

DES Waste Management Division 29 Hazen Drive; PO Box 95 Concord, NH 03302-0095

Phase II Environmental Site Assessment

Lavoie Property Hillside Avenue Lots 127-13, 127-14, and 127-15 Berlin, New Hampshire 03570

NHDES Site No. 200402064 Project No. 38138

Prepared For:

New Hampshire Department of Environmental Services Brownfields Program – Hazardous Waste Remediation Bureau 29 Hazen Drive, PO Box 95 Concord, New Hampshire 03302-0095 Melinda Bubier (603) 271-1169 Melinda.Bubier@des.nh.gov

Prepared By:

NOBIS GROUP® 18 CHENELL DRIVE CONCORD, NH 03301

(603) 224-4182

Clarence "Tim" Andrews, PG tandrews@nobis-group.com

March 26, 2019 Nobis File No. 70705.00

March 26, 2019 File No. 70705.00

Ms. Melinda Bubier New Hampshire Department of Environmental Services Brownfields Program – Hazardous Waste Remediation Bureau 29 Hazen Drive Concord, NH 03302-0095

Re: Phase II Environmental Site Assessment Lavoie Property Hillside Avenue, Lots 127-13, 127-14, and 127-15 Berlin, New Hampshire NHDES Site No. 200402064, Project No. 38138

Dear Ms. Bubier:

Nobis Engineering, Inc. dba Nobis Group[®] (Nobis) is pleased to submit this Phase II Environmental Site Assessment (ESA) of the Lavoie Property, Lots 127-13, 127-14, and 127-15 ("the Site"), located in Berlin, New Hampshire.

This work will be completed as an assignment under the New Hampshire Department of Environmental Services (NHDES) *Site Investigation, Remediation Design, Implementation Oversight at Petroleum and Hazardous Waste Sites, CERLCA and Brownfields Projects* Contract with Nobis. This report is subject to the limitations in Appendix A.

Thank you for the opportunity to be of service to you. Please do not hesitate to contact us if you have any questions.

Very truly yours, NOBIS GROUP®

A M

Joshua Stewart Project Scientist

Attachments cc: Mr. Jim Byrne, USEPA

la A Cina

Clarence "Tim" Andrews, P.G. Sr. Project Manager/ Associate Director of Environmental Services

TABLE OF CONTENTS PHASE II ENVIRONMENTAL SITE ASSESSMENT LAVOIE PROPERTY HILLSIDE AVENUE BERLIN, NEW HAMPSHIRE

SECTION

<u>PAGE</u>

1.0	INTRC	DUCTION	1
	1.1	Purpose	1
2.0	SITE D 2.1 2.2 2.3 2.4	DESCRIPTION Target Property Site Vicinity General Characteristics Site Use Summary Previous Environmental Reports and Site Observations	1 1 2 2
3.0	SCOP	E OF SERVICES	3
4.0	SURF/	ACE SOIL AND CONCRETE SAMPLING.	6
	4.1	Surface Soil Investigation	6
	4.2	Field Screening of Soil Samples	7
	4.3	Soil and Concrete Analytical Results	8
5.0	TEST	PIT EXPLORATIONS	10
	5.1	Test Pit Explorations and Sample Collection	10
	5.2	Field Screening of Soil Samples	10
	5.3	Test Pit Soil Analytical Results	11
6.0	SITE 0	GEOLOGY AND HYDROGEOLOGY	12
	6.1	Site Geology	12
	6.2	Site Hydrogeology	13
7.0	CONC 7.1 7 2	EPTUAL MODEL Soil Contamination Model 7.1.1 TPH-DRO 7.1.2 PAHs 7.1.3 PCBs 7.1.4 Metals Site Status	13 13 13 13 14 15
	1.2	UILE ULALUJ	10

TABLE OF CONTENTS (cont.) PHASE II ENVIRONMENTAL SITE ASSESSMENT LAVOIE PROPERTY HILLSIDE AVENUE BERLIN, NEW HAMPSHIRE

SECTION

PAGE

8.0	CON	CLUSIONS AND RECOMMENDATIONS	16
	8.1	Conclusions	16
	8.2	Recommendations	18

TABLES

NUMBER

- 1 Summary of Soil VOC and DRO Analysis
- 2 Summary of Soil PAH Analysis
- 3 Summary of Soil PCB Analysis
- 4 Summary of Soil Metals Analysis
- 5 Summary of Concrete PCB Analysis

FIGURES

<u>NUMBER</u>

- 1 Locus Map
- 2 PAH Sample Results
- 3 PCB Sample Results
- 4 Metals Sample Results

APPENDICES

- A Limitations
- B Test Pit Logs
- C Field Procedures
- D Discussion of Quality Assurance and Quality Control
- E Laboratory Analytical Reports

Lavoie Property Phase II ESA File No. 70705.00

1.0 INTRODUCTION

Nobis Engineering, Inc. dba Nobis Group® (Nobis) completed a Phase II Environmental Site Assessment (Phase II ESA) for the former Lavoie Property (target property) located on Hillside Avenue in Berlin, New Hampshire, Lots 127-13, 127-14, and 127-15. This work was performed as described in our "Work Scope and Budget Phase II Environmental Site Assessment" dated November 28, 2017 as approved by the New Hampshire Department of Environmental Services (NHDES) on February 22, 2018, as well as subsequent Work Scope Approval #2 dated February 22, 2018. The field activities and laboratory analyses were completed in general accordance with the Field Task Work Plan and Site-Specific Quality Assurance Project Plan Addendum - Final (RFA 16002, Lavoie Property), prepared by Nobis and approved by NHDES and United States Environmental Protection Agency (USEPA) June 29, 2018 and August 7, 2018, respectively. This report is subject to the limitations in Appendix A.

1.1 Purpose

The purpose of this study was to identify and evaluate environmental impacts to soil and groundwater in the vicinity from historic junkyard operations at the property.

2.0 SITE DESCRIPTION

2.1 Target Property

The target property, located at 640 Hillside Avenue, Berlin, Coos County, New Hampshire consists of three (3) individual residential properties collective referred to as "the Site". The three properties consist of:

- a 0.85-acre lot identified as Lot 127-13 classified as vacant land by the City of Berlin;
- a 0.36-acre lot identified as Lot 127-14 classified as vacant land by the City of Berlin; and
- a 1.40-acre lot identified as Lot 127-15 containing a residential home and several shed-like structures

The approximate location of the Site is illustrated on Figure 1. Site boundaries and building configurations are illustrated on Figure 2.

2.2 Site Vicinity General Characteristics

The subject site is located within an Residential district, as defined by the City of Berlin. Properties in the vicinity of the site are serviced by either private water supply wells or public water supply and municipal sewer system. The adjoining properties are residential in nature. Topography of the western portion of the target property is generally flat and slopes away to the east when moving eastward.

Based on site observations and review of the Berlin, New Hampshire, United States Geological Survey (USGS) Topographic Map, elevation at the site is approximately 1,380 feet above the National Geodetic Vertical Datum (NGVD) of 1929.

2.3 Site Use Summary

According to a complaint filed with NHDES on February 9, 2004 by the City of Berlin Zoning Office, the Site was operating as an unlicensed junkyard with storage of questionable containers and generally poor housekeeping. Inspection of the Site by NHDES identified the presence of multiple 55-gallon drums and other containers, lead-acid batteries, and various scrap automotive parts and metals. Reportedly, the property owner began his business practice in the late 1950s. With oversight and routine inspections by NHDES, the property owner implemented a self-performing cleanup of the staged materials over the course of several years. The complaint file for the Site was closed on January 21, 2011 citing cleanup completion. Currently, the property is held by the estate of the late owner. The property is vacant and is under consideration for tax deed taking by the City of Berlin. The City has requested performance of a Brownfields Phase II ESA to evaluate potential impacts to soil and groundwater from historic Site operations.

2.4 Previous Environmental Reports and Site Observations

No previous environmental reports have been completed for the target property. However, on November 6, 2017, NHDES and Nobis visited the Site with a representative of the City of Berlin to review current site conditions and discuss environmental assessment needs. The Site is situated in a residential area and has a house with a detached garage, a small shed, and two shedlike structures that have either partially or completely collapsed. The Site was generally overgrown with brush, but indications of historical use as a scrapyard were observed across most of the property. Site observations included the presence of multiple 275-gallon heating oil tanks, unlabeled 55-gallon steel and polyethylene drums, miscellaneous gasoline cans and smaller containers 5-gallons in volume or less, tires, tire rims, and various building materials. Minor areas of surface staining were observed in multiple locations, as well as unnatural/uneven terrain in areas indicating possible fill or excavation.

3.0 SCOPE OF SERVICES

The overall objectives of this project are to complete a Phase II ESA to determine whether historical practices at the site have impacted the soil and groundwater in the vicinity. Phase II investigations were conducted through the collection of shallow surface soil samples, test pit excavations with soil sampling, and sample analysis. Evaluation for the presence of hazardous building materials is not included in this work scope.

In support of completion of the Phase II ESA, the following tasks were performed:

Initial Site Visit and Work Scope Development

Nobis visited the site with NHDES and representatives of the City of Berlin prior to the preparation of a work scope and budget spreadsheet which was reviewed and approved by NHDES. The work scope development process also included soliciting prices from:

- a drilling subcontractor;
- an excavation subcontractor;
- a subcontracted laboratory; and
- a waste disposal subcontractor.

This task was approved using Nobis' accepted pre-approved budget per Work Scope Approval #1 issued November 28, 2017. A budget spreadsheet for the Phase II ESA was submitted, providing task line item details.

SSQAPPA Preparation

Based on the information gathered during the initial site visit, Nobis prepared and submitted to the NHDES and United States Environmental Protection Agency (USEPA) a Field Task Work Plan (FTWP) and Site-Specific Quality Assurance Project Plan Addendum (SSQAPPA), which described the quality control (QC) and quality assurance (QA) protocols and other technical procedures followed during implementation of the work to ensure that the results meet the stated performance criteria. The FTWP/SSQAPPA was based on Nobis' Generic Quality Assurance Project Plan (Generic QAPP), Revision 3 (RFA #16002) as approved by USEPA and NHDES on June 29, 2018 and refers to standard operating procedures for Nobis and Nobis' subcontractors.

HASP / Dig-Safe

Prior to conducting site work, Nobis prepared a site-specific health and safety plan for all on-site activities in accordance with Occupational Safety and Health Administration (OSHA) requirements.

Nobis visited the site on July 3, 2018 to confirm access to areas proposed for subsurface investigation and pre-marked the site to satisfy the requirements for DigSafe utility clearance.

Surface Soil Investigation

Nobis collected fifteen surface soil (0-0.5 feet below ground surface [ft bgs]) samples across the site on July 3, 2018. Sample locations were selected to provide geospatial coverage of the site and were based on visual observations at the site during the sampling event Refer to Figures 2 through 4 for sample locations.

Collected surface soil samples were screened in the field for total volatile organic compounds (VOCs) using a photoionization detector (PID). The collected samples were submitted to a State-certified laboratory (as identified in the SSQAPPA) for the following analyses:

- VOCs per EPA Method 8260B;
- polycyclic aromatic hydrocarbons (PAHs) per EPA Method 8270;
- total petroleum hydrocarbons (TPH) per EPA Method 8015 (diesel-range organics);
- polychlorinated biphenyls (PCBs) per EPA Method 8082; and
- 13 Priority Pollutant Metals.

In accordance with the SSQAPPA prepared for the site, QA/QC samples submitted for laboratory analysis included one trip blank for VOCs, and one duplicate for each analysis proposed.

Test Pit Investigations

Nobis and a test pit excavation subcontractor completed ten (10) test pits at the site on July 16, 2018. Test pit locations were selected based on the analytical results of the surface soil investigation and visual observations of the site to target areas of potential fill. Refer to Figure 2 for subsurface investigation locations.

Soil samples were collected from each test pit and were screened in the field for total volatile organic compounds (VOCs) using a photoionization detector (PID). One soil sample from each of the first five (5) test pits was selected for laboratory analysis based on PID readings and field observations. The selected samples were submitted to a State-certified laboratory (as identified in the SSQAPPA) for the following analyses:

- VOCs per EPA Method 8260B;
- PAHs per EPA Method 8270;
- TPH per EPA Method 8015 (diesel-range organics);
- PCBs per EPA Method 8082; and
- 13 Priority Pollutant Metals.

In accordance with the SSQAPPA prepared for the site, QA/QC samples submitted for laboratory analysis included one trip blank for VOCs, and one duplicate for each analysis proposed.

Additional Surface Soil Investigation

Nobis collected sixty (60) additional soil samples on September 13, 2018. The samples were collected to further define the extents of PCB and various metals identified at the site from previous surface soil and test pit soil analytical results. Samples were collected from 0-0.5 ft, 1 ft and 2 ft bgs. Refer to Figures 3 and 4 for additional surface soil investigation locations.

The collected samples were submitted to a State-certified laboratory (as identified in the SSQAPPA) for the following analyses:

- PCBs per EPA Method 8082; and/or
- 13 Priority Pollutant Metals.

In accordance with the SSQAPPA prepared for the site, QA/QC samples submitted for laboratory analysis included one duplicate for each analysis proposed.

PCBs in Concrete Investigation

Nobis collected two (2) concrete samples from a stained concrete pad below the deck on the east side of the residential structure on lot 127-15.

The collected samples were submitted to a State-certified laboratory (as identified in the SSQAPPA) for the following analyses:

• PCBs per EPA Method 8082.

In accordance with the SSQAPPA prepared for the site, QA/QC samples submitted for laboratory analysis included one duplicate.

No topographic survey effort was included in this work scope.

No IDW was containerized for off-site disposal during the performance of this Phase II ESA. All excess soil cuttings were disposed of on-site.

Phase II ESA Report Preparation

Nobis performed an assessment of soil contamination present at the site, including an assessment of subsurface stratigraphy and distribution of contaminants. The report includes a description of activities performed and provides recommendations for additional investigation activities. Laboratory data is summarized in tables and sample locations are shown on the attached figures. A discussion of QA/QC is included.

4.0 SURFACE SOIL AND CONCRETE SAMPLING

4.1 Surface Soil Investigation

Two rounds of surface soil sampling were performed by Nobis at the site on July 3, 2018 and September 13, 2018. Fifteen (15) locations were selected and sampled, with one sample collected per location during the July round. Soil sampling during the September sampling event consisted of additional samples at 5 of the 15 sample locations from the July round and eight (8) new surface soil locations to further define the extents of metals contamination at the site identified from the analytical results of the July sampling round. Soil sampling in September also included grid sampling for PCBs around three (3) of the 15 sample locations from July to further define the extents of PCB contamination identified from the analytical results of the July sampling round.

Surface soil sample locations (SS-01 through SS-15) performed in July 2018 were selected in the field based on observations of current site conditions and a desire to achieve geospatial coverage of the site. Soil samples were collected using hand tools (Shovel/Hand Augers) from 0-0.5 ft bgs. One soil sample per location was submitted for laboratory analysis. Samples were analyzed for VOCs, PAHs, TPH-DRO, PCBs, and metals.

In September 2018, additional soil samples were collected from around SS-07, SS-11, and SS-12 in 10 x 10 foot grid spacing to assess the extent of PCBs in soil at these locations. PCB results from the July round of sampling indicated PCBs were present in the soil at concentrations exceeding Env-Or 600 Soil Remediation Standards¹ (SRS) at these locations. Sampling at SS-07 and SS-12 consisted of the collection of nine surface soil samples (0-0.5 ft bgs) in 10 x 10 foot spacing and one sample collected from the original sample location at 1 ft bgs. Sampling at SS-11 consisted of

¹ New Hampshire Code of Administrative Rules, Chapter Env-Or 600, Soil Remediation Standards, Table 600-2, revised June 1, 2015.

the collection of thirteen surface soil samples (0-0.5 ft bgs) in 10 x 10 foot spacing, seven samples collected from 1 ft bgs, three samples collected from 2 ft bgs, and 2 additional samples collected from the original location at 1 and 2 ft bgs. Samples were collected using hand tools (Shovel/Hand Augers). A total of 45 soil samples and 2 duplicates (S7-5 and S7-9) were collected and submitted to the laboratory for PCBs analysis. See Figure 3 for details.

Additional soil samples collected during the September sampling round to further define the nature and extent of metals contamination at the site consisted of 8 new sample locations (M-1 through M-8, 0-0.5 ft bgs) to assess horizontal extent and additional samples collected from SS-03(1 ft bgs), SS-05(1 and 2 ft bgs), SS-06 (1 and 2 ft bgs), SS-07(1 and 2 ft bgs), SS-10(1 and 2 ft bgs), and SS-11(1 and 2 ft bgs) to assess vertical extent. Samples were collected using hand tools (Shovel/Hand Augers). A total of 19 soil samples and 2 duplicates (M-5 and M-7) were collected and submitted to the laboratory for metals analysis. See Figure 4 for details.

Nobis collected two concrete samples from the stained concrete pad under the deck on the east side of the residential structure on September 13, 2018. The concrete samples were collected by using an electric powered hammer drill with a 1-inch drill bit, in general accordance with USEPA guidelines, wetting methods were used. A total of two samples and a duplicate were submitted to the laboratory for PCB analysis.

The locations of the soil samples are shown on Figures 2 through 4.

No IDW was containerized for off-site disposal during the performance of this Phase II ESA. All excess soil was returned to the site.

Refer to section 6.0 of this report for a discussion of the site geology and hydrogeology.

4.2 Field Screening of Soil Samples

Surface soil samples were screened in the field for total concentrations of VOCs using a handheld PID equipped with a 10.6 eV lamp. The PID responds to most VOCs but does not register methane or natural components of air such as oxygen, nitrogen, or carbon dioxide. The PID has a detection limit of approximately 1 part per million by volume (ppmv), referenced to an isobutylene-in-air standard. Field screening indicated that total concentrations of VOCs in the soil samples were all less than 1 ppmv.

The results of field screening for total VOCs are summarized on Table 1, the soil screening procedures are described in Appendix C.

4.3 Soil and Concrete Analytical Results

Soil samples collected of laboratory analysis were submitted to Eastern Analytical, Inc. (EAI) of Concord, New Hampshire for laboratory analyses of VOCs per EPA Method 8260C, TPH (dieselrange organics [DRO]) per EPA Method 8015C, PAHs per EPA Method 8270D, PCBs per EPA Method 8082A, and 13 priority pollutant metals per EPA Method 6020.

The laboratory results were compared to the SRS. A summary of analytical results for surface soil and concrete samples below:

<u>VOCs</u>

Samples SS-01 through SS-15 were analyzed for VOCs. No VOCs were present at concentrations exceeding applicable SRS in any of the samples. Trichlorofluoromethane was present in the samples collected from SS-05 and SS-09, there is no SRS for trichlorofluoromethane. No other VOCs were present in any of the samples at concentrations above laboratory detection limits. Tabulated results are shown in Table 1.

<u>TPH-DRO</u>

Samples SS-01 through SS-15 were analyzed for TPH-DRO. TPH-DRO was present in all the samples at concentrations ranging from 71 mg/kg (SS-12) to 20,000 mg/kg (SS-05). Only the sample collected at SS-05 reported concentrations (20,000 mg/kg) of TPH-DRO exceeding the SRS of 10,000 mg/kg. Tabulated results are shown in Table 1.

<u>PAHs</u>

Samples SS-01 through SS-15 were analyzed for PAHs. Benzo[a]anthracene was present at concentrations exceeding the SRS of 1 mg/kg in the samples collected from SS-07(5.7 mg/kg), SS-11(1.2 mg/kg), and SS-15 FD(1.5 mg/kg). Benzo[a]pyrene was present at concentrations exceeding the SRS of 0.7 mg/kg in the samples collected from SS-02(1.1 mg/kg), SS-07(6.3 mg/kg), SS-11(1.2 mg/kg), and SS-15 FD(1.3 mg/kg). Benzo[b]fluoranthene was present at concentrations exceeding the SRS of 1 mg/kg in the samples collected from SS-02(2.1 mg/kg), SS-03(1.1 mg/kg), SS-07(10 mg/kg), SS-09(1.1 mg/kg), SS-11(2.5 mg/kg), SS-15(1.4 mg/kg), and SS-15 FD(1.3 mg/kg). Indeno[1,2,3-cd]pyrene was present at concentrations exceeding the SRS of 1 mg/kg in the samples collected from SS-05(5.8 mg/kg) and SS-15 FD(1.2 mg/kg). Other PAHs when detected were present at concentrations below applicable SRS. Tabulated results are shown in Table 2.

<u>PCBs</u>

Samples SS-01 through SS-15 and grid samples SS-07B, SS-11B, SS-11C, SS-12B, S7-1 through S7-9, S11-1 through S11-13, S12-1 through S12-9, and Concrete samples CS-1 and CS-2 were analyzed for PCBs. PCBs were present in all the collected samples at concentrations above laboratory detection limits except for the sample collected at SS-01 and the concrete samples CS-1 and CS-2, where no PCBs were present at concentrations above laboratory detection limits.

PCB-1260 was detected in 59 samples with concentrations ranging from 0.028 mg/kg to 8.7 mg/kg. PCB-1254 was detected in 45 samples with concentrations ranging from 0.036 mg/kg to 28 mg/kg. PCB-1248 was detected in 27 samples with concentrations ranging from 0.074 mg/kg to 33 mg/kg. PCB-1268 was detected in 11 samples with concentrations ranging from 0.059 mg/kg to 0.34 mg/kg.

The SRS of 1 mg/kg is established for total PCBs. Concentrations of total PCBs in 41 samples exceeded the SRS. Tabulated results are shown in Table 3 and 5.

<u>Metals</u>

Samples SS-01 through SS-15 and additional samples SS-03B, SS-05B, SS-06B, SS-06C, SS-07B, SS-07C, SS-10B, SS-10C, SS-11B, SS-11C, and M-1 through M-8 were analyzed for metals (13 Priority Pollutant). Antimony, arsenic, cadmium, lead, mercury, and/or zinc were present at concentrations exceeding their applicable SRS in two or more samples. Tabulated results are shown in Table 4.

Antimony was present at concentrations exceeding the SRS of 9 mg/kg in 10 samples with a maximum concentration of 54 mg/kg reported in the sample collected at M-3.

Arsenic was present at concentrations exceeding the SRS of 11 mg/kg in 13 samples with a maximum concentration of 43 mg/kg reported in the sample collected at SS-06B.

Cadmium was present at concentrations exceeding the SRS of 33 mg/kg in 2 samples with a maximum concentration of 78 mg/kg reported in the sample collected at M-5.

Lead was present at concentrations exceeding the SRS of 400 mg/kg in 21 samples with a maximum concentration of 4,300 mg/kg reported in the sample collected at M-3.

Mercury was present at concentrations exceeding the SRS of 7 mg/kg in 2 samples with a maximum concentration of 10 mg/kg reported in the sample collected at M-4 and SS-11C.

Zinc was present at concentrations exceeding the SRS of 1,000 mg/kg in 8 samples with a maximum concentration of 2,700 mg/kg reported in the sample collected at M-3.

The soil data are summarized in Tables 1 through 5 and a copy of the laboratory analytical reports are included in Appendix E. A discussion of QA/QC and data usability is included in Appendix D.

5.0 TEST PIT EXPLORATIONS

5.1 Test Pit Explorations and Sample Collection

Nobis performed oversight of ten (TP-01 through TP-10) test pit explorations and performed the collection of five laboratory analytical samples on July 16, 2018. The test pits were completed by Accuworx Northeast, Inc. of Pembroke, New Hampshire. Test pit explorations termination depths ranged from 3 ft bgs (TP-06 and TP-07) to 6 ft bgs (TP-1 and TP-10). All test pits were terminated at assumed bedrock, except for TP-10, which was terminated in native soil. Although the base of TP-01 was very moist, no groundwater was encountered in any of the test pits. Laboratory analytical samples collected from TP-01 through TP-05 were selected in the field based on observations and a desire to achieve geospatial coverage of the site. Soil samples were collected straight from the excavator bucket. Samples were analyzed for VOCs, PAHs, TPH-DRO, PCBs, and metals.

The locations of the soil samples are shown on Figures 2 through 4.

No IDW was containerized for off-site disposal during the performance of this Phase II ESA. All excess soil was returned to the site.

Refer to section 6.0 of this report for a discussion of the site geology and hydrogeology.

5.2 Field Screening of Soil Samples

Soils from the test pits were screened in the field for total concentrations of VOCs using a handheld PID equipped with a 10.6 eV lamp. The PID responds to most VOCs but does not register methane or natural components of air such as oxygen, nitrogen, or carbon dioxide. The PID has a detection limit of approximately 1 ppmv, referenced to an isobutylene-in-air standard. Field screening indicated that total concentrations of VOCs in the soil at all test pit locations were less than 1 ppmv.

The results of field screening for total VOCs are summarized on Table 1, the soil screening procedures are described in Appendix C.

5.3 Test Pit Soil Analytical Results

Soil samples collected of laboratory analysis were submitted to Eastern Analytical, Inc. (EAI) of Concord, New Hampshire for laboratory analyses of VOCs per EPA Method 8260C, TPH (dieselrange organics [DRO]) per EPA Method 8015C, PAHs per EPA Method 8270D, PCBs per EPA Method 8082A, and 13 priority pollutant metals per EPA Method 6020.

The laboratory results were compared to the SRS. A summary of analytical results for surface soil and concrete samples below:

<u>VOCs</u>

Samples TP-01 through TP-05 were analyzed for VOCs. No VOCs were present at concentrations exceeding applicable SRS in any of the samples. Trichlorofluoromethane was present in the sample collected from TP-02, there is no SRS for trichlorofluoromethane. No other VOCs were present in any of the samples at concentrations above laboratory detection limits. Tabulated results are shown in Table 1.

<u>TPH-DRO</u>

Samples TP-01 through TP-05 were analyzed for TPH-DRO. TPH-DRO was present in all the samples at concentrations ranging from 34 mg/kg (TP-03) to 190 mg/kg (TP-01) and did not exceed the SRS of 10,000 mg/kg. Tabulated results are shown in Table 1.

<u>PAHs</u>

Samples TP-01 through TP-05 were analyzed for PAHs. Benzo[a]pyrene was present at a concentration exceeding the SRS of 0.7 mg/kg in the sample collected from TP-01(1.1 mg/kg). Benzo[b]fluoranthene was present at a concentration exceeding the SRS of 1 mg/kg in the sample collected from TP-01(1.7 mg/kg). Other PAHs when detected were present at concentrations below applicable SRS. Tabulated results are shown in Table 2.

<u>PCBs</u>

Samples TP-01 through TP-05 were analyzed for PCBs. PCBs were present in the samples collected at TP-01, TP-02, and TP-05. No PCBs were present at concentrations above laboratory detection limits in the samples collected at TP-03 and TP-04.

PCB-1260 was detected in 4 samples with concentrations ranging from 0.032 mg/kg to 4.7 mg/kg. PCB-1254 was detected in 4 samples with concentrations ranging from 0.021 mg/kg to 7.4 mg/kg. PCB-1248 was detected in 1 sample (TP-02) with a concentration of 0.64 mg/kg.

The SRS of 1 mg/kg is established for total PCBs. Concentrations of total PCBs in the sample collected from TP-01 (12.1 mg/kg) exceeded the SRS. Tabulated results are shown in Table 3.

<u>Metals</u>

Samples TP-01 through TP-5 were analyzed for metals (13 Priority Pollutant). Antimony was present at a concentration exceeding the SRS of 9 mg/kg in the sample collected from TP-01 (33 mg/kg). Arsenic was present at a concentration exceeding the SRS of 11 mg/kg in the sample collected from TP-01 (21 mg/kg). Lead was present at a concentration exceeding the SRS of 400 mg/kg in the sample collected from TP-05 FD (870 mg/kg). Zinc was present at a concentration exceeding the SRS of 1,000 mg/kg in the sample collected from TP-01 (3,100 mg/kg). Tabulated results are shown in Table 4.

The soil data are summarized in Tables 1 through 4 and a copy of the laboratory analytical reports are included in Appendix E. A discussion of QA/QC and data usability is included in Appendix D.

6.0 SITE GEOLOGY AND HYDROGEOLOGY

6.1 Site Geology

Overburden soils encountered during test pit explorations were visually classified in the field in accordance with the Modified Burmister soil classification system. The soils encountered generally consisted of:

- Loose sand and silt with varying amounts of gravel and pieces of metal, electronics, tires as reworked topsoil fill.
- Loose to very dense sand with varying amounts of silt and gravel.
- Bedrock was encountered at depths ranging from approximately 3 to 6 feet bgs.

Solid waste fill materials were observed at boring locations TP-01 (metal scrap, electronics, plastics, and tires), TP-02 (metal scrap, electronics, and plastics), TP-05 (metal scrap and debris), and TP-08 (gray ash).

6.2 Site Hydrogeology

Nobis did not observe groundwater at the site during any of the completed investigation activities. Assumed shallow bedrock was present across the site. Nobis observed a potential wet area along the north end of Lot-127-13, near TP-01. This potential wetland is likely fed from bedrock groundwater seeps from the slope to the west of this location. Groundwater flow at the site is inferred to flow to the southeast toward the Androscoggin River, based on local topography and the location of the river.

7.0 CONCEPTUAL MODEL

Based on the results of this investigation, Nobis has developed conceptual models to identify the nature and extent of soil contamination and groundwater contamination in the site study area. Analytical results were compared to applicable regulatory standards and risk-based standards set forth in the Risk Characterization and Management Policy (RCMP)².

7.1 Soil Contamination Model

Nobis compared soil analytical results from the samples collected during the Phase II ESA activities (documented above) to NHDES SRS. TPH-DRO, PAHs, PCBs, and metals were found to be present at the site at concentrations exceeding applicable SRS. The majority of the samples containing concentrations of the above listed contaminants exceeding applicable SRS were collected from surface soil (0-1 ft bgs) and would classify these soils as RCMP Category S-1.

7.1.1 TPH-DRO

TPH-DRO concentrations in the sample collected at SS-05 exceeded SRS. Nobis observed steel drums in poor condition, a pile of debris, and stained soil in the vicinity of the sample location. Observed TPH-DRO concentrations at SS-05 are likely from a release or releases to the soil as evidenced by the stained soil, the likely source are the observed steel drums in poor condition.

7.1.2 PAHs

PAHs were present in several samples collected at the site at concentrations exceeding applicable SRS. The source of PAH contamination at the site can likely be attributed to historical uses at the property, additionally, some ash material was observed in TP-08. PAHs are not considered to be

² "Risk Characterization and Management Policy" prepared by the New Hampshire Department of Environmental Services, dated January 15, 1998 (updates to Method 1 Standards, September 2018).

a primary contaminant at the site as all locations of PAH contamination are also impacted by metals (primarily lead) at concentrations exceeding SRS.

7.1.3 PCBs

PCBs were present in the samples collected at SS-07, SS-11, and SS-12 at concentrations exceeding SRS, and additional grid sampling results for PCBs centered around these three sample locations indicate PCBs are present at the site in these areas exceeding SRS at the surface and the subsurface (SS-11 and SS-12 only). Sample results also indicate the complete extent of PCB contaminated soil at the site not defined.

Nobis compared individual PCB results from these three areas and concluded based on relative concentrations and the individual Aroclors the source of PCB contamination at the SS-07 area on Lot-127-15 differs from the source of PCB contamination at the SS-11 and SS-12 areas on Lot-127-13. PCBs detected on Lot 127-15 appear to be predominantly defined by Aroclor 1260, whereas the PCB distribution detected on Lot 127-13 appear to have greater concentration of Aroclors 1248 and 1254. Based on visual observations made by Nobis during sampling activities at the site, the source of PCB contamination at SS-07 is possibly from paints, and other PCB containing liquid products or consumer that would be stored in small metal containers. Nobis observed many small metal containers including paint cans in and around the SS-07 area. Based on visual observations made by Nobis during activities at the site, the presumed source of PCB contamination at SS-12 is possibly from industrial electrical components including but not limited to transformers. Nobis observed several pieces that looked to be from industrial electrical components in the vicinity of the SS-11 and SS-12 areas.

Cleanup criteria based on high and low occupancy standards are established in 40 CFR §761.61.

High occupancy area means any area where PCB remediation waste has been disposed of on-site and where occupancy for any individual not wearing dermal and respiratory protection for a calendar year is: 840 hours or more (an average of 16.8 hours or more per week) for non-porous surfaces and 335 hours or more (an average of 6.7 hours or more per week) for bulk PCB remediation waste.

Low occupancy area means any area where PCB remediation waste has been disposed of on-site and where occupancy for any individual not wearing dermal and respiratory protection for a calendar year is: less than 840 hours (an average of 16.8 hours per week) for non-porous surfaces and less than 335 hours (an average of 6.7 hours per week) for bulk PCB remediation waste. A self-implementing cleanup as outlined in 40 CFR §761.61(a) could be used at the site to address PCB contamination at the site once the full extent of PCB contamination at the site is defined. Nobis assumes the site is a high occupancy area (most conservative) and PCBs contamination would need to be remediated down to less than 1 mg/kg in soil for unrestricted use of the site or remediated to less than or equal to 10 mg/kg with the placement of a cap over the PCB contaminated soils with an Activity Use Restriction recorded on the property.

Four samples analyzed for PCBs (3 from area SS-11 and 1 from area SS-12) had concentrations of total PCBs greater than or equal to 50 mg/kg. Soils containing concentrations of total PCBs greater than or equal to 50 mg/kg, if selected for off-site disposal, must be transported and disposed of as Toxic Substances Control Act (TSCA) regulated waste and must be disposed of at a TSCA approved facility. Soils containing less than 50 mg/kg total PCBs can be disposed of at a facility approved to receive PCB containing waste as defined in 40 CFR §761.61(a)(5)(v).

7.1.4 Metals

The metals antimony, arsenic, cadmium, lead, mercury, and zinc were present in samples collected from the site at concentrations exceeding their respective SRS. Lead is the primary metal contaminant at the site, concentrations exceeded SRS in 23 of the 43 samples submitted to the laboratory for metals analysis. SRS exceedances of antimony, arsenic, cadmium, mercury, and zinc occurred in samples where lead also exceeded SRS except in three samples (SS-06B, M-2, and M-8). Arsenic exceeded SRS in the samples collected from SS-06B and M-8 and zinc exceeded SRS in the sample collected from M-2.

The source of the metals contamination identified at the site is likely from historic site use as an unlicensed salvage yard. One use of antimony alloys and a common use of lead is batteries, likely to have been present at the site when salvage operations were active. Zinc concentrations at the site are likely a result of the storage of galvanized steel at the site.

7.2 Site Status

Based on the data collected for this Phase II ESA, PCB and metal contamination, primarily lead, are present in site soil exceeding SRS. Lead contamination appears to present across the site with the highest concentrations present on Lot-127-15. PCB contamination exceeding SRS was identified at three areas, SS-07, SS-11, and SS-12. Area SS-07 is located on Lot-127-15 and areas SS-11 and SS-12 are located on Lot 127-13. Nobis believes the source of PCB contamination at area SS-07 is distinct from the source of PCB contamination at areas SS-11 and SS-12. Low levels of PCBs were present across the site but at concentrations below SRS. PCB contamination is not fully delineated at the site. Additional PCB sampling is warranted at the site to define the extents

of PCB contamination present at the three identified areas. PAHs are also present at the site at concentrations exceeding SRS and are co-located with locations with metal contamination exceeding SRS. TPH-DRO concentration at SS-05 exceeded SRS, lead concentrations at SS-05 also exceeded SRS.

The contaminants of concern (PCBs, PAHs, metals) are not anticipated to present a great risk to groundwater. Based on the distribution of contaminants, and the associated risk, PCBs are considered the primary contaminant of concern at the site, given the concentrations detected and the distribution. The current data indicates PCB contamination on Lot 127-15 (residential property) is of a lesser magnitude and likely from a different source than PCB contamination on Lot 127-13 (rear vacant property) as indicated by the difference between Aroclor 1260 versus Aroclors 1248 and 1254 reported. Given the lower concentrations and limited distribution, management and mitigation of PCBs on Lot 127-15 may be easier than on Lot 127-13. As such, remediation of these areas could be implemented independent of each other to phase the overall site cleanup strategy.

8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

Based on the data collected during the Phase II ESA that included collection and analysis of soil and groundwater samples, Nobis concludes the following:

- The target site consists of three separate properties. The properties are identified by the City of Berlin as Lots 127-13, 127-14, and 127-15. Lot 127-13 is a 0.85-acre lot classified as vacant land by the City of Berlin. Lot 127-14 is a 0.36-acre lot classified as vacant land by the City of Berlin. Lot 127-15 is a 1.40-acre lot classified as single-family use by the City of Berlin containing a residential home and several shed-like structures.
- The subject site is located within an Residential district, as defined by the City of Berlin. Properties in the vicinity of the site are serviced by either private water supply wells or public water supply and municipal sewer system. The adjoining properties are residential in nature.
- The Site was operating as an unlicensed junkyard with storage of questionable containers and generally poor housekeeping. Inspection of the Site by NHDES identified the presence of multiple 55-gallon drums and other containers, lead-acid batteries, and various scrap automotive parts and metals. Reportedly, the property owner began his business practice in the late 1950s.

- A total of fifteen surface soil locations were sampled at the target property (SS-01 through SS-15) on July 3, 2018. Locations were selected based on site observations and a desire to provide geospatial coverage of the site.
- One soil sample was collected from each surface soil location and submitted for laboratory analysis of VOCs, TPH DRO, PAHs, PCBs, and metals.
- A total of ten test pit explorations were performed at the target property (TP-01 through TP-10) on July 16, 2018.
- Soil samples were collected from TP-01 through TP-05 and submitted for laboratory analysis of VOCs, TPH DRO, PAHs, PCBs, and metals.
- Additional soil samples were collected on September 13, 2018, to further assess the nature and extent of PCB and metal contamination identified at the site from the samples collected in July 2018.
- Forty-five additional soil samples were collected from three areas centered around sample locations SS-07, SS-11, and SS-12 from July 2018 and were submitted for laboratory analysis of PCBs.
- Nineteen additional soil samples were collected and submitted for laboratory analysis of metals.
- No VOCs were present in any of the analyzed samples at concentrations exceeding SRS. Trichlorofluoromethane was present in the samples collected from SS-05 and SS-09, there is no SRS for trichlorofluoromethane.
- TPH-DRO was present in the sample collected from SS-05 at 10,000 mg/kg exceeding the SRS of 10,000 mg/kg. Stained soil and a drum in poor condition were observed in the vicinity of SS-05.
- The PAHs benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, and/or indeno[1,2,3-cd]pyrene were present in several samples (SS-02, SS-03, SS-07, SS-09, SS-11, SS-15, and SS-15 FD) at concentrations exceeding their applicable SRS.
- Total PCBs exceeding the SRS of 1 mg/kg in three of the surface soil samples (SS-07, SS-11, and SS-12) and one test pit sample (TP-01) collected in July 2018, additional soil samples were collected from three areas in 10 x 10-foot grids centered on previous sample locations SS-07, SS-11 and SS-12. Three samples from area SS-11 and one sample from area SS-12 exceeded 50 mg/kg, soils with PCB concentrations exceeding 50 mg/kg must be disposed of at an approved TSCA disposal facility.
- Two separate sources of PCB contamination appear to be present at the site based on the presence of individual PCB Aroclors and visual observations by Nobis. Areas SS-11 and

SS-12 on Lot 127-13 appear to be predominantly Aroclors 1248 and 1254 as opposed to Aroclor 1260 which is predominantly present in Area SS-07 on Lot 127-15. Based on visual observations made by Nobis during sampling activities at the site, the source of PCB contamination at SS-07 is likely from paints, and other PCB containing liquid products, consumer goods that would be stored in small metal containers. Nobis observed many small metal containers including paint cans in and around the SS-07 area. Based on visual observations made by Nobis during sampling activities at the site, the presumed source of PCB contamination at SS-11 and SS-12 is likely from industrial electrical components including but not limited to transformers. Nobis observed several pieces that looked to be from industrial electrical components in the vicinity of the SS-11 and SS-12 areas.

- The metals antimony, arsenic, cadmium, lead, mercury, and/or zinc were present in several of the samples collected at the site at concentrations exceeding applicable SRS. Lead is the primary metal contaminant at the site, concentrations exceeded SRS in 23 of the 43 samples submitted to the laboratory for metals analysis. SRS exceedances of antimony, arsenic, cadmium, mercury, and zinc occurred in samples where lead also exceeded SRS except in three samples (SS-06B, M-2, and M-8). Arsenic exceeded SRS in the samples collected from SS-06B and M-8 and zinc exceeded SRS in the sample collected from M-2.
- The source of the metals contamination identified at the site is likely from historic site use as an unlicensed salvage yard. One use of antimony alloys and a common use of lead is batteries, likely to have been present at the site when salvage operations were active. Zinc concentrations at the site are likely a result of the storage of galvanized steel at the site.
- Groundwater was not encountered during site investigation activities, based on
 observations by Nobis groundwater is likely only present beneath the site in bedrock.
 Nobis observed the base of TP-01 to be very moist, likely water seeping from bedrock
 feeding the assumed wetland next to TP-01. TP-01 was completed in an area of fill that
 looks to have been placed over a possible wet area.

8.2 Recommendations

Based on the observations during field investigations and data collected during the Phase II ESA, Nobis recommends the following:

- Additional soil sampling should be performed to determine the extents of identified PCB and metals contamination in order to develop remedial options and estimates.
- If a self-implementing cleanup as outlined in 40 CFR §761.61(a) with off-site disposal of PCB remediation waste is selected to address PCB contamination at the site, area SS-07 and areas SS-11 and SS-12 could be completed as two separate self-implementing

cleanups. Area SS-07 is located on a different lot and the PCB impacts are likely from a different source as opposed to areas SS-11 and SS-12. Areas SS-11 and SS-12 soils contain total PCBs greater than 50 mg/kg and will need to be disposed of at a TSCA approved disposal facility if off-site disposal is the selected remedial option for the soil in these areas.

TABLES

TABLE 1

SUMMARY OF SOIL VOC AND DRO ANALYSIS

Lavoie Property

640 Hillside Ave Berlin New Hampshire

							F	Project No	. 70705.00	e)											
	Soil Remediation Standa	rds		Benzene	Toluene	Ethylbenzene	Xylenes (Total)	MtBE	Naphthalene	lsopropylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	n-Propylbenzene	p-Isopropyltoluene	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Trichloroethylene	Tetrachloroethylene	Other 8260B VOCs	DRO- Diesel
	Env-Or 600 Table 600	-2		0.3	100	140	500	0.2	5	330	130	96	85	3,400	110	130	100	0.8	2	Varies	10,000
Sample	Sample Depth (ft)	PID Reading	Date																		
		(ppm)	Dute				SUR			ES											
SS-01	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		490
SS-02	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		300
SS-03	0-1'	<1.0	7/3/2018	<0.08	<0.08	<0.08	<0.16	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.08	<0.08	<0.08	<0.08	<0.08		110
SS-04	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.3	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		140
SS-05	0-1'	<1.0	7/3/2018	<0.06	<0.06	<0.06	<0.12	<0.1	<0.1	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.1	6.5′	20,000
SS-06	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		2,300
SS-07	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.3	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		1,700
SS-08	0-1'	<1.0	7/3/2018	<0.08	<0.08	<0.08	<0.16	<0.2	<0.2	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<008	<0.08	<0.08	<0.08		540
SS-09	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.62′	130
SS-10	0-1'	<1.0	7/3/2018	<0.08	<0.08	<0.08	<0.16	<0.2	<0.2	<0.08	<0.08	<0.08	<0.08	<.08	<0.08	<0.08	<0.08	<0.1	<0.08		110
SS-11	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.3	<0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		230
SS-12	0-1'	<1.0	7/3/2018	<0.1	<0.1	<0.1	<0.2	<0.3	< 0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		71
SS-13	0-1	<1.0	7/3/2018	<0.09	<0.09	<0.09	<0.18	< 0.3	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09		150
SS-14	0-1	<1.0	7/3/2018	<0.07	<0.07	<0.7	<0.14	<0.1	<0.1	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		07
00-10 89.15 ED	0-1	<1.0	7/3/2010	<0.09	<0.09	<0.1	<0.10	<0.2	<0.2	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09	<0.09		32
	0-1	<1.0	113/2010	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		2,000
	1 //	<10	7/16/2018	<0.1	<0.1	<0.1				.ES	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		100
	1-4	<1.0	7/10/2010	<0.1	<0.1	<0.1	<0.2	<0.2	<0.2	<0.0	<0.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		190
	1-2	<1.0	7/10/2018	<0.06	<0.06	<0.06	<0.12	<0.1	<0.1	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.55	53
	2-4	<1.0	7/10/2018	<0.05	<0.05		<0.06	<0.1	<0.1	<0.05	<0.05	<0.05		<0.05		<0.05	<0.05	<0.05	<0.05		34
TD 05	2-3	<1.0	7/16/2018	<0.00	<0.00	<0.00	<0.00	<0.1	<0.1	<0.07	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00	<0.00		50
	1-3	<1.U	7/10/2010	<0.07	<0.07	<0.07	<u>~0.14</u>	<0.1	<0.1	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		04
1P-05 FD	1-3	<1.0	7/16/2018	<0.07	<0.07	<0.07	<0.14	<0.1	<0.1	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		91

Notes:

1. All samples were collected by Nobis Engineering, Inc. on the dates indicated.

2. All concentrations reported in parts per million (ppm), equivalent to mg/Kg, except where indicated.

3. "<" indicates that the parameter was not detected at the specified reporting limit, "x". Concentrations in **Bold** indicate exceedances of applicable SRS.

4. The analyses were performed by Eastern Analytical, Inc. of Concord, New Hampshire by EPA Method 8260C for VOCs and EPA Method 8015C for TPH as Fuel Oil.

5. Env-Or 600 Soil Remediation Standards are referenced in New Hampshire Code of Administrative Rules Part Env-Or 600, revised June 1, 2015.

6. Compounds not listed in this table were not detected above laboratory reporting limits in the samples analyzed.

7. The other VOC detected is trichlorofluoromethane. There is no Soil Remediation Standard for trichlorofluoromethane.

TABLE 2SUMMARY OF SOIL PAH ANALYSISLavoie Property Berlin640 Hillside AveBerlin. New HampshireProject No. 70705.00

Soil	Remediation Standards		Vaphthalene	Acenaphthylene	Acenaphthene	-Iuorene	Anthracene	⁻ henanthrene	Jyrene	3enzo[a]anthracene	Chrysene	3enzo[b]fluoranthene	3enzo[k]fluoranthene	3enzo[a]pyrene	3enzo[g,h,i]perylene	ndeno[1,2,3-cd]pyrene	Dibenz[a,h]anthracene	-Iuoranthene	1-Methylnaphthalene	2-Methylnaphthalene
Env-Or 600 Table 600-2 (RCMP Category S-1)			5	490	340	77	1,000	ns	720	1	120	1	12	0.7	ns	1	0.7	960	ns	96
RCMP Category S-2			5	490	340	77	2,500	ns	2,500	4	360	4	36	0.7	ns	4	0.7	2,500	ns	100
RCMP Category S-3			5	490	340	77	5,000	ns	5,000	52	5,200	52	520	5	ns	52	5	5,000	ns	100
Sample Location	Date																			
<u> </u>	0.1	7/3/2018	<0.00	<0.00	<0.00	<0.00				ES 0.12	0.10	0.22	0.12	0.15	<0.00	<0.00	<0.00	0.26	<0.00	<0.00
33-01	0-1	7/3/2018	<0.09	<0.09	<0.09	<0.09	<0.09	0.11	0.21	0.13	0.19	0.32	0.12	0.15	<0.09	<0.09	<0.09	0.20	<0.09	<0.09
SS-02 SS-03	0-1'	7/3/2018	<0.09	0.36	<0.09	<0.09	0.25	0.88	1.6 0.90	0.99	1.3	2.1	0.73	1.1	0.31	0.34	<0.09	1.7	<0.09	<0.09
SS-04	0-1'	7/3/2018	<0.1	<0.1	<0.1	<0.1	<0.1	0.40	0.68	0.39	0.49	0.73	0.10	0.42	<0.1	0.12	<0.1	0.84	<0.00	<0.00
SS-05	0-1'	7/3/2018	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
	0-1'	7/3/2018	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
	0-1'	7/3/2018	<5	<5	<5	<5	<5	<5	10	5.7	7	10	<5	6.3	5.9	5.8	<5	12	<5	<5
SS-08	0-1'	7/3/2018	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
SS-09	0-1'	7/3/2018	0.15	<0.09	0.091	0.14	0.27	0.88	0.85	0.55	0.64	1.1	0.42	0.56	0.19	0.20	<0.09	1.2	<0.09	0.11
SS-10	0-1'	7/3/2018	<0.08	0.090	<0.08	<0.08	<0.08	0.33	0.51	0.33	0.45	0.78	0.27	0.34	0.12	0.13	<0.08	0.69	<0.08	<0.08
SS-11	0-1'	7/3/2018	0.21	0.12	0.44	0.46	0.55	1.7	1.7	1.2	1.4	2.5	0.85	1.2	0.48	0.52	0.13	2.3	0.50	0.74
SS-12	0-1'	7/3/2018	<0.1	<0.1	<0.1	<0.1	<0.1	0.20	0.35	0.22	0.30	0.50	0.18	0.26	0.17	<0.1	<0.1	0.46	<0.1	<0.1
SS-13	0-1'	7/3/2018	<0.09	<0.09	<0.09	<0.09	0.11	0.41	0.48	0.59	0.37	0.61	0.22	0.31	0.12	0.12	<0.09	0.64	<0.09	<0.09
SS-14	0-1'	7/3/2018	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.095	<0.08	<0.08	0.12	<0.08	<0.08	<0.08	<0.08	<0.08	0.12	<0.08	<0.08
SS-15	0-1'	7/3/2018	<0.08	<0.08	0.09	0.11	0.12	1.3	1.1	0.51	0.85	1.4	0.49	0.60	0.21	0.23	<0.08	1.7	<0.08	<0.08
SS-15 FD	0-1'	7/3/2018	<1	<1	<1	<1	<1	2.5	2.8	1.5	1.7	2	<1	1.3	1.1	1.2	<1	3.5	<1	<1
	TEST PIT SOIL SAMPLES																			
TP-01	1-4'	7/16/2018	<0.1	<0.1	0.11	0.12	0.29	0.9	1.5	0.99	1.2	1.7	0.62	1.1	0.4	0.48	0.12	2.1	0.11	0.17
TP-02	1-2'	7/16/2018	<0.08	<0.08	<0.08	<0.08	<0.08	0.095	0.13	<0.08	0.093	0.120	<0.08	<0.08	<0.08	<0.08	>0.08	0.180	<0.0	<0.08
TP-03	2-4'	7/16/2018	<0.07	<0.07	<0.07	<0.07	<0.07	0.093	0.096	<0.07	<0.07	0.077	<0.07	<0.07	<0.07	<0.07	<0.07	0.130	<0.07	<0.07
TP-04	2-3'	7/16/2018	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	0.11	<0.08	0.08	0.10	<0.08	<0.08	<0.08	<0.08	<0.08	0.130	<0.08	<0.08
TP-05	1-3'	7/16/2018	<0.08	<0.09	<0.10	<0.11	<0.12	0.130	0.290	0.150	0.190	0.230	0.085	0.150	0.082	0.096	<0.08	0.350	<0.08	<0.08
TP-05 FD	1-3'	7/16/2018	<0.08	0.083	0.083	<0.08	<0.08	0.19	0.38	0.19	0.25	0.32	0.11	0.21	0.087	0.1	<0.08	0.460	<0.08	<0.08

Notes:

1. All samples were collected by Nobis Engineering, Inc. on the dates indicated.

2. All concentrations reported in parts per million (ppm), equivalent to mg/Kg, except where indicated.

3. "<" indicates that the parameter was not detected at the specified reporting limit, "x". Concentrations in **Bold** indicate exceedances of applicable SRS.

4. "ns" indicates that no standard is established.

5. The analyses were performed by Eastern Analytical, Inc. of Concord, New Hampshire by EPA Method 8270D for SVOCs and EPA Method 8081B for pesticides.

5. Env-Or 600 Soil Remediation Standards referenced in New Hampshire Code of Administrative Rules Part Env-Or 600, Table 600-2, adopted on February 1, 2007 and most recently revised on June 1, 2015. 7. Compounds not listed in this table were not detected above laboratory reporting limits in the samples analyzed.

TABLE 3SUMMARY OF SOIL PCB ANALYSESLavoie Property640 Hillside AveBerlin, New HampshireProject No. 70705.00

Soil Rei	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	PCB-1262	PCB-1268	Total Polychlorinated Biphenyls		
NHDES E	nv-Or 600 Table	600-2	ns	ns	1							
	High Occupancy	Unconditional	ns	ns	1							
EPA ISCA Cleanup Standards		Encapsulated/Capped	ns	ns	10							
Otandards	Low Occupancy	Encapsulated/Capped	ns	ns	100							
	Sample Depth											
Sample	(ft.)	Date	61									
SS-01	0-0.5'	7/3/2018	<0.02	<0.02		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.18
SS-02	0-0.5'	7/3/2018	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.73	< 0.02	< 0.02	0.73
SS-03	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	0.16	<0.02	0.17	<0.02	0.11	0.44
	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	0.12	0.12	<0.02	0.067	0.31
SS-05	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	0.074	<0.02	0.073	<0.02	0.059	0.206
SS-06	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.31	<0.02	0.27	0.58
SS-07	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	2.2	<0.02	<0.02	2.2
SS-07B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.030	<0.02	<0.02	0.030
SS-08	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.052	<0.02	<0.02	0.052
	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	0.25	<0.02	0.17	<0.02	0.063	0.48
SS-10	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	0.28	0.31	0.28	<0.02	<0.02	0.87
SS-11	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	7.8	6.9	3.0	<0.02	<0.02	17.7
SS-11B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	3.4	1.9	<0.02	<0.02	5.3
SS-11C	2'	9/13/2018	<0.03	< 0.03	< 0.03	< 0.03	0.21	0.27	0.74	< 0.03	< 0.03	1.22
SS-12	0-0.5'	7/3/2018	<0.5	<0.5	<0.5	<0.5	<0.5	4.9	<0.5	<0.5	<0.5	4.9
SS-12B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	3.1	1.7	0.18	<0.02	<0.02	4.98
SS-13	0-0.5'	7/3/2018	<0.09	<0.09	<0.09	<0.09	0.72	<0.09	0.11	<0.09	<0.09	0.83
SS-14	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	0.041	0.028	<0.02	<0.02	0.069
SS-15	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	0.20	0.12	<0.02	0.08	0.40
SS-15 FD	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.32	<0.02	0.25	0.57
S7-1	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	2.6	1.8	1.5	<0.02	<0.02	5.9
S7-2	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	0.18	<0.02	<0.02	0.34	0.52
	0-0.5'	9/13/2018	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.29	0.24	< 0.03	0.25	0.78
S7-4	0-0.5'	9/13/2018	<0.04	<0.04	<0.04	<0.04	<0.04	0.071	0.11	<0.04	0.070	0.251
\$7-5	0-0.5'	9/13/2018	<0.01	<0.01	<0.01	<0.01	<0.01	0.071	0.11	<0.01	0.076	0.506
	0-0.5	0/12/2018	<0.02	<0.02	<0.02	<0.02	<0.02		0.22	<0.02	<0.070	0.500
37-FD0F3	0.0.5	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.59	<0.02	<0.02	0.59
57-6	0-0.5	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.24	<0.02	<0.02	0.24
57-7	0-0.5	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	1.4	<0.02	<0.02	1.4
S7-8	0-0.5'	9/13/2018	<0.03	<0.03	<0.03	<0.03	<0.03	0.036	0.042	<0.03	<0.03	0.078
S7-9	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	1.4	<0.02	<0.02	1.4
S7-FDUP9	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	1.6	<0.02	<0.02	1.6
S11-1A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	8.4	1.6	<0.02	<0.02	10.0
S11-2A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	0.65	0.86	0.53	<0.02	<0.02	2.04
S11-3A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	1.4	1.2	0.37	<0.02	<0.02	3.0
S11-4A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	8.4	8.9	1.2	<0.02	<0.02	18.5
S11-4B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	0.43	0.70	0.51	<0.02	<0.02	1.64
S11-5A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	6.3	8.2	2.1	<0.02	<0.02	16.6
S11-5B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	0.20	0.31	1.0	<0.02	<0.02	1.5
S11_5C	2'	Q/13/2019	<0.02	<0.02	<0.02	<0.02	<0.20	1.6	1.0	<0.02	<0.02	29
511-50	<u> </u>	JI JIZU 10	~0.0Z	~0.02	~0.0Z	~0.0Z	~0.0Z	1.0	1.2	~0.0Z	~0.0Z	2.0

TABLE 3SUMMARY OF SOIL PCB ANALYSESLavoie Property640 Hillside AveBerlin, New HampshireProject No. 70705.00

Soil Remediation Standards			oCB-1016	oCB-1221	oCB-1232	oCB-1242	PCB-1248	PCB-1254	PCB-1260	oCB-1262	PCB-1268	Fotal Polychlorinated 3iphenyls
NHDES E	nv-Or 600 Table	600-2	ns	ns	ns	ns	ns	ns	ns	ns	ns	1
		Unconditional	ns	ns	ns	ns	ns	ns	ns	ns	ns	1
EPA TSCA Cleanup		Encapsulated/Capped	ns	ns	ns	ns	ns	ns	ns	ns	ns	10
Standards	Low Occupancy	Unconditional	ns	ns	ns	ns	ns	ns	ns	ns	ns	25
	Sample Depth	Encapsulated/Capped	115	115	115	115	115	115	115	115	115	100
Sample	(ft.)	Date										
S11-6A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	0.85	1.4	0.33	<0.02	<0.02	2.6
S11-6B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	1.4	3.4	1.2	<0.02	<0.02	6.0
S11-7A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	18	3.2	<0.02	<0.02	21
S11-7B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	27	6.0	<0.02	<0.02	33
S11-8A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	2.8	0.70	<0.02	<0.02	3.5
S11-9A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	33	21	3.9	<0.02	<0.02	58
S11-9B	1'	9/13/2018	<0.02	<0.02	<0.02	<0.02	21	28	7.5	<0.02	<0.02	57
S11-9C	2'	9/13/2018	<0.02	<0.02	<0.02	<0.02	4.3	1.8	0.73	<0.02	<0.02	6.8
S11-10A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	4.5	0.76	<0.02	<0.02	5.3
S11-11A	0-0.5'	9/13/2018	<0.03	<0.03	<0.03	<0.03	21	14	2.5	<0.03	<0.03	38
S11-11B	1'	9/13/2018	<0.03	<0.03	<0.03	<0.03	23	24	2.7	<0.03	<0.03	50
S11-11C	2'	9/13/2018	<0.02	<0.02	<0.02	<0.02	4.5	<0.02	0.27	<0.02	<0.02	4.8
S11-12A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	1.9	4.2	0.67	<0.02	<0.02	6.8
S11-13A	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	13	12	1.6	<0.02	<0.02	27
S12-1	0-0.5'	9/13/2018	<0.03	<0.03	<0.03	<0.03	6.9	7.7	2.0	<0.03	<0.03	16.6
S12-2	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	74	8.7	<0.02	<0.02	82.7
S12-3	0-0.5'	9/13/2018	<0.03	<0.03	<0.03	<0.03	<0.03	11	2.3	<0.03	<0.03	13.3
S12-4	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	8.5	1.8	<0.02	<0.02	10.3
S12-5	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	22	2.4	<0.02	<0.02	24.4
S12-6	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	2.1	2.4	0.78	<0.02	<0.02	5.28
S12-7	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	5.0	1.0	<0.02	<0.02	6.0
S12-8	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	1.1	0.34	<0.02	<0.02	1.44
S12-9	0-0.5'	9/13/2018	<0.02	<0.02	<0.02	<0.02	<0.02	16	2.1	<0.02	<0.02	18.1
			TE	ST PIT SO	OIL SAMP	LES						
TP-01	1-4'	7/16/2018	<0.02	<0.02	<0.02	<0.02	<0.02	7.4	4.7	<0.02	<0.02	12.1
TP-02	1-2'	7/16/2018	<0.02	<0.02	<0.02	<0.02	0.64	0.22	0.089	<0.02	<0.02	0.95
TP-03	2-4'	7/16/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.18
TP-04	2-3'	7/16/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.18
TP-05	1-3'	7/16/2018	<0.02	< 0.02	< 0.02	< 0.02	<0.02	0.025	0.033	< 0.02	<0.02	0.058
TP-05 FD	1-3'	7/16/2018	<0.02	<0.02	<0.02	<0.02	<0.02	0.021	0.032	<0.02	<0.02	0.053

Notes:

1. All samples were collected by Nobis Engineering, Inc. on the dates indicated.

2. All concentrations reported in parts per million (ppm), equivalent to mg/Kg, except where indicated.

3. "<x" indicates that the parameter was not detected at the specified reporting limit "x". Bold values indicate exceedance of the high occupancy, unconditional cleanup level of 1 mg/kg.

4. The analyses were performed by Eastern Analytical, Inc. of Concord, New Hampshire by EPA Method 8082A for PCBs.

5. Env-Or 600 Soil Remediation Standards are referenced in New Hampshire Code of Administrative Rules Part Env-Or 600, revised June 1, 2015.

6. Compounds not listed in this table were not detected above laboratory reporting limits in the samples analyzed.

7. High Occupancy Use: Defined under TSCA as any area where PCB remediation waste has been disposed of on-site, and where occupancy for any individual not wearing dermal and respiratory protection for a calender year is: 840 hours or more (an average of 16.8 hours or more per week) for non-porous surfaces and 335 hours or more (an average of 6.7 hours or more per week) for bulk PCB remediation waste.

8. Low Occupancy Use: Defined under TSCA as any area where PCB remediation waste has been disposed of on-site, and where occupancy for any individual not wearing dermal and respiratory protection for a calender year is: less than 840 hours (an average of 16.8 hours or more per week) for non-porous surfaces and less than 335 hours (an average of 6.7 hours or more per week) for bulk PCB remediation waste.

9. PCB cleanup levels are stated in 40 CFR §761.61. Cleanup levels listed are for bulk PCB remediation waste 40 CFR § 761.61 (a)(4)(i), and porous surfaces 40 CFR § 761.61 (a)(4)(iii).

TABLE 4SUMMARY OF SOIL METALS ANALYSES

Lavoie Property

640 Hillside Ave

Berlin New Hampshire Project No 70705 00

					110jeet	10. 70700	0.00				-				
Soil Rem	ediation Standards		Antimony	Arsenic	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Thallium	Zinc
Env-Or 600 Table	600-2 (RCMP Categor	rv S-1)	9	11	12	33	1.000	ns	400	7	400	180	89	10	1.000
RCM	P Category S-2	j = ./	74	11	89	280	2,500	ns	400	52	2 500	1 600	690	10	2,500
BCM	P Category S-3		74	47	100	280	5,000	ns	400	52	3 100	1,000	690	10	5,000
Sample	Sample Depth (ft)	Date	7 -	77	100	200	0,000	115	400	02	0,100	1,000	000	10	0,000
Campie		Date			501		<u> </u>								
SS 01	0.0.5'	7/3/2018	0.82	65		1 6	16	140	72	<0.1	11	11	<0.5	<0.5	200
SS-01	0.05	7/3/2018	5	11	<u> </u>	5.0	28	140	12	0.1	11	0.0	~0.0 0.60	<0.5	560
<u> </u>	0.05	7/3/2010	25	0.9	1.2	7.0	20	7000	750	0.42	47 59	0.9	2.4	<0.5	830
SS-03	0-0.5	0/12/2010	25	9.0	T.3	1.0	40	4000	730	0.62	24	1.9	2.4	<0.5	820
33-03B	1	9/13/2010	9	9.1	0.70	10	20	4900	570	0.03	34	<0.5	7.9	<0.5	820
55-04	0-0.5	7/3/2018	4.8	15	0.78	9.9	20	1500	450	0.38	21	4.0	0.93	<0.5	880
55-05	0-0.5	7/3/2018	11	8.3	<0.5	9.9	52	13000	2,300	0.62	12	2.3	2.3	< 0.5	1,100
SS-05B	1'	9/13/2018	0.83	2.7	<0.5	0.84	8.8	710	200	0.11	11	<0.5	< 0.5	< 0.5	110
55-050	2	9/13/2018	<0.5	2.8	< 0.5	<0.5	13	12	9.4	< 0.1	8.8	<0.5	< 0.5	< 0.5	38
SS-06	0-0.5'	7/3/2018	11	13	0.71	9.4	46	4000	1,100	0.92	35	2.7	2.4	<0.5	840
SS-06B	1'	9/13/2018	1.3	43	0.55	<0.5	15	63	97	0.11	9.3	< 0.5	<0.5	<0.5	130
SS-06C	2'	9/13/2018	<0.5	3.3	0.53	<0.5	12	11	9.6	<0.1	8.7	<0.5	<0.5	<0.5	42
SS-07	0-0.5'	7/3/2018	3.3	8.8	0.73	2.9	29	1400	830	0.34	33	1.6	1.3	<0.5	1,400
SS-07B	1'	9/13/2018	<0.5	4.6	<0.5	<0.5	12	18	47	<0.1	6.3	<0.5	<0.5	<0.5	100
SS-07C	2'	9/13/2018	<0.5	2.4	<0.5	<0.5	12	10	9.8	<0.1	7.5	<0.5	<0.5	<0.5	43
SS-08	0-0.5'	7/3/2018	3	3.9	<0.5	2.6	27	130	240	0.22	35	1.3	<0.5	<0.5	260
SS-09	0-0.5'	7/3/2018	10	8.1	<0.5	9.5	41	260	450	1.1	45	1.7	1.5	<0.5	720
SS-10	0-0.5'	7/3/2018	7.3	9.9	0.51	16	48	530	990	0.40	83	1.6	0.81	<0.5	660
SS-10B	1'	9/13/2018	<0.5	3.5	0.59	3.0	14	29	57	0.12	20	<0.5	<0.5	<0.5	170
SS-10C	2'	9/13/2018	0.94	4.1	0.63	5.1	18	98	150	<0.1	32	<0.5	<0.5	<0.5	190
SS-11	0-0.5'	7/3/2018	13	12	0.52	11.0	120	480	780	4.60	110	2.4	1	<0.5	1,600
SS-11B	1'	9/13/2018	3.2	12	<0.5	4.3	30	140	720	3.1	60	<0.5	<0.5	<0.5	350
SS-11C	2'	9/13/2018	2.8	8.6	<0.5	3.3	31	190	460	10	84	<0.5	<0.5	<0.5	990
SS-12	0-0.5'	7/3/2018	1.8	9.1	<0.5	5.4	35	170	220	0.79	47	2.3	<0.5	<0.5	400
SS-13	0-0.5'	7/3/2018	3.4	8.3	<0.5	3.3	36	230	250	1.0	33	2.4	<0.5	<0.5	370
SS-14	0-0.5'	7/3/2018	<0.5	3.8	0.57	1.6	18	89	46	0.15	15	2.0	<0.5	< 0.5	130
SS-15	0-0.5'	7/3/2018	8.3	12	<0.5	4.0	40	480	450	1.2	43	1.2	2.2	3.2	4.2
SS-15 FD	0-0.5'	7/3/2018	12	13	0.66	9.9	59	4300	1,100	0.90	42	1.3	1.7	<0.5	890
M-1	0-0.5'	9/13/2018	5.8	14	< 0.5	9.1	78	720	480	2.4	65	< 0.5	0.61	< 0.5	720
M-2	0-0.5'	9/13/2018	3.2	9.4	< 0.5	6.9	48	220	240	1.5	63	< 0.5	< 0.5	< 0.5	1.300
M-3	0-0.5'	9/13/2018	54	18	< 0.5	36	96	2900	4.300	7	240	< 0.5	4.6	< 0.5	2.700
M-4	0-0.5'	9/13/2018	14	9.1	0.72	32	40	6000	1.000	10	58	< 0.5	16	< 0.5	2.600
M-5	0-0.5'	9/13/2018	6.1	12	<0.5	78	51	4100	1.200	1.1	160	<0.5	2.1	< 0.5	1.600
M-EDUP5	0-0.5'	9/13/2018	3.1	13	0.62	15	75	2400	590	0.58	250	<0.5	2.5	<0.5	1,300
M-6	0-0.5'	9/13/2018	<0.5	4.9	<0.5	0.80	11	18	32	0.00	10	<0.5	<0.5	<0.5	140
M-7	0-0.5'	9/13/2018	12	6.0	< 0.5	7.8	24	3600	880	0.63	44	<0.5	0.95	<0.5	660
	0-0.5'	0/13/2018	16	8.0	<0.0	10	53	6400	920	0.00	33	<0.0	1 /	<0.0	790
M-8	0-0.5	9/13/2018	0.77	0.0 21	<pre> <0.0 0.51</pre>	0.67	1/	70	110	0.02	11	<0.5	<0.5	<0.5	140
101-0	0-0.0	3/13/2010	0.11					10	110	0.11		-0.0	-0.0	-0.0	140
	1 //	7/16/2010	22	21		11	50	350	120	Λ	72	1.0	<05	<05	3 100
	1-4	7/16/2010	33	<u> </u>	<0.5 <0.5	14 2 E	10	120	450	4	10	1.0	-0.5 -0 E	<0.5 <0.5	200
		7/10/2018	3.0	4.7	<0.5	3.3	10	130	100	1.1	20	1.0	<0.5	<0.5	390
	2-4	7/10/2018	0.79	4.3	<0.5	0.57	13	92	4ð 40	0.13	9.2	1.0	<0.5	<0.5	00
	2-3	7/10/2018	0.59	1.1	0.710	<0.5	01	120	40	<u.1< td=""><td>0.Z</td><td>1.0</td><td><0.5</td><td><0.5</td><td>0U 100</td></u.1<>	0.Z	1.0	<0.5	<0.5	0U 100
	1-3	7/16/2018	1.4	4.5	0.76	2.30	20	900	200	0.150	13	2	<0.5	<0.5	180
TP-05 FD	1-3'	//16/2018	7.4	5.8	0.63	3.8	22	2,500	870	0.2	17	1.3	0.68	<0.5	270

Notes:

1. All samples were collected by Nobis Engineering, Inc. on the dates indicated.

2. All concentrations reported in parts per million (ppm), equivalent to mg/Kg, except where indicated.

3. "<" indicates that the parameter was not detected at the specified reporting limit, "x". Concentrations in **Bold** indicate exceedances of applicable SRS.

4. The analyses were performed by Eastern Analytical, Inc. of Concord, New Hampshire by EPA Method 6020 for metals.

5. Env-Or 600 Soil Remediation Standards are referenced in New Hampshire Code of Administrative Rules Part Env-Or 600, revised June 1, 2015.

TABLE 5SUMMARY OF CONCRETE PCB ANALYSESLavoie Property640 Hillside AveBerlin, New HampshireProject No. 70705.00

Soil Re	Soil Remediation Standards					PCB-1242	PCB-1248	PCB-1254	PCB-1260	PCB-1262	PCB-1268	Total Polychlorinated Biphenyls
Env-0	Env-Or 600 Table 600-2				ns	1						
RCI	MP Category S-3		ns	ns	ns	ns	ns	ns	ns	ns	ns	25
Sample	Sample Depth (ft.)	Date										
		•	C	ONCRET	E SAMPLI	ËS				•		
CS-1	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.18
CS-FD01	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.18
CS-2	0-0.5'	7/3/2018	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.18

Notes:

1. All samples were collected by Nobis Engineering, Inc. on the dates indicated.

2. All concentrations reported in parts per million (ppm), equivalent to mg/Kg, except where indicated.

3. "<" indicates that the parameter was not detected at the specified reporting limit, "x". Concentrations in **Bold** indicate exceedances of applicable SRS.

4. The analyses were performed by Eastern Analytical, Inc. of Concord, New Hampshire by EPA Method 8082A for PCBs.

5. Env-Or 600 Soil Remediation Standards are referenced in New Hampshire Code of Administrative Rules Part Env-Or 600, revised June 1, 2015.

6. Compounds not listed in this table were not detected above laboratory reporting limits in the samples analyzed.

FIGURES

PREPARED BY: JRS	CHECKED BY: TA
PROJECT NO. 70705.00	DATE: MARCH 2019

PREPARED BY: JRS	CHECKED BY: TA
PROJECT NO. 70705.00	DATE: MARCH 2019

APPENDICES

APPENDIX A

LIMITATIONS

- 1) These environmental services were performed in accordance with generally accepted practices of other consultants undertaking similar assessments at the same time and in the same geographical area. The results of this assessment are based on our professional judgment and are not scientific certainties. Specifically, Nobis Engineering, Inc. dba Nobis Group ® does not and cannot represent that the site contains no hazardous wastes, oil or other latent conditions beyond those observed during this assessment. No other warranty, express or implied, is made.
- 2) The observations and conclusions presented in this report were made solely on the basis of conditions described in the report and not on scientific tasks or procedures beyond the scope of described services or the budgetary and time constraints imposed by the client.
- 3) Observations were made of the site as indicated in this report. Where access to portions of the site was unavailable or limited, Nobis Group ®. renders no opinion as to the presence of hazardous wastes or the presence of indirect evidence of hazardous wastes in that portion of the site.
- 4) No property boundary, site feature or topographic surveys of the site were performed by Group ® unless specifically indicated in the text of the report.
- 5) No sampling or testing was performed for the presence of dioxins, furans, herbicides, radon, or urea-formaldehyde at the target property unless specifically indicated in the text of the report.
- 6) Chemical analyses have been performed for specific parameters during this assessment, as described in the text of the report. Additional chemical constituents not searched for during the current study may be present in soil and/or groundwater at the site. In addition, where such analyses have been conducted by an outside laboratory, Nobis Group ® has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
- 7) This report has been prepared for the exclusive use of the New Hampshire Department of Environmental Services, US Environmental Protection Agency, and City of Berlin, solely for use in an environmental evaluation of the site. This report shall not, in whole or in part, be conveyed to any other party, other than the identified users without prior written consent of Nobis Group ®

APPENDIX B

				т	EST PIT LOG				
PROJECT TEST PIT NO. TP-1 Lavoie Property SHEET 1 of 1 640 Hillside Ave, Berlin, New Hampshire FILE NO. 70705.00 Project No. 70705.00 CHKD BY TA									TP-1 of <u>1</u> 05.00 FA
Engineer Contracto Operator Weather	or <u>A</u> (J.Stewart CCUWORX J. Guarino 30's sunny		MakeJohn DeereModel50gCapacity0.16 yd3Reach18.2'			Ground El.NADatumNATime Start11:30Date7/16/2018		
Depth Below Grade (in)	Strata Change		Subsurface Description				avation Effort	Boulder Qty/Class	Laboratory Testing Results
		Dark brow	n black fine me	e sand and organic tal scrap, electron	silt, moist, PID 0.6 to 0.2 with tires, ics, plastics, etc		E	1/a	
2'				Lots of meta	al scrap				
4'									
		Brown fine t	to med sand	d little silt some gra	avel wet, possible fill, possible native			1/a	
6'				Assummed be	drock at 6ft				
8'									
10'									
12'									
14'									
Notes: 1) Analtical Sample collected from 1 to 4 feet below ground surface @ 11:30 ▼ Groundwater 2) ▼ Estimated Seasonal High Groundwater 3)						water			
7' BOULDER CLASS PROPORTIONS USED EXCAVATION EFFOR 2.5' 12" - 24" A 0-10% Trace E = Easy 2.5' 24" - 36" B 10-20% Little M = Moderate >36" C 20-35% Some D = Difficult						FFORT			

				т	EST PIT LOG				
Engine	Vob ering a Sustain	is pable Futu	ire	PROJECT Lavoie Property Ave, Berlin, New Hampshire iject No. 70705.00		TEST P SHEET FILE NC CHKD B	IT NO. 1 0. 707 3Y	TP-2 of <u>1</u> 05.00 TA	
Engineer Contracto Operator Weather	or <u>A</u> (J.Stewart CCUWORX J. Guarino 30's sunny	K	MakeJohn DeereModel50gCapacity0.16 yd³Reach18.2'			Ground El. NA Datum NA Time Start 11:45 Date 7/16/2018		
Depth Below Grade (in)	Strata Change		Subsurface Description				avation ffort	Boulder Qty/Class	Laboratory Testing Results
		Dark brow	n black fine s	and and organic s electronics, pl	ilt, moist, PID 0.4 to 0.2 , metal scrap, astics, etc		E		
2'			Brown fine t	o med sand, little s	silt, trace gravel, moist, fill?				
			Tan fine to r	ned sand, little silt,	, trace gravel, moist, native				
4'									
				Assumed bed	lrock at 4ft				
6'									
8'									
10'									
12'									
14' Notes: 1) Analtica 2) 3)	al Sample collected	from 1 to 2	feet below g	round surface @ 1	11:45	▼ ▽	WATER SY Groundwate Estimated S	<u>MBOLS</u> er Seasonal High Ground	water
2.5'	7'		BOULDER 12" - 24" 24" - 36" >36"	<u>CLASS</u> A B C	PROPORTIONS USED 0-10% Trace 10-20% Little 20-35% Some 35-50% And	I		EXCAVATION E E = Easy M = Moderate D = Difficult	FFORT

				т	EST PIT LOG				
PROJECTTESLavoie PropertySHE640 Hillside Ave, Berlin, New HampshireFILEProject No. 70705.00CHK								IT NO. 1 0. 707 3Y 1	TP-3 of <u>1</u> 05.00 TA
Engineer Contractor Operator Weather	or <u>A(</u>	J.Stewart CCUWORX J. Guarino 30's sunny	(MakeJohn DeereModel50gCapacity0.16 yd3Reach18.2'			Ground El. NA Datum NA Time Start 12:10 Date 7/16/2018		
Depth Below Grade (in)	Strata Change		Subsurface Description				avation Effort	Boulder Qty/Class	Laboratory Testing Results
			Brown fine	e to med sand little	e silt some gravel pid 0.3		Е	1/a	
2'								1/a	
			Tan fine to	med sand little silt	trace gravel moist, native		Μ	2/a	
4'									
				Assumed bed	rock at 4ft				
6'									
8'									
10'									
12'									
14'									
Notes: 1) Analtical Sample collected from 2 to 4 feet below ground surface @ 12:10 2) 3)					2:10	▼	WATER SY Groundwate Estimated S	<u>MBOLS</u> er Seasonal High Ground [,]	water
	7'		<u>BOULDER</u> 12" - 24"	<u>CLASS</u> A	PROPORTIONS USED 0-10% Trace			EXCAVATION EI E = Easy	FORT
7' 12" - 24" A 0-10% Trace E = Easy 2.5' 24" - 36" B 10-20% Little M = Moderate >36" C 20-35% Some D = Difficult 35-50% And 35-50% And									

			Т	EST PIT LOG				
Engine	Vob ering a Sustain	is able Future	PROJECT Lavoie Property 640 Hillside Ave, Berlin, New Hampshire Project No. 70705.00			TEST PIT NO.TP-4SHEET1file NO.70705.00CHKD BYTA		
Engineer Contracto Operator Weather	rA(J.Stewart CCUWORX Justin 30's sunny	MakeJohn DeereModel50gCapacity0.16 yd3Reach18.2'			Ground El.NADatumNATime Start12:35Date7/16/2018		
Depth Below Grade (in)	Strata Change	Subsurface Description				avation ffort	Boulder Qty/Class	Laboratory Testing Results
		Dark Br	rown fine to med sand, lit	tle silt, some gravel, PID 0.3		E		
2'		Brov	wn fine to med sand, little	e silt, some gravel, moist		E		
		Tan fi	ne to med sand, little silt,	trace gravel, moist, native		М	3/a	
4'		Same as above with many cobbles					6/a	
						М	3/a	
6'			End at 5ft on assu	imed bedrock				
8'								
10'								
12'								
14'								
Notes: 1) Analtica 2) 3)	al Sample collected	from 2 to 3 feet b	elow ground surface @ 1	2:35	▼ ▽	WATER SY Groundwate Estimated S	<u>MBOLS</u> er Seasonal High Ground	water
2.5'	7'	80 12 24 >3	ULDER <u>CLASS</u> 2" - 24" A 1" - 36" B 36" C	PROPORTIONS USED 0-10% Trace 10-20% Little 20-35% Some 35-50% And	_		EXCAVATION E E = Easy M = Moderate D = Difficult	FFORT

				т	EST PIT LOG				
PROJECTTEST PIT NLavoie PropertySHEET640 Hillside Ave, Berlin, New HampshireFILE NO.Project No. 70705.00CHKD BY									TP-5 of <u>1</u> 705.00 TA
Engineer Contracto Operator Weather	or A	J.Stewart CCUWORX J. Guarino 80's sunny		MakeJohn DeereModel50gCapacity0.16 yd3Reach18.2'			Ground Datum Time Sta Date	El1 art1 7/1	NA NA 3:00 6/2018
Depth Below Grade (in)	Strata Change		Subsurface Description				avation ffort	Boulder Qty/Class	Laboratory Testing Results
		Dark Brown	fine to med	sand, little silt and 0.3	gravel, metal scraps and debris, PID		М	2/a	
2'			Brown fine	e to med sand, little	e silt, some gravel, moist		М	2/a 1/b	
			Tan fine to	med sand, little silt	, little gravel, moist, native		М	3/a	
4'			S	Same as above with	h many cobbles		М	6/a	
							М	3/a	
6'				End at 5ft on assu	umed bedrock				
8'									
10'									
12'									
14'									
Notes: WATER SYMBOLS 1) Analtical Sample collected from 1 to 3 feet below ground surface @ 13:00 ▼ Groundwater 2) Stimated Seasonal High Groundwater 3) ■ Stimated Seasonal High Groundwater							dwater		
2.5'	7']	<u>BOULDER</u> 12" - 24" 24" - 36" >36"	<u>CLASS</u> A B C	PROPORTIONS USED 0-10% Trace 10-20% Little 20-35% Some 35-50% And	I		EXCAVATION E = Easy M = Modera D = Difficult	EFFORT te

			Т	EST PIT LOG				
Engine	Vob ering a Sustain	is able Future	L 640 Hillside A Proj	PROJECT avoie Property ve, Berlin, New Hampshire ect No. 70705.00		TEST P SHEET FILE NC CHKD B	IT NO. 1 0. 707 Y	TP-6 of <u>1</u> 05.00 A
Engineer Contract Operator Weather	r A(J.Stewart CCUWORX J. Guarino 80's sunny	Make Model Capacity Reach	John Deere 50g 0.16 yd ³ 18.2'	-	Ground Datum Time Sta Date	ElN art2 7/16	JA JA 2:25 /2018
Depth Below Grade (in)	Strata Change		Subsurface Description				Boulder Qty/Class	Laboratory Testing Results
		Dark Br	own fine to med sand, litt	tle silt, some gravel, PID 0.4		E		
2'		Brc	own fine to med sand, little	e silt, little gravel, moist			2/a	
		Tan fir	ne to med sand, little silt,	trace gravel, moist, native			2/a	
4'			Assumed bed	rock at 3ft				
6'								
8'								
10'								
12'								
14'								
Notes: 1) No Ana 2) 3)	l alytical Sample colle	ected.			▼ ▽	WATER SY Groundwate Estimated S	<mark> <u>MBOLS</u> ∋r Seasonal High Ground[,]</mark>	water
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						FORT		

PROJECT TEST PIT NO. TP-7 Lavoie Property SHEET 1 of 1 640 Hillside Ave, Berlin, New Hampshire FILE NO. 70705.00 Project No. 70705.00 CHKD BY TA										
_	Ground El.NADatumNATime Start14:25Date7/16/2018									
Exc	avation Effort	Boulder Qty/Class	Laboratory Testing Results							
at	E	2/a								
	Μ	2/a								
	М	3/a								
Notes: WATER SYMBOLS 1) No Analytical Sample collected. ▼ Groundwater 2) ▼ Estimated Seasonal High Groundwater 3)										
		EXCAVATION E E = Easy	FFORT							
		M = Moderate D = Difficult	9							
	at	Image: stress of the stres of the stress of the stress of the stress	TEST PIT NO. 1 SHEET 1 FILE NO. 707 CHKD BY 1 Datum 1 Time Start 14 Date 7/16 Excavation Boulder Effort Boulder Qty/Class M at E Z/a M M 3/a M 3/a V Groundwater V Groundwater V Estimated Seasonal High Ground E E asy M Destinated Seasonal High Ground							

				Т	EST PIT LOG				
Engine	Vob ering a Sustain	is able Future		PROJECT Lavoie Property 640 Hillside Ave, Berlin, New Hampshire Project No. 70705.00			TEST PIT NO. TP-8 SHEET 1 of 1 FILE NO. 70705.00 70705.00 CHKD BY TA TA		
Engineer Contract Operator Weather	or <u>A</u> (J.Stewart CCUWORX J. Guarino 30's sunny		MakeJohn DeereModel50gCapacity0.16 yd³Reach18.2'			Ground El.NADatumNATime Start14:40Date7/16/2018		
Depth Below Grade (in)	Strata Change		Subsurface Description					Boulder Qty/Class	Laboratory Testing Results
		Brown fine to	o coarse sa	nd and fine grave little silt, trace	el over dark brown fine to med sand, e gravel.		E		
2'			Gray	/ ash material, er	ncounter big rock		E	1/C	
			Brown fine	to med sand sor	ne gravrl little silt moist		М		
4'			٢	Γan fine to med s	and, little silt				
6'			Er	nd at 5.5ft on ass	umed bedrock				
8'									
10'									
12'									
14' Notes: 1) No Ana 2) 3)	alytical Sample colle	ected.				▼ ▽	WATER SY Groundwate Estimated S	<u>MBOLS</u> er Seasonal High Ground	water
	7'		<u>BOULDER</u> 12" - 24"	<u>CLASS</u> A	PROPORTIONS USED 0-10% Trace	I		EXCAVATION E E = Easy	FORT
2.5'			24" - 36" >36"	B C	10-20% Little 20-35% Some 35-50% And			M = Moderate D = Difficult	

				т	EST PIT LOG				
Engine	PROJECTTEST PIT NO.TP-9Lavoie PropertySHEET1of1640 Hillside Ave, Berlin, New HampshireFILE NO.70705.0070705.00Project No. 70705.00CHKD BYTA								
Engineer Contract Operator Weather	r A(J.Stewart CCUWORX J. Guarino 30's sunny	(MakeJohn DeereModel50gCapacity0.16 yd³Reach18.2'			Ground El.NADatumNATime Start15:00Date7/16/2018		
Depth Below Grade (in)	Strata Change		Subsurface Description				avation iffort	Boulder Qty/Class	Laboratory Testing Results
			Brown fir	ne to med sand, litt	le silt, some gravel, dry		Е	2/a	
2'							E	1/b 2/a	
			Tan fine	to med sand, little	silt, little gravel, moist		М		
4'									
6'				End at 5ft on assu	imed bedrock				
8'									
10'									
12'									
14'									
Notes: WATER SYMBOLS 1) No Analytical Sample collected. ▼ Groundwater 2) ▼ Estimated Seasonal High Groundwater 3)						water			
	7'		<u>BOULDER</u> 12" - 24"	<u>CLASS</u> A	PROPORTIONS USED 0-10% Trace	1		EXCAVATION EF	FORT
2.5'			24" - 36" >36"	B	10-20% Little	M = Moderate			
				0	35-50% And			D – Dinicult	

			-	TEST PIT LOG				
Engine	Vob ering a Sustain	is able Future		TEST P SHEET FILE NC CHKD B	IT NO	TP-10 of <u>1</u> 05.00 TA		
Engineer Contract Operator Weather	- or <u>A</u> (J.Stewart CCUWORX J. Guarino 80's sunny	Make Model Capacity Reach	John Deere 50g 0.16 yd ³ 18.2'		Ground Datum Time Sta Date	ElN art5 7/16	IA IA ::25 /2018
Depth Below Grade (in)	Strata Change		Subsurface Description				Boulder Qty/Class	Laboratory Testing Results
		Dark Brown fine	e to med sand, little silt, s 6ir	ome gravel, moist. Some debris in first າ		E	2/a	
2'		Tan	fine to med sand, little si	It and gravel, moist, native.	I	Μ	2/a	
					I	M	1/b 2/a	
4'					I	M	1/b	
6'			End at 6 ft. Ir	native soil				
8'								
10'								
12'								
14'								
Notes: WATER SYMBOLS 1) No Analytical Sample collected. ▼ Groundwater 2) ▼ Estimated Seasonal High Groundwater 3)						vater		
	7'	<u>BC</u>	<u>DULDER CLASS</u> 12" - 24" A	PROPORTIONS USED 0-10% Trace			EXCAVATION EF E = Easy	FORT
2.5'		2	24" - 36" B >36" C	10-20% Little 20-35% Some 35-50% And			M = Moderate D = Difficult	

APPENDIX C

FIELD PROCEDURES

Test Pits

The test pits were performed using a mini excavator to excavate through overburden material to refusal or maximum reach of the equipment. Test pits were terminated based on field observations, at a predetermined depth, and/or at the bedrock surface. Soil samples were obtained directly from the excavator bucket samplers using a new disposable plastic syringe and/or new nitrile disposable gloves. Soil samples were placed in resealable plastic bags for headspace screening methods and appropriate laboratory supplied containers for analytical samples.

Field Soil Sample Collection and Total Organic Vapor Screening

Soil samples were collected directly from stainless steel hand augers or hand shovels using a new disposable plastic syringe and/or new nitrile disposable gloves and placed in resealable bags or appropriate laboratory supplied containers. Each soil sample selected for screening was allowed to sit undisturbed for a select period of time (pending weather conditions) before TOV screening was completed. TOV field screening of soil samples was completed using a MiniRae Model 3000 Photoionization Detector (PID) equipped with a 10.6 electron volt (eV) lamp. The PID was calibrated to an isobutylene-in-air span gas and set to applicable response factors of 0.54 parts per million by volume (ppmv) for benzene and 0.43 ppmv for trichloroethylene (TCE).

APPENDIX D

DISCUSSION OF QUALITY ASSURANCE AND QUALITY CONTROL

Nobis Group[®] (Nobis) provides this summary of quality assurance and quality control considerations regarding field activities and laboratory analyses related to the Phase II Environmental Site Assessment performed at the Lavoie Property in Berlin, New Hampshire, as presented in this report.

FIELD QUALITY CONTROL - SOIL AND GROUNDWATER SAMPLES

Field Equipment Blanks

Nobis prepared and submitted to the New Hampshire Department of Environmental Services (NHDES) and United States Environmental Protection Agency (USEPA) a Field Task Work Plan (FTWP) and Site-Specific Quality Assurance Project Plan Addendum (SSQAPPA), which described the quality control (QC) and quality assurance (QA) protocols and other technical procedures followed during implementation of the work to ensure that the results meet the stated performance criteria. The FTWP/SSQAPPA was based on Nobis' Generic Quality Assurance Project Plan (Generic QAPP), Revision 3 (RFA #16002) as approved by USEPA on January 27, 2017 and NHDES on April 21, 2017, and refers to standard operating procedures for Nobis and Nobis' subcontractors.

In accordance with the approved FTWP/SSQAPPA, soil equipment blanks were not submitted during the study since disposable sampling equipment was utilized for sample collection. The soil samples were collected directly from excavation spoils or from surface soils with disposable plastic syringes or transferred into appropriate sample jars using disposable plastic scoop.

Trip Blank

Eastern Analytical, Inc. (Eastern) supplied trip blank samples, which accompanied the soil samples. The trip blanks were submitted for volatile organic compound (VOCs) analysis per EPA Method 8260C. The soil sample trip blank vial contained methanol as used to preserve soil samples per EPA Method 5035. An extract was taken from the methanol and analyzed for VOCs in soil. No VOCs were detected in the trip blank sample.

Duplicate Samples

Duplicate analyses for VOCs, total petroleum hydrocarbons (TPH) diesel-range organics (DRO) and polycyclic aromatic hydrocarbons (PAHs) were performed on two (2) soil samples (SS-15 and

TP-05). Duplicate analyses for polychlorinated biphenyls (PCBs) were performed on four (4) soil samples (SS-15, TP-05, S7-5, and S7-9) and one (1) concrete sample (CS-1). Duplicate analyses for metals were performed on four (4) soil samples (SS-15, TP-05, M-5, and M-7). The relative percent difference (RPD) calculations (where possible) are discussed per matrix.

The RPD calculation used is:

RPD = Sample Concentration – Duplicate Concentration x 100%

Mean Concentration

If a compound was not detected above the laboratory detection limit in one (1) of the samples, half of the detection limit was used in the calculation.

Soil Samples

Analytical results for TPH-DRO in the SS-15 and TP-05 parent samples and associated duplicate samples SS-15 FD and TP-05 FD indicated the following detections:

Compound	Sample (mg/kg)	Duplicate (mg/kg)	RPD (%)
TPH - DRO	SS-15 (92)	SS-15 FD (2,600)	186
	TP-05 (59)	TP-05 FD (91)	43

Analytical results for PAHs in the SS-15 and TP-05 parent samples and associated duplicate samples SS-15 FD and TP-05 FD indicated the following detections:

Compound	Sample (mg/kg)	Duplicate (mg/kg)	RPD (%)
Acenaphthylene	TP-05 (<0.09)	TP-05 FD (0.083)	59
Acenaphthene	SS-15 (0.09)	SS-15 FD (<1)	139
	TP-05 (<0.10)	TP-05 FD (0.083)	50
Fluorene	SS-15 (0.11)	SS-15 FD (<1)	128
Anthracene	SS-15 (0.12)	SS-15 FD (<1)	123
Phenanthrene	SS-15 (1.3)	SS-15 FD (2.5)	63
	TP-05 (0.13)	TP-05 FD (0.19)	38

Pyrene	SS-15 (1.1)	SS-15 FD (2.8)	87
	TP-05 (0.29)	TP-05 FD (0.38)	27
Benzo[a]anthracene	SS-15 (0.51)	SS-15 FD (1.5)	99
	TP-05 (0.15)	TP-05 FD (0.19)	24
Chrysene	SS-15 (0.85)	SS-15 FD (1.7)	67
	TP-05 (0.19)	TP-05 FD (0.25)	27
Benzo[b]fluoranthene	SS-15 (1.4)	SS-15 FD (2)	35
	TP-05 (0.23)	TP-05 FD (0.32)	33
Benzo[k]fluoranthene	SS-15 (0.49)	SS-15 FD (<1)	2
	TP-05 (0.085)	TP-05 FD (0.11)	26
Benzo[a]pyrene	SS-15 (0.60)	SS-15 FD (1.3)	74
	TP-05 (0.15)	TP-05 FD (0.21)	33
Benzo[g,h,i]perylene	SS-15 (0.21)	SS-15 FD (1.1)	136
	TP-05 (0.082)	TP-05 FD (0.087)	6
Indeno[1,2,3-cd]pyrene	SS-15 (0.23)	SS-15 FD (1.2)	136
	TP-05 (0.096)	TP-05 FD (0.1)	4
Fluoranthene	SS-15 (1.7)	SS-15 FD (3.5)	69
	TP-05 (0.35)	TP-05 FD (0.46)	27

*If a compound was not detected in one sample, half the detection limit was used for the calculation of RPD.

Analytical results for PCBs in the SS-15, S7-5, S7-9, and TP-05 parent samples and associated duplicate samples SS-15 FD, S7-FDUP5, S7-FDUP9, and TP-05 FD indicated the following detections:

Compound	Sample (mg/kg)	Duplicate (mg/kg)	RPD (%)
Aroclor-1254	SS-15 (0.20)	SS-15 FD (<0.02)	181
	S7-5 (0.21)	S7-FDUP5 (<0.02)	182
	TP-05 (0.025)	TP-05 FD (0.021)	17
Aroclor-1260	SS-15 (0.12)	SS-15 FD (0.32)	91

Compound	Sample (mg/kg)	Duplicate (mg/kg)	RPD (%)
Aroclor-1260	S7-5 (0.22)	S7-FDUP5 (0.59)	91
	S7-9 (1.4)	S7-FDUP9 (1.6)	13
	TP-05 (0.033)	TP-05 FD (0.032)	3
Aroclor-1268	SS-15 (0.08)	SS-15 FD (0.25)	103
	S7-5 (0.076)	S7-FDUP5 (<0.02)	153
Total PCBs	SS-15 (0.40)	SS-15 FD (0.57)	35
	S7-5 (0.506)	S7-FDUP5 (0.59)	15
	S7-9 (1.4)	S7-FDUP9 (1.6)	13
	TP-05 (0.058)	TP-05 FD (0.053)	9

*If a compound was not detected in one sample, half the detection limit was used for the calculation of RPD.

Analytical results for metals in the SS-15, M-5, M-7, and TP-05 parent samples and associated duplicate samples SS-15 FD, M-FDUP5, M-FDUP7, and TP-05 FD indicated the following detections:

Compound	Sample (mg/kg)	Duplicate (mg/kg)	RPD (%)
Antimony	SS-15 (8.3)	SS-15 FD (12)	36
	M-5 (6.1)	M-FDUP5 (3.1)	65
	M-7 (12)	M-FDUP7 (16)	29
	TP-05 (1.4)	TP-05 FD (7.4)	136
Arsenic	SS-15 (12)	SS-15 FD (13)	8
	M-5 (12)	M-FDUP5 (13)	8
	M-7 (6.0)	M-FDUP7 (8.0)	29
	TP-05 (4.5)	TP-05 FD (5.8)	25
Beryllium	SS-15 (<0.5)	SS-15 FD (0.66)	90
	M-5 (<0.5)	M-FDUP5 (0.62)	85
	TP-05 (0.76)	TP-05 FD (0.63)	19
Cadmium	SS-15 (4.0)	SS-15 FD (9.9)	85

Compound	Sample (mg/kg)	Duplicate (mg/kg)	RPD (%)
Cadmium	M-5 (78)	M-FDUP5 (15)	135
	M-7 (7.8)	M-FDUP7 (10)	25
	TP-05 (2.3)	TP-05 FD (3.8)	49
Chromium	SS-15 (40)	SS-15 FD (59)	38
	M-5 (51)	M-FDUP5 (75)	38
	M-7 (24)	M-FDUP7 (53)	75
	TP-05 (20)	TP-05 FD (22)	10
Copper	SS-15 (480)	SS-15 FD (4300)	160
	M-5 (4100)	M-FDUP5 (2400)	52
	M-7 (3600)	M-FDUP7 (6400)	56
	TP-05 (900)	TP-05 FD (2500)	94
Lead	SS-15 (450)	SS-15 FD (1100)	84
	M-5 (1200)	M-FDUP5 (590)	68
	M-7 (880)	M-FDUP7 (920)	4
	TP-05 (200)	TP-05 FD (870)	125
Mercury	SS-15 (1.2)	SS-15 FD (0.90)	29
	M-5 (1.1)	M-FDUP5 (0.58)	62
	M-7 (0.63)	M-FDUP7 (0.82)	26
	TP-05 (0.15)	TP-05 FD (0.2)	29
Nickel	SS-15 (43)	SS-15 FD (42)	2
	M-5 (160)	M-FDUP5 (250)	44
	M-7 (44)	M-FDUP7 (33)	29
	TP-05 (13)	TP-05 FD (17)	27
Selenium	SS-15 (1.2)	SS-15 FD (1.3)	8
	TP-05 (2)	TP-05 FD (1.3)	42
Silver	SS-15 (2.2)	SS-15 FD (1.7)	25
	M-5 (2.1)	M-FDUP5 (2.5)	17
	M-7 (0.95)	M-FDUP7 (1.4)	38

Compound	Sample (mg/kg)	Duplicate (mg/kg)	RPD (%)
Silver	TP-05 (<0.5)	TP-05 FD (0.68)	92
Thallium	SS-15 (0.32)	SS-15 FD (<0.5)	25
Zinc	SS-15 (4.2)	SS-15 FD (890)	198
	M-5 (1600)	M-FDUP5 (1300)	21
	M-7 (660)	M-FDUP7 (790)	18
	TP-05 (180)	TP-05 FD (270)	40

*If a compound was not detected in one sample, half the detection limit was used for the calculation of RPD.

Analytical results for VOCs in the SS-15 and TP-05 parent samples and associated duplicate samples SS-15 FD and TP-05 FD indicated that no compounds were detected; the RPDs were not calculated for these analyses.

A number of the RPDs calculated for soil analytical results exceed the 50% limit that is considered acceptable. Although RPD values for soil analyses are outside the acceptable range, these RPDs are consistent with sample heterogeneity. Based on the low-level detections observed, the results do not impact the outcome or validity of the findings and recommendation based on the data.

Concrete Samples

Analytical results for PCBs in the CS-1 parent sample and associated duplicate sample CS-FD01 indicated that no parameters were detected; the RPDs were not calculated for these analyses.

SUMMARY OF DATA VALIDATION

Based on the data collected, it is Nobis' opinion the data is useable to meet site data quality objectives. The analytical laboratories provided data to assist Nobis and NHDES to assess the laboratory quality control for the laboratory analyses performed per matrix. Nobis reviewed the laboratory analytical data provided by Eastern Analytical, Inc., including laboratory surrogate recoveries and acceptance limits, and the laboratory narratives, and found it to be complete and useable by Nobis for the sampling work. In accordance with the FTWP/SSQAPP, data validation was limited to a completeness check for the data, an assessment of relative percent differences for duplicate samples and a review of the laboratory quality control data, as described.

APPENDIX E

Eastern Analytical, Inc.

professional laboratory and drilling services

Tim Andrews Nobis Group 18 Chenell Drive Concord , NH 03301

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 183804 Client Identification: Lavoie Property | 70705.00 Date Received: 7/5/2018

Dear Mr. Andrews:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R:% Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

<u>7.(2.(8</u> Date # of pages (excluding cover letter)

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Temperat Acceptable t	ure upon receipt (°C): temperature range (°C): 0-6	0.1		Received on ice or cold packs (Yes/No): Υ		
Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)
183804.01	Trip Blank	7/5/18	7/3/18	soil	100.0	Adheres to Sample Acceptance Policy
183804.02	SS-01	7/5/18	7/3/18	soil	76.4	Adheres to Sample Acceptance Policy
183804.03	SS-02	7/5/18	7/3/18	soil	75.5	Adheres to Sample Acceptance Policy
183804.04	SS-03	7/5/18	7/3/18	soil	84.8	Adheres to Sample Acceptance Policy
183804.05	SS-04	7/5/18	7/3/18	soil	65.1	Adheres to Sample Acceptance Policy
183804.06	SS-05	7/5/18	7/3/18	soil	95.1	Adheres to Sample Acceptance Policy
183804.07	SS-06	7/5/18	7/3/18	soil	69.1	Adheres to Sample Acceptance Policy
183804.08	SS-07	7/5/18	7/3/18	soil	70.3	Adheres to Sample Acceptance Policy
183804.09	SS-08	7/5/18	7/3/18	soil	91.2	Adheres to Sample Acceptance Policy
183804.1	SS-09	7/5/18	7/3/18	soil	75.0	Adheres to Sample Acceptance Policy
183804.11	SS-10	7/5/18	7/3/18	soil	84.2	Adheres to Sample Acceptance Policy
183804.12	SS-11	7/5/18	7/3/18	soil	68.4	Adheres to Sample Acceptance Policy
183804.13	SS-12	7/5/18	7/3/18	soil	64.2	Adheres to Sample Acceptance Policy
183804.14	SS-13	7/5/18	7/3/18	soil	74.9	Adheres to Sample Acceptance Policy
183804.15	SS-14	7/5/18	7/3/18	soil	85.9	Adheres to Sample Acceptance Policy
183804.16	SS-15	7/5/18	7/3/18	soil	84.2	Adheres to Sample Acceptance Policy
183804.17	SS-06-FD	7/5/18	7/3/18	soil	66.4	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th Edition, 1998 and 22nd Edition, 2012

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

Eastern Analytical, Inc.

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	Trip Blank	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06
Lab Sample ID:	183804.01	183804.02	183804.03	183804.04	183804.05	183804.06	183804.07
Matrix:	soil	soil	soil	soil	soil	soil	soil
Data Sampladi	7/9/40	7/2/10	7/2/10	3011 0 /1 0	100	7/2/10	7/2/19
Date Sampled:	7/5/10	7/3/10	7/5/10	7/3/10	7/3/10	7/5/10	7/5/10
Date Received:	//5/18	//5/18	//5/18	//5/18	//5/18	//0/10	//3/10
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	7/10/18	7/11/18	7/11/18	7/9/18	7/9/18	7/9/18	7/9/18
Analyst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	1	2	2	2	3	1	2
Dichlorodifluoromethane	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
Chloromethane	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
Vinyl chloride	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
Bromomethane	< 0.2	< 0.4	< 0.4	< 0.3	< 0.6	< 0.2	< 0.4
Chloroethane	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
I richlorofluoromethane	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	6.5	< 0.2
Acetone	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1 < 6	< 0.06	< 0,1
1.1-Dichloroethene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
tert-Butyl Alcohol (TBA)	< 2	< 4	< 4	< 3	< 6	< 2	< 4
Methylene chloride	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
Carbon disulfide	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
Methyl-t-butyl ether(MTBE)	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
Ethyl-t-butyl ether(EIBE)	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
tert amyl methyl ether(TAME)	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
trans-1 2-Dichloroethene	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.06	< 0.2
1.1-Dichloroethane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
2,2-Dichloropropane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
cis-1,2-Dichloroethene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
2-Butanone(MEK)	< 0.5	< 1	< 1	< 0.8	< 1	< 0.6	< 1
Bromochloromethane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
letrahydrofuran(IHF)	< 0.5	< 1	< 1	< 0.8	< 1	< 0.6	< 1
Uniorororm 1.1.1 Trichloroothane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Carbon tetrachloride	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1
1.1-Dichloropropene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Benzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,2-Dichloroethane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Trichloroethene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,2-Dichloropropane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Dibromometnane Promodiobleromothene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1 4-Diovane	< 0.05	< 0.1	< 0.1 < 6	< 0.06	< 0.1	< 0.06	< 0.1 < 6
4-Methyl-2-pentanone(MIBK)	< 0.5	< 1	< 1	< 0.8	< 1	< 0.6	< 1
cis-1,3-Dichloropropene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Toluene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
trans-1,3-Dichloropropene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,1,2-Trichloroethane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
2-Hexanone	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Tio-Dichloroproparte Dibromochloromethane	< 0.05 < 0.05	< U.1 - 0 1	< U.1 - 0 1	< U.U8 < 0.08	< U.1 2 0 1		< U.1 < 0.1
1 2-Dibromoethane(EDR)	< 0.00 < 0.05	< 0.1 < 0.1	< 0.1 < 0.1	< 0.00 < 0.08	 0.1 < 0.1 	< 0.00 < 0.06	< 0.1 < 0.1
Chlorobenzene	< 0.05	< 0.1	< 0.1	< 0.00	< 0.1	< 0.00	< 0.1
1,1,1,2-Tetrachloroethane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Ethylbenzene	< 0.05	< 0.1	< 0.1	< 0,08	< 0.1	< 0.06	< 0.1 Z

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	Trip Blank	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06
Lab Sample ID:	183804.01	183804.02	183804.03	183804.04	183804.05	183804.06	183804.07
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Units:	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	7/10/18	7/11/18	7/11/18	7/9/18	7/9/18	7/9/18	7/9/18
Analyst	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	82600	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Ecotor	1	2	2	2	3	1	2
Dilution Factor.	1	-	-	-	_		
mp-X y lene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
o-Xylene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Styrene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Bromotorm	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.00	< 0.1
IsoPropyibenzene	< 0.05	< 0,1	< 0.1	< 0.08	< 0.1	< 0.00	< 0.1
Bromobenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.00	< 0.1
1, 1, 2, 2-1 etrachioroethane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.00	< 0.1
n.Pronylbanzana	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
2-Chlorotoluene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
4-Chlorotoluene	< 0.00	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1.3.5-Trimethylbenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
tert-Butylbenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1.2.4-Trimethylbenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
sec-Butylbenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1.3-Dichlorobenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
p-lsopropyltoluene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,4-Dichlorobenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,2-Dichlorobenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
n-Butylbenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,2-Dibromo-3-chloropropane	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,3,5-Trichlorobenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
1,2,4-Trichlorobenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Hexachlorobutadiene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< 0.1
Naphthalene	< 0.1	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	< 0.2
1,2,3-Trichlorobenzene	< 0.05	< 0.1	< 0.1	< 0.08	< 0.1	< 0.06	< U. I
4-Bromofluorobenzene (surr)	94 %R	90 %R	93 %R	98 %R	98 %R	30 %R	91 %K
1,2-Dichlorobenzene-d4 (surr)	102 %R	103 %R	104 %R	99 %R	98 %R	91 %K	30 %K
2,5-Dibromotoluene (surr)	101 %R	74 %R	111 %R	63 %R	55 %K	14 %K	23 70K
1 Oluene-do (SUIT)	91 %K	90 %K	33 70K	101 %K	101 /0K 103 %P	101 %K	100 %R
r,z-Dichloroethane-d4 (Suff)	91 70K	30 70K	55 70K	104 /01	100 /01	100 /01	102 /01

SS-01, SS-02, SS-03, SS-04, SS-05, SS-06: Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis

SS-05, SS-06: The surrogate 2,5-Dibromotoluene (surr) deviated outside the QC limits within the sample(s). The recovery of this surrogate is dependent on the quality of sample collection and/or matrix effect.

\mathcal{M}

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13
Lab Sample ID:	183804.08	183804.09	183804.1	183804.11	183804.12	183804.13	183804.14
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis:	7/11/18	7/11/18	7/11/18	7/11/18	7/11/18	7/11/18	7/11/18
Analyst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	3	2	2	2	3	3	2
Bildion i actor.	-	_					
Dichlorodifluoromethane	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
Chloromethane	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
Vinyi chloride	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.5	< 0.2
Chloroothane	< 0.8	< 0.3	< 0.5	< 0.2	< 0.3	< 0.3	< 0.2
Trichlorofluoromethane	< 0.3	< 0.2	0.2	< 0.2	< 0.3	< 0.3	< 0.2
Diethyl Ether	< 0.5	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Acetone	< 6	< 3	< 5	< 3	< 6	< 5	< 4
1.1-Dichloroethene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
tert-Butyl Alcohol (TBA)	< 6	< 3	< 5	< 3	< 6	< 5	< 4
Methylene chloride	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
Carbon disulfide	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
Methyl-t-butyl ether(MTBE)	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
Ethyl-t-butyl ether(ETBE)	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
Isopropyl ether(DIPE)	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
tert-amyl methyl ether(IAME)	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
1 1 Dishlaraothana	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.00
2.2-Dichloropropage	< 0.1	< 0.00	< 0.1	< 0.00	< 0.1	< 0.1	< 0.09
cis-1 2-Dichloroethene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
2-Butanone(MEK)	< 1	< 0.8	< 1	< 0.8	< 1	< 1	< 0.9
Bromochloromethane	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Tetrahydrofuran(THF)	< 1	< 0.8	< 1	< 0.8	< 1	< 1	< 0.9
Chloroform	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,1,1-Trichloroethane	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Carbon tetrachloride	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,1-Dichloropropene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Benzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
T,2-Dichloroothono	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1 2-Dichloropropage	< 0.1	< 0.00	< 0.1	< 0.00	< 0.1	< 0.1	< 0.09
Dibromomethane	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Bromodichloromethane	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	· < 0.09
1,4-Dioxane	< 8	< 5	< 7	< 5	< 9	< 8	< 5
4-Methyl-2-pentanone(MIBK)	< 1	< 0.8	< 1	< 0.8	< 1	< 1	< 0.9
cis-1,3-Dichloropropene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Toluene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
trans-1,3-Dichloropropene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,1,2-Irichloroethane	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
z-nexanone Tetrachloroethene	< 0.3	< U.2 2 0 09	 ∨.∠ ∠ ∩ 1 	> ∪.∠ < ∩ ∩2	 0.3 < 0.1 	< 0.3 < 0.1	< 0.2
1 3-Dichloropropage	< 0.1 < 0.1	< 0.00 < 0.08	 0.1 < 0.1 	< 0.08 < 0.08	< 0.1	< 0.1	< 0.09
Dibromochloromethane	< 0.1	< 0.00 < 0.08	< 0.1	< 0.00	< 0.1	< 0.1	< 0.09
1.2-Dibromoethane(FDR)	< 0.1	< 0.00	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Chlorobenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,1,1,2-Tetrachloroethane	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Ethylbenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09 4

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13
Lab Sample ID:	183804.08	183804.09	183804.1	183804.11	183804.12	183804.13	183804.14
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Analysis;	7/11/18	7/11/18	7/11/18	7/11/18	7/11/18	7/11/18	7/11/18
Analvst:	BAM	BAM	BAM	BAM	BAM	BAM	BAM
Method:	8260C	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	3	2	2	2	3	3	2
mp-Xvlene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
o-Xylene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Styrene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Bromoform	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
IsoPropylbenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Bromobenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1, 1, 2, 2-1 etf achioroethane	< 0.1	< 0.00	< 0.1	< 0.00	< 0.1	< 0.1	< 0.09
n-Propylhenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
2-Chlorotoluene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
4-Chlorotoluene	< 0.1	.< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,3,5-Trimethylbenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
tert-Butylbenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,2,4-Trimethylbenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
sec-Butylbenzene	< 0.1	, < 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,3-Dichlorobenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
p-isopropyitoluene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,4-Dichlorobenzene	< 0.1	< 0.08	< 0.1	< 0.00	< 0.1	< 0.1	< 0.09
n-Butylbenzene	· < 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1.2-Dibromo-3-chloropropane	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,3,5-Trichlorobenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
1,2,4-Trichlorobenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Hexachlorobutadiene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
Naphthalene	< 0.3	< 0.2	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2
1,2,3-Trichlorobenzene	< 0.1	< 0.08	< 0.1	< 0.08	< 0.1	< 0.1	< 0.09
4-Bromofluorobenzene (surr)	94 %R	90 %R	90 %R	94 %R	95 %R	91 %R	95 %R
1,2-Dichlorobenzene-d4 (surr)	103 %R	104 %R		103 %R	104 %K		104 %K
Z,5-Dibiomotoluene (surr)	100 %K	05 %K	01 % K	123 %R 97 %P	03 %K 99 %P	97 %R	99 % R
1,2-Dichloroethane-d4 (surr)	95 %R	95 %R	89 %R	99 %R	97 %R	97 %R	100 %R

Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

SS-13: The surrogate 2,5-Dibromotoluene (surr) deviated outside the QC limits within the sample(s). The recovery of this surrogate is dependent on the quality of sample collection and/or matrix effect.

\mathcal{M}

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-14	SS-15	SS-06-FD
Lab Sample ID:	183804.15	183804.16	183804.17
Matrix:	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18
Units:	ma/ka	ma/ka	ma/ka
Date of Analysis	7/11/18	7/11/18	7/11/18
Analysis.	DAM	DAM	
Analyst:	DAIVI 0260C	BAIN 9260C	8260C
	82000	02000	02000
Dilution Factor:	I	Z	2
Dichlorodifluoromethane	< 0.1	< 0.2	< 0.2
Chloromethane	< 0.1	< 0.2	< 0.2
Vinyl chloride	< 0.1	< 0.2	< 0.2
Bromometnane	< 0.3	< 0.3	< 0.4
Trichlorofluoromethane	< 0.1	< 0.2	< 0.2
Diethvl Ether	< 0.07	< 0.09	< 0.1
Acetone	< 3	< 3	< 4
1,1-Dichloroethene	< 0.07	< 0.09	< 0.1
tert-Butyl Alcohol (TBA)	< 3	< 3	< 4
Methylene chloride	< 0.1	< 0.2	< 0.2
Carbon disulide	< 0.1	< 0.2	< 0.2
Ethyl-t-butyl ether(ETBE)	< 0.1	< 0.2	< 0.2
Isopropyl ether(DIPE)	< 0.1	< 0.2	< 0.2
tert-amyl methyl ether(TAME)	< 0.1	< 0.2	< 0.2
trans-1,2-Dichloroethene	< 0.07	< 0.09	< 0.1
1,1-Dichloroethane	< 0.07	< 0.09	< 0.1
2,2-Dichloropropane	< 0.07	< 0.09	< 0.1
2-Butanone(MEK)	< 0.7	< 0.9	< 1
Bromochloromethane	< 0.07	< 0.09	< 0.1
Tetrahydrofuran(THF)	< 0.7	< 0.9	< 1
Chloroform	< 0.07	< 0.09	< 0.1
1,1,1-Irichloroethane	< 0.07	< 0.09	< 0.1
	< 0.07	< 0.09	< 0.1
Benzene	< 0.07	< 0.09	< 0.1
1,2-Dichloroethane	< 0.07	< 0.09	< 0.1
Trichloroethene	< 0.07	< 0.09	< 0.1
1,2-Dichloropropane	< 0.07	< 0.09	< 0.1
Dibromomethane	< 0.07	< 0.09	< 0.1
1 4-Dioxane	< 0.07	< 0.09	< 0.1
4-Methyl-2-pentanone(MIBK)	< 0.7	< 0.9	< 1
cis-1,3-Dichloropropene	< 0.07	< 0.09	< 0.1
Toluene	< 0.07	< 0.09	< 0.1
trans-1,3-Dichloropropene	< 0.07	< 0.09	< 0.1
	< 0.07 - 0.1	< 0.09	< 0.1 < 0.2
Tetrachloroethene	< 0.1	< 0.2 < 0.09	< 0.2
1,3-Dichloropropane	< 0.07	< 0.09	< 0.1
Dibromochloromethane	< 0.07	< 0.09	< 0.1
1,2-Dibromoethane(EDB)	< 0.07	< 0.09	< 0.1
Chlorobenzene	< 0.07	< 0.09	< 0.1
r, r, r, z-retrachioroethane	< 0.07 < 0.07	< 0.09 < 0 NG	< 0.1 < 0.1
LUIYDUILUIU	- 0.07	- 0.00	- 0.1

Eastern Analytical, Inc.

6

\mathcal{M}

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-14	SS-15	SS-06-FD
Lab Sample ID:	183804.15	183804.16	183804.17
Matrix:	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18
Units:	mg/kg	mg/kg	mg/kg
Date of Analysis:	7/11/18	7/11/18	7/11/18
Analyst:	BAM	BAM	BAM
Method:	8260C	8260C	8260C
Dilution Factor:	1	2	2
mp-Xvlene	< 0.07	< 0.09	< 0.1
o-Xylene	< 0.07	< 0.09	< 0.1
Styrene	< 0.07	< 0.09	< 0.1
Bromoform	< 0.07	< 0.09	< 0.1
IsoPropylbenzene	< 0.07	< 0.09	< 0.1
Bromobenzene	< 0.07	< 0.09	< 0.1
1,1,2,2-Tetrachloroethane	< 0.07	< 0.09	< 0.1
1,2,3-Trichloropropane	< 0.07	< 0.09	< 0.1
n-Propylbenzene	< 0.07	< 0.09	< 0.1
2-Chlorotoluene	< 0.07	< 0.09	< 0.1
4-Chlorotoluene	< 0.07	< 0.09	< 0.1
1,3,5-Trimethylbenzene	< 0.07	< 0.09	< 0.1
tert-Butylbenzene	< 0.07	< 0.09	< 0.1
1,2,4-Trimethylbenzene	< 0.07	< 0.09	< 0.1
sec-Butylbenzene	< 0.07	< 0.09	< 0.1
1,3-Dicniorobenzene	< 0.07	< 0.09	< 0.1
	< 0.07	< 0.09	< 0.1
1,4-Dichlorobenzene	< 0.07	< 0.09	< 0.1
	< 0.07	< 0.09	< 0,1
1.2 Dibromo 2 obloropropono	< 0.07	< 0.09	< 0.1
1,2-Dibiomo-3-chioropropane	< 0.07	< 0.09	< 0.1
	< 0.07	< 0.09	< 0.1
Hovachlorobutadiono	< 0.07	< 0.09	< 0.1
Naphthalono	< 0.07	< 0.09	< 0.1
1.2.3 Trichlorobonzono	< 0.1	< 0.2	< 0.2
A-Bromofluorobenzene (surr)	93 % P	9/ %P	91 % P
1 2-Dichlorobenzene-d4 (surr)	105 %P	103 %P	101 %P
2 5-Dibromotoluene (surr)	113 %R	51 %R	131 %R
Toluene-d8 (surr)	97 % P	98 % P	96 %R
1 2-Dichloroethane-d4 (surr)	99 %R	98 %R	94 %R
	00 /01	00 /01C	et /ure

SS-01, SS-02, SS-03, SS-04, SS-05, SS-06: Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07
						((0000 (00
Lab Sample ID:	183804.02	183804.03	183804.04	183804.05	183804.06	183804.07	183804.08
Matrix:	soil	soil	soil	soil	soil	SOI	SOI
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Units:	mg/kg						
Date of Extraction/Prep:	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18
Date of Analysis:	7/9/18	7/9/18	7/9/18	7/9/18	7/10/18	7/10/18	7/10/18
Analyst:	JMR						
Method:	8270D						
Dilution Factor:	1	1	1	2	52	14	71
Naphthalene	< 0.09	< 0.09	< 0.08	< 0.1	< 4	< 1	< 5
2-Methylnaphthalene	< 0.09	< 0.09	< 0.08	< 0.1	< 4	< 1	< 5
1-Methylnaphthalene	< 0.09	< 0.09	< 0.08	< 0.1	< 4	< 1	< 5
Acenaphthylene	< 0.09	0.36	0.12	< 0.1	< 4	< 1	< 5
Acenaphthene	< 0.09	< 0.09	< 0.08	< 0.1	< 4	< 1	< 5
Fluorene	< 0.09	< 0.09	< 0.08	< 0.1	< 4	< 1	< 5
Phenanthrene	0.11	0.88	0.53	0.40	< 4	< 1	< 5
Anthracene	< 0.09	0.25	0.15	< 0.1	< 4	< 1	< 5
Fluoranthene	0.26	1.7	1.1	0.84	< 4	< 1	12
Pyrene	0.21	1.6	0.90	0.68	< 4	< 1	10
Benzo[a]anthracene	0.13	0.99	0.57	0.39	< 4	< 1	5.7
Chrysene	0.19	1.3	0.72	0.49	< 4	< 1	7
Benzo[b]fluoranthene	0.32	2.1	1.1	0.73	< 4	< 1	10
Benzo[k]fluoranthene	0.12	0.73	0.40	0.27	< 4	< 1	< 5
Benzo[a]pyrene	0.15	1.1	0.60	0.42	< 4	< 1	6.3
Indeno[1,2,3-cd]pyrene	< 0.09	0.34	0.18	0.12	< 4	< 1	5.8
Dibenz[a,h]anthracene	< 0.09	< 0.09	< 0.08	< 0.1	< 4	< 1	< 5
Benzo[g,h,i]perylene	< 0.09	0.31	0.14	< 0.1	< 4	< 1	5.9
p-Terphenyl-D14 (surr)	59 %R	64 %R	62 %R	57 %R	DOR	68 %R	DOR

SS-04: Detection limits elevated due to low solids content.

SS-05, SS-06, SS-07: Detection limits elevated due to sample matrix causing internal standard and/or surrogate failure in undiluted analysis.

SS-05, SS-07: Detection limits also elevated due to higher than normal final extract volume.

DOR: Diluted out of range.

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14
			. ·				
Lab Sample ID:	183804.09	183804.1	183804.11	183804.12	183804.13	183804.14	183804.15
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18
Date of Analysis:	7/10/18	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18
Analyst:	JMR	JMR	JMR	JMR	JMR	JMR	JMR
Method:	8270D	8270D	8270D	8270D	8270D	8270D	8270D
Dilution Factor:	11	1	.1	1	2	1	1
Nanhthalana	< 0.8	0.15	< 0.08	0.21	< 0.1	< 0.09	< 0.08
2-Methylnanhthalene	< 0.8	0.15	< 0.08	0.21	< 0.1	< 0.09	< 0.08
1-Methylnaphthalene	< 0.0	< 0.09	< 0.00	0.74	< 0.1	< 0.00	< 0.00
Acenaphthylene	< 0.8	< 0.09	0.090	0.00	< 0.1	< 0.09	< 0.08
Acenaphthene	< 0.8	0.091	< 0.08	0.44	< 0.1	< 0.09	< 0.08
Fluorene	< 0.8	0.14	< 0.08	0.46	< 0.1	< 0.09	< 0.08
Phenanthrene	< 0.8	0.88	0.33	1.7	0.20	0.41	< 0.08
Anthracene	< 0.8	0.27	< 0.08	0.55	< 0.1	0.11	< 0.08
Fluoranthene	< 0.8	1.2	0.69	2.3	0.46	0.64	0.12
Pyrene	< 0.8	0.85	0.51	1.7	0.35	0.48	0.095
Benzo[a]anthracene	< 0.8	0.55	0.33	1.2	0.22	0.29	< 0.08
Chrysene	< 0.8	0.64	0.45	1.4	0.30	0.37	< 0.08
Benzo[b]fluoranthene	< 0.8	1.1	0.78	2.5	0.50	0.61	0.12
Benzo[k]fluoranthene	< 0.8	0.42	0.27	0.85	0.18	0.22	< 0.08
Benzo[a]pyrene	< 0.8	0.56	0.34	1.2	0.26	0.31	< 0.08
Indeno[1,2,3-cd]pyrene	< 0.8	0.20	0.13	0.52	< 0.1	0.12	< 0.08
Dibenz[a,h]anthracene	< 0.8	< 0.09	< 0.08	0.13	< 0.1	< 0.09	< 0.08
Benzo[g,h,i]perylene	< 0.8	0.19	0.12	0.48	0.17	0.12	< 0.08
p-Terphenyl-D14 (surr)	87 %R	53 %R	62 %R	48 %R	53 %R	51 %R	66 %R

SS-08: Detection limits elevated due to sample matrix causing internal standard and/or surrogate failure in undiluted analysis.

SS-12: Detection limits elevated due to low solids content.

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-15	SS-06-FD
Lab Sample ID: Matrix:	183804.16 soil	183804.17 soil
Date Sampled:	7/3/18	7/3/18
Date Received:	//5/18	//5/18
Units:	mg/kg	mg/kg
Date of Extraction/Prep:	7/6/18	7/6/18
Date of Analysis:	7/9/18	7/10/18
Analyst:	JMR	JMR
Method:	8270D	8270D
Dilution Factor:	1	15
Naphthalene	< 0.08	< 1
2-Methylnaphthalene	< 0.08	< 1
1-Methylnaphthalene	< 0.08	< 1
Acenaphthylene	< 0.08	< 1
Acenaphthene	0.090	< 1
Fluorene	0.11	< 1
Phenanthrene	1.3	2.5
	0.12	< 2 E
Puoraninene	1.7	3.5 2.8
Renzolalanthracene	0.51	2.0
Chrysene	0.85	1.5
Benzo[b]fluoranthene	1.4	2
Benzo[k]fluoranthene	0.49	< 1
Benzo[a]pyrene	0.60	1.3
Indeno[1,2,3-cd]pyrene	0.23	1.2
Dibenz[a,h]anthracene	< 0.08	< 1
Benzo[g,h,i]perylene	0.21	1.1
p-Terphen y I-D14 (surr)	71 %R	75 %R

SS-06-FD: Detection limits elevated due to sample matrix causing internal standard and/or surrogate failure in undiluted analysis.

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07
Lab Sample ID:	183804.02	183804.03	183804.04	183804.05	183804.06	183804.07	183804.08
Matrix:	soil	soil	soil	soil	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18	7/6/18
Date of Analysis:	7/9/18	7/9/18	7/9/18	7/9/18	7/10/18	7/10/18	7/9/18
Analyst:	MA	MA	MA	MA	MA	MA	MA
Method:	8015CDRO	8015CDRO	8015CDRO	8015CDRO	8015CDRO	8015CDRO	8015CDRO
Dilution Factor:	1	1	1	2	104	14	7
DRO (Diesel Range C10-C28) p-Terphenyl-D14 (surr)	490 97 %R	300 66 %R	110 60 %R	140 51 %R	20000 DOR	2300 DOR	1700 Mi

DOR: Diluted out of range. MI: Matrix Interference
EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14
l ah Sample ID:	183804 09	183804 1	183804 11	183804 12	183804 13	183804 14	183804 15
Matrix:	soil						
Date Sampled: Date Received:	7/3/18 7/5/18						
Units: Date of Extraction/Prep:	mg/kg 7/6/18						
Date of Analysis:	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18
Analyst:	MA						
Method:	8015CDRO						
Dilution Factor:	1	1	1	1	2	1	1
DRO (Diesel Range C10-C28) p-Terphenyl-D14 (surr)	540 76 %R	130 55 %R	110 71 %R	230 58 %R	71 61 %R	150 51 %R	87 98 %R

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-15	SS-06-FD
Lab Sample ID:	183804.16	183804.17
Matrix:	soil	soil
Date Sampled:	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18
Units:	mg/kg	mg/kg
Date of Extraction/Prep:	7/6/18	7/6/18
Date of Analysis:	7/9/18	7/10/18
Analyst:	MA	MA
Method:	8015CDRO	8015CDRO
Dilution Factor:	1	15
DRO (Diesel Range C10-C28)	92	2600

DRO (Diesel Range C10-C28)	92	2600
p-Terphenyl-D14 (surr)	74 %R	DOR

DOR: Diluted out of range.

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07
Lab Sample ID:	183804.02	183804.03	183804.04	183804.05	183804.06	183804.07	183804.08
Matrix:	soil						
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
% Solid:	76.4	75.5	84.8	65.1	95.1	69.1	70.3
Units:	mg/kg						
Date of Extraction/Prep:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Date of Analysis:	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18	7/9/18
Analyst:	SG						
Extraction Method:	3540C						
Analysis Method:	8082A						
Dilution Factor:	1	1	1	1	1	1	1
PCB-1016	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1221	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1232	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1242	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1248	< 0.02	< 0.02	0.16	< 0.02	0.074	< 0.02	< 0.02
PCB-1254	< 0.02	< 0.02	< 0.02	0.12	< 0.02	< 0.02	< 0.02
PCB-1260	< 0.02	0.73	0.17	0.12	0.073	0.31	2.2
PCB-1262	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
PCB-1268	< 0.02	< 0.02	0.11	0.067	0.059	0.27	< 0.02
TMX (surr)	93 %R	88 %R	97 %R	87 %R	74 %R	62 %R	84 %R
DCB (surr)	75 %R	97 %R	99 %R	75 %R	41 %R	72 %R	57 %R

Acid clean-up was performed on the samples and associated batch QC. SS-02: PCB-1260 result obtained from a 4X dilution analyzed on 7/10/2018. SS-07: PCB-1260 result obtained from a 10X dilution analyzed on 7/10/2018.

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14
l ab Sample ID:	183804 09	183804 1	183804 11	183804 12	183804 13	183804 14	183804.15
Matrix:	soil	lios.	soil	soil	soil	soil	soil
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18	7/3/18
Date Beceived:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
% Solid:	91.2	75	84.2	68.4	64.2	74.9	85.9
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Date of Extraction/Prep:	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18	7/5/18
Date of Analysis:	7/9/18	7/9/18	7/9/18	7/9/18	7/10/18	7/10/18	7/10/18
Analyst:	SG	SG	SG	SG	SG	SG	SG
Extraction Method:	3540C	3540C	3540C	3540C	3540C	3540C	3540C
Analysis Method:	8082A	8082A	8082A	8082A	8082A	8082A	8082A
Dilution Factor:	1	· 1	1	1	31	. 5	1
PCB-1016	< 0.02	< 0.02	< 0.02	< 0.02	< 0.5	< 0.09	< 0.02
PCB-1221	< 0.02	< 0.02	< 0.02	< 0.02	< 0.5	< 0.09	< 0.02
PCB-1232	< 0.02	< 0.02	< 0.02	< 0.02	< 0.5	< 0.09	< 0.02
PCB-1242	< 0.02	< 0.02	< 0.02	< 0.02	< 0.5	< 0.09	< 0.02
PCB-1248	< 0.02	0.25	0.28	7.8	< 0.5	0.72	< 0.02
PCB-1254	< 0.02	< 0.02	0.31	6.9	4.9	< 0.09	0.041
PCB-1260	0.052	0.17	0.28	3.0	< 0.5	0.11	0.028
PCB-1262	< 0.02	< 0.02	< 0.02	< 0.02	< 0.5	< 0.09	< 0.02
PCB-1268	< 0.02	0.063	< 0.02	< 0.02	< 0.5	< 0.09	< 0.02
TMX (surr)	88 %R	88 %R	86 %R	75 %R	60 %R	84 %R	79 %R
DCB (surr)	56 %R	63 %R	67 %R	66 %R	60 %R	60 %R	62 %R

Acid clean-up was performed on the samples and associated batch QC.

SS-11: PCB-1248, PCB-1254, and PCB-1260 result obtained from a 25X dilution analyzed on 7/10/2018. SS-12 and SS-13: Detection limits elevated due to sample matrix.

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-15	SS-06-FD
Lab Sample ID:	183804.16	183804.17
Matrix:	soil	soil
Date Sampled:	7/3/18	7/3/18
Date Received:	7/5/18	7/5/18
% Solid:	84.2	66.4
Units:	mg/kg	mg/kg
Date of Extraction/Prep:	7/5/18	7/5/18
Date of Analysis:	7/10/18	7/10/18
Analyst:	SG	SG
Extraction Method:	3540C	3540C
Analysis Method:	8082A	8082A
Dilution Factor:	1	1
PCB-1016	< 0.02	< 0.02
PCB-1221	< 0.02	< 0.02
PCB-1232	< 0.02	< 0.02
PCB-1242	< 0.02	< 0.02
PCB-1248	< 0.02	< 0.02
PCB-1254	0.20	< 0.02
PCB-1260	0.12	0.32
PCB-1262	< 0.02	< 0.02
PCB-1268	0.080	0.25
TMX (surr)	80 %R	65 %R
DCB (surr)	77 %R	84 %R

Acid clean-up was performed on the samples and associated batch QC.

M

LABORATORY REPORT

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-01	SS-02	SS-03	SS-04					
Lab Sample ID:	183804.02	183804.03	183804.04	183804.05					
Matrix:	soil	soil	soil	soil					
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	Analytical		Date of		
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	Matrix	Units	Analysis	Method	Analyst
	110/10	110/10	110/10	110110			T (0 () 0		DO
Antimony	0.82	5.0	25	4.8	Soll otDry	mg/kg	7/6/18	6020	DS
Arsenic	6.5	14	9.8	15	SoliotDry	mg/kg	7/6/18	6020	DS
Beryllium	< 0.5	0.93	1.3	0.78	SolTotDry	mg/kg	//6/18	6020	DS
Cadmium	1.6	5.0	7.0	9.9	SolTotDry	mg/kg	//6/18	6020	DS
Chromium	16	28	45	26	SolTotDry	mg/kg	7/6/18	6020	DS
Copper	140	1400	7000	1500	SolTotDry	mg/kg	7/6/18	6020	DS
Lead	72	440	750	450	SolTotDry	mg/kg	7/6/18	6020	DS
Mercury	< 0.1	0.42	1.4	0.38	SolTotDry	mg/kg	7/6/18	6020	DS
Nickel	11	47	58	21	SolTotDry	mg/kg	7/6/18	6020	DS
Selenium	1.1	0.9	1.9	4.0	SolTotDry	mg/kg	7/6/18	6020	DS
Silver	< 0.5	0.60	2.4	0.93	SolTotDry	mg/kg	7/6/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	7/6/18	6020	DS
Zinc	200	560	830	880	SolTotDry	mg/kg	7/6/18	6020	DS
Sample ID:	SS-05	SS-06	SS-07	SS-08					
Lab Sample ID:	183804.06	183804.07	183804.08	183804.09					
Matrix:	soil	soil	soil	soil					
Date Sampled:	7/3/18	7/3/18	7/3/18	7/3/18	Analytical		Date of		
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	Matrix	Units	Analysis	Method	Analyst
Antimony	11	11	3.3	3.0	SolTotDry	mg/kg	7/6/18	6020	DS
Arsenic	8.3	13	8.8	3.9	SolTotDry	mg/kg	7/6/18	6020	DS
Bervllium	< 0.5	0.71	0.73	< 0.5	SolTotDry	mg/kg	7/6/18	6020	DS
Cadmium	9.9	9.4	2.9	2.6	SolTotDry	mg/kg	7/6/18	6020	DS
Chromium	52	46	29	27	SolTotDry	mg/kg	7/6/18	6020	DS
Copper	13000	4000	1400	130	SolTotDry	mg/kg	7/6/18	6020	DS
Lead	2300	1100	830	240	SolTotDrv	ma/ka	7/6/18	6020	DS
Mercury	0.62	0.92	0.34	0.22	SolTotDrv	mg/kg	7/6/18	6020	DS
Nickel	72	35	33	35	SolTotDrv	mg/ka	7/6/18	6020	DS
Selenium	2.3	2.7	1.6	1.3	SolTotDrv	mg/ka	7/6/18	6020	DS
Silver	2.3	2.4	1.3	< 0.5	SolTotDrv	ma/ka	7/6/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDrv	ma/ka	7/6/18	6020	DS
Zinc	1100	840	1400	260	SolTotDry	mg/kg	7/6/18	6020	DS

EAI ID#: 183804

Client: Nobis Group

Client Designation: Lavoie Property | 70705.00

Sample ID:	SS-09	SS-10	SS-11	SS-12					
Lab Sample ID	183804 1	183804 11	183804 12	183804 13					
Matrix:	100004.1	100004.11	100004.12	100004.19					
Data Sampladi	7/0/40	5011	501	501	A I 47 I		Data af		
Date Sampled:	7/3/18	7/3/18	//3/18	//3/18	Analytical	11	Date of	11 .411	A I 1
Date Received:	7/5/18	7/5/18	7/5/18	7/5/18	WIGUIX	Units	Analysis	Method	Analyst
Antimony	10	7.3	13	1.8	SolTotDry	mg/kg	7/6/18	6020	DS
Arsenic	8.1	9.9	12	9.1	SolTotDry	mg/kg	7/6/18	6020	DS
Beryllium	< 0.5	0.51	0.52	< 0.5	SolTotDry	mg/kg	7/6/18	6020	DS
Cadmium	9.5	16	11	5.4	SolTotDry	mg/kg	7/6/18	6020	DS
Chromium	41	48	120	35	SolTotDry	mg/kg	7/6/18	6020	DS
Copper	260	530	480	170	SolTotDry	mg/kg	7/6/18	6020	DS
Lead	450	990	780	220	SolTotDry	mg/kg	7/6/18	6020	DS
Mercury	1.1	0.40	4.6	0.79	SolTotDry	mg/kg	7/6/18	6020	DS
Nickel	45	83	110	47	SolTotDry	mg/kg	7/6/18	6020	DS
Selenium	1.7	1.6	2.4	2.3	SolTotDry	mg/kg	7/6/18	6020	DS
Silver	1.5	0.81	1.0	< 0.5	SolTotDry	mg/kg	7/6/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	7/6/18	6020	DS
Zinc	720	660	1600	400	SolTotDry	mg/kg	7/6/18	6020	DS
Sample ID:	SS-13	SS-14	SS-15	SS-06-FD					
Lab Sample ID:	183804.14	183804.15	183804.16	183804.17					
Matrix:	soil	soil	soil	soil					
Date Sampled:	7/3/18	7/3/19	7/2/19	7/2/19	Analytical		Date of		
Date Campica.	7/5/10	7/5/10	7/5/10	7/5/10	Matrix	Units	Analysis	Method	Analyst
Date Neceweu.	115/16	7/5/16	115/16	7/3/10	_		-		, ,
Antimony	3.4	< 0.5	8.3	12	SolTotDry	mg/kg	7/6/18	6020	DS
Arsenic	8.3	3.8	12	13	SolTotDry	mg/kg	7/6/18	6020	DS
Beryllium	< 0.5	0.57	< 0.5	0.66	SolTotDry	mg/kg	7/6/18	6020	DS
Cadmium	3.3	1.6	4.0	9.9	SolTotDry	mg/kg	7/6/18	6020	DS
Chromium	36	18	40	59	SollotDry	mg/kg	7/6/18	6020	DS
Copper	230	89	480	4300	Soll otDry	mg/kg	7/6/18	6020	DS
Lead	250	46	450	1100	Soll otDry	mg/kg	7/6/18	6020	DS
Nickol	1.0	0.15	1.2	0.90	SOLIOTURY	mg/kg	7/0/18	6020	
Solonium	33 24	15	43	42	Soli otDry	mg/kg	7/0/10	6020	
Silver	2.4	2.U	1.2	1.3	SolTotDay	mg/kg	7/0/10 7/6/10	0UZU 6020	D0
Thallium	 0.5 < 0.5 	< 0.0 < 0.5	< 0.5 < 0.5	1.7	SolTotDay	mg/kg	7/6/10	6020	D0 D0
Zinc	~ 0.9	< 0.0 130	< 0.0 510	< 0.0 800	SolTotDry	mg/kg	7/6/19	6020	00 D0
	570	150	010	050	Sonoibiy	mg/kg	10/10	0020	03

Page .	<u> </u>	of .	2
--------	----------	------	---

CHAIN-OF-CUSTODY RECORD

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

				VC	C			S	VO	C	;	TĊLI	ME	TALS			NC	Re	iAN	IIC	S		M	CRO	01		ER			
SAMPLE I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	Matrix (see below)	GRAB/*COMPOSITE	524.2 524.2 BTEX 524.2 MTBE ONLY 8260 624 VTICS 1,4 TDIOXANE	802I BTEX HALOS	8015 GRO MAVPH	ABN A BN (PAH) DBCP	TPH8100 LI L2	8015 DRO MAEPH	PEST 608 PCB 608 PEST 8081 RCB 80823	OIL & GREASE 1664 TPH 1664	TCLP 1311 ABN METALS VOC PEST HERR	DISSOLYED METALS (LIST BELOW)	TOTAL METALS (LIST BELOW)	TS TSS TDS SPEC. CON.	BR CI F SO4 NO, NO, NO,NO,	BOD CBOD T. ALK.	TKN NH3 T. PHOS. O. PHOS.	pH T. Res. CHLORINE	COD PHENOLS TOC DOC	Total Ctanide Total Sulfide	REACTIVE CYANIDE REACTIVE SULFIDE Flashpoint Ignitability	Total Colform E. Coli Fecal Colform	ENTEROCOCCI Heterotrophic Plate Count				# OF CONTAINERS	Notes MeOH Vial	;
Trip Blank	7/3/18 8.00	2	6	X					\sim																					
55-01	7/3/18 12:25	S	લ	\times			X		X	$^{\times}$				X																
55-02	7/3/18 17:30	S	6	X			X		X	X				X														-		
55-03	7/3/18 12:35	S	Ь	×			X		X	X				X																
55-04	7/3/18 12:45	5	6	×			x		×	X				x																
55-05	7/3/18 12:50	5	6	X			x		x	x				×							-									
55-06	7/3/18 13:15	5	Ŀ	X			X		x	X				X																
55-07	7/3/18 13:25	S	6	x			X		x	x				×																
35-08	7/3/18 13:30	\$	61	X			X		X	×				X																
35-09	7/3/18 13:35	S	(,	×			X		X	×				K										1						-1
Matrix: A-Air; S-Soil; GW-Ground Water WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; N	; SW-Surface Water; DW-Drink a-NaOH; M-MEOH	ing W	ATER;																											
PROJECT MANAGER:	Andrews				DA	TE	Nei	EDE	ා රි	ta	nd	ara	17	FA'	Т				~	6	_,	ME	TA 1 5-	R	RCRA		DP.) [c	Mu Do	
COMPANY: Nobis Er	gineering, I	he	•			/00						Drne					T	EMP	0.	<u> </u> >	'C	• · · ·		U	NORA 1			11	, IIN I D,	CU
ADDRESS: 18 Chenzil	Jorives				REP	ORT	ING I	LEVEI	L			PRELIM	S: YES	G OF	No	42	10	Έ? (YES	/ No		Othi	ER MEI	TALS:						
CITY: <u>Concord</u>	STATE: NH	ZIP:	03	301	♪	۱		В		С												SAM	IPLES	FIEL	d Filt	TERE	D?		Yes 🗌	No
PHONE: 003-007-718 Fay:	<u>×</u>	EXT.:					С	R				ELECT	RONI	с Ор	TION	IS						Noti	ES: (IE:	SPECIAI	. DETECT	rion Li	MITS, B	ILLING	INFO, IF DIFFER	ENT)
E-MAIL: <u>+ andrews</u> @	nobis eng. c	om	<u>:</u> 1		PRE	SUM	PTIVE		RTAI	٩TY	<	E-MAII	. P	DF	Equ	SIC	EXCE	L												
SITE NAME: Lavore Pro	perty							11		r.			r.	,																
PROJECT #: 10705-00)				SAMP	'LER(S):	Jun	<u>c (</u>	 	- <u> (</u> 	500	<u>et</u>	ht 2		Ń	<u></u>	1												
STATE: (NH) MA ME	VT OTHER:				REL	inol	IISHF	D BY	~ '-	7/!	5 / Date:	18	<u> ·</u> 	0 5 [ime:	6	RE	CEWED	By:	2											
REGULATORY PROGRAM: NPDES: RGP.	POTW STORMWATER OR								•				-				1.1.1					Curr	lliero	BV.						
GWP, UIL FUND, UKOWNF	IELD OR OTHER:		<u> </u>		REL	INQU	DISHE	DΒγ	:		DATE:		1	ÍME:		RE	CEIVED	By:				SHE		кт:						
Quoir #:	P0 #:				RFI	INO	IISHF	D ÂV	·-		DATE		- 1	IMF:		RF	CEIVED	Ry.				FIELL	LEIED BERI	CUNIA!	NULLAND	v				
M Eastern Analy	tical, Inc. 25	5 Сне	NELL			D, NH	1 033	01 1	Геl: 6	03.22	8.05	25 1	.800.1	287.0	525	E-M		JSTOP	ERSER	VICE	 DEAST			TICAI	сом		NFAS	TERNIA		

professional laboratory and drilling services

25 CHENELL DRIVE CONCORD, NH 03301 TEL: 603.228.0525 1.800.287.0525 E-MAIL: CUSTOMERSERVICE@EASTERNANALYTICAL.COM WWW.EASTERNANALYTICAL.COM

183804

(WHITE: ORIGINAL GREEN: PROJECT MANAGER)

Page _____ of _____

CHAIN-OF-CUSTODY RECORD

FOR LAB USE ONLY 1838

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

					/0	Ċ			SV	0	C		TCLP	Мет	ALS			NC	ORC	AN	llC	S		Mi	CRO	0	ΤН	ER			<u> </u>
SAMPLE I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	MATRIX (SEE BELOW)	GRAB/*COMPOSITE	524.2 524.2 BTEX 524.2 MTBE ONLY \$366 674 VTIC	I, 4 DIOXANE	8021 BIEX HALOS SOLE CRO MAUDU	R170 675 SVTICE FDR DRCP	ABN A BN PAH		8015 DROA MAEPH	PEST 8081 PCB 8082	OIL & GREASE 1664 TPH 1664	TCLP 1311 ABN METALS VOC PEST HERB	DISSOLVED METALS (LIST BELOW)	TOTAL METALS (LIST BELOW)	TS TDS SPEC. CON.	BR CI F 504 NO ₂ NO ₃ NO ₃ NO ₂	BOD CBOD T. ALK.	TKN NH3 T. PHOS. , O. PHOS.	pH T. RES. CHLORINE	COD PHENOLS TOC DOC	Total Cyanide Total Sulfide	REACTIVE CYANIDE REACTIVE SULFIDE FLASHPOINT GANTABILITY	TOTAL COLFORM E. COLI FECAL COLFORM	ENTEROCOCCI <u>'§'</u> Heterotrophic Plate Count				# OF CONTAINERS	No [.] MeOH V	tes Iial #
55-10	7/3/18 13:45	5	4		4			×)	x	x				Х								•								
55-11	7/3/18 13:50	S	6	5	ς)	ĸ	:	x	x				X																
55-12	7/3/18 18:55	S	6		ĸ)	x	1	x	×				X																
55-13	7/3/18 14:05	5	ls	5	c			x	5	<u>y</u>	×				x									-							
55-14	7/3/18 14:10	\$	6		c		5	x	•	×	x				χ																
55-15	7/3/18 14:20	5	6		x			×		X	X				X																
88-06-FP	7/3/18 13:20	S	6		x			<u>×</u>		×	x				X														_		
	· · · ·																														
Matrix: A-Air; S-Soil; GW-Ground Waten WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; N	 r; SW-Surface Water; DW-Drink a-NaOH; M-MEOH	I KING W	/ATER;																												
PROJECT MANAGER:	Andrews	-			_	DAT	ΈN	leed	ED	S	tan	da	rd	T	AT	-		1		12			MF		8	RCRA	6	PP)	Fr	MN	Pr Cu
COMPANY: Nobis Eng	incering, Inc				_ ;	ΩΔ/()r	<u></u>	·			P	EDOI	TINC		TION		Ī	EMP	\mathcal{O}_{\cdot}	°°	C	· · · ·			menne				, 114	10, 00
ADDRESS: 18 Chenell -	Drive				_	REPO	RTIN	g Le	VEL			P	RELIMS	: YES	OR	No	13		.E?	ES	/ No		UIH	EK MEI	ALS;	•					
CITY: <u>Concoral</u> PHONE: 1002-204-449	STATE: <u>NE K</u> ⋧∽	ZIP:	053	301		А		В		C	-												SAT	1PLES	FIEL	d Fil	TERE	D?		YES [No
Fax:		CAI.:			-			OR				E	LECTI	SONIC	<u>O</u> P	TION	S	_					NOT	ES: (IE:)	SPECIAL	. DETEC	TION L	IMITS, B	ILLING	INFO, IF DI	(FFERENT)
E-MAIL: TAndrews Qui	nobiseng.com	L			_	Presu	JMPT	rive (Cert	TAIN	ty ∱	Ŀ	MAIL	PD		Equ	IIS	EXCE	L												
SITE NAME: LAVOIR Prop	perty J		_, _, _,		-1	SAMPLE	R(S):	N	ate	c /	Æ	T.	; / r	o +	1 e																
PROJECT #: 10105.00					- .		le-	le		-	-71	151	18	1): C	3	1	V	1	In	12	7									
REGULATORY PROGRAM: NPDES: RGP	POTW STORMWATER OR				- 1	RELIN	QUIS	SHED	By:		, Di	ATE:	·	Ť	ME:		RE	EIVED	BY	·	-3	-									
GWP, OIL FUND, BROWNF	Field OR OTHER:				BELINDIJISHED BY- DATE: TIME- RECEIVED RV. SITE HISTORY:																										
QUOTE #:	P0 #:						2013		1.		5	ril 6.					1120		וע.				Susp	ECTED	Contap	IINATIO	N:				
Eastern Analy	tical, Inc. 25	5 Сне	NELL	Drive	Cond	RELIN	QUIS NH (SHED 03301	Β γ: Τε	L: 603	D/ 3.228	ATE:	5 1 4	Ti 800 2	ME: 87.05	525	REC E-MA	EIVED	BY:	EDCED		 East	FIEL	D READ	INGS: _						

professional laboratory and drilling services

25 CHENELL DRIVE CONCORD, NH 03301 Tel: 603.228.0525 1.800.287.0525 E-Mail: CustomerService@EasternAnalytical.com www.EasternAnalytical.com

(WHITE: ORIGINAL GREEN: PROJECT MANAGER)

Eastern Analytical, Inc.

professional laboratory and drilling services

Tim Andrews Nobis Group 18 Chenell Drive Concord, NH 03301

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 184328 Client Identification: Lavoie Property Date Received: 7/17/2018

Dear Mr. Andrews:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R:%Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

<u>7.24.(8</u> Date

Client: Nobis Group

Client Designation: Lavoie Property

Temperat Acceptable	ture upon receipt (°C): temperature range (°C): 0-6	4.7	7 Received on ice or cold packs (Yes/No): Υ											
Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)								
184328.01	Trip Blank	7/17/18	7/16/18	soil		Canceled at customer's request								
184328.02	TP-01	7/17/18	7/16/18	soil	68.7	Adheres to Sample Acceptance Policy								
184328.03	TP-02	7/17/18	7/16/18	soil	90.5	Adheres to Sample Acceptance Policy								
184328.04	TP-03	7/17/18	7/16/18	soil	93.3	Adheres to Sample Acceptance Policy								
184328.05	TP-04	7/17/18	7/16/18	soil	87.7	Adheres to Sample Acceptance Policy								
184328.06	TP-05	7/17/18	7/16/18	soil	82.3	Adheres to Sample Acceptance Policy								
184328.07	TP-05FD	7/17/18	7/16/18	soil	85.7	Adheres to Sample Acceptance Policy								

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th Edition, 1998 and 22nd Edition, 2012

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 2nd edition, 1992

Client: Nobis Group

Client Designation: Lavoie Property

Sample ID:	TP-01	TP-02	TP-03	TP-04	TP-05	TP-05FD	
	101000.00						
Lab Sample ID:	184328.02	184328.03	184328.04	184328.05	184328.06	184328.07	
Matrix:	soil	soil	soil	soil	soil	soil	
Date Sampled:	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	
Date Received:	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Date of Analysis:	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	
Analyst:	VG	VG	VG	VG	VG	VG	
Method:	8260C	8260C	8260C	8260C	8260C	8260C	
Dilution Factor:	2	1	1	1	1	1	
Dichlorodifluoromethane	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Unioromethane Vinvlichloride	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Bromomethane	< 0.4	< 0.2	< 0.2	< 0.2	< 0.3	< 0.1	
Chloroethane	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Trichlorofluoromethane	< 0.2	0.55	< 0.1	< 0.1	< 0.1	< 0.1	
Diethyl Ether	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1 1-Dichloroethene	< 4 < 0 1	ے > 0 0 م >	< 0.05	< 2 < 0.06	< 3	< 3	
tert-Butyl Alcohol (TBA)	< 4	< 2	< 2	< 2	< 3	< 3	
Methylene chloride	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Carbon disulfide	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
Methyl-t-butyl ether(MIBE)	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
isopropyl ether(DIPE)	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
tert-amyl methyl ether(TAME)	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
trans-1,2-Dichloroethene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1,1-Dichloroethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
cis-1 2-Dichloroethene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
2-Butanone(MEK)	< 1	< 0.6	< 0.5	< 0.6	< 0.7	< 0.7	
Bromochloromethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
Tetrahydrofuran(THF)	< 1	< 0.6	< 0.5	< 0.6	< 0.7	< 0.7	
Chloroform 1.1.1-Trichloroethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
Carbon tetrachloride	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1,1-Dichloropropene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
Benzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1,2-Dichloroethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1 2-Dichloropropane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
Dibromomethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
Bromodichloromethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1,4-Dioxane	< 6	< 4	< 3	< 4	< 4	< 4	
4-Methyl-2-pentanone(MIBK)	< 1	< 0.6	< 0.5	< 0.6	< 0.7	< 0.7	
Toluene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
trans-1,3-Dichloropropene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1,1,2-Trichloroethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
2-Hexanone	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
1.3-Dichloropropane	< 0.1	< 0.06 < 0.06	< 0.05	< 0.00 < 0.06	< 0.07 < 0.07	< 0.07 < 0.07	
Dibromochloromethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
1,2-Dibromoethane(EDB)	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
Chlorobenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07	
i, i, i, z-i etracnioroetnane Ethvihenzene	< 0.1 < 0.1	< 0.06 < 0.06	< 0.05 < 0.05	< 0.06	< 0.07	< 0.07	
	- 0.1	- 0.00	- 0.00	~ 0.00	- 0.07	~ 0.07	

Client: Nobis Group

Client Designation: Lavoie Property

Sample ID:	TP-01	TP-02	TP-03	TP-04	TP-05	TP-05FD
Lab Sample ID:	184328.02	184328.03	184328.04	184328.05	184328.06	184328.07
Matrix:	soil	soil	soil	soil	soil	soil
Date Sampled:	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18
Date Received:	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka
Date of Analysis:	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18
Analyst:	VG	VG	VG	VG	VG	VG
Method:	8260C	8260C	8260C	8260C	8260C	8260C
Dilution Factor:	2	1	1	1	1	1
	-					
mp-Xylene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
Styrene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
Bromoform	< 0.1	< 0.00	< 0.05	< 0.00	< 0.07	< 0.07
IsoPropylbenzene	< 0.1	< 0.00	< 0.00	< 0.00	< 0.07	< 0.07
Bromobenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
1,1,2,2-Tetrachloroethane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
1,2,3-Trichloropropane	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
n-Propylbenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
2-Chlorotoluene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
4-Chlorotoluene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
1,3,5-Trimethylbenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
tert-Butylbenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
1,2,4-Trimethylbenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
sec-Butylbenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
	· < 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
p-isopropyitoluene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
1,4-Dichlorobenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
n-Butylbenzene	< 0.1	< 0.00	< 0.05	< 0.06	< 0.07	< 0.07
1 2-Dibromo-3-chloropropane	< 0.1	< 0.06	< 0.05	< 0.00	< 0.07	< 0.07
1.3.5-Trichlorobenzene	< 0.1	< 0.00	< 0.00	< 0.00	< 0.07	< 0.07
1.2.4-Trichlorobenzene	< 0.1	< 0.06	< 0.05	< 0.00	< 0.07	< 0.07
Hexachlorobutadiene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
Naphthalene	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
1,2,3-Trichlorobenzene	< 0.1	< 0.06	< 0.05	< 0.06	< 0.07	< 0.07
4-Bromofluorobenzene (surr)	102 %R	104 %R	98 %R	102 %R	99 %R	101 %R
1,2-Dichlorobenzene-d4 (surr)	106 %R	103 %R	101 %R	105 %R	105 %R	103 %R
2,5-Dibromotoluene (surr)	100 %R	91 %R	129 %R	132 %R	92 %R	106 %R
Toluene-d8 (surr)	89 %R	91 %R	92 %R	90 %R	89 %R	91 %R
1,2-Dichloroethane-d4 (surr)	97 %R	93 %R	95 %R	97 %R	93 %R	97 %R

TP-01: Reporting limits are elevated due to the % solids content of the sample or the sample mass used for analysis.

M

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property

Sample ID:	TP-01	TP-02	TP-03	TP-04	TP-05	TP-05FD	
Lab Sample ID:	184328.02	184328.03	184328.04	184328.05	184328.06	184328.07	
Matrix:	soil	soil	soil	soil	soil	soil	
Date Sampled:	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	
Date Received:	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Date of Extraction/Prep:	7/18/18	7/18/18	7/18/18	7/18/18	7/18/18	7/18/18	
Date of Analysis:	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	
Analyst:	JMR	JMR	JMR	JMR	JMR	JMR	
Method:	8270D	8270D	8270D	8270D	8270D	8270D	
Dilution Factor:	1	1	1	1	1	1	
Naphthalana	- 0 1	< 0.00	< 0.07	< 0.00	< 0.00	< 0.00	
2-Methylnaphthalene	< 0.1 0.17	< 0.08	< 0.07	< 0.08	< 0.08	< 0.08	
1-Methyinaphthalene	0.17	< 0.08	< 0.07	< 0.08	< 0.08	< 0.08	
Acenaphthylene	< 0.11	< 0.08	< 0.07	< 0.08	< 0.08	0.083	
Acenaphthene	0.11	< 0.08	< 0.07	< 0.08	< 0.08	< 0.08	
Fluorene	0.12	< 0.08	< 0.07	< 0.08	< 0.08	< 0.08	
Phenanthrene	0.90	0.095	0.093	< 0.08	0.13	0.19	
Anthracene	0.29	< 0.08	< 0.07	< 0.08	< 0.08	< 0.08	
Fluoranthene	2.1	0.18	0.13	0.13	0.35	0.46	
P y rene	1.5	0.13	0.096	0.11	0.29	0.38	
Benzo[a]anthracene	0.99	< 0.08	< 0.07	< 0.08	0.15	0.19	
Chrysene	1.2	0.093	< 0.07	0.080	0.19	0.25	
Benzo[b]fluoranthene	1.7	0.12	0.077	0.10	0.23	0.32	
Benzo[k]fluoranthene	0.62	< 0.08	< 0.07	< 0.08	0.085	0.11	
Benzo[a]pyrene	1.1	< 0.08	< 0.07	< 0.08	0.15	0.21	
Indeno[1,2,3-cd]pyrene	0.48	< 0.08	< 0.07	< 0.08	0.096	0.10	
Dibenz[a,h]anthracene	0.12	< 0.08	< 0.07	< 0.08	< 0.08	< 0.08	
Benzo[g,h,i]perylene	0.40	< 0.08	< 0.07	< 0.08	0.082	0.087	
p-Terphen y l-D14 (surr)	64 %R	62 %R	79 %R	71 %R	62 %R	55 %R	

LABORATORY REPORT

EAI ID#: 184328

Client: Nobis Group

Client Designation: Lavoie Property

Sample ID:	TP-01	TP-02	TP-03	TP-04	TP-05	TP-05FD	
	10 (000 00	40 4000 00	101000.01	10/000 05	40 4000 00	404000.07	
Lab Sample ID:	184328.02	184328.03	184328.04	184328.05	184328.06	184328.07	
Matrix:	soil	soil	soil	soil	soil	soil	
Date Sampled:	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	
Date Received:	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Date of Extraction/Prep:	7/18/18	7/18/18	7/18/18	7/18/18	7/18/18	7/18/18	
Date of Analysis:	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	
Analyst:	MA	MA	MA	MA	MA	MA	
Method:	8015CDRO	8015CDRO	8015CDRO	8015CDRO	8015CDRO	8015CDRO	
Dilution Factor:	1	1	1	1	1	1	
DRO (Diesel Range C10-C28) p-Terphenyl-D14 (surr)	190 85 %R	53 67 %R	34 78 %R	35 69 %R	59 66 %R	91 61 %R	

M

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property

Sample ID:	TP-01	TP-02	TP-03	TP-04	TP-05	TP-05FD	
Lab Sample ID:	184328.02	184328.03	184328.04	184328.05	184328.06	184328.07	
Matrix:	soil	soil	soil	soil	soil	soil	
Date Sampled:	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	7/16/18	
Date Received:	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	7/17/18	
% Solid:	68.7	90.5	93.3	87.7	82.3	85.7	
Units:	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
Date of Extraction/Prep:	7/18/18	7/18/18	7/18/18	7/18/18	7/18/18	7/18/18	
Date of Analysis:	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	7/19/18	
Analyst:	SG	SĢ	SG	SG	SG	SG	
Extraction Method:	3540C	3540C	3540C	3540C	3540C	3540C	
Analysis Method:	8082A	8082A	8082A	8082A	8082A	8082A	
Dilution Factor:	1	1	1	1	1	1	
PCB-1016	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
PCB-1221	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
PCB-1232	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
PCB-1242	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
PCB-1248	< 0.02	0.64	< 0.02	< 0.02	< 0.02	< 0.02	
PCB-1254	7.4	0.22	< 0.02	< 0.02	0.025	0.021	
PCB-1260	4.7	0.089	< 0.02	< 0.02	0.033	0.032	
PCB-1262	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
PCB-1268	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	
TMX (surr)	73 %R	90 %R	90 %R	90 %R	89 %R	81 %R	
DCB (surr)	85 %R	75 %R	79 %R	81 %R	86 %R	76 %R	

Acid clean-up was performed on the samples and associated batch QC.

TP-01: PCB-1254 and PCB-1260 result obtained from a 25X dilution analyzed on 7/19/2018.

TP-02: PCB-1248 result obtained from a 4X dilution analyzed on 7/19/2018.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property

Sample ID:	TP-01	TP-02	TP-03	TP-04					
Lab Sample ID:	184328.02	184328.03	184328.04	184328.05					
Matrix:	soil	soil	soil	soil					
Date Sampled:	7/16/18	7/16/18	7/16/18	7/16/18	Analytical		Date of		
Date Received:	7/17/18	7/17/18	7/17/18	7/17/18	Matrix	Units	Analysis	Method	Analyst
Date Accented.	/////10	/////0	/////10	/////0					
Antimony	33	3.6	0.79	0.59	SolTotDry	mg/kg	7/19/18	6020	DS
Arsenic	21	4.7	4.3	7.1	SolTotDry	mg/kg	7/19/18	6020	DS
Beryllium	< 0.5	< 0.5	< 0.5	0.71	SolTotDry	mg/kg	7/19/18	6020	DS
Cadmium	14	3.5	0.57	< 0.5	SollotDry	mg/kg	7/19/18	6020	05
Chromium	50	18	13	16	SollotDry	mg/kg	7/19/18	6020	05
Copper	350	130	92	120	SollotDry	mg/kg	7/19/18	6020	05
Lead	430	150	48	40	SollotDry	mg/kg	7/19/18	6020	05
Mercury	3.8	1.1	0.13	< 0.1	SollotDry	mg/kg	7/19/18	6020	00
Nickel	73	26	9.2	8.2	SolitotDry	mg/kg	7/19/10	6020	00
Selenium	1.0	1.5	1.0	1.6	SollotDiy	mg/kg	7/19/10	6020	
	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	7/10/10	6020	00
	< 0.0	< 0.5	< 0.5 60	< 0.0	SolTotDry	mg/kg	7/10/19	6020	20
ZINC	3100	350	00	00	Controlbry	mg/kg	110/10	0020	20
Sample ID:	TP-05	TP-05FD							
Lab Sample ID:	184328.06	184328.07							
Matrix	soil	soil		· .					
Data Sampladi	7/10/19	7/16/19			Analytical		Date of		
Date Sampled:	//10/18	7/10/18			Matrix	Units	Analysis	Method	Analyst
Date Received:	//1//18	//1//18				••••••			· · · · · · · · · · · · · · · · · · ·
Antimony	1.4	7.4	•		SolTotDry	mg/kg	7/19/18	6020	DS
Arsenic	4.5	5.8			SolTotDry	mg/kg	7/19/18	6020	DS
Beryllium	0.76	0.63			SolTotDry	mg/kg	7/19/18	6020	DS
Cadmium	2.3	3.8			SolTotDry	mg/kg	7/19/18	6020	DS
Chromium	20	22		:	SolTotDry	mg/kg	7/19/18	6020	DS
Copper	900	2500			SolTotDry	mg/kg	7/19/18	6020	DS
Lead	200	870			SolTotDry	mg/kg	7/19/18	6020	DS
Mercury	0.15	0.2			SolTotDry	mg/kg	7/19/18	6020	DS
Nickel	13	17			SolTotDry	mg/kg	7/19/18	6020	DS
Selenium	1.7	1.3			SolTotDry	mg/kg	7/19/18	6020	DS
Silver	< 0.5	0.68			SolTotDry	mg/kg	7/19/18	6020	DS
Thallium	< 0.5	< 0.5			SolTotDry	mg/kg	7/19/18	6020	DS
Zinc	180	270			SolTotDry	mg/kg	7/19/18	6020	DS

Page	of					С	HAI	N-O	OF-C	US	TOD	y F	REC	OR	D			Ļ)			F		1	813		
			B	OLD	FIELD	s Re	QUI	RED.	PLE	ASE		CLE	Re	QUE	STE	D A	NA	LYS	IS.							'	043	528	
S	AMPLE I.D.	Sampling Date / Time *If Composite Indicate Both Start & Finish Date / Time	MATRIX (SEE BELOW)	GRAB/*COMPOSITE	524.2 524.2 BTEX 524.2 MTBE ONLY 8260 56 VTICS	1, 4 DIOXANE 8021 BTEX HALOS	8015 GRO MAVPH	8270 625 SVITC EDB DBCP ABN A BN (PAH)	TPH8100 LI L2 BOIS DRO 3 MAFPH	PEST 608 PCB 608	PEST 8081 (PCB 8082) Oll & Grease 1664 TPH 1664	TCLP 1311 ABN METALS VOC PEST HERB	DISSOLVED METALS (LIST BELOW)	TOTAL METALS (LIST BELOW)	TS TDS SPEC. CON.	Br CI F SO4 NO2 NO3 NO3NO2	BOD CBOD T. ALK.	TKN NH3 I. PHOS. O. PHOS.	pH T. Res. Chlorine	COD PHENOLS TOC DOC	Total Cvanide Total Sulfide	Reactive Cvanide Reactive Sulfide Flashpoint Ignitability	TOTAL COLIFORM E. COLI FECAL COLIFORM	ENTEROCOCCI Heterotrophic Plate Count			# of Containers	N MeOł	otes † Vial :
X TET	PBLANC	7/1/18				9												_											
T	P-01	1 11:30	>	X		0		$\left \mathbf{\mathcal{A}} \right $	ΪX	Эy	0			\Diamond															
7	-P-02	11:4	5	ý		0		X	۲. ا	οY	0			Y)											_				
	TP-03	12:1	D	Ý		0		$\langle \rho \rangle$	5	07	0		-	$\left \right\rangle$															
7	-P-04	(2:3:	5	V		0		X	ľ,	0)	Ø			X															
T	-P-05	1 13:0	0	Ń		D		X	1	$\langle \rangle$	0			Ý															
T	P-05FD	13:0	1	X		0		6	X		ρ			\checkmark															
Matrix: A-Ai WW Preservative:	r; S-Soil; GW-Ground Wate -Waste water H-HCL; N-HNO3; S-H2SO4;	I er; SW-Surface Water; DW- Na-NaOH; M-MEOH	I Drinking	WATER;																									
PROJECT R COMPANY: Address: City:C PHONE:(2)	1anager: <u>TIM A</u> NOBIS <u>8 CHENNEL</u> ONCORD 03 - Z24 - 4	NDREWS DR STATE: NH	Zip: Ext.:	DE	301	Q Q R	ATE A/QC EPORT A	NEE ING L	DED:	c	TA :	<u>Repo</u> Prelim) (A) ORTIN MS: YES	<u>CD</u> G OF 5 OR	PTION No	À T Is	T	EMP [E?	4. Yes	7 } No	ະ	MET Othe Sam Note	FALS: IR MET/ IPLES	8 ALS: Field Special	rcra d Filt Detect	(13)		Fe, Mn Yes	PB,
FAX:	TOUDIELLE	DUMPICTUG	<u></u>				RESUIN	O 1PTIVE	K Cert		$\frac{1}{2}$	E-MAIL	IRONI L P	COP DF	PTION Equ	s Ks	EXCE	L					,						
E-MAIL: Site Name:	LANDIE PR	DODERTY	ιυη	n		-[''	۸ <u>د</u>	1	Δ.	-41 1 1	' '																		
PROJECT #:		·····	· · · · ·			_ SA	MPLER(s):		- <i>A</i>	7.1	7-1	<i>r</i>		 ò			7	1	7	<u>v</u>								
STATE:	IH) MA ME	VT OTHER:				- <u>k</u>	A. ¢Lino	UISHEI	D BY:		DATE	:	U / 1	TIME:	\leq	RE	CEIVED	<i>Ivr_</i> By:	Left										
REGULATORY	GWP OIL FIND ROOM	P POTW STORMWATER OR					/	L	\geq	_		···				<u> </u>						SITE	Histor	Y:					
	GIVE, OIL FUND, DAUWAN	111LLU UN UTALN:				— R	ELINQ	UISHE	d By:		DATE	:	1	TIME:		Re	CEIVED	By:			i	CUCD		CONTLN			· · · · · -		
QUINTE #•		P0 #•																				2031		CUNTAR	IINATION	l:		·····	

(WHITE: ORIGINAL GREEN: PROJECT MANAGER)

Eastern Analytical, Inc.

professional laboratory and drilling services

Tim Andrews Nobis Group 18 Chenell Drive Concord , NH 03301

Subject: Laboratory Report

Eastern Analytical, Inc. ID: 186678 Client Identification: Lavoie Property / 70705.00 Date Received: 9/14/2018

Dear Mr. Andrews:

Enclosed please find the laboratory report for the above identified project. All analyses were performed in accordance with our QA/QC Program. Unless otherwise stated, holding times, preservation techniques, container types, and sample conditions adhered to EPA Protocol. Samples which were collected by Eastern Analytical, Inc. (EAI) were collected in accordance with approved EPA procedures. Eastern Analytical, Inc. certifies that the enclosed test results meet all requirements of NELAP and other applicable state certifications. Please refer to our website at www.easternanalytical.com for a copy of our NELAP certificate and accredited parameters.

The following standard abbreviations and conventions apply to all EAI reports:

- Solid samples are reported on a dry weight basis, unless otherwise noted
- < : "less than" followed by the reporting limit
- > : "greater than" followed by the reporting limit
- %R:%Recovery

Eastern Analytical Inc. maintains certification in the following states: Connecticut (PH-0492), Maine (NH005), Massachusetts (M-NH005), New Hampshire/NELAP (1012), Rhode Island (269), Vermont (VT1012) and New York (12072).

The following information is contained within this report: Sample Conditions summary, Analytical Results/Data, Quality Control data (if requested) and copies of the Chain of Custody. This report may not be reproduced except in full, without the the written approval of the laboratory.

If you have any questions regarding the results contained within, please feel free to directly contact me or the chemist(s) who performed the testing in question. Unless otherwise requested, we will dispose of the sample (s) 30 days from the sample receipt date.

We appreciate this opportunity to be of service and look forward to your continued patronage.

Sincerely,

Lorraine Olashaw, Lab Director

<u>10.2.18</u> Date

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Temperature upon receipt (°C): Acceptable temperature range (°C): 0-6		4.7		Received on ice or cold packs (Yes/No): γ						
Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)				
1 866 78.01	CS-1	9/14/18	9/13/18	solid	95.4	Adheres to Sample Acceptance Policy				
1 866 78.02	CS-FD01	9/14/18	9/13/18	solid	86.2	Adheres to Sample Acceptance Policy				
1 8 6678.03	CS-2	9/14/18	9/13/18	solid	94.7	Adheres to Sample Acceptance Policy				
1 866 78.04	S11-1A	9/14/18	9/13/18	solid	67.3	Adheres to Sample Acceptance Policy				
186 678.05	S11-2A	9/14/18	9/13/18	solid	72.9	Adheres to Sample Acceptance Policy				
1 86 678.06	S11-3A	9/14/18	9/13/18	solid	58.1	Adheres to Sample Acceptance Policy				
1 8 6678.07	S11-4A	9/14/18	9/13/18	solid	6 8.2	Adheres to Sample Acceptance Policy				
1 866 78.08	S11-4B	9/14/18	9/13/18	solid	69.0	Adheres to Sample Acceptance Policy				
1866 78.09	S11-5A	9/14/18	9/13/18	solid	58.5	Adheres to Sample Acceptance Policy				
18 6678.1	S11-5B	9/14/18	9/13/18	solid	68.8	Adheres to Sample Acceptance Policy				
1 8 6678.11	S11-5C	9/14/18	9/13/18	solid	67.8	Adheres to Sample Acceptance Policy				
1866 78.12	S11-6A	9/14/18	9/13/18	solid	72.3	Adheres to Sample Acceptance Policy				
1 8667 8.13	S11-6B	9/14/18	9/13/18	solid	68. 6	Adheres to Sample Acceptance Policy				
1 8 6678.14	S11-7A	9/14/18	9/13/18	solid	49.3	Adheres to Sample Acceptance Policy				
1 8667 8.15	S11-7B	9/14/18	9/13/18	solid	75.7	Adheres to Sample Acceptance Policy				
18 6678.16	S11-8A	9/14/18	9/13/18	solid	79.1	Adheres to Sample Acceptance Policy				
1 866 78.17	S11-9A	9/14/18	9/13/18	solid	76.2	Adheres to Sample Acceptance Policy				
1 86 678.18	S11-9B	9/ 1 4/18	9/13/18	solid	82.0	Adheres to Sample Acceptance Policy				
1866 78.19	S11-9C	9/14/18	9/13/18	solid	73. 3	Adheres to Sample Acceptance Policy				
1 8 6678.2	S11-10A	9/14/18	9/13/18	solid	73.5	Adheres to Sample Acceptance Policy				
186 678.21	S11-11A	9/14/18	9/13/18	solid	63.5	Adheres to Sample Acceptance Policy				
1 866 78.22	S11-11B	9/14/18	9/13/18	solid	64.0	Adheres to Sample Acceptance Policy				

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 4th edition, 1992

M

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Temperature upon receipt (°C): Acceptable temperature range (°C): 0-6		4.7		Received on ice or cold packs (Yes/No): Y								
Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)						
186678.23	S11-11C	9/14/18	9/13/18	solid	71.3	Adheres to Sample Acceptance Policy						
186678.24	SS-11B	9/14/18	9/13/18	solid	68.3	Adheres to Sample Acceptance Policy						
186678.25	SS-11C	9/14/18	9/13/18	solid	56.2	Adheres to Sample Acceptance Policy						
1 866 78.26	S11-12A	9/14/18	9/13/18	solid	73.1	Adheres to Sample Acceptance Policy						
186678.27	S11-13A	9/14/18	9/13/18	solid	66.2	Adheres to Sample Acceptance Policy						
186678.28	S12-1	9/14/18	9/13/18	solid	57.6	Adheres to Sample Acceptance Policy						
1 866 78.29	S12-2	9/14/18	9/13/18	solid	66.3	Adheres to Sample Acceptance Policy						
1 866 78.3	S12-3	9/14/18	9/13/18	solid	57.6	Adheres to Sample Acceptance Policy						
1 86 678.31	S12-4	9/14/18	9/13/1 8	solid	68,9	Adheres to Sample Acceptance Policy						
186678.32	S12-5	9/14/18	9/13/18	solid	72.1	Adheres to Sample Acceptance Policy						
1 866 78.33	S12-6	9/14/18	9/13/18	solid	68.2	Adheres to Sample Acceptance Policy						
186678.34	S12-7	9/14/18	9/13/18	solid	70.7	Adheres to Sample Acceptance Policy						
186678.35	S12-8	9/14/18	9/13/18	solid	70.8	Adheres to Sample Acceptance Policy						
186678.36	S12-9	9/14/18	9/13/18	solid	73.6	Adheres to Sample Acceptance Policy						
1866 78.37	SS-12B	9/14/18	9/13/18	solid	76.0	Adheres to Sample Acceptance Policy						
1866 78.38	M-1	9/14/18	9/13/18	solid	76.3	Adheres to Sample Acceptance Policy						
1 8 6678.39	SS-10B	9/14/18	9/13/18	solid	79.9	Adheres to Sample Acceptance Policy						
186678.4	SS-10C	9/14/18	9/13/18	solid	86.6	Adheres to Sample Acceptance Policy						
186678.41	M-2	9/14/18	9/13/18	solid	84.9	Adheres to Sample Acceptance Policy						
186678.42	M-3	9/14/18	9/13/18	solid	80.5	Adheres to Sample Acceptance Policy						
186678.43	M-4	9/14/18	9/13/18	solid	60.9	Adheres to Sample Acceptance Policy						
1 8 6678.44	M-5	9/14/18	9/13/18	solid	66.3	Adheres to Sample Acceptance Policy						

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 4th edition, 1992

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

M

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Temperature upon receipt (°C): Acceptable temperature range (°C): 0-6		4.7		Received on ice or cold packs (Yes/No): Y						
Lab ID	Sample ID	Date Received	Date Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)				
186678.45	M-6	9/14/18	9/13/18	solid	75.8	Adheres to Sample Acceptance Policy				
1866 78.46	SS-03B	9/14/18	9/13/18	solid	79.8	Adheres to Sample Acceptance Policy				
186678.47	SS-05B	9/14/18	9/13/18	solid	92.6	Adheres to Sample Acceptance Policy				
186678.48	SS-05C	9/14/18	9/13/18	solid	82.6	Adheres to Sample Acceptance Policy				
1866 78.49	M-7	9/14/18	9/13/18	solid	79.8	Adheres to Sample Acceptance Policy				
186678.5	M-8	9/14/18	9/13/18	solid	72.8	Adheres to Sample Acceptance Policy				
1866 78.51	M-FDUP5	9/14/18	9/13/18	solid	77.5	Adheres to Sample Acceptance Policy				
1 866 78.52	S7-1	9/14/18	9/13/18	solid	80.8	Adheres to Sample Acceptance Policy				
186 678.53	S7-2	9/14/18	9/13/18	solid ·	68.6	Adheres to Sample Acceptance Policy				
1 866 78.54	S7-3	9/14/18	9/13/18	solid	55.5	Adheres to Sample Acceptance Policy				
18 6678.55	S7-4	9/14/18	9/13/18	solid	45.2	Adheres to Sample Acceptance Policy				
186678.56	S7-5	9/14/18	9/13/18	solid	83.9	Adheres to Sample Acceptance Policy				
1 866 78.57	S7-FDUP5	9/14/18	9/13/18	solid	83.0	Adheres to Sample Acceptance Policy				
186678.58	S7-6	9/14/18	9/13/18	solid	80.3	Adheres to Sample Acceptance Policy				
1866 78.59	S7-7	9/14/18	9/13/18	solid	42.7	Adheres to Sample Acceptance Policy				
186678.6	S7-8	9/14/18	9/13/18	solid	60. 6	Adheres to Sample Acceptance Policy				
186678.61	S7-9	9/14/18	9/13/18	solid	77.8	Adheres to Sample Acceptance Policy				
186678.62	S7-FDUP9	9/14/18	9/13/18	solid	74.2	Adheres to Sample Acceptance Policy				
1866 78.63	M-FDUP7	9/14/18	9/13/18	solid	80.3	Adheres to Sample Acceptance Policy				
186678.64	SS-06B	9/14/18	9/13/18	solid	84.5	Adheres to Sample Acceptance Policy				
186 678.65	SS-06C	9/14/18	9/13/18	solid	93.0	Adheres to Sample Acceptance Policy				
186678.66	SS-07B	9/14/18	9/13/18	solid	85.8	Adheres to Sample Acceptance Policy				

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 4th edition, 1992

SAMPLE CONDITIONS PAGE

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Temperat Acceptable to	ure upon receipt (°C): emperature range (°C): 0-6	4.7		Re	eceived	on ice or cold packs (Yes/No): Υ
Lab ID	Sample ID	Date Received	Date I Sampled	Sample Matrix	% Dry Weight	Exceptions/Comments (other than thermal preservation)
186678.67	SS-07C	9/14/18	9/13/18	solid	91.2	Adheres to Sample Acceptance Policy

Samples were properly preserved and the pH measured when applicable unless otherwise noted. Analysis of solids for pH, Flashpoint, Ignitability, Paint Filter, Corrosivity, Conductivity and Specific Gravity are reported on an "as received" basis.

Immediate analyses, pH, Total Residual Chlorine, Dissolved Oxygen and Sulfite, performed at the laboratory were run outside of the recommended 15 minute hold time.

All results contained in this report relate only to the above listed samples.

References include:

1) EPA 600/4-79-020, 1983

2) Standard Methods for Examination of Water and Wastewater, 20th, 21st, 22nd & 23rd Edition or noted Revision year.

3) Test Methods for Evaluating Solid Waste SW 846 3rd Edition including updates IVA and IVB

4) Hach Water Analysis Handbook, 4th edition, 1992

Eastern Analytical, Inc.

www.easternanalytical.com | 800.287.0525 | customerservice@easternanalytical.com

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	CS-1								
Lab Sample ID:	186678.01								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1260	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	10:59	9/17/18	8082A	SG
TMX (surr)	68 %R			%	9/18/18	10:59	9/17/18	8082A	SG
DCB (surr)	32 %R			%	9/18/18	10:59	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	CS-FD01								
Lab Sample ID:	186678.02								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Time	Date		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1260	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	11:09	9/17/18	8082A	SG
TMX (surr)	70 %R			%	9/18/18	11:09	9/17/18	8082A	SG
DCB (surr)	33 %R			%	9/18/18	11:09	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	CS-2								
Lab Sample ID:	186678.03								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1260	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	11:18	9/17/18	8082A	SG
TMX (surr)	79 %R			%	9/18/18	1 1 :18	9/17/18	8082A	SG
DCB (surr)	32 %R			%	9/18/18	11:18	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

8

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-1A								
Lab Sample ID:	186678.04								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Timo	Date		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	11:28	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	11:28	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	11:28	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	11:28	9/17/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/18/18	11:28	9/17/18	8082A	SG
PCB-1254	8.4	0.6	37	mg/kg	9/18/18	15:14	9/17/18	8082A	SG
PCB-1260	1.6	0.6	37	mg/kg	9/18/18	15:14	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	11:28	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	11:28	9/17/18	8082A	SG
TMX (surr)	71 %R			%	9/18/18	11:28	9/17/18	8082A	SG
DCB (surr)	57 %R			%	9/18/18	11:28	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-2A								
Lab Sample ID:	186678.05								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Timo	Date		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	11:38	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	11:38	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	11:38	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	11:38	9/17/18	8082A	SG
PCB-1248	0.65	0.09	5	mg/kg	9/18/18	15:23	9/17/18	8082A	SG
PCB-1254	0.86	0.09	5	mg/kg	9/18/18	15:23	9/17/18	8082A	SG
PCB-1260	0.53	0.09	5	mg/kg	9/18/18	15:23	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	11:38	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	11:38	9/17/18	8082A	SG
TMX (surr)	84 %R			%	9/18/18	11:38	9/17/18	8082A	SG
DCB (surr)	70 %R			%	9/18/18	11:38	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID: Matrix: Date Sampled:	S11-3A 186678.06 solid 9/13/18								
Date Received:	9/14/18 Result	RL	Dilution Factor	Units	Date / Analy	Time /zed	Date Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/18/18	11:48	9/17/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/18/18	11:48	9/17/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/18/18	11:48	9/17/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/18/18	11:48	9/17/18	8082A	SG
PCB-1248	1.4	0.1	7	mg/kg	9/18/18	15:33	9/17/18	8082A	SG
PCB-1254	1.2	0.1	7	mg/kg	9/18/18	15:33	9/17/18	8082A	SG
PCB-1260	0.37	0.03	2	mg/kg	9/18/18	11:48	9/17/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/18/18	11:48	9/17/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/18/18	11:48	9/17/18	8082A	SG
TMX (surr)	76 %R			%	9/18/18	11:48	9/17/18	8082A	SG
DCB (surr)	74 %R			%	9/18/18	11:48	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-4A								
Lab Sample ID:	186678.07								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Time	Date		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	11:57	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	11:57	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	11:57	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	11:57	9/17/18	8082A	SG
PCB-1248	8.4	1	57	mg/kg	9/18/18	15:43	9/17/18	8082A	SG
PCB-1254	8.9	1	57	mg/kg	9/18/18	15:43	9/17/18	8082A	SG
PCB-1260	1.2	0.1	7	mg/kg	9/18/18	15:53	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	11:57	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	11:57	9/17/18	8082A	SG
TMX (surr)	85 %R			%	9/18/18	11:57	9/17/18	8082A	SG
DCB (surr)	79 %R			%	9/18/18	11:57	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-4B								
Lab Sample ID:	186678.08								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data (Ti	Data		
	Result	RL	Factor	Units	Date / Analy	rime vzed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	12:07	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	12:07	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	12:07	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	12:07	9/17/18	8082A	SG
PCB-1248	0.43	0.1	6	mg/kg	9/18/18	16:02	9/17/18	8082A	SG
PCB-1254	0.70	0.1	6	mg/kg	9/18/18	16:02	9/17/18	8082A	SG
PCB-1260	0.51	0.1	6	mg/kg	9/18/18	16:02	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	12:07	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	12:07	9/17/18	8082A	SG
TMX (surr)	88 %R			%	9/18/18	12:07	9/17/18	8082A	SG
DCB (surr)	74 %R			%	9/18/18	12:07	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-5A								
Lab Sample ID:	186678.09								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Dete		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/18/18	12:17	9/17/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/18/18	12:17	9/17/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/18/18	12:17	9/17/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/18/18	12:17	9/17/18	8082A	SG
PCB-1248	6.3	0.6	34	mg/kg	9/18/18	16:12	9/17/18	8082A	SG
PCB-1254	8.2	0.6	34	mg/kg	9/18/18	16:12	9/17/18	8082A	SG
PCB-1260	2.1	0.6	34	mg/kg	9/18/18	16:12	9/17/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/18/18	12:17	9/17/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/18/18	12:17	9/17/18	8082A	SG
TMX (surr)	79 %R			%	9/18/18	12:17	9/17/18	8082A	SG
DCB (surr)	63 %R			%	9/18/18	12:17	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-5B								
Lab Sample ID:	186678.1								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Dete		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
PCB-1248	0.20	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
PCB-1254	0.31	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
PCB-1260	1.0	0.1	6	mg/kg	9/18/18	16:2 2	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	12:26	9/17/18	8082A	SG
TMX (surr)	75 %R			%	9/18/18	12:26	9/17/18	8082A	SG
DCB (surr)	56 %R			%	9/18/18	12:26	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-5C								
Lab Sample ID:	186678.11								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data (Time	Dete		
	Result	RL	Factor	Units	Date / Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	12:36	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	12:36	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	12:36	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	12:36	9/17/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/18/18	12:36	9/17/18	8082A	SG
PCB-1254	1.6	0.1	7	mg/kg	9/18/18	16:32	9/17/18	8082A	SG
PCB-1260	1.2	0.1	7	mg/kg	9/18/18	16:32	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	12:36	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	12:36	9/17/18	8082A	SG
TMX (surr)	79 %R			%	9/18/18	12:36	9/17/18	8082A	SG
DCB (surr)	91 %R			%	9/18/18	12:36	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-6A								
Lab Sample ID:	186678.12								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	12:46	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	12:46	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	12:46	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	12:46	9/17/18	8082A	SG
PCB-1248	0.85	0.1	7	mg/kg	9/18/18	16:41	9/17/18	8082A	SG
PCB-1254	1.4	0.1	7	mg/kg	9/18/18	16:41	9/17/18	8082A	SG
PCB-1260	0.33	0.02	1	mg/kg	9/18/18	12:46	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	12:46	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	12:46	9/17/18	8082A	SG
TMX (surr)	76 %R			%	9/18/18	12:46	9/17/18	8082A	SG
DCB (surr)	53 %R			%	9/18/18	12:46	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-6B								
Lab Sample ID:	186678.13								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Dete 1	T !			
	Result	RL	Factor	Units	Analy	rime vzed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	12:56	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	12:56	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	12:56	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	12:56	9/17/18	8082A	SG
PCB-1248	1.4	0.2	14	mg/kg	9/18/18	16:51	9/17/18	8082A	SG
PCB-1254	3.4	0.2	14	mg/kg	9/18/18	16:51	9/17/18	8082A	SG
PCB-1260	1.2	0.2	14	mg/kg	9/18/18	16:51	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	12:56	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	12:56	9/17/18	8082A	SG
TMX (surr)	62 %R			%	9/18/18	12:56	9/17/18	8082A	SG
DCB (surr)	43 %R			%	9/18/18	12:56	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.
LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-7A								
Lab Sample ID:	186678.14								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data (71	D-4-		
	Result	RL	Factor	Units	Date / Anaiy	/zed	Date Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/18/18	13:05	9/17/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/18/18	13:05	9/17/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/18/18	13:05	9/17/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/18/18	13:05	9/17/18	8082A	SG
PCB-1248	< 0.03	0.03	2	mg/kg	9/18/18	13:05	9/17/18	8082A	SG
PCB-1254	18	1	80	mg/kg	9/18/18	17:01	9/17/18	8082A	SG
PCB-1260	3.2	1	80	mg/kg	9/18/18	17:01	9/17/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/18/18	13:05	9/17/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/18/18	13:05	9/17/18	8082A	SG
⊤MX (surr)	73 %R			%	9/18/18	13:05	9/17/18	8082A	SG
DCB (surr)	49 %R			%	9/18/18	13:05	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID: Matrix:	S11-7B 186678.15 solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18 Result	RL	Dilution Factor	Units	Date / Analy	Time /zed	Date Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/18/18	13:15	9/17/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/18/18	13:15	9/17/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/18/18	13:15	9/17/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/18/18	13:15	9/17/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/18/18	13:15	9/17/18	8082A	SG
PCB-1254	27	2	130	mg/kg	9/18/18	17:10	9/17/18	8082A	SG
PCB-1260	6.0	0.4	26	mg/kg	9/18/18	17:20	9/17/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/18/18	13:15	9/17/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/18/18	13:15	9/17/18	8082A	SG
TMX (surr)	67 %R			%	9/18/18	13:15	9/17/18	8082A	SG
DCB (surr)	63 %R			%	9/18/18	13:15	9/17/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

M

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-8A								
Lab Sample ID:	186678.16								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Time	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	11:31	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	11:31	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	11:31	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	11:31	9/18/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/19/18	11:31	9/18/18	8082A	SG
PCB-1254	2.8	0.2	12	mg/kg	9/19/18	16:06	9/18/18	8082A	SG
PCB-1260	0.70	0.2	12	mg/kg	9/19/18	16:06	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	11:31	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	11:31	9/18/18	8082A	SG
TMX (surr)	79 %R			%	9/19/18	11:31	9/18/18	8082A	SG
DCB (surr)	64 %R			%	9/19/18	11:31	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-9A								
Lab Sample ID:	186678.17								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Anaiy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	11:40	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	11:40	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	11:40	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	11:40	9/18/18	8082A	SG
PCB-1248	33	2	128	mg/kg	9/19/18	16:16	9/18/18	8082A	SG
PCB-1254	21	2	128	mg/kg	9/19/18	16:16	9/18/18	8082A	SG
PCB-1260	3.9	2	128	mg/kg	9/19/18	16:16	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	11:40	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	11:40	9/18/18	8082A	SG
TMX (surr)	68 %R			%	9/19/18	11:40	9/18/18	8082A	SG
DCB (surr)	57 %R			%	9/19/18	11:40	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-9B								
Lab Sample ID:	186678.18								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Dete		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	11:50	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	11:50	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	11:50	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	11:50	9/18/18	8082A	SG
PCB-1248	21	2	118	mg/kg	9/19/18	16:35	9/18/18	8082A	SG
PCB-1254	28	2	118	mg/kg	9/19/18	16:35	9/18/18	8082A	SG
PCB-1260	7.5	2	118	mg/kg	9/19/18	16:35	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	11:50	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	11:50	9/18/18	8082A	SG
TMX (surr)	70 %R			%	9/19/18	11:50	9/18/18	8082A	SG
DCB (surr)	51 %R			%	9/19/18	11:50	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-9C								
Lab Sample ID:	186678.19								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Deta /	Time	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	12:00	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	12:00	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	12:00	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	12:00	9/18/18	8082A	SG
PCB-1248	4.3	0.4	27	mg/kg	9/19/18	16:45	9/18/18	8082A	SG
PCB-1254	1.8	0.4	27	mg/kg	9/19/18	16:45	9/18/18	8082A	SG
PCB-1260	0.73	0.09	5	mg/kg	9/19/18	16:55	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	12:00	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	12:00	9/18/18	8082A	SG
TMX (surr)	81 %R			%	9/19/18	12:00	9/18/18	8082A	SG
DCB (surr)	64 %R			%	9/19/18	12:00	9/18/18	8082A	SG

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-10A								
Lab Sample ID:	186678.2								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Dete		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	12:09	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	12:09	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	12:09	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	12:09	9/18/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/19/18	12:09	9/18/18	8082A	SG
PCB-1254	4.5	0.4	27	mg/kg	9/19/18	17:04	9/18/18	8082A	SG
PCB-1260 ⁻	0.76	0.09	5	mg/kg	9/19/18	17:14	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	12:09	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	12:09	9/18/18	8082A	SG
TMX (surr)	79 %R			%	9/19/18	12:09	9/18/18	8082A	SG
DCB (surr)	59 %R			%	9/19/18	12:09	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID: Matrix: Date Sampled:	S11-11A 186678.21 solid 9/13/18								
Date Received:	9/14/18 Result	RL	Dilution Factor	Units	Date / Analy	Time /zed	Date Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/19/18	12:19	9/18/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/19/18	12:19	9/18/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/19/18	12:19	9/18/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/19/18	12:19	9/18/18	8082A	SG
PCB-1248	21	3	156	mg/kg	9/19/18	17:24	9/18/18	8082A	SG
PCB-1254	14	3	156	mg/kg	9/19/18	17:24	9/18/18	8082A	SG
PCB-1260	2.5	1	62	mg/kg	9/19/18	17:34	9/18/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/19/18	12:19	9/18/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/19/18	12:19	9/18/18	8082A	SG
TMX (surr)	77 %R			%	9/19/18	12:19	9/18/18	8082A	SG
DCB (surr)	55 %R			%	9/19/18	12:19	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

LABORATORY REPORT

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-11B								
Lab Sample ID:	186678.22								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Deta 1	Time	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/19/18	12:29	9/18/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/19/18	12:29	9/18/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/19/18	12:29	9/18/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/19/18	12:29	9/18/18	8082A	SG
PCB-1248	23	3	154	mg/kg	9/19/18	17:43	9/18/18	8082A	SG
PCB-1254	14	3	154	mg/kg	9/19/18	17:43	9/18/18	8082A	SG
PCB-1260	2.7	1	61	mg/kg	9/19/18	17:53	9/18/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/19/18	12:29	9/18/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/19/18	12:29	9/18/18	8082A	SG
TMX (surr)	71 %R			%	9/19/18	12:29	9/18/18	8082A	SG
DCB (surr)	53 %R			%	9/19/18	12:29	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-11C								
Lab Sample ID:	186678.23								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
PCB-1248	4.5	0.5	27	mg/kg	9/19/18	18:03	9/18/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
PCB-1260	0.27	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	12:39	9/18/18	8082A	SG
TMX (surr)	80 %R			%	9/19/18	12:39	9/18/18	8082A	SG
DCB (surr)	60 %R			%	9/19/18	12:39	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	SS-11B								
Lab Sample ID:	186678.24								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Dete		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	12:48	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	12:48	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	12:48	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	12:48	9/18/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/19/18	12:48	9/18/18	8082A	SG
PCB-1254	3.4	0.2	14	mg/kg	9/19/18	18:12	9/18/18	8082A	SG
PCB-1260	1.9	0.2	14	mg/kg	9/19/18	18:12	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	12:48	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	12:48	9/18/18	8082A	SG
TMX (surr)	73 %R			%	9/19/18	12:48	9/18/18	8082A	SG
DCB (surr)	65 %R			%	9/19/18	12:48	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	SS-11C								
Lab Sample ID:	186678.25								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data (Time	Dete		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
PCB-1248	0.21	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
PCB-1254	0.27	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
PCB-1260	0.74	0.06	3	mg/kg	9/19/18	18:22	9/18/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/19/18	12:58	9/18/18	8082A	SG
TMX (surr)	79 %R			%	9/19/18	12:58	9/18/18	8082A	SG
DCB (surr)	60 %R			%	9/19/18	12:58	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-12A								
Lab Sample ID:	186678.26								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Dete		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	13:08	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	13:08	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	13:08	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	13:08	9/18/18	8082A	SG
PCB-1248	1.9	0.2	13	mg/kg	9/19/18	18:32	9/18/18	8082A	SG
PCB-1254	4.2	0,4	27	mg/kg	9/21/18	9:46	9/18/18	8082A	SG
PCB-1260	0.67	0.2	13	mg/kg	9/19/18	18:32	9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	13:08	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	13:08	9/18/18	8082A	SG
TMX (surr)	80 %R			%	9/19/18	13:08	9/18/18	8082A	SG
DCB (surr)	58 %R			%	9/19/18	13:08	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EALID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S11-13A								
Lab Sample ID:	186678.27								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Anaiy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/19/18	13:17	9/18/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/19/18	13:17	9/18/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/19/18	13:17	9/18/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/19/18	13:17	9/18/18	8082A	SG
PCB-1248	13	1	58	mg/kg	9/19/18		9/18/18	8082A	SG
PCB-1254	12	1	58	mg/kg	9/19/18		9/18/18	8082A	SG
PCB-1260	1.6	0.1	6 '	mg/kg	9/19/18		9/18/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/19/18	13:17	9/18/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/19/18	13:17	9/18/18	8082A	SG
TMX (surr)	74 %R			%	9/19/18	13:17	9/18/18	8082A	SG
DCB (surr)	58 %R			%	9/19/18	13:17	9/18/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

LABORATORY REPORT

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-1								
Lab Sample ID:	186678.28								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		D-t- (T !			
	Result	RL	Factor	Units	Date / Analy	rime vzed	Date Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/20/18	13:08	9/19/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/20/18	13:08	9/19/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/20/18	13:08	9/19/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/20/18	13:08	9/19/18	8082A	SG
PCB-1248	6.9	0.6	33	mg/kg	9/21/18	12:04	9/19/18	8082A	SG
PCB-1254	7.7	0.6	33	mg/kg	9/21/18	12:04	9/19/18	8082A	SG
PCB-1260	2.0	0.6	33	mg/kg	9/21/18	12:04	9/19/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/20/18	13:08	9/19/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/20/18	13:08	9/19/18	8082A	SG
TMX (surr)	76 %R			%	9/20/18	13:08	9/19/18	8082A	SG
DCB (surr)	51 %R			%	9/20/18	13:08	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

LABORATORY REPORT

EALID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-2								<u>-</u> -
Lab Sample ID:	186678.29								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Deta (Ti	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	13:17	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	13:17	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	13:17	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	13:17	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	13:17	9/19/18	8082A	SG
PCB-1254	74	10	740	mg/kg	9/21/18	15:49	9/19/18	8082A	SG
PCB-1260	8.7	0.6	37	mg/kg	9/21/18	12:24	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	13:17	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	13:17	9/19/18	8082A	SG
TMX (surr)	78 %R			%	9/20/18	13:17	9/19/18	8082A	SG
DCB (surr)	66 %R			%	9/20/18	13:17	9/19/18	8082A	SG

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-3								
Lab Sample ID:	186678.3								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data (T i	Data		
	Result	RL	Factor	Units	Date / Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/20/18	13:27	9/19/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/20/18	13:27	9/19/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/20/18	13:27	9/19/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/20/18	13:27	9/19/18	8082A	SG
PCB-1248	< 0.03	0.03	2	mg/kg	9/20/18	13:27	9/19/18	8082A	SG
PCB-1254	11	1	86	mg/kg	9/24/18	9:21	9/19/18	8082A	SG
PCB-1260	2.3	0.7	43	m g /kg	9/21/18	12:33	9/19/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/20/18	13:27	9/19/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/20/18	13:27	9/19/18	8082A	SG
TMX (surr)	80 %R			%	9/20/18	13:27	9/19/18	8082A	SG
DCB (surr)	61 %R			%	9/20/18	13:27	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-4								
Lab Sample ID:	186678.31								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Time	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	13:37	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	13:37	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	13:37	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	13:37	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	13:37	9/19/18	8082A	SG
PCB-1254	8.5	0.6	35	mg/kg	9/21/18	12:43	9/19/18	8082A	SG
PCB-1260	1.8	0.6	35	mg/kg	9/21/18	12:43	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	13:37	9/19/18	8082A	SG
PCB-1268	<.0.02	0.02	1	mg/kg	9/20/18	13:37	9/19/18	8082A	SG
TMX (surr)	79 %R			%	9/20/18	13:37	9/19/18	8082A	SG
DCB (surr)	55 %R			%	9/20/18	13:37	9/19/18	8082A	SG

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-5								
Lab Sample ID:	186678.32								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Deta 1	Time a	Data		
	Result	RL	Factor	Units	Date / Analy	rime vzed	Date Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	13:46	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	13:46	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	13:46	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	13:46	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	13:46	9/19/18	8082A	SG
PCB-1254	22	2	135	mg/kg	9/21/18	12:53	9/19/18	8082A	SG
PCB-1260	2.4	0.2	14	mg/kg	9/21/18	13:03	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	13:46	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	13:46	9/19/18	8082A	SG
TMX (surr)	76 %R			%	9/20/18	13:46	9/19/18	8082A	SG
DCB (surr)	56 %R			%	9/20/18	13:46	9/19/18	8082A	SG

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-6								
Lab Sample ID:	186678.33								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilation		Data (Times	Data		
	Result	RL	Factor	Units	Date / Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	15:14	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	15:14	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	15:14	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	15:14	9/19/18	8082A	SG
PCB-1248	2.1	0.2	14	mg/kg	9/25/18	14:26	9/19/18	8082A	SG
PCB-1254	2.4	0.2	14	mg/kg	9/25/18	14:26	9/19/18	8082A	SG
PCB-1260	0.78	0.2	14	mg/kg	9/25/18	14:26	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	15:14	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	15:14	9/19/18	8082A	SG
TMX (surr)	83 %R			%	9/20/18	15:14	9/19/18	8082A	SG
DCB (surr)	67 %R			%	9/20/18	15:14	9/19/18	8082A	SG

LABORATORY REPORT

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID: Matrix:	S12-7 186678.34 solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		D		D () (- .			
	Result	RL	Factor	Units	Date / Analy	l ime /zed	Date Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	15:24	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	15:24	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	15:24	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	15:24	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	15:24	9/19/18	8082A	SG
PCB-1254	5.0	0.5	28	mg/kg	9/25/18	14:35	9/19/18	8082A	SG
PCB-1260	1.0	0.1	7	mg/kg	9/25/18	14:45	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	15:24	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	15:24	9/19/18	8082A	SG
TMX (surr)	85 %R			%	9/20/18	15:24	9/19/18	8082A	SG
DCB (surr)	71 %R			%	9/20/18	15:24	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EALID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-8								
Lab Sample ID:	186678.35								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Timo	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
PCB-1254	1.1	0.1	7	mg/kg	9/25/18	14:55	9/19/18	8082A	SG
PCB-1260	0.34	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	15:33	9/19/18	8082A	SG
TMX (surr)	79 %R			%	9/20/18	15:33	9/19/18	8082A	SG
DCB (surr)	59 %R			%	9/20/18	15:33	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S12-9								
Lab Sample ID:	186678.36								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Timo	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	15:43	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	15:43	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	15:43	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	15:43	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	15:43	9/19/18	8082A	SG
PCB-1254	16	1	66	mg/kg	9/26/18	12:43	9/19/18	8082A	SG
PCB-1260	2.1	0.2	13	mg/kg	9/25/18	15:14	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	15:43	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	15:43	9/19/18	8082A	SG
TMX (surr)	78 %R			%	9/20/18	15:43	9/19/18	8082A	SG
DCB (surr)	59 %R			%	9/20/18	15:43	9/19/18	8082A	SG

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	SS-12B								
Lab Sample ID:	186678.37								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Timo	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	15:53	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	15:53	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	15:53	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	15:53	9/19/18	8082A	SG
PCB-1248	3.1	0.2	13	mg/kg	9/26/18	12:52	9/19/18	8082A	SG
PCB-1254	1.7	0.2	13	mg/kg	9/26/18	12:52	9/19/18	8082A	SG
PCB-1260	0.18	0.02	1.	mg/kg	9/20/18	15:53	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	15:53	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	15:53	9/19/18	8082A	SG
TMX (surr)	79 %R			%	9/20/18	15:53	9/19/18	8082A	SG
DCB (surr)	58 %R	·		%	9/20/18	15:53	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S7-1								
Lab Sample ID:	186678.52								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Timo	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	16:03	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	16:03	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	16:03	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	16:03	9/19/18	8082A	SG
PCB-1248	2.6	0.2	12	mg/kg	9/25/18	15:33	9/19/18	8082A	SG
PCB-1254	1.8	0.2	12	mg/kg	9/25/18	15:33	9/19/18	8082A	SG
PCB-1260	1.5	0.2	12	mg/kg	9/25/18	15:33	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	16:03	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	16:03	9/19/18	8082A	SG
TMX (surr)	76 %R			%	9/20/18	16:03	9/19/18	8082A	SG
DCB (surr)	69 %R			%	9/20/18	16:03	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S7-2								
Lab Sample ID:	186678.53								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Time	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1254	0.18	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1260	< 0.02	0.02	1 ·	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
PCB-1268	0.34	0.02	1	mg/kg	9/20/18	16:12	9/19/18	8082A	SG
TMX (surr)	78 %R			%	9/20/18	16:12	9/19/18	8082A	SG
DCB (surr)	92 %R			%	9/20/18	16:12	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

M

LABORATORY REPORT

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S7-3								
Lab Sample ID:	186678.54								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Timo	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1248	< 0.03	0.03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1254	0.29	0.03	2 .	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1260	0.24	0,03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
PCB-1268	0.25	0.03	2	mg/kg	9/20/18	16:22	9/19/18	8082A	SG
TMX (surr)	77 %R			%	9/20/18	16:22	9/19/18	8082A	SG
DCB (surr)	84 %R			%	9/20/18	16:22	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID: Matrix: Date Sampled:	S7-4 186678.55 solid 9/13/18								
Date Received:	9/14/18 Result	RL	Dilution Factor	Units	Date / Analy	Time zed	Date Prepared	Method	Analyst
PCB-1016	< 0.04	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1221	< 0.04	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1232	< 0.04	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1242	< 0.04	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1248	< 0.04	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1254	0.071	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1260	0.11	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1262	< 0.04	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
PCB-1268	0.070	0.04	2	mg/kg	9/20/18	16:32	9/19/18	8082A	SG
TMX (surr)	78 %R			%	9/20/18	16:32	9/19/18	8082A	SG
DCB (surr)	49 %R			%	9/20/18	16:32	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

LABORATORY REPORT

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID: Matrix:	S7-5 186678.56 solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1254	0.21	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1260	0.22	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
PCB-1268	0.076	0.02	1	mg/kg	9/20/18	16:42	9/19/18	8082A	SG
TMX (surr)	80 %R			%	9/20/18	16:42	9/19/18	8082A	SG
DCB (surr)	57 %R			%	9/20/18	16:42	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID:	S7-FDUP5 186678.57								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Timo	Data		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
PCB-1260	0.59	0.08	5	mg/kg	9/25/18	15:43	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	16:51	9/19/18	8082A	SG
TMX (surr)	78 %R			%	9/20/18	16:51	9/19/18	8082A	SG
DCB (surr)	55 %R			%	9/20/18	16:51	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID:	S7-6 186678.58								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Date /	Time	Date		
	Result	RL	Factor	Units	Analy	zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1260	0.24	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	17:01	9/19/18	8082A	SG
TMX (surr)	83 %R			%	9/20/18	17:01	9/19/18	8082A	SG
DCB (surr)	58 %R			%	9/20/18	17:01	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S7-7								
Lab Sample ID:	186678.59								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Timo	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.04	0,04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
PCB-1221	< 0.04	0.04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
PCB-1232	< 0.04	0.04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
PCB-1242	< 0.04	0.04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
PCB-1248	< 0.04	0.04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
PCB-1254	< 0.04	0.04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
PCB-1260	1.4	0.2	9	mg/kg	9/25/18	15:53	9/19/18	8082A	SG
PCB-1262	< 0.04	0.04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
PCB-1268	< 0.04	0.04	2	mg/kg	9/20/18	17:11	9/19/18	8082A	SG
TMX (surr)	70 %R			%	9/20/18	17:11	9/19/18	8082A	SG
DCB (surr)	43 %R			%	9/20/18	17:11	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S7-8								
Lab Sample ID:	186678.6								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Timo	Date		
	Result	RL	Factor	Units	Anaiy	zed	Prepared	Method	Analyst
PCB-1016	< 0.03	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1221	< 0.03	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1232	< 0.03	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1242	< 0.03	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1248	< 0.03	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1254	0.036	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1260	0.042	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1262	< 0.03	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
PCB-1268	< 0.03	0.03	2	mg/kg	9/20/18	17:20	9/19/18	8082A	SG
TMX (surr)	71 %R			%	9/20/18	17:20	9/19/18	8082A	SG
DCB (surr)	78 %R			%	9/20/18	17:20	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC. Detection limits elevated due to low solids content.

;

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	S7-9								
Lab Sample ID:	186678.61								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
PCB-1260	1.4	0.1	6	mg/kg	9/25/18	16:03	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	17:30	9/19/18	8082A	SG
TMX (surr)	68 %R			· %	9/20/18	17:30	9/19/18	8082A	SG
DCB (surr)	45 %R			%	9/20/18	17:30	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID: Lab Sample ID:	\$7-FDUP9 186678.62								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Data /	Time	Date		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
PCB-1260	1.6	0.1	7	mg/kg	9/26/18	13:02	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	17:40	9/19/18	8082A	SG
TMX (surr)	74 %R			%	9/20/18	17:40	9/19/18	8082A	SG
DCB (surr)	53 %R			%	9/20/18	17:40	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.

EAI ID#: 186678

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Client Sample ID:	SS-07B								
Lab Sample ID:	186678.66								
Matrix:	solid								
Date Sampled:	9/13/18								
Date Received:	9/14/18		Dilution		Deta /	Time	Data		
	Result	RL	Factor	Units	Analy	/zed	Prepared	Method	Analyst
PCB-1016	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1221	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1232	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1242	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1248	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1254	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1260	0.030	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1262	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
PCB-1268	< 0.02	0.02	1	mg/kg	9/20/18	17:49	9/19/18	8082A	SG
TMX (surr)	74 %R			%	9/20/18	17:49	9/19/18	8082A	SG
DCB (surr)	49 %R			%	9/20/18	17:49	9/19/18	8082A	SG

Acid clean-up was performed on the samples and associated batch QC.
M

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Sample ID:	SS-11B	SS-11C	M-1	SS-10B					
Lab Sample ID:	186678.24	186678.25	186678.38	186678.39					
Matrix:	solid	solid	solid	solid					
Date Sampled:	9/13/18	9/13/18	9/13/18	9/13/18	Analytical		Date of		
Date Received:	9/14/18	9/14/18	9/14/18	9/14/18	Matrix	Units	Analysis	Method	Analyst
Antimony	3.2	2.8	5.8	< 0.5	SolTotDrv	ma/ka	9/18/18	6020	DS
Arsenic	12	8.6	14	3.5	SolTotDry	ma/ka	9/18/18	6020	DS
Beryllium	< 0.5	< 0.5	< 0.5	0.59	SolTotDry	mg/kg	9/18/18	6020	DS
Cadmium	4.3	3.3	9.1	3.0	SolTotDry	ma/ka	9/18/18	6020	DS
Chromium	30	31	78	14	SolTotDry	mg/kg	9/18/18	6020	DS
Copper	140	190	720	29	SolTotDry	mg/kg	9/18/18	6020	DS
Lead	720	460	480	57	SolTotDry	mg/kg	9/18/18	6020	DS
Mercury	3.1	10	2.4	0.12	SolTotDry	mg/kg	9/18/18	6020	DS
Nickel	60	84	65	20	SolTotDry	mg/kg	9/18/18	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Silver	< 0.5	< 0.5	0.61	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Zinc	350	990	720	170	SolTotDry	m g /kg	9/18/18	6020	DS
Sample ID:	SS-10C	M-2	M-3	M-4					
Lab Sample ID:	186678.4	186678.41	186678.42	186678.43					
Matrix:	solid	solid	solid	solid					
Date Sampled:	9/13/18	9/13/18	9/13/18	9/13/18	Analytical		Date of		
Date Received:	9/14/18	9/14/18	9/14/18	9/14/18	Matrix	Units	Analysis	Method	Analyst
Antimony	0.94	3.2	54	14	SolTotDry	mg/kg	9/18/18	6020	DS
Arsenic	4.1	9.4	18	9.1	SolTotDry	mg/kg	9/18/18	6020	DS
Beryllium	0.63	< 0.5	< 0.5	0.72	SolTotDry	mg/kg	9/18/18	6020	DS
Cadmium	5.1	6.9	36	32	SolTotDry	mg/kg	9/18/18	6020	DS
Chromium	18	48	96	40	SolTotDry	mg/kg	9/18/18	6020	DS
Copper	98	220	2900	6000	SolTotDry	mg/kg	9/18/18	6020	DS
Lead	150	240	4300	1000	SolTotDry	mg/kg	9/18/18	6020	DS
Mercury	< 0.1	1.5	7	10	SolTotDry	mg/kg	9/18/18	6020	DS
Nickel	32	63	240	58	SolTotDry	mg/kg	9/18/18	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Silver	< 0.5	< 0.5	4.6	16	SolTotDry	mg/kg	9/18/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Zinc	190	1300	2700	2600	SolTotDry	mg/kg	9/18/18	6020	DS

M

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Sample ID:	M-5	M-6	SS-03B	SS-05B					
Lab Sample ID:	186678.44	186678.45	186678.46	186678.47					
Matrix:	solid	solid	solid	solid					
Date Sampled:	9/13/18	9/13/18	9/13/18	9/13/18	Analytical		Date of		
Date Received:	9/14/18	9/14/18	9/14/18	9/14/18	Matrix	Units	Analysis	Method	Analyst
Antimony	61	< 0.5	9.0	0.83	SolTotDrv	ma/ka	9/18/18	6020	DS
Arsenic	12	4.9	9.1	2.7	SolTotDry	ma/ka	9/18/18	6020	DS
Bervilium	< 0.5	< 0.5	5.1	< 0.5	SolTotDry	ma/ka	9/18/18	6020	DS
Cadmium	78	0.80	16	0.84	SolTotDry	ma/ka	9/18/18	6020	DS
Chromium	51	11	28	8.8	SolTotDry	ma/ka	9/18/18	6020	DS
Copper	4100	18	4900	710	SolTotDry	ma/ka	9/18/18	6020	DS
Lead	1200	32	570	200	SolTotDry	ma/ka	9/18/18	6020	DS
Mercurv	1.1	0.13	0.63	0.11	SolTotDry	ma/ka	9/18/18	6020	DS
Nickel	160	10	34	11	SolTotDry	mg/kg	9/18/18	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Silver	2.1	< 0.5	7.9	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Zinc	1600	140	820	110	SolTotDry	mg/kg	9/18/18	6020	DS
Sample ID:	SS-05C	M-7	M-8	M-FDUP5					
Lab Sample ID:	186678.48	186678.49	186678.5	186678.51					
Matrix:	solid	solid	solid	solid					
Date Sampled:	9/13/18	9/13/18	9/13/18	9/13/18	Analytical		Date of		
Date Received:	9/14/18	9/14/18	9/14/18	9/14/18	Matrix	Units	Analysis	Method	Analyst
Antimony	< 0.5	12	0.77	3.1	SolTotDry	mg/kg	9/18/18	6020	DS
Arsenic	2.8	6.0	24	13	SolTotDry	mg/kg	9/18/18	6020	DS
Beryllium	< 0.5	< 0.5	0.51	0.62	SolTotDry	mg/kg	9/18/18	6020	DS
Cadmium	< 0.5	7.8	0.67	15	SolTotDry	mg/kg	9/18/18	6020	DS
Chromium	13	24	14	75	SolTotDry	mg/kg	9/18/18	6020	DS
Copper	12	3600	70	2400	SolTotDry	mg/kg	9/18/18	6020	DS
Lead	9.4	880	110	590	SolTotDry	mg/kg	9/18/18	6020	DS
Mercury	< 0.1	0.63	0.11	0.58	SolTotDry	mg/kg	9/18/18	6020	DS
Nickel	8.8	44	11	250	SolTotDry	mg/kg	9/18/18	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Silver	< 0.5	0.95	< 0.5	2.5	SolTotDry	mg/kg	9/18/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Zinc	38	660	140	1300	SolTotDry	mg/kg	9/18/18	6020	DS

\mathcal{M}

LABORATORY REPORT

Client: Nobis Group

Client Designation: Lavoie Property / 70705.00

Sample ID:	M-FDUP7	SS-06B	SS-06C	SS-07B					
Lab Sample ID:	186678.63	186678.64	186678.65	186678.66					
Matrix:	solid	solid	solid	solid					
Date Sampled:	9/13/18	9/13/18	9/13/18	9/13/18	Analytical		Data of		
Date Received:	9/14/18	9/14/18	9/14/18	9/14/18	Matrix	Units	Analysis	Method	Analyst
Antimony	16	1.3	< 0.5	< 0.5	SolTotDrv	ma/ka	9/18/18	6020	DS
Arsenic	8.0	43	3.3	4.6	SolTotDry	mg/kg	9/18/18	6020	DS
Beryllium	< 0.5	0.55	0.53	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Cadmium	10	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Chromium	53	15	12	12	SolTotDry	mg/kg	9/18/18	6020	DS
Copper	6400	63	11	18	SolTotDry	mg/kg	9/18/18	6020	DS
Lead	920	97	9.6	47	SolTotDry	mg/kg	9/18/18	6020	DS
Mercury	0.82	0.11	< 0.1	< 0.1	SolTotDry	mg/kg	9/18/18	6020	DS
Nickel	33	9.3	8.7	6.3	SolTotDry	mg/kg	9/18/18	6020	DS
Selenium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Silver	1.4	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Thallium	< 0.5	< 0.5	< 0.5	< 0.5	SolTotDry	mg/kg	9/18/18	6020	DS
Zinc	790	130	42	100	SolTotDry	mg/kg	9/18/18	6020	DS
Sample ID:	SS-07C					·			
Lab Sample ID:	186678.67								
Matrix:	solid								
Data Sampladi	0/40/40				Applytical		Data of		
Date Received:	9/13/16				Matrix	Units	Analysis	Method	Analyst
Antimony	< 0.5				SolTotDry	ma/ka	9/18/18	6020	20
Arsenic	2.4				SolTotDry	ma/ka	9/18/18	6020	
Bervllium	< 0.5				SolTotDry	ma/ka	9/18/18	6020	
Cadmium	< 0.5				SolTotDry	ma/ka	9/18/18	6020	
Chromium	12				SolTotDry	ma/ka	9/18/18	6020	DS
Copper	10				SolTotDrv	ma/ka	9/18/18	6020	DS
Lead	9.8				SolTotDrv	ma/ka	9/18/18	6020	DS
Mercury	< 0.1				SolTotDrv	ma/ka	9/18/18	6020	DS
Nickel	7.5				SolTotDrv	ma/ka	9/18/18	6020	DS
Selenium	< 0.5				SolTotDrv	mg/ka	9/18/18	6020	DS
Silver	< 0.5				SolTotDry	mg/kg	9/18/18	6020	DS

< 0.5

43

Thallium

Zinc

SolTotDry mg/kg

SolTotDry mg/kg

9/18/18

9/18/18

6020

6020

DS

DS

Page of		R.		E.c. D	C	HAI	N-0	DF-	Cu	ST	OD'	r R	EC D-	OR	D									,≡== }		<u> </u>	18	667	78
					FKE	QUI	RED.	61			u IRO	CLE	KE(Met	QUE	STE		ANA	LYS	SIS.		Ċ		M		-				۲ با
Sample I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	Matrix (see below)	GRAB/*COMPOSITE	524.2 524.2 BTEX 524.2 MTBE ONLY 8260 624 VTIG5 A Director	8021 BTEX HALOS	8015 GRO MAVPH	8270 625 SVTICs EDB DBCP Abn a bn Pah	TPH8100 L1 L2	8015 DRO MAEPH	PEST 8081 PCB 8082	01L & GREASE 1664 TPH 1664	ILLET 1311 ABN METALS VOC PEST HERB	DISSOLVED METALS (LIST BELOW)	TOTAL METALS (LIST BELOW)	TS TSS TDS SPEC. CON.	BR CI F 504 NO2 NO3 NO3NO2	BOD CBOD T. ALK.	TKN NH3 T. PHOS. O. PHOS.	ph T. Res. Chlorine	СОВ РНЕНОІЗ ТОС DOC	Total Chanide Total Solfide	Reactive Cyanide Reactive Sulfide Fi acupative Jourbari ity	TOTAL COLIFORM E. COLI	FECAL COLIFORM ENTEROCOCCI	HETEROTROPHIC PLATE COUNT			# of Contrainers	Notes MeOH Vial #
CS-1	9/13/18/ 1240	S	6							X																		1	
CS-FDOI	1255		1																									1	
CS-2	1300																												
SII-IA	1330																												
S11 - 2A	1340																												
<u>SHI-3A</u>	1345	-																											
SI1-4A.	1350																												
511-4B	1407																												
511-5A	1400	,																											
511-5B	1416	11	L						-														-						
MAIKIX: A-AIK; S-SOIL; GW-GROUND WATE WW-WASTE WATER Preservative: H-HCL; N-HNO3; S-H2SO4; N	a; sw-surface water; dw-dri Ia-NaOH; M-MEOH	NKING V	VATER;																										
PROJECT MANAGER: <u>Tim</u> Company: <u>Nobis</u> Address: <u>18 Citenell</u> City: <u>Concort</u>	ANDREWS DR. STATE: NH	7IP-	07	3301	D Q/ Re	ATE A/QC PORT	NEE	EDEI	<u>): 2</u>	STA.	~ <u>~</u> P	Sepor		TA 5 Op Dr N	TION	 S	TE IC	MP	¥, Yes	7) No	۰	Me Oth Sal	etals ier M	ETALS	8 R :	CRA	13 PP	· F	E, MN PB, Cu
PHONE: <u>603-224-41</u> Fax:	82	Ext.: _				•	0	R		-	E	LECTI	ONIC	: Op	TION	s						Not	ES: (IE	: SPE	CIAL D	ETECTION	LIMITS,	, Billing	i Info, If Different
E-Mail: <u>TANDREWS @ No</u> SITE NAME: <u>LAVOIE PROF</u> PROJECT #: <u>70705.02</u>	OR Electronic Options Notes: (IE: 1) BISENSE. COAA MA MCP E-MAIL REF- EQUIS ENTER CS PERZY SAMPLER(S): DB JS Por.												د (س	24 57	mpl Mo	es Mru	con K	SCREAE											
STATE: (NE) MA ME Regulatory Program: NPDES: RGP GWP, Oil Fund, Brown	VT OTHER: POTW STORMWATER OR Teld or_Other:				Re	LINQ	UISHE	D BY		D 9	DATE: - 14-	R	4(T ,"Č \ **T	МЕ: 50	\langle		EIVED		A) le		SITE	Histo	DRY: _					÷.,
Quote #:	PO #:					ะเลย	JISHE	ט שי		U	ALC:		10	12:		- KFC	EIYED :	DÏ:				Susi	PECTEI	o Con	ITAMIN	IATION:			
M Eastern Analy	tical, Inc.	25 Сн	ENELL			LINQI rd, NI	UISHE	D В У: 01 Т	: Tel: 60	D 13.228	ATE: 8.052	5 1.8	TI∦ 300.2	1E: 187.05	525	REC E-MA	EIVED JL: CU	BY: JSTON	1erSe	RVICE	@Eas	FIEL	d R e <i>i</i> Anai	IDING	S:	ом] w	 /ww.e	ASTERN	

professional laboratory and drilling services

- 5

FOR LAB USE ORAT GG 78

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

		60	DLD	FIELDS	KE	QUI	RED.	LE	ASE	CIF	RCLE	RE	QUI	ESTI	ED /	ANA	ALYS	sis.											α
					DC		S	VC	C		ŤCL	Met	TALS			NO	RC	A	lic	S		M	CRC	0	TH	ÊR			
Sample I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	MATRIX (SEE BELOW)	GRAB/*COMPOSITE	24.2 24.2 BTEX 524.2 MTBE ONLY 26.0 624 VTIC5 4 Dioxane	021 BTEX HALOS	DIS GRO MAVPH	270 625 SYTICs EDB DBCP BN A BN PAH PH8100 LI L2	015 DRO MAEPH	EST 608 PCB 608 EST 8081 (PCB 8002	1L & GREASE 1664 TPH 1664	CLP 1311 ABN METALS OC PEST HERR	ISSOLVED METALS (LIST BELOW)	dtal Metals (List Below)	S TSS TDS SPEC. CON.	R CI F SO4 02 NO3 NO3NO2	OD CBOD T. ALK.	KN NH3 T. PHOS. O. PHOS.	H T. RES. CHLORINE	OD PHENOLS TOC DOC	ytal Cyanide Total Sulfide	EACTIVE CYANIDE REACTIVE SULFIDE ASHPOINT IGNITABILITY	dtal Colform E. Coli cai Colform	VTEROCOCCI TTEROCOCCI	LI-140101 410 1 141 10041			of Containers	Notes MeOH Vial #	ŧ
511-50	9/13/10 / 14/19	S	6	<u> </u>	, end					X			<u> </u>		<u>a</u> z	<u> </u>	F	<u> </u>	3	2	ææ		<u>, ar a</u>				#		-
511-60	1405	- ,	Ţ						+†		1																		_
SIL-GR	1430	┤┼										-											+				+		
Sil - 7A	1410								+†-									-						-					-
SIL-7-B	1440		┼╢╴						+[+	-					
SII-84	1410		┼╢╴					+														+	-	-					_
SIL-GA											\uparrow											-			·			·····	_
SII - 9R	1450											1		[<u> </u>							-
511-96	1459	\parallel	\square					+	++	┼╢╴		912																	-
STI – LOA Matrix: A-Air, S-Soil; GW-Ground Water WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; A	R; SW-SURFACE WATER; DW-DR Na-NaOH; M-MEOH	NKING V	VATER;							€ <u> </u> _										-									_
PROJECT MANAGER: <u>Tim</u> COMPANY: <u>NOBIS</u> ADDRESS: <u>18</u> Catter was	ANDREWS	- <u> </u>				ATE		ED:	\$7/	<u>wa</u>	REP	ORTIN	7A G 0			TI	EMP	44,* (YES	7)No	°C	Me Oth	T als: er Me	E E E E E E E E E E E E E E E E E E E	B RCRA		3 PP	Fe	, Mn Pb,	ເບ
CITY: <u>Concort</u>	STATE:NH	ZIP:	63	301	KE	POR A	ting lev B	EL	с		PRELIX	N: CHEZ	OR	No				\sim]	SAN	1PLES	s Fie	ld Fi	LTERE	D?		Yes 🗍 N	0
PHONE: <u>603-224-4</u> Fax:	/(82	Ехт.: _					OR	'n			Elec E-Maii	troni P	c 01	P tion >Equ	15 15 (EXCE					Not	ES: (IE:	Speci	AL DETE	CTION L	IMITS, I	BILLING	i Info, If Differe	л)
L-MAIL: <u>I ANDREWS C. N</u> SUTE NAME: LANDE PR	WANTY						MAINC	r										•											
PROJECT #: 70705.00					SAM	PLER(s):		De	3/	23	5																	
State: 🕅 MA ME	VT OTHER:							∫	Z	DATE	_	- T			Re	CEIVER	Rv.		5	+-									
REGULATORY PROGRAM: NPDES: RGP GWP, OIL FUND, REGWR	POTW STORMWATER OR FIELD OR, OTHER:				RF		UISHED	 3γ:		DATE:	128	ר 'ג' זיי	IME:	, ~	Č.		BY		U		SITE	HISTO	RY:						
QUOTE #:	PO #:														115.		2				SUSP	ECTED	Conti	MINATI	ON:				
Eastern Analy	tical, Inc.	25 C⊦	ENELL	Drive C	RE	ling rd, N	UISHED H 03301	BY: Tel:	603.2	Date: 28.05	525	T 1.800.1	IME: 287.0	525	Re E-M	CEIVED AIL: C	BY: USTO	MERSE	RVICE	@Eas	FIELI	d Real Anal	DINGS: YTICA	LCOM	l ww	/w Fa	STERN		_

professional laboratory and drilling services

FOR LAB USE OHLY 5 GG 78

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

0			Be)LD	Fie	LDS	Re	QUI	RED). F	DLE/	ASE	CII	RCLE	R	EQUI	ESTI	ED 🖌	ANA	LYS	sis.											
						V	DC	l 1		S	VC	C		TCL	ME	TALS			NO	RG	A	JIC	Ś		M	ICR	o O	TH	ĒR			
Sample I.D.	 * 	Sampling Date / Time If Composite, ndicate Both Start & Finish Date / Time	MATRIX (SEE BELOW)	GRAB/*COMPOSITE	524.2 574.7 RTEX 574.7 MTRF ONIV	8260 624 VTICS	8021 BTEX HALOS	8015 GRO MAVPH	8270 625 SVTICs EDB DBCP Abn a bn Pah	TPH8100 L1 L2	8015 DRO MAEPH	PEST 608 PCB 608 PEST 8081 PCB 8087	OIL & GREASE 1664 TPH 1664	TCLP 1311 ABN METALS VOC PEST HERB	DISSOLVED METALS (LIST BELOW)	TOTAL METRY (LIST BELOW)	IS TSS TDS SPEC. CON.	BR CI F 504 No ₂ No ₃ No ₃ No ₂	80D CBOD T. ALK.	TKN NH3 T. PHOS. O. PHOS.	OH T. RES. CHLORINE	COD PHENOLS TOC DOC	fotal Cyanide Total Sulfide	AEACTIVE CVANIDE REACTIVE SULFIDE	Total Coliforn E. Coll	ELAL - ULIFUKIA	HETEROTROPHIC PLATE COURT			# of Containers	Not i MeOH Vial	ES 7
511-11A	9/13	3/10/1512	S	6								X	'			P				_										1		
S11-11B		1 1506	1	1								i																		1		
511-110		1509																		-												
55 - 11B		1359														X																
55-11C		1402														X									1.		_					
S11 - 12A		1515																							-							
S11 - 13A		1520																												П		
512-1		1527									Γ																					
512-2		1530																												Τ		
S 12, -3 Yatnix: A-Air; S-Soil; GW-Ground Wate WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; 1	r; SW-S Na-NaO	L <u>(335</u> Surface Water; DW-Drini H; M-MEOH	KING V	VATER;																										7		
PROJECT MANAGER: <u>Tim</u> COMPANY: <u>Noisis</u> Iddress: <u>18 Chencel</u> ITY: <u>Concor</u> D	<u>م</u> يكرو	NOREUS STATE: <u>NI+</u>	ZIP: _	Ô3	330	 (A/Q EPOR A	E NE C TING	EEDI Lev B	E D: EL	Sī C	TAL	REP PRELIN	ORTI	NG O	PTIO No	MS	T1 10	EMP [E?	4 (ES	27) No	°C	Мі Оті <u>Sa</u>	ETALS IER ME MPLE	etals: Etals:	8 RCR/	A (13	D?	FI	, MN P Yes 🗌	, ,]
HONE: <u>635-629-</u> NX: MAIL: <u>TANDIREUS @</u> TE NAME: <u>LANDIE I</u> ROJECT #: <u>70705.00</u>	NONOF	62 BBISENG.CO. DERTY	EXT.: _				SAT	1PLER	MA		P ZD	3/		Elec E-Mai		IIC O	PTIOI Equ	NS UIS C	EXCE					NO	ies: (ie	: SPEC	IAL DETE	CTION L	IMITS, B	ILLING	INFO, IF DIFFI	RE
IATE: NH MA ME EGULATORY PROGRAM: NPDES: RGF GWP, OIL FUND: BROWN	VT POTV	OTHER: N Stormwater or r Other:					R	ELINC	QUISH	ED E		~	DATE P-14 DATE	+-18	>	TIME:)	<u>A</u>	CEIVED.	BY:	Ģ	Ð		Sitti	e Histo	ORY: _				<u></u>		
LUOTE #:		, PO #:							¢0:30		- 1.									.				Sus	PECTED) Con	TAMINATI	ION:				
Eastern Analy	tica d drill	al, Inc.	25 CH	IENELI	L DRIN	/e C		ELINC DRD, N	1H 03	IED E 1301	BY: Tel:	603.2	DATE 228.0	525	1.800	Time: 0.287.0	0525	Re E-M	CEIVED AIL: C	BY: USTO	MERSI	ERVICE	@EAs	FIE	.d Re <i>i</i> IAnai	ADINGS Lytic	: AL.COM	1 ww	/w.Eas	STERN	Analytica	

	Ц		-1
Page	<u> </u>	of	

FOR LAB USE DIATE GG 7

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

		50	LD	FIELD:	: Ke	QUI	RED	. P	LEA	SE C	Sirc	LER	EQU	EST	ED /	ANA	L LYS	sis.										Ç
	· · · · · · · · · · · · · · · · · · ·				QC		ļ	S	<u>/0</u>	C	T	CLP M	ETALS			NO	RG	AN	JIC	S		Μι	CRC	O	TH	ĒR		
SAMPLE I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish	ATRIX (SEE BELOW)	AB/*COMPOSITE	BTEX 524.2 MTBE ONLY 624 VTICS	BTEX HALOS	GRO MAVPH	625 SVTICS EDB DBCP A BN PAH	100 LI L2	DRO MAEPH	608 PCE 608 8081 PCE 6082)	GREASE 1664 TPH 1664	PEST HERB VED METALS (LIST BELOW)	METALS (BST BELOW)	TSS TDS SPEC. CON.	CI F SO4 NO3 NO3NO2	CBOD T. Alk.	NH3 T. PHOS. O. PHOS.	T. Res. Chlorine	PHENOLS TOC DOC	CYANIDE TOTAL SULFIDE	re Cyanide Reactive Sulfide dint Igritability	COLIFORM E. COLI COLIFORM	COCCI TROPHIC PLATE CONNT				Containers	Notes
	DATE / TIME	Σ	Ű	524.2 524.2 8260	8021	8015	8270 ABN	TPH8	8015	면 탄원	Oit &	VOC	IN	1 12	BB NO ₂	Bob	TKN	표	3	TOTAL (REACTIN	TOTAL FECAL	ENTERO				ы #	FIEUTI VIAL 17
S12-4	9/13/18/1537	5	6							$\boldsymbol{\chi}$																	1	
512-5	1 1543				1_					1																	i	
512-6	1549									ŀ																		
512-7	1552									-																	T	
512-8	1555	-								ŀ									-									
312-9	1559									ŀ													T					
<u>\$5-12B</u>	1602									1																		
M-1	1620												X	1														
55-10B	1630												X															
SS – 10 C Matrix: A-Air; S-Soil; GW-Ground Water WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; N	IGHD R; SW-SURFACE WATER; DW-DRIN Ia-NaOH; M-MEOH	KING W	L ATER;										X															
Project Manager: <u>Tim</u> Company: <u>Nobis</u>	ANDREWS					ATE	Ne	EDE	D:	STA	<u>مرت</u> رير	nD	T	47		T	EMP	4,	7	°C	Me	TALS:	8	RCR	A <	SAP-) F	e, Mn Pb, Cu
ADDRESS: 18 CITENELL	_ Dr				Q	A/QU EPOR	_ TING	LEVE	L		R Pri	EPORTI ELIMS: / M	ing O Bor	PTIO No	NS	10	:E?	Es	/ No		Oth	er Mei	TALS: _					
CITY: <u>Concard</u>	STATE:14	ZIP:	<u>03</u>)	01	-	A		В		С											SAN	1PLES	FIE	ld F	ILTERE	D?		Yes 🗌 No
PHONE: <u>603-224-2</u>	1182	Ext.:			-		c	OR			E	.ECTRO	NJC.O	PTIO	NS						Not	ES: (IE:	SPECI	L DETI	ECTION L	IMITS, E	BILLING	INFO, IF DIFFERENT)
E-MAIL: ANDREWS C.	- NOBISENG. CO.	u –		<u> </u>	-		MA	MCF	•		E-1	¹ ail (PDF	EQ	2810	Exce	9											
SITE NAME: LAVOIE	PROPERTY								577	.1-																		
PROJECT #: 70705.07	<u> ひ</u>				. SAI	1PLER(5):	5	-S		Z	_							- Contraction of the second									
STATE: NH MA ME	VT OTHER:				R	ELING	UISH	ED B	V:	D	DATE:		TIME:		RE	CEIVED	BY: /	_		2								
GWP. OII FIND PROGRAM: NPDES: RGP	POTW STORMWATER OR									9	141	51	155	~ (/	<u> </u>	Ì	le		SITE	HISTO	RY:					
OHOTE #.	PN #·				· R	ELINQ	UISH	ED B	Y:	D)ATE:		TIME:	and the second second	RE	CEIVEÐ	By:				SUSP	ECTED	CONTA	MINATI	ION:			
·····	/ V ///				R	ELINQ	UISH	ED B	V:	D)ATE:		TIME:		Re	CEIVED	BY:				FIEL	d Read	DINGS:					
Eastern Analy professional laboratory and	tical, Inc. d drilling services	25 Сне	NELL	Drive C		ord, N	IH 033	301 NGIN	Tel: 6	03.22	8.0525 Deen	1.80	0.287.	0525	E-M	AIL: C	USTO	MERSE	RVICE	@Eas	TERN	Anal	YTICA	L.COM	1] WM	/W.EA	STERN	ANALYTICAL.COM

Page <u>5</u> of <u>7</u>

CHAIN-OF-CUSTODY RECORD

186678	For Lab U	* ONLY 866	78
--------	-----------	------------	----

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

				V	90			S	VG	C		TCL	ME	TALS			NĠ	RC		JIC	S		M	ICRO	Ô	TH	ER			
SAMPLE I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	Matrix (see below)	GRAB/*COMPOSITE	524.2 524.2 BTEX 524.2 MTBE ONLY 8260 624 VTICS 1.4 Dioxane	8021 BTEX HALOS	8015 GRO MAVPH	8270 625 SVTICS EDB DBCP Abn a bn Pah	TPH8100 LI L2	8015 DRO MAEPH	PEST 608 PCB 608 PEST 8081 PCB 8082	OIL & GREASE 1664 TPH 1664	TCLP 1311 ABN METALS VOC PEST HERB	DISSOLVED METALS (LIST BELOW)	TOTAL METRES (LIST BELOW)	TS TDS SPEC. CON.	Br CI F 504 NO2 NO3 NO2	BOD CBOD T. ALK.	TKN NH3 T. PHOS. O. PHOS.	pH T. Res. CHLORINE	COD PHENOLS TOC DOC	Total Cyanide Total Sulfide	REACTIVE CYANIDE REACTIVE SULFIDE Flachdont Icnitarnity	TOTAL COLIFORM E. COLI	FELAL CULIPORM ENTEROCOCCI Heterotodur Plate Count				# of Containers	No MeOH V)TES /ial #
M-2	9/13/18/1645	5	6											X	1													1		
M-3	1650																											i		
M-4	1655																													
M-5	1700																													
M-6	1705																													
55-03B	1715																													
55-65B	1730																													
55-05C	1740																													
M-7	1755																													
M—B Matrix: A-Air; S-Soil; GW-Ground Water WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; N	I COCO SW-SURFACE WATER; DW-DRIN Ia-NaOH; M-MEOH	KING W	L ATER;											1														Ţ		
PROJECT MANAGER: TIM COMPANY: NOTBLE ADDRESS: 18 CHENELL CITY: CONSCORD	ANDREWS DR SHATE: NH	71P·	63		D Q/ Ri	ATE A/Q(POR A	E Ne C TING	EDE Levi	EL	574		REP PRELIM	ORTIN IS: JES		PTIO No	NS	T	EMP CE?	4 (TES	: 7) No	°C	Me Oth Sai	e tals (er M: M PL F	ETALS: _	RCRA		3 PP) F	e, Mn Yes	 PB, CU
PHONE: 603-224-4 FAX: E-MAIL: 7 Anno22eurs (4182	Ext.:_					c MA	DR MCF	5	-		Elec E-Maii	troni	ic 0	PT10 Eqi	ns ^{UIS} C	EXCE	5				Not	res: (18	: Speci	AL DETE	CTION L	IMITS, I	BILLING	i Info, If D	IFFERENT)
SITE NAME: <u>LAVOIE PA</u> PROJECT #: <u>70705, 000</u> STATE: MH MA ME	2 <i>0 pearet y</i> > VT Other:				SAP R z	IPLER(IS ED R	Æ	De		35	5	ĨIMF•			CLAVED			\mathbf{i})									
REGULATORY PROGRAM: NPDES: RGP GWP, OIL FUND, BROWNF OUOTE #:	POTW STORMWATER OR IELD OR OTHER: PO #:				R	ELINQ	UISH	ED B	Υ:	9	DATE:	-10	گ/ 1	اللة: اللة:		RE	CEIVED	BY:	Ø	ê 		SITE Susi	: Hist Pectei	ory:) Cont <i>i</i>	AMINATI)N:				
	tical, Inc.	25 Сн	ENELL	Drive C		elinq rd, N	UISH IH 03:	ed B 301	Y: Tel:	603.2	Date: 28.05	25	1 1.800	[IME: .287.(0525	Re E-M	CEIVED AIL: C	BY: Custo	MERSE	ERVICE	:@Eas	FIEL	d Re i IAna	ADINGS: Lytica	L.COM	ww	/w.Ea	STERN	ANALYTI	CAL.COM

	^		~
Page	6	of	+

For	LAB	Use	OHLY,	81		~	$\widehat{\boldsymbol{\Gamma}}$
			1	O C	\sim	10	5

 \sim

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

		V	OC	SVO	C	TCLP METALS	IN	ORGANICS	MICRO O	DTHER						
Sample I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	MATRIX (SEE BELOW) GRAB/*COMPOSITE 34.2 BTEX 5.24.2 MTBE ONU 3260 6.24 VTICS	1, 4 DIDXXME 8021 BTEX HALOS 8015 GRO MAVPH	8270 625 SYTICS EDB DBCP ABN A BN PAH TPH8100 L1 L2 8015 DRO MAEPH	PEST 608 PCB 608 PEST 8081 PCB 8082 OIL & Grease 1664 TPH 1664	TCLP 1311 ABN METALS VOC PEST HENB DISSOLVED METALS (LIST BELOW) GOTAL METALS (LIST BELOW)	15 TSS TDS SPEC. CON. Br. CI F SO4 NO2 NO5 NO5NO2 BOD CBOD T. ALK.	TKN NH; T. PHOS. O. PHOS. ph T. Kes. Chlorine cod Phenols TOC DOC fotal Cranide Total Sulfide	REACTIVE CVANDE REACTIVE SULFIDE FLASPOINT IGNTABILITY TOTAL COLFORM E. COLI FORLAL COLFORM ENTEROCICI HETEROTOPHIC PLATE COUNT	# OF CONTAINERS	Notes MeOH Vial #					
M-FDUAS	9/13/18/1917	56				X				1						
57-1	. 1812	2 2			X											
57-2	1828															
57-3	1835	•														
57-4	1840															
57-5	1845															
S7-FOUPS	IBUR															
57-6	1852															
57-7	1858															
S7-8 Matrix: A-Air; S-Soil; GW-Ground Water WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; N	I	IKING WATER;														
PROJECT MANAGER: TIM ANDRELSS COMPANY: NOBIS ADDRESS: 18 CHENER DR			- DATE - QA/QC - REPORT	NEEDED:	STAND	APRD T. REPORTING C PRELIMS: (VEDOR	PTIONS	TEMP. 4.7 °C ICE? (YES) NO	METALS: 8 RCRA (13-PP) FE, MN PB, CU							
CITY: <u>Concord</u>	STATE:NI+	ZIP: <u>0330(</u>	_ A	В	c				SAMPLES FIELD FILTERED? YES NO							
PHONE: 603-224-4182 Ext.: FAX: E-MAIL: TANDROWSE NOW 315ENG. COM				OR MA MCP		Electronic O E-May PDF	NOTES: (IE: SPECIAL DETECTION LIMITS, BILLING INFO, IF DIFFERENT)									
SITE NAME: LAVOIE PROPERTY PROJECT #: 70705.00			- SAMPLER(S	s):	03/3	S										
STATE: NH MA ME VT OTHER:			RELINQ	UISHED BY:	DATE:	TIME:	ED BY:									
REGULATORY PROGRAM: NPDES: RGP POTW STORMWATER OR GWP, OIL FUND, PROWNFIETB OR OTHER:			- BELINO	IIICHEN RV-	Q147 DATE:	18 /S.S. Time:	D RV:	SITE HISTORY:								
QUOTE #: PO #:				,		111L.	יש ט,	SUSPECTED CONTAMINATION:								
	CONCORD, N	RELINQUISHED BY: DATE: TIME: RECEIVED BY: FIELD READINGS: CONCORD, NH 03301 Tel: 603.228.0525 1.800.287.0525 E-Mail: CUSTOMERSERVICE@EASTERNANALYTICAL.COM www.EasternAnalytical.com														

Page	7	of	7

BOLD FIELDS REQUIRED. PLEASE CIRCLE REQUESTED ANALYSIS.

186678

				V				R	Vo)C	3 11	TCLE	Me	TALS			NC				5		M	ĊÞO	Č.		EDI			
SAMPLE I.D.	Sampling Date / Time *If Composite, Indicate Both Start & Finish Date / Time	Matrix (see below)	GRAB/*COMPOSITE	524.2 524.2 BTEX 524.2 MTBE ONLY 8260 624 VTICS 1, 4 Dioxane	8021 BTEX HALOS	8015 GRO MAVPH	8270 625 SYTICS EDB DBCP Abn a bn Pah	TPH8100 LI L2	8015 DRO MAEPH	PEST 608 PCB 608 PEST 8081 PCB 8092	OIL & GREASE 1664 TPH 1664	TCLP 1311 ABN METALS D VOC PEST HEAB	DISSOLVED METALS (LIST BELOW)	TOTAL METALYLIST BELOW)	TS TSS TDS SPEC. CON.	BR CI F 504 NO3 NO3 NO3NO3	BOD CBOD T. ALK.	TKN NH3 T. PHOS. O. PHOS.	pH T. Res. CHLORINE	COD PHENOLS TOC DOC	TOTAL CYANIDE TOTAL SULFIDE	Reactive Cyanide Reactive Sulfide Flashpoint Ignitability	Total Colform E. Coli Fecal Colform	ENTEROCOCCI HETEROTOPHIC PLATE COUNT				# of Containers	N eOH	otes Vial #
57-9	9/13/18/1902	5	G							${\mathcal{X}}$																		1		
S7-FOUP9	1905									Х																		ţ		
M-FOUP7	1908													X																
55-06B	1806													X	'															
53-06C	1809													X															_	
\$5-07B	1832									X				X																
35-07C	1834	L	L											X									1					1		
-									_																		-1			
·																	<u> </u>											_		
Matrix: A-Air; S-Soh; GW-Ground Water WW-Waste water Preservative: H-HCL; N-HNO3; S-H2SO4; N	 ; SW-Surface Water; DW-Drini a-NaOH; M-MEOH	KING W	ATER;												2 															
Project Manager: <u>Trad</u> Company: <u>Nobis</u> Address: <u>18 Citeswelc</u>	DR.				D QA Re	ATE /QC PORT	Ne Ing	EDE Leve	D:	Str	<u>+~</u>	DAA Repo Prelin	ORTIN	 ig 0	PTIO No	NS	T	EMP E? _ (4 . Yes	7 DNo	°C	М Е Отн	tals: er Met	8 FALS:	RCRA		PP	FE	e, Mn	PB, CU
114: <u>CONCORCO</u> PHONE 603-224-4	STATE: <u>NH</u>	ZIP: Evt.	533	<u>'ය(</u>													SAMPLES FIELD FILTERED?													
FAULE TANDICEUS C NOISISENG. COM			OR MA MCP SAMPLER(S): CR E-MAIL SAMPLER(S): CR ELECTRONIC ELECTRONIC ELECTRONIC PDF EQUIS EXCEL SAMPLER(S): CR ELECTRONIC ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC PDF ELECTRONIC ELECTRONIC PDF ELECTRONIC ELECTRONIC PDF ELECTRONIC ELECTRONIC ELECTRONIC PDF ELECTRONIC																											
							~	2	Se .	\geq	_					_	فشمعتمصم	}												
REGULATORY PROGRAM: NPDES: RGP POTW STORMWATER OR			KELINQUISHED BY: DATE: LIME: RECEIVED BY: OATE: LIME: RECEIVED BY: DATE: LIME: RECEIVED BY: OF THE RECEIVE																											
GWP, OIL FUND, BROWNFIELD OR OTHER:				RELINQUISHED BY: DATE: TIME: RECEIVED BY:											SHE ПЫЧИЧ:															
QUOTE #: PO #:					RE	LINO	UISHF	D B	Y:		DATE:			IME:		RF		By.			!	FIFI	D READ		UNATION	" <u> </u>				
M Eastern Analy	tical, Inc. 2	25 Che	NELL		NCOF	D, N	H 033	101	TEL: 6	503.22	28.05	25	1 .800	.287.0	525	E-M	AIL: C	USTOI	MERSE	RVICE	@Eas	TERN		TICAL	.com	ww	W.EAS	STERN	ANALYT	

professional laboratory and drilling services