New Bedford Harbor Superfund Site Final Intertidal West Zone 4 and West Zone 5 Remedial Action Report November 8, 2022

Prepared by:

U.S. Environmental Protection Agency Region 1 Boston, Massachusetts

Contents

	1. Introduction	1
	1.1 Site History	1
	2. Remedial Actions	2
	2.1 Pre-Remediation Environmental Sampling and Site Preparation	3
	2.2. Removal of Contaminated Sediment	3
	2.3 Remedial Environmental Sampling	4
	2.4 Site Restoration	4
	3. Waste Management	6
4.	References	6

Figures

Figure 1	Site Location Map
Figure 1-1a Figure 1-1b	Intertidal West Zone 4 Pre-Excavation Site Location and Features Intertidal West Zone 5 Pre-Excavation Site Location and Features
Figure 2-1a	Intertidal West Zone 4 Parcel 105-170 Proposed Excavation Boundaries and PCB Sample Locations (0-1 ft Depth Interval)
Figure 2-1b	Intertidal West Zone 4 Parcel 105-183 Proposed Excavation Boundaries and PCB Sample Locations (0-1 ft Depth Interval)
Figure 2-1c	Intertidal West Zone 5 Parcel 100-118 Proposed Excavation Boundaries and PCB Sample Locations (0-1 ft Depth Interval)
Figure 2-1d	Intertidal West Zone 5 Parcel 100-117 Proposed Excavation Boundaries and PCB Sample Locations
Figure 2-1e	Intertidal West Zone 5 Parcels 100-120, 100-85, and ROW Proposed Excavation Boundaries and PCB Sample Locations
Figure 2-2a	Intertidal West Zone 4 Parcel 105-170 Pre-Excavation Vegetation, Topography, and Excavation Area
Figure 2-2b	Intertidal West Zone 4 Parcel 105-183 Pre-Excavation Vegetation, Topography, and Excavation Area
Figure 2-2c	Intertidal West Zone 5 Parcel 100-118 Pre-Excavation Vegetation, Topography, and Excavation Area
Figure 2-2d	Intertidal West Zone 5 Parcel 100-117 Pre-Excavation Vegetation, Topography, and Excavation Area
Figure 2-2e	Intertidal West Zone 5 Parcel 100-85 Pre-Excavation Vegetation, Topography and Excavation Area

Figure 2-3a	Intertidal West Zone 4 Parcel 105-170 Compliance Survey Locations with
	Excavation Footprint (0-1 ft Depth Interval)
Figure 2-3b	Intertidal West Zone 4 Parcel 105-183 Compliance Survey Locations with
	Excavation Footprint (0-1 ft Depth Interval)
Figure 2-3c	Intertidal West Zone 5 Parcel 100-118 Compliance Survey Locations with
	Excavation Footprint (0-1 ft Depth Interval)
Figure 2-3d	Intertidal West Zone 5 Parcel 100-117 Compliance Survey Locations with
	Excavation Footprint (0-1 ft Depth Interval)
Figure 2-3e	Intertidal West Zone 5 Parcel 100-85 Compliance Survey Locations with
	Excavation Footprint (0-1 ft Depth Interval)
Figure 2-4a	Intertidal West Zone 4 Parcel 105-170 Post-Excavation and Restoration Record
	Drawing
Figure 2-4b	Intertidal West Zone 4 Parcel 105-183 Post-Excavation and Restoration Record
	Drawing
Figure 2-4c	Intertidal West Zone 5 Parcel 100-118 Post-Excavation and Restoration Record
	Drawing
Figure 2-4d	Intertidal West Zone 5 Parcel 100-117 Post-Excavation and Restoration Record
	Drawing
Figure 2-4e	Intertidal West Zone 5 Parcel 100-85 Post-Excavation and Restoration Record
	Drawing

Tables

Table 2-1a	Intertidal West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-170
Table 2-1b	Intertidal West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183
Table 2-1c	Intertidal West Zone 5 Pre-Excavation PCB Characterization Sample Results for Parcel 100-118
Table 2-1d	Intertidal West Zone 5 Pre-Excavation PCB Characterization Sample Results for Parcel 100-117
Table 2-1e	Intertidal West Zone 5 Pre-Excavation PCB Characterization Sample Results for Parcel 100-120, 100-85, and ROW
Table 2-2a Table 2-2b	Intertidal West Zone 4 Compliance Survey Control Table Intertidal West Zone 5 Compliance Survey Control Table
Table 2-3	Intertidal West Zone 4 and West Zone 5 Planting Summary

Attachments

Attachment A Intertidal West Zone 4 and West Zone 5 Topsoil Summary Attachment B Intertidal West Zone 4 Final Planting Plan Attachment C Intertidal West Zone 5 Final Planting Plan

Acronyms and Abbreviations

CDE	Cornell Dubilier Electronics, Inc.
CR	CR Environmental, Inc.
су	cubic yards
DPA	Designated Port Area
EPA	U.S. Environmental Protection Agency
ft	foot
GPS	global positioning system
Jacobs	Jacobs Engineering Group, Inc.
MCP	Massachusetts Contingency Plan
mg/kg	milligrams per kilogram
NAE	U.S. Army Corps of Engineers – New England District
NPL	National Priorities List
PCB	polychlorinated biphenyl
ppm	parts per million
ROD	Record of Decision
ROW	right of way
Sevenson	Sevenson Environmental Services, Inc.
SWCA	SWCA Environmental Consultants
TCL	target cleanup level
TSCA	Toxic Substances Control Act
UCL	upper concentration limit

1. Introduction

The purpose of this Remedial Action Report is to document the remedial action and final disposition of the restored West Zone 4 and West Zone 5 intertidal zones at the New Bedford Harbor Superfund Site (the Site). These zones are illustrated on Figure 1. Sediment and soil contaminated with polychlorinated biphenyls (PCBs) were excavated and shipped off-site for disposal, and then restored in accordance with the *Draft Final Intertidal Workplan for West Zone 4* and the *Draft Final Intertidal Workplan for West Zone 5* (Jacobs, 2020a, 2020c).

From May 2021 through June 2022, remediation and restoration of the West Zone 4 and West Zone 5 intertidal zones were conducted by Jacobs Engineering Group, Inc. (Jacobs) under contract to the U.S. Army Corps of Engineers – New England District (NAE) for the U.S. Environmental Protection Agency (EPA). The West Zone 4 and West Zone 5 intertidal zones are located adjacent to one another in the City of New Bedford along the Acushnet River shoreline within New Bedford Harbor. The two zones encompass six parcels of land; however, only five of the six parcels required remediation as the intertidal sediment exceeded the target cleanup levels (TCLs) established in the 1998 EPA Record of Decision (ROD). The TCLs for the West Zone 4 and West Zone 5 intertidal shoreline are 25 milligrams per kilogram (mg/kg) for the top 1 foot (95% upper confidence limit [UCL] of the mean concentration) and 50 mg/kg below 1 foot landward of the mudflats (not-to exceed value). The TCL for Upper Harbor mudflats and subtidal areas is 10 mg/kg, which must be attained as an average on an Upper Harbor-wide basis. Sediment and soils with PCB concentrations exceeding the TCLs were removed and disposed of in an off-site Toxic Substances Control Act (TSCA) permitted landfill. Following contaminated sediment removal from the West Zone 4 and West Zone 5 intertidal zones, areas that originally supported vegetative cover were backfilled with clean subsoil and topsoil to the approximate original elevation and restored with a similar vegetation type. Unvegetated areas (i.e., mudflats) were backfilled as needed to stabilize the shoreline.

1.1 Site History

The Site was proposed to the Superfund National Priorities List (NPL) in 1982 and finalized on the NPL in 1983. Pursuant to 40 CFR 300.425 (c)(2), the Commonwealth of Massachusetts nominated the Site as its priority for listing to the NPL. The Site is located in Bristol County, Massachusetts, which is approximately 55 miles south of the City of Boston. To the east, the Site is bordered by the Towns of Acushnet and Fairhaven, and to the west by the City of New Bedford and the Town of Dartmouth. The Site encompasses approximately 18,000 acres of open water and intertidal shoreline areas, extending from the shallow northern reaches of the Acushnet River Estuary, flowing southwards through the City of New Bedford's Designated Port Area (DPA), and ultimately discharging into Buzzards Bay. Based on the different geographic, environmental, and man-made features throughout the harbor, the Site was divided into three sections, which are further identified as the Upper Harbor, Lower Harbor, and the Outer Harbor (illustrated on Figure 1).

The Upper Harbor PCB-contaminated subtidal and intertidal zones encompass approximately 236 acres of the Site's total 18,000 acres and extends from the north near the Wood Street Bridge area southwards to the Coggeshall Street Bridge. The Lower Harbor encompasses approximately

750 acres of the Site's 18,000 acres and extends from the Coggeshall Street Bridge southwards to the New Bedford Hurricane Protection Barrier. The Outer Harbor encompasses the remaining 17,000 acres and extends from the New Bedford Hurricane Protection Barrier southward into Buzzards Bay to an imaginary line extending from Rocky Point (the southern tip of West Island in Fairhaven) southwesterly to a New Bedford Harbor navigational channel buoy, Buoy C3, and then southwesterly to Mishaum Point in Dartmouth. The three sections of the Site and their unique geographical features (e.g., bridges, barriers) are illustrated on Figure 1.

PCB contaminated sediment and seafood within the New Bedford Harbor was initially identified in the mid-1970s. EPA site-specific investigations began in 1983 and included pilot dredging and disposal studies, and extensive physical and chemical computer modeling. These initial studies are summarized in the *Draft Final Public Health Risk Assessment*, the *Draft Final Feasibility Study of Remedial Alternatives for the Estuary and Lower Harbor/Bay*, and the *Draft Final Supplemental Feasibility Study Evaluation for Upper Buzzards Bay* (Ebasco Services Inc., 1989, 1990, 1992). In 1990, the *Record of Decision Summary New Bedford Harbor/Hot Spot Operable Unit* was signed to address hotspots within the Upper Harbor, and in 1998, the *Record of Decision for the Upper and Lower Harbor Operable Unit* was signed to address the remaining contamination throughout the harbor (EPA, 1990, 1998).

Based on the results of these investigations and knowledge of the operations at the former Aerovox Site at 740 Belleville Avenue in New Bedford, the Aerovox Site was identified as the principal source of PCB contamination throughout the Site. During operations at this facility (1940s – 1970s), PCB wastes were discharged directly to the Upper Harbor through open trenches, spills, direct dumping, and indirectly through the City of New Bedford's sewerage system. During the same general time period, PCBs were also discharged to the Outer Harbor section of the Site from operations at the Cornell Dubilier Electronics, Inc. (CDE) facility, located just south of the New Bedford Hurricane Protection Barrier.

Historical industrial operations, primarily from the Aerovox Site, resulted in significantly elevated levels of PCB concentrations throughout the Upper Harbor, with a contaminant gradient decreasing from north to south across the Site. Prior to the commencement of remedial efforts, Upper Harbor sediment contained PCB concentrations ranging from below detection to greater than 100,000 mg/kg in localized areas. As a tidal embayment with diurnal 4-foot tides, intertidal mudflats and vegetated saltmarshes also became contaminated with PCBs in the Upper Harbor and in localized shoreline areas of the Lower Harbor. This report documents the Remedial Action that occurred during 2021 and 2022 in two of the Upper Harbor shoreline locations: West Zone 4 and West Zone 5. These two zones are located along the western side of the Site in New Bedford, Massachusetts, as illustrated on Figure 1, and are also less than half a mile south of the former Aerovox Site.

2. Remedial Actions

The methods used to complete the remedial action at West Zone 4 and West Zone 5 are presented below.

2.1 Pre-Remediation Environmental Sampling and Site Preparation

Sampling of sediment and soil from the subtidal, intertidal, and upland areas within West Zone 4 and West Zone 5 was conducted in 1999, 2000, 2001, 2015, 2018, 2019 and 2021. This data was utilized to delineate the boundaries of PCB contamination and determine the horizontal and vertical extent of the excavation areas needed to meet the 1998 ROD's TCLs. Figures 2-1a through 2-1e illustrate the proposed horizontal excavation boundaries and associated PCB sample locations.

Two subtidal caps abutting West Zone 4, L-014 and L-114, were constructed in September of 2020, as illustrated on Figure 2-1b. Prior to cap construction, portions of the West Zone 4 excavation area along the landward cap design boundaries were excavated and relocated within the cap design footprints. The excavated areas were backfilled with clean sand at 3H:1V to serve as a buffer between the remaining West Zone 4 material and the two caps. The sand buffer was designed to protect the caps during the intertidal remedial excavation by minimizing sloughing of cap material and providing a clean visible interface. The relocated West Zone 4 material, as well as the original footprint sediments within each cap's perimeter, were capped with approximately two feet of clean sand containing high levels of total organic content and one foot of armor stone. Refer to *the Final Upper Harbor Sediment Caps Remedial Action Report* for more information (Jacobs, 2021).

Pre-remedial conditions of West Zone 4 and West Zone 5 were documented prior to the initiation of remedial activities to establish baseline conditions for backfill, contouring, re-establishment of native vegetation, and deterrence of invasive species. This included a pre-excavation elevation survey and the mapping of wetland cover within West Zone 4 and 5, as illustrated on Figure 2-2a through Figure 2-2e. A photo-documentation survey of pre-existing site features, including the outfalls, retaining and stone walls, fences, road surfaces, drainage swales, ditches, and landscaping, was also completed prior to excavation in order to document all current conditions. Additionally, pre-excavation preparation activities included notification of remediation to residential and commercial property owners and tenants, clearing of trees and removal of debris, construction of access roads and staging areas, and mobilization of equipment.

2.2. Removal of Contaminated Sediment

Mobilization to West Zone 4 began on May 21, 2021. Excavation was conducted by the Sevenson Environmental Services, Incorporated (Sevenson) track-mounted amphibious excavators guided by a real-time kinematic global positioning system that recorded the actual horizontal and vertical extents of excavation. Target elevations were guided by the cut depth figures presented in the *Draft Final Intertidal Workplan for West Zone 4* and the *Draft Final Intertidal Workplan for West Zone 5* (Jacobs, 2020a, 2020c).

Excavated material was loaded into sealed roll-off containers and transported via truck to the Debris Disposal Area (DDA) located at 103 Sawyer Street in New Bedford, Massachusetts for stabilization with Portland cement and final off-site transport and disposal. Concrete pieces and boulders within the excavation areas were removed, cleaned, and utilized to stabilize steeper bank slopes and to fill deeper excavations.

A total of 5,366 cubic yards of contaminated sediment was excavated from the West Zone 4 and West Zone 5 intertidal zones. This value is based on quantities derived from the pre-excavation and post-excavation survey data. The as-built limits of excavation are illustrated on Figure 2-4a through Figure 2-4e.

2.3 Remedial Environmental Sampling

As documented in the *Final Pre-Excavation Confirmatory Pilot Test Technical Memorandum*, post-excavation elevations were used for establishing compliance that applicable TCLs were achieved (Jacobs, 2020d). The pre- and post- excavation compliance survey locations are shown on Figures 2-3a through 2-3e, and the survey data are presented in Table 2-2a and Table 2-2b for West Zone 4 and West Zone 5, respectively.

Ambient air monitoring was conducted by an independent party, Cashins & Associates, Inc., at fixed monitoring locations during West Zone 4 and West Zone 5 remedial activities in accordance with the *Draft Final Ambient Monitoring Plan for Remediation Activities* (Jacobs, 2020b). There were no exceedances of the risk based goals during West Zone 4 and West Zone 5 operations (EPA, 2021).

2.4 Site Restoration

Backfill of the excavated areas was performed by Sevenson using fill material as specified in the *Draft Final Generic Upper Harbor Intertidal Work Plan* (Jacobs, 2019a). The final postexcavation and post-restoration elevations are presented in Table 2-2a and Table 2-2b for West Zone 4 and West Zone 5, respectively. Topsoil was tested for acceptable nutrient range requirements identified in the *Draft Final Topsoil Acceptance Plan* (Jacobs, 2019b). The topsoil was not initially analyzed for the Massachusetts Contingency Plan (MCP) S-1 Soil Cleanup Standards for use of backfill at West Zone 4 and West Zone 5 because the same specific soil blend from Read Custom Soils was previously analyzed for the MCP S-1 Soil Cleanup Standards in May 2021 for use at the East Zone 4 and East Zone 5 remedial actions. The topsoil was analyzed for the MCP S-1 Soil Cleanup Standards for use of re-backfill at West Zone 4 and West Zone 5 in Spring 2022 after storm damage repair. A summary of the topsoil analysis results for West Zone 4 and West Zone 5 is provided in Attachment A.

The majority of Site restoration activities, excluding the planting of spring saltmarsh grasses, were completed in early October 2021 according to the methodology defined in the *Draft Final Intertidal Workplan for West Zone 4* and the *Draft Final Intertidal Workplan for West Zone 5* (Jacobs, 2020a, 2020c) and final planting plans (CR Environmental, 2021a). Restoration activities included placement of backfill, installation of erosion protection (including coir logs, gravel, and stone), and planting of native shrubs, trees, and other containerized plants. Following installation of the containerized plants, grass seed was broadcasted to assist in soil stabilization until the spring 2022 planting season arrived when the salt marsh grasses could be planted.

On October 26 and 27, 2021, a strong 'nor'easter brought substantial rain and winds exceeding 70 miles per hour to the New Bedford area. The wind and waves generated by the storm did not

negatively affect the majority of the previously restored intertidal areas at the Site, however, almost all of the recently placed topsoil at West Zone 4 and a small section of West Zone 5 was lost. An inspection of the West Zone 4 and West Zone 5 intertidal areas was completed on October 28, 2021 by Jacobs, NAE, and Sevenson to inspect the intertidal restoration areas and document the damage. Damage included lifting and displacement of many of the coir logs, and erosion of the recently placed (but unplanted) marsh topsoil and bank. Interim stabilization activities were conducted to minimize additional loss of restoration materials and damage to upland areas, which included replacement and reinstallation of several coir logs and backfilling behind several coir logs with gravel. Final West Zone 4 and West Zone 5 erosion and storm repairs began in early May 2022 and were completed within the month; actions related to the West Zone 4 and West Zone 5 storm repair are detailed in the *Final Intertidal Erosion and Storm Repairs at West Zone 4 Project Note* (Jacobs, 2022).

Following the completed repairs, SWCA Environmental Consultants (SWCA) planted over 35,000 plugs of low marsh and high salt marsh grasses (spartina alterniflora and spartina patens) and installed herbivory protection fencing. The planting was completed on June 24, 2022, within the spring planting window (April 15 through June 30). The planting summary for West Zone 4 and West Zone 5 is presented in Table 2-3. The ecological habitat compositions at West Zone 4 and West Zone 5 were restored on an approximate 1:1 basis, as compared between the pre-excavation and post-excavation wetland habitat distribution. In West Zone 4, all specified plants were installed within the specified elevation-based planting zones, with the exception of 112, four-liter panic grass plants (panicum amarum var. amarulum). These were not available and were substituted with 56 four-liter little bluestem plants (schizachyrium scoparium) and 56 four-liter switchgrass plants (panicum virgatum). Due to the storm, slight changes to the West Zone 4 topography were designed to increase erosion resistance. This eliminated a small area of suitable marsh habitat for Parcel 105-170 that was originally planned to receive approximately 2,000 salt marsh grass plugs. The 2,000 plugs were instead installed in West Zone 1 and East Zone 4 as the plants were already ordered. In West Zone 5, all plants were installed within the specified elevation-based planting zones. Both West Zone 4 and West Zone 5 marsh plantings also had Pierce Mill Cove style herbivory fencing as a geese deterrent (i.e., chicken wire). Figures 2-2a through Figure 2-2e illustrate the pre-excavation wetland distribution and Figures 2-4a through Figure 2-4e illustrate the post-excavation and restoration wetland distribution.

A final post-excavation drone survey was conducted by Green Seal Environmental, LLC on June 15, 2022 to document post-restoration topography. An inspection was performed by Jacobs, NAE, and EPA on July 12, 2022, which resulted in several punch list items including addressing a washout area at the end of Manomet Street with 6-8 inch stone, removing pin flags from replanted areas, removing any washed up coir logs, and continuing to monitor the top of the bank slope near the apartment complexes at parcel 105-183. All punch list items were completed on July 20, 2022.

Site monitoring and maintenance will continue through the first five full growing seasons (through spring 2027) to document the extent to which the wetland restoration and, where applicable, upland restoration goals of the project are achieved. The monitoring and maintenance protocols are described in the *Draft Final Generic Upper Harbor Intertidal Work Plan* (Jacobs, 2019a).

3. Waste Management

Sediment generated from West Zone 4 and West Zone 5 intertidal remediation was disposed of in accordance with TSCA. Approximately 5,366 cubic yards of sediment were stabilized at the DDA and transported via truck from the DDA at Sawyer Street in New Bedford, Massachusetts to Worcester, Massachusetts. From Worcester, Massachusetts, the stabilized sediment was transloaded to rail cars for ultimate disposal at the Wayne Disposal, Inc. Site #2 Landfill, operated by US Ecology, Inc. in Belleville, Michigan.

4. References

- CR Environmental. (2021a). WZ-4 Planting Plan, New Bedford Harbor Superfund Site. Retrieved from https://sems.epa.gov/work/1662740510254/01-100021844.pdf
- CR Environmental. (2021b). WZ-5 Planting Plan, New Bedford Harbor Superfund Site. Retrieved from https://sems.epa.gov/work/1662740510254/01-100021845.pdf
- Ebasco Services Inc. (1989). Draft Final Baseline Public Health Risk Assessment; New Bedford Harbor Feasibility Study.
- Ebasco Services Inc. (1992). Draft Final Supplemental Feasibility Study Evaluation for Upper Bazzards Bay, New Bedford Harbor RI/FS, New Bedford, Massachusetts.
- Ebasco Services, Inc. (1990). Draft Final Feasibility Study of Remedial Alternatives for the Estuary and Lower Harbor/Bay, New Bedford, Massachusetts. Volume I - III. Retrieved from https://semspub.epa.gov/work/01/63937.pdf; https://semspub.epa.gov/work/01/63940.pdf
- EPA. (1990). *Record of Decision Summary New Bedford Harbor/ Hot Spot Operable Unit.* Retrieved from https://semspub.epa.gov/work/01/218788.pdf
- EPA. (1998). Record of Decision for the Upper and Lower Harbor Operable Unit, New Bedford Harbor Superfund Site. USEPA Region 1 - New England. Retrieved from https://semspub.epa.gov/work/01/38206.pdf
- EPA. (2021, July 21). Ambient Air Monitoring Program Total Detectable PCB Homologues. Retrieved from SEMS : https://semspub.epa.gov/work/01/100018347.pdf
- Jacobs. (2019a). Draft Final Generic Upper Harbor Intertidal Work Plan, Revision 1. Retrieved from https://semspub.epa.gov/work/01/100019240.pdf
- Jacobs. (2019b). Draft Final Topsoil Acceptance Plan. Retrieved from https://sems.epa.gov/work/1663857652500/01-100019049.pdf

- Jacobs. (2020a). Draft Final Intertidal Workplan for West Zone 4, Revision 1. Retrieved from https://sems.epa.gov/work/1663857652500/01-100021832.pdf
- Jacobs. (2020b). Draft Final Ambient Air Monitoring Plan for Remediation Activities, Revision 3. Retrieved from https://sems.epa.gov/work/1663857652500/01-100019048.pdf
- Jacobs. (2020c). *Draft Final Intertidal Work Plan for West Zone 5*. Retrieved from https://semspub.epa.gov/work/01/100014735.pdf
- Jacobs. (2020d). *Final Pre-Excavation Confirmatory Pilot Test Technical Memorandum*. Retrieved from https://semspub.epa.gov/work/01/100019052.pdf
- Jacobs. (2021). *Final Upper Harbor Sediment Caps Remedial Action Report*. Retrieved from https://semspub.epa.gov/work/01/653811.pdf
- Jacobs. (2022). *Final Intertidal Erosion and Storm Repairs at West Zone 4 (WZ4)*. Retrieved from https://sems.epa.gov/work/1663857652500/01-100021846.pdf

Figures

Path:

- PCB Characterization and Confirmatory Sample Location
- PCB Characterization Sample Location

Proposed Limits of Excavation

— MHHW (1.99 ft)

Parcel Boundary

MHHW and MLLW Elevations NAVD88 ft. (Green Seal, 2018)

JACOBS

Intertidal West Zone 5 Parcel 100-118 Proposed Excavation Boundaries and PCB Sample Locations (0-1 ft Depth Interval)

New Bedford Harbor Superfund Site March 2019 Figure 2-1c

- PCB Characterization and Confirmatory Sample Location
- PCB Characterization Sample Location
 - Proposed Limits of Excavation
- MHHW (1.99 ft)
- Parcel Boundary

MHHW and MLLW Elevations NAVD88 ft. (Green Seal, 2018)

JACOBS

Intertidal West Zone 5 Parcel 100-117 Proposed Excavation Boundaries and PCB Sample Locations (0-1 ft Depth Interval)

New Bedford Harbor Superfund Site March 2019 Figure 2-1d

- PCB Characterization and Confirmatory Sample Location
- PCB Characterization Sample Location
- Proposed Limits of Excavation
- MHHW (1.99 ft)
- Parcel Boundary

MHHW and MLLW Elevations NAVD88 ft. (Green Seal, 2018)

JACOBS

Intertidal West Zone 5 Parcels 100-120, 100-85, ROW Proposed Excavation Boundaries and PCB Sample Locations (0-1 ft Depth Interval)

New Bedford Harbor Superfund Site March 2019 Figure 2-1e

	5'			
Legend Mean Lower Low Water Mean Higher High Water 0-1' Excavation Depth 1-2' Excavation Depth Parcel Bou	tion Depth Beach	Basemap Data Source: Green Seal Environmental (2018)	50 100 Feet March 2019	Vertical Datum: NAVD88

Notes:

Pre-excavation vegetative cover was surveyed by Nearview, LLC (October 2017).

Intertidal West Zone 5 Parcel 100-118 Pre-Excavation Vegetation, Topography, and Excavation Area New Bedford Harbor Superfund Site

Figure 2-2c

Notes:

Pre-excavation vegetative cover was surveyed by Nearview, LLC (October 2017).

And Design

DO-118

New Bedford Harbor Superfund Site

JACOBS

Figure 2-2d

Pre-excavation vegetative cover was surveyed by Nearview, LLC (October 2017).

Intertidal West Zone 5 Parcel 100-85 Pre-Excavation Vegetation, Topography and Excavation Area

New Bedford Harbor Superfund Site

Figure 2-2e

- Compliance Survey Location
- Proposed Limits of Excavation
 - MHHW (1.99 ft)
- Parcel Boundary

MHHW and MLLW Elevations NAVD88 ft. (Green Seal, 2018) Basemap Data Source: Green Seal (2018); MassGIS (2014)

JACOBS

Intertidal West Zone 5 Parcel 100-118 Compliance Survey Locations with Excavation Footprint (0-1 ft Depth Interval)

New Bedford Harbor Superfund Site

May 2019

Figure 2-3c

- Compliance Survey Location
- Proposed Limits of Excavation
 - MHHW (1.99 ft)
- MLLW (-1.97 ft)
- Parcel Boundary

MHHW and MLLW Elevations NAVD88 ft. (Green Seal, 2018)

Basemap Data Source: Green Seal (2018); MassGIS (2014)

JACOBS

Intertidal West Zone 5 Parcel 100-117 **Compliance Survey Locations with Excavation Footprint** (0-1 ft Depth Interval)

New Bedford Harbor Superfund Site

May 2019

Figure 2-3d

- Compliance Survey Location
- Proposed Limits of Excavation
 - MHHW (1.99 ft)
- MLLW (-1.97 ft)
- Parcel Boundary

MHHW and MLLW Elevations NAVD88 ft. (Green Seal, 2018) Basemap Data Source: Green Seal (2018); MassGIS (2014)

JACOBS

Intertidal West Zone 5 Parcel 100-85 Compliance Survey Locations with Excavation Footprint (0-1 ft Depth Interval)

New Bedford Harbor Superfund Site

May 2019

Figure 2-3e

Tables

			Sample Double Top	Sample				Final
Derect	Semale ID	Station ID	Depth Top	Depth	Comple Date	Description		Final
Parcel 105-170	Sample ID S-15L-INT230-10-20	Station ID INT230	(ft) 1.0	Bottom (ft) 2.0	Sample Date 7/13/2015	Description Aroclor 1254 - Immunoassay	(mg/kg) 6.1	Qualifier
	S-15L-INT230-10-20 S-15L-INT230-10-20-REP	INT230		2.0		Aroclor 1254 - Immunoassay	0.1	
			1.0					0
	S-15L-INT230-20-30	INT230	2.0	3.0		Aroclor 1254 - Immunoassay	5.2	
	S-15L-INT230-20-30-REP	INT230	2.0	3.0		Aroclor 1254 - Immunoassay	6.6	-
	S-15L-INT231-00-10	INT231	0.0	1.0		Aroclor 1254 - Immunoassay	1878	
	S-15L-INT231-10-20	INT231	1.0	2.0		Aroclor 1254 - Immunoassay	467	
105-170	S-15L-INT232-00-10	INT232	0.0	1.0		Aroclor 1254 - Immunoassay	0.50	
	S-15L-INT232-10-20	INT232	1.0	2.0		Aroclor 1254 - Immunoassay	0.50	U
105-170	S-15L-INT233-00-10	INT233	0.0	1.0		Aroclor 1254 - Immunoassay	6.0	
	S-15L-INT233-10-20	INT233	1.0	2.0		Total 139 PCB cong (excl non-detects)	23.0	
	S-15L-INT233-20-26	INT233	2.0	2.6		Aroclor 1254 - Immunoassay	6.9	
105-170	S-15L-INT234-00-10	INT234	0.0	1.0	7/10/2015	Aroclor 1254 - Immunoassay	0.50	
105-170	S-15L-INT234-10-20	INT234	1.0	2.0	7/10/2015	Total 139 PCB cong (excl non-detects)	39.0	
105-170	S-15L-INT234-20-30	INT234	2.0	3.0	7/10/2015	Aroclor 1254 - Immunoassay	8.0	
105-170	S-15L-INT235-00-10	INT235	0.0	1.0	7/13/2015	Aroclor 1254 - Immunoassay	77.5	D
105-170	S-15L-INT235-10-20	INT235	1.0	2.0	7/13/2015	Aroclor 1254 - Immunoassay	1218	D
105-170	S-15L-INT236-00-10	INT236	0.0	1.0	7/10/2015	Total 139 PCB cong (excl non-detects)	0.30	
105-170	S-15L-INT236-10-20	INT236	1.0	2.0	7/10/2015	Total 139 PCB cong (excl non-detects)	2.4	
	S-15L-INT236-20-30	INT236	2.0	3.0		Aroclor 1254 - Immunoassay	0.50	
105-170	S-15L-INT236-30-40	INT236	3.0	4.0		Aroclor 1254 - Immunoassay	0.50	U
	S-15L-INT237-00-10	INT237	0.0	1.0		Aroclor 1254 - Immunoassay	25.4	D
105-170	S-15L-INT237-10-15	INT237	1.0	1.5	7/13/2015	Total 139 PCB cong (excl non-detects)	41.0	
105-170	S-3415-2.0-3.0	S-3415	2.0	3.0	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	203	
	S-3415-3.0-3.3	S-3415	3.0	3.3	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	98.8	
	S-3415-3.3-3.5	S-3415	3.3	3.5	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	46.8	
	S-3429-1.0-2.0	S-3429	1.0	2.0	11/5/2001	Total 18 NOAA PCB cong (excl non-detects)	6.2	
105-170	S-0925-1	S-925	0.0	1.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	676	
	S-0925-2	S-925	1.0	2.0		Total 18 NOAA PCB cong (excl non-detects)	72.8	
105-170	S-0925-2DUP	S-925	1.0	2.0		Total 18 NOAA PCB cong (excl non-detects)	161	
105-170	S-0926-1	S-926	0.0	1.0		Total 18 NOAA PCB cong (excl non-detects)	83.2	
	S-0926-2	S-926	1.0	2.0		Total 18 NOAA PCB cong (excl non-detects)	33.8	
	S-0926-3	S-926	2.0	3.0		Total 18 NOAA PCB cong (excl non-detects)	25.7	
105-170	S-WS406-18FSP15-00-10	WS406	0.0	1.0		Total 209 PCB cong (excl non-detects)	13.4	┝────┤
105-170	S-WS406-18FSP15-00-10	WS406 WS406	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	6.9	
	S-WS406-18FSP15-10-20 S-WS407-18FSP15-20-30	WS406 WS407	2.0	3.0	12/11/2018	Total 209 PCB cong (excl non-detects)	6.9 46.7	5
		WS407 WS407	3.0				46.7	
105-170	S-WS407-18FSP15-30-40			4.0		Total 209 PCB cong (excl non-detects)		├
105-170	S-WS407-18FSP15-40-50	WS407	4.0	5.0	12/12/2018	PCB from Immunoassay (Aroclor 1254)	4.4	J

 Table 2-1a

 Intertidal West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-170

 Table 2-1a

 Intertidal West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-170

Parcel	Sample ID	Station ID	Sample Depth Top (ft)	Sample Depth Bottom (ft)	Sample Date	Description	Total PCB (mg/kg)	Final Qualifier
105-170	S-WS408-18FSP15-00-10	WS408	0.0	1.0		Total 209 PCB cong (excl non-detects)	33.3	
105-170	S-WS408-18FSP15-10-20	WS408	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	2.0	J
105-170	S-WS409-18FSP15-20-30	WS409	2.0	3.0		PCB from Immunoassay (Aroclor 1254)	9.7	J
105-170	S-WS409-18FSP15-30-40	WS409	3.0	4.0	12/12/2018	PCB from Immunoassay (Aroclor 1254)	5.2	J
105-170	S-WS409-18FSP15-40-50	WS409	4.0	5.0	12/12/2018	PCB from Immunoassay (Aroclor 1254)	6.8	J
105-170	S-WS410-18FSP15-00-10	WS410	0.0	1.0	12/11/2018	Total 209 PCB cong (excl non-detects)	1.2	
105-170	S-WS410-18FSP15-10-20	WS410	1.0	2.0	12/11/2018	PCB from Immunoassay (Aroclor 1254)	2.4	J
105-170	S-WS411-18FSP15-20-30	WS411	2.0	3.0	12/13/2018	Total 209 PCB cong (excl non-detects)	155	
105-170	S-WS411-18FSP15-30-40	WS411	3.0	4.0	12/13/2018	Total 209 PCB cong (excl non-detects)	2.5	
105-170	S-WS411-18FSP15-40-50	WS411	4.0	5.0		PCB from Immunoassay (Aroclor 1254)	10.0	J
105-170	S-WS426-18FSP15-00-10	WS426	0.0	1.0		Total 209 PCB cong (excl non-detects)	49.1	
105-170	S-WS426-18FSP15-10-20	WS426	1.0	2.0		Total 209 PCB cong (excl non-detects)	27.8	
	S-WS427-18FSP15-00-10	WS427	0.0	1.0		Total 209 PCB cong (excl non-detects)	3.7	
105-170	S-WS427-18FSP15-10-20	WS427	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	2.5	
	S-WS428-18FSP15-00-10	WS428	0.0	1.0		Total 209 PCB cong (excl non-detects)	3.1	
105-170	S-WS428-18FSP15-10-20	WS428	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	1.1	
105-170	S-WS429-18FSP15-00-10	WS429	0.0	1.0		Total 209 PCB cong (excl non-detects)	55.3	
105-170	S-WS429-18FSP15-10-20	WS429	1.0	2.0	12/12/2018	PCB from Immunoassay (Aroclor 1254)	1.3	
	S-WS429-18FSP15-20-30	WS429	2.0	3.0		PCB from Immunoassay (Aroclor 1254)	0.74	
105-170	S-WS429-18FSP15-30-40	WS429	3.0	4.0		Total 209 PCB cong (excl non-detects)	81.2	
105-170	S-WS429-18FSP15-40-50	WS429	4.0	5.0		PCB from Immunoassay (Aroclor 1254)	5.4	J
	S-WS429-18FSP15-50-60	WS429	5.0	6.0		PCB from Immunoassay (Aroclor 1254)	7.4	-
105-170	S-WS430-18FSP15-00-10	WS430	0.0	1.0		Total 209 PCB cong (excl non-detects)	23.9	
105-170	S-WS430-18FSP15-10-20	WS430	1.0	2.0	12/12/2018	PCB from Immunoassay (Aroclor 1254)	4.7	-
105-170	S-WS431-18FSP15-20-30	WS431	2.0	3.0	1/31/2019	Total 209 PCB cong (excl non-detects)	73.3	
	S-WS431-18FSP15-30-40	WS431	3.0	4.0		PCB from Immunoassay (Aroclor 1254)	4.4	
105-170	S-WS431-18FSP15-40-50	WS431	4.0	5.0		PCB from Immunoassay (Aroclor 1254)		JB
	S-WS432-18FSP15-00-10	WS432	0.0	1.0	3/13/2019	Total 209 PCB cong (excl non-detects)	38.4	
105-170	S-WS433-18FSP15-00-10	WS433	0.0	1.0	3/13/2019	Total 209 PCB cong (excl non-detects)	8.6	

D - reported value is from a dilution; U - not detected; J - estimated value; B - contaminant detected in the blank.

Total 18 NOAA PCB congeners multiplied by a factor of 2.6.

			Sample	Sample				
			Depth Top	Depth			Total PCB	Final
Parcel	Sample ID	Station ID	(ft)		Sample Date	Description	(mg/kg)	Qualifier
	S-15L-INT238-00-10	INT238	0.0	1.0		Total 139 PCB cong (excl non-detects)	25.0	
		INT238	1.0	2.0		Aroclor 1254 - Immunoassay	1.6	
		INT238	2.0	3.0		Aroclor 1254 - Immunoassay	0.50	
		INT239	0.0	1.0		Aroclor 1254 - Immunoassay	47.1	
	S-15L-INT239-10-20	INT239	1.0	2.0	7/10/2015	Aroclor 1254 - Immunoassay	275	
	S-15L-INT239-20-30	INT239	2.0	3.0	7/10/2015	Aroclor 1254 - Immunoassay	82.2	
	S-15L-INT239-30-40	INT239	3.0	4.0		Aroclor 1254 - Immunoassay	86.0	
		INT239	4.0	5.0	7/10/2015	Aroclor 1254 - Immunoassay	495	
		INT240	0.0	1.0		Aroclor 1254 - Immunoassay	4.9	
105-183	S-15L-INT240-10-20	INT240	1.0	2.0	7/10/2015	Aroclor 1254 - Immunoassay	2.8	
105-183	S-15L-INT240-20-30	INT240	2.0	3.0	7/10/2015	Aroclor 1254 - Immunoassay	1305	D
105-183	S-15L-INT240-30-40	INT240	3.0	4.0	7/10/2015	Aroclor 1254 - Immunoassay	148	D
105-183	S-15L-INT240-40-50	INT240	4.0	5.0	7/10/2015	Aroclor 1254 - Immunoassay	40.7	D
105-183	S-15L-INT241-00-10	INT241	0.0	1.0	7/8/2015	Aroclor 1254 - Immunoassay	1.7	
105-183	S-15L-INT241-10-20	INT241	1.0	2.0	7/8/2015	Aroclor 1254 - Immunoassay	1.2	
105-183	S-15L-INT241-20-30	INT241	2.0	3.0	7/8/2015	Aroclor 1254 - Immunoassay	1.7	
105-183	S-15L-INT242-00-10	INT242	0.0	1.0	7/9/2015	Aroclor 1254 - Immunoassay	1.2	
105-183	S-15L-INT242-10-20	INT242	1.0	2.0	7/9/2015	Aroclor 1254 - Immunoassay	4.4	
105-183	S-15L-INT242-20-30	INT242	2.0	3.0	7/9/2015	Aroclor 1254 - Immunoassay	2.4	
105-183	S-15L-INT243-00-10	INT243	0.0	1.0	7/9/2015	Aroclor 1254 - Immunoassay	57.5	D
105-183	S-15L-INT243-40-50	INT243	4.0	5.0	7/9/2015	Aroclor 1254 - Immunoassay	83.9	D
105-183	S-15L-INT244-00-10	INT244	0.0	1.0	7/9/2015	Aroclor 1254 - Immunoassay	1.0	
105-183	S-15L-INT244-10-20	INT244	1.0	2.0	7/9/2015	Aroclor 1254 - Immunoassay	0.90	
105-183	S-15L-INT244-20-30	INT244	2.0	3.0	7/9/2015	Aroclor 1254 - Immunoassay	0.90	
105-183	S-15L-INT245-00-10	INT245	0.0	1.0	7/8/2015	Aroclor 1254 - Immunoassay	79.9	D
105-183	S-15L-INT245-10-20	INT245	1.0	2.0	7/8/2015	Aroclor 1254 - Immunoassay	274	
105-183	S-15L-INT245-20-30	INT245	2.0	3.0	7/8/2015	Aroclor 1254 - Immunoassay	434	D
105-183	S-15L-INT245-30-40	INT245	3.0	4.0	7/8/2015	Aroclor 1254 - Immunoassay	61.8	D
105-183	S-15L-INT245-40-50	INT245	4.0	5.0	7/8/2015	Aroclor 1254 - Immunoassay	34.3	D
105-183	S-15L-INT246-00-10	INT246	0.0	1.0	7/9/2015	Total 139 PCB cong (excl non-detects)	11.0	
105-183	S-15L-INT246-10-20	INT246	1.0	2.0	7/9/2015	Total 139 PCB cong (excl non-detects)	18.0	
		INT246	2.0	3.0	7/9/2015	Aroclor 1254 - Immunoassay	6.0	
	S-15L-INT246-30-40	INT246	3.0	4.0	7/9/2015	Aroclor 1254 - Immunoassay	0.50	
	S-3439-1.1-1.6	S-3439	1.1	1.6	8/24/2001	Total 18 NOAA PCB cong (excl non-detects)	41.6	
		S-3439	1.6	2.1	8/24/2001	Total 18 NOAA PCB cong (excl non-detects)	0.91	
	S-3810-0.0-1.0	S-3810	0.0	1.0	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	24.7	
	S-3845-0.0-1.0	S-3845	0.0	1.0	11/14/2001	Total 18 NOAA PCB cong (excl non-detects)	122	

 Table 2-1b

 Intertidal West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183

 Table 2-1b

 Intertidal West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183

			Sample	Sample			T (1000	
Deve	Commite ID	Ctation ID	Depth Top	Depth	Comula Data	Description	Total PCB	Final
Parcel 105-183	Sample ID S-3845-1.0-2.0	S-3845	(ft) 1.0	Bottom (ft) 2.0	Sample Date 11/14/2001	Description Total 18 NOAA PCB cong (excl non-detects)	(mg/kg) 260	Qualifier
	S-3845-2.0-3.0	S-3845	2.0	3.0		Total 18 NOAA PCB cong (excl non-detects)	200	
105-183	S-3849-0.0-1.0	S-3849	0.0	1.0		Total 18 NOAA PCB cong (excl non-detects)	20.0	
105-183	S-3849-0.0-1.0 S-3849-1.0-2.0	S-3849	1.0	2.0		Total 18 NOAA PCB cong (excl non-detects)	312	
105-183	S-3849-2.0-3.0	S-3849	2.0	3.0	11/14/2001	Total 18 NOAA PCB cong (excl non-detects)	213	
105-183	S-0923-1	S-923	0.0	1.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	0.91	
105-183	S-0923-2	S-923	1.0	2.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	0.62	
105-183	S-0924-1	S-924	0.0	1.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	200	
105-183	S-0924-2	S-924	1.0	2.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	416	
105-183	S-0924-2 S-0924-3	S-924	2.0	3.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	260	
105-183	S-WS412-18FSP15-30-40	WS412	3.0	4.0	12/19/2018	Total 209 PCB cong (excl non-detects)	57.4	
105-183	S-WS412-18FSP15-40-50	WS412 WS412	4.0	5.0	12/19/2018	Total 209 PCB cong (excl non-detects)	75.8	
105-183	S-WS412-18FSP15-50-60	WS412 WS412	5.0	6.0		Total 209 PCB cong (excl non-detects)	5.0	
105-183	S-WS412-18FSP15-60-70	WS412	6.0	7.0		PCB from Immunoassay (Aroclor 1254)	3.5	.1
105-183	S-WS412-18FSP15-70-80	WS412	7.0	8.0		PCB from Immunoassay (Aroclor 1254)	3.3	
105-183	S-WS412-18FSP15-80-90	WS412	8.0	9.0		PCB from Immunoassay (Aroclor 1254)	9.8	
105-183	S-WS413-18FSP15-00-10	WS413	0.0	1.0		Total 209 PCB cong (excl non-detects)	0.12	0
105-183	S-WS413-18FSP15-10-20	WS413	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	3.5	.1
105-183	S-WS413-18FSP15-20-28	WS413	2.0	2.8		PCB from Immunoassay (Aroclor 1254)	3.3	
105-183	S-WS414-18FSP15-30-40	WS414	3.0	4.0		PCB from Immunoassay (Aroclor 1254)	93.0	
105-183	S-WS414-18FSP15-40-50	WS414	4.0	5.0		PCB from Immunoassay (Aroclor 1254)	19.0	
	S-WS414-18FSP15-50-60	WS414	5.0	6.0		Total 209 PCB cong (excl non-detects)	89.5	00
105-183	S-WS414-18FSP15-60-70	WS414	6.0	7.0		PCB from Immunoassay (Aroclor 1254)	5.7	.]
105-183	S-WS415-18FSP15-00-10	WS415	0.0	1.0		Total 209 PCB cong (excl non-detects)	228	•
105-183	S-WS415-18FSP15-10-20	WS415	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	93.0	JD
105-183	S-WS415-18FSP15-20-30	WS415	2.0	3.0		PCB from Immunoassay (Aroclor 1254)	91.0	
105-183	S-WS415-18FSP15-30-40	WS415	3.0	4.0		Total 209 PCB cong (excl non-detects)	64.8	02
105-183	S-WS415-18FSP15-40-50	WS415	4.0	5.0		Total 209 PCB cong (excl non-detects)	63.4	
105-183	S-WS415-18FSP15-50-60	WS415	5.0	6.0	12/13/2018	3	32.6	
105-183	S-WS415-18FSP15-60-70	WS415	6.0	7.0		Total 209 PCB cong (excl non-detects)	4.7	
105-183	S-WS416-18FSP15-00-10	WS416	0.0	1.0		Total 209 PCB cong (excl non-detects)	5.0	
105-183	S-WS416-18FSP15-10-20	WS416	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	7.4	JD
105-183	S-WS417-18FSP15-00-10	WS417	0.0	1.0		Total 209 PCB cong (excl non-detects)	1.5	
105-183	S-WS417-18FSP15-10-20	WS417	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	3.6	J
105-183	S-WS418-18FSP15-10-20	WS418	1.0	2.0	1/31/2019	Total 209 PCB cong (excl non-detects)	32.3	-
105-183	S-WS418-18FSP15-20-30	WS418	2.0	3.0		Total 209 PCB cong (excl non-detects)	21.0	
105-183	S-WS418-18FSP15-30-40	WS418	3.0	4.0		PCB from Immunoassay (Aroclor 1254)	7.4	JD

 Table 2-1b

 Intertidal West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183

Parcel	Sample ID	Station ID	Sample Depth Top (ft)	Sample Depth Bottom (ft)	Sample Date	Description	Total PCB (mg/kg)	Final Qualifier
105-183	S-WS418-18FSP15-40-50	WS418	4.0	5.0	12/20/2018	PCB from Immunoassay (Aroclor 1254)	17.0	JD
105-183	S-WS418-18FSP15-50-60	WS418	5.0	6.0		PCB from Immunoassay (Aroclor 1254)	8.2	
	S-WS418-18FSP15-60-70	WS418	6.0	7.0		PCB from Immunoassay (Aroclor 1254)	2.6	
105-183	S-WS418-18FSP15-70-80	WS418	7.0	8.0		PCB from Immunoassay (Aroclor 1254)	0.70	
105-183	S-WS418-18FSP15-80-90	WS418	8.0	9.0		PCB from Immunoassay (Aroclor 1254)	1.9	J
105-183	S-WS419-18FSP15-00-10	WS419	0.0	1.0		Total 209 PCB cong (excl non-detects)	7.1	
	S-WS419R-18FSP15-00-10-REP	WS419	0.0	1.0		Total 209 PCB cong (excl non-detects)	2.5	
105-183	S-WS419-18FSP15-10-20	WS419	1.0	2.0	12/13/2018	PCB from Immunoassay (Aroclor 1254)	12.0	JD
	S-WS419R-18FSP15-10-20-REP	WS419	1.0	2.0		PCB from Immunoassay (Aroclor 1254)	12.0	
	S-WS420-18FSP15-20-30	WS420	2.0	3.0		PCB from Immunoassay (Aroclor 1254)	93.0	
	S-WS420-18FSP15-30-40	WS420	3.0	4.0		PCB from Immunoassay (Aroclor 1254)	70.0	
	S-WS420-18FSP15-40-50	WS420	4.0	5.0		PCB from Immunoassay (Aroclor 1254)	89.0	
	S-WS420-18FSP15-50-60	WS420	5.0	6.0		Total 209 PCB cong (excl non-detects)	179	
	S-WS420-18FSP15-60-70	WS420	6.0	7.0		Total 209 PCB cong (excl non-detects)	35.9	
	S-WS420-18FSP15-70-80	WS420	7.0	8.0	12/20/2018	PCB from Immunoassay (Aroclor 1254)	14.0	JD
105-183	S-WS420-18FSP15-80-90	WS420	8.0	9.0	12/20/2018	PCB from Immunoassay (Aroclor 1254)	4.5	J
105-183	S-WS421-18FSP15-00-10	WS421	0.0	1.0	12/13/2018	Total 209 PCB cong (excl non-detects)	0.71	
105-183	S-WS421-18FSP15-10-20	WS421	1.0	2.0	12/13/2018	PCB from Immunoassay (Aroclor 1254)	3.8	J
105-183	S-WS422-18FSP15-00-10	WS422	0.0	1.0	12/13/2018	Total 209 PCB cong (excl non-detects)	2.2	
105-183	S-WS422-18FSP15-10-20	WS422	1.0	2.0	12/13/2018	Total 209 PCB cong (excl non-detects)	130	
105-183	S-WS422B-18FSP15-20-30	WS422B	2.0	3.0	3/13/2019	Total 209 PCB cong (excl non-detects)	2360	
105-183	S-WS422B-18FSP15-30-40	WS422B	3.0	4.0	3/13/2019	Total 209 PCB cong (excl non-detects)	250	
105-183	S-WS422B-18FSP15-40-50	WS422B	4.0	5.0	3/13/2019	Total 209 PCB cong (excl non-detects)	10.9	
105-183	S-WS423-18FSP15-20-30	WS423	2.0	3.0	1/16/2019	Total 209 PCB cong (excl non-detects)	0.89	
105-183	S-WS423-18FSP15-30-40	WS423	3.0	4.0	1/16/2019	PCB from Immunoassay (Aroclor 1254)	1.5	J
105-183	S-WS424-18FSP15-00-10	WS424	0.0	1.0	12/12/2018	Total 209 PCB cong (excl non-detects)	5.5	
105-183	S-WS424-18FSP15-10-20	WS424	1.0	2.0	12/12/2018	PCB from Immunoassay (Aroclor 1254)	1.3	J
105-183	S-WS424-18FSP15-20-30	WS424	2.0	3.0		PCB from Immunoassay (Aroclor 1254)	1.7	J
105-183	S-WS424-18FSP15-30-40	WS424	3.0	4.0	12/12/2018	PCB from Immunoassay (Aroclor 1254)	1.7	J
105-183	S-WS425-18FSP15-20-30	WS425	2.0	3.0	12/19/2018	PCB from Immunoassay (Aroclor 1254)	92.0	JD
105-183	S-WS425-18FSP15-30-40	WS425	3.0	4.0	12/19/2018	Total 209 PCB cong (excl non-detects)	54.3	
105-183	S-WS425-18FSP15-40-50	WS425	4.0	5.0	12/19/2018	Total 209 PCB cong (excl non-detects)	10.1	

D - reported value is from a dilution; U - not detected; J - estimated value; B - contaminant detected in the blank.

Total 18 NOAA PCB congeners multiplied by a factor of 2.6.

				Sample Depth Top	Sample Depth			Total PCB	Final
Parcel	Туре	Sample ID	Station ID	(ft)	Bottom (ft)	Sample Date	Description	(mg/kg)	Qualifier
100-118	Upland	S-15L-INT247-00-10	INT247	0.0	1.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	
100-118	Upland	S-15L-INT247-10-20	INT247	1.0	2.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	
100-118	Saltmarsh	S-15L-INT248-00-10	INT248	0.0	1.0		PCB from Immunoassay (Aroclor 1254)	16.20	-
100-118	Saltmarsh	S-15L-INT248-10-20	INT248	1.0	2.0	7/10/2015	PCB from Immunoassay (Aroclor 1254)	181.10	
100-118	Saltmarsh	S-15L-INT248-20-30	INT248	2.0	3.0	7/10/2015	PCB from Immunoassay (Aroclor 1254)	78.50	
100-118	Saltmarsh	S-15L-INT248-30-35	INT248	3.0	3.5	7/10/2015	PCB from Immunoassay (Aroclor 1254)	34.60	D
100-118	Upland	S-15L-INT249-00-10	INT249	0.0	1.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	U
100-118	Upland	S-15L-INT249-10-20	INT249	1.0	2.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	U
100-118	Saltmarsh	S-15L-INT250-00-10	INT250	0.0	1.0	7/10/2015	PCB from Immunoassay (Aroclor 1254)	7.80	D
100-118	Saltmarsh	S-15L-INT250-10-20	INT250	1.0	2.0	7/10/2015	PCB from Immunoassay (Aroclor 1254)	8.90	
100-118	Saltmarsh	S-15L-INT250-20-30	INT250	2.0	3.0	7/10/2015	Total 139 PCB cong (excl non-detects)	35.00	
100-118	Saltmarsh	S-15L-INT250-30-40	INT250	3.0	4.0	7/10/2015	PCB from Immunoassay (Aroclor 1254)	57.10	D
100-118	Saltmarsh	S-15L-INT250-40-46	INT250	4.0	4.6	7/10/2015	PCB from Immunoassay (Aroclor 1254)	11.50	D
100-118	Saltmarsh	S-15L-INT250-46-53	INT250	4.6	5.3	7/10/2015	PCB from Immunoassay (Aroclor 1254)	0.80	
100-118	Upland	S-15L-INT251-00-10	INT251	0.0	1.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	
100-118	Upland	S-15L-INT251-10-20	INT251	1.0	2.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	U
100-118	Upland	S-15L-INT252-00-10	INT252	0.0	1.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	U
100-118	Upland	S-15L-INT252-10-20	INT252	1.0	2.0	7/8/2015	PCB from Immunoassay (Aroclor 1254)	0.50	U
100-118	Mudflat	S-15G-INT253-00-10	INT253	0.0	1.0	8/13/2015	PCB from Immunoassay (Aroclor 1254)	22.80	
100-118	Mudflat	S-15G-INT253-10-20	INT253	1.0	2.0	8/13/2015	PCB from Immunoassay (Aroclor 1254)	9.50	
100-118	Mudflat	S-15G-INT253-20-30	INT253	2.0	3.0	8/13/2015	PCB from Immunoassay (Aroclor 1254)	2.60	
100-118	Mudflat	S-15G-INT253-30-40	INT253	3.0	4.0	8/13/2015	Total 139 PCB cong (excl non-detects)	11.00	
100-118	Mudflat	S-15G-INT253-40-50	INT253	4.0	5.0	8/13/2015	PCB from Immunoassay (Aroclor 1254)	7.40	
100-118	Upland	S-3812-0.03	S-3812	0.0	0.3	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	0.70	
100-118	Upland	S-38123-1.0	S-3812	0.3	1.0	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	7.80	
100-118	Upland	S-3812-1.0-1.5	S-3812	1.0	1.5	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	6.24	
100-118	Upland	S-3812-1.5-2.0	S-3812	1.5	2.0	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	2.16	
100-118	Upland	S-3813-0.0-1.0	S-3813	0.0	1.0	10/19/2001	Total 18 NOAA PCB cong (excl non-detects)	0.26	
100-118	Saltmarsh	S-0919-1	S-919	0.0	1.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	598.00	
100-118	Saltmarsh	S-0919-1DUP	S-919	0.0	1.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	21.06	
100-118	Saltmarsh	S-0919-2	S-919	1.0	2.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	17.68	
100-118	Mudflat	S-0921-1	S-921	0.0	1.0	10/23/2000	Total 18 NOAA PCB cong (excl non-detects)	31.20	
100-118	Mudflat	S-WS501-18FSP12-00-07	WS501	0.0	0.7	8/28/2018	Total 209 PCB cong (excl non-detects)	25.8	
100-118	Saltmarsh	S-WS503-18FSP12-00-10	WS503	0.0	1.0	8/21/2018	Total 209 PCB cong (excl non-detects)	11.8	
100-118	Saltmarsh	S-WS503-18FSP12-10-20	WS503	1.0	2.0	8/21/2018	PCB from Immunoassay (Aroclor 1254)	14	JD
100-118	Saltmarsh	S-WS503-18FSP12-20-30	WS503	2.0	3.0	8/21/2018	Total 209 PCB cong (excl non-detects)	84.6	
100-118	Upland	S-WS504-18FSP12-00-10	WS504	0.0	1.0	8/14/2018	Total 209 PCB cong (excl non-detects)	0.719	
100-118	Upland	S-WS504-18FSP12-10-20	WS504	1.0	2.0	8/14/2018	PCB from Immunoassay (Aroclor 1254)	6.4	
100-118	Saltmarsh	S-WS505-18FSP12-00-10	WS505	0.0	1.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	57	JD
100-118	Saltmarsh	S-WS505-18FSP12-10-20	WS505	1.0	2.0	9/25/2018	Total 209 PCB cong (excl non-detects)	24.6	
100-118	Saltmarsh	S-WS505-18FSP12-20-25	WS505	2.0	2.5	9/25/2018	Total 209 PCB cong (excl non-detects)	21.4	
100-118	Saltmarsh	S-WS506-18FSP12-00-10	WS506	0.0	1.0	8/21/2018	PCB from Immunoassay (Aroclor 1254)	9.6	
100-118	Saltmarsh	S-WS506-18FSP12-10-20	WS506	1.0	2.0	8/21/2018	PCB from Immunoassay (Aroclor 1254)	24	
100-118	Saltmarsh	S-WS506-18FSP12-20-30	WS506	2.0	3.0	8/21/2018	PCB from Immunoassay (Aroclor 1254)	92	JD
100-118	Upland	S-WS508-18FSP12-00-10	WS508	0.0	1.0	8/14/2018	Total 209 PCB cong (excl non-detects)	4.59	

 Table 2-1c

 Intertidal West Zone 5 Pre-Excavation PCB Characterization Sample Results for Parcel 100-118

				Sample Depth Top	Sample Depth			Total PCB	Final
Parcel	Туре	Sample ID	Station ID	(ft)	Bottom (ft)	Sample Date	Description	(mg/kg)	Qualifier
100-118	Upland	S-WS508-18FSP12-10-20	WS508	1.0	2.0	8/14/2018	PCB from Immunoassay (Aroclor 1254)	9.4	J
100-118	Saltmarsh	S-WS509-18FSP12-00-10	WS509	0.0	1.0	10/5/2018	Total 209 PCB cong (excl non-detects)	20.8	
100-118	Saltmarsh	S-WS509-18FSP12-10-20	WS509	1.0	2.0	10/5/2018	PCB from Immunoassay (Aroclor 1254)	7.9	J
100-118	Saltmarsh	S-WS509-18FSP12-20-30	WS509	2.0	3.0	10/5/2018	PCB from Immunoassay (Aroclor 1254)	5.7	J
100-118	Saltmarsh	S-WS509-18FSP12-30-40	WS509	3.0	4.0	10/5/2018	PCB from Immunoassay (Aroclor 1254)	4.2	J
100-118	Saltmarsh	S-WS510-18FSP12-00-10	WS510	0.0	1.0	8/21/2018	Total 209 PCB cong (excl non-detects)	21.5	
100-118	Saltmarsh	S-WS510-18FSP12-10-20	WS510	1.0	2.0	8/21/2018	Total 209 PCB cong (excl non-detects)	7.65	
100-118	Saltmarsh	S-WS510-18FSP12-20-30	WS510	2.0	3.0	8/21/2018	PCB from Immunoassay (Aroclor 1254)	2.6	J
100-118	Saltmarsh	S-WS510-18FSP12-30-40	WS510	3.0	4.0	8/21/2018	PCB from Immunoassay (Aroclor 1254)	17	JD
100-118	Saltmarsh	S-WS512-18FSP12-00-10	WS512	0.0	1.0	10/4/2018	Total 209 PCB cong (excl non-detects)	27.8	
100-118	Saltmarsh	S-WS512-18FSP12-10-20	WS512	1.0	2.0	10/4/2018	PCB from Immunoassay (Aroclor 1254)	1.8	J
100-118	Saltmarsh	S-WS512-18FSP12-20-30	WS512	2.0	3.0	10/4/2018	PCB from Immunoassay (Aroclor 1254)	0.34	J
100-118	Saltmarsh	S-WS512-18FSP12-30-40	WS512	3.0	4.0	10/4/2018	PCB from Immunoassay (Aroclor 1254)	0.81	J
100-118	Upland	S-WS514-18FSP12-00-10	WS514	0.0	1.0	8/14/2018	Total 209 PCB cong (excl non-detects)	0.0893	
100-118	Upland	S-WS514-18FSP12-10-20	WS514	1.0	2.0	8/14/2018	PCB from Immunoassay (Aroclor 1254)	4.7	J
100-118	Saltmarsh	S-WS515-18FSP12-00-10	WS515	0.0	1.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	40	JD
100-118	Saltmarsh	S-WS515-18FSP12-10-20	WS515	1.0	2.0	9/25/2018	Total 209 PCB cong (excl non-detects)	17.9	
100-118	Saltmarsh	S-WS515-18FSP12-20-30	WS515	2.0	3.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	2.2	J
100-118	Saltmarsh	S-WS515-18FSP12-30-40	WS515	3.0	4.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	6.1	J
100-118	Upland	S-WS516-18FSP12-00-10	WS516	0.0	1.0	8/14/2018	Total 209 PCB cong (excl non-detects)	0.0207	
100-118	Upland	S-WS516-18FSP12-10-20	WS516	1.0	2.0	8/14/2018	PCB from Immunoassay (Aroclor 1254)	10	J
100-118	Upland	S-WS518-18FSP12-00-10	WS518	0.0	1.0	8/14/2018	Total 209 PCB cong (excl non-detects)	0.056	
100-118	Upland	S-WS518-18FSP12-10-20	WS518	1.0	2.0	8/14/2018	PCB from Immunoassay (Aroclor 1254)	7.7	J
100-118	Upland	S-WS519-18FSP12-00-10	WS519	0.0	1.0	8/15/2018	Total 209 PCB cong (excl non-detects)	0.141	
100-118	Upland	S-WS519-18FSP12-10-20	WS519	1.0	2.0	8/15/2018	PCB from Immunoassay (Aroclor 1254)	11	J
100-118	Saltmarsh	S-WS520-18FSP12-00-10	WS520	0.0	1.0	10/5/2018	PCB from Immunoassay (Aroclor 1254)	4.8	J
100-118	Saltmarsh	S-WS520-18FSP12-10-20	WS520	1.0	2.0	10/5/2018	PCB from Immunoassay (Aroclor 1254)	5.6	J
100-118	Saltmarsh	S-WS520-18FSP12-20-30	WS520	2.0	3.0	10/5/2018	PCB from Immunoassay (Aroclor 1254)	3.5	J
100-118	Saltmarsh	S-WS520-18FSP12-30-40	WS520	3.0	4.0	10/5/2018	PCB from Immunoassay (Aroclor 1254)	4.1	J
100-118	Mudflat	S-WS521-18FSP12-00-10	WS521	0.0	1.0	9/17/2018	PCB from Immunoassay (Aroclor 1254)	9.9	J
100-118	Mudflat	S-WS521-18FSP12-10-20	WS521	1.0	2.0	9/17/2018	PCB from Immunoassay (Aroclor 1254)	2.8	J
100-118	Mudflat	S-WS521-18FSP12-20-30	WS521	2.0	3.0	9/17/2018	PCB from Immunoassay (Aroclor 1254)	3.8	J

Table 2-1c Intertidal West Zone 5 Pre-Excavation PCB Characterization Sample Results for Parcel 100-118

D - reported value is from a dilution; U - not detected; J - estimated value Total 18 NOAA PCB congeners multiplied by a factor of 2.6.

Table 2-1d Intertidal West Zone 5 Pre-Excavation PCB Characterization Sample Results for Parcel 100-117

Parcel	Туре	Sample ID	Station ID	Sample Depth Top (ft)	Sample Depth Bottom (ft)	Sample Date	Description	Total PCB (mg/kg)	Final Qualifier
100-117	Upland	S-15O-INT254-00-10	INT254	0.0	1.0	10/20/2015	PCB from Immunoassay (Aroclor 1254)	1.80	
100-117	Upland	S-15O-INT254-10-20	INT254	1.0	2.0	10/20/2015	PCB from Immunoassay (Aroclor 1254)	1.40	
100-117	Upland	S-15O-INT255-00-10	INT255	0.0	1.0	10/20/2015	PCB from Immunoassay (Aroclor 1254)	1.60	
100-117	Upland	S-15O-INT255-10-20	INT255	1.0	2.0	10/20/2015	PCB from Immunoassay (Aroclor 1254)	1.00	
100-117	Mudflat	S-15O-INT256-00-10	INT256	0.0	1.0	10/26/2015	Total 139 PCB cong (excl non-detects)	39.00	
100-117	Mudflat	S-15O-INT256-10-20	INT256	1.0	2.0	10/26/2015	Total 139 PCB cong (excl non-detects)	210.00	
100-117	Mudflat	S-15O-INT256-20-30	INT256	2.0	3.0	10/26/2015	PCB from Immunoassay (Aroclor 1254)	23.70	D
100-117	Mudflat	S-15O-INT256-30-40	INT256	3.0	4.0	10/26/2015	PCB from Immunoassay (Aroclor 1254)	10.60	D
100-117	Mudflat	S-15O-INT256-40-46	INT256	4.0	4.6	10/26/2015	PCB from Immunoassay (Aroclor 1254)	2.00	
100-117	Upland	S-15O-INT257-00-10	INT257	0.0	1.0	10/20/2015	PCB from Immunoassay (Aroclor 1254)	2.10	
100-117	Upland	S-15O-INT257-10-20	INT257	1.0	2.0	10/20/2015	PCB from Immunoassay (Aroclor 1254)	2.00	
100-117	Mudflat	S-0101-1	S-101	0.0	1.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	44.20	
100-117	Mudflat	S-0101-2	S-101	1.0	2.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	119.60	
100-117	Mudflat	S-0101-3	S-101	2.0	3.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	3.12	
100-117	Mudflat	S-0108-1	S-108	0.0	1.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	5.72	
100-117	Mudflat	S-0108-2	S-108	1.0	2.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	145.60	
100-117	Mudflat	S-0108-3	S-108	2.0	3.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	0.16	
100-117	Upland	S-WS522-18FSP12-00-10	WS522	0.0	1.0	9/17/2018	Total 209 PCB cong (excl non-detects)	0.18	
100-117	Upland	S-WS522-18FSP12-10-20	WS522	1.0	2.0	9/17/2018	PCB from Immunoassay (Aroclor 1254)	1.7	J
100-117	Upland	S-WS524-18FSP12-00-10	WS524	0.0	1.0	9/20/2018	Total 209 PCB cong (excl non-detects)	0.31	
100-117	Upland	S-WS524-18FSP12-10-20	WS524	1.0	2.0	9/20/2018	PCB from Immunoassay (Aroclor 1254)	0.82	JB
100-117	Mudflat	S-WS525-18FSP12-00-10	WS525	0.0	1.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	0.86	JB
100-117	Mudflat	S-WS525-18FSP12-10-20	WS525	1.0	2.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	0.42	J
100-117	Mudflat	S-WS525-18FSP12-20-30	WS525	2.0	3.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	2.2	J
100-117	Upland	S-WS527-18FSP12-00-10	WS527	0.0	1.0	9/20/2018	Total 209 PCB cong (excl non-detects)	0.0278	
100-117	Upland	S-WS527-18FSP12-10-20	WS527	1.0	2.0	9/20/2018	PCB from Immunoassay (Aroclor 1254)	0.78	JB
100-117	Mudflat	S-WS528-18FSP12-00-10	WS528	0.0	1.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	3.9	J
100-117	Mudflat	S-WS528-18FSP12-10-20	WS528	1.0	2.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	1.6	J
100-117	Mudflat	S-WS528-18FSP12-20-30	WS528	2.0	3.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	29	JD
100-117	Saltmarsh	S-WS531-18FSP12-00-10	WS531	0.0	1.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	8.7	J
100-117	Saltmarsh	S-WS531-18FSP12-10-20	WS531	1.0	2.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	7.1	J
100-117	Saltmarsh	S-WS531-18FSP12-20-30	WS531	2.0	3.0	9/25/2018	PCB from Immunoassay (Aroclor 1254)	6.3	J

D - reported value is from a dilution; J - estimated value; B - contaminant detected in blank

Total 18 NOAA PCB congeners multiplied by a factor of 2.6.

Table 2-1eIntertidal West Zone 5 Pre-Excavation PCB Characterization Sample Results for Parcel 100-120,
100-85, and ROW

Deve	Tura	Converte ID		Sample Depth Top	Sample Depth	Comple Date	Description	Total PCB
Parcel	Type	Sample ID S-15G-INT261-00-10	Station ID	(ft)	Bottom (ft)	Sample Date	Description	(mg/kg)
100-120	Upland		INT261	0.0	1.0	8/5/2015	PCB from Immunoassay (Aroclor 1254)	0.70
100-120	Upland	S-15G-INT261-10-20	INT261	1.0	2.0	8/5/2015	PCB from Immunoassay (Aroclor 1254)	1.70
100-120	Mudflat	S-15G-INT262-00-10	INT262	0.0	1.0	8/28/2015	PCB from Immunoassay (Aroclor 1254)	11.70
100-120	Mudflat	S-15G-INT262-10-20	INT262	1.0	2.0	8/28/2015	PCB from Immunoassay (Aroclor 1254)	4.30
100-85	Mudflat	S-15L-INT258-00-10	INT258	0.0	1.0	7/16/2015	PCB from Immunoassay (Aroclor 1254)	7.50
100-85	Mudflat	S-15L-INT258-10-20	INT258	1.0	2.0	7/16/2015	PCB from Immunoassay (Aroclor 1254)	0.90
100-85	Mudflat	S-15G-INT259-00-10	INT259	0.0	1.0	8/28/2015	Total 139 PCB cong (excl non-detects)	9.7
100-85	Mudflat	S-15G-INT259-10-20	INT259	1.0	2.0	8/28/2015	PCB from Immunoassay (Aroclor 1254)	1
100-85	Mudflat	S-15L-INT260-00-10	INT260	0.0	1.0	7/16/2015	PCB from Immunoassay (Aroclor 1254)	9.10
100-85	Mudflat	S-15L-INT260-10-23	INT260	1.0	2.3	7/16/2015	PCB from Immunoassay (Aroclor 1254)	0.70
100-85	Mudflat	S-0113-1	S-113	0.0	1.0	9/27/1999	Total 18 NOAA PCB cong (excl non-detects)	338.00
100-85	Mudflat	S-0113-2	S-113	1.0	2.0	9/27/1999	Total 18 NOAA PCB cong (excl non-detects)	174.20
100-85	Mudflat	S-0113-3	S-113	2.0	3.0	9/27/1999	Total 18 NOAA PCB cong (excl non-detects)	3.12
100-85	Saltmarsh	S-0116-1	S-116	0.0	1.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	202.80
100-85	Saltmarsh	S-0116-2	S-116	1.0	2.0	9/23/1999	Total 18 NOAA PCB cong (excl non-detects)	7.80
100-85	Upland	S-3818-0.0-1.0	S-3818	0.0	1.0	10/19/2001	Total 18 NOAA PCB cong (excl non-detects)	0.04
100-85	Upland	S-0807-1	S-807	0.0	1.0	10/18/2000	Total 18 NOAA PCB cong (excl non-detects)	0.60
100-85	Upland	S-0807-2	S-807	1.0	2.0	10/18/2000	Total 18 NOAA PCB cong (excl non-detects)	0.19
100-85	Mudflat	S-WS532-18FSP12-00-10	WS532	0.0	1.0	9/18/2018	PCB from Immunoassay (Aroclor 1254)	9.7
100-85	Mudflat	S-WS532-18FSP12-10-15	WS532	1.0	1.5	9/18/2018	PCB from Immunoassay (Aroclor 1254)	6.4
100-85	Saltmarsh	S-WS533-18FSP12-00-10	WS533	0.0	1.0	9/20/2018	PCB from Immunoassay (Aroclor 1254)	65
100-85	Saltmarsh	S-WS534-18FSP12-00-10	WS534	0.0	1.0	9/20/2018	PCB from Immunoassay (Aroclor 1254)	43
100-85	Saltmarsh	S-WS534-18FSP12-10-20	WS534	1.0	2.0	9/20/2018	Total 209 PCB cong (excl non-detects)	24.3
100-85	Saltmarsh	S-WS534-18FSP12-20-30	WS534	2.0	3.0	9/20/2018	Total 209 PCB cong (excl non-detects)	59.1
100-85	Saltmarsh	S-WS534-18FSP12-30-40	WS534	3.0	4.0	9/20/2018	Total 209 PCB cong (excl non-detects)	81.9
100-85	Saltmarsh	S-WS534-18FSP12-40-49	WS534	4.0	4.9	9/20/2018	Total 209 PCB cong (excl non-detects)	52
100-85	Saltmarsh	S-WS534B-18FSP12-50-60	WS534B	5.0	6.0	3/13/2019	Total 209 PCB cong (excl non-detects)	4.85
100-85	Upland	S-WS535-18FSP12-00-10	WS535	0.0	1.0	8/28/2018	Total 209 PCB cong (excl non-detects)	0.477
100-85	Upland	S-WS535-18FSP12-10-20	WS535	1.0	2.0	8/28/2018	PCB from Immunoassay (Aroclor 1254)	23
100-85	Saltmarsh	S-WS537-18FSP12-00-10	WS537	0.0	1.0	10/4/2018	PCB from Immunoassay (Aroclor 1254)	0.64
100-85	Saltmarsh	S-WS537-18FSP12-10-20	WS537	1.0	2.0	10/4/2018	PCB from Immunoassay (Aroclor 1254)	3.3
100-85	Saltmarsh	S-WS537-18FSP12-20-30	WS537	2.0	3.0	10/4/2018	PCB from Immunoassay (Aroclor 1254)	5.4
100-85	Saltmarsh	S-WS539-18FSP12-10-20	WS539	1.0	2.0	3/13/2019	PCB from Immunoassay (Aroclor 1254)	15.1
100-85	Saltmarsh	S-WS539-18FSP12-20-30	WS539	2.0	3.0	3/13/2019	PCB from Immunoassay (Aroclor 1254)	35.7
ROW	Saltmarsh	S-3817-0.0-1.0REP	S-3817	0.0	1.0	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	14.56
ROW	Saltmarsh	S-3817-0.0-1.0	S-3817	0.0	1.0	11/2/2001	Total 18 NOAA PCB cong (excl non-detects)	28.60

Notes:

D - reported value is from a dilution; U - not detected; J - estimated

Total 18 NOAA PCB congeners multiplied by a factor of 2.6

Parcel	Station ID	Location	Easting	Northing	Design Elevation	Post- Excavation Elevation	∆ (ft)	Date Surveyed	Restoration Design Elevation	Post- Restoration Elevation	∆ (ft)	Date Surveyed
			MA State		NAVD88	Lievation			NAVI	D88 ft		
105-170	WS406	Sidewall	814910.3	2704682	2.5	1.79	0.71	7/23/2021	3.25	3.42	0.17	8/11/2021
105-170	WS408	Sidewall	814879.9	2704614	2.1	1.54	0.56	7/27/2021	3.40	3.48	0.08	8/10/2021
105-170	WS430	Sidewall	814931.1	2704707	-0.4	-0.54	0.14	7/29/2021	1.00	1.09	0.09	8/11/2021
105-170	WS433	Sidewall	814928.5	2704742	-1	-1.09	0.09	7/28/2021	1.51	1.66	0.15	8/5/2021
105-170	WS434	Sidewall	814894.1	2704872.4	-1.2	-1.49	0.29	7/29/2021	2.00	2.11	0.11	8/3/2021
105-170	WS435	Sidewall	814917.1	2704852.7	-3.1	-3.36	0.26	7/29/2021	0.50	0.57	0.07	8/4/2021
105-170	WS436	Sidewall	814925.8	2704781.4	-1.6	-1.77	0.17	7/29/2021	1.53	1.71	0.18	8/6/2021
105-170	WS437	Sidewall	814937.7	2704754.9	-2.5	-2.74	0.24	7/29/2021	-0.12	0.02	0.14	8/6/2021
105-170	WS438	Sidewall	814899.5	2704987.5	-1.4	-1.53	0.13	7/28/2021	0.84	1.10	0.26	8/2/2021
105-170	WS439	Sidewall	814931.3	2704608.7	-2.87	-3.02	0.15	7/23/2021	-1.10	-0.94	0.16	8/9/2021
105-170	WS440	Sidewall	814857	2704517.9	2	1.57	0.43	7/23/2021	2.85	3.00	0.15	8/9/2021
105-170	WS441	Sidewall	814923.7	2704514.5	-3.42	-3.82	0.40	7/23/2021	-1.19	-0.93	0.26	8/9/2021
105-170	WS457	Sidewall	814883.1	2704932.5	0.6	0.32	0.28	7/28/2021	1.65	1.75	0.10	8/2/2021
105-170	WS458	Sidewall	814904.7	2704923.3	-2	-2.22	0.22	7/29/2021	0.57	0.72	0.15	8/3/2021
105-170	WS426	Floor	814892.5	2704911.1	-1	-1.51	0.51	7/29/2021	0.92	1.17	0.25	8/3/2021
105-170	S-926	Floor	814927	2704799	-2	-2.66	0.66	7/29/2021	0.92	1.13	0.21	8/6/2021
105-170	WS407	Floor	814927.5	2704654.3	-0.4	-1.31	0.91	7/23/2021	1.05	1.12	0.07	8/11/2021
105-170	INT237	Floor	814911	2704562	-0.9	-0.94	0.04	7/21/2021	0.95	1.07	0.12	8/9/2021
105-170	WS411	Floor	814899.6	2704519.5	-2.4	-2.90	0.50	7/23/2021	1.00	1.12	0.12	8/9/2021
105-183	WS442	Sidewall	814852.2	2704449.1	2.1	1.73	0.37	7/20/2021	3.25	3.29	0.04	8/4/2021
105-183	WS443	Sidewall	814909.8	2704435.5	-3.05	-3.34	0.29	7/23/2021	0.50	0.65	0.15	8/4/2021
105-183	WS444	Sidewall	814849	2704355.5	2	1.79	0.21	7/27/2021	3.50	3.65	0.15	8/4/2021
105-183	WS445	Sidewall	814921.1	2704351.3	-2.3		•		See note	•	•	
105-183	WS446	Sidewall	814879.4	2704262.4	1	0.93	0.07	7/1/2021	3.10	3.34	0.24	7/29/2021
105-183	WS447	Sidewall	814930.7	2704279	-1.8	-1.92	0.12	7/1/2021	-1.63	-1.51	0.12	7/28/2021
105-183	WS448	Sidewall	814965.2	2704221	0.5	0.42	0.08	6/30/2021	1.59	1.87	0.28	7/23/2021
105-183	WS449	Sidewall	814982.9	2704198.2	-3.7	-4.20	0.50	6/29/2021	-0.56	-0.43	0.13	7/22/2021
105-183	WS450	Sidewall	814983.7	2704117.5	0.7	0.41	0.29	6/28/2021	2.16	2.33	0.17	7/20/2021
105-183	WS451	Sidewall	814999.3	2704105.4	-4.1	-4.29	0.19	6/28/2021	-1.80	-1.52	0.28	7/20/2021
105-183	WS452	Sidewall	814982.3	2704018.3	-0.3	-0.46	0.16	6/28/2021	2.24	2.49	0.25	7/19/2021
105-183	WS453	Sidewall	815001.9	2704013.9	-4.7		•		See note	•	•	
105-183	WS454	Sidewall	815015	2703921.5	-3.58	-3.74	0.16	6/21/2021	0.50	0.67	0.17	7/15/2021
105-183	WS455	Sidewall	814975	2703921.5	3.95	3.75	0.20	6/24/2021	4.56	4.69	0.13	7/15/2021
105-183	WS456	Sidewall	815013.4	2703863.9	-2.9	-2.98	0.08	6/21/2021	-1.65	-1.50	0.15	7/15/2021
105-183	WS412	Floor	814878.8	2704431.3	-4.5	-5.05	0.55	7/12/2021	1.50	1.77	0.27	8/4/2021
105-183	WS415	Floor	814907	2704333.3	-4.3	-4.61	0.31	7/12/2021	0.73	0.99	0.26	8/4/2021
105-183	WS418	Floor	814933.8	2704256.5	-0.55	-0.79	0.24	6/30/2021	0.30	0.40	0.10	7/28/2021
105-183	WS420	Floor	814987.1	2704052.7	-5.1	-5.59	0.49	6/28/2021	1.08	1.39	0.31	7/19/2021
105-183	WS423	Floor	814996.1	2703922.8	-1	-1.43	0.43	6/24/2021	1.43	1.77	0.34	7/15/2021
105-183	WS425	Floor	814988.9	2704129.7	-3.6	-3.78	0.18	6/28/2021	0.50	0.65	0.15	7/20/2021
Not	te: Excavat	ion was co	ntinued up	to edge of ir	nstalled cap	, confirmed by visu	al inspection					

Table 2-2aIntertidal West Zone 4 Compliance Survey Control Table

Parcel	Station ID	Location	Easting	Northing	Design Elevation	Post- Excavation	∆ (ft)	Date Surveyed	Restoration Design Elevation	Post- Restoration Elevation	∆ (ft)	Date Surveyed
			MA State		NAVD88 ft	Elevation		-	NAV	088 ft	. ,	
100-118	WS509	Sidewall	814986.2	2703612.9	-0.6	-0.68	0.1	6/14/2021	0.86	1.01	0.15	7/1/2021
100-118	WS512	Sidewall	815001.2	2703516.8	-0.8	-1.06	0.3	6/14/2021	0.78	0.85	0.07	6/29/2021
100-118	WS538	Sidewall	814978.4	2703831.7	0.7	-0.35	1.1	6/18/2021	1.65	1.85	0.20	7/8/2021
100-118	WS539	Sidewall	814971.1	2703735.2	0.5	-0.53	1.0	6/16/2021	1.38	1.59	0.21	7/8/2021
100-118	WS540	Sidewall	814974.4	2703655.9	0.6	0.52	0.1	6/15/2021	1.58	1.81	0.23	7/2/2021
100-118	WS541	Sidewall	815017.4	2703434.5	0.7	0.18	0.5	6/10/2021	1.40	1.56	0.16	6/29/2021
100-118	WS542	Sidewall	815039.4	2703368.9	-2.1	-2.43	0.3	6/10/2021	0.00	0.37	0.37	6/28/2021
100-118	WS557	Sidewall	815008.5	2703836.3	-2.9	-2.95	0.1	6/18/2021		See not	te 1	
100-118	WS558	Sidewall	814981.8	2703750.1	-3.5	-3.66	0.2	6/16/2021	0.00	0.38	0.38	7/8/2021
100-118	WS559	Sidewall	814986.3	2703663.7	-5.1	-5.29	0.2	6/15/2021	0.50	0.61	0.11	7/2/2021
100-118	WS560	Sidewall	815018.1	2703482.6	-3.7	-3.79	0.1	6/14/2021	-1.40	-1.23	0.17	6/29/2021
100-118	WS561	Sidewall	815035.4	2703389.9	-2.4	-2.92	0.5	6/10/2021	0.80	0.92	0.12	6/28/2021
100-118	INT248	Floor	814981	2703647	-3.4	-3.61	0.2	6/15/2021	1.00	1.18	0.18	7/7/2021
100-118	S-919	Floor	815028	2703399	-2.0	-2.05	0.0	6/10/2021	1.24	1.53	0.29	6/28/2021
100-118	WS505	Floor	814978.6	2703715.1	-1.1	-1.48	0.4	6/15/2021	1.05	1.28	0.23	7/8/2021
100-118	WS515	Floor	815014.5	2703468.9	-0.9	-1.18	0.3	6/11/2021	0.90	1.13	0.23	6/29/2021
100-118	WS543	Floor	814985.5	2703808.2	-2.4	-2.59	0.2	6/18/2021	1.20	1.43	0.23	7/8/2021
100-117	WS544	Sidewall	815102.1	2703217.4	-2.4	-3.18	0.8	5/26/2021		See not	te 2	
100-117	WS545	Sidewall	815097.7	2703172	-2.9	-3.04	0.1	5/26/2021		See not	te 2	
100-117	WS546	Sidewall	815104.1	2703138.4	-2.7	-2.89	0.2	5/26/2021		See not		
100-117	WS547	Sidewall	815108.7	2703065.9	-2.6	-2.74	0.1	5/27/2021		See not	te 2	
100-117	WS548	Sidewall	815122.2	2702982	-2.7	-2.89	0.2	5/26/2021		See not	te 2	
100-117	WS562	Sidewall	815099	2703187.9	-3.1	-3.35	0.3	5/26/2021		See not	te 2	
100-117	WS563	Sidewall	815105.9	2703119.5	-3.0	-3.33	0.3	5/26/2021		See not	te 2	
100-117	WS564	Sidewall	815117.9	2703022.9	-4.0	-4.48	0.5	5/27/2021		See not		
100-117	S-101	Floor	815100	2703200	-3.7	-3.83	0.1	5/26/2021		See not	te 2	
100-117	S-108	Floor	815115	2703000	-2.7	-3.04	0.3	5/27/2021		See not		
100-117	WS549	Floor	815105.9	2703100.2	-2.8	-3.05	0.3	5/26/2021		See not		
100-85	WS550	Sidewall	815136.4	2702629.7	-1.7	-1.80	0.1	6/2/2021	-0.85	-0.66	0.19	6/22/2021
100-85	W\$551	Sidewall	815102	2702571	0.6	0.26	0.3	6/2/2021	1.68	1.96	0.28	6/23/2021
100-85	WS552	Sidewall	815019.7	2702515.7	0.0	-0.38	0.4	6/4/2021	1.30	1.56	0.26	6/24/2021
100-85	WS553	Sidewall	814934.8	2702469.8	-0.1	-0.13	0.0	6/4/2021	1.20	1.4	0.20	6/24/2021
100-85	WS554	Sidewall	814847.6	2702464.8	-0.8	-1.01	0.2	6/7/2021	0.62	0.77	0.15	6/24/2021
100-85	WS565	Sidewall	815121.3	2702562.1	-3.0	-3.32	0.3	6/2/2021	-1.96	-1.49	0.47	6/22/2021
100-85	WS566	Sidewall	815052	2702525.3	-2.9	-3.24	0.3	6/3/2021	-1.06	-0.99	0.07	6/23/2021
100-85	WS567	Sidewall	814978.1	2702470.8	-2.5	-2.69	0.2	6/4/2021	-0.55	-0.4	0.15	6/23/2021
100-85	WS568	Sidewall	814886.1	2702449.6	-2.6	-2.71	0.1	6/7/2021	-1.30	-1.09	0.21	6/24/2021
100-85	S-116	Floor	814900	2702465	-0.3	-0.49	0.2	6/7/2021	1.25	1.45	0.20	6/25/2021
100-85	WS534B	Floor	815072.5	2702551.9	-3.9	-4.72	0.8	6/3/2021	0.56	0.69	0.13	6/23/2021
100-85	WS539	Floor	815006	2702496.3	-1.6	-1.80	0.2	6/4/2021	1.00	1.36	0.36	6/24/2021
100-85	WS555	Floor	815144.9	2702586.9	-2.9	-3.14	0.2	6/2/2021	-2.52	-2.45	0.07	6/22/2021
100-85	WS556	Floor	814953.6	2702463.7	-2.0	-2.29	0.3	6/4/2021	0.60	0.73	0.13	6/24/2021
2	1: outside of	otes: restoration area n of parcel 100-										

Table 2-2bIntertidal West Zone 5 Compliance Survey Control Table

Table 2-3West Zone 4 and West Zone 5 Planting Summary

DATE	ΑCTIVITY
10/13 - 18/2021	Installation of containerized plants at West Zone 4 and West Zone 5
10/25/2021	Hydroseeding at West Zone 4
6/7 - 24/2022	Marsh plantings, hydroseeding, and herbivory protection fence installed in West Zone 4 and 5

Attachment A West Zone 4 and West Zone 5 Topsoil Summary

							Acceptable	Nutrient Ran	zes				Geoteo	h (Method	D7928)			MCP S-1	Soil Clear	up Standa	ards				
			рH	CEC	Base Saturation	Avail Plant Moisture	Organic Matter Content		6	v			Sand	Silt	Clav										
Batch #	Date	Supplier	рн 6-7	>20 meg/100g	>35%	50 - 70%	5 - 8%	Mg 50 - 120 ppm	1000 - 1500	к 100 - 160 ppm	>25 ppm	>15 ppm		0 - 50%	0 - 20%	Metals	Petroleum Hydrocarbons	Target VOCs	Target SVOCs	EDB	1,4- Diovano	Cyanide	PCBs	Backfill Location	Approved Vol (CY)
016		Read Custom	6.5	11	81.9	NA	5.9	174	1350	322	107.3	118	77.3	13.5	9.2	-	-	-	-	-	-		-	WZ5	500
017		Read Custom	6.5	11.2	82.3	NA	5.3	180	1377	331	118.3	118	76.6	13.6	9.8	-	-	-	-	-	-	-	-	WZ5/WZ4	500
018	5/27/21	Read Custom	6.5	8.7	77.1	NA	5.5	132	957	326	78	88	77.1	13.7	9.2	-	-	-	-	-	-	-	-	WZ5/WZ4	500
019	6/3/21	Read Custom	6.5	9.6	79.1	NA	5.2	134	1158	269	103.5	99	76.5	15.5	8	-	-	-	-	-	-	-	-	WZ4	500
020	6/7/21	Read Custom	7.3	9.9	100	NA	6.1	187	1443	433	121.1	151	83.4	11.3	5.4	-	-	-	-	-	-	-	-	WZ4	500
021	6/7/21	Read Custom	7.1	6.5	100	NA	5.6	116	962	284	119.9	102	84.8	10.3	4.9	-	-	-	-	-	-	-	-	WZ4	500
022	8/10/21	Read Custom	7.5	7.7	99.9	NA	6.1	139	1158	312	116.5	115	78	14.5	7.5	-	-	-	-	-	-	-	-	WZ4	500
023	8/10/21	Read Custom	7.2	8.3	100	NA	5.5	147	1236	344	118.4	124	79.7	12.6	7.7	-	-	-	-	-	-	-	-	WZ4	500
024	8/12/21	Read Custom	7.2	8.2	100	NA	6.1	149	1228	322	97.3	106	81.4	10.1	8.4	-	-	-	-	-	-	-	-	WZ4	500
001	02/14/22	Read Custom	6.2	13	73.8	NA	5.7	156.0	1512	277	123.5	277	77.6	15.2	7.2	٧	V	V	V	V	٧	٧	V	WZ4, WZ5, BP1, EZ5	450
	Averages	:	6.9	9.4	89.4	NA	5.7	151.4	1238.1	322.0	110.4	129.8	79.2	13.0	7.7										

Attachment B Intertidal West Zone 4 Final Planting Plan

WZ-4 PLANTING PLAN

New Bedford Harbor Superfund Site

August 2021

FIGURES

TABLES

TABLE 1 WZ-4 Plants for Restoration

Reference Figure 2 - New Bedford Harbor Superfund Site WZ-4 (Parcel 105-183 105-170) Mitigation

НАВІТАТ	Total Area	On Center Spacing	Southern Parcel 105-183 & Northern Parcel 105-170		
LOW MARSH	25,255 sq ft	square spacing	TOTAL Number of Plants		
		. 6			
Spartina alterniflora (2" plug)	Saltmarsh Cordgrass	1 ft	25,255 plugs		
	Plant plugs with slow Need goose fencing b				
Directions	water's edge		Planting range 0.5 ft to 2.2 ft NAVD88		
HIGH MARSH	11,538 sq ft	square spacing	TOTAL Number of Plants		
Spartina patens (2" plugs)	Salt Meadow Cordgrass	1 ft	3,923		
Distichlis spicata (2" plugs)	Spike Grass	1 ft	7,615		
			Planting range 2.2 to 3.2 ft NAVD88. Mixed planting with more <i>Distichlis</i>		
Directions	Plant plugs with slow	release fertilizer.	lower in this elevation zone.		

TABLE 1 (cont.) WZ-4 Plants for Restoration

Reference Figure 2 - New Bedford Harbor Superfund Site WZ-4 (Parcel 105-183 105-170) Mitigation

HABITAT	Total Area	On Center Spacing	Southern Parcel 105-183 & Northern Parcel 105-170
HIGH TIDE BUSH ZONE	9,694 sq ft	square spacing	TOTAL Number of Plants
	Salt Meadow		
Spartina patens (2" plugs)	Cordgrass	3 ft	718
Solidago sempervirens (2" plugs)	Seaside Goldenrod	3 ft	359
Iva frutescens (1 gallon)	High Tide Bush	3 ft	1077

Directions: General range 3.2 to 3.6 ft NAVD88. Plant high tide bush 3 ft on center. In between the rows of high tide bush plant plugs of *Spartina patens* and seaside goldenrod 3 ft on center with slow release fertilizer. Overseed zone with NE Salt Tolerant Grass *Mix*.

TABLE 1 (cont.) WZ-4 Plants for Restoration

Reference Figure 2 - New Bedford Harbor Superfund Site WZ-4 (Parcel 105-183 105-170) Mitigation

TRANSITION ZONE	Common Name	On Center Spacing	Parcel 1	05-170	Parcel 1	.05-183	TOTAL
(1 gallon)		triangular	872 sq ft	1174 sq ft	977 sq ft	229 sq ft	3,252 sq ft
Panicum amarum var. amarulum	Coastal Panic Grass	3 ft	112				112
Schizahyrium scoparium	Little Bluestem	3 ft		75	62		137
Panicum virgatum	Switchgrass	3 ft		75	62	29	166
Myrica pensylvanica	Northern Bayberry	15 ft		2	2		4
Rosa virginiana	Virginia Rose	15 ft		3	2		5
Vibrunum dentatum	Arrow-wood	15 ft		1	1		2
Overseed with NE Salt Tolerant Gro	ass Mix 1 lb/1250 sq ft		0.7 lb	1 lb	0.8 lb	0.2 lb	2.7 lbs

Directions: General range 3.6 ft NAVD88 to riverwalk path on the southern parcel, and red cedar tree and pea stone landscaped area on the northern parcel (follow polygon limits). Plant 1 gallon grasses 3 ft on center and shrubs 15 ft on center. Overseed zone with NE Salt Tolerant Grass Mix. Use slow release fertilizer in planting hole. Broadcasting fertilizer will encourage weed growth.

TABLE 1 (cont.) WZ-4 Plants for Restoration

Reference Figure 2 - New Bedford Harbor Superfund Site WZ-4 (Parcel 105-183 105-170) Mitigation

UPLAND AREAS

Parcel 105-183 - Seed disturbed upland (28,396 sq ft) with **New England Conservation and Wildlife Mix** at the rate of 1 lb/1750 sq ft and mulch (see Attachment 1). Need ~ **16.5 lbs**. Owner requested no shrub or tree plantings.

Parcel 105-170 - Lawn grass seeding (3,734 sq ft) and beach rose shrub planting will be done per the direction/discretion of Acorn Management (owners). Owners requested 35 *Rosa rugosa* for the pea stone area. The variety suggested is 'Belle Poitevine' (see Attachment).

Suggestion for plantings:

LANDSCAPED Pea Stone	Total Area	On Center triangular	Number of Plants
	Beach Rose-pink		
Rosa rugosa 'Belle Poitevine' (3 gallon)	double bloom	11 ft	35

Note: Planting Zones are based on pre-excavation conditions (see Attachment 'WZ-4 Plant Zonation') **Reference:** Jacobs 2019, *Draft Final Generic Upper Harbor Intertidal Work Plan Revision 1*, ACE-J23-35BG2000-M1-0109 (May)

ATTACHMENT 1

NEW ENGLAND SEED MIXES

NEW ENGLAND WETLAND PLANTS, INC

820 WEST STREET, AMHERST, MA 01002 PHONE: 413-548-8000 FAX 413-549-4000 EMAIL: INFO@NEWP.COM WEB ADDRESS: WWW.NEWP.COM

New England Coastal Salt Tolerant Grass Mix

Botanical Name	Common Name	Indicator
Elymus canadensis	Canada Wild Rye	FACU+
Festuca rubra	Red Fescue	FACU
Panicum amarum	Atlantic Coastal Panic Grass	FACU-
Andropogon gerardii	Big Bluestem	FAC
Sorghastrum nutans	Indian Grass	UPL
Panicum virgatum	Switch Grass	FAC
Juncus tenuis	Path Rush	FAC
PRICE PER LB. \$26.00 MIN. QUANITY	4 LBS. TOTAL: \$104.00	APPLY: 35 LBS/ACRE :1250 sq ft/lb

The New England Coastal Salt Tolerant Seed Mix contains a selection of native grasses that tolerate salty conditions. This mix is appropriate for drier coastal areas that receive salt spray or mist. Always apply on clean bare soil. The mix may be applied by hydro-seeding, by mechanical spreader, or on small sites it can be spread by hand. Lightly rake, or roll to ensure proper seed to soil contact. Best results are obtained with a Spring seeding. Late Spring and early Summer seeding will benefit with a light mulching of weed-free straw to conserve moisture. If conditions are drier than usual, watering may be required. Late Fall and Winter dormant seeding require an increase in the seeding rate. Fertilization is not required unless the soils are particularly infertile. Preparation of a clean weed free soil surface is necessary for optimal results.

New England Wetland Plants, Inc. may modify seed mixes at any time depending upon seed availability. The design criteria and ecological function of the mix will remain unchanged. Price is \$/bulk pound, FOB warehouse, Plus SH and applicable taxes.

NEW ENGLAND WETLAND PLANTS, INC

820 WEST STREET, AMHERST, MA 01002 PHONE: 413-548-8000 FAX 413-549-4000 EMAIL: INFO@NEWP.COM WEB ADDRESS: WWW.NEWP.COM

New England Conservation/Wildlife Mix

Botanical Name	Common Name	Indicator
Elymus virginicus	Virginia Wild Rye	FACW-
Schizachyrium scoparium	Little Bluestem	FACU
Andropogon gerardii	Big Bluestem	FAC
Festuca rubra	Red Fescue	FACU
Sorghastrum nutans	Indian Grass	UPL
Panicum virgatum	Switch Grass	FAC
Chamaecrista fasciculata	Partridge Pea	FACU
Desmodium canadense	Showy Tick Trefoil	FAC
Asclepias tuberosa	Butterfly Milkweed	NI
Bidens frondosa	Beggar Ticks	FACW
Eupatorium purpureum (Eutrochium maculatum)	Purple Joe Pye Weed	FAC
Rudbeckia hirta	Black Eyed Susan	FACU-
Aster pilosus (Symphyotrichum pilosum)	Heath (or Hairy) Aster	UPL
Solidago juncea	Early Goldenrod	
PRICE PER LB. \$39.50 MIN. QUANITY 2 LBS.	TOTAL: \$79.00	APPLY: 25 LBS/ACRE :1750

The New England Conservation/Wildlife Mix provides a permanent cover of grasses, wildflowers, and legumes

For both good erosion control and wildlife habitat value. The mix is designed to be a no maintenance seeding, and is appropriate for cut and fill slopes, detention basin side slopes, and disturbed areas adjacent to commercial and residential projects.

New England Wetland Plants, Inc. may modify seed mixes at any time depending upon seed availability. The design criteria and ecological function of the mix will remain unchanged. Price is \$/bulk pound, FOB warehouse, Plus SH and applicable taxes.

ATTACHMENT 2

LANDSCAPE PLANTINGS

Rosa rugosa 'Belle Poitevine'

Description

'Belle Poitevine' is one of the best hybrid *Rosa rugosa* available. The magenta buds open to ruffled, fragrant pink roses. It is a repeat bloomer, and when the flowering season is done, has colorful rose hips for winter color.

Like all rugosas, it is very hardy (zone 3), and the wrinkled foliage that's typical of rugosas makes it disease resistant. No chemicals should be used on the foliage as it will drop leaves if you spray it with pesticides. It can be pruned to form a border or allowed to grow taller as a specimen or hedge.

ATTACHMENT 3

WZ-4 PLANT ZONATION PRIOR TO EXCAVATION

JULY 2021

View looking south from Parcel 105-170 toward Parcel 105-183. Vegetation zonation low marsh; high marsh grasses and high tide bush; and a transition zone of salt tolerant grasses including switchgrass and bluestem, and the shrubs bayberry, winged sumac and red cedars.

View looking north from Parcel 105-183 at extensive *Phragmites australis* on the slope, wrack/high tide bush zone; and low marsh.

Attachment C Intertidal West Zone 5 Final Planting Plan

WZ-5 PLANTING PLAN

New Bedford Harbor Superfund Site

August 2021

Final

Landscape Plant Schedule

Symbol	Common Name	Latin Name	Quantity
Lesson and the second sec	Dappled Willow	Salix integra 'Hakuro Nishiki'	6
	Hydrangea	Hydrangea arborescens 'Incrediball'	15
\otimes	Knockout Rose	Rosa radrazz 'Blushing Pink'	8
*	Daylily	Hemerocallis 'Buttered Popcorn'	7

-

 ECOLOGICAL AND OCEANOGRAPHIC CONSULTANTS

 WWW.crenvironmental.com

 DRWM: kgt

 FILE NAME: CRW25-7-29-2021-1---Sa.dwg

 Figure

 Sogie:1*-15 ft

New Bedford Harbor Superfund Site WZ-5 (Parcel 100-118) Mitigation Detail Figure 2a

Tables

TABLE 1

WZ-5 Plants for Restoration

Reference Figures 2 and 2a (Parcel 100-118) 'Victoria Riverside' and Figure 3 (Parcel 100-85) 'Star Plating' New Bedford Superfund Site WZ-5 Mitigation

EXCAVATED AREAS	Total Area	On Center	Southern Parcel 100-85 Star Plating ¹	Northern Parcel 100-118 Victoria Riverside	Total Number
		triangular			
LOW MARSH	5667 sq ft	spacing	4051 sq ft	1616 sq ft	
Spartina alterniflora (2" plug)	Saltmarsh Cordgrass	1 ft	4678	1805	6483
	fertilizer. Salt marsh below culvert			Planting range 0.5 ft to toe of riprap slope ~ 1.8 ft NAVD	

HIGH TIDE BUSH ZONE (alternate goldenrod and high tide bush)	379 sq ft			in a line top of riprap slope for soil stability	
Solidago sempervirens					
(2" plug, plant 2 together)	Seaside Goldenrod	3 ft	not applicable	64	118
Iva frutescens (1 gallon)	High Tide Bush	3 ft	not applicable	59	59

Notes:

No backfill was required at parcel 100-120 or 100-117. No plantings were required per direction from EPA/USACE.

Reference: Jacobs 2019, Draft Final Generic Upper Harbor Intertidal Work Plan Revision 1, ACE-J23-35BG2000-M1-0109 (May)

TABLE 1

WZ-5 Plants for Restoration Reference Figures 2 and 2a (Parcel 100-118) 'Victoria Riverside' and Figure 3 (Parcel 100-85) 'Star Plating' New Bedford Superfund Site WZ-5 Mitigation

UPLAND AREAS

Parcel 100-85' Star Plating' - Seed disturbed upland with New England Erosion Control/Restoration Mix for Dry Sites at the rate of 1 lb/1250 sq ft and mulch (see attached spec sheet). Owner requested no shrub or tree plantings.

Parcel 100-118 'Victoria Riverside' - Grass seeding and shrubs will be done per the direction/discretion of Acorn Management (owners) <u>Suggetions for plantings:</u>

LANDSCAPED BERM Victoria Riverside	Total Area	On Center	Number of Plants	Plant Size landscape quality
		within ~5 ft		
	192 X 5.2 ft = 854 sf	wide berm		
Rosa radrazz 'Blushing Pink'	Knockout Rose	6 ft	8	#10 pot
Hemerocallis 'Buttered Popcorn'	Daylily	between roses	7	#1 Pot
Hydrangea arborescens 'Incrediball'	Smooth Hydrangea	7 ft	15	#7 Pot
Salix integra 'Hakuro Nishiki'	Dappled Willow	7 ft	6	#5 std

* Add organic material for moisture retention. 3 Inch deep mulch around the base of shrubs but not touching the stem(s). Plants will need to be watered regularly to establish. All grow best in moist well-drained soil.

Place Daylilies in between the Knockout Roses so 3 ft between a daylily and a knockout rose

Dappled Willows have a high requirement for moisture when they're young. Water them twice a week. Need periodic annual pruning to keep varigated leaf color.

Smooth Hydrangea prune back in late winter to encourage strong new growth and flowering.

Seed Specifications and Landscape Plant Images

NEW ENGLAND WETLAND PLANTS, INC

820 WEST STREET, AMHERST, MA 01002 PHONE: 413-548-8000 FAX: 413-549-4000 EMAIL: INFO@NEWP.COM WEB ADDRESS: WWW.NEWP.COM

<u>New England Erosion Control/Restoration Mix</u> For Dry Sites

		(00324)
BOTANICAL NAME	COMMON NAME	Ind.
FESTUCA RUBRA	CREEPING RED FESCUE	FACU
Elymus canadensis	Canada Wild Rye	FACU+
LOLIUM MULTIFLORUM	ANNUAL RYEGRASS	
LOLIUM PERENNE	Perrenial Ryegrass	
BOUTELOUA GRACILIS	Blue Grama	
SCHIZACHYRIUM SCOPARIUM	LITTLE BLUESTEM	FACU
SORGHASTRUM NUTANS	Indian Grass	UPL
AGROSTIS SCABRA	ROUGH BENTGRASS/TICKLEGRASS	FAC
AGROSTIS PERENNANS	Upland Bentgrass	FACU

PRICE PER LB.\$15.00REQ. QUANTITY:5 LBS.TOTAL\$75.00APPLY: 35 LBS/ACRE
1 LB/1250 SQ FTMINIMUM QUANTITY: 5 LBS

The <u>New England Erosion Control/Restoration Mix For Dry Sites</u> provides an appropriate selection of native and naturalized grasses to ensure that dry and recently disturbed sites will be quickly revegetated and the soil surface stabilized. It is an appropriate seed mix for road cuts, pipelines, steeper slopes, and areas requiring quick cover during the ecological restoration process. The mix may

be applied by hydro-seeding, by mechanical spreader, or on small sites it can be spread by hand. Lightly rake, or roll to ensure proper soil-seed contact. Best results are obtained with a Spring or late Summer seeding. Late Spring through Mid-Summer seeding will benefit from a <u>light</u> mulching of weed-free straw to conserve moisture. If conditions are drier than usual, watering will be required. Fertilization is not required unless the soils are particularly infertile. Preparation of a clean weed free seed bed is necessary for optimal results.

New England Wetland Plants, Inc. may modify seed mixes at any time depending upon seed availability. The design criteria and ecological function of the mix will remain unchanged.

Price is \$/bulk pound, FOB warehouse, plus S&H and applicable taxes.

Hemerocallis 'Buttered Popcorn (7)

Blushing Pink Knockout Rose (8) ~3 ft spacing

Hydrangea arborescens Incrediball® (Smooth Hydrangea) (15) ~5 ft on center spacing Smooth Hydrangea, Hydrangea arborescens 'Abetwo' PP20571

Salix integra 'Hakuro Nishiki' (6) Dappled Willow - full sun, moisture, spacing ~6 ft