Figures

Figure 1-1. EPA's General Ecological Risk Assessment Framework

Figure 2-1. Ecological Exposure CSM

Figure 4–1. Ratio of UCL95 to arithmetic mean for ICS triplicate samples from 2014 UCR Upland and 2015 Bossburg soil studies.

Horizonal dashed line indicates mean ratio

Figure 6-1a: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for cobalt

Background threshold value (BTV) = 20.4 mg/kg

Study

Figure 6-1b: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for copper

Background threshold value (BTV) = 41.5 mg/kg

Study

Figure 6-1c: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for lead

Background threshold value (BTV) = 27.2 mg/kg

Upland Soil

Study

Study

Upland Soil

Figure 6-1d: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for molybdenum

Background threshold value (BTV) = 1.4 mg/kg

Upland Soil Study

Figure 6-1e: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for nickel

Background threshold value (BTV) = 35 mg/kg

Study

Figure 6-1f: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for zinc

Background threshold value (BTV) = 111 mg/kg

Study

Figure 6-2a: Plant soil screening level (SSL) benchmark comparison for antimony

SSL benchmark = 1900 mg/kg Background threshold value (BTV) = 0.41 mg/kg

Figure 6-2b: Plant soil screening level (SSL) benchmark comparison for arsenic

SSL benchmark = 18 mg/kg Background threshold value (BTV) = 23.3 mg/kg

Figure 6-2c: Plant soil screening level (SSL) benchmark comparison for barium

SSL benchmark = 1400 mg/kg Background threshold value (BTV) = 395 mg/kg

Figure 6-2d: Plant soil screening level (SSL) benchmark comparison for chromium

SSL benchmark = 190 mg/kg Background threshold value (BTV) = 23.8 mg/kg

Figure 6-2e: Plant soil screening level (SSL) benchmark comparison for cobalt

SSL benchmark = 13 mg/kg Background threshold value (BTV) = 20.4 mg/kg

Figure 6-2f: Plant soil screening level (SSL) benchmark comparison for copper

SSL benchmark = 70 mg/kg Background threshold value (BTV) = 41.5 mg/kg

Figure 6-2g: Plant soil screening level (SSL) benchmark comparison for lead

SSL benchmark = 120 mg/kg Background threshold value (BTV) = 27.2 mg/kg

O 2012 Ecology Upland Soil △ Upland Soil ○ Study Study 2014 UCR 2015 Bossburg Study

Fill color: ■ > BTV

Figure 6-2h: Plant soil screening level (SSL) benchmark comparison for manganese

SSL benchmark = 220 mg/kg Background threshold value (BTV) = 1240 mg/kg

Figure 6-2i: Plant soil screening level (SSL) benchmark comparison for molybdenum

SSL benchmark = 26 mg/kg Background threshold value (BTV) = 1.4 mg/kg

Fill color: □ ≤ BTV □ > BTV

2014 UCR
Upland Soil
Study

Figure 6-2j: Plant soil screening level (SSL) benchmark comparison for nickel

SSL benchmark = 38 mg/kg Background threshold value (BTV) = 35 mg/kg

Figure 6-2k: Plant soil screening level (SSL) benchmark comparison for selenium

SSL benchmark = 0.52 mg/kg Background threshold value (BTV) = 0.098 mg/kg

2012 Ecology 2014 UCR 2015
Upland Soil △ Upland Soil □ Bossburg
Study Study Study

Fill color: ■ > BTV

Figure 6-2I: Plant soil screening level (SSL) benchmark comparison for thallium

SSL benchmark = 3.2 mg/kg Background threshold value (BTV) = 0.56 mg/kg

Figure 6-2m: Plant soil screening level (SSL) benchmark comparison for zinc

SSL benchmark = 160 mg/kg Background threshold value (BTV) = 111 mg/kg

Figure 7-1a: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for cobalt

Background threshold value (BTV) = 20.4 mg/kg

Study

Figure 7-1b: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for copper

Background threshold value (BTV) = 41.5 mg/kg

Study

Figure 7-1c: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for molybdenum

Background threshold value (BTV) = 1.4 mg/kg

Upland Soil Study

Figure 7-1d: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for zinc

Background threshold value (BTV) = 111 mg/kg

Study

Figure 7-2a: Invertebrate soil screening level (SSL) benchmark comparison for arsenic

SSL benchmark = 150 mg/kg Background threshold value (BTV) = 23.3 mg/kg 1.00 100

Fraction of samples with concentrations ≥ SSL shown above each box Points jittered for readability

Soil screening level shown as dashed line BTV shown as dotted line

Figure 7-2b: Invertebrate soil screening level (SSL) benchmark comparison for barium

SSL benchmark = 330 mg/kg Background threshold value (BTV) = 395 mg/kg

Figure 7-2c: Invertebrate soil screening level (SSL) benchmark comparison for chromium

SSL benchmark = 57 mg/kg Background threshold value (BTV) = 23.8 mg/kg

Figure 7-2d: Invertebrate soil screening level (SSL) benchmark comparison for cobalt

SSL benchmark = 130 mg/kg Background threshold value (BTV) = 20.4 mg/kg

Figure 7-2e: Invertebrate soil screening level (SSL) benchmark comparison for copper

SSL benchmark = 80 mg/kg Background threshold value (BTV) = 41.5 mg/kg

2012 Ecology Upland Soil Upland Soil Study 2014 UCR 2015
Upland Soil Upland Soil Bossburg Study

Figure 7-2f: Invertebrate soil screening level (SSL) benchmark comparison for manganese

SSL benchmark = 450 mg/kg Background threshold value (BTV) = 1240 mg/kg

Figure 7-2g: Invertebrate soil screening level (SSL) benchmark comparison for molybdenum

SSL benchmark = 230 mg/kg Background threshold value (BTV) = 1.4 mg/kg

Fill color: □ ≤ BTV □ > BTV

2014 UCR
Upland Soil
Study

Figure 7-2h: Invertebrate soil screening level (SSL) benchmark comparison for silver

SSL benchmark = 58 mg/kg Background threshold value (BTV) = 0.078 mg/kg

Figure 7-2i: Invertebrate soil screening level (SSL) benchmark comparison for thallium

SSL benchmark = 30 mg/kg Background threshold value (BTV) = 0.56 mg/kg

Figure 7-2j: Invertebrate soil screening level (SSL) benchmark comparison for vanadium

SSL benchmark = 290 mg/kg Background threshold value (BTV) = 47.5 mg/kg

Fill color: □ ≤ BTV ■ > BTV

Figure 7-2k: Invertebrate soil screening level (SSL) benchmark comparison for zinc

SSL benchmark = 120 mg/kg Background threshold value (BTV) = 111 mg/kg

Fill color: □ ≤ BTV ■ > BTV

Figure 8-1a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 8-1b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 8-1c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 8-1d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

Border color: ○ ≤ BTV

Figure 8-1e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 8-2a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for barium

Figure 8-2b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for barium

Figure 8-2c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for barium

Figure 8-2d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for barium

Figure 8-2e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for barium

Figure 8-3a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for cadmium

ED20 shown as dashed line
If no data shown, EDx not available for that endpoint

2012 Ecology 2014 UCR 2015

O Upland Soil Study 2014 UCR Upland Soil Study 2015 Bossburg Study

Effective dose (EDx) with an x percent reduction in the response

20

0.950

Figure 8-3b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 8-3c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for cadmium

Study

Study

Figure 8-3d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 8-3e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 8-4a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for chromium

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

O Upland Soil Study

2012 Ecology
Upland Soil Dland Soil Study

2014 UCR
Upland Soil Bossburg
Study

Figure 8-4b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for chromium

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

② 2012 Ecology Upland Soil Study 2014 UCR Upland Soil Study 2015 Bossburg Study

Figure 8-4c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for chromium

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

2012 Ecology Upland Soil Study 2014 UCR Upland Soil Study 2015 Bossburg Study

Figure 8-4d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for chromium

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

2012 Ecology Upland Soil Study 2014 UCR Upland Soil Study 2015 Bossburg Study

Figure 8-4e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for chromium

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

② 2012 Ecology Upland Soil Study 2014 UCR Upland Soil Study 2015 Bossburg Study

Figure 8-5a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-5b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-5c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-5d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-5e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-6a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 8-6b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for iron

Border color: ○ ≤ BTV

Figure 8-6c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 8-6d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for iron

Border color: ○ ≤ BTV

Figure 8-6e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 8-7a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 8-7b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 8-7c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 8-7d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 8-7e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 8-8a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 8-8b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 8-8c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 8-8d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 8-8e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 8-9a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for molybdenum

2014 UCR

Upland Soil

Study

2015 Bossburg

Study

2012 Ecology

Upland Soil

Study

Figure 8-9b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 8-9c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 8-9d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Study

Study

Study

Figure 8-9e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for molybdenum

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

2012 Ecology 2014 UCR 2015 Bossburg Upland Soil Upland Soil Study Study Study

Border color: O ≤ BTV

Figure 8-10a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-10b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-10c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-10d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-10e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-11a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-11b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Study

Study

Study

Figure 8-11c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-11d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-11e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-12a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 8-12b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 8-12c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 8-12d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 8-12e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 8-13: Cumulative Probability Plots for Metals without TRVs

Figure 9-1a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Border color: ○ ≤ BTV

Figure 9-1b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-1c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-1d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Border color: ○ ≤ BTV

Figure 9-1e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-1f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-2a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-2b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-2c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-2d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Border color: ○ ≤ BTV ● > BTV

Study

Study

Figure 9-2e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

2012 Ecology Upland Soil Study

2014 UCR
Upland Soil Upland Soil Study

2015
Bossburg
Study

Border color: ○ ≤ BTV ● > BT\

Figure 9-2f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-3a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-4a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 9-4b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 9-4c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 9-4d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Border color: ○ ≤ BTV ● > BTV

Figure 9-4e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Border color: ○ ≤ BTV ● > BTV

Study

Study

Study

Figure 9-4f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Border color: ○ ≤ BTV

Figure 9-5a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 9-5b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Border color: ○ ≤ BTV

Figure 9-5c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Border color: ○ ≤ BTV ● > BTV

Figure 9-5d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 9-5e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Border color: ○ ≤ BTV

Figure 9-5f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 9-6a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Border color: ○ ≤ BTV ● > BTV

Study

Study

Study

Figure 9-6b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 9-6c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

HQ = 1 shown as dashed line

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

2012 Ecology
Upland Soil
Study

2014 UCR
Upland Soil
Study

2015
Bossburg
Study

Border color: ○ ≤ BTV ● > BT\

Figure 9-6d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 9-6e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

1.050

Survival

1.025

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.0000

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

O 2012 Ecology Upland Soil Study 2014 UCR Upland Soil Upland Soil Study 2015 Bossburg Study

Border color: ○ ≤ BTV ● > BTV

Figure 9-6f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Border color: ○ ≤ BTV ● > BTV

Figure 9-7a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 9-7b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Study Study Study

Border color: ○ ≤ BTV ● > BTV

2014 UCR

Upland Soil

2015 Bossburg

2012 Ecology

Upland Soil

Figure 9-7c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 9-7d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Border color: O ≤ BTV

Upland Soil

Study

2014 UCR

Upland Soil

Study

2015 Bossburg

Study

Figure 9-7e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

2012 Ecology 2014 UCR 2015 Bossburg Upland Soil **Upland Soil** Study Study Study

Border color: O ≤ BTV

Figure 9-7f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 9-8a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-9a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Border color: ○ ≤ BTV ● > BTV

Study

Study

Study

Figure 9-9b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Border color: O ≤ BTV

Study

Study

Figure 9-9c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 9-9d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 9-9e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Border color: ○ ≤ BTV ● > BTV

Figure 9-9f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 9-10a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Border color: ○ ≤ BTV

Figure 9-10b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Border color: ○ ≤ BTV

Figure 9-10c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

2012 Ecology
Upland Soil
Study

2014 UCR
Upland Soil
Study

2015
Bossburg
Study

Border color: O ≤ BTV ● > BTY

Figure 9-10d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Fraction of samples with with HQ ≥ 1 shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

Border color: O ≤ BTV ● > BT

Figure 9-10e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Border color: ○ ≤ BTV ● > BTV

Figure 9-10f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Effective dose (EDx) with an x percent reduction in the response

20

ED20 shown as dashed line

If no data shown, EDx not available for that endpoint

Figure 9-11a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 9-11b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 9-11c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 9-11d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Border color: ○ ≤ BTV

Figure 9-11e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Border color: ○ ≤ BTV ● > BTV

Figure 9-11f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 9-12: Cumulative Probability Plots for Metals without TRVs

Fraction of samples with concentrations > BTV shown above each box Points jittered for readability

BTV shown as dotted line