

July 14, 2022

John C. Bryant, RPM ME/VT/CT Superfund Program USEPA Region 1 5 Post Office Square - Suite 100 Boston, MA 02109-3912

Re: Linemaster Switch Remedial Action, Woodstock, Connecticut

Quarterly Progress Report – April to June 2022

Dear Mr. Bryant:

On behalf of Linemaster Switch Corporation, TRC is pleased to submit the Quarterly Progress Report for April to June 2022 for the Linemaster Switch Corporation Remedial Action located in Woodstock, Connecticut. This report has been prepared in accordance with Paragraph 33 of the 1994 Consent Decree, as modified by changes to the progress reporting schedule approved by the United States Environmental Protection Agency (USEPA) on December 14, 2012.

If you have any questions regarding this report, please do not hesitate to contact me at <u>joliva@trccompanies.com</u> or (860) 462-8533.

Sincerely,

TRC

Jean M. Oliva

Project Manager/Senior Engineer

Attachment

cc: Timothy Carlone, Linemaster

Mike Senyk, CTDEEP

Al Smith, Esq.

QUARTERLY PROGRESS REPORT REMEDIAL ACTION AND LONG-TERM MONITORING

LINEMASTER SWITCH CORPORATION WOODSTOCK, CT

Date:July 14, 2022Report Period:April to June 2022Site:Linemaster Switch Facility
29 Plaine Hill Road
Woodstock, ConnecticutTRC PM:
Linemaster PM:Jean Oliva
Timothy Carlone
USEPA RPM:

REPORTS AND DELIVERABLES

The following reports and other deliverables were submitted during this quarterly period:

- On April 29, 2022, the following reports were prepared by TRC and submitted by Linemaster to the Connecticut Department of Energy and Environmental Protection (CTDEEP):
 - First Quarter (March) 2022 Aquatic Toxicity Monitoring Report (ATMR); and
 - Discharge Monitoring Report (DMR) for March 2022.
- On May 6, 2022, the results of the February 2022 groundwater sampling from domestic water supply wells GW-08DB, GW-14, GW-40DB, GW-73DB, GW-74DB, GW-75DB and GW-76DB were reported to individual residents/owners.
- On May 6, 2022, TRC submitted the January to March 2022 Quarterly Progress Report to USEPA.
- On May 27, 2022, the Discharge Monitoring Report for April 2022 was prepared by TRC and submitted by Linemaster to the CTDEEP.
- On June 27, 2022, the Discharge Monitoring Report for May 2022 was prepared by TRC and submitted by Linemaster to the CTDEEP.
- On April 29, 2022, the USEPA provided comments via email on the October 12, 2020 Focused Feasibility Study (FFS) submittal. USEPA requested Linemaster to not submit a revised FFS draft until the determination of a revised arsenic background concentration, which will reflect the results of the arsenic sampling conducted as part of the May 2022 semi-annual sampling event.

SIGNIFICANT ACTIVITIES

Significant activities completed during this quarterly period include the following:

• The April and June 2022 monthly monitoring events were conducted on April 11, 2022 and June 1, 2022 by TRC personnel. These events included groundwater sampling from the Interim Remedial Treatment System (IRTS) (ITS influent, ITS effluent, and Final Discharge). All water samples were submitted to Alpha Analytical (Alpha) of Westborough, Massachusetts for volatile organic compound (VOC) analysis by USEPA Method 8260. In addition, the ITS influent and Final Discharge samples from the June monthly event were also submitted for additional analysis in compliance with the semi-annual requirements of the General Permit for the Discharge of Groundwater Remediation Wastewater, Permit No.: CTRSW0055.

The May semi-annual monitoring event was conducted on May 10 through 12, 2022. Groundwater samples collected and analyzed during the May 2022 event, as designated by the semi-annual sampling schedule, included groundwater from the IRTS system and five associated deep bedrock extraction wells, six reconfigured Phase 1A system extraction wells, nine on-site deep bedrock monitoring wells, two on-site shallow bedrock monitoring wells, ten on-site overburden monitoring wells, the on-site facility drinking water well and treatment system, and nearby residential domestic wells (see **Figure 1**). All water samples were submitted to Alpha for full (IRTS system samples only) or select (constituents of concern [COCs] only) VOC analysis by USEPA Method 8260 or 524.2 (potable wells) with select samples analyzed for 1,4-dioxane by USEPA Method 8270SIM. Samples collected from three on-site deep bedrock monitoring wells, two on-site shallow bedrock monitoring wells, and three on-site overburden monitoring wells were submitted to Alpha for arsenic analysis by USEPA Method 200.7.

SAMPLING AND MONITORING RESULTS

Sampling and monitoring results from this quarterly period are summarized below:

Draft analytical results from the sampling events performed during this quarterly period are presented in **Tables 1A through 1G** (attached). A Site Plan is provided as **Figure 1**. **Figure 2**, **Figure 3** and **Figure 4** show the spatial distribution of site volatile organic COC detections and applicable criteria exceedances in the deep bedrock, shallow bedrock and overburden aquifers, respectively, for the wells sampled during the second quarter, semi-annual event.

With respect to COCs in the on-site wells, cis-1,2-dichloroethene (cis-1,2-DCE) and trichloroethene (TCE) concentrations were generally stable. The previously noted slight upward trend in TCE concentrations in deep bedrock extraction well GW10DB continued from a low observed in February 2020 but concentrations were still well below the concentration observed in November 2019. Total VOC concentrations at deep bedrock monitoring well MW21DB for this event were low compared to the reported concentrations from the previous two Novembers and from May 2020. TCE was not detected at deep bedrock monitoring well MW29DB for the first time since November 2018 or at deep bedrock monitoring well MW27DB where it has been detected sporadically over the past several years. TCE and total VOC concentrations at deep bedrock monitoring well MW35DB continued a downward trend that has been observed over the past several years.

With respect to overburden (till) monitoring well locations sampled during this quarter, COC concentrations have been relatively stable over the past two years. Wells MW23T and MWEPAATS continued to exhibit seasonal fluctuations, with higher total VOC concentrations observed in the fall and lower concentrations observed in the spring with MWEPAATS continuing to exhibit a slight downward trend over the past several years along with the seasonal fluctuations. The detected concentration of TCE in overburden well MWEPAATD was an order of magnitude lower than typically seen in this well. Well MW33T has also exhibited a reduction in TCE and total VOC concentrations over recent years.

The total VOC concentrations observed in the samples collected from the reconfigured Phase 1A extraction wells were mostly consistent with historical observations for these wells. The observed total VOC concentrations in well MW10SB continued to exhibit a

slight upward trend over the past several years. The observed concentrations of TCE and total VOCs in well FW-I were significantly higher than typically seen in this well.

With respect to COCs at off-site domestic supply well sample locations, TCE and cis-1,2-DCE continued to be detected at levels below drinking water standards in untreated water samples collected at residential wells GW14 and GW76DB. COCs were not detected in the treated water samples collected at these two locations. TCE concentrations in well GW76DB have been fairly stable whereas TCE and total VOC concentrations observed in the untreated water at GW14 are more variable over time. No other off-site domestic supply wells exhibited any detectable COC concentrations.

1,4-Dioxane analysis was performed on groundwater samples collected at a subset of the wells sampled during the semi-annual sampling event. 1,4-Dioxane was detected at two deep bedrock extraction wells, two deep bedrock monitoring wells, one shallow bedrock monitoring well, three overburden monitoring wells, the Linemaster production well, and each of the IRTS influent, effluent and final discharge samples. The only samples to exhibit 1,4-dioxane above the Connecticut Department of Health (CTDPH) action level of 3 $\mu g/L$ were collected from monitoring wells MW17SB (163 $\mu g/L$) and MW17TD (104 $\mu g/L$). In general, 1,4-dioxane levels were fairly consistent with previous monitoring results. The estimated concentration of 1,4-dioxane detected in deep bedrock extraction well MW14DB, at two orders of magnitude below the CTDPH action level during the May 2022 semi-annual sampling event, was the second consecutive detection of this compound.

With respect to the monthly IRTS Final Discharge samples collected over the quarter, these samples did not exhibit VOCs at levels exceeding applicable standards. However, cis-1,2-DCE was detected at an estimated concentration in the ITSEFF sample (collected between the air-stripper unit and carbon adsorption unit) during the April sampling event. In addition, cis-1,2-DCE was detected in the FINAL-DISCHARGE samples collected during the April, May and June sample events, all at estimated concentrations below applicable standards.

At the request of USEPA, select wells including, deep bedrock monitoring wells, GW36DB, MW12DB and MW18DB; shallow bedrock monitoring wells MW12SB and MW18SB and overburden monitoring wells, MW03T, MW12T and MW18T, were sampled for arsenic during the May 2022 semi-annual sampling event to augment the data set to be used to reevaluate the site-specific background concentration for arsenic. Draft analytical results of these analyses are presented in Table 2. Arsenic was detected in four of the nine collected samples, including the blind duplicate sample. None of the reported concentrations exceeded the Record of Decision (ROD) cleanup level of 50 $\mu g/L$. The highest detected concentrations within the deep bedrock aquifer, the shallow bedrock aquifer and the overburden aquifer were 5 $\mu g/L$, 25 $\mu g/L$ and 32 $\mu g/L$, respectively.

A comprehensive presentation, evaluation and interpretation of analytical results from this quarterly period will be included in the next Annual Monitoring Report scheduled to be submitted in March 2023.

• The April, May and June 2022 water use at the GW08 facility well was approximately 107,057 gallons, 107,504 gallons, and 89,571 gallons, respectively.

PROBLEMS ENCOUNTERED AND CORRECTIVE ACTIONS TAKEN

As a preventative measure against system problems, routine maintenance was performed on the IRTS and reconfigured Phase 1A systems. Routine maintenance activities include inspection of the system components, recording of system fluid levels and flow rates, and routine equipment maintenance (e.g., motor and valve lubrication, pump cleaning, filter cleaning, etc.). Problems encountered and subsequent corrective actions taken during this quarterly period are summarized below:

• No problems were encountered that required corrective actions during this reporting period.

PROJECT CHANGES AND ISSUES

Changes in scope, changes in project personnel or issues that need to be addressed include:

• No changes in scope, project personnel or other issues were initiated during this reporting period.

PROJECT SCHEDULE / PROPOSED ACTIVITIES

Proposed activities for the next 90-day quarterly period (July to September 2022) and beyond include the following:

- Performance of the monthly monitoring events in July and September 2022, per the <u>LTMP Sampling and Analysis Plan</u> (TRC, November 2015), with the exception that these events will be conducted by TRC.
- Performance of the quarterly monitoring event in August 2022, per the <u>LTMP Sampling</u> and <u>Analysis Plan</u> (TRC, November 2015), incorporating the recommendations contained in the 2021 Annual Monitoring Report.
- Submittal of the next Quarterly Progress Report for July to September 2022 by November 15, 2022.
- Address USEPA comments on the FFS.

Table 1A **Summary of Detected VOCs in Water Samples** IRTS System **Linemaster Switch Corporation** 2022 Semi-Annual Progress Report

Г										Location											
										Group:						IRTS	System				
										_							•				
										Well Name:			ITS	INF			ITSEFF	_	1	FINAL-DISCHAR	GE
										Sample											
				Screening	g Criteria					Date:	04/11/2022		05/10	/2022	06/01/2022	04/11/2022	05/10/2022	06/01/2022	04/11/2022	05/10/2022	06/01/2022
										S	2022 April Monthly	202	2 14 0	emi-Annual	2022 I Mandal	v 2022 April Monthly	2022 May Semi-	2022 I Mandala	2022 April Monthly	2022 May Semi- Annual	2022 June Monthly
									ì	Sample Event:	2022 April Monthly	202	22 May S	emi-Annual	2022 June Month!	y 2022 April Monthly	Annual	2022 June Monthly	2022 April Monthly	Annual	2022 June Monthly
										Lab Report:	L2218844		L222	4730	L2228842	L2218844	L2224730	L2228842	L2218844	L2224730	L2228842
										Lab Report.	L2210044	8260 Full		4730	12220042	L2210044	8260 Full List/	LLLLLOOTL	L2210044	8260 Full List/	L2220042
										Note/Method:	8260 Full List	8270 S		8260 Full List	8260 Full List	8260 Full List	8270 SIM	8260 Full List	8260 Full List	8270 SIM	8260 Full List
Dilution Factor:		CTDEEP R	CD Cuitouio		CTDPH	EPA	VISL	ROD	SDWA	Human	1	1		1	1	1	1	1	1	1	1
Sample Type:					Action	Resid-	Com-	Cleanup		Health				Field Dup							
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result (Q)	Result	(Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)) Result (Q)	Result (Q)	Result (Q)	Result (Q)
PCE-TCE and Associated Breakdown Compound	ls																				
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 0.500 U	< 0.500	U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	- 0.500	< 0.500 U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	20.3	19.1		19.2	19.5	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	10.500	< 0.500 U
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE 165	NE COA	70	70	NE	52.0	59.6		56.2	63.6	0.283 J	< 0.500 U	0.500	0.470 J	0.410	0.480 J
trans-1,2-Dichloroethene (trans-1,2-DCE) Vinyl chloride (VC)	100	NE 15,750	NE 1.6	NE 52	NE 0.5	165 0.19	694 3.16	NE 2	100	100 0.022	1.41 < 1.00 U	2.16 < 1.00	II	1.76 < 1.00 U	3.05 0.086 J	< 0.750 U < 1.00 U	0.750	< 0.750 U < 1.00 U			
Remaining Method 8260 or 524.2 VOC Compoun	2	13,730	1.0	32	0.3	0.19	3.10	2		0.022	< 1.00 0	< 1.00	U	< 1.00	0.086 J	< 1.00 U	< 1.00 U				
1,2-Dichloropropane	ius 5	NE	7.4	58	1	10.8	47.3	5	5	0.9	< 1.75 U	< 1.75	II	< 1.75 U	< 1.75 U						
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 0.500 U	< 0.500	IJ	< 0.500 U	< 0.500 U						
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 1.00 U	< 1.00	U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U
o-Xylene	530	NE	21,300	50,000	NE	904	3,800	NE	10,000	NE	< 1.00 U	< 1.00	U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 0.750 U	< 0.750	U	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U
1,4-Dioxane and Associated Indicator Compounds																					
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	N/A	0.448		N/A	N/A	N/A	0.394	N/A	N/A	0.43	N/A
1,4-Dioxane (8260)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	< 250 U	< 250	U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U
1,1,1-Trichloroethane (TCA)	200	62,000	6,500	16,000	200	11,600	48,900	200	200	10,000	< 0.500 U	< 0.500	U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U
1,1-Dichloroethene (1,1-DCE) 1,1-Dichloroethane (1,1-DCA)	7 70	96 NE	190 3,000	920 41.000	7 25	282 11.7	1,180	7 NE	7 NE	300 NE	< 0.500 U < 0.750 U	< 0.500 < 0.750	U	< 0.500 U < 0.750 U	< 0.500 U < 0.750 U	< 0.500 U < 0.750 U	< 0.500 U < 0.750 U	< 0.500 U < 0.750 U	< 0.500 U < 0.750 U	< 0.500 U < 0.750 U	< 0.500 U < 0.750 U
1,1-Dichloroethane (1,1-DCA) 1,2-Dichloroethane (1,2-DCA)	1	2.970	6.5	68	0.5	3.66	51 16	NE 5	NE 5	9.9	< 0.750 U < 0.500 U	< 0.750	TT.	< 0.750 U	< 0.750 U < 0.500 U	< 0.750 U < 0.500 U	< 0.750 U < 0.500 U	< 0.750 U	< 0.750 U < 0.500 U	< 0.750 U < 0.500 U	< 0.750 U < 0.500 U
1,2-Dichioloculatic (1,2-DCA)	1	2,770	0.5	Uo	0.3	3.00	10	3	J	Total VOCs:		81.308	U	77.16	86.236	0.283	0.394	ND	0.47	0.846	0.48

All results reported in micrograms per liter (µg/l).

Bolded value indicates constituent detected above method detection limits. Shaded results exceed one or more identified criteria, MCL or action level.

J: The result is an estimated quantity. The associated numerical value is

the approximate concentration of the analyte in the sample.

J+: Estimated value; biased high.

ND - Not Detected.

NE: No Criteria Established N/A: Indicates constituent not analyzed for during laboratory analysis.

N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot. ROD: Record of Decision

Q: Laboratory Qualifiers

U: Indicates not detected.

CTDPH: Connecticut Department of Health

CTDEEP: Connecticut Department of Energy and Environmental Protection

RSR: Remediation Standard Regulations GWPC: Groundwater Protection Criteria SWPC: Surface Water Protection Criteria Res. V/C: Residential Groundwater Volatilization Criteria

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06

target cancer risk or target hazard quotient of 1.0. The EPA VISL are categorized into Residential and Commercial criteria.

The Res. V/C and Residential EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity

to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well). The I/C V/C and Commercial EPA VISL apply to all on-site monitoring and extraction wells as well as GW08DB (facility potable well) and off-

site domestic supply well GW40DB (Woodstock Townhall potable well).

MCL: Maximum Contaminant Level

NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

 $SDWA: Safe \ Drinking \ Water \ Act. \ SDWA \ MCL \ of \ 80 \ ug/L \ applies \ to \ total \ trihalomethanes, consisting \ of \ the \ sum \ of \ the \ concentrations \ of \ applies \ to \ total \ trihalomethanes, consisting \ of \ the \ sum \ of \ the \ concentrations \ of \ applies \ to \ total \ trihalomethanes, \ consisting \ of \ the \ sum \ of \ the \ concentrations \ of \ applies \ to \ total \ trihalomethanes, \ consisting \ of \ the \ sum \ of \ sum \ sum \ of \ sum \ of \ sum \ of \ sum \ of \ sum \ sum$

bromodichloromethane, bromoform, dibromochloromethane and chloroform. * Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

Table 1B **Summary of Detected VOCs in Water Samples** Deep Bedrock Extraction Well Linemaster Switch Corporation 2022 Semi-Annual Progress Report

_						2022 56	iiii Aiiiidai i	Piogress Re	port											
										Location Group:				Doon	Bedrock Exti	raction	Wall			
										Group:				реер	Deurock Exti	raction	weii			—
										Well Name:	GW10D	В	MW01I)B	MW06D	В	MW14E	DВ	MW15DB	3
										Sample										
				Screening	r Cuitania					Date:	05/10/20	22	05/10/20)22	05/10/20	22	05/10/20	22	05/10/2022	2
				Screening	g Criteria						2022 May S	Semi-	2022 May 3	Semi-	2022 May S	Semi-	2022 May S	Semi-	2022 May Ser	mi-
									:	Sample Event:	Annua	1	Annua	1	Annual	l	Annua	1	Annual	
										Lab Report:	L222473	30	L22247	30	L222473	30	L222473	30	L2224730)
																	8260 COCs	/8270	8260 COCs/82	270
										Note/Method:	8260 CO		8260 CC	Cs	8260 CO	Cs	SIM		SIM	
Dilution Factor:		CTDEEP R	SR Criteria		CTDPH	EPA		ROD	SDWA	Human	2/20*		1		1		1		1	
Sample Type:	CATAIN C			*******	Action	Resid-	Com-	Cleanup		Health										
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result	(Q)	Result	(Q)	Result	(Q)	Result	(Q)	Result	(Q)
PCE-TCE and Associated Breakdown Compour																				
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 1.00	U	< 0.500	U	< 0.500	U	< 0.500	U		U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	212		2.12		0.995		< 0.500	U	21.1	
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	1,020		2.35		0.440	J	< 0.500	U	7.63	
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	29.3		< 0.750	U	< 0.750	U	< 0.750	U	0.237	J
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	0.650	J	< 1.00	U	< 1.00	U	< 1.00	U	< 1.00	U
Remaining Method 8260 or 524.2 VOC Compou	ınds																			
1,2-Dichloropropane	5	NE	7.4	58	1	10.8	47.3	5	5	0.9	0.644	J	< 1.75	U	< 1.75	U	< 1.75	U	< 1.75	U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 1.00	U	< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 2.00	U	< 1.00	U	< 1.00	U	< 1.00	U	< 1.00	U
o-Xylene	530	NE	21,300	50,000	NE	904	3,800	NE	10,000	NE	< 2.00	U	< 1.00	U	< 1.00	U	< 1.00	U	< 1.00	U
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 1.50	U	< 0.750	U	< 0.750	U	< 0.750	U	< 0.750	U
1,4-Dioxane and Associated Indicator Compoun	ds																			
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	N/A		N/A		N/A		0.0440	J	0.168	
1,4-Dioxane (8260)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	< 500	U	< 250	U	< 250	U	< 250	U	< 250	U
1,1-Dichloroethene (1,1-DCE)	7	96	190	920	7	282	1,180	7	7	300	1.95		< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
1,2-Dichloroethane (1,2-DCA)	1	2,970	6.5	68	0.5	3.66	16	5	5	9.9	< 1.00	U	< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
										Total VOCs:	1,265		4.47		1.435		0.044		29.135	

All results reported in micrograms per liter (µg/l).

Bolded value indicates constituent detected above method detection limits.

Shaded results exceed one or more identified criteria, MCL or action level. J: The result is an estimated quantity. The associated numerical value is

the approximate concentration of the analyte in the sample.

J+: Estimated value; biased high.

ND - Not Detected.

NE: No Criteria Established

N/A: Indicates constituent not analyzed for during laboratory analysis.

N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot.

Q: Laboratory Qualifiers

U: Indicates not detected.

UJ: Estimated non-detect.

CTDPH: Connecticut Department of Health

CTDEEP: Connecticut Department of Energy and Environmental Protection

RSR: Remediation Standard Regulations GWPC: Groundwater Protection Criteria

SWPC: Surface Water Protection Criteria

Res. V/C: Residential Groundwater Volatilization Criteria

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06

target cancer risk or target hazard quotient of 1.0. The EPA VISL are categorized into Residential and Commercial criteria.

The Res. V/C and Residential EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity

to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

The I/C V/C and Commercial EPA VISL apply to all on-site monitoring and extraction wells as well as GW08DB (facility potable well) and off-

site domestic supply well GW40DB (Woodstock Townhall potable well).

MCL: Maximum Contaminant Level

ROD: Record of Decision

NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

SDWA: Safe Drinking Water Act. SDWA MCL of 80 ug/L applies to total trihalomethanes, consisting of the sum of the concentrations of

 $bromodichloromethane,\,bromoform,\,dibromochloromethane\,\,and\,\,chloroform.$ * Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

Table 1C Summary of Detected VOCs in Water Samples Deep Bedrock Monitoring Well Linemaster Switch Corporation 2022 Semi-Annual Progress Report

							zuzz semi-	Alliluai Fio	gress kepo												
										Location Group:				Deep Be	edrock N	Monitoring W	ell				
										Well Name:	GW12DE	3	MW11DB	MW12	DB	MW21D	В	MW22D	В	MW27D	В
										Sample Date:	05/11/202	2	05/10/2022	05/11/2	022	05/12/202	22	05/11/202	22	05/11/202	22
				Screening	g Criteria					Date.	2022 May Se		2022 May Semi-	2022 May		2022 May S		2022 May S		2022 May S	
									9	Sample Event:	Annual	J1111-	Annual	Annu		Annual		Annual		Annual	
									·	Jumpie Zvenu	1 111114441		7 11111444	1 111111		1 111114441		1 11111441	\neg		
										Lab Report:	L2225016	6	L2224730	L22250	016	L222520	6	L222501	.6	L222501	.6
										Note/Method:	8260 COC	s	8260 COCs	8260 C	OCs	8260 CO	Gs.	8260 COC	Cs	8260 CO	Cs
Dilution Factor:		CED FED D	on a train		СТДРН	EPA	VISL	ROD		Human	1		1	1		1		1		1	
Sample Type:		CTDEEP R	SR Criteria		Action	Resid-	Com-	Cleanup	SDWA	Health									\neg		
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result	(Q)	Result (Q	Result	(Q)	Result	(Q)	Result	(Q)	Result	(Q)
PCE-TCE and Associated Breakdown Compoun	nds																				
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 0.500	U	< 0.500 U		U	< 0.500	U	< 0.500	U	< 0.500	U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	121		< 0.500 U	0.500	U	3.85		< 0.500	U	< 0.500	U
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	166		0.595	< 0.500	U	1.02		< 0.500	U	< 0.500	U
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	14.0		< 0.750 U	< 0.750	U	< 0.750	U	< 0.750	U	< 0.750	U
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	1.24		< 1.00 U	< 1.00	U	< 1.00	U	< 1.00	U	< 1.00	U
Remaining Method 8260 or 524.2 VOC Compou	unds																				
1,2-Dichloropropane	5	NE	7.4	58	1	10.8	47.3	5	5	0.9	0.351	J	< 1.75 U		U	< 1.75	U	< 1.75	U	< 1.75	U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 0.500	U	< 0.500 U		U	< 0.500	U	< 0.500	U	< 0.500	U
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 1.00	U	< 1.00 U		U	< 1.00	U	< 1.00	U	< 1.00	U
o-Xylene	530	NE	21,300	50,000	NE	904	3,800	NE	10,000	NE	< 1.00	U	< 1.00 U		U	< 1.00	U	< 1.00	U	< 1.00	U
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 0.750	U	< 0.750 U	< 0.750	U	< 0.750	U	< 0.750	U	< 0.750	U
1,4-Dioxane and Associated Indicator Compoun	ıds																				
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	N/A		N/A	N/A		N/A		N/A		N/A	
1,4-Dioxane (8260)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	< 250	U	< 250 U		U	< 250	U	< 250	U	< 250	U
1,1-Dichloroethene (1,1-DCE)	7	96	190	920	7	282	1,180	7	7	300	1.12		< 0.500 U		U	< 0.500	U	< 0.500	U	< 0.500	U
1,2-Dichloroethane (1,2-DCA)	1	2,970	6.5	68	0.5	3.66	16	5	5	9.9	< 0.500	U	< 0.500 U	< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
										Total VOCs:	303.711		0.595	ND		4.87		ND		ND	

Notes:

All results reported in micrograms per liter ($\mu g/l$).

Bolded value indicates constituent detected above method detection limits.

Shaded results exceed one or more identified criteria, MCL or action level.

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J+: Estimated value; biased high.

ND - Not Detected.

NE: No Criteria Established

N/A: Indicates constituent not analyzed for during laboratory analysis.

N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot.

Q: Laboratory Qualifiers

U: Indicates not detected.

UJ: Estimated non-detect.

CTDPH: Connecticut Department of Health

CTDEEP: Connecticut Department of Energy and Environmental Protection

RSR: Remediation Standard Regulations GWPC: Groundwater Protection Criteria SWPC: Surface Water Protection Criteria Res. V/C: Residential Groundwater Volatilization Criteria

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06

 $target\ cancer\ risk\ or\ target\ hazard\ quotient\ of\ 1.0.\ \ The\ EPA\ VISL\ are\ categorized\ into\ Residential\ and\ Commercial\ criteria.$

 $The \ Res. \ V/C \ \ and \ Residential \ EPA\ VISL\ apply\ to\ all\ off-site\ domestic\ supply\ wells\ as\ well\ as\ MW34T\ and\ GW12DB,\ due\ to\ their\ proximity$

to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

 $The \ I/C \ V/C \ and \ Commercial \ EPA \ VISL \ apply \ to \ all \ on-site \ monitoring \ and \ extraction \ wells \ as \ well \ as \ GW08DB \ (facility \ potable \ well) \ and \ off-site \ off-$

site domestic supply well GW40DB (Woodstock Townhall potable well).

MCL: Maximum Contaminant Level

ROD: Record of Decision

 $NRWQC: National\ Recommended\ Water\ Quality\ Criteria\ (Updated\ 2015).\ NRWQC\ apply\ to\ surface\ water\ results\ only.$

 $SDWA: Safe\ Drinking\ Water\ Act.\ SDWA\ MCL\ of\ 80\ ug/L\ applies\ to\ total\ trihalomethanes,\ consisting\ of\ the\ sum\ of\ the\ concentrations\ of\ MCL\ of\ 80\ ug/L\ applies\ to\ total\ trihalomethanes,\ consisting\ of\ the\ sum\ of\ the\ concentrations\ of\ MCL\ of\ 80\ ug/L\ applies\ to\ total\ trihalomethanes,\ consisting\ of\ the\ sum\ of\ the\ concentrations\ of\ MCL\ of\ 80\ ug/L\ applies\ to\ total\ trihalomethanes,\ consisting\ of\ the\ sum\ of\ sum\ of\ the\ sum\ of\ the\ sum\ of\ sum\$

bromodichloromethane, bromoform, dibromochloromethane and chloroform.

* Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

Table 1C Summary of Detected VOCs in Water Samples Deep Bedrock Monitoring Well Linemaster Switch Corporation 2022 Semi-Annual Progress Report

										Location								
										Group:			Deep Bed	irock N	Aonitoring W	/ell	Ī	
										Well Name:		MW2	8DB		MW29D)B	MW35D	В
										Sample								
				Screening	a Cuitania					Date:	05/12/202	22	05/12/20	22	05/11/20	22	05/12/202	22
				Screening	g Criteria						2022 May S	emi-	2022 May S	Semi-	2022 May S	Semi-	2022 May S	emi-
									S	ample Event:	Annual		Annua	l	Annua	1	Annual	ı
										Lab Report:	L222520	6	L222520)6	L222501	16	L222520	16
											8260 CO	Cs/	8260 CO	Cs/			8260 COC	$C_{\mathbf{S}}/$
									1	Note/Method:	8270 SII	Л	8270 SII	M	8260 CO	Cs	8270 SIN	М
Dilution Factor:		CTDEEP R	SR Criteria		CTDPH		VISL	ROD	SDWA	Human	1		1		1		1	
Sample Type:					Action	Resid-	Com-	Cleanup		Health			Field Du	1				
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result	(Q)	Result	(Q)	Result	(Q)	Result	(Q)
PCE-TCE and Associated Breakdown Compoun	nds																	
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	45.3		45.9		< 0.500	U	25.0	
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	22.5		22.0		< 0.500	U	80.0	
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	1.07		1.04		< 0.750	U	0.839	
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	0.096	J	0.107	J	< 1.00	U	0.280	J
Remaining Method 8260 or 524.2 VOC Compou	unds																	
1,2-Dichloropropane	5	NE	7.4	58	1	10.8	47.3	5	5	0.9	< 1.75	U	< 1.75	U	< 1.75	U	< 1.75	U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 1.00	U	< 1.00	U	< 1.00	U	< 1.00	U
o-Xylene	530	NE	21,300	50,000	NE	904	3,800	NE	10,000	NE	< 1.00	U	< 1.00	U	< 1.00	U	< 1.00	U
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 0.750	U	< 0.750	U	< 0.750	U	< 0.750	U
1,4-Dioxane and Associated Indicator Compoun	ıds																	
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	0.367		0.345		N/A		0.821	
1,4-Dioxane (8260)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	< 250	U	< 250	U	< 250	U	< 250	U
1,1-Dichloroethene (1,1-DCE)	7	96	190	920	7	282	1,180	7	7	300	< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
1,2-Dichloroethane (1,2-DCA)	1	2,970	6.5	68	0.5	3.66	16	5	5	9.9	< 0.500	U	< 0.500	U	< 0.500	U	< 0.500	U
_		2,970 6.5 68 0.5 3.66 16 5 5 Tot											69.392		ND		106.94	

Notes:

All results reported in micrograms per liter ($\mu g/l$).

Bolded value indicates constituent detected above method detection limits.

Shaded results exceed one or more identified criteria, MCL or action level.

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J+: Estimated value; biased high.

ND - Not Detected.

NE: No Criteria Established

N/A: Indicates constituent not analyzed for during laboratory analysis.

N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot.

Q: Laboratory Qualifiers

U: Indicates not detected.

UJ: Estimated non-detect.

CTDPH: Connecticut Department of Health

CTDEEP: Connecticut Department of Energy and Environmental Protection

RSR: Remediation Standard Regulations GWPC: Groundwater Protection Criteria SWPC: Surface Water Protection Criteria Res. V/C: Residential Groundwater Volatilization Criteria

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06

 $target\ cancer\ risk\ or\ target\ hazard\ quotient\ of\ 1.0.\ \ The\ EPA\ VISL\ are\ categorized\ into\ Residential\ and\ Commercial\ criteria.$

The Res. V/C and Residential EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

the on-site residence, with the exception of Gwobb (facility potable wen) and Gw-40Db (woodstock Townian potable wen).

 $The \ I/C \ V/C \ and \ Commercial \ EPA \ VISL \ apply \ to \ all \ on-site \ monitoring \ and \ extraction \ wells \ as \ well \ as \ GW08DB \ (facilty \ potable \ well) \ and \ off-partial \ of$

site domestic supply well GW40DB (Woodstock Townhall potable well).

MCL: Maximum Contaminant Level

ROD: Record of Decision

NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

SDWA: Safe Drinking Water Act. SDWA MCL of 80 ug/L applies to total trihalomethanes, consisting of the sum of the concentrations of

bromodichloromethane, bromoform, dibromochloromethane and chloroform.

* Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

Table 1D Summary of Detected VOCs in Water Samples Shallow Bedrock Monitoring Well Linemaster Switch Corporation Progress Report

		•											Monitoring '	Well
										Well Name:	MW17S	В	MW27S	SB
										Sample				
					~					Date:	05/11/20	22	05/12/20	22
				Screening	g Criteria						2022 May S		2022 May S	
									s	ample Event:	Annual		Annual	
										Lab Report:	L222501	6	L222520	06
											8260 COCs/	8270		
									1	Note/Method:	SIM		8260 CO	Cs
Dilution Factor:		CTDEEP R	SD Cuitania		СТДРН	EPA	VISL	ROD	SDWA	Human	1		1	
Sample Type:					Action	Resid-	Com-	Cleanup	SDWA	Health				
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result	(Q)	Result	(Q)
CE-TCE and Associated Breakdown Compour	ıds													
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 0.500	U	< 0.500	U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	14.9		< 0.500	U
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	24.1		< 0.500	U
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	2.16		< 0.750	U
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	< 1.00	U	< 1.00	U
Remaining Method 8260 or 524.2 VOC Compound														
1,2-Dichloropropane	5	NE	7.4	58	1	10.8	47.3	5	5	0.9	< 1.75	U	< 1.75	U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 0.500	U	< 0.500	U
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 1.00	U	< 1.00	U
o-Xylene	530	NE	21,300	50,000	NE	904	3,800	NE	10,000	NE	< 1.00	U	< 1.00	U
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 0.750	U	< 0.750	U
4-Dioxane and Associated Indicator Compoun) TD	2.75	275		4.000	24 400	3.75			4.50		7.7/	
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	163	т.	N/A	
1,4-Dioxane (8260)	NE 7	NE Oc	NE 100	NE 020	7	4,900	21,400	NE 7	NE 7	NE 200	104	J	< 250	U
1,1-Dichloroethene (1,1-DCE)	1	96	190	920	,	282	1,180	1	,	300	25.3		< 0.500	U U
1,2-Dichloroethane (1,2-DCA)	I	2,970	6.5	68	0.5	3.66	16	5	5	9.9	0.932		< 0.500	U

Total VOCs: 230.392

Notes

All results reported in micrograms per liter ($\mu g/l$).

Bolded value indicates constituent detected above method detection limits.

Shaded results exceed one or more identified criteria, MCL or action level.

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J+: Estimated value; biased high.

ND - Not Detected.

NE: No Criteria Established

N/A: Indicates constituent not analyzed for during laboratory analysis.

N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot.

Q: Laboratory Qualifiers

U: Indicates not detected.

UJ: Estimated non-detect.

CTDPH: Connecticut Department of Health

CTDEEP: Connecticut Department of Energy and Environmental Protection

RSR: Remediation Standard Regulations GWPC: Groundwater Protection Criteria

SWPC: Surface Water Protection Criteria

Res. V/C: Residential Groundwater Volatilization Criteria

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06

 $target\ cancer\ risk\ or\ target\ hazard\ quotient\ of\ 1.0.\ The\ EPA\ VISL\ are\ categorized\ into\ Residential\ and\ Commercial\ criteria.$

 $The \ Res. \ V/C \ \ and \ Residential \ EPA\ VISL\ apply to\ all\ of fi-site\ domestic\ supply\ wells\ as\ well\ as\ MW34T\ and\ GW12DB,\ due\ to\ their\ proximity$

to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

The I/C V/C and Commercial EPA VISL apply to all on-site monitoring and extraction wells as well as GW08DB (facilty potable well) and off-

site domestic supply well GW40DB (Woodstock Townhall potable well). \\

MCL: Maximum Contaminant Level ROD: Record of Decision

ROD: Record of Decision

NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

SDWA: Safe Drinking Water Act. SDWA MCL of 80 ug/L applies to total trihalomethanes, consisting of the sum of the concentrations of bromodichloromethane, bromoform, dibromochloromethane and chloroform.

* Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

Table 1E **Summary of Detected VOCs in Water Samples** Overburden Monitoring Well Linemaster Switch Corporation 2022 Semi-Annual Progress Report

•																				
										Location Group:					O	Ionitoring Well				
										Group:		1	1	1	Overburgen N	ionitoring weii	i	Ī	Ī	
										Well Name:	MW04T	MW06T	MW11T	MW17TS	MW17TD	MW23T	MW26T	MW33T	MWEPAATS	MWEPAATD
										Sample										
					.					Date:	05/12/2022	05/11/2022	05/10/2022	05/11/2022	05/11/2022	05/12/2022	05/12/2022	05/11/2022	05/12/2022	05/12/2022
				Screenin	g Criteria						2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-
									5	Sample Event:	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual	Annual
										Lab Report:	L2225206	L2225016	L2224730	L2225016	L2225016	L2225206	L2225206	L2225016	L2225206	L2225206
															8260 COCs/8270			8260 COCs/8270		8260 COCs/8270
										Note/Method:	8260 COCs	8260 COCs	8260 COCs	8260 COCs	SIM	8260 COCs	8260 COCs	SIM	8260 COCs	SIM
Dilution Factor:		CTDEEP R	RSR Criteria		CTDPH	EPA	VISL	ROD	SDWA	Human	50	1	1	1	1	1	250	2.5/1*	4	10/50/1*
Sample Type:					Action	Resid-	Com-	Cleanup		Health										
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)
PCE-TCE and Associated Breakdown Compoun	ds																			
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	25.0	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 0.500 U	< 125 U	< 1.25 U	< 2.00 U	< 5.00 U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	8,290	< 0.500 U	< 0.500 U	0.207 J	3.70	1.14	30,800	473	485	1,850
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	373	< 0.500 U	< 0.500 U	< 0.500 U	11.1	< 0.500 U	2,320	31.6	1.46 J	254
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	< 37.5 U	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U	279	272	< 3.00 U	17.6
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	< 50.0 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 250 U	< 2.50 U	< 4.00 U	< 10.0 U
Remaining Method 8260 or 524.2 VOC Compound	ıds	N.T.	7.4	5 0		10.0	45.0	-		0.0	.07.5 XI	1.00	11.00	.1.55	.1.55	.1.55	. 420 XI	A = (Y	.7.00	.15.5
1,2-Dichloropropane	5	NE 500,000	7.4	58	I NE	10.8	47.3	5	5	0.9	< 87.5 U	< 1.75 U	< 1.75 U	< 1.75 U	< 1.75 U	< 1.75 U	< 438 U	2.76 J	< 7.00 U	< 17.5 U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5 2,720	NE	700 10,000	68	< 25.0 U < 50.0 U	<0.500 U <1.00 U	< 0.500 U < 1.00 U	< 0.500 U < 1.00 U	<0.500 U <1.00 U	< 0.500 U < 1.00 U	<125 U <250 U	< 1.25 U < 2.50 U	< 2.00 U < 4.00 U	< 5.00 U < 10.0 U
m,p-Xylene o-Xylene	530 530	NE NE	21,300	50,000	NE NE	904	3,800	NE NE	10,000	NE NE	< 50.0 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 1.00 U	< 250 U	< 2.50 U	< 4.00 U	< 10.0 U
Toluene	1.000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 37.5 U	0.457 J	< 0.750 U	< 0.750 U	< 0.750 U	< 0.750 U	< 188 U	< 1.88 U	< 3.00 U	< 7.50 U
1.4-Dioxane and Associated Indicator Compound	,	4,000,000	23,300	30,000	130	32,700	137,000	1,000	1,000	31	V 37.5 0	0.437 3	V 0.730 U	< 0.750 C	< 0.730 C	< 0.730 C	< 166 C	< 1.66 U	₹ 3.00 €	< 7.50 C
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	N/A	N/A	N/A	N/A	104	N/A	N/A	2.68	N/A	0.84
1.4-Dioxane (8260)	NE	NE NE	NE	NE	3	4,900	21,400	NE	NE	NE NE	< 12,500 U	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 62,500 U	< 625 U	< 1.000 U	< 2.500 U
1,1-Dichloroethene (1,1-DCE)	7	96	190	920	7	282	1.180	7	7	300	12.2 J	< 0.500 U	< 0.500 U	< 0.500 U	35.4	< 0.500 U	< 125 U	< 1.25 U	< 2.00 U	2.43 J
1,2-Dichloroethane (1,2-DCA)	1	2,970	6.5	68	0.5	3.66	16	5	5	9.9	< 25.0 U	< 0.500 U	< 0.500 U	< 0.500 U	1.69	< 0.500 U	< 125 U	< 1.25 U	< 2.00 U	< 5.00 U
, (-,	_									Total VOCs:		0.457	ND	0.207	155.89	1.14	33,399	782.04	486.46	2.125

All results reported in micrograms per liter ($\mu g/l$).

Bolded value indicates constituent detected above method detection limits.

Shaded results exceed one or more identified criteria, MCL or action level. J: The result is an estimated quantity. The associated numerical value is

the approximate concentration of the analyte in the sample.

J+: Estimated value; biased high.

ND - Not Detected.

NE: No Criteria Established

N/A: Indicates constituent not analyzed for during laboratory analysis.

N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot. ROD: Record of Decision

Q: Laboratory Qualifiers

U: Indicates not detected. UJ: Estimated non-detect.

CTDPH: Connecticut Department of Health

CTDEEP: Connecticut Department of Energy and Environmental Protection

RSR: Remediation Standard Regulations GWPC: Groundwater Protection Criteria

SWPC: Surface Water Protection Criteria

Res. V/C: Residential Groundwater Volatilization Criteria

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06

target cancer risk or target hazard quotient of 1.0. The EPA VISL are categorized into Residential and Commercial criteria.

The Res. V/C and Residential EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

The I/C V/C and Commercial EPA VISL apply to all on-site monitoring and extraction wells as well as GW08DB (facilty potable well) and off-

site domestic supply well GW40DB (Woodstock Townhall potable well).

MCL: Maximum Contaminant Level

NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

SDWA: Safe Drinking Water Act. SDWA MCL of 80 ug/L applies to total trihalomethanes, consisting of the sum of the concentrations of

bromodichloromethane, bromoform, dibromochloromethane and chloroform. * Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also

exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

Table 1F **Summary of Detected VOCs in Water Samples** Reconfigured Phase1A

Linemaster Switch Corporation 2022 Semi-Annual Progress Report

										Location			_				
										Group:		_	Rec	onfigured Phase1A	System Extraction	Well	
																	1
										Well Name:	FW-E	FW-F3	5	FW-H	FW-I	FW-J	MW-10SB
										Sample							1
				Screening	Criteria					Date:	05/10/2022	05/10/20		05/10/2022	05/10/2022	05/10/2022	05/10/2022
				~~~~~	,						2022 May Semi	2022 May S	emi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-
									S	ample Event:	Annual	Annua		Annual	Annual	Annual	Annual
																	1
										Lab Report:	L2224730	L222473	0	L2224730	L2224730	L2224730	L2224730
																	1
										Note/Method:	8260 COCs	8260 CO	Cs	8260 COCs	8260 COCs	8260 COCs	8260 COCs
Dilution Factor:		CTDEED D	SR Criteria		CTDPH	EPA	VISL	ROD	SDWA	Human	250	4000		4	50	5	50/500*
Sample Type:		CIDEEL	SK Criteria		Action	Resid-	Com-	Cleanup	SDWA	Health							
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result (C	) Result	(Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)
PCE-TCE and Associated Breakdown Compoun	ıds																
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 125 U	852	J	< 2.00 U	46.0	<b>1.12</b> J	<b>12.4</b> J
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	31,200	444,000		118	5,490	690	9,600
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	4,620	10,300		404	916	25.9	62,900
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	58.5 J	< 3,000	U	23.7	16.7 J	4.20	821
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	43.8 J	< 4,000	U	9.46	< 50.0 U	< 5.00 U	1,800
Remaining Method 8260 or 524.2 VOC Compou	ınds																
1,2-Dichloropropane	5	NE	7.4	58	1	10.8	47.3	5	5	0.9	< 438 L	< 7,000	U	< 7.00 U	< 87.5 U	< 8.75 U	< 87.5 U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 125 U	< 2,000	U	< 2.00 U	< 25.0 U	< 2.50 U	135
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 250 L	2,160	J	< 4.00 U	< 50.0 U	< 5.00 U	207
o-Xylene	530	NE	21,300	50,000	NE	904	3,800	NE	10,000	NE	< 250 L	< 4,000	U	< 4.00 U	< 50.0 U	< 5.00 U	52.5
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 188 U	5,690		< 3.00 U	< 37.5 U	< 3.75 U	1,060
1,4-Dioxane and Associated Indicator Compoun	ds																
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	N/A	N/A		N/A	N/A	N/A	N/A
1,4-Dioxane (8260)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	< 62,500 U	< 1,000,000	U	< 1,000 U	< 12,500 U	< 1,250 U	<12,500 U
1,1-Dichloroethene (1,1-DCE)	7	96	190	920	7	282	1,180	7	7	300	< 125 U	< 2,000	U	1.85 J	< 25.0 U	< 2.50 U	100
1,2-Dichloroethane (1,2-DCA)	1	2,970	6.5	68	0.5	3.66	16	5	5	9.9	< 125 U	< 2,000	U	< 2.00 U	< 25.0 U	< 2.50 U	< 25.0 U
										Total VOCs:	35,922	463,002		557.01	6,469	721.22	76,688

All results reported in micrograms per liter (µg/l).

**Bolded** value indicates constituent detected above method detection limits.

Shaded results exceed one or more identified criteria, MCL or action level.

J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

J+: Estimated value; biased high.

ND - Not Detected.

NE: No Criteria Established

N/A: Indicates constituent not analyzed for during laboratory analysis.

N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot.

Q: Laboratory Qualifiers

U: Indicates not detected.

UJ: Estimated non-detect.

CTDPH: Connecticut Department of Health

CTDEEP: Connecticut Department of Energy and Environmental Protection

RSR: Remediation Standard Regulations GWPC: Groundwater Protection Criteria SWPC: Surface Water Protection Criteria

Res. V/C: Residential Groundwater Volatilization Criteria

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06

target cancer risk or target hazard quotient of 1.0. The EPA VISL are categorized into Residential and Commercial criteria.

The Res. V/C and Residential EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity

to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

The I/C V/C and Commercial EPA VISL apply to all on-site monitoring and extraction wells as well as GW08DB (facilty potable well) and off-

site domestic supply well GW40DB (Woodstock Townhall potable well).

MCL: Maximum Contaminant Level

ROD: Record of Decision

NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

SDWA: Safe Drinking Water Act. SDWA MCL of 80 ug/L applies to total trihalomethanes, consisting of the sum of the concentrations of

bromodichloromethane, bromoform, dibromochloromethane and chloroform. * Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

### Table 1G Summary of Detected VOCs in Water Samples Domestic Water Supply Well Linemaster Switch Corporation 2022 Semi-Annual Progress Report

									Lo	cation Group:	Linem	aster	Facility Potable Su	pply Well & Treatr	nent System	Dor	nestic Water Supply (7 Millbrook Lane)	
											GW08DB					GW14	GW14B	GW14T
										Well Name:			GW08TA	GW08TB	GW08TC	(Untreated)	(Mid-Treatment)	(Treated)
				Screenin	g Criteria					Sample Date:	05/10/2022	2	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022	05/10/2022
										•	2022 May Se	mi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-	2022 May Semi-
									5	Sample Event:	Annual		Annual	Annual	Annual	Annual	Annual	Annual
										Lab Report:	L2224730	)	L2224734	L2224734	L2224734	L2224734	L2224734	L2224734
											8260 COCs/8	270			524.2 COCs/827	)		
										Note/Method:	SIM		524.2 COCs	524.2 COCs	SIM	524.2 COCs	524.2 COCs	524.2 COCs
Dilution Factor:		CTDEED	RSR Criteria		CTDPH	EPA	VISL	ROD	SDWA	Human	1		1	1	1	1	1	1
Sample Type:		CIDEEF	Conteria		Action	Resid-	Com-	Cleanup	SDWA	Health								
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result	(Q)	Result (Q)	Result (Q)	Result (Q	) Result (Q)	Result (Q)	Result (Q)
PCE-TCE and Associated Breakdown Compoun	ds																	
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 0.500	U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	6.49		< 0.50 U	< 0.50 U	< 0.50 U	<b>0.23</b> J	< 0.50 U	< 0.50 U
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	20.9		< 0.50 U	< 0.50 U	< 0.50 U	1.7	< 0.50 U	< 0.50 U
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	0.827		< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	0.137	J	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Remaining Method 8260 or 524.2 VOC Compound																		
1,2-Dichloropropane	5	NE	7.4	58	1	10.8	47.3	5	5	0.9	< 1.75	U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 0.500	U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 1.00	U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
o-Xylene	530	NE 4 000 000	21,300	50,000	NE 150	904	3,800	NE	10,000	NE SE	< 1.00	U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 0.750	U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,4-Dioxane and Associated Indicator Compound		NE	N.T.	N.T.	2	4.000	21.400	N.T.	N.T.	NE			27/4	27/4	0.404	27/4	27/4	27/4
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	0.388	11	N/A	N/A	0.404	N/A	N/A	N/A
1,4-Dioxane (8260)	NE 7	NE 96	NE 190	NE 020	3	4,900	21,400	NE 7	NE 7	NE 300	< 250	U	N/A	N/A	N/A	N/A	N/A	N/A
1,1-Dichloroethene (1,1-DCE)	1	2,970		920	0.5	282	1,180	- /	-	300	< 0.500 < 0.500	U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-Dichloroethane (1,2-DCA)	1	2,970	6.5	68	0.5	3.66	16	3	3	9.9 Total VOCs:		U	< 0.50 U ND	< 0.50 U ND	< 0.50 U 0.404	< 0.50 U	< 0.50 U ND	< 0.50 U ND

All results reported in micrograms per liter (µg/l).

Res. V/C: Residential Groundwater Volatilization Criteria

Bolded value indicates constituent detected above method detection limits.

I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

Shaded results exceed one or more identified criteria, MCL or action level.

J: The result is an estimated quantity. The associated numerical value is target cancer risk or target hazard quotient of 1.0. The EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity.

The Res. V/C and Residential EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity.

J+: Estimated value; biased high. to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

ND - Not Detected. The I/C V/C and Commercial EPA VISL apply to all on-site monitoring and extraction wells as well as GW08DB (facility potable well) and off-

NE: No Criteria Established site domestic supply well GW40DB (Woodstock Townhall potable well).

N/A: Indicates constituent not analyzed for during laboratory analysis.

MCL: Maximum Contaminant Level
N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot.

ROD: Record of Decision

Q: Laboratory Qualifiers NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

U: Indicates not detected.

SDWA: Safe Drinking Water Act. SDWA MCL of 80 ug/L applies to total trihalomethanes, consisting of the sum of the concentrations of

UJ: Estimated non-detect. bromodichloromethane, bromoform, dibromochloromethane and chloroform.

CTDPH: Connecticut Department of Health * Denotes one or more dilutions were performed for the associated sample.

CTDEEP: Connecticut Department of Energy and Environmental Protection ** Reported analyte concentrations are from the lowest valid dilution.

CTDEEP: Connecticut Department of Energy and Environmental Protection ** Reported analyte concentrations are from the lowest valid dilution.

RSR: Remediation Standard Regulations Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also

GWPC: Groundwater Protection Criteria exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program. SWPC: Surface Water Protection Criteria

#### Table 1G **Summary of Detected VOCs in Water Samples** Domestic Water Supply Well Linemaster Switch Corporation 2022 Semi-Annual Progress Report

									Lo	ocation Group: Well Name:		nestic Water Supply Woodstock Town H GW40B (Mid-Treatment)	all) GW40T	Domestic Water Supply Well (350 Rte 171)	Domestic Water Supply Well (378 Rte 171) GW74DB	Supply Well (15 Millbrook Lane)	GW'	(10 Millb	er Supply Well rook Lane) GW76B (Mid-Treatement)	GW76T (Treated)
				Screenin	g Criteria				;	Sample Date: Sample Event:	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual	05/10/2022 2022 May Semi- Annual
						EDA	VACE	200		Lab Report:	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs	L2224734 524.2 COCs
Dilution Factor: Sample Type:		CTDEEP F	RSR Criteria		CTDPH Action	Resid-	VISL Com-	ROD Cleanup	SDWA	Human Health	1	1	1	1	1	1	1	l Field Dup	1	1
Analyte	GWPC	SWPC	RES V/C	I/C V/C	Level	ential	mercial	Level	MCL	NRWQC	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	Result (Q)	1	Result (Q)	Result (Q)
PCE-TCE and Associated Breakdown Compound	ls																			
Tetrachloroethene	5	88	340	810	5	26	114	5	5	10	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Trichloroethene	5	2,340	27	67	1	1.92	12	5	5	0.6	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	<b>0.42</b> J	<b>0.36</b> J	< 0.50 U	< 0.50 U
cis-1,2-Dichloroethene (cis-1,2-DCE)	70	NE	NE	NE	NE	NE	NE	70	70	NE	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	6.5	6.3	< 0.50 U	< 0.50 U
trans-1,2-Dichloroethene (trans-1,2-DCE)	100	NE	NE	NE	NE	165	694	NE	100	100	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Vinyl chloride (VC)	2	15,750	1.6	52	0.5	0.19	3.16	2	2	0.022	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Remaining Method 8260 or 524.2 VOC Compour	ıds																			
1,2-Dichloropropane	5	NE	7.4	58	1	10.8	47.3	5	5	0.9	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Ethylbenzene	700	580,000	50,000	50,000	NE	6.3	27.5	NE	700	68	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
m,p-Xylene	530	NE	21,300	50,000	NE	646	2,720	NE	10,000	NE	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
o-Xylene	530	NE	21,300	50,000	NE	904	3,800	NE	10,000	NE	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Toluene	1,000	4,000,000	23,500	50,000	150	32,700	137,000	1,000	1,000	57	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,4-Dioxane and Associated Indicator Compound	s																			
1,4-Dioxane (8270 Low-Level SIM)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,4-Dioxane (8260)	NE	NE	NE	NE	3	4,900	21,400	NE	NE	NE	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1,1-Dichloroethene (1,1-DCE)	7	96	190	920	7	282	1,180	7	7	300	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-Dichloroethane (1,2-DCA)	1	2,970	6.5	68	0.5	3.66	16	5	5	9.9	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
			•							Total VOCs:	ND	ND	ND	ND	ND	ND	6.92	6.66	ND	ND

ND - Not Detected.

NE: No Criteria Established

Q: Laboratory Qualifiers

U: Indicates not detected.

III: Estimated non-detect

CTDPH: Connecticut Department of Health

RSR: Remediation Standard Regulations

GWPC: Groundwater Protection Criteria

SWPC: Surface Water Protection Criteria

CTDEEP: Connecticut Department of Energy and Environmental Protection

All results reported in micrograms per liter (µg/l). Res. V/C: Residential Groundwater Volatilization Criteria Rolded value indicates constituent detected above method detection limits I/C V/C: Industrial/Commercial Groundwater Volatilization Criteria

Shaded results exceed one or more identified criteria, MCL or action level. EPA VISL: Environmental Protection Agency Vapor Intrusion Screening Level based on measured groundwater temperature and 1E-06 target cancer risk or target hazard quotient of 1.0. The EPA VISL are categorized into Residential and Commercial criteria. J: The result is an estimated quantity. The associated numerical value is

the approximate concentration of the analyte in the sample. The Res. V/C and Residential EPA VISL apply to all off-site domestic supply wells as well as MW34T and GW12DB, due to their proximity J+: Estimated value; biased high. to the on-site residence, with the exception of GW08DB (facility potable well) and GW40DB (Woodstock Townhall potable well).

The I/C V/C and Commercial EPA VISL apply to all on-site monitoring and extraction wells as well as GW08DB (facilty potable well) and off-

site domestic supply well GW40DB (Woodstock Townhall potable well).

MCL: Maximum Contaminant Level N/A: Indicates constituent not analyzed for during laboratory analysis. N: Indicates field collected sample. For duplicate samples, this indicates the parent aliquot.

ROD: Record of Decision

NRWQC: National Recommended Water Quality Criteria (Updated 2015). NRWQC apply to surface water results only.

SDWA: Safe Drinking Water Act. SDWA MCL of 80 ug/L applies to total trihalomethanes, consisting of the sum of the concentrations of bromodichloromethane, bromoform, dibromochloromethane and chloroform,

* Denotes one or more dilutions were performed for the associated sample.

** Reported analyte concentrations are from the lowest valid dilution.

Historically at the Linemaster site, wells that have exhibited the compounds listed in the last four rows of the table have also

exhibited 1,4-dioxane. Therefore, they are considered to be indicator compounds for the purpose of this monitoring program.

# Table 2 Summary of May 2022 Arsenic Groundwater Sample Results Linemaster Switch Corporation 2022 2nd Quarter Progress Report

						Analyte:	As	
						CAS #:	7440-38	3-2
						Unit:	ug/L	
					ROD	Cleanup Level:	50	
					Site-Specifi	c Background:	188	
						Field		
	Sample	Lab	Field	Field	Field	Turbidity		
Well Name:	Date	Report	pH (su)	ORP (mV)	Temp (°C)	(NTU)	Result	(Q)
		Dee	p Bedrock Mon	itoring Wells				
GW36DB	05/11/2022	L2225016	7.2	-8.7	11.88	0.76	< 5	U
MW12DB	05/11/2022	L2225016	7.36	-66.1	11.79	0.68	< 5	U
MW18DB	05/10/2022	L2224730	8.13	10.3	12.34	0.60	5	J
		Shallo	ow Bedrock Mo	nitoring Wells				
MW12SB	05/11/2022	L2225016	7.34	122.2	9.39	8.07	< 5	U
MW18SB	05/10/2022	L2224730	8.50	100.7	10.49	3.36	25	
		Ove	erburden Monit	toring Wells				
MW03T	05/11/2022	L2225016	6.23	197.5	10.02	0.20	< 5	U
MW12T	05/11/2022	L2225016	6.38	75.5	8.99	3.05	22	
DUP-1 AS	05/11/2022	L2225016	6.38	75.5	8.99	3.05	32	
MW18T	05/10/2022	L2224730	6.46	177.1	9.36	0.36	< 5	U

Notes:

All results reported in micrograms per liter (µg/l).

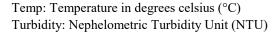
DUP: Duplicate sample collected from this location.

Bolded value indicates constituent detected above method detection limits.

Shaded results exceed one or more of the identified criteria.

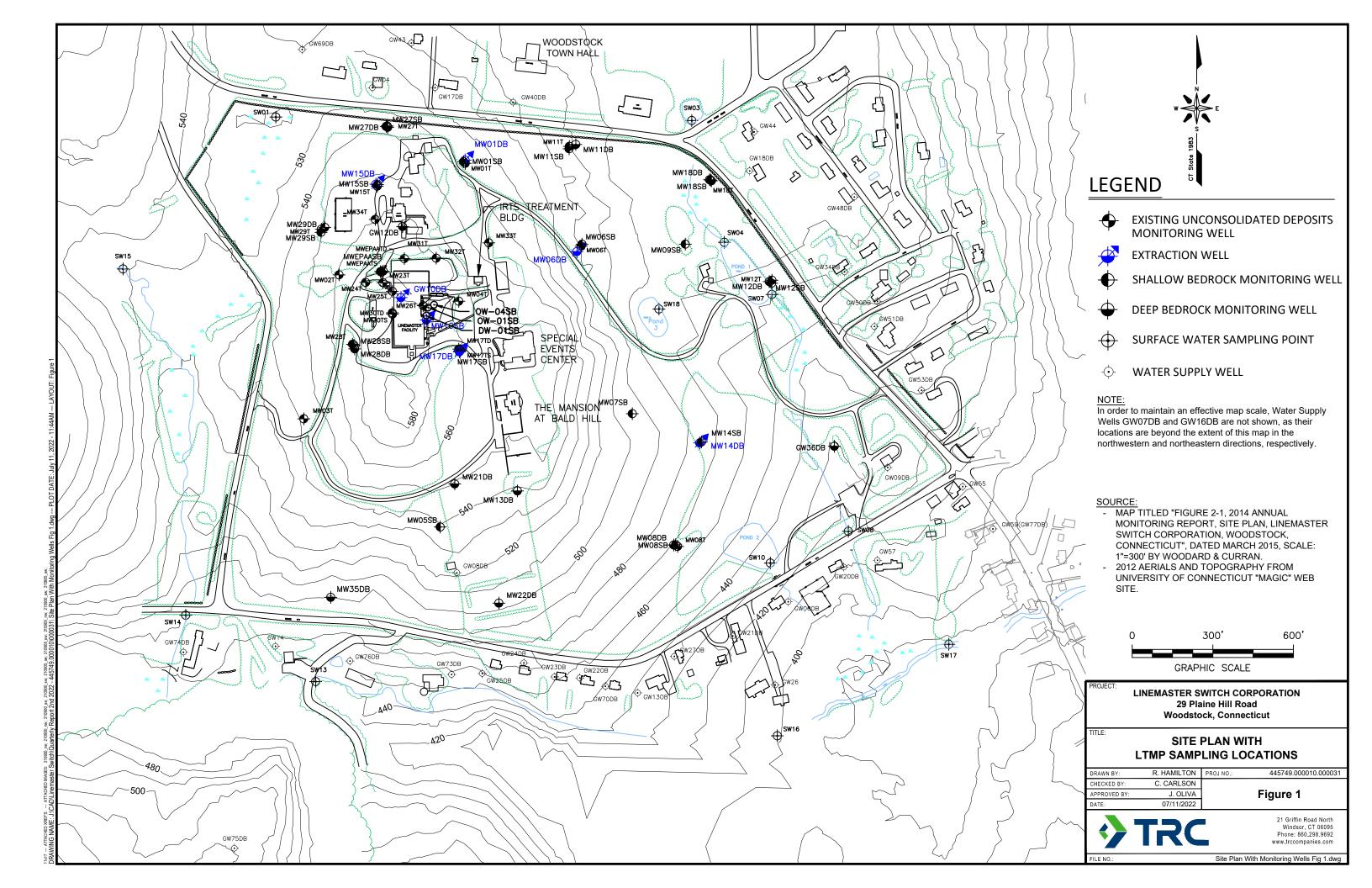
J: The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

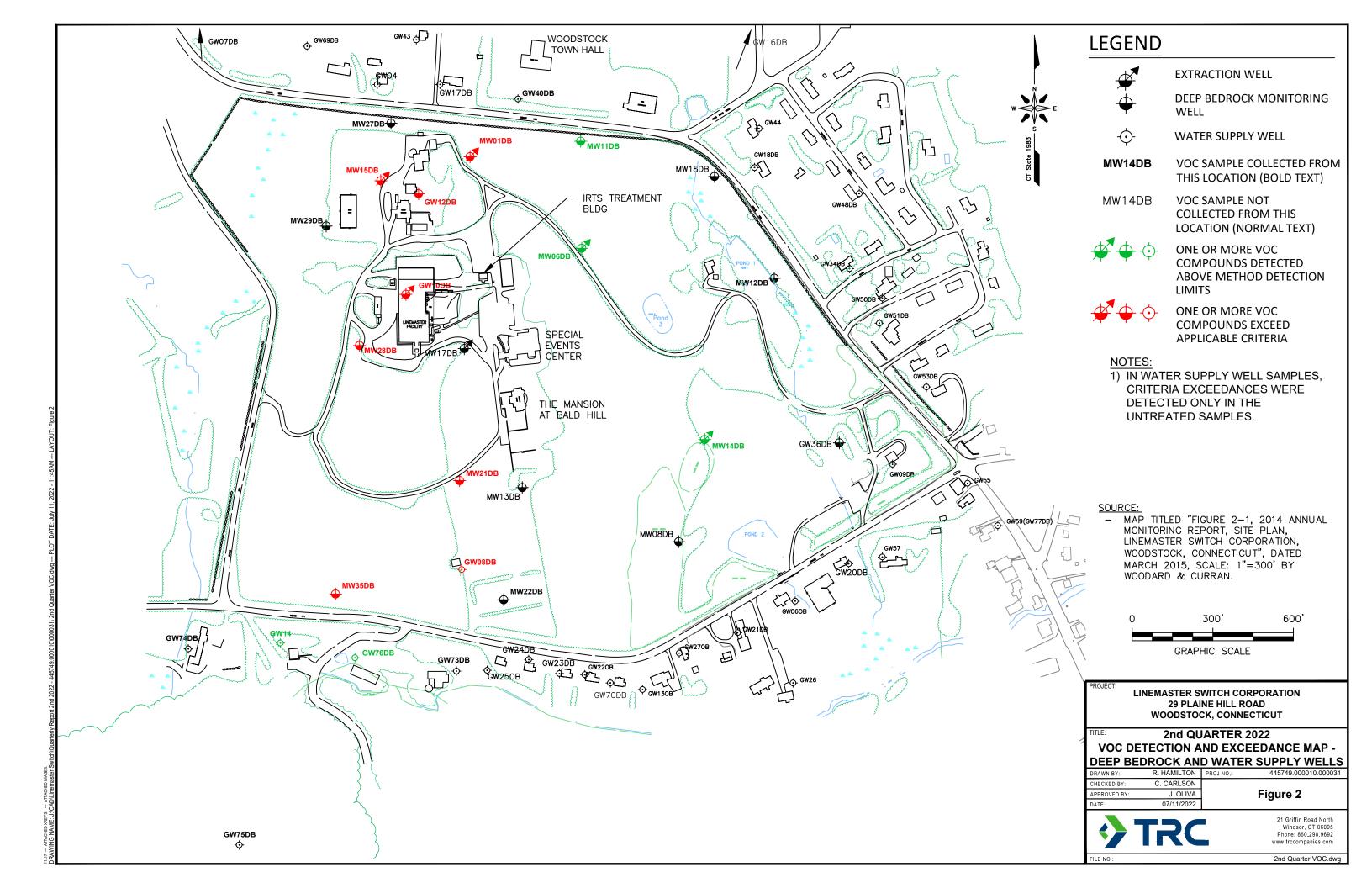
Q: Laboratory Qualifiers.


U: Indicates not detected.

ROD: Record of Decision

Background: Background concentration determined at the time of the 1992 Remedial Investigation.


<u>Field Parameter Units</u> pH: Standard Units (su)


ORP: Oxidation/Reduction Potential; millivolts (mV)

