#### **REVISED FINAL REPORT**

### TASK ORDER 1026

### ROUND ROBIN STUDY OF *IN-VITRO* BIOACCESSIBILITY ASSAY (IVBA) FOR LEAD IN SOIL AND EPA METHOD 3051A FOR LEAD AND ARSENIC: FLAT CREEK SOIL REFERENCE MATERIAL

Prepared by:

**QATS Analytical Group** 

Quality Assurance Technical Support Laboratory CB&I Federal Services LLC 2700 Chandler Ave. Las Vegas, Nevada 89120

February 10, 2017

Contract Number: EP-W-16-016

Task: 01

**Statistical Analysis of Round Robin Results** 

Prepared for Sara Duncan

Analytical Services Branch U.S. Environmental Protection Agency Washington, D.C. 20460

OFFICE OF SUPERFUND REMEDIATION AND TECHNICAL INNOVATION U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 Note: This document is the Revised Final Report for the "Round Robin Study of *In-Vitro* Bioaccessibility Assay (IVBA) for Lead in Soil and EPA Method 3051a for Lead and Arsenic: Flat Creek Soil Reference Material". This revised report was prepared under Task Order 1026 of the EPA Quality Assurance Technical Support Contract Number EP-W-16-016. This Study was conducted in 2012, and the original final report was submitted to EPA on November 14, 2012. The Study was conducted under Task Order 1026 of the EPA Quality Assurance Technical Support Contract Number EP-W-10-036, managed by Shaw Environmental, Inc. In 2013, Shaw Environmental Inc. was acquired by CB&I Federal Services LLC. All references to "Shaw" or "Shaw Environmental, Inc." in this revised final report should be considered to be the same as "CB&I Federal Services LLC". All electronic mail addresses in the report with the domain @shawgrp.com are now @cbifederalservices.com.

Subsequent to the submission of the original report, Syracuse Research Corporation (SRC), under EPA Contract Number EP-W-12-003, conducted an independent statistical analysis of the Study results. Under EPA Contract EP-W-16-016, Task Order 1026, Task 1, CB&I Federal Services LLC has been directed to prepare this revised final report of the 2012 Study to include the independent statistical analysis of the Study results performed by SRC. The results of the SRC independent statistical analysis, in narrative, tabular, and graphic format, have been included in this revised report on Pages 12 through 16 in Section V.E., with the beginning and ending of the SRC independent analysis clearly defined.

### TABLE OF CONTENTS

### PAGE

| I.   | SUMMARY                         | .1 |
|------|---------------------------------|----|
| II.  | INTRODUCTION                    | .2 |
| III. | BACKGROUND                      | .2 |
| IV.  | TECHNICAL APPROACH              | .3 |
| V.   | RESULTS AND DISCUSSION          | .6 |
| VI.  | CONCLUSIONS AND RECOMMENDATIONS | 6  |
| VII. | REFERENCES1                     | 8  |

### LIST OF APPENDICES

| APPENDIX A | FCRM EPA Method 3051A Lead Results and StatisticsA-1               |
|------------|--------------------------------------------------------------------|
| APPENDIX B | FCRM EPA Method 3051A Lead Results and t-TestB-1                   |
| APPENDIX C | FCRM EPA Method 3051A Arsenic Results and StatisticsC-1            |
| APPENDIX D | FCRM Lead IVBA Results and Statistics D-1                          |
| APPENDIX E | FCRM Lead IVBA Results and t-Test E-1                              |
| APPENDIX F | NIST SRM 2710a Certificate of Analysis F-1                         |
| APPENDIX G | Laboratory Submitted Initial Demonstration of Proficiency FormsG-1 |
| APPENDIX H | Laboratory Submitted Round Robin Study Sample ResultsH-1           |

### ACRONYMS AND ABBREVIATIONS

| ANOVA<br>dF<br>F<br>F-C rit<br>FCRM<br>HSD<br>ICP-MS<br>ICP-AES<br>IDP<br>IVBA<br>MS<br>NERL<br>NIST<br>P-Value<br>RM<br>RSD<br>RTP<br>SAS\STAT<br>SD<br>SEM<br>Shaw<br>Sm<br>SOP<br>SOW<br>SRC<br>SRM<br>SS<br>TRW<br>USEPA<br>USGS | Analysis of Variance<br>Degrees of Freedom<br>Value Calculated<br>Critical Value<br>Flat Creek Soil Reference Material<br>Honestly Significant Difference<br>Inductively Coupled Plasma - Mass Spectrometry<br>Inductively Coupled Plasma - Atomic Emission Spectrometry<br>Inductively Coupled Plasma - Atomic Emission Spectrometry<br>Inductively Coupled Plasma - Atomic Emission Spectrometry<br>Intial Demonstration of Proficiency<br>In-Vitro Bioaccessibility Assay<br>Mean Square<br>National Exposure Research Laboratory<br>National Institute of Standards and Technology<br>Probability Value<br>Reference Material<br>Relative Standard Deviation<br>Research Triangle Park<br>Statistical Analysis Software<br>Standard Deviation<br>Standard Deviation<br>Standard Deviation of the Mean<br>Shaw Environmental, Inc.<br>Standard Operating Procedure<br>Statement of Work<br>Syracuse Research Corporation, Inc.<br>Standard Reference Material<br>Sum of Squares<br>Technical Review Workgroup<br>United States Environmental Protection Agency<br>United States Geological Survey |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USGS                                                                                                                                                                                                                                 | United States Geological Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| QATS                                                                                                                                                                                                                                 | Quality Assurance Technical Support Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| QC                                                                                                                                                                                                                                   | Quality Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

### REVISED FINAL REPORT TASK ORDER 1026

### ROUND ROBIN STUDY OF *IN-VITRO* BIOACCESSIBILITY ASSAY (IVBA) FOR LEAD IN SOIL AND SOIL-LIKE MATERIALS AND EPA METHOD 3051A FOR LEAD AND ARSENIC: FLAT CREEK SOIL REFERENCE MATERIAL

### I. SUMMARY

The Bioavailability Committee of the USEPA Technical Review Workgroup for Metals and Asbestos (<u>http://epa.gov/superfund/bioavailability/trw.htm</u>) conducted a Round Robin Study (herein referred to as Study) of the *In Vitro* Bioaccessibility Assay (IVBA) for Lead<sup>1</sup> and EPA Method 3051A for Lead and Arsenic on the Flat Creek Soil Reference Material (FCRM).

Objectives:

- To derive a mean consensus value for the Lead IVBA for the FCRM, using EPA SOP 9200.2-86
- To report the total amount of lead and arsenic in the FCRM as measured by EPA Method 3051A

This Study included the participation of eight (8) laboratories, each reporting five (5) replicate analysis results for the FCRM Lead IVBA, as well as the Lead and Arsenic EPA Method 3051A digestion, with results totaling three (3) data sets of forty (40) results each. The EPA "Standard Operating Procedure for an *In Vitro* Bioaccessibility Assay" (EPA 9200.2-86) and EPA Method 3051A were provided for the participating laboratories as well as the Scope of Work to be performed. The results were statistically evaluated for IVBA Lead, and total Lead and Arsenic to derive the final consensus values provided in Table 1. No outlying sample results were identified using the Grubb's test either within each laboratory (n=5), or collectively (n=40) for the entire data set.

The associated quality control (QC) sample results provided by the laboratories for the reagent blank, bottle blank, spiked blank, and matrix spike were all within the control limits presented in the standard operating procedure (SOP) EPA 9200.2-86, with the exception of the Lead IVBA control soil. Although there were no outlier sample results identified using the Grubb's test, two (2) of the eight (8) laboratory results for the control soil NIST SRM 2710a exceeded the control limits specified in the EPA SOP 9200.2-86. A statistical comparison (t-test) was performed for the data set for one of the laboratories that had a control soil Lead IVBA result that was outside the control limits specified in EPA SOP 9200.2-86 and could be excluded. The Lead IVBA results for this one (1) laboratory were excluded and the statistical analysis was repeated for the Lead IVBA data set. Similarly, the EPA Method 3051A lead results from another laboratory were statistically evaluated using the t-test, which indicated that these EPA Method 3051A lead results could also be excluded. The revised statistical calculations resulted in lower standard deviation values for the individual and combined Lead IVBA and EPA Method 3051A lead results from the remaining laboratories, thus resulting in narrower Lead IVBA and EPA Method 3051A lead results from the remaining laboratories, thus resulting in narrower Lead IVBA and EPA Method 3051A lead results from the remaining laboratories, thus resulting in narrower Lead IVBA and EPA Method 3051A lead results from the remaining laboratories, thus resulting in narrower Lead IVBA and EPA Method 3051A lead results from the remaining laboratories, thus resulting in narrower Lead IVBA and EPA Method 3051A lead concentration 99-percentile prediction intervals for the new FCRM compared to using the total data set.

<sup>&</sup>lt;sup>1</sup> This method has been incorporated into the SW846 Compendium as Method 1340: https://www.epa.gov/hw-sw846/sw-846-test-method-1340-vitro-bioaccessibility-assay-lead-soil.

| FCRM                         | Low 99% PI | Mean | High 99% Pl | RSD  |
|------------------------------|------------|------|-------------|------|
| Lead Method 3051A (mg/Kg)    | 5490       | 6440 | 7400        | 5.4% |
| Arsenic Method 3051A (mg/Kg) | 550        | 730  | 910         | 8.9% |
| Lead IVBA Extracted (mg/Kg)  | 3990       | 4620 | 5250        | 4.9% |

### **II. INTRODUCTION**

Utilization of IVBA assays as an estimator of the bioaccessibility and bioavailability of lead in soil has been studied and recognized by the bioavailability scientific community. A comparison of the *in vivo* and *in vitro* assays for lead was conducted in 2007 and the results exhibited a high correlation between the two assays. (2007, EPA OSWER 9285.7-77). The IVBA assay is a viable and less cost prohibitive alternative to an *in vivo* assay (e.g., juvenile swine).

This report provides the Study results for the analysis of the FCRM. The objective of this Study is twofold: (1) derive a mean consensus value for the Lead IVBA for the FCRM, using EPA SOP 9200.2-86, and (2) report the total amount of lead and arsenic in the FCRM as measured by EPA Method 3051A. This report provides the data and statistical analysis of the lead and arsenic results from the Study conducted by the United States Environmental Protection Agency (USEPA), which validates its use as an additional soil reference material for EPA SOP 9200.2-86 and EPA Method 3051A. The FCRM was developed by the United States Geological Survey (USGS) from soil containing high concentrations of metals due to mining activity near an abandoned lead mine in Montana.

The Bioavailability Committee of the USEPA Technical Review Workgroup for Metals and Asbestos initiated the task of verification of the Lead IVBA values for the new FCRM in July, 2011. This Study was coordinated, evaluated, and reported by the USEPA Quality Assurance Technical Support (QATS) Program. The QATS Program was tasked to provide support that included a Study design, the development of the Study instructions in the form of a Statement of Work (SOW), reference material (RM) bottling and shipping, laboratory coordination, statistical analysis of results, and report preparation. Each of the eight (8) laboratories participating in the Study was requested to analyze each of the reference materials in five (5) replicate analyses, along with the EPA SOP 9200.2-86 required QC samples, including blank, matrix spike, and control soil.

### III. BACKGROUND

The utilization of IVBA methods as an estimator of the bioavailability of lead in soil matrices has been studied and adopted by the bioavailability community. The IVBA technique is utilized because it is a less expensive method for the estimation of the bioavailability of lead in soil for humans than the previous method of choice, which involved juvenile swine assays. A comparison of the *in vivo* and *in vitro* methods is presented in USEPA OSWER 9285.7-77 (USEPA, 2007). This Study employed two (2) methods: EPA Method 3051A for the determination of total lead and total arsenic, and EPA SOP 9200.2-86 for Lead IVBA determination. These methods are summarized below.

### III.A. EPA Method 3051A

EPA Method 3051A was used for the determination of total lead and total arsenic concentrations in the Study samples. Using EPA Method 3051A, solid samples are digested in concentrated nitric acid and concentrated hydrochloric acid using microwave heating with a suitable laboratory

microwave unit. In this Study,  $0.5 \pm 0.001$  grams of sample,  $9 \pm 0.1$  mL of concentrated nitric acid, and  $3 \pm 0.1$  mL of concentrated hydrochloric acid were added to a fluorocarbon polymer microwave vessel. The vessel was then sealed and heated in the microwave unit with power setting(s) that cause the mixture within the vessels to rise to a temperature of  $175^{\circ}$  C  $\pm 5^{\circ}$  C in approximately 5.5  $\pm 0.25$  minutes, and remain at  $175^{\circ}$  C  $\pm 5^{\circ}$  C for 4.5 minutes, or for the remainder of the 10 minute digestion period. After cooling, the vessel contents are either filtered, centrifuged, or allowed to settle, and then diluted to a suitable volume and analyzed using either EPA SW-846 Method 6010C (ICP-AES) or EPA SW-846 Method 6020A (ICP-MS).

### III.B. EPA SOP 9200.2-86

EPA SOP 9200.2-86 was the method used for the determination of Lead IVBA results for the Study samples. Throughout this report, the term "Lead IVBA" is used synonymously with EPA SOP 9200.2-86, unless the SOP is specifically referenced. The IVBA method is performed by first retrieving the soil to be assessed for *in vitro* bioaccessibility assay, drying the soil at less than 40° C, and passing the dried material through a sieve to obtain the soil particles that are less than 250  $\mu$ m<sup>2</sup>. One (1) gram of the soil is placed in a plastic bottle, and 100 mL of 0.4 M glycine, at a pH of 1.5, is added. The sample bottle(s), and associated quality control sample bottles, are then placed on a rotary extractor (30 ± 2 RPM) for one (1) hour while being heated at a constant temperature of 37°C ± 2°C. The heating of the bottles and rotary extraction apparatus is accomplished by immersion in a temperature controlled water bath (aquarium style), or alternatively, the apparatus can be heated by the flow of temperature controlled air (incubator style). After the prescribed extraction period, the bottles are removed from the extraction apparatus and the supernatant removed using an in-line filter and a 20 mL syringe. The filtered supernatant is then analyzed for lead (or other analytes) by ICP-AES or ICP-MS using the analytical methods cited above.

The Lead IVBA value for the FCRM is expressed as the ratio of the Lead IVBA result divided by EPA Method 3051A lead result, multiplied by 100.

$$IVBA (\%) = \frac{EPA SOP 9200.2 - 86 Result}{Method 3051A Result} \times 100$$

EPA Method 3051A and EPA SOP 9200.2-86 can be accessed using the following USEPA website hyperlinks:

https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestionsediments-sludges-soils-and-oils

https://nepis.epa.gov/Exe/ZyPDF.cgi/P100GESL.PDF?Dockey=P100GESL.PDF

### IV. TECHNICAL APPROACH

Shaw's QATS Program support included the following subtasks:

- Contacting candidate laboratories with previous IVBA experience;
- Requesting laboratories to complete an Initial Demonstration of Proficiency (IDP) form, if they had not done so in a previous Lead IVBA Round Robin Study;
- Bioavailability Committee of the USEPA Technical Review Workgroup for Metals and
   Asbestos review of the completed IDP forms and selection of laboratories to participate

<sup>&</sup>lt;sup>2</sup> After this round robin was completed, the recommended sieve size for this method was revised to <150 μm. Page 7 of 18 Document ID#: 1026-02102017-1

in the Study;

- Study Design;
- Development of a Statement of Work (SOW), including IVBA data reporting forms;
- Shipment of the IVBA samples and associated QC samples; and
- Statistical analysis of the Study results and report preparation.

### IV.A. Contacting Laboratories, IDP Form, and Participating Laboratory Selection

To identify gualified candidates to participate in the Study. Shaw first contacted laboratories with previous IVBA experience. Most of the laboratories in this Study were participants in a previous Lead IVBA Round Robin Study conducted by the Bioavailability Committee of the USEPA Technical Review Workgroup for Metals and Asbestos and coordinated by Shaw, which was completed in 2011. The laboratories were asked to complete an IDP form to determine their level of experience with the IVBA procedures. The information requested on the IDP form included the total number of IVBA analyses performed by the laboratory, as well as the QC sample results for the most recent ten (10) batches of IVBA analyses conducted at their facility. Only those laboratories that had not been participants in the previous Study were asked to complete the IDP form. From previous participation and the IDP form response, the Bioavailability Committee of the USEPA Technical Review Workgroup for Metals and Asbestos selected a total of eight (8) laboratories for participation in the Study, which are presented in Table 2. In order to maintain the anonymity of the Study participants, the IDP forms provided by the laboratories are presented in Appendix F in redacted format, with an alphanumeric letter used as an identifier, in an order inconsistent with the order presented in Table 2. The IDP forms, without redaction, are available from USEPA HQ Co-Chair for the Technical Review Workgroup (TRW), http://epa.gov/superfund/bioavailability/trw.htm.

|   | Laboratory Address                                                      |                                                                                                                    | Contact Name and e-mail Address                                         |  |  |
|---|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| 1 | 1ACZ Laboratories2773 Downhill Drive<br>Steamboat Springs, CO 80487     |                                                                                                                    | Mr. Tim VanWyngarden<br>(timv@acz.com)<br>Ms. Sue Webber (suew@acz.com) |  |  |
| 2 | 2 Laboratory (NERL) Research Triangle Park N(:                          |                                                                                                                    | Dr. Karen Bradham<br>(bradham.karen@epa.gov)                            |  |  |
| 3 | Ohio State University                                                   | School of Environment and<br>Natural Resources<br>2021 Coffey Rd.<br>410 C Kottman Hall<br>Columbus, OH 43210-1043 | Dr. Nicholas Basta<br>(basta.4@osu.edu)                                 |  |  |
| 4 | PRIMA Environmental                                                     | 5070 Robert J Mathews Pkwy,<br>Suite 300<br>El Dorado Hills, CA 95762                                              | Dr. Cindy Schreier<br>(cschreier@primaenvironmental.com)                |  |  |
| 5 | USEPA Region 7 300 Minnesota Avenue<br>Laboratory Kansas City, KS 66101 |                                                                                                                    | Michael Davis<br>(davis.michael@epa.gov)                                |  |  |

| 6 | USEPA Region 9<br>Laboratory       | 1337 South 46th Street, Bldg 201<br>Richmond, CA 94804                    | Richard Bauer<br>(bauer.richard@epa.gov)    |
|---|------------------------------------|---------------------------------------------------------------------------|---------------------------------------------|
| 7 | Royal Roads University<br>(Canada) | Royal Roads University<br>2005 Sooke Road<br>Victoria, BC, Canada V9B 5Y2 | Dr. Matt Dodd<br>(Matt.Dodd@RoyalRoads.ca)  |
| 8 | University of Colorado             | Benson Earth Science<br>2200 Colorado Avenue<br>Boulder, CO 80309         | Dr. John Drexler<br>(Drexlerj@Colorado.edu) |

### **IV.B. Study Design**

### **IV.B.1. FCRM and Number of Replicates**

The FCRM used in this Study was sent to the QATS Laboratory for sub-aliquoting and shipment on February 24, 2012 by USEPA National Exposure Research Laboratory (NERL) personnel, who had previously received the material from the USGS Associate Project Chief. The FCRM was provided in a 500 mL glass bottle, and sufficient FCRM material was mixed before sub-aliquots were bottled for Study sample analysis. The standard reference material (SRM) NIST SRM 2710a used as a control soil in this Study was provided by the NIST Analytical Chemistry Division from a previous Study conducted at the QATS Laboratory in 2009. The QATS Laboratory was provided with 50 grams of NIST SRM 2710a, and a sufficient amount of the material for the Study was combined and mixed before sub-aliquots were bottled for distribution to the laboratories.

The moisture content of the FCRM was <0.5%, and was determined by heating a 5 gram sample in an oven at  $105^{\circ}$  C for twelve (12) hours. The NIST SRM 2710a moisture content is approximately 2%, and the particle size is <74  $\mu$ m, as reported on the NIST SRM 2710a Certificate of Analysis.

The Certificate of Analysis for the NIST SRM 2710a is presented in Appendix F. Table 3 provides the lead and arsenic concentration, particle size, and moisture content for this NIST SRM 2710a, derived from the Certificates of Analysis.

| _       | Table 5. NIGT SINE 27 TO CERTIFICATE OF Analysis Farameters |                       |                       |          |          |  |  |  |
|---------|-------------------------------------------------------------|-----------------------|-----------------------|----------|----------|--|--|--|
|         | Element                                                     | Total                 | Leachable             | Particle | Moisture |  |  |  |
| Element |                                                             | Concentration (mg/Kg) | Concentration (mg/Kg) | Size     | Content  |  |  |  |
|         | Pb                                                          | 5520                  | 5100                  | <74 µm   | ~2%      |  |  |  |
|         | As                                                          | 1540                  | 1400                  | <74 μm   | ~2%      |  |  |  |

### Table 3. NIST SRM 2710a Certificate of Analysis Parameters

The Bioavailability Committee of the USEPA Technical Review Workgroup for Metals and Asbestos determined that five (5) replicate analyses of the FCRM would be conducted by each laboratory participating in the Study. Five (5) replicate analyses were chosen to ensure that a sufficient number of results were available for establishing a statistically sound Lead IVBA mean value and control limits for the new FCRM.

### IV.B.2. QC Samples

In this Study, the laboratories were instructed to analyze the samples in strict accordance with the EPA SOP 9200.2-86 including all of the associated quality control samples, with noted exceptions. Table 4 below provides the EPA SOP 9200.2-86 required QC samples and associated control limits used in this Study.

| QC Sample                     | Control Limits                                      |  |  |  |
|-------------------------------|-----------------------------------------------------|--|--|--|
| Reagent Blank                 | <25 µg/L Lead                                       |  |  |  |
| Bottle Blank                  | <50 µg/L Lead                                       |  |  |  |
| Blank Spike (10 mg/L)         | 85% -115% Recovery                                  |  |  |  |
| Matrix Spike (10 mg/L)        | 75% -125% Recovery                                  |  |  |  |
| Duplicate Sample              | ± 20% RPD                                           |  |  |  |
| Control Soil (NIST SRM 2710a) | IVBA Mean = 67.5%<br>Acceptable Range 60.7% - 74.2% |  |  |  |

### Table 4. EPA SOP 9200.2-86 Required QC Samples and Control Limits

NIST SRM 2710a was used as the control soil for both the Lead IVBA and EPA Method 3051A portions of the Study, followed by analysis. Both the lead and arsenic mean values and range appear in the Addendum to the NIST SRM 2710a Certificate of Analysis titled "Leachable Concentrations Determined Using EPA Methods 200.7 and 3050B." Five (5) replicate aliquots of the FCRM were subjected to the Lead IVBA procedure; therefore, there was no additional duplicate sample analysis requirement in this Study as a measure of analytical precision.

The laboratories were instructed to perform the analysis of one set of QC samples with each RM batch for both the Lead IVBA and the EPA Method 3051A methods.

### **IV.C. Statement of Work for the Study**

An SOW was developed by QATS personnel and the Bioavailability Committee of the USEPA Technical Review Workgroup for Metals and Asbestos which provided instructions to the participating laboratories on the analysis and reporting of the Study samples. The SOW provided a list of samples for each Lead IVBA batch and a recommended sequence of instrumental analysis of the Lead IVBA samples. The SOW also provided a list of the required associated QC sample analysis and QC sample control limits derived from the EPA SOP 9200.2-86.

### **IV.D.** Shipment of the Study Samples and Associated QC Samples

The Study samples were shipped to the eight (8) participating laboratories in April, 2012. The laboratories were provided a 30 day turnaround time for submitting the sample results. The Study sample shipments also included hardcopies and CDs of the SOW and the EPA SOP 9200.2-86.

### **IV.E. Statistical Analysis of the Study Results**

Conventional statistical analysis techniques were used to analyze the data collected from the Study. The statistical analyses were performed in Microsoft<sup>®</sup> Excel, using Analysis of Variance (ANOVA) and t-test data analysis tools provided by the Excel Analysis Tool Pac add-in package.

The statistical tool ANOVA, single factor (e.g., lead), was used to discern the intralaboratory versus the interlaboratory sources of variance of each FCRM data set derived from the Study. The statistical t-test was used to analyze the data from the different laboratories to determine, for example, if one set of data is statistically different than the others. Specifically, the t-test employed was the two (2) sample, assuming equal variances t-test.

The QC samples, including the reagent blank, bottle bank, spiked blank, matrix spike, and NIST SRM 2710a, were also processed with the Lead IVBA / EPA Method 3051A digested FCRM samples. The results were evaluated to determine if there were any anomalous data submitted by a participating laboratory that should be excluded from the composite results in the course of setting the FCRM statistical values and control limits.

### V. RESULTS AND DISCUSSION

### V.A. Initial Demonstration of Proficiency

The IDP forms provided by the laboratories selected for the Study are presented in Appendix G. As discussed in a previous section, these forms have been redacted to preserve anonymity. The original unredacted forms are available from the USEPA HQ Co-Chair for the TRW. Out of the ten (10) candidate laboratories submitting IDP forms, eight (8) laboratories were selected to be participants in the Study.

### V.B. Study Results

Each of the eight (8) laboratories participating in the Study analyzed the FCRM using five (5) replicate aliquots, providing a total of 40 results for the Lead IVBA procedure, and 40 lead and arsenic results for the EPA Method 3051A procedure. The SOW provided to the laboratories contained several tables that allowed laboratory reporting of the Study sample analysis results using Microsoft<sup>®</sup> Word. The participating laboratories were asked to submit the results to the QATS Laboratory via electronic mail, and provide hard copies of the results that could not be converted to electronic files. The results provided by the laboratories in the SOW tables are presented in Appendix H in redacted form. The original unredacted SOW forms completed by the laboratories are available from the USEPA HQ Co-Chair for the TRW.

### V.C. FCRM Results and Statistical Analysis

### V.C.1. Lead Results, EPA Method 3051A

Results of EPA Method 3051A for lead for the FCRM are presented in Appendix A. Table A-1 presents the EPA Method 3051A lead results for the FCRM. The mean lead result from all eight (8) laboratories (n=40) is 6,634 mg/Kg, with a pooled RSD value of 9.1%. The calculated lead 99 percentile prediction interval, based on the EPA Method 3051A results (n=40) alone, is  $\pm$  25.0%. As shown in Table A-1, the calculated percent standard deviation of the mean is 1.4%, and the calculated 99 percentile confidence interval of the mean is  $\pm$  3.9%. Note that the Laboratory D EPA Method 3051A mean lead result of 7,963 mg/Kg was higher than the results from the other laboratories, and 20% higher than the EPA Method 3051A mean result of 6,634 mg/Kg.

The formulas used for the prediction interval and confidence interval of the mean are provided below in Exhibit 1.

### Exhibit 1:

Prediction Interval: 
$$\bar{x} \pm \left( sd * t \left( \sqrt{1 + \frac{1}{n}} \right) \right)$$
  
Confidence Interval:  $x \pm (sm * t)$  where  $sm = \frac{sd}{n}$ 

Where:

sd = standard deviation (n-1)

t = Student's t; for n = 40, df=39, t = 2.708, for 99 percentile

sm = standard deviation of the mean

The mean Pb IVBA value is the mean Pb extraction result / the mean Pb EPA Method 3051A digestion result \* 100.

The pooled standard deviation resulting from division is based on the square root of the sum of the squares formula for two <u>independent variables</u> with <u>unequal means</u> formula. Please note that the sd are normalized to percentiles before squaring.

 $sd Pb IVBAratio = \left( Pb IVBAratio^* \left( \sqrt{((sd / mean Extractio))^2 + (sd / mean Digestio)}^2 \right) \right)$ 

**Note:** The square root of the sum of variances squared method was used as an estimator of the combined variance for the final lead IVBA result, as the expected means and variances of the IVBA extraction and digestion results are not expected to be equal. The IVBA extraction and the digestion results are not subsets of the same population, and therefore their respective variances are additive, even during the division operation.

Table A-2 presents the EPA Method 3051A lead results for the associated QC samples that were determined with the FCRM. These results include the blank spike recovery, matrix spike recovery, and the NIST SRM 2710a results and percent recovery. All results are within the control limits presented in the EPA SOP 9200.2-86 and in Table 4 above, with the exception of the EPA Method 3051A NIST SRM 2710a lead result of 4,537 mg/Kg for Laboratory E, which is slightly below the lower limit of 4,700 mg/Kg. Although the Laboratory E, EPA Method 3051A NIST SRM 2710a lead result is slightly below the lower control limit for lead based on the Addendum to the NIST SRM 2710a Certificate of Analysis, this did not translate into lower results for the FCRM when compared to the other laboratory results. The EPA Method 3051A NIST SRM 2710a Certificate of Analysis, the Addendum to the NIST SRM 2710a Certificate of Analysis, the excert in the Addendum to the NIST SRM 2710a Certificate of Analysis, the excert in the Addendum to the NIST SRM 2710a Certificate of Analysis, the excert in the Laboratory D NIST SRM 2710a Certificate of Analysis, which indicates good overall accuracy. The Laboratory D NIST SRM 2710a matrix spike recovery of 57% is outside the 75% to 125% matrix spike recovery range; however, because the spiking ratio was less than 1:4 spike to sample concentration, this spike result is not a reliable predictor of accuracy.

Table A-3 presents the ANOVA for the FCRM EPA Method 3051A lead results. For each set of laboratory data, Table A-3 presents the number of sample replicates (n), as well as the sum, mean, and variance (square of the data set standard deviation) values. The table also provides the various statistical calculation values that are used by the ANOVA algorithm to test the variance of all of the results for both within a laboratory, and between laboratories. These calculation results include: sum of squares (SS), degrees of freedom (df), mean square (MS), value calculated (F), critical value of (F-Crit), and probability value (P-value).

The results of the ANOVA assessment which are presented in Table A-3 indicate that the intralaboratory variance is low compared to interlaboratory variance. This is reflected by the large MS value for the interlaboratory group results (1,807,266) compared to the lower intralaboratory group results MS value (49,325). The variance uses the null hypothesis that the data sets provided by the laboratories represent the same samples, analyzed by the same method. The ANOVA

assessment allows the user to select the probability of error of falsely rejecting the hypothesis that all results are from the same population (same samples and method). The error significance level is typically set at 95%, which translates to a 5% chance of wrongly rejecting the hypothesis. The data comparison performed by the algorithm is referred to as a two-tail test, which means that both the upper and the lower ends of data distribution are tested. The ANOVA algorithm calculates (or selects from an algorithm table) the f-critical value, based on the assumption of normal distributions of the intralaboratory results and the composite results. If the calculated f-value, which is based on the ratio of variances displayed by the between laboratory results to the variance of individual laboratory results, is greater than the f-critical value, then the null hypothesis is rejected, which is the case for the lead extraction data sets. The ANOVA results presented in Table A-3 indicate that the variance in interlaboratory data is large relative to the intralaboratory data variances; therefore the null hypothesis is rejected with a high degree of confidence (low P-value). The rejection of the null hypothesis could indicate: 1) different methods were used in the analysis, 2) different samples were being analyzed, or 3) the intralaboratory variance is small compared to what might be expected. The latter choice must be accepted as correct, considering the RSDs for the FCRM for the intralaboratory (n=5) results all quite low (less than 8% RSD for three (3) data sets and less than 3% RSD for the remaining five (5) sets of results).

Appendix B provides the statistical t-test comparison of the Laboratory D EPA Method 3051A lead results. Table B-1 presents the t-test statistical comparison for the FCRM EPA Method 3051A lead results from Laboratory D and the results from the other seven (7) laboratories. This t-test was performed because the EPA Method 3051A lead results from Laboratory D as shown in Table A-1 were higher than the other laboratory results.

The t-test was employed to evaluate if there was a statistical difference between the results from Laboratory D versus the other reported results. The t-test function in Microsoft<sup>®</sup> Excel was used, which is the 2-sample (assuming equal variances, alpha 0.01, 99-percentile) t-test. The t-test results presented in Table B-1 shows there is a significant difference between the data from Laboratory D compared to the results derived from the other laboratories collectively, as indicated by a P (T ≤ t) value that is less than 0.01 for the t-tests performed on the data set. A t-Stat value that is greater that the t-critical value also indicates a significant difference between the Laboratory D data and the remaining data sets. The t-test comparison results, which are presented in Table B-1, indicate that the extraction results for Laboratory D can reasonably be excluded with a less than 1% chance of being incorrect. The EPA Method 3051A lead results for this laboratory were omitted and the statistical analysis was repeated for the EPA Method 3051A data set.

Table B-2 presents the revised statistical analysis of the EPA Method 3051A lead results for the FCRM, excluding the results from Laboratory D. The mean of the pooled EPA Method 3051A lead results (n=35) from the FCRM is 6,444 mg/Kg. The calculated pooled standard deviation of the FCRM EPA Method 3051A lead results is 345 mg/Kg, which provides a pooled RSD of 5.4%. The calculated lead 99 percentile prediction interval, based on the EPA Method 3051A lead results (n=35) alone, is  $\pm 14.8\%$  of the mean value of 6,444 mg/Kg. The calculated percent standard deviation of the mean for the FCRM EPA Method 3051A lead results is 0.91%. The calculated 99 percentile confidence interval of the mean EPA Method 3051A lead results for the FCRM is 6,444  $\pm 2.5\%$ .

### V.C.2. Arsenic Results, Method 3051A

Appendix C presents the FCRM EPA Method 3051A arsenic results. Table C-1 presents the EPA Method 3051A arsenic results, prediction intervals, and confidence intervals for the FCRM. The mean arsenic result is 728 mg/Kg, with a standard deviation of 65 mg/Kg and RSD of 8.9%. The calculated arsenic 99 percentile prediction interval, based on the EPA Method 3051A arsenic results (n=40) alone, is 728 mg/Kg  $\pm$  24.2%. The calculated 99 percentile confidence interval of the EPA Method 3051A mean arsenic result for the FCRM is 728 mg/Kg  $\pm$  3.8%.

Table C-2 presents results for the associated arsenic QC samples that were also determined by EPA Method 3051A along with the FCRM. The table includes the blank spike recovery, matrix spike recovery, and the NIST SRM 2710a results and percent recovery. Using the NIST SRM 2710a Certificate of Analysis as a guideline, the NIST SRM 2710a arsenic results are within the range presented in the Certificate of Analysis, with the exception of the results from Laboratories B and F. The arsenic results from Laboratories B and F, at 1,650 mg/Kg and 1,684 mg/Kg, respectively, slightly exceed the 1,600 mg/Kg upper range for arsenic listed in the Certificate of Analysis. The NIST SRM 2710a mean arsenic result for all eight (8) laboratories is 1,592 mg/Kg. This value is 113.7% of the NIST SRM 2710a strong leach value of 1,400 mg/Kg presented in the Addendum to the NIST SRM 2710a Certificate of Analysis, and indicates a high bias in the recovery of arsenic from the EPA Method 3051A digestion relative to the CLP digestion procedures referenced in the Certificate of Analysis. In comparison, the CLP digestions are usually open beaker or block digestions and may result in incomplete digestion, or possible increased losses of arsenic acid vapor during digestion.

Table C-3 presents the ANOVA for the FCRM EPA Method 3051A arsenic results. As with the ANOVA of the FCRM EPA Method 3051A lead results, the ANOVA of the FCRM EPA Method 3051A arsenic results show the intralaboratory variance to be low compared to interlaboratory variance. This is indicated by the large MS value of 20,732 for the interlaboratory group results compared to the lower intralaboratory group results MS value of 585. The RSD values for the FCRM EPA Method 3051A intralaboratory results (n=5) are all 6% or less.

### V.C.3. Lead IVBA Results (EPA SOP 9200.2-86)

Appendix D presents the FCRM Lead IVBA results. Table D-1 presents the Study Lead IVBA results for the FCRM along with the mean, standard deviation (n-1 weighting), and RSD values for each sample set. Please note that the values presented in these tables are not rounded. The pertinent rounded values are presented in the Conclusions and Recommendations section of this report. Table D-1 also presents the 99 percentile prediction interval for the Lead IVBA result, in mg/Kg. This 99 percentile prediction interval for the Lead IVBA result was converted to the Lead IVBA prediction interval by dividing the statistically combined Lead IVBA results with the statistically combined EPA Method 3051A lead results. Table D-1 also provides the confidence interval of the mean for the FCRM Lead IVBA value.

Table D-1 presents the mean concentration (n=40) of the FCRM Lead IVBA at 4,700 mg/Kg. This is 70.8% of the EPA Method 3051A mean lead concentration of 6,634 mg/Kg, which is presented in Table A-1, and represents a Lead IVBA value of 70.8%. The calculated pooled RSD value of the FCRM Lead IVBA results is 6.5%. The calculated lead 99 percentile prediction interval based on the Lead IVBA results alone (n=40) is  $\pm$  17.7%. The calculated lead 99 percentile predication interval for the Lead IVBA result, which includes the variance of the EPA Method 3051A results (n=80), is significantly higher at  $\pm$  29.7%. The calculated percent standard deviation of the mean for the FCRM is 1.24%. The calculated 99 percentile confidence interval of the Lead IVBA mean result for the FCRM is 70.8  $\pm$  3.3%. The Laboratory B results in Table D-1 were observed to be higher than the results from the other laboratories.

Table D-2 presents the Lead IVBA results for the associated QC samples that were processed with the FCRM, as well as the EPA Method 3051A lead QC results. These include results for the reagent blank, bottle blank, blank spike, matrix spike, and the NIST SRM 2710a. All results are within the control limits presented in the EPA SOP 9200.2-86 and in Table 4 above, with the exception of the Lead IVBA NIST SRM 2710a results from laboratories B and C and the reagent blank result for laboratory C.

In Table D-2, row 1, Laboratory C reported a reagent blank result of <40 ug/L, which is greater

than the EPA SOP 9200.2-86 required detection limit of 25 ug/L. The laboratory was contacted after a review of the laboratory's reagent blank results, and confirmed the reported <40 ug/L blank result was correct. However, because the actual analytical sample results are approximately 100 times greater in concentration, this elevated blank result does not impact the Study results.

Row 6 of Table D-2 presents the NIST SRM 2710a Lead IVBA percent recovery based on the Lead IVBA mean recovery of 3,440 mg/Kg from a previous Study. All percent recovery results are within  $\pm$  20% of the mean value, with the Laboratory B recovery the highest at 116.3%.

Row 8 of Table D-2 presents the NIST SRM 2710a EPA Method 3051A percent recovery for lead based on the NIST SRM 2710a Certificate of Analysis mean result for the strong leach acid digestion (EPA Method 3050B) of 5,100 mg/Kg, with the acceptance range of (4,700 - 5,800 mg/Kg). All of the lead digestion result recoveries are  $100 \pm 20\%$ ; however, compared with the Certificate of Analysis acceptance range (4,700 – 5,800 mg/Kg), the EPA Method 3051A result for Laboratory E was slightly below the lower limit at 4,537 mg/Kg. However, because the FCRM Lead IVBA results for Laboratory E were not low biased, the results were retained.

Row 9 of Table D-2 presents the Lead IVBA values for the NIST SRM 2710a derived from both the Lead IVBA and EPA Method 3051A results from this Study. The results are within the previously established EPA SOP 9200.2-86 control limits of 60.7% to 74.2% with the exception of the results from Laboratories B and C, which exceeded the 99 percentile control limits at 78.4% and 77.3%, respectively. The FCRM Lead IVBA results from these two (2) laboratories seem to correlate with these high NIST SRM 2710a Lead IVBA results.

Table D-3 presents the statistical summary for the ANOVA for the FCRM Lead IVBA results. The results of the ANOVA assessment, which are presented in Table D-3, indicate that the intralaboratory variance is low compared to interlaboratory variance. This is indicated by the large MS value of 485,588 for the interlaboratory group compared to the substantially lower MS value of 6,469 for the intralaboratory group. The ANOVA results presented in Table D-3 indicate that the variance in interlaboratory data is large relative to the intralaboratory data variances; therefore the null hypothesis is rejected with a high degree of confidence (low P-value). The RSD values for the FCRM for the intralaboratory (n=5) results are all quite low (less than 4% for one (1) of the sets, and less than 2% for the remaining seven (7) sets of results).

Because of the higher than acceptable Lead IVBA results for the NIST SRM 2710a from Laboratories B and C presented in row 9 of Table D-2, a statistical comparison (t-test) was performed between the FCRM data set for Laboratory B (the highest results) and the remaining FCRM data. The t-test was employed to evaluate if there was a statistical difference between the results from Laboratory B versus the results from the remaining seven (7) laboratories. The Excel t-test output for this exercise is presented in Appendix E. The t-test results presented in Table E-1 shows there is a significant difference between the data from Laboratory B compared to the results derived from the other laboratories collectively, as indicated by a P (T  $\leq$  t) value that is less than 0.01 for the t-tests performed on the data set. The t-test comparison results, which are presented in Table E-1, indicate that the Lead IVBA results for Laboratory B can reasonably be excluded with a less than 1% chance of being incorrect. The Lead IVBA extraction results for this one (1) laboratory were omitted and the statistical analysis was repeated for the remaining Lead IVBA data set.

Table E-2 presents the revised statistical analysis for the FCRM Lead IVBA results, excluding the results from Laboratory B. The FCRM Lead IVBA mean value minus the results from Laboratory B (n=35) is 4,619 mg/Kg. The Lead IVBA value is 69.6% of the EPA Method 3051A mean lead value of 6,634 mg/Kg, presented in Table E-2, and represents a Lead IVBA value of 69.6. The calculated pooled RSD of the FCRM Lead IVBA results is 4.9%. The calculated lead 99 percentile prediction interval based on the Lead IVBA results (n=35) alone, is  $\pm$  13.6%. The calculated 99 percentile prediction interval for the Lead IVBA value, which includes the variance of the EPA Method 3051A results (n=75), is  $\pm$  27.5%. The calculated percent standard deviation of the mean for the FCRM Lead IVBA result for the FCRM is 69.6  $\pm$  3.2%. Overall, the statistical results for the FCRM, excluding the Laboratory B data set, exhibit slightly increased precision when compared to the full data set.

Table D-4 presents the resulting calculated 99 percentile prediction interval for the Lead IVBA, which includes the variance of the EPA Method 3051A results, but has excluded both the Laboratory B Lead IVBA results and Laboratory D EPA Method 3051A lead results. The Lead IVBA value (n=70) is 71.7%, the SD is 5.2, and the RSD is 7.3%. The calculated 99 percentile prediction interval for the Lead IVBA, which includes the variance for the EPA Method 3051A results (n=70) is 71.7%  $\pm$  19.4%. The calculated percent standard deviation of the mean for the FCRM Lead IVBA result is 0.87%. The calculated 99 percentile confidence interval of the Lead IVBA mean result for the FCRM is 71.7%  $\pm$  2.3%. Overall, the statistical results for the FCRM, excluding the Laboratory B Lead IVBA data set and the Laboratory D EPA Method 3051A lead data set, exhibit increased precision as compared to the full data set.

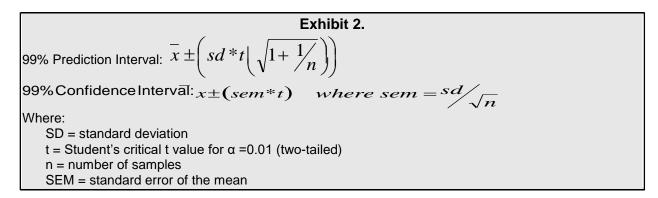
### V.D. Summary of FCRM Study Results and Prediction Intervals

Table 5 provides the EPA Method 3051A lead and arsenic results, statistics, and 99 percentile prediction intervals for the FCRM. Table 6 provides the Lead IVBA results, statistics, and 99 percentile prediction intervals for the FCRM.

| Analyte | Low 99% PI | Mean | High 99% PI | RSD  | Ν  |
|---------|------------|------|-------------|------|----|
| Pb      | 5490       | 6440 | 7400        | 5.4% | 35 |
| As      | 550        | 730  | 910         | 8.9% | 40 |

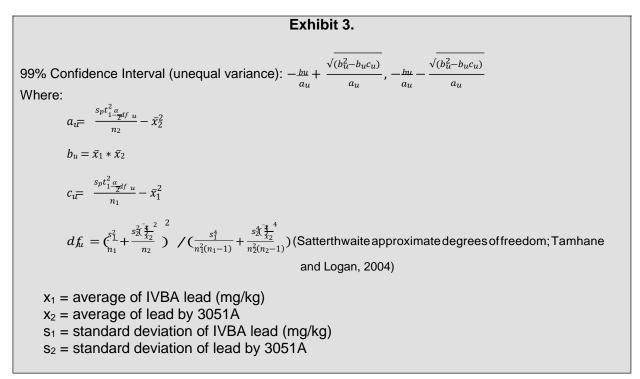
### Table 5. FCRM EPA Method 3051A Results and Statistics

### Table 6. FCRM Lead IVBA Results and Statistics


| Analyte | Mean Result<br>Lead IVBA (%) | Lead IVBA<br>(%)<br>(± 99% PI) | RSD* | Mean Result<br>Lead IVBA<br>(mg/Kg) | Lead IVBA<br>(mg/Kg)<br>(± 99% PI) | RSD* | Ν  |
|---------|------------------------------|--------------------------------|------|-------------------------------------|------------------------------------|------|----|
| Pb      | 71.7                         | (57.8 – 85.6)                  | 7.3% | 4619                                | (3991 – 5247)                      | 4.9% | 35 |

\* RSD was derived from the replicate Lead IVBA results.

# V.E. Independent Statistical Analysis of the Round Robin Study Results by Syracuse Research Corporation (SRC) and Comparison to Shaw's Standard Statistical Analysis Results


SRC, Inc. under contract EP-W-12-003 analyzed the Round Robin Study data using Tukey's Studentized Range (also known as the Honestly Significant Difference [HSD] test). This test evaluates whether the data from each laboratory are significantly different from the others while controlling the type 1 error rate (at  $\alpha = 0.05$ ) when multiple statistical comparisons are performed. When data from one or more laboratories were identified as different from the others, these datasets were further evaluated visually to determine if they should be excluded from the final dataset used to calculate prediction intervals (PIs) and confidence intervals (CIs). If the Tukey's HSD test or visual examination of the data did not identify any datasets that differed significantly from the others, or if the test indicated many differences among the datasets with no clear grouping, then all laboratory results were included in the final dataset.

The final dataset for each measurement endpoint included all laboratories that were not excluded for QC issues and were not identified as significantly different from the other laboratories by Tukey's HSD or visual inspection of the data. These data were used to calculate the PIs and CIs for the measurement endpoint. The PI for a Reference Material (RM) refers to a specific measurement and is used to determine if a laboratory result is acceptable, while the CI is an estimated range of values that is likely (with probability of  $\alpha$ ) to include the mean of a population. The formulas used for the prediction and CI are provided in Exhibit 2.



The final datasets for lead by EPA method 3051A and by IVBA Method SOP 9200.2-86 were used to estimate the IVBA as a percentage of the total lead (i.e., IVBA by Method EPA SOP 9200.2-86 / lead by Method 3051A). Fieller confidence intervals for the ratio of bi-variate normal random variables were calculated (Fieller, 1954; Dilba et al., 2006; Tamhane and Logan, 2004) using the T-

Test procedure in SAS (Exhibit 3; SAS/STAT software, Version 9.3 of the SAS System for Windows).



Prediction intervals account for the variability among individual measurements as well as the uncertainty in the estimate of mean. The prediction interval was estimated by extending the Fieller confidence limits to account for the estimated variability of the ratio (Exhibit 4).

Exhibit 4.  
99% Prediction Interval (unequal variance): 
$$LL - s_r * t_{1-\frac{a}{2}df_L}UL + s_r * t_{1-\frac{a}{2}df_2} = u$$
  
Where:  
 $LL, UL = lower limit, upper limit of the 99% Fieller type CI(unequal variance) for the ratio (Exhibit 2)$   
 $s_r = \frac{x}{y} \sqrt{\left(\frac{s_1}{s_1}\right)^2 - \frac{s_2}{s_2}}^2$  (first order Taylor series approximation; Stuart & Ord, 1986)  
 $df_u = \left(\frac{s_1^2}{n_1} + \frac{s_2^2 \sqrt{s_2}}{n_2}\right)^2 / \left(\frac{s_1^4}{n_1^2(n_1-1)} + \frac{s_2^4 \sqrt{s_1^4}}{n_2^2(n_2-1)}\right)$  (Welch-Satterthwaite degrees of freedom; Tamhane and Logan, 2004)  
 $x_1 = \text{average of IVBA (mg/kg)}$   
 $x_2 = \text{average of lead by 3051A}$   
 $s_1 = \text{standard deviation of IVBA (mg/kg)}$   
 $s_2 = \text{standard deviation of lead by 3051A}$ 

The SRC estimates based on the methods described above are presented in Table 7 below. The results of Pb 3051A and As 3051A are identical to what was determined using the standard statistical tests, compare to results in Tables B-2 and C-1, respectively. The SRC estimates of Pb IVBA (mg/kg) differ from the standard statistical results (compare Table 7 with Table E-2) because different laboratories were selected for inclusion in the estimate of Pb IVBA (mg/kg).

For the Pb 3051A data, SRC found the results of the ANOVA assessment indicated that data from at least one laboratory were significantly (p < 0.05) different from the other data. Analysis of the data using Tukey's HSD test showed that the data from Laboratory D were different from all of the remaining laboratories; this difference is also evident in Figure 1 (below). As data from Laboratory D were significantly different from all other laboratories, these data were omitted from the final dataset. Laboratory D was also eliminated from the estimate of Pb 3051A in the analysis using the standard statistical approach (see Table B-2).

For the As 3051A data, SRC found the results of the ANOVA assessment indicated a significant (p < 0.05) difference among the laboratories. Analysis of the data using Tukey's Studentized Range Test indicated many differences among the datasets with no clear majority grouping (see Figure 2 below). Therefore, all laboratories were included in the final dataset. All laboratories were also included in the estimate of As 3051A in the standard statistical analysis (see Table C-1).

For the Pb IVBA data, SRC removed the results from laboratories B and C because these laboratories exceeded the previously established EPA SOP 9200.2-86 control limits of 60.7% to 74.2% on the NIST SRM 2710a control soil. In addition, the results of the ANOVA assessment indicated a significant (p < 0.05) difference among the laboratories. While Tukey's HSD found the data from laboratory E to be significantly different from all of the remaining laboratories, visual inspection of Figure 3 (below) does not indicate the mean IVBA from laboratory E is substantially different from the mean IVBAs from the other laboratories; therefore, the data from laboratory E were retained in the final dataset.

Since SRC eliminated both laboratories B and C data for the Pb IVBA (mg/kg) results but the Shaw analysis only eliminated laboratory B (see section 'V.C.3 Lead IVBA Results (EPA SOP 9200.2-86)' for a discussion on why laboratory B data was eliminated but laboratory C was retained), there is a difference in the Pb IVBA results with 4562  $\pm$  183 mg/kg for the SRC analysis versus 4619  $\pm$  227 mg/kg from Table E-2. Consequently, the Pb % IVBA results differ as well, 71  $\pm$  4.7% from the SRC analysis versus 71.7  $\pm$  5.2% from Table D-4.

| Results          | Mean | SD  | 99% PI    | 99% CI of mean     | n               |
|------------------|------|-----|-----------|--------------------|-----------------|
| Pb 3051A (mg/kg) | 6444 | 345 | 5489-7399 | 6285-6603          | 35              |
| As 3051A (mg/kg) | 728  | 65  | 550-905   | 700-756            | 40              |
| Pb IVBA (mg/kg)  | 4562 | 183 | 4049-5076 | 4470-4654          | 30              |
| Pb IVBA (%)      | 71   | 4.7 | 56-86     | 69-73 <sup>1</sup> | 65 <sup>2</sup> |

Table 7: SRC Statistical Results for FCRM

<sup>1</sup>A Fieller's method modified by Dilba was used to calculate the 99% confidence interval for the % IVBA.

<sup>2</sup>Based on thirty (30) IVBA extraction results and thirty-five (35) Method 3051A digestion results.

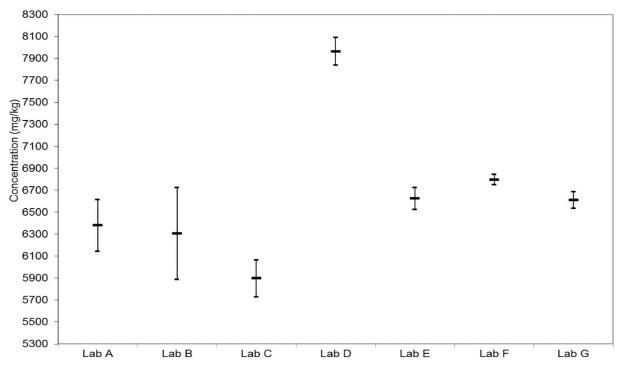
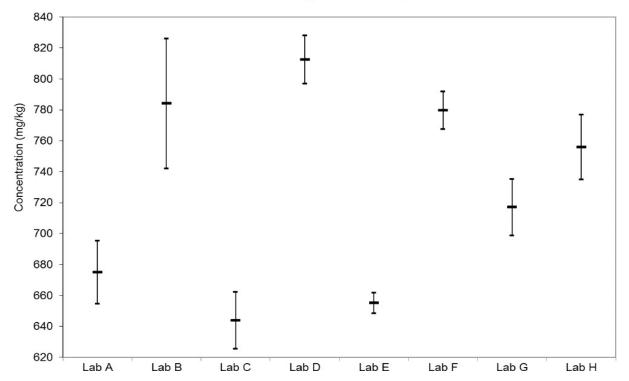
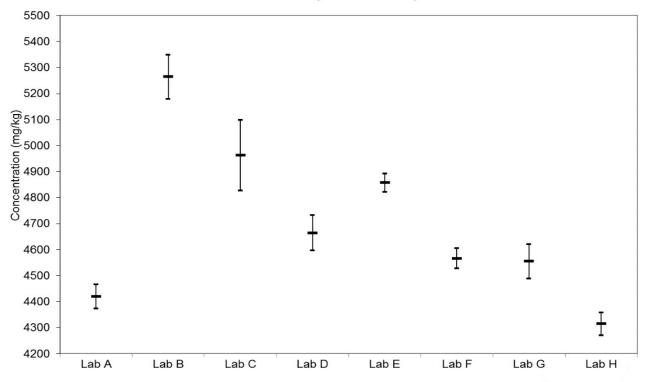





Figure 1. All Laboratory Results, Lead by Method 3051a (Mean  $\pm\,2$  SEM)

Figure 2. All Laboratory Results, Arsenic by Method 3051a (Mean  $\pm$  2 SEM)



### Figure 3. All Laboratory Results, Lead IVBA (Mean $\pm$ 2 SEM)



Note: Conclusion of Section V.E. – "Independent Statistical Analysis of the Round Robin Study Results by Syracuse Research Corporation (SRC) and Comparison to Shaw's Standard Statistical Analysis Results"

The TRW IVBA committee selected the Shaw results provided in this report as the final results for the Round Robin Study, noting that there is little difference between the statistical results provided by the Shaw standard statistical approach and the results from the SRC statistical approach.

### VI. CONCLUSIONS AND RECOMMENDATIONS

The main objectives of this Study were to derive a Lead IVBA mean with known confidence for the FCRM, as well as to estimate the 99 percentile prediction interval. Another objective was to derive a mean value with known confidence for the lead and arsenic concentrations for the FCRM based on the EPA Method 3051A results from this Study. The Study results from the eight (8) participating laboratories were all determined to be acceptable using conventional statistics and the Grubb's test for outliers. However, the t-test allowed for the exclusion of one laboratory's Lead IVBA results and another laboratory's EPA Method 3051A lead results, which allowed for the establishment of a Lead IVBA value for the FCRM with known and acceptable precision. This Study also provided for the determination of the lead and arsenic concentrations of the FCRM with known and acceptable precision. The associated QC results provided by the participating laboratories were all within the EPA SOP 9200.2-86 defined control limits, with a few noted exceptions.

Table 8 presents the final rounded values for the mean result and 99 percentile prediction intervals for the FCRM Lead IVBA results, as well as the EPA Method 3051A lead and arsenic values and

prediction intervals based on the pooled Study results. The prediction intervals for the EPA Method 3051A lead and arsenic values are presented in mg/Kg, and the Lead IVBA prediction intervals are presented in both mg/Kg and as Lead IVBA values.

|                              |            | encounce |             |
|------------------------------|------------|----------|-------------|
| FCRM                         | Low 99% PI | Mean     | High 99% Pl |
| Lead Method 3051A (mg/Kg)    | 5490       | 6440     | 7400        |
| Arsenic Method 3051A (mg/Kg) | 550        | 730      | 910         |
| Lead IVBA (mg/Kg)            | 3990       | 4620     | 5250        |
| Lead IVBA (%)                | 57.8       | 71.7     | 85.6        |

### Table 8. Rounded Values for the FCRM Lead IVBA and EPA Method 3051A Lead and Arsenic Results

### **VII. REFERENCES**

Dilba, G., Bretz, F. and V.Guiard. 2006. Simultaneous Confidence Sets and Confidence Intervals for Multiple Ratios. Journal of Statistical Planning and Inference. 136, 2640-2658.

Fieller, E.C. 1954. Some Problems in Interval Estimation. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 16, No. 2, 175-185.

NFESC (2003). Guide for Incorporating Bioavailability Adjustments into Human Health and Ecological Risk Assessments at U. S. Department of Defense Facilities, Naval Facilities Engineering Service Center (NFESC), Air Force Center for Environmental Excellence (AFCEE), Army Environmental Center (AEC), Part 2, Appendix C, June 2003.

Ruby, M., Drexler, J., "In Vitro Method for Determination of Lead Bioaccessibility Standard Operating Procedure for Stomach Phase Extraction", June 2003.

Tamhane, A.C. and Logan, B.R. 2004. Finding the Maximum Safe Dose Level for Heteroscedastic Data. J. Biopharmaceutical Statistics, Vol.14, No. 4, 843-856.

US EPA (2012) Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead in Soil, USEPA OSWER 9200.2-86, July 2012. On-line at: http://epa.gov/superfund/bioavailability/pdfs/EPA\_Pb\_IVBA\_SOP\_040412\_FINAL\_SRC.pdf

USEPA SW-846 EPA *Method 3051A Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils*, USEPA Rev. 1, February, 2007. On-line at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3051a.pdf

US EPA (2007). Estimation of Relative Bioavailability of Lead in Soil and Soil-like Materials using In Vivo and In Vitro methods, USEPA OSWER 9285.7-77, May 2007.

### Appendix A FCRM EPA Method 3051A Lead Results and Statistics

## Table A-1. FCRM EPA Method 3051A Lead Results With Prediction Intervals and Confidence Intervals – All Labs

|                    | FCRM E     | PA M        | lethod 3   | 051A Lea                   | ad Result  | s (mg/Kg   | 1)        |            |        |  |  |
|--------------------|------------|-------------|------------|----------------------------|------------|------------|-----------|------------|--------|--|--|
| Laboratory >       | A          | ۱           | В          | С                          | D          | E          | F         | G          | Н      |  |  |
| Replicate 1        | 61         | 80          | 5600       | 5762                       | 7812       | 6788       | 6838      | 6670       | 6246   |  |  |
| Replicate 2        | 60         | 36          | 6500       | 6019                       | 8141       | 6543       | 6742      | 6470       | 6513   |  |  |
| Replicate 3        | 66         | 57          | 6350       | 6156                       | 8087       | 6687       | 6815      | 6605       | 6471   |  |  |
| Replicate 4        | 65         | 79          | 6870       | 5845                       | 7878       | 6566       | 6739      | 6670       | 6538   |  |  |
| Replicate 5        | 64         | 39          | 6200       | 5699                       | 7898       | 6533       | 6844      | 6630       | 6737   |  |  |
| Mean               | 63         | 78          | 6304       | 5896                       | 7963       | 6623       | 6796      | 6609       | 6501   |  |  |
| SD                 | 26         | 64          | 466        | 188                        | 143        | 111        | 51        | 82         | 175    |  |  |
| RSD                | 4.1        | %           | 7.4%       | 3.2%                       | 1.8%       | 1.7%       | 0.8%      | 1.2%       | 2.7%   |  |  |
|                    |            | F           | Pooled R   | esults (n-                 | 1) n=40    |            |           |            |        |  |  |
|                    | Mean       |             |            | <b>`</b> `                 | ,<br>6634  | 4          |           |            |        |  |  |
|                    | SD         |             |            | 604                        |            |            |           |            |        |  |  |
|                    | RSD        |             |            |                            | 9.1%       | 6          |           |            |        |  |  |
| FCRM EPA           | Method 3   | <b>051Δ</b> | lead –     | 99 Perce                   | ntile Prec | liction In | terval (m | a/Ka)      |        |  |  |
| Low 99 % PI        |            |             | Loud       | Mean                       |            |            | •         | 99 % PI    |        |  |  |
| 4978               |            |             |            | 6634                       |            |            |           | 3290       |        |  |  |
|                    | ± 99 % P   | redict      | tion Inter | val = 25.0                 | % of the N | lean Valu  |           |            |        |  |  |
| The range above sh | nould be u | sed to      |            | ine if a lat<br>cceptable. | -          | PA Meth    | od 3051A  | lead resi  | ılt is |  |  |
| FCRM EPA Me        | ethod 305  | 1A Le       |            |                            |            |            |           |            |        |  |  |
| 6634 = Mean        |            |             | 96 = S     | D of the M                 | lean       | 1          |           | D of the M | ean    |  |  |
| Low 99 % CI        |            |             |            | Mean                       |            |            | •         | 99 % CI    |        |  |  |
| 6375               |            |             |            | 6634                       |            |            |           | 6892       |        |  |  |
| ± 99 Percen        |            |             |            |                            |            |            |           |            |        |  |  |

- SD = Standard Deviation
- RSD = Relative Standard Deviation
- CI = Confidence Interval
- PI = Prediction Interval

### Appendix A FCRM EPA Method 3051A Lead Results and Statistics

### Table A-2. FCRM EPA Method 3051A Batch QC Sample Lead Results

| Laboratory>                                                                                                        | Α      | В      | С     | D      | Е      | F      | G      | Н      | Mean   |
|--------------------------------------------------------------------------------------------------------------------|--------|--------|-------|--------|--------|--------|--------|--------|--------|
| Blank Spike Recovery<br>(Nominal: 10 mg/L) (Range:<br>85% to 115%)                                                 | 93.2%  | 111.8% | 96.3% | 108.0% | 96.9%  | 104.0% | 101.0% | 105.0% | 102.0% |
| FCRM Matrix Spike Recovery<br>(Nominal: 10 mg/L) (Range:<br>75% to 125%)                                           | 101.9% | 88%    | 83.2% | 57.0%  | 98.1%  | 76.5%  | 80.0%  | 81.2%  | 83.2%  |
| NIST SRM 2710a Digestion<br>Lead Results<br>NIST Certificate (Nominal:<br>5100 mg/Kg) (Range: 4700-<br>5800 mg/kg) | 5554   | 5370   | 4882  | 4912   | (4537) | 5491   | 5195   | 5181   | 5140   |
| Lead IVBA NIST SRM 2710a<br>Recovery Based on NIST<br>Certificate Leachable Value<br>of 5100 mg/Kg                 | 108.9% | 105.3% | 95.7% | 96.3%  | 89.0%  | 107.7% | 101.9% | 101.6% | 100.8% |

Values in parentheses are outside the associated control limits.

### Table A-3. FCRM EPA Method 3051A Lead Digestion Analysis of Variance

|                      |          |       | VA: Single Fac<br>na at 0.05 (95 p |          | •         |        |
|----------------------|----------|-------|------------------------------------|----------|-----------|--------|
|                      |          |       | SUMMARY                            |          |           |        |
| Groups               | Count    | Sum   | Mean                               | Variance |           |        |
| Laboratory A         | 5        | 31891 | 6378                               | 69533    |           |        |
| Laboratory B         | 5        | 31520 | 6304                               | 216830   |           |        |
| Laboratory C         | 5        | 29480 | 5896                               | 35459    |           |        |
| Laboratory D         | 5        | 39816 | 7963                               | 20328    |           |        |
| Laboratory E         | 5        | 33117 | 6623                               | 12215    |           |        |
| Laboratory F         | 5        | 33978 | 6796                               | 2648     |           |        |
| Laboratory G         | 5        | 33045 | 6609                               | 6805     |           |        |
| Laboratory H         | 5        | 32505 | 6501                               | 30784    |           |        |
|                      |          |       | ANOVA                              |          |           |        |
| Source of            | SS       | alf   | -                                  | <i>_</i> | Duralua   |        |
|                      | 33       | df    | MS                                 | F        | P-value   | F-Crit |
| Interlaboratory      | 12650866 | 7     | 1807266                            | 36.6     | 1.59 E-13 | 2.31   |
| Intralaboratory      | 1578406  | 32    | 49325                              |          |           |        |
|                      |          |       |                                    |          |           |        |
| Total                | 14229273 | 39    |                                    |          |           |        |
| SS = Sum of Squar    | res      |       |                                    |          |           |        |
| Df = Degrees of Fre  |          |       |                                    |          |           |        |
| MS = Mean Square     |          |       |                                    |          |           |        |
| F = F Value Calcula  |          |       |                                    |          |           |        |
| F-Crit = Critical Va | lue of F |       |                                    |          |           |        |
| P-value = Probabil   |          |       |                                    |          |           |        |

### Appendix B FCRM EPA Method 3051A Lead Results and t-Test

| Table       | Э D-1. Г |         | au Resu  | its and t | -restion   | Labora    | atory D L | ngestio | n Data | <u>i</u>    |
|-------------|----------|---------|----------|-----------|------------|-----------|-----------|---------|--------|-------------|
|             |          | FCRM EF | PA Metho | d 3051A   | Lead Res   | sults t-T | est (mg/ł | (g)     |        |             |
| Laboratory> | Α        | В       | С        | E         | F          | G         | Н         | Labora  | tory>  | D           |
| Replicate 1 | 6180     | 5600    | 5762     | 6788      | 6838       | 6670      | 6246      | Replica | te 1   | 7812        |
| Replicate 2 | 6036     | 6500    | 6019     | 6543      | 6742       | 6470      | 6513      | Replica | te 2   | 8141        |
| Replicate 3 | 6657     | 6350    | 6156     | 6687      | 6815       | 6605      | 6471      | Replica | te 3   | 8087        |
| Replicate 4 | 6579     | 6870    | 5845     | 6566      | 6739       | 6670      | 6538      | Replica | te 4   | 7878        |
| Replicate 5 | 6439     | 6200    | 5699     | 6533      | 6844       | 6630      | 6737      | Replica | te 5   | 7898        |
| Mean        | 6378     | 6304    | 5896     | 6623      | 6796       | 6609      | 6501      | Mean    |        | 7963        |
| SD          | 264      | 466     | 188      | 111       | 51         | 82        | 175       | SD      |        | 143         |
| RSD         | 4.1%     | 7.4%    | 3.2%     | 1.7%      | 0.76%      | 1.2%      | 2.7%      | RSD     |        | 1.8%        |
| La          | bs A-H   |         | F        | Percent D | Difference | •         | Lab D     |         |        |             |
|             | n        | =35     |          |           |            |           |           |         | N      | <b> </b> =5 |
| Mean        | 6        | 444     |          | 21.       | 1%         |           | Mean      |         | 7      | 963         |
| SD          | 3        | 345     |          |           |            |           | SD        |         | 1      | 43          |

RSD

1.8%

RSD

5.4%

### Table B-1. FCRM Lead Results and t-Test for Laboratory D Digestion Data

|                                                                                                                                                                                   | alpha = 0.01 1 in 99)                                                               |                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                                                                                                   | Lab A-H                                                                             | Lab D                                             |
| Mean                                                                                                                                                                              | 6444                                                                                | 7963                                              |
| Variance                                                                                                                                                                          | 119094                                                                              | 20328                                             |
| Observations                                                                                                                                                                      | 35                                                                                  | 5                                                 |
| Pooled Variance                                                                                                                                                                   | 108698                                                                              |                                                   |
| Hypothesized Mean<br>Difference                                                                                                                                                   | 0                                                                                   |                                                   |
| Df                                                                                                                                                                                | 38                                                                                  |                                                   |
| t-Stat                                                                                                                                                                            | 9.64                                                                                |                                                   |
| P(T ≤ t) (two-tail)                                                                                                                                                               | 9.40 E-12                                                                           |                                                   |
| t-Critical (two-tail)                                                                                                                                                             | 2.71                                                                                |                                                   |
| The t-Stat value of 9.64 is g<br>therefore, the null hypothe<br>different (zero difference, s<br>A P(T $\leq$ t) two tail value of I<br>probability that the means<br>population. | sis that the means are no<br>same population), can be<br>less than 0.01 indicates a | ot significantly<br>rejected.<br>greater than 99% |
|                                                                                                                                                                                   |                                                                                     | he results from                                   |

### Appendix B FCRM EPA Method 3051A Lead Results and t-Test

## Table B-2. FCRM EPA Method 3051A Lead Results With Prediction Intervals and Confidence – Minus Laboratory D

|                 | FC          | RM EPA M     | ethod 305   | 51A Lead                  | Results (  | mg/Kg)      |             |           |
|-----------------|-------------|--------------|-------------|---------------------------|------------|-------------|-------------|-----------|
| Laboratory >    | Α           | В            | С           | D                         | E          | F           | G           | Н         |
| Replicate 1     | 6180        | 5600         | 5762        |                           | 6788       | 6838        | 6670        | 6246      |
| Replicate 2     | 6036        | 6500         | 6019        |                           | 6543       | 6742        | 6470        | 6513      |
| Replicate 3     | 6657        | 6350         | 6156        |                           | 6687       | 6815        | 6605        | 6471      |
| Replicate 4     | 6579        | 6870         | 5845        |                           | 6566       | 6739        | 6670        | 6538      |
| Replicate 5     | 6439        | 6200         | 5699        |                           | 6533       | 6844        | 6630        | 6737      |
|                 |             |              |             |                           |            |             |             |           |
| Mean            | 6378        | 6304         | 5896        |                           | 6623       | 6796        | 6609        | 6501      |
| SD              | 264         | 466          | 188         |                           | 111        | 51          | 82          | 175       |
| RSD             | 4.1%        | 7.4%         | 3.2%        |                           | 1.7%       | 0.8%        | 1.2%        | 2.7%      |
|                 |             |              |             |                           |            |             |             |           |
|                 |             | P            | ooled Res   | ults (n-1) r              | า=35       |             |             |           |
|                 | Ме          | an           |             |                           | 6444       |             |             |           |
|                 | SD          |              |             |                           | 345        |             |             |           |
|                 | RS          | D            |             |                           | 5.4%       |             |             |           |
|                 |             |              |             | ·                         |            |             |             |           |
| FCRM EPA        | Method 3    | 051A Lead    | d Results   | – 99 Perc                 | entile Pr  | ediction Ir | nterval (m  | g/Kg)     |
| Low 99          | % PI        |              | N           | lean                      |            | Н           | igh 99 % Pl |           |
| 5489            | 9           |              | 6           | 444                       |            |             | 7399        |           |
|                 | ± 99        | % Predict    | ion Interva | l = 14.8% c               | of the Mea | n Value     |             |           |
| The range abov  | re should   | be used to   |             | e if a labora<br>eptable. | atory EPA  | Method 3    | 051A lead   | result is |
| FCRM EPA Me     | thod 305    | 1A Lead F    | Results – 9 | 99 Percen                 | tile Conf  | idence Int  | erval of th | ne Mean   |
| 6444 = N        | Mean        |              | 58 =SD (    | of the Mear               | 1          | 0.91% =     | RSD of the  | Mean      |
| Low 99          |             |              |             | lean                      |            | Н           | igh 99 % C  |           |
| 628             |             |              | -           | 444                       |            |             | 6603        |           |
| ± 99 Pe         | rcentile of | f the Confic | lence Inter | val of the                | Mean = 2.  | 5% of the N | lean Value  |           |
| The range above | e can be i  | used to sta  |             | ssess the<br>esult.       | confidenc  | e in the ac | ccuracy of  | the mean  |

SD = Standard Deviation

RSD = Relative Standard Deviation

- CI = ConfidenceInterval
- PI = Prediction Interval

## Appendix C FCRM EPA Method 3051A Arsenic Results and Statistics

| With                        | Predictio             |            |                      | Confidence       |                   |           | abs                             |           |
|-----------------------------|-----------------------|------------|----------------------|------------------|-------------------|-----------|---------------------------------|-----------|
|                             | FCRM                  | EPA Meth   | nod 3051A            | Arsenic I        | Results (n        | ng/Kg)    |                                 |           |
| Laboratory >                | Α                     | В          | C                    | D                | E                 | F         | G                               | Н         |
| Replicate 1                 | 652                   | 716        | 621                  | 800              | 649               | 776       | 715                             | 748       |
| Replicate 2                 | 653                   | 760        | 673                  | 841              | 656               | 789       | 700                             | 731       |
| Replicate 3                 | 700                   | 792        | 655                  | 816              | 649               | 770       | 712                             | 742       |
| Replicate 4                 | 696                   | 830        | 639                  | 799              | 654               | 765       | 706                             | 790       |
| Replicate 5                 | 674                   | 822        | 631                  | 806              | 667               | 798       | 752                             | 768       |
| Mean                        | 675                   | 784        | 644                  | 812              | 655               | 779       | 717                             | 756       |
| SD                          | 23                    | 47         | 21                   | 17               | 7                 | 14        | 21                              | 24        |
| RSD                         | 3.4%                  | 6.0%       | 3.2%                 | 2.1%             | 1.1%              | 1.8%      | 2.9%                            | 3.1%      |
|                             | Mean<br>Std De<br>RSD |            | Pooled Re            | sults n=40       | 728<br>65<br>8.9% |           |                                 |           |
| FCRM EPA<br>Low 99 %<br>550 |                       | 3051A Ar:  | Ме                   | Percentil<br>ean | e Predicti        |           | al (mg/Kg)<br>Jh 99 % Pl<br>905 | )         |
|                             | ± 99                  | Prediction | Interval =           | 24.2% of t       | he Mean Va        | alue      |                                 |           |
| The range above s           | should be u           | used to de | etermine if<br>accep |                  | ry EPA Me         | thod 3051 | A arsenic                       | result is |
| FCRM EPA Metho              | od 3051A              | Arsenic –  | 99 Perce             | ntile Conf       | idence Int        |           |                                 |           |
| 728 = Mea                   |                       |            |                      | f the Mean       |                   |           | RSD of the                      | Mean      |
| Low 99 %                    | CI                    |            |                      | an               |                   | Hig       | Jh 99 % CI                      |           |
| 700                         |                       |            |                      | 28               |                   |           | 756                             |           |
| ± 99 Pero                   | centile of th         |            |                      |                  |                   |           |                                 | esult.    |

## Table C-1. FCRM Laboratory Arsenic Results

- SD = Standard Deviation
- RSD = Relative Standard Deviation
- CI = ConfidenceInterval
- PI = Prediction Interval

### Appendix C FCRM EPA Method 3051A Arsenic Results and Statistics

| Laboratory>                                                              | Α      | В      | С      | D      | E      | F      | G      | н      | Mean   |
|--------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Blank Spike Recovery<br>(Range: 85% to 115%)                             | 90.8%  | 114.8% | 90.5%  | 110.0% | 95.8%  | 102.0% | 99.9%  | 104.0% | 101.0% |
| RM Matrix Spike Recovery (Range: 75% to 125%)                            | 103.8% | NA     | 106.7% | 106.0% | 120.7% | 97.9%  | 100.0% | 97.1%  | 104.5% |
| NIST SRM 2710a Arsenic<br>(Mean: 1400 mg/Kg)<br>(Range: 1300-1600 mg/Kg) | 1592   | (1650) | 1460   | 1546   | 1322   | (1684) | 1505   | 1577   | 1592   |

### Table C-2. FCRM EPA Method 3051A Batch QC Sample Arsenic Results

Values in parentheses are outside the associated control limits.

### Table C-3. FCRM EPA Method 3051A Arsenic Results Analysis of Variance

|                        |             |      | VA: Single Fa<br>oha at 0.05 (95 |          |           |        |
|------------------------|-------------|------|----------------------------------|----------|-----------|--------|
|                        |             |      | SUMMARY                          |          |           |        |
| Groups                 | Count       | Sum  | Mean                             | Variance |           |        |
| Laboratory A           | 5           | 3375 | 675                              | 520      |           |        |
| Laboratory B           | 5           | 3920 | 784                              | 2206     |           |        |
| Laboratory C           | 5           | 3220 | 644                              | 430      |           |        |
| Laboratory D           | 5           | 4062 | 812                              | 301      |           |        |
| Laboratory E           | 5           | 3274 | 655                              | 56.4     |           |        |
| Laboratory F           | 5           | 3897 | 779                              | 187      |           |        |
| Laboratory G           | 5           | 3584 | 717                              | 424      |           |        |
| Laboratory H           | 5           | 3778 | 756                              | 553      |           |        |
|                        |             |      | ANOVA                            |          |           |        |
| Source of<br>Variation | SS          | Df   | MS                               | F        | P-value   | F-Crit |
| Interlaboratory        | 145124      | 7    | 20732                            | 35.5     | 2.51 E-13 | 2.31   |
| Intralaboratory        | 18708       | 32   | 585                              |          |           |        |
| Total                  | 163833      | 39   |                                  |          |           |        |
|                        | 100000      | 00   |                                  |          |           |        |
| SS = Sum of Squa       | ares        |      |                                  |          |           |        |
| df = Degrees of F      | reedom      |      |                                  |          |           |        |
| MS = Mean Squar        | е           |      |                                  |          |           |        |
| F = F Value Calcu      | lated       |      |                                  |          |           |        |
| F-Crit = Critical V    | alue of F   |      |                                  |          |           |        |
| P-value = Probab       | ility Value |      |                                  |          |           |        |
|                        |             |      |                                  |          |           |        |

|                 | With         |             | -1. FCRN<br>n Interval |               |             |             | 5             |             |
|-----------------|--------------|-------------|------------------------|---------------|-------------|-------------|---------------|-------------|
|                 |              | FCR         | VI Lead IVE            | BA Results    | s (mg/Kg)   |             |               |             |
| Laboratory >    | Α            | В           | C                      | D             | E           | F           | G             | Н           |
| Replicate 1     | 4360         | 5210        | 4870                   | 4762          | 4921        | 4609        | 4538          | 4314        |
| Replicate 2     | 4491         | 5420        | 5000                   | 4639          | 4840        | 4604        | 4434          | 4285        |
| Replicate 3     | 4387         | 5260        | 5060                   | 4622          | 4849        | 4549        | 4584          | 4267        |
| Replicate 4     | 4448         | 5260        | 5130                   | 4576          | 4857        | 4563        | 4589          | 4393        |
| Replicate 5     | 4409         | 5170        | 4750                   | 4720          | 4816        | 4505        | 4626          | 4310        |
|                 |              |             |                        |               |             |             |               |             |
| Mean            | 4419         | 5264        | 4962                   | 4664          | 4856        | 4566        | 4554          | 4314        |
| SD              | 52           | 95          | 152                    | 76            | 39          | 43          | 74            | 48          |
| RSD             | 1.17%        | 1.81%       | 3.07%                  | 1.62%         | 0.81%       | 0.94%       | 1.63%         | 1.12%       |
|                 |              |             |                        |               |             |             |               |             |
|                 |              |             | Pooled Re              | sults (n-1) ı | า=40        |             |               |             |
|                 | Mea          | an          |                        |               | 4700        |             |               |             |
|                 | SD           |             |                        |               | 304         |             |               |             |
|                 | RSE          | כ           |                        |               | 6.5%        |             |               |             |
|                 |              |             |                        | ·             |             |             |               |             |
|                 | FCRM Le      | ead IVBA ·  | - 99 Perce             | ntile Pred    | iction Inte | rval (mg/ł  | ≺g)           |             |
| Low 99          | % PI         |             | ſ                      | lean          |             | ŀ           | ligh 99 % P   |             |
| 386             | 6            |             | 4                      | 4700          |             |             | 5534          |             |
|                 | ± 9          | 99 % Predic | ction Interv           | al = 17.7% (  | of the Mear | n Value     |               |             |
| The range above | should be    | used to de  | etermine if            | a laborator   | y EPA SO    | P 9200.2-8  | B6 IVBA ext   | racted lead |
|                 |              |             | result is              | acceptabl     | е.          |             |               |             |
|                 | FCR          | M Lead IV   | /BA – 99 P             | ercentile     | Prediction  | Interval    |               |             |
| Low 99          | % PI         |             | Γ                      | lean          |             | ŀ           | -ligh 99 % P  |             |
| 49.8            | 3            |             |                        | 70.8          |             |             | 91.9          |             |
|                 | ± 9          | 99 % Predic | ction Interv           | al = 29.7% (  | of the Mear | n Value     |               |             |
| The pooled EPA  |              |             |                        |               |             |             |               |             |
| 3051A digestion | results to c |             |                        |               |             | at includes | s the variand | ce of both  |
| IVBA = 70.8 o   | or 70.8%     | exi         | traction and<br>SD = 7 |               | results     | RSI         | D = 11.2%     |             |
|                 |              |             |                        |               |             |             |               | A recult in |
| The range above | e snoula be  | e usea to a |                        |               | IY EPA SC   | P 9200.2-   | oo lead IVE   | A result is |
|                 |              |             |                        | eptable.      |             |             |               |             |
|                 | FCR          | M Lead IV   | /BA – Con              | fidence In    | terval of t | he Mean     |               |             |
| 70.8 = N        | Nean         |             | 0.88 SD                | of the Mear   | า           | 1.24%       | = RSD of the  | Mean        |
| Low 99          | % PI         |             |                        | lean          |             | ł           | ligh 99 % P   |             |
|                 | 5            |             |                        | 70.8          |             |             | 73.2          |             |
| 68.5            |              |             |                        |               |             |             |               |             |
|                 | Percentile o | of the Conf | idence Inte            | rval of the   | Mean = 3.3  | % of the M  | ean Value     |             |

## Table D.1. ECRM Load IV/RA Results

SD = Standard Deviation

RSD = Relative Standard Deviation

CI = Confidence Interval

= Prediction Interval ΡI

### Table D-2. FCRM Lead IVBA and EPA Method 3051A Lead Batch QC Sample Results

|    | Laboratory>                                                                                                                                                                                             | Α      | В      | C      | D      | E      | F      | G      | Н      | Mean   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1  | Reagent Blank <25 ug/L                                                                                                                                                                                  | 1      | <3     | <40    | <1     | 1.8    | <2.5   | <11    | 4.5    | NA     |
| 2  | Bottle Blank ug/L <50 ug/L                                                                                                                                                                              | 1      | <3     | <40    | <1     | 1.6    | <2.5   | <11    | 4.1    | NA     |
| 3  | Blank Lead Spike Recovery (Control Limits: 85% to 115%)                                                                                                                                                 | 91.4%  | 104.0% | 108.3% | 100.0% | 98.0%  | 113.0% | 102.0% | 98.4%  | 101.9% |
| 4  | FCRM Lead Matrix Spike Recovery<br>(Control Limits: 75% to 125%)                                                                                                                                        | 100.2% | 117.6% | 116.2% | 62%    | 103.1% | 62%    | 122%   | 92.2%  | 96.9%  |
|    |                                                                                                                                                                                                         |        |        |        |        |        |        |        |        |        |
| 5  | NIST SRM 2710a mg/Kg Lead IVBA Results<br>(Nominal = 3440 mg/Kg)                                                                                                                                        | 3325   | 4000   | 3943   | 3595   | 3615   | 3400   | 3393   | 3332   | 3575   |
| 6  | NIST SRM 2710a Lead IVBA Percent Recovery<br>(Nominal: 3440 mg/Kg) (Control Limits: 80% to 120%)                                                                                                        | 96.7%  | 116.3% | 114.6% | 104.5% | 105.1% | 98.8%  | 98.6%  | 96.9%  | 103.9% |
|    |                                                                                                                                                                                                         |        | •      |        |        |        |        |        |        |        |
| 7  | NIST SRM 2710a EPA Method 3051A Digestion Lead<br>Results (mg/Kg) NIST Certificate (Nominal: 5100 mg/Kg)<br>(Range: 4700 to 5800 mg/Kg)                                                                 | 5554   | 5370   | 4882   | 4912   | (4537) | 5491   | 5195   | 5181   | 5140   |
| 8  | NIST SRM 2710a EPA Method 3051A Lead Percent<br>Recovery Based on NIST Certificate Leachable Value of<br>5100 mg/Kg (Control Limits: 80% to 120%)                                                       | 108.9% | 105.3% | 95.7%  | 96.3%  | 89.0%  | 107.7% | 101.9% | 101.6% | 100.8% |
|    |                                                                                                                                                                                                         |        |        |        |        |        |        |        |        |        |
| 9  | Lead IVBA value for NIST SRM 2710a, based on the<br>mean EPA 3051A lead value using EPA SOP 9200.2-86<br>criteria. (Mean 67.5%: Control Limits: 60.7% - 74.2%)                                          | 65.2   | (78.4) | (77.3) | 70.5   | 70.9   | 66.7   | 66.5   | 65.3   | 70.1   |
|    |                                                                                                                                                                                                         |        |        |        |        |        |        |        |        |        |
| 10 | NIST SRM 2710a Lead IVBA Results Based on both the<br>IVBA Lead Extraction and EPA 3051A Digestion of NIST<br>SRM 2710a During this Study<br>Lead IVBA: (Mean 67.5%: Control Limits: 60.7% to<br>74.2%) | 59.9   | (74.5) | (80.8) | 73.2   | (79.7) | 61.9   | 65.3   | 64.3   | 69.9   |
| 11 | Lead IVBA value for NIST SRM 2710a based on the<br>Study Lead IVBA and EPA Method 3051A results. (i.e.<br>Row 10 divided by IVBA 67.5%)                                                                 | 88.7%  | 110.4% | 119.7% | 108.4% | 118.0% | 91.7%  | 96.8%  | 95.3%  | 103.6% |

NA = Not Applicable

Values in parentheses are outside the associated control limits.

|                                            |         | Excel ANOVA:<br>Note: alpha at | Single Factor<br>0.05 (95 perce |          |           |        |
|--------------------------------------------|---------|--------------------------------|---------------------------------|----------|-----------|--------|
|                                            |         | SU                             | MMARY                           |          |           |        |
| Groups                                     | Count   | Sum                            | Mean                            | Variance |           |        |
| Laboratory A                               | 5       | 22095                          | 4419                            | 2658     |           |        |
| Laboratory B                               | 5       | 26320                          | 5264                            | 9030     |           |        |
| Laboratory C                               | 5       | 24810                          | 4962                            | 23170    |           |        |
| Laboratory D                               | 5       | 23319                          | 4664                            | 5718     |           |        |
| Laboratory E                               | 5       | 24282                          | 4856                            | 1534     |           |        |
| Laboratory F                               | 5       | 22830                          | 4566                            | 1828     |           |        |
| Laboratory G                               | 5       | 22771                          | 4554                            | 5491     |           |        |
| Laboratory H                               | 5       | 21569                          | 4314                            | 2327     |           |        |
|                                            |         | A                              | NOVA                            |          |           |        |
| Source of                                  | SS      | df                             | MS                              | F        | P-value   | F-Crit |
| Interlaboratory                            | 3399119 | 7                              | 485588                          | 75.1     | 4.83 E-18 | 2.31   |
| Intralaboratory                            | 207022  | 32                             | 6469                            |          |           |        |
| Total                                      | 3606142 | 39                             |                                 |          |           |        |
| SS = Sum of Square<br>df = Degrees of Free |         |                                |                                 |          |           |        |
| MS = Mean Square                           | dom     |                                |                                 |          |           |        |
| F = F Value Calculat                       | ed      |                                |                                 |          |           |        |
| F-Crit = Critical Value                    |         |                                |                                 |          |           |        |
| P-value = Probability                      |         |                                |                                 |          |           |        |
|                                            | y value |                                |                                 |          |           |        |

### Table D-3. FCRM Lead IVBA - Analysis of Variance Results

### Table D-4. FCRM Lead IVBA Prediction and Confidence Intervals Minus Lab B Lead IVBA and Lab D EPA Method 3051A Lead Results

| FCRM Lea                           | ad IVBA – 99 Percentile Prediction                                             | n Interval                                      |
|------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------|
| Low 99 % PI                        | Mean                                                                           | High 99 % PI                                    |
| 57.8                               | 71.7                                                                           | 85.6                                            |
| ± 99 Pr                            | ediction Interval = 19.4% of the Mean                                          | n Value                                         |
|                                    | sults been divided by the pooled dige<br>des the variance of both extraction a |                                                 |
| IVBA = 71.7 or 71.7%               | SD = 5.2                                                                       | RSD = 7.3%                                      |
| The range above should be          | used to determine if a laboratory lea                                          | ad IVBA result is acceptable.                   |
| FCRM Lead IVB                      | A – 99 Percentile Confidence Inte                                              | rval of the Mean                                |
| FCRM Lead IVB<br>71.7 = Mean       | A – 99 Percentile Confidence Inte<br>0.62 SD of the Mean                       | rval of the Mean<br>0.87% = RSD of the Mean     |
|                                    |                                                                                |                                                 |
| 71.7 = Mean                        | 0.62 SD of the Mean                                                            | 0.87% = RSD of the Mean                         |
| 71.7 = Mean<br>Low 99 % Cl<br>70.0 | 0.62 SD of the Mean<br>Mean                                                    | 0.87% = RSD of the Mean<br>High 99 % Cl<br>73.3 |

- SD = Standard Deviation
- RSD = Relative Standard Deviation
- CI = Confidence Interval
- PI = Prediction Interval

### Appendix E FCRM Lead IVBA Results and t-Test

|              | FCRM Lead IVBA Results t-Test (mg/Kg) |      |      |      |       |      |      |              |      |  |
|--------------|---------------------------------------|------|------|------|-------|------|------|--------------|------|--|
| Laboratory > | Α                                     | С    | D    | Е    | F     | G    | н    | Laboratory > | В    |  |
| Replicate 1  | 4360                                  | 4870 | 4762 | 4921 | 4609  | 4538 | 4314 | Replicate 1  | 5210 |  |
| Replicate 2  | 4491                                  | 5000 | 4639 | 4840 | 4604  | 4434 | 4285 | Replicate 2  | 5420 |  |
| Replicate 3  | 4387                                  | 5060 | 4622 | 4849 | 4549  | 4584 | 4267 | Replicate 3  | 5260 |  |
| Replicate 4  | 4448                                  | 5130 | 4576 | 4857 | 4563  | 4589 | 4393 | Replicate 4  | 5260 |  |
| Replicate 5  | 4409                                  | 4750 | 4720 | 4816 | 4505  | 4626 | 4310 | Replicate 5  | 5170 |  |
|              |                                       |      |      |      |       |      |      |              |      |  |
| Mean         | 4419                                  | 4962 | 4664 | 4856 | 4566  | 4554 | 4314 | Mean         | 5264 |  |
| SD           | 52                                    | 152  | 76   | 39   | 43    | 74   | 48   | SD           | 95   |  |
| RSD          | 1.2%                                  | 3.1% | 1.6% | 0.8% | 0.94% | 1.6% | 1.1% | RSD          | 1.8% |  |

### Table E-1. FCRM Lead IVBA Results and t-Test for Laboratory B

|      | Labs A-H | Percent Difference | Lab  | В    |
|------|----------|--------------------|------|------|
|      | n=35     |                    |      | n=5  |
| Mean | 4619     | 13.1%              | Mean | 5264 |
| SD   | 227      |                    | SD   | 95   |
| RSD  | 4.9%     |                    | RSD  | 1.8% |

| al<br>Mean<br>Variance                                                                                                                                                                   | lpha = 0.01 (1 in 99)<br>Labs A-H<br>4619<br>51519                               | <b>Lab B</b><br>5264                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                                          | 4619                                                                             | 5264                                             |
|                                                                                                                                                                                          |                                                                                  | 0_0.                                             |
| Variance                                                                                                                                                                                 | E1E10                                                                            |                                                  |
|                                                                                                                                                                                          | 51519                                                                            | 9030                                             |
| Observations                                                                                                                                                                             | 35                                                                               | 5                                                |
| Pooled Variance                                                                                                                                                                          | 47047                                                                            |                                                  |
| Hypothesized Mean                                                                                                                                                                        | <u> </u>                                                                         |                                                  |
| Difference                                                                                                                                                                               | 0                                                                                |                                                  |
| Df                                                                                                                                                                                       | 38                                                                               |                                                  |
| t-Stat                                                                                                                                                                                   | 6.22                                                                             |                                                  |
| P(T ≤ t) two-tail                                                                                                                                                                        | 2.87 E-07                                                                        |                                                  |
| t-Critical two-tail                                                                                                                                                                      | 2.71                                                                             |                                                  |
| The t-Stat value of 6.22 is gr<br>therefore, the null hypothes<br>different (zero difference, sa<br>A P(T $\leq$ t) two tail value of le<br>probability that the means of<br>population. | is that the means are no<br>ame population), can be<br>ess than 0.01 indicates a | t significantly<br>rejected.<br>greater than 99% |

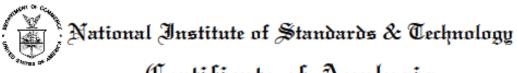
SD = Standard Deviation

RSD = Relative Standard Deviation

### Appendix E FCRM Lead IVBA Results and t-Test

| Table E-2. FCRM Lead IVBA Results                                |
|------------------------------------------------------------------|
| With Prediction Intervals and Confidence Intervals - Minus Lab B |
|                                                                  |

|                                                                                                                                                                  | FCRM Le              | ead IVB                                                                                                | A Result                                                                                                                                                                                                          | ts (mg/K                                                                         | (g)       |                                                                                       |                                                                                                                                 |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------|
| Laboratory >                                                                                                                                                     | A                    | В                                                                                                      | С                                                                                                                                                                                                                 | D                                                                                | E         | F                                                                                     | G                                                                                                                               | н                |
| Replicate 1                                                                                                                                                      | 4360                 |                                                                                                        | 4870                                                                                                                                                                                                              | 4762                                                                             | 4921      | 4609                                                                                  | 4538                                                                                                                            | 4314             |
| Replicate 2                                                                                                                                                      | 4491                 |                                                                                                        | 5000                                                                                                                                                                                                              | 4639                                                                             | 4840      | 4604                                                                                  | 4434                                                                                                                            | 4285             |
| Replicate 3                                                                                                                                                      | 4387                 |                                                                                                        | 5060                                                                                                                                                                                                              | 4622                                                                             | 4849      | 4549                                                                                  | 4584                                                                                                                            | 4267             |
| Replicate 4                                                                                                                                                      | 4448                 |                                                                                                        | 5130                                                                                                                                                                                                              | 4576                                                                             | 4857      | 4563                                                                                  | 4589                                                                                                                            | 4393             |
| Replicate 5                                                                                                                                                      | 4409                 |                                                                                                        | 4750                                                                                                                                                                                                              | 4720                                                                             | 4816      | 4505                                                                                  | 4626                                                                                                                            | 4310             |
|                                                                                                                                                                  | · · ·                |                                                                                                        |                                                                                                                                                                                                                   |                                                                                  |           |                                                                                       |                                                                                                                                 |                  |
| Mean                                                                                                                                                             | 4419                 |                                                                                                        | 4962                                                                                                                                                                                                              | 4664                                                                             | 4856      | 4566                                                                                  | 4554                                                                                                                            | 4314             |
| SD                                                                                                                                                               | 52                   |                                                                                                        | 152                                                                                                                                                                                                               | 76                                                                               | 39        | 43                                                                                    | 74                                                                                                                              | 48               |
| RSD                                                                                                                                                              | 1.2%                 |                                                                                                        | 3.1%                                                                                                                                                                                                              | 1.6%                                                                             | 0.8%      | 0.94%                                                                                 | 1.6%                                                                                                                            | 1.1%             |
|                                                                                                                                                                  |                      |                                                                                                        |                                                                                                                                                                                                                   |                                                                                  |           |                                                                                       |                                                                                                                                 |                  |
|                                                                                                                                                                  |                      | led Res                                                                                                | ults (n-1)                                                                                                                                                                                                        |                                                                                  |           |                                                                                       |                                                                                                                                 |                  |
|                                                                                                                                                                  | ean                  |                                                                                                        |                                                                                                                                                                                                                   | 461                                                                              | -         |                                                                                       |                                                                                                                                 |                  |
| SD                                                                                                                                                               |                      |                                                                                                        |                                                                                                                                                                                                                   | 227                                                                              |           |                                                                                       |                                                                                                                                 |                  |
| RS                                                                                                                                                               | SD                   |                                                                                                        | ٨                                                                                                                                                                                                                 | 4.99                                                                             | %         |                                                                                       |                                                                                                                                 |                  |
|                                                                                                                                                                  |                      |                                                                                                        |                                                                                                                                                                                                                   |                                                                                  |           |                                                                                       |                                                                                                                                 |                  |
| FCRM                                                                                                                                                             | Lead IVBA – 99       | Percen                                                                                                 | tile Pred                                                                                                                                                                                                         | diction I                                                                        | nterval ( | mg/Kg)                                                                                |                                                                                                                                 |                  |
| Low 99 % PI                                                                                                                                                      |                      |                                                                                                        | lean                                                                                                                                                                                                              |                                                                                  |           | -                                                                                     | n 99 % Pl                                                                                                                       |                  |
| 3991                                                                                                                                                             | ₽<br>99 % Prediction |                                                                                                        | 619                                                                                                                                                                                                               |                                                                                  |           |                                                                                       | 5247                                                                                                                            |                  |
| 0                                                                                                                                                                |                      |                                                                                                        | aborate                                                                                                                                                                                                           |                                                                                  |           |                                                                                       | <i>Jour 10 u</i>                                                                                                                | cceptable        |
| <u> </u>                                                                                                                                                         |                      |                                                                                                        |                                                                                                                                                                                                                   | -                                                                                |           |                                                                                       |                                                                                                                                 | cceptable        |
| FC                                                                                                                                                               | CRM Lead IVBA        | - 99 Pe                                                                                                |                                                                                                                                                                                                                   | -                                                                                |           | rval                                                                                  |                                                                                                                                 | cceptable        |
|                                                                                                                                                                  |                      | - 99 Pe                                                                                                | ercentile                                                                                                                                                                                                         | -                                                                                |           | rval<br>Higł                                                                          | <b>99 % PI</b>                                                                                                                  |                  |
| FC<br>Low 99 % PI<br>50.5                                                                                                                                        |                      | - 99 Pe                                                                                                | ercentile<br>lean<br>59.6                                                                                                                                                                                         | Predict                                                                          | ion Inte  | rval<br>Higł                                                                          | n 99 % Pl                                                                                                                       |                  |
| FC<br>Low 99 % PI<br>50.5                                                                                                                                        | CRM Lead IVBA        | A – 99 Pe<br>M<br>Interva<br>d by the                                                                  | ercentile<br>lean<br>59.6<br>l = 27.5%<br>pooled d                                                                                                                                                                | e Predict                                                                        | ion Inte  | rval<br>High<br>Ie<br>o derive                                                        | <b>1 99 % Pl</b><br>88.8                                                                                                        |                  |
| FC<br>Low 99 % PI<br>50.5                                                                                                                                        | CRM Lead IVBA        | A – 99 Pe<br>M<br>(n<br>Interva<br>d by the<br>of both                                                 | ercentile<br>lean<br>59.6<br>l = 27.5%<br>pooled d                                                                                                                                                                | e Predict                                                                        | ion Inte  | rval<br>High<br>Ie<br>o derive<br>esults                                              | <b>1 99 % Pl</b><br>88.8                                                                                                        | VBA and          |
| FC<br>Low 99 % PI<br>50.5<br>The pooled extraction res<br>includ<br>IVBA = 69.6 or 69.6%<br>The range above sho                                                  | CRM Lead IVBA        | A - 99 Pe<br>M<br>Interva<br>d by the<br>of both<br>SE<br>determin                                     | ercentile<br>lean<br>59.6<br>I = 27.5%<br>pooled d<br>extractio<br>0 = 7.2<br>he if a lab                                                                                                                         | of the M<br>ligestion<br>n and dig                                               | ion Inte  | rval<br>High<br>e<br>o derive<br>esults<br>RSD<br>A result                            | <b>99 % Pl</b><br>88.8<br><b>an Lead l</b><br>= 10.3%<br><i>is accept</i>                                                       | VBA and          |
| FCRM Le                                                                                                                                                          | CRM Lead IVBA        | A - 99 Pe<br>M<br>Interva<br>d by the<br>of both<br>SE<br>determin<br>ercentil                         | ercentile<br>lean<br>59.6<br>I = 27.5%<br>pooled d<br>extractio<br>0 = 7.2<br>he if a lab<br>e Confic                                                                                                             | e Predict<br>of the M<br>ligestion<br>n and dig<br>poratory f                    | ion Inte  | rval<br>High<br>o derive<br>esults<br>RSD<br>A result                                 | a 99 % Pl<br>88.8<br>an Lead I<br>= 10.3%<br>is accept<br>an                                                                    | VBA and<br>able. |
| FC<br>Low 99 % PI<br>50.5<br>The pooled extraction res<br>includ<br>IVBA = 69.6 or 69.6%<br>The range above sho<br>FCRM Le<br>69.6 = Mean                        | CRM Lead IVBA        | A - 99 Pe<br>M<br>Interva<br>d by the<br>of both<br>SE<br>determin<br>ercentil                         | ercentile<br>lean<br>59.6<br>I = 27.5%<br>pooled d<br>extractio<br>0 = 7.2<br>he if a lab<br>confic<br>o of the M                                                                                                 | e Predict<br>of the M<br>ligestion<br>n and dig<br>poratory f                    | ion Inte  | rval<br>High<br>o derive<br>esults<br>RSD<br>A result                                 | $\frac{99 \% PI}{88.8}$ an Lead I $= 10.3\%$ is accept<br>an<br>BD of the I                                                     | VBA and<br>able. |
| FCRM Lee<br>69.6 = Mean<br>Low 99 % PI<br>50.5<br>The pooled extraction res<br>includ<br>IVBA = 69.6 or 69.6%<br>FCRM Lee<br>69.6 = Mean<br>Low 99 % CI          | CRM Lead IVBA        | A - 99 Pe<br>M<br>Interva<br>d by the<br>of both<br>SC<br>determin<br>ercentil<br>0.83 = SC            | ercentile<br>lean<br>59.6<br>I = 27.5%<br>pooled d<br>extractio<br>0 = 7.2<br>the if a lab<br>e Confic<br>0 of the M<br>lean                                                                                      | e Predict<br>of the M<br>ligestion<br>n and dig<br>poratory f                    | ion Inte  | rval<br>High<br>o derive<br>esults<br>RSD<br>A result<br>f the Me<br>.2% = RS<br>High | <b>99 % Pl</b><br>88.8<br><b>an Lead l</b><br>= 10.3%<br><i>is accept</i><br><b>an</b><br>5D of the l<br><b>99 % Cl</b>         | VBA and<br>able. |
| FC<br>Low 99 % PI<br>50.5<br>The pooled extraction res<br>includ<br>IVBA = 69.6 or 69.6%<br>The range above sho<br>FCRM Le<br>69.6 = Mean<br>Low 99 % CI<br>67.4 | CRM Lead IVBA        | A <b>- 99 P</b><br>M<br>Interva<br>d by the<br>of both<br>SC<br>determin<br>ercentil<br>0.83 = SC<br>M | ercentile<br>lean<br>$\overline{59.6}$<br>I = 27.5%<br>pooled d<br>extractio<br>$\overline{9} = 7.2$<br>$\overline{6}$ <i>if a lab</i><br><i>c Confic</i><br>$\overline{9}$ of the M<br>lean<br>$\overline{59.6}$ | e Predict<br>of the M<br>ligestion<br>n and dig<br>poratory f<br>lence In<br>ean | ion Inte  | rval<br>High<br>o derive<br>esults<br>RSD<br>A result<br>f the Me<br>.2% = RS<br>High | <b>99 % Pl</b><br>88.8<br><b>an Lead l</b><br>= 10.3%<br><i>is accept</i><br><b>an</b><br>SD of the l<br><b>99 % Cl</b><br>71.8 | VBA and<br>able. |


SD = Standard Deviation

RSD = Relative Standard Deviation

CI = Confidence Interval

PI = Prediction Interval

### Appendix F NIST SRM 2710a Certificate of Analysis



## Certificate of Analysis

### Standard Reference Material® 2710a

### Montana I Soil

#### Highly Elevated Trace Element Concentrations

This Standard Reference Material (SRM) is intended primarily for use in the analysis of soils, sediments, or other materials of a similar matrix. One unit of SRM 2710a consists of 50 g of the dried, powdered soil, blended with lead oxide.

**Certified Values:** The certified concentrations for 22 elements, expressed as mass fractions [1] on a dry-mass basis, are provided in Table 1. Certified values are based on results obtained from critically evaluated independent analytical techniques. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [2].

Reference Values: The reference values for 13 constituents, expressed as mass fractions on a dry-mass basis, are provided in Table 2. Ten reference values are based on results obtained from a single NIST analytical method, and three are based on results form two NIST analytical methods. Reference values are non-certified values that are the best estimate of the true value; however, the values do not meet NIST criteria for certification and are provided with associated uncertainties that may not include all sources of uncertainty [2].

**Information Values**: The values for 13 elements are provided in Table 3 for information purposes only. These are non-certified values with no uncertainty assessed. The information values included in this certificate are based on results obtained from one NIST method.

Expiration of Certification: The certification of SRM 2710a is valid, within the measurement uncertainties specified, until 1 January 2019, provided the SRM is handled in accordance with the instructions given in this certificate (see "Instructions for Use"). This certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet) will facilitate notification.

E.A. Mackey and R.R. Greenberg of the NIST Analytical Chemistry Division were responsible for coordination of the technical measurements leading to certification.

Statistical analyses were performed by J.H. Yen of the NIST Statistical Engineering Division.

Support aspects involved in the issuance of this SRM were coordinated through the NIST Measurement Services Division.

Stephen A. Wise, Chief Analytical Chemistry Division

Gaithersburg, MD 20899 Certificate Issue Date: 7 April 2009 Robert L. Watters, Jr., Chief Measurement Services Division

SRM 2710a

Page 1 of 7

#### INSTRUCTIONS FOR USE

Sampling: The SRM should be thoroughly mixed by repeatedly inverting and rotating the bottle horizontally before removing a test portion for analysis. A minimum mass of 250 mg (dry mass - see *Instructions for Drying*) should be used for analytical determinations to be related to the mass fraction values in this Certificate of Analysis.

To obtain the certified values, sample preparation procedures should be designed to effect complete dissolution. If volatile elements (i.e., arsenic, mercury, selenium) will be determined, precautions should be taken in the dissolution of SRM 2710a to avoid volatilization losses.

**Drying:** To relate measurements to the certified, reference, and information values that are expressed on a dry-mass basis, users should determine a drying correction at the time of each analysis. The recommended drying procedure is oven drying for 2 h at 110 °C. Note that analytical determination of volatile elements (i.e., arsenic, mercury, selenium) should be determined on samples as received; separate samples should be dried as previously described to obtain a correction factor for moisture. Correction for moisture must be made to the data for volatile elements before comparing to the certified values. This procedure ensures that these elements are not lost during drying. The mass loss on drying for this material as bottled was approximately 2 %, but this value may change once the bottle is opened and the soil is exposed to air.

#### SOURCE, PREPARATION, AND ANALYSIS

Source and Preparation of Material<sup>1</sup>: The U.S. Geological Survey (USGS), under contract to NIST, collected and processed the material for SRM 2710a. The original collection site used for SRM 2710 was no longer available due to remediation efforts by the Montana Department of Environmental Quality. An alternative nearby site, located within the flood plain of the Silver Bow Creek, was selected. The site is approximately five miles west of Butte, Montana. Soil for SRM 2710a was placed in 22 plastic-lined five-gallon buckets using a common garden spade. The buckets were sealed and transferred to the USGS using a commercial freight carrier. At the USGS, the SRM 2710a soil was dried at room temperature, disaggregated, and sieved to remove coarse material ( $\geq$ 2 mm). The resulting soil was ball-milled in 50 kg portions together with an amount of lead oxide sufficient to achieve a mass fraction of 0.55 % lead in the final product. The entire ball-milled batch of soil was transferred to a cross-flow V-blender for mixing. The blended soil was radiation sterilized prior to bottling. In the final preparation step the blended material was split into containers using a custom-designed spinning riffler, which was used to divide the material into smaller batches, and then used to apportion approximately 50 g into each pre-cleaned bottle.

Every 100th bottle was set aside for chemical analyses designed to assess material homogeneity using X-ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS) at the USGS. Homogeneity assessments were performed at NIST as well, and results indicated that additional processing was needed to achieve optimum homogeneity. The material from all bottles was combined, and then ground in batches between stainless steel plates for a time sufficient to produce a powder of which  $\geq$ 95 %, by mass, passed through a 200 mesh (74 µm) sieve. The resulting powder was blended, and 50 g portions were dispensed into bottles using the spinning riffler. Results from additional analyses indicated material homogeneity was acceptable (see below).

Analysis: The homogeneity was assessed for selected elements in the bottled material using X-ray fluorescence spectrometry and instrumental neutron activation analysis (INAA). The estimated relative standard deviation for material inhomogeneity is  $\leq 1$  % and no component for inhomogeneity was included in the expanded uncertainties of the certified or reference values.

Analyses of this material were performed at NIST and at the USGS (Denver, CO). Results from NIST were used to provide the certified, reference, and information values shown in Tables 1, 2, and 3 respectively. Results from the USGS were used to confirm those values. The analytical techniques used for each element are listed in Table 4; the analysts are listed in Tables 5 and 6.

Page 2 of 7

<sup>&</sup>lt;sup>1</sup> Certain commercial equipment, instruments, or materials are identified in this certificate in order to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

| Element    | Ма    | ss Fr<br>(%) | action | Element   |      | ss Fi<br>mg/k | action<br>g) |
|------------|-------|--------------|--------|-----------|------|---------------|--------------|
| Aluminum   | 5.95  | ±            | 0.05   | Antimony  | 52.5 | ±             | 1.6          |
| Arsenic    | 0.154 | ±            | 0.010  | Barium    | 792  | ±             | 36           |
| Calcium    | 0.964 | ±            | 0.045  | Cadmium   | 12.3 | ±             | 0.3          |
| Copper     | 0.342 | ±            | 0.005  | Cobalt    | 5.99 | ±             | 0.14         |
| Iron       | 4.32  | ±            | 0.08   | Lanthanum | 30.6 | ±             | 1.2          |
| Lead       | 0.552 | ±            | 0.003  | Mercury   | 9.88 | ±             | 0.21         |
| Magnesium  | 0.734 | ±            | 0.038  | Strontium | 255  | ±             | 7            |
| Manganese  | 0.214 | ±            | 0.006  | Uranium   | 9.11 | ±             | 0.30         |
| Phosphorus | 0.105 | ±            | 0.004  |           |      |               |              |
| Potassium  | 2.17  | ±            | 0.13   |           |      |               |              |
| Silicon    | 31.1  | ±            | 0.4    |           |      |               |              |
| Sodium     | 0.894 | ±            | 0.019  |           |      |               |              |
| Titanium   | 0.311 | ±            | 0.007  |           |      |               |              |
| Zinc       | 0.418 | ±            | 0.015  |           |      |               |              |

## Table 1. Certified Values (k,b) (Dry-Mass Basis) for Selected Elements in SRM 2710a

<sup>(a)</sup> Certified values for all elements except lead and mercury are the equally weighted means of results from two or three analytical methods. The uncertainty listed with each value is an expanded uncertainty about the mean. The expanded uncertainty is calculated as  $U = ku_c$ , where  $u_c$  is intended to represent, at the level of one standard deviation, the combined effect of between-method and within-method components of uncertainty, following the ISO Guide [3,4]. The coverage factor (k) is determined from the Student's *t*-distribution corresponding to the appropriate associated degrees of freedom and approximately 95 % confidence for each analyte.

<sup>(b)</sup> The certified values for lead and mercury are each results from a single NIST method (see Table 4) for which a complete evaluation of all sources of uncertainty has been performed. The uncertainties for the certified values for these elements represent expanded uncertainties with a coverage factor of 2, with uncertainty components combined following the ISO Guide [4].

Page 3 of 7

| Element    | Mass Fraction | (mg/kg) |
|------------|---------------|---------|
| Cesium     | 8.25 ±        | 0.11    |
| Chromium   | 23 ±          | 6       |
| Europium   | 0.82 ±        | 0.01    |
| Gadolinium | 3.0 ±         | 0.1     |
| Lutetium   | 0.31 ±        | 0.01    |
| Neodymium  | 22 ±          | 2       |
| Nickel     | 8 ±           | 1       |
| Rubidium   | 117 ±         | 3       |
| Samarium   | 4.0 ±         | 0.2     |
| Scandium   | 9.9 ±         | 0.1     |
| Thallium   | 1.52 ±        | 0.02    |
| Thorium    | 18.1 ±        | 0.3     |
| Vanadium   | 82 ±          | 9       |
|            |               |         |

### Table 2. Reference Values (Dry-Mass Basis) for Selected Elements in SRM 2710a

<sup>(8)</sup> Reference values for all elements except chromium, nickel, samarium, and vanadium are based on results from one analytical method at NIST (see Table 4) and the uncertainties represent the expanded uncertainties, which include the combined Type A and Type B with a coverage factor of 2, following the ISO Guide [4].

<sup>(b)</sup> Reference values for nickel and samarium are the equally weighted means of results from two analytical methods for nickel and two INAA experiments for samarium. The uncertainty listed with each value is an expanded uncertainty about the mean. The expanded uncertainty is calculated as  $U = ku_c$ , where  $u_c$  is intended to represent, at the level of one standard deviation, the combined effect of between-method and within-method components of uncertainty, following the ISO Guide [3,4]. The coverage factor (k) is determined from the Student's *t*-distribution corresponding to the appropriate associated degrees of freedom and approximately 95 % confidence for each analyte.

<sup>(e)</sup> Reference values for chromium and vanadium are based on a weighted mean calculated based on the Dersimonian-Laird method [5], which incorporates an estimate of the between-method variance into the weights. The expanded uncertainty listed with these values is calculated as  $U = ku_c$ , where k = 2, and  $u_c$  is intended to represent, at the level of one standard deviation, the combined effect of between-method and within-method components of uncertainty.

# Table 3. Information Values<sup>(\*)</sup> (Dry-Mass Basis) for Selected Elements in SRM 2710a

| Element    | Mass Fraction (mg/kg) |
|------------|-----------------------|
| Boron      | 20                    |
| Cerium     | 60                    |
| Dysprosium | 3                     |
| Gold       | 0.2                   |
| Hafnium    | 7                     |
| Indium     | 7                     |
| Selenium   | 1                     |
| Silver     | 40                    |
| Tantalum   | 0.9                   |
| Terbium    | 0.5                   |
| Tungsten   | 190                   |
| Ytterbium  | 2                     |
| Zirconium  | 200                   |

<sup>(a)</sup> Information values are based on results from one analytical method at NIST

SRM 2710a

Page 5 of 7

| Element | Methods               | Element | Methods             |
|---------|-----------------------|---------|---------------------|
| Ag      | INAA                  | Na      | INAA; XRF           |
| Al      | INAA; XRF             | Nd      | INAA                |
| As      | CCT-ICP-MS; INAA; XRF | Ni      | ICP-MS; ICP-OES     |
| Au      | INAA                  | P       | ICP-OES; XRF        |
| в       | PGAA                  | Pb      | ID-ICP-MS           |
| Ba      | INAA: XRF             | Rb      | INAA                |
| Ca      | INAA; XRF             | Sb      | ICP-MS; INAA        |
| Cd      | ID-ICP-MS; PGAA       | Sc      | INAA                |
| Ce      | INAA                  | Se      | CCT-ICP-MS          |
| Co      | INAA; ICP-OES         | Si      | PGAA; XRF           |
| Cr      | INAA; XRF             | Sm      | INAA <sup>(*)</sup> |
| Cs      | INAA                  | Sr      | ICP-OES; XRF        |
| Cu      | INAA; XRF             | Ta      | INAA                |
| Dy      | INAA                  | Ть      | INAA                |
| Eu      | INAA                  | Th      | INAA                |
| Fe      | INAA; PGAA; XRF       | Ti      | PGAA; XRF           |
| Gd      | PGAA                  | TI      | ICP-MS              |
| Hf      | INAA                  | U       | ICP-MS; INAA        |
| Hg      | CV-ID-ICPMS           | v       | INAA; XRF           |
| K       | INAA; PGAA; XRF       | w       | INAA                |
| La      | INAA <sup>(a)</sup>   | Yb      | INAA                |
| Lu      | INAA                  | Zn      | INAA; XRF           |
| Mg      | INAA; XRF             | Zr      | XRF                 |
| Mn      | INAA; PGAA; XRF       |         |                     |

#### Table 4. NIST Methods Used for the Analysis of SRM 2710a

#### NIST Methods of Analysis

| CCT-ICP-MS   | Collision cell inductively coupled plasma mass spectrometry              |
|--------------|--------------------------------------------------------------------------|
| CV-ID-ICP-MS | Cold vapor isotope dilution inductively coupled plasma mass spectrometry |
| ICP-MS       | Inductively coupled plasma mass spectrometry                             |
| ICP-OES      | Inductively coupled plasma optical emission spectrometry                 |
| ID-ICP-MS    | Isotope dilution inductively coupled plasma mass spectrometry            |
| INAA         | Instrumental neutron activation analysis                                 |
| PGAA         | Prompt gamma-ray activation analysis                                     |
| XRF          | X-ray fluorescence spectrometry                                          |
|              |                                                                          |
|              | USGS Methods of Analysis <sup>(b)</sup>                                  |
|              |                                                                          |

| WD-XRF-2  | Wavelength dispersive X-ray fluorescence spectrometry at USGS    |
|-----------|------------------------------------------------------------------|
| ICP-OES-2 | Inductively coupled plasma optical emission spectrometry at USGS |
| ICP-MS-2  | Inductively coupled plasma mass spectrometry at USGS             |

<sup>(8)</sup>Two different INAA experiments, performed using different sub-samples and different analytical conditions, were used to provide certified and reference values for lanthanum and samarium, respectively. <sup>(b)</sup>USGS Methods of Analysis were used to confirm results from certification methods.

SRM 2710a

Page 6 of 7

Table 5. Participating NIST Analysts:

| S.J. Christopher | S.A. Rabb            |
|------------------|----------------------|
| R.D. Day         | J.R. Sieber          |
| S.E. Long        | R.O. Spatz           |
| E.A. Mackey      | R.S. Popelka-Filcoff |
| A.F. Marlow      | B.E. Tomlin          |
| J.L. Molloy      | L.J. Wood            |
| K.E. Murphy      | L.L. Yu              |
| R.L. Paul        | R. Zeisler           |

Table 6. Participating USGS Laboratory and Analysts

| Laboratory                                                          |
|---------------------------------------------------------------------|
| U.S. Geological Survey<br>Branch of Geochemistry<br>Denver, CO, USA |

#### M.G. Adams Z.A. Brown P.L. Lamothe J.E. Taggart S.A. Wilson

Analysts

#### REFERENCES

- Thompson, A.; Taylor, B.N.; Guide for the Use of the International System of Units (SI), NIST Special Publication 811 (2008); available at http://www.physics.nist.gov/Pubs/contents.html.
- [2] May, W.E.; Gills, T.E.; Parris, R.; Beck, II, C.M.; Fassett, J.D.; Gettings, R.J.; Greenberg, R.R.; Guenther, F.R.; Kramer, G.; MacDonald, B.S.; Wise, S.A.; Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements, NIST Special Publication 260-136 (1999); available at http://www.cstl.nist.gov/nist839/NIST\_special\_publications.htm.
- [3] Levenson, M.S.; Banks, D.L.; Eberhardt, K.R.; Gill, L.M.; Guthrie, W.F.; Liu, H.K.; Vangel, M.G.; Yen, J.H.; Zhang, N.F.; J. Res. NIST 105, pp. 571-579 (2000).
- [4] ISO; Guide to the Expression of Uncertainty in Measurement, ISBN 92-67-10188-9, 1st ed.; International Organization for Standardization: Geneva, Switzerland (1993); see also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC (1994); available at http://www.physics.nist.gov/Pubs/contents.html.
- [5] DerSimonian, R.; Laird, N.; Controlled Clinical Trials 7, 177-188 (1986).

Users of this SRM should ensure that the certificate in their possession is current. This can be accomplished by contacting the SRM Program at: telephone (301) 975-2200; fax (301) 926-4751; e-mail srminfo@nist.gov; or via the Internet at <u>http://www.nist.gov/srm</u>.

SRM 2710a

Page 7 of 7

# Addendum to Certificate

# Standard Reference Material® 2710a

#### Montana I Soil

#### Highly Elevated Trace Element Concentrations

#### Leachable Concentrations Determined Using USEPA Methods 200.7 and 3050B

The mass fraction values contained in the NIST Certificate of Analysis for SRM 2710a represent the total element content of the material. The measurement results used to provide the certified, reference or information values are obtained from methods that require complete sample decomposition, or from nondestructive analytical methods such as instrumental neutron activation analysis or prompt gamma-ray activation analysis. Where complete sample decomposition is required, it can be accomplished by digestion with mixed acids or by fusion. For mixed-acid decomposition, hydrofluoric acid must be included in the acid mixture used to totally decompose siliceous materials such as soils and sediments.

In its monitoring programs, the U.S. Environmental Protection Agency (USEPA) has established a number of leach methods for the preparation of soil samples for the determination of extractable elements. Six laboratories participated, five of which used USEPA Method 200.7; the remaining laboratory used USEPA SW-846 Method 3050B for preparation of soil samples. All elements were determined in leachates by inductively coupled plasma optical emission spectrometry. All laboratories provided individual results from duplicate portions, and these results were averaged together to provide one result for each element from each participating laboratory. Results rejected as outliers by the USEPA Contract Laboratory Program (CLP) officials were not included. Results are summarized in Table A1. The ranges of mass fraction values, median values (to two significant figures), and the number of results included for each are given for 23 elements. The percent recovery values based on the ratios of the median values to the total element content (from the certified, reference, or information values in the Certificate of Analysis) are listed in the last column of Table A1. Note that the certified values provided as total mass fractions in the Certificate of Analysis are the best estimate of the true mass fraction values for this material.

This USEPA CLP Study was coordinated by Clifton Jones, Quality Assurance and Technical Support Program (QATS), Shaw Environmental & Infrastructure Group, Las Vegas, NV, under the direction of John Nebelsick, USEPA, Analytical Services Branch. The participating laboratories are listed in Table A2.

SRM 2710a

Page 1 of 2

| Element   | n | Rang  | ;e (m | ig/kg) | Median (mg/kg) | Recovery (%) |
|-----------|---|-------|-------|--------|----------------|--------------|
| Aluminum  | 6 | 8200  | -     | 12000  | 10000          | 17           |
| Antimony  | 6 | 5.0   | -     | 12     | 9.6            | 18           |
| Arsenic   | 6 | 1300  | -     | 1600   | 1400           | 92           |
| Barium    | 6 | 490   | -     | 540    | 510            | 65           |
| Beryllium | 6 | 0.24  | -     | 0.51   | 0.48           |              |
| Cadmium   | 5 | 9.6   | -     | 12     | 11             | 86           |
| Calcium   | 6 | 1700  | -     | 2000   | 1800           | 19           |
| Chromium  | 6 | 9.2   | -     | 11     | 10             | 41           |
| Cobalt    | 6 | 2.8   | -     | 5.2    | 3.8            | 64           |
| Copper    | 6 | 3100  | -     | 3500   | 3300           | 95           |
| Iron      | 6 | 30000 | -     | 36000  | 34000          | 79           |
| Lead      | 6 | 4700  | -     | 5800   | 5100           | 93           |
| Magnesium | 6 | 3200  | -     | 3600   | 3500           | 48           |
| Manganese | 6 | 1500  | -     | 1800   | 1700           | 77           |
| Mercury   | 6 | 9.3   | -     | 11.7   | 10             | 104          |
| Nickel    | 5 | 4.8   | -     | 6.1    | 5.5            | 69           |
| Potassium | 6 | 3800  | -     | 4700   | 4100           | 19           |
| Selenium  | 2 | 1.5   | -     | 2.6    | 2.0            | 200          |
| Silver    | 6 | 31    | -     | 39     | 36             | 91           |
| Sodium    | 6 | 550   | -     | 650    | 590            | 7            |
| Thallium  | 3 | 1.3   | -     | 3.6    | 3.2            | 213          |
| Vanadium  | 6 | 35    | -     | 43     | 38             | 48           |
| Zinc      | 6 | 3300  | -     | 4400   | 3800           | 90           |

Table A1. Results from Laboratories Participating in the EPA Contract Laboratory Program Study.

#### Table A2. List of CLP and non-CLP Participating Laboratories

A4 Scientific, Inc. Bonner Analytical Testing Co. Chem Tech Consulting Group Datachem Laboratories, Inc. Liberty Analytical Corporation SVL Analytical, Inc.

# **APPENDIX G**

# Laboratory Submitted Initial Demonstration of Proficiency Forms

Laboratory A

## LAB A Initial Demonstration of Proficiency (IDP) Form For IVBA Round Robin of NIST 2710a and 2711a (ver. 06-30-10)

Before the USEPA initiates the Round Robin analysis of the NIST 2710a and 2711a materials they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

| 1       Interference of the Dreaman point of the point had using the attached SOP?         2       Will your facility conduct the extraction? (Yes/No)       Yes         3       If the answer to question 2 is no, please provide the name of the laboratory that will be conducting the extraction. (Lab Name)       No         4       Will your facility conduct the extract analysis? (Yes/No)       No         5       If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)       Other lab name was here         6       Will your facility be able to conduct the attached IVBA Method EPA 9200.1-86 as written? (air controlled temperature is OK) (Yes, or Provide comment Below in 7)       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | General and Lacinty questions                                                |                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------|--------------------------|
| 2       Will your facility conduct the extraction? (Yes/No)       Yes         3       If the answer to question 2 is no, please provide the name of the laboratory that will be conducting the extraction. (Lab Name)       No         4       Will your facility conduct the extract analysis? (Yes/No)       No         5       If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)       Other lab name was here         6       Will your facility be able to conduct the attached IVBA Method EPA 9200.1-86 as written? (air controlled temperature is OK) (Yes, or Provide comment Below in 7)       No         7       If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86 method in the field provided here. Comment-The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes | 1 |                                                                              |                          |
| 3       If the answer to question 2 is no, please provide the name of the laboratory that will be conducting the extraction. (Lab Name)         4       Will your facility conduct the extract analysis? (Yes/No)       No         5       If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)       Other lab name was here         6       Will your facility be able to conduct the attached IVBA Method EPA 9200.1-86 as written? (air controlled temperature is OK) (Yes, or Provide comment Below in 7)       No         7       If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86 method in the field provided here. Comment- The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                       | _ |                                                                              |                          |
| name of the laboratory that will be conducting the<br>extraction. (Lab Name)No4Will your facility conduct the extract analysis? (Yes/No)No5If the answer to question 4 is no, please provide the<br>name of the laboratory that will be conducting the<br>analysis. (Lab Name)Other lab name<br>was here6Will your facility be able to conduct the attached IVBA Method EPA<br>9200.1-86 as written? (air controlled temperature is OK)<br>(Yes, or Provide comment Below in 7)No7If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86<br>method in the field provided here. Comment-<br>The apparatus we use is different from the one described in the SOP. It consists of a locally built<br>Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br>is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this<br>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br>relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                 |   | Will your facility conduct the extraction? (Yes/No)                          | Yes                      |
| extraction. (Lab Name)       No         4       Will your facility conduct the extract analysis? (Yes/No)       No         5       If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)       Other lab name was here         6       Will your facility be able to conduct the attached IVBA Method EPA 9200.1-86 as written? (air controlled temperature is OK) (Yes, or Provide comment Below in 7)       No         7       If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86 method in the field provided here. Comment-The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                | 3 |                                                                              |                          |
| <ul> <li>Will your facility conduct the extract analysis? (Yes/No)</li> <li>If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)</li> <li>Will your facility be able to conduct the attached IVBA Method EPA</li> <li>9200.1-86 as written? (air controlled temperature is OK) (Yes, or Provide comment Below in 7)</li> <li>If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86 method in the field provided here. Comment-The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes</li> </ul>                                                                                                                                                                                                                                                                                        |   | name of the laboratory that will be conducting the                           |                          |
| <ul> <li>5 If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)</li> <li>6 Will your facility be able to conduct the attached IVBA Method EPA 9200.1-86 as written? (air controlled temperature is OK) (Yes, or Provide comment Below in 7)</li> <li>7 If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86 method in the field provided here. Comment-The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes</li> </ul>                                                                                                                                                                                                                                                                                                                                                              |   | extraction. (Lab Name)                                                       |                          |
| name of the laboratory that will be conducting the<br>analysis. (Lab Name)was here6Will your facility be able to conduct the attached IVBA Method EPA<br>9200.1-86 as written? (air controlled temperature is OK)<br>(Yes, or Provide comment Below in 7)No7If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86<br>method in the field provided here. Comment-<br>The apparatus we use is different from the one described in the SOP. It consists of a locally built<br>Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br>is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this<br>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br>relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 | Will your facility conduct the extract analysis? (Yes/No)                    | No                       |
| analysis. (Lab Name)       No         6       Will your facility be able to conduct the attached IVBA Method EPA<br>9200.1-86 as written? (air controlled temperature is OK)<br>(Yes, or Provide comment Below in 7)       No         7       If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86<br>method in the field provided here. Comment-<br>The apparatus we use is different from the one described in the SOP. It consists of a locally built<br>Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br>is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this<br>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br>relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 |                                                                              | Other lab name           |
| <ul> <li>6 Will your facility be able to conduct the attached IVBA Method EPA<br/>9200.1-86 as written? (air controlled temperature is OK)<br/>(Yes, or Provide comment Below in 7)</li> <li>7 If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86<br/>method in the field provided here. Comment-<br/>The apparatus we use is different from the one described in the SOP. It consists of a locally built<br/>Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br/>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br/>is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this<br/>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br/>relevant data for lead since 2007. We will use the protocol as written including matrix spikes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | name of the laboratory that will be conducting the                           | was here                 |
| <ul> <li>9200.1-86 as written? (air controlled temperature is OK)<br/>(Yes, or Provide comment Below in 7)</li> <li>7 If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86<br/>method in the field provided here. Comment-<br/>The apparatus we use is different from the one described in the SOP. It consists of a locally built<br/>Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br/>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br/>is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this<br/>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br/>relevant data for lead since 2007. We will use the protocol as written including matrix spikes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | analysis. (Lab Name)                                                         |                          |
| <ul> <li>(Yes, or Provide comment Below in 7)</li> <li>If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86 method in the field provided here. Comment-<br/>The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of 37 ± 2°C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 | Will your facility be able to conduct the attached IVBA Method EPA           | No                       |
| 7 If the answer the question 6 is no, please provide the deviation from the EPA 9200.1-86 method in the field provided here. Comment-<br>The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of $37 \pm 2^{\circ}$ C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 9200.1-86 as written? (air controlled temperature is OK)                     |                          |
| method in the field provided here. Comment-<br>The apparatus we use is different from the one described in the SOP. It consists of a locally built<br>Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br>is immersed in a water bath maintained at a temperature of $37 \pm 2^{\circ}$ C. We have been using this<br>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br>relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | (Yes, or Provide comment Below in 7)                                         |                          |
| The apparatus we use is different from the one described in the SOP. It consists of a locally built Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of $37 \pm 2^{\circ}$ C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 |                                                                              | e EPA 9200.1-86          |
| Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br>is immersed in a water bath maintained at a temperature of $37 \pm 2^{\circ}$ C. We have been using this<br>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br>relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | method in the field provided here. Comment-                                  |                          |
| Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 30 rpm in an end over<br>end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles<br>is immersed in a water bath maintained at a temperature of $37 \pm 2^{\circ}$ C. We have been using this<br>apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled<br>relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | The apparatus we use is different from the one described in the SOP. It cons | sists of a locally built |
| end rotation. The basket holds up to ten 125 ml HPDE bottles. The basket containing the bottles is immersed in a water bath maintained at a temperature of $37 \pm 2^{\circ}$ C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Plexiglas/LPDE basket attached to via a pulley to a motor that operates at 3 | 0 rom in an end over     |
| is immersed in a water bath maintained at a temperature of $37 \pm 2^{\circ}$ C. We have been using this apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                                                              |                          |
| apparatus for IVBA determination since 2002 (mostly for arsenic and lead) but have compiled relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                                                                              |                          |
| relevant data for lead since 2007. We will use the protocol as written including matrix spikes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                              |                          |
| which we have not included frequently in the past.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                                                                              | ig matrix spikes         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | which we have not included frequently in the past.                           |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                              |                          |

#### **General and Facility Questions**

| Ap | paratus |
|----|---------|
|----|---------|

| 8 | Does the IVBA apparatus your facility has use air or water as the 37°C thermal conducting/controlling medium. (Air, Water) | Water |
|---|----------------------------------------------------------------------------------------------------------------------------|-------|
| 9 | How many bottle positions does your apparatus have?                                                                        | 10    |

|    | Analytical                                                                                                                             |           |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 10 | Type of analytical instrument use for the final Determination (ICP-AES) (ICP-MS) (GFAA) or specify other instrument type.              | ICP-MS    |
| 11 | Please provide the instrumental detection limit for the procedure that you currently use for the IVBA method. $(\Box g/L)$             | 0.1 µg/L  |
| 12 | Name of Control Soil - Reference Material typically used by your facility for the IVBA extraction. (e.g., NIST 2710 or 2711, or other) | NIST 2711 |
| 13 | Blank spike amount (mg/L) used in your procedure.                                                                                      | 10 mg/L   |
| 14 | Matrix spike amount (mg/L) used in your procedure.                                                                                     | 10 mg/L   |

# Analytical (continued)

## **Table of Batch IVBA Results**

| No | Batch Date | Reagent<br>Blank<br>µg/L    | Bottle<br>Blank<br>µg/L | Spiked<br>Blank<br>Result | Spike<br>Blank<br>Percent<br>Recovery | Matrix<br>Spike<br>Percent<br>Recovery | Duplicate<br>Relative<br>Percent<br>Difference | Reference<br>Material<br>Name | Control<br>Soil<br>Result<br>(mg/L)<br>(analytical<br>solution) | Control<br>Soil<br>RPD | Control<br>Soil<br>IVBA |
|----|------------|-----------------------------|-------------------------|---------------------------|---------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------------------------|------------------------|-------------------------|
| Α  | Date       | <b>&lt;25</b> ∣µ <b>g/L</b> | <50 µg/L                | (mg/L)                    | 85-115%                               | 75-125%                                | <20%RPD                                        |                               |                                                                 | <10%RPD                | IVBA%                   |
| В  | mm/dd/yyyy | <25 ∣µg/L                   | <50 µg/L                | 9.2                       | 92.4%                                 | 87.3%                                  | 7.4%                                           | NIST 2711                     | 9.12 mg/L                                                       | 7.1%                   | 75.5%                   |
| 1  | 01/15/2007 | <50                         | <50                     | 9.5                       | 95.0                                  | N/A                                    | 11.9                                           | NIST 2711                     | 10.1                                                            | 9.54                   | 84.6                    |
| 2  | 10/02/2007 | <50                         | <50                     | 9.5                       | 95.0                                  |                                        | 0.0                                            | NIST 2711                     | 9.42                                                            | 2.17                   | 81.4                    |
| 3  | 11/26/2007 | <50                         | <50                     | 9.5                       | 94.7                                  |                                        | 9.5                                            | NIST 2711                     | 9.85                                                            | 6.83                   | 84.8                    |
| 4  | 11/28/2007 | <50                         | <50                     | 9.3                       | 93.3                                  |                                        | 2.4                                            | NIST 2711                     | 9.59                                                            | 4.01                   | 82.5                    |
| 5  | 12/03/2007 | <50                         | <50                     | 9.4                       | 94.1                                  |                                        | 27.0                                           | NIST 2711                     | 9.44                                                            | 2.39                   | 81.2                    |
| 6  | 12/04/2007 | <50                         | <50                     | 9.5                       | 94.7                                  |                                        | 6.9                                            | NIST 2711                     | 9.75                                                            | 5.75                   | 83.9                    |
| 7  | 12/05/2007 | <50                         | <50                     | 9.5                       | 95.0                                  |                                        | 31.6                                           | NIST 2711                     | 9.85                                                            | 6.83                   | 84.8                    |
| 8  | 12/05/2007 | <50                         | <50                     | 9.5                       | 95.2                                  |                                        | 14                                             | NIST 2711                     | 10.0                                                            | 8.46                   | 86.1                    |
| 9  | 12/05/2007 | <50                         | <50                     | 9.5                       | 95.2                                  |                                        | 5.1                                            | NIST 2711                     | 10.1                                                            | 9.54                   | 86.9                    |
| 10 | 12/09/2007 | <50                         | <50                     | 9.8                       | 97.8                                  |                                        | 10.0                                           | NIST 2711                     | 9.42                                                            | 2.17                   | 81.1                    |
| 11 | 03/25/2008 | <0.1                        | 1.1                     | 9.3                       | 93.0                                  |                                        | 6.2                                            | NIST 2711                     | 10.2                                                            | 10.6                   | 89.2                    |
| 12 | 03/28/2008 | <0.1                        | 0.7                     | 10.5                      | 105                                   |                                        | 2.3                                            | NIST 2711                     | 10.7                                                            | 16.1                   | 90.6                    |
| 13 | 05/08/2008 | <0.1                        | 0.7                     | 9.8                       | 98                                    |                                        | 0.4                                            | NIST 2711                     | 10.9                                                            | 18.2                   | 91.5                    |
| 14 | 05/08/2008 | <0.1                        | 0.8                     | 10.2                      | 102                                   |                                        | 2.7                                            | NIST 2711                     | 10.1                                                            | 9.54                   | 86.8                    |
| 15 | 11/26/2008 | <0.1                        | 4.2                     | 9.8                       | 98                                    |                                        | 2.8                                            | NIST 2711                     | 9.79                                                            | 6.18                   | 84.3                    |
| 16 | 11/27/2008 | <0.1                        | 1.0                     | 10.5                      | 105                                   |                                        | 4.2                                            | NIST 2711                     | 10.4                                                            | 12.8                   | 89.5                    |
| 17 | 02/03/2009 | <0.1                        | 3.5                     | 9.9                       | 99                                    |                                        | 3.6                                            | NIST 2711                     | 9.50                                                            | 3.04                   | 80.6                    |
| 18 | 02/04/2009 | <0.1                        | 0.9                     | 9.9                       | 99                                    |                                        | 7.7                                            | NIST 2711                     | 9.77                                                            | 5.97                   | 82.6                    |
| 19 | 02/05/2009 | <0.1                        | 0.5                     | 10.5                      | 105                                   |                                        | 2.3                                            | NIST 2711                     | 8.97                                                            | -2.71                  | 75.7                    |
| 20 | 02/05/2009 | <0.1                        | 0.5                     | 9.9                       | 99                                    |                                        | 1.5                                            | NIST 2711                     | 9.34                                                            | 1.30                   | 79.3                    |
| 21 | 02/05/2009 | <0.1                        | 0.4                     | 9.9                       | 99                                    |                                        | 1.5                                            | NIST 2711                     | 8.97                                                            | -2.71                  | 75.7                    |
| 22 | 02/10/2009 | <0.1                        | 12.5                    | 11.1                      | 111                                   |                                        | 14.5                                           | NIST 2711                     | 10.0                                                            | 8.46                   | 84.4                    |
| 23 | 02/11/2009 | <0.1                        | 0.2                     | 10.3                      | 103                                   |                                        | 1.6                                            | NIST 2711                     | 10.1                                                            | 9.54                   | 86.2                    |
| 24 | 02/12/2009 | <0.1                        | 0.2                     | 10.2                      | 102                                   |                                        | 2.2                                            | NIST 2711                     | 10.2                                                            | 10.6                   | 87.1                    |
| 25 | 02/12/2009 | <50                         | <50                     | 10.3                      | 103                                   |                                        | 2.9                                            | NIST 2711                     | 9.34                                                            | 1.30                   | 78.4                    |

| 26 | 10/05/2009 | <50  | <50  | 9.5  | 95.0 | 4.5  | NIST 2711 | 10.6  | 15.0  | 91.6 |
|----|------------|------|------|------|------|------|-----------|-------|-------|------|
| 20 |            |      |      | 10.3 |      |      |           |       |       | 88.6 |
|    | 11/23/2009 | <0.1 | <0.5 |      | 103  | 11.9 | NIST 2711 | 10.4  | 12.8  |      |
| 28 | 01/12/2010 | <0.1 | 2.3  | 10.7 | 107  | 0.1  | NIST 2711 | 10.40 | 12.8  | 88.2 |
| 29 | 01/13/2010 | <0.1 | 1.0  | 10.8 | 108  | 0.9  | NIST 2711 | 10.80 | 17.1  | 91.2 |
| 30 | 02/09/2010 | <0.1 | 0.6  | 10.7 | 107  | 1.7  | NIST 2711 | 8.10  | -12.1 | 69.7 |
| 31 | 02/09/2010 | <0.1 | 0.6  | 10.3 | 103  | 8.0  | NIST 2711 | 9.57  | 3.80  | 82.4 |
| 32 | 02/13/2010 | <0.2 | <0.2 | 10.3 | 103  | 9.2  | NIST 2711 | 10.0  | 8.46  | 86.1 |
| 33 | 02/15/2010 | <5   | <5   | 9.5  | 95.0 | 12.2 | NIST 2711 | 10.4  | 12.8  | 86.7 |
| 34 | 02/15/2010 | <5   | <5   | 9.8  | 98.2 | 0.0  | NIST 2711 | 10.0  | 8.46  | 85.3 |
| 35 | 02/17/2010 | <0.2 | 0.5  | 10.4 | 104  | 2.4  | NIST 2711 | 9.19  | -0.33 | 78.6 |
| 36 | 02/19/2010 | <0.1 | 0.4  | 10.3 | 103  | 2.3  | NIST 2711 | 9.82  | 6.51  | 82.1 |
| 37 | 02/23/2010 | <0.1 | 0.3  | 10.5 | 105  | 2.0  | NIST 2711 | 9.57  | 3.80  | 80.1 |
| 38 | 02/23/2010 | <0.1 | 1.4  | 10.2 | 102  | 2.6  | NIST 2711 | 9.66  | 4.77  | 80.1 |
| 39 | 02/24/2010 | <0.1 | 0.6  | 10.2 | 102  | 0.1  | NIST 2711 | 9.24  | 0.22  | 79.5 |
| 40 | 03/01/2010 | <0.1 | 0.6  | 10.2 | 102  | 1.2  | NIST 2711 | 9.52  | 3.25  | 80.8 |
| 41 | 03/02/2010 | <0.1 | 0.4  | 10.3 | 103  | 1.9  | NIST 2711 | 9.36  | 1.52  | 80.3 |
| 42 | 03/03/2010 | <0.1 | 1.1  | 10.4 | 104  | 8.5  | NIST 2711 | 9.76  | 5.86  | 81.0 |
| 43 | 03/04/2010 | <0.1 | 0.3  | 10.3 | 103  | 3.5  | NIST 2711 | 9.48  | 2.82  | 81.0 |
| 44 | 03/05/2010 | <0.1 | 0.3  | 10.4 | 104  | 2.2  | NIST 2711 | 9.74  | 5.64  | 82.9 |
| 45 | 03/09/2010 | <0.1 | 0.8  | 10.4 | 104  | 79   | NIST 2711 | 9.96  | 8.03  | 82.4 |
| 46 | 03/09/2010 | <0.1 | 0.5  | 10.5 | 105  | 0.7  | NIST 2711 | 9.84  | 6.72  | 83.1 |

Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example.

# Laboratory B

## Lab B Initial Demonstration of Proficiency (IDP) Form For IVBA Round Robin of NIST 2710a and 2711a (ver. 06-30-10) (submitted 7-08-2010)

Before the USEPA initiates the Round Robin analysis of the NIST 2710a and 2711a materials they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

|   | General and Facility Questions                                                       |                               |
|---|--------------------------------------------------------------------------------------|-------------------------------|
| 1 | Number of IVBA analyses your facility has performed for lead using the attached SOP? | ~ 50 for Pb<br>(> 150 for As) |
| 2 | Will your facility conduct the extraction? (Yes/No)                                  | Yes                           |
| 3 | If the answer to question 2 is no, please provide the                                |                               |
|   | name of the laboratory that will be conducting the                                   |                               |
|   | extraction. (Lab Name)                                                               |                               |
| 4 | Will your facility conduct the extract analysis? (Yes/No)                            | No                            |
| 5 | If the answer to question 4 is no, please provide the                                | Other lab name                |
|   | name of the laboratory that will be conducting the                                   | was here.                     |
|   | analysis. (Lab Name)                                                                 |                               |
| 6 | Will your facility be able to conduct the attached IVBA Method EPA                   | Yes                           |
|   | 9200.1-86 as written? (air controlled temperature is OK)                             |                               |
|   | (Yes, or Provide comment Below in 7)                                                 |                               |
| 7 | If the answer the question 6 is no, please provide the deviation from the            | e EPA 9200.1-86               |
|   | method in the field provided here. Comment-                                          |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |
|   |                                                                                      |                               |

#### **General and Facility Questions**

#### Apparatus

| 8 | Does the IVBA apparatus your facility has use air or water as the 37°C thermal conducting/controlling medium. (Air, Water) | water |
|---|----------------------------------------------------------------------------------------------------------------------------|-------|
| 9 | How many bottle positions does your apparatus have?                                                                        | 10    |

|    | Analytical                                                                                                                             |           |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 10 | Type of analytical instrument use for the final Determination (ICP-AES) (ICP-MS) (GFAA) or specify other instrument type               | ICP-MS    |
| 11 | Please provide the instrumental detection limit for the procedure that you currently use for the IVBA method. $(\Box g/L)$             | 0.106     |
| 12 | Name of Control Soil - Reference Material typically used by your facility for the IVBA extraction. (e.g., NIST 2710 or 2711, or other) | NIST 2711 |
| 13 | Blank spike amount (mg/L) used in your procedure.                                                                                      | 10.0 mg/L |
| 14 | Matrix spike amount (mg/L) used in your procedure.                                                                                     | n.a.      |

## Analytical (continued)

| No | Batch Date | Reagent<br>Blank<br>µg/L | Bottle<br>Blank<br>µg/L | Spiked<br>Blank<br>Result | Spike<br>Blank<br>Percent<br>Recovery | Matrix<br>Spike<br>Percent<br>Recovery | Duplicate<br>Relative<br>Percent<br>Difference | Reference<br>Material<br>Name | Control<br>Soil<br>Result<br>(mg/L)<br>(analytical<br>solution) | Control<br>Soil<br>RPD | Control<br>Soil<br>IVBA |
|----|------------|--------------------------|-------------------------|---------------------------|---------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------------------------|------------------------|-------------------------|
| Α  | Date       | <25 µg/L                 | <50 µg/L                | (mg/L)                    | 85-115%                               | 75-125%                                | <20%RPD                                        |                               |                                                                 | <10%RPD                | IVBA%                   |
| В  | mm/dd/yyyy | <25 ∣µg/L                | <50 ∣µg/L               | 9.2                       | 92%                                   | 87%                                    | 7%                                             | NIST 2711                     | 9.12 mg/L                                                       | 7.1%                   | 75.5%                   |
| 1  | 4/26/2005  | n.m.                     | < 5                     | 9.6                       | 96%                                   | n.m.                                   | n.m.                                           | NIST 2711                     | 11                                                              | n.m.                   | 95%^                    |
| 2  | 8/22/2005  | < 5                      | < 5                     | 1.0*                      | 100                                   | n.m.                                   | 0                                              | NIST 2711                     | 12                                                              | n.m.                   | 103%^                   |
| 3  | 8/30/2005  | n.m.                     | < 5                     | 11                        | 110                                   | n.m.                                   | 10%                                            | NIST 2711                     | 10, 10, 10,<br>11**                                             | 10%                    | 86%^                    |
| 4  | 9/1/2005   | n.m.                     | < 5                     | 8.9                       | 89                                    | n.m.                                   | 3%                                             | NIST 2711                     | 9.6, 9.5,<br>9.8, 9.6**                                         | 3%                     | 83%^                    |
| 5  | 9/12/2005  | n.m.                     | < 5                     | 11                        | 110                                   | n.m.                                   | 1%                                             | NIST 2711                     | 10,10, 9.9,<br>10**                                             | 1%                     | 86%^                    |
| 6  | 9/19/2005  | n.m.                     | < 5                     | 11                        | 110                                   | n.m.                                   | 9.5%                                           | NIST 2711                     | 10, 10, 11,<br>11**                                             | 9.5%                   | 91%^                    |
| 7  | 9/21/06    | < 5                      | 8                       | 11                        | 110                                   | n.m.                                   | n.m.                                           | NIST 2711                     | 9.5                                                             | n.m.                   | 82%^                    |
| 8  | 9/22/2006  | < 5                      | 9                       | 11                        | 110                                   | n.m.                                   | n.m.                                           | NIST 2711                     | 15                                                              | n.m.                   | 130%^                   |
| 9  | 8/22/2008  | < 5                      | < 5                     | 11                        | 110                                   | n.m.                                   | 0                                              | NIST 2711                     | 10                                                              | n.m.                   | 86%^                    |
| 10 |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |

### Table of Batch IVBA Results

\* Spiked to 1.0 mg/L Pb.

\*\* NIST soil extracted 4 times during this data set.

^ Assumes concentration of lead in NIST 2711 soil is 1162 mg/kg, per certificate of analysis.

Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example.

# Laboratory C

### LAB C Initial Demonstration of Proficiency (IDP) Form For IVBA Round Robin of NIST 2710a and 2711a (ver. 07-02-10) (Submitted 7-26-2010)

Before the USEPA initiates the Round Robin analysis of the NIST 2710a and 2711a materials they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

#### General and Facility Questions

| 1 | Number of IVBA analyses your facility has performed for lead using the attached SOP?                                                                                   | 1,926 (MS Access<br>data base query,<br>includes QC) |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 2 | Will your facility conduct the extraction? (Yes/No)                                                                                                                    | yes                                                  |
| 3 | If the answer to question 2 is no, please provide the name of the laboratory that will be conducting the extraction. (Lab Name)                                        |                                                      |
| 4 | Will your facility conduct the extract analysis? (Yes/No)                                                                                                              | yes                                                  |
| 5 | If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)                                          |                                                      |
| 6 | Will your facility be able to conduct the attached IVBA Method EPA<br>9200.1-86 as written? (air controlled temperature is OK)<br>(Yes, or Provide comment Below in 7) | Yes                                                  |
| 7 | If the answer the question 6 is no, please provide the deviation from the method in the field provided here. Comment-                                                  | he EPA 9200.1-86                                     |

#### Apparatus

| 8 | Does the IVBA apparatus your facility has use air or water as the 37°C thermal conducting/controlling medium. (Air, Water) | Water |
|---|----------------------------------------------------------------------------------------------------------------------------|-------|
| 9 | How many bottle positions does your apparatus have?                                                                        | 10    |

#### Analytical

|    | / that y to ba                                                                                                                         |                                     |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 10 | Type of analytical instrument use for the final Determination (ICP-AES) (ICP-MS) (GFAA) or specify other instrument type.              | ICP-AES or ICP-MS<br>(We have both) |
| 11 | Please provide the aqueous method detection limit for the procedure that you currently use for the IVBA method. $(\Box g/L)$           | ICP 40 ug/L & ICP-<br>MS 0.1 ug     |
| 12 | Name of Control Soil - Reference Material typically used by your facility for the IVBA extraction. (e.g., NIST 2710 or 2711, or other) | NIST 2711                           |
| 13 | Blank spike amount (mg/L) used in your procedure.                                                                                      | High 10 mg/L<br>Low is 1 mg/L       |
| 14 | Matrix spike amount (mg/L) used in your procedure.                                                                                     | High 10 mg/L<br>Low is 1 mg/L       |

## Analytical (continued)

#### Table of Batch IVBA Results

| No | Batch Date  | Reagent  | Bottle   | Spiked | Spike    | Matrix                   | Duplicate  | Reference | Control               | Control | Control |
|----|-------------|----------|----------|--------|----------|--------------------------|------------|-----------|-----------------------|---------|---------|
|    |             | Blank    | Blank    | Blank  | Blank    | Spike                    | Relative   | Material  | Soil                  | Soil    | Soil    |
|    |             | µg/L     | µg/L     | Result | Percent  | Percent                  | Percent    | Name      | Result                | RPD     | IVBA    |
|    |             |          |          |        | Recovery | Recovery                 | Difference |           | (mg/L)                |         |         |
|    |             |          |          |        |          |                          |            |           | (analytical solution) |         |         |
| Α  | Date        | <25 µg/L | <50 µg/L | (mg/L) | 85-115%  | 75-125%                  | <20%RPD    |           |                       | <10%RPD | IVBA%   |
| В  | mm/dd/yyyy  | <25 µg/L | <50 µg/L | 9.2    | 92.4%    | 87.3%                    | 7.4%       | NIST 2711 | 9.12 mg/L             | 7.1%    | 75.5%   |
| 1  | 06/04/2009  | <25ug/L  | <40 ug/L | 10.42  | 104.3    | 121.8                    | 2.2        | NIST 2711 | 9.48                  | 2.4     | 82      |
| 2  | 06/29-2008  | <25ug/L  | <40 ug/L | 9.62   | 96.2     | 92.5                     | 0.6        | NIST 2711 | 9.13                  | 0.4     | 79      |
| 3  | 06/28/2008  | <25ug/L  | <40 ug/L | 9.69   | 96.9     | 95.7                     | 3.2        | NIST 2711 | 9.36                  | 0.1     | 81      |
| 4  | 02//05/2008 | <25ug/L  | <40 ug/L | 9.81   | 98.1     | 84.2                     | 0.8        | NIST 2711 | 9.47                  | 2.6     | 81      |
| 5  | 02/07/2008  | <25ug/L  | <40 ug/L | 9.94   | 99.4     | 85.5                     | 0.2        | NIST 2711 | 8.21                  | 2.6     | 71      |
| 6  | 02/07/2008  | <25ug/L  | <40 ug/L | 9.53   | 95.3     | 89.2                     | 0.1        | NIST 2711 | 9.20                  | 2.5     | 79      |
| 7  | 02/07/2008  | <25ug/L  | <40 ug/L | 9.43   | 94.3     | 89.00                    | 1.8        | NIST 2711 | 9.11                  | 0.6     | 78      |
| 8  | 04/24/2008  | <25ug/L  | <40 ug/L | 9.89   | 98.9     | 92.3                     | 1.1        | NIST 2711 | 9.66                  | 2.2     | 83      |
| 9  | 05/16/2008  | <25ug/L  | <40 ug/L | 9.43   | 94.3     | Lab C-M3<br>FLAG*<br>SEE | 0.7        | NIST 2711 | 9.10                  | 0.8     |         |
|    |             |          |          |        |          | Below                    |            |           |                       |         | 78      |
| 10 | 08/08/2009  | <25ug/L  | <40 ug/L | 9.28   | 92.8     | Lab C-M3<br>FLAG*<br>SEE | 2.5        | NIST 2711 | 8.92                  | 2.7     |         |
|    |             |          |          |        |          | Below                    |            |           |                       |         | 77      |

Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example.

M3 Flag on Lab -X's reports. M3 = The Spike Recovery value is unusable since the analyte concentration in the sample was disproportionate to the spike level. The recovery of associated control samples (LFB & LCS) was acceptable. In this case the samples were so high in Pb the spike values were unusable

Control Soil IVBA % were based on TV of 1162, which is the value used by the EPA in the 2007b validation document, (Drexler and Brattin 2007: EPA 2007b)

# Laboratory D

### LAB D Initial Demonstration of Proficiency (IDP) Form For IVBA Round Robin of NIST 2710a and 2711a (ver. 07-02-10) (Submitted 7-21-2010)

Before the USEPA initiates the Round Robin analysis of the NIST 2710a and 2711a materials they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

| General and       | Facility Questions  |   |
|-------------------|---------------------|---|
| e e i i e i a i a | i admity Quoditerio |   |
| <b>7</b> 1114 1   |                     | 1 |

| 1 | Number of IVBA analyses your facility has performed for lead using the attached SOP?                                  | ~9-10,000        |
|---|-----------------------------------------------------------------------------------------------------------------------|------------------|
| 2 | Will your facility conduct the extraction? (Yes/No)                                                                   | Yes              |
| 3 | If the answer to question 2 is no, please provide the                                                                 |                  |
|   | name of the laboratory that will be conducting the                                                                    |                  |
|   | extraction. (Lab Name)                                                                                                |                  |
| 4 | Will your facility conduct the extract analysis? (Yes/No)                                                             | Yes              |
| 5 | If the answer to question 4 is no, please provide the                                                                 |                  |
|   | name of the laboratory that will be conducting the<br>analysis. (Lab Name)                                            |                  |
| 6 | Will your facility be able to conduct the attached IVBA Method EPA                                                    | Yes              |
|   | 9200.1-86 as written? (air controlled temperature is OK)                                                              |                  |
|   | (Yes, or Provide comment Below in 7)                                                                                  |                  |
| 7 | If the answer the question 6 is no, please provide the deviation from the method in the field provided here. Comment- | ne EPA 9200.1-86 |
|   |                                                                                                                       |                  |
|   |                                                                                                                       |                  |
|   |                                                                                                                       |                  |
|   |                                                                                                                       |                  |
|   |                                                                                                                       |                  |
|   |                                                                                                                       |                  |

|   | Apparatus                                                                                                                  |                         |
|---|----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 8 | Does the IVBA apparatus your facility has use air or water as the 37°C thermal conducting/controlling medium. (Air, Water) | Either                  |
| 9 | How many bottle positions does your apparatus have?                                                                        | We have two 10 position |

#### Analytical

|    | Allalytical                                                                                                                            |                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 10 | Type of analytical instrument use for the final Determination (ICP-AES) (ICP-MS) (GFAA) or specify other instrument type.              | ICP/MS                     |
| 11 | Please provide the aqueous method detection limit for the procedure that you currently use for the IVBA method. $(\Box g/L)$           | .02 ug/l                   |
| 12 | Name of Control Soil - Reference Material typically used by your facility for the IVBA extraction. (e.g., NIST 2710 or 2711, or other) | NIST 2710 , 2711, or 2710A |
| 13 | Blank spike amount (mg/L) used in your procedure.                                                                                      | 1 mg/l                     |
| 14 | Matrix spike amount (mg/L) used in your procedure.                                                                                     | 1 mg/l                     |

# Analytical (continued)

## Table of Batch IVBA Results

| No | Batch Date | Reagent<br>Blank | Bottle<br>Blank | Spiked<br>Blank | Spike<br>Blank      | Matrix<br>Spike     | Duplicate<br>Relative | Reference<br>Material | Control<br>Soil                              | Control<br>Soil | Control<br>Soil |
|----|------------|------------------|-----------------|-----------------|---------------------|---------------------|-----------------------|-----------------------|----------------------------------------------|-----------------|-----------------|
|    |            | µg/L             | µg/L            | Result          | Percent<br>Recovery | Percent<br>Recovery | Percent<br>Difference | Name                  | Result<br>(mg/L)<br>(analytical<br>solution) | RPD             | IVBA            |
| Α  | Date       | <25 µg/L         | <50 µg/L        | (mg/L)          | 85-115%             | 75-125%             | <20%RPD               |                       |                                              | <10%RPD         | IVBA%           |
| В  | mm/dd/yyyy | <25 µg/L         | <50 µg/L        | 9.2             | 92.4%               | 87.3%               | 7.4%                  | NIST 2711             | 9.12 mg/L                                    | 7.1%            | 75.5%           |
| 1  | 05/19/10   | 0.05             | 0.05            | 2603            | 100                 | 112                 | 6                     |                       |                                              |                 |                 |
| 2  | 03/19/10   | 09               | 09              | 2669            | 107                 | 99                  | 3                     |                       |                                              |                 |                 |
| 3  | 03/07/10   | 08               | 08              | 2789            | 111                 | 108                 | 9                     |                       |                                              |                 |                 |
| 4  | 02/03/10   | .07              | .07             | 2658            | 106                 | 107                 | 34                    | 2711                  | 0.611                                        | 2.2             |                 |
| 5  | 12/03/09   | .23              | .23             | 2744            | 110                 | 102                 | 6                     |                       |                                              |                 |                 |
| 6  | 12/02/09   | .1               | .1              | 2614            | 105                 | 102                 | 16                    | 2711                  | 0.567                                        | 8.9             |                 |
| 7  | 11/09/09   | .17              | .17             | 2497            | 100                 | 94                  | 23                    |                       |                                              |                 |                 |
| 8  | 12.03/09   | .08              | .08             | 2667            | 107                 | 93                  | 3                     |                       |                                              |                 |                 |
| 9  | 12/04/09   | .1               | .1              | 2737            | 109                 | 101                 | 12                    |                       |                                              |                 |                 |
| 10 | 12/01/09   | 04               | 04              | 2615            | 105                 | 102                 | 1                     |                       |                                              |                 |                 |

Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example.

# Laboratory E

#### Lab E Initial Demonstration of Proficiency (IDP) Form For IVBA Round Robin of NIST 2710a and 2711a (ver. 07-02-10)

Before the USEPA initiates the Round Robin analysis of the NIST 2710a and 2711a materials they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

|   | General and Facility Questions                                                                                                                                         |                |  |  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
| 1 | Number of IVBA analyses your facility has performed for lead<br>using the attached SOP?                                                                                | ~ 420 analyses |  |  |  |  |
| 2 | Will your facility conduct the extraction? (Yes/No)                                                                                                                    | Yes            |  |  |  |  |
| 3 | If the answer to question 2 is no, please provide the<br>name of the laboratory that will be conducting the<br>extraction. (Lab Name)                                  |                |  |  |  |  |
| 4 | Will your facility conduct the extract analysis? (Yes/No)                                                                                                              | Yes            |  |  |  |  |
| 5 | If the answer to question 4 is no, please provide the<br>name of the laboratory that will be conducting the<br>analysis. (Lab Name)                                    |                |  |  |  |  |
| 6 | Will your facility be able to conduct the attached IVBA Method<br>EPA 9200.1-86 as written? (air controlled temperature is OK)<br>(Yes, or Provide comment Below in 7) | Yes            |  |  |  |  |
| 7 | If the answer the question 6 is no, please provide the deviation f<br>9200.1-86 method in the field provided here. Comment-                                            | rom the EPA    |  |  |  |  |

#### Apparatus

|   | Does the IVBA apparatus your facility has use air or water as the 37 <sup>o</sup> C thermal conducting/controlling medium. (Air, Water) | Water |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| 9 | How many bottle positions does your apparatus have?                                                                                     | 12    |

#### Analytical

|    | Analytical                                                                                                                                   |                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 10 | Type of analytical instrument use for the final Determination<br>(ICP-AES) (ICP-MS) (GFAA) or specify other instrument type.                 | ICP-MS                                                           |
| 11 | Please provide the aqueous method detection limit for the<br>procedure that you currently use for the IVBA method. (µg/L)                    | 0.08 µg/L                                                        |
| 12 | Name of Control Soil - Reference Material typically used by<br>your facility for the IVBA extraction. (e.g., NIST 2710 or 2711,<br>or other) | 2710 (used<br>through 2/10/09<br>when we ran out<br>of this SRM) |
| 13 | Blank spike amount (mg/L) used in your procedure.                                                                                            | 10 mg/L                                                          |
| 14 | Matrix spike amount (mg/L) used in your procedure.                                                                                           | 10 mg/L                                                          |

Page 1 of 2

## Analytical (continued)

| No | Batch Date | Reagent<br>Blank | Bottle<br>Blank | Spiked<br>Blank | Spike<br>Blank | Matrix<br>Spike | Duplicate<br>Relative | Reference<br>Material | Control<br>Soil | Control<br>Soil | Control<br>Soil |
|----|------------|------------------|-----------------|-----------------|----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------|
|    |            | µg/L             | μg/L            | Result          | Percent        | Percent         | Percent               | Name                  | Result          | RPD             | IVBA            |
|    |            | 10-              |                 |                 | Recovery       | Recovery        | Difference            |                       | (mg/L)          |                 |                 |
|    |            |                  |                 |                 | -              | -               |                       |                       | (analytical     |                 |                 |
|    |            |                  |                 |                 |                |                 |                       |                       | solution)       |                 |                 |
| Α  | Date       | <25 µg/L         | <50 µg/L        | (mg/L)          | 85-115%        | 75-125%         | <20%RPD               |                       |                 | <10%RPD         | IVBA%           |
| В  | mm/dd/yyyy | <25 µg/L         | <50 µg/L        | 9.2             | 92.4%          | 87.3%           | 7.4%                  | NIST 2711             | 9.12 mg/L       | 7.1%            | 75.5%           |
| 1  | 2/4/09     | <5 µg/L          | <5 µg/L         | 9.9             | 99.5           | 100             | 0.0                   | NIST 2710             | 40.8            | 1.9             | 73.6            |
| 2  | 2/4/09     | <5 µg/L          | <5 µg/L         | 10.2            | 101.8          | 99.0            | 1.0                   | NIST 2710             | 40.7            | 1.2             | 74.1            |
| 3  | 2/5/09     | <5 µg/L          | <5 µg/L         | 10.2            | 101.6          | 105             | 4.6                   | NIST 2710             | 46.3            | 6.0             | 79.5            |
| 4  | 2/5/09     | <5 µg/L          | <5 µg/L         | 10.2            | 102.3          | 103             | 3.2                   | NIST 2710             | NA              | NA              | NA              |
| 5  | 2/9/09     | <5 µg/L          | <5 µg/L         | 10.0            | 100.5          | NA              | NA                    | NIST 2710             | NA              | NA              | NA              |
| 6  | 2/10/09    | <5 µg/L          | <5 µg/L         | 10.1            | 101.4          | 99.3            | 0.7                   | NIST 2710             | 42.3            | 0.4             | 75.3            |
| 7  | 2/10/09    | <5 µg/L          | <5 µg/L         | NA              | NA             | 96.6            | 3.4                   | NIST 2710             | 43.5            | 3.45            | 77.6            |
| 8  |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |
| 9  |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |
| 10 |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |

#### Table of Batch IVBA Results for Pb

Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example. Laboratory F

## LAB F Initial Demonstration of Proficiency (IDP) Form For IVBA Round Robin of NIST 2710a and 2711a (ver. 07-02-10)

(Submitted 7-13-2010)

Before the USEPA initiates the Round Robin analysis of the NIST 2710a and 2711a materials they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

| General and | Facility | Questions |
|-------------|----------|-----------|
|-------------|----------|-----------|

| 1 | Number of IVBA analyses your facility has performed for lead using<br>the attached SOP?                              | 60                  |
|---|----------------------------------------------------------------------------------------------------------------------|---------------------|
| 2 | Will your facility conduct the extraction? (Yes/No)                                                                  | Yes                 |
| 3 | If the answer to question 2 is no, please provide the                                                                | 100                 |
| 3 | name of the laboratory that will be conducting the                                                                   |                     |
|   | extraction. (Lab Name)                                                                                               |                     |
| 4 | Will your facility conduct the extract analysis? (Yes/No)                                                            | Yes                 |
| 5 | If the answer to question 4 is no, please provide the                                                                |                     |
|   | name of the laboratory that will be conducting the                                                                   |                     |
|   | analysis. (Lab Name)                                                                                                 |                     |
| 6 | Will your facility be able to conduct the attached IVBA Method EPA                                                   | Yes, air controlled |
|   | 9200.1-86 as written? (air controlled temperature is OK)                                                             |                     |
|   | (Yes, or Provide comment Below in 7)                                                                                 |                     |
| 7 | If the answer the question 6 is no, please provide the deviation from th method in the field provided here. Comment- | e EPA 9200.1-86     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |
|   |                                                                                                                      |                     |

#### Apparatus

| 8 | Does the IVBA apparatus your facility has use air or water as the 37°C thermal conducting/controlling medium. (Air, Water) | Air |
|---|----------------------------------------------------------------------------------------------------------------------------|-----|
| 9 | How many bottle positions does your apparatus have?                                                                        | 12  |

|    | Analytical                                                                                                                             |         |
|----|----------------------------------------------------------------------------------------------------------------------------------------|---------|
| 10 | Type of analytical instrument use for the final Determination (ICP-AES) (ICP-MS) (GFAA) or specify other instrument type.              | ICP-AES |
| 11 | Please provide the aqueous method detection limit for the procedure that you currently use for the IVBA method. $(\Box g/L)$           | 25 ug/L |
| 12 | Name of Control Soil - Reference Material typically used by your facility for the IVBA extraction. (e.g., NIST 2710 or 2711, or other) | 2711    |
| 13 | Blank spike amount (mg/L) used in your procedure.                                                                                      | 10 mg/L |
| 14 | Matrix spike amount (mg/L) used in your procedure.                                                                                     | 10 mg/L |

## Analytical (continued)

#### Table of Batch IVBA Results

| No | Batch Date | Reagent<br>Blank | Bottle<br>Blank | Spiked<br>Blank | Spike<br>Blank | Matrix<br>Spike | Duplicate<br>Relative | Reference<br>Material | Control<br>Soil | Control<br>Soil | Control<br>Soil |
|----|------------|------------------|-----------------|-----------------|----------------|-----------------|-----------------------|-----------------------|-----------------|-----------------|-----------------|
|    |            | ug/L             | ug/L            | Result          | Percent        | Percent         | Percent               | Name                  | Result          | RPD             | IVBA            |
|    |            |                  | Ū               |                 | Recovery       | Recovery        | Difference            |                       | (mg/L)          |                 |                 |
|    |            |                  |                 |                 |                |                 |                       |                       | (analytical     |                 |                 |
| _  |            |                  |                 |                 |                |                 |                       |                       | solution)       |                 |                 |
| Α  | Date       | <25 ug/L         | <50 ug/L        | (mg/L)          | 85-115%        | 75-125%         | <20%RPD               |                       |                 | <10%RPD         | IVBA%           |
| В  | mm/dd/yyyy | <25 ug/L         | <50 ug/L        | 9.2             | 92.4%          | 87.3%           | 7.4%                  | NIST 2711             | 9.12 mg/L       | 7.1%            | 75.5%           |
| 1  | 06/16/2010 | <25 ug/L         | NA              | 9.6             | 95.5%          | 92.3            | 2.8                   | NIST 2711             | 9.36 mg/L       | 0.7%            | 84.4%           |
| 2  | 06/28/2010 | <25 ug/L         | NA              | 9.6             | 95.9%          | 91.6            | 1.8                   | NIST 2711             | 9.20 mg/L       | -0.8%           | 84.4%           |
| 3  | 06/30/2010 | <25 ug/L         | NA              | 9.6             | 96.5%          | 96.0            | 2.2                   | NIST 2711             | 9.42 mg/L       | 1.2%            | 84.4%           |
| 4  | 07/06/2010 | <25 ug/L         | NA              | 9.5             | 94.8%          | 94.2            | 3.1                   | NIST 2711             | 9.31 mg/L       | 0.2%            | 84.4%           |
| 5  | 07/07/2010 | <25 ug/L         | NA              | 9.5             | 94.8%          | 89.1            | 1.2                   | NIST 2711             | 9.19 mg/L       | -0.8%           | 84.4%           |
| 6  |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |
| 7  |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |
| 8  |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |
| 9  |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |
| 10 |            |                  |                 |                 |                |                 |                       |                       |                 |                 |                 |

Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example.

Note (LAB F): 75.5% IVBA listed in example should be for NIST 2710 according to USEPA IVBA Method EPA 9200.

# Laboratory G

## LAB G Demonstration of Proficiency (IDP) Form For IVBA Round Robin of NIST 2710a and 2711a (ver. 07-02-10)

Before the USEPA initiates the Round Robin analysis of the NIST 2710a and 2711a materials they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

|   | General and Facility Questions                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Number of IVBA analyses your facility has performed for lead using the attached SOP?                                                                                                                                                                                                                                                                        | 228                                                                                                                                 |
| 2 | Will your facility conduct the extraction? (Yes/No)                                                                                                                                                                                                                                                                                                         | Yes                                                                                                                                 |
| 3 | If the answer to question 2 is no, please provide the<br>name of the laboratory that will be conducting the<br>extraction. (Lab Name)                                                                                                                                                                                                                       |                                                                                                                                     |
| 4 | Will your facility conduct the extract analysis? (Yes/No)                                                                                                                                                                                                                                                                                                   | Yes                                                                                                                                 |
| 5 | If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)                                                                                                                                                                                                                               |                                                                                                                                     |
| 6 | Will your facility be able to conduct the attached IVBA Method EPA<br>9200.1-86 as written? (air controlled temperature is OK)<br>(Yes, or Provide comment Below in 7)                                                                                                                                                                                      | Yes. * However,<br>we do not have<br>riffle splitter to<br>mix and split the<br>samples. We use<br>in air incubator<br>set at 37 C. |
| 7 | <ul> <li>If the answer the question 6 is no, please provide the deviation from th method in the field provided here. Comment-</li> <li>1. Per method comparison, We normally dry our samples at 105 d recommended &lt;40 deg. Celsius per item # 6. May need some cl</li> <li>2. Cost of splitter is \$500- recommended but not required per spe</li> </ul> | leg. Celsius instead arification.                                                                                                   |

| Ар | paratus |
|----|---------|
|----|---------|

|   | Appalatas                                                                                                                  |            |
|---|----------------------------------------------------------------------------------------------------------------------------|------------|
| 8 | Does the IVBA apparatus your facility has use air or water as the 37°C thermal conducting/controlling medium. (Air, Water) | Air        |
| 9 | How many bottle positions does your apparatus have?                                                                        | 8 per each |

|    | Analytical                                                                                                                             |          |
|----|----------------------------------------------------------------------------------------------------------------------------------------|----------|
| 10 | Type of analytical instrument use for the final Determination (ICP-AES) (ICP-MS) (GFAA) or specify other instrument type.              | ICP-AES  |
| 11 | Please provide the aqueous method detection limit for the procedure that you currently use for the IVBA method. $(\Box g/L)$           | 50 □g/L  |
| 12 | Name of Control Soil - Reference Material typically used by your facility for the IVBA extraction. (e.g., NIST 2710 or 2711, or other) | 2711     |
| 13 | Blank spike amount (mg/L) used in your procedure.                                                                                      | 100 □g/L |
| 14 | Matrix spike amount (mg/L) used in your procedure.                                                                                     | 100      |

## **Analytical (continued)**

## Table of Batch IVBA Results

| No | Batch Date     | Reagent<br>Blank<br>µg/L | Bottle<br>Blank<br>µg/L | Spiked<br>Blank<br>Result | Spike<br>Blank<br>Percent<br>Recovery | Matrix<br>Spike<br>Percent<br>Recovery | Duplicate<br>Relative<br>Percent<br>Difference | Reference<br>Material<br>Name | Control<br>Soil<br>Result<br>(mg/L)<br>(analytical<br>solution) | Control<br>Soil<br>RPD | Control<br>Soil<br>IVBA |
|----|----------------|--------------------------|-------------------------|---------------------------|---------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------------------------|------------------------|-------------------------|
| Α  | Date           | <25 µg/L                 | <50 µg/L                | (mg/L)                    | 85-115%                               | 75-125%                                | <20%RPD                                        |                               |                                                                 | <10%RPD                | IVBA%                   |
| В  | mm/dd/yyyy     | <25 µg/L                 | <50 µg/L                | 9.2                       | 92.4%                                 | 87.3%                                  | 7.4%                                           | NIST 2711                     | 9.12 mg/L                                                       | 7.1%                   | 75.5%                   |
| 1  | 06/14/2010 (1) |                          | <50 ug/L                | 4.37                      | 83.2%                                 | -132, -266                             | 2.3, 4.6,<br>10.4, 4.8, 4.1                    | NIST 2711                     | 8.39 mg/L                                                       |                        | 77.7%                   |
| 2  | 06/14/2010 (2) |                          | <50 ug/L                | 4.36                      | 83.0%                                 | 80.1, 76.7                             | 2.6, 6.6, 6.3,<br>0.9                          | NIST 2711                     | 8.89 mg/L                                                       |                        | 80.8%                   |
| 3  | 06/14/2010 (3) |                          | <50 ug/L                | 4.35                      | 82.9%                                 | 81.3, 72.9                             | 1.6                                            | NIST 2711                     | 8.51 mg/L                                                       |                        | 76.7%                   |
| 4  | 01/28/2010     | <50 ug/L                 |                         | 4.21                      | 84.2%                                 | 406, 403                               | 0.6, 4.4, 2.1                                  | NIST 2711                     | 8.78 mg/L                                                       |                        | 85.0%                   |
| 5  | 12/14/2009     |                          |                         | 0.745                     | 74.5%                                 | 596, 287                               |                                                | NIST 2711                     | 2.12 mg/L                                                       |                        | 67.5%                   |
| 6  | 08/27/2009     |                          | <50 ug/L                | 3.75                      | 75.0%                                 | 76.6, 86.5                             | 6.3, 9.2, 5.8,<br>8.6                          | NIST 2711                     | 8.10 mg/L                                                       |                        | 74.3%                   |
| 7  | 06/30/2009     |                          | <50 ug/L                | 3.88                      | 77.6%                                 | 73.7, 71.5                             | 86.0, 0.9,<br>0.5, 4.8                         | NIST 2711                     | 8.78 mg/L                                                       |                        | 81.3%                   |
| 8  | 06/25/2009     |                          | <50 ug/L                | 4.16                      | 83.2%                                 | 69.4, 57.0                             | 70.2, 16.3,<br>1.0                             | NIST 2711                     | 8.50 mg/L                                                       |                        | 78.0%                   |
| 9  | 06/02/2009     |                          | <50 ug/L                | 4.02                      | 80.4%                                 | 77.0, 91.0                             | 3.2, 3.0, 6.5                                  | unknown                       | 8.20 mg/L                                                       |                        | 74.5%                   |
| 10 | 05/26/2009     |                          | <50 ug/L                |                           |                                       | 25.5, 38.9                             | 16.4, 0.8,<br>8.8, 0.4, 18.8                   | unknown                       | 5.70 mg/L                                                       |                        | 52.8%                   |

# Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example.

Data Notes: All batches had a matrix spike and matrix spike duplicate. Most batches had duplicate analyses on multiple samples. Row 1 MS/MSD were spiked at <10% of native concentration.

Row 4 MS/MSD were spiked at ~30% of native concentration.

Row 5 MS/MSD were spiked at <15% of native concentration.

Row 10 MS/MSD were spiked at ~15% of native concentration.

Laboratory H

## LAB H Demonstration of Proficiency (IDP) Form For Lead IVBA Round Robin of new RM, with Microwave Digestion of RM for Lead and Arsenic using EPA Method 3051A (ver. 09-22-11)

Before the USEPA initiates the Round Robin analysis the new RM they have requested that each of the laboratories that wish to participate in the study complete the following Initial Demonstration of Proficiency (IDP) Form, Clifton Jones (Quality Assurance Technical Support Laboratory) US (702 895-8713) clifton.jones@shawgrp.com

|   | IVBA                                                                                                                                                                   |                                |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1 | Number of IVBA analyses your facility has performed for lead using the attached IVBA SOP EPA 9200.1-86?                                                                | * See below                    |
| 2 | Will your facility conduct the extraction? (Yes/No)                                                                                                                    | Yes                            |
| 3 | If the answer to question 2 is no, please provide the name of the laboratory that will be conducting the Extraction. (Lab Name)                                        |                                |
| 4 | Will your facility conduct the extract analysis? (Yes/No)                                                                                                              | Yes                            |
| 5 | If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the Analysis. (Lab Name)                                          |                                |
| 6 | Will your facility be able to conduct the attached IVBA Method EPA<br>9200.1-86 as written? (air controlled temperature is OK)<br>(Yes, or Provide comment Below in 7) | Yes, see LAB H<br>Lab SOP 256. |
| 7 | If the answer the question 6 is no, please provide the deviation from method in the field provided here. Comment-                                                      | the EPA 9200.1-86              |

## **General and Facility Questions**

\* The LAB H has performed 9200.1-86 on 143 client samples. 80 of these were tested for lead and the remaining 63 were tested for arsenic. These numbers do not count laboratory QC samples or work performed during method development and documentation of acceptable performance prior to running client samples.

|    | Microwave Digestion using 3051A                                                                                                      |                                                                                                                                                                                                                                                                                          |
|----|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8  | Total number of analyses your facility has performed for lead and arsenic using the attached EPA Method 3051A.                       | Typically has<br>been used for oil<br>or tissue matrix<br>only, not soil or<br>sediment.<br>Currently<br>performing MDLs<br>and precision and<br>accuracy studies<br>for soil and<br>recently updated<br>soil procedure in<br>SOP 420. No<br>client soil<br>samples in<br>several years. |
| 9  | Will your facility conduct the digestion? (Yes/No)                                                                                   | Yes                                                                                                                                                                                                                                                                                      |
| 10 | If the answer to question 2 is no, please provide the<br>name of the laboratory that will be conducting the<br>Digestion. (Lab Name) |                                                                                                                                                                                                                                                                                          |
| 11 | Will your facility conduct the digest analysis? (Yes/No)                                                                             | Yes                                                                                                                                                                                                                                                                                      |
| 12 | If the answer to question 4 is no, please provide the name of the laboratory that will be conducting the analysis. (Lab Name)        |                                                                                                                                                                                                                                                                                          |
| 13 | Will your facility be able to conduct the attached EPA Method 3051A as written?<br>(Yes, or Provide comment Below in 7)              | See below.                                                                                                                                                                                                                                                                               |
| 14 | If the answer the question 6 is no, please provide the deviation from El the field provided here. Comment-                           | PA Method 3051A in                                                                                                                                                                                                                                                                       |
|    | See appendix A of LAB H Lab SOP 420 for deviations.                                                                                  |                                                                                                                                                                                                                                                                                          |

# Apparatus IVBA

| 16 | Does the IVBA apparatus your facility has use air or water as the 37°C thermal conducting/controlling medium. (Air, Water)                                                | Air                                                                                                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 17 | How many bottle positions does your apparatus have?                                                                                                                       | It holds 12 x 2L<br>bottles. Each 2L<br>bottle can hold<br>about ten 125 mL<br>IVBA extraction<br>bottles. Total = 120 |
| 18 | Does your usual protocol allow for the pre-incubation of the extraction solution to 37°C before initiation of the IVBA extraction.                                        | Yes                                                                                                                    |
| 19 | How do you measure temperature of the controlling apparatus?                                                                                                              | Digital<br>thermometer with<br>data logger.                                                                            |
| 20 | If your lab uses air control, are you using a commercially available<br>extraction apparatus? If possible, please provide the vendor and<br>part number, or Model number. | Associated<br>Designs 3740-<br>12BRE (12 place<br>TCLP rotary                                                          |

|    |                                                                                                                                         | agitator) |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 21 | If your lab uses air control, what type of temperature control device<br>is being used (i.e., benchtop, upright, or walk-in incubator)? | Walk-in   |
| 22 | Does your lab use a pH probe which compensates for temperature (i.e., Automatic Temperature Control (ATC probe))?                       | Yes       |
| 23 | If not, how does your lab control for temperature when measuring the pH?                                                                |           |

# Analytical IVBA

| 24 | Type of analytical instrument typically used for the final Determination (ICP-AES) (ICP-MS) (GFAA) or specify other instrument type.                   | Typically use<br>ICP/AES. ICP/MS<br>could be used if<br>necessary. |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 25 | Please provide the aqueous method detection limit for the procedure that you currently use for the IVBA method for both Lead and Arsenic. $(\Box g/L)$ | As = 10 ug/L<br>Pb = 15 ug/L                                       |
| 26 | Name of Control Soil - Reference Material typically used by your facility for the IVBA extraction. (e.g., NIST 2710 or 2711, or other)                 | NIST 2711A                                                         |
| 27 | Blank spike amount (mg/L) used in your procedure.                                                                                                      | 1 mg/L                                                             |
| 28 | Matrix spike amount (mg/L) used in your procedure.                                                                                                     | 5 mg/L                                                             |

## **Apparatus Microwave**

| 29 | Does the Microwave apparatus at your facility have temperature or pressure control. | temperature                     |
|----|-------------------------------------------------------------------------------------|---------------------------------|
| 30 | How many vessel positions does your apparatus have?                                 | 12                              |
| 31 | Please provide the manufacturer and model of your microwave Apparatus.              | CEM MARS Xpress                 |
| 32 | What procedure do you use for the microwave power calibration?                      | Not performed, use temp control |
| 33 | When was your microwave apparatus last power calibrated?                            | N/A                             |

## Table of Batch Lead IVBA Results Table modified by CLJ - QATS

| No | Batch Date | Reagent<br>Blank<br>µg/L | Bottle<br>Blank<br>µg/L | Spiked<br>Blank<br>Result | Spike<br>Blank<br>Percent<br>Recovery | Matrix<br>Spike<br>Percent<br>Recovery | Duplicate<br>Relative<br>Percent<br>Difference | Reference<br>Material<br>Name | Control<br>Soil<br>Result<br>(mg/L)<br>(analytical<br>solution) | Control<br>Soil<br>RPD | Control<br>Soil<br>IVBA | Determina<br>tion by<br>ICP-AES<br>or ICP-MS |
|----|------------|--------------------------|-------------------------|---------------------------|---------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------|-----------------------------------------------------------------|------------------------|-------------------------|----------------------------------------------|
| Α  | Date       | <25 µ̃g/L                | <50 µ̃g/L               | (mg/L)                    | 85-115%                               | 75-125%                                | <20%RPD                                        |                               |                                                                 | <10%RPD                | IVBA%                   |                                              |
| В  | Mm/dd/yyyy | <25 µ̃g/L                | <50 µ̃g/L               | 9.2                       | 92.4%                                 | 87.3%                                  | 7.4%                                           | NIST 2711                     | 9.12 mg/L                                                       | 7.1%                   | 82.9%                   |                                              |
| 1  | 04/11/2011 | <15                      | ?                       | 0.99                      | 99                                    | 93                                     | 0.1                                            | NIST 2711a                    | 10.5                                                            | 3.7                    | 75                      | ICP-AES                                      |
| 2  | 04/13/2011 | <15                      | ?                       | 5.21                      | 104                                   | 104                                    | 7                                              | NIST 2711a                    | 11.6                                                            | 6.2                    | 83                      | ICP-AES                                      |
| 3  | 10/03/2011 | <15                      | ?                       | 0.98                      | 98                                    | 80                                     | 4                                              | NIST 2711a                    | 11                                                              | 2.8                    | 76                      | ICP-AES                                      |
| 4  |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |                                              |
| 5  |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |                                              |
| 6  |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |                                              |
| 7  |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |                                              |
| 8  |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |                                              |
| 9  |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |                                              |
| 10 |            |                          |                         |                           |                                       |                                        |                                                |                               |                                                                 |                        |                         |                                              |

Note Row A presents the quality control acceptance criteria from the USEPA IVBA Method EPA 9200.1-86, and Row B provides an example.

#### Appendix G Laboratory Submitted IDP Forms

#### Table of EPA Microwave Method 3051a Soil Batch Lead Results

| No | Batch Date | Reagent<br>Blank<br>µg/L | Matrix<br>Spike<br>Percent<br>Recovery | Duplicate<br>Sample<br>Relative<br>Percent<br>Difference | LCS or<br>Reference<br>Material<br>Name | LCS or<br>Reference<br>Material<br>Nominal<br>Value<br>(mg/Kg) | Reference<br>Material<br>Result<br>(mg/ Kg) | Reference<br>Material<br>Result<br>Percent<br>Recovery | Determination<br>by<br>ICP-AES or<br>ICP-MS |
|----|------------|--------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------------------------------|
| Α  | Date       | <25 <b>µg/L</b>          | 75-125%                                | <20%RPD                                                  |                                         |                                                                |                                             |                                                        |                                             |
| В  | Mm/dd/yyyy | <25                      | 87.3%                                  | 7.4%                                                     | NIST 2711                               | 1100 mg/kg                                                     | 912 mg/L                                    | 82.9%                                                  |                                             |
| 1  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 2  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 3  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 4  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 5  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 6  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 7  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 8  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 9  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 10 |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |

Note: Row A presents typical quality control acceptance criteria from the USEPA Method 6010, and Row B provides an example.

#### Appendix G Laboratory Submitted IDP Forms

#### Table of EPA Microwave Method 3051a Soil Batch Arsenic Results

| No | Batch Date | Reagent<br>Blank<br>µg/L | Matrix<br>Spike<br>Percent<br>Recovery | Duplicate<br>Sample<br>Relative<br>Percent<br>Difference | LCS or<br>Reference<br>Material<br>Name | LCS or<br>Reference<br>Material<br>Nominal<br>Value<br>(mg/Kg) | Reference<br>Material<br>Result<br>(mg/ Kg) | Reference<br>Material<br>Result<br>Percent<br>Recovery | Determination<br>by<br>ICP-AES or<br>ICP-MS |
|----|------------|--------------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|---------------------------------------------|
| Α  | Date       | <25 µg/L                 | 75-125%                                | <20%RPD                                                  |                                         |                                                                |                                             |                                                        |                                             |
| В  | Mm/dd/yyyy | <25 µg/L                 | 87.3%                                  | 7.4%                                                     | NIST 2711                               | 90 mg/kg                                                       | 81 mg/kg                                    | 90.0%                                                  |                                             |
| 1  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 2  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 3  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 4  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 5  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 6  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 7  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 8  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 9  |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |
| 10 |            |                          |                                        |                                                          |                                         |                                                                |                                             |                                                        |                                             |

Note: Row A presents typical quality control acceptance criteria from the USEPA Method 6010, and Row B provides an example.

## **APPENDIX H**

## Laboratory Submitted Round Robin Study Sample Results

Laboratory A

#### LAB A- Statement of Work for the Lead IVBA and EPA Method 3051A (for Lead and Arsenic) Round Robin Analyses of a New Reference Material (RM)

(version 4, April 9, 2012)

**Introduction:** The purpose of this Statement of Work (SOW) is to provide specific information and procedures for the analysis and reporting for (1) EPA SOP EPA 9200.2-86 (the lead only IVBA) and (2) EPA method 3051A (for analysis lead and arsenic) Round Robin analyses for the New EPA IVBA Reference Material (RM). Please read carefully. Analyses of the New RM must be performed in strict accordance with the EPA SOP EPA 9200.2-86 (see attachment 1) and EPA Method 3051A (see attachment 2). Any exceptions to the SOP procedures will be provided in this Statement of Work. **Please note the sample extraction, analyses, and reporting are to be completed within a thirty (30) day-turn-around time**.

**Suggestions or Edits to the EPA SOP:** If you have any suggested changes to the Lead IVBA SOP 9200.2-86 that might be helpful, ether editorial or technical, it would be great if you could e-mail (or provide on CD) a word document with the suggested changes along with the Round Robin Study results. If you wish, you could use the "Tools - Tract Changes" feature of WORD to provide the suggested changes to the WORD copy of the Lead IVBA SOP 9200.2-86 that you received on the CD with the Round Robin Study samples.

**Sample Receipt:** Two 30 mL Nalgene (polyethylene) wide mouth bottles will be provided to you. One bottle will contain approximately twenty (20) grams of the **New IVBA RM Sample**, and the second bottle will also contain approximately five (5) grams of **NIST SRM 2710a**. The bottles will be logged in to your usual sample receipt login system; however, these soil materials will not require refrigeration.

#### (1) EPA SOP EPA 9200.2-86 (Lead IVBA)

**Required Quality Assurance/Quality Control:** During the EPA review of the Initial Demonstration of Proficiency Forms (IDP) Forms submitted by the laboratories participating in the Round Robin Study, it was noted that not all laboratories performed each of the Quality Control samples that are presented in the SOP EPA 9200.2-86. It is imperative for this study that all of the required quality control samples are prepared and analyzed as specified in the SOP EPA 9200.2-86. It was also noted during the reviewed of the IDP Forms that different laboratories use varying acceptance criteria for the quality control parameters. It is a requirement for this study that the acceptance criteria presented in the SOP EPA 9200.2-86 be used for quality control sample results. Below is a table of the required quality control samples and the control limits, which was derived from Section 9 of the SOP EPA 9200.2-86. Limits that are lower than those specified for the Reagent Blank and the Bottle Blank are acceptable. Please note that a designated duplicate sample is not

| QC Sample                  | Control Limits                                             |
|----------------------------|------------------------------------------------------------|
| Reagent blank              | <25 µg/L lead                                              |
| Bottle blank               | <50 µg/L lead                                              |
| Blank spike (10 mg/L)      | 85-115% recovery                                           |
| Matrix spike (10 mg/L)     | 75-125% recovery                                           |
| Duplicate sample           | ±20% RPD                                                   |
| Control soil (NIST 2710a ) | NIST 2710a Mean<br>67.5% (Acceptable<br>Range 60.7- 74.2%) |

All quality Control Samples must be run on every batch extraction of the NIST materials. <u>The New RM</u> <u>must each be extracted in a batch with a complete set of quality control QC samples.</u> Please note that the control soil NIST SRM 2710a range is based on the NIST Addendum to the Certificate of Analysis leachable median lead value of 5100 mg/kg, **not** the total dissolution Certificate of Analysis lead value 5520 mg/kg.

**Sample preparation:** The provided **New IVBA RM Sample** and **NIST SRM 2710a** should be used <u>as is</u>. The oven drying and the sieving to less than 250um should <u>not</u> be performed. Also, riffle splitting should <u>not</u> be performed on these SRM materials. The New RM must be extracted in a single extraction batch, with five (5) replicate RM samples, along with complete associated QC samples for each batch. To insure homogeneity, the New RM and NIST SRM 2710a bottles <u>must</u> be rotated along the x, y, and z axes for at least one minute before sub-sampling for extraction. <u>Note: the New RM and NIST SRM</u> **2710a** materials used in this study must be weighted out to 1.000 +/- 0.001 g. which is a more precise weighing that the SOP requirement. The extraction apparatus may have the extraction temperature controlled to  $37 \pm 2$  °C by either air (incubator type) or water (aquarium type). For either incubator or aquarium type of extractor, the sample rotation speed must be 28 RPM as specified in the SOP.

The batch sequence that <u>must</u> be used for this study is provided in Table 1 below. Again, please note that a designated duplicate sample is not required. The sample extraction will proceed as presented in the SOP.

| IVBA Extraction Batch for Lead |                             |            |  |  |  |  |
|--------------------------------|-----------------------------|------------|--|--|--|--|
| Extractor<br>Position          | Sample Name                 | Comment    |  |  |  |  |
| 1                              | New RM                      |            |  |  |  |  |
| 2                              | New RM                      |            |  |  |  |  |
| 3                              | New RM                      |            |  |  |  |  |
| 4                              | New RM                      |            |  |  |  |  |
| 5                              | New RM                      |            |  |  |  |  |
| 6                              | New RM Matrix Spike         | 10 mg/L Pb |  |  |  |  |
| 7                              | Bottle Blank                |            |  |  |  |  |
| 8                              | Blank Spike                 | 10 mg/L Pb |  |  |  |  |
| 9                              | Control Soil NIST SRM 2710a |            |  |  |  |  |

Table 1. IVBA Lead Extraction Batch for Round Robin Analysis of the New RM

**Sample Filtering and Analysis:** Sample filtering and analysis should proceed as indicated in the SOP. The analysis will be performed using either EPA SW-846 method 6010C (ICP-AES) or 6020A (ICP-MS); however, the analytical sequence should be exactly as specified in Table 2.

**Reporting:** Tables 3 and 4 <u>must</u> be used for reporting the IVBA analysis results for the New RM and the associated QC samples results. The laboratory <u>must</u> provide copies of the calibration and the raw data print out from the instrumental analysis for both batches as part of the data submission.

Please complete the Results Tables 3 and 4 and e-mail to <u>clifton.jones@shawgrp.com</u>, followed by a 2<sup>nd</sup> day Fed-Ex mailing of the Results Tables 3 and 4, along with the copies of the calibration and the raw data print outs from the instrumental analysis to the address provided below. Please provide any other pertinent information regarding the RM extraction and analysis with the data submission.

Clifton Jones Shaw Environmental - QATS 2700 Chandler Avenue, Bldg C Las Vegas, Nevada, USA 89120 Tel. (702) 895-8713

#### Table 2. Analytical Sequence for Lead IVBA Extraction Batch for the New RM

| Position                                                                       | Sample Name                                                                      | Comment                                |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|
|                                                                                | Initial Standard Calibration                                                     |                                        |
| Initial Standard Calibration                                                   | Interference Check Sample (s)                                                    |                                        |
| and Beginning QC                                                               | Initial Calibration Verification                                                 |                                        |
| Samples                                                                        | and/or Continuing Calibration                                                    |                                        |
| Campies                                                                        | Standards and Blanks, as per EPA                                                 |                                        |
|                                                                                | Methods 6010C or 6020A.                                                          |                                        |
| 10(< <proxy no.)<="" position="" td=""><td>Reagent Blank</td><td></td></proxy> | Reagent Blank                                                                    |                                        |
| 11                                                                             | Bottle Blank                                                                     | (from Extractor Position 7)            |
| 12                                                                             | New RM (Extractor Position 1)                                                    |                                        |
| 13                                                                             | New RM (Extractor Position 2)                                                    |                                        |
| 14                                                                             | New RM (Extractor Position 3)                                                    |                                        |
| 15                                                                             | New RM (Extractor Position 4)                                                    |                                        |
| 16                                                                             | New RM (Extractor Position 5)                                                    |                                        |
| 17                                                                             | Control Soil NIST SRM 2710a                                                      | (from Extractor Position 9)            |
| 18                                                                             | Blank Spike                                                                      | 10 mg/L (from Extractor<br>Position 8) |
| 19                                                                             | New RM Matrix Spike                                                              | 10 mg/L (from Extractor<br>Position 6) |
| 20                                                                             | Continuing Calibration<br>Verification Standard                                  |                                        |
| 21                                                                             | Continuing Calibration<br>Verification Blank                                     |                                        |
| Analytical Run Closing QC<br>Samples-                                          | Interference Check Sample etc. as required by either EPA Methods 6010C or 6020A. |                                        |

### (1) EPA SOP EPA 9200.2-86 (Lead IVBA)

#### Table3: Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch

Data Reporting Form for new RM

| Laboratory Performing Extraction Lab A                        |                                                                   |                    |                                                                                        |                                                                                                    |  |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| Laboratory Performing Analysis                                | Lab A                                                             |                    |                                                                                        |                                                                                                    |  |  |  |  |
| IVBA Extraction Batch Results new RM: Lead                    |                                                                   |                    |                                                                                        |                                                                                                    |  |  |  |  |
|                                                               |                                                                   |                    |                                                                                        |                                                                                                    |  |  |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-MS Instrument Method Detection<br>Limit (MDL) (ug/L) 2.0 ug/L |                    |                                                                                        |                                                                                                    |  |  |  |  |
| Extraction Date                                               | May 10, 2012                                                      |                    |                                                                                        |                                                                                                    |  |  |  |  |
| Extraction Lead Standard<br>Manufacturer and Lot #            | Ultra Scientific ICP-082,                                         | Lot# L0039         | 4                                                                                      |                                                                                                    |  |  |  |  |
| Analysis Date(s)                                              | May 18, 2012                                                      |                    |                                                                                        |                                                                                                    |  |  |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              | Inorganic Ventures, E2-                                           | MEB393062          | 2                                                                                      |                                                                                                    |  |  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | High Purity Standards, 1                                          | 125704             |                                                                                        |                                                                                                    |  |  |  |  |
| Interference Check Sample Source<br>and Lot #                 | n/a                                                               |                    |                                                                                        |                                                                                                    |  |  |  |  |
| Sample Name                                                   | Instrument result for<br>the analytical<br>solution (ug/L)        | Dilution<br>Factor | Final Instrumental result<br>analytical solution<br>(corrected for dilution)<br>(ug/L) | t Result in mg/Kg (corrected<br>for 1g/100mL extraction)<br>(i.e., ug/L times 100/1000 =<br>mg/kg) |  |  |  |  |
| EXAMPLE SOIL (NIST 2710a)                                     | 70                                                                | 10                 | 700                                                                                    | 70                                                                                                 |  |  |  |  |
|                                                               |                                                                   |                    |                                                                                        |                                                                                                    |  |  |  |  |
| Reagent Blank                                                 | 1.01                                                              | 1                  | 1.01                                                                                   |                                                                                                    |  |  |  |  |
| Bottle Blank                                                  | 0.72                                                              | 1                  | 0.72                                                                                   |                                                                                                    |  |  |  |  |
| RM (Extractor Position 1)                                     | 43600                                                             | 1                  | 43600                                                                                  | 4360                                                                                               |  |  |  |  |
| RM (Extractor Position 2)                                     | 45100                                                             | 1                  | 45100                                                                                  | 4491                                                                                               |  |  |  |  |
| RM (Extractor Position 3)                                     | 43900                                                             | 1                  | 43900                                                                                  | 4387                                                                                               |  |  |  |  |
| RM (Extractor Position 4)                                     | 44700                                                             | 1                  | 44700                                                                                  | 4448                                                                                               |  |  |  |  |
| RM (Extractor Position 5)                                     | 44500                                                             | 1                  | 44500                                                                                  | 4409                                                                                               |  |  |  |  |
| Control Soil SRM 2710a                                        | 33300                                                             | 1                  | 3300                                                                                   | 3325                                                                                               |  |  |  |  |
| Blank Spike                                                   | 9140                                                              | 1                  | 9140                                                                                   | 914                                                                                                |  |  |  |  |
| RM Matrix Spike                                               | 56400                                                             | 1                  | 56400                                                                                  | 5547                                                                                               |  |  |  |  |

| Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for new RM |                    |  |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| Laboratory Performing Extraction                                                 | Lab A              |  |  |  |  |  |
| Laboratory Performing Analysis                                                   | Lab A              |  |  |  |  |  |
| IVBA Extraction Batch Spiked Blank and Spiked Sample Results                     |                    |  |  |  |  |  |
| for New RM: Lead                                                                 |                    |  |  |  |  |  |
| Bottle Blank Result (mg/L)                                                       | 0.0010             |  |  |  |  |  |
| Blank Spike Result (mg/L)                                                        | 0.00072 (9140) CLJ |  |  |  |  |  |
| Blank Spike Percent Recovery                                                     | 91.4%              |  |  |  |  |  |
|                                                                                  |                    |  |  |  |  |  |
| Average (5) Result RM (mg/L)                                                     | 44.2               |  |  |  |  |  |
| RM Matrix Spike Result (mg/L)                                                    | 55.4               |  |  |  |  |  |
| RM Matrix Spike Percent Recovery                                                 | 100.2              |  |  |  |  |  |

## (2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

Table 3. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

Data Reporting Form for new RM: Results for Lead

| Laboratory Performing Extraction                              | Lab A                                                      |                    |                                                                                        |                                                                                              |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|
| Laboratory Performing Analysis                                | Lab A                                                      |                    |                                                                                        |                                                                                              |  |  |  |
|                                                               | <b>Digestion Batch</b>                                     | n Results          | new RM: Lead                                                                           |                                                                                              |  |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-MS Instrument Method Detection Limit<br>(MDL) (ug/L)   |                    |                                                                                        |                                                                                              |  |  |  |
| Digestion Date                                                | May 9, 2012                                                |                    |                                                                                        |                                                                                              |  |  |  |
| Digestion Lead Standard<br>Manufacturer and Lot #             | Ultra Scientific ICP-0                                     | 82, Lot# L003      | 394                                                                                    |                                                                                              |  |  |  |
| Analysis Date(s)                                              | May 18, 2012                                               |                    |                                                                                        |                                                                                              |  |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              | n/a                                                        |                    |                                                                                        |                                                                                              |  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | n/a                                                        |                    |                                                                                        |                                                                                              |  |  |  |
| Interference Check Sample Source<br>and Lot #                 | n/a                                                        |                    |                                                                                        |                                                                                              |  |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) | Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg) |  |  |  |
| EXAMPLE SOIL (NIST 2710a)                                     | 35                                                         | 10                 | 350                                                                                    | 70                                                                                           |  |  |  |
|                                                               |                                                            |                    |                                                                                        |                                                                                              |  |  |  |
| Reagent Blank                                                 | 0.94                                                       | 1                  | 0.94                                                                                   |                                                                                              |  |  |  |
| RM (Sample 1)                                                 | 30900                                                      | 1                  | 30900                                                                                  | 6180                                                                                         |  |  |  |
| RM (Sample 2)                                                 | 30300                                                      | 1                  | 30300                                                                                  | 6036                                                                                         |  |  |  |
| RM (Sample 3)                                                 | 33300                                                      | 1                  | 33300                                                                                  | 6657                                                                                         |  |  |  |
| RM (Sample 4)                                                 | 32900                                                      | 1                  | 32900                                                                                  | 6579                                                                                         |  |  |  |
| RM (Sample 5)                                                 | 32600                                                      | 1                  | 32600                                                                                  | 6439                                                                                         |  |  |  |
| Control Soil SRM 2710a                                        | 27800                                                      | 1                  | 27800                                                                                  | 5554                                                                                         |  |  |  |
| Blank Spike                                                   | 9320                                                       | 1                  | 9320                                                                                   |                                                                                              |  |  |  |
| RM Matrix Spike                                               | 42800                                                      | 1                  | 42800                                                                                  |                                                                                              |  |  |  |

## Table 4. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for new RM: Results for Lead

| Results for new RM. Results for Lead                       |                         |  |  |  |  |
|------------------------------------------------------------|-------------------------|--|--|--|--|
| Laboratory Performing Extraction                           | Lab A                   |  |  |  |  |
| Laboratory Performing Analysis                             | Lab A                   |  |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |                         |  |  |  |  |
| New RM: Lead                                               |                         |  |  |  |  |
| Blank Spike Result (mg/L)                                  | 0.00094 mg/L(9.320) CLJ |  |  |  |  |
| Blank Spike Percent Recovery                               | 93.2%                   |  |  |  |  |
|                                                            |                         |  |  |  |  |
| Average (5) Result RM (mg/L)                               | 32.0                    |  |  |  |  |
| RM Matrix Spike Result (mg/L)                              | 42.8                    |  |  |  |  |
| RM Matrix Spike Percent Recovery                           | 101.9%                  |  |  |  |  |

## Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u> Data Reporting Form for new RM: Results for Arsenic

| Laboratory Performing Extraction                                                                                                                                         | Lab A                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Laboratory Performing Analysis                                                                                                                                           | Lab A                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
|                                                                                                                                                                          | igestion Batch I                                                                                                         | Results n                                                                                                                                                                                                                       | ew RM: Arsenic                                                                                                                  |                                                                                                         |  |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                                                                                                                                 | ICP-MS                                                                                                                   | Instrument<br>(MDL) (ug/                                                                                                                                                                                                        | t Method Detection Limit<br>L)                                                                                                  |                                                                                                         |  |  |  |
| Digestion Date                                                                                                                                                           |                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
| Digestion Arsenic Standard<br>Manufacturer and Lot #                                                                                                                     | Ultra Scientific ICP-03                                                                                                  | 33, Lot# L004                                                                                                                                                                                                                   | 31A                                                                                                                             |                                                                                                         |  |  |  |
| Analysis Date(s)                                                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
| Analysis Arsenic Standard<br>Manufacturer and Lot #                                                                                                                      | Inorganic Ventures, E2-MEB393062                                                                                         |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot #                                                                                                            | High Purity Standards, 1125704                                                                                           |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
| Interference Check Sample Source                                                                                                                                         | n/a                                                                                                                      |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
| and Lot #                                                                                                                                                                |                                                                                                                          |                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                         |  |  |  |
| Sample Name                                                                                                                                                              | Instrument result<br>for the analytical<br>solution (ug/L)                                                               | Dilution<br>Factor                                                                                                                                                                                                              | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L)                                          | Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)            |  |  |  |
|                                                                                                                                                                          | Instrument result for the analytical                                                                                     |                                                                                                                                                                                                                                 | result analytical solution (corrected for                                                                                       | for 0.5g/100mL extraction)(i.e                                                                          |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)                                                                                                                                 | Instrument result<br>for the analytical<br>solution (ug/L)<br>35                                                         | Factor                                                                                                                                                                                                                          | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350                                                         | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)                                          |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank                                                                                                                | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80                                                 | Factor           10           1                                                                                                                                                                                                 | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80                                                 | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70                                    |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank<br>RM (Sample 1)                                                                                               | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80<br>3260                                         | Factor           10           1           1           1                                                                                                                                                                         | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80<br>3260                                         | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70<br>652                             |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank<br>RM (Sample 1)<br>RM (Sample 2)                                                                              | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80<br>3260<br>3280                                 | Factor           10           1           1           1           1                                                                                                                                                             | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80<br>3260<br>3280                                 | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70<br>652<br>653                      |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank<br>RM (Sample 1)<br>RM (Sample 2)<br>RM (Sample 3)                                                             | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80<br>3260<br>3280<br>3500                         | Factor           10           1           1           1                                                                                                                                                                         | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80<br>0.80<br>3260<br>3280<br>3280<br>3500         | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70<br>652<br>653<br>700               |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank<br>RM (Sample 1)<br>RM (Sample 2)<br>RM (Sample 3)<br>RM (Sample 4)                                            | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80<br>3260<br>3280<br>3500<br>3480                 | Factor           10           1           1           1           1           1           1           1           1           1                                                                                                 | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80<br>3260<br>3280<br>3500<br>3480                 | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70<br>652<br>653<br>700<br>696        |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank<br>RM (Sample 1)<br>RM (Sample 2)<br>RM (Sample 3)<br>RM (Sample 4)<br>RM (Sample 5)                           | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80<br>3260<br>3280<br>3500<br>3480<br>3410         | Factor 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                   | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80<br>3260<br>3280<br>3500<br>3480<br>3410         | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70<br>652<br>653<br>700<br>696<br>674 |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank<br>RM (Sample 1)<br>RM (Sample 2)<br>RM (Sample 3)<br>RM (Sample 4)<br>RM (Sample 5)<br>Control Soil SRM 2710a | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80<br>3260<br>3280<br>3280<br>3480<br>3410<br>7970 | Factor           10           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1           1 | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80<br>3260<br>3280<br>3280<br>3480<br>3410<br>7970 | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70<br>652<br>653<br>700<br>696        |  |  |  |
| Sample Name<br>EXAMPLE SOIL (NIST 2710a)<br>Reagent Blank<br>RM (Sample 1)<br>RM (Sample 2)<br>RM (Sample 3)<br>RM (Sample 4)<br>RM (Sample 5)                           | Instrument result<br>for the analytical<br>solution (ug/L)<br>35<br>0.80<br>3260<br>3280<br>3500<br>3480<br>3410         | Factor 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                   | result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>350<br>0.80<br>3260<br>3280<br>3500<br>3480<br>3410         | for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg)<br>70<br>652<br>653<br>700<br>696<br>674 |  |  |  |

#### Table 6. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for new RM: Results for Arsenic

| Results for new RM: Results for Arsenic                    |                         |  |  |  |  |
|------------------------------------------------------------|-------------------------|--|--|--|--|
| Laboratory Performing Extraction                           | Lab A                   |  |  |  |  |
| Laboratory Performing Analysis                             | Lab A                   |  |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |                         |  |  |  |  |
| New RM : Arsenic                                           |                         |  |  |  |  |
| Blank Spike Result (mg/L)                                  | 0.00080 mg/L (9.08) CLJ |  |  |  |  |
| Blank Spike Percent Recovery                               | 90.8%                   |  |  |  |  |
|                                                            |                         |  |  |  |  |
| Average (5) Result RM (mg/L)                               | 3.386 mg/L              |  |  |  |  |
| RM Matrix Spike Result (mg/L)                              | 13.9                    |  |  |  |  |
| RM Matrix Spike Percent Recovery                           | 103.8%                  |  |  |  |  |

## Laboratory B

### (1) EPA SOP EPA 9200.2-86 (Lead IVBA)

Table 3. Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch Data Reporting Form for New RM

| Laboratory Performing Extraction                              |     | Lab B                                                |                                                   |                                                                                        |                                                                                                  |  |  |
|---------------------------------------------------------------|-----|------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Laboratory Performing Analysis                                |     | Lab B                                                |                                                   |                                                                                        |                                                                                                  |  |  |
|                                                               | IVB | A Extraction Bate                                    | ch Resul                                          | ts New RM: Lead                                                                        |                                                                                                  |  |  |
| Instrument Type? (ICP-AES or ICP-M)                           |     | IS                                                   | Instrument Method Detection<br>Limit (MDL) (ug/L) |                                                                                        | 333, 0.17 (CLJ)                                                                                  |  |  |
| Extraction Date                                               |     | 05/14/2012                                           |                                                   |                                                                                        |                                                                                                  |  |  |
| Extraction Lead Standard<br>Manufacturer and Lot #            |     | CPI INT'L                                            | #11L036                                           |                                                                                        |                                                                                                  |  |  |
| Analysis Date(s)                                              |     | 5/16/2012                                            |                                                   |                                                                                        |                                                                                                  |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              |     | Inorganic Ventures                                   |                                                   | E2-MEB373122                                                                           |                                                                                                  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # |     | ACCUSTANDARD                                         |                                                   | 211055033                                                                              |                                                                                                  |  |  |
| Interference Check Sample Source<br>and Lot #                 |     | Inorganic Ventures                                   |                                                   | E2-MEB348034                                                                           |                                                                                                  |  |  |
| Sample Name                                                   |     | Instrument result for the analytical solution (ug/L) | Dilution<br>Factor                                | Final Instrumental result<br>analytical solution<br>(corrected for dilution)<br>(ug/L) | t Result in mg/Kg (corrected<br>for 1g/100mL extraction)<br>(i.e ug/L times 100/1000 =<br>mg/kg) |  |  |
| EXAMPLE SOIL                                                  |     | 70                                                   | 10                                                | 700                                                                                    | 70                                                                                               |  |  |
|                                                               |     |                                                      |                                                   |                                                                                        |                                                                                                  |  |  |
| Reagent Blank                                                 |     | 0.44                                                 | 5                                                 | 2.2                                                                                    | 0                                                                                                |  |  |
| Bottle Blank                                                  |     | 0.88                                                 | 5                                                 | 4.4                                                                                    | 0                                                                                                |  |  |
| New RM (Extractor Position 1)                                 |     | 521                                                  | 100                                               | 52100                                                                                  | 5210                                                                                             |  |  |
| New RM (Extractor Position 2)                                 |     | 542                                                  | 100                                               | 54200                                                                                  | 5420                                                                                             |  |  |
| New RM (Extractor Position 3)                                 |     | 526                                                  | 100                                               | 52600                                                                                  | 5260                                                                                             |  |  |
| New RM (Extractor Position 4)                                 |     | 526                                                  | 100                                               | 52600                                                                                  | 5260                                                                                             |  |  |
| New RM (Extractor Position 5)                                 |     | 517                                                  | 100                                               | 51700                                                                                  | 5170                                                                                             |  |  |
| Control Soil NIST SRM 2710a                                   |     | 400                                                  | 100                                               | 40000                                                                                  | 4000                                                                                             |  |  |
| Blank Spike                                                   |     | 2075                                                 | 5                                                 | 10375                                                                                  | 1040                                                                                             |  |  |
| New RM Matrix Spike                                           |     | 644                                                  | 100                                               | 64400                                                                                  | 6440                                                                                             |  |  |

#### Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for New RM Laboratory Performing Extraction Lab B Laboratory Performing Analysis Lab B **IVBA Extraction Batch Spiked Blank and Spiked Sample Results for New RM: Lead** Bottle Blank Result (mg/L) 0 Blank Spike Result (mg/L) 10375 **Blank Spike Percent Recovery** 104% Average (5) Result New RM (mg/L) 5264 New RM Matrix Spike Result (mg/L) 6440 New RM Matrix Spike Percent Recovery 117.6%

# (2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

Table 3. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

Data Reporting Form for New RM: Results for Lead

| Laboratory Performing Extraction                              | Lab B                                                      |                                                                    |                                                                                                                                                                              |        |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
| Laboratory Performing Analysis                                | Lab B                                                      |                                                                    |                                                                                                                                                                              |        |  |  |  |  |
| Digestion Batch Results New RM: Lead                          |                                                            |                                                                    |                                                                                                                                                                              |        |  |  |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      |                                                            | Instrument Method Detection Limit<br>(MDL) (ug/L) 333 , 0.17 (CLJ) |                                                                                                                                                                              |        |  |  |  |  |
| Digestion Date                                                | 05/14/2012                                                 |                                                                    |                                                                                                                                                                              |        |  |  |  |  |
| Digestion Lead Standard<br>Manufacturer and Lot #             | CPI INT'L                                                  | #11L036                                                            |                                                                                                                                                                              |        |  |  |  |  |
| Analysis Date(s)                                              | 5/16/2012                                                  |                                                                    |                                                                                                                                                                              |        |  |  |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              | Inorganic Ventures                                         |                                                                    | E2-MEB373122                                                                                                                                                                 |        |  |  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | ACCUSTANDARD                                               | 211055033                                                          |                                                                                                                                                                              |        |  |  |  |  |
| Interference Check Sample Source<br>and Lot #                 | Inorganic Ventures                                         | E2-MEB348034                                                       |                                                                                                                                                                              |        |  |  |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor                                                 | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>Result in mg/Kg (corrected<br>for 0.5g/100mL extraction<br>ug/L times 200/1000 = n |        |  |  |  |  |
| EXAMPLE SOIL                                                  | 35                                                         | 10                                                                 | 350                                                                                                                                                                          | 70     |  |  |  |  |
|                                                               |                                                            |                                                                    |                                                                                                                                                                              |        |  |  |  |  |
| Reagent Blank                                                 | 0.128                                                      | 2000                                                               | 256                                                                                                                                                                          | ND@1.0 |  |  |  |  |
| New RM (Sample 1)                                             | 279.8                                                      | 20000                                                              | 5596000                                                                                                                                                                      | 5600   |  |  |  |  |
| New RM (Sample 2)                                             | 325.3                                                      | 20000                                                              | 6506000                                                                                                                                                                      | 6500   |  |  |  |  |
| New RM (Sample 3)                                             | 317.5                                                      | 20000                                                              | 6350000                                                                                                                                                                      | 6350   |  |  |  |  |
| New RM (Sample 4)                                             | 343.7                                                      | 20000                                                              | 6870000                                                                                                                                                                      | 6870   |  |  |  |  |
| New RM (Sample 5)                                             | 310.2                                                      | 20000                                                              | 6200000                                                                                                                                                                      | 6200   |  |  |  |  |
| Control Soil NIST SRM 2710a                                   | 268.6                                                      | 20000                                                              | 5372000                                                                                                                                                                      | 5370   |  |  |  |  |
| Blank Spike                                                   | 13.98                                                      | 2000 27960 27.96                                                   |                                                                                                                                                                              |        |  |  |  |  |
| New RM Matrix Spike                                           | 342.4                                                      | 20000                                                              | 6848000                                                                                                                                                                      | 6850   |  |  |  |  |

## Table 4. 3051A Digestion Spiked Blank and Spiked Sample Results for New RM: Results for Lead

| Results for New RM. Results for Lead                     |                     |  |  |  |  |
|----------------------------------------------------------|---------------------|--|--|--|--|
| Laboratory Performing Extraction                         | Lab B               |  |  |  |  |
| Laboratory Performing Analysis                           | Lab B               |  |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results f |                     |  |  |  |  |
| New RM                                                   | I: Lead             |  |  |  |  |
| Blank Spike Result (mg/L)                                | 27.96               |  |  |  |  |
| Blank Spike Percent Recovery                             | 111.8               |  |  |  |  |
|                                                          |                     |  |  |  |  |
| Average (5) Result New RM (mg/L)                         | 6300                |  |  |  |  |
| New RM Matrix Spike Result (mg/L)                        | 6850                |  |  |  |  |
| New RM Matrix Spike Percent Recovery                     | 220 (250 MG/KG SPK) |  |  |  |  |

#### Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

#### Data Reporting Form for New RM: Results for Arsenic

| Laboratory Performing Extraction Lab B                        |                                                            |                    |                                                       |          |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------|-------------------------------------------------------|----------|--|--|--|--|
| Laboratory Performing Analysis                                | Lab B                                                      |                    |                                                       |          |  |  |  |  |
| Digestion Batch Results New RM: Arsenic                       |                                                            |                    |                                                       |          |  |  |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-MS                                                     |                    | Instrument Method Detection Limit<br>(MDL) (ug/L) 333 |          |  |  |  |  |
| Digestion Date                                                | 05/14/2012                                                 |                    |                                                       |          |  |  |  |  |
| Digestion Arsenic Standard<br>Manufacturer and Lot #          | CPI INT'L                                                  | #11L036            |                                                       |          |  |  |  |  |
| Analysis Date(s)                                              | 5/16/2012                                                  |                    |                                                       |          |  |  |  |  |
| Analysis Arsenic Standard<br>Manufacturer and Lot #           | Inorganic Ventures                                         |                    | E2-MEB373122                                          |          |  |  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | ACCUSTANDARD                                               |                    | 211055033                                             |          |  |  |  |  |
| Interference Check Sample Source<br>and Lot #                 | Inorganic Ventures                                         | E2-MEB348034       |                                                       |          |  |  |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor | tor 0 5g/100ml extraction                             |          |  |  |  |  |
| EXAMPLE SOIL                                                  | 35                                                         | 10                 | 350                                                   | 70       |  |  |  |  |
|                                                               |                                                            |                    |                                                       |          |  |  |  |  |
| Reagent Blank                                                 | 0.38                                                       | 2000               | 760                                                   | ND @ 1.0 |  |  |  |  |
| New RM (Sample 1)                                             | 358                                                        | 2000               | 716000                                                | 716      |  |  |  |  |
| New RM (Sample 2)                                             | 380                                                        | 2000               | 760000                                                | 760      |  |  |  |  |
| New RM (Sample 3)                                             | 396                                                        | 2000               | 792000                                                | 792      |  |  |  |  |
| New RM (Sample 4)                                             | 416                                                        | 2000               | 832000                                                | 830      |  |  |  |  |
| New RM (Sample 5)                                             | 411                                                        | 2000               | 822000                                                | 822      |  |  |  |  |
| Control Soil NIST SRM 2710a                                   | 826                                                        | 2000               | 1652000                                               | 1650     |  |  |  |  |
| Blank Spike                                                   | 14.33                                                      | 2000               | 28660                                                 | 28.7     |  |  |  |  |
| New RM Matrix Spike                                           | 358.3                                                      | 2000               | 716600                                                | 717      |  |  |  |  |

## Table 6. 3051A Digestion Spiked Blank and Spiked Sample Results for New RM: Results for Arsenic

| Lab B                        |  |  |  |  |  |  |
|------------------------------|--|--|--|--|--|--|
| Lab B                        |  |  |  |  |  |  |
| nd Spiked Sample Results for |  |  |  |  |  |  |
| Arsenic                      |  |  |  |  |  |  |
| 28.7                         |  |  |  |  |  |  |
| 114.8                        |  |  |  |  |  |  |
|                              |  |  |  |  |  |  |
| 784                          |  |  |  |  |  |  |
| 717                          |  |  |  |  |  |  |
| -268 (25 MG/KG SPK)          |  |  |  |  |  |  |
|                              |  |  |  |  |  |  |

## Laboratory C

### (1) EPA SOP EPA 9200.2-86 (Lead IVBA)

Table 3. Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch Data Reporting Form for New RM

| Laboratory Performing Extraction                              |     | Lab C                                                |                        |                                                                                        |                                                                                                  |  |  |
|---------------------------------------------------------------|-----|------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Laboratory Performing Analysis                                |     | Lab C                                                |                        |                                                                                        |                                                                                                  |  |  |
| IVBA Extraction Batch Results New RM: Lead                    |     |                                                      |                        |                                                                                        |                                                                                                  |  |  |
| Instrument Type? (ICP-AES or ICP-MS)                          | ICP |                                                      | Instrumen<br>Limit (MD | t Method Detection<br>L) (ug/L)                                                        | 40 ug/L                                                                                          |  |  |
| Extraction Date                                               |     | 04/23/12                                             |                        |                                                                                        |                                                                                                  |  |  |
| Extraction Lead Standard<br>Manufacturer and Lot #            |     | CPI International                                    | Lot# 11G0              | 022                                                                                    |                                                                                                  |  |  |
| Analysis Date(s)                                              |     | 04/26/12                                             |                        |                                                                                        |                                                                                                  |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              |     | CPI International                                    | Lot#                   | 11G022                                                                                 |                                                                                                  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # |     | SPEX                                                 | Lot#                   | ot# 6-171CR                                                                            |                                                                                                  |  |  |
| Interference Check Sample Sour<br>and Lot #                   | ce  | SPEX                                                 | Lot#                   | t# 3-50YP                                                                              |                                                                                                  |  |  |
| Sample Name                                                   |     | Instrument result for the analytical solution (ug/L) | Dilution<br>Factor     | Final Instrumental result<br>analytical solution<br>(corrected for dilution)<br>(ug/L) | t Result in mg/Kg (corrected<br>for 1g/100mL extraction)<br>(i.e ug/L times 100/1000 =<br>mg/kg) |  |  |
| EXAMPLE SOIL                                                  |     | 70                                                   | 10                     | 700                                                                                    | 70                                                                                               |  |  |
| Reagent Blank                                                 |     | <40                                                  | 1                      | <40                                                                                    | <4                                                                                               |  |  |
| Bottle Blank                                                  |     | <40                                                  | 1                      | <40                                                                                    | <4                                                                                               |  |  |
| New RM (Extractor Position 1)                                 |     | 9734                                                 | 5                      | 48700                                                                                  | 4870                                                                                             |  |  |
| New RM (Extractor Position 2)                                 |     | 9994                                                 | 5                      | 50000                                                                                  | 5000                                                                                             |  |  |
| New RM (Extractor Position 3)                                 |     | 10112                                                | 5                      | 50600                                                                                  | 5060                                                                                             |  |  |
| New RM (Extractor Position 4)                                 |     | 10261                                                | 5                      | 51300                                                                                  | 5130                                                                                             |  |  |
| New RM (Extractor Position 5)                                 |     | 9497                                                 | 5                      | 47500                                                                                  | 4750                                                                                             |  |  |
| Control Soil NIST SRM 2710a                                   |     | 7886                                                 | 5                      | 39430                                                                                  | 3943                                                                                             |  |  |
| Blank Spike                                                   |     | 2166                                                 | 5                      | 10830                                                                                  | 1083                                                                                             |  |  |
| New RM Matrix Spike                                           |     | 12248                                                | 5                      | 61240                                                                                  | 6124                                                                                             |  |  |

| Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for New RM |             |  |  |  |  |  |
|----------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Laboratory Performing Extraction                                                 | Lab C       |  |  |  |  |  |
| Laboratory Performing Analysis                                                   | Lab C       |  |  |  |  |  |
| IVBA Extraction Batch Spiked Blank and Spiked Sample                             |             |  |  |  |  |  |
| Results for N                                                                    | ew RM: Lead |  |  |  |  |  |
| Bottle Blank Result (mg/L)                                                       | <0.04       |  |  |  |  |  |
| Blank Spike Result (mg/L)                                                        | 10.83       |  |  |  |  |  |
| Blank Spike Percent Recovery                                                     | 108.3%      |  |  |  |  |  |
|                                                                                  |             |  |  |  |  |  |
| Average (5) Result New RM (mg/L)                                                 | 49.62       |  |  |  |  |  |
| New RM Matrix Spike Result (mg/L)                                                | 61.24       |  |  |  |  |  |
| New RM Matrix Spike Percent Recovery                                             | 116.2%*     |  |  |  |  |  |

• The spike recovery value is unusable since the analyte concentration is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

# 2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

Table 3. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

Data Reporting Form for New RM: Results for Lead

| Laboratory Performing Extraction                              | Lab C                                                      |                                                   |                                                                                                                                                                               |        |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
| Laboratory Performing Analysis                                | Lab C                                                      |                                                   |                                                                                                                                                                               |        |  |  |  |  |
| Digestion Batch Results New RM: Lead                          |                                                            |                                                   |                                                                                                                                                                               |        |  |  |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP0                                                       | Instrument Method Detection Limit<br>(MDL) (ug/L) |                                                                                                                                                                               |        |  |  |  |  |
| Digestion Date                                                | 05/02/12                                                   | 40                                                |                                                                                                                                                                               |        |  |  |  |  |
| Digestion Lead Standard<br>Manufacturer and Lot #             | СРІ                                                        | Lot# 11G0                                         | 22                                                                                                                                                                            |        |  |  |  |  |
| Analysis Date(s)                                              | 05/03/12                                                   |                                                   |                                                                                                                                                                               |        |  |  |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              | СРІ                                                        | Lot#                                              | 11G022                                                                                                                                                                        |        |  |  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | SPEX                                                       | Lot#                                              | 6-171CR                                                                                                                                                                       |        |  |  |  |  |
| Interference Check Sample Source<br>and Lot #                 | SPEX                                                       | Lot# 3-50YP                                       |                                                                                                                                                                               |        |  |  |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor                                | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>Result in mg/Kg (correcte<br>for 0.5g/100mL extraction<br>ug/L times 200/1000 = mg/ |        |  |  |  |  |
| EXAMPLE SOIL                                                  | 35                                                         | 10                                                | 350                                                                                                                                                                           | 70     |  |  |  |  |
|                                                               |                                                            |                                                   |                                                                                                                                                                               |        |  |  |  |  |
| Reagent Blank                                                 | <40                                                        | 100                                               | <4000                                                                                                                                                                         | <400   |  |  |  |  |
| New RM (Sample 1)                                             | 57615                                                      | 100                                               | 5761500                                                                                                                                                                       | 576150 |  |  |  |  |
| New RM (Sample 2)                                             | 60189                                                      | 100                                               | 6018900                                                                                                                                                                       | 601890 |  |  |  |  |
| New RM (Sample 3)                                             | 61556                                                      | 100                                               | 6155600                                                                                                                                                                       | 615560 |  |  |  |  |
| New RM (Sample 4)                                             | 58450                                                      | 100                                               | 5845000                                                                                                                                                                       | 584500 |  |  |  |  |
| New RM (Sample 5)                                             | 56994                                                      | 100                                               | 5699400                                                                                                                                                                       | 569940 |  |  |  |  |
| Control Soil NIST SRM 2710a                                   | 24410                                                      | 200                                               | 4882000                                                                                                                                                                       | 488200 |  |  |  |  |
| Blank Spike                                                   | 9634                                                       | 1 9634 963                                        |                                                                                                                                                                               |        |  |  |  |  |
| New RM Matrix Spike                                           | 42683                                                      | 200                                               | 8536600                                                                                                                                                                       | 853660 |  |  |  |  |

#### Table 4. 3051A Digestion Spiked Blank and Spiked Sample

|   | Res | ults for | New R | M: | Re | sults | for l | _ead |  |
|---|-----|----------|-------|----|----|-------|-------|------|--|
| _ |     |          |       |    |    | -     |       |      |  |

| Results for New RM. Results for Lead                       |        |  |  |  |  |
|------------------------------------------------------------|--------|--|--|--|--|
| Laboratory Performing Extraction L                         | ab C   |  |  |  |  |
| Laboratory Performing Analysis L                           | ab C   |  |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |        |  |  |  |  |
| New RM:                                                    | Lead   |  |  |  |  |
| Blank Spike Result (mg/L)                                  | 9.63   |  |  |  |  |
| Blank Spike Percent Recovery                               | 96.3%  |  |  |  |  |
|                                                            |        |  |  |  |  |
| Average (5) Result New RM (mg/L)                           | 6872.5 |  |  |  |  |
| New RM Matrix Spike Result (mg/L)                          | 8536.6 |  |  |  |  |
| New RM Matrix Spike Percent Recovery                       | 83.2%* |  |  |  |  |

• The spike recovery value is unusable since the analyte concentration is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.

#### Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

#### Data Reporting Form for New RM: Results for Arsenic

| Laboratory Performing Extraction Lab C                        |                                                            |                                                   |                                                                                                                                                                                  |        |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|--|
| Laboratory Performing Analysis                                | Lab C                                                      |                                                   |                                                                                                                                                                                  |        |  |  |  |  |
| Digestion Batch Results New RM: Arsenic                       |                                                            |                                                   |                                                                                                                                                                                  |        |  |  |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP                                                        | Instrument Method Detection Limit<br>(MDL) (ug/L) |                                                                                                                                                                                  |        |  |  |  |  |
| Digestion Date                                                | 05/02/12                                                   | 60                                                |                                                                                                                                                                                  |        |  |  |  |  |
| Digestion Arsenic Standard<br>Manufacturer and Lot #          | СРІ                                                        | Lot# 11B07                                        | 77                                                                                                                                                                               |        |  |  |  |  |
| Analysis Date(s)                                              | 05/03/12                                                   |                                                   |                                                                                                                                                                                  |        |  |  |  |  |
| Analysis Arsenic Standard<br>Manufacturer and Lot #           | СРІ                                                        | Lot#                                              | 11B077                                                                                                                                                                           |        |  |  |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | SPEX                                                       | Lot#                                              | 9-61-CR                                                                                                                                                                          |        |  |  |  |  |
| Interference Check Sample Source<br>and Lot #                 | SPEX                                                       | Lot# 3-50YP                                       |                                                                                                                                                                                  |        |  |  |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor                                | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L)<br>Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)<br>ug/L times 200/1000 = mg/l |        |  |  |  |  |
| EXAMPLE SOIL                                                  | 35                                                         | 10                                                | 350                                                                                                                                                                              | 70     |  |  |  |  |
|                                                               |                                                            |                                                   |                                                                                                                                                                                  |        |  |  |  |  |
| Reagent Blank                                                 | <60                                                        | 100                                               | <6000                                                                                                                                                                            | <600   |  |  |  |  |
| New RM (Sample 1)                                             | 6206                                                       | 100                                               | 620600                                                                                                                                                                           | 62060  |  |  |  |  |
| New RM (Sample 2)                                             | 6734                                                       | 100                                               | 673400                                                                                                                                                                           | 67340  |  |  |  |  |
| New RM (Sample 3)                                             | 6550                                                       | 100                                               | 655000                                                                                                                                                                           | 65500  |  |  |  |  |
| New RM (Sample 4)                                             | 6393                                                       | 100                                               | 639300                                                                                                                                                                           | 63930  |  |  |  |  |
| New RM (Sample 5)                                             | 6312                                                       | 100                                               | 631200                                                                                                                                                                           | 63120  |  |  |  |  |
| Control Soil NIST SRM 2710a                                   | 7300                                                       | 200                                               | 1460000                                                                                                                                                                          | 146000 |  |  |  |  |
| Blank Spike                                                   | 9054                                                       | 1 9054 905                                        |                                                                                                                                                                                  |        |  |  |  |  |
| New RM Matrix Spike                                           | 13897                                                      | 200 2779400 277940                                |                                                                                                                                                                                  |        |  |  |  |  |

### Table 6. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for New RM: Results for Arsenic

| Results for new RWI: Results for Arsenic                   |         |  |  |  |  |  |
|------------------------------------------------------------|---------|--|--|--|--|--|
| Laboratory Performing Extraction L                         | ab C    |  |  |  |  |  |
| Laboratory Performing Analysis L                           | ab C    |  |  |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |         |  |  |  |  |  |
| New RM: A                                                  | Arsenic |  |  |  |  |  |
| Blank Spike Result (mg/L)                                  | 9.05    |  |  |  |  |  |
| Blank Spike Percent Recovery                               | 90.5%   |  |  |  |  |  |
|                                                            |         |  |  |  |  |  |
| Average (5) Result New RM (mg/L)                           | 643.9   |  |  |  |  |  |
| New RM Matrix Spike Result (mg/L)                          | 2779.4  |  |  |  |  |  |
| New RM Matrix Spike Percent Recovery                       | 106.7%  |  |  |  |  |  |

## Laboratory D

(1) EPA SOP EPA 9200.2-86 (Lead IVBA) Table 3. Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch Data Reporting Form for New RM

| Laboratory Performing Extraction                              |                                | Lab D                                                      |                        |                                                                                        |                                                                                                                       |  |
|---------------------------------------------------------------|--------------------------------|------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Laboratory Performing Analysis                                | tory Performing Analysis Lab D |                                                            |                        |                                                                                        |                                                                                                                       |  |
|                                                               | IVB                            | A Extraction Bate                                          | ch Resul               | ts New RM: Lead                                                                        |                                                                                                                       |  |
| Instrument Type? (ICP-AES or ICP-MS)                          | ICP-N                          |                                                            | Instrumen<br>Limit (MD | t Method Detection<br>L) (ug/L)                                                        | 0.031                                                                                                                 |  |
| Extraction Date                                               |                                | 5/7/12                                                     |                        |                                                                                        |                                                                                                                       |  |
| Extraction Lead Standard<br>Manufacturer and Lot #            |                                | SPEX 11-116PB                                              |                        |                                                                                        |                                                                                                                       |  |
| Analysis Date(s)                                              |                                | 5/8/12                                                     |                        |                                                                                        |                                                                                                                       |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              |                                | SPEX 11-116PB                                              |                        |                                                                                        |                                                                                                                       |  |
| Initial Calibration Verification<br>Standard Source and Lot # |                                | SPEX 20-140JB                                              |                        |                                                                                        |                                                                                                                       |  |
| Interference Check Sample Sour                                | rce                            | Environmental<br>Express 0929914 +<br>1119513              |                        |                                                                                        |                                                                                                                       |  |
| Sample Name                                                   |                                | Instrument result for<br>the analytical<br>solution (ug/L) | Dilution<br>Factor     | Final Instrumental result<br>analytical solution<br>(corrected for dilution)<br>(ug/L) | <ul> <li>Result in mg/Kg (corrected<br/>for 1g/100mL extraction)<br/>(i.e ug/L times 100/1000 =<br/>mg/kg)</li> </ul> |  |
| EXAMPLE SOIL                                                  |                                |                                                            | 50                     |                                                                                        |                                                                                                                       |  |
|                                                               |                                |                                                            |                        |                                                                                        |                                                                                                                       |  |
| Reagent Blank                                                 |                                | 0                                                          |                        | 0                                                                                      | NA                                                                                                                    |  |
| Bottle Blank                                                  |                                | 0                                                          |                        | -2.3                                                                                   | NA                                                                                                                    |  |
| New RM (Extractor Position 1)                                 |                                | 952                                                        | 50                     | 47624                                                                                  | 4762                                                                                                                  |  |
| New RM (Extractor Position 2)                                 |                                | 927                                                        | 50                     | 46389                                                                                  | 4639                                                                                                                  |  |
| New RM (Extractor Position 3)                                 |                                | 924                                                        | 50                     | 46221                                                                                  | 4622                                                                                                                  |  |
| New RM (Extractor Position 4)                                 |                                | 915                                                        | 50                     | 45759                                                                                  | 4576                                                                                                                  |  |
| New RM (Extractor Position 5)                                 |                                | 943                                                        | 50                     | 47199                                                                                  | 4720                                                                                                                  |  |
| Control Soil NIST SRM 2710a                                   |                                | 718                                                        | 50                     | 35947                                                                                  | 3595                                                                                                                  |  |
| Blank Spike                                                   |                                | 200                                                        | 50                     | 10041                                                                                  | NA                                                                                                                    |  |
| New RM Matrix Spike                                           |                                | 1056                                                       | 50                     | 52836                                                                                  | 5284                                                                                                                  |  |

| Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for New RM |       |  |  |  |
|----------------------------------------------------------------------------------|-------|--|--|--|
| Laboratory Performing Extraction                                                 | Lab D |  |  |  |
| Laboratory Performing Analysis                                                   | Lab D |  |  |  |
| IVBA Extraction Batch Spiked Blank and Spiked Sample                             |       |  |  |  |
| Results for New RM: Lead                                                         |       |  |  |  |
| Bottle Blank Result (mg/L)                                                       | 0.0   |  |  |  |
| Blank Spike Result (mg/L)                                                        | 10    |  |  |  |
| Blank Spike Percent Recovery                                                     | 100   |  |  |  |
|                                                                                  |       |  |  |  |
| Average (5) Result New RM (mg/L) 46639                                           |       |  |  |  |
| New RM Matrix Spike Result (mg/L)                                                | 52836 |  |  |  |
| New RM Matrix Spike Percent Recovery                                             | 62    |  |  |  |

# (2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

Table 3. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

Data Reporting Form for New RM: Results for Lead

| Laboratory Performing Extraction                              | Lab D                                                      |                                                   |                                                                                        |                                                                                             |
|---------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Laboratory Performing Analysis                                | Lab D                                                      |                                                   |                                                                                        |                                                                                             |
|                                                               | <b>Digestion Batch</b>                                     | Results                                           | New RM: Lead                                                                           |                                                                                             |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-MS                                                     | Instrument Method Detection Limit<br>(MDL) (ug/L) |                                                                                        | 0.031                                                                                       |
| Digestion Date                                                | 5/7/12                                                     |                                                   |                                                                                        |                                                                                             |
| Digestion Lead Standard<br>Manufacturer and Lot #             | SPEX 11-116PB                                              |                                                   |                                                                                        |                                                                                             |
| Analysis Date(s)                                              | 5/8/12                                                     |                                                   |                                                                                        |                                                                                             |
| Analysis Lead Standard<br>Manufacturer and Lot #              | SPEX 11-116PB                                              |                                                   |                                                                                        |                                                                                             |
| Initial Calibration Verification<br>Standard Source and Lot # | SPEX 20-140JB                                              |                                                   |                                                                                        |                                                                                             |
| Interference Check Sample Source<br>and Lot #                 | Environmental<br>Express 0929914 +<br>1119513              |                                                   |                                                                                        |                                                                                             |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor                                | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) | Result in mg/Kg (corrected<br>for 0.5g/50mL extraction)(i.e<br>ug/L times 100/1000 = mg/kg) |
|                                                               |                                                            |                                                   |                                                                                        |                                                                                             |
| Reagent Blank                                                 | 0                                                          |                                                   | 0                                                                                      | NA                                                                                          |
| New RM (Sample 1)                                             | 1566                                                       | 50                                                | 78303                                                                                  | 7812                                                                                        |
| New RM (Sample 2)                                             | 1724                                                       | 50                                                | 86215                                                                                  | 8141                                                                                        |
| New RM (Sample 3)                                             | 1664                                                       | 50                                                | 83192                                                                                  | 8087                                                                                        |
| New RM (Sample 4)                                             | 1631                                                       | 50                                                | 81542                                                                                  | 7878                                                                                        |
| New RM (Sample 5)                                             | 1625                                                       | 50                                                | 81256                                                                                  | 7898                                                                                        |
| Control Soil NIST SRM 2710a                                   | 989                                                        | 50                                                | 49429                                                                                  | 4912                                                                                        |
| Blank Spike                                                   | 215                                                        | 50                                                | 10761                                                                                  | NA                                                                                          |
| New RM Matrix Spike                                           | 1742                                                       | 50                                                | 87100                                                                                  | 8534                                                                                        |

### Table 4. <u>3051A Digestion</u> Spiked Blank and Spiked Sample

| Results for New RM: Results for Lead                       |       |  |  |  |
|------------------------------------------------------------|-------|--|--|--|
| Laboratory Performing Extraction                           | Lab D |  |  |  |
| Laboratory Performing Analysis                             | Lab D |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |       |  |  |  |
| New RM: Lead                                               |       |  |  |  |
| Blank Spike Result (mg/L)                                  | 10.7  |  |  |  |
| Blank Spike Percent Recovery                               | 108   |  |  |  |
|                                                            |       |  |  |  |
| Average (5) Result New RM (mg/kg) 7963                     |       |  |  |  |
| New RM Matrix Spike Result (mg/kg)                         | 8534  |  |  |  |
| New RM Matrix Spike Percent Recovery                       | 57    |  |  |  |

## Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u> Data Reporting Form for New RM: Results for Arsenic

| Laboratory Performing Extraction                              | Lab D                                                      |                                                   |                                                                                        |                                                                                             |
|---------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Laboratory Performing Analysis                                | Lab D                                                      |                                                   |                                                                                        |                                                                                             |
| D                                                             | igestion Batch F                                           | Results N                                         | lew RM: Arsenic                                                                        |                                                                                             |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-MS                                                     | Instrument Method Detection Limit<br>(MDL) (ug/L) |                                                                                        | 0.015                                                                                       |
| Digestion Date                                                | 5/7/12                                                     |                                                   |                                                                                        |                                                                                             |
| Digestion Arsenic Standard<br>Manufacturer and Lot #          | SPEX 11-116PB                                              |                                                   |                                                                                        |                                                                                             |
| Analysis Date(s)                                              | 5/8/12                                                     |                                                   |                                                                                        |                                                                                             |
| Analysis Arsenic Standard<br>Manufacturer and Lot #           | SPEX 11-116PB                                              |                                                   |                                                                                        |                                                                                             |
| Initial Calibration Verification<br>Standard Source and Lot # | SPEX 20-140JB                                              |                                                   |                                                                                        |                                                                                             |
| Interference Check Sample Source<br>and Lot #                 | Environmental<br>Express 0929914 +<br>1119513              |                                                   |                                                                                        |                                                                                             |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor                                | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) | Result in mg/Kg (corrected<br>for 0.5g/50mL extraction)(i.e<br>ug/L times 100/1000 = mg/kg) |
|                                                               |                                                            |                                                   |                                                                                        |                                                                                             |
| Reagent Blank                                                 | 0                                                          |                                                   | 0                                                                                      | NA                                                                                          |
| New RM (Sample 1)                                             | 160                                                        | 50                                                | 8025                                                                                   | 800                                                                                         |
| New RM (Sample 2)                                             | 178                                                        | 50                                                | 8913                                                                                   | 841                                                                                         |
| New RM (Sample 3)                                             | 167                                                        | 50                                                | 8399                                                                                   | 816                                                                                         |
| New RM (Sample 4)                                             | 165                                                        | 50                                                | 8276                                                                                   | 799                                                                                         |
| New RM (Sample 5)                                             | 166                                                        | 50                                                | 8302                                                                                   | 806                                                                                         |
| Control Soil NIST SRM 2710a                                   | 311                                                        | 50                                                | 15561                                                                                  | 1546                                                                                        |
| Blank Spike                                                   | 219                                                        | 50                                                | 10963                                                                                  | NA                                                                                          |
| New RM Matrix Spike                                           | 381                                                        | 50                                                | 19082                                                                                  | 1869                                                                                        |

### Table 6. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for New RM: Results for Arsenic

| Results for new RW. Results for Arsenic                    |      |  |  |  |
|------------------------------------------------------------|------|--|--|--|
| Laboratory Performing Extraction L                         | ab D |  |  |  |
| Laboratory Performing Analysis L                           | ab D |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |      |  |  |  |
| New RM: Arsenic                                            |      |  |  |  |
| Blank Spike Result (mg/L)                                  | 10.9 |  |  |  |
| Blank Spike Percent Recovery                               | 110  |  |  |  |
|                                                            |      |  |  |  |
| Average (5) Result New RM (mg/L)                           | 813  |  |  |  |
| New RM Matrix Spike Result (mg/L)                          | 1869 |  |  |  |
| New RM Matrix Spike Percent Recovery                       | 106  |  |  |  |

## Laboratory E

### (1) EPA SOP EPA 9200.2-86 (Lead IVBA)

Table 3. Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch Data Reporting Form for New RM

| Laboratory Performing Extraction                              |                                            | LAB E                                                      |                                                                               |         |                                                                                                |
|---------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------|
| Laboratory Performing Analysis                                |                                            | LAB E                                                      |                                                                               |         |                                                                                                |
|                                                               | IVBA Extraction Batch Results New RM: Lead |                                                            |                                                                               |         |                                                                                                |
| Instrument Type? (ICP-AES or ICP-MS)                          | ICP-N                                      | AS Instrument Method Detection<br>Limit (MDL) (ug/L)       |                                                                               |         | 0.03                                                                                           |
| Extraction Date                                               |                                            | 05/29/12                                                   | -                                                                             |         |                                                                                                |
| Extraction Lead Standard<br>Manufacturer and Lot #            |                                            | VHG – lot # 101-0037                                       |                                                                               |         |                                                                                                |
| Analysis Date(s)                                              |                                            | 06/11/12                                                   |                                                                               |         |                                                                                                |
| Analysis Lead Standard<br>Manufacturer and Lot #              |                                            | VHG – lot # 102-0115                                       |                                                                               |         |                                                                                                |
| Initial Calibration Verification<br>Standard Source and Lot # |                                            | VHG – lot # 011-0103                                       |                                                                               |         |                                                                                                |
| Interference Check Sample Sour<br>and Lot #                   | rce                                        | VHG – lot #'s 102-0114 & 104-0052                          |                                                                               |         |                                                                                                |
| Sample Name                                                   |                                            | Instrument result for<br>the analytical<br>solution (ug/L) | he analytical Dilution analytical solution<br>Eactor (corrected for dilution) |         | Result in mg/Kg (corrected<br>for 1g/100mL extraction)<br>(i.e ug/L times 100/1000 =<br>mg/kg) |
| EXAMPLE SOIL                                                  |                                            | 70                                                         | 10                                                                            | 700     | 70                                                                                             |
| Reagent Blank                                                 |                                            | 0.2                                                        | 9.8                                                                           | 1.8     | NA                                                                                             |
| Bottle Blank                                                  |                                            | 0.2                                                        | 9.9                                                                           | 1.6     | NA                                                                                             |
| New RM (Extractor Position 1)                                 |                                            | 506.3                                                      |                                                                               |         | 4920.9                                                                                         |
| New RM (Extractor Position 2)                                 |                                            | 497.9                                                      |                                                                               |         | 4839.5                                                                                         |
| New RM (Extractor Position 3)                                 |                                            | 490.3                                                      | 98.9                                                                          | 48487.8 | 4848.8                                                                                         |
| New RM (Extractor Position 4)                                 |                                            | 500.6                                                      | 97.0                                                                          | 48565.9 | 4856.6                                                                                         |
| New RM (Extractor Position 5)                                 |                                            | 494.4                                                      | 97.4 48159.8                                                                  |         | 4816.0                                                                                         |
| Control Soil NIST SRM 2710a                                   |                                            | 374.5 96.5 36149.8                                         |                                                                               | 36149.8 | 3615.0                                                                                         |
| Blank Spike                                                   |                                            | 19.9                                                       | 98.1                                                                          | 1956.1  | NA                                                                                             |
| New RM Matrix Spike                                           |                                            | 535.4 97.3 52085.4 5208.5                                  |                                                                               | 5208.5  |                                                                                                |

### Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for New RM Laboratory Performing Extraction LAB E LAB E Laboratory Performing Analysis **IVBA Extraction Batch Spiked Blank and Spiked Sample Results for New RM: Lead** Bottle Blank Result (mg/L) .002 1.96 (adjusted to 10 in Table) CLJ Blank Spike Result (mg/L) **Blank Spike Percent Recovery** 98.0 % Average (5) Result New RM (mg/L) 48.6 New RM Matrix Spike Result (mg/L) 52.1 New RM Matrix Spike Percent Recovery 103.1 %

# (2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

Table 3. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

| Data Reporting Form for New RM: Results for Lead              |                                                                                                                                                      |                           |                        |                                                                                              |  |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|----------------------------------------------------------------------------------------------|--|--|
| Laboratory Performing Extraction                              | LAB E                                                                                                                                                |                           |                        |                                                                                              |  |  |
| Laboratory Performing Analysis                                | LAB E                                                                                                                                                |                           |                        |                                                                                              |  |  |
| Digestion Batch Results New RM: Lead                          |                                                                                                                                                      |                           |                        |                                                                                              |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-MS                                                                                                                                               | Instrument<br>(MDL) (ug/I | Method Detection Limit | 0.03                                                                                         |  |  |
| Digestion Date                                                | 06/07/12                                                                                                                                             |                           |                        |                                                                                              |  |  |
| Digestion Lead Standard<br>Manufacturer and Lot #             | VHG – lot # 101-0037                                                                                                                                 |                           |                        |                                                                                              |  |  |
| Analysis Date(s)                                              | 06/11/12                                                                                                                                             |                           |                        |                                                                                              |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              | VHG – lot # 102-0115                                                                                                                                 |                           |                        |                                                                                              |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | VHG – lot # 011-0103                                                                                                                                 |                           |                        |                                                                                              |  |  |
| Interference Check Sample Source<br>and Lot #                 | VHG – lot #'s 102-011                                                                                                                                | 4 & 104-0052              | 2                      |                                                                                              |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L)<br>Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) |                           |                        | Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg) |  |  |
| EXAMPLE SOIL                                                  | 35                                                                                                                                                   | 10                        | 350                    | 70                                                                                           |  |  |
|                                                               |                                                                                                                                                      |                           |                        |                                                                                              |  |  |
| Reagent Blank                                                 | 0.5                                                                                                                                                  | 9.2                       | 4.6                    |                                                                                              |  |  |
| New RM (Sample 1)                                             | 729.9                                                                                                                                                | 93.0                      | 67876.                 |                                                                                              |  |  |
| New RM (Sample 2)                                             | 687.0                                                                                                                                                | 95.2                      | 65428.                 |                                                                                              |  |  |
| New RM (Sample 3)                                             | 715.9                                                                                                                                                | 93.4                      | 66867.2                |                                                                                              |  |  |
| New RM (Sample 4)                                             | 701.9                                                                                                                                                | 93.6                      | 65663.4                |                                                                                              |  |  |
| New RM (Sample 5)                                             | 698.0                                                                                                                                                | 93.6                      | 65334.0                |                                                                                              |  |  |
| Control Soil NIST SRM 2710a                                   | 496.8                                                                                                                                                | 91.3                      | 45372.8                |                                                                                              |  |  |
| Blank Spike                                                   | 5.07                                                                                                                                                 | 91.7                      | 464.8                  |                                                                                              |  |  |
| New RM Matrix Spike                                           | 711.6                                                                                                                                                | 91.4                      | 65066.9                | 6506.7                                                                                       |  |  |

Page H-35

## Table 4. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for New RM: Results for Lead

| Results for New RM. Results for Lead |                               |  |  |  |
|--------------------------------------|-------------------------------|--|--|--|
| Laboratory Performing Extraction     | LAB E                         |  |  |  |
| Laboratory Performing Analysis       | LAB E                         |  |  |  |
| 3051A Digestion Spiked Blank a       | and Spiked Sample Results for |  |  |  |
| New RM: Lead                         |                               |  |  |  |
| Blank Spike Result (mg/L)            | 0.465                         |  |  |  |
| Blank Spike Percent Recovery         | 96.9 %                        |  |  |  |
|                                      |                               |  |  |  |
| Average (5) Result New RM (mg/L)     | 66.2                          |  |  |  |
| New RM Matrix Spike Result (mg/L)    | 65.1                          |  |  |  |
| New RM Matrix Spike Percent Recovery | 98.1 %                        |  |  |  |

# Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u> Data Reporting Form for New RM: Results for Arsenic

| Laboratory Performing Extraction                              | boratory Performing Extraction LAB E                                                                      |                                                                                                                        |     |       |                                                                                              |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----|-------|----------------------------------------------------------------------------------------------|--|
| Laboratory Performing Analysis                                | LAB E                                                                                                     |                                                                                                                        |     |       |                                                                                              |  |
| Digestion Batch Results New RM: Arsenic                       |                                                                                                           |                                                                                                                        |     |       |                                                                                              |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-MS                                                                                                    | Instrument Method Detection Limit                                                                                      |     |       |                                                                                              |  |
| Digestion Date                                                | 06/07/12                                                                                                  |                                                                                                                        |     |       |                                                                                              |  |
| Digestion Arsenic Standard<br>Manufacturer and Lot #          | VHG – lot # 101-0037                                                                                      |                                                                                                                        |     |       |                                                                                              |  |
| Analysis Date(s)                                              | 06/11/12                                                                                                  |                                                                                                                        |     |       |                                                                                              |  |
| Analysis Arsenic Standard<br>Manufacturer and Lot #           | VHG – lot # 102-0115                                                                                      |                                                                                                                        |     |       |                                                                                              |  |
| Initial Calibration Verification<br>Standard Source and Lot # | VHG – lot # 011-0103                                                                                      | VHG – lot # 011-0103                                                                                                   |     |       |                                                                                              |  |
| Interference Check Sample Source<br>and Lot #                 | VHG – lot #'s 102-011                                                                                     | 4 & 104-0052                                                                                                           | 2   |       |                                                                                              |  |
| Sample Name                                                   | for the analytical Eactor solution (corrected for 1.5g/100mL                                              |                                                                                                                        |     |       | Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg) |  |
| EXAMPLE SOIL                                                  | 35                                                                                                        | 10                                                                                                                     | 350 |       | 70                                                                                           |  |
| Descent Disple                                                | 0.025                                                                                                     | 9.2                                                                                                                    |     | 0.3   | NA                                                                                           |  |
| Reagent Blank<br>New RM (Sample 1)                            | 0.035                                                                                                     | ÷                                                                                                                      | 6   |       | NA<br>649.7                                                                                  |  |
| New RM (Sample 2)                                             |                                                                                                           | 69.76         93.0         6487.3         648.7           69.72         05.0         655.0         655.0         655.0 |     |       |                                                                                              |  |
| New RM (Sample 3)                                             | 69.47                                                                                                     | 68.87         95.2         6559.0         655.9           69.47         93.4         6488.7         648.9              |     |       |                                                                                              |  |
| New RM (Sample 4)                                             | 69.47         93.4         6488.7         648.9           69.88         93.6         6537.3         653.7 |                                                                                                                        |     |       |                                                                                              |  |
| New RM (Sample 5)                                             | 71.27                                                                                                     | 93.6                                                                                                                   |     | 671.0 | 667.1                                                                                        |  |
| Control Soil NIST SRM 2710a                                   | 144.7                                                                                                     | 91.3                                                                                                                   |     | 215.4 | 1321.5                                                                                       |  |
| Blank Spike                                                   | 24.98                                                                                                     | 91.7                                                                                                                   |     | 290.2 | NA                                                                                           |  |
| New RM Matrix Spike                                           | 92.99                                                                                                     | 91.4                                                                                                                   |     | 502.8 | 850.3                                                                                        |  |

### Table 6. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for New RM: Results for Arsenic

| Results for New RM. Results for Arsenic |                                   |  |  |  |
|-----------------------------------------|-----------------------------------|--|--|--|
| Laboratory Performing Extraction        | LAB E                             |  |  |  |
| Laboratory Performing Analysis          | LAB E                             |  |  |  |
| 3051A Digestion Spiked Blank a          | and Spiked Sample Results for     |  |  |  |
| New RM: Arsenic                         |                                   |  |  |  |
| Blank Spike Result (mg/L)               | 2.3 (adjusted to 10 in table) CLJ |  |  |  |
| Blank Spike Percent Recovery            | 95.8 %                            |  |  |  |
|                                         |                                   |  |  |  |
| Average (5) Result New RM (mg/L)        | 6.5                               |  |  |  |
| New RM Matrix Spike Result (mg/L)       | 8.5                               |  |  |  |
| New RM Matrix Spike Percent Recovery    | 120.7%                            |  |  |  |

Laboratory F

(1) EPA SOP EPA 9200.2-86 (Lead IVBA) Table 3. Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch Data Reporting Form for New RM

| Laboratory Performing Extraction                              |     | LAB F                                                                      |                                                      | action Batch Bata Report                                                                                                   |            |  |
|---------------------------------------------------------------|-----|----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------|--|
| Laboratory Performing Analysis LAB F                          |     |                                                                            |                                                      |                                                                                                                            |            |  |
| IVBA Extraction Batch Results New RM: Lead                    |     |                                                                            |                                                      |                                                                                                                            |            |  |
| Instrument Type? (ICP-AES or ICP-MS)                          | AES |                                                                            | Instrument Method Detection<br>Limit (MDL) (ug/L) 20 |                                                                                                                            |            |  |
| Extraction Date                                               |     | 5/4/2012                                                                   |                                                      |                                                                                                                            |            |  |
| Extraction Lead Standard<br>Manufacturer and Lot #            |     | Lot# 17-94PB                                                               | SPEX Cer                                             | tiprep 1000 mg/L Pb Std.                                                                                                   |            |  |
| Analysis Date(s)                                              |     | 5/9/2012                                                                   |                                                      |                                                                                                                            |            |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              |     | Lot# 17-94PB                                                               |                                                      | SPEX Certiprep 1000 mg                                                                                                     | /L Pb Std. |  |
| Initial Calibration Verification<br>Standard Source and Lot # |     | Lot# 24-134JB                                                              |                                                      | SPEX Certiprep LPC Std1, 20 mg/L Pb. ICV, CCV<br>prepared by diluting Std into 0.4M glycine to match<br>matrix             |            |  |
| Interference Check Sample Sour<br>and Lot #                   | rce | Lot# 37-29AS                                                               |                                                      | SPEX Certiprep 5000 mg/L AI, Ca, Mg; 2000 mg/L Fe<br>prepared by x10 dilution into 0.4M glycine and spike<br>with 5mg/L Pb |            |  |
| Sample Name                                                   |     | Instrument result for<br>the analytical<br>solution <del>(ug/L)</del> mg/L | Dilution<br>Factor                                   | Final Instrumental resultResult in mg/Kg (corre<br>for 1g/100mL extractio                                                  |            |  |
| EXAMPLE SOIL                                                  |     | 70                                                                         | 10                                                   | 700                                                                                                                        | 70         |  |
|                                                               |     |                                                                            |                                                      |                                                                                                                            |            |  |
| Reagent Blank                                                 |     | - 0.00387                                                                  | 1                                                    | - 0.00387                                                                                                                  |            |  |
| Bottle Blank                                                  |     | - 0.00249                                                                  | 1                                                    | - 0.00249                                                                                                                  |            |  |
| New RM (Extractor Position 1)                                 |     | 46.09                                                                      | 1                                                    | 46.09                                                                                                                      | 4609       |  |
| New RM (Extractor Position 2)                                 |     | 46.04                                                                      | 1                                                    | 46.04                                                                                                                      | 4604       |  |
| New RM (Extractor Position 3)                                 |     | 45.49                                                                      | 1                                                    | 45.49                                                                                                                      | 4549       |  |
| New RM (Extractor Position 4)                                 |     | 45.63                                                                      | 1                                                    | 45.63                                                                                                                      | 4563       |  |
| New RM (Extractor Position 5)                                 |     | 45.05                                                                      | 1                                                    | 45.05                                                                                                                      | 4505       |  |
| Control Soil NIST SRM 2710a                                   |     | 34.00                                                                      | 1                                                    | 34.00                                                                                                                      | 3400       |  |
| Blank Spike                                                   |     | 11.31                                                                      | 1                                                    | 11.31                                                                                                                      | 1131       |  |
| New RM Matrix Spike                                           |     | 55.66                                                                      | 1                                                    | 55.66                                                                                                                      | 5566       |  |

| Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for New RM |                            |  |  |  |  |  |
|----------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|
| Laboratory Performing Extraction                                                 | LAB F                      |  |  |  |  |  |
| Laboratory Performing Analysis                                                   | LAB F                      |  |  |  |  |  |
| IVBA Extraction Batch Spike                                                      | ed Blank and Spiked Sample |  |  |  |  |  |
| Results for New RM: Lead                                                         |                            |  |  |  |  |  |
| Bottle Blank Result (mg/L)                                                       | 0.00249                    |  |  |  |  |  |
| Blank Spike Result (mg/L)                                                        | 11.31                      |  |  |  |  |  |
| Blank Spike Percent Recovery                                                     | 113%                       |  |  |  |  |  |
|                                                                                  |                            |  |  |  |  |  |
| Average (5) Result New RM (mg/L)                                                 | 45.66                      |  |  |  |  |  |
| New RM Matrix Spike Result (mg/L)                                                | 55.66                      |  |  |  |  |  |
| New RM Matrix Spike Percent Recovery                                             | 100%                       |  |  |  |  |  |

# (2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

 Table 3. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

 Data Reporting Form for New RM: Results for Lead

Laboratory Performing Extraction LAB F Laboratory Performing Analysis LAB F **Digestion Batch Results New RM: Lead** Instrument Type? (ICP-AES or ICP-Instrument Method Detection Limit 6.1 AES MS) (MDL) (ug/L) **Digestion Date** 5/18/2012 Digestion Lead Standard SPEX Certiprep 1000 mg/L Pb Std. Lot# 17-94PB Manufacturer and Lot # Analysis Date(s) 5/22/2012 Analysis Lead Standard Lot# 17-94PB SPEX Certiprep 1000 mg/L Pb Std. Manufacturer and Lot # Initial Calibration Verification SPEX Certiprep LPC Std1, 20 mg/L Pb, ICV, CCV Lot# 24-134JB Standard Source and Lot # prepared by diluting Std to match sample matrix SPEX Certiprep 5000 mg/L AI. Ca. Mg: 2000 mg/L Fe Interference Check Sample Source prepared by x10 dilution into sample matrix and spike Lot#37-29AS and Lot # with 5 mg/L Pb (B) **Final Instrumental** Result in mg/Kg (corrected Instrument result Dilution result analytical Sample Name for the analytical for 0.5a/100mL extraction)(i.e Factor solution(corrected for solution<del>(ug/L)</del>mg/L ug/L times 200/1000 = mg/kg) dilution)(ug/L)mg/L EXAMPLE SOIL 35 10 350 70 - 0.008072 - 0.08072 Reagent Blank 10 New RM (Sample 1) 6.838 10 68.38 6838 New RM (Sample 2) 6.742 10 67.42 6742 New RM (Sample 3) 6.815 10 68.15 6815 New RM (Sample 4) 6.739 10 67.39 6739 New RM (Sample 5) 6.844 10 68.44 6844 Control Soil NIST SRM 2710a 5.491 10 54.91 5491 Blank Spike 1.041 10 10.41 **New RM Matrix Spike** 7.561 10 75.61

## Table 4. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for New RM: Results for Lead

| Results for New RM. Results for Lead |                               |  |  |  |
|--------------------------------------|-------------------------------|--|--|--|
| Laboratory Performing Extraction     | LAB F                         |  |  |  |
| Laboratory Performing Analysis       | LAB F                         |  |  |  |
| 3051A Digestion Spiked Blank         | and Spiked Sample Results for |  |  |  |
| New RM: Lead                         |                               |  |  |  |
| Blank Spike Result (mg/L)            | 10.41                         |  |  |  |
| Blank Spike Percent Recovery         | 104                           |  |  |  |
|                                      |                               |  |  |  |
| Average (5) Result New RM (mg/L)     |                               |  |  |  |
| New RM Matrix Spike Result (mg/L)    | 75.61                         |  |  |  |
| New RM Matrix Spike Percent Recovery | 76.5                          |  |  |  |

### Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u> Data Reporting Form for New RM: Results for Arsenic

| Laboratory Performing Extraction LAB F                        |                                                                            |                    |                                                                                                       |                                                                                              |  |  |
|---------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
|                                                               |                                                                            |                    |                                                                                                       |                                                                                              |  |  |
| Laboratory Performing Analysis LAB F                          |                                                                            |                    |                                                                                                       |                                                                                              |  |  |
| Digestion Batch Results New RM: Arsenic                       |                                                                            |                    |                                                                                                       |                                                                                              |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | AES Instrument Method Detection Limit<br>(MDL) (ug/L) 1.3                  |                    |                                                                                                       |                                                                                              |  |  |
| Digestion Date                                                | 5/18/2012                                                                  |                    |                                                                                                       |                                                                                              |  |  |
| Digestion Arsenic Standard<br>Manufacturer and Lot #          | Lot# 16-97AS SPEX Certiprep 1000 mg/L Pb Std.                              |                    |                                                                                                       |                                                                                              |  |  |
| Analysis Date(s)                                              | 5/22/2012                                                                  |                    |                                                                                                       |                                                                                              |  |  |
| Analysis Arsenic Standard<br>Manufacturer and Lot #           | Lot# 16-97AS                                                               |                    | SPEX Certiprep 1000 mg                                                                                | /L As Std.                                                                                   |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | Lot# 24-134JB                                                              |                    | SPEX Certiprep LPC Std <sup>2</sup><br>prepared by diluting Std                                       | to match sample matrix                                                                       |  |  |
| Interference Check Sample Source and Lot #                    | Lot#37-29AS                                                                |                    |                                                                                                       | /L AI, Ca, Mg; 2000 mg/L Fe<br>into sample matrix (A) and                                    |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution <del>(ug/L)</del> mg/L | Dilution<br>Factor | Final Instrumental<br>result analytical<br>solution(corrected for<br>dilution) <del>(ug/L)</del> mg/L | Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg) |  |  |
| EXAMPLE SOIL                                                  | 35                                                                         | 10                 | 350                                                                                                   | 70                                                                                           |  |  |
|                                                               |                                                                            |                    |                                                                                                       |                                                                                              |  |  |
| Reagent Blank                                                 | - 0.00009013                                                               | 10                 | - 0.0009013                                                                                           |                                                                                              |  |  |
| New RM (Sample 1)                                             | 0.7760                                                                     | 10                 | 7.760                                                                                                 | 776.0                                                                                        |  |  |
| New RM (Sample 2)                                             | 0.7890                                                                     | 10                 | 7.890                                                                                                 | 789.0                                                                                        |  |  |
| New RM (Sample 3)                                             | 0.7695                                                                     | 10                 | 7.695                                                                                                 | 769.5                                                                                        |  |  |
| New RM (Sample 4)                                             | 0.7648                                                                     | 10                 | 7.648                                                                                                 | 764.8                                                                                        |  |  |
| New RM (Sample 5)                                             | 0.7977                                                                     | 10                 | 7.977                                                                                                 | 797.7                                                                                        |  |  |
| Control Soil NIST SRM 2710a                                   | 1.684                                                                      | 10                 | 16.84                                                                                                 | 168.4                                                                                        |  |  |
| Blank Spike                                                   | 1.019                                                                      | 10                 | 10.19                                                                                                 |                                                                                              |  |  |
| New RM Matrix Spike                                           | 1.758                                                                      | 10                 | 17.58                                                                                                 |                                                                                              |  |  |

 Table 6. <u>3051A Digestion</u> Spiked Blank and Spiked Sample

 Results for New RM: Results for Arsenic

| Laboratory Performing Extraction     | LAB F                         |  |  |  |
|--------------------------------------|-------------------------------|--|--|--|
| Laboratory Performing Analysis       | LAB F                         |  |  |  |
| 3051A Digestion Spiked Blank         | and Spiked Sample Results for |  |  |  |
| New RM: Arsenic                      |                               |  |  |  |
| Blank Spike Result (mg/L)            | 10.19                         |  |  |  |
| Blank Spike Percent Recovery         | 102                           |  |  |  |
|                                      |                               |  |  |  |
| Average (5) Result New RM (mg/L)     | 7.794                         |  |  |  |
| New RM Matrix Spike Result (mg/L)    | 17.58                         |  |  |  |
| New RM Matrix Spike Percent Recovery | 97.9                          |  |  |  |

# Laboratory G

### (1) EPA SOP EPA 9200.2-86 (Lead IVBA)

Table 3. Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch Data Reporting Form for New RM

| Laboratory Performing Extraction                              |       | Lab G                                                      |                                                   |                                                                                        |                                                                                                |  |
|---------------------------------------------------------------|-------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Laboratory Performing Analysis                                |       | Lab G                                                      |                                                   |                                                                                        |                                                                                                |  |
| IVBA Extraction Batch Results New RM: Lead                    |       |                                                            |                                                   |                                                                                        |                                                                                                |  |
| Instrument Type? (ICP-AES or ICP-MS)                          | ICP - | AES                                                        | Instrument Method Detection<br>Limit (MDL) (ug/L) |                                                                                        | 0.64 ug/L                                                                                      |  |
| Extraction Date                                               |       | 4/23/2012                                                  |                                                   |                                                                                        |                                                                                                |  |
| Extraction Lead Standard<br>Manufacturer and Lot #            |       | Claritas<br>Lot # 9-145CR                                  |                                                   |                                                                                        |                                                                                                |  |
| Analysis Date(s)                                              |       | 4/24/2012                                                  |                                                   |                                                                                        |                                                                                                |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              |       | CLaritas<br>Lot # 9-145CR                                  |                                                   |                                                                                        |                                                                                                |  |
| Initial Calibration Verification<br>Standard Source and Lot # |       | Absolute<br>Lot # 101110                                   |                                                   |                                                                                        |                                                                                                |  |
| Interference Check Sample Sour<br>and Lot #                   | се    | QATS<br>Lot # 0503 & 0203                                  |                                                   |                                                                                        |                                                                                                |  |
| Sample Name                                                   |       | Instrument result for<br>the analytical<br>solution (ug/L) | Dilution<br>Factor                                | Final Instrumental result<br>analytical solution<br>(corrected for dilution)<br>(ug/L) | Result in mg/Kg (corrected<br>for 1g/100mL extraction)<br>(i.e ug/L times 100/1000 =<br>mg/kg) |  |
| EXAMPLE SOIL                                                  |       | 70                                                         | 10                                                | 700                                                                                    | 70                                                                                             |  |
| Reagent Blank                                                 |       | <0                                                         |                                                   |                                                                                        | <0                                                                                             |  |
| Bottle Blank                                                  |       | <0                                                         |                                                   |                                                                                        | <0                                                                                             |  |
| New RM (Extractor Position 1)                                 |       | 45380                                                      |                                                   |                                                                                        | 4538                                                                                           |  |
| New RM (Extractor Position 2)                                 |       | 44340                                                      |                                                   |                                                                                        | 4434                                                                                           |  |
| New RM (Extractor Position 3)                                 |       | 45840                                                      |                                                   |                                                                                        | 4584                                                                                           |  |
| New RM (Extractor Position 4)                                 |       | 45890                                                      |                                                   |                                                                                        | 4589                                                                                           |  |
| New RM (Extractor Position 5)                                 |       | 46260                                                      |                                                   |                                                                                        | 4626                                                                                           |  |
| Control Soil NIST SRM 2710a                                   |       | 33930                                                      |                                                   |                                                                                        | 3393                                                                                           |  |
| Blank Spike                                                   |       | 10180                                                      |                                                   |                                                                                        | 1018                                                                                           |  |
| New RM Matrix Spike                                           |       | 57670                                                      |                                                   |                                                                                        | 5767                                                                                           |  |

| Table 4. Lead Extraction Batch Spiked Blar | Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for New RM |  |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| Laboratory Performing Extraction           | Lab G                                                                            |  |  |  |  |  |
| Laboratory Performing Analysis             | Lab G                                                                            |  |  |  |  |  |
| IVBA Extraction Batch Spike                | ed Blank and Spiked Sample                                                       |  |  |  |  |  |
| Results for New RM: Lead                   |                                                                                  |  |  |  |  |  |
| Bottle Blank Result (mg/L)                 | <0                                                                               |  |  |  |  |  |
| Blank Spike Result (mg/L)                  | 10.2 mg/L                                                                        |  |  |  |  |  |
| Blank Spike Percent Recovery               | 102%                                                                             |  |  |  |  |  |
|                                            |                                                                                  |  |  |  |  |  |
| Average (5) Result New RM (mg/L)           | 45.5 mg/L                                                                        |  |  |  |  |  |
| New RM Matrix Spike Result (mg/L)          | 57.7 mg/L                                                                        |  |  |  |  |  |
| New RM Matrix Spike Percent Recovery       | 122%                                                                             |  |  |  |  |  |

# (2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

Table 3. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u>

Data Reporting Form for New RM: Results for Lead

| Laboratory Performing Extraction                              | Lab G                                                      |                          |                                                                                        |                                                                                            |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Laboratory Performing Analysis                                | Lab G                                                      |                          |                                                                                        |                                                                                            |  |  |
| Digestion Batch Results New RM: Lead                          |                                                            |                          |                                                                                        |                                                                                            |  |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-AES                                                    | Instrument<br>(MDL) (ug/ | 10.64 ug/L                                                                             |                                                                                            |  |  |
| Digestion Date                                                | 4/23/2012                                                  |                          |                                                                                        |                                                                                            |  |  |
| Digestion Lead Standard<br>Manufacturer and Lot #             | Claritas<br>Lot # 9-145CR                                  |                          |                                                                                        |                                                                                            |  |  |
| Analysis Date(s)                                              | 4/24/2012                                                  |                          |                                                                                        |                                                                                            |  |  |
| Analysis Lead Standard<br>Manufacturer and Lot #              | CLaritas<br>Lot # 9-145CR                                  |                          |                                                                                        |                                                                                            |  |  |
| Initial Calibration Verification<br>Standard Source and Lot # | Absolute<br>Lot # 101110                                   |                          |                                                                                        |                                                                                            |  |  |
| Interference Check Sample Source and Lot #                    | QATS<br>Lot # 0503 & 0203                                  |                          |                                                                                        |                                                                                            |  |  |
| Sample Name                                                   | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor       | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) | Result in mg/Kg (corrected<br>for 1.0g/50mL extraction)(i.e<br>ug/L times 50/1000 = mg/kg) |  |  |
| EXAMPLE SOIL                                                  | 35                                                         | 10                       | 350                                                                                    | 70                                                                                         |  |  |
|                                                               |                                                            |                          |                                                                                        |                                                                                            |  |  |
| Reagent Blank                                                 | <0                                                         |                          |                                                                                        | <0                                                                                         |  |  |
| New RM (Sample 1)                                             | 133400                                                     |                          |                                                                                        | 6670                                                                                       |  |  |
| New RM (Sample 2)                                             | 129400                                                     |                          |                                                                                        | 6470                                                                                       |  |  |
| New RM (Sample 3)                                             | 132100                                                     |                          |                                                                                        | 6605                                                                                       |  |  |
| New RM (Sample 4)                                             | 133400                                                     |                          |                                                                                        | 6670                                                                                       |  |  |
| New RM (Sample 5)                                             | 132600                                                     |                          |                                                                                        | 6630                                                                                       |  |  |
| Control Soil NIST SRM 2710a                                   | 103900                                                     |                          |                                                                                        | 5195                                                                                       |  |  |
| Blank Spike                                                   | 10120                                                      |                          |                                                                                        | 506                                                                                        |  |  |
| New RM Matrix Spike                                           | 140000                                                     |                          |                                                                                        | 7000                                                                                       |  |  |

## Table 4. <u>3051A Digestion</u> Spiked Blank and Spiked Sample Results for New RM: Results for Lead

| Results for new RM. Results for Lead                       |           |  |  |
|------------------------------------------------------------|-----------|--|--|
| Laboratory Performing Extraction                           | Lab G     |  |  |
| Laboratory Performing Analysis                             | Lab G     |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |           |  |  |
| New RM: Lead                                               |           |  |  |
| Blank Spike Result (mg/L)                                  | 10.1 mg/L |  |  |
| Blank Spike Percent Recovery                               | 101%      |  |  |
|                                                            |           |  |  |
| Average (5) Result New RM (mg/L)                           | 132 mg/L  |  |  |
| New RM Matrix Spike Result (mg/L)                          | 140 mg/L  |  |  |
| New RM Matrix Spike Percent Recovery                       | 80%       |  |  |

# Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u> Data Reporting Form for New RM: Results for Arsenic

| Laboratory Performing Extraction                                                                                 | poratory Performing Extraction Lab G                       |                                                            |                                                                                        |                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|
| Laboratory Performing Analysis                                                                                   | Lab G                                                      |                                                            |                                                                                        |                                                                                          |  |
| D                                                                                                                | Digestion Batch Results New RM: Arsenic                    |                                                            |                                                                                        |                                                                                          |  |
| Instrument Type? (ICP-AES or ICP-<br>MS)                                                                         | ICP - AES                                                  | CP - AES Instrument Method Detection Limit<br>(MDL) (ug/L) |                                                                                        | 9.09 ug/L                                                                                |  |
| Digestion Date                                                                                                   | 4/23/2012                                                  |                                                            |                                                                                        |                                                                                          |  |
| Digestion Arsenic Standard<br>Manufacturer and Lot #                                                             | Claritas<br>Lot # 9-145CR                                  |                                                            |                                                                                        |                                                                                          |  |
| Analysis Date(s)                                                                                                 | 4/24/2012                                                  |                                                            |                                                                                        |                                                                                          |  |
| Analysis Arsenic Standard<br>Manufacturer and Lot #                                                              | Claritas<br>Lot # 9-145CR                                  |                                                            |                                                                                        |                                                                                          |  |
| Initial Calibration Verification<br>Standard Source and Lot #                                                    | Absolute<br>Lot # 101110                                   |                                                            |                                                                                        |                                                                                          |  |
| Interference Check Sample Source<br>and Lot #                                                                    | QATS<br>Lot # 0503 & 0203                                  |                                                            |                                                                                        |                                                                                          |  |
| Sample Name                                                                                                      | Instrument result<br>for the analytical<br>solution (ug/L) | Dilution<br>Factor                                         | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) | Result in mg/Kg (corrected<br>for 1g/50mL extraction)(i.e<br>ug/L times 50/1000 = mg/kg) |  |
| EXAMPLE SOIL                                                                                                     | 35                                                         | 10                                                         | 350                                                                                    | 70                                                                                       |  |
|                                                                                                                  |                                                            |                                                            |                                                                                        |                                                                                          |  |
| Reagent Blank                                                                                                    | <0                                                         |                                                            |                                                                                        | 0                                                                                        |  |
|                                                                                                                  |                                                            |                                                            |                                                                                        | <0                                                                                       |  |
| New RM (Sample 1)                                                                                                | 14290                                                      |                                                            |                                                                                        | 714.5                                                                                    |  |
| New RM (Sample 1)<br>New RM (Sample 2)                                                                           | 14290<br>13990                                             |                                                            |                                                                                        | 714.5<br>699.5                                                                           |  |
| New RM (Sample 1)New RM (Sample 2)New RM (Sample 3)                                                              | 14290<br>13990<br>14240                                    |                                                            |                                                                                        | 714.5<br>699.5<br>712.0                                                                  |  |
| New RM (Sample 1)New RM (Sample 2)New RM (Sample 3)New RM (Sample 4)                                             | 14290<br>13990<br>14240<br>14110                           |                                                            |                                                                                        | 714.5<br>699.5<br>712.0<br>705.5                                                         |  |
| New RM (Sample 1)New RM (Sample 2)New RM (Sample 3)New RM (Sample 4)New RM (Sample 5)                            | 14290<br>13990<br>14240<br>14110<br>15040                  |                                                            |                                                                                        | 714.5<br>699.5<br>712.0<br>705.5<br>752.0                                                |  |
| New RM (Sample 1)New RM (Sample 2)New RM (Sample 3)New RM (Sample 4)New RM (Sample 5)Control Soil NIST SRM 2710a | 14290<br>13990<br>14240<br>14110<br>15040<br>30100         |                                                            |                                                                                        | 714.5<br>699.5<br>712.0<br>705.5<br>752.0<br>1505                                        |  |
| New RM (Sample 1)New RM (Sample 2)New RM (Sample 3)New RM (Sample 4)New RM (Sample 5)                            | 14290<br>13990<br>14240<br>14110<br>15040                  |                                                            |                                                                                        | 714.5<br>699.5<br>712.0<br>705.5<br>752.0                                                |  |

# Table 6. 3051A Digestion Spiked Blank and Spiked Sample Results for New RM: Results for Arsenic

| Laboratory Performing Extraction                           | Lab G     |  |  |
|------------------------------------------------------------|-----------|--|--|
| Laboratory Performing Analysis                             | Lab G     |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |           |  |  |
| New RM: Arsenic                                            |           |  |  |
| Blank Spike Result (mg/L)                                  | 9.99 mg/L |  |  |
| Blank Spike Percent Recovery                               | 99.9%     |  |  |
|                                                            |           |  |  |
| Average (5) Result New RM (mg/L)                           | 14.3 mg/L |  |  |
| New RM Matrix Spike Result (mg/L)                          | 24.3 mg/L |  |  |
| New RM Matrix Spike Percent Recovery                       | 100%      |  |  |

Laboratory H

### (1) EPA SOP EPA 9200.2-86 (Lead IVBA)

Table 3. Laboratory, Instrument, Instrumental MDL, and IVBA Extraction Batch Data Reporting Form for New RM

| Laboratory Performing Extraction                              |       | Lab H                                                      |                    |                                                                                        |                                                                                                |
|---------------------------------------------------------------|-------|------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Laboratory Performing Analysis Lab H                          |       | Lab H                                                      |                    |                                                                                        |                                                                                                |
|                                                               | IVB   | A Extraction Bate                                          | ch Resul           | ts New RM: Lead                                                                        |                                                                                                |
| Instrument Type? (ICP-AES or ICP-MS)                          | ICP-A | ES Instrument Method Detection<br>Limit (MDL) (ug/L)       |                    |                                                                                        | 4.0                                                                                            |
| Extraction Date                                               |       | 5/14/2012                                                  |                    |                                                                                        |                                                                                                |
| Extraction Lead Standard<br>Manufacturer and Lot #            |       | Inorganic Ventures<br>CGPB1-1                              |                    |                                                                                        |                                                                                                |
| Analysis Date(s)                                              |       | 5/15/2012                                                  |                    |                                                                                        |                                                                                                |
| Analysis Lead Standard<br>Manufacturer and Lot #              |       | Inorganic Ventures<br>CGPB1-1                              |                    |                                                                                        |                                                                                                |
| Initial Calibration Verification<br>Standard Source and Lot # |       | Spex 43-47AS                                               |                    |                                                                                        |                                                                                                |
| Interference Check Sample Sou<br>and Lot #                    | rce   | Inorganic Ventures<br>E2-MEB348035 and<br>E2-MEB399019     |                    |                                                                                        |                                                                                                |
| Sample Name                                                   |       | Instrument result for<br>the analytical<br>solution (ug/L) | Dilution<br>Factor | Final Instrumental result<br>analytical solution<br>(corrected for dilution)<br>(ug/L) | Result in mg/Kg (corrected<br>for 1g/100mL extraction)<br>(i.e ug/L times 100/1000 =<br>mg/kg) |
| EXAMPLE SOIL                                                  |       | 70                                                         | 10                 | 700                                                                                    | 70                                                                                             |
| Descent Plank                                                 |       | 4.51                                                       | 4                  | 4.51                                                                                   | 0.451                                                                                          |
| Reagent Blank<br>Bottle Blank                                 |       | 4.13                                                       | 1                  | 4.51                                                                                   | 0.451                                                                                          |
| New RM (Extractor Position 1)                                 |       | 44210                                                      | 1                  | 44210                                                                                  | 4314                                                                                           |
| New RM (Extractor Position 1)                                 |       | 43580                                                      | 1                  | 43580                                                                                  | 4285                                                                                           |
| New RM (Extractor Position 2)                                 |       | 43000                                                      | 1                  | 43000                                                                                  | 4267                                                                                           |
| New RM (Extractor Position 4)                                 |       | 45000                                                      | 1                  | 45000                                                                                  | 4393                                                                                           |
| New RM (Extractor Position 5)                                 |       | 43790                                                      | 1                  | 43790                                                                                  | 4310                                                                                           |
| Control Soil NIST SRM 2710a                                   |       | 33860                                                      | 1                  | 33860                                                                                  | 3332                                                                                           |
| Blank Spike                                                   |       | 9835                                                       | 1                  | 9835                                                                                   | 983.5                                                                                          |
| New RM Matrix Spike                                           |       | 53240                                                      | 1                  | 53240                                                                                  | 5218                                                                                           |

### Table 4. Lead Extraction Batch Spiked Blank and Spiked Sample Results for New RM

| Laboratory Performing Extraction                     | Lab H   |  |  |  |
|------------------------------------------------------|---------|--|--|--|
| Laboratory Performing Analysis                       | Lab H   |  |  |  |
| IVBA Extraction Batch Spiked Blank and Spiked Sample |         |  |  |  |
| Results for New RM: Lead                             |         |  |  |  |
| Bottle Blank Result (mg/L)                           | 0.00413 |  |  |  |
| Blank Spike Result (mg/L)                            | 9.835   |  |  |  |
| Blank Spike Percent Recovery                         | 98.35   |  |  |  |
|                                                      |         |  |  |  |
| Average (5) Result New RM (mg/L)                     | 43.91   |  |  |  |
| New RM Matrix Spike Result (mg/L)                    | 53.24   |  |  |  |
| New RM Matrix Spike Percent Recovery                 | 92.2    |  |  |  |

### (2) SW-846 METHOD 3051A MICROWAVE ASSISTED ACID DIGESTION OF SEDIMENTS, SLUDGES, SOILS, AND OILS

### Table 3. Laboratory, Instrument, Instrumental MDL, and 3051A Digestion

|                                                               | Data Reporting Form f                                                           | or New RM:         | Results for Lead                                                                       | _                                                                                            |
|---------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Laboratory Performing Extraction                              | Lab H                                                                           |                    |                                                                                        |                                                                                              |
| Laboratory Performing Analysis                                | Lab H                                                                           |                    |                                                                                        |                                                                                              |
|                                                               | <b>Digestion Batch F</b>                                                        | Results I          | New RM: Lead                                                                           |                                                                                              |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | ICP-AES Instrument Method Detection<br>Limit (MDL) (ug/L) 1.5 ug/L (0.30 mg/kg) |                    |                                                                                        | 1.5 ug/L (0.30 mg/kg)                                                                        |
| Digestion Date                                                | 5/7/2012                                                                        |                    |                                                                                        |                                                                                              |
| Digestion Lead Standard<br>Manufacturer and Lot #             | Inorganic Ventures<br>CGPB1-1                                                   |                    |                                                                                        |                                                                                              |
| Analysis Date(s)                                              | 5/15/2012                                                                       |                    |                                                                                        |                                                                                              |
| Analysis Lead Standard<br>Manufacturer and Lot #              | Inorganic Ventures<br>CGPB1-1                                                   |                    |                                                                                        |                                                                                              |
| Initial Calibration Verification<br>Standard Source and Lot # | Spex 43-47AS                                                                    |                    |                                                                                        |                                                                                              |
| Interference Check Sample Source and Lot #                    | Inorganic Ventures<br>E2-MEB348035 and<br>E2-MEB399019                          |                    |                                                                                        |                                                                                              |
| Sample Name                                                   | Instrument result for<br>the analytical<br>solution (ug/L)                      | Dilution<br>Factor | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) | Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg) |
| EXAMPLE SOIL                                                  | 35                                                                              | 10                 | 350                                                                                    | 70                                                                                           |
|                                                               |                                                                                 |                    |                                                                                        |                                                                                              |
| Reagent Blank                                                 | -1.88                                                                           | 2                  | -3.76                                                                                  | -0.376                                                                                       |
| New RM (Sample 1)                                             | 31280                                                                           | 2                  | 62560                                                                                  | 6246                                                                                         |
| New RM (Sample 2)                                             | 32580                                                                           | 2                  | 65160                                                                                  | 6513                                                                                         |
| New RM (Sample 3)                                             | 32310                                                                           | 2                  | 64620                                                                                  | 6471                                                                                         |
| New RM (Sample 4)                                             | 32750                                                                           | 2                  | 65500                                                                                  | 6538                                                                                         |
| New RM (Sample 5)                                             | 33690                                                                           | 2                  | 67380                                                                                  | 6737                                                                                         |
| Control Soil NIST SRM 2710a                                   | 25910                                                                           | 2                  | 51820                                                                                  | 5181                                                                                         |
| Blank Spike                                                   | 5237                                                                            | 2                  | 10474                                                                                  | 1047                                                                                         |
| New RM Matrix Spike                                           | 36600                                                                           | 2                  | 73200                                                                                  | 7313                                                                                         |

# Table 4. 3051A Digestion Spiked Blank and Spiked Sample Results for New RM: Results for Lead

| Laboratory Performing Extraction                           | Lab H  |  |
|------------------------------------------------------------|--------|--|
| Laboratory Performing Analysis                             | Lab H  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |        |  |
| New RM: Lead                                               |        |  |
| Blank Spike Result (mg/L)                                  | 10.474 |  |
| Blank Spike Percent Recovery                               | 105    |  |
|                                                            |        |  |
| Average (5) Result New RM (mg/L)                           | 65.044 |  |
| New RM Matrix Spike Result (mg/L)                          | 73.2   |  |
| New RM Matrix Spike Percent Recovery                       | 81.2   |  |

## Table 5. Laboratory, Instrument, Instrumental MDL, and <u>3051A Digestion</u> Data Reporting Form for New RM: Results for Arsenic

| Laboratory Performing Extraction Lab H                        |                                                                     |                    |                                                                                        |                                                                                              |
|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Laboratory Performing Analysis                                | Lab H                                                               |                    |                                                                                        |                                                                                              |
|                                                               | igestion Batch Re                                                   | esults Ne          | ew RM: Arsenic                                                                         |                                                                                              |
| Instrument Type? (ICP-AES or ICP-<br>MS)                      | Instrument Method Detection<br>Limit (MDL) (ug/L) 2.35 (0.47 mg/kg) |                    | 2.35 (0.47 mg/kg)                                                                      |                                                                                              |
| Digestion Date                                                | 5/7/2012                                                            |                    |                                                                                        |                                                                                              |
| Digestion Arsenic Standard<br>Manufacturer and Lot #          | Inorganic Ventures<br>CGAS1-1                                       |                    |                                                                                        |                                                                                              |
| Analysis Date(s)                                              | 5/15/2012                                                           |                    |                                                                                        |                                                                                              |
| Analysis Arsenic Standard<br>Manufacturer and Lot #           | Inorganic Ventures<br>CGAS1-1                                       |                    |                                                                                        |                                                                                              |
| Initial Calibration Verification<br>Standard Source and Lot # | Spex 43-47AS                                                        |                    |                                                                                        |                                                                                              |
| Interference Check Sample Source and Lot #                    | Inorganic Ventures<br>E2-MEB348035 and<br>E2-MEB399019              |                    |                                                                                        |                                                                                              |
| Sample Name                                                   | Instrument result for the analytical solution (ug/L)                | Dilution<br>Factor | Final Instrumental<br>result analytical<br>solution (corrected for<br>dilution) (ug/L) | Result in mg/Kg (corrected<br>for 0.5g/100mL extraction)(i.e<br>ug/L times 200/1000 = mg/kg) |
| EXAMPLE SOIL                                                  | 35                                                                  | 10                 | 350                                                                                    | 70                                                                                           |
|                                                               |                                                                     |                    |                                                                                        |                                                                                              |
| Reagent Blank                                                 | -0.12                                                               | 2                  | -0.24                                                                                  | -0.024                                                                                       |
| New RM (Sample 1)                                             | 3744                                                                | 2                  | 7488                                                                                   | 747.6                                                                                        |
| New RM (Sample 2)                                             | 3654                                                                | 2                  | 7308                                                                                   | 730.5                                                                                        |
| New RM (Sample 3)                                             | 3706                                                                | 2                  | 7412                                                                                   | 742.2                                                                                        |
| New RM (Sample 4)                                             | 3957                                                                | 2                  | 7914                                                                                   | 790.0                                                                                        |
| New RM (Sample 5)                                             | 3841                                                                | 2                  | 7682                                                                                   | 768.0                                                                                        |
| Control Soil NIST SRM 2710a                                   | 7886                                                                | 2                  | 15772                                                                                  | 1577                                                                                         |
| Blank Spike                                                   | 5193                                                                | 2                  | 10386                                                                                  | 1039                                                                                         |
| New RM Matrix Spike                                           | 8638                                                                | 2                  | 17276                                                                                  | 1726                                                                                         |

### Table 6. <u>3051A Digestion</u> Spiked Blank and Spiked Sample

| Desculte | fam Manne | DM. Desults fee | A       |
|----------|-----------|-----------------|---------|
| Results  | tor New   | RM: Results for | Arsenic |
| 1.00uito | 101 11011 |                 | /       |

| Laboratory Performing Extraction                           | Lab H  |  |  |  |
|------------------------------------------------------------|--------|--|--|--|
| Laboratory Performing Analysis                             | Lab H  |  |  |  |
| 3051A Digestion Spiked Blank and Spiked Sample Results for |        |  |  |  |
| New RM: Arsenic                                            |        |  |  |  |
| Blank Spike Result (mg/L)                                  | 10.386 |  |  |  |
| Blank Spike Percent Recovery                               | 104    |  |  |  |
|                                                            |        |  |  |  |
| Average (5) Result New RM (mg/L)                           | 7.561  |  |  |  |
| New RM Matrix Spike Result (mg/L)                          | 17.276 |  |  |  |
| New RM Matrix Spike Percent Recovery                       | 97.1   |  |  |  |