S-5 60/20 20.0-25.0 Red-brown fine SAND, trace Sitt. S-5 S-6 60/16 25.0-30.0 Red-brown fine SAND, trace Sitt. S-6 60/16 25.0-30.0 Red-brown fine SAND, trace Sitt. S-6 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. Red-brown fine SAND. Red-brown fine SAND. Red-brown fine to medium SAND. S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine to medium SAND. Red-brown fine SAND, Little Silt. S5.0'		Ошо	C B A L S O		T			SAMPLE DESCRIPTION			FIELD TESTING	KEEKS
S - 2 60/16 5.0/10.0 Red-brown fine to medium SAND, MEDIUM SAND BO 0.6/1.4		H	ĞŠ	No.	REC.	(Ft.)	BLOWS/6M	Burmister CLASSIFICATION	DESCRIPTION	INSTALLED	HNU (ppm)	Ŝ
S-2 60/16 5.0/10.0 Red-brown fine to medium SAND, NEDIUM SAND b) 0.4/1.0				S-1	60/26	0-5.0		Red-brown fine to medium SAND, little fine to coarse Gravel, Silt.			1	1
S-3 60/26 10.0-15.0 Red-brown fine SAND, trace Silt. 10.0'		5		S-2	60/16	5.0/10.0		Red-brown fine to medium SAND, little fine Gravel.	FINE TO MEDIUM SAND		1	
15 S-4 60/39 15.0-20.0 Top. 35": Red fine SAND and SILT. 15.0' SAND SILT 15.0' 15.0' SAND SILT 15.0' SAND SILT 15.0' SAND SILT 15.0' SAND SILT 15.0' SAND SILT 15.0' SAND SILT 15.0' 15.0' SAND SILT 1		10		C. 7	40/26	10.0-15.0	-	Red-brown fine SAND, trose Silt	10.04		a) 0.4/1.2	
20 S-5 60/20 20.0-25.0 Red-brown fine SAND, trace Silt. 25 S-6 60/16 25.0-30.0 Red-brown fine to medium SAND. 26 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 27 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 28 S-8 60/6 35.0-40.0 Red-brown fine SAND, little Silt. 29 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 20 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 25 S-8 60/6 35.0-40.0 Red-brown fine SAND, little Silt. 26 S-7 60/3 30.0-35.0 Red-brown fine SAND, little Silt.	_			3-3	60/26	10.0-13.0		Red-blown fine SAND, trace Sitt.			1	
20 S-5 60/20 20.0-25.0 Red-brown fine SAND, trace Silt. 25 S-6 60/16 25.0-30.0 Red-brown fine to medium SAND. 26 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 27 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 28 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 29 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 20 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 20 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. 21 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-1 S-	4	15		S-4	60/39	15.0-20.0		Top 35": Red fine SAND and SILT. - 35-36": Red-brown fine to coarse SAND. - 36-39": Red-brown fine SAND, trace	1		1 ' '	2
25 S-6 60/16 25.0-30.0 Red-brown fine to medium SAND. 25.0' 30 S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. FINE SAND a) 0.4/2.2 b) 0.4/1.8 a) 0.4/1.8 a) 0.4/1.8 a) 0.4/1.8 FINE TO MEDIUM SAND a) 0.4/1.8 a) 2.0/1.6 b) 2.2/1.4	-	20		s-5	60/20	20.0-25.0					1	
S-6 60/16 25.0-30.0									FINE SAND		0) 0.4/1.6	
S-7 60/3 30.0-35.0 Red-brown fine to medium SAND. Red-brown fine to medium SAND. S-8 60/6 35.0-40.0 Red-brown fine SAND, little Silt. Red-brown fine SAND, little Silt. 35.0'		25		S-6	60/16	25.0-30.0		Red-brown fine to medium SAND.	25.0′		1	
S-8 60/6 35.0-40.0 Red-brown fine SAND, little Silt. 35.0' b) 2.2/1.4		30		s-7	60/3	30.0-35.0		Red-brown fine to medium SAND.	FINE TO MEDIUM SAND		a) 0.4/1.8	
S-8 60/6 35.0-40.0 Red-brown fine SAND, little Silt. 35.0' b) 2.2/1.4		35									a) 2.0/1.6	!
				S-8	60/6	35.0-40.0		Red-brown fine SAND, little Silt.				
REMARKS:		40										_

NOTES: STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

REMARKS:

1) Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector. 0.4/1.8 = total HNu reading/background value prior to reading. Letters denote specific soil jars screened. ppm= parts per million.

2) Sample wet at approximately 17 feet below grade.

	CASN			SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING
	NUS		PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmiste	CLASSIFICATION	DESCRIPTION	INSTALLED	HNU (ppm)
		s-9	60/32	40.0-45.0			ne SAND, trace Silt.	+		a) 1.0/0.6
ı				-]				b) 1.2/0.6
								FINE SAND		
		S-10	60/30	45.0-50.0] Red-brown fi	ne SAND, little Silt.	FINE SAND		a) 1.0/0.6
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Ь) 1.0/0.8
						1				
		S-11	60/8	50.0-55.0		Red-brown fi fine to coar	ne to coarse SAND, and se GRAVEL, little	50'		a) 0.8/0.8 b) 1.0/1.0
						silt.		FINE TO COARSE SAND AND GRAVEL		
						1				a) 1.0/0.8
		s-12	60/20	55.0-60.0		Red-brown fi	ne SAND, little Silt.	55'		ь) 1.0/0.8
]				
		S-13	60/14	60.0-65.0		Padahnaum fi	ne SAND, little Silt.	1		a) 1.5/0.8
		3-,5	50714	80.0-83.0		- Ked-brown 11	HE SAND, LILLIE SILL.			b) 6/0.8
						1		1		
I	<u> </u>	S-14	60/8	65.0-70.0		Red-brown fi	n fine SAND, little Silt.			a) 3.0/1.0
I]		FINE		b) 5.2/0.8
						-				
ŀ		S-15	60/10	70.0-75.0		Top 8": Red	-brown fine SAND,			a) 2.2/0.8 b) 1.8/0.8
						Bottom 8": little Silt	l-brown fine SAND, Light brown fine SAND			
ŀ]				
ŀ		S-16	60/22	75.0-80.0		Red-brown fi	ne SAND, little Silt.			a) 2.0/0.8 b) 1.8/0.8
l]				}
		6 45	10/24	20.0.05.0		,	an CAND Course City			a) 2.4/2.0
		S-17	60/21	80.0-85.0		jkea-brown fi -	ne SAND, trace Silt.			b) 2.0/1.8
l						}				
ĺ	REMA	RKS:				L		<u> </u>		<u> </u>

:04	SPRI TECHN	NG HIL	L ROAD,	CIATES, INC. TRUMBULL, CT DLOGICAL CONSUL			PROJECT Old Southington Landf Southington, Connect	ill	EPORT OF BORING SHEET FILE NO. CHKD. BY	3 OF 4 50124.10 ML	_
	CASS G			SAMPLE		SA	MPLE DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING	REMKS
I	N U	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmi	Ster CLASSIFICATION	DESCRIPTIO	N INSTALLED	KNU (ppm)	Š
	<u> </u>	S-18	60/20	85.0-90.0		Red-brown grades in	n fine to medium SAND, nto red-brown fine to AND, trace Silt.			a) 2.4/2.2	
	-	┼──				medium s/	AND, Trace Silt.	FINE TO		b) 2.2/2.0	
]		MEDIUM SAN			
90	<u> </u>	1	(0.07	22 2 25 2		1				a) 2.6/2.0	
	-	S-19	60/23	90.0-95.0		trace Si	n fine to medium SAND, lt.			b) 2.8/2.0	
	-			·		1		92.0'			
]		}		j	
95	-	S-20	60/20	95.0-100.0		Ped-brow	n fine SAND, little Silt.			a) 2.8/1.8	
	-	13-20	00/20	93.0-100.0		Ked Bi Om	Tille SAND, CICCLE STCC.			b) 2.4/2.0	
]]			
		-			·	4					
100	 	s-21	60/27	100.0-105.0		 Red-brown	n fine SAND, little Silt	}		a) 3.2/2.4	l
	<u> </u>					7				b) 2.8/2.2	
]		FINE		1	
	\vdash	 		 		-{		SAND			l
105	-	s-22	60/27	105.0-110.0		Red-brow	n fine SAND, little Silt	j		a) 2.8/2.4	
]				b) 3.0/2.4	
	<u> </u>	 				1		}		}	l
	-	 				-					
110		s-23	60/25	110.0-115.0		Red-brown	n fine SAND, little Silt	Ì		a) 2.6/2.4 b) 2.4/2.4	
]				0) 2.4/2.4	
	<u> </u>	-			 	-}					
	\vdash	 				1					
15		s-24	60/8	115.0-120.0		Red-brown	n fine to medium SAND,	115.0'		a) 2.6/2.6 b) 2.8/2.8	l
	}	} -				-	•				
	-	-				1					
20					······································	j				a) 3.2/3.0	
20	L	s-25	60/31	120.0-125.0		Red-brown trace Sil	n fine to medium SAND,			b) 3.8/2.0	
						-					
	-					1		FINE TO MEDIUM SAN	。	}	1
25]				a) 2.8/2.0	
-	<u> </u>	s-26	60/20	125.0-130.0		Red-brown	n fine to medium SAND.			b) 3.2/2.0	۱
	-					1				}	-
]					
30						<u> </u>				<u> </u>	

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING No.GZ-5D

NOTES:

³⁾ Ten feet of schedule 40, 10-slot pvc well screen set at approximately 127 feet below grade. Well completed with threaded, flush-joint pvc riser pipe. No. 12 quartz sand placed around well from approximately 113 to 133 feet. Bentonite seal (hole plug) placed around well from approximately 108 to 113 feet. Well annulus backfilled with bentonite/cement grout. Well capped with locking steel sleeve cemented in place. Well developed for approximately 21 hours.

GOL 204	DBERG	ERG-ZOINO & ASSOCIATES, INC. PRING HILL ROAD, TRUMBULL, CT 06611 CHNICAL/GEOHYDROLOGICAL CONSULTANTS				I Old Southington Landfill I Filt No. 20124.1						
	TECHN	ICAL/C					Old Southington Land Southington, Connect	cut	<u> </u>	CHKD. BY	ML	_
D E P T	CASWS		, .	SAMPLE		s	AMPLE DESCRIPTION	STRATU	1	EQUIPMENT	FIELD TESTING	REEKS
T H	ğ S	No.	PEN./ REC.	DEPTH (ft.)	BLOWS/6"	Burmi	ster CLASSIFICATION	DESCRIPT	ION	INSTALLED	нии (ррт)	K
	<u> </u>	s-27	60/26	130.0-135.0		Red-brow little S	n fine to medium SAND,				a) 3.8/2.0 b) 3.2/2.0	Ì
	-			-		1		FINE MEDIUM S	TO		3.2,2.0	l
]						
13!	5	S-28	38/26	135.0-138.0	· · · · · · · · · · · · · · · · · · ·	 Weathere	d Red-brown, fine to rained SANDSTONE.	135.0'				
						meatum-g	rained SANDSTONE.					١
	-	C-1	36/12	138.0-143.0		 Weathere	d red-brown, fine to rained SANDSTONE.	WEATHER	ED		<u>.</u>	
140						medium-g	rained SANDSTONE.	SANDSTO	NE		Ē	l
	-	<u> </u>				}						
								142'			ł	
		C-2	36/36	143.0-146.0		Red-brow	n, fine to medium-grained E.	SANDSTO	WE			١
145	5 -					1		JANUSTO				
								146' E.O	.в.			١
	\vdash					1					ļ	
15												l
	`	ļ									Ì	
	十]					•	
]						١
15:	i ├					1					}	1
]		İ				l
	-					{		ļ			}	
160						1		1	Ì		ĺ	I
	}			-7		1						
						<u> </u>						l
									1			
165	·											l
												l
	-	<u> </u>						ł				l
170]						l
	_								Ì			
							٠,		1			l
175	DEMA	RKS:				<u> </u>					<u> </u>	1
;} ;}	Casi Bedr Bori	ng ref ock co ng end	iusal at <i>red wit</i> led at a	: approximatel h HD wire-lin pproximately	y 135 feet be e diamond cor 146 feet belo	low grade e barrel. w grade.	Bedrock sealed with bento No blow counts recorded.	nite slurry	'.			
7) B)	ROD	0% at 57% at	rock in	terval 135/-1 nterval 138/-	38'. 144'.	•						
TOF	ES:	1) \$	TRATIFI	CATION LINES	REPRESENT APP	ROXIMATE	BOUNDARY BETWEEN SOIL TYPES	TRANSITIO	MS MAY	E GRADUAL.		_
GΖ	A	2)	MIER LE	VEL READINGS IR DUE TO OTHE	HAVE BEEN MAD R FACTORS THA	AT TIME N THOSE P	BOUNDARY BETWEEN SOIL TYPES S AND UNDER CONDITIONS STAT RESENT AT THE TIME MEASUREM	ED, FLUCTUA ENTS WERE M	TIONS ADE	OF GROUNDWAT	ER NG No.GZ-5D	_
			_							100.00	·· - · ·	

REPORT OF BORING No. GZ-7S SHEET 1 OF T FILE No. 5UT24.10 CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS Clarence Welti & Associates Don Moodie Linda McKee BORING LOCATION 5 feet east of GZ-7M GROUND SURFACE ELEVATION 155.9
DATE START 4/27/90 DATE END BORING Co. FOREMAN GZA ENGINEER T57.50 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 36" SPLIT SPOON DRIVEN USING A 140 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME 9.4 4/27/90 1305 10 0 hours 4/30/90 5.6 0830 3 days DRILLING METHOD: 3 3/4" HSA CASNG SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT TESTING PEN./ DEPTH (Ft.) DESCRIPTION INSTALLED H BLOWS/6" HNU (ppm) No. Burmister CLASSIFICATION 5 GRAVEL, SAND AND REFUSE 10 7.4/1.8 2 WOOD, STYROFOAM, METAL, little fine Sand, trace Silt. S-1 36/10 10.0-13.0 15 15.0' E.O.B. 20 25 30 35 REMARKS:

1) Sample wet at approximately 9.4 feet below grade. Soil sample field-screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector. 2) 7.4/1.8=sample HNU value/background HNU value prior to reading. ppm = parts per million.

3) Ten feet of 2-inch, schedule 40 threaded, flush-joint, 10-slot PVC well screen set at approximately 14.5 feet below grade. Well completed with 2-inch, schedule 40, solid PVC riser pipe. No. 12 quartz sand placed around the well from 3 to 15 feet below grade. Bentonite seal (hole plug) placed around well from 0.5 to 3 feet. Well capped with locking steel pipe cemented in place. Well developed for approximately 30 minutes. 4) Boring ended at approximately 15 feet below grade. No blow counts recorded. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: BORING No. GZ-7S GZA

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBÜLL, CT 06611 REPORT OF BORING NO. GZ-7M SHEET 1 OF 3 FILE NO. 50124.10 CHKD. BY **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Don Moodie Linda McKee BORING LOCATION 5 feet east of GZ-7D GROUND SURFACE ELEVATION 155.9
DATE START 4/26/90 DATE ENU UATUM 157.57 4/27/90 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 lb. HAMMER FALLING 30 In. STABILIZATION TIME DATE TIME WATER CASING 4/26/90 0845 10' 10' 0 hours 9.21 3 days 4/30/90 0850 out DRILLING METHOD: 3 3/4" HSA CASNG S REMKS SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED TESTING No. BLOWS/6" Burmister CLASSIFICATION See GZ-70 boring log GRAVEL, SAND AND REFUSE 10 15 15.04 PEAT 20 24.01 25 GRAY SAND 29.51 30 SAND AND GRAVEL 35 REMARKS: Sample wet at approximately 10 feet below grade. NOTES: STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE GZA BORING No. GZ-7M

4					ROLOGICAL CO			Old Southington Southington, Con	Landfill	SHEET FILE No. 50 CHKD. BY	2 0F 3 0T24.10	
	DWO	C A L O L S		locu (SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT N INSTALLED	FIELD TESTING	の大玉用力
4	H	GS	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6*	Burmiste	CLASSIFICATION	DESCRIPTION	A INSTALLED	IESI ING	ŝ
	45				-		See	e GZ-7D boring log				
	50											
	55											
	60								FINE TO COARSE SANI AND GRAVE			
	65											
	70											
	75											2
	80											
	85											
	2)	REMARKS:						<u> </u>				
١	NOT	ES:	12	STRATI	FICATION LI	NES REPRESENT	APPROXIMATE_	BOUNDARY BETWEEN SOIL T	YPES, TRANSITIO	NS MAY BE GRADUAL.		

Ē	IC B			SAMPLE		SA	MPLE DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING
P T H	CASWS	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	1	ster CLASSIFICATION	DESCRIPTI		TESTING HNU (ppm)
				-				FINE TO COARSE SAND AND GRAVEL)	
						1		SAND AND GRAVEL)	
90						1		87.0'	<u> </u>	
, -	-				· · · · · · · · · · · · · · · · · · ·	1		FINE TO COARSE SAND		
							.	92.0'		
95								}		
					·			GRAVEL		
100						1				
						,		102.0		1
105	-	S-1 60/20 105.0-110.0 Red-b		Red-brow	n fine to coarse SAND,	FINE TO		1.6/1.		
						some fin little S	n fine to coarse SAND, e to coarse Gravel, ilt.	SAND		
110	_							110.0' E.O.B.		
							•			
115										
120										
125										
						}				
130						<u> </u>				
3) 4)	REMA Soil	RKS: sampl	e field	l-screened for leading/back	volatile org	anic compo	ounds with 11.7 eV HNU Mod reading. ppm= parts per m No blow counts recorded.	lel PI-101 pho million	toionization detec	tor.
→ ,	BUI I	ily enc	neu al a	Phi ovingtetà	iio ieet be(O	m grace.	PODICON COURTS PECOPOED.			

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS

Old Southington Landfill Southington, Connecticut

PROJECT

REPORT OF BORING NO. GZ-7D SHEET 1 OF 4 FILE NO. 50724.10 CHKD. BY

BORING CO. FOREMAN GZA ENGINEER

Clarence Welti & Associates Don Moodie Linda McKee

BORING LOCATION West of Meridan Box Company
GROUND SURFACE ELEVATION 155.9 DAILM 157.58
DATE START 3/26/90 DATE END 4/4/90

SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 lb. HAMMER FALLING 30 In.

DRILLING METHOD: 4" CASING-DRIVEN USING A 300 Lb. HAMMER FALLING 24 In.

ROCK CORE OBTAINED USING 4-INCH STEEL CASING NX DIAMOND CORE

GROUNDWATER READINGS DATE WATER CASING STABILIZATION TIME TIME 10' 3/26/90 1040 8' 0 hours

	RREL						<u> </u>		
DEPT	CASNG			SAMPLE		SAMPLE DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING
Ť	ğ S	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmister CLASSIFICATION	DESCRIPTION	INSTALLED	HNU (ppm)
		S-1	60/30	0-5.0		Red-brown fine to coarse GRAVEL, and fine to coarse SAND, little Silt, trace Slag (FILL).			a) 0.2/0.2 b) 0.6/0.2 c) 1.2/0.4
5		s-2	60/24	5.0-10.0		Top 12": Red-brown fine to coarse GRAVEL and fine to coarse SAND, little Silt (FILL). Middle 10": Red-brown fine to coarse SAND, Some fine to coarse GRAVEL, little Silt (possible	GRAVEL, SAND AND REFUSE		a) 3.2/1.0 b) 4.8/1.2 c) 4.6/1.2
10		s-3	60/24	10.0-15.0		GRAYEI, little Silt (possible petroleum odor). Bottom 2": Red-brown fine to coarse SAND and REFUSE (Plastic, Glass). Red-brown fine to medium SAND, little fine to coarse Gravel, trace Refuse (Plastic).			a) 2.8/1.2 b) 4.2/1.2
15		S-4	60/30	15.0-20.0		Brown PEAT, trace Metal Chips, Wire.	15.0'		a) 2.6/1.0 b) 2.8/1.0
20							PEAT		a) 1.2/1.0
		S-5	60/35	20.0-25.0		Top 12": BROWN PEAT 12-13": Light brown GRAVEL, and fine to coarse SAND. 13-19": BROWN PEAT 19-35": Gray fine to medium SAND, some Silt, trace Metal.	2/0/		b) 2.2/1.2
25		S-6	60/50	25.0-30.0		Top 45": Gray fine to medium SAND, some Silt. Bottom 5": Brown fine SAND and SILT, trace Clay.	24.0' GRAY SAND		a) 2.8/1.2 b) 2.0/1.2
3 0		s-7	60/40	30.0-35.0		Red-brown fine to coarse SAND, little Silt, trace fine Gravel.	29.5'		a) 1.2/1.0 b) 1.8/1.2
35		S-8	36/22	35.0-38.0		Red-brown fine to coarse GRAVEL and	SAND AND GRAVEL		a) 2.4/1.0
						Red-brown fine to coarse GRAVEL and fine to coarse SAND, some Silt.			b) 1.2/1.0
40	1		L			1			{

1) Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector. 4.8/0.2=Total HNU reading/background value prior to reading. Letters denote specific soil jars screened.
2) Sample wet at approximately 8 feet below grade. ppm= parts per million

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

NOTES: GZA

	GEO	TECH			SOCIATES, IN D, TRUMBÚLL, ROLOGICAL CO			PROJECT Old Southington Land Southington, Connect	fill	REPORT OF BORING SHEET FILE NO. CHKD. BY	No, GZ-7D 2 OF 4 50T24.10 ML
	スーひのひ	BLOSH		r	SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT	FIELD E TESTING M K
•	H	ZG ZG	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"		CLASSIFICATION	DESCRIPTION	INSTALLED	1,7,7
		<u> </u>	S-9	24/3	40.0-42.0		Red-brown fi and fine to	ne to coarse GRAVEL coarse SAND, some Silt.	3		2.0/1.0
•			s-10	50/12	42.0-47.0		Red-brown fi	ne to coarse GRAVEL coarse SAND, some Silt			a) 3.6/1.2 b) 4.0/1.4
			ļ				trace Clay.	••••••••••••••••••••••••••••••••••••••			
•	45						1		ĺ		
]				a) 3.6/1.4
			s-11	60/12	47.0-52.0		Red-brown fi and fine to trace Clay.	ne to coarse GRAVEL coarse SAND, some Silt			b) 3.2/1.4
٦	50]
ĺ	"										
	1		S-12	60/25	52.0-57.0		Red-brown fi	ne to coarse GRAVEL coarse SAND, trace Silt.			a) 2.8/1.4
	ſ						and fine to	coarse SAND, trace Silt.			b) 3.2/1.4
	55						4		}		}
											a) 3.0/1.8
			s-13	60/30	57.0-62.0		Red-brown fi and fine to	ne to coarse GRAVEL coarse SAND, trace Silt.			b) 3.0/1.6
	١						-				
	60						1				
-			2.44	10 100	(2.0.(7.0]	fine to coppe CDAVEL	FINE TO COARSE		a) 4.2/1.4
ł	ļ		S-14	60/22	62.0-67.0		Red-brown fi and fine to Silt.	ne to coarse GRAVEL coarse SAND, trace	SAND AND GRAVEL		b) 3.8/1.4
_	65										
]				
	ŀ		S-15	60/0	67.0-72.0		No recovery				
	ļ]]
	70						_		ļ		
-							1		}		7 ((0.9)
ļ			s-16	60/4	72.0-77.0		Red-brown fi	ne to coarse GRAVEL coarse SAND, little			3.4/0.8
-	}						sitt.				
	75						1				
			C-17	40/0	77 0-92 0		No pocovers				
	ł		S-17	60/0	77.0-82.0		No recovery				
- }	80]		}		
	}						-				
-	İ	_	s-18	60/3	82.0-87.0		Red-brown fi	ne to coarse GRAVEL me Silt.			2.8/1.0
							and SANU, So	ine sitt.			
	لوه	REMA	RKS:				<u></u>		<u> </u>		L
_											

NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

D E P	C B			SAMPLE		, s	MPLE DESCRIPTION	STRATU	M EQUIPMENT	FIFID
P T H	C A LOWS	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	1	ster CLASSIFICATION	DESCRIPT		TESTING HNU (ppm)
		\$-19	60/20	87.0-92.0		Red-brown some fine Silt.	n fine to coarse SAND, e to coarse Gravel, trace	FINE TO COARSE S AND GRAV	AND EL	a) 0.8/0.6 b) 1.2/0.8
90								FINE 1 COARSE S	TO AND	
		\$-20	60/3	92.0-97.0		Red-brown	n coarse GRAVEL, some coarse Sand, trace Silt.	92.0'		a) 6.4/0.8
95								BOULDE	ER	
		s-21	60/10	97.0-102.0		Red-brown (Boulder)	n Arkosic SANDSTONE			
100		0.22	40.00	102.0.107.0		- - - - -	Aine to cooks CAUR	103.04		a) 2.4/0.8
105		s-22	60/28	102.0-107.0		Silt.	n fine to coarse SAND, e to coarse Gravel, trace	102.0		b) 5.2/0.8
		s-2 3	60/25	107.0-112.0		Red-brown	n fine to coarse SAND, e to coarse Gravel, trace	FINE T	TO AND	a) 10.2/1.2 b) 8.2/0.8
110										
		s-24	36/25	112.0-115.0		Red-brown some fine Silt, tra	n fine to coarse SAND e to coarse Gravel, little ace Clay.			a) 7.2/1.2 b) 6.8/1.0
115		s-25	60/12	115.0-120.0		Red-brown	n fine to medium SAND.	115.0		a) 5.8/1.0
120			, 12			some fine trace Sil	n fine to medium SAND, e to coarse Gravel, t.	FINE T	AND	b) 5.0/1.2
İ		s-26	54/20	120.0-124.5		Red-brown little fi	n fine to coarse GRAVEL, ne to coarse Sand, trace			a) 3.8/0.6
125								125.01		b) 3.6/0.8
		s-27	60/1	125.0-130.0		Red-brown (Boulder)	a Arkosic SANDSTONE	BOULDE	R 1111	
130 3)	REMA Core	RKS: d thro	ough bou	ilder.		l			1 0 0	<u> </u>

	GOLD 204	BERG	-ZOING	& ASSO	CIATES, INC. TRUMBULL, CT	06611		PROJECT		REPORT OF BOI	RING N	o ₂ GZ-70	
•					DLOGICAL CONSU			Old Southington Landfil Southington, Connecticu		SHEET FILE D CHKD.	BÝ _	50124.10 ML	· ·
	Ошо	CASNG			SAMPLE	 -	SA	MPLE DESCRIPTION	STRATUM	I EQUIPM	ENT	FIELD TESTING	KEEKS
	T	N W	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmi	ster CLASSIFICATION	DESCRIPTI	ON INSTAL	LED	HNU (ppm)	KS
			s-28	60/22	130.0-135.0			n fine to coarse GRAVEL, edium to coarse Sand, lt.				a) 6.4/0.8	T
	•						trace Si	it.	j		<u> </u>	b) 6.8/1.0	}
-			 			<u> </u>	ł						İ
		<u> </u>				f	1		•			- > 0 8/0 8	
_	135		s-29	60/30	135.0-140.0		Red-brown	n fine to coarse GRAVEL, to coarse SAND, little	j		::1	a) 0.8/0.8 b) 0.7/0.7	
						<u> </u>	Silt.	, , , , , , , , , , , , , , , , , , ,					
				-		<u> </u>	1		ļ				
•	4,0		s-30	60/30	140.0-145.0		Red-brow	n fine to coarse GRAVEL to coarse SAND, little	GRAVEL		~4 I	a) 0.8/0.8 b) 0.8/0.8	
	140						Silt.	to coarse samp, little	GRAVE		::	0.070.8	
_			 			 	<u> </u>]		3		
			 			<u></u> _	-		1				
	145						1				: I		1
*	145		S-31 60/8 145.0-150.0				Red-brown	n fine to coarse GRAVEL, ine to coarse SAND, Silt.	Ì		1	a) 0.8/0.8	4
						 -	-				['	b) 0.7/0.7	5
							1				- 1		6
	150		C-1 60/40 150.0-155.0]						7
			C-1	60/40	150.0-155.0		Red SANDS	STONE.	150.0'		Ì		8
							1		SANDSTO	NE	l		۱
į	1						1		İ		- 1		1
	155]				Į		1
							┥		155.0' E.O.B.		l		
				\vdash			†				}		1
]		f		ł		
i	160						-				[
	ŀ						1		ł		1		1
]		ļ		1		
_							1			1			l
	165						-]		1		
	- 1						1						
]		}				
							1		ł		1		
	170						1		[
							1			•	}		
							ļ						
-		\vdash				L	1		}		}		
	175 t	REMA	ARKS:		fluch-inf	at 10-elot min unil concer o	At at an-	rovimetaly 4/	<u>_</u>				
	4)	feet No.1	MARKS: feet of 2-inch, schedule 40, threaded, feet of 2-inch, schedule 40, threaded, to below grade. Well completed with 2-i 12 quartz sand placed around the well from 125 to 130 feet. Wel bel pipe cemented in place. Well develo er refusal at approximately 146 feet be rock cored with NX wire-line, split cor ing ended at approximately 155 feet bel 33% at rock interval 150'-155'.			eted with 2-ind the well fr	riusn-joij nch, sched om 130 to	nt, ju-stot pyc well screen s ule 40, pvc riser pipe to app 146 feet below grade. Bento	et at appi proximately pnite sluri	y 2 feet abov ry placed	e grad	le.	
	E \	arou	and the well from 125 to 130 feet. Well by pipe cemented in place. Well develor r refusal at approximately 146 feet be				annulus ped for ap	backfilled with bentonite/cem proximately 5 hours.	ent grout	. Well cappe	d with	l	
	裂	Auge Bedr Bori	r refusal at approximately 146 feet be ock cored with NX wire-line, split cor ng_ended at approximately 155 feet bel				ow grade. barrel. w grade.	Bedrock sealed with bentonit No blowcounts recorded.	e slurry.				
	NOTE	-	2}	JATER LE	LCATION LINES EVEL READINGS UR DUE TO OTHE	REPRESENT APP HAVE BEEN MAD R FACTORS THA	E AT TIME	BOUNDARY BETWEEN SOIL TYPES. S AND UNDER CONDITIONS STATED RESENT AT THE TIME MEASUREMEN	FLUCTUAT STEEL MARKER	TONS OF GROUNDE	GRADUAL. GROUNDWATER		
- 1	GZ1	A.	•	5000			BORING N					G No. GZ-7t	2

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No GZ-11\$ SHEET OF 1 FILE No. 50124.10 CHKD. BY PROJECT Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER BORING LOCATION 5' East of GZ-11D
GROUND SURFACE ELEVATION 148.6 DATUM 150.69
DATE START 4/25/90 DATE END 4/25/90 Clarence Welti & Associates
Don Moodie
Linda McKee GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 24" SPLIT SPOON DRIVEN USING A 300 lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME 4/25/90 1245 5 0 Hours 4/30/90 5.51 1218 out 6 Days DRILLING METHOD: 3 3/4" HSA CASN'S KEMKS SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD TESTING DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ REC. HNU (ppm) BLOWS/6# No. Burmister CLASSIFICATION See boring log GZ-11D FINE TO COARSE SAND PEAT 111 15 FINE TO MEDIUM SAND 20 Gray fine to medium SAND, trace Silt. **S-1** 24/22 20.0-22.0 7.2/2.0 3 4 24 E.O.B 25 30 35 REMARKS:

1) Soil samples field screened for volatile organic compounds with 11.7 HNU model PI-101 photoionization detector. 7.2/2.0= total HNU reading/background value prior to reading.

2) Sample wet at approximately 5 feet below grade.

3) Ten feet of 2-inch, schedule 40. 10-slot pvc riser set at approximately 23 feet below grade. No.12 quartz sand placed arouund well from approximately 10 to 24 feet below grade. Bentonite seal (hole plug) placed around well from 4 to 10 feet. Well capped with locked steel pipe cemented in place. Well developed for approximately 1 hour.

4) Boring ended at approximately 24 feet below grade. No blow counts recorded. NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE GZA BORING No. GZ-11S

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No. GZ-11D SHEET TO 2 FILE No. 5UT24.10 CHKD. BY **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER BORING LOCATION Northwest corner of Lori Corp. GROUND SURFACE ELEVATION 148.1 DATUM DATE START 4/23/90 DATE END 4/24/90 Clarence Welti & Associates Don Moodie Linda McKee 149.67 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 Lb. HAMMER FALLING 30 In. STABILIZATION TIME DATE TIME WATER CASING 4/23/90 1300 11' 15 0 Hours 4/30/90 3.91 7 Days 1218 out DRILLING METHOD: 3 3/4" HSA

RÔC	K CO	RE OB	ATNED I	MAID XN HTI	OND CORE BAR	REL.			
	BLOSS	SAMPLE				SAMPLE DESCRIPTION	STRATUM DESCRIPTION	EQUIPMENT INSTALLED	FIELD TESTING HNU (pom)
<u>. </u>	ĜŜ				BLOWS/6"	Burmister CLASSIFICATION		INDIALEED	+
		S-1	60/20	0-5.0		Top 14": Red-brown fine to coarse -SAND, little fine to coarse Gravel Silt.			0.8/0.6
	_					-Bottom 6": Gray SILT and fine to coarse SAND. little fine to coarse			j j
						- Gravel, Clay:	FINE TO COARSE SAND		}
5]			f [
		S-2	60/16	5.0-10.0		Top 8": Brown, fine to coarse SAND some fine Gravel, some Silt. Bottom 8": Black PEAT.	•		a) 1.0/0.6
		 				Bottom 8": Black PEAT.	ì		b) 0.2/0.6
	_					1]]
						1	9.0']
10		s-3	60/30	10.0-15.0		Top 4": Black PEAT, Bottom 26": Gray fine to medium	PEAT		0.6/0.6
						SAND.	11.01		0.0,0.0
						1			1 1
		-				-			
15		s-4	60/40	15.0-20.0		Gray fine SAND, trace Silt.			a) 0.6/0.6
						1			b) 0.6/0.6
]			1 1
1									1 1
20			10.110				FINE TO		a) 0.8/0.6
		S-5	60/48	20.0-25.0		Gray fine SAND, little silt.	MEDIUM SAND		b) 0.6/0.6
		├				4			1 1
						†			1
25						1	1		20404
25		s-6	60/48	25.0-30.0		Gray fine SAND, little Silt, inter layered with 1-inch thick red- brown SILT and fine SAND.	•		a) 0.6/0.6 b) 0.6/0.6
-						brown SILT and fine SAND.			1
						-			
-						1]]
30		s-7	60/48	30.0-35.0		Top 10": Gray fine to medium SAND,			a) 0.8/0.8
1						Top 10": Gray fine to medium SAND, little Silt. Bottom 38": Gray Silty CLAY.	31.0′		b) 1.2/1.0 c) 0.8/0.8
]	SILTY		0.070.8
						4	CLAY		
35		C - P	40.440	75 0 (0.0		7 484 Sanu Claver SVV 4	<u> </u>		0.4/0.4
	—	s-8	60/40	35.0-40.0		Top 6": Gray Clayey SILT, trace	35.5'		a) 0.6/0.6 b) 0.8/0.6
			<u> </u>			SILT and CLAY, trace fine Sand. Bottom 4": Red-brown fine to	SILT AND CLAY		c) 0.6/0.6
						fine Sand. Middle 30": Gray and light brown SILT and CLAY, trace fine Sand. Bottom 4": Red-brown fine to coarse SAND, some fine to coarse Gravel, little Silt.	CLAY		d) 0.6/0.6
-						1	39.5		1

REMARKS:
Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector.
0.8/0.6= total HNU reading/background value prior to reading. Letters denote specific soil jars screened.
Sample wet at approximately 11 feet below grade.
ppm= parts per million 1)

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

GZA BORING No. GZ-11D

	GOL 204	DBER	G-ZOII	NO & ASS	SOCIATES, IN	C. CT 06611		PROJECT		REPORT OF BORING SHEET FILE NO.	No. GZ-11D	
٦					ROLOGICAL CO			Old Southington Lan Southington, Connec	dfill ticut	SHEET FILE No. CHKD. BY	50124.10	
1	DEP	CBAL			SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING	R
4	P T	CASNG	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmiste	_ CLASSIFICATION	DESCRIPTION	INSTALLED	HNU (ppm)	REMXS
	<u>"</u>		s-9	60/2	40.0-45.0	01000,0			 		 	
					-		to coarse Sa	ine GRAVEL, some fine and, little Silt.			a) 5.8/1.0	1
			ļ				4		FINE TO		İ	
						 	┥		COARSE SAND			
4	45	 	S-10	60/20	45.0-50.0			ne to coarse SAND, some			a) 5.2/1.8	
							into red-bro	ine to coarse SAND, some trace Silt. Grades own GRAVEL, some fine and, little Silt.				
Ì							To coarse se	ind, tittle sitt.	47.0']	
			<u> </u>				4		1			
- (50		S-11	60/18	50.0-55.0		Red-brown fi	ne to coarse GRAVEL.	GRAVEL		a) 4.8/0.6	
		_					some fine to Silt.	ne to coarse GRAVEL, o coarse Sand, little				
]					l
			<u> </u>				4		54.0'		a) 2.8/0.6	1
-	55		S-12	60/48	55.0-60.0		Top 24": Red	l-brown fine to medium	FINE TO			
	1			00,10	22.0 00.0		- SAND, little Bottom 24":	d-brown fine to medium e Silt. Red-brown GRAVEL and ese SAND, little Silt.	MEDIUM SAND			'
							Tine to coar	'se SAND, LITTLE SILT.	57.0'		a) 3.4/0.6	1
							-		SÄND AND GRAVEL			
	60		S-13	60/48	60.0-65.0		Top 24% Red	l-brown fine to medium	60.0'		a) 2.6/0.4	3
•			3 13	00/40	00.0-05.0		SAND, trace Bottom 24":	i-brown fine to medium Silt. Red-brown fine SAND, race Clay.	FINE TO		b) 2.2/0.4	
1							- some Silt, t	race Clay.	62.0') 	
- 1]					1
	65		S-14	60/13	45 0 70 0		Bad-basse 45	ne CAND some Cilt			a) 0.8/0.4 b) 2.2/0.4]
			3-14	60/12	65.0-70.0		trace Clay.	ne SAND, some Silt,			D) 2.2/0.4	
			 -				1		FINE			
]		FINE			
	70		0.15	/2/10	70 0 77 5			A ODAUEL and			a) 0.6/0.4	
			S-15	42/18	70.0-73.5		fine to coar	ne to coarse GRAVEL and se SAND, some Silt, medrock). al at 73.5'.)				4
- 1							Spoon refus	al at 73.5'.)	j			1
	Ì]		73.3'			5
	75		- 1	10.115			<u> </u>	_				
	ŀ		C-1	60/45	76.0-81.0		Red SANDSTON	E.	SANDSTONE			
	ł	-					1		SAME I ONE			
	į]		}			
	80						4					
_	ŀ	\dashv					-		91.0/			6
	ŀ	\dashv				_ 	1		81.0' E.O.B.		{	1 1
-	Ì						<u></u>					7
1	85						<u>l</u>		<u>L</u>		<u> </u>	Ц
	3)	REMA Ten	RKS: feet q	f 2-inc	h Schedule	40, 10-slot j	ove well scree	en set at approximately 60	feet below_g	rade.		
-		Well No.	REMARKS: en feet of 2-inch Schedule 40, 10-slot pvc we well completed with 2-inch , Schedule 40 three No. 12 quartz sand placed around well from ap (hole plug) placed around well from 42.5 to 46 capped with locking steel pipe cemented in placed refusel at approximately 75 feet below greder cored with NX diamond core barrel, bed loring ended at approximately 81 feet below grand at approximately 81 feet below grand 47% at rock interval 76'-81'.					usn-joint byd fiser to app ely 48 to 60 feet below gra Well appulus backfilled w	roximately 2 ade. Bentonit ith bentonits	reet above grade. e seal e/cement arout l	iei I	
	4)	capp Augei	ed will	h lock	ng steel pi approximate	pe cemented (y 75 feet be	in place, We clow grade.	ll developed for approximm	tely 2 hours	i.		
	裂	Bori Bori Redro	ock co	cored with MX diamond core barrel, bedrock ended at approximately al feet below grade. 7% at rock interval 76.81				eled with bentonite slurry. b blow counts recorded.				
												\dashv
		_	2)	MAY OC	LEVEL READIN	GS HAVE BEEN THER FACTORS	MADE AT TIMES THAN THOSE PI	BOUNDARY BETWEEN SOIL TYPE S AND UNDER CONDITIONS STA RESENT AT THE TIME MEASURE!	IED, FLUCTUAT MENTS WERE MA	IUNS OF GROUNDWAT	ŁŔ	

BORING No. GZ-11D

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING NO. GZ-12M SHEET FILE NO. 50T2/10 CHKD. BY **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION 5' West of GZ-12D GROUND SURFACE ELEVATION 156.3 DATE START 4/10/90 DATE END BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Don Moodle Linda McKee 5/11/90 157.79 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 24" SPLIT SPOON DRIVEN USING A 300 Lb. HAMMER FALLING 30 In. WATER CASING DATE TIME STABILIZATION TIME 1345 4/10/90 11' 15' 0 hours 4/11/90 0800 11.2' 1 day IDRILLING METHOD: 3 3/4" HSA 4/23/90 0830 11.6 13 days out CASNG EQUIPMENT FIELD SAMPLE SAMPLE DESCRIPTION STRATUM TESTING DEPTH DESCRIPTION INSTALLED PEN./ BLOWS/6* No. Burmister CLASSIFICATION See GZ-12D Boring Log. FINE TO COARSE SAND 5 10 10.04 15 FINE TO MEDIUM SAND 20 25 25.0 FINE TO COARSE SAND 29.04 30 FINE TO COARSE GRAVEL 35.0' FINE TO COARSE SAND 35 37.0 FINE TO COARSE GRAVEL REMARKS: STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. GZ-12M

	GOL 204	DBER SPR	G-ZOIN ING HI	O & ASS	SOCIATES, IN	IC. CT 06611		PROJECT Old Southington Lar	wiff 1	REPORT OF BORING SHEET FILE No. CHKD. BY	S No. GZ-12M 2 OF 2 50724 10	
	_		NICAL/	GEOHYDI	ROLOGICAL CO	DISULTANTS		Southington, Connec	ticut	CHKD. BÝ	ML.	I _o
	- ama	BLOWS	<u> </u>		SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING	KEEKS
	Ħ	30 20	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6H	<u>Burmiste</u>	CLASSIFICATION	DESCRIPTION		HNU (ppm)	-
							See	GZ-12D boring log.	FINE TO MEDIUM SAI	ND I		1
			-			<u></u>	1		42.0'	0105005457378888888888888888888888888888888888		
							1		GRAVEL		1]
	45									📓 📓		
-			 				1		45.0' FINE SAN	▷ 👹 👹	1	}
		_					1		47.0'		· ·	
_]			3 19		l
	50		<u> </u>							300008.565.00		
_				 -			1					
]					
							{		1			ĺ
-	55								GRAVEL AN			
							}		FINE TO		Ì	
_						<u> </u>	}					
	60						<u> </u>					
	00		S-1	24/16	60.0-62.0		Red-brown fi fine to coar	ne to coarse GRAVEL and se SAND, little Silt.			2.2/0.8	
•			ļ				1					2
							<u> </u>			1		l
•	65											
							1		66.0'			
							<u> </u>		FINE TO COARSE SAN	<u> </u>		3
_							<u> </u>		68.0' E.O.B.	1		
	70						-					ĺ
							<u> </u>					
							{				}	
-	_						1				}	
	75]					ļ
							1					
			ļ				1					
	80									- [1	l
-			-									
										1		
_]					
	85	REMA	RKS:	L	<u> </u>	L	L		<u> </u>			
	1)	Soi 2.2	l samp /0.8=	ole fie Total	ld-screened HNU reading	for volatile /background v	organic comp alue prior to	ounds with 11.7 eV HNU Moo reading. ppm = parts per	del PI-101 ph	otoionization de	tector.	
•	2)	bel For	reet Owgra matio	of 2-11 ade. W n mater	nch scheduli ell complet ial around_	ed with 2-incl well_from app	h, schedule 4 roximately 47	t 10-stot pvc wett screen 0 pvc riser pipe to approx 'to 62 feet; hole cayed.	set at appro (imately 2 fe Bentonite și	et above grade. Lurry placed arou	ınd	
	3)	wel cap	l from	m approith loc	ximately 42 ked steel p	to 47 feet. ipe cemented	Annulus from in place. We	ounds with 11.7 eV HNU Moo reading. ppm = parts per t 10-slot pvc well screen 0 pvc riser pipe to appro: to 62 feet; hole cayed. 15 to 42 feet backfilled! Ill developed for approxima No blow counts recorded.	with bentonitately 2.5 hou	te/cement grout. urs.	Well	
		ES:										
			53	WATER MAY OC	LEVEL READ!	NGS HAVE BEEN OTHER FACTORS	MADE AT TIME THAN THOSE P	BOUNDARY BETWEEN SOIL TYPE S AND UNDER CONDITIONS STA RESENT AT THE TIME MEASURE	TED FLUCTUA MENTS WERE M	TIONS OF GROUND	ATER	
	G2	M								IRO	RING No. <u>GZ-12M</u>	!

REPORT OF BORING No. GZ-120 SHEET 1 DF 3 FILE No. 50724.10 CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Don Moodie Linda McKee BORING LOCATION West of WNTY
GROUND SURFACE ELEVATION 156.4 DATUM 158.25
DATE START 4/5/90 DATE END 4/10/90

SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 lb. HAMMER FALLING 30 In.

GROUNDWATER READINGS DATE TIME WATER CASING STABILIZATION TIME 15' 10' 4/5/90 1315 0 hours 11.4' 4/12/90 0900 7 days out

	DR	ILLIN	IG METI	HOD: 3 3	3/4" HSA USING NX DIA	MOND CORE BA	RREL	47 12770	0700		-	├─ 	0.07.5	
					SAMPLE		SAMPLE DESCRIPTION)H	STR	ATUM	EQUI	PMENT	FIELD	REM
٦	T H	CASSG	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6M	Burmister CLASSIFICA	TION	DESC	RIPTION	INST	ALLED	HNU (ppm)	IK I
-			S-1	60/25	0-5.0		Red-brown fine to coarse SA fine to coarse Gravel, some	SILt.					a) 1.0/0. b) 2.8/0.	
-	5		S-2	60/26	0.5-10.0		Red-brown fine to coarse SA fine to coarse Gravel, some	ND, some Silt.	COARS	NE TO E SAND			a) 5.0/0.	•
-	10		S-3	60/20	10.0-15.0		Red-brown fine to medium SA some Silt, little fine to d Gravel.	IND,	10.0	, 			a) 2.6/0.	4
-	15		S-4	60/34	15.0-20.0]						a) 5.0/0.	·
_	20						Top 4": Red-brown coarse SA Middle 28": Red-brown fine SAND, little fine to coarse trace Silt. Bottom 2": Red-brown GRAVEL		MEDIU	NE TO M SAND			a) 4.8/0.	4
-			S-5	60/15	20.0-25.0		Red-brown fine to medium SA Silt, trace fine Gravel.	ND, little						
	25		\$-6	60/55	25.0-30.0		Top 50": Red-brown fine to SAND, little Silt. Bottom 5": Red-brown fine t coarse GRAVEL, some fine Sa little Silt.	coarse o ind,	25.0 COARS	NE TO			a) 4.0/0.4 b) 4.2/0.4	l I
	30		s-7	60/14	30.0-35.0		Red-brown fine to coarse GR some fine Sand, Silt.	AVEL,	29.0	NE TO E GRAVEL			a) 3.8/0.4	•
	35		S-8	60/30	35.0-40.0		Top 5": Red-brown fine to m -SAND, some Silt. Middle 12": Red-brown mediu coarse SAND, some Silt. Bottom 13": Red-brown fine coarse GRAVEL, trace Silt.	medium m to	35.0 FI COARS 37.0	NE TO E SAND			a) 1.8/0.4	
	40						coarse GRAVEL, trace Silt.		COARS	NE TO E GRAVEL				

REMARKS:
1) Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector.
2.8/0.2= Total HNU reading/background value prior to reading. Letters denote specific soil jars screened.
2) Sample wet at approximately 15 feet below grade.
ppm= parts per million

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

GZA BORING No. GZ-120

Ε				SAMPLE		CAMOI	DESCRIPTION	STRATUM	EQUIPMENT	FIFID
	CASN	-	PEN./	DEPTH	BLOWS/6"	1	CLASSIFICATION	DESCRIPTION	INSTALLED	FIELD TESTING HNU (ppm)
_	GS	No. S-9	REC. 60/50	(Ft.) 40.0-45.0	BLOWS/O"	Top 18th Ped	-brown medium to	FINE TO MEDIUM SAND		<u> </u>
						middle o": R	ed-brown fine to L. Red-brown fine to L, some fine to coarse	42.0'		a) 4.0/0.4 b) 3.2/0.4
						Bottom 26":	Red-brown fine to L, some fine to coarse	GRAVEL		3.270.4
	<u> </u>	<u> </u>				Sand, Silt.	•	L		1
45	 -	S-10	48/48	45.0-50.0		Top 20": Red	-brown fine SAND.	45.0' FINE		a) 3.6/0.4
	-		10, 10			little Silt. Bottom 28":	-brown fine SAND, Red-brown fine to and fine to coarse	SĂND		b) 4.0/0.4
						GRAVEL, Some	silt.	47.0'		
						4				
50	<u> </u>	S-11	60/26	50.0-55.0		- Red-brown CP	AVEL little fine to	ĺ		a) 6.2/0.8
	 	3-11	00/20	30.0-33.0		coarse SAND,	AVEL, little fine to Silt, trace Clay.			
]				
						_		1		
55	-	S-12	60/22	55.0-60.0		Pad-hour fi	ne to Coarse SPAVEI	GRAVEL		a) 6.4/0.8
	-	3-12	00/22	JJ.0-80.0		- little fine	ne to coarse GRAVEL, to coarse Sand, Silt.	FINE TO		b) 6.2/1.0
						1		COARSE SAND		
]				
60	<u> </u>	6 17	(0/22	40.0.45.0		- load-bassin si	no to coopeo CDAVEL			a) 5.4/0.8
		S-13	60/22	60.0-65.0		and fine to	ne to coarse GRAVEL, coarse SAND, little	-		b) 5.0/1.0
		 				-		-		
]		1		
65		2.47	10.75	(F 0 70 0			h 42 4a			a) 5.0/0.8
		S-14	60/35	65.0-70.0		GRAVEL and f	brown fine to coarse ine to coarse SAND, Red-brown fine to	66.0'		b) 5.0/0.8
			 			ICOarse SANU.	Red-brown fine to some fine to coarse			
						GRAVĒĹ.		COARSE SAND		
70						<u>. </u>				a) 5.2/1.0
	 	S-15	60/30	70.0-75.0		Top 6"; Red- SAND, little	brown fine to coarse fine Gravel. Red-brown fine SAND, race Gravel.			b) 5.8/1.0
		 				some Silt, t	race Gravel.	72.0'	7 7 7	
]		}		
75						1				a) 5.8/1.0
	 	s-16	60/30	75.0-80.0	<u>.</u>	Red-brown fil	ne SAND, some Silt.			b) 5.0/0.8
		-				1				}
						_				
80]		FINE SAND		a) 4.8/1.0
	 	s-17	60/32	80.0-85.0		Red-brown fi	ne SAND, some Silt.			
	 -	ļ <u>.</u>				1				
		ļ	 			1				
35-						1				
,,	REMA	RKS:								

GZA

BORING No. GZ-120

•	GOLD	BERG	-ZOINC	& ASSO	CIATES, INC., TRUMBULL, CT	06611		PROJECT		REPORT OF BORING	No. GZ-120	
9					DLOGICAL CONSU			Old Southington Landfi Southington, Connectic	11 20	SHEET FILE No. CHKD. BY	50124.10 ML	
	DED	BLOWS			SAMPLE		SA	AMPLE DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING	R
	P T H	S N C	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Bucmi	ster CLASSIFICATION	DESCRIPTI	ON INSTALLED	HNU (ppm)	REMKS
	n .	3	S-18	60/50	85.0-90.0	BLOW3/0		n fine SAND, some Silt.		18-83	a) 4.6/1.0	۲
•							1	·	FINE			ł
4									SAND			3
		-	<u> </u>				4					
	90		S-19	36/22	90.0-93.0		Ton 6": 5	Red-brown fine to medium	90.0'	— <u> </u>	a) 6.2/0.8	
٦			-	30,22	70.0 75.0		T CAMP		1	200		
- !							COArse S	": Red-brown fine SAND. 2": Red-brown fine to AND and fine to coarse some Silt, trace Clay. ple)	SAND AN GRAVEL	iD Description	}	
-							(TOC same	ple)	GRAVES	6008		
	95		s-20	12/6	95.0-96.0		Pod-broun	n fine to common SAND and]	
•		-	C-1	60/12	96.0-101.0		fine to c	n fine to coarse SAND and coarse GRAVEL, some Silt. STONE.	96.0'		a) 4.6/0.8	4
9			<u> </u>]			P. Og		5
	ļ]		1	0000		
	100		 				Ļ		RED SANDSTO	NE DO		
٦			C-2	60/53	101.0-106.0		Red SANDS	STONE .		9000		
1			-	00,33	10110 10010		The same	51 GN2 1	i	D. Ca	Ì	
-]			000		
- 1	105								[D. 08		6
			ļ				-		106.0' E.O.B.			7
٦							1		6.0.8.	·		l
							1		1	İ		ł
	110]			ļ	ļ	
							1		ļ	ł		\
			ļ				-		j	1	}	}
						· · · · · · · · · · · · · · · · · · ·	1					ļ
	115]					ľ
	''']		Ĭ		İ	
_							_					
1	- 1					<u> </u>	1		ŀ	}		
							1					
	120]		1		[
	}						1		1			
	}						1]			
	<u>.</u>	$\neg \neg$				-	1					
	125]]		'
İ	ļ]					
	}		_				1					
	}						1					
l	130 L	REMA	RKS:	* 2-i	h Schadula /	N threaded 4	luch-ioic	t 10-slot mus well sorsen set	at appare	rimetaly 80 fact		
	3)	belo guar	H Grac tz sar	ir 2-1110 de. Wel no place	n, schedule 4 il completed were ed around were	u inceaded, t with 2-inch, s from 76.5 to	Cusn-101n Schedule 4 20.5 fee	t 10-slot pvc well screen set 0 pvc riser to approximately t below grade. Bentonite sea well from 8 to 71.5 feet back	2 feet about pellets	ove grade. No. 12 b) placed		
	/ >	arou grou	nd wel	l from	71.5 to 76.5 bed with locki	feet. Annulu ng steel pipe	s around cemented	well from 8 to 71.5 feet back in place. Well developed fo	cfilled with or approxim	th bentonite/cemer mately 6.5 hours.	nt	
	5 }	nuge Bedri Bori	ock co	isal at red wit led at a	approximately h NX diamond approximately	yo teet Delo core barrel, 106 feet belo	w grade. Bedrock s w grade.	in place. Well developed for sealed with bentonite slurry. No blow counts recorded. hterval 1017-1067.				
┰⊦												
	NOTE:	> :	2} }	ATER LE	LATION LINES EVEL READINGS UR DUE TO OTHE	REPRESENT APP HAVE BEEN MAD R FACTORS THA	E AT TIME:	BOUNDARY BETWEEN SOIL TYPES S AND UNDER CONDITIONS STATED RESENT AT THE TIME MEASUREMEN	TKANSTITON FLUCTUAT ITS WERE MA	TIONS OF GROUNDWAT	ER	

REPORT OF BORING NO. GZ-13\$ SHEET OF 1 FILE NO. 5UT24.10 CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING Co. FOREMAN GZA ENGINEER BORING LOCATION Menard's northeastern property boundary GROUND SURFACE ELEVATION 179.4 DATUM 181.35 DATE START 4/20/90 DATE EMD 4/20/90 Clarence Welti & Associates Dave Bromley David Swettand GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 72" SPLIT SPOON DRIVEN USING A 300 lb. HAMMER FALLING 30 in. DATE TIME WATER CASING STABILIZATION TIME DRILLING METHOD: 3 3/4" HSA 4/20/90 1245 32.8 30' 1 hour BLONS REMKS **EQUIPMENT** SAMPLE STRATUM SAMPLE DESCRIPTION FIELD PEN./ DEPTH (Ft.) DESCRIPTION INSTALLED No. BLOWS/6" HNU (ppm) Burmister CLASSIFICATION 1 11.7 ev See GZ-13D boring log. 2 FINE TO COARSE SAND 10 13.0 15 20 FINE GRAVEL 25 29.01 30 Light brown fine to coarse SAND, little fine Gravel, trace Silt. S-1 72/40 30.0-36.0 a)5.6/0.83 b)4.7/0.5 c)6.0/0.6d)6.0/0.6 FINE TO COARSE SAND 35 4 38.0' E.O.B. Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detec 5.6/0.8-Total HNU reading/background value prior to reading. Letters denote specific soil jars screened. No blow counts recorded. ppm=parts per million. Sample wet at approximately 32 feet below ground surface. Ten feet of 2-inch, schedule 40,10-slot pvc well screen set at approximately 28 to 38 feet below grade. Well completed with 2-inch, schedule 40, threaded, flush-joint pvc riser to approximately 2 feet above grade. No. 12 quartz sand backfilled around annulus from approx. 26 to 38 feet. Bentonite seal approx. 19 to 26 feet. Well annulus backfilled with bentonite/cement grout. Well capped with locking steel pipe cemented in place. Well developed for 4 hours. 38 1) 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. GZ-13S

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING NO. GZ-13M SHEET 1 UF 3 FILE No. 50124.10 CHKD. BY ML **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION 15 feet east of GZ-130
GROUND SURFACE ELEVATION 179.6 DATUM 181.92
DATE START 4/18/90 DATE END 4/19/90 BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Dave Bromley Linda McKee GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 Lb. HAMMER FALLING 30 In. DATE TIME WATER CASING STABILIZATION TIME 4/20/90 1020 32.8 Out 1 Day DRILLING METHOD: 3 3/4" HSA CASNG KEMKS **EQUIPMENT** FIELD SAMPLE DESCRIPTION STRATUM SAMPLE DEPTH (Ft.) DESCRIPTION INSTALLED TESTING PEN./ REC. BLOWS/6" Burmister CLASSIFICATION No. See GZ-13D boring log. FINE TO COARSE SAND 10 13.0' 15 20 FINE GRAVEL 25 29.0' 30 FINE TO COARSE SAND 35 40 REMARKS: NOTES: STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE GZA BORING No. GZ-13M

	•				SOCIATES, IN D, TRUMBULL,			PROJECT Old Southington Southington, Cor	<u>Landfill</u>	REPORT OF B SHEET FILE CHKD	PRING No	. GZ-13M 2 OF 3 0T24.10	
	_		NI CAL,	GEOHYDI	ROLOGICAL CO	DISULTANTS							T _R
	PTH	B_LO36		Ineu /	SAMPLE		SAMPL	E DESCRIPTION	STRATUM DESCRIPTION	EQUII INST		FIELD TESTING	RENKS
	<u> </u>	ĞŠ	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6*	Burmiste	CLASSIFICATION	DESCRIPTION	1 NS1/	ICCED.	IEST ING	ŝ
				 			See	GZ-13D boring log.	SAND				
_		\vdash							SAND AND GRAVEL			}	
												j	} }
	۱ 45								45.0'			}	
-	۱								(1	1 1
	1					<u> </u>							1
_													
	50								1				
	۰,												
	ì	-							ļ			j	
									İ				
	55								ļ				
									İ			1	1 1
_									FINE TO				
												1	
	60												
•									1				
]				
_													
	65								}			}	1
									ł				11
4				ļ]	
									ļ				
	70								l				
													1
									}			}	
4		\vdash		 					1			1	1
_	75	\vdash		-		L—.—.—			1				
												1	1 1
9									1				
												1	
	80								Ì			1	
									1			[1 1
1									Ì			Į.	11
									İ				
	85-	REMAI	RKS:	L								<u></u>	4
													l
•													Ì
ļ													
	NOT	ES:	2}	STRATI WATER	FICATION LI	NES REPRESENT	APPROXIMATE	BOUNDARY BETWEEN SOIL S AND UNDER CONDITIONS RESENT AT THE TIME MEA	TYPES, TRANSITIO	NS MAY BE GR	ADUAL UNDWATER	 }	
	G2	A		MAY OC	CUR DUE TO (OTHER FACTORS	THAN THOSE P	RESENT AT THE TIME MEA	ASUREMENTS WĒRĒ M	ADE	BORING	No. <u>GZ-13</u>	

				OCIATES, INC. , TRUMBULL, CT OLOGICAL CONSU			PROJECT Old Southington L Southington, Con	andfill hecticut	REPORT OF E SHEE FILE CHKD	ORING N	lo, <u>GZ-13M</u> 3 OF 3 50124.10	
DWP	C A LOW			SAMPLE		SA	AMPLE DESCRIPTION	STRATE		1	FIELD TESTING	REMK
H	N W	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	<u>Burmi</u>	ster CLASSIFICATION	DESCRIP	TION INSTA	ALLED	HNU (ppm)	Š
90						s	see boring log GZ-13D.	EIME	3			
95								FINE MEDIUM	SAND			
100		S-1	60/60	100.0-105.0		Red-brown	n fine to medium SAND, lt.				a) 1.0/0.8 b) 1.0/0.8	2
105									133 133 133 133 133 133 133 133 133 133	33893333333		3
110								108.0′ E.O.1	3.			4
115												
120												
125												
130 2) \$ 3) 1	REMAI Soil s 1.0/0 en fe grade grade cement opm=pa	RKS: ample .8=Tot et of Wel lled t grou	field- al HNU 2-inch 1 compi to appr to Wel er mili	screened for reading/backg ,schedule 40, eted with 2-, oximately 96 { capped with ion.	volatile orga round value p i0-slot pvc w nch,schedule feet, Benton locking stee	nic composition to reel screer 40 pvc rite seal	unds with 11.7 eV HNU Meading. Letters denote as the approximately ser to approximately 90.5 to 96 feet. Well mented in place. Well	odel PI-101 pho specific soil 98 to 108 feet feet above gra annulus backfi developed for	otoionization jar screened below de. Sand lled with ber 4 hours.	detect	or.	
NOTE GZ:		1) S	TRATIF	ICATION LINES EVEL READINGS JR DUE TO OTHE	REPRESENT APP HAVE BEEN MAD R FACTORS THA	ROXIMATE E AT TIME: IN THOSE P	BOUNDARY BETWEEN SOIL T S AND UNDER CONDITIONS RESENT AT THE TIME MEAS	YPES TRANSITIO STATED, FLUCTU UREMENTS WERE	ONS MAY BE GE ATIONS OF GRE MADE	RADUAL DUNDWATE BORIN	R IG No. <u>GZ-13</u> M	

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING NO. GZ-13D SHEET 1 OF 5 FILE NO. 50124.10 CHKD. BY **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Dave Bromley David Swetland BORING LOCATION Fifteen feet east of GZ-13D GROUND SURFACE ELEVATION 180.2 DATUM DATE START 4/10/90 DATE END 4/18/90 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 (b. HAMMER FALLING 30 In. DATE WATER CASING STABILIZATION TIME TIME 4/18/90 12:00 80' None 4 INCH CASING DRIVEN USING A 600 LB. HAMMER DRILLING METHOD: FALLING 24 IN. ROCK CORE OBTAINED WITH NX CORE BARREL. 4/24/90 11:00 35.1 out 1 Day CASWS DEP SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD TESTING PEN./ REC. DEPTH (Ft.) DESCRIPTION INSTALLED Ť BLOWS/6" No. Burmister CLASSIFICATION See boring log GZ-13DA 5 FINE TO COARSE SAND 10 13.04 15 20 FINE GRAVEL 25 29.01 30 FINE TO COARSE SAND 35 40-**REMARKS:** NOTES:

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

BORING No. GZ-13D

	GOL 204	DBER	G-ZOIN ING HI	O & ASS	OCIATES, IN	IC. CT 06611		PROJECT		REPORT OF BORING No. GZ-13D SHEET 2 OF 5 FILE No. 5UT24.10 CHKD. BY	
_	GEC	TECH			ROLOGICAL CO			Old Southington Southington, Con	Landfill necticut	FILE No. 50124.10 CHKO. BY ML	
	DEPT	BLOU'S			SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT FIELD	REEKS
-	T	N W	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmiste	r CLASSIFICATION	DESCRIPTION	INSTALLED TESTING	K
								boring log GZ-13DA			
					-				SAND AND GRAVEL		l
									43.5′		
-	45										
								•	j		
									ļii.		
									1		
- 1	50						:				
-											
[
_	ا										1
	ככ										
-											
	60										
									FINE TO		
-									FINE TO MEDIUM SAND	'	
-	65								1		
_											
-									j		
ļ	70										
	′								1		
	1	-							ļ		
_		\vdash									
	75										1
-	. ,										1
-											
	}										
	80										
							ı				
-											
• (Í										ĺ
	85							<u> </u>			L
_		REMA	RKS:								
ţ	NOT	ES:	1}	STRATI	FICATION LI	NES REPRESENT	APPROXIMATE MADE AT TIME	BOUNDARY BETWEEN SOIL S AND UNDER CONDITIONS RESENT AT THE TIME MEAS	TYPES, TRANSITIO STATED, FLUCTUA	NS MAY BE GRADUAL. TIONS OF GROUNDWATER	
ا بر	GZ	Α	-,	MAY OC	CUR DUE TO	THER FACTORS	THAN THOSE P	RESENT AT THE TIME MEAS	SUREMENTS WERE M	BORING NO.GZ-13D	

-				_	CIATES, INC. TRUMBULL, CT DLOGICAL CONSU				PROJECT ington Landfil on, Connecticu	l	REPOR	T OF BOR SHEET FILE N CHKD.	ING NO.	GZ-13D 3 OF 5 0124.10	-
1	DEPTH	CAS NG		lor:: :	SAMPLE		SA	MPLE DESCRIPTI	·	STRATU	1	EQUIPM	NT	FIELD	REMKS
	H	ZG ZG	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	<u>Burmi</u>	STET CLASSIFICA	TION	DESCRIPT	100	INSTAL	.EU	TESTING	Ŝ
							Se	e boring logs (3Z-13DA	}					1
										})
_										1				}	1
			<u> </u>	-						ĺ	İ			ŀ	1
_	90			 						1	1			1	1
_										ļ	ļ			}	1
										{	Ì			ĺ	
-											[
	95			 -							l			ļ	
				 						}	- 1				1
•	,			 			ı)	}				
										1					
-	100									1				1	
_					<u> </u>						1			į	
										•				}	
_					_ ,, .									ļ	
											1]	
!	105									ETNE T	.,				
-							ı			FINE T	AND			ļ	
				ļ							l				
		_									- 1			Ì	
-	110						:			}					
							i								
•														 	
										1	{				1
	115				·		i				Ì			}	1
				}						ļ	}				1
										[ĺ				
										1					
	120										}				
	120									1	}				
							Ì								
				ļ		 					ł				
										[1
	125					 	 			{				!	1
1										}					1
										Į					1
	130	REMA	DKe.			<u> </u>	<u> </u>			L				L	
		NEMA	n n Ji												
۳															
	NOTE	S:	23 8	TRATIF	ICATION LINES	REPRESENT APPI	ROXIMATE	BOUNDARY BETWEE S AND UNDER CON RESENT AT THE T	N SOIL TYPES	TRANSITIO	NS MAY	BE GRAD	UAL .		
	GZZ	A	2)	AY OCC	UR DUE TO OTHE	R FACTORS THAI	א זאסse" פֿ	RESENT AT THE T	IME MEASUREMEN	ts were m	ADE	J. GROOF	BORING	No.GZ-131	<u> </u>

	I L			SAMPLE		SAMPLE DESCRIPTION	STRATUM	EQUIPMENT	FIELD
	CASWS	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmister CLASSIFICATION	DESCRIPTIO	ON INSTALLED	TESTING
						See boring log GZ-13DA			None
	<u> </u>	ļ				1	1		
	 					1].		
	-	 -				•			
35						1		1 9 9	1
								1 11 11	
	<u> </u>					}			
	 					-	j	1 11 11	
40	-						FINE TO		
							1	1 13 13	ļ
]	1	1 11 11	ł
	<u> </u>					-	1// 0/	-1 0 0	
45						-	144.0	1 11 11	}
						1	FINE TO COARSE SAM		1
]	COARSE SAN	"	1
			ļ					1 8 8	}
50			 				150.0	\dashv NN	ļ
	 				 		150.0		
	<u> </u>					İ	FINE SAN	p NN	
							AND SILI	'	1
55		 					155.04	<u> </u>	
							155.0	1 11 11	}
	 						SILT		
						j	j		
60									1
	<u> </u>						161.0		İ
	-								}
							FINE TO		}
65							COARSE SAN		1
~-							ĺ		
							167.0'		
									1
70							COBBLES		
70		S-31	50/16	170.0-175.0		Top 4": Fine to coarse GRAVEL. Bottom 12": Red-brown fine SAND,	\		1
						some Silt.	51115 70		
							FINE TO COARSE GRAVEL		-
								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_
75)	REMA	RKS:	ounts re	corded.					
5	Ten belo	feet c	f 2-inc le. Vel	h schedule 40 ll completed w	10-slot pvo	well screen set at approximately hedule 40 pyc riser pipe to appro set. Bentonite placed 135 to 158 d in place. Well developed for 6 w grade.	162 to 172 feet ximately 2 feet	t above grade.Quart	У
	Well	cappe	rilled a	approximately locking steel	128 to 174 fe pipe cemente 158 feet bold	et. Bentonite placed 135 to 158 ed in place. Well developed for 6	and 1/4 to 185 hours.	teet below grade.	
	J, 00	. 1113	.s.ieu i	, on grade to	.so reet pett	g. uuv.			

	GOL 0 204	BERG SPRI	-ZOING NG HII	L ROAD	CIATES, INC., TRUMBULL, CT	06611			PROJECT		REPO	RT OF BORING NO SHEET FILE NO. 51 CHKD. BY	GZ-130 OF 5	
			ICAL/	SEOHYDRO	DEOGICAL CONSU	LTANTS		=		<u> </u>	L_,	CHKO. BY	ML	_
	DEPT	C A LOWS			SAMPLE		SA	MPLE DESCRI	PTION .	STRATU	- 1	EQUIPMENT	FIELD	REMKS
	T H	N W	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmis	ster CLASSIF	CATION	DESCRIPT	ION	INSTALLED	TESTING	K S
			C-1	60/33	176.0-181.0		Weathered	Red-brown S	ANDSTONE.				None	
										WEATHER SANDSTO	NED NE			
	180													
			C-2	48/32	181.0-185.0		Red-brown	SANDSTONE.		181.01			ł 	
-										SANDSTO	WE			
	185									185.0' E.O.B	_		<u> </u> 	
•										2.0.5				
	190]							
_														
	195													
-														
											į			
	200						}							
-	205										}			
											- {			
	210													
	215													
	İ													
-														
	220	REMA	RKS:		-					<u></u>		·	· · · · · · · · · · · · · · · · · · ·	
														İ
	NOTE	s:	13 8	TRATIFI	CATION LINES	REPRESENT APP	ROXIMATE B	OUNDARY BETH	EEN SOIL TYPES.	TRANSITIO	NS MA	Y BE GRADUAL.		
	GZI	A	2) (MATER LE	VEL READINGS JR DUE TO OTHE	HAVE BEEN MAD R FACTORS THA	E AT TIMES IN THOSE PR	S AND UNDER CRESENT AT THE	EEN SOIL TYPES, ONDITIONS STATED TIME MEASUREMEN	TS WERE MA	I I ONS ADE	BORING	No. <u>GZ-130</u>	

OF BORING No. GZ-13DA SHEET 1 OF 4 FILE No. 5UT24.10 CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 PROJECT Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Dave Bromley David Swetland BORING LOCATION Menard's northeastern property boundary GROUND SURFACE ELEVATION DATE START 4/4/90 DATE END 4/9/90 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 3" X 60" SPLIT WIRELINE CASING ADVANCED INSIDE 4 INCH CASING DATE STABILIZATION TIME TIME WATER CASING DRILLING METHOD: 4 INCH CASING SPUN WITH CHRISTIANSEN SAMPLER BLONG SAMPLE SAMPLE DESCRIPTION STRATUM EQUIPMENT FIELD DEPTH PEN./ DESCRIPTION INSTALLED BLOWS/6" HNU (ppm) No. **Burmister CLASSIFICATION** 60/36 Red-brown fine to medium SAND, little Silt. a) 0.8/7.8S-1 0-5.0 2 b) 0.8/1.4 a) 0.8/1.25 Red-brown fine to coarse SAND, little fine Gravel, little Silt. S-2 60/30 5.0-10.0 b) 0.8/1.8 FINE TO COARSE SAND a) 0.9/1.1 10 Red-brown fine to medium SAND, some fine Gravel, little Silt. **S-3** 60/10 10.0-15.0 b) 0.9/1.2 13.0' 15 S-4 12/9 15.0-16.0 Red-brown fine GRAVEL, some medium Sand, little Silt. a) 0.9/1.2 48/6 S-5 16.0-20.0 Red-brown fine GRAVEL, some medium Sand, little Silt. 0.9/1.8 20 Red and gray, fine GRAVEL, trace fine Sand (fragments of volcanic tuff or altered conglomerate). **S-6** 60/4 20.0-25.0 FINE GRAVEL 25 0.9/1.9 **s-7** 60/4 25.0-30.0 Red and gray, fine GRAVEL, little fine Sand, trace Silt. 29.01 30 60/0 30.0-35.0 No recovery FINE TO COARSE SAND 0.9/1.4 Brown fine to coarse SAND, little Silt. 35 S-8 60/4 35.0-40.0 40 REMINES:

Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector.
0.8/2.8=Total HNU reading/background value prior to reading. Letters denote specific soil jars screened.
No blow counts recorded.

ppm= parts per million 1)

NOTES: STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE GZA BORING No. GZ-13DA

2)

	GOL 202	DBER	G-ZOII	O & ASS	OCIATES, IN	C. CT 06611		PROJECT		REPORT OF BORING SHEET FILE No. CHKD. BY	No. GZ-13DA	
					OLOGICAL CO		_	Old Southington Land Southington, Connect	fill	FILE No. CHKD. BY	50124.10	
	OWO+	CASNG		loeu /	SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING	SEEN
	H	ĞŠ	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/64		CLASSIFICATION	DESCRIPTION	INSTALLED	HNU (ppm)	ŝ
•			S-9	60/18	40.0-45.0		Red-brown fi and fine GRA	ne to coarse SAND, VEL, little Silt.	SAND AND GRAVEL		1.5/1.0	,
-	45			60/0	45.0-50.0		No recovery.		43.5'		1.4/0.9	
	50		S-10	50/10	50.0-55.0		Red-brown fi some fine Gr	ne to medium SAND, avel, little Silt.			2.2/0.8	
-	55		S-11	60/8	55.0-60.0		Red-brown fi	ne to medium SAND, avel, little Silt:			a) 1.6/0.8 b) 1.4/0.8	
~	60		S-12	60/26	60.0-65.0		Red-brown fi	ne SAND, little Silt.	FINE TO	ND.	a) 2.4/0.8 b) 2.4/1.0	
~	65		S-13	60/36	65.0-70.0		Red-brown fi	ne SAND, some Silt.			a) 2.2/1.0 b) 1.8/0.8	
~	70		S-14	60/30	70.0-75.0		Red-brown fi	ne SAND, some Silt.			a) 1.9/0.8 b) 1.0/0.9	
	75		s-15	60/28	75.0-80.0		Red-brown fi Gravel Silt (Gravel main	ne SAND, little fine ly in bottom 4")			a) 1.7/0.8 b) 1.5/0.8	
	80		s-16	60/24	80.0-85.0		Red-brown fi (more cohesi	ne SAND, little Silt. ve in bottom 12").			a) 2.0/0.9 b) 1.6/0.8	
-	85-	REMA	RKS:									
-												

¹⁾ STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

D E P	ĂL			SAMPLE		SAMPLE DESCRIPTION	STRATUM	EQUIPMENT	FIELD
H	BLOSS	No.	PEN./ REC.	DEPTH (ft.)	BLOWS/6*	Burmister CLASSIFICATION	DESCRIPTION	INSTALLED	HNU (ppm)v
		s-17	60/18	85.0-90.0		Red-brown fine SAND, some Silt.			1.7/1.0
90		s-18	60/42	90.0-95.0		Red-brown fine SAND, little Silt, trace Clay.			3.2/1.0
95		S-19	60/31	95.0-100.0		Red-brown fine SAND, little Silt, trace Clay.			2.8/1.0
						trace Clay.			3.0/1.0
100			60/0	100.0-105.0		No recovery.			
105		s-20	60/12	105.0-110.0		Red-brown fine to medium SAND, little Silt.	FINE TO MEDIUM SAND		8.0/1.2
110		s-21	60/36	110.0-115.0		Red-brown fine to medium SAND, little Silt. (some thin layers of fine SAND and SILT).			2.4/1.2
115		s-22	60/50	115.0-120.0		Red-brown fine SAND, some Silt.			a) 3.0/1.2 b) 2.0/1.2
120			60/0	120.0-125.0		No recovery.			
125		s-23	60/12	125.0-130.0		Red-brown fine SAND, little Silt			3.6/1.2
130									
130 €	REMA	RKS:							

)	C B			SAMPLE		SAMPLE D	ESCRIPTION	STRATUM	EQUIPMENT	FIELD
i 	CASNG	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6*	†	ster CLASSIFICATION		INSTALLED	TESTING HNU (ppm)
		s-24	60/26	130.0-135.0		Red-brown fine S	SAND, some Silt.			a) 1.2/1.2 b) 1.0/1.0
135		s-25	60/18	135.0-140.0		Red-brown fine S	SAND, little Silt.	FINE TO MEDIUM SAN		3.6/1.2
40		s-26	60/20	140.0-145.0		Red-brown fine S	SAND, little Silt.			4.6/1.2
						-		144.01	_	3.6/1.
145		s-27	60/11	145.0-150.0		Red-brown fine t some Silt, trace	to coarse SAND, tine Gravel.	FINE TO COARSE SAN		3.5, 1.2
50		s-28	60/24	150.0-155.0		Red-brown fine S	SAND and SILT.	150.0′	_	a) 4.0/1.9 b) 2.8/1.3
i						1		FINE SAND AND SILT	,	
55		s-29	60/20	155.0-160.0		Red-brown SILT layer of fine to and fine SAND).	some CLAY (4" medium GRAVEL	155.0' SILT		a) 3.6/1.0 b) 4.2/1.0
60		s-30	60/40	160.0-165.0		Top12": Red-brow	n SILT and fine	161.0'		4.0/0.9
		30	50,740	100.0 109.0		SAND. Bottom 28": Gray SAND, trace Silt		FINE TO COARSE SANG	,	
65		C-1	24/6	165.0-167.0	.25 min.	Red-brown fine t	o coarse SAND,			
		C-2	36/6	167.0-170.0		Red-brown COBBLE	s.	167.0'	-	
70		C-3	36/0	170.0-173.0		No recovery.		COBBLES		
75						1		173.0' E.O.B.	-	}

⁶⁾ ROD 10% at rock interval 176'-181'. ROD 63% at rock interval 181'-185'.

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL.
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

GZA

BORING No. GZ-13DA

REPORT OF BORING No. GZ-14S SHEET 1 UF 1 FILE No. 50724,10 CHKD. BY GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Dave Bromley David Swetland BORING LOCATION Southwestern corner of Chuck & Eddies property GROUND SURFACE ELEVATION 176.6 DATUM 178.29 DATE START 5/4/90 DATE END 5/4/90 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 lb. HAMMER FALLING 30 In. DATE WATER CASING STABILIZATION TIME 32.9'below PVC 5/4/90 1200 1.5 hours DRILLING METHOD: 3 3/4" HSA CASNG KENKS FIELD STRATUM FOLIT PMENT SAMPLE SAMPLE DESCRIPTION TESTING DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ REC. BLOWS/6* No. Burmister CLASSIFICATION See boring log GZ-14D. None 5 10 15 SAND 20 25 30 Top 10": Red-brown fine to coarse SAND, some fine Gravel, trace Silt, Middle 10": Lt. gray fine to medium SAND, trace Silt, Bottom 17": Red-brown fine to medium SAND, little Silt. **S-1** 60/37 30.0-36.0 3 35 36' E.O.B. REMARKS:
Sampled for physical parameters at 30-35 feet below grade.
Sample wet at approximately 30 feet below grade.
Ten feet of 2-inch schedule 40, 10-slot por well screen set at approximately 26 to 36 feet
below grade. Well completed with 2-inch, schedule 40, threaded, flush-joint por riser to approximately 2 feet
above grade. No. 12 quartz sand placed aroud well from approximately 23 to 36 feet. Bentonite seal
21 to 23 feet. Well annulus backfilled with bentonite/cement grout. Well capped with locking steel pipe
cemented in place. Well developed for 6 hours.
Boring ended at approximately 36 feet below grade. No blow counts recorded. 1) 3) 3) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. GZ-145

	GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. Clarence Welti & Associates Daye Bromley						PROJECT Old Southington Landfill Southington, Connecticut			RE	REPORT OF BORING NO. GZ-14M SHEET FILE NO. 50724.10 CHKD. BY					
											CHAD. BY ML					
	GZ/	BORING Co. Clarence Welti & Associates BORING LOCATION GROWN SURFACE DAVID SWETLAND DATE START 5/1									OCATION southwestern corner of Chuck & Eddies propert URFACE ELEVATION 176.5 DATUM 178.11 RT 5/1/90 DATE END 5/3/90 GROUNDWATER READINGS					
l	SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 Lb. HAMMER FALLING 3							In.				CASING		IZATION TIM	E	
					-	40 60W HTTH C	UDICTIANCEN		5/3/90		30.61	Out		1 Day		
	DRI	LLIN	G MET	IOD: SA	MPLER. CASI HAMMER AFTE	NG SPUN WITH C NG POUNDED WIT R CIRCULATION	H 600 LB, LOST AT 70'									
	D	C B SAMPLE SAMPLE					SAI	PLE DESCRIPTI	ON	STR	ATUH	Edni	PHENT	FIELD TESTING	RE	
	P T H) 3 (5)	No. PEN./ REC.		DEPTH (Ft.)	BLOWS/6#	Burmi	ster CLASSIFIC	ATION	DESCRIPTION		INST	ALLED	HNU (ppm)	KHEKO	
						See	boring log GZ-14D.			***			1			
				 												
- {																
	5			 		<u> </u>										
Ì																
					 	 										
	10															
-				 	 	 								,		
ď																
-				-	}	 			-					11		
	15															
		-			 											
	20								S	AND				1 1		
							:				!					
						 									11	
	25															
															} }	
	30															
						 				1						
1	35						,									
-											ı					
										}				;		
-	40	REMA	RKS:	<u> </u>	Ĺ,	<u>i</u>	<u> </u>							<u></u>	4-{	
	1)	Şoj	l same	oles fid Total r	eld screene eading/back million.	d for volatile ground value p	organic com prior to read	pounds with 11. ling. Letters o	7 eV HNU Mo denote speci	del PI- ific so	101 pho	toioniza screened	tion det •	ector.		
•																
		ES:	2}	STRATI WATER MAY OC	FICATION LI LEVEL READI CUR DUE TO	NES REPRESENT NGS HAVE BEEN OTHER FACTORS	APPROXIMATE MADE AT TIME THAN THOSE P	BOUNDARY BETWEE S AND UNDER CON RESENT AT THE 1	N SOIL TYPE IDITIONS STA IME MEASURE	S. TRAI	ISITIONS .UCTUATIONS VERE MADE	MAY BE I ONS OF GI	GRADUAL .	ER		
	G2	A											BORI	NG No. <u>GZ-1</u>	<u>4</u> M	

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611						C. CT 06611		PROJECT		REPORT OF BORING No. GZ-14M SHEET 2 OF 3 FILE No. 50124.10			
GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS								Old Southington Land Southington, Connect	CRED. BI				
į	DEP	CALOWS			SAMPLE		SAMPL	E DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING	SAME	
	T	N W	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmiste	CLASSIFICATION		INSTALLED	HNU (ppm)	K	
	''	-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						,,,,,,,		
	!				-]		Ì				
							-		f 				
į			├─				1		j				
	45		S-1	60/36	45.0-50.0		Top 12": Rec	d-brown, fine to coarse	Ì		1.8/1.8	2	
							Bottom'24": - trace Silt.	d-brown, fine to coarse ce Silt. Fine to medium SAND,					
1		<u> </u>	 -				4		ļ		i		
	ΕO	_	 -				1		<u> </u>		1.7/1.7		
ļ	50		S-2	48/24	50.0-55.0		Red-brown fi trace Silt.	ine to medium SAND,			1.771.7		
							4						
			 				†					ll	
	55]		{		1.8/1.8	} }	
			S-3	60/20	55.0-60.0		Red-brown fi trace Silt.	ine to medium SAND,	<u> </u>				
						w_ 	1				Ì		
-							1		{				
١	60			50.405	(2.2.45.2			to asset that all a	SAND		4.2/0.8		
			5-4	50/25	60.0-65.0		Red-brown fi	ine SAND, little Silt.	j			1	
		\vdash					1						
]					[
-	65						-						
							1						
	ļ						1						
				<u> </u>			4						
	70		_				┪					1 1	
							4						
		-					1						
	75						1						
]			-1 00			
•							1		77.0				
	90						1		SILTAND	 			
	80		S-5	50/28	80.0-85.0		Top 16": Bro	own, plastic SILT and	CLAY		4.0/1.0		
ł							Bottom 12": Silt, little	Brown fine SAND, little fine Gravel.	82.0'	- 88	0.9/1.0	3	
		-		 			1		SAND				
	85-								<u></u>				
ł		REMA No b	RKS:	ountș re	corded.		hange capacity					į	
	5)	AT 8	1.0'	sample o	collected fo	r cation exc	nange capacity	y.				}	
												}	
	NOT	ES:	1}	STRATI	FICATION LIN	IES REPRESENT	APPROXIMATE	BOUNDARY BETWEEN SOIL TYPES S AND UNDER CONDITIONS STAT RESENT AT THE TIME MEASUREN	TRANSITIO	NS MAY BE GRADUAL	†FP	\dashv	
	G2	A	د)	MAY OC	CUR DUE TO	THER FACTORS	THAN THOSE P	RESENT AT THE TIME MEASUREN	MENTS WERE M	ADE ROR	ING No. GZ-14	┰┤	

4					TRUMBULL, CT			Old Southington Landfill Southington, Connecticut				SHEET 3 0F 3 FILE NO. 50T24.10 CHKD. BY ML			
- 1				201110110	SAMPLE	CIARIO			DESCRIPTION	STRATU		EQUIPMENT		R	
_	PTH	8-103% C403G	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6H	1		CLASSIFICATION	DESCRIPT		INSTALLED	FIELD TESTING HNU (ppm)	KHEKS	
	"	,		NEG.	(10.7	BEOW5/ 0		3001	02,00111041104	SAND			(ррш)	4	
					-					87.01			a)3.2/1.0 b)3.0/1.0	1 1	
٦			S-6	48/18	88.0-92.0		Red-brow	n, fi	ne SAND and SILT,	}			5)3.0/1.0		
1	90						little C	lày.	·						
٦	,									SAND A	DM				
ı							-			İ					
_]			•	1		1		
	95					<u> </u>				05.57				5	
_										95.5' E.O.B.					
٦]			ļ	}			1 1	
į												!		1 1	
9	100													1	
ļ															
											ł			1 1	
1	105													1 1	
	כטו										1				
	Ì				· —						1				
_	110														
ł														} }	
										ļ				1 1	
٦										Ĭ				1 1	
	115									}					
										}				1	
											1			1 1	
										1	- }				
	120														
_															
7															
	125														
			1											İΙ	
										ļ]]	
														} }	
-	130	REMA	RKS;				ss :	02 1	A balan and a Mark	l				Ч	
	5 }	samp Ten Well	te foi feet (comp	physic of 2-inc leted w	al par ameters h,schedul e 40 ith 2-inch.sch	collected fr ,10-slot, pvc legule 40,thre	om oo to well scr aded, flu	y∠ te een s ish-io	et below grade. No blo et at approximately 85 i int poc riser to approx 5 feet. Bentonite seal l capped with locking s	counts re to 95 feet imate(v 2	corded below feet a	grade. bove grade.			
		No. Well	12 sai	nd place lus baci	ed around well cfilled with b or 12 hours	. from approxi pentonite/ceme	mately 78 nt grout.	to 9	5 feet. Bentonite seal capped with locking s	76 to 78 teel pipe	feet. cement	ed in place.			
_		#41 (4646	.opeu (J. IL HOUIS.										
	NOTE	s:	1)	STRATIF	CATION LINES	REPRESENT APP	ROXIMATE	BOUND	ARY BETWEEN SOIL TYPES.	TRANSITIO	NS MAY	BE GRADUAL.			
	NOTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE BORING No.GZ-14M														

GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 REPORT OF BORING No. GZ-14D
SHEET 1 OF 4
FILE No. 5UT24.10
CHKD. BY **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING CO. FOREMAN GZA ENGINEER Clarence Welti & Associates Dave Bromley David Swettand BORING LOCATION Southwestern corner of Chuck & Eddies property GROUND SURFACE ELEVATION 176.3 DATUM 177.90 DATE START 4/25/90 UATE ENU 5/1/90 GROUNDWATER READINGS SAMPLER: SAMPLER CONSISTS OF A 2" X 60" SPLIT SPOON DRIVEN USING A 300 Lb. HAMMER FALLING 30 In. STABILIZATION TIME DATE TIME WATER CASING DRILLING METHOD: 4 INCH CASING SPUN USING A CHRISTIANSEN SAMPLER. 5/1/90 31.54 out 2 hours CASNG DEPTH SAMPLE SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD PEN./ DEPTH (Ft.) DESCRIPTION INSTALLED Burmister CLASSIFICATION No. BLOWS/6" HNU (ppm) 0.6/0.6 48/24 0.1-5.0 Red-brown, fine to coarse SAND, trace Silt. S-1 0.6/0.6 S-2 60/30 5.0-10.0 Red-brown, fine to medium SAND, trace Silt. 0.5/0.5 10 5-3 60/30 10.0-15.0 Red-brown, fine to medium SAND, trace Silt. 0.5/0.5 15 Top 18": Red-gray fine to coarse SAND, trace Silt, Gravel. Bottom 18": Red-gray fine SAND, little Silt. 5-4 60/36 15.0-20.0 SAND 0.5/0.5 20 S-5 60/34 20.0-25.0 Red-gray fine SAND, trace Silt. 0.4/0.4 25 S-6 60/35 25.0-30.0 Red-gray fine SAND, trace Silt. 30 0.4/0.4 Red-brown fine to medium SAND, little Silt. S-7 60/22 30.0-35.0 35 0.4/0.4 S-8 60/34 35.0-40.0 Red-brown fine to medium SAND, little Silt.

Soil samples field screened for volatile organic compounds with 11.7 eV HNU Model PI-101 photoionization detector. 0.6/0.6=Total HNU reading/background value prior to reading. Letters denote specific soil jars screened. No blow counts recorded. Sample wet at approximately 30 feet below ground surface. ppm= parts per million. 1)

3}

STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

-	GEO	TECH	NICAL		D, TRUMBULL,			Old Southington Land Southington, Connect	SHEET 2 0F 4 FILE No. 50T24.10 CHKD. BY ML			
	10mg	CASWS		IDEN (SAMPLE		SAMPLI	DESCRIPTION	STRATUM DESCRIPTION	EQUIPMENT INSTALLED	FIELD E	
	H	ĞŠ		PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	Burmister CLASSIFICATION		DESCRIPTION	INSTALLED	HNU (ppm) S	
•			S-9	60/22	40.0-45.0		Red-brown fi	ne SAND, little Silt.				
-	45			60/0	45.0-50.0		No recovery.					
9	50			60/0	50.0-55.0		No recovery.					
	55			60/0	55.0-60.0		No recovery.		SAND			
	60			60/0	60.0-65.0		No recovery.				0.6/0.6	
-	65		S-10	60/22	65.0-70.0		SAND, some S	ilt.			0.5/0.5	
	70		S-11	60/20	70.0-75.0		SAND, some S	ilt, fine Gravel.			a) 3.2/1.0 b) 3.6/0.8	
•	75		S-12	60/20	75.0-80.0		Top 12": Red	-brown fine SAND, ILT, some fine Sand,				
	80			60/0	80.0-85.0		Bottom 8": S little Clay.	ili, some fine sand,	77.0'			
3	85								82.0' SAND			
	NOT	REMA	1 2}	STRATI	FICATION LIN	ES REPRESENT	APPROXIMATE F	COUNDARY BETWEEN SOIL TYPE S AND UNDER CONDITIONS SIDE BESSENT AT THE TIME MEASURE	S. TRANSITIO	NS MAY BE GRADUAL		

MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE

GZA

BORING No. GZ-14D

			EUNTUKU	LOGICAL CONSUL	IANIS		Old Southington Land Southington, Connect	Teut	SHEET FILE No. CHKD. BY	ML
)	BLOSS		DEN (SAMPLE		_ s	AMPLE DESCRIPTION	STRATUM	EQUIPMENT	FIELD TESTING
<u> </u>	ĞS	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"		ster CLASSIFICATION	DESCRIPTION	INSTALLED	HNU (ppm)
			60/0	85.0-90.0		No recov	ery.	SAND		
					·	4		87.0'		
]		j		
90			10.00]				13.2/1.0
		s-13	60/29	90.0-95.0		Sand.	LT and CLAY, little fine	SILT AND		
						1		}		
]				
95		S-14	60/50	95.0-100.0		Bear SI	LT and fine SAND.	95.0'	-	3.2/0.6
		5-14	60/30	95.0-100.0		Brown SI	LI and Time SAND.	93.0		
								Ì		
						4		1		Ì
00		s-15	60/35	100.0-105.0		⊣ Bro⊎n fi	ne SAND and SILT, little			1.8/0.6
		- 11	37,57			CLAY.		CUIT AND		ļ
								SILT AND SAND		
						-				
05		S-16	60/20	105.0-110.0	<u></u>	Brown fil	ne SAND and SILT, little			1.7/0.6
						CLAY.				
						4				İ
						1		109.01	-	
10		s-17	60/45	110.0-115.0] Top_12";	Brown SILT and CLAY, ine SAND. 3": SAND and SILT, little	SILT AND CLAY		2.6/0.7
						Bottom 3: Clay.	3": SAND and SILT, little	111.0'	-	ĺ
						1		SAND AND SILT		
15						1				3.0/0.7
כו		s-18	60/37	115.0-120.0		Brown fi	ne SAND, some Silt, lay.	115.0'		3.0/0.7
			<u> </u>			4		SAND]
						1				
20]		119.0'		
			60/0	120.0-125.0		No recov	ery.			
j						1		04112 4112		
]		SAND AND SILT	1 11 11	
25		C-10	40//0	135 0 470 0		 	an CAND and CITY Acces			3.4/0.7
		s-19	60/60	125.0-130.0		Clay.	ne SAND and SILT, trace			
						j		1	1 11 11	1
						4 .				
30	REMA	RKS:	L	ard sediment o		<u> </u>			T NN	<u> </u>

¹⁾ STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES:

GZA

BORING No. GZ-14D

	204	GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS						PROJECT Old Southington Landfil	L	REPORT OF BORING NO. <u>GZ-14D</u> SHEET 4 OF 4 FILE NO. <u>5UT24.10</u> CHKD. BY ML	_
				EOHYDRO	SAMPLE	LTANTS	SA	MPLE DESCRIPTION	STRATUM	CRAD. BI	_
	DEPTH	CASEG	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	1	ster CLASSIFICATION	DESCRIPTI] [,
			s-20	60/32	130.0-135.0		_====	ne SAND, some Silt,		4.6/0.7	_
_							}		SAND	4.6/0.7	
		_		ļ			-		134.0′		
	135		S-21	60/4	135.0-140.0		Brown fir	ne SAND and SILT, trace		4.8/0.7	
		_									
_									SAND		
	140		s-22	60/32	140.0-145.0		Brown fir	ne SAND and SILT.	AND SILT	4.2/0.6	
-			<u> </u>				-		<u> </u>		_
							1				5
-	145		s-23	60/30	145.0-150.0		Top 16":	Brown SAND and SILT.			
							some brok Bottom 8' SANDSTONE	Brown SAND and SILT. ': Fine SAND and SILT, en Rock Fragments. ': Weathered, gray,			6
-	<u> </u>]		148.0'	0.50	
	150						1		WEATHERE SANDSTON	1 12:03	
-			C-1	60/38	151.0-156.0		Top 6": B SAND and Bottom 3"	Brown, fine to medium GRAVEL, some Silt. ': Red \$ANDSTONE.	152.0'	00000	
									RED SANDSTON	NE CO	
-	155						1		156.0′		
							}		E.O.B.		
	160						1				
•											
	165				·		!				
•							 				
	170										
	175	REMA	RKS:			10-01-+		an oat at amprovimentally 478	** 1/E for	• halau aaada	_
عور)	Well No. Rect	reet o compl 18 mys	eted w	in schedule 40, ith 2-inch,schill ite sand aroun	edule 40, three declarations as well from a	well screened, flush	een set at approximately 135 n-joint pvc riser to approxim ely 130 to 148 feet. Hole co (led with bentonite/cement gr hours.	ately 2 fe llasped 14	t below grade. tet above grade. 8 to 156 ft. below grade. capped with locking	
_	6)	stee	i pipe 14% at	cement rock	ted in place. interval 151/-	well develop 156'.	ed for 10	hours.	out. Well	capped with tocking	
											_
	NOTE GZ1		1) 5	TRATIFI NATER LE NAY OCCU	CATION LINES IN THE READINGS OF THE READINGS O	REPRESENT APP HAVE BEEN MAD R FACTORS THA	ROXIMATE E E AT TIMES IN THOSE PE	BOUNDARY BETWEEN SOIL TYPES, S AND UNDER CONDITIONS STATED RESENT AT THE TIME MEASUREMEN	IRANSITION FLUCTUAT TS WERE MA	S MAY BE GRADUAL IONS OF GROUNDWATER DE BORING NO.GZ-14D	_
	544	1								100KING NO. <u>GZ-14D</u>	

-					SOCIATES, IN D, TRUMBULL, ROLOGICAL CO			PROJECT Old Southington Landfill Southington, Connecticut PROJECT SHEET OF BORING No. GZ-17M SHEET FILE No. 5UT24.10 CHKD. BY ML							
1	ROR	ING				iti & Associat	tes		LOCATION SURFACE ET TART 4/4/9					57.1 <u>3</u>	-
_t									7/3//		ROUNDWATE				
7	SAM	PLER	: SAMI	PLER CO DON DRIV	NSISTS OF A VEN USING A	2" X 24" SPLI 300 lb. HAMME	T R FALLING 30	ING 30 In. DATE			WATER	CASING	STABILI	ZATION TIME	E
١					_			:	4/4/90	1230	11'	15′	0 h	ours	
)RII	LLIN	G METI	HOD: 3 3	3/4" HSA	OTHER:		,	4/13/90	0810	10′	out	9 d	вуз	
ŀ									 .	Ц		<u></u>			┰┩
ľ		Y F	Ĺ		SAMPLE		SAM	PLE DESCRIPTION	Ж	STR	HUTA	EQU	IPMENT	FIELD	G K
		CASNG	No. REC. (Ft.) BLOWS/6" Burmister						TION	DESC	RIPTION	INS	TALLED	TESTING	K
t	寸	_							_	†					\top
1	I						See	boring log LW-	עזו	1		1			11
١										ļ				İ	
۱	ļ									1				1	11
1	5			 						1					
1	ŀ			 											
	ŀ			 	<u> </u>					1				1	11
	ŀ					 									
J	ا ،									1					[,]
]```														
ı	-			 						-					1 1
	-									1					1 1
١	ŀ														
1	15			_						1				}	} }
١	Į														
1	Ĺ										NE TO E SAND				
1	20}							-		1]]			} }
1	ŀ	_								1					1 1
ĺ	f					<u></u>				1					
1										1]]
1	25														
Γ	F													1	
	ŀ	\dashv	_							1					
1	H	\dashv]
1.	, -													1	
1	~[1	
1	ŀ													1	
	}														
1	_}	{													
1	55		-												
1]		1	
		\Box								37.0					
	-									AND	SAND GRAVEL				
1	لل.	REMA	RKS:	ئــــا		1				<u></u> _	 			1	4-{
1) '	Sam	ple we	et at ap	proximately	/ 11 feet below	w ground sur	face.							
															1
ŀ	OTE	S:	1)	STRATI	FICATION LIN	VES REPRESENT	APPROXIMATE !	BOUNDARY BETWEE	N SOIL TYPE	S. TRAI	SITIONS	MAY RE	GRADUAL		\dashv
l		_	13	WATER I	LEVEL READIR CUR DUE TO	NGS HAVE BEEN THE FACTORS	MADE AT TIME THAN THOSE P	S AND UNDER CON RESENT AT THE T	DITIONS STÀ IME MEASURE	TED FI	LUCTUĂTIO JERE MADE	NS OF G	ROUNDWÂTE	R	
L	OTES: 1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL. 2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE BORING No. GZ-17M BORING No. GZ-17M														

ַם							F DECCRIPTION	CTOATIN	EQUIPMENT FIELD		
,	N O		PEN./ REC.	DEPTH (Ft.)		1	E DESCRIPTION	STRATUM DESCRIPTION	INSTALLED	TESTING	
<u>'</u>	G S	No.	REC.	(Ft.)	BLOWS/6"		CLASSIFICATION Log LW-17D for description	 	170	HNU (ppm)	
						000 001 1110	tog an my for about pero.	SAND AND			
								GRAVEL		ļ	
								43.0'			
5										}	
						{				Í	
					<u></u>					Ì	
					ļ <u>-</u>	†		-		l	
0										ļ	
								}		ļ	
į								FINE SAND			
١	{				<u> </u>	1				1	
ا_	-					1					
5		s-1	24/10	55.0-57.0		Red-brown fi	ne SAND, little Silt.			1.8/1.6	
]		}		}	
						1					
0	{				<u> </u>	{		60.0'	التنتينا	[
	_					1		E.O.B.			
									}	}	
										İ	
5)			ļ	}	
	_	-									
										İ	
0									ł		
1						}		}		}	
1	-									1	
								}		}	
5											
										[
ŀ					 			ĺ	ľ	1	
ł	\dashv										
ٳ								}		1	
٥											
	}										
ŀ											
ł	{									1	
))	REMAI Soil 1.8, Ten gra- No. pla- ben app	samp 1.6=5 feet de. We 12 qu	le fiel Sample i of 2-ir ell comp partz si cound we e/cement	d-screened HNU value/bu hch Schedule pleted with and placed a ell from 40 t grout. We hour.	for volatile ackground HNU: 40, threaded 2-inch scheduround well fround to 45 feet. Bell capped with	organic compo value prior I flush-joint ule 40, 10-sl rom 45 to 60 Well annulus th locking sto	ounds with 11.7 eV HNU Mode to reading. ppm = parts p , 10-slot pvc well screen; of pvc riser pipe to appro- feet below grade. Benton; from approximately 3 to 4 eel pipe cemented into pla so blow counts recorded.	el PI-101 pho er million set at approx ximately 2 fe te seal (pell 0 feet backfi ce. Well dev	toionization dete imately 59 feet be et above grade. ets) lied with reloped for	ector.	
07	Böf						O blow counts recorded. BOUNDARY BETWEEN SOIL TYPE S AND UNDER CONDITIONS STA RESENT AT THE TIME MEASURE				

REPORT OF BORING No. GZ-170 SHEET 1 OF 3 FILE No. 50724.10 GOLDBERG-ZOING & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 **PROJECT** Old Southington Landfill Southington, Connecticut GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS BORING LOCATION 5 feet west of LW-17D
GROUND SURFACE ELEVATION 155.3 DATUM 157.25
DATE START 4/2/90 DATE END 4/4/90 BORING Co. FOREMAN GZA ENGINEER Clarence Welti & Associates Don Moddie Linda McKee READINGS GROUNDWATER SAMPLER: SAMPLER CONSISTS OF A 2" X 24" SPLIT SPOON DRIVEN USING A 300 lb. HAMMER FALLING 30 in. DATE . TIME WATER CASING STABILIZATION TIME 4/4/90 1405 10' 15' 4/13/90 0810 10.2 9 days out DRILLING METHOD: 3 3/4" HSA CASNG SAMPLE DESCRIPTION STRATUM **EQUIPMENT** FIELD SAMPLE TESTING DEPTH (Ft.) DESCRIPTION INSTALLED PEN./ REC. No. BLOWS/6" Burmister CLASSIFICATION See boring log LW-17D for description. 10 15 FINE TO COARSE SAND 20 25 30 35 37.04 SAND AND GRAVEL REMARKS: Sample wet approximately 10 feet below ground surface. STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE NOTES: GZA BORING No. GZ-17D

	GOLDBERG-ZOINO & ASSOCIATES, INC. 204 SPRING HILL ROAD, TRUMBULL, CT 06611 GEOTECHNICAL/GEOHYDROLOGICAL CONSULTANTS							PROJECT Old Southington Southington, con	-	REPORT OF BORING NO. GZ-170 SHEET 2 0F 3 FILE NO. 50124.10 CHKD. BY HL			
			NICAL,	GEOHYDI		DISULTANTS		<u></u>	inecticut_	CHKD. BY			
	D E P	BLODE		PEN./	SAMPLE DEPTH			E DESCRIPTION	STRATUM DESCRIPTION	EQUIPMENT INSTALLED	FIELD R E M K S		
	Ĥ	GS	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6"	<u>Burmister</u>	CLASSIFICATION			S		
,	l :	\vdash		 			See for d	LW-170 boring log escription.	SAND AND GRAVEL				
4											1 1		
									43.0'		1 1		
_	45	-											
									_		1 11		
Į							1						
9													
l	50	-							Ì				
أحد									1				
٦													
		$\vdash \vdash$											
=	55			 									
- {									}				
		\square											
				 					ľ				
	60												
-	ĺ				1		1						
				 					FINE SAN	0			
	65								İ				
-											1 []		
•									1				
1									l				
ı	70												
													
	_												
1	75												
ايد													
	1			 									
-	80												
	80												
l									-				
_		\vdash)))		
7	85												
١	-	REMA	RKS:										
-	NOT	ES:	13	STRATI	FICATION LI	LES REPRESENT	APPROXIMATE_	BOUNDARY BETWEEN SOIL	TYPES, TRANSITIO	NS MAY BE GRADUAL.			
	G2	A	۷)	MAY OC	CUR DUE TO	OTHER FACTORS	THAN THOSE P	BOUNDARY BETWEEN SOIL S AND UNDER CONDITIONS RESENT AT THE TIME MEA	SUREMENTS WERE M	IADE BORI	NG No. <u>GZ-17</u> D		

	GOL 0	BERG	SERG-ZOINO & ASSOCIATES, INC. SPRING HILL ROAD, TRUMBULL, CT 96611 ,						PROJ		RE	REPORT OF BORING No. GZ-170 SHEET 3 OF 3			
•	GE01	ECHN			OLOGICAL CONSU			0 <u>l</u>	d Southing outhington,	ton Landfi Connectio	Ut .	SHEET FILE No. CHKD. BY	50124.10		
	DEPT	CASNG	L		SAMPLE		S	MPLE DES	SCRIPTION		STRATUM	EQUIPMENT	FIELD TESTING	REMKS	
	T H	N W	No.	PEN./ REC.	DEPTH (Ft.)	BLOWS/6#	Burmi	<u>ster</u> CLAS	SIFICATION		DESCRIPTION	INSTALLED	HNU (ppm)	K S	
	90				-										
_	95		s-1	24/18	95.0-97.0		Red-brow	n fine SAI	ND, little	Silt.	FINE SAND		7.2/4.8	2	
	100		s-2	18/16	100.0/101.5		Red-brow	n fine SAI	ND, little	Silt.	101.5' E.O.B.		5.6/4.2	3	
	105										É.O.B.				
	110														
	115						1								
	120														
	125														
	130 2) 3)	REMA Soil 7.2/ Ten comp No I pell capp Bori	RKS: sampl 4.8= I feet o leted 2 quar ets pl ed with ng end	es fiel otalHNU f 2-inc with 2- tz sanc taced ar h lock ed at a	d screened for reading/backs schedule 40 inch schedule 40 placed around the welling steel pipe approximately	or volatile or ground value 10-slot pv 40 threaded of the well fi from 79.5 to cemented in 101.5 feet be	rganic comporior to vc well sor flush-join rom, approx o 84 feet. place. Welcow ground	pounds with reading. Teen set a nt pvc ri- imately 8 Well an ell devel d surface.	th 11.7 eV ppm = par at approxii ser to app 4 to 101.5 nulus back oped for a . No blow	HNU Model ts per mil nately 99 rest. Ber filled wit pproximate counts rec	PI-101 photo tion feet below g 1.5 feet ab ntonite n bentonite/ by 1 hour an corded.	pionization det rade. Well ove ground sur- cement slurry. d 20 minutes.	ector. face. Well		
•	NOTE	s:										MAY BE GRADUAL			

APPENDIX E AQUIFER CHARACTERISTICS/HYDRAULIC CONDUCTIVITY DATA

APPENDIX E

AQUIFER CHARACTERISTICS/HYDRAULIC CONDUCTIVITY DATA

A 72-hour pump test was conducted at former Municipal Well No. 5 during the period from April 29, 1987 through May 2, 1987 to assess the behavior of the study area aquifer under pumping conditions. This test was performed in conjunction with the sampling program of on-site monitor wells and within the specifications defined within the DEP Discharge Permit (DEP/WPC-131-120)⁽²³⁾.

The discharge rate of the pump test was approximately 650 gallons per minute (gpm) as recorded by a BIF Venturi type flow recorder. Prior to testing, the Venturi Meter was calibrated and tested for accuracy by both BIF and Goldberg-Zoino. Water was discharged to the sanitary sewer system located about 500 feet west of the pumping well. Periodic measurements were taken at the pumping well and the following observation wells:

CW-20	TW-18
CW-15	TW-17
LW-103S	LW-17D
LW-103M	B-1
LW-103D	B-2
LW-15S	B-3
LW-15M	GZ-4S
LW-15D	GZ-4M
	GZ-4D

Prior to initiation of testing, static water levels were taken from surrounding monitor wells. Water levels throughout the test were measured in approximately one-hour intervals using an electric water level indicator; no measurements were taken between 1:00 AM and 5:00 AM throughout the test. Water level measurements were taken from similar reference points located on the pumping and monitor wells throughout the test.

Based upon groundwater measurements taken at the conclusion of the test, Figure 4 was drawn. This figure depicts the cone of depression established in the shallow water table by pumping at a continuous rate of about 650 gpm. At approximately 72 hours after pumping began, drawdown in the observation and pumping well had approached stabilization. A maximum drawdown of 12.7 feet was measured in Municipal Well No. 5 while a maximum drawdown of 0.3 feet was measured in GZ-4D, the most distant observation well measured.

Figure 4 depicts a radius of influence of approximately 1100-1500 feet from former Municipal Well No. 5. Distance-drawdown calculations indicate a maximum cone of depression of approximately

1550 feet at stabilization. Greater pumping rates could increase the radius of cone of depression. As shown on Figure 4, pumpage of this former water supply well establishes a northwestern groundwater flow pattern toward the pumping well beneath the northern part of the study area. No interference due to pumpage of the Lori Well Corporation was evident during the pump test.

Aquifer transmissivity is likely on the order of 140,000 gpd/ft, as calculated using a distance-drawdown relationship as stated byCooper and Jacob⁽¹¹⁾. This high transmissivity is typical for unconfined sand and gravel aquifers with large saturated thicknesses and is similar to results of past testing of former Municipal Well No. 5 by others. A transmissivity of 100,000 gpd/ft was reported from testing performed in 1970 using similar methodology⁽¹⁰⁾.

Water samples were taken from the pumping well discharge at approximately four hour intervals throughout the test. These samples were screened for volatile organic compounds at the Goldberg-Zoino Environmental Chemistry Laboratory located in Newton, Massachusetts using a gas chromatograph. No volatile organic compounds were detected in any of the samples throughout the test.

Hydraulic conductivities of on-site materials were estimated in the past using pump test data, described above, sieve analyses and the equilibrium well equation. As part of site characterizations described in this report, estimates of hydraulic conductivity have been refined. Data developed from the pump test is summarized here and referred to in later sections.

Hydraulic conductivity was estimated by dividing the calculated transmissivity by the saturated overburden thickness. This method indicates an average hydraulic conductivity of 2900 gpd/ft² for the on-site saturated overburden.

The equilibrium well equation assumes that the cone of depression created by the pumping well has reached its maximum extent. Using this empirical equation, a hydraulic conductivity of approximately 920 gpd/ft² was calculated.

Calculations

HYDRAULIC CONDUCTIVITY (K)

Estimation of k using transmissivity + Aquifer thickness

At CW-20

$$K = 171600 \text{ gpd/ft } \times \frac{1}{50.5 \text{ ft}} = 3400 \text{ gpd/ft}^2$$

At CW-15

$$K = 171600 \text{ gpd/ft x } \frac{1}{59 \text{ ft}} = 2900 \text{ gpd/ft}^2$$

At LW-103D

$$K = 188000 \text{ gpd/ft x } \frac{1}{75 \text{ ft}} = 2500 \text{ gpd/ft}^2$$

Average 933 gpd/ft²
Minimum 2500 gpd/ft²
Maximum 3400 gpd/ft²

Estimation of K using $K = Ad \frac{2}{10}$ from sieve analysis

GZ-1 K =
$$1(0.035)^2$$
 = $1.23 \times 10^{-3} \frac{\text{cm}}{\text{s}}$ = $1.23 \times 10^{-5} \text{ m/s}$ = 26.1 gpd/ft²

$$GZ-2 k = 1(0.055)^2 = 3.03x10^{-3} cm = 3.03x10^{-5} m/s = 64.2 gpd/ft^2$$

GZ-3 K =
$$1(0.02)^2 = 4x10^{-4} \frac{cm}{s} = 4x10^{-6} \text{ m/s} = 8.5 \text{ gpd/ft}^2$$

$$GZ-4 K = 1(0.019)^2 = 3.6x10^{-4} \frac{cm}{s} = 3.6.10^{-6} m/s = 7.6 gpd/ft^2$$

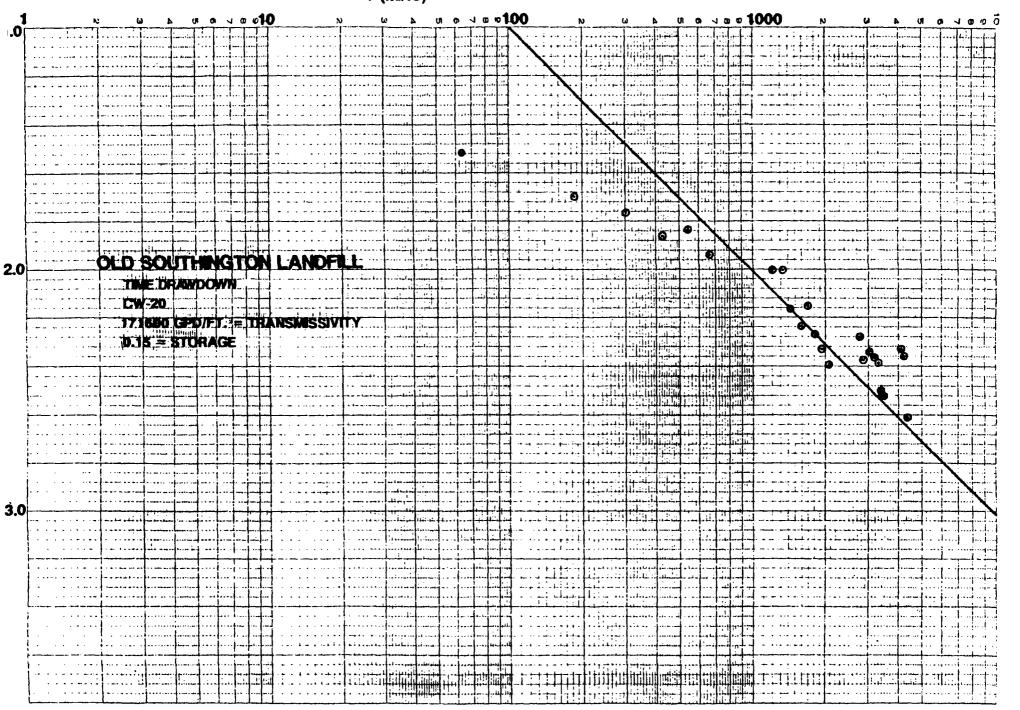
Average 26.6 gpd/ft²
Minimum 7.6 gpd/ft²
Maximum 64.2 gpd/ft²

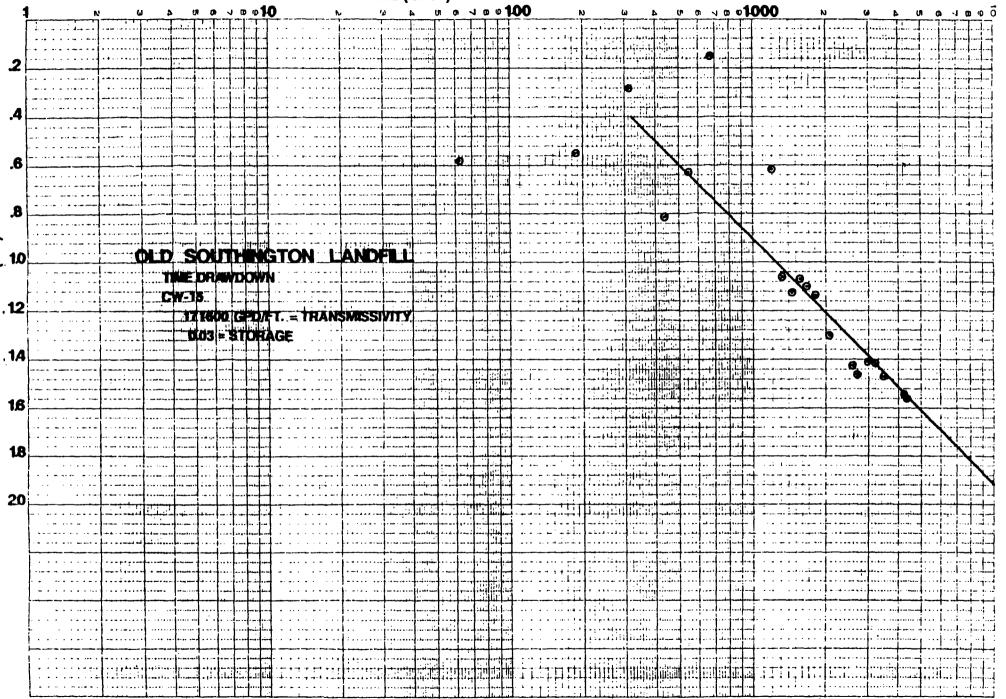
Estimation using equilibrium well equation at location Municipal Well No. 5.

$$K-\frac{R}{G^2-h^2} = \frac{650 (1055) \text{ Log } .33}{(54^2-13^2)} = 916 \text{ gpd/ft}^2$$

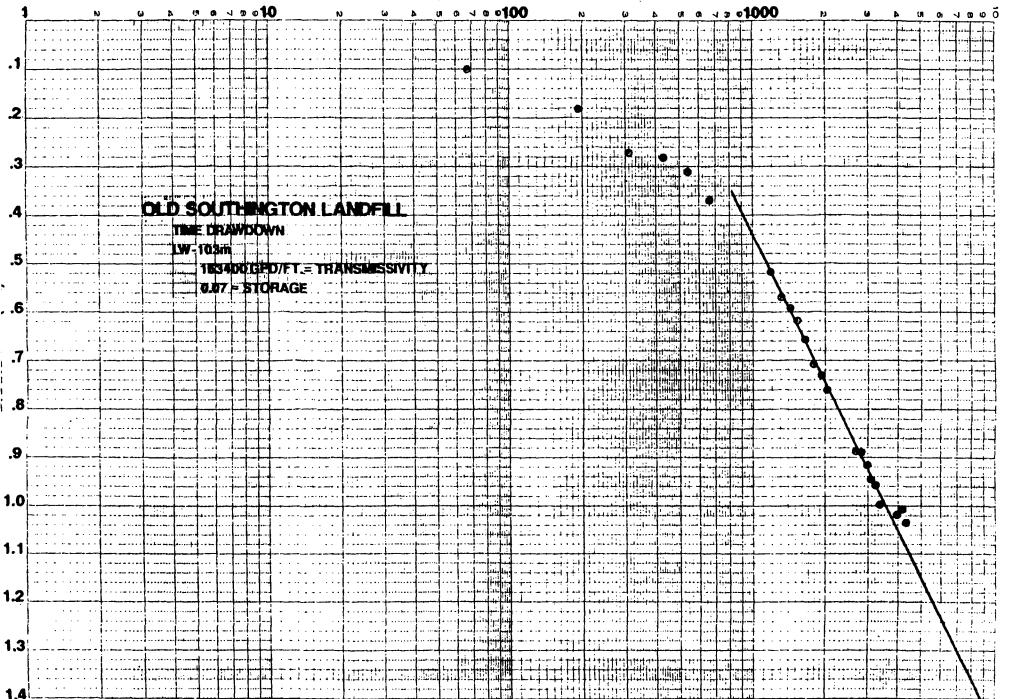
CALCULATIONS

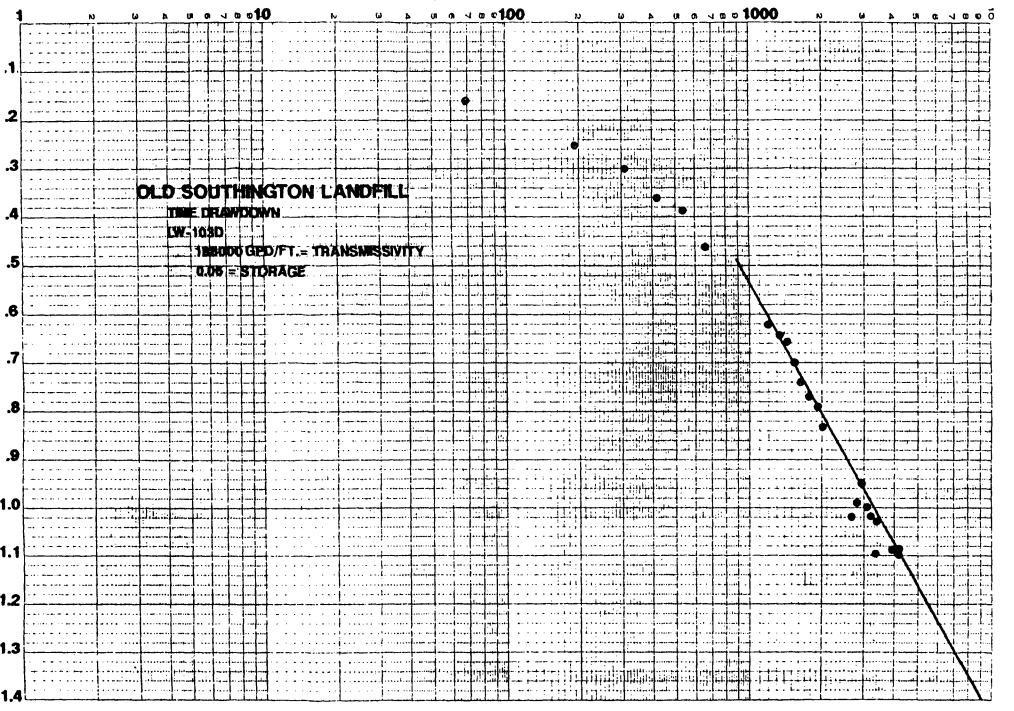
Transmissivity

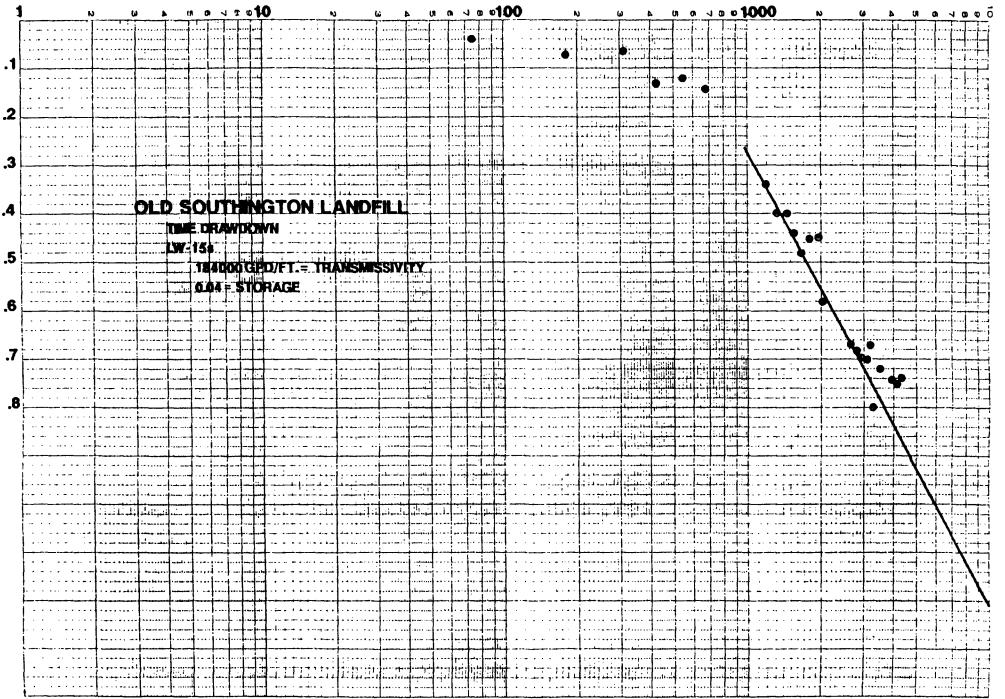

Estimated Transmissivity as calculated using the Modified - non equilibrium equation, Cooper & Jacob (1946)

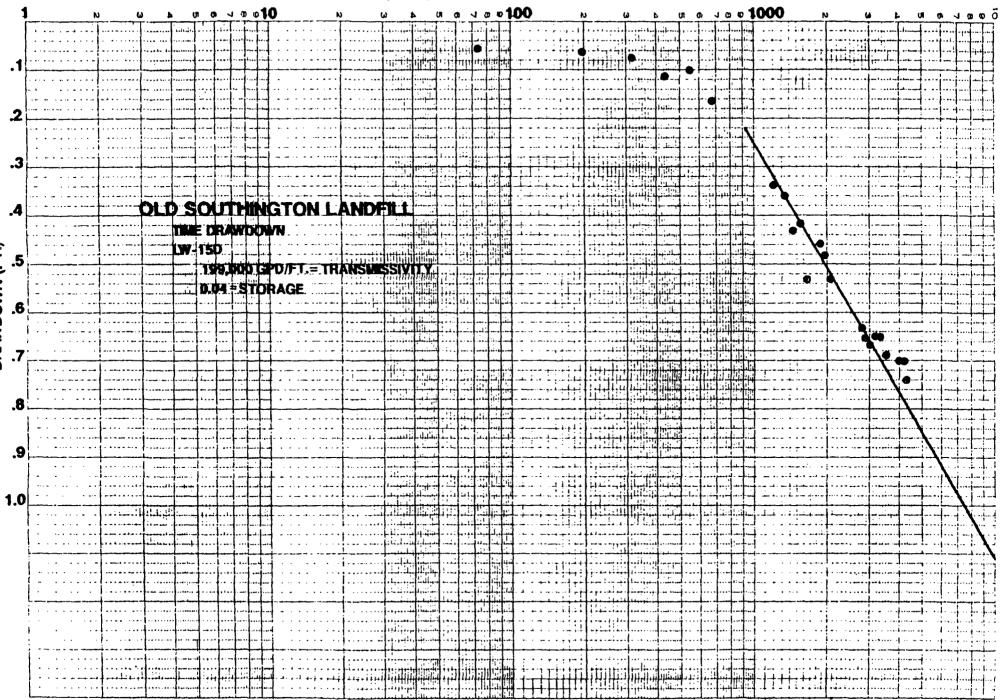

 $T = \frac{264Q}{\Delta s}$

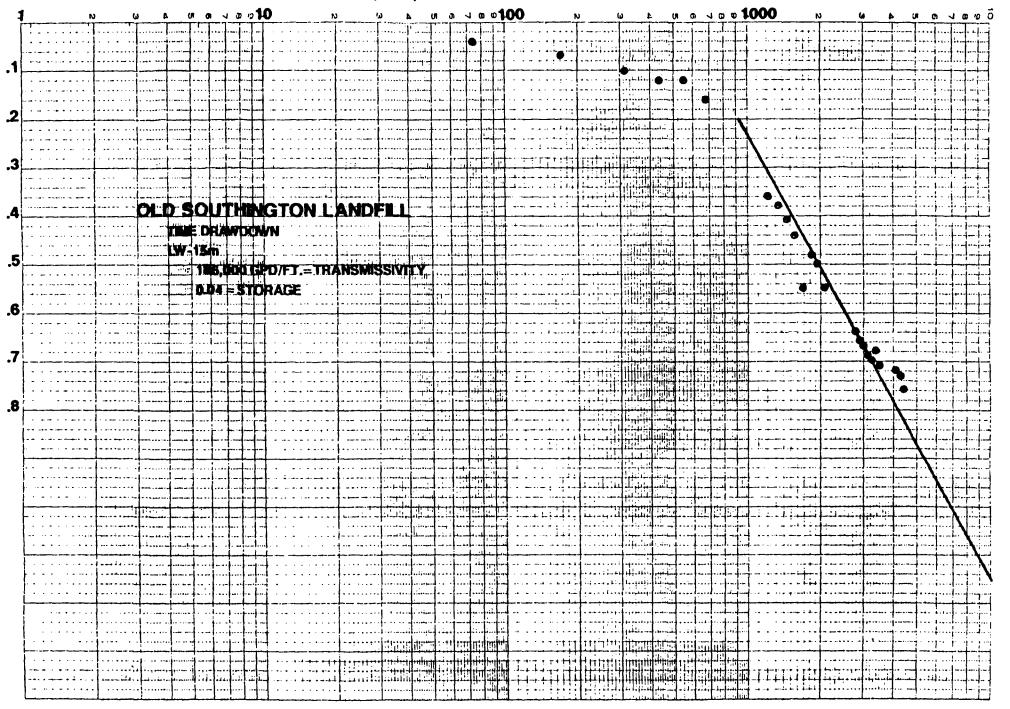
Q = 650 gpm
\[\Delta s = Drawdown over one log cycle
T = Transmissivity
GPD/ft = Gallons Per Day Per Foot
As Calculated using the distance drawdown relationship

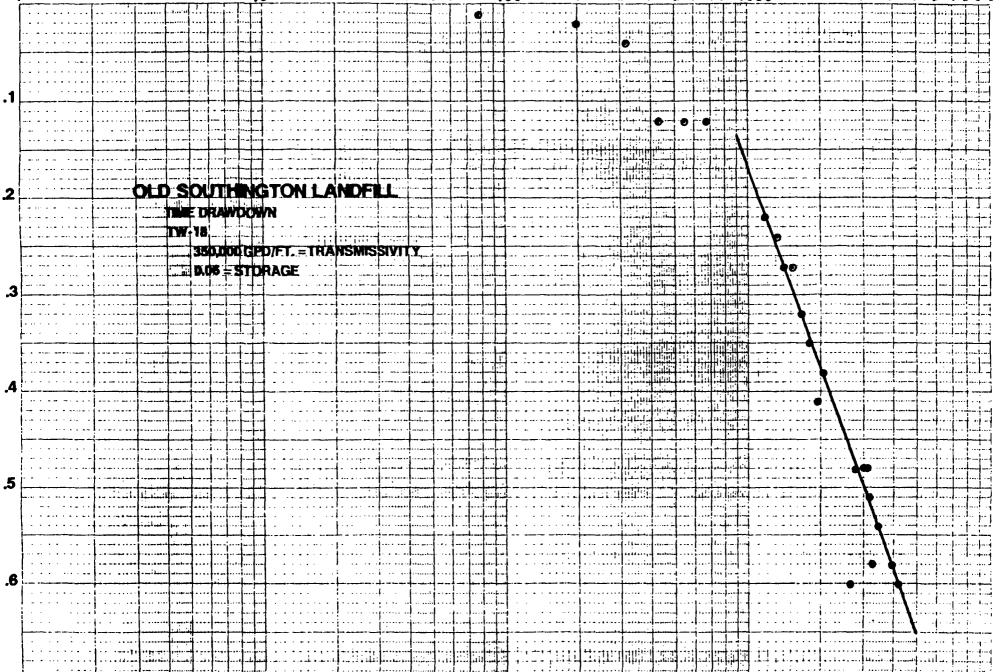

T = 140,000 gpd/ft

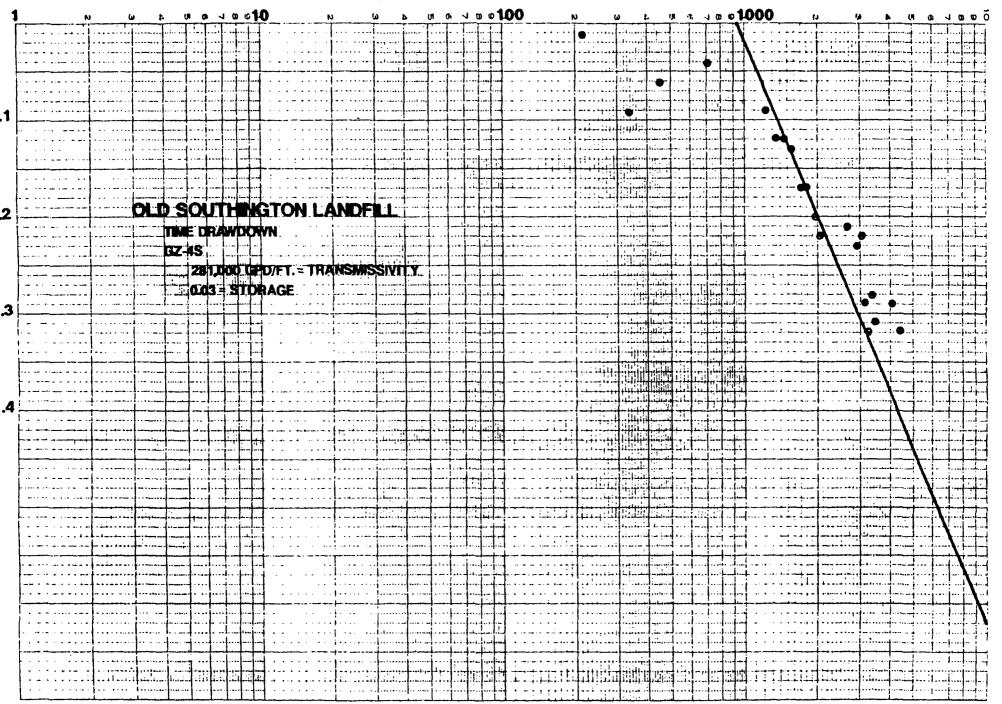

T (MINS)

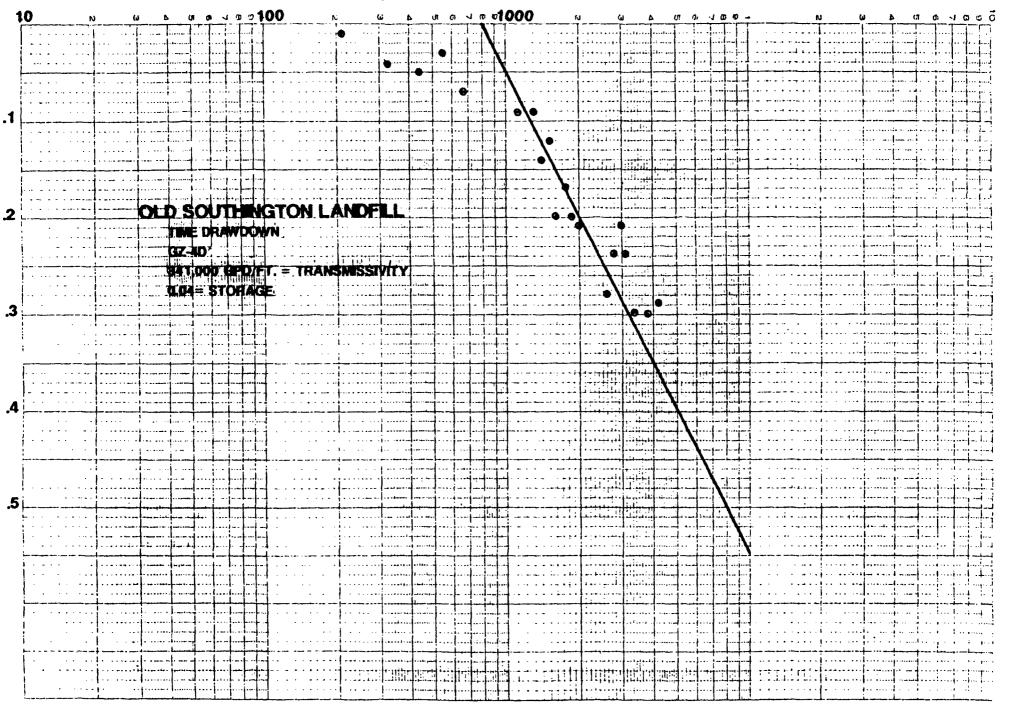


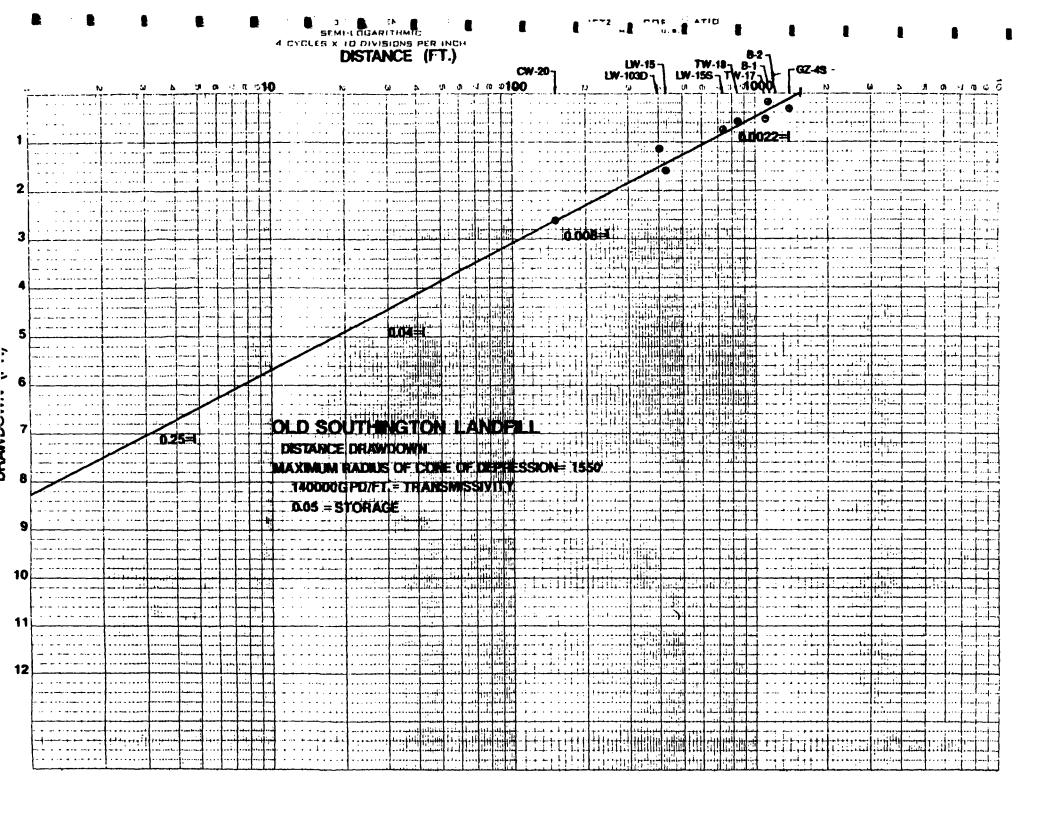


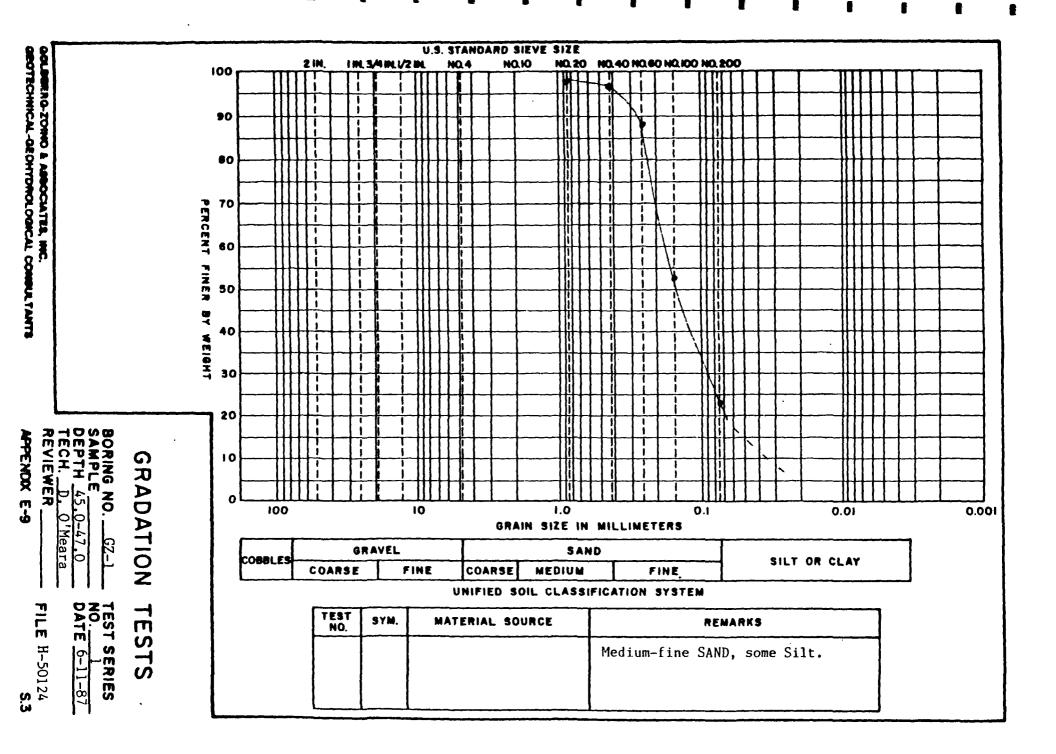

NO. THE 1410 MICTZGEN PRACH PARCE

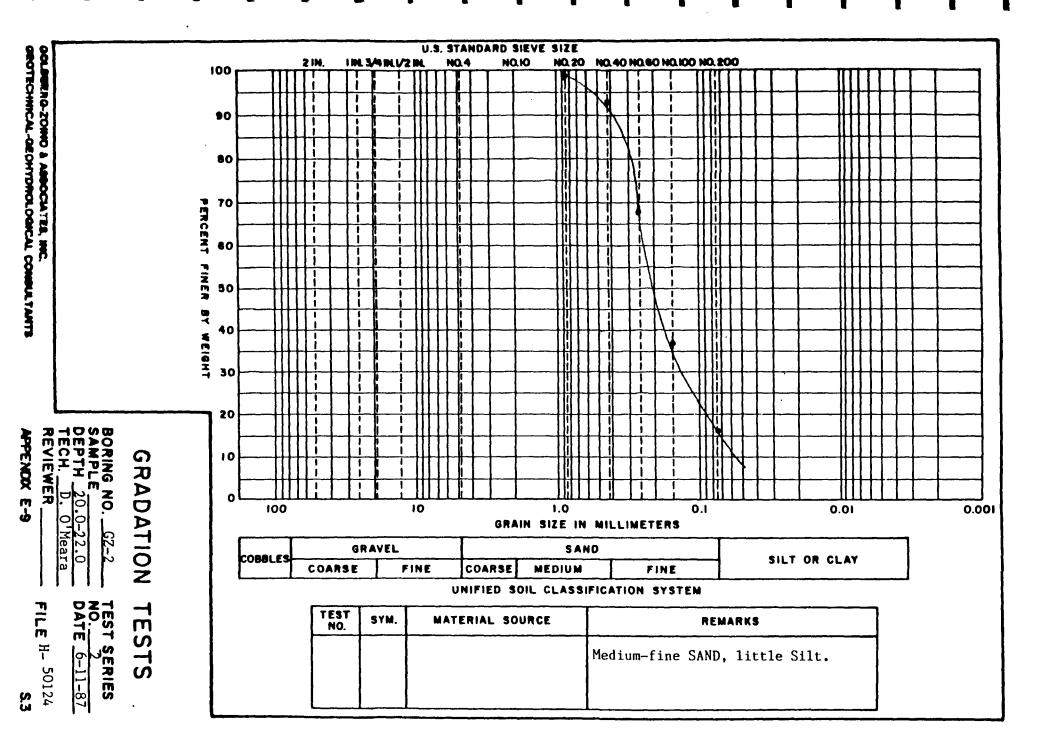


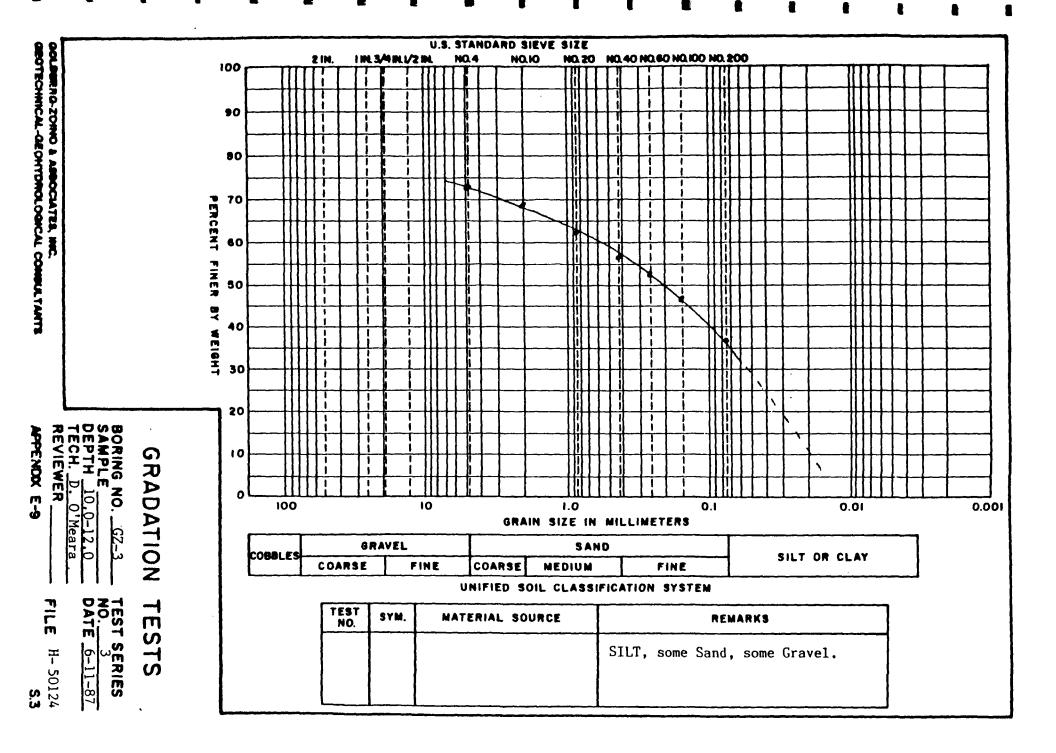







NO. SAGA 410 MITTEEN COAPH PARED




NO. PARE ATO DIETZGEN ROAPH PAGE

