HAZARD RANKING SYSTEM (HRS) DOCUMENTATION RECORD COVER SHEET

Name of Site: PCE – Carriage Cleaners

EPA ID No. NEN000710226

Contact Persons

Documentation Record: Kumud Pyakuryal, National Priorities List Coordinator U.S. Environmental Protection Agency, Region 7 11201 Renner Boulevard Lenexa, Kansas 66219 (913) 551-7956 Michael Davis, On-Scene Coordinator 11201 Renner Boulevard Lenexa, Kansas 66219 (913) 551-7328 David Zimmermann, Site Manager Tetra Tech, Inc. 415 Oak Street

(816) 412-1788

Pathways, Components, or Threats Not Scored

The groundwater, surface water, and air migration pathways, and the soil exposure component of the soil exposure and subsurface intrusion pathway are not scored in this Hazard Ranking System (HRS) documentation record because the subsurface intrusion component of the soil exposure and subsurface intrusion pathway is sufficient to qualify the site for the National Priorities List (NPL). The groundwater, surface water, and air migration pathways, and the soil exposure component of the soil exposure and subsurface intrusion pathway are of concern to the U.S. Environmental Protection Agency (EPA) and may be considered during a future evaluation. At the time of the listing, the site score is sufficient without the pathways and component mentioned above.

Kansas City, Missouri 64106

Ground Water Migration Pathway: The ground water migration pathway was not scored because although there is sampling to show a release of chlorinated solvents has occurred to shallow groundwater (Ref. 10, pp. 36-41, 64, 65, 73, 78, 79), there are few domestic wells in the site vicinity (Ref. 10, pp. 49, 50, 75). There are two registered domestic wells within one mile of the site and a total of 33 domestic wells within 4 miles of the site (Ref. 10, pp. 50, 75). Most of these wells are northwest and upgradient of the site (Ref. 10, p. 50). Furthermore, although there are indications of contaminated groundwater present that could threaten targets, it has not been scored because evaluation of the migration pathway would not significantly contribute to the overall site score.

Surface Water Migration Pathway: A release to surface water is unlikely as the nearest perennially flowing surface water feature, the Missouri River, is 0.7 mile east of the site (Ref. 10, pp. 50). The listing of this site would not be changed by evaluating this pathway.

Soil Exposure Component, Soil Exposure and Subsurface Intrusion Pathway: The soil exposure component was not scored because although there is sampling to show a release of chlorinated solvents has occurred to subsurface soils (Ref. 10, pp. 33-36), none of the samples were collected from the top 2 feet of soil and no soil samples were collected on properties other than the former dry cleaner (Ref. 10, p. 68).

Air Migration Pathway: Some outdoor air samples collected were analyzed for chlorinated volatile organic compounds and none were detected (Refs. 9, pp. 9, 13;10 pp. 15, 19, 20, 28). The listing of this site would not be changed by evaluating this pathway.

HRS DOCUMENTATION RECORD

Name of Site: PCE – Carriage Cleaners

Date Prepared: September 2022

EPA Region: 7

Street Address of Site*: 2110 South Franklin Street

City, County, State, Zip Code: Bellevue, Sarpy, Nebraska, 68005

General Location in the State: Eastern Nebraska

Topographic Map: Omaha South Quadrangle, Nebraska – Iowa, 7.5-Minute Series, 2021 (Ref. 3)

Latitude: 41.137721

Longitude: -95.894082

The coordinates above for the PCE - Carriage Cleaners Site were measured from within the center of the parcel where the dry cleaner was once located at the northwest corner of West 22nd Avenue and Franklin Street in Bellevue Nebraska (Ref. 4, pp. 1, 2).

*The street address, coordinates, and contaminant locations presented in this HRS documentation record identify the general area the site is located. They represent one or more locations EPA considers to be part of the site based on the screening information EPA used to evaluate the site for NPL listing. EPA lists national priorities among the known "releases or threatened releases" of hazardous substances; thus, the focus is on the release, not precisely delineated boundaries. A site is defined as where a hazardous substance has been "deposited, stored, disposed, or placed, or has otherwise come to be located." Generally, HRS scoring and the subsequent listing of a release merely represent the initial determination that a certain area may need to be addressed under CERCLA. Accordingly, EPA contemplates that the preliminary description of facility boundaries at the time of scoring will be refined as more information is developed as to where the contamination has come to be located.

Scores

Air Pathway	Not Scored
Ground Water ¹ Pathway	Not Scored
Soil Exposure and Subsurface Intrusion Pathway	100
Surface Water Pathway	Not Scored

HRS SITE SCORE 50.00

¹ "Ground water" and "groundwater" are synonymous; the spelling is different due to "ground water" being codified as part of the HRS, while "groundwater" is the modern spelling.

		S	S ²
1.	Groundwater Migration Pathway Score (Sgw)	NS	NS
2a.	Surface Water Overland/Flood Migration Component (from Table 4-1, line 30)	NS	NS
2b.	Ground Water to Surface Water Migration Component (from Table 4-25, line 28)	NS	NS
2c.	Surface Water Migration Pathway Score (S _{sw}) Enter the larger of lines 2a and 2b as the pathway score.	NS	NS
3a.	Soil Exposure Component Score (S _{se}) (from Table 5-1, line 22)	NS	NS
3b.	Subsurface Intrusion Component Score (S _{ssi}) (from Table 5-11, line 12)	100	10,000
3c.	Soil Exposure and Subsurface Intrusion Pathway Score (S _{sessi}) (from Table 5-11, line 13)	100	10,000
4.	Air Migration Pathway Score (S _a)	NS	NS
5.	Total of $S^2_{gw} + S^2_{sw} + S^2_{sessi} + S^2_{a}$		10,000
6.	HRS Site Score Divide the value on line 5 by 4 and take the square root		50.00

Note:

NS = Not scored

Table 5-11 – Subsurface Intrusion Component Scoresheet				
	Factor Categories and Factors	Maximum	Value	
	Tactor Categories and Factors	Value	Assigned	
	Subsurface Intrusion Component			
Likel	ihood of Exposure:	1		
1.	Observed Exposure	550	550	
2.	Potential for Exposure:			
2a.	Structure Containment	10	NS	
2b.	Depth to contamination	10	NS	
2c.	Vertical Migration	15	NS	
2d.	Vapor Migration Potential	25	NS	
3.	Potential for Exposure (lines 2a * (2b+2c+2d), subject to a maximum of 500)	500	NS	
4.	Likelihood of Exposure (higher of lines 1 or 3)	550	550	
Wast	e Characteristics:			
5.	Toxicity/Degradation	(a)	10,000	
6.	Hazardous Waste Quantity	(a)	10,000	
7.	Waste Characteristics (subject to a maximum of 100)	100	100	
Targe	ets:			
8.	Exposed Individual	50	50	
9.	Population:			
9a.	Level I Concentrations	(b)	484.2	
9b.	Level II Concentrations	(b)	168.71	
9c.	Population within an Area of Subsurface Contamination	(b)	NS	
9d.	Total Population (lines 9a + 9b +9c)	(b)	652.91	
10.	Resources	5	5	
11.	Targets (lines $8 + 9d + 10$)	(b)	707.91	
Subsurface Intrusion Component Score:				
12.	Subsurface Intrusion Component (lines $4 \times 7 \times 11$)/82,500 ^c (subject	100	100	
	to a maximum of 100)	100	100	
Soil F	Exposure and Subsurface Intrusion Pathway Score:			
13.	Soil Exposure Component + Subsurface Intrusion Component	100	100	
	(subject to a maximum of 100)	100	100	

Notes:

^a Maximum value applies to waste characteristics category.
 ^b Maximum value not applicable.
 ^c Do not round to the nearest integer.
 NS Not scored

Notes: The source of this map image is Esri, used by EPA with Esri's permission. Ref. 10, p. 63

Source: The source of this map image is Esri, used by EPA with Esri's permission. Refs. Figures 4 & 5

Source: The source of this map image is Esri, used by EPA with Esri's permission; Refs. 7, pp. 5, 9; 8, pp. 15, 16, 26, 30; 9, pp. 14, 20; 10, pp. 40, 41, 73

REFERENCES

Ref.

No. Description of the Reference

- U.S. Environmental Protection Agency (EPA). Hazard Ranking System, Title 40 Code of Federal Regulations (CFR) Part 300, Appendix A (55 Federal Register [FR] 51583, Dec. 14, 1990, as amended at 82 FR 2779, Jan. 9, 2017; 83 FR 38037, Aug. 3, 2018), as published in the Code of Federal Regulations on July 1, 2019, with two attachments. Attachment A: Federal Register Vol. 55, No. 241. December 14, 1990. Hazard Ranking System Preamble. Attachment B: Federal Register Vol. 82, No. 5, January 9, 2017. Addition of a Subsurface Intrusion Component to the Hazard Ranking System Preamble. Available at <u>https://semspub.epa.gov/src/document/HQ/100002489</u>. 197 Pages.
- 2. EPA. Superfund Chemical Data Matrix (SCDM). Accessed on August 2, 2022. Accessed on-line at: https://www.epa.gov/superfund/superfund-chemical-data-matrix-scdm-query. 9 Pages.
- 3. U.S. Department of the Interior, U.S. Geological Survey (USGS). Omaha South Quadrangle, Nebraska-Iowa. 7.5 Minute Series (Topographic). Scale, 1:24,000. 2021. Note: Modified by Tetra Tech, Inc. (Tetra Tech) to add the location of the former Carriage Cleaners facility. 1 Map.
- 4. Tetra Tech. Project Note to File with Attachment. Subject: Coordinates for PCE Carriage Cleaners in Bellevue, Nebraska. Attachment: Google Earth Map. September 29, 2021. 2 Pages.
- 5. EPA. Facility Registry Service (FRS) Facility Detail Report, PCE Carriage Cleaners. Accessed on October 1, 2021. Accessed on-line at: FRS Query US EPA. 2 Pages.
- 6. Thiele Geotech Inc. Phase I Environmental Site Assessment Report, Commercial Property, 2110 & 2112 Franklin Street, Omaha, Nebraska. Prepared for Buckley Construction. July 27, 2017. 212 pages.
- 7. Thiele Geotech Inc. Phase II Environmental Site Assessment, Commercial Property, 2110 2112 Franklin Street, Bellevue, Nebraska. Prepared for Buckley Construction. September 18, 2017. 58 pages.
- 8. Thiele Geotech Inc. Supplemental Environmental Site Assessment Report, Commercial Property, 2110 2112 Franklin Street, Bellevue, Nebraska. Prepared for Buckley Construction Co. July 31, 2018. 170 pages.
- 9. Olsson Inc. Carriage Cleaners, Vapor Intrusion Assessment. Prepared for the Nebraska Department of Environmental Quality. June 21, 2019. 286 pages.
- 10. Tetra Tech, Inc. Removal Site Evaluation and Site Inspection Report, PCE Carriage Cleaners, Bellevue, Nebraska. Prepared for EPA Region 7. July 9, 2021. 367 pages.
- 11. Haldeman, D. Nebraska Department of Environment and Energy. Letter to M. Peterson, EPA Region 7. Subject: Request for Federal Action, Former Carriage Cleaners Site, Bellevue, NE. July 12, 2019. 5 pages.
- 12. Tetra Tech. Project Note to File with Attachments. Subject: Reporting Limits for Analytic Services Requests (ASRs) 8435, 8482, 8519, 8588, 8618, 8619, 8652, 8774, and 8745. Prepared by: David Zimmermann, Project Manager. Attachments: Reporting Limits. October 15, 2021. 123 Pages.
- Tetra Tech. Project Note to File with Attachments. Subject: Area of Exposure Regularly Occupied Structures. Prepared by: David Zimmermann, Project Manager. Attachments: List of Regularly Occupied Structures and Building Reports. October 20, 2021. 210 Pages.
- 14. EPA, Solid Waste and Emergency Response. Dense Nonaqueous-phase Liquids (DNAPL) Remediation: Selected Projects Approaching Regulatory Closure, Status Update. EPA 542-R-04-016. December 2004. 34 Pages.
- 15. EPA, Office of Emergency and Remedial Response. Estimating Potential for Occurrence of DNAPL at Superfund Sites, Quick Reference Fact Sheet. Publication: 9355.4-07FS. January 1992. 10 Pages.
- EPA. Office of Solid Waste and Emergency Response (OSWER) Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication No. 9200.2-154. June 2015. 267 Pages.

- 17. U. S. Census Bureau. QuickFacts: Sarpy County, Nebraska. Accessed on-line at U.S. Census Bureau QuickFacts: United States. 3 pages.
- Tetra Tech. Project Note to File with Attachments. Subject: Property Information Forms from December 2019 for PCE - Carriage Cleaners in Bellevue Nebraska. Prepared by: David Zimmermann, Project Manager. Attachments: Property Questionnaires for December 2019 sampling effort. November 15, 2021. 12 Pages.
- 19. Tetra Tech. Project Note to File with Attachments. Subject: Electronic Field Sheets Carriage Cleaners in Bellevue Nebraska. Prepared by: David Zimmermann, Project Manager. Attachments: Copies of electronic field sheets for ASR Numbers 8482, 8519, 8588, 8618, 8619, 8652, 8744, and 8775. January 5, 2022. 13 pages.
- 20. Tetra Tech. Trip Report and Data Summary October 2021 Sampling Event, PCE Carriage Cleaners, Bellevue, Nebraska. Prepared for EPA Region 7. December 10, 2021. 309 pages.

SITE SUMMARY

The PCE – Carriage Cleaners site in Bellevue Nebraska, as scored for HRS purposes, consists of one area of observed exposure (AOE), delineated by regularly occupied residential and workplace structures with documented observed exposures. The AOE includes 85 structures with samples meeting observed exposure criteria or inferred to be within the AOE. The site-attributable hazardous substances that have entered indoor air from the subsurface include the following chlorinated volatile organic compounds (CVOCs): tetrachloroethene (PCE), trichloroethene (TCE), *cis*-1,2-dichloroethene (*cis*-1,2-DCE), *trans*-1,2-DCE, and vinyl chloride (Ref. 10; see **Table 2** of this HRS documentation record see **Section 5.2.0**). The site includes documented indoor air contamination in 64 regularly occupied structures overlying soil and groundwater contaminated by the release of PCE and its chemical degradations from operations at the former dry-cleaning operation. Although soil and groundwater contamination is discussed, an area of subsurface contamination is not scored for HRS purposes. The EPA identification number for the site, as recorded in the Superfund Enterprise Management System (SEMS) database, is NEN000710226 (Ref. 5).

The site is within the City of Bellevue Nebraska and is on the loess bluff about 0.3 mile west of the Missouri River flood plain, and about 0.7 mile southwest of the river (Refs. 3; 10, p. 7). Elevation at the site is about 1,038 feet above mean sea level (AMSL), which is about 70 feet above the Missouri River floodplain's elevation (Refs. 3; 10, p. 7). Bellevue is in eastern Nebraska about 6 miles south of the Interstate 80 (I-80) bridge over the Missouri River at Omaha, Nebraska (Refs. 3;10, p. 7).

The former Carriage Cleaners facility is currently a vacant lot at 2112 Franklin Street in Bellevue (Ref. 10, p. 7). The building was demolished in 2010 (Refs. 6, p. 66; 10, p. 7). The first listing for Carriage Cleaners in the city directories was 1976-1977 (Ref. 6, p. 78). Carriage Cleaners closed about 1994 and the property was sold through the Bankruptcy Court in 1996 (Refs. 6, p. 4; 10, p. 7). Property uses between about 1995 and 2010, when the building was demolished, are uncertain. The 2110 Franklin Street building was formerly used as a laundromat in the early 1990s and may have been the location of the Highlander Laundry, which shared the 2112 Franklin address in 1980-1981 (Ref. 6, pp. 18, 78).

Commercial businesses are generally present along Franklin Street between 21st and 23rd Avenue and along Mission Avenue, one block south of the former dry cleaner. The areas surrounding the commercial corridors are largely residential (Ref. 10, p. 8).

Historical investigations conducted in 2017-2020 identified PCE and TCE in soil, groundwater, and soil gas vapor samples collected at or near the former dry cleaner. A Phase II Environmental Site Assessment (ESA) of the former Carriage Cleaners property was conducted in 2017 (Ref. 7). Two soil samples were collected at the former dry cleaners during the Phase II ESA and PCE and TCE were detected at maximum concentrations of 3,010 micrograms per kilogram (μ g/kg) and 89.2 μ g/kg respectively, at 43-44 feet below ground surface (bgs) (Ref. 7, pp. 4, 9). Groundwater samples were collected from two temporary monitoring wells (Ref. 7, p. 2). In the shallow well (collected within about 15-25 feet bgs), PCE was detected at 201 micrograms per liter (μ g/L), and in the deep well (screened from 70-80 feet bgs), PCE was detected at 6.88 μ g/L (Ref. 7, pp. 2, 5). TCE was detected at 22.7 μ g/L in the shallow well and 3.45 μ g/L in the deep well sample. The PCE degradation products *cis*-1,2-DCE (103 μ g/L) and trans-1,2-DCE (28.8 μ g/L) were detected in the shallow well sample (Ref. 7, p. 5).

In June and July, 2018, a supplemental ESA was conducted that included sampling of soil, groundwater, soil gas, sub-slab vapor, and indoor air (Ref. 8, pp. 7, 111, 112, 134, 169). Soil samples were collected at the former dry cleaners, with the highest PCE concentrations detected near the western edge of the former building. PCE was detected at 1,090 μ g/kg at 5-6 feet bgs and at 4,440 μ g/kg at 15-16 feet bgs (Ref. 8, pp. 14, 26, 62-65). A soil gas vapor sample (SV-1) collected at 5 feet bgs near the center of the property where the former dry cleaner was located had a PCE concentration of 1,100,000 micrograms per cubic meter (μ g/m³) (Ref. 8, pp. 17, 26, 119). A PCE concentration of 350,000 μ g/m³ was detected in a sub-slab vapor sample (SS-2) collected at the 2110 Franklin Street building (Ref. 8, pp. 17, 26, 124). Groundwater samples were collected from six shallow (about 25 feet bgs) and six deep (about 75 feet bgs) temporary monitoring wells except for a location cross-gradient to the south (Ref. 8, pp. 15, 16, 30). PCE was detected at 9,450 μ g/L and TCE was detected at 52.6 μ g/L in the shallow well and across Franklin Street from the former dry cleaner (Ref. 8, pp. 30, 76, 77). No contaminants were reported in the deep groundwater sample collected at that location, but PCE was detected at 1,360 μ g/L and TCE was detected at 16.1 μ g/L in the deep well at the southeast corner of Franklin Street and 22nd Avenue (Ref. 8, pp. 30, 74, 75, 78, 79).

During the supplemental ESA a deep boring was logged to better understand the lithology under the former dry cleaner and water levels were measured to understand groundwater flow direction (Ref. 8, pp. 7, 18, 19, 36-38). In shallow wells the depth to groundwater was measured at 13.08 to 15-93 feet below ground level; in the deep wells depth to groundwater was measured at 21.03 to 31.18 feet below ground level (Ref. 8, p. 19). Groundwater in the shallow wells was determined to be flowing to the east/southeast (Ref. 8, p. 19). The lithology logged for boring GW-2, about 90 feet southeast of the former dry cleaner property, consists primarily of Loveland Loess (high plasticity clays) deposits overlain by Peoria Loess (silts and silty lean clays) deposits generally overlain by fill (Ref. 8, pp. 12, 26, 36-38). Fill material ranged from 5.5 to 6.5 feet thick and consisted of lean clay. Peoria Loess was encountered beneath the fill to a depth of 74.5 feet. Loveland Loess consisting of red gray, wet, firm, fat, clay was encountered below the Peoria Loess (Ref. 8, pp. 12, 38). The thickness of the Loveland Loess is uncertain.

In 2019 the Nebraska Department of Environmental Quality (NDEQ) (now the Nebraska Department of Environment and Energy [NDEE]) conducted a vapor intrusion investigation of the areas north, south, and east of the former dry cleaner (Ref. 9, pp. 1, 4, 5, 13, 14). The investigation included the collection of indoor air and sub-slab vapor samples from eight commercial and three residential structures, one ambient air sample, and shallow groundwater samples (28 to 40 feet bgs) from 11 locations (Ref. 9, pp. 5, 6, 13, 14). Groundwater sampling documented PCE at concentrations exceeding 200 μ g/L at three temporary wells on Main Street, more than 800 feet downgradient of the former dry cleaners (Refs. 9, pp. 12, 14, 20; 10, p. 65). Also documented was PCE levels in sub-slab vapors as high as 25,000 μ g/m³ and as high as 130 μ g/m³ in indoor air (Ref. 9, pp. 13, 17-19, 102, 103, 130, 137, 165). Based on these data, NDEE determined that contaminant concentrations in indoor air could present an immediate human health risk, and exceed established indoor air and/or sub-slab vapor Removal Management Levels (RMLs) for PCE and/or TCE (Ref. 11, p. 4).

In July 2019, NDEE submitted a Request for Federal Action, requesting that EPA consider the following types of actions: (1) mitigation of vapor intrusion (VI) into residences and businesses where NDEE had determined indoor air or sub-slab vapor concentrations exceed applicable risk-based standards for protection of human health, (2) additional indoor air and sub-slab sampling within the known area of contamination, and/or (3) additional soil and groundwater sampling to delineate and control the source(s) of contamination (Ref. 11).

Sampling for the EPA removal site evaluation/site investigation (RSE/SI) occurred between December 2019 and April 2021 (Ref. 10, p. 15). During the RSE, 25 soil samples from 15 direct-push technology (DPT) soil borings (SB), 12 groundwater samples from 12 DPT temporary wells (TW), 140 indoor air samples, and 116 sub-slab vapor samples were collected at or near the former dry cleaner facility (Ref. 10, pp. 16-19, 20-23, 33-34, 37, 38). In addition, membrane interface probe (MIP) and electrical conductivity (EC) logging to investigate soils at the former dry cleaner, and presence of clays and silts to the total depth logged was performed at 21 locations at or near the former dry cleaner. Also, vapor samples were collected from sanitary and stormwater sewer manholes in the site area (Ref. 10, pp. 31, 32, 43, 68, 74). The RSE/SI indicated presence of dry cleaner-related hazardous substances in soil, groundwater, indoor air, sub-slab vapors, and sanitary sewer vapor at the former dry cleaner and to the east. Maximum concentrations of PCE in the various media sampled are as follows: soil (45,000,000 µg/kg), groundwater (11,000 µg/L); sub-slab vapor (39,000 $\mu g/m^3$), indoor air (400 $\mu g/m^3$), and sanitary sewer vapor (8,300 $\mu g/m^3$) (Ref. 10, pp. 24, 29, 35, 40, 45). At seven businesses and 13 single or multi-family residences, PCE concentrations in indoor air exceeded the EPA RML for residential or commercial/industrial settings (Ref. 10, p. 54). Sub-slab PCE vapor concentrations at 12 residential properties exceeded the 1,400 µg/m³ removal management level (RML). PCE concentrations at six businesses exceeded the 5,800 µg/m³ RML. In the indoor air at one commercial property, the TCE concentration exceeded the 6 µg/m³ RML for commercial indoor air, and in one residential crawlspace, the PCE concentration exceeded the 42 μ g/m³ RML for residential indoor air.

EPA Region 7's Emergency and Rapid Response Services (ERRS) contractor installed vapor mitigation systems (VMS) at seven businesses and 13 residential properties between December 2019 and February 2021 (Ref. 10, p. 55, see Table 2 of this HRS documentation record). Most of these systems were installed based on detections of elevated concentrations in sub-slab samples (Ref. 10, pp. 54, 55).

In October 2021 additional MIP and EC logging was done to further define the extent of contamination south of the former dry cleaner under W. 22^{nd} Avenue (Ref. 20, pp. 13, 33, 34). Fourteen MIP/EC borings were advanced to depths ranging from about 60 to 80 feet below ground surface (Ref. 20, pp. 13-16). Soil sampling was performed at 18 borings at depths where most contamination was detected during MIP logging (Ref. 20, pp. 17-18). PCE was detected in 42 of the 44 samples submitted; TCE was detected in 11 (Ref. 20, p. 21). The maximum PCE concentration detected (13,000,000 $\mu g/kg$) was in SB-36 near the southwestern corner of the former dry cleaner at a depth of 58.5 – 59.5 feet below ground surface (Ref. 20, pp. 21, 22-23, 34).

5.0 SOIL EXPOSURE AND SUBSURFACE INTRUSION PATHWAY

For this site, the subsurface intrusion component is scored based on the actual intrusion of hazardous substances into regularly occupied structures that have structure containment values greater than zero and meet the criteria as being in an area of observed exposure (Ref. 1, Section 5.2.0).

5.2 SUBSURFACE INTRUSION COMPONENT

The subsurface intrusion component is evaluated because indoor air samples collected fromwithin residential and workplace structures have documented observed exposures (Ref. 1, Section 5.2.1). The site includes one area of observed exposure (AOE) comprising 62 regularly occupied residential structures and 23 regularly occupied workplace structures that meet the criteria for observed exposure or are inferred to be within the AOE. The hazardous substances meeting observed exposure criteria in the AOE (i.e., in the indoor air of regularly occupied structures) include tetrachloroethene (PCE), trichloroethene (TCE), *cis*-1,2-dichloroethene (*cis*-1,2-DCE), *trans*-1,2-DCE, and vinyl chloride (VC). The AOE is based on 41 residential structures and 23 workplace structures with concentrations of these hazardous substances that meet observed exposure criteria, as documented through indoor air sampling (see **Observed Exposure by Chemical Analysis** in **Section 5.2.0**). Twenty-two additional residential structures are inferred to be within the AOE based on their location between the contaminated structures (see **Figure 2**) [Ref. 1, Section 5.2.0].

The origin of the indoor air contamination at the site is subsurface intrusion from an extensive groundwater and soil vapor contamination area that exists beneath the AOE (see Figures 3, 4, 5). This contamination originated from a former dry cleaning facility that operated at 2112 Franklin Street from the mid-1970s to early 1990s (Refs. 6, pp. 18; 10, pp. 8, 9). Soil samples collected at the former dry cleaning facility in 2021 documented the following chlorinated volatile organic compounds (CVOC) at the maximum concentrations; PCE (45.000,000 micrograms per kilogram [µg/kg]), and TCE (4,000 µg/kg) (Ref. 10, pp. 33-36, 72, 288, 291). The hazardous substances detected most frequently and at the highest levels in the subsurface chlorinated volatile organic compound (CVOC) contamination area are PCE and TCE. The maximum concentrations reported in groundwater since 2017 are 11,000 micrograms per liter (µg/L) for PCE; and 52.6 µg/L for TCE (Ref. 10, pp. 40, 78). At the former dry cleaner, PCE in soil gas has been measured as high as 1,100,000 micrograms per cubic meter ($\mu g/m^3$) (Ref. 8, pp. 17, 26, 119). Sub-slab soil vapor samples at the location of the former facility have documented PCE as high as 350,000 µg/m³ (Ref. 8, pp. 17, 26, 124). Vapor samples from the sanitary sewer located south of the former drycleaner were collected in 2021. Several samples exhibited CVOCs, and the maximum concentrations were detected in sample 8745-207 from location Sewer-05 at the corner of Main and E. 22nd Ave, with PCE (up to 8,300 μ g/m³), TCE (up to 85 J μ g/m³), *cis*-1,2-DCE (up to 28 μ g/m³), *trans*-1,2-DCE (up to 0.71 μ g/m³), and VC (up to 4.9 µg/m³) (Ref. 10, pp. 42-46, 74, 283, 311). Off the former dry cleaner property, sub-slab soil vapor collected concurrently with the indoor air samples showed that CVOCs are present in the subsurface directly beneath the AOE, at levels up to 28,000 µg/m³ (Ref. 10, pp. 24-27, 67, 196, 198). The extent of subsurface groundwater and soil vapor contamination is not fully delineated; most of the structures in the AOE are located above the CVOC subsurface contamination (see Figures 2 - 5 of this HRS documentation record).

The upland geology of Eastern Nebraska is Pleistocene in age and consists of eolian (wind-blown) deposits of Peoria loess. The loess formed in dune-shaped hills and has been extensively eroded. The Peoria loess typically consists of silts and silty lean clays that are stiff when dry but become softer with increasing moisture content. Loveland Loess underlies the Peoria Loess. Loveland Loess typically consists of high plasticity clays that are stiff when wet and dry. The loess overlies Pleistocene glacial deposits of Kansan till. The till consists of lean to fat clays mixed with sand, gravel, and occasional cobbles (Ref. 8, p. 12).

Cretaceous sandstone and Pennsylvanian limestone and shale form the bedrock units underlying the region. The depth to bedrock is typically over 100 feet in upland areas, and varies due to erosion within the Missouri River valley (Ref. 8, p. 12). Based on borings performed at the PCE Carriage Cleaners facility by EPA and other investigators, the property is underlain from the ground surface down by Peoria loess and Loveland loess (Refs. 8, pp. 12, 36-38; 10, pp. 49, 71). The water table surface occurs in the Peoria loess at an approximate depth of 13 to 15.4 feet below ground surface (Ref. 8, p. 19). No known confining layers exist between ground surface and the top of the water table. In general, groundwater flows to the east/southeast (Ref. 8, p. 19).

The CVOC contamination is encountered throughout the Peoria loess, in temporary wells screened from 20 to 25 feet below ground surface and in temporary wells screened from 70 to 75 feet bgs (Ref. 8, pp. 9, 15). Dense nonaqueous phase liquid (DNAPL) is assumed present at the site due to the very high concentrations of PCE (45,000,000 μ g/kg) in a soil sample (SB-13) collected at a depth of 13-14 feet bgs, and 9,200,000 μ g/kg in a soil sample (SB-23) collected from

43-44 feet bgs (below the water table) (Refs. 10, p. 35; 15, pp. 4, 5). Another indicator of possible DNAPL presence is that PCE in groundwater is found at a concentration which is greater than 1 percent of its pure phase solubility which is 2,000 μ g/L (Ref. 14, pp. 3, 32). Three groundwater samples (TW-13, TW-21, TW-107) collected in April 2021 contained PCE at concentrations ranging from 2,100 to 11,000 μ g/L (Ref. 10, pp. 40, 73).

The volatile compounds PCE and TCE, and their breakdown products *cis*-1,2-DCE, *trans*-1,2-DCE, and vinyl chloride, are part of a common class of chemicals with known vapor intrusion characteristics (Ref. 16, pp. 44, 58, 59, 266). Where vapor intrusion is involved, in general, the subsurface vapors may emanate from the contaminated groundwater and enter the pore space around and between the subsurface soil particles and soil column above the groundwater table. From there the hazardous vapors in the vadose zone (the soil between the surface and the groundwater table) may enter buildings by migrating through cracks, seams, interstices, and gaps in walls or foundations (Ref. 16, pp. 46, 48, 49). In April 2021, 13 samples of sanitary sewer gas and three samples of storm sewer gas were collected (Ref. 10, pp. 42, 45, 46, 74). Vapor samples from the sanitary sewer located south and east of the former drycleaner were collected in 2021. Several samples exhibited CVOCs, and the maximum concentrations were detected in sample 8745-207 from location Sewer-05 at the corner of Main and E. 22nd Ave, with PCE (up to 8,300 μ g/m³), TCE (up to 85 J μ g/m³), *cis*-1,2-DCE (up to 28 μ g/m³), *trans*-1,2-DCE (up to 0.71 μ g/m³), and VC (up to 4.9 μ g/m³) (Ref. 10, pp. 42, 45, 33, 311). In general, sanitary sewers may be potential pathways for contaminants to enter structures (Ref. 16, pp. 44, 50).

During its investigations of the site, EPA has identified one historical and current possible origin of contamination. The first listing for Carriage Cleaners in the city directories was 1976-1977 (Ref. 6, p. 78). Carriage Cleaners closed about 1994 and the property was sold through the Bankruptcy Court in 1996 (Refs. 6, p. 4; 10, p. 7). Database searches and investigation results have not identified other potential sources of chlorinated solvent releases to the environment near the site (Ref. 6, pp. 13-17, 105, 108, 109, 124-150).

5.2.0 GENERAL CONSIDERATIONS

There is one identified area of observed exposure at the site where structures are subject to indoor air contamination due to subsurface intrusion, as shown in **Figure 2** of this HRS documentation record.

AOE Number	Type of Structure	Number(s) of Specific Type of Structure ¹	References
AOE 1	Residence Workplace	62 23	Figure 2

TABLE 1. SUMMARY OF REGULARLY OCCUPIED STRUCTURES WITHIN AREAS OF OBSERVED EXPOSURE

¹ For multi-subunit structures (duplexes and apartments), the number of structures does not take into account subunits. Although most of the residential structures sampled during the December 2019 through February 2021 sampling events were single family homes, there were several instances where multiple subunits of the same building were sampled. At ROS 31A and 31B (identified as a duplex) both units were sampled (Refs. 10, pp. 29, 84; 13, pp. 57, 58). At commercial building ROS 33, three samples were collected at three different addresses associated with the building (33A, 33B, and 33C) (Refs. 10, pp. 29, 84; 13, pp. 61, 62). ROS 127 is a three-story apartment building with 42, 1-bedroom units where no sample was collected (Ref. 13, pp. 209, 210). ROS 98 is a residential property that was converted to 4 apartments (Ref. 13, pp. 153, 154). For all structures within the inferred areas of observed exposure, where the divisions of the subunits are unknown, a default value of one regularly occupied subunit on the lowest level is used for HRS scoring purposes.

Area(s) of Observed Exposure

The results of the December 2019 through February 2021 sampling events document one area where regularly occupied structures are subject to Level I or Level II indoor air concentrations due to subsurface intrusion; these areas are presented as AOE 1 (see Figure 2 of this HRS documentation record).

AOE 1 – Area of Observed Exposure 1

Location, description and delineation of AOE (with reference to a map of the site):

There are 62 regularly occupied residential structures and 23 regularly occupied workplace structures within AOE 1. The AOE is delineated based on residential structures and workplace structures that had observed exposures of site-attributable hazardous substances, as documented through indoor air sampling (see **Observed Exposure by Chemical Analysis**

below and **Figure 2** of this HRS documentation record). Twenty-two additional residential structures are within AOE 1 and contamination in these structures is inferred based on their location between the structures that meet the observed exposure criteria through chemical analysis (see **Figure 2** of this HRS documentation record) [Ref. 1, Section 5.2.0].

Most of the structures in AOE 1 are located above the CVOC subsurface contamination discussed in this HRS documentation record (see **Figures 2 and 3** of this HRS documentation record).

Identification of all regularly occupied structures in the AOE:

TABLE 2. REGULARLY OCCUPIED STRUCTURES WITHIN THE AOE

Type of Structure	Regularly Occupied Structure ID	References
AOE 1	l	
Workplace (sample location) (VMS installed December 2019)	ROS 01	10, pp. 55, 82; 13, pp. 2, 5, 6; Figure 2
2 unit apartment (sample location) (VMS installed December 2019)	ROS 02	10, pp. 55, 82; 13, pp. 2, 7, 8; Figure 2
Workplace (sample location) (VMS installed December 2019)	ROS 03	10, pp. 55, 82; 13, pp. 2, 9, 10; Figure 2
Workplace (sample location) (VMS installed December 2019)	ROS 04	10, pp. 55, 82; 13, pp. 2, 11, 12; Figure 2
Workplace (sample location) (VMS installed December 2019)	ROS 05	10, pp. 55, 82; 13, pp. 2, 13, 14; Figure 2
Workplace (sample location) (VMS installed December 2019)	ROS 06	10, pp. 55, 82; 13, pp. 2, 15, 16; Figure 2
Workplace (sample location) (VMS installed December 2019)	ROS 07	10, pp. 55, 82; 13, pp. 2, 17, 18; Figure 2
SF Residence (sample location)	ROS 08	10, p. 82; 13, pp. 2, 19, 20; Figure 2
SF Residence (sample location) (VMS installed October 2020)	ROS 09	10, pp. 55, 82; 13, pp. 2, 21, 22; Figure 2
SF Residence (sample location) (VMS installed October 2020)	ROS 10	10, p. 55, 83; 13, pp. 2, 23, 24; Figure 2
SF Residence (sample location)	ROS 13	10, p. 83; 13, pp. 2, 28, 29; Figure 2
Workplace (sample location)	ROS 14	10, p. 83; 13, pp. 2, 30, 31; Figure 2
SF Residence (sample location)	ROS 15	10, p. 83; 13, pp. 2, 32, 33, 34; Figure 2
SF Residence (sample location)	ROS 16	10, p. 83; 13, pp. 2, 35, 36; Figure 2
SF Residence (sample location)	ROS 17	10, p. 83; 13, pp. 2, 37, 38; Figure 2
Workplace (sample location)	ROS 18	10, p. 83; 13, pp. 2, 39, 40; Figure 2
Workplace (sample location)	ROS 19	10, p. 83; 13, pp. 2, 41, 42; Figure 2
SF Residence (sample location)	ROS 20	10, p. 83; 13, pp. 2, 43, 44; Figure 2
SF Residence (sample location)	ROS 22	10, p. 83; 13, pp. 2, 45, 46; Figure 2
SF Residence (sample location)	ROS 27	10, p. 83; 13, pp. 2, 49, 50; Figure 2
SF Residence (sample location) (VMS installed June 2020)	ROS 28	10, pp. 55, 83; 13, pp. 2, 51, 52; Figure 2
SF Residence (sample location)	ROS 29	10, p. 83; 13, pp. 2, 53, 54; Figure 2
SF Residence (sample location)	ROS 30	10, p. 83; 13, pp. 2, 55, 56; Figure 2
Residence Duplex (sample location)	ROS 31A	10, p. 84; 13, pp. 2, 57, 58; Figure 2
Residence Duplex (sample location)	ROS 31B	10, p. 84; 13, pp. 2, 57, 58; Figure 2
SF Residence (sample location)	ROS 32	10, p. 84; 13, pp. 2, 59, 60; Figure 2
	ROS 33A	
Workplace (sample location)	ROS 33B	10, p. 84; 13, pp. 2, 61, 62; Figure 2
	ROS 33C	
Workplace (sample location)	ROS 34	10, p. 84; 13, pp. 2, 63, 64; Figure 2
Residence (sample location)	ROS 35	10, p. 84; 13, pp. 2, 63, 64; 10, p. 84; 19, p. 10; Figure 2
Workplace (sample location)	ROS 37	10, p. 84; 13, pp. 2, 65, 66; Figure 2
Workplace (sample location)	ROS 38	10, p. 84; 13, pp. 2, 67, 68; Figure 2

TABLE 2. REGULARLY OCCUPIED STRUCTURES WITHIN THE AOE

Type of Structure	Regularly Occupied Structure ID	References
SF Residence (inferred)	ROS 39	10, p. 8413, pp. 2, 69, 70;; Figure 2
SF Residence (sample location)	ROS 40	10, p. 84; 13, pp. 2, 71, 72; Figure 2
Workplace (sample location)	ROS 42	10, p. 84; 13, pp. 2, 73, 74; Figure 2
SF Residence (sample location)	ROS 43	10, p. 84; 13, pp. 2, 75, 76; Figure 2
SF Residence (sample location- inferred)	ROS 49	10, p. 84; 13, pp. 2, 85, 86; Figure 2
SF Residence (sample location)	ROS 50	10, p. 84; 13, pp. 2, 87, 88; Figure 2
SF Residence (sample location)	ROS 54	10, p. 85; 13, pp. 3, 91, 92; Figure 2
SF Residence (sample location)	ROS 55	10, p. 85; 13, pp. 3, 93, 94; Figure 2
SF Residence (sample location) (VMS installed October 2020)	ROS 56	10, pp. 55, 85; 13, pp. 3, 95, 96; Figure 2
SF Residence (sample location)	ROS 57	10, p. 85; 13, pp. 3, 97, 98; Figure 2
SF Residence (sample location)	ROS 61	10, p. 85; 13, pp. 3, 101, 102; Figure 2
Workplace (sample location)	ROS 65	10, p. 85; 13, pp. 3, 105, 106; Figure 2
Workplace (sample location)	ROS 69	10, p. 85; 13, pp. 3, 109, 110; Figure 2
SF Residence (sample location) (VMS installed October 2020)	ROS 70	10, pp. 55, 85; 13, pp. 3, 111, 112; Figure 2
Workplace (sample location) (VMS installed June 2020)	ROS 72	10, pp. 55, 85; 13, pp. 3, 115, 116; Figure 2
Workplace (sample location)	ROS 75	10, p. 85; 13, pp. 3, 121, 122; Figure 2
Workplace (sample location)	ROS 76	10, p. 85; 13, pp. 3, 123, 124; Figure 2
SF Residence (sample location) (VMS installed August 2020)	ROS 77	10, pp. 55, 85; 13, pp. 3, 125, 126; Figure 2
SF Residence (sample location)	ROS 79	10, p. 86; 13, pp. 3, 129, 130; Figure 2
Workplace (sample location)	ROS 83	10, p. 86; 13, pp. 3, 135, 136; Figure 2
Workplace (sample location)	ROS 84	10, p. 86; 13, pp. 3, 135, 136; Figure 2
Workplace (sample location)	ROS 85	10, p. 86; 13, pp. 3, 137; Figure 2
SF Residence (sample location)	ROS 86	10, p. 86; 13, pp. 3, 139, 140; Figure 2
SF Residence (sample location) (VMS installed November 2020)	ROS 91	10, pp. 55, 86; 13, pp. 3, 143, 144; Figure 2
SF Residence (sample location) (VMS installed August 2020)	ROS 92	10, pp. 55, 86; 13, pp. 3, 145, 146; Figure 2
Workplace (sample location)	ROS 94	10, p. 86; 13, pp. 3, 149, 150; Figure 2
Residence Duplex (sample location)	ROS 97	10, p. 86; 13, pp. 3, 151, 152; Figure 2
4 Apartment Residence (sample location) (VMS installed October 2020)	ROS 98	10, pp. 55, 86; 13, pp. 3, 153, 154; Figure 2
SF Residence (sample location)	ROS 99	10, p. 86; 13, pp. 3, 155, 156; Figure 2
SF Residence (sample location)	ROS 101	10, p. 86; 13, pp. 3, 157, 158; Figure 2
SF Residence (sample location) (VMS installed February 2021)	ROS 102	10, pp. 55, 87; 13, pp. 3, 159, 160; Figure 2
SF Residence (sample location) (VMS installed November 2020)	ROS 103	10, pp. 55, 87; 13, pp. 3, 161, 162; Figure 2
SF Residence (sample location)	ROS 104	10, p. 87; 13, pp. 3, 163, 164; Figure 2
SF Residence (sample location)	ROS 105	10, p. 87; 13, pp. 3, 165, 166; Figure 2
SF Residence (sample location) (VMS installed December 2020)	ROS 106	10, pp. 55, 87; 13, pp. 3, 167, 168; Figure 2
SF Residence (inferred AOE)	ROS 107	13, pp. 3, 169, 170; Figure 2
SF Residence (inferred AOE)	ROS 108	13, pp. 3, 171, 172; Figure 2

TABLE 2. REGULARLY OCCUPIED STRUCTURES WITHIN THE AOE

Type of Structure	Regularly Occupied Structure ID	References
SF Residence (inferred AOE)	ROS 109	13, pp. 3, 173, 174; Figure 2
SF Residence (inferred AOE)	ROS 110	13, pp. 3, 175, 176; Figure 2
SF Residence (inferred AOE)	ROS 111	13, pp. 3, 177, 178; Figure 2
SF Residence (inferred AOE)	ROS 112	13, pp. 3, 179, 180; Figure 2
SF Residence (inferred AOE)	ROS 113	13, pp. 3, 181, 182; Figure 2
SF Residence (inferred AOE)	ROS 114	13, pp. 3, 183, 184; Figure 2
SF Residence (inferred AOE)	ROS 115	13, pp. 3, 185, 186; Figure 2
SF Residence (inferred AOE)	ROS 116	13, pp. 3, 187, 188; Figure 2
SF Residence (inferred AOE)	ROS 117	13, pp. 3, 189, 190; Figure 2
SF Residence (inferred AOE)	ROS 119	13, pp. 4, 193, 194; Figure 2
SF Residence (inferred AOE)	ROS 120	13, pp. 4, 195, 196; Figure 2
SF Residence (inferred AOE)	ROS 121	13, pp. 4, 197, 198; Figure 2
SF Residence (inferred AOE)	ROS 122	13, pp. 4, 199, 200; Figure 2
SF Residence (inferred AOE)	ROS 123	13, pp. 4, 201, 202; Figure 2
SF Residence (inferred AOE)	ROS 124	13, pp. 4, 203, 204; Figure 2
SF Residence (inferred AOE)	ROS 125	13, pp. 4, 205, 206; Figure 2
SF Residence (inferred AOE)	ROS 126	13, pp. 4, 207, 208; Figure 2
3 story, 42-unit Apartment Building Residence (inferred AOE)	ROS 127	13, pp. 4, 209, 210; Figure 2

Notes:

Regarding mitigation systems, HRS Section 5.2.1.2.2 instructs to include in the hazardous waste quantity all regularly occupied structures or subunits that have had mitigation systems installed as part of a removal or other temporary response action; HRS Section 5.2.1.3 instructs that if a removal or temporary response action has occurred that has not completely mitigated the release, count the initial targets as if the removal or temporary response action has not permanently interrupted target exposure from subsurface intrusion.

SF Single family

VMS Vapor mitigation system

AOE Area of observed exposure

ROS Regularly occupied structure

Observed Exposure by Direct Observation

Observed exposure by direct observation is not evaluated.

Observed Exposure by Chemical Analysis

Multiple residential and workplace structures at this site have been identified as having indoor air concentrations for CVOCs that meet observed exposure criteria, as documented below. NDEE and EPA performed indoor air sampling and outdoor air sampling between May 2019 and February 2021. A contractor conducted a vapor intrusion assessment in the spring of 2019 that entailed collection of sub-slab vapor and indoor samples at eight commercial and three residential structures and one ambient air sample (Refs. 9, pp. 5, 13; 10, pp. 6, 12, 13). EPA removal management levels (RML) were exceeded at 5 commercial properties and one residential property (Ref. 11, p. 4). Following completion of the report, NDEE requested federal action to evaluate the site to determine if removal actions may be appropriate (Ref. 11). EPA initiated a removal site evaluation (RSE) and site inspection (SI) in the fall of 2019. As part of the RSE/SI vapor intrusion samples were collected under Analytical Services Request (ASR) numbers 8435 (December 2019), 8482 (January 2020), 8519 (March 2020), 8588 (June 2020), 8618 (July 2020), 8619 (August 2020), 8652 (September 2020), and 8774 (February 2021) (Ref.10, p. 15).

During the first EPA sampling event in December 2019, previous sampling locations were replicated, and vapor mitigation systems (VMS) were installed in six businesses and one residential property (Refs. 8, p. 26; 9, pp. 17-19; 10, pp. 16, 20, 55). During the first sampling event EPA collected two ambient air samples (Ref. 10, p. 20). During the second EPA sampling event in January 2020, EPA collected post VMS samples at six of the locations where the systems were installed in December 2019 and resampled a sensitive population location (Bellevue Senior Center) (Ref. 10, pp. 16, 20. Subsequent sampling events targeted residential and commercial buildings, generally to the east of the former dry cleaner location (Ref. 10, p. 66).

All indoor air, sub-slab vapor, ambient air, and sewer gas samples collected by EPA were analyzed by the Region 7 EPA laboratory by EPA Region 7 RLAB Method 3230.4 (air samples in canister at ambient levels by GC/MS) (Ref. 10, pp. 144, 187, 197, 211, 226, 241, 255, 270, 284). Samples were analyzed for the site-related compounds PCE, TCE, *cis*-1,2-DCE, *trans*-1,2-DCE, and VC (Ref. 10, p. 15). All air samples, except sewer gas samples, were collected into evacuated stainless-steel canisters equipped with a 24-hour passive flow regulator (Ref. 10, pp. 16-23). Sewer gas samples were collected as grab samples (Ref. 10, p. 42).

Establishment of Background Levels

During the December 2019 and January 2020 sampling events, EPA resampled only the structures that had elevated levels of contamination identified by NDEE. In March 2020 EPA collected indoor air and sub-slab vapor samples from three homes (ROS 51, 68, 74) $\frac{1}{2}$ block west (hydrologically upgradient) of the former dry cleaner and one residential property (ROS 89) northeast of the former drycleaner. In June 2020 EPA sampled a commercial building (ROS 24) south/southeast and a residential structure (ROS 81) northeast of the former drycleaner. In August 2020 EPA sampled residential structure (ROS 71) located 1 $\frac{1}{2}$ blocks west of the former drycleaner and another residential structure (ROS 78) located northeast. In September 2020 EPA sampled residential structures (ROS 48, 62 and 80). ROS 80 and 62 are located north and north/northwest of the former dry cleaner and ROS 48 is located northeast of the former dry cleaner. All of these structures used as representation of background concentrations are shown on **Figure 2** of this HRS documentation record. The results for these samples show the absence of contamination in indoor air, all but one of the structures contained low concentrations (< 2.1 μ g/m³) of PCE in the sub-slab vapor sample collected (Ref. 10, pp 84, 85, 86). The exception was the commercial structure (ROS 24) which contained PCE (16 μ g/m³) and TCE (0.15 μ g/m³) in the sub-slab vapor sampled (Ref. 10, p. 83)

All background and observed exposure indoor air samples were collected during the same timeframe (i.e., March, June, August, and September 2020). The samples were collected using laboratory evacuated 6-liter. All samples were delivered under chain-of-custody to the Region 7 EPA Laboratory in Kansas City Kansas, where they were analyzed for PCE, TCE, *cis*-1,2-DCE, *trans*-1,2-DCE and VC by EPA Method 3230.4 (air samples in canisters at ambient levels by GC/MS) (Ref. 10, pp. 144, 187, 197, 211, 226, 241, 255, 270). Data validation shows that all results are fully usable without qualification (Ref. 10, pp. 144, 187, 197, 211, 226, 241, 255, 270).

Ambient outdoor air samples were collected in May 2019 by an NDEE contractor (Ref. 9, pp. 165, 166) and by EPA in December 2019 (Ref. 10, p. 20). Locations of the ambient air samples is shown on **Figure 2** of this HRS documentation record. The ambient air sample collected by NDEE contractor Olsson, Inc. was equipped with a 24-hour regulator and was analyzed by Eurofins TestAmerica for VOCs by Method TO-15 (Ref. 9, pp. 5, 6, 13, 110, 111, 166). The two ambient air samples collected by EPA were equipped with 24-hour regulators and were analyzed by the EPA Region 7 laboratory for PCE, TCE, *cis*-1,2-DCE, *trans*-1,2-DCE and VC by EPA Method 3230.4 (air samples in canisters at ambient levels by GC/MS) (Ref. 10, pp. 15, 19, 20, 143, 144, 154, 179, 182). No VOCs were reported in the samples collected by EPA (samples 8435-25 and 8435-28) (Ref. 10, p. 151). No PCE, TCE, *cis*-1,2-DCE, *trans*-1,2-DCE or VC were detected in the sample collected by Olsson in May 2019 (Ref. 9, pp. 110, 111).

Sample ID/ ROS ID	Sample Location	Start Date and Time	End Date and Time	Basis for Sample as Background	References
8519-2/	Basement utility closet; 150 feet	03/09/2020	03/10/2020	Residence at west edge of impacted area	10, pp. 196, 206; 19,
ROS-68	west/northwest of dry cleaner	10:28	09:40		p. 3; Figure 2

Sample ID/ ROS ID	Sample Location	Start Date and Time	End Date and Time	Basis for Sample as Background	References
8519-9/	Basement utility closet; 290 feet	03/09/2020	03/10/2020	Residence at northwest	10, pp. 196, 206; 19,
ROS-74	north/northwest of dry cleaner	14:51	12:13	edge of impacted area	p. 3; Figure 2
8519-12/	Basement: 250 feet north/northwest	03/09/2020	03/10/2020	Residence at northwest	10, pp. 196, 206; 19,
ROS-51	of dry cleaner	16:10	15:12	edge of impacted area	p. 3; Figure 2
8519-13/	Basement; 1,640 feet northeast of dry	03/09/2020	03/10/2020	Residence at northeast	10, pp. 196, 206; 19,
ROS-89	cleaner	16:45	15:28	edge of impacted area	p. 3; Figure 2
8588-5/ ROS-24	Classroom on first floor; 620 feet south/southeast of dry cleaner	06/15/2020 12:28	06/16/2020 10:30	Business at south/southeast edge of impacted area	10, pp. 210, 221; 19, p. 5; Figure 2
8588-19/	Basement; 960 feet northeast of dry	06/16/2020	06/17/2020	Residence at northeast	10, pp. 210, 221; 19,
ROS-81	cleaner	08:48	07:59	edge of impacted area	p. 5; Figure 2
8619-17/ ROS-71	Not specified; 525 feet west/northwest of dry cleaner	08/25/2020 09:42	08/26/2020 08:45	Residence west/ northwest of impacted area	10, pp. 240, 250; 19, p. 8; Figure 2
8619-19/	Not specified; 1,140 feet northeast of	08/25/2020	08/26/2020	Residence at northeast	10, pp. 240, 250; 19,
ROS-78	dry cleaner	11:53	10:15	edge of impacted area	p. 9; Figure 2
8652-17/	Basement living area; 1,725 feet	09/15/2020	09/16/2020	Residence at northeast	10, pp. 254, 265; 19,
ROS-48	northeast of dry cleaner	10:50	09:26	edge of impacted area	p. 10; Figure 2
8652-19/	Basement; 615 feet north/northwest	09/15/2020	09/16/2020	Residence at northwest	10, pp. 254, 265; 19,
ROS-62	of dry cleaner	11:30	10:13	edge of impacted area	p. 10; Figure 2
8652-21/	Basement back wall; 475 feet north	09/15/2020	09/16/2020	Residence at north	10, pp. 254, 265; 19,
ROS-80	of dry cleaner	11:50	11:00	edge of impacted area	p. 10; Figure 2

TABLE 3. AOE 1 BACKGROUND LOCATIONS

Table 4 presents the analytical results for the background samples presented above.

TABLE 4. AOE 1 BACKGROUND SAMPLE CONCENTRATIONS

Sample ID/ ROS ID	Eligible Hazardous Substance	Concentration (µg/m ³)	Sample Reporting Limit (µg/m ³)*	References
	Tetrachloroethene	0.34 U	0.34	
8510.2/	Trichloroethene	0.14 U	0.14	
0319-2/ DOS 69	cis-1,2-Dichloroethene	0.20 U	0.20	10, p. 198; 12, p. 16
KUS 08	trans-1,2-Dichloroethene	0.20 U	0.20	
	Vinyl chloride	0.13 U	0.13	
	Tetrachloroethene	0.34 U	0.34	
8519-9/	Trichloroethene	0.14 U	0.14	
BOS 74	cis-1,2-Dichloroethene	0.20 U	0.20	10, p. 200; 12, p. 18
K05 /4	trans-1,2-Dichloroethene	0.20 U	0.20	
	Vinyl chloride	0.13 U	0.13	
	Tetrachloroethene	0.34 U	0.34	
8510 12/	Trichloroethene	0.14 U	0.14	
0019-12/ DOS 51	cis-1,2-Dichloroethene	0.20 U	0.20	10, p. 200; 12, p. 19
K05 51	trans-1,2-Dichloroethene	0.20 U	0.20	
	Vinyl chloride	0.13 U	0.13	
	Tetrachloroethene	0.34 U	0.34	
9510 12/	Trichloroethene	0.14 U	0.14	
8319-13/ DOS 80	cis-1,2-Dichloroethene	0.20 U	0.20	10, p. 201; 12, p. 19
KUS 89	trans-1,2-Dichloroethene	0.20 U	0.20	-
	Vinyl chloride	0.13 U	0.13	

Sample ID/ ROS ID	Eligible Hazardous Substance	Concentration $(\mu g/m^3)$	Sample Reporting Limit (µg/m ³)*	References
8588-5/ ROS 24	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	0.34 U 0.14 U 0.20 U 0.20 U 0.13 U	0.34 0.14 0.20 0.20 0.13	10, p. 213; 12, p. 26
8588-19/ ROS 81	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	0.34 U 0.14 U 0.20 U 0.20 U 0.13 U	0.34 0.14 0.20 0.20 0.13	10, p. 216; 12, p. 30
8619-17/ ROS 71	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	0.34 U 0.14 U 0.20 U 0.20 U 0.13 U	0.34 0.14 0.20 0.20 0.13	10, p. 246; 12, p. 49
8619-19/ ROS 78	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	0.34 U 0.14 U 0.20 U 0.20 U 0.13 U	0.34 0.14 0.20 0.20 0.13	10, p. 246; 12, p. 50
8652-17/ ROS 48	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	0.34 U 0.14 U 0.20 U 0.20 U 0.13 U	0.34 0.14 0.20 0.20 0.13	10, p. 260; 12, p. 58
8652-19/ ROS 62	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	0.34 U 0.14 U 0.20 U 0.20 U 0.13 U	0.34 0.14 0.20 0.20 0.13	10, p. 260; 12, p. 59
8652-21/ ROS 80	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	0.34 U 0.14 U 0.20 U 0.20 U 0.13 U	0.34 0.14 0.20 0.20 0.13	10, p. 261; 12, p. 59

TABLE 4. AOE 1 BACKGROUND SAMPLE CONCENTRATIONS

Notes:

*The reporting limit in this table takes into account any dilution factor, volume adjustment, and percent solids for the sample and is sometimes called the sample quantitation limit or SQL (Ref. 12, pp. 16, 25, 45, 54).

ID Identification

U The analyte was not detected at or above the reporting limit (Ref. 10, pp. 195, 253).

 $\mu g/m^3$ Micrograms per cubic meter

Background Levels

The maximum background reporting limits for *cis*-1,2-DCE (0.20 μ g/m³); *trans*-1,2-DCE (0.20 μ g/m³); PCE (0.34 μ g/m³); TCE (0.14 μ g/m³); and vinyl chloride (0.13 μ g/m³) are selected as the background levels for establishing observed exposure because all background results for the five hazardous substances were non-detect (Ref. 1, Sections 2.3 and 5.2.1.1.1]. These levels are presented in Table 5 below.

Eligible Hazardous Substance	Background Level (µg/m ³)	Concentrations used for Establishing an Observed Exposure $(\mu g/m^3)$
Tetrachloroethene	0.34 U	≥ 0.34
Trichloroethene	0.14 U	≥ 0.14
cis-1,2-Dichloroethene	0.20 U	≥ 0.20
trans-1,2-Dichloroethene	0.20 U	≥ 0.20
Vinyl chloride	0.13 U	≥0.13

TABLE 5. AOE 1 BACKGROUND LEVELS

Notes:

µg/m³ Micrograms per cubic meter

AOE Area of observed exposure

U The analyte was not detected at or above the reporting limit (Ref. 10, p. 253).

Exposure Samples

Indoor air concentrations of PCE, TCE, *cis*-1,2-DCE; *trans*-1,2-DCE; and vinyl chloride greater than or equal to their respective site-specific background levels and attributable to the subsurface contamination are used to establish observed exposure [Ref. 1, Table 2-3]. Results for indoor air samples collected from 64 structures exhibited concentrations that exceed these site-specific background levels, as shown Tables 6 and 7 below. Where vapor mitigation systems were installed, pre- and post-installation indoor air samples are presented. Note that if a post-installation system sample was collected and no CVOCs were detected only the pre-installation sample is presented. If no post installation sample was collected, that is noted as well.

ROS ID	Sample ID	Sample Location	Start Date and Time	End Date and Time	References
POS 01	8435-22	Indoor air	12/03/2019 14:45	12/04/2019 10:38	10, pp. 143, 153, 176; Figure 2
KUS UI	8482-12	Not specified	01/29/2020 14:09	1/30/2020 11:04	10, p. 186, 193; 19, p. 2; Figure 2
	8435-20	Dining Room, 2202 Franklin St.	12/03/2019 14:02	12/04/2019 12:36	10, pp. 143, 153, 174; Figure 2
ROS 02	8482-9	Kitchen, 2202 Franklin St.	01/29/2020 13:35	1/30/2020 10:43	10, p. 186, 193; 19, p. 2; Figure 2
POS 02	8435-16	Office area	12/03/2019 12:20	12/04/2019 10:24	10, pp. 143, 153, 170; Figure 2
RUS 03	8482-11	Office area	01/29/2020 13:52	1/30/2020 10:54	10, p. 186, 193; 19, p. 2; Figure 2
ROS 04	8435-6	Indoor air	12/03/2019 10:26	12/04/2019 09:14	10, pp. 143, 153, 160; Figure 2
ROS 05	8435-13	In shop bay	12/03/2019 12:20	12/04/2019 10:24	10, p. 143, 153, 167; Figure 2
DOS 06	8435-12	Storage shed	12/03/2019 11:40	12/04/2019 09:43	10, pp. 143, 153, 166; Figure 2
KUS UO	8482-15	Not specified	01/29/2020 14:27	1/30/2020 11:14	10, p. 186, 193; 19, p. 2; Figure 2
POS 07	8482-2	Dining hall	01/29/2020 12:40	1/30/2020 09:54	10, p. 186, 193; 19, p. 2; Figure 2
ROS 07	8482-5	Bar closet	01/29/2020 13:17	1/30/2020 10:07	10, p. 186, 193; 19, p. 2; Figure 2
ROS 08	8519-31	Not specified	03/11/2020 12:04	03/12/2020 09:30	10. p. 196, 207; 19, p. 4; Figure 2
ROS 09	8618-2	Not specified	07/20/2020 11:02	07/21/2020 08:49	10, pp. 225, 236; 19, p. 6; Figure 2

TABLE 6. AOE 1 OBSERVED EXPOSURE SAMPLE LOCATIONS

TABLE 6. AOE 1 OBSERVED EXPOSURE SAMPLE LOCATIONS

ROS ID	Sample ID	Sample Location	Start Date	End Date	References
	0.010.4		07/20/2020	07/21/2020	
DOS 10	8618-4	Not specified	11:28	09:01	10, pp. 225, 236; 19, p. 6; Figure 2
KOS 10	9774 12	Kitahan	02/15/2021	02/16/2021	10, pp. 269, 278; 19, p. 11; Figure
	8//4-13	Kitchen	15:11	13:48	2
ROS 13	8618-16	Not specified	07/21/2020	07/22/2020	10 pp 225 236: 19 p 6: Figure 2
100 10	0010 10		08:23	07:40	10, pp. 220, 200, 19, p. 0, 11gare 2
	8519-23	Basement	03/10/2020	03/11/2020	10, pp. 196, 206; 19, p. 3; Figure 2
ROS 14			13:30	10:14	
	8774-22	Basement	02/16/2021	02/17/2021	10, pp. 269, 278; 19, p. 11; Figure
			14:21	12:40	Z
ROS 15	8619-15	Not specified	08/23/2020	08/20/2020	10, pp. 240, 250; 19, p. 8; Figure 2
			06/15/2020	06/16/2020	
ROS 16	8588-13	Basement	15.51	15:56	10, pp. 210, 221; 19, p. 5; Figure 2
			08/24/2020	08/25/2020	
ROS 17	8619-5	Not specified	11:26	09:24	10, pp. 240, 250; 19, p. 8; Figure 2
DOG 10	0774 2	T	02/15/2021	02/16/2021	10, pp. 269, 278; 19, p. 11; Figure
KUS 18	8//4-3	Lower level	11:42	10:04	2
DOS 10	8510 17	Office	03/10/2020	03/11/2020	10 p 106 206: 10 p 2: Figure 2
KUS 19	0319-17	Office	10:11	08:44	10. p. 190, 200, 19, p. 5, Figure 2
ROS 20	8588-25	Basement	06/16/2020	06/17/2020	10 pp 210 222: 19 p 5: Figure 2
K05 20	0500-25	Basement	13:02	10:12	10, pp. 210, 222, 17, p. 5, 1 igure 2
ROS 22	8619-9	Not specified	08/24/2020	08/25/2020	10 nn 240 250: 19 n 8: Figure 2
100 22	0017 7		16:15	15:12	10, pp. 210, 200, 19, p. 0, 11gare 2
ROS 27	8588-9	Basement	06/15/2020	06/16/2020	10, pp. 210, 221; 19, p. 5; Figure 2
			14:36	14:18	
	8519-3	Basement	03/09/2020	03/10/2020	10, pp. 196, 206; 19, p. 3; Figure 2
			07/21/2020	10:40	10 pp 92 225 227:10 p 7:
ROS 28	8618-31	First floor	17.05	13.26	Figure 2
			07/21/2020	07/22/2020	10 nn 83 225 237 19 n 7
	8618-32	Basement	17:06	13:26	Figure 2
DOGO	0554.11		02/15/2021	02/16/2021	10, pp. 269, 278; 19, p. 11; Figure
ROS 29	8774-11	Basement living room	14:41	13:21	2
DOS 20	9619 6	Nataracified	07/20/2020	07/21/2020	10 m 225 226 10 m 6 Eigung 2
KOS 30	8018-0	Not specified	12:07	11:32	10, pp. 223, 236; 19, p. 6; Figure 2
ROS 31A	8774-20	Basement on stairs	02/16/2021	02/17/2021	10, pp. 269, 278; 19, p. 11; Figure
KOS JIA	0//4-20	Basement on stans	09:58	08:56	2
ROS 31B	8652-9	Basement pool table	09/14/2020	09/15/2020	10, pp. 254, 265; 19, p. 10; Figure
Ressing	0002)		15:16	15:00	2
ROS 32	8619-29	Not specified	08/26/2020	08/27/2020	10, pp. 240, 251; 19, p. 9; Figure 2
-			08:00	07:11	
	8652-3	Main room near back	09/14/2020	09/15/2020	10, pp. 254, 265; 19, p. 10; Figure
ROS 33A		entrance	11:04	09:20	2 10 m 254 265: 10 m 10: Eigung
ROS 33B	8652-5	Main room	11.20	09/13/2020	10, pp. 234, 203, 19, p. 10, Figure
ROS 33C			09/15/2020	09.20	10 pp 254 265: 19 p 10: Figure
	8652-6	Main room	11.22	09.20	2
			07/20/2020	07/21/2020	
ROS 34	8618-10	Not specified	13:53	12:05	10, pp. 225, 236; 19, p. 6; Figure 2
DOS 25	9652 1	Living pages	09/14/2020	09/15/2020	10, pp. 254, 265; 19, p. 10; Figure
KUS 33	8032-1	Living room	10:40	08:30	2
ROS 37	8610-1	Not specified	08/24/2020	08/25/2020	10 pp 240 250: 10 p 8: Figure 2
103 37	0017-1	THOUS PECIFICU	10:00	08:50	10, pp. 240, 250, 19, p. 6, Figure 2

ROS ID	Sample ID	Sample Location	Start Date and Time	End Date and Time	References
ROS 38	8519-8	Office	03/09/2020	03/10/2020	10. p. 196, 206; 19, p. 3; Figure 2
ROS 40	8652-32	Basement left room	09/15/2020	09/16/2020	10, pp. 254, 266; 19, p. 10; Figure
ROS 42	8618-12	Not specified	07/20/2020	07/21/2020	10, pp. 225, 236; 19, p. 6; Figure 2
ROS 43	8588-21	Basement	06/16/2020	06/17/2020	10, pp. 210, 221; 19, p. 5; Figure 2
ROS 50	8435-27	Basement utility/bathroom	12/03/2019	12/04/2019	10, p. 143, 154, 181; Figure 2
ROS 54	8519-6	First floor – living room	03/09/2020	03/10/2020	10. p. 196, 206; 19, p. 3; Figure 2
ROS 55	8588-15	Basement	06/15/2020	06/16/2020	10, pp. 210, 221; 19, p. 5; Figure 2
	8618-24	Not specified	07/21/2020	07/22/2020	10, pp. 225, 236; 19, p. 7; Figure 2
ROS 56	8774-9	Basement laundry room	02/15/2021	02/16/2021	10, pp. 269, 278; 19, p. 11; Figure
ROS 57	8774-7	Basement bedroom by	02/15/2021	02/16/2021	10, pp. 269, 278; 19, p. 11; Figure
ROS 61	8618-14	Not specified	07/20/2020	07/21/2020	10, pp. 225, 236; 19, p. 6; Figure 2
ROS 65	8618-18	Not specified	07/21/2020	07/22/2020 08:09	10, pp. 225, 236; 19, p. 7; Figure 2
ROS 69	8519-29	Not specified	03/11/2020	03/12/2020 08:23	10. pp. 196, 207; 19, p. 3; Figure 2
	8618-20	Not specified	07/21/2020	07/22/2020 08:28	10, pp. 225, 236; 19, p. 7; Figure 2
ROS 70	8774-16	Basement entrance	02/15/2021 17:10	02/16/2021 16:00	10, pp. 269, 278; 19, p. 11; Figure 2
D.0.5.72	8519-25	Office	03/10/2020 13:57	03/11/2020 10:20	10, pp. 196, 207; 19, p. 3; Figure 2
ROS 72	8618-25	Not specified	07/21/2020 14:44	07/22/2020 11:25	10, pp. 225, 237; 19, p. 7; Figure 2
ROS 75	8519-21	Office	03/10/2020 11:32	03/11/2020 09:13	10. p. 196, 206; 19, p. 3; Figure 2
ROS 76	8774-18	Back office by garage	02/16/2021 09:07	02/17/2021 08:06	10, pp. 269, 278; 19, p. 11; Figure 2
ROS 77	8588-31	Basement	06/16/2020 16:38	06/17/2020 11:15	10, pp. 210, 222; 19, p. 5; Figure 2
ROS 79	8619-11	Not specified	08/24/2020 16:50	08/25/2020 16:04	10, pp. 240, 250; 19, p. 8; Figure 2
ROS 83	8435-8	Workshop	12/03/2019 10:40	12/04/2019 09:28	10, p. 143, 153, 162; Figure 2
ROS 84	8435-10	Ice room	12/03/2019 10:55	12/04/2019 10:12	10, p. 143, 153, 164; Figure 2
ROS 85	8482-17	Not specified	01/29/2020 14:39	1/30/2020 11:20	10, p. 186, 193; 19, p. 2; Figure 2
ROS 86	8435-18	Basement	12/03/2019 13:30	12/04/2019 12:23	10, p. 143, 153, 172; Figure 2
	8652-11	Basement near port	09/14/2020 16:35	09/15/2020 15:10	10, pp. 254, 265; 19, p. 10; Figure 2
KUS 91	8774-17	Basement back room by port	02/16/2021 08:05	02/17/2021 07:09	10, pp. 269, 278; 19, p. 11; Figure 2

TABLE 6. AOE 1 OBSERVED EXPOSURE SAMPLE LOCATIONS

-			Ctart Data	End Data	
ROS ID	Sample ID	Sample Location	Start Date	End Date	References
	1	1	and Time	and Time	
	8588 27	Basement	06/16/2020	06/17/2020	10 pp 210 222: 10 p 5: Figure 2
DOG 02	0300-27	Dasement	13:50	10:22	10, pp. 210, 222, 19, p. 5, Figure 2
RUS 92	0.050.00	First floor on wood burning	09/15/2020	09/16/2020	10, pp. 254, 265; 19, p. 10; Figure
	8652-23	stove	13:29	11:56	2
			07/21/2020	07/22/2020	
ROS 94	8618-34	Not specified	17.26	13.34	10, pp. 225, 237; 19, p. 7; Figure 2
			08/25/2020	08/26/2020	
ROS 97	8619-21	Not specified	12.50	12.45	10, pp. 240, 250; 19, p. 9; Figure 2
		-	13:30	12:45	
ROS 98	8618-30	Not specified	07/21/2020	07/22/2020	10 nn 225 237 19 n 7 Figure 2
100 70	0010 50	not specifica	16:43	13:15	10, pp. 220, 207, 19, p. 7, 11gare 2
POS 00	8610 7	Not specified	08/24/2020	08/25/2020	10 pp 240 250: 10 p 8: Figure 2
K03 33	0019-7		13:00	11:04	10, pp. 240, 250, 19, p. 8, Figure 2
DOG 101	0(10.05	Not specified	08/25/2020	08/26/2020	
ROS 101	8619-25		15:50	14:12	10, pp. 240, 250; 19, p. 9; Figure 2
			08/25/2020	08/26/2020	
ROS 102	8619-23	Not specified	14.15	12.53	10, pp. 240, 250; 19, p. 9; Figure 2
			00/14/2020	00/15/2020	10 pp 254 265: 10 p 10: Figure
	8652-7	Basement main room	17.19	16.20	10, pp. 254, 205, 19, p. 10, Figure
ROS 103			1/:18	10:28	2 10 2(0 270 10 11 F
	8774-10	Basement main room	02/15/2021	02/16/2021	10, pp. 269, 278; 19, p. 11; Figure
			14:25	13:11	2
ROS 104	8652-24	Basement back room	09/15/2020	09/16/2020	10, pp. 254, 265; 19, p. 10; Figure
K05 104	8032-24	Dasement back room	14:10	12:55	2
DOG 105	9(52.2)	D	09/15/2020	09/16/2020	10, pp. 254, 266; 19, p. 10; Figure
ROS 105	8032-20	Basement bar area	14:42	13:13	2
			09/15/2020	09/16/2020	10, pp. 254, 266; 19, p. 10; Figure
	8652-29	Basement hallway shelf	15.32	14.05	2
ROS 106			02/15/2021	02/16/2021	- 10 pp 269 278: 19 p 11: Figure
	8774-15	Basement back right corner	15.46	14.20	o, pp. 209, 270, 19, p. 11, Figure
		2	13:40	14:29	2

TABLE 6. AOE 1 OBSERVED EXPOSURE SAMPLE LOCATIONS

Notes:

AOE Area of observed exposure Regularly occupied structure

ROS

ID Identification

TABLE 7. AOE OBSERVED EXPOSURE SAMPLE CONCENTRATIONS

Sample ID/ ROS ID	Eligible Hazardous Substance	Concentration $(\mu g/m^3)$	Sample Reporting Limit (µg/m ³)*	References
8435-22/ ROS 01	Tetrachloroethene	88	0.34	10, p. 150; 12, p. 8
8482-12 [/] ROS 01	Tetrachloroethene Trichloroethene Vinyl chloride	74 0.28 0.15	0.34 0.14 0.15	10, p. 190; 12, p. 14
8435-20/ ROS 02	Tetrachloroethene	16	0.34	10, p. 149; 12, p. 7
8482-9/ ROS 02	Tetrachloroethene	12	0.34	10, p. 190; 12, p. 13
8435-16/ ROS 03	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	9.8 7.1 1.4 4.7 0.58	0.34 0.27 0.20 0.20 0.13	10, p. 148; 12, p. 6
8482-11/ ROS 03	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene	4.5 360 0.91	0.34 1.4 0.20	10, p. 190; 12, p. 14

TABLE 7.	AOE OBSERVED	EXPOSURE SAMP	LE CONCENTRATIONS

Sample ID/	Eligible Hazardous	Concentration	Sample Reporting	References
ROS ID	Substance	$(\mu g/m^3)$	Limit $(\mu g/m^3)^*$	
	<i>trans</i> -1,2-Dichloroethene	5.0	0.20	
9125 61	Vinyl chloride	0.31	0.13	
8433-0/ ROS 04	Tetrachloroethene	11	0.34	10, p. 146; 12, p. 3
8435-13/				
ROS 05	Tetrachloroethene	380	3.4	10, p. 148; 12, p. 5
8435-12/	Tatus ablance theme	7.2	0.24	10 - 147:12 - 5
ROS 06	Tetrachioroethene	7.5	0.34	10, p. 147, 12, p. 5
8482-15/	Tetrachloroethene	4.9	0.34	10 n 191·12 n 15
ROS 06	Trichloroethene	0.52	0.14	10, p. 171, 12, p. 13
8482-2/	Tetrachloroethene	0.44	0.34	10, p. 188; 12, p. 11
ROS 07	Trichloroethene	0.66	0.14	
8482-5/ DOS 07	T i 11	0.69	0.34	10, p. 189; 12, p. 12
RUS 0/	Irichloroethene	0.37	0.14	
8519-31/ ROS 08	Tetrachloroethene	1.9	0.34	10, p. 205; 12, p. 24
8618-2/	Tetrachloroethene	11	0.34	
ROS 09	Trichloroethene	0.53	0.14	10, p. 227; 12, p. 35
8618-4/		0.4	0.24	10 227 12 26
ROS 10	letrachloroethene	8.4	0.34	10, p. 227; 12, p. 36
8774-13/	Totas ablance other a	0.20	0.24	10 - 274:12 - 66
ROS 10	Tetrachioroethene	0.39	0.34	10, p. 2/4; 12, p. 66
8618-16/	Trichloroethene	16	0.14	10 p 230: 12 p 39
ROS 13		1.0	0.14	10, p. 230, 12, p. 37
8519-23/	Tetrachloroethene	7.5	0.34	
ROS 14	Trichloroethene	3.4	0.14	10, p. 203; 12, p. 22
	Vinyl chloride	0.62	0.13	
8774-22/	Tillert	8.5	0.34	10 . 27(12 (2 (0
ROS 14	I richloroethene	1./	0.14	10, p. 2/6; 12, pp. 68, 69
8610 15/	v myl chloride	0.55	0.15	
ROS 15	Tetrachloroethene	14	0.34	10, p. 245; 12, p. 49
8588-13/				
ROS 16	Tetrachloroethene	0.62	0.34	10, p. 215; 12, p. 28
8619-5/	Tatus ablance theme	67	0.24	10 - 242:12 - 46
ROS 17	Tetrachioroethene	0.7	0.34	10, p. 245; 12, p. 40
8774-3/	Tetrachloroethene	38	0.34	10 n 271:12 n 63
ROS 18		50	0.51	10, p. 271, 12, p. 03
8519-17/ DOG 10	Tetrachloroethene	0.57	0.34	10, p. 202; 12, p. 20
RUS 19				
8388-23/ POS 20	Tetrachloroethene	0.45	0.34	10, p. 218; 12, p. 31
8619-9/				
ROS 22	Tetrachloroethene	26	0.34	10, p. 244; 12, p. 47
8588-9/			0.04	
ROS 27	Tetrachloroethene	1.1	0.34	10, p. 214; 12, p. 27
8519-3/	Tatrachlaracthana	65	0.24	$10 = 108 \cdot 12 = 16$
ROS 28	10110100000000	05	0.34	10, p. 170, 12, p. 10
8618-31/	Tetrachloroethene	13	0 34	10 n 234 12 n 43
ROS 28				· · · · · · · · · · · · · · · · · · ·
8618-32/ DOS 28	Tetrachloroethene	1.4	0.34	10, p. 234; 12, p. 43
KUS 28 9774-11/				
ROS 29	Tetrachloroethene	1.0	0.34	10, p. 273; 12, p. 66
8618-6/	Tetrachloroethene	1 4	0.34	10 n 228: 12 n 36
5010-0/	1 cu acinoi o cuicile	1.7	0.54	10, p. 220, 12, p. 30

Sample ID/ Eligible Hazardous Concentration Sample Reporting References ROS ID Substance $(\mu g/m^3)$ Limit (µg/m³)* **ROS 30** 8774-20/ Tetrachloroethene 4.0 0.34 10, p. 275; 12, p. 68 ROS 31A 8652-9/ Tetrachloroethene 3.7 0.34 10, p. 258; 12, p. 56 ROS 31B 8619-29/ Tetrachloroethene 0.46 0.34 10, p. 249; 12, p. 52 **ROS 32** 8652-3/ Tetrachloroethene 230 3.4 10, p. 256; 12, p. 54 0.14 ROS 33A Trichloroethene 0.49 8652-5/ Tetrachloroethene 200 3.4 10, p. 257; 12, p. 55 Trichloroethene ROS 33B 0.32 0.14 8652-6/ Tetrachloroethene 200 3.4 10, p. 257; 12, p. 55 ROS 33C Trichloroethene 0.28 0.14 8618-10/ Tetrachloroethene 9.1 0.34 10, p. 229; 12, p. 37 **ROS 34** 8652-1/ Tetrachloroethene 5.7 0.34 10, p. 256; 12, p. 54 **ROS 35** 8619-1/ Tetrachloroethene 9.6 J 0.34 10, p. 242; 12, p. 45 **ROS 37** 8519-8/ Tetrachloroethene 0.38 0.34 10, p. 199; 12, p. 18 **ROS 38** 8652-32/ Tetrachloroethene 22 0.34 10, p. 263; 12, p. 62 **ROS 40** 8618-12/ 10, p. 229; 12, p. 38 Tetrachloroethene 1.5 0.34 **ROS 42** 8588-21/ Tetrachloroethene 14 0.34 10, p. 217; 12, p. 30 **ROS 43** Trichloroethene 0.32 0.14 8435-27/ Tetrachloroethene 1.5 0.34 10, p. 151; 12, p. 9 **ROS 50** 8519-6/ Tetrachloroethene 1.2 0.34 10, p. 199; 12, p. 17 **ROS 54** 8588-15/ Tetrachloroethene 0.36 0.34 10, p. 215; 12, p. 29 **ROS 55** 8618-24/ Tetrachloroethene 12 0.34 10, p. 232; 12, p. 41 **ROS 56** 8774-9/ 0.43 Tetrachloroethene 0.34 10, p. 273; 12, p. 65 ROS 56 8774-7/ Tetrachloroethene 0.73 0.34 10, p. 272; 12, p. 65 **ROS 57** 8618-14/ Tetrachloroethene 1.5 0.34 10, p. 230; 12, p. 38 **ROS 61** cis-1,2-Dichloroethene 0.35 0.20 Tetrachloroethene 0.37 8618-18/ 0.34 10, p. 231; 12, p. 39 trans-1,2-Dichloroethene **ROS 65** 17 0.20 8519-29/ 2.7 Tetrachloroethene 0.34 10, p. 205; 12, p. 23 **ROS 69** 8618-20/ Tetrachloroethene 23 0.34 10, p. 231; 12, p. 40 ROS 70 8774-16/ Tetrachloroethene 1.1 0.34 10, p. 274; 12, p. 67 ROS 70 8519-25/ Tetrachloroethene 11 0.34 10, p. 204; 12, p. 22 **ROS 72** 8618-25/ Tetrachloroethene 1.3 0.34 10, p. 233; 12, p. 41 **ROS 72** 8519-21/ Tetrachloroethene 0.40 0.34 10, p. 203; 12, p. 21 **ROS 75**

TABLE 7. AOE OBSERVED EXPOSURE SAMPLE CONCENTRATIONS

Sample ID/ ROS ID	Eligible Hazardous	Concentration $(\mu g/m^3)$	Sample Reporting	References
8774-18/ POS 76	Tetrachloroethene	58	0.34	10, p. 275; 12, p. 67
8588-31/ ROS 77	Tetrachloroethene	8.8	0.34	10, p. 219; 12, p. 33
8619-11/ ROS 79	Tetrachloroethene	4.3	0.34	10, p. 244; 12, p. 48
8435-8/ POS 83	Tetrachloroethene Trichloroethene	31	0.34	10, p. 146; 12, p. 4
8435-10/ ROS 84	Tetrachloroethene Trichloroethene	9.4 0.59	0.34 0.27	10, p. 147; 12, pp. 4, 5
8482-17/	<i>trans</i> -1,2-Dichloroethene Tetrachloroethene	5.9	0.20	10, p. 192; 12, p. 15
8435-18/ ROS 86	Tetrachloroethene	2.4	0.34	10, p. 149; 12, p. 7
8652-11/ ROS 91	Tetrachloroethene	19	0.34	10, p. 258; 12, p. 57
8774-17/ ROS 91	Tetrachloroethene	9.9	0.34	10, p. 275; 12, p. 67
8588-27/ ROS 92	Tetrachloroethene	13	0.34	10, p. 218; 12, p. 32
8652-23/ ROS 92	Tetrachloroethene	2.8	0.34	10, p. 261; 12, p. 60
8618-34/ ROS 94	Tetrachloroethene	9.2	0.34	10, p. 235; 12, p. 44
8619-21 ROS 97	Tetrachloroethene Trichloroethene	3.8 0.33	0.34 0.14	10, p. 247; 12, p. 50
8618-30/ ROS 98	Tetrachloroethene	2.0	0.34	10, p. 234; 12, p. 43
8619-7/ ROS 99	Tetrachloroethene	2.9	0.34	10, p. 243; 12, p. 47
8619-25/ ROS 101	Tetrachloroethene Trichloroethene	1.8 0.16	0.34 0.14	10, p. 248; 12, p. 51
8619-23/ ROS 102	Tetrachloroethene	5.3	0.34	10, p. 247; 12, p. 51
8652-7/ ROS 103	Tetrachloroethene	5.6	0.34	10, p. 257; 12, p. 51
8774-10/ ROS 103	Tetrachloroethene	1.2	0.34	10, p. 273; 12, p. 65
8652-24/ ROS 104	Tetrachloroethene	0.91	0.34	10, p. 261; 12, p. 60
8652-26/ ROS 105	Tetrachloroethene	20	0.34	10, p. 262; 12, p. 61
8652-29/ ROS 106	Tetrachloroethene	6.2	0.34	10, p. 263; 12, p. 61
8774-15/ ROS 106	Tetrachloroethene	1.5	0.34	10, p. 274; 12, p. 67

TABLE 7. AOE OBSERVED EXPOSURE SAMPLE CONCENTRATIONS

Notes:

*The reporting limit in this table takes into account any dilution factor, volume adjustment, and percent solids for the sample and is sometimes called the sample quantitation limit or SQL (Ref. 12, pp. 2, 11, 16, 25, 35, 45, 54, 63). J

The identification of the analyte is acceptable; the reported value is an estimate. Tetrachloroethene was J-coded in sample 9619-1.

Although the analyte in question has been positively identified in the sample, the quantitation is an estimate due to poor precision obtained for this analyte (14%, limit is 11%) in the laboratory duplicate sample (Ref. 10, pp. 239, 241)

Micrograms per cubic meter µg/m³

Area of observed exposure AOE

ROS Regularly occupied structure

Identification ID

Attribution to Subsurface and Site

The former Carriage Cleaners facility was a documented user of PCE (also known as tetrachloroethene or perchloroethene [perc]). Carriage Cleaners initiated hazardous waste reporting in 1986 (Ref. 6, pp. 4, 210, 211). Waste generated at the dry cleaner in 1986 was F002 cartridge filters (156 per year) (Ref. 6, pp. 4, 210, 211). In 1988, the cartridge filters were steam cleaned to remove perchlorethylene so they could be disposed of at the Douglas County landfill (Ref. 6, pp. 4, 201-204). Approximately 4,000 to 18,000 pounds of waste perchlorethylene was generated at Carriage Cleaners from 1988 to 1992 (Ref. 6, p. 4). In December 1993 Carriage Cleaners submitted a notification to the State of Nebraska indicating that the facility had purchased an estimated 2,500 gallons of perchloroethylene for its dry-cleaning operations for use in a transfer type dry cleaning machine that had been installed in 1955 (Ref. 6, pp. 171, 172, 174). The waste management practices the facility employed after the dry-cleaning machine was installed in 1955 and when the facility initiated hazardous waste reporting in 1986 are unknown. Also unknown is whether any spills of PCE to the soil occurred during the operation or if releases to the sanitary sewer from steam stripping of filters occurred. In October 1995 the NDEO was notified that the facility was no longer doing business and had filed Chapter 7 Bankruptcy (Ref. 6, pp. 4, 170). Although no specific spill was recorded, the weight of evidence discussed in this HRS documentation record (such as sampling results, concentration gradients, high levels detected directly under the former facility) indicate chlorinated solvents were released from the facility into the environment; environmental samples collected at the former facility, subsequent to its operation, suggest a release occurred.

Cretaceous sandstone and Pennsylvanian limestone and shale form the bedrock units underlying the region. The depth to bedrock is typically over 100 feet in upland areas, and varies due to erosion within the Missouri River valley (Ref. 8, p. 12). Based on borings performed at the PCE Carriage Cleaners facility by EPA and other investigators, the site is underlain from the ground surface down by Peoria loess and Loveland loess (Refs. 8, pp. 12, 36-38; 10, pp. 49, 71; 20, pp. 34, 88-90). The material is described as clay and silt, low to moderate plasticity, to about 73 to 74 feet bgs where clay is logged to 80 feet (Refs. 7, pp. 3, 9, 11-14; 20, pp. 88-90). The water table surface occurs in the Peoria loess at an approximate depth of 13 to 15.4 feet below ground surface (Ref. 8, p. 19). Chlorinated solvent contamination in soils is documented in SB-36 throughout the entire formation to a depth of 79 to 80 feet (Ref. 20, pp. 22, 34, 161-186). In general, groundwater flows to the east/southeast (Ref. 8, p. 19).

The CVOC contamination is encountered throughout the Peoria loess, in temporary wells screened from 20 to 25 feet below ground surface and in temporary wells screened from 70 to 75 feet bgs (Ref. 8, pp. 9, 15). Dense nonaqueous phase liquids (DNAPL) is assumed present at the site due to the very high concentrations of PCE (45,000,000 μ g/kg) in a soil sample collected (SB-13) at a depth of 13-14 feet bgs, and 9,200,000 μ g/kg in a soil sample (SB-23) collected from 43-44 feet bgs (below the water table) (Refs. 10, p. 35; 15, pp. 4, 5). Another indicator of possible DNAPL presence is that PCE in groundwater is found at a concentration which is greater than 1 percent of its pure phase solubility which is 2,000 μ g/L (Ref. 14, pp. 3, 32). Three groundwater samples (TW-13, TW-21, TW-107) collected in April 2021 contained PCE at concentrations ranging from 2,100 to 11,000 μ g/L (Ref. 10, pp. 40, 73). In June and July 2018, a supplemental ESA was conducted that included sampling of soil gas, sub-slab vapor, and indoor air (Ref. 8, pp. 7, 111, 112, 134, 169). A soil gas vapor sample (SV-1) collected at 5 feet bgs near the center of the former dry cleaner property had a PCE concentration of 1,100,000 micrograms per cubic meter (μ g/m³) (Ref. 8, pp. 17, 26, 119). A PCE concentration of 350,000 μ g/m³ (SS-2) was detected in a sub-slab vapor sample collected at the 2110 Franklin Street building (Ref. 8, pp. 17, 26, 124). Isoconcentration maps of groundwater and subsurface vapors show highest concentrations near the former dry cleaner property and diminishing with distance to the east (Refs. 10, pp. 65, 67; 20, p. 32).

During the EPA RSE/SI sampling events, sub-slab soil vapor samples collected concurrently with the indoor air samples showed that CVOCs are present in the subsurface directly beneath the AOE. Off the former dry cleaner property, sub-slab soil vapor collected concurrently with the indoor air samples showed that CVOCs are present in the subsurface directly beneath the AOE, at levels up to 28,000 μ g/m³ (Ref. 10, pp. 24-27, 67, 82-86, 196, 198, see **Figure 5** of this HRS documentation record). Subslab vapor samples collected west (upgradient) of the drycleaner showed that PCE was either non-detect or less than 2 μ g/m³ indicating the absence of an upgradient source (See **Figure 5** of this documentation record). The extent of subsurface groundwater and soil vapor contamination is not fully delineated; all the structures in the AOE are located above the CVOC subsurface contamination (see **Figures 2, 4 and 5** of this HRS documentation record). The sub-slab soil vapor and indoor air results indicate that the observed exposures at the site are associated with

soil vapor intrusion. Figures 3, 4 and 5 of this HRS documentation record illustrate the extent of subsurface contamination.

Consideration of Indoor Anthropogenic Origins

During the numerous indoor air sampling events, EPA or START would visually inspect sample locations for commercial products that might impact sampling results and note their presence. Products were observed at the commercial structures (ROS 03, ROS 05, and ROS 33) (Ref. 10, pp. 82, 84). At these locations, PCE in sub-slab vapors was measured as high as 25,000 μ g/m³ (ROS 03), 15,000 μ g/m³ (ROS 05), and 400 μ g/m³ (ROS 33) (Ref. 10, pp. 82, 84). While small amounts of anthropogenic substances were noted or suspected to be used the high concentrations of PCE in the sub-slab vapors beneath these structures suggest at least a portion of the PCE in indoor air may have resulted from vapor intrusion. At ROS 83 and adjacent ROS 84 elevated concentrations of PCE and TCE were noted in indoor air (Ref. 10, p. 86). A building survey form identified a spray bottle (spray cap missing) that contained a chlorinated solvent as an ingredient. The survey form noted that the container was inoperable and had not been used for several months (Ref. 18, p. 9). Because PCE was also found in sub-slab vapors (Ref. 10, p. 86), and the product had not been used for several months, the concentrations in indoor air are believed to be from vapor intrusion.

Consideration of Outdoor Air Contamination

Outdoor air sampling was conducted May 2019 and December 2019 to demonstrate that increased levels of hazardous substances in indoor air sample are the result of subsurface intrusion and not outdoor air that has migrated into the structures (Refs. 1, Section 5.2.1.1.1; 9, pp. 5, 13, 68, 86, 110, 111, 166; 10, p. 20). Sampling of outdoor air was conducted simultaneously with the corresponding indoor air sample(s); the sample collection, analytical, and validation procedures were identical for indoor air samples and their corresponding outdoor air samples (Ref. 10, p. 19). The outdoor air sampling information and results are presented below in Tables 8 and 9.

Sample ID	Sample Location	Start Date and Time	End Date and Time	References
Ambient Air 320-50452-5	Behind (south) of Building	05/15/2019 18:15	05/16/2019 16:10	9, pp. 5, 6, 13, 25, 52, 54, 68, 86, 166: Figure 2
8435-25	Ambient air at First Presbyterian church	12/03/2019	12/04/2019	10, pp. 20, 143, 154, 179:
	(1220 Bellevue Blvd S.)	15:50	14:03	Figure 2
8435-28	Ambient air south side of building at	12/04/2019	12/05/2019	10, pp. 20, 143, 154, 182:
	Bellevue Florist (509 W. Mission Ave)	11:02	09:03	Figure 2

TABLE 8. AOE 1 OUTDOOR (AMBIENT) AIR ATTRIBUTION SAMPLE LOCATION

Notes:

ID Identification

Sample ID	Eligible Hazardous Substance	Concentration $(\mu g/m^3)$	Reporting Limit (µg/m ³)	References
	Tetrachloroethene	ND	2.7	
Ambiant Air	Trichloroethene	ND	2.1	
220 50452 5	cis-1,2-Dichloroethene	ND	1.6	9, pp. 110, 111
320-30432-3	trans-1,2-Dichloroethene	ND	1.6	
	Vinyl chloride	ND	1.0	
	Tetrachloroethene	0.34 U	0.34	
	Trichloroethene	0.27 U	0.27	
8435-25	cis-1,2-Dichloroethene	0.20 U	0.20	10, p. 151; 12, p. 9
	trans-1,2-Dichloroethene	0.20 U	0.20	
	Vinyl chloride	0.13 U	0.13	
	Tetrachloroethene	0.34 U	0.34	
	Trichloroethene	0.27 U	0.27	
8435-28	cis-1,2-Dichloroethene	0.20 U	0.20	10, p. 151; 12, pp. 9, 10
	trans-1,2-Dichloroethene	0.20 U	0.20	
	Vinyl chloride	0.13 U	0.13	

TABLE 9. AOE 1 OUTDOOR (AMBIENT) AIR ATTRIBUTION SAMPLE CONCENTRATIONS

Notes:

ND Not Detected at the reporting limit (or method detection limit [MDL] or estimated detection limit [EDL] if shown) (Ref. 9, p. 93).

U The analyte was not detected at or above the reporting limit; sometimes called the sample quantitation limit (Refs. 10, p. 142; 12, p. 2).

Structure Containment

As presented above in the AOE, there are 63 regularly occupied structures that have observed exposure documented through chemical analysis and are therefore assigned a containment value of 10 [Ref. 1, Table 5-12]. EPA Region 7's Emergency and Rapid Response Services (ERRS) contractor installed vapor mitigation systems (VMS) at seven businesses and 13 residential properties between December 2019 and February 2021 (Ref. 10, p. 55). Consistent with HRS Section 5.2.1.1.2.1, for all the regularly occupied structures with unknown containment features, a structure containment value of greater than zero is assigned. Where multiple containment factor values could apply to a given structure, per, HRS Section 5.2.1.1.2.1, the highest value is considered assigned.

TABLE 10. AOE 1 – STRUCTURE CONTAINMENT

Regularly Occupied Structure ID	Structure Containment Factor Value (Ref. 1, Table 5-12)	Rationale	References
ROS 01-10, 13-20, 22, 27-35, 37, 38, 40, 42, 43, 50, 54-57, 61, 65, 69, 70, 72,75-77, 79, 83-86, 91, 92, 94, 97-99, 101- 106	10	Evidence of subsurface intrusion with documented observed exposure	See AOE description above: Figure 2
ROS 01-07, 09, 10, 28, 56, 70, 72, 77, 91, 92, 98, 102, 103, 106	2	Engineered, active vapor mitigation system without documented institutional controls	10, pp. 54, 55
All other structures in AOE 1	Greater than 0	Unknown containment features	Ref. 1, Section 5.2.1.1.2.1

AOE Hazardous Waste Quantity

Tier A Hazardous Constituent Quantity:

The total hazardous constituent quantity for AOE 1 could not be adequately determined according to the HRS requirements; that is, the total mass of all Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) hazardous substances to have entered the structures is not known and cannot be estimated with reasonable confidence (Ref. 1, Section 2.4.2.1.1 and 5.2.1.2.2). Insufficient historical and current data (air concentration data, air

flow data, etc.) are available to adequately calculate the total mass, or a partial estimate, of all CERCLA hazardous substances to have entered the structures. Therefore, there is insufficient information to calculate a total or partial hazardous constituent quantity estimate for AOE 1 with reasonable confidence. Scoring proceeds to the evaluation of Tier B, Hazardous Wastestream Quantity (Ref. 1, Sections 2.4.2.1.1 and 5.2.1.2.2).

Hazardous Constituent Quantity Assigned Value: Not Scored (Ref. 1, Table 5-19)

Hazardous Constituent Quantity Complete? (Y/N): No

Tier B Hazardous Wastestream Quantity:

The hazardous wastestream quantity for AOE 1 could not be adequately determined according to the HRS requirements; that is, the total mass, or a partial estimate, of all hazardous wastestreams and CERCLA pollutants and contaminants to have entered the structures is not known and cannot be estimated with reasonable confidence (Ref. 1, Section 2.4.2.1.2 and 5.2.1.2.2). Insufficient historical and current data (air concentration data, air flow data, etc.) are available to adequately calculate the total mass, or a partial estimate, of all hazardous wastestreams and CERCLA pollutants and contaminants to have entered the structures. Therefore, there is insufficient information to adequately calculate or extrapolate a total or partial Hazardous Wastestream Quantity for AOE 1 with reasonable confidence. Scoring proceeds to the evaluation of Tier C, Volume (Ref. 1, Sections 2.4.2.1.2 and 5.2.1.2.2).

Hazardous Wastestream Quantity Assigned Value: Not Scored

Tier C Volume:

There are 62 occupied residential structures and 23 commercial/industrial structures (i.e., workplaces) within the AOE (see **Figure 2**). Volume is calculated for each regularly occupied structure located within the areas of observed exposure that was sampled by EPA during the RSE/SI, some of which were shown by chemical analysis to be within the AOE and others of which are inferred to be within the AOE [Ref. 1, Section 5.2.1.2.2].

The area in square feet (ft²) of each structure is obtained from assessors records (Ref. 13). The actual ceiling height of each structure when provided, was used. When not provided, a ceiling height of 8 feet is used to calculate volume for each structure [Ref. 1, Section 5.2.1.2.2]. Volume calculations for these regularly occupied structures within AOE 1 are shown below.

Regularly Occupied Structure ID	Area (ft ²) (Regularly Occupied Structures)	Ceiling Height (ft)	Volume (yd ³) Area × Height / 27 (Ref. 1, Section 5.2.1.2.2)	References
ROS 01	7,868	12	3,497	10, p. 82; 13, pp. 2, 5, 6
ROS 02	360	9	120	10, p. 82; 13, pp. 2, 7, 8
ROS 03	6,000	14	3,111	10, p. 82; 13, pp. 2, 9, 10
ROS 04	4,169	10	1,544	10, p. 82; 13, pp. 2, 11, 12
ROS 05	6,880	14	3,567	10, p. 82; 13, pp. 2, 13, 14
ROS 06	624	8	185	10, p. 82; 13, pp. 2, 15, 16
ROS 07	10,136	11	4,129	10, p. 82; 13, pp. 2, 17, 18
ROS 08	1,848	8	548	10, p. 82; 13, pp. 2, 19, 20
ROS 09	1,680	8	498	10, p. 82; 13, pp. 2, 21, 22
ROS 10	840	8	249	10, p. 82; 13, pp. 2, 23, 24
ROS 13	3,612	8	1,070	10, p. 83; 13, pp. 2, 28, 29
ROS 14	1,704	10	631	10, p. 83; 13, pp. 2, 30, 31

TABLE 11. AOE 1 VOLUME

TABLE 11. AOE 1 VOLUME

Regularly Occupied Structure ID	Area (ft ²) (Regularly Occupied Structures)	Ceiling Height (ft)	Volume (yd ³) Area × Height / 27 (Ref. 1, Section 5.2.1.2.2)	References
ROS 15	1,454	8	431	10, p. 83; 13, pp. 2, 32, 33, 34
ROS 16	1,440	8	427	10, p. 83; 13, pp. 2, 35, 36
ROS 17	1,036	8	307	10, p. 83; 13, pp. 2, 37, 38
ROS 18	4,320	9	1,440	10, p. 83; 13, pp. 2, 39, 40
ROS 19	1,194	10	442	10, p. 83; 13, pp. 2, 41, 42
ROS 20	1,746	8	517	10, p. 83; 13, pp. 2, 43, 44
ROS 22	1,794	8	532	10, p. 83; 13, pp. 2, 45, 46
ROS 27	1,519	8	450	10, p. 83; 13, pp. 2, 49, 50
ROS 28	2,770	8	821	10, p. 83; 13, pp. 2, 51, 52
ROS 29	1,536	8	455	10, p. 83; 13, pp. 2, 53, 54
ROS 30	2,400	8	711	10, p. 83; 13, pp. 2, 55, 56
ROS 31A	1,728	8	512	10, p. 84; 13, pp. 2, 57, 58;
ROS 31B	1,728	8	512	10, p. 84; 13, pp. 2, 57, 58
ROS 32	4,064	8	1,204	10, p. 84; 13, pp. 2, 59, 60
ROS 33A				
ROS 33B	7,360	10	2,726	10, p. 84; 13, pp. 2, 61, 62
ROS 33C				
ROS 34	2.042	10	1 200	10, p. 84; 13, pp. 2, 63, 64
ROS 35	2,943	12	1,308	10, p. 84; 13, pp. 2, 63, 64
ROS 37	6,645	12	2,953	10, p. 84; 13, pp. 2, 65, 66
ROS 38	2,400	10	889	10, p. 84; 13, pp. 2, 67, 68
ROS 39	1,392	8	412	10, p. 84; 13, pp. 2, 69, 70
ROS 40	2,490	8	738	10, p. 84; 13, pp. 2, 71, 72
ROS 42	3,916	10	1,450	10, p. 84; 13, pp. 2, 73, 74
ROS 43	1,938	8	574	10, p. 84; 13, pp. 2, 75, 76
ROS 49	1,836	8	544	10, p. 84; 13, pp. 2, 85, 86
ROS 50	2,008	8	595	10, p. 84; 13, pp. 2, 87, 88
ROS 54	961	8	285	10, p. 85; 13, pp. 3, 91, 92
ROS 55	1,595	8	473	10, p. 85; 13, pp. 3, 93, 94
ROS 56	2,156	8	639	10, p. 85; 13, pp. 3, 95, 96
ROS 57	1,564	8	463	10, p. 85; 13, pp. 3, 97, 98
ROS 61	720	8	213	10, p. 85; 13, pp. 3, 101, 102
ROS 65	8,412	12	3,739	10, p. 85; 13, pp. 3, 105, 106
ROS 69	1,197	10	443	10, p. 85; 13, pp. 3, 109, 110
ROS 70	2,140	8	634	10, p. 85; 13, pp. 3, 111, 112
ROS 72	1,796	8	532	10, p. 85; 13, pp. 3, 115, 116
ROS 75	5,015	11	2,043	10, p. 85; 13, pp. 3, 121, 122
ROS 76	1,200	8	356	10, p. 85; 13, pp. 3, 123, 124
ROS 77	1,825	8	541	10, p. 85; 13, pp. 3, 125, 126
ROS 79	1,868	8	553	10, p. 86; 13, pp. 3, 129, 130
ROS 83	1,799	14	933	10, p. 86; 13, pp. 3, 135, 136

TABLE 11. AOE 1 VOLUME

Regularly Occupied Structure ID	Area (ft ²) (Regularly Occupied Structures)	Ceiling Height (ft)	Volume (yd ³) Area × Height / 27 (Ref. 1, Section 5.2.1.2.2)	References
ROS 84	1,799	14	933	10, p. 86; 13, pp. 3,135, 136
ROS 85	8,350	8	2,474	10, p. 86; 13, pp. 3, 137
ROS 86	2,324	8	689	10, p. 86; 13, pp. 3, 139, 140
ROS 91	3,217	8	953	10, p. 86; 13, pp. 3, 143, 144
ROS 92	2,494	8	739	10, p. 86; 13, pp. 3, 145, 146
ROS 94	2,621	8	777	10, p. 86; 13, pp. 3, 149, 150
ROS 97	2,400	8	711	10, p. 86; 13, pp. 3, 151, 152
ROS 98	3,114	8	923	10, p. 86; 13, pp. 3, 153, 154
ROS 99	2,091	8	620	10, p. 86; 13, pp. 3, 155, 156
ROS 101	2,652	8	786	10, p. 86; 13, pp. 3, 157, 158
ROS 102	2,240	8	664	10, p. 87; 13, pp. 3, 159, 160
ROS 103	1,680	8	498	10, p. 87; 13, pp. 3, 161, 162
ROS 104	1,984	8	588	10, p. 87; 13, pp. 3, 163, 164
ROS 105	3,049	8	903	10, p. 87; 13, pp. 3, 165, 166
ROS 106	2,201	8	652	10, p. 87; 13, pp. 3, 167, 168
ROS 107	1,926	8	571	13, pp. 3, 169, 170
ROS 108	1,707	8	506	13, pp. 3, 171, 172
ROS 109	1,440	8	427	13, pp. 3, 173, 174
ROS 110	1,728	8	512	13, pp. 3, 175, 176
ROS 111	1,568	8	465	13, pp. 3, 177, 178
ROS 112	1,454	8	431	13, pp. 3, 179, 180
ROS 113	1,754	8	520	13, pp. 3, 181, 182
ROS 114	1,440	8	427	13, pp. 3, 183, 184
ROS 115	2,747	8	814	13, pp. 3, 185, 186
ROS 116	1,392	8	412	13, pp. 3, 187, 188
ROS 117	1,566	8	464	13, pp. 3, 189, 190
ROS 119	1,963	8	582	13, pp. 4, 193, 194
ROS 120	1,521	8	451	13, pp. 4, 195, 196
ROS 121	2,112	8	626	13, pp. 4, 197, 198
ROS 122	1,392	8	412	13, pp. 4, 199, 200
ROS 123	720	8	213	13, pp. 4, 201, 202
ROS 124	2,364	8	700	13, pp. 4, 203, 204
ROS 125	2,424	8	718	13, pp. 4, 205, 206
ROS 126	2,904	8	860	13, pp. 4, 207, 208
ROS 127	32,178	8	9,534	13, pp. 4, 209, 210

Notes:

HRS Section 5.2.1.2.2 instructs to include in the hazardous waste quantity all regularly occupied structures or subunits that have had mitigation systems installed as part of a removal or other temporary response action.

Identification İD

Regularly occupied structure ROS feet

ft

 ft^2 Square feet

 yd^3 Cubic yards

AOE Number 1

Sum of values: 84,501 Sum of values/2.5 (V/2.5): 33,800.4 Equation for Assigning Value (Ref. 1, Table 5-19) Volume Assigned Value: 33,800.4

Tier D Area:

Area of the regularly occupied structures was not evaluated because the volume was adequately determined.

Sum of values: Not evaluated Sum of values/13 (A/13): Not applicable Equation for Assigning Value (Ref. 1, Table 5-19)

Area Assigned Value: Not Evaluated

AOE Hazardous Waste Quantity Value:

AOE 1 Hazardous Waste Quantity

Per the HRS, the highest values assigned to the source for hazardous constituent quantity (Tier A), hazardous wastestream quantity (Tier B), volume (Tier C), or area (Tier D) should be assigned as the source hazardous waste quantity value (Ref. 1, Section 2.4.2.1.5).

TABLE 12. AOE 1 Hazardous Waste Quantity

Tier Evaluated	AOE 1 Values
А	Not Scored
В	Not Scored
С	33,800.4
D	Not evaluated

AOE 1 Hazardous Waste Quantity Factor Value: 10,000 (Ref. 1, Table 2-6, Section 2.4.2.2)

5.2.1 SUBSURFACE INTRUSION COMPONENT

5.2.1.1 LIKELIHOOD OF EXPOSURE

5.2.1.1.1 Observed Exposure

The documentation and analytical results presented above in Section 5.2.0 demonstrate that hazardous substances have been released into regularly occupied structures via the subsurface, thereby establishing observed exposure for the site (Ref. 1, Section 5.2.1.1.1). Specifically, indoor air samples from 40 occupied residential structures and 23 occupied workplace structures exhibited concentrations of PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride that meet observed exposure criteria (see Observed Exposure by Chemical Analysis in Section 5.2.0). The indoor air samples that meet observed exposure criteria are listed in Table 13 below. See **Figure 2** of this HRS documentation record for the release sample locations and see Tables 6 and 7 for observed exposure sample location descriptions and analytical results.

AOE Number	Regularly Occupied Structure ID	Evidence	Eligible Hazardous Substance(s)	References
	ROS 01	8482-12	Tetrachloroethene Trichloroethene Vinyl chloride	10, p. 190; 12, p. 14
	ROS 02	8482-9	Tetrachloroethene	10, p. 190; 12, p. 13
	ROS 03	8482-11	Tetrachloroethene Trichloroethene <i>cis</i> -1,2-Dichloroethene <i>trans</i> -1,2-Dichloroethene Vinyl chloride	10, p. 190; 12, p. 14
	ROS 06	8482-15	Tetrachloroethene Trichloroethene	10, p. 191; 12, p. 15
	ROS 07	8482-2	Tetrachloroethene Trichloroethene	10, p. 188; 12, p. 11
	ROS 13	8618-16	Trichloroethene	10, p. 230; 12, p. 39
1	ROS 14	8519-23	Tetrachloroethene Trichloroethene Vinyl chloride	10, p. 203; 12, p. 22
		8774-22	Tetrachloroethene Trichloroethene Vinyl chloride	10, p. 276; 12, pp. 68, 69
	ROS 15	8619-15	Tetrachloroethene	10, p. 245; 12, p. 49
	ROS 18	8774-3	Tetrachloroethene	10, p. 271; 12, p. 63
	ROS 22	8619-9	Tetrachloroethene	10, p. 244; 12, p. 47
	ROS 40	8652-32	Tetrachloroethene	10, p. 263; 12, p. 62
	ROS 43	8588-21	Tetrachloroethene Trichloroethene	10, p. 217; 12, p. 30
	ROS 76	8774-18	Tetrachloroethene	10, p. 275; 12, p. 67
	ROS 83	8435-8	Tetrachloroethene Trichloroethene	10, p. 146; 12, p. 4
	ROS 84	8435-10	Tetrachloroethene Trichloroethene <i>trans</i> -1,2-Dichloroethene	10, p. 147; 12, pp. 4, 5
	ROS 105	8652-26	Tetrachloroethene	10, p. 262; 12, p. 61

TABLE 13. SAMPLES DOCUMENTING OBSERVED EXPOSURE

Notes:

AOE Area of observed exposure

ID Identification

ROS Regularly occupied structure

An observed exposure factor value of 550 is assigned because observed exposure is established in regularly occupied structures (Ref. 1, Sec. 5.2.1.1.1).

SsI Component Observed Exposure Factor Value: 550

5.2.1.1.3 Calculation of Likelihood of Exposure Factor Category Value

A likelihood of exposure factor category value is assigned because observed exposure is established for the site (Ref. 1, Section 5.2.1.1.3).

Likelihood of Exposure Factor Category Value: 550 (Ref. 1, Sec. 5.2.1.1.3)

5.2.1.2 WASTE CHARACTERISTICS

5.2.1.2.1 Toxicity/Degradation

The hazardous substances associated with the site include PCE, TCE, *cis*-1,2-DCE, *trans*-1,2-DCE, and vinyl chloride, all of which are present in the AOE (see Section 5.2.0). Therefore, per the HRS Section 2.2.2 (*Identify hazardous substances associated with a source*), these substances are eligible for consideration in an SsI evaluation as they are found in samples meeting observed exposure criteria. The toxicity and degradation factor values for the AOE contaminants are shown below.

Toxicity Factor Value

TABLE 14. TOXICITY FACTOR VALUES

Eligible Hazardous Substance	AOE Number	Toxicity Factor Value	References
Tetrachloroethene	1	100	2, p. 4
Trichloroethene	1	1,000	2, p. 5
cis-1,2-Dichloroethene	1	1,000	2, p. 2
trans-1,2-Dichloroethene	1	100	2, p. 3
Vinyl chloride	1	10,000	2, p. 6

Degradation Factor Value

TABLE 15. DEGRADATION FACTOR VALUES

Eligible Hazardous Substance	AOE Number	Substance Present in AOE or NAPL? (Y/N)	Depth to Contamination (Ref. 1, Sec. 5.2.1.1.2.2)	Half-life (Days)	Degradation Factor Value ¹ (Ref. 1, Table 5-18)	References
Tetrachloroethene	1	Y	NA	NA	1	TABLE 7
Trichloroethene	1	Y	NA	NA	1	TABLE 7
cis-1,2-Dichloroethene	1	Y	NA	NA	1	TABLE 7
trans-1,2-Dichloroethene	1	Y	NA	NA	1	TABLE 7
Vinyl chloride	1	Y	NA	NA	1	TABLE 7

Notes:

¹ Any hazardous substance that meets the criteria for observed exposure (i.e., the substances present in the AOEs) have an assigned degradation factor value of 1 (Ref. 1, Section 5.2.1.2.1.2).

AOE Area of observed exposure

NAPL Non-aqueous phase liquids

Y Yes

N No

NA Not applicable

Eligible Hazardous Substance	AOE Number	Toxicity	Degradation Factor Value (Ref. 1, Table 5-18)	Toxicity/Degradation Factor Value
Tetrachloroethene	1	100	1	100
Trichloroethene	1	1,000	1	1,000
cis-1,2-Dichloroethene	1	1,000	1	1,000
trans-1,2-Dichloroethene	1	100	1	100
Vinyl chloride	1	10,000	1	10,000

TABLE 16. TOXICITY/DEGRADATION FACTOR VALUES

The substance with the highest combined toxicity/degradation factor value: Vinyl chloride

Toxicity/Degradation Factor Value: 10,000

5.2.1.2.2 Hazardous Waste Quantity for Subsurface Intrusion Component

TABLE 17. HAZARDOUS WASTE QUANTITY FOR SUBSURFACE INTRUSION COMPONENT

AOE Number	AOE 1 Hazardous Waste Quantity
1	33,800.4

Sum of AOE Values: 33,800.4

The hazardous waste quantity value of 33,800.4, which is based on estimates of AOE structure volumes corresponds to a hazardous waste quantity factor value of 10,000 (Ref. 1, Table 2-6). The hazardous constituent quantity is not adequately determined for the areas of observed exposure, and targets are subject to Level I or Level II concentrations. In this situation, the HRS prescribes assigning the higher of the value from Table 2-6 or a value of 100, whichever is greater, as the hazardous waste quantity factor value for the SsI component (Ref. 1, Section 5.2.1.2.2). Therefore, a value of 10,000 is assigned as the hazardous waste quantity factor value.

Hazardous Waste Quantity Factor Value: 10,000

5.2.1.2.3 Calculation of Waste Characteristics Factor Category Value

The waste characteristics factor category value is determined by multiplying the toxicity/degradation and hazardous waste quantity factor values, subject to a maximum product of 1×10^8 , and assigning a value from HRS Table 2-7 based on the product (Ref. 1, Section 5.2.1.2.3). The product for the site is 1×10^8 , which corresponds to a waste characteristics factor category value of 100 in HRS Table 2-7.

Toxicity/Degradation Factor Value: 10,000 Hazardous Waste Quantity Factor Value: 10,000

Toxicity Factor Value x Hazardous Waste Quantity Factor Value: 1×10^8 or 100,000,000

Waste Characteristics Factor Category Value: 100 (Ref. 1, Table 2-7)

5.2.1.3 TARGETS

There are 62 regularly occupied residential structures and 23 regularly occupied workplace structures within AOE 1, for a total of 85 regularly occupied structures which constitute the site (see **Figure 2 and Section 5.2.0** of this HRS documentation record).

AOE Number	Type of Structure	Number(s) of Specific Type of Structure ¹	Type of Population	References
	Residence (single family)	58	Residents	13, pp. 2-4; Figure 2
	Residence (apartment building, multi-unit, multilevel	1: ROS 127 ²	Residents	13, pp. 209, 210; Figure 2
1	Residence (apartment, multi- unit)	1: ROS 02	Residents	13, pp. 7, 8; Figure 2
	Residence duplex or multi- unit	2; ROS 31A, 31B, 98 ³	Residents	13, pp. 2-4, 57, 58, 153, 154; Figure 2
	Workplace	23	Workers	13, pp. 2-4; Figure 2

TABLE 18. TYPES OF STRUCTURE/POPULATIONS IN AOE 1

Notes:

¹ The number of <u>structures</u> is counted; individual subunits are listed for residential structures.

² ROS 127 is a three-story apartment building consisting of 42, 1 bedroom apartments where contamination is inferred. 14 apartments (42 divided by three) are assumed to exist on each of the three levels.

³ ROS 31A and 31B is a duplex, both units were sampled; ROS 98 is a four apartment building whose configuration is not known.

TABLE 19. HAZARDOUS SUBSTANCES THAT EQUAL OR EXCEED HEALTH-BASED BENCHMARKS IN AOE 1

ROS ID	Sample ID	Eligible Hazardous Substance	Hazardous Substance Concentration (µg/m ³)	Benchmark Concentration (µg/m ³)	Benchmark (Ref. 1, Table 5-20)	References
BOS 01	8435-22	Tetrachloroethene	88	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 150
KOS 01	8482-12	Tetrachloroethene	74	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 190
DOS 02	8435-20	Tetrachloroethene	16	10.8	Cancer risk	2, p. 4; 10, p. 149
KOS 02	8482-9	Tetrachloroethene	12	10.8	Cancer risk	2, p. 4; 10, p. 190
	8435-16	Trichloroethene	7.1	0.478 2.09	Cancer risk Non-cancer risk	2, p. 5; 10, p. 148
		Vinyl chloride	0.58	0.168	Cancer risk	2, p. 6; 10, p. 148
ROS 03	8482-11	Trichloroethene	360	0.478 2.09	Cancer risk Non-cancer risk	2, p. 5; 10, p. 190
		Vinyl chloride	0.31	0.168	Cancer risk	2, p. 6; 10, p. 190
ROS 04	8435-6	Tetrachloroethene	11	10.8	Cancer risk	2, p. 4; 10, p. 146
ROS 05	8435-13	Tetrachloroethene	380	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 148
ROS 06	8482-15	Trichloroethene	0.52	0.478	Cancer risk	2, p. 5; 10, p. 191
ROS 07	8482-2	Trichloroethene	0.66	0.478	Cancer risk	2, p. 5; 10, p. 188
ROS 09	8618-2	Trichloroethene	0.53	0.478	Cancer risk	2, p. 5; 10, p. 227

SESSI-Subsurface Intrusion/ Targets

		es segs inn tells i				
ROS ID	Sample ID	Eligible Hazardous Substance	Hazardous Substance Concentration (µg/m ³)	Benchmark Concentration (µg/m ³)	Benchmark (Ref. 1, Table 5-20)	References
ROS 13	8618-16	Trichloroethene	1.6	0.478	Cancer risk	2, p. 5; 10, p. 230
	8519-23	Trichloroethene	3.4	0.478 2.09	Cancer risk Non-cancer risk	2, p. 5; 10, p. 203
ROS 14		Vinyl chloride	0.62	0.168	Cancer risk	2, p. 6; 10, p. 203
	9774 22	Trichloroethene	1.7	0.478	Cancer risk	2, p. 5; 10, p. 276
	8774-22	Vinyl chloride	0.33	0.168	Cancer risk	2, p. 6; 10, p. 276
ROS 15	8619-15	Tetrachloroethene	14	10.8	Cancer risk	2, p. 4; 10, p. 245
ROS 18	8774-3	Tetrachloroethene	38	10.8	Cancer risk	2, p. 4; 10, p. 271
ROS 22	8619-9	Tetrachloroethene	26	10.8	Cancer risk	2, p. 4; 10, p. 244
ROS 28	8519-3	Tetrachloroethene	65	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 198
ROS 33A	8652-3	Tetrachloroethene	230	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 256
1000020		Trichloroethene	0.49	0.478	Cancer risk	2, p. 5; 10, p. 256
ROS 33B	8652-5	Tetrachloroethene	200	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 257
ROS 33C	8652-6	Tetrachloroethene	200	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 257
ROS 40	8652-32	Tetrachloroethene	22	10.8	Cancer risk	2, p. 4; 10, p. 263
ROS 43	8588-21	Tetrachloroethene	14	10.8	Cancer risk	2, p. 4; 10, p. 217
ROS 56	8618-24	Tetrachloroethene	12	10.8	Cancer risk	2, p. 4; 10, p. 232
ROS 70	8618-20	Tetrachloroethene	23	10.8	Cancer risk	2, p. 4; 10, p. 231
ROS 72	8519-25	Tetrachloroethene	11	10.8	Cancer risk	2, p. 4; 10, p. 204
ROS 76	8774-18	Tetrachloroethene	58	10.8 41.7	Cancer risk Non-cancer risk	2, p. 4; 10, p. 275
DOG 93	0425 0	Tetrachloroethene	31	10.8	Cancer risk	2, p. 4; 10, p. 146
KUS 83	8435-8	Trichloroethene	0.64	0.478	Cancer risk	2, p. 5; 10, p. 146
ROS 84	8435-10	Trichloroethene	0.59	0.478	Cancer risk	2, p. 5; 10, p. 147
ROS 91	8652-11	Tetrachloroethene	19	10.8	Cancer risk	2, p. 4; 10, p. 258
ROS 92	8588-27	Tetrachloroethene	13	10.8	Cancer risk	2, p. 4; 10, p. 218
ROS 105	8652-26	Tetrachloroethene	20	10.8	Cancer risk	2, p. 4; 10, p. 262

TABLE 19. HAZARDOUS SUBSTANCES THAT EQUAL OR EXCEED HEALTH-BASED BENCHMARKS IN AOE 1

Notes: µg/m³ ID Micrograms per cubic meter

Identification

ROS Regularly occupied structure

5.2.1.3.1 Exposed Individual

There are exposed individuals in 26 regularly occupied structures subject to Level I concentrations (i.e., concentrations above health-based benchmarks), as shown above in **Table 19** and as displayed in **Figure 2** of this HRS documentation record.

AOE Number: AOE 1 Regularly Occupied Structure ID: ROS 1 Sample ID: 8482-12 Eligible Hazardous Substance: Tetrachloroethene Hazardous Substance Concentration: 74 μ g/m³ Benchmark Concentration: 10.8 μ g/m³ (cancer risk), 41.7 μ g/m³ (non-cancer risk) Level of Contamination (Level I/Level II/Potential): Level I Reference: 2, p. 4; 10, p. 190

AOE Number: AOE 1 Regularly Occupied Structure ID: ROS 14 Sample ID: 8519-23 Eligible Hazardous Substance: Trichloroethene Hazardous Substance Concentration: 3.4 μg/m³ Benchmark Concentration: 0.478 μg/m³ (cancer risk), 2.09 μg/m³ (non-cancer risk) Level of Contamination (Level I/Level II/Potential): Level I Reference: 2, p. 5; 10, p. 203

AOE Number: AOE 1 Regularly Occupied Structure ID: ROS 14 Sample ID: 8519-23 Eligible Hazardous Substance: Vinyl chloride Hazardous Substance Concentration: $0.62 \ \mu g/m^3$ Benchmark Concentration: $0.168 \ \mu g/m^3$ (cancer risk) Level of Contamination (Level I/Level II/Potential): Level I Reference: 2, p. 6; 10, p. 203

These data demonstrate that there is at least one exposed individual in one or more regularly occupied structures subject to Level I concentrations; therefore, a value of 50 is assigned as the exposed individual factor value (Ref. 1, Section 5.2.1.3.1).

Exposed Individual Factor Value: 50

5.2.1.3.2 Population

Population is evaluated based on two factors, Level I concentrations and Level II concentrations. Population within an area of subsurface contamination is not considered for this scoring evaluation.

For the structures that were documented in AOE 1 through chemical analysis, the actual population is used (if reported). For residential structures where the actual population was not reported and for residential structures in the inferred AOE, where the actual population counts were not readily available, the Sarpy County average of 2.72 persons per household is used (Refs, 1, Section 5.2.1.3.2; 17, p. 1). For commercial and industrial structures (i.e., workplaces) where the actual population was not readily available, a default value of 1 full-time worker per structure is used.

5.2.1.3.2.1 Level I Concentrations

Level I concentrations are media-specific concentrations for the target that meet the criteria for observed exposure for the pathway and are at or above SsI component-specific benchmark values, as shown in **Table 19** above (Refs. 1, Section 2.5; 2, pp. 4, 5, 6). Information for AOE 1 can be found in **Section 5.2.0**. The regularly occupied structures that meet observed exposure criteria and exhibit Level I concentrations are listed below.

Level I Population

Regularly	Samula	Number of Exposed	Number of Full-time Workers		Number of Part-time Workers		Regularly	
Structure ID	ID	Individuals (non- workers)	Actual Number	Adjusted (Number/3)	Actual Number	Adjusted (Number/6)	Structure's Total Population Value	References
ROS 01	8482-12		1	0.33	7	1.16	1.49	2, p. 4; 10, p. 190; 18, p. 12
ROS 02	8482-9	1					1	2, p. 3; 10, p. 190; 18, p. 3
ROS 03	8482-11		6	2	1	0.16	2.16	2, p. 4; 10, p. 190; 18, p. 10
ROS 04	8435-6				1	0.16	0.16	2, p. 4; 10, p. 146; 18, p. 2
ROS 05	8435-13		1	0.33			0.33	2, p. 4; 10, p. 148
ROS 06	8482-15		6	2	2	0.33	2.33	2, p. 5; 10, p. 191; 18, p. 6
ROS 07	8482-2				24	4	4	2, p. 5; 10, p. 188; 18, p. 7
ROS 09	8618-2	2.72					2.72	2, p. 5; 10, p. 227, 17, p. 1
ROS 13	8618-16	2.72					2.72	2, p. 5; 10, p. 230; 17, p. 1
ROS 14	8519-23 8774-22		1	0.33			0.33	2, pp. 5, 6; 10, pp. 203, 276;
ROS 15	8619-15	2.72					2.72	2, p. 4; 10, p. 245; 10, p. 245; 17, p. 1
ROS 18	8774-3		1	0.33			0.33	2, p. 4; 10, p. 271;
ROS 22	8619-9	2.72					2.72	2, p. 4; 10, p. 244; 17, p. 1
ROS 28	8519-3	2.72					2.72	2, p. 4; 10, p. 206; 17, p. 1
ROS 33A, 33 B, 33 C	8652-3 8652-5 8652-6		1	0.33			0.33	2, pp, 4, 5; 10, pp. 256, 257
ROS 40	8652-32	2.72					2.72	2, p. 4; 10, p. 263; 17, p. 1
ROS 43	8588-21	2.72					2.72	2, p. 4; 10, p. 217; 17, p. 1
ROS 56	8618-24	2.72					2.72	2, p. 4; 10, p. 232; 17, p. 1

TABLE 20. LEVEL I POPULATION IN AOE 1

Regularly Occupied Structure	Sample ID	Number of Exposed Individuals	Num Full-time Actual	ber of e Workers Adjusted	Nu Part-tir Actual	mber of ne Workers Adjusted	Regularly Occupied Structure's Total	References
ID		workers)	Number	(Number/3)	Number	(Number/6)	Population Value	
ROS 70	8618-20	2.72					2.72	2, p. 4; 10, p. 231; 17, p. 1
ROS 72	8519-25		1	0.33			0.33	2, p. 4; 10, p. 204
ROS 76	8774-18		1	0.33			0.33	2, p. 4; 10, p. 275;
ROS 83	8435-8		3	1	1	0.16	1.16	2, pp. 4, 5; 10, p. 146; 18, p. 9
ROS 84	8435-10		3	1	3	0.5	1.5	2, p. 5; 10, p. 147; 18, p. 11
ROS 91	8652-11	2.72					2.72	2, p. 4; 10, p. 258; 17, p. 1
ROS 92	8588-27	2.72					2.72	2, p. 4; 10, p. 218; 17, p. 1
ROS 105	8652-26	2.72					2.72	2, p. 4; 10, p. 262; 17, p. 1

TABLE 20. LEVEL I POPULATION IN AOE 1

Notes:

HRS Section 5.2.1.3 instructs that if a removal or temporary response action has occurred that has not completely mitigated the release, count the initial targets as if the removal or temporary response action has not permanently interrupted target exposure from subsurface intrusion. ID Identification

ROS Regularly occupied structure

Sum of regularly occupied structures' total population values subject to Level I concentrations: 48.42 Sum of regularly occupied structures' total population values subject to Level I concentrations x 10: 484.2

Level I Concentrations Factor Value: 484.2

5.2.1.3.2.2 Level II Concentrations

Level II concentrations are exhibited by structures with one or more samples that meet the criteria for observed exposure by chemical analysis but do not exhibit Level I concentrations (Ref. 1, Sec. 5.2.1.3.1). There are 39 structures with documented Level II concentrations that do not exhibit Level I concentrations. Structures that are inferred to be in the AOEs are also assigned Level II concentrations (Ref. 1, Section 5.2.1.3.1). Information for AOE 1 can be found in **Section 5.2.0**. The structures that exhibit Level II concentrations through chemical analysis or are inferred to be in AOE 1 due to their locations are listed below.

Level II Population

TABLE 21. LEVEL II POPULATION IN AOE 1

Regularly	Sample	Number of	Number of		Number of		Regularly	References
Occupied	ID/Inferred	Exposed	Full-time Workers		Part-time Workers		Occupied	
Structure	Indoor Air	Individuals	Actual	Adjusted	Actual	Adjusted	Structure's Total	
ID	Contamination	(non-workers)	Number	(Number/3)	Number	(Number/6)	Population Value	
ROS 08	8519-31	2.72					2.72	2, p. 3; 10, p. 205;

SESSI-Subsurface Intrusion/ Targets

Regularly Occupied	Sample ID/Inferred	Number of Exposed	Number of Full-time Workers		Number of Part-time Workers		Regularly Occupied	References
Structure ID	Indoor Air Contamination	Individuals (non-workers)	Actual Number	Adjusted (Number/3)	Actual Number	Adjusted (Number/6)	Structure's Total Population Value	
ROS 10	8774-13	2.72					2.72	2, p. 3; 10, p. 274; 17, p. 1
ROS 16	8588-13	2.72					2.72	2, p. 3; 10, p. 215; 17, p. 1
ROS 17	8619-5	2.72					2.72	2, p. 3; 10, p. 243; 17, p. 1
ROS 19	8519-17		1	0.33			0.33	2, p. 3; 10, p. 202
ROS 20	8588-25	2.72					2.72	2, p. 3; 10, p. 218; 17, p. 1
ROS 27	8588-9	2.72					2.72	2, p. 3; 10, p. 17, p. 1
ROS 29	8774-11	2.72					2.72	2, p. 3; 10, p. 273; 17, p. 1
ROS 30	8618-6	2.72					2.72	2, p. 3; 10, p. 228; 17, p. 1
ROS 31A	8774-20	2.72					2.72	2, p. 3; 10, p. 275; 17, p. 1
ROS 31B	8652-9	2.72					2.72	2, p. 3; 10, p. 258; 17, p. 1
ROS 32	8619-29	2.72					2.72	2, p. 3; 10, p. 249; 17, p. 1
ROS 34	8618-10		1	0.33			0.33	2, p. 3; 10, p. 229
ROS 35	8652-1	2.72					2.72	2, p. 3; 10, p. 256; 17, p. 1
ROS 37	8619-1		1	0.33			0.33	2, p. 3; 10, p. 242
ROS 38	8519-8		1	0.33			0.33	2, p. 3; 10, p. 199
ROS 39	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 42	8618-12		1	0.33			0.33	2, p. 3; 10, p. 229
ROS 49	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 50	8435-27	2					2	2, p. 3; 10, p. 151; 18, p. 5
ROS 54	8519-6	2.72					2.72	2, p. 3; 10, p. 199; 17, p. 1
ROS 55	8588-15	2.72					2.72	2, p. 3; 10, p. 215; 17, p. 1
ROS 57	8774-7	2.72					2.72	2, p. 3; 10, p. 272; 17, p. 1
ROS 61	8618-14	2.72					2.72	2, pp. 1, 3; 10, p. 230; 17, p. 1
ROS 65	8618-18		1	0.33			0.33	2, pp. 2, 3; 10, p. 231
ROS 69	8519-29		1	0.33			0.33	2, p. 3; 10, p. 205
ROS 75	8519-21		1	0.33			0.33	2, p. 3; 10, p. 203
ROS 77	8588-31	2.72					2.72	17, p. 1; Figure 2
ROS 79	8619-11	2.72					2.72	2, p. 3; 10, p. 244; 17, p. 1

TABLE 21. LEVEL II POPULATION IN AOE 1

SESSI-Subsurface Intrusion/ Targets

Regularly Occupied	Sample ID/Inferred	Number of Exposed	Nu Full-tin	nber of ne Workers	Nur Part-tin	nber of ne Workers	Regularly Occupied	References
Structure ID	Indoor Air Contamination	Individuals (non-workers)	Actual Number	Adjusted (Number/3)	Actual Number	Adjusted (Number/6)	Structure's Total Population Value	
ROS 85	8482-17		2	0.66	1	0.16	0.82	2, p. 3; 10, p. 192; 18, p. 8
ROS 86	8435-18	2					2	2, p. 3; 10, p. 149; 18, p. 4
ROS 94	8619-34		1	0.33			0.33	2, p. 3; 10, p. 235
ROS 97	8619-21	2.72					2.72	2, p. 3; 10, p. 247; 17, p. 1
ROS 98	8618-30	2.72					2.72	17, p. 1; Figure 2
ROS 99	8619-7	2.72					2.72	2, p. 3; 10, p. 243; 17, p. 1
ROS 101	8619-25	2.72					2.72	2, pp. 3, 4; 10, p. 248; 17, p. 1
ROS 102	8619-23	2.72					2.72	17, p. 1; Figure 2
ROS 103	8774-10	2.72					2.72	2, p. 3; 10, p. 273; 17, p. 1
ROS 104	8652-24	2.72					2.72	2, p. 3; 10, p. 261; 17, p. 1
ROS 106	8774-15	2.72					2.72	2, p. 3; 10, p. 274; 17, p. 1
ROS 107	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 108	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 109	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 110	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 111	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 112	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 113	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 114	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 115	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 116	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 117	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 119	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 120	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 121	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 122	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 123	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 124	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 125	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 126	Inferred	2.72					2.72	17, p. 1; Figure 2
ROS 127	Inferred	33.081					33.08	17, p. 1; Figure 2

TABLE 21. LEVEL II POPULATION IN AOE 1

Notes:

HRS Section 5.2.1.3 instructs that if a removal or temporary response action has occurred that has not completely mitigated the release, count the initial targets as if the removal or temporary response action has not permanently interrupted target exposure from subsurface intrusion. 1

The population value is based of 14 apartment units on the first floor times the county average of 2.72 persons per household

Sum of regularly occupied structures' total population values subject to Level II concentrations: 168.71

Level II Concentrations Factor Value: 168.71

5.2.1.3.2.3 Population within Area(s) of Subsurface Contamination

Population within an area of subsurface contamination (ASC) is not evaluated for this site.

Population within an Area of Subsurface Contamination Factor Value: Not scored

5.2.1.3.2.4 Calculation of Population Factor Value

The population factor value is the sum of the factor values for Level I concentrations, Level II concentrations, and population within the ASCs (Ref. 1, Section 5.2.1.3.2.4).

Level I Concentrations Factor Value: 484.2 Level II Concentrations Factor Value: 168.71 Population within an Area of Subsurface Contamination Factor Value: Not scored

Level I Concentrations + Level II Concentrations + Population within an Area of Subsurface Contamination: 652.91

Population Factor Value: 652.91

5.2.1.3.3 Resources

ROS 85 is the Bellevue Senior Center and ROS 07 is an event space (Bellevue Volunteer Firefighters Hall) that are used by the community (Refs. 10, pp. 8, 18, pp. 7, 8). These buildings are routinely used by the community and qualify as a resource. Therefore, a value of 5 is assigned for the resources factor (Ref. 1, Section 5.2.1.3.3).

Resources Factor Value: 5

5.2.1.3.4 Calculation of Targets Factor Category Value

The sum of the values for the exposed individual, population, and resources factors is assigned as the targets factor category value for the subsurface intrusion component (Ref. 1, Section 5.2.1.3.4).

Exposed Individual Factor Value: 50 Population Factor Value: 652.91 Resources Factor Value: 5

Exposed Individual + Population + Resources: 707.91

Targets Factor Category Value: 707.91