EPA Contract No. 68-W6-0042 EPA Work Assignment No. 161-RICO-017H

EPA Project Officer: Diana King

EPA Remedial Project Manager: Ed Hathaway

DRAFT REMEDIAL INVESTIGATION DATA REPORT

Callahan Mining Superfund Site Brooksville, Maine

June 2005

Metcalf & Eddy, Inc. 701 Edgewater Drive Wakefield, MA 01880

Team Subcontractor
TRC Environmental Corporation
Boott Mills South
100 Foot of John Street
Lowell, MA 01852

TABLE OF CONTENTS

Sectio	n	Page No.
1.0	INTRODUCTION	1-1
1.1	Site Location	1-1
1.2	Site History	1-1
1.3	Site Operations	
1	.3.1 Site Reclamation	
1	.3.2 Post-Reclamation Site Development	
1.4	<u> •</u>	
1	.4.1 Pre-Mining Condition	
1	.4.2 Condition During Mining Operations	
1	.4.3 Current Condition	
1.5		
2.0	Study Area Investigation	2-1
2.1	Reconnaissance	
2.2	Terrestrial Geophysical Surveying	
2.3	Marine Geophysical Surveying	
2.4	Topographic Survey	
2.5	Surface Soil Sampling	
2.6	Sediment Sampling	
2.7	Surface Water Sampling	
2.8	Residential Well Sampling	
3.0	Physical Characteristics of Study Area	3-1
3.1	Geology	
3.2	Hydrogeology/Hydrology	
	.2.1 Hydrology	
_	.2.2 Ground Water Flow	
3.3	<i>2</i> ,	
	.3.1 Fauna	
3	.3.2 Flora	3-8
4.0	Nature and Extent of Contamination	4-1
4.1	Soil Contamination	4-1
4.2	Sediment Contamination	4-4
4.3	Surface Water Contamination	4-6
4.4	Residential Well Water Quality	
4.5	Flora/Fauna Contaminant Concentrations	
4.6	Data Usability	4-10
5.0	Conceptual Model	5-1
5.1	Potential Source Areas	
	.1.1 Tailings Pile	
	.1.2 Waste Rock Piles	
5	.1.3 Ore Pad	5-4

5.1.4	Mine Operations Area	5-4
5.1.5	Former Open Pit Mine	
5.1.6	Dyer Cove/Former Settling Pond	
5.1.7	Former Discharge Pipe/Goose Cove	
5.2 Rel	ease Mechanisms	
5.2.1	Acid Rock Drainage and Leaching of Metals into Ground Water	5-6
5.2.2	Erosion	5-7
5.2.3	Acid Rock Drainage to Surface Water	5-7
5.2.4	Windblown Dust	5-7
5.2.5	Catastrophic Slope Failure	5-8
5.3 Co	ntaminant Transport Pathways	5-8
5.3.1	Wind	5-8
5.3.2	Soil Erosion	5-8
5.3.3	Sediment Transport	5-9
5.3.4	Surface Water Flow	5-9
5.3.5	Ground Water Flow	5-9
5.4 Pot	ential Receptors	5-10
5.4.1	Ecological	5-10
5.4.2	Human	5-10
6.0 Reme	dial Investigation Data Needs	6-1
7.0 Refer	ences	7-1

TABLES

- Table 2.3-1: Potential Ecological Receptors
- Table 2.5-1: Surface Soil Samples
- Table 2.6-1: Sediment Samples
- Table 2.7-1: Surface Water Samples Table 2.8-1: Residential Well Samples
- Table 4.1-1: Surface Soil Analytical Results
- Table 4.1-1: Surface Soft Analytical Results
- Table 4.2-1: Sediment Analytical Results
 Table 4.3-1: Surface Water Analytical Results
- Table 4.4-1: Residential Well Analytical Results
- Table 4.5-1: Marine Flora/Fauna Analytical Results
- Table 4.5-1: Marine Flora/Fauna Analytical Results Table 6.0-1: Remedial Investigation Data Needs

FIGURES

- Figure 1.1-1: Site Location
- Figure 1.1-2: Site Plan
- Figure 1.3-1: Flowchart of Mining Operations
- Figure 1.3-2: Detail Map of Ore Processing Operations Area
- Figure 1.4-1: Site Aerial Photo, 1960
- Figure 1.4-2: Site Aerial Photo, 1972
- Figure 1.4-3: Map of 1972 Site Conditions

- Figure 1.4-4: Aerial Photograph of Mining Operation, 1972
- Figure 1.4-5: Photograph of Water Discharge Pipe
- Figure 1.4-6: Aerial Photograph of Site, 2002
- Figure 1.4-7: Photograph of Site from Waste Rock Pile 1
- Figure 2.2-1: Geophysical Survey Location
- Figure 2.5-1: Surface Soil Sample Locations
- Figure 2.6-1: Surface Water Sample Locations
- Figure 2.7-1: Sediment Sample Locations
- Figure 2.8-1: Residential Well Sample Locations
- Figure 3.1-1: Bedrock Geology Map
- Figure 3.1-2: Bedrock Elevation Map
- Figure 3.1-3: Seismic Reflection Profile TP-1
- Figure 3.1-4: Side-Scan Sonar Image-Goose Cove
- Figure 3.1-5: Sub-Bottom Profile of Former Mine Pit
- Figure 3.2-1: Water Level Elevations from Tidal Gauge
- Figure 3.3-1: Ecological Habitats
- Figure 4.1-1: Surface Soil Analytical Results
- Figure 4.2-1: Sediment Analytical Results
- Figure 4.2-2: Sediment Analytical Results, Background Locations
- Figure 4.3-1: Surface Water Analytical Results
- Figure 4.3-2: Surface Water Analytical Results, Background Locations
- Figure 4.4-1: Residential Well Analytical Results, Northern Area
- Figure 4.4-2: Residential Well Analytical Results, Western Area
- Figure 4.4-3: Residential Well Analytical Results, Southern Area
- Figure 4.5-1: Marine Flora/Fauna Analytical Results
- Figure 5.0-1: Conceptual Model
- Figure 5.3-1: Contaminant Transport Pathways

PLATES

Plate 1: Site Plan

APPENDICES

Appendix A	Field Data Forms and Notes
Appendix B	Geophysical Reports
Appendix C	Surface Soil Sample Laboratory Results, Metals
Appendix D	Surface Soil Sample Laboratory Results, VOCs
Appendix E	Surface Soil Sample Laboratory Results, SVOCs
Appendix F	Sediment Sample Laboratory Results, Metals
Appendix G	Sediment Sample Laboratory Results, VOCs
Appendix H	Sediment Sample Laboratory Results, SVOCs
Appendix I	Sediment Sample Laboratory Results, TCO
Appendix J	Surface Water Sample Laboratory Results, Dissolved Metals
Appendix K	Surface Water Sample Laboratory Results, Total Metals
Appendix L	Surface Water Sample Laboratory Results, VOCs

Appendix M	Surface Water Sample Laboratory Results, SVOCs
Appendix N	Surface Water Sample Laboratory Results, Gasoline Fuel Oil
Appendix O	Drinking Water Well Sample Laboratory Results, Metals
Appendix P	Drinking Water Well Sample Laboratory Results, VOCs
Appendix Q	Drinking Water Well Sample Laboratory Results, Organic Compounds
Appendix R	Biota Sample Laboratory Results, Metals
Appendix S	Biota Sample Laboratory Results, PAHs
Appendix T	Particle Size Data
Appendix U	Data Validation Reports
Appendix V	Data Usability Analysis

LIST OF ACRONYMS

AGP	Acid Generation Potential
ARD	Acid Rock Drainage
EPA	United States Environmental Protection Agency
ESI	Expanded Site Inspection
FS	Feasibility Study
FSP	Field Sampling Plan
HRS	Hazard Ranking System
kg	Kilogram
MEDEP	Maine Department Of Environmental Protection
MEDOT	Maine Department Of Transportation
MEG	Maximum Exposure Guideline
NNP	Net Neutralization Potential
NOAA	National Ocean And Atmospheric Administration
NPL	National Priorities List
PAH	Poly Aromatic Hydrocarbon
ppb	Parts Per Billion
ppm	Parts Per Million
ppt	Parts Per Trillion
PRG	Preliminary Remediation Goal
QAPP	Quality Assurance Project Plan
RAC	Remedial Action Contract
RAG	Remedial Action Guidelines
RI	Remedial Investigation
SIP	Site Inspection Prioritization
SVOC	Semivolatile Organic Compound
TEL	Threshold Effects Level
TRC	TRC Environmental Corporation
ug (or µg)	Micrograms
VOC	Volatile Organic Compound
WRP	Waste Rock Pile

1.0 INTRODUCTION

Metcalf & Eddy, Inc. (M&E) received Work Assignment No. 161-RICO-017H under the United States Environmental Protection Agency (EPA) Response Action Contract (RAC) No. 68-W6-0042 (RAC) to perform a Remedial Investigation at the Callahan Mining Superfund Site (the site) in Brooksville, Maine. M&E assigned primary responsibilities for implementation of most of the tasks in this project to RAC Team Subcontractor, TRC Environmental Corporation (TRC).

This Data Report describes the results of Phase IA of the Remedial Investigation that was conducted at the site from September 2004 through January 2005. Unless otherwise noted, the work described in this report was conducted in accordance with the Sampling and Analysis Plan (TRC, 2004).

1.1 Site Location

Figure 1.1-1 shows the location of the Callahan Mining site on the coast of Maine.

Figure 1.2-1 and Plate 1 show a site plan. The site is an elongate shaped, 150-acre property oriented north-south on Goose Falls Road in Brooksville, Maine, approximately 35 miles west of Bar Harbor, Maine. It is situated at 44° 21' 05.9" north latitude and 68° 48' 35.5" west longitude. The site is located on the northwestern coast of a peninsula known as Cape Rosier and is bordered by the Penobscot Bay to the west. East of the site is the Holbrook Island Sanctuary State Park and Goose Pond. A limited number of private residences are located adjacent to the site on Goose Falls Road and Cape Rosier Road.

1.2 Site History

An outcrop of massive zinc and copper ore was discovered at low tide by a clam digger about ten miles west of the Blue Hill mining camp in a tidal estuary known as Goose Falls Pond. Subsequently, a shaft was sunk by William Veague on the nearby shore and mining of high grade zinc-copper ore commenced. The ore was taken from Goose Cove to Castine by barge and piled on a dock. Periodically, coastal schooners picked up the ore in Castine and delivered it to smelters located to the south.

- 1881 Beginning of two year period of mining. About 10,000 tons of ore were mined from four shafts at the mine, known at the time as the "Penobscot Mine." The ore was reported to contain 20 percent zinc 2.8 percent copper and some lead. The crude ore was hand sorted, and reportedly, 3,000 tons were shipped.
- 1887 Mine closes, apparently due to low metal prices.
- 1914 An attempt to reopen the mine proved unsuccessful.
- 1940 The St. Joseph Lead Company conducted an exploratory drilling program on the property advancing 13 boreholes totaling 5,501 feet.
- 1942 U.S. Bureau of Mines drills an additional nine boreholes, totaling 2,883 feet.
- 1950 U.S. Bureau of Mines conducts additional drilling. Although numerous occurrences of copper and zinc sulfides were encountered, apparently implementation of a mining operation was not considered economic.
- 1956 The property was optioned by the Penobscot Mining Company, Ltd., of Toronto. The Penobscot Mining Company drilled a few exploratory boreholes that indicated more promising economic conditions at the site, cleaned out the old workings, and mined some ore from underground shafts and tunnels.
- The property was brought to the attention of Callahan Mining Corporation. Reevaluation of all past work indicated that sufficient values might exist to warrant an open pit mining operation. Based on this analysis a lease was negotiated by the Callahan Mining Corporation with the Penobscot Mining Company.
- 1966 Maine Legislature passes "An Act Relating to Mining Activity under Goose Falls Pond,
 Town of Brooksville, Hancock County" allowing Callahan Mining Corporation to

construct and maintain dams to temporarily exclude and divert tidal and fresh water from Goose Pond.

Callahan Mining Corporation obtains permit from the U.S. Army Corps of Engineers to construct two dams, one at Goose Falls to prevent inflow of sea water and one upstream of the mine to prevent inflow of fresh water. The permit requires Callahan Mining Corporation to monitor effluent discharge and eliminate toxic effects on marine organisms.

Maine Water Improvement Commission issued a Waste Discharge License allowing discharge of effluent from the flotation operation to Goose Pond. The License was later modified to require discharge to Goose Cove.

- 1967 Dam construction completed.
- 1968 Open pit mining operations commenced on 2/17/68.

Approximately 225,000 tons of mud flowed into the pit from Stink Cove leaving a 33 foot thick layer of organic silt covering some excavation equipment.

1972 Mining operations ceased in June 1972 due to the depletion of the mineral reserve. At the time mining operations ceased, the mine consisted of a roughly circular open pit approximately 600 feet in diameter and 320 feet deep.

The Goose Pond Reclamation Society was formed and a Reclamation Plan was prepared.

- 1974 Aquaculture business established to raise oysters and coho salmon.
- 1979 Aquaculture business files for bankruptcy.
- 1980 Partial opening of Goose Falls Dam.

- 1982 EPA conducts Preliminary Assessment of Site.
- 1985 Goose Pond Reclamation Society obtains approval for dredging of sediment in Goose Cove but the Brooksville Planning Board refused to grant permission for the dredging.
 - Goose Pond Reclamation Society is dissolved.
- 1987 USTs removed from operations area. No evidence of contamination was observed.

Permission for removal of the remaining portion of the dam was issued by the Maine DEP to allow unrestricted tidal flow into the pond as occurred prior to the development of the mine. However, the dam was not removed.

1988 The site was acquired by Mr. James Benesen of White's Head, Maine. Mr. Benesen is the current owner of record for the site.

1.3 Site Operations

Figure 1.3-1 shows a flow chart of the ore processing operations performed at the Callahan Mine. Approximately 5 million tons of waste rock and approximately 800,000 tons of ore-bearing rock were removed from the mine by Callahan Mining Corporation. The ore consisted primarily of sphalerite (ZnS), chalcopyrite (CuFeS₂) and minor occurrences of galena (PbS). Ore bearing rock was blasted from inside the pit and hauled out in trucks to an ore storage area (the Ore Pad).

An ore concentrate was produced from the ore. Approximately 18% of ore-bearing rock processed was recovered as copper/lead and zinc ore concentrates. The ore concentrate was prepared by crushing the ore-bearing rock into particles smaller than 0.5 inch diameter using a three stage crushing process (a jaw crusher and two cone crushers). The crushed ore was then milled to a fine sand using two ball mills. The milling process produced a seawater slurry of the sand-sized ore particles which was subjected to a flotation separation process.

Flotation separation utilizes the "surface active" property of sulfide mineral particles. The slurry of finely ground ore is passed through flotation cells where it is mixed with flotation reagents and air is bubbled through it. The flotation reagents mixed with the slurry cause the metal sulfide mineral particles to adhere to the surface of the air bubbles and formed a froth that is collected at the surface. Chemical compounds used in the flotation cell process included dithiophosphate, diethyldithiophosphate, aryl phosphorodithioate, cyclohexanol, and cresol. The metal-rich froth was collected, washed, dried, and stockpiled in a portion of the mill where it awaited transportation to a smelter. A series of flotation processes were used to concentrate the individual metals separately. The average ore grade was 1.30% copper, 4.91% zinc, 0.35% lead, and 0.50 ounces per ton of silver.

The non-metalliferous particles remaining in the slurry were discharged to the tailings pond. The approximately 11-acre tailings pond is located in the southern portion of the property, adjacent to Goose Pond. In the tailings pond solid tailings settle from the water, and the clarified water is decanted through a drain under the tailing pond for recycling into the flotation process. As more tailings storage was required, the rock embankment at the downstream side of the tailings pond was built up. The current height of the tailings embankment at the Callahan Mine is approximately 80 feet.

Figure 1.3-2 shows the detail of the ore processing operations area. The map shows the former location of the primary and secondary rock crushers, the flotation cell, office and site laboratory as well as an area where there were reported underground storage tanks removed.

Due to the depth of the pit, water constantly seeped into the pit. This water was constantly pumped out and discharged through a pipe extending under Goose Falls, ending in Goose Cove. Due to excess siltation of Goose Cove, Dyer Cove was later used as a settling pond to remove a portion of the sediment (rock flour and silt) prior to discharging the mine water to Goose Cove.

1.3.1 Site Reclamation

A reclamation program was begun after cessation of mining in 1972. The reclamation program reportedly included the following activities.

- Draining of surface water from the tailings pond and seeding surface
- Grading, seeding and planting of the waste piles
- Removal of the upstream fresh water dam
- Flooding of pit by removing the sluice boards in the salt water (Goose Falls) dam
- Salvage and resale of mining and processing equipment
- Partial demolition of the buildings and equipment foundations

The seeding and plantings of the waste rock piles was not successful due to lack of any suitable soil in these areas.

1.3.2 Post-Reclamation Site Development

In the period between the mine closure and 1980, an aquaculture facility was operated at the Site for the cultivation and sale of Coho Salmon. Oyster cultivation was also conducted on an experimental basis. During this period, restricted tidal flow into Goose Pond was maintained by the Goose Falls dam. No other operations have been located at the site since 1980.

1.4 Site Description

The Callahan Mining Site is an abandoned zinc/copper/lead mine. The following sections describe the conditions of the site before, during and after the Callahan-era mining operations that took place at the site.

1.4.1 Pre-Mining Condition

Figure 1.4-1 is an aerial photograph of the site taken in 1960 prior to construction of the mine. The figure shows the approximate site boundary together with the eventual locations of the open pit mine and the tailings pond. The area that eventually became the open pit mine is located partially on land and partially underwater in Goose Pond.

Prior to the construction of the Callahan Mine, fresh water entered Goose Pond from the south, via a small stream. Salt water also entered the cove, from the north, at Goose Falls, during flood tides. At the time, a prominent feature of the site was the so-called "reversing" Goose Falls. During the incoming flood tide as the sea level rose, water flowed south across the rocks of Goose Falls into Goose Pond. As the tide ebbed, flow reversed and the falls then reversed as well, cascading northward across Goose Falls into Goose Cove. The falls were well known as a picturesque and unique natural phenomenon visited by local residents and vacationing families. Reportedly, the foam caused by the falls was observed to glow at night due to phosphorescent algae in the water.

The site as it appears in 1960 is essentially undeveloped except for the area later to be occupied by the tailings pond where the land appears to have been cleared and possibly used for agricultural purposes (area currently referred to as the former "Redman Farm"). There are also several residences present adjacent to the site along the roadway.

1.4.2 Condition During Mining Operations

Figure 1.4-2 shows an aerial photograph of the site as it appeared when the mine was operating in 1972. Figure 1.4-3 shows a map of the site as it appeared during the time of active mining and Figure 1.4-4 is an aerial photograph from a newspaper article published in 1972 showing the condition of the site, including the open pit excavation.

To allow exploitation of the ore body, the Callahan Mining Corporation drained Goose Pond by constructing two dams, one upstream of the site and one at Goose Falls. Water that previously entered the site from upstream was diverted through a newly constructed channel to the south, allowing water to drain into Weir Cove. Figure 2.4-3 shows numerous facilities on the northern portion of the property, representing the various elements of the mining operation.

The mine pit was approximately 600 to 1,000 feet in diameter and 320 feet deep. Figure 1.4-2 shows that the pit extended east of the former eastern shoreline of Goose Pond, beyond the area that was formerly underwater.

Figure 1.4-3 shows the approximate location of the former discharge pipe that was used to pump water out of the pond after the dam was constructed. Figure 1.4-5 shows a photograph of the character of the discharge water prior to use of Dyer Cove for settling. For a period of time, this discharge was released directly into Goose Cove via a pipe on the sea floor. The water appears to be laden with sediment. Due to concerns over the discharge of sediment, an embayment within Goose Pond (Dyer Cove) was later enclosed during mining and used as a settling pond for the mine. The water in the settling pond was pumped to the mine water sump, where it was then pumped through the pipe that was extended further out into Goose Cove.

1.4.3 Current Condition

Following the end of the mining operations, the mine pit was flooded with seawater by opening an eight foot section of the dam at Goose Falls. The mine is currently under water and is subject to daily tidal exchange in Goose Pond. The site is currently vacant, unfenced and access is not restricted in any way. Trespasser activity is evident from the presence of recreational vehicle tracks, food and beverage wastes, discharged firearms casings and campfire remnants.

Figure 1.4-6 shows an aerial photograph of the site in 2002. The area of the former open pit mine is highlighted as well as the pre-1968 shoreline in the area of the pit. In the area of Waste Rock Pile (WRP) 3, there is an apparent slope failure that is highlighted by a dashed white line. drawn along the toe of the slope. The slope has failed at the location where the line bends out to the east. The site appears relatively bare of vegetation

Figure 1.1-2 shows a map of the Callahan Mining Site as it appeared in 2002. The site currently contains waste rock piles, a tailings pile, and some relic mine operations buildings and structures. The former open pit mine is now underwater in Goose Pond.

Figure 1.4-7 shows a panorama of the site looking north from the top of WRP 1 to provide a general depiction of site features from the ground. This view shows the layout of the Ore Pad uphill from WRP 2 on the left (west); Dyer Cove (the former settling pond), Goose Falls Dam and Stink Cove in the background, Holbrook Island Sanctuary on the far (east) side of Goose Pond, and WRP 3 are also observable in this photo. The orange staining that is observable on Waste Rock Pile 1 (foreground), the Ore Pad and WRP 3 is evidence of sulfide mineral oxidation, which can produce acid rock drainage (ARD).

In June 1967 when the open excavation reached a depth of approximately 100 feet, a large mass (estimated 225,000 tons) of black organic silt began to slide into the excavation from Stink Cove, a former cove located north of Goose Cove. The slide buried some mining equipment including trucks and a power shovel. Callahan Mining Corporation dredged the clay out of the excavation and reportedly placed it in then area at the base of WRP 1. The dredged clay area is now covered with wetland vegetation, and can be seen at the base of WRP 1 in Figure 1.4-7.

Access to the site is currently unrestricted. There are roadway entrances at the north and south boundaries of the property. Numerous signs of recreational trespasser activity are observable at the site, including shotgun shells, broken clay shooting targets, trash, ATV tracks, etc., and recreational trespassers have been observed at the site on numerous occasions. Goose Pond and Goose Cove are reportedly used for shellfish harvesting, although there are posted warning signs on the shore prohibiting this practice.

1.5 Pertinent Regulatory History

- 1987 Four underground storage tanks located in the vicinity of the metal shop building were removed in 1987. No indication of releases or contaminated soil were observed during the tank removals.
- 1995 Maine Department of Environmental Protection (ME DEP) completes the Site Inspection Prioritization (SIP) Report.
- 1999 ME DEP conducts Expanded Site Inspection but no report is issued.

2001 EPA issues Hazard Ranking System (HRS) package indicating a Hazard Ranking Score of 50 based on surface water contamination. Other contaminated media were not addressed in the HRS package.

9/5/02 Site added to National Priorities List

•

2.0 STUDY AREA INVESTIGATION

TRC conducted the field-work for this project in accordance with the EPA-approved Sampling and Analysis Plan (TRC 2004). The following field activities were completed from October 2004 through January 2005.

- Reconnaissance
- Terrestrial geophysical surveying
- Marine geophysical surveying
- Topographic survey of site
- Surface soil sampling
- Sediment sampling
- Surface water sampling
- Residential well sampling

EPA currently anticipates that the other activities specified in the Sampling and Analysis Plan will be completed by ME DOT.

2.1 Reconnaissance

During the field investigation, TRC conducted a detailed inspection of the site. A list of significant observations is presented below.

Prior to mobilization, a local resident reported that an open hole appeared on the site adjacent to the location of the former open pit. The site owner arranged for fill material to be brought from off-site and placed over the hole to prevent possible erosion and to provide increased protection against trespasser injury. After the hole was filled, TRC installed concrete barriers along the edge of the open pit slope to provide an additional safety measure in the area.

Site access was observed to be unrestricted and TRC staff spoke with several groups of recreational trespassers who were encountered on the site. To discourage trespassers, especially

hunters and other sport riflery, TRC posted signs at each site entrance indicating the presence of site workers.

TRC revised several of the surface soil and sediment sample locations to correspond with areas of staining that were observed.

TRC and EPA ecological staff inspected potential locations for ecological reference samples, and made adjustments to the sampling locations provided in the original October 2004 FSP.

Subsequent to the surface soil sampling activity, a local resident pointed out the location of an abandoned transformer on the eastern slope of WRP 1.

2.2 Terrestrial Geophysical Surveying

Figure 2.2-1 shows the location of the terrestrial geophysical survey that was performed by Hager Geosciences. Appendix B presents the geophysical data report. This survey was conducted to estimate the depth of bedrock across the site. A variety of geophysical methods were used, including seismic refraction (four lines), seismic reflection (two lines) and ground penetrating radar (12 lines).

Seismic Reflection methods were used at the Tailings Pile (lines TP-1 and TP-2) due to the limited horizontal distance available for offset shots and the large vertical variation in surface topography. A 24 geophone array was used in a "roll-along" fashion to achieve 12-fold common depth point coverage. A total of 200 shots were colleted for line TP-1 and 78 shots were collected for TP-2.

Seismic refraction was used at the base of the Tailings Pile (TP-3) and at the base of WRP-1 (Lines WRP-1 and WRP-2). Geophone arrays consisted of either 24 (WRP-1, WRP-2, WRP-3) or 48 (TP-3) geophones. Shots were located at the line midpoint, at the line ends and off the end of each survey line. In areas of low signal-to-noise ratio, "shots" consisting of a 90 pound Propelled Energy Generator were stacked.

Due to the shallow depth of bedrock over much of the areas surveyed, and poor ground coupling of the geophones to the loose rock over much of the site, ground penetrating radar was used to estimate bedrock depths in most of the survey area. A variety of antenna frequencies were used in the survey ranging from 20 MHz to 100 MHz.

2.3 Marine Geophysical Surveying

Appendix B presents the geophysical data report. Hydroterra Environmental Services of Dover, New Hampshire conducted marine geophysical surveys at the site to determine the bathymetry and to examine the character of the sea floor and sub-bottom. A bathymetric survey was conducted in Goose Cove and Goose Pond (Plate 1). Side-Scan sonar and sub-bottom surveying was conducted over the former mine pit area and in Goose Cove.

Due to tidal fluctuations in Goose Cove and Goose Pond, temporary tidal gauges were installed and used to correct for the tidal range in each area.

2.4 Topographic Survey

Plate 1 shows the results of the topographic survey that was conducted at the site by ASEC Corporation of Boston, Massachusetts together with the bathymetric survey information. The topographic survey was performed using a combination of aerial photogrammetry and ground surveying. The site boundary was determined from examination of property deeds, but due to missing information at the town offices, portions of the northwestern site boundary are approximated.

2.5 Surface Soil Sampling

Figure 2.5-1 and Plate 1 show all of the surface soil samples that were collected by TRC along with all of the known previous surface soil sampling locations. Table 2.5-1 lists the surface soil samples that were collected by TRC. Appendix A presents the field notes and sampling forms that document the collection of samples by TRC.

Surface soil samples were collected in accordance with the EPA-approved FSP/QAPP at 30 locations at the site including all three waste rock piles, the Ore Pad, Operations Area, one onsite background location and two off-site background locations.

2.6 Sediment Sampling

Figure 2.6-1 and Plate 1 show all of the sediment samples that were collected by TRC. Table 2.6-1 lists the sediment samples that were collected by TRC. Appendix A presents the field notes and sampling forms that document the collection of samples by TRC.

Sediment samples were obtained in accordance with the EPA-approved FSP/QAPP at 23 locations in Goose Cove, Goose Pond, Dyer Cove, Tailings Pile Pond, WRP-1 Wetland, Goose Pond Upstream, and a reference area (Horseshoe Cove). TRC collected samples concurrent with the surface water sampling activity, and proceeded upstream from the furthest downstream location.

2.7 Surface Water Sampling

Figure 2.7-1 and Plate 1 show all of the surface water samples that were collected by TRC. Table 2.7-1 lists the surface water samples that were collected by TRC. Appendix A presents the field notes and sampling forms that document the collection of samples by TRC.

Surface water samples were obtained in accordance with the EPA-approved FSP/QAPP at 12 locations in Goose Cove, Goose Pond, Dyer Cove, Tailings Pile Pond and the WRP-1 Wetland. TRC collected samples concurrent with the sediment sampling activity, and proceeded upstream from the furthest downstream location.

No seeps were active at the time of sampling, but some of the sampling locations appeared to be in areas where seepage was occurring, as evidenced by blue-green copper hydroxide staining.

The standing water depth at each location was at least eight inches, and samples were obtained in areas where the flow of surface water was preferentially lower. Separate samples were obtained at each location for total and dissolved metals.

2.8 Residential Well Sampling

Figure 2.8-1 and Plate 1 show all of the residential well samples that were collected by TRC. Table 2.8-1 lists the residential well samples that were collected by TRC. Appendix A presents the field notes and sampling forms that document the collection of samples by TRC.

Well samples were obtained in accordance with the EPA-approved FSP/QAPP at seven locations. Table 2.8-1 indicates the location from where each sample was collected at each residence. An attempt was made at each location to collect a sample of untreated water as close to the well head as possible. This was not possible at all locations. Each well was purged for a minimum of 15 minutes to remove stagnant water from the piping system.

3.0 PHYSICAL CHARACTERISTICS OF STUDY AREA

Plate 1 presents the site topographic survey showing all of the Remedial Investigation sample locations.

3.1 Geology

Figure 3.1-1 shows a bedrock map of the site vicinity. The Cape Rosier deposit occurs as lenses of mixed sulfides of zinc, copper, lead, and iron replacing highly sheared and altered agglomerate. The country rock of Cape Rosier and of the adjacent portion of the mainland is composed of a series of volcanics – rhyolitic and andesitic flows, agglomerates, and pyroclastics – folded with northeasterly regional strike and intruded by sills and dikes of diorite. The volcanics are collectively called the Castine formation and tentatively assigned to the early or middle Paleozoic. The cover of glacial till averages only a few feet in thickness, and outcrops are numerous, especially along the shores. Four miles east of the mine as the contact between the volcanics and the southwestern end of a late Paleozoic batholith of granite and diorite. In the immediate vicinity of the Cape Rosier Mine, two agglomerates, the Goose Falls and Dyer Point, and a black rhyolite are recognized.

The Goose Falls agglomerate is characterized by fragments ranging from ¼ inch to 5 inches in size and colored grayish buff. The Dyer Point agglomerate is characterized by 5 to 7 inch angular fragments of black rhyolite, which weathers white in a fine-grained groundmass that weathers gray.

The rhyolite is black, massive and very fine-grained. The general strike of these structures is approximately N 17E and the dip is southeasterly. In the area drilled (for mine exploration) the Goose Falls agglomerate is intruded by two diorite sills and several minor tongues of variable thickness and characterized by pinching, swelling and splitting. Typical diorite is massive, unsheared and fresh; the color is light gray with a slight greenish tone.

Traces of mineralization at the surface are rare, but drilling establishes a mineralized zone that coincides approximately with the zone of intensely sheared and thoroughly altered agglomerate

lying chiefly below and to a lesser extent between the diorite sills. The sheared agglomerate has been converted into 1) a green-black macroscopically non-mineralic chlorite schist; or 2) a coarse aggregate of creamy-white non-foliate talc and white calcite, in which the carbonate appears to be healing a talc breccia; or 3) a chlorite-talc-calcite rock. The mineralized zone dips about 55° SE near the surface and flattens with the diorite to about 30° SE at depths down dip of 200 to 400 feet. The thickness of the chief mineralized zone (not the ore) beneath the lower diorite ranges from a few inches up to 100 feet.

Within the mineralized zone, that is, within the zone of sheared agglomerate largely or wholly altered to chlorite, talc and calcite, and carrying disseminated sulfides, there occur several sphalerite-chalcopyrite-galena ore shoots of lens-like habit. The largest of these are localized in the thickest part of the mineralized zone, in the vicinity of shafts 1 and 2. In this area, three lenses – footwall, middle, and hanging wall – lie beneath and essentially conformable in dip with the lower diorite. These lenses are separated by a very lean mineralized zone.

The mineralized zone is oriented N 17° E dipping in a southeasterly direction and was comprised of lenses of zinc-copper-lead sulfides. The country rock is composed of a series of volcanic rocks (rhyolite, andesite, agglomerate and pyroclastics), folded with northeasterly regional strike and intruded with sills and dikes of diorite.

Plate 3.1-2 shows the inferred bedrock elevation based on the results of the geophysical surveying. Bedrock is exposed across much of the site at the surface, but is buried below the waste rock piles and the Tailings Pile. Bedrock is estimated to be approximately 70 feet deep below the crest of WRP-1, 0-20 feet deep at the base of WRP 1 and 2, and approximately 30-60 feet deep under the Tailings Pile.

Figure 3.1-3 shows a seismic reflection profile across the Tailings Pile. The bedrock surface is annotated on the profile showing a sloping bedrock surface deepening to the east.

Figure 3.1-4 shows a side-scan sonar image of the sea floor in Goose Cove superimposed on a map of the cove. Bedrock outcrop can be seen on both shores of the cove and the horizontal

linear element on the side-scan image is the former discharge pipe location. The image is interpreted to indicate a gravelly, rocky bottom with little fine grained sediment present.

Figure 3.1-5 shows a sub-bottom profile across the former open pit mine area. This figure shows the form of the bedrock as a series of ledges underwater corresponding to the former haul roads that formed a spiral pattern in the mine pit. The profile shows over 70 feet of sediment filling the bottom of the former pit and a thin (less than five feet) veneer of sediment in the shallower portions of Goose Pond.

3.2 Hydrogeology/Hydrology

3.2.1 Hydrology

The site lies adjacent to Goose Pond, a tidal estuary that empties into the Penobscot Bay. Based on the topography, all surface water runoff from the Site discharges directly or through drainage ditches into Goose Pond Estuary. Goose Pond is tidally influenced and flushes into Goose Cove and Penobscot Bay approximately 500 feet north of the Site during the low tide cycle. Wetland areas and a small, unnamed stream are located approximately 500 to 1,000 feet west of the developed portion of the Site, in a separate surface water drainage area.

The principal surface water feature at the site is the Goose Pond Estuary. Fresh water enters the cove from upstream and salt water enters the cove at Goose Falls (during flood tides) which is now partially dammed, so tidal flow is more restricted than before development of the mine. Goose Pond was approximately 5 to 30 feet deep prior to development of the mine, but now the pond is over 300 feet deep at the location of the former open pit.

Figure 3.2-1 shows the tidal range recorded during the bathymetric survey at Goose Cove and Goose Pond. The mean tidal range in Goose Cove is about two feet, but the range averages over 8 feet outside of Goose Falls Dam. The timing of the tidal cycle appears to lag approximately two hours from the Castine tidal station located across Penobscot Bay.

A small surface water body is also ponded on top of the tailings pile. The depth of water here varies seasonally but is typically less than one foot deep.

There are drainage features on the site which help to direct surface runoff around some of the rock piles. These drainage features are ephemeral streams, running only when there is sufficient runoff water.

3.2.2 Ground Water Flow

No sand and gravel aquifers exist on the peninsula were the Site is located. There are no existing ground water monitoring wells or piezometers at the site, so there is no quantitative evaluation of ground water flow direction, hydraulic gradient or seepage velocity. However, it is evident that ground water in the overburden (including the multiple piles of rock and tailings at the site), is likely directed toward the Goose Pond Estuary. Given the steepness of the waste rock piles, it is likely that the horizontal hydraulic gradients in these areas are large, and given the apparent large average particle size that characterizes these deposits, it is also likely that the ground water is flowing at relatively high seepage velocities, and principally discharging to Goose Pond.

The tailings pile contains finer grained sediments, and the seepage velocity of ground water within the tailings pile is expected to be much lower. However, ground water infiltration and flow through the crushed rock perimeter of the Tailing Pile is anticipated to be much larger.

Several seeps have been historically observed at the site emanating from the base of the Tailings Pile, indicating that ground water is discharging to the surface in places. Some of this seepage may re-infiltrate and some of the seepage may runoff into Goose Pond. In addition, internal drainage structures are know to have been placed in the Tailings Pile which may or may not still be active and could affect the hydrology of that area.

Ground water flow in bedrock is less predictable since there are no piezometric monitoring points. Since the cove was deepened several hundred feet into the underlying bedrock, it is likely that there is exchange of surface water and bedrock ground water in the former mine pit.

All residences on the peninsula are served by private wells, and most wells near the site are completed in the bedrock aquifer.

3.3 Ecology

3.3.1 Fauna

Reclamation efforts by the Callahan Mining Company were of limited success and the mine waste units and process areas appear to be largely un-reclaimed, though some areas are revegetated with local "volunteer" plants that have become established. Some trees that were planted over 30 years ago appear today as small saplings but many of the original plantings did not survive.

TRC previously conducted site reconnaissance on August 12 and 13, 2002 to evaluate on-site ecological conditions. Information gathered during that reconnaissance identified non-vegetated areas, three aquatic/wetland habitats and four terrestrial vegetation habitat cover types present on the site and immediate vicinity. Habitats were identified based on descriptions and classifications provided in DeGraaf and Rudis (1986) and Cowardin et al. (1979). Each of the terrestrial cover types generally represents an early successional plant community that is associated with a disturbed environment. The cover types noted on the site and vicinity included the following.

Non-Vegetated Cover Types

1) Unvegetated Areas

Aquatic/Wetland Cover Types

- 1) Open Water (Estuarine)
- 2) Salt Marsh (Estuarine Emergent)
- 3) Shallow Marsh (Palustrine Emergent)

Terrestrial Vegetation Cover Types

- 1) Grass
- 2) Shrub Old Field

- 3) Birch/Aspen Woodland
- 4) Spruce/Birch Woodland

Figure 3.3-1 is a map showing the distribution of various cover types. Brief descriptions of each habitat are provided below.

Unvegetated Areas: Areas containing no vegetation or very sparse vegetation were common on the tailings pile, waste rock pile and ore pad as well as other areas including unpaved roadways, former building/structure sites, and in the vicinity of the former settling pond (Dyers Cove). These areas predominately consisted of exposed soil and rocks with occasional scattered saplings, shrubs, and/or herbaceous vegetation present. Portions of these unvegetated areas were located on steep slopes associated with the tailings and waste rock piles.

Open Water (Estuarine Unconsolidated Bottom): This cover type includes Goose Pond and Dyers Cove, an embayment to Goose Pond. Although an eight to ten foot tidal fluctuation was noted at Goose Cove (located in the Penobscot Bay) during the site reconnaissance, the tidal fluctuation within Goose Pond was considerably less (approximately 1.5 to 2.0 feet fluctuation between high and low tide). This difference is believed to be attributable to the narrow constriction (as well as the height of the constriction) associated with Goose Falls. Algae was noted to be abundant within the upper portions of Goose Pond where water depths were generally very shallow. The deepest portions of Goose Pond are associated with the former open pit mine.

Salt Marsh (Estuarine Emergent): A narrow fringe of salt marsh is present along much of the shoreline of Goose Pond. The width of the salt marsh ranges from a few feet to over 100 feet. This cover type is dominated by salt-marsh cord-grass (Spartina alternifolia), black grass (Juncus gerardii), and salt-marsh plantain (Plantago maritima). Other species present include glasswort (Salicornia europaea), sea-blite (Suaeda sp.), spearscale (Atriplex patula), three-square (Scirpus americanus), and seaside goldenrod (Solidago sempervirens).

Shallow Marsh (Palustrine Emergent): This habitat type is generally present slightly upgradient of the salt marsh cover type as well as within two large depressions that are present on the site. The depressions are located on the large mound where the tailings pond was formerly located (southern portion of the site) and north of the large waste rock pile (central portion of site). The predominant species in this cover type is cat-tail (*Typha angustifolia*) with Baltic sedge (*Juncus balticus*), common reed (*Phragmites australis*), rushes (*Juncus* spp.) and purple loosestrife (*Lythrum salicaria*) also present.

Grass: This cover type is present on the mound where the tailings pond was previously present. This habitat is located adjacent to the shallow marsh community located within the depression present on this mound. Short (e.g., less than 12 inches in height) grass species, lichens, and paper birch (*Betula papyrifera*) seedlings comprise the vegetation within this community.

Shrub – Old Field: The shrub-old field habitat is present in scattered locations throughout the site. These areas are variable in plant species composition with some areas dominated by herbaceous plants and others by saplings and/or shrubs. Species noted include young eastern white pine (Pinus strobus), paper birch, balsam fir (Abies balsamea), northern white cedar (Thuja occidentalis) and quaking aspen (Populus tremuloides) with meadowsweet (Spirea latifolia), blackberry (Rubus allegheniensis), goldenrod (Solidago spp.), Queen Anne's lace (Dauca carota), thistle (Cirsium sp.), and various grasses also present.

Birch – Aspen Woodland: This early successional forested cover type is predominately present in various locations within the northern portion of the site. Vegetation is comprised predominately of sapling and pole-sized quaking aspen and paper birch trees in the overstory. Each of these tree species is considered to be a short-lived "pioneer" species that typically occur on recently disturbed sites. It is likely that this cover type will continue to expand to other areas of the site that are currently unvegetated or presently contain an earlier successional plant community (i.e., grass or shrub – old field). This habitat is succeeded by the spruce – fir woodland community.

Spruce – Birch Woodland: This woodland community is present within the central portion of the site and downgradient from the tailings pile. In addition, this habitat predominates in the vicinity of the site. This woodland community is comprised primarily of red spruce (Picea rubens) and paper birch in the tree overstory with a variety of understory vegetation present including bracken fern (Pteridium aquilinum) and wintergreen (Gaultheria procumbens). Red spruce represents a long-lived species that is often associated with disturbance.

3.3.2 Flora

Table 3.3-1 lists potential amphibian, reptilian, avian, invertebrate, fish and mammalian receptors that were noted on the site or may potentially occur within each habitat present on the site. This table also provides foraging guild information that is useful in assessing potential exposure to site-related constituents of concern. It is expected that species inhabiting the aquatic/wetland cover types would have greater potential for exposure to constituents of concern than species that are generally associated with terrestrial cover types.

A review of Table 3.3-1 indicates that a variety of omnivorous and piscivorous bird and mammal species that forage within the aquatic/wetland habitats on the site may be exposed to site-related constituents of concern. Some of these species were noted during the site reconnaissance.

In addition to the species listed in Table 3.3-1, a variety of macroinvertebrates and fishes are also expected to inhabit the tidal wetland habitats provided by Goose Pond and the adjacent salt marsh. Invertebrate species noted during the site reconnaissance include blue crab, soft-shell clam, moon jellyfish, and common blue mussel while a dead American eel (approximately 8 inches in length) was noted near the mouth of Dyers Cove.

4.0 NATURE AND EXTENT OF CONTAMINATION

This section presents a discussion of the types of contaminants that were detected in each of the separate media at the Site from all previous environmental investigations. Environmental samples of surface water, sediment, soil, ground water and organisms have been collected at the site periodically since at least 1967. Data from the Remedial Investigation as well as from the historical studies listed below are summarized in the following sections.

- 1967 1968: Sampling of Well Water, unknown source
- 1974 1975: Testing for Trace Elements in Selected Marine Organisms by Maine Department of Marine Resources
- 1986: Minesite Environmental Review by F.M. Beck
- 1987: Site Investigation by Maine Department of Environmental Protection (ME DEP)
- 1995: Final Site Inspection by ME DEP
- 1999: Expanded Site Inspection by ME DEP

Each of the following sections presents tables of the contaminants that were detected together with the concentrations. Separate tables are presented for each group of contaminants (i.e., volatile organic compounds [VOC], semi-volatile organic compounds [SVOC], metals, etc.). If a particular group of contaminants was not detected for any of the samples in a given study area, no table is presented. Also, the tables only list analytes that were detected in one or more samples. Analytes that were not detected in any sample are not included in the tables, and the contaminant concentration for other analytes that were not detected are simply listed as blank and the tables do not include detection limits for any constituent.

Appendices C through T present a complete tabulation of all laboratory test results obtained during the Remedial Investigation and other previous investigations. The appendices contain all of the results, all of the analytes and all of the data qualifiers. Appendix U presents copies of all of the data validation reports.

4.1 Soil Contamination

Table 4.1-1 presents laboratory analytical results for soil samples collected at the site. The criteria used for screening surface soil samples are the lower of EPA Region IX Preliminary Remediation Goals (PRGs) for Residential Soil, dated October 2002 and the Maine Remedial

Action Guidelines (ME RAGs). The EPA Region IX PRGs were used as a relatively conservative screening criterion, and per EPA Region policy, all of the Region IX PRGs were reduced by a factor of 10, making them even more conservative.

Figure 4.1-1 depicts the distribution of soil concentrations for arsenic, cadmium, copper, lead and zinc. Concentrations of these metals that exceed one or more criteria are highlighted on both the figure and the table.

Former Mine Operations Area: Table 4.1-2 summarizes the number of samples in which contaminants were detected in the Operations Area. Detected concentrations of metals in the former mine operations area are among the highest detected in soil on site. Detected concentrations of several metals exceed the residential PRGs including arsenic, cadmium, copper, lead, mercury, selenium, silver, and zinc. VOCs (acetone and dichloromethane) were detected in one of six samples (sample collected in 1994). Six soil samples tested for SVOCs contained SVOCs at low concentrations. Detected concentrations of VOCs and SVOCs are below residential PRGs.

Ore Pad: Table 4.1-3 summarizes the number of samples in which contaminants were detected in the Ore Pad. Metals concentrations in soils from the Ore Pad are also among the highest on site, due to the fact that residual ore material is still present at this location. Soils samples contained several metals, including arsenic, cadmium, copper, lead and zinc at concentrations exceeding the residential PRGs and residential ME RAGs. No VOCs or SVOCs were detected in soil samples from the Ore Pad.

Waste Rock Pile 1: Table 4.1-4 summarizes the number of samples in which contaminants were detected in soils at WRP-1. Soils samples from WRP-1 contained several metals, including arsenic (maximum 100 ppm), copper (maximum 110,000 ppm), lead (maximum 9100 ppm) and zinc (maximum 18,000 ppm) at concentrations exceeding the residential PRGs and residential ME RAGs. Cadmium is present at concentrations above the Region IX residential PRGs but below the ME RAGs. No VOCs or SVOCs were detected in soil samples from WRP-1.

Waste Rock Pile 2: Table 4.1-5 summarizes the number of samples in which contaminants were detected in soils at WRP-2. Soils samples from WRP-2 contained several metals, including arsenic (maximum 57 ppm), copper (maximum 2000 ppm), lead (maximum 790 ppm) and zinc (maximum 8400 ppm) at concentrations exceeding the residential PRGs and residential ME RAGs. Cadmium (maximum 32 ppm) is present at concentrations above the Region IX residential PRGs but below the ME RAG. No VOCs or SVOCs were detected in soil samples from WRP-2.

Waste Rock Pile 3: Table 4.1-6 summarizes the number of samples in which contaminants were detected in soils at WRP-3. Soils samples from WRP-3 contained several metals, including arsenic (maximum 130 ppm), copper (maximum 3600 ppm), lead (maximum 700 ppm) and zinc at concentrations exceeding the residential PRGs and residential RAGs. No VOCs or SVOCs were detected in soil samples from WRP-3.

Tailings Pile: Table 4.1-7 summarizes the number of samples in which contaminants were detected in surface soils in the Tailings Pile. Soil samples were obtained from several locations on the upper surface of the Tailings Pile. Although the tailings are the non-ore bearing waste product from the mining operation, elevated concentrations of several metals are present, including aluminum, arsenic (maximum 120 ppm), cadmium (maximum 32 ppm), copper, iron, lead (maximum 990 ppm), manganese, thallium, vanadium and zinc. The VOCs detected include acetone, 1,2-dichlorobenzene, 1,3-dichlorobenzene, diethylbenzene, and 3,4-dithiohexane. The SVOCs detected included bis(2-ethylhexyl) phthalate and butyl benzyl phthalate, but all VOC and SVOC concentrations were below residential PRGs.

Background: Table 4.1-8 summarizes the number of samples in which contaminants were detected in soils obtained from background locations. The background samples include 12 collected by TRC plus four samples obtained in 1999. Some of the background samples contained metals at concentrations that exceed one or more of the screening criteria. Arsenic was present at a concentration exceeding the Region IX residential PRG in all 12 samples where arsenic was an analyte, but the maximum concentration of arsenic of 14 ppm only slightly exceeds the MEG of 10 ppm. Elevated concentrations of aluminum, iron, manganese and

vanadium were present in several of the background samples, but there is no MEG for these compounds. Cadmium, lead and zinc were not present at concentrations that exceeded any screening criteria in the 12 RI samples. Based on the results, these samples all appear to represent background conditions reasonably.

4.2 Sediment Contamination

Table 4.2-1 shows the results from laboratory testing of sediment from the site and background locations. The sample results are highlighted where they exceed one of the relevant screening criteria. The primary screening criteria used for sediment samples are the National Ocean and Atmospheric Administration (NOAA) Screening Quick Reference Tables (SQuiRTs) for Organics and Inorganics (Freshwater Sediment TEL), dated September 1999. For compounds without a NOAA TEL concentration, benchmark concentrations from the following documents, in order, were used:

- Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision.
- Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Volume 1, EPA 1999. (Freshwater or Marine Sediment Toxicity Reference Values).
- Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario, Ontario Ministry of the Environment, 1993. (Lowest Effect Levels).

Figures 4.2-1 and 4.2-2 depict the distribution of sediment water quality for arsenic, cadmium, copper, lead and zinc. Metal concentrations that exceed one or more criteria are highlighted and are considered in this analysis as "elevated."

Goose Pond: Table 4.2-2 summarizes the number of samples in which contaminants were detected in sediment samples obtained from Goose Pond. Goose Pond sediment contained elevated (relative to screening criteria) concentrations of arsenic, cadmium, copper, lead, mercury, nickel silver and zinc were detected at concentrations exceeding the screening criteria. Detected SVOCs include butyl benzyl phthalate and di(2-ethylhexyl)phthalate.

One area of discolored (blue-green) sediment at the base of WRP-3 (SD-422) contained the highest concentrations of copper (10,000 ppm) of any sediment sample obtained from the site. Elevated concentrations (relative to screening criteria) of arsenic, cadmium, lead and zinc were also detected in this sample.

One sample was collected from Stink Cove. None of the metals were present in this sample in excess of the screening criteria.

Two of the sediment samples from Goose Pond are located upstream of the site. Since the flow direction of Goose Pond was reversed during the years of mining operation, it should be noted that these sample locations could contain sediment from the site that was deposited during that time period. Only cadmium, copper and zinc are present at concentrations above the screening criteria in one of the two samples. Note also, that both the marine and fresh water screening criteria are used for these samples due to the tidal influence in the area and the inflow of freshwater. No VOCs or SVOCs were detected in these samples.

Tailings Pile: Table 4.2-3 summarizes the number of samples in which contaminants were detected in sediment samples obtained from the tailings Pile. Five sediment samples were collected from Tailings Pile drainage channels. These samples contained cadmium (maximum 110 ppm), copper (maximum 3760 ppm), lead (maximum 1100 ppm) and zinc (maximum 23,000 ppm) at concentrations above the freshwater screening criteria.

Sediment samples from the wetland on top of the Tailings Pile contained arsenic, cadmium, copper, lead, mercury and zinc at concentrations above the freshwater screening criteria. No VOCs or SVOCs were detected in these samples.

Seeps: Table 4.2-4 summarizes the number of samples in which contaminants were detected in sediment samples obtained from seeps.

Dyer's Cove: Table 4.2-5 summarizes the number of samples in which contaminants were detected in sediment samples obtained from Dyer's Cove. Arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver and zinc were detected at concentrations exceeding screening criteria in Dyer Cove. Detected VOCs include acetone and methylene chloride. Detected SVOCs include butyl benzyl phthalate and di(2-ethylhexyl)phthalate.

Goose Cove: Table 4.2-6 summarizes the number of samples in which contaminants were detected in sediment samples obtained from Goose Cove. Five samples from Goose Cove sediment contained elevated metals concentrations (relative to screening criteria) for cadmium, copper, lead and zinc. Arsenic and nickel are present at concentrations exceeding the fresh water criteria, but these criteria do not apply to Goose Cove. Sample SD-421 was located at the end of the former discharge pipe and contained the highest metals concentrations of the Goose Cove sediment samples.

WRP-1 Wetland: One sediment sample from the WRP-1 wetland contained nickel and zinc at concentrations exceeding the fresh water screening criteria.

Background: Table 4.2-7 summarizes the number of samples in which contaminants were detected in sediment samples obtained from background sample locations. Only one (BK_HSC_SED9) of the eight background samples contained one metal (arsenic) in excess of the screening criteria, and this sample was the only background sample containing SVOCs (bis(2-ethylhexyl)phthalate, butyl benzyl phthalate and phenanthrene. Based on the detection of theses SVOCs, further consideration of this sample as a suitable background location should be made prior to the risk assessment.

4.3 Surface Water Contamination

Table 4.3-1 presents laboratory analytical results from all of the available surface water sampling. Blank results indicate parameters that were not tested. Analytical results for surface water are compared to three sets of screening criteria as a benchmark for evaluating the results. The primary screening criteria used for surface water are from Suter and Tsao (1996). For

compounds without a specified Tier II value, benchmark screening values from the following documents were used.

- National Recommended Water Quality Criteria for Priority Toxic Pollutants (Freshwater/saltwater CCC), November 2002
- Water Quality Criteria Summary Concentrations, EPA 1994

Note that the State of Maine follows the federal standards for surface water, except that there are fewer compounds that have Maine standards. Highlighted values in Table 4.3-1 indicate exceedances of one or more screening criteria.

Figures 4.3-1 and 4.3-2 depict the distribution of surface water quality for arsenic, cadmium, copper, lead and zinc. Metal concentrations that exceed one or more criteria are highlighted.

Tailings Pile: Table 4.3-2 summarizes the number of samples in which contaminants were detected in surface water samples obtained from the Tailings pile area including seeps, the wetland area and ephemeral drainages. Several samples were obtained prior to the RI of Tailings Pile seeps, and some of the seeps were sampled in multiple rounds. Observed concentrations over a five year period at two seeps did not change significantly. VOCs were detected at sample location SW-SA_2 including trichloroethane, 1-butanethiol, ethylbenzene, toluene and xylene. Several metals were detected at concentrations in excess of screening criteria including cadmium (maximum 25 ppb), copper (maximum 550 ppb), lead (maximum 44 ppb) and zinc (12,100 ppb).

Unfiltered samples of water from the wetland on the Tailings Pile contained elevated concentrations (relative to screening criteria) of aluminum, barium, cadmium, copper, lead and zinc. The filtered samples contained concentrations of barium, cadmium, copper and zinc in excess of the fresh water criteria.

WRP-3 Seep: The seep at the base of WRP-3 (SW-422) contained elevated concentrations of several metals (relative to screening criteria), including aluminum, barium, beryllium, cadmium,

cobalt, copper (maximum 9790 ppb), iron, lead (maximum 154 ppb), manganese, nickel and zinc (maximum 171,000 ppb) in both the filtered and unfiltered samples.

WRP-1 Wetland: Unfiltered samples of water from the wetland on WRP-1 contained elevated concentrations (relative to screening criteria) of aluminum, barium, beryllium, cadmium, copper, iron, lead, manganese, nickel, vanadium and zinc. The filtered samples contained concentrations of barium, iron, manganese and zinc in excess of the fresh water criteria.

Goose Pond: Table 4.3-3 summarizes the number of samples in which contaminants were detected in surface water samples obtained from the Tailings pile area including seeps, the wetland area and ephemeral drainages. Unfiltered surface water samples from Goose Pond adjacent to the Tailings Pile and WRP-3 contained elevated (relative to screening criteria) concentrations of aluminum, barium, cadmium, copper, lead and zinc. The filtered samples contained concentrations of barium, cadmium, copper and zinc in excess of the fresh water criteria.

Elevated concentrations of metals (relative to screening criteria) were detected in both filtered and unfiltered samples from the Goose Pond samples in the area of the former mine pit. Barium, cadmium, copper and zinc were the most commonly detected metals that exceeded screening criteria. Generally, the filtered and unfiltered concentrations were similar in all samples from this area.

Dyer Cove: Table 4.3-4 summarizes the number of samples in which contaminants were detected in surface water samples obtained from Dyer Cove. Unfiltered and filtered surface water samples from Dyer Cove contained elevated concentrations (relative to screening criteria) of barium, cadmium, copper and zinc.

Goose Cove: Table 4.3-5 summarizes the number of samples in which contaminants were detected in surface water samples obtained from Goose Cove. Elevated concentrations of copper and zinc (relative to screening criteria) were detected at concentrations that exceeded the marine screening criteria.

Background: One surface water sample was collected from Horseshoe Cove (sample 99-BKSW-26). The sample was tested for cadmium, copper, lead, mercury, selenium, silver and zinc, but none of these contaminants were detected.

4.4 Residential Well Water Quality

Table 4.4-1 summarizes available analytical data from testing of private drinking water wells in the area surrounding the site. Figures 4.4-1, 4.4-2 and 4.4-3 depict the distribution of ground water quality for arsenic, cadmium, copper, lead, zinc, sulfate and pH. Metal concentrations that exceed one or more criteria are highlighted. Values that exceed one of the screening criteria are highlighted on both the table and the figure.

The results indicate that elevated concentrations of several metals were detected (relative to screening criteria), including arsenic, cadmium, copper, iron, manganese and zinc were detected in several wells.

4.5 Flora/Fauna Contaminant Concentrations

The flora/fauna data presented in this report is compiled from three monitoring programs.

- Maine Department of Marine Resources, Bio-Accumulation of Trace Elements in Selected Marine Organisms, November 20, 1974 to November 19, 1975
- Maine Marine Environmental Monitoring Program, Marine Monitoring Baseline Data Final Report, June 1993
- Maine Department of Environmental Protection, Surface Water Ambient Toxic (SWAT)
 Monitoring Program

Table 4.5-1 and Figure 4.5-1 list the results of available flora/fauna testing. Samples of fin fish (coho salmon fillets), bloodworms, soft shell clams and blue mussels were collected and analyzed for metals content. In addition, two species of seaweed were analyzed and tested.

The primary criteria used for screening fish tissue sample results are the Lowest Chemical Specific No Observed Adverse Effect Level (NOAEL) concentrations for fish, mussel, fisheating birds or fish-eating mammals developed by the Army Soldier System Center (SSC) of

Natick, Massachusetts. Secondary criteria for screening fish sample results are the EPA Region 3 risk-based concentrations for human health.

The 1974 study by the Maine Department of Marine Resources reports that levels of cadmium, copper, lead, and zinc are several times to several orders of magnitude higher in Goose Cove biota than in samples collected from other stations in midcoastal study areas.

One mussel sample was obtained as part of the Maine Marine Environmental Monitoring Program in 1993, indicating elevated concentrations (relative to screening criteria) of cadmium, chromium, copper, lead, nickel, silver and zinc in one sample from Goose Cove.

The latest available analytical data from the Maine Department of Environmental Protection SWAT Monitoring Program indicate elevated (relative to screening criteria) concentrations of cadmium, copper, lead and zinc in blue mussel samples collected at Cape Rosier in 2001. Concentrations of cadmium and lead were lower and concentrations of lead and copper were higher in 2001 compared to the 1989 sampling.

In general, based on more recent sampling results, concentrations of aluminum, arsenic, cadmium, chromium, copper, lead, nickel and zinc in biota samples exceeded screening criteria.

4.6 Data Usability

Appendix U contains all of the data validation reports for the laboratory testing performed as part of this investigation. And Appendix V contains an analysis of data usability. The data were reviewed and determined to be suitable to achieve the data quality objectives set forth in the Sampling and Analysis Plan (TRC, 2004).

5.0 CONCEPTUAL MODEL

Figure 5.0-1 shows a diagram that presents the recognized potential source areas, release mechanisms, contaminant transport pathways and likely receptors for contamination at the site. A description of each of the aspects of the conceptual risk assessment is presented below.

5.1 Potential Source Areas

There are six primary contaminant source areas at the site: the Tailings Pile, the three Waste Rock Piles, the Ore Pad and the former Operations Area. These areas are the locations of uncontrolled accumulations of potential waste materials.

In addition, there are four secondary contaminant source areas at the site that may have primary accumulations of waste materials, or are locations of secondary accumulations of waste: Dyer Cove, Goose Pond, the Former Mine Pit and Goose Cove.

This section provides an overview of each of the potential contaminant source areas at the site.

5.1.1 Tailings Pile

The Tailings Pile contains a large accumulation of very fine grained pulverized rock from which most of the heavy metals were removed. Available surface soil, surface water and sediment data in the area of the Tailings Pile suggest that this area is a contaminant source for metals since some of the highest metals concentrations at the site were observed near the Tailings Pile. It is possible that the waste rock used to dam the tailings is the source of the elevated metals that were observed in this area of the site or it is possible that there is some other unknown source within the Tailings Pile.

Historical records indicate that as the tailings pile was raised in elevation, additional waste rock was placed around the edge of the tailings pond to act as a dam for the placement of additional mill tailings. This procedure led to a situation at the edge of the Tailings Pile where waste rock is likely situated on top of earlier accumulations of tailings. This situation could cause geotechnical instability of the slopes and has not been examined previously.

Based on past use and visual observations, the Tailings Pile is a potential source of the metals contamination that has been documented in the surface soils, surface water (seeps) and sediment in Goose Pond and should be investigated as a potential source of groundwater contamination (no groundwater contamination has been documented to date)."

5.1.2 Waste Rock Piles

The Waste Rock Piles contain large accumulations of broken-up rock that were once buried deep underground. Most of the rock in the Waste Rock Piles consists of rocks that were present in the rock layers located above the target zone of ore-bearing rocks. These rocks were removed via blasting, then loaded onto trucks, hauled out of the pit and placed onto the waste rock piles. Consequently, it is unlikely that there are any organic contaminants present in the waste rock, other than possibly residual explosives.

However, the waste rock is a potential source of metals contamination, since the bedrock is comprised of naturally occurring inorganic elements and the bedrock is rich in metals. In addition, the sulfide minerals in the rock in the piles reacts with infiltrating rain water and oxygen to form sulfuric acid, which increases the ability of the infiltrating rain and surface water to leach metals from the waste rock. This "Acid Rock Drainage" can cause the leachate that discharges from the waste rock piles to have a low pH and an elevated metals concentration. Sulfide mineral oxidation is typically noticeable as an orange staining on rocks or in areas where leachate or water ponds.

The waste rock piles are not lined or covered.

Waste Rock Pile 1: Waste Rock Pile 1 contains the largest volume of waste rock, but there is only evidence of slight to moderate acid generation on WRP 1. The powder magazine is present on WRP 1 but there are no explosives test data to evaluate whether there have been releases in the area of the powder magazine. Usually, ammonium nitrate fuel oil is used for rock blasting but there were no available records to indicate what materials were used at this site. The area surrounding the powder magazine has not been evaluated for the presence of explosive residuals.

Based on past use and visual observations, WRP 1 is a potential source of metals and possibly explosives contamination in surface soils, surface water (seeps) and sediment in Goose Pond and should be investigated as a potential source of groundwater contamination (no groundwater contamination has been documented to date)."

Waste Rock Pile 2: Waste Rock Pile 2 is located between the Ore Pad and Dyer Cove. There is noticeable oxidation staining at the base of WRP 2, suggesting that acidic leachate is being produced and discharging either over land or underground from WRP 2.

Based on past use, available site test data and visual observations, WRP 2 is a potential source of metals contamination in surface soils, surface water (seeps and discharge to Dyer Cove) and sediment in Dyer Cove and should be investigated as a potential source of groundwater contamination (no groundwater contamination has been documented to date)."

Waste Rock Pile 3: The surface soils at WRP-3 exhibit the most pronounced iron staining and highly weathered rock. There is a large area of dead vegetation at the base of WRP-3 at the base of WRP 3 and blue-green leachate is also discharging from the base. This suggests that there may be a significant acid generation problem at this pile.

There also appears to be a potential geotechnical stability problem associated with WRP 3. Examination of the pile indicated an area where the steep slope appears to have failed. Near the failed mass of rock is a separate potential future failure surface.

WRP 3 is referred to in some historic records as a "Tailings Pile." Though no tailings are currently observable at the surface of this pile, it is possible that there is an accumulation of tailings underneath or inside of the pile. The presence of buried tailings might be one potential source for the observed geotechnical instability at WRP 3.

Based on past use and visual observations, WRP 3 is a potential source of metals contamination in surface soils, surface water and sediment in Goose Pond and should be investigated as

a potential source of groundwater contamination (no groundwater contamination has been documented to date)."

5.1.3 *Ore Pad*

The Ore Pad is the location where the mine placed the rock that was identified as ore-bearing. Ore was placed on the side of the hill then pushed down the hill into the rock crushers. The Ore Pad today still contains the greatest quantity of ore-bearing rocks and is the location where there is the greatest evidence of acid generation. Virtually the entire Ore Pad is stained orange and covered with disintegrated rock fragments (both indications of acid weathering). A trail of orange staining stretches from the top of the Ore Pad down the hill to the Mine Operations Area. The Ore Pad is not lined.

Based on past use and visual observations, the Ore Pad is a potential source of metals contamination in surface soils and should be investigated as a potential source of groundwater contamination (no groundwater contamination has been documented to date)."

5.1.4 Mine Operations Area

The Mine Operations area is the former location of the machinery that was used to crush and process the rock that was staged in the Ore Pad. At lease two underground fuel storage tanks were located in this area (2,000 and 4,000 gallons respectively, but these were removed in 1987. The Operations Area included a machine shop, and assay laboratory, the two rock crushers and the flotation cells. All of these structures have been removed from the site, except for some of the old building foundations.

Based on past use and visual observations, the Mine Operations Area is a potential source of metals and organic (volatile and semivolatile) contamination in surface soils, surface water and sediment in Goose Pond and should be investigated as a potential source of groundwater contamination (no groundwater contamination has been documented to date)."

5.1.5 Former Open Pit Mine

The Former Open Pit Mine is now located underwater in Goose Pond. This portion of the site is partially located on the Callahan Mine Property and partially under Goose Pond which is a

"Water of the State" and is owned by the State of Maine. Due to the mining operations, the sediment formerly covering the underlying bedrock was removed, thereby exposing the rock. In addition, the open pit was excavated deep into the ore body, potentially resulting in the uncovering and fracturing of bedrock that is naturally enriched in metals and sulfides. The pit represents the deepest point on the site and is one potential receptor point for sediment that is eroded into the pond from the adjacent contaminant source areas.

Based on past use and visual observations, the Open Pit Mine Area is a potential source of metals contamination in surface water and sediments in Goose Pond.

5.1.6 Dyer Cove/Former Settling Pond

Dyer Cove was used as a settling pond for water pumped out of the pit area. As a result, the sediment contained in the cove is enriched in metals and sulfide minerals. In addition, the Cove is adjacent to other potential contaminant source areas and could be a secondary source for sediment that was deposited and accumulated in the Cove. Prior site testing data confirms the presence of elevated metals concentrations in surface water and sediment of Dyer Cove.

Based on past use and existing test data, Dyer Cove is a potential source of metals contamination in surface water and sediment.

5.1.7 Former Discharge Pipe/Goose Cove

During excavation of the mine pit, sediment laden water was pumped through a pipe that discharged into Goose Cove. A photograph of the water discharge is shown in Figure 1.4-5. Reportedly (according to residents of the area who lived in the area at the time of the mining operations), a layer of black sediment was observed to be present in the cove as a result of this discharge. Elevated concentrations of metals that were measured in organisms and sediment of Goose Cove confirm that the Cove is a potential source of contamination.

Based on past use and visual observations, sediment in Goose Cove is a potential source of metals contamination in surface water and sediment.

5.2 Release Mechanisms

Releases from the contaminant source areas can occur as described below.

5.2.1 Acid Rock Drainage and Leaching of Metals into Ground Water

Precipitation that infiltrates through the various waste areas has the potential to dissolve contaminants and leach them from the rock and soil. In the areas where there are sulfide minerals present, the water and oxygen react to form sulfuric acid. The acid increases the leaching of certain metals from the soil and rock. Most metals have a higher solubility at low pH (acidic conditions) including aluminum, copper, lead, manganese, nickel and zinc which commonly are found in Acid Rock Drainage leachate. The most common metal found is iron, in the form of soluble ferrous ions, ferrous hydroxide, ferrous sulfate and ferric sulfate. The soluble iron hydroxides precipitate in non-acidic and oxic environments to cause a strong red-orange staining. The acid also causes more rapid weathering and disintegration of bedrock. The resultant acidic leachate can be greatly enriched in metals concentrations which then can be transported to the ground water.

The production of Acid Rock Drainage is dependent on the balance of the acid generation potential (AGP) and net neutralization potential (NNP) of the rock. In general, if the ratio of NNP to AGP is greater than 3, then it is unlikely that an acidic leachate will be formed. However, even if this ratio is greater than 3, large AGP values can cause leachate that is high in metals and result in rapid decomposition and weathering of the rock. Therefore, both the balance between NNP and AGP and the magnitude of the AGP are important.

The environment can naturally assimilate Acid Rock Drainage through dilution, biologic activity and neutralization, sometimes very close to the point of generation, but sometimes after migrating great distances. At Callahan Mine, the Acid Rock Drainage source areas are located close to surface water bodies, and there is not much opportunity for dilution until the leachate discharges. In addition, some of the waste rock the originally was present above the ore body contained carbonates which can buffer the acid generation. The waste rock piles containing the carbonate rocks may be less significant sources of Acid Rock Drainage, but the location of these rocks within the waste rock piles is not known. Depending on the abundance of buffering rocks

and the surface area contact time of the leachate, the natural buffering capacity of the rocks can become depleted over time and again lead to increased Acid Rock Drainage as the mine waste remains exposed and uncontrolled.

5.2.2 Erosion

Contamination that is present in surface soils can be eroded via surface water runoff and transported downhill. In particular, at this site, there is little vegetation to inhibit erosion, so erosion can be an effective release mechanism for contaminants that are present on the surface.

5.2.3 Acid Rock Drainage to Surface Water

Acid Rock Drainage formed as described above, can also discharge to surface water directly or via seeps. Several known seeps are present at the site, and some are discharging blue-green water or are co-located with orange stained areas. The blue green precipitate is a copper hydroxy-oxide that forms when acidic solutions high in copper are neutralized. The importance of dilution of the Acid Rock Drainage into areas such as Dyer Cove or Goose Pond is not known, since the discharge rates and acidity of the leachate have not been measured. Regardless, the effects of Acid Rock Drainage discharging to surface water will be greatest at the edges of the surface water body where the leachate enters. The tidal range in Goose Pond is reported to be less than a foot and the surface water flow patterns in the pond are not documented, so the compensating dilution that would be caused by surface water movement cannot yet be determined.

5.2.4 Windblown Dust

Since there is little vegetation on the various terrestrial waste areas, wind is a potentially effective release/transport mechanism for contaminants present in small particles. This mechanism is particularly important at the Tailings Pile, where the contaminant mass is very fine grained, and approximately 30% of the tailings area is sparsely vegetated. Note that the igneous and metamorphic rocks, like those in the study area, typically are comprised of between 35 and 80 percent silica, so large quantities of silica (a class A1 carcinogen) will be present in the finely crushed tailings.

5.2.5 Catastrophic Slope Failure

The geotechnical stability of the oversteepened rock and tailings piles is questionable, since there appear to have been prior slope failures. Decay of the rock due to sulfide oxidation can also cause instability. Geotechnical stability is a concern for the permanence of any potential remedial measures that are eventually selected as well as being a physical hazard. Though not portrayed on Figure 4.0-1, the potential for a catastrophic slope failure is present at the site, and such a failure could expose large amounts of contaminants to the environment and re-stimulate acid generation of waste rocks that are currently not exposed to infiltration or possibly release contaminants directly into the adjacent surface water bodies. The potential for a catastrophic slope failure should be evaluated in the RI/FS.

5.3 Contaminant Transport Pathways

Figure 5.3-1 portrays the various contaminant transport pathways that are likely to exist at the site. The contaminant transport pathways that are important at this site include wind, soil erosion, sediment transport, surface water flow, ground water flow and the food chain.

5.3.1 Wind

Wind is an important transport mechanism at the portion of this site where contaminants are present in small particle sizes. The specific areas where wind is likely to be effective include the Tailings Pile and the Ore Pad. With little vegetation and the elevated topographic position of each of these areas, wind can effectively transport contaminants away from their primary source areas. Silica (a class A1 carcinogen) is expected to be a contaminant of concern at the Tailings Pile due to the high concentration of silica in bedrock (approximately 35 to 80%), the extremely fine grained size of the crushed rock particles (silt size and finer), the fact that much of the tailings are not vegetated, and dust particles can easily be transported via wind from the source area.

5.3.2 Soil Erosion

Contaminants that are present in surface soils can be eroded via overland water flow and transported to lower elevations and typically into drainage features that exist on the site.

Drainage ditches on top of the Tailings Pile and at the base of WRP 1 are possible collection

points for contaminated soil that is transported by erosion. Contaminated soils at higher elevations are also susceptible to erosion, especially at the Ore Pad, which is a steeper accumulation of metal-rich crushed rock that has become disintegrated as a result of acid rock drainage. The waste rock piles are also potential areas where soil erosion can occur, but due to much larger particle sizes, erosion is likely less a concern at these locations.

5.3.3 Sediment Transport

Transport of contaminated sediment that has entered the Goose Pond Estuary is possible due to tidally-induced flow of water in and out of Goose Falls Dam. No flow information is available to evaluate the potential for sediment transport in the pond or cove. Sediment was previously transported to Goose Cove via a 16 inch drainage pipe that was used during the mining operation phase of the site.

5.3.4 Surface Water Flow

Despite some surface water controls that were constructed by Callahan Mining Corporation to mitigate this as a contaminant transport pathway, transport of contaminant by surface water is likely still occurring. Surface water erosion of materials is potentially most important at the Tailings Pile and the Ore Pile due to the smaller particle sizes that are present. Surface water seeps are also present at many of the source areas, and visual and chemical evidence of contamination at these locations is apparent. Surface water is likely one of major transport mechanisms for potentially contaminated sediment from Dyer Cove into Goose Pond and the Former Open Pit Area, and from Goose Pond into Goose Cove and potentially into Penobscot Bay.

5.3.5 Ground Water Flow

Contaminants that infiltrate into the ground and reach the water table can be transported by ground water advection to locations that are hydraulically down gradient. This includes possible discharge to wetlands, streams, the coves and the underlying bedrock aquifer that provides drinking water to the private residences near the site.

There are no ground water monitoring wells at the site, so there is currently no understanding of the ground water seepage velocity, hydraulic gradients, or hydraulic conductivities of the waterbearing units at the site. There are no data regarding the hydrostratigraphy at the site, so it is not known whether there are multiple isolated water bearing zones, or if there are perched water tables or other ground water flow complications.

It is likely that the topographically elevated portions of the site, including the waste rock piles, Tailings Pile and Ore Pad are ground water recharge zones where infiltrating precipitation enters the underground flow system. These areas likely have downward vertical hydraulic gradients. While ground water flow paths probably terminate at the surface water bodies somewhere underwater or possibly discharge as springs/seeps at the ground surface, the potential for discharge to the underlying aquifer must be evaluated as part of the RI/FS.

5.4 Potential Receptors

Both human and ecological receptors potentially can be exposed to contamination that is released from the site.

5.4.1 Ecological

Contaminants that enter the surface water bodies on the site can be ingested by aquatic organisms (fin fish and shellfish) that inhabit these areas. Terrestrial mammals and invertebrates can also ingest contaminants directly from contaminated soil and water, or through the food chain in plants and smaller organisms. Avian species can also potentially become exposed to contaminants through incidental ingestion of soil or water and through the food chain.

5.4.2 Human

There are several potential pathways that could result in human exposure to site contaminants. This analysis is conservative since there is no specific re-use plan for the site and the potential exposure scenarios might be more limited than assumed herein. Also note that there are insufficient data to determine whether certain media have actually been impacted by contamination, or whether that contamination, if present, is at concentrations that exceed the EPA's acceptable risk range. If there is no contamination, or if contamination is not present at a concentration that would cause a significant risk to human health, then some or all of these exposure pathways might not be a concern at this site.

- Dermal exposure to contaminated soil, sediment or surface water through direct contact by site trespassers, construction workers or future occupants of the site (child, teen or adult).
- Ingestion of contaminated ground water by users (child, teen and adult) of the aquifer.
- Ingestion or dermal contact with water or sediment by recreational users (child, teen and adult boaters, swimmers, bathers) in the surface water bodies.
- Inhalation of contaminated dust from the site.
- Human consumption of contaminated fin fish, shell fish, mammals or birds.

6.0 REMEDIAL INVESTIGATION DATA NEEDS

Table 6.0-1 lists the various data needs and recommended investigative activities that should be conducted to address these needs.

7.0 REFERENCES

Beck, Fred, 1986: Minesite Environmental Review.

Cowardin et al.. 1979. Classification of Wetlands and Deepwater Habitats of the United States

DeGraaf, R.M. and D.D. Rudis. 1986. New England Wildlife: Habitat, Natural History and Distribution. USDA Technical Report NE-108.

EPA, 1994, Water Quality Criteria Summary Concentrations.

EPA 1999, Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Volume 1 (Freshwater or Marine Sediment Toxicity Reference Values).

EPA, 2002, National Recommended Water Quality Criteria for Priority Toxic Pollutants (Freshwater/saltwater CCC).

Maine Department of Environmental Protection. 1995, Site Inspection Prioritization Report.

Maine Department of Marine Resources, 1975, *Bio-Accumulation of Trace Elements in Selected Marine Organisms*

Maine Department of Marine Resources, 1993, Maine Marine Environmental Monitoring Program, *Marine Monitoring Baseline Data Final Report*.

Ontario Ministry of the Environment, 1993, Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario,. (Lowest Effect Levels).

Roy F. Weston, 2001. Hazard Ranking System Report.

Suter II, G.W. and C. L. Tsao, 1996, The Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revisions (Tier II Values: Secondary Chronic value).

TRC, 2004, Sampling and Analysis Plan for Callahan Mining Corporation Superfund Site RI.

Tables

Emmile	Common Name	Soissatific Name	Call	Earne Mathad	Dranding Cubatrata				Ha	bitat	-		
Family	Common Name	Scientific Name	Guild	Forage Method	Breeding Substrate	1	2	3	4	5	6	7	8
Amphibians													
Bufonidae	Eastern American Toad	Bufo a. americanus	Ί	Ground Ambusher	Water	X	X	X_	X	X			X
Hylidae	Gray Treefrog	Hyla versicolor	I	Bark Ambusher	Water				X				
	Northern Spring Peeper	Pseudacris c. crucifer	I	Riparian Ambusher	Water					X	Ţ		X
Plethodontidae	Redback Salamander	Plethodon c. cinereus	I	Ground Gleaner	Terrestrial Subsurface				X	X			
Ranidae	Green Frog	Rana clamitans melanota	Ī	Riparian Ambusher	Water								X
	Northern Leopard Frog	Rana pipiens	I	Riparian Ambusher	Water	i							X
	Pickerel Frog	Rana palustris	I	Riparian Ambusher	Water					X			
	Wood Frog	Rana sylvatica	I	Ground Ambusher	Water				X	X			X
Salamandridae	Red-spotted Newt	Notophthalmus viridescens	I	Water/Ground Gleaner	Water .					X			X
Birds													
Accipitridae	Bald Eagle	Haliaeetus leucocephalus	P	Water-Foot Plunger	Tree Branch		1				X	X	
	Broad-winged Hawk	Buteo platypterus	С	Ground Pouncer	Tree-Branch		X						
	Northern Harrier	Circus cyaneus	С	Ground Pouncer	Riparian Ground						X	X	X
	*Osprey	Pandion haliaetus	P	Water-Foot Plunger	Tree Branch						X		
	Red-tailed Hawk	Buteo jamaicensis	C	Ground Pouncer	Tree-Branch	X	X	X					
	Rough-legged Hawk	Buteo lagopus	С	Ground Pouncer	Not Applicable							X	
	Sharp-shinned Hawk	Accipiter striatus	С	Air Hawker	Tree-Branch		X	X	X	X	Ī		
Alcedinidae	*Belted Kingfisher	Ceryle alcyon	P	Water Plunger	Riparian Subsurface						X		T
Anatidae	*American Black Duck	Anas rubripes	0	Water Forager	Riparian Ground						X	X	X
	Blue-winged Teal	Anas discors	0	Water Forager	Riparian Ground								X
	Bufflehead	Bucephala albeola	0	Bottom Forager	Not Applicable						X	X	
	Canada Goose	Branta canadensis	H	Ground Grazer	Riparian Ground				T		X	X	X
	Greater Scaup	Aythya marila	0	Bottom Forager	Not Applicable						X	X	
	Green-winged Teal	Anas crecca	H	Water Grazer	Riparian Ground								X
	Mallard	Anas platyrhynchos	G	Water Forager	Riparian Ground							X	X
	Red-breasted Merganser	Mergus serrator	P	Ocean Diver	Not Applicable						X	X	
Apodidae	Chimney Swift	Chaetura pelagica	I	Air Screener	Buildings	X	X	X			X		
Ardeidae	American Bittern	Botaurus lentiginosus	С	Water Ambusher	Riparian Ground								X

T	C	Gairraig N	C1.1	EM-4ld	Donas dieses Contratored				Ha	bitat			
Family	Common Name	Scientific Name	Guild	Forage Method	Breeding Substrate	1	2	3	4	5	6	7	8
	Black-crowned Night Heron	Nycticorax nycticorax	C.	Water Ambusher	Riparian Twig-Branch							X	
	*Great Blue Heron	Ardea herodias	С	Water Ambusher	Riparian Twig-Branch				,			X	X
	Least Bittern	Ixobrychus exilis	С	Water Ambusher	Riparian Herb-Shrub								X
Bombycillidae	*Cedar Waxwing	Bombycilla cedrorum	F.	Upper Canopy Gleaner	Tree-Twig			X					
Caprimulgidae	Common Nighthawk	Chordeiles minor	I	Air Screener	Buildings	X	X	X			X		
	Whip-poor-will	Caprimulgus vociferus	I	Air Screener	Ground-Herb			X					
Certhiidae	Brown Creeper	Certhia americana	I	Bark Gleaner	Tree Cavity-Crevice				X	X			
Charadriidae	Killdeer	Charadrius vociferus	I	Ground Gleaner	Ground-Herb	X	X						
Columbidae	*Mourning Dove	Zenaida macroura	G	Ground Gleaner	Tree-Branch	X	X	X		X			
Corvidae	*American Crow	Corvus brachyrhynchos	О	Ground Gleaner	Tree-Branch	X	X	X			X	X	
	*Blue Jay	Cyanocitta cristata	0	Ground Gleaner	Tree-Branch			X		X			
	*Common Raven	Corvus corax	С	Ground Scavenger	Cliff					X			
Falconidae	American Kestrel	Falco sparverius	С	Ground Pouncer	Tree Cavity-Crevice	X	X						X
Fringillidae	*American Goldfinch	Carduelis tristis	0	Ground Gleaner	Shrub	X	X	X	X	X			X
	American Tree Sparrow	Spizella arborea	0	Ground Gleaner	Not Applicable		X	X				Ì	X
	Chipping Sparrow	Spizella passerina	0	Ground Gleaner	Shrub	X	X		X	X		Î	Τ.
	Common Redpoll	Carduelis flammea	G	Ground Gleaner	Not Applicable	X	X						
	Dark-eyed Junco	Junco hyemalis	G	Ground Gleaner	Ground-Herb		X	X	X	X			
	Evening Grosbeak	Coccothraustes vespertinus	G	Ground Gleaner	Tree-Twig			X		X			
	Field Sparrow	Spizella pusilla	0	Ground Gleaner	Ground-Herb	X	X	X					
	Indigo Bunting	Passerina cyanea	I	Lower Canopy Gleaner	Ground-Herb		X	X	X				
	Lincoln's Sparrow	Melospiza lincolnii	O	Ground Gleaner	Ground-Herb			X					
	Pine Grosbeak	Pinicola enucleator	G	Ground Gleaner	Not Applicable	X				X			
	Pine Siskin	Carduelis pinus	0	Ground Gleaner	Tree-Branch		X		X	X			
	Purple Finch	Carpodacus purpureus	G	Ground Gleaner	Tree-Branch					X			
	Red Crossbill	Loxia curvirostra	G	Upper Canopy Gleaner	Tree-Twig					X			
·	Rose-breasted Grosbeak	Pheucticus ludovicianus	0	Lower Canopy Gleaner	Tree-Twig			X	X				
	Savannah Sparrow	Passerculus sandwichensis	Ō	Ground Gleaner	Ground-Herb	X	X					X	X
	Sharp-tailed Sparrow	Ammodramus	O	Ground Gleaner	Ground-Herb		T	1				X	1

Family	Common Name	Scientific Name	Guild	Forage Method	Breeding Substrate				Ha	bitat			
ramity	Common Name		Guna	Torage Meinoa	Dreeding Substrate	1	2	3	4	5	6	7	8
		caudacutus					<u> </u>				<u> </u>		
	Snow Bunting	Plectrophenax nivalis	G	Ground Gleaner	Not Applicable	X	X					<u> -</u>	X
	Song Sparrow	Melospiza melodia	0	Ground Gleaner	Ground-Herb		X	X			<u></u>		ļl
	Swamp Sparrow	Melospiza georgiana	I	Ground Gleaner	Riparian Ground	<u></u>						<u></u>	X
	White-throated Sparrow	Zonotrichia albicollis	0	Ground Gleaner	Ground-Herb			X	X	X			
	White-winged Crossbill	Loxia leucoptera	G	Upper Canopy Gleaner	Tree-Branch					X			
Gaviidae	Common Loon	Gavia immer	P	Ocean Diver	Not Applicable						X		
Hirundinidae	Bank Swallow	Riparia riparia	I	Air Screener	Terrestrial Subsurface	X	X	X			X	X	X
	Barn Swallow	Hirundo rustica	I	Air Screener	Buildings		X	X] _		X	X	X
	Cliff Swallow	Hirundo pyrrhonota	I	Air Screener	Buildings		X	X					X
	Tree Swallow	Tachycineata bicolor	I	Air Screener	Tree Cavity-Crevice	X	X	X				X	X
Icteridae	Baltimore Oriole	Icterus galbula	0	Upper Canopy Gleaner	Tree-Twig				X				
	Common Grackle	Quiscalus quiscula	0	Ground Gleaner	Tree-Branch		X						X
	Red-winged Blackbird	Agelaius phoeniceus	0	Ground Gleaner	Shrub	·	X	1				X	X
Laniidae	Northern Shrike	Lanius excubitor	С	Ground Pouncer	Not Applicable		X	X	X	X			X
Laridae	*Arctic Tern	Sterna paradisaea	P	Water Plunger	Beach-Rock-Dune						X		
	Common Tern	Sterna hirundo	P	Water Plunger	Beach-Rock-Dune						X		
	Great Black-backed Gull	Larus marinus	C	Coastal Scavenger	Beach-Rock-Dune						X	X	
	Herring Gull	Larus argentatus	C	Coastal Scavenger	Beach-Rock-Dune		X				X	X	
	*Ring-billed Gull	Larus delawarensis	0	Coastal Scavenger	Beach-Rock-Dune	· ·		ľ			X	X	
Mimidae	Brown Thrasher	Toxostoma rufum	0	Ground Gleaner	Shrub			X			1		
	Gray Catbird	Dumetella carolinensis	0	Ground Gleaner	Shrub			X	X				
	*Northern Mockingbird	Mimus polyglottos	0	Ground Gleaner	Shrub			X					
Paridae	*Black-capped Chickadee	Parus atricapillus	I	Lower Canopy Gleaner	Tree Cavity-Crevice			X	X	X			
Parulidae	American Redstart	Setophaga ruticilla	I	Lower Canopy Gleaner	Tree-Twig				X	X			
	Bay-breasted Warbler	Dendroica castanea	I	Lower Canopy Gleaner	Tree-Branch			X		X			
	Black-and-White Warbler	Mniotilta varia	I	Bark Gleaner	Ground-Herb				X	X			
	Blackburnian Warbler	Dendroica fusca	I	Upper Canopy Gleaner	Tree-Branch					X			
	Blackpoll Warbler	Dendroica striata	I	Lower Canopy Gleaner	Tree-Branch		}			X			
	Black-throated Green	Dendroica virens	I		Tree-Branch			İ	X	X			

Eil-	CN	G .:42.G N/	C	EM-414	Duna dina Callatanta	Π.			Ha	bitat			
Family	Common Name	Scientific Name	Guild	Forage Method	Breeding Substrate	1	2	3	4	5	6	7	8
	Warbler										ŀ		
	Black-throated Blue Warbler	Dendroica caerulescens	I	Lower Canopy Gleaner	Shrub				X	X			
	Canada Warbler	Wilsonia canadensis	I	Lower Canopy Gleaner	Riparian Ground				X	X			
	Cape May Warbler	Dendroica tigrina	Ι	Upper Canopy Gleaner	Tree-Twig					X			
	Chestnut-sided Warbler	Dendroica pensylvanica	I	Lower Canopy Gleaner	Shrub			X	X				
	Common Yellowthroat	Geothlypis trichas	I	Lower Canopy Gleaner	Ground-Herb		X	X					X
	Magnolia Warbler	Dendroica magnolia	I	Lower Canopy Gleaner	Tree-Branch					X			
	Nashville Warbler	Vermivora ruficapilla	I	Lower Canopy Gleaner	Ground-Herb			X	X	X			
	Northern Parula	Parula americana	I	Upper Canopy Gleaner	Tree-Branch					X			
	Ovenbird	Seiurus aurocapillus	I	Ground Gleaner	Ground-Herb				X	X			
	Tennessee Warbler	Vermivora peregrina	I	Upper Canopy Gleaner	Ground-Herb	T		X		X			
	Yellow Warbler	Dendroica petechia	I	Lower Canopy Gleaner	Shrub			X					Ī
	Yellow-rumped Warbler	Dendroica coronata	I	Lower Canopy Gleaner	Tree-Branch			X		X			
Phalacrocoraci dae	*Double-crested Cormorant	Phalacrocorax auritus	P	Ocean Diver	Riparian Ground						X		
Picidae	Downy Woodpecker	Picoides pubescens	I	Bark Gleaner	Tree Cavity-Crevice				X	X			
	*Northern Flicker	Colaptes auratus	I	Ground Gleaner	Tree Cavity-Crevice	X	X	X					
	Yellow-bellied Sapsucker	Sphyrapicus varius	O.	Bark Excavator	Tree Cavity-Crevice				X	X			
Ploceidae	House Sparrow	Passer domesticus	G	Ground Gleaner	Buildings			X				X	
Podicipedidae	Horned Grebe	Podiceps auritus	0	Bottom Forager	Not Applicable			T		T	X		Ī
Rallidae	Sora	Porzana carolina	0	Riparian Gleaner	Riparian Ground			T				X	X
	Virginia Rail	Rallus limicola	0	Riparian Gleaner	Riparian Ground							X	X
Scolopacidae	American Woodcock	Scolopax minor	I	Ground Prober	Ground-Herb			X	X				
	Common Snipe	Gallinago gallinago	I	Water Gleaner	Riparian Ground							X	X
	Spotted Sandpiper	Actitis macularia	0	Riparian Gleaner	Ground-Herb		X						
Sittidae	*Red-breasted Nuthatch	Sitta canadensis	I	Bark Gleaner	Tree Cavity-Crevice			Π		X			
	White-breasted Nuthatch	Sitta carolinensis	Ι .	Bark Gleaner	Tree Cavity-Crevice				X				
Strigidae	Barred Owl	Strix varia	C	Ground Pouncer	Tree Cavity-Branch			X		X			
	Great Horned Owl	Bubo virginianus	С	Ground Pouncer	Tree-Branch		X	X	X	X			
Sturnidae	European Starling	Sturnus vulgaris	0	Ground Gleaner	Buildings	X	X.					X	

E:	C	G.:4:G. N	Call	E M-4l I	Described of				Ha	bitat			
Family	Common Name	Scientific Name	Guild	Forage Method	Breeding Substrate	1	2	3	4	5	6	7	8
Sylviidae	Golden-crowned Kinglet	Regulus satrapa	I	Lower Canopy Gleaner	Tree-Twig					X			
	Ruby-crowned Kinglet	Regulus calendula	Ι.	Lower Canopy Gleaner	Tree-Twig					X			
Tetraonidae	Ruffed Grouse	Bonasa umbellus	O	Ground Gleaner	Ground-Herb			X	X	X			
	Spruce Grouse	Dendragapus canadensis	0	Ground Gleaner	Ground-Herb	T				X			
Thraupidae	Scarlet Tanager	Piranga olivacea	Ī	Upper Canopy Gleaner	Tree-Twig				X				
Trochilidae	Ruby-throated Hummingbird	Archilochus colubris	0	Floral Hover-Gleaner	Tree-Branch			x	X	X			
Troglodytidae	House Wren	Troglodytes aedon	I	Lower Canopy Gleaner	Tree Cavity-Crevice			X	X				
	Winter Wren	Troglodytes troglodytes	I	Ground Gleaner	Tree Cavity-Crevice					X		X	
Turdidae	American Robin	Turdus migratorius	O	Ground Gleaner	Tree-Branch	X	X	X	X	X			
	Hermit Thrush	Catharus guttatus	I	Ground Gleaner	Ground-Herb			X	X	X			
	Swainson's Thrush	Catharus ustulatus	I	Ground Gleaner	Tree-Twig				X	X			
	Veery	Catharus fuscescens	О	Ground Gleaner	Ground-Herb			X	X	X			
	Wood Thrush	Hylocichla mustelina	0	Ground Gleaner	Tree-Branch				X	X			
Tyrannidae	Eastern Kingbird	Tyrannus tyrannus	I	Air Sallier	Tree-Twig		X	X					
	Eastern Phoebe	Sayornis phoebe	I	Air Sallier	Buildings			X					
	Least Flycatcher	Empidonax minimus	I	Air Sallier	Tree-Branch				X	X.			
	Olive-sided Flycatcher	Contopus borealis	I	Air Sallier	Tree Branch					X			
	Yellow-bellied Flycatcher	Empidonax flaviventris	I	Air Sallier	Ground-Herb					X			
Vireonidae	Red-eyed Vireo	Vireo olivaceus	I	Upper Canopy Gleaner	Tree-Twig	1			X	X			
	Solitary Vireo	Vireo solitarius	I	Upper Canopy Gleaner	Tree-Twig					X			
Mammals										1			
Canidae	Coyote	Canis latrans	О	Ground Forager	Terrestrial Subsurface	X	X	X	X	X			X
	Red Fox	Vulpes vulpes	· O	Ground Forager	Terrestrial Subsurface	X	X	X	X	X		X	X
Cervidae	*White-tailed Deer	Odocoileus virginianus	Н	Ground Grazer	Ground-Herb		X	X	X	X		X	X
Cricetidae	Deer Mouse	Peromyscus maniculatus	.O	Ground Forager	Terrestrial Subsurface		Ī	X	X	X			
	Meadow Vole	Microtus pennsylvanicus	Н	Ground Grazer	Terrestrial Subsurface		X	X				X	X
	Muskrat	Ondatra zibethicus	Н	Water Grazer	Riparian Subsurface						X	X	X
	S. Red-backed Vole	Clethrionomys gapperi	Н	Ground Grazer	Terrestrial Subsurface			X	X	X			
	Southern Bog Lemming	Synaptomys cooperi	Н	Ground Grazer	Ground-Herb								X
Erethizontidae	Porcupine	Erethizon dorsatum	Н	Upper Canopy Browser	Terrestrial Subsurface					X			

Family	Common Name	CojautiGo Nama	Guild	Forge Method	Dragding Cubatrata				Ha	bitat			
Family	Common Nume	Scientific Name	Guna	Forage Method	Breeding Substrate	1	2	3	4	5	6	7	8
Felidae	Bobcat	Felis rufus	С	Ground Stalker	Cave-Crevice			X	X	X			
Leporidae	Snowshoe Hare	Lepus americanus	H	Ground Grazer	Ground-Herb			X	X	X			
Mustelidae	Ermine	Mustela erminea	С	Ground Pursuer	Ground-Herb	X	X	X	X	X			
	Fisher	Martes pennanti	С	Upper Canopy Pursuer	Tree Cavity-Crevice			X	X	X			
	Long-tailed Weasel	Mustela frenata	С	Ground Pursuer	Terrestrial Subsurface	X	X	X	X			X	X
	Mink	Mustela vison	P	Water Diver	Riparian Subsurface					X	X	X	X
	River Otter	Lutra canadensis	P	Water Diver	Riparian Subsurface					X	X	X	X
	Striped Skunk	Mephitis mephitis	0	Ground Forager	Terrestrial Subsurface	X	X	X	X	X	X	X	X
Procyonidae	Raccoon	Procyon lotor	О	Ground Forager	Tree Cavity-Crevice	X	X	X	X	X	X	X	X
Sciuridae	Eastern Chipmunk	Tamias striatus	G	Ground Forager	Terrestrial Subsurface			X		X			
	*Red Squirrel	Tamiasciurus hudsonicus	G	Upper Canopy Forager	Tree Cavity-Crevice				X	X			
	Woodchuck	Marmota monax	H	Ground Grazer	Terrestrial Subsurface			X					
Soricidae	Masked Shrew	Sorex cinereus	I	Ground Gleaner	Terrestrial Subsurface			X		X		X	X
	N. Short-tailed Shrew	Blarina brevicauda	I	Ground Gleaner	Terrestrial Subsurface		X	X	X	X		X	X
	Pygmy Shrew	Sorex hoyi	I.	Ground Gleaner	Riparian Subsurface				X	X			
	Smoky Shrew	Sorex fumeus	I	Ground Gleaner	Terrestrial Subsurface				X	X			
	Water Shrew	Sorex palustris	I	Water Gleaner	Riparian Subsurface			!					X
Talpidae	Hairy-tailed Mole	Parascalops breweri	I	Ground Gleaner	Terrestrial Subsurface		X	X	X	X			
	Star-nosed Mole	Condylura cristata	I	Water Gleaner	Riparian Subsurface							X	X
Vespertilionid ae	Big Brown Bat	Eptesicus fuscus	I	Air Hawker	Buildings	X	X	X				X	X
	Little Brown Bat	Myotis lucifugus	I	Air Hawker	Buildings	X	X	X				X	X
	Red Bat	Lasiurus borealis	I	Air Hawker	Tree-Twig	X	X	X	X			X	X
	Small-footed Myotis	Myotis leibii	I	Air Hawker	Buildings	X	X	X				X	X
Zapodidae	Meadow Jumping Mouse	Zapus hudsonius	О	Ground Forager	Ground-Herb		X	X	X	X		X	X
	Woodland Jumping Mouse	Napaeozapus insignis	О	Ground Forager	Ground-Herb			X	X	X			
Reptiles													
Colubridae	E. Smooth Green Snake	Opheodrys v. vernalis	I	Ground Ambusher	Terrestrial Subsurface			X	X				X
	Eastern Garter Snake	Thamnophia s. sirtalis	C	Ground Ambusher	Terrestrial Subsurface		X	X	X	X			X
	Eastern Milk Snake	Lampropeltis t,	C	Ground Ambusher	Terrestrial Subsurface				X				

Emanila	Correspondent Number	CainatiGa Nama	Calld	Forms Mothed	Dranding Cubstrate				Ha	bitat			
Family	Common Name	Scientific Name	Guild	Forage Method	Breeding Substrate	1	2	3	4	5	6	7	8
		triangulum											
	Northern Redbelly Snake	Storeria o. occipitomaculata	I	Ground Ambusher	Terrestrial Subsurface				X				
	Northern Ringneck Snake	Diadophis punctatus edwardsi	С	Ground Ambusher	Terrestrial Subsurface				X	X		_	
NOTES:			<u> </u>							l	<u> </u>		
Habitats:	1: Unvegetated Areas	5: Spruce - Birch Woodland		Guilds:	C: Carnivore	I: In	isecti	vore					
	2: Grass	6: Open Water (Goose Pond)			F: Frugivore	O: 0	Omni	vore			_		
	3: Shrub - Old Field	7: Salt Marsh (Estuarine Emergent)			G: Granivore	P: P	isciv	ore					
	4: Aspen - Birch Woodland	8: Shalow Marsh (Palustr Emergent)	ine	-	H: Herbivore					· · · · · · · · · · · · · · · · · · ·			
* Species obs	served on the site during sit	te reconnaissance.											

Ta	ble 2.5-1: Surface	Soil Sample	es	
Location Name	Sample Event Date	Metals	SVOC	VOC
SS-401	2004/12/02	D05709	A18S7	A18S7
SS-401 (duplicate)	2004/12/02	D05739	A18D9	A18D9
SS-402	2004/12/02	D05710	A18S8	A18S8
SS-403	2004/11/30	D05711		
SS-404	2004/12/02	D05712	A18S9	A18S9
SS-405	2004/12/02	D05713	A18T0	A18T0
SS-406	2004/11/30	D05714		
SS-407	2004/12/02	D05715	A18T1	A18T1
SS-408	2004/11/30	D05716		
SS-409	2004/11/30	D05717		
SS-410	2004/12/02	D05718	A19C8	A19C8
SS-411	2004/12/02	D05719	A19C9	A19C9
SS-412	2004/12/02	D05720	A19D0	A19D0
SS-413	2004/12/02	D05721	A19D1	A19D1
SS-414	2004/11/30	D05722		
SS-415	2004/11/30	D05723		
SS-416	2004/12/02	D05724	A19D2	A19D2
SS-417	2004/11/30	D05725		
SS-418	2004/11/30	D05726		
SS-419	2004/11/30	D05727		
SS-420	2004/11/30	D05728		
SS-421	2004/11/30	D05729		
SS-422	2004/11/30	D05730		
SS-423	2004/11/30	D05731		
SS-424	2004/11/30	D05732		
SS-425	2004/11/30	D05733		
SS-426	2004/11/30	D05734		
SS-427	2004/11/30	D05735		
SS-427 (duplicate)	2004/11/30	D05740		
SS-428	2004/11/30	D05736		
SS-429	2004/11/30	D05737		
SS-430	2004/11/30	D05738		

Table 2.6-1	: Sediment Sa	amples	
Location Name	Date	TOC/TCO	Metals
SD-401	2004/11/17	D05638	D05638
SD-402	2004/11/17	D05639	D05639
SD-403	2004/11/12	D05640	D05640
SD-404	2004/11/12	D05641	D05641
SD-405	2004/11/17	D05642	D05642
SD-406	2004/11/17	D05643	D05643
SD-407	2004/11/11	D05644	D05644
SD-408	2004/11/11	D05645	D05645
SD-409	2004/11/18	D05646	D05646
SD-410	2004/11/11	D05647	D05647
SD-411	2004/12/03	D05648	D05648
SD-412	2004/11/12	D05649	D05649
SD-413	2004/11/11	D05650	D05650
SD-415	2004/11/11	D05651	D05651
SD-416	2004/11/11	D05652	D05652
SD-417	2004/11/11	D05653	D05653
SD-420	2004/12/03	D05654	D05654
SD-420 (duplicate)	2004/12/03	D05659	D05659
SD-421	2004/12/03	D05655	D05655
SD-422	2004/11/12	D05656	D05656
SD-422 (duplicate)	2004/11/12	D05660	D05660
SD-423	2004/11/11	D05657	D05657
SD-424	2004/11/18	D05658	D05658
SD-425	2004/12/03	D05706	D05706
SD-426	2004/12/03	D05707	D05707

Table 2.7	7-1: Surface Water San	nples	
Location Name	Date	Sulfate	Metals
SW-403	2004/11/16	D05667	D05667
SW-403 (duplicate)	2004/11/16	D05691	D05691
SW-403 (filtered, duplicate)	2004/11/16		D05692
SW-403 (filtered)	2004/11/16		D05668
SW-405	2004/11/17	D05669	D05669
SW-405 (filtered)	2004/11/17		D05670
SW-406	2004/11/17	D05671	D05671
SW-406 (filtered)	2004/11/17		D05672
SW-407	2004/11/16	D05673	D05673
SW-407 (filtered)	2004/11/16		D05674
SW-410	2004/11/16	D05675	D05675
SW-410 (filtered)	2004/11/16		D05676
SW-411	2004/12/03	D05677	D05677
SW-411 (duplicate)	2004/12/03	D05704	D05704
SW-411 (duplicate)	2004/12/03		D05705
SW-411 (filtered)	2004/12/03		D05678
SW-414	2004/11/16	D05679	D05679
SW-414 (filtered)	2004/11/16		D05680
SW-415	2004/11/16	D05681	D05681
SW-415 (filtered)	2004/11/16		D05682
SW-419	2004/12/02	D05683	D05683
SW-419 (filtered)	2004/12/02		D05684
SW-422	2004/11/17	D05685	D05685
SW-422 (filtered)	2004/11/17		D05686
SW-423	2004/11/16	D05687	D05687
SW-423 (filtered)	2004/11/16		D05688
SW-424	2004/11/18	D05689	D05689
SW-424 (filtered)	2004/11/18		D05690

	Table 2.8-1: Residential Well Samples												
Location Name	Address	Sample Location	Sample Event Date	Sulfate	Metals	VOCs							
DWCA-10	46 Goose Falls Road	Tap at spring	2005/01/12	D05764	MA1GP3	A1GA1							
DWCA-11	19 Goose Falls Road	Upstream of pressure tank	2005/01/12	D05760	MA1GP2	A1G97							
DWCA-12	9 Goose Falls Road	Upstream of pressure tank	2005/01/12	D05759	MA1GP1	A1G96							
DWCA-15	Harborside Road (serves multiple homes)	Upstream of pressure tank	2005/01/11	D05766	MA1GP4	A1GN3							
DWCA-16	1027 Cape Rosier Road	Upstream of pressure tank	2005/01/11	D05755	MA1GN7	A1G92							
DWCA-16 (duplicate)	1027 Cape Rosier Road	Upstream of pressure tank	2005/01/11	D05756	MA1GN8	A1G93							
DWCA-17	1043 Cape Rosier Road	Kitchen tap	2005/01/11	D05757	MA1GN9	A1G94							
DWCA-18	1071 Cape Rosier Road	Upstream of pressure tank	2005/01/12	D05758	MA1GP0	A1G95							

Table 4.1-1 Surface Soil Analytical Results (Detects Only)

Source Area	I	T		WRP-1	WRP-1	WRP-1	WRP-1	WRP-1	WRP-2	WRP-2	WRP-2	WRP-2
Location ID				99-WRP-21	99-WRP-22	SS-407	SS-408	SS-409	SS-417	SS-418	99-SS-05	99-SS-44
				99E-DIN-10875	99E-DIN-11382	SS-407	SS-408	SS-409	SS-417	SS-418	99E-DIN-11361	99E-DIN-11378
Sample Date		Maine RAGs	Region IX PRG	10/4/1999	10/4/1999	12/2/2004	11/30/2004	11/30/2004	11/30/2004	11/30/2004	10/6/1999	10/6/1999
Depth			for Residential		0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
CONSTITUENT	UNITS		Soil	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds												
1,2-Dichlorobenzene	(ug/kg)	2700000	110000									
1,3-Dichlorobenzene	(ug/kg)		53000									
Acetone	(ug/kg)	480000	1400000									
Methylene chloride	(ug/kg)	13000	9100									
3,4-Dithiohexane	(ug/kg)											
Diethyl benzene (mixed isomers)	(ug/kg)											
Semivolatile Organic Compound												
Acetophenone	(ug/kg)											
bis(2-Ethylhexyl) phthalate	(ug/kg)	1200000	35000									
Butyl benzyl phthalate	(ug/kg)		1200000									
Chrysene	(ug/kg)		62000									
Di-n-butyl phthalate	(ug/kg)		610000									
Dimethyl phthalate	(ug/kg)		61000000									
Fluoranthene	(ug/kg)		230000									
Pyrene	(ug/kg)		230000									
Metals	1-0-0/											
Aluminum	(mg/kg)		7600			[56000]	[45000]	[60000]	[13000]	[46000]		
Antimony	(mg/kg)		3.1			0.11J	2.6J	0.31J	0.84J	0.35J		
Arsenic	(mg/kg)		0.39			[22]J	[51]J	[34]J	[23]J	[57]J		
Barium	(mg/kg)		540			16EB	9.5EB	5.4EB	9.4EB	16EB		
Beryllium	(mg/kg)		15			0.24J	0.14J	0.35J	0.31J	0.27J		
Cadmium	(mg/kg)		3.7	[8.7]	[13]	0.55J	0.37J	0.81J	[16]J	0.45J	[27]	[17]
Calcium	(mg/kg)			HER SHARE SH		420J	91J	280J	5900J	210J		
Chromium	(mg/kg)		210			13J	4.1JEB	3.1JEB	12JEB	11JEB		
Cobalt	(mg/kg)		900			0.77J	0.31J		4.8J	1.9J		
Copper	(mg/kg)		310	[1600]J	[2100]J	[2400]J	[5200]J	[8200]J	[1600]J	[2000]J	[1800]J	[480]J
Iron	(mg/kg)		2300			[47000]	[74000]	[55000]	[17000]	[57000]		
Lead	(mg/kg)		40	[780]	[3000]	[140]J	[820]J	[380]J	[520]J	[260]J	[640]	[210]
Magnesium	(mg/kg)					110000J	94000J	120000J	18000J	82000J		
Manganese	(mg/kg)		180			[1400]J	[970]J	[1300]J	[480]J	[1100]J		
Mercury	(mg/kg)		2.3	1J	0.5J	0.41	0.35J	0.23J	0.41J	0.14J	0.7J	0.2J
Nickel	(mg/kg)		160			5.3JEB	1.7JEB	0.62JEB	12JEB	7.3JEB		
Potassium	(mg/kg)					4100J	4000	1900	1000J	2100J		
Selenium	(mg/kg)		39	7		5.1J	15J	16J	1.9J	7.6J		
Silver	(mg/kg)		39	4.1	2.3	1.2J	5.2J	3.3J	2J	1.6J	3.1	0.9
Sodium	(mg/kg)						120J			100J		
Thallium	(mg/kg)		0.52			[1.3]J	[2]J	[0.86]J	0.46J	[1.2]J	Part In the last	
Vanadium	(mg/kg)		7.8			[17]J	[14]J	[14]J	[11]J	[19]J	Maria de la companya della companya	
Zinc	(mg/kg)		2300	[2400]	[7200]	330J	250J	290J	[5700]J	260J	[8400]	[4200]
	(99)			[]	[, = 0 0]	0000			[0.00]0			The same of the sa

Table 4.1-1 Surface Soil Analytical Results (Detects Only)

Source Area		1		WRP-2	WRP-2	WRP-2	WRP-3	WRP-3	WRP-3	WRP-3	WRP-3
Location ID				99-SS-45	99-WRP2-10	99-WRP2-48	99-TPL-16	99-TPL-17	99-TPL-18	SS-405	SS-406
	 							99E-DIN-11367			SS-406
Sample Date		Maine RAGs	Region IX PRG		10/4/1999	10/4/1999	10/4/1999	10/4/1999	10/4/1999		11/30/2004
Depth	<u> </u>		for Residential	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
CONSTITUENT	UNITS		Soil	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds	-			,							
1,2-Dichlorobenzene	(ug/kg)	2700000	110000								
1,3-Dichlorobenzene	(ug/kg)		53000								
Acetone	(ug/kg)	480000	1400000								
Methylene chloride	(ug/kg)	13000	9100								
3,4-Dithiohexane	(ug/kg)										
Diethyl benzene (mixed isomers)	(ug/kg)										
Semivolatile Organic Compound											
Acetophenone	(ug/kg)										
bis(2-Ethylhexyl) phthalate	(ug/kg)	1200000	35000								
Butyl benzyl phthalate	(ug/kg)		1200000								
Chrysene	(ug/kg)		62000								
Di-n-butyl phthalate	(ug/kg)		610000								
Dimethyl phthalate	(ug/kg)		61000000								
Fluoranthene	(ug/kg)		230000								
Pyrene	(ug/kg)		230000								
Metals											
Aluminum	(mg/kg)		7600							[41000]	[57000]
Antimony	(mg/kg)		3.1							1.7J	0.3J
Arsenic	(mg/kg)		0.39							[130]J	[23]J
Barium	(mg/kg)	10000	540							8.8EB	9.6EB
Beryllium	(mg/kg)	4	15							0.18J	0.17J
Cadmium	(mg/kg)		3.7		[32]					0.79J	0.78J
Calcium	(mg/kg)									280J	120J
Chromium	(mg/kg)		210							6.2J	4.6JEB
Cobalt	(mg/kg)		900							0.27J	0.049J
Copper	(mg/kg)	650	310	80J	[1100]J	[540]J	[670]J	[520]J	[630]J	[3600]J	[340]J
Iron	(mg/kg)		2300							[41000]	[40000]
Lead	(mg/kg)	375	40	[120]	[790]	[220]	[230]	[410]	[150]	[700]J	[240]J
Magnesium	(mg/kg)									78000J	120000J
Manganese	(mg/kg)		180							[1100]J	[1300]J
Mercury	(mg/kg)		2.3	0.1J	0.9J		0.7J	1J	0.3J	1.5	0.36J
Nickel	(mg/kg)	3800	160							1.8JEB	1.3JEB
Potassium	(mg/kg)									2800	4200
Selenium	(mg/kg)	950	39			9.5	20	4.9	6.6	5.9J	6.3J
Silver	(mg/kg)		39		2.7	1.9	3	4		2.9J	1.6J
Sodium	(mg/kg)										
Thallium	(mg/kg)		0.52							[4.4]J	[1.3]J
Vanadium	(mg/kg)		7.8							[10]J	[16]J
	(mg/kg)		2300	130	[7700]	150	90	390	220	420J	400J

Table 4.1-1 Surface Soil Analytical Results (Detects Only)

Source Area				Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings
Location ID				SS-401	SS-401	SS-402	SS-403	SS-404	TP_SOIL1	TP_SOIL2	99-TPD-11	99-TPD-12
				SS-401	SSE-401	SS-402	SS-403	SS-404	94E-DIN-02236	94E-DIN-02235	99E-DIN-10890	99E-DIN-10889
Sample Date		Maine RAGs	Region IX PRG	12/2/2004	12/2/2004	12/2/2004	11/30/2004	12/2/2004	9/8/1994	9/8/1994	10/5/1999	10/6/1999
Depth		Residential	for Residential	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0.25-0.5
CONSTITUENT	UNITS		Soil	Primary	Duplicate 1	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds												
1,2-Dichlorobenzene	(ug/kg)	2700000	110000		2J							
1,3-Dichlorobenzene	(ug/kg)		53000		2J							
Acetone	(ug/kg)	480000	1400000							33		
Methylene chloride	(ug/kg)	13000	9100									
3,4-Dithiohexane	(ug/kg)									100J		
Diethyl benzene (mixed isomers)	(ug/kg)									1,270J		
Semivolatile Organic Compound												
Acetophenone	(ug/kg)											
bis(2-Ethylhexyl) phthalate	(ug/kg)	1200000	35000					48J				
Butyl benzyl phthalate	(ug/kg)		1200000							110		
Chrysene	(ug/kg)		62000									
Di-n-butyl phthalate	(ug/kg)		610000									
Dimethyl phthalate	(ug/kg)		61000000									
Fluoranthene	(ug/kg)		230000									
Pyrene	(ug/kg)		230000									
Metals												
Aluminum	(mg/kg)		7600	[38000]	[46000]	[25000]	[19000]	[37000]				
Antimony	(mg/kg)		3.1	0.44J	0.5J	0.45J	0.44J	0.47J				
Arsenic	(mg/kg)	10	0.39	[120]J	[120]J	[65]J	[65]J	[87]J	[54]	[55]		
Barium	(mg/kg)	10000	540	4.2EB	4.7EB	3.6EB	12EB	4.2EB	24	36		
Beryllium	(mg/kg)		15	0.17J	0.19J	0.35J	0.28J	0.19J				
Cadmium	(mg/kg)	27	3.7	0.3J	0.27J	[25]J	[22]J	0.15J	[20]	[32]	[15]	[25]
Calcium	(mg/kg)			330J	550J	62000J	88000J	330J				
Chromium	(mg/kg)		210	5.4J	7.7J	20J	18JEB	13J	25	16		
Cobalt	(mg/kg)		900	0.31J	0.35J	4.7J	4.3J	0.51J				
Copper	(mg/kg)	650	310	[510]J	[510]J	[1200]J	[2500]J	[410]J	[670]	[1900]	[470]J	[1400]J
Iron	(mg/kg)		2300	[51000]	[52000]	[34000]	[30000]	[54000]				
Lead	(mg/kg)	375	40	[480]J	[470]J	[620]J	[990]J	[350]J	[560]	[510]	[780]	[990]
Magnesium	(mg/kg)			76000	92000	50000	39000J	74000J				
Manganese	(mg/kg)		180	[1100]J	[1200]J	[1600]J	[1800]J	[1000]J				
Mercury	(mg/kg)	60	2.3	0.5	0.46	0.42	0.58J	0.38			0.5J	0.5J
Nickel	(mg/kg)		160	2JEB	2.4JEB	17JEB	15JEB	3.7JEB	20	12		
Potassium	(mg/kg)			1800	2000	1500	1800	2200				
Selenium	(mg/kg)	950	39	12J	13J	5.5J	5.8J	9.1J	6	9	4.9	9.9
Silver	(mg/kg)	950	39	3.3J	2.9J	2.4J	3.8J	2.4J	2.7	3.4	4	4.4
Sodium	(mg/kg)			18JEB			18J					
Thallium	(mg/kg)		0.52	[2.8]J	[2.8]J	[1.5]J	[1.4]J	[2]J				
Vanadium	(mg/kg)		7.8	[13]J	[15]J	[16]J	[13]J	[17]J				
Zinc	(mg/kg)	1500	2300	150J	160J	[5900]J	[6600]J	120J	[15000]	[17000]	[4200]	[5800]

Table 4.1-1 Surface Soil Analytical Results (Detects Only)

Source Area	T	T	T	Tailings	Tailings	Tailings	BKRD	BKRD	BKRD	BKRD	BKRD	BKRD
Location ID				99-TPD-13	99-TPD-14	99-TPD-15	SS-419	SS-420	SS-421	SS-422	SS-423	SS-424
					99E-DIN-10868		SS-419	SS-420	SS-421	SS-422	SS-423	SS-424
Sample Date		Maine RAGs	Region IX PRG		10/6/1999	10/6/1999	11/30/2004		11/30/2004			11/30/2004
Depth	-		for Residential	0.25-0.5	0.25-0.5	0.25-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
CONSTITUENT	UNITS	rtooloontial	Soil	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds	OTTITO			, illinary	1 milary	1 milary	1 milety	1 milary	1 milary	1 milety	Timary	1 milary
1,2-Dichlorobenzene	(ug/kg)	2700000	110000									
1,3-Dichlorobenzene	(ug/kg)	2100000	53000									
Acetone	(ug/kg)	480000	1400000									
Methylene chloride	(ug/kg)	13000	9100									
3,4-Dithiohexane		13000	9100									
Diethyl benzene (mixed isomers)	(ug/kg)											
	(ug/kg)											
Semivolatile Organic Compound												
Acetophenone	(ug/kg)	4000000	05000									
bis(2-Ethylhexyl) phthalate	(ug/kg)	1200000	35000									
Butyl benzyl phthalate	(ug/kg)		1200000									
Chrysene	(ug/kg)		62000									
Di-n-butyl phthalate	(ug/kg)		610000									
Dimethyl phthalate	(ug/kg)		61000000									
Fluoranthene	(ug/kg)		230000									
Pyrene	(ug/kg)		230000									
<u>Metals</u>												
Aluminum	(mg/kg)		7600				[19000]	[20000]	[14000]	[15000]	800	720
Antimony	(mg/kg)		3.1				0.19J	0.18J	0.29J	0.21J	0.073J	0.045J
Arsenic	(mg/kg)	10	0.39				[10]J	[13]J	[11]J	[11]J	[0.49]J	[0.59]J
Barium	(mg/kg)	10000	540				37EB	34EB	49JEB	26JEB	13JEB	6.4JEB
Beryllium	(mg/kg)	4	15				0.37J	0.41J	0.3	0.33	0.034	0.022J
Cadmium	(mg/kg)	27	3.7	[19]	[16]		0.11J	0.12J	0.18J	0.12J	0.056J	0.033J
Calcium	(mg/kg)						450J	310J	260J	230J	210J	97J
Chromium	(mg/kg)		210				22JEB	19JEB	20JEB	23JEB	1.2JEB	0.83JEB
Cobalt	(mg/kg)		900				5J	5.5J	3.7J	3.9J	0.1J	0.074J
Copper	(mg/kg)	650	310	[1800]J	[1400]J	180J	14J	10J	15J	14J	0.63J	1.1J
Iron	(mg/kg)		2300	[1000]	[1100]0	1000	[23000]	[28000]	[19000]	[25000]	800	800
Lead	(mg/kg)	375	40	[840]	[700]	[290]	26J	22J	29J	17J	4J	6.2J
Magnesium	(mg/kg)	010	40	[0.10]	[100]	[200]	2900J	3000J	2200J	2900J	54J	60J
Manganese	(mg/kg)	 	180				[400]J	[410]J	170	[200]	16	6.6J
Mercury	(mg/kg)	60	2.3	0.5J	0.5J	0.4J	0.078J	0.084J	0.12J	0.052J	0.02J	0.027J
Nickel	(mg/kg)	3800	160	0.00	0.00	0.40	18JEB	17JEB	16JEB	16JEB	0.66JEB	0.0273 0.47JEB
Potassium	(mg/kg)	3000	100				700J	510J	570J			120J
Selenium		950	39	E 2	4.0	0.0				620J	120J	1203
Silver	(mg/kg)	950	39	5.2 4.3	4.9	9.8	1.1J	0.86J	0.97J	0.76J	0.0001	0.441
	(mg/kg)	950	39	4.3	3.7	2	0.22J	0.23J	0.27J	0.32J	0.038J	0.11J
Sodium	(mg/kg)		0.50				0.401	0441	62J	44J	22J	16J
Thallium	(mg/kg)		0.52				0.12J	0.11J	0.12J	0.11J	0.018J	0.02J
Vanadium	(mg/kg)	4555	7.8				[30]J	[28]J	[32]J	[36]J	3J	2.5J
Zinc	(mg/kg)	1500	2300	[4400]	[3800]	50	76J	95J	72J	64J	3.8J	3.6J

Table 4.1-1 Surface Soil Analytical Results (Detects Only)

Source Area	T			BKRD	BKRD	BKRD	BKRD	BKRD	BKRD	BKRD	BKRD	BKRD
Location ID				SS-425	SS-426	SS-427	SS-427	SS-428	SS-429	SS-430	99-BKSS-01	99-BKSS-02
				SS-425	SS-426	SS-427	SSE-427	SS-428	SS-429	SS-430		99E-DIN-11395
Sample Date	İ	Maine RAGs	Region IX PRG	11/30/2004	11/30/2004	11/30/2004		11/30/2004			10/6/1999	10/6/1999
Depth			for Residential	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
CONSTITUENT	UNITS		Soil	Primary	Primary	Primary	Duplicate 1	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds							-apiliano .			· · · · · · · · · · · · · · · · · · ·	· ·······	· · · · · · · · ·
1,2-Dichlorobenzene	(ug/kg)	2700000	110000									
1,3-Dichlorobenzene	(ug/kg)		53000									
Acetone	(ug/kg)	480000	1400000									
Methylene chloride	(ug/kg)	13000	9100									
3,4-Dithiohexane	(ug/kg)		0.00									
Diethyl benzene (mixed isomers)	(ug/kg)											
Semivolatile Organic Compound												
Acetophenone	(ug/kg)											
bis(2-Ethylhexyl) phthalate	(ug/kg)	1200000	35000									
Butyl benzyl phthalate	(ug/kg)	120000	1200000									
Chrysene	(ug/kg)		62000									
Di-n-butyl phthalate	(ug/kg)		610000									
Dimethyl phthalate	(ug/kg)		61000000									
Fluoranthene	(ug/kg)		230000									
Pyrene	(ug/kg)		230000									
Metals	(ug/kg)		230000									
Aluminum	(mg/kg)		7600	4500	1900	[26000]	[26000]	[24000]	[24000]	[14000]		
Antimony	(mg/kg)		3.1	0.12J	0.052J	0.089J	0.087J	0.39J	0.13J	0.17J		
Arsenic	(mg/kg)	10	0.39	[3.6]J	[1.3]J	[7.9]J	[6.9]J	[14]J	[11]J	[12]J		
Barium	(mg/kg)	10000	540	13JEB	4.5JEB	22JEB	20JEB	20JEB	17JEB	12JEB		
Beryllium	(mg/kg)	4	15	0.089	0.041	0.4	0.36	0.4	0.3	0.16		
Cadmium	(mg/kg)	27	3.7	0.051J	0.025J	0.097J	0.093J	0.087J	0.082J	0.063J		
Calcium	(mg/kg)	21	3.7	140J	130J	170J	610J	240J	140J	110J		
Chromium	(mg/kg)		210	5.5JEB	1.6JEB	23JEB	23JEB	21JEB	22JEB	16JEB		
Cobalt	(mg/kg)		900	0.76J	0.23J	3.4J	4.9J	2.8J	2.3J	1.8J		
Copper	(mg/kg)	650	310	2.7J	1.2J	6.3J	6.7J	8.8J	5.7J	4.7J	56J	51J
Iron	(mg/kg)	000	2300	[7900]	[2800]	[27000]	[30000]	[34000]	[28000]	[36000]	1 303	513
Lead	(mg/kg)	375	40	18J	9J	10J	12J	14J	13J	38J	[440]	[440]
Magnesium	(mg/kg)	3/3	40	580J	200J	2800J	5200J	3200J	3100J	1900J	[110]	[110]
Manganese	(mg/kg)		180	38	14	[200]	[320]					
Mercury		60	2.3	0.046J	0.021J			[250]	170	120	0.41	
Nickel	(mg/kg)	3800	160	2.8JEB		0.075J	0.078J	0.11J	0.09J	0.067J	0.1J	
Potassium	(mg/kg)	3000	100		0.74JEB	19JEB	16JEB	10JEB	8.9JEB	9.7JEB		
Selenium	(mg/kg)	050	20	220J	160J	490J	410J	390J	350J	220J		
	(mg/kg)	950	39	0.401	0.0701	0.93J	0.401	0.83J	0.471	0.401		4
Silver	(mg/kg)	950	39	0.16J	0.072J	0.18J	0.13J	0.18J	0.17J	0.13J	1.1	1.1
Sodium	(mg/kg)		0.50	25J	27J	0.0751	0.0001	0.0001	0.000	34J		
Thallium	(mg/kg)		0.52	0.059J	0.035J	0.075J	0.066J	0.086J	0.076J	0.061J		
Vanadium	(mg/kg)	4500	7.8	[15]J	[8.3]J	[32]J	[48]J	[32]J	[34]J	[46]J		
Zinc	(mg/kg)	1500	2300	17J	5.4J	18J	87J	74J	58J	39J	290	270

Table 4.1-1 Surface Soil Analytical Results (Detects Only)

Source Area				BKRD	BKRD
Location ID				99-BKSS-03	99-SS-04
					99E-DIN-11360
Sample Date		Maine RAGs	Region IX PRG	10/6/1999	10/6/1999
Depth		Residential	for Residential	0-0.5	0-0.5
CONSTITUENT	UNITS	1100100111101	Soil	Primary	Primary
Volatile Organic Compounds	CHILO		00	T Tillion y	rimary
1.2-Dichlorobenzene	(ug/kg)	2700000	110000		
1.3-Dichlorobenzene	(ug/kg)	270000	53000		
Acetone	(ug/kg)	480000	1400000		
Methylene chloride	(ug/kg)	13000	9100		
3.4-Dithiohexane	(ug/kg)	10000	0100		
Diethyl benzene (mixed isomers)	(ug/kg)				
Semivolatile Organic Compound					
Acetophenone	(ug/kg)				
bis(2-Ethylhexyl) phthalate	(ug/kg)	1200000	35000		
Butyl benzyl phthalate	(ug/kg)	1200000	1200000		
Chrysene	(ug/kg)		62000		
Di-n-butyl phthalate	(ug/kg)		610000		
Dimethyl phthalate	(ug/kg)		6100000		
Fluoranthene	(ug/kg)		230000		
Pyrene	(ug/kg)		230000		
Metals	(ug/kg)		230000		
Aluminum	(marles)		7600		
	(mg/kg)		3.1		
Antimony	(mg/kg)	10	0.39		
Arsenic	(mg/kg)	10000			
Barium	(mg/kg)		540 15		
Beryllium	(mg/kg)	4 27			
Cadmium	(mg/kg)	21	3.7		
Calcium	(mg/kg)		040		
Chromium	(mg/kg)		210		
Cobalt	(mg/kg)	050	900	40.1	[4400]
Copper	(mg/kg)	650	310	49J	[1400]J
Iron	(mg/kg)	075	2300	54403	[0.40]
Lead	(mg/kg)	375	40	[110]	[210]
Magnesium	(mg/kg)		100		
Manganese	(mg/kg)		180		0.71
Mercury	(mg/kg)	60	2.3		0.5J
Nickel	(mg/kg)	3800	160		
Potassium	(mg/kg)				
Selenium	(mg/kg)	950	39	4	
Silver	(mg/kg)	950	39		2.9
Sodium	(mg/kg)				
Thallium	(mg/kg)		0.52		
Vanadium	(mg/kg)		7.8		
Zinc	(mg/kg)	1500	2300	260	310

Table 4.1-2: Summary of Chemicals Detected Operations Area

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
VOCs				
1,1,1-trichloroethane	(ug/kg)	5	0	ND
1,1,2,2-Tetrachloroethane	(ug/kg)	5	0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	(ug/kg)	5	0	ND
1,1,2-Trichloroethane	(ug/kg)	5	0	ND
1,1-Dichloroethane	(ug/kg)	5	0	ND
1,1-Dichloroethene	(ug/kg)	5	0	ND
1,2,4-Trichlorobenzene	(ug/kg)	5	0	ND
1,2-Dibromo-3-chloropropane	(ug/kg)	5	0	ND
1,2-Dichlorobenzene	(ug/kg)	5	0	ND
1,2-Dichloroethane	(ug/kg)	5	0	ND
1,2-Dichloropropane	(ug/kg)	5	0	ND
1,3-Dichlorobenzene	(ug/kg)	5	0	ND
1,4-Dichlorobenzene	(ug/kg)	5	0	ND
2-Butanone (MEK)	(ug/kg)	5	0	ND
2-Hexanone	(ug/kg)	5	0	ND
4-Methyl-2-pentanone	(ug/kg)	5	0	ND
Acetone	(ug/kg)	5	0	ND
Benzene	(ug/kg)	5	0	ND
Bromodichloromethane	(ug/kg)	5	0	ND
Bromoform	(ug/kg)	5	0	ND
Bromomethane	(ug/kg)	5	0	ND
Carbon disulfide	(ug/kg)	5	0	ND
Carbon tetrachloride	(ug/kg)	5	0	ND
Chlorobenzene	(ug/kg)	5	0	ND
Chlorodibromomethane	(ug/kg)	5	0	ND
Chloroethane	(ug/kg)	5	0	ND
Chloroform	(ug/kg)	5	0	ND
Chloromethane	(ug/kg)	5	0	ND
cis-1,2-Dichloroethene	(ug/kg)	5	0	ND
cis-1,3-Dichloropropene	(ug/kg)	5	0	ND
Cyclohexane	(ug/kg)	5	0	ND
Dichlorodifluoromethane	(ug/kg)	5	0	ND
Ethylbenzene	(ug/kg)	5	0	ND
Ethylenedibromide	(ug/kg)	5	0	ND
Fluorotrichloromethane	(ug/kg)	5	0	ND
Isopropylbenzene	(ug/kg)	5	0	ND
Methyl acetate (acetic acid, methyl este	(ug/kg)	5	0	ND
Methyl cyclohexane	(ug/kg)	5	0	ND
Methyl tert-butyl ether	(ug/kg)	5	0	ND
Methylene chloride	(ug/kg)	5	0	ND
Styrene	(ug/kg)	5	0	ND
Tetrachloroethene	(ug/kg)	5	0	ND
Toluene	(ug/kg)	5	0	ND
trans-1,2-Dichloroethene	(ug/kg)	5	0	ND
Trans-1,3-Dichloropropene	(ug/kg)	5	0	ND
Trichloroethene	(ug/kg)	5	0	ND ND
Vinyl chloride	(ug/kg) (ug/kg)	5	0	ND
		5	0	ND
Xylenes (total)	(ug/kg)	5	<u> </u>	ואט

Table 4.1-2: Summary of Chemicals Detected Operations Area

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
SVOCs				
1,1'-Biphenyl	(ug/kg)	5	0	ND
2,2'-Oxybis(1-Chloropropane)	(ug/kg)	5	0	ND
2,4,5-Trichlorophenol	(ug/kg)	5	0	ND
2,4,6-Trichlorophenol	(ug/kg)	5	0	ND
2,4-Dichlorophenol	(ug/kg)	5	0	ND
2,4-Dimethylphenol	(ug/kg)	5	0	ND
2,4-Dinitrophenol	(ug/kg)	5	0	ND
2,4-Dinitrotoluene	(ug/kg)	5	0	ND
2,6-Dinitrotoluene	(ug/kg)	5	0	ND
2-Chloronaphthalene	(ug/kg)	5	0	ND .
2-Chlorophenol	(ug/kg)	5	0	ND
2-Methylnaphthalene	(ug/kg)	5	0	ND
2-Methylphenol	(ug/kg)	5	0	ND
2-Nitroaniline	(ug/kg)	5	0	ND
2-Nitrophenol	(ug/kg)	5	0	ND
3,3'-Dichlorobenzidine	(ug/kg)	5	0	ND
3-Nitroaniline	(ug/kg)	5	0	ND
4,6-Dinitro-2-methylphenol	(ug/kg)	5	0	ND
4-Bromophenyl phenyl ether	(ug/kg)	5	0	ND
4-Chloro-3-methylphenol	(ug/kg)	5	0	ND
4-Chloroaniline	(ug/kg)	5	0	ND
4-Chlorophenyl phenyl ether	(ug/kg)	5	0	ND
4-Methylphenol	(ug/kg)	5	0	ND
4-Nitroaniline	(ug/kg)	5	0	ND
4-Nitrophenol	(ug/kg)	5	0	ND
Acenaphthene	(ug/kg)	5	0	ND
Acenaphthylene	(ug/kg)	5	0	ND
Acetophenone	(ug/kg)	5	2	78
Anthracene	(ug/kg)	5	0	ND
Atrazine	(ug/kg)	5	0	ND
Benzaldehyde	(ug/kg)	5	0	ND ND
Benzo(a)anthracene	(ug/kg)	5	0	ND
Benzo(a)pyrene	(ug/kg)	5	0	ND
Benzo(b)fluoranthene	(ug/kg)	5	0	ND
Benzo(g,h,i)perylene		5	0	ND
Benzo(k)fluoranthene	(ug/kg)	5		ND
	(ug/kg)		0	
Bis(2-chloroethoxy) methane	(ug/kg)	5	0	ND ND
bis(2-Chloroethyl) ether	(ug/kg)		0	
bis(2-Ethylhexyl) phthalate	(ug/kg)	5	5	480
Butyl benzyl phthalate	(ug/kg)	5	2	240
Carbonala	(ug/kg)	5	0	ND
Carbazole	(ug/kg)	5	0	ND
Chrysene	(ug/kg)	5	2	58
Di-n-butyl phthalate	(ug/kg)	5	4	110
Di-n-octyl phthalate	(ug/kg)	5	0	ND
Dibenz(a,h) anthracene	(ug/kg)	5	0	ND
Dibenzofuran	(ug/kg)	5	0	ND
Diethyl phthalate	(ug/kg)	5	0	ND

Table 4.1-2: Summary of Chemicals Detected Operations Area

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Dimethyl phthalate	(ug/kg)	5	2	450
Fluoranthene	(ug/kg)	5	2	100
Fluorene	(ug/kg)	5	0	ND
Hexachlorobenzene	(ug/kg)	5	0	ND
Hexachlorobutadiene	(ug/kg)	5	0	ND
Hexachlorocyclopentadiene	(ug/kg)	5	0	ND
Hexachloroethane	(ug/kg)	5	0	ND
Indeno(1,2,3-cd)pyrene	(ug/kg)	5	0	ND
Isophorone	(ug/kg)	5	0	ND
N-Nitrosodi-n-propylamine	(ug/kg)	5	0	ND
N-Nitrosodiphenylamine	(ug/kg)	5	0	ND
Naphthalene	(ug/kg)	5	0	ND
Nitrobenzene	(ug/kg)	5	0	ND
Pentachlorophenol	(ug/kg)	5	0	ND
Phenanthrene	(ug/kg)	5	0	ND
Phenol	(ug/kg)	5	0	ND
Pyrene	(ug/kg)	5	2	65
Metals				
Aluminum	(mg/kg)	5	5	29000
Antimony	(mg/kg)	5	5	0.96
Arsenic	(mg/kg)	5	5	220
Barium	(mg/kg)	5	5	30
Beryllium	(mg/kg)	5	5	0.53
Cadmium	(mg/kg)	10	10	170
Calcium	(mg/kg)	5	5	11000
Chromium	(mg/kg)	5	5	33
Cobalt	(mg/kg)	5	5	14
Copper	(mg/kg)	10	10	24000
Iron	(mg/kg)	5	5	84000
Lead	(mg/kg)	10	10	8500
Magnesium	(mg/kg)	5	5	49000
Manganese	(mg/kg)	5	5	1800
Mercury	(mg/kg)	10	10	7.2
Nickel	(mg/kg)	5	5	30
Potassium	(mg/kg)	5	5	2300
Selenium	(mg/kg)	10	8	39
Silver	(mg/kg)	10	10	45
Sodium	(mg/kg)	5	5	93
Thallium	(mg/kg)	5	5	6.7
Vanadium	(mg/kg)	5	5	24
Zinc	(mg/kg)	10	10	63000

Table 4.1-3: Summary of Chemicals Detected Ore Pad

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Aluminum	(mg/kg)	2	2	46000
Antimony	(mg/kg)	1	1	4.1
Arsenic	(mg/kg)	2	2	50
Barium	(mg/kg)	2	2	8.2
Beryllium	(mg/kg)	2	2	0.3
Cadmium	(mg/kg)	4	3	24
Calcium	(mg/kg)	2	2	1500
Chromium	(mg/kg)	2	2	11
Cobalt	(mg/kg)	2	1	1.7
Copper	(mg/kg)	4	4	14000
Iron	(mg/kg)	2	2	83000
Lead	(mg/kg)	4	4	2100
Magnesium	(mg/kg)	2	2	97000
Manganese	(mg/kg)	2	2	960
Mercury	(mg/kg)	4	4	4.4
Nickel	(mg/kg)	2	2	6.8
Potassium	(mg/kg)	2	2	2700
Selenium	(mg/kg)	4	4	46
Silver	(mg/kg)	4	4	19
Sodium	(mg/kg)	2	2	62
Thallium	(mg/kg)	2	2	1.3
Vanadium	(mg/kg)	2	2	16
Zinc	(mg/kg)	4	4	8800

Table 4.1-4: Summary of Chemicals Detected WRP-1 Soils

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
VOCs				
1,1,1-trichloroethane	(ug/kg)	1	0	ND
1,1,2,2-Tetrachloroethane	(ug/kg)	1	0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	(ug/kg)	1	0	ND
1,1,2-Trichloroethane	(ug/kg)	1	0	ND
1,1-Dichloroethane	(ug/kg)	1	0	ND
1,1-Dichloroethene	(ug/kg)	1	0	ND
1,2,4-Trichlorobenzene	(ug/kg)	1	0	ND
1,2-Dibromo-3-chloropropane	(ug/kg)	1	0	ND
1,2-Dichlorobenzene	(ug/kg)	1	0	ND
1,2-Dichloroethane	(ug/kg)	1	0	ND
1,2-Dichloropropane	(ug/kg)	1	0	ND
1,3-Dichlorobenzene	(ug/kg)	1	0	ND
1,4-Dichlorobenzene	(ug/kg)	1	0	ND
2-Butanone (MEK)	(ug/kg)	1	0	ND
2-Hexanone	(ug/kg)	1	0	ND
4-Methyl-2-pentanone	(ug/kg)	1	0	ND
Acetone	(ug/kg)	2	1	17
Benzene	(ug/kg)	1	0	ND
Bromodichloromethane	(ug/kg)	1	0	ND
Bromoform	(ug/kg)	1	0	ND
Bromomethane	(ug/kg)	1	0	ND
Carbon disulfide	(ug/kg)	1	0	ND
Carbon tetrachloride	(ug/kg)	1	0	ND
Chlorobenzene	(ug/kg)	1	0	ND
Chlorodibromomethane	(ug/kg)	1	0	ND
Chloroethane	(ug/kg)	1	0	ND
Chloroform	(ug/kg)	1	0	ND
Chloromethane	(ug/kg)	1	0	ND
cis-1,2-Dichloroethene	(ug/kg)	1	0	ND
cis-1,3-Dichloropropene	(ug/kg)	1	0	ND
Cyclohexane	(ug/kg)	1	0	ND
Dichlorodifluoromethane	(ug/kg)	1	0	ND
Ethylbenzene	(ug/kg)	1	0	ND
Ethylenedibromide	(ug/kg)	1	0	ND
Fluorotrichloromethane	(ug/kg)	1	0	ND
Isopropylbenzene	(ug/kg)	1	0	ND
Methyl acetate (acetic acid, methyl este	(ug/kg)	1	0	ND
Methyl cyclohexane	(ug/kg)	1	0	ND ND
Methyl tert-butyl ether	(ug/kg)	1	0	ND
Methylene chloride	(ug/kg)	2	1	56
		1	0	ND ND
Styrene Tetrachloroethene	(ug/kg) (ug/kg)	1	0	ND ND
Toluene	(ug/kg)	1	0	ND ND
		1	0	ND ND
trans-1,2-Dichloroethene	(ug/kg)		0	
Trans-1,3-Dichloropropene	(ug/kg)	1		ND
Trichloroethene	(ug/kg)	1	0	ND ND
Vinyl chloride	(ug/kg)	1	0	ND
Xylenes (total)	(ug/kg)	1	0	ND

Table 4.1-4: Summary of Chemicals Detected WRP-1 Soils

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
SVOCs				
1,1-Thibisethane	(ug/kg)	1	0	ND
3,4-Dithiohexane	(ug/kg)	1	0	ND
Diethyl benzene (mixed isomers)	(ug/kg)	1	0	ND
Trimethyloxepane	(ug/kg)	1	0	ND
1,1'-Biphenyl	(ug/kg)	1	0	ND
2,2'-Oxybis(1-Chloropropane)	(ug/kg)	1	0	ND
2,4,5-Trichlorophenol	(ug/kg)	1	0	ND
2,4,6-Trichlorophenol	(ug/kg)	1	0	ND
2,4-Dichlorophenol	(ug/kg)	1	0	ND
2,4-Dimethylphenol	(ug/kg)	1	0	ND
2,4-Dinitrophenol	(ug/kg)	1	0	ND
2,4-Dinitrotoluene	(ug/kg)	1	0	ND
2,6-Dinitrotoluene	(ug/kg)	1	0	ND
2-Chloronaphthalene	(ug/kg)	1	0	ND
2-Chlorophenol	(ug/kg)	1	0	ND
2-Methylnaphthalene	(ug/kg)	1	0	ND
2-Methylphenol	(ug/kg)	1	0	ND
2-Nitroaniline	(ug/kg)	1	0	ND
2-Nitrophenol	(ug/kg)	1	0	ND
3,3'-Dichlorobenzidine	(ug/kg)	1	0	ND
3-Nitroaniline	(ug/kg)	1	0	ND
4,6-Dinitro-2-methylphenol	(ug/kg)	1	0	ND
4-Bromophenyl phenyl ether	(ug/kg)	1	0	ND
4-Chloro-3-methylphenol	(ug/kg)	1	0	ND
4-Chloroaniline	(ug/kg)	1	0	ND
4-Chlorophenyl phenyl ether	(ug/kg)	1	0	ND
4-Methylphenol	(ug/kg)	1	0	ND
4-Nitroaniline	(ug/kg)	1	0	ND
4-Nitrophenol	(ug/kg)	1	0	ND
Acenaphthene	(ug/kg)	1	0	ND
Acenaphthylene	(ug/kg)	1	0	ND
Acetophenone	(ug/kg)	1	0	ND
Anthracene	(ug/kg)	1	0	ND
Atrazine	(ug/kg)	1	0	ND
Benzaldehyde	(ug/kg)	1	0	ND
Benzo(a)anthracene	(ug/kg)	1	0	ND
Benzo(a)pyrene	(ug/kg)	1	0	ND
Benzo(b)fluoranthene	(ug/kg)	1	0	ND
Benzo(g,h,i)perylene	(ug/kg)	1	0	ND
Benzo(k)fluoranthene	(ug/kg)	1	0	ND ND
Bis(2-chloroethoxy) methane	(ug/kg)	1	0	ND ND
bis(2-Chloroethyl) ether	(ug/kg)	1	0	ND
bis(2-Ethylhexyl) phthalate	(ug/kg)	2	0	ND
Butyl benzyl phthalate	(ug/kg)	2	1	130
Caprolactam		1	0	ND
	(ug/kg)	1	0	ND ND
Carbazole	(ug/kg)		0	ND ND
Chrysene	(ug/kg)	1	0	ND ND
Di-n-butyl phthalate	(ug/kg)	<u> </u>	<u> </u>	וואר וואר

Table 4.1-4: Summary of Chemicals Detected WRP-1 Soils

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS	· · · · · · · · · · · · · · · · · · ·		
Di-n-octyl phthalate	(ug/kg)	1	0	ND
Dibenz(a,h) anthracene	(ug/kg)	1	0	ND
Dibenzofuran	(ug/kg)	1	0	ND
Diethyl phthalate	(ug/kg)	1	0	ND
Dimethyl phthalate	(ug/kg)	1	0	ND
Fluoranthene	(ug/kg)	1	0	ND
Fluorene	(ug/kg)	1	0	ND
Hexachlorobenzene	(ug/kg)	1	0	ND
Hexachlorobutadiene	(ug/kg)	1	0	ND
Hexachlorocyclopentadiene	(ug/kg)	1	0	ND
Hexachloroethane	(ug/kg)	1	0	ND
Indeno(1,2,3-cd)pyrene	(ug/kg)	1	0	ND
Isophorone	(ug/kg)	1	0	ND
N-Nitrosodi-n-propylamine	(ug/kg)	1	0	ND
N-Nitrosodiphenylamine	(ug/kg)	1	0	ND
Naphthalene	(ug/kg)	1	0	ND
Nitrobenzene	(ug/kg)	1	0	ND
Pentachlorophenol	(ug/kg)	1	0	ND
Phenanthrene	(ug/kg)	2	0	ND
Phenol	(ug/kg)	<u> </u>	0	ND
Pyrene	(ug/kg)	2	0	ND
Metals				
Aluminum	(mg/kg)	3	3	60000
Antimony	(mg/kg)	3	3	2.6
Arsenic	(mg/kg)	4	4	100
Barium ·	(mg/kg)	4	4	16
Beryllium	(mg/kg)	3	3	0.35
Cadmium	(mg/kg)	8	8	150
Calcium	(mg/kg)	3	3	420
Chromium	(mg/kg)	4	4	26
Cobalt	(mg/kg)	3	2	0.77
Copper	(mg/kg)	8	8	110000
Iron	(mg/kg)	3	3	74000
Lead	(mg/kg)	8	8	9100
Magnesium	(mg/kg)	3	3	120000
Manganese	(mg/kg)	3	3	1400
Mercury	(mg/kg)	7	7_	1
Nickel	(mg/kg)	4	4	30
Potassium	(mg/kg)	3	3	4100
Selenium	(mg/kg)	8	6	77
Silver	(mg/kg)	8	7	70
Sodium	(mg/kg)	3	1	120
Thallium	(mg/kg)	3	3	2
Vanadium	(mg/kg)	3	3	17
Zinc	(mg/kg)	8	8	18000

Table 4.1-5: Summary of Chemicals Detected WRP-2

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Aluminum	(mg/kg)	1	1	46000
Antimony	(mg/kg)	1	1	0.35
Arsenic	(mg/kg)	1	1	57
Barium	(mg/kg)	1	1	16
Beryllium	(mg/kg)	1	1	0.27
Cadmium	(mg/kg)	3	2	32
Calcium	(mg/kg)	1	1	210
Chromium	(mg/kg)	1	1	11
Cobalt	(mg/kg)	1	1	1.9
Copper	(mg/kg)	3	3	2000
Iron	(mg/kg)	1	1	57000
Lead	(mg/kg)	3	3	790
Magnesium	(mg/kg)	1	1	82000
Manganese	(mg/kg)	11	_1	1100
Mercury	(mg/kg)	2	2	0.9
Nickel	(mg/kg)	1	1	7.3
Potassium	(mg/kg)	1	1	2100
Selenium	(mg/kg)	3	2	9.5
Silver	(mg/kg)	3	3	2.7
Sodium	(mg/kg)	1	1	100
Thallium	(mg/kg)	1	1	1.2
Vanadium	(mg/kg)	1	_ 1	19
Zinc	(mg/kg)	3	3	7700

Table 4.1-6: Summary of Chemicals Detected WRP-3

<u> </u>	T	Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
VOCs				
1,1,1-trichloroethane	(ug/kg)	1	0	ND
1,1,2,2-Tetrachloroethane	(ug/kg)	1	0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	(ug/kg)	1	0	ND
1,1,2-Trichloroethane	(ug/kg)	1	0	ND
1,1-Dichloroethane	(ug/kg)	1	0	ND
1,1-Dichloroethene	(ug/kg)	1	0	ND
1,2,4-Trichlorobenzene	(ug/kg)	1	0	ND
1,2-Dibromo-3-chloropropane	(ug/kg)	1	0	ND
1,2-Dichlorobenzene	(ug/kg)	1	0	ND
1,2-Dichloroethane	(ug/kg)	1	0	ND
1,2-Dichloropropane	(ug/kg)	1	0	ND
1,3-Dichlorobenzene	(ug/kg)	1	0	ND
1,4-Dichlorobenzene	(ug/kg)	1	0	ND
2-Butanone (MEK)	(ug/kg)	1	0	ND
2-Hexanone	(ug/kg)	1	0	ND
4-Methyl-2-pentanone	(ug/kg)	1	0	ND
Acetone	(ug/kg)	1	0	ND
Benzene	(ug/kg)	1	ō	ND
Bromodichloromethane	(ug/kg)	1	0	ND
Bromoform	(ug/kg)	1	0	ND
Bromomethane	(ug/kg)	1	0	ND ND
Carbon disulfide	(ug/kg)	1	0	ND
Carbon tetrachloride	(ug/kg)	1	0	ND
Chlorobenzene	(ug/kg)	1	0	ND
Chlorodibromomethane	(ug/kg)	1	0	ND
Chloroethane	(ug/kg)	1	0	ND
Chloroform	(ug/kg)	1	0	ND
Chloromethane	(ug/kg)	1	0	ND
cis-1,2-Dichloroethene	(ug/kg)	1	0	ND
cis-1,3-Dichloropropene	(ug/kg)	1	0	ND
Cyclohexane	(ug/kg)	1	0	ND
Dichlorodifluoromethane	(ug/kg)	1	0	ND
Ethylbenzene	(ug/kg)	1	0	ND
Ethylenedibromide	(ug/kg)	1	0	ND
Fluorotrichloromethane	(ug/kg)	1	0	ND
Isopropylbenzene	(ug/kg)	1	0	ND
Methyl acetate (acetic acid, methyl este	(ug/kg)	1	0	ND ND
Methyl cyclohexane	(ug/kg)	1	0	ND
Methyl tert-butyl ether		1	0	ND ND
Methylene chloride	(ug/kg) (ug/kg)	1	0	ND
Styrene		1	0	ND ND
Tetrachloroethene	(ug/kg) (ug/kg)	1	0	ND ND
		1	0	ND ND
Toluene	(ug/kg)			
trans-1,2-Dichloroethene	(ug/kg)	1	0	ND
Trans-1,3-Dichloropropene	(ug/kg)	1	0	ND ND
Trichloroethene	(ug/kg)	1	0	ND ND
Vinyl chloride	(ug/kg)	1	0	ND
Xylenes (total)	(ug/kg)	1	0	ND_

Table 4.1-6: Summary of Chemicals Detected WRP-3

SVOCs				
1,1'-Biphenyl	(ug/kg)	1	0	ND
2,2'-Oxybis(1-Chloropropane)	(ug/kg)	1	0	ND
2,4,5-Trichlorophenol	(ug/kg)	1	0	ND
2,4,6-Trichlorophenol	(ug/kg)	1	0	ND
2,4-Dichlorophenol	(ug/kg)	1	0	ND
2,4-Dimethylphenol	(ug/kg)	1	0	ND
2,4-Dinitrophenol	(ug/kg)	1	0	ND
2,4-Dinitrotoluene	(ug/kg)	1	0	ND
2,6-Dinitrotoluene	(ug/kg)	1	0	ND
2-Chloronaphthalene	(ug/kg)	1	0	ND
2-Chlorophenol	(ug/kg)	1	0	ND
2-Methylnaphthalene	(ug/kg)	1	0	ND
2-Methylphenol	(ug/kg)	1	0	ND
2-Nitroaniline	(ug/kg)	1	0	ND
2-Nitrophenol	(ug/kg)	1	0	ND
3,3'-Dichlorobenzidine	(ug/kg)	1	0	ND
3-Nitroaniline	(ug/kg)	1	0	ND
4,6-Dinitro-2-methylphenol	(ug/kg)	1	0	ND
4-Bromophenyl phenyl ether	(ug/kg)	1	0	ND
4-Chloro-3-methylphenol	(ug/kg)	1	0	ND
4-Chloroaniline	(ug/kg)	1	0	ND
4-Chlorophenyl phenyl ether	(ug/kg)	1	0.	ND
4-Methylphenol	(ug/kg)	 1	0	ND
4-Nitroaniline	(ug/kg)		0	ND
4-Nitrophenol	(ug/kg)	1	0	ND
Acenaphthene	(ug/kg)		0	ND
Acenaphthylene	(ug/kg)		0	ND
Acetophenone	(ug/kg)	<u></u>	0	ND
Anthracene	(ug/kg)		0	ND
Atrazine	(ug/kg)	<u>.</u> 1	0	ND
Benzaldehyde	(ug/kg)	1	0	ND
Benzo(a)anthracene	(ug/kg)	1	0	ND
Benzo(a)pyrene	(ug/kg)	 1	0	ND
Benzo(b)fluoranthene	(ug/kg)	1	0	ND
Benzo(g,h,i)perylene	(ug/kg)		0	ND
Benzo(k)fluoranthene	(ug/kg)	1	0	ND
Bis(2-chloroethoxy) methane	(ug/kg)	1	0	ND
bis(2-Chloroethyl) ether	(ug/kg)	1	0	ND
bis(2-Ethylhexyl) phthalate	(ug/kg)	1	0	ND
Butyl benzyl phthalate	(ug/kg)		0	ND
Caprolactam	(ug/kg)	 -	0	ND
Carbazole	(ug/kg)	1	0	ND
Chrysene	(ug/kg)		0	ND
Di-n-butyl phthalate	(ug/kg)		0	ND
Di-n-octyl phthalate	(ug/kg)	1	0	ND
Dibenz(a,h) anthracene	(ug/kg)		0	ND
Dibenzofuran	(ug/kg)	1	0	ND ND
Diethyl phthalate	(ug/kg) (ug/kg)	<u>'</u>	0	ND
Dimethyl phthalate		 1	0	ND ND
Fluoranthene	(ug/kg)	<u> </u>	0	ND ND
Fluorene	(ug/kg)	 	0	ND ND
Linoielle	(ug/kg)	!	IU	עא

Table 4.1-6: Summary of Chemicals Detected WRP-3

Hexachlorobenzene	(ug/kg)	1	0	ND
Hexachlorobutadiene	(ug/kg)	1	0	ND
Hexachlorocyclopentadiene	(ug/kg)	1	0	ND
Hexachloroethane	(ug/kg)	1	0	ND
Indeno(1,2,3-cd)pyrene	(ug/kg)	1	0	ND
Isophorone	(ug/kg)	1	0	ND
N-Nitrosodi-n-propylamine	(ug/kg)	1	0	ND
N-Nitrosodiphenylamine	(ug/kg)	1	0	ND
Naphthalene	(ug/kg)	1	0	ND
Nitrobenzene	(ug/kg)	1	0	ND
Pentachlorophenol	(ug/kg)	1	0	ND
Phenanthrene	(ug/kg)	1	0	ND
Phenol	(ug/kg)	1	0	ND
Pyrene	(ug/kg)	1	0	ND
Metals				
Aluminum	(mg/kg)	2	2	57000
Antimony	(mg/kg)	2	2	1.7
Arsenic	(mg/kg)	2	2	130
Barium	(mg/kg)	2	2	9.6
Beryllium	(mg/kg)	2	2	0.18
Cadmium	(mg/kg)	5	2	0.8
Calcium	(mg/kg)	2	2	280
Chromium	(mg/kg)	2	2	6.2
Cobalt	(mg/kg)	2	2	0.27
Copper	(mg/kg)	5	5	3600
iron	(mg/kg)	2	2	41000
Lead	(mg/kg)	5	5	700
Magnesium	(mg/kg)	2	2	120000
Manganese	(mg/kg)	2	2	1300
Mercury	(mg/kg)	5	5	1.5
Nickel	(mg/kg)	2	2	1.8
Potassium	(mg/kg)	2	2	4200
Selenium	(mg/kg)	5	5	20
Silver	(mg/kg)	5	4	4
Sodium	(mg/kg)	2	0	ND
Thallium	(mg/kg)	2	2	4.4
Vanadium	(mg/kg)	2	2	16
Zinc	(mg/kg)	5	5	420

Table 4.1-7: Summary of Chemicals Detected Tailing Pile

CONSTITUENT					
CONSTITUENT			Times	Times	Maximum
CONSTITUENT			Sought	Detected	Concentration
1,1,1-trichloroethane (ug/kg) 4 0 ND 1,1,2-Trichloroethane (ug/kg) 4 0 ND 1,1,2-Trichloroethane (ug/kg) 4 0 ND 1,1,2-Trichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,2-Trichlorobenzene (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0	CONSTITUENT	UNITS			
1,1,2,2-Tetrachloroethane (ug/kg) 4 0 ND 1,1,2-Trichloro-1,2,2-trifluoroethane (ug/kg) 4 0 ND 1,1,2-Trichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4<	VOCs		··········		
1,1,2-Trichloro-1,2,2-trifluoroethane (ug/kg) 4 0 ND 1,1,2-Trichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 1 2 1,2-Dichloroethane (ug/kg) 4 0 ND 1,2-Dichloroethane (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 1 2 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND A-ectone (ug/kg) 4 0	1,1,1-trichloroethane	(ug/kg)	4	0	ND
1,1,2-Trichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethane (ug/kg) 4 0 ND 1,2-Trichlorobenzene (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND	1,1,2,2-Tetrachloroethane		4	0	ND
1,1-Dichloroethane (ug/kg) 4 0 ND 1,1-Dichloroethene (ug/kg) 4 0 ND 1,2-4-Trichlorobenzene (ug/kg) 4 0 ND 1,2-Dibromo-3-chloropropane (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,2-Dichloropropane (ug/kg) 4 0 ND 1,2-Dichloropropane (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0		(ug/kg)	4	0	ND
1,1-Dichloroethene (ug/kg) 4 0 ND 1,2-4-Trichlorobenzene (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 1 2 1,2-Dichloropenzene (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND		(ug/kg)	4	0	ND
1,2,4-Trichlorobenzene (ug/kg) 4 0 ND 1,2-Dibromo-3-chloropropane (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 0 ND 1,2-Dichloroptopane (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND		(ug/kg)	. 4	0	ND
1,2-Dibromo-3-chloropropane (ug/kg) 4 0 ND 1,2-Dichlorobenzene (ug/kg) 4 1 2 1,2-Dichloroethane (ug/kg) 4 0 ND 1,2-Dichloropropane (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 1 2 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND A-methyl-2-pentanone (ug/kg) 4 0 ND A-methyl-2-pentanone (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND<	1,1-Dichloroethene	(ug/kg)	4	0	ND
1,2-Dichlorobenzene (ug/kg) 4 1 2 1,2-Dichloroethane (ug/kg) 4 0 ND 1,2-Dichloropropane (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 0 ND 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Chlorobenzene		(ug/kg)	4	0	ND
1,2-Dichloroethane (ug/kg) 4 0 ND 1,2-Dichloropropane (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 1 2 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlor	1,2-Dibromo-3-chloropropane	(ug/kg)	4	0	ND
1,2-Dichloropropane (ug/kg) 4 0 ND 1,3-Dichlorobenzene (ug/kg) 4 1 2 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND <	1,2-Dichlorobenzene	(ug/kg)	4	1	2
1,3-Dichlorobenzene (ug/kg) 4 1 2 1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chloro		(ug/kg)	4	0	ND
1,4-Dichlorobenzene (ug/kg) 4 0 ND 2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 4 0 ND Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND C	1,2-Dichloropropane	(ug/kg)	4	0	ND
2-Butanone (MEK) (ug/kg) 4 0 ND 2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 6 1 33 Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chlorodibrom	1,3-Dichlorobenzene	(ug/kg)	4	1	2
2-Hexanone (ug/kg) 4 0 ND 4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 6 1 33 Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorobenzene <td>1,4-Dichlorobenzene</td> <td>(ug/kg)</td> <td>4</td> <td>0</td> <td>ND</td>	1,4-Dichlorobenzene	(ug/kg)	4	0	ND
4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 6 1 33 Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorotetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorotethane (ug/kg) 4 0 ND Chlorotethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND Cis-1,	2-Butanone (MEK)	(ug/kg)	4	0	ND
4-Methyl-2-pentanone (ug/kg) 4 0 ND Acetone (ug/kg) 6 1 33 Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorotetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorotethane (ug/kg) 4 0 ND Chlorotethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND Cis-1,	2-Hexanone	(ug/kg)	4	0	ND
Acetone (ug/kg) 6 1 33 Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chlorotethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND Cis-1,3-Dichloropropene	4-Methyl-2-pentanone		4	0	ND
Benzene (ug/kg) 4 0 ND Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chlorotethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND <td< td=""><td>Acetone</td><td></td><td>6</td><td>1</td><td>33</td></td<>	Acetone		6	1	33
Bromodichloromethane (ug/kg) 4 0 ND Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND Cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND	Benzene		4	0	ND
Bromoform (ug/kg) 4 0 ND Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND Cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND	Bromodichloromethane		4	0	ND
Bromomethane (ug/kg) 4 0 ND Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND Cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND	Bromoform		4	0	ND
Carbon disulfide (ug/kg) 4 0 ND Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chloroethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND <t< td=""><td>Bromomethane</td><td></td><td>4</td><td>0</td><td>ND</td></t<>	Bromomethane		4	0	ND
Carbon tetrachloride (ug/kg) 4 0 ND Chlorobenzene (ug/kg) 4 0 ND Chlorodibromomethane (ug/kg) 4 0 ND Chloroethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 <	Carbon disulfide		4	0	ND
Chlorobenzene(ug/kg)40NDChlorodibromomethane(ug/kg)40NDChloroethane(ug/kg)40NDChloroform(ug/kg)40NDChloromethane(ug/kg)40NDcis-1,2-Dichloroethene(ug/kg)40NDcis-1,3-Dichloropropene(ug/kg)40NDCyclohexane(ug/kg)40NDDichlorodifluoromethane(ug/kg)40NDEthylbenzene(ug/kg)40NDEthylenedibromide(ug/kg)40NDFluorotrichloromethane(ug/kg)40NDIsopropylbenzene(ug/kg)40NDMethyl acetate (acetic acid, methyl este(ug/kg)40NDMethyl cyclohexane(ug/kg)40NDMethyl tert-butyl ether(ug/kg)40ND	Carbon tetrachloride		4	0	ND
Chlorodibromomethane (ug/kg) 4 0 ND Chloroethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND Cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Dichlorodifluoromethane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Chlorobenzene		4	. 0	ND
Chloroethane (ug/kg) 4 0 ND Chloroform (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Dichlorodifluoromethane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Chlorodibromomethane		4	0	ND
Chloroform (ug/kg) 4 0 ND Chloromethane (ug/kg) 4 0 ND cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Dichlorodifluoromethane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Chloroethane		4	0	ND
Chloromethane (ug/kg) 4 0 ND cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Dichlorodifluoromethane (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Chloroform		4	0	ND
cis-1,2-Dichloroethene (ug/kg) 4 0 ND cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Dichlorodifluoromethane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Chloromethane		4	0	ND
cis-1,3-Dichloropropene (ug/kg) 4 0 ND Cyclohexane (ug/kg) 4 0 ND Dichlorodifluoromethane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	cis-1,2-Dichloroethene		4	0	ND
Cyclohexane (ug/kg) 4 0 ND Dichlorodifluoromethane (ug/kg) 4 0 ND Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	cis-1,3-Dichloropropene		4	0	ND
Dichlorodifluoromethane(ug/kg)40NDEthylbenzene(ug/kg)40NDEthylenedibromide(ug/kg)40NDFluorotrichloromethane(ug/kg)40NDIsopropylbenzene(ug/kg)40NDMethyl acetate (acetic acid, methyl este(ug/kg)40NDMethyl cyclohexane(ug/kg)40NDMethyl tert-butyl ether(ug/kg)40ND			4	0	ND
Ethylbenzene (ug/kg) 4 0 ND Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Dichlorodifluoromethane		4	0	ND
Ethylenedibromide (ug/kg) 4 0 ND Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Ethylbenzene		4	0	ND
Fluorotrichloromethane (ug/kg) 4 0 ND Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND	Ethylenedibromide		4	0	ND
Isopropylbenzene (ug/kg) 4 0 ND Methyl acetate (acetic acid, methyl este (ug/kg) 4 0 ND Methyl cyclohexane (ug/kg) 4 0 ND Methyl tert-butyl ether (ug/kg) 4 0 ND			4		ND
Methyl acetate (acetic acid, methyl este(ug/kg)40NDMethyl cyclohexane(ug/kg)40NDMethyl tert-butyl ether(ug/kg)40ND			4	0	
Methyl cyclohexane(ug/kg)40NDMethyl tert-butyl ether(ug/kg)40ND					
Methyl tert-butyl ether (ug/kg) 4 0 ND				<u> </u>	
Methylene chloride (ug/kg) 6 0 ND	Methylene chloride	(ug/kg)	6	0	ND
Styrene (ug/kg) 4 0 ND					
Tetrachloroethene (ug/kg) 4 0 ND					
Toluene (ug/kg) 4 0 ND					
trans-1,2-Dichloroethene (ug/kg) 4 0 ND					
Trans-1,3-Dichloropropene (ug/kg) 4 0 ND					
Trichloroethene (ug/kg) 4 0 ND					
Vinyl chloride (ug/kg) 4 0 ND					

Table 4.1-7: Summary of Chemicals Detected Tailing Pile

			T	
		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Xylenes (total)	(ug/kg)	4	0	ND
SVOCs	(-3-3)		ļ	
1,1-Thibisethane	(ug/kg)	2	0	ND
3,4-Dithiohexane	(ug/kg)	2	1	100
Diethyl benzene (mixed isomers)	(ug/kg)	2	1	1300
Trimethyloxepane	(ug/kg)	2	0	ND
1,1'-Biphenyl	(ug/kg)	4	0	ND
2,2'-Oxybis(1-Chloropropane)	(ug/kg)	4	0	ND
2,4,5-Trichlorophenol	(ug/kg)	4	0	ND
2,4,6-Trichlorophenol	(ug/kg)	4	0	ND
2,4-Dichlorophenol	(ug/kg)	4	0	ND
2,4-Dimethylphenol	(ug/kg)	4	0	ND
2,4-Dinitrophenol	(ug/kg)	4	0	ND
2,4-Dinitrotoluene	(ug/kg)	4	0	ND
2,6-Dinitrotoluene	(ug/kg)	4	0	ND
2-Chloronaphthalene	(ug/kg)	4	0	ND
2-Chlorophenol	(ug/kg)	4	0	ND
2-Methylnaphthalene	(ug/kg)	4	0	ND ND
2-Methyliphenol	(ug/kg)	4	0	ND ND
2-Nitroaniline	(ug/kg)	4	0	ND
2-Nitrophenol	(ug/kg)	4	0	ND ND
3,3'-Dichlorobenzidine	(ug/kg)	4	0	ND ND
3-Nitroaniline	(ug/kg)	4	0	ND ND
4,6-Dinitro-2-methylphenol		4	0 .	ND ND
4-Bromophenyl phenyl ether	(ug/kg) (ug/kg)	4	0	ND ND
4-Chloro-3-methylphenol		4	0	ND
4-Chloroaniline	(ug/kg)	4		ND ND
	(ug/kg)	4	0	
4-Chlorophenyl phenyl ether	(ug/kg)	4		ND
4-Methylphenol	(ug/kg)		0	ND
4-Nitroaniline	(ug/kg)	4	0	ND
4-Nitrophenol	(ug/kg)	4	0	ND
Acenaphthene	(ug/kg)	4	0	ND
Acenaphthylene	(ug/kg)	4	0	ND ND
Acetophenone	(ug/kg)	4	0	ND
Anthracene	(ug/kg)	4	0	ND
Atrazine	(ug/kg)	4	0	ND
Benzaldehyde	(ug/kg)	4	0	ND
Benzo(a)anthracene	(ug/kg)	4	0	ND
Benzo(a)pyrene	(ug/kg)	4	0	ND
Benzo(b)fluoranthene	(ug/kg)	4	0	ND
Benzo(g,h,i)perylene	(ug/kg)	4	0	ND
Benzo(k)fluoranthene	(ug/kg)	4	0	ND
Bis(2-chloroethoxy) methane	(ug/kg)	4	0	ND
bis(2-Chloroethyl) ether	(ug/kg)	4	0	ND
bis(2-Ethylhexyl) phthalate	(ug/kg)	6	1	48
Butyl benzyl phthalate	(ug/kg)	6	1	110
Caprolactam	(ug/kg)	4	0	ND
Carbazole	(ug/kg)	4	0	ND

Table 4.1-7: Summary of Chemicals Detected Tailing Pile

		···		
		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Chrysene	(ug/kg)	4	0	ND
Di-n-butyl phthalate	(ug/kg)	4	0	ND
Di-n-octyl phthalate	(ug/kg)	4	0	ND
Dibenz(a,h) anthracene	(ug/kg)	4	0	ND
Dibenzofuran	(ug/kg)	4	0	ND
Diethyl phthalate	(ug/kg)	4	0	ND
Dimethyl phthalate	(ug/kg)	4	0	ND
Fluoranthene	(ug/kg)	4	0	ND
Fluorene	(ug/kg)	4	0	ND
Hexachlorobenzene	(ug/kg)	4	0	ND
Hexachlorobutadiene	(ug/kg)	4	0	ND
Hexachlorocyclopentadiene	(ug/kg)	4	0	ND
Hexachloroethane	(ug/kg)	4	0.	ND
Indeno(1,2,3-cd)pyrene	(ug/kg)	4	0	ND
Isophorone	(ug/kg)	4	0	ND
N-Nitrosodi-n-propylamine	(ug/kg)	4	0	ND
N-Nitrosodiphenylamine	(ug/kg)	4	0	ND
Naphthalene	(ug/kg)	4	0	ND
Nitrobenzene	(ug/kg)	4	0	ND
Pentachlorophenol	(ug/kg)	4	0	ND
Phenanthrene	(ug/kg)	6	0	ND
Phenol	(ug/kg)	4	0	ND
Pyrene	(ug/kg)	6	0	ND
Metals				
Aluminum	(mg/kg)	5	5	46000
Antimony	(mg/kg)	- 5	5	0.5
Arsenic	(mg/kg)	7	7	120
Barium	(mg/kg)	7	7	36
Beryllium	(mg/kg)	5	5	0.35
Cadmium	(mg/kg)	12	11	32
Calcium	(mg/kg)	5	5	88000
Chromium	(mg/kg)	7	7	25
Cobalt	(mg/kg)	5	5	4.7
Copper	(mg/kg)	12	12	2500
Iron	(mg/kg)	5	5	54000
Lead	(mg/kg)	12	12	990
Magnesium	(mg/kg)	5	5	92000
Manganese	(mg/kg)	5	. 5	1800
Mercury	(mg/kg)	10	10	0.58
Nickel	(mg/kg)	7	7	20
Potassium	(mg/kg)	5	5	2200
Selenium	(mg/kg)	12	12	13
Silver	(mg/kg)	12	12	4.4
Sodium	(mg/kg)	5	2	18
Thallium	(mg/kg)	5	5	2.8
Vanadium	(mg/kg)	5	5	17
Zinc	(mg/kg)	12	12	17000

Table 4.1-8: Summary of Chemicals Detected Background

			 	
		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Aluminum	(mg/kg)	13	13	26000
Antimony	(mg/kg)	13	13	0.39
Arsenic	(mg/kg)	13	13	14
Barium	(mg/kg)	13	13	49
Beryllium	(mg/kg)	13	13	0.41
Cadmium	(mg/kg)	16	13	0.8
Calcium	(mg/kg)	13	13	610
Chromium	(mg/kg)	13	13	23
Cobalt	(mg/kg)	13	13	5.5
Copper	(mg/kg)	16	16	56
Iron	(mg/kg)	13	13	36000
Lead	(mg/kg)	16	16	110
Magnesium	(mg/kg)	13	13	5200
Manganese	(mg/kg)	13	13	410
Mercury	(mg/kg)	14	14	0.12
Nickel	(mg/kg)	13	13	19
Potassium	(mg/kg)	13	13	700
Selenium	(mg/kg)	16	8	4
Silver	(mg/kg)	16	15	1.1
Sodium	(mg/kg)	13	7	62
Thallium	(mg/kg)	13	13	0.12
Vanadium	(mg/kg)	13	13	48
Zinc	(mg/kg)	16	16	290

Table 4.2-1 Sediment Analytical Results (Detects Only)

Location				G. Pond	G. Pond	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings
Type				Upstream	Upstream	Wetland	Wetland					
Location ID				BK_GP_SED11	SD-401	SD-403	SD-412	SAMPLE_1	SAMPLE 2	SD-TP_SPILL	SD-SA1	SD-SA2
Dale		NOAA SQRT	NOAA SQRT	9/8/1994	11/17/2004	11/12/2004	11/12/2004	5/1/1986	5/1/1986	1/1/1987	1/1/1987	1/1/1987
Depth		for Freshwater	for Marine	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
	UNITS	Sediment	Sediment	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds												
1,1-Thibisethane	(ug/kg)											
	(ug/kg)											
	(ug/kg)											
	(ug/kg)											
Semivolatile Organic Compounds												
	(ug/kg)											
	(ug/kg)											
	(ug/kg)											
Metals												
	(mg/kg)				20000J	24000	21000					
	(mg/kg)				0.18J	0.68J	1.3J					
	(mg/kg)	17	41.6	8	7 J	[54]J	[85]J					
	(mg/kg)			69	25J	13J	5.9J					
	(mg/kg)				0.7	0.34	0.27					
	(mg/kg)	3.5	4.2	0.8	[4.3]J	[25]J	[16]J	[33]	[19]	[10]	[110]	[21]
	(mg/kg)				1800J	64000J	70000J					
	(mg/kg)	90	160	34	35J	21J	17J					
	(mg/kg)				8.7J	3.3J	3.9J					
	(mg/kg)	197	108	28	[120]J	[2100]J	[1100]J	[3760]	[1590]	[730]	[370]	[2800]
	(mg/kg)				19000	24000	34000					
	(mg/kg)	91.3	112	36	69J	[1000]J	[560]J	[740]	[670]	[370]	[510]	[1100]
	(mg/kg)				9300J	49000	38000					
	(mg/kg)				200J	1600J	1400J					
	(mg/kg)	0.49	0.7		0.15	[0.7]J	[0.79]J					
	(mg/kg)	35.9	42.8	26	30J	14J	16J					
	(mg/kg)				2500J	2400J	1400J					
	(mg/kg)											
	(mg/kg)				1.6J	5J	6.4J					
	(mg/kg)		1.8		0.45J	[4.1]J	[3.2]J					
	(mg/kg)				11000	19J	21J					A. Carlotte
	(mg/kg)				0.34J	1.4J	2.1J					
	(mg/kg)				26J	17J	12J					
	(mg/kg)	315	271	110	[820]J	[6800]J	[3800]J	[8600]	[4800]	[2800]	[23000]	[7600]
Total Combustible Organics (TCO)	0 0											
	(mg/kg)				124279	55328	73482J					

Table 4.2-1 Sediment Analytical Results (Detects Only)

Location				Tailings	Tailings	G. Pond	G. Pond	G. Pond	G. Pond	G. Pond	G. Pond	G. Pond
Туре					· umige	0	0	0	0	0	0	0
Location ID				TPS1 SED6	TPS1 SED6A	TPS2 SED7	TPS2_SED7A	99-SD-29	99-SD-31	SD-402	99-SD-33	99-SD-35
Dale		NOAA SQRT	NOAA SQRT	9/8/1994	9/8/1994	9/8/1994	9/8/1994			11/17/2004		10/5/1999
Depth		for Freshwater	for Marine	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
	UNITS	Sediment	Sediment	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds												
1,1-Thibisethane	(ug/kg)			2000J								
Acetone	(ug/kg)			33								
	(ug/kg)			75								
	(ug/kg)			35J								
Semivolatile Organic Compounds	(49/1.9)											
Bis(2-ethylhexyl)phthalate	(ug/kg)			740		15000						
Butyl benzyl phthalate	(ug/kg)					190						
Phenanthrene	(ug/kg)					100						
Metals	(ug/ng)											
Aluminum	(mg/kg)									30000J		
Antimony	(mg/kg)									0.79J		
Arsenic	(mg/kg)	17	41.6	[36]	[27]	[56]	[270]			[44]J		
Barium	(mg/kg)	.,	41.0	64	50	64	230			17J		
Beryllium	(mg/kg)				00	04	200			0.47		
Cadmium	(mg/kg)	3.5	4.2	[33]	[28]	[43]	[170]	[33]	[27]	[34]J	[5.2]	[3.9]
Calcium	(mg/kg)	0.0	7.6	[00]	[20]	[+0]	[110]	[00]	[21]	33000J	[0.2]	[0.0]
Chromium	(mg/kg)	90	160	45	38	41	30			32J		
Cobalt	(mg/kg)		100	- 40	00	71	00			5.1J		
Copper	(mg/kg)	197	108	[970]	[1500]	[1400]	[1600]	[1800]J	[1200]J	[2300]J	[1900]J	[170]J
Iron	(mg/kg)	107	100	[5/0]	[1000]	[1400]	[1000]	[1000]5	[1200]5	27000	[1300]3	[170]5
Lead	(mg/kg)	91.3	112	[550]	[550]	[1500]	[760]	[770]	[590]	[1200]J	[210]	52
Magnesium	(mg/kg)	01.0	112	[550]	[550]	[1500]	[/00]	[110]	[000]	53000J	[210]	02
Manganese	(mg/kg)									1200J		
Mercury	(mg/kg)	0.49	0.7					[0.7]J	0.3J	[0.67]	0.2J	
Nickel	(mg/kg)	35.9	42.8	35	[39]	35	[250]	[0.7]5	0.55	15J	0.23	
Potassium	(mg/kg)	00.0	72.0		[55]	00	[230]			3100J		
Pyrene	(mg/kg)									01000		
Selenium	(mg/kg)				4	6	7	6.9	5.7	6.1J		
Silver	(mg/kg)		1.8	[2.9]	[12]	[5.8]	1 1	[4.6]	[3.2]	[5.4]J		
Sodium	(mg/kg)		1.0	[2.0]	[12]	[5.0]		[4.0]	[3.2]	4100		
Thallium	(mg/kg)									1.5J		
Vanadium	(mg/kg)									20J		
Zinc		315	271	[16000]	[15000]	[22000]	[58000]	[6900]	[5400]	[7600]J	[3100]	[840]
Total Combustible Organics (TCO)	(mg/kg)	310	2/1	[10000]	[15000]	[22000]	[36000]	[0900]	[3400]	[/600]J	[3100]	[040]
TCO	(mg/kg)									E6333		
100	(mg/kg)									56233		

Table 4.2-1 Sediment Analytical Results (Detects Only)

Location				G. Pond	G. Pond	G. Pond	G. Pond	G. Pond	G. Pond	G. Pond	G. Pond	Dyer	Dyer
Туре						3		2	2	Seep	Seep	_,_,_	-,-
Location ID				SD-404	SD-405	SD-406	SD-407	SD-424	SD-410	SD-422	SD-422	99-SD-37	99-SD-39
Dale		NOAA SQRT	NOAA SQRT				and the state of t				A STATE OF THE PARTY OF THE PAR		
Depth		for Freshwater	for Marine	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.33	0.33-0.83	0.33-0.83	0-0.5	0-0.5
CONSTITUENT	UNITS	Sediment	Sediment	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Duplicate 1	Primary	Primary
Volatile Organic Compounds						,			,				FIRE
1,1-Thibisethane	(ug/kg)												
Acetone	(ug/kg)												
Methylene chloride	(ug/kg)												
Trimethyloxepane	(ug/kg)												
Semivolatile Organic Compounds													
Bis(2-ethylhexyl)phthalate	(ug/kg)												
Butyl benzyl phthalate	(ug/kg)												
Phenanthrene	(ug/kg)												
Metals													
Aluminum	(mg/kg)			27000	28000J	16000J	15000	5400	7500	35000	33000		
Antimony	(mg/kg)			1.1J	0.88J	0.065J	0.36J	0.056J	0.095J	0.78J	0.8J		
Arsenic	(mg/kg)	17	41.6	[32]J	[38]J	6.8J	16J	4.4J	7.8J	[64]J	[60]J		
Barium	(mg/kg)			37J	17J	23J	26J	4.4J	6.2J	5J	9.7J		
Beryllium	(mg/kg)			1	0.56	0.6	0.57	0.18	0.23	1.3	1.3		
Cadmium	(mg/kg)	3.5	4.2	[20]J	[25]J	2.6J	2.6J	0.67J	1.8J	[32]J	[29]J	[5.5]	[7.3]
Calcium	(mg/kg)			6100J	8900J	2500J	2600J	760J	2200J	32000J	27000J		
Chromium	(mg/kg)	90	160	40J	29J	33J	27J	10J	16J	18J	16J		
Cobalt	(mg/kg)			12J	5.7J	7.6J	9.2J	3.2J	5J	8.1J	17J		
Copper	(mg/kg)	197	108	[2100]J	[2000]J	96J	[200]J	[140]J	[150]J	[10000]J	[9200]J	[190]J	[350]J
Iron	(mg/kg)			31000	29000	20000	22000	8400	14000	35000	33000		
Lead	(mg/kg)	91.3	112	[380]J	[710]J	26J	[120]J	28J	27J	[930]J	[830]J	[120]	[150]
Magnesium	(mg/kg)			25000	43000J	9500J	10000	3300	5400	56000	54000		
Manganese	(mg/kg)			540J	720J	210J	300J	120J	210J	1500J	2100J		
Mercury	(mg/kg)	0.49	0.7	0.24J	0.48	0.045J	0.12J	0.073	0.039J	[0.52]J	0.47J		0.1J
Nickel	(mg/kg)	35.9	42.8	[36]J	18J	29J	26J	8.7J	15J	28J	27J		
Potassium	(mg/kg)			3700J	3100J	3400J	3000J	490J	770J	1800J	1600J		
Pyrene	(mg/kg)												
Selenium	(mg/kg)			3.4J	4.9J	2.3J	1J	0.27J	0.24J	6.9J	6.6J		
Silver	(mg/kg)		1.8	[2.2]J	[3.5]J	0.31J	0.72J	0.19J	0.22J	[3]J	[3]J		
Sodium	(mg/kg)			2400	6200	37000	9100	3200	2100	37J	31J		
Thallium	(mg/kg)			0.94J	1.4J	0.27J		0.077J	0.087J	1.4J	1.3J		
Vanadium	(mg/kg)			39J	25J	31J	29J	11J	14J	17J	16J		
Zinc	(mg/kg)	315	271	[7800]J	[6900]J	[430]J	[810]J	220J	[480]J	[16000]J	[8800]J	[1400]	[1700]
Total Combustible Organics (TCO)	1												
TCO	(mg/kg)			91448	84771	156326	62780	23679	21777	60854J	62478J		

Table 4.2-1 Sediment Analytical Results (Detects Only)

Location				Dyer	Dyer	Dyer	Dyer	Dyer	Dyer	Dyer	Dyer	Dyer
Туре												
Location ID				DCS D SED5	DCS SED4	DC SED8	SD-408	SD-413	SD-415	SD-416	SD-417	SD-SP_SEEP
Dale		NOAA SQRT	NOAA SQRT	9/8/1994	9/8/1994	9/8/1994	11/11/2004	11/11/2004	11/11/2004	11/11/2004	11/11/2004	1/1/1987
Depth		for Freshwater	for Marine	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
	UNITS	Sediment	Sediment	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds											, , , , , ,	
1,1-Thibisethane	(ug/kg)											
	(ug/kg)			32								
	(ug/kg)			39	320							
	(ug/kg)											
Semivolatile Organic Compounds	(-3-3)											
	(ug/kg)			4600	430							
	(ug/kg)			200	100							
	(ug/kg)											
Metals	(-33)											
	(mg/kg)						38000	22000	17000	19000	16000	
	(mg/kg)						0.55J	0.99J	0.47J	0.31J	1J	
	(mg/kg)		41.6	[23]	14	[22]	[17]J	[23]J	[23]J	[18]J	[37]J	
	(mg/kg)	The same of the sa		110	55	70	27J	28J	21J	24J	8.9J	
	(mg/kg)						0.64	0.61	0.67	0.63	0.34	
	(mg/kg)		4.2	[4.9]	[3.6]	[11]	[16]J	[30]J	[19]J	[9]J	[41]J	[11]
	(mg/kg)						6200J	4400J	2700J	2200J	11000J	
	(mg/kg)		160	40	32	40	38J	37J	33J	29J	33J	
	(mg/kg)						8.8J	12J	11J	10J	12J	
**************************************	(mg/kg)		108	[660]	[990]	[2200]	[1500]J	[2600]J			[2400]J	84
	(mg/kg)						25000	31000	23000	24000	20000	
	(mg/kg)		112	[260]	[210]	[400]	[630]J	[720]J	[230]J	[200]J	[280]J	[360]
	(mg/kg)				[62000	19000	14000	13000	22000	[000]
	(mg/kg)						900J	530J	290J	360J	470J	
	(mg/kg)		0.7				0.44J	[0.74]J	0.21J	0.19J	[0.59]J	
The second secon	(mg/kg)		42.8	[40]	35	34	32J	[39]J	29J	31J	33J	
	(mg/kg)		1	A DELEVER OF THE PERSON			3700J	3000J	3000J	2600J	1400J	
	(mg/kg)				0.1J		0.000	00000	00000	20000	1.000	
	(mg/kg)				0.10		1.8J	2.7J	2.2J	0.83J	2.1J	
	(mg/kg)		1.8	[7]	0.6	[2.9]	[3.6]J	[3]J	1.4J	0.92J	[1.9]J	
	(mg/kg)				0.0	[=.0]	7700	5000	14000	6200	3400	
	(mg/kg)						0.83J	0.45J	0.41J	0.28J	0.49J	
	(mg/kg)						34J	31J	33J	30J	23J	
	(mg/kg)		271	[4000]	[2600]	[6200]	[40000]J	[8100]J	[31000]J	[18000]J	[12000]J	[4200]
Total Combustible Organics (TCO)		0.0		[.000]	[2000]	[0200]	[.10000]5	[0.00]0	[01000]0	[-0000]0	[12000]0	[1200]
	(mg/kg)						73632	31877	117048	41531	33755	

Table 4.2-1 Sediment Analytical Results (Detects Only)

Location	T			WRP-1	S. Cove	G. Cove	G. Cove	G. Cove	G. Cove	G. Cove	?	?	?
Type	-			Wetland	S. Cove	G. Cove	G. Cove	G. Cove	G. Cove	G. Cove	BKGD	BKGD	BKGD
Location ID	-			SD-423	SD-409	SD-411	CR-3	SD-420	SD-420	SD-421			99-BKSD-25
Dale	+	NOAA SQRT	NOAA SQRT			12/3/2004	1/1/1975	12/3/2004	12/3/2004	12/3/2004	10/6/1999	10/6/1999	10/6/1999
Depth	-	for Freshwater	for Marine	0.5-1	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
CONSTITUENT	UNITS	Sediment	Sediment	Primary	Primary	Primary	Primary	Primary	Duplicate 1	Primary	Primary	Primary	Primary
Volatile Organic Compounds	Olillo	Codiment	Codimon	Timidiy	Timary	1 milety	1 Illiary	1 minary	Duplicate 1	rilliary	rilliary	riiiiary	Filliary
1,1-Thibisethane	(ug/kg)												
Acetone	(ug/kg)												
Methylene chloride	(ug/kg)												
Trimethyloxepane	(ug/kg)												
Semivolatile Organic Compounds													
Bis(2-ethylhexyl)phthalate	(ug/kg)		<u> </u>										
Butyl benzyl phthalate	(ug/kg)		-										
Phenanthrene	(ug/kg)												
Metals	(ug/kg)												
Aluminum	(mg/kg)			22000	7800	14000		22000	22000	17000			
Antimony	(mg/kg)		1	0.17J	7600	0.67J		0.37J	0.42J	0.57J			
Arsenic	(mg/kg)	17	41.6	15J	4.5J	16J		[17]J	(18)J	[23]J			
Barium	(mg/kg)	17	41.0	59J	11J	14EB		30EB	31EB	18EB			
Beryllium	(mg/kg)			0.74	0.21	0.38J		0.7J	0.71J	0.55J			
Cadmium	(mg/kg)	3.5	4.2	1.8J	0.5J	[10]J	[6.9]	0.73 0.8J	0.713 0.98J	[14]J			
Calcium	(mg/kg)	3.5	4.2	2700J	860J	52000J	[6.9]	5000J	1700J				
Chromium		90	160	39J	17J	20JEB		38JEB		3400J			
Cobalt	(mg/kg)	90	100	9.2J	3.8J	5.9J	478		36JEB 16J	31JEB			
Copper	(mg/kg)	197	108	75J	22J	[1000]J		15J 100J		6.1J	441	401	14J
Iron	(mg/kg)	197	100	26000	11000	21000	the second second		[370]J	[1300]J	14J	18J	14J
Lead	(mg/kg)	04.0	112				2.03	37000	37000	26000	40		40
	(mg/kg)	91.3	112	50J	17J	[200]J	[156]	44J	35J	[240]J	10	11	10
Magnesium	(mg/kg)			8200	4100	17000		9300	9500	21000			
Manganese	(mg/kg)	0.40	0.7	240J	93J	310JEB		760JEB	800JEB	400JEB			
Mercury Nickel	(mg/kg)	0.49		0.091J	0.021	0.3J		0.039J	0.035J	0.26J			
	(mg/kg)	35.9	42.8	[41]J	13J	18JEB		[42]JEB	[40]JEB	18JEB			
Potassium	(mg/kg)			2600J	1300J	2300J		3200J	3400J	3200J			
Pyrene	(mg/kg)			441	0.501	0.41							
Selenium	(mg/kg)		4.0	1.1J	0.56J	2.4J		0.7J	0.37J	4.2J			
Silver	(mg/kg)		1.8	0.45J	0.16J	1.4J	1.49	0.39J	0.4J	1.5J			
Sodium	(mg/kg)			900	6000	13000		3400	3200	21000			
Thallium	(mg/kg)			0.23J	0.12J	0.43J		0.2J	0.17J	0.51J			
Vanadium	(mg/kg)	0.15	074	40J	18J	24J		34J	32J	32J			1.5
Zinc	(mg/kg)	315	271	[720]J	130J	[3100]J	[1090]	[540]J	[570]J	[3500]J	49	64	52
Total Combustible Organics (TCC				404040				22220					
TCO	(mg/kg)			124042J	53639	161785		33585	34495	167679			

Table 4.2-1 Sediment Analytical Results (Detects Only)

Location				?	H. Cove	H. Cove	H. Cove	H. Cove
Туре				BKGD	BKGD	BKGD	BKGD	BKGD
Location ID				99-SD-27	SD-425	SD-426	BK HSC SED10	BK HSC SED9
Dale		NOAA SQRT	NOAA SQRT				9/8/1994	9/8/1994
Depth	1	for Freshwater	THE RESIDENCE OF THE PARTY OF T	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5
CONSTITUENT	UNITS	Sediment	Sediment	Primary	Primary	Primary	Primary	Primary
Volatile Organic Compounds	0	- COUNTRY			, ,,,,,,			
1.1-Thibisethane	(ug/kg)							
Acetone	(ug/kg)	-						
Methylene chloride	(ug/kg)							
Trimethyloxepane	(ug/kg)							
Semivolatile Organic Compounds								
Bis(2-ethylhexyl)phthalate	(ug/kg)							3400
Butyl benzyl phthalate	(ug/kg)	1						110
Phenanthrene	(ug/kg)	1						100J
Metals	(=3.1.3)							
Aluminum	(mg/kg)				10000	8600		
Antimony	(mg/kg)							
Arsenic	(mg/kg)		41.6		6.5J	9.4J	10	[17]
Barium	(mg/kg)				16EB	13EB	21	22
Beryllium	(mg/kg)				0.43J	0.35J		
Cadmium	(mg/kg)		4.2		0.34J	0.36J		
Calcium	(mg/kg)				3100J	26000J		
Chromium	(mg/kg)		160		22JEB	16JEB	15	21
Cobalt	(mg/kg)	The same of the sa			5.1J	4.5J		
Copper	(mg/kg)		108	18J	12J	7.6J	11	45
Iron	(mg/kg)				16000	16000		
Lead	(mg/kg)		112	16	13J	12J	10	12
Magnesium	(mg/kg)				5700	6000		
Manganese	(mg/kg)				190JEB	200JEB		
Mercury	(mg/kg)	0.49	0.7		0.059J	0.063J		
Nickel	(mg/kg)	35.9	42.8		18JEB	14JEB	22	29
Potassium	(mg/kg)				2200J	1700J		
Pyrene	(mg/kg)							0.39
Selenium	(mg/kg)				0.76J	0.9J		
Silver	(mg/kg)		1.8		0.16J	0.1J		
Sodium	(mg/kg)				7400	7900		
Thallium	(mg/kg)				0.15J	0.15J		
Vanadium	(mg/kg)				22J	19J		
Zinc	(mg/kg)	315	271	84	59J	49J	41	54
Total Combustible Organics (TCO)							
тсо	(mg/kg)				66801	68507		

Table 4.2-2: Summary of Chemicals Detected Goose Pond Sediment

	1			
		Times	Times	Maximum
CONSTITUENT	UNITS	Sought	Detected	Concentration
VOCs				
Acetone	(ug/kg)	2	1	33
Methylene chloride	(ug/kg)	2	1	75
1,1-Thibisethane	(ug/kg)	. 2	1	2000
3,4-Dithiohexane	(ug/kg)	2	0	ND
Diethyl benzene (mixed isomers)	(ug/kg)	2	0	ND
Trimethyloxepane	(ug/kg)	2	1	35
SVOCs				
bis(2-Ethylhexyl) phthalate	(ug/kg)	2	2	15000
Butyl benzyl phthalate	(ug/kg)	2	1	190
Phenanthrene	(ug/kg)	2	0	ND
Pyrene	(ug/kg)	2	0	ND
Metals				
Aluminum	(mg/kg)	8	8	30000
Antimony	(mg/kg)	8	7	1.1
Arsenic	(mg/kg)	12	12	270
Barium	(mg/kg)	12	12	230
Beryllium	(mg/kg)	8	8	1
Cadmium	(mg/kg)	16	-16	170
Calcium	(mg/kg)	8	8	33000
Chromium	(mg/kg)	12	12	45 .
Cobalt	(mg/kg)	8	8	12
Copper	(mg/kg)	16	16	2400
iron	(mg/kg)	8	8	31000
Lead	(mg/kg)	16	16	1500
Magnesium	(mg/kg)	8	8	53000
Manganese	(mg/kg)	8	8	1200
Mercury	(mg/kg)	11	11	0.7
Nickel	(mg/kg)	12	12	250
Potassium	(mg/kg)	8	8	3700
Selenium	(mg/kg)	16	13	7
Silver	(mg/kg)	16	14	12
Sodium	(mg/kg)	8	8	37000
Thallium	(mg/kg)	8	7	1.5
Vanadium	(mg/kg)	8	8	39
Zinc	(mg/kg)	16	16	58000

Table 4.2-3: Summary of Chemicals Detected Tailings Pile Sediment

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Aluminum	(mg/kg)	2	2	24000
Antimony	(mg/kg)	2	2	1.3
Arsenic	(mg/kg)	2	2	85
Barium	(mg/kg)	2	2	13
Beryllium	(mg/kg)	2	2	0.34
Cadmium	(mg/kg)	7	7	110
Calcium	(mg/kg)	2	2	70000
Chromium	(mg/kg)	2	2	21
Cobalt	(mg/kg)	2	2	3.9
Copper	(mg/kg)	7	7	3760
Iron	(mg/kg)	2	2	34000
Lead	(mg/kg)	7	7	1100
Magnesium	(mg/kg)	2	2	49000
Manganese	(mg/kg)	2	2	1600
Mercury	(mg/kg)	2	2	0.79
Nickel	(mg/kg)	2	2	16
Potassium	(mg/kg)	2	2	2400
Selenium	(mg/kg)	2	2	6.4
Silver	(mg/kg)	2	2	4.1
Sodium	(mg/kg)	2	2	21
Thallium	(mg/kg)	2	2	2.1
Vanadium	(mg/kg)	2	2	17
Zinc	(mg/kg)	7	7	23000

Table 4.2-4: Summary of Chemicals Detected Seep Sediments

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Aluminum	(mg/kg)	2	2	35000
Antimony	(mg/kg)	2	. 2	0.8
Arsenic	(mg/kg)	2	2	64
Barium	(mg/kg)	2	2	9.7
Beryllium	(mg/kg)	2	2	1.3
Cadmium	(mg/kg)	3	3	32
Calcium	(mg/kg)	2	2	32000
Chromium	(mg/kg)	2	2	18
Cobalt	(mg/kg)	2	2	17
Copper	(mg/kg)	3	3	10000
Iron	(mg/kg)	2	3	35000
Lead	(mg/kg)	3		930
Magnesium	(mg/kg)	2	2	56000
Manganese	(mg/kg)	2	2	2100
Mercury	(mg/kg)	2	2	0.52
Nickel	(mg/kg)	2	2	28
Potassium	(mg/kg)	2	2	1800
Selenium	(mg/kg)	2	2	6.9
Silver	(mg/kg)	2	2	3
Sodium	(mg/kg)	2	2	37
Thallium	(mg/kg)	2	2	1.4
Vanadium	(mg/kg)	2	2	17
Zinc	(mg/kg)	3	3	16000

Table 4.2-5: Summary of Chemicals Detected Dyer Cove Sediment

		Times	Times	Maximum
CONSTITUENT	UNITS	Sought	Detected	Concentration
VOCs				
Acetone	(ug/kg)	1	0	ND
Methylene chloride	(ug/kg)	2	2	320
1,1-Thibisethane	(ug/kg)	2	0	ND
3,4-Dithiohexane	(ug/kg)	2 .	0	ND
Diethyl benzene (mixed isomers)	(ug/kg)	2	0	ND
Trimethyloxepane	(ug/kg)	2	0	ND
SVOCs	1		_ 	
bis(2-Ethylhexyl) phthalate	(ug/kg)	2	2	4600
Butyl benzyl phthalate	(ug/kg)	2	2	200
Phenanthrene	(ug/kg)	2	0	ND
Pyrene	(ug/kg)	2	1	100
Metals				
Aluminum	(mg/kg)	4	4	38000
Antimony	(mg/kg)	4	4	0.99
Arsenic	(mg/kg)	7	7	23
Barium	(mg/kg)	7	7	110
Beryllium	(mg/kg)	4	4	0.67
Cadmium	(mg/kg)	9	9	30
Calcium	(mg/kg)	. 4	4	6200
Chromium	(mg/kg)	7	7	40
Cobalt	(mg/kg)	4	4	12
Copper	(mg/kg)	9	7	2600
Iron	(mg/kg)	4	4	31000
Lead	(mg/kg)	9	9	720
Magnesium .	(mg/kg)	4	4	62000
Manganese	(mg/kg)	4	4	900
Mercury	(mg/kg)	5	5	0.74
Nickel	(mg/kg)	7	7	40
Potassium	(mg/kg)	4	4	3700
Selenium	(mg/kg)	8	4	2.7
Silver	(mg/kg)	9	7	7
Sodium	(mg/kg)	4	4	14000
Thallium	(mg/kg)	4	4	0.83
Vanadium	(mg/kg)	4	4	34
Zinc	(mg/kg)	9	9	40000

Table 4.2-6: Summary of Chemicals Detected Goose Cove Sediment

			[
		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Aluminum	(mg/kg)	4	4	22000
Antimony	(mg/kg)	4	4	0.67
Arsenic	(mg/kg)	4	4	23
Barium	(mg/kg)	4	4	31
Beryllium	(mg/kg)	4	4	0.71
Cadmium	(mg/kg)	5	5	14
Calcium	(mg/kg)	4	4	52000
Chromium	(mg/kg)	4	4	38
Cobalt	(mg/kg)	5	5	478
Copper	(mg/kg)	4	4	1300
Iron	(mg/kg)	5	5	37000
Lead	(mg/kg)	5	5	240
Magnesium	(mg/kg)	4	4	21000
Manganese	(mg/kg)	4	4	800
Mercury	(mg/kg)	4	4	0.3
Nickel	(mg/kg)	4	4	42
Potassium	(mg/kg)	4	4	3400
Selenium	(mg/kg)	4	_4	4.2
Silver	(mg/kg)	5	5	1.5
Sodium	(mg/kg)	4	4	21000
Thallium	(mg/kg)	4	4	0.51
Vanadium	(mg/kg)	4	4	34
Zinc	(mg/kg)	5	5	3500

Table 4.2-7: Summary of Chemicals Detected Background Sediment

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS		-	
VOCs				
Acetone	(ug/kg)	1	0	ND
Methylene chloride	(ug/kg)	1	0	ND
1,1-Thibisethane	(ug/kg)	1	0	ND
3,4-Dithiohexane	(ug/kg)	1	0	ND
Diethyl benzene (mixed isomers)	(ug/kg)	1	0	ND
Trimethyloxepane	(ug/kg)	1	0	ND
SVOCs				
bis(2-Ethylhexyl) phthalate	(ug/kg)	1	1	3400
Butyl benzyl phthalate	(ug/kg)	1	1	110
Phenanthrene	(ug/kg)	1	1	100
Pyrene	(ug/kg)	1	1	390
Metals				
Aluminum	(mg/kg)	3	3	20000
Antimony	(mg/kg)	3	1	0.18
Arsenic	(mg/kg)	6	6	17
Barium	(mg/kg)	6	6	69
Beryllium	(mg/kg)	3	3	0.7
Cadmium	(mg/kg)	9	4	4.3
Calcium	(mg/kg)	3	3	26000
Chromium	(mg/kg)	6	6	35
Cobalt	(mg/kg)	3.	· 3	8.7
Copper	(mg/kg)	9	9	120
Iron	(mg/kg)	3	3	19000
Lead	(mg/kg)	9	9	69
Magnesium	(mg/kg)	3	3	9300
Manganese	(mg/kg)	3	3	200
Mercury	(mg/kg)	3	3	0.15
Nickel	(mg/kg)	6	6	30
Potassium	(mg/kg)	3	3	2500
Selenium	(mg/kg)	9	3	1.6
Silver	(mg/kg)	9	3	0.45
Sodium	(mg/kg)	3	3	11000
Thallium	(mg/kg)	3	3	0.34
Vanadium	(mg/kg)	3	3	26
Zinc	(mg/kg)	9	9	820

Table 4.3-1 Surface Water Analytical Results (Detects Only)

Area				Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings
Туре				Seep	Seep	Seep	Seep	Seep	Seep	Seep	Seep	Seep	Seep
Location ID		Freshwater	Salt Water	99-TPR-50	SAMPLE_1	SAMPLE 2	SAMPLE 4	SW-SA_1	SW-SA_1	SW-SA_1	SW-SA_1	SW-SA 2	SW-SA_2
Date		Screening	Screening	10/5/1999	1/1/1986	1/1/1986	1/1/1986	1/1/1986	1/1/1987	1/1/1990	1/1/1991	1/1/1986	1/1/1987
CONSTITUENT	UNITS	Criteria	Criteria	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Total/Filtered		Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total	Total
Volatile Organic Compounds													
1,1,1-trichloroethane	(ug/l)											17	
1-Butanethiol	(ug/l)												
Ethylbenzene	(ug/l)											6	
Toluene	(ug/l)											5	
Xylenes (total)	(ug/l)											36	
Semivolatile Organic Compounds													
Di-n-butylphthalate	(ug/l)							22					
Di-n-octyl phthalate	(ug/l)												
Dioctyl adipate	(ug/l)												
o,o-diethyl phosphorodithiotic acid	(ug/l)										10J		
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)							8J		2.8J	1.55		14J
o,o-diethyl-s-methyl phosphorothioate	(ug/l)								18J	3.1J	1.71		
o,o-s triethyldithiophosphate	(ug/l)												13J
Metals													
Aluminum	(ug/l)	87											
Antimony	(ug/l)	30											
Arsenic	(ug/l)	150	36										
Barium	(ug/l)	4											
Beryllium	(ug/l)	0.66											
Cadmium	(ug/l)	0.25	8.8	[23]	[4]	[25]	[20]	[11]	[24]	[14]	[25]	[18]	[16]
Calcium	(ug/l)												
Chromium	(ug/l)	74											
Cobalt	(ug/l)	23											
Copper	(ug/l)	9	3.1	[84]	[80]	[20]	[20]			[530]			
Iron	(ug/l)	1000											
Lead	(ug/l)	2.5	8.1	[31]	[20]				1	[23]			2
Magnesium	(ug/l)												
Manganese	(ug/l)	120											
Nickel	(ug/l)	52	8.2							[40]			
Potassium	(ug/l)												
Silver	(ug/l)	0.36											
Sodium	(ug/l)												
Vanadium	(ug/l)	20											
Zinc	(ug/l)	120	81	[5860]J	[730]	[10600]	[4910]	[3620]		[6100]	[5410]	[9410]	
Sulfate													
Sulfate	(mg/l)												

Table 4.3-1 Surface Water Analytical Results (Detects Only)

Area				Tailings	Tailings	WRP-3	WRP-3	Tailings	Tailings	Tailings	Tailings	Tailings	WRP-1
Type				Seep	Seep	Seep	Seep	Wetland	Wetland	Wetland		Open Water	
Location ID		Freshwater	Salt Water			SW-422	SW-422	SW-TP	SW-403	SW-403	SW-403	SW-403	SW-423
Date		Screening			1/1/1991		11/17/2004					11/16/2004	11/16/2004
CONSTITUENT	UNITS	Criteria	Criteria	Primary	Primary	Primary	Primary	Primary	Duplicate 1	Primary	Duplicate 1	Primary	Primary
Total/Filtered		Total	Total	Total	Total	Filtered	Total	Total	Total	Total	Filtered	Filtered	Filtered
Volatile Organic Compounds													
1,1,1-trichloroethane	(ug/l)												
1-Butanethiol	(ug/l)			2.9J	1J								
Ethylbenzene	(ug/l)												
Toluene	(ug/l)												
Xylenes (total)	(ug/l)												
Semivolatile Organic Compounds													
Di-n-butylphthalate	(ug/l)												
Di-n-octyl phthalate	(ug/l)												
Dioctyl adipate	(ug/l)												
o,o-diethyl phosphorodithiotic acid	(ug/l)				10J								
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)			6J	4.86								
o,o-diethyl-s-methyl phosphorothioate	(ug/l)			0.6J	10J								
o,o-s triethyldithiophosphate	(ug/l)												
Metals													
Aluminum	(ug/l)	87				[306]	[2490]J		[210]J	[834]J			
Antimony	(ug/l)	30				0.7J	1.5J		0.96J	1.3J	0.76J	0.75J	
Arsenic	(ug/l)	150	36				3.1J		0.96J	3.1J	0.33J	0.39	0.56
Barium	(ug/l)	4				[16.6]	[17.4]		[7.6]J	[8.6]J	[7.5]J	[7.6]J	[14.9]
Beryllium	(ug/l)	0.66				[1.7]	[1.8]						
Cadmium	(ug/l)	0.25	8.8	[8]	[15]	[846]	[854]	1,711777	[3.2]	[3.9]	[3.2]	[2.9]	0.21
Calcium	(ug/l)					293000	291000		73300	76900	72300	72500	163000
Chromium	(ug/l)	74											
Cobalt	(ug/l)	23				[91.4]	[93.7]						1.9
Copper	(ug/l)	9	3.1	[550]	[30]	[7780]J	[9790]J		[40.4]J	[88.1]J	[24.3]J	[21.8]J	
Iron	(ug/l)	1000					[1590]J		299J	[1030]J			[2680]
Lead	(ug/l)	2.5	8.1	[6]	[10]	[87.2]	[154]J		[12.8]J	[44.2]J	1.4J	1.8	
Magnesium	(ug/l)					154000	170000		7150	8550	6720	6740	49500
Manganese	(ug/l)	120				[8050]	[7680]J		20.2J	54.6J	10.1	11.4	[343]
Nickel	(ug/l)	52	8.2	[60]	[40]	[168]	[163]J	1. (1)	1.8J	4.2J	1.5J	1J	[18.4]
Potassium	(ug/l)					7660	11900		1890J	2400J	1910J	2190J	12300
Silver	(ug/l)	0.36				2.2J							
Sodium	(ug/l)					94900	227000		23000	24400	22800	23700	101000
Vanadium	(ug/l)	20											
Zinc	(ug/l)	120	81	[11500]	[12100]	[171000]J	[169000]J	[390]	[911]J	[1170]J	[808]J	[823]J	[690]J
Sulfate												4000	
Sulfate	(mg/l)						1600		113	110			

Table 4.3-1 Surface Water Analytical Results (Detects Only)

Area				WRP-1	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	Tailings	WRP-3	WRP-3
Туре				Wetland	Onen Wate	Onen Wate	Open Water		Onen Water		Onen Water		
Location ID	_	Freshwater		SW-423	99-511/-30	90-2/1/32	SAMPLE 3	SW-405	SW-405	SW-GPE1		99-SW-34	
Date	-	Screening			10/5/1999		1/1/1986		11/17/2004		1/1/1987	10/5/1999	
CONSTITUENT	UNITS	Criteria	Criteria	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Total/Filtered	CIVITO	Total	Total	Total	Total	Total	Total	Filtered	Total	Total	Total	Total	Total
Volatile Organic Compounds	+	Total	Total	Total	iotai	Total	Total	riitereu	Total	Total	Total	Total	Total
1.1.1-trichloroethane	(ug/l)			to the second									
1-Butanethiol	(ug/l)												
Ethylbenzene	(ug/l)												
Toluene	(ug/l)												
Xylenes (total)	(ug/l)												
Semivolatile Organic Compounds	(ug/i)												
Di-n-butylphthalate	(ug/l)												
Di-n-octyl phthalate	(ug/l)												
Dioctyl adipate	(ug/l)												
o.o-diethyl phosphorodithiotic acid	(ug/l)												
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)												
o,o-diethyl-s-methyl phosphorothioate	(ug/l)												
o,o-s triethyldithiophosphate	(ug/l)												
Metals	(ug/I)												
Aluminum	(ug/l)	87		[17200]J				50.4J	[212]J				
Antimony	(ug/l)	30		0.65J				0.5J	[Z1Z]J				
Arsenic	(ug/l)	150	36	10.6J				0.5J	0.92J				
Barium		4	30										
Beryllium	(ug/l)	0.66		[67.1]				[5.1]J	[5.4]J				
Cadmium	(ug/l)	0.00	8.8	[0.8]	[4 0]	(0.0)	[40]	[0.04]	(4.7)	(0)	(0)	(0.7)	(4)
Calcium	(ug/l)	0.25	0.0	[10]	[1.2]	[2.9]	[18]	[0.94]	[1.7]	[2]	[9]	[2.7]	[1]
Chromium	(ug/l)	74		169000				136000	139000				
Cobalt	(ug/l)			29 8									
	(ug/l)	23 9	2.4		[00]	[40]	[40]	(4.5).	(47)	[40]		[50]	24.0
Copper	(ug/l)		3.1	[46.9]J	[26]	[46]	[10]	[4.5]J	[17]J	[40]		[50]	[14]
	(ug/l)	1000		[39600]J	1011	2/20			303J				
Lead	(ug/l)	2.5	8.1	[37.2]J	[8]J	[4]J			[3.3]J	[4]		[4]J	[3]J
Magnesium	(ug/l)	100		55600				439000	447000				
Manganese	(ug/l)	120		[471]J				42	47.8J				
Nickel	(ug/l)	52	8.2	[107]J				1.4J	2.2J				
Potassium	(ug/l)	0.00		15000				140000	143000				
Silver	(ug/l)	0.36						and the latest the same	and the same of th				
Sodium	(ug/l)			102000				3760000	3700000				
Vanadium	(ug/l)	20		[30.6]			111111111111111111111111111111111111111						
Zinc	(ug/l)	120	81	[2630]J	[420]J	[850]J	[6500]	[271]J	[330]J	[380]		[790]J	[270]J
Sulfate													
Sulfate	(mg/l)			607					882				

Table 4.3-1 Surface Water Analytical Results (Detects Only)

Area				WRP-3	WRP-3	Dyer	Dyer	Dyer	Dyer	Dyer	Dyer	Dyer
Туре					Open Water							Open Water
Location ID		Freshwater			SW-406		99-SW-40		SW-414	SW-415	SW-415	SW-SP_SEEP
Date		Screening		11/17/2004								1/1/1986
CONSTITUENT	UNITS	Criteria	Criteria	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Total/Filtered		Total	Total	Filtered	Total	Total	Total	Filtered	Total	Filtered	Total	Total
Volatile Organic Compounds						1, 2, 5, 1						
1,1,1-trichloroethane	(ug/l)			The state of the s								
1-Butanethiol	(ug/l)											
Ethylbenzene	(ug/l)											
Toluene	(ug/l)											
Xylenes (total)	(ug/l)											
Semivolatile Organic Compounds												
Di-n-butylphthalate	(ug/l)											
Di-n-octyl phthalate	(ug/l)											100
Dioctyl adipate	(ug/l)											260
o,o-diethyl phosphorodithiotic acid	(ug/l)											
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)											
o,o-diethyl-s-methyl phosphorothioate	(ug/l)											
o,o-s triethyldithiophosphate	(ug/l)											
Metals												
Aluminum	(ug/l)	87			[106]J				81.6J		[305]J	
Antimony	(ug/l)	30			Toy To State of the State of th							
Arsenic	(ug/l)	150	36	1.1	1.1J			1.6	1.7J	1.7	2J	
Barium	(ug/l)	4		[6.8]J	[6.5]J			[7.2]J	[7.3]J	[7.3]J	[7.7]J	11 - 1 - 1 - 1
Beryllium	(ug/l)	0.66										
Cadmium	(ug/l)	0.25	8.8	[2.6]	[2.7]	[1.1]	[1]	[2.7]	[2.6]	[1.6]	[2]	[60]
Calcium	(ug/l)			231000	227000			275000	275000	291000	291000	
Chromium	(ug/l)	74										
Cobalt	(ug/l)	23		1.1	1.2			1.1	1.2	1.2	1.3	
Copper	(ug/l)	9	3.1	[15.9]J	[20.7]J	[7]	[7]	[6.6]J	[13.6]J	[5.7]J	[16]J	
Iron	(ug/l)	1000			147J				98.5J		392J	
Lead	(ug/l)	2.5	8.1		1.9J		[3]J		2.3J		[4.8]J	[3]
Magnesium	(ug/l)			801000	801000			1000000	996000	1080000	1070000	
Manganese	(ug/l)	120		39.8	41.7J			18.3	20.1J	16.7	24.2J	
Nickel	(ug/l)	52	8.2	1.9J	2J			2J	2.4J	1.9J	3.5J	
Potassium	(ug/l)			239000J	237000J			300000	302000	318000	321000	
Silver	(ug/l)	0.36										
Sodium	(ug/l)			6440000	6390000			8000000	8020000	8520000	8590000	
Vanadium	(ug/l)	20						1.1	1.2	1.2	1.8	
Zinc	(ug/l)	120	81	[511]J	[512]J	[260]J	[260]J	[420]J	[437]J	[280]J	[309]J	[13900]
Sulfate												
Sulfate	(mg/l)				1660				2110		2260	

Table 4.3-1 Surface Water Analytical Results (Detects Only)

Area				Dyer	Dyer	Dyer	Pond	Pond	Pit	Pit	Pit	Pit
Туре				Open Water	Open Water	Open Water	Open Water					
Location ID		Freshwater	Salt Water		SW-SP_SEEP	SW-SP_SEEP	SW-407	SW-407		99-SW-49		SW-410
Date			Screening	1/1/1987	1/1/1990	1/1/1991						11/16/2004
CONSTITUENT	UNITS		Criteria	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Total/Filtered		Total	Total	Total	Total	Total	Filtered	Total	Total	Total	Filtered	Total
Volatile Organic Compounds												
1,1,1-trichloroethane	(ug/l)											
1-Butanethiol	(ug/l)											
Ethylbenzene	(ug/l)											
Toluene	(ug/l)											
Xylenes (total)	(ug/l)											
Semivolatile Organic Compounds												
Di-n-butylphthalate	(ug/l)											
Di-n-octyl phthalate	(ug/l)											
Dioctyl adipate	(ug/l)											
o,o-diethyl phosphorodithiotic acid	(ug/l)					1.66						
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)					3.49						
o,o-diethyl-s-methyl phosphorothioate	(ug/l)											
o,o-s triethyldithiophosphate	(ug/l)											
Metals												
Aluminum	(ug/l)	87						55.8J				
Antimony	(ug/l)	30										
Arsenic	(ug/l)	150	36				1.5	1.6J			1.8	1.9J
Barium	(ug/l)	4					[7.2]J	[7.4]J			[6.7]J	[7.2]J
Beryllium	(ug/l)	0.66					THE STATE OF THE S					
Cadmium	(ug/l)	0.25	8.8	[65]	[49]	[51]	[1.4]	[1.5]		[1.2]	[0.47]	[0.52]
Calcium	(ug/l)						282000	284000			308000	310000
Chromium	(ug/l)	74										
Cobalt	(ug/l)	23					1.3	1.2			1.3	1.3
Copper	(ug/l)	9	3.1		[260]	[470]	[8.9]J	[12.1]J	2J	3J		
Iron	(ug/l)	1000					BE INGS	61.4J				
Lead	(ug/l)	2.5	8.1		[3]	[104]		1.3J				
Magnesium	(ug/l)						1040000	1040000			1150000	1150000
Manganese	(ug/l)	120					20.3	21.4J			10.8	13.1J
Nickel	(ug/l)	52	8.2			[60]	1.8J	2J			1.7J	1.8J
Potassium	(ug/l)						307000	309000			348000	353000
Silver	(ug/l)	0.36								[2.3]		
Sodium	(ug/l)						8290000	8270000			9170000	9330000
Vanadium	(ug/l)	20					1.1	1.2			1.6	1.5
Zinc	(ug/l)	120	81		[9000]	[16300]	[268]J	[275]J	[87]J	[110]J	65.2J	67.1J
Sulfate												
Sulfate	(mg/l)							2190				2460

Table 4.3-1 Surface Water Analytical Results (Detects Only)

Area	1			Pit	Pit	Pit	Pit	Cove	Cove	Cove	Cove	
Туре								Open Water				
Location ID		Freshwater	Salt Water	SW-419	SW-419	SW-424	SW-424	SW-411	SW-411	SW-411	SW-411	
Date						11/18/2004			12/3/2004	12/3/2004	12/3/2004	
CONSTITUENT	UNITS	Criteria	Criteria	Primary	Primary	Primary	Primary	Duplicate 1	Primary	Duplicate 1	Primary	
Total/Filtered	-	Total	Total	Filtered	Total	Filtered	Total	Filtered	Filtered	Total	Total	
Volatile Organic Compounds												
1,1,1-trichloroethane	(ug/l)											
1-Butanethiol	(ug/l)											
Ethylbenzene	(ug/l)											
Toluene	(ug/l)											
Xylenes (total)	(ug/l)											
Semivolatile Organic Compounds												
Di-n-butylphthalate	(ug/l)											
Di-n-octyl phthalate	(ug/l)											
Dioctyl adipate	(ug/l)											
o,o-diethyl phosphorodithiotic acid	(ug/l)											
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)											
o,o-diethyl-s-methyl phosphorothioate	(ug/l)											
o,o-s triethyldithiophosphate	(ug/l)											
Metals												
Aluminum	(ug/l)	87		[168]J	[380]		[103]J		[167]J	51.6J	[167]J	
Antimony	(ug/l)	30									0.71J	
Arsenic	(ug/l)	150	36	0.85J	1.1J	1J	1.2J	1.4	1.4J	1.5J	1.5J	
Barium	(ug/l)	4			[5.2]J	[7]J	[7.2]J	[5.4]J	[6]J	[5.8]J	[6.2]J	
Beryllium	(ug/l)	0.66										
Cadmium	(ug/l)	0.25	8.8	[2.3]	[2.1]	[2.4]	[2.4]	[0.87]	[1]	[0.87]	[1]	
Calcium	(ug/l)			91600	133000	229000	235000	211000	214000	214000	213000	
Chromium	(ug/l)	74										
Cobalt	(ug/l)	23					1.2					
Copper	(ug/l)	9	3.1	[54.7]J	[58.8]	[16]J	[19.8]J	[15.4]J	[22]J	[16.6]J	[21.4]J	
Iron	(ug/l)	1000		147	386		163J		187		203	
Lead	(ug/l)	2.5	8.1		1.5		1.6J				1.1	
Magnesium	(ug/l)			286000	438000	794000	823000	735000	741000	743000	745000	
Manganese	(ug/l)	120		52.2	51.2	37.6	43J	20.8	24.6	21.9	25.4	
Nickel	(ug/l)	52	8.2	2J	2.7J	1.9J	2.5J	1.7J	1.8J	1.6J	2.1J	
Potassium	(ug/l)			86700J	129000	232000J	241000J	215000J	218000J	222000J	216000J	
Silver	(ug/l)	0.36										
Sodium	(ug/l)			2300000	3540000	6330000	6490000	5850000	5870000	5900000	5890000	
Vanadium	(ug/l)	20			1.3			1.2	1.4	1.2	1.4	
Zinc	(ug/l)	120	81	[524]J	[501]J	[429]J	[446]J	[181]J	[187]J	[177]J	[190]J	
Sulfate												
Sulfate	(mg/l)				931		1790			774	1650	

Table 4.3-2: Summary of Chemicals Detected Tailings Pile Surface Water and Seeps

	1	Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
VOCs				,
1,1,1-trichloroethane	(ug/l)	8	1	17
1-Butanethiol	(ug/l)	8	2	2.9
Ethylbenzene	(ug/l)	8	1	6
Toluene	(ug/l)	8	1	5
Xylenes	(ug/l)	8	1	36
SVOCs				
Di-n-butylphthalate	(ug/l)	8	1	22
Dioctyl adipate	(ug/l)	8	0	ND
Dioctyl phthalate	(ug/l)	8	0	ND '
o,o-diethyl phosphorodithiotic acid	(ug/l)	8	2	. 10
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)	8	6	14
o,o-diethyl-s-methyl phosphorothioate	(ug/l)	8	5	18
o,o-s triethyldithiophosphate	(ug/l)	8	1	13
Metals				
Aluminum	(ug/l)	2	2	834
Antimony	(ug/l)	2	2	1.3
Arsenic	(ug/l)	2	2	3.1
Barium	(ug/l)	2	2	8.6
Beryllium	(ug/l)	2	0	ND
Cadmium	(ug/l)	15	14	25
Calcium	(ug/l)	2	2	76900
Chromium	(ug/l)	2	0	ND
Cobalt	(ug/l)	2	. 0	ND
Copper	(ug/l)	13	9	550
Iron	(ug/l)	2	2	1030
Lead	(ug/l)	15	9	44.2
Magnesium	(ug/l)	2	2	8550
Manganese	(ug/l)	2	2	54.6
Mercury	(ug/l)	3	0	ND
Nickel	(ug/l)	6	5	60
Potassium	(ug/l)	2	2	2400
Selenium	(ug/l)	3	0	ND
Silver	(ug/l)	3	0	ND
Sodium	(ug/l)	2	2	24400
Thallium	(ug/l)	2	. 0	ND
Vanadium	(ug/l)	2	0	ND
Zinc	(ug/l)	13	13	12100
Sulfate	(ug/l)	2	2	113000
Cyanide	(ug/l)	6	0	ND

Table 4.3-3: Summary of Chmicals Detected in Goose Pond Surface Water

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS	ooug		001100111111111111111111111111111111111
VOCs				
1,1,1-trichloroethane	(ug/l)	1	0	ND
1-Butanethiol	(ug/l)	1	0	ND
Ethylbenzene	(ug/l)	1	0	ND
Toluene	(ug/l)	1	0	ND
Xylenes	(ug/l)	1	0	ND
SVOCs	1 -		 -	·
Di-n-butylphthalate	(ug/l)	1	0	ND
Dioctyl adipate	(ug/l)	1	0	ND
Dioctyl phthalate	(ug/l)	1	0	ND
o,o-diethyl phosphorodithiotic acid	(ug/i)	1	0	ND
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)	1	0	ND
o,o-diethyl-s-methyl phosphorothioate	(ug/l)	1	0	ND
o,o-s triethyldithiophosphate	(ug/l)	1	0	ND
Metals				
Aluminum	(ug/l)	6	5	380
Antimony	(ug/l)	6	0	ND
Arsenic	(ug/l)	6	6	1.9
Barium	(ug/l)	6	6	7.4
Beryllium	(ug/l)	6	0	ND
Cadmium	(ug/l)	16	14	18
Calcium	(ug/l)	6	6	310000
Chromium	(ug/l)	6	0	ND
Cobalt	(ug/l)	6	4	1.3
Copper	(ug/l)	15	13	58.8
Iron	(ug/l)	6	5	386
Lead	(ug/l)	16	10	50
Magnesium	(ug/l)	6	6	1150000
Manganese	(ug/l)	6	6	51.2
Mercury	(ug/l)	12	0	ND
Nickel	(ug/l)	6	6	2.7
Potassium	(ug/l)	6	6	353000
Selenium	(ug/l)	12	0	ND
Silver	(ug/l)	12	1	2.3
Sodium	(ug/l)	6	6	9330000
Thallium	(ug/l)	6	0	ND
Vanadium	(ug/l)	6	3	1.5
Zinc	(ug/l)	15	14	6500
Sulfate	(ug/l)	6	6	2460000

Table 4.3-4: Summary of Chemicals Detected in Dyer's Cove Surface Water

	Times	Maximum
	Detected	Concentration
CONSTITUENT		
Aluminum	2	305
Antimony	0	ND
Arsenic	2	2
Barium	2	7.7
Beryllium	0_	ND
Cadmium	4	2.6
Calcium	2	291000
Chromium	0	ND
Cobalt	2	1.3
Copper	4	16
Iron	2	392
Lead	3	4.8
Magnesium	2	1070000
Manganese	2	24.2
Mercury	0	ND
Nickel	2	3.5
Potassium	2	321000
Selenium	0	ND
Silver	0	ND
Sodium	2	8590000
Thallium	0	ND
Vanadium	2	1.8
Zinc	4	437
Sulfate	2	2260000

Table 4.3-5: Summary of Chemicals Detected in Goose Cove Surface Water

		Times	Times	Maximum
		Sought	Detected	Concentration
CONSTITUENT	UNITS			
Aluminum	(ug/l)	2	2	167
Antimony	(ug/l)	2	1	0.71
Arsenic	(ug/l)	2 2 2 2 2 2	2	1.5
Barium	(ug/l)	2	2	6.2
Beryllium	(ug/l)	2	0	ND
Cadmium	(ug/l)	2	2	1
Calcium	(ug/l)	2	2	214000
Chromium	(ug/l)		0	ND
Cobalt	(ug/l)	2	0	ND
Copper	(ug/l)	2	2	21.4
Iron	(ug/l)	2	1	203
Lead	(ug/l)	2 2 2	1	1.1
Magnesium	(ug/l)	2	2	745000
Manganese	(ug/l) _	2	2	25.4
Mercury	(ug/l)	2	0	ND
Nickel	(ug/l)	2 2 2 2 2	2	2.1
Potassium	(ug/l)	2	2	222000
Selenium	(ug/l)	2	0	ND
Silver	(ug/l)	2	0	ND
Sodium	(ug/l)		2	5900000
Thallium	(ug/l)	2	0	ND
Vanadium	(ug/l)	2	2	1.4
Zinc	(ug/l)	2	2	190

Table 4.4-1 Drinking Water Analytical Results (Detects Only)

		EPA	Maine	Region IX	1F	1F	1F	1F	2F	2F	2F	2F	3F	3F	3F	3F	4F
		MCLs	MEG	Tap Water	12/1/1967	5/1/1968	7/1/1968	9/1/1968	12/1/1967	5/1/1968	7/1/1968	9/1/1968	12/1/1967	5/1/1968	7/1/1968	9/1/1968	12/1/1967
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
<u>Metals</u>																	
Aluminum	(ug/l)		1430	3650													1
Arsenic	(ug/l)	10	10	0.045													i
Barium	(ug/l)	2000	2000	255													
Beryllium	(ug/l)	4		7													
Cadmium	(ug/l)	5	3.5	2	0				0.001		0.01		0_				0.002
Calcium	(ug/l)																
Chromium	(ug/l)	100	40	11													
Cobalt	(ug/l)			73													
Copper	(ug/l)	1300	1300	146	0.5	0.4	0.03		0.01	0.1	0.05	0.03	0.05	0.1	0.25		0.03
Iron	(ug/l)			1095													
Lead	(ug/l)	15	10		0				0				0.02				0
Magnesium	(ug/l)																
Manganese	(ug/l)		500	88													
Mercury	(ug/l)	2	2	1.1													1
Nickel	(ug/l)		140	73	0.02				0.02	0.02			0.02	0.02			0.03
Potassium	(ug/l)																
Sodium	(ug/l)		20000														
Vanadium	(ug/l)			3.6													
Zinc	(ug/l)		2000	1095	1.5			0	1.6	1.3	1.07	0.68	0.1		0.11	0.08	0.1
Sulfate	(ug/l)																ļ
Boron	(ug/l)		630	730													

Table 4.4-1
Drinking Water Analytical Results
(Detects Only)

		EPA	Ma	aine	Region IX	4F	4F	4F	5F	5F	5F	5F	6F	6F	7F	7F	7F	8F
		MCLs	M	EG	Tap Water	5/1/1968	7/1/1968	9/1/1968	12/1/1967	5/1/1968	7/1/1968	9/1/1968	12/1/1967	9/1/1968	12/1/1967	5/1/1968	7/1/1968	12/1/1967
CONSTITUENT	UNITS				PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
<u>Metals</u>																		
Aluminum	(ug/l)		14	430	3650													
Arsenic	(ug/l)	10	1	10	0.045													
Barium	(ug/l)	2000	20	000	255													
Beryllium	(ug/l)	4			7													
Cadmium	(ug/l)	5	3	3.5	2				0.001				0		0.001			0
Calcium	(ug/l)																	
Chromium	(ug/l)	100	4	40	11													
Cobalt	(ug/l)				73													l
Copper	(ug/l)	1300	13	300	146	0.07	0.04		0.06	0.2	0.15	0.12	0.2		0.005	0.03	0.04	0.02
Iron	(ug/l)				1095													
Lead	(ug/l)	15	1	10					0				0.01		0			0.01
Magnesium	(ug/l)																	l
Manganese	(ug/l)		5	00	88													
Mercury	(ug/l)	2		2	1.1													
Nickel	(ug/l)			40	73	0.01			0.03	0.02			0		0.01			0.05
Potassium	(ug/l)																	
Sodium	(ug/l)		20	0000									_					
Vanadium	(ug/l)				3.6													
Zinc	(ug/l)		20	000	1095		0.04	0.08	1.6	0.08	0.47	0.45	0.1	0.09	0.02		0.03	1.6
Sulfate	(ug/l)																	
Boron	(ug/l)		6	30	730													

Table 4.4-1 Drinking Water Analytical Results (Detects Only)

		EPA	Maine	Region IX	8F	8F	9F HARDING	9F HARDING	9F HARDING	9F_HARDING	9F HARDING	9F_HARDING	10F	10F
		MCLs	MEG	Tap Water	5/1/1968	7/1/1968	12/1/1967	5/1/1968	7/1/1968	9/1/1968	1/1/1986	1/1/1990	12/1/1967	5/1/1968
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
<u>Metals</u>														
Aluminum	(ug/l)		1430	3650										
Arsenic	(ug/l)	10	10	0.045										
Barium	(ug/l)	2000	2000	255										
Beryllium	(ug/l)	4		7										
Cadmium	(ug/l)	5	3.5	2			0						0	
Calcium	(ug/l)													
Chromium	(ug/l)	100	40	11										
Cobalt	(ug/l)			73										
Copper	(ug/l)	1300	1300	146	0.04	0.04	0.02	0.04	0		0.04	0.02	0.02	0.06
Iron	(ug/l)			1095										
Lead	(ug/l)	15	10				0.01		0.05				0.02	
Magnesium	(ug/l)													
Manganese	(ug/l)		500	88										
Mercury	(ug/l)	2	2	1.1										
Nickel	(ug/l)		140	73	0.15		0.04						0.05	
Potassium	(ug/l)													
Sodium	(ug/l)		20000											
Vanadium	(ug/l)			3.6										
Zinc	(ug/l)		2000	1095		0.72	0.03		0.07	0.01			0.07	
Sulfate	(ug/l)													
Boron	(ug/l)		630	730										

Table 4.4-1 Drinking Water Analytical Results (Detects Only)

		EPA	Maine	Region IX	10F	10F	11F_ROBINSON	11F ROBINSON	12F JGRAY	12F JGRAY	12F_JGRAY	12F JGRAY	12F JGRAY	12F_JGRAY
		MCLs	MEG	Tap Water	7/1/1968	9/1/1968	12/1/1967	1/1/1986	12/1/1967	5/1/1968	7/1/1968	1/1/1986	1/1/1990	1/1/1991
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
<u>Metals</u>										_				
Aluminum	(ug/l)		1430	3650										
Arsenic	(ug/l)	10	10	0.045										
Barium	(ug/l)	2000	2000	255										
Beryllium	(ug/l)	4		7										
Cadmium	(ug/l)	5	3.5	2			0.001		0					
Calcium	(ug/i)													
Chromium	(ug/l)	100	40	11										
Cobalt	(ug/l)			73										
Copper	(ug/l)	1300	1300	146	0.03		0.03		0.01	0.04	0.02	0.2	0.09	0.26
Iron	(ug/l)			1095									1	
Lead	(ug/l)	15	10				0.09		0		0.05			
Magnesium	(ug/l)										-			
Manganese	(ug/l)		500	88										
Mercury	(ug/l)	2	2	1.1										
Nickel	(ug/l)		140	73			0.03		0.03					
Potassium	(ug/l)													
Sodium	(ug/l)		20000											
Vanadium	(ug/l)			3.6										
Zinc	(ug/l)		2000	1095	0.04	0.02	1.6	0.3	0.04		0.02			0.02
Sulfate	(ug/l)													
Boron	(ug/l)		630	730										

Table 4.4-1 Drinking Water Analytical Results (Detects Only)

		EPA	Maine	Region IX	13F_SMITH	13F_SMITH	13F_SMITH	13F_SMITH	14F_RANKIN	14F_RANKIN	14F RANKIN	14F RANKIN	14F_RANKIN	14F_RANKIN
		MCLs	MEG	Tap Water	12/1/1967	5/1/1968	7/1/1968	1/1/1986	12/1/1967	5/1/1968	7/1/1968	9/1/1968	1/1/1986	1/1/1990
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
<u>Metals</u>														
Aluminum	(ug/l)		1430	3650										
Arsenic	(ug/l)	10	10	0.045										
Barium	(ug/l)	2000	2000	255										
Beryllium	(ug/l)	4		7										
Cadmium	(ug/l)	5	3.5	2	0.001		0.008		0					
Calcium	(ug/l)													
Chromium	(ug/l)	100	40	11										
Cobalt	(ug/l)			73										
Copper	(ug/l)	1300	1300	146	0.14	0.08		0.03	0.05	0.09	0.11	0.25	0.18	0.04
Iron	(ug/l)			1095										
Lead	(ug/l)	15	10		0.01				0.08					0.005
Magnesium	(ug/l)													
Manganese	(ug/l)		500	88										
Mercury	(ug/l)	2	2	1.1										
Nickel	(ug/l)		140	73	0.03				0.04					
Potassium	(ug/l)													
Sodium	(ug/l)		20000											
Vanadium	(ug/l)			3.6										
Zinc	(ug/l)		2000	1095	0.05		0.03	0.01	0.05		0.04	0.05		
Sulfate	(ug/l)													
Boron	(ug/l)		630	730										

Table 4.4-1
Drinking Water Analytical Results
(Detects Only)

		EPA	Maine	Region IX	14F_RANKIN	CALLAHAN_WATER	DWCA-01	DWCA-01	DWCA-02	DWCA-03	DWCA-04	DWCA-05	DWCA-05	DWCA-06	DWCA-06
		MCLs	MEG	Tap Water	1/1/1991	1/1/1986	8/29/2002	9/10/2003	9/10/2003	9/10/2003	9/10/2003	9/10/2003	8/26/2004	8/29/2002	9/10/2003
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
Metals															
Aluminum	(ug/l)		1430	3650				-							
Arsenic	(ug/l)	10	10	0.045				[7.0]					-		
Barium	(ug/l)	2000	2000	255											
Beryllium	(ug/l)	4		7				-							
Cadmium	(ug/l)	5	3.5	2									[2.0]		
Calcium	(ug/l)														
Chromium	(ug/l)	100	40	11											
Cobalt	(ug/l)			73											
Copper	(ug/l)	1300	1300	146			31	24	110	86	13	[500]	73	[180]	[270]
Iron	(ug/l)			1095				20	30	10	[3100]	480	20		30
Lead	(ug/l)	15	10						9		[71.0]	7		4.3	
Magnesium	(ug/l)														
Manganese	(ug/l)		500	88					10		80	[150]	[360]		
Mercury	(ug/l)	2	2	1.1											
Nickel	(ug/l)		140	73											
Potassium	(ug/l)														
Sodium	(ug/l)		20000												
Vanadium	(ug/l)			3.6											
Zinc	(ug/l)		2000	1095	0.02	0.02	46	46	71	48	[7400]	170	40	150	100
Sulfate	(ug/l)							45000	12000	11000	9000	12000	13000		18000
Boron	(ug/l)		630	730											

Table 4.4-1 Drinking Water Analytical Results (Detects Only)

		EPA	Maine	Region IX	DWCA-06	DWCA-07	DWCA-08	DWCA-09	DWCA-10	DWCA-10	DWCA-10	DWCA-11	DWCA-11	DWCA-11	DWCA-12	DWCA-12
		MCLs	MEG	Tap Water	8/26/2004	9/10/2003	9/10/2003	9/10/2003	8/29/2002	9/10/2003	1/12/2005	8/29/2003	9/10/2003	1/12/2005	8/29/2002	1/12/2005
CONSTITUENT	UNITS			PRGs	Primary											
Metals															, , , , ,	
Aluminum	(ug/l)		1430	3650	60											
Arsenic	(ug/l)	10	10	0.045				[4.0]			[0.28]J			[0.25]J		[0.4]J
Barium	(ug/l)	2000	2000	255										4.7		2.9
Beryllium	(ug/l)	4		7										0.06J		0.08J
Cadmium	(ug/l)	5	3.5	2	[3.0]	[11.0]								0.04J		0.06J
Calcium_	(ug/l)										24800			9390		17400
Chromium	(ug/l)	100	40	11												
Cobalt	(ug/l)			73										0.16J		0.11J
Copper	(ug/l)	1300	1300	146	95	100		140	34	28	0.79J	[610]	[390]	[317]J	27	80.8J
Iron	(ug/l)			1095	60	10	20	[1300]		40			10	11.6J		287
Lead	(ug/l)	15	10		5	<u> </u>		5			0.03J		3	[20.4]J		[162]J
Magnesium	(ug/l)										3720			4930		1740
Manganese	(ug/l)		500	88			30	[160]					10	2.3		16.7
Mercury	(ug/l)	2	2	1.1							0.1			0.1		0.1
Nickel	(ug/l)		140	73							0.29J			1.9		2.3
Potassium	(ug/l)										1320			4940		712
Sodium	(ug/l)		20000								6760			10400		7800
Vanadium	(ug/l)			3.6							0.48J					
Zinc	(ug/l)		2000	1095	240	[2700]		- 8	10	13	2.2J	24	66	31.9J	10	56.4J
Sulfate	(ug/l)				19000	23000	27000	28000		15000	13600		12000	8750		13500
Boron	(ug/l)		630	730												

Table 4.4-1
Drinking Water Analytical Results
(Detects Only)

		EPA	Maine	Region IX	DWCA-13	DWCA-15	DWCA-15	DWCA-15	DWCA-15	DWCA-16	DWCA-16	DWCA-16	DWCA-16	DWCA-17	DWCA-17
		MCLs	MEG	Tap Water	9/10/2003	8/29/2002	9/10/2003	10/21/2003	1/11/2005	5/13/2003	9/10/2003	1/11/2005	1/11/2005	9/10/2003	11/18/2004
CONSTITUENT	UNITS	6		PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Duplicate 1	Primary	Primary
Metals															
Aluminum	(ug/l)		1430	3650											
Arsenic	(ug/l)	10	10	0.045											
Barium	(ug/l)	2000	2000	255								3.6	3.7		
Beryllium	(ug/l)	4		7											
Cadmium	(ug/l)	5	3.5	2								0.03J	0.02J		
Calcium	(ug/l)								40800			24200	24300		
Chromium	(ug/l)	100	40	11											
Cobalt	(ug/l)			73											
Copper	(ug/l)	1300	1300	146	43	21	53	7	11.5J	59	42	71.6J	45J	[270]	[280]
Iron	(ug/l)			1095	10		50				10	54.6	37.9	30	
Lead	(ug/l)	15	10				[1200]	3	4J	4		[10.1]J	2.4J	[11.0]	4
Magnesium	(ug/l)								4970		_	2550	2560	ļ <u>.</u>	
Manganese	(ug/l)		500	88								0.87	0.9		
Mercury	(ug/l)	2	2	1.1					0.1			0.1	0.1		<u> </u>
Nickel	(ug/l)		140	73					0.61			0.73	0.59		
Potassium	(ug/l)								1200			5650	5650		
Sodium	(ug/l)		20000						11700			13300	13400		
Vanadium	(ug/l)			3.6					0.53				<u> </u>		
Zinc	(ug/l)		2000	1095	32		460		1.6J	44	53	28.7J	31.3J	64	
Sulfate	(ug/l)				16000		18000	18000	9530		12000	13100	13100	8000	
Boron	(ug/l)		630	730						1					

Table 4.4-1
Drinking Water Analytical Results
(Detects Only)

		EPA	Maine	Region IX	DWCA-17	DWCA-17	DWCA-17	DWCA-17	DWCA-18	DWCA-18	DWCA-19	DWCA-19	DWCA-19	DWCA-20	DWCA-22	DWCA-23
		MCLs	MEG	Tap Water	11/18/2004	11/18/2004	11/18/2004	1/11/2005	9/10/2003	1/12/2005	5/13/2003	6/25/2003	8/26/2004	6/25/2003	8/29/2002	8/29/2002
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
<u>Metals</u>																
Aluminum	(ug/l)		1430	3650								140	240			
Arsenic	(ug/l)	10	10	0.045				[0.22]J		[0.33]J						
Barium	(ug/l)	2000	2000	255				0.95J		5.6		4	7			
Beryllium	(ug/l)	4		7						0.04J						
Cadmium	(ug/l)	5	3.5	2				0.02J		0.08J	[3.7]	[3.3]	[9.0]			
Calcium	(ug/l)							19400		11300						
Chromium	(ug/l)	100	40	11						[78.8]	7	1				
Cobalt	(ug/l)			73						0.05J						L
Copper	(ug/l)	1300	1300	146	[240]	34	32	34.9J	[490]	82.7J	[290]	[200]	68	7	40	61
Iron	(ug/l)			1095			30	15.1J	20	42.3		[1900]	520			
Lead	(ug/l)	15	10		5			0.77J	4	[14.7]J	[180]	[31.0]	[16.0]			l
Magnesium	(ug/l)							3760		2420						
Manganese	(ug/l)		500	88				1.6		1.1		35	20			L
Mercury	(ug/l)	2	2	1.1				0.1		0.1						
Nickel	(ug/l)		140	73				0.35J		0.62	8	4	3			
Potassium	(ug/l)							1150		4610						1
Sodium	(ug/l)		20000					9310		11000						
Vanadium	(ug/l)			3.6												1
Zinc	(ug/l)		2000	1095			36	25.1J	55	22J	[2000]	[1500]	[1700]		10	
Sulfate	(ug/l)						8000	6460	17000	13500		27000	32000			
Boron	(ug/l)		630	730								14				

Table 4.4-1 Drinking Water Analytical Results (Detects Only)

		EPA	Maine	Region IX	DWCA-24	DWCA-25	DWCA-26	DWCA-27	DWCA-28	DWCA-29	DWCA-30	DWCA-31	HOWARD	MGRAY-SANDECKI
		MCLs	MEG	Tap Water	10/21/2003	10/21/2003	10/21/2003	8/26/2004	8/26/2004	8/26/2004	8/26/2004	8/26/2004	1/1/1987	1/1/1986
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary	Primary
<u>Metals</u>														
Aluminum	(ug/l)		1430	3650				70						
Arsenic	(ug/l)	10	10	0.045			[3.0]	[5.0]						
Barium	(ug/l)	2000	2000	255				17						
	(ug/l)	4		7										
Cadmium	(ug/l)	5	3.5	2				[3.0]						0.01
Calcium	(ug/l)													
Chromium	(ug/l)	100	40	11										
Cobalt	(ug/l)			73										
Copper	(ug/l)	1300	1300	146		24		120		60	25	23	0.12	0.43
Iron	(ug/l)			1095	10	30		160	110		10	20		
Lead	(ug/l)	15	10			3		4		5				0.003
Magnesium	(ug/l)													
Manganese	(ug/l)		500	88			20	20						
Mercury	(ug/l)	2	2	1.1										
Nickel	(ug/l)		140	73				6						
Potassium	(ug/l)													
Sodium	(ug/l)	}	20000											
Vanadium	(ug/l)			3.6										
Zinc	(ug/l)		2000	1095	23	12	3	750	13	28	18	5	0.45	0.26
Sulfate	(ug/l)				5000	9000	28000	17000	15000	10000	11000	8000		
Boron	(ug/l)]]	630	730										

Table 4.4-1 Drinking Water Analytical Results (Detects Only)

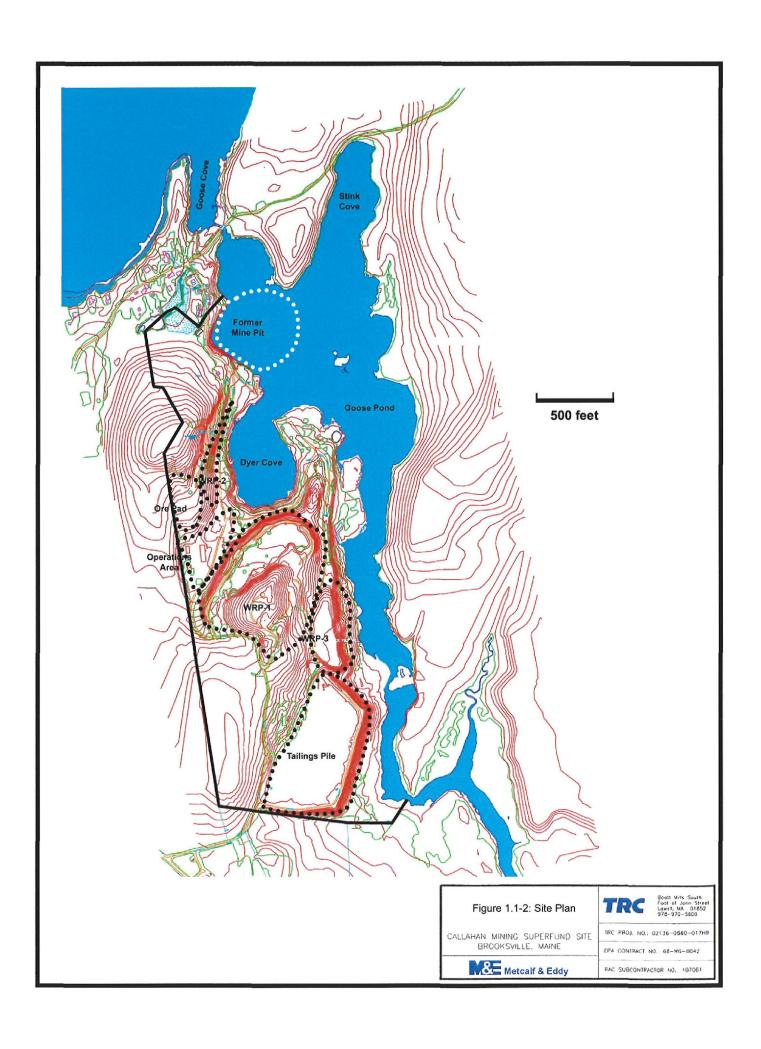
		EPA	Maine	Region IX	MGRAY-SANDECKI	MGRAY-SANDECKI	MGRAY-SANDECKI	NORRINGTON
		MCLs	MEG	Tap Water	1/1/1987	1/1/1990	1/1/1991	1/1/1987
CONSTITUENT	UNITS			PRGs	Primary	Primary	Primary	Primary
Metais								
Aluminum	(ug/l)		1430	3650				
Arsenic	(ug/l)	10	10	0.045				
Barium	(ug/l)	2000	2000	255				
Beryllium	(ug/l)	4		7				
Cadmium	(ug/l)	5	3.5	2	0.005		0.0007	
Calcium	(ug/l)							
Chromium	(ug/l)	100	40	11				
Cobalt	(ug/l)			73				
Copper	(ug/l)	1300	1300	146		0.25	0.4	
Iron	(ug/l)			1095				
Lead	(ug/l)	15	10		0.001			0.003
Magnesium	(ug/l)							
Manganese	(ug/l)		500	88				
Mercury	(ug/l)	2	2	1.1				
Nickel	(ug/l)		140	73				
Potassium	(ug/l)							
Sodium	(ug/l)		20000					
Vanadium	(ug/l)			3.6				
Zinc	(ug/l)		2000	1095		0.04	0.08	
Sulfate	(ug/l)							
Boron	(ug/l)		630	730				

Table 4.5-1 Marine Flora/Fauna Analytical Results (Detects Only)

			CASTINE_1	CASTINE_1_N	CASTINE_2	CASTINE_3	CASTINE_4	CR-3	GOOSE_COVE	CR-3
			mussel	mussel	mussel	mussel	mussel	mussel	mussel	clam
		Fish Tissue	M. edulis	M. edulis	M. edulis	M. edulis	M. edulis	M. edulis	M. edulis	Mya arenaria
		Screening Level	10/6/2001	1/1/1989	10/6/2001	10/6/2001	10/6/2001	12/7/1974	1/1/1993	12/7/1974
CONSTITUENT	UNITS									12///07
Polyaromatic Hydroca	rbons									
1-Methylphenanthrene						0.84	1.4			
Benzo(a)anthracene	(ug/kg)	4.3				1	0.89			
Benzo(b)fluoranthene	(ug/kg)	22				0.77	1.5			
Chrysene	(ug/kg)	22				0.77	1.2			
Fluoranthene	(ug/kg)	22	0.80B		0.92B	1.4B	2.3B			
Phenanthrene	(ug/kg)	210	0.73B		0.76B	1.3B	2.3B			
Pyrene	(ug/kg)	22	0.6		0.64	1	1.4			
Metals										
Aluminum	(mg/kg)	0.8	[283.37]		[371.02]	[381.38]	[198.26]			
Arsenic	(mg/kg)	0.002	[15.13]	Limited Street, Street, St.	[11.97]	[11.89]	[16.5]			
Cadmium	(mg/kg)	0.004	[7.31]	[9.1]	[6.6]	[6.46]	[6.99]	[0.96]	[9.1]	[0.38]
Chromium	(mg/kg)	0.02	[1.63]	[1.3]	[1.2]	[1.52]	[1.5]		[1.3]	
Cobalt	(mg/kg)	4								0.28
Copper	(mg/kg)	0.5	[16.02]	[8.9]	[10.68]	[11.16]	[11.36]	[1.52]	[8.9]	[6.03]
Iron	(mg/kg)		445.66	210	438.67	456.21	388.43	30		736
Lead	(mg/kg)	0.0008	[11.43]	[6.3]	[8.21]	[9.72]	[11.22]	[1.4]	[6.3]	[7]
Mercury	(mg/kg)		0.1059	0.12	0.1192	0.112	0.1065		0.06	
Nickel	(mg/kg)	0.042	[3.29]	[0.95]	[3.03]	[0.99]			[0.95]	0.01
Silver	(mg/kg)	0.37		0.1				0.06	[0.5]	0.09
Zinc	(mg/kg)	0.3	[223.87]	[180]	[167.52]	[171.38]	[202.54]	[37]	[180]	[28]

Table 4.5-1 Marine Flora/Fauna Analytical Results (Detects Only)


			CR-3	CR_GOOSE_POND	CR-3	CR-3
			bloodworm	coho salmon	seaweed	seaweed
			Glycera	Onchorhyncus		Chondrus
		Fish Tissue	dibranchiata	kisutch	Fucus sp.	crispus
		Screening Level	12/7/1974	1/1/1975	12/7/1974	12/7/1974
CONSTITUENT	UNITS					
Polyaromatic Hydroca						
1-Methylphenanthrene	(ug/kg)					
Benzo(a)anthracene	(ug/kg)	4.3				
Benzo(b)fluoranthene	(ug/kg)	22				
Chrysene	(ug/kg)	22				
Fluoranthene	(ug/kg)	22				
Phenanthrene	(ug/kg)	210				
Pyrene	(ug/kg)	22				
<u>Metals</u>						
Aluminum	(mg/kg)	0.8				
Arsenic	(mg/kg)	0.002				
Cadmium	(mg/kg)	0.004	[0.89]		3.53	0.46
Chromium	(mg/kg)	0.02				
Cobalt	(mg/kg)	4				4.9
Copper	(mg/kg)	0.5	[4.67]	[0.67]	18.4	29.6
Iron	(mg/kg)		57		392	1230
Lead	(mg/kg)	0.0008			5	19.5
Mercury	(mg/kg)					
Nickel	(mg/kg)	0.042	[0.85]			
Silver	(mg/kg)	0.37	0.08		0.52	0.77
Zinc	(mg/kg)	0.3	[26]	[8]	463	188


Table 6.0-1: RI/FS Data Needs				
Data Item	Potential Data Gaps	Comments		
Geology	· · · · · · · · · · · · · · · · · · ·	TD		
Bedrock Elevation	yes	The true bedrock surface elevation should be verified via drilling at key locations.		
Topography	no	Site survey completed		
Soil particle size	yes	Data needed for subsurface soils to evaluate contaminant fate and transport and geotechnical properties.		
Hydrogeology	.			
Overburden hydraulic conductivity, other aquifer parameters	yes	Data needed to evaluate fate and transport and possibly to evaluate dewatering alternatives.		
Bedrock hydraulic conductivity, other aquifer parameters	yes	No hydraulic conductivity test data are available for the bedrock. These data will be needed if bedrock aquifer is contaminated.		
Vertical hydraulic gradient	yes	Well clusters on the site to evaluate vertical hydraulic gradients in overburden and bedrock and evaluate vertical ground water transport pathways to bedrock and surface water.		
Water table elevation/flow direction/seepage velocity	yes	No water table maps exist and there are no ground water monitoring points.		
Bedrock aquifer potentiometric surface	yes	No data exist for evaluation of bedrock ground water flow direction. These data will be needed if bedrock aquifer is contaminated.		
Goose Pond flow information (tidal flow, floodplain, flow rate, tidal elevation, temperature/ salinity/pH profile with depth in pit)	yes	No data exist regarding flow in Goose Pond. These data will be needed to evaluate the fate and transport of contaminated sediment and surface water.		
Sediment thickness and lateral extent	yes	Thickness estimates based on sub-bottom profiling will be useful, but sampling will be needed to determine the thickness of sediments deposited after the mining operations began. Will need these data to estimate remedial costs for sediment dredging or capping.		
Annual Precipitation	yes	Data need to be compiled for site.		
Ecological				
Wetland extent	yes	No wetland delineation has been completed at the site.		
Habitat	no	TRC completed a habitat evaluation.		

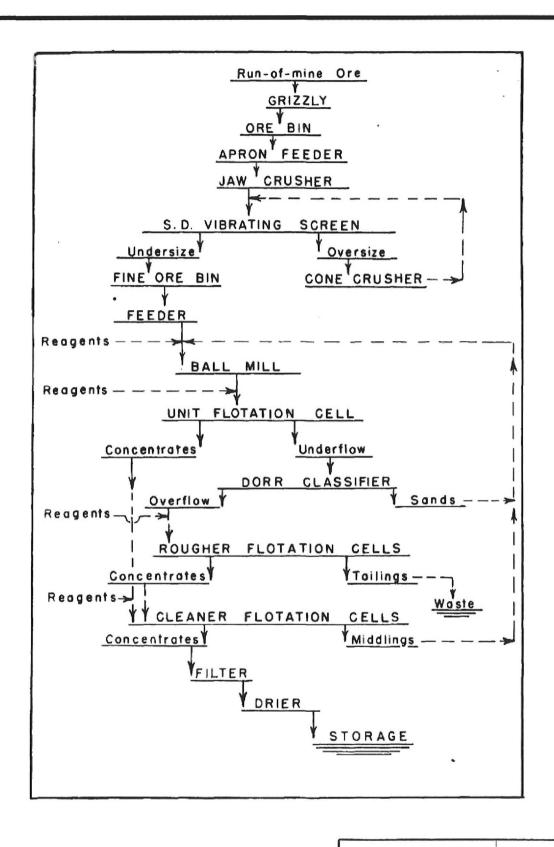

	Table 6.0-1: RI/FS Data Needs				
Data Item	Potential Data Gaps	Comments			
Bioassay	yes	Additional data needed in Goose Pond, Goose Cove, Dyer Cove and possibly the Former Pit Area to evaluate impacts to fin fish and shell fish. Toxicity testing of shellfish, benthic invertebrates and fish recommended.			
Background	yes	Reference data were collected in the RI.			
Nature and Extent of Contain	mination (On-s	ite)			
Bedrock ground water	yes	No recent test data exist to evaluate bedrock ground water quality. Need background data for metals due to expected natural elevated metals concentrations.			
Overburden ground water	yes	No recent test data exist to evaluate overburden ground water quality.			
Surface water	yes	Seeps at Tailings Pile, Waste Rock Pile 3 and Waste Rock Pile 2 need to be sampled to determine nature and extent of contamination, for risk assessment and to evaluate fate and transport. Non-chemical water quality parameters (pH, dissolved oxygen, Eh, salinity, temperature, etc.) needed in surface water bodies to evaluate fate and transport of contaminants. Data needed during all phases of tidal cycle.			
Sediment	yes	Sediment thickness and lateral extent.			
Surface soil	yes	Data needed to evaluate acid generating potential, neutralization potential, sulfur content, metals content and leachability testing of waste materials.			
Subsurface soil	yes	Need at least eight subsurface soil samples at each of the Waste Rock Piles, the Tailings Pile, the Ore Pad and the Former Operations Area for Risk Assessment. Subsurface soil contamination in process area not delineated. Geotechnical information needed to evaluate stability of waste rock piles, Ore Pad and Tailings Pile. Data needed to evaluate acid generating potential, neutralization potential, sulfur content, metals content and leachability testing of waste materials. Volume of waste in rock and tailings piles. Consolidation analysis of Tailings Pile (Cone Penetrometer data transect, moisture data, density data.			
Air/dust	yes	Given the elevated metals concentrations in surface			

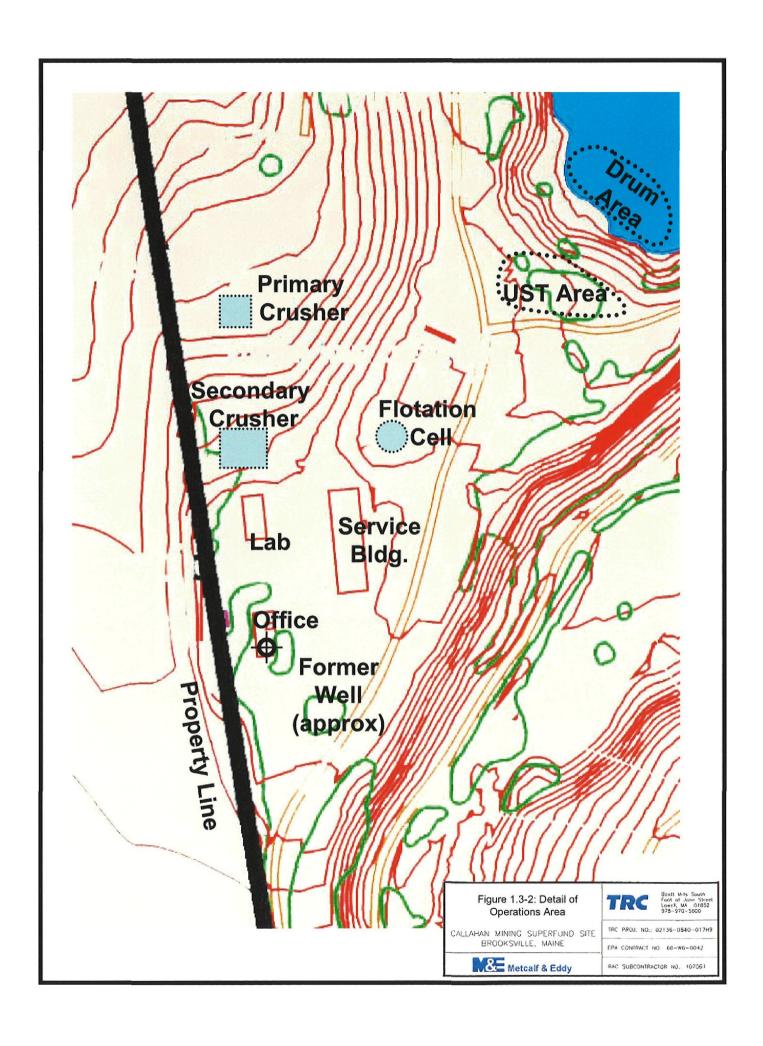
Table 6.0-1: RI/FS Data Needs				
Data Item	Potential Data Gaps	Comments		
_		soils, dust sampling should be performed for metals and silica.		
Biota	Yes	Sampling of forage fish, fin fish, shellfish and benthic invertebrates needs to be performed to evaluate impact to the food chain. A taxonomic analysis of the benthic invertebrate population needs to be completed to determine whether there is a noticable impact		
Nature and Extent of Co	ontamination (Off-s	<u></u>		
Residential Wells	yes	Continued monitoring recommended due to variable past results.		
Surface water	yes	Sampling in Penobscot Bay should be conducted to determine impact. Sampling of water in sump should be performed		
Sediment	yes	Sampling in Penobscot Bay should be conducted. Insufficient data in Weir Cove. Sampling of sediment in sump should be performe		
Surface soil	no	Sufficient data exist for HHRA		

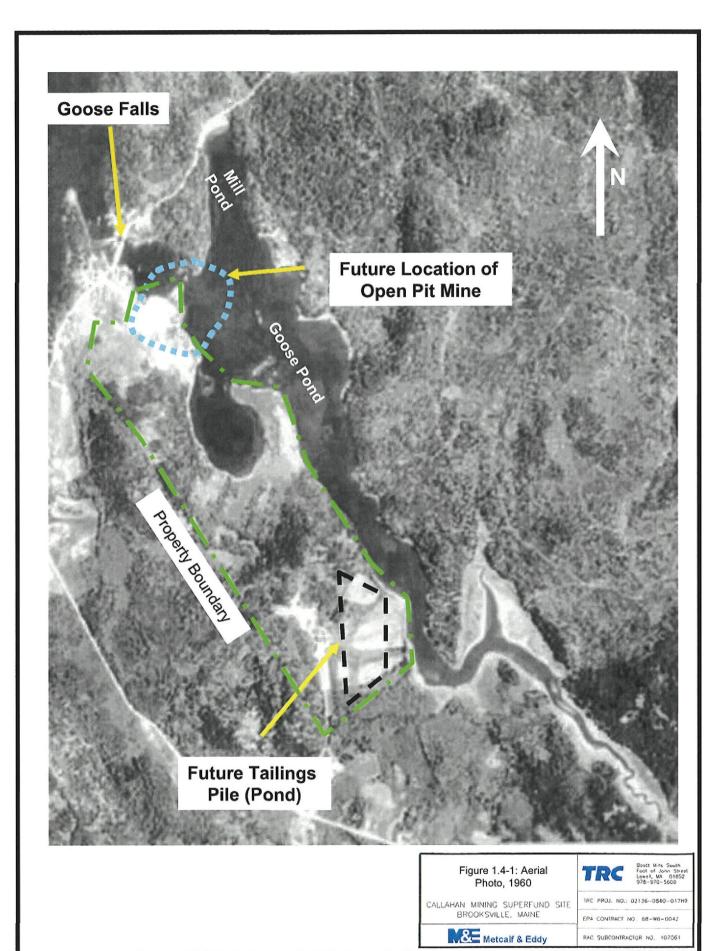
Figures

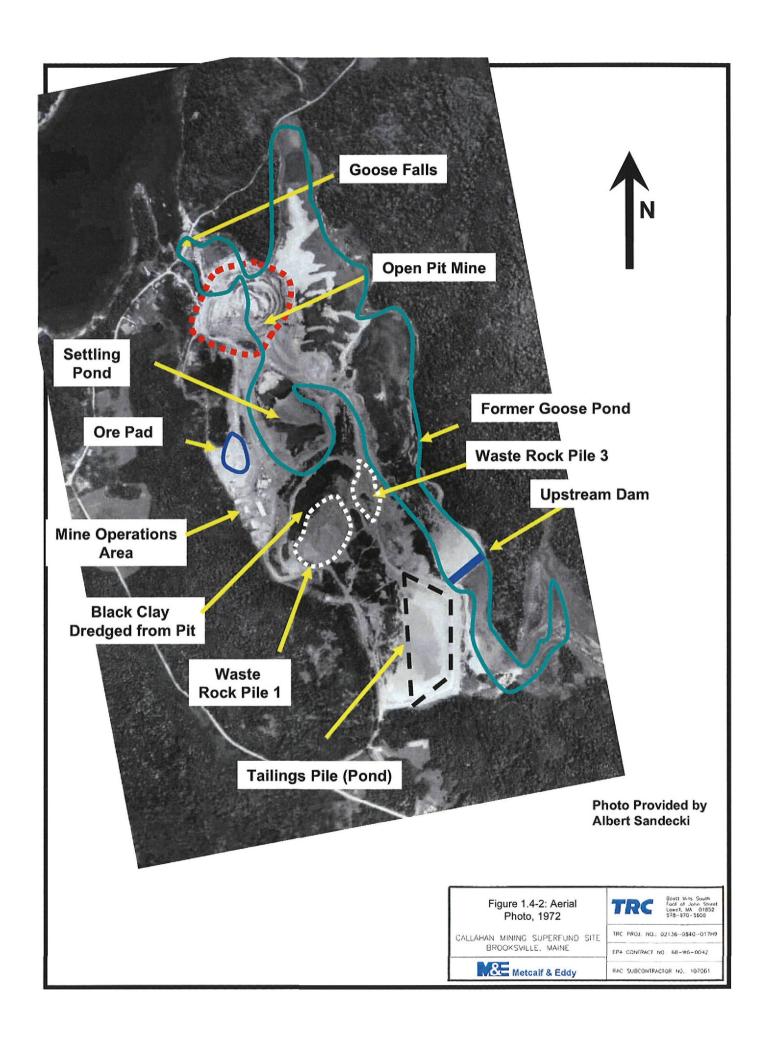
Figure 1.3-1: Flowchart of Mining Operations

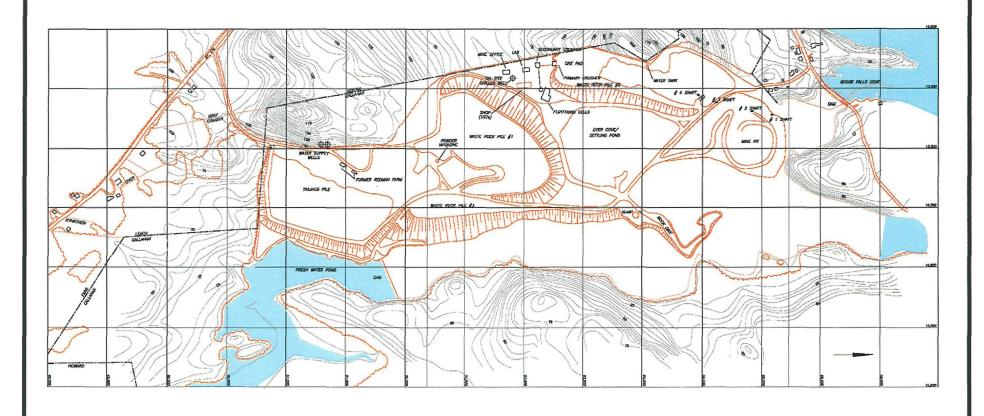
Mining Operations

CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE






Boots U.os South Foot of John Street Lowell, MA 01852 978-970-5600


TRC PROJ. NO.: 02136--0540--017H9

EPA CONTRACT NO: 68-W6-0042

Figure 1.4-3: Map of 1972 Site Conditions

CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE

Metcalf & Eddy

TRC

Boots Mills South Foot of John Street Lowell, MA 01852

TRC PROJ. NO.: 02136-0540-017H9

EPA CONTRACT NO: 68-W6-0042

Figure 1.4-4: Aerial Photo of Mining Operations

CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE

TRC

Boots Was South Foot of John Stree Lowel, MA 01652 978-970-5600

RC PROJ. NO.: 02136--0540--017H9

EPA CONTRACT NO.: 68-W6-0042

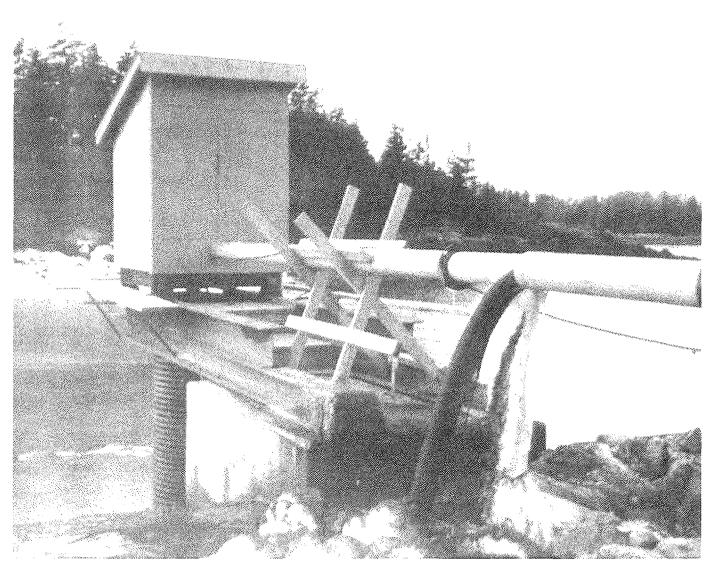
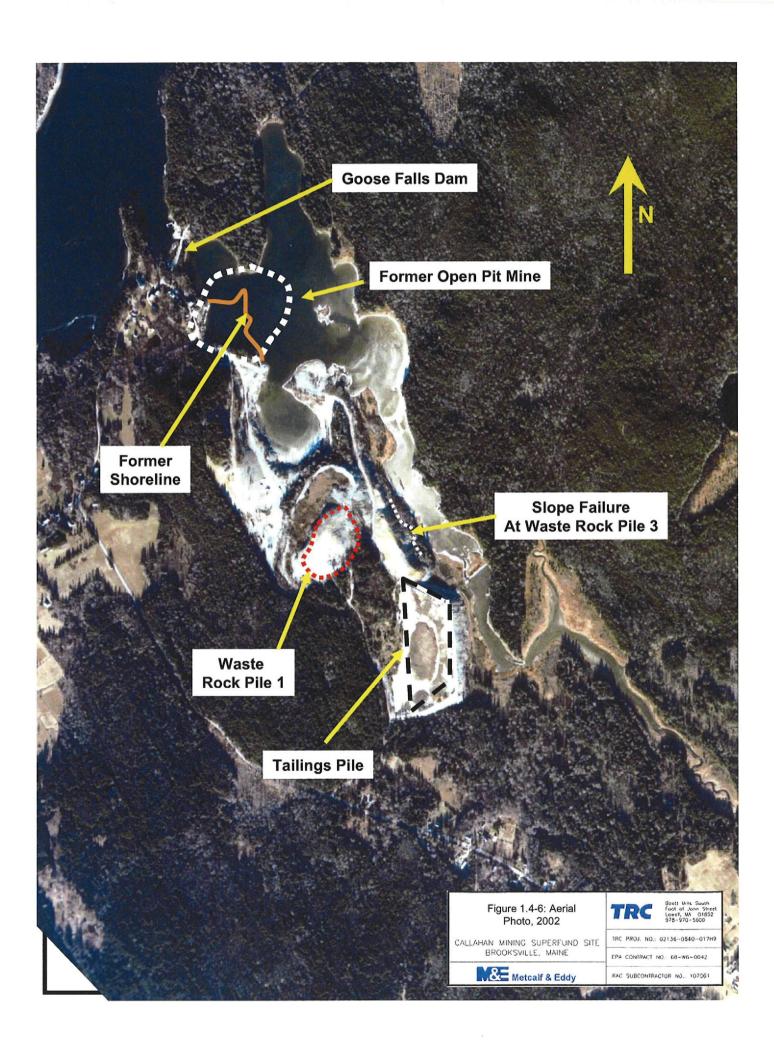


Photo Provided by Albert Sandecki

Figure 1.4-5: Photo of Discharge Pipe

CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE

MEE Metcalf & Eddy


TRC

Boots Was South Fact of John Staret Lower, MA 01852 974-970-1600

IRC PROJ. NO.: 02136-0540-01789

EPA CONTRACT NO 68-W6-CO4.

PAC SUBCONTRACTOR NO. 10/061

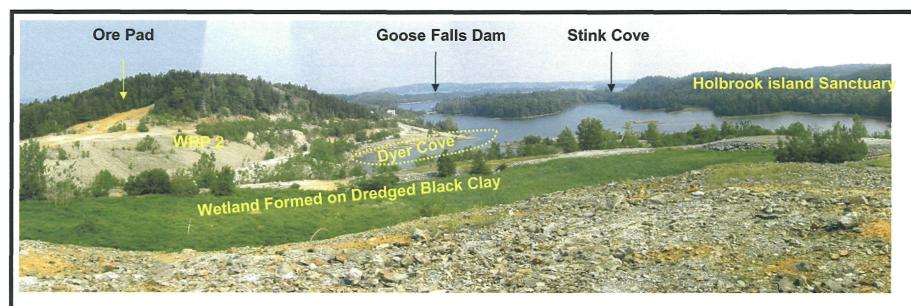
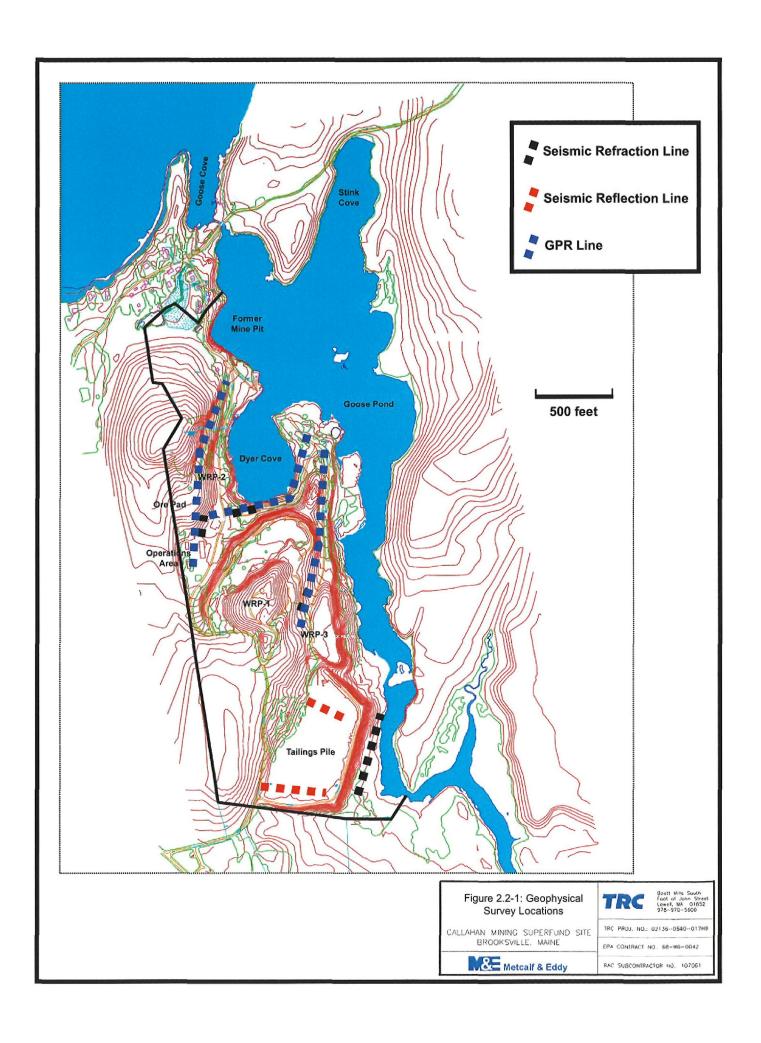
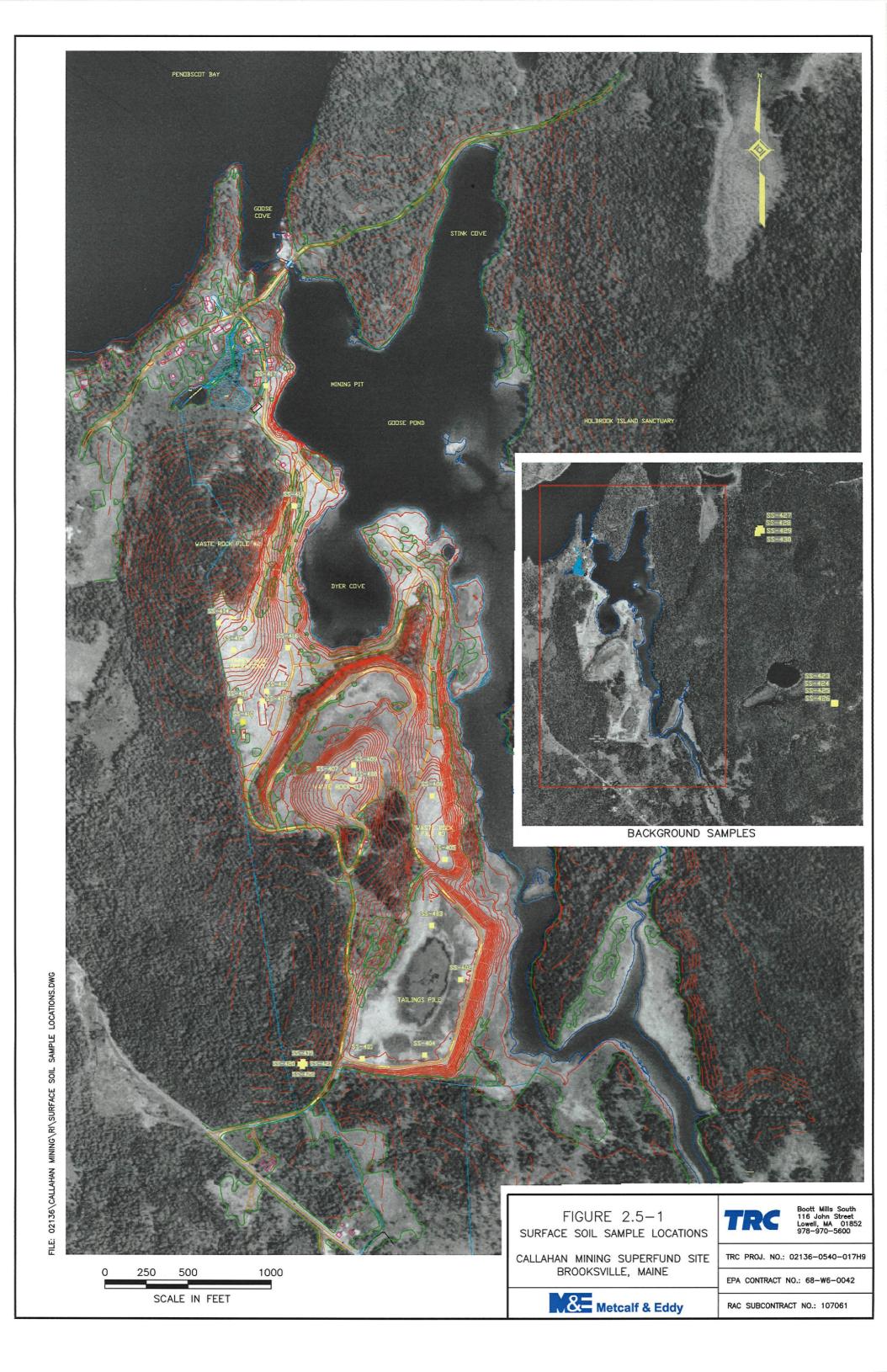
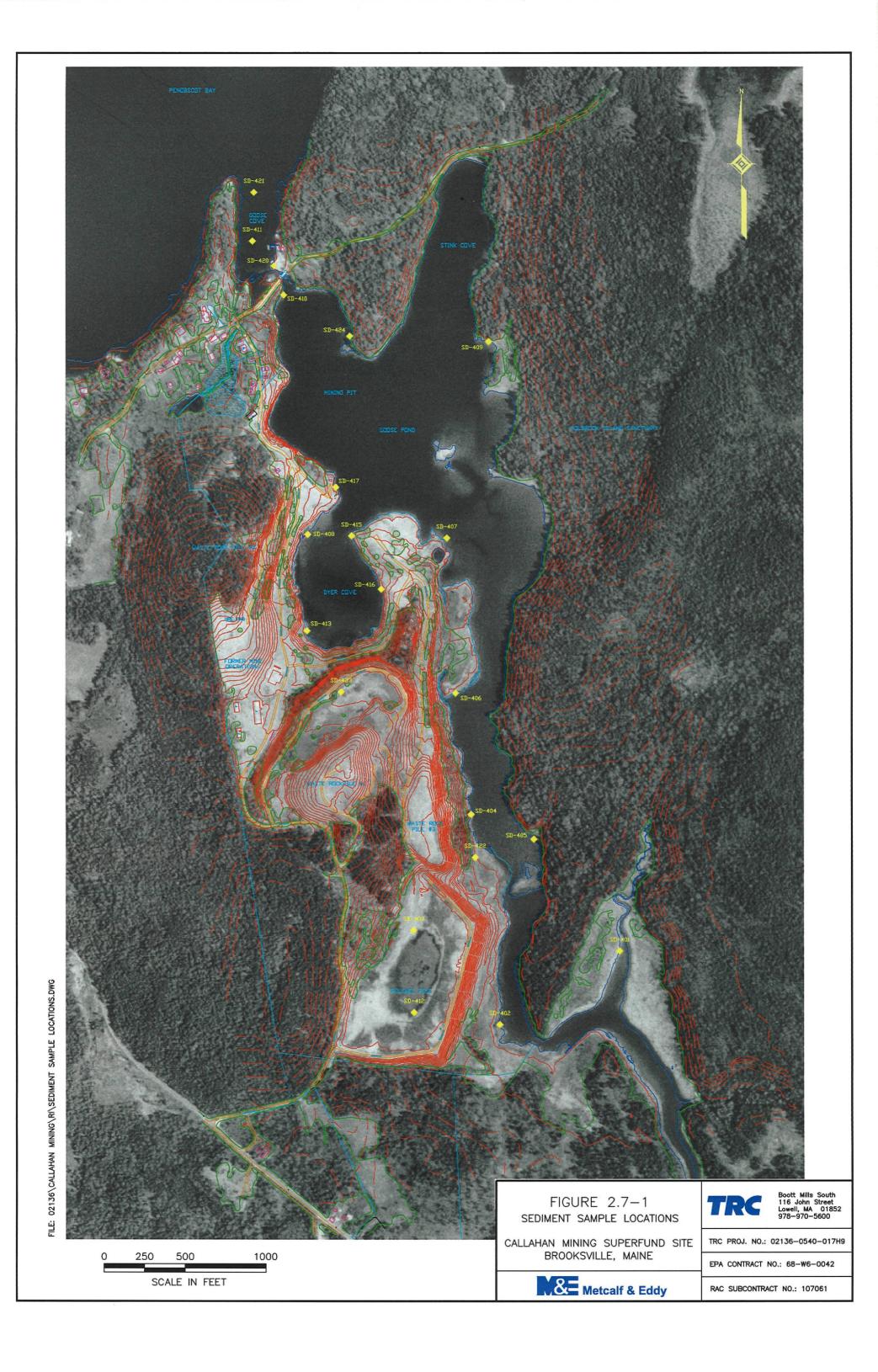
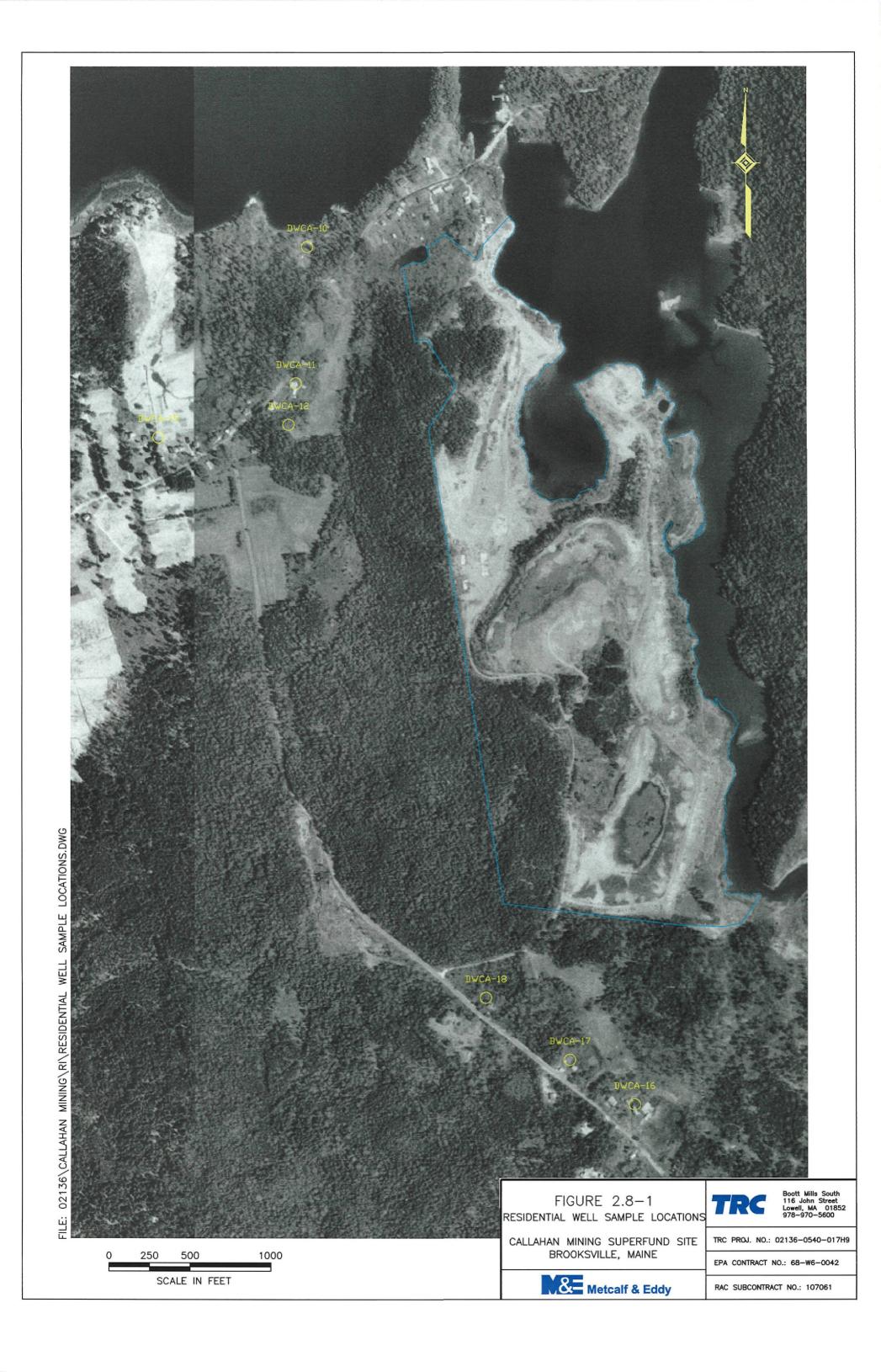


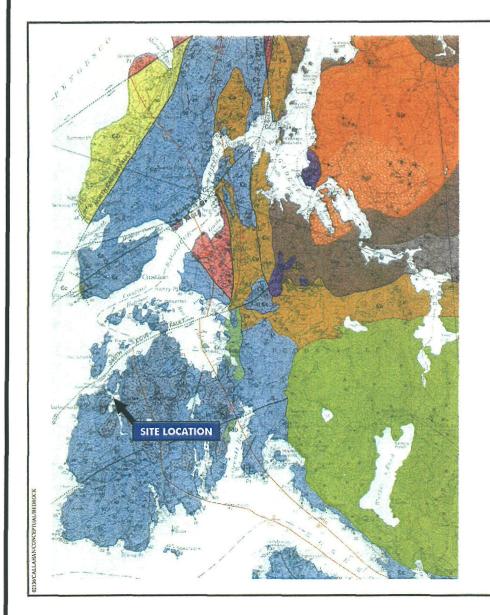
Figure 1.4-7: Photo of Site from WRP-1


CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE


Metcalf & Eddy

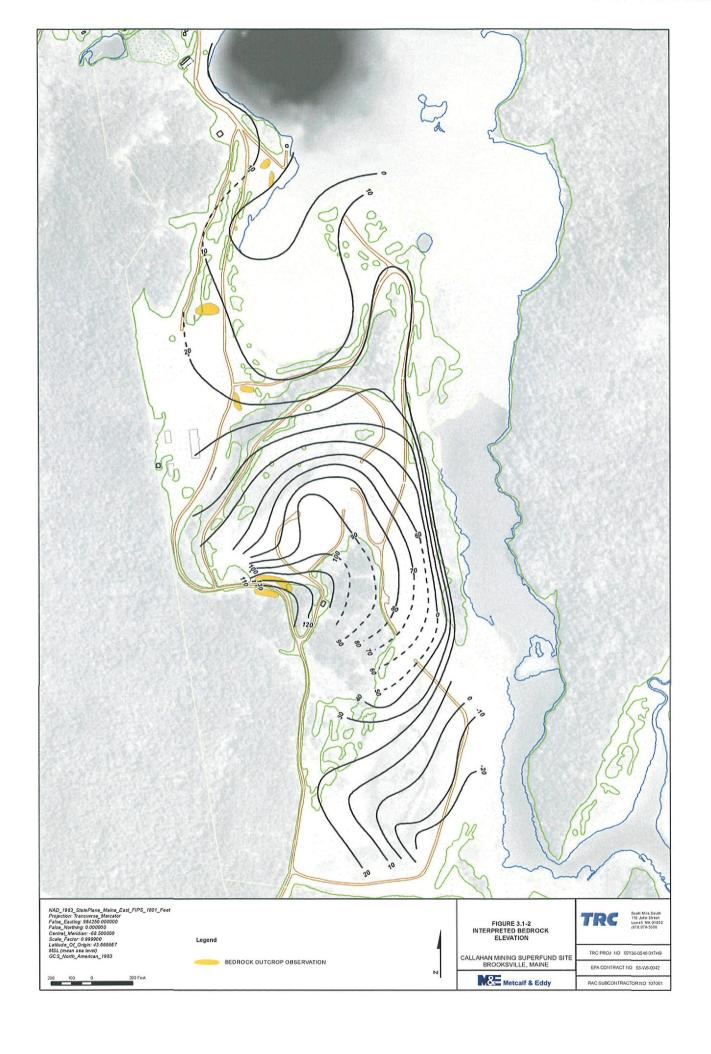

Foot of John Lowell, MA

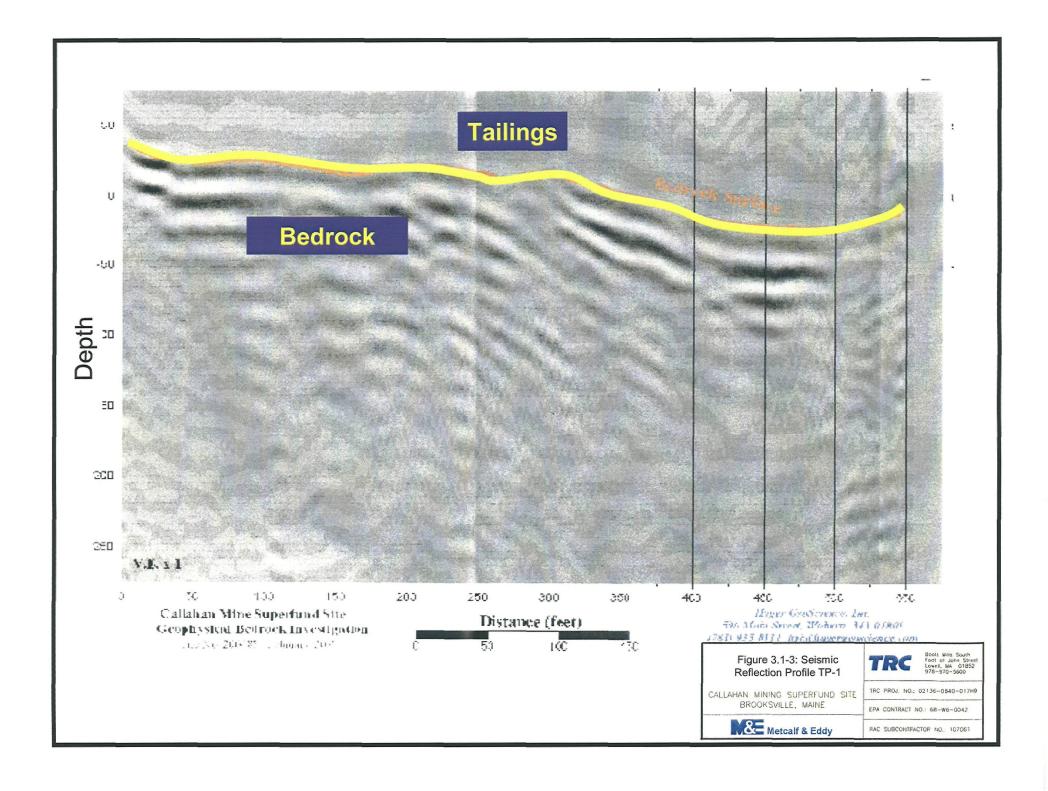

TRC PROJ. NO.: 02136-0540-017H9

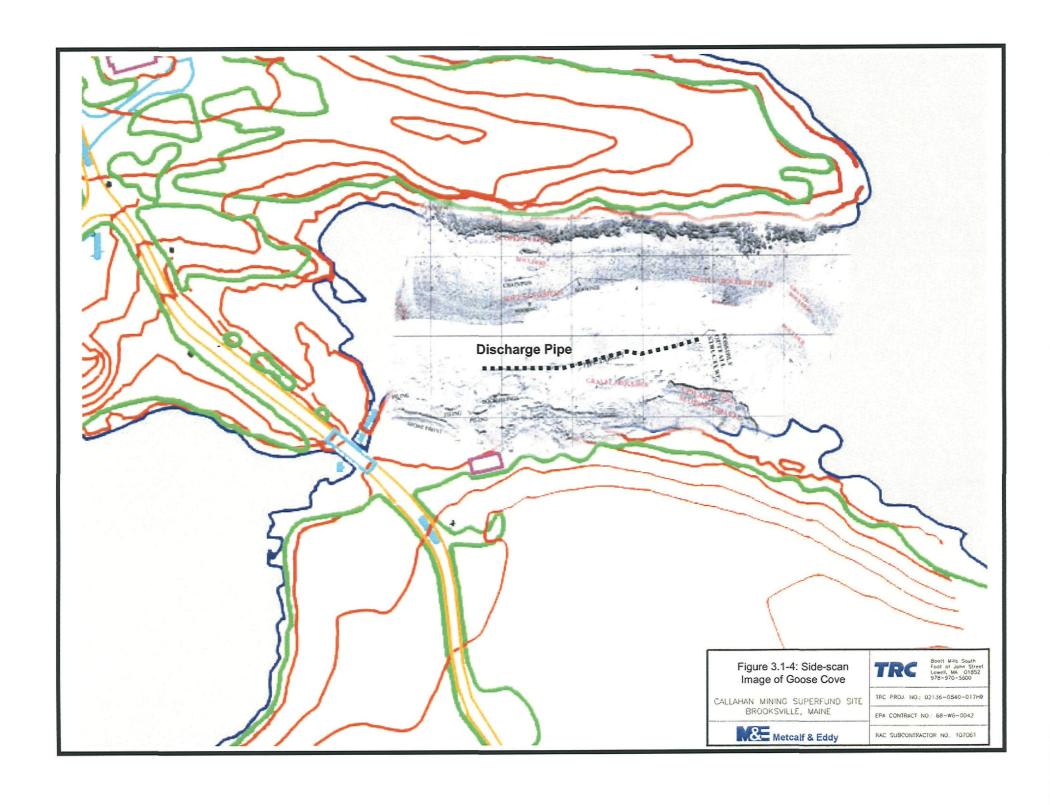

EPA CONTRACT NO: 68-W6-0042

Legend:

BASE MAP IS A PORTION OF THE FOLLOWING: GEOLOGY OF NORTHERN PENOBSCOT BAY, MAINE BY DAVID B. STEWART WITH CONTRIBUTIONS TO GEOCHRONOLOGY BY ROBERT D. TUCKER, 1998


Figure 3.1-1 BEDROCK GEOLOGY MAP CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE TRC


Boott Mills South Foot of John Street Lowell, MA 01852 978-970-5000


MINING SUPERFUND SITE TRC PROJ. NO.: 02136-0480-017H1

EPA CONTRACT NO.; 68-W6-0042

Metcalf & Eddy

North

LAYERS

South

EXCAVATION AREA STEPPED BEDROCK TERRACES

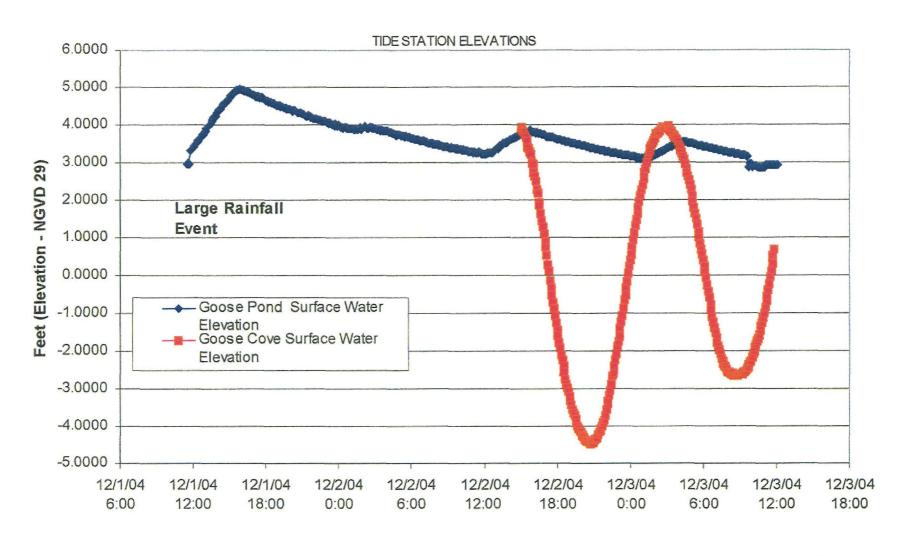
> SAND, SOME GRAVEL AND BOULDERS FILLED IN EXCAVATION PIT

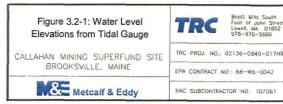
200 ft (approx. 196.7 elev.)

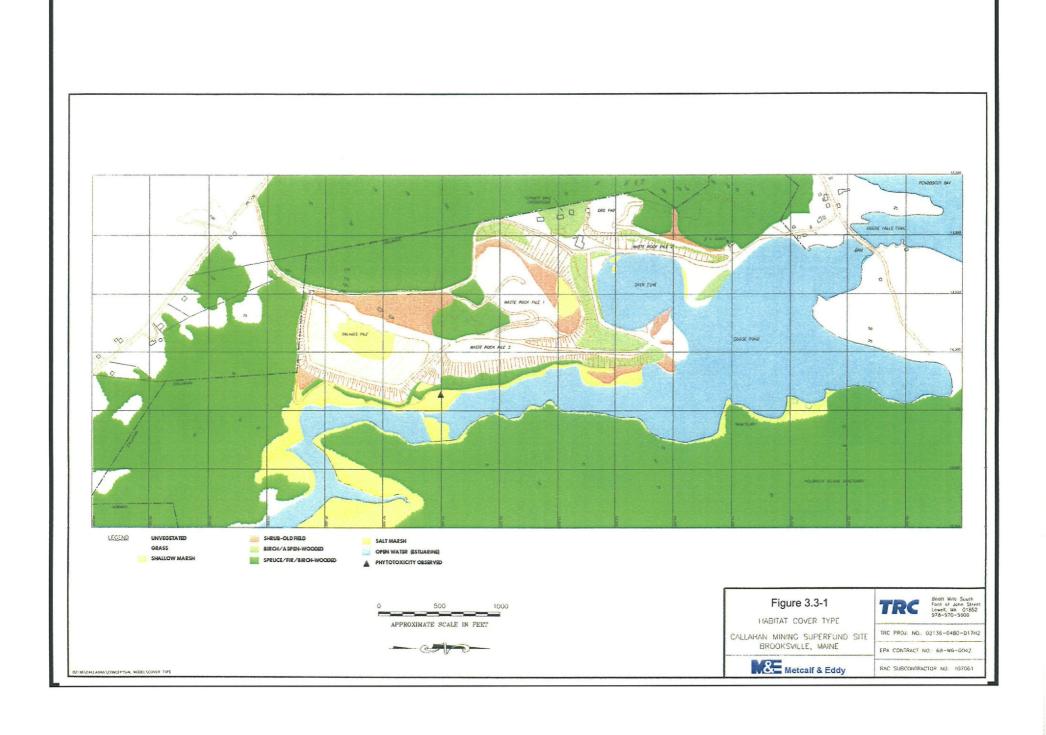
GOOSE POND SUB-BOTTOM PROFILE C - C' 0

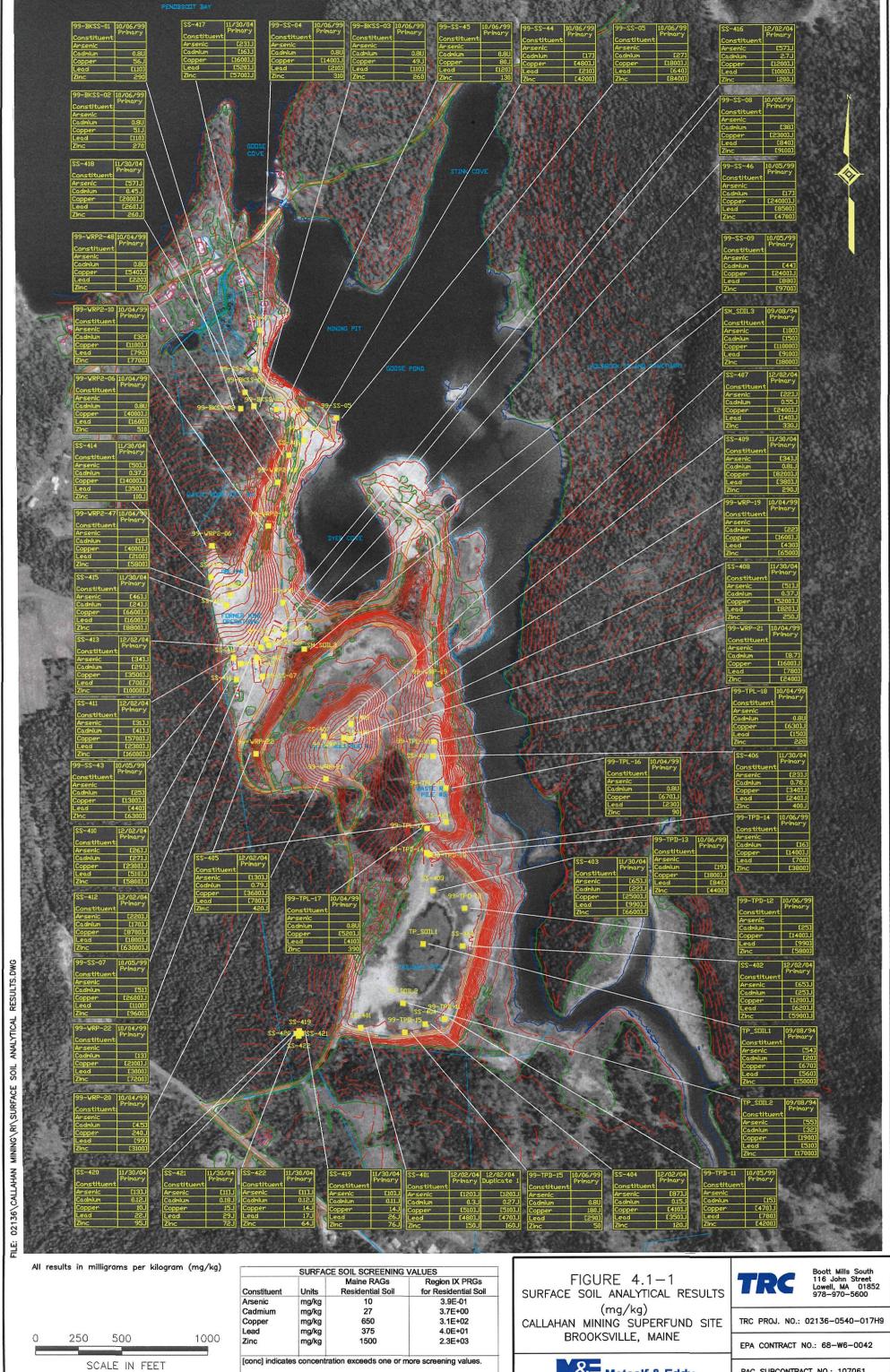
Figure 3.1-5: Sub-bottom Profile of Former Mine Pit

CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE

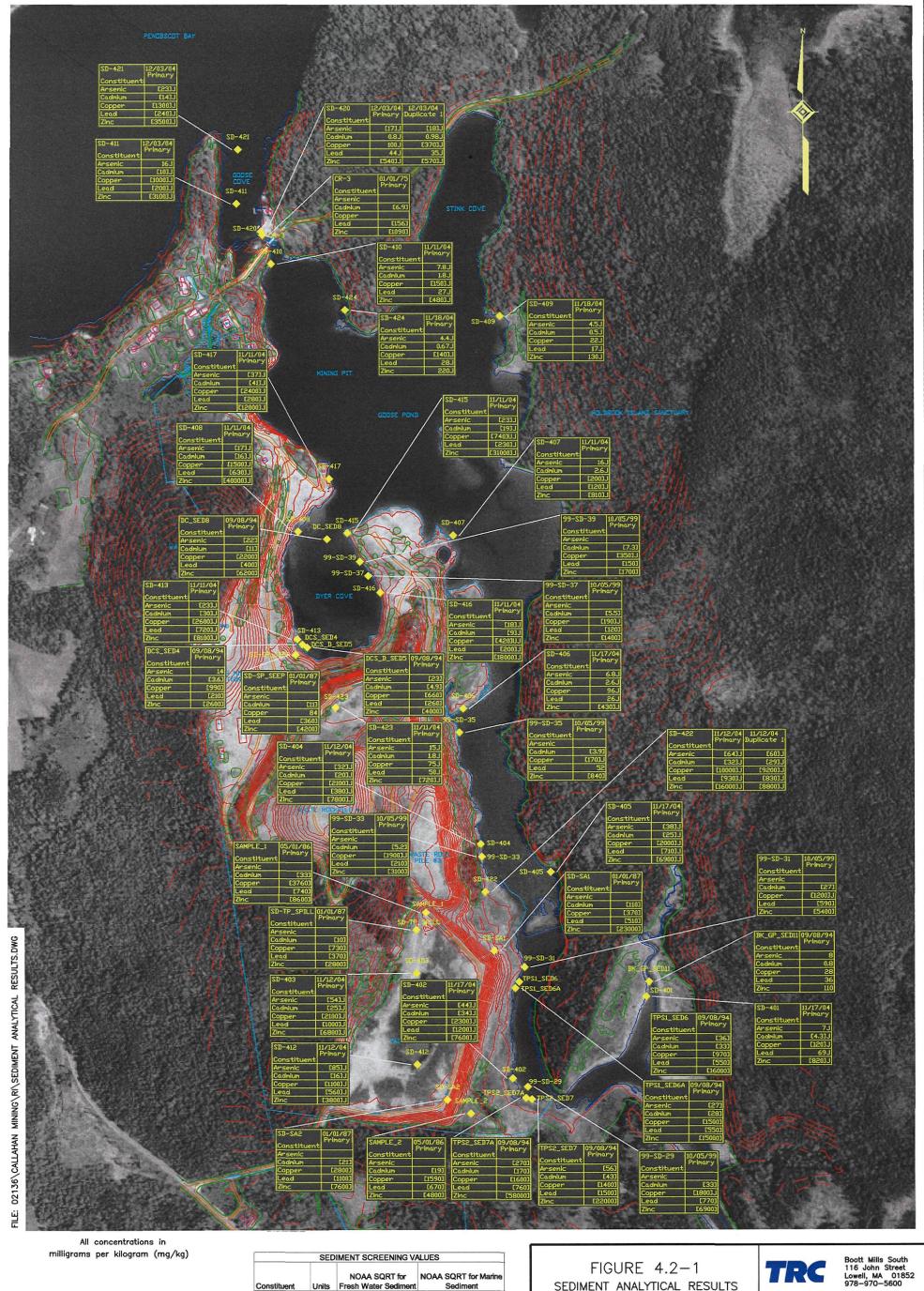

Metcalf & Eddy


TRC


Boott Mills South foot of John Street Lowell, MA 01852


TRC PROJ. NO.: 02136-0540-017H9

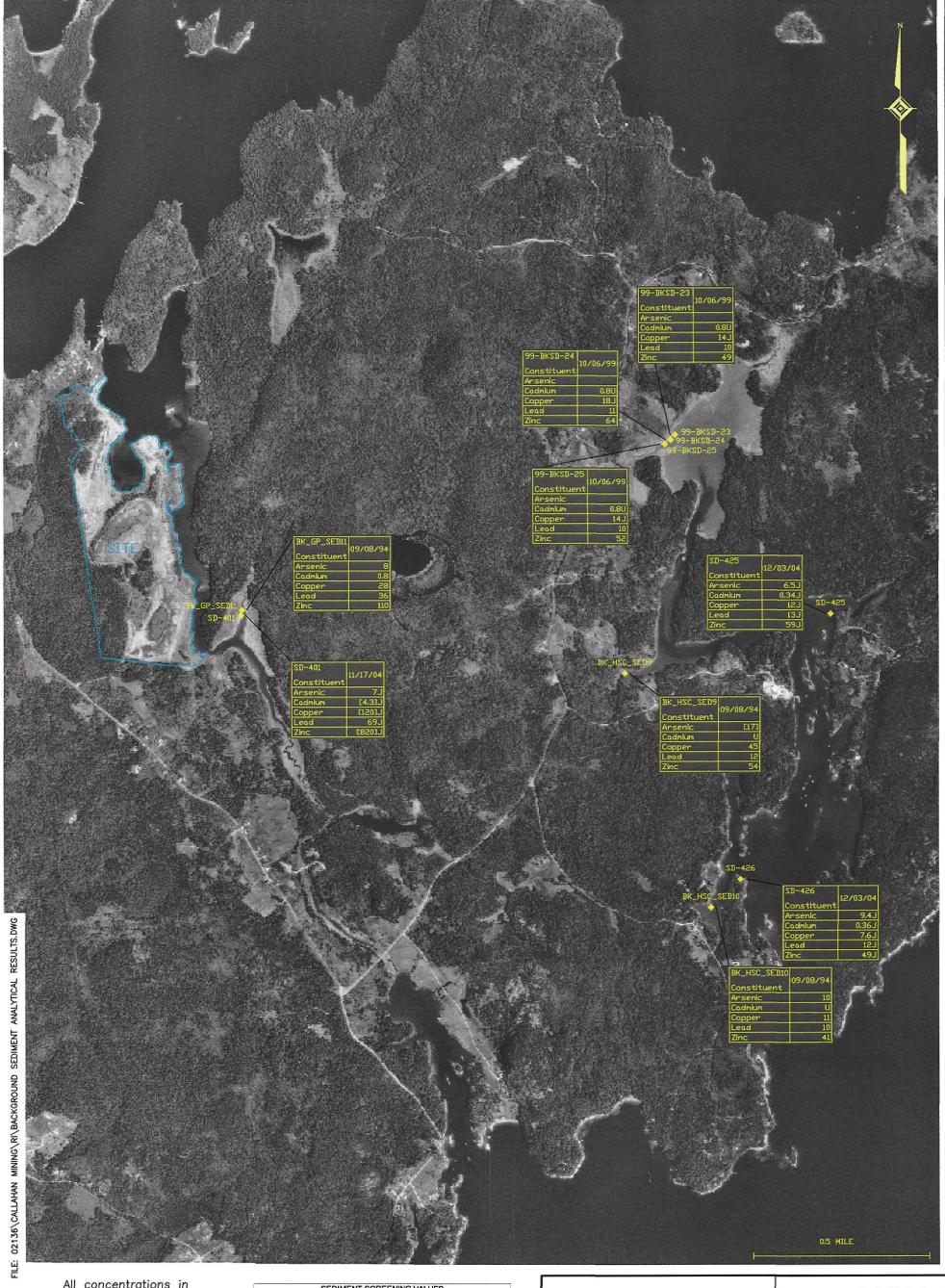
EPA CONTRACT NO.: 68-W6-0042



Metcalf & Eddy

250 500 1000 SCALE IN FEET

Constituent	Units	NOAA SQRT for Fresh Water Sediment	NOAA SQRT for Marine Sediment
Arsenic	mg/kg	17	41.6
Cadmium	mg/kg	3.5	4.2
Copper	mg/kg	197	108
Lead	mg/kg	91.3	112
Zinc	mg/kg	315	271


SEDIMENT ANALYTICAL RESULTS

CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE

TRC PROJ. NO.: 02136-0540-017H9

EPA CONTRACT NO.: 68-W6-0042

All concentrations in milligrams per kilogram (mg/kg)

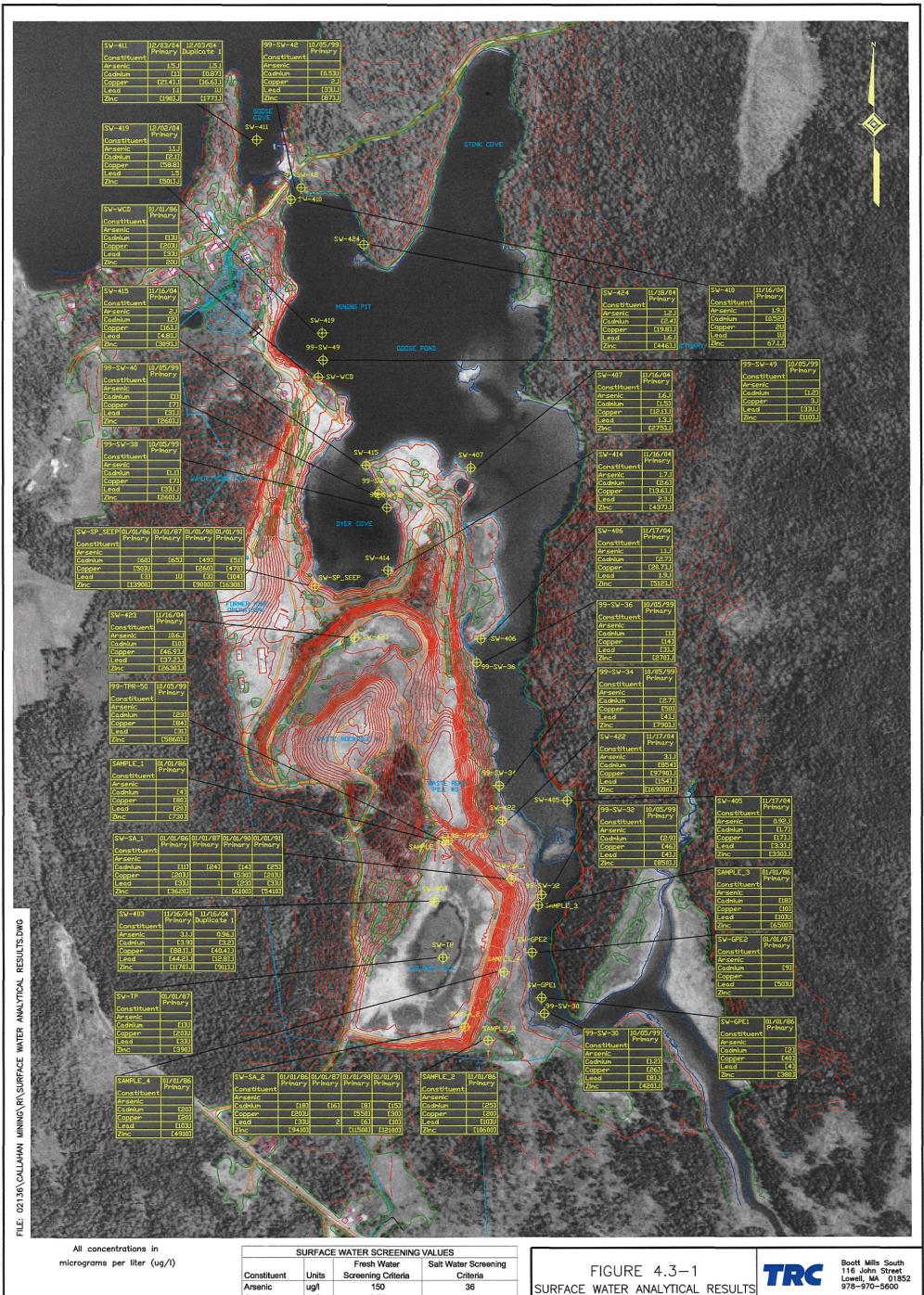
	SED	IMENT SCREENING VA	ALUES
Constituent	Units	NOAA SQRT for Fresh Water Sediment	NOAA SQRT for Marine Sediment
Arsenic	mg/kg	17	41.6
Cadmium	mg/kg	3.5	4.2
Copper	mg/kg	197	108
Lead	mg/kg	91.3	112
Zinc	mg/kg	315	271

[conc] indicates concentration exceeds one or more screening values.

FIGURE 4.2-2

SEDIMENT ANALYTICAL RESULTS
BACKGROUND LOCATIONS

CALLAHAN MINING SUPERFUND SITE
BROOKSVILLE, MAINE


Metcalf & Eddy

Boott Mills South 116 John Street Lowell, MA 01852 978-970-5600

TRC PROJ. NO.: 02136-0540-017H9

EPA CONTRACT NO.: 68-W6-0042

Metcalf & Eddy

BROOKSVILLE, MAINE

CALLAHAN MINING SUPERFUND SITE TRC PROJ. NO.: 02136-0540-017H9

EPA CONTRACT NO.: 68-W6~0042

RAC SUBCONTRACT NO.: 107061

SCALE IN FEET

500

250

Cadmium

Copper

Lead

Zinc

1000

ug/l

ug/l

ug/l

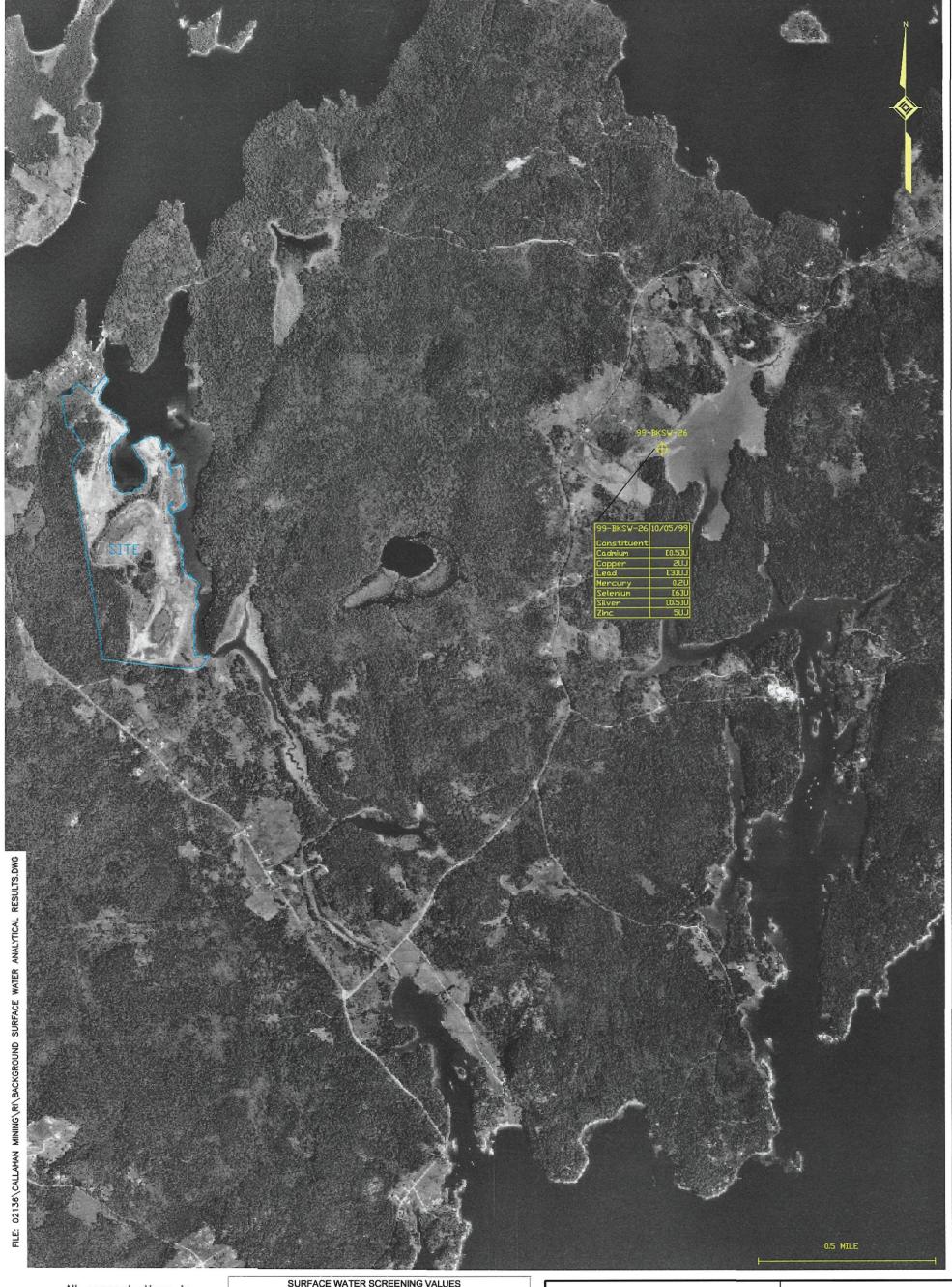
ug/l

0.25

9

2.5

120


[conc] indicates concentration exceeds one or more screening values.

8.8

3.1

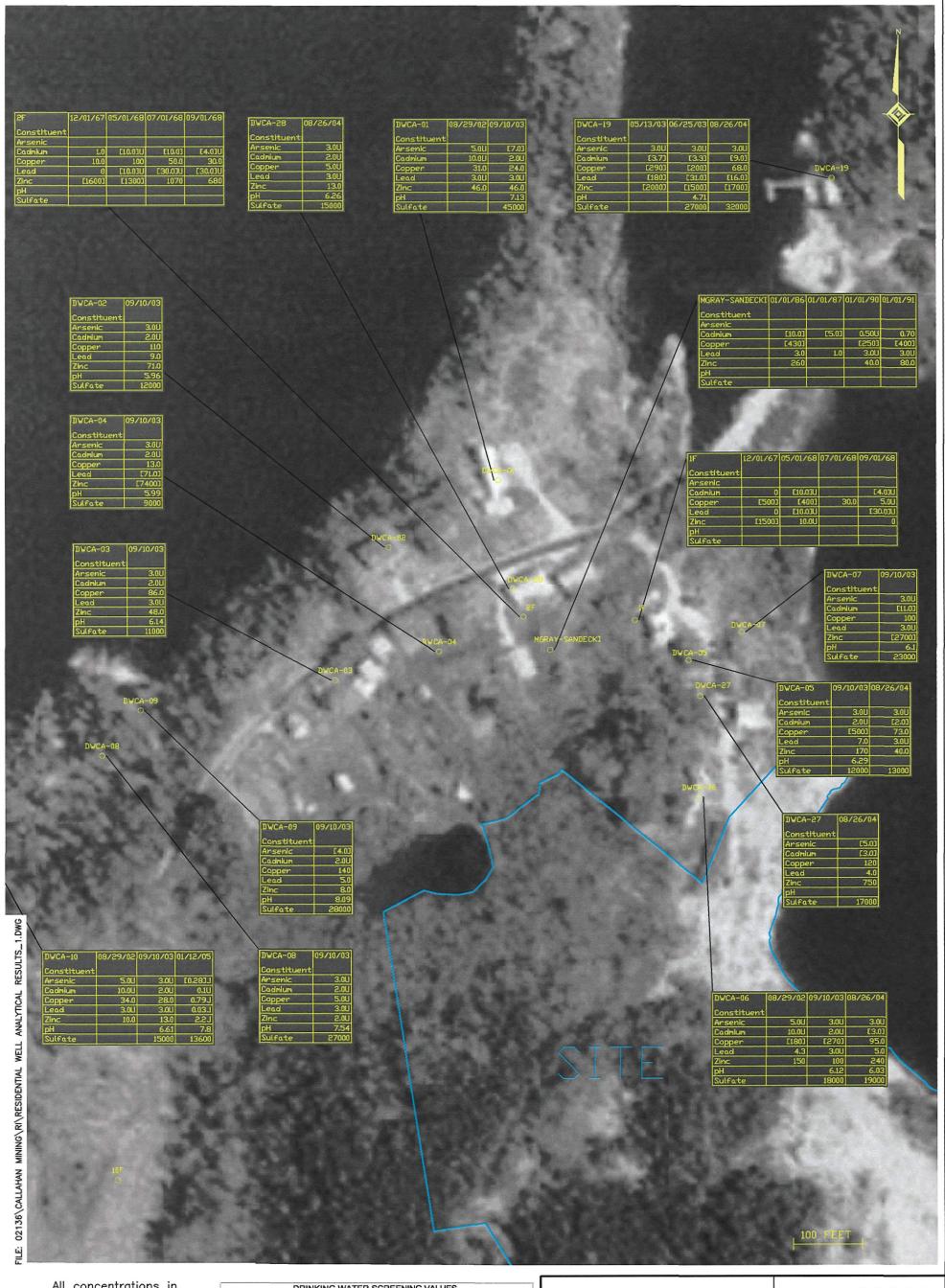
8.1

81

All concentrations in micrograms per liter (ug/l)

		Fresh Water	Salt Water Screening
Constituent	Units	Screening Criteria	Criteria
Arsenic	ug/l	150	36
Cadmium	ug/l	0.25	8.8
Copper	ug/l	9	3.1
Lead	ug/l	2.5	8.1
Zinc	ug/l	120	81

FIGURE 4.3-2
SURFACE WATER ANALYTICAL RESULTS
BACKGROUND LOCATIONS


CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE

TRC PROJ. NO.: 02136-0540-017H9

EPA CONTRACT NO.: 68-W6-0042

All concentrations in micrograms per liter (ug/l)

	DRINE	ING WATER SC	REENING VALUES	
Constituent	Units	EPA MCLs	State of Maine MEGs	Region IX Tap Water PRGs
Arsenic	ug/l	10	10	0.045
Cadmium	-3.	5	3.5	1.825
Соррег	ug/l	1300	1300	146
Lead	ug/l	15	10	None
Zinc	ug/l	None	2000	1095

[conc] indicates concentration exceeds one or more screening values.

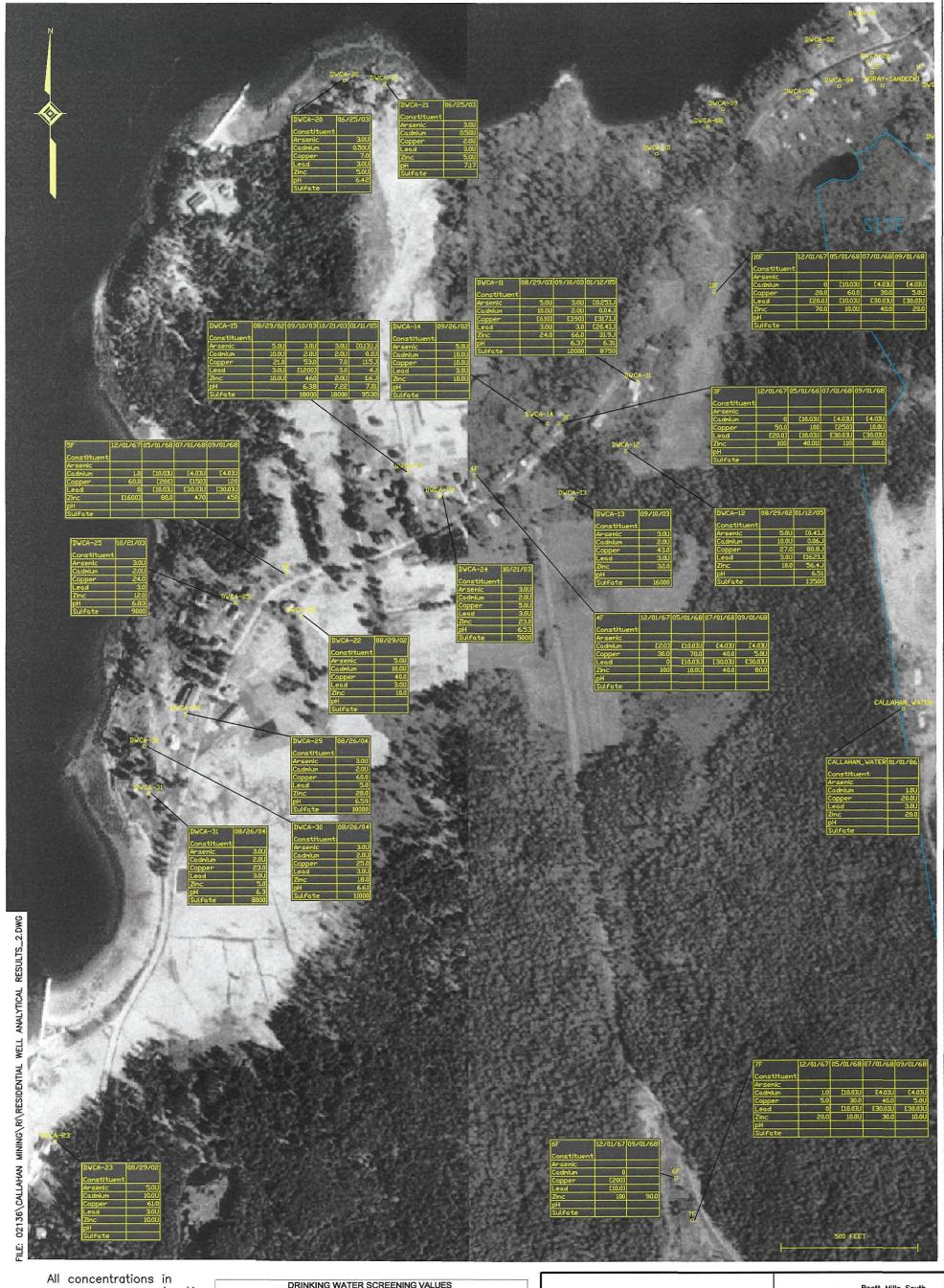
FIGURE 4.4—1

RESIDENTIAL WELL ANALYTICAL

RESULTS — NORTHERN AREA

CALLAHAN MINING SUPERFUND SITE

BROOKSVILLE, MAINE


Metcalf & Eddy

Boott Mills South 116 John Street Lowell, MA 01852 978-970-5600

TRC PROJ. NO.: 02136-0540-017H9

EPA CONTRACT NO.: 68-W6-0042

All concentrations in micrograms per liter (ug/l)

	DRIN	KING WATER SC	REENING VALUES	
Constituent	Units	EPA MCLs	State of Maine MEGs	Region IX Tap Water PRGs
Arsenic	ug/l	10	10	0.045
Cadmium	ug/l	5	3.5	1.825
Соррег	ug/l	1300	1300	146
Lead	ug/l	15	10	None
Zinc	ug/l	None	2000	1095

[conc] indicates concentration exceeds one or more screening values.

FIGURE 4.4-2 RESIDENTIAL WELL ANALYTICAL RESULTS — EASTERN AREA CALLAHAN MINING SUPERFUND SITE

BROOKSVILLE, MAINE



Boott Mills South 116 John Street Lowell, MA 01852 978-970-5600

TRC PROJ. NO.: 02136-0540-017H9

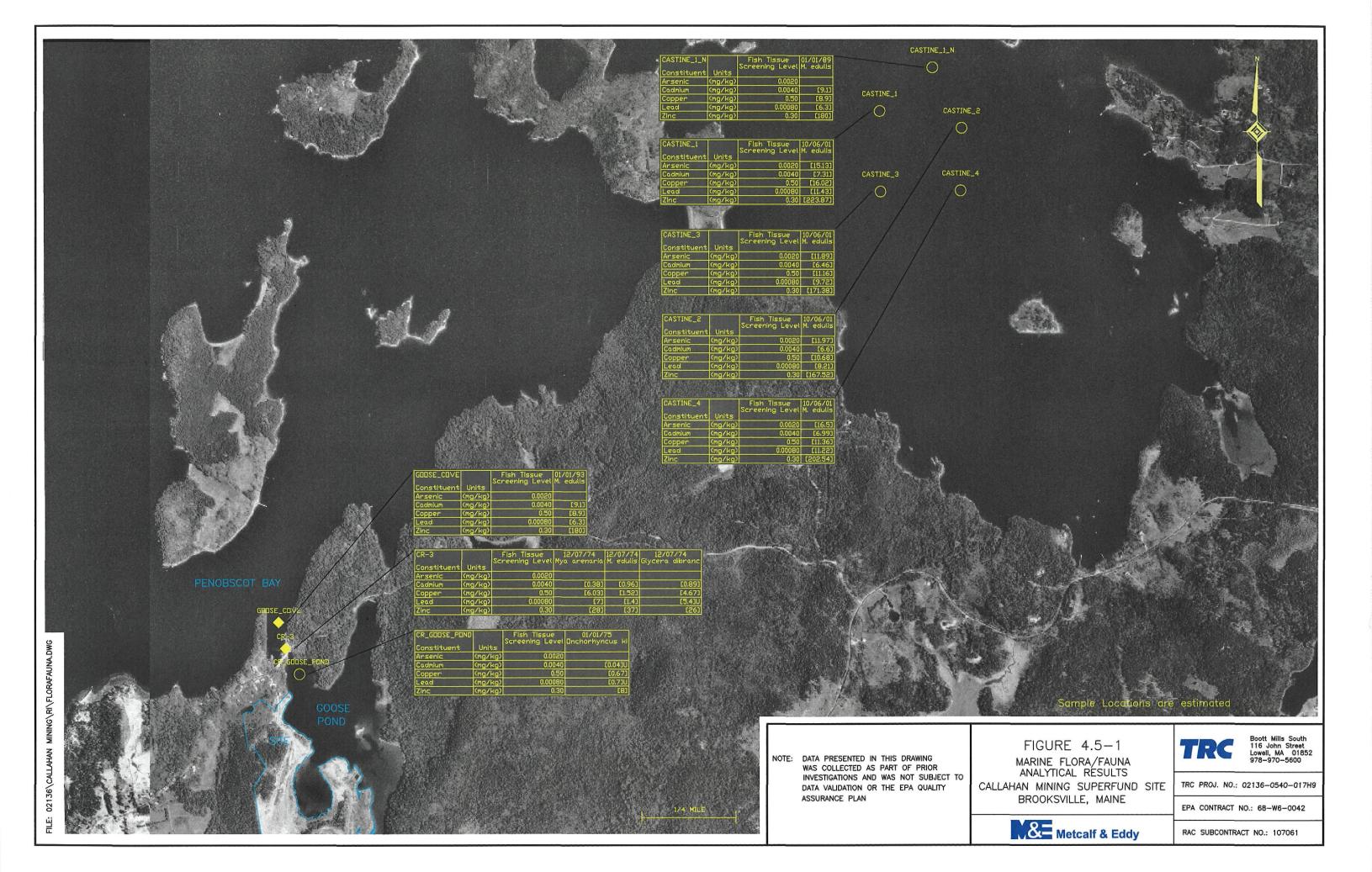
EPA CONTRACT NO.: 68-W6-0042

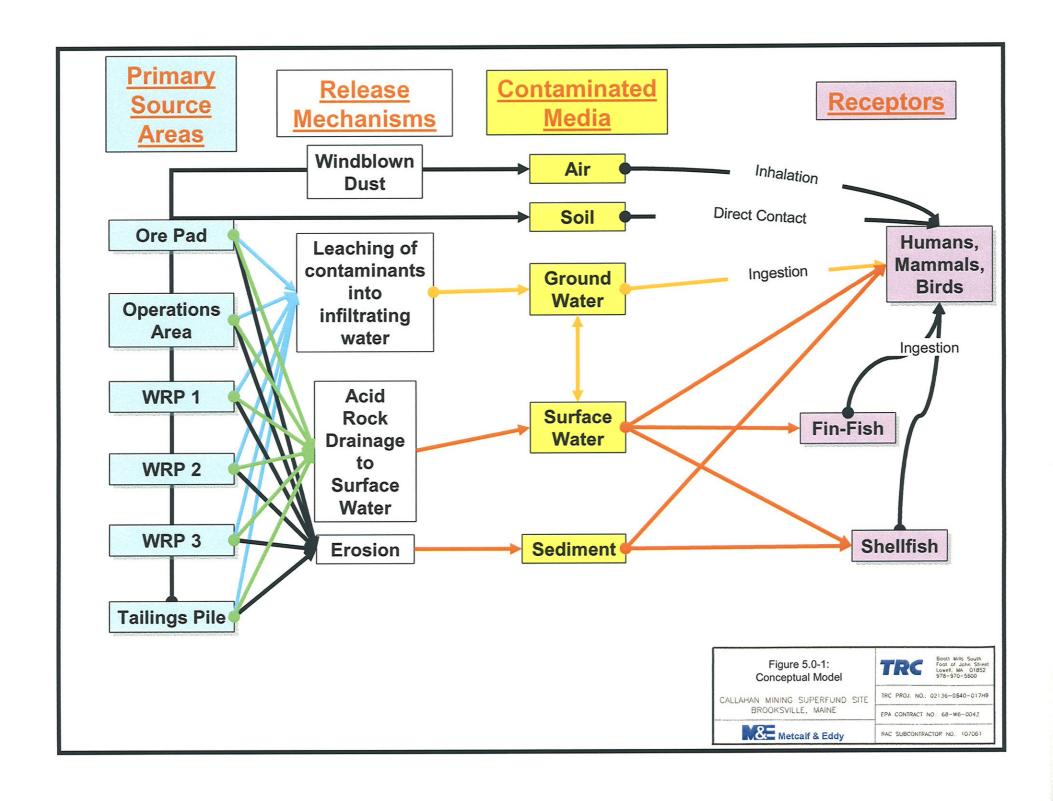
Metcalf & Eddy

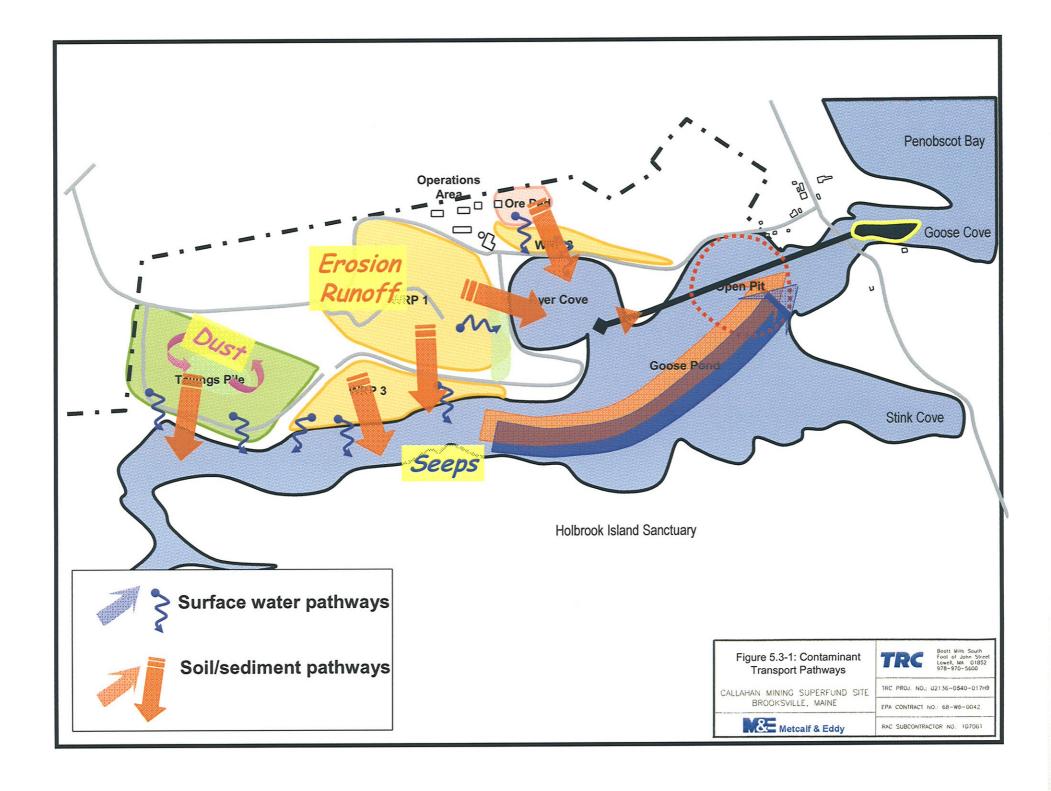
All concentrations in micrograms per liter (ug/l)

Constituent	Units	EPA MCLs	State of Maine MEGs	Region IX Tap Water PRGs
Arsenic	ug/l	10	10	0.045
Cadmium	ug/l	5	3.5	1.825
Copper	ug/l	1300	1300	146
Lead	ug/l	15	10	None
Zinc	ug/l	None	2000	1095

FIGURE 4.4-3 RESIDENTIAL WELL ANALYTICAL RESULTS — SOUTHERN AREA CALLAHAN MINING SUPERFUND SITE BROOKSVILLE, MAINE


Metcalf & Eddy




Boott Mills South 116 John Street Lowell, MA 01852 978-970-5600

TRC PROJ. NO.: 02136-0540-017H9

EPA CONTRACT NO.: 68-W6-0042

Appendix A Field Data Forms

Callahan Mixe Surface Soils

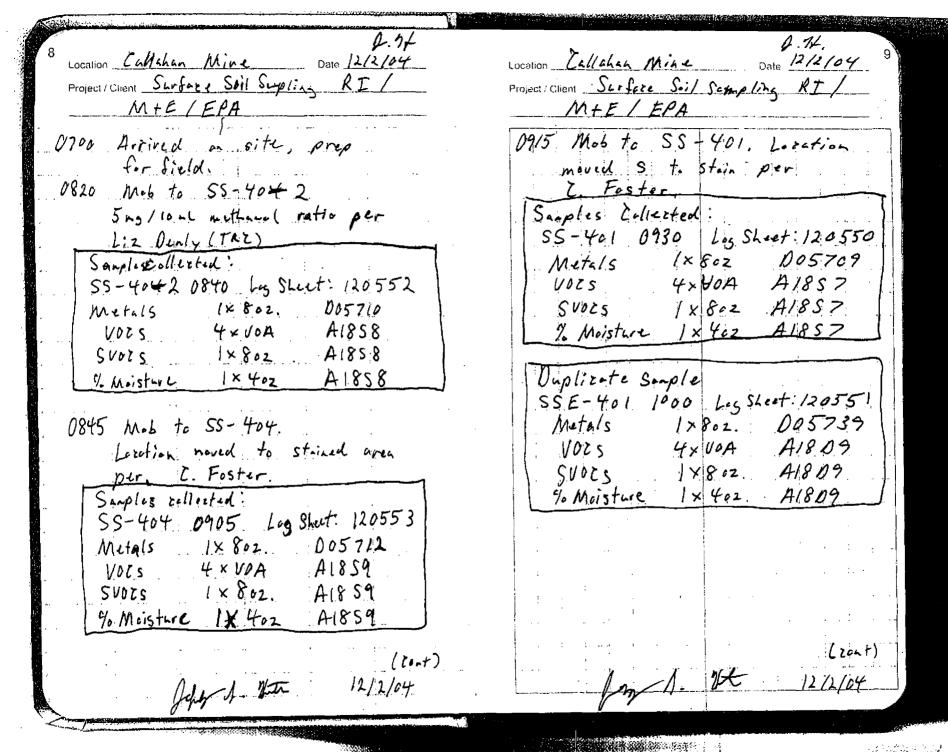
ALL-WEATHER
Environmental
FIELD BOOK
No. 550 F

Location Callahan Mine Date 1/49/04 Project/Client Surface Soil Sampling AI/ Partly Clendy, 40°E POE = Love (D 1300 J. Hunter A. Berganter, Bu-tosz (M+E) arrived on Site 1315 T. Foster gave Site tour & H/s meeting. 1345 Mobilized to locations SS-427 through SS-430. Lozation approx 13 mile South along Ice truil Sample for markers stradolle trail and are appear 30 ft apart 1420 Mobilized to locations 55-423 through SS-426, Locations marked approx. 1,000 fl. west along Fresh Pond Trail: on south slope of Bazkwood Mtn. 1515 Returned to Site traiter Dignaziona Son SDil supling in betheround areas. Jeffy S. Ithou 11/29/04

Location Callahan Mine Date 11/30/04 Project / Client Saxford Soit Sampling RI/ Clear, 35°F | EPA | PAR = level 0700 Arrived of site: J. Wenter A. Begger, B. Fester (TRE) R. Bostoss (MAFE) 0730 Prep for field background supple first 0745 Mob to SS-427 HL SS-410 Samples Collected: Los sheet 120386 -Metals 1 + 8 02 0830 005735 SSE-427 (field dup) -Metals / x 802 0900 SS-428 Log sheet: 120388 1 x 8 02. 0840 D05736 - Metals \$5-429 Las Sheet: 120387 x 8 02 0820 005737 -Metals Log Squit: 120393 SS-430 1 × 8 0 Z 0900 005738 -Matels SS-430 (MS) -Metals 1 × 8 02 0900 (zont)

Jeffy D. notest

Location Callohon Mine Date 11/30/04 Project/Client Surfax Sail Sappling RI MIE / EPA 0950 Mob to SS-423 thru SS-426 Samples collected: (background) SS-423 | 405 SLACT: 120389 Metals 1 x 802 1010 005731 SS-424 Log Sheet: 120390 Metals 1x 802 1012 205732 SS - 425 Log Sheet: 120391 Metals 1 x 802 1015 005733 55-426 Los Sheet: 120392 Metals 11 x 802 1018 005 734 1030 Mob to trailer for decon 1110 Mob to SS-419 thru SS-422 Samples Callerted (background) 55-419 Log Sheet: 120394 Metals 1 x 8 ez 1140 005727 SS-420 Lpg Sheet: 120395 Metals 1 x 802. 1145 p05728 SS-421 Las Sheet: 120396 Metals 1 x 802, 1150 005729 SS-422 Los Sheet: 120397 Metals 1 x 8 02. 155 DO5730 1200 Wilked down ald obandersed road. Found what look like 6 in two 6 in notted water (ront)


Project/Chent Shrford Soil Sampling

wells in road way with mount New looking piping outside of Ohl. Asso, and an old broken-down metal shed. 1220 M.b to finiter to decay resupply. 1240 Mob to SS-403 Somple Collected: SS-403 Log Steet: 120398 Metals 1 x 8 02, 1305 00574 1312 M.b to SS+408 Sample Collected SS-408 405 Sheet: 1203.99 Metals 1x 8 02. 1325, DO5716. 1330 Anob to SS-409 Sample Collected 55-409 405 Sheet: 120400 Metals 1 x 8 02. 1335 005767 1345 Mob to SS-406 Sample Collected: SS-406 1x 882 Logsheet: 120401 Metals 1 x 8 02. 1353 005714 Jeh A. Vit 11/30/04 CEOMF

Location Callahan Mine Date 11/30/04. Project/Client Surface Sil Scapling RI M+E/EPA 1400 M.b to SS-415 Sample Collected: Log Sheet: 120546 55-415 Metals 1x 802. 1410 005723 1412 Mob to SS-414 Sample Collexted 55-414 Lag Sheet: 120547 Metals 1 x 8 02. 1418 005722 1425 Decon for a.M. 1430 Mob to SS- 418 S5-418 Log Sheet: 120548 Metals 1 x 8 02. 1435 005 726 1440 MOB to SS+417 Sample Collected at entrace to mine peop. SS-417 Log Sheet: 120549 1 × 8 02 1455 DO5725 Metals 1500 Mc6 to office Dezon, poperwork 1715 Lift Site سللا 1/30/04

ocation <u> </u>			Soi	Da 1 S.	te <u>1</u>	<u> </u>	R	エータノ
// +	E /E	PA						
104 W X , L	erry sei	, 500	<i>F</i>	<i>^p,</i>	01	<u> </u>	eve	
0100					ļ ļ			
	lezon,	pop	er war k	Pr	مروه	•		
	enples	rel	lezted	A.L	11			f#-
	for s							-
					,	· · · · · · · · · · · · · · · · · · ·	ļ !	
1235	3	<u> </u>	וע או	a /2	X e	ж] !	
	edes	# 'S					·-	
	843	5-17				. .		
	8436	+ 7	1078 -	15	43			
1270	1 1					ے۔	20	
· [
··· † ·	1	Scape	_		i !	2.	<u>.</u> .	<u> </u>
	1 1	tiple	!) :		: 1			
	to 1	orms	III_{L}	te .	··l		<u> </u>	
	RAS	Tass	QA	1ac	of			<u> </u>
		, 6						
10445								†
1445								
		5					s + 0	<u></u>
	100 5	14 fo	r 0	والاعتمام	44-		ļ	<u> </u>
	08 s	ebzent	re to re	j.,		 		
						<u>-</u>		
		1						† -
			 		·	L !	∳ 	
			ļ <u>.</u> ļ	!	ļ			-
			<u> </u>	ļ	! -		ļ	<u> </u>
	!			1 				<u> </u>
	M	10.	1/1		12	11	10	H
		/	1	!	<u> </u>	<u>'</u>	1.—	1 -

1 1/L

M. Date 12/2/64 Location Tellohan Mike Project/Client Scifoce Soil Sumpling RI/ M+E/EPA M+E/EPA 1000 Meb to SS-407 LOSSList: Samples Collected: X3 for MS/MSD Sarples Lakested: \$5-407 1030 SS-411 VOE/-1-1802 DO5715 Metals Metals 5-402-4x VOA 11025 x 3 AI8TI 1/0 2/5 1 x 802 AI8TI CHORS Svots x3 1× 402 AI8TA % Moisture 9/2 Moistere 1100 MOB to SS-405 1420 Mal to Samples Collected: SS-412 es Shed: 120554 55-405 Metals x 802 DO5713 VOCS Metals VOCS A18 TO SUDES 4 x VOA A18TO 25002 x 802 1 Misture 1 ×402 A18TO % Mistire 1130 Bock to troller. 12 paperverk. 55-410 1330 Mobile Suples tollested: Metals VOCS 4x VAA Luc Sheet: 120 556 1350 55-410 1×802 005718 SVOCS Metals 1×862 % Misture Váts A1968 1 x 402 4× VOA (test) Alger SUVES x 802 lefts & 9 Let 1/2 Mistere A1928 1 x 402 12/2/04 D. Vite

Location Callahan Mine Date 12/2/04 11 Project/Client Suiface Soil Simpling AI 400 Blob to SS-411 1410 Los Sheet: 120557 1 x Poz 005719 1/02 YXVOD A1929 1 × 802 A1929 1 x 402 A1929 55-412 1425 Los Sheet: 120558 100 5720 1×802 4 × UDA A1900 A1900 1x 802 1x Yoz A1900 1435 Mob to SS-413 lecation adjusted East per Q. Weiss % C. Faster 1440 Les Sheet 120559 1005721 1×802. Algoi

AIDDI

A1901

12/2/24

1 bouts

Location Callabu Mine Date 12/3/04 Location Callaban hine Date 12/03/04 Project/Client Sudday t Supling Project / Client 1340 5W+411 Water Quality 1300 Meb to SD 421 Icched helds Sulfate Sk-ples collected SD 421 1320 4-5 Steet: 120503 Metals 3×802 005655 720 1×802 Grein Size 2 x 16 a2 6.80 pH 1400 And to SD-411 2 Foster El logshest # 1205925 f Holing SW-411 Sonst price to south and 120593 Scupling. SO-411 1405 Los sheet: 120563 Mits 3x 8+2. 005648 TLD 1×802. Cris 5:26 2×1662 1420 - Approx. 15 cottempts at 15/1500 Scotment Sampling at SO-1 at 50-420 bout on by best failing due to believe & Miet-(s (3x8,2)x2 D05654 TEO (1×802) ×2 Comm Size (1x (6 cz) x 2 -1. 4× 12/3/04

TRC	Proje	ct: .her. 021	Proje 36 <i>04</i>	ect No Ao (d	1.: 27H]	Dat 3	te/Time 2/64	e: 0930	She	et <u> </u>	_of	Ŀ
Sample Log Sh	eet Contra	actor Personnel:				TRO	Perso	onnel:				
Sample No.: SS-4	101 / 55 1	E-48:14.			Sk	etch o	f Sam	ple Locat	tion			_
Depth/Interval Sampled:	0-6 jushe	٤						liu. Pile	-	 		_
Sample Type: Grab Con (circle)	nposite or Both			\$0				1.1.4				_
Media: Surface Soil (circle) Subsurface (Soil Surfac	ent ee Water id Water				•	S-41				/	
Field Screening Informati	-		Si	ervati (†y	Sand	L (SA	N) 0	ronsisk d	5 r s lu	<u>'</u>		-
Other Field Measurement	well wt.						d, v.					
8D 476474 39	t.65 g.	5.1 a.										
SAMPLE COLLECTION EQU	JIPMENT:		DEC	CON. I	LUID	TION PI USE IXI			SCRI	PTION	:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: 5 Ml. Syring	Trowel Shelby Tube Dredge Sam Kemmerer Extended An Bailer Backhoe Van Dorn Bo	m	Alco Tap HNC Tap Meti Hex Ace Air I DI W Air I	Wate hanol ane tone Dry Vater Dry	pr10% _. r	MXXI MXX		Aniales S				
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	- !	Volur Requi	red	Tim Colle	ction	CLP Samp	le	Ca	LP se#	_
W Nors	YES (NO)	Ize Only		×8.			30	D057			8M	$\frac{1}{2}$
VOES V SVOES	YES (NO)	Ize Only		10A , 1 × 8			30	A185 A185		$\overline{}$	9 <u>5</u>	1
1 % Moisture	YES NO	Ire onl		×21			730	A 18 S			595	1
	YES NO											$\frac{1}{2}$

Signed: Jay 1. 1/1

TRC	Pro	ject: llahan	021)	roje 36 C	ct No 1590	.: ०१भ	f3	Date/ 2/1/	Time 04	:: 10:	00 5	hee	t	of
Sample Log She	eef Con	tractor Perso	nnel:					TRC P	erso	nnel:	۴,			
Sample No.: SSE -						Sk	cetcl				ocatio			
Depth/Interval Sampled: _	0-6 inch	<u>.e</u> s				_	<u> </u>			a 5		_		
Sample Type: Grab, Com (circle)	posite or Boti	h				J	C	٠٧	4	r)				
Media: Surface Soil (circle) Subsurface S	ioil Surfa	ment ace Water und Water					7	0 -	τ_					
Field Screening Information	on:			bse	rvatio	ons:					<u> </u>		<u></u>	
Type of Meter: OVM	Орри	n .	-		Sse	4.	4	5	SS	-4	10	L		
Other Field Measurements		· · · · · · · · · · · · · · · · · · ·	_ -											
BD 476475 34. BE 014 182 32.	2 g. 86 g.	Fle wt. 5.1 g. 5.1 g. 5.0 g. 4.9 g.	- - - - - -	· · · · · · · · · · · · · · · · · · ·										
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:		DEC Tap Alco Tap HNO Tap	ON. F water nox water 3 (1 o Water ianol ane one ory fater ory	LUID	U [PRO SEP VXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		URE:		CRIP	TION:			
ANALYTICAL PARAMETERS	Filtered (circle)	Preserv Meth			Volun Requir			lme o			CLP imple		-	_P se#
U Metals	YES NO		Daly	-	×&			ooc		-	5734			8M
Vots	YES NO	2×M+OH.			× VO.		$\perp I$	000			<u>809</u>		335	
Syots	YES NO		orly		× 84			oo e			809 000	\neg		95
M. Moisture	YES NO	Ire	Only	\vdash	<u>* 1</u>	92		70		Ft []	<u>809</u>	' -	335	75
	YES NO											十		

Signed: Jay 1. 1/2

TRC	Proj	ject: Ushah O	P 2(3	roje (09	ct No 390 C	.: ክንዝ	3 1	Date/∏ 2 <i>/2/(</i>	Time 34	08	40	Sheet		of <u>/</u>
Sample Log She	Cont	ractor Personnel Bartosz		· <u></u> .			I٦	TRC P	ersol	nnel:				
Sample No.: SS-	402	_			1		cetcl	of S	amp	le Lo	catio	on		
Depth/Interval Sampled: _	0-6 in	žta z					_	22	40	2				
Sample Type: Grab, Com (circle)	posite or Boti	1			-	T _q	14	5					-	
Media: Surface Soil) (circle) Subsurface S	ioil Surfa	ment ace Water and Water					R	.10			7			
Field Screening Information	on:		-	Obse	rvatio	ons:						<u>-</u> .	- '	·
Type of Meter: () V/	0 ppm		-	<u>S:1+</u>	y <u>s</u> x	ul [SM) [1.	<u> 5 r</u>	4 1	4	6 1. 5.	:14,	
Other Field Measurements	5:		Silty small (SM) It. som, 40% silt, 60% f. saud, v. loose, moist									<u> </u>		
BD 476469 34.	88 5	1.9 g. 39. 5.3 g. 40. 5.2 g. 38. 5.0 g. 37.	18)										
SAMPLE COLLECTION EQU	IPMENT:				ONTA ON. F			PRO	CED	JRE:	DES	CRIP	rion:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: 5 ML Syrins C	Trowel Shelby Tub Dredge Sal Kemmerer Extended A Bailer Backhoe Van Dorn E	Arm Sottle		Tap Alco Tap HNO Tap Meth Hexa Acet Air D None	water nox water 3 (1 c Water anol one ory ater	or10%)			whes	·			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method	n ·		Volun Leguir	ed	Cc	ime o	on	Sa	CLP mple	_	CL Cas	
₩ Metals	YES NO	Ice On		1/		02.		284	$\overline{}$	<u>DO5</u>			024	
230V N	YES (NO)	2×Me0H, 2×	Lak	1			_	184		<u> </u>			355	
M SVOCS	YES NO	Ize Only		1.		12.		84		<u> </u>			335° 35°9	
1 % Misture	YES NO	Ice Daly		++	<u>× 2</u>	02.	<u> </u>	841	۲	A/1	3 (7		-
	YES NO	 		+					\dashv					

Signed: Joy 1. Vt

	Projec		Project No.:	Date/Tim	e:	heet at 1					
TRC	Colle	Lan O21	<u>36 090 01743</u>	11/30/04	13.05	heet of					
Sample Log She	Contra	ctor Personnel:		TRC Perso	onnel:						
- Cample Log One	R.	Butosz		Jeff	Hunter,	A. Bergan					
Sample No.: SS-4	n 2		Sk	etch of Sam	ple Locatio	n					
Sample No.:	<u> </u>		11/1								
Depth/Interval Sampled: _	0-6 incle	5									
Sample Type: Grab, Com (circle)	posite or Both			55-4	203						
Media: Surface Soil (circle) Subsurface S Other	soil Surfac	ent e Water d Water									
Field Screening Information	on:		Observations:		- 1						
Type of Meter: 1/A			Silty Cla	y (21)	It. dive b	roma,					
Other Field Measurements			Sity Play (Pl) It. dive brown, 40% silt, 60% zlay, & soft,								
GPS			_moist								
<u> </u>				· · · · · · · · · · · · · · · · · · ·							
					···						
SAMPLE COLLECTION EQU	IPMENT:		DECONTAMINAT DECON. FLUID	TION PROCED USED		RIPTION:					
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Arr Bailer Backhoe Van Dorn Bot	n Hitle	Tap water Alconox Tap water HNO ₃ (1 or10%) Tap Water Methanol Hexane Acetone Alr Dry DI Water Air Dry	NAT INAK I	storaless						
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#					
1 Metal	YES (NO)	Ite Onl.	y 1 x 802.	1305	D0571	0248M					
	YES NO										
	YES NO										
	YES NO										
	YES NO										
	YES NO										

Signed: Js 1. 1/4

TRC	Proje	ct:	P r ነ ነ ዓረ	ojec . AS	t No.:	ንዘያ	Date/T	ime: Y	0905	She	et <u> </u>	of
	Confe	actor Personne	<u>~(~)</u> :	, 0 ,	100.	<i>/</i> :(/_	TRC Pe	rson	nel:	<u> </u>		
Sample Log She		Bertos	2				<u> </u>	Hu	ter,	A.	Bei	342
Sample No.: SS-6	404		\vdash			Sket	tch of Sa	ımpl	e Locat	ion	T	-
Depth/Interval Sampled:		٤5			T T							
Sample Type: Grab, Con (circle)	posite or Both					$\frac{1}{1}$				-		
Media: Surface Soil (circle) Subsurface S	Soil Surfac	ent ee Water nd Water		:			35-4	04				
Field Screening Information	oņ:		0	bser	vation	s:			····			··-·- \
Type of Meter: 01/10	Oppm.			<u>S:1</u>	ty s	ard	(SM) 60% F.) (Droksi	<u>- 7-</u>	ye4	<u> </u>
Other Field Measurements	<u> </u>		-		ist ist	<u> †,</u>	60% F.	<u> </u>	end,	ν.	1005	*,_
	TARE 34.87 g.	Sample M.	-		731							
BD 476362	34.87 g.	<u>5'.0s.</u>	39.									
RE OIL 194	\$2.70c.	5.0 ₅ .	37.	70								
BD 476455 BE 014 194 BE 014 193	33.03 4.	5.0°s.	3 <u>8</u> .	03								
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: 5 mL Syringe Van Dorn Bottle					NTAMII ON. FLU water nox water 3 (1 orli Water anol ne one ry ater	סונ	ON PROCUSED USED 10%		DE	SCRI	PTION	:
ANALYTICAL PARAMETERS	Filtered	Preservatio			/olume	, T	Time of Collection		CLP			LP se#
Metals	(circle) YES (NO)	Tee Oul			equired x &:	-	0905	_	Samp 1057	-		8m
☑ vozs	YES NO	1xMeOH,)x	_				0905		A18 S		335	
V SUOCS	YES NO	Ice Only			× 802		0905		4185	7	335	95
1 % Misther	YES (NO)	Ize Onl	7		x 20:		<u>0905</u>		<u>4185</u>	9	<u> 335</u>	95
	YES NO		<i>'</i>			+		\dashv				

Signed: Rev: 8 July 1991

TRC	Proje	ct:	Pr	oject No.:	Date/Tim	e: St	eet l of l					
INL	Can	llahan (<u> </u>	60590 0174	3 12/2/04	///5	neet <u>l</u> of <u>l</u>					
Sample Log She	Contra	ictor Personnel	1:	_								
Sample Log She	R.	Bartes 2.										
Sample No.: SS- L	LAE		Sketch of Sample Location									
Sample No.:	103											
Depth/Interval Sampled: <u>0-6 iaches</u>				•	ur	9						
Sample Type: Grab, Composite or Both (circle)												
Media: Surface Soil Sediment (circle) Subsurface Soil Surface Water Other Ground Water					55-40							
Field Screening Information	on:		O	bservations:		-! 						
Type of Meter: 0 V///	Oppm		Grovelly Sond yellowish - oronge,									
Other Field Measurements	• •		for the Sound, yellowish - arough, 60% F-E Sound, 40% grovel - 2066/e, loose, day									
GPS TA	RE Se	wle ut.										
<u> 80476360 34.</u>	80.	E 0.	39.80									
BD 476 461 34 BE 014 207 3	7.730.	<u>5.0 s. </u>	39. 73									
BE 014 207 3	2. 735.	<u>5.0</u>	37.73									
BE 014203 3.	2.75 g.	<u>5.1 g.</u>	37	<u>. 85</u>								
SAMPLE COLLECTION EQUIPMENT: Hand Auger Trowel Core Sampler Shelby Tube Spatula/Spoon Dredge Sampler				ECONTAMINA DECON. FLUID Tap water Alconox Tap water HNO3 (1 or10%	USED X		RIPTION:					
Bowl (stainless)	Kemmerer	\vdash	Tap Water 🗡 Methanol									
Split-spoon (2" or 3")	Extended Arr Bailer	"	Hexane									
OTHER:	Backhoe			Acetone Air Dry	d							
5 ml Syringe	Van Dorn Bo	ttle 📙	DI Water 💆									
				Air Dry None								
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	n	Volume Required	Time of Collection	CLP Sample	CLP Case#					
✓ Metals	YES (NO)	Ize Onl.	<u>y</u>	1 × 8 02.	1115	D05713	0248M					
VOES	YES (NO)	LX MepH. 2x	H, 0	4× VOA	1115	AISTO	33595					
✓ SVOES	YES 😡	Ice Onl		1×802.	1115	A18T0	33595					
1 % Moisture	YES NO	Ize Onl	7	1x Loz.	1115	A18TO	33595					
<u> </u>	YES NO				 		 					

Signed: fg 1. 11

TRC	Proje	ct: Yahah O213	Project No.: 60590 01743	Date/Tim	e: / /353 S	heet <u>1</u> of <u>1</u>						
Sample Log She	Contra	nctor Personnel:		TRC Perso	onnel:	A. Bergan						
Sample No.: SS-4		Sketch of Sample Location										
Depth/Interval Sampled: _	es											
Sample Type: Grab Com (circle)			/ ^S	\$ 406								
Media: Surface Soil (circle) Subsurface S	Soil Surfac	ent e Water d Water	(10	WRT F	3							
Field Screening Information	on:		Observations:									
Type of Meter: N/A	<u> </u>		Cravelly sand (SV) Drongish-brown, 60% F-T Sand, 40% grovel, some tabbles-balldies loose, dry									
Other Field Measurements	s:	·	tobbles - bolders loose, dry									
<u>G-PS</u>	· · · · · · · · · · · · · · · · · · ·											
												
SAMPLE COLLECTION EQU	JIPMENT:		DECONTAMINA DECON. FLUID Tap water			CRIPTION:						
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Art Bailer	pler	Alconox Tap water HNO ₃ (1 or10% Tap Water Methanol Hexane Acetone Air Dry	P K K K K K K K K K K K K K K K K K K K	torales5							
	Backhoe Van Dorn Bo	ttle	DI Water Air Dry None	× ×								
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Required	Time of Collection	CLP Sample	CLP Case#						
☑ Metals	YES (O)	Ite onl	7 1×802.	1353	1005714	0248M						
	YES NO			<u> </u>		 						
	YES NO		-	 								
	YES NO			 								
H 	VEC NO			1		- -						

№ 120401

Signed: July 1. 11x

TRC	Proje	ct:	Project No.: Date/Time: Sheet						et <u> </u>	of_		
1120	Late	actor Personnel:	1360	<u> </u>		RC Perso		—	——			
Sample Log Sheet		Bartos 2	:				ter,	A.	Ben			
Sample No.: SS- 40		MS/MSD					ple Locati					
Sample No.: 33 12				<u> </u>				<u> </u>				
Depth/Interval Sampled:	-6 inche	s						1	1			
Sample Type: Grab, Composite or Both (circle)				55-4	2/3	00	W.K.	 				
Media: Surface Soil Subsurface Soil Other	ent e Water d Water		5									
Field Screening Information:				rvations		 b	-l .l .					
Type of Meter: $\partial V_{\Lambda\Lambda}$	" /) pt	<u>"</u>	Crevelly send esus yellowish-oronge,									
Other Field Measurements:			Crevelly send (SW) yellowish-oronge, 80% F-t send, 40% grevel to cobble, MS Sample: Inose, damp.									
TARE	• •	ple lut.	MS Saple: BD478416 34.76. 5.1 a. 39.86									
BD 476460 34.58	<u>, 5</u>	0 . 39.53	80 476454 34.56s. 4.9c. 39.46									
80476476 34.75	<u>5</u>	ρς 32.7 <u>50</u>	BD 416454 34.565. 4.95. 39.46 BE 014 286 32.975. 5.04. 37.97									
BE 014210 32.72	<u>9. 5</u>	15. 37.82										
BE 014271 32.8	7 š . 5	.0 3. 37.87										
SAMPLE COLLECTION EQUIPM	IENT:		DEC	ONTAMINA ON. FLUII water	D US	ED	DES		PTION:			
Hand Auger	Trowel		Alco	nox	F	8047	16369	34.	74s.	5.19		
Core Sampler Spatula/Spoon	Shelby Tube Dredge Sam	pler 📙	HNO3 (1 or 10%) 55 图 \$\$ \$76453 34.739. 5.1									
Bowl (stainless)	Kemmerer Extended Ar	H										
Split-spoon (2" or 3")	™ ∐	Hexa Acet		-] RE 01	(44 YO	32.	•	٦٧			
other: 5 nl. Syringe	Backhoe	H	Air C	ry	2	7			3	9.84		
J	Van Dom Bo	ttle 🗀	Air Dry <u>™</u> 37.96									
ANALYTICAL PARAMETERS	Filtered	Preservation		Volume		me of	CLP	\neg	· CL			
<u> </u>	(circle) YES (NO)	Method	_	× 802.		3 o	Sample 10057/5	. 	Cas			
 	YES NO	Ite Only		~002. ×VOA	- 	30	AI8T		<u>024</u> 335			
	res 🔞	1xMeOH 2xH Ize Unly		×802.		30	AIST			75		
	res (NO)	Ire Day	1	× 202.		y30	A18T	$\overline{}$		95		
i — i	YES NO	J. V.RIY	7	<u>r dyf</u> ,	1	, , <u>, </u>	710	十				
	YES NO		1		1			\top				

Signed: Jy 1.11t

	Proje	ct:	Project No.:	Date/Tim		Sheet of					
TRC	Call	ahan 0213	60590 DJ743	11/30/04	1325	, o					
Sample Log She	Contra	ctor Personnel:									
		Bestos2									
Sample No.: SS - 4	08 / 55-	408 MS	SI AN	cetch of Sam	ple Locatio	on .					
Depth/Interval Sampled: _	0-6 inche	7									
Sample Type: Grab Com (circle)			S	-408							
Media: Surface Soil (circle) Sub surface S Other	Soil Surfac	ent e Water d Water									
Field Screening Information	on:		Observations:								
Type of Meter: N/A			Gravelly send (Sr), Orangish - Grown, BOX F-2 send, 40% grove 1, some								
Other Field Measurements			Cobbles - bendders, losse, dry								
GPS	······································										
	 										
SAMPLE COLLECTION EQU	IPMENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:								
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Ari Bailer Backhoe Van Dorn Bo	m	Tap water Alconox Tap water HNO ₃ (1 or 10% Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None	XXXXXXX I IN MXXXXXX							
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#					
V Metals	YES (NO)	Ize Only		1325	P0571	s olyam					
Metals (MS)	YES (NO)	Ite Out		1325	005716						
	YES NO		, <u> </u>								
	YES NO										
	YES NO										
	YES NO		1		l	1					

Signed: A

TRC	Project:	n 02131	Proje ∕ 0∮9	ct No	.: 1 174 3	Da 3	ate/Ti <i>30/0</i>	me: <i>+ /3</i> j	of			
Sample Log Sheet	Contractor	Personnel:			-	- J 68	C Pei	Sonnel:				
0.0 440	I IV. DWL	1012	J. Hunter A. Bergah Sketch of Sample Location									2 24
Sample No.: SS- 409			,		R							
Depth/Interval Sampled: 0-6 juth(5				**			-	3.2.	40	9		
Sample Type: Grab Composite or Both (circle)						4						-
Media: Surface Soil	Sediment		 		\neg	7	/	1_				-
(cîrcle) Subsurface Soil	Surface W	1				\neg						
Other	Ground W	ater										
					_\				<u> </u>			
Field Screening Information:		•	Obse		_							
Type of Meter: N/A			<u></u>	<u>Lvell</u>	<u>x </u>	And	182) 00m	s:sh	- 6r	4 W A	•——
Other Field Measurements:		·	Gravelly Sand (8th), orngish-brown, 60% F-2 Sand, 40% gravel, Some tobbles-boulders, loose, day									
GPS -			DOLINEIS, 1005E, MIY									
	· · · · ·			•	_							
												
SAMPLE COLLECTION EQUIPMEN	IT:		DEC	ON. F	FUID	FION F USI		EDURE:		CR!P	TION:	
Hand Auger T	rowel		Alco	water nox		X						
1 -	heiby Tube redge Sampler	H	Tap HNC	water 3 (1 c	10%	is X						
1 · · · · · · · · · · · · · · · · · · ·	emmerer		Tap	Water anol	r .]					
,	xtended Arm	H	Hex	ane		F						
I OTHER:	ailer ackhoe		Acet Air I	Σry		×						
v	an Dorn Bottle		DI W Air (later Drv		X						
	Itered F	Preservation	Non	•	- T	<u>L</u>	ne of	-	CLP		Ci	_P
ANALYTICAL PARAMETERS (ircle)	Method		Requir		Coll	ection	S	ample		Ca	se#
Wyth's YES	5 🔞 I	ze Only	11	×R	92,	1;	335	DO.	571	7 1	<u> የኢ</u>	PM
YE:		· · · · · · · · · · · · · · · · · · ·	-					 		\perp		
YE:								+		-		
YES					\dashv			 - -		-		
YES			+-					+		+		
AF-212 10 4 2 0 4 0 0	S NO			•	<u></u>			9/		l_ Re	v: 8 Ji	

Signed: If S. Hunt

	Proje		Projec			Date/Ti		Sh	Sheet <u>1</u> of <u>1</u>			
TRC	Calla	than O	<u>2136 0</u>	590 as	713/	2/2/04	/35	0		ы <u>т</u> .		
Sample Log Sho	Contra	actor Personnel	l:				rsonnel:					
Cample Log On	R.B	artosa										
Samula Na . 65-11			Sketch of Sample Location									
Sample No.: <u>55-41</u>	<u></u>				1	γ.		_N,	100			
Depth/Interval Sampled:	m.c. inh		<u> </u>	<u> </u>	 		<u>.</u>		العاد			
Depth/Interval Sampled: _	D-G THERE	5	H H	$+\!\!\!\!+\!\!\!\!\!+$		 -			1			
Sample Type: Grab Con	posite or Both			_{	-			=	_			
(circle)												
Media: Surface Soil Sediment						-			1-1			
(circle) Subsurface S	e Water	\vdash				1-1	+		_			
Other	Groun	d Water	\vdash	58-4	10		- -		+			
			-	23 (- -	-	+		
Field Screening Information	on.		Obear	vations								
_			Observations:									
Type of Meter: Ovm	0 ρρ	m	For F-2 soud, 40% gravel,									
Other Field Measurement			V. lease, maist.									
6-PS 1	ARE S.	<u>vt.</u>										
1 R n LL - 1/2/2 2	170	N .	39.76									
80 476417 3	7.63 g. 5	.0g.	39.63									
BE 014287 32	<u>.965. 3</u>	70 G	37.96									
BE 014270 33	1.303.	5.05	38.30									
			DECONTAMINATION PROCEDURE:									
SAMPLE COLLECTION EQU	IPMENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:									
 	Teernel		Tap water R									
Hand Auger Core Sampler	Trowel Shelby Tube		Tap water									
Spatula/Spoon	Dredge Sam		HNO ₃ (1 or 10%) 95 The Tap Water									
Bowl (stainless)	Kemmerer	<u> </u>	Meth			75						
Split-spoon (2" or 3")	Extended An Bailer	™ <u> </u>	Kexane Acetone									
OTHER:	Backhoe		Air D	ry	1	<u> </u>				}		
SML Syringe	Van Dorn Bo	ttle 🔲 📗	DI W: Air D		ŀ	7						
			None		[<u> </u>	- <u></u>					
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method		olume equired		ime of election		LP mple	CL Cas			
Metels	YES NO	Ice only	/ 14	802		350	Dos	718	0248			
1 Voc's	YES NO	2× McOH 2	x 140 4	1 Voa	<i>[i</i> :	150	4190	8	3359			
Y SVOC'S	YES 🔞	-Tee onh	/ 1×	BOR	13	50	1119	18	3359			
1. moisture	YES 6	Ice only	/ /×	808	13	50	1419	<u>cs</u>	335	15		
	YES NO		<u> </u>		 	·						
1 1 1	VEC NO		- I		1		1		1	I		

Signed: An 1.715

TRC	Proje	ct: P	roject No.: ০૮৭০ (১ (১৮)	Date/Tim		Sheet /	_ of <u>/</u>			
	Contr	actor Personnel:								
Sample Log Sho	eet L	vtos7		5 Harrier		≥				
		V703+		ketch of Sam						
Sample No.: <u>55 - 4/</u>	<u>/</u>	. [1 N.						
<u> </u>			55-4	11	1(1		1			
Depth/interval Sampled: <u>(</u>	0-6 inches	s 🗍	•				1			
							 			
Sample Type: Grab Con (circle)	nposite or Both									
Media: Surface Soil	Sedim	ent	:		 	1	++			
(circle) Subsurface S	Soil Surfac	e Water			1 1	+	1			
Other	Grour	nd Water					7			
							† †			
Field Screening Informati	on:	- 0	bservations:	<u> </u>						
Type of Meter: OUM	· -	Sandy grovel, d. gray, 305.1-2 song								
	_	70% grovel, losse, wet								
	Other Field Measurements:						· ·			
6PS 80476536 34.5	569. 5.	 <u>3</u>	9.66	<u> </u>						
	35 a. 5.	$\frac{19.}{18}$	9.95							
	95 4. 5.	· · · · · · · · · · · · · · · · · · ·	17.95							
	85 q. 4.		7.75	<u> </u>						
	- j									
SAMPLE COLLECTION EQU	JIPMENT:	1	DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:							
Hand Auger	Trowel		Tap water Alconox 7							
Core Sampler	Shelby Tube		Tap water 2							
Spatula/Spoon	Dredge Sam	pler	HNO ₃ (1 or10% Tap Water) X >1~~~~	(3) (0 %					
Bowl (stainless) Split-spoon (2" or 3")	Kemmerer Extended Ar	_ H	Methanol	国			-			
i	Bailer	''' 🔲 l	Hexane Acetone		-					
OTHER:	Backhoe	\square	Air Dry							
EML syringe	Van Dorn Bo	ttle 🗀	DI Water Air Dry	図						
	Filtered	D	None Volume	Time of	CLP		CLP			
ANALYTICAL PARAMETERS	(circle)	Preservation Method	Required	Collection	Sampl	le C	ase#			
V Metals	YES 😥	Ice only	14802	1410	Do 17/		48m			
Voc's	YES 160	RXMIOH 2xHi		1410	414 (595			
Y SVoc's	YES (NO)	Ice only	14802	1410	A196		595			
M Y. moisture	YES 🔞	Ice only	1×20=	1410	AIRC	7 33.	595			
<u> </u>	YES NO	<u> </u>								

AF-212 Nº 120557

Signed: A. A.

	ct:	Project No	Sheet / at l								
TRC	Call	han 02	13605900	1743	12/2/04	1425	Sheet <u>/</u> of <u> </u>				
Sample Log She		actor Personnel	:		TRC Perso	oņnel:	. ——				
Sample Log Sile	R. B	ertosz	:		J. Honte	r. A.E	ergan				
				Sket	tch of Sam	plé Locati	on				
Sample No.: <u>55-4/7</u>		•				H	Dree -				
· · · · · · · · · · · · · · · · · · ·		,					اعادا				
Depth/Interval Sampled: _	0-6 inche	\$			-22	412					
		<u>. </u>				('3					
Sample Type: Grab Com (circle)	posite or Both										
Media: Surface Soil			<u> </u>		_						
(circle) Subsurface S		e Water			•						
Other	Groun	d Water									
Field Screening Information	on:		Observati	ons:							
Town of Materia	CI .		There		41 1/	Liens	Veical				
Type of Meter: OVM	U ppm		Clayer grovel, y. brown, 40% olar,								
Other Field Measurements	s:										
GPS	· · · · · · · · ·					•					
	. 834.	5.19.	39.93								
80476532 34	.73	5.0 4	39.73								
BE 014 277 32	١.9٤ غ.	5.0 A.	37.92 37.68			-					
BE 014282 3:	2.68 g.	5.0g.	37.68								
SAMPLE COLLECTION EQU	IPMEŃT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:								
			Tap water								
Hand Auger	Trowel		Alconox	_	X						
Core Sampler Spatula/Spoon	Shelby Tube Dredge Sam	1 1 1	Tap wate HNO ₃ (1		3 ph 2	Staidesu	Ì				
Bowi (stainless)	Kemmerer		Tap Wate	er	A						
Split-spoon (2" or 3")	Extended Ar	m	Methanol Hexane		Øc₽						
OTHER:	Bailer	 	Acetone		Ħ						
5ml syringe	Backhoe Van Dorn Bo	#ILE	Air Dry DI Water		囡						
, , ,	Yall Doll Do		Air Dry		M		ĺ				
ANALYTICAL PARAMETERS	Filtered	Preservation			Time of	CLP	CLP				
	(circle)	Method	Requi		Collection	Sample	00.404				
Metals	YES (NO.	ICE ON WHE	.0		1425	Do572					
Voc's	YES MOS	Ice	7 113 44V	6a	1425	AIA DO					
YSVOC'S	YES NO	Ice only	1180	> P	1425	AIT DO					
1 / moisture	YES 😥	Ice only	1 1x20	岁	J¥ 25	419 DC	33595				
	YES NO				. = -,-						
[VEC NO	i	1	- 1		I	1				

Signed: Ay 1 11

	Proje	ct:	Project No.:	Date/Tim	Date/Time: Sheet 1 or						
TRC	Call	ahan 0213	50590 017H	3 17/464	1440						
Sample Log She	I Contr	actor Personnel:	el: TRC Personnel:								
- Campic Log One	R. B.	11057	:	J Hunfes ketch of Sam	, A Be	rgan					
Sample No.: <u>55-41</u>	~		SI	ketch of Sam	ple Location						
Sample 140 <u>.5.5 = 47</u>	<u> </u>		1	F- 4-3		3 00					
Depth/Interval Sampled: _	0-6 inch	es	96-	412	1	9 6					
Sample Type: Grab Corr (circle)	posite or Both										
Media: Surface Soil	Sedim	ent	 			- 					
(circle) Subsurface S	Soil Surfac	e Water			 						
Other	Groun	d Water	1 1 1								
Field Screening Information	on:		Observations:								
Type of Meter: OVM											
•	Uppm		Gravelly send , olive-brown," 4 60% F-2 Sand, 40% 5 rovel,								
Other Field Measurements	s: 	· ·	ture, we	et .		<u></u>					
<u>G-PS</u>		<u> </u>									
	<u>52 g. </u>	<u>5.1 g. </u>	39.62			· · · · · · · · · · · · · · · · · · ·					
	02 g.].1.g.	39.12			· · · · · · · · ·					
	80 3.	5.09.	38.1 5 37.80	_							
PE VITAID SA	· • · · · · · · · · · · · · · · · · · ·	3.09.									
SAMPLE COLLECTION EQU	IPMENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:								
Hand Auger	Trowel		Tap water Alconox	2							
Core Sampler	Shelby Tube	F 1	Tap water HNO ₃ (1 or10%	, X 10°105	families	,					
Spatula/Spoon Bowl (stainless)	Dredge Sam Kemmerer	pler	Tap Water	" 💆							
Split-spoon (2" or 3")	Extended Ar	m 📙 📗	Methanol Hexane	H							
OTHER:	Bailer		Acetone								
ا ا	Backhoe Van Dorn Bo	##	Air Dry D! Water	×							
5ml syringe	, tan 55.11 50		Air Dry None	M							
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation	Volume Required	Time of Collection	CLP Sample	CLP Case#					
M Metals	YES (NO	Ire only	1×802	114.160	D0572/	02481					
Voc's	YES (NO)	DYMOH DYL		1440	419D1	33595					
I SVOC'S	YES (1)	Ice Only	1×802	11111	A19 D1	33595					
My moisture	YES (10)	Ice only	1×20=	1 11/1	419 DI	33595					
	YES NO										
J []	VEC NO	1	1 .	Ī]					

Signed: WA

777	_	ct:	Project No.:	Date/Tim	18	heet <u>/</u> of _/_
TRC	Call	ahan o	2136 0590 0174	3 11/30/04	1418	01
Sample Log She	ant I	actor Personnel:		TRC Perso	onnel:	
Sample Log Sik	R.	Bontosz	:	J. H	unter	
Sample No.: SS-	414		SI	ketch of Sam	ple Locatio	n
Sample No.:						
Depth/Interval Sampled: _	0-6 inches					
Sample Type: Grab, Com (circle)	posite or Both		-5	5-414		
Media: Surface Soil (circle) Subsurface S Other	Soil Surfac	ent e Water d Water		Ore pile		
Field Screening Information	on:		Observations:		- 	
Type of Meter: N/A		·	Silty send	(M2)	emsist- k	solve,
Other Field Measurements			20% 6114,	80% F-T	Send, v.	losse, dry
CPS						
				· ———————		
<u> </u>				· 		
						
	<u> </u>			 .		
SAMPLE COLLECTION EQU	IPMENT:	_	DECONTAMINA DECON. FLUID Tap water			CRIPTION:
Hand Auger	Trowel	\vdash	Alconox Tap water	A	_	
Core Sampler Spatula/Spoon	Shelby Tube Dredge Samj		HNO ₃ (1 or10%) XX (8° 5°	Stankss	
Bowl (stainless)	Kemmerer		Tap Water Methano!			
Split-spoon (2" or 3")	Extended An Bailer	™ -	Hexane	H		
OTHER:	Backhoe		Acetone Air Dry	K K		
	Van Dorn Bo	ttle 📖	DI Water Air Dry	쉿		
		<u>, </u>	None		1 · · · · · · · · · · · · · · · · · · ·	
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#
1 Metals	YES (NO)	Ice Ohl	4 1 × 802.	1418	P0572	2 0248M
	YES NO			<u> </u>		
	YES NO					
	YES NO					
	YES NO					
	VEC NO		1			1 1

Signed: A. 1/2t

	Proje	ct:	Project No.:	Date/Time	e:	Sheet of					
TRC	Tall	ahen 0213	<u>6 0970 017#3</u>	11/30/04	1410						
Sample Log She	Contra	ctor Personnel:		TRC Perso		- 0					
	R.	Bertosz									
Sample No.: SS-4	15	·	Sk	etch of Sam	ple Locatio	on '					
Campie ito	· · · · · · · · · · · · · · · · · · ·		- / 	1111	 						
Depth/Interval Sampled: _	0-6 inches										
Sample Type: Grab, Com	posite or Both			Pile							
(circle)			 								
Media: Surface Soil) Sedim	ent		• 55- 415	-						
(circle) Subsurface S		e Water									
Other	Groun	d Water									
	·				1 1						
Field Screening Information	on:		Observations:								
Type of Meter: 1/A			Silty soud	(SM) or	ecish -	brows.					
Other Field Measurements			207. silt,	80% F-	t sack, V.	loose,					
GPS.	·• 		meist.								
<u>- 67 3</u>											
·											
											
			DECONTAMINA	TION PROCE	HIBE.						
SAMPLE COLLECTION EQU	IPMENT:	l	DECON, FLUID			CRIPTION:					
Hand Auger	Trowel		Tap water Ałconox	M							
Core Sampler	Shelby Tube		Tap water		torles						
Spatula/Spoon	Dredge Sam	oler	HNO ₃ (1 or10% Tap Water) 区(%)	deta cos						
Bowl (stainless) Split-spoon (2" or 3")	Kemmerer Extended An		Methanol Hexane	M							
OTHER:	Bailer	~ 	Acetone								
	Backhoe	H	Air Dry Dì Water	鬨							
	Van Dorn Bo	Tile	Air Dry	图							
ANALYSISAL BARANSTERS	Filtered	Preservation	None Volume	Time of	CLP	CLP					
ANALYTICAL PARAMETERS	(circle)	Method	Required	Collection	Sample						
Metals	YES NO	Ire Only	1 × 802.	1410	P0572	3 0248m					
	YES NO					-					
	YES NO					-					
	YES NO					 					
	YES NO			<u>.</u>	 						

Signed: Jely S. Hut

TOP	Proje	ct: Pi	roject No.:	Date/Tim	e: She	eet l of l					
TRC	Cal	lahan O2	136 0590 OAL	13 12/2/01	1530						
Sample Log She	Conte	actor Personnel:		TRC Perso	onnel;						
- Cumpic Log One	R. E	Partosz :		J. Hund cetch of Sam	w. A. E	serve n					
	5		7	etch of Sam	ple Location						
Campie No.:			7N / /	1	 	+					
 Depth/Interval Sampled: _	0-6 inch	es 104	P2/ -	1	Byen	- - -					
					1						
Sample Type: Grab Com	posite or Both	 	22-46,	11/	+++	bue					
(circle)				1		- - 					
Media: Surface Soil) Sedim	ent -	: -			+					
(circle) Subsurface S		e Water				 					
Other	Groun	d Water	P	1							
Field Screening Information	on:	0	bservations:								
Type of Meter:	1	-	Greatly so	d. ve	Maricha	4644					
Type of Meter:	Oppm		Gracely sad, Vellowish- armye, 70% m-2 sand, 30% gravel, loose, moist.								
Other Field Measurements	·	_	moist		· · · · · · · · · · · · · · · · · · ·						
GPS	8										
		9 39.49									
	34.67 5.										
		.1 38.03 _ .0 38.04			 _						
DE VII XIX	33107 3	. , , , , , , , , , , , , , , , , , , , 									
SAMPLE COLLECTION EQU	IDMENT:	1	DECONTAMINA	TION PROCED	URE:						
SAMPLE COLLECTION EQU	ir men .		DECON. FLUID Tap water	USED X	DESCR	IPTION:					
Hand Auger	Trowel		Alconox								
Core Sampler	Shelby Tube	- 	Tap water HNO ₃ (1 or10%) X 101.5	Aninkes	·					
Spatula/Spoon Bowl (stainless)	Dredge Samp Kemmerer		Tap Water	' []	•	·					
Split-spoon (2" or 3")	Extended An		Methanol Hexane	H							
OTHER:	Bailer	\vdash	Acetone			İ					
OTHER:	Backhoe		Air Dry DI Water	X							
	Van Dorn Bo		Air Dry	图							
	Filtered	Preservation	None Volume	Time of	CLP	CLP					
ANALYTICAL PARAMETERS	(circle)	Method	Required	Collection	Sample	Case#					
Metals	YES (NO)	Ice only	1× 807	153C	DU 5724	0248m					
Ly Voc's	YES (NO)	2×120×1,2×460	4× Vog	1530	419DZ	33595					
Y 51/0€ 'y	YES (NO)	Ice only	1×802	1530	AIG DZ	33595					
1/2 moisture	YES (NO)	Ice only	1205	1530	AI9 DZ	33595					
	YES NO										
<u> </u>	YES NO										

Signed: fy 1, M

	Projec	et:	Proje	ct No.:	Date/Tim	e: sh	eet / as /				
TRC	Ca11	chan 02	136.05	% 0174	3 11/30/0	4 1455 S	eet <u>/</u> of <u>/</u>				
Sample Log Shee	et Contra	ctor Personnei	:		IRC Perso	onnel:					
	<u> </u>	Bertosz	J. Hanter, A. Borg an								
Sample No.: S5 - 4	17		ı	SI	etch of Sam	ple Location					
Outupie ito.i						 					
Depth/Interval Sampled:0	7-6 inches		_	<u>þ</u> -	155-41-						
Sample Type: Grab Comp (circle)	osite or Both	_									
Media: Surface Soil (circle) Subsurface So	il Surfac	ent e Water d Water	Of								
Field Screening Information	n:		Obse	rvations:		1 1 1					
Type of Meter: N/A			Gro	welly Si	nd (S4)	grayid - b	// _{h.h.}				
Other Field Measurements:	Grovelly Sond (Sw) grayid-boom, 60% F-7 sond, 40% gravel up to 2 in , dease, damp										
CPS				<u> </u>	erense, et	<u> </u>					
					,						
	 										
											
						······································					
SAMPLE COLLECTION EQUIP	MENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:								
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Am Baller Backhoe Van Dorn Bot	n 📙	Alco Tap ' HNO Tap ' Meth Hexa Acet Air D DI W Air D	one Ory 'ater Ory	XXXXX XXXX	S					
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation		Volume Required	Time of Collection	CLP Sample	CLP Case#				
✓ Metals	YES (10)	Tre On		× 802.	1455	Do 5 7 2 5	1				
	YES NO	<u> </u>	7	× (102,		D. 3 7	102 1011				
	YES NO										
	YES NO	·- ·-· · · · · · · · · · · · · · · · ·									
	YES NO										
	YES NO	•			· · · · · · · · · · · · · · · · · · ·						

Signed: Ja S. At

	Projec		Project No.:	Date/Time	ISha	eet <u>1</u> of <u>1</u>						
TRC	Lall	shen 0	2136,0590 01A	4311/30/04	1435							
Sample Log She	Contra	ctor Personnel	:	TRC Perso	nneł:							
Sample Log Sile	R.	Bartosz	J. Hunter, A Bergan									
Sample No.: SS-4	, &		Sk	etch of Sam	ole Location							
Sample No.: 33 7	10.		22	-418								
Depth/interval Sampled:	0-6 inches		WRP2	0.4								
Sample Type: Grab, Comp (circle)	posite or Both			Love	+ - +							
Media: Surface Soil (circle) Subsurface So Other		ent e Water d Water										
Field Screening Information	n:	·	Observations:			- 						
Type of Meter: 1/ / a			Gravelly	send of	b	(0 m to .						
Type of Meter: N /A			Cobles, V. lose, damp									
Other Field Measurements:			7.066/es	V. loose	dang							
LPS	·			·	· · ·							
												
					···							
												
SAMPLE COLLECTION EQUI	PMENT:		DECONTAMINA DECON, FLUID			IPTION:						
Hand Auger	Trowel		Tap water Alconox	图		j						
Core Sampler	Shelby Tube	<u> </u>	Tap water HNO ₃ (1 or10%	, [₹]								
Spatula/Spoon Bowl (stainless)	Dredge Samp Kemmerer	oler -	Tap Water	′ 🙎								
Split-spoon (2" or 3")	Extended Arr	" 🔲 I	Methanol Hexane	鬥								
OTHER:	Bailer	H I	Acetone									
	Backhoe	H	Air Dry Dl Water	為								
	Van Dom Bot	me L	Air Dry	Ž.								
	Filtered	Preservation	None Volume	Time of	CLP	CLP						
ANALYTICAL PARAMETERS	(circle)	Method	Required	Collection	Sample	Case#						
Metals .	YES (10)	Tre Och	1 1×802	1435	D05726	0248M						
<u> </u>	YES NO					<u> </u>						
	YES NO											
	YES NO	i 										
	YES NO											

Signed: Jeffer 1. Heth Rev: 8 July 1991

	Proje			ct No.:	Date/		Sha	Sheet of		
TRC	Zell.	then 02	4360	590 OF	13/1/30	104 114	0	·=(<u>/</u> (" <u> '</u> .	
Sample Lea She	Contra	ctor Personnel:			TRC P	ersonnel:				
Sample Log She	<u> </u>	Bartosz	٠.	·	<u> </u>	Hunte	r, F	. Bec	59h	
2 - 22				Sk	etch of S	ample Lo	cation			
Sample No.: SS-4	<u>t I</u>					7	•	$\perp \perp$		
Depth/Interval Sampled: _	D-6:1	45		53	-419		. .			
Depin/micryar Sampled: _	<u> </u>					0		+	_	
Sample Type: Grab, Com	posite or Both				Koris	0				
(circle)			-	 	<u> </u>		-+	++		
Media: Surface Soil	Sedim	ent	1.				_	++		
(circle) Subsurface S		e Water	_	 	-	 		+-+		
Other	Groun	d Water						 		
		<u> </u>	1				_	1 1	_ -	
Field Screening Information	Field Screening Information:							1		
Туре of Meter: // /Д		Observations: Silty Sand (SM) V. Grown.								
		Silty SAND (SAN) y. brown. 2010 silt, 75% F-M sand, trose gravel, lease, day								
Other Field Measurements	·		-51	vel,	cose,	dex		. <u> </u>		
GPS			·							
							 -	·-·		
SAMPLE COLLECTION EQUI	IPMENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION;							
			-	water	Ø					
Hand Auger Core Sampler	Trowei Shelby Tube	HI	Alco Tap	nox water	園	o. (1 1	ے ریا	Leo 1		
Spatula/Spoon	Dredge Sam	oler 🔲 📗	HNO	3 (1 or10%) [A] 10	% Stand	.css 55	lea ,		
Bowl (stainless)	Kemmerer		•	Water nanol	園					
Split-spoon (2" or 3")	Extended Ari Bailer	™	Hexa		H					
OTHER:	Backhoe		Acet Air E		团					
	Van Dorn Bo	ttle 📖	DI W Air D		뙭					
			None	e		- 1 -		1		
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method		Volume Required	Time o Collecti		LP mple	CLI Case		
Metals	YES (NO)	Ize Onl.	y I	×802.	1140	005	724	M.		
	YES NO					005	72.7	0248	/ /\	
	YES NO									
	YES NO									
	YES NO				<u>. ,</u>					

Signed: Affr 1. 1th Rev: 8 July 1991

TRC	Proje	ect: Inhah 02	Рго 1 <i>36 в</i>	ject 1 590	No.: <i>ወነትዙ</i>	3	Date/Time: 11/30/04 1145				Sheet of		
Sample Log She	Contr	actor Personnel	:			1	TRC P	,et20	nnel:				
	<u> </u>	Bartosz	J. Hunter, A. Beig Sketch of Sample Location								<u> چ</u> دیر		
Sample No.: SS-4	2.0				3	Ketci	1013	-	He Lo	canc)n 		
Depth/Interval Sampled: _	0-6 inche	s						6)			
Sample Type: Grab, Com (circle)	posite or Both					(R)	th)	0	Б				
Media: Gurface Soil	Sedim	ent		+				-0-					_
(circle) Subsurface S		e Water			SS-	42	9		C	,			
Other	Grour	nd Water											
								·					
Field Screening Information	on:				tions:								
Type of Meter: N/A			<u> </u>	<u>:1</u> +>	SAL	<u>L C.</u>	<u>(w)</u>		y.	bro	<u> </u>		 '
Other Field Measurements:				Silty Sand (SM), y. brown, 20% silt, 75% F-M Sand, traco gravel, loose, dry									
GPS				AV	,	100	.J.E.,	<u> </u>	7	•			
										<u> </u>			
								_					
		·											
SAMPLE COLLECTION EQU	IPMENT:		DI		FAMINA I. FLUIC		PRO SED	CED	URE:	DES	CRIP	TION:	
Hand Auger	Trowel	I	A	cono	×	Ī							
Core Sampler Spatula/Spoon	Shelby Tube Dredge Sam		HI	ip wat 10 ₃ (*	1 o (1 10%)	355	対						
Bowl (stainless)	Kemmerer			p Wa ethan		ľ	Ž						
Split-spoon (2" or 3")	Extended Ar Baller	m		exane etone		ŀ	-						
OTHER:	Backhoe	H		r Dry Wate		1	$\frac{\overline{x}}{x}$						
	Van Dorn Bo	ottle إ	Ai	r Dry	· 1	,	4						
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method			ume uired		ime c liecti			CLP mple		Cl Cas	
Mytals	YES (O)	Ize Only			02.	_	45			72			8W
	YES NO			-									
	YES NO											_	
	YEŞ NO												
	YES NO										\perp		
	YES NO					L							
^{^-} 2 %10 120395					_	10	// .	1	161	_	Re	v: 8 Ju	ıly 1991

[№]2**№** 120395

Signed: July 1. Hot

TRC	Proje			ct No.:	2	Date/Time: 1150 Sheet 1 o						
				.40 OIJ		11/30/	T	7773	1			
Sample Log She		ctor Personnel:				TRC P			n	Л		
		Butosz	J. Hunter A. Bergen Sketch of Sample Location									
Sample No.: SS-4	121		<u> </u>	 	Sketo		Samp N	le Loca	tion	 		
			-	 - -	+	17	1/4	-				
Depth/Interval Sampled: _	0-6 jache	s			- - -			-	SS-	721		
Sample Type: Grab Com (circle)	posite or Both				Ø	•			-		-	
Media: Surface Soil (circle) Subsurface S	Soil Surfac	ent e Water d Water				, te		0				
Field Screening Information	on:		Obse	ervations	 S:	<u> </u>	[<u>-</u>	
Type of Meter: //				1/4	SAP	ol (SM	1, 1/e	bro	wh,		
Other Field Measurements	s: 	·		lty Losil	loos	<u> </u>	dr	y	ma,	race	<u>-</u>	
GPS								·				
		·										
<u></u>												
											—	
											—	
SAMPLE COLLECTION EQU	IPMENT:			ONTAMIN			CEDI		ESCRIP	TION:	•	
Hand Augus	Trowel	ল		water								
Hand Auger Core Sampler	Shelby Tube		Тар	onox water		[2]	ے ر <i>ی</i> د	Fomles	- (
Spatula/Spoon	Dredge Samı	oler	- HNC	D ₃ (1 or10 Water	0%)	₩"	710 -	- Permi		1	-	
Bowl (stainless) Split-spoon (2" or 3")	Kemmerer Extended An	_	Meti	hanol		Ø						
	Bailer	" 📙 [Hex:	ane tone		Н						
OTHER:	Backhoe		Air E			鬥						
	Van Dorn Bo	ttle 🗀 📗	Air [Vater ` Dry		園					1	
	Filtered	Due 2	Non_	e Volume		Time o	<u>√</u> [CLF	, <u>I</u>	CLF	,	
ANALYTICAL PARAMETERS	(circle)	Preservation Method		Required		ollecti		Samp		Case		
1 Metals	YES NO	Ire Oal.	<u> </u>	× 802		150		0057	29	0248	M	
	YES NO											
	YES NO]		.			
	YES NO											
	YES NO											
	YES NO										j	

Signed: Ach S. H. Rev: 8 July 1991

TRC	Proje		Project No.: Date/Tim 36 o 590 0 1 7 H 3 /1/30/0				ime:		She	et	/ of	. (
	[A []	<u>ahan 0213</u>	605°	1001	}\\ 5	14	1/30	104	//5	5]			-
Sample Log Shee	- 1	ector Personnel:				TF	RC Pe	rson	nel:		,		
	K.	Bartosz .	Sketch of San						nather, A. Bergan				
Sample No.: <u>SS-42</u>	2	-			3,	elcii		1	e Loca	acion	Т	- T	\neg
		<u> </u>				_	-	∸┤	+	 	+	+	-
Depth/Interval Sampled:(0-6 incl	.25	_					_		-	+		<u> </u>
Sample Type: Grab Comp (circle)	osite or Both						-		+		-		
Media: Surface Soil	Sedim	ent	·.			+	-	.		- 22	4	2 2	-
(cîrcle) Subsurface So		e Water			•				•		Ţ <u>.</u>	77	
Other	Groun	d Water											
<u></u>													
Field Screening Information		Observations:											
Type of Meter: N/A		Silty Sand (SM), y. brown,											
Other Field Measurements:		Silty Sand (SM), y. brown, 20% silt, 75% F-M Sand, trock gravel, loose, dry											
			4500	Ł (<u>514v</u>	el,	/0	2.0		lry			
<u>GPS</u>		 -										<u></u> '	
·	·			_								·	-
													_
													
SAMPLE COLLECTION EQUIP	MENT:				LUID	ION ! US		EDU	-	ESCR	PTIC	ON:	
U4 A	Tanual	ाच ।		water	•	Ş							
Hand Auger Core Sampler	Trowel Shelby Tube		Тар	water	-								}
Spatula/Spoon	Dredge Sam	oler	HNC Tap) ₃ (1 c Water	r10%) r				•	-			ĺ
Bowl (stainless) Split-spoon (2" or 3")	Kemmerer Extended An	<u>,, </u>	Meti	nanot		Ž	1						ł
OTHER:	Bailer		Hexa Acet				1						1
Omen.	Backhoe	H	Air C			X	4						
	Van Dorn Bo	ttle 🗀	Air E)ry		ž	1						
	Filtered	Preservation		Volun		Tir	ne of	Т	ĆL	P	Γ	CLP	\dashv
ANALYTICAL PARAMETERS	(circle)	Method	<u> </u>	Requi			ectio	. -	Sam			Caset	-
Metals	YES (NO)	Ize Only	+4	x {	802		<u>55</u>	4	0057	30	<i>()</i> 2	481	<u>~</u>
	YES NO		+-					+					\dashv
	YES NO		+-										
- <u> </u>	YES NO	·	+-				-	\dashv					
 	YES NO		+			_		+					\dashv
AF-21/210 120207	YES NO		ــــــــــــــــــــــــــــــــــــــ			1.1	, A	<u> </u>			Rev:	8 July	1991

^{AF-2}Nº 120397

Signed: J. D. Lor

	Proje	ect:	Proje	ct No	.:	Da	te/Ti	me:		CL.		- 1
TRC	Call	When 021	36 o 59	00	14113	3 111	30/0	4 1	010	Sne	et _ <i></i> _	. of <u>/</u>
Sample Log Sh	eet Contr	actor Personnel	:					sonne				
	<u> </u>	. Burtosz	· .				J. <i>F</i>	<i>furt</i>	er,	<u>A.</u>	Ber	<u> </u>
Sample No.: SS-	423		; 	7	Sk	etch o	of Sai		Locat	ion		- -
				 			1	1	+	+-	35	42
Depth/Interval Sampled: _	0-6 in								 -	<u> </u>		
Sample Type: Grab, Con (circle)	nposite or Both		-	2				-			-	
Media: Surface Soil Subsurface S	Soii Surfac	ce Water				Fres	ik P	end	Tr.			
Field Screening Informati	on:		Obse	rvatio	ons:						ـــــــــــــــــــــــــــــــــــ	!
Tuno of Motors A / / A			<u></u>		SWI]‡.	A 4 5		90%	F-1	 L	
Type of Meter: N/A		San	d ,	10%]‡. 	<u> </u>	7 , lo	054	d	amp		
Other Field Measurement	s: 											
GPS	_							· -				
						-						
	_							<u> </u>				
	· · · · · · · · · · · · · · · · · · ·		_									
SAMPLE COLLECTION EQU	JIPMENT:					TION P USE		EDURE		SCRI	PTION	:
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Sam Kemmerer Extended Ar Bailer Backhoe Van Dorn Bo	pler	Alco Tap HNC Tap Met Hex Ace Air I DI W Air I	Water hanol ane tone Dry later Dry e	or (6%)	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	cF		O. B.			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method		Volun Requir			e of ction		CLP Sample	e		LP se#
1 Metals	YES (NO)	Ice Onl	γI	x 8	0Z.	10	10	Do.	573	1	024	8W
	YES NO		′								-	
	YES NO	<u> </u>										
	YES NO	ļ										<u>. </u>
	YES NO		_						_			
	YES NO	I	- 1		- 1					- 1		

^{AF2}**№** 120389

Signed: John 1. 1/ht

TRC	Projec		Project No.:	Date/Tim		Sheet		_/
225		ector Personnel:	<u>رار ا ۵ ۱۹۷ ۵ ه</u>	TRC Perso				
Sample Log She	ו לממ	Brotos 2		<u> 」J. <i>H</i></u>	nater.	A.	Berga	4
Sample No.: SS-42	14	_	SI	ketch of Sam	ple Locati	on		
Sample No.:	<u>` </u>		<u> </u>	NT	-	 		<u> </u>
Depth/Interval Sampled:	0-6 in.	-		-		•		<u> </u>
Sample Type: Grab, Com (circle)	nposite or Both	_				22	424	
Media: Surface Soil (circle) Subsurface S Other		e Water	·	rest fon	A 7.01			
Field Screening Information	on:		Observations:	·····				_
Type of Meter: N//	1		Sand (sur	1t. s.	oy , 90	o io F	ح-	- - - 1
Other Field Measurements	s:		3440, 1	<u> </u>	<u>ei , /a</u>	ose,	N. A.44.	r
CPS								
SAMPLE COLLECTION EQU	IIPMENT:		DECONTAMINA DECON. FLUID			CRIPT	ION:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Arr Bailer Backhoe Van Dorn Bo	n ttle	Tap water Alconox Tap water HNO ₃ (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None	XN NAMA	S S			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	,	CLP Case#	
1 Matals	YES NO	Ize Only		1012	00573		12481	
	YES NO	7				_		7
	YES NO				1			7
	YES NO							7
	YES NO							\exists
	YEŞ NO				<u> </u>	_		٦
Nº 120390		· · · · · · · · · · · · · · · · · · ·	Signed: _	Joh 1.74	ヤ	Rev	8 July 19	91

TRC	Proje				et No				Time			Sheo	. 1	of
ING	Callo	Lon 0213	60	590	01	74	3 11/30/04 101				5	Onice.	` <u> </u>	ان ان ——
Sample Log Sheet		actor Personne							erso					
		Bartes	2					J.	Hu	iter		A.	Berg	gan.
Sample No.:			-			S	cetch	of S	Samp !	le Lo	rk rk	on	· ·	-
			\vdash		_			•	<u> </u>		, ·	 _	-	
Depth/Interval Sampled: 0-	6 inzl	L.							S - 4	25				
Sample Type: Grab Composite (circle)	or Both			-		· .								
Media: Surface Soil	Sedim	ent .	\vdash	-				•				•		
(circle) Subsurface Soil		e Water	\vdash	U	=									
Other	Groun	d Water				- /	res	~	9 × 9			1		
			П	,										
Field Screening Information:			()bse	rvatio	ons:						L		
Type of Meter: // //			<u>-</u>	<u>S</u> a	nd	(3	w)	0	lice	bro	₩n.	9	0%	
N 77			┨ _	F-7	50	nd,	1.0	1,	510	ve1	<u>, /</u>	0054	, al	AND
Other Field Measurements:		•	-											
_GPS	 		-		· · · - ·									
<u> </u>			-											
			-											
<u></u>			 											
SAMPLE COLLECTION EQUIPMENT	r:] '			MINA LUID		PRO SED	CED	JRE:	DES	CRIP	TION:	
	_	<u></u>			water		<u> </u>	9						
····································	owel elby Tube	H	ļ	Ałco Tap	nox water		12	₫ .	<i>a</i> ~	_				
l	edge Sam	1 1		HNO	3 (1 c Water	r10%)	X] (υ	Pa S	<i>></i>				•
	mmerer				watei anol	ſ	2	₫						
Pa	tended An iler	m		Hexa Acet			F	-						
I OTHER:	ckhoe		•	Air E			1	₹						
Va	n Dom Bo	ttle 🔲		DI W Air D			12	P R						
				None	<u> </u>		<u> </u>	<u> </u>						
	ered rcle)	Preservation Method	n		Volun Lequii		Co	me c llecti	on		CLP imple	,	Cl Cas	
W Metal YES	NO	Ire Or	ly	1	x 8	0 Z	10	15		DOS	573	3	024	811
YES	ΝО		7									T		
YES	NO											$\cdot $		
YES	NO													
YES	NO													
YES	МО													

^{AF-217}Nº 120391

Signed: A. Mt

TRC	Proje	ct: Lan 0213	Project No.	: 1 7 43	Date/Tir	ne: <i>CY 0</i> .	shرا الامرا	eet <u>/</u> o	of <u>J</u>
Sample Log Sho	Contra	actor Personnel:		-	TRC Per	sonnel:			
		Bartosz :		Skat	ch of Sar	That le	cation	4. Ber	<u> </u>
Sample No.: SS -	426	-		JACE		A T	Cation		7
Depth/Interval Sampled:	0-6 ins	Les		•			•		
Sample Type: Grab Con (circle)	nposite or Both	-				6			_
Media: Surface Soil (circle) Subsurface S	Soil Surfac	e Water		Fr	esh 1	ornd	Trai,	,	
Field Screening Information	on:		Observatio	ns:			<u></u>	 	
Type of Meter: N /-	1		Sand C	(SW)	oliv	e de	abon ,	90%	
Other Field Measurement	s:		F-C Samp	<u>, /e</u>	<u></u>	<u>e-e(_,</u>	1003	e, Mas	<u>A</u>
GPS							·		<u> </u>
	<u> </u>						<u> </u>		
<u> </u>		· · · · · · · · · · · · · · · · · · ·					-		_
 									—
SAMPLE COLLECTION EQU	JIPMENT:		DECONTAN DECON. FI	-		DURE:	DESCR	RIPTION:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Ari Bailer Backhoe Van Dorn Bo	m ttle	Tap water Alconox Tap water HNO ₃ {1 or Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None						
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volum Require		Time of collection		CLP Imple	CLP Case	
✓ Metals	YES NO	Ice Only	1 ×80	>2.	1018	Po	5 7 3 4	0248	M
<u> </u>	YES NO	<u>'</u>		_					
	YES NO					 	. <u> </u>	<u> </u>	
<u> </u>	YES NO			_					_
	YES NO			_		 -		 	
	YES NO		ı	- 1		1		I	ı

^{M-21}Nº 120392

Signed: Jy 1. 11tt

	Projec	:t:	Proje	ct No.:	ا ا	Date/Tim	e:	Sheet	1 of 1
TRC	Callah	nt: -021	<u>36 o</u>	<u>590 01</u>	[}#3	H/30	0836	Oricet _	
Sample Log She	Contra	ctor Personnel:				TRC Pers			
•	1 K.	BAITUSZ	<u>.</u>			J, H	unter	<u>. A.</u>	Briggy
Sample No.: 5543	1 554	127			Sketo	h of Sam	ple Locat	ion	
Sample No.: <u>عَلَيْ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِي</u> (هَا (هَا) (الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ الْحَالِيَّةِ ا			_		_	Ø∕.	je f,		
Depth/Interval Sampled:	0 - 610.		*	22915	1	+	 	# <u>></u>	5
			-		+	 	- 		
Sample Type: Grab Com (circle)	posite or Both	-						+	
Media: Surface Soil	Sedime	-nt	- 		+-	 -	-	+ $+$	
(circle) Subsurface S		e Water	+-		+-		+	1 -	-
Other	Ground	d Water	-		-	1	+ +-	+	+
, i	•	-	-R			1			1
Field Screening Information	on:		Obse	rvation	s:		<u> </u>		
Type of Meter:	ī		<u></u>	1/1/2	Str. 6	~/01	· v2 /.	La	Daw h
			30	72 51	t. 6	0% F	Souit	30%	ounded ct,
Other Field Measurements	>: 		gr	nve (40	to 1 10	. atia	1, ma)	c†,
<u>rrs</u>	·		v.	10050	<u>e :</u>	<u> </u>		<u> </u>	·
							<u> </u>		
			-						
	· · · · · · · · · · · · · · · · · · ·								
· · · · · · · · · · · · · · · · · · ·									
SAMPLE COLLECTION EQU	IPMENT:		-	ONTAMII ON. FLU		N PROCEI		SCRIPTIC	N:
Hand Auger	Trowel	□ II		water nox		矧			
Core Sampler	Shelby Tube		Тар	water	CON	図		•	
Spatula/Spoon	Dredge Samp	ler	Tap	3 (1 ort) Water	0%13	团			
Bowl (stainless) Split-spoon (2" or 3")	Kemmerer Extended Am	. 🗆 📗	Meth	nanol		Ä			
OTHER:	Bailer	" 🔲 📗	Hexa Acet						
OTHER.	Backhoe	-	Air E	Ory /ater		[2]			ļ
	Van Dorn Bot	tle 🗀	Air D	Эгу		这			
	Filtered	Preservation	None	e Volume	<u>-</u>	Time of	CLP	1	CLP
ANALYTICAL PARAMETERS	(circle)	Method	F	Required	<u> </u>	ollection	Samp	le (Case#
V shetals	YES NO	ideomic	 	12		830	00573		48W
V Wetals	YES NO	ite caly	18	<u> </u>	109	100-dep	0057	401 D	148W
	YES NO								
	YES NO				-		<u> </u>		
	YES NO								
1 []	YES NO								

Signed: July S. 116

TRC	Projec C _A //	ct: when 02		ect No ၄၀ 0			te/Tim		She	et <u>I</u>	of <u> </u>
Sample Log She	ACT I	ictor Personnel <i>Bortes</i> マ			•		C Perso	onnel:	A	Rei	· .
00.					Sk	etch o	of Sam	ple Loca	tion	, ,0 67	5 4 h
Sample No.: SS 42	8	· 	9				1 14	1	ما ا		
Depth/Interval Sampled: _	0-6 inch		9						1.		•
Sample Type: Grab Corr (circle)	posite or Both			ļ. -							<u> </u>
Media: Surface Soil (circle) Subsurface S	Soil Surfac	ent e Water d Water				-					
			+.	<u> </u>	418	-+		 -	-		
Field Screening Information				ervati	' 			.l 1		<u> </u>	<u></u>
	•				<u> </u>	w/90	ove l	· V.	bron		
7477			30	% sil	<i>t</i> , <i>t</i>	(0%	F. S	axial,	10%	You.	ndea
Other Field Measurements	s: 		31	wel.	hp.	<u>t.e</u>	lin.	Axia!	<i>v</i> _	10.5e	
<u>Cfs</u>			<u>h_</u>	ist.		<u> </u>			<u> </u>		 .
				-	•						
SAMPLE COLLECTION EQU	DPMENT:				MINA FLUID		ROCEI D		ESCRI	PTION:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3")	Trowel Shelby Tube Dredge Samp Kemmerer Extended An		Ald Tap HN Tap Me He	water onox water O ₃ (1 o Water thanol cane	r or100%) r)55/XXXXX					·
OTHER:	Backhoe Van Dorn Bo	ttle	Air Di 1	Dry Nater Dry		X X X X					
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	No	volui Requi	red		e of	CL Sam		CI Cas	
X Mutals	YES NO	Ize Only	7	8 0:	2,	084	-0	1)0573	6	014	W8
<u> </u>	YES NO					 -					
	YES NO		·	 -							
	YES NO		-+								
	120 140	L									

Signed: July 1. It

Sample Log Sheet Coritractor Personnel: TRC Personne	TRC	Proje	ct: L _{eu} 0213	Projec 6 0596	t No.: 2 01 }	ie: 0820	Sheet 1 of 1		
Sample No.: Sketch of Sample Location Depth/Interval Sampled: O To rock Sample Type: Grap Composite or Both (circle) Surface Soil Sediment (circle) Media: Surface Soil Surface Water Other Ground Water Field Screening Information: Type of Meter: MA Other Field Measurements: Sifty Send to grove 1, V, brown Send to grove 1,	Sample Log She	Contra	actor Personnel	:		TRC Pers	onnel:	n 0	
Depth/Interval Sampled: Unicol Sample Type: Grab Composite or Both (circle) Media: Surface Soil Sediment (circle) Subsurface Soil Surface Water Other Ground Water Field Screening Information: Type of Meter: MA Other Field Measurements: Sifty Sand Mygravel, y, brewn, 30% of the field Measurements: Sifty Sand Mygravel, y, brewn, 30% of t	<u> </u>		Bartosz	<u>-</u> :		J. 17	witer,	A. Dergan	_
Depth/Interval Sampled:	Sample No.: SS4 2	<u> </u>		7	<u>_</u>	Ketch of Sam	` 	1. 1	_
Sample Type: Grab Composite or Both (circle) Media: Surface Soil Sediment (circle) Subsurface Soil Surface Water Other Ground Water Field Screening Information: Type of Meter: Other Field Measurements: Sifty Sand to grave 1 yr, brewn, Soft sift for F. Sand, 10 is counted Stavet for F. S							112	100	_
Sample Type: Grab Composite or Both (circle) Media: Surface Soil Sediment Subsurface Soil Surface Water Other Ground Water Field Screening Information: Type of Meter: MA Other Field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to the field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to the field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to the field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to the field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to the field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to the field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to the field Measurements: Sifty Sand to grave 1, y, bream, 10/2 canded Struct to	Depth/Interval Sampled: _	0-6 (LE)	М	- "-			 	(5 P)	
Media: Surface Soil Surface Water Other		* 5.4							
Subsurface Soil Other	(circle)	posite or Both					-		
Other Ground Water Continue		Sedim	ent ·					 	_
Field Screening Information: Type of Meter:	Oubsurface o		•			 	- -		┪
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") Bailer Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO Other Field Measurements: Sifty Send to parall, y. brown. Solv Still, 60 is F. Send, 10 is conded Strange Language, 10 is conded Spray Send to parall, y. brown. Sprit, 50 is F. Send, 10 is conded Spray Send to parall, y. brown. Sprit, 50 is F. Send, 10 is conded Spray Send to parall, y. brown. Sprit, 50 is F. Send, 10 is conded Spray Send to parall, y. brown. Sprit, 50 is F. Send, 10 is conded Spray Send to parall, y. brown. Sprit, 50 is F. Send, 10 is conded Spray Send to parall, y. brown. Sprit, 50 is F. Send, 10 is conded Spray Send, 10 is conded Tap water Alconox Tap water HN03 (1 or 0%) Tap water HN03	Other	Groun	d Water						
Silty Sand by gravel, y, brewn, 30 % Silty Sand by gravel, y, brewn,		·		Þ		5		4:	
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO YES NO DECONTAMINATION PROCEDURE: DECON. FLUID USED Tap water Alconox Tap water HNO 3 (1 or 10%) Tap Water Alconox Tap Water Alconox Tap Water Methanol Hexane Acetone Air Dry None Time of CLP Case# Case# ON 1 C	Field Screening Information	on:		Obser	vations:				
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO YES NO DECONTAMINATION PROCEDURE: DECON. FLUID USED Tap water Alconox Tap water HNO 3 (1 or 10%) Tap Water Alconox Tap Water Alconox Tap Water Methanol Hexane Acetone Air Dry None Time of CLP Case# Case# ON 1 C	Type of Meter: \sqrt{A}			<u>Sil+</u>	X Ser	1 h/gears	1, y.	brown,	
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO YES NO DECONTAMINATION PROCEDURE: DECON. FLUID USED Tap water Alconox Tap water HNO 3 (1 or 10%) Tap Water Alconox Tap Water Alconox Tap Water Methanol Hexane Acetone Air Dry None Time of CLP Case# Case# ON 1 C	Other Field Measurements	*:			SIT,	<u>60 % </u>	and,	W. loose	
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO Preservation Method Preservation Method Required Collection Sample CLP CLP CLP CASE# Collection Sample Case# YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO DESCRIPTION: Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₄ (1 or (0%) Tap wat	C25			Jusis	1.	· · · · · · · · · · · · · · · · · · ·		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO Preservation Method Preservation Method Required Collection Sample CLP CLP CLP CASE# Collection Sample Case# YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO DESCRIPTION: Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₄ (1 or (0%) Tap wat			 -			<u></u>			1
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO Preservation Method Preservation Method Required Collection Sample CLP CLP CLP CASE# Collection Sample Case# YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO DESCRIPTION: Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₄ (1 or (0%) Tap wat				<u></u>					
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO Preservation Method Preservation Method Required Collection Sample CLP CLP CLP CASE# Collection Sample Case# YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO DESCRIPTION: Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₄ (1 or (0%) Tap wat		<u>-</u>						<u> </u>	1
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO Preservation Method Preservation Method Required Collection Sample CLP CLP CLP CASE# Collection Sample Case# YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO DESCRIPTION: Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water Alconox Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₃ (1 or (0%) Tap water HNO ₄ (1 or (0%) Tap wat									╛
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle Alconox Tap water HNO3 (1 or 0%) Tap Water Methano! Hexane Acetone Air Dry Di Water Air Dry None ANALYTICAL PARAMETERS Filtered (circle) Method Preservation Method Time of CLP Case# Case# YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO	SAMPLE COLLECTION EQUI	IPMENT:						CRIPTION:	
Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) YES NO YES NO YES NO YES NO YES NO Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water HNO3 (1 or 10%) Tap water Methano! Hexane Acetone Air Dry None Time of CLP Case# Case# YES NO YES NO YES NO YES NO YES NO YES NO	Hand Auger	Trowel		•		Ŋ.			1
Bowl (stainless) Split-spoon (2" or 3") CHER: Baller Backhoe Van Dorn Bottle ANALYTICAL PARAMETERS Filtered (circle) Method Preservation Method Required Collection Filtered (circle) Method Preservation Method Preservation Method Required Collection Sample Case# YES NO YES NO YES NO YES NO YES NO YES NO	· · · ·			Тар w	rater _	~ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
Split-spoon (2" or 3") Extended Arm Bailer Backhoe Van Dorn Bottle Acetone Air Dry None ANALYTICAL PARAMETERS Filtered (circle) Method Preservation Method Required Collection Sample Case# YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO	· · · · · · · · · · · · · · · · · · ·	-	pler	Tap V	Vater	9 1 777 🔀		•	1
OTHER: Baller Backhoe Van Dorn Bottle Acetone Air Dry DI Water Air Dry None ANALYTICAL PARAMETERS Filtered (circle) Method YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO YES NO	, , , , , , , , , , , , , , , , , , , ,		m 🗔			Ä			1
Van Dorn Bottle DI Water Air Dry None None	OTHER:		H						
ANALYTICAL PARAMETERS Filtered (circle) Preservation Method Required Collection Sample Case# None			ttle	DI Wa	iter	[2]			
ANALYTICAL PARAMETERS (circle) Method Required Collection Sample Case# Notice N					-				l
YES NO YES NO YES NO YES NO	ANALYTICAL PARAMETERS								7
YES NO YES NO YES NO YES NO	□ melals	YES (NO	ick only	3	ے ز	0820	D0573	7 0248M	
YES NO		YES NO							
TES NO		YES NO							
YES NO		YES NO							
		YES NO			••		<u> </u>		1

AF-212 Nº 120387

Signed: Jelay 1. 14

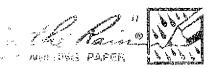
TRC	Proje Zalla		Project No.: Date/Time: Sheet 1 of								1				
Sample Log She	Contra	ctor Personnel	l:	-			T	RC P							
	R. 19	Partosz.	:		_			<u>J.</u>	H	nat	er,	A	<u>. B</u>	2/54	h
Sample No.: SS- 4	30. / SS	-430 MS	 			Sk	etch	of S	amp N	Γ		Τ.	Τ-	Г	Г
			\vdash	•					1	-2	V.c	- 1	-	O.	H
Depth/interval Sampled: _	0-6 inch						· ·					-			
Sample Type: Grab, Com (circle)	posite or Both						-						-		
Media: Surface Soil		ent										-		-	\vdash
(circle) Subsurface S		e Water d Water					,								
Otilei	Gioun	u water				.						١.	<u> </u>	430	<u></u>
P'ald Company of the Later was dis-								}				ļ	Ā	P	
Field Screening Information	n:		I —		rvatio										_
Type of Meter: N/A			<u> </u>	<u> </u>	' 	<u> </u>	~ o(_	<u>h</u>	<u>, / . e</u>	ror	e l		<u>, 6</u>	<u> </u>	4
Other Field Measurements	::		ے ا	0100	<u> </u>	5 n +, 80 np	+0 +0	1	: L >	<u>~, </u>	101	<u>. /-</u>	v. /.	**(-
C-PS			=	m	ist										ز ـــ
			_												_
<u> </u>			-							·					-
															-
SAMPLE COLLECTION EQU	IPMENT:	-	<u> </u>	DEC	ON. F	MINA.			CEDI	JRE:	DES	CRIF	PTION	:	
Hand Auger	Trowel			i ap Alco	water nox	•	}	∄ .							
Core Sampler Spatula/Spoon	Shelby Tube				water 2 (1 c	or10%	,	_							
Bowl (stainless)	Dredge Samı Kemmerer		·	Tap '	Wate anol	r		-							-
Split-spoon (2" or 3")	Extended Arr	m	i	Hexa	ne		ļ								i
OTHER:	Bailer Backhoe		•	Acet Air D			t	┪ .							
	Van Dorn Bo	ttle 📙		DI W Air D			 	-		_					ł
······	· Eiltonad	D		None		200	<u>[</u>] ime o	. . 1		CLP		<u>~</u>	LP	
ANALYTICAL PARAMETERS	Filtered (circle)	· Preservatio Method	on 		equi		Co	llecti	on		ımpk			se#	_
1 Metals	YES (10)	Ize Only	7	_	8 0			90			73			81	╗
Metals (MS)	YES (10)	Ire and	7	_	8_0	Z.	_0	190	0	Do	573	8	0),	18N	ᅬ
	YES NO			_				-				-	-		
	YES NO					_						\dashv		 -	-
<u> </u>	YES NO			<u> </u>		-						\dashv			\dashv

No. 120 393

Signed: July & 1/th

Callahan Mino Residential Wells

ALL WEATHER


Environmental

HILLD BOOK

No: 550 F

FS10024

Bool:-Bnd-N-Env-Fab cov550F

LELWEATHER Let et enemental Field Book

TRC Environmental Coup 100 foot of John St Lowell MA 01852

978 970 5600

Callahan Mine - 202 326 9560 Project Managar-Dale Weiss 978-656-3560 Sik Managar - Ceslie Mevickar US EPA

Fig. 19. Control of the Staint All-Weather Writing Paper - A control of the staint and enhance the written image. It is widely secured, the control of the c

Cover Options

Polyter - Cove-

^eshrikaid Caver

, flam Ha

town blo. 550

10 1986 J. L. DARLING CORP.

CONTENTS

MESCRENCE

DATE

L January 2004 RW Sampling

01/11/08

Reference Page Index

- 147 Error codes, Hazardous classifications. Contamer types
- 148 Sampling guidelinos (Liquids)
- 149 Sampling guidelines (Solids)
- 150 Approximate Volume of Water in Casing or Hole Ground Water Monitoring Well
 - PVC Pipe casing tables
- 152 Soil Classification
- 153 Sul Classification
- 54 Conversions (Length Weight Volume, Temp. No.)
- 155 Conversions (Concuptionions, Volume/Flow or time, Velocity Acceleration)
- Maximum Concentration of Contaminants for the Topicity Characteristic.

.

1145 TRC on Sike - C- Rostor Mike Dreher we we are organing Bother for well, Collection from Newby residences. 1240 Dale Wess Called + Thomy any has a terent Hal SNOW 207-326-8217 who may went us to sample his well we are to determine map, lowbon. This well is attached to a Judy Spears resident also. 1300 Equipment Calibration - 25I in logsheet w/ Today's Date 1400 Called Hal Snow. Well yous a tap adsount to the well head. We'l Run a hose to growt Surface Afrough 5 gal bucket to record water Quality Sheet # 120596 PERCHESIL OIL 11/05

Location Cullahan Mine Date OI 11 08

Well huns Continuously & 1435 Houses running Cumonthy Logging at 30 seconds IPL - Mefale IPL - Sulfate Sayple ID'S DWCA-15 Voic's Melals - Do 5766 Sulfake - 005766: 1500 At Lisa Hopkins house cellor way to uball headin the dellar with 510 Mile and I mobiler YSI Bottles & Hose + top before tilter used 1530 Punging Lines + Receiding W/95 See Sheet 1540 "NTU's are high. Bubbles? Chtyle & 1 01/11/05

1545 Collected DWCA-16 + Duc AF 16 Depteake 1600 Chemiel up + Demobe Sumple INY Milals 005755 /005756 Sulfate= VOC'S A1692/A1693 DOS756/55 1615 Dale weiss called. Mr. Vergue Cancelled for Tommorow 1630 All Snuples presonel+ on ice al lablel. 1650 called Mrs Conton + Mobilized to DWCA-17 Sheet # , 120598 1705 Itelia landon says the State could not hill a way to sayle at the well hed. We looked downstairs to only a pressure relief value pressure tonk she also world that the court of the character of the court of the co

She was doing landy So Flow was occurry, 1515 there been having the 1315 water for 5 mils, t are +525 cf Co (he ched to / hs/hsp hs/bus 1725 Volumes of DWCA-17 triple vons - A1694 Double, Mitals - DOSTS7 Double Sulfate. - DOS757 With 10 minutes 45 minutes Logging at 30 seconds 1745 labled + in friese all are presonted. cliff 1750 Mike is conducting a YSI post calibration 1810 Post cal cartines note: Turbidity values flachentel at DWCA-16 & A This was Hoght to be due to Aemhun/ Churc Fla ollilos

0715 Mile Drehan is calibrating USE for water quality Measurements. I am Organizing log suschs 0730 Nok: TB-004 Trip Blank was prepared on oillilos at 1330 -Da RAS# ALG99 3 voc's colDIttzo to ptt 62 0750 Mobilizing equipment to DWCA 18 - Jordan Residone (Wilce May not i's contact) 0805 A4 Mantha Darden (Mike May and They are a couple. Mile asked of we want to Sample his Duy well which is the historical well for the property which he uses to water his garden. I called Dale Floff nersy ? O820 he are able to use top Before the pressure tank. well log wil 155 for 10-15 whim has then sample. alluffeth orlizes

0831 Put on hop. Pump kicker in very quidely loggins uf YSE. Nok. YSE 15 logging at 30 seconds but clock , says 8:35 50 1h 15 awent of my watch 0845 Sampling DWCA-18 Metals - 505758 Data on Sulfate, - 005758 Short# Vocs - (Ms/MSD) - A1695 120599 0200 Mila Maynord also has a dis well which he should ar I'd need a pump or a pershaltic pury to collect it worker Level 18 down 10-12 Al Again used for garlan 0430 Mile Slowed us the loaking of the protession well + it is flowing Rom a top in side of him. He Bays if only freezes in some cold weather. 6935 Spole W/D. WEiss elevate AT ortalos

Dusuld like to Saugle Autesian

Well Tap and spring

Dug well flowwork can

wait Lill spring due to

wait Lill spring due to

Need to prejet with a

pump.

3 Described that Mile Mayand

also knows where the

Transformer was list to

Can Plabograph it.

Of Still a field call on weather,

and possible transformer

New the Powder Mass

To Plabographs at housers

At Mallie Barins's House

To Allie Barins's House

the cellar, we can again our a hose out from the before the pressure tounk lagging water quality up 451 650 MS will Run him Studle 10-15 Minutes allight all oilizes

+ Ste allowal us access to

Project Chem Swowing at 11 am

Note: I have slate graphed the Pressure tenk al subsequent Liber apparatus. This house has been here for 4 Boring Sunpt ID's - Mely - DO 5759 We are running the plans L 2 Hoses, out to back your to prevent any icing near the Back of house. SHEET # 120600 1205 we are at the Artesian well this is supposed to be owned by Alida Fish and , Thus well on the MEDEP says No information greatable" But is lable 101 the Map as DWCA-10, and this lot. Becomst it I's running constantly NO Purya is regunded. We will with ys I in a graduated Data becarded on Sheet # 120602 Chullen 1 01/12/05

1225 DWCA-10 Collected UOKS - A1641 Metals - Do 5764

Sulfale - 005764

1245 ALL Souples one provid onl are an ice

305 We and at Due DWCA-4

Boring, Methor at prollie Bat 9 goods fulls

She has a heatmout

took which appoints Is to preved birild up.

She astored me record in the testing at the well

it apparedly had alot of Sulfar in the past

we confirmed hosp out

of the Bellchard + will run Has Athough hose

For 10-15 mins

1370 Running has out of top t

334 Actual loggins tinnen 99 x 1338

chetterint elliste

We will Rain Ho Lin Stelle + ensur page

Loabor US on the

a ramp while chan/malker

access blility

At onset of Puzz, Mike tells me the meney 15

Full on the USI.

We'll Make recurings of

2 minute internals over

a leighth of time is loming + Hen I'll collect Samples

1345 WILL Go another 5 min +

will collect the sample.

1350 Sample DWCA 1211

Data an Sheet #

ID's Are: Moc's = A1697

Mythis = 005760

Salfate = 005760 Marin got reads that she has

a calcule acid nuclinitie- She

will let us copy those in April

Location Callahan Line Date 01/12/05 Project / Client SNOWT NG we Demobilizer hoses + egrepment + Sauples 1415 Hawly breakle closing the Bulkheal down to have Cellar. The woodan door is compal + ICE Hat has firmal, is preventing It from closing all the way 1440 Mille is keeping pressue on it while I kny he hook the door closed Hook now Broken 1500 Returned Miles to Knilon For Post calibrahu of Hur GEZ 1525 I rehard to Mis Bonny to put plastic hee him on the war side of the Aulisheal Door to execut drifts will real to replace hook in the basement Bullchard door in 1645 Lendal all equipment + Sautes 1655 TAC att 5 KBh 01/12/05

TRC	Projec	ct: alan Mir	Project No.: ০2। 3/ ০১%	Date/Time		neet / of /
Sample Log Shee	Contra	ctor Personnel:				M. Deher
Sample No.: DWCA	-17 ms	/med Sulfales	Sk	etch of Samj	ole Location	
Depth/Interval Sampled:			10	Kitale	31	
Sample Type: Grab, Compo	site or Both	ļ	hell To			
Media: Surface Soil (circle) Subsurface Soil Other		ent e Water d Water	Brive	way		
Field Screening Information:	;		Observations:			
Type of Meter: UST 8	so Mos	3	D) pec	ho Cit	0 000	an!
Other Field Measurements:			-A			
	Salvally =	N/A	- Kan he	- 15 	mpu po	OALA
(00) (09 (00) (10)	· · · · · ·		- loggea	<u> </u>	F tw	- IOMIA
pt 6.94			Mr. 2		che ating	
1 360 337 My 36.0			16.	-36 N	7 u 64	rukim.
SAMPLE COLLECTION EQUIPM	BENT.		DECONTAMINA	TION PROCED	URE:	
SAMPLE COLLECTION EQUIPM		_	DECON, FLUID Tap water	USED	PESC	RIPTION:
Hand Auger	Trowel		Alconox Tap water	A	-	
Core Sampler Spatula/Spoon	Shelby Tube Dredge Samp	oler	HNO ₃ (1 or10% Tap Water) [_	
Bowl (stainless) Split-spoon (2" or 3")	Kemmerer Extended Arr		Methanol	H M	4	,
OTHER:	Bailer		Hexane Acetone			,
1 -(1 /- 1	Backhoe Van Dorn Bot	ttle	Air Dry DI Water	H		
			Air Dry None			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#
Metals	YES (NO)	HWUZ pH C	21PL	CA+5-25	00575	33748
	YES NO	LŒ	IPL	F15251	72500579	33748
区 1003	YES NO	HCL P44	2 3 40 m	P15241	25 A169	4 33348
	YES NO			· 		
- 	YES NO			· 		
AF-212	YES NO	<u> </u>		01.11.0	12 to	Rev: 8 July 1991
№ 120598			Signed: _	Clutte	<u> </u>	UCA. Gard 1991

TRC	Proje	u 1	Project No.:	Date/Tim	161	neet <u>/</u> of <u>/</u>					
INC	Cal	lahen	02136 0590	01/12/05							
Sample Log Sho	eet Contr	actor Personnel	: 	TRC Person	opnet: hv /h	Drelan					
Sample No.: DWCA	-11		8	ketch of Sam							
Sample No.: DWCH				-100	at ment	ORB					
Depth/Interval Sampled:	M		X VI								
Sample Type: Grab.Com	posite or Both				RAMP						
Media: Surface Soil (circle) Subsurface S Other		ent se Water ad Water	Ce.	1 1 1	Dr. Leve my						
Field Screening Information	on:		Observations:	! 	-h						
Type of Meter: YSI 6	TO MAS		Rant	ron	up Be	ku e					
Other Field Measurement			Ran 140 For 15 mins +								
Temp = 9.6 Cond = 103 No = 10.57 pH = 6.31 orl = 360	Nine		Recon On c	Lew Recorde	nfor Co nhe ha	full.					
SAMPLE COLLECTION EQU	IPMENT:	· · · · · ·	DECONTAMINA DECON. FLUX			RIPTION:					
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowe! Shelby Tube Dredge Sam Kemmerer Extended An Bailer Backhoe Van Dorn Bo	pler	Tap water Alconox Tap water HNO ₃ (1 or10) Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None		μA						
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#					
1 Mehls	YES (NO	HN030462	IPL	1350	005760						
1 Sul Park	YES (NO)	DLE	IPL	1350	005760	33748					
× voc's	YES (NO)	HCLOHC	2 3 youl	35	A1897						
	YES NO										
	YES NO										
	YES NO										

Rev: 8 July 1991

Nº 120601

TRC	Proje Calla	,	Project No.: 2136 0590	Date/Time 0 1/12/0		neet <u>(</u> of <u>1</u>
Sample Log She	et	actor Personnel:			she A	n Drehar
Sample No.: NWCA-	12		Sk	etch of Sam		Ex Ma
Depth/Interval Sampled: _	NA					Don't
Sample Type: Grab Com (circle)	posite or Both		Drive	100		Slave
Media: Surface Soil (circle) Subsurface S Other		ent se Water ad Water	UAY)	present	3 1	15
Field Screening Information	on:		Observations:			
Type of Meter: YSZ 6	so mos		Slight	Sufer	oda:	<u> </u>
Other Field Measurements	::] .	Runt	- longer	w/ 1/5	I for
Temp = 8.05 Cond = 85 BO = 3.71 AH = 6.51	vru= 2	.6	15 Min water Direct	enality	ill Sta results	Lle L
OR= 351.1			Becon	1	ne fan	es Se
SAMPLE COLLECTION EQUI	IPMENT:		O زمری DECONTAMINA DECON, FLUID			RIPTION:
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Art Bailer Backhoe Van Dorn Bo	m ttie	Tap water Alconox Tap water HNO ₃ (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None	,	JA	
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#
X Metals	YES (NO)	PHLI HAZZ		1140	305759	
Sulfake	YES NO	Tet	186	1140	D05750	
N voc's	YES NO	HCT CS	3 40m1	1140	1716-96	33748
 	YES NO		 		-	
	YES NO		<u> </u>	A A	W	-
Nº 120600		·	Signed: _(DUHD	8/2	Rev: 8 July 1991

TRC	Proje Calla		Project No.: ∂≥136 <i>o59</i> 6	Date/Time	19	Sheet of					
Sample Log She	Contr	actor Personnel:		TRC Perso	nnel:	M. Drehar					
			Sk	etch of Sam							
Sample No.: DWCA	-10		d. (d	. 1		7777					
Depth/Interval Sampled:	At swfame	Spring	(chart)			use 1					
Sample Type: Grab Com	posite or Both					Age lone!					
Media: Surface Soil (circle) Subsurface S	Sedim Soil Surface	ent e Water	1 4 w 1 4	1	Chry						
Other	Groun	d Water		· vé may	100 [1	TAT					
Field Screening Information	 on:		Observations:	7		·l!					
Type of Meter: ♀∫ ↓	halel 650	MIS	Spring		Dipes						
Other Field Measurements):		vea roul. Is repended								
Temp= 7.8 Cond = 108 Do = 10.55 PH = 7.8 ORP = 326.	NTU's =	1.5	he pro-	ke Than	nala Ja A scess Dwch du Hun	sh which					
SAMPLE COLLECTION EQUI	IPMENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:								
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Sam Kemmerer Extended An Bailer Backhoe Van Dorn Bo	pler	Tap water Alconox Tap water HNO ₃ (1 or10%) Tap Water Methanol Hexane Acetone Air Dry DI Water None		9						
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Required	Time of Collection	CLP Sample	CLP Case#					
Metals	YES (NO)	HANZ PHLZ	187	(225	105764	33748					
X Sulfate	YES (10)	Tck	191	1225	205769						
× 1052	YES (10)	ACS PHC 2	- 3,40ml	1225	416A1	33748					
	YES NO				-						
	YES NO										

^{AF-212}Nº 120602

Signed: Challes

TRC	Proje Call	ict:	Project 02134			Date/Time:			Sheet of/							
Sample Log Sheet	Contra	actor Personnel	:			TR	C Perso	onnel:	M. Drelor							
Sample No.: NWCA - 18				Sketch of Sample Location												
Depth/Interval Sampled: _ ^			<i>/</i> _		Hon	sk	Bul	kland								
Sample Type: Grab, Composite or Both (circle)				-/	K	1	o t				-					
Media: Surface Soil Sediment (circle) Subsurface Soil Surface Water Other Ground Water									,							
Field Screening Information:		:	Observations:													
Type of Meter: YST 650 MAS																
Other Field Measurements:				(search w/ YST 10 months												
Temp = 8.22 Nyu = 0.0 Con1 = 84 00 = 10.14 pH = 6.38 0RP = 357				Top before the presentation was used. (saged w/ YSI 10 mats prod her K mrs. hure from well come on instably.												
		DECONTAMINATION PROCEDURE.														
SAMPLE COLLECTION EQUIPM	IENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION: Tap water													
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended An Bailer Backhoe Van Dorn Bo	m ttle	Alco Tap t HNO Tap t Meth Hexa Acet Air D DI W Air D None	mox water g (1 o Water nanol nne one Ory ater	r10%		∧ ne of	/ A		CLP	-					
ANALYTICAL PARAMETERS	(circle)	Preservation Method	R	Requir		Colle	ection	Samp	le	CLP Case#						
7	(ES (NO	HNO1 pHL	+-	<u>ρι</u>		0845		00575								
	(ES (NO)	14/1 /2		PL		0845		D0575								
	res (NO res no	nd IfCL <2		40 *	'	00	* >	A169	3	33748	<u>'</u>					
	res no	- -					-		-		一					
	ES NO							7								
Nº 120599			5	Signe	d: _(M	NE	AL	R	ev: 8 July 1	991					

TRC	Proje		-	ect No.:	Date/Tim	ie:	Sheet of								
INL	Callal	an thinz	<u> 136 لـ 10</u>	-0590	101/11/0	5 1515									
Sample Log She	eet Contra	actor Personne	l:		onnel:										
	C Fosker, M. Dreher														
Sample No.: DWCA - 16 DWCAE - 16 Duplicate				Sketch of Sample Location											
	 -	Dublink	╀╌			 	- 								
Depth/Interval Sampled: _		1			. 										
	-			1.											
Sample Type: Grab, Composite or Both (circle)					2 -(dur									
(onote)															
Media: Surface Soil (circle) Subsurface S	Sedim				04										
Oubsullace ((CIRCLE) Subsurface Soil Surface Water Other Ground Water				Wa	 									
				-											
	<u> </u>			<u> </u>	<u> </u>										
Field Screening Information	on: 4 0		Observations:												
Type of Meter:	ńďs		Value Printe tel hadro												
Other Field Measurement	s:			Photos Softanor used											
Jan - 8.12 C	Texp=8.63 Salinly= MA				- Philographical										
Con) = 135	water -		High NTU'S - Prase has												
Do = 11.64				a filter.											
PH = 6.59				Many Bubbles in Bucket											
088 = 345.2 NTU = 89.2				MANG	Bubbles	in Budi	64								
	 -		DECONTAMINATION PROCEDURE:												
SAMPLE COLLECTION EQU	IIPMENT:		DECON. FLUID USED DESCRIPTION:												
Hand Auger	Trowel			p water conox	H										
Core Sampler Shelby Tube				p water IO ₃ (1 or10%	ΔН										
Spatula/Spoon Bowl (stainless)				p Water	" 📙	ACN									
Split-spoon (2" or 3")	") Extended Arm			thanol xane		100									
OTHER: TAP	Bailer Backhoe			etone · Dry	H	T.									
, ,, ,	Van Dorn Bo	ttle 🔲	DI	Water	· Д										
<u></u>		<u>,</u>	No		<u>. H</u> _										
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method	n	Volume Required	Time of Collection	ÇLP Sample	CLP Case#								
	YES (NO	HNU3 LZ		191	1545	005755/5	33748								
≥ Sulfate	YES (NO	ILE		IPL	1545	005755/50	33348								
X 100°	YES (NO	HCL 42		3 40 -	1545	A-1092 /9:	33748								
	YES NO														
	YES NO														
	YES NO				2111	hi									

^{AF-212}Nº 120597

Signed: Clubery

TRC	Proje	1 6		Project No.: 02136 0590			Date/Time:			Sheet of					
Sample Log Sheet	Contra	Contractor Personnel:					TRC Personnel:								
Sample No.: B DWCA -15					SI	ketch			le Loc				_		
]		<u> </u>					_					
Depth/interval Sampled: Composite of well								<u></u>	- U.W	1	<u> </u>				
Sample Type: Grab, Composite or Both (circle)				-		V		1	E	low	<u> </u>	-			
Media: Surface Soil (circle) Subsurface Soil Other	Sedim Surfac Groun	e Water				14	4								
Field Screening Information:			Observations:												
Type of Meter: 151 (MD)			Pump Running												
Other Field Measurements:	Other Field Measurements:			Longid withon Quality											
T= 848 Salinhy= NA (onl= 187 D0 = 9.15 CH = 7.01 DEP = 329.8 NTU = 0.7				Longid Water Dunliky WIY5E at 30 securis											
SAMPLE COLLECTION EQUIPMEN	SAMPLE COLLECTION EQUIPMENT:			DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:											
Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: B B V	rowel helby Tube redge Samp emmerer xtended Arr ailer ackhoe an Dorn Bot	m	A T: Hi T: M H- A: Di A: N:	ip water conox ip water NO ₃ (1 ip Water chano exane cetone r Dry Water r Dry one	r or10% F			IV 	}						
ANALYTICAL PARAMETERS (C	ltered :ircle)	Preservatio Method	'n	Volu Requ			ime of		CI San	_P ìple		CLP ase#			
X INCA > YES	(NO)	HNV36	2	121		1	145		005	766	33	48			
Sulfate YES	; (NO)	TCE		I PL	-		445 No5766		33748						
▼ VOC'S YES	NO NO	7 HLLL2		<u> 3 4</u> /	·nl	1	445		ALG	N 3	3	1748	_		
YES	NO							_					_		
YES	NO .					<u> </u>									
YES	NO					Ŋ.	∧ - .	44	4				_		
^{∧F-212} Nº 120596				Sign	ed: (_	<u> Y/1</u>	W	7	沁		Rev: 8	July 19	91		

Callahan Mine Seliment and Surfacestates

ALL-WEATHER Environmental FIELD BOOK
No. 550 F

Field (sc.

L'ocation Callahan Mine Date 11/11/04 Project / Client Sediment Sampling KI/ M+E/EPA PPE Leve D overcast, 40°F 0745 K. Sears, T. Foley (TRC) mobilizing to SD-408 for sediment sampling. 0755 A. Stattel, C. Foster (TRC) at 5D-408 also 0815 Sampling SD-408 for: COO144 DO5645 Metals 3 x 802 CO014'C DO5645 TOCITOD 1 XBOZ Grain size 1 x 1602 cool4'C P05645 See log sheet # 120357 for details. Staff gauge #2 @ 8:00 am read + O. 4 At. 0845 Completed sampling SD-408, mobilizing to SD-417 for sediment sampling. 0900 \$taff gauge #2 @ 9:00 am read. 40.05 FT 0905 Sampling SD-417 for: Metals 3x802 co0140 D05653 TOCITO 1x802 CO014 C DO5653 Grain size 1 x1802 (0014'C D05653 See log sheet #120858 for detoils KINAN COM 11/11/04

Location Callaban Mine Date 11/11/04 Project / Client RI Sediment Sampling / MTE, EPA overcast 40 F PPE=levelD 0935 Mobilizing to SD-418 for sediment sampling 0946 Sediment is very soft 0950 Sampling SD-413 for: Metals 3x802 (0014C D05650 TOCITCO 1x802 COO14 C D05650; Grain 5120 1x1602 cool40 D05650 See log sheet # 120359 for delais 1010 completed sampling SD-413 mobilizing to SD-415 for stdiment sambling 1030 sampling SD-416 for Metals 3x802 (0014 6 005652 TOCITCO 14 802 CON 4. C DOSESS Grain size 141602 (0014'4 D05652 See sample log sheet #120360 For details. Sample taken below 1115 completed sampling so-416 Mobilizing to field trailer to decon equipment. 1120 Having problems starting TRC vehicle. Leaving it onsite while deconing and trying to contact Ford for assistance Kuan cas

Location Callahan Mine Date 11/11/04 Project / Client RI Sediment Sampling (EPA: M+E overcast 40°F PPE= level D 1220 completed deconing equipment, mobilizing to SD-415 for sediment sampling 1235 collecting SD-415 for: Metals 3x802 cool4 c Do5651 TOCITCO 1x802 cool40 DOS651 Grain 512e 1x1602 cool4'C D05651 See sample log sheet # 120361 for details. 1300 Mobilizing to 50-407 for sediment sampling. 1310 staff gauge #1 reads +0.7 ft. 1330 Collecting SD-407 for: Metals 3x802 cool 4.6 DD5644 TOC/TCO 1×802 COOL4'C DO5644 Grain size 1x1602 (0014 C D05644 See sample log sheet # 120362 for details. 1400 completed sampling SD-407, mabilizing to SD-423 for sediment sampling. 1430 Tow truck on site to pick up TRC vehicle. 11/11/04

Location :	Callaban Mine	Date 11/11/04
		t sampling /EPA, MtE
		PPE-Level D
1450	sampling SD	423 for:
1		COOL4'C DO5657 MSIDA
		. COOLY'C DOS667 MS/Dup
	The second secon	2 COOI4 C D05657
1510		mpling SD-423,
i-	mobilizing to	SD-410 for
	sediment sam	pling
1530		#3 read 0.0 ft.
		g out of site
1545	1	find a location
	that is not	1
1600	callecting si	
1		2 COOLYC DOS647
		C0014'C D05647
: 		dor (0014'C D05647
1620		impling &D-410.
		field trailer
		nt decon, and
	wrap up for	
1700	completed	
i i		age. Offsite for

11/11/04

Location Callanan Mine Dale 11/12/04 Project/Client RI Seament Sampling / EPA+ M+E Sunny, 30'F PPE = level D 0715 K. Sears, C. Foster A. Stattel, T. Foley ansite preparing for scalment sampling. 0800 Mobilizing equipment to SD-404 0840 Walking out to 50-404 noticed tory location of heavy green stained. sediments. Will go back to sample 50-400 at this location 0845 Note area with two seeps coming out of the waste rock road. There is heavy orange staining at top of road. Taking sample at bottom of one of the seeps 0905 Sampling SD-404 Por 3 x 802 COO14 C DO5641 Metals TOCITCO 1 x 802 COO! 4'C D05641 Grainsize 1x1602 cool4°C DO5641 See sample log sheet # 120365 for details. Oalo Mobilizing to SD-422 for Sediment sampling. There are three green stained locations within approx, 20 feet of Kuan tenn

Location 9	Callak	<u>nan Mir</u>	<u> </u>	Date	2/04
Project / C	lient RI	Sedime	nt Sam	pling /EF	A+ M+€
sunr	<u>14 30.1</u>	s	·	PPE.	levelD
		1 1 1	1 1 1	pear to	1 1
	one	c105e = +	40 4	ne surf	ace
	i : I	!!!!		i i i	ang e
0450		ing \$		00565619	LLD ED
	1 1	1 1 1		003636	· · ·
!			1 1	D056561	i !
\ <u></u>	1 ' 1		. i	3 1 7	
1]	1 .	ileg sn	ce+ #12	0366
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	etails		مد لد ا	- 6
	1 1	- -	!!	3 at to	P .0F
1 !	1 1	: . !	uble N	retland	
	sedime	ints.	<u> </u>	<u> </u>	
1025	Sampl	ing SD	-403 F	or	
	Metals	, 3x 8	10° D	Poorto	1 : .
i		0 1 x 2	1 i	05640	
			1 :	DOSIGNO C	
	Sec s	ample	og due	-+ Ha	0367
		details		 	
1050				ing as	SD-403
	mobil	izing t	₽ Sb -4	12 For	
:	sedir	nent s	ampli	<u> </u>	
,		() <u> </u>		
1 1	11	MA 1	20	n 111	12/04

Dala 11/12/04

Metals 3×802 cool4c Do5649
Toctoo 1×802 cool4c Do5649
Grain Size 1×1602 cool4c Do5649
See sample log sheet # 120368
for details.

1130 Completed sampling for day.

Mobilizing to field trailer for equipment decon and sample preparation and storage.

Luon Seas 11/12/04

Project/Client RI Sed ISW Sampling / EPA + M+E
Sunny 40: PPE=Level D

1000 Mobilizing to SWID-410 for Surface water campling 1030 Approximate clack tide. Stream gauge # 1 at approx. - 0.401 Flag appears to be missing from sampling location 1035 Sampling SW-410 for Metals, total pholy HNO3 IXIL poly postig Metals diss. ett- I without 1x1 Lpoly Dose76 Sulfate - 145amL poly DOS675 See sample 199 sheet # 120369 for details 1045 Mobilizing to SW-414 for EW COLLECTION_ 1100 sampling SW-414 for Metals, total phrind HNO3 IXILpoin DOS679 Metals diss pH=1 w HNO3 1x1Lpoly DOS680 Sulfate - exsount poly pos679 See sample log sheet # 120370 for details 1105 completed sampling SW-414, Mobilizing to SW-415 Flag is still present, sampling form same location as sediments

11/16/04

a ·

Location Callahan Mine Date 11/16/04 Project / Client RI Sed ISW Sampling / EPA+M+E PPE=Level D Sunny, 40'F 1110 Sampling SW-415 for: Metals total PH=1WHMO3 INLPOLY DO 5681 Metals, diss. pH-In/HNO2 14/Lpoly 005682 sulfate + 1500ml poly D05681 See sample log sheet # 12036) for details 1115 Mobilizing to SW-407, flag is Still in place. 1125 Sampling SW-407 for: Metals, tot pH=1w/HNO3 1x1L poly 005673 Metals, diss pH= lw/ HNO3 1x1L poly DO5674 Sulfate - 12500 ml poly 1135 completed sampling SW-107, mobilizing to the trailer for sample preservation filtration and storage. Note: All Dissolul Metals Samples were Filhand with a 0.45 Micron and partetally Pump. using the for each save Prior he presonal as 1 HWO 3

Location Callahan Mine Date 11/16/04 Project/Client KI Sed/SWSampling/EPA+mdE PPE = Level D Sunny, 40% 13:00 - mobe bock to 3 414 collect GIS data. 13:20 Mobe to 8W-423 13:30 collet sample 5W-423 13:40 more to 5W+403 13:55 - college 5w - 403 + Dupliate + water grality parameter - Dos69/91 5W-403-Souple 20's Diss there's Dos6926, Temp. 4/90 Solinly 0.27 Dos68/92 ORP 286.3 D.O. (mg/2) 11.66 Conductivity (mskm) 335 14: 10 - Andy Began tack vehicle with coolers containing samples 5W- 423 & 5W-403 back to traile to meet K Stars and filter (Cabel samples 14:30 Croster + A. Stattel back to trailer with equipment etc.

surface water. Bee Sampleley sheet 1145 Sampling SW-422 for: Metals tot IXIL PH=IW/HNO3 DO5685 Metals, diss IXIL ph: IW/ HNO3 po 5686 Sulfate IxSoumL -145 Sampling SW-406 For 1 Sheet of Metals, tot IXIL pH=1w/HNO3 DO5671 metals, diss IVIL pH: INI HNO DO5672 Sulfate 1x500mL Dos671 1150 Obtaining water quality parameters at sw-406. Preparing

to sample for sediments.

Kiran Jeans 11/12/04

Incation Callahan Mine Date 11/17/04 Project / Cheni RI SP/SW Sampling / EPA + M+E PPE = Level D Sunny 50 F

1200 Sampling SD-406 for: Metals 3x802 coolyc DOS643 TO(/TCO 1x802 COOIUC DO5643 Grainsize 1,1402 (00146 D05643 12100 See sample log sheet # 120374 for details. 1210 C. Foster / A. Stattel meet K. Sears ! A. Bergan to drop off SWISD samples for preservation and storage. C. Foster/ A. Stattel to SN/SD-405 for surface water sampling! 1225 Sampling SW-405 for: (MS) Dup metals, tot 2x14 pH-1w14NO3 DO5669 metals, diss 2x1L eH=1w1NNO3 Dos6To Sulfate 2x500mL -005669 see sample log sheet # for details 1245 mobilizing to collect sediment at 50-405 1300 Sampling SD-405 for: metals 3×802 cool45 DOS642 TOC/TCO 1x802 (00142 005642 Grain size 1x1602 (00146 005642 Kuran Scars 11/17/04

Kur Sean

11/17/04

Project / Client RI SDISW Sampling / EPA+ M+E PPE=LevelD Sunny 40'F 1500 Completed sampling SD-402. mobilizing to shore near SDISW-407 to Store cance. 1545 mobilizing to field trailer to store/preserve/package Samples. Also to decon. equipment. 1640 Preparing PE Samples for Shipment with sediment Samples 1645 CS-111704-01, DO5663, Metals, Lot DO42542 Cat 542 (8) MS01636 16 50 CS-111704-03, DO5665, TOC ITCD Lot DO42542 , Cat 542 1655 Preparing PE Samples for Surface water samples: 1700 CS-B In order to meet SDG requirements, one set of pes for SW will be dated 11/16/04. 11/16/04 16:00 CS-111604-05, DOS694, metals IS4679 11/16/04 16:05 CS-111604-06, 005695, Mercury HG 3881

Location Callahan mine Date 11/17/04

Location Callahan Mine Date 11/17/04 Project / Chent RI SDISW Sampling | ME + EPA PPE=Level D. Sunny, 25'F 1700 CS-111704-07, D05696 Sulfate. Lot P108506 Cat 506 Note: All dissolus Mobils Samples may Films with a dedicated 045 micron Filter al delocated desposable believes priv to Presentin with thoog to ptt <2

Location Callahan Mine	Date 11/18/04
Project / Client KI SD/SW Sampling	/ M+E / EPA
•	E=Level D

0800 Onsite preparing to sample remaining two locations (50409 284 SW150-424), also preparing 0 385 /8 ac samples For enipment 0810 Prepared RB-003 for surface water metals: 505693 1114 SHOWIND DOGS Sample run through dedicated poly tubing and filtered as surface water samples have been 0.45 Micron Pilter. OBBO Prepared RB-001 for sediment samples DOSGGI XIL OH- W/HNO. used decontaminated bowl spoon and auger head from SD/SW + 405 sample 0845 Prepared PE sample (5-11/804-08 for surface water: DO 5697 Metals IS4680 0850 Prepared PE Sample (5-111804-09 for surface water 005698, Mercura only HG3882

Location Callahan mine Project / Client RI SD/SW Sampling PPE = Level D 1130 Mobilizing For Su-419 h TWS 25 C Surace Wahr Dup Ims 10 cahn pr 2 4 SDF for Middle 1155 SW-419 Collected 120592 Double volume Conductivity 19.988 YSI ! 5 14.66 Band A offer? Yem 5.26 Sample 20's Tot Mets + Sulf = DOS683 21,43 | Diss hetals - 005684 Callrahan Check on Tot Metals + Salfaf -D05689 al (2/02/04) Dris lety 105680

Location Callahan Mine Project/Client RI SD/SW Sampling / EPA+ M+E Clary/Snowing 30°F 0700 Arrived on site. Pico for field 50-425. 50425 × 2 for MS/MSD Log Steet 120561 Metals 005667 205667 TOC 005667 2 x 16 02. 50-425 1010 Not to 1 or Steef: 120562 Metals Jx802 D0566 8 TOC 205668 005668 1340 Sw-411 Details on Next Page Note: All Filherd Metals Samples Cosseland molass were di bland with a dedicated 17.45 Micron Color + Delicated Since Case Sisposable Penshaltic tubing prince to Preservature up/ 14003 to plt CZ

Location Callaher Mine Date 12/3/04 Location Collabora line Date 12(03/04 Project/Client Sudhunt Soupling 1340 5W + 411 Water Quality 1300 Meb to SD 421 collected helds Sulfate Sk-plas collected Temp 4.67 + Diss Motals SD-421 1320 405 Sheet: 120503 Metals 3×802 005655 Co-2 18.226 Salinity 18.24 TEO 1×8.2 Grain Size 2 x 6 12 pH 6.80 pH 1400 mob to SD-411. 2 Foster see lagsheaf # 1205925 f taking SW-411 just prior to souch ent 120593 Seip/Ag. Sank ID's are Mxt/suf - D056+7 SO-411 1405 LS Sheet: 120363 Diss Metals - Do 5678 005648 Met 15 3x 802. Deplicate SWE-411 +SWFE-411 @ 1400 2/03/04/05705 Crin Size 2 k/6 02 1420 - Appivx. 15 effects at 1500 Sediment sampling at SO-420 location by boat failing due to believe & prom recovery in Power dudge. ration mive to Restand Share by Louse Fulls per C. Foster Dup 50-420 1 1520 Los Sheet 120568 1540 (3×8,2)×2 D05654 (1 x 802) × 2 Gumen Size (2×1602)×2 12/3/04

TRC	Project: Ca	llahan Tal	Proje	ct No	.:		ate/1	ime 0 4	3:5	s	heet	ـــــــــــــــــــــــــــــــــــــ	of	
Sample Log Sheet	Contractor P	ersonnel:					RC P				osto	≈ r, A.	Stat	/•
Sample No.: 5W - 403	+ Duplical SWE+SWF	£ 403	See		tel	ו פו	Sa	<u> </u>		catio		eet	-	_
Depth/Interval Sampled:			100	5	D -	40	3							•
Sample Type. Grab, Composite of (circle)	or Both	. -									-			
Media: Surface Soil (circle) Subsurface Soil (Other	Sediment Surface Wat Ground Wat													-
Field Screening Information:			Obse	rvati	ons:									
Type of Meter: YJI	<u> </u>		_ '/ _	4"	th:	<u>.ck</u>	10	46	- 0	FZ	ce			
Other Field Measurements:			_ <u>e v</u> v	eru	Fil	<u>m p</u>	100	<u>,,,</u>	icu	1.4	ري <u>.</u> -دي			-
Temp (°C)= 4.19 OR1	0= 286.	3	<u>u</u>	ver	•	Fl	va 1	-/-	1	on	Ŋ	4رر	à ce	
PH= 7.78 Salis	n/hy = 0.3	-7	<u>_</u>	ut		m,	o Us		20 /	120	C a		<u> </u>	
D.O. (mg/L)= 11. 66 Conductivity (ms/cm)=	135		_04	<u>exp</u>	neen	t	Fr	<u>~</u>	no	<u> </u>		ىرىن	<u>C</u>	
			DEC	ONTA	A = 1 & 1 A									_
SAMPLE COLLECTION EQUIPMENT:				ON A			SED	CEDI	JKE:	DES	CRIP	TION:		
Hand Auger Tro	wel		-	water	•	ŀ								
Core Sampler She	lby Tube			water 0 ₃ (1 c		, F	\dashv							
-	dge Sampler Imerer	oxdot	Тар	Wate		" [7							-
i I I	ended Arm		Meti Hex	hanoi ane		Ė	╛							
OTHER:	er khoe		Ace Air I	tone Dn/		ŀ	-						•	
VAIA DOTTUR TIME IL	Dorn Bottle		DI V	Vater		ļ	4							ł
D			Air I <u>Non</u>	е			₫							╛
ANALYTICAL PARAMETERS Filte		eservation Method		Volur Requi			ime o			CLP imple,			_P se#	
Metals dissolven YES	NO pH	= []/#N	(G.	1 x l	L	1	355	-	POS		78	024	7 M	
Metals Total YES	(NO) OH		10,	1 x /	1		155		D05	697	67	024	2M	
1 2 Cit'is LES	(NO)		17	x 5	DOLL		355			697	10	024		$\neg \neg$
Duplicate Models Disable (YES)	NO DIT	22 w/th	103	y l	11		355		005	69°	3	62y	7 M	
Duplicate Total Hardy YES	(10) PHC	2 w/H/	0 3	Y	PL	L (S	355		10	569	\Box	<u> </u>	<u> </u>	
AF-212 YES	(NO)			X 50	PM	13	<u> </u>	<u> </u>	70	569		024		
³ Nº 120377		•		Signe	:d: (W	HC	84	<u> </u>		Re –	ev: 8 J	uly 19:	91

TRC	Project Call		Project No.: <i>ტ2436 0590 ০</i> টা	Date/Time		et of
Sample Log She	et l A	home Jade		TRC Perso	nnel:	Loster
Sample No.: Sw ~	. /			etch of Samp	ole Location	
Depth/Interval Sampled:	0-ift					
Sample Type: Grab Comp (circle)	oosite or Both			2	k	
Media: Surface Soil (circle) Subsurface So Other				Whe		
Field Screening Information	n:		Observations:			
Type of Meter: N/A			Book		nuple 1	
Other Field Measurements: GPS W/700 ble Conductivity - 19.9 DO - 14.66 Temp - 5.26 pt - 7.76 Sminly - 21.43 ORP - 252.	988 - Bat Act, 3	İer	Collec	ted au	w Dit	
SAMPLE COLLECTION EQUI	PMENT:		DECONTAMINA DECON, FLUID			RIPTION:
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Arr Bailer Backhoe Van Dorn Bo	n	Tap water Alconox Tap water HNO ₃ (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water None			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method	Required	Time of Collection	CLP Sample	CLP Case#
X Totallelali X Dischal helals X Sulfale	YES NO YES NO	HWO3 C	-2 1PL -2 1PL	1155 1155	DO5683 DO5684	0247 M 0247m 0247m
	YES NO		1 100 1001		74.76.7	
	YES NO	·				<u> </u>
^{AF-212} Nº 120592	100 100	<u></u>	Signed: _(MW40	P.X	Rev: 8 July 1991

TRC	Proje Ca	ct: lishen wine 0	Proj 2136 <i>o</i>	ect No.: 590 0 /} }			heet <u>l</u> of <u>l</u>
Sample Log Shee	et Contra	ictor Personne	l:		TRC Person	nnel: C.Fe	oster, A.Statt
Sample No.: <u>SW - 4</u>	23			Sk	etch of Samp	le Locatio	n
Depth/Interval Sampled:						F.	
Sample Type: Grab, Comp (circle)	osite or Both						
Media: Surface Soil (circle) Subsurface So Other			1		1 40 S	g caty we	and the second
Field Screening Information	1;	<u>-</u>	·	ervations:		_	
Type of Meter: 15T			<u> </u>	igh turbi	dity obs	erved	in and
Other Field Measurements:			_A	round sai	mple 10	cation	in and corganic red or. (organic t sample
Temp(°C) = 1.22 pH = 7.42 D.O. (mg/L) = 5.65 Conductivity (ms/cm)	0RP= 2 Salinity = 1 07887	07.5 081	~ - -	1/4" ice ocation		sater o	+ sample
SAMPLE COLLECTION EQUIP	PMENT:		DE	CON. FLUID	TION PROCED USED		CRIPTION:
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended An Bailer Backhoe Van Dorn Bo	oler	Ali Ta HM Ta Me He Ac Aii DI Air	p water conox p water lO3 (1 or10%) p Water ethanol exane etone r Dry Water r Dry			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method	n	Volume Required	Time of Collection	CLP Sample	CLP Case#
Metals, disr.	(ES) NO	pH=1 -1 H	Noz	1×1L.	1330		70247M
Mitals, tatal	YES NO	pH = (m) H	NOJ	<u> x L, </u>	/33 0	00568	
Shifate	YES NO		\rightarrow	1 x 500-C	1330	D0568	2 0147M
 	YES NO						
	YES NO				· 01 /	1	

AF-2Nº 120376

Signed: Child

TRC		ct: Lhan ne	026	ct No.; 3 6 0596 3 1 11 3		/Time: 기(で十		Shee	et	
Sample Log She	et	actor Personnel	: _			Person Sta		C . 4	Foster	
Sample No.: SW - 4	0 5 ms	loup	Se	e sa	mple	100	sh.	æ	T] -
Depth/Interval Sampled:	0-6"			2037 ocati		for ske		wt	ole	-
Sample Type: Grab Com (circle)	posite or Both	-								-
Media: Surface Soil (circle) Subsurface Soil Other		ent e Water d Water								-
Field Screening Informatio	n:		Obs	ervations:				l	· 	
Type of Meter:				ea of						
Other Field Measurements	: YSI:			ainaq etjar	~	TON	n a	<u> </u>	attail	
Temp 2.44 pt 7.06 ORP 355.4 Do 14.4 mg/L										
Sal 12.27 ppt Cond 12015										
SAMPLE COLLECTION EQUI	PMENT:			ONTAMINA CON. FLUID				CRI	PTIÓN:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: dedicated poly	Trowel Shelby Tube Dredge Samp Kemmerer Extended And Bailer Backhoe Van Dorn Bo	m	Alc Tar HN Tar Mer Hex Ace Air	water onox water onox water onox water thanol cane ctone Dry Vater Dry	6)					
ANALYTICAL PARAMETERS	Filtered (circle)	Chem (c Preservatio	ח	ne Volume Required	Time Collec		CLP Sample		CLP Case#	1
Metals tot.	YES NO	Method		XIL	122		D05669	\neg	อวนาพ	weeler Weeler
Metals diss.	(YES) NO	pt= lw/th		XIL	12.2				0247M	7
Sulfate Sulfate	YES NO			x SOOML	122		D0566			1)
	YES NO							\neg	dep cf	
	YES NO]
	YES NO									

^{AF-2}Nº 120380

Signed: Rev. 8 July 1991

TRC	Projec			oject No.: 56 0590 0174	Date/Time	. ICL	eet <u>/</u> of <u>/</u>
		ctor Personnel		70 7 7.717.	TRC Perso	<u></u> -	
Sample Log Sheet	Hi	gaterra -	Sal	e Indeema		tor J. A	Hunton
S W-411					etch of Sam		
Sample No.: 5 W-411 05577	1 3 m/	005678_	\sqcup	4	/		
Depth/interval Sampled:	1000	in he	1 /				/
Departmerval Sampled.		56-911 568-44				W-4/1	
Sample Type: Grab Composite	or Both	Spir	┟╌┼		 *		
(circle)			-	- -		 	
Media: Surface Soil	Sedime	ent					/
(circle) Subsurface Soil		Water					/
Other	Ground	f Water					
	<u> </u>					147	Oarle
Field Screening Information:			<u> </u>	bservations:			
Type of Meter:			<u> </u>		is low !		
Other Field Measurements:		··· <u> </u>		- Leaving	Goose Pa	Ward Ward	
			-	Story 10	the co	062 COLD	
Temp: 4.67 Cond: 18.226			_	1 C 11/4 (15 10 100 8	He as the	oux ht
Salinity: 18.24				· · · · · · · · · · · · · · · · · · ·			
Do: 10.71			_			<u> </u>	
pH: 6.80 ORP: 149.1			_			<u> </u>	
				ECONTAMINA'	TION PROCED	URE:	
SAMPLE COLLECTION EQUIPMENT:	1	ļ		DECON. FLUID			RIPTION:
Hand Auger Tro	wel			Гар water . Alconox	X		
1 41	lby Tube			Гар water HNO ₃ (1 ог10%) X 10° p	Stordess	
1.71	dge Samp nmerer	ler X	1	Γap Water	′ Д ·	ŕ	
·	ended Arm	, 📙]		Methanol Hexane	Н		
OTHER: Ding Fill 120 Bail			_	Acetone			
T ' ' '	khoe Dorn Bott			Air Dry DI Water	×		
Van	DOM BOU		F	Air Dry			
ANALYTICAL PARAMETERS Filte		Preservation		Volume	Time of	CLP	CLP
Can (Can		Method		Required	Collection	Sample 38	Case#
	NO (NO)	PH=1 -/4		IXIL		005671	02471
Metals, Total YES Sulfate YES	(NO)	<i>pH=1 ~1 H</i> ~_	77 P3		1340	005617	D241M
YES YES	NO			1 x Juan		\$05678 501	
X 7. to (holy + sultity YES		N 42 W/40	3/2	1,PL, 1500	1400	CF-16-14	DITAM
Dissolus My (YES)	NO	alt 2 2 w/s		1PL	1400	D05705	B247N

Signed: for 1. 4t

TRC		ct: Callahor The 0213				Date/Ti	me: 11/1	Sheet _ of _					
Sample Log She	eet	actor Personnel	· NA	-				A. 5:	sett.	ef			
								gan					
Sample No.: SW-	424					tch of Sa	, -	cation					
						grow	<u> </u>		 -				
Depth/Interval Sampled: _	S\$W-4	24		Fle(- 4	- 7 - 4	hee	100					
Sample Type Grab Com (circle)	posite or Both									_			
Media: Surface Soi! (circle) Subsurface S Other		ent ce Water ed Water						•					
Field Screening Information	on:			ervatio		Samp	10 0	ollee	ted	<u></u>			
Type of Meter:		į	<u>J</u>	7 F	<u>ل</u>	fan	edg	e of	she	re			
Other Field Measurements	 Si		(begin	nin	fom g of cf a	9 7 4 S	<u>(1)</u>	end of	<u></u>			
Temp. 4.36 Sa	linity = a	23.75	— (<u> </u>	<u> </u>	or a	DOTE			# <u></u> ,			
pH. = 7.85 C	TRP= 308	0.0											
Conductivity (/cm)	= 23,9	76											
D.O. (mg/c) = 13.9	76												
		<u> </u>						<u> </u>					
SAMPLE COLLECTION EQU	IPMENT:		DE	ECON. F	LUID	ION PROC	EDURE:	DESCR	PTION	:			
Hand Auger	Trowel			р water coлox		図 り	17ct						
Core Sampler	Shelby Tube		Ta	p water 10 ₃ (1 o	-10%\	A io'l	Jane.	(s)					
Spatula/Spoon Bowl (stainless)	Dredge Sam Kemmerer	pler	Ta	p Water	. 10 /8)		, Mar						
Split-spoon (2" or 3")	Extended Ar	m 🔲]		ethanol exane		H			07.0	3. 3			
OTHER	Bailer			etone		\Box		Dissidu Dos	4 24 4 24	.,.			
Poh. bottles	Backhoe Van Dorn Bo	uttle 📙 📗		r Dry Water	•	Ш		Dos	640				
Duscy,				r Dry эле		H		1	cF				
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method		Volun Requir		Time of		CLP ample		LP ase#			
metal total	YES (NO	OH-IN/H	N8.	[x		13:	10	05683	024	7M			
Mancfals diss	YES NO	et =) w/41	10-1	1 × L L		13:20			FOX4				
X sylfate	YES (NO		**3	1 > 00	onl	13:2	_	1189		7 M			
	YES NO		1					5890 for		-cf			
	YES NO						1 3 1	N	- //				
	YES NO												

^{AF-2}Nº 120385

Signed: Chillen & A State Rev: 8 July 1991

TRC		ct; ahan ine	021	ject No 36 の パフ H	590	, [Date/	Time (0 4	: 140		Shee	t	of
Sample Log She	et	actor Personnel	: 			- 1	TRC P		nnel:	12.			
Sample No.: <u>5 W - 41</u>	27		5	ca s		etch	of S	amp	e Lo	catio	n_		1366
Depth/Interval Sampled:	0-3"			oke			اح	10	S C C	cti	ОIC		
Sample Type: Grab Com (circle)	posite or Both			-									
Media: Surface Soil (circle) Subsurface S Other		ent e <u>Water</u> d Water										,	
Field Screening Information	on:		Ol	servat	ions:								
Type of Meter:			<u>_/</u>	10 I	CE A	4 .	54 M	ele_	lac	x 4.10	on,	lin	itel
Other Field Measurements	:: YSI						 -						
Temp: 8.23											_		
Sal 4.06													
0 0 0													
pt 684									<u>.</u>	<u></u>			
SAMPLE COLLECTION EQU	IPMENT:			ECONTA DECON.	FLUID		PRO	CED	URE:			TION	:
Hand Auger Core Sampler	Trowel Shelby Tube	H	_	liconox ap wate		Ì	\exists						
Spatula/Spoon	Dredge Sam		ŀ	INO ₃ (1 ap Wate	or10%	5)	7						•
Bowl (stainless) Split-spoon (2" or 3")	Kemmerer Extended An	m ∐ i	, n	lethano lexane		-	7						
· · · · · · · ·	Bailer	·	-	cetone			4						
OTHER: Dedicated Poty be Direct FILL	Backhoe ويا إلى Van Dorn Bo	ittle		tir Dry I Water		Ì	╡ .						
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				ir Dry Ione		į	×						
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	n	Volu Requ			Time o			CLP ample	,		LP ase#
Metals, tot	YES NO	0H= W/ H	NO3	1 7 (II	45		 	685		02	47n
Metals, diss	YES NO	ot = (w/ H1		141	4	Ш	45	}			23	ب20	
Sulfate	YES NO			1×5	00mL	11	40	5	PES	685		02١	17m
	YES NO								005	383	الجوع	حيا	cF

YES

YES

NO

NO

Signed: functions

TRC	Projec Calla Min	han	Pr 02.1	36	t No.: 059: 711 3	0	Date/Time: Sheet / or												
Sample Log She	et Contra	ictor Personne	1:									er,							
	<u> </u>		Τ			Sket		_		CLP CLP Sample Case#									
Sample No.: Sw- 4	06												Ţ						
Depth/Interval Sampled:	0-6"										ļ. 	-							
Sample Type: Grab, Comp (circle)	posite or Both						-				-		1						
Media: Surface Soil (circle) Subsurface Soil Other													- -						
Field Screening Informatio	n:		0	bsei	vation	15:							<u>-</u>						
Type of Meter:] –						 										
Other Field Measurements	YSI:] -					_					_						
	Cond 1413		-										—						
PH 6.29	-	·	-				-						_						
ORP 928-3	426.3												_						
DU 13.4 mg/L			- <u>P</u>	ig	L,+ i	de n	nark	+	0 2 4	male	9	16	<u>F</u> +						
Sulinity 20.39	··· -	·	ا - <u>د</u>	ato	C De	والجو	= 0.	71	+				_						
SAMPLE COLLECTION EQUI	PMENT:			DEC	ON. FL		ON PRO-	CED		DESCR	IPTIO	N:							
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: dedicated poly	Trowel Shelby Tube Dredge Samp Kemmerer Extended And Bailer Backhoe	m		Alco Tap v HNO Tap v Meth Hexa Acet Air D	water 3 (1 or Water anol ine one	10%)													
battles	Van Dorn Bo	•		DI W Air D None	ry		X												
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	a. l	i	Volume Lequire		Time o		_										
Metals, tot	YES NO	pH=(W/H)	NOX	t	x ((1:45		005	671.	02	<u>47</u> r	η						
Metals, diss	YES NO	oH= lw/H	_		KIL	<u> - T</u>	11:45	<u>. </u>	D05	6713.	02	47	rY)						
Sulfate	YES NO			١ĸ	500	mL	11:45	5	005	671	02	47	\wedge						
	YES NO								105	67L	500	dup							
	YES NO											7							
	YES NO																		
Nº 120375				S	Signed	1: -	M	M	H	M	Rev: 8	July	199						

TRC		Project Calla Mi	ct: ihan ne	P ₍	rojeg 02 (3	21 No 36- 141	13	10	Date/ !			so si	heet		of <u>l</u>
Sample Log Sho	eet		actor Personnel:	:				-	TRC F	ersoi ergo	nnel:	C.F A.S	ost tat	er,	K.Se
S\N/~L	1.0										- 4	cation			
Sample No.: SW-H	10			_	<u>ce</u>					ρģ	s	<u>nce</u>	<u>- =</u>	-	
Depth/interval Sampled:	0-6	f,			or		D-	41	b					_	+
Sample Type: Grab, Con (circle)	nposite o	r Both								-			_		_
Media: Surface Soil (circle) Subsurface S Other	Soil (Sedimo Surfac Groun												· ·	
Field Screening Information	on:			C	Obse	rvati	ons:								
Type of Meter:					Wa	ter	ر د	<u>z</u>	e le	ar	ګ ,	ed i	<u></u>	ent	
Other Field Measurements	s: YSJ	С		_	- 1		_				_	-			
Temp 7.03 °C				_		درا 6	TE	$g_{\mathcal{E}}$	7N	, G8	0 98	Pa	<i>21</i> 10	>	
Cond 29771.	Ms/en	<u> </u>		-				1 ,			· -		, —		
Salinity 28.9 DD 9.59	<u>₽}†</u> ₩0/L			-7	W o	te	<u>r_</u> c	1-e	oth	<u>* (</u>	<u>0. t</u>				
of B.12 6.5				_ 	51a	ck		+i	de						
DRP @10.6 39		.7													
SAMPLE COLLECTION EQU	IIPMENT:			ı	DEC	ON. F	LUIE		N PRO	OCED	URE:	DESC	CRIP	TION:	:
Hand Auger	Trov	wel			Tap Alco	watei nox	Ī		H						
Core Sampler		lby Tube				water		4)	H						
Spatula/Spoon Bowl (stainless)		dge Samp imerer	oler 📙		Тар	Wate	г	۰,	H						
Split-spoon (2" or 3")		nded Arr	m		Meth Hexa	ianol ane	•		\exists						
OTHER:	Baile		H		Acet Air D				H						
dedicated poly		khoe Dorn Bot	ttle		DI W	ater			Ħ						
001116			.		Air E None	-		•	X						
ANALYTICAL PARAMETERS	Filter (circ		Cherate all Preservation Method	h		Volur Regui		G	Time ollect			CLP ample	T		LP se#
Metals, total	YES		pH=lw/HNC)		×)l			<u>ი</u> ვ:	5		675		224	MF
Metals ✓	(ES)		OLH IN 1=HO	_		x ()		1	039			676	$-\Gamma$)24	MFI
Sulfate	YES	(N)		<u>. </u>	1	x 500	mL.	10	35	5	Dos	3679	s c	24	7M
	YES	NO		<u> </u>				_					\perp		
	YES	NO						L					\bot		·
	YES	NO			1										

120369

Signed: Rev: 8 July 1991

TRC	ct: ahan me	Project No.: Date/Time: 02.136 0596 11/16/04 1050 Sheet 1 0							of <u> </u>			
Sample Log Shee	Contra	actor Personnel:				TRC Pe	ersonr utfel	nel: C. , A. I K.	Fos Burg Ca	an,	J	
CM/ H					Sket	ch of Sa						
Sample No.: <u>SW - 4</u>	1									ļ		
Depth/Interval Sampled:	0-6"											
Sample Type: Grab Comp (circle)	osite or Both					Pyer	Cove		-			
							9441 D		assi area			
Field Screening Information		Observations:										
Type of Meter:	Sounds within Dyer Coff 20 number of her tide began antoring											
Other Field Measurements:	YSI			GOOSE	_	ons:	7.	Brile	,			
ORP 383.2					· ·							
pH 7.17			_									
Temp 1.75°C			<u>-7</u>	later	d	<u>eptl</u>	<u> </u>	1 t.	ት			
Con 228314 Sa1 25.59, b		······	_		1		•	<u></u>	10			
Sa! 25.39 p.			3	lack At Po	ND	Con Enha	<u>ุ พ.</u> ๘ .		<u>nde</u>	i Ho	Z	
SAMPLE COLLECTION EQUIP			DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:									
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: dedicated poly bottles	Trowel Shelby Tube Dredge Samp Kemmerer Extended Am Bailer Backhoe Van Dorn Bo		A T H T M H A A	ap water Iconox ap water NO ₃ (1 or1 ap Water iethanol exane cetone ir Dry I Water ir Dry	10%)			·				
ANALYTICAL PARAMETERS	Filtered	Chemical Preservation	₹	one Volume		Time o		CLP	, ,		LP	
	(circle)	Method	-	Require	-	Collection	-t	Samp	~		ise#	
Metals, total	YES NO	PH=IWIHN		121		<u> 11 00</u>		0056		02	14M	
	YES (NO)	bH= IMI HV	<u>د ۲۷</u>	1x1L 1x900n		1100 1100	$\overline{}$	2056		02		
	YES NO		-	AUJE A	<u>"-</u>	1100	 }	×056		UL.	- € 	
	YES NO						- -			_		
	YES NO		\dashv		十		+		~	<u>.</u>		

~~Nº 120370

Signed: Kun Cow Rev: 8 July 1991

TRC	Pr	oject: Nahan Mine	Project No.: 02136 0590 017H3						Time ⊷ ه-	t ti	10	Shee	t	of(-
Sample Log She	et co	ntractor Personne	l:					TRC F	Person	nnel:	C.	Fost	rer,	K·8	ears,
			1				<u> </u>		Samp				<u>J</u>	<u> </u>	\dashv
Sample No.: SW-4	15	_	\vdash				_		—				100	21	-
Depth/Interval Sampled: _	0-611			rar				e	109	Sh	ce	47	20	26	
Sample Type Grab, Com (circle)	posite or Bo	th				_						-			_ _
'	(circle) Subsurface Soil Surface Water Other Ground Water														
Field Screening Information:					rvatio	ons:	!		<u> </u>	1	l	<u> </u>	1	<u> </u>	7
Type of Meter:				Sample in Dyer cove 40 mm/kg											
Other Field Measurements: YST				Sample is yer cove 40 months orter time entering good Pend at Bridge											
ORP 381.1 pH 7.50 temp 3.42.c DO 9.65 mg/L Sal 26.92 ppt				Ŋα	ıte.	r	de	pH	= = = = = = = = = = = = = = = = = = = =			(- .			
Cond 25243 Ju	.5		<u> </u>												╣.
SAMPLE COLLECTION EQUIPMENT: Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: dedicated poly Sampler Extended Arm Bailer Backhoe Van Dorn Bottle					ON. If water nox water and ane cone ory later	FLUID r r or10% r) 1	SE CONTRACTOR OF THE PROPERTY			DES		PTION		
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	រីកំ		Volur Requi		(Time Collect			CLP ampl			LP ese# /	,]
≥ Metals tot	YES NO		0,	1	×		1	1115	5		368		02	14m	1
Metals diss	YES NO	PH= W/HN	_	7-	x IL		_	1115		-	36°C		_	m	7
Sulfate	YES NO				60		Ţ	1115			568		027	7 P]
	YES NO					-						\Box			_
	YES NO														
	YES NO														

^{AF-212}Nº 120371

Signed: Kirawkaw Rev: 8 July 1991

TRC		ct: ahan Nne	Pr O2	oject 136	t No.: 0570 4 K3	Date/Time:				Shee	et <u>]</u>	of <u></u>
Sample Log She	Contr	actor Personnel					TRC I	Person	nnel: C	Sta	ste!	r, Ire
634, 11,	57-				S	ket	ch of	Samp	le Loca	tion	<u> </u>	
Sample No.: SW - 40	04			e-e	Sav	np	1= 1	09	shee	† #	=	
Depth/Interval Sampled:	0-6"		-	α	leca				e to			
Sample Type: Grab, Com (circle)	posite or Both			1	-	-				-		
Media: Surface Soil (circle) Subsurface S Other		ent ce Water nd Water										
Field Screening Information	on:		0	bser	vations:	:	. 1	-L <u>-</u>	 			
Type of Meter:			_	<u>51</u>	mplf.	50	Min	45	after	\mathcal{T}_i) e	
Other Field Measurements	s:		SAMPLE SO MINHS of the Tide externs at Brilge									
Temp 3.31 'C			_									
PH 7.67			۱ –				· .					
ORP 374.8			تـ- ا	<u>) ep</u>	th o	<u>f_</u>	wal	er	- 1.4	ft_		
	111			SI	ack/				14. S. ad a			
cond 24548 34	st islem		_	<u> </u>	AUK /		·omi	$\frac{1}{v^{a}}$	TIO			
SAMPLE COLLECTION EQU	IPMENT:] ;	DECC	NTAMIN. ON. FLUI		N PRO			ESCRI	PTION	:
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER: dedicated poly bottles	Trowel Shelby Tube Dredge Sam Kemmerer Extended Ar Bailer Backhoe Van Dorn Bo	pler	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tap V Metha Hexad Aceto Air Do None	nox vater 3 (1 or10° Vater anol ne one ry ater	%)	XIIIIIIX					
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method			olume equired		Time Collect		CL Sam			LP Se#
Metals, tot.	YES NO	oH= IW(HN	0,		11_		1125		2056	73		14m
Metals diss.	YES NO	OH = IW/ HA		צו	14.		1125		D056	74	025	776
Sulfate	YES NO	<u> </u>		1 x !	500m	4	1129	5	DDS6	13	02	4m
-	YES NO					\perp						
<u> </u>	YES NO					\perp	<u>. </u>		·			· · · · · · · · · · · · · · · · · · ·
(YES NO		[1				- 1		

AF-21 Nº 120372

Signed: Kuan Som

TRC	Proje	ct: when this	Project No.: ১ 2136 ০ জ০ ০০	Date/Time	1405 SI	heetof					
Sample Log She	eet Contra	nctor Personnel	ack Mckenna	TRC Perso	wnet:	-					
Sample No.:SO	411			etch of Sam							
Depth/Interval Sampled:	D-6-4	0-64			52-4						
Sample Type: Grab Com (circle)	posite or Both										
Media: Surface Soil (circle) Subsurface S Other					Pin						
Field Screening Information	on:	·	Observations:								
Type of Meter: N	4		Elay (20) v. d. g. 10,								
Other Field Measurements	-`		Starsish tereb, organic rich								
GPS											
			moter de	pth = 15	.1"						
SAMPLE COLLECTION EQUI	IPMENT:		DECONTAMINATION PROCEDURE: DECON, FLUID USED DESCRIPTION:								
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Am Bailer Backhoe Van Dorn Bo	m ttle	Tap water Alconox Tap water HNO3 (1 or10% Tap Water Methanol Hexane Acetone Air Dry Di Water None	X I ZX X	Spriels 62						
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method	n Volume Required	Time of Collection	CLP Sample	CLP Case#					
X Metals	YES NO	Ire an		1405	D05648						
× 720	YES (NO)	IZE Onl	7	1405	205648						
X hivin Size	YES (NO	Ith Onl	y 2 x/602	1405	D05646	5 0247AA					
 	YES NO	-		-,		+					
				<u> </u>							

Signed: Da D. HL

	Proje	ct:	Project No.:	Date/Time	:	. / /
TRC	CAL	lahen	Project No.: <u>৪৯৪৮ ০৮% ০।১</u> ১	3 12/3/0	4 1320 She	et <u>/</u> of <u>/</u>
Sample Log She	Contra	actor Personnel:	. (TRC Perso	nnel: 🖰 💯	tauter Seter
Sample No.: 5041			Sk	etch of Samı		
Depth/interval Sampled: _	0-6 inche	s		971-39		
Sample Type: Grab, Com (circle)	posite or Both			W. State Sta		
Media: Surface Soil (circle) Subsurface S Other		ent e Water d Water				
Field Screening Information	on:		Observations:			
Type of Meter: N/A			lley,	et) ar	1817. ela	<u> </u>
Other Field Measurements	3:		Soft, w	et) ar	g sait ric	<u> </u>
CPS .			water =	14.6' d.	ep :	
			 		·	
						
SAMPLE COLLECTION EQUI	PMENT:		DECONTAMINA DECON, FLUID		URE: DESCR	IPTION:
Hand Auger	Trowel		Tap water Alconox	X		
Core Sampler	Shelby Tube	oler X	Tap water HNO ₃ (1 or10%) 以 (0040 4	Stainles)	
Spatula/Spoon Bowl (stainless)	Dredge Sam _l Kemmerer	pier	Tap Water Methanol	′ 鬥 ‴		
Split-spoon (2" or 3")	Extended Ari Bailer	™ <u> </u>	Hexane Acetone	F		
OTHER: POMAN DIRECTOR	Pdeillion	-	Air Dry DI Water	$\overline{\mathbb{A}}$		
	Van Dorn Bo	100	Air Dry None	P		
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method		Time of Collection	CLP Sample	CLP Case#
Metals .	YES NO	Ire ONL		1320	D05655	0241M
₩ TZO	YES NO	Ize Ohly		1320	005655	0247M
V Graja Size	YES (NO)	Ice Only	/ 2×1802	1320	Do5655	0247W
	YES NO				-	
	YES NO					
VF-212	110 110	<u> </u>		L 	<u> </u>	Pour R July 1991

Signed: Ag 1. MA

TRC	Project Call	ct: shch 02	Project 136 0	ct No.: 590 0 }	Date/Tim	e: /520	Sheet of								
Sample Log She	Contra	Bertosz			TRC Pers	onnel:	Foster								
			41, 8		etch of Sam										
Sample No.: SD-4	20 / SUE	420 3 1540		₩ ₩		15b-									
Depth/Interval Sampled:			-			130	140								
			-				 								
Sample Type: Grab Com (circle)	posite or Both	ļ			Real										
Media: Surface Soil						<u>, </u>									
(circle) Subsurface S	Soil Surfac	e Water	- 			 - - -	 								
Other	Groun	d Water													
		···				1.									
Field Screening Information	on:			rvations:			·· ····								
Type of Meter:	Type of Meter: N/ / A					Soft, wet.									
Other Field Measurements	3 : .	-		47, 1	VE 7										
GPS															
·			DEO	OLUT A BAINI A		DUDE:									
SAMPLE COLLECTION EQU	IPMENT:		DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:												
Hand Auger [국]	Trowel	図	-	water mox	N N										
Core Sampler	Shelby Tube			water) ₃ (1 or10%) \(\(\frac{1}{2}\) 10 \(\frac{1}{6}\)	Stocialsol									
Spatula/Spoon Bowl (stainless)	Dredge Samı Kemmerer		Тар	Water nanol	Í	,									
Split-spoon (2" or 3")	Extended An Bailer	™ <u> </u>	Hexa	ane	A										
OTHER:	Backhoe		Air E	Dry	· 🖄										
	Van Dorn Bo	ttle 📙	Air I		圍										
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method		e Volume Required	Time of Collection	CLP Sampl	CLP e Case#								
X Metals	YES (NO)	Ite On 1		x 802.	1520	D0565									
X Tto	YES NO	Ice Onl.	_	x 8.2.	1520	00565	*								
M (min Size	YES (NO)	Ire Onl.	- 1	1802.	1520	00565	4 0247M								
	YES NO		_ _		 	ļ <u> </u>									
	YES NO					 									

Signed: Ja 1. 14

TRC	Project: Callahaa	. 0	Project No.: ১/৪৮ ০ স্বি গৌ	Date/Til	ne: <i>† 0950</i>	Shee	et <u>/</u>	of <u>/</u>						
Sample Log Sheet	Contractor	Personnel:	-	TRC Per	sonnel:	· /	F,57	ter						
Sample No.:	is Inso		1 N Sk		ch of Sample Location									
Depth/Interval Sampled: 6-6	jathes		ç	D-425	ong C	ove								
Sample Type: Grab, Composite (circle)	or Both	-												
Media: Surface Soil (circle) Şubsurface Soil Other	Sediment Surface Wa Ground Wa					-								
Field Screening Information: Type of Meter: 人 /人			Observations: 35 ' feeto	high tie	le le									
Other Field Measurements:	<u>\$</u>		abudant	Austle	skells	<u> </u>	Kort	=						
		S:	7 (lay (26) 30% silt 104521es,	V. d. g Seft Organiz	met,	70 i.	e la	ν, ,, t						
SAMPLE COLLECTION EQUIPMENT	т:		DECONTAMINA DECON, FLUID	USED		SCRII	PTION:							
Core Sampler Shampler	owel nelby Tube nelby Tube edge Sampler emmerer itended Arm niler nckhoe in Dorn Bottle		Tap water Alconox Tap water HNO ₃ (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry	AND THANK) Shounless									
	tered Pr	reservation	None Volume Required	Time of	CLF			LP se#						

(3) (4) Metals 024711 YES 1x802 1×1602 D05667 TTO YES TOZ Grainsize D05667 **60** YES YES NO YES NO YES NO

Nº 120561

Signed: M. Not

TRC	Project Cal	ct: 1 1/26ga 02136	Project No.: 0590 01班/2/	Date/Time	She	et <u>l</u> of <u>l</u>
Sample Log She	eet	ector Personnel:		TRC Perso	nnel:	Foster
0.0	162 (. [SI	etch of Sam		- / - /
Sample No.: SD-	420		1	Pines		
Depth/Interval Sampled:	0-6 inche				P- 426	
Sample Type: Grab Com (circle)	posite or Both			1		
Media: Surface Soil (circle) Subsurface S Other		ent e Water d Water				4
Field Screening Information	on:		Observations:		·	
Type of Meter: N/A			43' from	Ligh fid	۷	
Other Field Measurements			- Beach co	o in put		70
295		 -	Sandy eles	(EL) V	A. eres	
			Janky Eley	30% of sout	abandon	ŀ
			musele sh	11,0190	nie rieh	
		<u> </u>				
		 [-				· · · · · · · · · · · · · · · · · · ·
SAMPLE COLLECTION EQU Hand Auger Core Sampler Spatula/Spoon	IPMENT: Trowel Shelby Tube Dredge Samp	oler	DECONTAMINA DECON. FLUID Tap water Alconox Tap water HNO ₃ (1 or10%	USED × 大 人		EIPTION:
Bowl (stainless)	Kemmerer		Tap Water Methanol	ď		
Split-spoon (2" or 3")	Extended Am Bailer	" <u> </u>	Hexane Acetone	Н		
OTHER:	Backhoe		Air Dry	X		
	Van Dorn Bo	ttle 📙	DI Water Air Dry None	Ä		
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Reguired	Time of Collection	CLP Sample	CLP Case#
☐ Metals	YES NO	Ize Obly	3 x 802	1850	D05668	0247M
M TZO	YES (NO	Ire Only	1×802	1050	po5668	0247 M
V for Cominsize	YES NO	Ire Daly	1×1502	1050	005668	DLYTM
	YES NO					ļ
	YES NO		1			1

YES

NO

Signed: Jy 1. 1/_

TRC	Proje	ct: <i>Callaha</i> - 0213	7 Project No.: 6- 05 90・ 017 H:		e: ''/ 18/0/7 She 	eet <u></u> of <u></u>	_					
Sample Log She	et	actor Personnel:	NA		onnel: A. St	,						
		 -	<u>:</u>		Bergan		4					
Sample No.: 5D-4	109		Sk	etch of Sam	ole Location	Traile	\exists					
Depth/Interval Sampled:	0-6 inc	hes		A	, M							
Sample Type: Grab, Comp (circle)	ocsite or Both				er	/ sha	7					
Media: Surface Soil (circle) Subsurface So		ent e Water d Water	Toute	5	50409	Rock	180					
Field Screening Information	n:		Observations:	Sed iner	+ cons	1st of	\prod					
Type of Meter:			black C	lay , 571	tand a	ganles	<u>,</u>					
Other Field Measurements:			tace sand. Slight organic stor. Trace clamshells.									
-GPS coordinates Trimble Geo. -photographs to	K ア		Sample of edge of and in	share.	14 ft (beginaln	from	(عا					
							.					
SAMPLE COLLECTION EQUIP	PMENT:		DECONTAMINA DECON. FLUID Tap water			RIPTION:						
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Art Bailer Backhoe Van Dorn Bo	m =	Alconox Tap water HNO ₃ (1 or10% Tap Water Methano! Hexane Acetone Air Dry DI Water Air Dry None) XXXX Storie	Ness 10°10							
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#]					
Metals Me	YES NO	cool 4°C	3 - 8 02.	14:00	005646	OZYTM						
M toc/TCO	YES NO	cool 4°C		14:00	105646	0247M						
Sprain Size	YES NO	cool 4°	- 1×1602.	14:00	005646	0242M	4					
├ ├	YES NO				ļ — . —		-					
 	YES NO				<u> </u>	ļ	-					
! <u> </u>	YES NO		ļ		1	ļ	1					

Signed: Any tallel Rev: 8 July 1991

7730	ct:Oxllahan	Proje			Date/Time: Sheet of						
TRC]	Mine			:30	<u> يخدا /</u>	70	₹ 2 ′′′′			
Sample Log She	eet Contra	actor Personnel:	NA:	C	رر so	TRC Per		1: A.S 2, 40.		cl	
E CA	424				Sketo	h of Sa					
Sample No.:	729					TT			<u>1</u>	B	
Depth/Interval Sampled:	Ota 6 in	ches							*		**
Sample Type: Grab, Com	posite or Both		<u> </u>				<u> </u>				
<u> </u>			•							50	18
1-1-1-1	Sedim	- I			1	1		1	2		#
1	oil Surfac	l.						\overline{X}	ı.	X 50	-43
Other	Groun	d Water					X	w X		コノ	\top
.		T .					7	Y X			\Box
Field Screening Information	en:		Obse	rvation	s: <u>5</u>	dine	17_	consi	ific	of d	œ/k
Type of Meter:		· .	97	ky 8	and.	, <u>silt</u>		diat			<u>s</u>
Other Field Measurements	: .3.	56-3/2	الماني	m c	shel	Ls,					<u>t.</u>
855 F 727 7.4	Do 73	114 -1/2"	<u>ა</u>	mpl	18 C	sille	tcol	<u>. 17£</u>	<u>F</u> -	f-ron	<u> </u>
76Temp 3.50			3 ho	<u> </u>	<u>ze (</u>	9 123	<u>s) a</u>	nd	<u> 17</u>	0.6	2_
300 FD 313.6			<u>}4</u>	, 0	<u></u>	rate				·	_
Cond 27 270 3	23974	ALS									_
127.8						·					_
- GRS coordinate		ving									\dashv
SAMPLE COLLECTION EQUI	PMENT:	taken	DECONTAMINATION PROCEDURE: DECON. FLUID USED DESCRIPTION:								
Hand Auger	Trowel			water onox		X					
Core Sampler	Shelby Tube		Тар	water			. \	å			- }
Spatula/Spoon	Dredge Samı) ₃ (1 or1 Water	0%)	∑ 5%	રતોશ્કા	10-(0		-	Ì
Bowl (stainless)	Kemmerer			water hanol							
Split-spoon (2" or 3")	Extended An Bailer	m [-].	Hex								į
OTHER:	Backhoe		Ace Air [tone Drv		닝					ł
	Van Dorn Bo	ttle 🔲	D! W	/ater		K					i
			Air (Non			H					- 1
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method		Volume Reguired		Time of Collection		CLP Sample	T	CLP Case	
☑ Metals	YES (NO)	Cool 4°C	7,	1803	/	3:30		5658	10.	1474	٨
N TOC/TCD	YES (NO)	cool 4°C		×80		3:30		05658		1247/	
1 Grainslze	YES (NO)	(001 4°C		×160	$\neg \neg \neg$	3:30		05658		2471	\neg
	YES NO	COBL L C		<i>y-</i> 1 0 0	<u>~ </u>	J-76	1		- "		-
	YES NO		+-		+						\dashv
 	YES NO					-					\dashv
AF-212	IES NO	<u> </u>	Щ.			11.19.21	} 	· 		. P Indo	1991
№ 120383			;	Signed	: [4	libe av	y forf	1.5hH	€ Kev	, o Jusy	(55)

	TRC	Project Calla Mi	than	07	ject No.: 136 0590 01743	Date/Time		eet of				
	Sample Log Shee	Contra	ctor Personnel:			TRC Perso	nnel: Fer, A·S	itattel				
	Sample No.: SD-40 Depth/Interval Sampled:	<u> </u>			Ski	tch of Samp	اماه	de				
,	Sample Type: Grab Comp (circle)				desar		or pine					
	Media: Surface Soil (circle) Subsurface So Other		e Water d Water		V	Sul	merses or	7				
,	Field Screening Information	1:		Observations: Gray to dark gray str 57/ty clay with organics: Ot. gray / whitish streaks								
3	Type of Meter:											
	Other Field Measurements:		· .		in clay	- Samp	le colle					
	GPS coordinates Trimble Geox - photographs tal	Γ	using	at 53 ft. from shore and in 0.9 ft. water organic odar								
	SAMPLE COLLECTION EQUIP Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Arr Bailer Backhoe Van Dorn Bol	m Hitle	D T: A T: H T: M H A A D A N	ECONTAMINATECON. FLUID ap water loonox ap water NO3 (1 or10%) ap Water ethanol exane cetone ir Dry I Water ir Dry one	USED V3°6, C	DESCR	IPTION:				
	ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	_	Volume Required	Time of Collection	CLP Sample	CLP Case#				
		YES NO	C00146		3×802	1440	D05639	0247m				
	XTOC/TCO XGrain Size	YES (NO)	(00) 4°C	\dashv	1x802 1x1602	1440 1440	DD5639	0247M				
		YES NO										
		YES NO				· · · · ·	· · · · · · · · · · · · · · · · · · ·	 				

Signed: Autor Same Rev: 8 July 1991

TRC		ct: ih an in e	Project No.: Date/Time: Sheet 1 of 1									
Sample Log She	Conitra	ictor Pérsonne —	ī:		TRC Perso	nnel: C.F	osto	er, t. Poloy,].			
Sample No.: SD - 40 Depth/Interval Sampled:	<u>0-6"</u>		44	Sk	etch of Samp	ble Locati	ion	A	-			
(circle) Media: Surface Soil (circle) Subsurface S Other	Sedimo	ent e Water d Water				Sfeet		3 Sh	nack			
Field Screening Information	on:		bservations:]				
Type of Meter:		tan tailing w/mottled grey										
Other Field Measurements	:		(powdered rock)									
Trimble GCOXT's Photographs take	- Depth of water = 0.2ft											
SAMPLE COLLECTION EQUIPMENT Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samj Kemmerer Extended Arn Bailer Backhoe Van Dorn Bo	m H		DECONTAMINA DECON. FLUID Tap water Alconox Tap water HNO3 (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water None	SED XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DE		PTION:	7			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method		Volume Required	Time of Collection	CLP Samp		CLP Case#	_			
Metals ✓ Metals	YES NO	c0014'		3x802	10:25	D0564		0247M	-			
N C/TCD	YES NO	C0014,0		1802	10:25	D0264		0247M	(10			
□ Grain size	YES NO	00014.C		2x1602	10:25	D0564	ŧŌ.	9247W	16.0			
- 	YES NO			<u> </u>		 		<u> </u>	1			
- - - - - - - - - - - - - -	YES NO				<u> </u>				┨			

Signed: K

TRC		ct: than ne	Project No 02436 05 0174	p.: 0 3	Date/Time 네/12/하나	0850 Sh	eet of				
Sample Log She	eet	actor Personnei:		TRC Personnel: C. Foster, T. Folay, A. Stattel, K. Sears							
Sample No.: <u>\$D~</u> 낙이	<u>+</u>		<u></u>		etch of Samp	ple Location	2.19.4.3				
Depth/Interval Sampled: _	0-6"				300	y sind	nece				
Sample Type: Grab Com (circle)	posite or Both				7	Who have					
Media: Surface Soil (circle) Subsurface S Other		e Water id Water			u						
Field Screening Information	on:		ocad by baley he Observat			1 1 1 1 1 1 1	V cad				
Type of Meter:	•		brown silty clay, trace fine								
Other Field Measurements	s:		gravel								
Thimble Groun	ing	sample takene low dide									
- Photographs ta	ken										
- depth to water	= 0.2 \$+	@ low tide									
SAMPLE COLLECTION EQU	IPMENT:		DECONTA DECON.		ION PROCED		RIPTION:				
Hand Auger Core Sampler Spatula/Spoon Bow! (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Am Bailer Backhoe Van Dorn Bo	m ttle	Tap wate Alconox Tap wate HNO3 (1 Tap Wate Methanol Hexane Acetone Air Dry DI Water Air Dry None	r or10%) er I		Studess					
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Requ	ired -	Time of Collection	CLP Sample	CLP Case#				
Metals	YES (NO)	coo14'C			6905	D05641	0247M				
X TOCITCO	YES (NO)	COOL4.C			0905	DO 5641	0247M				
X Grain size	YES NO	271000 c	العالم	202	0905	D65641	MLARO				
	YES NO			$\overline{}$		<u> </u>	 				
	YES NO	<u> </u>	- -	 							

^{M-21}Nº 120365

Signed: Kuar Caso

TRC	Cal	han ine	0213	6 05 1943	10	Ĭ	111104 Sheet 1							
Sample Log She	Contra	ctor Personnel	1			TI	TRC Personnel: C. FOSTCY, TFolcy, A. Stattel, K. Sears							
Sample No.: SD-40)J	-		T /	Sk	etch	TRC Personnel: C. FOSTCY,							
Depth/Interval Sampled:	0-6"			K	Dyc) (
Sample Type: Grab Com (circle)	posite or Both) S/(2	72		_				
Media: Surface Soil (circle) Subsurface S Other		ent e Water d Water				•	[a	+	Gull	of	wa	ter		
Field Screening Information	on:			ervati										
Type of Meter:			-9	rey	<u> 51</u>	1+	a	nd	de	<u>14,</u>	_\$	rell	5,_	
Other Field Measurements	s:		<u> </u>	<u>race</u>	<u>fi</u> n <	ne_	gra	<u>uve</u>	1	<u>زوی</u>	<u>nd</u>			
-GPS-coordinat			_worms											
Trimble GEOXT S	<u> </u>	lb	The	\ \ \ \	40 101	<u>t S</u>	<u>אס</u> ס	<u>re</u> n	<u>~(n</u>	3 U 2	<u> </u>	}		
- Photographs to	ken							<u>• • • </u>		- P				
- Water depth:						-						_		
SAMPLE COLLECTION EQU				CONTA			PRO	CED	URE:	DES	CRIP	TION	:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Ara Bailer Backhoe Van Dorn Bot	n ttle	Ald Ta HN Ta Me He Ac Air DI Air		r or10% r				hish	_				
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method		Volui Requi			ime c Necti			CLP Imple			LP se#	
Metals ✓ Metals	YES (6)	COO! 4.C		<u> </u>			30	2_		564		02	471	
☑ TOC TCO	YES 🔞	c0014'C		XB.			30			56 <u>4</u>			47M	
A Grain Size	YES NO	COO1 4.C	- 1	<u> 180</u>	02.		530	<u>'</u>	DO	56L	£4	02	474	
	YES NO								-					
	YES NO	<u> </u>									十			

^{№2}Nº 120362

Signed: Kray Coup Rev. 8 July 1991

TRC	Proje Callo Min	ct: ihan o e	Date/Time	ne: 4 0145 Sheet <u>l</u> of <u>l</u>							
Sample Log She	et Contra	actor Personnel	TRC Personnel: C. Foster, T. Foley, A. Stattel, K. Sea								
2	108			Sk	etch of Sam	ole Location					
Sample No.: SD - L	100			/							
Depth/Interval Sampled:	0-1.3 F	7, <i>E</i> D									
Sample Type: Grab, Com (circle)			na \		Dues	Cove					
Media: Surface Soil (circle) Subsurface S Other	-	ent	ank		Dyer Q	K					
<u></u>		io vidici.		\rightarrow		468	12				
Field Screening Information	on:		Observ	 ations:	York Wlaci feath	d alrama	<u> </u>				
Type of Meter:			grey clay w/ white								
Other Field Measurements	 5:		Streaks								
-GPS coordina. Trimble GeoxT - Photographed 1 3 angles, 0, 6	SN 4413A	40998	Wo	iter	depth =	1.3 fee	+				
SAMPLE COLLECTION EQU	UDMENT.		DECON	TAMINA	TION PROCED	URE:					
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Sam Kemmerer Extended An Bailer Backhoe Van Dorn Bo	pter m	Tap wa Alcond Tap wa	ox ater (1 o 10% ater nol e ne re			RIPTION:				
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	,	olume guired	Time of Collection	CLP Sample	GLP Case#				
Metals	YES (NO)	COO 4'C		802	0815	D05645					
☑ Toc/Tco	YES NO	C0014'C		802	0815	D05645					
X Grain Size	YES NO	C0014'C		(602	0815	D05645					
	YES NO										
	YES NO										
	YES NO			, .							

Signed: Kuar Slaw Rev: 8 July 1991

TRC	Proje Calla Min	0218	Project No.: 02186 0590 019 H3				Date/Time: 11/11/04 1320			et <u> </u>	of <u>1</u>	
Sample Log Sho	eet Contra	el:			TRC Personnel: C. Foster, A. Stattel, T. Foley, K. Sea							
			T			Ske	etch of	Samp	le Loca	tion		
Sample No.: SD-410	<u> </u>			N							\geq	
		9-4inohus						<u> </u>	1	1		
Depth/Interval Sampled: _	0-4-0-	0.4							_ X €	1		
Sample Type: Grab, Con (circle)	nposite or Both		7	مر	- {	- "	Pid	7				
(circle)			-								1.	
Media: Surface Soil	Sedim	ent							V			
(circle) Subsurface S		e Water					1				$\overline{}$	
· Other	Groun	d Water						1		1.	54.	
						i					Cay	*
Field Screening Information		, , ,	7)bse	vatio	ns:			<u>'</u>		·	
_			7	With	h. <	-1 - 1	-		 14 :م	 -		
Type of Meter:	· · · · · · · · · · · · · · · · · · ·		- (grey black fine silty sand, clams present.									
Other Field Measurements	s:		out of main channel of flow									
-GPS coordinat	es taken	using					ry f					
Trimble Geo'			- very wet									
- Photographs +	<u>aken</u>											
		 	- water depth = 0.8 ft									
			-						<u> </u>			
SAMPLE COLLECTION EQU	IIPMENT:	<u> </u>	-		NTA! ON. F		ION PRO	DCED		ESCRI	PTION	:
Hand Auger	Trowel		1	Tap v	water		X					
Core Sampler	Shelby Tube			Тар	water			a. \	Λ			
Spatula/Spoon	Dredge Samı	oler	İ	HNO Tan I	₃ (1 o Water	r10%)) (e 5)	in yes			
Bowl (stainless)	Kemmerer	H		Meth								
Split-spoon (2" or 3")	Extended An Bailer	" 📙		Hexa Acet			Н					
OTHER:	Backhoe			Air D	гу		\boxtimes					
	Van Dorn Bo	ttle L		DI W Air D								
	Pile de		<u> </u>	None	Volum		Time	-6	CL	 -	· · · ·	LP
ANALYTICAL PARAMETERS	Filtered (circle)	Preservati Method			equir		Collect		Sam			se#
Metals	YES NO	c0014.0	<u> </u>	3	K 80	2	1600	<u> </u>	D056	47	024	7M
☑ TOCITCO	YES (NO	(0014°	<u> </u>	[.(x 81	12	1600)	P056	<u>,47</u>	024	7M
□ Grain size	YES NO	C0014	<u>د</u>	11	(160	<u> </u>	1600)	P056	47	<u>624</u>	3M
	YES NO											
	YES NO											
F-1	VEC NO			T		Ţ,						

<u>Nº</u> 120364

Signed: Luan Can

TRC	Callai Mc	naun :	02136 0570 02136 0570	li/la/o4	10:50 She	et of				
Sample Log Sho	eet Contra	ictor Personnel:	•		onnel: C.Fos tel, K.Se					
Sample No.: SD~ 412	<u>.</u>		ant	Sketch of Sam	ple Location					
Depth/Interval Sampled:	0-6"					4				
Sample Type: Grab Con (circle)	nposite or Both		1 1 1 1 1 1			4				
Media: Surface Soil (circle) Subsurface S Other	Soil Surfac	ent e Water d Water				*				
Field Screening Information	on:		Observation	s:	(powde	red				
Other Field Measurement	s:		rock-artificial man-made clay toilt)							
- GPS coordinates Trimble GeoXT: - Photographs taker	sw:		- traces of iron staining (8.							
Depth of water = 1	0.2.6+					<u>-</u>				
SAMPLE COLLECTION EQU	JIPMENT:		DECON. FLI	NATION PROCEI JID USED [∑]		RIPTION:				
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended An Bailer Backhoe Van Dorn Bo	m ttle	Tap water Alconox Tap water HNO ₃ (1 or1 Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None	XXX	r Storoless	CLP				
ANALYTICAL PARAMETERS	. Filtered (circle)	Preservation Method	Required	Time of Collection	, CLP Sample	Case#				
Metals	YES (NO)	Cool4'C	 		D05649					
X TOCITCO	YES (NO)	cool 4'C	14802			0247M				
□ Grainsize	YES (NO)	COOL 4'C	1×1601	11:05	D 05647	0247M				
	YES NO			 	 	 				
	YES NO				 					

Signed: Wan Rev: 8 July 1991

TRC	calle	zhan Line	021	36 05 90 014 H 3	MI II OH	0940 S	heet of
Sample Log She	eet Contra	actor Personnel	:		TRC Perso	onnel: C.F.	oster, rs, A.Statte
Sample No.: SD ~ U	113			Sk	etch of Sam	ple Location	n ·
Depth/Interval Sampled:							
Sample Type: Grab Com (circle)	posite or Both						
(circle) Subsurface S	Sedim oil Surfac Groun	e Water	:		W.	Dyes (are)	SD43
Field Screening Informatio	n:		Obs	ervations:			
Type of Meter:			6	grey d	ay (w/	black	streaks)
Other Field Measurements	:		- <u>r</u>	nild p	etroleun	n odor	
Trimble Geo Photographs	XT 5N44	113A0998	- W	ater dep	th=1.6 f		drainage RPile Z
SAMPLE COLLECTION EQUI Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended And Bailer Backhoe Van Dorn Bo	pler	DE Ta Ak Ta HN Ta Me Ac Air	econ. FLUID p water conox p water IO3 (1 or10%) p Water ethanol exane etone Dry Water Dry	NKM TKKMT	on Stoinles	
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	`	Volume Required	Time of Collection	CLP Sample	CLP Case#
Metals	YES NO	(0014'		3×802	0950	00565	0 0247M
X TOCITCO	YES (NO)	(0014)	i i	18802	0950	D05651	
Grain size	YES (NO)	(001 41	۷	14 (602	0950	D0565	0 0241M
 	YES NO			_/			_
	YES NO	<u> </u>	+	-/			
^-2120359		<u> </u>		Signed: _	Kiron	lean	Rev: 8 July 1991
-4~ TC0000				Signed: —		77	•

TRC	Project Calla		Project No.: 02.136 0590 014H3	Date/Time	She	eet _(_ of _		
Sample Log She	eet	ctor Personnel:		TRC Perso	. T. Foley	ster, 1, A. tatle1		
Sample No.: <u>5D~41</u>	5		Sk	etch of Samp		TRCiler		
Depth/Interval Sampled: _	0-6"							
Sample Type: Grab Com (circle)	posite or Both			pyer		13		
Media: Surface Soil (circle) Subsurface S Other		ent e Water d Water						
Field Screening Information	on:		Observations:		· · ·			
Type of Meter:			- grey b	lack si	it and	clay		
Other Field Measurements	:		- organis	ms (sa	lt worm	<u> </u>		
GPS coordinate Trimble GeoxT		- organisms (salt worms, clams) noted						
Photo graphs to	ık <i>e</i> n							
Water Depth	1.9 ft.							
SAMPLE COLLECTION EQUI	IPMENT:		DECONTAMINAT DECON. FLUID	TION PROCED USED		IPTION:		
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Arr Bailer Backhoe Van Dorn Bor	n Little	Tap water Alconox Tap water HNO ₃ (1 or10%) Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None		n Showless	I. Ol'D		
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#		
☐ Metals	YES (NO)	COO 14 C		12:35	DO5651	824TM ®		
LI TOCITCO	YES NO		14802	12:35	D05651	0247M		
Grain Size	YES NO		1x 1602	12:35	D05651	0247M		
	YES NO				-			
片	YES NO				·			
[№] 2 120361			Signed:	Kwa	Sean	Rev: 8 July 1991		

TRC	Project Callal <u>Min</u>	nan o	2136 059 2136 0171	D.	u/u/o	me: † 1020	Shee	t of	f]_
Sample Log She	eet	ctor Personnel:	,		TRC Per	rsonnel: C. 24, A. Str	Fost attel	er, K.se	ars
Sample No.: SD - L	116			Sk	etch of Sa	mple Locar	tion		
Depth/interval Sampled: _	0-6"				+		-		
Sample Type: Grab Com (circle)	posite or Both	-			0.86	COVE		1	-
Media: Surface Soil (circle) Subsurface S Other		ent e Water d Water		130	\$50 H	10			
Field Screening Information	on:		Observati	ons:					
Type of Meter:			areu	نع	141	clau,	pre:	<u>sence</u>	<u>of</u>
Other Field Measurements	s:					ng.			
GPS coordinates	taken usin	\o							
Trimble GeokT	3N 4413A	0948	_San	<u>aple</u>	take	of a	rec	<u> + 14</u>	
Ol alarmaka i da			<u>Del</u>	Wa	area	0+ a	cid	V 021	<u> </u>
Photographs tak	en		_ Qru	<u> ოთ დ</u>	<u>e. </u>				
Wotter Depth = 1	. & ft.								
SAMPLE COLLECTION EQU	IPMENT:		DECON.	FLUID	ION PROC USED ⊠	-	ESCRIP	TION:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Arr Bailer Backhoe Van Dorn Bol	n	Tap wate Alconox Tap wate HNO ₃ (1 Tap Wate Methano Hexane Acetone Air Dry Di Water Air Dry None	r ori0%) i		on Stoube			
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volu Requ		Time of Collection			CLF Case	
Metals Metals	YES (16)	00140			1030	D056	52	024	7M
₩ TOCITCO	YES NO	c0014C	IX8	-	1030	D056		024	
train size	YES (NO)	C0014C	1416	02	1030	2056	52	024	M
	YES NO				*-		$-\!\!\!\!+$		
	YES NO					 			
11	ILO NO 1					1			

Signed: Kum Kaw Rev: 8 July 1991

TRC	Proje Call Min		02.\ Pr	ojec 36 017	No.: 0540 HH3	Date/T	ime: 14 065	She	et of	
Sample Log Sh	eet Contra	nctor Personnel				TRC PO	ersonnel: ey, K.	C.Fos Scart,	ter, A.Stattel	
S 11-	17		Sketch of Sample Location							
Sample No.: SD - 4	· · ·							1	1	
Depth/Interval Sampled: _	D-6"							4		
Sample Type: Grab, Con (circle)	nposite or Both			\$	5 4 17	house	1 10	Dye		
Media: Surface Soil (circle) Subsurface Soil Other		e Water			300	-10 CFV	tank (*		
Field Screening Informati	on:		0	bser	vations:					
Type of Meter:				gre	y 6	ack	sedin	rent		
Other Field Measurements:				- clam shells - sulferous oder						
GPS coordinate GCOXT, SN44 - Photographed 10	BPPOAEL	· · · · · · · · · · · · · · · · · · ·				,				
Water depth= 1.1	5 feet		_							
SAMPLE COLLECTION EQU	JIPMENT:		_		NTAMINA ON, FLUID	TION PRO	CEDURE:	DESCR	RIPTION:	
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Ara Bailer Backhoe Van Dorn Bo	m ttle	7 3 7 8 8 7 6	Tap V Metha Hexar Aceto Air Dr Va None	iox rater (1 or10% Vater anol one one y tter		110 on S		,	
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	n		olume equired	Time o		CLP ample	CLP Case#	
Metals	YES NÓ	C0014°C		3	xBoz	0205	D05	6 53	0247M	
▼TOC/TCO	YES (NO)	COO14'C			x802	0905	Dos	<u> 5653</u>	0247M	
☑ Grain size	YES (O	C0014,C			X1602	0905	500	<u> </u>	0247M	
	YES NO								<u> </u>	
	YES NO		.58						3	

Signed: Kuaylaus Rev: 8 Ju

TRC	Proje Call Mu	ahan	Project ০২।3৬ <i>০</i> ।৭	No.: 0590 H3	11/12		115		14.		- 1	
Sample Log She	eet	actor Personne	l:		TRC K.S	Personi Cours	nel: C.F. A.Sta	ioste He	≥r, T (Fol	oy	
Sample No.: SD - 423	2 Field a	Luplicate	416				Locatio	n				
Sample No.: _ SD 122	SD	E-422	Page	+ai	sed	roa	d _		-	<u> </u>	=	
Depth/Interval Sampled: _	4-10"		3							S=8	ᇻ	ip lue olin
Sample Type: Grab Com	posite or Both			1 2	3 2	3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		S a	mpi	4	re
Media: Surface Soil (circle) Subsurface S	Sedim Soil Surfac Groun	e Water	W	V	V		ose	N/	3	From	1 k	, hai
·						3		Po	<u>- </u>			
Field Screening Information	on:		Observa	ations:			····					
Type of Meter:			-tan							me	.	
Other Field Measurements			<u>bluc</u>	1gree	en S	tair	ing					
-GPS measureme		using	-root									
Trimble GeoxT			-laye		14. gr	een e	slime	<u>in</u>	av	<u>ea</u>		
- <u>Pictures take</u> - <u>Water depth</u>			-low								1	
	0., (,,											
											4	
SAMPLE COLLECTION EQU	IPMENT:		t .	TAMINAT			-	CRIP	TION:	-		
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended And Bailer Backhoe	pler	Tap wa Alcond Tap wa HNO ₃ (Tap Wa Methar Hexand Aceton Air Dry	ex ater (1 or10%) ater aol e e		⁰ 6, 8N	Storyles	•				
·	Van Dorn Bo	ttle 🗀	DI Wate Air Dry None	er	×	0	riginal Field d	. / u p				
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method	n Vo	lume quired	Time Collect	of	CLP Sample	1	CL Cas		1	
Metals	YES NO	Cool 4		802	093		05656	a	024			Ø
☑ TOC(τco	YES KO	८००।५७	2 x	802	093	0 8	05 4 56, 05 66 0		024	7M	K	P
☑ Grain size	YES (NO	C0014'	C 2 x	1602	093	0 P	05656	4	0247	<u> M</u>	Į.	F
	YES NO	· .						_			_	
	YES NO							-	<u> </u>		\downarrow	
	VEC NO		1			ī						

№ 120366

Signed: Luan Dan

Rev: 8 July 1991

TRC	Projec Calla Mine	han	Project No.: ৩2।১৮ ০6৭০ ০।구॥এ	Date/Time:	She	eet <u>· 1</u> of <u>1</u>
Sample Log She	eet Contra	ctor Personnel:		1		ster, ,. A.Statla
Sample No.: SD-42 Depth/Interval Sampled:	.3 6-6-13	2"	Sk	etch of Sample		
Sample Type: Grab Com						
Media: Surface Soil (circle) Subsurface S Other		ent e Water d Water		Corail Africal Reneway	Wetherd 2	
Field Screening Information	on:		Observations:			
Type of Meter:			0-6" exten	cover	mat,	mossy,
Other Field Measurements - GPS comply nates GeoXT, SN441 - Photographed	<u> </u>	<u>-</u>	to g	rey sitt	and_c	امي.
			pepth of	water =	0.3 Ft	•
SAMPLE COLLECTION EQUIPMENT Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Arr Bailer Backhoe Van Dorn Bol	m	DECONTAMINAT DECON. FLUID Tap water Alconox Tap water HNO3 (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water Air Dry None	USED 10 ³ la or	DESCR	SIPTION:
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	Volume Required	Time of Collection	CLP Sample	CLP Case#
Metals	YES (NO)	COO! 4'C	6×802		D05657	
▼ TOC / TCO ▼ Grain Size □ □ □	YES NO YES NO YES NO	40014.C	2×802 1×1602		<u> </u>	0247M
	YES NO					
^{ĀF-21} Nº 120363			Signed:	Kray	eas	Rev: 8 July 1991

TRC	Proje C a ll	ct: ahan ine	021	ect No.: 3	Date/Tim	e 14:20 SI	neet of			
Sample Log She	eet	actor Personnel): -		TRC Perso A - Sto		.Foster			
CD-4	გ (·			s	ketch of Sam	ple Locatior	1			
Sample No.: <u>SD-4</u>	<u> </u>		 		 	1-14				
Depth/Interval Sampled:	0-6"									
Sample Type: Grab Con (circle)	nposite or Both			W						
Media: Surface Soil	Sedim	ent	14	Pr. wid	1	1 -				
(circle) Subsurface S		e Water	I. II. 🗀	150.40	<u> </u>					
Other	Groun	d Water		7			1			
. 1			7	N catta	5,	1/1/9				
Field Screening Information	on:		Obs		Sample	~ Abs	Priva of			
Type of Meter:			 	ests o	of 100 f	(nating	taward s			
			sheets of 100 floating towards Margon tip of waterway Dark							
Other Field Measurement	s:		G	ay mo	ok/clay	; highe	rganles			
-GPS coordinate	the state of the s	using	.00	TAPLES	odoc.	SAMPLE	2 Collecte			
Trimble Gook					ff water					
- Photographs to	a ken			1100 in	ches des	the c	ampu			
			<u>ده</u>	VIE E	4 /17	7 1071	3MM -			
SAMPLE COLLECTION EQU	PPMENT:		DE	CON. FLUI	ATION PROCED		RIPTION:			
Hand Auger	Trowel			p water conox						
Core Sampler	Shelby Tube			p water IO _{3,} (1 or10%	5 × 10%	n Stoudess				
Spatula/Spoon Bowl (stainless)	Dredge Sam Kemmerer	oler 📙 📗	Та	p Water	" 🔼		·			
Split-spoon (2" or 3")	Extended An	m -		thanol xane	H ·		A ¹			
OTHER:	Bailer Backhoe	$H \mid$		etone Drv	\forall					
'	Van Dom Bo	ttle	DI	Water						
	-		No.	ne	H					
ANALYTICAL PARAMETERS	.Filtered (circle)	Preservation Method	n	Volume Required	Time of Collection	CLP Sample	CLP Case#			
Metals	YES NO	COO1 4'C	. 7	3x802	1420	005638	0247m			
☐ TOCITO	YES NO	cool 4'C		x802	1420	D05638				
□ Grain size	YES NO	cool 4°C		k (602	1420	D05638	I			
	YES NO			•						
	YES NO			, , , , , , , , , , , , , , , , , , ,						
	YES NO									

120381

Signed: Rev. 8 July 1991

TRC	Proje Call M	ahan ine	B)	017H3	Date/Tim	e:/3: <i>0</i> 0 SI	neet <u>1</u> of <u>1</u>
Sample Log Sh	eet	actor Personne	d:		TRC Person	onnel:	·Foster
Sample No.: SD-4	:05		2	to limb	ketch of Sam		
Depth/Interval Sampled:	0-6"			10 ph	1 1/4		
Sample Type: Grab Con (circle)	nposite or Both			10	on sold	<u> </u>	Z
Media: Surface Soil (circle) Subsurface S Other	Soil Surfac	ent e Water d Water		Tale of the same o	2.905	2000 0000	7 1
Field Screening Informati	on:		0	bservations:			
Type of Meter:			- 9	rey org	anic mu	ick tro	ice root
Other Field Measurement	s:						ce white n sample
Using trimb	ile GOOXT	taken	- <u>- 2</u>	shellfish grass in layer later de	temains the sc	on curt	ac = of SD.
SAMPLE COLLECTION EQU	JIPMENT:			ECONTAMINA DECON. FLUID			RIPTION:
Hand Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Samp Kemmerer Extended Am Bailer Backhoe Van Dorn Bo	m		Tap water Alconox Tap water HNO ₃ (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water None	X IIIXXXIII	n Stronless	CLP
ANALYTICAL PARAMETERS	Filtered (circle)	Preservation Method	' חכ	Volume Required	Time of Collection	CLP Sample	Case#
Metals	YES (NO)	0014		3x862	13:00	D05642	<u> </u>
XITOCITCO	YES (NO)	<u> 1007</u>		1802	13:00	D05642	
1 Grain Size	YES NO	<u>(0014.0</u>	-	1x1602	13:00	005642	0247M
	YES NO						-
 	ILS NO			<u> </u>		 	+

Signed:

TRC	Proje Calla Mh	ahan .	Project No.: 02136 0590 01143 Date/Time: Sheet 1 of						
Sample Log Sho	eet	ector Personnel	:		TRC Pers		.Foster		
Sample No.:	06			SI	cetch of Sam		n		
Depth/interval Sampled: _	0-6"			Waste	Rock Clif		ining		
Sample Type: Grab Con (circle)	posite or Both			cattail	7	V	attack		
Media: Surface Soil (circle) Subsurface S Other		ent e Water d Water			2	W	7 - 0		
Field Screening Information	on:		_	bservations:	ey org	janic o	clay,		
Other Field Measurements - GPS coordinates Trimble Geox - Photographs of taken.	s taken u			Depth of l	water = 1	0.A.1+.			
SAMPLE COLLECTION EQUIPMENT Auger Core Sampler Spatula/Spoon Bowl (stainless) Split-spoon (2" or 3") OTHER:	Trowel Shelby Tube Dredge Sam Kemmerer Extended An Bailer Backhoe Van Dorn Bo	m		DECONTAMINA DECON. FLUID Tap water Alconox Tap water HNO3 (1 or10% Tap Water Methanol Hexane Acetone Air Dry DI Water None	USED XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	DESC	CRIPTION:		
ANALYTICAL PARAMETERS	Filtered (circle)	Preservatio Method		Volume Required	Time of Collection	CLP Sample	CLP Case#		
Metals	YES (G)	cool4'		3x802	12:00	D05643			
	YES NO	COOL4"		1x160Z	12:00	D05643			
AIRM. 2172	VES NO	20011		1.1.2.1.600	12:0-		- 00000		

[№]Nº 120374

YE\$

YES

NO

NO

Signed: Rev: 8 July 1991

Appendix B Geophysical Reports

596 Main Street Woburn, MA 01801

Tel 781-935-8111 Fax 781-935-2717

March 14th, 2005 File 200485

TRC, Inc.

Attention: Mr. Dale Weiss 100 Foot of John Street Boott Mills South Lowell, MA 01852

Re: Final Report of Geophysical Investigation

Callahan Mines Superfund Site

Brooksville, Maine

Dear Mr. Weiss:

Enclosed is one (1) complete copy of the final report for the above-referenced site, including all changes/additions you requested. We have also included a CD containing pdfs of all HGI plates, GPR profiles, and the report text.

We have also sent a copy to Michael DeChiara of Metcalf & Eddy.

Please contact us at 781.935.8111 if you have any questions or need additional information.

Respectfully yours,

HAGER GEOSCIENCE, INC.

Jutta L. Hager, Ph.D.

President

Cc: Michael DeChiara

GEOPHYSICAL INVESTIGATION CALLAHAN MINES SUPERFUND SITE BROOKSVILLE, MAINE

Prepared for:

Metcalf & Eddy, Inc. 701 Edgewater Drive Wakefield, MA 01880

Prepared by:

Hager GeoScience, Inc. 596 Main Street Woburn, Massachusetts 01801

File 200485 March 2005

Geophysical Investigation Callahan Mines Superfund Site Brooksville, Maine

EXECUTIVE SUMMARY

Hager GeoScience, Inc. (HGI) was contracted by Metcalf & Eddy, Inc. (M&E) to perform a geophysical investigation at the Callahan Mines Superfund Site in Brooksville, Maine. The objective of the investigation was to: 1) obtain bedrock depth points at specified locations within the Tailings Pond and Waste-Rock Piles; 2) obtain bathymetric contours for Goose Pond and Goose Cove; 3) determine the character of the Goose Cove seafloor; and 4) provide support for Goose Cove sediment sampling by M&E. Site investigations were coordinated through an on-site representative of TRC, Inc. (TRC).

HGI performed the land geophysical portion of the investigation and retained the services of Hydroterra Environmental Services LLC (Hydroterra) to perform the marine portion of the work. Hydroterra's results are appended to this report as a stand-alone document.

Sub-surface bedrock information was obtained using a combination of seismic refraction/reflection and GPR investigative techniques. Approximately 1,650 lineal feet of seismic and 4,420 lineal feet of GPR data were collected (Plate 1), resulting in 1,538 bedrock depth points (851 seismic and 687 GPR).

Separate bedrock models were constructed for the tailings pond and waste rock pile areas from a combined but segregated database of seismic and GPR data (Plates 3a and 3b). The models articulate an east-dipping bedrock surface in the tailings pond area and a north-dipping bedrock ridge around the waste rock pile areas. The bedrock topography conforms to the pre-mining topography in most of the investigated areas. Seismic data suggest the presence of fracture zones in the tailings pond area. It can be also inferred from the bedrock and surface topography that fractured bedrock persists throughout the site.

1.0 INTRODUCTION AND APPROACH

Hager GeoScience, Inc. (HGI) was contracted by Metcalf & Eddy, Inc. (M&E) to perform a geophysical investigation at the Callahan Mines Superfund Site in Brooksville, Maine. The objective of the investigation was to: 1) obtain bedrock depth points at specified locations within the Tailings Pond and Waste-Rock Piles; 2) obtain bathymetric contours for Goose Pond and Goose Cove; 3) determine the character of the Goose Cove seafloor; and 4) provide support for Goose Cove sediment sampling by M&E. Site investigations were coordinated through an on-site representative of TRC, Inc. (TRC).

HGI performed the land geophysical work from November 29th through December 4th, 2004. Hydroterra Environmental Services LLC (Hydroterra) performed the marine portion of the work in early December. Hydroterra's results are appended to this report as a stand-alone document.

Locations for the geophysical investigations were specified in the RFP and revised subsequent to a site visit and RFP Addenda. Initially designated as seismic refraction surveys, the exploration program was modified by HGI (with the consent from TRC) to include a combination of seismic refraction, seismic reflection, and ground penetrating radar (GPR) investigative methods. The modifications were necessary to compensate for general geological and logistical constraints to the seismic refraction method, including poor geophone and seismic source coupling, shallow bedrock, and shot offset restrictions at the tailings pond area.

After consideration of low-frequency radar, multi-channel active surface wave (MASW), and seismic reflection methods, seismic reflection was chosen as the preferred method within the tailings pond area. HGI concluded that, in the absence of calibration data, the seismic reflection technique would provide the required horizontal and vertical resolution of a dipping bedrock surface beneath overburden with variable seismic velocity values. The seismic refraction method was used at the base of the tailings pond next to Goose Pond. With the exception of a thin crushed rock surface layer, this location was as close to a natural setting as was encountered at the site.

All of the survey locations in the waste rock pile areas were situated on varying thickness of a crushed rock layer containing a variable poorly sorted dry matrix ranging from rock fragments to rock powder. This layer has very low seismic transmissivity and results in poor source-energy and geophone coupling. Seismic refraction surveys incorporating land streamers or sandbags over "spikeless" geophones could be performed over relatively short spread lengths; however, the results of such surveys using longer multichannel linear arrays result in weak signals and low confidence solutions.

For the above reasons, and because of shallow bedrock along most of Waste Rock Pile (WRP) #3, HGI chose to substitute GPR for the seismic refraction method within these areas. Prior to the investigations, the conventional wisdom regarding the waste rock piles was that they were too thick to be investigated from the top by refraction methods; particularly at Waste Rock Pile (WRP) #1. However, the alleged thick pile of dry crushed rock would be a suitable environment for low-frequency radar investigations. HGI therefore deployed 100-MHz and multiple low-frequency (15- to 80-MHz) antenna systems. For reasons discussed later in the report, higher frequency antennas would be optimal for most survey locations at this site. Short seismic refraction surveys were performed along most GPR traverses to provide depth information to constrain the GPR depth conversion factors.

Surveyors were contracted by M&E to provide survey control for the geophysical investigations. Wood stakes were used to mark GPR and seismic survey locations where possible. This method worked at the tailings pond area where soil conditions were favorable; however, penetration of wood stakes in the waste rock pile areas was minimal. Paint marks were used to supplement stakes as markers in these areas. Between the time of the HGI survey and the GPS survey measurements, inclement weather conditions and/or other influences washed away or covered the paint marks and some wood stakes for survey locations at GPR lines WRP-1 (waste rock pile) and WRP-3. GPS measurements were not obtained for GPR line markers atop Callahan Mountain (WRP #1) and seismic line TP-3, at the base of the tailings pond. Coordinates and elevations for the missing GPS measurements were extrapolated from nearby measurements or estimated from a USGS topographic map. The extrapolations and estimates at the missing locations are adequate, with the exception of those for Callahan Mountain where a small lateral variation in location can result in a large surface elevation variation, and, consequently, a large variation in calculated bedrock elevation.

2.0 DATA ACQUISITION

HGI personnel performed the survey from November 29th through December 4th, 2004. Geophysical data were acquired along four seismic refraction lines, two seismic reflection lines, and twelve GPR lines. Plate 1 shows the locations of the geophysical investigations. Approximately 1,650 lineal feet of seismic and 4,420 lineal feet of GPR data were collected (Plate 1).

2.1 Seismic Refraction Survey

The seismic refraction survey was performed using a Geometrics Geode® 48-channel exploration seismograph at the locations shown on Plate 1. To acquire refraction data, HGI used 14-Hz Mark Products and 4.5-Hz OYO geophones deployed along linear 48-and 24- channel geophone arrays. The geophone arrays were attached to our Geometrics Hager GeoScience, Inc.

Geophysical Investigation Callahan Mines Superfund Site Brooksville, Maine

Geode® exploration seismograph units via seismic cables that relay the motion-induced electrical signals from individual sensors to the seismograph. The electrical signals are converted to digital signals in the seismograph unit and recorded on a computer as SEG-2 Rev 1, 32-bit integer data via Ethernet cable. Our acquisition software provides a number of Windows-based browsers that permitted the on-site display and evaluation of data quality.

Seismic lines WRP-1 (W-E line), WRP-2 (N-S line), and WRP-3 (N-S line) each consisted of 24 geophones spaced 5 feet apart on a land streamer cable system. For reasons mentioned above, these surveys were conducted to obtain bedrock depth information for constraining the GPR depth conversion. These lines were located along existing access roads constructed along the edges of the waste rock piles consisting of crushed dry rock. A 90-pound propelled energy generator (PEG) was used as the seismic energy source. Five shot point locations were used for each survey; two off-end shots, two end shots, and one mid shot.

Seismic Line TP-3 (N-S line) consisted of one 48-geophone spread with geophones spaced 10 to 20 feet apart. This line was located at the east side of the tailings pond at the base of the rock berm next to Goose Pond. The road leading to this area had been destroyed by erosion, and the survey location had to be accessed via a 70+-foot descent along a treacherous washout at the north end of the rock berm. Due to the limited access and because all equipment had to be hand carried by this route, a seisgun was used as the sole energy source. HGI had seven shot point locations for the TP-3 survey; two off-end shots, two end shots, two quarter shots, and one mid shot.

The quality of the seismic signals was verified in the field at each shot location. For records exhibiting low signal-to-noise ratio, additional shots were used to additively stack the coherent parts of the signal, which helps mitigate the detrimental effects of random environmental noise. Shot locations were also mirrored to enable examination of the reciprocity of refractor travel-times.

2.2 Seismic Reflection Survey

Reflection data were collected along two lines (TP-1 & TP-2, Plate 1). Seismic reflection was chosen as the preferred method for imaging the tailings pond area. HGI concluded that, in the absence of calibration data, the seismic reflection technique would provide the required horizontal and vertical resolution of a dipping bedrock surface beneath overburden with variable seismic velocity values.

The seismic reflection survey was also performed using the Geometrics Geode® 48-channel exploration seismograph described in section 2.1. To acquire reflection data, HGI used 100-Hz Mark Products geophones (~70% damping) deployed along a linear 48-

channel geophone array. A roll-along procedure using 24 active geophones was used to achieve 12-fold coverage using the CDP method. This level of fold coverage is usually necessary for land surveys to achieve a stacked record of high quality.

TP-2 was the first line to be acquired. A number of walk-a-way test shots were taken for the TP-2 survey at offsets of 50, 55, 60, and 70 feet. A review of the test data led to the selection of 55 feet as a suitable source-geophone offset. Other acquisition parameters for TP-2 include a record length of 300 ms and a sample rate of .125 ms.

Following the TP-2 survey, acquisition parameters were adjusted for the TP-1 survey. A 50-foot shot offset was used for TP-1. The record length was increased to 750 ms and the sample rate lowered to 0.5 ms, which allowed for signals of up to 1000 Hz to be accurately represented.

As a function of line length, TP-1 consisted of 200 shots and TP-2 consisted of 78 shots.

2.3 GPR Survey

Ground penetrating radar data were collected using a Geophysical Survey Systems, Inc. (GSSI) SIR System 3000 digital ground penetrating radar system. The GPR data were displayed on a color monitor for immediate visual inspection and quality control and simultaneously recorded on the system's flash memory for later processing and interpretation.

The goal of the GPR investigation was to add additional bedrock depth points in parts of the study area originally designated for seismic surveys, but where waste rock debris limited geophone coupling, logistical issues/obstructions prevented the use of appropriate seismic line lengths, and bedrock was too shallow.

GPR surveys were conducted using 100-MHz and multiple-low-frequency (MLF) antennas. The MLF antenna system was operated at 20-, 35- and 40-MHz. The GPR lines and their corresponding collection frequency are listed below:

- CM-1-1&2 20-MHz
- WRP-1-ext 100-MHz
- WRP-2-1&2 100-MHz
- WRP-3-1 40- & 100-MHz
- WRP-3-2 35- & 100-MHz

Low-frequency antennas were initially used where bedrock was reported to be deep. However, in most areas, the bedrock appeared to be much shallower than anticipated. Consequently, lines were re-run using the 100-MHz antenna system. The exception was

CM-1 on top of Callahan Mountain (WRP #1) where the MLF survey was completed at sunset on the last field day. A higher frequency antenna, probably 200 MHz, could have been used for more optimum results. However, based on information available prior to the investigations, lower frequency antenna systems were deployed to the site.

The geophysical techniques and their limitations are discussed in Section 6.

3.0 DATA REDUCTION AND ANALYSIS

Following the field data collection, the geophysical data were downloaded to a PC at the HGI office. The data were archived, processed, and analyzed using the following proprietary software:

- GPR: GSSI's RADAN for Windows NT® with Structural and Stratigraphic Interactive Interpretation Module®
- Seismic Refraction: SIPT2 iterative ray tracing
- Seismic Reflection: Linear Radon Transform
- Grid Modeling: Surfer® 8.0
- Graphic Presentations: Surfer® 8.0; AutoCAD® 2000

The map plates and profiles in the Appendices were created from processing of the multidisciplinary data sets and an integrated database consisting of GPR and seismic data. These appendices contain six map plates, four GPR profiles, and four seismic profiles.

Considerable effort was made to accurately locate data points in the Maine state planar coordinate system. M&E provided GPS coordinates and elevation for selective points along HGI's geophysical survey lines. Using the measured GPS points, HGI calculated the X and Y coordinate values and interpolated elevations for each of the 1,538 interpreted bedrock depth points (851 seismic and 687 GPR).

Re-sampling (x4) followed by moving average (x3) calculations were made to reasonably show the spatial distribution of representative depth and elevation points from the integrated geophysical database used for this study (Plates 2a and 2b). All data were used for analyzing bedrock surface trends.

3.1 Seismic Refraction Survey

Refraction data reduction and analysis initiated with the determination of arrival times of the direct (where applicable) and refracted waves for each shot-receiver pair. These arrivals were identified and 'picked' on a trace-by-trace basis by examining individual seismograms for the break in phase leading the first coherent seismic wavelet arrival.

Geophysical Investigation Callahan Mines Superfund Site Brooksville, Maine

Coherent arrivals were enhanced through the use of frequency filters that remove both coherent (e.g. electrical) and non-coherent (e.g. wind) noise from individual records.

Direct and refracted wave travel-times expressed as a function of source and receiver locations and elevations were used to generate the earth model most consistent with all observations. HGI analyzes seismic refraction data using Rimrock Geophysics' SIPWin®, a Windows-based version of SIPT2. In the SIPWin® program, picked arrival times are subdivided into individual refractor layers on the basis of refractor geometry. This is accomplished by examining the slope of the line connecting refractor arrival times plotted as a function of distance. Since the slope of the line depends on a layer's seismic velocity, slope changes may be used to discriminate between layers of differing velocity. The SIPWin® program combines this layer information with the principles of travel-time reciprocity to constrain average layer velocities and interface depths (e.g. weathered and non-weathered bedrock surfaces) beneath source and receiver locations.

Modeled results were correlated with available known constraints; i.e. average velocities of the expected media types, and the correlation of model structure with other geophysical data.

Overburden velocities measured along seismic refraction lines WRP-1, WRP-2, and WRP-3 are 2713 ft/s, 4200 ft/s, and 1972 ft/s, respectively. A velocity of approximately 4300 ft/s in natural saturated soil was measured along seismic refraction line TP-3. Poorly consolidated, crushed, porous, back-filled mine tailings tend to have low seismic velocities; however, water-saturated pore space should increase seismic velocities in these materials to sub-water wave speeds, perhaps between 3500ft/s and 4500 ft/s.

The low overburden velocities measured at WRP-1 and WRP-3 are consistent with those of poorly sorted dry crushed rock. These lines are located on ramps constructed of crushed rock and are adjacent to bedrock outcrops. Higher overburden velocities measured at WRP-2 and TP-3 indicate the presence of dense or saturated subsurface natural soils overlying bedrock. Seismic line WRP-2 (located in a pre-mining topographic low or stream drainage and situated on a thin layer of crushed-rock fill) is underlain by saturated natural valley fill. TP-3 (located adjacent to Goose Pond) is also situated over area underlain by saturated natural sediment.

3.2 Seismic Reflection Survey

The TP-1 and TP-2 data were converted to the SEPlib format to enable use of linear Radon Transform. After application of a refraction mute to eliminate the first arrivals, a Band pass filter with corners at 40 and 250 Hz was applied to the data to increase the relative strength of the prime observed reflector. Subsequently,

- 1) A linear Radon Transform was applied to better isolate the remaining linear ground roll and airwave energy form the hyperbolic-shaped reflector. A mute was then applied in this new domain to remove the separated ground-roll and airwave noise. Noise suppression techniques included a simple x t domain mute.
- 2) Noise-suppressed data were sorted to common midpoint with a peak 12-fold coverage.
- 3) A velocity analysis of the binned DCMP data was undertaken using the standard semblance plot technique. Optimal stacking of the dominant reflector occurred within a range of velocity values from 4200ft/s to 5000 ft/s.
- 4) A normal moveout (NMO) correction was applied to the data using a stacking velocity $V_{\text{stack}} = 4800 \text{ ft/s}$.
- 5) The NMO corrected data were stacked to enhance the signal-to-noise ratio of the reflector.
- 6) The stacked section was converted from time to depth using a uniform velocity of $V_{int} = \sim 3500$ ft/s. The analysis of refractions was used to constrain subsurface velocities.

The seismic reflection data volume contained only one prominent reflector, which had arrival times and offset moveout consistent with a reflection from the top of bedrock. In many places, however, the reflector had non-hyperbolic moveout. Importantly, no reflector was observed earlier than this arrival to help constrain the interval velocity profile above bedrock. A standard velocity semblance analysis was then applied to the noise-suppressed data. This analysis searched through a 3-D parameter space (velocity, midpoint, zero-offset travel time) to find the parameters that optimize stack power.

The results of this analysis were not entirely conclusive, because a range of values (4200 ft/s - 5000 ft/s) generated very similar stack power profiles. The best-fit results varied slightly with midpoint location (i.e., +/-200 ft/s); however, this can be attributed to the fact that non-hyperbolic reflector moveout violates the NMO approximation. Owing to these complications, we applied the NMO correction with a NMO velocity of V NMO=4800 ft/s, the velocity value that led to the best overall stack.

Robustly estimating depth-varying velocity profiles requires numerous reflectors that provide velocity constraints at different depth locations. Velocity estimation can be done with only 1 reflector; however, this seldom provides sufficient information to resolve any high- or low-velocity lenses or gradients that affect arrival times. Hence, although a NMO velocity of 4800 ft/s yielded the best stack power, considerable variation in the velocity profile could exist (i.e. the 4200 ft/s - 5000 ft/s described above).

Additional constraints on the seismic velocity were also available from the nearby seismic refraction survey, and from material property and saturation information. As stated in Section 3.1, velocities obtained from seismic refraction line TP-3 indicated a natural saturated soil velocity of approximately 4300 ft/s. Overburden velocities measured along

refraction lines WRP-1, WRP-2, and WRP-3 are 2713 ft/s, 4200 ft/s, and 1972 ft/s, respectively. Poorly consolidated, crushed, porous, back-filled mine tailings tend to have low seismic velocities; however, water-saturated pore-space should increase seismic velocities to sub-water wave speeds (perhaps between 3500ft/s and 4500 ft/s). Hence, we included this information in the analysis and decided to use the slower estimates from the better-constrained seismic refraction results.

We have mapped the NMO+stack profile to depth using a constant interval velocity V_{int} of 3800 ft/s. This is not really migration per se, because no summation was carried out over diffraction surfaces (e.g. Kirchhoff migration). The time-domain stack section can be obtained by rescaling the depth axis by factor 2/V_int.

Deconvolution was not performed on the data. The seismic data were acquired in wet sandy soil, leading to fairly constant, well-shaped wavelets. Hence, there was little need for wavelet regularization across the shot and receiver axes through deconvolution. Deconvolution could have been included to attempt to balance the wave field spectra and localize the reflector in depth. However, in this case, velocity uncertainty is far greater than depth picking error, making deconvolution a less important processing step.

No F-K (dip) filtering was applied in the processing flow. A tau-p mapping/inversion approach was used to attenuate ground roll and airwave noise. This is a more localized transform (unlike the F-K, which is global) that attenuates noise more effectively in a smaller region. This step is vital to ensure that ground roll and airwave noise are not interpreted as structure.

The stacked sections for TP-1 and TP-2 are shown in Appendix B. The main structural feature is the east-dipping layer with topographic relief of approximately 60 and 64 feet for TP-1 and TP-2, respectively. Based on the cross-sectional models, this reflector is interpreted to be the top of bedrock. Pursuant to the above discussion regarding the possible range of interval velocity, the position of the bedrock reflector as shown in Appendix B is considered to be conservative. The bedrock position could be lowered by 12% if a stacking and interval velocity of 4000 ft/s is used.

A significant amplitude and phase anomaly is present on the interpreted bedrock sections. The discontinuous reflections in these regions are consistent with the interpretation of a localized fracture system or faulting with a minor amount of block offset (shown in red annotations in TP-1a and TP-2a). Raw data records indicate that the causes of the disruption are moderately east-dipping features.

Additional discontinuous layers appear to be present below the interpreted bedrock reflector. These features are probably internal bedrock features related to fractures or rock fabric.

3.3 Ground Penetrating Radar Survey

Bedrock stratigraphy along GPR traverses was determined using GPR reflections that arose due to the back-scattering of the input GPR wave from discontinuous stratigraphic interfaces. Band-pass and/or spatial FFT filters, horizontal smoothing, background removal, gain adjustments, and wavelet deconvolution were performed as essential processing steps. Two-way travel times to the tops of GPR reflectors were then picked and entered into an ASCII file according to file number and traverse offset. All generated ASCII files were then incorporated into a collective database.

Site- and unit-specific GPR propagation velocities were estimated using migration techniques, estimates based on experience, and seismic refraction data. GPR travel-time data were then mapped into the depth domain using these velocity estimates. Penetration depths for both the 100-MHz and MLF systems were more than adequate for the target depths of investigation. For reasons discussed earlier in the report (Sections 1.0 and 2.3), in many areas, the bedrock depth was too shallow to resolve with the antenna systems used at the site. The bedrock horizon in these areas was interpreted using experience and some degree of subjective analysis. This method of interpretation will usually result in slightly deeper bedrock "picks"; however, it will not adversely affect the overall bedrock surface trend analysis. Data resolution in records from both the 40-MHz MLF and 100-MHz antenna systems at the site was suitable for identifying the bedrock horizon where it occurred below the pulse width of the antenna.

4.0 DATA SYNTHESIS

Approximately 1,650 lineal feet of seismic and 4.420 lineal feet of GPR data were collected (Plate 1), resulting in 1,538 bedrock depth points (851 seismic and 687 GPR). These data were used to construct a best-fit 2-D grid model using Surfer® for Windows' kriging algorithm for the top of bedrock. Kriging algorithms incorporating anisotropy parameters were used to create the grids. Areas where data were not acquired or were insufficient to analyze surface trends have been accordingly blanked in the grid model. A final bedrock contour map was then produced with Surfer® for Windows (Plates 3 and 3a). A matrix smoothing function was also applied to the grids to emphasize the surface trends. The bedrock model has been developed to emphasize the bedrock surface trends and is best used as a semi-quantitative indication of bedrock depth.

Seismic and GPR profiles are contained in Appendix B and C, respectively. The bedrock horizons in the seismic models are inversion models constructed from the seismic raw data and articulate the bedrock surface along the seismic lines. Similarly, the GPR profiles show the detailed bedrock profile along the GPR lines. Although based on these data, the bedrock-surface contour model described above was constructed using kriging

trend analysis and filtered using a moving average matrix filter to enhance the bedrock surface trends. Consequently, the bedrock elevations in the bedrock surface model along the GPR and seismic lines will vary somewhat from those shown on both the seismic and GPR profiles.

Separate bedrock models were constructed for the tailings pond and waste rock pile areas from a combined but segregated database of seismic and GPR data (Plates 3a and 3b). Large data gaps between the tailings pond and waste rock piles and the Goose Pond inlet north of WRP #1 prevent the valid interpolation of bedrock surface trends in these areas. Incorporating the elevation of bedrock outcrops in the area and performing additional land and marine geophysical surveys atop Callahan Mountain and in the Goose Pond inlet could achieve a contiguous bedrock surface trend across these areas.

5.0 SUMMARY

The bedrock models articulate an east dipping bedrock surface in the tailings pond area and a north dipping bedrock ridge in the waste rock pile areas. The bedrock topography conforms to the pre-mining topography in most of the investigated areas. At a minimum, the bedrock model developed for this study provides an accurate tool for assessing the possible migration pathways of DNAPL or other types of contaminants; however, incorporating additional bedrock structural details would provide a more complete model for analyzing bedrock-influenced groundwater movement.

Seismic data suggest the presence of fracture zones in the tailings pond area. It can also be inferred from the bedrock and surface topography that fractured bedrock persists throughout the site. If not already available, we recommend conducting a fracture trace study and integrating the results with the geophysical study. Other possible categories of useful information include borehole data, old mine plans, etc.

Based on our analysis of the data, we used USGS topographic maps to look at the preand post-mining topography. This review showed little differences in the topography in most of the areas of geophysical investigation...including Callahan Mountain (WRP #1). Plate 4 (Appendix A) overlays topographic maps that pre- and post-date the major mining events at the site. The overlay clearly shows areas of positive and negative topographic changes. A more accurate determination of these changes can be achieved by comparing current digital terrain models with pre-mining topographic data.

6.0 THE GEOPHYSICAL TECHNIQUES

6.1 Seismic Refraction

6.1.1. Description of the Method.

We collect seismic data using our Geometrics Geode® exploration seismograph system with 24- or 48-channel geophone arrays. Geophone spacing depends on the depth of investigation, but is between 5 to 20 feet. Shot points are located at a minimum off the ends of each spread, at the end geophones, and in the middle of the spread

6.1.2. Data Analysis and Interpretation.

The seismic data are analyzed using the SIPT2 iterative ray tracing technique. Data are input into the computer and a first-approximation model is created. The computer then compares the modeled arrival times along each ray trace from shot to geophone with the "picked" field arrival times and subsequently adjusts the model. After a number of iterations of this process, a reasonable fit between modeled and actual data is produced (i.e. the travel times along ray paths of modeled and calculated data are similar) which leads to the determination of layer depth beneath each geophone and shot point. The accuracy of the SIPT2 iterative method is contingent on a reasonable first-guess horizontally layered model.

6.1.3. Limitations of the Method.

Analysis of seismic refraction data requires an assumption of a model composed of a number of layers, such as bedrock overlain by overburden, or bedrock overlain by till and overburden. Other limiting assumptions are i) seismic refraction layers are continuous and extend from one end of the refraction line to the other; and ii) layer velocities increase with depth.

Seismic refraction requires a sufficiently strong source so that seismic energy is transmitted to refracting interfaces and returned to the surface to be recorded by each geophone in a seismic spread. When bedrock is deep and/or overburden velocities are low, explosives or seisgun sources may be required to produce sufficient seismic energy to reach most or all of the geophones in a spread. It is becoming increasingly difficult to use intrusive seismic sources, particularly explosives, at many sites.

Seismic refraction can only distinguish between materials if their seismic velocities are sufficiently different. Thus it may not be possible to distinguish between weathered bedrock and till, particularly if the bedrock is shale.

Electric lines with 60-cycle current (and/or greater harmonics) may create interference with seismic data collection along lines adjacent to or beneath them.

6.2 Seismic Reflection

6.2.1 The Method

We collect seismic data using our Geometrics Geode© exploration seismograph system that is capable of recording 48-channel geophone arrays. Geophone spacing generally depends on the depth of investigation, but is usually between 2.5 to 10 feet. Shot points are located a minimum of 50 feet off the end of an array to help reduce the debilitating effects of airwave and ground roll noise. Seismic energy is generated by either hammer blows on a steel plate or by a Betsy seisgun that uses industrial blanks to create an airwave when impacted with a hammer. For the latter source, the nozzle of the seisgun is buried 1.5 to 2 feet below the surface to enhance the amplitude of the signal entering the ground. The quality of the seismic signal for each shot point is verified in the field. The seismograph records all seismic data to an internal hard drive and floppy diskette, and transferred to a desktop computer.

A typical field recording configuration is the common source gather, which involves 24 active geophones and a single source location at a fixed offset from the recording channels. With HGI's 48-channel recording capability, this configuration can be maintained throughout a seismic line by "rolling" the geometrical configuration along the ground surface at 5 feet intervals. In doing so, a number of reflections from different source-receiver geometries are recorded that correspond to the same subsurface reflection point. These can be subsequently stacked to improve the quality of recorded signals.

6.2.2 Data Analysis and Interpretation

A substantial amount of processing is needed before it is possible to make any geologic interpretation of recorded seismic data. A typical processing sequence includes, but is not restricted to, the following: i) initial frequency filtering; ii) pre-stack F/K filtering; iii) trace edit; iv) first arrival mute; v) common offset to CDP sort; vi) application of datum statistics; vii) normal moveout correction; viii) surface consistent residual statistics; ix) CDP stack; x) deconvolution; xi) post-stack F/K filtering; xii) migration; xiii) frequency filtering; and xiv) trace scaling/normalization. HGI utilizes the Kansas Geological Survey WinSeis®-15 Turbo software package to analyze seismic reflection data.

Geologic interpretation is carried out on the CDP stacked data and generally involves identifying continuous reflectors. After reflector horizons have been delineated and stratigraphically assessed, a "time-to-depth" conversion can be applied using velocity information obtained from neighboring borehole data or from typical velocity estimates from compiled tables.

6.2.3 Limitations

Analysis and interpretation of shallow seismic reflection data is inherently limited by a number of factors:

The ability to resolve thin layers is dependent on the dominant frequency of the interrogating energy source. A general "rule of thumb" is that a layer must be thicker than ¼ of the dominant wavelength to produce a noticeable reflection.

The ability to isolate an individual reflector is dependent on the ability to separate it from the wavelets of earlier arrivals.

The magnitude of the reflection from any discontinuous interface is directly related to the impedance contrast across it (where impedance is defined as the product of density and velocity). Thus, situations frequently occur where additional strata exist but have an associated impedance contrast too small to be discerned.

Seismic energy sources must be strong enough for adequate penetration of seismic energy to the target of interest.

The robustness of any "time-to-depth" conversion is directly correlated with the validity of the velocity profile used. For near-surface seismic reflection investigations, this problem is greatly exacerbated by the possibility of strong lateral variations in the velocity profile.

6.3 Ground Penetrating Radar

6.3.1 Description of the Method

The principle of ground penetrating radar (GPR) is the same as that used by police radar, except that GPR transmits electromagnetic energy into the ground. The energy is reflected back to the surface from interfaces between materials with contrasting electrical (dielectric and conductivity) and physical properties. The greater the contrast between two materials in the subsurface, the stronger the reflection observed on the GPR record. The depth of GPR signal penetration depends on the properties of the subsurface materials and the frequency of the antenna used to collect radar data. The lower the antenna frequency, the greater the signal penetration, but the lower the signal resolution.

GPR data are collected using a Geophysical Survey Systems (GSSI) SIR 2000/3000 ground penetrating radar system. GPR data are digitally recorded on the internal hard drive, or flash-memory of the system. System controls allow the GPR operator to filter out noise, attributed to both coupling noise, caused by conductive soil conditions, Hager GeoScience, Inc.

spurious noise caused by local EMF fields and internal system noise. For shallow surveys, we use 400-, 200-, 100-, 900- or 1500-megahertz (MHz) antennas. For deeper penetration, we use lower frequency antennas ranging from 200 MHz to 15 MHz, depending on the anticipated depth of the target(s) and the degree of signal penetration. All of these antenna configurations can collect data in continuous mode or as discrete point measurements using signal-stacking techniques. Since there is a tradeoff between signal penetration and resolution, test lines are run using different antennas at several frequencies and then the highest frequency antenna that produces the highest quality data is used. In some cases, data are collected with several antenna frequencies.

6.3.2 Data Analysis and Interpretation

The horizontal scale of the GPR record shows distance along the survey traverse. In the continuous data collection mode, the horizontal scale on each GPR record is determined by the antenna speed along the surface. When a survey wheel is used, the GPR system records data with a fixed number of traces per unit distance. The GPR record is automatically marked at specified distance intervals along the survey line. The vertical scale of the radar record is determined by the velocity of the transmitted signal and the recording time window or range. The recording time interval, or range, represents the maximum two-way travel time in which data are recorded. The conversion of two-way travel time to depth depends on the propagation velocity of the GPR signal, which is site specific. When little or no information is available about the makeup of subsurface materials, we estimate propagation velocities from handbook values and experience at similar sites or by CDP velocity surveys with a bi-static antenna.

After completion of data collection, the GPR data are transferred to a PC for review and processing using RADAN NT for Windows NT™ software. When appropriate, we prepare 3D models of GPR data, which can be sliced in the X, Y, and Z directions.

The size, shape, and amplitude of GPR reflections are used to interpret GPR data. Objects such as metallic UST's and utilities produce reflections with high amplitude and distinctive hyperbolic shapes. Clay, concrete pipes boulders and other in-situ features may produce radar signatures of similar shape but lower amplitude. The boundaries between saturated and unsaturated materials such as sand and clay, bedrock and overburden generally also produce strong reflections.

6.3.3 Limitations of the Method

GPR signal penetration is site-specific. It is determined by the dielectric properties of local soil and fill materials. GPR signals propagate well in resistive materials such as sand and gravel; however, soils containing clay, ash- or cinder-laden fill or fill saturated with brackish or otherwise electrically conductive groundwater cause GPR signal

attenuation and loss of target resolution. Concrete containing rebar or wire mesh also inhibits signal penetration.

The interpreted depths of objects detected using GPR are based on on-site calibration, handbook values, and/or estimated GPR signal propagation velocities from similar sites. GPR velocities and depth estimates may vary if the medium under investigation or soil water content is not uniform throughout the site.

Utilities are interpreted on the basis of reflections of similar size and depth that exhibit a linear trend; however GPR cannot unambiguously determine that all such reflectors are related. Fiberglass UST's, or utilities composed of plastic or clay may be difficult to detect if situated in soils with similar electromagnetic properties, or if situated in fill with other reflecting targets which generate "clutter" or signal scattering and thus obscure other deeper reflectors. Objects buried beneath reinforced concrete pads or slabs may also be difficult, but possible, to detect.

Changes in the speed at which the GPR antenna is moved along the surface causes slight variations in the horizontal scale of the recorded traverse. Distance interpolation may be performed to minimize the error in interpreted object positions. The variation in the horizontal scale of the GPR record may be controlled, to a certain extent, with a distance encoder or Survey Wheel. The GPR antenna produces a cone-shaped signal pattern that emanates approximately 45 degrees from horizontal front and back of the antenna. Therefore, buried objects may be detected before the antenna is located directly over them. GPR anomalies may appear larger than actual target dimensions.

GPR interpretation is more subjective than other geophysical methods. The interpretive method is based on the identification of reflection patterns that do not uniquely identify a subsurface target. Borings, test pits, site utility plans and other ground-truth are recommended to verify the interpreted GPR results.

LIST OF ILLUSTRATIONS

APPENDIX A - MAP PLATES (in pocket)

Plate 1. Location Map - Geophysical Surveys

Plate 2a. Location Map - Bedrock Depth Points

Plate 2b. Location Map - Bedrock Elevation Points

Plate 3a. Contour Map - Top of Bedrock

Plate 3b. Color Contour Map - Top of Bedrock

Plate 4. Topographic Map - Pre- & Post Mining Topography

APPENDIX B – SEISMIC PROFILES

WPR-1

WPR-2

WPR-3

TP-3

TP-1

TP1a

TP-2

TP2a

APPENDIX C - GPR PROFILES

WRP-1

WRP-2

WRP-3

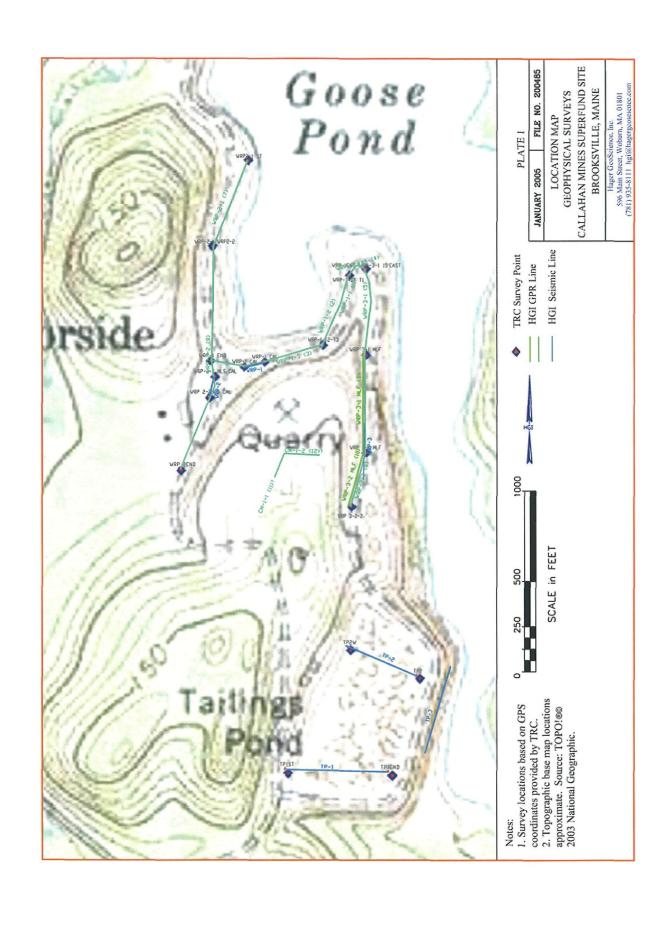
C-M

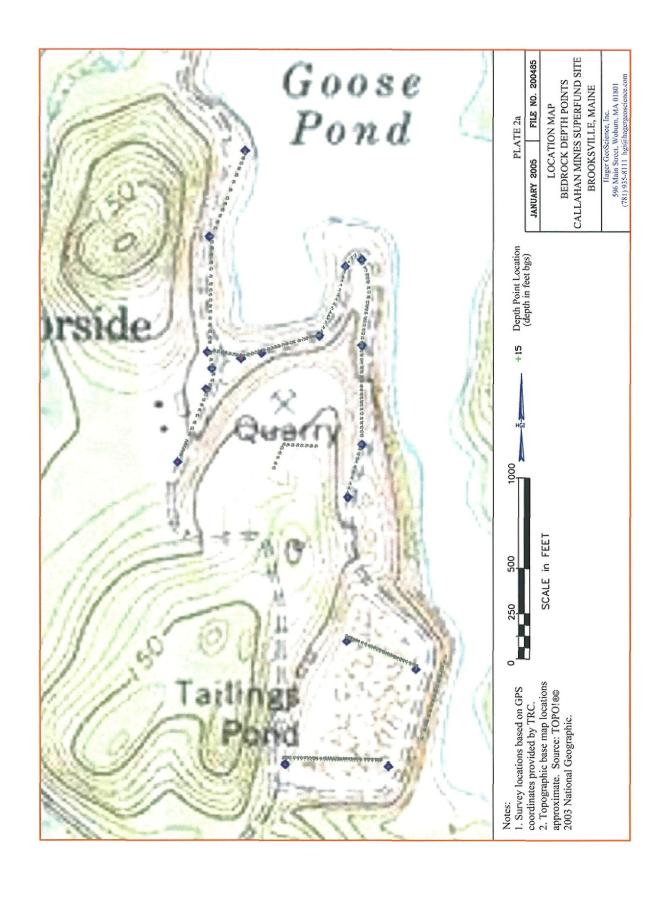
APPENDIX D -GPR PROFILE RECORDS (ON CD)

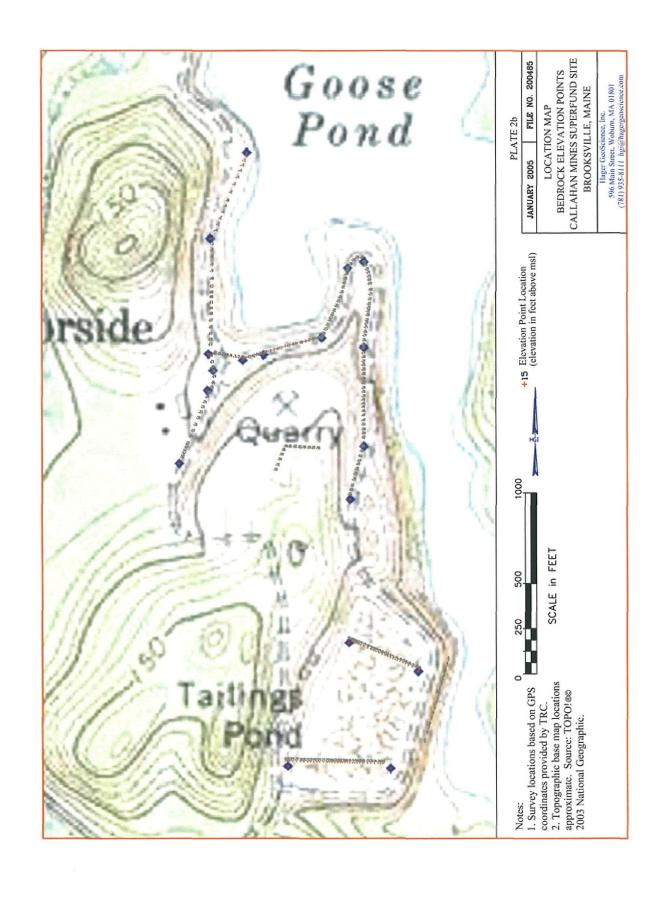
Geophysical Investigation Callahan Mine Superfund Site Brooksville, Maine

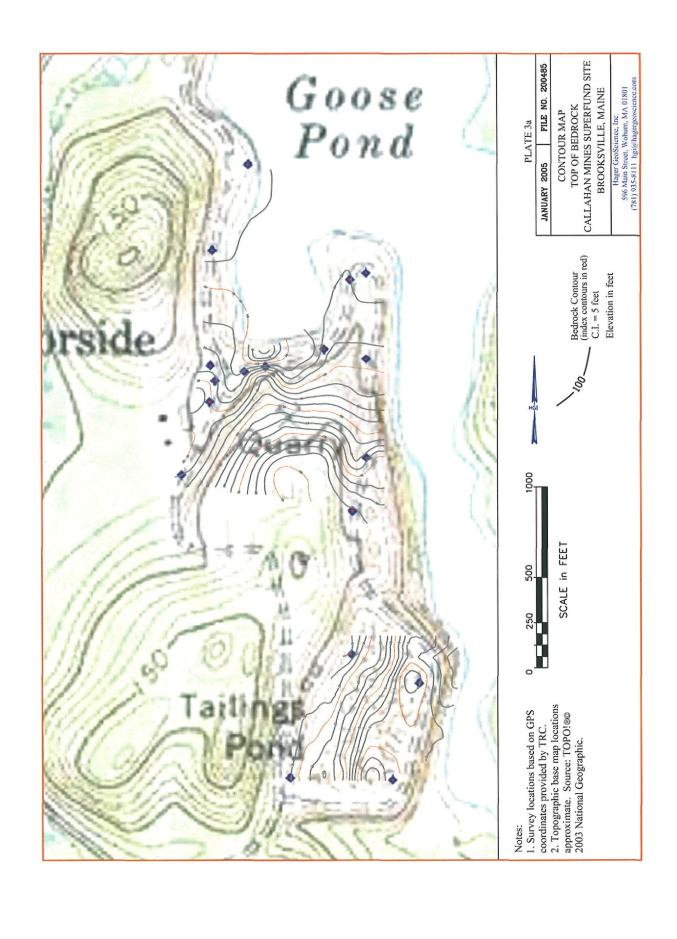
APPENDIX A - MAP PLATES (IN POCKET)

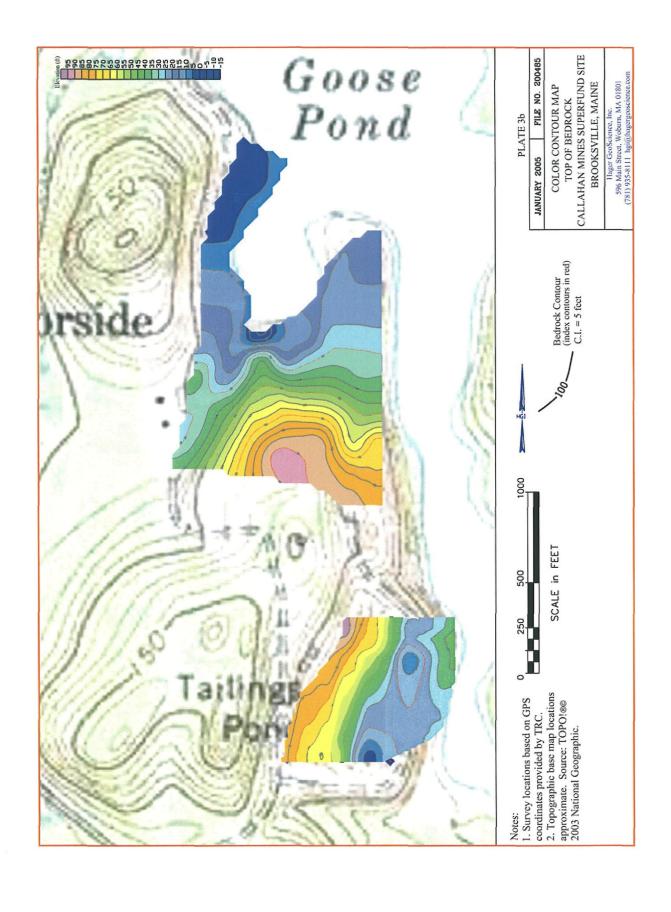
Plate 1. Location Map - Geophysical Surveys

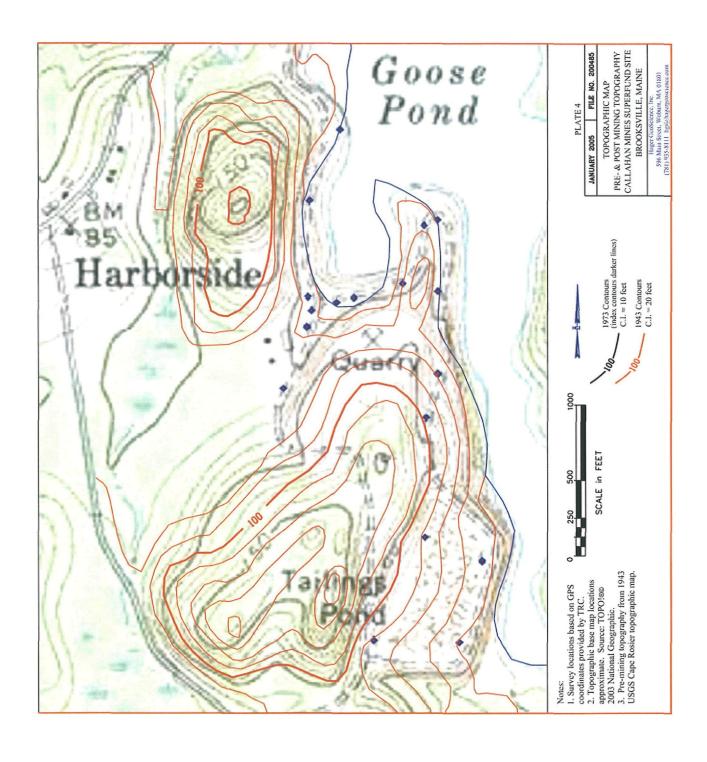

Plate 2a. Location Map - Bedrock Depth Points

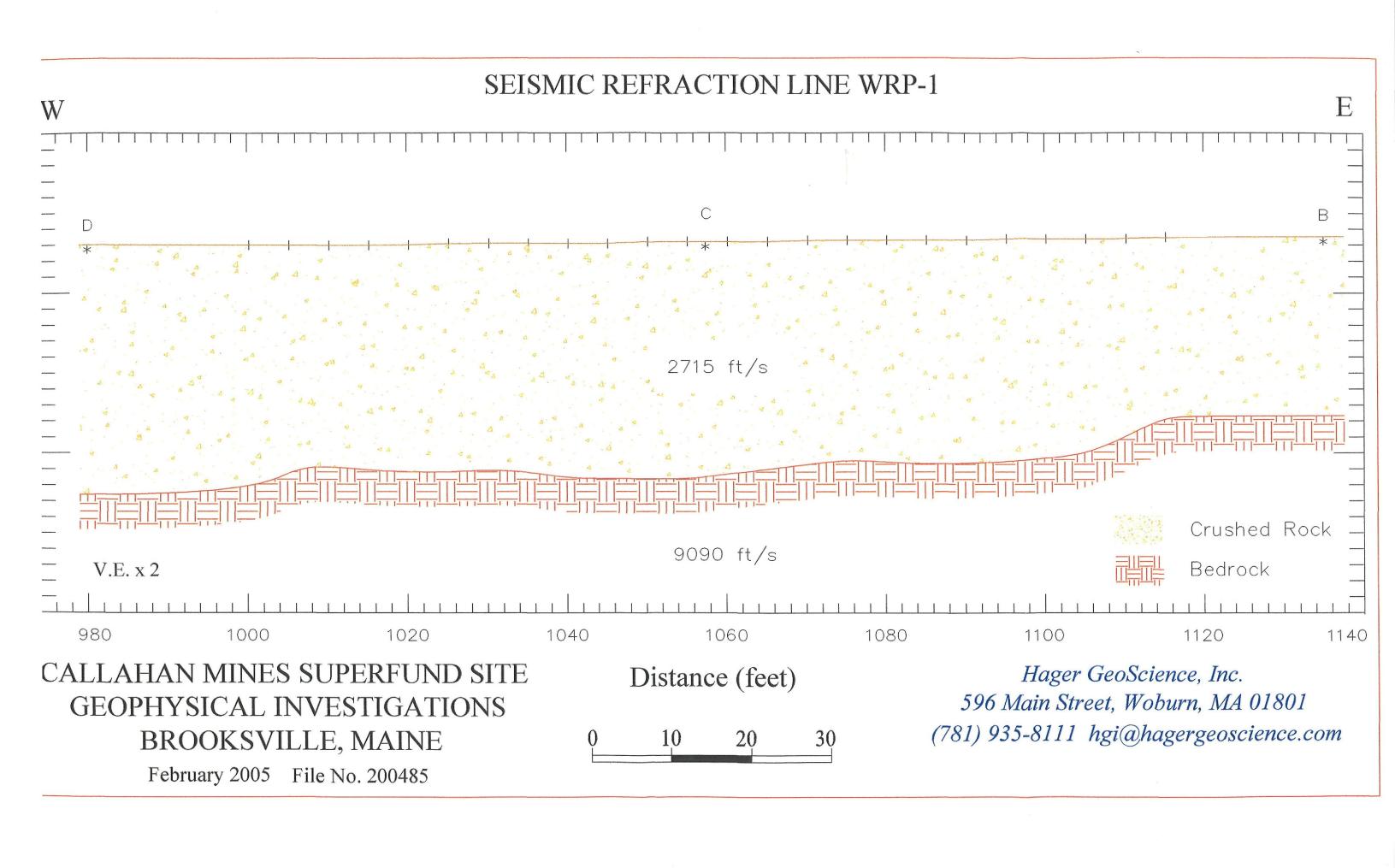

Plate 2b. Location Map – Bedrock Elevation Points

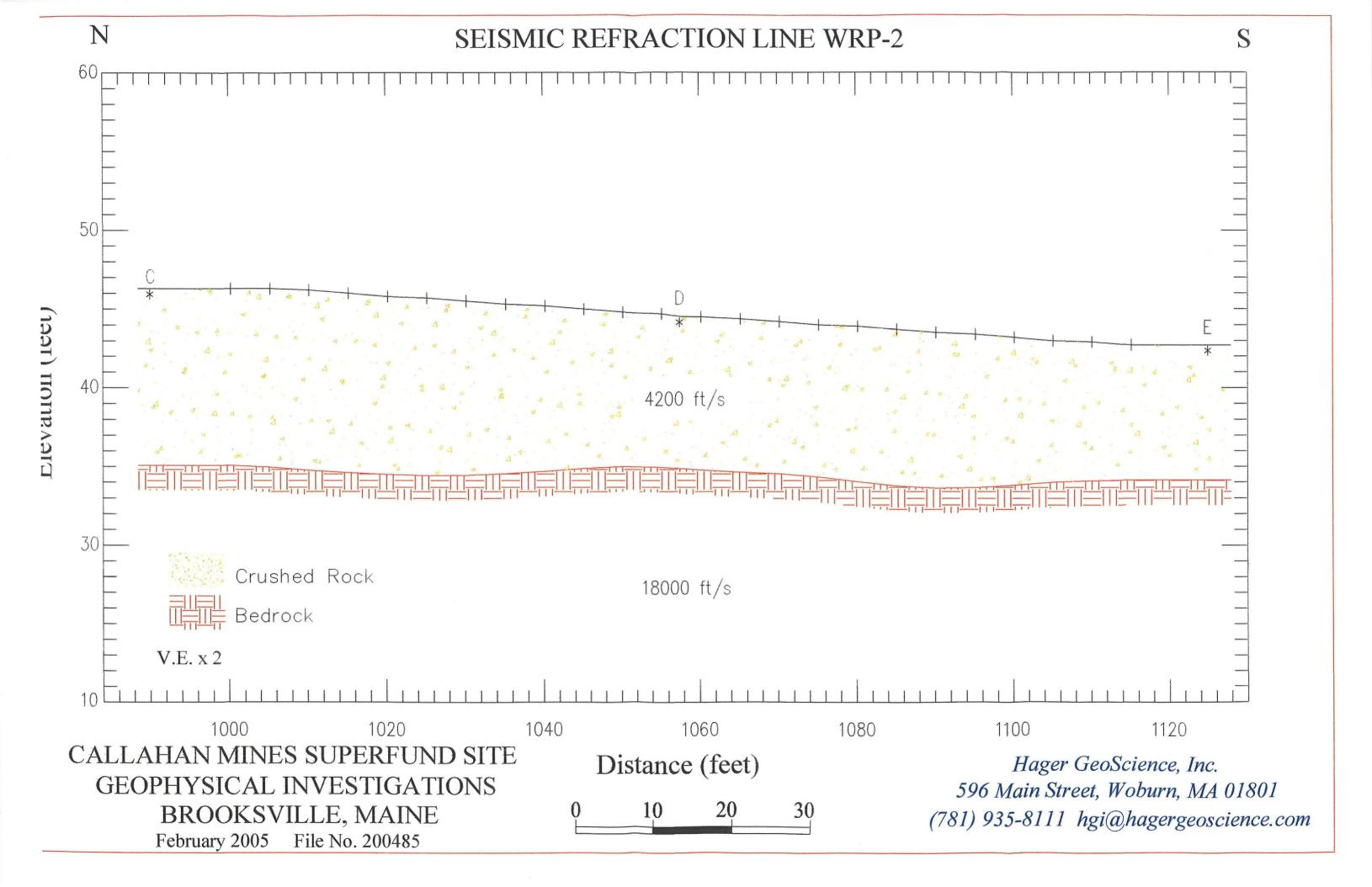

Plate 3a. Contour Map - Top of Bedrock

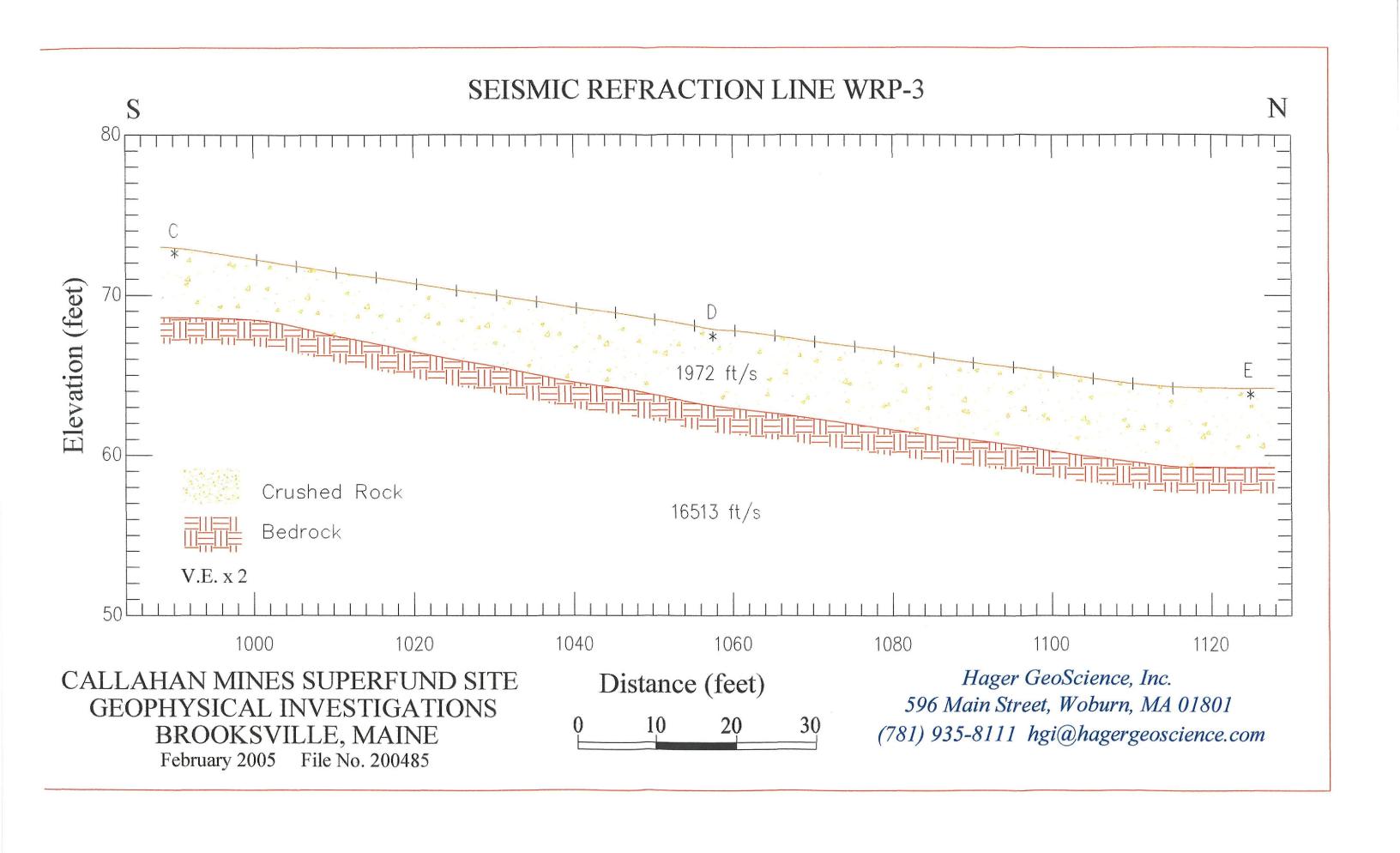

Plate 3b. Color Contour Map - Top of Bedrock

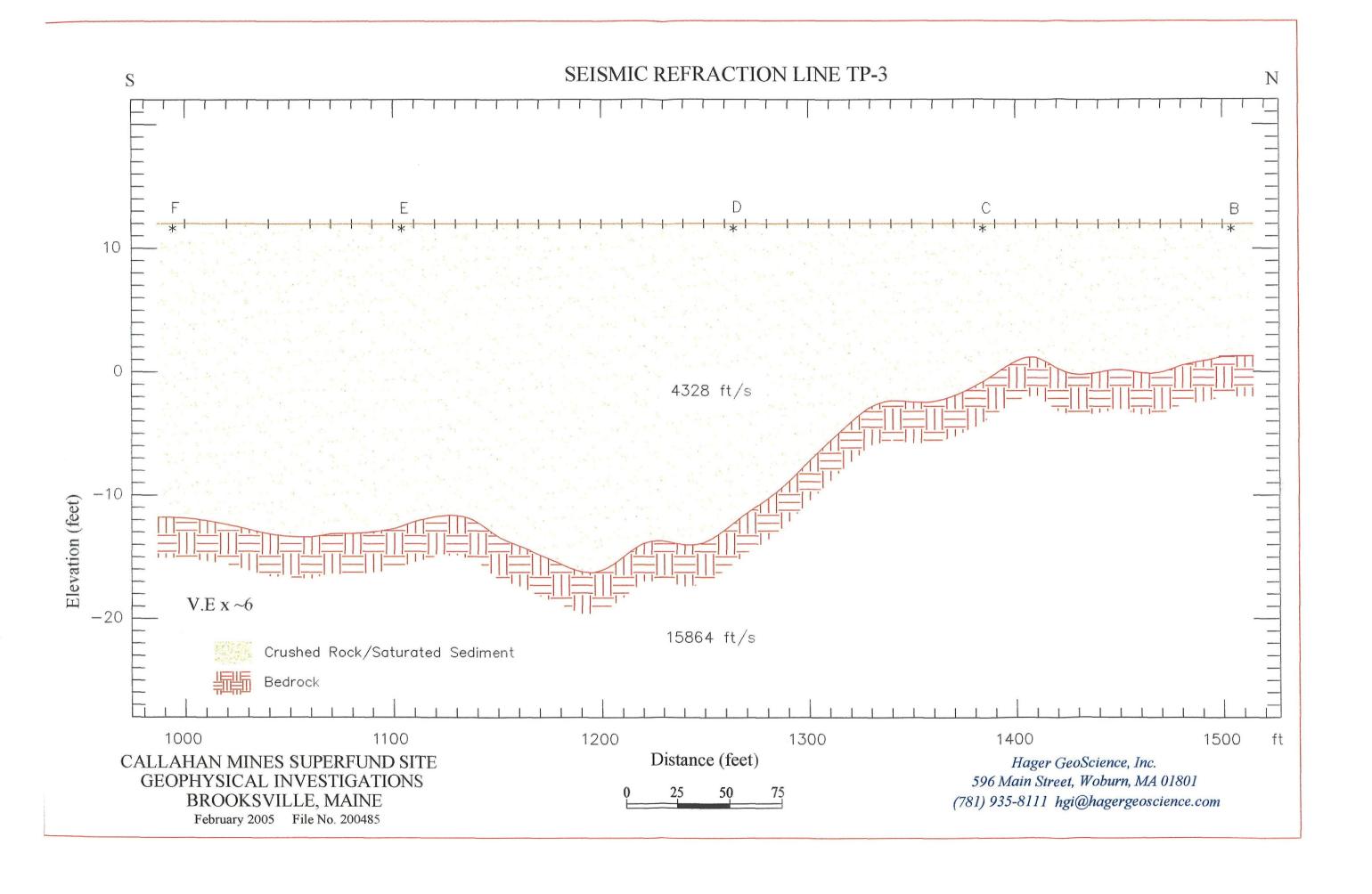

Plate 4. Topographic Map - Pre- & Post Mining Topography

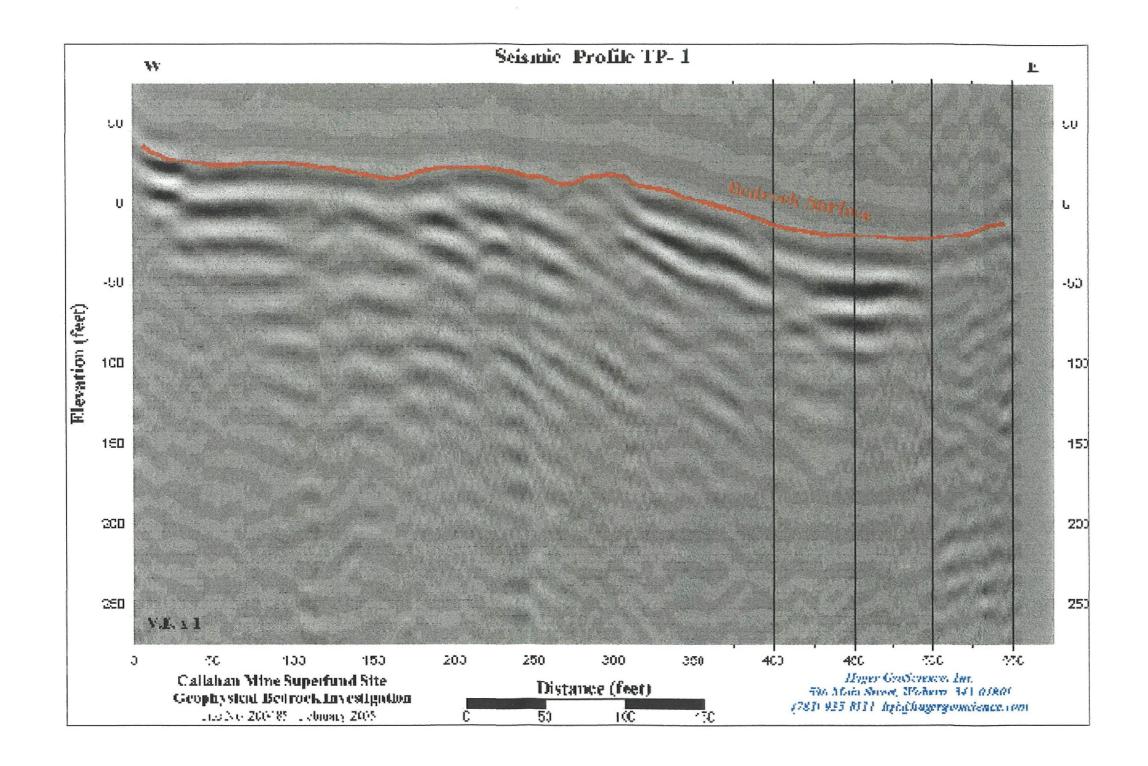


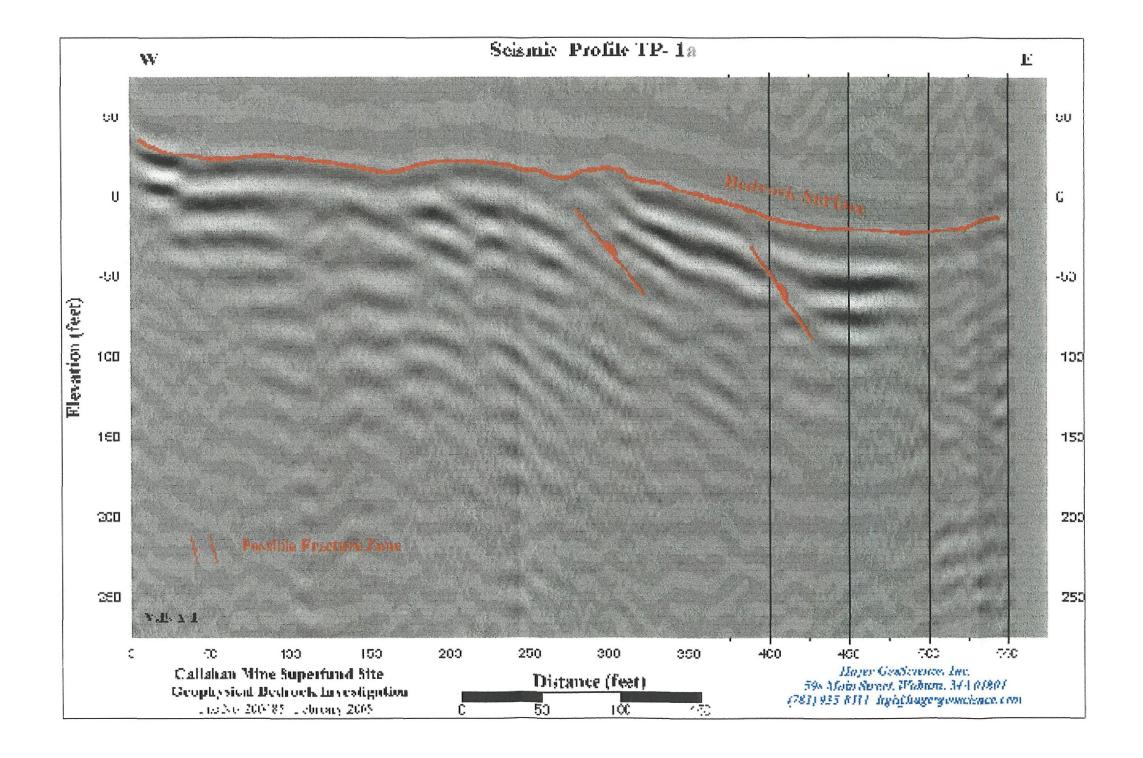


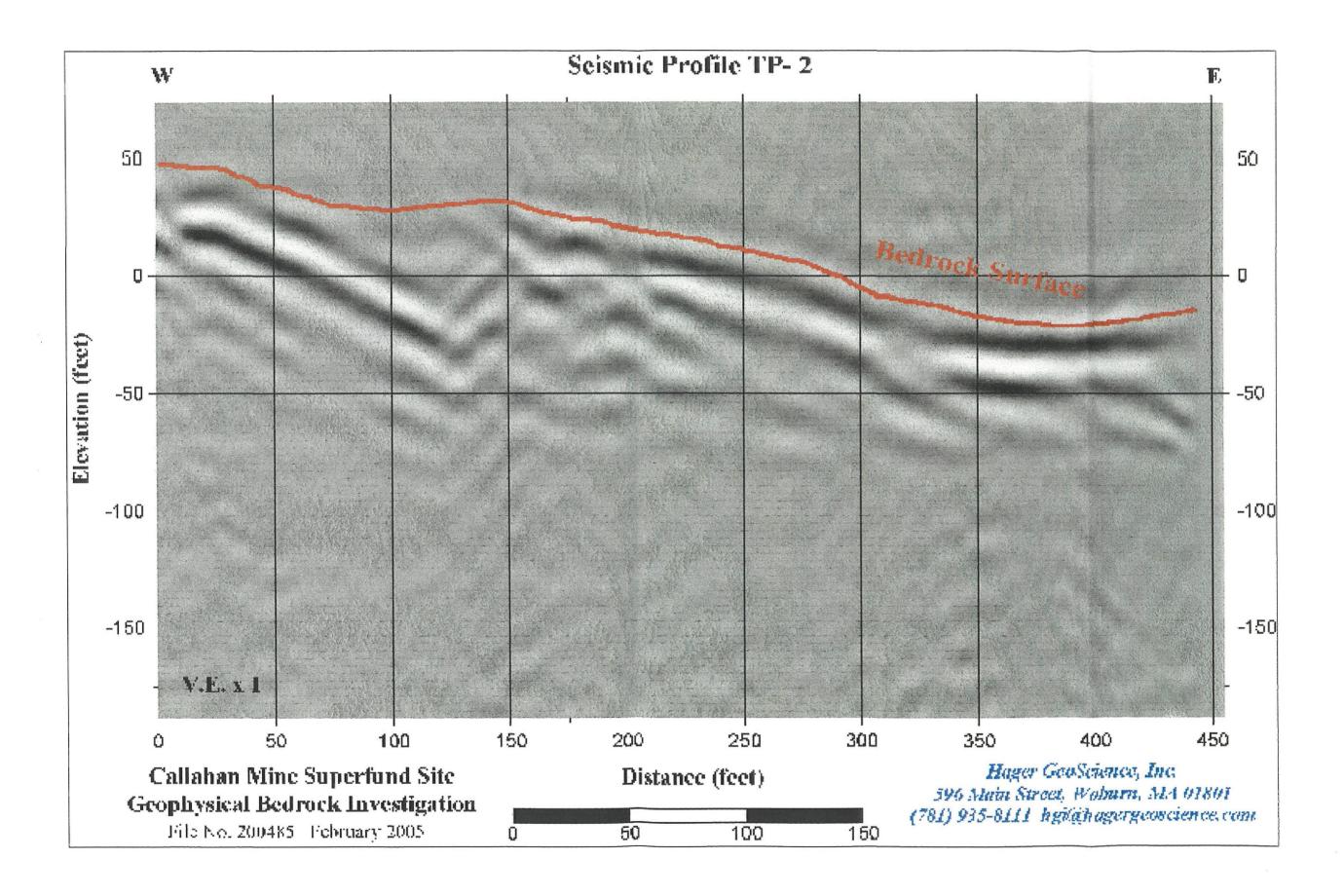


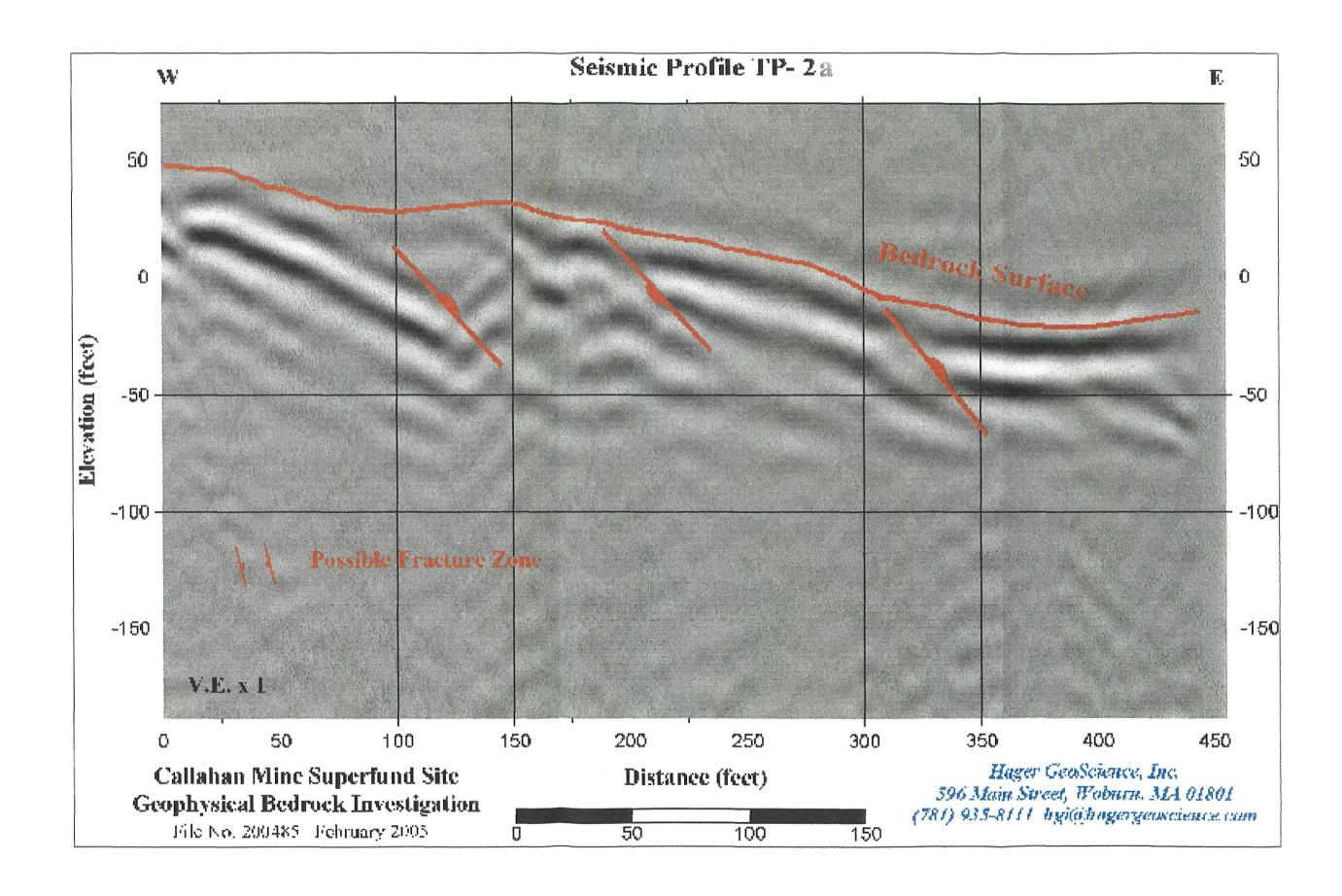

Geophysical Investigation Callahan Mine Superfund Site Brooksville, Maine

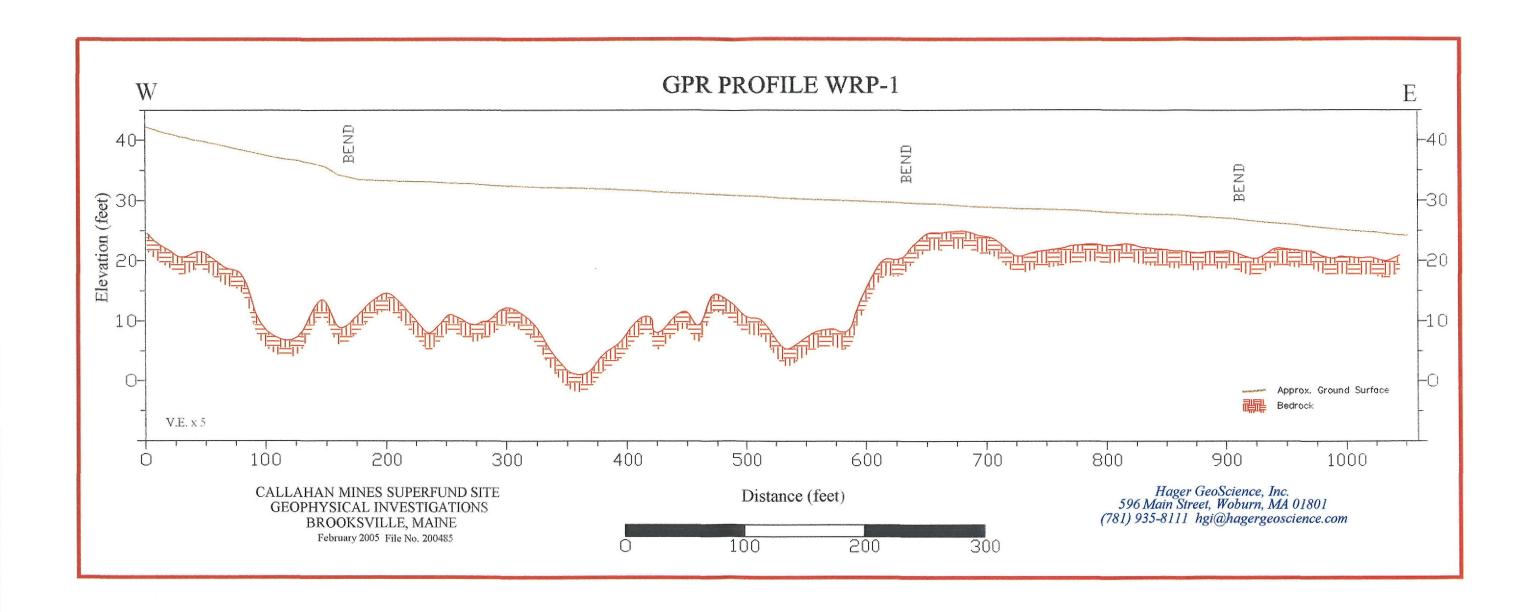

APPENDIX B - SEISMIC PROFILES

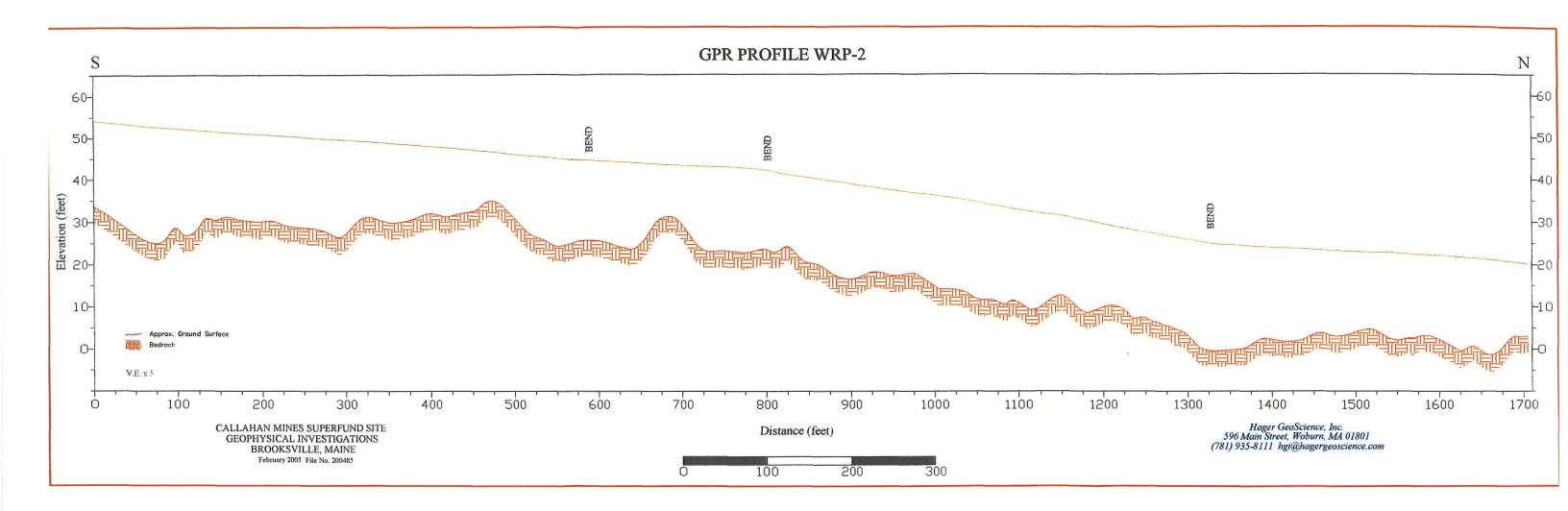

Seismic Refraction Line WRP-1 (10 scale) Seismic Refraction Line WRP-2 (10 scale) Seismic Refraction LineWRP-3 (10 scale) Seismic Refraction Line TP-3 (40 scale) Seismic Reflection Line TP-1 (60 scale) Seismic Reflection Line TP-1a (60 scale) Seismic Reflection Line TP-2 (40 scale) Seismic Reflection Line TP-2a (40 scale)

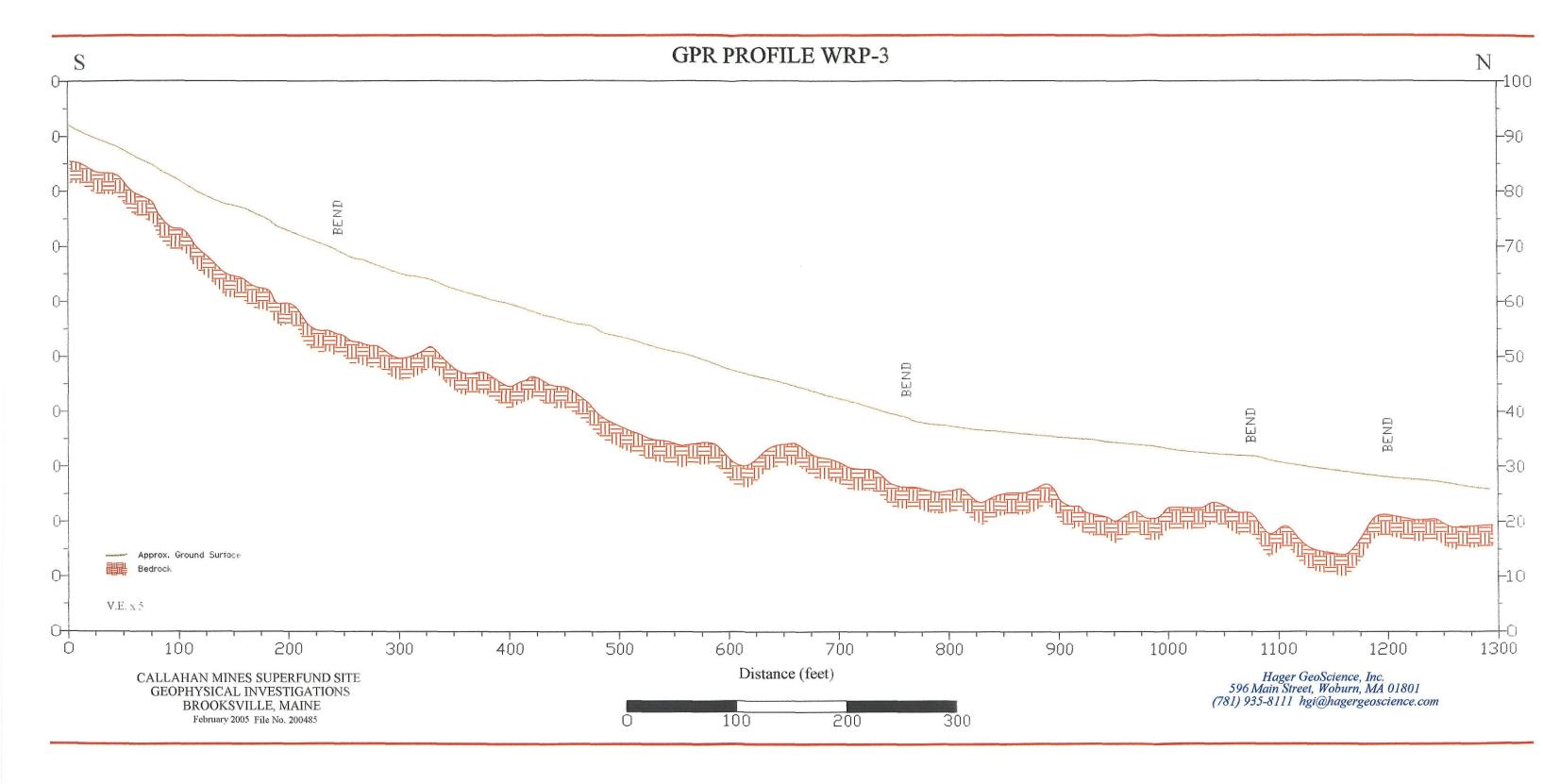


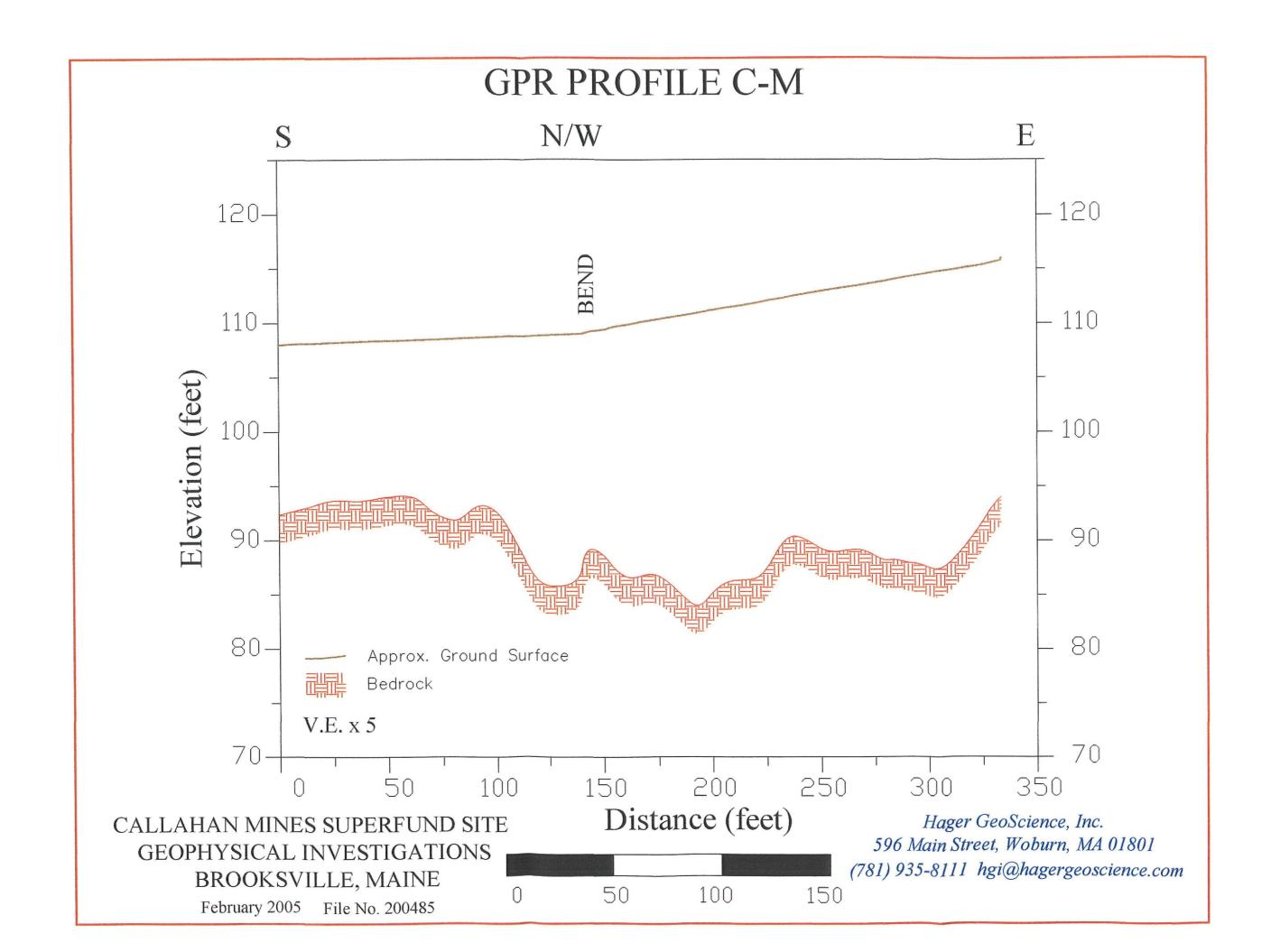




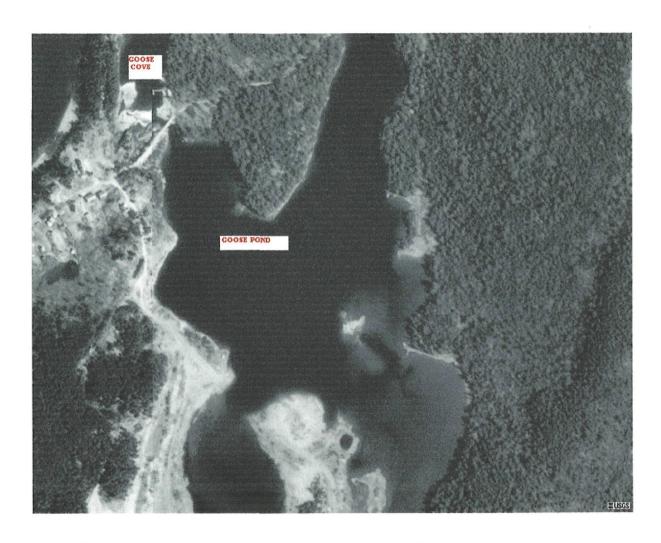







APPENDIX C - GPR PROFILES

GPR Line WRP-1 (80 scale) GPR Line WRP-2 (80 scale) GPR Line WRP-3 (80 scale) GPR Line C-M (40 scale)



APPENDIX D - GPR PROFILE RECORDS (ON CD)

GPR Line WRP-1 GPR Line WRP-2 GPR Line WRP-3 GPR Line C-M

SUMMARY REPORT

Marine Geophysical Survey Goose Cove / Goose Pond Brooksville, Maine

Prepared For: Hager Geoscience, Inc. 596 Main Street Woburn, MA 01801 Prepared By: HYDROTERRA Environmental Services LLC 272 ½ Dover Point Road Dover, NH 03820

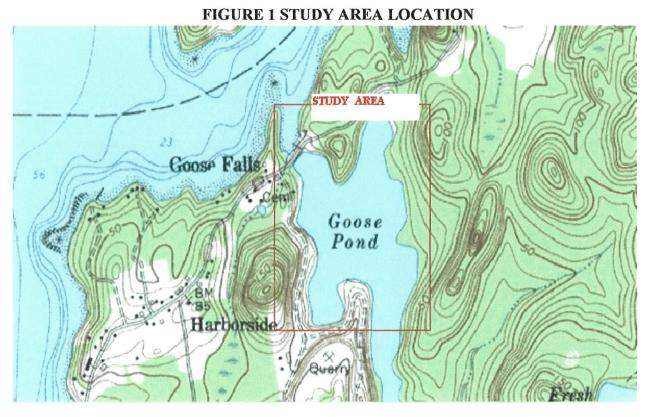

Revised - March 11, 2005

TABLE OF CONTENTS

Sectio	<u>Page</u>				
1.0	INTRODUCTION 1-1				
2.0	MARINE SURVEY TASKS2-12.1Seafloor Bottom Survey2-32.2Pond/Cove Bathymetry2-4				
3.0	SUMMARY OF FINDINGS3-13.1 Goose Cove3-13.2 Goose Pond3-2				
	LIST OF TABLES				
<u>Table</u>	Page				
1 2	Summary of the Tide Station Details				
	FIGURES				
Figure					
1 2 3 4 5 6 7 8 9	Study Area Location Map				
APPE	NDIX				
A B	CD Containing Electronic Data Files Study Area Drawings				

1.0 INTRODUCTION

HYDROTERRA Environmental Services is pleased to submit this summary report for the Bathymetry, and Seafloor Bottom survey services conducted at Goose Pond and Goose Cove in Brooksville, Maine (Callahan Mining Superfund Site). The locations of Goose Pond and Goose Cove (the Study Area) are shown on Figures 1 and 2. The marine survey was performed in December 2004 and included tasks to characterize the nature of the sea floor and sub-bottom features of the Study Area. Field data was collected between December 1 and 3, 2004.

The survey tasks included pond and cove bottom bathymetric soundings, side scan sonar, and sub-bottom profiling. The following sections provide a summary of the tasks completed and a discussion of key results regarding the nature of the sea floor and sub-bottom features of the Study Area.

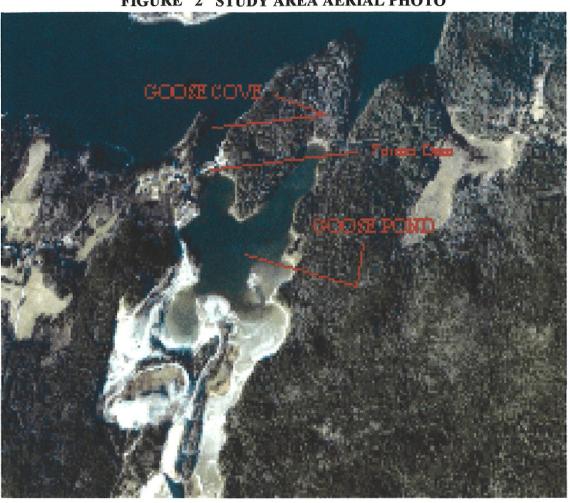


FIGURE 2 STUDY AREA AERIAL PHOTO

2.0 MARINE SURVEY TASKS

The marine survey tasks were completed using HYDROTERRA's 17-foot survey boat. The survey boat was equipped with recording fathometers, a Differential Global Positioning System (DGPS), an onboard computer and a hydrographic surveying software.

Sounding data was adjusted to the NGVD 1929 datum (established within the Study Area by ASEC Corporation (2005). Positioning data was collected in Geodetic Latitudes and Longitudes (WGS 1984) and reduced to the Eastern Maine State Plane Coordinate System (1983) (northings and eastings in feet).

Two tidal stations were established for the survey. Table 1 presents the details of these stations. Surface water elevations during the survey were recorded every 5 minutes using In-Situ data loggers set up at each station. The electronic data from this monitoring is included on the CD contained in Appendix A. Plots of the surface water elevation changes recorded during the survey are presented on Figure 3. As shown on Figure 3, the surface water elevation in Goose Pond (controlled by the remaining partial dam located at the northern end of the pond) only varied approximately 2 feet and lagged behind the Goose Cove tidal changes by approximately 2 hours. The Goose Cove tide range during the monitoring period was approximately 8.7 feet.

TABLE 1	TIDE STATION DAT	ГА		
Station ID	Location (northing/easting - feet) (East Maine - State Plane 1983)	Construction Type	Elevation Datum (ASEC Corp NVGD 1929)	
Goose Pond	249,162.223' 904,301.839'	1" PVC - on steel rod	7.06'	
Goose Cove	250,981.152' 903,367.742'	Wooden Piling (dock pier)	11.62'	

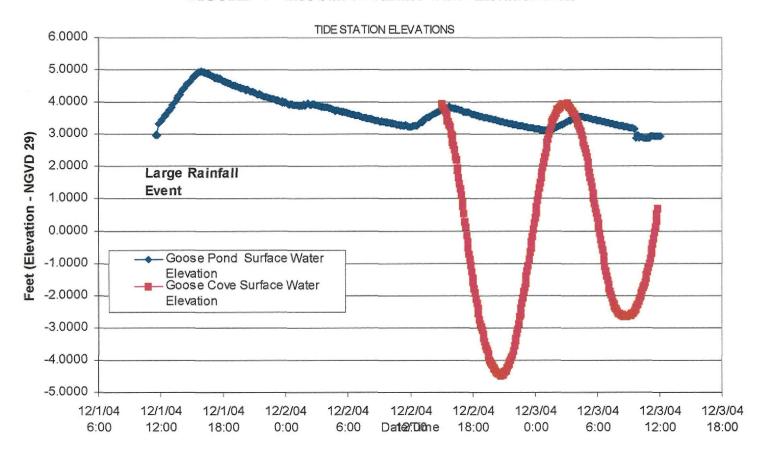


FIGURE 3 Tide Station Surface Water Elevation Plots

2.1 Seafloor Bottom Survey

HYDROTERRA mapped the bottom and sub-bottom substrate/sediment of the pond and cove. This mapping provided detailed data on bottom surface features such as natural and manmade physical obstructions and also sub-bottom features such as sediment types, thickness, characteristics and depths of bedrock. The purpose of this survey was to identify any piping, or manmade features found on the sea floor and to characterize the nature and distribution of the sea floor materials. The mapping consisted of a geophysical survey which involved side scan sonar transects and acoustic sub-bottom profiling. The survey was completed across Goose Pond and Goose Cove within the areas outlined in the Request for Proposal for Geophysical Surveying Services dated October 15, 2004.

For side scan sonar surveys, HYDROTERRA used a Klein 150kHz system. The side scan system was comprised of a towfish, an onboard computer system, a 100-meter tow cable and a towfish depressor.

In operation, the sonar sensor unit, referred to as the tow-fish, was towed by the survey vessel past an object or through the area of investigation. Two simultaneous fan-shaped acoustic beams, oriented at right angles to the tow-fish, are continually transmitted and then reflected off objects and sea floor features. The reflected signals are received by the transducers in the tow-fish, filtered, amplified and presented graphically to yield a display analogous to an oblique photograph of the sea floor and the objects on it. The side scan sonar system accepted Differential Global Positioning System (DGPS) information which is integrated with side scan sonar data, providing correlation of latitude-longitude and side scan targets. For positioning, HYDROTERRA employed a DGPS navigation and charting/plotting software linked to the side scan system.

The side scan sonar record showed bottom sediment type distribution and sediment features, and identified obstructions laying on the sediment surface such as bedrock ledge, boulders or man-made features including piping.

To collect sub-bottom information in the pond and cove, HYDROTERRA used a sub-bottom acoustic profiling system. The sub-bottom acoustic profiling system (ODEC - *Stratabox*) used the transmission of calibrated FM frequency low frequency acoustic waves (10 kHz) to penetrate the pond/cove bottom and provide resolution of sub-bottom layers and objects. The acoustic survey provided cross sectional data of the pond bottom depths with surface sediment classification, subbottom sediment thickness and characteristics, and possible bedrock depth.

The acoustic tow fish was towed alongside the boat and the onboard hydrographic surveying computer software collected and logged real time bottom / sub-bottom information along with positioning data. The transect intervals were based upon the variations in bottom and sub-bottom features.

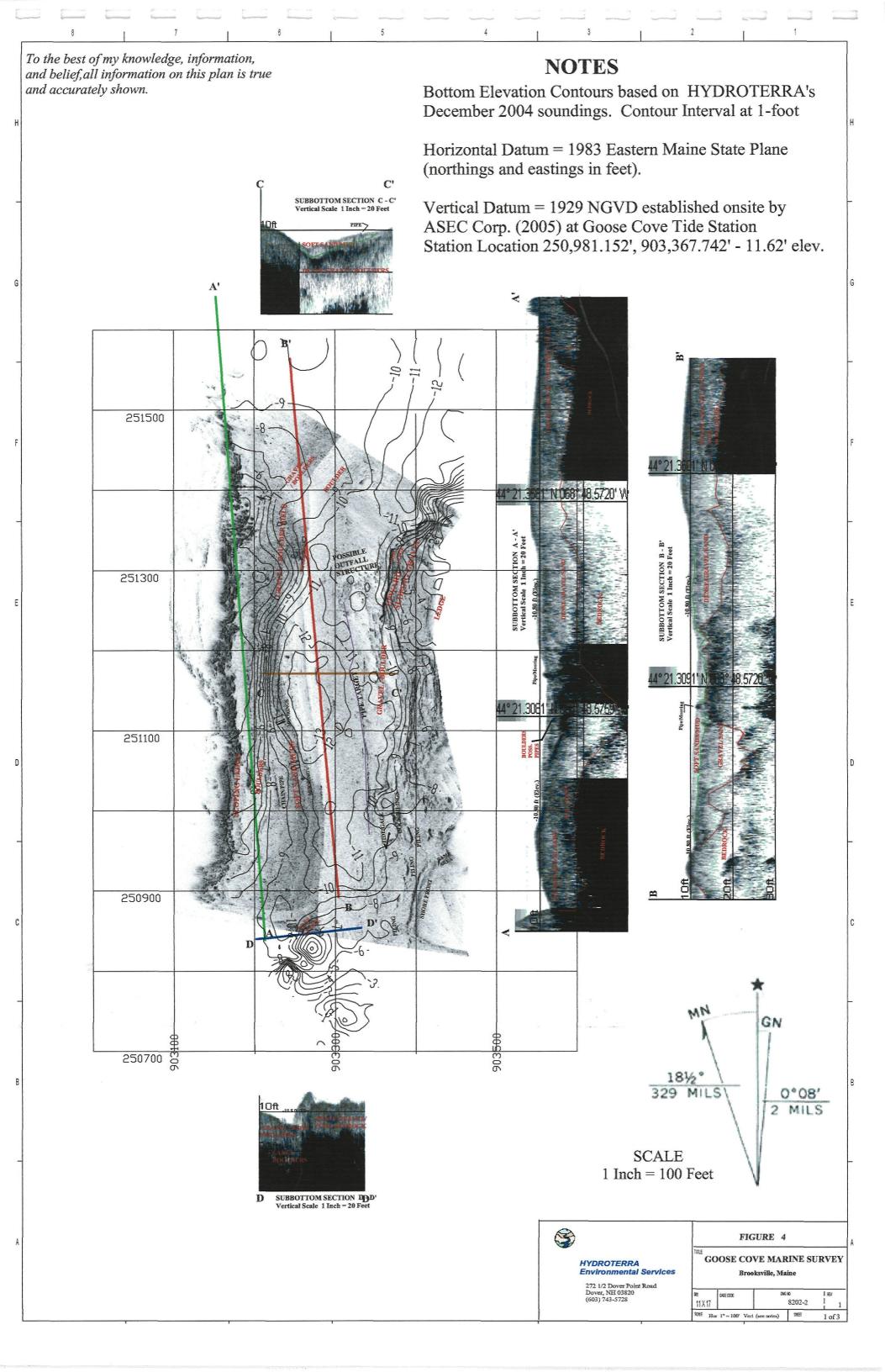
The surveys resulted in side scan sonar image maps generated with interpretive plan views showing the materials and features identified on the sea floor. Figures 4, 5 and 6 present the sonar imagery for the Goose Cove area. Figures 7, 8, and 9 present the sonar imagery for the Goose Pond area. Larger scale (1" = 100') plans of these results are included in Appendix B of this report. The AutoCAD Drawings for these figures are contained on the CD included in Appendix A. Table 2 lists the profiles presented on each figure. Plot tracks for the side scan surveys are included in Appendix B.

The sub-bottom survey generated cross sections with interpretation of sediment thickness, type and structures and depth to bedrock. The cross-sectional profiles for the Goose Cove area were plotted on Figure 4 and for the Goose Pond area on Figure 7. The locations of these profiles are shown on each figure. Larger scale (1" = 100') profiles of the sub-bottom sections are included in Appendix B of this report. The AutoCAD Drawings for these figures are contained on the CD included in Appendix A.

2.2 Pond/Cove Bathymetry

HYDROTERRA conducted a bathymetric survey of Goose Pond and Goose Cove. This survey provided bottom elevation data and bottom feature characteristics of the pond and cove. The fathometers were calibrated using a metal striker plate and hand soundings. The onboard hydrographic surveying computer software collected and logged real time depth, water temperature, boat speed, bearing and positioning data on an adjustable interval (at 1-second intervals). Field observations and operator notes are also logged real time by the software. The XYZ electronic data files for the bathymetric survey are contained on the CD included in Appendix A.

Sounding data was adjusted to the NGVD 1929 (established within the Study Area by ASEC Corporation (2005). Positioning data was collected in Geodetic Latitudes and Longitudes (WGS 1984) and reduced to the Eastern Maine State Plane System (1983) in feet.

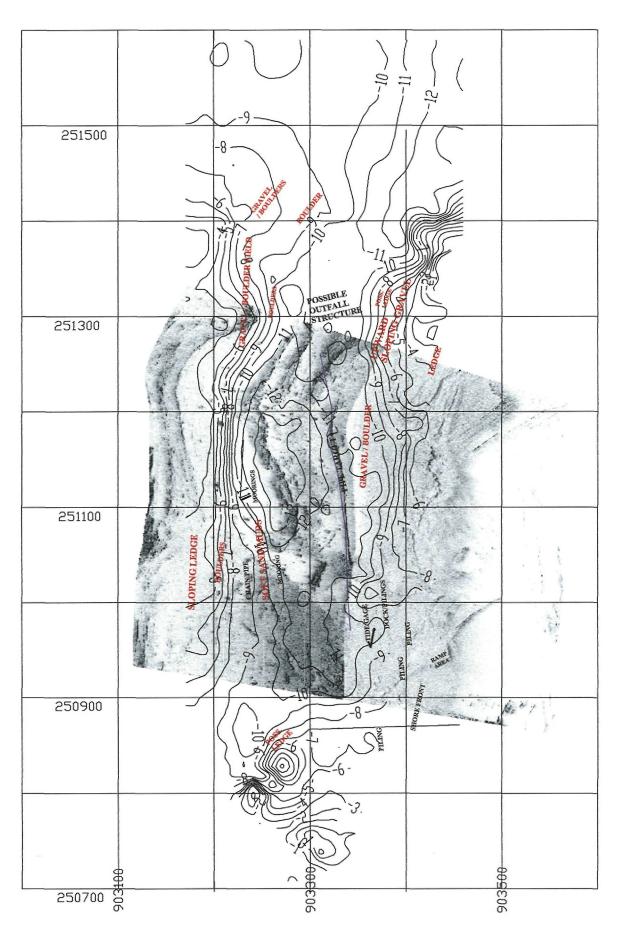

The survey was completed across Goose Pond and Goose Cove. Based upon bottom depth variability, transect lines were varied during the survey to provide overlapping coverage and to provide sufficient elevation data to generate a pond/cove bottom elevation contour map. The track lines of the bathymetric surveys are included in Appendix B.

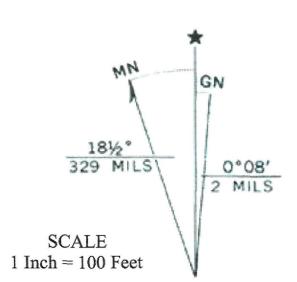
HYDROTERRA reduced all sounding data and prepared a hydrographic sounding contour map showing the sea floor elevations for both Goose Pond and Goose Cove. These maps are in AutoCAD DWG format and contained on the CD included in Appendix A. The contours for Goose Cove were drawn at 1 foot intervals. Due to the extreme changes in elevation of the former pond mining excavation area, the contour intervals were varied in accordance to the following sequence to allow for better presentation of the data.

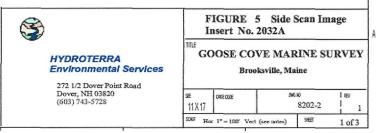
Elevations -300' to -50' contours every 10 feet Elevations -50' to - 20' contours every 2 feet Elevations -20' to 0 contours every 1 foot.

TABLE 2	DATA IMAGE PRESENTATION SUMMARY						
Figure	Location	AutoCAD File Name	Bottom Elevation	Side Scan Profiles	Sub-Bottom Profiles	Related Data Files (included on CD)	
4	Goose Cove	Goose-Cove- Fig4.dwg Goose-Cove-Fig4.dxf	Elevation Contours	2040a	0153, 0602, 0120, 0904 and 0132	Sounding and Tide Data - bathycove- xyz, cove-tide-data, Side Scan Images - 2032A.tiff, 2034B.tiff, and 2040A.tiff Sub-bottom Images - 120 a-a.bmp, 153 b-b.bmp, 132 c-c.bmp, and 904 d-d.bmp	
5	Goose Cove	Goose-Cove- Fig5.dwg	>>	2032a	none	Same	
6	Goose Cove	Goose-Cove- Fig6.dwg	"	2034b	none	Same	
7	Goose Pond	Goose-Pond- Fig7.dwg Goose-Pond-Fig7.dxf	,,	1726b, 1807c, and 1720c	0147, 0619, 0101, 0252, 0854, and 0623	Sounding and Tide Data - pondbathy1-xyz ,Pond-tide-data, Side Scan Images - 1720.tiff, 1726A.tiff, 1726B.tiff, 1807c.tiff, and 1815A.tiff Sub-bottom Images - 147a-a.bmp, 101b-b.bmp, 252c-c.bmp, 854d-d.bmp, 619e-e.bmp and 623f-f.bmp	
8	Goose Pond	Goose-Pond- Fig8.dwg	>>	1726AA	none	Same	
9	Goose Pond	Goose-Pond- Fig9.dwg	27	1807a, 1738, and 1740	none	Same	

2-6

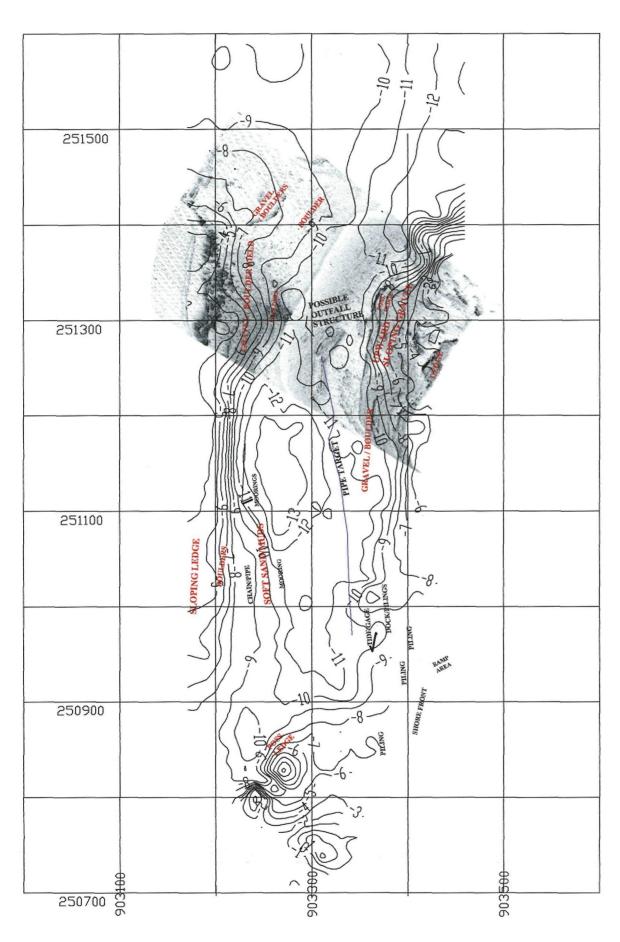

To the best of my knowledge, information, and belief, all information on this plan is true and accurately shown.

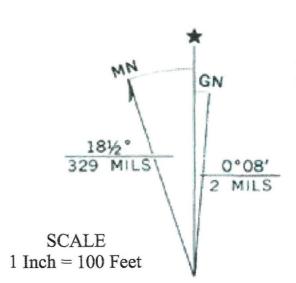

NOTES


Bottom Elevation Contours based on HYDROTERRA's December 2004 soundings. Contour Interval at 1-foot

Horizontal Datum = 1983 Eastern Maine State Plane (northings and eastings in feet).

Vertical Datum = 1929 NGVD established onsite by ASEC Corp. (2005) at Goose Cove Tide Station Station Location 250,981.152', 903,367.742' - 11.62' elev.


To the best of my knowledge, information, and belief, all information on this plan is true and accurately shown.


NOTES

Bottom Elevation Contours based on HYDROTERRA's December 2004 soundings. Contour Interval at 1-foot

Horizontal Datum = 1983 Eastern Maine State Plane (northings and eastings in feet).

Vertical Datum = 1929 NGVD established onsite by ASEC Corp. (2005) at Goose Cove Tide Station Station Location 250,981.152', 903,367.742' - 11.62' elev.

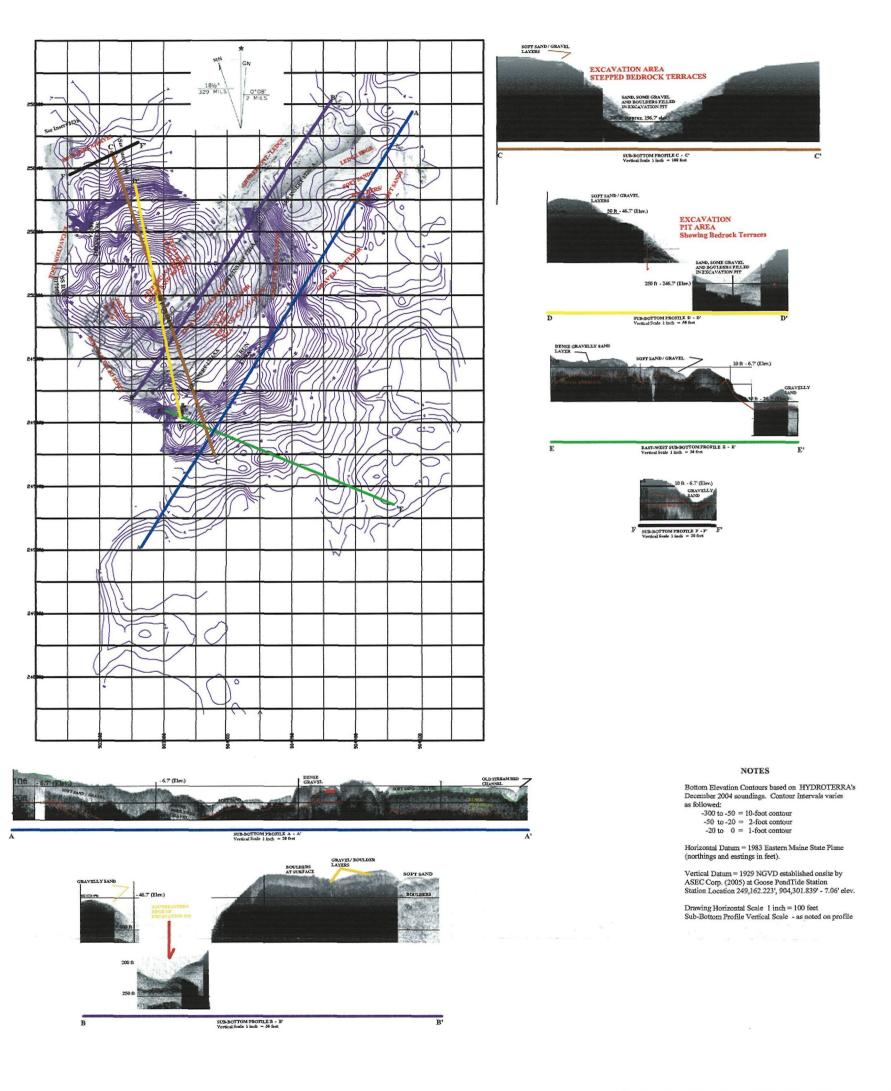

Insert No. 2034B
TILE
GOOSE COVE MARINE SURVEY
Brooksville, Maine

FIGURE 6 Side Scan Image

282 006:006 066:00 1 Rev 11/1/17 82:02-2 1 1 SOMF Hore 1*=100* Vert (see notes) 98ET 3 of 3

To the best of my knowledge, information and belief, the information on this plan is true and accurately shown.

E

HYDROTERRA
Environmental Services LLC
272 1/2 Dover Point Road
Dover, NH 03820

FIGURE 7

GOOSE POND MARINE SURVEY
Brooksville, Maine

900 8202-2
1

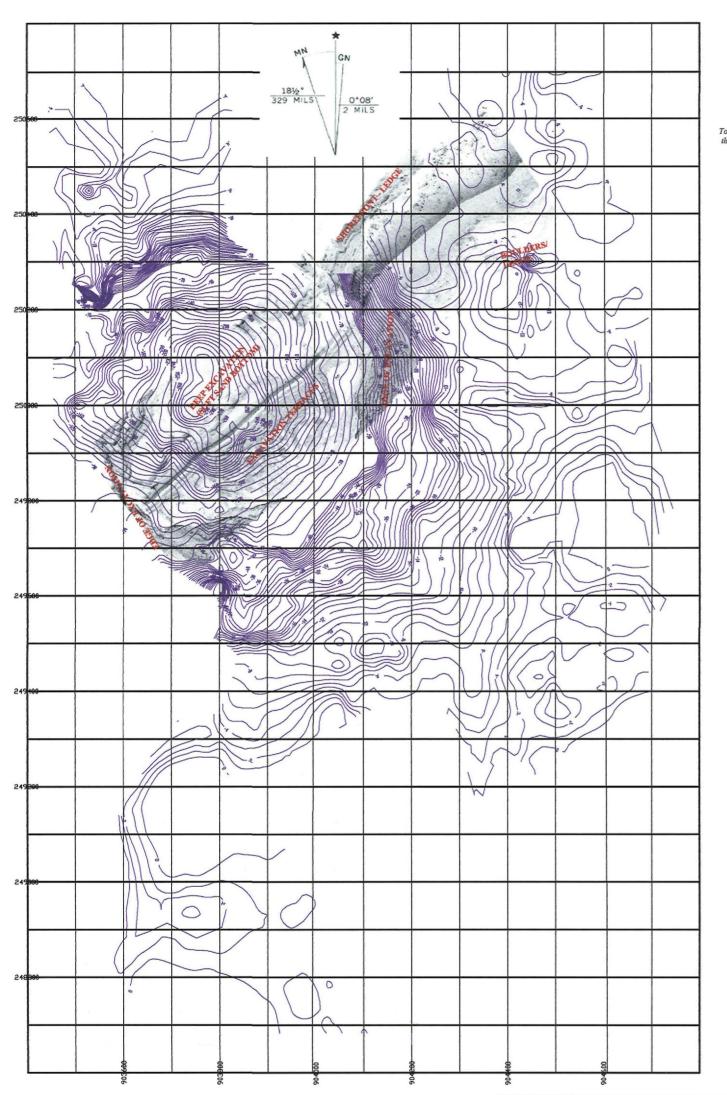

Horizantal 7" = 100" Vertical (see sorse)

FIGURE 7

But 1

GOOSE POND MARINE SURVEY
Brooksville, Maine

1

To the best of my knowledge, information and belief, the information on this plan is true and accurately shown.

NOTES

Bottom Elevation Contours based on HYDROTERRA's December 2004 soundings. Contour Intervals varies as followed:

-300 to -50 = 10-foot contour -50 to -20 = 2-foot contour

-20 to 0 = 1 - foot contour

Horizontal Datum = 1983 Eastern Maine State Plane (northings and eastings in feet).

Vertical Datum = 1929 NGVD established onsite by ASEC Corp. (2005) at Goose PondTide Station Station Location 249,162.223', 904,301.839' - 7.06' elev.

Drawing Horizontal Scale 1 inch = 100 feet Sub-Bottom Profile Vertical Scale - as noted on profile

HYDROTERRA Environmental Services LLC

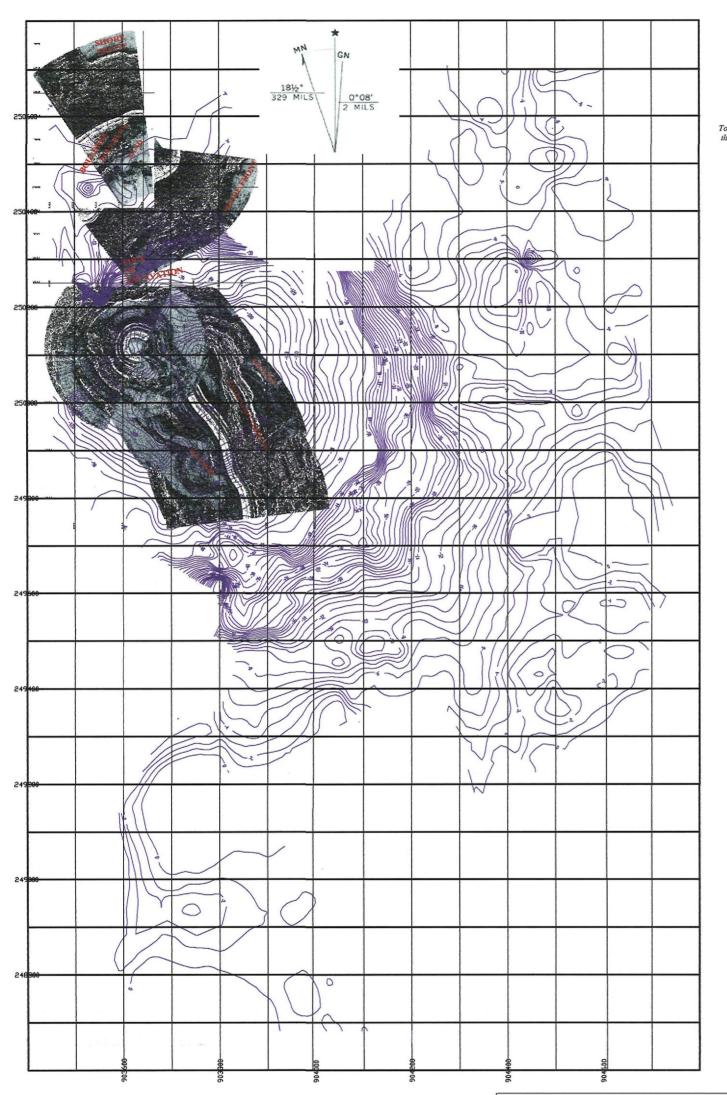

272 1/2 Dover Point Road Dover, NH 03820

FIGURE 8 Scan Side Image Insert 1726 AA

GOOSE POND MARINE SURVEY

Brooksville, Maine

SZE D	DWGNO 8202-2	No. 2 3/12/05
SCALE Horizontal 1	"-100" Vertical (see notes)	SHEET 2 of 3

To the best of my knowledge, information and belief, the information on this plan is true and accurately shown.

NOTES

Bottom Elevation Contours based on HYDROTERRA's December 2004 soundings. Contour Intervals varies as followed:

-300 to -50 = 10-foot contour -50 to -20 = 2-foot contour -20 to 0 = 1-foot contour

Horizontal Datum = 1983 Eastern Maine State Plane (northings and eastings in feet).

Vertical Datum = 1929 NGVD established onsite by ASEC Corp. (2005) at Goose PondTide Station Station Location 249,162.223', 904,301.839' - 7.06' elev.

Drawing Horizontal Scale 1 inch = 100 feet Sub-Bottom Profile Vertical Scale - as noted on profile

HYDROTERRA Environmental Services LLC

272 1/2 Dover Point Road Dover, NH 03820 FIGURE 9
Scan Side Images
Inserts 1807a, 1738, and 1740
GOOSE POND MARINE SURVEY
Brooksville, Maine

3.0 SUMMARY OF FINDING

The following section provides a summary of the key bottom and subbottom features identifed in both Goose Cove and Goose Pond.

3.1 Goose Cove

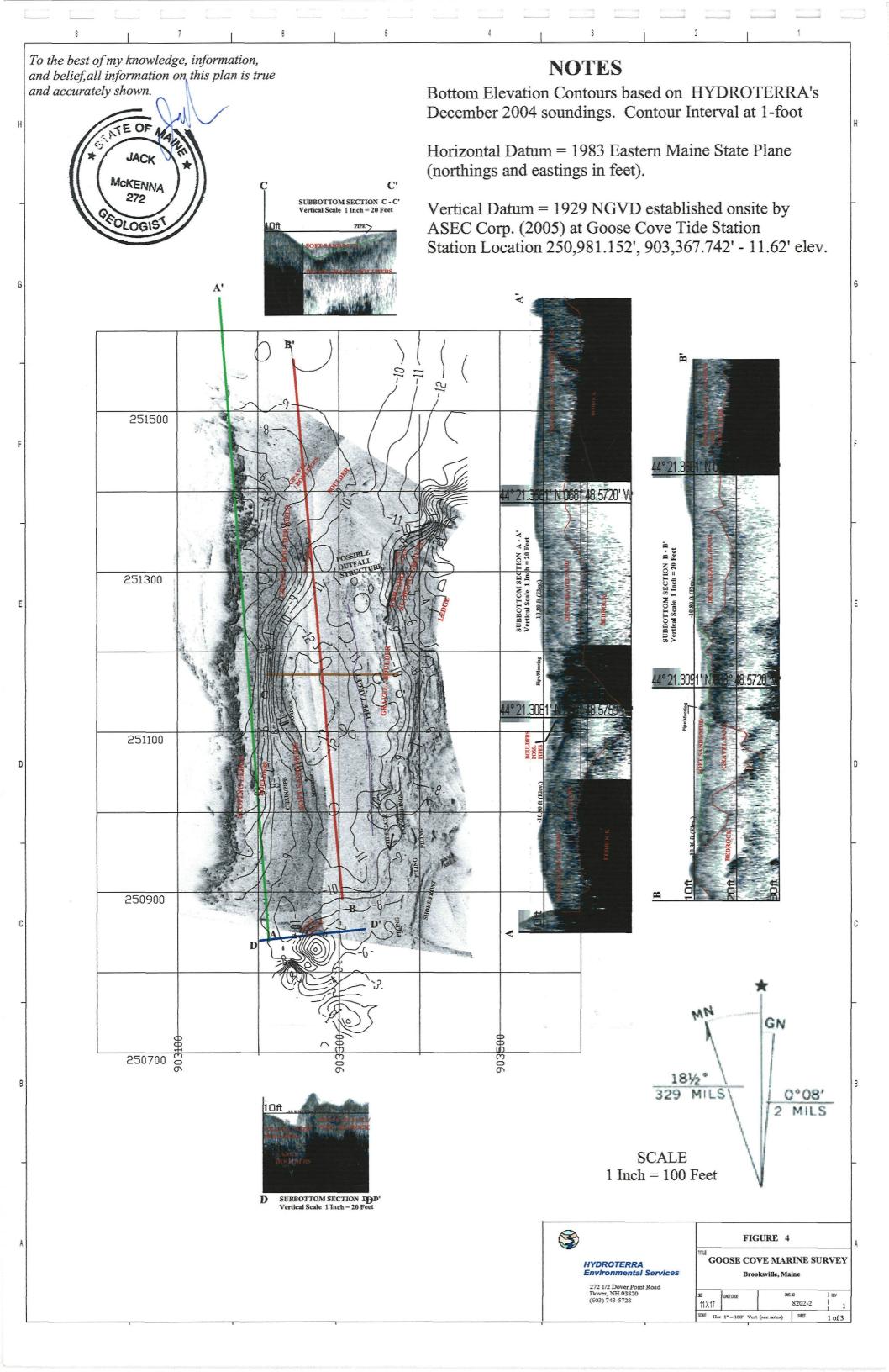
Sounding data (see Figure 4) suggests that the deepest bottom elevations encountered in the cove (13 feet) were located along the central mid-section of the cove (location 251,100' and 903,300'). With the exception of the area adjacent to the former dam and along the shorelines, the bottom topography in the cove was generally flat. Bedrock outcrops along the shoreline and adjacent to the former dam area created sharp topographic relief in contrast to the center portions of the cove. The side scan sonar transects and sub-bottom profiles indicated that the majority of the bottom of the cove is covered with a gravelly sand. A soft sand zone was identified within the deepest portion of the cove (location 251,100' and 903,300'). The sub-bottom profiles suggest that the thickness of the soft sand zone was generally less than 3 feet. The denser gravelly sand was estimated at an approximate maximum thickness of 15 feet and located at the deepest bottom channel area. This gravelly sand deposit contained many large boulders with maximum size estimates between 2 and 3 feet diameters. Bedrock elevations varied greatly across the cove (from bedrock outcrop at the water surface adjacent to the shore edges to the deepest elevation to the top of bedrock estimated at -30 feet NGVD).

Several manmade features were identified on the cove bottom, as marked on the Figures 4, 5, and 6. These features included moorings, pilings, chains and pipes. A series of side scan sonar targets which are believed to be associated with a pipe and possible outfall location from the former mining operations were identified trending north-south along an easterly track of approximately 903,400'. Minor mounding was noted at the possible outfall location, however no significant soft sediment mound was observed.

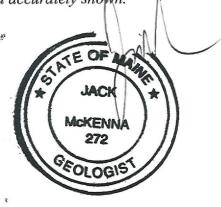
3.2 Goose Pond

With the exception of the former mine excavation hole, sounding data (Figure 7) suggests the bottom elevations of the pond ranged from 0 to -20 feet. Shallowest sections were encountered along the southern end of the pond with downward sloping topography to the northwest. Variation on bottom topography appears to be controlled by underling bedrock surface. The bathymetric, side scan and sub-bottom data indicates that the excavation hole is well defined and forms a concentric shape. The vertical slopes of the excavation were stepped into terraces. Four distinct terraces were identified from the survey data. Several additional smaller steps were also noted along partial sections of the excavation. The deepest portion of the elevation had an approximate elevation of -300 feet. The sub-bottom and side scan data suggest that a soft sand has been deposited on the terraces and bottom of the excavation. The thickness of this deposit appears to range from 1 foot (over the small terrace)

to over 25 feet (at the bottom of the excavation). The side scan sonar imagery also indicated several boulders within the excavation. At an approximable location of 250,001' / 903,901' survey data identified possible man-made debris such as a pipe or metal objects.


For the remaining portions of the pond, the bottom is covered with up to 15 feet of gravelly sand with smaller pockets of layered soft sand. A former stream bed channel was located at location 250,494' / 904,530'. Several large boulders and/or bedrock outcrops were seen thoughout the pond area. No significant man-made objects were noted in pond.

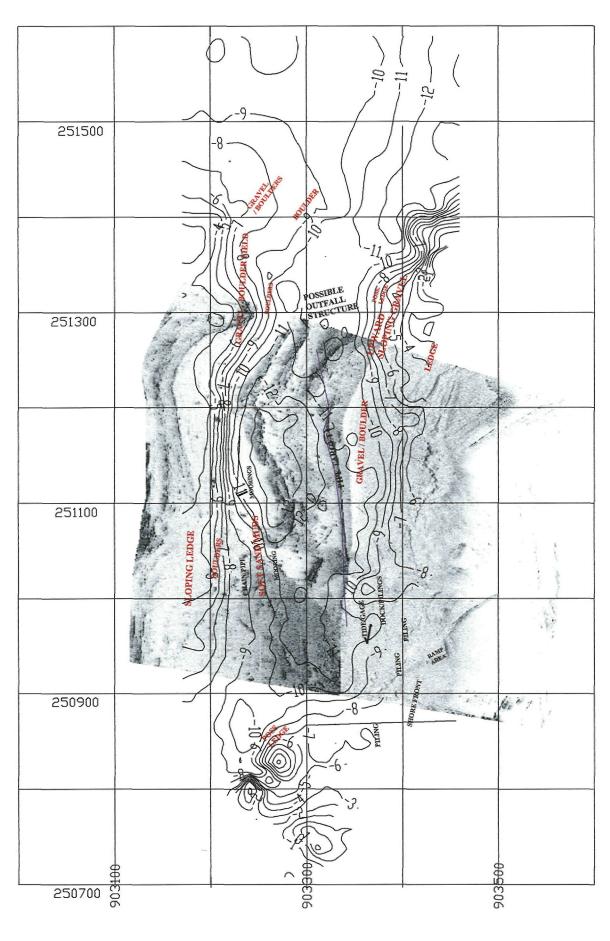
APPENDIX A

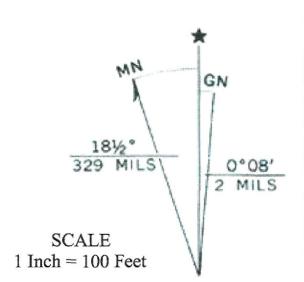

ELECTRONIC DATA FILES

APPENDIX B

STUDY AREA DRAWING

To the best of my knowledge, information, and belief, all information on this plan is true and accurately shown.

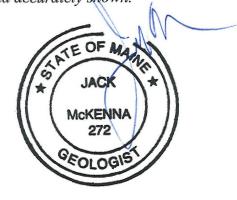



NOTES

Bottom Elevation Contours based on HYDROTERRA's December 2004 soundings. Contour Interval at 1-foot

Horizontal Datum = 1983 Eastern Maine State Plane (northings and eastings in feet).

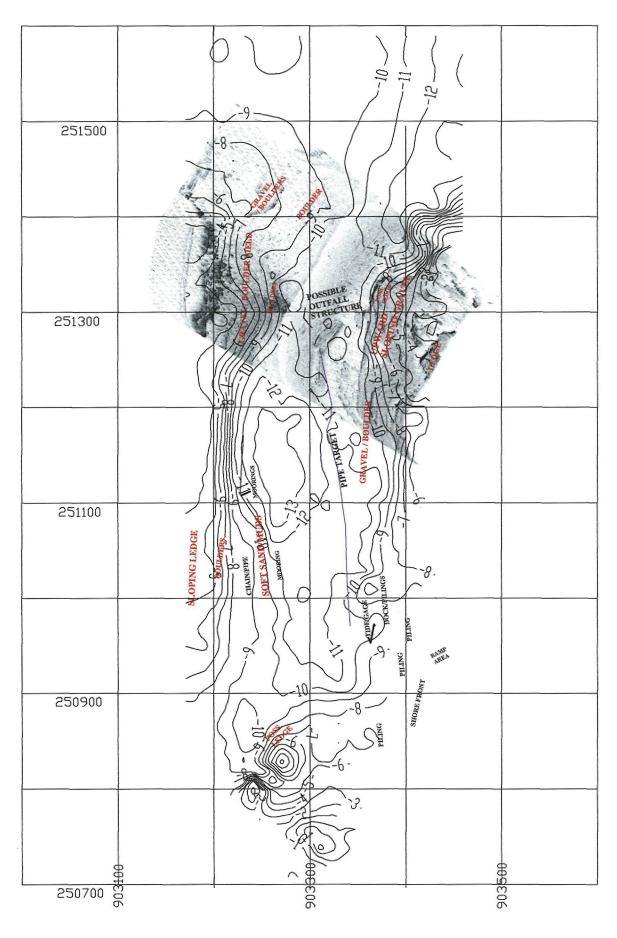
Vertical Datum = 1929 NGVD established onsite by ASEC Corp. (2005) at Goose Cove Tide Station Station Location 250,981.152', 903,367.742' - 11.62' elev.



272 1/2 Dover Point Road Dover, NH 03820 (603) 743-5728

	IGURE nsert No.		Scan Im	age
G	DOSE CO	VE MAI		JRVEY
sse 11 X 17	0/46E 000E	Di	610 8202-2	I sev
SCALE H	r 1" - 100' Ver	t (see notes)	SHEEL	1 of 3

To the best of my knowledge, information, and belief, all information on this plan is true and accurately shown.



NOTES

Bottom Elevation Contours based on HYDROTERRA's December 2004 soundings. Contour Interval at 1-foot

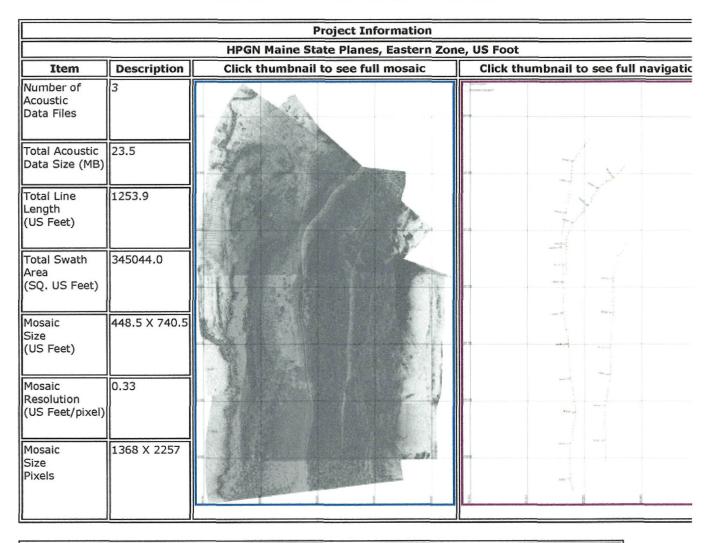
Horizontal Datum = 1983 Eastern Maine State Plane (northings and eastings in feet).

Vertical Datum = 1929 NGVD established onsite by ASEC Corp. (2005) at Goose Cove Tide Station Station Location 250,981.152', 903,367.742' - 11.62' elev.

GOOSE COVE MARINE SURVEY Brooksville, Maine 272 1/2 Dover Point Road Dover, NH 03820 (603) 743-5728

	DREAME	DING NO	1 Rev
1X17		8202-2	1
HE H	r I" = 100' Vert (see notes)	SHEET	3 of 3

FIGURE 6 Side Scan Image


Insert No. 2034B

SURVEY TRANSECT INFORMATION

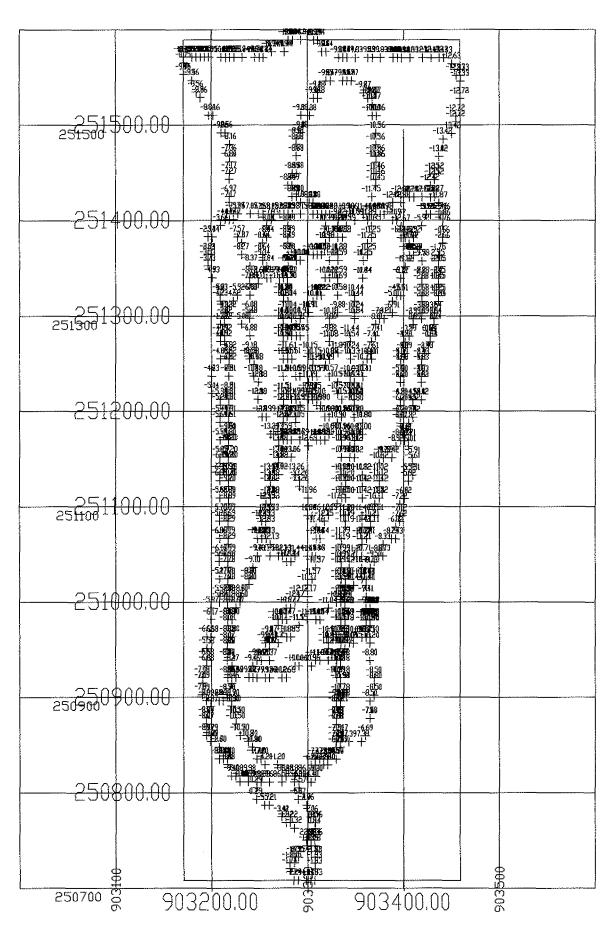
Sonar Processing by SonarWeb V3.16ZL PRO Chesapeake Technology, Inc To replace this message choose a custom logo under the 'HTML Title Block' Option

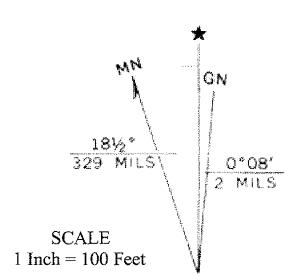
Hydroterra Environmental Service Jack McKenna

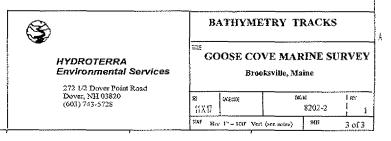
GOOSE COVE SIDE SCAN RUNS

	Click on Sonar File for full Details										
Data File	File Size	Start Time	End Time	Line Length	Line Area						
D:\Raw SSS Data\337-2032a.XTF	6299 KB	12/02/2004 20:32:25	12/02/2004 20:33:56	387.1	99061.8						
D:\Raw SSS Data\337-2040a.XTF	10820 KB	12/02/2004 20:42:55	12/02/2004 20:45:37	633.1	186268.8						
D:\Raw SSS Data\337-2034b.XTF	6429 KB	12/02/2004 20:38:08	12/02/2004 20:39:41	233.7	59713.4						

Sonar Processing by SonarWeb V3.16ZL PRO Chesapeake Technology Inc.


To the best of my knowledge, information, and belief, all information on this plan is true and accurately shown.


NOTES

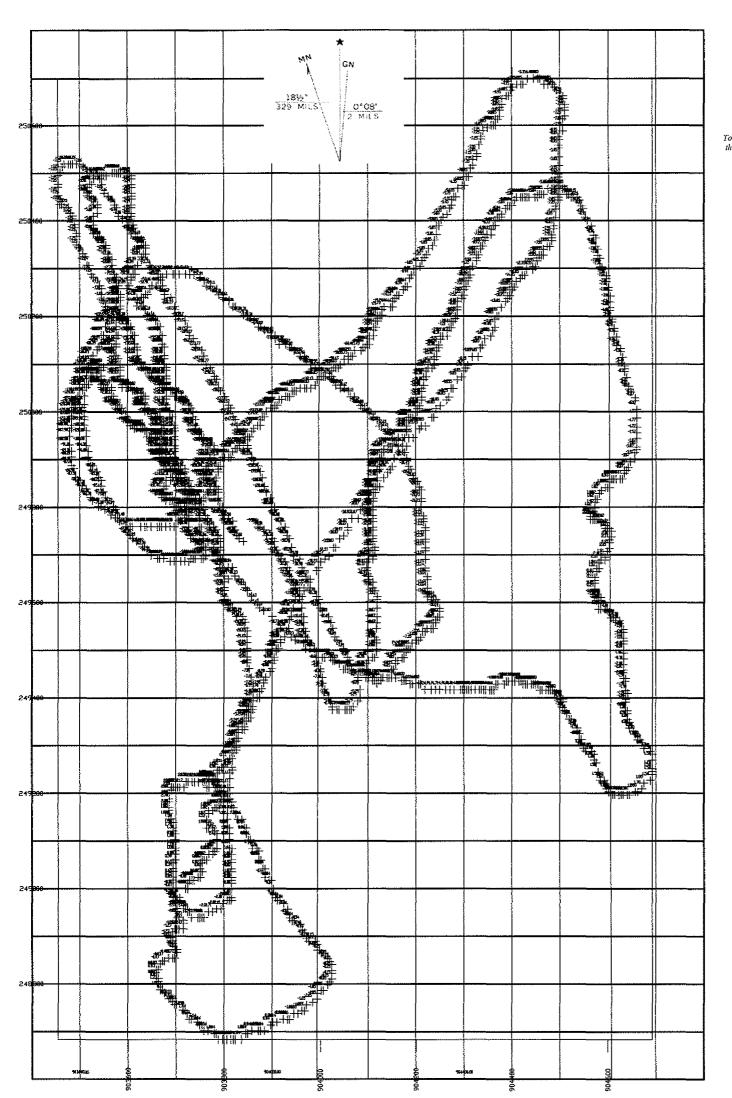

Bottom Elevation Contours based on HYDROTERRA's December 2004 soundings. Contour Interval at 1-foot

Horizontal Datum = 1983 Eastern Maine State Plane (northings and eastings in feet).

Vertical Datum = 1929 NGVD established onsite by ASEC Corp. (2005) at Goose Cove Tide Station Station Location 250,981.152', 903,367.742' - 11.62' elev.

Sonar Processing by SonarWeb V3.16ZL PRO Chesapeake Technology, Inc To replace this message choose a custom logo under the 'HTML Title Block' Option

Hydroterra Environmental Service Jack McKenna


GOOSE POND SIDE SCAN RUNS

		Project Information	
		HPGN Maine State Planes, Eastern Zone	, US Foot
Item	Description	Click thumbnail to see full mosaic	Click thumbnail to see full naviga
Number of Acoustic Data Files	7		
Total Acoustic Data Size (MB)	96.9	A STATE OF THE STA	- Eller
Total Line Length (US Feet)	4301.2		
Total Swath Area (SQ. US Feet)	1314741.3		
Mosaic Size (US Feet)	1358.1 X 1261.5		E W. J.
Mosaic Resolution (US Feet/pixel)	0.33		
Mosaic Size Pixels	4140 X 3845		

	Click on	Sonar File for full De	etails		
Data File	File Size	Start Time	End Time	Line Length	Line Area
D:\Raw SSS Data\337-1726a.XTF	25196 KB	12/02/2004 17:26:59	12/02/2004 17:33:23	1089.0	350315.4
D:\Raw SSS Data\337-1726b.XTF	16845 KB	12/02/2004 17:33:36	12/02/2004 17:37:51	749.9	237772.4
D:\Raw SSS Data\337-1720.XTF	20291 KB	12/02/2004 17:21:02	12/02/2004 17:26:11	1098.3	356266.9
D:\Raw SSS Data\337-1807c.XTF	10067 KB	12/02/2004 18:08:29	12/02/2004 18:10:57	384.8	108601.2
D:\Raw SSS Data\337-1738.XTF	4517 KB	12/02/2004 17:38:15	12/02/2004 17:39:19	158.8	35390.6
D:\Raw SSS Data\337-1740.XTF	5888 KB	12/02/2004 17:40:11	12/02/2004 17:41:36	265.8	69706.8
D:\Raw SSS Data\337-1807a.XTF	14136 KB	12/02/2004 18:07:35	12/02/2004 18:11:07	554.6	156688.0

Sonar Processing by SonarWeb V3.16ZL PRO Chesapeake Technology Inc.

Versioneris V.	Raw Navigation Snoothed Navigation			
	2000	The state of the s		
	250600	SOLVERS STATE OF THE STATE OF T	A Market Mark Mark Mark Mark Mark Mark Mark Mark	\$20.07 <u>20</u>
		537-17266 537-17266		
		07-1700 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	280000		A Company of the Comp	
		2/02/200	A Company of the Comp	
		Little Market Market Market Market Market Market Market Market Market Market Market Market Market Market Market		

To the best of my knowledge, information and belief, the information on this plan is true and accurately shown.

NOTES

Bottom Elevation Contours based on HYDROTE December 2004 soundings. Contour Intervals varias followed:

-300 to -50 = 10-foot contour -50 to -20 = 2-foot contour -20 to 0 = 1-foot contour

Horizontal Datum = 1983 Eastern Maine State Pla (northings and eastings in feet).

Vertical Datum = 1929 NGVD established onsite ASEC Corp. (2005) at Goose PondTide Station Station Location 249,162.223', 904,301.839' - 7.06

Drawing Horizontal Scale 1 inch = 100 feet Sub-Bottom Profile Vertical Scale - as noted on p

Appendix C Surface Soil Sample Laboratory Results, Metals

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	99-BKSS-01 10/06/1999 Primary	99-BKSS-02 10/06/1999 Primary	99-BKSS-03 10/06/1999 Primary	99-SS-04 10/06/1999 Primary	99-SS-05 10/06/1999 Primary	99-SS-07 10/05/1999 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)						
Antimony	(mg/kg)						
Arsenic	(mg/kg)						
Barium	(mg/kg)						
Beryllium	(mg/kg)						
Cadmium	(mg/kg)	0.8U	U8.0	0.8U	0.8U	27	51
Calcium	(mg/kg)						•
Chromium	(mg/kg)						
Cobalt	(mg/kg)						
Copper	(mg/kg)	5 6 J	51J	49J	1400J	1800J	2600J
Iron	(mg/kg)						
Lead	(mg/kg)	110	110	110	210	640	1100
Magnesium	(mg/kg)						
Manganese	(mg/kg)						
Mercury	(mg/kg)	0.1J	R	R	0.5J	0.7J	0.4J
Nickel	(mg/kg)						
Potassium	(mg/kg)						
Selenium	(mg/kg)	4U	4	4	11U	4U	4.8
Silver	(mg/kg)	1.1	1.1	0.8U	2.9	3.1	5.3

Page: 2 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	99-BKSS-01 10/06/1999 Primary	99-BKSS-02 10/06/1999 Primary	99-BKSS-03 10/06/1999 Primary	99-SS-04 10/06/1999 Primary	99-SS-05 10/06/1999 Primary	99-SS-07 10/05/1999 Primary
Sodium	(mg/kg)		_	•			
Thallium	(mg/kg)						
Vanadium	(mg/kg)						
Zinc	(mg/kg)	290	270	260	310	8400	9600
•							
•							
				•			
·							
		•					
							
					-		

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-SS-08 10/05/1999 Primary	99-SS-09 10/05/1999 Primary	99-SS-43 10/05/1999 Primary	99-SS-44 10/06/1999 Primary	99-SS-45 10/06/1999 Primary	99-SS-46 10/05/1999 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)						
Antimony	(mg/kg)						
Arsenic	(mg/kg)						
Barium	(mg/kg)						
Beryllium	(mg/kg)						
Cadmium	(mg/kg)	38	44	25	17	U8.0	17
Calcium	(mg/kg)						
Chromium	(mg/kg)		,				
Cobalt	(mg/kg)						
Соррег	(mg/kg)	2300J	2400J	1300J	480J	80J	24000J
Iron	(mg/kg)						
Lead	(mg/kg)	840	880	440	210	120	8500
Magnesium	(mg/kg)						
Manganese	(mg/kg)						
Mercury	(mg/kg)	0.7J	0.7J	0.4J	0.2J	0.1J	7.2J
Nickel	(mg/kg)						
Potassium	(mg/kg)					•	
Selenium	(mg/kg)	4 U	4.2	4U	4U	4U	39
Silver	(mg/kg)	39	4.2	2.3	0.9	0.8U	45

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-SS-08 10/05/1999 Primary	99-SS-09 10/05/1999 Primary	99-SS-43 10/05/1999 Primary	99-SS-44 10/06/1999 Primary	99-SS-45 10/06/1999 Primary	99-SS-46 10/05/1999 Primary
Sodium	(mg/kg)						_
Thallium	(mg/kg)			-			
Vanadium	(mg/kg)						
Zinc	(mg/kg)	9100	9700	· 6300	4200	130	47 00
			•				
				•			

Page: 5 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-TPD-11 10/05/1999 Primary	99-TPD-12 10/06/1999 Primary	99-TPD-13 10/06/1999 Primary	99-TPD-14 10/06/1999 Primary	99-TPD-15 10/06/1999 Primary	99-TPL-16 10/04/1999 Primary
Starting Depth	(feet)	0.00	0.25	0.25	0.25	0.25	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)			-			
Antimony	(mg/kg)						
Arsenic	(mg/kg)						
Barium	(mg/kg)						
Beryllium	(mg/kg)						
Cadmium	(mg/kg)	15	25	19	16	U8.0	U8.0
Calcium	(mg/kg)						
Chromium	(mg/kg)						
Cobalt	(mg/kg)						
Copper	(mg/kg)	470J	1400J	1800J	1400J	180J	670J
lron ·	(mg/kg)						
Lead	(mg/kg)	780	990	840	700	290	230
Magnesium	(mg/kg)	•					
Manganese	(mg/kg)						
Mercury	(mg/kg)	0.5J	0.5J	0.5J	0.5J	0.4J	0.7J
Nickel	(mg/kg)						
Potassium	(mg/kg)	•					
Selenium	(mg/kg)	4.9	9.9	5.2	4.9	9.8	20
Silver	(mg/kg)	4	4.4	4.3	3.7	2	3

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

•	SITE	99-TPD-11	99-TPD-12	99-TPD-13	99-TPD-14	99-TPD-15	99-TPL-16
CONSTITUENT	DATE RESULT TYPE	10/05/1999 Primary	10/06/1999 Primary	10/06/1999 Primary	10/06/1999 Primary	10/06/1999 Primary	10/04/1999 Primary
Sodium	(mg/kg)		<u>-</u>				
Thallium	(mg/kg)						
Vanadium	(mg/kg)						
Zinc	(mg/kg)	4200	5800	4400	3800	50	90
			0				
				_ ·	<u> </u>		

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-TPL-17 10/04/1999 Primary	99-TPL-18 10/04/1999 Primary	99-WRP-19 10/04/1999 Primary	99-WRP-20 10/04/1999 Primary	99-WRP-21 10/04/1999 Primary	99-WRP-22 10/04/1999 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)						
Antimony	(mg/kg)						
Arsenic	(mg/kg)						
Barium	(mg/kg)						
Beryllium	(mg/kg)						
Cadmium	(mg/kg)	0.8U	0.8U	22	4.5	8.7	13
Calcium	(mg/kg)			•			
Chromium	(mg/kg)						
Cobalt	(mg/kg)						
Copper	(mg/kg)	520J	630J	1600J	240J	1600J	2100J
Iron	(mg/kg)						
Lead	(mg/kg)	410	150	430	99	780	3000
Magnesium	(mg/kg)						
Manganese	(mg/kg)						
Mercury	(mg/kg)	1 J	0.3J	. 0. 3 J	0.1J	1J	0.5J
Nickel	(mg/kg)						
Potassium	(mg/kg)						
Selenium	(mg/kg)	4.9	6.6	5.9	4U	7	4U
Silver	(mg/kg)	4	2.1U	2.7	0.8U	4.1	2.3

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	99-TPL-17 10/04/1999 Primary	99-TPL-18 . 10/04/1999 Primary	99-WRP-19 10/04/1999 Primary	99-WRP-20 10/04/1999 Primary	99-WRP-21 10/04/1999 Primary	99-WRP-22 10/04/1999 Primary
Sodium	(mg/kg)						_
Thallium	(mg/kg)						
Vanadium	(mg/kg)						
Zinc	(mg/kg)	390	220	6500	3100	2400	7200

Page: 9 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-WRP2-06 10/04/1999 Primary	99-WRP2-10 10/04/1999 Primary	99-WRP2-47 10/04/1999 Primary	99-WRP 2-48 10/04/1999 Primary	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)						38000
Antimony	(mg/kg)						0.44J
Arsenic	(mg/kg)					100	120J
Barium	(mg/kg)					3	4.2EB
Beryllium	(mg/kg)						0.17J
Cadmium	(mg/kg)	0.8U	32	12	0.8U	150	0.3J
Calcium	(mg/kg)						330J
Chromium	(mg/kg)					26	5.4J
Cobalt	(mg/kg)						0.31J
Copper	(mg/kg)	4000J	1100J	4 000J	540J	110000	510J
tron	(mg/kg)						51000
Lead	(mg/kg)	1600	790	2100	2 20	9100	480J
Magnesium	(mg/kg)						76000
Manganese	(mg/kg)					e .	1100J
Mercury	(mg/kg)	4.4J	0.9J	1.3J	R		0.5
Nickel	(mg/kg)					30	2JEB
Potassium	(mg/kg)						1800
Selenium	(mg/kg)	46	4 U	11	9.5	77	12 J
Silver	(mg/kg)	19	2.7	8.3	1.9	70	3.3 J

Page: 10 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-WRP2-06 10/04/1999 Primary	99-WRP2-10 10/04/1999 Primary	99-WRP2-47 10/04/1999 Primary	99-WRP2-48 10/04/1999 Primary	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary
Sodium	(mg/kg)	_				_	18JEB
Thallium	(mg/kg)						2.8J
Vanadium	(mg/kg)						13J
Zinc	(mg/kg)	510	7700	5800	150	18000	150J

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: So

CONSTITUENT	SITE DATE RESULT TYPE	SS-401 12/02/2004 Duplicate 1	SS-402 12/02/2004 Primary	SS-403 11/30/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary	SS-406 11/30/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)	46000	25000	19000	37000	41000	57000
Antimony	(mg/kg)	0.5J	0.4 5J	0.44J	0.47J	1.7J	0.3J
Arsenic	(mg/kg)	120J	65J	65J	87J	130J	23J
Barium	(mg/kg)	4.7EB	3.6EB	12EB	4.2EB	8.8EB	9.6EB
Beryllium	(mg/kg)	0.19J	0.35J	0.28J	0.19J	0.18J	0.17J
Cadmium	(mg/kg)	0.27J	25J	22J	0.15J	0.79J	0.78J
Calcium	(mg/kg)	550J	62000J	88000J	330J	280J	120J
Chromium	(mg/kg)	7, 7 J	20J	18JEB	13J	6.2J	4.6JE8
Cobalt	(mg/kg)	0.35J	4.7J	4.3J	0.51J	0.27J -	0.049J
Copper	(mg/kg)	510 J	1200J	2500J	410J	3600J	340J
Iron	(mg/kg)	52000	34000	30000	54000	41000	40000
Lead	(mg/kg)	470J	620J	990J	350J	700J	240J
Magnesium	(mg/kg)	92000	50000	39000J	74000J	78000J	120000J
Manganese	(mg/kg)	1200J	1600J	1800J	1000J	1100J	1300J
Mercury	(mg/kg)	0.46	0.42	0.58J	0.38	1.5	0.36J
Nickel	(mg/kg)	2.4JEB	17JEB	15JEB	3.7JEB	1.8JEB	1.3JEB
Potassium	(mg/kg)	2000	1500	1800	2200	2800	4200
Selenium	(mg/kg)	13J	5.5J	5.8J	9.1J	5.9J	6.3J
Silver	(mg/kg)	2.9J	2.4J	3.8J	2.4J	2.9J	1.6J

Page: 12 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

Sail

CONSTITUENT	SITE DATE RESULT TYPE	SS-401 12/02/2004 Duplicate 1	SS-402 12/02/2004 Primary	SS-403 11/30/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary	SS-406 11/30/2004 Primary
Sodium	(mg/kg)	30UJ	14UJ	18J	20UJ	32UJ	38UJ
Thallium	(mg/kg)	2.8J	1.5 J	1.4J	2J	4. 4 J	1.3J
Vanadium	(mg/kg)	15J	16J	13J	17J	10J	1 6J
Zinc	(mg/kg)	160J	5900J	6600J	120J	420J	400J

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: So

	SITE	SS-407	SS-408	SS-409	SS-410	SS-411	SS-412
CONSTITUENT	DATE	12/02/2004	11/30/2004	11/30/2004	12/02/2004	12/02/2004	12/02/2004
	RESULT TYPE	Primary	Primary	Primary	Primary	Primary	Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)	56000	45000	60000	17000	16000	29000
Antimony	(mg/kg)	0.11J	2.6J	0.31J	0.77J	0.85J	0.74J
Arsenic	(mg/kg)	22J	51J	34 .j	26J	31J	220J
Barium	(mg/kg)	16EB	9.5EB	5.4EB	25EB	30EB	26EB
Beryllium	(mg/kg)	0.24J	0.14J	0.35J	0.34J	0.46J	0.49J
Cadmium	(mg/kg)	0.55J	0.37J	0.81J	27J	41J	170J
Calcium	(mg/kg)	420J	91J	280J	11000J	7800J	2800J
Chromium	(mg/kg)	13J	4.1JEB	3.1JEB	33J	30J	27J
Cobalt	(mg/kg)	0. 77 J	0.31J	0.0012UJ	14J	13J	14 J
Copper	(mg/kg)	2400J	5200J	8200J	2300J	5700J	8700J
Iron	(mg/kg)	47000	74000	55000	24000	34000	84000
Lead	(mg/kg)	140J	820J	380J	510J	2300J	1800J
Magnesium	(mg/kg)	110000J	94000J	120000J	22000J	18000	49000
Manganese	(mg/kg)	1400J	9 7 0J	1300J	1300J	740J	1800J
Mercury .	(mg/kg)	0.41	0.35J	0.23J	0.33	1.1	1.2
Nickel	(mg/kg)	5.3JEB	1.7JEB	0.62JEB	30JEB	30JEB	23JEB
Potassium	(mg/kg)	4100J	4000	1900	970	1400	2300
Selenium	(mg/kg)	5.1J	15J	16J	2 J .	4.3J	19J
Silver	(mg/kg)	1.2J	5.2J	3.3J	2 J	3.5J	5.5J

Page: 14 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS.

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-408 11/30/2004 Primary	SS-409 11/30/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary	\$\$-412 12/02/2004 Primary
Sodium	(mg/kg)	32UJ	120J	26UJ	60JEB	56JEB	63JEB
Thallium	(mg/kg)	1.3J	2J	0.86J	0.49J	0.59J	6.7J
Vanadium	(mg/kg)	17J	14 J	14J	23J	24J	21J
Zinc	(mg/kg)	330J	250J	290J	5800J	16000J	63000J

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	SS-413 12/02/2004 Primary	SS-414 11/30/2004 Primary	SS-415 11/30/2004 Primary	SS-416 12/02/2004 Primary	SS-417 11/30/2004 Primary	SS-418 11/30/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)	22000	46000	40000	21000	13000	46000
Antimony	(mg/kg)	0.96J	Ŕ	4.1J	0.61J	0.84J	0.35J
Arsenic	(mg/kg)	34J	50 J	46J	57J	23J	57J
Barium	(mg/kg)	26EB	6.5EB	8.2EB	13EB	9.4EB	16EB
Beryllium	(mg/kg)	0.53J	0.12J	0.3J	0.17J	0.31J	0.27J
Cadmium	(mg/kg)	29J	0.37J	24J	2.7J	16J	0.45J
Calcium	(mg/kg)	3600J	30J	1500J	440J	5900J	210J
Chromium	(mg/kg)	27J	1.5JEB	11JEB	27J	12JEB	11JEB
Cobalt	(mg/kg)	11J	0.0012UJ	1.7J	1.7J	4.8J	1.9J
Copper	(mg/kg)	3500J	14000J	6600J	1200J	1600J	2000J
Iron	(mg/kg)	29000	83000	42000	36000	17000	57000
Lead	(mg/kg)	700J	350J	1600J	1000J	520J	260J
Magnesium	(mg/kg)	26000	97000J	77000J	36000	18000J	82000J
Manganese	(mg/kg)	870J	890J	960J	530J	480J	1100J
Mercury	(mg/kg)	0.58	0.14J	1.5J	1.7	0.41J	0.14J
Nickel	(mg/kg)	28JEB	0.2JEB	6.8JEB	13JEB	12JEB	7.3JEB
Potassium	(mg/kg)	1800	2700	2400J	1300	1000J	2100J
Selenium	(mg/kg)	3.2J	24J	10J	7.4J	1 .9J	7.6J
Silver	(mg/kg)	4.8J	12J	7 J	3.9J	2J	1.6J

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

				-		·	
CONSTITUENT	SITE DATE RESULT TYPE	SS-413 12/02/2004 Primary	SS-414 11/30/2004 Primary	SS-415 11/30/2004 Primary	SS-416 12/02/2004 Primary	SS-417 11/30/2004 Primary	SS-418 11/30/2004 Primary
Sodium	(mg/kg)	93JEB	21J	62 J	51JEB	39UJ	100J
Thallium	(mg/kg)	0.64J	1.3J	1.3J	0.77J	0.46J	1.2J
Vanadium	(mg/kg)	22 J	16J	15J	19J	11J	19J
Zinc	(mg/kg)	10000J	110J	8800J	1200J	5700J	260J

Page: 17 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-419 11/30/2004 Primary	SS-420 11/30/2004 Primary	SS-421 11/30/2004 Primary	SS-422 11/30/2004 Primary	SS-423 11/30/2004 Primary	SS-424 11/30/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)	19000	20000	14000	15000	800	720
Antimony	(mg/kg)	0.19J	0.18J	0.29J	0.21J	0.073J	0.045J
Arsenic	(mg/kg)	10J	13J	11J	11J	0.49J	0.59J
Barium	(mg/kg)	37EB	34EB	49JEB	26JEB	13JEB	6.4JEB
Beryllium	(mg/kg)	0.37J	0.41J	0.3	0.33	0.034	0.022J
Cadmium	(mg/kg)	0.11J	0.12J	0.18J	0.12J	0.056J	0.033J
Calcium	(mg/kg)	450J	310J	260J	230J	210J	97J
Chromium	(mg/kg)	22JEB	19JEB	20JEB	23JEB	1.2JEB	0.83JEB
Cobalt	(mg/kg)	5J	5.5J	3.7J	3.9J	0.1J	0.074J
Copper	(mg/kg)	14J	10J	15J	14J	0.63J	1.1J
Iron	(mg/kg)	23000	28000	19000	25000	800	800
Lead	(mg/kg)	26J	22J	29J	17J	4J	6.2J
Magnesium	(mg/kg)	2900J	3000J	2200J	2900J	54.)	60J
Manganese	(mg/kg)	400J	410J	170	200	16	6.6J
Mercury	(mg/kg)	0.078J	0.084J	0.12J	0.052J	0.02J	0.027J
Nickel	(mg/kg)	18JEB	17JEB	16JEB	16JEB	0.66JEB	0.47JEB
Potassium	(mg/kg)	700J	510J	570J	620J	120J	120J
Selenium	(mg/kg)	1.1J	0.86J	0.97J	0.76J	0.51UJ	0.54UJ
Silver	(mg/kg)	0.22J	0.23J	0.27J	0.32J	0.038J	0.11J

Page: 18 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-419 11/30/2004 Primary	SS-420 11/30/2004 Primary	SS-421 11/30/2004 Primary	SS-422 11/30/2004 Primary	SS-423 11/30/2004 Primary	SS-424 11/30/2004 Primary
Sodium	(mg/kg)	39UJ	41UJ	62J	44J	22J	16J
Thallium	(mg/kg)	0.12J	0.11J	0.12J	0.11J	0.018J	0.02J
Vanadium	(mg/kg)	30J	28J	32J	36J	3J	2.5J
Zinc	(mg/kg)	76J	95J	72J	64J	18.8	3.6J

Page: 19 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-425 11/30/2004 Primary	SS-426 11/30/2004 Primary	SS-427 11/30/2004 Primary	SS-427 11/30/2004 Duplicate 1	SS-428 11/30/2004 Primary	SS-429 11/30/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)	4500	1900	26000	26000	24000	24000
Antimony	(mg/kg)	0.12J	0.052J	0.089J	0.087J	0.39J	0.13J
Arsenic .	(mg/kg)	3.6J	1.3J	7.9J	6.9J	1 4 J	11J
Barium	(mg/kg)	13JEB	4.5JEB	22JEB	20JEB	20JEB	17JEB
Beryllium	(mg/kg)	0.089	0.041	0.4	0.36	0.4	0.3
Cadmium	(mg/kg)	0.051J	0.025J	0.097J	0.093J	0.087J	0.082J
Calcium	(mg/kg)	140J	130J	170J	610J	240J	140J
Chromium	(mg/kg)	5.5JEB	1.6JEB	23JEB	23JEB	21JEB	22JEB
Cobalt	(mg/kg)	0.76J	0.23J	3.4J	4.9J	2.8J	2.3J
Copper	(mg/kg)	2.7J	1.2J	6.3J	6.7J	8.8J	5.7J
Iron	(mg/kg)	7900	2800	27000	30000	34000	28000
Lead	(mg/kg)	18J	9J	10J	12J	14J	13J
Magnesium	(mg/kg)	580J	200J	2800J	5200J	3200J	3100J
Manganese	(mg/kg)	38	14 _.	200	320	250	170
Mercury	(mg/kg)	0.046J	0.021J	0.075J	0.078J	0.11J	0.09J
Nickel	(mg/kg)	2.8JEB	0.74JEB	19JEB	16JEB	10JEB	8.9JEB
Potassium	(mg/kg)	220J	160J	490J	410J	390J	350J
Selenium	(mg/kg)	0.56UJ	0.46UJ	0.93J	0.51UJ	0.83J	0.67UJ
Silver	(mg/kg)	0.16J	0.072J	0.18J	0.13J	0.18J	0.17J

Page: 20 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METALS

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-425 11/30/2004 Primary	SS-426 11/30/2004 Primary	SS-427 11/30/2004 Primary	SS-427 11/30/2004 Duplicate 1	SS-428 11/30/2004 Primary	SS-429 11/30/2004 Primary
Sodium	(mg/kg)	25 J	27J	34U J	32UJ	36UJ	47UJ
Thallium	(mg/kg)	0.059J	0.035J	0. 075 J	0.066J ·	0.086J	0.076J
Vanadium	(mg/kg)	15J	8.3J	32J	48J	32 J	34 J
Zinc	(mg/kg)	17J	5.4J	18J	87J	74J	58J

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-430 11/30/2004 Primary	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 09/08/1994 Primary	
Starting Depth	(feet)	0.00	0.00	0.00	
Ending Depth	(feet)	0.50	0.50	0.50	
Aluminum	(mg/kg)	14000			
Antimony	(mg/kg)	0.17J			
Arsenic	(mg/kg)	12J	54	55	
Barium	(mg/kg)	12JEB	24	36	
Beryllium	(mg/kg)	0.16			
Cadmium	(mg/kg)	0.063J	20	32	
Calcium	(mg/kg)	110J			
Chromium	(mg/kg)	16JEB	25	16	
Cobalt	(mg/kg)	1.8J			
Copper	(mg/kg)	4.7J	67 0	1900	
ron	(mg/kg)	36000			
_ead	(mg/kg)	38J	560	510	
Magnesium	(mg/kg)	1900J			
Manganese	(mg/kg)	120			
Mercury	(mg/kg)	0.067J			
Nickel	(mg/kg)	9.7JEB	20	12	
Potassium	(mg/kg)	220J			
Selenium	(mg/kg)	0.604UJ	6	9	
Silver	(mg/kg)	0.13J	2.7	3.4	÷

Page: 22 of 22 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS METAL\$

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

	SITE	SS-430	TP_SOIL1	TP_SOIL2		
CONSTITUENT	DATE RESULT TYPE	11/30/2004 Primary	09/08/1994 Primary	09/08/1994 Prima ry		
odium	(mg/kg)	34J				
hallium	(mg/kg)	0. 061 J				
anadium	(mg/kg)	46J				
inc	(mg/kg)	39J	15000	17000	·	
		•				
			•			
			•			
			•			
						

Appendix D Surface Soil Sample Laboratory Results, VOCs

SURFACE SOIL SAMPLE RESULTS VOCS

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

Soil

SAMPLE TYPE:

SITE SM SOIL3 SS-401 SS-401 SS-402 SS-404 SS-405 CONSTITUENT DATE 09/08/1994 12/02/2004 12/02/2004 12/02/2004 12/02/2004 12/02/2004 RESULT TYPE Primary **Primary** Duplicate 1 Primary Primary Primary Starting Depth (feet) 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.50 **Ending Depth** (feet) 12U 12U 12U 11U 11U 1,1,1-trichloroethane (ug/kg) 12U 12U 12U 11U 11U 1,1,2,2-Tetrachloroethane (ug/kg) 12U 1,1,2-Trichloro-1,2,2-trifluoroethane 12U 12U 11Ų 11U (ug/kg) (ug/kg) 12U 12U 12U 11U 11U 1,1,2-Trichloroethane 1,1-Dichloroethane (ug/kg) 12U 12U 12U 11U 11U (ug/kg) 12U 12U 12U 11U 11U 1,1-Dichloroethene 12U 12U 12Ų 11U 110 1,2,4-Trichlorobenzene (ug/kg) 12U 12U 12U 11U 11U 1,2-Dibromo-3-chloropropane (ug/kg) (ug/kg) 12U. 2J 12Ų 11U 11U 1,2-Dichlorobenzene (ug/kg) 12U 12U 12U 11U 11U 1.2-Dichloroethane 12U 1,2-Dichloropropane (ug/kg) 12U 12U 11U 11U 12U 2J 12U 11U 11U 1,3-Dichlorobenzene (ug/kg) 11U 1,4-Dichlorobenzene (ug/kg) 12U 12U 12U 110 12U 12U 12U 11U 11U 2-Butanone (MEK) (ug/kg) 12U 12U 12U 11U 11Ų 2-Hexanone (ug/kg) 12U 12U 12U 11U 11U 4-Methyl-2-pentanone (ug/kg) 17 12U 12U 12U 11U Acetone (ug/kg) 11U 12U 12U 11U Benzene (ug/kg) 12U 11U 12U 12U 12Ų 11U 11U Bromodichloromethane (ug/kg)

SURFACE SOIL SAMPLE RESULTS vocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary	SS-401 12/02/2004 Dupticate 1	SS-402 12/02/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary
Bromoform	(ug/kg)		12U	12U	12Ų	11U	11U
Bromomethane	(ug/kg)		12UJ	12U	12U	11U	11U
Carbon disulfide	(ug/kg)		12U	12U	12U	11Ų	11U
Carbon tetrachloride	(ug/kg)		12U	12U	12U	11U	11U
Chlorobenzene	(ug/kg)		12U	12U	12U	11U	11U
Chlorodibromomethane	(ug/kg)		12U	12U	12U	11U	11U
Chloroethane	(ug/kg)		12U	12U	12Ų	11U	11U
Chloroform	(ug/kg)		12U	12U	12U	11U	11 U
Chloromethane	(ug/kg)		12U	12U	12U	1 1 U	11U
cis-1,2-Dichloroethene	(ug/kg)		12U	12U	12U	11U	11U
cis-1,3-Dichloropropene	(ug/kg)		12U	12U	12U	11U	11U
Cyclohexane	(ug/kg)		12U	12U	12U	11U	11U
Dichlorodifluoromethane	(ug/kg)		12U	12U	12U	11U	11U
Ethylbenzene	(ug/kg)		12U	12U	12U	11U	11U
Ethylenedibromide	(ug/kg)		12U	12U	12U	11U	11U
Fluorotrichloromethane	(ug/kg)		12U	12U	12U	11U	11U
Isopropylbenzene	(ug/kg)		12U	12U	12U	11U	11U
Methyl acetate (acetic acid, methyl este	(ug/kg)		12 U	12 U	12U	1 1 U	11U
Methyl cyclohexane	(ug/kg)		12U	12U	12U	11U	11U
Methyl tert-butyl ether	(ug/kg)		12U	12U	12U	11U	11U
Methylene chloride	(ug/kg)	56	12U	12U	12U	11U	11U

SURFACE SOIL SAMPLE RESULTS vocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary	SS-401 12/02/2004 Duplicate 1	SS-402 12/02/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary
Styrene	(ug/kg)		12U	12U	12U	11U	11U
Tetrachloroethene	(ug/kg)		12U	12U	12U	11U	1 1 U
Toluene	(ug/kg)		12U	120	12 U	11U	11U
trans-1,2-Dichloroethene	(ug/kg)		12U	12U	12U	11U	11U
Trans-1,3-Dichloropropene	(ug/kg)		12U	12U	12U	1 1 U	11U
Trichloroethene	(ug/kg)		12U	12U	12U	11U	11U
Vinyl chloride	(ug/kg)		12U	12U	12U	11U	1 1 U
Xylenes (total)	(ug/kg)		12U	12U	12U	11U	11U
1,1-Thibisethane	(mg/kg)	U			•		·
3,4-Dithiohexane	(mg/kg)	U					
Diethyl benzene (mixed isomers)	(mg/kg)	U	•				
Trimethyloxepane	(mg/kg)	U					

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary	SS-412 12/02/2004 Primary	SS-413 12/02/2004 Primary	SS-416 12/02/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
1,1,1-trichloroethane	(ug/kg)	1 1U	12U	12U	14U	13U	11U
1,1,2,2-Tetrachloroethane	(ug/kg)	1 1U	12U	12U	14U	13U	11U
1,1,2-Trichloro-1,2,2-trifluoroethane	(ug/kg)	11U	12U	12U	14U	13U	11U
1,1,2-Trichloroethane	(ug/kg)	11U	12U	12U	14U	13U	11 U
1,1-Dichloroethane	(ug/kg)	11U	12Ų	12U	14U	13U	11U
1,1-Dichloroethene	(ug/kg)	1 1U	12U	12U	14U	13U	11 U
1,2,4-Trichlorobenzene	(ug/kg)	1 1U	12U	12U	14U	13U -	11U
1,2-Dibromo-3-chloropropane	(ug/kg)	1 1U	12U	12U	14U	13U	11U
1,2-Dichlorobenzene	(ug/kg)	11U	12U	12U	14U	13U	11U
1,2-Dichloroethane	(ug/kg)	11U	12U	12U	14U	13U	11U
1,2-Dichloropropane	(ug/kg)	11U	12U	12U	14U	13U	11U
1,3-Dichlorobenzene	(ug/kg)	1 1U	12 U	12U	14U	13U	11U
1,4-Dichlorobenzene	(ug/kg)	11U	12U	12U	14U	13U	11U
2-Butanone (MEK)	(ug/kg)	1 1U	12U	12U	14U	13U	11U
2-Hexanone	(ug/kg)	11U	12 U .	12U	14U	13U	11U
4-Methyl-2-pentanone	(ug/kg)	11U	12U	12U	14U	13U	11U
Acetone	(ug/kg)	11U	12U	12U	14U	13U	11U
Benzene	(ug/kg)	1 1U	12U	12U	14U	13U	11U
Bromodichloromethane	(ug/kg)	11U	12U	12U	14U	13U	11U

PERIOD:

From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary	SS-412 12/02/2004 Primary	SS-413 12/02/2004 Primary	SS-416 12/02/2004 Primary
Вготобот	(ug/kg)	11U	12U	12U	14U	13U	110
Bromomethane	(ug/kg)	11U	12Ų	12U	14U	13U	11U
Carbon disulfide	(ug/kg)	11U	12U	12U	14U	13U	11U `
Carbon tetrachloride	(ug/kg)	11 U	12U	12U	14U	13U	11U
Chlorobenzene	(ug/kg)	11U	12U	12U	14U	13U	11 U
Chlorodibromomethane	(ug/kg)	11U	12U	12U	14U	13U	11 U
Chloroethane	(ug/kg)	11U	12Ų	12U	14U	13U	11U
Chloroform	(ug/kg)	11 U	12U	12U	14U	13U	11U
Chloromethane	(ug/kg)	1 1U -	12U	12U	14U	13U	11U
cis-1,2-Dichloroethene	(ug/kg)	11U	12U	12U	14U	13U	11U
cis-1,3-Dichloropropene	(ug/kg)	11U	12U	12U	14U	13U	11U
Cyclohexane	(ug/kg)	11U	12U	12U	14U	13U	11U
Dichlorodifluoromethane	(ug/kg)	1 1U	12U	12U	14U	13U	11U
Ethylbenzene	(ug/kg)	11U	12U	12U	14U	13U	11U
Ethylenedibromide	(ug/kg)	1 1U	12U	12U	14U	13U	11U
Fluorotrichloromethane	(ug/kg)	1 1U	12 U	12U	14U	130	11U
Isopropylbenzene	(ug/kg)	11 U	12U	12U	14U	13U	11U
Methyl acetate (acetic acid, methyl este	(ug/kg)	1 1U	12U	12U	14 U	13U	11U
Methyl cyclohexane	(ug/kg)	11 U	12U	12U	14U	13U	11 U
Methyl tert-butyl ether	(ug/kg)	11U	12U	12U	14U	13U	11 U
Methylene chloride	(ug/kg)	11U	12U	12U	14U	13U	11U

SURFACE SOIL SAMPLE RESULTS vocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary	SS-412 12/02/2004 Primary	SS-4 <u>1</u> 3 12/02/2004 Primary	SS-416 12/02/2004 Primary
Styrene	(ug/kg)	1 1 U	12U	12U	14U	13U	11U
Tetrachloroethene	(ug/kg)	1 1 U	12U	12 U	14 U	13U	11U
Toluene	(ug/kg)	11U	12U	12U	14U	13U	11U
trans-1,2-Dichloroethene	(ug/kg)	1 1 U	12U	12 U	14U	13U	11U
Trans-1,3-Dichloropropene	(ug/kg)	1 1 U	12U	120	14U	13U	11U
Trichloroethene	(ug/kg)	11U	12U	12U	14U	13U	11U
Vinyl chloride	(ug/kg)	11U	12U	12U	14U	13U	11U
Xylenes (total)	(ug/kg)	1 1 U	12U	12U	14U	13U	110
1,1-Thibisethane	(mg/kg)						
3,4-Dithiohexane	(mg/kg)						
Diethyl benzene (mixed isomers)	(mg/kg)						
Trimethyloxepane	(mg/kg)						

SURFACE SOIL SAMPLE RESULTS vocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 09/08/1994 Primary	_				
Starting Depth	(feet)	0.00	0.00		•	 ·		
Ending Depth	(feet)	0.50	0.50					
1,1,1-trichloroethane	(ug/kg)							
1,1,2,2-Tetrachloroethane	(ug/kg)							•
1,1,2-Trichloro-1,2,2-trifluoroethane	(ug/kg)							
1,1,2-Trichloroethane	(ug/kg)							
1,1-Dichloroethane	(ug/kg)							
1,1-Dichloroethene	(ug/kg)							
1.2.4-Trichlorobenzene	(ug/kg)	•						
1,2-Dibromo-3-chloropropane	(ug/kg)						*	
1,2-Dichlorobenzene	(ug/kg)							
1,2-Dichloroethane	(ug/kg)							
1,2-Dichloropropane	(ug/kg)							
1,3-Dichlorobenzene	(ug/kg)							
1,4-Dichlorobenzene	(ug/kg)							
2-Butanone (MEK)	(ug/kg)							
2-Hexanone	(ug/kg)							
4-Methyl-2-pentanone	(ug/kg)							
Acetone	(ug/kg)	U	33					
Benzene	(ug/kg)							
Bromodichloromethane	(ug/kg)							

SURFACE SOIL SAMPLE RESULTS vocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 · 09/08/1994 · Primary		
Bromoform	(ug/kg)			==	
Bromomethane	(ug/kg)				
Carbon disulfide	(ug/kg)				
Carbon tetrachloride	(ug/kg)				
Chlorobenzene	(ug/kg)				
Chlorodibromomethane	(ug/kg)				
Chloroethane	(ug/kg)				
Chloroform	(ug/kg)				
Chloromethane	(ug/kg)				
cis-1,2-Dichloroethene	(ug/kg)				
cis-1,3-Dichloropropene	(ug/kg)				
Cyclohexane	(ug/kg)				
Dichlorodifluoromethane	(ug/kg)				
Ethylbenzene	(ug/kg)		•		
Ethylenedibromide	(ug/kg)				
Fluorotrichloromethane	(ug/kg)				
Isopropylbenzene	(ug/kg)				
Methyl acetate (acetic acid, methyl este	(ug/kg)				
Methyl cyclohexane	(ug/kg)				
Methyl tert-butyl ether	(ug/kg)				
Methylene chloride	(ug/kg)	U	U		

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 09/08/1994 Primary	
Styrene	(ug/kg)			
Tetrachloroethene	(ug/kg)			
Toluene	(ug/kg)			
trans-1,2-Dichloroethene	(ug/kg)			
Trans-1,3-Dichloropropene	(ug/kg)			
Trichloroethene	(ug/kg)			
Vinyl chloride	(ug/kg)			
Xylenes (total)	(ug/kg)			
1,1-Thibisethane	(mg/kg)	U	U	
3,4-Dithiohexane	(mg/kg)	U	0.1J	
Diethyl benzene (mixed isomers)	(mg/kg)	U	1.27J	
Trimethyloxepane	(mg/kg)	U	U	

Appendix E Surface Soil Sample Laboratory Results, SVOCs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary	SS-401 12/02/2004 Duplicate 1	SS-402 12/02/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
1,1'-Biphenyl	(ug/kg)		380U	380U	410U	380U	370U
2,2'-Oxybis(1-Chloropropane)	(ug/kg)		380U	380U	410U	380U	370U
2,4,5-Trichlorophenol	(ug/kg)		970U	970U	1000U	950U	930U
2,4,6-Trichlorophenol	(ug/kg)		380U	380U	410U	3 8 0U	370U
2,4-Dichlorophenol	(ug/kg)		380U	380U	410U	380U	370U
2,4-Dimethylphenol	(ug/kg)		380U	380U	410U	380U	370U
2,4-Dinitrophenol	(ug/kg)		970U	970U	1000U	950U	930U
2,4-Dinitrotoluene	(ug/kg)		380U	380U	410U	380U	370U
2,6-Dinitrotoluene	(ug/kg)		380U	380U	410U	380U	370U
2-Chloronaphthalene	(ug/kg)		380U	380U	410U	380U	370U
2-Chlorophenol	(ug/kg)		380U	380U	410U	380U	370U
2-Methylnaphthalene	(ug/kg)		380U	380U	410U	380U	370U
2-Methylpheлol	(ug/kg)		380U	380U ⁻	410U	380U	370U
2-Nitroaniline	(ug/kg)		970U	970U	1000U	950U	930U
2-Nitrophenol	(ug/kg)		380U	380U	410U	380U	370U
3,3'-Dichlorobenzidine	(ug/kg)	•	380UJ	380UJ	410UJ	380UJ	370UJ
3-Nitroaniline	(ug/kg)		970UJ	970UJ	1000UJ	950UJ	930UJ
4,6-Dinitro-2-methylphenol	(ug/kg)	•	970U	970U	1000U	950U	930U
4-Bromophenyl phenyl ether	(ug/kg)		380U	380U	410U	U08E	370U

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary	SS-401 12/02/2004 Duplicate 1	SS-402 12/02/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary
4-Chloro-3-methylphenol	(ug/kg)		380U	380U	410U	380U	370U
4-Chloroaniline	(ug/kg)		380U	380U	410U	380U	370U
4-Chlorophenyl phenyl ether	(ug/kg)		380U	380U	410U	380U	370U
4-Methylphenol	(ug/kg)		380U	380U	410U	380U	370U
4-Nitroaniline	(ug/kg)		970U	970U	1000U	950U	930U
4-Nitrophenol	(ug/kg)		970U	970U	1000U	950U	930U
Acenaphthene	(ug/kg)		380U	380U	410U	380U ,	3700
Acenaphthylene	(ug/kg)		380U	380U	410U	380U	370U
Acetophenone	(ug/kg)		380U	380U	410U	380U	370U
Anthracene	(ug/kg)		380U	380U	410U	380U	370U
Atrazine	(ug/kg)		380U	380U	410U	380U	370U
Benzaldehyde	(ug/kg)		380U	380U	410U	380U	370U
Benzo(a)anthracene	(ug/kg)		380U	380U	410U	380U	370U
Benzo(a)pyrene	(ug/kg)		380U	380U	410U	380U	370U
Benzo(b)fluoranthene	(ug/kg)		380U .	380U	410U	380U	370U
Benzo(g,h,i)perylene	(ug/kg)		380U	380U	410U	380U	370U
Benzo(k)fluoranthene	(ug/kg)	•	380UJ	380UJ	410UJ	380UJ	370UJ
Bis(2-chloroethoxy) methane	(ug/kg)		380U	380U	410U	380U	370U
bis(2-Chloroethyl) ether	(ug/kg)		380U	380U	410U	380U	370U
bis(2-Ethylhexyl) phthalate	(ug/kg)	U	380UJ	380UJ	410UJ	48J	370UJ
Butyl benzyl phthalate	(ug/kg)	130	380U	380U	410U	380U	370U

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: So

CONSTITUENT	SITE DATE RESULT TYPE	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary	SS-401 12/02/2004 Duplicate 1	SS-402 12/02/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary
Caprolactam	(ug/kg)		380U	380U	410U	380U	370U
Carbazole	(ug/kg)	•	380U	380U	4 10U	380U	370U
Chrysene	(ug/kg)		380U	380U	410U	380U	370U
Di-n-butyl phthalate	(ug/kg)		380U	380U	410U	380U	370U
Di-n-octyl phthalate	(ug/kg)		380U	380U	410U	380U	370U
Dibenz(a,h) anthracene	(ug/kg)		_ 380U	380U	4 10U	380U	370U
Dibenzofuran	(ug/kg)		380U	380U	410U	380U	370U
Diethyl phthalate	(ug/kg)		380U	380U	410U	J088	370U
Dimethyl phthalate	(ug/kg)		380U	380U	410U	108E	370∪
Fluoranthene	(ug/kg)		380U	380U	410U	380U	370U
Fluorene	(ug/kg)		380U	380U	410U	380U	370U
Hexachlorobenzene	(ug/kg)		380U	3 8 0U	410U	380U	370U
Hexachlorobutadiene	(ug/kg)		380U	380U	410U	380U ·	370U
Hexachlorocyclopentadiene	(ug/kg)		380U	380U	410U	380U	370U
Hexachloroethane	(ug/kg)		380U	380U	410U	380U	370U
Indeno(1,2,3-cd)pyrene	(ug/kg)		380U	380U	410U	380U	370U
Isophorone	(ug/kg)		380U	380U	410U	380U	370U
N-Nitrosodi-n-propylamine	(ug/kg)		380U	380U	410U	380U	370U
N-Nitrosodiphenylamine	(ug/kg)		380U	380U	410U	380U	370U
Naphthalene	(ug/kg)		380U	380U	410U	380U	370U
Nitrobenzene	(ug/kg)	•	380U	380U	410U	380U	3700

Page: 4 of 12 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS SVOCS

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	SM_SOIL3 09/08/1994 Primary	SS-401 12/02/2004 Primary	SS-401 12/02/2004 Duplicate 1	SS-402 12/02/2004 Primary	SS-404 12/02/2004 Primary	SS-405 12/02/2004 Primary
Pentachlorophenol	(ug/kg)		970U	970U	1000U	950U	930U
Phenanthrene	(ug/kg)	U. ·	380U	380U	410U	380U	370U
Phenol	(ug/kg)		380U	380U	410U	380U	370U
Pyrene	(ug/kg)	U	380U	380U	410U	380U	370U

SURFACE SOIL SAMPLE RESULTS svocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

			•				
				,			
CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary	SS-412 12/02/2004 Primary	SS-413 12/02/2004 Primary	SS-416 12/02/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
1,1'-Biphenyl	(ug/kg)	370U	410U	410U	470U	420U	370U
2,2'-Oxybis(1-Chloropropane)	(ug/kg)	370U	410U	410U	470U	420U	370U
2,4,5-Trichlorophenol	(ug/kg)	920U	1000U	1000UJ	1200U	1100U	930U
2,4,6-Trichlorophenol	(ug/kg)	370U	410U	410U	470U	420U	370U
2,4-Dichlorophenol	(ug/kg)	370U	410U	410U	470U	420U	370U
2,4-Dimethylphenol	(ug/kg)	370U	410U	410U	470U	420U	370U
2,4-Dinitrophenol	(ug/kg)	920U	1000U	1000U	1200U	1100U	930U
2,4-Dinitrotoluene	(ug/kg)	370U	410U	410U	470U	420U	370U
2,6-Dinitrotoluene	(ug/kg)	370U	410U	410U	470U	420U	370U
2-Chloronaphthalene	(ug/kg)	370U	410U	410U	470U	420U	370U
2-Chlorophenol	(ug/kg)	370U	410U	410U	470U	420U	370U
2-Methylnaphthalene	(ug/kg)	370U	410U	410U	470U	420U	370U
2-Methylphenol	(ug/kg)	370U	410U	410U	470U	420U	370U
2-Nitroaniline	(ug/kg)	920U	1000U	1000U	1200U	1100U	930U
2-Nitrophenol	(ug/kg)	3 70 U	410U	410U	470U	420U	370U
3,3'-Dichlorobenzidine	(ug/kg)	370UJ	410UJ	410UJ	470UJ	420UJ	370UJ
3-Nitroaniline	(ug/kg)	920UJ	1000UJ	1000ŲJ	1200UJ	1100UJ	930UJ
4,6-Dinitro-2-methylphenol	(ug/kg)	920U	1000U	1000U	1200U	1100U	930U
4-Bromophenyl phenyl ether	(ug/kg)	370U	410U	410U	470U	420U	370U

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary	SS-412 12/02/2004 Primary	SS-413 12/02/2004 Primary	SS-416 12/02/2004 Primary
4-Chloro-3-methylphenol	(ug/kg)	370U	410U	410U	470U	420U	370U
4-Chloroaniline	(ug/kg)	370U	410U	410U	470U	420U	370U
4-Chlorophenyl phenyl ether	(ug/kg)	370U	410U	410U	470U	420U	370U
4-Methylphenol	(ug/kg)	370U	410U	410U	470U	420U	370U ·
4-Nitroaniline	(ug/kg)	920U	1000U	1000U	1200U	1100U	930U
4-Nitrophenol	(ug/kg)	920U	100QU	1000U	1200U	1100U	930U
Acenaphthene	(ug/kg)	370U	410U	410U	470U	420U	370U
Acenaphthylene	(ug/kg)	370U	410U	410U	470U	420U	370U
Acetophenone	(ug/kg)	370U	54J	410U	78J	420U	370U
Anthracene	(ug/kg)	370U	410U	410U	470U	420U	370U
Atrazine	(ug/kg)	370U	410U	410U	470U	420U	370U
Benzaldehyde	(ug/kg)	370U	410U	410U	470U	420U	370U
Berizo(a)anthracene	(ug/kg)	370U	41 0U	410U	470U	420U	370U
Benzo(a)pyrene	(ug/kg)	370U	410U	410U	470U	420U	370U
Benzo(b)fluoranthene	(ug/kg)	370U	410U	410U	470U	420U	370U
Benzo(g,h,i)perylene	(ug/kg)	370U	410U	410U	470U	420U	370U
Benzo(k)fluoranthene	(ug/kg)	370UJ	410UJ	410U	470Ú	420U	370UJ
Bis(2-chloroethoxy) methane	(ug/kg)	370U	410U	410U	470U	420U	370U
bis(2-Chloroethyl) ether	(ug/kg)	370U	410 U	410U	470U	420U	370U
bis(2-Ethylhexyl) phthalate	(ug/kg)	370UJ	480J	120J	230J	57J	120J
Butyl benzyl phthalate	(ug/kg)	370U	70J	410U	24 0J	420U	370U

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

Soil

CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary .	SS-412 12/02/2004 Primary	SS-413 12/02/2004 Primary	SS-416 12/02/2004 Primary
Caprolactam	(ug/kg)	370U	410U	410U	470U	420U	370U
Carbazole	(ug/kg)	370U	410U	410U	470U	420U	370U
Chrysene	(ug/kg)	370U	43J	410U	58J	420U	370U
Di-n-butyl phthalate	(ug/kg)	370U	110J	63J	93J	43J	370U
Di-n-octyl phthalate	(ug/kg)	370U	410U	410U	470U	420U	370U
Dibenz(a,h) anthracene	(ug/kg)	370U	410U	410U	470U	420U	370U
Dibenzofuran	(ug/kg)	370U	410U	410U	470U	420U	370U
Diethyl phthalate	(ug/kg)	370U	410U	410U	470U	420U	370U
Dimethyl phthalate	(ug/kg)	370U	250J	410U	450J	420U	370U
Fluoranthene	(ug/kg)	370U	58 J	410U	100J	420U	370U
Fluorene	(ug/kg)	370U	410U	410U	470U	420U	370U
Hexachlorobenzene	(ug/kg)	370U	410U	410U	470U	420U	370U
Hexachlorobutadiene	(ug/kg)	370U	410U	410U	470U	420U	370U
Hexachlorocyclopentadiene	(ug/kg)	370U	410U	410U	470U	420U	370U
Hexachloroethane	(ug/kg)	370U	410U	410U	470U	420U	370U
Indeno(1,2,3-cd)pyrene	(ug/kg)	370U	410U	410U	470U	420U	370U
Isophorone	(ug/kg)	370U	410U	410U	470U	420U	370U
N-Nitrosodi-n-propylamine	(ug/kg)	370U	410U	410U	470U	420U	370U
N-Nitrosodiphenylamine	(ug/kg)	370U	410U	410U	470U	420U	370U
Naphthalene	(ug/kg)	370U	410U	410U	470U	420U	370U
Nitrobenzene	(ug/kg)	370U	410U	410U	470U	420U	370∪

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SS-407 12/02/2004 Primary	SS-410 12/02/2004 Primary	SS-411 12/02/2004 Primary	SS-412 12/02/2004 Primary	SS-413 12/02/2004 Primary	SS-416 12/02/2004 Primary
Pentachlorophenol	(ug/kg)	920U	1000U	1000U	1200U	1100U	930U
Phenanthrene	(ug/kg)	370U	410U	410U	470U	420U	370U
Phenol	(ug/kg)	370U	410U	410U	470U	420U	370U
Pyrene	(ug/kg)	370U	44J	410U	65J	420U	370U

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 09/08/1994 Primary		
Starting Depth	(feet)	0.00	0.00		
Ending Depth	(feet)	0.50	0.50		
1,1'-Biphenyl	(ug/kg)	-			
2,2'-Oxybis(1-Chloropropane)	(ug/kg)				
2,4,5-Trichlorophenol	(ug/kg)				
2,4,6-Trichlorophenol	(ug/kg)				
2,4-Dichlorophenol	(ug/kg)				
2,4-Dimethylphenol	(ug/kg)				
2,4-Dinitrophenol	(ug/kg)				
2,4-Dinitrotoluene	(ug/kg)				
2,6-Dinitrotoluene	(ug/kg)				
2-Chloronaphthalene	(ug/kg)				
2-Chlorophenol	(ug/kg)				
2-Methylnaphthalene	(ug/kg)				
2-Methylphenol	(ug/kg)				
2-Nitroaniline	(ug/kg)				
2-Nitrophenol	(ug/kg)				
3,3'-Dichlorobenzidine	(ug/kg)				
3-Nitroaniline	(ug/kg)				
4,6-Dinitro-2-methylphenol	(ug/kg)				
4-Bromophenyl phenyl ether	(ug/kg)				

Page: 10 of 12 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS svocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 09/08/1994 Primary		·	
4-Chloro-3-methylphenol	(ug/kg)					
4-Chloroaniline	(ug/kg)					
4-Chlorophenyl phenyl ether	(ug/kg)					
4-Methylphenol	(ug/kg),					
4-Nitroaniline	(ug/kg)			1		
4-Nitrophenol	(ug/kg)					
Acenaphthene	(ug/kg)					
Acenaphthylene	(ug/kg)					
Acetophenone	(ug/kg)	•				
Anthracene	(ug/kg)					
Atrazine	(ug/kg)					
Benzaldehyd e	(ug/kg)					
Benzo(a)anthracene	(ug/kg)	•				
Benzo(a)рутепе	(ug/kg)					
Benzo(b)fluoranthene	(ug/kg)					
Benzo(g,h,i)perylene	(ug/kg)					
Benzo(k)fluoranthene	(ug/kg)					
Bis(2-chloroethoxy) methane	(ug/kg)					
bis(2-Chloroethyl) ether	(ug/kg)					
bis(2-Ethylhexyl) phthalate	(ug/kg)	U	U			
Butyl benzyl phthalate	(ug/kg)	U	110			

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 09/08/1994 Primary					
Caprolactam	(ug/kg)			-				
Carbazole	(ug/kg)							
Chrysene	(ug/kg)							
Di-n-butyl phthalate	(ug/kg)						•	
Di-n-octyl phthalate	(ug/kg)							
Dibenz(a,h) anthracene	(ug/kg)							
Dibenzofuran	· (ug/kg)							
Diethyl phthalate	(ug/kg)							
Dimethyl phthalate	(ug/kg)							
Fluoranthene	(ug/kg)				•			
Fluorene	(ug/kg)							
Hexachlorobenzene	(ug/kg)							
Hexachlorobutadiene	(ug/kg)							
Hexachlorocyclopentadiene	(ug/kg)							
Hexachloroethane	(ug/kg)							
Indeno(1,2,3-cd)pyrene	(ug/kg)							
Isophorone	(ug/kg)							
N-Nitrosodi-n-propylamine	(ug/kg)							
N-Nitrosodiphenylamine	(ug/kg)							
Naphthalene	(ug/kg)							
Nitrobenzene	(ug/kg)					-		

Page: 12 of 12 Date: 05/11/2005

SURFACE SOIL SAMPLE RESULTS svocs

PERIOD: From 09/08/1994 thru 12/02/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	TP_SOIL1 09/08/1994 Primary	TP_SOIL2 09/08/1994 Primary			
Pentachlorophenol	(ug/kg)					_
Phenanthrene	(ug/kg)	U	U			
Phenol	(ug/kg)					
Pyrene	(ug/kg)	U	U			
•						
	•					
				,		
					 	

Appendix F Sediment Sample Laboratory Results, Metals

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	99-BKSD-23 10/06/1999 Primary	99-BKSD-24 10/06/1999 Primary	99-BKSD-25 10/06/1999 Primary	99-SD-27 10/05/1999 Primary	99-SD-29 10/05/1999 Primary	99-SD-31 10/05/1999 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)						
Antimony ·	(mg/kg)						
Arsenic	(mg/kg)						
Barium	(mg/kg)						
Beryllium	(mg/kg)						
Cadmium	(mg/kg)	U8.0	0.8U .	0.8U	0.8U	33	27
Calcium	(mg/kg)						
Chromium	(mg/kg)						
Cobalt	(mg/kg)						
Copper	(mg/kg)	14J	18J	14J	18 J	1800J	1200J
Iron	(mg/kg)						
Lead	(mg/kg)	10	11	10	16	770	590
Magnesium	(mg/kg)						
Manganese	(mg/kg)						
Mercury	(mg/kg)	R	R	R	R	0. 7 J	0.3J
Nickel	(mg/kg)						
Potassium	(mg/kg)						
Selenium	(mg/kg)	4,U	· 4U	4U	4U	6.9	5.7
Silver	(mg/kg)	0.8U	0.8U	0.8U	0.8U	4.6	3.2

Page: 2 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

(mg/kg)		Primary	Primary	Primary	Primary	Primary
				·		
(mg/kg)						
(mg/kg)						
(mg/kg)	49	64	52	84	6900	5400
				•	·	
•						
				÷		

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	99-SD-33 10/05/1999 Primary	99-SD-35 10/05/1999 Primary	99-SD-37 10/05/1999 Primary	99-SD-39 10/05/1999 Primary	BK_GP_SED11 09/08/1994 Primary	BK_HSC_SED10 09/08/1994 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)						
Antimony	(mg/kg)						
Arsenic	(mg/kg)	•				8	10
Barium	. (mg/kg)					69	21
Beryllium	(mg/kg)						
Cadmium	(mg/kg)	5.2	3.9	5.5	7.3	8.0	U
Calcium	(mg/kg)						
Chromium	(mg/kg)					34	15
Cobalt	(mg/kg)						
Copper	(mg/kg)	1900 J	170J	1 9 0J	350J	28	11
Iron	(mg/kg)				•	-	
Lead	(mg/kg)	210	52	120	150	36	10
Magnesium	(mg/kg)						
Manganese	(mg/kg)						
Mercury	(mg/kg)	0.2J	R		0.1J		
Nickel	(mg/kg)					26	22
Potassium	(mg/kg)						
Selenium	(mg/kg)	4 U	4U	4U	4U	2U	4U
Silver	(mg/kg)	0.8U	0.8U	0.8U	0.8U	0.2U	0.1U

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-SD-33 10/05/1999 Primary	99-SD-35 10/05/1999 Primary_	99-SD-37 10/05/1999 Primary	99-SD-39 10/05/1999 Primary	BK_GP_SED11 09/08/1994 Primary	BK_HSC_SED10 09/08/1994 Primary
Sodium	(mg/kg)				•		
Thallium	(mg/kg)						
Vanadium	(mg/kg)						
Zinc	(mg/kg)	3100	840	1400	1700	110	41
·							
•							
		•					
		_			 		

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	BK_HSC_SED9 09/08/1994 Primary	CR-3 01/01/1975 Primary	DCS_D_SED5 09/08/1994 Primary	DCS_SED4 09/08/1994 Primary	DC_SED8 09/08/1994 Primary	SAMPLE_1 05/01/1986 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00 .	0.00
Ending Depth	(feet)	0.50	0,50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)						
Antimony	(mg/kg)						
Arsenic	(mg/kg)	17		23	14	22	
Barium	(mg/kg)	22		110	55	70	
Beryllium	(mg/kg)						
Cadmium	(mg/kg)	U	6.9	4.9	3.6	11	33
Calcium	(mg/kg)						
Chromium	(mg/kg)	21		40	32	40	
Cobalt	(mg/kg)		478				
Copper	(mg/kg)	45		660	990	2200	3760
Iron	(mg/kg)		2.03				
Lead	(mg/kg)	12	156	260	210	400	740
Magnesium	(mg/kg)						
Manganese	(mg/kg)						
Mercury	(mg/kg)						
Nickel	(mg/kg)	29		40	35	34	
Potassium	(mg/kg)						
Selenium	(mg/kg)	4U		U ·	U		
Silver	(mg/kg)	0.2U	1.49	7	0.6	2.9	

Page: 6 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD:

From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	BK_HSC_SED9 09/08/1994 Primary	CR-3 01/01/1975 Primary	DCS_D_SED5 09/08/1994 Primary	DCS_SED4 09/08/1994 Primary	DC_SED8 09/08/1994 Primary	SAMPLE_1 05/01/1986 Primary
Sodium	(mg/kg)			-			
Thallium	(mg/kg)						
Vanadium	(mg/kg)						
Zinc	(mg/kg)	54	1090	4000	2600	6200	8600
				•			
		•					
		•					
		•					
	<u> </u>						

PERIOD:

From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SAMPLE_2 05/01/1986 Primary	SD-401 11/17/2004 Primary	SD-402 11/17/2004 Primary	SD-403 11/12/2004 Primary	SD-404 11/12/2004 Primary	SD-405 11/17/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)		20000J	30000J	24000	27000	28000J
Antimony	(mg/kg)		0.18J	0.79J	0.68J	1.1J	0.88J
Arsenic	(mg/kg)		7J	44 J	54J	32 J	38J
Barium	(mg/kg)		25J	17J	13J	37J	17 J
Beryllium	(mg/kg)		0.7	0.47	0.34	1	0.56
Cadmium	(mg/kg)	19	4.3J	3 4J	25J	20J	25J
Calcium	(mg/kg)		1800J	33000J	64000J	6100J	8900J
Chromium	(mg/kg)		35J	3 2J	21 J	40J	29J
Cobalt	(mg/kg)		8.7J	5.1J	3.3J	12 J	5.7J
Copper	(mg/kg)	1590	120J	2300J	2100J	2100J	2000J
Iron	(mg/kg)		19000	27000	24000	31000	29000
Lead	(mg/kg)	670	69J	1200J	1000J	380J	710J
Magnesium	(mg/kg)		9300J	53000J	49000	25000	43000J
Manganese	(mg/kg)		200J	1200J	1600J	540J	720J
Mercury	(mg/kg)		0.15	0.67	0.7J	0.24J	0.48
Nickel	(mg/kg)		3 0J	15J	14J	36J	18J
Potassium	(mg/kg)		2500J	3100J	2400J	3700J	3100J
Selenium	(mg/kg)		1.6J	6.1J	5J	3.4J	4.9J
Silver	(mg/kg)		0.45J	5.4J	4.1J	2.2J	3.5J

Page: 8 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

CONSTITUENT	SITE DATE RESULT TYPE	SAMPLE_2 05/01/1986 Primary	SD-401 11/17/2004 Primary	SD-402 11/17/2004 Primary	SD-403 11/12/2004 Primary	SD-404 11/12/2004 Primary	SD-405 11/17/2004 Primary
Sodium	(mg/kg)		11000	4100	19J	2400	6200
hallium	(mg/kg)		0.34J	1.5J	1.4J	0. 9 4J	1.4J
anadium/	(mg/kg)		26J	20J	17J	39J	25J
linc	(mg/kg)	4800	820J	7600J	6800J	7800J	6900J

PERIOD;

From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SD-406 11/17/2004 Primary	SD-407 11/11/2004 Primary	SD-408 11/11/2004 Primary	SD-409 11/18/2004 Primary	SD-410 11/11/2004 Primary	SD-411 12/03/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.33	0.50
Aluminum	(mg/kg)	16000J	15000	38000	7800	7500	14000
Antimony	(mg/kg)	0.065J	0.36J	0.55J	0.03UJ	0.095J	0.67J
Arsenic	(mg/kg)	6.8J	16J	17J	4.5J	7.8J	16J
Barium	(mg/kg)	23J	26J	27 J	11J	6.2J	14EB
Beryllium	(mg/kg)	0.6	0.57	0.64	0.21	0.23	0.38J
Cadmium	(mg/kg)	2.6J	2.6J	16J	0.5J	1.8J	10J
Calcium	(mg/kg)	2500J	2600J	6200J	8 60J	2200J	52000J
Chromium	(mg/kg)	33J	27J	38J	17J	16J	20JEB
Cobalt	(mg/kg)	7.6J	9.2J	8.8J	3.8J	5J	5.9J
Copper	(mg/kg)	96J	200J	1500J	22J	150J	1000J
Iron	(mg/kg)	20000	22000	25000	11000	14000	21000
Lead	(mg/kg)	26J	120J	630J	17J	27J	200J
Magnesium	(mg/kg)	9500J	10000	62000	4100	5400	17000
Manganese	(mg/kg)	210J	300J	900J	93J	210J	310JEB
Mercury	(mg/kg)	0.045J	0.12J	0.44J	0.021	0.039J	0.3J
Nickel	(mg/kg)	29J	26J	32J	13J ·	15J	18JEB
Potassium	(mg/kg)	3400J	3000J	3700J	1300J	770J	2300J
Selenium	(mg/kg)	2.3J	1 J	1.8J	0.56J	0.24J	2.4J
Silver	(mg/kg)	0.31J	0.72J	3.6J	0.16J	0.22J	1.4J

Page: 10 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SD-406 11/17/2004 Primary	SD-407 11/11/2004 Primary	SD-408 11/11/2004 Primary	SD-409 11/18/2004 Primary	SD-410 11/11/2004 Primary	SD-411 12/03/2004 Primary
Sodium	(mg/kg)	37000	9100	7700	6000	2100	13000
Thallium	(mg/kg)	0.27J	0.32UJ	0.83J	0.12J	0.087J	0.43J
Vanadium	(mg/kg)	31J	29J	34J	18J	14J	24J
Zinc	(mg/kg)	430J	810J	40000J	130J	480J	3100J

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	SD-412 11/12/2004 Primary	SD-413 11/11/2004 Primary	SD-415 11/11/2004 Primary	SD-416 11/11/2004 Primary	SD-417 11/11/2004 Primary	SD-420 12/03/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)	21000	22000	17000	19000	16000	22000
Antimony	(mg/kg)	1 .3J	0.99J	0.47J	0.31J	1J	0.37J
Arsenic	(mg/kg)	85J	23J	2 3J	18J	37J	17 J
Barium	(mg/kg)	5. 9 J	28J	21J	24J	8.9J	30EB
Beryllium	(mg/kg)	0.27	0.61	0.67	0.63	0.34	0.7J
Cadmium	(mg/kg)	16J	30J	19J	9J	4 1J	0.8J
Calcium	(mg/kg)	70000J	4400J	2700J	2200J	11000J	5000J
Chromium	(mg/kg)	17J	37J	. 33J	29J	33J	38JEB
Cobalt	(mg/kg)	3.9J	12J	11J	10J	12J	15J
Copper	(mg/kg)	1100J	2600J	740UJ	420UJ	2400J	100J
Iron	(mg/kg)	34000	31000	23000	24000	20000	37000
Lead	(mg/kg)	560J	₋ 720J	230J	200J	280J	44J
Magnesium	(mg/kg)	38000	19000	14000	13000	22000	9300
Manganese	(mg/kg)	1400J	530J	290J	· 360J	470J	760JEB
Mercury	(mg/kg)	0.79J	0.74J	0.21J	0.19J	0.59J	0.039J
Nickel	(mg/kg)	16J	39J	29J	31J	33J	42JEB
Potassium	(mg/kg)	1400J	3000J	3000J	2600J	1400J	3200J
Selenium	(mg/kg)	6.4J	2.7 J	2.2J	0.83J	2.1J	0.7J
Silver	(mg/kg)	3.2J	3 J	1.4J	0.92J	1.9J	0.39J

Page: 12 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

				•			
CONSTITUENT	SITE DATE RESULT TYPE	SD-412 11/12/2004 Primary	SD-413 11/11/2004 Primary	SD-415 11/11/2004 Primary	SD-416 11/11/2004 Primary	SD-417 11/11/2004 Primary	SD-4 20 12/03/2004 Primary
Sodium	(mg/kg)	21J	5000	14000	6200	3400	3400
Thallium	(mg/kg)	2.1J	0.45J	0.41J	0.28J	0.49J	0.2J
Vanadium	(mg/kg)	12J	31J	33J	30J	23J	34J

Page: 13 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SD-420 12/03/2004 Duplicate 1	SD-421 12/03/2004 Primary	SD-422 11/12/2004 Primary	SD-422 11/12/2004 Duplicate 1	SD-423 11/11/2004 Primary	SD-424 11/18/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.33	0.33	0.50	0.00
Ending Depth	(feet)	. 0.50	0.50	0.83	0.83	1.00	0.50
Aluminum	(mg/kg)	22000	17000	35000	33000	22000	5400
Antimony	(mg/kg)	0.42J	0. 57 J	0.78J	0.8J	0.17J	0.056J
Arsenic	(mg/kg)	1 8 J	2 3J	64J	60J	1 5J	4.4J
Barium	(mg/kg)	31EB	18EB	5J	9.7J	59J	4.4J
Beryllium	(mg/kg)	0.71J	0.55J	1.3	1.3	0.74	0.18
Cadmium	(mg/kg)	0.98J	14 J	32 J	29J	1.8J	0.67J
Calcium	(mg/kg)	1700J	3400J	32000J	27000J	2700J	7 60J
Chromium	(mg/kg)	36JEB	31JEB	18J	16J	39J	10J
Cobalt	(mg/kg)	16J	6.1J	8.1J .	17J	9.2J	3.2J
Copper	(mg/kg)	370J	1300 J	10000J	9200J	75J	140J
Iron	(mg/kg)	37000	26000	35000	33000	26000	8400
Lead	(mg/kg)	35J	240J	930J	830J	50J	28J
Magnesium	(mg/kg)	9500	21000	56000	54000	8200	3300
Manganese	(mg/kg)	800JEB	400JEB	1500J	2100J	240J	120J
Mercury	(mg/kg)	0.035J	0.26J	0.52J	0.47J	0.091J	0.073
Nickel	(mg/kg)	40JEB	18JEB	28J	27J	41J	8.7J
Potassium	(mg/kg)	3400J	3200J	1800J	1600J	2600J	490J
Selenium	(mg/kg)	0.37J	4.2J	6.9J	6.6J	1.1J	0.27J
Silver	(mg/kg)	0.4J	1.5J	3J	3J	0.45J	0.19J

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	SD-420 12/03/2004 Duplicate 1	SD-421 12/03/2004 Primary	SD-422 11/12/2004 Primary	SD-422 11/12/2004 Duplicate 1	SD-423 11/11/2004 Primary	SD-424 11/18/2004 Primary
Sodium	(mg/kg)	3200	21000	37J	31J	900	3200
Thallium	(mg/kg)	0.17J	0.51J	1.4J	1.3J	0.23J	0.077J
			· ·				
Vanadium	(mg/kg)	32J	32J	17J	16J	40J	11J

PERIOD:

From 12/07/1974 thru 12/03/2004 - Inclusive

Soil

CONSTITUENT	SITE DATE RESULT TYPE	SD-425 12/03/2004 Primary	SD-426 12/03/2004 Primary	SD-SA1 01/01/1987 Primary	SD-SA2 01/01/1987 Primary	SD-SP_SEEP 01/01/1987 Primary	SD-TP_SPILL 01/01/1987 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Aluminum '	(mg/kg)	10000	8600				
Antimony	(mg/kg)	0.041UJ	0.035UJ				
Arsenic	(mg/kg)	6.5J	9.4J	•			
Barium	(mg/kg)	16EB	13EB				
Beryllium	(mg/kg)	0.43J	0.35J				
Cadmium	(mg/kg)	0.34J	0.36J	110	21	11	10
Calcium	(mg/kg)	3100J	26000J				
Chromium	(mg/kg)	22JEB	16JEB				
Cobalt	(mg/kg)	5.1J	4.5J				
Copper	(mg/kg)	12J	7. 6 J	370	2800	84	730
Iron	(mg/kg)	16000	16000				
Lead	(mg/kg)	13J	12J	510	1100	360	370
Magnesium	(mg/kg)	5700	6000				
Manganese	(mg/kg)	190JEB	200JEB				•
Mercury	(mg/kg)	0.059J	0.063J				
Nickel	(mg/kg)	18JEB	14JEB				
Potassium	(mg/kg)	2200J	1700J				
Selenium	(mg/kg)	0.76J	0.9J				
Silver	(mg/kg)	0.16J	0.1J				

Page: 16 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SD-425 12/03/2004 Primary	SD-426 12/03/2004 Primary	SD-SA1 01/01/1987 Primary	SD-SA2 01/01/1987 Primary	SD-SP_SEEP 01/01/1987 Primary	SD-TP_SPILL 01/01/1987 Primary
Sodium	(mg/kg)	7400	7900		<u> </u>		
Thallium	(mg/kg)	0.15J	0.15J				
/anadium	(mg/kg)	22 J	19J				
Zinc	(mg/kg)	59J	49J	23000	7600	4200	2800
						·	

Page: 17 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT	SITE DATE RESULT TYPE	TPS1_SED6 09/08/1994 Primary	TPS1_SED6A 09/08/1994 Primary	TPS2_SED7 09/08/1994 Primary	TPS2_SED7A 09/08/1994 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50
Aluminum	(mg/kg)				
Antimony	(mg/kg)				
Arsenic	(mg/kg)	36	27	56	270
Barium	(mg/kg)	64	50	64	230
Beryllium	(mg/kg)				
Cadmium	(mg/kg)	33	28	43	170
Calcium	(mg/kg)				
Chromium	(mg/kg)	45	38	41	30
Cobalt	(mg/kg)				
Copper	(mg/kg)	970	1500	1400	1600
Iron	(mg/kg)				
Lead	(mg/kg)	550	550	1500	760
Magnesium	(mg/kg)				
Manganese	(mg/kg)				
Mercury	(mg/kg)				
Nickel	(mg/kg)	35	39	35	250
Potassium	(mg/kg)				
Selenium	(mg/kg)	υ	4	6	7
Silver	(mg/kg)	2.9	12	5.8	1

Page: 18 of 18 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS METALS

PERIOD:

From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

Soil

CONSTITUENT	SITE DATE RESULT TYPE	TP\$1_\$ED6 09/08/1994 Primary	TPS1_SED6A 09/08/1994 Primary	TPS2_SED7 09/08/1994 Primary	TPS2_SED7A 09/08/1994 Primary	
Sodium	(mg/kg)					
Thallium	(mg/kg)					
Vanadium	(mg/kg)					
Zinc	(mg/kg)	16000	15000	22000	58000	
						•

Appendix G Sediment Sample Laboratory Results, VOCs

SEDIMENT SAMPLE RESULTS VOCS

PERIOD:

From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

Soil

		•					
CONSTITUENT	SITE DATE	BK_HSC_SED9 09/08/1994	DCS_D_SED5 09/08/1994	DCS_SED4 09/08/1994	TPS1_SED6 09/08/1994	TPS2_SED7 09/08/1994	
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	
1,1-Thibisethane	(mg/kg)	U	U	U	2J	U	
3,4-Dithiohexane	(mg/kg)	U	U	U			
Acetone	(mg/kg)	U	0.032	U	0.033	U	
Diethyl benzene (mixed isomers)	(mg/kg)	U	U	U	υ	U	
Methylene chloride	(mg/kg)	υ	0.039	0.32	0.075	U	
Trimethyloxepane	(mg/kg)	U	. U	U	0.035J	U	
ı							

Appendix H Sediment Sample Laboratory Results, SVOCs

SEDIMENT SAMPLE RESULTS SVOCS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

Soil

							127,24
CONSTITUENT	SITE DATE	BK_HSC_SED9 09/08/1994	DCS_D_SED5 09/08/1994	DCS_SED4 09/08/1994	TPS1_SED6 09/08/1994	TPS2_SED7 09/08/1994	
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	
3,4-Dithiohexane	(mg/kg)				U	U	
Bis(2-ethylhexyl)phthalate (BEHP)	(mg/kg)	3.45	4.63	0.43	0.74	14.65	
Butyl benzyl phthalate	(mg/kg)	0.11	0.2	0.1	U	0.19	
Phenanthrene	(mg/kg)	0.1J	U	U	U	U	
Pyrene	(mg/kg)	0.39	U	0.1J	U	U	

Appendix I Sediment Sample Laboratory Results, TCO

SEDIMENT SAMPLE RESULTS TOTAL COMBUSTIBLE ORGANICS

ONSTITUENT	SITE DATE RESULT TYPE	SD-401 11/17/2004 Primary	SD-402 11/17/2004 Primary	SD-403 11/12/2004 Primary	SD-404 11/12/2004 Primary	SD-405 11/17/2004 Primary	SD-406 11/17/2004 Primary
tarting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
nding Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
otal Combustible Organics (TCO)	(mg/kg)	124279	56233	55328	91448	84771	156326

SEDIMENT SAMPLE RESULTS TOTAL COMBUSTIBLE ORGANICS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SD-407 11/11/2004 Primary	SD-408 11/11/2004 Primary	SD-409 11/18/2004 Primary	SD-410 11/11/2004 Primary	SD-411 12/03/2004 Primary	SD-412 11/12/2004 Primary
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.33	0.50	0.50
Total Combustible Organics (TCO)	(mg/kg)	62780	73632	53639	21777	161785	73482J

Page: 3 of 5 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS TOTAL COMBUSTIBLE ORGANICS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

Soil

CONSTITUENT	SITE DATE	SD-413 11/11/2004	SD-415 11/11/2004	SD-416 11/11/2004	SD-417 11/11/2004	SD-420 12/03/2004	SD-420 12/03/2004
	RESULT TYPE	Primary	Primary	Primary	Primary	Primary	Duplicate 1
Starting Depth	(feet)	0.00	0.00	0.00	0.00	0.00	0.00
Ending Depth	(feet)	0.50	0.50	0.50	0.50	0.50	0.50
Total Combustible Organics (TCO)	(mg/kg)	31877	117048	41531	33755	33585	34495

SEDIMENT SAMPLE RESULTS TOTAL COMBUSTIBLE ORGANICS

PERIOD:

From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

Soil

CONSTITUENT	SITE DATE RESULT TYPE	SD-421 12/03/2004 Primary	SD-422 11/12/2004 Primary	SD-422 11/12/2004 Duplicate 1	SD-423 11/11/2004 Primary	SD-424 11/18/2004 Primary	SD-425 12/03/2004 Primary
Starting Depth	(feet)	0.00	0.33	0.33	0.50	0.00	0.00
Ending Depth	(feet)	0.50	0.83	0.83	1.00	0.50	0.50
Total Combustible Organics (TCO)	(mg/kg)	167679	60854J .	62478J	124042J	23679	66801

Page: 5 of 5 Date: 05/11/2005

SEDIMENT SAMPLE RESULTS TOTAL COMBUSTIBLE ORGANICS

PERIOD: From 12/07/1974 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Soil

CONSTITUENT .	SITE DATE RESULT TYPE	SD-426 12/03/2004 Primary			
Starting Depth	(feet)	0.00			
Ending Depth	(feet)	0.50			
Total Combustible Organics (TCO)	(mg/kg)	68507			
÷					
		 -	<u></u>	<u>-</u>	
•					•
			_		

Appendix J Surface Water Sample Laboratory Results, Dissolved Metals

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

Water SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-403 11/16/2004 Primary	SW-403 11/16/2004 Duplicate 1	SW-405 11/17/2004 Primary	SW-406 11/17/2004 Primary	SW-407 11/16/2004 Primary	SW-410 11/16/2004 Primary
Aluminum (Dissolved)	(ug/l)	50U	50U	50.4J	50U	50U	50U
Antimony (Dissolved)	(ug/l)	0.75J	0.76J	0.5J	0.5UJ	0.5UJ	0.5UJ
Arsenic (Dissolved)	(ug/l)	0.39	0.33J	0.75J	1.1	1.5	1.8
Barium (Dissolved)	(ug/l)	7.6J	7.5J	5.1J	6.8J	7.2J	6.7J
Beryllium (Dissolved)	(ug/l)	0.2U	0.2U	0.2ህ	0.2U	0.2U	0.2U
Cadmium (Dissolved)	(ug/l)	2.9	3.2	0.94	2.6	1.4	0.47
Calcium (Dissolved)	· (ug/l)	72500	72300	136000	231000	282000	308000
Chromium (Dissolved)	(ug/l)	2U	2U	2U	2U	2U	2U
Cobalt (Dissolved)	(ug/l)	1U	1U	1U	1.1	1.3	1.3
Copper (Dissolved)	(ug/l)	21.8J	24.3J	4.5J	15.9J	8.9J	2U
Iron (Dissolved)	(ug/l)	50U	50U	50U	50U	50U	50U
Lead (Dissolved)	(ug/l)	1.8	1.4J	1U	1Ü	1U	1U
Magnesium (Dissolved)	(ug/l)	6740	6720	439000	801000	1040000	1150000
Manganese (Dissolved)	(ug/l)	11.4	10.1	42	39.8	20.3	10.8
Mercury (Dissolved)	(ug/l)	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Nickel (Dissolved)	(ug/l)	1 J	1.5J	1.4J	1.9J	1.8J	1.7J
Potassium (Dissolved)	(ug/l)	2190J	1910J	140000	239000J	307000	348000
Selenium (Dissolved)	(ug/l)	1U	1U	1 U	1U	1U	1U
Silver (Dissolved)	(ug/l)	1U	1U	1 U	1U	1U	1U
Sodium (Dissolved)	(ug/l)	23700	22800	3760000	6440000	8290000	9170000
Thallium (Dissolved)	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U

Page: 2 of 6 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS DISSOLVED METALS

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-403 11/16/2004 Primary	SW-403 11/16/2004 Duplicate 1	SW-405 11/17/2004 Primary	SW-406 11/17/2004 Primary	SW-407 11/16/2004 Primary	SW-410 11/16/2004 Primary
Vanadium (Dissolved)	(ug/l)	1ប	10	10	1U	1,1	1.6
Zinc (Dissolved)	(ug/l)	823J	808J	271J	511J	268J	65.2J
	•						
							•

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	SW-411 12/03/2004 Primary	SW-411 12/03/2004 Duplicate 1	SW-414 11/16/2004 Primary	SW-415 11/16/2004 Primary	SW-419 12/02/2004 Primary	SW-422 11/17/2004 Primary
Aluminum (Dissolved)	(ug/l)	167J	50U	50U	50U	168J	306
Antimony (Dissolved)	(ug/l)	0.5UJ	0.5UJ	0.5UJ	0.5UJ	0.5UJ	0.7J
Arsenic (Dissolved)	(ug/l)	1.4J	1.4	1.6	1.7	0.85J	0.2U
Barium (Dissolved)	(ug/l)	6 J	5.4J	7.2J	7.3J	5U	16.6
Beryllium (Dissolved)	(ug/l)	0.2U	0.2Ų	0.2U	0.2 U	0.2 U	1.7
Cadmium (Dissolved)	(ug/l)	1	0.87	2.7	1.6	2.3	846
Calcium (Dissolved)	(ug/l)	214000	211000	275000	291000	91600	293000
Chromium (Dissolved)	(ug/l)	20	2U	2U	2 U	2U	2U
Cobalt (Dissolved)	(ug/l)	1U	1U	1.1	1.2	1U	91.4
Copper (Dissolved)	(ug/l)	22 J	15.4J	6.6J	5.7J	54.7J	7780J
Iron (Dissolved)	(ug/l)	187	50U	50U	50U	147	500U
Lead (Dissolved)	(ug/l)	1U	1U	1U	1U	1U	87.2
Magnesium (Dissolved)	(ug/l)	741000	735000	1000000	1080000	286000	154000
Manganese (Dissolved)	(ug/l)	24.6	20.8	18.3	16.7	52.2	8050
Mercury (Dissolved)	(ug/l)	0.2U	0.2Ų	0.2U	0.2U	0.2U	0.2U
Nickel (Dissolved)	(ug/l)	1.8J	1.7J	2يا	1 .9J	2J	168
Potassium (Dissolved)	(ug/l)	218000J	215000J	300000	318000	86700J	7660
Selenium (Dissolved)	(ug/l)	1U	1U	1U	1 U	1 U	2.2J
Silver (Dissolved)	(ug/l)	1U	1U	1U	1 U	1 U	1 U
Sodium (Dissolved)	(ug/l)	5870000	5850000	8000000	8520000	2300000	94900
Thallium (Dissolved)	(ug/i)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U

			,				•
CONSTITUENT	SITE DATE RESULT TYPE	SW-411 12/03/2004 Primary	SW-411 12/03/2004 Duplicate 1	SW-414 11/16/2004 Primary	SW-415 11/16/2004 Primary	SW-419 12/02/2004 Primary	SW-422 11/17/2004 Primary
Vanadium (Dissolved)	(ug/l)	1.4	1.2	1.1	1.2	1U	10
Zinc (Dissolved)	(ug/l)	187J	181J	420J	280J	52 4 J	171000J

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	SW-423 11/16/2004 Primary	SW-424 11/18/2004 Primary		
Aluminum (Dissolved)	(ug/l)	50U	50U		
Antimony (Dissolved)	(ug/l)	0.5UJ	0.5UJ		
Arsenic (Dissolved)	(ug/l)	0.56	1J		
Barium (Dissolved)	(ug/l)	14.9	7 J		
Beryllium (Dissolved)	(ug/l)	0.2U	0.2U		
Cadmium (Dissolved)	(ug/l)	0.21	2.4		
Calcium (Dissolved)	(ug/l)	163000	229000		
Chromium (Dissolved)	(ug/l)	2U	2U	•	
Cobalt (Dissolved)	· (ug/l)	1.9	1U		
Copper (Dissolved)	(ug/l)	2U	16J		
Iron (Dissolved)	(ug/l)	2680	50U		
Lead (Dissolved)	(ug/l)	1U	1U .		
Magnesium (Dissolved)	- (ug/l)	49500	794000		
Manganese (Dissolved)	(ug/l)	343	37.6		
Mercury (Dissolved)	(ug/l)	0,2U	0.2U		
Nickel (Dissolved)	(ug/l)	18.4	1.9J		
Potassium (Dissolved)	(ug/l)	12300	232000J		
Selenium (Dissolved)	(ug/l)	1 U	10		
Silver (Dissolved)	(ug/l)	1U	1 U		
Sodium (Dissolved)	(ug/l)	101000	6330000		
Thallium (Dissolved)	(ug/l)	0.5U	0.5U		

Page: 6 of 6 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS DISSOLVED METALS

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-423 11/16/2004 Primary	SW-424 11/18/2004 Primary	
/anadium (Dissolved)	(ug/l)	1U	1U	
Zinc (Dissolved)	. (ug/l)	690J	429J	
			•	
			•	
	•			
		<u> </u>		

Appendix K Surface Water Sample Laboratory Results, Total Metals

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-BKSW-26 10/05/1999 Primary	99-RBB-44A 10/05/1999 Primary	99-RBK-43A 10/05/1999 Primary	99-SW-30 10/05/1999 Primary	99-SW-32 10/05/1999 Primary	99-SW-34 10/05/1999 Primary
Aluminum	(ug/l)						
Antimony	(ug/I)						
Arsenic	(ug/l)					•	•
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.5U	0.5U	0.5U	1.2	2.9	2.7
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	2UJ	2UJ	2UJ	26	46	50
Iron	(ug/l)						
Lead	(ug/l)	3UJ	3UJ	3UJ	8J	4J	4 J
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Nickel	(ug/l)						
Potassium	(ug/l)						
Selenium	(ug/l)	6U	6U	6U	6U	6U	6U
Silver	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Sodium	(ug/l)						
Thallium	(ug/l)	-					

Page: 2 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-BKSW-26 10/05/1999 Primary	99-RBB-44A 10/05/1999 Primary	99-RBK-43A 10/05/1999 Primary	99-SW-30 10/05/1999 Primary	99-SW-32 10/05/1999 Primary	99-SW-34 10/05/1999 Primary
Vanadium	(ug/l)				· · · · · ·		
Zinc	(ug/i)	5UJ	5UJ	5UJ	4 20J	850J	790J
Sulfate	(ug/l)						
Cyanide	(ug/l)						
						•	
•							
	,						
		-	· · ·		· · ·	_	_

Page: 3 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	99-SW-36 10/05/1999 Primary	99-SW-38 10/05/1999 Primary	99-SW-40 10/05/1999 Primary	99-SW-42 10/05/1999 Primary	99-SW-49 10/05/1999 Primary	99-TPR-50 10/05/1999 Primary
	(ug/l)			-			
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	1	1.1	1	0.5U	1.2	23
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	14	7	7	2J	3J	84
Iron	(ug/l)						
Lead	(ug/l)	3J	3UJ	3J	3กา	3 UJ	31
Magnesium	(ug/l)						•
Manganese	(ug/l)				•		
Mercury	(ug/l)	0.2U	0.2U	0.2U	0.2U	0.2U ·	0.2U
Nickel .	(ug/l)						
Potassium	(ug/l)				•		
Selenium	(ug/l)	6U	6U	6U	6U	6U	6U
Silver	(ug/l)	0.5U	0.5U	0.5U	0.5U	2.3	0.5U
Sodium	(ug/l)						
Thallium	(ug/l)						

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

CONSTITUENT	SITE DATE RESULT TYPE	99-SW-36 10/05/1999 Primary	99-SW-38 10/05/1999 Primary	99-SW-40 10/05/1999 Primary	99-SW-42 10/05/1999 Primary	99-SW-49 10/05/1999 Primary	99-TPR-50 10/05/1999 Primary
/anadium	(ug/l)				<u> </u>	· · · · · · · · · · · · · · · · · · ·	
Zinc	(ug/l)	270J	260J	260J	87J	110J	5860J
Sulfate	(ug/l)						
Cyanide	(ug/l)						

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SAMPLE_1 01/01/1986 Primary	SAMPLE_2 01/01/1986 Primary	SAMPLE_3 01/01/1986 Primary	SAMPLE_4 01/01/1986 Primary	SW-403 11/16/2004 Primary	SW-403 11/16/2004 Duplicate 1
Aluminum	(ug/l)	· · ·				834J	210J
Antimony	(ug/l)					1.3J	0.96J
Arsenic	(ug/l)					3.1J	0.96J
Barium	(ug/l)					8.6J	7.6J
Beryllium	(ug/l)					0.2U	0.2U
Cadmium	(ug/l)	4	25	18	20	3.9	3.2
Calcium	(ug/l)					76900	73300
Chromium	(ug/l)					2U	2U
Cobalt	(ug/l)					1U	1U
Copper	(ug/l)	80	20	10	20	88.1J	40.4J
Iron	(ug/l)					1030J	299J
Lead	(ug/l)	20	10U	10U	10U	44.2J	12.8J
Magnesium	(ug/l)	-				8550	7150
Manganese	(ug/l)					54.6J	20.2J
Mercury	(ug/l)					0.2U	0.2U
Nickel	(ug/l)					4.2J	1.8J
Potassium	(ug/l)					2400J	1890J
Selenium	(ug/l)					1U	10
Silver	(ug/l)					1U	1U
Sodium	(ug/l)					24400	23000
Thallium	(ug/l)					0.5U	0.5U

Page: 6 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	SAMPLE_1 01/01/1986 Primary	SAMPLE_2 01/01/1986 Primary	SAMPLE_3 01/01/1986 Primary	SAMPLE_4 01/01/1986 Primary	SW-403 11/16/2004 Primary	SW-403 11/16/2004 Duplicate 1
Vanadium	(ug/l)			-		1U	1U
Zinc	(ug/l)	730	10600	6500	4910	1170J	911J
Sulfate	(ug/l)					110000	113000
Cyanide	(ug/l)						
·							
	•						
		•					
		•					
						_	

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-405 11/17/2004 Primary	\$W-406 11/17/2004 Primary	SW-407 11/16/2004 Primary	SW-410 11/16/2004 Primary	SW-411 12/03/2004 Primary	SW-411 12/03/2004 Duplicate 1
Aluminum	(ug/l)	212 J	106J	55.8J	50U	167J	51.6J
Antimony	(ug/l)	0.5UJ	0.5UJ	0.5UJ	0.5UJ	0.71J	0.5UJ
Arsenic	(ug/l)	0.92J	1.1J	1.6J	1.9J	1.5J	1.5J
Barium	(ug/l)	5.4J	6.5J	7.4J	7 .2J	6.2J	5.8J
Beryllium	(ug/l)	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Cadmium	(ug/l)	1.7	2.7	1.5	0.52	1	0.87
Calcium	(ug/l)	139000	227000	284000	310000	213000	214000
Cḥromium	(ug/l)	2U	2U	2U	2U	2U	2U
Cobalt	(ug/l)	1U	1.2	1.2	1,3	10	1U
Copper	(ug/l)	17J	20.7J	12.1J	2Ų	21.4J	16.6J
Iron	(ug/I)	303J	147J	61.4J	50U	203	50U
Lead	(ug/l)	3.3J	1. 9 J	1.3J	1 U	1,1	1 U
Magnesium	(ug/I)	447000	801000	1040000	1150000	745000	743000
Manganese	(ug/l)	47.8J	41.7J	21.4J	13.1J	25.4	21.9
Mercury	(ug/l)	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Nickel	(ug/l)	2.2J	2 J	2J	1.8J	2.1J	1.6J
Potassium	(ug/l)	143000	237000J	309000	353000	216000J	222000J
Selenium	(ug/l)	1U	1U	1U	1U	1 U	1U
Silver	(ug/l)	1U	1U	1U	1U	1 U	1U
Sodium	(ug/l)	3700000	6390000	8270000	9330000	5890000	5900000
Thallium ·	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U

Page: 8 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Water

•							
CONSTITUENT	SITE DATE RESULT TYPE	SW-405 11/17/2004 Primary	SW-406 11/17/2004 Primary	SW-407 11/16/2004 Primary	SW-410 11/16/2004 Primary	SW-411 12/03/2004 Primary	SW-411 12/03/2004 Duplicate 1
Vanadium	(ug/l)	10	1U	1.2	1.5	1.4	1.2
Zinc	(ug/l)	330J	512J	275J	67.1J	190 J	177J
Sulfate	(ug/l)	882000	1660000	2190000	2460000	1650000	774000
Cyanide	(ug/l)						

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	SW-414 11/16/2004 Primary	SW-415 11/16/2004 Primary	SW-419 12/02/2004 Primary	SW-422 11/17/2004 Primary	SW-423 11/16/2004 Primary	SW-424 11/18/2004 Primary
Aluminum	(ug/l)	81.6J	305J	380	2490J	17200J	103J
Antimony	(ug/l)	0.5UJ	0.5UJ	0.5UJ	1.5J	0.65J	0.5UJ
Arsenic	(ug/l)	1.7J	2J	1.1J	3.1J	10.6J	1.2J
Barium	(ug/l)	7.3J	7.7J	5.2J	17.4	67.1	7.2J
Beryllium	(ug/l)	0.2U	0,2U	0.2U	1.8	0.8	0.2U
Cadmium	(ug/l)	2.6	2	2.1	854	10	2.4
Calcium	(ug/l)	275000	291000	133000	291000	169000	235000
Chromium	(ug/l)	2U	2 U	2U	2U	29	2U
Cobalt	(ug/l)	1.2	1.3	1U	93.7	8	1.2
Copper	(ug/l)	13.6J	16J	58.8	9790J	46.9J	19.8J
Iron	(ug/l)	98.5J	392J	386	1590J	39600J	163J
Lead	(ug/l)	2.3J	4.8J	1.5	154J	. 37.2J	1.6J
Magnesium	(ug/l)	996000	1070000	438000	170000	55600	823000
Manganese	(ug/l)	20.1J	24.2J	51.2	7680J	471J	43J
Mercury	(ug/l)	0.2U	0.2U	0.2U	0.2U	0.2U	0.2U
Nickel	(ug/l)	2.4J	3.5J	2.7J	163J	107 J	2.5J
Potassium	(ug/l)	302000	321000	129000	11900	15000	241000J
Selenium	(ug/l)	1U	10	1U	2U	1U	1U
Silver	(ug/l)	1U	1U	1U	10	1 U	1U .
Sodium	(ug/l)	8020000	8590000	3540000	227000	102000	6490000
Thallium	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U

Page: 10 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

CONSTITUENT	SITE DATE RESULT TYPE	SW-414 11/16/2004 Primary	SW-415 11/16/2004 Primary	SW-419 12/02/2004 Primary	SW-422 11/17/2004 Primary	SW-423 11/16/2004 Primary	SW-424 11/18/2004 Primary
/anadium	(ug/l)	1.2	1.8	1.3	1U	30.6	1U
Zinc	(ug/l)	437J	309J	501J	169000J	2630J	446J
Sulfate	(ug/l)	2110000	2260000	931000	1600000	607000	1790000
Cyanide	(ug/l)						
•							
				٠			
·							
•							

Page: 11 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-GPE1 01/01/1986 Primary	SW-GPE2 01/01/1987 Primary	SW-SA_1 01/01/1986 Primary	SW-SA_1 01/01/1987 Primary	SW-SA_1 01/01/1990 Primary	SW-SA_1 01/01/1991 Primary
Aluminum	(ug/l)						· · ·
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	2	9	11	24	14	25
Calcium	(ug/l)		•				
Chromium	(ug/l)						
Cobalt	(ug/l)						
Соррег	(ug/l)	40		20U		530	20U
Iron	(ug/l)						
Lead	(ug/l)	4	50U	3U	1	23	3U
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/1)					40	40U
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 12 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-GPE1 01/01/1986 Primary	SW-GPE2 01/01/1987 Primary	SW-SA_1 01/01/1986 Primary	SW-SA_1 01/01/1987 Primary	SW-SA_1 01/01/1990 Primary	SW-SA_1 01/01/1991 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	380		3620		6100	5410
Sulfate	(ug/l)						
Cyanide	(ug/l)				10U	50U	50U
			•				
·							
	•						
<u> </u>	<u> </u>	_					

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	SW-SA_2 01/01/1986 Primary	SW-SA_2 01/01/1987 Primary	SW-SA_2 01/01/1990 Primary	SW-SA_2 01/01/1991 Primary	SW-SP_SEEP 01/01/1986 Primary	SW-SP_SEEP 01/01/1987 Primary
Aluminum	(ug/l)	·					
Antimony	(ug/l)						
Arsenic ·	(ug/l)						
Barium	(ug/l)					•	
Beryllium	(ug/l)						
Cadmium	(ug/l)	18	16	8	15	60	65
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)		•				
Copper	(ug/l)	20U		550	30	50U	
Iron	(ug/l)						
Lead	(ug/l)	3U	2	6	10	3	1 U
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)			60	40		
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 14 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-SA_2 01/01/1986 Primary	SW-SA_2 01/01/1987 Primary	SW-SA_2 01/01/1990 Primary	SW-SA_2 01/01/1991 Primary	SW-SP_SEEP 01/01/1986 Primary	SW-SP_SEEP 01/01/1987 Primary
Vanadium	(ug/l)				<u>-</u>	-	<u> </u>
Zinc	(ug/l)	9410		11500	12100	13900	
Sulfate	(ug/l)						
Cyanide	(ug/l)		10U	50U	50U		

Page: 15 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	SW-SP_SEEP 01/01/1990 Primary	SW-SP_SEEP 01/01/1991 Primary	SW-TP 01/01/1987 Primary	SW-WCD 01/01/1986 Primary	
Aluminum	(ug/l)					
Antimony	(ug/l)					
Arsenic	(ug/l)					
Barium	(ug/l)					
Beryllium	(ug/l)					
Cadmium	(ug/l)	49	51	10	1U	
Calcium	(ug/l)					
Chromium	(ug/l)					
Cobalt	(ug/l)					
Copper	(ug/l)	260	470	20U	20U	
Iron ·	(ug/l)					
Lead	(ug/l)	3	104	3U	3U	
Magnesium	(ug/l)					
Manganese	(ug/l)					
Mercury	(ug/l)					
Nickel	(ug/l)	40U	60			
Potassium	(ug/l)					
Selenium	(ug/l)					
Silver	(ug/l)					
Sodium	(ug/l)					
Thallium	(ug/l)					

Page: 16 of 16 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS TOTAL METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	SW-SP_SEEP 01/01/1990 Primary	SW-SP_SEEP 01/01/1991 Primary	SW-TP 01/01/1987 Primary	SW-WCD 01/01/1986 Primary
Vanadium	(ug/l)	·			
Zinc	(ug/l)	9000	16300	390	20U
Sulfate	(ug/l)				
Cyanide	(ug/l)	50U	50U		
				a .	
					,

Appendix L Surface Water Sample Laboratory Results, VOCs

SURFACE WATER SAMPLE RESULTS VOCS

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE	SW-GPE2 01/01/1987	SW-SA_1 01/01/1986	SW-SA_1 01/01/1987	SW-SA_1 01/01/1990	SW-SA_1 01/01/1991	SW-SA_2 01/01/1986
1,1,1-trichloroethane	(ug/l)	5U	5U	5U	1 U	1U	17
1-Butanethiol	(ug/l)	5U	5U	5U	1 U	1U	5U
Ethylbenzene	(ug/l)	5U	5U	5U	1 U	1U	6 .
Toluene	(ug/l)	5U	5U	5U	1U	10	5
Xylene (total)	(ug/l)	5U	5U	5U	1 U	1U	36

SURFACE WATER SAMPLE RESULTS VOCS

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE	SW-SA_2 01/01/1987	\$W-SA_2 01/01/1990	SW-SA_2 01/01/1991	SW-SP_SEEP 01/01/1986	SW-SP_SEEP 01/01/1987	SW-SP_SEEP 01/01/1990
,1,1-trichloroethane	(ug/l)	5U	10	1U	5U	5U	1U
1-Butanethiol	(ug/l)	5U	2.9J	1J	5U	5U	1U
Ethylbenzene	(ug/l)	5U	1U	1U	5U	5U	10
Foluene	(ug/l)	5U	1U	1U	5U	5U	1Մ
Kylene (total)	(ug/l)	5U	1U	1ប	5U	5U	1U

SURFACE WATER SAMPLE RESULTS vocs

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

Motor

CONSTITUENT	SITE DATE	SW-SP_SEEP 01/01/1991		
,1,1-trichloroethane	(ug/l)	1U	 	
-Butanethiol	(ug/l)	10		
Ihylbenzene	· (ug/l)	10		
oluene	(ug/l)	10		
(ylene (total)	(ug/l)	1 U		
		•		
				· ·
-	<u>.</u>		 	

Appendix M Surface Water Sample Laboratory Results, SVOCs

Page: 1 of 3 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS SVOCS

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE	SW-GPE2 01/01/1987	SW-SA_1 01/01/1986	SW-SA_1 01/01/1987	SW-SA_1 01/01/1990	SW-SA_1 01/01/1991	SW-SA_2 01/01/1986
Di-n-butylphthalate	(ug/l)	10U	22	10U	10U	10U	10U
Di-n-octyl phthalate	(ug/l)	10U	1 0 U	10U	10U	10U	10U
Dioctyl adipate	(ug/l)	10U	10U	10 U	10U	10U	10U
o,o-diethyl phosphorodithiotic acid	(l\gu)	10U	10U	10U	10U	10J	10U
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)	10U	8J	10U	2.8J	1.55	10U
o,o-diethyl-s-methyl phosphorothicate	(ug/l)	10 U	10U	18J	3.1J	1.71	10U
o,o-s triethyldithiophosphate	(ug/l)	10U	10U .	10U	10U	10U	10U

SURFACE WATER SAMPLE RESULTS svocs

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

·							
CONSTITUENT	SITE DATE	SW-SA_2 01/01/1987	SW-SA_2 01/01/1990	SW-SA_2 01/01/1991	SW-SP_SEEP 01/01/1986	SW-SP_SEEP 01/01/1987	SW-SP_SEEP 01/01/1990
Di-n-butylphthalate	(ug/l)	10U	10U	10U	1 0U	10U	10U
Di-n-octyl phthalate	(ug/l)	10U	10U	10U	100	10U	10U
Dioctyl adipate	(ug/l)	10U	10U	10U	260	10U	10U
o,o-diethyl phosphorodithiotic acid	(ug/l)	10U	10U	10J	10U	10U	10U
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)	14J	6J	4.86	10U	10U	10U .
o,o-diethyl-s-methyl phosphorothicate	(ug/l)	10U	0.6J	10J	10U	100	10U
o,o-s triethyldithiophosphate	(ug/l)	13J	10 U	10U	10U	10U .	100

SURFACE WATER SAMPLE RESULTS svocs

PERIOD: From 01/01/1986 thru 12/03/2004 - Inclusive

(ug/l)

10U

SAMPLE TYPE: Water

o,o-s triethyldithiophosphate

•			
CONSTITUENT	SITE DATE	SW-SP_SEEP 01/01/1991	
Di-n-butylphthalate	(ug/l)	10U	
Di-n-octyl phthalate	(ug/l)	10U	
Dioctyl adipate	(ug/l)	10U	
o,o-diethyl phosphorodithiotic acid	(ug/l)	1.66	
o,o-diethyl-s-ethyl phosphorothioate	(ug/l)	3.49	,
o,o-diethyl-s-methyl phosphorothioate	(ug/l)	10U	

Appendix N Surface Water Sample Laboratory Results, Gasoline Fuel Oil

Page: 1 of 1 Date: 05/11/2005

SURFACE WATER SAMPLE RESULTS GASOLINE/FUEL OIL

PERIOD:

From 01/01/1986 thru 12/03/2004 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE	SW-SA_1 01/01/1986	SW-SA_2 01/01/1986	SW-SP_SEEP 01/01/1986	SW-SP_SEEP 01/01/1987	SW-SP_SEEP 01/01/1990	
Fuel oil no. 2	(ug/l)	50U	50U	50U	20U		
Gasoline	(ug/l)	10U	10U	10U	20U	5U	
	-						
				•			
				-		•	
					•		
	•						

Appendix O Drinking Water Well Sample Laboratory Results, Metals

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	10F 12/01/1967 Primary	10F 05/01/1968 Primary	10F 07/01/1968 Primary	10F 09/01/1968 Primary	11F_ROBINSON 12/01/1967 Primary	11F_ROBINSON 01/01/1986 Primary
Aluminum	(ug/l)						
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0	0.01U	0.004U	0.004U	0.001	0.001U
Calcium	(ug/l)						
Chromium	(ug/l)	•					
Cobalt	(ug/l)						
Copper	(ug/l)	0.02	0.06	0.03	0.005U	0.03	0.02U
ron	(ug/l)						
Lead	(ug/l)	0.02	0.01U	0.03U	0.03U	0.09	0.003U
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)	0.05	0.01U	0.01U	0.01U	0.03	
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						•
Sodium	(ug/l)						
Thallium	(ug/l)						

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	10F 12/01/1967 Primary	10F 05/01/1968 Primary	10F 07/01/1968 Primary	10F 09/01/1968 Primary	11F_ROBINSON 12/01/1967 Primary	11F_ROBINSO 01/01/1986 Primary
Vanadium	(ug/l)					-	
Zinc	(ug/l)	0.07	0.01U	0.04	0.02	1.6	- 0.3
Sulfate	(ug/l)						
Boron	(mg/l)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)						
•							
	•						
				•			
							

Page: 3 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	12F_JGRAY 12/01/1967 Primary	12F_JGRAY 05/01/1968 Primary	12F_JGRAY 07/01/1968 Primary	12F_JGRAY 01/01/1986 Primary	12F_JGRAY 01/01/1990 Primary	12F_JGRAY 01/01/1991 Primary
Aluminum	(ug/l)	•					
Antimony	(ug/l)			•			
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0	0.01U	0.004U	0.001U	0.0005U	0.0005U
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	0.01	0.04	0.02	0.2	0.09	0.26
Iron	(ug/l)						
Lead	(ug/l)	0	0.01U	0.05	0.003U	0.003U	0.003U
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)	0.03	0.01U	0.01U		0.04U	0.04U
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	12F_JGRAY 12/01/1967 Primary	12F_JGRAY 05/01/1968 Primary	12F_JGRAY 07/01/1968 Primary	12F_JGRAY 01/01/1986 Primary	12F_JGRAY 01/01/1990 Primary	12F_JGRAY 01/01/1991 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	0.04	0.01U	0.02	0.02U	0.01U	0.02
Sulfate	(ug/l)						
Boron	(mg/l)						
Cyanide	(ug/l)					0.05U	0.05U
Molybdenum	(mg/l)						•

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	13F_SMITH 12/01/1967 Primary	13F_SMITH 05/01/1968 Primary	13F_SMITH 07/01/1968 Primary	13F_SMITH 01/01/1986 Primary	13F_SMITH 01/01/1990 Primary	14F_RANKIN 12/01/1967 Primary
Aluminum	(ug/l)						_
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)					-	
Cadmium	(ug/l)	0.001	0.01U	0.008	0.004U	0.001U	0
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	0.14	0.08		0.03	0.02U	0.05
Iron	(ug/l)						
Lead	(ug/l)	0.01	0. 01U	0.03U	0.03U	0.003U	0.08
Magnesium	(ug/l)			•		4	
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)	0.03	0.01U	0.01U	0.01U		0.04
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 6 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	13F_SMITH 12/01/1967 Primary	13F_SMITH 05/01/1968 Primary	13F_SMITH 07/01/1968 Primary	13F_SMITH 01/01/1986 Primary	13F_SMITH 01/01/1990 Primary	14F_RANKIN 12/01/1967 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	0.05	0.01U	0.03	0.01	0.02U	0.05
Sulfate	(ug/l)						
Boron	(mg/l)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)						

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	14F_RANKIN 05/01/1968 Primary	14F_RANKIN 07/01/1968 Primary	14F_RANKIN 09/01/1968 Primary	14F_RANKIN 01/01/1986 Primary	14F_RANKIN 01/01/1990 Primary	14F_RANKIN 01/01/1991 Primary
Aluminum	(ug/l)		-		_		
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.01U	0.004U	0.004U	0.001U	0.0005U	0.0005U
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	0.09	0.11	0.25	0.18	0.04	0.02U
Iron	(ug/l)						
Lead	(ug/l)	0.01U	0.1U	0.03U	0.003U	0.005	0.003U
Magnesium	(ug/l)						
Manganese	(ug/l)				•		
Mercury	(ug/l)						
Nickel	(ug/l)	0.01U	0.01U	0.01U		0.04U	0.04U
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 8 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	14F_RANKIN 05/01/1968 Primary	14F_RANKIN 07/01/1968 Primary	14F_RANKIN 09/01/1968 Primary	14F_RANKIN 01/01/1986 Primary	14F_RANKIN 01/01/1990 Primary	14F_RANKIN 01/01/1991 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	0.01U	0.04	0.05	0.02U	0.01U	0.02
Sulfate	(ug/l)						
Boron	(mg/l)						
Cyanide	(ug/l)					0.05U	0.05U
Molybdenum	(mg/l)						

Page: 9 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	1F 12/01/1967 Primary	1F 05/01/1968 Primary	1F 07/01/1968 Primary	1F 09/01/1968 Primary	2F 12/01/1967 Primary	2F 05/01/1968 Primary
Aluminum	(ug/l)						
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0	0.01U		0.004U	0.001	0.01U
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	0.5	0.4	0.03	0.005U	0.01	0.1
Iron	(ug/l)						
Lead	(ug/l)	0	0.01U		0.03U	0	0.01U
Magnesium	(ug/l)	•					
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)	0.02	0.01U		0.01U	0.02	0.02
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 10 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	1F 12/01/1967 Primary	1F 05/01/1968 Primary	1F 07/01/1968 Primary	1F 09/01/1968 Primary	2F 12/01/1967 Primary	2F 05/01/1968 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	1.5	0.01U		0	1.6	1.3
Sulfate	(ug/l)						
Boron	(mg/l)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)						
•							
					,		
					•		

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	2F 07/01/1968 Primary	2F 09/01/1968 Primary	3F 12/01/1967 Primary	3F 05/01/1968 Primary	3F 07/01/1968 Primary	3F 09/01/1968 Primary
Numinum	(ug/l)						_
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.01	0.004U	0	0.01U	0.004U	0.004U
Calcium	(ug/l)						
Chromium	(ug/l)					-	
Cobalt	(ug/l)						
Copper	(ug/l)	0.05	0.03	0.05	0.1	0.25	0.01U
Iron	(ug/l)						
Lead	(ug/l)	0.03U	0.03U	0.02	0.01 U	0.03U	0.03U
Magnesium	(ug/l)						
Manganese	(ug/l)						•
Mercury	· (ug/l)						
Nickel	(ug/l)	0.01U	0.01U	0.02	0.02	0.01U	0.01U
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)					•	
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 12 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE (ug/l)	2F 07/01/1968 Primary	2F 09/01/1968 Primary	3F 12/01/1967 Primary	3F 05/01/1968 Primary	3F 07/01/1968	3F 09/01/1968
	(ua/l)				i minaly	Primary	Primary
	1-3.7						
Zinc	(ug/l)	1.07	0.68	0.1	0.04U	0.11	80.0
Sulfate	(ug/l)						
Boron	(mg/i)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)						

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	4F 12/01/1967 Prìmary	4F 05/01/1968 Primary	4F 07/01/1968 Primary	4F 09/01/1968 Primary	5F 12/01/1967 Primary	5F 05/01/1968 Primary
Aluminum	(ug/l)						
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.002	0.01U	0.004U	0.004U	0.001	0.01U
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	0.03	0.07	0.04	0.005U	0.06	0.2
Iron	(ug/l)						
Lead	(ug/l)	. 0	0.01U	0.03U	0.03U	0	0.01U
Magnesium	, (ug/l)						
Manganese	(ug/l)				-		
Mercury -	(ug/l)						
Nickel	(ug/l)	0.03	0.01	0.01U	0.01U	0.03	0.02
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 14 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	4F 12/01/1967 Primary	4F 05/01/1968 Primary	4F 07/01/1968 Primary	4F 09/01/1968 Primary	5F 12/01/1967 Primary	5F 05/01/1968 Primary
/anadium	(ug/l)						
Zinc	(ug/l)	0.1	0.01U	0.04	0.08	1.6	0.08
Sulfate	(ug/l)						
Boron	(mg/l)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)						

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	5F 07/01/1968 Primary	5F 09/01/1968 Primary	6F 12/01/1967 Primary	6F 09/01/1968 Primary	7F 12/01/1967 Primary	7F 05/01/1968 Primary
Aluminum	(ug/l)						•
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.004U	0.004년	0		0.001	0.01U
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt ,	(ug/l)						
Copper	(ug/l)	0.15	0,12	0.2		0.005	0.03
Iron	(ug/l)						
Lead	(ug/l)	0.03U	U E0 .0	0.01		0	0.01U
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)	0.01U	0.01U	0		0.01	0.01U
Potassium	(ug/l)		•				
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)					•	

Page: 16 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

		-					
CONSTITUENT	SITE DATE RESULT TYPE	5F 07/01/1968 Primary	5F 09/01/1968 Primary	6F 12/01/1967 Primary	6F 09/01/1968 Primary	7F 12/01/1967 Primary	7F 05/01/1968 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	0.47	0.45	0.1	0.09	0.02	0.01U
Sulfate	(ug/l)						
Boron	(mg/l)	•					
Cyanide	(ug/l)						
Molybdenum	(mg/l)						

PERIOD: From 12/01/1967 thru 01/12/2005 - inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	7F 07/01/1968 Primary	7F 09/01/1968 Primary	8F 12/01/1967 Primary	8F 05/01/1968 Primary	8F 07/01/1968 Primary	9F_HARDING 12/01/1967 Primary
Aluminum	(ug/l)						
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barlum	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.004U	0.004U	0	0.01U	0.004U	0
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	0.04	0.005U	0.02	0.04	0.04	0.02
Iron	(ug/l)						
Lead	(ug/l)	0.03U	0.03U	0.01	0.01U	0.03U	0.01
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)	0.01U	0.01 U	0.05	0.15	0.01U	0.04
Potassium	· (ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						•

Page: 18 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	7F 07/01/1968 Primary	7F 09/01/1968 Primary	8F 12/01/1967 Primary	8F 05/01/1968 Primary	8F 07/01/1968 Primary	9F_HARDING 12/01/1967 Primary
'anadium	(ug/l)						
linc	(ug/l)	0.03	0.01U	1.6	0.01U	0.72	0.03
ulfate	(ug/l)						
Goron	(mg/l)						
Syanide Syanide	(ug/l)					-	
folybdenum	(mg/l)					•	
					·		
·							

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive.

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	9F_HARDING 05/01/1968 Primary	9F_HARDING 07/01/1968 Primary	9F_HARDING 09/01/1968 Primary	9F_HARDING 01/01/1986 Primary	9F_HARDING 01/01/1987 Primary	9F_HARDING 01/01/1990 Primary
Aluminum	(ug/l)						
Antimony	(ug/l)						
Arsenic	(ug/l)						
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.01U	0.004U	0.004U	0.001じ	0.005U	0.0005U
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Copper	(ug/l)	0.04	0	0.005U	0.04		0.02
Iron	(ug/l)						
Lead	(ug/l)	0.01U	0.05	0.03U	0.003U	0.001U	0.003U
Magnesium	(ug/l)						
Manganese	(ug/l)						
Mercury	(ug/l)						
Nickel	(ug/l)	0.01U	0.01U	0.01U			0.04U
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 20 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: F

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	9F_HARDING 05/01/1968 Primary	9F_HARDING 07/01/1968 Primary	9F_HARDING 09/01/1968 Primary	9F_HARDING 01/01/1986 Primary	9F_HARDING 01/01/1987 Primary	9F_HARDING 01/01/1990 Primary
Vanadium	(ug/l)	-			 -		
Zinc	(ug/l)	0.01U	0.07	0.01	0.02U		0.01U
Sulfate	(ug/l)						
Boron	(mg/l)		,				
Cyanide	(ug/l)						0.05ป
Molybdenum .	(mg/l)						
-						·	
					–		

Page: 21 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	CALLAHAN_WATE 01/01/1986 Primary	DWCA-01 08/29/2002 Primary	DWCA-01 09/10/2003 Primary	DWCA-02 09/10/2003 Primary	DWCA-03 09/10/2003 Primary	DWCA-04 09/10/2003 Primary
Aluminum	(ug/l)		_	_		-	
Antimony	(ug/l)						
Arsenic	(ug/l)		5.0U	7.0	3.0U	3.0U	3.0U
Barium	(ug/l)						
Beryllium	(ug/l)						
Cadmium	(ug/l)	0.001U	10.0U	2.0U	2.0U	2.0U	2.0U
Calcium	(ug/l)						
Chromium	(ug/l)		10.0U				
Cobalt	(ug/l)						
Copper	(ug/l)	0.02U	31.0	24.0	110	86.0	13.0
Iron	(ug/l)			20.0	30.0	10.0	3100
Lead	(ug/l)	0.003U	3.0U	3.0U	9.0	3.0U	71.0
Magnesium	(ug/l)						
Manganese	(ug/l)				10.0	10.0U	80.0
Mercury	(ug/l)	-					
Nickel .	(ug/l)		10.0U				
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 22 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

ONSTITUENT	SITE DATE RESULT TYPE	CALLAHAN_WATE 01/01/1986 Primary	DWCA-01 08/29/2002 Primary	DWCA-01 09/10/2003 Primary	DWCA-02 09/10/2003 Primary	DWCA-03 09/10/2003 Primary	DWCA-04 09/10/2003 Primary
anadium	(ug/l)						
inc	(ug/l)	0.02	46.0	46.0	71.0	48.0	7400
ulfate	(ug/l)			45000	12000	11000	9000
oron	(mg/l)						
yanide	(ug/l)						
lolybdenum	(mg/l)						

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-05 09/10/2003 Primary	DWCA-05 08/26/2004 Primary	DWCA-06 08/29/2002 Primary	DWCA-06 09/10/2003 Primary	DWCA-06 08/26/2004 Primary	DWCA-07 09/10/2003 Primary
Aluminum	(ug/l)		20.0U			60.0	
Antimony	(ug/l)		3.0U			3.0U	
Arsenic	(ug/l)	3.0U	3.0U	5.0U	3.0U	3.0U	3.0U
Barium	(ug/l)		5.0U			5.0U	
Beryllium	(ug/l)		2.0U			2.00	
Cadmium	(ug/l)	2.0U	2.0	10.0U	2.0U	3.0	11.0
Calcium	(ug/l)						
Chromium	(ug/l)		1.0Ư	10.0U		1.0U	
Cobalt	(ug/l)						
Copper	(ug/l)	500	73.0	180	270	95.0	100
Iron	(ug/l)	480	20.0		30.0	60.0	10.0
Lead	(ug/l)	7.0	3.0U	4.3	3.0U	5.0	3.0U
Magnesium	(ug/l)						
Manganese	(ug/l)	150	360		10.0U	10.0U	10.0U
Mercury	(ug/l)		0.20U			· 0.20U	
Nickel	(ug/l)		2.0U	10 .0U		2.0U	
Potassium	(ug/l)						
Selenium	(ug/l)		10.0U			10.0U	
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 24 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

	•						
CONSTITUENT	SITE DATE RESULT TYPE	DWCA-05 09/10/2003 Primary	DWCA-05 08/26/2004 Primary	DWCA-06 08/29/2002 Primary	DWCA-06 09/10/2003 Primary	DWCA-06 08/26/2004 Primary	DWCA-07 09/10/2003 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	170	40.0	150	100	240	2700
Sulfate	(ug/l)	12000	13000		18000	19000	23000
Boron	(mg/l)			•			
Cyanide	(ug/l)						
Molybdenum	(mg/l)		0.01U			0.01ป	
							,

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-08 09/10/2003 Primary	DWCA-09 09/10/2003 Primary	DWCA-10 08/29/2002 Primary	DWCA-10 09/10/2003 Primary	DWCA-10 01/12/2005 Primary	DWCA-11 08/29/2003 Primary
Aluminum	(ug/l)					25U	
Antimony	(ug/l)					0.25U	
Arsenic	(ug/l)	3.0U	4.0	5.0 U	3.0U	0,28J	5.0U
Barium	(ug/l)					10	
Beryllium	(ug/l)					0.1U	
Cadmium	(ug/l)	2.0U	2.0U	10.0Մ	2.0U	0.1U	10.0U
Calcium	(ug/l)					24800	
Chromium	(ug/l)			10.0U		1U	10.0U
Cobalt	(ug/l)					0.5UJ	
Copper	(ug/l)	5.0U	140	34.0	28.0	0.79J	610
fron	(ug/l)	20.0	1300		40.0	50U	
Lead	(ug/l)	3.0U	5.0	3.0U	3.0U	0.03J	3.0U
Magnesium	(ug/l)					3720	
Manganese	(ug/l)	30.0	160		10.0U	0.5U	
Mercury	(ug/l)					0.1	
Nickel	(ug/l)			10.0U		0.29J	10.0U
Potassium	(ug/l)				•	1320	
Selenium	(ug/l)					1.5U	
Silver	(ug/l)					0.5U	
Sodium	(ug/l)		•			6760	
Thallium	(ug/l)					0.25U	

Page: 26 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

						•	
CONSTITUENT	SITE DATE · RESULT TYPE	DWCA-08 09/10/2003 Primary	DWCA-09 09/10/2003 Primary	DWCA-10 08/29/2002 Primary	DWCA-10 09/10/2003 Primary	DWCA-10 01/12/2005 Primary	DWCA-11 08/29/2003 Primary
Vanadium	(ug/l)					0.48J	
Zinc	(ug/l)	2.0U	0.8	10.0	13.0	2.2 J	24.0
Sulfate	(ug/l)	27000	28000		15000	13600	
Boron	(mg/l)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)						

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-11 09/10/2003 Primary	DWCA-11 01/12/2005 Primary	DWCA-12 08/29/2002 Primary	DWCA-12 01/12/2005 Primary	DWCA-13 09/10/2003 Primary	DWCA-14 09/26/2002 Primary
Aluminum	(ug/l)	, ,	25U	· initially	25U	· imaly	, milety
Antimony	(ug/l)		0.26U		0.28U		
Arsenic	(ug/l)	3.0U	0.25J	5.0U	0.4J	3.0U	5.00
Barium	(ug/l)		4.7		2.9		
Beryllium	(ug/l)		0.06J		0.08J		
Cadmium	(ug/l)	2.0U	0.04J	10.0U	0.06J	2.0U	10.0U
Calcium	(ug/l)		9390		17400		
Chromium	(ug/l)		1U	10.0U	1U		10.0U
Cobalt	(ug/l)		0.16J		0.11J		
Copper	(ug/l)	390	317J	27.0	80.8J	43.0	10.0U
fron	(ug/l)	10.0	11.6J		287	10.0	
Lead	(ug/l)	3.0	20.4J	3.0U	162J	3.0U	3.0U
Magnesium	(ug/l)		4930		1740		
Manganese	(ug/l)	10.0	2.3		16.7	10.0U	
Mercury	(ug/l)		0.1		0.1		
Nickel	(ug/l)		1.9	10.0U	2.3		
Potassium	(ug/l)		4940		712		
Selenium	(ug/l)		1.5U		1.5U		
Silver	(ug/l)		0.5U		0.5U		
Sodium	(ug/l)		10400		7800		
Thallium	(ug/l)		0.25U		0.25U		

Page: 28 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-11 09/10/2003 Primary	DWCA-11 01/12/2005 Primary	DWCA-12 08/29/2002 Primary	DWCA-12 01/12/2005 Primary	DWCA-13 09/10/2003 Primary	DWCA-14 09/26/2002 Primary
Vanadium	(ug/l)		0.5U		0.5U	-	
Zinc	(ug/l)	66.0	31.9J	10.0	56.4J	32.0	10.0U
Sulfate	(ug/l)	12000	8750		13500	16000	
Boron	(mg/l)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)						

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-15 08/29/2002 Primary	DWCA-15 09/10/2003 Primary	DWCA-15 10/21/2003 Primary	DWCA-15 01/11/2005 Primary	DWCA-16 05/13/2003 Primary	DWCA-16 09/10/2003 Primary
Aluminum	(ug/l)				25U		
Antimony	(ug/l)		1		0.25U	6.0U	
Arsenic	(ug/l)	5.0U	3.00	3.0U	0.1UJ	3.0U	3.0U
Barium	(ug/l)				10		
Beryllium	(ug/l)				0.1U	0.50U	
Cadmium	(ug/l)	10.0U	2.0U	2.00	0.1Ų	0.50U	2.0U
Calcium	(ug/l)				40800		
Chromium	(ug/l)	10.0U			1U	1.0U	
Cobalt	(ug/l)				0.5UJ		
Copper	(ug/l)	21.0	53.0	7.0	11.5J	59.0	42.0
Iron	(ug/l)		50.0	10.0U	50U		10.0
Lead	(ug/l)	3.0U	1200	3.0	4 J	4.0	3.0U
Magnesium	(ug/l)				4970		
Manganese	(ug/l)		10.0U	10.0U	0.5U		10.0U
Mercury	(ug/l)				0.1	0.20U	
Nickel	(ug/l)	10.0U			0.61	4.0U	
Potassium	(ug/l)			-	1200		
Selenium	(ug/l)				1.5U	6.0U	
Silver	(ug/l)				0.5U	0.50U	
Sodium	(ug/l)				11700		
Thallium	(ug/l)				0.25U	5. 0 U	

Page: 30 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-15 08/29/2002 Primary	DWCA-15 09/10/2003 Primary	DWCA-15 10/21/2003 Primary	DWCA-15 01/11/2005 Primary	DWCA-16 05/13/2003 Primary	DWCA-16 09/10/2003 Primary
Vanadium	(ug/l)			<u></u>	0.53		
Zinc	(ug/l)	10.0U	460	2.0U	1. 6 J	44.0	53.0
Sulfate	(ug/l)		18000	18000	9530		12000
Boron	(mg/l)					•	
Cyanide	(ug/l)						
Molybdenum	(mg/l)						
•							

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-16 01/11/2005 Primary	DWCA-16 01/11/2005 Duplicate 1	DWCA-17 09/10/2003 Primary	DWCA-17 11/18/2004 Primary	DWCA-17 11/18/2004 Primary	DWCA-17 11/18/2004 Primary
Aluminum	(ug/l)	25U	25U				
Antimony	(ug/l)	0.25U	0.25U				
Arsenic	(ug/l)	0.12UJ	0.1UJ	3.0U			
Barium	(ug/l)	3.6	3.7				
Beryllium	(ug/l)	0.1U	0.2U				
Cadmium	(ug/l)	0.03J	0.02J	2.0U			
Calcium	(ug/l)	24200	24300				
Chromium	(ug/l)	10	1U				
Cobalt	(ug/l)	0.5UJ	0.5UJ				
Copper	(ug/l)	71.6J	45J	270	280	240	34.0
Iron	(ug/l)	54.6	37.9	30.0			
Lead	(ug/l)	10.1J	2. 4 J	11.0	4.0	5.0	3.0U
Magnesium	(ug/l)	2550	2560				
Manganese	(ug/l)	0.87	0.9	10.0U			
Mercury	(ug/l)	0.1	0.1				
Nickel	(ug/l)	0.73	0.59		•		
Potassium	(ug/l)	5650	5650				
Selenium	(ug/l)	1.5U	1.5U				
Silver	(ug/l)	0.5U	0.5U				
Sodium	(ug/l)	13300	13400				
Thallium	(ug/l)	0.25U	0.25U				

Page: 32 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

SITE DATE RESULT TYPE	DWCA-16 01/11/2005 Primary	DWCA-16 01/11/2005 Duplicate 1	DWCA-17 09/10/2003 Primary	DWCA-17 11/18/2004 Primary	DWCA-17 11/18/2004 Primary	DWCA-17 11/18/2004 Primary
(ug/l)	0.5U	0.5U				
(ug/l)	28.7 J	31.3J	64.0			
(ug/l)	13100	13100	8000			
(mg/l)						
(ug/l)						
(mg/l)						

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-17 11/18/2004 Primary	DWCA-17 01/11/2005 Primary	DWCA-18 09/10/2003 Primary	DWCA-18 01/12/2005 Primary	DWCA-19 05/13/2003 Primary	DWCA-19 06/25/2003 Primary
Aluminum	(ug/l)		25U		25U		140
Antimony	(ug/l)		0.25U		0.34U	6.0U	6.0U
Arsenic	(ug/l)	3.0U	0.22J	3.0U	0.33J	3.0U	3.0U
Barium	(ug/l)		0.95J		5.6		4.0
Beryllium	(ug/l)		0.1U		0.04J	0.50U	0.50U
Cadmium	(ug/l)	2.0U	0.02J	2.0U	0.08J	3.7	3.3
Calcium	(ug/l)		19400		11300		
Chromium	(ug/l)		1U		78.8	7.0	1.0
Cobalt	(ug/l)		0.5UJ		0.05J		
Соррег	(ug/l)	32.0	34.9J	490	82.7J	290	200
Iron	(ug/l)	30.0	15.1J	20.0	42.3		1900
Lead	(ug/l)	3.0U	0.77J	4.0	14.7J	180	31.0
Magnesium	(ug/l)		3760		2420		
Manganese	(ug/l)	10.0U	1.6	10.0U	1.1		35.0
Mercury	(ug/l)		0.1		0.1	0.20U	0.20U
Nickel	(ug/l)		0.35J		0.62	0.8	4.0
Potassium	(ug/l)		1150		4610		
Selenium	(ug/l)	•	1.5U		1.5U	6.0U	6.0U
Silver	(ug/l)		0.5U		0.5U	0.50U	0.50U
Sodium	(ug/l)		9310		11000		
Thallium	(ug/l)		0.25U	,	0.25U	5.0U	

Page: 34 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

SITE DATE	DWCA-17 11/18/2004	DWCA-17 01/11/2005	DWCA-18 09/10/2003	DWCA-18 01/12/2005	DWCA-19 05/13/2003	DWCA-19 06/25/2003	
RESULT TYPE	Primary	Primary	Primary	Primary	Primary	Primary	
(ug/l)		0.5U		0.5U			
(ug/l)	36.0	25.1J	55.0	22 J	2000	1500	
(ug/l)	8000	6460	17000	13500		27000	
(mg/l)			•			0.014	
(ug/l)			·				
(mg/l)						0.001U	
	DATE RESULT TYPE (ug/l) (ug/l) (ug/l) (mg/l) (ug/l)	DATE 11/18/2004 RESULT TYPE Primary (ug/l) 36.0 (ug/l) 8000 (mg/l) (ug/l)	DATE 11/18/2004 01/11/2005 RESULT TYPE Primary Primary (ug/l) 0.5U (ug/l) 36.0 25.1J (ug/l) 8000 6460 (mg/l) (ug/l)	DATE 11/18/2004 01/11/2005 09/10/2003 RESULT TYPE Primary Primary Primary (ug/l) 0.5U (ug/l) 36.0 25.1J 55.0 (ug/l) 8000 6460 17000 (mg/l) (ug/l)	DATE 11/18/2004 01/11/2005 09/10/2003 01/12/2005 RESULT TYPE Primary Primary Primary Primary 0.5U 0.5U 0.5U (ug/l) 36.0 25.1J 55.0 22J (ug/l) 8000 6460 17000 13500 (mg/l) (ug/l)	DATE 11/18/2004 01/11/2005 09/10/2003 01/12/2005 05/13/2003 RESULT TYPE Primary Primary Primary Primary Primary 0.5U 0.5U (ug/l) 36.0 25.1J 55.0 22J 2000 (ug/l) 8000 6460 17000 13500 (mg/l) (ug/l)	

Page: 35 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-19 08/26/2004 Primary	DWCA-20 06/25/2003 Primary	DWCA-21 06/25/2003 Primary	DWCA-22 08/29/2002 Primary	DWCA-23 08/29/2002 Primary	DWCA-24 10/21/2003 Primary
Aluminum	(ug/l)	240					
Antimony	(ug/l)	3.0U	6.0U	6.0U			
Arsenic	(ug/l)	3.0U	3.0U	3.0U	5.0U	5.0U	3.0U
Barium	(ug/l)	7.0					
Beryllium	(ug/l)	2.0U	0.50U	0.50U	-		
Cadmium	(ug/l)	9.0	0.50U	0.50U	10.0U	10.0U	2.0U
Calcium	(ug/l)			•			
Chromium	(ug/i)	1.0 U	1.0U	1.0U	10.0U	10.0U	
Cobalt	(ug/l)						
Copper	(ug/l)	68.0	7.0	2.0U	40.0	61.0	5.0U
iron	(ug/l)	520					10.0
Lead	(ug/l)	16.0	3.0U	3.0U	3.0U	3.0U	3.0U
Magnesium	(ug/l)						
Manganese	(ug/l)	20.0					1.0U
Mercury	(ug/l)	0.20U	0.20U	0.20U			
Nickel	(ug/l)	3.0	4.0U	4.0U	10.0U	10.0U	
Potassium	(ug/l)						
Selenium	(ug/l)	10.0U	6.0U	6.0U			
Silver	(ug/l)		0.50 U	0.50U			
Sodium	(ug/l)						
Thallium	(ug/l)		5.0U	5.0U			

Page: 36 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-19 08/26/2004 Primary	DWCA-20 06/25/2003 Primary	DWCA-21 06/25/2003 Primary	DWCA-22 08/29/2002 Primary	DWCA-23 08/29/2002 Primary	DWCA-24 10/21/2003 Primary
/anadium	(ug/l)						
Zinc	(ug/l)	1700	5.0U	5.0U	10.0	10.0U	23.0
Sulfate	(ug/l)	32000				·	5000
Boron	(mg/l)						
Cyanide	(ug/l)						
Molybdenum	(mg/l)	0.01U					

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-25 10/21/2003 Primary	DWCA-26 10/21/2003 Primary_	DWCA-27 08/26/2004 Primary	DWCA-28 08/26/2004 Primary	DWCA-29 08/26/2004 Primary	DWCA-30 08/26/2004 Primary
Aluminum	(ug/l)		·	70.0		-	
Antimony	(ug/l)			3.0U			
Arsenic	(ug/l)	3.0U	3.0	5.0	3.0U	3.0U	3.0U
Barium	(ug/l)			17.0			
Beryllium	(ug/l)			2.0U			
Cadmium	(ug/l)	2.0U	2.0U	3.0	2.0U	2.0U	2.0U
Calcium	(ug/l)						
Chromium	(ug/l)			1.0U			
Cobalt	(ug/l)						
Copper	(ug/l)	24.0	5.0U	120	5.0U	60.0	25.0
Iron	(ug/l)	30.0	10.0U	160	110	10.0U	10.0
Lead	(ug/l)	3.0	3.0U	4.0	3.0U	5.0	3.0U
Magnesium	(ug/l)				•		
Manganese	(ug/l)	10.0U	20.0	20.0	10.0U	10.0U	10 .0U
Mercury	(ug/l)			0.20U			
Nickel	(ug/l)			6.0			
Potassium	(ug/l)						
Selenium	(ug/l)			10.0U			
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

Page: 38 of 42 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS METALS (INCLUDING CYANIDE AND SULFATE)

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-25 10/21/2003 Primary	DWCA-26 10/21/2003 Primary	DWCA-27 08/26/2004 Primary	DWCA-28 08/26/2004 Primary	DWCA-29 08/26/2004 Primary	DWCA-30 08/26/2004 Primary
Vanadium	(ug/l)						
Zinc	(ug/l)	12.0	3.0	750	13.0	28.0	18.0
Sulfate	(ug/l)	9000	28000	17000	15000	10000	11000
Boron	· (mg/l)						
Cyanide	(ug/l)						,
Molybdenum	(mg/l)			0.01U			

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-31 08/26/2004 Primary	HOWARD 01/01/1987 Primary	LEACH 01/01/1987 Primary	MGRAY-SANDEC 01/01/1986 Primary	MGRAY-SANDEC 01/01/1987 Primary	MGRAY-SANDEO 01/01/1990 Primary
Aluminum	(ug/l)						
Antimony	(ug/l)						
Arsenic	(ug/l)	3.0U					
Barium	(ug/l)						
Beryllium	(ug/l)						•
Cadmium	(ug/l)	2,0U	0.004U	0.005U	0.01	0.005	0.0005U
Calcium	(ug/l)						
Chromium	(ug/l)						
Cobalt	(ug/l)						
Соррег	(ug/l)	23.0	0.12		0.43		0.25
Iron	(ug/l)	20.0			•		
Lead	(ug/l)	3.0U	0.03U	0.001U	0.003	0.001	0.003U
Magnesium	(ug/l)		,				
Manganese	(ug/l)	10,0U					
Mercury	(ug/l)						
Nickel	(ug/l)		0.01U				0.04U
Potassium	(ug/l)						
Selenium	(ug/l)						
Silver	(ug/l)						
Sodium	(ug/l)						
Thallium	(ug/l)						

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

							
CONSTITUENT	SITE DATE RESULT TYPE	DWCA-31 08/26/2004 Primary	HOWARD 01/01/1987 Primary	LEACH 01/01/1987 Primary	MGRAY-SANDEC 01/01/1986 Primary	MGRAY-SANDEC 01/01/1987 Primary	MGRAY-SANDEO 01/01/1990 Primary
Vanadium	(ug/l)		<u> </u>				
Zinc	(ug/l)	5.0	0.45		0.26		0.04
Sulfate	(ug/l)	8000					
Boron	(mg/l)					•	
Cyanide	(ug/l)						0.05U
Molybdenum	(mg/l)						
						•	
<u> </u>	· · · · · ·					. <u></u> .	
							,
,	•						
<u> </u>							

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	MGRAY-SANDECKI 01/01/1991 Primary	NORRINGTON 01/01/1987 Primary
Aluminum	(ug/l)		
Antimony	(ug/l)		
Arsenic	(ug/l)		
Barium	(ug/l)		
Beryllium	(ug/l)		
Cadmium	(ug/l)	0.0007	0.005U
Calcium	(ug/l)		
Chromium	(ug/l)		
Cobalt	(ug/l)		
Copper	(ug/l)	0.4	
Iron	(ug/l)		
Lead	(ug/l)	0.003U	0.003
Magnesium	(ug/l)		
Manganese	(ug/l)		
Mercury	(ug/l)		
Nickel	(ug/l)	0.04U	
Potassium	(ug/i)		
Selenium	(ug/l)		
Silver	(ug/l)		
Sodium	(ug/l)		
Thallium	(ug/l)		

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

Venedium (ug/l) Zinc (ug/l) 0.08 Sulfate (ug/l) 0.05U Boron (ug/l) 0.05U Cyanide (ug/l) 0.05U Molybdenum (mg/l)	CONSTITUENT	SITE DATE RESULT TYPE	MGRAY-SANDECKI 01/01/1991 Primary	NORRINGTON 01/01/1987 Primary
Sulfate (ug/l) Soron (mg/l) Cyanide (ug/l) 0.05U Molybdenum (mg/l)	/anadium	(ug/l)		
Boron (mg/l) Cyanide (ug/l) 0.05U Molybdenum (mg/l)	Zinc	(ug/l)	0.08	
Cyanide (ug/i) 0.05U Molybdenum (mg/i)	Sulfate	(ug/l)		
Molybdenum (mg/l)	Boron	(mg/l)		
	Cyanide	(ug/l)	0.05U	
	Molybdenum	(mg/l)		

Appendix P Drinking Water Well Sample Laboratory Results, VOCs

DRINKING WATER SAMPLE RESULTS vocs

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-10 01/12/2005 Primary	DWCA-11 01/12/2005 Primary	DWCA-12 01/12/2005 Primary	DWCA-15 01/11/2005 Primary	DWCA-16 01/11/2005 Primary	DWCA-16 01/11/2005 Duplicate 1
1,1,1-trichloroethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
1,1,2,2-Tetrachloroethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
1,1,2-Trichloro-1,2,2-trifluoroethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
1,1,2-Trichloroethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0. 5 U	0.5U
1,1-Dichloroethane	(ug/l)	0.5U	0.5U	0.5U	0.5U [*]	0.5U	0.5 U
1,1-Dichloroethene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
1,2,3-Trichlorobenzene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5 U
1,2,4-Trichlorobenzene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
1,2-Dibromo-3-chloropropane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
1,2-Dichlorobenzene	(ug/l)	0.5U	0.5U	0. 5U	0.5U	0.5U	0.5U
1,2-Dichloroethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5∪
1,2-Dichloropropane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
1,3-Dichlorobenzene	(ug/l)	0.5U	0.5U	0. 5U	0.5U	0.5U	0.5U
1,4-Dichlorobenzene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
2-Butanone (MEK)	(ug/l)	5U	5U ·	5U	50	50	5U
2-Hexanone	(ug/l)	5U	5U	5U	5U	5U	5U
4-Methyl-2-pentanone	(ug/l)	5U	5U	5U	5U	5U	5U
Acetone	(ug/l)	5U	5U	5U	5U	5U	5U
Benzene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Bromochloromethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Bromodichloromethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U

DRINKING WATER SAMPLE RESULTS VOCS

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE: Water

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-10 01/12/2005 Primary	DWCA-11 01/12/2005 Primary	DWCA-12 01/12/2005 Primary	DWCA-15 01/11/2005 Primary	DWCA-16 01/11/2005 Primary	DWCA-16 01/11/2005 Duplicate 1
Bromoform	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Bromomethane	(ug/l)	R	0.5UJ	0.5UJ	R	0.5U	0.5U
Carbon disulfide	(ug/l)	R	0.5UJ	0.5UJ	R	0.5ป	0.5U
Carbon tetrachloride	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Chlorobenzene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Chlorodibromomethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Chloroethane	(ug/l)	R	0.5UJ	0.5UJ	R	0.5U	0.5U
Chloroform	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Chloromethane	(ug/l)	R	0.5UJ	0.5UJ	R	0.5U	0.5U ,
cis-1,2-Dichloroethene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
cis-1,3-Dichloropropene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Cyclohexane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Dichlorodifluoromethane	(ug/l)	R	0.5UJ	0.5UJ	R	0.5U	0.5U
Ethylbenzene	(ug/l)	0.5U	U2.0	0.5U	0.5U	0.5U	0.5U
Ethylenedibromide	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Fluorotrichloromethane	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Isopropylbenzene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Methyl acetate (acetic acid, methyl este	(ug/l)	0.5U	0.5∪	0.5U	0.5U	0.5U	0.5U
Methyl cyclohexane	(ug/l)	0.5U	0.5U	0.5U	0.5ひ	0.5U	0.5U
Methyl tert-butyl ether	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U
Methylene chloride	(ug/l)	0.5UJ	0.5UJ	0.5UJ	0.5UJ	1.9UJ	2UJ

DRINKING WATER SAMPLE RESULTS vocs

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-10 01/12/2005 Primary	DWCA-11 01/12/2005 Primary	DWCA-12 01/12/2005 Primary	DWCA-15 01/11/2005 Primary	DWCA-16 01/11/2005 Primary	DWCA-16 01/11/2005 Duplicate 1	
Styrene	(ug/l)	0.5U	0.5Ų	0.5U	0.5U	0.5U	0.5U	
Tetrachloroethene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	
Toluene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	
trans-1,2-Dichloroethene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	
Trans-1,3-Dichloropropene	(ug/l)	0.5U	0.5U	0.5U	0.5 U	0.5U	0.5U	
Trichloroethene	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	
Vinyl chloride	(ug/l)	0.5U	0.5U	0.5U	0.5U	0.5U	0.5U	
Xylenes (total)	(ug/l)	0.5U	0.5U	0.5U .	0.5U	0.5U	0.5U	

DRINKING WATER SAMPLE RESULTS vocs

PERIOD:

From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-17 01/11/2005 Primary	DWCA-18 01/12/2005 Primary	
1,1,1-trichloroethane	(ug/l)	0.5U	0.5UJ	
1,1,2,2-Tetrachloroethane	(ug/l)	0.5U	0.5UJ	
1,1,2-Trichloro-1,2,2-trifluoroethane	(ug/l)	0.5U	0.5UJ	
1,1,2-Trichloroethane	(ug/l)	0.5U	0.5UJ	
1,1-Dichloroethane	(ug/l)	0.5U	0.5UJ	
1,1-Dichloroethene	(ug/i)	0.5U	0.5UJ	
1,2,3-Trichlorobenzene	(ug/l)	0.5U	0.5UJ	
1,2,4-Trichlorobenzene	(ug/l)	0.5U	0.5UJ	
1,2-Dibromo-3-chloropropane	(ug/l)	0.5U	0.5UJ	
1,2-Dichlorobenzene	(ug/l)	0.5U	0.5UJ	
1,2-Dichloroethane	(ug/l)	0.5U	0.5UJ	
1,2-Dichloropropane	(ug/l)	0.5U	0.5UJ	
1,3-Dichlorobenzene	. (ug/l)	0.5U	0.5UJ	
1,4-Dichlorobenzene	(ug/l)	0.5U	0.5UJ	
2-Butanone (MEK)	(ug/l)	5U	5บJ	
2-Нехапопе	(ug/l)	5U	5UJ	
4-Methyl-2-pentanone	(ug/l)	5U	5UJ	
Acetone	(ug/l)	5U	5UJ	
Benzene	(ug/l)	0.5U	0.5UJ	
Bromochloromethane	(ug/l)	0.5U	0.5UJ	
Bromodichloromethane	(ug/l)	0.5U	0.5UJ	

Page: 5 of 6 Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS VOCS

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	DWCA-17 01/11/2005 Primary	DWCA-18 01/12/2005 Primary	
Bromoform	(ug/l)	0.5U	0.5UJ	
Bromomethane	(ug/i)	0.5U	0.5UJ	
Carbon disulfide	(ug/l)	0.5U	0.5UJ	
Carbon tetrachloride	(ug/l)	0.5U	0.5UJ	
Chlorobenzene	(ug/l)	0.5U	Q.5UJ	
Chlorodibromomethane	(ug/l)	0. 5 U	0.5UJ	
Chloroethane	(ug/l)	0.5U	0.5UJ	
Chloroform	(ug/l)	0.5U	0.5UJ	
Chloromethane	(ug/l)	0.5U	0.5UJ	
cis-1,2-Dichloroethene	(ug/l)	0.5U	0.5UJ	
cis-1,3-Dichloropropene	(ug/l)	0.5U	0.5UJ	
Cyclohexane	(ug/l)	0.5U	0.5UJ	
Dichlorodifluoromethane	(ug/l)	0.5U	0.5UJ	
Ethylbenzene	(ug/l)	0.5U	0.5UJ	
Ethylenedibromide	(ug/l)	0.5U	0.5UJ	
Fluorotrichloromethane	(ug/l)	0.5∪	0.5UJ	
Isopropylbenzene	(ug/l)	0.5U	0.5UJ	
Methyl acetate (acetic acid, methyl este	(ug/l)	0.5U	0.5UJ	
Methyl cyclohexane	(ug/l)	0.5U	0.5UJ	
Methyl tert-butyl ether	(ug/l)	0.5U	0.5UJ	
Methylene chloride	(ug/l)	1.7UJ	0.57UJ	

Page: 6 of 6

Date: 05/11/2005

DRINKING WATER SAMPLE RESULTS VOCS

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

				•	
CONSTITUENT	SITE DATE RESULT TYPE	DWCA-17 01/11/2005 Primary	DWCA-18 01/12/2005 Primary		
Styrene	(ug/l)	0.5U	0.5UJ		
Tetrachloroethene	(ug/l)	0.5U	0.5UJ		
Toluene	(ug/l)	0.5U	0.5UJ		
trans-1,2-Dichloroethene	(ug/l)	0.5U	0.5UJ		
Trans-1,3-Dichloropropene	(ug/l)	0.5U	0.5UJ		
Trichloroethene	(ug/l)	0.5U	. 0.5UJ		
Vinyl chloride	(ug/l)	0.5U	0.5UJ	•	
Xylenes (total)	(ug/l)	0.5U	0.5UJ	•	

Appendix Q Drinking Water Well Sample Laboratory Results, Organic Compounds

DRINKING WATER SAMPLE RESULTS MISCELLANEOUS ORGANIC ANALYSES

PERIOD: From 12/01/1967 thru 01/12/2005 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE RESULT TYPE	CALLAHAN_WATE 01/01/1986 Primary	MGRAY-SANDEC 01/01/1987 Primary	·	
Fuel oil no. 2	(ug/l)	0.05U			
Gasoline	(ug/l)	0.01U			
Total VOCs	(ug/l)		0.05U	-	
Total SVOCs	(ug/l)		0.01U		
Total Pesticides/PCBs	(ug/l)	0.001U			
			 _	 <u></u>	

Appendix R Biota Sample Laboratory Results, Metals

MARINE FLORA AND FAUNA SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 10/06/2001 - Inclusive

SAMPLE TYPE:

CONSTITUENT	SITE DATE	CASTINE_1 10/06/2001	CASTINE_1_N 01/01/1989	CASTINE_2 10/06/2001	CASTINE_3 10/06/2001	CASTINE_4 10/06/2001	CR-3 12/07/1974
Aluminum	(mg/kg)	283.37		371.02	381.38	198.26	
Arsenic	(mg/kg)	15.13		11.97	11.89	16.5	
Cadmium	(mg/kg)	7.31	9.1	6.6	6.46	6.99	0.38
Chromium	(mg/kg)	1.63	1.3	1.2	1,52	1.5	
Cobalt	(mg/kg)		•				0.28
Copper	(mg/kg)	16.02	8.9	10.68	11.16	11.36	6.03
ron	(mg/kg)	445.66	210	438.67	456.21	388.43	736
Lead	(mg/kg)	11.43	6.3	8.21	9.72	11.22	7
Mercury	(mg/kg)	0.1059	0.12	0.1192	0.112	0.1065	
Nickel	(mg/kg)	3.29	0.95	3.03	0.99	U	0.01
Silver	(mg/kg)	U	0.1	υ	U	U	0.09
Zinc	(mg/kg)	223.87	180	167.52	171.38	202.54	28

MARINE FLORA AND FAUNA SAMPLE RESULTS METALS

PERIOD: From 12/07/1974 thru 10/06/2001 - Inclusive

SAMPLE TYPE:

CONSTITUENT .	SITE DATE	CR-3 12/07/1974	CR-3 12/07/1974	CR-3 12/07/1974	CR-3 12/07/1974	CR_GOOSE_PON 01/01/1975	GOOSE_COVE 01/01/1993
Aluminum	(mg/kg)						
Arsenic	(mg/kg)						
Cadmium	(mg/kg)	0.96	3.53	0.46	0.89	0.04U	9.1
Chromium	(mg/kg)		r				1.3
Cobalt	(mg/kg)			4.9			•
Copper	(mg/kg)	1.52	18.4	29.6	4.67	0.67	8.9
ron	(mg/kg)	30	392	1230	57		
Lead	(mg/kg)	1.4	5	19.5	5.4U	0.7U	6.3
Mercury	(mg/kg)						0.06
Nickel	(mg/kg)				0.85		0.95
Silver	(mg/kg)	0.06	0.52	0.77	0.08		0.5
Zinc	(mg/kg)	37	463	188	26	8	180

Appendix S Biota Sample Laboratory Results, PAHs

MARINE FLORA AND FAUNA SAMPLE RESULTS PAHS

PERIOD: From

From 12/07/1974 thru 10/06/2001 - Inclusive

SAMPLE TYPE:

Soil

CONSTITUENT	SITE DATE	CASTINE_1 10/06/2001	CASTINE_2 10/06/2001	CASTINE_3 10/06/2001	CASTINE_4 10/06/2001	
1,1'-Biphenyl	(ug/kg)	1.0U	1.0U	1.0U	1.0U	
1-Methylnaphthalene	(mg/kg)	0.001U	0.001U	0.001U	0.001U	
1-Methylphenanthrene	(mg/kg)	0.001U	- 0.001U	0.00084	0.00144	
2,3,5-Trimethylnaphthalene	(mg/kg)	0.001U	0.001U	0.001U	0.001ป	
2,6-Dimethy/naphthalene	(mg/kg)	0.001U	0.001U	0.001U	0.001ั	
2-Methylnaphthalene	(ug/kg)	1.0U	1.0U	1.0U	1.0U	
Acenaphthene	(ug/kg)	1.0U	1.0U	1.0U	1.0U	
Acenaphthylene	(ug/kg)	1.00	- 1.0U	1.0U	1.0U	
Anthracene	(ug/kg)	1.0U	1.0U	1.0U	1.0U	
Benzo(a)anthracene	(ug/kg)	1.0U	1.0U	1.0	0.89	
Benzo(a)pyrene	(ug/kg)	2.0U	2.0U	2.0U	2.0U	
Benzo(b)fluoranthene	(ug/kg)	1.QU	1.0U	0.77	1.5	
Benzo(e)pyrene	(mg/kg)	0.002U	0.002U	0.002U	0.002U	
Benzo(g,h,i)perylene	(ug/kg)	2.0U	2.0U	2.0U	2.0U	
Chrysene	(ug/kg)	1.0U	1.0U	0.77	1.2	
Fluoranthene	(ug/kg)	0.80B	0.92B	1.4B	2.3B	•
Fluorene	(ug/kg)	1.0U	1.0U	1.0U	1.0U	
Indeno(1,2,3-cd)pyrene	(ug/kg)	2.0U	2.0U	2.0U	2.0U	
Naphthalene	(ug/kg)	1.0U	1.0U	1.0U	1.0U	
Perylene	(mg/kg)	0.002U	0.002U	0.002U	0.002U	
Phenanthrene	(ug/kg)	0.73B	0.76B	1.3B	2.3B	

MARINE FLORA AND FAUNA SAMPLE RESULTS PAHS

PERIOD:

From 12/07/1974 thru 10/06/2001 - Inclusive

SAMPLE TYPE:

Soil

Appendix T Particle Size Data

SOUTHWEST RESEARCH INSTITUTE

CLIENT: METCALF & EDDY

TASK ORDER: 041208-2

SRR: 26941 SDG: D05648 CASE: 0247M

VTSR: December 7, 2004 PROJECT#: 03159,29,00X

GRAIN SIZE ANALYSIS

Southwest Research Institute Grain Size Report

010032

SwRI Sample ID: 256145 Task Order #:

Customer:

Metcalf & Eddy

Case:

0247M

Project:

041208-2 03159.29.00X Client Sample ID: D05648 Sample Matrix:

Sediment

SDG:

D05648

Sieve of +10

Total Sample Wt: 168.76

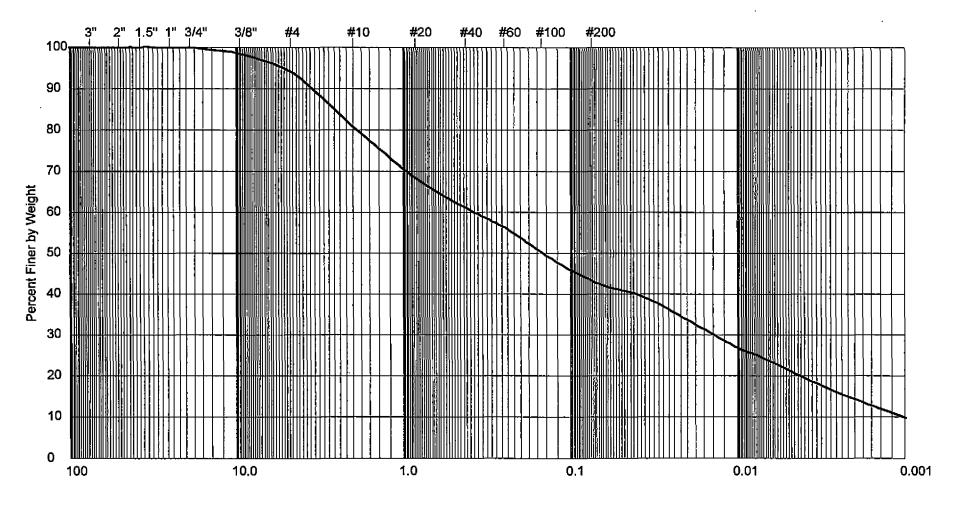
Sieve	Wt. Retained	% Retained	% Pass 100.0	
3"	0	0.0		
2"	0	0.0	100.0	
1 1/2"	0	0.0	100.0	
1"	0	0.0	100.0	
3/4"	0	0.0	100.0	
3/8"	2.41	1.4	98.6	
#4	6.29	5.2	94.8	
#10	24.21	19.5	80.5	

Date Analyzed:

01/03/05

Sieve of -20/+200

	Weight of Materials used in Hydrometer 50.01								
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass				
#20	7.81	21.22	54.13	32.1	67.9				
#40	4.45	33.30	66.21	39.2	60.8				
#60	2.73	40.72	73.63	43.6	56.4				
#100	3.97	51.50	84.41	50.0	50.0				
#200	5.05	65.22	98.13	58.1	41.9				


Date Analyzed:

01/03/05

	Specific (Gravity: 2.36		Hydrometer ID:	152-H-00	1	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Fine
20	2	29	6	23	11.5	0.0360	40.206
20	5	26	6	20	12.0	0.0233	34.962
20	15	23	6	17	12.5	0.0137	29.717
20	30	21	6	15	12.9	0.0098	26,221
20	60	20	6	14	13.0	0.0070	24.473
20	250	16	6	10	13.7	0.0035	17.481
20	1440	13	6	7	14.2	0.0015	12.237

Date Analyzed:

12/28/04

Grain Size in Millimeter

SwRI Sample ID: 256145

Task Order: 041208-2

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05648

Sample Matrix: Sediment

SwRI Sample ID: 256146 Task Order #:

041208-2

Customer:

Metcalf & Eddy

Case:

0247M

Project:

03159.29.00X

Client Sample ID: D05654 Sample Matrix:

Sediment

SDG: D05648

Sieve of +10

Total Sample Wt: 362.44

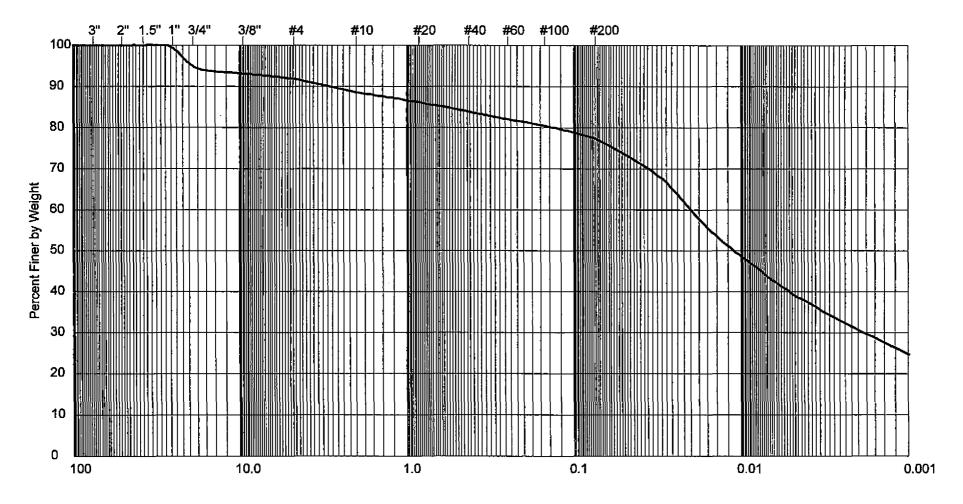
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	22,21	6.1	93.9
3/8"	2.76	6.9	93.1
#4	4.34	8.1	91,9
#10	12.41	11.5	88.5

Date Analyzed: 01/03/05

Sieve of -20/+200

Weight of Materials used in Hydrometer: 50,07								
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass			
#20	1.34	8.58	50.30	13.9	86.1			
#40	1.34	17.17	58.89	16.2	83.8			
#60	1.03	23,76	65.48	18.1	81.9			
#100	0.87	29.34	71.06	19.6	80.4			
#200	1.53	39.14	80.86	22.3	77.7			

Date Analyzed:


01/03/05

	Specific (Gravity: 2.60		Hydrometer ID:	152-H-00	2	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	45	7	38	8.9	0.0292	67.829
20	5	40	7	33	9.7	0.0193	58.904
20	15	35	7	28	10.6	0.0116	49.979
20	30	33	7	26	10.9	0.0083	46.410
20	60	30	7	23	11.4	0.0060	41.055
20	250	26	7	19	12.0	0.0030	33.915
20	1440	22	7	15	12.7	0.0013	26.775

Date Analyzed:

12/28/04

U.S. Standard Sieve Size

Grain Size in Millimeter

SwRI Sample ID: 256146

Task Order: 041208-2

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample 1D: D05654

010040

Southwest Research Institute Grain Size Report

SwRI Sample ID: 256147

Customer:

Metcalf & Eddy

Case:

0247M

Task Order #: Project:

041208-2 03159.29.00X Client Sample ID: D05655 Sample Matrix: Sediment

SDG:

D05648

Sieve of +10

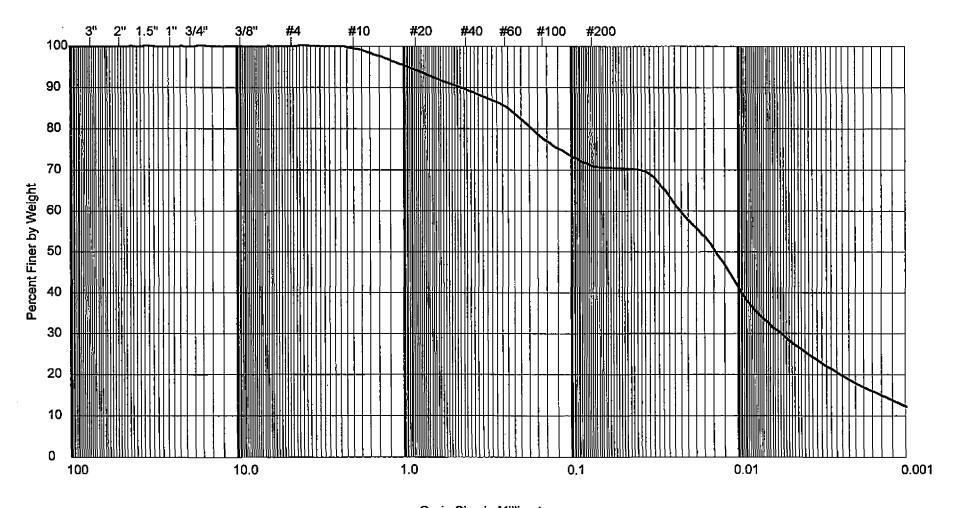
Total Sample Wt: 134.29

Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0	0.0	100.0

Date Analyzed: 01/03/2005

Sieve of -20/+200

Weight of Materials used in Hydrometer: 50.01							
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass		
#20	2.93	7.87	7.87	5.9	94.1		
#40	2.40	14.31	14.31	10.7	89.3		
#60	1.77	19.07	19.07	14.2	85.8		
#100	4.22	30.40	30.40	22.6	77.4		
#200	4.32	42.00	42.00	31.3	68.7		


01/03/2005 Date Analyzed:

	Specific 0	Gravity: 2.33		Hydrometer ID:	152-H-003	3	
Тетр.	Reading Time	Hydro. Reading	Hydro, Corr,	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	39_	7	32	9.9	0.0338	70.258
20	5	34	7	27	10.7	0.0222	59.280
20	15	30	7	23	11.4	0.0132	50.498
20	30	25	7	18	12.2	0.0097	39.520
20	60	22	7	15	12.7	0.0070	32.933
20	250	17	7	10	13.5	0.0035	21.956
20	1440	14	7	7	14.0	0.0015	15.369

Date Analyzed:

12/28/04

U.S. Standard Sieve Size

Grain Size in Millimeter

SwRI Sample ID: 256147

Task Order: 041208-2

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05655

010044

SwRI Sample ID: 256148

Customer:

Metcaif & Eddy

Case:

0247M

Task Order #: Project:

041208-2 03159.29.00X

Sample Matrix:

Client Sample ID: D05659 Sediment SDG:

D05648

Sieve of +10

Total Sample Wt: 431.59

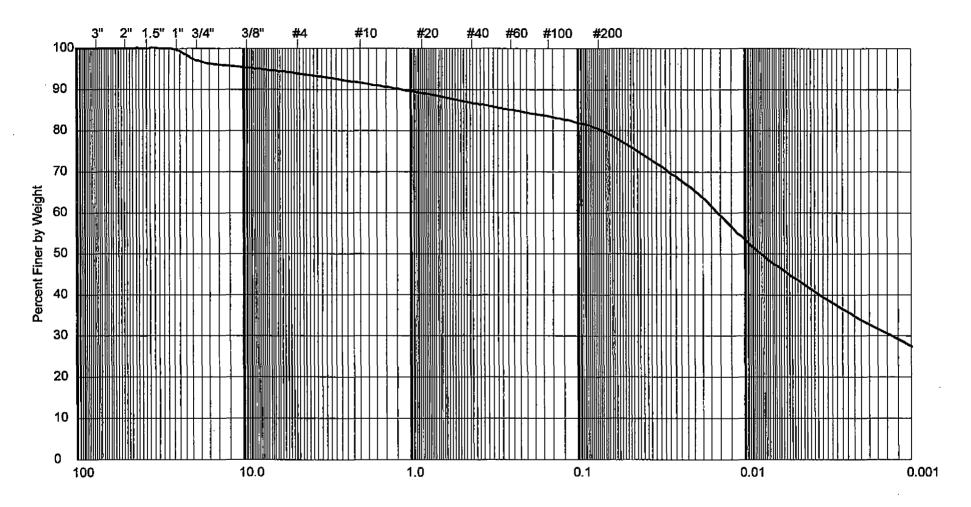
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	14.95	3.5	96.5
3/8"	5.35	4.7	95.3
#4	6.09	6.1	93.9
#10	10.11	8.5	91.5

Date Analyzed:

01/03/05

Sieve of -20/+200

Weight of Materials used in Hydrometer:50.00								
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass			
#20	1.32	10.43	46.93	10.9	89.1			
#40	1.33	20.94	57.44	13.3	86.7			
#60	0.97	28.60	65.10	15.1	84.9			
#100	0.77	34.69	71.19	16.5	83.5			
#200	1.43	45.99	82.49	19.1	80.9			


Date Analyzed:

01/03/05

	Specific C	Gravity: 2.60		Hydrometer ID:	152-H-00	04	
Temp.	Reading Time	Hydro. Reading	Hydro, Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	45	7	38	8.9	0.0292	70.268
20	5	42	7	35	9.4	0.0190	64.721
20	15	37	7	30	10.2	0.0114	55.475
20	30	34	7	27	10.7	0.0083	49.927
20	60	32	7	25	11.1	0.0060	46.229
20	250	27	7	20	11.9	0.0030	36.983
20	1440	23	7	16	12.5	0.0013	29.587

Date Analyzed:

12/28/04

Grain Size in Millimeter

SwRi Sample ID: 256148

Task Order: 041208-2

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05659

SwRI Sample ID: 256150 Task Order #:

Customer:

Metcalf & Eddy

Case:

0247M

Project:

041208-2 03159.29.00X Client Sample ID: D05706 Sample Matrix: Sediment

SDG:

D05648

Sieve of +10

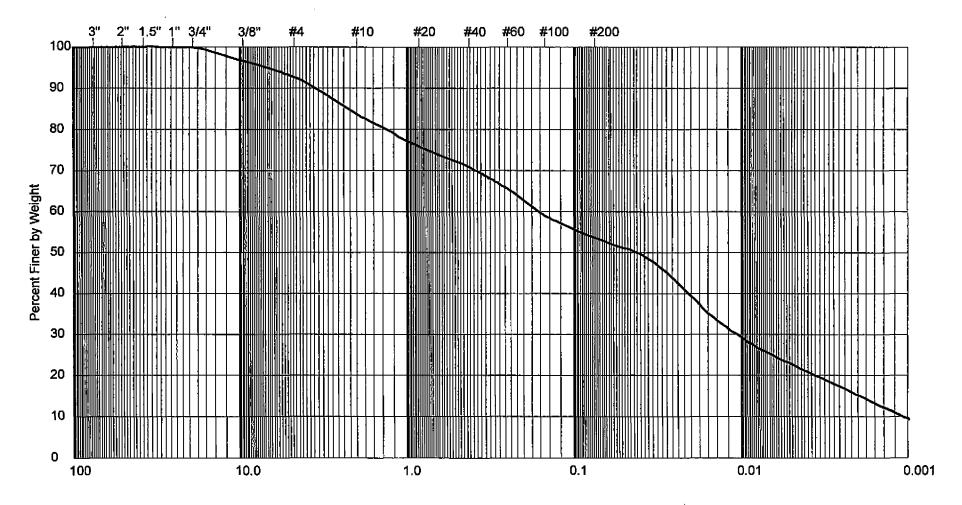
Total Sample Wt 131.01

Sieve	Wt. Retained	% Retained	% Pass
Oleve	VVI. I (etalica	70 (Ctained	70 1 033
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	4.63	3.5	96.5
#4	4.42	6.9	93.1
#10	12.61	16.5	83.5

Date Analyzed: 01/03/05

Sieve of -20/+200

Weight of Materials used in Hydrometer:50.09								
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass			
#20	4.72	10.30	31.96	24.4	75.6			
#40	2.82	16.46	38.12	29.1	70.9			
#60	. 3.21	23.47	45.13	34.4	65.6			
#100	4.05	32.31	53.97	41.2	58.8			
#200	3.99	41.02	62.68	47.8	52.2			


Date Analyzed:

01/03/05

<u></u>	Specific (Gravity: 2.41	·	Hydrometer ID:	152-H-00	05	
Temp.	Reading Time	Hydro. Reading	Hydro, Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	35	7	28	10.6	0.0340	49.737
20	5	30	7	23	11.4	0.0223	40.855
20	15	25	7	18	12.2	0.0133	31.974
20	30	23	7	16	12.5	0.0095	28.421
20	60	21	7	14	12.9	0.0068	24.868
20	250	18	7	11	13.3	0.0034	19.539
20	1440	14	7	7	14.0	0.0015	12.434

Date Analyzed:

12/28/04

Grain Size in Millimeter

SwRi Sample ID: 256150

Task Order: 041208-2

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05706

SwRI Sample ID: 256151 Task Order #:

041208-2

Customer:

Metcalf & Eddy

Case:

0247M

Project:

03159.29.00X

Client Sample ID: D05707 Sample Matrix:

Sediment

SDG: D05648

Sieve of +10

Total Sample Wt 271.14

Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0,0	100.0
1 1/2"	0	0.0	100.0
1"	0	0,0	100.0
3/4"	14.40	5.3	94.7
3/8"	16.93	11.6	88.4
#4	22.33	19.8	80.2
#10	37.46	33.6	66.4

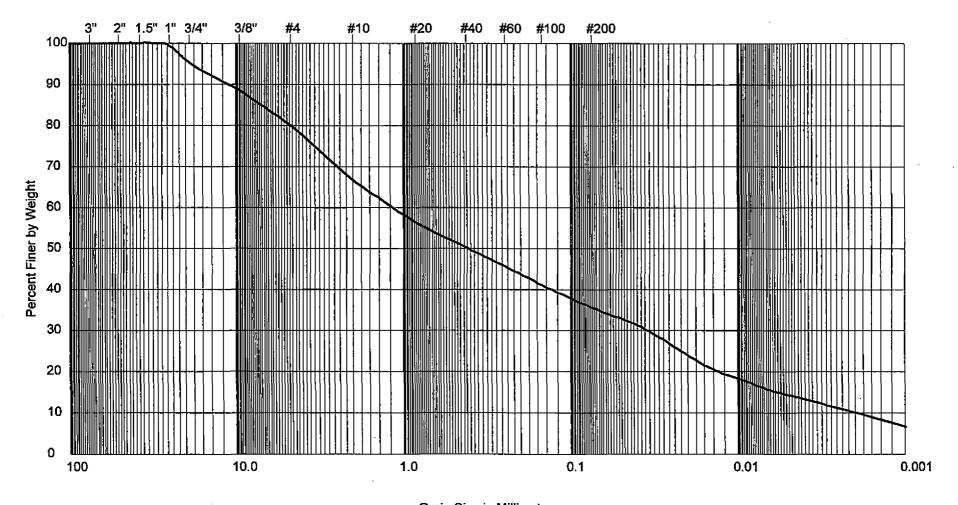
Date Analyzed:

01/03/05

Sieve of -20/+200

Weight of Materials used in Hydrometer:50.00							
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass		
#20	7.83	28.19	119.31	44.0	56.0		
#40	4.44	44.18	135.30	49.9	50.1		
#60	3.41	56.45	147.57	54.4	45.6		
#100	3.47	68,95	160.07	59.0	41.0		
#200	4.36	84.65	175,77	64.8	35.2		

Date Analyzed:


01/03/05

	Specific (Gravity: 2.45		Hydrometer ID:	152-H-00	06	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	29	7	22	11.5	0.0349	30.674
20	5	25	7	18	12.2	0.0227	25.097
20	15	21	7	14	12.9	0.0135	19.520
20	30	20	7	13	13.0	0.0096	18.125
20	60	18	7	11	13.3	0.0068	15.337
20	250	16	7	9	13.7	0.0034	12.548
20	1440	13	7	6	14.2	0,0014	8.366

Date Analyzed:

12/28/04

U.S. Standard Sieve Size

Grain Size in Millimeter

SwRi Sample ID: 256151

Task Order: 041208-2

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05707

Southwest Research Institute

Hygroscopic Moisture Report

010056

Client: METCALF & EDDY

Sample Receipt Report: 26941

Task Order: 041208-2

Lab Code: SWRI

Sample Matrix: Sediment

Project: 03159.29.006

Case: DAS 0247M

SDG: D05648

	Lab	Hygroscopic	
Field Sample ID#	Sample ID#	Moisture, %	%RPD
D05648	256145	0.793	
D05654	256146	0.299	
D05655	256147	0.794	
D05659	256148	0.498	
D05706	256150	0.793	
D05706	256150D	0.694	13.3%
D05707	256151	0.699	

SOUTHWEST RESEARCH INSTITUTE

CLIENT: Metcalf & Eddy

TASK ORDER: 041116-5, 041119-7

SRR: 26864, 26889

SDG: D05640 CASE: 0247M

VTSR: November 16/19, 2004 PROJECT#: 03159.29.00X

SAMPLE DATA

010153

SwRI Sample ID: 255316 Task Order #: Project:

041116-5 03159.29.00X Customer:

Metcalf & Eddy Client Sample ID: D05640 Sample Matrix: Sediment

Case:

0247M D05640

SDG:

Sieve of +10

Total Sample Wt: 98.63

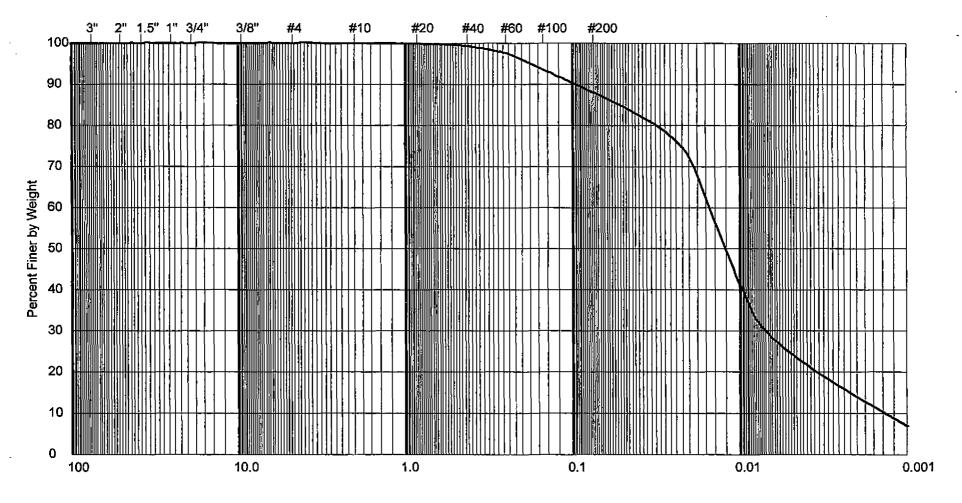
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0	0.0	100.0

Date Analyzed:

12/20/2004

Sieve of -20/+200

Weight of Materials used in Hydrometer: 50.05							
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass		
#20	0.07	0.14	0.14	0.1	99.9		
#40	0.25	0.63	0.63	0.6	99.4		
#60	0.83	2.27	2.27	2.3	97.7		
#100	2.12	6.46	6.46	6.5	93.5		
#200	2.74	11.87	11.87	12.0	88.0		


Date Analyzed:

12/20/2004

	Specific (Gravity: 2.44		Hydrometer ID:	152-H-0	09	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	45	7	38	8.9	0.0308	80.024
20	5	42	7	35	9.4	0.0200	73.706
20	15	31	7	24	11.2	0.0126	50.541
20	30	25	7	18	12.2	0.0093	37.906
20	60	20	7	13	13.0	0.0068	27.377
20	250	16	7	9	13.7	0.0034	18.953
20	1440	12	7	5	14.3	0.0015	10.529

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255316

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05640

010157

SwRI Sample ID: 255317 Task Order #:

Customer:

Metcalf & Eddy

Case:

0247M

Project:

041116-5 03159.29.00X Client Sample ID: D05641 Sample Matrix: Sediment SDG: D05640

Sieve of ±10

Total Sample Wt: 111.21

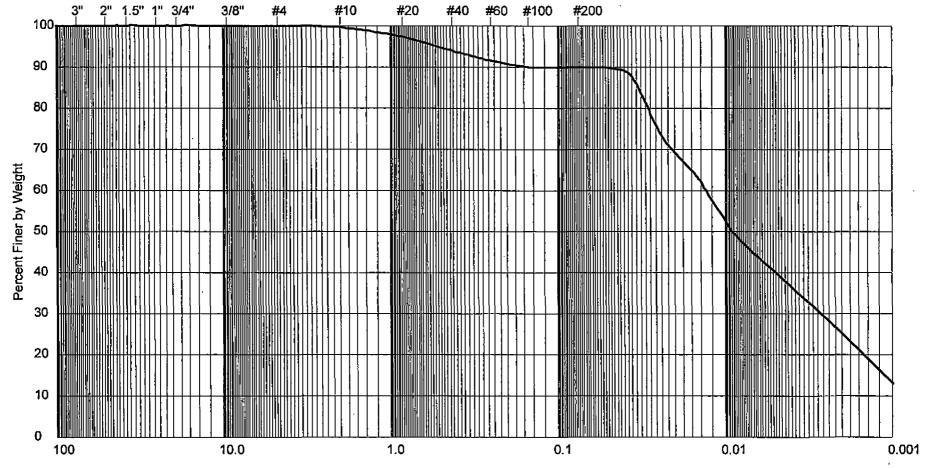
Sieve of +10		·	
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0.17	0.2	99.8
#10	0.14	0.3	99.7

Date Analyzed:

12/20/2004

Sieve of -20/+200

Weight of Materials used in Hydrometer:50.05							
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass		
#20	1.13	2.50	2.81	2.5	97.5		
#40	1.84	6.58	6.89	6.2	93.8		
#60	1.21	9.26	9.57	8.6	91.4		
#100	1.79	13.23	13.54	12.2	87.8		
#200	2.49	18.75	19.06	17.1	82.9		


Date Analyzed:

12/20/2004

	Specific Gravity: 2.03			Hydrometer ID:	152-H-008	3	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	45	8	37	8.9	0.0364	89.791
20	5	38	8	30	10.1	0.0245	72.803
20	15	34	8	26	10.7	0.0146	63.096
20	30	30	8	22	11.4	0.0106	53.389
20	60	27	8	19	11.9	0.0077	46.109
20	250	23	8	15	12.5	0.0039	36.402
20	1440	17	8	9	13.5	0.0017	21.841

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255317

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05641

SwRI Sample ID: 255318 Task Order #:

Customer: Metcalf & Eddy Client Sample ID: D05644

Case:

0247M

Project:

041116-5 03159.29.00X

Sample Matrix: Sediment

SDG:

D05640

Sieve of +10

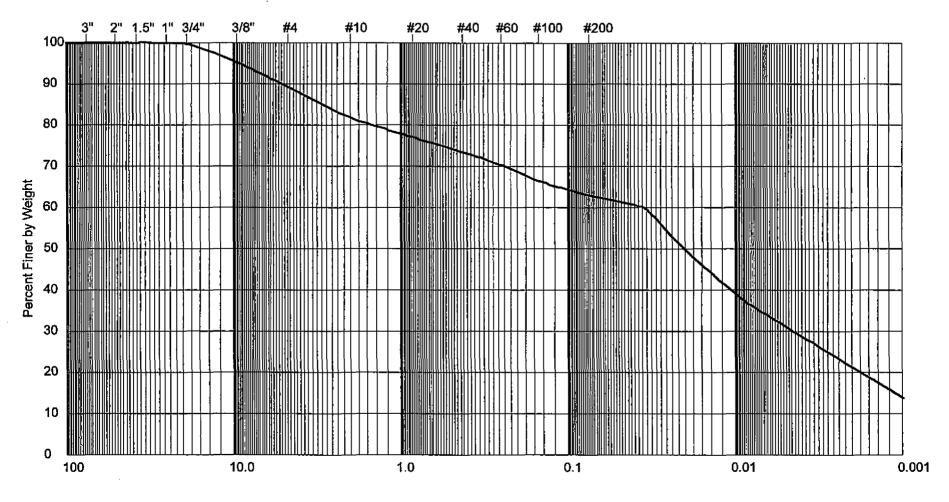
Total Sample Wt: 213.05

0.010 01 110			
Sieve_	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	10.28	4.8	95.2
#4	12.75	10.8	89.2
#10	16.85	18.7	81.3

Date Analyzed;

12/20/2004

Sieve of -20/+200


Weight of Materials used in Hydrometer:50.00							
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass		
#20	2.65	9.18	49.06	23.0	77.0		
#40	2.21	16.83	56.71	26.6	73.4		
#60	1.92	23.48	63.36	29.7	70.3		
#100	2.48	32.07	71.95	33.8	66.2		
#200	2.17	39.59	79.47	37.3	62.7		

Date Analyzed:

12/20/2004

Specific Gravity: 2.28			 -	Hydrometer ID: 152-H-001			
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	39	6	33	9.9	0.0344	59.976
20	_5	34	6	28	10.7	0.0226	50.889
20	15	30	6	24	11.4	0.0135	43.619
20	30	27	6	21	11.9	0.0097	38.166
20	60	25	6	19	12.2	0.0070	34.532
20	250	21	6	15	12.9	0.0035	27.262
20	1440	16	6	10	13.7	0.0015	18.175

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255318

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05644

Sample Matrix: Sediment

10162

•

010165

Task Order#:

Project:

SwRI Sample ID: 255319 041116-5 03159.29.00X Customer: Client Sample ID: D05645

Sample Matrix:

Metcalf & Eddy

Sediment

Case:

0247M

SDG:

D05640

Sieve of +10

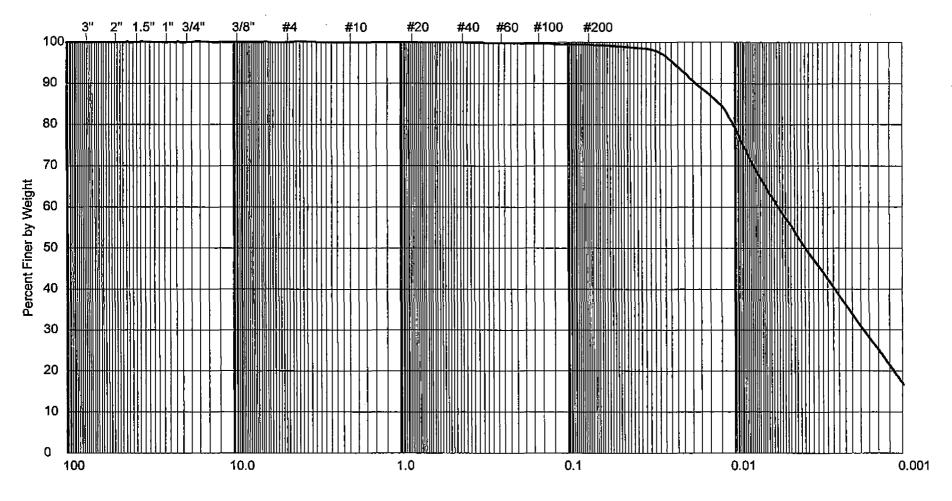
Total Sample Wt: 142.20

01010 01 1 10			
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0	0.0	100.0

Date Analyzed:

12/20/2004

Sieve of -20/+200


	Weight of Materials use	ed in Hydromet	er:60.08		
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass
#20	0.03	0.07	0.07	0.0	100.0
#40	0.05	0.19	0.19	0.1	99.9
#60	0.10	0.43	0.43	0.3	99.7
#100	0.06	0.57	0.57	0.4	99.6
#200	0.12	0.85	0.85	0.6	99.4

Date Analyzed:

12/20/2004

	Specific Gravity: 2.29				152-H-00		
Temp.	Reading Time	Hydro. Reading	Hydro, Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	60	7	53	6.5	0.0278	98.272
20	5	56	7	49	7.1	0.0184	90.856
20	15	52	7	45	7.8	0.0111	83.439
20	30	46	7	39	8.8	0.0084	72.314
20	60	41	7	34	9.6	0.0062	63.043
20	250	31	7	24	11.2	0.0033	44.501
20	1440	21	7	14	12.9	0.0015	25.959

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255319	Customer: Metcalf Eddy
Task Order: 041116-5	Client Sample ID: D05645
Project: 03159.29.00X	Sample Matrix: Sediment

10166

010169

SwRI Sample ID: 255320 Task Order #:

Customer:

Metcalf & Eddy

Case:

0247M

Project:

041116-5 03159.29.00X Client Sample ID: D05647 Sample Matrix:

Sediment

SDG:

D05640

Sieve of +10

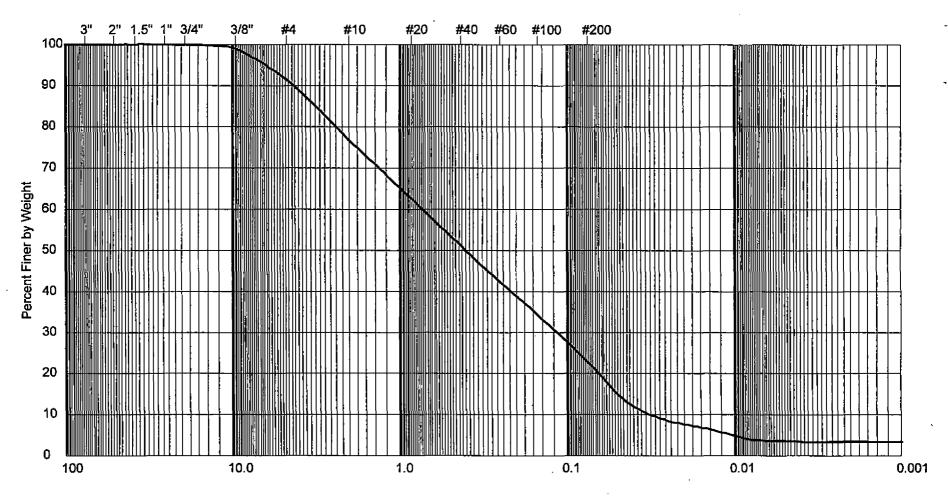
Total Sample Wt: 288.01

Sieve	Wt. Retained	. % Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	1.43	0.5	99.5
#4	21.83	8.1	91.9
#10	44.36	23.5	76.5

Date Analyzed:

12/20/2004

Sieve of -20/+200


	Weight of Materials us	sed in Hydromete	er: 50.05		
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass
#20	9.22	40.60	108.22	37.6	62.4
#40	7.60	74.07	141.69	49.2	50.8
#60	5.77	99.47	167.09	58.0	42.0
#100	4.94	121.23	188.85	65.6	34.4
#200	7.41	153.85	221.47	76.9	23.1

Date Analyzed:

12/20/2004

Specific Gravity: 2.40				Hydrometer ID;	152-H-003		
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	13	7	6	14.2	0.0394	9.816
20	5	12	7	5	14.3	0.0250	8.180
20	15	11	7	4	14.5	0.0146	6.544
20	30	10	7	3	14.7	0.0104	4.908
20	60	9	7	2	14.8	0.0074	3.272
20	250	9	7	2	14.8	0.0036	3.272
20	1440	9	7	2	14.8	0.0015	3.272

Date Analyzed:

Grain Size in Millimeter

SwRl Sample ID: 255320

Task Order: 041116-5

Project: 03159.29.00X

· Customer: Metcalf Eddy

Client Sample ID: D05647

Sample Matrix: Sediment

10170

010173

SwRI Sample ID: 255321

Task Order #: 041116-5

Customer: Client Sample ID: D05649

Metcalf & Eddy

Case: 0247M D05640

Project

03159.29.00X

Sample Matrix: Sediment

SDG:

Sieve of +10

Total Sample Wt: 225,71

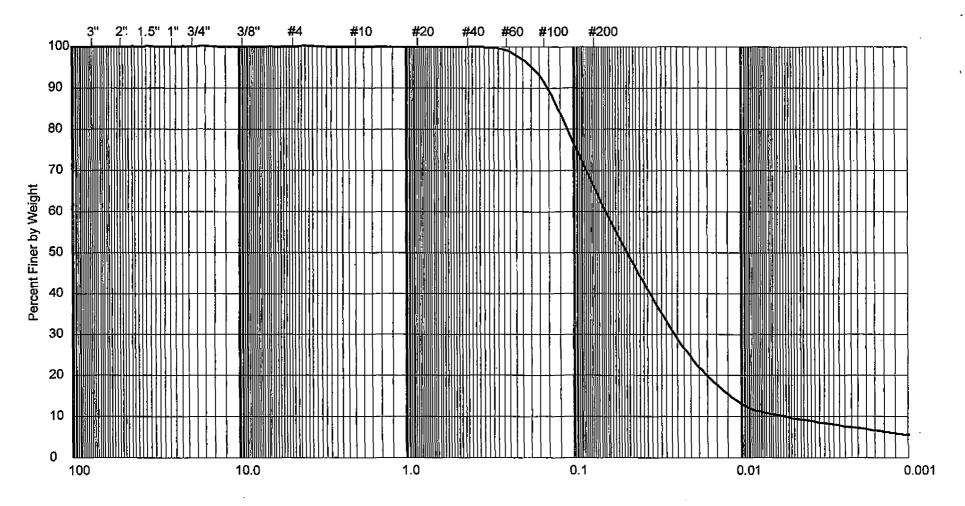
Pass
00.0
00.0
00.0
00.0
0.00
00.0
00.0
00.0
(

Date Analyzed:

12/20/2004

Sieve of -20/+200

Weight of Materials used in Hydrometer: 50.08						
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass	
#20	0	0.00	0.00	0.0	100.0	
#40	0.07	0.32	0.32	0.1	99.9	
#60	0.06	0.59	0.59	0.3	99.7	
#100	3.51	16.41	16.41	7.3	92.7	
#200	13.78	78.51	78.51	34.8	65.2	


Date Analyzed:

12/20/2004

Specific Gravity: 2.46			Hydrometer ID:	152-H-00			
Тетр.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	26	7	19	12.0	0.0355	39.685
20	5	20	7	13	13.0	0.0234	27.153
20	15	15	7	. 8	13.8	0.0139	16.709
20	30	13	7	6	14,2	0.0100	12.532
20	60	12	7	5	14.3	0.0071	10.443
20	250	11	7	4	14.5	0.0035	8.355
20	1440	10	7	3	14.7	0.0015	6.266

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255321

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05649

Southwest Research Institute

Grain Size Report

SwRI Sample ID: 255322 Task Order #:

Customer;

Metcalf & Eddy

Case:

0247M

Project:

041116-5 03159.29.00X Client Sample ID: D05650 Sample Matrix:

Sediment

SDG: D05640

Sieve of +10

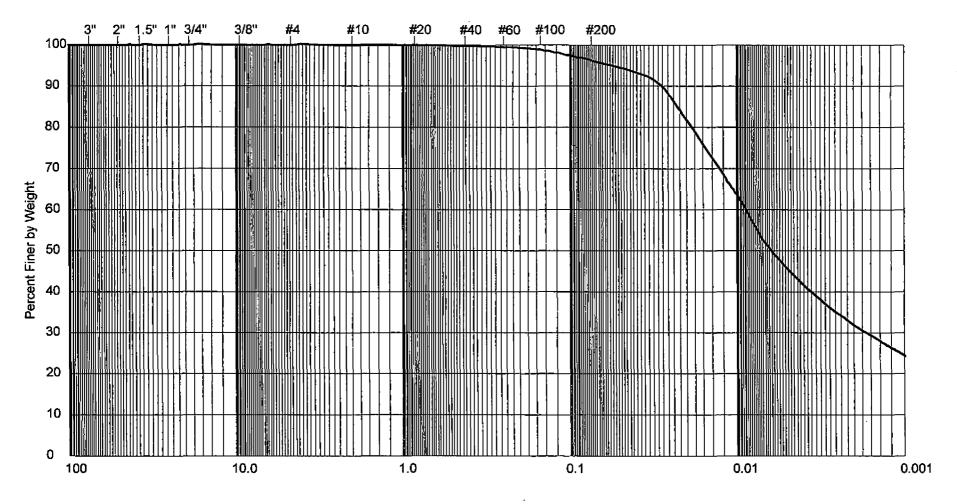
Total Sample Wt: 227.62

Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0	0.0	100.0

Date Analyzed:

12/20/2004

Sieve of -20/+200


Weight of Materials used in Hydrometer:50.04								
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass			
#20	0.05	0.23	0.23	0.1	99.9			
#40	0.09	0.64	0.64	0.3	99.7			
#60	0.10	1.09	1.09	0.5	99.5			
#100	0.26	2.27	2.27	1.0	99.0			
#200	1.42	8.73	8.73	3.8	96.2			

Date Analyzed:

12/20/2004

	Specific Gravity: 2.40				Hydrometer ID: 152-H-005				
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer		
20	2	50	7	43	8.1	0.0298	91.946		
20	5	45	7	38	8.9	0.0197	81.255		
20	15	39	7	32	9.9	0.0120	68.425		
20	30	35	7	28	10.6	0.0088	59.872		
20	60	30	7	23	11.4	0.0065	49.181		
20	250	24	7	17	12.4	0.0033	36.351		
20	1440	20	7	13	13.0	0.0014	27.798		

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255322	
Task Order: 041116-5	

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05650

Sample Matrix: Sediment

10178

.

010181

SwRI Sample ID: 255323 Task Order #:

041116-5

Customer:

Metcalf & Eddy Client Sample ID: D05651

Case:

0247M

Project:

gradient in Australia

03159.29.00X

Sample Matrix: Sediment

SDG: D05640

Sieve of +10

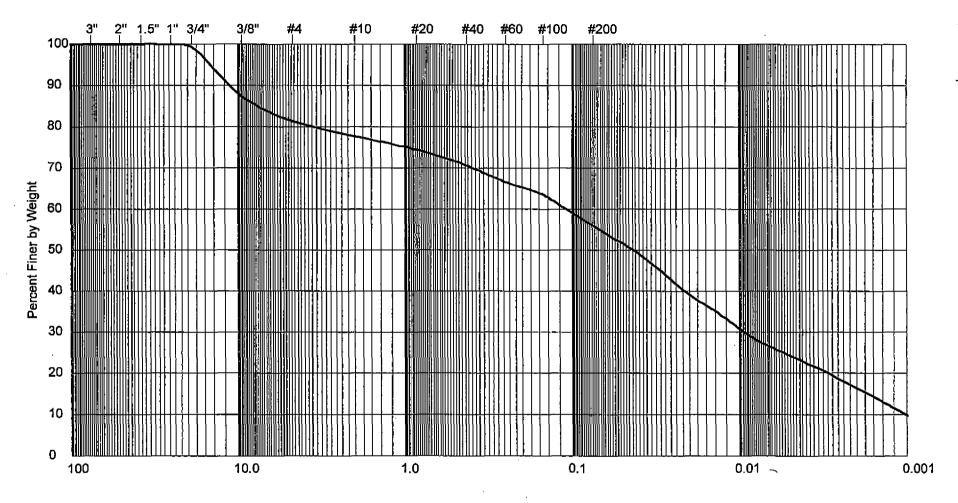
Total Sample Wt: 146.02

Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0,0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	19.84	13.6	86.4
#4	8.02	. 19.1	80.9
#10	4.88	22.4	77.6

Date Analyzed:

12/20/2004

Sieve of -20/+200


Weight of Materials used in Hydrometer: 50.04								
Sieve	Wt. Retained each Sieve	ach Yield	Wt. Retained	% Retained	% Pass			
#20	1.96	4.44	37.18	25.5	74.5			
#40	2,61	10.35	43.09	29.5	70.5			
#60	2.72	16.50	49.24	33.7	66.3			
#100	1.79	20.56	53.30	36.5	63.5			
#200	5.40	32.78	65.52	44.9	55.1			

Date Analyzed:

12/20/2004

	Specific C	Fravity: 2.43		Hydrometer ID:	152-H-00	06	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	· 2	36	7	29	10.4	0.0334	47.567
20	5	31	7	24	11.2	0.0219	39.366
20	15	28	7	21	11.7	0.0129	34.445
20	30	25	7	18	12.2	0.0093	29.524
20	60	23	7	16	12.5	0.0067	26.244
20	250	20	7	13	13.0	0.0033	21.323
20	1440	15	7	8	13.8	0,0014	13.122

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255323

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05651

Sample Matrix: Sediment

010182

SwRi Sample ID: 255324 Task Order #:

041116-5

Customer:

Metcalf & Eddy

Case:

0247M

Project:

03159.29.00X

Client Sample ID: D05652 Sample Matrix: Sediment

SDG: D05640

Sieve of +10

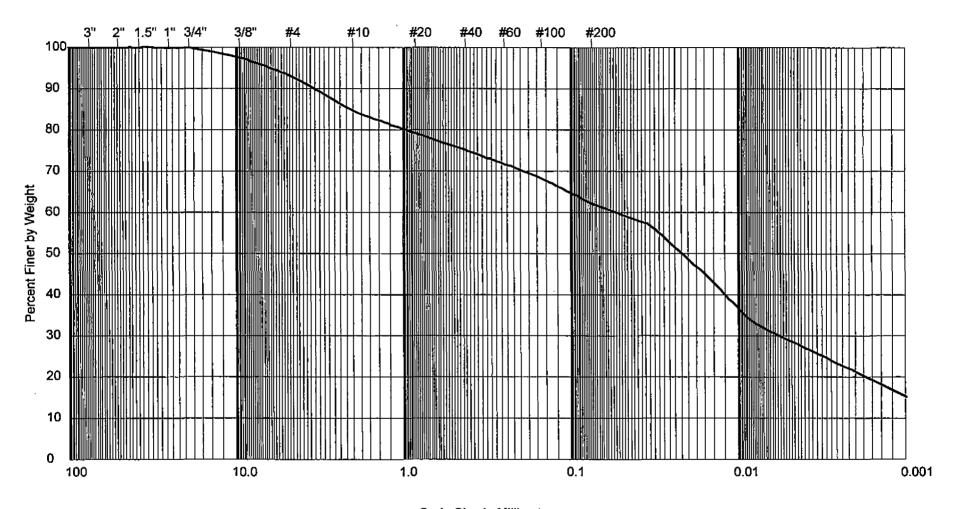
Total Sample Wt 256.42

3/646 01 + 10			
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	6.23	2.4	97.6
#4	11.04	6.7	93.3
#10	23.25	15.8	84.2

Date Analyzed:

12/20/2004

Sieve of -20/+200


Weight of Materials used in Hydrometer: 50.05								
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass			
#20	3.02	13.03	53.55	20.9	79,1			
#40	2.47	23.68	64.20	25.0	75,0			
#60	1.98	32.22	72.74	28.4	71,6			
#100	1.97	40.72	81.24	31.7	68.3			
#200	3.80	57.11	97.63	38.1	61.9			

Date Analyzed:

12/20/2004

	Specific (Gravity: 2.34	· · · · ·	Hydrometer ID:	152-H-00	07	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	38	7	31	10.1	0.0340	57.053
20	5	34	7	27	10.7	0.0221	49.691
20	15	30	7	23	11.4	0.0132	42.329
20	30	26	7	19	12.0	0.0096	34.968
20	60	24	7	17	12.4	0.0069	31.287
20	250	21	7	14	12.9	0.0034	25.766
20	1440	17	7	10	13.5	0.0015	18.404

Date Analyzed:

Grain Size in Millimeter

SwRi Sample ID: 255324

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample 1D: D05652

Sample Matrix: Sediment

10186

SwRI Sample ID: 255325

Customer:

Metcalf & Eddy

Case:

0247M

Task Order#: Project:

041116-5 03159.29.00X Client Sample ID: D05653 Sample Matrix:

Sediment

SDG:

D05640

Sieve of +10

Total Sample Wt: 333.92

0,010 0, 10	T		
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	54.01	16.2	83.8
#4	51.92	31.7	68.3
#10	44.72	45.1	54.9

Date Analyzed:

12/20/04

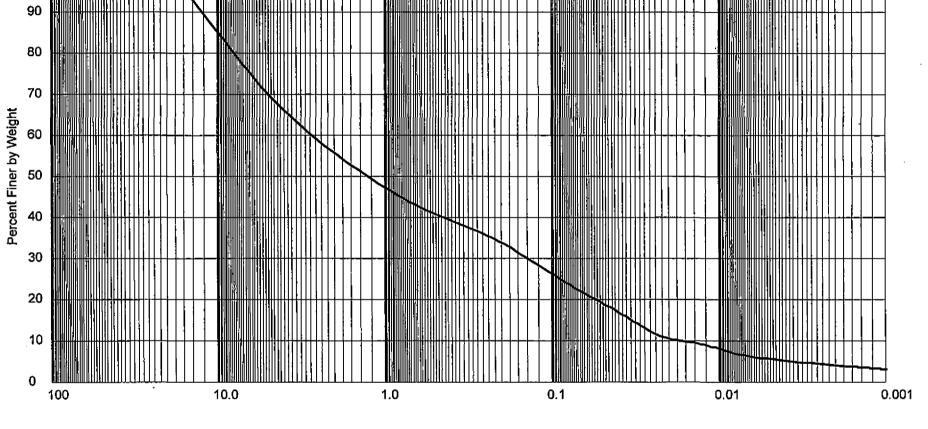
Sieve of -20/+200

Weight of Materials used in Hydrometer:50.01								
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass			
#20	9.22	33.79	184.44	55.2	44.8			
#40	4.83	51.49	202.14	60.5	39.5			
#60	3.31	63.62	214.27	64.2	35.8			
#100	4.44	79.89	230.54	69.0	31.0			
#200	7.75	108.29	258.94	77.5	22.5			

Date Analyzed;

12/20/04

	Specific (Gravity: 2.35		Hydrometer ID:	152-H-0	10	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	21	7	14	12.9	0.0383	16.747
20	5	16	7	9	13.7	0.0250	10.766
20	15	15	7	8	13.8	0.0145	9.570
20	30	14	7	7	14.0	0.0103	8.374
20	60	12	7	5	14.3	0.0074	5.981
20	250	11	7	4	14.5	0.0036	4.785
20	1440	10	7	3	14.7	0.0015	3.589


Date Analyzed: 12/15/04

#10

100

#60 #100

#200

Grain Size in Millimeter

SwRI Sample 1D: 255325

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05653

Sample Matrix: Sediment

10190

010193

SwRI Sample ID: 255326

Customer:

Metcalf & Eddy

Case:

0247M

Task Order #. Project:

041116-5 03159.29.00X Client Sample ID: D05656 Sample Matrix:

Sediment

SDG:

D05640

Sieve of +10

Total Sample Wt: 241.60

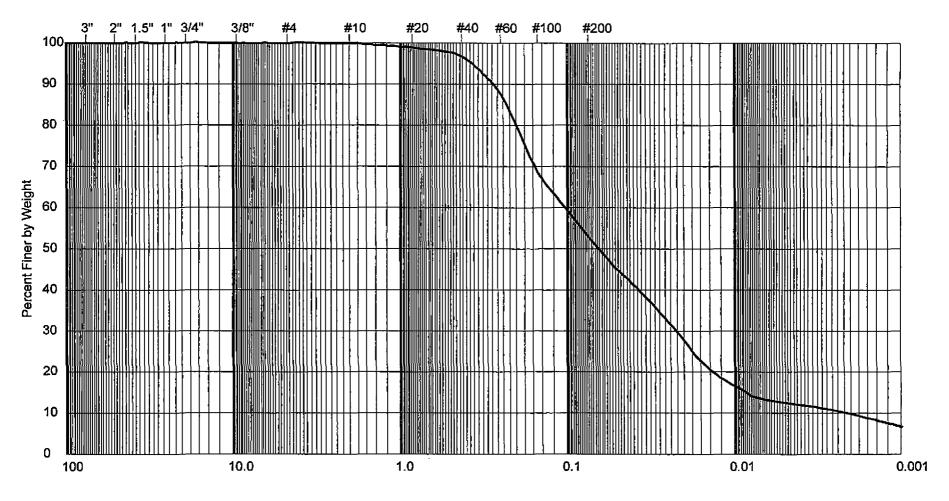
01010 01 - 10		<u> </u>	
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0,0	100.0
#4	0	0.0	100.0
#10	0	0.0	100.0

Date Analyzed:

12/20/04

Sieve of -20/+200

Weight of Materials used in Hydrometer:50.06						
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass	
#20	0.56	2.70	2.70	1.1	98.9	
#40	0.75	6.32	6.32	2.6	97.4	
#60	4.31	27.12	27.12	11.2	88.8	
#100	10.26	76.64	76.64	31.7	68.3	
#200	8.54	117.86	117.86	48.8	51.2	


Date Analyzed:

12/20/04

	Specific 0	Gravity: 2.48		Hydrometer ID:	152-H-00)1	
Temp.	Reading Time	Hydro. Reading	Hydro, Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	25	6	19	12.2	0.0356	39.397
20	5	21	6	15	12.9	0.0231	31.103
20	15	15	6	9	13.8	0.0138	18.662
20	30	14	6	8	14.0	0.0098	16.588
20	60	12	6	6	14.3	0.0070	12.441
20	250	12	6	6	14.3	0.0034	12.441
20	1440	10	6	4	14,7	0.0015	8.294

Date Analyzed:

12/15/04

Grain Size in Millimeter

SwRI Sample ID: 255326	Customer: Metcalf Eddy
Task Order: 041116-5	Client Sample ID: D0565

Project: 03159.29.00X Sample Matrix: Sediment

01019

010197

SwRI Sample ID: 255327 Task Order #.

Customer: Metcalf & Eddy Client Sample ID: D05657

Case:

0247M

Project:

041116-5 03159.29.00X

Sample Matrix:

Sediment

SDG:

D05640

Sieve of +10

Total Sample Wt: 93.06

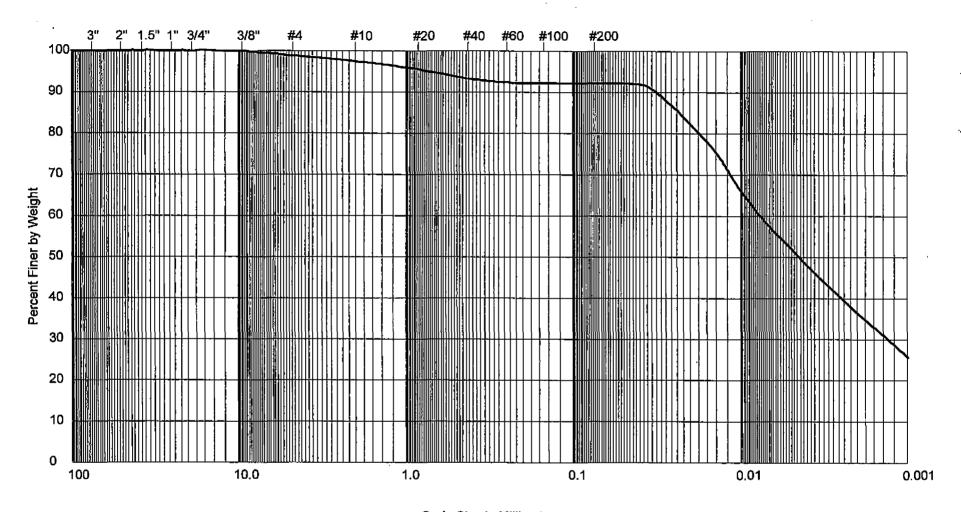
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	. 0	0.0	100.0
3/8"	0	0.0	100.0
#4	1.21	1.3	98.7
#10	1.17	2.6	97.4

Date Analyzed:

12/20/04

Sieve of -20/+200

Weight of Materials used in Hydrometer: 50.06							
Sieve	Wt. Retained each Sieve	Yield	Wt Retained	% Retained	% Pass		
#20	1.00	1.81	4.19	4.5	95.5		
#40_	1.23	4.04	6,42	6.9	93.1		
#60	1.11	6.05	8.43	9.1	90.9		
#100	0.90	7.68	10.06	10.8	89.2		
#200	1.40	10,22	12.60	13.5	86.5		


Date Analyzed:

12/20/04

	Specific (Gravity: 2.04		Hydrometer ID:	152-H-0)2	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	46	7	39	8.8	0.0360	92.160
20	5	43	7	36	9.2	0.0233	85.070
20	15	39	7	32	9.9	0.0140	75,618
20	30	35	7	28	10.6	0.0102	66.166
20	60	32	7	25	11.1	0.0074	59.077
20	250	26	7	19	12.0	0.0038	44.898
20	1440	21	7	14	12.9	0.0016	33.083

Date Analyzed:

12/15/04

Grain Size in Millimeter

SwRI Sample ID: 255327

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05657

Sample Matrix: Sediment

10198

Southwest Research Institute

Grain Size Report

010201

SwRI Sample ID: 255328 Task Order #:

041116-5

Customer:

Metcalf & Eddy

Case:

0247M

Project:

03159.29.00X

Client Sample ID: D05660 Sample Matrix:

Sediment

SDG: D05640

Sieve of +10

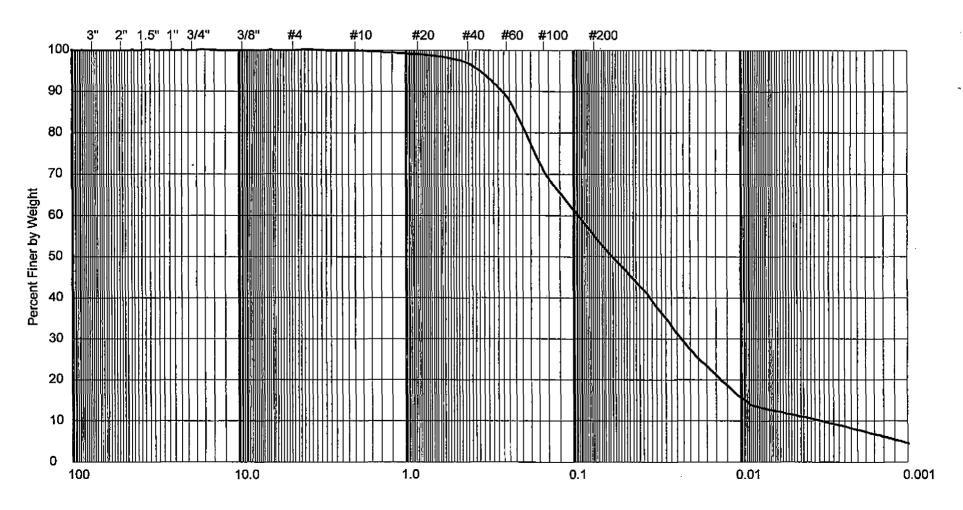
Total Sample Wt: 273.03

SIEVE OI + IU		** *	
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0	0.0	100.0

Date Analyzed:

12/20/04

Sieve of -20/+200


Weight of Materials used in Hydrometer 50.09							
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass		
#20	0.50	2.73	2.73	1.0	99.0		
#40	0.76	6.87	6.87	2.5	97.5		
#60	3.90	28.13	28.13	10.3	89.7		
#100	9.71	81.05	81.05	29.7	70.3		
#200	8.57	127.77	127.77	46.8	53.2		

Date Analyzed:

12/20/04

	Specific (Fravity: 2.47		Hydrometer ID:	152-H-00	03	·
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	27	7	20	11.9	0.0352	41,605
20	5	21	7	14	12.9	0.0232	29,124
20	15	17	7	10	13.5	0.0137	20.803
20	30	14	7	7	14.0	0.0099	14,562
20	60	13	7	6	14.2	0.0070	12.482
20	250	12	7	5	14.3	0.0035	10.401
20	1440	10	7	3	14.7	0.0015	6.241

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255328

Task Order: 041116-5

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05660

Sample Matrix: Sediment

1020

Southwest Research Institute Grain Size Report

010205

SwRI Sample ID: 255620 Task Order #:

Customer:

Metcalf & Eddy

Case:

0247M

Project:

041119-7 03159.29.00X Client Sample ID: D05638 Sample Matrix:

Sediment

D05640 SDG:

Sieve of ±10

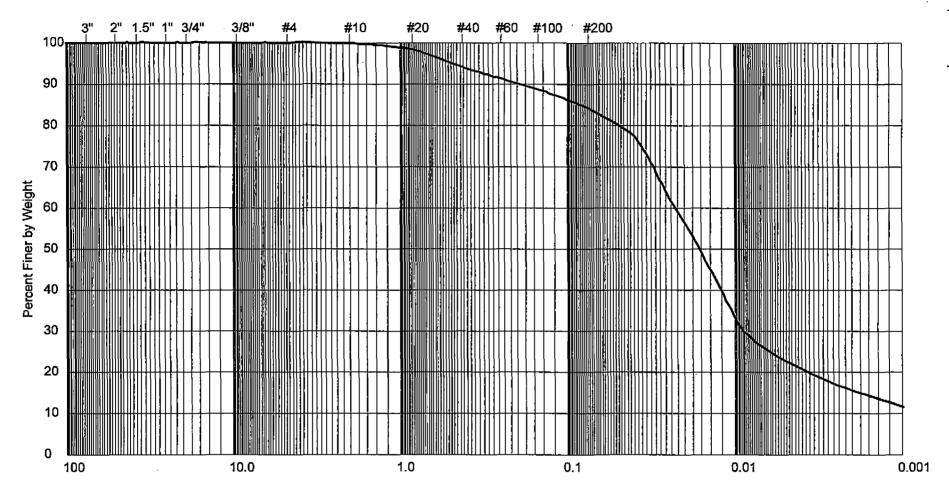
Total Sample Wt: 152.73

Sieve	Wt. Retained	% Retained	% Pass	
3"	0	0.0	100.0	
2"	0	0.0	100.0	
1 1/2"	0	0.0	100.0	
1"	0	0.0	100.0	
3/4"	0	0.0	100.0	
3/8"	. 0	0.0	100.0	
#4	0	0.0	100.0	
#10	0 ·	0.0	100.0	

Date Analyzed:

12/20/04

Sieve of -20/+200


Weight of Materials used in Hydrometer:50.08						
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass	
#20	0.62	1.89	1.89	1.2	98.8	
#40	2.39	9.18	9.18	6.0	94.0	
#60	1.42	13.51	13.51	8.8	91.2	
#100	1.19	17.14	17.14	11.2	88.8	
#200	2.30	24,15	24.15	15.8	84.2	

Date Analyzed:

12/20/04

	Specific (Gravity: 2.04	· · · · · · · · · · · · · · · · · · ·	Hydrometer ID:	152-H-0	04	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	_ 39	7	32	9.9	0.0382	77.572
20	5	33	7	26	10.9	0.0254	63.027
20	15	27	7	20	11.9	0.0153	48.482
20	30	22	7	15	12.7	0.0112	36.362
20	60	18	7	11	13.3	0.0081	26.665
20	250	15	7	8	13.8	0.0040	19.393
20	1440	13	7	6	14.2	0.0017	14.545

Date Analyzed:

Grain Size in Millimeter

SwRi Sample ID: 255620

Task Order: 041119-7

Project; 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05638

Sample Matrix: Sediment

10206

Southwest Research Institute Grain Size Report

010209

SwRi Sample ID: 255621 Task Order #:

041119-7

Customer:

Metcalf & Eddy Client Sample ID: D05639

Case:

0247M

Project:

03159.29.00X

Sample Matrix;

Sediment

SDG: D05640

Sieve of +10

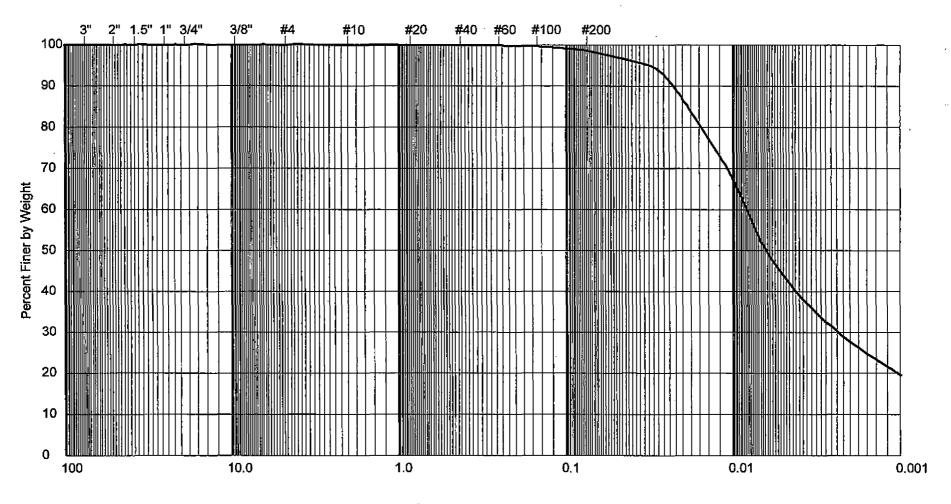
Total Sample Wt: 246.41

Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0	0.0	100.0

Date Analyzed:

12/20/2004

Sieve of -20/+200


	Weight of Materials used in Hydrometer.60.03						
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass		
#20	0.04	0.16	0.16	0.1	99.9		
#40	0.03	0.29	0.29	0.1	99.9		
#60	0.05	0.49	0.49	0.2	99.8		
#100	0.11	0.94	0.94	0.4	99.6		
#200	0.50	3.00	3.00	1.2	98.8		

Date Analyzed:

12/20/2004

Specific Gravity: 2.40				Hydrometer ID:	152-H-00	15	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Fine
20	2	60	7	53	6.5	0.0267	94.469
20	5	54	7	47	7.4	0.0180	83.775
20	15	47	7	40	8.6	0.0112	71.298
20	30	41	7	34	9,6	0.0084	60.603
20	60	34	7	27	10.7	0.0063	48.126
20	250	25	7	18	12,2	0.0033	32.084
20	1440	20	7	13	13.0	0.0014	23,172

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255621	Customer: Metcalf Eddy
Taşk Order: 041119-7	Client Sample ID: D0563
Project: 03159.29.00X	Sample Matrix: Sediment

10210

Southwest Research Institute Grain Size Report

SwRi Sample ID: 255622

Task Order #: 041119-7

Customer. Client Sample ID: D05642

Metcalf & Eddy

Case:

0247M

Project:

03159.29.00X

Sample Matrix: Sediment SDG:

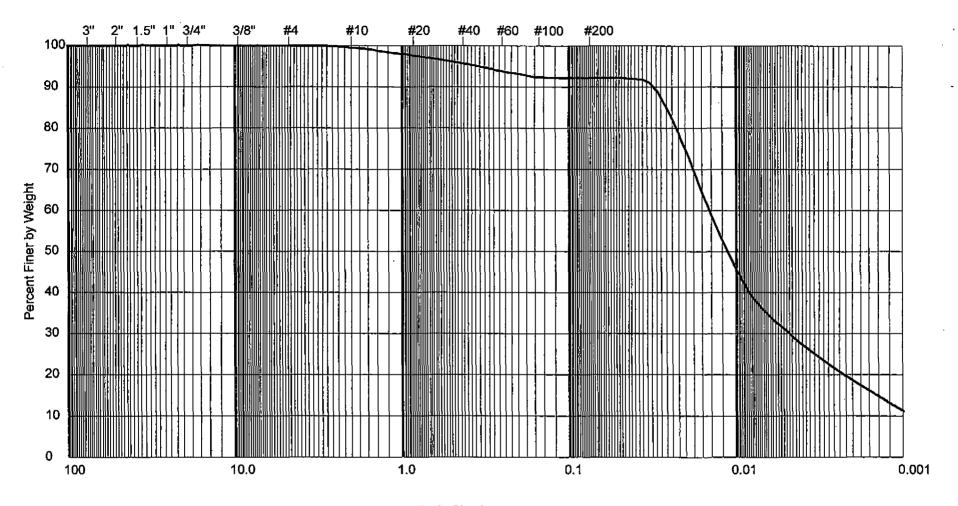
D05640

Sieve of +10		Total Sample Wt	214.01
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0.80	0.4	99.6

Date Analyzed:

12/20/04

Sieve of -20/+200


Weight of Materials used in Hydrometer:50.05						
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass	
#20	1.08	4.60	5.40	2.5	97.5	
#40	0.91	8.48	9.28	4.3	95.7	
_#60	0.99	12.69	13.49	6.3	93.7	
#100	1.15	17.59	18.39	8.6	91.4	
#200	1.73	24.96	25.76	12.0	88.0	

Date Analyzed:

12/20/04

	Specific 0	Gravity: 2,32		Hydrometer ID:	152-H-0	06	
Temp.	Reading Time	Hydro. Reading	Hydro, Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	49	7	42	8.3	0.0311	92.130
20	5	42	7	35	9.4	0.0209	76.775
20	15	32	7	25	11.1	0.0131	54.839
20	30	27	7	20	11.9	0.0096	43.871
20	60	23	7	16	12.5	0.0070	35.097
20	250	18	7	11	13.3	0.0035	24.129
20	1440	14	7	7	14.0	0.0015	15.355

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255622 Customer: Metcalf Eddy
Task Order: 041119-7 Client Sample ID: D05642
Project: 03159.29.00X Sample Matrix: Sediment

010214

Southwest Research Institute Grain Size Report

010217

SwRI Sample ID: 255623 Task Order#:

Customer:

Metcalf & Eddy

Case:

0247M

Project:

ا دو المراجع المراجع

041119-7 03159.29.00X Client Sample ID: D05643 Sample Matrix: Sediment

SDG:

D05640

Sieve of +10

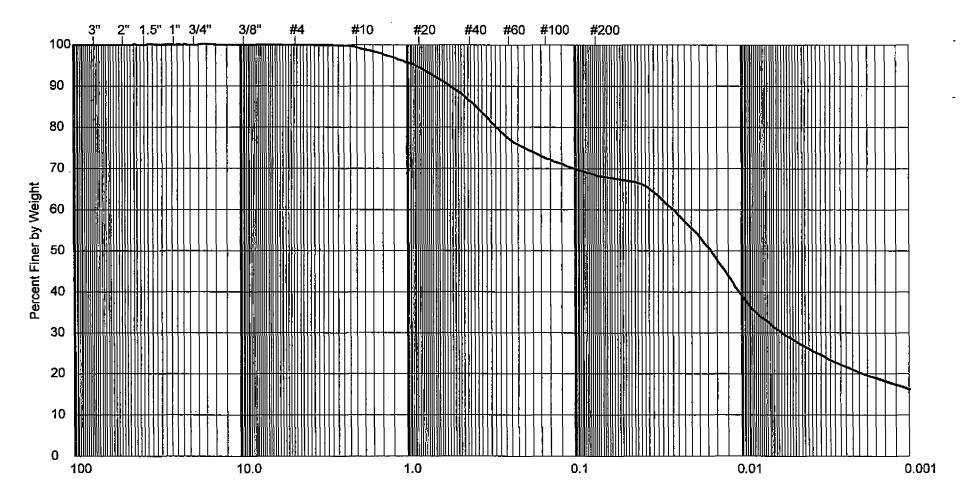
Total Sample Wt: 114.72

3/010 01 1 10			
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	0	0.0	100.0
#4	0	0.0	100.0
#10	0.34	0.3	99.7

Date Analyzed;

12/20/04

Sieve of -20/+200


	Weight of Materials used in Hydrometer: 50.03										
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass						
#20	2.41	5.51	5.85	5.1	94.9						
#40	4.21	15.13	15.47	13.5	86.5						
#60	4.91	26.36	26.70	23.3	76.7						
#100	2.24	31.48	31.82	27.7	72.3						
#200	2.13	36.35	36.69	32.0	68.0						

Date Analyzed:

12/20/04

	Specific (Gravity: 2.10		Hydrometer ID:	152-H-00	07	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	35	7	28	10.6	0.0384	66.403
20	5	32	7	25	11.1	0.0249	59.288
20	15	28	7	21	11.7	0.0147	49.802
20	30	24	7	17	12.4	0.0107	40.316
20	60	21	7	14	12.9	0.0077	33.201
20	250	17	7	10	13.5	0.0039	23.715
20	1440	15	7 、	8	13.8	0.0016	18.972

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255623

Task Order: 041119-7

Project: 03159.29.00X

Customer: Metcalf Eddy Client Sample ID: D05643

Sample Matrix: Sediment

Southwest Research Institute Grain Size Report

010221

SwRI Sample ID: 255624 Task Order #:

Customer:

Metcalf & Eddy

Case:

0247M

Project:

041119-7 03159.29.00X Client Sample ID: D05646 Sample Matrix:

Sediment

SDG: D05640

Sieve of +10

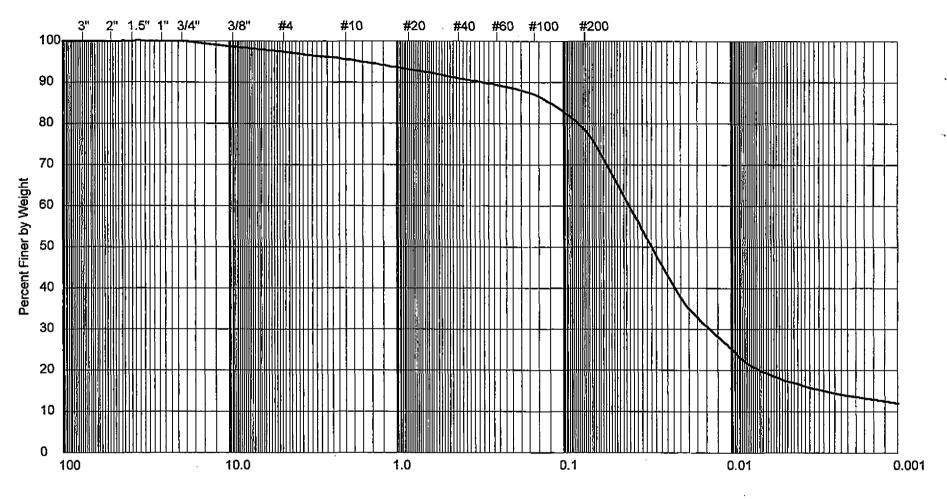
Total Sample Wt: 282.63

Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	. 0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	4.01	1.4	98.6
#4	3.56	2.7	97.3
#10	4.98	4.4	95.6

Date Analyzed:

12/20/04

Sieve of -20/+200


	Weight of Materials used in Hydrometer:50.03									
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass					
#20	1.30	7.02	19.57	6.9	93.1°					
#40	1.12	13.06	25.61	9.1	90.9					
#60	0.82	17.49	30.04	10.6	89.4					
#100	1.02	23.00	35.55	12.6	87.4					
#200	4.04	44.81	57.36	20.3	79.7					

Date Analyzed:

12/20/04

	Specific (Gravity: 2.23		Hydrometer ID:	152-H-0	80	
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer
20	2	34	8	26	10.7	0.0365	56.514
20	5	27	8	19	11,9	0.0244	41,299
20	15	22	8	14	12.7	0.0145	30.431
20	30	20	8	12	13.0	0.0104	26.084
20	60	17	8	9	13.5	0.0075	19.563
20	250	15	8	7	13.8	0.0037	15.215
20	1440	14	8	6	14.0	0.0016	13.042

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255624 Customer: Metcalf Eddy
Task Order: 041119-7 Client Sample ID: D05646
Project: 03159.29.00X Sample Matrix: Sediment

010222

Southwest Research Institute Grain Size Report

010225

SwRI Sample ID: 255625 Task Order #:

041119-7

Customer.

Metcalf & Eddy

Case:

0247M

Project:

03159.29.00X

Client Sample ID: D05658 Sample Matrix: Sediment

SDG: D05640

Sieve of +10

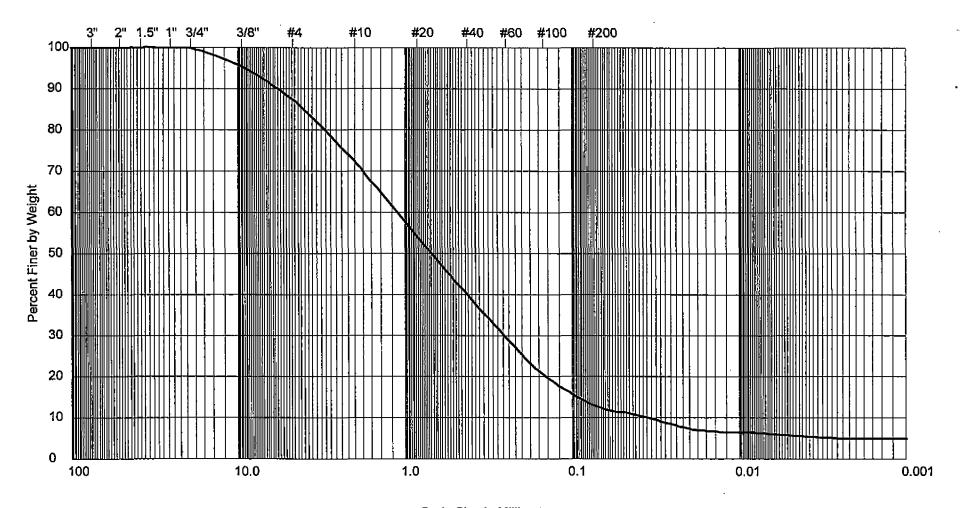
Total Sample Wt: 364.54

0,040 01 1 10	<u> </u>		
Sieve	Wt. Retained	% Retained	% Pass
3"	0	0.0	100.0
2"	0	0.0	100.0
1 1/2"	0	0.0	100.0
1"	0	0.0	100.0
3/4"	0	0.0	100.0
3/8"	16.14	4.4	95.6
#4	28.48	12.2	87.8
#10	56.45	27.7	72.3

Date Analyzed:

12/20/04

Sieve of -20/+200


	Weight of Materials us	Weight of Materials used in Hydrometer 50.00									
Sieve	Wt. Retained each Sieve	Yield	Wt. Retained	% Retained	% Pass						
#20	12.75	67.18	168.25	46.2	53.8						
#40	9.89	119.30	220.37	60.5	39.5						
#60	6.97	156.03	257.10	70.5	29.5						
#100	7.01	192.97	294.04	80.7	19.3						
#200	5.37	221.26	322.33	88.4	11.6						

Date Analyzed:

12/20/04

	Specific (Gravity: 2.36		Hydrometer ID:	meter ID: 152-H-009				
Temp.	Reading Time	Hydro. Reading	Hydro. Corr.	Corrected Hydro Reading	L	Diam (mm)	% Finer		
20	2	14	7	7	14.0	0.0397	10.989		
20	5	12	7	5	14.3	0.0254	7,849		
20	15	11	7	4	14.5	0.0148	6.279		
20	30	11	7	4	14.5	0.0104	6.279		
20	60	11	. 7	4	14.5	0.0074	6.279		
20	250	10	7	3	14.7	0.0036	4.709		
20	1440	10	7	3	14.7	0.0015	4.709		

Date Analyzed:

Grain Size in Millimeter

SwRI Sample ID: 255625

Task Order: 041119-7

Project: 03159.29.00X

Customer: Metcalf Eddy

Client Sample ID: D05658

Sample Matrix: Sediment

010226

Southwest Research Institute

Hygroscopic Moisture Report

010229

Client: METCALF & EDDY

Lab Code: SWRI

Case: DAS 0247M

Sample Receipt Report: 26864, 26889

Sample Matrix: Sediment

SDG: D05640

Task Order: 041116-5, 041119-7

Project: 03159.29.006

	Lab	Hygroscopic	
Field Sample ID#	Sample ID#	Moisture, %	%RPD
D05640	255316	0.794	
D05640	255316D	0.795	0.13%
D05641	255317	0.897	
D05644	255318	0.592	
D05645	255319	0.495	
D05647	255320	0.587	
D05649	255321	0.882	
D05650	255322	0.688	
D05651	255323	0.798	
D05652	255324	0.992	
D05653	255325	0.685	
D05656	255326	0.895	
D05657	255327	0.794	
D05660	255328	0.699	
D05638	255620	0.595	
D05639	255621	0.789	
D05642	255622	0.793	
D05643	255623	0.497	
D05646	255624	0.687	
D05658	255625	0.898	

			Но	ffman	n LaRoche	Project Number			Boring Number G-5			heet		
	RC		IA-	·8	Area G	ĺ	2	0447-0:	100-	00000	Well No.		1	of 1
				/CB Loc	ation:		_				Geologist	_		
Soil	Boring ——	Log	30'	DS CB	3 IVS-2						Kevin Staszowski			
I -	Contracto	-			Sampler Mode									
S2C	2/Dumitr	u Rac	lu ——		Power Pro	be 9600) EC		₽r	e-probe	to 10.5', Core 10.5'	-14.5'		
Sampl	er Descript	tion				Classific	ation Meth	od			Coordinates			
48 ii	n. Macro	core				Burm					X = NA Y = NA			
Temp	Temporary Piezometer or Screen Point							e from Pi outheas	•		Reference Elevation		NA	ft
Depth	Depth					Pipe Tyj		storm			Approximate Depth of Invert		12.00) ft
Screer	n Length/ty	/ре				Water T	able Depti				NA	ft		
Riser I	Length/type	е				Total de	epth	14	.5 f	t	Completion Date 3	/19/2003		
Depth	Sample Number	PEN,	/REC		Sa	mple Desc	cription			Strati- graphic Description	Field Testing			
				_		-								
1				1			•							
2 _				1										
_	_			-										
3 —				1										
4 _]										
				┨										
5 —		_		<u> </u>										
6				Pre-pr	obe to 10.5'									
7 _														
8		-												
9 _														
10_														
,,-	S-1	48"/	24"	10" br	own fine SA	ND and Sil	t, trace co	arse grav	el					
11]				_	-	58555555555555555555555555555555555555				
12			<u> </u>	1	athered angu									
13_				11" br	own fine SAN	ND and Sil	lt - stained			2.00.0000000000000000000000000000000000	13.7' - FID = 110.4 ppm 13.8' - FID = 183.8 ppm			
14 <u> </u>							•				13.9 - FID = 112 ppm			
			-		EOB 14.5'			<u> </u>			14' - FID = 88.4 ppm	<u> </u>		
	15													
Granular Soils Cohesive Soils Grain Size			(HSCS)	Note 1	Sample	Tim	<u> </u>	12:02	<u> </u>					
8lows/ft 0-4 4-10 10-30 30-50 >50	Density v. loose loose m. dens dense v. dense	se e	Slows/ft >2 2-4 4-8 8-15	Density v. soft soft m. stiff stiff v. stiff hard	slit/clay <0 f. sand 0.4 m. sand 2.0 c. sand 4.8 f. gravel 19 c. gravet 75 cobble 30	0.08 mm 43-0.08 mm 0-0.43 mm 8-2.0 mm 1-4.8 mm 1-19 mm 10-75 mm	Note 2 Note 3 Note 4 Note 5 Note 6	Sample Roche	Dep	oth	13.6 to 14.1 ft			
little 10-20					boulder >3 -	100 mm		Depth o	of re	covered s	sample measured from	bottom o	f core	

Hoffmann LaRoche Project Number Boring Number G-4 Sheet Well No. 1 of 1 **TA-8** Area G 20447-0100-00000 MH/CB Location: Geologist Soil Boring Log 15' DS CB IVS-2 Kevin Staszowski Boring Contractor/ Foreman Sampler Model Sampling Description S2C2/Dumitru Radu Power Probe 9600 EC Pre-probe to 9.5', Core 9.5'-13.5' Sampler Description Classification Method Coordinates 48 in. Macrocore X = NABurmeister Y = NAHorizontal Distance from Pipe Temporary Piezometer or Screen Point Reference Elevation NA ft 15" southeast Approximate Depth 11.00 ft Depth of Invert 18" storm Surface Elevation NA ft Screen Length/type Water Table Depth NA Riser Length/type Completion Date 3/19/2003 Total depth 13.5 ft Strati-Field Sample Depth PEN/REC Sample Description graphic Description Number Testing 1 2 3 Pre-probe to 9.5' 5 6 7 48"/24" 12" red-brown fine SAND and Silt **S-1** 12" brown fine SAND and Silt, some coarse 12.25' - FID = 14.6 ppm 11 gravel - stained 12.3' - FID = 63.2 ppm 12.4' - FID = 78.9 ppm 12. 12.75' - FID = 70.6 ppm 12.9' - FID = 242.0 ppm13. 13.25 - FID = 383.0 ppm EOB 13.5' 14 15. Note 1 11:11 Granular Solls Sample Time Cohestve Solls Gratn Size (USCS) Blows/ft Density Note 2 Sample Depth 12.8 to 13.3 ft Blows/ft Density silt/clav <0.08 mm 0-4 v. loose f, sand m, sand c, sand 0.43-0.08 mm 2.0-0.43 mm 4.8-2.0 mm >2 2-4 v. soft Note 3 Roche #80795 4-10 loose soft 10-30 m. dense m. stiff stiff Note 4 Duplicate sample G-400-13.3 at 1126, Roche #80796 4-8 30-50 dense 8-15 19-4.8 mm 75-19 mm f. gravel Note 5 >50 v. dense v. stiff hard c. gravel cobble

Note 6

Depth of recovered sample measured from bottom of core.

300-75 mm

>300 mm

boulder

Proportions

some 20-35% and 35-50%

ace 0-10%

Ittle 10-20%

			Hoffm	nann LaRo	he	Project N	umber			Boring Number G-1		Sh	neet
TRC IA-8			Area	G		20447-0	100	-00000	Well No.	Well No. 1 o			
Soil	Boring	Log		Location: IVS-6						Geologist Angela Shum			
ļ	Boring Contractor/ Foreman Sampler Mod						_	Car					
] -	2/Dumitr			Sampler N Bobcat					npling Des e-probe	to 3.5', Core 3.5'-7.	5'		
	er Descript					cation Met	nod			Coordinates			
	n. Macro					neister ntal Distand	o from Di			X = NA	Y = <u>NA</u>	<u> </u>	
Temp	orary Piezo or Scree					18" s	outheas	•		Reference Elevation		NA_	ft
Depth					Pipe Ty		<u>storm</u>			Approximate Depth of Invert		4.40	ft
Screer	Length/ty	/pe			Water	Table Dept	h j	NA		Surface Elevation	1	NA .	ft
Riser I	Length/typ	e			Total d	lepth	7	7.5 f	t	Completion Date 4	/23/2003		
Depth	Sample Number	PEN/	REC		Sample Des	scription .			Strati- graphic Description	Field Testing			
_									D _C C I public			_	
1 _													
2 _			Pr	e-probe to 3	5'					l			
3 <u> </u>													
4 -	_S-1	48"/4	5" 11	" red-brown	SILT and fin	e Sand		_				_	
5 _		_				to medium SAND, some silt T and fine Sand, little coarse CK fragments and coarse Sand,							
			gr	avel						5.5' - FID = 2.4 ppm			
6 —	-		── lit	de silt				′		6.0' - FID = 19.3 ppm 6.5' - FID = 49 ppm			
7 —				:" red-brown agments/cobl			ne rock			7.0' - FID = 46.5 ppm			
8 _				EOB 7.5'					249991989109110AB551				
9													
10													
_ 11													
12											,		
13					,								
14		. <u> </u>	-										
15													
						1 81-4- 4				0.40			
1	4-10 koose 2-4 soft		sity silt/day oft f. sand m. sand	f. sand 0.43-0.08 mm Note 3 Roche #81			e Dep	epth 7.0 to 7.5 ft					
30-50 >50	m. dens dense v. dense	. 1	4-8 m. s 8-15 stiff 5-30 v. st	f. gravel iff c. gravel	4.8-2.0 mm 19-4.8 mm 75-19 mm	Note 4 Note 5							-
trace 0-109			>30 hard	cobble boulder	300-75 mm >300 mm	Note 6	Depth (of re	covered :	sample measured from	bottom of	core.	<u>.</u>

Appendix U Data Validation Reports

Surface Water

March 22, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, MA 01863-2431

Subject:

Work Assignment No. 161-RICO-017H

Case No. 0247M, SDG D05667_IB

Southwest Research Institute, San Antonio, TX Callahan Mining Superfund Site, Brooksville, ME

Tier II Inorganic Data Validation

Total Metals:

10/Surface Waters/

D05667, D05669, D05671, D05673, D05675,

D05679, D05681, D05685, D05687, D05689

(Field duplicate pair: D05667/D05691)

Dissolved Metals:

8/Surface Waters/

D05668, D05672, D05674, D05676, D05680,

D05682, D05686, D05688

(Field duplicate pair: D05668/D05692)

Metals:

2/PE Samples/

, D05694, D05695

Dear Ms. Clark:

A Tier II validation, in accordance with the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, June 13, 1988 criteria, and incorporating Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, as deemed appropriate, was performed on the inorganic analytical data for 18 surface water samples and two performance evaluation (PE) samples collected by TRC Environmental Corporation on November 16, 17, and 18, 2004 from the Callahan Mining Superfund Site in Brooksville, ME. The associated field duplicate samples D05691 and D05692, PE sample D05700, and rinsate blank sample D05693 were reported in sample delivery group (SDG) D05670. All samples were analyzed for metals under the Metcalf & Eddy Remedial Action Contract Delivery of Analytical Services (DAS) program using Metcalf & Eddy's DAS Specification, D-137, Analytical Specification for the Analysis of Total and Dissolved Metals in Marine Water Samples, October 2004.

In accordance with the EPA-approved project plans for the site, Tier II validation was performed on all samples in this SDG. The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)

- Holding Times and Sample Preservation
 - ICP-MS Tuning and Mass Calibration
 - Instrument Calibration
- * Blanks
 - ICP Interference Check Sample Results
- Matrix Spike (MS) Results
- Laboratory Duplicate Results
 - Field Duplicate Results
- Laboratory Control Sample (LCS) Results
 - Internal Standards
- Laboratory Fortified Blank (LFB) Sample Results
- * Furnace Atomic Absorption Results
- * ICP Serial Dilution Results
 - Detection Limit Results
- NA Sample Quantitation Results
 - Accuracy Check/PE Samples
- Comparison of Total and Dissolved Results
- * All criteria were met for this parameter.

Note: Worksheets are not included for parameters that have met criteria or parameters that are not applicable (NA) to Tier II validation,

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site data quality objectives (DQOs) and potential usability issues

Data Summary Tables - summarize accepted, qualified, and rejected data based on the Tier II data validation review.

Overall Evaluation of Data and Potential Usability Issues

Following is a summary of the site DQOs:

 To determine the nature and extent of contamination and to support a human health and ecological risk assessment.

All results are usable for project objectives.

The validation actions applied as a result of sampling error are summarized below:

• The positive results for arsenic, manganese, and nickel in samples D05667, D05669, D05671, D05673, D05675, D05679, D05681, D05685, D05687, and D05689 and aluminum, copper, iron, and lead in samples D05667, D05669, D05671, D05673, D05679, D05681, D05685, D05687, and D05689 were qualified as estimated (J) due to high relative percent differences (RPDs) for these analytes in the evaluation of the field-duplicate pair. The direction of the bias cannot be determined from this nonconformance. These results are usable for project objectives as estimated values which may have a minor effect on the data usability.

The validation actions applied as a result of analytical error are summarized below:

- The positive results for copper in sample D05682 and nickel in samples D05668, D05669, D05671, D05672, D05673, D05674, D05675, D05676, D05679, D05680, D05682, and D05689 were qualified as estimated (J) due to high recoveries for these analytes in the CRDL standard analyses. The results are usable for project objectives as estimated values which may be biased high. This qualification has a minor effect on the data usability.
- The positive results for zinc in samples D05673, D05674, D05675, D05676, D05681, and D05682 were qualified as estimated (J) due to positive interference in the ICSA analysis. The results are usable for project objectives as estimated values which may be biased high. This qualification has a minor effect on the data usability.
- The positive and nondetect results for antimony were qualified as estimated (J/UJ) in all
 surface water samples due to low recoveries of this analyte in the ICSA analysis. The
 results are usable for project objectives as estimated values and nondetects with estimated
 quantitation limits which may be biased low. This qualification has a minor effect on the
 data usability.
- The positive results for copper in samples D05667, D05668, D05669, D05671, D05672, D05673, D05674, D05679, D05680, D05681, D05682, D05685, D05686, D05687, and D05689 and zinc in all surface water samples were qualified as estimated (J) due to PE sample nonconformances. The results may be biased high for copper and zinc. These results are usable for project objectives as estimated values. This qualification has a minor effect on the data usability.
- Positive results which were less than the quantitation limit (QL) were qualified as estimated
 (J). The following results were affected by this qualification: aluminum in samples D05671, D05673, D05689, and D05679, barium in samples D05667, D05668, D05669, D05671, D05672, D05673, D05674, D05675, D05676, D05679, D05680, D05681,

D05682, and D05689, iron in samples D05673 and D05679, selenium in sample D05686, and potassium in samples D05667, D05668, D05671, D05672, and D05689. There is potential uncertainty for the accuracy of these results. The results are usable for project objectives as estimated values which may have a minor effect on the data usability.

The following metals were analyzed by ICP/AES: aluminum, barium, calcium, copper, magnesium, potassium, sodium, and zinc. The following metals were analyzed by ICP/MS: antimony, beryllium, cadmium, chromium, cobalt, iron, lead, manganese, nickel, silver, thallium, and vanadium. The following metals were analyzed by hydride AA: arsenic and selenium.

The attached Table I summarizes the Tier II validation recommendations which were based on the following information:

ICP-MS Tuning and Mass Calibration

In the beryllium analysis performed on 02/18/05, the resolution (0.77) exceeded the control limit of 0.75 atomic mass units (amu) in the final mass resolution check. Validation action was not taken on this basis as all associated analytical quality control results were within acceptance limits indicating acceptable instrument accuracy.

Instrument Calibration

A CRDL standard was analyzed at the required quantitation limit. The following table lists the analytes which exhibited recoveries outside of the validation control limits of 80 - 120%.

		Markey 2 feet of the	
Copper	03/01/05	135.0%	Estimate (J) the positive result for copper in sample D05682.
Nickel	02/24/05	126.0%	Estimate (J) the positive results for nickel in samples D05668, D05669, D05671, D05672, D05673, D05674, D05675, D05676 D05679, D05680, D05682, and D05689.
Zinc	03/01/05	140.5%	No validation actions were required as the associated results were greater than the affected range.

ICP Interference Check Sample Results

All recovery criteria were met in the ICSAB analysis.

The following table lists the analytes which exhibited recoveries outside of the control limits (true value \pm 2x the QL for ICP/AES or true value \pm 3x the QL for ICP/MS) or were detected at levels greater than

2x the QL in the ICSA solution analysis associated with all samples.

e de la companya de l			
Zinc	03/01/05 03/03/05	ICP	Detected at >2x the QL
Antimony	02/24/05	ICP/MS	33%, Result was not within 3x the QL

In the ICP/MS analysis, sodium or calcium were present in all surface water samples at greater than 50% those of the levels in the ICP/MS ICSA solution. The positive and nondetect results for antimony in all surface water samples were qualified as estimated (J/UJ) due to low recovery in the ICSA standard.

For the ICP/AES analysis, the levels of interferents in samples were reviewed. Magnesium was present in samples D05669 (85%), D05671 (153%), D05672 (153%), D05673 (198%), D05674 (198%), D05675 (219%), D05676 (219%), D05679 (190%), D05680 (190%), D05681 (204%), D05682 (206%), and D05689 (157%) at greater than 50% that of the level in the ICSA solution. Professional judgement was used to accept results in which the estimated interference was less than 10% of the sample result.

Samps	AMERICA	\$5,000 G \$2,000 \$2,000	- (\$ 1703.65) 103.4653 \$ 5 104.553	
D05669	zinc	330	17	Validation action not required; interference <10%.
D05671	zinc	512	30.5	Validation action not required; interference <10%.
D05672	zinc	511	30.5	Validation action not required; interference <10%.
D05673	zinc	275	39.6	Estimate (J) the positive result for zinc.
D05674	zinc	268	39.6	Estimate (J) the positive result for zinc.
D05675	zinc	67.1	43.8	Estimate (J) the positive result for zinc.
D05676	zinc	65.2	43.8	Estimate (J) the positive result for zinc.
D05679	zinc	437	37.9	Validation action not required; interference <10%.
D05680	zinc	420	38	Validation action not required; interference <10%.
D05681	zinç	309	40.8	Estimate (J) the positive result for zinc.
D05682	zinc	280	41.1	Estimate (J) the positive result for zinc.
D05689	zinc	446	31.4	Validation action not required; interference < 10%.

Service Company

Field Duplicate Results

Samples D05667 and D05691 (reported in SDG D05670) were submitted as a field duplicate pair with this sample set and associated with samples D05667, D05669, D05671, D05673, D05675, D05679, D05681, D05685, D05687, and D05689. The following table summarizes the RPDs which were outside of the acceptance criteria.

a state of the	CONTRACTOR OF THE PROPERTY.			the Control of the Co			
	1.1.1.1.2.1			1895			
	Aluminum	834	210	119.5	Estimate (I) the positive results for aluminum in samples D05667, D05669, D05671, D05673, D05679, D05681, D05685, D05687, and D05689.		
•	Arsenic	3.1	0.96	105.4	Estimate (I) the positive result for arsenic in all associated samples.		
	Соррег	1.88	40.4	74.2	Estimate (J) the positive results for copper in samples D05667, D05669, D05671, D05673, D05679, D05681, D05685, D05687, and D05689.		
	Iron	1030	299	110	Estimate (J) the positive results for iron in samples D05667, D05669, D05671, D05673, D05679, D05681, D05685, D05687, and D05689.		
	Lead	44.2	12.8	110.2	Estimate (J) the positive results for lead in samples D05667, D05669, D05671, D05673, D05679, D05681, D05685, D05687, and D05689.		
	Manganese	54.6	20.2	92.0	Estimate (J) the positive result for manganese in all associated samples.		
	Nickel	4.2	1.8	80	Estimate (J) the positive result for nickel in all associated samples.		

All criteria were met in the field duplicate pair D05668/D05692.

Internal Standards

The following table lists the sample internal standard (IS) areas which were outside of the control limits of 60-125%.

		Talayang T Sajadah Malayan		
D05685 (10-fold)	02/23/05	Yttrium/ 239.7%	vanadium	Validation action was not required; result for vanadium was nondetect and therefore not affected by the potential high bias.
D05686 (10-fold)	02/23/05	Yttrium/ 237.3%	vanadium ==	Validation action was not required; result for vanadium was nondetect and therefore not affected by the potential high bias.
D05685 (10-fold)	02/24/05	Yttrium/ 243.2%	chromium, iron, manganese, nickel	Chromium was nondetect and therefore reported without qualification. The sample was reanalyzed with a 100-fold dilution with acceptable IS recovery. The laboratory reported results for iron, manganese, and nickel from the 100-fold dilution analysis.
D05686 (10-fold)	02/24/05	Yttrium/ 245.7%	chromium, iron, manganese, nickel	Chromium was nondetect and therefore reported without qualification. The sample was reanalyzed with a 100-fold dilution with acceptable IS recovery. The laboratory reported results for iron, manganese, and nickel from the 100-fold dilution analysis.
D05685 (10-fold)	02/24/05	Yttrium/ 272.1%	cobalt	The sample was reanalyzed with a 100-fold dilution with acceptable IS recovery. The laboratory reported the result for cobalt from the 100-fold dilution analysis.
D05686 (10-fold)	02/24/05	Yttrium/ 270.3%	cobalt	The sample was reanalyzed with a 100-fold dilution with acceptable IS recovery. The laboratory reported the result for cobalt from the 100-fold dilution analysis.

Detection Limit Results

The laboratory performed 10-fold dilutions for antimony, cadmium, chromium, cobalt, iron, lead, manganese, nickel, silver, thallium, and vanadium and a 5-fold dilution for beryllium on all samples and quality control (QC) samples. In addition, a two-fold dilution was performed for selenium on sample D05685. These elevated quantitation limits still met the project-required quantitation limits. The following table lists the dilutions required in order to bring results within the instrument linear range.

No. 18.50		
D05671, D05672, D05673, D05674, D05675, D05676, D05679, D05680, D05681, D05682, D05689	Magnesium	2-fold
D05685. D05686	Zinc	10-fold

*Sumptos	ALE PART	Made Personal
D05669	Potassium and Sodium	20-fold
D05671, D05672, D05673, D05674, D05675, D05676, D05679, D05680, D05681, D05682, D05689	Potassium and Sodium	50-fold /

For all analyses, positive results which were < the QL were qualified as estimated (J). The following results were affected by this qualification: aluminum in samples D05671, D05673, D05689, and D05679, barium in samples D05667, D05668, D05669, D05671, D05672, D05673, D05674, D05675, D05676, D05679, D05680, D05681, D05682, and D05689, iron in samples D05673 and D05679, selenium in sample D05686, and potassium in samples D05667, D05668, D05671, D05672, and D05689.

Accuracy Check/PE Samples

The aqueous metals PE samples D05694 (IS4679), D05695 (HG3885), and marine reference PE sample D05700 (SLEW-3) were evaluated with this SDG.

In the analysis of PE sample D05694, 15 out of 16 detected analytes were evaluated as "Within Limits." Selenium was not evaluated. Validation actions were not required on the basis of this evaluation.

In the analysis of PE sample D05695, mercury was evaluated as "Within Limits."

In the analysis of PE sample D05700, the control limits of 70-130% were used for the evaluation as the PE levels were close to the quantitation limits. The following table details the evaluation of the analytes for which certified values were given.

Arsenic	2.1	0.95-1.77	Due to the low concentration, professional judgement was used to accept the results for arsenic without qualification as arsenic recovered within control limits in the other PE sample and LFB and recovered only slightly above the control limits in this PE sample.
Copper	5.3	1.09-2.01	Estimate (J) the positive results for copper in samples D05667, D05668, D05669, D05671, D05672, D05673, D05674, D05679, D05680, D05681, D05682, D05685, D05686, D05687, and D05689.

236.1.	VI (42-1)	al III da - a a a a a a a Tarang a a a a a a a a a a a a a a a a a a	
!- ! - 	je st e s <u>pod se og og</u>		and the second s
Manganese 4	2.3 : \$1955 (1955)	1.13-2.09 ർരങ്ങൾ ഇപ്പോട്ട	Due to the low concentration, professional judgement was used to accept the results for manganese without qualification as manganese recovered within control limits in the other PE samples, LFBs, and instrument standards and recovered only slightly above the control limits in this PE sample.
Nickel	2.0	0.86-1.6	Due to the low concentration, professional judgement was used to accept the results for nickel without qualification as nickel recovered within control limits in the other PE sample and LFB and recovered only slightly above the control limits in this PE sample.
Vanadium	3.3	1.80-3.34	Within control limits.
Zinc	3.9	0.14 - 0.26	Estimate (J) the positive results for zinc in all surface water samples.
Cadmium Chromium Cobalt Iron Lead	0.20 U 2.0 U 1.0 U 50.0 U 1.0 U	True Values 0.048 ug/L 0.183 ug/L 0.042 ug/L 0.568 ug/L 0.009 ug/L	Validation actions were not required as the certified PE values were less than the method detection limits.

Please contact Ms. Elizabeth Denly at (978):656-3577 should you have any questions or comments concerning this information.

Very truly yours,

TRC Environmental Corporation

Lorie MacKinnon

Data Validator

Elizabeth Denly Senior QA Chemist

- Tier II Attachments: 1. Table I: Recommendation Summary Table
 - 2. Table II: Overall Evaluation of Data
 - 3. Table III: Tentatively Identified Compound Summary (NA)
 - 4. Data Summary Tables
 - 5. IRDA Form
 - 6. Data Validation Worksheets
- 7. Copy of non-CLP Analytical Method (M&E DAS Specification D-137)
 - 8. PE Score Reports
 - 9. Copies of Telephone Logs/Communication Forms
 - 10. Supporting Data for Reduced Payment Recommendations (NA)
 - 11. Copies of Field Sampling Notes
 - 12. Copies of EPA-approved Amendments to QAPiP or SAP (NA)
 - 13. CSF Audit (DC-2 Form)
 - 14. DQO Summary Form

Ed Hathaway, EPA Remedial Project Manager (DV memo and data summary table) cc: Project File **PSAdmin**

Attachment 1 Table I: Recommendation Summary Table

 $\Big(\frac{1}{q},\frac{1}{z}\Big)$

Table I Recommendation Summary for Metals Analyses Callahan Mining Superfund Site Case# 0247M SDG D05667_IB

County Summer	En Mr. (serv	Quines ()
D05667	sw	J¹, J², J6, J ⁷ , J ⁸ , J ¹⁰ , J ¹³
D05668	sw	J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ¹⁰ , J ¹³
D05669	sw	J ¹ , J ² , J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ¹⁰
D05671	sw	J ¹ , J ² , J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ⁹ , J ¹⁰ , J ¹³
D05672	sw	J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ¹⁰ , J ¹³
D05673	sw	J ¹ , J ² , J ⁴ , J ⁵ , J ⁶ , J ⁷ , J ⁸ , J ⁹ , J ¹⁰ , J ¹¹
D05674	sw	J ⁴ , J ⁵ , J ⁶ , J ⁷ , J ⁸ , J ¹⁰
D05675	sw	J¹, J⁴, J⁵, J6, J8, J¹0
D05676	sw	J ⁴ , J ⁵ , J ⁶ , J ⁸ , J ¹⁰
D05679	sw	J ¹ , J ² , J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ⁹ , J ¹⁰ , J ¹¹
D05680	sw	J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ¹⁰
D05681	sw	J ¹ , J ² , J ⁵ , J ⁶ , J ⁷ , J ⁸ , J ¹⁰
D05682	sw	J³, J⁴, J⁵, J⁶, Jˀ, Jଃ, J¹0
D05685	sw	J ¹ , J ² , J ⁶ , J ⁷ , J ⁸
D05686	sw	J ⁶ , J ⁷ , J ⁸ , J ¹²
D05687	sw	J ¹ , J ² , J ⁶ , J ⁷ , J ⁸
D05688	sw	J ⁶ , J ⁸
D05689	sw	J ¹ , J ² , J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ⁹ , J ¹⁰ , J ¹³

SW - Surface Water

- J¹ Estimate (J) the positive results for arsenic, nickel, and manganese due to high RPDs for these analytes in the evaluation of the field duplicate pair.
- J² Estimate (J) the positive results for aluminum, copper, iron, and lead due to high RPDs for these analytes in the evaluation of the field duplicate pair.
- J³ Estimate (J) the positive result for copper due to high recovery for this analyte in the CRDL standard analysis. The result may be biased high.

- Estimate (J) the positive result for nickel due to high recovery for this/analyte in the CRDL standard analysis. The result may be biased high.
- Estimate (J) the positive result for zinc due to positive interference in the ICSA analysis. The result may be biased high.
- J⁶ Estimate (J/UJ) the positive and nondetect results for antimony due to low recovery in the ICSA analysis. The result may be biased low.
- J⁷ Estimate (J) the positive result for copper due to PE sample nonconformances. The result may be biased high.
- J⁸ Estimate (J) the positive results for zinc due to PE sample nonconformances. The results may be biased high.
- J⁹ Estimate (J) the positive result for aluminum since the result is < the QL.
- J^{10} Estimate (J) the positive result for barium since the result is \leq the QL.
- J¹¹ Estimate (J) the positive result for iron since the result is < the QL.
- J^{12} Estimate (J) the positive result for selenium since the result is < the QL.
- J¹³ Estimate (J) the positive result for potassium since the result is < the QL.

Attachment 2
Table II: Overall Evaluation of Data

Table II Overall Evaluation of Data - Data Validation Memorandum Case 0247M, SDG D05667_IB

Metals								
ООД	Sampling* and/or Analytical Method	Measure	ement Error	Sampling Variability**	Potential Usability			
	Appropriate Yes or No	Analytical Error	Sampling Error*		Issues			
To determine the nature and extent of contamination and to support a human health risk assessment.	Both - Yes	Refer to qualifications in R/S Key: J ³ through J ¹³	Refer to qualifications in R/S Key	. A	Low and High Blased Results: Potential high bias exists for copper in sample D05682 and nickel in samples D05668, D05669, D05671, D05672, D05673, D05674, D05675 D05676, D05679, D05680, D05682, and D05689 due the to high recoveries in the CRDL standard analysis. Potential high bias exists for zinc in samples D05673, D05674, D05675 D05676, D05681, and D05682 due to positive interference in the ICSA analysis. Potential low bias exists for antimony in all surface water samples due to low recovery in the ICSA analysis. Potential high bias exists for the positive results for copper and zinc in all surface water samples due to high PE results. Potential Uncertainty in Results: Potential uncertainty exists for select aluminum, barium, Iron, selenium and potassium results which were < the QL. Potential uncertainty exists for arsenic, manganese, and nickel in samples D05667, D05669, D05671, D05673, D05675, D05679, D05681 D05685, D05687, and D05689 and aluminum, copper, iron, and lead in samples D05667, D05669, D05671, D05673, D05679, D05681, D05685 D05687, and D05689 due to the high RPDs for these analytes in the evaluation of the field duplicate pairs. Results discussed above can still be used for project objectives a estimated values or nondetects with estimated quantitation limits These issues may have a minor impact on the data usability.			

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Attachment 3 Table III: Tentatively Identified Compound Summary

-not applicable to this SDC

Attachment 4 IRDA Form

NO.	errer (·			
NO. 02474		allahan			
RATORY SWRI					2 PE sonf
DO 5667_IB	REVIEWE	R(IF NOT	ESD)_	TRC	·
Das 0-137	REVIEWE	R'S NAM	<u> ار</u>	ni r	lackiman
CTION FYI /	_ COMPLET	TION DAT	E	03/22	105
					•
<u>DATA ASS</u>	ESSMENT S	UMMARY			•
			15.7		. The LOT III
	·	<u>ICP</u>	AA HY	<u>HG</u>	ICP/MS <u>CYANIDE</u>
HOLDING TIMES	-	- گ	0	. 0	^
CALIBRATIONS		_0	0	0	0
BLANKS	÷	_0_	_0_		0
ICS	•	_ 6	N.A	NA	
LCS	<i>'</i> .	0.	_0_	_0_	<u> </u>
DUPLICATE ANALYSIS	-	0_	_0_	_ 0_	
MATRIX SPIKE	-	O_	_0_		<u>_0</u>
MSA		NA	<u>~~~</u>	NA.	<u>NA</u>
SERIAL DILUTION		_0_	<u>NA</u>	<u>_NB</u>	<u>o</u>
SAMPLE VERIFICATION		NA	<u>NA</u>	_ NA	<u>NA</u>
OTHER QC			_0	o	
OVERALL ASSESSMENT		_ـــ	,0		
O = Data had no problems, or qualified due to	minor problems	·-			
M = Data qualified due to major problems.	•		+		
Z = Data unacceptable.					•
X = Problems, but do not affect data.					
N ITEMS:					

AREAS OF CONCERN:	
<u> </u>	· · · · · · · · · · · · · · · · · · ·
	·
NOTABLE PERFORMANCE:	
Validator: பு	Date: 3/19/05
Validator: LM	Date: 3/19/10 S
•	•

CASE NO.

SOW #

. 1. 2.

3.

4.

5. 6.

7.

8.

9.

10.

11. 12.

DPO:ACTION

LABORATORY

ACTION ITEMS:

Attachment 5 Data Summary Tables

Site: Callahan Mining Superfund Site - Brooksville, ME Case Number 0247M, SDG D05667_IB

						25684 25684 25684 25684 25684 26684							i D					3000	nus A		
	E816			THE REAL PROPERTY.	機與網	MANAGE OF	NAME:		HISTOR							100					
Aluminum	50	834	ر ل	50.0	U	106	ال ال	50.0	U	55.8	J	50.0	U	50.0	Ų	50.0	U .	81.6	J	50.0	U
Antimony	0.5	1.3	J	0.75	J	0.50	υJ	0.50	UJ.	0.50	UJ	0.50	UJ	0.50	IJ	0.50	IJJ	0.50	UJ	0.50	w
Arsenic	0.2	3.1	J	0.39		1,1	j	1.1		1.6	J	1.5		1.9	J	1.8		1.7	J	1.6	
Barlum	5.0	8.6	J	7.6	J	6.5	J	6.8	J	7.4	J	7.2	J	7.2	J	6.7	J	7.3	J	7.2	J
Beryllium	0.2	0.20	U	0.20	U	0.20	υ	0.20	U	0,20	υ	0.20	U	0.20	u	0.20	U	0.20	U	0.20	U
Cadmium	0.2	3.9		2,9		2.7		2.6		1.5		1.4		0.52		0.47	•	2.6		2.7	
Çalçlum	50	76,900		72,500		227,000		231,000		284,000		282,000		310,000		308,000	,	275,000		275,000	
Chromium	2.0	2.0	U	2.0	U	2.0	Ų	2.0	U	2.0	Ų	2.0	บ	2.0	υ	2.0	U	2,0	U	2.0	U
Cobalt	1.0	1.0	U	1.0	U	1.2		1.1		1,2		1.3		1.3		1.3		1,2		1.1	
Copper	2.0	88.1	J	21.8	J	20.7	3	15.9	J	12.1	J	8.9	J	2.0	U	2.0	U	13.6	J	6.6	J
Iron	50	1030	J	50.0	U	147	J	50.0	U	61.4	J	50.0	U	50,0	U	50.0	U	98.5	J	50.0	U
Lead	1	44.2	J	1.8		1.9	J	1.0	Ų	1.3	J	1.0	U	1.0	υ	1.0	Ψ.	2.3	J	1.0	U
Mägneslum	50	8550		6740		801,000		801,000		1,040,000		1,040,000		1,150,000		1,150,000		996,000		1,000,000	
Manganese	1.0	54.6	J	11.4		41.7	٦	39.8		21.4	J	20.3		13.1	J	10.8		20.1	J	18.3	
Mercury	0.2	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U
Nickel	1.0	4.2	J	1.0	J	2.0	J	1.9	J	2.0	J	1.8	J	1.8	J	1.7	J	2.4	J	2.0	J
Potassium	250	2400	J	2190	J	237,000	J	239.000	Ł	309,000		307,000		353,000		348,000		302,000		300,000	
Selenium	1.0	1,0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	`υ	1.0	υ	1.0	U	1.0	IJ	1,0	u .
Silver	1.0	1.0	Ų	1.0	U	1.0	U	1.0	U	1,0	U	1.0	U	1.0	U	1.0	U	1,0	υ	1.0	U
Sodlum	250	24,400		23,700		6,390,000		6,440,000		8,270,000		8,290,000		9,330,000		9,170,000		8,020,000		8,000,000	
Thaillum	0.5	0.50	υ	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	u	0.50	บ	0.50	U	0.50	U
Vanadium	1.0	1.0	Ų	1.0	U	1.0	U	1.0	υ	1.2		1,1		1,5		1.6		1.2		1.1	
Zinc	2.0	1170	ું જાણાં(કોકોએ	623	J Grandstan	512 กลรัสส์เพลเตเมื่อใ	ل ملدون تيانية	511 (1985) 584(20)	J Secretaristis	275	<u>भूषा स्थाप</u>	268 ((335)45)4635	J Machaeleren	67.1	J La Problemon	65.2	J Marianto a	437	ر مادرون	420	J New Company
THE REPORT OF THE PARTY OF THE		SIMPLIFIE	NW W	MATTER STATE	64 164	网络特别	THE REAL PROPERTY.	解料研究	0.488	A THE	TIME I		COMP		公公城			Part I	10	MATTER	

QL - Quantitation Limit

J - Esilmated value

UJ - Estimated nondetect

U - Not detected at the specified quantitation limit

The second secon		1164) 1173	li Upra	1752 1752	i) II	304 1312	3	, AVE. 1 (10)50	35.	, lu		CANAL TANAL				1074	,
	in gold	1.27	1	472	ŋ	41/2	Ω		Ľ.	217	O.	144	by I	100		V sector	
	(i.); v(i)						<u>.</u>			1,014	9	15.44	<u>.</u>				W.
	aro, he)							1.2			N. 184		1,11		,	1	÷
			dareds Table		(1.22) (2.16)				resident Orașilia			gileen (erio Sancai		anto		
	Jaja		edi Paring		بالينية	15-11.		Heat our to		k ingeless.	2.11		فالشادا	ikini.	ر خالیان را در داری	1/4	
iligardi S. arean kar (Attill 1900-15 bijkanjara a saida) Aluminum	50	305	J	50.0	ue.ene.ee U	2490	J	308		17,200	J	50.0	U	212	J	103	J
Antimony	0.5	0.50	UJ	0.50	UJ	1.5	J	0.70	J	0.65	J	0.50	IJ	0.50	w,	0.50	U.
Arsenic	0.2	2.0	J	1.7		3.1	J	0.20	U	10.8	J	0.56		0.92	J	, 1.2	J
Barlum	5.0	7.7	J	7.3	J	17.4		18.8		67.1		14.9		5.4	J:	7.2	J
Beryflum	0.2	0.20	U	0.20	U	1.8		1.7		0.80		0.20	U	0.20	U .	0.20	U
Cadmlum	0.2	2,0		1.8		854		848		10		0.21		1.7		2.4	
Calclum	50	291,000		291,000		291,000		293,000		169,000		183,000		139,000		235,000	
Chromlum	2.0	2.0	U	2.0	U	2.0	U	2.0	U	29.0		2.0	U	2.0	U ,	2.0	U
Cobalt	1.0	1.3		1.2		₩3.7		91.4		8.0		1.9		1.0	U :	1.2	
Copper	2.0	16.0	J	5.7	J	9790	L	7780	J	48.9	J	2.0	U	17.0	J	19.8	J
Iron	50	392	J	50.0	U	1590	J	500	U	39,600	J	2680		303	J	163	J
Lead	1	4.8	J	1.0	U	154	1	87.2		37.2	J	1,0	U	3.3	J	1.6	J
Magneslum	60	1,070,000		1,080,000		170,000		154,000		55,800		49,500		447,000		823,000	
Manganese	1.0	24.2	J	18.7		7680	J	8050		471	J	343		47.8	J	49.0	J
Mercury	0.2	0.20	U	0.20	U	0.20	U	0.20	U	0,20	U	0.20	Ų	0.20	U	0.20	U
Nickel	1.0	3.5	J	1.9	J	163	J	168		107	J	18.4		2.2	J	2.5	J
Potassium	250	321,000		318,000		11,900		7880		16,000		12,300		143,000		241,000	J
Selenium	1.0	1.0	U	1.0	U	2.0	U	2.2	J	1.0	'υ	1.0	U	1.0	U	1.0	U
Silver	1.0	1.0	U	1.0	U	1.0	U	t.0	U	1.0	U	1.0	U	1.0	Ų	1.0	U
Sodium	260	8,590,000		8,520,000		227,000		94,900		102,000		101,000		3,700,000	1	6,490,000	
Thallium	0.5	0.50	U	0.50 -	U	0.50	υ	0.50	b	0.50	υ	0.50	U	0.50	υ ₍	0.50	C
Vanedium	1.0	1,8		1.2		1.0	U	1.0	U	30.6		1.0	U	1.0	U .	1.0	ι
Zinc	2.0	309	J v. v.	280	J	189,000	ل	171,000	J	2630	J	690	J	330	J	448	

QL - Quantitation Limit

J - Estimated value

UJ - Estimated nondetect

U - Not detected at the specified quantitation limit

March 17, 2005

Christine Clark Regional Sample Control Center U.S. EPA Region I 11 Technology Drive North Chelmsford, MA 01863-2431

Subject:

Work Assignment No. 161-RICO-017H

Case No. 0247M, SDG D05670

Southwest Research Institute, San Antonio, TX Callahan Mining Superfund Site, Brooksville, ME

Tier II Inorganic Data Validation

Total Metals:

4/Surface Waters/

D05677, D05683, D05691, D05704

(Field duplicate pairs: D05667/D05691 and D05677/D05704)

Dissolved Metals:

6/Surface Waters/

D05670, D05678, D05684, D05690, D05692,

D05705

(Field duplicate pairs: D05668/D05692 and D05678/D05705)

2/Rinsate Blanks/ | D05693, D05699

Metals:

4/PE Samples/

D05697, D05698, D05700, D05701

Dear Ms. Clark:

A Tier II validation, in accordance with the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, June 13, 1988 criteria, and incorporating Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, as deemed appropriate, was performed on the inorganic analytical data for ten surface water samples, two rinsate blank samples, and four performance evaluation (PE) samples collected by TRC Environmental Corporation on November 16, 17, and 18, 2004 and December 2 and 3, 2004 from the Callahan Mining Superfund Site in Brooksville, ME. The field duplicate samples D05667 and D05668 and associated PE samples D05694 and D05695 were reported in sample delivery group (SDG) D05667_IB. All samples were analyzed for metals under the Metcalf & Eddy Remedial Action Contract Delivery of Analytical Services (DAS) program using Metcalf & Eddy's DAS Specification, D-137, Analytical Specification for the Analysis of Total and Dissolved Metals in Marine Water Samples, October 2004.

In accordance with the EPA-approved project plans for the site, Tier II validation was performed on all samples in this SDG. The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
 - Holding Times and Sample Preservation
- ICP-MS Tuning and Mass Calibration
- Instrument Calibration
- Blanks
- .9.4 ICP Interference Check Sample Results
- Matrix Spike (MS) Results
- Laboratory Duplicate Results
 - Field Duplicate Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Laboratory Fortified Blank (LFB) Sample Results
- Furnace Atomic Absorption Results
- ICP Serial Dilution Results
 - **Detection Limit Results**
- Sample Quantitation Results NA
 - Accuracy Check/PE Samples
- Comparison of Total and Dissolved Results
- All criteria were met for this parameter.

Note: Worksheets are not included for parameters that have met criteria or parameters that are not applicable (NA) to Tier II validation.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site data quality objectives (DQOs) and potential usability issues

Data Summary Tables - summarize accepted, qualified, and rejected data based on the Tier II data validation review.

Overall Evaluation of Data and Potential Usability Issues

Following is a summary of the site DQOs:

To determine the nature and extent of contamination and to support a human health and ecological risk assessment.

All results are usable for project objectives.

The validation actions applied as a result of sampling error are summarized below:

- The positive results for aluminum, arsenic, copper, lead, nickel, iron, and manganese were qualified as estimated (J) in sample D05691 due to high relative percent differences (RPDs) for these analytes in the evaluation of the field duplicate pair. The direction of the bias cannot be determined from this nonconformance. These results are usable for project objectives as estimated values which may have a minor impact on the data usability.
- The positive results for copper were qualified as estimated (J) in samples D05678, D05684, and D05705 due to a high RPD for this analyte in the evaluation of the field duplicate pair. The direction of the bias cannot be determined from this nonconformance.
 These results are usable for project objectives as estimated values which may have a minor impact on the data usability.

The validation actions applied as a result of analytical error are summarized below:

- The positive results for copper in sample D05670 and nickel in all surface water samples were qualified as estimated (J) due to high recoveries for these analytes in the CRDL standard analyses. The results are usable for project objectives as estimated values which may be biased high. This qualification has a minor effect on the data usability.
- The positive results for zinc were qualified as estimated (J) in samples D05677, D05678, D05704, and D05705 due to positive interference in the ICSA sample analysis. The results are usable for project objectives as estimated values which may be biased high. This qualification has a minor effect on the data usability.
- The positive and nondetect results for antimony and nickel were qualified as estimated (J/UJ) in all surface water samples due to low recovery and negative interference, respectively, in the ICSA sample analysis. The results are usable for project objectives as estimated values and nondetects with estimated quantitation limits which may be biased low. This qualification has a minor effect on the data usability.
- The positive results for arsenic, copper, and zinc were qualified as estimated (J) in all surface water samples due to PE sample nonconformances. The results for copper and zinc may be biased high. The direction of the bias cannot be determined for arsenic as the analyte was found both above and below control limits in the PE sample analyses. These results are usable for project objectives as estimated values. This qualification has a minor effect on the data usability.

Positive results which were less than the quantitation limit (QL) were qualified as estimated (J). The following results were affected by this qualification: aluminum in samples D05670, D05677, D05678, D05678, D05684, and D05704, barium in samples D05670, D05677, D05678, D05683, D05690, D05691, D05692, D05704, and D05705, and potassium in samples D05677, D05678, D05684, D05690, D05691, D05692, D05704, and D05705. There is potential uncertainty for the accuracy of these results. The results are usable for project objectives as estimated values which may have a minor impact on the data usability.

The following metals were analyzed by ICP/AES: aluminum, barium, calcium, copper, magnesium, potassium, sodium, and zinc. The following metals were analyzed by ICP/MS: antimony, beryllium, cadmium, chromium, cobalt, iron, lead, manganese, nickel, silver, thallium, and vanadium. The following metals were analyzed by hydride AA: arsenic and selenium.

The attached Table I summarizes the Tier II validation recommendations which were based on the following information:

Holding Times and Sample Preservation

The temperature of the cooler containing PE sample D05700 was recorded at 14 degrees Celsius upon receipt at the laboratory. Validation action was not taken based on this temperature nonconformance as the PE sample does not require refrigeration.

ICP-MS Tuning and Mass Calibration

In the beryllium analysis performed on 02/18/05, the resolution (0.77) exceeded the control limit of 0.75 atomic mass units (amu) in the final mass resolution check. Validation action was not taken on this basis as all associated analytical quality control results were within acceptance limits indicating acceptable instrument accuracy.

Due to laboratory oversight, the final tunes were not performed for the 02/20/05 and 02/25/05 analyses. Validation actions were not taken on this basis as the samples were analyzed within three hours of the initial tune and all associated analytical quality control results were within acceptance limits indicating acceptable instrument accuracy.

Instrument Calibration

A CRDL standard was analyzed at the required quantitation limit. The following table lists the analytes which exhibited recoveries outside of the validation control limits of 80 - 120%.

1 3 O. 1747	ABRES.		Contains, very
Copper	02/28/05	143.0%	Estimate (J) the positive result for copper in sample D05670.
Nickel	02/20/05	122.0%	Estimate (J) the positive results for nickel in all surface water samples.
Zinc ** - *** ****	02/28/05*	132.5%, 124.0%	No validation actions were required as only the PB sample *was associated with this CRDL standard.
Nickel	02/24/05	142.0%	No validation actions were required as only the PE sample was associated with this CRDL standard.

ICP Interference Check Sample Results

All recovery criteria were met in the ICSAB analysis.

The following table lists the analytes which exhibited recoveries outside of the control limits (true value \pm 2x the QL for ICP/AES or true value \pm 3x the QL for ICP/MS) or were detected at levels greater than 2x the QL in the ICSA solution analysis associated with all samples.

4,000	isonopsis; Tauk	5-300 <u>5</u> 8-3-	
Zinc	02/28/05	ICP 17 E	Detected at >2x the QL
Nickel	02/24/05	ICP/MS	Detected at > (-)2x the QL
Antimony	02/24/05	ICP/MS	33%, Result was not within 3x the QL

For the ICP/MS analysis, the levels of interferents in samples were reviewed. Sodium or calcium was present in samples D05670 (3760%), D05677 (5890%), D05678 (5870%), D05683 (3540%), D05684 (2300%), D05690 (6330%), D05691 (73%), D05692 (72%), D05704 (5900%), and D05705 (5850%) at greater than 50% those of the levels in the ICP/MS ICSA solution. The positive and nondetect results for antimony and nickel in all surface water samples were qualified as estimated (J/UJ) due to the low recovery or negative interference in the ICSA standard.

			Armangi Mesertor	- \$4 July - 45 July - 1, 5 July - 5 July 1955 - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
D05670	nickel	1.4	-90.2	Estimate (J) the positive result for nickel.
D05677	nickel	2.1	-141	Estimate (I) the positive result for nickel.
D05678	nickel	1.8	-141	Estimate (J) the positive result for nickel

	1. (\$1)3.29% 1		Control of the second	Log Bridge
<u>til and the state of the state</u>	<u> </u>			ا <u>ان با در این مسلم به باید به در باید باید باید باید باید باید باید باید</u>
D05683	nickel	2.7	-85	Estimate (J) the positive result for nickel.
D05684	nickel	2.0	-55	Estimate (J) the positive result for nickel.
D05690	" nickel	1.9	-152 🐣	Estimate (I) the positive result for nickel.
D05691	nickel	1.8	-1.7	Estimate (I) the positive result for nickel.
D05692	nickel	1.5	-1.7	Estimate (I) the positive result for nickel.
D05704	nickel	1.6	-142	Estimate (I) the positive result for nickel.
D05705	nickel	1.7	-140	Estimate (I) the positive result for nickel.

For the ICP/AES analysis, the levels of interferents in samples were reviewed. Magnesium was present in samples D05670 (83%), D05677 (141%), D05678 (141%), D05683 (83%), D05684 (54%), D05690 (142%), D05704 (141%), and D05705 (139%) at greater than 50% that of the level in the ICSA solution. Professional judgement was used to accept results in which the estimated interference was less than 10% of the sample result.

		14 <u>14</u>	California Marketerica Marketerica	
D05670	zinc	271	16.6	Validation action not required; interference <10%.
D05677	zinc	190	28.2	Estimate (J) the positive result for zinc.
D05678	zinc	187	28.2	Estimate (J) the positive result for zinc.
D05683	zinc	501	16.6	Validation action not required; interference <10%.
D05684	zinc	524	10.9	Validation action not required; interference <10%.
D05690	zinc	429	28.4	Validation action not required; interference <10%.
D05704	zinc	177	28.2	Estimate (J) the positive result for zinc.
D05705	zinc	181	27.9	Estimate (J) the positive result for zinc.

Field Duplicate Results

Samples D05667 (reported in SDG D05667_IB) and D05691 were submitted as a field duplicate pair with this sample set and associated with sample D05691. The following table summarizes the RPDs which were outside of the acceptance criteria.

2-24(v).	21475E	(1) (83) (84)	Kri	Aston
Aluminum	834	210	119.5	Estimate (J) the positive result for aluminum in sample D05691.
Arsenic	3.1	0.96	105.4	Estimate (J) the positive result for arsenic in sample D05691.
Copper	88.1	40.4	74.2	Estimate (J) the positive result for copper in sample D05691.
Iron	1030	299	110	Estimate (J) the positive result for iron in sample D05691.
Lead	44.2	12.8	110.2	Estimate (J) the positive result for lead in sample D05691.
Manganese	54.6	20.2	92.0	Estimate (J) the positive result for manganese in sample D05691.
Nickel	4.2	1.8	80	Estimate (J) the positive result for nickel in sample D05691.

Samples D05678 and D05705 were submitted as a field duplicate pair with this sample set and associated with samples D05678, D05684, and D05705. The following table summarizes the RPDs which were outside of the acceptance criteria.

Actual to				
Copper	22.0	15.4	35.3	Estimate (I) the positive results for copper in samples D05678, D05684, and D05705.

All criteria were met in the remaining field duplicate pairs.

Detection Limit Results

The laboratory performed 10-fold dilutions for antimony, cadmium, chromium, cobalt, iron, lead, manganese, nickel, silver, thallium, and vanadium and a 5-fold dilution for beryllium on all samples and quality control (QC) samples. These elevated quantitation limits still met the project-required quantitation limits. The following table lists the dilutions required in order to bring results within the instrument linear range.

Sampists.		Digitalestateit
D05690, D05677, D05678, D05704, D05705	Magnesium	2-fold
D05670, D05683	Potassium and Sodium	25-fold
D05690, D05677, D05678, D05704, D05705, D05700	Potassium and Sodium	50-fold
D05684	Potassium and Sodium	20-fold

Page 7

For all analyses, positive results which were < the QL were qualified as estimated (J). The following results were affected by this qualification: aluminum in samples D05670, D05677, D05678, D05684, and D05704, barium in samples D05670, D05677, D05678, D05683, D05690, D05691, D05692, D05704, and D05705, and potassium in samples D05677, D05678, D05684, D05690, D05691, D05692, D05704, and D05705.

Accuracy Check/PE Samples

The aqueous metals PE samples D05694 (IS4679), D05695 (HG3885), D05697 (IS4680), D05698 (HG3882), and D05701 (HG3873) and marine reference PE sample D05700 (SLEW-3) were evaluated with this SDG.

In the analysis of PE sample D05694, 15 out of 16 detected analytes were evaluated as "Within Limits." Selenium was not evaluated. Validation actions were not required on the basis of this evaluation.

In the analysis of PE sample D05697, 14 out of 16 detected analytes were evaluated as "Within Limits." Selenium was not evaluated and arsenic was evaluated as "Action Low." Arsenic was detected in all surface water samples. The positive results for arsenic were qualified as estimated (I) in all surface water samples. Validation actions were not required for selenium on the basis of this evaluation.

In the analysis of PE samples D05695, D05698, and D05701, mercury was evaluated as "Within Limits."

In the analysis of PE sample D05700, the control limits of 70-130% were used for the evaluation as the PE concentrations were close to the quantitation limits. The following table details the evaluation of the analytes for which certified values were given.

		Ellenbergungs Gelügge verti	Asign Asign
Arsenic	2.1	0.95-1.77	Arsenic recovered outside of the control limits in the PE sample D05697. Estimate (J) the positive results for arsenic in all surface water samples.
Соррег	5.3	1.09-2.01	Estimate (I) the positive results for copper in all surface water samples.
Manganese	2.3	1.13-2.09	Due to the low concentration, professional judgement was used to accept the results for manganese without qualification as manganese recovered within control limits in the other PE samples, LFBs, and instrument standards and recovered only slightly above the control limits in this PE sample.

Augustin .	1.45	The State	
Nickel	2.0	0.86-1.6	Due to the low concentration, professional judgement was used to
	a later Germana	· step (strike) - dr	accept the results for nickel without qualification as nickel recovered within control limits in the other PE samples, LFBs, and instrument standards and recovered only slightly above the control limits in this PE sample.
Vanadium	3.3	1.80-3.34	Within control limits.
Zinc	3.9	0.14 - 0.26	Estimate (J) the positive results for zinc in all surface water samples.
Cadmium Chromium Cobalt Iron Lead	0.20 U 2.0 U 1.0 U 50.0 U 1.0 U	True Values 0.048 ug/L 0.183 ug/L 0.042 ug/L 0.568 ug/L 0.009 ug/L	Validation actions were not required as the certified PE values were less than the MDLs.

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments concerning this information.

Very truly yours,

TRC Environmental Corporation

Elizabeth Dealy for Lorie MacKinnon

Data Validator

Elizabeth Denly

Senior QA Chemist

- Tier II Attachments: 1. Table I: Recommendation Summary Table
 - 2. Table II: Overall Evaluation of Data
 - 3. Table III: Tentatively Identified Compound Summary (NA)
 - 4. Data Summary Tables
 - 5. IRDA Form
 - 6. Data Validation Worksheets
 - 7. Copy of non-CLP Analytical Method (M&E DAS Specification D-137)
 - 8. PE Score Reports
 - 9. Copies of Telephone Logs/Communication Forms
 - 10. Supporting Data for Reduced Payment Recommendations (NA)
 - 11. Copies of Field Sampling Notes
 - 12. Copies of EPA-approved Amendments to QAPjP or SAP (NA)
 - 13. CSF Audit (DC-2 Form)
 - 14. DQO Summary Form

Ed Hathaway, EPA Remedial Project Manager (DV memo and data summary table) cc:

Project File **PSAdmin**

Attachment 1 Table I: Recommendation Summary Table

Table I Recommendation Summary for Metals Analyses Callahan Mining Superfund Site Case# 0247M SDG D05670

Singula Minibes	VERTER	ALDIERS A						
D05670	sw	J ³ , J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ⁹						
D05677	SW	J ⁴ , J ⁵ , J ⁶ , J ⁷ , J ⁸ , J ⁹ , J ¹⁰						
D05678	sw	J ² , J ⁴ , J ⁵ , J ⁶ , J ⁷ , J ⁸ , J ⁹ , J ¹⁰						
D05683	SW	J ⁴ , J ⁶ , J ⁷ , J ⁹						
D05684	sw	J ² , J ⁴ , J ⁶ , J ⁷ , J ⁸ , J ¹⁰						
D05690	sw	J ⁴ , J ⁶ , J ⁷ , J ⁹ , J ¹⁰						
D05691	sw	J ¹ , J ⁴ , J ⁶ , J ⁷ , J ⁹ , J ¹⁰						
D05692	SW	J ⁴ , J ⁶ , J ⁷ , J ⁹ , J ¹⁰						
D05704	sw	J ⁴ , J ⁵ , J ⁶ , J ⁷ , J ⁸ , J ⁹ , J ¹⁰						
D05705	sw	J ² , J ⁴ , J ⁵ , J ⁶ , J ⁷ , J ⁹ , J ¹⁰						
D05693	RB	A						
D05699	RB	A						

SW - Surface Water RB - Rinsate Blank

- A Accept results.
- J¹ Estimate (J) the positive results for aluminum, arsenic, copper, lead, nickel, iron, and manganese due to a high RPD for these analytes in the evaluation of the field duplicate pair.
- Estimate (J) the positive result for copper due to a high RPD for this analyte in the evaluation of the field duplicate pair.
- J³ Estimate (J) the positive result for copper due to high recovery for this analyte in the CRDL standard analysis. The result may be biased high.
- J⁴ Estimate (J) the positive result for nickel due to high recovery for this analyte in the CRDL standard analysis. The result may be biased high.

- J⁵ Estimate (J) the positive result for zinc due to positive interference in the ICSA analysis. The result may be biased high.
- J⁶ Estimate (J/UJ) the positive and nondetect results for antimony and nickel due to the low recovery or negative interference for these analytes in the ICSA analysis. The results may be biased low.
- J⁷ Estimate (J) the positive results for arsenic, copper, and zinc due to PE sample nonconformances. The results for copper and zinc may be biased high. The direction of the bias cannot be determined for arsenic as this analyte was found both above and below control limits in the analysis of the PE samples.
- J⁸ Estimate (J) the positive result for aluminum since the result is < the QL.
- J⁹ Estimate (J) the positive result for barium since the result is < the QL.
- J¹⁰ Estimate (J) the positive result for potassium since the result is < the QL.

Attachment 2 Table II: Overall Evaluation of Data

Table II Overall Evaluation of Data - Data Validation Memorandum
Case 0247M, SDG D05670

				.M	etals	
Γ	DQO	Sampling* and/or Analytical Method	Measure	ment Error	Sampling Variability**	Potential .* Usability
		Appropriate Yes or No	Analytical Error	Sampling Error*		Issues
s b	To determine the sature and extent of contamination and to upport a human ealth and ecological isk assessment.	Both - Yes	Refer to qualifications in R/S Key: J ³ through J ¹⁰	Refer to qualifications in R/S Key	T. 2-1	Low and High Blased Results: Potential high bias exists for copper in sample D05670 and nickel in all surface water samples due to the high recoveries in the CRDL standard analysis. Potential high bias exists for zinc in samples D05677, D05678, D05704, and D05705 due to positive interference in the ICSA analysis. Potential low bias exists for antimony and nickel in all surface water samples due to the low recovery or negative interference in the ICSA analysis. Potential high bias exists for copper and zinc in all surface water samples due to high PE results. Potential Uncertainty in Results: Potential uncertainty exists for arsenic in all surface water samples due to both low and high PE results. Potential uncertainty exists for select aluminum, barium, and potassium results which were < the QL. Potential uncertainty exists for aluminum, arsenic, copper, lead, nickel,
					<u>k</u>	iron, and manganese in sample D05691 and copper in samples D05678, D05684, and D05705 due to the high RPDs for these analytes in the evaluation of the field duplicate pairs. Results discussed above can still be used for project objectives as estimated values or nondetects with estimated quantitation limits. These issues may have a minor impact on the data usability.

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Attachment 3
Table III: Tentatively Identified Compound
Summary

-not applicable to this IDG

Attachment 4 IRDA Form

Date: 03/16/05

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. 0247M	site <u>Ca</u>	11ahan 1	<u> </u>		·
LABORATORY SWRI	NO OF SAMP	LES/MA	TRIX_	10 AQ	2.FB 7 PE
SDG # DO 5670	REVIEWER(II	NOT E	SD)	TRC	· · ·
SOW # Das D-13-7	REVIEWER'S	NAME_	Lon	i Mai	cking
DPO:ACTION FYI	COMPLETION	N DATE		23/16/0	5
	- .	-			
DATA ASSE	SSMENT SUM	MARY			
			ICP/MS		10.4
			.*	HG .	HY <u>CYANIDE</u>
1. HOLDING TIMES	. :		<u> </u>		<u> </u>
2. CALIBRATIONS			<u> </u>	0	
3. BLANKS				<u>o</u>	
4. ICS			0	NB	NA
5. LCS	• •	<u> </u>	0	<u> </u>	0_
6. DUPLICATE ANALYSIS		<u> </u>		:	
7. MATRIX SPIKE		<u> </u>	0_	<u>o</u>	<u> </u>
8. MSA		<u>_NA</u>	<u> NA</u>	<u>NA</u>	NA
9. SERIAL DILUTION		0	<u> </u>	NA	NA
10. SAMPLE VERIFICATION	4	NA	NA.	NA ·	NA
11. OTHER QC	-	0 "	_0_	<u> </u>	
12. OVERALL ASSESSMENT	±	0_		0	
O = Data had no problems, or qualified due to	minor problems.				
M = Data qualified due to major problems.					
Z = Data unacceptable.	•				
X = Problems, but do not affect data.	•				
ACTION ITEMS:					
	<u> </u>			-	
				· · · · · · · · · · · · · · · · · · ·	
AREAS OF CONCERN:	· · · · · · · · · · · · · · · · · · ·			·	
				<u> </u>	
				`	·
NOTABLE PERFORMANCE:	·	<u>-</u>			
				-	
			· · · · · ·		
•					

Validator:

Attachment 5 Data Summary Tables

						DOLOR IN					471	Dissolved		2541 2541 2541 2541 2541 2541 2541 2541		542 200 200 200 200 200 200 200 200 200 2		200 NV 10	o O			IDTNESS		OF MALS	SOL
Aluminum	50	167	J	167	J	380		168	J	210	J	50.0	υ.	51.6	J	50.0	υ	50.4	J	50.0	U	50.0	υ	50.0	U
Antimony	0.5	0.71	J	0.50	w	0,50	UJ	0.50	ŲJ	0.96	J	0.76	J	0.50	w	0.50	ŲJ	0.50	IJ	0.50	ΟJ	0.50	U	0.50	v
Arsenic	0.2	1.5	J	1.4	J	1.1	J	0.85	J	0.96	J	0.33	J	1.5	J	1.4	J	0.75	J	1.01	J	0.20	U	0.20	U
Badum	5.0	6.2	J	6.0	J	5.2	J	5.0	u	7.6	J	7.5	J	5.8	J	5.4	J	5.1	j	7.0	J	5.0	U	5.0	υÏ
Beryllium	0.2	0.20	U	0.20	υ	0.20	Ų	0.20	บ	0.20	υ	0.20	บ	0,20	U	0.20	U	0.20	Ų	0.20	υ.	0.20	U	0.20	U
Cadmlum	0.2	1.0		1.0		2.1		2.3		3.2		3.2		0.87		0.87		0.94		2.4.		0.20	u	0.20	U
Calcium	50	213,000		214,000		133,000		91,600		73,300		72,300		214,000		211,000		138,000		229,000		50.0	U	50.0	U
Chromlum	2.0	2.0	u	2.0	u	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	Ų	2.0	U	2.0	U	2.0	U
Cobalt	1.0	1,0	ß	1.0	U '	1.0	U	1.0	U	1.0	Ų	1.0	U	1.0	u	1.0	U	1.0	U	1.0		1.0	U	1.0	Ų
Соррег	2.0	21.4	j	22.0	J	58.8	J	54.7	J	40.4	J	24.3	J	16.6	J	15.4	J	4.5	J.	16.0	J	2.0	Ų	2.0	v
Iron	50	203		187		386		147		299	J	50.0	U	50.0	U	50.0 -	U	50.0	U	50.0	U	50.0	U	50.0	U
Lead	1	1,1		1.0	U	1.5		1.0	U	12.8	J	1,4		1.0	U	1.0	U	1.0	U	1.0	Ų	1.0	U	1.0	Ų
Magnesium	50	745,000		741,000		438,000		285,000		7150		6720		743,000		735,000		439,000		794,000		50.0	Ų	50.0	U
Manganese	1.0	25.4		24.6		51.2		52.2		20,2	J	10,1		21.9		20.8		42,0		37.6		1.0	U	1.0	U
Мегсигу	0,2	0.20	U	-0.20	U	0.20	υ	0.20	U	0.20	U	0.20	Ų	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0,20	U
Nickel	1.0	2.1	J	1.8	J	2.7	J	2,0	J	1.8	J	1.5	J	1.8	J	1.7	J	1.4	J	1.9	J	1.0	U	1,0	U
Potassium	250	216,000	J	218,000	J	129,000		86,700		1890	J	1910	لإ	222,000	J	215,000	J	140,000		232,000	J.	250	U	250	Ų
Sefenium	1.0	1.0	บ	1.0	υ	1.0	U	1.0	U	1.0	U	1.0	Û	1.0	U	1.0	Ų	1.0	U	1,0	U	1.0	U	1.0	U
Silver	1.0	1,0	U	1.0	U	1.0	U	1.0	u	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	IJ	1.0	U
Sodium	250	5,890,000		5,870,000		3,540,000		2,300,000		23,000		22,800		5,900,000		5,850,000		3,760,000		6,330,000		250	U	250	U
· Thaillum	0.5	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	u	0.50	U	0.50	U	0.50	υ	0.50	IJ	0.50	U
Venadium	1.0	1.4		1.4		1.3		1.0	U	1.0	U	1.0	Ų	1.2		1,2		1.0	U	1.0	U	1.0	U	1.0	U
Zinc	2.0	190	ी देशिकामान्य	187	J Mickeysin	501	j Kenama:	524 อัลกาสเตรีเกียวลัย	J Parting	911	J marana	808	J Paralisa	177	J Supply System	181	J J	271	J Digana	429	j Managali	2.0	U Mosacania	2.0	U AND AND AND AND AND AND AND AND AND AND
	mplec	WWW.12/03	阿姆斯]	104 H	712/02	84 据线	2024	4	響物	704 M	洲洲	NAME:	の発展	经验	建学公式	对机场	等数价	14	福建筑	整理部	200	以解	建筑	光 数

QL - Quantitation Limit

J - Estimated value

UJ - Estimated nondetect

U - Not detected at the specified quantitation limit

⁻ Original sample of field duplicate pair reported in SDG D05867_IB

Surface Soil

036.200100.0061.00005

701 Edgewater Drive Wakefield, MA 01880

Tel: 781-246-5200 Fax: 781-245-6293 www.m-e.com

March 11, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, Massachusetts 01863-2431

Re: Work Assignment No. 161-RICO-017H

Case 0248M, SDG D05729

Woods Hole Group, Raynham, Massachusetts

Callahan Mining Superfund Site, Brooksville, Maine

Tier II Inorganic Data Validation

Low Concentration Metals and Mercury:

11/Surface Soils/D05729, D05730, D05731,

D05732, D05733, D05734, D05735, D05736,

D05737, D05738, D05740

(Field Duplicate Pair: D05735 and D05740)

1/Aqueous Equipment Blank/D05741

1/Performance Evaluation Sample/D05743

Dear Ms. Clark:

A Tier II data validation was performed by Metcalf & Eddy, Inc. (M&E) on the low concentration metals and mercury analytical data for eleven surface soil samples (including one field duplicate pair), one performance evaluation (PE) sample, and one equipment blank sample collected from the Callahan Mining Superfund Site, located in Brooksville, Maine, by TRC on November 30, 2004. The samples were analyzed through the Response Action Contract (RAC) Delivery of Analytical Services (DAS) program using M&E DAS Analytical Specification for the Analysis of Low Concentration Metals Including Cyanide in Solid Samples (Including Samples with High Moisture Content (D-044.2), based on EPA methodology. M&E evaluated these data using the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, February 1989 criteria, modified for the methods and incorporating organic data validation guidance, Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria. Additional guidance was provided by Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

J:\NE\CALLAHAN MINING\data validation\DV memorandum\sD05729 metals.wpd

The Tier II metals data validation was based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- Preservation and Technical Holding Times
- Instrument Calibration
- * ICP-MS Internal Standards
- * ICP-MS Tuning, Mass Calibration, and Resolution Check
 - Blanks
 - Inductively Coupled Plasma Interference Check Sample
 - Matrix Spike
- Laboratory Duplicate
 - Field Duplicates
- NA Furnace Atomic Absorption Analysis
 - Inductively Coupled Plasma Serial Dilution
- Laboratory Fortified Blank
- * Instrument Detection Limits
 - Sample Quantitation Results
 - Performance Evaluation Sample / Accuracy Check
- * all criteria met for this parameter
- NA parameter not applicable

Note: Worksheets are not included for parameters that have met criteria or for criteria that are not applicable to a Tier II data validation.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations
Table II: Overall Evaluation of Data - summarizes site DQOs and potential usability issues
Data Summary Tables - summarizes accepted, qualified, and rejected data

Copies of the field sampling notes for this sample delivery group (SDG) are included with this Data Validation Memorandum.

Overall Evaluation of Data and Potential Usability Issues

The following is a summary of the site DQOs (Data Quality Objectives):

• To determine nature and extent of contamination and to support a human health risk assessment.

The low concentration metals and mercury sample results were qualified as a result of sampling and analytical error. Qualifications as a result of sampling error are summarized below:

- The positive and nondetect results for barium, chromium, and nickel in all soil samples were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The results are usable for project objectives. These qualifications have a minor impact on data usability.
- The positive results for calcium, magnesium, and zinc in all soil samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.

Qualifications as a result of analytical error are summarized below:

- The positive mercury results in all soil samples and the nondetect mercury result in the aqueous sample were qualified as estimated (J and UJ, respectively) due to holding time exceedances. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias. These qualifications have a minor impact on the data usability.
- The positive thallium results in all soil samples were qualified as estimated (J) due to continuing calibration standard recovery exceedance. The results are usable for project objectives as estimated concentrations with a possible high bias. These qualifications have a minor impact on the data usability.
- The positive results for sodium in samples D05735, D05736, D05737, and D05740 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. This qualification has a minor impact on data usability. Note that these results were qualified as estimated (J) because they were less than the quantitation limit but greater than the method detection limit (MDL). Therefore, the overall qualification for these results are estimated nondetect (UJ).
- The positive results for selenium in samples D05731, D05732, D05733, D05734, and D05737; and for antimony in sample D05741 were qualified as nondetect (U) at the sample-specific negative blank action level due to negative instrument drift and blank contamination. These results are usable for project objectives as nondetect results. This qualification has a minor impact on data usability. Note that the selenium results in these samples were also qualified as estimated (J) due to positive interferences in the interference check sample (ICS) A solution. Therefore, the

overall qualification for this analyte is estimated nondetect (UJ) due to blank contamination and ICSA interferences.

- The positive results for aluminum, calcium, copper, iron, lead, magnesium, sodium, thallium, vanadium, and zinc in sample D05741 were qualified as nondetect (U) at the reported concentration due to method or instrument blank contamination. These results are usable for project objectives as nondetect results. This qualification has a minor impact on data usability. Note that the results for copper, lead, thallium, vanadium, and zinc were also qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences.
- The nondetect result for cobalt in sample D05741 was qualified as estimated (UJ) due to negative instrument drift. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. This qualification has a minor impact on data usability.
- The nondetect results for selenium in samples D05738, D05740, and D05741 were elevated to their sample-specific negative blank action levels due to negative instrument drift and blank contamination. These results are usable for project objectives as elevated quantitation limits. This qualification has a minor impact on data usability.
- The positive and blank-qualified results for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, thallium, vanadium, and zinc in all soil samples; for manganese in sample D05732; and for chromium, copper, lead, nickel, thallium, vanadium, and zinc in sample D05741 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias. This qualification has a minor impact on data usability.
- The positive and nondetect results for selenium in all soil samples and sample D05741 were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias. This qualification has a minor impact on data usability. Note that the nondetect selenium results in samples D05731, D05732, D05733, D05734, and D05737 were also qualified as estimated (UJ) due to negative instrument drift. Therefore, the overall qualification for this analyte is estimated nondetect (UJ) due to instrument drift and ICSA interferences.

- The positive results for nickel and zinc in all soil samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high. This qualification has a minor impact on the data usability.
- The positive results for antimony and potassium were qualified as estimated (J) due to low matrix spike recovery. The results are usable for project objectives as estimated values that may be biased low. This qualification has a minor impact on the data usability.
- The positive results for potassium in all soil samples were qualified as estimated (J) due to serial dilution imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive results for arsenic, cadmium, and magnesium in all soil samples were qualified as estimated (J) due to high recoveries in the PE sample. The results are usable for project objectives as estimated values with a possible high bias. This qualification has a minor impact on the data usability.
- The positive results for barium and silver in all soil samples were qualified as estimated (J) due to recovery exceedances in the laboratory control sample. These results are usable for project objectives as estimated concentrations with a possible high bias. This qualification has a minor impact on the data usability.
- The positive and blank-qualified results for the following samples and analytes were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the method detection limit (MDL). These results are usable for project objectives as estimated concentrations and quantitation limits. This qualification has a minor impact on the data usability.

antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740

beryllium: D05732

cobalt: D05731, D05732, D05733, D05734

copper: D05731

nickel: D05731, D05732, D05734

selenium: D05730, D05731, D05732, D05733, D05734, D05736, D05737

sodium: all soil samples thallium: all soil samples

• The positive and blank-qualified results for aluminum, barium, calcium, chromium,

copper, lead, magnesium, nickel, sodium, thallium, vanadium, and zinc in sample D05741 were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations. This qualification has a minor impact on the data usability.

Data Completeness

The laboratory was contacted on February 8, 2005 concerning the following:

- 1. The units of measure for iron in the January 4, 2005 and January 12, 2005 ICP-MS sequences are incorrectly listed as "mg/L" instead of "µg/L."
- 2. There are two sets of aqueous MDLs reported on Form IX. The laboratory was requested to resubmit the forms with MDL data for the solid matrix.

The laboratory provided an acceptable response on February 10, 2005.

Preservation and Technical Holding Times

All mercury analyses were performed outside the 28-day holding time requirement. The soil samples were analyzed 30 days after sampling; the equipment blank was analyzed 29 days after sampling. The positive mercury results in the soil samples and the nondetect result in the aqueous sample were qualified as estimated (J and UJ, respectively) due to holding time exceedances. These results are usable for project objectives as estimated concentrations and quantitation limits.

Instrument Calibration

The continuing calibration verification (CCV) standard recovery for thallium analyzed on January 6, 2005 (11:10AM) was 116%, which exceeded the recovery criteria (90% - 110%). All positive thallium results in all soil samples were qualified as estimated (J) due to this CCV recovery exceedance. These results are usable for project objectives as estimated concentrations with a possible high bias.

Blanks

The following table summarizes the blank contamination detected in the laboratory blanks associated with the soil samples. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. The nominal Blank Action Levels (BAL) from the method blank were calculated based on a 1gm sample weight (dry), 50mL final volume, and two-fold dilution. The nominal BALs from instrument blanks were

based on a 1gm sample weight (dry) and 50mL final volume. Sample-specific BALs are further adjusted for actual sample weights, moisture content, and any additional dilutions.

Analyte	Blank Type	Maximum Blank Concentration	Nominal Blank Action Level (BAL) mg/Kg	Action/Samples Affected
arsenic	inst	0.13 μg/L	0.065	No action; all results greater than BAL
barium _.	mb	0.0076 mg/Kg	0.038	No action; all results greater than BAL
calcium	inst	-33 μg/L	-16.5	No action; all results greater than BAL
chromium	mb	0.014 mg/Kg	0.07	No action; all results greater than BAL
cobalt	inst	-0.16 μg/L	-0.08	No action; all results greater than BAL
copper	mb	0.06 mg/Kg	0.30	No action; all results greater than BAL
iron	mb	1.3 mg/Kg	6 .5	No action; all results greater than BAL
lead	mb	0.008 mg/Kg	0.04	No action; all results greater than BAL
magnesium	mb	1.1 mg/Kg	5.5	No action; all results greater than BAL
manganese	mb	0.08 mg/Kg	0.40	No action; all results greater than BAL
nickel	inst	-0.28 μg/L	-0.14	No action; all results greater than BAL
potassium	inst	21 μg/L	10.5	No action; all results greater than BAL
	inst	-9.4 μg/L	-4.7	
selenium	inst	0.2 μ <i>g/</i> L	0.1	Qualify the positive result as nondetect (U) at sample-specific negative BAL in samples D05731, D05732, D05733, D05734, and D05737
	inst	-1.4 μg/L	-0.7	Elevate the reported MDL to the sample- specific negative BAL in samples D05738 and D05740
sodium	mb	2.1 mg/Kg	10.5	Qualify the positive result as nondetect (U) at sample-specific BAL in samples D05735, D05736, D05737, and D05740
thallium	inst	0.035 μg/L	0.0175	No action; all results greater than BAL
vanadium	mb	0.08 mg/Kg	0.40	No action; all results greater than BAL
zinc	mb	0.16 mg/Kg	0.80	No action; all results greater than BAL

inst - instrument blank (i.e. ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample result was nondetect, qualification of the data was not required.
- If the sample result was > MDL and < positive BAL, the result was qualified as a nondetect (U) at the reported concentration.
- If the sample result was > positive BAL, qualification of the data was not required.

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J).
- If the sample result was nondetect, the MDL was qualified as estimated (UJ).
- If the sample result was > MDL and > negative BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required.

The following table summarizes the blank contamination detected in the laboratory blanks associated with the aqueous equipment blank sample. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. Maximum blank concentrations from instrument blanks were also adjusted for sample dilutions.

Analyte	Blank Type	Maximum Blank Concentration jug/L	Blank Action Level (BAL) μg/L	Action/Samples Affected		
aluminum	mb	69	345	Qualify positive result nondetect (U) at reported concentration in sample D05741		
antimony	inst	0.018	0.18	Qualify the result nondetect (U) at negative		
	inst	-0.028	-0.28	BAL in sample D05741		
calcium	mb	28	140	Qualify positive result nondetect (U) at reported concentration in sample D05741		
cobalt	inst	-0.032	-0.32	Qualify nondetect result estimated (UJ) at reported MDL in sample D05741		

Metcalf & Eddy, Inc.

Analyte	Blank Type	Maximum Blank Concentration µg/L	Blank Action Level (BAL) µg/L	Action/Samples Affected			
copper	mb	1.4	7.0	Qualify positive result nondetect (U) at reported concentration in sample D05741			
iron	mb	100	500	Qualify positive result nondetect (U) at reported concentration in sample D05741			
lead	mb	1.6	8.0	Qualify positive result nondetect (U) at reported concentration in sample D05741			
magnesium	mb	100	500	Qualify positive result nondetect (U) at reported concentration in sample D05741			
nickel	mb	0.08	0.40	No action; result above BAL			
potassium	mb	39	195	No action; nondetect in sample			
selenium	inst	0.1	1.0	Elevate the reported MDL to the negative			
	inst	-0.091	-0.91	BAL in sampleD05741			
sodium	mb	12	60	Qualify positive result nondetect (U) at reported concentration in sample D05741			
thallium	inst	0.035	0.18	Qualify positive result nondetect (U) at reported concentration in sample D05741			
vanadium	inst	0.19	1.9	Qualify positive result nondetect (U) at reported concentration in sample D05741			
zinc	mb	7.4	37	Qualify positive result nondetect (U) at reported concentration in sample D05741			

inst - instrument blank (i.e. ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample result was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the reported concentration.
- If the sample result was > positive BAL, qualification of the data was not required.

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (I).
- If the sample result was nondetect, the MDL was qualified as estimated (UJ).
- If the sample result was > MDL and > negative BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required

The following table summarizes the level of blank contamination detected in the equipment blank associated with the surface soil samples.

Analyte	Blank Concentration (µg/L)	Action/Samples Affected
aluminum	52	No action; result qualified as nondetect (U) after blank actions.
barium	0.38	Qualify all soil samples (EB).
calcium	50	No action; result qualified as nondetect (U) after blank actions.
chromium	7.6	Qualify all soil samples (EB).
copper	2.9	No action; result qualified as nondetect (U) after blank actions.
iron	44	No action; result qualified as nondetect (U) after blank actions.
Iead	1.1	No action; result qualified as nondetect (U) after blank actions.
magnesium	10	No action; result qualified as nondetect (U) after blank actions.
nickel	0.84	Qualify all soil samples (EB).
sodium	30	No action; result qualified as nondetect (U) after blank actions.
thallium	0.070	No action; result qualified as nondetect (U) after blank actions.
vanadium	0.19	No action; result qualified as nondetect (U) after blank actions.
zinc	7.1	No action; result qualified as nondetect (U) after blank actions.

Inductively Coupled Plasma Interference Check Sample

Positive results for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, nickel,

thallium, vanadium, and zinc were reported in the ICSA solution analyses at concentrations greater than the MDLs. Results for copper and selenium were reported in the ICSA solution at a concentration greater than the negative MDL.

The positive and blank-qualified results for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, thallium, vanadium, and zinc in all soil samples; and for manganese in sample D05732 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. The positive and blank-qualified results for chromium, copper, lead, nickel, thallium, vanadium, and zinc in sample D05741 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias.

The positive and nondetect results for selenium in all soil samples and sample D05741 were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias.

Matrix Spike (MS)

Sample D05738 was analyzed as the matrix spike with this data set. The analytes that did not meet recovery (%R) acceptance criteria of 75-125% and the actions taken are summarized in the table below:

Analyte	Spiked Sample Result (mg/Kg)	Sample Result (mg/Kg)	Spike Added (mg/Kg)	MS %R	Affected Samples/Action
antimony	0.60	0.17	1.2	33	Qualify as estimated (J) the positive results in all soil samples.
nickel	39	9.7	19	154	Qualify as estimated (J) the positive results in all soil samples.
potassium	570	220	473	73	Qualify as estimated (J) the positive results in all soil samples.
Zinc	64	39	19	134	Qualify as estimated (J) the positive results in all soil samples.

Field Duplicates

Samples D05735 and D05740 were the field duplicate pair analyzed in association with this data set. The analytes that did not meet the field duplicate relative percent difference (RPD) criterion of <50% for analytes greater than 5x reporting limit or the absolute difference criterion of >4x reporting limit

for those less than <5x reporting limit, and the actions taken are summarized in the following table:

Analyte	D05735 (mg/Kg)	D05740 (mg/Kg)	%RPD	Actions
calcium	170	610	113	Qualify as estimated (J) the positive calcium results in all samples.
magnesium	2800	5200	60	Qualify as estimated (J) the positive magnesium results in all samples.
zinc	18	87	131	Qualify as estimated (J) the positive zinc results in all samples.

Inductively Coupled Plasma Serial Dilution

Potassium exceeded the 15% difference acceptance criteria in the ICP serial dilution analysis (36%). Due to this exceedance, all positive results for potassium in the soil samples were qualified as estimated (J). These results are usable for project objectives as estimated concentrations.

Sample Quantitation Results

The positive and blank-qualified results for the following samples and analytes were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations. This qualification has a minor impact on the data usability.

aluminum: D05741

antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740

barium: D05741 beryllium: D05732 calcium: D05741 chromium: D05741

cobalt; D05731, D05732, D05733, D05734

copper: D05731, D05741

lead: D05741 magnesium: D05741

nickel: D05731, D05732, D05734, D05741

selenium: D05730, D05731, D05732, D05733, D05734, D05736, D05737

sodium: all samples in the SDG thallium: all samples in the SDG

vanadium: D05741 zinc: D05741

Performance Evaluation Sample/Accuracy Check

Performance Evaluation Sample

The metals and mercury PE sample D05743 (EPA ampule number MS01878) was evaluated with this SDG. Eight analytes were scored "Within Limits," eight analytes were scored "Not Evaluated," and four were scored "Warning High." No validation action was necessary on the basis of these results. Three analytes (arsenic, cadmium, and magnesium) were scored "Action High." On the basis of those scores, the positive results for arsenic, cadmium, and magnesium in all soil samples were qualified as estimated (J). These results are usable for project objectives as estimated concentrations.

Laboratory Control Sample

Barium and silver exceeded the 80% - 120% acceptance criteria in the solid laboratory control samples (128% and 124%, respectively). Due to these exceedances, all positive results for barium and silver in the soil samples were qualified as estimated (J). These results are usable for project objectives as estimated concentrations with a possible high bias.

Please contact Ms. Constance Lapite at (781) 224-6628 or at <u>constance.lapite@m-e.com</u> if you have any questions regarding this Tier II validation.

Very truly yours

Richard Purdy Data Validator

Elizabeth Denly Senior Reviewer

Constance Lapite

RAC Lead Chemist

cc: Leslie McVickar, EPA Remedial Project Manager (Data Validation Memorandum, Data Summary Tables)

Elizabeth Denly, TRC Project Chemist (entire package)

Denise Laferte, M&E Oversight Chemist (Data Validation Memorandum, Data Summary Tables)

Richard Purdy, M&E Data Validation Chemist (entire package)
Callahan Mine Project File, Work Assignment No. 161-RICO-017H

Attachments:

IRDA

Table I: Recommendations Summary Table

Table II: Overall Evaluation of Data

Data Summary Tables
Data Validation Worksheets

PE Score Report(s)

Copy of non-CLP Analytical Methods (M&E DAS Specification D-044.2)

Copies of Telephone Logs/Communications Forms

Supporting Data for Reduced Payment Recommendations (not applicable)

Copies of Field Sampling Notes

Copies of EPA-approved Amendments to QAPjP or SAP (not applicable)

CSF Completeness Evidence Audit (DC-2 Form)

DQO Summary Form

INORGANIC REGIONAL DATA ASSESSMENT

CASE N	NO. 0248 M	SITE CALLAHAD MUSE					
LABORA	ATORY WOODS HAVE GROUP	NO. OF SAMPLES/					
		MATRIX 11 SS, 1EB, 1PE					
SDG#	D05729	REVIEWER (IF NOT ESD) Metcalf & Eddy					
SOW#	D-044.2	REVIEWER'S NAME Richard Purdy					
DPO:	ACTION FYI XX	COMPLETION DATE 3 10 05					
	DATA ASSE	SSMENT SUMMARY					
	21111 11002						
1.	DATA COMPLETENESS	ICP-AES ICP-MS Hg CYANIDE					
2.	HOLDING TIMES	0 M'					
3.	CALIBRATIONS						
4.	BLANKS	0' 0					
5.	ICS	02 104					
6.	MATRIX SPIKE	0^3					
7.	LABORATORY DUPLICATES						
8.	FIELD DUPLICATES	03 0					
9.	LABORATORY CONTROL SAMPLE	03 0					
10.	LABORATORY FORTIFED BLANK						
11.	SERIAL DILUTION	O3					
12.	DETECTION LIMITS						
13.	SAMPLE QUANTITATION						
14.	OTHER QC - PE						
15. OVERALL ASSESSMENT O							
<pre>O = Data had no problems/or qualified due to minor problems. M = Data qualified due to a major problem. Z = Data unacceptable. X = Problems, but do not affect data.</pre>							
ACTION	ITEMS: WI - MISSED HOLDING	nme; 0'- mina contamination;					
	- negatives dreft; 03- mine	•					
	•						
NOTABL	E PERFORMANCE:						

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site

Case 0249M, SDG D05729

Analyte	Action	Analyte	Action
aluminum	A	magnesium	1 ₈ 1 ₁₀
antimony	l ₃ l ₆ l ₁₁	manganese	J ⁴
arsenic	J ³ J ⁸	mercury	J ¹
barium	A ² J ⁹	nickel	A ² J ³ J ⁵ J ¹¹
beryllium	J_{i1}	potassium	J ⁶ J ⁷
cadmium	J ₃ J ₈	selenium	A ¹ A ³ J ⁴ J ¹¹
calcium	J ¹⁰	silver	J ⁹
chromium	$A^2 J^3$	sodium	A ⁴ J ¹¹
cobalt	l ₃ l ₁₁	thallium	J ² J ³ J ¹¹
copper	l ₃ l ₁₁	vanadium	J 3
iron	A	zinc	J ₃ J ₂ J ₁₀
lead	J_3		

A - Accept all data.

- A¹ Qualify the positive results for selenium in samples D05731, D05732, D05733, D05734, and D05737 as nondetect (U) at the negative blank action level due to negative instrument drift and laboratory blank contamination.
- A² Qualify "EB" the positive and nondetect results for barium, chromium, and nickel in all soil samples due to equipment blank contamination.
- A³ Elevate the nondetect results for selenium in samples D05738 and D05740 to the negative blank action level due to negative instrument drift and laboratory contamination.
- A⁴ Qualify the positive results for sodium in samples D05735, D05736, D05737, and D05740 as nondetect (U) at the reported concentration due to laboratory blank contamination.
- J¹ Qualify the positive results for mercury in all soil samples as estimated (J) due to holding time exceedances.
- J² Qualify the positive results for thallium in all soil samples as estimated (J) due to continuing calibration standard recovery exceedances.
- J³ Qualify the positive and blank-qualified results for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, thallium, vanadium, and zinc in all soil samples; and for manganese in sample D05732 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses.

J ⁵ - Qualify the positive results for nickel and zinc in all soil samples as estimated (J) due to high matrix spike recovery. J ⁶ - Qualify the positive results for antimony and potassium in all soil samples as estimated (J) due to low matrix spike recovery. J ⁷ - Qualify the positive results for potassium in all soil samples as estimated (J) due to serial dilution imprecision. J ⁸ - Qualify the positive results for arsenic, cadmium, and magnesium in all soil samples as estimated (J) due to high recoveries in the PE sample. J ⁹ - Qualify the positive results for barium and silver in all soil samples as estimated (J) due to recovery exceedances in the laboratory control sample. J ¹⁰ - Qualify the positive results for calcium, magnesium, and zinc in all soil samples as estimated (J) due to field duplicate imprecision. J ¹¹ - Qualify the positive and blank-qualified results for the following samples and analytes were estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740 beryllium: D05731 D05732, D05733, D05734, D05735, D05736, D05737 solium: D05731, D05731, D05731, D05732, D05733, D05734, D05735, D05735, D05735, D05735, D05736, D05737, D05736, D05737, D05738, D05738, D05739, D05731, D05732, D05733, D05733, D05734, D05735, D05735, D05735, D05735, D05736, D05735, D05736, D05736, D05736, D05737, D05738, D05738, D05739, D0573	J⁴	-	Qualify the positive and nondetect results for selenium in all soil samples as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses.
low matrix spike recovery. J ⁷ - Qualify the positive results for potassium in all soil samples as estimated (J) due to serial dilution imprecision. J ⁸ - Qualify the positive results for arsenic, cadmium, and magnesium in all soil samples as estimated (J) due to high recoveries in the PE sample. J ⁹ - Qualify the positive results for barium and silver in all soil samples as estimated (J) due to recovery exceedances in the laboratory control sample. J ¹⁰ - Qualify the positive results for calcium, magnesium, and zinc in all soil samples as estimated (J) due to field duplicate imprecision. J ¹¹ - Qualify the positive and blank-qualified results for the following samples and analytes were estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740 beryllium: D05732 cobalt; D05731, D05732, D05733, D05734, D05734, D05736, D05737 sodium: D05729, D05731, D05732, D05733, D05734, D05734, D05735, D05735, D05736, D05737, D05738, D05738, D05730, D05731, D05732, D05733, D05734, D05735, D05735, D05735, D05736, D05737, D05738, D05738, D05740	J ⁵	-	
imprecision. J* - Qualify the positive results for arsenic, cadmium, and magnesium in all soil samples as estimated (J) due to high recoveries in the PE sample. J* - Qualify the positive results for barium and silver in all soil samples as estimated (J) due to recovery exceedances in the laboratory control sample. J* - Qualify the positive results for calcium, magnesium, and zinc in all soil samples as estimated (J) due to field duplicate imprecision. J* - Qualify the positive and blank-qualified results for the following samples and analytes were estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740 beryllium: D05732 cobalt; D05731, D05732, D05733, D05734 copper: D05731 nickel: D05731, D05732, D05733, D05734, D05736, D05736, D05737 sodium: D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05735, D05735, D05736, D05737, D05738, D05740	J ⁶	-	
(J) due to high recoveries in the PE sample. Journal of the positive results for barium and silver in all soil samples as estimated (J) due to recovery exceedances in the laboratory control sample. July and Complete the positive results for calcium, magnesium, and zinc in all soil samples as estimated (J) due to field duplicate imprecision. July and Complete the positive and blank-qualified results for the following samples and analytes were estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740 beryllium: D05732 cobalt; D05731, D05732, D05733, D05734 copper: D05731 nickel: D05731, D05732, D05733, D05734, D05736, D05736, D05737 sodium: D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05735, D05736, D05737, D05738, D05738, D05740	J ⁷	-	
exceedances in the laboratory control sample. Jio - Qualify the positive results for calcium, magnesium, and zinc in all soil samples as estimated (J) due to field duplicate imprecision. Jii - Qualify the positive and blank-qualified results for the following samples and analytes were estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740 beryllium: D05732 cobalt; D05731, D05732, D05733, D05734 copper: D05731 nickel: D05731, D05732, D05734 selenium: D05730, D05731, D05732, D05733, D05734, D05736, D05737 sodium: D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05736, D05737, D05738, D05740	J_8	-	
due to field duplicate imprecision. Jii - Qualify the positive and blank-qualified results for the following samples and analytes were estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740 beryllium: D05732 cobalt; D05731, D05732, D05733, D05734 copper: D05731 nickel: D05731, D05732, D05734 selenium: D05730, D05731, D05732, D05733, D05734, D05736, D05737 sodium: D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05736, D05737, D05738, D05740	1_{δ}	-	
estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. antimony: D05731, D05732, D05733, D05734, D05735, D05737, D05740 beryllium: D05732 cobalt; D05731, D05732, D05733, D05734 copper: D05731 nickel: D05731, D05732, D05734 selenium: D05730, D05731, D05732, D05733, D05734, D05736, D05737 sodium: D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05736, D05737, D05738, D05740	J10	-	
beryllium: D05732 cobalt; D05731, D05732, D05733, D05734 copper: D05731 nickel: D05731, D05732, D05734 selenium: D05730, D05731, D05732, D05733, D05734, D05736, D05737 sodium: D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05736, D05737, D05738, D05740	J''	-	estimated (J and UJ, respectively) because they were less than the quantitation limit but greater
D05738, D05740			beryllium: D05732 cobalt; D05731, D05732, D05733, D05734 copper: D05731 nickel: D05731, D05732, D05734
			sodium: D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05736, D05737,

thallium:

D05738, D05740

D05729, D05730, D05731, D05732, D05733, D05734, D05735, D05736, D05737,

Table Ib

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site

Case 0248M, SDG D05729

Analyte	Action	Analyte	Action
aluminum	A ² J ⁴	magnesium	$A^2 J^4$
antimony	A ¹	manganese	A
arsenic	A	mercury	J,
barium	J ⁴	nickel	J ⁴ J ⁵
beryllium	A	potassium	A
cadmium	A	selenium	$A^3 J^3$
calcium	$A^2 J^4$	silver	A
chromium	J ⁴ J ⁵	sodium	$A^2 J^4$
cobalt	J ²	thallium	A ² J ⁴ J ⁵
соррег	A ² J ⁴ J ⁵	vanadium	A ² J ⁴ J ⁵
iron	A ²	zinc	A ² J ⁴ J ⁵
lead	A ² J ⁴ J ⁵		

A	-	Accept all data.
, A¹	-	Qualify the result for antimony in sample D05741 as nondetect (U) at the negative blank action limit due to negative instrument drift and laboratory blank contamination.
A ²	-	Qualify the positive results for aluminum, calcium, copper, iron, lead, magnesium, sodium, thallium, vanadium, and zinc in samples D05741 as nondetect (U) at the reported concentration due to method or instrument blank contamination.
A ³	-	Elevate the nondetect result to the negative blank action level due to negative instrument drift and laboratory contamination.
\mathbf{J}^1	-	Qualify the nondetect result for mercury in sample D05741 as estimated (UJ) due to holding time exceedance.
J^2	-	Qualify the nondetect result for cobalt in sample D05741 as estimated (UJ) due to negative instrument drift.

Qualify the nondetect result for selenium in sample D05741 estimated (UJ) due to negative interferences in the ICSA solution analyses.

Qualify the positive and blank-qualified results aluminum, barium, calcium, chromium, copper, lead, magnesium, nickel, sodium, thallium, vanadium, and zinc in sample D05741 as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL.

J⁵ - Qualify the positive and blank-qualified results for chromium, copper, lead, nickel, thallium, vanadium, and zinc in sample D05741 as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0248M, SDG D05729

Low Concentration Metals and Mercury							
DQO	Sampling* and/or Analytical Method Appropriate Yes or No	Measurement Error		Sampling Variability	Potential Usability		
		Analytical Error	Sampling Error*	. **	Issues		
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ³ A ⁴ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive and nondetect results for barium, chromium, and nickel in all soil samples were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The positive results for calcium, magnesium, and zinc in all soil samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive mercury results in all soil samples were qualified as estimated (J) due to holding time exceedances. These results are usable for project objectives as estimated concentrations that may be biased low. The positive thallium results in all soil samples were qualified as estimated (J) due to continuing calibration standard recovery exceedance. The results are usable for project objectives as estimated concentrations with a possible high bias.		

- The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Table IIa Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site

Case 0249M, SDG D05729

	Low Concentration Metals and Mercury							
DQO	Sampling* and/or Analytical Method Appropriate Yes or No	Measurement Error		Sampling Variability	Potential Usability Issues			
		Analytical Error	Sampling Error*		155005			
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ³ A ⁴ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for sodium in samples D05735, D05736, D05737, and D05740 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. The positive results for selenium in samples D05731, D05732, D05733, D05734, and D05737 were qualified as nondetect (U) at the negative blank action limit due to negative instrument drift. These results are usable for project objectives as nondetect results. The positive and blank-qualified results for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, thallium, vanadium, and zinc in all soil samples; and for manganese in sample D05732 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits that may be biased high.			

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0248M, SDG D05729

	Low Concentration Metals and Mercury							
DQO	Sampling* and/or Analytical	Measurement Error		Sampling Variability	Potential Usability Issues			
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		issues			
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ³ A ⁴ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹	Refer to qualifications in Table I; A ² J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The nondetect results for selenium in samples D05738 and D05740 were elevated to their sample-specific negative blank action levels due to negative instrument drift and blank contamination. These results are usable for project objectives as estimated quantitation limits with a possible low bias. The positive results for nickel and zinc in all soil samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high. The positive results for antimony and potassium were qualified as estimated (J) due to low matrix spike recovery. The results are usable for project objectives as estimated values that may be biased low. The positive results for barium and silver in all soil samples were qualified as estimated (J) due to recovery exceedances in the laboratory control sample. These results are usable for project objectives as estimated concentrations with a possible high bias.			

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0248M, SDG D05729

	Low Concentration Metals and Mercury								
an	Sampling* Measurement Erro		ment Error	Sampling Variability	Potential Usability Issues				
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*	1	issues				
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ³ A ⁴ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive and nondetect results for selenium in all soil samples were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias. The positive results for arsenic, cadmium, and magnesium in all soil samples were qualified as estimated (J) due to high recoveries in the PE sample. The results are usable for project objectives as estimated values that may be biased high. The positive results for potassium in all soil samples were qualified as estimated (J) due to serial dilution imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias.				

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses Callahan Mining Superfund Site Case 0248M, SDG D05729

	•	-		oncentration Me	etals and Mercury	
DQO	Sampling* and/or	Measurement Еггог		Sampling Variability	Potential Usability	
	Analytical Method Appropriate Yes or No	Analytical Error	analytical Sampling	Issues		
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ³ A ⁴ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	The positive an analytes were qu were less than th	on Data Usability (Results usable for project objectives): and blank-qualified results for the following samples and pualified as estimated (J and UJ respectively) because they be equantitation limit but greater than the MDL. These results object objectives as estimated concentrations and quantitation D05731, D05732, D05733, D05734, D05732, D05731, D05732, D05733, D05734, D05731, D05732, D05734, D05731, D05732, D05734, D05736, D05737, D05737, D05737, D05738, D0573

- The evaluation of "sampling error" cannot be completely assessed in data validation.
- Sampling variability is not assessed in data validation.

Table IIb

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site

Case 0249M, SDG D05729

				Aqueous QC	
			Low Co	oncentration Me	etals and Mercury
and/o	Sampling* and/or Analytical	Measure	ment Error	Sampling Variability	Potential Usability Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ² A ³ J ¹ J ² J ³ J ⁴ J ⁵	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives) The nondetect mercury result in sample D05741 was qualified as estimated (J) due to holding time exceedance. These results are usable for project objectives as an estimated quantitation limits. The positive result for antimony in sample D05741 was qualified a nondetect (U) at the negative blank action limit due to negative instrument drift. This result is usable for project objectives as nondetect results. The positive results for aluminum, calcium, copper, iron, lead, magnesium sodium, thallium, vanadium, and zinc in sample D05741 were qualified a nondetect (U) at the reported concentration due to method or instrument blank contamination. These results are usable for project objectives a nondetect results. The nondetect result for cobalt in sample D05741 was qualified as estimated (UJ) due to negative instrument drift. These results are usable for project objectives as estimated quantitation limits with a possible low bias.

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Table IIb

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0249M, SDG D05729

Aqueous QC Sample

			Low Co	ncentration Me	etals and Mercury
DQO Sampling and/or Analytica		/or		Sampling Variability	Potential Usability Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		issues
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ² A ³ J ¹ J ² J ³ J ⁴ J ⁵	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The nondetect result for selenium in sample D05741 was elevated to the sample-specific negative blank action level due to negative instrument drift and blank contamination. These results are usable for project objectives as estimated quantitation limits with a possible low bias. The nondetect result for selenium in sample D05741 was qualified as estimated (UJ) due to negative interferences seen in the ICSA solution analyses. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. The positive and blank-qualified results for aluminum, barium, calcium, chromium, copper, lead, magnesium, nickel, sodium, thallium, vanadium, and zinc in sample D05741 were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits.

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Table IIb

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0249M, SDG D05729

Aqueous OC Sample

		•	Low Co	oncentration Me	etals and Mercury
	Sampling* and/or Analytical	Measurement Error		Sampling Variability	Potential Usability Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		188005
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ² A ³ J ¹ J ² J ³ J ⁴ J ⁵	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives) The positive and blank-qualified results for chromium, copper, lead, nickel thallium, vanadium, and zinc in sample D05741 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias.

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

SITE: Callahan Mining Superfund Site

CASE NO.: 0248M SDG NO.: D05729

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Soil (mg/Kg)

Traf	fic Report Sample No.	D05729	D05730	D05731	D05732	D05733
	M&E Sample ID	SS-421	SS-422	SS-423	\$S-424	SS-425
	Lab Sample ID	0412024-01	0412024-02	0412024-03	0412024-04	0412024-05
	Date Sampled	11/30/04	11/30/04	11/30/04	11/30/04	11/30/04
	% Solids	75.6	74.7	80.9	79.6	70.6
-	Comments		ļ		·	l
Analyte	RL					
Aluminum	4.0	14000	15000	800	720	4500
Antimony	0.15	0.29 J	0.21 J	0.073 J	0.045 J	0.12 J
Arsenic	0.20	11 J	11 J.	0.49 J	0.59 J	3.6 J
Barium	2.0	49 JEB	26 JEB	13 JEB	6.4 JEB	13 JEB
Beryllium	0.040	0.30	0.33	0.034	0.022 J	0.089
Cadmium	0.010	0.18 J	0.12 J	0.056 J	0.033 J	0.051 J
Calcium	8.0	260 J	230 Ј	210 J	97 J	140 J
Chromium	1.0	20 JEB	23 JEB	1.2 JEB	0.83 JEB	5.5 JEB
Cobalt	2.0	3.7 J	3.9 J	0.10 Ј	0.074 J	0.76 J
Copper	1.0	15 J	14 J	0.63 J	1.1 J	2.7 J
Iron	4.0	19000	25000	800	800	7900
Lead	0.40	29 J	17 J	4.0 J	6.2 J	18 J.
Magnesium	10	2200 J	2900 Ј	54 J	60 J	580 J
Manganese	1.0	170	200	16	6.6 J	38
Mercury	0.010	0.12 J	0.052 J	0.020 J	0.027 J	0.046 J
Nickel	2.0	16 JEB	16 JEB	0.66 JEB	0.47 JEB	2.8 JEB
Potassium	50	570 J	· 620 J	120 J	120 J	220 J
Selenium	1.0	0.97 J	0.76 J	0.51 UJ	0.54 UJ	0.56 UJ
Silver	0.020	0.27 Ј	0.32 J	0.038 J	0.11 J	0.16 J
Sodium	50	62 J	44 J	22 J	16 J	25 J
Thallium	0.40	0.12 J	0.11 J	0.018 J	0.020 J	0.059 J
Vanadium	1.0	32 J	36 J	3.0 J	2.5 J	15 J
Zinc	2.0	72 J	64 Ј	3.8 J	3.6 J	17 J

CASE NO.: 0248M SDG NO.: D05729

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Soil (mg/Kg)

Traffic Re	port Sample No.	D05734	D05735	D05736	D05737	D05738
	M&E Sample ID	SS-426	SS-427	SS-428	SS-429	SS-430
	Lab Sample ID	0412024-06	0412024-07	0412024-08	0412024-09	0412024-10
	Date Sampled	11/30/04	11/30/04	11/30/04	11/30/04	11/30/04
	% Solids	78.9	68.3	59.9	59.9	66.1
	Comments		FD of D05740			
Analyte_	RL					
Aluminum	4.0	1900	26000	24000	24000	14000
Antimony	0.15	0.052 J	0.089 J	0.39 J	0.13 J	0.17 J
Arsenic	0.20	1.3 J	7.9 J	14 J	11 J	12 J
3arium	2.0	4.5 JEB	22 JEB	20 JEB	17 JEB	12 JEB
Beryllium	0.040	0.041	0.40	0.40	0.30	0.16
Cadmium	0.010	0.025 J	0.097 J	0.087 J	0.082 J	0.063 J
Calcium	8.0	130 J	170 Ј	240 J	140 Ј	110 Ј
Chromium	1.0	1.6 JEB	23 JEB	21 JEB	22 JEB	16 JEB
Cobalt	2.0	0.23 J	3.4 J	2.8 J	2.3 J	1.8 J
Copper	1.0	1.2 J	6.3 J	8.8 J	5.7 J	4.7 J
ron	4.0	2800	27000	34000	28000	36000
Lead	0.40	9.0 J	10 J	14 J	13 J	38 J
Magnesium	10	200 J	2800 J	3200 J	3100 J	1900 J
Manganese	1.0	14	200	250	170	1 2 0
Mercury	0.010	0.021 J	0.075 J	0.11 J	0.090 J	0.067 J
Vickel .	2.0	0.74 JEB	19 JEB	10 JEB	8.9 JEB	9.7 JEB
Potassium	50	160 Ј	490 J	390 Ј	350 J	220 J
Selenium	1.0	0.46 UJ	0.93 J	0.83 J	0.67 UJ	0.60 UJ
Silver	0.020	0.072 J	0.18 J	0.18 J	0.17 J	0.13 Ј
Sodium	50	27 Ј	34 UJ	36 UJ	47 UJ	34 J
Thallium	0.40	0.035 J	0.075 J	0.086 J	0.076 J	0.061 J
Vanadium	1.0	8.3 J	32 J	32 J	34 J	46 J
Zinc	2.0	5.4 J	18 J	74 J	58 J	39 J

SITE: Callahan Mining Superfund Site CASE NO.: 0248M

SDG NO.: D05729

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Soil (mg/Kg)

Traffic Report Sample No. D05" M&E Sample ID Lab Sample ID D41202 Date Sampled T1/30 Solids 70. Comments FD of D Analyte RL Aluminum 4.0 26000 Antimony 0.15 0.087 Arsenic 0.20 6.9 Barium 2.0 20 Beryllium 0.040 0.36 Cadmium 0.010 0.093	427 24-11 0/04 5
Lab Sample ID Date Sampled I I / 30	24-11 0/04 5
Date Sampled 11/30 % Solids 70. Comments FD of D)/04 5
Mailyte RL	5
Comments FD of D	-
Analyte RL Aluminum 4.0 26000 Antimony 0.15 0.087 J Arsenic 0.20 6.9 J Barium 2.0 20 J Beryllium 0.040 0.36	05735
Aluminum 4.0 26000 Antimony 0.15 0.087 Arsenic 0.20 6.9 Barium 2.0 20 Beryllium 0.040 0.36	
Aluminum 4.0 26000 Antimony 0.15 0.087 I Arsenic 0.20 6.9 I Barium 2.0 20 I Beryllium 0.040 0.36	
Antimony 0.15 0.087 I Arsenic 0.20 6.9 I Barium 2.0 20 I Beryllium 0.040 0.36	
Arsenic 0.20 6.9 I Barium 2.0 20 I Beryllium 0.040 0.36	
Barium 2.0 20 J Beryllium 0.040 0.36	
Beryllium 0.040 0.36	
	ŒΒ
Cadmium 0.010 0.093 I	
Calcium 8.0 610 I	
Chromium 1.0 23 J	
Cobalt 2.0 4.9 3	f
Copper 1.0 6.7 3	Ī
Iron 4.0 30000	
Lead 0.40 12 I	Г
Magnesium 10 5200 l	ſ
Manganese 1.0 320	
Mercury 0.010 0.078 I	Ī
Nickel 2.0 16 J	
Potassium 50 410 J	Г
	UJ
Silver 0.020 0.13 J	「
Sodium 50 32 T	IJ
Thallium 0.40 0.066 1	Ī
Vanadium 1.0 48 J	Ţ
Zinc 2.0 87 J	
	ļ.

SITE: Callahan Mining Superfund Site

CASE NO.: 0248M SDG NO.: D05729 DATA SUMMARY TABLE
Metals and Mercury Analysis (D-044.2)
Aqueous QC Sample (ug/L)

]		Traffic Report Sample No.	D05741
		M&E Sample ID	RB-004
		Lab Sample ID	0412024-12
Ĭ		Date Sampled	12/01/04
		Comments	Equipment Blank
	Analyte	RL_	
Aluminum		40.0	52 UJ
Antimony		1.5	0.28 U
Arsenic		2.0	0.13 U
Barium		20.0	0.38 J
Beryllium		0.40	0.20 U
Cadmium		0.10	0.098 U
Calcium		80.0	50 UJ
Chromium		10.0	7.6 J
Cobalt		20.0	0.038 UJ
Copper		10.0	2.9 UJ
Iron		40.0	44 U
Lead		4.0	1.1 UJ
Magnesium		100	10 UJ
Manganese		10.0	4.1 U
Mercury		0.10	0.008 UJ
Nickel		20.0	0.84 J
Potassium		500	30 U
Selenium		10.0	0.91 UJ
Silver		0.20	0.12 ปั
Sodium		500	30 UJ
Thallium		4.0	0.070 UJ
Vanadium		10.0	0.19 UJ
Zinc		20.0	7.1 UJ

DATA SUMMARY TABLE DEFINITIONS (Inorganics)

- EB As a qualifier for soil/sediment samples: Analyte is also detected in the equipment blank
- FD Field Duplicate
- g gram
- J The concentration is an estimated quantity mg/Kg milligrams per Kilogram
- - R The data are rejected as unusable
 - RL Reporting Limit
 - U Analyte was analyzed for but not detected at the specified reporting limit
- ug/L micrograms per Liter
- UJ The sample quantitation limit is an estimated quantity
- NA Not Applicable

036,200100,0061,00005

701 Edgewater Drive Wakefield, MA 01880

Tel: 781-246-5200 Fax: 781-245-6293 www.m-e.com

March 11, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, Massachusetts 01863-2431

Re: Work Assignment No. 161-RICO-017H

Case 0248M, SDG D05711

Woods Hole Group, Raynham, Massachusetts

Callahan Mining Superfund Site, Brooksville, Maine

Tier II Inorganic Data Validation

Low Concentration Metals and Mercury: 10/Surface Soils/D05711, D05714, D05716,

D05717, D05722, D05723, D05725, D05726,

D05727, D05728

(Field Duplicate Pair: D05735 and D05740, in

Case 0248M, SDG D05729)

1/Aqueous Equipment Blank/D05741 (in Case

0248M, SDG D05729)

1/Performance Evaluation Sample/D05743 (in

Case 0248M, SDG D05729)

Dear Ms. Clark:

A Tier II data validation was performed by Metcalf & Eddy, Inc. (M&E) on the low concentration metals and mercury analytical data for ten surface soil samples, one performance evaluation (PE) sample, and one equipment blank sample collected from the Callahan Mining Superfund Site, located in Brooksville, Maine, by TRC on November 30, 2004. The samples were analyzed through the Response Action Contract (RAC) Delivery of Analytical Services (DAS) program using M&E DAS Analytical Specification for the Analysis of Low Concentration Metals Including Cyanide in Solid Samples (Including Samples with High Moisture Content (D-044.2), based on EPA methodology. M&E evaluated these data using the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, February 1989 criteria, modified for the methods and incorporating organic data validation guidance, Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria. Additional guidance was provided by Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

The Tier II metals data validation was based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- Preservation and Technical Holding Times
- Instrument Calibration
- * ICP-MS Internal Standards
- ICP-MS Tuning, Mass Calibration, and Resolution Check
 - Blanks
 - Inductively Coupled Plasma Interference Check Sample
 - Matrix Spike
 - Laboratory Duplicate
 - Field Duplicates
- NA Furnace Atomic Absorption Analysis
 - Inductively Coupled Plasma Serial Dilution
 - Laboratory Fortified Blank
- Instrument Detection Limits
 - Sample Quantitation Results
 - Performance Evaluation Sample / Accuracy Check
- * all criteria met for this parameter

NA - parameter not applicable

Note: Worksheets are not included for parameters that have met criteria or for criteria that are not applicable to a Tier II data validation.

Copies of the field sampling notes for this sample delivery group (SDG) are included with the Data Validation Memorandum for Case 0248M, SDG D05729, previously submitted to EPA.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site DQOs and potential usability issues

Data Summary Tables - summarizes accepted, qualified, and rejected data

Overall Evaluation of Data and Potential Usability Issues

The following is a summary of the site DQOs (Data Quality Objectives):

• To determine nature and extent of contamination and to support a human health risk assessment.

The low concentration metals and mercury sample results were qualified as a result of sampling and analytical error. Qualifications as a result of sampling error are summarized below:

- The positive and nondetect results for barium, chromium, and nickel in all soil samples were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The results are usable for project objectives. These qualifications have a minor impact on data usability.
- The positive results for calcium, magnesium, and zinc in all soil samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.

Qualifications as a result of analytical error are summarized below:

- The positive mercury results in all soil samples were qualified as estimated (J) due to holding time exceedances. These results are usable for project objectives as estimated concentrations with a possible low bias. These qualifications have a minor impact on the data usability.
- The positive results for cobalt in samples D05711, D05714, D05716, D05723, D05725, and D05726; for magnesium in samples D05711, D05714, D05716, and D05717; and for potassium in samples D05723, D05725, D05726, D05727, and D05728 were qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible high bias. These qualifications have a minor impact on the data usability.
- The positive results for sodium in samples D05714, D05717, D05725, D05727, and D05728 were qualified as nondetect (U) at the reported concentration due to method blank contamination. These results are usable for project objectives as nondetects. This qualification has a minor impact on data usability. Note that these results were also qualified as estimated (J) because they were less than the quantitation limit but greater than the method detection limit (MDL). Therefore, the overall qualification for this analyte is estimated nondetect (UJ).
- The positive result for cobalt in sample D05714 and the nondetect results for cobalt in samples D05717 and D05722 were qualified as estimated (J and UJ, respectively) due to negative instrument drift. This qualification has a minor impact on data usability. The results are usable for project objectives as an estimated concentrations and quantitation limits with a possible low bias.

- The positive results for arsenic, cadmium, chromium, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all soil samples; and for antimony in all soil samples except D05722 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias. This qualification has a minor impact on data usability.
- The positive and nondetect results for cobalt and selenium in all soil samples were
 qualified as estimated (J and UJ, respectively) due to negative interferences seen in the
 ICSA solution analyses. These results are usable for project objectives as estimated
 concentrations and quantitation limits with a possible low bias. This qualification has
 a minor impact on data usability.
- The positive results for mercury in all soil samples were qualified as estimated (J) due
 to high matrix spike recovery. The results are usable for project objectives as estimated
 values that may be biased high. This qualification has a minor impact on the data
 usability.
- The positive results for antimony in all soil samples except D05722 were qualified as
 estimated (J) due to low matrix spike recovery. The results are usable for project
 objectives as estimated values that may be biased low. This qualification has a minor
 impact on the data usability.
- The nondetect result for antimony in sample D05722 was rejected (R) due to low matrix spike recovery. The result is not usable for project objectives. This qualification may have a major impact on data usability.
- The positive results for antimony, cadmium, and zinc in all samples were qualified as estimated (J) due to laboratory duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive results for beryllium, cadmium, cobalt, mercury, silver, sodium, and thallium in all soil samples were qualified as estimated (J) due to serial dilution imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive results for arsenic, cadmium, and magnesium in all soil samples were qualified as estimated (J) due to high recoveries in the PE sample. The results are usable for project objectives as estimated values with a possible high bias. This qualification has a minor impact on the data usability.

• The positive and blank-qualified results for the following samples and analytes were qualified by the laboratory as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits. This qualification has a minor impact on the data usability.

antimony:

D05717

cobalt:

D05714, D05716

nickel:

D05714, D05717, D05722

sodium:

all soil samples

thallium:

D05727, D05728

Data Completeness

The laboratory was contacted on February 28, 2005 concerning the following:

- 1. A Form I was not provided for sample D05716
- The final CCB is not listed on Forms III, XIII, or XV for the January 13, 2005 ICP-MS analysis sequence.
- 3. Cadmium should be flagged "E"because of the serial dilution exceedance.

The laboratory provided an acceptable response on March 1 and 3, 2005.

Preservation and Technical Holding Times

All mercury analyses were performed 30 days after sampling, which exceeds the 28-day holding time requirement. The positive mercury results in all soil samples were qualified as estimated (J) due to these holding time exceedances. These results are usable for project objectives as estimated concentrations.

Instrument Calibration

The following table summarizes the continuing calibration verification (CCV) standard recoveries that did not meet the 90% - 110% recovery acceptance criteria, the validation action, and the samples affected:

Analyte	CCV	Recovery	Action	Samples Affected
cobalt	01/04/05 10:39	112%	Qualify the positive results as estimated (J)	D05711

Analyte	CCV	Recovery	Action	Samples Affected
cobalt	01/04/05 11:32	112%	Qualify the positive results as estimated (J)	D05714, D05716, D05723, D05725, D05726
chromium	1/13/05 15:43	114%	Qualify the positive results as estimated (J)	None; no reported results prior to this CCV
sodium	01/14/05 13:49	113%	Qualify the positive results as estimated (J)	None; no reported results prior to this CCV
potassium	01/14/05 15:55	111%	Qualify the positive results as estimated (J)	D05723, D05725, D05726, D05727, D05728
sodium	01/14/05 16:02	89%	Qualify the positive results as estimated (1)	None; no reported results prior to this CCV.
barium	01/14/05 16:16	88%	Qualify the positive results as estimated (J)	None; no reported results prior to this CCV
magnesium	01/18/05 20:44	114%	Qualify the positive results as estimated (J)	D05711, D05714, D05716, D05717

The following table summarizes the reporting limit standard (CRI) recoveries that did not meet the 80% - 120% recovery acceptance criteria, the validation action, and the samples affected:

Analyte	CRI	Recovery	Action	Samples Affected
iron	01/20/05 22:37	65%	Qualify the positive and nondetect results as estimated (J and UJ, respectively)	None; all iron results greater than 2x reporting limit.

Blanks

The following table summarizes the blank contamination detected in the laboratory blanks associated with the soil samples. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. The nominal Blank Action Levels (BAL) from the method blank were calculated based on a 1gm sample weight (dry), 50mL final volume, and two-fold dilution. The nominal BALs from instrument blanks were based on a 1gm sample weight (dry) and 50mL final volume. Sample-specific BALs are further adjusted for actual sample weights, moisture content, and any additional dilutions.

Analyte	Blank Type	Maximum Blank Concentration	Nominal Blank Action Level (BAL) mg/Kg	Action/Samples Affected
aluminum	mb	1.5 mg/Kg	7.5	No action; all results greater than BAL
arsenic	inst	0.09 μg/L	0.045	No action; all results greater than BAL
	inst	-0.17 μg/L	0.085	
barium	mb	0.0058 mg/Kg	0.029	No action; all results greater than BAL
calcium	mb	1.5 mg/Kg	7.5	No action; all results greater than BAL
	inst	-11 μg/L	5.5	
chromium	inst	-0.17 μg/L	0.085	No action; all results greater than BAL
cobalt	inst	-0.55 μg/L	0.28	Qualify the positive result as estimated (J) in sample D05714. Qualify the nondetect results as estimated (UJ) in samples D05717 and D05722.
copper	mb	0.028 mg/Kg	0.14	No action; all results greater than BAL
iron	mb	2.6 mg/Kg	13.0	No action; all results greater than BAL
	inst	-9.9 μg/L	5.0	No action; all results greater than BAL
lead	mb	0.019 mg/Kg	0.095	No action; all results greater than BAL
magnesium	mb	1.70 mg/Kg	8.5	No action; all results greater than BAL
manganese	mb	0.14 mg/Kg	0.70	No action; all results greater than BAL
potassium	inst	61 μg/L	31.0	No action; all results greater than BAL
	inst	-9.6 μg/L	4.8	
selenium	inst	0.80 µg/L	0.40	No action; all results greater than BAL
	inst -0.35 μg/L 0.18		0.18	·
sodium	mb	2.8 mg/Kg	14.0	Qualify the positive result for sample D05714, D05717, D05725, D05727, and D05728 as nondetect (U) at the reported value.
thallium	mb	0.012 mg/Kg	0.060	No action; all results greater than BAL
vanadium	inst	0.34 μg/L	0.17	No action; all results greater than BAL
	inst	-0.47 μg/L	0.24	

Analyte	Blank Type	Maximum Blank Concentration	Nominal Blank Action Level (BAL) mg/Kg	Action/Samples Affected
zinc	mb	0.21 mg/Kg	1.05	No action; all results greater than BAL

inst - instrument blank (i.e., ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the reported concentration
- If the sample result was > positive BAL, qualification of the data was not required

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J)
- If the sample result was nondetect, the MDL was qualified as estimated (UJ)
- If the sample result was > MDL and > negative BAL, qualification of the data was not required

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required

The data for the equipment blank sample (D05741) associated with these samples is located in the data package for Case 0248M, SDG D05729 and was validated as part of the data set. As a result of the contamination detected in the equipment blank sample and any validation actions applied to that sample data, the following table summarizes the level of blank contamination detected in the equipment blank associated with the surface soil samples:

Analyte	Blank Concentration (µg/L)	Action/Samples Affected
barium	0.38	Qualify all soil samples (EB).
chromium	7.6	Qualify all soil samples (EB).

Analyte	Blank Concentration (µg/L)	Action/Samples Affected
nickel	0.84	Qualify all soil samples (EB).

Inductively Coupled Plasma Interference Check Sample

Positive results for antimony, arsenic, cadmium, chromium, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc were reported in the ICSA solution analyses at concentrations greater than the MDLs. Results for cobalt and selenium were reported in the ICSA solution at a concentration greater than the negative MDL.

The positive results for arsenic, cadmium, chromium, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all soil samples; and for antimony in all soil samples except D05722 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias.

The positive and nondetect results for cobalt and selenium in all soil samples were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias.

Matrix Spike (MS)

Sample D05716 was analyzed as the matrix spike with this data set. The analytes that did not meet recovery (%R) acceptance criteria of 75% - 125% and the actions taken are summarized in the table below:

Analyte	Spiked Sample Result (mg/Kg)	Sample Result (mg/Kg)	Spike Added (mg/Kg)	MS %R	Affected Samples/Action
antimony	0.54	0.26	0.98	0	Qualify as estimated (J) the positive results in all samples. Reject (R) the nondetect result in sample D05722.
тегсигу	0.59	0.38	0.11	198	Qualify as estimated (J) the positive results in all soil samples.

Laboratory Duplicates

Sample D05716 was analyzed as a laboratory duplicate in association with this data set. The analytes that did not meet the relative percent difference (RPD) criterion of <35% for analytes greater than 5x reporting limit or the absolute difference criterion of >2x reporting limit for those less than <5x reporting limit, and the actions taken are summarized in the following table:

Analyte	Sample Result (mg/Kg)	Duplicate Result (mg/Kg)	%RPD	Actions
antimony	2.6	0.50	135	Qualify as estimated (J) the positive antimony results in all samples.
cadmium	0.37	1.1	99	Qualify as estimated (J) the positive cadmium results in all samples.
zinc	250	490	65	Qualify as estimated (J) the positive zinc results in all samples.

Field Duplicates

Samples D05735 and D05740 (located in Case 0248M, SDG D05729) were the field duplicate pair analyzed in association with these soil samples. The analytes that did not meet the field duplicate relative percent difference (RPD) criterion of <50% for analytes greater than 5x reporting limit or the absolute difference criterion of >4x reporting limit for those less than <5x reporting limit, and the actions taken are summarized in the following table:

Analyte	D05735 (mg/Kg)	D05740 (mg/Kg)	%RPD	Actions
calcium	170	610	113	Qualify as estimated (J) the positive calcium results in all samples.
magnesium	2800	5200	60	Qualify as estimated (J) the positive magnesium results in all samples.
zinc	18	87	131	Qualify as estimated (J) the positive zinc results in all samples.

Inductively Coupled Plasma Serial Dilution

An ICP serial dilution analysis was performed on sample D05716. The analytes that did not meet the percent difference (%D) validation criterion of 15% for results greater than 50x the MDL and the actions taken are summarized in the following table:

Analyte	50x MDL (mg/Kg)	Sample (mg/Kg)	Serial Dilution (mg/Kg)	%D	Actions
beryllium	0.061	0.14	0.17	26	Qualify as estimated (J) the positive beryllium results in all samples.
cadmium	0.051	0.37	0.45	22	Qualify as estimated (J) the positive cadmium results in all samples.
cobalt	0.026	0.31	0.12	61	Qualify as estimated (I) the positive cobalt results in all samples.
silver	0.054	5.2	6.2	19	Qualify as estimated (J) the positive silver results in all samples.
sodium	22.1	120	140	17	Qualify as estimated (J) the positive sodium results in all samples.
thallium	0.035	2.0	2.4	21	Qualify as estimated (J) the positive thallium results in all samples.

A serial dilution determination was also performed on sample D05716 for mercury. The %D for this analysis (19%) exceeded the validation criterion of 15% for results greater than 50x the MDL. Although this analysis is not required under the DAS specification, the results were evaluated as an indication of possible matrix interferences. Professional judgment was used to estimate (J) the positive results for all soil samples due to serial dilution imprecision.

Laboratory Fortified Blanks

The recovery for iron (186%) exceeded the 70% - 130% acceptance criteria in the laboratory fortified blank (LFB). Because the concentration of iron in the soil samples were significantly higher than that in the LFB and the laboratory control sample showed acceptance recovery, professional judgment was used to not qualify the positive results for iron.

Performance Evaluation Sample/Accuracy Check

Performance Evaluation Sample

The metals and mercury PE sample D05743 (EPA ampule number MS01878), reported in Case 0248M, SDG D05729, was evaluated with this SDG. Eight analytes were scored "Within Limits," eight analytes were scored "Not Evaluated," and four were scored "Warning High." No validation action was necessary on the basis of these results. Three analytes (arsenic, cadmium, and magnesium) were scored "Action High." On the basis of those scores, the positive results for arsenic, cadmium, and magnesium in all soil samples were qualified as estimated (J). These results are usable for project objectives as estimated concentrations with a possible high bias.

Laboratory Control Sample

All laboratory control samples met the 80% - 120% acceptance criteria. No validation action was required.

Sample Quantitation Results

The positive and blank-qualified results for the following samples and analytes were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations. This qualification has a minor impact on the data usability.

antimony:

D05717

cobalt:

D05714, D05716

nickel:

D05714, D05717, D05722

sodium:

all soil samples

thallium:

D05727, D05728

Please contact Ms. Constance Lapite at (781) 224-6628 or at <u>constance.lapite@m-e.com</u> if you have any questions regarding this Tier II validation.

Very truly yours

Richard Purdy Data Validator

Elizabeth Denly Senior Reviewer

RAC Lead Chemist

Constance Lapite

ce: Leslie McVickar, EPA Remedial Project Manager (Data Validation Memorandum, Data Summary Tables)

✓ Elizabeth Denly, TRC Project Chemist (entire package)

Denise Laferte, M&E Oversight Chemist (Data Validation Memorandum, Data Summary Tables)

Richard Purdy, M&E Data Validation Chemist (entire package)

Callahan Mine Project File, Work Assignment No. 161-RICO-017H

Attachments:

IRDA

Table I: Recommendations Summary Table

Table II: Overall Evaluation of Data

Data Summary Tables

Data Validation Worksheets

PE Score Report(s)

Copy of non-CLP Analytical Methods (M&E DAS Specification D-044.2)

Copies of Telephone Logs/Communications Forms

Supporting Data for Reduced Payment Recommendations (not applicable)

Copies of Field Sampling Notes (previously submitted)

Copies of EPA-approved Amendments to QAPjP or SAP (not applicable)

CSF Completeness Evidence Audit (DC-2 Form)

DOO Summary Form

INORGANIC REGIONAL DATA ASSESSMENT

CASE N	10. 0248M	SITE CALLANA MINE
LABORA	TORY WOODS HOLE GROUP	NO. OF SAMPLES/
		MATRIX to 55
SDG#	D05711	_ REVIEWER (IF NOT ESD) Metcalf & Eddy
SOW#	D044.2	REVIEWER'S NAME Richard Purdy
DPO:	ACTION FYI XX	COMPLETION DATE 3/3/05
	DATA ASSE	ESSMENT SUMMARY
		ICP-AES ICP-MS Hg CYANIDE
1.	DATA COMPLETENESS	$\frac{1}{2}$
2.	HOLDING TIMES	$\frac{0}{1}$
3.	CALIBRATIONS	
 4. 5. 	BLANKS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
6.	MATRIX SPIKE	$\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$
7.	LABORATORY DUPLICATES	
8.	FIELD DUPLICATES	
9.	LABORATORY CONTROL SAMPLE	
10.	LABORATORY FORTIFED BLANK	$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}
11.	SERIAL DILUTION	$\overline{\Box}$ $\overline{\bigcirc}^{\iota}$ $\overline{-}$ $\overline{\Box}$
12.	DETECTION LIMITS	0 0
13.	SAMPLE QUANTITATION	
14.	OTHER QC	0 0
15.	OVERALL ASSESSMENT	0 0
M = Z =	Data had no problems/or qual Data qualified due to a majo Data unacceptable. Problems, but do not affect	or problem.
		& ; OZ-autricle criteria; OZ-EDEMS
8E001	RED; 04-mmor contamuales	7844
AREAS	OF CONCERN:	
	· · · · · · · · · · · · · · · · · · ·	
NOTABI	E PERFORMANCE:	

Table I

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site Case 0249M, SDG D05711

Analyte	Action	Analyte	Action
aluminum	A	magnesium	J ² J ⁹ J ¹⁰
antimony	J ⁴ J ⁶ J ⁷ J ¹¹ J ¹² R ¹	manganese	J ⁴
arsenic	J ⁴ J ⁹	mercury	1 ₁ 1 ₆ 1 ₈
barium	A ²	nickel	A ² J ⁴ J ¹¹
beryllium	1 ₈	potassium	J^2
cadmium	J ⁴ J ⁷ J ⁸ J ⁹	selenium	J ⁵
calcium	1,10	silver	J ⁴ J ⁸
chromium	A ² J ⁴	sodium	A ¹ J ² J ⁸ J ¹¹
cobalt	J ² J ³ J ⁵ J ⁸ J ¹¹	thallium	J4 J8 J ¹¹
copper	J ⁴	vanadium	J⁴
iron	Α.	zinc	J ⁴ J ⁷ J ¹⁰
lead	J ⁴		

A - Accept an data	Α	-	Accept all data
--------------------	---	---	-----------------

- A¹ Qualify positive results for sodium in samples D05714, D05717, D05725, D05727, and D05728 as nondetect (U) at the reported concentration due to method blank contamination.
- A² Qualify "EB" the positive and nondetect results for barium, chromium, and nickel in all soil samples due to equipment blank contamination.
- J¹ Qualify the positive mercury results in all soil samples as estimated (J) due to holding time exceedances.
- J² Qualify as estimated (J) the positive results for cobalt in samples D05711, D05714, D05716, D05723, D05725, and D05726; for magnesium in samples D05711, D05714, D05716, and D05717; and for potassium in samples D05723, D05725, D05726, D05727, and D05728 due to continuing calibration standard recovery exceedances.
- J³ Qualify as estimated (J and UJ) the positive result for cobalt in sample D05714 and the nondetect results for cobalt in samples D05717 and D05722 due to negative instrument drift.
- J⁴ Qualify the positive results for arsenic, cadmium, chromium, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all soil samples; and for antimony in all soil samples except D05722 as estimated (J) due to positive interferences seen in the ICSA solution analyses.
- Qualify the positive and nondetect results for cobalt and selenium in all soil samples as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses.

 J^6 Qualify the positive results for mercury in all soil samples as estimated (J) due to high matrix spike recovery. J^7 Qualify the positive results for antimony, cadmium, and zinc in all samples as estimated (I) due to laboratory duplicate imprecision. J^8 Qualify the positive results for beryllium, cadmium, cobalt, mercury, silver, sodium, and thallium in all soil samples as estimated (J) due to serial dilution imprecision. Qualify the positive results for arsenic, cadmium, and magnesium in all soil samples as estimated (J) due to high recoveries in the PE sample. TIO Qualify the positive results for calcium, magnesium, and zinc in all soil samples as estimated (J) due to field duplicate imprecision. J^{11} Qualify the positive and blank-qualified results for the following samples and analytes as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL, D05717 antimony: cobalt: D05714, D05716 nickel: D05714, D05717, D05722 sodium: all soil samples thallium: D05727, D05728 J^{12} Qualify the positive results for antimony in all soil samples except D05722 as estimated (J) due to low matrix spike recovery. \mathbb{R}^1 Reject (R) the nondetect result for antimony in sample D05722 due to low matrix spike recovery.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05711

			Low Con	ncentration Me	tals and Mercury
DQO Sampling* and/or	Measuren	nent Error	Sampling Variability	Potential Usability Issues	
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		issues
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹ J ¹² R ¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	Major Impact on Data Usability (Results are not usable for project objectives): The nondetect result for antimony in sample D05722 was rejected (R) due to low matrix spike recovery. The result is not usable for project objectives. Minor Impact on Data Usability (Results usable for project objectives): The positive and nondetect results for barium, chromium, and nickel in all soil samples were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The positive results for calcium, magnesium, and zinc in all soil samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive result for cobalt in sample D05714 and the nondetect results for cobalt in samples D05717 and D05722 were qualified as estimated (J and UJ, respectively) due to negative instrument drift. The results are usable for project objectives as an estimated concentrations and quantitation limits with a possible low bias.

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0249M, SDG D05711

			Low Co	ncentration Me	tals and Mercury
DQO	and/or	Measurer	ment Error	Sampling Variability	Potential Usability Issues
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹ J ¹² R ¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for cobalt in samples D05711, D05714, D05716, D05723, D05725, and D05726; for magnesium in samples D05711, D05714, D05716, and D05717; and for potassium in samples D05723, D05725, D05726, D05727, and D05728 were qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible high bias. The positive results for sodium in samples D05714, D05717, D05725, D05727, and D05728 were qualified as nondetect (U) at the reported concentration due to method blank contamination. This qualification has a minor impact on data usability. The positive mercury results in all soil samples were qualified as estimated (J) due to holding time exceedances. These results are usable for project objectives as estimated concentrations. The positive results for mercury in all soil samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high.

- The evaluation of "sampling error" cannot be completely assessed in data validation.
- Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05711

			Low Co	ncentration Me	tals and Mercury
DQO Sampling* and/or	and/or	Measurer	nent Error	Sampling Variability	Potential Usability
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*	***	Issues
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹ J ¹² R ¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for antimony in all samples except D05722 were qualified as estimated (J) due to low matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high. The positive results for arsenic, cadmium, chromium, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all soil samples; and for antimony in all soil samples except D05722 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias. The positive and nondetect results for cobalt and selenium in all soil samples were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias. The positive results for antimony, cadmium, and zinc in all samples were qualified as estimated (J) due to laboratory duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias.

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05711

			Low Co	ncentration Me	etals and Mercury
DQO Sampling* Measuremen		nent Error	Sampling Variability	Potential Usability Issues	
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		135005
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹¹ J ¹² R ¹	Refer to qualifications in Table I: A ² J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for beryllium, cadmium, cobalt, mercury, silver, sodium, and thallium in all soil samples were qualified as estimated (J) due to serial dilution imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive results for arsenic, cadmium, and magnesium in all soil samples were qualified as estimated (J) due to high recoveries in the PE sample. The results are usable for project objectives as estimated values with a possible high bias. The positive and blank-qualified results for the following samples and analytes were qualified as estimated (J) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations. antimony: D05717 cobalt: D05714, D05716 nickel: D05714, D05717, D05722 sodium: all soil samples thallium: D05727, D05728

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

SITE: Callahan Mining Superfund Site

CASE NO.: 0248M SDG NO.: D05711

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Soil (mg/Kg)

	Traffic Report Sample No.	D05711	D05714	D05716	D05717	D05722
'	M&E Sample ID	SS-403	SS-406	SS-408	SS-409	SS-414
*	Lab Sample ID	0412023-01	0412023-02	0412023-03	0412023-04	0412023-05
	Date Sampled	11/30/04	11/30/04	11/30/04	11/30/04	11/30/04
	% Solids	76.6	87.2	85.2	90.0	83.6
	Comments					
Analyt	e RL					
Aluminum	4.0	19000	57000	45000	60000	46000
Antimony	0.15	0.44 J	0.30 J	2.6 Ј	0.31 J	R
Arsenic	0.20	65 J	23 J	51 J	34 J	50 J
Barium	2.0	12 EB	9.6 EB	9.5 EB	5.4 EB	6.5 EB
Beryllium	0.040	0.28 J	0.17 J	0.14 J	0.35 J	0.12 J
Cadmium	0.010	22 J	0.78 J	0.37 J	0.81 J	0.37 Ј
Calcium	8.0	88000 J	120 J	91 J	280 J	30 J
Chromium	1.0	18 JEB	4.6 JEB	4.1 ЈЕВ	3.1 JEB	1.5 JEB
Cobalt	2.0	4.3 J	0.049 J	0.31 J	0.0012 UJ	0.0012 UJ
Соррег	1.0	2500 J	340 Ј	5200 J	8200 J	14000 J
Iron	4.0	30000	40000	74000	55000	83000
Lead	0.40	990 J	240 J	820 J .	380 J	350 J
Magnesium	10	39000 J	120000 J	94000 J	120000 J	97000 J
Manganese	1.0	1800 J	1300 J	970 J	1300 J	1 068
Mercury	0.0050	0.58 J	0.36 J	0.35 J	0.23 J	0.14 J
Nickel	2.0	15 JEB	1.3 JEB	1.7 JEB	0.62 JEB	0.20 JEB
Potassium	50	1800	4200	4000	1900	2700
Selenium	1.0	5.8 J	6.3 J	15 J	16 J	24 J
Silver	0.010	3.8 J	1.6 J	5.2 J	3.3 J	12 J
Sodium	50	18 J	38 UJ	120 J	26 UJ	21 J
Thallium	0.40	1.4 J	1.3 J	2.0 J	0.86 J	1.3 J
Vanadium	1.0	13 J	16 J	14 J	14 J	16 J
Zinc	2.0	6600 J	400 J	250 J	290 J	110 J

SITE: Callahan Mining Superfund Site

CASE NO.: 0248M SDG NO.: D05711

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Soil (mg/Kg)

Traffic-l	Report Sample No.	D05723	D05725	D05726	D05727	D05728
	M&E Sample ID	SS-415	SS-417	SS-418	SS-419	SS-420
	Lab Sample ID	0412023-06	0412023-07	0412023-08	0412023-09	0412023-10
	Date Sampled	11/30/04	11/30/04	11/30/04	11/30/04	11/30/04
	% Solids	83.4	91.7	84.2	69.7	70.0
·	Comments		Ĭ			
			11			
Analyte	_RL		<u> </u>			
Aluminum	4.0	40000	13000	46000	19000	20000
Antimony	0.15	4.1 J	0.84 J	0.35 J	0.19 J	0.18 J
Arsenic	0.20	46 J	23 J	57 J	10 J	13 J
Barium .	2.0	8.2 EB	9.4 EB	16 EB	37 EB	34 EB
Beryllium	0.040	0.30 J	0.31 J	0.27 Ј	0.37 J	0.41 J
Cadmium	0.010	24 J	16 J	0.45 J	0.11 J	0.12 J
Calcium	8.0	1500 Ј	5900 J	210 J	450 J	310 J
Chromium	1.0	11 JEB	12 JEB	11 JEB	22 JEB	19 JEB
Cobalt	2.0	1.7 Ј	4.8 J	1.9 J	5.0 J	5.5 J
Соррег	1.0	6600 J	1600 J	2000 J	14 J	10 J
Iron	4.0	42000	17000	57000	23000	28000
Lead	0.40	1600 J	520 J	260 J	26 J	22 J
Magnesium	10	77000 J	18000 J	82000 J	2900 J	3000 J
Manganese	1.0	960 J	480 J	1100 J	400 J	410 J
Mercury	0.0050	1.5 J	0.41 J	0.14 J	0.078 J	0.084 J
Nickel	2.0	6.8 JEB	12 JEB	7.3 JEB	18 JEB	17 JEB
Potassium	50	2400 J	1000 J	2100 J	700 J	510 J
Selenium	0.1	10 J	1.9 J	7.6 J	1.1 J	0.86 J
Silver	0.010	7.0 J	2.0 J	1.6 J	0.22 J	0.23 J
Sodium	50	62 J	39 UJ	100 J	39 UJ	41 UJ
Thallium	0.40	1.3 J	0.46 J	1.2 J	0.12 J	0.11 J
Vanadium	1.0	15 J	11 J	19 J	30 J	28 J
Zinc	2.0	8800 J	5700 J	260 J	76 J	95 J

DATA SUMMARY TABLE DEFINITIONS (Inorganics)

- EB As a qualifier for soil/sediment samples: Analyte is also detected in the equipment blank
- FD Field Duplicate
- g gram
- J The concentration is an estimated quantity
- mg/Kg milligrams per Kilogram
 - R The data are rejected as unusable
 - RL Reporting Limit
 - U Analyte was analyzed for but not detected at the specified reporting limit
 - ug/L micrograms per Liter
 - UJ The sample quantitation limit is an estimated quantity
 - NA Not Applicable

036.200100.0061.00005

701 Edgewater Drive Wakefield, MA 01880

Tel: 781-246-5200 Fax: 781-245-6293 www.m-e.com

March 18, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, Massachusetts 01863-2431

Re: Work Assignment No. 161-RICO-017H

Case 0248M, SDG D05709

Woods Hole Group, Raynham, Massachusetts

Callahan Mining Superfund Site, Brooksville, Maine

Tier II Inorganic Data Validation

Low Concentration Metals and Mercury:

11/Surface Soils/D05709, D05710, D05712,

D05713, D05715, D05718, D05719, D05720,

D05721, D05724, D05739

(Field Duplicate Pair: D05709 and D05739)

1/Aqueous Equipment Blank/D05742 1/Performance Evaluation Sample/D05744

Dear Ms. Clark:

A Tier II data validation was performed by Metcalf & Eddy, Inc. (M&E) on the low concentration metals and mercury analytical data for eleven surface soil samples (including one field duplicate pair), one performance evaluation (PE) sample, and one equipment blank sample collected from the Callahan Mining Superfund Site, located in Brooksville, Maine, by TRC on December 2, 2004. The samples were analyzed through the Response Action Contract (RAC) Delivery of Analytical Services (DAS) program using M&E DAS Analytical Specification for the Analysis of Low Concentration Metals Including Cyanide in Solid Samples (Including Samples with High Moisture Content) (D-044.2), based on EPA methodology. M&E evaluated these data using the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, February 1989 criteria, modified for the methods and incorporating organic data validation guidance, Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria. Additional guidance was provided by Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

The Tier II metals data validation was based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- * Preservation and Technical Holding Times
 - Instrument Calibration
 - ICP-MS Internal Standards
- ICP-MS Tuning, Mass Calibration, and Resolution Check
 - Blanks
 - Inductively Coupled Plasma Interference Check Sample
 - Matrix Spike
 - Laboratory Duplicate
- * Field Duplicates
- NA Furnace Atomic Absorption Analysis
 - Inductively Coupled Plasma Serial Dilution
- * Laboratory Fortified Blank
- * Instrument Detection Limits
 - Sample Quantitation Results
 - Performance Evaluation Sample /Accuracy Check
- * all criteria met for this parameter
- NA parameter not applicable

Note: Worksheets are not included for parameters that have met criteria or for criteria that are not applicable to a Tier II data validation.

The following information was used to generate the Data Validation Memorandum attachments:

Table Ia and Ib: Recommendation Summary Table - summarizes validation recommendations
Table IIa and IIb: Overall Evaluation of Data - summarizes site DQOs and potential usability issues
Data Summary Tables - summarizes accepted, qualified, and rejected data

Copies of the field sampling notes for this sample delivery group (SDG) are included with the Data Validation Memorandum for Case 0248M, SDG D05729, previously submitted to EPA.

Overall Evaluation of Data and Potential Usability Issues

The following is a summary of the site DQOs (Data Quality Objectives):

 To determine nature and extent of contamination and to support a human health risk assessment. The low concentration metals and mercury sample results were qualified as a result of sampling and analytical error. Qualifications as a result of sampling error are summarized below:

• The positive results for barium and nickel in all soils; and for sodium in all soil samples except D05710, D05712, D05713, D05715, and D05739 were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The results are usable for project objectives. These qualifications have a minor impact on data usability.

Qualifications as a result of analytical error are summarized below:

- The positive results for cobalt in samples D05710, D05712, D05713, and D05715; for thallium in samples D05710, D05712, D05713, D05715, D05718, D05719, and D05720; and for magnesium in samples D05712, D05713, D05715, and D05718 were qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible high bias. These qualifications have a minor impact on the data usability.
- The positive result for silver in sample D05709 was qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible low bias. These qualifications have a minor impact on the data usability.
- The positive results for sodium in samples D05710, D05712, D05713, D05715, and D05739 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. This qualification has a minor impact on data usability. Note that these results were qualified as estimated (J) because they were less than the quantitation limit but greater than the method detection limit (MDL). Therefore, the overall qualification for these results are estimated nondetect (UJ).
- The positive results for aluminum, calcium, copper, iron, lead, magnesium, potassium, and zinc in sample D05742 were qualified as nondetect (U) at the reported concentration due to method blank contamination. These results are usable for project objectives as nondetect results. This qualification has a minor impact on data usability. Note that the results for calcium, copper, iron, lead, magnesium, potassium, and zinc were also qualified as estimated (J) because they were less than the quantitation limit but greater than the method detection limit (MDL). Therefore, the overall qualification for these results are estimated nondetect (UJ).
- The nondetect result for cobalt in sample D05742 was qualified as estimated (UJ)

at the MDL due to negative instrument drift. This qualification has a minor impact on data usability. This result is usable for project objectives as an estimated quantitation limit with a possible low bias.

- The nondetect results for antimony and selenium in sample D05742 had quantitation limits elevated to the negative blank action level due to negative instrument drift and laboratory blank contamination. This qualification has a minor impact on data usability. The results are usable for project objectives as elevated quantitation limits.
- The positive results for antimony, arsenic, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc in all soil samples; and for cadmium in samples D05710, D05718, D05719, D05720, and D05721 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias. This qualification has a minor impact on data usability.
- The positive and blank-qualified results for copper, lead, nickel, and zinc in sample D05742 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with possible high bias. This qualification has a minor impact on data usability.
- The nondetect result for selenium in sample D05742 was qualified as estimated (UJ)
 due to negative interferences seen in the ICSA solution analyses. This result is usable
 for project objectives as an estimated quantitation limit with a possible low bias.
- The positive results for vanadium in all soil samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high. This qualification has a minor impact on the data usability.
- The positive results for antimony in all soil samples and the positive and blank-qualified results for sodium in all soil samples were qualified as estimated (J and UJ, respectively) due to low matrix spike recoveries. The results are usable for project objectives as estimated values and quantitation limits that may be biased low. This qualification has a minor impact on the data usability.
- The positive results for cadmium, calcium, and cobalt in all soil samples were qualified as estimated (J) due to laboratory duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.

- The positive results for beryllium, cadmium, calcium, cobalt, copper, thallium, and zinc in all soil samples and the positive and blank-qualified results for sodium in all soil samples were qualified as estimated (J and UJ, respectively) due to serial dilution imprecision. The results are usable for project objectives as estimated values and quantitation limits with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive result for potassium in sample D05715 was qualified as estimated (J) due to linear range exceedance. This result is usable for project objectives as an estimated concentration. This qualification has a minor impact on the data usability.
- The positive and blank-qualified results for sodium in all soil samples, and for cobalt in samples D05709, D05712, D05713, D05715, and D05739 were qualified by the laboratory as estimated (J and UJ, respectively) as being less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits. This qualification has a minor impact on the data usability.
- The positive and blank-qualified results for barium, calcium, copper, iron, lead, magnesium, nickel, potassium, sodium and zinc in the equipment blank sample D05742 were qualified by the laboratory as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits. This qualification has a minor impact on the data usability.
- The positive results for silver in all soil samples were qualified as estimated (J) due to laboratory control sample (LCS) recovery exceedance. These results are usable for project objectives as estimated concentrations with a possible high bias. This qualification has a minor impact on the data usability.

Data Completeness

The laboratory was contacted on March 9, 2005 concerning the following:

- 1. The percent solids for samples D05715 and D05739 are incorrectly reported on the Form I, which affects the reported sample concentrations.
- 2. Aluminum and iron exceeded the reporting limit in the aqueous method blank. The associated sample should have been re-digested and re-analyzed.

The laboratory provided an acceptable response on March 10, 2005.

Instrument Calibration

The following table summarizes the continuing calibration verification (CCV) standard recoveries that did not meet the 90% - 110% recovery acceptance criteria, the validation action, and the samples affected:

Analyte	CCV	Recovery	Action	Samples Affected
cobalt	01/05/05 11:31	113%	Qualify the positive results as estimated (J)	D05710, D05712, D05713, D05715,
silver	01/11/05 14:17	89%	Qualify the positive results as estimated (J)	D05709
thallium	01/28/05 14:52	114%	Qualify the positive results as estimated (J)	D05710, D05712, D05713, D05715, D05718, D05719, D05720
magnesium	01/28/05 18:54	113%	Qualify the positive results as estimated (J)	D05712, D05713, D05715, D05718
cobalt	02/01/05 10:43	111%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
aluminum	01/12/05 22:46	111%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV

The following table summarizes the reporting limit standard (CRI) recoveries that did not meet the 80% - 120% recovery acceptance criteria, the validation action, and the samples affected:

Analyte	CRI	Recovery	Action	Samples Affected
silver	01/11/05 13:53	124%	Qualify the positive results as estimated (J)	None; all silver results greater than 2x reporting limit.

Blanks

The following table summarizes the blank contamination detected in the laboratory blanks associated with the soil samples. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. The nominal Blank Action Levels (BAL) from the method blank were calculated based on a 1gm sample weight (dry), 50mL final volume, and two-fold dilution. The nominal BALs from instrument blanks were based on a 1gm sample weight (dry) and 50mL final volume. Sample-specific BALs are further adjusted for actual sample weights, moisture content, and any additional dilutions.

Analyte	Blank Type	Maximum Blank Concentration	Nominal Blank Action Level (BAL) mg/Kg	Action/Samples Affected
aluminum	mb	1.2 mg/Kg	6.0	None: all results are greater than BAL
arsenic	mb	0.0055 mg/Kg	0.028	None: all results are greater than BAL
barium	mb	0.0067 mg/Kg	0.034	None: all results are greater than BAL
cadmium	mb	0.009 mg/Kg	0.045	None: all results are greater than BAL
calcium	mb	1.4 mg/Kg	7.0	None: all results are greater than negative
	inst	-66.0 μg/L	33.0	BAL
chromium	inst	0.15 μg/L	0.075	None: all results are greater than BAL
cobalt	inst	-0.24 μg/L	0.12	None: all results are greater than BAL
copper	inst	-1.2 μg/L	0.60	None: all results are greater than negative BAL
iron	mb	2.9 mg/kg	14.5	None: all results are greater than BAL
	inst	-13.0 μg/L	6.5	
lead	inst	0.61 μg/L	0.30	None: all results are greater than BAL
	inst	-0.051 μg/L	0.026	
magnesium	mb	1.3 mg/Kg	6.5	None: all results are greater than BAL
manganese	mb	0.17 mg/Kg	0.85	None: all results are greater than BAL
nickel	mb	0.018 mg/Kg	0.090	None: all results are greater than BAL
potassium	mb	6.8 mg/Kg	34.0	None: all results are greater than BAL
selenium	inst	0.14 μg/L	0.070	None: all results are greater than negative BAL
	inst	-2.1 μg/L	1.1	·
sodium	mb	2.8 mg/Kg	14 .	Qualify the positive results as nondetect (U) at the reported concentration in samples D05710, D05712, D05713, D05715, and D05739
thallium	mb	0.0063 mg/Kg	0.032	None: all results are greater than BAL
vanadium	mb	0.073mg/Kg	0.36	None: all results are greater than BAL
zinc	mb	0.21 mg/Kg	1.05	None: all results are greater than BAL

inst - instrument blank (i.e., ICB or CCB) mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the reported concentration
- If the sample result was > positive BAL, qualification of the data was not required

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J)
- If the sample result was nondetect, the MDL was qualified as estimated (UJ)
- If the sample result was > MDL and > negative BAL, qualification of the data was not required

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required

The following table summarizes the blank contamination detected in the laboratory blanks associated with the aqueous equipment blank sample. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. Maximum blank concentrations from instrument blanks were also adjusted for dilutions.

Analyte	Blank Type	Maximum Blank Concentration (µg/L)	Nominal Blank Action Level (BAL) (µg/L)	Action/Samples Affected
aluminum	mb	69.0	345	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742
antimony	inst	0.018	0.18	Elevate the MDL to the negative BAL in
	inst	-0.028	0.28	sample D05742

Analyte	Blank Type	Maximum Blank Concentration (µg/L)	Nominal Blank Action Level (BAL) (µg/L)	Action/Samples Affected
calcium	mb	28.0	140	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742
cobalt	inst	-0.032	0.32	Qualify the nondetect result as estimated (UJ) at the MDL in sample D05742
copper	mb	1.4	7.0	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742
iron	mb	100	500	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742
lead	mb	1.6	8.0	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742
magnesium	mb	100	500	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742
nickel	mb	0.080	0.40	None: result is greater than BAL
potassium	mb	39	195	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742
selenium	inst	0.10	1.0	Elevate the MDL to the negative BAL in
	inst	-0.091	0.91	sample D05742
sodium	mb	12.0	60.0	None: result is greater than BAL
thallium	inst	0.035	0.35	None: result is nondetect
vanadium	inst	0.19	1.9	None: result is nondetect
zinc	щb	7.4	37.0	Qualify the positive result as nondetect (U) at the reported concentration in sample D05742

inst - instrument blank (i.e., ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the reported concentration
- If the sample result was > positive BAL, qualification of the data was not required

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J)
- If the sample result was nondetect, the MDL was qualified as estimated (UJ)
- If the sample result was > MDL and > negative BAL, qualification of the data was not required

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required

The following table summarizes the level of blank contamination detected in the equipment blank associated with the surface soil samples.

Analyte	Blank Concentration (µg/L)	Action/Samples Affected	
aluminum	170	No action; result qualified as nondetect (U) after blank actions.	
barium	0.16	Qualify all soil samples (EB).	
calcium	20	No action; result qualified as nondetect (U) after blank actions.	
copper	0.51	No action; result qualified as nondetect (U) after blank actions.	
iron	. 32	No action; result qualified as nondetect (U) after blank actions.	
lead	0.36	No action; result qualified as nondetect (U) after blank actions.	
magnesium	9.2	No action; result qualified as nondetect (U) after blank actions.	
nickel	3.7	Qualify all soil samples (EB).	
potassium	42	No action; result qualified as nondetect (U) after blank action	

Analyte	Blank Concentration (µg/L)	Action/Samples Affected
sodium	62	Qualify all soil samples except D05710, D05712, D05713, D05715, and D05739 (EB).
zinc	6.0	No action; result qualified as nondetect (U) after blank actions.

Inductively Coupled Plasma Interference Check Sample

Positive results for antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc were reported in the ICSA solution analyses at concentrations greater than the MDLs. Results for selenium were also reported in the ICSA solution at a concentration greater than the negative MDL.

The positive results for antimony, arsenic, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc in all soil samples; and for cadmium in samples D05710, D05718, D05719, D05720, and D05721 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. Positive and blank-qualified results for copper, lead, nickel, and zinc in sample D05742 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias.

The nondetect result for selenium in samples D05742 was qualified as estimated (UJ) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias.

Matrix Spike (MS)

Sample D05709 was analyzed as the matrix spike with this data set. The analytes that did not meet recovery (%R) acceptance criteria of 75% - 125% and the actions taken are summarized in the table below:

Analyte	Spiked Sample Result (mg/Kg)	Sample Result (mg/Kg)	Spike Added (mg/Kg)	MS %R	Affected Samples/Action
antimony	0.49	0.44	0.95	5	Qualify as estimated (J) the positive results in all soil samples.
sodium	240	18	338	67	Qualify as estimated (J and UJ, respectively) the positive and blank-qualified results in all soil samples.

Analyte	Spiked Sample Result (mg/Kg)	Sample Result (mg/Kg)	Spike Added (mg/Kg)	MS %R	Affected Samples/Action
vanadium	18	13	3.3	143	Qualify as estimated (J) the positive results in all soil samples.

Laboratory Duplicates

Sample D05709 was analyzed as a laboratory duplicate in association with this data set. The analytes that did not meet the relative percent difference (RPD) criterion of <35% for analytes greater than 5x reporting limit or the absolute difference criterion of >2x reporting limit for those less than <5x reporting limit, and the actions taken are summarized in the following table:

Analyte	Sample Result (mg/Kg)	Duplicate Result (mg/Kg)	%RPD	Actions
cadmium	0.30	0.47	45	Qualify as estimated (J) the positive cadmium results in all samples.
calcium	330	610	60	Qualify as estimated (J) the positive calcium results in all samples.
cobalt	0.31	0.45	37	Qualify as estimated (J) the positive cobalt results in all samples.

Inductively Coupled Plasma Serial Dilution

A serial dilution analysis was performed on sample D05709. The percent difference (%D) for beryllium (24%), cadmium (27%), calcium (33%), cobalt (23%), copper (20%), sodium (61%), thallium (21%), and zinc (67%) exceeded the validation control limit of 15% for results greater than 50x the MDL. The positive and blank-qualified results for beryllium, cadmium, calcium, cobalt, copper, sodium, thallium, and zinc were qualified as estimated (J and UJ, respectively) in all soil samples due to these serial dilution exceedances.

Sample Quantitation Results

The concentration of potassium in sample D05715 exceeded the linear range of the ICP-MS and was not re-analyzed at a dilution. The result for potassium in sample D05715 was qualified as estimated (J).

The positive and blank-qualified results for sodium in all soil samples, and for cobalt in samples D05709, D05712, D05713, D05715, and D05739 were qualified by the laboratory as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL.

These results are usable for project objectives as estimated concentrations and quantitation limits.

The positive and blank-qualified results for barium, calcium, copper, iron, lead, magnesium, nickel, potassium, sodium and zinc in the equipment blank sample D05742 were qualified by the laboratory as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits.

Performance Evaluation Sample/Accuracy Check

Performance Evaluation Sample

The metals and mercury PE sample D05744 (EPA ampule number MS01949) was evaluated with this SDG. Fifteen analytes were scored "Within Limits" and eight analytes were scored "Not Evaluated." No validation action was necessary on the basis of these results.

Laboratory Control Sample

The recovery for silver (122%) exceeded the 80% - 120% acceptance criteria for the soil LCS. The positive results for silver in all soil samples are qualified as estimated (J). These results are usable for project objectives as estimated concentrations with a possible high bias.

The recoveries for all analytes in the aqueous LCS met the 80% - 120% acceptance criteria. No validation action was required.

Please contact Ms. Constance Lapite at (781) 224-6628 or at <u>constance.lapite@m-e.com</u> if you have any questions regarding this Tier II validation.

Very truly yours

Richard Purdy Data Validator

Elizabeth Denly Senior Reviewer

RAC Lead Chemist

cc: Leslie McVickar, EPA Remedial Project Manager (Data Validation Memorandum, Data Summary Tables)

Elizabeth Denly, TRC Project Chemist (entire package)

Denise Laferte, M&E Oversight Chemist (Data Validation Memorandum, Data Summary Tables)

Richard Purdy, M&E Data Validation Chemist (entire package)

Callahan Mine Project File, Work Assignment No. 161-RICO-017H

Attachments: IRDA

Table I: Recommendations Summary Table

Table II: Overall Evaluation of Data

Data Summary Tables

Data Validation Worksheets

PE Score Report(s)

Copy of non-CLP Analytical Methods (M&E DAS Specification D-044.2)

Copies of Telephone Logs/Communications Forms

Supporting Data for Reduced Payment Recommendations (not applicable)

Copies of Field Sampling Notes (previously submitted)

Copies of EPA-approved Amendments to QAPiP or SAP (not applicable)

CSF Completeness Evidence Audit (DC-2 Form)

DOO Summary Form

INORGANIC REGIONAL DATA ASSESSMENT

CASE :	NO. 0248W	_ SITE_d	CLAHAUL	Mioroa		
LABOR	ATORY woods HOLE GROUP	NO. OF	NO. OF SAMPLES/			
		MATRIX_	1155,10	=8, 1 P€		
SDG#	POF70T	_ REVIEWE	R (IF NOT	ESD) Metca	lf & Eddy_	
SOW#	D-044.Z	REVIEWE	R'S NAME I	Richard Pur	dy	
DPO:	ACTION FYI XX	_ COMPLET:	ION DATE	3/11/05		
	DATA ASSI	ESSMENT SU	MMARY			
1.	DATA COMPLETENESS	ICP-AES	ICP-MS	Hg 	CYANIDE	
2.	HOLDING TIMES		O	_O		
3.	CALIBRATIONS		_ O ^z	_0_		
4.	BLANKS		_ <u>_</u>	O		
5.	ICS		02			
6.	MATRIX SPIKE		_02			
7.	LABORATORY DUPLICATES		O ^z	O		
8.	FIELD DUPLICATES		0	0		
9.	LABORATORY CONTROL SAMPLE		_ O ^z _	_0_		
10.	LABORATORY FORTIFED BLANK		_0_	_0_		
11.	SERIAL DILUTION		_02			
12.	DETECTION LIMITS		_0_	O		
13.	SAMPLE QUANTITATION	<u> </u>	02	_0	<u> </u>	
14.	OTHER QC		0	0		
15.	OVERALL ASSESSMENT	<u> </u>	_0_	_ O	<u> </u>	
M = Z =	= Data had no problems/or qual = Data qualified due to a majo = Data unacceptable. = Problems, but do not affect	or problem		problems.		
ACTIO	N ITEMS: 0' - WOORRECT RESUL	r; 02-M	INOR EX	ceevance	} _	
	03- MINOR CONTAMINAT	700				
AREAS	OF CONCERN:					
NOTAB	LE PERFORMANCE:					

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site Case 0249M, SDG D05709

Surface	Soil	Samples

Analyte	Action	Analyte	Action
aluminum	A	magnesium	11
antimony	J ² J ⁴	manganese	J ²
arsenic	J ²	тегсигу	Α .
barium	A ²	nickel	A ² J ²
beryllium	1 _e	potassium	J^{γ}
cadmium	J ² J ⁵ J ⁶	selenium	J^2
calcium	J ₂ J ₆	silver	J¹ J² J8
chromium	J ²	sodium	A ¹ A ² J ⁴ J ⁶ J ⁹
cobalt	J1 J2 J5 J6 J9	thallium	J¹ J² J6
copper	J ² J ⁶	vanadium	J ² J ³
iron	A	zinc ·	J ² J ⁶
lead	J^2		

A -	Accept all data.
-----	------------------

- A^{l} Qualify the positive results for sodium in samples D05710, D05712, D05713, D05715, and D05739 as nondetect (U) at the reported concentration due to method blank contamination.
- A^2 Qualify "EB" the positive and nondetect results for barium and nickel in all samples, and sodium in all soil samples except D05709, D05712, D05713, D05715, and D05739 due to equipment blank contamination.
- JI Qualify as estimated (J) the positive results for cobalt in samples D05710, D05712, D05713, and D05715; for magnesium in samples D05712, D05713, D05715, and D05718; for silver in sample D05709; and for thallium in samples D05710, D05712, D05713, D05715, D05718, D05719, and D05720 due to continuing calibration standard recovery exceedances.
- J^2 Qualify as estimated (J) the positive results for antimony, arsenic, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc in all soil samples; and for cadmium in samples D05710, D05718, D05719, D05720, and D05721 due to positive interferences seen in the ICSA solution analyses.
- J^3 Qualify the positive results for vanadium in all soil samples as estimated (J) due to high matrix spike recovery.
- J[‡] Qualify the positive results for antimony and the positive and blank-qualified results for sodium in all soil samples as estimated (J and UJ, respectively) due to low matrix spike recovery.

ե Qualify the positive results for cadmium, calcium, and cobalt in all soil samples as estimated (J) due to laboratory duplicate imprecision. **J**6 Qualify as estimated (J and UJ, respectively) the positive results for beryllium, cadmium, calcium, cobalt, copper, thallium, and zinc and the positive and blank-qualified results for sodium in all soil samples due to serial dilution imprecision. J^7 Qualify as estimated (J) the positive result for potassium in sample D05715 due to linear range exceedance. J_8 Qualify as estimated (I) the positive results for silver in all soil samples due to LCS recovery exceedance. J^9 Qualify as estimated (J and UJ, respectively) the positive and blank-qualified results for sodium in all soil samples, and for cobalt in samples D05709, D05712, D05713, D05715, and D05739 due to concentrations detected less than the quantitation limit but greater than the MDL.

Table Ib

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site

Case 0249M, SDG D05709

Aqueous QC Sample

Analyte	Action	Analyte	Action
aluminum	Α¹	magnesium	A ¹ J ⁴
antimony	$A^2 J^2$	manganese	A
arsenic	A	mercury	A
barium	J ⁴	nickel	J ² J ⁴
beryllium	A	potassium	A¹ J⁴
cadmium	A	selenium	$A^2 J^3$
calcium	A¹ J⁴	silver	A
chromium	A	sodium	J ⁴
cobalt	J_1	thallium	A
copper	A¹ J² J⁴	vanadium	A
iron	A ¹ J ⁴	zinc	$A^1 J^2 J^4$
lead	$A^1 J^2 J^4$		

A -	Accept	al.	l data.
-----	--------	-----	---------

- A¹ Qualify the positive results for aluminum, calcium, copper, iron, lead, magnesium, potassium, and zinc in sample D05742 as nondetect (U) at the reported concentration due to method blank contamination.
- A² Elevate the quantitation limits for antimony and selenium in sample D05742 to the negative blank action level due to instrument drift and laboratory blank contamination.
- J¹ Qualify as estimated (UJ) the nondetect result for cobalt in sample D05742 due to negative instrument drift
- Qualify as estimated (J and UJ, respectively) the positive and blank-qualified results for copper, lead, nickel, and zinc in sample D05742 due to positive interferences seen in the ICSA solution analyses.
- J³ Qualify as estimated (UJ) the nondetect result for selenium in sample D05742 due to negative interferences seen in the ICSA solution analyses.
- J⁴ Qualify as estimated (J and UJ, respectively) the positive and blank-qualified results for barium, calcium, copper, iron, lead, magnesium, nickel, potassium, sodium and zinc in sample D05742 because they were less than the quantitation limit but greater than the MDL.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site

Case 0248M, SDG D05709

	Low Concentration Metals and Mercury						
DQO	and/or Variability		Sampling Variability	Potential Usability			
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues		
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹	Refer to qualifications in Table I: A ²	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for barium and nickel in all soil samples and sodium in all soil samples except D05709, D05712, D05713, D05715, and D05739 were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The results are usable for project objectives. The positive results for cobalt in samples D05710, D05712, D05713, and D05715; for thallium in samples D05710, D05712, D05713, D05715, D05718, D05719, and D05720; and for magnesium in samples D05712, D05713, D05715, and D05718 were qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible high bias. The positive result for silver in sample D05709 was qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible low bias. The positive results for vanadium in all soil samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high.		

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05709

r 	Surface Soft Samples						
			Low Co	ncentration Me	tals and Mercury		
DQO Sampling* Measurement Error and/or Analytical		Sampling Variability	Potential Usability Issues				
	Method Appropriate Yes or No	Analytical Епог	Sampling Error*		ISSUES		
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹	Refer to qualifications in Table I: A ²	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for sodium in samples D05710, D05712, D05713, D05715, and D05739 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. Note that these results were qualified as estimated (J) because they were less than the quantitation limit but greater than the method detection limit (MDL). Therefore, the overall qualification for these results are estimated nondetect (UJ). The positive results for antimony, arsenic, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc in all soil samples; and for cadmium in samples D05710, D05718, D05719, D05720, and D05721 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias. The positive results for antimony and the positive and blank-qualified results for sodium in all soil samples were qualified as estimated (J and UJ, respectively) due to low matrix spike recoveries. The results are usable for project objectives as estimated values and quantitation limits that may be biased low.		

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05709

	Low Concentration Metals and Mercury								
DQO	Sampling* and/or	Measurement Error		Sampling Variability	Potential Usability Issues				
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		issues				
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: Al J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹	Refer to qualifications in Table I: A ²	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for cadmium, calcium, and cobalt in all soil samples were qualified as estimated (I) due to laboratory duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive results for beryllium, cadmium, calcium, cobalt, copper, thallium, and zinc and the positive and blank-qualified results for sodium in all soil samples were qualified as estimated (I and UI, respectively) due to serial dilution imprecision. The results are usable for project objectives as estimated values and quantitation limits with an indeterminate direction of bias. The positive result for potassium in sample D05715 was qualified as estimated (I) due to linear range exceedance. This result is usable for project objectives as an estimated concentration. The positive and blank-qualified results for sodium in all soil samples, and for cobalt in samples D05709, D05712, D05713, D05715, and D05739 were qualified by the laboratory as estimated (I and UI, respectively) as being less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits.				

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05709

Low Concentration Metals and Mercury								
DQO	DQO Sampling* Measurement Error Sampling Variability Analytical Method Analytical Sampling Appropriate Error Error* Yes or No	Measurement Error		Variability	Potential Usability Issues			
		issues						
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: At J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹	Refer to qualifications in Table I: A ²	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for silver in all soil samples were qualified as estimated (J) due to LCS recovery exceedance. These results are usable for project objectives as estimated concentrations with a possible high bias.			

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05709

Aqueous QC Sample

	Low Concentration Metals and Mercury							
DQO	Sampling* and/or	Measurement Eπor		Sampling Variability **	Potential Usability			
Analytical Method Appropriate Yes or No		Analytical Error	Sampling Error*		Issues			
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ² J ¹ J ² J ³ J ⁴	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for aluminum, calcium, copper, iron, lead, magnesium, potassium, and zinc in sample D05742 were qualified as nondetect (U) at the reported concentration due to method blank contamination. These results are usable for project objectives as nondetect results. Note that the results for calcium, copper, iron, lead, magnesium, potassium, and zinc were also qualified as estimated (J) because they were less than the quantitation limit but greater than the MDL. Therefore, the overall qualification for these results are estimated nondetect (UJ). The nondetect result for cobalt in sample D05742 was qualified as estimated (UJ) at the MDL due to negative instrument drift. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. The quantitation limits for antimony and selenium in sample D05742 were elevated to the negative blank action level due to negative instrument drift and laboratory blank contamination. The results are usable for project objectives.			

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury

Callahan Mining Superfund Site Case 0248M, SDG D05709

Aqueous QC Sample

Low Concentration Metals and Mercury								
DQO	Sampling* and/or	Measurement Error		Sampling Variability	Potential Usability			
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*	**	Issues			
To determine nature and extent of contamination and to support a human health risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ² J ¹ J ² J ³ J ⁴	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive and blank-qualified results for copper, lead, nickel, and zinc in sample D05742 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias. The nondetect result for selenium in sample D05742 was qualified as estimated (UJ) due to negative interferences seen in the ICSA solution analyses. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. The positive and blank-qualified results for barium, calcium, copper, iron, lead, magnesium, nickel, potassium, sodium and zinc in the equipment blank sample D05742 were qualified by the laboratory as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits.			

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Soll (mg/Kg)

Tra	ffic Report Sample No.	D05709	D05710	D05712	D05713	D05715	D05718
	M&E Sample ID	SS-401	SS-402	SS-404	SS-405	SS-407	SS-410
	Lab Sample ID	0412035-01	0412035-02	0412035-03	0412035-04	0412035-05	0412035-06
	Date Sampled	12/02/04	12/02/04	12/02/04	12/02/04	12/02/04	12/02/04
	% Solids	86.5	80.5	87.1	86.6	89.0	78.4
	Comments	FD of D05739					
Analyte	RL						
Aluminum	4.0	38000	25000	37000	41000	56000	17000
Antimony	0.15	0.44 J	0.45 J	0.47 J	1.7 J	0.11 J	0.77 J
Arsenic	0.20	120 J	65 J	87 J	130 J	22 J	26 J
Barium .	2.0	4.2 EB	3.6 EB	4.2 EB	8.8 EB	16 EB	25 EB
Beryllium	0.040	0.17 J	0.35 J	0.19 J	0.18 J	0.24 J	0.34 J
Cadmium	0.010	0.30 J	25 J	0.15 J	0.79 J	0.55 J	27 J
Calcium	8.0	330 J	62000 J	330 J	280 J	420 J	11000 J
Chromium	1.0	5.4 J	20 J	13 J	6.2 J	13 J	33 J
Cobalt	2.0	0.31 J	4.7 J	0.51 J	0.27 J	0.77 J	14 J
Соррег	1.0	510 J	1200 J	410 J	3600 J	2400 J	2300 J
fron	4.0	51000	34000	54000	41000	47000	24000
Lead	0.40	480 J	620 J	350 J	700 J	140 J	510 J
Magnesium	10	76000	50000 .	74000 J	78000 J	110000 J	22000 J
Manganese	1.0	1100 J	1600 J	1000 J	1100 J	1400 J	1300 J
Mercury	0.010	0.50	0.42	0.38	1.5	0.41	0.33
Nickel	2.0	2.0 JEB	17 JEB	3.7 JEB	1.8 JEB	5.3 JEB	30 JEB
Potassium	50	1800	1500	2200	2800	4100 J	970
Selenium	1.0	12 J	5.5 J	9.1 J	5.9 J	5.1 J	2.0 J
Silver	0.020	3.3 J	2.4 J	2.4 J	2.9 J	1.2 J	2.0 J
Sodium	50	18 JEB	14 UJ	20 UJ	32 UJ	32 UJ	60 JEB
Thallium	0.40	2.8 J	1.5 J	2.0 J	4.4 J	1.3 J	0.49 J
Vanadium	1.0	13 J	16 J	17 J	10 J	17 J	23 Ј
Zinc	2.0	150 J	5900 J	120 J	420 J	330 J	5800 J

SITE: Callaban Mining Superfund Site CASE NO.: 0248M

SDG NO.: D05709

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Soil (mg/Kg)

	Traffic Report Sample No. M&E Sample ID Lab Sample ID Date Sampled % Solids	D05719 \$\$-411 0412035-07 12/02/04 81.2	D05720 SS-412 0412035-08 12/02/04 70.1	D05721 SS-413 0412035-09 12/02/04 80.3	D05724 SS-416 0412035-10 12/02/04 88	D05739 SSE-401 0412035-11 12/02/04 85.8
Analy	Comments					FD of D05709
		16000	29000	22000	21000	46000
Aluminum Antimony	4.0 0.15	0.85 J	0.74 J	0.96 J	0.61 J	0.50 J
Arsenic	0.13	0.85 J 31 J	0.74 J 220 J	0.96 J 34 J	0.61 J 57 J	0.30 J 120 J
Barium	2.0	30 EB	26 EB	26 EB	13 EB	4.7 EB
Bervilium	0.040	0.46 J	0.49 J	0.53 J	0.17 J	0.19 J
Cadmium	0.010	41 J	170 J	29 J	2.7 J	0.19 J 0.27 J
Calcium	8.0	7800 J	2800 J	3600 J	440 J	550 J
Chromium	1.0	30 J	27 J	27 J	27 J	7.7 J
Cobalt	2.0	13 J	14 J	11 1	1.7 J	0.35 J
Соррег	1.0	5700 J	8700 J	3500 J	1200 J	510 J
Iron	4.0	34000	84000	29000	36000	52000
Lead	0.40	2300 J	1800 J	700 J	1000 J	470 J
Magnesium	10	18000	49000	26000	36000	92000
Manganese	1.0	740 J	1800 J	870 J	530 J	1200 J
Mercury	0.010	1.1	1.2	0.58	1.7	0.46
Nickel	2.0	30 JEB	23 JEB	28 JEB	13 JEB	2.4 JEB
Potassium	50	1400	2300	1800	1300	2000
Selenium	1.0	4.3 J	19 J	3.2 J	7.4 J	13 J
Silver	0.020	3.5 J	5.5 J	4.8 J	3.9 J	2.9 Ј
Sodium	50	56 JEB	63 JEB	93 JEB	51 JEB	30 UJ
Thallium	0.40	0.59 J	6.7 J	0.64 J	0.77 J	2.8 J
Vanadium	1.0	24 J	21 J	22 J	19 J	15 J
Zinc	2.0	16000 J	63000 J	10000 J	1200 J	160 J
l					İ	

SITE: Callahan Mining Superfund Site

CASE NO.: 0248M SDG NO.: D05709

			705742
ł		Traffic Report Sample No.	D05742
		M&E Sample ID	RB-005
1		Lab Sample ID	0412035-12
		Date Sampled	
		Dilution Factor	2
		Mass/Volume of Sample	25 mL
		Comments	Equipment Blank
"			
L	Analyte	RL	
Aluminum		40.0	170 U
Antimony		1.5	0.28 Ü
Arsenic		2.0	0.13 ป
Barium		20.0	Q.16 J
Beryllium		0.40	0.20 U
Cadmium		0.10	0.098 U
Calcium		80.0	20 UJ
Chromium		10.0	U 81.0
Cobalt		20.0	0.038 UJ
Copper		10.0	0.51 UJ
Iron		40.0	32 UJ
Lead		4.0	0.36 UJ
Magnesium		100	9.2 UJ
Manganese		10.0	4.1 U
Мегсигу		0.10	U 800.0
Nickel		20.0	3.7 J
Potassium		500	42 UJ
Selenium		10.0	0.91 UJ
Silver		0.20	0.12 U
Sodium		500	62 J
Thallium		4.0	0.026 U
Vanadium		10.0	0.15 U
Zinc		20.0	6.0 UJ

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Aqueous QC Sample (ug/L)

DATA SUMMARY TABLE DEFINITIONS (Inorganics)

- CRQL Contract Required Quantitation Limit
 - EB As a qualifier for soil/sediment samples: Analyte is also detected in the equipment blank
 - FD Field Duplicate
 - g gram
 - J The concentration is an estimated quantity
- mg/Kg milligrams per Kilogram
 - R The data are rejected as unusable
 - RL Reporting Limit
 - U Analyte was analyzed for but not detected at the specified reporting limit
- ug/L micrograms per Liter
- UJ The sample quantitation limit is an estimated quantity
- NA Not Applicable

February 24, 2005

Christine Clark Regional Sample Control Center U.S. EPA Region I Office of Environmental Measurement and Evaluation 11 Technology Drive North Chelmsford, MA 01863-2431

Subject:

Work Assignment No. 161-RICO-017H

Case 33595, SDG A18D9

Envirosystems, Inc., Columbia, Maryland

Callahan Mining Superfund Site, Brooksville, Maine

Tier II Organic Data Validation

Volatiles:

11/Surface Soils/

A18D9, A18S7, A18S8, A18S9, A18T0,

A18T1, A19C8, A19C9, A19D0, A19D1,

A19D2

(Surface Soil Field Duplicate Pair/A18S7 and A18D9)

1/Trip Blank/

A19D6

1/PE Sample/

A19D4

Semivolatiles:

11/Surface Soils/

A18D9, A18S7, A18S8, A18S9, A18T0,

A18T1, A19C8, A19C9, A19D0, A19D1,

A19D2

(Surface Soil Field Duplicate Pair/A18S7 and A18D9)

1/Equipment Blank/ A19E0 1/PE Sample/ A19D5

Dear Ms. Clark:

A Tier II data validation, in accordance with the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, was performed on the organic analytical data for 11 surface soil samples (including one field duplicate pair), one equipment blank, one trip blank, and two performance evaluation (PE) samples collected from the Callahan Mining Superfund Site in Brooksville, Maine by TRC Environmental Corporation on December 2, 2004. The samples were analyzed for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) under the Contract Laboratory Program (CLP) Routine Analytical Services (RAS) program using the USEPA Contract Laboratory Program Statement of Work for Organic Analysis, Multi-Media, Multi-Concentration, OLM04.3. In accordance with the EPA-approved project plans for the site, Tier II validation was conducted on all samples in this sample delivery group (SDG).

The Tier II data validation was based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- * Preservation and Technical Holding Times
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations
 - Blanks
- Surrogate Recoveries
- Internal Standards
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Field Duplicate Results
- NA Sensitivity Check
 - Accuracy Check/PE Samples
- NA Target Compound Identification
- Compound Quantitation and Reported Quantitation Limits
 - Tentatively Identified Compounds (TICs)
- NA Semivolatile Cleanup
- NA System Performance
- * All criteria were met.

Note: Worksheets' are not included for parameters that have met criteria or parameters that are not applicable (NA) to the method or to Tier II validation.

The following information was used to generate the Data Validation Memorandum attachments:

Tables Ia and Ib: Recommendation Summary Table - summarizes validation recommendations

Tables IIa and IIb: Overall Evaluation of Data - summarizes site DQOs and potential usability

issues

Table III: Tentatively Identified Compound Summary - summarizes the TIC results for the

VOC and SVOC analyses

Data Summary Tables - summarizes accepted, qualified and rejected data

Overall Evaluation of Data and Potential Usability Issues

Following is a summary of the site DQOs:

• To evaluate the nature and extent of contamination in surface soils and to obtain data for use in a human health risk assessment.

All results are usable for project objectives. Qualifications applied to the data as a result of sampling error are summarized below.

The positive results for acetone were qualified as nondetects (U) in all soil samples except sample
A18T0 due to trip blank contamination. These results are still usable for project objectives. This
qualification has a minor impact on data usability.

Qualifications applied to the data as a result of analytical error are summarized below.

- The positive results for caprolactam were qualified as nondetects (U) in samples A18S9, A18T0, A18T1, A19C8, A19C9, A19D0, and A19D1 due to laboratory method blank contamination. These results are still usable for project objectives. This qualification has a minor impact on data usability.
- The nondetect result for bromomethane in sample A18S7 was qualified as estimated (UJ) due to
 a calibration nonconformance. This result is usable for project objectives as a nondetect with an
 estimated quantitation limit. This qualification has a minor impact on data usability.
- The positive and nondetect results for bis(2-ethylhexyl)phthalate and benzo(k)fluoranthene in samples A18D9, A18S7, A18S8, A18S9, A18T0, A18T1, A19C8, and A19D2 and the nondetect results for 3-nitroaniline and 3,3'-dichlorobenzidine in all samples in this SDG were qualified as estimated (J/UJ) due to calibration nonconformances. These results are usable for project objectives as estimated values and nondetects with estimated quantitation limits. This qualification has a minor impact on data usability.

The attached Tables Ia and Ib summarize the Tier II validation recommendations which were based on the following information:

Data Completeness (CSF Audit - Tier I)

Minor issues were noted with section titles and page numbers. The laboratory revised the DC-2 form and

resubmitted it on January 27, 2005. In addition, the laboratory was requested to submit the internal custody log showing the transfer of samples to the freezer within 48 hours of collection. Due to an error within the laboratory, this transfer was not recorded on the internal custody log and therefore could not be provided.

Initial and Continuing Calibrations

VOCs

All criteria were met in the initial calibration. The percent difference (%D) of bromomethane (25.4) was outside of the acceptance criteria in the continuing calibration associated with sample A18S7. The nondetect result for bromomethane in sample A18S7 was qualified as estimated (UJ).

SVOCs

Compounds that did not meet criteria in the initial and continuing calibrations are summarized in the following table.

ASSENCE FOR			THE STATE OF THE S
- (4 <u>16</u>) (7.3)		11. (Q.12/v/A)	TO PERMIT
3-Nitroaniline	X (67.3)	XX (67.6)	XX (49.3)
3,3'-Dichlorobenzidine	X (33.4)		XX (91.9)
Bis(2-ethylhexyl)phthalate			XX (41.1)
Benzo(k)fluoranthene			XX (31.7)
systeman sangular	elgajānis in As Mac	SELO ANGLE	A DE CARLESTO DESCRIPCIÓN DE COMPANION DE CO

- X = Initial calibration (IC) percent relative standard deviation (%RSD) > 30; estimate (J/UJ) all positive and nondetect results
- XX = Continuing calibration (CC) percent difference (%D) > 25; estimate (J/UJ) all positive and nondetect results

The nondetect results for 3-nitroaniline and 3,3'-dichlorobenzidine were qualified as estimated (UJ) in all samples in this SDG. The positive and nondetect results for bis(2-ethylhexyl)phthalate and benzo(k)fluoranthene were qualified as estimated (J/UJ) in samples A18D9, A18S7, A18S8, A18S9, A18T0, A18T1, A19C8, and A19D2.

Ms. Clark Page 5

Blanks

VOCs

Target compounds were detected in the method blanks and trip blank (A19D6) associated with the samples in this SDG. The following table summarizes the maximum concentrations detected, the action levels associated with these contaminants, and the affected samples.

		Carrino Carrino Decesio 2008		CESTAL MARCON	
Acetone	Trip	8	80	10	All samples except A18T0

CRQL - Contract Required Quantitation Limit

Blank Actions (due to blank contaminants):

- If sample concentration was < the CRQL and ≤ the Action Level, qualify the result as a nondetect (U) at the CRQL.
- If sample concentration was > the CRQL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the CRQL and > the Action Level, qualification of the data was not required.

The positive results for acetone were qualified as nondetects (U) at the CRQL in all soil samples except sample A18T0. Acetone was not detected in sample A18T0; qualification of the data for this sample was therefore not required. It should be noted that due to the nature of surface soil sampling for VOCs, an equipment blank was not required.

SVOCs

Target compounds were not detected in the associated equipment blank A18E0. Target compounds were detected in the method blanks associated with the samples in this SDG. The following table summarizes the maximum concentrations detected, the action levels associated with these contaminants, and the affected samples.

Ms. Clark Page 6

Lange Life	Stores (p) Cansumanta	Abramoto Anstrodolos Baston	estion Percei	TRVI	Air rismus
Caprolactam	Method	89	445	330	A18S9, A18T0, A18T1, A19C8, A19C9, A19D0, A19D1
Diethylphthalate	Method	150	1500	330	None

CRQL - Contract Required Quantitation Limit

Blank Actions (due to blank contaminants):

- If sample concentration was < the CRQL and ≤ the Action Level, qualify the result as a nondetect (U) at the CRQL.
- If sample concentration was > the CRQL and ≤ the Action Level, qualify the result as not detected (U) at the reported concentration.
- If the sample concentration was > the CRQL and > the Action Level, qualification of the data was not required.

The positive results for caprolactam were qualified as nondetects (U) at the CRQL in samples A18S9, A18T0, A18T1, A19C8, A19C9, A19D0, and A19D1. Qualification of the caprolactam results in the remaining samples and the diethylphthalate results in all samples was not required as these compounds were not detected in these surface soil samples.

It should be noted that the equipment blank was extracted using only 250 mL instead of the normal one-liter volume due to insufficient volume collected. Quantitation limits for the equipment blank were therefore 4x higher than normal.

MS/MSD Results

Sample A18T1 was designated for MS/MSD analyses with this sample set.

VOCs

All criteria were met.

SVOCs

The following table summarizes the nonconformances observed in the MS/MSD analyses performed on sample A18T1.

		10/4/1	Artyjenos Luios Desemble Leds	
pentachlorophenol	114	118	17-109	No validation action was required since pentachlorophenol was not detected in sample A18T1.

Accuracy Check/PE Samples

VOCs

One volatile soil PE sample, A19D4 (ERA Catalog #721; Lot #D038721), was evaluated with this SDG. In the analysis of PE sample A19D4, 22 out of 27 detected analytes were evaluated as "Within Limits." Five detected compounds (trichloroethene, bromodichloromethane, dibromochloromethane, bromoform, and 1,1,2,2-tetrachloroethane) were evaluated as above the performance acceptance limits. Since these compounds were not detected in any surface soil samples in this SDG, qualification of the data was not required on the basis of this evaluation. One compound, 1,2,3-trichloropropane, was evaluated as a missed TIC; no validation action was required on the basis of this evaluation.

SVOCs

One semivolatile soil PE sample, A19D5 (ICCSV542), was evaluated with this SDG. In the analysis of PE sample A19D5, 13 out of 17 detected analytes were evaluated as "Within Limits." Three detected compounds (naphthalene, di-n-octylphthalate, and benzo[k]fluoranthene) were evaluated as "Warning High," four detected TICs were evaluated as "Non-Spiked TIC," and one detected compound (caprolactam) was evaluated as "Less Than CRQL." No validation action was required on the basis of these evaluations.

TICs

<u>VOCs</u>

Sample A18T0 contained a TIC which was most likely due to column bleed. This TIC was therefore not reported.

Ms. Clark Page 8

SVOCs

During validation, select TICs were not reported in several samples due to the presence of these TICs in the samples at <10x the concentration in the method blanks.

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments regarding this information.

Very truly yours,

TRC Environmental Corporation

Hyabeth Denly

Elizabeth Denly

Data Validator

Lorie MacKinnon

Low Macking

Senior Reviewer

Tier II Attachments:

- 1. Tables Ia and Ib: Recommendation Summary Tables
- 2. Tables IIa and IIb: Overall Evaluation of Data
- 3. Table III: Tentatively Identified Compound Summary
- 4. ORDA Form
- 5. Data Summary Tables
- 6. Data Validation Worksheets
- 7. Copy of non-CLP Analytical Method (NA)
- 8. PE Score Reports
- 9. Telephone Logs/Communication Forms
- 10. Supporting Data for Reduced Payment Recommendations (NA)
- 11. Field Sampling Notes
- 12. EPA-approved Amendments to QAPjP or SAP (NA)
- 13. CSF Completeness Evidence Audit (DC-2 Form)
- 14. DQO Summary Form

Ms. Clark Page 9

cc: Leslie McVickar, EPA Remedial Project Manager (DV memo and data summary tables)

Project File PSAdmin

Attachment 1 Table I: Recommendation Summary Table

Table Ia Recommendation Summary Volatile Organic Compounds in Surface Soil Samples Callahan Mining Superfund Site Case 33595, SDG A18D9

Sample Numbers	Matrix	Qualifiers
A18D9	SO	A ¹ ′
A18S7	SO	A ¹ , J ¹
A18S8	so	A ¹
A18S9	so	A1*
A18T0	SO	Α
A18T1	so	A ¹
A19C8	SO	A ¹
A19C9	so	A ¹
A19D0	so	A ^t
A19D1	so	A ¹⁻
A19D2	so	A ¹
A19D6	TB	A

SO - Soil TB - Trip Blank

A - Accept the data.

A¹ - Accept the data, but qualify the positive result for acetone as a nondetect (U) due to trip blank contamination.

 J^1 - Estimate (UJ) the nondetect result for bromomethane due to a calibration nonconformance. The direction of bias cannot be determined from this nonconformance.

Table Ib

Recommendation Summary

Semivolatile Organic Compounds in Surface Soil Samples

Callahan Mining Superfund Site

Case 33595, SDG A18D9

Sample Numbers	Matrix	Qualifiers
A18D9	so	J ¹ , J ²
A18S7	SO	J ¹ , J ²
A18S8	so	J¹, J²
A18S9	so	A ¹ , J ¹ , J ²
A18T0	so	A ¹ , J ¹ , J ²
A18T1	so	A ¹ , J ¹ , J ²
A19C8	so	A ¹ , J ¹ , J ²
A19C9	SO	A ¹ , J ¹
A19D0	so	A ¹ , J ¹
A19D1	so	A1, J1
A19D2	so	J¹, J²
A19F0	EB	

SO - Soil

EB - Equipment Blank

- A¹ Accept the data, but qualify the positive result for caprolactam as a nondetect (U) due to method blank contamination.
- J^1 Estimate (UJ) the nondetect results for 3,3'-dichlorobenzidine and 3-nitroaniline due to calibration nonconformances. The direction of bias cannot be determined from these nonconformances.
- J² Estimate (J/UJ) the positive and nondetect results for bis(2-ethylhexyl)phthalate and benzo(k)fluoranthene due to calibration nonconformances. The direction of bias cannot be determined from these nonconformances.

Attachment 2 Table II: Overall Evaluation of Data

Table IIa Overall Evaluation of Data for VOCs in Surface Soil Samples Callahan Mining Superfund Site Case 33595, SDG A18D9

				Volatile Orga	nic Compounds
DQO	Sampling*	Measuren	nent Error	Sampling Variability	Potential Usability
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*	**	Issues
To determine the nature and extent of contamination in the surface soils	Sampling Method appropriate - yes	Refer to qualifications in Table Ia:	Refer to qualifications in Table Ia:	Not applicable for Tier II	Minor Impact on Data Usability The positive results for acetone were qualified as nondetects in all surface soil samples except sample A18TO due to trip blank contamination.
and to obtain data for use in a human health risk assessment	Analytical Method appropriate - yes	1,	A ¹		Potential uncertainty exists for the bromomethane result in sample A18S7 due to a calibration nonconformance.

^{*}The evaluation of "sampling error" cannot be completely assessed in data validation.

**Sampling variability is not assessed in data validation.

Table IIb Overall Evaluation of Data for SVOCs in Surface Soil Samples Callahan Mining Superfund Site Case 33595, SDG A18D9

		<u> </u>	S	emivolatile Or	ganic Compounds
DQO	Sampling* and/or	Measurer	nent Error	Sampling Variability	Potential Usability
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*	**	Issues
To determine the nature and extent of contamination in the surface soils and to obtain data for use in a human health risk assessment	Sampling Method appropriate - yes Analytical Method appropriate - yes	Refer to qualifications in Table Ib:	Refer to qualifications in Table Ib: None	Not applicable for Tier II	Minor Impact on Data Usability The positive results for caprolactam were qualified as nondetects in samples A18S9, A18T0, A18T1, A19C8, A19C9, A19D0, and A19D1 due to method blank contamination Potential uncertainty exists for the 3,3'-dichlorobenzidine and 3-nitroaniline results in all samples due to calibration nonconformances.
					Potential uncertainty exists for the bis(2-ethylhexyl)phthalate and benzo(k)fluoranthene results in samples A18D9, A18S7, A18S8, A18S9, A18T0, A18T1, A19C8, and A19D2 due to calibration nonconformances.

^{*}The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**}Sampling variability is not assessed in data validation.

Attachment 3 Table III: Tentatively Identified Compound Summary

Table III
Tentatively Identified Compound (TIC) Summary
for Callahan Mining Superfund Site
Case No. 33595 SDG No. A18D9

Enssidentionasomer	18000	1108		हरप्रदर्भ	enico.	's folkir	25000
n-Hexadecanoic Acid	1	1	1			-	
Bacchotricuneatin			ī				
1,1'-Biphenyl, 2,4',5-trichloro-					1		
1,1'-Biphenyl, 2,4,6-trichloro-				I			
1,1'-Biphenyl, 3,3',4,4'-tetrachloro-				1			
1,1'-Biphenyl, trichloro-				1	2		
1,1'-Biphenyl, 2,3,4',6-tetrachloro-				1	2		
1,1'-Biphenyl, 3,3',4,4'-tetrachloro-				1	3		
1,1'-Biphenyl, 2,3,3',4'-tetrachloro-	_			2			
1,1'-Biphenyl, 2,2',3,4,6-pentachloro-				1			
1,1'-Biphenyl, 2,3,4',6-tetrachloro-				1	-		
1,1'-Biphenyl, 2,4,4',6-tetrachloro-			,		1		
1,1'-Biphenyl, 2,3',4,4'-tetrachloro-			:		1		
1,1'-Biphenyl, 2,2',6,6'-tetrachloro-					1		
1,1'-Biphenyl, 2,2',4,4',5-pentachloro-					1 .		
1,1'-Biphenyl, 2,3',4,4',5-pentachloro-			,		3		
1,1'-Biphenyl, 2,3',4,5',6-pentachloro-	· · · - · · · ·				1		
2-Naphthalenol, 1-[4-nitrop)]				1			
.gammaSitosterol	L					1	
Heptadecane					-		1
· Nonadecane						/	i
Heneicosane							1
2,6,11-Trimethyldodecane			1				

The number indicated in the above tables represents the number of compounds of that classification identified in the sample.

No TICs were identified in samples A18E0 and A19D6. Only unknown TICs were identified in samples A18S8, A18S9, A18T0, and A19D1. Therefore, these samples were not included in the TIC Summary Table.

Attachment 4 ORDA Form

REGION I, EPA-NE ORGANIC REGIONAL DATA ASSESSMENT (ORDA)*

CASE #: _33595	SITE NAME: Callahan Mining Superfinds
LAB NAME: Envirosystems	# OF SAMPLES/MATRIX: 11/10/1/05, 1/10, 1/10
SDG #: A18 D 9	VALIDATION CONTRACTOR: TRC
SOW #/CONTRACT #: 68 -00-004 2-	VALIDATOR'S NAME: Elizabeth Denly
EPA-NE DV TIER LEVEL: T	DATE DP REC'D BY EPA-NE: 12/28/04
TPO/PO: **ACTION FYI	DV COMPLETION DATE: 2/28/05
ANALYTICAL DATA QU	UALITY SUMMARY
<u> </u>	
 Preservation and Contractual Holding Times GC/MS / GC/ECD Instrument Performance Check Initial Calibration Continuing Calibration Blanks Surrogate Compounds Internal Standards Matrix Spike/Matrix Spike Duplicate Sensitivity Check PE Samples-Accuracy Check Target Compound Identification Compound Quantitation and Reported QLs Tentatively Identified Compounds Semivolatile Cleanup/Pesticide/PCB Cleanup Data Completeness Overall Evaluation of Data Data were qualified due to major contractual problems Data were rejected as unusable due major contractual p ACTION ITEMS: (z items)	O O O O O O O O O O O O O O O O O O O
AREAS OF CONCERN: (m items)	
COMMENTS:	
*This form assesses the analytical data quality in terms of corerrors and/or non-contractual analytical issues that affect data	ntractual compliance only. It does not assess sampling a quality.
**Check "ACTION" only if contractual defects resulted in r	educed payment/data rejection recommendations.
Validator: Oliyabeth Jenly	Date: 2/29/65
INSTRUCTIONS ON I	REVERSE SIDE

12/96

Attachment 5 Data Summary Tables

Site: Callahan Mining Superfund Site - Brookeville, ME Case Number 33595, SDG A1809

			A STATE	10 A A A A A A A A A A A A A A A A A A A	N,		1277 1277 1277 1288 1288 1288 1288 1288		7. (1. (1. (1. (1. (1. (1. (1. (1. (1. (1	(1) H (1) H (1) H (2) H (2) H	NOTE OF THE PARTY		
				Land Inc.			i I		- 176 176	Erroedoria. 202			Marca Marca
Dichlorodilluoromethane	10	12 U 1	12 U 1	12 U 1	11 U 1	11 U 1	11 U 1	12 U . 1	12 U 1	14 U 1	13 U 1	11 U 1	10 U
Chloromethane	10	12 0 1	120	12 0	11 0 1	110 1	1110 1	12 Ü i	12 0 1	14 Ŭ 1	13 0 1	1110 1	100
Vinyl chloride	10	12 U 1	12 U 1	12 U 1	11,0 1	11 0 1	11 0 1	12 U 1	12 U 1	j 14 U 1	13 U 1	11 U 1	10 U
Bromomethane	10	12 U 1	12 UJ 1	12 U 1	11 U 1	110 1	110 1	12 U 1	12 U 1	14 U 1	13 U I	11 U 1	10 0
Chloroethane	10	12 U 1	12 U 1	12 U 1	11 U 1	110 1	11 0 1	12 U 1	12 U 1	14 U 1	13 0 1	11 U 1	10 U
Trichforollucromethane	10	12 U 1	12 0 1	12 U 1	11 U 1	11 0 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	11 0 1	10 U
1,1-Dichloroethene	10	12 U 1	12 U 1	12 U 1	11 0 1	110 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	11 U 1	10 U 10 U
1,1,2-Trichlero-1,2,2-trilluoroethane Agetone	10	12 U 1 12 U 1	12 U 1	12 U 1	11 U 1	110 1	11 U 1	12 U 1 12 U 1	120 1	14 U 1	130 1	110 1	100
Carbon disulfide	10	12 U 1	120 1	12 U 1	11 0 1	11 0	110 1	12 0 - 1	120 1	14 0 1	13 U 1	1 110 1	10 U
Methyl acetete	l io i	12 Ŭ 1	1 12 Ŭ - i	12 Ŭ i	11 0 1	l iiŭ i	l iiŭ i	12 Ŭ i	12 0 1	14 U 1	13 Ŭ 1	l iiū i	10 0
Methylene chloride	10	. 12 U 1	12 U 1	12 U 1	11 Ú 1	11 U 1	ii ŭ i	12 U 1	12 U 1	14 U 1	13 U 1	ากับ	10 U
trans-1,2-Dichloroethene	10	12 U 1	12 U 1	12 U 1	11 U 1	11 U 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	110 1	10 U
Mathyl tert-butyl ether	10	12 U 1	12 U 1	12 U 1	11 U 1	11 U 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	11 U 1	10 U
1,1-Dichloroethane	10	12 U 1	12 U 1	12 U 1	11 U 1	110 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	110 [10 U
cis-1,2-Dichloroethens	10	12 U 1	12 U 1	12 U 1	11 0 .1		11 0 1	12 U 1	12 U 1	14 U 1	13 0 1	11 U 1	10 U
2-Butanona (MEK) Chloroform	10	12 U 1 12 U 1	12 U 1	12 U 1	11 U 1	11 0 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1 13 U 1	11 U 1	10 U
1,1,1-Trichloroethane	10	120 1	120 1	12 0 1	110 1	110 1	11 0 1	120 1	120 1	14 U 1	130 1	110 1	10 0
Cyclohexana	10	12 0 1	1 12 0 1	12 0 1	11 0 1	110 1	110 1	12 0 1	120 1	14 0 1	130 1	110 1	10 U
Carbon tetrachtoride	10	12 Ŭ 1	12 0 1	12 U t	11 U 1	l iiŭ i	l iiŭ i	12 0 1	120 1	14 0 1	13 0 1	l iiŭ i	10 U
Trichloroethene	10	12 0 1	12 U 1	12 U 1	11 Ŭ 1	110 1	l iiŭ i	12 U 1	12 0 1	14 U 1	13 Ŭ 1	110 1	10 U
1,2-Dichloroethane	10	12 U 1	12 U 1	12 U 1	11 Ū 1	11 0 1	11 0 1	12 0 1	12 U 1	14 U 1	13 U 1	11 0 1	10 Ú
Benzene	10	12 U 1	12 U 1	12 U 1	11 U 1	11 U 1	11 U 1	12 Ú 1	12 U 1	14 0 1	13 U 1	110 1	10 U
Methyloyolohexene	10	12 U 1	12 U 1	12 U 1	11 U 1	110 1	11 🔱 1	[12 U 1	12 U 1	14 U 1	130 1	11 U 1	10 U
1,2-Dichioropropane	10	12 () 1	12 U 1	12 U · 1	11 0 1	11 U 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	11 U 1	10 U
Bromodichloromethane	10	12 U 1	12 U 1	12 U 1	11 U 1	11 U 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	11 0 1	10 U
cis-1,3-Dichloropropene 4-Methyl-2-pentanone	10	12 U 1	12 U 1	12 U 1	11 0 1	11 U 1	110 1	12 U 1	12 U 1	14 U 1	13 U 1	11 U 1	10 U
Toluene	10	12 0 1	120 1	12 0 1	110 1	11 0 1	110 1	120 1	120 1	14 0 1		l iiŭ i	10 0
trans-1,3-Dichloropropens	10	12 0 1	12 0 1	12 0 1	11 Ŭ i	110 1	l iiŭ i	120 1	12 0 1	140 1	130 1	l iiù i	10 0
1,1,2-Trichloroethane	10	12 Ŭ 1	12 0 1	12 U 1	11 0 1	l iiŭ i	l 11 ŭ 1	l tžů i	12 U 1	14 U 1	130 1	11 Ŭ 1	10 0
Tetrachloroethene	10	12 U 1	12 U 1	12 U 1	11 Ú 1	11 0 1	11 0 1	12 U 1	12 U 1	14 U 1	13 U 1	110 1	10 U
2-Hexanone	10	12 U 1	12 U 1	12 U 1	11 U 1	110 1	11.0 1	12 U 1	12 U 1	14 년 1	13 U 1	110 1	10 U
Dibromachioromethane	10	12 U 1	12 U 1	12 U 1	11 U 1	11 U 1	110 1	[· 12 U 1	12 U 1	14 U 1	13 0 1	11 U 1	10 U
Ethylenedibromide Chigrobenzene	10 10	12 U 1	12 0 1	12 U 1	11 U 1	11 0 1	11 0 1	12 0 1	12 U 1	140 1	13 U 1	11 U 1	10 U
Ethylbenzene	10	12 U T 12 U 1	12 U 1	12 U 1 12 U 1	11 U 1	11 U 1	11 0 1	12 U 1	12 U 1	14 U 1	13 U 1	11 U 1	10 U
Xylenes (total)	10	12 0 1	120	12 0 1	11 0 1	110 1	110	12 U 1	12 0 1	140 1	13 0 1	1110 1	10 0
Styrene	10	12 0 1	1 12 0 1	12 0 1	11 U	1 11 0 1	11 0 1	12 0 1	120 1	14 0 1		1 110 1	100
Bromolorm	10	12 Ŭ 1	12 0 1	120 1	11 U 1	l iiŭ i	l iiŭ i	12 Ŭ i	12 0 1	14 0 1		l iiŭ i	10 0
Isopropylbenzene	10	12 Ü 1	12 U 1	12 U 1	11 U 1	11 0 1	11 U 1	12 U 1	12 U 1	14 Ŭ 1	13 0 1	11 Ŭ 1	lioù
1,1.2,2-Tetrachtoroethane	10	12 U 1	12 U 1	12 U 1	11 U 1	11 0 1	11 0 1	12 U 1	12 U 1	14 U 1	13 U . 1	110 1	10 U
1,3-Dichlorobenzene	10	2 J 1	12 U 1	12 U 1	11 U 1	11 U 1	110 1	12 U 1	12 U 1	14 U 1	13 U 1	110 1	10 U
1,4-Dichlorobenzane	10	12 U 1	12 U 1	12 U 1	11 U 1	110 1	11 U 1	12 U 1	12 U 1	14 U 1	13 U 1	110 1	10 U
1,2-Dichlorobenzene	10	2 J 1	12 U 1	12 U 1	11 0 1	11 U 1	11 0 1	12 0 1	12 U 1	14 0 1	13 U 1	11 0 1	10 U
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	10	12 U 1	12 U 1	12 U 1	11 U 1	110 1	11 0 1	12 0 1	12 U 1	14 U 1	13 U 1	11 0 1	10 U
1,2,4* THURIOTODORZONO		12 U 1	1 12 U 1	12 U 1	11 0 1	11 U 1	11 U 1	12 U 1	12 U 1	14_U _ 1	13 U 1	11_U1	10 U

All results reported on a dry weight basis.

CROL - Contract Required Quantitation Limit (not corrected for percent solids)

DF - Dilution Factor

U - Undetected at the specified quantitation limit

UJ - Estimated nondetect due to nonconformances identified in the validation summary

J - Estimated value

Banzaldehyde Phenol 2-Chlorophenol Bla(2-chloroethyl) ether 2-Methyliphenol 2-Chzophanol Bla(2-chloroethyl) ether 2-Methyliphenol 2-Chzybla(1-Chloropropane) Acatopharone 4-Methyliphenol N:Nitrosodi-r-propylamine Hexachloroethane Nitroborozene lacphorone 2-Nitrophenol 2-Nitrophenol 1a(2-chloroethoxy) methane 2,4-Dischlorophenol Naphthelene 4-Chioroshilline Hexachlorobutadlene Caprosadine 4-Chioroshilline	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1		410 U 410 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	370 U 1 370 U	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U	470 U 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1	370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U
Benzeldehyde Benzeldehyde Phenol 2-Chtorophenol Bia(2-chloroethyl) ether 2-Metryliphenol 2-Chybla(1-chloroprepane) Acatopherone 4-Metryliphenol Nithrosodi-n-propylamine Haxachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dichlorophenol Acatohoroethane Nitrobenzene 1-Sephorone 2-Nitrophenol 2,4-Dichlorophenol Naphthelene 4-Chloroethiline Haxachlorobutadiene Caprolactarin 4-Chloro-3-Methylphenol 2-Methylnaphthalene lexachlorocyclopentadiene 2,4-5-Trichlorophenol 2,4-5-Trichlorophenol	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1	380 U 1 380 U	410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	370 U 1 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U	1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 1 470 U 1 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1	370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U
Phenot 2-Chlorophenol Bla(2-chlorophenol 2-Chlorophenol 2-Chlorophenol 2-Chybla(1-Chloropropane) Acatophenone 4-Methyliphenol 4-Nitropenin-propylamine Haxachloroethane Nitrobentzene lacpherone 2-Nitrophenol 2,4-Dimethyliphenol a(2-chloroethoxy) methane 2,4-Dichlorophenol Naphthelene 4-Chloroethoxy) methane 2-Aphthelene	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1	380 U 1 380 U	410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	370 U 1 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U	1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 1 470 U 1 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1	370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U
2-Chlorophenol Bis(2-chloroetryl) ether 2-Metrylphenol 2-Oxybis(1-Chloropropane) Acatophenore 4-Metrylphenol Nitrosodi-n-propylamine Haxachioroethane Nitroborizene leopherone 2-Nitrophenol s(2-chloroethane) is(2-chloroethane) Naphthalene 4-Chlorophenol Naphthalene 4-Chloro-Metrylphenol 2-Metrylphenol -Chloros-Metrylphenol -Chloros-Metrylphenol 2-Metrylphenol -Metrylphenol -Metrylphenol -Metrylphenol 2-Metrylphenol -Metrylphenol -Metrylphenol -Metrylphenol -Metrylphenol -Metrylphenol -Metrylphenol -Metrylphenol	330 330 330 330 330 330 330 330 330 330	380 Ü 1 380 Ü 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	380 U 1 380 U	410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	410 U 1 410 U 1 410 U 1 410 U 1 54 J 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U	1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 78 J 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1	370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U
2-Methylphenol 2-Oxybis(1-Chloropropane) A-ctophenone 4-Methylphenol I-Nitropolin-propylamine Hexachioroethane Nitrobenzene leophenone 2-Nitrophenol 2,4-Dimethylphenol a(2-chloroethoxy) methane 2,4-Dichlorophenol Naphthelene 4-Chloroethoxy Maphthelene 4-Chloro-3-Methylphenol 2-depoleration Caprolection 2-Methylphenol 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration 2-depoleration	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1	380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	1 370 U 1 1 1 370 U 1 1 370 U 1 1 1 370 U 1 1 1 370 U 1 1 1 370 U 1 1 3 370 U 1 1 3 370 U 1 1 3 370 U 1 1 3 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	410 U 1 410 U 1 54 J 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U	1 470 U 1 1 470 U 1 1 78 J 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1	370 U 370 U 370 U 370 U 370 U 370 U 370 U 370 U
Oxybis(1-Chloropropane) Acatopherone Acatopherone AMetrylphanol Nitrosedi-r-propylamine Hexachicoresthane Nitrosentane Nitrosentane Nitrosentane 2,4-Dimetrylphanol 2,4-Dichlorophanol Naphthelene 4-Ohiorophanol Naphthelene 4-Ohiorophanol Hexachiorobutsdiene Caprolactian 1-Chloro-3-Mathylphanol 2,4-B-Titchlorophanol 2,4-B-Titchlorophanol 2,4-B-Titchlorophanol 2,4-B-Titchlorophanol	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	1 370 U 1 1 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	410 U 1 54 J 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U 410 U 410 U 410 U	1 470 U 1 1 78 J 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U
Acatiopherone 4-Methylphenol Nitrosodi-r-propylemine Haxachlorosthane Nitroberozene lacphorone 2.4-Dimethylphenol (2-chlorosthane) Naphthelene 4-Chlorostillice Haxachlorostudiene 4-Chloros-Mathylphenol Caprofestam Chloros-Mathylphenol 2.4-1-frichlorophenol 2.4-1-frichlorophenol 2.4-5-frichlorophenol 2.4-5-frichlorophenol	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	64 J 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U 410 U 410 U	1 78 J 1 470 U 1 470 U 1 470 U 1 470 U 1 470 U 1 470 U 1 470 U 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1 420 U 1 420 U 1	370 U 370 U 370 U 370 U 370 U 370 U
4-Metrylphenol Nitrosodi-n-propylamine Haxachiorosihane Nitrobentzene Isopherone 2-Nitrophenol 2-A-Umetrylphecol (2-chioresthosy) methane 2,4-Dichlorophenol Naphthelene 4-Chlorosiniline Haxachiorobutsdiene Caprolectian Chloros-Methylphenol Z-Metrylnaphthalene z-A-Chloros-Methylphenol Z-4,6-Trichlorophenol 2,4,6-Trichlorophenol	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1 370 U 1 370 U 1	410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U 410 U	1 470 U 1 1 470 U 1 1 470 U 1 1 470 U 1	420 U 1 420 U 1 420 U 1 420 U 1	370 U 370 U 370 U 370 U
Haxachloroathane Nitrobenzene lacphorone 2.4-Dimetriphecol (2-chloroathoxy) methane 2.4-Dichlorophenol Naphthelene 4-Chloroathline Hexachlorobutadiene Caprolactian Chloro-Mathylphenol Z-Mettylnaphthalene zachlorocyclopentadiene 2.4,6-Trichlorophenol 2.4,6-Trichlorophenol	330 330 330 330 330 330 330 330 330 330	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	380 U 380 U 380 U 380 U 380 U 380 U 380 U	1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1	370 U · 1 370 U · 1 370 U · 1 370 U · 1 370 U · 1	410 U 1 410 U 1 410 U 1 410 U 1	410 U 410 U 410 U 410 U	1 470 U 1 1 470 U 1 1 470 U 1	420 U 1 420 U 1 420 U 1	370 U 370 U 370 U
Nitrobenzene sepherone 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dimethylphenol 2,4-Dichlorophenol Naphthelene 4-Chlorostillice Hexachlorobutsellene Caprolestiam -Chloros-Methylphenol 2-Methylnaphthelene 2,4-B-Titchlorophenol 2,4-B-Titchlorophenol 2,4-B-Titchlorophenol	330 330 330 330 330 330 330 330 330 330	380 U 11 380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	1 380 U 380 U 380 U 380 U 380 U 380 U	1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1	370 U 1 370 U 1 370 U 1 370 U 1	410 U 1 410 U 1 410 U 1	410 U 410 U 410 U	1 470 U 1 1 470 U 1	420 U 1 420 U 1	370 U 370 U
Isophorone 2-Nitrophenol 2,4-Dimethylphenol (2-chlorophenol 2,4-Dichlorophenol Naphihelene 4-Chlorostillice Hexachlorobutadene Caprolartam -Chloros-Mathylphenol 2-Methylnaphihalene szachlorocyclopentadlene 2,4-6-Trichlorophenol 2,4-5-Trichlorophenol	330 330 330 330 330 330 330 330 330	380 U 1. 380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1 410 U 1	1 380 U 1 380 U 1 380 U 1 380 U 1 380 U	1 370 U 1 1 370 U 1 1 370 U 1 1 370 U 1	370 U 1 370 U 1 370 U 1	410 U 1	410 U 410 U	1 470 U 1	420 U 1	370 U
2,4-Dimetrylphecol (2-chioreathoxy) methane (2-4-Dichioreathoxy) methane (2-4-Dichioreathox Naphthelene (4-Chioreathlice - Cabrolautine - Cabrolautine - Chiorea-Mathylphenol 2-Methylphenol - Methylphenol - Chiorey-Copenhadene (2,4,6-Trichlorophenol 2,4,6-Trichlorophenol	330 330 330 330 330 330 330 330	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1 410 U 1	380 U 380 U 380 U	1 370 U 1 1 370 U 1	370 U 1			1 470 1/ 1	1 400 11 1	476
(2-chioreathoxy) mathane 2,4-Dichlorophenol Naphthelene 4-Chiomaniline Hexachloroburdelene Caprolectara Chiomo-Mathylphenol 2-Methylnaphthalene szachlorocyclopentadlene 2,4-6-Trichlorophenol 2,4-5-Trichlorophenol	330 330 330 330 330 330 330 330	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	380 U 1 380 U 1 380 U 1 380 U 1	410 U 1 410 U 1 410 U 1	380 U 380 U	1 370 U 1		1 410 11 4			420 U 1	370 U
2,4-Dichlorophenol Naphthelene 4-Chlorosetiline Hexachlorobutsellene Caprolariam -Chloro-S-Mathylphenol 2-Methylnaphthalene xachloropyctopentadene 2,4-6-Trichlorophenol 2,4-5-Trichlorophenol	330 330 330 330 330 330 330	380 U 1 380 U 1 380 U 1 380 U 1 380 U 1	380 U 1 380 U 1 380 U 1	410 U 1	1 380 U				410 U 410 U	1 470 U 1 1 470 U 1	420 U 1	1 370 U
Naphthelene 4 -(-Normalline Hexachlorobutadiene CaprolestamChieros-Méthylphenol 2-Methylphthalene teachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol	330 330 330 330 330 330 330	380 U 1 380 U 1 380 U 1 380 U 1	380 U 1 380 U 1	410 U 1		1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
Hexachlorobutadiene Caprolastam -Chtorus-Methyfphenol 2-Methyfnaphthallene szachlorocytiopentadiene 2-4,6-Trichlorophenol 2-4,5-Trichlorophenol	330 330 330 330	380 U 1 380 U 1		Lato II è	1 380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
CaprolactamChèore-3-Mathylphenol 2-Methylnaphthalane szechkorocyclopentadlene 2,4,8-Trichlorophenol 2,4,5-Trichlorophenol	330 330 330	380 U 1	1380 U 1		380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
-Chloro-3-Methylphenol 2-Methylnaphthalene xachlorocyclopentadlene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	330 330 330		380 U 1	410 U 1	1 380 U 1	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1 1 470 U 1	420 U 1	370 U
2-Methylnaphthalane exachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	330 330	வைய ப 1	380 U 1	410 U	380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
2,4,6-Trichlorophenoi 2,4,5-Trichlorophenoi		380 U 1	380 U 1	410 U 1	380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
2,4,5-Trichiorophenol		380 U 1	380 U 1	410 U 1	1 380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
		380 U 19	38D · U 1	410 U 1	1 380 U	1 370 U 1 1 830 U 1	370 U 1	410 U 1	410 U 1000 U	1 470 U 1 1 1200 U 1	420 U 1	1 370 U 1 930 U
1,1'-Biphenyi		380 U 1	380 U 1	410 U	1 380 U	1 370 U	370 U 1	410 U 1	410 U	1 470 U	1 420 U	1 370 U
2-Chloronaphihalene	330	380 U 1	380 U 1	410 U 1	1 380 U	1 370 U 1	1 370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
	830	970 U 1	970 U 1	1000 U	1 950 U	1 930 U 1	920 U 1	1000 U 1	1000 U	1 1200 U 1	1100 U 1	1 830 U
		380 U 1	380 U 1	410 U 1	1 380 U	1 370 U 1 1 370 U 1	I 370 U 1 I 370 U 1	250 J 1	410 U	1 450 J 1 1 470 U 1	1 420 U 1	1 370 U
		380 U 1	380 U 1	410 U	1 380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U	420 U	370 U
3-Nitroaniline	830	970 UJ 1	970 UJ 1	1000 UJ 1	1 950 UJ	1 930 UJ 1	B20 UJ 1	1000 UJ 1	1000 ŲJ	1 1200 UJ 1	1100 UJ 1	930 UJ
		380 U 1	380 U 1	410 U	380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	1 370 U
		970 U 1	970 U 1	1000 U 1	1 950 U	1 930 U 1 1 930 U 1	1 920 U 1	1000 U 1	1000 U	1 1200 U 1 1 1200 U 1	1100 U 1	1 930 U
		380 U 1	380 0	410 U	380 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	370 U
		380 U 1	380 U 1	410 U	360 U	1 370 U 1	370 U 1	410 U 1	410 U	1 470 U 1	420 U . 1	370 U
		380 U 1	380 U 1	410 U 1	1 380 U	1 370 U 1	i 370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	1 370 U
	330	380 U 1	380 U 1	410 U 1	1 360 U 1 380 U	1 370 U 1 1 370 U 1	1 370 U 1	410 U 1	410 U	1 470 U 1 1 470 U 1	420 U 1	1 970 U 1 370 U
	830	970 U 1	970 U 1	1000 U	1 950 U	1 930 U 1	1 820 U	1000 U 1	1000 U	1 1200 U	1100 U	1 630 U
	830	970 U 1	870 U 1	1000 U	1 960 U	1 930 U 1	1 920 U 1	1000 U 1	1000 U	1 1200 U 1	1 1100 U 1	1 830 U
	330 330	380 U 1	380 U 1	410 U 1	1 380 U 1 380 U	1 370 U 1 1 370 U 1	1 370 U 1	410 U 1	410 U	1 470 U 1 1 470 U 1	420 U 1	1 370 U
	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U 1 1 370 U 1	1 370 U 1	410 U 1	410 U	1 470 U 1	1 420 U 1	1 370 U
Atrazine	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U 1	1 370 U 1	410 U 1	410 U	1 470 U 1	1 420 U 1	1 370 U
	830	970 U 1	970 U 1	1000 U	1 950 U	1 .830 U 1	i 920 U 1	1000 U 1	1000 U	1 1200 U 1	1100 U 1	1 830 U
	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U 1	1 370 U 1 1 370 U 1	410 U 1	410 U 410 U	1 470 U 1 1 470 U 1	1 420 U 1 1 420 U 1	1 370 U
	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U	1 370 U 1	410 U	410 U	1 470 U	420 U	1 370 U
Di-n-butyl phthalate	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U 1	370 U 1	110 J 1	63 J	1 93 J 1	1 43 J 1	1 370 U
	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U 1	1 370 U 1	58 J 1	410 U	1 100 J 1	420 U	1 370 U
	330 330	380 U 1	380 U 1	410 U	1 380 U 1 380 U	1 370 U 1 1 370 U 1	1 370 U 1	44 J 1	410 U	1 65 J 1 1 240 J 1	1 420 U 1 1 420 U 1	1 370 U
3,3'-Dichlorobenzidine	330	380 VJ 1	380 UJ 1	410 UJ	1 380 UJ	1 370 W	370 UJ	410 UJ 1	410 UJ	1 470 UJ 1	420 UJ	1 370 W
Benzo(a)anthracene	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U 1	1 370 U 1	410 U 1	410 U	1 470 U 1	420 U 1	1 370 U
Chrysene	330 330	380 U 1 380 UJ 1	380 U 1	410 U	1 380 U	1 370 U 1	1 370 U 1	43 J 1	410 U	1 58 J	420 U	1 370 U
	330	380 U 1	380 UJ 1	410 UJ 410 U	1 48 J 1 380 U	t 370 UJ 1 1 370 U 1	1 370 UJ 1 1 370 U 1	480 J 1	120 J 410 U	1 230 J 1 1 470 U 1	1 57 J 1 1 420 U 1	1 120 J 1 370 U
	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U	1 370 U	410 U 1	410 U	1 470 U	1 420 U	1 370 U
	330	380 UJ 1	380 UJ 1	410 UJ	1 380 UJ	1 970 UJ 1	1 370 UJ 1	410 UJ 1	410 U	1 470 U 1	420 U	1 370 UJ
	330 330	380 U 1	380 U 1	410 U	1 380 U 1 380 U	1 370 U 1	1 370 U 1	410 U 1	410 U	1 470 U 1	1 420 U	1 370 U
	330	380 U 1	380 U 1	410 U	1 380 U 1 380 U	1 370 U 1 1 370 U 1	1 370 U 1 1 370 U 1	410 U 1	410 U	1 470 U 1 1 470 U 1	1 420 U 1	1 370 U
Benzo(g,h,i)perylene	330	380 U 1	380 U 1	410 U	1 380 U	1 370 U	1 370 U 1	410 U	410 U	1 470 U	420 U	1 370 U

All results reported on a dry weight basis.
CRQL - Contract Required Quantitation Limit (not corrected for percent solids)
DF - Ditation Factor

U - Undetected at the specified quantitation fimit UJ - Estimated nondetect due to nonconformances identified in the validation summary <math display="block">J - Estimated value

		50.50 90.50	Taleshie Taleshie	
	1		1914 P. L.	
		$a_i \in \mathcal{U}(n_i)$		
To Mesical Car			, 2,29212. , 1,292	ä
Benzaldehyde		10	40 U	
Phenol 2-Chlorophenol		10 10	40 U	
Bis(2-chloroethyl) ether		10	40 U	
2-Methylphenol		10	40 U	
2,2'-Oxyble(1-Chloropropane) Apetophenone		10 10	40 U	
4-Methylphenol		. 10	40 · U	
N-Nitrosodi-n-propylamine		10	40 U	
Hexachiomethane Nitrobenzene		10 10	40 U	
léophorone		10	40 U	
2-Nitrophenol		10 10	40 U	
2,4-Olmethylphenol Bis(2-chloroethoxy) methane		10	40 U	
2,4-Dichlorophenol		10	40 U	
Naphthelene 4-Chloroanitine		10	40 U	
Haxachiorobutadiene		10 10	40 U	
Caprolactam		10	40 U	
4-Chloro-3-Methylphenol		10	40 U	
2-Methylnaphthalena Hexachlorocyclopentadiana		10 10	40 U 40 U	
2,4,6-Trichlorophenol		10	40 U	
2,4,6-Trichlorophenol		25 10	100 U	
1,1'-Biphenyi 2-Chioronaphthalena		10	40 U	
2-Nitroanline		25	100 U	
Dimethyl phthalate		10	40 U	
2,6-Dinitrotoluene Acenaphthylene		10 10	40 U	
3-Nitroaniline		25	100 UJ	
Acenephthene		10	40 U	
2,4-Dinitrophenol 4-Nitrophenol		25 25	100 U 100 U	
Dibenzofuran		10	40 U	
2,4-Dinitrotoluene		10 10	40 U	
Diethyl phthalate Fluorene		10	40 U	
4-Chlorophanyi phanyi siher		10	40 U	
4-Nitroaniline		26	100 U	
4,6-Dinitro-2-methylphenol N-Nitrosod/phenylamine		25 10	100 U 40 U	
4-Bromophenyl phenyl ether		10	40 U	
Hexachlorobanzene Atrezine		10	40 U 40 U	
Pentachiorophenol		10 25	100 U	
Phenanthrene		10	40 U	
Anthracene Cerpazole		10 10	40 U	
Di-n-butyl phthafale		10	40 U	
Fluoranthana		10	40 U	
Pyréne Subá hazzad obtholota		10	40 U	
Butyf benzyl phthalate 3,3'-Dichlorobenzidine		10 10	40 U	
Benzo(a)anthracene		10	40 L	
Chrysene Clark established to the late		10	40 U	
Bis(2-athylhexyl) phthalate Di-n-octyl phthalate		10 10	40 U 40 U	
Benzo(b)fluoranthene		10	40 U	
Benzc(k)fluoranthene		10	40 U	
Benzo(a)pyrene Indeno(1,2,3-od)pyrene		10 10	40 U 40 U	
Olbenzo(a,h) anthracene		10	40 U	
Benzo(g,h,l)perylana		10	40 Ų	

CPGL - Contract Required Quantitation Limit
DF - Ditation Factor
U - Undetected at the specified quantitation limit
UJ - Estimated nondetect due to nonconformances identified in the validation summary

Residential Wells

March 17, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, MA 01863-2431

Subject:

Work Assignment No. 161-RICO-017H

Case No. 33852, SDGs MA1GN7 and MA1GN8

Ceimic Corporation, Narragansett, RI

Callahan Mining Superfund Site, Brooksville, ME

Tier II Inorganic Data Validation

Metals:

8/Residential Wells/

MAIGN7, MAIGN8, MAIGN9, MAIGP0, MAIGP1,

MA1GP2, MA1GP3, MA1GP4

(Field duplicate pair: MAIGN7/MAIGN8)

1/PE Sample/

MA1GP5

Dear Ms. Clark:

A Tier II validation, in accordance with the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, June 13, 1988 criteria, and incorporating Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, as deemed appropriate, was performed on the inorganic analytical data for eight residential well samples and one performance evaluation (PE) sample collected by TRC Environmental Corporation on January 11, 12, and 13, 2005 from the Callahan Mining Superfund Site in Brooksville, Maine. All samples were analyzed for metals under the Contract Laboratory Program (CLP) Routine Analytical Services (RAS) program using the ILM05.3 Statement of Work (SOW). The metals analysis was modified to report lower quantitation limits through Flex Clause Modification Reference #1194.1. It should be noted that the laboratory reported the results for the above-listed samples in two separate sample delivery groups (SDGs) although these samples were submitted together and analyzed under the same Flex Clause Modification Reference number. This report represents the validation of both of these SDGs.

In accordance with the EPA-approved project plans for the site, Tier II validation was performed on all samples in this SDG. The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- * Holding Times and Sample Preservation

- ICP-MS Tuning and Mass Calibration
 - Instrument Calibration
 - Blanks
 - ICP Interference Check Sample Results
- Matrix Spike (MS) Results
- Laboratory Duplicate Results
 - Field Duplicate Results
- Laboratory Control Sample (LCS) Results
 - Internal Standards
 - Laboratory Fortified Blank Sample (LFB) Results
- NA Furnace Atomic Absorption Results
 - ICP Serial Dilution Results
 - Detection Limit Results
- NA Sample Quantitation Results
 - Accuracy Check/PE Samples
- * All criteria were met for this parameter.

Note: Worksheets are not included for parameters that have met criteria or parameters that are not applicable (NA) to the method or to Tier II validation.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site data quality objectives (DQOs) and potential usability issues

Data Summary Tables - summarize accepted, qualified, and rejected data based on the Tier II data validation review.

Overall Evaluation of Data and Potential Usability Issues

Following is a summary of the site DQOs:

 To determine the impact to drinking water from the site and to support a human health risk assessment.

All results are usable for project objectives.

The validation actions applied as a result of sampling error are summarized below:

• The positive results for copper and lead were qualified as estimated (J) in all samples due to high relative percent differences (RPDs) for these analytes in the evaluation of the field duplicate pair. The direction of the bias cannot be determined from this nonconformance. These results are usable for project objectives as estimated values which may have a minor impact on the data usability.

The validation actions applied as a result of analytical error are summarized below:

- The following results were qualified as nondetects (U) due to laboratory blank contamination: antimony in samples MA1GN7, MA1GN8, MA1GN9, MA1GP0, MA1GP1, and MA1GP2, arsenic in sample MA1GN7, chromium in samples MA1GN9, MA1GN9, MA1GP1, MA1GP2, MA1GP3, and MA1GP4, selenium in samples MA1GP0 and MA1GP4, silver in samples MA1GN7, MA1GP0, MA1GP1, and MA1GP2, and vanadium in samples MA1GP1 and MA1GP2. The results are still usable for project objectives. This qualification may have a minor impact on data usability.
- The positive and nondetect results for cobalt in all samples were qualified as estimated (J/UJ) due to negative contamination in the laboratory blank analyses. The results are usable for project objectives as estimated values and nondetects with estimated quantitation limits which may be biased low. This qualification may have a minor effect on the data usability.
- The positive and nondetect results for arsenic were qualified as estimated (J/UJ) in all samples due to low recovery in the LFB sample. The results are usable for project objectives as estimated values and nondetects with estimated quantitation limits which may be biased low. This qualification may have a minor effect on the data usability.
- The positive results for copper and zinc were qualified as estimated (I) due to high percent differences (%Ds) for these analytes in the evaluation of the serial dilution analyses. These results are usable for project objectives as estimated values. This qualification may have a minor effect on the data usability.
- Positive results which were greater than the method detection limit (MDL) but less than the contract-required quantitation limit (CRQL) (for ICP/MS analytes) and ≤2x the MDL (for ICP/AES analytes) were qualified as estimated (J). The following results were affected by this qualification: iron in samples MA1GN9 and MA1GP2, barium in sample MA1GN9, beryllium in samples MA1GP0, MA1GP1, and MA1GP2, cadmium in samples MA1GN7, MA1GN8, MA1GN9, MA1GP0, MA1GP1, and MA1GP2, cobalt in samples MA1GP0, MA1GP1, and MA1GP2, copper, lead, and vanadium in sample MA1GP3, and nickel in samples MA1GN9 and MA1GP3. There is potential uncertainty for the accuracy of theses results. The results are usable for project objectives as

estimated values which may have a minor impact on the data usability.

The following metals were analyzed by ICP/AES: aluminum, calcium, iron, magnesium, potassium, and sodium. The following metals were analyzed by ICP/MS: antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, thallium, vanadium, and zinc.

The attached Table I summarizes the Tier II validation recommendations which were based on the following information:

Instrument Calibration

A CRQL standard was analyzed at 2x the required quantitation limit. The following table lists the analytes which exhibited recoveries outside of the validation control limits of 80 - 120%.

endine endoste bar-		
Antimony	CRQL1 122%	No validation actions were required as project samples were not bracketed by this CRQL standard.
Antimony	CRQL5 137%	No validation actions were required as project samples were not bracketed by this CRQL standard.
Arsenic	CRQL5 130%	No validation actions were required as project samples were not bracketed by this CRQL standard.

Blanks

The following table summarizes the blank contaminants detected in the laboratory blanks and associated action levels.

cynth re-	Artonlas
Antimony	2.51 ug/L
Arsenic	0.13 ug/L
Calcium	415 ug/L
Chromium	0.76 ug/L
Cobalt	(-) 0.22 ug/L
Nickel	0.085 ug/L
Selenium	0.63 ug/L

	New Year and The S
Silver	0.12 ug/L
Vanadium	0.27 ug/L

Qualification of the data was performed as follows:

For positive contamination,

- If the positive sample value was ≥ the CRQL and ≤ the Action Level, qualify the result as a nondetect (U) at the reported concentration.
- If the positive sample value was < CRQL and ≤ the Action Level, qualify the result as a nondetect (U) at the CROL.
- If the positive sample value was > the MDL and > the Action Level, report the value unqualified.

For negative contamination,

- If the sample value was nondetect, qualify the result as an estimated nondetect (UJ) at the reported CRQL.
- If the positive sample value was > the MDL and < the Action Level, qualify the result as estimated (J).

Based on the action levels determined, the positive results for antimony in samples MA1GP0, MA1GP1, and MA1GP2 and arsenic in sample MA1GN7 were qualified as nondetect (U) at the reported concentrations. The positive results for antimony in samples MA1GN7, MA1GN8, and MA1GN9, chromium in samples MA1GN7, MA1GN8, MA1GN9, MA1GP1, MA1GP2, MA1GP3, and MA1GP4, selenium in samples MA1GP0 and MA1GP4, silver in samples MA1GN7, MA1GP0, MA1GP1, and MA1GP2, and vanadium in samples MA1GP1 and MA1GP2 were qualified as nondetect (U) at the CRQL. The positive and nondetect results for cobalt in all samples were qualified as estimated (J/UJ) due to negative contamination detected.

ICP Interference Check Sample Results

All recovery criteria were met in the ICSAB analysis.

The following table lists the analytes which exhibited recoveries outside of the control limits of 80 - 120% or were detected at levels greater than 2x the MDL in the ICSA solution analysis associated with all samples. Validation actions were not required as sample interferent levels were less than 50% that of the level in the ICSA solution.

Averty/te	- Bereifrichteilne Rechien
Sodium	Detected at >2x the MDL
Arsenic	340%
Beryllium	Detected at >2x the MDL

windy	149 Trade mikrosev
Cadmium	59%
Selenium	207%
Zinc	125%
Vanadium	0%

Field Duplicate Results

Samples MA1GN7 and MA1GN8 were submitted as the field duplicate pair with this sample set. The following table summarizes the RPDs which were outside of the acceptance criteria.

19116	TO ALLEY SECTION		9-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
	1 3 3 3 A	- 17 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	rai i i i i ji ji <u>Tarangan dan</u> a	
Copper	71.6	45.0	45.6	Estimate (I) the positive results for copper in all samples.
Lead	10.1	2.4	123	Estimate (J) the positive results for lead in all samples.

Internal Standards (ICP/MS)

The following table lists the sample internal standard (IS) areas which were outside of the control limits of 60-125%.

Single 1	Francisco (Tender - Ampre	18-78-2-17-2-1 	
MAIGN8	Lithium-6	Beryllium	133	Validation action was not required; beryllium was reported from the 2-fold dilution which exhibited an acceptable internal standard recovery.
MA1GN9	Lithium-6	Beryllium	. 161	Validation action was not required as result for beryllium was nondetect.
MA1GN9 2-fold dilution	Lithium-6	Beryllium	134	As IS recovery was outside of control limits in the diluted analysis also, beryllium was reported from the original undiluted analysis.

Laboratory Fortified Blank Sample (LFB) Results

The following table lists the analytes which exhibited recoveries outside of the control limits of 70 - 130% and the resulting validation actions.

X80000	ASSIVE C	
Arsenic	45	Estimate (J/UI) the positive and nondetect results for arsenic in all samples.

ICP Serial Dilution Results

An ICP serial dilution analysis was performed on sample MA1GN9. The following table lists the analytes which exhibited %Ds greater than 15 and the resulting validation actions.

e estivo		
Copper	16%	Estimate (J) the positive results for copper in all samples.
Zinc	19%	Estimate (J) the positive results for zinc in all samples.

Detection Limit Results

It should be noted that the quantitation limits were not calculated correctly with the preparation factor. Upon request during validation, the laboratory resubmitted the results for all samples with the correct quantitation limits. The project-required quantitation limits were met in all samples.

For the ICP/MS analysis, in which a multiple point calibration was performed, positive results which were greater than the MDL but less than the CRQL were qualified as estimated (J). The following results were affected by this qualification: barium in sample MA1GN9, beryllium in samples MA1GP0, MA1GP1, and MA1GP2, cadmium in samples MA1GN7, MA1GN8, MA1GN9, MA1GP0, MA1GP1, and MA1GP2, cobalt in samples MA1GP0, MA1GP1, and MA1GP2, copper, lead, and vanadium in sample MA1GP3, and nickel in samples MA1GN9 and MA1GP3.

For the ICP/AES analysis, in which a single point calibration was performed, positive results which were $\leq 2x$ the MDL were qualified as estimated (J). The following results were affected by this qualification: iron in samples MA1GN9 and MA1GP2.

Accuracy Check/PE Samples

One metals aqueous PE sample, MA1GP5 (IS4682), was evaluated with this SDG. In the analysis of PE sample MA1GP5, 14 out of 18 detected analytes were evaluated as "Within Limits." Zinc was evaluated as "warning low", selenium was not evaluated, and calcium and magnesium were detected below the CRQL. Validation actions were not required on the basis of these evaluations.

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments concerning this information.

Very truly yours,

TRC Environmental Corporation

ijabeth Benly for Lorie MacKinnon Data Validator

Elizabeth Denly Senior QA Chemist

- Tier II Attachments: 1. Table I: Recommendation Summary Table
 - 2. Table II: Overall Evaluation of Data
 - 3. Table III: Tentatively Identified Compound Summary (NA)
 - 4. Data Summary Tables
 - 5. IRDA Form
 - 6. Data Validation Worksheets
 - 7. Copy of CLP Flex Clause Modification Reference #1194.1
 - 8. PE Score Reports
 - 9. Copies of Telephone Logs/Communication Forms
 - 10. Supporting Data for Reduced Payment Recommendations (NA)
 - 11. Copies of Field Sampling Notes
 - 12. Copies of EPA-approved Amendments to QAPjP or SAP
 - 13. CSF Audit (DC-2 Form)
 - 14. DQO Summary Form

Ed Hathaway, EPA Remedial Project Manager (DV memo and data summary table) cc:

Project File **PSAdmin**

Attachment 1 Table I: Recommendation Summary Table

Table I

Recommendation Summary

for Metals Analyses

Callahan Mining Superfund Site

Case# 33852 SDGs MA1GN7 and MA1GN8

Sample atmixer	A Marin	June, s
MAIGN7	DW	A ¹ , A ² , A ³ , A ⁵ , J ¹ , J ² , J ³ , J ⁴ , J ⁸
MA1GN8	DW	A ¹ , A ³ , J ¹ , J ² , J ³ , J ⁴ , J ⁸
MAIGN9	DW	A ¹ , A ³ , J ¹ , J ² , J ³ , J ⁴ , J ⁵ , J ⁶ , J ⁸ , J ¹¹
MA1GP0	DW	A ¹ , A ⁴ , A ⁵ , J ¹ , J ² , J ³ , J ⁴ , J ⁷ , J ⁸ , J ⁹
MA1GP1	DW	A ¹ , A ³ , A ⁵ , A ⁶ , J ¹ , J ² , J ³ , J ⁴ , J ⁷ , J ⁸ , J ⁹
MA1GP2	DW	A ¹ , A ³ , A ⁵ , A ⁶ , J ¹ , J ² , J ³ , J ⁴ , J ⁵ , J ⁷ , J ⁸ , J ⁹
MA1GP3	DW	A ³ , J ¹ , J ² , J ³ , J ⁴ , J ¹⁰ , J ¹¹
MA1GP4	DW	A ³ , A ⁴ , J ¹ , J ² , J ³ , J ⁴

DW - Drinking Water

- A¹ Accept data, but qualify the result for antimony as a nondetect due to contamination detected in the laboratory blanks.
- A² Accept data, but qualify the result for arsenic as a nondetect due to contamination detected in the laboratory blanks.
- A³ Accept data, but qualify the result for chromium as a nondetect due to contamination detected in the laboratory blanks.
- A⁴ Accept data, but qualify the result for selenium as a nondetect due to contamination detected in the laboratory blanks.
- A⁵ Accept data, but qualify the result for silver as a nondetect due to contamination detected in the laboratory blanks.
- A⁶ Accept data, but qualify the result for vanadium as a nondetect due to contamination detected in the laboratory blanks.
- J¹ Estimate (I) the positive results for copper and lead due to a high RPD for these analytes in the evaluation of the field duplicate pair.

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments concerning this information.

Very truly yours,

TRC Environmental Corporation

Lorie MacKinnon

Data Validator

Senior QA Chemist

- Tier II Attachments: 1. Table I: Recommendation Summary Table
 - 2. Table II: Overall Evaluation of Data
 - 3. Table III: Tentatively Identified Compound Summary (NA)
 - 4. Data Summary Tables
 - 5. IRDA Form
 - 6. Data Validation Worksheets
 - 7. Copy of CLP Flex Clause Modification Reference #1194.1
 - 8. PE Score Reports
 - 9. Copies of Telephone Logs/Communication Forms
 - 10. Supporting Data for Reduced Payment Recommendations (NA)
 - 11. Copies of Field Sampling Notes
 - 12. Copies of EPA-approved Amendments to QAPjP or SAP
 - 13. CSF Audit (DC-2 Form)
 - 14. DQO Summary Form

Ed Hathaway, EPA Remedial Project Manager (DV memo and data summary table) cc:

Project File **PSAdmin**

Attachment 1 Table I: Recommendation Summary Table

Table I

Recommendation Summary

for Metals Analyses

Callahan Mining Superfund Site

Case# 33852 SDGs MA1GN7 and MA1GN8

Semply compa	VEIGH	vicinies.
MAIGN7	DW	A ¹ , A ² , A ³ , A ⁵ , J ¹ , J ² , J ³ , J ⁴ , J ⁸
MA1GN8	DW	A ¹ , A ³ , J ¹ , J ² , J ³ , J ⁴ , J ⁸
MA1GN9	DW	A ¹ , A ³ , J ¹ , J ² , J ³ , J ⁴ , J ⁵ , J ⁶ , J ⁸ , J ¹¹
MA1GP0	DW	A ¹ , A ⁴ , A ⁵ , J ¹ , J ² , J ³ , J ⁴ , J ⁷ , J ⁸ , J ⁹
MA1GP1	· DW	A ¹ , A ³ , A ⁵ , A ⁶ , J ¹ , J ² , J ³ , J ⁴ , J ⁷ , J ⁸ , J ⁹
MA1GP2	DW	A ¹ , A ³ , A ⁵ , A ⁶ , J ¹ , J ² , J ³ , J ⁴ , J ⁵ , J ⁷ , J ⁸ , J ⁹
MA1GP3	DW	$A^3, J^1, J^2, J^3, J^4, J^{10}, J^{11}$
MA1GP4	DW	A ³ , A ⁴ , J ¹ , J ² , J ³ , J ⁴

DW - Drinking Water

- A¹ Accept data, but qualify the result for antimony as a nondetect due to contamination detected in the laboratory blanks.
- A² Accept data, but qualify the result for arsenic as a nondetect due to contamination detected in the laboratory blanks.
- A³ Accept data, but qualify the result for chromium as a nondetect due to contamination detected in the laboratory blanks.
- A⁴ Accept data, but qualify the result for selenium as a nondetect due to contamination detected in the laboratory blanks.
- A⁵ Accept data, but qualify the result for silver as a nondetect due to contamination detected in the laboratory blanks.
- A⁶ Accept data, but qualify the result for vanadium as a nondetect due to contamination detected in the laboratory blanks.
- J¹ Estimate (I) the positive results for copper and lead due to a high RPD for these analytes in the evaluation of the field duplicate pair.

- J² Estimate (J/UJ) the positive or nondetect result for cobalt due to negative contamination in the laboratory blanks. The result may be biased low.
- I³ Estimate (J/UJ) the positive or nondetect result for arsenic due to low recovery for this analyte in the LFB analysis. The result may be biased low.
- Estimate (J) the positive results for copper and zinc due to a high %Ds for these analytes in the serial dilution analysis.
- J^5 Estimate (J) the positive result for iron since the result is $\leq 2x$ the MDL.
- J⁶ Estimate (J) the positive result for barium since the result is greater than the MDL but less than the CROL.
- J⁷ Estimate (J) the positive result for beryllium since the result is greater than the MDL but less than the CRQL.
- J⁸ Estimate (J) the positive result for cadmium since the result is greater than the MDL but less than the CRQL.
- J⁹ Estimate (J) the positive result for cobalt since the result is greater than the MDL but less than the CRQL.
- J¹⁰ Estimate (J) the positive results for copper, lead, and vanadium since the results are greater than the MDL but less than the CRQL.
- Estimate (J) the positive result for nickel since the result is greater than the MDL but less than the CRQL.

Attachment 2 Table II: Overall Evaluation of Data

Table II Overall Evaluation of Data - Data Validation Memorandum Case 33852, SDGs MA1GN7 and MA1GN8

	Metals									
DQO	Sampling* and/or Analytical Method	Measure	ment Error	Sampling Variability**	Potential Usability					
	Appropriate Yes or No	Analytical Error	Sampling Error*		Issues					
To determine the impact to drinking water from the site and to support a human health risk assessment.	Both - Yes	Refer to qualifications in R/S Key: A¹ through A⁴ J² through J¹¹	Refer to qualifications in R/S Key		Low Biased Results: Potential low bias exists for cobalt in all samples due to the negative contamination in laboratory blanks. Potential low bias exists for arsenic in all samples due the to low recovery in the LFB analysis. Potential Uncertainty in Results: Quantitation limits for antimony, arsenic, chromium, selenium, silver, and vanadium were elevated in select samples due to laboratory blank contamination. Potential uncertainty exists for select vanadium, iron, barium, cadmium, cobalt, copper, beryllium, nickel, and lead results which were <2x the MDL for ICP/AES or greater than the MDL but less than the CRQL for ICP/MS. Potential uncertainty exists for the copper and zinc results in all samples due to high %Ds in the serial dilution analysis. Potential uncertainty exists for the copper and lead results in all samples due to the high RPDs for these analytes in the evaluation of the field duplicate pair. Results discussed above can still be used for project objectives as estimated values or nondetects with estimated quantitation limits. These issues may have a minor impact on the data usability.					

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Attachment 3 Table III: Tentatively Identified Compound Summary

- not applicable to this SDG

Attachment 4 IRDA Form

INORGANIC REGIONAL DATA ASSESSMENT

CASE NO. 33852	SITE Callahan Mining					
LABORATORY Counce (organism	NO OF SAMPLES/MATRIX 8 AQ 1 PE					
SDG# MAIGHT MAIGHE	REVIEWER(IF NOT ESD) TRC					
SOW # ILMOS 3	REVIEWER'S NAME Locic macking					
DPO:ACTION FYI	COMPLETION DATE 03/07/05					
DATA ASS	SESSMENT SUMMARY					
	- DL18					
	ICP <u>AA</u> HG <u>CYANIDE</u>					
1. HOLDING TIMES	0 0 7 7					
2. CALIBRATIONS						
3. BLANKS	0 0 1					
4. ICS	0 0					
5. LCS	0 0					
6. DUPLICATE ANALYSIS	0 0					
7. MATRIX SPIKE	0 0					
8. MSA	NA NA					
9 SERIAL DILUTION	0 0 1					
10. SAMPLE VERIFICATION	NA NA					
11. OTHER QC	0 0					
12. OVERALL ASSESSMENT	0 0					
O = Data had no problems, or qualified due to	to minor problems.					
M = Data qualified due to major problems.						
Z = Data unacceptable.						
X = Problems, but do not affect data.						
ACTION ITEMS:						
	· · · · · · · · · · · · · · · · · · ·					
AREAS OF CONCERN:						
AREAS OF CONCERN:						
						
NOTABLE PERFORMANCE:						
	·					
	•					
Validators Local Mark						

Attachment 5 Data Summary Tables

Site: Callahan Mining Superfund Site - Brooksville, ME Case Number 33852, SDGs MA1GN7 and MA1GN8

TRCS Lab S RAS S	on Name ample ID ample ID ample ID omments	DWC/ (DWC/ (05016 (MAT)	4-16 2-01	DWC DWC 05016 WAY Field doi WAY	2-002 GN8 JUCATO CT		A 17 2-03	DWC DWC MAX	32-049	05016			206 GP2 JB JB JB JB JB JB JB JB JB JB JB JB JB	05018 E.W.MAT	207 P3 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	DWC DWC 705016 MA1	A-15 32-08 GP4
Analyte 特別的	CROL	情的實際的	司即開始開始	生的場合發展數格	空际机机等	加斯克斯斯	學學學	語所聞的智慧	生态影響的	经验证金额		以開展的學	相外的	THE REAL PROPERTY.		子が含まれる。	
Aluminum	50	25.0	U	25.0	Ų	25.0	U	25.0	Ų	25.0	U	25.0	U	25.0	Ų	25.0	U
Antimony	0.5	0.25	U	0.25	U	0.25	U	0.34	U	0.28	ŭ	0.26	υ	0.25	U	0.25	U
Arsenic	0.2	0.12	UJ	0.10	นา	0.22	J	0.33	J	0.40	j	0.25	J	0.28	J	0.10	UJ
Barium	2.0	3.6		3.7		0.95	J	5.6		2.9		4.7		1.0	U	1.0	U
Beryllium	0.2	0.10	U	0.20	U	0.10	U	0.04	J	0.08	J	0.06	J	0.10	U	0.10	U
Cadmium	0.2	0.03	J	0.02	J	0.02	J	0.08	J	0.06	J	0.04	J	0.10	U	0.10	υ
Calcium	1000	24,200		24,300		19,400		11,300		17,400		9390		24,800		40,800	
Chromium	2.0	1.0	U	1.0	U	1.0	U	78.8		1.0	U	1.0	U	1.0	υ	1.0	U
Cobalt	1.0	0.50	UJ	0.50	IJ	0.50	UJ	0.05	J	0.11	J	0.16	J	0.50	UJ	0.50	UJ [
Copper	2.0	71.6	J	45,0	J	34.9	J	82.7	J	80.8	J	317	J	0.79	J	11.5	J
Iron	100	54.6		37.9		15.1	J	42.3		287		11.6	J	50.0	U	50.0	U
Lead	0.2	10.1	J	2.4	J	0.77	J	14.7	J	162	J	20.4	J	0.03	J	4.0	J
Magnesium	50	2550		2560		3760		2420		1740		4930		3720		4970	ł
Manganese	1.0	0.87		0.90		1.6		1.1		16.7	•	2.3		0.50	U	0.50	Ų
Nickel	1.0	0.73		0.59		0.35	J	0.62		2.3		1.9		0.29	J	0.61	
Potassium	100	5650		5650		1150		4610		712		4940		1320		1200	
Selenium	3.0	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	υ
Silver	1.0	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	υ
Sodium	1000	13,300		13,400		9310		11,000		7800		10,400		6760		11,700	
Thallium	0.5	0.25	IJ	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U
Vanadium	1.0	0.50	IJ	0.50	U	0.50	U	0.50	υ	0.50	U	0.50	Ų	0.48	J	0.53	
Zinc	2.0	28.7	J	31.3	J	25.1	. J_	22.0	J	_56.4	J	31.9	J	2.2	_J	1.6	J
	Sampled Analyzed	DOMESTIC CONTRACTOR OF THE SECOND	/05 TO HE I	01/1 02/1	Natural Control of the Control of th		1/05 1/05	017 027	70 17 2 173 175 1	(2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		101/1 102/1		Eoin:	705 Sh	01/1 02/1	1/05 - 1/05 1/06 1/06

CRQL - Contract-Required Quantitation Limit

J - Estimated value

UJ - Estimated nondetect

March 1, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, MA 01863-2431

Subject:

Work Assignment No. 161-RICO-017H

Case No. 0249M, SDG D05755_IB

Southwest Research Institute, San Antonio, TX Callahan Mining Superfund Site, Brooksville, ME

Tier II Inorganic Data Validation

Mercury: 8/Drinking Waters/

D05755, D05756, D05757, D05758, D05759, D05760,

D05764, D05766

(Field duplicate pair: D05755/D05756)

1/PE Sample/

D05762

Dear Ms. Clark:

A Tier II validation, in accordance with the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, June 13, 1988 criteria, and incorporating Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, as deemed appropriate, was performed on the inorganic analytical data for eight drinking water samples and one performance evaluation (PE) sample collected by TRC Environmental Corporation on January 11, 12, and 13, 2005 from the Callahan Mining Superfund Site in Brooksville, ME. All samples were analyzed for mercury under the Metcalf & Eddy Remedial Action Contract Delivery of Analytical Services (DAS) program using Metcalf & Eddy's DAS Specification, D-004.1, Analytical Specification for the Analysis of Low Concentration Metals and Cyanide in Aqueous Samples, June 2001.

In accordance with the EPA-approved project plans for the site, Tier II validation was performed on all samples in this sample delivery group (SDG). The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- Holding Times and Sample Preservation
- Instrument Calibration
- Blanks
- NA ICP Interference Check Sample Results

- Matrix Spike (MS) Results
- * Laboratory Duplicate Results
- * Field Duplicate Results
- * Laboratory Control Sample (LCS) Results
- Laboratory Fortified Blank Sample (LFB) Results
- NA Furnace Atomic Absorption Results
- NA ICP Serial Dilution Results
- * Detection Limit Results
- NA Sample Quantitation Results
 - Accuracy Check/PE Samples
- * All criteria were met for this parameter.

Note: Worksheets are not included for parameters that have met criteria or parameters that are not applicable (NA) to the method or to Tier II validation.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Overall Evaluation of Data - summarizes site data quality objectives (DQOs) and potential usability issues

Data Summary Tables - summarize accepted, qualified, and rejected data based on the Tier II data validation review.

Overall Evaluation of Data and Potential Usability Issues

 To determine the impact to drinking water from the site and to support a human health risk assessment.

All results are usable for project objectives. Validation actions were not required as a result of sampling or analytical error.

The attached Table I summarizes the Tier II validation recommendations which were based on the following information:

Accuracy Check/PE Samples

One mercury aqueous PE sample, D05762 (HG3881), was evaluated with this SDG. In the analysis of PE sample D05762, mercury was evaluated as "Within Limits."

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments concerning this information.

Very truly yours,

TRC Environmental Corporation

Elizabeth benez for

Elijabeth Derly

Lorie MacKinnon Data Validator

Elizabeth Denly Senior QA Chemist

- Tier II Attachments: 1. Table I: Recommendation Summary Table
 - 2. Table II: Overall Evaluation of Data
 - 3. Table III: Tentatively Identified Compound Summary (NA)
 - 4. Data Summary Table
 - 5. IRDA Form
 - 6. Data Validation Worksheets
 - 7. Copy of non-CLP Analytical Method (M&E DAS Specification D-004.1)
 - 8. PE Score Reports
 - 9. Copies of Telephone Logs/Communication Forms (NA)
 - 10. Supporting Data for Reduced Payment Recommendations (NA)
 - 11. Copies of Field Sampling Notes
 - 12. Copies of EPA-approved Amendments to QAPiP or SAP (NA)
 - 13. CSF Audit (DC-2 Form)
 - 14. DQO Summary Form

Leslie McVickar, EPA Remedial Project Manager (DV memo and data summary table) cc:

Project File

PSAdmin

Attachment 1 Table I: Recommendation Summary Table

Table I
Recommendation Summary
for Mercury Analyses
Callahan Mining Superfund Site
Case# 0249M, SDG D05755_IB

Sande Make	VEIGN	§្ឋាត្តប៉ែប្លន
D05755	DW	A
D05756	DW	Α
D05757	DW	Α
D05758	DW	A
D05759	DW	A
D05760	DW	Α .
D05764	DW	A
D05766	DW	A

DW - Drinking Water

A - Accept results.

Attachment 2 Table II: Overall Evaluation of Data

Table II Overall Evaluation of Data - Data Validation Memorandum Case 0249M, SDG D05755_IB

Метсигу													
DQO	Sampling* Measurement Error and/or Analytical				Measurement Error		Measurement Error		Measurement Error		Measurement Error		Potential Usability Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*										
To determine the impact to drinking water from the site and to support a human health risk assessment.	Both - Yes	Refer to qualifications in R/S Key: None	Refer to qualifications in R/S Key None		All results can be used for project objectives without qualifications.								

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Attachment 3 Table III: Tentatively Identified Compound Summary - not applicable to this sDG

Attachment 4 IRDA Form

21020	Region I
INORGANIC RE	GIONAL DATA ASSESSMENT
CASE NO. 0249 M	SITE Callahan Mining
LABORATORY SWRI	NO OF SAMPLES/MATRIX 8AQ 1PE
SDG # <u>Do 5755</u> _ IB	REVIEWER(IF NOT ESD) TRL
SOW # ILMOY, 1/ Das DOOY, 1	REVIEWER'S NAME Loric Mackingon
DPO:ACTION FYI /	COMPLETION DATE 02/28/05
DATA AS	SESSMENT SUMMARY
	<u>ICP AA HG CYANIDE</u>
1. HOLDING TIMES	7 7 0 7
2. CALIBRATIONS	
3. BLANKS	
4. ICS	I NA
5. LCS	
6. DUPLICATE ANALYSIS	
7. MATRIX SPIKE	
8. MSA	L NA L
9. SERIAL DILUTION	NA
10. SAMPLE VERIFICATION	L NA
11. OTHER QC	
12. OVERALL ASSESSMENT	
O = Data had no problems, or qualified due	to minor problems.
M = Data qualified due to major problems.	
Z = Data unacceptable.	
X = Problems, but do not affect data.	
ACTION ITEMS:	
·	
AREAS OF CONCERN:	

Date: 02/28/0s

Validator: Lone Mackinson

Attachment 5 Data Summary Tables

Site: Callahan Mining Superfund Site - Brooksville, ME Case Number 0249M, SDG D05755_IB

TRCS Labis DASS	ilon Name (* PDWCA* Sample (D) DWCA* Sample (D) 257686 Sample (D) 005755 Comments	DWCAE-16 257661	257662 D05757	DWCA-18 DW 257663 2 25	CA12 DWCA CA-12 DWCA 7664 25769 5769 D057	-11 DWCA-10 5 257668	DWCA-15 DWCA-15 257669 D05766
Analyte and the state of the st		DF III PROBLEM D	F HILL SHARE BELLED		ENGINDE THERESE		THE DE
Mercury	0.1 0.1 U	1 0.1 U	1 0.1 U 1	0.1 U 1 0.1	U 1 0.1 U	_1 0.1 U 1	0.1 U 1
TORREST TRANSPORTER THE TRANSPORT OF PRODUCTION OF THE TRANSPORT OF THE TR	Sampled 01/11/05 Analyzed 01/19/05	SOCOM: Differing triple (BARBARIA)	01/11/05 01/19/05	RINGONORIES INCORREGISCOEUTARUMONIO	Detailment of the state of the	01/12/05 6 01/19/05	Siff@hierchessescol/States N

QL - Quantitation Limit DF - Dilution Factor U - Undetected at the specified quantitation limit

March 7, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
Office of Environmental Measurement and Evaluation
11 Technology Drive
North Chelmsford, MA 01863-2431

Subject: Work Assignment No. 161-RICO-017H

Case 33748, SDG A1G92

A4 Scientific, Inc., The Woodlands, Texas

Callahan Mining Superfund Site, Brooksville, Maine

Tier III Organic Data Validation

Volatiles: 8/Drinking Waters/ A1G92, A1G93, A1G94, A1G95, A1G96,

A1G97, A1GA1, A1GN3

(Drinking Water Field Duplicate Pair/A1G92 and A1G93)

1/Trip Blank/ A1G99 1/PE Sample/ A1G98

Dear Ms. Clark:

A Tier III data validation, in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Low Concentration Organic Data Review (June 2001) and the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, as deemed appropriate, was performed on the organic analytical data for eight drinking water samples (including one field duplicate pair), one trip blank, and one performance evaluation (PE) sample collected from the Callahan Mining Superfund Site in Brooksville, Maine by TRC Environmental Corporation on January 11, 12, and 13, 2005. The samples were analyzed for volatile organic compounds (VOCs) under the Contract Laboratory Program (CLP) Routine Analytical Services (RAS) program using the USEPA Contract Laboratory Program Statement of Work for Analysis of Low Concentration Organic, OLC03.2. Tier III validation was conducted on all samples in this sample delivery group (SDG).

The Tier III data validation was based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- Preservation and Technical Holding Times
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
 - Initial and Continuing Calibrations

Ms. Clark Page 2

- Blanks
- Surrogate Recoveries
- Internal Standards
 - Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Field Duplicate Results
- NA Sensitivity Check
 - Accuracy Check/PE Samples
 - Target Compound Identification
- Compound Quantitation and Reported Quantitation Limits
 - Tentatively Identified Compounds (TICs)
- NA Semivolatile Cleanup
- System Performance
- * All criteria were met.

Note: Worksheets are not included for parameters that have met criteria or parameters that are not applicable (NA) to the method.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site DQOs and potential usability issues

Table III: Tentatively Identified Compound Summary - summarizes the TIC results for the VOC

analyses

Data Summary Table - summarizes accepted, qualified and rejected data

Overall Evaluation of Data and Potential Usability Issues

Following is a summary of the site DQOs:

• To determine the impact to drinking water from the site and to obtain data for use in a human health risk assessment.

All results are usable for project objectives with the exception of dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide in samples A1GN3 and A1GA1. Qualifications applied to the data as a result of sampling error are summarized below.

Ms. Clark Page 3

The positive results for acetone in samples A1G92, A1G93, A1G94, A1G95, A1G96, A1G97, and A1GN3 and 2-butanone in sample A1G97 were qualified as nondetects (U) due to trip blank contamination. These results are still usable for project objectives. This qualification has a minor impact on data usability.

Qualifications applied to the data as a result of analytical error are summarized below.

- The nondetect results for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide in samples A1GN3 and A1GA1 were rejected (R) due to surrogate recoveries less than 20%. These results are not usable for project objectives. This qualification may have a major impact on data usability.
- The positive results for methylene chloride in all samples were qualified as nondetects (U) due to
 laboratory method blank contamination. These results are still usable for project objectives. This
 qualification has a minor impact on data usability.
- The nondetect results for methylene chloride were qualified as estimated (UJ) in all samples due to calibration nonconformances. These results are usable for project objectives as nondetects with estimated quantitation limits. This qualification has a minor impact on data usability.
- The nondetect results for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide in samples A1G96 and A1G97 and the nondetect results for cis-1,3-dichloropropene, trans-1,3-dichloropropene, and 1,1,2-trichloroethane in sample A1G95 were qualified as estimated (UJ) due to low surrogate recoveries. These results are usable for project objectives as nondetects with estimated quantitation limits and may be biased low. This qualification has a minor impact on data usability.
- All nondetect results in sample A1G95 were qualified as estimated (UJ) due to low recoveries in
 the MS/MSD analyses. These results are usable for project objectives as nondetects with
 estimated quantitation limits and may be biased low. This qualification has a minor impact on data
 usability.

The attached Table I summarizes the Tier III validation recommendations which were based on the following information:

Initial and Continuing Calibrations

The percent relative standard deviation (59.2) and percent differences (41.8/45.8) of methylene chloride were outside of the acceptance criteira in the initial and continuing calibrations associated with all samples in this SDG. Methylene chloride was not detected in the samples in this SDG; these nondetect results were qualified as estimated (UJ) due to the calibration nonconformances.

Blanks

Target compounds were detected in the method blanks and trip blank (A1G99) associated with the samples in this SDG. The following table summarizes the maximum concentrations detected.

	STOS A	Derri den Generalen. Prikarias papilo	32.00
Methylene chloride	Method	0.89	0.5
Acetone	Trîp	15	5
2-Butanone	Trip	3.2	5
1,2,3-Trichlorobenzene	Method	0.10	0.5

CRQL - Contract Required Quantitation Limit

Blank Actions (due to blank contaminants):

Methylene chloride (since detected at <10x the CRQL):

- · Sample results < CRQL were qualified as nondetects (U) at the CRQL.
- Sample results ≥ CRQL were qualified as nondetects (U) at the reported concentration if the result was <10x the concentration detected in the blank, based on professional judgment.

Acetone (since detected at >2x the CRQL):

- · Sample results < CRQL were qualified as nondetects (U) at the CRQL.
- Sample results ≥ CRQL but < the blank concentration were qualified as nondetects (U) at the reported concentration detected in the blank.
- Sample results ≥ CRQL and > the blank concentration were qualified as nondetects (U) at the reported concentration if the result was <10x the concentration detected in the blank.

2-Butanone (since detected at <2x the CRQL):

- Sample results < CRQL were qualified as nondetects (U) at the CRQL.
- Sample results ≥ CRQL were qualified as nondetects (U) at the reported concentration if the result was <10x the concentration detected in the blank, based on professional judgment.

1,2,3-Trichlorobenzene (since detected at < the CRQL):

- Sample results < CRQL were qualified as nondetects (U) at the CRQL.
 - Sample results ≥ CRQL were qualified as nondetects (U) at the reported concentration if the result was <5x the concentration detected in the blank, based on professional judgment.

The positive results for methylene chloride in samples A1G96, A1G97, A1GA1, and A1GN3, acetone in samples A1G92, A1G93, A1G94, A1G95, A1G96, A1G97, and A1GN3, and 2-butanone in sample A1G97 were qualified as nondetects (U) at the CRQL since the concentrations detected were below the CRQL. The positive results for methylene chloride in samples A1G92, A1G93, A1G94, A1G95, and A1G99 were qualified as nondetects (U) at the reported concentrations since the concentrations detected were greater than the CRQL and <10x the blank concentration. 1,2,3-Trichlorobenzene was not detected in any samples in this SDG; qualification of the data for 1,2,3-trichlorobenzene was therefore not required.

Surrogate Recoveries

The following table summarizes the surrogate recoveries which were outside of the acceptance criteria and the associated validation actions.

	<u></u>			
Sono (C	The state of the s		in its general de la company	especialistical Superiorities Superiorities
A1GN3	17	ok	ok	ok
Validation Action	Reject (R) the associated nondetect results.	NA .	NA	NA .
A1GA1	18	122	ok	134
Validation Action	Reject (R) the associated nondetect results.	None; associated results nondetects.	NA	None; associated results nondetects
A1G97	20	ok	ok	ok
Validation Action	Estimate (UJ) the associated nondetect results.	NA	NA	NA
A1G96	24	ok	ok	ok

American Action			remeder Melbropregreete	ilikk2÷ Afrikhorosiisois Ö2
Validation Action	Estimate (UI) the associated nondetect results.	NA	NA	NA
A1G95	ok	ok	76	ok
Validation Action	NA	NA	Estimate (UJ) the associated nondetect results.	NA

Associated compounds:

chloroethane-d5: dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, carbon disulfide toluene-d8: trichloroethene, toluene, tetrachloroethene, ethylbenzene, xylenes (total), styrene, isopropyl benzene trans-1,3-dichloropropene: cis-1,3-dichloropropene, trans-1,3-dichloropropene, 1,1,2-trichloroethane 1,1,2,2-tetrachloroethane, 1,2-dibromo-3-chloropropane

The nondetect results for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide in samples A1GN3 and A1GA1 were rejected (R) due to surrogate recoveries less than 20%. The nondetect results for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide were qualified as estimated (UJ) in samples A1G96 and A1G97 due to low surrogate recoveries. The nondetect results for cis-1,3-dichloropropene, trans-1,3-dichloropropene, and 1,1,2-trichloroethane were qualified as estimated (UJ) in sample A1G95 due to low surrogate recovery.

MS/MSD Results

Sample A1G95 was designated for MS/MSD analyses with this sample set. The following table summarizes the nonconformances observed in the MS/MSD analyses.

China in			ASTENDED SE VIOLES ENSAMS EXERT
1,1-dichloroethene	44	46	61-145
benzene	54	54	76-127
trichloroethene	52	54	71-120
toluene	52	54	76-125
chlorobenzene	52	52	75-130

Target compounds were not detected in sample A1G95. Based on the professional judgement of the validator, all nondetect results in sample A1G95 were qualified as estimated (UJ) due to the low recoveries of all spiked compounds in the MS and MSD analyses.

Accuracy Check/PE Samples

One volatile aqueous PE sample, A1G98 (V80515), was evaluated with this SDG. In the analysis of PE sample A1G98, 17 out of 23 detected analytes were evaluated as "Within Limits." One detected compound, 4-methyl-2-pentanone, was evaluated as "Action High"; qualification of the data on this basis was not required as this compound was not detected in any samples in this SDG. One detected compound (1,2-dibromo-3-chloropropane) was evaluated as "Warning High" and one detected compound (methylene chloride) was evaluated as "Less Than CRQL"; no validation action was required on the basis of these evaluations. Three detected TICs were evaluated as "TIC Found." Hexane was evaluated as "TIC Missed"; however, this TIC was actually detected in the PE sample but the result was reported in the case narrative since this is an alkane. No validation actions were required due to the TIC results.

Target Compound Identification

The spectra of all detected compounds were reviewed during validation. There were several compounds which were reported as detected but the associated spectrum did not exhibit an acceptable match with the reference spectrum. The results for these compounds were changed to nondetects at the CRQL and are summarized in the following table.

20 20 20 E		s salaminariossi.
A1G95	cis-1,3-dichloropropene	роог spectrum; peak most likely due to surrogate artifact
AIGN3	acetone	secondary ion (m/z 58) not present and is in reference spectrum at >10%
	methylcyclohexane	secondary ion (m/z 55) not present and is in reference spectrum at >10%; secondary ion (m/z 98) outside ±20% limits when compared to reference spectrum
·	1,2-dichloropropane	secondary ion (m/z 112) not present and is in reference spectrum at >10%

Sampenii	Composition (1750)	រួមភូមិក្រុមបាលនៃលេ
	4-methyl-2-pentanone	secondary ions (m/z 58 and 100) not present and are in reference spectrum at >10%
	2-hexanone	secondary ion (m/z 100) not present and is in reference spectrum at >10%

TICs

The identifications of TICs at 4.57 minutes in samples A1G93 and A1G94 were changed from unknown alkane to hexane, based on the professional judgment of the validator. The TICs in samples A1G96, A1G97, and A1GA1 were not reported as these TICs were most likely due to column bleed.

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments regarding this information.

Very truly yours,

TRC Environmental Corporation

Elizabeth Denly

Data Validator

Lorie MacKinnon Senior Reviewer

Tier II Attachments:

- 1. Table I: Recommendation Summary Table
- 2. Table II: Overall Evaluation of Data
- 3. Table III: Tentatively Identified Compound Summary
- 4. ORDA Form
- 5. Data Summary Tables
- 6. Data Validation Worksheets

Ms. Clark Page 9

- 7. Copy of non-CLP Analytical Method (NA)
- 8. PE Score Reports
- 9. Telephone Logs/Communication Forms (NA)
- 10. Supporting Data for Reduced Payment Recommendations (NA)
- 11. Field Sampling Notes
- 12. EPA-approved Amendments to QAPjP or SAP (NA)
- 13. CSF Completeness Evidence Audit (DC-2 Form)
- 14. DQO Summary Form

cc: Leslie McVickar, EPA Remedial Project Manager (DV memo and data summary tables)
Project File
PSAdmin

Attachment 1 Table I: Recommendation Summary Table

Table I Recommendation Summary Volatile Organic Compounds in Drinking Water Samples Callahan Mining Superfund Site Case 33748, SDG A1G92

Sample Numbers	Matrix	Qualifiers
A1G92 :	DW	A ¹ , A ³ , J ¹
A1G93	DW	A ¹ , A ³ , J ¹
A1G94	DW	A ¹ , A ³ , J ¹
A1G95	DW	A ¹ , A ³ , J ¹ , J ³ , J ⁴
A1G96	DW	A^1, A^3, J^1, J^2
A1G97	DW	A ¹ , A ² , A ³ , J ¹ , J ²
AlGAl	DW_	A ³ , J ¹ , R ¹
A1GN3	DW	A ¹ , A ³ , J ¹ , R ¹
A1G99	ТВ	A ³ , J ¹

DW - Drinking Water

- TB Trip Blank
- A¹ Accept the data, but qualify the positive result for acetone as a nondetect (U) due to trip blank contamination.
- A² Accept the data, but qualify the positive result for 2-butanone as a nondetect (U) due to trip blank contamination.
- A³ Accept the data, but qualify the positive result for methylene chloride as a nondetect (U) due to method blank contamination.
- J¹ Estimate (UJ) the nondetect result for methylene chloride due to calibration nonconformances. The direction of bias cannot be determined from this nonconformance.
- J² Estimate (UJ) the nondetect results for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide due to low surrogate recoveries. These results may be biased low.
- J³ Estimate (UI) the nondetect results for cis-1,3-dichloropropene, trans-1,3-dichloropropene, and 1,1,2-trichloroethane due to low surrogate recoveries. These results may be biased low.
- J4 Estimate (UI) all nondetect results due to low recoveries in the MS/MSD analyses. These results may be biased low.
- R¹ Reject (R) the nondetect results for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide due to low surrogate recoveries.

Attachment 2 Table II: Overall Evaluation of Data

Table II Overall Evaluation of Data for VOCs in Drinking Water Samples Callahan Mining Superfund Site Case 33748, SDG A1G92

Volatile Organic Compounds							
DQO	Sampling* and/or	Measurement Error		Sampling Variability	Potential Usability		
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*	**	Issues		
To determine the impact to drinking water from the site and to obtain data for use in a human health risk assessment.	Sampling Method appropriate - yes Analytical Method appropriate - yes	Refer to qualifications in Table Ia: A ³ , J ¹ - J ⁴ , R ¹	Refer to qualifications in Table Ia: A ¹ , A ²	Not applicable for Tier II	Major Impact on Data Usability The nondetect results for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide in samples A1GN3 and A1GA1 were rejected due to low surrogate recoveries. These results are not usable for project objectives. Minor Impact on Data Usability The positive results for acetone in samples A1G92, A1G93, A1G94, A1G95, A1G96, A1G97, and A1GN3 and 2-butanone in sample A1G97 were qualified as nondetects due to trip blank contamination. The positive results for methylene chloride in all samples were qualified as nondetects due to method blank contamination. Potential uncertainty exists for methylene chloride results in all samples due to calibration nonconformances. Potential low bias exists for dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide in samples A1G96 and A1G97 and cis-1,3-dichloropropene, trans-1,3-dichloropropene, and 1,1,2-trichloroethane in sample A1G95 due to low surrogate recoveries. Potential low bias exists for all nondetect results in sample A1G95 due to low recoveries in the MS/MSD analyses.		

^{*}The evaluation of "sampling error" cannot be completely assessed in data validation.

**Sampling variability is not assessed in data validation.

Attachment 3 Table III: Tentatively Identified Compound Summary

Table III Tentatively Identified Compound (TIC) Summary for Callahan Mining Superfund Site Case No. 33748 SDG No. A1G92

Chssdesnione (months	11110	A. (6-)	AMERI
Hexane	1	1	1

The number indicated in the above tables represents the number of compounds of that classification identified in the sample. No TICs were identified in samples A1G95, A1G96, A1G97, A1GA1, A1GN3, and A1G99. Therefore, these samples were not included in the TIC Summary Table.

Attachment 4 ORDA Form

REGION I, EPA-NE ORGANIC REGIONAL DATA ASSESSMENT (ORDA)*

CASE #: 33 748	SITE NAME: Collabor Mining Sperford Site
LAB NAME: A4 Scientific, Inc.	# OF SAMPLES/MATRIX: PIDW 1/TB, 1/PE
SDG #: 41692	VALIDATION CONTRACTOR: TKC.
SOW #/CONTRACT #: DLC03.2 LP-W6-0042	VALIDATOR'S NAME: Elizabeth Denly
EPA-NE DV TIER LEVEL:	DATE DP REC'D BY EPA-NE: 1286
TPO/PO: **ACTION FYI	DV COMPLETION DATE: 3265
<u>ANALYTICAL DATA QU</u>	ALITY SUMMARY
 Preservation and Contractual Holding Times GC/MS / GC/ECD Instrument Performance Check Initial Calibration Continuing Calibration Blanks Surrogate Compounds Internal Standards Matrix Spike/Matrix Spike Duplicate Sensitivity Check PE Samples-Accuracy Check Target Compound Identification Compound Quantitation and Reported QLs Tentatively Identified Compounds Semivolatile Cleanup/Pesticide/PCB Cleanup Data Completeness Overall Evaluation of Data Data were qualified due to major contractual problems. Data were rejected as unusable due major contractual problems. 	;
AREAS OF CONCERN: (m items)	
COMMENTS:	
*This form assesses the analytical data quality in terms of con- errors and/or non-contractual analytical issues that affect data	ractual compliance only. It does not assess sampling
**Check "ACTION" only if contractual defects resulted in re	duced payment/data rejection recommendations.
Validator: Elijabeth Denly	Date: 3/2/05
INSTRUCTIONS ON R	EVERSE SIDE

Attachment 5 Data Summary Tables

		is des Bankses Januars	Mersy ewersin Ness sylver San sylver	1025 (150) 1055 (15) 105 105 105		in in the second
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloromethane Chloromethane 1,1-Dichloroethane 1,1-Dichloroethane Andone Carbon devillide Methyl acetata Methylene chloride trans-1,2-Dichloroethane Methyl terl-buryl ether 1,1-Dichloroethane Methyl terl-buryl ether 1,1-Dichloroethane cle-1,2-Dichloroethane Chloroform 1,1-1-Trichloroethane Chloroform 1,1-1-Trichloroethane Chloroformethane Carbon tetrachloride Trichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane Bromodichloromethane cle-1,3-Dichloropropane Bromodichloromethane cle-1,3-Dichloropropane 1-1,2-Christopropane 1-1,2	0.5 0.5 U 0.5 0.5 U		1	0.8 W 1 0.5 W 1 0.5 W 1 0.5 W 1 0.5 W 1 0.5 U 1	0.5 U 1 0.5 U 1 0.5 U 0.5 U 1 0 0.5 U 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene	0.5 0.5 U 0.5 0.5 U 0.5 0.5 U 0.5 0.5 U 0.5 0.5 U 0.5 0.5 U 0.5 0.5 U	1 0.5 U 1 0.5 1 0.5 U 1 0.5 1 0.5 U 1 0.5 1 0.5 U 1 0.5 1 0.5 U 1 0.5 1 0.5 U 1 0.5	5 U 1 0.5 UJ 1 5 U 1 0.5 UJ 1 5 U 1 0.5 UJ 1 5 U 1 0.5 UJ 1 5 U 1 0.5 UJ 1	0.5 U 1 0.5 U 1 0.5 U 1 0.5 U 1 0.5 U 1 0.5 U 1	0.5 U 1 0.5 U 0.5 U 1 0.5 U 0.5 U 1 0.5 U 0.5 U 1 0.5 U 0.5 U 1 0.5 U 0.5 U 1 0.5 U	1 0.5 U 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 1 0.5 U 1 0.

CROL - Contract Required Quantitation Limit
OF - Dilution Factor
R - Rejected data point due to nonconformance identified in the validation aummany

U - Undetected at the specified quantitation limit
UJ - Estimated nondetect due to nonconformances identified in the validation summary

J - Estimated value

Sediment

036.200100.0061.00005

701 Edgewater Drive Wakefield, MA 01880

Tel: 781-246-5200 Fax: 781-245-6293 www.m-e.com

March 29, 2005

Ms. Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, Massachusetts 01863-2431

Re: Work Assignment No. 161-RICO-017H

Case 0247M, SDG D05640-IB

Woods Hole Group, Raynham, Massachusetts

Callahan Mining Superfund Site, Brooksville, Maine

Tier II Inorganic Data Validation

Low Concentration Metals

and Mercury:

19/Sediment Samples/D05638, D05639, D05640, D05641, D05642, D05643, D05644, D05645, D05646, D05647, D05649, D05650, D05651, D05652, D05653, D05656,

D05657, D05658, D05660

(Field Duplicate Pair: D05656 and D05660) 1/Aqueous Equipment Blank/D05661 1/Performance Evaluation Sample/D05663

Dear Ms. Clark:

A Tier II data validation was performed by Metcalf & Eddy, Inc. (M&E) on the low concentration metals and mercury analytical data for nineteen sediment samples (including one field duplicate pair), one performance evaluation (PE) sample, and one equipment blank sample collected from the Callahan Mining Superfund Site, located in Brooksville, Maine, by TRC on November 11, 12, 17, and 18, 2004. The samples were analyzed through the Response Action Contract (RAC) Delivery of Analytical Services (DAS) program using M&E DAS Analytical Specification for the Analysis of Low Concentration Metals Including Cyanide in Solid Samples (Including Samples with High Moisture Content) (D-044.2), based on EPA methodology. M&E evaluated these data using the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, February 1989 criteria, modified for the methods and incorporating organic data validation guidance, Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria. Additional guidance was provided by Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

J:\NE\CALLAHAN MINING\data validation\DV memorandum\sD05640-IB metals.wpd

The Tier II metals and mercury data validation was based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- Preservation and Technical Holding Times
- Instrument Calibration
- ICP-MS Internal Standards
- * ICP-MS Tuning, Mass Calibration, and Resolution Check
 - Blanks
 - Inductively Coupled Plasma Interference Check Sample
 - Matrix Spike
- Laboratory Duplicate
 - Field Duplicates
- NA Furnace Atomic Absorption Analysis
 - Laboratory Fortified Blanks
 - Inductively Coupled Plasma Serial Dilution
- * Instrument Detection Limits
 - Sample Quantitation Results
 - Performance Evaluation Sample / Accuracy Check
- * all criteria met for this parameter

NA - parameter not applicable

Note: Worksheets are not included for parameters that have met criteria or for criteria that are not applicable to a Tier II data validation.

Copies of the field sampling notes for this sample delivery group (SDG) are included with the Data Validation Memorandum for Case 0247M, SDG D05648-IB, previously submitted to EPA.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations
Table II: Overall Evaluation of Data - summarizes site DQOs and potential usability issues
Data Summary Tables - summarizes accepted, qualified, and rejected data

Overall Evaluation of Data and Potential Usability Issues

The following is a summary of the site DQOs (Data Quality Objectives):

• To determine nature and extent of contamination and to support a human health and ecological risk assessment.

The low concentration metals and mercury sample results were qualified as a result of sampling and analytical error. Qualifications as a result of sampling error are summarized below:

- The positive results for barium, cobalt, and zinc in all sediment samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive result for mercury in sample D05643 was qualified as estimated (J) due to low solids content. The result is usable for project objectives as an estimated value with an indeterminate direction of bias. This qualification has a minor impact on the data usability.

Qualifications as a result of analytical error are summarized below:

- The positive mercury results in sediment samples D05640, D05641, D05644, D05645, D05647, D05649, D05650, D05651, D05652, D05653, D05656, D05657, and D05660 were qualified as estimated (J) due to holding time exceedances. These results are usable for project objectives as estimated concentrations with a possible low bias. These qualifications have a minor impact on the data usability.
- The positive results for aluminum and magnesium in samples D05638, D05639, D05642, and D05643 and for aluminum in sample D05661 were qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible high bias. These qualifications have a minor impact on the data usability.
- The positive result for silver in sample D05657 was qualified as estimated (J) due to continuing calibration standard recovery exceedances. The result is usable for project objectives as an estimated concentration with a possible low bias. This qualification has a minor impact on the data usability.
- The positive results for calcium and potassium in sample D05657 were qualified as estimated (J) due to internal standard recovery exceedances. The results are usable for project objectives as estimated concentrations. This qualification has a minor impact on the data usability.
- The positive results for copper in samples D05651 and D05652 and for thallium in sample D05644 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as

nondetect results. This qualification has a minor impact on data usability. Note that the results for copper and thallium were also qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences.

- The positive results for aluminum, calcium, copper, lead, magnesium, nickel, sodium, and thallium in sample D05661 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. This qualification has a minor impact on data usability. Note that these results were also qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences.
- The nondetect result for cobalt in sample D05661 was qualified as estimated (UJ) at the reported MDL due to negative instrument drift. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. This qualification has a minor impact on data usability.
- The nondetect results for antimony and selenium in sample D05661 had quantitation limits elevated to their sample-specific negative blank action levels due to negative instrument drift and blank contamination. These results are usable for project objectives as estimated quantitation limits with a possible low bias. This qualification has a minor impact on data usability.
- The positive and blank-qualified results for arsenic, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in all samples except D05646 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias. This qualification has a minor impact on data usability.
- The blank-qualified results for copper, lead, nickel, and thallium in sample D05661 were qualified as estimated (UJ) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated quantitation limits with a possible high bias. This qualification has a minor impact on data usability. Note that these results were also qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences.

- The positive results for selenium in all sediment samples and the nondetect result for selenium in sample D05661 were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias. This qualification has a minor impact on data usability.
- The positive results for chromium and silver in all sediment samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high. This qualification has a minor impact on the data usability.
- The positive and nondetect results for antimony in all sediment samples were qualified as estimated (J and UJ, respectively) due to low matrix spike recovery. The results are usable for project objectives as estimated values and quantitation limits that may be biased low. This qualification has a minor impact on the data usability.
- The positive and blank-qualified results for calcium, potassium, and thallium in all sediment samples were qualified as estimated (J and UJ, respectively) due to serial dilution imprecision. The results are usable for project objectives as estimated values and quantitation limits with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive results for barium in all sediment samples were qualified as estimated (J) due to low recoveries in the PE sample. The results are usable for project objectives as estimated values with a possible low bias. This qualification has a minor impact on the data usability.
- The positive result for chromium in sample D05640 was qualified as estimated (J)
 due to linear range exceedance. This result is usable for project objectives as an
 estimated concentration. This qualification has a minor impact on the data usability.
- The blank-qualified results for aluminum, calcium, copper, lead, magnesium, nickel, sodium, and thallium in sample D05661 were qualified as estimated (UJ) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated quantitation limits. This qualification has a minor impact on the data usability.

• The positive and blank-qualified results for the following samples and analytes were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the method detection limit (MDL). These results are usable for project objectives as estimated concentrations and quantitation limits. This qualification has a minor impact on the data usability.

antimony: D05638, D05643, D05657, D05658

selenium: D05646, D05647, D05652, D05657, D05658

sodium: D05640, D05649, D05656, D05660

thallium: D05638, D05641, D05643, D05644, D05646, D05647,

D05651, D05652, D05657, D05658

Data Completeness

The laboratory was contacted on March 18, 2005 concerning the following:

- 1. Confirm the pH of sample D05661. The data (page 1098) indicates the pH is "NA."
- 2. The aqueous MDL Form IX does not list antimony, calcium, or silver.
- 3. Explain the laboratory's practice of re-analyzing failed CCVs.

The laboratory provided an acceptable response and resubmittal on March 21, 2005. The pH of sample D05661 was confirmed to be <2, and acceptable. The MDL Form IX was revised to included the missing analytes and resubmitted. It is the laboratory's documented procedure to allow for the reanalysis of a failed CCV one time.

The laboratory was contacted on March 21, 2005 concerning the following:

4. M&E requested, via e-mail dated December 14, 2004, that the laboratory analyze sample D05643 for mercury both prior to and following freeze-drying. Data for the mercury analysis of the freeze-dried sample was not provided in the data package.

The laboratory provided a response on March 25, 2005, stating that mercury analysis was not performed on a freeze-dried aliquot of sample D05643.

Preservation and Technical Holding Times

The mercury analyses for all sediment samples except D05638, D05639, D05642, D05643, D05646, and D05658 were performed outside the 28-day holding time requirement. The positive mercury results in the affected sediment samples were qualified as estimated (J) due to possible sample degradation caused by holding time exceedances.

Note that because of its high moisture content, sample D05643 was freeze-dried prior to preparation for metals analysis. Due to holding time considerations, the sample aliquot used for mercury analysis was not freeze-dried. No further validation action was taken.

Instrument Calibration

The following table summarizes the continuing calibration verification (CCV) standard recoveries that did not meet the 90% - 110% recovery acceptance criteria, the validation action, and the samples affected:

Analyte	ccv	Recovery	Action	Samples Affected
aluminum	02/01/05 14:35	125%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
copper	02/01/05 14:35	140%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
magnesium	02/01/05 14:35	117%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
potassium	02/01/05 14:35	118%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
sodium	02/01/05 14:35	115%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
zinc	02/01/05 14:35	117%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
aluminum	02/01/05 15:40	131%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
copper	02/01/05 15:40	113%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
magnesium	02/01/05 15:40	126%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
potassium	02/01/05 15:40	124%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
sodium	02/01/05 15:40	122%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
vanadium	02/01/05 15:40	112%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV

Analyte	CCV	Recovery	Action	Samples Affected
aluminum	02/03/05 17:04	112%	Qualify the positive results as estimated (J)	D05638, D05639, D05642, D05643
magnesium	02/03/05 17:04	111%	Qualify the positive results as estimated (J)	D05638, D05639, D05642, D05643
aluminum	02/03/05 17:34	113%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
magnesium	02/03/05 17:34	112%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
aluminum	02/03/05 17:40	114%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
magnesium	02/03/05 17:40	113%	Qualify the positive results as estimated (J)	None; no results reported from analyses prior to CCV
silver	02/07/05 19:13	89%	Qualify the positive result as estimated (I)	D05657
aluminum	01/12/05 22:46	111%	Qualify the blank- qualified result as estimated (UJ)	D05661

ICP-MS Internal Standards

The recovery for the internal standard scandium in sample D05657 (121%) did not meet the DAS-specified limits of 30% - 120%. This sample was not diluted and re-analyzed. Therefore, positive results for calcium and potassium in sample D05657, which were associated with this internal standard, were qualified as estimated (J).

Blanks

The following table summarizes the blank contamination detected in the laboratory blanks associated with the sediment samples. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. The nominal Blank Action Levels (BAL) from the method blank were calculated based on a 1gm sample weight (dry), 50mL final volume, and two-fold dilution. The nominal BALs from instrument blanks were based on a 1gm sample weight (dry) and 50mL final volume. Sample-specific BALs are further adjusted for actual sample weights, moisture content, and any additional dilutions.

Analyte	Blank Type	Maximum Blank Concentration	Nominal Blank Action Level (BAL) mg/Kg	Action/Samples Affected	
aluminum	mb	0.92 mg/Kg 4.6		No action; all sediment results above BAL	
arsenic	inst	0.11 μg/L 0.055		No action; all sediment results above BAL	
barium	mb	0.0055 mg/Kg	0.028	No action; all sediment results above BAL	
calcium	mb	1.7 mg/Kg	8.5	No action; all sediment results above BAL	
chromium	inst	0.20 μg/L	0.10	No action; all sediment results above BAL	
cobalt	inst	-0.19 μg/L	0.095	No action; all sediment results above BAL	
copper	inst	6.8 µg/L	3.4	Qualify positive results as nondetect (U) at	
	inst	-0.43 μg/L	0.22	reported concentrations in samples D05651 and D05652	
iron	inst	33.0 μg/L	16.5	No action; all sediment results above BAL	
	inst	-6.4 μg/L	3.2		
lead	inst	0.19 μg/L	0.095	No action; all sediment results above BAL	
magnesium	inst	15.0 μg/L	7.5	No action; all sediment results above BAL	
manganese	mb	0.1 mg/Kg	0.5	No action; all sediment results above BAL	
potassium	inst	38.0 μg/L	19	No action; all sediment results above BAL	
	inst	-19.0 μg/L	9.5		
selenium	inst	0.35 μg/L	0.18	No action; all sediment results above BAL	
	inst	-0.36 μg/L	0.18		
thallium	mb .	0.019 mg/Kg	0.095	Qualify positive result as nondetect (U) at reported concentration in sample D05644	
vanađium	mb	0.049 mg/Kg	0.24	No action; all sediment results above BAL	
zinc	mb	2.1 μg/L	1.05	No action; all sediment results above BAL	

inst - instrument blank (i.e., ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample result was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the reported concentration.
- If the sample result was > positive BAL, qualification of the data was not required.

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J).
- If the sample result was nondetect, the MDL was qualified as estimated (UJ).
- If the sample result was > MDL and > negative BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required.

The following table summarizes the blank contamination detected in the laboratory blanks associated with the aqueous equipment blank sample. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. Maximum blank concentrations from instrument blanks were also adjusted for sample dilutions.

Analyte	Blank Type	Maximum Blank Concentration (µg/L)	Blank Action Level (BAL) (µg/L)	Action/Samples Affected
aluminum	mb	69.0	345	Qualify positive result as nondetect (U) at reported concentration in sample D05661
antimony	inst	0.018	0.18	Elevate the MDL to the negative BAL in
	inst	-0.028	0.28	sample D05661
calcium	mb	28.0	140	Qualify positive result as nondetect (U) at reported concentration in sample D05661
cobalt	inst	-0.032	0.32	Qualify the nondetect result as estimated (UJ) in sample D05661
copper	mb	1.4	7.0	Qualify positive result as nondetect (U) at reported concentration in sample D05661
iron	mb	100	500	None; not detected in sample

Analyte	Blank Type	Maximum Blank Concentration (µg/L)	Blank Action Level (BAL) (µg/L)	Action/Samples Affected
lead	mb	1.6	8.0	Qualify positive result as nondetect (U) at reported concentration in sample D05661
magnesium	mb	100	500 .	Qualify positive result as nondetect (U) at reported concentration in sample D05661
nickel	mb	0.080	0.40	Qualify positive result as nondetect (U) at reported concentration in sample D05661
potassium	mb	39.0	195	None; not detected in sample
selenium	inst	0.10	1.0	Elevate the MDL to the negative BAL in
	inst	-0.091	-0.91	sample D05661
sodium	mb	12.0	60.0	Qualify positive result as nondetect (U) at reported concentration in sample D05661
thallium	inst	0.035	0.35	Qualify positive result as nondetect (U) at reported concentration in sample D05661
vanadium	inst	0.19	1.9	None; not detected in sample
zinc	mb	7.4	37.0	None; not detected in sample

inst - instrument blank (i.e. ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample result was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the reported concentration.
- If the sample result was > positive BAL, qualification of the data was not required.

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J).
- If the sample result was nondetect, the MDL was qualified as estimated (UJ).
- If the sample result was > MDL and > negative BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required

The following table summarizes the level of blank contamination detected in the equipment blank associated with the sediment samples.

Analyte	Blank Concentration (µg/L)	Action/Samples Affected
aluminum	5.0	No action; result qualified as nondetect (U) after blank actions.
calcium	22	No action; result qualified as nondetect (U) after blank actions.
соррег	0.43	No action; result qualified as nondetect (U) after blank actions.
lead	0.19	No action; result qualified as nondetect (U) after blank actions.
magnesium	2.0	No action; result qualified as nondetect (U) after blank actions.
nickel	0.10	No action; result qualified as nondetect (U) after blank actions.
sodium	32	No action; result qualified as nondetect (U) after blank actions.
thallium	0.038	No action; result qualified as nondetect (U) after blank actions.

Inductively Coupled Plasma Interference Check Sample

Positive results for antimony, arsenic, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc were reported in the ICSA solution analyses at concentrations greater than the MDLs. Results for selenium were reported in the ICSA solution at concentrations greater than the negative MDL.

The positive and blank-qualified results for arsenic, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in all samples except D05646 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. The blank-qualified results for copper, lead, nickel, and thallium in sample D05661 were qualified as estimated (UJ) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias.

The positive results for selenium in all sediment samples and the nondetect result for selenium in

sample D05661 were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias.

Matrix Spike (MS)

Sample D05657 was analyzed as the matrix spike with this data set. The analytes that did not meet recovery (%R) acceptance criteria of 75-125% and the actions taken are summarized in the table below:

Analyte	Spiked Sample Result (mg/Kg)	Sample Result (mg/Kg)	Spike Added (mg/Kg)	MS %R	Affected Samples/Action
antimony	1.0	0.17	1.9	45	Qualify as estimated (J and UJ, respectively) the positive and nondetect results in all sediment samples.
chromium	60	39	13	156	Qualify as estimated (J) the positive results in all sediment samples.
silver	0.61	0.45	0.12	128	Qualify as estimated (J) the positive results in all sediment samples.

Field Duplicates

Samples D05656 and D05660 were the field duplicate pair analyzed in association with this data set. The analytes that did not meet the relative percent difference (RPD) criterion of <50% for analytes greater than 5x reporting limit or the absolute difference criterion of >4x reporting limit for those less than <5x reporting limit, and the actions taken are summarized in the following table:

Analyte	Sample D05656 Result (mg/Kg)	Sample D05660 Result (mg/Kg)	%RPD	Actions
barium	5.0	9.7	64	Qualify as estimated (J) the positive barium results in all sediment samples.
cobalt	8.1	17	71	Qualify as estimated (J) the positive cobalt results in all sediment samples.
zinc	16000	8800	- 58	Qualify as estimated (J) the positive zinc results in all sediment samples.

Laboratory Fortified Blanks

The recovery for aluminum (246%) exceeded the 70% - 130% acceptance criteria in the laboratory fortified blank (LFB). Because the concentrations of aluminum in the sediment samples were significantly higher than that in the LFB and the laboratory control sample showed acceptance recovery, professional judgment was used to not qualify the positive results for aluminum.

Inductively Coupled Plasma Serial Dilution

An ICP serial dilution analysis was performed on sample D05657. The analytes that did not meet the percent difference (%D) validation criterion of 15% for results greater than 50x the MDL and the actions taken are summarized in the following table:

Analyte	50x MDL (mg/Kg)	Sample (mg/Kg)	Serial Dilution (mg/Kg)	%D	Actions
calcium	26	2700	3400	25	Qualify as estimated (J) the positive results in all sediment samples.
potassium	17	2600	3400	27	Qualify as estimated (J) the positive results in all sediment samples.
thallium	0.07	0.23	0.28	22	Qualify as estimated (J and UJ, respectively) the positive and blankqualified results in all sediment samples.

Sample Quantitation Results

The concentration of chromium in sample D05640 exceeded the linear range of the ICP-MS and was not re-analyzed at a dilution. The result for chromium in sample D05640 was qualified as estimated (J).

The positive and blank-qualified results for the following sediment samples and analytes were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits.

antimony:

D05638, D05643, D05657, D05658

selenium:

D05646, D05647, D05652, D05657, D05658

sodium:

D05640, D05649, D05656, D05660

thallium:

D05638, D05641, D05643, D05644, D05646, D05647,

D05651, D05652, D05657, D05658

The blank-qualified results for aluminum, calcium, copper, lead, magnesium, nickel, sodium and thallium in the equipment blank sample D05661 were qualified by the laboratory as estimated (UJ) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated quantitation limits.

The positive result for mercury in sample D05643 was qualified as estimated (J) due to the low solids content of the sample (<30%).

Performance Evaluation Sample/Accuracy Check

Performance Evaluation Sample

The metals and mercury PE sample D05663 (EPA ampule number MS01636) was evaluated with this SDG. Thirteen analytes were scored "Within Limits" and nine analytes were scored "Not Evaluated." No validation action was necessary on the basis of these results. One analyte, barium, was scored "Action Low." On the basis of this score, the positive results for barium in all sediment samples were qualified as estimated (J). These results are usable for project objectives as estimated concentrations with a possible low bias.

Laboratory Control Sample

All laboratory control samples met the 80% - 120% acceptance criteria. No validation action was required.

Please contact Ms. Constance Lapite at (781) 224-6628 or at <u>constance.lapite@m-e.com</u> if you have any questions regarding this Tier II validation.

Very truly yours,

Richard Purdy Data Validator

Elizabeth Denly Senior Reviewer

RAC Lead Chemist

cc: Leslie McVickar, EPA Remedial Project Manager (Data Validation Memorandum, Data

Summary Tables)

Elizabeth Denly, TRC Project Chemist (entire package)

Denise Laferte, M&E Oversight Chemist (Data Validation Memorandum, Data Summary Tables)

Richard Purdy, M&E Data Validation Chemist (entire package)

Callahan Mine Project File, Work Assignment No. 161-RICO-017H

Attachments: IRDA

Table I: Recommendation Summary Table

Table II: Overall Evaluation of Data

Data Summary Tables

Data Validation Worksheets

PE Score Report(s)

Copy of non-CLP Analytical Methods (M&E DAS Specification D-044.2)

Copies of Telephone Logs/Communications Forms

Supporting Data for Reduced Payment Recommendations (not applicable)

Copies of Field Sampling Notes (previously submitted)

Copies of EPA-approved Amendments to QAPjP or SAP (not applicable)

CSF Completeness Evidence Audit (DC-2 Form)

DQO Summary Form

INORGANIC REGIONAL DATA ASSESSMENT

CASE N	10. 0247M	SITE CA	W CIAMAN	וויסומים	
LABORA	90081 300H ZWEEW YROTH	NO. OF S	SAMPLES/		
		MATRIX_	1950, IRE	, (∈ 8	
SDG#	D05640- IB	REVIEWE	(IF NOT	ESD) Metca	lf & Eddy_
SOW#	D-044·2	REVIEWER	R'S NAME R	Richard Pur	dy
DPO:	ACTION FYI XX	COMPLET	ON DATE	3/18/02	
	DATA ASSE	SSMENT SU	MMARY		
	, <u></u>	TOD ADO	TOD MO	TT -	CHANTED TO
1.	DATA COMPLETENESS	ICP-AES	ICP-MS	Нд _ О	CYANIDE
2.	HOLDING TIMES		0	02	
3.	CALIBRATIONS		03	_0_	
4.	BLANKS		04		
5.	ICS		ర ^డ		
6.	MATRIX SPIKE		_ 03		
7.	LABORATORY DUPLICATES			0	
8.	FIELD DUPLICATES				
9.	LABORATORY CONTROL SAMPLE			<u> </u>	
10.	LABORATORY FORTIFED BLANK		03	0	
11.	SERIAL DILUTION		03	0	
12.	DETECTION LIMITS				
13.	SAMPLE QUANTITATION		03		
14.	OTHER QC		O	O	· <u>L</u>
15.	OVERALL ASSESSMENT		_0_		<u> </u>
M = Z =	Data had no problems/or qual Data qualified due to a majo Data unacceptable. Problems, but do not affect	r problem		problems.	
		_		_ 0	
	ITEMS: O'- minor incompleters				2
AREAS	OF CONCERN:				
	·				
NOTABL	E PERFORMANCE:	·			

Table Ia

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site Case 0247M, SDG D05640-IB

Sediment Samples

Analyte	Action	Analyte	Action
aluminum	J ²	magnesium	J ²
antimony	J ⁵ J ⁸ J ¹²	manganese	J ₂
arsenic	J ⁵	mercury	J¹ J¹4
barium	J ₁₀ J ₁₃	nickel	J ₂
beryllium	A	potassium	J ⁴ J ⁹
cadmium	1,	selenium	J ⁶ J ¹²
calcium	J ⁴ J ⁹	silver	J ₃ J ₂ J ₃
chromium	J ⁵ J ⁷ J ¹¹	sodium	J ¹²
cobalt	J ⁵ J ¹³	thallium	A ¹ J ⁵ J ⁹ J ¹²
copper	A¹ J⁵	vanadium	J ⁵
iron	A	zinc	l ₂ l ₁₃ .
lead	J ⁵		

A	-	Accept all data.
A ^I	-	Qualify the positive results for copper in samples D05651 and D05652 and for thallium in sample D05644 as nondetect (U) at the reported concentration due to laboratory blank contamination.
\mathbf{J}_{l}	-	Qualify the positive results for mercury in samples D05640, D05641, D05644, D05645, D05647, D05649, D05650, D05651, D05652, D05653, D05656, D05657, and D05660 as estimated (J) due to holding time exceedances.
J^2	-	Qualify the positive results for aluminum and magnesium in samples D05638, D05639, D05642, and D05643 as estimated (J) due to continuing calibration standard recovery exceedances.
J ³	-	Qualify the positive result for silver in sample D05657 as estimated (J) due to continuing calibration standard recovery exceedance.
J ⁴	- '	Qualify the positive results for calcium and potassium in sample D05657 as estimated (J) due to internal standard recovery exceedances.
J ⁵	-	Qualify as estimated (J and UJ, respectively) the positive and blank-qualified results for arsenic, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in all samples except D05646 due to positive interferences seen in the ICSA solution analyses.

interferences seen in the ICSA solution analyses.

Qualify as estimated (J) the positive results for selenium in all sediment samples due to negative

 J^6

J^{7}	-	Qualify the positive results for chromium and silver in all sediment samples as estimated (J) due to high matrix spike recovery.					
J ⁸	-	Qualify the positive and nondetect results for antimony in all sediment samples as estimated (J and UJ, respectively) due to low matrix spike recovery.					
J ⁹	-	Qualify the positive and blank-qualified results for calcium, potassium, and thallium in all sediment samples as estimated (J and UJ, respectively) due to serial dilution imprecision.					
J ¹⁰		Qualify the positive results for barium in all sediment samples as estimated (J) due to low recovery in the PE sample.					
J ¹¹	-	Qualify the positive result for chromium in sample D05640 as estimated (J) due to linear range exceedance.					
J ^{t2}		Qualify the positive and blank-qualified results for the following samples and analytes as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL:					
		antimony: D05638, D05643, D05657, D05658 selenium: D05646, D05647, D05652, D05657, D05658 sodium: D05640, D05649, D05656, D05660 thallium: D05638, D05641, D05643, D05644, D05646, D05647, D05651, D05652, D05657, D05658					
J ¹³	-	Qualify the positive results for barium, cobalt, and zinc in all sediment samples as estimated (J) due to field duplicate imprecision.					
J ¹⁴	-	Qualify the positive result for mercury in sample D05643 as estimated (J) due to low solids content.					

Table Ib

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site Case 0247M, SDG D05640-IB

Aqueous QC Sample

Analyte	Action	Analyte	Action
aluminum	۸ ^۱ یا آو	magnesium	A¹ J ⁶
antimony	. J ³	manganese	A
arsenic	A	mercury	A
barium	A	nickel	A¹ J⁴ J6
beryllium	A	potassium	A
cadmium	A	selenium	J³ J⁵
calcium	A ¹ J ⁶	silver	A
chromium	A	sodium	A ^t J ⁶
cobalt	J^2	thallium	A ¹ J ⁴ J ⁶
copper	A1 J4 J6	vanadium	· A
iron	Α .	zinc	A
lead	A ¹ J ⁴ J ⁶		

A -	Accept all data.
-----	------------------

- A¹ Qualify the positive results for aluminum, calcium, copper, lead, magnesium, nickel, sodium, and thallium in sample D05661 as nondetect (U) at the reported concentration due to method or instrument blank contamination.
- J¹ Qualify the positive result for aluminum in sample D05661 as estimated (J) due to continuing calibration standard recovery exceedance.
- Qualify the nondetect result for cobalt in sample D05661 as estimated (UJ) due to negative instrument drift.
- J³ Elevate the quantitation limits for antimony and selenium in sample D05661 to the negative blank action level due to negative instrument drift and laboratory blank contamination.
- J⁴ Qualify the blank-qualified results for copper, lead, nickel, and thallium in sample D05661 as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses.
- Qualify the nondetect result for selenium in sample D05661 as estimated (UJ) due to negative interferences in the ICSA solution analyses.
- J⁶ Qualify the blank-qualified results for aluminum, calcium, copper, lead, magnesium, nickel, sodium, and thallium in sample D05661 as estimated (UJ) because they were less than the quantitation limit but greater than the MDL.

Table ∏a

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site

Case 0247M, SDG D05640-IB

Sediment Samples

			Low Co	ncentration Me	tals and Mercury
DQO	Sampling* and/or	Measurement Error		Sampling Variability	Potential Usability
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹⁰ J ¹¹ J ¹²	Refer to qualifications in Table I: J ¹³ J ¹⁴	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for barium, cobalt, and zinc in all sediment samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive mercury results in sediment samples D05640, D05641, D05644, D05645, D05647, D05649, D05650, D05651, D05652, D05653, D05656, D05657, and D05660 were qualified as estimated (J) due to holding time exceedances. These results are usable for project objectives as estimated concentrations with a possible low bias. The positive results for aluminum and magnesium in samples D05638, D05639, D05642, and D05643 were qualified as estimated (J) due to continuing calibration standard recovery exceedances. The results are usable for project objectives as estimated concentrations with a possible high bias.

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Table IIa

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0247M, SDG D05640-IB

Sediment Samples

			Low Co	ncentration Me	tals and Mercury
DQO	Sampling* and/or	Measurement Error		Sampling Variability	Potential Usability Issues
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹⁰ J ¹¹ J ¹²	Refer to qualifications in Table I: J ¹³ J ¹⁴	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive result for silver in sample D05657 was qualified as estimated (J) due to continuing calibration standard recovery exceedances. The result is usable for project objectives as an estimated concentration with a possible low bias. The positive results for copper in samples D05651 and D05652 and for thallium in sample D05644 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. Note that the results for copper and thallium were also qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences. The positive results for selenium in all sediment samples were qualified as estimated (J) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible low bias.

Table IIa

- The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0247M, SDG D05640-IB

Sediment Samples

	Low Concentration Metals and Mercury							
DQO	Sampling* and/or	and/or		Sampling Variability	Potential Usability			
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues			
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹⁰ J ¹¹ J ¹²	Refer to qualifications in Table I: J ¹³ J ¹⁴	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive and blank-qualified results for arsenic, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in all sediment samples except D05646 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias. The positive results for chromium and silver in all sediment samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high. The positive and nondetect results for antimony in all sediment samples were qualified as estimated (J and UJ, respectively) due to low matrix spike recovery. The results are usable for project objectives as estimated values and quantitation limits that may be biased low.			

Table IIa

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0247M, SDG D05640-IB

Sediment Samples

· ·	Low Concentration Metals and Mercury							
DQO	Sampling* and/or	and/or		Sampling Variability	Potential Usability Issues			
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		ISSUES			
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁷ J ⁸ J ⁹ J ¹⁰ J ¹¹ J ¹²	Refer to qualifications in Table I: J ¹³ J ¹⁴	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive and blank-qualified results for calcium, potassium, and thallium in all sediment samples were qualified as estimated (J and UJ, respectively) due to serial dilution imprecision. The results are usable for project objectives as estimated values and quantitation limits with an indeterminate direction of bias. The positive results for barium in all sediment samples were qualified as estimated (J) due to low recoveries in the PE sample. The results are usable for project objectives as estimated values with a possible low bias. The positive result for chromium in sample D05640 was qualified as estimated (J) due to linear range exceedance. This result is usable for project objectives as an estimated concentration. The positive result for mercury in sample D05643 was qualified as estimated (J) due to low solids content. The result is usable for project objectives as an estimated value with an indeterminate direction of bias.			

Table IIa

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Callahan Mining Superfund Site Case 0247M, SDG D05640-IB Sediment Samples

Low Concentration Metals and Mercury DOO Sampling* Measurement Error Sampling Potential Variability and/or Usability Analytical Issues Method Analytical Sampling Appropriate Error Error* Yes or No Minor Impact on Data Usability (Results usable for project To determine Sampling Refer to Refer to Not nature and Method qualifications qualifications applicable objectives): extent of Appropriate in Table I: in Table I: for Tier II The positive and blank-qualified results for the following samples and contamination - yes T13 T14 A^{l} analytes were qualified as estimated (J and UJ, respectively) because they and to support J1 J2 J3 J4 J5 J6 a human Analytical were less than the quantitation limit but greater than the MDL. These J⁷ J⁸ J⁹ J¹⁰ J¹¹ Method results are usable for project objectives as estimated concentrations and health and T12 Appropriate ecological risk quantitation limits. assessment. - yes antimony: D05638, D05643, D05657, D05658 selenium: D05646, D05647, D05652, D05657, D05658 sodium: D05640, D05649, D05656, D05660 thallium: D05638, D05641, D05643, D05644, D05646, D05647, D05651, D05652, D05657, D05658 The positive results for calcium and potassium in sample D05657 were qualified as estimated (J) due to internal standard recovery exceedances. The results are usable for project objectives as estimated values.

Table IIb

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses Callahan Mining Superfund Site Case 0247M, SDG D05640-IB

Aqueous QC Sample

	Low Concentration Metals and Mercury							
DQO .	Sampling* and/or	r		Sampling Variability	Potential Usability Issues			
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		issues			
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ J ¹ J ² J ³ J ⁴ J ⁵ J ⁶	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive result aluminum in sample D05661 was qualified as estimated (J) due to continuing calibration standard recovery exceedances. The result is usable for project objectives as an estimated concentration with a possible high bias. The positive results for aluminum, calcium, copper, lead, magnesium, nickel, sodium, and thallium in sample D05661 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. Note that these results were also qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences. The nondetect result for cobalt in sample D05661 was qualified as estimated (UJ) at the reported MDL due to negative instrument drift. This result is usable for project objectives as an estimated quantitation limit with a possible low bias.			

Table IIb

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

- The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Callahan Mining Superfund Site Case 0247M, SDG D05640-IB Aqueous QC Sample

			Low Co	ncentration Me	tals and Mercury
DQO	Sampling* and/or			Sampling Variability	Potential Usability Issues
	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: At J1 J2 J3 J4 J5 J6	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The nondetect results for antimony and selenium in sample D05661 had quantitation limits elevated to their sample-specific negative blank action levels due to negative instrument drift and blank contamination. These results are usable for project objectives as estimated quantitation limits with a possible low bias. The blank-qualified results for copper, lead, nickel, and thallium in sample D05661 were qualified as estimated (UJ) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated quantitation limits with a possible high bias. Note that these results were also qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences.

Table IIb Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Callahan Mining Superfund Site Case 0247M, SDG D05640-IB Aqueous OC Sample

			Low Co	ncentration Me	etals and Mercury
DQO	Sampling* and/or Analytical Method Appropriate Yes or No	Measurement Error		Sampling Variability	Potential Usability
		Analytical Error	Sampling Error*	**	Issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A! J¹ J² J³ J⁴ J⁵ J⁶	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The nondetect result for selenium in sample D05661 was qualified as estimated (UJ) due to negative interferences seen in the ICSA solution analyses. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. The blank-qualified results for aluminum, calcium, copper, lead, magnesium, nickel, sodium and thallium in the equipment blank sample D05661 were qualified as estimated (UJ) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated quantitation limits.

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

SITE: Callahan Mining Superfund Site

CASE NO.: 0247M SDG NO.: D05640-IB

DATA SUMMARY TABLE INORGANIC ANALYSIS (D-044.2) Sediment (mg/Kg)

				T	1	 	1
T	raffic Report Sample No.	D05638	D05639	D05640	D05641	D05642	D05643
	M&E Sample ID	SD-401	SD-402	SD-403	SD-404	SD-405	SD-406
	Lab Sample ID	0411094-14	0411094-15	0411094-01	0411094-02	0411094-16	0411094-17
	Date Sampled	11/17/04	11/17/04	11/12/04	11/12/04	11/17/04	11/17/04
	% Solids	33.5	60.1	64.6	42.9	39	51.5
	Comments						Freeze-Dried *
Analyte	RL			<u> </u>	<u> </u>	<u> </u>	
Aluminum	4.0	20000	30000 J	24000	27000	28000 J	16000 J
Antimony	0.15	0.18 J	0.79 J	0.68 J	1.1 J	0.88 J	0.065 J
Arsenic	0.20	7.0 J	44 J	54 J	32 J	38 J	6.8 J
3arium	2.0	25 J	17 J	13 J	37 J	17 J	23 J
Be r yllium	0.040	0.70	0.47	0.34	1.0	0.56	0,60
Cadmium	0.010	4.3 J	34 J	25 J	20 J	25 J	2.6 J
Calcium	8.0	1800	33000 J	64000 J	6100 J	8900 J	2500 J
Chromium	1.0	35 J	32 J	21 J	40 J	29 Ј	33 J
Cobalt	2.0	8.7 J	5.1 J	3.3 J	12 J	5.7 J	7.6 J
Copper	1.0	120 J	2300 J	2100 J	2100 J	2000 J	96 J
ron	4.0	19000	27000	24000	31000	29000	20000
ead	0.40	69 J	1200 J	1000 J	380 J	710 J	26 J
Magnesium	10	9300	53000 J	49000	25000	43000 J	9500 J
Manganese	1.0	200 J	1200 J	1600 J	540 J	720 J	210 J
Метсигу	0.010	0.15	0.67	0.70 J	0.24 J	0.48	0.045 J
Vickel	2.0	30 J	15 J	[4 J	36 J	18 J	29 J
Potassium	50	2500 J	3100 J	2400 J	3700 J	3100 J	3400 J
Selenium	1.0	1.6 J	6.1 J	5.0 J	3.4 J	4.9 J	2.3 J
Silver	0.020	0.45 J	5.4 J	4.1 J	2.2 J	3.5 J	0.31 J
Sodium	50	11000	4100	19 J	2400	6200	37000
Thallium	0.40	0.34 J	1.5 J	1.4 J	0.94 J	1,4 J	0.27 J
Vanadium	1.0	26 J	20 J	17 J	39 J	25 J	31 J
Zine	2.0	820 J	7600 J	6800 J	7800 J	6900 J	430 J

^{* -} Sample D05643 freeze-dried for all metals except mercury.
The solids content was 28.9% prior to freeze-drying.

SITE: Callahan Mining Superfund Site

CASE NO.: 0247M SDG NO.: D05640-IB

DATA SUMMARY TABLE INORGANIC ANALYSIS (D-044.2) Sediment (mg/Kg)

Traf	fic Report Sample No.	D05644	D05645	D05646	D05647	D05649	D05650
	M&E Sample ID	SD-407	SD-408	SD-409	SD-410	SD-412	SD-413
	Lab Sample ID	0411094-03	0411094-04	0411094-18	0411094-05	0411094-06	0411094-07
	Date Sampled	11/11/04	11/11/04	11/18/04	11/11/04	11/12/04	11/11/04
	% Solids	53.5	55.3	63.8	83.3	7 2 .5	65.7
	Comments						
Analyte	_RL	·					
Aluminum	4.0	15000	38000	7800	7500	21000	22000
Antimony	0.15	0.36 J	0.55 J	0.030 UJ	0.095 J	1.3 J	0.99 J
Arsenic	0.20	16 J	17 Ј	4.5 J	7.8 J	85 J	23 J
Barium	2.0	26 J	27 J	11 J	6.2 J	5.9 J	28 J
3eryllium	0.040	0.57	0.64	0.21	0.23	0.27	0.61
Cadmium	0.010	2.6 J	16 J	0.50 J	1.8 J	16 J	30 J
Calcium	8.0	2600 J	6200 J	860 J	2200 Ј	70000 J	4400 J
Chromium	1.0	27 J	38 J	17 Ј	16 J	17 J	37 J
Cobalt	2.0	9.2 J	8.8 J	3.8 J	5.0 J	3.9 J	12 J
Copper	1.0	200 J	1500 J	22 J	150 J	1100 J	2600 J
ron	4.0	22000	25000	11000	14000	34000	31000
cad	0.40	120 J	630 J	17 J	27 J	560 J	720 J
Magnesium	10	10000	62000	4100	5400 -	38000	19000
Manganese	1.0	300 J	900 J	93 J	210 J	1400 J	530 J
Mercury	0.010	0.12 J	0.44 J	0.021	0.039 J	0.79 J	0.74 J
Nickel	2.0	26 J	32 J	13 J	15 J	16 J	39 J
otassium	50	3000 J	3700 J	1300 J	770 J	1400 J	3000 J
Selenium	1.0	1.0 J	1.8 J	0.56 J	0.24 J	6.4 J	2.7 J
Silver	0.020	0.72 J	3.6 J	0.16 J	0.22 Ј	3.2 J	3.0 J
Sodium	50	9100	7700	6000	2100	21 J	5000
Thallium .	0.40	0.32 UJ	0.83 J	0.12 J	0.087 J	2.1 J	0.45 J
Vanadium	1.0	29 J	34 J	18 J	14 J	12 J	31 J
Zinc	2.0	810 J	40000 J	130 J	480 J	3800 J	8100 J

SITE: Callahan Mining Superfund Site CASE NO.: 0247M

SDG NO.: D05640-IB

DATA SUMMARY TABLE INORGANIC ANALYSIS (D-044.2) Sediment (mg/Kg)

	Traffic Report Sample No.	D05651	D05652	D05653	D05656	D05657	D05658
	M&E Sample ID	SD-415	SD-416	SD-417	SD-422	SD-423	SD-424
	Lab Sample ID	0411094-08	0411094-09	0411094-10	0411094-11	0411094-12	0411094-19
	Date Sampled	11/11/04	11/11/04	11/11/04	11/12/04	11/11/04	11/18/04
	% Solids	42.5	60.4	74.4	59.5	42	77.2
	Comments				FD of D05660		
Analyte	RL						
Muminum	4.0	17000	19000	16000	35000	22000	5400
Antimony	0.15	0.47 J	0.31 J	1.0 J	0.78 J	0.17 J	0.056 J
Arsenic	0.20	23 J	18 J	37 J	64 J	15 J	4.4 J
3arium	2.0	21 J	24 J	8.9 J	5.0 J	59 J	4.4 J
Beryllium	0.040	0.67	0.63	0.34	1.3	0.74	0.18
Cadmium	0.010	19 J	9.0 J	41 J	32 J	1.8 J	0.67 J
Calcium	8.0	2700 J	2200 J	11000 J	32000 J	2700 J	760 J
Chromium	1.0	33 J	29 J	33 J	18 J	39 J	10 J
Cobalt	2.0	11 J	10 J	12 J	8.1 J	9.2 J	3.2 J
Соррег	1.0	740 UJ	420 UJ	2400 J	10000 J	75 J	140 J
ron	4.0	23000	24000	20000	35000	26000	8400
ead	0.40	230 J	200 J	280 J	930 J	50 J	28 J
Magnesium	10	14000	13000	22000	56000	8200	3300
vianganese	1.0	290 J	360 J	470 J	1500 J	240 J	120 J
viercury	0.010	0.21 J	0.19 J	0.59 J	0.52 J	0.091 J	0.073
Nickel	2.0	29 J	31 J	33 J	28 J	41 J	8.7 J
otassium	50	3000 J	2600 J	1400 J	1800 J	2600 Ј	490 J
Selenium	1.0	2.2 Ј	0.83 J	2.1 J	6.9 J	1.1 J	0.27 J
Silver	0.020	1.4 J	0.92 J	1.9 J	3.0 J	0.45 J	0.19 J
lodium	50	14000	6200	3400	37 J	900	3200
Challium	0.40	0.41 J	0.28 J	0.49 J	1.4 J	0.23 J	0.077 J
/anadium	1.0	33 J	30 J	23 J	17 J	40 J	11 J
Zinc	2.0	31000 J	18000 J	12000 J	16000 J	720 J	220 J

SITE: Callahan Mining Superfund Site CASE NO.: 0247M

CASE NO.: 0247M SDG NO.: D05640-IB DATA SUMMARY TABLE INORGANIC ANALYSIS (D-044.2) Sediment (mg/Kg)

	20 6	C. D C I. No.	D05660
1	Iran	ic Report Sample No.	
[M&E Sample ID	1
ļ		Lab Sample ID	0411094-13
ľ		Date Sampled	11/12/04
Ì		% Solids	60.4
Í		Comments	FD of D05656
	Analyte	RL	
Aluminum		4.0	33000
Antimony		0.15	0.80 J
Arsenic		0.20	60 J
Barium		2.0	9.7 J
Beryllium		0.040	1.3
Cadmium	•	0.010	29 J
Calcium		8.0	27000 J
Chromium		1.0	16 J
Cobalt		2.0	17 J
Соррег		1.0	9200 J
Iron		4.0	33000
Lead		0.40	830 J
Magnesium		10	54000
Manganese		1.Ò	2100 J
Mercury		0.010	0.47 J
Nickel		2.0	27 J
Potassium		50	1600 J
Selenium		1.0	6.6 J
Silver		0.020	3.0 J
Sodium		50	31 J
Thallium		0.40	1.3 J
Vanadium		1.0	16 J
Zinc		2.0	8800 J

SITE: Callaban Mining Superfund Site

CASE NO.: 0247M SDG NO.: D05640-IB DATA SUMMARY TABLE INORGANIC ANALYSIS (D-044.2) Aqueous QC Sample (ug/L)

	Traffic Report Sample No.	D05661
	M&E Sample ID	RB-001
	Lab Sample ID	0411094-20
	Date Sampled	11/18/04
	Comments	Equipment Blank
Anal	yte RL	
Aluminum	40.0	5.0 UJ
Antimony	1.5	0.28 U
Arsenic	2.0	0.13 U
Barium	20.0	0.14 U
Beryllium	0.40	0.20 U
Cadmium	0.10	0.098 U
Calcium	80.0	22 UJ
Chromium	10.0	0.18 U
Cobalt	20.0	0.038 UJ
Соррет	10.0	0.43 UJ
Iron	40.0	18 U
Lead	4.0	0.19 UJ
Magnesium	100	2.0 UJ
Manganese	10.0	4.1 Ü
Mercury	0.10	0.008 U
Nickel	· 20.0	0.10 UJ
Potassium	500	30 U
Selenium	10.0	0.91 UJ
Silver	0.20	0.12 U
Sodium	500	32 UJ
Thallium	4.0	0.038 UJ
Vanadium	10.0	0.15 U
Zinc	20.0	5.3 U

DATA SUMMARY TABLE DEFINITIONS (Inorganics)

- EB As a qualifier for soil/sediment samples: Analyte is also detected in the equipment blank
- FD Field Duplicate
- g gram
 J The concentration is an estimated quantity
 mg/Kg milligrams per Kilogram
- - R The data are rejected as unusable
 - RL Reporting Limit
 - U Analyte was analyzed for but not detected at the specified reporting limit
- ug/L micrograms per Liter
- UJ The sample quantitation limit is an estimated quantity
- NA Not Applicable

701 Edgewater Drive Wakefield, MA 01880

Tel: 781-246-5200 Fax: 781-245-6293 www.m-e.com

036.200100.0061.00005

March 21, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, Massachusetts 01863-2431

Re: Work Assignment No. 161-RICO-017H

Case 0247M, SDG D05648-IB

Woods Hole Group, Raynham, Massachusetts

Callahan Mining Superfund Site, Brooksville, Maine

Tier II Inorganic Data Validation

Low Concentration Metals and Mercury:

6/Sediment Samples/D05648, D05654,

D05655, D05659, D05706, D05707

(Field Duplicate Pair: D05654 and D05659)

1/Aqueous Equipment Blank/D05662 1/Performance Evaluation Sample/D05664

Dear Ms. Clark:

A Tier II data validation was performed by Metcalf & Eddy, Inc. (M&E) on the low concentration metals and mercury analytical data for six sediment samples (including one field duplicate pair), one performance evaluation (PE) sample, and one equipment blank sample collected from the Callahan Mining Superfund Site, located in Brooksville, Maine, by TRC on December 3, 2004. The samples were analyzed through the Response Action Contract (RAC) Delivery of Analytical Services (DAS) program using M&E DAS Analytical Specification for the Analysis of Low Concentration Metals Including Cyanide in Solid Samples (Including Samples with High Moisture Content (D-044.2), based on EPA methodology. M&E evaluated these data using the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, February 1989 criteria, modified for the methods and incorporating organic data validation guidance, Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria. Additional guidance was provided by Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004.

The Tier II metals data validation was based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- Preservation and Technical Holding Times
- * Instrument Calibration
- ICP-MS Internal Standards
- * ICP-MS Tuning, Mass Calibration, and Resolution Check
 - Blanks
 - Inductively Coupled Plasma Interference Check Sample
 - Matrix Spike
- Laboratory Duplicate
 - Field Duplicates
- NA Furnace Atomic Absorption Analysis
 - Inductively Coupled Plasma Serial Dilution
- Laboratory Fortified Blank
- Instrument Detection Limits
 - Sample Quantitation Results
 - Performance Evaluation Sample / Accuracy Check
- * all criteria met for this parameter

NA - parameter not applicable

Note: Worksheets are not included for parameters that have met criteria or for criteria that are not applicable to a Tier II data validation.

Copies of the field sampling notes for this sample delivery group (SDG) are included with this Data Validation Memorandum.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site DQOs and potential usability issues

Data Summary Tables - summarizes accepted, qualified, and rejected data

Overall Evaluation of Data and Potential Usability Issues

The following is a summary of the site DQOs (Data Quality Objectives):

• To determine nature and extent of contamination and to support a human health and ecological risk assessment.

The low concentration metals and mercury sample results were qualified as a result of sampling and analytical error. Qualifications as a result of sampling error are summarized below:

- The positive results for barium, chromium, manganese, and nickel in all sediment samples were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The results are usable for project objectives. These qualifications have a minor impact on data usability.
- The positive results for calcium and copper in all sediment samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive result for mercury in sample D05655 was qualified as estimated (J) due to low solids content. The result is usable for project objectives as an estimated value with an indeterminate direction of bias. This qualification has a minor impact on the data usability.

Qualifications as a result of analytical error are summarized below:

- The positive results for aluminum, calcium, copper, lead, magnesium, sodium, and zinc in sample D05662 were qualified as nondetect (U) at the reported concentration due to method blank contamination. These results are usable for project objectives as nondetect results. This qualification has a minor impact on data usability. Note that these results were also qualified as estimated (J) because the concentrations were less than the reporting but greater than the method detection limit (MDL). Therefore, the overall qualification for these analytes is estimated nondetect (UJ).
- The nondetect results for antimony in samples D05706 and D05707 and cobalt in sample D05662 were qualified as estimated (UJ) at the reported MDL due to negative instrument drift. These results are usable for project objectives as estimated quantitation limits with a possible low bias. This qualification has a minor impact on data usability.
- The nondetect results for antimony and selenium in sample D05662 were elevated
 to their sample-specific negative blank action levels due to negative instrument drift
 and blank contamination. These results are usable for project objectives with elevated
 quantitation limits. This qualification has a minor impact on data usability.
- The positive results for arsenic, beryllium, cadmium, chromium, cobalt, copper, lead,

manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in samples D05648, D05654, D05655, and D05659 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias. This qualification has a minor impact on data usability.

- The positive and blank-qualified results for chromium, copper, lead, nickel, and zinc in sample D05662 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias. This qualification has a minor impact on data usability. Note that the results for copper, lead, and zinc were also qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. Therefore, the overall qualification for these analytes is estimated nondetect (UJ) due to blank contamination and ICSA interferences.
- The positive and nondetect results for selenium in all sediment samples and sample D05662 were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias. This qualification has a minor impact on data usability.
- The positive results for arsenic, cadmium, chromium, lead, and zinc in all sediment samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high. This qualification has a minor impact on the data usability.
- The positive and nondetect results for antimony in all sediment samples were qualified as estimated (J and UJ, respectively) due to low matrix spike recovery. The results are usable for project objectives as estimated values and quantitation limits that may be biased low. This qualification has a minor impact on the data usability.
- The positive results for calcium in all sediment samples were qualified as estimated (J) due to laboratory duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.

- The positive results for cadmium, mercury, potassium, selenium, and thallium in all sediment samples were qualified as estimated (J) due to serial dilution imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. This qualification has a minor impact on the data usability.
- The positive results for the following samples and analytes were qualified as estimated (J) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations. This qualification has a minor impact on the data usability.

selenium: D05654, D05659, D05706, D05707

thallium: D05648, D05654, D05659, D05706, D05707

• The positive and blank-qualified results for aluminum, barium, calcium, chromium, copper, lead, magnesium, manganese, nickel, sodium, and zinc in sample D05662 were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits. This qualification has a minor impact on the data usability.

Data Completeness

The laboratory was contacted on March 15, 2005 concerning the following:

- 1. The chromium result for sample D05654 is incorrectly reported on Form I.
- 2. There is an un-numbered page between 15 and 16. The validator manually numbered it as page 15a.

The laboratory provided an acceptable response and resubmitted data on March 16, 2005.

Preservation and Technical Holding Times

Note that because of its high moisture content, sample D05655 was freeze-dried prior to preparation for metals analysis. Due to holding time considerations, the sample aliquot used for mercury analysis was not freeze-dried. No further validation action was taken.

Blanks

The following table summarizes the blank contamination detected in the laboratory blanks associated with the sediment samples. If a contaminant was detected in more than one blank, the highest

concentration was used to qualify associated sample results and is summarized below. The nominal Blank Action Levels (BAL) from the method blank were calculated based on a 1gm sample weight (dry), 50mL final volume, and two-fold dilution. The nominal BALs from instrument blanks were based on a 1gm sample weight (dry) and 50mL final volume. Sample-specific BALs are further adjusted for actual sample weights, moisture content, and any additional dilutions.

Analyte	Blank Type	Maximum Blank Concentration	Nominal Blank Action Level (BAL) mg/Kg	Action/Samples Affected
aluminum	mb	0.38 mg/Kg	1.9	No action; all results greater than BAL
antimony	inst	-0.39 µg/L	0.20	Qualify the nondetect results as estimated (UJ) in samples D05706 and D05707
arsenic	inst	0.065 µg/L	0.032	No action; all results greater than BAL
barium	mb	0.024 mg/Kg	0.12	No action; all results greater than BAL
cadmium	mb	0.0062 mg/Kg	0.031	No action; all results greater than BAL
chromium	mb	0.021 mg/Kg	0.10	No action; all results greater than BAL
	inst	-0.13 μg/L	0.065	
cobalt	inst	-0.030 μg/L	0.015	No action; all results greater than BAL
copper	inst	0.73 μg/L	3.6	No action; all results greater than BAL
	inst	-0.17 μg/L	0.085	
iron	mb	2.0 mg/Kg	10.0	No action; all results greater than BAL
	inst	-9.5 μg/L	4.8	
lead	mb	0,0095 mg/Kg	0.048	No action; all results greater than BAL
magnesium	mb	0.4 mg/Kg	2.0	No action; all results greater than BAL
nickel	inst	-0.47 μg/L	0.24	No action; all results greater than BAL
potassium	mb	4.0 mg/Kg	20	No action; all results greater than BAL
	inst	-45 μg/L	22	
selenium	inst	0.67 μg/L	0.34	No action; all results greater than BAL
sodium	mb	2.1 mg/Kg	10.5	No action; all results greater than BAL
thallium	mb	0.011 mg/Kg	0.055	No action; all results greater than BAL
vanadium	mb	0.032 mg/Kg	0.16	No action; all results greater than BAL

Analyte	Blank Type	Maximum Blank Concentration	Nominal Blank Action Level (BAL) mg/Kg	Action/Samples Affected
zinc	mb	0.41 mg/Kg	2.0	No action; all results greater than BAL

inst - instrument blank (i.e., ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample result was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the
 reported concentration.
- If the sample result was > positive BAL, qualification of the data was not required.

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J).
- If the sample result was nondetect, the MDL was qualified as estimated (UJ).
- If the sample result was > MDL and > negative BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required.

The following table summarizes the blank contamination detected in the laboratory blanks associated with the aqueous equipment blank sample. If a contaminant was detected in more than one blank, the highest concentration was used to qualify associated sample results and is summarized below. Maximum blank concentrations from instrument blanks were also adjusted for sample dilutions.

Analyte	Blank Type	Maximum Blank Concentration µg/L	Blank Action Level (BAL) µg/L	Action/Samples Affected
aluminum	mb	69	345	Qualify positive result nondetect (U) at reported concentration in sample D05662
antimony	inst	0.018	0.18	Elevate the reported MDL to the negative
	inst	-0.028	0.28	BAL in sample D05662
calcium	mb	28	140	Qualify positive result nondetect (U) at reported concentration in sample D05662
cobalt	inst	-0.032	0.32	Qualify nondetect result estimated (UJ) at reported MDL in sample D05662
copper	mb	1.4	7.0	Qualify positive result nondetect (U) at reported concentration in sample D05662
iron	mb	100	500	No action; nondetect in sample
lead	mb	1.6	8.0	Qualify positive result nondetect (U) at reported concentration in sample D05662
magnesium	mb	100	500	Qualify positive result nondetect (U) at reported concentration in sample D05662
nickel	mb	0.08	0.40	No action; result above BAL
potassium	mb	39	195	No action; nondetect in sample
selenium	inst	0.1	1.0	Elevate the reported MDL to the negative
	inst	-0.091	0.91	BAL in sample D05662
sodium	mb	12	60	Qualify positive result nondetect (U) at reported concentration in sample D05662
thallium	inst	0.035	0.35	No action; nondetect in sample
vanadium	inst	0.19	1.9	No action; nondetect in sample
zinc	mb	7.4	37	Qualify positive result nondetect (U) at reported concentration in sample D05662

inst - instrument blank (i.e. ICB or CCB)

mb - method blank

For positive blank contamination, sample results were qualified as follows:

- If the sample result was nondetect, qualification of the data was not required.
- If the sample result was > MDL and ≤ positive BAL, the result was qualified as a nondetect (U) at the reported concentration.

• If the sample result was > positive BAL, qualification of the data was not required.

For negative blank contamination, sample results were qualified as follows:

- If the sample result was positive and ≤ negative BAL, the result was qualified as estimated (J).
- If the sample result was nondetect, the MDL was qualified as estimated (UJ).
- If the sample result was > MDL and > negative BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is < the positive BAL, sample results were qualified as follows:

- If the sample result was >MDL and > negative BAL but ≤ positive BAL, the result was qualified as nondetect (U) at the reported concentration.
- If the sample result was > MDL and < negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > positive BAL, qualification of the data was not required.

For positive and negative blank contamination where the negative BAL is > the positive BAL, sample results were qualified as follows:

- If the sample result was > MDL but ≤ negative BAL, the result was qualified as nondetect (U) at the negative BAL.
- If the sample result was nondetect, elevate the MDL to the negative BAL.
- If the sample result was > negative BAL, qualification of the data was not required

The following table summarizes the level of blank contamination detected in the equipment blank associated with the surface sediment samples.

Analyte	Blank Concentration (μg/L)	Action/Samples Affected
aluminum	7.2	No action; result qualified as nondetect (U) after blank actions.
barium	0.21	Qualify all sediment samples (EB).
calcium	18	No action; result qualified as nondetect (U) after blank actions.
chromium	0.32	Qualify all sediment samples (EB).
copper	0.59	No action; result qualified as nondetect (U) after blank actions.
lead	0.35	No action; result qualified as nondetect (U) after blank actions.
magnesium	4.6	No action; result qualified as nondetect (U) after blank actions.
manganese	7.0	Qualify all sediment samples (EB).
nickel	0.64	Qualify all sediment samples (EB).
sodium	. 39	No action; result qualified as nondetect (U) after blank actions.
zinc	8.1	No action; result qualified as nondetect (U) after blank actions.

Inductively Coupled Plasma Interference Check Sample

Positive results for antimony, arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc were reported in the ICSA solution analyses at concentrations greater than the MDLs. Results for selenium were reported in the ICSA solution at concentrations greater than the negative MDL.

The positive results for arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in samples D05648, D05654, D05655, and D05659 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. The positive and blank-qualified results for chromium, copper, lead, nickel, and zinc in sample D05662 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias.

The positive and nondetect results for selenium in all sediment samples and sample D05662 were qualified as estimated (J and UJ, respectively) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible low bias.

Matrix Spike (MS)

Sample D05706 was analyzed as the matrix spike with this data set. The analytes that did not meet recovery (%R) acceptance criteria of 75-125% and the actions taken are summarized in the table below:

Analyte	Spiked Sample Result (mg/Kg)	Sample Result (mg/Kg)	Spike Added (mg/Kg)	MS %R	Affected Samples/Action
antimony	0.53	0.041 U	1.6	33	Qualify as estimated (J and UJ, respectively) the positive and nondetect results in all sediment samples.
arsenic	10	6.5	2.0	196	Qualify as estimated (J) the positive results in all sediment samples.
cadmium	0.49	0.34	0.10	148	Qualify as estimated (J) the positive results in all sediment samples.
chromium	35	22	10	130	Qualify as estimated (J) the positive results in all sediment samples.

Analyte	Spiked Sample Result (mg/Kg)	Sample Result (mg/Kg)	Spike Added (mg/Kg)	MS %R	Affected Samples/Action
lead	18	13	4.0	128	Qualify as estimated (J) the positive results in all sediment samples.
zinc	86	59	20	134	Qualify as estimated (J) the positive results in all sediment samples.

Laboratory Duplicates

Sample D05706 was analyzed as a laboratory duplicate in association with this data set. The analytes that did not meet the relative percent difference (RPD) criterion of <35% for analytes greater than 5x reporting limit or the absolute difference criterion of 2x reporting limit for those less than <5x reporting limit, and the actions taken are summarized in the following table:

Analyte	Sample Result (mg/Kg)	Duplicate Result (mg/Kg)	%RPD	Actions
calcium	3100	6600	73	Qualify as estimated (J) the positive calcium results in all samples.

Field Duplicates

Samples D05654 and D05659 were the field duplicate pair analyzed in association with this data set. The analytes that did not meet the RPD criterion of <50% for analytes greater than 5x reporting limit or the absolute difference criterion of <4x reporting limit for those less than <5x reporting limit, and the actions taken are summarized in the following table:

Analyte	D05654 (mg/Kg)	D05659 (mg/Kg)	%RPD	Actions
calcium	5000	1700	99	Qualify as estimated (J) the positive calcium results in all samples.
copper	100	370	115	Qualify as estimated (J) the positive copper results in all samples.
selenium	0.70	0.37	62	No action; both results <4x reporting limit

Inductively Coupled Plasma Serial Dilution

An ICP serial dilution analysis was performed on sample D05706. The analytes that did not meet

the percent difference (%D) validation criterion of 15% for results greater than 50x the MDL and the actions taken are summarized in the following table:

Analyte	50x MDL (mg/Kg)	Sample (mg/Kg)	Serial Dilution (mg/Kg)	%D	Actions
cadmium	0.08	0.34	0.48	40	Qualify as estimated (J) the positive results in all samples.
potassium	14	2200	2600	18	Qualify as estimated (J) the positive results in all samples.
selenium	0.21	0.76	0.91	19	Qualify as estimated (J) the positive results in all samples.
thallium	0.06	0.15	0.18	23	Qualify as estimated (J) the positive results in all samples.

A serial dilution determination was also performed on sample D05706 for mercury. The %D for this analysis (18%) exceeded the validation criterion of 15% for results greater than 50x the MDL. Although this analysis is not required under the DAS specification, the results were evaluated as an indication of possible matrix interferences. Professional judgment was used to estimate (J) the positive results for mercury in all sediment samples due to serial dilution imprecision.

Sample Quantitation Results

The positive results for the following sediment samples and analytes were qualified as estimated (J) because they were less than the quantitation limit but greater than the MDL.

selenium:

D05654, D05659, D05706, D05707

thallium:

D05648, D05654, D05659, D05706, D05707

The positive and blank-qualified results for aluminum, barium, calcium, chromium, copper, lead, magnesium, manganese, nickel, sodium and zinc in the equipment blank sample D05662 were qualified by the laboratory as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL.

The positive result for mercury in sample D05655 was qualified as estimated (J) due to the low solids content of the sample (<30%).

Performance Evaluation Sample/Accuracy Check

Performance Evaluation Sample

The metals and mercury PE sample D05664 (EPA ampule number MS01661) was evaluated with this SDG. Fourteen analytes were scored "Within Limits" and nine analytes were scored "Not Evaluated." No validation action was necessary on the basis of these results.

Laboratory Control Sample

The recoveries for all analytes in the sediment and aqueous LCS were acceptable. No validation actions were required.

Please contact Ms. Constance Lapite at (781) 224-6628 or at <u>constance.lapite@m-e.com</u> if you have any questions regarding this Tier II validation.

Very truly yours,

Richard Purdy Data Validator

00.

Elizabeth Denly

Senior Reviewer

Constance Lapite

RAC Lead Chemist

cc: Leslie McVickar, EPA Remedial Project Manager (Data Validation Memorandum, Data Summary Tables)

✓ Elizabeth Denly, TRC Project Chemist (entire package)

Denise Laferte, M&E Oversight Chemist (Data Validation Memorandum, Data Summary Tables)

Richard Purdy, M&E Data Validation Chemist (entire package)

Callahan Mine Project File, Work Assignment No. 161-RICO-017H

Attachments:

IRDA

Table I: Recommendations Summary Table

Table II: Overall Evaluation of Data

Data Summary Tables

Data Validation Worksheets

PE Score Report(s)

Copy of non-CLP Analytical Methods (M&E DAS Specification D-044.2)

Copies of Telephone Logs/Communications Forms

Supporting Data for Reduced Payment Recommendations (not applicable)

Copies of Field Sampling Notes

Copies of EPA-approved Amendments to QAPjP or SAP (not applicable)

CSF Completeness Evidence Audit (DC-2 Form)

DOO Summary Form

INORGANIC REGIONAL DATA ASSESSMENT

CASE	NO. 0247 M	SITE CALLAND WILLING					
LABOR.	ATORY WOODS HOLE GROUP	_ NO. OF	SAMPLES/				
		MATRIX_	682,11	=8, 1 PE	<u> </u>		
SDG#	D05648 - IB	REVIEWE	R (IF NOT	ESD) Metca	lf & Eddy_		
SOW#	D-044.2 (1cmo4.1)	REVIEWE	R'S NAME F	Richard Pur	dy		
DPO:	ACTION FYI XX	COMPLET	ION DATE	3/16/05	-		
-	DATA ASSI	ESSMENT SU	MMARY				
1.	DATA COMPLETENESS	ICP-AES	ICP-MS	Hg O	CYANIDE		
2.	HOLDING TIMES		0	0			
3.	CALIBRATIONS		0	0			
4.	BLANKS		Oz	0			
5.	ICS		02				
6.	MATRIX SPIKE		_0'	0			
7.	LABORATORY DUPLICATES		0'	_0_			
8.	FIELD DUPLICATES		0'	<u> </u>	·		
9.	LABORATORY CONTROL SAMPLE			<u>0</u>			
10.	LABORATORY FORTIFED BLANK						
11.	SERIAL DILUTION	1	<u>o,</u>	0'	<u> </u>		
12.	DETECTION LIMITS			O			
13.	SAMPLE QUANTITATION		0	0	 		
14.	OTHER QC	<u> </u>	<u> </u>	_0_	 		
15.	OVERALL ASSESSMENT	<u> </u>		_0	<u> </u>		
M = Z =	Data had no problems/or qual Data qualified due to a majo Data unacceptable. Problems, but do not affect	or problem		problems.			
ACTION	I ITEMS: O' - WILDOR EXCEGNO	۵۲ : مع	- MINOR CO	n rau war	ω		
	05 - minas incomple						
AREAS	OF CONCERN:						
NOTABI	LE PERFORMANCE:						

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site Case 0247M, SDG D05648-IB

Sediment Samples

Analyte	Action	Analyte	Action
aluminum	A	magnesium	A
antimony	J1 J2 J5	manganese	$A^1 J^2$
arsenic	J ² J ⁴	mercury	l ₈ l ₁₀
barium	Α¹	nickel	A ¹ J ²
beryllium	J ²	potassium	J ₈
cadmium	J ² J ⁴ J ⁸	selenium	J ³ J ⁸ J ⁹
calcium	J ⁶ J ⁷	silver'	J ² .
chromium	A ^t J ² J ⁴	sodium	'A
cobalt	J^2	thallium	J ² J ⁸ J ⁹
copper	J ² J ⁷	vanadium	J ²
iron	A	zinc	J ² J ⁴
lead	J ² j ⁴		

- A Accept all data.
- A^t Qualify the positive for barium, chromium, manganese, and nickel in all sediment samples as "EB" due to equipment blank contamination.
- Qualify as estimated (UJ) the nondetect results for antimony in samples D05706 and D05707 due to negative instrument drift.
- Qualify as estimated (J) the positive results for arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in samples D05648, D05654, D05655, and D05659 due to positive interferences seen in the ICSA solution analyses.
- Qualify as estimated (J) the positive results for selenium in all sediment samples due to negative interferences seen in the ICSA solution analyses.
- Qualify the positive results for arsenic, cadmium, chromium, lead, and zinc in all sediment samples as estimated (J) due to high matrix spike recovery.
- J⁵ Qualify the positive and nondetect results for antimony in all sediment samples as estimated (I and UI, respectively) due to low matrix spike recovery.
- J⁶ Qualify the positive results for calcium in all sediment samples as estimated (J) due to laboratory duplicate imprecision.

- J⁷ Qualify the positive results for calcium and copper in all sediment samples as estimated (J) due to field duplicate imprecision.
 J⁸ Qualify the positive results for cadmium, mercury, potassium, selenium, and thallium in all sediment samples as estimated (J) due to serial dilution imprecision.
 J⁹ Qualify the positive results for the following samples and analytes as estimated (J) because they were less than the quantitation limit but greater than the MDL.
 selenium: D05654, D05659, D05706, D05707 thallium: D05648, D05654, D05659, D05706, D05707
- J¹⁰ Qualify the positive result for mercury in sample D05655 as estimated (J) due to low solids content.

Table Ib

Recommendation Summary Table for Low Concentration Metals and Mercury Callahan Mining Superfund Site

Case 0247M, SDG D05648-IB Aqueous QC Sample

Analyte	Action	Analyte	Action
aluminum	A ² J ⁴	magnesium	$A^2 J^4$
antimony	Α ^ι	manganese	J ⁴
arsenic	A	mercury	А
barium	J ⁴	nickel	J ² J ⁴
beryllium	A	potassium	A
cadmium	A	selenium	A ¹ J ³
calcium	A ² J ⁴	silver	.A
chromium	J ² J ⁴	sodium	$A^2 J^4$
cobalt	l,	thallium	A
соррег	$A^2 J^2 J^4$	vanadium	A
iron	A	zinc	$A^2 J^2 J^4$
lead	$A^2 J^2 J^4$		

Α	· -	Accep	ŧ	all	data.

- A¹ Elevate the MDL for the nondetect results for antimony and selenium in sample D05662 to the negative blank action level due to negative instrument drift and laboratory blank contamination.
- A² Qualify the positive results for aluminum, calcium, copper, lead, magnesium, sodium, and zinc in sample D05662 as nondetect (U) at the reported concentration due to laboratory blank contamination.
- Qualify the nondetect result for cobalt in sample D05662 as estimated (UJ) due to negative instrument drift.
- J² Qualify the positive and blank-qualified results for chromium, copper, lead, nickel, and zinc in sample D05662 as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses.
- Qualify the nondetect result for selenium in sample D05662 as estimated (UJ) due to negative interferences in the ICSA solution analyses.
- Qualify the positive and blank-qualified results for aluminum, barium, calcium, chromium, copper, lead, magnesium, manganese, nickel, sodium, and zinc in sample D05662 as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0247M, SDG D05648-IB

Sediment Samples

			Low Co	ncentration Me	otals and Mercury
	Sampling* and/or Analytical	Measurement Error		Sampling Variability	Potential Usability Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁸ J ⁹	Refer to qualifications in Table I: A ¹ J ⁷ J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for barium, chromium, manganese, and nickel in all sediment samples were qualified "EB" due to equipment blank contamination. An indeterminate amount of sampling error may have affected these sample results. The results are usable for project objectives. The positive results for calcium and copper in all sediment samples were qualified as estimated (J) due to field duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive results for arsenic, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, silver, thallium, vanadium, and zinc in all sediment samples and for antimony in samples D05648, D05654, D05655, and D05659 were qualified as estimated (J) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible high bias.

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0247M, SDG D05648-IB

Sediment Samples

			Low	Concentration Met	als and Mercury
DQO	Sampling* and/or Analytical	Measurément Error		Sampling Variability	Potential Usability
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁸ J ⁹	Refer to qualifications in Table I: A ¹ J ⁷ J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The nondetect results for antimony in samples D05706 and D05707 were qualified as estimated (UJ) at the reported MDL due to negative instrument drift. These results are usable for project objectives as estimated quantitation limits with a possible low bias. The positive results for selenium in all sediment samples were qualified as estimated (J) due to negative interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations with a possible low bias. The positive results for arsenic, cadmium, chromium, lead, and zinc in all sediment samples were qualified as estimated (J) due to high matrix spike recovery. The results are usable for project objectives as estimated values that may be biased high.

^{*} The evaluation of "sampling error" cannot be completely assessed in data validation.

Metcalf & Eddy, Inc.

^{**} Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site

Case 0247M, SDG D05648-IB

Sediment Samples

			Low Cor	ncentration Me	tals and Mercury
	Sampling* and/or Analytical	Measurement Error		Sampling Variability	Potential Usability Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		155465
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁸ J ⁹	Refer to qualifications in Table I: A ¹ J ⁷ J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive and nondetect results for antimony in all sediment samples were qualified as estimated (J and UJ, respectively) due to low matrix spike recovery. The results are usable for project objectives as estimated values and quantitation limits that may be biased low. The positive results for calcium in all sediment samples were qualified as estimated (J) due to laboratory duplicate imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive result for mercury in sample D05655 was qualified as estimated (J) due to low solids content. The result is usable for project objectives as an estimated value with an indeterminate direction of bias.

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0247M, SDG D05648-IB

Sediment Samples

				Sediment S	
			Low Co	ncentration Me	tals and Mercury
	Sampling* and/or Analytical	Measurer	nent Error	Sampling Variability	Potential Usability Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		155005
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: J ¹ J ² J ³ J ⁴ J ⁵ J ⁶ J ⁸ J ⁹	Refer to qualifications in Table I: A ¹ J ⁷ J ¹⁰	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for cadmium, mercury, potassium, selenium, and thallium in all sediment samples were qualified as estimated (J) due to serial dilution imprecision. The results are usable for project objectives as estimated values with an indeterminate direction of bias. The positive results for the following samples and analytes were qualified as estimated (J) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations. This qualification has a minor impact on the data usability. selenium: D05654, D05659, D05706, D05707 thallium: D05648, D05654, D05659, D05706, D05707

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

Table IIb

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site

Case 0247M, SDG D05648-IB

Aqueous OC Sample

		<u></u>	Low Co	ncentration Me	tals and Mercury
DQO	Sampling* and/or Analytical	Measurer	nent Error	Sampling Variability	Potential Usability
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ² J ¹ J ² J ³ J ⁴	Refer to qualifications in Table I: None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive results for aluminum, calcium, copper, lead, magnesium, sodium, and zinc in sample D05662 were qualified as nondetect (U) at the reported concentration due to laboratory blank contamination. These results are usable for project objectives as nondetect results. The nondetect result for cobalt in sample D05662 was qualified as estimated (UJ) at the reported MDL due to negative instrument drift. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. The nondetect results for antimony and selenium in sample D05662 were elevated to their sample-specific negative blank action levels due to negative instrument drift and blank contamination. These results are usable for project objectives with elevated quantitation limits with a possible low bias.

- The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Table IIb

Overall Evaluation of Data for Low Concentration Metals and Mercury Analyses

Callahan Mining Superfund Site Case 0247M, SDG D05648-IB

Aqueous QC Sample

				ncentration Me	tals and Mercury
DQO	Sampling*	Measurement Епог		Sampling Variability	Potential Usability
,	Analytical Method Appropriate Yes or No	Analytical Error	Sampling Error*		Issues
To determine nature and extent of contamination and to support a human health and ecological risk assessment.	Sampling Method Appropriate - yes Analytical Method Appropriate - yes	Refer to qualifications in Table I: A ¹ A ² J ¹ J ² J ³ J ⁴	Refer to qualifications in Table I; None	Not applicable for Tier II	Minor Impact on Data Usability (Results usable for project objectives): The positive and blank-qualified results for chromium, copper, lead, nickel, and zinc in sample D05662 were qualified as estimated (J and UJ, respectively) due to positive interferences seen in the ICSA solution analyses. These results are usable for project objectives as estimated concentrations and quantitation limits with a possible high bias. The nondetect result for sclenium in sample D05662 was qualified as estimated (UJ) due to negative interferences seen in the ICSA solution analyses. This result is usable for project objectives as an estimated quantitation limit with a possible low bias. The positive and blank-qualified results for aluminum, barium, calcium, chromium, copper, lead, magnesium, manganese, nickel, sodium, and zinc in sample D05662 were qualified as estimated (J and UJ, respectively) because they were less than the quantitation limit but greater than the MDL. These results are usable for project objectives as estimated concentrations and quantitation limits.

- * The evaluation of "sampling error" cannot be completely assessed in data validation.
- ** Sampling variability is not assessed in data validation.

SITE: Callahan Mining Superfund Site

CASE NO.: 0247M SDG NO.: D05648-IB

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Sediment (mg/Kg)

Traffic	Report Sample No.	D05648	D05654	D05655	D05659	D05706	D05707
	M&E Sample ID	SD-411	SD-420	SD-421	SDE-420	SD-425	SD-426
	Lab Sample ID	0412036-01	0412036-02	0412036-09	0412036-04	0412036-07	0412036-08
	Date Sampled	12/03/04	12/03/04	12/03/04	12/03/04	12/03/04	12/03/04
	% Solids	45.0	73.3	86.8	75.3	54.7	59.6
	Comments		FD of D05659	Freeze-Dried *	FD of D05654		
Analyte	RL						
Aluminum	4.0	14000	22000	17000	22000	10000	8600
Antimony	0.15	0.67 J	0.37 J	0.57 J	0.42 J	0.041 UJ	0.035 UJ
Arsenic	0.20	16 J	17 J	23 J	18 J	6.5 J	9.4 J
Barium	2.0	14 EB	30 EB	18 EB	31 EB	16 EB	13 EB
Beryllium	0.040	0.38 J	0.70 J	0.55 J	0.71 J	0.43 J	0.35 J
Cadmium	0.010	10 J	0.80 J	14 J	0.98 J	0.34 J	0.36 J
Calclum	8.0	52000 J	5000 J	3400 J	1700 J	3100 J	26000 J
Chromium	1.0	20 JEB	38 JEB	31 JEB	36 JEB	22 JEB	16 JEB
Cobalt	2.0	5.9 J	15 J	6.1 J	16 J	5.1 J	4.5 J
Copper	1.0	1000 J	100 J	1300 J	370 J	12 J	7.6 J
ron	4.0	21000	37000	26000	37000	16000	16000
Lead	0.40	200 J	1 44 J	240 J	35 J	13 J	12 J
Magnesium	10	17000	9300	21000	9500	5700	6000
Manganese	1,0	310 JEB	760 JEB	400 JEB	800 JEB	190 JEB	200 JEB
Mercury	0.010	0.30 J	0.039 J	0,26 J	0.035 J	0.059 J	0.063 J
Nickel	2.0	18 JEB	42 JEB	18 JEB	40 JEB	18 JEB	14 JEB
Potassium	50	2300 J	3200 J	3200 J	3400 J	2200 J	1700 J
Selenium	1.0	2.4 J	0.70 J	4.2 J	0.37 J	0.76 J	0.90 J
Silver	0.020	1.4 J	0.39 J	1.5 J	0.40 J	0.16 J	0.10 J
Sodlum	50	13000	3400	21000	3200	7400	7900
Thallium	0.40	0.43 J	0.20 J	0.51 J	0.17 J	0.15 J	0.15 J
/anadium	1.0	24 J	34 J	32 J	32 J	22 J	19 J
Zinc	2.0	3100 J	540 J	3500 J	570 J	59 J	49 J

^{* -} Freeze-dried for all metals except mercury

CASE NO.: 0247M SDG NO.: D05648-IB DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Sediment (mg/Kg)

	raffic Report Sample No.	D05648	D05654	D05655	D05659	D05706	D05707
	M&E Sample ID	SD-411	SD-420	SD-421	SDE-420	\$D-425	\$D-426
	Lab Sample ID	0412036-01	0412036-02	0412036-09	0412036-04	0412036-07	0412036-08
	Date Sampled	12/03/04	12/03/04	12/03/04	12/03/04	12/03/04	12/03/04
	% Solids	45.0	73.3	86.8	75.3	54.7	59.6
	Comments		FD of D05659	Freeze-Dried *	FD of D05654	}	
Analyte	RL ·				<u> </u>		
Aluminum	4.0	14000	22000	17000	22000	10000	8600
Antimony	0.15	0.67 J	0.37 J	0.57 J	0.42 J	0.041 UJ	0. 0 35 UJ
Arsenic	0.20	16 J	17 J .	23 J	18 J	6.5 J	9.4 J
Barium	2.0	14 EB	30 EB	18 EB	31 EB	16 EB	13 EB
Beryllium	0.040	0.38 J	0.70 J	0.55 J	0.71 J	0.43 J	0.35 J
Cadmium	0.010	10 J	0.80 J	14 J	0.98 J	0.34 J	0.36 J
Calcium	8.0	52000 J	5000 J	3400 J	1700 J	3100 J	26000 J
Chromium	1.0	20 JEB	38 JEB	31 JEB	36 JEB	22 JEB	16 JEB
Cobalt	2.0	5.9 J	15 J	6.1 J	16 J	5.1 J	4.5 J
Copper	1.0	1000 J	100 J	1300 J	370 J	12 J	7.6 J
ron	4.0	21000	37000	26000	37000	16000	16000
Lead	0.40	200 J	44 J	240 J	35 J	13 J	12 J
Magnesium	10	17000	9300	21000	9500	5700	6000
Manganese	1.0	310 JEB	760 JEB	400 JEB	800 JEB	190 JEB	200 JEB
Метсигу	0.010	0.30 J	0.039 J	0.26 J	0.035 J	0.059 J	0.063 J
Nickel	2.0	18 JEB	42 JEB	18 JEB	40 JEB	18 JEB	14 JEB
Potassium	50	2300 Ј	3200 J	3200 J	3400 J	2200 Ј	1700 J
Selenium	1.0	2.4 J	0.70 J	4.2 J	0.37 J	0.76 J	0.90 J
Silver	0.020	1.4 J	0.39 J	1.5 J	0.40 J	0.16 J	0.10 J
Sodium	50	13000	3400	21000	3200	7400	7900
Thallium .	0.40	0.43 J	0.20 Л	0.51 J	0.17 J	0.15 J	0.15 J
Vanadium	0.1	24 J	34 J	32 J	32 J	22 J	19 J
Zinc	2.0	3100 J	540 J	3500 J	570 J	59 J	49 J

Freeze-dried for all metals except mercury.
 The solids content was 29.9% prior to freeze-drying.

SITE: Callaban Mining Superfund Site

CASE NO.: 0247M SDG NO.: D05648-IB

Traffic Report Sample No. D05662 M&E Sample ID RB-002 Lab Sample ID 0412036-05 Date Sampled 12/03/04 25 mL Mass/Volume of Sample Comments Equipment Blank. Analyte RL40.0 7.2 UJ Aluminum Antimony 0.28 U 1.5 Arsenic 0.13 U 2.0 Barium 20.0 0.21 J Beryllium 0.40 0.20 U Cadmium 0.098 U 0.10 Calcium 18 UJ 80.0 Chromium 10.0 0.32 J Cobalt 20.0 0.038 UJ Copper 10.0 0.59 UJ Iron 40.0 18 U Lead 4.0 0.35 UJ Magnesium 4.6 UJ 100 Manganese 10.0 7.0 J Mercury 0.10 0.008 U Nickel 20.0 0.64 J Potassium 500 30 U Selenium 10.0 0.91 UJ Silver 0.20 0.12 U Sodium 500 39 UJ Thallium 4.0 0.026 U 0.15 U Vanadium 10.0 Zinc 20.0 8.1 UJ

DATA SUMMARY TABLE Inorganic Analysis (D-044.2) Aqueous QC Sample (ug/L)

DATA SUMMARY TABLE DEFINITIONS (Inorganics)

- EB As a qualifier for soil/sediment samples: Analyte is also detected in the equipment blank
- FD Field Duplicate
- g gram
- J The concentration is an estimated quantity
- mg/Kg milligrams per Kilogram
 - R The data are rejected as unusable
 - RL Reporting Limit
 - U Analyte was analyzed for but not detected at the specified reporting limit
- ug/L micrograms per Liter
- UJ The sample quantitation limit is an estimated quantity
- NA Not Applicable

March 1, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, MA 01863-2431

Subject:

Work Assignment No. 161-RICO-017H

Case No. 0247M, SDG D05640_IA

Southwest Research Institute, San Antonio, TX Callahan Mining Superfund Site, Brooksville, ME

Tier II Inorganic Data Validation

TCO: 19/Sediments/ D05638, D05639, D05640, D05641, D05642, D05643,

D05644, D05645, D05646, D05647, D05649, D05650, D05651, D05652, D05653, D05656, D05657, D05658,

D05660

(Field duplicate pair: D05656/D05660)

Dear Ms. Clark:

A Tier II validation, in accordance with the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, June 13, 1988 criteria, and incorporating Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, as deemed appropriate, was performed on the inorganic analytical data for 19 sediment samples collected by TRC Environmental Corporation on November 11, 12, 17, and 18, 2004 from the Callahan Mining Superfund Site in Brooksville, ME. All samples were analyzed for total combustible organics (TCO) under the Metcalf & Eddy Remedial Action Contract Delivery of Analytical Services (DAS) program using Metcalf & Eddy's DAS Specification, D-005.1, Analytical Specification for the Analysis of Total Organic Carbon, Total Combustible Organics, Grain Size, Moisture Content, and pH in Soil, Sediment, and Solids, June 2001.

In accordance with the EPA-approved project plans for the site, Tier II validation was performed on all samples in this sample delivery group (SDG). The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
 - Holding Times and Sample Preservation
- Instrument Calibration

- Blanks
- NA ICP Interference Check Sample Results
- NA Matrix Spike (MS) Results
 - Laboratory Duplicate Results
- Field Duplicate Results
- Laboratory Control Sample (LCS) Results
- Laboratory Fortified Blank Sample (LFB) Results
- NA Furnace Atomic Absorption Results
- NA ICP Serial Dilution Results
- Detection Limit Results
- NA Sample Quantitation Results
 - Accuracy Check/PE Samples
- * All criteria were met for this parameter.

Note: Worksheets are not included for parameters that have met criteria or parameters that are not applicable (NA) to the method or to Tier II validation.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site data quality objectives (DQOs) and potential usability issues

Data Summary Tables - summarize accepted, qualified, and rejected data based on the Tier II data validation review.

Overall Evaluation of Data and Potential Usability Issues

 To determine the nature and extent of contamination and to support a human health risk assessment.

All results are usable for project objectives.

Validation actions were not applied as a result of sampling error. The validation actions applied as a result of analytical error are summarized below:

The positive results for TCO in samples D05649, D05656, D05657, and D05660 were qualified as estimated (J) due to a holding time exceedance. The results are usable for project objectives as estimated values. This qualification has a minor effect on the data usability.

The attached Table I summarizes the Tier II validation recommendations which were based on the following information:

Holding Times and Sample Preservation

The TCO analyses of samples D05649RE, D05656, D05657, and D05660 took place one and two days outside of the required holding time. The positive results for TCO in samples D05649, D05656, D05657, and D05660 were qualified as estimated (J).

Laboratory Duplicate Results

All TCO analyses were performed in duplicate. The relative percent difference (RPD) for TCO was below the acceptance limit of 15 for all samples with the exception of sample D05649 (25.0). The laboratory reanalyzed the sample in duplicate outside of holding time; the reanalysis yielded an acceptable RPD for the duplicate analyses. The TCO result from the reanalysis of sample D05649 was therefore reported. Qualification of the data on the basis of laboratory duplicate results was therefore not required.

Accuracy Check/PE Samples

A soil PE for total organic carbon (TOC) analysis was submitted with this sample group. As all samples had TCO concentrations greater than 1%, TOC analysis was not required. Therefore, this PE sample was not analyzed. It should be noted that PE samples are not available for TCO analysis.

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments concerning this information.

Very truly yours,

TRC Environmental Corporation

Chyabeth Lerby for Lorie MacKinnon Data Validator

Chyabeth Lerby

Elizabeth Denly Senior QA Chemist

- Tier II Attachments: 1. Table I: Recommendation Summary Table
 - 2. Table II: Overall Evaluation of Data
 - 3. Table III: Tentatively Identified Compound Summary (NA)
 - 4. Data Summary Table
 - 5. IRDA Form
 - 6. Data Validation Worksheets
 - 7. Copy of non-CLP Analytical Method (M&E DAS Specification D-005.I)
 - 8. PE Score Reports (NA)
 - 9. Copies of Telephone Logs/Communication Forms
 - 10. Supporting Data for Reduced Payment Recommendations (NA)
 - 11. Copies of Field Sampling Notes
 - 12. Copies of EPA-approved Amendments to QAPiP or SAP (NA)
 - 13. CSF Audit (DC-2 Form)
 - 14. DQO Summary Form

Leslie McVickar, EPA Remedial Project Manager (DV memo and data summary table) cc: Project File **PSAdmin**

Attachment 1 Table I: Recommendation Summary Table

Table I Recommendation Summary for TCO Analyses Callahan Mining Superfund Site Case# 0247M, SDG D05640_IA

និយាល្រីក្រស់យោងមា	roginario	Quellines,
D05638	SE	A
D05639	SE	A
D05640	SE	A
D05641	SE	A
D05642	SE	Α
D05643	SE	A
D05644	SE	A
D05645	SE	A
D05646	SE	· A
D05647	SE	A
D05649	SE	Jι
D05650	SE	Α
D05651	SE	A
D05652	SE	Α
D05653	SE	A
D05656	SE	\mathfrak{I}_{1}
D05657	\$E	\mathfrak{I}_{l}
D05658	SE	A
D05660	SE	J^1

SE = Sediment

A - Accept the data.

J¹ - Estimate (J) the positive result for TCO due to a holding time exceedance.

Attachment 2 Table II: Overall Evaluation of Data

Table II Overall Evaluation of Data - Data Validation Memorandum Case 0247M, SDG D05640_IA

			TCO		
DQO	Sampling* and/or Analytical	Measuren	nent Error	Sampling Variability**	Potential " Usability , Issues
	Method Appropriate Yes or No	Analytical Error	Sampling Error*		
To determine the nature and extent of contamination and to support a human health risk assessment.	Both - Yes	Refer to qualifications in R/S Key:	Refer to qualifications in R/S Key		Potential uncertainty exists for the positive results for TCO in samples D05649, D05656, D05657, and D05660 due to a holding time exceedance.
		1,	None		Results discussed above can still be used for project objectives as estimated values. These issues may have a minor impact on the data usability.

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Attachment 3 Table III: Tentatively Identified Compound Summary
-not applicable to this SDG

Attachment 4 IRDA Form

CASE	ENO. 024714	SITE Callahan Mining
	DRATORY SWRI.	NO OF SAMPLES/MATRIX 19 Sedimont
SDG	K Shirtor	REVIEWER(IF NOT ESD) TIC
SOW		REVIEWER'S NAME Logic Macking
		COMPLETION DATE OLIZIOS
DPO:	ACTION FYI J	_ COM ELTION DATEOLICATO
		POOLETHIT CUILCLE DV
	DATA ASS	ESSMENT SUMMARY
		TCO
		ICP AA HG CYANIDE
1.	HOLDING TIMES	
2.	CALIBRATIONS	
3.	BLANKS	
4.	ICS	/NA
5.,	LCS	
6.	DUPLICATE ANALYSIS	
7.	MATRIX SPIKE	
8.	MSA	
9.	SERIAL DILUTION	/NA
10.	SAMPLE VERIFICATION	
11.	OTHER QC	
12.	OVERALL ASSESSMENT	
	O = Data had no problems, or qualified due t	o minor problems.
	M = Data qualified due to major problems.	
	Z = Data unacceptable.	
,	X = Problems, but do not affect data.	·
ACTI	ON ITEMS:	·
	·	·
	AS OF CONCERN:	· · · · · · · · · · · · · · · · · · ·

Validator: Loric Macking

NOTABLE PERFORMANCE:

Date: 2/28/05

Attachment 5 Data Summary Tables

Site: Callahan Mining Superfund Site - Brooksville, ME Case Number 0247M, SDG D05640_IA

	CALIST NATIO	EP IX	SPHOL	- GP-707/	ESD-408	SD-10	SPHIZE	601418 601418	SP415	*SD-416	SP417
	psample io	255 0	25574	#2553 B#	255319	\$04 \$255320	255.21	255322	256323	9 255324 1	255325
Mois	S Sample III ture Content		5 7 7 8 3		448°	18:0%	256	36 8 %	59.9°	346°	22:2°
	Comments										
生態能學與影響與 Analyté 財物等為影響與斯爾姆關關	を表のDigg	新新期的地 族	医	推動的類似則	C STATISTICS OF	AMMARIAN		翻點網點類個	のできた。	国生活作及 图图	
TCÖ	100	55328	91448	62780	73632	21777	73482 J	31877	117048	41531	33755
	ate Sampled ate Analyzed	11/23/04	1/2/04 1/23/04 in	7/1/04 1/23/04	11/11/04	1/11/04 1/23/04	11/12/04 11/28/04	10/11/04	311/104 311/23/04	1/23/04元	11/11/04

QL - Quantitation Limit

J - Estimated value

Site: Callahan Mining Superfund Site - Brooksville, ME Case Number 0247M, SDG D05640_tA

	on Name	SD-422	SD-423 N	SD-422	SD-401-8	健SD 402個	SD-405	』SD-406⊭	表SD-409以	#SD-424
TRG	Sample ID	\$5,422	SD-423	SDE-4224	SD-401	SD-402		SD-40625		
2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Sample ID	法解析法法内内的内部建筑	255327	255328		255621	255622	255623	255624	255625
·····································	Sample ID	関連・中心がいかかける	D05657	D05860	D05638	D05639河	经共享的企业的	Company of the second	D05646	Marin Ten Indian
大大学(大) (1-5-1-2-10) (1-5-1-10) (1-5-1-10) (1-5-1-10) (1-5-1-10) (1-5-1-10) (1-5-1-10) (1-5-1-10) (1-5-1-10)	e Content omments		0.0		05170	30.20	736U 476W	69.5%		20,00
				Field						
				duplicate of						
	翻欄蝴翩			D05656						
等於用於理性機構(Analyte)。 如此學學學	SACING	化工作的工作	物學學學學		建筑的 种型线		機關與關係			
TCO	100	60854 J	124042 J	62478 J	124279	56233	84771	156326	53639	23679
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	Sampled	影響和放射		11/12/04	E THE TOTAL	1670	施 1/67/04世	1,67,041	2000年	11/18/041
指於於自然思想的關係的於為自然是可以使用的使用。 1. 10	Analyzed	福祉11/27/04 標準	推路(1/27/04競響	国数13727/04 国	### 1/27/04 w	黎斯(1)27/07	9歲11/27/04日	解的172804 基础	SH1112710498	1/27/04者

QL - Quantitation Limit

J - Estimated value

March 1, 2005

Christine Clark
Regional Sample Control Center
U.S. EPA Region I
11 Technology Drive
North Chelmsford, MA 01863-2431

Subject:

Work Assignment No. 161-RICO-017H

Case No. 0247M, SDG D05648_IA

Southwest Research Institute, San Antonio, TX Callahan Mining Superfund Site, Brooksville, ME

Tier II Inorganic Data Validation

TCO: 6/Sediments/

D05648, D05654, D05655, D05659, D05706, D05707

(Field duplicate pair: D05654/D05659)

Dear Ms. Clark:

A Tier II validation, in accordance with the Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Inorganic Analyses, June 13, 1988 criteria, and incorporating Region I, EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses, December 1996 criteria, as deemed appropriate, was performed on the inorganic analytical data for six sediment samples collected by TRC Environmental Corporation on December 3, 2004 from the Callahan Mining Superfund Site in Brooksville, ME. All samples were analyzed for total combustible organics (TCO) under the Metcalf & Eddy Remedial Action Contract Delivery of Analytical Services (DAS) program using Metcalf & Eddy's DAS Specification, D-005.1, Analytical Specification for the Analysis of Total Organic Carbon, Total Combustible Organics, Grain Size, Moisture Content, and pH in Soil, Sediment, and Solids, June 2001.

In accordance with the EPA-approved project plans for the site, Tier II validation was performed on all samples in this sample delivery group (SDG). The data were evaluated based on the following parameters:

- Overall Evaluation of Data and Potential Usability Issues
- Data Completeness (CSF Audit Tier I)
- Holding Times and Sample Preservation
- * Instrument Calibration
- Blanks
- NA ICP Interference Check Sample Results
- NA Matrix Spike (MS) Results

- Laboratory Duplicate Results
- * Field Duplicate Results
- * Laboratory Control Sample (LCS) Results
- Laboratory Fortified Blank Sample (LFB) Results
- NA Furnace Atomic Absorption Results
- NA ICP Serial Dilution Results
- Detection Limit Results
- NA Sample Quantitation Results
 - Accuracy Check/PE Samples
- * All criteria were met for this parameter.

Note: Worksheets are not included for parameters that have met criteria or parameters that are not applicable (NA) to the method or to Tier II validation.

The following information was used to generate the Data Validation Memorandum attachments:

Table I: Recommendation Summary Table - summarizes validation recommendations

Table II: Overall Evaluation of Data - summarizes site data quality objectives (DQOs) and potential usability issues

Data Summary Tables - summarize accepted, qualified, and rejected data based on the Tier II data validation review.

Overall Evaluation of Data and Potential Usability Issues

 To determine the nature and extent of contamination and to support a human health risk assessment.

All results are usable for project objectives. Validation actions were not applied as a result of sampling or analytical error.

The attached Table I summarizes the Tier II validation recommendations which were based on the following information:

Accuracy Check/PE Samples

A soil PE for total organic carbon (TOC) analysis was submitted with this sample group. As all samples had TCO concentrations greater than 1%, TOC analysis was not required. Therefore, this PE sample was not analyzed. It should be noted that PE samples are not available for TCO analysis.

Please contact Ms. Elizabeth Denly at (978) 656-3577 should you have any questions or comments concerning this information.

Very truly yours,

TRC Environmental Corporation

Elijabeth benly for Lorie MacKinnon Data Validator

Elijabeth benly

Elizabeth Denly Senior QA Chemist

Tier II Attachments:

1. Table I: Recommendation Summary Table

2. Table II: Overall Evaluation of Data

3. Table III: Tentatively Identified Compound Summary (NA)

4. Data Summary Table

5. IRDA Form

6. Data Validation Worksheets

7. Copy of non-CLP Analytical Method (M&E DAS Specification D-005.1)

8. PE Score Reports (NA)

9. Copies of Telephone Logs/Communication Forms

10. Supporting Data for Reduced Payment Recommendations (NA)

11. Copies of Field Sampling Notes

12. Copies of EPA-approved Amendments to QAPiP or SAP (NA)

13. CSF Audit (DC-2 Form)

14. DQO Summary Form

cc: Leslie McVickar, EPA Remedial Project Manager (DV memo and data summary table)

Project File PSAdmin

Attachment 1 Table I: Recommendation Summary Table

Table I
Recommendation Summary
for TCO Analyses
Callahan Mining Superfund Site
Case# 0247M, SDG D05648_IA

. Samuls Somiler	ANTAL C	ŞARÎH NAS
D05648	SE	A
D05654	SE	A
D05655	SE	A
D05659	SE	, A
D05706	SE	A
D05707	SE	A

SE = Sediment

A - Accept results.

Attachment 2 Table II: Overall Evaluation of Data

Table II Overall Evaluation of Data - Data Validation Memorandum Case 0247M, SDG D05648_IA

			TCO			
DQO	Sampling* Measurement Error and/or Analytical		Sampling Variability**	Potential Usability Issues		
*	Method Appropriate Yes or No	Analytical Error	Sampling Error*			
To determine the nature and extent of contamination and to support a human health risk assessment.	Both - Yes	Refer to qualifications in R/S Key:	Refer to qualifications in R/S Key		Results can be used for project objectives without qualifications.	
·		None	None		\$	

The evaluation of "sampling error" cannot be completely assessed in data validation. Sampling variability is not assessed in data validation.

Attachment 3 Table III: Tentatively Identified Compound Summary
-not applicable to this DA

Attachment 4 IRDA Form

Region_	エ

INORGANIC REGIONAL DATA ASSESSMENT

CASE 1	NO. 0247M	SITE Callahan Mining
LABOR	LATORY SURI	NO OF SAMPLES/MATRIX (scdimust
SDG#	DO 5648_FA	REVIEWER(IF NOT ESD) TRC
SOW#		REVIEWER'S NAME Locie Mackinson
DPO:A	CTION FYI	COMPLETION DATE 2/28 105
,		
	DATA ASS	ESSMENT SUMMARY
	DATA ASSI	SOMETH GOVERNMEN
· ,		TCO <u>ICP AA HG CYANIDE</u>
1.	HOLDING TIMES	
2.	CALIBRATIONS (balance, our)	
3.	BLANKS	
4.	ICS	
5.	LCS	
6.	DUPLICATE ANALYSIS	
7.	MATRIX SPIKE	NA
8.	MSA	
9.	SERIAL DILUTION	
10.	SAMPLE VERIFICATION	
11.	OTHER QC	<u> </u>
12.	OVERALL ASSESSMENT	
	O = Data had no problems, or qualified due to	minor problems.
	M = Data qualified due to major problems.	
	Z = Data unacceptable.	·
	X = Problems, but do not affect data.	
ACTIO	N ITEMS:	·
	<u> </u>	
AREAS	OF CONCERN:	
		·
NOTAE	BLE PERFORMANCE:	
····	·	
·		

Validator: Loni Mackinson

Date: 02/28/07

Attachment 5 Data Summary Tables

DATA SUMMARY TABLE TCO Analysis (D-005.1) Sediment Samples

(Units: mg/kg)

Site: Callahan Mining Superfund Site - Brooksville, ME Case Number 0247M, SDG D05648_IA

PROPERTY TO A STATE OF THE PROPERTY OF THE PRO	Locator stract	Specific	Social	্রচা: 2ন	30/00	Sexze	SD/4/26
	महिल् इंदर्ग होता असी	30 Car	Service	Spinkly	State (200)	Sat bis	Spicke
	Har Sabarah	युन्त भर्म है।	(4)(0)(3)	少E(5)的6	25(5)(1)	्रेग्रस् <i>वि</i>	क्षानुस्कृति व
	हिला आधीर करते	চারীবার্টর	(अन्तिन्तिन)	<u>जिल्</u> नानुन्	1904930	[5](1)\/(1)(1)	िर्माहित्रीय
	साम्बद्धाः विकासम्बद्धाः स्	(3/2) 1/3/C	281(2)7	otories.	12. 04.	490%	一致13岁。
	Cietiana Posti				्निस्टि लगुनाल्डास्ट्रल्य १९५ स्ट्रल ्स		
E and Carelyne	101				prince the capacity of the cap		HELVA FEET
TCO	100	161785	33585	167679	34495	66801	68507
	enne Espanalustion	polytic last.	12/1/10	100000	September 1	production of the state of the	ienesus.

QL - Quantitation Limit

Appendix V Data Usability Analysis

Callahan Mine Data Quality Evaluation

I. Usability of Data for Project Objectives

The 1999 and 2004-2005 data validation reports were evaluated for issues which may impact the potential decision-making process or usability of the data. Out of the total population of 670 individual results for sediment samples, six (0.90 percent) were rejected. Out of the total population of 644 individual results for surface water samples, none were rejected. Out of the total population of 2175 individual results for soil samples, four (0.18 percent) were rejected. Out of the total population of 584 individual results for residential well samples, 10 (1.7 percent) were rejected. In general, the majority of the data (99.1 % for sediment, 100% for surface water, 99.8% for soil, and 98.3 % for residential wells) were usable for project objectives. These percentages met the QAPP criterion of greater than 95% completeness for laboratory data. However, several issues were noted which may affect the decision-making process.

- In the case of high-biased data the listed results exceed one or more of the project action levels by a
 minimal amount. Caution should be used when using these results for decision-making purposes as the
 actual results could be lower and below the project action levels. However, in all cases the decisionmaking process reflects the use of conservative values.
- In the case of low-biased data, the listed results fall below one or more of the project action levels by a minimal amount. Caution should be used when using these results for decision-making purposes as the actual results could be higher and above the project action levels.
- In the case of data with an indeterminate bias, potential uncertainty exists for these results. The listed results are below or above one or more of the project action levels by a minimal amount. Caution should be used when using these results for decision-making purposes.

These issues are discussed below and are grouped by matrix.

A. Sediments

All of the results were deemed usable during validation with the exception of mercury in samples 99-BKSD-23, 99-BKSD-24, 99-BKSD-25, 99-SD-37, and 99-SD-37 from the 1999 sampling event due to low matrix spike recovery. These results are not usable for project objectives. Table 1 summarizes other data where the decision-making process may have been impacted by the biases or uncertainty of the data noted during data validation.

		Ta	able 1	
	Poten	tial Biases Associa	ted with Sediment Samples	
Sample ID	Project Action Level(s) Affected			
-		1999 Sedir	nent Samples	
99-SD-35	copper	indeterminate	field duplicate variability	(1), (2)
99-SD-37	copper	indeterminate	field duplicate variability	(1), (2)
		2004 Sedir	ment Samples	
SD-401	cadmium, copper	high	positive interference (ICSA)	Cd: (1), (2) Cu: (2)
SD-402	arsenic	high	positive interference (ICSA)	(1), (2)
SD-403	arsenic	high	positive interference (ICSA)	(1), (2)
SD-404	arsenic, nickel	high	positive interference (ICSA)	(1)
	silver	high	positive interference (ICSA) and high MS recovery	(2)
SD-405	arsenic	high	positive interference (ICSA)	(1)
ļ	silver	high	positive interference (ICSA) and high MS recovery	(2)
SD-406	zinc	high	positive interference (ICSA)	(1), (2)
SD-407	copper, lead	high	positive interference (ICSA)	(1), (2)

Table 1
Potential Biases Associated with Sediment Samples

Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected
SD-408	arsenic, silver	high	positive interference (ICSA)	As: (1) Ag: (2)
	mercury	low	holding time exceedance	(1)
SD-410	copper, zinc	high	positive interference (ICSA)	Cu: (2) Zn: (1), (2)
SD-412	silver	high	positive interference (ICSA) and high MS recovery	(2)
SD-413	arsenic, nickel	high	positive interference (ICSA)	(1)
	silver	high	positive interference (ICSA) and high MS recovery	(2)
SD-415	arsenic	high	positive interference (ICSA)	(1)
SD-416	arsenic	high	positive interference (ICSA)	(1)
SD-417	arsenic	high	positive interference (ICSA)	(1)
	silver	high	positive interference (ICSA) and high MS recovery	(2)
SD-420	nickel	high	positive interference (ICSA) and equipment blank contamination	(1)
	arsenic	high	positive interference (ICSA) and high MS recovery	(1)
	copper	indeterminate	field duplicate variability	(2)
SDE-420	nickel	high	positive interference (ICSA) and equipment blank contamination	(1)

Table 1 Potential Biases Associated with Sediment Samples

Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected
	arsenic	high	positive interference (ICSA) and high MS recovery	(1)
SD-421	arsenic	high	positive interference (ICSA) and high MS recovery	(1)
SD-422	silver	hìgh	positive interference (ICSA) and high MS recovery	(2)
SDE-422	silver	high	positive interference (ICSA) and high MS recovery	(2)
	mercury	low	holding time exceedance	(1)
SD-423	nickel	high	positive interference (ICSA)	(1)
SD-424	copper	high	positive interference (ICSA)	(2)

NOAA Screening Quick Reference Table for Inorganics in Solids (Freshwater Sediment PEL)
 NOAA Screening Quick Reference Table for Inorganics in Solids (Marine Sediment ERL)

B. Residential Wells

All of the results were deemed usable during validation with the exception of dichlorodifluoromethane, chloromethane, bromomethane, chloroethane, and carbon disulfide in samples DWCA-15 and DWCA-10 from the January 2005 sampling event due to low surrogate recoveries. Since these compounds are most likely not contaminants of concern at this site and since MCLs or Maine MEGs do not exist for these compounds, the overall usability of the data was not significantly impacted by these unusable data points. However, Table 2 summarizes data where the decision-making process may have been impacted by the biases or uncertainty of the data noted during data validation.

Table 2 Potential Biases Associated with January 2005 Residential Well Samples Sample ID Analyte(s) Affected Direction of Reason for Bias Project Action Level(s) Bias Affected						
DWCA-16	lead	indeterminate	field duplicate variability	(2)		
DWCA-18	lead	indeterminate	field duplicate variability	(1), (2)		

C. Soil Samples:

All of the results were deemed usable during validation the exception of mercury in samples 99-WRP2-48, 99-BKSS-02, and 99-BKSS-03 from the 1999 sampling event and antimony in sample SS-414 from the 2004 sampling event due to low matrix spike recoveries. Since antimony is most likely not a contaminant of concern at this site, the overall usability of the data was not significantly impacted by this unusable data point. The mercury results in the listed samples are not usable for the achievement of project objectives. In addition, Table 3 summarizes data where the decision-making process may have been impacted by the biases or uncertainty of the data noted during data validation.

		Ta	able 3			
Potential Biases Associated with Soil Samples						
Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected		
	,	1999 So	il Samples			
99-SS-44	copper	indeterminate	field duplicate variability	(1), (2)		
99-TPD-11	copper	indeterminate	field duplicate variability	(1), (2)		
99-TPL-16	copper	indeterminate	field duplicate variability	(1)		
99-TPL-17	соррег	indeterminate	field duplicate variability	(1), (2)		
99-TPL-18	copper	indeterminate	field duplicate variability	(1), (2)		
99-WRP-20	copper	indeterminate	field duplicate variability	(2)		
99-WRP2-48	copper	indeterminate	field duplicate variability	(1), (2)		
		2004 Surfac	e Soil Samples			
SS-401	copper	indeterminate	positive interference (ICSA) and serial dilution imprecision	(1), (2)		
	lead	high	positive interference (ICSA)	(1)		
	vanadium	high	positive interference (ICSA)	(2)		

Table 3
Potential Biases Associated with Soil Samples

Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias and high MS recovery	Project Action Level(s) Affected
SSE-401	copper	indeterminate	positive interference (ICSA) and serial dilution imprecision	(1), (2)
	lead	high	positive interference (ICSA)	(1)
SS-402	lead	high	positive interference (ICSA)	(1)
	cadmium	indeterminate	serial dilution and laboratory duplicate imprecision	(1)
SS-403	cadmium	indeterminate	serial dilution and laboratory duplicate imprecision	(1)
SS-404	соррег	indeterminate	positive interference (ICSA) and serial dilution imprecision	(1), (2)
SS-405	vanadium	high	positive interference (ICSA) and high MS recovery	(2)
SS-406	copper	high	positive interference (ICSA)	(2)
SS-408	antimony	indeterminate	low MS recovery and laboratory duplicate imprecision	(2)
SS-409	lead	high	positive interference (ICSA)	(1)
	thallium	high	positive interference (ICSA)	(2)
SS-410	lead	high	positive interference (ICSA)	(1)
	cadmium	indeterminate	positive interference (ICSA) and serial dilution and laboratory duplicate	(1)

Table 3	
Potential Biases Associated with Soil Samples	

Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected
			imprecision	
	thallium	indeterminate	serial dilution imprecision	(2)
SS-411	thallium	indeterminate	high recovery in calibration standard, positive interference (ICSA), and serial dilution imprecision	(2)
SS-413	thallium	indeterminate	positive interference (ICSA) and serial dilution imprecision	(2)
	cadmium	indeterminate	positive interference (ICSA) and serial dilution and laboratory duplicate imprecision	(1)
SS-414	selenium	low	negative interference (ICSA)	(2)
SS-415	antimony	indeterminate	positive interference (ICSA) and laboratory duplicate imprecision	(2)
	cadmium	indeterminate	serial dilution and laboratory duplicate imprecision	(1)
	mercury	indeterminate	serial dilution imprecision	(2)
SS-416	thallium	indeterminate	positive interference (ICSA) and serial dilution imprecision	(2)
	cadmium	indeterminate	serial dilution and laboratory duplicate imprecision	(2)

Table 3
Potential Biases Associated with Soil Samples

Potential Biases Associated with Soil Samples						
Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected		
	zinc	indeterminate	serial dilution imprecision	(1)		
SS-417	lead	high	positive interference (ICSA)	(1)		
	thallium	indeterminate	serial dilution imprecision	(2)		
	cadmium	indeterminate	laboratory duplicate imprecision	(1)		
SS-419	arsenic	high	positive interference (ICSA) and high recovery in PE	(1)		
SS-420	arsenic	high	positive interference (ICSA) and high recovery in PE	(1)		
SS-421	arsenic	high	positive interference (ICSA) and high recovery in PE	(1)		
SS-422	arsenic	high	positive interference (ICSA) and high recovery in PE	(1)		
SS-423	arsenic	high	positive interference (ICSA) and high recovery in PE	(2)		
SS-424	arsenic	high	positive interference (ICSA) and high recovery in PE	(2)		
SS-426	vanadium	high	positive interference (ICSA)	(2)		
SS-428	arsenic	high	positive interference (ICSA) and high recovery in PE	(1)		
SS-429	arsenic	high	positive interference (ICSA) and high recovery in PE	(1)		
SS-430	arsenic	high	positive interference (ICSA) and high recovery in PE	(1)		

		Table 3								
Potential Biases Associated with Soil Samples										
Sample ID A	nalyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected						

D. Surface Water:

All of the results were deemed usable during validation. However, the Table 4 summarizes data where the decision-making process may have been impacted by the biases or uncertainty of the data noted during data validation.

		Ta	able 4	,		
Potential Biases Associated with Surface Water Samples						
Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected		
		1999 Surface	Water Samples			
99-SW-32	lead	high	high CRDL standard recovery	(1)		
99-SW-34	lead	high	high CRDL standard recovery	(1)		
99-SW-36	lead	high	high CRDL standard recovery	(1)		
99-SW-40	lead	high	high CRDL standard recovery	(1)		
99-SW-42	copper	low	low CRDL standard recovery	(2)		
	zinc	high	high CCV recovery	(2)		
99-SW-49	copper	low	low CRDL standard recovery	(2)		
	zinc	high	high CCV recovery	(2)		
		2004 Surface	Water Samples			
SW-403	iron	indeterminate	field duplicate variability	(1)		
SW-405	lead	indeterminate	field duplicate variability	(1)		
SWF-405	copper	high	high CRDL standard and PE	(2)		

Table 4
Potential Biases Associated with Surface Water Samples

Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected
			recovery	
SW-406	aluminum, lead	indeterminate	field duplicate variability	(1)
SW-407	nickel	high	high CRDL standard recovery	(1)
	copper	indeterminate	high recovery in PE and field duplicate variability	(1)
	aluminum, lead	indeterminate	field duplicate variability	(1)
SWF-407	nickel	high	high CRDL standard recovery	(2)
	соррег	high	high recovery in PE	(2)
SW-411	zine	high	positive interference (ICSA) and high recovery in PE	(1)
SWE-411	zinc	high	positive interference (ICSA) and high recovery in PE	(1)
	соррег	high	high recovery in PE	(1)
SWF-411	zinc	high	positive interference (ICSA) and high recovery in PE	(1)
SWFE-411	copper	high	high recovery in PE	(1)
	zinc	high	positive interference (ICSA) and high recovery in PE	(1)
SW-414	nickel	high	high CRDL standard recovery	(1)
	copper	indeterminate	high recovery in PE and field duplicate variability	(1)

Table 4 Potential Biases Associated with Surface Water Samples

Sample ID	Analyte(s) Affected	Direction of Bias	Reason for Bias	Project Action Level(s) Affected
	aluminum, lead	indeterminate	field duplicate variability	(1)
SWF-414	nickeI	high	high CRDL standard recovery	(2)
Ī	соррег	high	high recovery in PE	(2)
SW-415	соррег	high	high recovery in PE	(1)
SWF-415	nickel	high	high CRDL standard recovery	(2)
	copper	high	high CRDL standard and PE recovery	(2)
SW-424	aluminum, lead	indeterminate	field duplicate variability	(1)
SWF-424	copper	high	high recovery in PE	(1)

National Recommended Water Quality Criteria for Priority Toxic Pollutants (Freshwater CCC), April 1999
 National Recommended Water Quality Criteria for Priority Toxic Pollutants (Saltwater CCC), April 1999

II. Analytical Method Deviations for the 2004-2005 Sampling Events

The analytical methods used by the laboratories during the 2004-2005 sampling events were as stated in the *Quality Assurance Project Plan for Remedial Investigation/Feasability Study, Draft, Callahan Mining Superfund Site, Brooksville, Maine, October 2004* with one exception. A different analytical method was used for the analysis of metals in residential well samples. Due to laboratory capacity issues during the January 2005 sampling event, the metals (minus mercury) analyses of the residential well samples were performed using the EPA Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.3 with a Flex Clause Modification which included lower reporting limits and the requirement for the laboratory to analyze a laboratory fortified blank at the reporting limit. This was in lieu of using the Delivery of Services (DAS) Analytical Specification D-004.1, as specified in the QAPP. This method change did not affect the project objectives or usability of the data as the method which was utilized was modified to ensure that the low reporting limits were achieved and to contain the same level of quality control as the planned method.

The analytical methods were followed as written in the DAS Analytical Specifications (included in the October 2004 QAPP) and EPA CLP SOWs with the exceptions listed in Table 5. It should be noted that these exceptions were approved prior to the onset of the program and did not affect the quality of data or the achievement of project objectives. No other modifications to the methods were noted during the data validation process.

	Table 5			
Summary of Analytical Method Deviations for 2004-2005 Sampling Events				
Matrix and Methods	Laboratory Deviations From Stated Methods			
Surface Water:	(1) Arsenic and selenium were determined by hydride AA instead			
Metals: D-137	of hydride ICP/MS.			
	(2) Remaining metals digested according to ILM04.1 procedures			
	instead of chelate extraction used for select metals.			
	(3) LFB and CRDL recovery limits expanded to 50-150% from 70-			
	130% for analytes with reporting limits less than 5 ug/L.			
Surface Soil:	No deviations were noted.			
Metals: D-044.2				
VOCs & SVOCs: OLM04.3				
Residential Well:	No deviations were noted.			
Metals: ILM05.3 Flex Clause 1194.1				
Hg: D-004.1				
VOCs: OLC03.2				
Sediment:	No deviations were noted.			
Metals: D-044.2				
TCO & Grain Size: D-005.1				