TIBBETTS ROAD SITE Barrington, New Hampshire

\$

, **.**.

3

SDMS DocID

274672

Feasibility Study Report

Appendices

Sumartan	d Recercis Center
e	Tibbe HU
TO AL	Tibbe HU 4.6

Prepared For: U.S. Environmental Protection Agency Region I 90 Canal Street Boston, Massachusetts 02114

Prepared By: CDM Federal Programs Corporation 98 North Washington Street Boston, Massachusetts 02114

June 1992

LIST OF APPENDICES

- Appendix A Ground Water Extraction System
- Appendix B Shallow Aquifer Flushing Calculations
- Appendix C Cost Information
- Appendix D Development of Ground Water Cleanup Goals

APPENDIX A

· .

.

Ground Water Extraction System

This appendix contains a discussion and computations for conceptual design of a system for extraction of contaminated ground water from the overburden and weathered bedrock.

Appendix A

Ground Water Extraction System Considerations

The purpose of this appendix is to present the basis for selection of a design flow for evaluation of remedial alternatives in the Feasibility Study.

The description of the ground water regime at the Tibbetts Road Site is based on a systematic review and analysis of existing data. It is recognized that certain additional data will be necessary — primarily to provide a proper basis for remedial design. However, the following description is based on a practical working knowledge of the origin, occurrence and movement of ground water at and adjacent to the Site.

The process of designing an extraction and recharge system for treatment of the Site's contaminated ground water necessitates an estimate of how the ground water regime operates under natural conditions. Such an estimate depends on certain assumptions and the employment of averages that are less than precise figures. However, given the historic wide variation in rainfall/ precipitation variance from average conditions, variability of an estimate of a conceptual regime is just as likely to be the result of natural causes as from any imprecision of the figures used in development of the estimate.

Basic Factors Influencing the Ground Water Regime

The Site and the adjacent area is not a part of a defined drainage basin as it is elevated from the surrounding area. Consequently, ground water movement is radially away from the Site and is entirely dependent upon the direct, site-specific, infiltration of rainfall/precipitation for replenishment. Ground water level and movement varies with the seasons. During the growing season, ground water replenishment is reduced as the bulk of the rainfall is taken up by the growing trees and other plants. Ground water movement from the site is complex as it occurs in poorly connected or separate systems in both the unconsolidated overburden material and in the underlying bedrock.

<u>Climate</u>

The climate of the Barrington area was discussed with Anthony Federer of the University of New Hampshire (Durham) (Telecom. Oct. 1991). In this area the growing season is just short of 5 months--starting about the first or second week of May and extending to about the end of September. Water levels have been measured periodically at the Site during these months (see Table A-1). Also, the continuous water level record maintained at the Site showed a relatively uniform high level during the winter months through early May; then dropping during the summer and starting to rise in October-November.

Studies of evapotranspiration conducted by the University of New Hampshire show variation between different forest covers and soils. The following general values were considered appropriate for analysis of Site conditions as they are similar to those currently present at the Site:

- evapotranspiration would most likely fall between 500 mm/year (19.7-in) for fully deciduous forest cover and 650 mm/year (25.6) for fully conifer forest cover (a composite value of 550 mm or 21.65-in is used in later calculations).
- with such cover, winter rains not lost to overland flow would infiltrate the ground (with minimal evapotranspiration loss because the forest is mostly deciduous) as it is not expected that the frost layer is fully continuous.

TABLE A-1

Available Data - Water Level Measurements from top of Well Casing - Various Dates

					Change from 10/90 to	Change from 5/91 to	Change from 5/91 to	Intake
Well	10/8/90	5/6/91	6/5/91	7/5/91	5/91	6/9 1	7/91	depth
<u>No.</u>	(feet)	(fæt)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
37D	11.7	4.4	7.8	10.7	+7.3	-3.4	-6.3	15.4-25.4
52S	11.9		7.8	10.7	*		***	6.5-11.5
57S	11.2	3.2		9.6	+8.0		-6.4	9.0-19.0
70S			6.9	10.2				8.0-13.0
71S			8.3	11.1				12.0-17.0
72S			6.7	9.9				7.5-12.5
74S		3.5	6.6	9.3		-3.1	-5.8	13.0-18.0
77S		3.7	6.6	9.2		-2.9	-5.5	10.0-15.0
75R			7.4	10.2				21.0-26.0
2R	29.6	15.2		27.2	+14.4	***	-12.0	?-350
35R	10.2	3.9	6.6	9.6	+6.3	-2.7	-5.7	29.0-82
59R	20.6	14.7		20.8	+5.9		-6.1	59.0-203.5
61R	28.5	15.8		26.9	+12.7		-11.1	70.0-203.5
67R	20.3	13.2		19.5	+7.1	. 	-6.3	80.0-163.8
69R	15.1	8.3	11.2	14.4	+6.8	-2.9	-6.1	37.0-57.0
76R		4.8		15.9			-11.1	38.0-252.0

Note: The ground surface is normally 2.2 to 2.5 ft. below the top of the well casing. Source: RI Section 3.0 - the evapotranspiration during the 5 growing months would comprise about 80 percent of the total annual amount.

A rainfall/precipitation record is maintained by the University (7 miles southeasterly of the Site). The basic data from this record show the following:

Precipitation Record Years	Average Annual <u>(Inches)</u>	Low Year 1985 <u>(Inches)</u>	High Year 1983 <u>(Inches)</u>	Avg. Month <u>(Inches)</u>	Low Month June/July <u>(Inches)</u>	High Month November <u>(Inches)</u>
1980-1990	-	29.98	56.14	-	-	
1951-1980	43.2	-	-	3.60	3.00	4.70

The above figures indicate that rainfall/precipitation is *highly* variable annually as well as monthly.

Origin of Ground Water and Infiltration

Ground water levels depicted in the RI show that these levels, like the topography, are mounded at and in the immediate vicinity of the Site. The origin of the ground water is from the direct infiltration of the rainfall/precipitation that falls on the area. Of the total amount of such precipitation, previously quoted as an average annual amount of 43.2-in/year, only a portion becomes ground water. Approximately 80 percent of the anticipated annual evapotranspiration is expected to occur during the 5 months of the growing season. The amount of rainfall/ precipitation that is added to the ground water during the different seasons is based on figures previously presented for the various Site conditions that influence and control the ground water regime. The movement of ground water into and out of the unconsolidated overburden at and adjacent to the Site is as estimated in the following calculations.

Ground Water Loss from Unconsolidated Overburden - 5 Summer Months

- Average rainfall 5 summer months = 5 mo. \times 3.6-in/month = 18.00-in
- Evapotranspiration 5 summer months = 80% of 21.65 in ave./yr = 17.32-in

Infiltration to ground water (no surface run off in the growing season) = 0.68-in

- Ground water level gain 10/90 to 5/91 = 7.3 ft for 37D should also be representative of the ground water volume drained during the prior or following growing season. This drainage (specific yield) only amounts to 10 percent,* or less, of the volume of soil and water in the interval of level change.

	<u>Specifi</u>	c Yield
	10%	_9%
- Volume to be drained at $10\% = 0.73$ ft. & at $9\% = 0.657$ ft. or:	8.76-in	7.88 -in
- Added volume from infiltration (per above) for the five summer		
months $=$	<u>0.68-in</u>	<u>0.68-in</u>
Total 5 mo. ground water loss from overburden $=$	9.44-in	8.56-in
and: per month	1.89-in	1.71-in

* Silty sand would have a porosity of 35 to 40 percent but only 10 percent, or less, would drain in 150 days with the rest retained as soil moisture according to Johnson, A.J.; 1967, Compilation of Specific Yield - Geological Water Supply Paper 1662-D, U.S.G.S.

> Ground Ground Water Water Elev. Elev. 10/8/90 6/5/91 (feet) (feet) 52S 315.9 320.0 69 R 315.7 311.8 diff. 4.1 4.3 (hydraulic gradient)

While the above only represents one well pair, and soils characteristics vary as do soil depths to rock, the difference in the hydraulic gradient between one season and another is small. As a result, the overburden drainage rate for summer conditions is also applied to winter conditions.

Review of Winter Drainage and Water Level Recovery

	<u>Specifi</u>	<u>c Yield</u>
	<u>10%</u>	<u>9%</u>
- Rainfall/Precipitation: 7 mo. × 3.6-in/mo. =	25.20-in	25.20-in
Less Evapotranspiration (20% if 21.65-in)	<u>4.33-in</u>	<u>4.33-in</u>
Remainder	20.87-in	20.87-in
Less overburden drainage (same as summer monthly \times 7 mo.)		
$1.89-in/mo \& 1.71-in/mo. \times 7 mo. =$	<u>13.23-in</u>	<u>11.97-in</u>
Available for Water Level Recovery	7.64-in	8.90-in
Translated to Water Level Rise (÷ by 10 & 9% respectively)	76.4-in or 6.4-ft	98.89-in or 8.2-ft

Drainage Hydraulic Gradient from Well Pairs

From the foregoing it appears reasonable to adopt a figure of $1.8 - in./mo. \pm 5\%$ average monthly overburden ground water loss (drainage) from the area of interest. This loss results in approximately a 7.3 ft. loss in the elevation of the ground water when vegetative growth absorbs nearly all of the precipitation and a corresponding rise when precipitation exceeds the ability of the ground water regime to move the amount of infiltration out of the area during the remainder of the year.

An area of 222,000 sq. ft. (5.1 acres) is contemplated as a potential capture (extraction) area for remediation. As noted above the amount of ground water added to such an area would be seasonally variable; however, the drainage from it, under natural conditions, is expected to be relatively uniform. The average drainage rate, under natural conditions, is estimated to be 5.77 gpm. The computation for this estimate is as follows: 222,000 sq/ft. (1.8-in/12) 7.48 gal/ft³/43,200 min/mo. = 5.77 gpm.

Soils/Overburden

Soils to a depth of about 3.5 ft. are described in the 1973 U.S. Department of Agriculture publication, *Soil Survey of Stafford County, New Hampshire*. This description indicates that the first 20 inches of surface material consists of a fine sandy loam and that a poorly permeable grayishbrown sandy loam pan layer may be present at a depth of 22 to 41 inches. The current and prior studies of the Site have employed different methods in an attempt to establish values of the soil hydraulic conductivity at and adjacent to the Site. The summary by EPA/ERB, (1986) states that an estimated value for horizontal permeability in the upper till is 16.1gpd/ft². More recent testing indicates that the upper till over the central and eastern portion of the site (wells 70S, 71S, 72S and 73S) is more likely to be an order of magnitude less than the 16.1gpd/ft² figure. While the results show a wide range of values, it would be expected that the soil horizontal hydraulic conductivity would, in general, correspond to the following:

Depth Interval <u>(feet)</u>	Site Generally (gpd/ft ²)	Tibbetts Rd. Side (westerly) (gpd/ft ²)	80ft. off-Site (easterly) (gpd/ft ²)
7 - 12	± 1.5		± 15
12 - 16	± 0.5	5 to 15	
16 - 20	> 0.5	± 2.5	± 1

The above leaves in question the low value of 0.09 gpd/ft² for a 8 to 13 ft depth (well 70S in the easterly corner of the Site) and the 27.7 gpd/ft² value for a 5 to 7 ft. depth at well 62S (80 ft. off-Site-northwesterly). Also, all of the above figures, with the exception of the one for

[•] The area from Tibbetts Road easterly through to the well 35R location.

62S are the results of in situ testing of installed monitoring wells. The results from such tests are a measure of horizontal permeability/hydraulic conductivity (see RI Section 3.0).

An examination of the drop in ground water levels (2.9 ft.) in wells 37D and 52S from 6/5/91 to 7/5/91, as reported in Table A-1, presents an opportunity to estimate the vertical permeability of the Site's soils. During this period it is anticipated that all rainfall is utilized by the vegetative cover in the form of evapotranspiration. Also, it is anticipated that the vegetative cover will have no extractive effect on the ground water at levels from 6 to 8 feet below the surface. The 2.9 ft. drop translates to a vertical gravity drainage of 0.29 ft. of water over 30 days (specific capacity of 10% assumed - see note under Origin of Ground water) or a vertical hydraulic conductivity of 0.075 gpd/ft². This figure is approximately an order of magnitude less than figures quoted for horizontal hydraulic conductivity of the lower till (quoted at 0.7gpd/ft² in EPA/ERB, 1986). An order of magnitude difference, or more, is commonly encountered and must be considered as being reasonable.

Bedrock Ground Water

The ground water in the bedrock must be accepted as existing in at least two systems. An examination of Table A-1 shows wells 2R, 61R and 76R with approximately a 5 ft greater seasonal difference in elevation than other rock wells. An examination of the concentrations of total volatile organic contaminants in the bedrock (Table A-20 of the RI) shows that only at wells 69R and 75R do analytical results exceed 1,000 parts per billion (ppb). Both of the wells are completed in the highly fractured/weathered portion of the bedrock. No pumping tests were conducted at either of those wells. However, a pumping test was conducted at well 35R (R4) which is 90 ft. northeasterly of well 69R. Figures D5, D6 and Table D3 from EPA/ERB, 1986 are reproduced and included for ease of reference. A review of Figure D5, a semi-log plot of drawdown during the test indicates no boundary conditions were present. However, the test only extended for a 60 minute period and the presence of boundary conditions would be expected to be manifested only in an extended pumping period. The recovery plot, D6, indicates an aquifer of limited extent with no recharge with pumping lowering the static water level; if not permanently, at least for an extended time. This condition is reflected by the plot showing a residual drawdown of 1.5 ft. at the point where the t/t^1 ratio is 1.

Seasonal ground water levels in those two wells were:

	5/6/91 Elev. (feet)	7/5/91 Elev. <u>(feet)</u>	Seasonal Difference (feet)
Well 35R	317.4	311.7	5.7
Well 69R	318.6	312.5	6.1
Elev. difference	1.2 ft.	0.8 ft.	

For well 75R only the 7/5/91 elevation of 319.1 ft. was recorded. This elevation is anticipated to be generally representative of the highest elevation of the ground water mound in the highly fractured/weathered bedrock in the growing season. During the winter season the elevation is estimated to be about 6 to 7 feet higher and closely approximate a level of the ground water in the adjacent overburden soil.

Seasonal elevation changes of the ground water which occur in both the overburden and bedrock indicate that the source of bedrock recharge is the overburden; however, the difference in elevation is an indication of the low vertical permeability of the overburden and a slow rate of recharge. The pumping test results for 35R, which are indicative of no recharge and limited extent, also pose problems for any proposed pumping scheme for remediating contamination in the highly fractured/weathered bedrock.

Summary

An area of 5.1 acres (600 ft. \times 370 ft.) (222,000 sq. ft.) (generally encompassing the area of exceedance of MCLs) was adopted for consideration of institution of a remedial action scheme. Computations based on seasonal changes of ground water levels indicate that the vertical and horizontal outflow from the Site's topographic high amounts to about 1.8-in. of water per month or a total of 5.77 gpm over 5.1 acres.

A remedial action that utilized a technique to spread extracted and treated water over the Site could not be operated efficiently in the winter and would not prevent continued potential migration of contaminants from the Site. The bedrock aquifer exists as separate systems with the most plausible remedial action being to extract and treat from the contaminated upper highly fractured/ weathered bedrock and discharge treated water to the lower (deeper) less contaminated bedrock aquifer.

A single pumping test of a well in the upper bedrock aquifer indicates that the aquifer is of limited extent and probably could not sustain pumping even at a 5 gpm rate from a single well. The overall bedrock system is complex and resists truly definitive estimates of extraction rates that would be appropriate for long term operation of a remedial system. With the small flow rates involved it is probably not important to establish an operational extraction rate. As a part of a predesign activity 5 or 6 weathered bedrock wells in the well 75R/69R area should be properly spaced and tested. It is expected that 3 or 4 new wells would be utilized as low rate extraction wells and the others, together with existing wells, utilized for monitoring purposes.

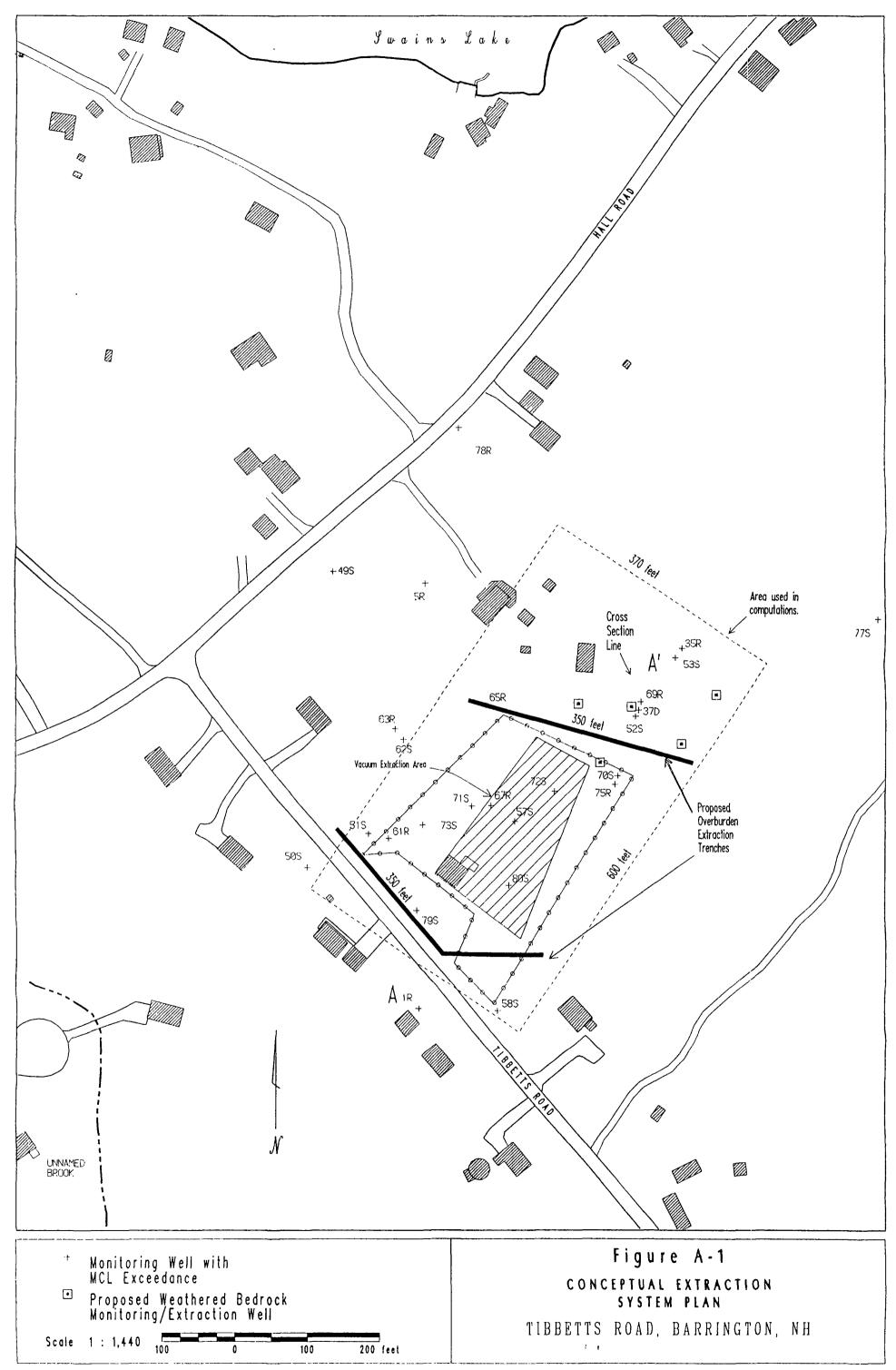
As a part of the remediation the installation of collection trenches to intercept outflow of the area from horizontal overburden flow is proposed. The variability of soil permeability makes an estimation of the volume so intercepted uncertain other than to express that it would be a minimal amount and unlikely to regularly exceed 1 gpm.

Tentative locations for the wells and trenches for a remedial action extraction system are as shown on the attached Figure A-1. The design extraction rate selected for use in the analysis

of alternatives is 5 gpm. This may also be represented as a range of 3 to 10 gpm and must be refined later based on further work in the weathered bedrock. The northern extraction trench may be reduced in size or eliminated, depending on the effectiveness of the weathered bedrock wells.

.

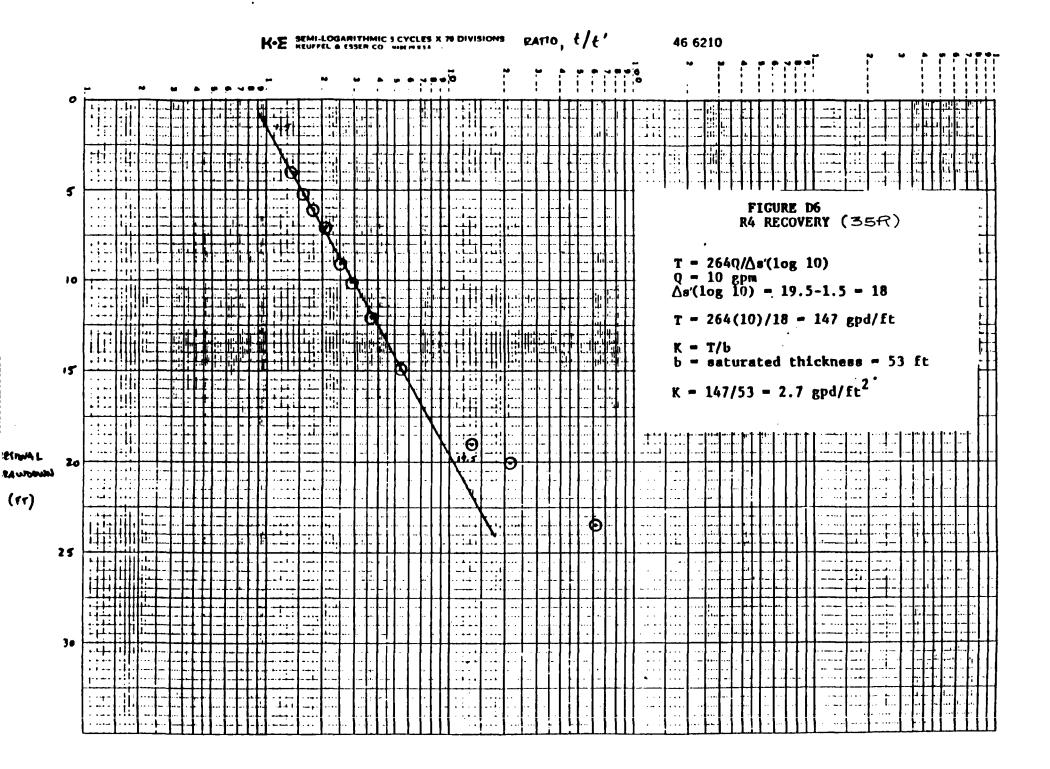
2



1

: •

•



Source base map: Eastern Topographics, June 19, 1990

REFERENCES

- EPA.
 Basics of Pump-and-Treat Ground-Water Remediation Technology. EPA/600/8-90/003, March 1990.
- (2) EPA. Subsurface Contamination Reference Guide EPA/540/2-90/011
- (3) Federer, Anthony, Telecom. Oct. 1990, University of New Hampshire, Durham.
- Prepared by EPA/ERB
 "Geohydrological Investigations, Tibbetts Road Site" Barrington, NH February 5, 1986
- (5) U.S. Department of Agriculture Soil Conservation Service, March 1973, Soil Survey of Stafford County, New Hampshire.

										K	•E			671T	HMI	5.5		.ES	x 71	DIAI	510N:	5	T	1 m (. (-	N)				46 (521	0													
	•	-		~		•	. .	•	~	•			~	•	•	u	•	~	• • • •	5		2		60 	•		• • •	••••	0 Q L		2										•)
	0	· · · · · · · · · · · · · · · · · · ·		: 	•••• ••• •••	-1-1 					· · · · · · ·										· · · · · • · · · · 1 ·												! 		 					L					- <u>-</u> - <u>-</u> - - - -	
	5	• • • • • • • • • • • • • • • • • • •		 	· · · · · · · ·						······································	· · · · ·								······································	· · · · · · · · · · · · · · · · · · ·	· · ·					 			· •	;; 1;				- 1					•						
		•••	 					·				· · · · ·	9 :	· · · · · · · · · ·															 - -					R	F 10 4 I	SURI DRAV	e e Ndc	05 DWN	(35	R)	I				
	ID		· · · · ·	: : 	• • • • • • • •						· · · · ·	· · · · · · · · · · · · · · · · · · ·		 		¢) (Ð		10	, ,								İ		T - Q - ()=	2 1 10	640 0 g	}/∆ ;pm [0]	s (1 =	log 30-	10 -10))) -	20)						• • •
		· · · · ·		·	••••••••••••••••••••••••••••••••••••••						 		- 111 1 1 1		······································		· · · · · · · · · · · · · · · · · · ·			ð							- - . - . - .			1	T -	2	64(od/I	Ēt					
	IS		. 		· • • • • • • • • • • • • • • • • • • •	+ + + + + + + + + + + + + + + + + + +															ð						· · · · ·					. 8	ati			1 tl 2.9				9 – 2	53	ft	-			
)Rawooda)					••••	-1							· · · · · · · · · · · · · · · · · · ·								• • • • •	N								. 1	⊼ -	Ui	527 11:1				, 6	.			.11	- 11	. 1 1.			
(4)	Zo		. 			•••••		 			· · · · ·			-			_			الد • • • • • • • • • • •			<u>P</u>	N						···· ·	• i		9 <u>-</u> 19 - 11 19 - 11					······					!	· 		
		· · · · ·			· · · ·															· · · · ·			 		e					· · · · ·	· · · · · · · ·		· · · · ·		- - -				· · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·			· · · ·		
	25		· · · ·	:::: 																						N N				• 			 			8 1				· · · · · · · ·	+					
														_					┥┝	· • • • • •					* 			\mathbb{N}					••••••••••••••••••••••••••••••••••••••													
	30	· · · · · · · · · · · · · · · · · · ·				. I. I	Ŧ								++					•		1			-	╞╼╊			\mathbf{N}					11		• • • • •	- i i - i - i - i - i - i						Ŧ			
		· · · · · ·										• • • • • 	• • • •						╉╋	• • • • •			· .			╎╌╎					• • • • • • • •		·[-]						- 	•••		╌╫╌╂				

TABLE D3 ROCK WELL R4(35尺) TIME-DRAWDOWN/RECOVERY DATA

DRAWDOWN DATA		RECOVERY	DATA	
<u>t (min) s (ft)</u>	<u>t (min)</u>	<u>t' (min)</u>	<u>t/t'</u>	<u>s' (ft)</u> :
2 6.60 5 8.70 7 9.20 12 11.80 17 15.10 27 18.80 37 21.40 47 23.11 60 26.04	62 64 66 75 84 94 102 117 135 170 207	1 3 5 14 23 33 41 56 74 109 146	62.0 21.3 13.2 5.4 3.7 2.9 2.5 2.1 1.8 1.6 1.4	23.00 20.11 19.02 15.01 12.08 10.08 9.08 7.11 6.09 5.25 4.02

APPENDIX B

Shallow Aquifer Flushing Calculations

(This appendix presents calculations that show the estimated time in years required for natural flushing of TCE in the shallow aquifer to a concentration equal to the MCL. A comparison of actual vs. calculated flushing rates for Benzene and TCE is also shown.)

.

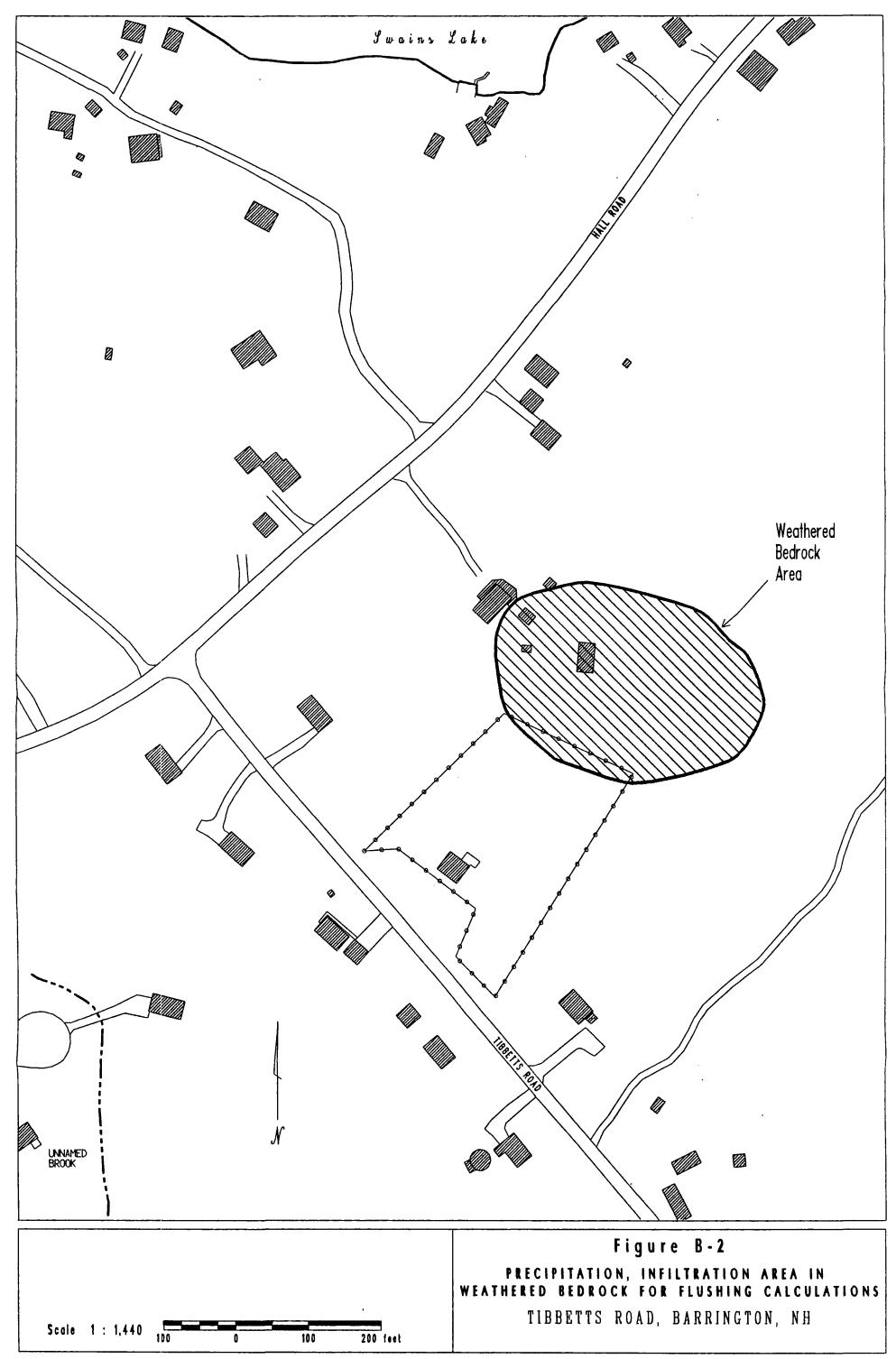
The following tables summarize the parameters used and the results obtained from a flushing model used to determine the cleanup times to reduce the contaminant concentrations in the overburden and weathered bedrock aquifers to below the maximum contaminant level (MCL) for trichlorethylene (TCE) and benzene. Cleanup times were calculated for three areas within the overburden corresponding to the two proposed trench areas (Areas B and C) and the central portion of the site (Area A), and the area of weathered bedrock.

Input Parameters	Ov	erburden Are	as	Weathered
	Α	В	С	Bedrock Area
Porosity, n	0.15	0.15	0.15	0.1
Soil Density, γ (kg/l)	2.0	2.0	2.0	2.2
Fractional Organic Carbon, f_{∞}	0.13%	0.13%	0.13%	0.10%
Saturated Thickness of Aquifer (ft)	15	15	15	35
Area of Contamination (ft ²)	32,000	32,000	82,000	75,000
Plume Volume (ft ³)	480,000	480,000	1,230,000	2,625,000
Pumping Rates: Natural Infiltration (gpm) Trenches/Wells (gpm)	0.46* 0.8**	0.46* 0.8**	1.1* 2.0**	1.9† 4.0††
Initial TCE Concentration (ppb)	7800	300	53	650
Initial Benzene Concentration (ppb)	590	1100	140	4000
TCE and Benzene MCL/Cleanup Goal (ppb)	5	5	5	5

CLEANUP TIMES IN YEARS REQUIRED TO MEET MCLS

		Overburden Are	RS	Weathered
	A	В	С	Bedrock Area
TCE: Natural Attenuation * Pumping	41.1 23.6	22.8 13.1	14.7 8.1	30.2 14.4
Benzene: Natural Attenuation * Pumping	16.0 9.2	18.3 10.5	12.2 6.7	24.2 11.5

* Due to 12" infiltration contacting contaminated zones.


** Due to 21" infiltration, which may include need for limited (summer) recharge.

† Due to 21" infiltration.

†† Average operation may be less.

Source base map: Eastern Topographics, June 19, 1990

🕐 🕡 💦 Source base map: Eastern Topographics, June 19, 1990

CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE

. •

PARAMETERS USED

Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.46 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300%

Contaminant: TRICHLOROETHENE

Koc (Organic carbon partition coefficient): 126 liters per kg Kd (Distribution coefficient): 0.1638 liters per kg Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 7800.0 micrograms per liter

'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms.

Flush #	0.00	Mass =	22279.92	Conc =	7800.00
Flush #	1.00	Mass =	14479.92	Conc =	5069.29
Flush #	2.00	Mass =	9410.63	Conc =	3294.58
Flush #	3.00	Mass =	6116.05	Conc =	2141.18
Flush #	4.00	Mass =	3974.88	Conc =	1391.57
Flush #	5.00	Mass =	2583.31	Conc =	904.39
Flush #	6.00	Mass =	1678.92	Conc =	587.77
Flush #	7.00	Mass =	1091.14	Conc =	382.00
Flush #	8.00	Mass =	709.14	Conc =	248.26
Flush #	9.00	Mass =	460.88	Conc =	161.35
Flush #	10.00	Mass =	299.53	Conc =	104.86
Flush #	11.00	Mass =	194.67	Conc =	68.15
Flush #	12.00	Mass =	126.52	Conc =	44.29
Flush #	13.00	Mass =	82.22	Conc =	28.79
Flush #	14.00	Mass =	53.44	Conc =	18.71
Flush #	15.00	Mass =	34.73	Conc =	12.16
Flush #	16,00	Mass =	22.57	Conc =	7.90
Flush #	17.00	Mass =	14.67	Conc =	5.14
Flush #	18.00	Mass =	9.53	Conc =	3.34

Number of flush volumes required: 18.00 Final concentration in groundwater: 3.34 micrograms per liter Time to cleanup: 41.08 years CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE

. •

.

PARAMETERS USED

Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.80 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300%

Contaminant: TRICHLOROETHENE Koc (Organic carbon partition coefficient): 126 liters per kg (Distribution coefficient): 0.1638 liters per kg Kd Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 7800.0 micrograms per liter

'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms.

Flush #	0.00	Mass =	22279.92	Conc =	7800.00
Flush #	1.00	Mass =	14479.92	Conc =	5069.29
Flush #	2.00	Mass =	9410.63	Conc =	3294.58
Flush #	3.00	Mass =	6116.05	Conc =	2141.18
Flush #	4.00	Mass =	3974.88	Conc =	1391.57
Flush #	5.00	Mass =	2583.31	Conc =	904.39
Flush #	6.00	Mass =	1678.92	Conc =	587.77
Flush #	7.00	Mass =	1091.14	Conc =	382.00
Flush #	8.00	Mass =	709.14	Conc =	248.26
Flush #	9.00	Mass =	460.88	Conc =	161.35
Flush #	10.00	Mass =	299.53	Conc =	104.86
Flush #	11.00	Mass =	194.67	Conc =	68.15
Flush #	12.00	Mass =	126.52	Conc =	44.29
Flush #	13.00	Mass =	82.22	Conc =	28.79
Flush #	14.00	Mass =	53.44	Conc =	18.71
Flush #	15.00	Mass =	34.73	Conc =	12.16
Flush #	16.00	Mass =	22.57	Conc =	7.90
Flush #	17.00	Mass =	14.67	Conc =	5.14
Flush #	18.00	Mass =	9.53	Conc =	3.34

Number of flush volumes required: 18.00 Final concentration in groundwater: 3.34 micrograms per liter Time to cleanup: 23.62 years

CDM Federal Programs Corp. Rough Groundwater Flushing Report for BENZENE PARAMETERS USED . • Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.46 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: BENZENE Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0832 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 590.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of qw. Both are given in micrograms. Flush # 590.00 0.00 Mass = 1146.33 Conc =Flush # 1.00 Mass = 556.33 Conc = 286.34 Conc = 138.96 Flush # 2.00 Mass = 270.00 Conc = 67.44 Flush # 3.00 Mass = 131.03 Conc = Flush # 4.00 Mass = 63.59 32.73 5.00 Mass = 30.86 Conc = 15.88 Flush # Flush # 6.00 Mass = 14.98 Conc = 7.71 Conc = Flush # 7.00 7.27 3.74 Mass =

Number of flush volumes required: 7.00 Final concentration in groundwater: 3.74 micrograms per liter Time to cleanup: 15.97 years CDM Federal Programs Corp. Rough Groundwater Flushing Report for BENZENE

. -

PARAMETERS USED

Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.80 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300%

Contaminant: BENZENE

Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0832 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 590.0 micrograms per liter

'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms.

Flush #	0.00	Mass =	1146.33	Conc =	590.00
Flush #	1.00	Mass =	556.33	Conc =	286.34
Flush #	2.00	Mass =	270.00	Conc =	138.96
Flush #	3.00	Mass =	131.03	Conc =	67.44
Flush #	4.00	Mass =	63.59	Conc =	32.73
Flush #	5.00	Mass =	30.86	Conc =	15.88
Flush #	6.00	Mass =	14.98	Conc =	7.71
Flush #	7.00	Mass =	7.27	Conc =	3.74

Number of flush volumes required: 7.00 Final concentration in groundwater: 3.74 micrograms per liter Time to cleanup: 9.19 years

CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE PARAMETERS USED Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.46 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: TRICHLOROETHENE Koc (Organic carbon partition coefficient): 126 liters per kg Kd (Distribution coefficient): 0.1638 liters per kg Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 300.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. 300.00 Flush # 0.00 Mass = 856.92 Conc = 194.97 Conc = Flush # 1.00 556.92 Mass = 2.00 Flush # Mass = 361.95 Conc = 126.71 Conc = Flush # 3.00 Mass = 235.23 82.35 Flush # 4.00 Mass = 152.88 Conc = 53.52 99.36 Flush # 5.00 Mass = Conc = 34.78 Flush # 6.00 Mass = 64.57 Conc = 22.61 Flush # 7.00 Mass = 41.97 Conc = 14.69 9.55 Flush # 8.00 Mass = 27.27 Conc = Flush # 9.00 Mass = Conc = 6.21 17.73 Flush # 10.00 Mass = 11.52 Conc = 4.03

Number of flush volumes required: 10.00 Final concentration in groundwater: 4.03 micrograms per liter Time to cleanup: 22.82 years

CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE PARAMETERS USED . • Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.80 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: TRICHLOROETHENE Koc (Organic carbon partition coefficient): 126 liters per kg Kd (Distribution coefficient): 0.1638 liters per kg Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 300.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. Flush # 0.00 856.92 Conc = 300.00 Mass = Flush # 1.00 Mass = 556.92 Conc = 194.97 Flush # 2.00 361.95 Conc = 126.71 Mass = Conc = Flush # 3.00 Mass = 235.23 82.35 Mass = Conc = Flush # 152.88 53.52 4.00 Flush # 5.00 Mass = 99.36 Conc = 34.78 Flush # 6.00 Mass = 64.57 Conc = 22.61 Flush # Conc = 14.69 7.00 Mass = 41.97 Flush # 8.00 Mass = 27.27 Conc = 9.55

17.73

11.52

Conc =

Conc =

6.21

4.03

Number of flush volumes required: 10.00 Final concentration in groundwater: 4.03 micrograms per liter Time to cleanup: 13.12 years

Mass =

Mass =

Flush #

Flush #

9.00

10.00

CDM Federal Programs Corp. Rough Groundwater Flushing Report for BENZENE PARAMETERS USED Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.46 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: BENZENE Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0832 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 1100.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. Flush # Conc = 1100.00 0.00 Mass = 2137.23 Flush # 533.85 1.00 Conc = Mass = 1037.23 Flush # Conc = 259.08 2.00 Mass = 503.38 Conc = Flush # 3.00 Mass = 244.30 125.74 Flush # Conc = Mass = 118.56 4.00 61.02 Conc = Flush # 5.00 Mass = 57.54 29.61 Flush # 6.00 Mass = 27.92 Conc = 14.37 6.98 7.00 Flush # 13.55 Conc = Mass = 3.39 Flush # 8.00 Mass = 6.58 Conc = Number of flush volumes required: 8.00

Final concentration in groundwater: 3.39 micrograms per liter Time to cleanup: 18.26 years

CDM		rograms Corp r BENZENE	. Rough	Groundwater	Flushing Re	port	
PARAMETER:	S USED						
Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 480000 cubic feet Pump rate: 0.80 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300%							
Contaminant: BENZENE Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0832 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 1100.0 micrograms per liter							
'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms.							
Flush #	0.00	Mass =	2137.23	Conc =	1100.00		
Flush #		Mass =	1037.23		533.85		
Flush #	2.00	Mass =		Conc =	259.08		
Flush #		Mass =			125.74		
Flush #	4.00	Mass =			61.02		
Flush #	5.00	Mass =	57.54		29.61		
Flush #		Mass =					
Flush #		Mass = Mass =					
		Mass =		cone =	۶.۰۶		

Number of flush volumes required: 8.00 Final concentration in groundwater: 3.39 micrograms per liter Time to cleanup: 10.50 years

•

CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE PARAMETERS USED . • Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 1230000 cubic feet Pump rate: 1.10 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: TRICHLOROETHENE Koc (Organic carbon partition coefficient): 126 liters per kg Kd (Distribution coefficient): 0.1638 liters per kg Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 53.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. Flush # 0.00 Mass = 151.39 Conc = 53.00 98.39 Conc = 34.45 Flush # 1.00 Mass = Mass = Flush # 63.94 Conc =22.39 2.00 41.56 Conc = 14.55 Flush # 3.00 Mass = Flush # 4.00 Mass = 27.01 Conc = 9.46 Flush # Mass = 17.55 Conc = 6.15 5.00 Flush # 6.00 Mass = 11.41 Conc = 3.99 Number of flush volumes required: 6.00

Final concentration in groundwater: 3.99 micrograms per liter Time to cleanup: 14.67 years

CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE PARAMETERS USED . -Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 1230000 cubic feet Pump rate: 2.00 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: TRICHLOROETHENE Koc (Organic carbon partition coefficient): 126 liters per kg Kd (Distribution coefficient): 0.1638 liters per kg . Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 53.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. Flush # 0.00 151.39 Conc = 53.00 Mass = Conc = 34.45 Flush # 1.00 Mass = 98.39 22.39 Flush # 2.00 Mass = 63.94 Conc =Mass = Conc =Flush # 41.56 3.00 14.55 Flush # Mass = Conc = 4.00 27.01 9.46 Flush # 5.00 Mass = 17.55 Conc = 6.15 Conc = Flush # 3.99 6.00 Mass = 11.41

Number of flush volumes required: 6.00 Final concentration in groundwater: 3.99 micrograms per liter Time to cleanup: 8.07 years

CDM Federal Programs Corp. Rough Groundwater Flushing Report for BENZENE PARAMETERS USED Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 1230000 cubic feet Pump rate: 1.10 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: BENZENE Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0832 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 140.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. 0.00 140.00 Flush # Mass = 272.01 Conc = Flush # 1.00 Mass = 132.01 Conc = 67.94 Mass = Conc = Flush # 2.00 32.97 64.07 Flush # 3.00 Mass = 31.09 Conc = 16.00

15.09

7.32

Conc =

Conc =

7.77

Number of flush volumes required: 5.00 Final concentration in groundwater: 3.77 micrograms per liter Time to cleanup: 12.23 years

Mass =

Mass =

Flush #

Flush #

4.00

5.00

CDM Federal Programs Corp. Rough Groundwater Flushing Report for BENZENE PARAMETERS USED . • Porosity: 0.15 Density: 2.00 kilograms per liter Plume volume: 1230000 cubic feet Pump rate: 2.00 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1300% Contaminant: BENZENE Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0832 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 140.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. Flush # 0.00 Mass = 272.01 Conc = 140.00 Flush # 1.00 Mass = 132.01 Conc = 67.94 Flush # 2.00 Conc = 32.97 Mass = 64.07 Flush # 3.00 Mass = 31.09 Conc =16.00 Flush # 4.00 Mass = 15.09 Conc = 7.77 Flush # Mass = Conc = 5.00 7.32 3.77 Number of flush volumes required: 5.00

Final concentration in groundwater: 3.77 micrograms per liter Time to cleanup: 6.72 years CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE

PARAMETERS USED

Porosity: 0.10 Density: 2.20 kilograms per liter Plume volume: 2625000 cubic feet Pump rate: 1.90 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1000%

Contaminant: TRICHLOROETHENE

Koc (Organic carbon partition coefficient): 126 liters per kg Kd (Distribution coefficient): 0.1260 liters per kg Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 650.0 micrograms per liter

'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms.

Flush #	0.00	Mass =	2271.62	Conc =	650.00
Flush #	1.00	Mass =	1621.62	Conc =	464.01
Flush #	2.00	Mass =	1157.61	Conc =	331.24
Flush #	3.00	Mass =	826.37	Conc =	236.46
Flush #	4.00	Mass =	589.91	Conc =	168.80
Flush #	5.00	Mass =	421.12	Conc =	120.50
Flush #	6.00	Mass =	300.62	Conc =	86.02
Flush #	7.00	Mass =	214.60	Conc =	61.41
Flush #	8.00	Mass =	153.19	Conc =	43.83
Flush #	9.00	Mass =	109.36	Conc =	31.29
Flush #	10.00	Mass =	78.07	Conc =	22.34
Flush #	11.00	Mass =	55.73	Conc =	15.95
Flush #	12.00	Mass =	39.78	Conc =	11.38
Flush #	13.00	Mass =	28.40	Conc =	8.13
Flush #	14.00	Mass =	20.27	Conc =	5.80
Flush #	15.00	Mass =	14.47	Conc =	4.14

Number of flush volumes required: 15.00 Final concentration in groundwater: 4.14 micrograms per liter Time to cleanup: 30.21 years CDM Federal Programs Corp. Rough Groundwater Flushing Report for TRICHLOROETHENE

PARAMETERS USED

Porosity: 0.10 Density: 2.20 kilograms per liter Plume volume: 2625000 cubic feet Pump rate: 4.00 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1000%

Contaminant: TRICHLOROETHENE

Koc (Organic carbon partition coefficient): 126 liters per kg Kd (Distribution coefficient): 0.1260 liters per kg Maximum Contamination Level: 5.0 micrograms per liter Initial concentration in gw: 650.0 micrograms per liter

'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms.

Flush #	0.00	Mass =	2271.62	Conc =	650.00
Flush #	1.00	Mass =	1621.62	Conc =	464.01
Flush #	2.00	Mass =	1157.61	Conc =	331.24
Flush #	3.00	Mass =	826.37	Conc =	236.46
Flush #	4.00	Mass =	589.91	Conc =	168.80
Flush #	5.00	Mass =	421.12	Conc =	120.50
Flush #	6.00	Mass =	300.62	Conc =	86.02
Flush #	7.00	Mass =	214.60	Conc =	61.41
Flush #	8.00	Mass =	153.19	Conc =	43.83
Flush #	9.00	Mass =	109.36	Conc =	31.29
Flush #	10.00	Mass =	78.07	Conc =	22.34
Flush #	11.00	Mass =	55.73	Conc =	15.95
Flush #	12.00	Mass =	39.78	Conc =	11.38
Flush #	13.00	Mass =	28.40	Conc =	8.13
Flush #	14.00	Mass =	20.27	Conc =	5.80
Flush #	15.00	Mass =	14.47	Conc =	4.14

Number of flush volumes required: 15.00 Final concentration in groundwater: 4.14 micrograms per liter Time to cleanup: 14.35 years

CDM Federal Programs Corp. Rough Groundwater Flushing Report for BENZENE PARAMETERS USED Porosity: 0.10 Density: 2.20 kilograms per liter Plume volume: 2625000 cubic feet Pump rate: 1.90 gallons per minute 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1000% Contaminant: BENZENE Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0640 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 4000.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. Flush # 0.00 9068.80 Conc = 4000.00 Mass = Flush # 1.00 Mass = 5068.80Conc = 2235.71 Flush # 2.00 Mass = 2833.09 Conc = 1249.60 Flush # Conc = 3.00 Mass = 1583.49698.43 Flush # 4.00 Mass = 885.06 Conc = 390.37 Flush # 5.00 Mass = 494.68 Conc = 218.19 Conc = Flush # 6.00 Mass = 276.49 121.95 Flush # 7.00 Mass = 154.54 Conc = 68.16 Flush # 8.00 Mass = 86.38 Conc = 38.10 Flush # 9.00 Mass = 48.28 Conc = 21.29 Flush # 10.00 Mass = 26.98 Conc = 11.90 Flush # 11.00 Mass = 15.08 Conc = 6.65 Flush # 12.00 Mass = 8.43 Conc = 3.72

Number of flush volumes required: 12.00 Final concentration in groundwater: 3.72 micrograms per liter Time to cleanup: 24.17 years

CDM Federal Programs Corp. Rough Groundwater Flushing Report for BENZENE PARAMETERS USED Porosity: 0.10 Density: 2.20 kilograms per liter Plume volume: 2625000 cubic feet 4.00 gallons per minute Pump rate: 100.00% of contaminated liquid replaced each iteration Foc (percent organic carbon in soil): 0.1000% Contaminant: BENZENE Koc (Organic carbon partition coefficient): 64 liters per kg Kd (Distribution coefficient): 0.0640 liters per kg Maximum Contamination Level: 5 micrograms per liter Initial concentration in gw: 4000.0 micrograms per liter 'Mass' refers to total mass of contaminant in a volume containing one liter of groundwater. 'Conc' is mass in 1 liter of gw. Both are given in micrograms. Flush # 0.00 Mass = 9068.80 Conc = 4000.00 Flush # 1.00 5068.80 Conc = 2235.71 Mass = 2.00 2833.09 Conc = 1249.60 Flush # Mass = 3.00 1583.49 Flush # Mass = Conc = 698.43 Flush # 4.00 885.06 Conc = 390.37 Mass = 5.00 Conc = 218.19 Flush # 494.68 Mass = 6.00 276.49 Conc = 121.95 Flush # Mass = Flush # 7.00 154.54 Conc = 68.16 Mass = 8.00 Flush # Mass = 86.38 Conc = 38.10 Flush # 9.00 Mass = 48.28 Conc = 21.29 Flush # 10.00 Mass = 26.98 Conc = 11.90 Flush # 11.00 Mass = 15.08 Conc = 6.65 Conc = 3.72 Flush # 12.00 Mass = 8.43

Number of flush volumes required: 12.00 Final concentration in groundwater: 3.72 micrograms per liter Time to cleanup: 11.48 years The following tables summarize the parameters used and the results obtained from a flushing model used to determine the cleanup times to reduce the arsenic concentration in the overburden and aquifer to below the maximum contaminant level (MCL). Cleanup times were calculated for three areas within the overburden corresponding to the two proposed trench areas (Areas B and C) and the central portion of the site (Area A).

Input Parameters	Ov	erburden Area	as
	А	В	С
Porosity, n	0.15	0.15	0.15
Saturated Thickness of Aquifer, h (ft)	15	15	15
Area of Contamination, A (ft ²)	32,000	32,000	82,000
Volume of Contaminated Water, V _w [million gallons (MG)]	0.54	0.54	1.38
Retardation Factor, R	2	2	2
Flow Rates, Q (MG/yr.): Natural Infiltration * Ground Water Extraction **	0.24 0.42	0.24 0.42	0.61 1.1
Initial Arsenic Concentration, C _o (ppb)	97	150	185
Arsenic MCL/Cleanup Goal, C(t) (ppb)	50	50	50

CLEANUP TIMES IN YEARS REQUIRED TO MEET ARSENIC MCL

		Overburden Area	ıs
	А	В	С
Natural Attenuation * Ground Water Extraction**	3.0 1.7	4.9 2.8	5.9 3.3

* Due to 12" infiltration contacting contaminated zones.

** Due to 21" infiltration, which may include need for limited (summer) recharge.

AND DRESSER & MORE CLEARLY EPA
MADE DRESSER & MORE CLEARLY THE DATE CHECKED DATE CHECKED
DETAIL ASSENTS READ
DETAIL ASSENTS CLEARLY THE OTHER OF DETAIL OF THE CHECKED
DETAIL ASSENTS CLEARLY THE OTHER PARE NO. A TSENTE IN
the MCL of 50 pph for Arsenie in
the three or evolution areas A, B, C
(see Fig B-1) based on Natural attenuation
and based on extraction of the
contaminated groundwater.
Method: Use the hising Tank' approach described
by Bob Schreiber of CDM (see Cales dated
May 26, 1992): at

$$C(t) = C, e(nARR)$$

 $ln \frac{C(t)}{Co} = -\frac{Qt}{nARR}$
 $it t = -\frac{nAhR}{R} \frac{C(t)}{Co}$
where: $t = cleanup$ time
 $n = poronity$
 $A = Arise of Contaminated Plume
 $R = Retardation Factor (Use 2 - WORST CAS)$
 $Q = Flors Rate$
 $C(t) = Maximum Contaminant Level (50ppb)$
 $C_o = Initial Critaminant Concentration
In the above equation, $nAh = the volume of$
contaminated groundwater (Vw).
Thus, $t = -\frac{V_R}{Q} ln \frac{C(t)}{C_o}$$$

i

.

•

- · · · · · · · · · · · · · · ·

ţ

•.

AMP DRESSER & MOKEE CLIENT EPA
DETAIL ARSENIC CLEANUP TIME DATE CHECKED DATE COMPUTED BY APP
AREA B
Parameters Used: n = 0.15; A = 52,000 ft²; h=15 ft.
Vw = 0.54 MG
Natural Attenuation @ 12"/yr.
Q = 0.42 MG/yr.
Q = 0.42 MG/yr.
Co = 150 ppb (@ Well 52 S)
CLEANUP TIME:
Natural Attenuation:

$$t = -\frac{0.54 (2)}{0.24} \ln \frac{50}{150}$$

 $t = 4.9$ yrs.
Groundwaten Extraction:
 $t = -\frac{0.54 (2)}{0.42} \ln \frac{50}{150}$
 $t = 2.8$ yrs.

4

.

·. •.

÷

AMP DRESSER & MCKEE CLIENT EPA
DRETTIBBETTS RD
DETAIL ARSENIC CLEANUP TIME
AREA C
Parameters Used:
$$N = 0.15$$
; $A = 82,000 \text{ ft}^2$; $h = 15 \text{ ft}$
 $V_W = 1.38 \text{ MG}$
Natural Attenuation @ 12"/yr:
Q = 0.61 MG/yr.
Growndwrater Extraction @ 21"/yr:
Q = 1.1 MG/yr.
Co = 185 ppb (@ Well 505)
CLEANUP TIME:

•

Natural Attenuation:

$$t = \frac{-1.38(2)}{0.61} \ln \frac{50}{185}$$

 $t = 5.9 \text{ yrs.}$
Groundwater Extraction:
 $t = \frac{-1.38(2)}{1.1} \ln \frac{50}{185}$
 $t = 3.3 \text{ yrs.}$

.

CAMP DRESSER & McKEE

CLIENT EPA/ARCS PROJECT TOBETTS RD -	DATE CHECKED 5-26-92	COMPUTED BY <u>SCHREDBER</u> DATE <u>5/26/92</u>
DETAIL	CHECKED BY SDH SDE	

OBJELTIVES : ESTIMATE TIME TO REALLY MCL FOR ARSENIC IN PLOME AT WELL SDS AREA.

AN ESTIMATE OF TIME-TO-MCL.

SEE ALSO THE SWANSON - SCHLETBER 5/22/92 MITS. NOTES (1 PABE), MUS ATTACHES CONES OF LYMAN, ET M. BOOK PABES.

ALSO NOTE THE REFS. TO VOLS I, I, + III OF CAN'S 10/91 ARAFT R. I. RPT.

BOTTOM LINE: • MCL COULD BE REACHED WITHIN A YEAR OF 0.5 GAM PUMPING.

> DISPERSION COULD CAUSE THIS TIME TO BE EXTENDED.

- A GEOCHEMISTRY EVALUATION SHOULD BE PERFOLMED - TO ESTIMATE ASSOLFTION CHARTES. OF AS EN THIS GEOLOGY MORE RETADATION COULD EXTONS TIME-TO-MCL SIGNIFICANTY.

بالالتان والمتحافظين وواد فمستو

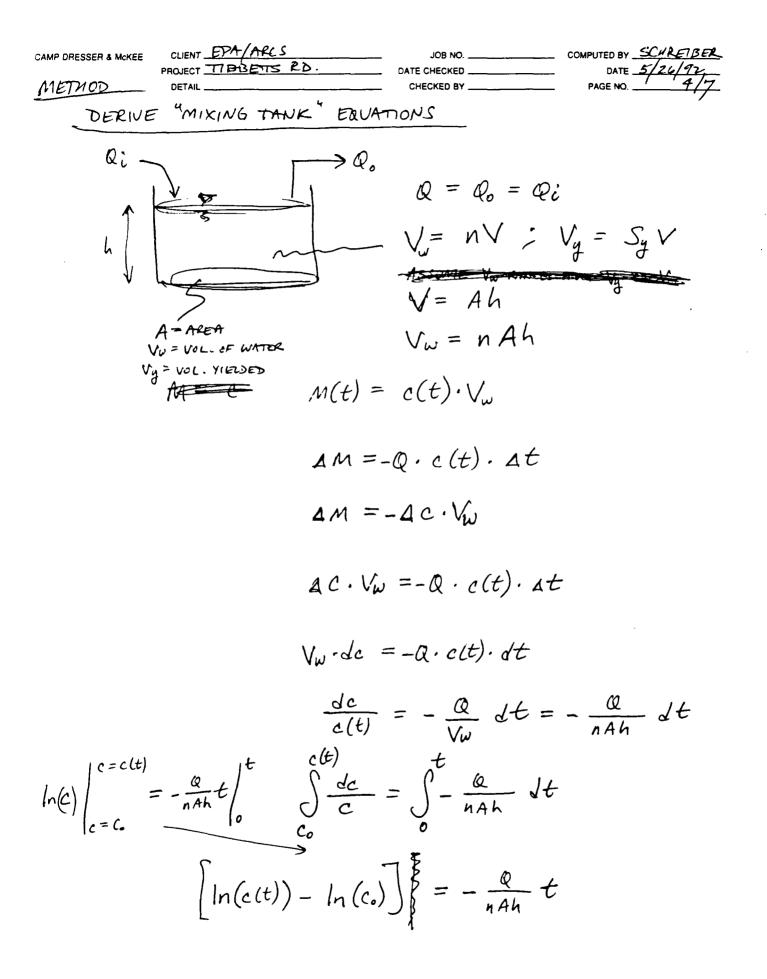
CAMP DRESSER & MCKEE CLIENT <u>EPA ARCS</u> JOB NO. <u>COMPUTED BY SCHRETBER</u> PROJECT <u>TTBBETTS RD</u> DATE CHECKED DATE <u>5/26/92</u> DETAIL <u>CHECKED BY</u> PAGE NO. <u>2/7</u>
ASSUMPTIONS CLOUDED
· PUMPING OF ARSENIC PLUME = 0.5 GPM = 0.26 MG
=35,157 ft 3/yr AREA OF PLUME 2: 1.5 x 0.8 @ 1 = #120 BASED ON FIG. # 5-60F10/91 JAAFT R.I. RPT. W. H
$A = (1.5 \times 120)(0.8 \times 120) = 17,280 Ft^{2}$
- DEPTH OF PLUME: BASOD ON FIG. 3-7 OF DAAFT R. I. RAT (10/91) NOL, III.
· PLUME IS ONLY IN BROWN SANDY TILL.
· DEPTH@50S ≈ 0.4 ° @ 1 : 20'
$h = 0.4 \times 120 = 8 ft$
· VOLUME OF WATER IN PLUME:
$V_{\omega} = nAh = (n)(17, 2BOFC^2 \times BFC)$
=(n)(138,240 Ft3) = (n)(1 m6)

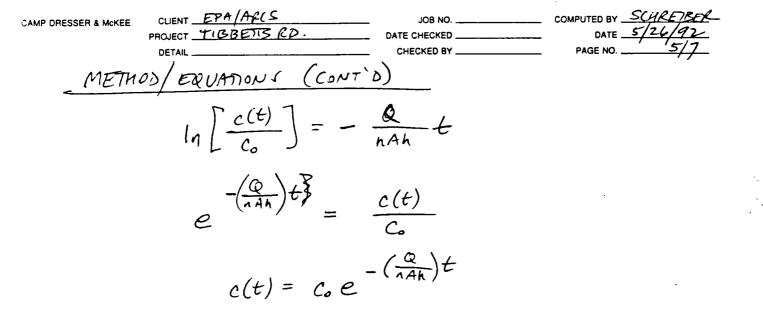
- · PORDSITY : ASSUME IT RANGES FROM 10% to 40%-
- · RETARDATION: · VOCS BENZONG + TOE HAVE MOVED ABOUT 20 FT/YEAR - p. 5-13, 3- 9, R. E. RET 10/92 VOL. THE
 - · ASSUMING VOCS WENT DUMPDO AT SAMO TIME AS ANSONIC, IT APPORAS THAT ARSEND HAS MOUDD AT SAME RATE AS BENTENE AND TOE.
 - . THUS, MOST LIKERY RETARD ATTON ESTIMATE SHOULD BE LOW, TOWARDS 1.

• · · · ·

CAMP DRESSER & McKEE	CLIENT EPA/ARCS PROJECT <u>TIBBETTS</u> R.D. DETAIL	JOB NO	DATE 5/26/92
- A35 , RE	SUMPTIONS (CONT'S) SUMPTIONS (CONT'S) · BASED ON LYM		SEF ATTACHED
	KERON PATER WITH MIKE	5 - AND	ON DISCULIENS WARREN LYMAN -
	CHEMIC VARCON CAN 7	CAL FORMS.	H, REDOX, ETT.) FTS FORM AND
		DATION IS THE EDICT.	HENEFOLE 4MB
	•••	C IS TYPICOU GROUNDWATER	
!		ZE THE GEOC	BE NETDOD TO HOMISTRY AT
	· +16, 2.1 LYMAN	12-6 ON p. 2 OT AL CAN	2.12-37 OF B5 USED.

ALSO SOLTION 3. 1.1, p. 3-2 OF DRAFT R. I. PPT VOL. I - FNDICATED SANDY, COAM SOILS.


THIS INDICATES "HIGH MOBILITY" -FUNTHER BACKING OF LOW RETANDATION ASSUMPTION .


· BOTTOM LINE - AS A MOST LIKERY CASE, ASSUME LITTLE RETAMPATION.

AS A "WORST CASO," R MAY BE Z OR SO.

. 7

· INITIAL CONC. AT STAT OF PUMPING - 139 Mg/L BASED ON R.I. RPT VOL. II TABLE 4-24. · TARGET CONC. : MCL = 50 Mg/L

THIS EQN. IS FOR MON - RETARDED SPECIES.

FOR RETARDED CONTAMINANTS, MODIFY THE VOLUME BY DEFINING AN "EFFECTIVE VOLUME":

$$V_R = \frac{V_w \cdot R}{R}$$

TUUS, MIXING TANK ERN BELOMES:

$$c(t) = c_{e} e^{-\left(\frac{Q}{n}AhR\right)t}$$

MAJOR ASSUMPTIONS OF THIS METHOD

- · PLUME IS FULLY MIXED.
- · DISPERSION SURING PUMP + TREAT IS LIMITED.
- · RETANDATION MODELS INSTANEOUS EQUILIBRIUM OF PARTITIONING.
- · RETARDATION SHOULD BE RANGED ALROSS LIKERY VALUES.
- · WATER VOLUME IS DEFINED BY POROLITY 'n -THIS SHOULD BE RONGED FROM SPELFIC FIELD TO FORM POROLITY.

CAMP DRESSER & McKEE	CLIENT EPA/ARCS	JOB NO	COMPUTED BY <u>SCHRETBER</u>
	PROJECT TTBBETTS RD-	DATE CHECKED	DATE _5/26/92_
	DETAIL	CHECKED BY	PAGE NO6/7

ANALYSIS

ţ

- · PREVANT A TABLE AND SHOW A RANGE OF POSSIBLE REJULTS. CIRCLE THE "MONE LIKELY" REJULT.
- · TWO RANGED VARIABLES ARE: ·R = RETADATION: 1-2; 1 MORE LIKELY ·N = POROSITY: 10% - 40%; 20% MORE LIKELY.
- · USE OTHER ASSUMPTIONS LISTED DSEWHERE.

$$MRTYSIJ ERN. ZTSED ON MIXING THUR ARADATH:
$$c(t) = c_{0} e^{-(a/nAhR)t}$$

$$C_{0} = 139 \mu_{0}/L$$

$$Q = 0.26 M6/gr$$

$$Ah = 1 M6$$

$$c(t) = 50 \mu_{0}/L$$

$$(50 \mu_{0}/L) = [139 \mu_{0}/L] e^{-\left[\frac{a 26 M6/gr}{(n)(1 M6)(R)}\right](t)}$$

$$0.36 = e^{-\left[\left(\frac{1}{nR}\right)\left(\frac{0.26t}{gr}\right)\right]}$$

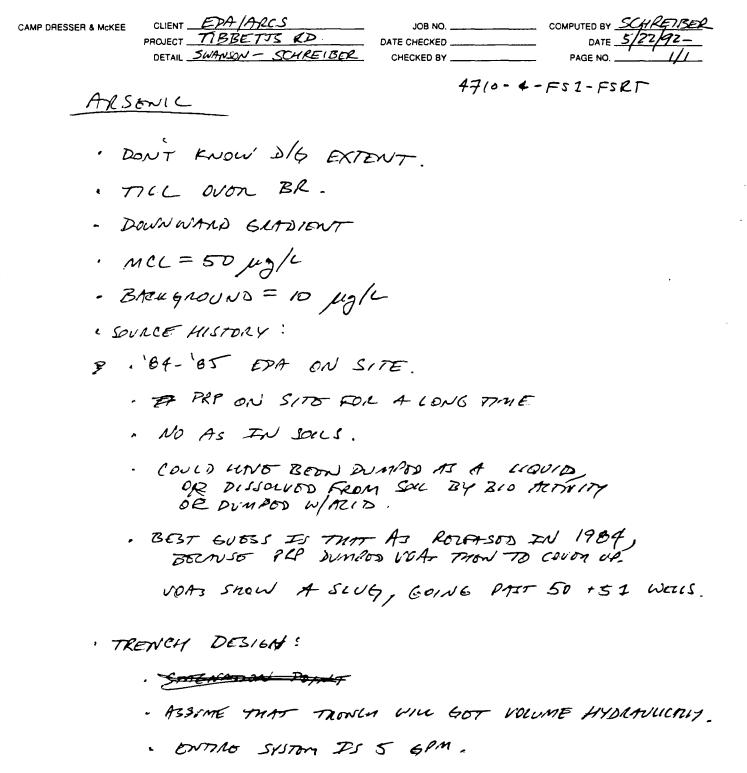
$$ln(0.36) = -\left(\frac{1}{nR}\right)\left(\frac{0.26t}{gr}\right)$$

$$IME TO \longrightarrow t = -(nR)\left(\frac{yr}{0.26}\right)\left[ln(0.36)\right]$$

$$t = (3.88 years) \times (nR)$$$$

CAMP DRESSER & MCKEE

CLIENT EPALARCS COMPUTED BY SCHRETBER JOB NO. _ TIBBETTS RD. DATE 5/26/92 PROJECT _ DATE CHECKED __ PAGE NO. ____ DETAIL ____ CHECKED BY _____


17

RESULTS

EST'D NO. OF YEARS TO REATH ARSENIC MCL 1

	RETTARDATION,	FACTOR
PORDSITY	1	2
1070	5 Mos.	10 Mos.
20 %	10 mos.	1 YR, B MOS.
30%	4 YR, 3 mos-	2 YRS, 6 MOS.
40 %	1 YR, & MOS.	3 YRS, 4 MOS.

$$\begin{array}{rcl} \underline{CHEUC} & \underline{CHEULTION} \\ \hline C(t) = C_0 & e^{-(Q/n \ AhR)t} \\ \hline t = 3 \ YRS, \ 4 \ mos. = 1, 216.75 \ Days \\ \hline C_0 = 139 \ \mug/L \\ \hline Q = 0.5 \ 6Pm = 720 \ Fe^{1/dag} = 9000 \\ \hline g^{2/5} \\ \hline A = 17, 280 \ ft^2 \\ \hline A = 17, 280 \ ft^2 \\ \hline A = 8 \ Fe \\ \hline n = 40\% = 0.4 \\ R = 2 \end{array} \qquad \begin{array}{rcl} \hline C(t) = (139) e^{-\left[\frac{1}{100}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)/(0.4+1)\sqrt{1000}(1+1)/(0.4+1)/$$

money ~ 1 GPM.

. ASSUME 0.5 GPM FOR AS PLUME.

· As RETARTION:

· encon w/ MIKE MILLON + WARREN LYMON.

ENVIRONMENTAL INORGANIC CHEMISTRY

Properties, Processes, and Estimation Methods

Edited by Itamar Bodek, Ph.D., Arthur D. Little, Inc. Warren J. Lyman, Ph.D., Arthur D. Little, Inc. William F. Reehl, Arthur D. Little, Inc. David H. Rosenblatt, Ph.D., U.S. Army Biomedical Research and Development Laboratory

> SETAC Special Publications Series Series Editors

Barbara T. Walton, Oak Ridge National Laboratory Richard Ashley Conway, Union Carbide Corporation

PERGAMON PRESS

New York • Oxford • Beijing • Frankfurt São Paulo • Sydney • Tokyo • Toronto

. .

Arsenio (As) 7.2-1

. . . t

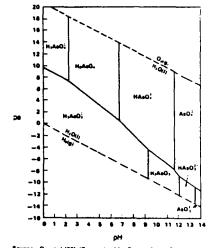
7.2 ARSENIC (As)

7.2.1 Occurrence and Uses

In its natural state, arsenic is usually associated with sulfide ores. Over 100 minerals and ores contain arsenic. The principal arsenic-bearing minerals include: arsenopyrite FeAsS), necolite (NASS), cobalitie (CoAsS), tennantite (Cu₁AsS₁), enargite (Cu₂AsS₄), and native arsenic (5). The principal arsenic compounds produced are arsenic trouble (As₂O₃) and arsenic metal, from which oner compounds are made. About 70% of all arsenic used is in posticides, principality the following:

- Monosodium methanearsenate (MSMA) HAsO₃CH₃Na
- Disourum methanearsenate (DSMA) Na₂AsO₃CH₃
- Arsenic acid H₃AsO₄
- Dimethylarsinic acid (cacodylic acid) --- (CH₃)₂AsO₂H

Other uses of arsenic and arsenic compounds are in wood preservatives, glass manufacture, alloys, electronics, catalysts, feed additives, and veterinary chemica, s [23].


There are many arsenic forms of environmental significance, including arsenious acids $(H_3A_3O_3, H_2ASO_3, HASO_3^{24})$, arsenic acids $(H_1ASO_4, H_2ASO_3, HASO_3^{24})$, arsenites, arsenates, methylarsenic acid $(H_2ASO_3CH_3)$, dimethylarsinic acid $(H_2ASO_3CH_3)$, dimethylarsinic acid $(H_2ASO_3CH_3)$, dimethylarsine $(ASiCH_3)_3$, dimethylarsine $(ASiCH_3)_3$, dimethylarsine $(ASiCH_3)_3$, there forms illustrate the various oxidation states that arsenic commonly exhibits (-III, 0, III, V) and the resulting complexity of its chemistry in the environment.

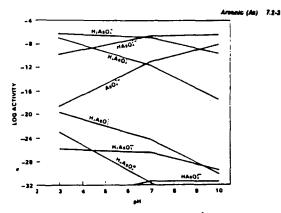
7.2.2 Speciation Reactions in Water

ArseniciV: chemistry resembles that of phosphorus(V) In aqueous systems, it exhibits amonic behavior. In aerobic waters, arsenic acid predominates only at extremely low pH (<2: within a pH range of 2 to 11, it is replaced by H₃ASO₄ and HAsO₄². Arsenious acid appears at low pH and under mildly reduced conditions, but is replaced by H₃ASO₄ as the pH increases. Only when the pH exceeds 12 does HAsO₄² appear. At low pH in the presence of sulfide, HASO₂ can form; arsite, arsine derivatives and arsenic metal can occur under varying pH and redox conditions. Figures 7.2-2 and -3 show the composition of arsenic in service and reduced systems, respectively.

Since it forms anions in solution, arsenic does not form complexes with simple anions like Cl² and SO₄², as do cationic metals. Rather, anionic arsenic complexes behave like ligands in water. Arsenic forms bonds with organic sulfur, nitrogen azc carbon. Arsenic (+111) reacts with sulfur and sulfhydryl groups such as cystnic, organic dithols, proteins and enzymes, but it does not react with amine groups or organics with reacte nitrogen constituents. On the other hand, arsenic (+V) reacts with

7.2-2 Bese Meinis

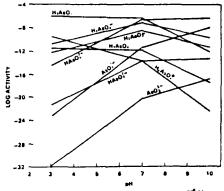
Source: Rai et al (22) (Cooynght 1984. Electric Power Research Institute Reprinted with permission.)


FIGURE 7.2-1 The pe-pH Diegram for Arsenic in Water at 25°C

reduced nitrogen groups such as amines but not sulfhydryl groups. Carbon forms organoarsenicals with both the trivalent and pentavaient forms [23]. The complexation of arsence (+ III and + V) by dissolved organic matter in natural environments prevents sorption and coprecipitation with solid-phase organics and inorganics; essentially, it increases the mobility of arsence in aquatic systems and in the soil [5].

7.2.3 Solubility/Precipitation

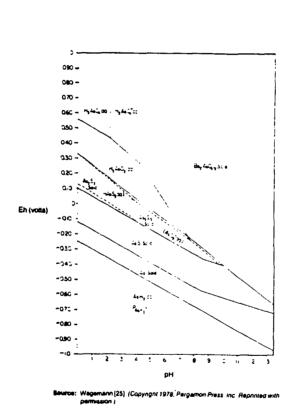
The behavior of arsenic as a ligand suggests that the presence of metal cations could result in precipitation of arsenates and arsenites. Wagemann [25] studied barium, chromium, iron and calcium at typical freshwater concentrations as possible factors controlling the concentration level of total dissolved arsenic in solution. He possible that at typical freshwater concentrations. Be is the most likely controlling metal. Figure 7.2-4 shows the theoretical conditions for the precipitation of Bay $\Delta sO_{1}J_{2}$.


AsS and or As_2S_3 may form in very anoxic environments where sulfur is present [8]. Some authors [5,8,22] suggest that FeAsO₄ may control As levels at high redox

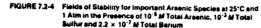
Total concentration of soluble As assumed to be $10^{-6} M$

Source: Ris stal [22] (Copyright 1984 Electric Power Research Institute, Reonnied with permission)

FIGURE 7.2-2 Activities of As Aqueous Species Under Aerobic Conditions (pe + pH = 16)


Total concentration of soluble As assumed to be $10^{-6} M$.

Source: Rs. et al. [22] (Copyright 1984: Electric Power Research Inseture: Recinited with Demission)


FIGURE 7.2-3 Activities of As Aqueous Species Under Reduced Conditions (pe + pH = 7)

7.2-4 Jacob Ma

pe-12.5; and actdic pH pH<2.3). Pb $_{1}AsO_{4/2}$ and $Mn_{3}(AsO_{4/2})$ have also been suggested as possible solids in natural environments 14], but it has not been established whether the mechanism is precipitation or sorption onto solid surfaces.

The precipitation of arsenic depends largely on redox potential and pH. However, the presence of other minerals is also important: co-precipitation of arsenic with sulfides and iron oxides is a significant removal mechanism for arsenic in aqueous systems, as described below.

7.2.4 Sorption on Solis and Sediments

Arsenic is strongly sorbed onto soils and sediments, and sorption is one of the principal means by which arsenic is removed from solution. The process actually comprises three mechanisms: (1) specific assorption onto Fe and Al hydrous oxides, clays, and carbonates; (2) co-precipitation with Fe oxides; and (3) isomorphic substitution of arsenic with prosphorus in minerals [24]. Co-precipitation with hydrous Fe oxides is probably the most common mechanism under most environmental conditions [5]. Ferguson and Gavis [5,8] state that co-precipitation with manganese oxides can also occur.

Each of the arsenic species possesses different chemical properties that affect its sorption behavior. In anarchoic sediments, Holm *et al.* [16,22] reported that arsenate is more strongly sorbed than methylarsenic acid. Cacodylic acid idimethylarsinic acid- is less strongly sorbed than arsenate or methylarsenic acid. Wauchope [27] found that the same order applied in aerobic sediments.

Ferguson and Anderson [7] stated that the sorption of arsenate on iron and aluminum hydroxide followed the Langmuir isotherm, while arsenite was less strongly sorbed on the same materials and seemed to vary linearly with concentration. Iron oxide surfaces are positively charged at particular pH conditions, and arsenate and arsenite may be sorbed as negatively charged ions. Gulens, Champ and Jackson [12] speculated that both $A_8(V)$ and $A_8(II)$ anions form complexes with Fe(III) in solution; the difference in $A_8(V)$ and $A_8(II)$ sorption could then be explained by the greater solubility of the Fe(III) $A_8(II)$ complex. Whatever the mechanism, $A_8(III)$ appears to be less strongly sorbed than $A_8(V)$.

The factors affecting argenic sorption on soils and sediments include redox conditions, pH, the presence of certain competing amons and complexing ions, salinity, clay content, and hydrous oxide content. Sorbed As:V in sediments may be remobilized if conditions become sufficiently reduced for As:VIII) to form. Argenic also appears to be more mobile under alkaline conditions. The maximum sorption of As:VI in takolinities and montmorillonite is at pH 5 (9). The sorption of As:III: increases beyond this pH; at pH 8, more As:III: is sorbed than As:VI. Gupta and Chen (13) showed that sorption of As:III: onto alumina, bauxite and carbon decreases at pH values above 9, while for As:V₂ the decrease occurs when the pH is above 7. Similar pH dependencies have been shown for sorption on Al and Fe oxides [1,21].

7.2-4 Tuce Metals

The rate and extent of arsenic sorption onto aluminal bauxite and carbon decreases with increased salinity [13]. The presence of other ions also affects arsenic sorption, because they compete for sorption sites or complex with arsenic. Because of its similarity to arsenate, phosphate competes strongly with arsenic area of its soils and sediments [4,15,16,18]. The anions that have little or no effect include Cl'and SO₄² [17,18]. Organics that complex with arsenic presumably would increase arsenic mobility and decrease its sorption.

The literature provides sorption constants for arsenic either as a particular arsenic species or for total arsenic sorption onto various sorbents, soils and sediments. Different types of sorption constants are also reported: sorption capacities at equilibrium. Freundlich constants. Langmuir constants, and sorption for specific experimental conditions. A brief summary of each kind of constant as measured for arsenic is given below. The reader is encouraged to refer to the original documents for details on experimental conditions, because values vary greatly depending on the particular conditions of each measurement.

Fuller [10,11] found the mobility of arsenic in clay soils to be low to moderate but much higher for loamy and sandy soils 6-10 cm/day for loamy sand/ Using leachates of varying concentrations from landfills and soils. Arthur D Little. Inc. (3) measured sorption capacity by means of batch tests. as shown in Table 7.2-1.

TABLE 7.2.1

Sorption Capacity for Total Arsenic at Equilibrium for Soils

Soli Type	Solution Conc. at Equilibrium (ppb)	Sorption Capacity (µg total As/g soil)	
Alluvial material	< 0.2-420	1.1-215	
Residual soil	< 0.2.225	1.1-28.9	
Silty fine sand			
with little clay	0 4-483	1.0-252	
Gravelly, well-graced			
sity sand	14-477	1.0-121	
Brown, clayey send	2.2-495	1.0 80	
Fine sand	10-514	1 1.7.9	

Source: Arthur D. Little, Inc. (3).

Areenic (As) 7.2-7

Elkhatib et al. [6] reported values for arsenic (III) sorption by various aoils in West Virginia. Freundlich isotherms were used to model the sorption for Lily (fine loamy sinceous), Chavies (coarse loamy mixed), and Upshur (fine mixed) soils. The results are shown in Table 7.2-2.

Sorption of arsenic V) has been described by the Langmuir isotnerm. For kaolinite and montmorillonite, A_m was reported [9] to be 7.19 and 9.9 μ moig respectively, and the corresponding K_L values were 3.54 and 3.57 (log M^{-1}).¹ For soils, A_m (total) was reported by Wangan et al. (26)¹ to vary between 3.31 and 4.47.

TABLE 7.2-2

Freundlich Isotherm Constants* for Some West Virginia Soils

Seil Type	L	iv	C			pin	20	-	Up	ahur
Herison,	•	81	•	Bi.		81	•	8		81
ĸŗ	28.3	22 7	77.4	93.4	30.3	18.2	63.8	102 0	33.4	21.6
1/N	8 389	0 428	0.437	0.460	0 474	0 956	0 671	0 669	0 5-45	0 636

Source: Eikhatib er al. [6]

Wauchope and McDowell [28] measured sorption. S (µmol g), for various arsenic species onto sediments from five lakes and one creek in the Mississippi River alluvial flood plain. Their results are shown in Table 7.2-3.

TABLE 7.2-3

Sorption (S) of Amenic Species Onto Sediments After Two Hours

		-0- -0-	HARD 3CH 3		Construite HArD2 ^{1CH} 312	
Sorpete Conc. (JMF)	0.37	3.87	0.35	363	0.40	3.80
Sorption [®] (umot/g)	-0 073 0.043	0.36-0.71	-0 008 0 067	-0 018-0 68	-0.011-0.061	0 01 7-0.44

a hepetive values indicate description from the sediments.

Source: Wauchope and McDowell [28]

 $1 = A_m = \text{Langmuir sorption maximum, µmol g: } K_1 = \text{Langmuir constant, log } M^{-1}$, A_m itela), is the sum of A_m it when more than one type of site. It is present

7.2-4 Tree Metals

7.2.5 Biotransformation

The biological cycling of arsenic in the environment is described in section 2.15, which deals with the microbial transformation of inorganic pollutants. Methylation of arsenic is important because of the extremely toxic products that result. Also, this process transfers arsenic from sediments back to the water column in aquatic systems, increasing arsenic mobility in the environment. Biotransformation of arsenic can produce highly volatile compounds such as arsine (AsH₃), dimethylarsine (HAs(CH₃)₂) and trimethylarsine (As(CH₃)₂).

The processes and conditions involved in arsenic cycling in water were illustrated in section 2.15 (Figure 2.15-3). This cycle has been found to occur in both freshwater and saltwater systems (2.5.8). The dominant processes in the arsenic cycle of an environmental system is determined by the environmental conditions (aerated or reduced. pH, microbial population, etc.: in the system.

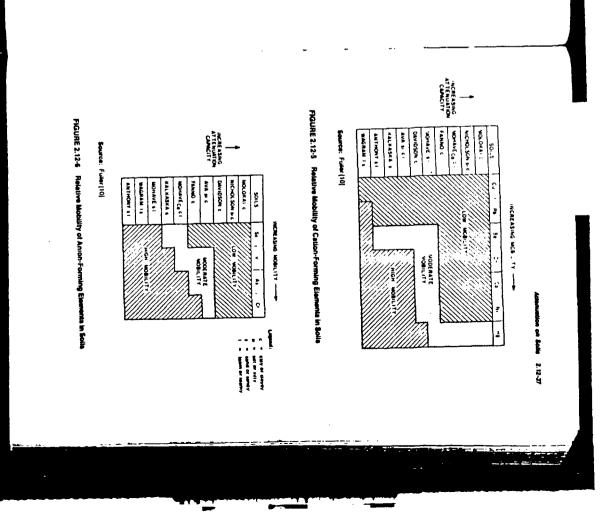
7.2.8 Volatilization

In extremely anoxic environments, arsine may be produced. Methylation of arsenic can also result in highly volatile methylated arsine derivatives. Arsine is probably rapidly oxidized under aerobic conditions or in the atmosphere [5,19,20], but dimethylarsine and trimethylarsine may be more persistent because of their lower rates of oxidation [5].

7.2.7 Literature Cited

- Anderson, M.A., J.F. Ferguson and J. Gavis, "Arsenate Adsorption on Amorphous Aluminum Hydroxides." J. Colloid and Interface Sci., 54, 391-99 (1976).
- Andrese, M.O., "Distribution and Speciation of Arsenic in Natural Waters and Some Marine Algas," Deep Sea Research, 25, 391-402 (1978).
- Arthur D. Little, Inc., Full-Scale Field Evaluation of Waste Disposal from Coal-Fired Electric Generating Plants. Appendix F (Part 4), EPA Contract No. 68-02-3167, Final Report to U.S. EPA, Office of Research and Development. Washington, D.C. (1984).
- Barrow, N.J., "On the Displacement of Adsorbed Anions from Soil: II. Displacement of Phosphate by Arsenate," Soil Sci., 117, 28-33 (1974), as cited by Rai et al. [22].
- Callahan, M., M. Slimak, N. Gabel, I. May, C. Fowler, J. Freed, P. Jennings, R. Durfee, F. Whitmore, B. Maestri, W. Mabey, B. Holt and C. Gould, Water-Related Environmental Fate of 129 Priority Pollutants, Volume 1: Introduction and Technical Background, Metals and Inorganics, Pesticides and PCBs, EPA-4004-79-029a, EPA Contracts 68-01-3852 and 68-01-3867. Office of Water Planning and Standards, U.S. Environmental Protection Agency, Washington, D.C. (1979).

- Araanio (As) 7.2-8
- 6 Elkhatib, E.A., O.L. Bennett and R.J. Wright, "Arsenite Sorption and Desorption in Soils," Soil Sci. Soc. Am. J., 48, 1025-30 (1964).
- 7 Ferguson, J.F. and M.A. Anderson, "Chemical Forms of Arsenic in Water Supplies and Their Removal," in Chemistry of Water Supply, Treatment, and Distribution, A.J. Rubin ed.), Ann Arbor Science Publishers, Ann Arbor, Mich. 137-58 (1974).
- Ferguson, J.F. and J. Gavis, "A Review of the Arsenic Cycle in Natural Waters," Water Res., 6, 1259-74 (1972).
- Frost, R.R. and R.A. Griffin, "Effect of pH on Adsorption of Arsenic and Selenium from Landfill Leachate by Clay Minerais." Soil Sci. Soc. Am. J., 41, 53-57 (1977), as cited by Rai et al. [22].
- Fuller, W.H., Investigation of Landfill Leachate Pollutant Attenuation by Soils, EPA 600/2-78-158. NTIS PB 286 995. Municipal Env. Res. Lab., Cincinnati, Ohio (1978).
- Fuller, W.H., Movement of Selected Metals, Asbestos, and Cyanide in Soil: Applications to Waste Disposal Problems: EPA 600 2-77-020. PB 266 905, Municipal Environmental Research Laboratory. Cincinnati, Ohio 1977).
- Gulens, J., D.R. Champ, and R.E. Jackson. "Influence of Redox Environments on the Mobility of Arsenic in Ground Water." in *Chemical Modeling in Aqueous* Systems E.A. Jenne (ed.), American Chemical Society, Wainington, DC, 81-95 (1979).
- Gupta, S.K. and K.Y. Chen, "Arsenic Removal by Adsorption." J. Water Pollut. Control Fed., 50, 493-506 (1978).
- Hess, R.E. and R.W. Blancher, "Dissolution of Arsenic from Waterlogged and Aerated Soils," Soil Sci. Soc. Am. J., 41, 861-65 (1977).
- Hingston, F.J., A.M. Posner and J.P. Quirk, "Competitive Adsorption of Negatively Charged Ligands on Oxide Surfaces," *Disc. Faraday Soc.*, 52, 234-342 (1971), as cited by Rai et al. [22].
- Holm, T.R., M.A. Anderson, D.G. Iverson, and R.S. Stanfortn. "Heterogeneous Interactions of Arsenic in Aquatic Systems," in *Chemical Modeling in Aqueous* Systems, E.A. Jenne (ed.), Symposium Series 93. American Chemical Society, Washington, D.C., 711-36 (1979), as cited by Rai et al. (22).
- Leckie, J.O., M.M. Benjamin, K. Hayes, G. Kaufman and S. Altman, Adsorption:Coprecipitation of Trace Elements from Water with Iron Oxyhydroxide, EPRI-RP-910, Electric Power Research Institute. Palo Alto, Calif. (1980), as cited by Rai et al. [22].
- Livesey, N.T. and P.M. Huang, "Adsorption of Arsenate by Soil and Its Relation to Chemical Properties and Anions," Soil Sci., 131, 88-94 (1961). as cited by Rai et al. (22).
- 19 Parris, G.E. and F.E. Brinckman, "Reactions which Relate to the Environmental Mobility of Arsenic and Antimony: I. Quarternization of Trimethylariane and Trimethylstibine." J. Org. Chem., 40, 3201-03 (1975), as cited by Callahan et al. [5].


rs for Calc

Emp

•. •.

el Para

Source: Amoozegar-Fard, Fuller and Warrick [2] (Copyright 1984, Reprinted with permission)

utine the Pr

TABLE 2.12-0

[2n] _{as} /[2n],									
Parameter	0.1	0.2	6.J	0.4	0.5	9.6	0.7	0.8	0.9
	0.0210	0.0173	0.0161	0.0149	0.0136	0.0111	0.00954	0 00803	0.00487
b	0.000657	0.000591	0.000570	0.000550	0.000526	0.000483	2 0 00046	6 0 00044	3 0 000394
c	2 784	2 747	2 897	2 660	2 637	2 638	2 660	2 648	2 698
đ	0 00373	0 00336	0.00324	0.00310	0 00268	0 00255	0 00254	0 00236	0 00211
•	~ 15.38	- 14.92	- 14 86	- 14 72	- 14 75	14 57	14.76	14 96	15 82
1	82 37	80 25	79 18	78 42	77 79	77 12	76 71	76.57	78 93
9	67.11	60 90	58.93	56 97	54 66	51 12	51 03	49 37	46 16
	- 188.2	167 5	162.1	156.3	- 148.2	- 135 9 -	137 1	- 132.3	- 122 0
1	- 6 44	~ 5 88	- 5.68	- 5.48	- 5 27	- 4.92	- 4.82	- 4.61	- 4 22
ہ م	0 841	0 844	0.846	0 848	0 847	0 846	0 846	0 848	0 846

n Velocity of Zinc by Four

n 19

2.12.14 ł

ē,

Particular Property

TABLE 2.12-4

Distribution Coefficients for Some Metals

		Barbola 6	100			
Netel	Berbent	Come. (M)	Meaning	Cans. (M)	pi 1	K _d (mirg)
Ba	Paver securiters	10-4.0	Seewara	-07		\$30
	Privar securrent	10***	Rever water	-	-	2,800
Cel	Montmoneore	10 ⁻⁶ - 10 ⁻⁷	NeNO, - NeOAc	10001	50	
	(No-Iom)		•	10001	45	100
				001001	50	210
				0 01 0 01	45	800
C u	Bertante (Ca-lorm)	9-10 ^{-6.1}	Seemater	-07		43
	Kasinas	Trace	Humic acid	0 mg 1	64	43
			better	0.5 μα/1	8.4	32
				10,001	84	25
				71 Sugel	64	22
	Fe ₂ O ₃ · H ₂ Oram)	10***	Seemater	-07		7,000
	MnO ₄ (hydroug)	0-10-6 8	Sec.ater	-07	•	7,300
Min	Fe emde(hydrout)	10 ^{-7 8} - 10 ^{-6 8}	Securator	-07		20.000
Hg	Fe ₂ O ₂ · H ₂ O(am)	2.5 - 10-5	NeNO,	10	45	50 200
			•		5 95	2.560.00
	Bentente	10*6	CalNO	0.01	67	408.009
			••		7 🖬	179,009
						118,000
N	Montmoniance	10-4 5	Securator	÷07		200
	Fe ende(hyereus)	10-4 5	Beausier	-07		100,000
Zn	ā-MnO,	10-4.10-4	Server	-07		800,000

۰.

:

•

K. - destinant malaget (in g-

C = max

Desa (them variable sources) addpted from Pian or at (24)

~ = 2 = 2 = 2 = 1 Ŧ Cone (B) ĉ Т Nuclo, **ON** ŝ N.S.

Langmuir Constants for Some Metals

TABLE 2.12-5

.

10⁻⁴ 10⁻³ Au(11) 10⁻⁴ - 10⁻³ Au(11) 10⁻³ 10⁻³ 10⁻⁶ - 10⁻⁶ As(N) as AsO2 10 ¹ 10 ⁵ 10^{-4.7} - 10^{-3.8} 10^{-4.} - 10^{-2.8} C(M) 10^{-3.3} - 10^{-1.8} C(M) Borberrt Hydrourde AV(OH)₃ (am) Onynydronde. Fe₂0₃ - H₂O(am) (mopily ^cow Monuclione (Na-torm) 2 **a** 3

÷,

ð

on Solis 2.12-19

.....

I I

7.5.5

APPENDIX C

Cost Information

(This appendix contains cost computations and backup for the presentation of costs in Section 4)

_AMP DRESSER & McKEE CLIENT	JOB NO	COMPUTED BY
PROJECT	DATE CHECKED 124	DATE
DETAIL	CHECKED BY	PAGE NO

CIVIL AND SITE RELATED.

COST ESTIMATE INFORMATION

:

.

_ COMPUTED BY_ _ DATE____ JOB NO._____ AMP DRESSER & MCKEE CLIENT_ PROJECT PAGE NO. CHECKED BY DETAIL Notes: Assume State does res, wells. VOA's are a lequete for tracking. (1) Demolition of Honse · tests for PCB's = \$1,500 say 10 tests @ \$150 ach. time to plan for, collect, and andy ze samples, write report. 200 hrs & \$50/hr. = \$10,000 \$ 11, 500 \$ 20,000 · Demalition activity/ \$ 5,000 · Cutop & Lord into poll-off's, lave found tion as is. · Disposel Cost c #30/Cabic good. 20' × 30' × 20' × 52 = 22.2 c.Y. 27 \$ 700 (not hozardons.) \$ 37,200 (say \$40,000 for removel.)

JAMP DRESSER & MCKEE CLIENT. PROJECT

(

(2) Site Aesthetics/Security. Fancing Repairs & upgrade. Rake, Lom & Secol. 2000/ \$2,500/ scre. RI/ prov waste removal 15 dramas e 300 each

JOB NO	COMPUTED BY
DATE CHECKED	DATE
CHECKED BY	PAGE NO
¥ 7,000	
\$ 4,500	use pg 5 Calculation = 120,000 \$27,000
# 77,500 -	X/2000
# 27,000	wes
\$ 34,000	2110/22

A Monitoring Sample 20 vells 3 parsons/I week 120 hours x # 50/hour = \$ 6,000 / per event. Sample/Amelysis Cost. (UOAS) \$205/somple x20 mills. = \$4,1000 / per event ac somples, etc. \$10 Report Prop, record keeping / verieus. = \$ 2,000 / par about \$ 12,500 / perevent. - \$ 13,000

AMP DRESSER & MCKEE CLIENT <u>EPA</u> PROJECT <u>Tibbetts Rd</u> DETAIL <u>Costs - Woter Supply</u> ALTERNATE WATER SUPPLY COSTS (A Portion of MM-2.)

· Issue is the cost of upgrading and operation and mointenance of the water supply.

Upgrading: Based on conversations with the district, it appears that There is a problem with clogging of the Silters. WRS discussed this with a district representative (Boucher) via telecom. The clogging occurs in a geotextile which separates The rock from the sand in the 2 - 70' x30' gravity Slow sand filters? The gestexpile is nonwoven and clogs? "Some one" had estimated replacment Cost at about \$100,000. - It appears that two optims are available: (1) - geotextile replacement - possibly with a woven fabric. (2) - complete filter replacement. - Cost Factors for upgrading of the filters: · Study of the problem: · Report on Finds and recommandations: · Specifications and promrement of contractor. · Modifica Hons: removal of sand, some & fabric. replace fabric and sond. replace piping.

• • •

AMP DRESSER & McKEE CLIENT	JOB_NO	COMPUTED BY WRS
DETAIL	DATE CHECKED CHECKED BY	DATE2/6/92 PAGE NO2
· Startup and shakeda	un of Filters.	
· Monitoring , & operation		r more.
Study of Problem / Report.		
Review Plans. (20 hrs)	Rego	t of Resalts
Discuss operation of disdr	rict. (56%) and	O Recommendations 5
Observe operations. Sampling & analysis in field	Rachar. Frank	-(30 hr.)
Sampling & analysis in dield		e# to/hn 2# 5,250]
· Estimate L.S. of \$10,000;	including sampling \$	and fy sis
Develop Promrement Domm	ants.	
Specifications & Drawings	, competetions - (200	h-s.)
Promoconant activistics -	(An here)	e Go /hr. = #14,400]
	6	
· Es dimate L.S. of #16,000.	<u>.</u>	
Remark a A Replace to	t Etter (- b
Removal and Replacement		
· Remore and stage sand	, stone & fabric.	
· Disposed of stone.		
· Fresh send & stone, new fil	br.c.	
30'X70'= 2,1005.F. X 2 = 4,20	00 S.F.	
Rough estimate: 4,2,005.1	F. X 3', 467 C.Y.	
Consider Excan, backill	compact by hand case	h.
Means 1331 Data	- 5A Elitra.	
R. 7. 36		
heary 30:1 #1.	9.50/c.Y.	
heavy 30:1 #1. hand tamp- 6* lagers. #1.	o. 40/c.Y.	
	2.93/G Y.	
A 2	7.92/GY.	

AMP DRESSER & McKEE CLIENT PROJECT DETAIL	JOB_NO DATE_CHECKED CHECKED_BY	COMPUTED BY W/S DATE 2/6/72 PAGE NO. 3
Silter fabric. Poly gropylene #	1.65 /5. Y. plus 50"	2.
(po. 47 - paramet	surcharge for - bise price)	Small eren
Stone: \$30/C.Y. X 467C.Y. Fabric: <u>4.200 x</u> \$2.5 \$/s.Y.		
With opening, excase from, & cleanyp a good rough		# 30,000.
Startup, shakerlown & m Estimate LS. of \$10,00	_	
Total of above: \$66,	<u> </u>	
(After consideration to estimate more th		cided e.) 40 6/5/92

•

CAMP DRESSER & MCKEE	CLIENT	JOB NO	COMPUTED BY
	PROJECT	DATE CHECKED	DATE
	DETAIL	CHECKED BY	PAGE NO

WATER TREATMENT SYSTEM UPGRADING

3/ 23/92

.

-

Comps. R. Stoops Check W. Swanson.

(MM-2)

TIBBETTS ROAD SITE

SYSTEM REPLACEMENT COST SUMMARY

Sludge Drying Bed 25,00 Yard Work & Piping 10,0 Subtotal \$205,0 Engineering, Contingency &Administration @ 35%	Building	\$ 70,000
Yard Work & Piping10,0Subtotal\$205,0Engineering, Contingency &Administration @ 35%\$ 72,0	Package Treatment Plant	100,000
Subtotal \$205,0 Engineering, Contingency &Administration @ 35% <u>\$ 72,0</u>	Sludge Drying Bed	25,000
Engineering, Contingency &Administration @ 35% <u>\$ 72,0</u>	Yard Work & Piping	10,000
&Administration @ 35% <u>\$ 72,0</u>	Subtotal	\$205,000
Total \$277,0		<u>\$ 72,000</u>
	Total	\$277,000

- Designed for 50 homes

- Treatment Provided by Two 50 gpm packaged units

- Use existing finished water storage and pressure system and existing chlorine and hydroxide system.

TECHNOLOGY SALES ASSOCIATES, Inc.

.

INSTRUMENTATION · CHEMICAL FEED · CONTROLE · BUTTERFLY AND BALL VALVEE · PROCESS EQUIPMENT

ARLAN A. BARTLET AUL S. SEISERT, JR.	5 WILKING DRIVE 2107 270
ayne C. Fischer Ssociates IIChael J. Brillon Arcy A. Colaneri IChard F. Kramer	(508) 696-6070 PAX (508) 899-7617 TELEFAX TRANSNITTAL COVER SHEET
DATE: -	3/20/92
TO:	CDM
•	617-621-2565
FAX #:	Bol Stopps
ATTN: SUBJECT:	Burrish NH. / CPC Microflow
PAGES:	6 TO FOLLOW
NESSAGE:	Der Bol
Enclos	
walt .	actuale two The SOA Tanks and other the Falsadamy you
des, re.	Place call with any instrans
	REGARDS,
IF ANY OF You.	THE ABOVE PAGES ARE NOT RECEIVED, PLEASE CALL US AT (508) 695-6070. THANK

OUR FAX NO. 18: (508) 699-7617.

. ·

03/20/1992 10:48

TECH SALES ASSOC

P.02

TRI-MITE UTILIZES TRIDENT • TEC COST-EFFICIENT WATER TREATMEN

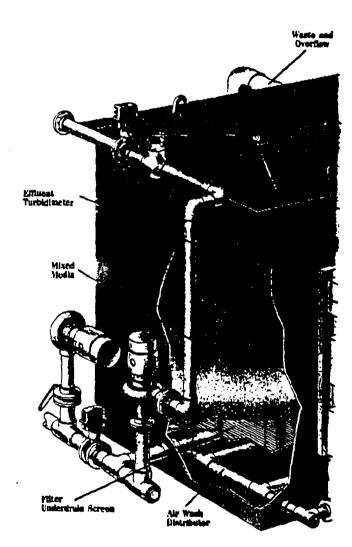
TRI-MITE™ IS

The Tri-Mite*from CPC Engineering is a complete, factory-built water treat-ment plant. Tri-Mile, the smallest in Microfloc Products' Trident® family of COMPACT treatment systems, combines the in-novative flocculation/clarification AND technology of the Adsorption Clarifier with solid-state controls and the pro-ven Microfloc Mixed Media (iltration pricess. The result is a prepackaged plant that can meet both municipa) and industrial standards for process and drinking water at a fraction of the cust and total land area required by conventional systems. Available in five sizes, one Tri-Mile unit can process flows ranging from 50 gpm to 350

> Benefits of the patentod = Tri-Mite system include:

eom.

- Superior water quality
- Minimal space requirements
- · Excellent process reliability
- · Easy, affordable installation
- Low maintenance
- · Simple operation


Unlike many other water treatment systems, Tri-Mite equipment is shipped fully assembled for easier, less costly installation. In addition, all but the two largest models are shipped with the Adsorption Clarifler media and Mixed Media already in place, further speeding installation and minimizing expense.

*Note: Proprietary 7% Mile lectropingy is privacted usdar U.S. parceus *4547206, *4606161, *4743382

PRODUCES

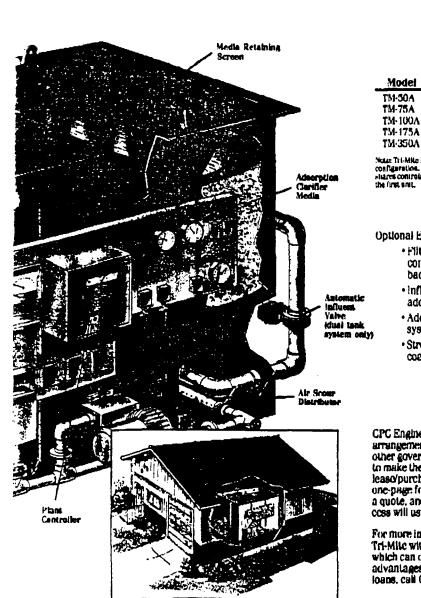
TRI-MITE^T Tri-Mite water systems are ideal for small-scale industrial and municipal water treatment of surface water and groundwater supplies, industrial uses HIGH- include polable and process water pro-duction and reverse osmosis pretreat-QUALITY ment. Municipal uses include treating drinking water in small communities. POTABLE OR park and recreation arcaw and resorts.

PROCESS The Trident process utilized by the Tri-Mite system can remove turbidity. WATER color, Iron, mangunese, laste and odor. The system also removes many lineas-

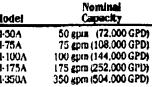
causing microorganisms, such as Glar-dia lambia and Cryptosportdium. The combination of the Adsorption Clarifier and the Mixed Media filter removes virtually all particulate contaminants and can routinely produce finished water with wrbidity of 0.1-0.3 NTU.

***** 15086997617

P.03


TRI-MITE™

MODELS


OPTIONS

AND

INOLOGY TO PROVIDE RELIABLE, T IN LOW-CAPACITY APPLICATIONS

This many illustration shows he compart som of a Tri-Mile and exten a correspondency compact plant building. [cffictual from use can modil. It significant capital cost so lags.

Note: Tri-Mile is dealigned for a one or two-unit configuration. The record unit of a two-unit system relates controls. Backwash pump and all blower with the first suit.

Optional Equipment:

- Filter-to-waste valve and controls for use after filter backwash.
- Influent static mixer where additional mixing is required.
- Additional chemical feed systems as required.
- Streaming current monitor coagulation control.

CPC Engineering has made special arrangements for municipalities or other governmental units that choose to make their Tri-Mile acquisitions with leaso/purchase financing. A simple, one-page form is all that is required for a quote, and the entire financing process will usually take less than a week.

For more information on acquiring a Tri-Mite with lease/purchase financing, which can offer cost and convenience advantages over bond issues and bank loans, call CPC Engineering.

CONVENIENT FINANCING IS AVAILABLE

03/28/1992

10:49

TECH SALES ASSOC

innovative solids separation device

clarification occur as the coagulated particles move through the media and

are adsorbed onto the surfaces of the

inedia and previously trapped solids. The Adsorption Clarifler provides stable, high-rate pretreatment and sends well-conditioned water to the

Mixed Media filter. At this stage, up to

95% of turbidity has aiready been

The Mixed Media filter polishes the

bination of materials to produce a

filter bed that hydraulically grades

flow to create excellent finished water quality. The fliter uses a careful com-

Licies. Contact flocculation and

HOW After chemical dosing, raw water enters the plant and flows upward

WORKS contains granular, buoyant media that urap and remove the coagulated par-

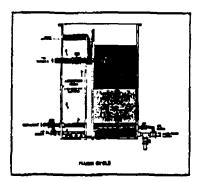
TRI-MITE through the Adsorption Clarifier. This

removed.

15086997617

XOIOIOK

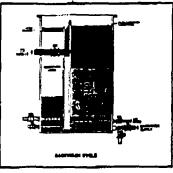
P.04



from coarse to fine in the direction of filter flow. This allows true depth filtration and increased solids storage at high filter rates designed to match the efficiency of the Adsorption Clarifler. The result is consistent, highquality effluent.

Proper coagulation is also essential for good water treatment, yet its control is seldom included as a process com-ponent, especially in low-capacity systems. The Tri-Mite utilizes a solidstate controller to facilitate congulation control. The controller continuously receives an effluent turbidity signal and compares it to the operator-selected effluent setpoint quality. If the actual effluent turbidity is above or below deadband (the acceptable range around turbidity setpoint, the controller directs an appropriate change in the primary coagulant dosage rate.

HOW TRI-MITE The patented Tri-Mite water system SIMPLIFIES which minimize operation and maintenance requirements. Painted carbon steel tankage, fully automatic controls and a compact design all


PLITEATION HODE

incorporates a number of elements AND reduce the amount of time and atten-tion required to maintain and operate MAINTENANCE the system. (Stainless steel or aluminum tankage is also available.)

> In addition, the Tri-Mite water system uses a simplified, two-step cleaning process. The Adsorption Clarifier is cleaned by injecting diffused air into the bottom of the clarifler. The air reduces the adsorption media's buoyancy, causing immediate expansion and scouring. Raw water continues to enter the clarifier, and the accumulated solids are flushed to waste.

> The Mixed Media filter is backwashed by reversing the flow. In the three smallest Tri-Mite models, filter media is directly relained by an underdrain screen.

The two largest models, TM-175A and TM-350A, are each equipped with a PVC pipe lateral underdrain system and media support gravel. All Tri-Mite systems include air-enhanced backwash.

The filter wash cycles are accomplished automatically and are coordinated with interlocking controls. The control system can also automatically initiate a backwash when the effluent reaches a given turbidity level. Should the backwash fail to lower effluent turbidity to an acceptable level, the control system can shut the plant down automatically and initiate an alarm.

CALL CPC ENGINEERING FOR COMPLETE ANSWERS TO YOUR WATER TREATMENT PROBLEMS

To learn more about the Tri-Mite or our other Microfloc water treatment. technologies, call (508) 347-7344. We can provide a complete, cost-effective approach to your water treatment,

are of CPC Engineering

P.O. Box 35, 4 Sturbridge, MA 01566 FAX: (508) 347-8158/(508) 347-7048

TRI-MITE" SPECIFICATIONS

xininini

GENERAL

Under this section of the specifications, the contractor shell fumish

GENERAL
Under this section of the specifications, the contractor shell furnish and install a completely integrated, factory-huilt water treatment plant similar and equal to TRI-MITETM. Model TM.
CPC Engineering Corporation, P.O. Box 36, Sturbinge, MA 01666, The equipment shall be suitable for indoor installation and have a nominal contract shall be suitable for indoor installation.
An 015 of the support of the s

TREATMENT PROCEES

Chemical Treatment. The chemical feed systems shall include three separate metering pumps, each independently adjustable to fend congulant, polymer, and a third chemical. Each feeder shall include a auction hose, atrainer, chemical-resutant tank, and mixer.

suction hose, atteiner, chemical-resultant tans, and integr. Automatic Chemical Control. Controls shall be provided to automate the primary coaquidellium ideage. Filter effluent tubicity shall be monitored and compared to an operator-adjustable sotpoint. Coaguiant dosage shall be adjusted automatically to bring the affluant turbicity to the satpoint. The unit shall have an adjustable deadband to minima-dosage overshout. Durage adjustments shall be proportional to the deviation from the setpoint. The unit will be contained within the main control result. control parier

deviation from the setDoint. The unit will be Contained within the main control period. Adsorption ClariflerTM. The Adsorption ClariflerTM shall have a total area of _______square feat. Adsorption clariflerTM shall have a total area of ______square feat. Adsorption clariflerTM shall be accom-plianed using gravitar adsorption media assoc fically manufactured for use in water treatment. The media shall be designed to optimize the encovel of coogulated part class with a initiation of headloss develop-ment. The meterial shall be of a type that has been damonstrated to echieve this performance in more than 100 full-esso instatetwish. The clean bed headloss through the Adsorption ClariflerTM shall be less than 18 where sit a 10 gpm/sql. ft. upflow rate. The adsorption media shall be returned by a corrosion-resettern assembly that allows free passage of water, but contains the granular accorption media shall be returned by a corrosion-resettern that adsorption media shall be returned by a corrosion-resettern assembly that allows free passage of water, but contains the granular accorption media perocles. The retainer but contains the granular accorption media of corrosion-resistant matchel. The comperiment system conserved of corrosion-resistant matchel, the comperiment shall be constructed of corrosion-resistant methods. Fittration. The total filter area shall be _______ equare fest. The ef-

Fibration. The total filter area shall be ______ square feet. The si-fluent system shall include a pump and a level-responsive value arrang-ed so that the plant offluent matches the filter encoded by the section of the shall be assisted with subliary air accur to enhance the beckwash stitclency. The filter media shall be a 30 inch deop Mixed Mode bed composed of three materials, each of diffuent sits and spacific growty, providing uniform void gradation from coarse to fine in the direction of flow. The top of the bed shall consist of material of approximately 1.2 mm particle size and the bottom of approximately 0.3 mm particle size. The matorials shall be carefully designed and selected by the treat-ment plant manufacturer. The TM-BOA, TM-75A, and TM-100A shall have filter material re-landed directly on a Johnson stanless stell channel-rod screen so as Elitration. The total filter area shall be source feet. The el-

The IM-BUA, IM-70A, and IM-10UA shar tave intor materials re-tained directly on a Johnson stainless stall channel-rod screen so as to siminate the need for support gravel. The TM-175A and TM-350A will be provided with media support gravel designed for the PVC pipe lateral undersche system. Filter materials for TM-175A and TM-350A shall be shipped in begs for ostalletien.

Low Pressure Air Supply, Low pressure air for scouring of the Ad-scription ClarifierMend Mixed Media filtration materials shall be sup-

plied by a two-stage regenerative type blower with a cast aluminum who inveiles and blower housing. The unit shall be dynamically be-anced, have a cose coupled ODP melor and induce intake and axinate aliencers. Bearings shell be double sealed and permanently lubricated.

allencers. Bearings shall be double sealed and permanently lubricated. Plant Construction. The major components shall be of the size and configuration shows on the plans. The tenkess outside walls shall be faincased of supported in subrably braced and supported. In no case shall a single wall separate filtered water and unfiltered water. The double builkhead shall be provided with free drainage. The arrangement of treatment modules, suxiliary devices and sup-porting equipment shall provide ready access for maintenance.

porting equipment shall provide roady access for maintenance. Surface Preparation. Cill, gresse, dirt, rust, miliscale and foreign mat-ter shall be removed from the netter tankage surface by a method defined by Steel Structures Painting Council Spec SSPC-SP10 and ex-terior by Spec SSPC-SPG. Tankage intenor and extentor shall receive at the fectory two custs of high build epoxy finish protective coating, to a thickness of 7 to 11 mile, suitable for potspie water service. Tank bottom shall be bare, for placement into a mattic base pad coating. Iduations and stainless steel tankage shall have a mette extender finish produced by sandblasting and shall not be painted.) Bare Smean Milens.

Plant Process Valves, Automatic valves with motor actuators shall be provided for process valves. Valves 2" and smaller shall be ball type with bronze body, brass bell and Teffon³ seats. Valves 2 ½ " and larger with bronze body, breas bell and Teflon³ seats. Valves 2,% " and length shall be water butterfly valves with aluminum bronze disc. Bune Neest and a tem seals, and und body. Motor actuators shall have 120V. 60 Hz supply, NEMA 4 enclosure. A manual water-type butterfly valve, compete with operating lever, shall be provided for backwash rate setting. Automatic valves shall be provided for efficient. Adsorption Clefifer scour, fitter scour, backwash inlet, wasts, and fitter dran-down An optional litter to waeto valve can also be provided. Plant influent flow shall be adjustable by a manual rate set volve. Prisht effluent flow shall be meintained by a level-responsive control valve.

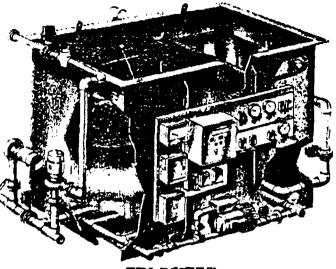
Automatic influent valves shall be provided on duel unit installations.

Automatic influent valves shall be provided on duel unit installations. Plant Control. The treatmont plant valve aeguancing and coagulant dosage adjustment shall be executed by a solid-tate programmable logic controller. The controls shall be completely asambled and mounted in a NEMA 12 enclosure. The control panel shell provide for automatically sterning and stopping the plant raw water pumpe and characal toed pumper, Lased on clearwell level or manual override. The control system shell provide means for automatically initiating cleaning of the Adsorption Clarifier ¹⁶ by elabed time or a preset. But adjustable, preserve sensor. Menuel initiate anall sites be provided. The control system shell provide means for automatically initiating the system shell provide means for automatically initiating clarifier¹⁶ can be cleaned at a time in duel tank systems. During the fluent cycle, calected sauds enail be removed by proper sequencing of valves and blower. Return to serve cal shell be automatic. The control system shell provide means for automatically initiating beckwash of the Mixed Medus filter by a preset, but adjustable, filter headings sensor or elepsed time. Manual initiate shell also be provid-ed. The control system shell induce an initeriock so that any one filter beckwash of the Mixed Medus filter by a preset, but adjustable, filter headings sensor or elepsed time. Manual initiate shell also be provid-ed. The control system shell induce a initeriock so that any one filter backwash cycle is initiated, the Adsorption Clarifier¹⁶ is fluehed first, immediately followed by a filler backwash. The control system shell successitically sequence valves and pumpe during the backwash excle. Return to service shells be automatically intrustes a backwash on stifuent high subdity and will shu the plant down and initiates a diales.

effluent high turbidity and will shut the plant down and initiate and a should the backwash fail to substantially reduce affluent turbidity after an operator selected time delay setting.

Pumps. The treatment plant menufacturer shall provide factory-installed offluent and hackwash pumps. Pumps shall be centrifugal, and suction, close coupled with OOP Motor. (See Technical Data Sheet.)

Electrical Equipment. The power supply to load center shall be Electrical Equipment. The power supply to load center shall be "Pump and blower motors shall be open crip-proof construction with 40°C rise rating. Motor starters shall be housed in NEMA 1 enclosures and are factory installed and wired.


Presessmbly, TM-50A, TM-76A and TM-100A units will be entirely factory pressembled with both clarifying and filter media installed. In-stellation requirements will include proper leastion of the unit on the public uses used and completion of electrical and piping connections.

Plant Startup and Operator Training. The trastment plant manufac-turer shall provide ______ days of plant start-up and operator table ing. Training shall be conducted by a factory-trained servicement employed by the manufacturer. An additional _____ dayse of technical direction shall be provided for media placement in TM-175A and TA-38QA units.

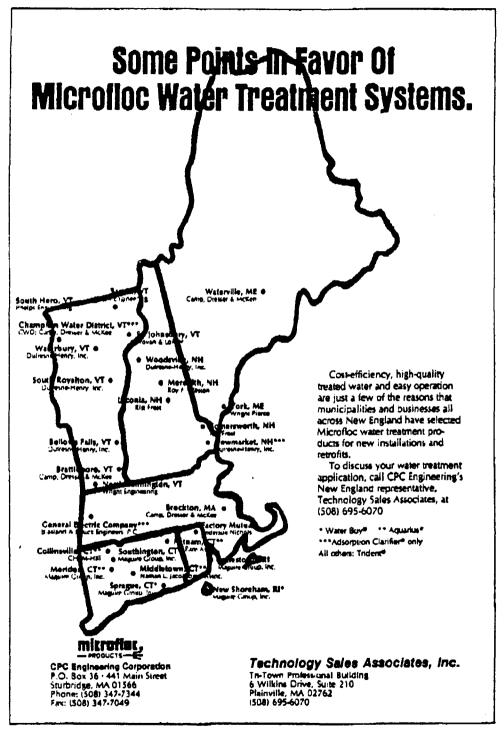
Operator's Manual. The treatment plant manufacturer shall furnish three Owners Manuels which shall provide complete instructions for installation, start-up, operation and maintenance.

*Telling to a responsed weakewark at Durant Curb.

CPC Engineering Corporation P O. Box 36, 441 Main Street Sturbridge, VA 01566 (508) 347-7344 FAX: (508) 347-8155/(508) 347-7048 P.06

TRI-MITE" TECHNICAL DATA SHEET

PARAME	TERC	UNITS	TH FOR	TH TEA	794 4004	TM-176A	TM-350A	
		and the second se	TM-50A	TM-75A	TM-100A			
Influent Forw	4418	GPM (GPD)	50 (72,000)	76 (108,0005	100(144,000)	1751262.0008	350 604.0001	
Shipping Climentiane		Length (Ht)	8'-4"	₽'·Ĵ''	10-11"	12' 6''	22'.4" TE	
		Wights (1t)	6'-10''	5.5.	8.0.	10'-4''	10,10	
		Height (ft)	2'-0"	9'-1'	8'-11''	B+4"	9'4'	
Tank		Langsh (fe)	8'-7''	8'.4"	2.9.	10'.8"	18-2"	
Dimensions		Widdy (11)	2.9	4 -1"	4'.1"	\$611°	8-11 -	
		Height Ift	7.4"	7' 8'	7'-4''	7'-6''	7-8 11 15	
Weidhis		Shipping (line.)	8,000	≥.000	12.000	21,000	42.0005	
	r	Operating (Ibe.)	10.500	18 000	21.000	37,000	74.000-3 36	
Vasa Ped Dee		Pounce/It	575	678	878	875	676 - 5.76	
Seckwash Ho Tank Volume	iding.	Gallons	2,500	00£.t	8.200	8,100	18,2007-18	
Overneeg: Clearange		Minimum into	2*-8**	2.0.	2"-8"	2.4"	2'-5'	
		Infruent Go.1	2	211	3	4	8 41	
Pice		Ethuantlina	2	239	3	4	8	
Connettiens	[Backwash (m.)	3	4	4		8 , 14	
		Westar Overflow (in.)	4		6		10	
Adeproprieto		Total Area (Ith	5.0	π	10.0	17.6	36.0	
Clarrier		Upflow Rate (gpm/tt ¹)	10	10	10	10	10 + , 2	
Miguel Martin		Totel Area (ft*)	100	15.0	20.0	35.0	70.041	
FRIDE		Hats (gpmvf13)	6	6	6	6.	6	
	[Sectwesh Rate -gpm/ft*)	18) I	15	. 16	16 5040	
Total Volume per Week Cysle		Adsorption Clarifier (gal)	400	600	500	1,400	2.800.1.1	
(Notes 1 & 2)		Mined Media (gal.)	906	1,310	1,800	3,190	6.300× KA	
	Pumpa	Effluerat	50 gpm, 1 hp	75 gpm, 1 % hp	100 gpm, 3 hp	178 gpm, 8 hp	350 gpm, 10 heve	
i		Beckweek	1 WD gpm, 3 hp	270 gp/m, 5 he	380 game, 7 % hu	\$25 gpm, 10 hp	1.000 gpm. 28 hpd	
	alle wer	Horsepewer	3	3	7.6	7.6	2.1 (-34	
	Convoie	Sold Sum	Autometic	Automeut	Autometic	Autometre	Automote H	
ļ			50 get, tena	100 gal. term	100 gal, tenit	200 gal. tank	400 gal, tankie à	
Presente	Chemica: Feed	Cassulant System		60 gpd piump	106 gpd pump	108 gpd sump	240 gpt pump	440 gpd pumper?
Canyonense				X op miner	¥ ha miser	W hp muser	Vis nep mixed	% ho must we
		Robust and an	80 gal, tenk	50 gal, tank	50 gai, terik	100 gel. tenit	200 gal. Hank	
		System	60 ppd pump	60 gaul pump	50 god pump	108 gpd purse	240 gp6 pump1 s	
			% ing mener	% hamiser	A hpmvag	14 ng munir	N PB MINE KAT	
	I	0	50 gal. tank	50 gal tenit	50 gal. tank	100 gail tanà	200 gal, tank	
J	•	Other Chemiual	28 gad purse	38 gpd pump	38 gpd oumo	108 990 0000	240 god pumping	
			S no miser	X ho mean	K hpmizer	st np mister	X ho miser see	
Electrical		Lood Comer	120/240V. 60Hz.	120/2404. 50 Ha. 19. 3 WWW. 70A	120/208V. 60 Hz 30, 4wrs, 70A	120/2087. 50 HE 38,4 WEB. 100A	120/208V, 40Hz 30, 4 wire, 1 50A	


n baskwart role stawn anno y 38 yr. Ware are basad on a b-mitum boukw 17 SE required at SULT. Required rize views framer with comparynue fram 10 genuit? at 2014 at 18 ge IL WARE DIVISION

Assergtion Clocker" is normally worker waste hondry system should be sized read on an B-minute table visiter fluids. unes between Milled Media Leaks rask volumes from sech uumpers

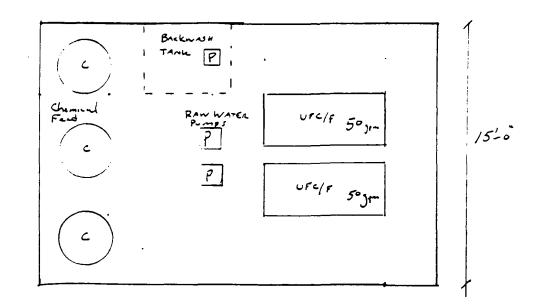
ant puriviry weath should mavide a range of 28 38 R. at the plant what

A version private provide several or the stage of 22 4 m. in the part sets.
 A version private private private several several of 22 4 m. in the part sets.
 A version private private private several several sets.
 A version private private private private several several sets.
 The means and the computation means the concrete and have turbuleness private priv

. •

As seen in "Journal," New England Water Works Association.

P.07


AMP DRESSER & MCKEE CLIENT BANNINGTONNY PROJECT WTP DETAIL JIZING	JOB NO.4710-Y-ARI COMPUTED BY RAS DATE CHECKED 3/23/72 DATE 3/21/92 CHECKED BY WRS PAGE NO. 1
50 Homes	
	Regis : (WATER USE 115 gal) per bedrenn
Assure: 3 bedround pa 50 x 3 x 1-5 = 1 (500 x. 600 x.	<u>,</u>
peak hear demond : From Chark Viessmo	
Third Addition Graph for peak water	· · · · · · · · · · · · · · · · · · ·
r	2 h.a / Acres 100,000 jid
100000 jpd = 69	Just.
To Serve as reduce and to meet price	Jon packaged UNITS dancy for Average USE due peak Usage,

• •

1

JOB NO. 4710 - 4-AEI COMPUTED BY ______ CLIENT BACCING TIM NI-AMP DRESSER & McKEE PROJECT ______ ____ DATE CHECKED______ DATE_ Size & Git PAGE NO. DETAIL____ CHECKED BY. Assume. A. USE Existint Finished water Storage & pressure system USE Existing Chlorine & Hydroxide System. COSTS Moonly or create drying hed for solids # 25 000 packaged plant cost assume EMicroflow or similar usige \$ 90,000, - 128,000 547 100,000 Stanley Steek Carbon Strek

25'-0"

Small Package Building: 25 × 15 = 375 59. FT @ 180/st = 67,500 SAy = \$70000

CAMP DRESSER & MCKEE CLIENT GARAGE NH PROJECT WTP DETAIL SIZN CUST	JOB NO. 4710-4-AEI COMPUTED BY PASE DATE CHECKED 323172 DATE 3/2102 CHECKED BY WRS PAGE NO. 3
Cost Summary	_
Bu. 12.~.	# 70 000
PAchage plant	\$ 100,000
dry, y Bed	\$ 25,000
Misc. Yard work & promp	\$ 10,000
TIZIN TO EXIST System	# 205,000 -
+ Engineering & Contingency	72,000 Orme 6/10/92
35%	# 266,500 800
	277,000 64492

···· ·

t

AMP DRESSER & McKEE CLIENT	JOB NO	COMPUTED BY WES
PROJECT	DATE CHECKED	DATE 2/6/92
DETAIL	CHECKED BY	PAGE NO

Annal OfM Budget for next year is \$15,000 not including labor. 10 to 12 hours / week for labor. Say 12 honrs/wk x Szweeks x \$ 50/honr = \$ 31,200/yr. Total: \$46,200/yr.

JOB NO	COMPUTED BY
DATE CHECKED	DATE
CHECKED BY	PAGE NO
C	ATE CHECKED 11/LI/41

Alternative MM-2

٠

LIMITED ACTION ALTERNATIVE

ITEMS	CAPITAL	OFM	NOTES
DEMOLITION AND REMOVAL OFHOUSE	\$ 40,000		Tested but not hazardous.
2) SITE SECURITY GENERAL CLEANUP (3) PREPARATION OF DEED RESTRICTIONS	# 27,000 # 27,000 # 34,00025 wps z17/92		(Using pg 5 calculation for Denneo Waste Disposar).
MONITORING OF GROUND WATER WATER SUSTEM UPGRADE ADD: ENGINALING 2 1590 ADMIN & 590 Add 202	* 6 6,000 × 17 * /0,500 3,500 * 10,500 * 10,500	\$ 13,000 per event. 194 \$46,000	4 times for two years = #52,000 2 times for two years = #26,000 Annual thereafter: #13,000 Must use 1020 discount rate:
Capital OfM	# 96,500 # 68,000 # 169,500 2017	wits 59,000 2(7)72 59,000 2(7)72 59,000 2(7)72 59,000 2(7)72	

• • • •

JAMP DRESSER & McKEE CLIENT____ PROJECT_

DETAIL .

JOB NO._____ DATE CHECKED______ CHECKED BY_____

COMPUTED BY_ DATE____ PAGE NO. (S.)

Consider Incincrator Ash/RI waste (for Irent 2 above) Ash 12 donns: 3 donns. Sampling & analysis e \$ 1,000 each (dioxin tests on somet with drums.) \$ 12,000 Remarkal: themp of conside 12,000 6,0 ... Off-site disposal e 1,000 each 24,000 w/ reparts, ck wrs 2/10/92 Say \$ 20,000 27,000

AMP DRESSER & McKEE CLIENT DA	ЈОВ NO С ГЕ СНЕСКЕД <u>и/ч/{i</u>	COMPUTED BY <u>N/R.S.</u> DATE <u>1943/7</u>
DETAIL C	HECKED BY	PAGE NO()
COST ITEMS FOR CONSID	ERATION MM	-3 plus.
Grandwoter mon: toring.		
Well installation.		
Trench in solallation.		
Observation well installation.		
Connection pipes to tradmant	uni B.	
Storage / equalization tank.		
Air stripper		
Carbon Adsorption		
4V/03 Unit		
Discharge piping		
Building, w/ HVAC & Planbing		
Instrumentadion + Controls		
Process Piping.		
Bench Scale Tests.		
Neal to secure & resoluct sit	e per MM-2.	
May need to provide a new force		

•. •

.

JOB NO. 7710-007 COMPUTED BY WCS DATE CHECKED (1/21/91 DATE 10/22/97 CHECKED BY PAGE NO. (1) CAMP DRESSER & MCKEE CLIENT_ CLIENT Erif PROJECT TibbetB. Rol. DETAIL Tranch/Well System Compute Costs of Extraction System Basend on F.S. Appandix A Work by R. Prese. (AM-4A, etc.) (MM-5,6 \$7) WRS 4/15/92 6/5/92 Extraction System Details (1) Trenches 2-350ft. = 700ft. - till depth @ some 15 to 20ft. - to be conservative, preliminary cost at the trench system can be 20ft. deepalong the antire long the Cost Factors soil sampling & analysis. estimate nearling samples for VOA's along trench lines (would be part of design cost) - excavate and temporarily stockpile soil. - trench dewatering / treat water in plant (already constructed) - placement of filter fabric and draininge net. - placement of crushed (filter) stone base. - placement of "under drain" pipe. - complete placement of crushed some. back fill trench with excavated soil. remore excess spoil to on-site recharge area. - place manholes, pumps, controls and force mass to treatment buildings. - connect to control panels & start system. water from tranch would be un Mon the free trant zystam. USE sheet pilling for tranch stabilization Arro Demotering following A CANATION.

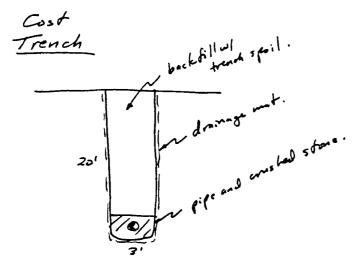
AMP DRESSER & MCKEE CLIENT_______ JOB NO._____ COMPUTED BY WILS PROJECT______ DATE CHECKED II 21/41 DATE DETAIL ______ CHECKED BY @ML PAGE NO._____

•

;

- - - ----

۰.


.

CAMP DRESSER & McKEE CLIENT____ PROJECT___

DETAIL

wes

3.

 $\begin{aligned} & \mathcal{E} \times \operatorname{Caushin}: \quad \overline{\frac{700' \times 20' \times 3'}{27}} : 1,556 \text{ C.Y.} \\ & \overline{27} \end{aligned}$ $\begin{aligned} & \operatorname{Cnushed} \ & \operatorname{Stme}: \quad \underline{3' \times 1.5' \times 700'} = 117 \text{ C.Y.} \\ & \overline{27} \end{aligned}$ $\begin{aligned} & Fabric/\operatorname{Net}: \quad \underline{43' \times 700'} = 3,344 \text{ S.Y.} \\ & \overline{3} \end{aligned}$ $\begin{aligned} & Fipe \qquad : \qquad 700' \\ & \overline{3} \end{aligned}$ $\begin{aligned} & \operatorname{Pipe} \qquad : \qquad 700' \\ & \operatorname{Manholes}: \qquad One \ at \ each \ and, \ one \ cauter \ - \ total \ G \ each. \\ & \operatorname{Pumps}(2): \qquad 1 \ ta \ 2gpm \ each. \\ & Feed \ & Fipes: \qquad 400', \ 4-5' \ deep \ & franch. \end{aligned}$

Means Cost Data for 1221 10 Red: tim Site Work Cost Data

		COMPLITED BY LANCE
AMP DRESSER & McKEE CLIENT PROJECT	JOB NO DATE CHECKED <u>1121 [1]</u>	DATE PAGE NO.
DETAIL	CHECKED BY	PAGE NO
Dramage geotexpiles:	Fabric/advarse anditions:	# 1.65 /S.Y.
	(0.44" Phick) adverse conditions.	\$ 16.20 /5.4,
Drainage material:	3/4" crushed stone	: \$ 17.65/c.Y.
Downtering (pg. 25)		
2" di.	Phrs gran pung.	: \$100/day
Trench Excavition (9	g. \$+)	
14	'-20' cleep.	: \$3.54 /c.Y.
Backfill & Compact. ((First End		: \$ 1.56/c.Y.
	Enche comme en M. (pg. 35) 6"wide / 60" dage	: ⁸ 0.62/L.F.
For collection p.pe. 1 use water distri	pg. 65) 5y stan price. 2" \$: #4.0) /L.F.
Sheet piling (Steel) (204 Deep 10 times 50	p26) pull + Savage but reuse deduct savage value + sceap.	# 9,20 / S.F.
On-site handing of ero	in med material (to stockpile on Gu	er) 4.00/cy

•. •

-

JAMP DRESSER & MCKEE CLIENT	JOB NO	COMPUTED BY WRS
PROJECT DETAIL	DATE CHECKED UIU	DATE PAGE NO
	I	

i

5.666k1 \$ 77,227

;

sub. Total \$117,000

· - --

ţ

$$\frac{100 \times 20 \times 3 \text{ ft uine}}{27} = \frac{1556}{\cancel{x}^{4}/\cancel{cy}} = \frac{12,450}{\cancel{x}^{4}/\cancel{cy}} = \frac{12,250}{\cancel{x}^{4}/\cancel{cy}} = \frac{12,250}{\cancel{x}^{4}/\cancel{cy}$$

•• •

•

	JOB NO	COMPUTED BY
AMP DRESSER & McKEE CLIENT PROJECT	DATE CHECKED	DATE
DETAIL	CHECKED BY	PAGE NO (7.)
	Bala	a Comed of
Cost	F	ue Conned of Wed = 335,000
Wells.		•
60 ¹ 30		
5 wells @ 421 = 20	at total drilling.	
@ \$150/ff	4	45,000 = # 30,000
@ 120/04 ²		
	c	# 10
Prings & Con the Is L.	2.	# 10,000 wrs
•		CI
h	ells sub Total	\$ 40,000
	Collection System foto	1 = # 3.75
	COLIZCIEN SUSPON POIN	575,000
Cost	,	
Recharge Area		
Cost @ Tranch system 6	o" dece.	
(600 Ht. do	(\mathbf{A})	
	-	
Use costs from collection (franch.	
64 de siza aliza t		
6" & pipe placement		
600° X ×	1.80/c.F.	- 41,080
Complexes famps. 30 m.	he \$ 8.30 cody.	- 264
Peccast Manholes		
vecase / un toles 2 and at s't		<i>u</i>
\$940 X 2 =		= \$1,880
-740 X 2 -		
Crushed Store		"
2'X 3' X 600' X \$17.6	5/c.7.	= 42,353
27		
	4	

,

Subbohl: \$ 5,577

AMP DRESSER & McKEE CLIENT	JOB NO COMPUTED BY WKS
PROJECT	DATE CHECKED 11/21/91 DATE
DETAIL	CHECKED BY WK PAGE NO. 8
	(coursed forward) \$5,577

Excavation and Backfill	
5'x 2' x 600' x \$ 5.10/c.1/.	\$ 1,133
This system only included in Altomative MM-7. Statent B states 1972 5. 5 total Refer to Insection fills 1001 1000 total or 5 total	\$ 6,710
Well Surcharge for H#S, Materials Cost Handling (2003) Estimate Handling (2003)	\$1,342
9 6 9 9 19 2 Total:	\$ 8,052
round to :	\$ 10,000

Need to Compute annual OfM. - Combine with Treatmont. Inspection and maintanance. Power for pamping. Parts, etc. add #1,000/year. Time 2480 huns @ 50/hre #4,000 / year. Power: Exbraction 7 units @ 1/6 HP Cost: 7/ HPX0746 EW X8760 home (yr X \$0.10/AWA HP = #762.41/yr. Total # 5,762.41/yr. Powned to # <u>G.000/yr</u>.

COMPUTED BY BALL JOB NO. AMP DRESSER & MCKEE CLIENT. DATE 11/21/91 DATE CHECKED_ PROJECT. PAGE NO._ CHECKED BY_ DETAIL _ CLEARING + GRUbbing Costs hems pg 23 estimate based on 2 acres total to be cheed + grebbed Change # 8475/acte x 2 = #16,850 gryb @ 4525/acte x 2 _ 9,00 \$ 26,000 Mobilization / DENObilization Costs @ #10/mi per equipment item Assume 50 miles are way = 100 miles R.T. squepment needed : 4 dump trucks No Zen/Londers Z backhoes 2 pile Driver 1 Schaper 10 , temes × 1.5 (entrigency) = 15 equipment items 15 x # 10/mi x 100 miles = \$ 15,000

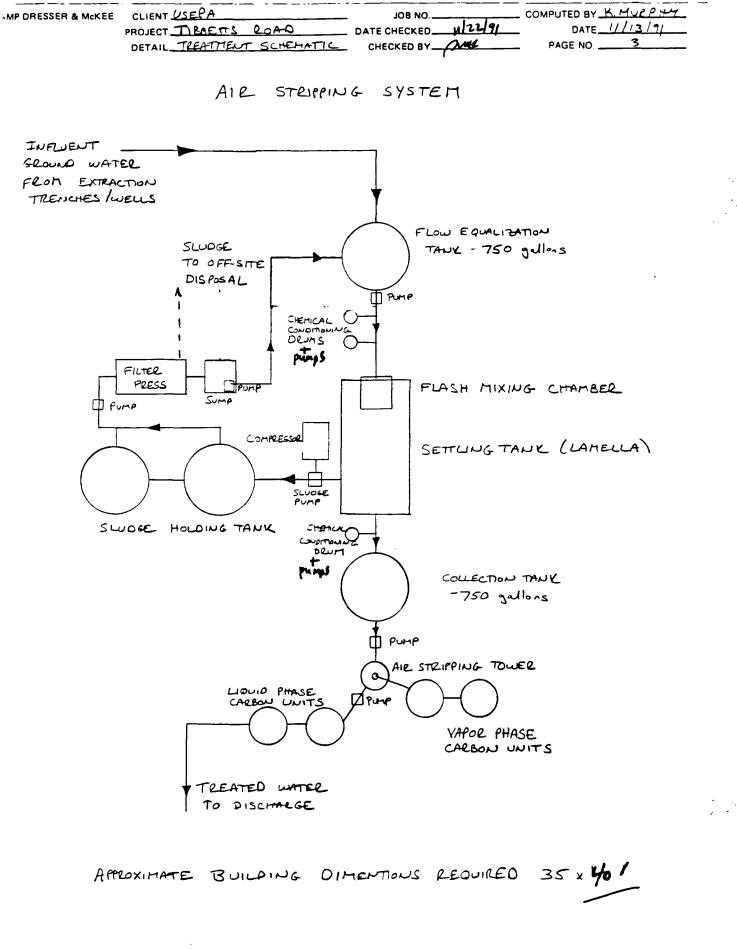
COMPUTED BY PULK JAMP DRESSER & MCKEE CLIENT_ JOB NO. DATE CHECKED DATE_1/4/91 PROJECT. CHECKED BY PAGE NO. DETAIL Temporary Utilities + Facilities = # 9,600 Two office Trailers @ \$200/Mo x 24 Mas. Treiber freight in/out @ \$5.0/100my x 2 x 2 2,000 = Portoble johns + Sarvice 3 ragid Q \$100 junth x 3 x 24 7,200 2 Power for 2 tribers @ 100/100 co x 24 4,800 = Install power + phones 2,000 phone service \$ 100/mo x 24 = 2,400 28,000.

ON-Site VApor ConforNaint Building assume 1000 ft? bldg @ #12/SF. plus instructions cost SPRUNG INSTONT STRUCTURES JR gual No foundation # 24,000 # 12 × 1000 × 2 (1NStalletum) = (ADD This item to Cost of Treatment Facilities Bldg)

MP DRESSER & McKEE	CLIENT	JOB NO	COMPUTED BY
	PROJECT	DATE CHECKED	DATE
	DETAIL	CHECKED BY	PAGE NO

TREATMENT PROCESS EQUIPMENT

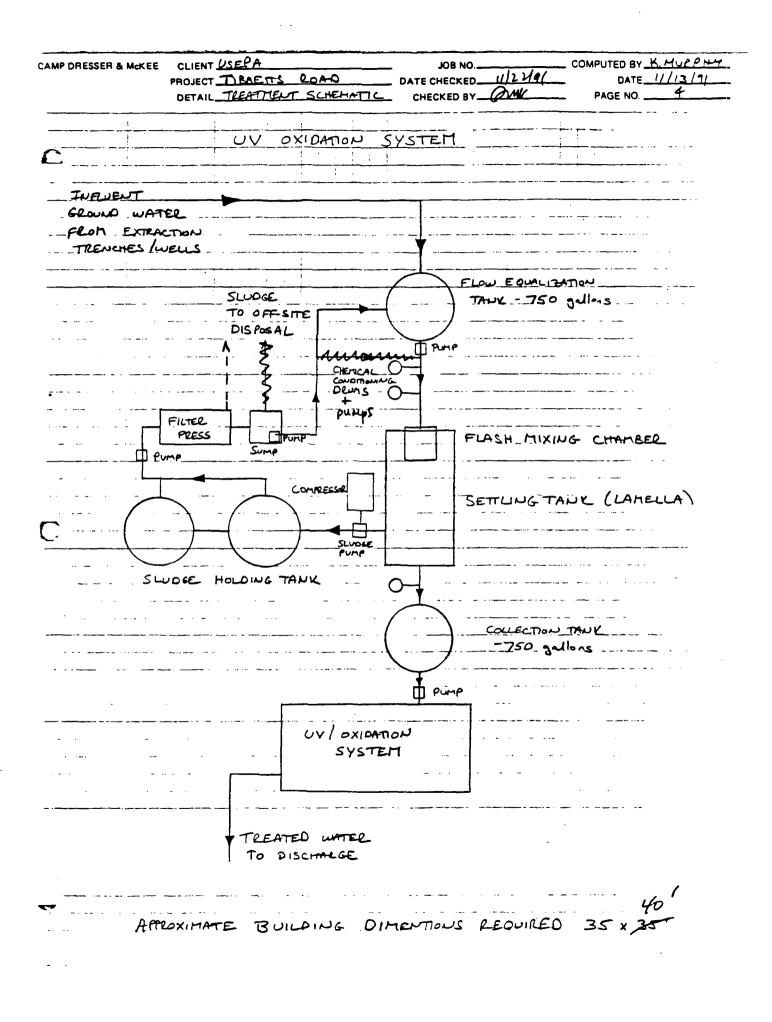
COST ESTIMATE INFORMATION


	JOB NO CO E CHECKED//22/4/ HECKED BY	DMPUTED BY <u>IC</u> , MULP +
CAPITAL COSTS FOR UV O	XIDATION	
TTEM	AMOUNT	
E JUALIZATION TANK	\$ 1700	
LAMELLA GRAVITY SETTLER FILTER PRESS COLLECTION TANK	A 31,700 A 13,000 A 1700	
UV DXIDATION STSTEM	\$ 77,500	
CLUCKE HOLDING TANKS	\$ 3600	
PUMPS / COMPRESSOR	\$ 10,60	
PROCESS BUILDING CONSTRUCTION	\$ 151,000	
STRE	172,000	Included elsewhere.
	£ 362,305 290,300	
(Note: \$314,300 w/\$24,000 to accomodate VES	o additional	

to accomodate VE ... WRS 940 6/5/92

. .

AMP DRESSER & McKEE	CLIENT USEPA PROJECT TICRETTS ROAD DETAIL COST ESTIMATE	JOB NO COMPUTED BY _K DATE CHECKED DATE DATE CHECKED BY PAGE NO	11/1/91
CAPIT	AL COST FOR AIR	STRIPPING / CARBON	
TICH		AMOUNT	
EQUAL	ZATION TYANK	\$ 1700	`
	A GRAVITY SETTLER PILTER PRESS DON DANK	A 31,700 13.000 & 1700	
AIR STI		\$ 22,000	
CALBON	I TREATHENT UNITS	-	
VA	POR FIASE	\$ 3600	
· · · ·	JULD PHASE	# 3000	
SLICSE	HOLDING TANKS	1 3600	
pumps /	COMPRESSOR	8 (1,200	
PROCES	S BUILDING CONSTRUC	NON \$ 151,000	
Stree - A	TOCK	يمار 3- 22, 23- المر الر	luded ese where .
		# 3+4,000 242,000	
(Note ad	: \$266,000 w/ \$24 Ditional to accomod WRS	· ·	


. . .

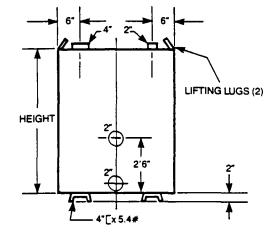
1

t

المتحفي والمستحد ال

CAMP DRESSER & MCKEE CLIENT USEPA	JOB NO	COMPUTED BY K. MURPHAY
PROJECT TIRGETS CO	DATE CHECKED UZUI	DATE 10/22
DETAIL COST ESTIMATE	CHECKED BY	PAGE NO. 1

EQUALIZATION TANK

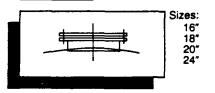

i

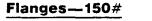
CONTINUOUS SYSTEM AT 5 GPM

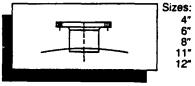
cone bottom tank see spec on filming fore

vertical jumbo drums

JVD-1	510	48″	64"
JVD-2	750	48"	96"
JVD-3	1000	48"	128"
JVD-4	1020	64"	74"
JVD-5	1500	64"	108-
JVD-6	2000	64"	144"
JVD-7	1250	72**	72*
JVD-8	1700	72*	96″
JVD-9	2100	72*	120"
JVD-10	2500	72"	144"
JVD-11	2950	72"	168"
JVD-12	2050	96*	66"
JVD-13	3000	96*	96*
JVD-14	4100	96°	132*
JVD-15	5000	96"	162"

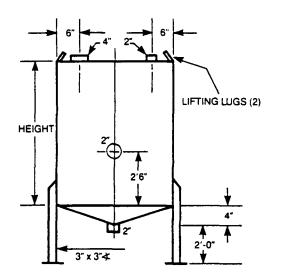

*Other capacities are available

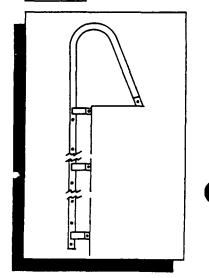

			· · ·
48"	10.4	7.8	93.6
64*	18.6	13.9	166.8
72*	23.5	17.6	211.2
96"	41.8	31.3	375.6



A complete line of accessories is offered including manholes, valves, fittings, pumps, flanges, and ladders. Special protective coatings inside and outside are also available.

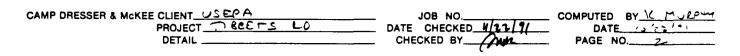
Manholes





AVON INDUSTRIAL PARK AVON, MA 02322 1-617-580-0550 Boston-773-7777 1-800-343-0788 (outside Mass)

Ladders


······································	
CAMP DRESSER & MCKEE CLIENT USEPA PROJECT TREE TS RD DETAIL COST ESTMATE	JOB NO COMPUTED BY K. MURP. M DATE CHECKED 1/22/91 DATE 10/23/31 CHECKED BY PAGE NO2
FURNISH AND INSTALL LAM I UNIT FOR IRON REMOV	
DESIGN FLOW: 5	P
IRON CONC. : 230	
Marsh	Wurzel England Sales, Inc. Rield, MA -7994
Model 1174	BRLF UP to 10 gpm
Landla Tank	\$ 18,000
Floc + Rapid Mix Ton	ks & 6,200
Installation Cost	g 7,000
(4

\$31,200

Epoxy painted - carbon steel tank FRP plates

CAMF	DRESSER & MCKEE CLIENT USEPA JOB NO COMPUTED BY K. MURPHY PROJECT TIBETTS ROAD DATE CHECKED 11/2 Jay DATE 10/22131 DETAIL COST ESTIMATE CHECKED BY MAL PAGE NO
(ILON REMOVAL AND IRON SLUDGE PROLESSING EQUIPMENT
	DESIGN CRITERIA;
	Influent Iron concentration: 230 mg/l [Peak conc. detected in 1990/91]
	Flow Rute: SgpM = 0,0072 MGD = Q
	SLUDGE QUANTITY ESTIMATE (165/day)
	S = 8.34 Q (2.9 Fe + SS + A)
	S= sludge produced (16=/day) Fe = Fron concentration in gw (mg/2) SS = Suspended Solids (mg/2) (assume negative) A = Additional Chemicals Added (mg12) Q = flow (maD) S= 8.34 (0.0072) (2.9 (230) + 0 + 5]
(S = 40 16s / dam - 1-270 solids sludge predicted from a Landla Gauty Sottler - 40 16s / day of sludge solids at an estimated 1.5% solids concentration expected from an inclined plate setter (longla), recuits in sludge quantity of:
	40 165/200 = 2690 165/200 of 1.5% stade
	Assuming Sludge weigne 62.4 16s/ff2
	V = <u>Ws</u> = <u>40 15/day</u> = 43 ft ³ / day of 51.dze produced Positids & (0.015) (62.4 15/47) = 322 gal/day
	FILTER PRESS can produce 30% solids (based on vendor information)
, I	40.165/dag = 2 ft²/dag = 15 gal/dag (0.30)(62,4162/43)
	FOR 50 mg/L Iron 5= 10 16/day 1.570 638/65/day = 76 gal/day

• ··· · ······ ·

(

(

ł

.

CAMP DRESSER & MCKEE CLIENT USEPA	JOB NO	COMPUTED BY K. MURPHA
PROJECT TIBBETS CO	DATE CHECKED 11/2091	DATE 12/22/-1
DETAIL COST ESTMANE	CHECKED BY	PAGE NO3

COLLECTION TANK / PUMP CHAMBER

(

(

.

510 gallon capacity tak MASSACHUSETTS, ENGNEERING CO.

COST = #1500

ESEE EQUALIZATION TANK COST]

CAMP DRESSER & MCKEE CLIENT USEPA JOB NO. _____ COMPUTED BY K. MURPH-7 PROJECT TIBBETIS QD DATE CHECKED U22/91 DATE /2/23/91 DETAIL COST ESTIMATE CHECKED BY PAGE NO. ____

SLUDGE STORAGE

- 76 ged /day (1.5% slodge) @ 52 fpm iron - 322 god /day (1.5% slodge) @ 230 ppm iron for 2-10 day storage = 750 ged Use 2 750 gedlon tenks (cone botton) MASSACHUSETTS ENGINEERING (0, Price Quote & 1400 / each H' Dinote B' Height SMPPING (057 & 120/ea FNSTPULATION (057 & 200/ea #1700/ea & 3400 for 2 tents

ſ

(

CAMP DRESSER & MCKEE CLIENT USEPA JOB NO. COMPUTED BY K MJEF-44 PROJECT TIRBETTS LOND DATE CHECKED 11/22/41 DATE D/32/91 DETAIL COST ESTIMATE CHECKED BY MUL PAGE NO. 2
(AIR STRIPPER UNIT Design Flow = 5 gpm Verion; R.E. Wright Associates, Inc. 1-800-944-5515 David Bown
Verson: R.E. Wright Associates, Inc. 1-800-944-5515 David Brown Chuck Culpin Capital cost = \$\$ 22,000 For ST-1 includes installation costs (also see attached)
Operation + Maintenance for Air Shipper & 2000/yr routine maintenance & 1500/yr to replace packing material & 3500/yr

ţ

÷

USE OF VAPOR PHASE CARBON FOR OFF-GASES & 3600 capital & 23,500 /yr (see 0+1 backup)

USE OF LIQUID PRASE CARBON \$ 3000 capital & +5.000/gr (see 0+14 back-p) 24,000 CAPITAL = \$28,600

0+M = \$ 41,000 50,000 Present worth (30, 107) = 28,000 + 41,000 (9,427) = # 4/5, 110 Total Present worth for carbon use

The second se	AIR STRIPPING TO	Submitted by:
	Required Data for	
Date Submitted: Budgetary? X Y Competitive Bid		Date Needed: <u>lo /31/9/</u> Bid Date:
Company Name:	CDM Inc.	
Address: Ten (Cambridge Center Cank	nige MA 02142
		Person: Kathken Hugely
Fax: (617) <u>6</u> 3	-]-3565 Project/	Reference name: <u>TibleHs</u> Road
GPM of liquid to Number of source Influent pump re	•	ater Temp.: <u>/5</u> C F PM TDH
Effluent pump re		
Electrical Power	r Available:	
115 V 115/230 V X 220 V 460 V	Single Phase Single Phase Three Phase Three Phase	
Explosion-proof Design electric	components required? circuit to control inf	Yes X No luent pump? Yes No
Condition of ind	strictions (tower heigh fluent water: <u>loon-Man</u> h, suspended solids, et	, DBOPPM Are SS PPM
Shall off gases Type of regulati	be regulated? <u>X</u> Yes ion requested: <u>X</u> Carbo	NO nIncinerationOther
Type of column a	aterial requested:	FRP SS Alum.
Winterization	Yes No	
General location		
Special site cor	nditions: <u>Residential</u>	Neighborhood
Misc. notes and	comments: <u>flease</u>	cvide: capital + Or Mosts,
Whether life	buid phase carbon was	1) be required to rect
		s increased to 10 gem
•	that affect cost.	

: . .

r.e. wright associates. inc.

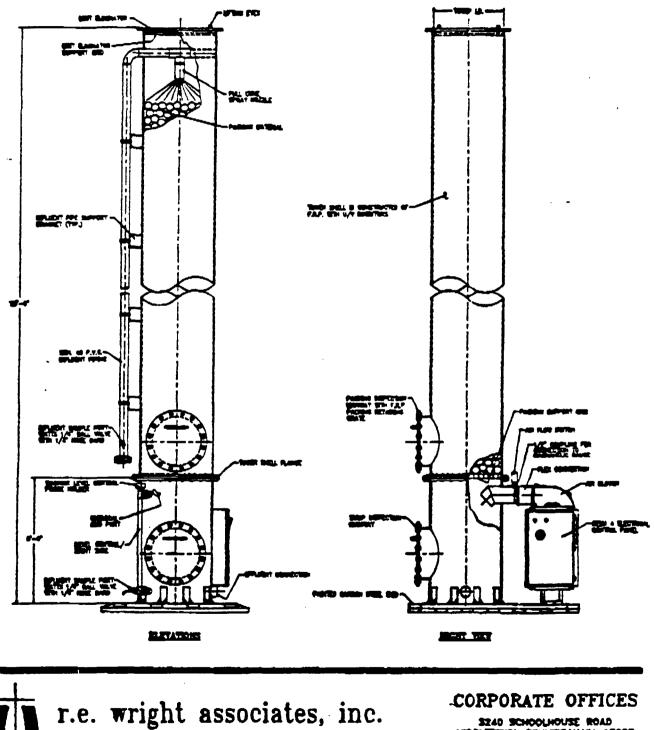
	4	Infly Concent	ration	R	Efflue equire		
	emical	ppb ug/1	ppm mq/1	ppb ug/1	ppm mg/1	Removal	
/	cetone cis Acetylenedichloride (1,2-DCE) trans Acetylenedichloride(1,2-DCE)		<u> </u>				
	Benzene Bromoform		_				
	Bromodichloromethane Carbon Tetrachloride Chlorobenzene						
	Chlorodibromomethane Chloroethane Chloroform (Trichloromethane)						1
	Chloromethane (Methyl Cloride) Dichlorodifluoromethane						II.
	Ethyl Acetate Ethylidenechloride (1,1-Dichloro- ethane)						
	Ethylenedichloride (1,2-Dichloro- ethane) Ethylbenzene			•			
	Ethyl Toluene (3-) Ethyl Toluene (4- or p-)						
	Methane Methylbromide Methylchloroform (1,1,1-Trichloro-		 				
	ethane)						آم
	Methylethylketone (MEK) Methylisobutylketone (MIBK)						4
	Napthalene Tetrachloroethylene (PCE) Toluene						
	Trichloroethylene (TCE) Trichlorofluoromethane Trichlorotrifluoroethane (UNCON113)		I				
	UCON-113 Vinyl Chloride (Chloroethylene)	· · · · · · · · · · · · · · · · · · ·					
	Vinylidenechloride (1,1-Dichloro- ethylene) Vinyltrichloride (1,1,2-Trichloro-						
	ethane) M Xylene O Xylene						
	P Xylene Other (Specifiy)						
			L		L		

SEE ATTACHED

r.e. wright associates, inc.

TIBBETTS ROAD, NH GW CONCENTRATIONS

CONSTITUENT	MAX. CONC.(mg/1)	CLEANUP GOAL (mg/l)
Benzene cis-1,2-dichloroethene trans-1,2-dichloroethene Ethylbenzene 4-methyl-2-pentanone [misk] Tetrachloroethene Toluene 1,1,1 Trichloroethane Trichloroethene Xylenes	$ \begin{array}{r} 3.1 \\ 4 & \text{for UV} \\ 4 & \text{oridation} \\ 2.5 \\ 10 & 150 \\ 2.5 \\ 12 \\ 0.22 \\ 7.8 \\ 18 \\ \end{array} $	$ \begin{array}{c} 0.005 \\ 0.07 \\ 0.1 \\ 0.7 \\ * \\ \hline 900 \\ \hline 900 \\ \hline 10 \\ \hline 0.005 \\ \hline 900 $
Bis(2-ethylhexyl)phthalate	0.24	NA
2-Methylnaphthalene	0.04	NA
Naphthalene	0.455 < 1 pp b	* = >70%, renard
Arsenic	0.185	0.05
Chromium	0.514	0.1
Lead	0.22	0.05
Manganese	19.9	0.05
Nickel	0.40	0.1
Vanadium	0.55	NA
Iron	227	1


* = No MCL available, Please report estimated effluent concentrations.

NA = Not Applicable, No Cleanup Goal Required

DESIGN FLOW: 5 GPM

No significant reduction of MIBK or Nuphthalane Using air stripping alone.

E.R.S. STANDARD EQUIPMENT i, z, and 3 ft. dia. air stripping towers

ENVIRONMENTAL RESTORATION SYSTEMS GROUP SZ40 SCHOOLHOUSE ROAD HEDDLETOWN, PENNSYLVANIA 17057 TOLL FREE: 1-800-238-3320 IN PA. (717)844-5501 FAX. (717)844-4581

AIR STRIPPING TOWER

	Specification	IS	
 Fiberglass reinforced plastic (FRP) construction with U/V inhibitors Cast-aluminum spark-resistant blower with TEFC motor. Site tube with Warrick level controls/high level shutoff. Air flow switch and automatic shutoff for loss of air flow. Full-size NEMA 4 control panel. Allen Bradley electrical components. High efficiency, polypropylene, random-dumped packing. Scotfoam mist eliminator. Painted carbon steel skid. Chemical injection port for ease in cleaning the column. Two hand-ways for packing inspection and removal. Magnehelic gauge to measure pressure drop through packing. Stainless steel influent and effluent sampling ports. Flanged top, adaptable for off-gas treatment. Lifting lugs. 			
Unit Dimensions			
Model	<u>ST-1</u>	<u>\$T-2</u>	<u>ST-3</u>
Diameter Overall Height Packed Height Maximum Flow Rate Blower Electrical Requirements Optional Off-gas Treatment: Carbon	1 foot 25 feet 18 feet 15 gpm 1/2 HP 1/60/115/230 200 pounds	2 feet 25 feet 18 feet 90 gpm 1 HP 1/60/230 400 pounds	3 feet 25 feet 18 feet 200 gpm 7 1/2 HP 3/60/230/460 1,600 pounds
 Off-gas treatment—includes duct from top of tower to carbon unit, appropriately sized duct heater, and one carbon unit. Pump controls for air stripping tower panel—includes motor starter with thermal overload protection and intrinsically safe water level controls. Explosion-proof NEMA 7 controls. Installation and maintenance contracts. Custom design systems up to 12 feet in diameter, including telemetry control options and pre- and/or post-treatment. 			

•

November 12, 1991

Ms. Kathy Murphy CDM, Inc. 10 Cambridge Center Cambridge, MA 02142

.

Re: Budgetary Price for a 5 gpm Air Stripping Tower Project Reference Name; Tibbetts Road

Dear Ms. Murphy:

R. E. Wright Associates, Inc. (REWAI) is pleased to present the following budgetary price for the air stripping tower (AST) system described in this letter.

<u>Design</u>:

Minimum Influent Water Temperature - 59^oF Minimum Influent Water Flow Rate - 3 gpm Maximum Influent Water Flow Rate - 5 gpm Air/Water Ratio - 75:1 Air Flow - 50 CFM Static Water Pressure Loses through System - 7 inches

<u>Contaminants</u>

<u>Chemical</u>	Maximum Influent(ppb)	Design Effluent (ppb)
Benzene	3,100	5
Cis-1,2-Dichloroethene	4,000	70
Trans-1,2-Dichloroethene	4,000	100
Ethylbenzene	2,500	700
Tetrachloroethene	2,500	5
Toluene	12,000	1,000
1,1,1-Trichloroethane	220	200
Trichloroethene	7,800	5
Total Xylenes	18,000	10,000

3240 schoolhouse road middletown, pa 17057-3595 toll free 800-238-3320, in pa (717)-944-5501 fax (717)-944-4551 Ms. Kathlean Murphy

Other Chemicals (Estimated Effluent Level Only)

4-Methyl-2-Pentanone Naphthalene	10,000 455	10,000 ² 455 ²
2-Methylnaphthalene	240	NA
Bisphthalate	40	NA
_		

Inorganics³

Arsenic	185
Chromium	514
Lead	220
Manganese	19,900
Nickel	400
Vanadium	550
Iron [⊥]	227,000

¹The AST system's packing and liquid phase carbon will foul causing excessive maintenance if the manganese and iron present in the influent water is not removed, by pretreatment.

²4-Methyl-2 Pentanene and naphthalene will not air strip using the proposed design. However, the liquid phase carbon will remove this chemical, but the effluent level will vary from 100 percent at start-up of carbon and steadily fall from that point.

³This budgetary proposal does not include provision for the removal of the inorganics listed. A pre-treatment system will be required for removal of the inorganics.

AST System:

One (1) AST one foot (1') in diameter by twenty-five feet (25') in overall height. The tower will be manufactured from fiberglass reinforced plastic (FRP), chemical resistant isophthalic resin with U/V protection and designed for 100 mph wind loads and seismic zone 2 vibrational effects. The tower will be delivered as fully assembled as possible and equipped with the following:

- o Vapor exhaust cap.
- o Three-inch (3") diameter flanged duct (connecting the tower to the air phase carbon unit).
- o Tower mounted duct supports.
- o Mesh type mist eliminator with support.
- o Tower mounted influent pipe supports.
- o Flanged tower top.
- o Flanged tower sump.
- o Packing support plate.
- A packing bed depth of eighteen feet (18') of polypropylene packing.

r.e. wright associates, inc.

- 3 -

- o Air inlet.
- o Lifting lugs.
- o Base ring/hold down lugs.
- o Influent spray nozzle.
- o Painted carbon steel system skid.

Nozzles:

- o One-inch (1") influent nozzle (NPT) with internal tower
 piping.
- o One and one-half (1.5") effluent nozzle flanged.
- o Three (3) eight-inch (8") diameter manways.
- o Two-inch (2") NPT drain with plug.
- o Instrumentation nozzles.
- o Two (2) sample ports.
- o Chemical addition port.

Fluid Handling Equipment:

- o One (1) effluent pump, 1/60/230 volt, 1/2 Hp TEFC motor, to produce 5 gpm at 50 TDH.
- o System piping one-inch (1"), PVC Schedule 40.

Electrical Equipment and Instrumentation

- One (1) Nema 4 electrical enclosure to operate one (1) blower and two (2) pumps and wired for a 1/60/230 volt power supply.
- o Tower sump level controls.
- o Air flow switch.
- o Pressure gauge.

Mechanical Equipment

- o One (1) air blower, 1/60/230 volt, 1/2 Hp TEFC motor, equipped with a flexible connector, stand and weather cover.
- 0 0.5 KW duct heater.

Vapor Phase Carbon

Two (2) carbon units with 400 pounds of virgin carbon.

Liquid Phase Carbon

Two (2) carbon units with 330 pounds of virgin carbon.

Approximate carbon usage:

Vapor Phase - .7 pounds/hour Liquid Phase - .6 pounds/hour

r.e. wright associates, inc.

Ms. Kathlean Murphy - 4 - November 12, 1991

Budgetary Prices; FOB Point of Manufacture.

.

AST System	1800	\$22,000.00
Vapor Phase Carbo	n Units (\$ 800 /ea.),	\$ 3,600.00
Liquid Phase Carb	on Units (\$1,500/ea.)	\$ 3,000.00

Total Budgetary Price.....\$28,600.00

If you have any questions or need further assistance, please feel free to contact me.

Very truly yours,

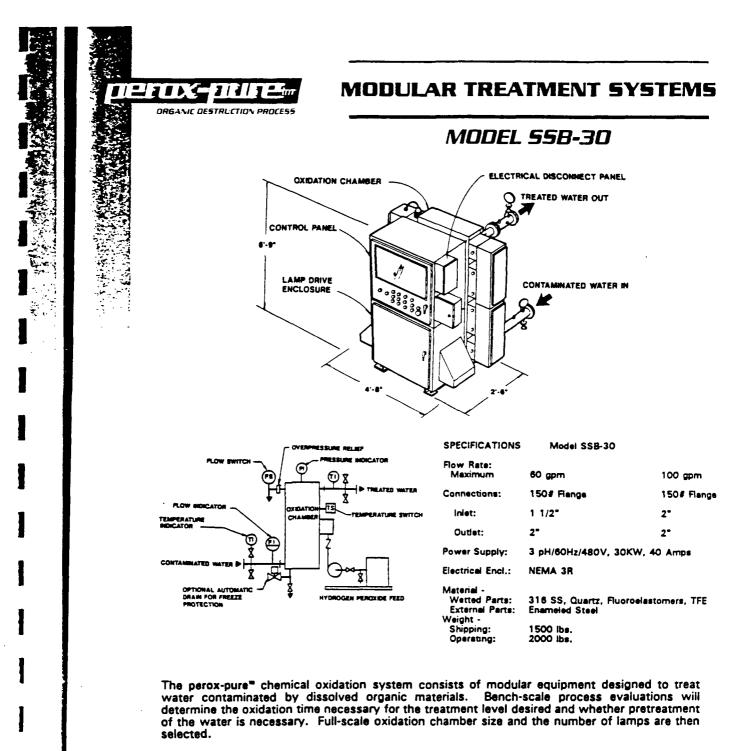
R. E. WRIGHT ASSOCIATES, INC.

Thomas J. Hanlon Ø Chief Cost Estimator

TJH:df

.

.


CAMP DRESSER & MOKEE CLIENT USEPA PROJECT TIBBETS RD DETAIL COST ESTIMATE UV/0XIDATION SYSTEM (Design flow: 5 gpm VV PEROXIDATION SYSTEM ULTROX ULTROX O+M SYLAI (1000 nallons COMPUTED BY K MUCHT DATE 10/02/11 DATE 10/02/11 PAGE NO. COMPUTED BY K MUCHT DATE 10/02/11 PAGE NO. PAGE NO. PAGE NO. COMPUTED BY K MUCHT DATE 10/02/11 PAGE NO. PAGE

PEROXIDATION SYSTEMS - Vendor Quotes Model SSB30

0

(

MINITUM FLOW REQUIRED FOR UNIT = 10 gpm PRETREATMENT REQUIREMENTS XIPPM INON INFLUENT

The oxidation chamber contains horizontally mounted lamps in quartz sleeves with fluoroelastomer seals. Indicators are provided to monitor performance of each lamp. Safety features include shop-wired and tested control panels interlocked with temperature and flow switches to shut off power at preset conditions.

The perox-pure^m system and its components are covered by numerous issued and pending patents.

Peroxidation Sustems Inc.

5151 E. Broadway, Suite 600 Tucson, Arizona 85711 602-790-8383 FAX 602-790-8008

CAMP DRESSER & MCKEE CLIENT USEPA	JOB NO	COMPUTED BY K MURPHY
DETAIL COST ESTIMATE	DATE CHECKED [[[]] L] [] CHECKED BY	DATE /0/33/9/ PAGE NO3

PROCESS BUILDING

.

ITEM S	HALTWELL RD Welfield WTP × 0.33 	Levised Cost
Earthwork	\$ 6000	2000
Concrete	4 78000	25,700
Masonry	\$ 67000	22,100
Steel and Iron	\$ 40000	13,200
Carpentry	\$ 3000	1000
Weather Protection	12000	4000
foors + windows	\$ 12000	4000
Finishes	8 1:000	5300
Instrumentation +	Controls # 40000	13,200
Conveyance	R 3000	1000
Mechanical	3 162 000	53,400
Electrical	8 43,000	13, 300
	\$ 431,000	# 153.700

USE A 160,000) NUT USE A 160,000) USEd Sie North proje.

SITE WORK

.

Ĺ

Demolition and	Lemoral of House	\$ 40,000
	and site security	

4 70,000

. . .

.

•

.

CAMP DRESSER & MCKEE CLIENT USEPA PROJECT TIBLE TTS ROAD DETAIL COST ESTIMATE OTM Operation and Main	JOB NO COMPUTED BY <u>V. MJR PHY</u> DATE CHECKED <u>1112/141</u> DATE <u>11/5/11</u> CHECKED BY <u>AMA</u> PAGE NO
(FOR UV OXIDA	
<u>ETEM</u> POWER	Cost /gr
Pumping Equipment HVAC + Electric	B 4440 B 900 B 5775
CHEMICAL COSTS Metale Removal UV Oxidation	# 6370 & /600
LABOR	\$ 60,000
SOUDS DISPOSAL	# 3610
EDUIPMENT MAINTENANCE + REPAIL	\$ 1245 ?
	\$ 83,390/90

(Ĩ

•

AP DRESSER & MCKEE CLIENT USCPA PROJECT TT BEETTS LOAD DA' DETAIL COST ESTIMATE C O + M	JOB NO TE CHECKED ///2ン/91 HECKED BY	COMPUTED BY <u>K. Mull</u> DATE <u>/////9/</u> PAGE NOG
POWER FOR VV OR, OATION		
PUMPING :		
Centrifical Pumps	2 × 1 l+P	= 2 ++P
2 Air Diaphan Punps + Compressor		4 11 P
Subnersible Sump Pup		1 118
Chemical Feed Punp	3 K K HP	1.5 HP
NO strong	Subtotal	8.5 HP
tother in the = 0.746 KW		6.3 KW
6.3 Kw x 24 km	x 3 6 <u>5 den</u> x 80.0 40	os/kwh
	=	\$ 4440/91
EQUIPMENT :		\$ 900 190
HVAC + Electricity		
Use Hartnell Road Feasibi multiplied by 0.3 reduction	lity Study 3 for building	
· · · · · · · · · · · · · · · · · · ·		4

•

. 1

\$ 17,500 x 0.33 = \$ 5775/gr

UV OXIDADON

۱

H2O2 (quote by Poroxidation Systems) & 1600/yr

CAMP DRESSER & MCKEE CLIENT USERA JOB NO. COMPUTED BY <u>C.MULPEN</u> PROJECT <u>TLABETTS LOAD</u> DATE CHECKED <u>MILIPH</u> DETAIL <u>COST ESTIMATE</u> CHECKED BY <u>ANK</u> DATE <u>MISSION</u> CHECKED BY <u>ANK</u> PAGE NO. <u>P</u> PAGE NO. <u>P</u> PAGE NO. <u>P</u> A SSUMING B Hr ubrk Day 7 days a week 1 poson 2912 Man Hours /4T *A* 8 20/hr

\$ 60,000/17

E QUIPTENT + RE	MAINTENAUCE		
For	UV Oxidation	8 315 / 45	?
For	Remaining Operations 201.5 of remaining	equipment confited costs	
	0.015 x 8 61,300	\$ 130 lyr	

(

í

\$ 1245 14-

CAMP DRESSER & MCKEE CLIENT USEPA JOB NO. COMPUTED BY K. MURPHY PROJECT TIMEETTS COAD DATE CHECKED UZ2191 DATE /0/30/91 DETAIL COST ESTIMATE CHECKED BY PAGE NO. 9 OTM
If sludge cake is disposed of as hazerdous (waste the cost is \$ 500 / ton (price quote from Keefe Environmental Services
assume log 2 1 ton of slidge site Dec. 89 - Clean Harbors Quote)
For 1.5% sludge (230 ppm fe)
43 ft3/dag = 1.6 cy/day = 1.6 ton/day x 8 500/ton x 3:5day
= 2 290, 648/y-
For 30% sludge (230 pp Fe)
2 ft3/day = 0.074 cy/day = 0.074 ton/day × \$500/ton × 305 day
= # 3,518 /20
For 30% studge (50 mm Fe)

For 30% sludge (50 ppm Fe) 0.5 ft 3/day = 0.020 cy/day = 0.020 tor/day ×\$ 500/tor × 355 day = \$ 3,610/gr

. (

(

CAMP DRESSER & MCKEE CLIENT		JOB NO	COMPUTED BY	
PROJECT		DATE CHECKED	DATE	
DETAIL		CHECKED BY	PAGE NOO	
SAMPLING	AN D	ANALASIS	(nsTs	

(

(

(

\$ 250 / sample	Priority Poll-tant Metals
3 205 / Sample	Priority Pollutant VOA (GC/MS)
\$ 2051 Sample \$ 475/Sample	Priority Pollutent VOA (GC/MS) Priority Pollutent Seni-VOAS (GC/MS)

Use treatment plant labor for all but surface water Discharge Optim (NPDES)

CAMP DRESSER & MCKEE CLIENT USEPA PROJECT TIBLE TTS LOAD DETAIL COST ESTIMATE	JOB NO COMPUTED BY 14. Mo pha DATE CHECKED_LL 2. 191 DATE_1/779/ CHECKED BY PAGE NO
ι ·	MAINTENANCE COST STRIPPING
ITEM	COST / Jr
POWER	
PUMPING	\$ 5260
HVAC + Electric	\$ 5775
CHEMICAL COST	
Metals Removal	\$ 6370
CARBON USAGE	
(VAPOR PITASE	\$ 22,500
LIQUID PHASE	\$ 24,000
LABOR	\$ 60,000
SOLIDS DISPOSAL	\$ 3610
EQUIPMENT MANTENANCE + REPAR	\$ 4535
	TOTAL \$ 132,000 /yr

(

CAMP DRESSER & MCKEE CLIENT USEFA PROJECT TIBBETS BOFO DETAIL COST ESTRATE 0+M	JOB NO DATE CHECKED CHECKED BY	COMPUTED BY K Hore has DATE 1/ /7/91 PAGE NO.
POWER FOR AIR STRIPPING		
PUMPING FIR STEPPER BLOWER Centrical Pumps	3 × 1 ++P	左 HP = 3 HP
2 Air Diaphran Pumps + compressor Submessible sump Pump		+ r+p 1 r+p
No when i cel Feed pump	3 x Кнр	$\frac{7.5}{10} + \frac{1}{10}$ $= 7.5 \text{ Kw}$
No vor us . Cut ut in tor proton our our our our our our our our	365 <u>dan</u> , \$0.08/K 90	uh = 275260

HVAC + Electricity Use Hartwell Road Feasibility Study Multiplied by 0.33 for building reduction

(

(

4 17,500 x 0.33 = \$ 5775

CAMP DRESSER & McKEE	CLIENT USEPA	JOB NO	COMPUTED BY K. MURPHY
	PROJECT TIBBETTS ROAD	DATE CHECKED	22(91 DATE 11/13/91
	DETAIL COST ESTIMATE	CHECKED BY	WIK PAGE NO3

CALBON USAGE FOR AIR STRIPPING ALTERNATIVE USING INFOLMATION PROVIDED BY R.E. Wright

VABOR PHASE CALBON

(

(

LIQUID PHASE CARBON Two (2) units used in series with 330 poinds of carbon Carbon usage ~ 0.6 16/hr = 14 ½ 16/day Change unit every 23 days Reservate 16 units per year \$ 1000 each for regeneration costs +500 for shipping \$ 1500 /unit x 16 units = \$24,000

CAMP DRESSER & MCKEE CLIENT_USEPA	JOB NO	COMPUTED BY K. Murphy
PROJECT TBBETS RD	DATE CHECKED 112141	DATE 11 118 /91
DETAIL COST ESTIMATE	CHECKED BY	PAGE NO
0	('	

(EQUIPMENT MAINTENANCE + REPAIR FOR AR STRIPPING / CARBON TREATMENT

(

í

	2000 /yr		\sim	utine Ma	aintenance	for air	stripper
#	1500 lyr		+0	replace	packing	naterial	
1	3500 171	᠊ᠻᢦᠵ	air	stripper	-		

FOR Remaining operations Po 1.5 of remaining equipment capital costs 0.015 x 69,000 = \$ 1,035 /yr

\$ 4535/70

Assumes water table has been depressed by the pump totreat system.

í

CAMP DRESSER & McKEE CLIENT	JOB NO	COMPUTED BY WRS
	CHECKED BY	PAGE NO

(1)
$$V^{a}por Extraction System.$$

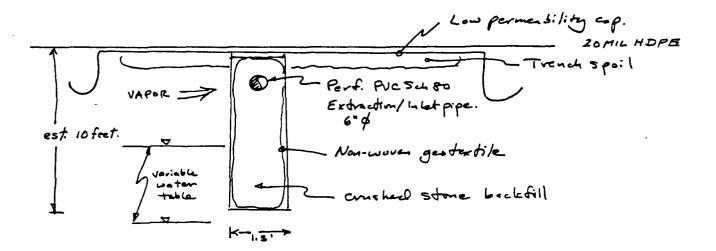
 $Blower / Controls / ETC.$
 $Volume to be treated:$
 $\frac{30'X/00'X20'}{27} = \frac{2,200 \text{ C.Y.}}{27}$

(

•

í

\$ 20,000


COMPUTED BY WCS CAMP DRESSER & MCKEE CLIENT_ JOB NO._ DATE CHECKED 11/2/91 PROJECT_ CHECKED BY_____ PAGE NO. 3. DETAIL .

(

l

(

الاغي الجادية فترغر فتستحا فتعفر ستعدد الراران والرار

PUC Pipe - 100' extraction 100' to honsing.

Trench Volume 10' X 1.5' X 100' = 56 C.Y. X2 for slope fruch sides 27

	DATE CHECKED	COMPUTED BY WKS DATE (0/31/27
DETAIL	CHECKED BY	PAGE NO

Cost Trench System.

(

Í,

PVC Pipe Goti Means, (pg. 70) 6"\$ 1.80/ft. Site work last Date. Say \$2.00/84 to \$ 200. include fittings, etc. :

Trench Excavation 56 C.Y. e \$4.50/c.Y. = 112 (pg. 34) \$ 318.

(number) Store : #30/C.Y. * FOC.Y = (numb prime prime) (PJ. 38) \$ 2,100 . HDPE. Use \$2.00/54, × 373 5.4. # 666 2

			Subtahl:	# 7,96 3
Add	302 for haz.	conditions:		· 2,389

Total: # 10,352

Capid 17201 1 A RT e # 4: # 65,352 10ml de #65, \$00 sub total Sty \$ 66,000

CAMP DRESSER & MCKEE CLIENT___ DETAIL COST-VES

{

JOB NO. 00 4-160 COMPUTED BY WRS DATE 2/6/92 DATE CHECKED___ PAGE NO. CHECKED BY_

Revise Vacaum Extraction (VES) System Cost. Cost System of 4 wells instead of a trench.

Well sizing

EPA

Consider total depon of 30', allowing penedration of the harder lower till. 6"\$ \$ 12"\$ Dual with draw. I system w/ both a small submarsible pump and an air extraction system Line. Cap/ Access Port for inspection, maintenance, and pump pulling. Trench w/ air and water I mes to building. Use nominal 100' length of Imes.

Menn's 1991 5th Ed: Hon. N. 75
Price for gravel pack well

$$8'' \not 0$$
, 40' deep u/gravel (casing -compleke
 $@ 2 q / L.F.$
1/2 HP Submersible pump. \$505.
PJ. 74
 $2'' \not 0$ line $@ $2.83 / L.F.$
trench excase hm.
 $@ $4.50 / C.Y.$
 $1'X 5' X I.5 (side supe) X (00' = 2PC.Y.$

	JOB NO	COMPUTED BY MCS
PROJECT	DATE CHECKED	
DETAIL	CHECKED BY	PAGE NO2.

(

(


• .

(

Well footage:	3 aft. X 4 wells X 24/L.F.	1	\$ 2,800
Ū.	4 pumps x 505		# 2,020
	4 trenches 28 c. y. x 4 x \$4.50/c. Y.	F	\$ 504
	2-2"\$ lines 800' X #2.87/L.F.	τ	\$ 2,312
			\$7716

all 302 for hez. work \$1.3= (10,031)

#10,031 Sey #10,000

Total pag_ 70258 * 69,258 wrs 219192 # 70,000

Captile Total

(

1

CAMP DRESSER & MCKEE CLIENT	JOB NO	COMPUTED BY WAR
PROJECT	DATE CHECKED M 20/41	DATE 6/31/97
DETAIL	CHECKED BY	PAGE NO

.....

(

(

(

Power. 1/4 HP blower 1/4 X 0.746 KWH/ X 8760 hrs X 0.10/KUH * \$ 163

Total: \$ 40,963

· . . .

.

CAMP DRESSER & MCKEE

-

(

(

CLIENT	JOB NO	COMPUTED BY WRS
PROJECT	DATE CHECKED	DATE
DETAIL	CHECKED BY	PAGE NO

OFF-SITE RECHARGE BED

(MM-5)

.

CAMP DRE

(

(

.

RESSER & MCKEE		JOB NO. 7710-004	COMPUTED BYRS
	PROJECT	DATE CHECKED	DATE 4/14/92
	DETAIL Off-Site Recharge	CHECKED BY	PAGE NO

$$\left(\begin{array}{c} \text{from fig 2-17 Seepage rate } 0.27 \neq 0.38 \text{ ga} / \text{s.F./day. - Bernburt.} \\ (\text{loom-clay-silf.}) \\ \text{from 575 "draindown" curre. - 0.075 ft/day when water is seasonally high.} \\ Cn=0.1 , 0.06 \text{ga} / \text{s.F./day.} \\ \end{array} \right) \\ C0.16 \text{ft/day.} , 0.075 \text{ga} / \text{s.F./day.} \\ (\text{draindown at high end of curve.}) \\ \end{array}$$

Size@ 100,000 S.F. > 61,200 S.F.

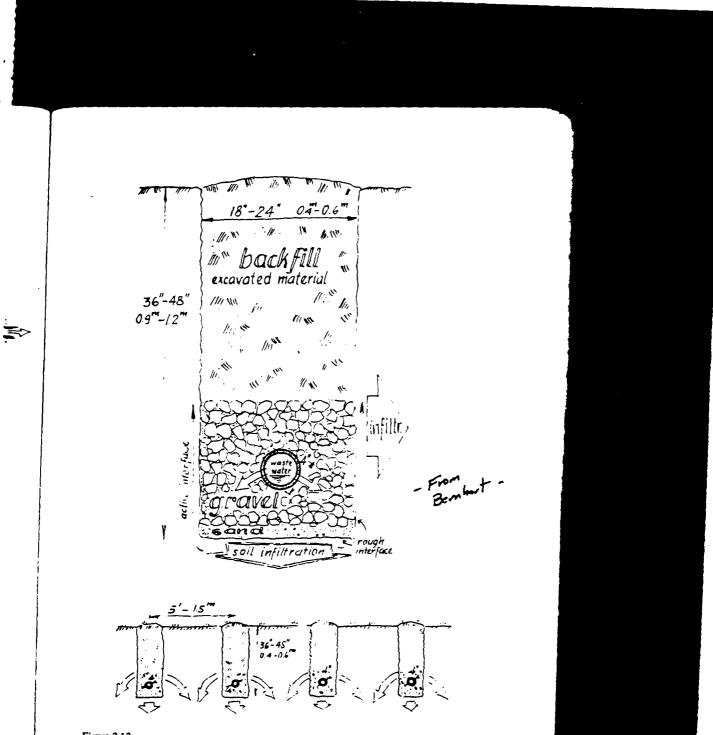
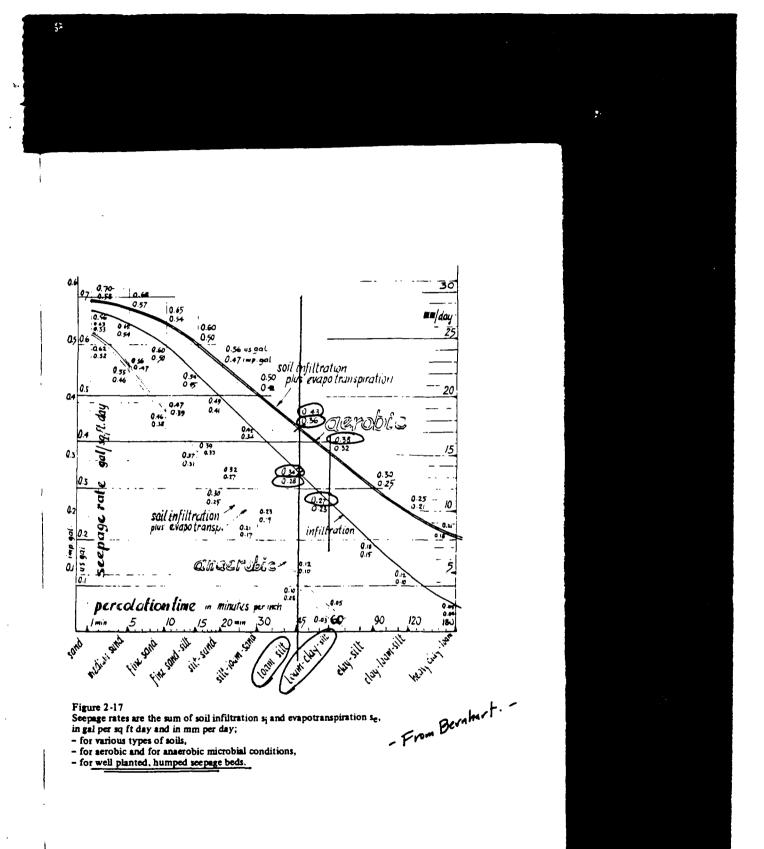
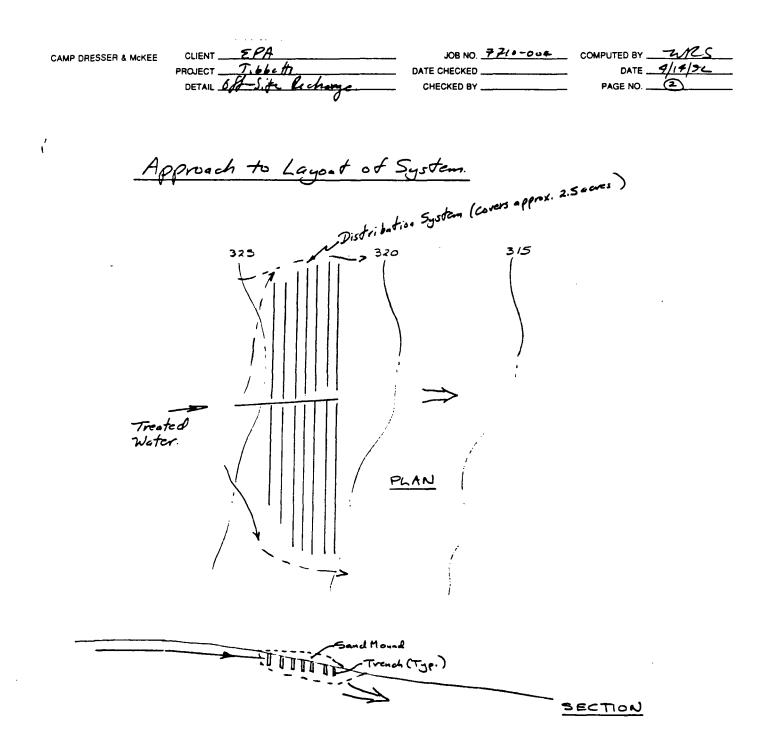
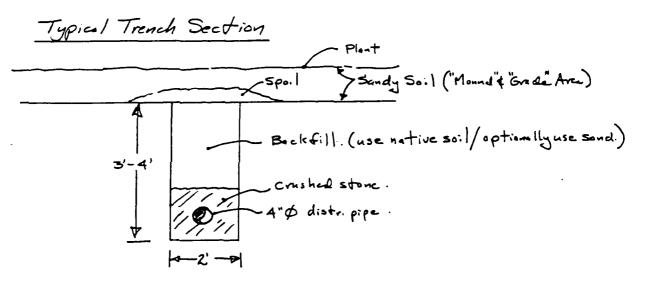




Figure 2-12 Anaerobic scepage trenches, the conventional construction method, using deep trenches with excavated material used as backfill. Since the lower parts of the trenches are frequently innundated, hydraulic pressure is exerted onto the sidewalls of the trenches, – so that these areas become active interface areas for wastewater infiltration.

.


33

ţ

CAMP DRESSER & MCKEE CLIENT EPA JOB NO. 77/0-004 COMPUTED BY -WRS PROJECT DATE CHECKED DATE 4/14/92 DETAIL OFFS.de Recharge CHECKED BY PAGE NO. 6.)
Other considerations
· Basic infiltration area: 100,000 S.F.
· Possible dimension: 200 ft. by 50. ft. across contours of Ne land.
· Consider 100 ft. buffer: Total Lond Area to be partured.
400ft, by 700 ft,
280,000 S.F. or about 7 acres.
· Consider a chain link force around the basic 2008t.
by Sooft aren; 1400 L.F. w/ 2 gates.
· Feed line from Side: unknown low from - use 2,000 ft.
\$ of lines : "feed" line: 6"\$ dostribution pipe: 4"\$ Space distribution pipe@~20' C/C fotal pipe lang A: Soo'X 10 lines = 5,000'
· Sand Fill : "average" of 2ft. over The area
25t. X 200 ft X 50 o ft. = 7,400 Cubic yards. 27 cm ft/cu.gd.
· Manholes: say beach in recharge are for observation.
· Operations: Mow planted area every two weeks April - Sept.
Observe water levels.

CAMP DRESSER & MCKEE	CLIENT CPA	JOB NO. 77/0-004	COMPUTED BY
	DETAIL Off. Site Rechange		DATE
	DETAIL COP SIDE RECHARGE.	CHECKED BY	PAGE NO

Excalation for trenches: 2'X4'X 5000'= 1,480 Cu.yda. 27 - increase to 1,800 to cover other grading & drainage work

Crushed Stone: 2'X 1.5'X 5000'= 560 G. yds. 27 - vound to 600 Gu.yds. W.11 near "tees" & "plugs", man holes & covers. Tees - 10 coch ±. plugs - 20 coch ±.

CAMP DRESSER & MCKEE	CLIENT	JOB NO	COMPUTED BY
	PROJECT	DATE CHECKED	DATE 4/13/72.
	DETAIL	CHECKED BY	PAGE NO

$$O Land Taking:
Estimate 7 acres @ $10,000/acre = $70,000
Eascounds, cts. /est. L.S. @ $10, 000/acre = $10,000
Clearing $ Grubbing
A acres: $13,000/acr. = $52,000
(Means gp.25 (See also pg.9 obve algo/9))
(See callection trench $ on-side recharge comps. for unit casts.)
@ Feed Pipe Q 2,000 ft.
G"$ pipe pleament
2000' C $1,80/L.F. = $13,600
Complex 100 C $8,80 ach = $800
Manholes $ preast for observation
etc.
* @ $9 $0 ach = $3,760
Beedding Sand.
2'x2'x2,000'/2 $ 300 C.Y. X $ 30.00 C.Y. = $19,000
Trench Excase for $ Beekfill.
3'X6'X 2000'/2 $ 1,300C.Y. X $5.10/C.Y. = $6,630$$

566th /: \$155,870

	• ··· · • • · • · •		
CAMP DRESSER & McKEE	CLIENT	JOB NO	COMPUTED BY
	PROJECT	DATE CHECKED	DATE
	DETAIL	CHECKED BY	PAGE NO

 $6 e^{4} 9 40 e_{a} c_{b} = 5,640$ $(r' d_{eep})$

Crushed Stone

(

.

۰.

560 c. Y. @ \$17.65/c. Y. = \$10,590+ 40 c. Y. @ \$17.65/c. Y. (misc.)

CAMP DRESSER & MCKEE

(

PROJECT	 <u> </u>	
DETAIL	 	

JOB NO.	COMPUTED BY	wes_
DATE CHECKED	DATE	A
CHECKED BY	PAGE NO.	Ē

For Of M of System:

Mowing, check on system, etc. : 10 hrs/wk X 26 wks X#50/hr. \$ 13,000. /y-. Misc. parts, etc. \$ 2,000/yr.

Total \$ 15,000/yr.

. . . .

CAMP DRESSER & MCKEE

í

1

CLIENT _ PROJECT _____ _____ DETAIL

DATE CHECKED _____ CHECKED BY _____

JOB NO. _____ COMPUTED BY _____ DATE _____ PAGE NO. _____

SURFACE WATER DISCHARGE COST ESTIMATE.

(MM-G)

	ESSER & MCKEE CLIENT EPA PROJECT <u>T: bbe H3 Ref</u> D DETAIL <u>Cas 13</u> .	JOB NO. <u>77(0-0</u> ATE CHECKED <u>MIZ</u> CHECKED BY	04 COMPUTED BY <u>W/S</u> 191 DATE (0/03/91 2 PAGE NO. ()
(COMPUTE COSTS OF S DISCHARGE SYST		
	System Components		URS 4/15/12 24/5 12
	Discharge Line: 1,800 feet	- Grinch \$	gravidy flow.
	Pumping Schotion : duplex pac maximum	kaze unit of design flaw.	10 gpm
		- 2,200 feet	
	Dischage Line: 1,400 feet	· Ginch ø g	varidy other.
	Manholes: Geach.		
	Use an average treach dept	hot 8 ft. fr	The discharge line.
(Use a clapth of 4 ft. for the ors 1600 Consider some repairing: - Soute		
	Cost Discharge Lines (Means	Site Work Gost	Data 1751 10 " Ed.)
	Reinstorial Plastic Pipe, 6" \$:		: \$ 14.65/L.F. (include: 01P)
	Excare time and backfill:	Badding	(include: 0fP) : 2.24/LiF.
	Excare time and backfill: Tranche 6 to 10 feet cheep	Badding Cx casede book fill	(includes OfP)
	Excare ting and backfill: Tranche 6 to 10 feet cleep (pg. 34)	Cxcase	(include: 0fP) : 2.24/LiF. : # 4.50/C.Y.) : # 1.56/C.Y.) : # 2.75/C.Y.)
	Excare time and backfill: Tranche 6 to 10 feet cheep	Cx casede book fill	(include: 0fP) : 2.24/LiF. : # 4.50/C.Y.) : # 1.56/C.Y. \$8.8
	Excare time and backfill: Tranche 6 to 20 feet cleep (Pg. 34) Parement (bitumine as concrete 4" Phick) (Pg. 35) Manholes:	Cx carete book fill tamping	(include: 0fP) : 2.24/LiF. : # 4.50/C.Y.) : # 1.56/C.Y.) : # 2.75/C.Y.) : # 36 /S.Y.
	Excare time and backfill: Tranche 6 to 20 feet cleep (Pg. 34) Parement (bitumine as concrete 4" Phick) (Pg. 35) Manholes:	Cx carete book fill tamping	(include: 0fP) : 2.24/LiF. : # 4.50/C.Y.) : # 1.56/C.Y. #8.8 : # 2.75/C.Y.) : # 36/S.Y. : #940 each.
	Excare thing and backfill: Tranche 6 to 10 feet cleep (pg. 3 t) Parement (biohuming as Congete 4" Phick) (pg. 3 t)	Cx carete book fill tamping	(include: 0fP) : 2.24/LiF. : # 4.50/C.Y.) : # 1.56/C.Y.) : # 2.75/C.Y.) : # 36 /S.Y.

·

CAMP DRESSER & MCKEE CLIENT PROJECT DETAIL	JOB NO DATE CHECKED/3.191 CHECKED BY	COMPUTED BY <u>WRS</u> DATE <u>(9/37/9/</u> PAGE NO. <u>2.</u>
Pipe: 3,200ft, Bedding: 2.24/Lif Trench: <u>S'cleep X 3'uide</u> 27	$\frac{14.65}{L.F.} = \frac{4}{2}$ $\frac{14.65}{200} = \frac{14}{200}$ $\frac{14.65}{L.F.} = \frac{14}{2}$ $\frac{14.65}{L.F.} = \frac{14}{2}$ $\frac{14.65}{L.F.} = \frac{14}{2}$	46, PF0 7, 200 35, 060
Parament: 1600' <u>5'X 500'</u> (\$30 9	# = / S. Y.) = #	, 32, 000 10, 000
Manholes: Geach × \$1,4		8,550
grnit		90,490 19,690
Cost Force Main/ Pressure	Discharge	
PVC pipe: 2"\$ (water distribution - 03. Excavation and backfil, Trench. 9'-6' daep. (Pg. 34) 9.	65) Bedding : / excuste: backfill:	# 4.01/ft. # 1.30/LF # 1.36/C.Y. # 1.36/C.Y. # 275/C.Y.
2,200 Pipe: +,700 St. X \$4.0	1/L.F =	# 8.31 /c.Y. # 8,822 # 5,614
Trench: <u>5'deapx 2'widex</u> Balding: \$ 130 x 2200' Paremant: (some as atome) <u>5'x 1100'</u> (\$36/sy)	= # = # furce noin 5465tate/: #	7,180 2,860 22,000 10,923 40,862
Package Pumping Station: L 1" stallation	.S. with #	40,000
force	tein 526foddi # +	x 0, 4/2, 80, 862

•

CAMP DRESSER & MARE CULENT
CAMP DRESSER & MARE CULENT
DETAIL
DETAIL

$$ME = \frac{1000}{1000}$$

 $ME = \frac{1000}{1000}$
 $ME = \frac{10000}{$

.

'n

.

· ·

•		• •	
CAMP DRESSER & MCKEE	CLIENT	JOB NO	COMPUTED BY
	PROJECT	DATE CHECKED	DATE
	DETAIL	CHECKED BY	PAGE NO

INJECTION WELL COST ESTIMATE.

3/19/92

í

(

ĺ

Comps. R. Preble Check W. Swanson.

(MM-7)

TIBBETTS ROAD

Injection Wells

A program for providing injection wells for disposal of treated water would preferably include two wells so a backup is available if the operating well requires servicing. The concept includes utilizing the existing 6-in. monitoring well designated 76R. The location of a second well is proposed to be near the intersection of the woods road leading to the above-existing well and Tibbetts Road. The budget estimate herein includes the cost of providing a search for a second injection well to cover the contingency that the first new well would not exhibit adequate capacity.

A drilled well diameter of 6 inches is proposed with an anticipated depth of 400 feet. If adequate capacity is not met at this depth, the installation of a second well is proposed rather than extending the depth.

Well completion would include a connection to the well casing for attachment of the discharge piping from the treatment facility, valving to isolate the well during operation, well venting, access for measurement of water level to monitor well condition, vandal-proof caps and protective posts to serve during construction and later snow plowing, etc.

Low yield might prompt hydrofracing of one well to improve yield. Operation for 300 feet of bedrock would be to separate the well into 6 hydrofrac zones or separate pressurized operation for best production improvement potential.

Connection Piping To Injection Wells

Extending down from the treatment location to a new well just southwest of the Treadwell property and then along the woods road to the existing well would

amount to some 1,400 feet. Possibly, work in protective Level C would be required within the site boundaries.

<u>Budget</u>

An estimate of cost for the above-described system has been prepared which would necessitate a budget amount for the contractual amount of \$70,000 which would including utilizing 3 wells (including 2 new ones). If one new well proved sufficient, a savings of approximately \$10,000 would be expected.

TIBBETTS ROAD INJECTION WELL BUDGET

<u>Wells</u> - (2 new wells - if 1 new well budget \$10,000 less)

. . .

1.	Mobilization and on-site moves for drilling equipment		\$ 1,500
2.	Drilling for casing and surface seal (incl. materials)	100 ft. x \$40 =	4,000
3.	Bedrock 6-in. drilling	600 ft. x \$12 =	7,200
4 .	Well development		1,200
5.	Pumping test and well ratings (initial testing @ 24 hrs. each well)		4,800
6.	Hydrofrac operation to improve production - <u>1 well at \$5,000</u>		5,000
7.	Rating of hydrofraced well (6 hrs.)		800
8.	Well completion items - 3 wells		6,000
		SUBTOTAL	\$30,500
<u>Cc</u>	nnecting Piping to Treatment Facility		
1.	1,400 feet of 4-inch PVC buried 5 ft. connecting pipe @ \$20/ft.		\$28,000
2.	Level "C" surcharge for \pm 12%		1,600
3.	of pipeline length 160 ft. x \$10/ft. Miscellaneous		2 400
	(driveway crossing/surface restoration)		3,400
		SUBTOTAL	<u>\$33,000</u>
		CONTRACT 1	TOTAL TOTAL ⁽¹⁾

NOTE: (1) If completed under a general contract, add 15% or approximately \$4,600 to the \$30,500 well work effort. Round contract total to \$70,000.

\$63,500 \$70,000

.

CAMP DHESSER & MCKEE CLIEN	JOB NO.	COMPUTED BY WILS
PROJECT DETAIL	DATE CHECKED 11 21/91 CHECKED BY	DATE PAGE NO
	(com, al formand)\$5,577

Excaration and Backfill
$\frac{5' x z' x 600'}{27} x = \frac{4}{1,133}$
This System within System ED ECNIMINES This System attended to System DED ECNIMINES added to attended THIS System DED ECNIMINES Attended to attended to the stand of the st
White out y Sunchange for H#S, Materials WH-7 out y Sunchange for H#S, Materials Owned 6/10/92 Handling (2003) #1,342
Tod 1: \$ 8,052
round to: \$ 10,000
AB 9 92
Extraction Trenches : \$335,000 \$390,000 Extraction Trenches : \$335,000 \$375,000 wes Extraction Wells : \$5,000 \$375,000 wes
Recharge Aren : - 10,000 # 167,000 # 385,000
Need to Compute annual OFM Combine with Treatment. Inspection and maintenance
Parts, etc. add \$1,000/year. Time 2000 huns & Solhre \$ 12,000 lyear. 12,000
Power: Extraction 7 maits e 1/2 HP
Cost: 7, HPX 0.746 EW X8760 hours (yr X \$0.10/AWA HP = \$762.41 /yr.
Todal \$ 5,7624/gr.
round to # 6,000/yr.

CAMP DRESSER & McKEE

1

ţ

 CLIENT
 JOB NO.
 COMPUTED BY

 PROJECT
 DATE CHECKED
 DATE

 DETAIL
 CHECKED BY
 PAGE NO.

.

OFF-SITE DISCHARGE TO POTW MM-8 (See Section 3.0).

.

_ COMPUTED BY WORS DATE (2/27/97 JOB NO_____ DATE CHECKED_____/1//// CHECKED BY_____ CAMP DRESSER & McKEE CLIENT_ PROJECT. <u>Ody</u>: Fuel et Smg: @ \$1.00/gellm. 2 Frips X 2 Amiles, 45 miles/day x 41.00 = \$9.60 / day 5mg. x 365 days = # 3,504/yr. 5.6. Total: \$ 56,60 +/yr. Total Annal Cost \$ 185,00 \$-1gr. round to: \$188,000/.yr. Storace/Thomster System : Provide 5-day storage in 2 - 18,000 gallon tanks. assume tanks are writeringed, or tray call be installed niside the Building Foundation
Z tanka, 18,000 de # z. 0/get 21,000 72,000 = Basence winter : 20700 @ 10,000 /tank 20,000 \$ 1/2,000 Duplex transfer pumping system 4 12,000 ~

APPENDIX D

.

-

Development of Ground Water Cleanup Goals

. •

.

Appendix D

Development of Ground Water Cleanup Goals

The purpose of this appendix is to present the logic for the development of preliminary cleanup goals for ground water. The results of the risk assessment computations for the ground water ingestion pathway are presented in summary form in Tables D-1 and D-2. Table D-1 summarizes the potential carcinogenic risks for ground water ingestion, and is based on Section 6.0 of the RI (Tables 6-17 and 6-18). Six chemicals of concern have computed carcinogenic risks. Table D-2 summarizes the potential noncarcinogenic risks for groundwater ingestion and is based on Section 6.0 of the RI (Tables 6-19 and 6-20). Nine chemicals of concern have noncarcinogenic risks, expressed as hazard indices, exceeding 1.

Table D-1
Potential Carcinogenic Risks from Ground Water Ingestion

Chemical of	Chemical-Specific Carcinogenic Risk Average Concentrations		Chemical-Specific Carcinogenic Risk Maximum Concentrations	
Concern	Shallow Wells	Deep Wells	Shallow Wells	Deep Wells
benzene	3.22×10^{-5}	1.13×10^{-4}	3.73×10^{-4}	1.05×10^{-3}
styrene	—	4.91 × 10 ⁻⁶	_	1.16×10^{-4}
tetrachloroethene	9.49 × 10 ⁻⁵	1.61×10^{-5}	1.49×10^{-3}	1.49×10^{-4}
trichloroethene	4.30×10^{-5}	9.40 × 10⁻⁵	1.00×10^{-3}	8.37×10^{-5}
bis(2-ethylhexyl)phthalate	9.83 × 10 ⁻⁷	2.29 × 10⁻⁵	1.64×10^{-6}	3.93×10^{-5}
arsenic	1.00×10^{-3}	6.14 × 10 ⁻⁴	3.79×10^{-3}	1.09×10^{-3}

Source: Tables 6-17 and 6-18 of the Remedial Investigation.

Table D-2
Potential Noncarcinogenic Risks from Ground Water Ingestion,
with Hazard Indices Exceeding 1

Chemical	Average Con	icentrations	Maximum Concentrations		
of Concern	Shallow Wells	Deep Wells	Shallow Wells	Deep Wells	
1,2-dichloroethene (total)			11.00	3.01	
4-methyl-2-pentanone	—		5.48	3.01	
tetrachloroethene	_	_	6.85	—	
toluene	—		1.64	_	
naphthalene	—	_	3.12	-	
arsenic	1.34		5.07	1.45	
chromium	—	_	1.93	2.82	

Table D-2 (continued)Potential Noncarcinogenic Risks from Ground Water Ingestion,
with Hazard Indices Exceeding 1

Chemical	Average Con	ncentrations	Maximum Concentrations		
of Concern	Shallow Wells	Deep Wells	Shallow Wells	Deep Wells	
manganese	1.64	1.34	5.45	3.12	
vanadium	_			1.69	

Source: Tables 6-19 and 6-20 of the Remedial Investigation.

Potential Carcinogens

Five of the chemicals of concern, which are potentially carcinogenic, including benzene, styrene, tetrachloroethene, trichloroethene, and arsenic, have promulgated maximum contaminant levels (MCLs). However, the MCL for arsenic is currently under review. In addition, the MCL for styrene is based on noncarcinogenic effects. An MCL has been proposed for bis(2-ethylhexyl)phthalate. Generally, final and proposed MCLs are appropriate cleanup goals to be considered for the contaminated groundwater at the Site. The five potentially carcinogenic chemicals of concern with MCLs are:

MCL (ug/L)
5
100
5
5
50
4 (proposed)

Noncarcinogens

A number of noncarcinogenic chemicals of concern for site groundwater have final MCLs, including cis- and trans-1,2-dichloroethene, ethylbenzene, toluene, 1,1,1-trichloroethane, xylenes, and chromium. In addition, an MCL has been proposed for nickel, and an action level based on noncarcinogenic effects has been issued for lead. These MCLs, proposed MCLs and action level can serve as cleanup goals and are:

Chemical	<u>MCL (ug/L)</u>
cis-1,2-dichloroethene	70
trans-1,2-dichloroethene	100
ethylbenzene	700
toluene	100
1,1,1-trichloroethane	200
xylenes	10,000

Chemical

MCL (ug/L)

chromium (total)	100
lead	15 (Action level)
nickel	100 (proposed)

For several of the contaminants of concern for groundwater at the Tibbetts Road Site, including 4-methyl-2-pentanone, 2-methylnaphthalene, naphthalene, manganese and vanadium, no MCL, proposed MCL or action level is available. Therefore, risk-based cleanup levels for these five contaminants were derived based on a hazard index of 1.0 for each toxicity endpoint, exposure assumptions for the ingestion of groundwater, and EPA reference doses (RfDs). Table D-3 presents the development of the risk-based cleanup goals for these contaminants.

Table D-3 Development of Risk-based Cleanup Goals for Noncarcinogenic Chemicals of Concern with No Available MCLs

Chemical of Concern	Target Hazard Index (unitless)	Oral Reference Dose (Rfd) ¹ (mg/kg/day)	Effect of Concern	Exposure Factor ³ (L/kg/day)	Risk-based Cleanup Goal ⁴ (mg/L)
4-methyl-2-pentanone (synonym methyl isobutyl ketone)	1.0	5E-02	Liver/kidney	2.74E-02	1.825
2-methylnaphthalene	0.5	4E-02 ²	Decreased Body Weight Gain	2.74E-02	0.73
Naphthalene	0.5	4E-02	Decreased Body Weight Gain	2.74E-02	0.73
Manganese	1.0	1.4E-01	No Effect	2.74E-02	5.11
Vanadium	1.0	7E-03	None Observed	2.74E-02	0.256

Notes:

1 RfDs obtained from EPA's Integrated Risk Information System (IRIS) and Health Effects Assessment Summary Tables (HEAST), 1992.

- 2 The RfD for naphthalene was used for 2-methylnaphthalene, as a RfD was not available.
- 3 Exposure Factor of 2.74E-02 L/kg/day = 2 liters of water/day x 350 days ingestion/365 day per year x 1/70 kg/body weight.
- 4 Risk-based Cleanup Goal (mg/L) = RfD (mg/kg/day)/Exposure Factor (L/kg/day).

Potential cleanup levels for contaminants found in groundwater at the Tibbetts Road Site are summarized in Table D-4.

Table D-4Potential Cleanup Levels forContaminants Found in Groundwater at the Tibbetts Road Site

Chemical of Concern	Preliminary Cleanup Goal (in ug/L)	Basis (MCL or Risk Based, if no MCL available)
Volatile Organic Compounds (VOCs)		
Benzene	5	MCL
cis-1,2-dichloroethene	70	MCL
trans-1,2-dichloroethene	100	MCL
Ethylbenzene	700	MCL
4-methyl-2-pentanone	1,830	Risk
Styrene	100	MCL
Tetrachloroethene	5	MCL
Toluene	1,000	MCL
Trichloroethene	5	MCL
1,1,1-Trichloroethane	200	MCL
Xylenes	10,000	MCL
Semivolatile Organic Compounds (SVOCs)		
Bis(2-ethylhexyl)phthalat	e 4	Proposed MCL

Table D-4 (Continued)Potential Cleanup Levels forContaminants Found in Groundwater at the Tibbetts Road Site

Chemical of Concern	Preliminary Cleanup Goal (in ug/L)	
2-methylnaphthalene	730	Risk
Naphthalene	730	Risk
<u>Metals</u>		
Arsenic	50	MCL
Chromium	100	MCL
Lead	15	Action Level
Manganese	5,110	Risk
Nickel	100	Proposed MCL
Vanadium	256	Risk