UPDATED

Draft

Regional Groundwater Assessment of Impacts from Historic

Releases of the NECR Mine and UNC Mill Facilities

Navajo Nation

November 10, 2022

Prepared By:

U.S. Environmental Protection Agency
Region IX

With Support by:

Tetra Tech, Inc. 1999 Harrison Street, Suite 500 Oakland, CA 94612 EPA has updated the 2011 draft Regional Groundwater Assessment of Impacts from Historic Releases of the NECR Mine and UNC Mill Facilities Navajo Nation to include recently collected data and to replace a table in the original report that had incorrect units.

The updated report includes:

- 1. The 2011 report, in its entirety.
- 2. Revised Table 3. Summary of Groundwater Sampling Results. The revised table, replaced in the original report, corrects unit error in original table and incorporates data from water samples collected in the summer of 2022 from five wells around the UNC Mill/NECR Mine and Quivira Mine Sites.
- 3. Lab Data results from water samples collected in the summer of 2022. The lab reports are included in Attachment A.

Table of Contents

SECTION	1. INTRODUCTION	1-1
SECTION	2. GEOLOGY	2-1
2.1.	San Juan Basin Geology	2-1
	2.1.1. San Juan Basin Stratigraphy in the Zuni Uplift	2-1
2.2.	Hydrogeology	
	2.2.1. Surface Water	
	2.2.2. Groundwater	2-5
SECTION	3. POTENTIAL LOCATION OF MINING IMPACT	3-1
3.1.	Mining History in the Churchrock Area.	3-1
3.2.	Uranium Mine/MILL Releases.	3-2
SECTION	4. CONCEPTUAL MODEL	4-1
SECTION	5. AREA-WIDE GROUNDWATER SAMPLING EVENTS	5-1
5.1.	NURE 1977 to 1979 Sampling Event	
5.2.	2002 UNC Mill Sampling Event	5-3
5.3.	Church Rock Uranium Monitoring Project 2003 and 2004 Sampling Events	
5.4.	EPA 2008 to 2009 Sampling Event	5-4
5.5.	EPA 2010 Sampling Event.	5-4
SECTION	6. HISTORICAL GROUNDWATER DATA FOR SELECT WELLS	6-1
SECTION	7. SUMMARY OF PRIOR GROUNDWATER ASSESSMENTS	7-1
7.1.	Water Quality Impacts of Uranium Mining and Milling Activities in the Grants Mineral Be	elt,7-
7.2.	historic water quality data, puerco RIVER basin, arizona and new mexico	7-1
7.3.	Radioactivitiy in the environment – a case study of the puerco and little coloroado River Basins, Arizona and new Mexico	7-2
7.4.	Effects of Uranium-Mining Releases on Ground-water QuaLity in the Puerco River Basin, ArizonA and new mexico	7-3
SECTION	8. CONCLUSIONS	8-1
8.1.	Impacts to the Alluvium Aquifer	8-1
8.2.	Impacts to the Upper Gallup Sandstone Member Aquifer	8-2
8.3.	Impacts to the Westwater Canyon Aquifer	8-3
SECTION	9. SUMMARY	9-1
SECTION	10 REFERENCES 10	0.1

List of Figures

Figure 1.	Geologic Features of the San Juan Basin		
Figure 2.	Geologic Cross Section of the San Juan Basin		
Figure 3.	Geologic Cross-Section of the Church Rock Area		
Figure 4.	Stratigraphic Column of the United Nuclear Mine		
Figure 5.	Conceptual Drawing of Groundwater Recharge from Stream Flow		
Figure 6.	Conceptual Drawing of Uranium Releases via Water Discharges		
Figure 7.	Average Yearly Mine Water Discharge		
Figure 8.	Well Location Map		

List of Tables

Table 1.	NECR Water Well Sampling Data – EPA START October 2010
Table 2.	Summary of NECR Aquifer Formations and Associated Wells
Table 3.	Summary of Groundwater Sampling Results

List of Appendices

Appendix A. Historic Select Well Groundwater Data

Acronyms and Abbreviations

a.k.a. also know as

bgs below ground surface

CDC Center for Disease Control

CRUMP Church Rock Uranium Monitoring Project

DO dissolved oxygen

EE/CA Engineering Evaluation/Cost Analysis

ERRG Engineering/Remediation Resources Group, Inc.

HASL Health and Safety Laboratory

MCL Maximum Contaminant Limit

NECR Northeast Church Rock Mine

NMEID New Mexico Environmental Improvement Division
 NNEPA Navajo Nation Environmental Protection Agency
 NPDES National Pollution Discharge Elimination System

NRC Nuclear Regulatory Commission

NURE National Uranium Resource Evaluation Program

ORP oxygen/reduction potential

TDS total dissolve solids

UNC United Nuclear Corporation

US EPA U.S. Environmental Protection Agency

USGS United States Geological Survey

ft³ cubic feet

gpm gallons per minute
mg/L milligrams per liter

µg/L micrograms per liter

pCi/L picoCuries per liter

Section 1. Introduction

The purpose of this report is to summarize the impacts to groundwater due to historical mining and milling activities of the Northeast Church Rock, and the United Nuclear Corporation (UNC) Mill in the Church Rock area of the Navajo Nation.

The United States Environmental Protection Agency (US EPA) issued the "Engineering Evaluation/Cost Analysis, Northeast Church Rock (NECR) Mine Site, Gallup, New Mexico" (EE/CA) on May 30, 2009, which presented its preferred remedy for clean-up of waste material from the NECR Mine Site. The preferred remedy included excavation of approximately 871,000 cubic yards of waste material and placement in a disposal cell to be constructed on the United Nuclear Corporation (UNC) Mill Site tailings disposal cells located approximately 0.5 miles southeast of the NECR mine. The EE/CA specifically stated:

"The scope of this EE/CA is to present alternatives for surface and near-surface soil removal actions only. A detailed groundwater characterization has not been performed at the NECR mine facility to date."

US EPA received numerous comments expressing concern that the EE/CA did not address groundwater. The local community and the Navajo Nation requested that further evaluation and understanding of the area-wide impacts to groundwater from local mining activities be conducted prior to the NECR surface soil cleanup. This groundwater assessment was conducted in response to the local community and the Navajo Nation's request to evaluate the potential groundwater impacts.

To determine aquifers that were likely to be impacted, this assessment analyzed the historic releases from the NECR mine and UNC mill sites, and the groundwater flow direction. Historical well data was reviewed to determine which wells were screened in potentially impacted aquifers, followed by review of historical and current groundwater chemistry data from representative wells.

The historical sources of potential groundwater contamination analyzed in this report include mine water discharges from the NECR and Quivira Mines, the 1979 spill due to the dam failure at the UNC Mill Site, ponding at the NECR Mine Site, historical seepage from the mill tailings, the dewatering of the Westwater Canyon Formation during mining operations and the placement of waste rock back into the Westwater Canyon Formation. The three local aquifers impacted by these releases include the Alluvium aquifer along the Rio Puerco, the Upper Gallup aquifer, and the Westwater Canyon aquifer. The historical releases from the mill cell tailings are the subject of a current investigation and enforcement action of US EPA Region 6.

Similarly, this report references and discusses the findings and conclusions of several other historical reports that examined the effects of releases of the mine water discharge and 1979 spill on the soils and groundwater along the Rio Puerco. However, this report focuses only on regional groundwater impacts of mining and milling in the local area.

2.1. SAN JUAN BASIN GEOLOGY

The prominent geologic feature in northwestern New Mexico is the San Juan Basin, which encompasses over 26,000 square miles extending into southwestern Colorado (Figure 1). The central portion of the basin is a circular, bowl-shaped depression containing sedimentary rocks up to 14,400 feet thick and ranging in age from approximately 2 million to 570 million years old. The uplifted, folded, and faulted rocks of the adjacent mountain ranges define the margins of the San Juan Basin. (Brister and Hoffman, 2002).

The geologic description of the San Juan Basin was developed through observations of the subsurface rock outcrops at the basin margins and from wells and mines within the basin. The northern margin of the basin is defined by the San Juan uplift, La Plata Mountains, and Sleeping Ute Mountain of southern Colorado (Figure 1). The western margin is defined by the Carrizo and Chuska Mountains and the Defiance uplift (monocline). The southern margin of the San Juan Basin is defined by the Zuni Mountains (a result of the Zuni uplift), and the southeastern margin by the Lucero uplift and Ignacio monocline. The eastern margin is defined by the Nacimiento Mountains (uplift) and the Gallina-Archuleta arch. The mountains and highlands at the margins of the basin receive most of the rainfall and have more vegetation than the semiarid San Juan Basin (Brister and Hoffman, 2002).

Following the west, north, and east margins is the Hogback monocline, whose rocks dip steeply into the basin. Following the southern margin is the Chaco slope, a gently dipping platform with upper elevations approximately 2,500 feet above the central basin (Brister and Hoffman, 2002).

The basin terrain consists of mesas, canyons, and valleys eroded from nearly flat-lying Upper Cretaceous and Tertiary (approximately 95 to 2 million years ago) sedimentary rock units. In the early Paleocene epoch (approximately 65 million years ago), the mountains and hogbacks that define the basin boundary began to form (Brister and Hoffman, 2002).

The NECR mine is located on the Chaco slope adjacent to the Zuni uplift.

2.1.1. San Juan Basin Stratigraphy in the Zuni Uplift

The layers of sedimentary rock in the San Juan Basin slope down (dip) toward the center of the basin from the highlands at the margins. Older sedimentary rocks are exposed at the margins of the basin and are successively overlain by younger layers of rock toward the center, "similar to a set of nested bowls" (Figure 2) (Brister and Hoffman, 2002).

The oldest rocks in the San Juan Basin are the Precambrian basement rocks (approximately 1,500 to 1,750 million years old), which underlie all of the sedimentary rocks within the basin. Outcrops of the Precambrian rocks appear in uplifts along the basin margins, including the Nacimiento Mountains, the Zuni uplift, and the San Juan uplift in Colorado. Common Precambrian rock types in the area are Granite and quartzite (Brister and Hoffman, 2002).

Sedimentary deposition occurred in the San Juan Basin from the Pennsylvanian through Tertiary periods (from approximately 330 to 2 million years ago) when the basin went through cycles of marine, coastal, and nonmarine deposition. The Pennsylvanian and Permian formations (approximately 330 to 240 million years ago) also outcrop in the uplifts at the basin margins, prominently in the Zuni uplift east of Gallup. The Pennsylvanian and Permian rocks are marine and composed predominantly of limestone, shale, sandstone, and gypsum; and are fractured ground-water aquifers in the Zuni uplift region (Brister and Hoffman, 2002).

The Pennsylvanian and Permian rocks are overlain by nonmarine Triassic rocks (approximately 240 million years old) including sandstone, siltstone, and mudstone of the Chinle Group and the Rock Point Formation. These nonmarine deposits occurred mainly from rivers and streams that flowed into the area from the southeast (Brister and Hoffman, 2002).

This period of nonmarine deposition was followed by windblown sand dunes approximately 170 million years ago. These dunes were preserved as cross bedded layers of sand in the Middle Jurassic Entrada Sandstone (Brister and Hoffman, 2002).

During the Late Jurassic period (approximately 145 million years ago), stream-laid sands were deposited throughout the basin creating the Morrison Formation. The United States Geological Survey (USGS) recognizes four members of the Morrison Formation in the southern margin of the San Juan Basin (aka Grants uranium district): the Recapture Member (oldest), the Westwater Canyon Member, the Brushy Basin Member, and the Jackpile Sandstone Member (youngest). The Recapture Member is a grayish-red siltstone and claystone. The Westwater Canyon Member overlies the Recapture Member and consists principally of medium- to coarse-grained, arkosic sandstones interbedded with mudstone units of variable thicknesses. It is approximately 270 feet thick in NECR mine. The Brushy Basin Member overlies the Westwater Canyon member, is approximately 70 feet thick, and consists of mudstone formed from volcanic ash falls. The Jackpile Sandstone Member is the uppermost fluvial sandstone in the formation, and does not appear in the NECR area (Roca Honda Resources, 2009). The Morrison is one of several well-known uranium-bearing rock units in the mining districts along the southern flank of the basin (Brister and Hoffman, 2002).

The Late Jurassic period was followed by approximately 50 million years of no deposition and erosion, and no sediments were preserved in the San Juan Basin during the Early Cretaceous period (Brister and Hoffman, 2002).

The western U.S. was bisected by a large interior seaway during the Late Cretaceous (approximately 95 to 65 million years ago), which had a northwest-to-southeast-trending shoreline in northwest New Mexico. The shoreline migrated back and forth (northeastward and southwestward) across the basin, depositing approximately 6,500 feet of marine, coastal plain, and nonmarine sediments. The back and forth migration of the shoreline across the basin shifted the depositional environment from nonmarine to marine (transgression), and back to nonmarine (regression), until the seaway retreated from the basin and nonmarine deposits dominated the area at the end of the Cretaceous. The marine deposits in the area consist of sandstone, shale, and a few thin limestone beds; the coastal plain deposits include sandstone, mudstone, and coal; and nonmarine deposits include mudstone, sandstone, and conglomerate (Brister and Hoffman, 2002).

The transgression/regression sequence was repeated throughout the Late Cretaceous period and was preserved in the formations in the San Juan Basin. The Late Cretaceous rocks include the following units from the oldest to the youngest: the Dakota Sandstone, the Mancos Shale, the Mesa Verde Group (which includes the Gallup Sandstone, the Crevasse Canyon Formation, and the Point Lookout Sandstone), the Menefee Formation, the Cliffhouse Sandstone, the Lewis Shale, the Pictured Cliffs Sandstone, the Fruitland Formation, and the Kirtland Shale (Brister and Hoffman, 2002). The youngest rock outcrops in the NECR area are from the Mesa Verde Group (Canonie, 1988).

The Dakota Formation dates from the Late Cretaceous and consists of fine to medium grained, well sorted sandstone with siltstone and shale interbeds (Hilpert, 1963). The Formation is about 100 feet thick in the NECR mine (Canonie, 1988).

The Mancos Shale Formation dates from the Late Cretaceous and consists of three Members. The lowermost (oldest) Whitewater Arroyo Shale Member is about 60 feet thick, the middle Two Wells Sandstone Member is about 50 feet thick and the uppermost Mancos Shale Member is about 700 feet (Hilpert, 1963 and Canonie, 1988). The upper 200 feet of the Mancos Shale is interbedded with the lower Gallup sandstone of the Mesa Verde Group (Canonie, 1988).

In the NECR Mine, the Gallup formation occurs as the Lower Gallup Sandstone and the Upper Gallup Sandstone with the Lower Gallup Sandstone interbedded in the upper portion of the Mancos Shale (Figure 3 and Figure 4). The lower Gallup Sandstone is approximately 160 feet thick and the Upper Gallup Sandstone is approximately 150 feet thick. The Crevasse Canyon Formation overlies the Gallup Formation and includes the Dilco Coal Member, the Mulato Tongue, and the Dalton Sandstone Member. The basal unit of the Crevasse Canyon Formation is the Dilco Coal Member, which is approximately 100 feet thick and consists of interbedded sandstone, siltstone, shale and coal beds. The Mulatto Tongue is actually a member of the Mancos Shale but occurs between the Dilco Coal Member and the Dalton Sandstone in the Church Rock area and is included in the Crevasse Formation locally. The Mulatto Tongue consists of shale, siltstone, and marine sandstone and is approximately 70 feet thick. The Dalton Sandstone Member is above the Mulatto Shale and is approximately 90 feet thick at the top of the NECR

Mine. The Dalton Sandstone is a light gray very fine grained to fine grained marine sandstone. The Dalton Sandstone comprises the surface rocks at the NECR Mine (Canonie, 1988, and Brister and Hoffman, 2002) The Dalton Sandstone is non-producing formation in the vicinity of NECR, and as a consequence, there are no wells drawing from that formation.

Nonmarine deposition in stream channels, floodplains, lakes, and windblown sands were the dominant forms of sediments in the San Juan Basin from the end of the Cretaceous through the Tertiary (approximately 65 to 2 million years ago). These deposits are found primarily in the central basin area away from the margins (Brister and Hoffman, 2002).

2.2. HYDROGEOLOGY

There are two main sources of sources of water in the Churchrock area: surface water and groundwater.

2.2.1. Surface Water

Average annual precipitation in the area is approximately 12 to 16 inches and generally occurs as localized, short-duration, high-intensity thunderstorms from July to October causing streams in the area to be primarily ephemeral (EPA, 2007c). Water records from 1948 through 1962 indicate the annual evaporation rate is nearly 5 times the precipitation rate, which means more water is lost to the atmosphere than is absorbed by the ground, creating a semi-arid climate. Native vegetation consists of grasses, shrubs and trees, but is generally sparse in the region and provides minimal protection from surface erosion (Stone, 1981).

The dry conditions and high intensity rains cause the surface soils to quickly saturate and prevent precipitation from penetrating deeper below the ground surface and much of the rain fall in the canyons washes over the ground surface. During periods of increased precipitation the discharge rate in the streams increases allowing more sediment to be suspended in the river. Short-term, fast moving streams and arroyos are produced that cut-through the bedrock in the canyons and washes, carrying the sediments downstream, and depositing them as alluvium. Drainage ways and washes in the area tend to be long rectilinear channels following the direction of local fracture zones, suggesting influence from the underlying bedrock and regional uplift. This stream pattern is especially apparent where channels cross the Upper Gallup Sandstone (USGS, 1994).

The alluvium in the canyons and on valley floors consists of fine grained sand inter-fingered with silty clay layers deposited from eroded bedrock material. The alluvium directly overlies sedimentary bedrock in the Puerco River basin and aids in transferring surface water through the shallow groundwater zone in the alluvium to the deeper bedrock aquifers (Figure 5). The water table elevation in the area remains relatively constant through the year allowing the river channel to act as a zone of recharge, losing water downward through sediments when water is flowing in the river, and as zone of evaporation when water is not actively flowing in the channel (USGS, 1994). When surface water is present near the NECR mine,

the flow direction is from northwest to southeast along unnamed arroyos and into the northeast- to southwest-trending Pipeline arroyo.

2.2.2. Groundwater

The sandstone units in and near the NECR mine and the UNC Mill area mine overlying the basement faults show passive bending or draping as evidenced by fracturing in the sedimentary rock layers. The fracturing increases near the hinge of the folds over the basement faulting. Recharge for the aquifers primarily occurs where the water bearing strata are exposed at the ground surface or where they are in direct contact with potentially saturated alluvial deposits. The ability of the sandstone units to capture water increases as it is weathered from exposure, fractured from faulting, or chemically altered through dissolution. The main water bearing strata in the NECR mine and the UNC Mill area, from shallowest to deepest, are the alluvial deposits, the Upper Gallup Sandstone, the Lower Gallup Sandstones, and the Westwater Canyon Sandstone (Raymondi, R. & Conrad, R., 1983). Because of the northward dip of the rock units, each of these strata outcrop along the Pipeline Arroyo and the North Fork of the Puerco River with the deeper units appearing further south. The rock outcrops comprise a narrow east-to-west belt that forms the southern outline of the San Juan Basin along the north side of the Zuni Uplift. The narrow exposures dip northward locally from 3 to 30 degrees, and occur at elevations of approximately 6,500 feet above mean sea level. As stated previously, rainfall infiltrates into the shallow subsurface and become the alluvium groundwater moving southwesterly with the ground surface contours. Groundwater is transmitted to the underlying water bearing strata where the alluvium comes in contact. Once in the water bearing strata, the groundwater flows northward following the regional dip in the area (Kerr-McGee Corporation, 1976). A piezometric surface map for the Upper Gallup Sandstone shows a northeast flow direction following the regional dip in the area of the NECR Mines (EPA, 2010). Regional dip at the east end and south of the Zuni Uplift becomes nearly level and may not have much effect on groundwater flow direction (Stone, 1981).

Prior to mine dewatering a continuous shallow groundwater system in the alluvium was not likely present in Pipeline Arroyo area. The alluvium in the Pipeline canyon became saturated and generated an artificial groundwater system once dewatering of the mine began.

Measurements and calculations conducted by the USGS on water flowing in the Pipeline Arroyo from March through June 1981 estimated a daily water loss of 47,500 cubic feet (ft³) of water per day. The areas of loss were evapotranspiration (5,000 ft³/day), alluvial underflow (4,000 ft³/day), absorbed by the Upper Gallup Sandstone¹ (32,000 ft³/day), and absorbed by the Torrivio Sandstone¹ and Dilco Coal

¹ Raymondi and Conrad identified the Torrivio Sandstone Member as located just above the Upper Gallup Sandstone Member; however, subsequent geologic review of drilling logs and fieldwork found the Torrivio Sandstone Member cannot be distinguished from the underlying Upper Gallup Sandstone Member. This groundwater assessment report includes the Former Torrivio Sandstone Member as part of the Upper Gallup Sandstone Member.

Members (6,500 ft³/day) (Raymondi, R. & Conrad, R., 1983). The amount was approximately 7% of the total flow in the arroyo and indicates substantial recharge occurred from surface precipitation along fractured sections of the bedrock.

According to a study conducted by Canonie, the alluvium sandstone layers within the Upper Gallup Sandstone Member are in direct contact with the tailings or tailings seepage. Figure 5 provides a conceptual model of how surface water and tailings can be transported to the shallow and deep aquifers in the region.

Section 3. Potential Location of Mining Impact

3.1. MINING HISTORY IN THE CHURCHROCK AREA

Uranium was mined near Church Rock from the 1950's until 1962, and to a greater extent from 1967 to 1986. The NECR Mine and the Quivira Mine (a.k.a. Kerr-McGee Mine) mined uranium ore form the Westwater Canyon member of the Morrison Formation from shafts between 1500 and 2000 feet below ground surface (bgs). Because the ore body was located below the groundwater table; large quantities of groundwater had to be pumped from the shafts to allow access to the ore. Prior to the mining and milling activities, no near-surface ground water system existed in the site area. During mining operations the Pipeline Arroyo had a steady flow of water from the mine water discharge.

Initially, mine water pumped from the shafts and mining works was discharged directly into an unnamed arroyo that feed into the Pipeline arroyo. In 1973, UNC applied for a National Pollution Discharge Elimination System (NPDES) permit for NECR Mine and in 1974, Kerr-McGee applied for the Quivira Mine. The permits granted effective January 1975, set the maximum uranium concentration of 2 milligrams per liter (mg/L) and dissolved radium-226 at 30 picocuries per liter (pCi/L). The dissolved radium-226 standard was subsequently lowered in 1977 to 3.3 pCi/L. Both mines used settling ponds followed by ion-exchange to meet the NPDES permit requirements. There were numerous daily exceedences during the mine discharge permit period. The USGS estimates that over the period of operations of the mines, a total of approximately 600 tons of uranium were released into the Pipeline Arroyo/Rio Puerco from the mine water discharges alone. The NECR mine ceased operations in 1982 and the Quivira Mine in 1986.

The mill facility at UNC was licensed to operate in May 1977. The mill used conventional acid leach, solvent extraction methods to extract uranium. The acid-waste tailings mix was pumped to three disposal cells located adjacent to the Pipeline Arroyo. Acidic waste water seeped into two underlying Gallup sandstone formations and the Alluvium material underneath the Pipeline Arroyo.

In July 1979, the dam on the south disposal cell failed and an estimated 94 million gallons and 18,000 tons of suspended solids were released into the Pipeline Arroyo, and ultimately in the Rio Puerco. Details of the release are presented in Section 4.2 Uranium Mine Releases.

In May 1982, the UNC Mill site was closed and in 1987, UNC submitted a reclamation plan for permanent closure to the Nuclear Regulatory Commission (NRC). A final Reclamation Plan was approved in 1991, which included dewatering of Borrow Pit #2, regrading and recontouring the tailings piles, dismantling the Mill buildings and equipment, and placing them in Borrow Pit #1 in compacted

layers. A soil and rock cover was placed over the 100 acre tailings disposal cells. The final element for closure is groundwater corrective action program that is ongoing.

3.2. URANIUM MINE/MILL RELEASES

The releases that occurred as a result of uranium mining at NECR: mine water discharges from the NECR and Quivira Mines, the 1979 spill due to the dam failure at the UNC Mill Site, ponding at the NECR Mine Site, and historical seepage from the mill tailings cells. In addition, the dewatering during mining operation and the placement of waste rock back into the ore body may have impacted the Westwater Canyon formation. (Figure 6).

The largest historic release associated with mining in the area was the discharge of groundwater pumped from the uranium mines. Because the ore deposits were below the water table, groundwater was pumped from the mine workings to allow access to the ore bodies, tunnels, and shafts during operations. At its peak, mine water from NECR and neighboring Quivira Mine was discharged at 5,000 gallons per minute (gpm) to the unnamed arroyo which fed into the Pipeline Arroyo (Figure 7). Mine discharges began in 1967 but were not treated until after 1975 under an NPDES permit. The USGS estimates that approximately 140 million cubic meters of mine water discharge (37 billion gallons) and 600 tons of uranium was released into the Pipeline Arroyo/Rio Puerco from the discharges conducted from 1967 through 1985 when the UNC mining operations ceased.

In 1979, a catastrophic release occurred when the dam on the south tailings disposal cell at the UNC Mill facility failed and approximately 94 million gallons of acidic mine tailings were released into the Pipeline Arroyo. The release increased flows in the Rio Puerco and carried mine tailings as far as 80 miles downstream into the State of Arizona. The release left deposits of tailings sludge along the Pipeline Arroyo which contained radioactive thorium, uranium and other metals. Under oversight of the State of New Mexico (NMEID), UNC conducted a cleanup of tailings containing high levels of thorium-230 along approximately 8 miles on the Pipeline Arroyo and Rio Puerco downstream of the spill. Sediment samples collected after the cleanup indicated that most Thorium-230 levels were below NMEID standards. A comprehensive human health assessment of the spill was conducted by NMEID, NRC, and US EPA, and included water samples, sediment samples, air monitoring, and human and animal tissue analyses. The study found increased levels of radionuclides, specifically uranium, in animal tissue and bone radioactivity, although the high levels could not be directly associated with the 1979 spill, but may have been associated with the mine water discharges (Centers for Disease Control [CDC], 1980).

A sustained release in the form of seepage from the tailings disposal cells occurred, when UNC discharged an estimated 820 million gallons of acidic mine water and sludge into unlined tailings disposal cells located adjacent to the Pipeline Arroyo. Of the estimated 820 million discharged, an estimated 380 million gallons were lost to evaporation during this period and 94 million gallons were lost in the dam failure, leaving approximately 346 million gallons that seeped into the underlying formations or were retained in the tailings sludge. Whenever possible during closure of the tailings disposal cells, UNC

removed excess liquid and mixed lime into the disposal pits in an attempt to neutralize the remaining acidic material. The Closure Report for the Mine Site stated that the tailings were no longer discharging into the underlying units. The contamination associated with the historic release is being cleaned up by UNC with oversight by US EPA Region 6 (UNC, 2011).

In response to a concern about the continued movement of the groundwater plumes, UNC conducted an assessment of the tailings to determine if contaminated liquids were still seeping into the formation aquifers below the site in 2004. The study included installation of piezometers near the former borrow area that had been the original source of acid seepage. Based on the field work and evaluation of historic data, the report concluded that the disposal cells had in fact stopped leaching to the aquifers. In 2011, in response to a request by US EPA, UNC modeled the saturation rate in the tailings over time and concluded that saturation exists in locations but the fluid is bound into the soil matrix.

There were also ponds on the NECR Mill site as part of the NPDES treatment process. The mine water pumped from the Westwater Canyon Formation was held for settlement prior to treatment and discharge into the Unnamed Arroyo. Theoretically, mine water could seep into the underlying formation that is located at the surface. The formation that outcrops at the NECR Mine is the Dalton sandstone which is a non-producing formation in the area.

The mining of uranium ore in the Westwater Canyon Formation at NECR involved sinking a shaft to the ore zone and dewatering since the ore resided below the top of the water table elevation. The dewatering, open shaft, tunnels, and stopes introduced air into the rock layers that were previously saturated. Opening of the underground through dewatering and exposure to air caused the geochemical setting to change from a reducing environment to an oxidizing environment. After mining ended, the groundwater has been re-saturating the ore zones that were dewatered. The re-saturation is likely to have occurred slowly, but it would still trap some air that likely entered the ground water as dissolved oxygen. It would likely take a period before the geochemical condition of the ground water will change from an oxidizing to a reducing environment again. The oxidizing environment is more conducive to uranium solubilization and mobilization. At the end of mining and the beginning of closure, some parts of the NECR Mine were filled with washed tailings sands from the UNC mill using a slurry mixture that was pumped from the surface and down into the mine. After backfilling was completed, the NECR Mine was closed and sealed.

Section 4. Conceptual Model

Major releases uranium, radium and gross alpha that occurred in the NECR area are dewatering of the mine and discharges of mine water in to the unnamed Arroyo, catastrophic release from the tailings disposal cells, and seepage to the subsurface from water in the tailings disposal cells. These releases are discussed in more detail in Section 3.2. To assess the impact of all historic releases, wells that may have been impacted by the releases were selected. The wells were selected by reviewing the release, determining the movement of water from the release through in the subsurface, and identifying wells in the pathway.

The mine water discharges and the spill from the 1979 dam breach flowed south-southwesterly along the Pipeline Arroyo and into the Rio Puerco. The water infiltrated into the shallow groundwater unit in the Alluvium. The Alluvium beneath the Pipeline Arroyo is shallow and no wells were drilled in that part of the formation. However, shallow hand dug wells in the Alluvium beneath the Rio Puerco have been used in the area since before mining began.

To a lesser extent, mine water discharges would have also seeped through the Alluvium into the Upper Gallup formation where the Upper Gallup contacts the base of the Alluvium along the Pipeline Arroyo at the UNC Mill site. The Upper Gallup formation was unsaturated in the vicinity of the UNC Mill Site prior to mining operations, but became saturated once mine dewatering began (Canonie, 1988). Once mining operations ceased, the water levels in the Upper Gallup decreased.

Seepage from the tailings disposal cells infiltrated into the Upper Gallup Sandstone where it contacts the base of the Alluvium beneath the tailings disposal cells. Because groundwater flow in the Upper Gallup Sandstone Member is northerly at the UNC mill site, the closest well north of the site screened in the Upper Gallup Sandstone Member was selected for this assessment.

The Dalton Sandstone Member outcrop is present at the NECR Mine site where the historic holding ponds were operated for the NPDES permit compliance treatment before releasing into the Pipeline Arroyo. Theoretically, any seepage from the surface at the NECR Mine site would infiltrate into the Dalton Sandstone; however, the sandstone has been described in several wells logs in the area as dry or non-producing. A review of available well logs for the area at Navajo Nation Division of Natural Resources Department of Water Resources did not find any wells screened across the Dalton Sandstone Member in the vicinity of the site, further indicating that the sandstone does not produce water. The shallowest water producing formation at the NECR Mine site is the Upper Gallup.

The mining operations and subsequent closure may have impacted or altered the Westwater Canyon aquifer in the area of the mine. An oxidation/reduction environment is required for uranium to leach into

Section 4 Conceptual Model

the groundwater. Dewatering the mine workings and exposing the ore to air may have accelerated oxidation of the uranium ore, and once groundwater was allowed to fill the mine workings when the mine closed operations a larger oxidation/reduction environment may have been created than previously existed. In addition, waste rock from the mining and milling processes was placed in the mines to fill the workings and remove the waste rock from the surface. The waste rock also may have added oxidized and partially processed ore to the subsurface environment also increasing the oxidation/reduction environment in the mine area. Groundwater from the Westwater Canyon formation is used for drinking water up gradient in the aquifer (south of the mine) and near Crownpoint, New Mexico, approximately 40 miles cross gradient. The Westwater Canyon aquifer is too deep in the mine vicinity and wells for assessing water quality are limited to the NECR Mine Well (abandoned in 2004) and Mill Well².

Table 2 provides a summary of the rationale in selecting the wells used to assess groundwater quality for this assessment. The five historic releases are listed across the heading and the water bearing units are listed in the first column. If the water bearing unit had a potential impact from a specific release based on water flow in the area, the closest well to that impact was chosen. A review of the well locations in the Alluvium identified two old wells in the Rio Puerco Alluvium immediately down gradient of mouth of the Pipeline Arroyo. These wells would have been the first to see a potential impact from mine water discharges and 1979 spill. Two wells in the Upper Gallup formation north of the UNC Mill site and north of the NECR Mine Site were identified to assess impacts from the UNC Mill tailing seepage and the Mine water discharge historic releases. The UNC Mill well and the abandoned NECR Mine well are the only wells located in the Westwater Canyon aquifer in the area. There are no wells in the Dalton formation.

Figure 8 presents the well locations.

-

² Documents reviewed indicated that the Mill well is located in the Westwater Canyon member. However, one reference indicates that it might be located in the sandstone above the Westwater Canyon Member: the Dakota Sandstone.

Section 5. Area-wide Groundwater Sampling Events

After mining operations began in the area, several sampling programs were instituted in response to increased community concern regarding the quality of the water for domestic and livestock purposes. This section describes these sampling programs and their findings in the area. Most of the programs were broader in scope than the impact of historic releases at the NECR Mine and the UNC Mill Site, and included wells that are not hydrogeologically connected to these sources.

The chemicals of concern in groundwater in the NECR mine area include radionuclides, TDS, nitrates, and arsenic. The primary contaminants are radium-226, radium-228, uranium, and TDS. The primary risk to human health and the environment from the chemicals of concern is through direct ingestion of contaminated groundwater or ingestion of meat from livestock that have ingested contaminated groundwater. The cleanup criteria for groundwater in the areas are the US EPA maximum contaminant levels (MCLs) for drinking water.

The US EPA established primary and secondary MCLs to protect public health and provide guidelines to state and local enforcement agencies. Primary MCLs are legally enforceable standards that apply to public water systems and were established to protect public health by limiting the levels of contaminants in drinking water. The secondary MCLs are non-enforceable guidelines regulating contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. The US EPA recommends secondary standards to water systems but does not require systems to comply.

The MCLs for the contaminants of concern for NECR are:

Primary MCL	Secondary MCL
15 pCi/L	
not established	not established
not established	not established
5 pCi/L	
30 mg/L	
not established	500 mg/L
10 mg/L	
10 mg/L	
not established	250 mg/L
Less than 6.5 greater than 8.5	
	15 pCi/L not established not established 5 pCi/L 30 mg/L not established 10 mg/L not established Less than 6.5

Water samples have been collected from many unregulated wells and springs throughout the Navajo Nation region under various investigations and programs. From 1977 to 1979, Los Alamos Scientific Laboratory collected samples in the Church Rock area as part of the National Uranium Resource Evaluation Program (NURE) during the hydrogeochemical and stream sediment reconnaissance phase. In July 2002, a water quality sample was collected from a domestic well in the Westwater Canyon Member in the area of the UNC Mill. In 2003 and 2004, Navajo Nation Environmental Protection Agency (NNEPA) collected samples under the Church Rock Uranium Monitoring Project (CRUMP). EPA collected additional samples in the Church Rock area from 2008 through 2010. Because the wells are unregulated sources of water, limited or no information on well development is available and groundwater samples were not collected regularly. Available analytical results summarized below are from limited grab groundwater samples.

5.1. NURE 1977 TO 1979 SAMPLING EVENT

From September 1977 to October 1979, NURE collected thirteen groundwater samples in the Church Rock area from twelve wells. Data from the samples were compiled and transferred to a database by USGS. Ten samples were collected in September 1977; one sample was collected in October 1978; and two samples were collected in October 1979 after the UNC Mill tailings spill in July 1979, including a resample of a well from the 1977 event (EPA, 2009d). Samples are identified in the database with unique identifiers; however, no information is available to correlate the samples with wells from other sampling events or specific aquifers in the area. Sample identification, dates collected, and uranium concentrations are presented below.

Sample ID	<u>Date Collected</u>	<u>Uranium Concentration</u>		
1081950	9/20/1977	0.89		
1081951	9/20/1977	0.22		
1081952	9/20/1977	0.18		
1081953	9/20/1977	0.64		
1081954	9/20/1977	2.4		
1081955	9/20/1977	1.24		
1081956	9/20/1977	2.62		
1081958	9/20/1977	0.44		
1081962	9/20/1977	0.63		
1082210	10/01/1978	1.46		
1082328	10/17/1979	0.24		
(resample of 1081958)				
1082365	10/18/1979	0.95		
1082366	10/18/1979	1007.4		

Uranium concentrations in the samples ranged from 0.17 μ g/L to 2.62 μ g/L, except for sample 1082366 that had a uranium concentration of 1,007.4 μ g/L, which exceeded the MCL of 30 μ g/L. Sample 1082366 was collected from the drainage directly across Pipeline Arroyo from the UNC Mill .

5.2. 2002 UNC MILL SAMPLING EVENT

In July 2002, MWH collected a water quality sample from the Westwater Canyon Member in the area of the UNC Mill from a domestic well located in Section 2 of Township 16 north and Range 16 west. Dissolved uranium was detected at a concentration of 70 μ g/L, and gross alpha activity was not detected at a level greater than the laboratory reporting limit of 1.0 pCi/L (MWH, 2003).

5.3. CHURCH ROCK URANIUM MONITORING PROJECT 2003 AND 2004 SAMPLING EVENTS

EPA and NNEPA collected water samples near the Church Rock and NECR Mines in October 2003 as part of the CRUMP. The pollutants and water quality parameters included in the analyses were concentrations of arsenic, iron, selenium, sulfate, pH, total hardness, fluoride, chloride, and total dissolved solids. Many of the wells sampled during the CRUMP October 2003 study were deemed unsuitable for human and domestic uses based on water quality parameters of the samples, and various pollutants detected. Thirteen wells were sampled in the area and analyzed for uranium (EPA, 2009):

- Well 14K-313 contained 0.05 μg/L of uranium
- Well 14K-586 contained 3 µg/Lof uranium
- Well 15T-303 (listed as 15K-303) contained 0.69 μg/L of uranium
- Well 16-4-10 contained 69.37 µg/L of uranium
- Well 16K-336 contained 0.57 µg/L of uranium
- Well 16K-340 contained 2.92 µg/L of uranium
- Well 16T-348 contained 0.29 µg/L of uranium
- Well 16T-534 contained 0.15 μg/L of uranium
- Well 16T-559 contained 0.09 μg/L of uranium
- Well 16T-606 contained 6.99 μg/L of uranium
- Well 16T-608 contained 5.76 µg/L of uranium
- Well Grey contained 14.84 μg/L of uranium
- Well Solar contained 0.24 μg/L of uranium

Of the 13 wells sampled during this sampling event, only the groundwater sample collected from well 16-4-10 contained uranium at a concentration greater than the MCL of 30 μ g/L. Well 16-4-10 is a shallow well (less than 10 feet) and located approximately 6.5 miles downgradient of the UNC Mill site. It

appears to be located in an outcrop of the Morrison Formation along a tributary drainage running northwest into the Rio Puerco.

5.4. EPA 2008 TO 2009 SAMPLING EVENT

EPA collected and analyzed water samples from 2008 to 2009 from the following wells:

- Well 15K-303 contained 0.38 μg/L of uranium
- Well 14T-586 contained 1.5 μg/L of uranium
- Well 14K-313 did not contained uranium at a concentration greater than or equal to the laboratory reporting limit
- Well Grey contained 5.2 μg/L of uranium
- Well 16-4-10 contained 260 µg/L of uranium
- Well 16-3-4 did not contained uranium at a concentration greater than or equal to the laboratory reporting limit
- Well 16T-513 did not contained uranium at a concentration greater than or equal to the laboratory reporting limit
- Becenti Trail Spring contained 110 μg/L of uranium

The uranium concentrations in the samples collected from well 16-4-10 in 2008 and the Becenti Trail Spring in 2009 exceeded the MCL of $30\,\mu\text{g/L}$. As mentioned earlier, Well 16-4-10 is downstream of the mines; however, it is along a different drainage running northwest into the Rio Puerco and therefore is not influenced by the releases analyzed in this report. Becenti Trail Spring is a shallow water source with an aquifer listed as 231CHNL, the Chinle Formation, although the spring depth does not correlate well with the expected formation depth. The measured depth to water at the Becenti Trail Spring was reported as 12 feet bgs. The spring may be an associated with the same source as Well 16-4-10.

5.5. EPA 2010 SAMPLING EVENT

EPA collected and analyzed water samples from the following wells on October 19, 2010:

- Well 15K-303 had uranium activity of 0.978 pCi/L
- Well 14T-586 had uranium activity of 2.474 pCi/L
- Well Mill Well had uranium activity of 5.604 pCi/L
- Well 16K-336 had uranium activity of 0.743 pCi/L
- Well 16K-340 had uranium activity of 1.812 pCi/L

 Mine Well was not sampled because it had previously been abandoned in place and filled with concrete.

Water from the wells were analyzed in the field for pH, temperature, conductivity, dissolved oxygen (DO), salinity, total dissolved solids (TDS), turbidity, and oxygen reduction potential (ORP). Samples were collected from each of the wells and analyzed for gross alpha, beta, and photon radioactivity by EPA Method 900, radium-226 by EPA Method 903.1, radium-228 by EPA Method 904.0, isotropic uranium by Health and Safety Laboratory (HASL) Method 300 U-01-RC mod, and thorium by HASL Method Th-01-RC mod. All wells met the maximum contaminant level (MCL) for radionuclides in drinking water, except 16K-336 that had a Radium (226 and 228) activity level of 5.78 pCi/L, which is greater than the MCL of 5 pCi/L. Groundwater samples from all wells exceeded the TDS secondary MCL of 500 mg/L. (Secondary MCLs are not health-based and for aesthetic considerations, such as taste, color and odor.) Wells 16K-340, 14K-586, 15T-303 and Mill Well had concentrations of sulfate greater than the secondary MCL of 250 mg/L. Well 16K-336 contained arsenic at a concentration of 11 mg/L, slightly greater than the MCL of 10 mg/L. A summary of the analytical results from the 2010 sampling event are presented in Table 1.

Section 6. Historical Groundwater Data for Select Wells

Water quality data including radionuclides and general chemistry were evaluated for the selected wells identified in Section 4. Table 3 summarizes data from the selected wells. Evaluation of the well data was problematic because:

- very few wells had groundwater data from before mining began,
- samples from different wells were rarely collected concurrently, making comparison of water quality parameters difficult,
- sampling methods and procedures could not be verified for most of the data,
- analytical procedures have modified and become more sensitive since sampling began,
- Infrequent sampling events providing a small data set.

The most recent laboratory analytical data for groundwater indicate that all wells met the federal standard for radionuclides contaminants, except 16K-336 that had a Radium (226 and 228) activity level of 5.78 pCi/L, which is greater than the MCL of 5 pCi/L. Well 16K-336 contained arsenic at a concentration of 11 mg/L, slightly greater than the MCL of 10 mg/L. Groundwater samples from all wells exceeded the Total Dissolved Solids (TDS) secondary MCL of 500 mg/L. Wells 16K-340, 14K-586, 15T-303 and Mill Well had concentrations of sulfate greater than the secondary MCL of 250 mg/L. The secondary MCLs are not health-based but established considering aesthetic qualities such as odor, taste and color. Primarily due to the high TDS concentrations, the water from the wells is considered poor quality for human consumption.

The data show indicates:

Alluvium wells:

- Decreases in the conductivity from >1,330 to 150 and >1,180 to 190
- Decreases in nitrates from 13.02 mg/L to <7 mg/L, and >13.0 mg/L to 5.97 mg/L
- A temporary increase in sulfate followed by decreasing concentrations, to concentrations approximately the same sulfate concentrations from the first sample event pre-mining. (368 mg/L and 118 mg/L)

Gallup Wells:

• Both wells exhibit increases in sulfate from 580.68 mg/L to 1,380 mg/L in well 14K-586 and 520 mg/L to 2,000 mg/L in well 15T-303.

Westwater Canyon:

- The Mill Well exhibited a decrease in uranium concentrations from 65 mg/L in 1984 to 3 mg/L in 2010. No radionuclide data was available for this well prior to 1984. However, the Mine well that draws water from the same formation had dissolved uranium concentrations between 0.725 mg/L and 3.71 mg/L in 1979
- The Mill Well showed an increase in TDS and sulfate from 335 mg/L to 2,300 mg/L and from 32 mg/L to 1,460 mg/L, respectively.

Section 7. Summary of Prior Groundwater Assessments

The US EPA and USGS conducted assessments of the groundwater in response to growing concern over the possible impact to the groundwater quality in the area around and down gradient of the NECR Mine.

7.1. WATER QUALITY IMPACTS OF URANIUM MINING AND MILLING ACTIVITIES IN THE GRANTS MINERAL BELT,

In 1975, at the request of NMEIA, US EPA Region 6 assessed the impacts of mining and mine water discharge in the Grants Mineral belt, specifically in relation to the applicable regulations and standards (US EPA, 1975). The water quality assessment evaluated discharges, potable water supply and limited stream data for the Ambrosia Lake, Church Rock and Jackpile-Paguate Mining areas. A representative sample of the mine discharge water could not be collected during the initial sampling event at the NECR Mine (referred to as United Nuclear Corporation Churchrook Mine) because a power failure caused the mine to flood and mining operations were temporarily suspended for repairs. The report stated that even without a representative sample "Indications are that the present treatment facility is inadequate to meet existing NPDES permit conditions." NMEIA returned to the mine on March 14, 1975, and collected a sample after the mining operations had resumed. The concentration of radium-226 in the sample was 57 pCi/L, which exceed the NPDES permit condition of 30 pCi/L.

The assessment also found that concentrations of radium-226 and selenium in drinking water at the NECR Mine and mobile home area for workers and families exceeded the United States Public Health Service limits of 3 pCi/L and 0.01 mg/L, respectively. Radium was detected at concentrations of 12.6 pCi/L at the mine and 39.7 pCi/Lin a mobile home used by mine workers, and selenium was detected at a concentration of 0.06 mg/L in both locations. The US EPA recommended finding an alternate source of potable water for the workers and families of miners who use the wells (US EPA, 1975).

7.2. HISTORIC WATER QUALITY DATA, PUERCO RIVER BASIN, ARIZONA AND NEW MEXICO

In 1988, the USGS began a five-year study of the occurrence and movement of radionuclides and trace metals in the Puerco River basin in Northeastern Arizona and northwestern New Mexico (USGS, 1991). The report presented historical water quality data for select wells in the Puerco river basin and a bibliography of geology, hydrology, and water quality references. The purpose of the report was to summarize data for surface water and groundwater quality indicators in the Puerco River basin dating from before the mine tailings release up to 1988. The report included water quality information for 72 stream locations and 323 groundwater wells. Several of the 323 wells were located in the study area for

this report, including wells 16K-340 and 16K-336. The historic stream water data presented several samples collected immediately after the July 16, 1979, tailings dam failure that contained high levels of thorium (54.6 pCi/L maximum result on August 4, 1979) and uranium (900 ug/L maximum result on July 26, 1979)

7.3. RADIOACTIVITIY IN THE ENVIRONMENT – A CASE STUDY OF THE PUERCO AND LITTLE COLOROADO RIVER BASINS, ARIZONA AND NEW MEXICO

The USGS presented a second study of the Puerco River basin to determine the distribution of radioactive elements (USGS, 1994). The second study included sampling surface water, sediment, and groundwater down to 150 feet bgs in the Puerco River basin. Nine surface water sampling stations were established in the basin: three on the Puerco River; three on the Little Colorado River, and three on tributaries not affected by mining (Black Creek, Zuni River, and the Little Colorado River at Woodruff). The groundwater strategy included sixty-nine wells along the Puerco and Little Colorado Rivers, including thirty-eight wells in ten well clusters. Each well cluster consisted of three to nine wells of varying depths and distances from the river channel to allow determination of vertical and horizontal extent of radioactive contamination. The screen lengths were typically short – from a foot screened interval to about 10 feet length. The USGS also sampled groundwater from wells on tributaries where no mining had occurred and wells screened in the underlying bedrock aquifers.

Because radium and uranium adsorb to sediments, water samples were filtered so that the unfiltered water, filtered water, and sediment components of the sample could be assessed separately. Ninety-three of 95 filtered samples contained gross-alpha activity less than the federal drinking water standards of 15 pCi/L, and twenty out of twenty-three filtered samples contained uranium concentrations less than the proposed Federal standard in 1994 of 20 mg/L. In comparison to the filtered samples, unfiltered samples contained up to 10 times more uranium and generally exceeded Federal drinking-water standards for total uranium in 51 out of 54 samples, and exceeded total gross alpha standards in 82 out of 91 samples.

There was no significant difference in the radioactivity levels in sediments collected from areas that were potentially impacted by mining and in sediments collected from tributaries with no mining history. Differences in radioactivity in the sediments appeared to be related to the geology of the surrounding area and not proximity to uranium mines.

The groundwater study concluded that groundwater samples collected from shallow depths (less than 40 feet), closest to the abandoned uranium mines, and near the center of the riverbed had higher concentrations of dissolved uranium. In 1989, concentrations of dissolved uranium greater than 35 μ g/L were detected in shallow groundwater samples from the mouth of the Pipeline Arroyo to the Arizona/New Mexico border. In 1990, the area containing concentrations of dissolved uranium greater than 35 μ g/L only reached from the mouth of the Pipeline Arroyo to just East of Gallup, New Mexico

7.4. EFFECTS OF URANIUM-MINING RELEASES ON GROUND-WATER QUALITY IN THE PUERCO RIVER BASIN, ARIZONA AND NEW MEXICO

In 1997, the USGS published the "Effects of Uranium Mining Releases on Ground-Water Quality in Puerco River Basin, Arizona and New Mexico" to describe the water quality of the Rio Puerco Alluvium aquifer, the movement of water between the Puerco River and the underlying alluvial aquifer, and changes in the water quality of the alluvial and bedrock aquifers related to the mine releases. The report used the data presented in the previous USGS reports and additional previously published data to develop models and evaluate the geology and geochemistry of the Puerco River basin.

Reviewing historic stream gages and estimating evaporation rates, the USGS estimated that in 1990 the source of the almost half of the groundwater in the Alluvium between the mouth of the Pipeline Arroyo and the Nuria Monocline (approximately 3 miles east of Gallup) could have been mine water discharge. Background samples collected upstream of the mouth of the Pipeline Arroyo in the Rio Puerco contained tritium concentrations indicating recent source of water, and uranium concentrations between 6 and 13 ug/L. Groundwater samples downstream of the Pipeline Arroyo had tritium concentrations indicating an older source of water similar to the tritium concentrations from the mine water in the Westwater Canyon formation and uranium concentrations as high as 870 µg/L.

USGS reported groundwater concentrations of uranium ranged from 1 to 220 μ g/L in 1990, which was less than the maximum uranium concentration of 870 μ g/L detected in groundwater in 1989. The report also confirmed that higher concentrations were detected in shallow wells, close to the center of the riverbed, and closest to the abandoned mines. Water in the Alluvium was generally alkaline, with high concentrations of sulfate and TDS. All samples of radium-226 and radium-228 were less than federal standards.

The USGS assessed the fate of the uranium released through mine dewatering discharge and concluded that sorption of uranium on the sediment is the probable fate of the dissolved uranium. This conclusion was based on analyses of sediment samples for uranium and thorium isotopes. In most natural cases, the ratio of uranium activity to thorium activity should be close to one. If significant amount of uranium leached in to the environment or sorbed onto the sediments, the ratio would be greater than one. The calculated U/Th ratios for the sediment samples closer the centerline of the streambed were greater than one indicating uranium had been added to the sediments from mine releases. However, the changes were small because USGS could not distinguish between uranium concentrations in sediments containing mine water discharges and sediments without mine discharge water.

The USGS study determined that the groundwater and sediments in the Alluvium had been impacted by the mine water discharges. Concentrations of dissolved uranium had decreased over time but were still present in limited areas in 1990 at concentrations greater than 35 μ g/L. Except for a few shallow samples in the center of the channel, gross alpha, uranium, and radium met federal standards downstream of Gallup. Groundwater samples east of Gallup showed improvement over the study period. As indicated

in the analysis of the Alluvium aquifer, sorption on to the sediment is probably where the dissolved uranium resides. Isotope analyses of the sediments suggest that the concentrations of uranium in the sediments near the center of the channel are more likely to be associated with the mine water discharge than concentrations in the sediments away from the center.

Section 8. Conclusions

During the mining operations at NECR mines and the UNC Mill Site operations, dissolved uranium, radium, gross alpha and other contaminants were introduced into the groundwater in the area by several different releases: mine water discharges, the 1979 dam breach release, seepage from the tailings disposal cells at the UNC Mill site, dewatering of the ore body formation during mining, and disposal of waste rock back into the mine workings..

Surface water flowing in the Pipeline Arroyo and Rio Puerco seeps into the underlying Alluvium forming the shallow groundwater in the area. Groundwater in the Alluvium generally flows from northeast to southwest, in the same the direction as the Pipeline Arroyo and Rio Puerco. Groundwater can seep from the Alluvium into the underlying sandstone bedrock, such as the Upper Gallup Sandstone Member, where it contacts the Alluvium. Surface water can also seep directly into the sandstone formations where they outcrop at the surface. Groundwater in the sandstone formations flows northward following the regional dip in the area.

Based on the historic releases and the hydrogeology of the Area, three aquifers were identified as potentially impacted from the historic releases: the Alluvium aquifer, the Upper Gallup Sandstone Member aquifer, and the Westwater Canyon Formation aquifer.

8.1. IMPACTS TO THE ALLUVIUM AQUIFER

The Alluvium beneath the Rio Puerco is a source of groundwater for the neighboring communities. The largest impact on the Alluvium aquifer was from the mine water discharge where an estimated 37 billion gallons of water containing 600 tons of uranium was released into the Pipeline Arroyo/Rio Puerco over a 16 year period. The second major impact to the Alluvium Aquifer was the 1979 dam breach that released of approximately 94 million gallons of water containing radioactive mill tailings. While considered one of the largest radioactive spills in history, contamination from the 1979 spill occurred as a single event and had a brief period during which it could be absorbed into the underlying aquifers as it flowed down the Rio Puerco. Investigations conducted by USGS determined that the Alluvium beneath the Rio Puerco had been impacted by the mine water discharge and to a lesser extent by the 1979 dam breach. The USGS reports documented dissolved uranium in the Alluvium groundwater and indicated that the uranium had adsorbed on to the Alluvium sediments. The USGS investigations constructed numerous monitoring wells targeting zones in the Alluvium where groundwater impacts from the previous releases were expected (i.e. shallow, center of stream wells).

Section 8 Conclusions

This groundwater assessment utilized data from wells installed prior to mining operations. This assessment of existing livestock wells found that mining in the area had a possible influence on secondary water quality constituents in the Alluvium groundwater, such as the decrease in TDS, and the spike and subsequent decrease in sulfate concentrations wells 16K-336 and 16K-340. The wells used in this assessment may not have shown impacts from uranium or radium 226/228 because they were not located in an optimal location relative to the center of the stream channel and the depth of screen, or they had an insufficient historical data.

TDS concentrations have remained consistent in the Alluvium groundwater wells from pre-mining to present. Pre-mining data indicate TDS concentrations ranged from 832 mg/L to 1,423 mg/L and data from October 2010 detected concentrations of TDS ranging from 1,000 mg/L to 1,200 mg/L. Concentrations of TDS in drinking water are regulated under the EPA's National Secondary Drinking Water Standards and is considered and aesthetic effect causing and undesirable taste or odor. The elevated concentrations of TDS detected in the Alluvium groundwater are considered poor water quality for human consumption.

Based on the limited data for wells in this assessment, the uranium concentrations in the Alluvium groundwater appears to have been consistent over the past 50 years and are below federal safe drinking water levels. The well furthermost from the NECR mine within the study area, 16K-336, had an anomalous concentration of 5.78 pCi/L of Radium-226/228 during the October 2010 sampling event, which exceeded the MCL of 5 pCi/L. Previous groundwater samples collected in 1989 and 1990 by the USGS were less than the MCL for of radium-226 and radium-228, as well as all other historic samples collected from the livestock wells in this assessment.

The Alluvium in the Pipeline Arroyo has also been impacted by historical tailing seepage. The lateral extent of this impact is approximately 2000 feet southeast of the UNC Mill Site; however, there are no livestock wells located in the Pipeline Arroyo Alluvium in the impacted area.

8.2. IMPACTS TO THE UPPER GALLUP SANDSTONE MEMBER AQUIFER

The Upper Gallup Sandstone Member wells may also have been affected by the mine water discharge but to a lesser extent because the mine water would have passed through the Alluvium before entering the Upper Gallup Sandstone Member. The Friendship well, 14K-586, and the Pipeline Canyon Well, 15T-303 showed an increase in sulfate concentrations but have not shown a subsequent decrease as seen in the Alluvium wells All other constituent's concentrations appear constant over the historic record.

Current groundwater in Upper Gallup Sandstone Member wells contains elevated concentrations of TDS ranging from 1,700 mg/L to 2,200 mg/L. Groundwater in the region that is not impacted by mining can also have high concentrations of TDS from dissolved formation material as groundwater passes through. Uranium and radium 226/228 concentrations in the groundwater in the livestock wells within the study

Section 8 Conclusions

area are less than federal safe drinking water levels, and based on the limited data; appear to have been fairly consistent over the past 33 years.

The greatest impact from releases of radionuclides and secondary contaminants on the quality of Upper Gallup Sandstone Member groundwater is at the UNC Mill Site, where the Upper Gallup Sandstone Member has been affected by the acidic seepage from the tailings disposal cells during mining operations. These releases are currently being remediated under oversight of US EPA Region 6 and the State of New Mexico. The extent of the release from the tailing seepage currently extends approximately 3000 feet in the Upper Gallup Sandstone Member.

8.3. IMPACTS TO THE WESTWATER CANYON AQUIFER

A large quantity of mine water was extracted from the Westwater Canyon Formation to allow access to ore during mining operations. This process introduced oxygen and temporarily changed the aquifer around the ore rock from anaerobic to aerobic. After mining operations ceased, groundwater around the ore returned to the original oxidation state. In addition, waste rock was disposed in the mine shafts and stopes as part of the mine closure.

The Westwater Canyon Sandstone Member Aquifer showed a decrease in water quality with elevated uranium concentrations occurring in the Mill well immediately following the cessation of mining, but has since declined to below federal levels. Radium-226 concentrations in the Mine well were high during mining operations but decreased to less than the MCL after mining ceased. Radionuclide concentrations appear to have improved, but secondary contaminant concentrations indicate a decrease in water quality in the Westwater Canyon Sandstone Member. The Mine well sample collected in 1973 and Mill well sample collected in 1976 contained high quality water with low TDS concentrations (300 mg/L to 400 mg/L). After mining ceased in 1986, the TDS concentrations increased to 2,258 mg/L in 1993 and have remained greater than the MCL of 500 mg/L.

Section 9. Summary

In response to concerns voiced by the community, US EPA evaluated the impacts to groundwater due to historical mining and milling activities of the Northeast Church Rock, and the UNC Mill in the Church Rock area of the Navajo Nation.

The prominent geologic feature in northwestern New Mexico is the San Juan Basin, which is a circular, bowl-shaped depression containing sedimentary rocks. The uplifted, folded, and faulted rocks of the adjacent mountain ranges define the margins of the San Juan Basin. The southern margin of the San Juan Basin, where NECR is located, is defined by the Zuni Mountains. The layers of sedimentary rock in the San Juan Basin slope down toward the center of the basin from the highlands at the margins. During the Late Jurassic period, stream-laid sands were deposited throughout the basin creating the Morrison Formation which includes the Westwater Canyon Sandstone Member. The Morrison is one of several well-known uranium-bearing rock units in the mining districts.

A prominent feature of the Late Cretaceous was northwest to southeast shoreline that migrated back and forth across the basin, depositing marine, coastal plain, and nonmarine sediments. The marine deposits in the area consist of sandstone, shale, and a few thin limestone beds. The Late Cretaceous rocks include the following units from the oldest to the youngest: the Dakota Sandstone, the Mancos Shale, the Mesa Verde Group (which includes the Upper Gallup Sandstone Member and the Crevasse Canyon Formation).

River deposited alluvium overlies the sedimentary bedrock in the Puerco River basin. The Alluvium consists of fine grained sand interfingered with silty clay layers. When surface water is present near the NECR mine, the flow direction is from northwest to southeast along unnamed arroyos, into the northeast-to southwest-trending Pipeline arroyo and into the Rio Puerco. Groundwater can seep from the Alluvium into the underlying sandstone bedrock, such as the Upper Gallup, where it contacts the Alluvium. Surface water can also enter the sandstone formations where the formation outcrops at the surface. Groundwater in the sandstone units flows to the north following the regional dip of bedrock.

During operations of the UNC Mill and the NECR Mine, the largest releases of uranium, radium and gross alpha were surface water discharges (water pumped from the mines, and the 1979 catastrophic release from the tailings disposal cells) whose impacts would first be observed in the Alluvium groundwater wells. The tailing disposal cells at the UNC Mill Site and the settlement ponds at the NECR Mill would affect groundwater by seeping into the underlying formations. The Upper Gallup Sandstone Member outcrops at the UNC Mill Site and the Dalton Sandstone Member outcrops at the NECR Mill site. The Dalton Sandstone Member is a non-producing sandstone in the NECR area; therefore, very little seepage would have passed through the Dalton into the groundwater. In addition, groundwater

Section 9 Summary

quality in the Westwater Canyon Sandstone Member Aquifer could have been affected by the disposal of waste rock in the mine workings and dewatering of the mine during operation.

Water samples have been collected from many unregulated wells and springs throughout region under various investigations and programs. From 1977 to 1979, Los Alamos Scientific Laboratory collected samples during the hydrogeochemical and stream sediment reconnaissance phase. In 2003 and 2004, Navajo Nation Environmental Protection Agency collected samples under the Church Rock Uranium Monitoring Project. EPA collected additional samples in the Church Rock area from 2008 through 2010. Uranium concentrations were greatest after the 1979 spill event in the Pipeline Arroyo. There also exceedences of federal standards for Uranium in wells within 15 miles of the area but were located in geologic formations or watersheds that would not have been impacted by releases at the NECR Mine or UNC Mill Site.

Historical groundwater quality data including radionuclides and general chemistry were compiled for select wells. These select wells were identified after evaluating release and groundwater flow patterns to identify pre-mining wells closest to the releases. Generally, most Alluvium and Upper Gallup wells showed a general increase in secondary contaminant concentrations (such as sulfate and TDS) since mining had ceased. The Westwater Canyon Sandstone Member well, Mill Well 1, has shown improvement in quality for uranium concentrations but a worsening in quality for the secondary contaminants. The most recent laboratory analytical data for groundwater indicate that all wells met the federal standard for radionuclides contaminants, except the furthermost Alluvium well, 16K-336, had a Radium 226/228 activity level of 5.78 pCi/L. Groundwater samples from all wells exceeded the Total Dissolved Solids (TDS) secondary MCL of 500 mg/L and some wells had concentrations of sulfate greater than the secondary MCL of 250 mg/L.

Finally, a literature search was conducted and results summarized. The USGS conducted a detailed study of the Alluvium under the Rio Puerco between 1988 and 1991. Using short-screened, specifically-located monitoring wells in the Alluvium, the USGS documented that releases from the NECR Mine and the UNC Mill Site had resulted in increased uranium concentrations in the Alluvium groundwater. Concentrations of dissolved uranium decreased over time but were still present in limited areas in 1990 when the study was completed. The USGS assessed the fate of the uranium released through mine dewatering discharge and concluded that sorption of uranium on the sediment is the probable fate of the dissolved uranium; however, the changes in sediment concentrations were within the range of non-mining impact sediment concentrations.

In summary, the three major water sources in the NECR Mine and UNC Mill area, the Alluvium groudwater, the Upper Gallup Sandstone Member aquifer, and the Westwater Canyon Sandstone Member aquifer have shown impacts to water quality associated with the mining operations. Water quality in the groundwater has generally improved since cessation of mining operations. Current water quality is considered poor due to the TDS concentrations that are normal for the region. Uranium concentrations

Section 9 Summary

and Radium-226/228 are below federal health levels with the exception of an anomalous result from one Alluvium well, and the plume for the historical Tailing Disposal cells seepage, which is under investigation and enforcement by EPA Region 6.

Section 10. References

- Brister and Hoffman, 2002. New Mexico's Energy, Present and Future: Policy, Production, Economics, and the Environment. Brian S. Brister and L. Greer Price editors. New Mexico Bureau of Geology and Mineral Resources.
- Canonie Environmental, 1988. "Transmittal, Pre-Mining/Pre-Milling Water Level Data, United Nuclear Corporation's Church Rock Site, Gallup, New Mexico." July 26.
- Canonie Environmental, 1988. "Reclamation Engineering Services: Geohydrologic Report, Church Rock Site, Gallup, New Mexico." May
- Chronic Diseases Division, Bureau of Epidemiology, Memo: Biological Assessment After Uranium Mill Tailings Spill , Church Rock, New Mexico, December 24, 1980
- Church Rock Uranium Monitoring Project (CRUMP), 2007. "Report of the Church Rock Uranium Monitoring Project, 2003-2007." Principal authors: C. Shuey and M. Ronca-Battista. Sponsored by Churchrock Chapter, Navajo Nation in collaboration with Southwest Research and Information Center and the Navajo Education and Scholarship Foundation. May.
- Hilpert, 1963. "Uranium Resources of Northwestern New Mexico." Geological Survey Professional Paper 603. U.S. Department of the Interior.
- Keller, J.C., 2007. "Jamie deLemos Takes on Toxins on the Navajo Nation." Profile for doctoral candidate at Tufts School of Engineering and member of Diné Network for Environmental Health. Tufts University E-News. September 4. Available Online at: http://enews.tufts.edu/focus/18/2007/09/04/Jamie%20deLemosTakesonToxinsontheNavajoNation.
- MWH, 2003. "Northeast Church Rock Mine Site Assessment." Prepared for United Nuclear Corporation. July.
- Raymondi, R & Conrad, R, 1983. "Hydrogeology of Pipeline Canyon, Near Gallup, New Mexico." Published in Volume 21, Number 2 of *Ground Water*. March April
- Roca Honda Resources, LLC, 2009. "Baseline Data Report, Roca Honda Mine." October.
- Stone, 1981. "Hydrogeology of the Gallup Sandstone, San Juan Basin, Northwest New Mexico." Published in Volume 19 Number 1 of *Ground Water*. January-February
- US EPA, 1975. "Water Quality Impacts of Uranium Mining and Milling Activities in the Grants Mineral Belt, New Mexico." September. Available on the internet at: http://nepis.epa.gov/Simple.html>

Section 10 References

United States Environmental Protection Agency (EPA). 2007c. "Abandoned Uranium Mines and the Navajo Nation, Navajo Nation AUM Screening Assessment Report and Atlas with Geospatial Data." August.

- EPA, 2009d. Google Earth file from Linda Reeves with compilation of data from EPA and DWR. May 2.
- EPA, 2010. E-mail and faxes containing historic Church Rock maps. From Cynthia Wetmore, EPA. To Robin L. Mock, ERRG. January.
- United States Geological Survey (USGS), 1991. "Historic Water Quality Data, Puerco River Basin, Arizona and New Mexico." Report 91-196 June Available on the internet at: http://pubs.er.usgs.gov/
- USGS, 1994. "Radioactivity in the Environment A Case Study of the Puerco and Little Coloroado River Basins, Arizona and New Mexico." Report 94-4192 Available on the internet at: http://pubs.er.usgs.gov/>
- USGS, 1997a. "Radioactivity in the Environment A Case Study or the Puerco and Little Colorado River basins, Arizona and New Mexico." Open-File Report 94-4192.
- USGS, 1997b. "Effects of Uranium-Mining Releases on Ground-Water Quality in the Puerco River Basin, Arizona and New Mexico." Water Supply Paper 2476 Available on the internet at: http://pubs.er.usgs.gov/>

Figures

INDIVIDUAL DISTRICTS OF THE URANIUM REGION ARE OUTLINED. PRINCIPAL DISTRICTS: C.R.=CHURCH ROCK; Cpt.=CROWNPOINT; S.L.=SMITH LAKE - MARIANO LAKE; A.L.=AMBROSIA LAKE; LA.=LAGUNA. (AFTER SANTOS AND TURNER PETERSON 1986 BASED ON KELLY 1951) (REPRINTED BY PERMISSION OF AAPG).

APPROXIMATE SCALE: 1"=20 MI

LEGEND:

BOUNDARY OF SAN JUAN STRUCTURAL BASIN UPLIFT BOUNDARY

GEOLOGIC FEATURES OF

Engineering/Remediation Resources Group, Inc. 115 Sansome St., Suite 200 San Francisco, California 94104 (415) 395-9974 CLIENT: U.S. ENVIRONMENTAL PROTECTION AGENCY

LOCATION: NEW MEXICO NAVAJO NATION

DRAWN BY:
SC 08/08/11

THE SAN JUAN BASIN

CHECKED BY: PROJECT NO. FIG NO.

MF 08/08/11 2010-202 1

Brister and Hoffman, 2002. New Mexico's Energy, Present and Future: Policy, Production, Economics, and the Environment. Brian S. Brister and L. Greer Price editors. New Mexico Bureau of Geology and Mineral Resources.

Resource	s Group, Inc.	LIENT: U.S. ENVIRONMENTAL PROTECTION AGENCY	GEOL	_OGIC CROSS—SE THE SAN JUAN		
	o, California 94104	OCATION: CHURCH ROCK AREA NEW MEXICO, NAVAJO AREA	DRAWN BY: SC 08/08/11	CHECKED BY: MHF 08/08/11	PROJECT NO. 2010-202	FIG NO.

HORIZONTAL SCALE: 1"=5000' VERTICAL SCALE: 1"=500'

CROSS SECTION VIEW WITH EXAGGERATED VERTICAL SCALE

LEGEND:

Trc - CHINLE GROUP

Jsr - SAN RAFAEL FROUP (ENTRADA; TODILTO; SUMERVILLE)

Jm - MORRISON GROUP

Kd - DAKOTA

Kml - MANCOS SHALE

Kg - GULLOP SANDSTONE

Kcc - CREVASSE CANYON

Kmm - MULATTO TONGUE OF MANKOS

U.S. ENVIRONMENTAL PROTECTION AGENCY CHURCH ROCK AREA NEW MEXICO, NAVAJO AREA

GEOLOGIC CROSS SECTION CHURCH ROCK AREA CHECKED BY: SC 09/08/11 MHF 09/08/11

PROJECT NO. FIG NO. 2010-202

Source:

Canonie Environmental, 1988. "Transmittal, Pre-Mining/Pre-Milling Water Level Data, United Nuclear Corporation's Church Rock Site, Gallup, New Mexico." July 26.

Specific source for Two Wells SS — Cobban, W.A., and Hook, S.C., 1989, Mid—Cretaceous molluscan record from west—central New Mexico, IN Anderson, O.J., and others, eds., Southeastern Colorado Plateau: New Mexico Geological Society Guidebook, no. 40, p. 247—264

ERRG	

Engineering/Remediation Resources Group, Inc.

115 Sansome St., Suite 200 San Francisco, California 94104 (415) 395-9974

U.S. ENVIRONMENTAL PROTECTION AGENCY		HEAST CHURCH E STRATIGRAPHIO		
LOCATION: CHURCH ROCK AREA NEW MEXICO, NAVAJO NATION	DRAWN BY: SC 08/03/11	CHECKED BY: MHF 08/03/11	PROJECT NO. 2010-202	FIG NO.

LEGEND:

Ground Water Recharge

MF 09/08/11

FIG NO.

2010-202

5

CLIENT:	U.S. ENVIRONMENTAL PROTECTION AGENCY		NCEPTUAL DRAW ER RECHARGE FI		OW
LOCATION:	CHURCH ROCK AREA	DRAWN BY:	CHECKED BY:	PROJECT NO.	FIG

NAVAJO NATION

SC 09/08/11

NOTES:

- MINE WATER WAS DISCHARGED FROM BOTH THE NORTHEAST CHURCH ROCK MINE AND THE QUIVA MINE.
- 2. SOURCE OF OBSERVED DATA: UNC MINING AND MILLING MEMORANDUM DATED SEPTEMBER 30, 1986.

SOURCE: "CANONIE ENVIRONMENTAL, 1991. TAILING RECLAMATION PLAN AS APPROVED BY NRC MARCH 01,1991, LICENSE NO. SUA-1475."

CLIENT:	U.S. ENVIRONMENTAL PROTECTION AGENCY	AVERAGE	YEARLY MINE W	ATER DISCHARGE	-
LOCATION:	CHURCH ROCK AREA NEW MEXICO, NAVAJO AREA	DRAWN BY: SC 08/03/11	CHECKED BY: MHF 08/03/11	PROJECT NO. 2010-202	FIG NO.

Tables

Table 1. NECR Water Well Sampling Data – EPA START October 2010

Analyte	Units	MCL				I Name		
			14T- 586	14T-586 100(dup)	15T- 303	16K- 336	16K-340	Mill Well
Water Quality								
рН			7.1	7.1	6.8	7.4	7.6	7.4
Conductivity	S/m		0.26	0.26	0.35	0.15	0.19	0.36
Turbidity	NTU		10.1	10.1	10.1	29.9	5.5	14.7
Dissolved Oxygen	mg/L		6.30	6.30	7.99	3.05	5.26	6.39
Temperature	°C		7.6	7.6	12.1	15.5 °C	Temperature	
Salinity	%		0.1	0.1	0.2	0.1	0.1	0.2
Total Dissolved Solids	g/L		1.7	1.7	2.2	1	1.2	2.3
Oxidation Reduction Potential	mV		100	100	mV	86	76	-127
Metals								
Aluminum	μg/L		220	82	68.0	229	126	68.0
Antimony	μg/L	6	3.00	7.34	6.83	3.00	3.00	3.00
Arsenic	μg/L	10	5.00	5.00	7.54	11	8.53	5.00
Barium	μg/L	2,000	13.1	13.4	8.24	450	140	1.64
Beryllium	μg/L	4	1.00	1.00	1.00	1.00	1.00	1.00
Bromide	μg/L		0.200	0.200	0.200	0.234	0.295	0.361
Cadmium	μg/L	5	1.00	1.00	1.17	1.00	1.00	1.00
Calcium	μg/L		270000	281000	373000	76800	99800	2420
Chromium	μg/L	100	13.9	1.00	1.16	1.00	1.03	1.43
Cobalt	μg/L		1.13	1.00	1.00	1.00	1.00	1.00
Copper	μg/L	1,300	3.00	3.00	3.00	29.7	3.00	20.4
Iron	μg/L	,,,,,,	482	468	685	2720	181	9870
Lead	μg/L	15	3.30	3.30	3.30	3.58	3.30	3.74
Magnesium	μg/L		119000	122000	144000	20600	43500	470
Manganese	μg/L		320	319	162	95.9	122	51
Mercury	μg/L	2	0.066	0.066	0.066	0.066	0.066	0.066
Nickel	μg/L	_	71.3	1.51	1.50	1.50	1.50	2.38
Potassium	μg/L		7430	7690	5650	2540	3940	3200
Selenium	μg/L	50	7.7	37.7	43.8	10.2	5.00	26.7
Silver		00	1.00	1.00	1.00	1.00	1.00	1.00
Sodium	μg/L μg/L		135000	140000	188000	202000	233000	694000
Thallium		2	5.00	5.00	8.9	5.00	5.00	6.45
Vanadium	μg/L		1.00	1.00	1.00	1.00	1.00	1.00
Zinc	μg/L		338	355	839	153	148	659
Radionuclides	μg/L		550	333	038	133	140	009
ALPHA	pCi/L	15	2.62	5.80	-0.526	0.129	5.46	9.79
BETA	pCi/L	ne	6.58	6.02	2.62	4.99	2.37	2.72
Pct Uranium-	percent	ne	0.00	0.02	0.00	0.00	0.00	0.00
235	·	110						
Radium-226	pCi/L		0.880	0.540	1.18	1.20	0.464	0.639
Radium-228 Radium 226 + 228	pCi/L pCi/L	5	3.41 4.29	3.71 4.25	3.34 4.52	4.58 5.78	0.747 1.211	1.77 2.409

Table 1. NECR Water Well Sampling Data – EPA START October 2010 (continued)

Analyte	Units	MCL			We	II Name		
·			14T- 586	14T-586 100(dup)	15T- 303	16K- 336	16K-340	Mill Well
Thorium-228	pCi/L		- 0.0147	0.155	-0.139	0.298	-0.0682	0.139
Thorium-230	pCi/L		-0.185	0.818	-0.158	-0.524	0.0264	0.480
Thorium-232	pCi/L		-0.133	-0.0195	-0.0195	-0.0195	-0.0722	-0.0195
Uranium- 233/234	pCi/L		1.16	1.73	0.317	-0.171	0.297	2.61
Uranium- 235/236	pCi/L		0.114	0.0569	0.219	0.181	0.115	0.174
Uranium-238	pCi/L		1.20	0.790	0.442	0.392	1.40	2.82
Uranium ¹	μg/L	30	3.69	3.85	1.46	0.60	2.70	8.36
Anions				'				
Chloride	mg/L		14.0	14.1	10.5	18.8	22.1	154
Nitrate	mg/L		0.267	0.266	0.100	2.89	5.97	0.100
Nitrite	mg/L		0.100	0.100	0.100	0.100	0.100	0.100
Ortho- phosphate	mg/L		0.200	0.200	2.00	0.291	0.163	2.00
Sulfate	mg/L	250 ²	1380	1310	2000	118	368	1460
Fluoride	mg/L		1.19	1.24	1.52	0.861	0.483	1.73
Miscellaneous								
δD H ₂ O	%		-80.8	-81.2	-73.1	-91.4	-82.6	-107.3
δ ¹⁸ O H ₂ O	%		-10.44	-10.53	-8.56	-12.04	-11.01	-14.14

Notes:

MCL - maximum contaminant level for EPA drinking water standards

S/m - Siemens per meter

NTU - Nephelometric Turbidity Units

mg/L - milligram per liter

°C - degrees Celsius

g/L – grams per liter

mV - millivolts

μg/L – micrograms per liter

pCi/L – picoCuries per liter

% - percent

ne - not established

Uranium in μg/L was calculated by summing the pCi/l for uranium 233 through 238 and multiplying by a conservative conversion factor of 0.67 pCi/μg.

^{2.} Secondary drinking water standard for sulfate is presented in the table.

Table 2. Summary of NECR Aquifer Formations and Associated Wells

			Mine Site		UNC Mill Site				
Geologic Unit	Description	Mine Dewatering	Waste placed back in ore body	Pond/ Waste Seepage	Tailings Seepage	1979 Spill			
Alluvium	Shallow water bearing zone in under Pipeline Arroyo and Rio Puerco	Majority of water infiltrated into Alluvium. 16K-336 16K-340			Under Region 6, GE is addressing plume from tailings remanating about 1400 feet d/g from tailings pile.	Dam breached resulted in thorium-230 contamination in Pipeline Arroyo sediments. Clean-up was completed. 16K-336 16K-340			
Dalton Sandstone Member	Non- producing sandstone/shale			No wells. Formation not a large producer		101(-3-10			
Upper Gallup Sandstone Member	First producing sandstone in are	Fraction of Mine water may infiltrate from Alluvium into Gallup and back under Mine Site			Two areas impacted: Zone 1 – Plume stable, remedy suspended; MNA proposed and Zone 3 – Plume migrating towards north				
Westwater Canyon Sandstone Member	Ore body aquifer	Large radius of influence may have resulted in change of geochemistry which could increase Uranium dissolution rates NECR Mine Well; Mill Well	Waste placed back in ore body NECR Mine Well; Mill Well		101 000				

UPDATED Table 3. Summary of Groundwater Sampling Results w/corrected units

				-		Radionucli	des				General Chemistry						
Geologic Formation	Well ID/ Sample ID	Sample Date**	Total Uranium (pCi/L)	Uranium (ug/L)	Radium-226 (pCi/L)	Radium-228 (pCi/L)	Radium-226 + Radium 228 (pCi/L)	Gross Alpha	Gross Alpha excluding U (pCi/L)	TDS (mg/L)	Conductiv ity	Field pH	рН	Arsenic (ug/L)	Sulfate (mg/L)	Nitrate (mg/L)	
			'	-	1	'	A-Zone A	Aquifer Wells		'	'		'	'			
Gallup	14K-586	12-Apr-76								4,890	1,690		8.0		581	trace	
	(Friendship-1;	17-May-78		2 ^a	1.2 ^a	2 ^a	3.2 ^a										
	14T-586)	06-Mar-79						<17						<5		0.5	
		31-Jul-79						<5									
		07-Nov-79						<3									
		11-Feb-80						<4			2,134		7.87		887		
		30-May-85								922		7	7.3	23.9	1,042	0.42	
		18-Jul-85						<2									
		17-Mar-88													886		
		05-Aug-03		3	2.60			10.80		2,136		8.07		8	1,097		
		Feb - Mar 2008		1.50	1.19	2.25	3.44	7.85	6.85	1,810	2,250	6.98	7.80	0.97		<0.3	
		09-Oct-10	2.47		0.88	3.41		2.62		1,700	2,600		7.1	5	1,380	0.267	
		22-Jun-22		2.00	1.50	1.40				2,100	2,317	7.57		<5	955	0.300	
	15T-303*	Jun-55								2,450	3,120				520	0.6	
	(Pipeline Cyn./	24-Sept-87 ^b			1.6 ± 0.1	0 ± 1		-5.1 ± 3.2		2,593	1910.00	8.00	7.20	<5	1,770	0.24	
	15K303 in 1948)	28-Oct-03	0.46	0.69	0.47	1.50		4.0		3,043		8.13		<5	1,940		
	1940)	Feb - Mar 2008		0.38	1.19	3.73	4.9	0.9	1	2,528	2,890	7.20	7	1		<0.3	
		09-Oct-10	0.978		1.18	3.34		-0.526		2,200	3,500		6.8	7.54	2,000	0.100	
		21-Jun-22		0.374	2.50	0.90				2,490	2,671	7.23		1.02	1,490	<0.1	
Alluvium	16K-336	Sep-53								832	1,330				91	0.3	
	(Puerco North Fork;	26-Mar-74				-				892	1,380		8.2	<10 (trace)	136	13.02	
	Superman 2)	29-Oct-03	0.38	0.57	0.83	0.30		5.9		888		8.05		6	122		
		01-Oct-08		0.80	0.40	0.67				904					158	7	
		09-Oct-10	0.402		1.20	4.58		0.129		1,000	150		7	11	118	2.89	
		21-Jun-22		0.422	0.60	<0.4				970	1,244	7.63		4.07	122	1.00	
	16K-340	Jun-54								1,250	1,810				314	13.0	
	(1081954)	02-May-72								1,423	2,190		8.3		490	20.46	
		20-Sep-77		2.4							2,150		7.1				
		29-Oct-03	1.96	2.92	0.40	0.40		nd		1,469		8.16		<5	419		
		Oct-09 ^b		2.20		0.34											
		09-Oct-10	1.812		0.464	0.747		5.46		1,200	190.0	0.04	7.6	8.5	368	5.97	
	N 4: N A - II	22-Jun-22		2	0	<0.2				1,170	1,655	8.24		<5	334	6.70	
Westwater	Mine Well	Nov-73		4.050	77					412	663				110	1	
Canyon	Mine Water	13-Feb-79		1,250	77	1.0				552			8	10	77	1	
Member		14-Feb-79		725	103	1.0				421			8	<10	79	'	
		16-Feb-79		2,070	0.6	5.0				415			8	<10 <10	81	1	
		17-Feb-79		2,100	49	<1				483			8		76		
		21-Feb-79		960	82	<1				386			8	<10 <10	73	0	
		27-Feb-79 14-Mar-79		3,710	155 67	<1 <1				383 386			7	<10	70 70	1	
		27-Mar-79		1,570	90	2.0				404			8	<10	76		
		21-Mai-19		1,530	90	2.0				404			0	<10	70	1	

https://usepa-my.sharepoint.com/personal/wetmore_cynthia_epa_gov/Documents/Desktop/temp - gw wells necr/Updated 2022 NEChurchRock_WellDataCompilation_11092022.xlsx

UPDATED Table 3. Summary of Groundwater Sampling Results w/corrected units

						Radionucli	des			General Chemistry						
Geologic Formation	Well ID/ Sample ID	Sample Date**	Total Uranium (pCi/L)	Uranium (ug/L)	Radium-226 (pCi/L)	Radium-228 (pCi/L)	Radium-226 + Radium 228 (pCi/L)	Gross Alpha	Gross Alpha excluding U (pCi/L)	TDS (mg/L)	Conductiv	Field pH	рН	Arsenic (ug/L)	Sulfate (mg/L)	Nitrate (mg/L)
	•		•	•	•	•	A-Zone A	Aquifer Wells	•	•	•	•	•		•	•
		11-Apr-79		2,290	22	5.0				381			8	<10	76	13
		2-May-79		1,700	11					371			8		73	1
		11-Jun-79		3,620	36	5.2				450			8	12	112	<0.1
		30-Apr-80		2,840	490	<1				381			8		71	
		16-Jul-80		2,700	86.1	1.3				538			6.7		272	
	Mill Well I	12-Aug-76								335			7.98	1	32	5
		9-Oct-84		65	1.8			43		228			8.49	1	18	
		23-Apr-92		576	0.4	2		2		292			8.83	4	33	0.1
		28-Jul-93		2	1.6	1.4	3	1.8		2258			8.5	1.0	1,260	0.1
		3rd Quarter 1998		65			<0.2									
		4th Quarter 1998		1			<0.2									
		1st Quarter 1999		48			<0.2									
		2nd Quarter 1999		33			<0.2									
		18-Jun-02		70	0.7	2.7	3.4	1		2,090			8.34	1	1,100	0.1
		Feb-06		8.1			2.4									
		Sep-10		3	0.92	1.7	2.6		1.7	2,240			8.80	<1	1270	<0.1
		09-Oct-10	5.604	8	0.639	1.77		9.79		2,300	360		7.4	5.0	1,460	0.100
		19-Jul-22		0.3	0.400	<-0.2	<0.2			1,020			8.3	2.0	469	0.170
MCLs				30	ne	ne	5	15	15	500	ne	6.5 to 8.5	6.5 to 8.5	10	ne	10

Notes:

Shaded cells indicate data from before the July 16, 1979 spill.

a = Radio isotope data for Well 14K-586 is a compilation of data from the same formation in neighboring wells. Values in **bold** exceed MCLs.

* - listed as 15K-303 No. 3 (In powerhouse) for Crownpoint

MCLs = maximum contaminant levels

mg/L = milligrams per liter

nd = non-detect (detection limit not available)

pCi/L = picoCuries per liter

TDS = total dissolved solids

-- = not analyzed for

<0.5 = not detected at concentrations greater than the laboratory reporting limit of 0.5 μ g/L.

μg/L = micrograms per liter

Appendix A. Historic Select Well Groundwater Data

14K-586

VELL

14T-586

International Specialists in the Environment
1940 Webster Street, Suite 100

1940 Webster Street, Suite 100 Oakland, California 94612 Tel: (510) 893-6700, Fax: (510) 550-2760

January 24, 2011

U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105

Attention:

Harry Allen, USEPA On-Scene Coordinator

Andrew Bain, USEPA

Subject:

NECR Water Well Sampling

Church Rock Chapter

Navajo Nation

145-586 15T-303 16k-336 16k-340 mill wall

TDD No: T02-09-10-08-0005

Project No: 002693.2103.01RA

INTRODUCTION

In October 2010 the U.S. Environmental Protection Agency (USEPA) tasked the Ecology and Environment Inc. Superfund Technical Assessment and Response Team (START) with technical assistance relating to residential water well sampling in the vicinity of the former Northeast Church Rock Mine located in the Church Rock Chapter of the Navajo Nation. (Figure 1, Attachment A).

The purpose of this sampling event was to generate additional data to measure the impact of the former Northeast Church Rock Mine uranium mine on wells within the adjacent areas.

SAMPLING ACTIVITIES

Well sampling was conducted on October 19, 2010. A total of five wells were sampled. Four of the wells were residential wells and one (Mill Well) well was part of the former United Nuclear Corporation (UNC) facility in the area. Every effort was made to collect water samples in a manner consistent with resident collection and use (i.e. taps, pumps or bucket collect).

A Time Critical Quality Assurance and Sampling (QASP) Plan (Appendix D) was developed prior to sampling and followed with the following exceptions:

- Well NR#1 is no longer in use and was not sampled as the casing has been filled with concrete.
- The Mine Well is no longer in use and was not sampled as the casing has been filled with concrete.

Water quality parameters were measured in the field using a Horiba, Ltd. multi-parameter water quality meter. The meter was calibrated daily using a buffer solution. Samples were collected and analyzed for metals, radionuclides and anions by GEL Laboratories Inc. (Charleston, SC). Samples were collected and analyzed for oxygen and hydrogen isotopic ratio by Isotech Laboratories, Inc (Champaign, II). The QASP (Appendix D) contains all methods and volumes used in sample analysis.

WELL DESCRIPTIONS

NECR Water Well Sampling TDD No: 02-09-10-08-0005

Page 2

Well 15T-303

Well 15T-303 is a windmill powered well that feeds into an approximately 40,000 gallon uncovered metal tank. The well is currently in use and there is a trough and locked tap in the vicinity of the tank that are used to water livestock. Samples were collected from the top of the tank using a bucket.

14T-586

14T-586 is a diesel engine powered well that feeds into an approximately 10,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

Mill Well

The Mill Well is located on the former UNC facility property. The well is electric powered well, housed in a wooden pump house, north of the former UNC offices and equipment yard. There is no storage tank affiliated with the well and the well is not currently in use. Samples were collected from a tap inside the pump house with pump turned on.

Mine Well

The mine well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

NR#1

The NR#1 well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

16K-340

Well 16K-340 is a windmill powered well that feeds into an approximately 40,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

RESULTS

Table 1 (Appendix B) gives a well specific summary of all applicable data. All laboratory data was validated by a START chemist using the *Region 9 Draft Superfund Data Evaluation/Validation Guidance*. Data validation indicated the laboratory data was acceptable with qualification as definitive data. A separate data validation report was generated under this project and is included in the project file.

This letter summarizes all activities conducted on the Tuba City Removal project. If you have any questions regarding START's activities associated with this project, please do not hesitate to contact me.

Respectfully,

Mike Folan

NECR Water Well Sampling TDD No: 02-09-10-08-0005 Page 3

START Member

Attachments: A – Homesite Location Map B –Data Tables

C – Photographic Documentation

D- QASP

cc: file

ATTACHMENT A: Well Location Map

ATTACHMENT B: Data Tables

	D:09-10-08-0005 14T-5	86		14T-586100 (duplicate)	5	15T-3		2104.01
		Result	Units		Result	Units		Result	Units
	pН	7.1		рН	7.1		рН	6.8	
	Conductivity	0.26	S/m	Conductivity	0.26	S/m	Conductivity	0.35	S/m
	Turbidity	10.1	NTU	Turbidity	10.1	NTU	Turbidity	10.1	NTU
Wa	Dissolved Oxygen	6.30	mg/L	Dissolved Oxygen	6.30	mg/L	Dissolved Oxygen	7.99	mg/L
ter	Temperature	7.6	°C	Temperature	7.6	°C	Temperature	12.1	°C
Water Quality	Salinity	0.1	%	Salinity	0.1	%	Salinity	0.2	%
lity	Total Dissolved Solids Oxidation Reduction	1.7	g/L	Total Dissolved Solids Oxidation Reduction	1.7	g/L	Total Dissolved Solids Oxidation Reduction	2.2	g/L
	Potential	100	mV	Potential	100	mV	Potential	129	mV
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Aluminum	220	ug/L	Aluminum	82	ug/L	Aluminum	68.0	ug/L
	Antimony	3.00	ug/L	Antimony	7.34	ug/L	Antimony	6.83	ug/L
	Arsenic	5.00	ug/L	Arsenic	5.00	ug/L	Arsenic	7.54	ug/L
	Barium	13.1	ug/L	Barium	13.4	ug/L	Barium	8.24	ug/L
	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L
	Bromide	0.200	ug/L	Bromide	0.200	ug/L	Bromide	0.200	ug/L
	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L	Cadmium	1.17	ug/L
	Calcium	270000	ug/L	Calcium	281000	ug/L	Calcium	373000	ug/L
	Chromium	13.9	ug/L	Chromium	1.00	ug/L	Chromium	1.16	ug/L
	Cobalt	1.13	ug/L	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L
	Copper	3.00	ug/L	Copper	3.00	ug/L	Copper	3.00	ug/L
Metals	Iron	482	ug/L	Iron	468	ug/L	Iron	685	ug/L
als	Lead	3.30	ug/L	Lead	3.30	ug/L	Lead	3.30	ug/L
	Magnesium	119000	ug/L	Magnesium	122000	ug/L	Magnesium	144000	ug/L
	Manganese	320	ug/L	Manganese	319	ug/L	Manganese	162	ug/L
	Mercury	0.066	ug/L	Mercury	0.066	ug/L	Mercury	0.066	ug/L
	Nickel	71.3	ug/L	Nickel	1.51	ug/L	Nickel	1.50	ug/L
	Potassium	7430	ug/L	Potassium	7690	ug/L	Potassium	5650	ug/L
	Selenium	7.7	ug/L	Selenium	37.7	ug/L	Selenium	43.8	ug/L
	Silver	1.00	ug/L	Silver	1.00	ug/L	Silver	1.00	ug/L
	Sodium	135000	ug/L	Sodium	140000	ug/L	Sodium	188000	ug/L
	Thallium	5.00		Thallium	5.00		Thallium	8.9	ug/L
			ug/L		-	ug/L		_	
	Vanadium	1.00	ug/L	Vanadium	1.00 355	ug/L	Vanadium Zinc	1.00 839	ug/L
_	Zinc		ug/L Units	Zinc	Result	ug/L	12.000	-	ug/L
	Analyte		-	Analyte			Analyte		Units
	ALPHA	2.62	pCi/L	ALPHA	5.80	pCi/L	ALPHA	-0.526	pCi/L
	BETA	6.58	pCi/L	BETA	6.02	pCi/L	BETA	2.62	pCi/L
Z.	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent
Radionuclide's	Radium-226	0.880	pCi/L	Radium-226	0.540	pCi/L	Radium-226	1.18	pCi/L
nuc	Radium-228	3.41	pCi/L	Radium-228	3.71	pCi/L	Radium-228	3.34	pCi/L
clid	Thorium-228	-0.0147	pCi/L	Thorium-228	0.155	pCi/L	Thorium-228	-0.139	pCi/L
e's	Thorium-230	-0.185	pCi/L	Thorium-230	0.818	pCi/L	Thorium-230	-0.158	pCi/L
	Thorium-232	-0.133	pCi/L	Thorium-232	-0.0195	pCi/L	Thorium-232	-0.0195	pCi/L
	Uranium-233/234	1.16	pCi/L	Uranium-233/234	1.73	pCi/L	Uranium-233/234	0.317	pCi/L
	Uranium-235/236	0.114	pCi/L	Uranium-235/236	0.0569	pCi/L	Uranium-235/236	0.219	pCi/L
	Uranium-238	1.20	pCi/L	Uranium-238	0.790	pCi/L	Uranium-238	0.442	pCi/L

Table 1: NECR Water Well Sampling Data

	147	-586		14T-58610	0 (duplicate)		15	T-303	
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
ı	Chloride	14.0	mg/L	Chloride	14.1	mg/L	Chloride	10.5	mg/L
Αn	Nitrate	0.267	mg/L	Nitrate	0.266	mg/L	Nitrate	0.100	mg/L
Anions	Nitrite	0.100	mg/L	Nitrite 0.100 mg		mg/L	Nitrite	0.100	mg/L
S	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	2.00	mg/L
	Sulfate	1380	mg/L	Sulfate	1310	mg/L	Sulfate	2000	mg/L
	Fluoride	1.19	mg/L	Fluoride	1.24	mg/L	Fluoride	1.52	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H₂O	-80.8	%	δD H₂O	-81.2	%	δD H₂O	-73.1	%
	δ ¹⁸ O H₂O	-10.44	%	δ ¹⁸ O H₂O	-10.53	%	δ ¹⁸ O H ₂ O	-8.56	%

Table 1: NECR Water Well Sampling Data

0.50	16K-336			16K-340			MILLWELL		
		Result	Units		Result	Units		Result	Units
	рН	7.4		pН	7.6		pН	7.4	
	Conductivity	0.15	S/m	Conductivity	0.19	S/m	Conductivity	0.36	S/m
Water Quality	Turbidity	29.9	NTU	Turbidity	5.5	NTU	Turbidity	14.7	NTU
	Dissolved Oxygen	3.05	mg/L	Dissolved Oxygen	5.26	mg/L	Dissolved Oxygen	6.39	mg/L
	Temperature	15.5	°C	Temperature	16.8	°C	Temperature	15.2	°C
	Salinity	0.1	%	Salinity	0.1	%	Salinity	0.2	%
	Total Dissolved Solids Oxidation Reduction	1	g/L	Total Dissolved Solids Oxidation Reduction	1.2	g/L	Total Dissolved Solids Oxidation Reduction	2.3	g/L
	Potential	86	mV	Potential	76 .	mV	Potential	-127	mV
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Aluminum	229	ug/L	Aluminum	126	ug/L	Aluminum	68.0	ug/L
	Antimony	3.00	ug/L	Antimony	3.00	ug/L	Antimony	3.00	ug/L
	Arsenic	11	ug/L	Arsenic	8.53	ug/L	Arsenic	5.00	ug/L
	Barium	450	ug/L	Barium	140	ug/L	Barium	1.64	ug/L
	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L
	Bromide	0.234	ug/L	Bromide	0.295	ug/L	Bromide	0.361	ug/L
	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L
	Calcium	76800	ug/L	Calcium	99800	ug/L	Calcium	2420	ug/L
	Chromium	1.00	ug/L	Chromium	1.03	ug/L	Chromium	1.43	ug/L
	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L
Metals		29.7	_	Copper	3.00			20.4	ug/L
	Copper	2720	ug/L	Iron	181	ug/L ug/L	Copper Iron	9870	_
	Iron	3.58	ug/L	Lead	3.30	-	Lead	3.74	ug/L ug/L
	Lead	_	ug/L			ug/L	2-200		
	Magnesium	20600	ug/L	Magnesium	43500	ug/L	Magnesium	470	ug/L
	Manganese	95.9	ug/L	Manganese	122	ug/L	Manganese	51	ug/L
	Mercury	0.066	ug/L	Mercury	0.066	ug/L	Mercury	0.066	ug/L
	Nickel	1.50	ug/L	Nickel	1.50	ug/L	Nickel	2.38	ug/L
	Potassium	2540	ug/L	Potassium	3940	ug/L	Potassium	3200	ug/L
	Selenium	10.2	ug/L	Selenium	5.00	ug/L	Selenium	26.7	ug/L
	Silver	1.00	ug/L	Silver	1.00	ug/L	Silver	1.00	ug/L
	Sodium	202000	ug/L	Sodium	233000	ug/L	Sodium	694000	ug/L
	Thallium	5.00	ug/L	Thallium	5.00	ug/L	Thallium	6.45	ug/L
	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L
	Zinc	153	ug/L	Zinc	148	ug/L	Zinc	659	ug/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	ALPHA -	0.129	pCi/L	ALPHA	5.46	pCi/L	ALPHA	9.79	pCi/L
Radionuclide's	BETA	4.99	pCi/L	BETA	2.37	pCi/L	BETA	2.72	pCi/L
	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent
	Radium-226	1.20	pCi/L	Radium-226	0.464	pCi/L	Radium-226	0.639	pCi/L
	Radium-228	4.58	pCi/L	Radium-228	0.747	pCi/L	Radium-228	1.77	pCi/L
	Thorium-228	0.298	pCi/L	Thorium-228	-0.0682	pCi/L	Thorium-228	0.139	pCi/L
	Thorium-230	-0.524	pCi/L	Thorium-230	0.0264	pCi/L	Thorium-230	0.480	pCi/L
	Thorium-232	-0.0195	pCi/L	Thorium-232	-0.0722	pCi/L	Thorium-232	-0.0195	pCi/L
	Uranium-233/234	-0.171	pCi/L	Uranium-233/234	0.297	pCi/L	Uranium-233/234	2.61	pCi/L
	Uranium-235/236	0.181	pCi/L	Uranium-235/236	0.115	pCi/L	Uranium-235/236	0.174	pCi/L
	Uranium-238	0.392	pCi/L	Uranium-238	1.40	pCi/L	Uranium-238	2.82	pCi/L

Table 1: NECR Water Well Sampling Data

	16K-336			16K-340			MILLWELL		
П	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Chloride	18.8	mg/L	Chloride	22.1	mg/L	Chloride	154	mg/L
D	Nitrate	2.89	mg/L	Nitrate	5.97	mg/L	Nitrate	0.100	mg/L
Anions	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L
ñ	Ortho-phosphate	0.291	mg/L	Ortho-phosphate	0.163	mg/L	Ortho-phosphate	2.00	mg/L
	Sulfate	118	mg/L	Sulfate	368	mg/L	Sulfate	1460	mg/L
	Fluoride	0.861	mg/L	Fluoride	0.483	mg/L	Fluoride	1.73	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H ₂ O	-91.4	%	δD H ₂ O	-82.6	%	δD H₂O	-107.3	%
	δ ¹⁸ O H ₂ O	-12.04	%	δ ¹⁸ O H ₂ O	-11.01	%	δ ¹⁸ O H ₂ O	-14.14	%

ATTACHMENT C: Photographic Documentation

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Description:

Well 15T-303

Date: 10/19/10

Description:

Well 15T-303

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 14T-586

Date: 10/19/10

Description:

Well 14T-586

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Mill Well

Date: 10/19/10

Description:

Mill Well

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Description: Mine Well

Date: 10/19/10

Description:

Well NR#1

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Description:

16K-340

Date: 10/19/10

Description:

16K-340

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-336

Date: 10/19/10

Description:

16K-336

Table J
Reporting Limits, Action Levels, and Quality Control Limits

		Action Level	Quantitation	Duplicate	Matrix	Matrix Spike
Analysis	Analyte	(mg/L)	Limit (µg/L)	RPD	Spike	RPD
Anions by 300.0	Fluoride	4	0.10	25	75-125	20
Anions by 300.0	Chloride	250	1.0	25	75-125	20
Anions by 300.0	Nitrite as N	1	0.10	25	75-125	20
Anions by 300.0	Nitrate as N	10	0.10	25	75-125	20
Anions by 300.0	o-Phosphate, as P	Not Available	1.0	25	75-125	20
Anions by 300.0	Sulfate	250 (s)	0.50	25	75-125	20
Metals by 6010B	Aluminum	0.1	100	25	75-125	20
Metals by 6010B	Antimony	0.1	100	25	75-125	20
Metals by 6010B	Arsenic	0.01	10	25	75-125	20
Metals by 6010B	Barium	2	20	25	75-125	20
Metals by 6010B	Beryllium	0.005	5	25	75-125	20
Metals by 6010B	Cadmium	0.01	10	25	75-125	20
Metals by 6010B	Calcium	Not Available	1000	25	75-125	20
Metals by 6010B	Chromium	0.10	10	25	75-125	20
Metals by 6010B	Cobalt	Not Available	20	25	75-125	20
Metals by 6010B	Copper	1.3 (s)	20	25	75-125	20
Metals by 6010B	Iron	Not Available	50	25	75-125	20
Metals by 6010B	Lead	0.015	5	25	75-125	20
Metals by 6010B	Magnesium	Not Available	600	25	75-125	20
Metals by 6010B	Manganese	0.05 (s)	15	25	75-125	20
Metals by 6010B	Mercury	0.002	0.5	25	75-125	20
Metals by 6010B	Nickel	Not Available	20	25	75-125	20
Metals by 6010B	Potassium	Not Available	5000	25	75-125	20
Metals by 6010B	Selenium	0.05	10	25	75-125	20
Metals by 6010B	Silver	0.10 (s)	10	25	75-125	20
Metals by 6010B	Thallium	0.002	10	25	75-125	20
Metals by 6010B	Vanadium	Not Available	20	25	75-125	20
Metals by 6010B	Zinc	5 (s)	10	25	75-125	20
Gross alpha by 900.0	alpha	See table A-1	1.0 piC/L	25	75-125	20
Gross beta by 900.0	beta	See table A-1	1.0 piC/L	25	75-125	20
903.1	Ra-226	See table A-1	1.0 piC/L	25	75-125	20
904.0	Ra-228	See table A-1	1.0 piC/L	25	75-125	20
Isotopic Th by HASL 300 Th-01-RCmod	Th-238, 230, 232	See table A-1	1.0 piC/L	25	75-125	20
Isotopic U by HASL 300 U-02-RC mod	U-233/234, U- 235/236, U-238	See table A-1	1.0 piC/L	25	75-125	20

Key: RPD = relative percent difference; mg/L = milligrams per liter; $\mu/L = micrograms$ per Liter NA = Not Applicable

⁽s) = National Secondary Drinking Water Regulation not enforceable and not an action limit for this assessment

BUREAU OF INDIAN AFFAIRS SOIL, WATER & MATERIALS ING LABORATUR! P. O. BOX 1060, GALLUP, MEXICO 87301 LABORATORY DATA SHEET FOR WATER SAMPLES

(14T-586

LAB. NO. 76-NT-894 FIELD NO. COLLECTOR Russ Brangan - Kerr McGee
LOCATION Sec 35 T 17 R 16W ANALYZED BY TRANSCRIBED BY mapolace CHECKED BY _ DATE RECEIVED BY LABORATORY April 13,1976 REPORTED BY DATE ANALYSIS COMPLETED 4-27-76 AUTHORIZED BY George B. Soce
DATE COLLECTED April 12,1976 SOURCE OF WATER 14-T-586 Navajo Tribe AGENCY Ft. Defiance BRANCH Water & Sanitation DEPARTMENT Temperature (°F)____(°C)____ Silica (SiO₂) Boron (B)_____ 0.19 Iron (Fe) Calcium (Ca) Magnesium (Mg)____ Sodium (Na) 220,70 Potassium (K)_____ 19.09 Cations Phosphorus (P) Bicarbonate (HCO3)_____ Carbonate (CO3) Sulfate (SO₄)_____ 12.09 580.68 Chloride (C1)___ Fluoride (F) 0.04 0.68 Nitrate (N)____ Aniens 19.26 Total Solids Mg/1 4890 Mg/1___ Dissolved Solids Tons Per Acre Foot Calcium, Magnesium 465 Hardness as Mg/1 Ca CO3 Non Carbonate 130 Bicarbonate Alkalinity 335 Alkalinity as Mg/1 Carbonate Alkalinity Ca CO3 Hydroxide Alkalinity_ Total Alkalinity___ 335 Soluble Sodium Percentage (SSP)___ 51 Sodium Absorption Ratio (SAR) 4.45 Specific Conductance (Micromhos at 25°C) Residual Sodium Carbonate (RSC) 8.0 C.3 5 Class for Irrigation Water____ REMARKS:

14T-586 Friendship-1 PWSID NN3500323

's of mill

EPA sample 0.970 Arsenic MCL 10 ug/L 1.500 Uranium MCL 30 ug/L 1.190 Ra226 pCi/L 2.250 Ra228 pCi/L 3.440 RaTotal MCL 5 pCi/L 7.850 Gross Alpha pCi/L 6.845 Gr. Alpha (excluding U) MCL 15 pCi/L 4.450 Beta 7.80 pH Secondary MCL 6.5 - 8.5 6.98 Field pH 2250.00 Conductivity umhos/cm 14.900 Turbidity MCL 1ntu -0.37 Corrosivity 3.78 Collection temperature celsius 325.0 T. Alkalinity (CaCO3) mg/L 830.0 Total Hardness NTUA desired maximum 500 mg/L 150.4 Calcium NTUA desired range 75-200 mg/L 376.0 Calcium (CaCO3) NTUA desired range 75-200 mg/L 110.40 Magnesium mg/L 454.0 Magnesium (CaCO3) mg/L 1810.0 Dissolved Solids Secondary MCL 500 mg/L 16.40 Chloride Secondary MCL 250 mg/L 0.388 Fluoride Primary MCL 4.0; Secondary MCL 2.0 mg/L <0.3 Phosphate mg/L Sulfate Secondary MCL 250 mg/L < 0.3 Nitrate Primary MCL 10 <0.3 Nitrite Primary MCL 1 mg/L ND Mercury Primary MCL .002 ug/L 100 Boron ug/L 240000 Calcium ug/L 2.100 Iron Secondary MCL .3 mg/L 120000 Magnesium ug/L 8000 Potassium ug/L 160000 Sodium ug/L 1100.0 Hardness as CaCO3 (calculated) mg/L ND AluminumSecondary MCL .05-.2 mg/L ND Antimony Primary MCL .006 mg/L 0.0200 Barium Primary MCL 2 mg/L ND Beryllium Primary MCL .004 mg/L ND Cadmium Primary MCL .005 mg/L ND ChromiumPrimary MCL .1mg/L 1.30 Cobalt ug/L 0.0029 Copper Primary MCL action level 1.3 mg/L ND Lead Primary MCL action level .015 mg/L 2.0000 Manganese Secondary MCL .05 mg/L 13.00 Molybdenum ug/L 13.000 NickelB ug/L 0.00110 SeleniumPrimary MCL .05 mg/L ND Silver Secondary MCL .10 mg/L ND ThalliumPrimary MCL .002 mg/L ND Vanadiumug/L

15K-303 Pipeline Canyon Well

d/g of Mine

EPA sample 0.710 Arsenic MCL-10 ug/4 0.380 Uranium MCL 30 ug/L 1.190 Ra226 pCi/L 3.730 Ra228 pCi/L 4.920 RaTotal MCL 5 pCi/L 0.895 Gross Alpha pCi/L 0.640 Gr. Alpha (excluding U) MCL 15 pCi/L 13.800 Beta 6.54 pH Secondary MCL 6.5 - 8.5 7.20 Field pH

2.0000 Zinc Secondary MCL 5 mg/L

2890.00 Conductivity umhos/cm 11.200 Turbidity MCL 1ntu -0.45 Corrosivity 3.70 Collection temperature celsius 195.0 T. Alkalinity (CaCO3) mg/L 1040.0 Total Hardness NTUA desired maximum 500 mg/L 129.6 Calcium NTUA desired range 75-200 mg/L 324.0 Calcium (CaCO3) NTUA desired range 75-200 mg/L 174.10 Magnesium mg/L 716,0 Magnesium (CaCO3) mg/L 2528.0 Dissolved Solids Secondary MCL 500 mg/L 10.50 Chloride Secondary MCL 250 mg/L 0.738 Fluoride Primary MCL 4.0; Secondary MCL 2.0 mg/L <0.3 Phosphate mg/L Sulfate Secondary MCL 250 mg/L < 0.3 Nitrate Primary MCL 10 <0.3 Nitrite Primary MCL 1 mg/L ND Mercury Primary MCL .002 ug/L 110 Boron ug/L 370000 Calcium ug/L 1.000 Iron Secondary MCL .3 mg/L 140000 Magnesium ug/L 5300 Potassium ug/L 140000 Sodium ug/L 1500.0 Hardness as CaCO3 (calculated) mg/L ND AluminumSecondary MCL .05-.2 mg/L ND Antimony Primary MCL .006 mg/L ND Beryllium Primary MCL .004 mg/L ND Beryllium Primary MCL .004 mg/L ND Cadmium Primary MCL .005 mg/L ND ChromiumPrimary MCL .1mg/L 0.77 Cobalt ug/L 0.0024 Copper Primary MCL action level 1.3 mg/L ND Lead Primary MCL action level .015 mg/L 0.3100 Manganese Secondary MCL .05 mg/L 0.84 Molybdenum ug/L 16.000 NickelB ug/L 0.00083 SeleniumPrimary MCL .05 mg/L ND Silver Secondary MCL .10 mg/L ND ThalliumPrimary MCL .002 mg/L ND Vanadiumug/L 0.0400 Zinc Secondary MCL 5 mg/L

Annie Grey HP

EPA sample 2.400 Arsenic MCL 10 ug/L 5.200 Uranium MCL 30 ug/L 0.948 Ra226 pCi/L 0.566 Ra228 pCi/L 1.514 RaTotal MCL 5 pCi/L 12.200 Gross Alpha pCi/L 8.716 Gr. Alpha (excluding U) MCL 15 pCi/L 35.400 Beta 8.57 pH Secondary MCL 6.5 - 8.5 6.90 Field pH 332.00 Conductivity umhos/cm 22.400 Turbidity MCL 1ntu -1.54 Corrosivity 6.82 Collection temperature celsius 143.0 T. Alkalinity (CaCO3) mg/L 55.2 Total Hardness NTUA desired maximum 500 mg/L 17.6 Calcium NTUA desired range 75-200 mg/L 44.0 Calcium (CaCO3) NTUA desired range 75-200 mg/L

Mill 6/10/02
8/12/76
8/12/76

To:

Roy Blickwedel

Larry Bush

From:

Jed Thompson

Date:

August 3, 2004

Job No:

1010139.011802

Subject: Groundwater Quality in the Westwater Canyon Member at the Northeast

Church Rock Mine

This memorandum was prepared in response to comments to the Northeast Church Rock (NECR) Mine Closeout Plan received from the State of New Mexico, Mining and Minerals Division (MMD) in their memo dated June 23, 2004. This memorandum presents available information about:

- Regional groundwater quality within the Westwater Canyon Member, Dakota Sandstone and Gallup Formation near the NECR Mine site (the Site),
- · Historic groundwater quality analyses of NECR mine water; and,
- Comparisons of regional and historic water quality data to the groundwater sample collected at the Site on May 17, 2004.

HISTORIC AND REGIONAL DATA

Historic and regional groundwater quality data sources used in this report are listed below.

- Water Quality Impacts of Uranium Mining and Milling Activities in the Grants Mineral Belt, New Mexico. (EPA, 1975)
- Water Quality Data for Discharges from New Mexico Uranium Mines and Mills. (NMEID, 1980)
- Hydrogeology and Water Resources of San Juan Basin, New Mexico. Hydrologic Report 6. (Stone, 1983)
- Reclamation Engineering Services, Geobydrologic Report. (Canonie, 1987)
- Five-year Review Report, United Nuclear Corporation Ground Water Operable Unit McKinley County, New Mexico. (USEPA, 1998)
- Discharge Permit (DP) 63 sampling results

The primary aquifers in the Church Rock region are the Dakota Sandstone and Westwater Canyon Member. Higher geologic units, including the Gallup Formation and the alluvium are not historic aquifers (Canonie, 1987).

The alluvium and Gallup Formation at the Northeast Church Rock mine and mill were unsaturated. Occurrences of groundwater in both units are derived from mine dewatering seepage from multiple mines (USEPA, 1998), and are hydraulically separated from the Dakota Sandstone and Westwater Canyon Member by the Upper D-Cross Tongue Member of the Mancos Shale which is a very

8/3/04 b

effective aquiclude (Canonie, 1987). Minewater that seeped into the alluvium and Gallup Formation is being regulated and addressed under the Church Rock Mill Superfund site under NRC Source Materials License SUA-1475. Minewater was discharged to Pipeline Arroyo in accordance with the Federal Clean Water Act under NPDES Permit Number NM0020401.

Groundwater flows downdip in bedrock (Canonie, 1987). The local dip and groundwater flow direction in the Gallup Formation, Dakota Sandstone and Westwater Canyon Member is to the north (Stone, 1983).

Available analytical data for Site minewater are summarized in Table 1 and listed in Attachment 1. All data are reported results from DP-63 for minewater before comingling with decant from sand backfill. These data represent the ambient groundwater quality in the Westwater Canyon Member at the Site.

	NECD BAI	TAI NEWATER QU	BLE 1	I IAAAA A BY1		4,00
	Data Points	Average ²	Max	Min	St Dev	NMED Std.
MAJOR IONS						
Alkalinity (CaCO3)	2	179.5	232	127		
Bicarbonate	1	155	155	155		
Calcium	2	20.55	31	10.1	-	
Chloride	13	7.6	14.9	5	3.0	250
Fluoride	11	0.50	0.55	0.42	0.03	1.6
Magnesium	2	2.6	4.2	1	-	
Nitrogen, Nitrate (as N)	11	1.7	13	0.1	3.7	10
Potassium	2	2.1	2.2	1.9	**	A
Sodium	5	282.9	1009.1	10	410.5	
Sulfate	13	93	272	70	55	600
PHYSICAL PROPERTIES						
TDS	13	426.9	552	370.5	61.3	1000
pH ⁴	13	7.88	8.45	6.70	0.52	6 to 9
Conductivity ⁵	5	683	950	485	171	18
METAL - DISSOLVED						
Aluminum	13	0.5	2.8	0.1	0.7	5.0
Arsenic	10	0.0102	0.0118	0.0100	.0.0006	0.1
Barium	13	0.20	0.70	0.01	0.18	1.0
Boron	10	0.20	0.30	0.01	0.09	0.75
Cadmium	11	0.003	0.010	0.001	0.004	0.01
Chromium	11	0.011	0.041	0.001	0.015	0.05
Cobalt	11	0.0146	0.0500	0.0001	0.0137	0.05
Copper	11	0.0066	0.0235	0.001	0.0075	1.0
Iron	13	0.85	4.9	0.01	1.46	1.0
Lead	11	0.01	0.05	0.001	0.020	0.05
Manganese	13	0.112	1.3	0.002	0.357	0.2
Mercury	11	0.0005	0.001	0.0004	0.0002	0.002
Molybdenum	11	0.012	0.04	0.001	0.017	1.0
Nickel	11	0.0250	0.1349	0.01	0.0376	0.2
Selenium	12	0.031	0.05	0.004	0.013	0.05
Silver	10	0.0095	0.01	0.0054	0.0015	0.05
Uranium	13	2.082	3.71	0.725	0.936	5.0
Vanadium	3	0.1	0.1	0.1	0	
Zinc	13	0.0117	0.02	0.0022	0.0052	10.0
RADIONUCLIDES - DISS	OLVED .					
Radium-226	13	97.6	490	0.6	125.1	306
Radium-228	12	2.1	5.2	1	1.8	30°

Notes:

^{1.} Summary of selected parameters from Attachment 1.

^{2.} All values in mg/L except as otherwise noted

Standards for arsenic, cadmium, barium, chromium, fluoride, mercury, nitrate, lead, selenium, silver, and uranium are human health standards

Standards for chloride, copper, sulfate, TDS, pH, Iron, and zinc are secondary domestic water supply standards Standards for aluminum, boron, cobalt, manganese, molybdenum, and nickel are for irrigation water

^{4.} pH in standard units

^{5.} Conductivity in uS/cm

Combined Radium 226 and 228 cannot exceed 30 pCi/L

There is no groundwater quality data for the Dakota Sandstone near the Site.

Average historic minewater data exceeded standards for radium 226 in the Westwater Canyon Member.

Four wells are located within a one mile radius of the Site. The locations of the wells are shown in Figure 1. The Church Rock Mill Well and NECR-1 Well are completed in the Westwater Canyon Member. The Friendship Well is completed in the Gallup Formation. NR-1 is completed in the alluvium. The Church Rock Mill Well is used as a non-potable water supply for the mine office and to supplement the water in the tailings impoundment evaporation ponds to prevent the pond liner from drying out. NECR-1, NR-1 and the Friendship wells are not currently used. Completion data for these wells are provided in Table 2. The Pipeline Canyon Well mentioned in the Closeout Plan is located approximately 1.5 miles to the northeast of the Permit Boundary.

TABLE 2 WELL COMPLETION DATA									
Well Name	Completion Date	Total Depth (ft bgs)	Top of Screen (ft bgs)	Screened Interval (ft)	Completion Unit				
Church Rock Mill	urch Rock Mill 6/6/76 · 1,600		Unk	100	Westwater Canyon				
NECR Well			Unk	Unk	Westwater Canyon				
Friendship	Unk	718	Unk	40	Gallup				
NR-1	5/28/91	105	74.6	30.4	Alluvium				

CURRENT SITE CONDITIONS

A groundwater sample was collected at the Site on May 17, 2004. The sample was collected from the well located approximately 200 feet south of shaft NECR-1 on the north end of the Site. The sample was collected in accordance with the SOP presented in the Section 27 Closeout Plan.

The sample was collected from approximately the center of the water column in the well. The depth to water was 524.68 feet below the top of casing. The total depth of the vent is 1,230 feet below the top of casing. The sample was collected at approximately 900 feet below the top of casing. The sample was collected using multiple trips with a PVC double ball bailer. The double ball bailer works the same as a single ball bailer, with the balls floating as the bailer is lowered, allowing water to enter and flow through the device freely. When the designated depth is reached, the bailer is hoisted and the balls at the top and bottom of the bailer are seated preventing the water from leaving the bottom of the bailer and preventing water above the bailer from mixing with the water in the bailer.

Sufficient trips were made with the bailer to provide the quantity of water required for NMED and UNC to analyze for the analytes included in the Closeout Plan. Results of the analytical analyses of UNC's samples are provided in Table 3 along with the average minewater quality from Table 1 and the water quality from the Church Rock Mill Well which is also completed in the Westwater Canyon Member. The laboratory report is included in Attachment 2.

Water bailed from the NECR well was black in color and smelled of hydrogen sulfide. The field pH of the sample was 10.2 standard units, and the conductivity was 1800 umhos/cm at 18.0 degrees Celsius.

As shown in Table 3, the pH and concentrations of alkalinity, sulfate, sodium, TDS, and boron are elevated above average mine water concentrations from the DP-63 monitoring. Several constituents, particularly radium and uranium, are less concentrated currently than when mining was active. pH and alkalinity values in the recent NECR sample are also greater than those seen in the Church Rock Mill Well, while sulfate and sodium concentrations (which make up the bulk of TDS) are less

concentrated. Concentrations of boron and TDS, and the pH exceed NMED standards in the NECR sample.

	SECTION 2	TAB	LE 3 R ANALYTICAL R	MINE	- 0	
Constituent	Units	Mill Well Average 6/18/02 Mine Water		NEOR Well 5/17/04 ³	NMED Std.4	
MAJOR IONS	TV-				*	
Alkalinity, Total as CaCO ₃	mg/L	-	179.5	365		
Bicarbonate	mg/L	225	155	••		
Calcium	mg/L	16.0	20.55	3.38		
Chloride	mg/L	160	7.6	21.8	250	
Fluoride	mg/L	**	· 0.50	0.7	1.6	
Magnesium	mg/L	4.2	2.6	0.58		
Nitrate + Nitrite	mg/L	<0.10	1.75	<0.10	10.0	
Potassium	mg/L	3.5	2.1	5.57		
Sodium	mg/L	644	282.9	388		
Sulfate	mg/L	1100	93	450	600	
PHYSICAL PROPERT						
TSS	mg/L			243		
TDS	mg/L	2090	426.9	1150	1000	
На	s.u.	8.34	7.88	9.90	6 to 9	
Conductivity	umhos/cm	-	683	1840		
METALS - DISSOLV	ED					
Aluminum	mg/L	< 0.10	0.5	< 0.10	5.0	
Arsenic	mg/L	< 0.001	0.0102	0.001	0.1	
Barium	mg/L	5	0.20	0.014	1.0	
Beryllium	mg/L	< 0.01	••	< 0.01		
Boron	mg/L		0.20	4.47	0.75	
Cadmium	mg/L	< 0.005	0.003	< 0.01	0.01	
Cobalt	mg/L	< 0.01	0.0146	< 0.01		
Iron	mg/L		0.85	0.140	1.0	
Lead	mg/L	< 0.05	0.01	< 0.001	0.05	
Manganese	mg/L	0.05	0.112	0.003		
Molybdenum	mg/L	< 0.10	0.012	0.056	1.0	
Nickel	mg/L	< 0.05	0.025	< 0.05		
Selenium	mg/L	< 0.001	0.031	0.002	0.05	
Uranium	mg/L	0.0700	2.082	0.134	5.0	
Vanadium	mg/L	<0.10	0.1	< 0.005		
RADIONUCLIDES - I	The second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery will be a second livery with the second livery will be a second livery with the second livery will be a second livery will be a second livery with the second livery will be a second livery will					
Gross Alpha	pCi/l	<1	-	93 ± 3.6		
Radium-226	pCi/I	0.7	97.6	2.4 ± 0.5	30 ⁸	
Radium-228	pCi/l	2.7	2.1	<1.0	30 ⁶	

Notes:

- 1. Samples collected from Church Rock Mill Well as reported in Closeout Plan
- 2. Average mine water quality as reported in Table 1
- 3. Sample collected from well located near shaft NECR-1
- 4. Standards for fluoride, nitrate, arsenic, barium, cadmium, lead, selenium, uranium, and radium are human health standards.
 - Standards for chloride, sulfate, TDS, pH, and Iron are secondary domestic water supply standards.
- Standards for aluminum, boron and molybdenum are for irrigation water.
- 5. Value represents nitrate as N
- 6. Combined Radium 226 and 228 cannot exceed 30 pCi/L

Figures 2 through 6 show the concentration trends for alkalinity, sulfate, TDS, pH and boron. The figures plot the trends over time by data source. All available data is plotted in the graphs.

Elevated values for pH and alkalinity in the recent NECR sample are likely due to the presence of sulfate reducing bacteria (SRB) in the well water, adding alkalinity to the water as they reduce sulfate to sulfide. The presence of SRB's would explain the black coloring and hydrogen sulfide smell of the water bailed from the well. This might also explain why uranium and iron concentrations are lower

today than during active mining. Uranium is less mobile in reducing environments and iron will react with the sulfide and precipitate as iron sulfide.

The likely role of sulfate-reducing conditions in the current NECR sample chemistry is further supported by the following differences between the NECR sample and the Mill Well:

- Sulfate is about a factor of two less in the NECR sample compared to the Mill Well indicating sulfate reduction,
- Bicarbonate is concentrated in the NECR sample in stoichiometric proportion to sulfate reduction according to the reaction:

$$2 CH_2O + SO_4^2 = H_2S + 2 HCO_3$$
.

There is currently no explanation for the elevated concentration of boron in the recent NECR sample. There are no data for boron from the Mill Well.

CONCLUSIONS

Groundwater quality at the Site is within NMED standards with the exception of pH, TDS and boron. Sulfate and TDS concentrations and radium activity at the site have dropped since the peak concentration recorded in 1993 possibly because of sulfate reduction. A sulfate reducing environment would explain the increase in pH and alkalinity seen in the recent NECR sample.

The source of boron in the water is unknown.

Water quality has improved since mining ceased. This is especially true for constituents of greatest concern, radium and uranium. In addition, metals concentrations meet water quality standards. While dissolved solids are greater today than during mining, they are comprised of common ions that do not pose a health risk.

While the pH of the NECR is higher than historic results, it is not recommended that it be considered for abatement. Treatment to reduce pH could produce adverse environmental consequences. Metals and radionuclides are geochemically fixed under current and anticipated conditions; to alter this equilibrium would be to run the risk of mobilizing them.

FIGURE 2 **ALKALINITY CONCENTRATION IN GROUNDWATER NEAR NECR MINE**

FIGURE 3 SULFATE CONCENTRATION IN GROUNDWATER NEAR NECR MINE

FIGURE 4
TDS CONCENTRATION IN GROUNDWATER NEAR NECR MINE

FIGURE 5
pH OF GROUNDWATER NEAR NECR MINE

FIGURE 6 BORON CONCENTRATION OF GROUNDWATER NEAR NECR MINE

Client: United Nuclear Corporation

Project: UNC Closcout Plan

Lab ID: C04050789-001

Client Sample ID: NECR-Well 1

Report Date: 06/24/04

Collection Date: 05/17/04 09:40

Date Received: 05/20/04

Matrix: Aqueous

	MCL/									
Analyses	Result	Units	Qual	RL Q	CL	Method	Analysis Date / B			
MAJOR IONS	•					•				
Alkalinity, Total as CaCO3	365	mg/L		1.0		A2320 B	05/21/04 10:36 / nlm			
Calcium	3.38	mg/L		0.20		E200.7	05/24/04 15:27 / ts			
Chloride	21.8	mg/L		1.0	•	A4500-CI B	05/21/04 09:34 / []			
Fluoride	0.7	mg/L		0.1		A4500-F C	05/24/04 09:42 / stb			
Magnesium	0.58	mg/L		0.20		E200.7	05/24/04 15:27 / ts			
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.10		E353.2	05/24/04 12:10 / Jal			
Potassium	. 5.57	mg/L		0.30		E200.7	05/24/04 15:27 / is			
Sodium	388	mg/L		0.30		E200.7	05/24/04 15:27 / ls			
Sulfate	450	mg/L	D	9.8		A4500-SO4 E	06/01/04 12:47 / dd			
PHYSICAL PROPERTIES							,			
Conductivity	1840	umhos/cm		1.0		A2510 B	05/21/04 09:55 / dd			
pH	9.90	s.u.		0.01		A4500-H B	05/21/04 11:02 / js			
Solids, Total Dissolved TDS @ 180 C	1150	mg/L		10		A2540 C	05/21/04 15:46 / js			
Solids, Total Suspended TSS @ 105 C	243 -	mg/L		1.0		E160.2	05/21/04 09:07 / Js			
METALS - DISSOLVED		•								
Atuminum	ND	mg/L		0.1		E200.8	05/25/04 16:31 / eli-b			
Arsenic	0.001	mg/L		0.001		E200.8	05/25/04 16:31 / eli-b			
Barium	0.014	mg/L		0.003		E200.8	06/18/04 01:48 / bws			
Beryllium	ND	mg/L		0.01		E200.8	05/25/04 16:31 / ell-b			
Boron	4.47	mg/L		0.0010		E200.7	05/24/04 15:27 / ts			
Cadmium	ND	mg/L		0.01		E200.8	05/25/04 16:31 / eli-b			
Cobalt	ND	mg/L		0.01		E200.8	05/25/04 16:31 / eli-b			
ron	0.140	mg/L		0.010		E200.7	05/24/04 15:27 / ts			
ead	ND	mg/L		0.001		E200.8	06/18/04 01:48 / bws			
fanganese	0.003	mg/L		0.001		E200.8	00/10/04 01:40 / bws			
folybdenum	0.056	mg/L		0.001		E200.8	06/18/04 01:48 / bws			
lickel	ND	mg/L		0.05		E200.8	05/25/04 16:31 / eli-b			
elenium	0.002	mg/L		0.001		E200.8	05/25/04 16:31 / ell-b			
Iranium	0.134	mg/L		0.0001		E200.8	06/18/04 01:48 / bws			
anadium	ND	mg/L		0.005		E200.8	06/18/04 01:48 / bws			
ADIONUCLIDES - DISSOLVED	•									
ross Alpha	93.0	pCi/L		1.0		E900.0	05/24/04 09:00 / rs			
ross Alpha precision (±)	3.6	PCI/L				E900.0	05/24/04 09:00 / rs			
adium 226	2.4	pCI/L		0.2	- 1	E903.0	05/25/04 12:50 / df			
adium 226 precision (±)	0.5	PCI/L			1	E903.0	05/25/04 12:50 / df			
adium 228	ND	pCl/L		1.0	1	E904.0	05/28/04 09:24 / p]			

Report Definitions: RL - Analyte reporting limit.

ns: A

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client: United Nuclear Corporation

Project: UNC Closeout Plan Lab ID: C04050789-001

Client Sample ID: NECR-Well 1

Report Date: 06/24/04

Collection Date: 05/17/04 09:40

Date Received: 05/20/04

Matrix: Aqueous

	MCL/									
Analyses	Result	Units	Qual	RL QCL	Method	Analysis Date / By				
DATA QUALITY										
A/C Balance (± 5)	-0.170	%			Calculation	06/11/04 14:47 / tae				
Anions	17.3	meq/L			Calculation	06/11/04 14:47 / tae				
Cations	17.3	meq/L			Calculation	06/11/04 14:47 / lae				
Solids, Total Dissolved Calculated	1090	mg/L			Calculation	00/11/04 14,47 / lau				
TDS Balance (0.80 - 1.20)	1.06	dec. %			Calculation	06/11/04 14:47 / lae				

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Client: United Nuclear Corporation
Project: UNC Closeout Plan

Lab ID: C04050789-002

Client Sample ID: SECT27-Vent 3

Report Date: 06/24/04

Collection Date: 05/17/04 14:30

Date Received: 05/20/04

Matrix: Aqueous

•	MCL							
Analyses	Result	Units	Qual	RL QCL	Method	Analysis Date / By		
MAJOR IONS					•	ve,		
Alkalinity, Total as CaCO3	308	mg/L		1.0	A2320 B	05/21/04 10:47 / nlm		
Calcium	339	mg/L	D	0.57	E200.7	05/24/04 15:35 / 1s		
Chloride	23.2	mg/L		1.0	A4500-CI B	05/21/04 09:35 / ji		
Fluoride	0.4	mg/L		0.1	A4500-F €	05/24/04 00:44 / 6/16		
Magnesium	41.8	mg/L		0.20	E200.7	05/24/04 15:30 / ts		
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.10	E353.2	05/24/04 12:20 / jal		
Potassium	13.4	mg/L		0.30	E200.7	05/24/04 15:30 / ts		
Sodium	492	mg/L		0.30	E200.7	05/24/04 15:30 / Is		
Sulfate	1780	mg/L	D	30	A4500-SO4 E	06/01/04 12:50 / dd		
PHYSICAL PROPERTIES								
Conductivity	3520	umhos/cm		1.0	A2510 B	05/21/04 09:55 / dd		
oH .	7.10	s.u.		0.01	A4500-H B	05/21/04 11:03 / Js		
Solids, Total Dissolved TDS @ 180 C	2810	mg/L		10	A2540 C	05/21/04 15:46 / Js		
Solids, Total Suspended TSS @ 105 C	100	mg/L		1.0	E160.2	05/21/04 09:07 / Js		
METALS - DISSOLVED								
Aluminum	ND	mg/L		0.1	E200.8	05/25/04 16:43 / eli-b		
Arsenic	0.011	mg/L		0.001	E200.8	05/25/04 16:43 / eli-b		
Barium	0.017	mg/L		0.003	E200.8	06/18/04 01:41 / bws		
Beryllium	ND	mg/L		0.01	E200.8	05/25/04 16:43 / eli-b		
Boron	0.379	mg/L		0.0010	E200.7	05/24/04 15:30 / ts		
admium	ND	mg/L		0.01	E200.8	05/25/04 16:43 / elf-b		
cobalt	ND	mg/L		0.01	E200.8	05/25/04 16:43 / ell-b		
ron	18.8	mg/L		0.010	E200.7	05/24/04 15:30 / ts		
ead	ND	mg/L		0.001	E200.8	06/18/04 01:41 / bws		
langanes e	2.6	mg/L		0.01	E200.8	05/27/04 23:26 / eli-b		
lolybdenum	0.7	mg/L		0.1	E200.8	05/27/04 23:26 / ell-b		
ickel	ND .	mg/L		0.05	E200.8	05/25/04 16:43 / ell-b		
elenium	0.003	mg/L		0.001	E200.8	05/25/04 16:43 / eli-b		
ranium	7.84	mg/L		0.0001	E200.B	06/18/04 01:41 / bws		
anadium	ND	mg/L		0.005	E200.8	06/18/04 01:41 / bws		
ADIONUCLIDES - DISSOLVED								
ross Alpha	5660	pCi/L		1.0	E900.0	05/24/04 09:00 / rs		
ross Alpha precision (±)	27,8	pCi/L			E900.0	05/24/04 09:00 / rs		
adium 226	24.2	pCI/L		0.2	E903.0	05/25/04 12:50 / df		
edium 226 precision (±)	1.5	pCVL			E903.0	05/25/04 12:50 / df		
adium 228	ND	pCVL.		1.0	E904.0	05/28/04 09:24 / p]		

Report

RL - Analyte reporting limit.

Definitions:

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client: United Nuclear Corporation

Project: UNC Closeout Plan
Lab ID: C04050789-002

Client Sample ID: SECT27-Vent 3

Report Date: 06/24/04

Collection Date: 05/17/04 14:30

Date Received: 05/20/04

Matrix: Aqueous

		•				
Analyses	Result	Units	, Qual	MCL/ RL QCL	Method	Analysis Date / By
DATA QUALITY						
A/C Balance (± 5)	-0.944	%			Calculation	06/11/04 14:48 / tae
Anions	43.8	meq/L			Calculation	06/11/04 14:48 / tae
Cations	43.0	meq/L			Calculation	06/11/04 14:48 / tae
Solids, Total Dissolved Calculated	2090	mg/L			Calculation	06/11/04 14:48 / toe
TDS Balance (0.80 - 1.20)	0.970	dec. %			Calculation	06/11/04 14:48 / tae

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

UNC Mining and Milling	ChurchRoo	k Operations
GroundWater Monitoring		
Well ID;		NECR-Well 1
Collection Date:	······································	5/17/2004 9:40
Receive Date:		5/20/2004 10:00
Report Date:		6/18/2004 14:30
SAME AND A STATE OF THE SAME A	el ministra	
Alkalinity, Total as CaCO3	mg/L	; 365
Calcium	mg/L	. 3.38
Chloride	mg/L	: 21.8
Fluoride	mg/L	. 0.7
Magnesium	mg/L	0.58
Nitrogen, Nitrate+Nitrite as N	mg/L	ND(0.10)
Polassium	my/L	. 5.57 . :
Sodium	mg/L	388
Sulfate	mg/L	450
Conductivity	umhos/cm	1840
pH	s.u.	9.90
Solids, Total Dissolved TDS @ 180 C	mg/L	1150 ·
Solids, Total Suspended TSS @ 105 C	mo/L	243
Aluminum	mg/L	ND(0.1)
Arsenic	mg/L	0.001
Barlum	mg/L	0.014
Beryllium	mg/L	ND(0.01)
Baron	mg/L	4.47
Cadmium	mg/L	ND(0.01)
Cobalt	mg/L	ND(0.01)
ron	mg/L	0.140
ead	mg/L	ND(0.001)
langanes e	mg/L	0.003
łolybdenum	mg/L	0.056
licke1	mg/L	ND(0.05)
elenium	mg/L	0.002
ranium	mg/L	0.134
anadlum	mg/L	ND(0.005)
ross Alpha	PCI/L	93.0
ross Alpha precision (±)	pCVL	3.6
adium 226	pCVL	2.4
adium 226 precision (±)	pCI/L	0.5
adium 228	·	ND(1.0)
adium 228 precision (±)	pCI/L	0.470
C Balance (± 5)		-0.170
nons alions		17.3 17.3
nions olds, Total Dissolved Calculated		1090
OS Balance (0.80 - 1.20)		1.06
10 Daletted (0.00 - (120)		1.40

^{**}Note: The data presented on this form is intended for summary purposes only. Laboratory approved data is contained within the quarterly reports.

tae; r.\clients2004\timo_mining\unc_gallup-2nd2004_final.xds

UNC Mining and Milling		
GroundWater Monitoring	Summary: C	
Well ID:		SECT27-Vent 3 5/17/2004 14:30
Collection Date:		
Receive Date:		5/20/2004 10:00
Report Date:	**************************************	6/18/2004 14:30
Alkalinity, Total as CaCO3	mg/L	308 (308
Calcium	mg/L	339
Chloride	mg/L	23.2
Fluoride	mg/L	0.4
Magneslum Nitrogen, Nitrate+Nitrite as N	mg/L	41.8 ND(0.45)
Nitrogen, Nitrate+Nitrite as N	mg/L	ND(0.10)
	mg/L	13.4
Sodium	mg/L	492
Sulfate	mg/L	1780
Conductivity	umhos/cm	
Н	\$.U.	7.10
Solids, Total Dissolved TDS @ 180 C	mg/L	2810
Colldo, Total Suspended TSS @ 105 C	mg/L	100
Numinum	mg/L	ND(0.1)
Arsenic	mg/L	0.011
Barlum	mg/L	0.017
Beryllium	mg/L	ND(0.01)
loron	mg/L	0.017
admium	mg/L	ND(0.01)
obalt	mg/L	ND(0.01)
on	mg/L	18.8
ead	mg/L	ND(0.001)
langanese .	mg/L	2,6
lolybdenum	mg/L	0.7
ickel	mg/L	ND(0.5)
elenium	mg/L	0.003
ranlum	mg/L	7.84
anadlum	mg/L	ND(0.005)
ross Alpha	pCVL	5660
ross Alpha precision (±)	pCi/L	27.8
adium 226	pCi/L	24.2
adium 228 precision (±)	pCl/L	1.5
	рCVL	ND(1.0)
idium 228 precision (±)	pCVL	•
C Balance (± 5)		-0.944
ions		43.8
ilions		43.0
ilds, Total Dissolved Calculated		2890
OS Balance (0.80 - 1.20)		0.970

^{**}Note: The data presented on this form is intended for summary purposes only. Laboratory approved data is contained within the quarterly reports.

tae: r/clients2004/unc_mining/unc_gallop-2nd2004_final.xis

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Report Date: 06/18/04 ... Work Order: C04050789

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B						A	nafytical F	Run: ORION_	040521A
Sample ID: CCV1_040521_1	Continuing Ca	libration Ve	rification Standa	rd				05/21	/04 09:32
Alkalinity, Total as CaCO3	4820	mg/L	1.0	96.3	90	110 -		05/21	
Method: A2320 B	· · · · · · · · · · · · · · · · · · ·						Bat	ch: 040521_	I_ALK-W
Sample ID: MBLK1_040521_1	Method Blank							05/21	/04 07:46
Alkalinity, Total as CoCO3	ND	mg/L	1.0						
Sample ID: C04050718-004DMS	Matrix Spike							05/21/	04 08:21
Alkalinity, Total as CaCO3	349	mg/L	1.0	95.7	90	110			
Sample ID: C04050718-004DMSD	Matrix Spike D	uplicate						05/21/	04 08:31
Alkalinity, Total as CaCO3	349	mg/L	1.0	96	90	110	0.1	10	
Sample ID: C04050790-002BMS	Matrix Spike							05/21/	04 11:18
Alkalinity, Total as CaCO3	266	mg/L	1.0	94.2	90	110			
Sample ID: C04050790-002BMSD	Matrix Spike D	uplicate				·		05/21/	04 11:20
Alkalinity, Total as CaCO3	265	mg/L	1.0	93.6	90	110	0.3	10	
Sample ID: LCS1_040521_1	Laboratory Con	itrof Spike						05/21/	04 11:47
Alkalinity, Total as CaCO3	4900	mg/L	1.0	98.1	90	110			
Method: A2510 B						Bato	h: 040521	A-COND-PF	OBE-W
Sample ID: LCS1_040521A	Laboratory Con	troi Spike			•			05/21/0	4 09:55
Conductivity	1450 u	mhos/cm	1.0	103	90	110		`	
Sample ID: MBLK1_040521A	Method Blank							05/21/0	4 09:55
Conductivity .	ND עז	mhos/cm	1.0						
Sample ID: C04050789-002BDUP	Sample Duplica	te						05/21/0	4 09:55
Conductivity	3510 ur	nhos/cm	1.0		•		0.3	10	
Sample ID: LCS2_040521A	Laboratory Cont	tro! Spike			•			05/21/0	4 09:55
Conductivity	1460 un	nhos/cm	1.0	103	90	110			÷

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation

Report Date: 06/18/04 Work Order: C04050789

Project: UNC Closeout Plan

Result Units RL %REC Low Limit High Limit RPD RPDLImit Qual Analyte Batch: 040521A-SLDS-TDS-W Mathod: A2540 C Laboratory Control Spike Sample ID: LCS1_040521A 05/21/04 15:46 Solids, Total Dissolved TDS @ 180 C 996 mg/L 10 99.6 90 110 Sample ID: MBLK1_040521A Method Blank 05/21/04 15:46 Solids, Total Dissolved TDS @ 180 C ND mg/L 10 Sample ID: C04050814-003BMS Matrix Spike 05/21/04 15:48 Solids, Total Dissolved TDS @ 180 C 3280 mg/L 10 99 90 110 05/21/04 15:48 Sample ID: C04050814-003BMSD Matrix Spike Duplicate Solids, Total Dissolved TDS @ 180 C 3270 98.3 90 mg/L 10 110 0.5 10 Matrix Spike Sample ID: C04050814-004BMS 05/21/04 15:49 Solids, Total Dissolved TDS @ 180 C 3080 mg/L 10 99.6 20 110 Sample ID: C04050814-004BMSD Matrix Spike Duplicate 05/21/04 15:49 3660 mg/L Solids, Total Dissolved TDS @ 180 C 10 98.5 90 110 0.7 10 Laboratory Control Spike Sample ID: LCS2_040521A 05/21/04 15:50 Solids, Total Dissolved TDS @ 180 C 1000 mg/L 10 100 90 110 Method: A4500-CI B Batch: 040521A-CL-TTR-W Method Blank Sample ID: MBLK9-040521A 05/21/04 09:20 Chloride ND mg/L 1.0 Matrix Spike Sample ID: C04050756-001BMS 05/21/04 09:38 5700 1.0 100 Chloride mg/L 90 110 Sample ID: C04050756-001BMSD Matrix Spike Duplicate 05/21/04 09:39 99.6 5680 mg/L Chloride 1.0 90 110 0.2 10 Laboratory Control Spike Sample ID: LC\$35-040521A 05/21/04 09:41 3510 mg/L 1.0 99.1 90 110 Chloride Batch: 040524_1_F-ISE-W A4500-F C Method: Method Blank 05/24/04 09:14 Sample ID: MBLK1_040524_1 Fluoride ND mg/L 0.10 Sample ID: C04050714-001IMS Matrix Spike 05/24/04 09:21 0.10 90 Fluoride 1.80 mg/L 110 Sample ID: C04050714-001IMSD Matrix Spike Duplicate 05/24/04 09:24 1.80 mg/L 0.10 90 110 10 Fluoride

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation
Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

Analyle		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit	Qual
Method:	A4600-H B						Ana	lytical Run:	ORION-PH	040521A
Sample ID: pH	(CCV)=ph7	Continuing Ca 6.97	alibration V s.u.	erification Standa 0.010	rd 99.6	90	110		05 <i>[</i> 21	/04 10:56
Method:	A4500-H B		"	·				В	atch: pH05-2	1-041108
Sample ID: pH	C04050775-001A(DUP)	Sample Dupli 8.15	cate o.u.	0.010				0.5	05/21 10	/04 11:04
Method:	A4500-SO4 E		·					Batch: 040	601_1_SO4-	TURB-W
Sample ID: Sulfate	MBLK-1_040601	Method Blank ND	mg/L	1.0					06/01	/04 12:26
Sample ID: Sulfate	C04050789-001BMS	Matrix Spike 1410	mg/L	30	100	90	110		06/01/	/04 13:09
Sample ID: Suifate	C04050789-001BMSD	Matrix Spike D 1400	uplicate mg/L	30	99.1	90	110	0.7	06/01/ 10	04 13:10
Sample ID: Sulfate	C04050874-005DMS	Matrix Spike 110	mg/L	1.5	96.8	90	110		06/01/	04 13:25
Sample ID: Sulfate	C04050874-005DMSD	Matrix Spike D 111	uplicate mg/L	1.5	97.7	90	110	0.4	06/01/ 10	04 13:26
Sample ID: Sulfate	LCS-1_040601	Laboratory Cor 41.7	ntrol Spike mg/L	1.0	104	90	110		06/01/	04 13:27
Method: E	160.2							Balch: 04	0521A-SLDS	TSS-W
	MBLK1_040521A Suspended TSS @ 105 C	Method Blank ND	mg/L	1.0					05/21/0	04 09:07
•	C04050789-002BDUP Suspended TSS @ 105 C	Sample Duplica 122	nte mg/L	1.0				20	05/21/0 25	4 09:08
Method: E	200.7					• •	Αı	nalytical Ru	n: ICP1-C_0	40524A
Sample ID: 0 Boron iron . Calcium Magnesium Potassium Sodlum	CONT 120103-96	Continuing Calil 1.01 1.05 53.2 53.1 51.5 53.2	bration Ver mg/L mg/L mg/L mg/L mg/L mg/L	ification Standard 0.10 0.030 1.0 1.0 1.0	101 105 106 106 103 108	89.5 89.5 89.5 89.5 89.5	110.5 110.5 110.5 110.5 110.5 110.5		05/24/0	94 14:23

Qualifiers:

RL - Analyte reporting limit.

Uranium

Barium

Uranium

Vanadium

Load

Vanadium

· QA/QC Summary Report

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Sample ID: C04050789-001DMSD

Report Date: 06/18/04 Work Order: C04050789

06/18/04 02:02

20

20

20

20

Analyte	Result	Units	RL.	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8						Analy	tical Run	ICPMS1-C	040617B
Sample ID: CCV	Continuing Ca	alibration Veri	fication Standa	ırd		•		06/18	/04 01:06
Barlum	0.0638	mg/L	0.0010	106	80	110			
Lead .	0.0619	mg/L	0.0010	103	90	110			
Uranium ·	0.0615	mg/L	0.0010	102	90	110		•	
Vanadium	0.0619	mg/L	0.0010	103	90	110			
Method: E200.8								Batch	: R36342
Sample ID: C04050789-001DMS	Matrix Spike							06/18	04 01:55
Barlum	0.0632	mg/L	0.0010	97.3	70	130			
Lead	0.0502	ma/L	0.0010	100	70	130			,

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

105

97.5

97.5

99.6

92.2

96.4

70

70

70

70

70

70

130

130

130

130

130

130

0.1

0.5

3.4

1.1

mg/L

mg/L

mg/L

mg/L

mg/L .

mg/L

0.186

Matrix Spike Duplicate

0.0494

0.0632

0.0500

0.180

0.0489

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation
Project: UNC Closeout Plan

Report Date: 05/18/04 Work Order: C04050789

Sample ID: CCV-25 Continuing Calibration Verification Standard	Analytical Run: TECHNICON_04 05/24/04 90 110 05/24/04 90 110	4 11:55								
Sample ID: CCV-16 Continuing Calibration Verification Standard Nitrogen, Nitrate+Nitrite as N 0.930 mg/L 0.10 93 Sample ID: CCV-25 Continuing Calibration Verification Standard	90 110 05/24/04 90 110	4 11:55								
Nitrogen, Nitrate+Nitrite as N 0.930 mg/L 0.10 93 Sample ID: CCV-25 Continuing Calibration Verification Standard	90 110 . 05/24/04 90 110									
Sample ID: CCV-25 Continuing Calibration Verification Standard	90 110	\$ 12:18								
	90 110	\$ 12:18								
Nitrogen, Nitrate+Nitrite as N 1.07 mg/L 0.10 107										
	Batch: Λ2004-05-24-1 N									
Method: E353.2 Batch: A2004-05-24_1_NO3_01										
Sample ID: MBLK-1 Method Blank	05/24/04	09:43								
Nitrogen, Nitrate+Nitrite as N ND mg/L 0.10	•									
Sample ID: C04050727-001BMS Matrix Spike										
	90 110 -	10.01								
and the second of the second o										
Sample ID: C04050727-001BMSD Matrix Spike Duplicate Nitrogen, Nitrate+Nitrite as N 2.01 mg/L 0.10 101 5	90 110 0.5 10	10:03								
Nittogen, Nitate+Nitate as in 2.01 ing/2 0.10 101	30 110 0.5 10									
Sample ID: MBLK-17 Method Dlank	05/24/04	11:58								
Nitrogen, Nitrate+Nitrite as N ND mg/L 0.10										
Sample ID: C04050789-001CMS Matrix Spike	05/24/04	12:13								
Nitrogen, Nitrate+Nitrite as N 2.02 mg/L 0.10 101 9	90 110									
Sample ID: C04050789-001CMSD Matrix Spike Duplicate	. 05/24/04	12:15								
warming the second seco	90 110 1.0 10	12.10								
Sample ID: MBLK-32 Method Blank Nitrogen, Nitrate+Nitrite as N ND mg/L 0.10	05/24/04	12:35								
Nitrogen, Nitrate+Nitrite as N ND mg/L 0.10										
Sample ID: C04050845-005CMS Matrix Spike	· 05/24/04	12:53								
Nitrogen, Nitrate+Nitrite as N 2.29 mg/L 0.10 95.5 9	90 110									
Sample ID: C04050845-005CMSD Matrix Spike Duplicate	05/24/04	12-58								
- Inprove	90 110 0.9 10									
Sample ID: MBLK-48 Method Blank	05/24/04	13:18								
Nitrogen, Nitrate+Nitrite as N ND mg/L 0.10	:									
Sample ID: C04050845-014CMS Matrix Spike	05/24/04 1	13:57								
Nitrogen, Nitrate+Nitrite as N 14.5 mg/L 0.15 90.9 90	90 110									
Sample ID: C04050845-014CMSD Matrix Spike Duplicate	05/24/04 1	13-50								
Nitrogen, Nitrate+Nitrite as N 14.5 mg/L 0.15 90.9 90										
•										

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation
Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit Qual
Method: E900.0							<u> </u>	Batch: R3558(
Sample ID: C04050732-001A	Matrix Spike							05/24/04 09:00
Gross Alpha	543	pCl/L	1.0	106	70	130		
Sample ID: C04050732-001A	Matrix Spike	Duplicate	•					05/24/04 09:00
Gross Alpha	562	pC <i>V</i> L	1.0	110	70	130	3.3	30
Sample ID: MB-R35500	Method Blank	c						05/24/04 09:00
Gross Alpha	ND	PCVL	1.0					
Sample ID: LCS-R35580	Laboratory Co	ontroi Spike						05/24/04 09:00
Gross Alpha	507	· pCI/L	1.0	99,5	70	130		
Sample ID: C04050910-001A	Sample Duplic	cate					•	05/24/04 09:00
Gross Alpha	ND	PCIL	1.0		70	.130	0	30
Sample ID: C04040049-001B	Sample Duplic	ale				•		05/24/04 09:00
Gross Alpha	ND	pÇi/L	1,0				0	30
Method: E903.0								Batch: RA226-0589
Sample (D: C04050805-001AMS	Matrix Spike							05/25/04 12:50
Radium 226	24.8	pCI/L	0.20	92.7	70	130	•	•
Sample ID: C04050805-001AMSD	Matrix Spike D	uplicate						05/25/04 12:50
Radium 226	25.4	pCI/L	0.20	94.8	70	130	2.1	30
Sample ID: MB-RA226-0589	Method Blank							05/25/04 12:50
Radium 226	мD	pCVL	0.20			•		
Sample ID: LCS-RA226-0589	Laboratory Con	itrol Spike						05/25/04 12:50
Radium 226	14.9	PCI/L	0.20	98.1	70	130		,
Method: E904.0								Batch: 04228-602A
Sample ID: C04050891-001A	Matrix Spike	•			,		•	05/28/04 09:24
Radium 228	25	pCVL	1.0	107	70	130		
Sample ID: C04050891-001A	Matrix Spike Du	plicate						05/28/04 09:24
Radium 228	22	pCi/L	1.0	96.8	70	130	9.8	30
						•		and the second s

Qualifiers:

RL - Analyte reporting limit.

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888 235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com ะหูงพพ.ยุคยาญูเล่ม com : อะเจ๋ะเจ๋ะเธ๋าอาวุ: เอ๋งรั เอ๋รเจ๋า

ENERGY LABORATORIES, INC. • 2333 Sali Creek Highway (82601) • P.O. Box 3253 • Casper, WY 62602 Toll Free 888.235.0515 • 307.235.0515 • Fax S07.234.1639 • casper@energytab.com • www.energytab.com

LABOILATORIES Energy Laboratories Inc.

2393 Salt Creek Highway PO Box 3258 Casper, WY \$2602Quotation Date: 29-Apr-04 Submitted By: Tracy DeWitt

TEL: (307) 235-0515 FAX: (307) 234-1639

Aqueous

Vđacanz

Quotation for Analytical Services # C1212

Quote ID: C 1212 Montgomery Watson Harza Company: Project: Genusdanier Sumpling Jed Thompson Centiast. 1475 Pine Grove Road TAT: 15 Working Days Address: Ste 109 PO Box 774015 QC Level: Steamboat Springs, CO 80477 SID (970) 279-9048 Expires: (970) 879-6260 21-Apr-05 Phone: Test Remarks # Samp Unit Price Test Total Test Namo Matrix A2320 B \$10.00 00.012 Aureous Alkalinity . \$10.00 \$10,00 A4500-C1B Chloride. Aquenus A2510 B \$10.00 \$10.00 Conductivity Aqueous A4500-F C \$10.00 \$10.00 Fluoride E900.0 \$50.00 \$50,00 Gross Alpha Aqueous \$50.04 \$50,00 E200.7 Ca,Fe,Mg,K,Na Metals by ICP, Dissolved Aqueous Burun only (analyzed in ELI-\$10.00 510.00 Metals by KIPACPMS, Total-E200.7_8 Ληυεουέ Billings) £200.8 Ba.V.Unat.Pb \$40.00 \$40.00 Metals by ICP-M5. Dissolved. Aqueous \$15.00 Nitrogen, Nitrate + Nitrite F353.2 \$15.00 Aqueous \$10.00 A4500-11 D \$10.00 011. Aquevus \$75.00 \$75.00 E903.0 Radium 226, Dissolved Aqueuus \$75 00 \$75.00 Radium 228, Dissolved E904.0 Aquenus \$10.00 \$10.00 Solids, Total Dissolved A2540 C Agricous \$10.00 510.00 E160.2 Solids, Total Suspended

A4500-SO4 E

To assure that the quoted analysis and pricing specifications are provided, please include the Quote ID number referenced above on the Chain of Custody or sample submittal documents .

Subcontracting of sample analyses to an outside laboratory may be required. If so, Energy Laboratories will utilize its branch laboratories or qualified commer laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

\$10.00

\$10.60

January 2004

Appendix B * Groundwater Sampling SOP * Page 3

the Project Manager and the laboratory's project manager, will decide whether or not to analyze the samples.

3.4 FIELD DOCUMENTATION

All aspects of sample collection and handling as well as visual observations will be documented in the field logbooks. Field logbooks will note the following information:

- Site location
- Sampler name(s)
- Date and time of sample collection
- Sample identification number(s)
- Field water quality measurements (pH, conductivity, temperature)
- Sample handling (including preservation, as appropriate)
- How sample collected (e.g. grab, composite, bailer)
- Number and type of any QA/QC or split samples collected
- Field observations, including any unusual conditions or activities in the area

4.0 WATER QUALITY PARAMETERS

Water quality parameters to be analyzed for the collected sample are presented in Table 4.1 below.

TABLE 4.1 WATER QUALITY MONITORING PARAMETERS										
Parameter	Fraction	Method	Detection	UNITS						
			Limit	<u> </u>						
	GENERAL C	CHEMISTRY AND ANION	IS							
pH		EPA 150.1	0.1	mg/l						
Electrical Conductivity	·	EPA 120.1	1	umhos/cm						
Total Dissolved Solids		EPA 160.1	10	. mg/l						
Total Suspended Solids		EPA 160.2	5	mg/l						
Alkalinity		EPA 310.1	2.0	mg/l (as						
				CaCO ₃ }						
Chloride	<u> </u>	EPA 325.2	1.0	mg/l						
Fluoride		EPA 340.2	0.1	mg/l						
Nitrate (NO3 + NO2 as N)		EPA 353.2	0.02	mg/l						
Sulfate	<u> </u>	EPA 375.3	10.0	mg/i						
	CATIONS	AND TRACE METALS								
Barium	Dissolved	EPA 200.7, ICP	0.00363	mg/l						
Boron	Dissolved	EPA 200.7, ICP	۰0.001 و۰۸	mg/l						
Calcium	Dissolved	EPA 200.7, ICP	0.27	mg/l						
fron	Dissolved	EPA 200.7, ICP	0.016.\	mg/l						
Lead	Dissolved	EPA 200.7, ICP	0.04 0.\	mg/l						
Magnesium	Dissolved	EPA 200.7, ICP	0.2 ✓	mg/l						
Potassium	Dissolved	EPA 200.7, ICP	0.30 ✓	mg/l						
Sodium	Dissolved	EPA 200.7, ICP	0.30 /	mg/l						
Uranium	Dissolved	EPA 200.8, ICP-MS	0.0001	mg/l						
Vanadium	Dissolved	EPA 200.7, ICP	0.005A)	mg/l						
	R/	ADIONUCLIDES								
Radium 226	Dissolved	EPA 903.0	1	pCi/l						
Radium 228	Dissolved	EPA 904.0	1	pCi/l						
Gross Alpha	Dissolved	EPA 900.0	. 1	pCi/l						

J		
•		
٠		
•		
:		
•		
ļ		
İ		
•		
]		
į		
-		
:		
-		
•		
•		

Signed

Sample Disposal:

Return to client:

npany Name:	Project Name, I	7\VS #	, Pen	nt#,	Etc.:	roject Name, PVS#, Permt#, Etc.:										
UNE	UNC	دي	o sec	سسيمنة	- PLAN											
port Mail Address: MWH ITTU! YED THOMPSEN PO BOX 77401B HTS PENGGEOUG NO, STE 107 STEAMBOAT SPECIAS, CO BUY 77	Contact Name JED TH (970) 87 JAMES.T	Pho 0MP 9-6	ne, F: 50 ~ 26 %	ax, E	ma#:			12.0		l	S	-	er Name If other than Cont AMC	r Name If other than Contact:		
roice Address: UC O BCK 3077 ALLVI, NM 87305-3077	Invoice Conta DOCKEN (505)7:	ct & P BRC	houa	#:							F	urch	ase Order#:	ELI Quote		
eport Required For: POTW/WWTP DW DW DOTHER DECIAL Report Formats - ELI must be notified prior to ample submittal for the following: ELAC ALAD Level IV DOTHER DD/EDT Format SAMPLE IDENTIFICATION Collection (Name, Location, Interval, etc.) Date Time NECR - WELL 1 1748/94 4949 SECT 27 - VENT 3 1748/94 1439	Number of Containors L L M Sample Type: AW S V B O	A	YAI	-YS	515	F			ST			Normal Tumarround (TAT) 60	Notify ELI prior to R ample submittal for ac charges and sched	iditional	Receipt-Temp OC Cooler D(s) Custody Seal(Y, N) Intact Intact V:N Signature Match Lab ID NO LB COOLER NO LB COO	
															LABOR	
Custody Relinquished by:	18 MA	Time: 104 Time:	<u> </u>	سي	Ship Ship	ped by	vps	_6	יוק,	≥			Received by:	<u> </u>	Date/Time: Date/Time:	

of fractions In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Sample Type:

Lab Disposal:

Visit our web site at www.energylab.com for additional information, downloadable fee schedule, forms, & links.

Energy Laboratories Inc.

Sample Receipt Checklist

Cilent Name: United Nuclear Corporation				Date a	nd Time Received:	5/20	1/2004 1	00:00:00	
Work Order Number C04050789	\bigcirc			Receiv	red by: sp				
Checklist completed by:	Leave	5/20	ort	Review	red by hittate		-	Date	,
	Carrier na	me: <u>UPS</u>			ė				
Shipping container/cooler in good condition?	•	Yes 6	2	No 🗀	Not Present				
Custody seals intact on shipping container/coo	oler?	Yes 5	2	No 🗆	Not Present				
Custody seals intact on sample bottles?	•	Yes [J	No 🗆	Not Present	✓			
Chain of custody present?		Yes 6	2	No 🗆				•	
Chain of custody signed when relinquished and	d received?	Yes 5	2	№ 🗆					
Chain of custody agrees with sample labels?		Yes 5	2	№ 🗆					
Samples in proper container/bottle?		Yes &	3	ио 🗆					
Sample containers intact?	•	Yes 🖸	2	No 🗆	_				
Sufficient sample volume for indicated test?		Yes &	2	No 🗆					
All samples received within holding time?		Yes 🛭	d 1	No 🗆					
Container/Temp Blank temperature in complian	ice?	Yes 🗆] 1	No 🗹	18 °C				
Water • VOA vials have zero headspace?		Yes 🗆]	No 🗆	No VOA viais subm	itted	\mathbf{Z}		
Water - pH acceptable upon receipt?		Yes 🗹	j	to 🗆	Not Applicable				
	Adjusted?		Check	ed by		•			٠,
Any No and/or NA (not applicable) response mu	ust be detailed in the	comments	section bel	ow. 		-	. — —		
Cilent contacted:	Date contacted:			F	Person contacted				
Contacted by:	Regarding:								
Comments: Split and preserved for total metals.									• .
			•						
Corrective Action									

ANALYTICAL SUMMARY REPORT

Juno 24, 2004

Max Chischilly
United Nuclear Corporation
1475 Pine Grove Road
Ste 109
PO Box 774018
Gallup, NM 87305

Workorder No.: C04050789

Quote ID: C1247 - Groundwater Sampling

Energy Laboratories Inc. received the following 2 samples from United Nuclear Corporation on 5/20/2004 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C04050789-001	NECR-Well I	05/17/04 9:40	05/20/04	Aqueous	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Total Alkalinity
					QA Calculations .
*	•		:		Chloride
					Conductivity
		•			Fluoride
					Metals by ICP, Dissolved
				•	Metals by ICP-MS, Dissolved
		•			Nitrogen, Nitrate + Nitrite pH
					Gross Alpha
•					Radium 226, Dissolved
•					Radium 228, Dissolved
		•			Solids, Total Dissolved
		•			Solids, Total Suspended
					Sulfate
C04050789-002	SECT27-Vent 3	05/17/04 14:30	05/20/04	\queous	Same As Above

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative or Report.

If you have any questions regarding these tests results, please call.

Report Approved By:

Date: 24-Jun-04

CLIENT:

United Nuclear Corporation

Project:

UNC Closeout Plan

Sample Delivery Group: C04050789

CASE NARRATIVE

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

COMMENTS

Additional metals added per client's request 6/23/04.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT

eli-cs - Energy Laboratories, Inc. - College Station, TX

eli-g - Energy Laboratories, Inc. - Gillette, WY

eli-h - Energy Laboratories, Inc. - Helena, MT

eli-r - Energy Laboratories, Inc. - Rapid City, SD

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package. A copy of the submittal(s) has been included and tracked in the data package.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by NELAC. Some client specific reporting requirements may not require NELAC reporting protocol. NELAC Certification Number E87641.

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

The total number of pages of this report are indicated by the page number located in the lower right corner.

ATTACHMENT 1 WESTWATER CANYON MEMBER WATER QUALITY DATA

Date	Sample ID	Location	.Analyte	Units	Value	Qualifier
8/12/1976		Mill Well	Alkalinity (CaCO3)	mg/L	100	:
8/12/1976		Mill Well	Arsenic	mg/L	0.001	
8/12/1976		Mill Well	Bicarbonate	mg/L	121.7	
8/12/1976		Mill Well	Cadmium	mg/L	0.01	
8/12/1976		. Mill Well	Calcium	mg/L	5.5	
8/12/1976		· Mill Well	Chloride	mg/L	17	
8/12/1976		Mill Well	Magnesium	mg/L	0.8	
8/12/1976		: Mill Well	Manganese	mg/L	0.08	
8/12/1976		Mill Well	Nitrate + Nitrate as N	mg/L	5.3	
8/12/1976		Mill Well	рН	s.u.	7.98	
8/12/1976	•	Mill Well	Potassium	mg/L	6.6	
8/12/1976		: Mill Well	Selenium :	mg/L	0.01	
8/12/1976		· Mill Well	Sodium :	mg/L:	.60	
8/12/1976		Mill Well	Sulfate	mg/L	32	
8/12/1976		Mill Well	TDS ·	mg/L	335	
2/13/1979	TS-24A	· Minewater	Aluminum	mg/l	0.2	
2/13/1979	TS-24A	Minewater	Arsenic	mg/l	0.01	:
2/13/1979	TS-24A	· Minewater	Barium	mg/l	0.1	<
2/13/1979	TS-24A	: Minewater	Boron	mg/l	0.2	
2/13/1979	TS-24A	Minewater	Cadmium	mg/l	0.001	<
2/13/1979	TS-24A	Minewater	Chloride	mg/l	5.8	
2/13/1979	TS-24A	Minewater	Chromium	mg/l	0.001	
2/13/1979	TS-24A	: Minewater	Cobalt	mg/l	0.01	
2/13/1979	TS-24A	Minewater	Copper .	mg/l	0.001	
2/13/1979	TS-24A	Minewater	Cyanide	mg/l	0.1	<
2/13/1979	TS-24A	Minewater	Fluoride	mg/l	0.5	· · · · · · · · · · · · · · · · · · ·
2/13/1979	TS-24A	Minewater	Iron	mg/l	0.05	
2/13/1979	TS-24A	Minewater	Lead	mg/l	0.001	<u> </u>
2/13/1979	TS-24A	Minewater	Manganese	mg/l	0.006	
2/13/1979	TS-24A	' Minewater	Mercury	· mg/l	0.0004	<
2/13/1979	TS-24A	' Minewater	Molybdenum	mg/l	0.003	
2/13/1979	TS-24A	Minewater	Nickel	mg/l	0.01	<
2/13/1979	TS-24A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.7	
2/13/1979	TS-24A	Minewater	pH, lab	SU	8.4	
2/13/1979	TS-24A	Minewater	Phenols	mg/l	0.003	
2/13/1979	TS-24A	Minewater	Radium-226	pCi/l		± 2.8
2/13/1979	TS-24A	Minewater	Radium-228	pCi/l		± 1
2/13/1979	TS-24A	Minewater	Selenium	mg/l	0.04	
2/13/1979	TS-24A	Minewater	Silica	mg/l	0.01	<
2/13/1979	TS-24A	Minewater	Sulfate	mg/l	77	
2/13/1979	TS-24A	Minewater	TDS ·	mg/l	552	
2/13/1979	TS-24A	Minewater	Uranium	mg/l	1.25	
2/13/1979	TS-24A	Minewater	Zinc	mg/l	0.02	
2/14/1979	TS-28A	Minewater	Aluminum .	mg/l	0.3	
2/14/1979	TS-28A	Minewater	Arsenic	mg/l	0.01	<
2/14/1979	TS-28A	Minewater	Barium	mg/l	0.1	<
2/14/1979	TS-28A	Minewater	Boron	mg/l	0.2	
2/14/1979	TS-28A	Minewater	Cadmium	mg/l	0.001	<
2/14/1979	TS-28A	Minewater	Chloride	mg/i	6.1	
2/14/1979	TS-28A	Minewater	Chromium	mg/l	0.001	
2/14/1979	TS-28A	Minewater	Cobalt	mg/l	0.01	<
2/14/1979	TS-28A	Minewater	Copper	mg/l	0.002	

ATTACHMENT 1 WESTWATER CANYON MEMBER WATER QUALITY DATA

Date	Sample ID	Location	. Analyte .	Units:)	Qualifier
2/14/1979	TS-28A	Minewater	Cyanide :	mg/l	0.1	<
2/14/1979	TS-28A	Minewater	Fluoride	mg/l	0.5	
2/14/1979	· TS-28A	Minewater	lron :	mg/l	0.01	
2/14/1979	TS-28A	Minewater	Lead :	mg/l	0.001	
2/14/1979	TS-28A	Minewater	Manganese :	mg/l	0.002	
2/14/1979	TS-28A	Minewater	Mercury	mg/l	0.0004	٠.
2/14/1979	TS-28A	Minewater	Molybdenum	mg/l	0.001	
2/14/1979	TS-28A	Minewater	Nickel ·	mg/l	0.01	
2/14/1979	TS-28A	Minewater	Nitrogen, Nitrate (as N)	mg/l	1.2	
2/14/1979	TS-28A	Minewater	pH, lab	ຮປ	8.4	
2/14/1979	TS-28A	Minewater	Phenols	mg/l	0.003	
2/14/1979	TS-28A	Minewater	Radium-226	pCi/l	103	±3
2/14/1979	TS-28A	Minewater	Radium-228	pCi/l	1	±2
2/14/1979	TS-28A	Minewater	Selenium :	mg/l	0.04	
2/14/1979	TS-28A	Minewater	Silver	mg/l	0.01	<
2/14/1979	TS-28A	Minewater	Sulfate	mg/l	79	
2/14/1979	TS-28A	Minewater	TDS	mg/l	421	
2/14/1979	TS-28A	Minewater	Uranium	mg/l	0.725	
2/14/1979	TS-28A	Minewater	Zinc	mg/l	0.01	
2/16/1979	TS-33A	Minewater	Aluminum	mg/l	1.2	
2/16/1979	TS-33A	Minewater	Arsenic	mg/l	0.01	<
2/16/1979	TS-33A	Minewater	Barium	mg/l	0.3	
2/16/1979	TS-33A	Minewater	Boron :	mg/l	0.2	
2/16/1979	TS-33A	Minewater	Cadmium	mg/l	0.001	
2/16/1979	TS-33A	Minewater	Chloride	mg/l	7.7	
2/16/1979	TS-33A	Minewater	Chromium	mg/l	0.002	
2/16/1979	TS-33A	Minewater	Cobalt	mg/l	0.01	
2/16/1979	TS-33A	Minewater	Copper :	mg/l	0.004	· · · · · · · · · · · · · · · · · · ·
2/16/1979	TS-33A	Minewater	Cyanide	mg/l	0.1	
2/16/1979	TS-33A	Minewater	Fluoride	mg/l	0.48	
2/16/1979	TS-33A	Minewater	iron	mg/l	4.9	
2/16/1979	TS-33A	Minewater	Lead	mg/l	0.001	
2/16/1979	TS-33A	Minewater	Manganese	mg/l	0.011	
2/16/1979	TS-33A	Minewater	Mercury	mg/l	0.0004	
2/16/1979	TS-33A	Minewater	Molybdenum	mg/l	0.003	
2/16/1979	TS-33A	Minewater	Nickel	mg/l	0.01	
2/16/1979	TS-33A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.7	
2/16/1979			pH, lab	SU	7.98	
	TS-33A	Minewater		mg/l	0.004	
2/16/1979	TS-33A	Minewater	Phenois	pCi/l		± 0.4
2/16/1979	TS-33A	Minewater	Radium-226	pCi/i		±2
2/16/1979	TS-33A	Minewater	Radium-228		0.04	
2/16/1979	TS-33A	Minewater	Selenium	mg/l	0.04	
2/16/1979	TS-33A	Minewater	Silver	mg/l	81	
2/16/1979	TS-33A	Minewater	Sulfate	mg/l		
2/16/1979	TS-33A	Minewater	TDS	mg/l	415 2.07	
2/16/1979	TS-33A	Minewater	Uranium	mg/l		
2/16/1979	TS-33A	Minewater	Zinc	mg/l	0.01	
2/17/1979	TS-38A	Minewater	Aluminum	mg/l	0.3	
2/17/1979	TS-38A	Minewater	Arsenic	mg/l	0.01	
2/17/1979	TS-38A	Minewater	Barium	mg/l	0.7	
2/17/1979	TS-38A	Minewater	Boron	mg/l	0.2	
2/17/1979	TS-38A	Minewater	Cadmium		0.001	<u> <</u>

ATTACHMENT:1 WESTWATER CANYON MEMBER WATER QUALITY DATA

Date	.Sample ID	Location	Analyte	Units	Value	Qualifier
2/17/1979	TS-38A	Minewater	Chloride	mg/l	6.2	
2/17/1979	TS-38A	Minewater	Chromium	mg/l	0.001	
2/17/1979	TS-38A	Minewater	Cobalt	mg/l	0.01	
2/17/1979	TS-38A	Minewater	Copper	mg/l	0.001	
2/17/1979	TS-38A	Minewater	Cyanide	mg/l	: 0.1	
2/17/1979	TS-38A	Minewater	Fluoride	mg/l	0.48	
2/17/1979	TS-38A	Minewater	Iron !	mg/l	2.5	
2/17/1979	TS-38A	Minewater	Lead	mg/l	0.001	
2/17/1979	TS-38A	Minewater	Manganese	mg/l	0.003	
2/17/1979	TS-38A	Minewater	Mercury	mg/l	0.0004	
2/17/1979	TS-38A	Minewater	Molybdenum	mg/l	0.002	
2/17/1979	TS-38A	Minewater	Nickel	mg/l	0.002	
2/17/1979	TS-38A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5	
2/17/1979	TS-38A	Minewater	pH, lab	SU	8.2	
2/17/1979	TS-38A	Minewater	Phenois	mg/l	0.005	
2/17/1979	TS-38A	:Minewater	Radium-226	pCi/I		± 2.1
2/17/1979	TS-38A	Minewater	Radium-228:	pCi/l		<
2/17/1979	TS-38A	. iMinewater	Selenium	mg/l	0.03	
2/17/1979	TS-38A	Minewater	Silver		0.03	
2/17/1979	TS-38A	Minewater	Sulfate	mg/l	76	
2/17/1979	TS-38A	Minewater	TDS	_mg/l		
2/17/1979	TS-38A	Minewater	Uranium .	.mg/l	483	
2/17/1979	TS-38A	Minewater	Zinc	mg/l	2.1	
2/21/1979	TS-43A	Minewater	Aluminum	mg/l	0.01	
2/21/1979	TS-43A	Minewater	Arsenic	mg/l	0.3	
2/21/1979	TS-43A	Minewater	Barium	mg/l	0.01	
2/21/1979	TS-43A	Minewater	Boron	mg/l	0.4	
2/21/1979	TS-43A	Minewater	Cadmium	<u>mg/l</u>	0.3	· · · · · · · · · · · · · · · · · · ·
2/21/1979	TS-43A	Minewater	Chloride	mg/l	0.001	<
2/21/1979		Minewater	Chromium	mg/l	. 7	
2/21/1979		Minewater	Cobalt	mg/l	0.001	<
2/21/1979	TS-43A	Minewater	Copper	mg/l		<u> </u>
2/21/1979		Minewater	Cyanide	mg/l	0.003	
2/21/1979		Minewater	Fluoride	mg/l	0.1	<
2/21/1979	TS-43A	Minewater	Iron	mg/l	0.46	
2/21/1979		Minewater	Lead	mg/l	0.07	
2/21/1979	TS-43A	Minewater	Manganese	mg/l	0.001	<
2/21/1979	TS-43A	Minewater	Mercury	mg/l	0.01	
2/21/1979	TS-43A	:Minewater	Molybdenum	mg/l	0.0004	<u> </u>
2/21/1979	TS-43A	Minewater		mg/l	0.002	
2/21/1979	TS-43A	Minewater	Nickel Nitrogen, Nitrate (as N)	mg/l	0.01	<
2/21/1979		Minewater	pH, lab	mg/l	0.4	
2/21/1979	TS-43A	Minewater	Phenols :	mg/l	8.19	
2/21/1979	TS-43A	Minewater	Radium-226	mg/l	0.003	. 4 7
2/21/1979	TS-43A	Minewater	77.72	pCi/l		±1.7
2/21/1979	TS-43A		Radium-228	pCi/i		<
2/21/1979	TS-43A	Minewater Minewater	Selenium Silver	mg/l	0.03	
2/21/1979	TS-43A			mg/l	0.01	< .
2/21/1979 2/21/1979	TS-43A	Minewater	Sulfate	mg/l	73	
2/21/1979		Minewater	TDS	mg/l	386	
	TS-43A	Minewater	Uranium ·	mg/l	0.96	
2/21/1979	TS-43A	Minewater	ZIIIG .	mg/l	0.01	< '
2/27/1979	TS-47A	Minewater	Aluminum ·	mg/i	0.3	

Date	Sample ID	Location	Analyte	Units	Value	Qualifler
2/27/1979	TS-47A	Minewater	Arsenic	mg/l _i	0.01	
2/27/1979	TS-47A	Minewater	Barium	mg/l	0.1	
2/27/1979	TS-47A	Minewater	Boron	mg/l	- 0.3	•
2/27/1979	TS-47A	Minewater	Cadmium	mg/l	0.001	<
2/27/1979	TS-47A	Minewater	Chloride .	mg/l	7	
2/27/1979	TS-47A	Minewater	Chromium	mg/l	0.001	<
2/27/1979	. TS-47A	Minewater	Cobalt	mg/l.	0.01	<
2/27/1979	TS-47A	Minewater	Copper	mg/l	0.001	<
2/27/1979	-TS-47A	Minewater	Cyanide	mg/l	0.2	
2/27/1979	TS-47A	Minewater	Fluoride	mg/l	0.48	
2/27/1979	: TS-47A	Minewater	Iron	mg/l	0.61	
2/27/1979	TS-47A	Minewater	Lead	mg/l	0.001	<
2/27/1979	TS-47A	Minewater	Manganese	mg/l	0.02	
2/27/1979	TS-47A	Minewater	Mercury	mg/l	0.0004	
2/27/1979	TS-47A	Minewater	Molybdenum	mg/l	0.001	
2/27/1979	TS-47A	Minewater	Nickel	mg/l	0.01	
2/27/1979	TS-47A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5	
2/27/1979	TS-47A	Minewater	pH, lab	mg/l	7,42	
2/27/1979	TS-47A	Minewater	Phenois	mg/l	0.002	
2/27/1979	TS-47A	Minewater	Radium-226	pCi/l	155	
2/27/1979	TS-47A	Minewater	Radium-228	pCi/l		<
2/27/1979	TS-47A	Minewater	Selenium	mg/l	0.04	
2/27/1979	TS-47A	Minewater	Silver	mg/l	0.01	
2/27/1979	TS-47A	Minewater	Sulfate	mg/l	70	
2/27/1979	TS-47A	Minewater	TDS	mg/l	383	
2/27/1979	TS-47A	Minewater	Uranium	mg/l	3.71	
2/27/1979	TS-47A	Minewater	Zinc	mg/l	0.01	_
3/14/1979	TS-52A	Minewater	Aluminum	mg/l	0.3	
3/14/1979	TS-52A	Minewater	Arsenic	mg/l	0.01	· · · · · · · · · · · · · · · · · · ·
3/14/1979	TS-52A	Minewater	Barium	mg/l	0.2	
3/14/1979	TS-52A	Minewater	Boron	mg/l	0.3	
3/14/1979	TS-52A	Minewater	Cadmium	mg/l	0.001	1
3/14/1979	TS-52A	Minewater	Chloride	mg/l	6.5	
3/14/1979	TS-52A	Minewater	Chromium	mg/l	0.041	
3/14/1979	TS-52A	Minewater	Cobalt	mg/l	0.041	
3/14/1979	TS-52A	Minewater	Copper	mg/l	0.016	
3/14/1979	TS-52A	Minewater	Cyanide	mg/l	0.018	<u> </u>
3/14/1979		Minewater	Fluoride	mg/l	0.52	
1}		Minewater	iron ·	mg/l	0.52	
3/14/1979	TS-52A			mg/l	0.001	
3/14/1979	.TS-52A	Minewater	Lead		0.001	
3/14/1979	TS-52A	Minewater	Manganese	mg/l	0.0004	
3/14/1979	TS-52A	Minewater	Mercury	mg/l	0.0004	
3/14/1979	TS-52A	Minewater	Molybdenum .	mg/i		
3/14/1979	TS-52A	Minewater	Nickel	mġ/l	0.01	
3/14/1979	TS-52A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5	
3/14/1979	TS-52A	Minewater	pH, lab	mg/l	7.2	
3/14/1979	TS-52A	Minewater	Phenois	mg/l	0.006	
3/14/1979	TS-52A	Minewater	Radium-226	pCi/l	1	± 2.7
3/14/1979	TS-52A	Minewater	Radium-228	pCi/I		<u> </u>
3/14/1979	TS-52A	Minewater	Selenium	mg/l	0.03	
3/14/1979	TS-52A	Minewater	Silver	mg/l	0.01	
3/14/1979	TS-52A	Minewater	Sulfate	mg/l	70	<u> </u>

Date	Sample ID	Location	Analyte ii ii	Units	Value	Qualifier
3/14/1979	TS-52A	Minewater	TDS	mg/l	386	
3/14/1979	TS-52A	Minewater	Uranium .	mg/l	1.57	
3/14/1979	TS-52A	Minewater	Zinc	mg/l	0.02	
3/27/1979	. TS-56A	. Minewater	Aluminum	mg/l	0.1	
3/27/1979	TS-56A	Minewater	Arsenic	mg/l	0.01	
3/27/1979	TS-56A	Minewater	Barlum	mg/l	0.2	
3/27/1979		Minewater	Boron	.mg/l	.0.2	
3/27/1979	:TS-56A	Minewater	Cadmium	mg/l	0.001	
3/27/1979		Minewater	Chloride	mg/l	7	
3/27/1979	TS-56A	Minewater	Chromium	mg/l	0.002	
3/27/1979	:TS-56A	Minewater	Cobalt	mg/l	0.002	
3/27/1979	TS-56A	Minewater	Copper	mg/l	0.001	
3/27/1979	1TS-56A	Minewater	Cyanide	mg/l	0.001	
3/27/1979	TS-56A	Minewater	Fluoride	mg/l	0.48	
3/27/1979	TS-56A	Minewater	Iron	mg/l	0.02	
3/27/1979	TS-56A	Minewater	Lead	mg/l	0.02	
3/27/1979	: TS-56A	Minewater	Manganese	mg/l	0.002	
3/27/1979	TS-56A	Minewater	Mercury	mg/l	0.002	
3/27/1979	TS-56A	Minewater	Molybdenum	mg/l	0.0004	<
3/27/1979	TS-56A	Minewater	Nickel		0.001	
3/27/1979	TS-56A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.01	
3/27/1979	TS-56A	Minewater	pH, lab	mg/l	8	
3/27/1979	TS-56A	Minewater	Phenois	mg/l		
3/27/1979	TS-56A	Minewater	Radium-226	mg/l	0.001	
3/27/1979	TS-56A	Minewater	Radium-228	pCi/I		± 2.3 ± 1
3/27/1979	TS-56A	Minewater	Selenium	pCi/l		エリ
3/27/1979	TS:56A	Minewater	Silver	mg/l	0.03	
3/27/1979		Minewater	Sulfate	mg/l	0.01 76	<
3/27/1979		Minewater	TDS	mg/l		
3/27/1979	TS-56A	Minewater	Uranium	mg/l	404	
3/27/1979	TS-56A	Minewater	Zinc	mg/l	1.53	
4/11/1979	TS-63	Minewater	Aluminum	mg/l	0.01	
4/11/1979	TS-63	Minewater	Arsenic	mg/l	<u> </u>	
4/11/1979	TS-63	Minewater	Barium	mg/l	0.01	<
4/11/1979	TS-63	Minewater	Boron	mg/l	0.2	
4/11/1979	TS-63	Minewater	Cadmium	mg/l	0.1	
4/11/1979	TS-63	Minewater	Chloride	mg/l	0.01 5	<u> </u>
4/11/1979	··TS-63	Minewater	Chromium	mg/l	- 2	-
4/11/1979	TS-63	Minewater	Cobalt	mg/l	0.02	5
4/11/1979	TS-63	Minewater	Copper	mg/l	0.03	
4/11/1979	TS-63	Minewater	Cyanide	mg/l	0.01	
4/11/1979	TS-63	Minewater	Fluoride	mg/l	0.1	<u> </u>
4/11/1979	TS-63	Minewater	Iron	mg/l	0.51	
4/11/1979	TS-63	Minewater	Lead	mg/l	0.05	
4/11/1979	TS-63	Minewater	Manganese	mg/i	0.05	
4/11/1979	:TS-63	Minewater	Mercury	mg/l	0.01	
4/11/1979	TS-63	Minewater	Molybdenum	mg/l	0.0004	
4/11/1979	TS-63		Nickel	mg/l		
4/11/1979	·TS-63	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.02	
4/11/1979	TS-63	Minewater	pH, lab	mg/l	7.59	
4/11/1979	:TS-63		Phenois	mg/l		
4/11/1979	TS-63		Radium-226	mg/l	0.001	<
	10-00	winewater	naululii-220	рСИ	22	<u>_</u>

Date	Sample ID	Location	Analyte	Units	Value	Qualifier
4/11/1979	TS-63	Minewater	Radium-228	pÇi/i	. 5	٠
4/11/1979	TS-63	Minewater	Sc : t	umhos/cm	600	-
4/11/1979	TS-63	Minewater	Selenium :	mg/l	0.02	-
4/11/1979	TS-63	Minewater	Silver	mg/l	0.01	<
4/11/1979	TS-63	Minewater	Sodium	mg/l	85.3	
4/11/1979	TS-63	Minewater	Sulfate .	mg/l	75.8	
4/11/1979	TS-63	Minewater	TDS	mg/l	380.5	
4/11/1979	TS-63	Minewater	Thorium-230	pCi/l	0.6	<
4/11/1979	TS-63	Minewater	Uranium :	mg/l	2.29	
4/11/1979	TS-63	Minewater	Vanadium	mg/l	0.1	<
4/11/1979	TS-63	Minewater	Zinc	mg/l	0.01	<
5/2/1979	TS-69	Minewater	Aluminum	mg/l	0.2	<
5/2/1979	· TS-69	Minewater	Barium	mg/i	0.1	<
5/2/1979	TS-69	Minewater	Cadmium	mg/l	0.01	٧
5/2/1979	TS-69	Minewater	Chloride	mg/l	5	
5/2/1979	TS-69	Minewater	Chromium	mg/l	0.02	<
5/2/1979	TS-69	Minewater	Cobalt	mg/l	0.05	
5/2/1979	TS-69	Minewater	Copper	mg/l	0.01	
5/2/1979	TS-69	Minewater	Fluoride	mg/l	0.42	
5/2/1979	TS-69	Minewater	Iron	mg/l	0.04	<
5/2/1979	TS-69	Minewater	Lead	mg/l	0.05	
5/2/1979	TS-69	Minewater	Manganese	mg/i	0.01	
5/2/1979	TS-69	Minewater	Mercury	mg/i	0.0004	
5/2/1979	TS-69	Minewater	Molybdenum	mg/l	0.04	
5/2/1979	TS-69	Minewater	Nickel	mg/l	0.04	٧
5/2/1979	TS-69	Minewater	Nitrogen, Nitrate (as N)	mg/l	1	
5/2/1979	TS-69	Minewater	pH, lab	mg/l	8.45	
5/2/1979	TS-69	Minewater	Phenois	mg/l	0.001	<
5/2/1979	TS-69	Minewater	Radium-226	pCi/l	11.2	
5/2/1979	TS-69	Minewater	Sc	umhos/cm	485	
5/2/1979	TS-69	Minewater	Silver	mg/l	0.01	<
5/2/1979	TS-69	Minewater	Sodium	mg/l	1009.1	
5/2/1979	TS-69	Minewater	Sulfate	mg/l	73.3	
5/2/1979	TS-69	Minewater	TDS	mg/l	370.5	
5/2/1979	TS-69	Minewater	Thorium-230	pCi/I	5.8	
5/2/1979	TS-69	Minewater	Uranium	mg/l	1.7	
5/2/1979	TS-69	Minewater	Vanadium	mg/l	0.1	<
5/2/1979	TS-69	Minewater	Zinc	mg/l	0.01	<
6/11/1979		Minewater	Aluminum	mg/l	0.339	
6/11/1979		Minewater	Arsenic	mg/l	0.0118	
6/11/1979		Minewater	Barium	mg/l	0.043	
6/11/1979		Minewater	Boron	mg/l	0.01	
6/11/1979		Minewater	Cadmium	mg/l	0.0038	
6/11/1979		Minewater	Chloride	mg/i	13.4	
6/11/1979		Minewater	Chromium	mg/l	0.0356	
6/11/1979	***************************************	Minewater	Cobalt	mg/l	0.0001	
6/11/1979		Minewater	Copper	mg/l	0.0235	
6/11/1979		Minewater	Fluoride	mg/l	0.55	
6/11/1979		Minewater	Iron	mg/l	0.059	
6/11/1979		Minewater	Lead	mg/l	0.0138	
6/11/1979		Minewater	Manganese	mg/l	0.0026	
			· · · · · · · · · · · · · · · · · · ·		0.0028	
6/11/1979		Minewater	Mercury	mg/l	0.001	

Date	Sample ID	Location	. : Analyte	Units	Value	Qualifier
6/11/1979		Minewater	Molybdenum	mg/l	0.0373	
6/11/1979	• •	Minewater	Nickel	mg/l	0.1349	
6/11/1979	:	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.1	
6/11/1979	•	Minewater	pH, lab	้ารับ	7.94	
6/11/1979	:	Minewater	Radium-226	pCi/l	36.1	
6/11/1979	-	Minewater	Radium-228	pCi/l	5.2	
6/11/1979		Minewater	Sc	umhos/cm	690	
6/11/1979	•	Minewater	Selenium	mg/l	0.0149	
6/11/1979		Minewater	Silver	mg/l	0.0054	
6/11/1979		Minewater	Sodium	mg/l	10	<u> </u>
6/11/1979		Minewater	Sulfate	mg/l	111.5	
6/11/1979		Minewater	TDS .	mg/l	449.6	
6/11/1979		Minewater	Thorium-230	pCi/l	120.5	
6/11/1979		Minewater	Uranium	mg/l	3.62	
6/11/1979		Minewater	Vanadium	mg/l	0.1	
6/11/1979		Minewater	Zinc	mg/l	0.0022	
4/30/1980		Minewater	Alkalinity (CaCO3)	mg/l	232	
4/30/1980		Minewater	Aluminum	mg/l	2.8	
4/30/1980		Minewater	Barium	mg/l	0.1	
4/30/1980		Minewater	Calcium	mg/l	10.1	
4/30/1980		Minewater	Chloride	mg/i	6.5	
4/30/1980		Minewater	Iron	mg/i	1.99	
4/30/1980		Minewater	Lead-210	pCi/l		± 7.0
4/30/1980		Minewater	Magnesium	mg/l	2.40	<
4/30/1980		Minewater	Manganese	mg/l	0.003	
4/30/1980		Minewater	pH, lab	SU	8	
4/30/1980		Minewater	Potassium	mg/l	2.2	
4/30/1980		Minewater	Radium-226	pCi/l		± 12
4/30/1980		Minewater	Radium-228	pCi/l		<
4/30/1980		Minewater	Sc	umhos/cm	691	
4/30/1980		Minewater	Selenium	mg/l	0.004	
4/30/1980		Minewater	Silica	mg/l	21	
4/30/1980		Minewater	Sodium	mg/l	170	
4/30/1980		Minewater	Sulfate	mg/l	71	
4/30/1980		Minewater	TDS	mg/l	381	
4/30/1980		Minewater	Thorium-230	pCi/l	0.6	
1/30/1980		Minewater	Uranium	mg/l	2.84	-
1/30/1980		Minewater	Zinc	mg/i	0.02	
7/16/1980		Minewater	Alkalinity (CaCO3)	mg/i	127	
7/16/1980		Minewater	Aluminum	_mg/l	0.1	
7/16/1980		Minewater	Barium	mg/l	0.01	
7/16/1980		Minewater	Bicarbonate	mg/l	155	
7/16/1980		Minewater	Calcium	mg/l	31	
7/16/1980		Minewater	Carbonate	mg/l	0.1	<u></u>
7/16/1980		Minewater	Chloride	mg/l	14.9	
7/16/1980		Minewater	Iron	mg/l	0.1	<
7/16/1980		Minewater	Lead-210	pCi/l		± 3.42
/16/1980		Minewater	Magnesium	mg/l	4.2	
/16/1980		Minewater	Manganese	mg/l	1.3	
/16/1980	1	Minewater	pH, lab	SU	6.7	
/16/1980		Minewater	Potassium	mg/l	1.9	
/16/1980		Minewater	Radium-226	pCi/l		± 1.7

Date	Sample ID	Location	Analyte	Units	Value	Qualifier
7/16/1980	, ,	Minewater	Radium-228	pCi/l	1.3	± 5.0
7/16/1980		Minewater	Sc	umhos/cm	950	
7/16/1980		Minewater	Selenium .	mg/l	0.05	
7/16/1980		Minewater	Silicon	mg/l	6.9	
7/16/1980		Minewater	Sodium	mg/l	140	
7/16/1980		Minewater	Sulfate	mg/i	272	
7/16/1980		Minewater	TDS	mg/l	538	·
7/16/1980		Minewater	Thorium-230	pCi/I		± 2.6
7/16/1980		Minewater	Uranium	mg/l	2.7	
7/16/1980		Minewater	Zinc .	mg/l	0.01	******
10/9/1984		Mill Well	Alkalinity (CaCO3)	mg/L	197	
10/9/1984		.Mill Well	Aluminum	mg/L	0.05	
10/9/1984		- Mill Well	Ammonium as N	mg/L	0.05	
10/9/1984		Mill Well	Arsenic	mg/L	0.001	
10/9/1984		Mill Well	Bicarbonate	mg/L	239.7	
10/9/1984		Mill Well	Cadmium	mg/L	0.01	
10/9/1984		Mill Well	Calcium	mg/L	4.7	
10/9/1984		Mill Well	Chloride	mg/L	4.1	
10/9/1984		Mill Well	Cobalt	mg/L	0.05	
10/9/1984	******	. Mill Well	Gross Alpha	pCi/L	43	
10/9/1984		Mill Well	Lead	mg/L	0.05	
10/9/1984		Mill Well	Lead 210	pCi/L	9.3	
10/9/1984		Mill Well	Magnesium	mg/L	3.24	
10/9/1984		Mill Well	Manganese	mg/L	0.01	
10/9/1984		Mill Well	Molybdenum	mg/L	0.01	
10/9/1984		Mill Well	Nickel	mg/L	0.05	
10/9/1984		Mill Well	pH	s.u.	8.49	
10/9/1984		Mill Well	Potassium	mg/L	1.6	
10/9/1984		Mill Well	Radium 226	pCi/L	1.8	
10/9/1984		Mill Well	Selenium	mg/L	0.001	
10/9/1984	[Mill Well	Sodium	mg/L	103.2	
10/9/1984		Mill Well	Sulfate	mg/L	17.7	
10/9/1984		Mill Well	TDS	mg/L	228	
10/9/1984		Mill Well	Thorium 230	pCi/L	61.3	
10/9/1984		Mill Well	Uranium	mg/L	0.065	
10/9/1984		Mill Well	Vanadium	mg/L	0.003	
4/23/1992		Mill Well	Alkalinity (CaCO3)	mg/L	201	
4/23/1992		Mill Well	Aluminum	mg/L	0.1	
4/23/1992		Mill Well	Ammonium as N	mg/L	0.1	
4/23/1992		Mill Well	Arsenic	mg/L	0.004	
4/23/1992		Mill Well	Beryllium	mg/L	0.004	
4/23/1992		Mill Well	Bicarbonate	mg/L mg/L	245	
4/23/1992		Mill Well	Cadmium			
4/23/1992		Mill Well	Calcium	mg/L	0.01 3.2	
4/23/1992		Mill Well	Chloride	mg/L		
4/23/1992		Mill Well	Cobalt	mg/L	6.3	
4/23/1992		Mill Well	Gross Alpha	mg/L	0.01	
4/23/1992		Mill Well	Lead Lead	pCi/L	2.3	
4/23/1992		Mill Well	Lead 210	mg/L	0.05	
4/23/1992				pCi/L	- 1	
4/23/1992			Magnesium	mg/L	0.4	
			Manganese	mg/L	0.01	
4/23/1992		Mill Well	Molybdenum	mg/L	0.1	

Date	Sample ID	Location	. Analyte :	: Units	Value Qualifie	3T
4/23/1992		:Mill Well	Nickel	: mg/L · :	0.05	
4/23/1992		:Mill Well	Nitrate + Nitrate as N	mg/L	0.1	
4/23/1992		Mill Well	На	s.u.	8.83	
4/23/1992		Mill Well	Potassium	mg/L	1	
4/23/1992		Mill Well	Radium 226	pCi/L	0.4	
4/23/1992		Mill Well	Radium 228	pCi/L	2.1	
4/23/1992		Mill Well	Selenium	mg/L	0.218	_
4/23/1992		Mill Well	Sodium	mg/L	123	
4/23/1992		Mill Well	Sulfate	mg/L	33.3	
4/23/1992		Mill Well	TDS	mg/L	292	_
4/23/1992		Mill Well	Thorium 230	pCi/L	0.2	
4/23/1992		Mill Well	Uranium	mg/L	0.576	
4/23/1992		Mill Well	Vanadium	mg/L	0.1	
7/28/1993		Mill Well	Alkalinity (CaCO3)	mg/L	188	_
7/28/1993		Mill Well	Aluminum	mg/L	0.16	
7/28/1993		Mill Well	Ammonium as N	mg/L	0.05	_
7/28/1993		Mill Well	Arsenic	mg/L	0.001	
7/28/1993		Mill Well	Beryllium	mg/L	0.005	
7/28/1993		Mill Well	Bicarbonate	mg/L	229	
7/28/1993		Mill Well	Cadmium	mg/L	0.01	
11	[Mill Well	Calcium	mg/L	15	
7/28/1993	i		1	mg/L	182	
7/28/1993		Mill Well	Chloride		0.01	
7/28/1993		Mill Well	Cobalt	mg/L	1.8	
7/28/1993		Mill Well	Gross Alpha	pCi/L		
7/28/1993	ļ	Mill Well	Lead	mg/L	0.05 4.9	_
7/28/1993	ļ <u> </u>	Mill Well	Magnesium	mg/L	0.24	
7/28/1993	ļ	Mill Well	Manganese	mg/L	0.1	
7/28/1993	<u> </u>	Mill Well	Molybdenum	mg/L		
7/28/1993		Mill Well	Nickel	mg/L	0.05	
7/28/1993		Mill Well	Nitrate + Nitrate as N	mg/L.	0.1	
7/28/1993		Mill Well	pH	. s.u.	8.49	
7/28/1993	ļ	Mill Well	Potassium	mg/L	3	
7/28/1993		Mill Well	Radium 226	pCi/L	1.6	
7/28/1993		Mill Well	Radium 228	pCi/L	1.4	
7/28/1993	ļ	Mill Well	Selenium	mg/L_	0.003	
7/28/1993		Mill Well	Sodium	mg/L	708	—
7/28/1993		Mill Well	Sulfate	mg/L	1260	
7/28/1993		Mill Well	TDS	mg/L	2258	
7/28/1993		Mill Well	Thorium 230	pCi/L	0.2	
7/28/1993		Mill Well	Uranium	mg/L	0.002	
7/28/1993		Mill Well	Vanadium	mg/L	0.1	
6/18/2002		Mill Well	Alkalinity (CaCO3)	mg/L	185	
6/18/2002	\$ 	Mill Well	Aluminum	mg/L	0.1	
6/18/2002		· Mill Well	Ammonium as N	mg/L	0.5	
6/18/2002		Mill Well	Arsenic	mg/L	0.001	
6/18/2002	<u> </u>	Mill Well	Beryllium	mg/L	0.01	
6/18/2002		Mill Well	Bicarbonate	mg/L	225	
6/18/2002	ļ	Mill Well	Cadmium	mg/L	0.005	
6/18/2002		Mili Well	Calcium	mg/L	16	
6/18/2002		Mill Well	Chloride	mg/L	160	
6/18/2002		Mill Well	Cobalt	mg/L	0.01	_
6/18/2002	<u> </u>	Mill Well	Gross Alpha	pCi/L	1 1	

WESTWATER CANYON MEMBER WATER QUALITY DATA

Date	Sample ID	Location `	Analyte	Units	Value	Qualifier
6/18/2002		Mill Well	Lead	mg/L	0.05	
6/18/2002		Mill Well	Lead 210	pCi/L	1	
6/18/2002		Mill Well	Magnesium	mg/L	4.2	ŀ
6/18/2002		Mill Well	Manganese	mg/L	0.05	,
6/18/2002	•	Mill Well	Molybdenum	mg/L	0.1	1
6/18/2002		Mill Well	Nickel	mg/L	0.05	
6/18/2002		Mill Well	Nitrate + Nitrate as N	mg/L'	0.1	•
6/18/2002		Mill Well	pH .	s.u.	8.34	1
6/18/2002		Mill Well	Potassium	mg/L	3.5	
6/18/2002		_ Mill Well	Radium 226	pCi/L	0.7	
6/18/2002		Mill Well	Radium 228	pCi/L	2.7	
6/18/2002		Mill Well	Selenium	mg/L	0.001	
6/18/2002		Mill Well	Sodium	mg/L	644	1
6/18/2002	•	Mill Well	Sulfate	mg/L	1100	
6/18/2002		Mill Well	TDS	mg/L	2090	
6/18/2002		Mill Well	Thorium 230	pCi/L	0.02	
6/18/2002		Mill Well	Uranium	mg/L	0.07	
6/18/2002		Mill Well	Vanadium	mg/L	0.1	
Motoc						

Qualifier of < signifies that concentration was less than detection limit shown Qualifier of ± represents precision of radionuclides analysis

Water Sources in Church Rock Area Sampled in 2003 by CRUMP Water Assessment Team

y F				Coordinates				Use(s)
	Pinedale	35,37 457	108,30 670	16 16 14 1111	Qal	dug, HP	8	LS, DOM
-	Church Rock	35,32 158	108,35 753	15 17 13 1	Qal?	drilled, HP	unk	LS
II C	Coyote Cyn	35,39 982	108,34 113	17 16 32 or 29	Kg	drilled, WM	622	LS, DOM
1 (Coyote Cyn	35,39 432	108,30 557	17 16 35	Kmv or Kg	drilled, PWS	750	abd-CWS
yn S	Standing Rk	35,40 277	108,28 698	17 15 29 421	Kg	drilled, WM	614	LS
9, 4		35,34 315	108,34 633	16 16 31 33	Jmw?	dug, HP	<1	LS, DOM
Fork (Church Rock	35,34 362	108,38 202	16 17 33 4223	Qal	drilled, WM	122	LS
Cluster (Church Rock	35,35 582	108,35 890	16 17 25 1132	Qal	drilled, WM	141	LS
ev F	Pinedale	35,37 178	108,27 195	16 15 17 1431	Kd	drilled, WM	410	LS
Cyn (Church Rock	35,35 818	108,38 675	16 17 21 344	Jmw	drilled, WM	410	DOM, LS
e/ (Church Rock	35,27 560	108,39 207	15 17 33 43	unk	drilled, WM	unk	LS
ch (Church Rock	35,36 998	108,33 237	16 16 17 411	Kd	drilled, WM	417	LS
	Church Rock	35,31 123	108,38 332	15 17 21 4	unk	drilled, WM	unk.	DOM, LS
ch ımı								

Following Pages

Summary of General Chemistry
Summary of Heavy Metals
Summary of Radionuclides
Complete field chemistry reported by NMED
Complete radionuclide analyses reported by NMED
Complete uranium analyses reported by USEPA

Abbreviations and Symbols

TRS = Township, Range, Section

TD = Total Depth of well, in feet, unk = unknown depth

Uses abd-CWS = abandoned community water system, DOM = domestic, LS = livestock,

Type HP = hand pump, WM = windmill

Formation Qal = alluvium, Kd = Dakota SS, Kg = Gallup SS, Kmv = Mesa /

Verde, Jmw = Morrison/Westwater

NNEPA = Navajo Nation Environmental Protection Agency

USEPA = US Environmental Protection Agency

Summary of General Chemistry

Well #	Sampling Date	Dissolved Solids (rng/L)	Calcium (CaCO ₃) (mg/L)	Magnesium (mg/L)	Potassium (mg/l)	Sodium (mg/L)	Total Hardness (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	pH (Units)
USEPA or	NNEPA MCL	500	75-200	none	none	none	500	250	250	6 5-8 5
Lab		NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	field
Grey	10/28/2003	553 5	376 0	(???) -36	6 69	24 1	240 0	4.5	305 0	7 72
Solar	10/29/2003	561 8	38 0	1200	4 00	27 9	148 0	4 64	352 0	8 61
14K-313	10/29/2003	1,095 0	640 0	440 0	4 36	105 0	1,080 0	10 7	1,070 0	8 31
14K-586	8/5/2003	2,136 0	251 8	125 1	7 10	143 1	1,143 9	19 1	1,097 2	8 07
15K-303	10/28/2003	3,043 0	980 0	(???) -940	5.97	191 0	40 0	12 1	1,940 0	8 13
16-4-10	10/29/2003	237 5	152 0	32 0	1 61	8 37	184 0	143	27 1	7 45
16K-336	10/29/2003	887 6	200 0	88 0	2 84	207 0	288 0	20 9	122 0	8 05
16K-340	10/29/2003	1,469 0	420 0	180 0	3 65	256 0	600 0	25 5	419 0	8 16
16T-348	10/29/2003	660 9	40	80	0 86	222 0	120	3 48	155 0	9 63
16T-534	10/29/2003	811 8	132 0	76 0	3 00	179 0	208 0	8 0	3140	8 67
16T-559	10/28/2003	498 4	120	15 0	1 71	162 0	27 0	4 59	148 0	8 87
16T-606	10/28/2003	3,500 0	196 0	1,740 0	6 91	245 0	1,940 0	23 3	1,130 0	7 45
16T-608	10/28/2003	1,015 0	24 0	36 0	0 86	390 0	60 0	251 0	134 0	8 82

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level, mg/L = milligrams per liter, NMSLD = New Mexico Scientific Laboratory Division, NTUA = Navajo Tribal Utility Authority, ??? = data are questionable

1

Summary of Heavy Metals and Aesthetic Parameters

Well#	Sampling Date	Arsenic (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Nickel (mg/L)	Selenium (mg/L)	Fluoride (mg/L)	Iron (mg/L)
USEPA or I	NNEPA MCL	0 010	0 005	0 05	13	0 02	01	0 05	16 (WQCC)	0.3
Lab		NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	field*	freld*
		0.000	2 0000							,
Grey	10/28/2003	< 0 005	< 0 0002	< 0 001	<0 02	0 001	< 0 04	< 0 005	0 92	0 01
Solar	10/29/2003	< 0 005	< 0 0002	< 0 001	0 062	< 0 001	< 0 04	< 0 005	0 32	4 10
14K 313	10/29/2003	< 0 005	< 0 0002	< 0 001	< 0 02	< 0 001	< 0 04	< 0 005	1 34	0 54
14K 586	8/5/2003	0 008**	<0 001**	<0 001**	<0 1**	<0 001**	<0 1**	<0 005**	not tested	5 10**
15K 303	10/28/2003	< 0 005	<0 0002	< 0 001	0 026	< 0 001	< 0 04	< 0 005	1 60	0 68
16 4 10	10/29/2003	< 0 005	< 0 0002	< 0 001	< 0 02	< 0 001	< 0 04	0 043	0.58	0 10
16K 336	10/29/2003	0 006	<0 0002	< 0 001	< 0 02	< 0 001	< 0 04	< 0 005	1 03	2 00
16K 340	10/29/2003	< 0 005	< 0 0002	< 0 001	<0.02	< 0 001	< 0 04	< 0 005	0.71	0 40
16T 348	10/29/2003	< 0 005	<0 0002	< 0 001	<0 02	< 0 001	< 0 04	<0 005	0 47	0 02
16T 534	10/29/2003	< 0 005	<0 0002	< 0 001	<0.02	< 0 001	< 0 04	< 0 005	0 44	0 49
16T 559	10/28/2003	< 0 005	<0 0002	< 0 001	< 0 02	< 0 001	< 0 04	< 0 005	0 64	0 07
16T 606	10/28/2003	< 0 005	< 0 0002	< 0 001	< 0 02	< 0 001	< 0 04	< 0 005	1 16	3 28
16T 608	10/28/2003	< 0 005	< 0 0002	< 0 001	<0.02	< 0 001	< 0.04	0 006	1 96	0 12

^{*}field tests by New Mexico Environment Department

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level mg/L = milligrams per liter NMSLD = New Mexico Scientific Laboratory Division NTUA = Navajo Tribal Utility Authority WQCC = N M Water Quality Control Commission groundwater standard ??? = data are questionable

^{**}lab results reported by NMSLD

Summary of Selected Radionuclides*

Well#	Sampling Date	Gr Alpha (U Nat Ref) (pCı/L)	Gr Beta (Sr/Y 90 Ref) (pCi/L)	Radium 226 (pCi/L)	Radium 228 (pCi/L)	Total Uranium (pCi/L)	Uranium mass (ug/L)
USEPA or NNEPA MCL		15	none	combined 5 0		none	30
Grey	10/28/2003	7 20	9 40	0 10	0 40	9 94	14 84
Solar	10/29/2003	nd	4 40	0 08	0 20		0 24
14K 313	10/29/2003	nd	4 40	0 04	0 50		0 05
14K 586	8/5/2003	10 80	14 90	2 60	not tested	not tested	3 00
15K 303	10/28/2003	4 00	9 00	0 47	1 50	0 46	0 69
16 4 10	10/29/2003	44 10	26 00	0 33	0 70	46 48	69 37
16K 336	10/29/2003	5 90	4 40	0 83	0 30	0 38	0 57
16K 340	10/29/2003	nd	4 90	0 40	0 40	1 96	2 92
16T 348	10/29/2003	nd	1 60	nd	0 60	0 20	0 29
16T 534	10/29/2003	nd	270	0 20	0 50	0 10	0 15
16T 559	10/28/2003	nd	1 50	0 05	nd	0 06	0 09
16T 606	10/28/2003	40 00	20 40	8 34	0 80	4 68	6 99
16T 608	10/28/2003	5 40	nd	0 04	1 40	3 86	5 76

^{*}All samples except for 14T 586 analyzed at USEPA lab in Las Vegas NV 14T 586 analysis at N M State Laboratory Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level pCi/L = picoCuries per liter

REPORT OF SANITARY SURVEY OF PUBLIC WATER SYSTEM

KERR MCGEE WATER SYSTEM PWSID # NM-20323

JUN-586 July 85 compliance in 3/79 2/80 3/88 7/85

3/79

CONDUCTED BY

DEPARTMENT OF HEALTH AND HUMAN SERVICES
PUBLIC HEALTH SERVICE
NAVAJO AREA INDIAN HEALTH SERVICE
OFFICE OF ENVIRONMENTAL HEALTH AND ENGINEERING

FOR

ENVIRONMENTAL PROTECTION AGENCY SAN FRANCISCO, CALIFORNIA

I. INTRODUCTION

The biennial survey of the Kerr McGee community water system was completed on May 25, 1988. The system is located about 16 miles north and east of Gallup, New Mexico. The last survey was completed on June 27, 1985 by a representative of the Environmental Protection Agency. The purposes of this latest survey were to evaluate and make recommendations on the operation and maintenance of the system, determine compliance with the Safe Drinking Water Act (SDWA) and to determine possible unmet needs.

The survey was conducted in accordance with the Safe Drinking Water Act (PL 93-523) and its amendments. The procedure manual "A Guide to Be Used in Conducting a Sanitary Survey", an interim guideline developed for use in the Navajo Area, was used as a rough guideline during the survey. The survey was conducted by Don Payne, Senior Sanitarian, Navajo Area Office of Environmental Health and Engineering.

II. BACKGROUND

The responsibility for operation and maintenance of this system has been that of the Navajo Tribe since the Kerr McGee mine closed and left the source unattended. The water system serves the rural community of Kerr McGee. It was built under separately funded P.L. 86-121 projects NA-74-542 and NA-74-543a during 1977. The water system has a total of 8 connections which serve an approximate population of 44 persons. The main system components are one well with tribal well number 14T-586, one ground level storage tank of 4,000 gallon capacity and PVC water service lines to serve the 8 connections.

Well 14T-586 is the source of water for the system. The well is 750 feet deep with a 7 inch diameter steel casing. It is equipped with a Jenson pump jack powered by an electric motor. The pump is operated from a manual, wall mounted switch.

For those who are interested in obtaining more indepth technical information for the system a copy of the design analysis sheet may be found in the master service unit file for this community water system.

III. OPERATION AND MAINTENANCE

The operation and maintenance (O&M) evaluation was not carried out to the extent that valve boxes were checked for leakage, water line markers specifically checked, etc. Instead, the surveyors tried to get a general idea of the quality of O&M by noting the general appearance of the pumphouse, presence of water line markers and the degree that the operator has been satisfying the requirements of the Safe Drinking Water Act.

Personnel responsible for operation of this water system are not certified as water treatment plant operators. Some of them have attended training courses sponsored by the Environmental Protection Agency and the Indian

Health Service. However, they have not passed any of the tests for certification.

Monthly water samples for bacteriological analysis are collected from the system and analyzed at the NTUA laboratory in Ft. Defiance, Arizona. The sample results are sent to EPA, Region IX as required. The system has had no monitoring nor reporting or maximum concentration level (MCL) violations for bacteriology during the last twelve months.

The baseline samples for inorganic analyses were collected in March, 1979. Initial data indicated that all results, with the exception of selenium at 0.02 mg/l, were in compliance with Federal standards. Follow up samples collected for further selenium analysis indicated that the first result was probably an anomaly as the follow up samples analysis results were less than the MCL for selenium. (0.01 mg/l) Sampling for inorganics was most recently done again in June, 1986. The concentration of selenium was again below the MCL. Results of all other inorganic baseline analyses were within the Federal standards as before.

Baseline radionuclide sampling was completed in February, 1980. Results were in compliance with Federal standards. The system was again sampled in July, 1985. The latest radionuclide analyses results, (gross alpha = <2pCi/l), were also within the Federal standards.

Water samples for a complete series of secondary chemical analyses were collected in May, 1985. All of the results were within the recommended range of concentrations.

Sodium is a special case when you consider that approximately 3% of the American population are on low sodium diets prescribed for reasons of illness. The low sodium diets most commonly prescribed limit the patient to either 2.0, 1.0, or 0.5 grams of sodium over a 24 hour period. Where water supplies contain more than 20 mg/l, limiting dietary sodium to less than 1.0 grams/day is difficult to achieve and maintain. For this reason, the SDWA requires that each water system using well water collect samples every three years and submit the results to EPA. (If a system has several wells, all drawing water from the same aquifer, the operator is only required to sample one well.) The frequency of sampling can be varied if the sodium concentration is significantly greater or less than the 20 mg/l. This particular system had a measured sodium concentration of 238 mg/l, well above the 20 mg/l recommended for hypertensives. It is highly recommended that the system operator notify the medical community of the sodium concentration of this public water system.

NOTE: The above information was obtained from 'Drinking Water and Health', SAFE DRINKING WATER COMMITTEE, Advisory Center on Toxicology, Assembly of Life Sciences, National Research Council. NATIONAL ACADEMY OF SCIENCES, Washington, D.C. 1977. (4th Printing, 1984.)

The corrosivity of the water has not been determined.

The water for this system is neither chlorinated nor fluoridated. The water contains natural fluoride at 0.77 mg/l.

Information concerning chemical, radiological and bacteriological sampling and analyses records are included in Attachment A.

IV. SUMMARY

The water system is very simple. However, the pumphouse and storage tank area have apparently never received much attention from any operator. Numerous problems such as the following were noted:

- 1. The pumphouse and storage tank are not protected from trespass by a fence.
- 2. The crude pumphouse has a large hole in the roof directly over the well. The plate sealing the well casing has a hole approximately 1 1/2 inches in diameter. A portion of the pumphouse wall has also been removed and left open for easy access.
- 3. The electric cable supplying power to the motor lies on the floor in water.
- 4. The water storage tank is badly rusted inside and out.

This water system is poorly maintained. Therefore, no new connections should be made until the pumphouse, well, and storage tank area have been significantly improved.

The water is very high in sodium. Emphasis should be placed upon notification of health officials of the sodium concentration of the raw water supply. The corrosivity of the water should also be determined so the operator can know if there is any potential problem with lead leaching from lead solder in houses. None of the operators for this particular system are certified. However, they have had some training. Even though the operators may not become certified they should be encouraged and allowed to attend short refresher courses that may be offered in the area. The items noted during the sanitary survey are found on the attached field survey sheet.

The items recommended for correction, listed in priority order, and estimated cost of corrections are presented below:

Findings and Recommendations

Estimated Cost to Correct

 The access hole in the roof of the pumphouse had been left open, leaving the top of the unsealed well casing open to contaminated rain water.

The access hole should be sealed.

 One of the large bridge timbers in the side of the pumphouse had been removed to provide access to the inside of the building.

The old lock for which no one apparently has a key should be cut off and replaced. The timber should be nailed back up at the open side of the building.

 The top of the well had an unsealed hole of about 1 1/2 inches in diameter.

The hole should be repaired.

4. The pumphouse was poorly drained. Consequently, water that leaks from around the sucker rod collects in a large puddle in and around the building.

The water should be drained from the inside of the building.

The building was not heated.

An electric, thermostatically controlled heater should be installed in the building after it has been renovated.

 A sampling tap was not available in the pumphouse.

A sampling tap with vacuum breaker should be installed inside the pumphouse.

7. There was no means of adequate treatment of the water. Lask of treatment will probably become a problem when the forthcoming amendment to the SDWA become effective. The operator should begin planning for the installation and operation of a chlorinator.

8. The storage tank was badly rusted inside and out. One welded joint appeared to be nearly rusted through. The cover was off the hatch at the top of the tank.

Plans should be made to replace the storage tank.

 A stock tank was located next to the water storage tank and pumphouse. Standing water was noted.

> The stock tank should be relocated 50-100 yards downgradient from the present site.

Submitted By: Charles C. Tree For	8-15-88
Donald W. Payne	Date
Senior Sanitarian	
Navajo Area Office	
Submitted By: Charles C. Free	8:12:88
Charles Freeman, R.S.	Date
District Sanitarian	
Gallup District	
Submitted By: Willi O. Man.	P/16/18
Bill Mace, P.E. District Engineer	vale
Gallup District	
Garrah Disciscs	

ATTACHMENT A

· (-1) Type of Survey (check one) Fisid 1/Seii (1.147-58 6) Gatels) System Ensuranted 14-00323 [/ fellev-sp / Annual STEVET C7 CCAALMINA LYIES 2055FL 2121FR // Revisit // Other Crzerstip 3/17/88 The Novejo Tribe SURVEYCR (S) CORRELIES RESERVATION Don Payne Kerr McGee :ZIS?-17:1 EXIST-DE-Idia -12113 ::-ING EECESI ING FECTS 175 20000000 A. SCERCE 4. RECGEDS P. Will. MONT. & OFFIR. ECUSEREEPING I. WATER ACCESSION CCREOLZD E. PIFIEG/VALVES SCEEDULE 7. FUNP COSTROLS RECOLES TILL 3. SPRING E. TREATHER 1. EMERGERCY PLAN × S. SEPETY S. OPERATOR INFIL. GALLERY CTEER D. STORAGE FAC. C. SETA/SFDS PEKPS & MOTORS 1. COMPOUED 1. BACT. KONTORING BACT. CITY. 1. FUNF 2. FOURDITION ELECTRIC MOTOR 3. STORAGE TANK ESTRADECRI -C. FUEP EGGSE B. DIST. SYSTEM . 4. GREATICS TURBILITY 1. Y/L APPURT. STRUCTURE 6. PADIOLOGICAL 2. VALTE/VAL. 31. 2. EEATING SECONDURY CEEKICHL 1. ELECTRICITY PLEASEDE SERVES for the system ansideration should be given to freaking the water Hermotetial tap with warmen breaker should be made

PW	SYSTEM: <u>Kerr McGee</u> PWSID: <u>W M - 0 0 3 2 3</u> YEAR: <u>\$ 7 - 8 8</u>							ROBIO PLIAI A		I C A L
MON	S A M	R D E A S Y	R D E A S Y	RT QA TO TV NT RG						
7	RIN	132:194	:	:	1987 :		:	:	:	>>>>
°C _T	CHK	6:14	:	:	;	•	:	:	:	<<<<>>>>>>
N	RIN	13:12	:	:	:	:	:	:	:	>>>>
O _V	CHK	:	:	:	;	:	:	:	:	<<<<< >>>>>
D_	RIN	100:10	:	:	:	:	:	:	:	
D _E c	CHK	:	:	:	:	:	:	;	:	<<<< >>>>>
				+	1988				•	
J	RIN	17/0:125	:	:	:	:	:	:	:	>>>>
AN	CHK	:	:	:	;	:	:	:	:	<<<<< >>>>>
F E B	RTN	10:38	:	:	:	:	:	:	:	>>>>
В	CHK	:	:	:	:	:	:	:	:	<<<<< >>>>>
M	RIN	0 3/10	:	:	:	: ;	:	:	:	
AR	CHK	;	:	:	:	:	: /	:	:	<<<<< >>>>>
					1987	1				
AP	RIN	1%:4/15	:	;	:	:	:	:	:	>>>>>
PR	CHK	:	:	:	:	: i	:	:	:	<<<<< >>>>>
M	RIN	0 :54	:	:	:	:	:	:	<u> </u>	>>>>
A	CHK	:	:	:	:	:	:	:	:	<<<<< >>>>>
Ţ.,	DAME	13 :51	:	:	·	:	:	:	_:	
UN	CHK	:	:	:	:	: [:	:	:	<<<<< >>>>>
			-			987	•			
J	RIN	13:14	:	:		:	:	:	:	>>>>>
L	CHK	:	:	:		:	:	<u> </u>	<u> </u>	<<<<< >>>>>
A U	RIN	136.83	:	;	- :	:	:	:	l <u>:</u>	>>>>>
G	CHK	:	:	;	;	:	:	<u> </u>	<u> </u>	<<<<< >>>>>
S E	RIN	零光	:	<u>:</u>]_:	. :	:	:	:	.
Ep	CHK	ρ·:	:	:	:	:	<u>:</u>	:	<u> </u>	<<<< >>>>>>

CE 7

REPORT OF ANALYSIS

OUT OF STATE 800/545-2188

LAB # 85-08-08:

SAMPLE IDENTIFICATION

DATE COLLECTED

ALPHA1 pCi/liter

Kerr McGee

07/18/85 12:30:00

C4

POTABLE WATER ANALYSIS NAVAJO TRIBAL UTILITY AUTPORITY BACTEMOLOGICAL LABORATORY EXCRESOUS ENCIESA PWSID# NM 0 3 23 PHESENT 2 TOTAL COLFORM CONFIRMED COLFORA ROUTINE COMMENTY LAB TEMP RESAMPLE NON-COMMUNITY CHECK SAMPLE INDIVIDUAL MAILING ADDRESS OF REPORT DETAILED DESCRIPTION AND LOCATION OF SAMPLING POINT ADDRESS an STATE ZIP REMARKS MEV. 9-84 (D as NAVAJO TRIBAL UTILITY AUTHORITY CHEMICAL ANALYSIS LABORATORY 6099 Nm# 0323 PWSID NUMBER SAMPLE NUMBER Kerr Mc Gee SAMPLE LOCATION DATE COLLECTED DATE RECEIVED. COLLECTED BY DATE OUT_ F.S. White TECHNICIAN_ TEST PARAMETER METHOD RESULTS MCL 0.05 ARSENIC ATOMIC ABSORPTION BARIUM ATOMIC ABSORPTION 1.0 0.01 CADMIUM ATOMIC ABSORPTION

CHROMIUM 0.05 ATOMIC ABSORPTION NIA IRON . ATOMIC ABSORPTION 0.05 LEAD ATOMIC ABSORPTION MANGANESE ATOMIC ABSORPTION NIA 0.002 MERCURY FLAMELESS ATOMIC ABSORPTION 0.01 SELENIUM ATOMIC ABSORPTION 0.05 SILVER ATOMIC ABSORPTION CADMIUM REDUCTION IC 0.42 10.0 NITRATE (ASN) FLUORIDE ELECTRODE 1.4 FORM NO. 5450 (P) as REV 8-83 CHEMICAL ANALYSIS

MAVAJO TRIBAL UTI LABORA

II ITY	10	RITY
200V	A 10	(2)
TORY	*	1-14

SAMPLE NUMBER_ SAMPLE LOCATION Kerr McGee

DATE RECEIVED 6-5-85 PWSID NUMBER DATE COLLECTED COLLECTED BY_ DATE OUT_ ADDRESS. TECHNICIAN Onelson

TEST	PARAMETER	METH O D	RESULTS	MCL
土	ARSENIC	ATOMIC ABSORPTION	0239	Charles To the Control of
*	BARIUM	ATOMIC ABSORPTION		0.05
*	CADMIUM	ATOMIC ABSORPTION	.0816	1.0
*	CHROMIUM	ATOMIC ABSORPTION	. 001	0.01
X	IRON		5.001	0.05
¥	LEAD		1.4	N/A
V	MANGANESE	ATOMIC ABSORPTION	.0059	0.05
3		ATOMIC ADSORPTION Hach	1.5	N/A
<u>*</u>	MERCURY	FLAMELESS ATOMIC ABSORPTION	.0019	
*	SELENIUM	ATOMIC ASSORPTION		0.002
*	SILVER	ATOMIC ABSORPTION	.0085	0.01
	NITRATE (ASN)	CADMIUM REDUCTION .	7.001	0.05
	FLUORIDE	ELECTRODE		10.0
RM NO. 54		ELECTRODE		1.4

WATER CHEMICAL ANALYSIS	NAVAJO TRIBAL UTILIT	Y AUTייחRITY	(NA
COUNTRY A A	-95 COLLECTED B		35
TEST PARAMETER	F. S. White METHOD	RESULTS	mg/l
ALKALINITY	TITRAMETRIC AS COCO-	362mg/1	- mg/i
CALCIUM	CITRAMETRICOR AA W CACO	561	75-200
CHLORIDE	JITRAMETRIC IC 3	6.7	250
TOTAL HARDNESS	TITRAMETRIC 40 Calo	940	500
MAGNESIUM	CALCULATED OR AA MCCCD3	379	- 300
MANGANESE	SPECTROPHOTOMETRIC OR AA	317	0.05
IRON	SPECTROPHOTOMETRIC OR AA		0.05
pH	ELECTRODE	112	0.3
PHOSPHATE	SPECTROPHOTOMETRIC TC	7.3	6.5-8.5
POTASSIUM	FLAME DUOTOMETER	<0.1	
SODIUM	ELANE SUBSEINE	20.1	1000-2000
SULFATE	THERAMETRIC JC	238	
TOTAL DISSOLVED SOLIDS		1042	250
TURBIDITY		922	500
FLUORIDE	NEPHELOMETER -ELECTRODS IC	.77	1.4

REV 8-83

WATER SUPPLY PROGRAMS DIVISION LABORATORY REPORT OF DRINKING WATER EXAMINATION .

*. :		CHEMICAL	· ÷
4. (4)	SERIAL NO. OF WATER	SAMPLE 45866	
**	DATE MO.	DAY ENDING DATE	NG. DAY
DATE OF SAMPLING		OF COMPOSITE OR DATE OF SRAB SAMPLE	<u> </u>
TURBIDITY (5 s.u.)*	9 12	CAE	75 .78
COLOR (15 s.u.)*	13	END CARD 2 - DUPLICA	TE COLS. 1-8 FOR CARD 3
000R (3 s.u.)*	•	SPECIFIC CONDUCTANCE	MICROMOHS AT 25°C
TOTAL DISSOLVED SOLIOS (500)*		pH .	
CHLORIDE (250)*		CR*6 (.05)**	< □·00st
SULFATE (250)*		\$1LYER (0.05)**	< 0.03
NITRATE (45)*	• <u></u>	COPPER (1.0)*	23 27
SODIUM	□•□	WANGANESE (0.05)* (SPECT.)	28 32
LITHIUN	36 39	LEAD (0.05)**	42 656
BARIUM (1.0)**	<□·211	IRON (0.3)* (SPECT.)	46 50
M. 8. A. S. (0.5)*	46 49	COBALT	52 56
ARSENIC (0.01)* (0.05)**	<□·dos	CADMIUM (0.01)**	
SELENIUM (0.01)**	-CZ- 56 58	ZINC (5.0)*	64 68
CCE	61 64	NICKEL	70
FLUORIDE (1.4 TO 2.4)**	66 68	MERCURY	<
CYANIDE (0.01)* (0.2)**	70 • 13	REMARKS	
SECORMENDED FIMIT .	-MANDATORY LIMIT	Lau. IV.	8 END CARD 3. 3
	US PER LITER UNLESS OTHERWIS	E MOTEO. Date Completed	4-13-79 80
1MOT INCLUDED IN 1982 P	NS DRINKING WATER STANDARDS	IPA helm incom	atti

19EV. 4-80)

U.S. EN RONMENTAL PROTECTION SENCY OFFIC OF RESEARCH AND DEVEL MENT DRINKING WATER RESEARCH DIVISION LABORATORY REPORT OF DRINKING WATER EXAMINATION

CHEMICAL ANALYSIS

i.	SER	IAL NO. OF WATER SAMPL	E 57949	
-	DATE OF SAMPLIN	DATE MO. G. COMPOSITE TO STARTED	DAY OF COMPOSITE OR DATE OF GRAB SAMPLE	MO. DAY YR.
	TURBIDITY (I t.u.)*	—• —	CALCIUM	•_
	COLOR (15c.u.)**	• 12	MAGNESIUM	27 31
	TOTAL DISSOLVED SOLIDS (500)	13	HARDNESS as CaCO ₃	33 37
•	CHLORIDE (250)**	21 24	- ALKALINITY as CaCO ₃	17 20
	SULFATE (250)**	25 28	SPECIFIC CONDUCTANCE	9 12 (MICROMOHS
	NITRATE -N (10.)*	29 31	pH (6.5-8.5)**	14 16
	SODIUM		CHROMIUM (TOTAL) (FURNACE) (.05) *	17 • 1 21
•	'LITHIUM	36 39	SILVER (0.05)*	23 27
	BARIUM (1.)*	46	COPPER (1.0)**	28 32
	ARSENIC (0.05)*(FURNACE)		MANGANESE (0.05) *** (SPECT.)	
	SELENIUM (0.01)* (FURNACE)	<	LEAD (0.05)* (FURNAC	•
	FLUORIDE (1.4 to 2.4))*	IRON (0.3)** (SPECT.)	, 46 50
	SILICON	• <u> </u>	CADMIUM (0.010)* (FU	
	AEUMINUM .	51 • 55 ····	ZINC (5)**	64 68
		56 61	MERCURY (0.002)*	75 79
-		67 e	REMARKS:	•
٠	*Primary MCL	**Secondary MCL	LAB. NO	2945

67.4.201 67.4.201

OFFICE RESEARCH AND DEVELO ENT

Kery McGec

LABORATORY REPORT OF DRINKING WATER EXAMINATION

30)	CHEMICAL	ANALYSIS	7 0000323
SERIA	L NO. OF WATER SAMPLE		
DATE OF SAMPLING	DATE MO. I	OF COMPOSITE MO. COMPOSITE OF OR DATE OF GRAB SAMPLE	1880 7 8
TURBIDITY (I tu.)*	• — 12	CALCIUM 27	•
COLOR (15c.u.)**	•	MAGNESIUM 23	- 37
TOTAL DISSOLVED 50LIDS (500)	•	HARDNESS as CaCO ₃	14
CHLORIDE (250)**	21 24	ALKALINITY 25 CaCO3 17	20
SULFATE (250)**	25 28	SPECIFIC CONDUCTANCE	(MICROMOHS AT 25- C)
WITRATE -N (10.)*	29 31	pH (6.5-8.5)**	14 16
SODIUM	32 35	CHROMIUM (TOTAL) (FURNACE) (.05) *	17 21
TITHIUM	35 39	SILVER (0.05)*	23 27
BARIUM (1.)*	40 44	COPPER (1.0)**	28 32
ARSENIC (0.05)*(FURNACE)	51 54	MANGANESE (0.05) ** (SPECT.)	34 38
SELENIUM (0.01)* (FURNACE)	-008 56 59	LEAD (0.05)* (FURNACE)	
FLUORIDE (1.4 to 2.4)*	□• □ 68	IRON (0.3)** (SPECT.)	46 50
SILICON	22 25	CADMIUM (0.010) (FURNACE	58 62
ALUMINUM		ZINC (5)**	
&	•	MERCURY (0.002)	75 79
	56 61 ———————————————————————————————————	REMARKS: .	

*Primary MCL

**Secondary MCL -:

AR NO. 2942

RECEIVED DEPARTMENT CHEMICAL and PHYSICAL A for WATER SAMPLES

Date received	Lab No.	SLD upor do
11/11/11/11	WC 2824	51.62

Water Supply System	n Name	liter of the less)		IM PRIMARY PARA	. City or L	ocation	mplete Secon	County	☐ Organi	ic k one:	Radiological
Kerr McGer Collection Date 2/11/80	Collection	Time Colle	ction Point			McGee Min	e, Mck	inley Co.	TF	REATED WATER	A RAW WATE
Collected By A. Smill		Owne		illie's Home			**************************************	Ā	ddress UII	ILlup, NM 873	1337
TYPE of SYSTE		Community	□ No	n-community	SOURCE Drain	Coping	□ Lake □ Pool	□Well-Depth □Other (specify)	,,,,,,,,,,	LAT. °	
CATIONS	mg/I	ANIONS	mg/l	PHYSICAL		HEAVY METALS	mg/I	PARAMETER		ORGANIC	
00930 Sodlum (as Na)	2369	00940 Chloride (as CI)	100	70300 Total Filterable Residue	mg/1 / / / /	01000 Arsenic	+11		Н	39390 Endrin	
00935 Potassium (as K)	507	00950 Fluoride (as F)	048	38260 Foaming Agents (as Las)	1001	01005 Barlum				39732 Lindane	41111
00900 Tot.Hardness (as CaCO ₃)	795	00620 Nitrate (as N)	THE	00095 Conductance Micromhos 25°C	21311	01025 Cadmlum	TIT			38270 Methoxychlor	
00915 Calcium (as Ca)	15 90	00430 Alkalinity (as CaCO ₃)	354	00400 pH	787	01030 Chromlum		RADIOLOG 01501 Gross Alpha	GICAL pCI/I	39400 Toxaphene	
00925 Magneslum (as Mg)	784	00440 Blcarbonate (as HCO ₃)		01330 Odor	0	01049 Lead	1	03501 Gross Beta	pCI/I	39730 2, 4-D	
01045 Iron-Total (as Fe)	10121	00445 Carbonate (as CO ₃)	0	00080 Color	mg/1	07180 Mercury		09501 Radlum-226	pCI/I	39740 2, 4, 5-TP (Silvex)	
0,1056 Manganese (as Mn)	061	00945 Sulfate (as SO ₄)	5169	00070 Turbidity	1015	01145 Selenium	1	11501 Radium-228	pCI/I		
_].		.1				01075 Sliver	+11				
ABORATORY RE	MARKS:								Reviewed Date repo	Mails 1	e

Environ ntal Analysis Laboratories

2030 Wright Jenue Richmond, California 94804 (415) 235-2633

(415) 235-2633 (TWX) 910-382-8132 A REGION IN

DRINKING HATER AUALITSIS REPORT

Ms. Laura Tom

EPA Region IX

215 Fremont Street.

San Francisco, California 94105

TO : AUDREY

Ref: LFE No.: 4137-58,59,61,6

Purchase Order No.: SO 416 NTSE

Date Received: 2/4-2/21/80

Date Reported: Prelim. 3/21/80

No. of Samples: 26

Sample Number	Results pCi/1 ± 2 σ					
and Collection Date	Gross Alpha	225Ra 228Ra	Total Gross 3H 90ST Uranium Beta			
45646 1/21/80	17 ± 1	Incomplete	Incomplete NV 161 - Carson Colony C.s. 1			
45647 1/21/80	< 3 :		NV 162 - Dresservite Cs.			
45648 1/24/80	< 3	·	NY 166 - Fallon Res. C.S.			
45649 1/23/80	< 3		NY 168 - Nixon C.S.			
5650 1/23/80	< 2		NY 169 - Wadaworth C.S.			
45651 1/22/80	< 3		NV 171 - Campbell Ranch			
52016 2/4/80	< 2		NY WO-Buttle Man Ind. Colo			
54676 2/11/80	< 2		MM 273/294 Bass Lakes			
54677 2/11/80	< 2		NM 262/267 Mexican Spring Ele			
54678 2/11/80	_<2		MM 237 Tonatoni NTUA			
54679 2/11/80	< 3		" ? NH 274 Coyote Caryon FL			
54680 2/11/80	6 ± 1	Incomplete	My 265 Black Springs Wes			
54681 2/11/80	< 3		8 NM 274 Colote Carpon Sy			
54682 2/11/80	< 2		Roman Smith Set			
54683 2/12/80 -	< 2		HM 225 Chiska Bia System			
54684 2/12/80	< 3		NA 268 Naschitti			
54685 2/12/80	< 2		MM 264 Buffalo Springs sys			
54686 2/12/80	< 2		MM 291 Tohatchi BIA Spoom			
54689 2/11/80	R 4		M Kerr-Milee			
54771 1/22/80 .	< 2		ca sop // Klamath Islon - Blake			
		domain de la segui pass y	17 P. T. F Allerton			

Environmental Chemist Nuclear Science Department

Intal Analysis Labo

2039 Wright Avenue Richmond, California 94804 (415) 235-2633 (TWX) 910-382-8132

A REGION I.

DRINKING WATER ANALYSIS REPORT

Ms. Vera Moritz Environmental Protection Agency 215 Fremont St. •14 San Francisco, California 94105

Ref: LFE No.: 4137-30

Purchase Order No.: SO 416 NTSE

Date Received:

11/7/79

Date Reported:

Prelim, 1/23/80

No. of Samples:

	Sample Number and		Results pCi/1 ± 2 σ
	Collection Date	Gross Alpha	226 _{Ra} 226 _{Ra} Total Gross ³ H ⁹⁰ Sr Uranium Beta
	54550	12 ± 1	
	54552	< 2	NMdb Black Springs Wash
	54556	< 3	AZ280Hovek Chapter House
	54553	< 3	Manuelito Comm. Sual
	54554	9 ± 2	AZZRO Houck Community Sul
-	54555	. <3	Incomplete AZZEZ Lupton Community Suple
	54557	< 4	MY 278 Tsa Ya Toh Ch. House
•	54558		NH 2595. Church Rock Comm. S
	54559	. 3	NH260 Church Rock Ch. House
	54560	` 3	NH275Pinedale Ch. House
	54561	< 3	Kerr- McGer Camp
	54562	< 4	NH229Ft. Wingate BIA
	54801	< 3	NH 23281A Training Center, Cont.
	54804	< 3	ALL 2020: E . Die Out.
	6.6	< 2	NH 233 Ojo Encino BIA Schoo
	54806	< 3	NM 238 Whitehorse Lake Ch. Hour
-	54811	< 3	NH235 Standing Rock BIA School
_	54812	< 4	NH244 Lake Valley BIA Boarding S
_	54813	< 4	Wilder Lake Valley Chapter (1)
	54814	< 2	MILESUME rock Ch. Water C
		en en en enter enter	NHOSI Crownpoint BIA Hg. Water

Environmental Chemist Nuclear Science Department

Environm tal Analysis Laboratories

2030 Wright Avenue Richmond, California 94804 (415) 235-2633

Ms. Vera Moritz EPA Region IX 215 Fremont Street

San Francisco, California 94105

Purchase Order No

Date Received:

Sample Number		Results pCi/l ± 2 σ
and Collection Date	Gross Alpha	226Ra 228Ra Total Gross 3H 90Sr Uranium Heta
33853 7/12/79 33862 7/14/79 33867 7/12/79 33870 7/13/79 34181 7/14/79	2 ± 1 < 5 < 3 < 3 6 ± 2 < 3	Inscription House AZ 283. Many Farms MTUA AZ 252 Rock Point AZ 3048 Chinle - Caryon de Chel'y Mal'l Homenet AZ 3022 Not Completed Rough Rock Frish School AZ 3061 Lukochuka: AZ 192
34196 7/13/79	< 3	Hardrock - Havajo Gespel Mission 42 257
Ft. Wingate 7/31/79	< 3	
Ft. Wingate BIA 7/31/79	< 4	
Werr McGee Camp	< 5	
7/31/79		
.Churchrock Comm. 7/31/79	< 5	
Navajo Training Center Continental	< 3	
Divide, NM 232 7/31/79		
Lupton Church House, AZ 281, 7/31/79	4 ± 1	
Pinedale Church House, NM 275	< 4	
7/31/79		
South Churchrock, NM 259, 7/31/79	< 4	
Chi Chil Tah Cheechiltah, NY 224 7/31/79	< 3	
Houck Community 7/31/79	< 3	map Ht

Environmental Chemist Nuclear Science Department

	45000750	70 /05 /10	147			
CAI TEUDHIA	KENDKIED	79/05/10	ANIAL YST	5RESULT2510	MAUNITS	
				Control of the second		
,	HILL CESSES.		BETA	<1.1E014#	PCIAL	
ALBO MUCLE CVMb	NM 45AAA		AL PHA	<1.7F01417	PCI/L	
19 3040 075 04 6	9 23		AL. PHA		2. 15. 15. 15.	
120070 09145	DATE- 79 03	1 06 7			•	
c17F. 1.						1.0
				<1.1F01411	PCIAL	
DINEDALE NH GERE	5		RFTA	<1.3F01413	PCI/L	
17 3040 075 04 1	9 23		AI.PHA	41.31.01-12		•
2004AA 09145	DATE - 79 0:	3 07		*		
e175- L	Ar .	x Y				
			41 5114	<9.2E00	PCI.L	
MOLICK APTY 45A7	1	*	ALDHA	<1.1F01 411	PCI/L	
19 7040 075 04	19 23		RETA	41.11.01 -11		
1000AR POTHS	' DATE- 79 0'	3 09			•	
c17F- L	4-4-4	2.0				
	a 4 4		-	<1.1E01411	PCI/L	
HIDTON APTZ 458	76		RFTA		PCI/L	
19 3040 075 04	10 23		ALPHA	. <5.3E00	PC176	7
SMIDE SYDEL	DATE- 79 0	3 09				
el/F- L					1	
-177-		34,000	204.5		PGI/L	
PETANCE NH 458	79	5.00	AFTA	<1.1E01 ZH	PCI/L	0.00
10 3040 075 04	09 23		AI,PHA	<9.1E00	PCI/L	
200499 P91W5	DATE- 79 0	3 09				
<17F= 1			•	•		
C175- 1				Alto Lesian	0014	,
TSA YAH TOH NA	45884		RETA	<5.4E00	. PCI/L	
. 19 3040 075 04	nò 23	:	. ALPHA	<5.4E00	PCI/L	
. 10 1040 075 04	DATE- 79 0	3 09				
200490 991W5	12416 17				St. 100 St. 10	
c17F- L						
	EU AEAAA	68	RETA	<5.4E00	PCI/L	
FT MC DEPMITT A	VO - 33		AL PHA	<2.5E00	PCI/L	
19 7040 075 04	DATE- 79 0	13 11	7 34			
1909A7 091W5	DATE:					
c17F 1.				5.8	2014	
CHILCHINGETO A	17 42019 .		BETA	<5.4F00	PCT/L	
19 3040 075 04	00 27		. ALPHA	<5.4E00	PCI/L	
10 1041 075 00	DATE79 (13 12				
SUUVAS BOLME	, parte are					
c12e- 1						
	12 42010		BETA	<5.4F00	PCI/L	144
CHILCHIMETO NO	11 45010	i.	AL PHA	42.5F00 .	PC1/L	
10 3040 075 04	04 63	12 12				
· SULLA ENTINE	DATE- 79 (03 17				•
517F I						
di antigrapia di Salah da			SFF 18	9096		1
MARTANO LAKE N	4 4/107		27511	2.4F-01.247.	TE-02 PCI/L	
10 3040 075 04	114 C)	02 12	27411	1.5F01 15 1.	SEUU BCITT	
SMIDS . VEVEUE	DATE- 79		23011		BE-OI POIL	
C17F			0.00			

618. Propriétion part 618. Propriétion part 618. Propriétion part

Suc 911

Navajo Nation Water Management Branch Well Log and Drilling Report

PO Box 678 Fort Defiance, Arizona * PH: 928.729.4004 * FAX: 928.729.4126

WELL NO: 14T-586		PWSID:	NM3500323
WELL NAME/OTHER NO: KERR M	CGEE PUB. WTR. SYS.		
WELL TYPE: WW W.	ELL STATUS: ACT	WELL USE: D	OM
LOCATION: .75 M. SW OF KERR MCG	SEE MINE OFF.		
UTM: X(EAST) 724991 Y(N	ORTH) 3949101	ZONE: 12 OPER	RATOR: TRIBE O&M
WATERSHED CODE: 15020006000	STATE: NM	COUNTY: MK	CHAPTER CODE: COYO
GRAZING DISTRICT: 14	LOCATION DATA SOURCE.	FIELD CHECKED 06/16/94	
WELLNO: 14T-586	STARTED:	3/26/1976 COMPLETED:	3/27/1976
ELEVATION: 7090 FT.	DEPTH:	750 FT. DEPTH MEASUR	RED: 3/26/1976
DIAMETER: 9.88 IN.	DEPTH IS:	R Measu	ıred, Estimated, Reported
CASING_DIAMETER: 7 IN.	FROM: -1 FT	. TO: 750 FT.	MATL: STL
CASING_DIAMETER: 0 IN.	FROM: 0 FT	. TO: 0 FT.	MATL:
CASING DIAMETER: 0 IN.	FROM: 0 FT	. <i>TO:</i> 0 FT.	MATL:
CASING_DIAMETER: 0 IN.	FROM: 0 FT	. TO: 0 FT.	MATL:
CASING PERFORATED FROM:	0 FT. TO:	0 FT. OPENING	TYPE:
CASING PERFORATED FROM:	0 FT. TO:	0 FT. OPENING	TYPE:
CASING PERFORATED FROM:	0 FT. TO:	0 FT. OPENING	TYPE:
CASING PERFORATED FROM:	0 FT. TO:	0 FT. OPENING	TYPE:
CASING PERFORATED FROM:	0 FT. <i>TO</i> :	0 FT. OPENING	TYPE:
DATE WELL TURNED OVER TO TRIBE:			
FUNDED BY: PRIVATE		CONTRACTOR: SALAZ	AR DRILL.
SITE IMPROVEMENTS: TA-WL	7	TYPE OF LIFT: SU	ENERGY: EM
HORSEPOWER RATING OF PUMP: 3	ON SI	TE STORAGE CAPACITY:	13000 GAL.
STRUCTURE DATA SOURCE:	WELL FILE/FLD CHK		
WELLNO: 14T-586			211MVRD
THICKNESS: 0 FT. NOMIN BAILER/PUMP TEST: PT RAT	<i>AL YIELD:</i> 10 GPM E: 16 GPM <i>TE</i> :		T DATE: 10/28/1991
DRAWDOWN: 10 FT.	OBSERVATION WELL D	·	, D, (12. 10)20, 100 1
HORIZONTAL CONDUCTIVITY:		SPECIFIC CAPACITY:	1.6 GAL./MIN./FT.
VERTICAL CONDUCTIVITY:	•	STORAGE COEFFICIENT:	0
COEFFICIENT OF TRANSMISSIVITY:	0 FT2/DAY		
AVAILABITY OF TEST DATA:		DRILLERS/ELECTRIC LOGS:	DLEL
HYDROLOGY DATA SOURCE:	WTR DVLPMNT/WELL FI	LE	

WELL NO: 14T-586

STATIC WATER LEVEL(S):

381 FT. 10/28/1991 388 FT. 5/22/1990 380 FT. 3/27/1976

GEOLOGIC INTERVAL(S):

<u>TOP</u>	<u>BOTTOM</u>	<u>UNIT</u>	<u>LITHOLOGY</u>
0	164	211BRLB	SDSL
164	238	211DLTN	SDSL
238	418	211MLTT	SDSL
418	560	211GLLP	SDSL
560	690	210MNCS	SHLE
690	703	211TLLS	SNDS
703	718	210MCDK	SHLE
718	0	211DKOT	SDSL

COMMENT(S):

WELL PROJECT NO. NA-74-543a\NO APPROX. LOCATION OPERATES ON PUMP JACK. 14T-584 & 14T-586 (SAME WELL) WELL CONFIRMED-UPDATED PER * O&M SURVEY OF FALL 91 * TRIBAL WELL RECORD INDICATES PERFORATION SLOTTED 40 FT. WITH 1/16" MESH DEPTH OF PERFORATED INTERVAL UNKNOWN. WELL RECORD DOES NOT SHOW THE DEPTH OF PERFORATION. WELL WAS DEVELOPED BY KERR MCGEE AND IHS. DRILLERS LOG/E LOG/WATER QUALITY AVAILABLE IN WELL FOLDER. ALSO PUMP TEST DATA FROM 10/28/91 TEST. PUMP RATE DURING TEST VARIED FROM 10.5 GPM TO 19.0 GPM; AVERAGE OF 16 GPM CALCULATED BY DIVIDING TOTAL GALLONS WITHDRAWN (FROM METER READINGS) BY TOTAL PUMPING TIME. BECAUSE DEPTH OF PERFORATED INTERVAL IS UNKNOWN AQUI-FER COULD BE ANY OF THE GEOHYDROLOGIC UNITS IN THE MESA VERDE GROUP (211MVRD); WELL MAY ALSO BE PRODUCING FROM THE DAKOTA SANDSTONE(211DKOT). GEOHYDROLOGIC UNITS INTERPRETED FROM GEOPHYSICAL LOG AS CORRELATED WITH OTHER LOGS IN THE AREA. INTERVAL INTERPRETED AS 211MLTT PROBABLY ALSO DILCO COAL MEMBER OF CREVASSE CANYON FORMATION (211DLCOC). LOCA-TION COORDINATES MEASURED WITH GPS DEVICE 7 SATELLITES VI-SIBLE, ELEVATION INTERPOLATED FROM 1:24000 TOPO. THE IMPROVEMENTS AT THIS SITE ARE IN FAIR CONDITION. STORAGE TANK IS COVERED. L. NOTAH/M.S. JOHNSON 12/18/1994

"	LOCATION FILE	
TRIBAL WELL NO /47-	15181611111 pdiste	PRID MM3500312131
WELL NAME/OTHER NO KI	ERIE MCIGIEE PUIBL WAT	reprisis.
MELL TYPE (MARK ONLY ONE)	WELL STATUS (MARK ONLY ONE)	WELL USE (MARK ONLY ONE)
WW WATER WELL	ACT ACTIVE	X DOM DOMESTIC
WA ARTESIAN WELL	INA INACTIVE	AGR AGRICULTURE
ws spring	ABA ABANDONED	LIV LIVESTOCK
NS NATURAL SPRING	UNK UNKNOWN	IND INDUSTRIAL MINING
OW OBSERVATION WELL	L	REC RECREATION
GS GAS WELL		HUN HUNICIPAL
OP OIL PRODUCTION		OTH OTHER
MW MINERAL WELL		UNK UNKHOWE
XX UNKNOWN		
QUAD NO 5261	MILES WEST	MILES SOUTH
NE SE SW NW / NE 10 ACRE	SE SW NW / NE SE SW NW 40 ACRE 160 ACRE	SECT. TOWNSHIP RANGE
APPROXIMATE LOCATION	75 m/ LE SW OF KER	RIMCGEE MINE OFF.
LATITUDE TITLE	LONGITUDE	
UTH COORDINATES: X(EA	ST) 7249911 Y(NORTH)	3949/0/ ZONE / 2
OPERATOR MANAGED	lolém usgs watershed	CODE /15/012/010/016/0100
STATE: TRIBE	NM NEW HEXICO	UT UTAH CO COLORADO
COUNTY: AP APACHE	MR HCKINLEY	sj san juan 🔲 nt hontezuha
OLAVAN AN	UL VALENCIA	KA KANE LP LA PLATA
Со сосоити	C)	
	SD SANDOVAL	
	so socorro	GRAZING DISTRICT //4
	RA RIO ARRIBA	•
	sa san juan	
CHAPTER NAME:	COYOTE CANYON	CHAPTER CODE COYO

LOCATION FILE COMPLETED BY: 1. NOTAH

- DATE 61 194

FIELD CHECKED BY: [MOTAH GK / MSEL]
revised 07 April 93

LOCATION DATA SOURCE: FILELD CHECKED 16/16/194

- *	Mark, short 1 . The	· · · · · · · · · · · · · · · · · · ·	STRUCTURE FIL	E	.	•
-	WELL NO 1/47-15	6//		312110		UPDATED JUL 19
		FT DEPTH				LETED 3 1271 1976
ELEVATI(ON (1/101/10)	FT DEPTH	<u> </u>	DI	EPTH MEA	SURED 3 / 26/1976
DEPTH I	MEASURED	ESTIMATED	X REF	PORTED	WELL	DIA. 9.88 IN
1 CASI	NG DIA 7 . OO	FROM -	// D FT	TO 1	150 1	T MATL SHI
2 CASI	NG DIA	fron	FT FT	TO T		T HATL
3 CASI	NG DIA	Fron	TT FT	то	TT F	T HATL
4 CASI	NG DIA		• •	ro roverdur irnatainless ste	iron eel	MATL MATL Mon-monel
1 CASI	NG PERFORATED FROM		PT TO		FT	OPENING TYPE
2 CASI	ng perforated from		ft to		FT	OPENING TYPE
3 CASI	ng perforated from		ft to		FT	OPENING TYPE
4 CASI	ng perforated from		PT TO		PT	OPENING TYPE
5 CASI OPENING	p=perfora	ed rock l=: ted/porous/slo	FT TO louvered/shut otted casing t=sand poi	r=wire-wo	rr een pund screed/shore	OPENING TYPE Themesh screen sen sed x=open hole
DATE WE	LL TURNED OVER TO	TRIBE:/_	/			
FUNDED	BY: PRIVATE		сои	TRACTOR: 5/	712 A 21	4R DRILL
SITE IN	PROVEMENTS	<u>TYI</u>	PE OF LIFT		ENE	RGY SOURCE
П мм	WINDHILL	☐ YE	AIRLIFT		K EN	ELECTRIC HOTOR
WP WP	WATERING POINT	PS	PISTON		DE	Diesel Engine
⊠ TA	TANK	_ rv	TURBINE		☐ HA	RAND
X MT	WATER LINE	☐ x 1	MULTIPLE TUR	Bine	Gs	GAS ENGINE
TR	TROUGH	□ си	CENTRIFUGAL		LP LP	LP GAS ENGINE
☐ cs	CISTERN	∏ нс	MULTIPLE CEN	TRIFUGAL	NG NG	NATURAL GAS ENGINE
∏ в₽	HAND PUMP	DB0	BUCKET		MW	WINDMILL.
□ но	NONE	🔀 sv	SUBMERSIBLE		o so	SOLAR
PUMP HI	• <u> </u>	n site storagi	CAPACITY [131243	GAL	
STRUCT	ure data source: 🔟	ELLU FILL	E/FLD	0414 1		

STRUCTURE FILE COMPLETED BY: L. NOTAM/M.J. SUNSON DATE 1918 194
revised 08 April 92 /dbase/seil8/coc/5tr-form.y

HYDROLOGY FILE UPDATED JUL 19 957 TRIBAL WELL NO /4/-584 USGS AQUIFER CODE 2 1 1 MVRD THICKNESS FT NOHINAL YIELD | | | | GPM YIELD HEASURED / / X PUMP TEST & HOURS BAILER DATE 1012811991 DRAWDOWN | 1 131911 PT OBSERVATION WELL DATA AVAILABLE YES SPECIFIC CAPACITY 1 .60 GPH/FT HORIZ CONDUCTIVITY FT/DAY VERT. CONDUCTIVITY STORAGE COEF COEF OF TRANSHISSIVITY INDICATE ADDITIONAL PUMPING TEST DATA AVAILABLE AS HARD COPY: MULTIPLE RATE DRAWDOWN PUMPING TEST SINGLE RATE DRAWDOWN PUMPING TEST YES X NO MULTIPLE RATE DRAWDOWN/RECOVERY TEST X YES NO RECOVERY TEST LOG AVAILABLE: A DL DRILLER'S X EL ELECTRIC LOG HYDROLOGY DATA SOURCE: WHITER DEVOLPMENT DATE \$ 188194 HYDROLOGY FILE COMPLETED BY: NOTHAM ENTERED JUL 1 9 1995 STATIC WATER LEVEL FILE DEPTH TO SWL _____ FT DATE ____/___/ DEPTH TO SWL 38/00 PT DATE 10/28/1991 DEPTH TO SWL 380,00FT DATE 031271 76 DEPTH TO SWL ______FT DATE ____/__/ DEPTH TO SWL _____PT DATE ____/___/ DEPTH TO SWL _____FT DATE ___/__/ DEPTH TO SWL _____/___/ DEPTH TO SWL _____FT DATE ___/___/ DEPTH TO SWL _____FT DATE ____/___/ DEPTH TO SWL _____ FT DATE ____/___/ DEPTH TO SWL _____FT DATE ___/__/ DEPTH TO SWL _____/___/____ DEPTH TO SWL _____PT DATE ___/__/ DEPTH TO SWL _____FT DATE ____/___/ DEPTH TO SWL _____FT DATE ____/___/ DEPTH TO SWL _____FT DATE ____/__/ DEPTH TO SWL _____FT DATE ___/___ DEPTH TO SWL _____FT DATE ____/___/ DEPTH TO SWL _____FT DATE / / DEPTH TO SWL _____FT DATE / /
/dbase/wells/doc/Eyd-Forz.vp _____FT DATE ___/___/ DEPTH TO SWL

revised OS April 93

TRIBAL WELL RECORD GEOHYDROLOGIC UNITS

TRIBAL WELL NO / 1917- 58	611111	ENTERED JUL	
SEQ-NO 001 DEPTH TO TOP	DEPTH TO BOTTOM C HODIFIER C	GEOHYDRO-UNIT	LITH.
CONTRIBUTING UNIT CODE		GEOHYDRO-UNIT	LITH.
SEQ-NO BOB DEPTH TO TOP	DEPTH TO BOTTOM TO MODIFIER	GEOHYDRO-UNIT	LITH.
CONTRIBUTING UNIT CODE	d	GEOHYDRO-UNIT	LITH. SDSL
SEQ-NO 005 DEPTH TO TOP	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITH.
INTERVAL FILE COMPLETED BY			E /2 /8 94

TRIBAL WELL RECORS

TRIBAL WELL NO 147-		ENTERED.	
SEQ-NO OO O	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITH.
	LOGIC HODIFIER		
CONTRIBUTING UNIT COD	e <u>VI</u>	"早年节节的兴兴性的时间对对关系的特殊的	**************************************
SEQ-NO 007 DEPTH TO TOP	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITE.
LITHO	LOGIC HODIFIER		
CONTRIBUTING UNIT COD	: (4)	<u> </u>	*****************
SEQ-NO 08 DEPTH TO TOP	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITE.
LITHO	LOGIC MODIFIER		
CONTRIBUTING UNIT CODE	. 🛮	<u> </u>	
※ 本書 本本 本本 本本 本本 本本 本本 本本 本本 本本 本 本 本 本	***************************************	**************************************	集加利用铁矿美美美美美美美
SEQ-NO TOP	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITH.
LITHOI	COGIC HODIFIER		
	***************************************	《祖祖明日刊四年代代表自日日日日日代代表的《祖宗》:	医甲基甲氏试验检试验 医甲基苯基甲基
SEQ-NO TOP	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITH.
LITHO	OGIC HODIFIER		
CONTRIBUTING UNIT CODE	<u> </u>		
INTERVAL FILE COMPLETED revised 08 April 93	BY: M.S. JOHNSON	DATE //dbase/w	12 1 18. 194 1110/doc/Int-Porm. wp

COMMENTS FILE

* *	TRIBAL WELL NO 147-6-86
	ENTERED JUL 1 9 1995
	COMMENTS: Experience with Tribal well record indicates
	perforation slatted 40 FT. with 16" mesh, depth of perforated
uterval wknam	well record does not show the depth of perforation.
	well was developed by Kerr Magee and IHS.
	Drillers Log / ELog / water Quality available
	in well Folder. Also puns test data from 10/28/91 tost
	Puns rate during test varied from 10.5 GPM - 19.0 GPM;
	average of 16 GPM calculated to by divising total gallons
	withdrawn (from nater readings) by total sumsing time.
	Because desth of perforated interval is unknown, aquifer could be any
	of the geologic units in the Mex Vorde Group (211MVRD); well may also be
	producing from the Dakota Sandstone (2110KOT).
	Geolydrologic units interpreted from apoplysical log as
	correlated with other loss in the area, Interval interpreted as 211 MITT
	probably also continue Dileo Cool Member of Crussee Canyon Formation (211DL COC).
	includes (CHULCOC).
	LOCATION COORDINATES MEASURED WITH GPS DEVICE 7 SATELLITES VISIBLE
	LOCATION COORDINATES PICKED OFF TOPO HAP -SCALE=
	ELEVATION PRINTED ON TOPO HAP ~SCALE=
	ELEVATION MEASURED WITH GPS UNIT -4 SATELLITES VISIBLE
	X ELEVATION INTERPOLATED FROM 1:24000 TOPO
	THE IMPROVEMENTS AT THIS SITE ARE:
	IN GOOD CONDITION NEED SOME MAINTENANCE
	☐ IN FAIR CONDITION ☐ NEED MAJOR MAINTENANCE
	IN POOR CONDITION
	STORAGE TANK IS COVERED UNCOVERED
	1 alx-malma a. Il.
	COMMENTS BY: L. NOTA 4 M.S. Johnson DATE / B 1 / 94 revised 07 April 93 /Coase/wells/doc/Coc-Fore.vp

WELL RECORD

Water Well Development

Navajo Trib Window Ro	e ck, Arizona								O 14T-586
		Miles west_							Gee Cap.
T17N, Location	Pi6W Sec	34 200	· · · · · · · · · · · · · · · · · · ·			······································			
Began well	3-26-7	6		Finis	shed well		3-27-7	6	
Diameter of	well	9.7/8"		Dept	h of well		750		
Static water	level3	80'	. Drawdo	own _	N.A	•	. Recov	ery	N.A.
Quantity of	water on tes	t run: bailer: pum	p:		G. P.	M. Tes	ted for		hours
Kind of casi	ng: 7" 0.	0 metasizes and	length	7" 0	0 x 750	<u> </u>			
Screen kind	slotted	Length	4	0'		Mes	h	1/16"	
Contractor _	Salazar 1	Brothers Drlg.	Inc.	Add	ress_Box#	2958,	, Mila	n, N.M.	
DEI	PTH .	•	L	og .					
From	To	Formation		·	Acquifer			Remark	
								, 	
								<u>-</u>	
								······································	
				······································					
					<u> </u>				
								•	·

Remarks:								-	
5 P									

NTRD - 01

Teta

Salts

Excellent

Calcium Ca.

Good

Magnesium

Mg.

Fair

Sodium

Na.

Poor

Chlorides

CL

Doubtful

Sulfates

so

Carbonates HCO

Not suitable for domestic, livestock use

CO 3

P.H.

TRIBAL WELL NO >14T-586

Nn 35003.23 PWSID STATE NUMBER

WELL NAME/OTHER NO >35 WATERWELL/KERR MCGEE

WELL TYPE >WW

WELL STATUS ACT WELL USE

QUAD NO

MILES WEST > 7-34

MILES SOUTH >12.23

> 160 ACRE > SECT >35 TWNSHP >T17.0 RANGE >R16.0W .75 miles 5W. of mining offices >KERR MCGEE MINING CAMP 40 ACRE >

APPROXIMATE LOCATION

724991 >714243 Y(NORTH) ZONE > 3 UTM COORD: X(EAST) OPERATOR >TRIBE O&M

WATERSHED CODE >/5020060000 STATE >NM COUNTY CHAPTER CODE >MK

GRAZING DISTRICT >14

LOCATION DATA SOURCE >WELL FILES

FIELD CHECKED BY > C. NOTAH 6-16-94

WELLNO 14T-586

3 -26-1976 STARTED **/**/***

COMPLETED 3/27/1976

ELEVATION 7/20 750 FT FTDEPTH DEPTH MEASURED 3/26/1976

DEPTH IS M

WELL DIA 9.88 IN

MATL STL 1 CASING DIA 7.00 FROM -/.o FT TO 750 FT

2 CASING DIA FT MATL TN FROM FT TO

3 CASING DIA MATL FROM FT TO FT IN

4 CASING DIA FROM FT TO FT MATL IN

WELL NO= 14T-586

1 CASING PERFORATED FROM OPENING TYPE FT TO FT 2 CASING PERFORATED FROM FTOPENING TYPE FTTO 3 CASING PERFORATED FROM FT TO FT OPENING TYPE 4 CASING PERFORATED FROM TO FTOPENING TYPE FT5 CASING PERFORATED FROM FT OPENING TYPE PΨ TO DATE WELL TURNED OVER TO TRIBE

SITE IMPROVEMENTS TA PR WL

TYPE OF LIFT 5U

ENERGY SOURCE EM

PUMP HP 3 ON SITE STORAGE CAPACITY /3,000 STRUCTURE DATA SOURCE O&M MAINTAINANCE STATION

....no hydrology data available

\$RECNO WELLNO 14653 14T-586 SWL DATE

14T-586 388.0 5/22/1990

... no geologic interval data available

.... field water quality data available WELL PROJECT NO. NA-74-543a\NO APPROX. LOCATION

OPERATES ON PUMP JACK. 14T-584 & 14T-586 (SAME WELL)

WELL CONFIRMED-UPDATED PER * O&M SURVEY OF FALL 91 *

WELL RECORD

Water Well Development Navajo Tribe Window Rock, Arizona WELL NO. 14T-586 Kerr McGee Cap. Quad. No. 106 SW Miles west 7.34 Miles south 12.23 T17N, Ri6W Sec. 34 Location 3-26-76 3-27-76 Began well ___ _____ Finished well ____ Diameter of well _____ 9 7/8" 750' _____ Depth of well _____ Static water level ____380' _____ Drawdown _____ N.A. Recovery ____ N.A. Quantity of water on test run: bailer: pump: G. P. M. Tested for hours Kind of casing: 7" 0.0 metasizes and length 7" 0.0 x 750' Screen kind slotted 40' _____ Mesh 1/16" ____Length___ Contractor Salazar Brothers Drlg. Inc. Address Box# 2958, Milan, N.M. DEPTH LOG From To Formation Acquirer Remarks 0' 750' MESAUARDE Remarks: S.P. Teta Calcium Magnesium Sodium Chlorides Sulfates Carbonates P.H. CO Salts Cz. Mg. Na. CL SO HCO 3

NTRD. RE

Excellent

Good

Fair

Poor

Doubtful

Not suitable for domestic, livestock use

<i>t</i>	· SA		R BROS, DRIL	LING		PR	3 OJEĆT	0//76	REPORT
OCATION	AREA			COMPA	NY			. STATE O	
JCA I ION	CACI	100-1	Rock	1/1/1	43, D	2000	e4)	May	March 20
ECTION		TWN		NG	77	PE ORIG	بر <u>م</u> سرز	\wedge	RIG NO.
	DEP	TW	DRILLING	AND COL		OG BIT USI		· · · · · · · · · · · · · · · · · · ·	REMARKS OR
HOLE NO.	FROM	то	ROCK TYPE	NAME	TYPE	SIZE	RUN	SER, NO.	FEET OF CORE RECOVERED
	0	100	PLESA VARDE		İ	<u> </u>		K-7	1120072
		76'()	181 E 511 V 1481198					// /	
					<u> </u>				
	-	*****		·····					
	RILLERS	TIME	DISTRIBUTION		<u> </u>		ATFRI	ALS USED	<u> </u>
	30						7 7	140 0010	
Daile	· · · · · · · · · · · · · · · · · · ·		LLI	168				······································	
£181 //,	<u> </u>	5/5	Hole	(1/6]					
	<i>U</i>	"							
Material Communication of the									
					•	•			

***************************************									-
			,						
	·		*						
		**************************************	WATER-GALLO	NS		FR	юм		
ST CIRC	ULATION-	-MIX M	UD REMARKS:						
ROM	, то		7						
ROM	, то		7						
ROM	1 TO	· · · · · · · · · · · · · · · · · · ·	•		······································				
	' TO		*						
ROM									
ROM	' то		•						
	• то		,			SIGNE	0-0RILL	endren!	

SALAZAR BROS, DRILLING REPORT NO. DRILLING REPORT STATE COMPANY LOCATION KERR 700 GEE SECTION RNG TWN DRILLING AND CORING LOG REMARKS OR FEET OF CORE BIT USED DEPTH ROCK TYPE HOLE RECOVERED FROM то NAME TYPE SIZE RUN SER, NO. 100 DRILLERS TIME DISTRIBUTION MATERIALS USED FROM WATER-GALLONS LOST CIRCULATION—MIX MUD REMARKS: FROM 1 TO

SIGNED-DRILLER

ALG. (C. ALG. (C. GRANTS, N.M.

Parents of

FROM

FROM

FROM

FROM

1 TO

1 TO

' TO

į	. S			LING		PR	OJECT	3-571-17	E REPORT N
§					#42 verancezaturaria		e ikki menindan me	CYATE O	
LOCATION	I AREA	Ehur	ch Rock	COMPA	KRY7	20 90	50	1	
SECTION			N I	RNG	TY	PE /RIG	_ /	00	RIG NO.
41770 W 77 10 10 10 10 10 10 10 10 10 10 10 10 10	l ne	PTU		AND CO			ED		REMARKS OR
NO.	FROM	ТО	TYPE	NAME	TYPE	SIZE	RUN	SER. NO.	FEET OF CORE RECOVERED
teration	640	750	A) ESA CARRIE	(4 1/2)	13	3"		2.5/10	660
								- J	
	7	300	mesa wewe						

	DRILLER	S TIME	DISTRIBUTION	· ! ·································		M.	ATERI	ALS USED	
477					***************************************	٠ محر.		-6	
DRILLING AND CORING LOG MOLE DEPTH ROCK TYPE NAME TYPE SIZE RUN SER. NO. PERT RECK									
EDCATION AREA LOCATION TWN RNG LOCATION AREA LOCATION TWN RNG LOCATION AREA LOCATION AREA LOCATION AREA LOCATION TWN RNG LOCATION AREA LOCATION ARE									
DRILLERS TIME DISTRIBUTION BOTH STATES AND									
MER !	57 , 77.	<u>** </u>	15 65-36 PM	<u>/· </u>					
		3.0 ·							
		·					· · · · · · · · · · · · · · · · · · ·		
· ·						·-········			
	·····								
			WATER-GALL	.ons		FI	MOS		
LOST CIRC	ULATIO	N-MIX N							€ <u></u> ,
			4		· 			· <u>, , , , , , , , , , , , , , , , , , ,</u>	4 F.
						<u></u>			
			•						
-		<u> </u>		· · · · · · · · · · · · · · · · · · ·			,		
-			,						
r KUM	* 1°C					SIGNE	C-DRIL	LER	· ·
				-	· ·,			1/2 2/1	
•			•				.66	, SERVICE F	RINTING CO. GRANTS, N.M.

SALAZAR BROS. DRILLING REPORT NO. DRILLING REPORT COMPANY/ME 4. Me gare Chirch Book LOCATION TYPE RIG 6 **SECTION** RNG TWN DRILLING AND CORING LOG BIT USED REMARKS OR FEET OF CORE DEPTH NO. NAME TYPE SIZE RUN SER. RECOVERED FROM TO 300 MATERIALS USED DRILLERS TIME DISTRIBUTION FROM WATER-GALLONS LOST CIRCULATION-MIX MUD REMARKS:

SERVICE PRINTING CO. GRANTS, N.M.

y a war with the control of the cont

1 TO

1 TO

1 TO · TO

' TO

FROM FROM

FROM

FROM

FROM

ł ,	. 5 A		BROS, DRII	LING		PR	2/g	7/76	RE	PORT A
OCATION	AREA	ch Ros		COMP		CC 72	ne (2. 2)	STATE 0		
ECTION		TWN	F	RNG	77	PE RIG	- C - Z		RIG NO.	
	DEF	PTH	DRILLING ROCK	AND CO		OG BIT USI	ED		REMARKS	5 OR
HOLE NO,	FROM	τo	TYPE	NAME	TYPE	SIZE	RUN	SER, NO.	FEET OF RECOVE	
	660	750	MESA VARDE							
		7								
			<u> </u>							·····
					 					······
<u> </u>						<u> </u>			 	
					_					
	L					**************************************		والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة		
	RILLERS	TIME	DISTRIBUTION			MA	ATERIA	LS USED	<u></u>	
_ hii/	011.5	20 min			12 1/2	12.1	Min.	e Hot		
				Ì						
20/1	1 55	erine i desi	30 to 4:01							
8 2 A	25.5	1. 11	30 to 4:01	7)						
7	V ¢									
***************************************								·		
	····					······				
	 								 	
······································										
						······································				
**************************************			WATER-GALLO)NS		FR	ОМ			
OST CIRC	II ATION	MIX MI	JD REMARKS:		-					Mile of the sections
ROM	, TO	1111/	· REMARKS.	***************************************						
ROM	······································			······································				······································	74/4 ⁴⁸	
	1 TO						(
FROM	' TO									
FROM	' TO		•							-
FROM	י דס		*							
				na meneral kalangan pertambah di Al-	Mark Color (* 1804) (* 1805) (* 1804)		O-ORILL			

,	DR	ILLING REPORT			t h	OJECT	27- 71	REPORT
							and the second s	
ATION	AREN hurch	Korle	COMPA	NY VL	MS	ye.	STATE	W Miero
		7-7			PE RIG). 150		RIG NO.
ECTION	<u>AWT</u>	N DRILLING	RNG			/, /a -		
HOLE	DEPTH	ROCK	AND CO		BIT US	EO		REMARKS OR
HOLE NO.	FROM TO	TYPE	NAME	TYPE	SIZE	RUN	SER. NO.	RECOVERED
Value				<u> </u>				
Wal								
					<u> </u>			
				.				
, E	RILLERS TIME	DISTRIBUTION			М	ATERIA	LS USED	
from	. 4:00 -	500 p.n	τ.					
di.	land MIT	week						
7	7	30/						
(100 ·	-6:00 1	D.D.P. \$						
7	7.	aring Down						
		ary vou						
					, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
		· · · · · · · · · · · · · · · · · · ·				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>
·	manulus de la company de la co	Market Control of the						
							, , , , , , , , , , , , , , , , , , , ,	
		WATER-GALL	ONS.		F	ROM		
	ULATION-MIX M	UD REMARKS:						
ST CIRC	OLA HON-MIX M							
	T TO	*						
ROM		•						
ROM	т ТО	•						
ST CIRC	r TO	•						

MILL

WELL

1940 Webster Street, Suite 100 Oakland, California 94612 Tel: (510) 893-6700, Fax: (510) 550-2760

January 24, 2011

U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105

TDD No: T02-09-10-08-0005 Project No: 002693.2103.01RA

Attention:

Harry Allen, USEPA On-Scene Coordinator

Andrew Bain, USEPA

Subject:

NECR Water Well Sampling

Church Rock Chapter Navajo Nation

Navajo Natio

148-586 15T-303

164-336 164-340

INTRODUCTION

In October 2010 the U.S. Environmental Protection Agency (USEPA) tasked the Ecology and Environment Inc. Superfund Technical Assessment and Response Team (START) with technical assistance relating to residential water well sampling in the vicinity of the former Northeast Church Rock Mine located in the Church Rock Chapter of the Navajo Nation. (Figure 1, Attachment A).

The purpose of this sampling event was to generate additional data to measure the impact of the former Northeast Church Rock Mine uranium mine on wells within the adjacent areas.

SAMPLING ACTIVITIES

Well sampling was conducted on October 19, 2010. A total of five wells were sampled. Four of the wells were residential wells and one (Mill Well) well was part of the former United Nuclear Corporation (UNC) facility in the area. Every effort was made to collect water samples in a manner consistent with resident collection and use (i.e. taps, pumps or bucket collect).

A Time Critical Quality Assurance and Sampling (QASP) Plan (Appendix D) was developed prior to sampling and followed with the following exceptions:

- Well NR#1 is no longer in use and was not sampled as the casing has been filled with concrete.
- The Mine Well is no longer in use and was not sampled as the casing has been filled with concrete.

Water quality parameters were measured in the field using a Horiba, Ltd. multi-parameter water quality meter. The meter was calibrated daily using a buffer solution. Samples were collected and analyzed for metals, radionuclides and anions by GEL Laboratories Inc. (Charleston, SC). Samples were collected and analyzed for oxygen and hydrogen isotopic ratio by Isotech Laboratories, Inc (Champaign, II). The QASP (Appendix D) contains all methods and volumes used in sample analysis.

WELL DESCRIPTIONS

Well 15T-303

Well 15T-303 is a windmill powered well that feeds into an approximately 40,000 gallon uncovered metal tank. The well is currently in use and there is a trough and locked tap in the vicinity of the tank that are used to water livestock. Samples were collected from the top of the tank using a bucket.

14T-586

14T-586 is a diesel engine powered well that feeds into an approximately 10,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

Mill Well

The Mill Well is located on the former UNC facility property. The well is electric powered well, housed in a wooden pump house, north of the former UNC offices and equipment yard. There is no storage tank affiliated with the well and the well is not currently in use. Samples were collected from a tap inside the pump house with pump turned on.

Mine Well

The mine well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

NR#1

The NR#1 well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

16K-340

Well 16K-340 is a windmill powered well that feeds into an approximately 40,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

RESULTS

Table 1 (Appendix B) gives a well specific summary of all applicable data. All laboratory data was validated by a START chemist using the *Region 9 Draft Superfund Data Evaluation/Validation Guidance*. Data validation indicated the laboratory data was acceptable with qualification as definitive data. A separate data validation report was generated under this project and is included in the project file.

This letter summarizes all activities conducted on the Tuba City Removal project. If you have any questions regarding START's activities associated with this project, please do not hesitate to contact me.

Respectfully,

Mike Folan

START Member

 $\begin{array}{ll} \mbox{Attachments:} & \mbox{A-Homesite Location Map} \\ \mbox{B-Data Tables} \end{array}$

C – Photographic Documentation D- QASP

cc: file

ATTACHMENT A: Well Location Map

ATTACHMENT B: Data Tables

Table 1: NECR Water Well Sampling Data

14T-586100 (duplicate)

Result

7.1

Units

TDD:09-10-08-0005

14T-586

7.1

Result Units

pН

PAN:002693.2104.01 RA 15T-303 Result Units 6.8 0.35 S/m

	рп	7.1		pH	7.1		рн	6.8	
	Conductivity	0.26	S/m	Conductivity	0.26	S/m	Conductivity	0.35	S/m
<	Turbidity	10.1	NTU	Turbidity	10.1	NTU	Turbidity	10.1	NTU
Yate	Dissolved Oxygen	6.30	mg/L	Dissolved Oxygen	6.30	mg/L	Dissolved Oxygen	7.99	mg/L
n O	Temperature	7.6	°C	Temperature	7.6	ç	Temperature	12.1	°C
Water Quality	Salinity	0.1	%	Salinity	0.1	%	Salinity	0.2	%
₹	Total Dissolved Solids	1.7	g/L	Total Dissolved Solids	1.7	g/L	Total Dissolved Solids	2.2	g/L
	Oxidation Reduction Potential	100	m∨	Oxidation Reduction Potential	100	m∨	Oxidation Reduction Potential	129	m∨
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Aluminum	220	ug/L	Aluminum	82	ug/L	Aluminum	68.0	ug/L
	Antimony	3.00	ug/L	Antimony	7.34	ug/L	Antimony	6.83	ug/L
	Arsenic	5.00	ug/L	Arsenic	5.00	ug/L	Arsenic	7.54	ug/L
	Barium	13.1	ug/L	Barium	13.4	ug/L	Barium	8.24	ug/L
	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L
1	Bromide	0.200	ug/L	Bromide	0.200	ug/L	Bromide	0.200	ug/L
	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L	Cadmium	1.17	ug/L
	Calcium	270000	ug/L	Calcium	281000	ug/L	Calcium	373000	ug/L
1	Chromium	13.9	ug/L	Chromium	1.00	ug/L	Chromium	1.16	ug/L ug/L
	Cobalt	1.13	ug/L	Cobalt	1.00		Cobalt	1.00	
l	Copper	3.00				ug/L			ug/L
Metals			ug/L	Copper	3.00	ug/L	Copper	3.00	ug/L
als	Iron	482	ug/L	iron	468	ug/L	Iron .	685	ug/L
	Lead	3.30	ug/L	Lead	3.30	ug/L	Lead	3.30	ug/L
1	Magnesium	119000	ug/L	Magnesium	122000	ug/L 	Magnesium	144000	ug/L
	Manganese	320	ug/L	Manganese	319	ug/L	Manganese	162	ug/L
	Mercury	0.066	ug/L	Mercury	0.066	ug/L	Mercury	0.066	ug/L
	Nickel	71.3	ug/L	Nickel	1.51	ug/L	Nickel	1.50	ug/L
	Potassium	7430	ug/L	Potassium	7690	ug/L	Potassium	5650	ug/L
	Selenium	7.7	ug/L	Selenium	37.7	ug/L	Selenium	43.8	ug/L
	Silver	1.00	ug/L	Silver	1.00	ug/L	Silver	1.00	ug/L
	Sodium	135000	ug/L	Sodium	140000	ug/L	Sodium	188000	ug/L
]	Thallium	5.00	ug/L	Thallium	5.00	ug/L	Thallium	8.9	ug/L
	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L
	Zinc	338	ug/L	Zinc	355	ug/L	Zinc	839	ug/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	ALPHA	2.62	pCi/L	ALPHA	5.80	pCi/L	ALPHA	-0.526	pCi/L
	BETA	6.58	pCi/L	BETA	6.02	pCi/L	BETA	2.62	pCi/L
	Pct Uranium-235	0.00		Pct Uranium-235			Pct Uranium-235	0.00	percent
Rac	Radium-226	0.880	pCi/L	Radium-226	0.540	pCi/L	Radium-226	1.18	pCi/L
혉	Radium-228	3.41	pCi/L	Radium-228	3.71	pCi/L	Radium-228	3.34	pCi/L
Radionuclide's	Thorium-228		pCi/L	Thorium-228	0.155	pCi/L	Thorium-228	-0.139	pCi/L
le.	Thorium-230	-0.185	pCi/L	Thorium-230	0.818	pCi/L	Thorium-230	-0.158	pCi/L
l"	Thorium-232	-0.133	pCi/L	Thorium-232	-0.0195	pCi/L	Thorium-232	-0.0195	pCi/L
	Uranium-233/234	1.16	pCi/L	Uranium-233/234	1.73	pCi/L	Uranium-233/234	0.317	pCi/L
	Uranium-235/236	0.114	pCi/L	Uranium-235/236	0.0569	pCi/L	Uranium-235/236	0.219	pCi/L
	Uranium-238	1.20	pCi/L	Uranium-238	0.790	pCi/L	Uranium-238	0.442	pCi/L
		20	PONE	Otaliiuiii-200	0.730	POILE	Oranium, 200	J.772	Pone

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005

PAN:002693.2104.01RA

	147	Γ-586		14T-58610	0 (duplicate)	15	T-303	
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Chloride	14.0	mg/L	Chloride	14.1	mg/L	Chloride	10.5	mg/L
≥	Nitrate	0.267	mg/L	Nitrate	0.266	mg/L	Nitrate	0.100	mg/L
Anions	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L
ଊ	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	2.00	mg/L
	Sulfate	1380	mg/L	Sulfate	1310	mg/L	Sulfate	2000	mg/L
	Fluoride	1.19	mg/L	Fluoride	1.24	mg/L	Fluoride	1.52	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H₂O	-80.8	1%	δD H₂O	-81.2	%	δD H₂O	-73.1	%
	δ ¹⁸ O H₂O	-10.44	%	δ ¹⁸ Ο Η ₂ Ο	-10.53	%	δ ¹⁸ Ο Η ₂ Ο	-8.56	%

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005

PAN:002693.2104.01RA	
Selection of the select	

	16K-3	36		16K-34	10		MILLWE	in about the billion of the con-	104.011
		Result	Units		Result	Units		Result	Units
	pН	7.4		pН	7.6		ρН	7.4	
	Conductivity	0.15	S/m	Conductivity	0.19	S/m	Conductivity	0.36	S/m
_	Turbidity	29.9	NTU	Turbidity	5.5	NTU	Turbidity	14.7	NTU
a≱	Dissolved Oxygen	3.05	mg/L	Dissolved Oxygen	5.26	mg/L	Dissolved Oxygen	6.39	mg/L
막	Temperature	15.5	°C	Temperature	16.8	°C	Temperature	15.2	°C
Water Quality	Salinity	0.1	%	Salinity	0.1	%	Salinity	0.2	%
Ţ	Total Dissolved Solids Oxidation Reduction	1	g/L	Total Dissolved Solids Oxidation Reduction	1.2	g/L	Total Dissolved Solids Oxidation Reduction	2.3	g/L
	Potential	86	mV	Potential	76 .	mV	Potential	-127	mV
Г	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Aluminum	229	ug/L	Aluminum	126	ug/L	Aluminum	68.0	ug/L
İ	Antimony	3.00	ug/L	Antimony	3.00	ug/L	Antimony	3.00	ug/L
	Arsenic	11	ug/L	Arsenic	8.53	ug/L	Arsenic	5.00	ug/L
	Barium	450	ug/L	Barium	140	ug/L	Barium	1.64	ug/L
	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L
	Bromide	0.234	ug/L	Bromide	0.295	ug/L	Bromide	0.361	ug/L
.	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L
	Calcium	76800	ug/L	Calcium	99800	ug/L	Calcium	2420	ug/L
	Chromium	1.00	ug/L	Chromium	1.03	ug/L	Chromium	1.43	ug/L
	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L
_	Copper	29.7	ug/L	Copper	3.00	ug/L	Copper	20.4	ug/L
Metals	Iron	2720	ug/L	Iron	181	ug/L	Iron	9870	ug/L
als	Lead	3.58	ug/L	Lead	3.30	ug/L	Lead	3.74	ug/L
	Magnesium	20600	ug/L	Magnesium	43500	ug/L	Magnesium	470	ug/L
	Manganese	95.9	ug/L	Manganese	122	ug/L	Manganese	51	ug/L
	Mercury	0.066	ug/L	Mercury	0.066	ug/L	Mercury	0.066	ug/L
	Nickel	1.50	ug/L	Nickel	1.50	ug/L	Nickel	2.38	ug/L
	Potassium	2540	ug/L	Potassium	3940	ug/L	Potassium	3200	ug/L
	Selenium	10.2	ug/L	Selenium	5.00	ug/L	Selenium	26.7	ug/L
	Silver	1.00	ug/L	Silver	1.00	ug/L	Silver	1.00	ug/L
	Sodium	202000	ug/L	Sodium	233000	ug/L	Sodium	694000	ug/L
	Thallium	5.00	ug/L	Thallium	5.00	ug/L	Thallium	6.45	ug/L
	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L
	Zinc	153	ug/L	Zinc	148	ug/L	Zinc	659	ug/L
	Analyte	Result		Analyte	Result	Units	Analyte	Result	Units
	ALPHA	0.129	pCi/L	ALPHA	5.46	pCi/L	ALPHA	9.79	pCi/L
	BETA	4.99	pCi/L	BETA	2.37	pCi/L	BETA	2.72	pCi/L
	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent
Rac	Radium-226	1.20	pCi/L	Radium-226	0.464	pCi/L	Radium-226	0.639	pCi/L
Radionuclide's	Radium-228	4.58	pCi/L	Radium-228	0.747	pCi/L	Radium-228	1.77	pCi/L
nucl	Thorium-228	0.298	pCi/L	Thorium-228	-0.0682	pCi/L	Thorium-228	0.139	pCi/L
ide	Thorium-230	-0.524	pCi/L	Thorium-230	0.0264	pCi/L	Thorium-230	0.480	pCi/L
S	Thorium-232	-0.0195	pCi/L	Thorium-232	-0.0722	pCi/L	Thorium-232	-0.0195	pCi/L
	Uranium-233/234	-0.171	pCi/L	Uranium-233/234	0.297	pCi/L	Uranium-233/234	2.61	pCi/L
	Uranium-235/236	0.181	pCi/L	Uranium-235/236	0.297	pCi/L	Uranium-235/236	0.174	pCi/L
	Uranium-238	0.392	pCi/L				Uranium-238		
	UlaillullI-230	0.392	how.	Uranium-238	1.40	pCi/L	บเสทเนท-238	2.82	pCi/L

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005

PAN:002693.2104.01 RA

	16K-336			16K-340			MILLWELL		
Anions	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Chloride	18.8	mg/L	Chloride	22.1	mg/L	Chloride	154	mg/L
	Nitrate	2.89	mg/L	Nitrate	5.97	mg/L	Nitrate	0.100	mg/L
	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L
	Ortho-phosphate	0.291	mg/L	Ortho-phosphate	0.163	mg/L	Ortho-phosphate	2.00	mg/L
	Sulfate	118	mg/L	Sulfate	368	mg/L	Sulfate	1460	mg/L
	Fluoride	0.861	mg/L	Fluoride	0.483	mg/L	Fluoride	1.73	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H₂O	-91.4	%	δD H₂O	-82.6	%	δD H₂O	-107.3	%
	δ ¹⁸ O H₂O	-12.04	%	δ ¹⁸ Ο Η ₂ Ο	-11.01	%	δ ¹⁸ O H₂O	-14.14	%

ATTACHMENT C: Photographic Documentation

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 15T-303

Date: 10/19/10

Description:

Well 15T-303

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 14T-586

Date: 10/19/10

Description:

Well 14T-586

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Mill Well

Date: 10/19/10

Description:

Mill Well

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description: Mine Well

Date: 10/19/10

Description:

Well NR#1

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-340

Date: 10/19/10

Description:

16K-340

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-336

Date: 10/19/10

Description:

16K-336

Table J
Reporting Limits, Action Levels, and Quality Control Limits

		Action Level	Quantitation	Duplicate	Matrix	Matrix Spike	
Analysis	Analyte	(mg/L)	Limit (µg/L)	ŔPD	Spike	RPD	
Anions by 300.0	Fluoride	4	0.10	25	75-125	20	
Anions by 300.0	Chloride	250	1.0 ·	25	75-125	20	
Anions by 300.0	Nitrite as N	1	0.10	25	75-125	20	
Anions by 300.0	Nitrate as N	10	0.10	25	75-125	20	
Anions by 300.0	o-Phosphate, as P	Not Available	1.0	25	75-125	20	
Anions by 300.0	Sulfate	250 (s)	0.50	25	75-125	20	
Metals by 6010B	Aluminum	0.1	100	25	75-125	20	
Metals by 6010B	Antimony	0.1	100	25	75-125	20	
Metals by 6010B	Arsenic	0.01	10	25	75-125	20	
Metals by 6010B	Barium	2	20	25	75-125	20	
Metals by 6010B	Beryllium	0.005	5	25	75-125	20	
Metals by 6010B	Cadmium	0.01	10	25	75-125	20	
Metals by 6010B	Calcium	Not Available	1000	25	75-125	20	
Metals by 6010B	Chromium	0.10	10	25	75-125	20	
Metals by 6010B	Cobalt	Not Available	20	25	75-125	20	
Metals by 6010B	Соррег	1.3 (s)	20	25	75-125	20	
Metals by 6010B	Iron	Not Available	50	25	75-125	20	
Metals by 6010B	Lead	0.015	5	25	75-125	20	
Metals by 6010B	Magnesium	Not Available	600	25	75-125	20	
Metals by 6010B	Manganese	0.05 (s)	15	25	75-125	20	
Metals by 6010B	Mercury	0.002	0.5	25	75-125	20	
Metals by 6010B	Nickel	Not Available	20	25	75-125	20	
Metals by 6010B	Potassium	Not Available	5000	25	75-125	20	
Metals by 6010B	Selenium	0.05	10	25	75-125	20	
Metals by 6010B	Silver	0.10 (s)	10	25	75-125	20	
Metals by 6010B	Thallium	0.002	10	25	75-125	20	
Metals by 6010B	Vanadium	Not Available	20	25	75-125	20	
Metals by 6010B	Zinc	5 (s)	10	25	75-125	20	
Gross alpha by 900.0	alpha	See table A-1	1.0 piC/L	25	75-125	20	
Gross beta by 900.0	beta	See table A-1	1.0 piC/L	25	75-125	20	
903.1	Ra-226	See table A-1	1.0 piC/L	25	75-125	20	
904.0	Ra-228	See table A-1	1.0 piC/L	25	75-125	20	
Isotopic Th by HASL 300 Th-01-RCmod	Th-238, 230, 232	See table A-1	1.0 piC/L	25	75-125	20	
Isotopic U by HASL 300 U-02-RC mod	U-233/234, U- 235/236, U-238	See table A-1	1.0 piC/L	25	75-125	20	

Key: RPD = relative percent difference; mg/L = milligrams per liter; $\mu/L = micrograms$ per Liter NA = Not Applicable

⁽s) = National Secondary Drinking Water Regulation not enforceable and not an action limit for this assessment

MEMORANDUM

Moll Well 9/22/10 Red clata for;

198

TO:

Ms. Sara Jacobs U.S. EPA. Region 9 DATE:

December 7, 2010

02

FROM:

Toby Leeson, Bruce Narloch

REFERENCE:

1008501

SUBJECT:

Risk Analysis of Mill Site Well Water Used for Construction Dust Control

Northeast Church Rock Mine Site, New Mexico

MWH is submitting this technical memorandum to U.S. EPA, Region 9 on behalf of United Nuclear Corporation (UNC). This memorandum describes an assessment of potential risk associated with the use of a well water in connection with investigations or construction activities at or nearby NECR and related areas (e.g., on the adjacent Navajo Reservation). This memorandum has been developed to address concerns recently expressed by the local community with respect to the quality of the water used for dust suppression during the NECR investigation and removal activities and whether such use poses a potential risk to humans or the environment.

Introduction and Background

UNC has been using water from a well on its property at NECR in connection with site investigations since 2006 and most recently for dust control during the Interim Removal Action (IRA) (Interim Removal Action Construction Plan (MWH, 2009)). The primary use of the water has been for suppression of dust generated during construction activities, by utilizing a spray truck, in accordance with standard operating procedures. The source of water used for dust suppression has been a well at the Church Rock Mill Site, herein referred to as or "Mill Well 1".

Mill Well 1 is completed in the Westwater Canyon Member of the Morrison Formation at a total depth of 1,600 feet below ground surface (bgs). Water from the well has historically been sampled and analyzed for a variety of constituents, including radionuclides. The results of these analyses are summarized in Table 1, *Historical Water Analytical Results from Mill Well 1*. This well was most recently sampled by UNC in September 2010 for chemical analysis of metals, general water quality parameters, and radionuclides. Table 1 lists historical results for total uranium and radium-226 plus radium-228. Results for other analyses from the September 2010 sampling event are shown in Table 2, *Summary of Mill Well 1 Water Analytical Results, September 2010*. A copy of the laboratory report for this most recent sampling event is included as an attachment.

Although not applicable to water used for dust control, analytical results were compared to applicable New Mexico water quality standards (i.e., NMAC 20.6.2) to determine if any compounds warrant further evaluation. As presented in Tables 1 and 2, three constituents (uranium, sulfate and total dissolved solids) have been detected above the standards. However, uranium was last detected above its standard in 2002 and has been below the standard in the last two sampling events, including during the time period of water use for the IRA.

As can be seen in Table 2, both sulfate and total dissolved solids (TDS) exceeded NMAC 20.6.2 standards. Both constituents are classified as general water quality parameters, and are not considered constituents of potential concern. Sulfates are naturally occurring in mineral compounds, many of which are found dissolved in groundwater and are non-toxic. Consumption of water containing sulfate or sulfate compounds may have a laxative effect at high concentrations (e.g., greater than 1000 mg/l) and can impart an unpleasant taste to the water. Due to the lack of toxicity, there are no health-based guidelines for sulfate in drinking water.

TDS represents the sum of the cations (positively charged) and anions (negatively charged) in the water and is a qualitative measure of the amount of dissolved ions, but does not indicate the levels of individual ions or specific water quality issues. As such, there is no toxicity issue directly related to TDS.

Risk Assessment

The water used during dust suppression was applied conservatively and the amount used was only enough to suppress dust. At no time was the water allowed to pool or runoff the construction areas. Based on the location and methods used to apply the water from Mill Well 1 for dust suppression, water mist applied to the surface evaporates quickly and has no potential to impact surface water or groundwater. The lack of impact to surface was demonstrated by the post-IRA status survey results.

Because water from Mill Well 1 is not used for drinking, the only possible complete exposure pathway is inhalation of water mist by a construction worker or observer while the water is being applied. Therefore, potential risks to human health from uranium through this potential exposure pathway were evaluated. Sulfate and TDS were not included in the risk assessment for the reasons stated above and because there are no toxicity values with which to conduct risk calculations.

The general approach used in this risk evaluation was based on screening-level human health risk assessment (HHRA) methods presented in the *Final Removal Site Evaluation Report Northeast Church Rock Mine Site* (MWH, 2007). A preliminary remediation goal (PRG) for uranium in water that is used for dust suppression was calculated using the U.S. Environmental Protection Agency (USEPA) Online PRG Calculator for Chemicals (2010a). The general framework for conducting HHRAs under CERCLA is provided in USEPA's *Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Part A* (1989). The PRGs were calculated using the methodologies described in USEPA's *Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual, Part B* (1991a) and updated input parameters and equations as noted in USEPA's Online PRG Calculator for Chemicals (2010a).

As described above, the primary exposure scenario for the Site involves potential exposure of Site workers or remediation observers to uranium in water used in dust suppression through inhalation of mist generated during dust suppression activities. Currently, the USEPA does not have a method, or exposure model, for the evaluation of non-volatile constituents (e.g., uranium) in water mist. Therefore, an oral exposure model was used and it was conservatively assumed that a Site worker or remediation observer could be exposed to up to 1 liter per day (L/day) of dust suppression water as inhaled mist. While USEPA's Online PRG Calculator for Chemicals (2010a) cites the water ingestion rate of an adult as 2 L/day, USEPA's Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors (1991b) further clarifies that it should be assumed that half of a site worker's daily water intake (1 liter out of 2) occurs at work, with all water ingested being conservatively assumed to come from drinking water at work and not a bottled

water source. The assumption that a site worker would inhale a volume of inhaled mist equivalent to the daily drinking water intake at work (i.e., 1 L/day) is highly conservative, as it is unlikely that a worker would inhale that much mist. Additional assumptions included an exposure frequency (EF) of 250 days per year (d/yr) and exposure duration (ED) of 15 years (yr). The oral reference dose (RfD) for uranium of 3.0E-03 milligrams per kilogram per day (mg/kg-day) was obtained from USEPA's Integrated Risk Information System (IRIS) database (USEPA, 2010b). Based on these exposure assumptions and toxicity information, a PRG for uranium in dust suppression water of 0.31 mg/L was calculated (Table 3).

In accordance with MWH (2007), only non-carcinogenic hazards of uranium were evaluated; potential carcinogenic risks associated with possible exposure to uranium daughter products (e.g., radium-226) were not evaluated in the above PRG. It should also be noted that this PRG does not include potential contributions of background concentrations of uranium to non-carcinogenic hazard. A screening-level non-carcinogenic hazard quotient (HQ) for Site workers and remediation observers assuming exposure to uranium in dust suppression water as mist was calculated based upon the following equation:

HQ = EPC / PRG

(Equation 1)

Where:

EPC = exposure point concentration (mg/L)

HQ = hazard quotient (unitless)

PRG = preliminary remediation goal (mg/L)

An EPC for uranium in dust suppression water was conservatively assumed as 0.07 mg/L, the highest concentration measured in samples collected from Mill Well 1 historically.

For Site workers and remediation observers potentially exposed to uranium in water used for dust suppression, a non-carcinogenic HQ estimate was calculated as 0.2 (Table 3). This screening-level non-carcinogenic HQ estimate does not exceed the USEPA's point of departure risk management criterion for evaluation of non-carcinogenic hazards equal to 1. Based on the above results, the presence of uranium in water used for dust suppression does not pose a significant risk to Site workers or remediation observers.

IRA Air Monitoring and Soil Data Evaluation

During the IRA, a comprehensive Health and Safety Program, including Radiation Safety, was implemented by the construction contractor (MACTEC, 2009) for both field personnel as well as the general public or remediation observers (e.g., at the boundaries of the construction areas and from the viewing area used during the IRA). The results of the H&S sampling confirmed that there was no exposure during the IRA. Personnel and vehicle monitoring included:

- Uranium bioassay monitoring
- External radiation monitoring
- Breathing-zone air monitoring
- · Radioactive contamination monitoring
- · Fugitive dust monitoring

No exceedances of applicable occupational exposure limits were detected for any of these tests, as described in the *Interim Removal Action Status Survey Report* (MWH, 2010). Additionally, radioactive contamination was not detected on any person or any vehicle leaving the IRA construction area. Fugitive dust monitoring was also conducted and all results were less than applicable occupational exposure limits (MACTEC, 2010).

Environmental monitoring was also performed during the IRA, as described in the *Interim Removal Action Completion Report* (MWH, 2010). Monitoring included:

- Air monitoring of internal and external radiation dose
- Radon exposure
- Environmental external radiation dose
- Respirable dust

All results were within EPA-approved monitoring criteria (MWH, 2010).

After the conclusion of IRA construction activities, a post-construction status survey was conducted that included surface soil sampling and analysis of Ra-226 concentrations, as described in the Interim *Removal Action Post-IRA Status Survey Report* (MWH, 2010). The soil samples were collected at 22 locations within the IRA construction area from 0 to 0.5 feet below ground surface (bgs) on a regular grid over the whole area. The results of the soil analyses indicated post-IRA Ra-226 concentrations (pCi/g) were within the range of background concentrations as demonstrated using the methods of the *Multi-Agency Radiation Survey and Site Investigation Manual* (MARSSIM) (EPA, 2000).

Conclusions

The results of this analysis indicate that use of water from Mill Well 1 for dust suppression during construction activities does not result in significant risk of exposure to humans or the environment, and that if comparable methods of control and monitoring are used during future investigation and construction activities, no significant risk of exposure will occur. While water from Mill Well 1 meets current drinking water standards for uranium, this analysis indicates that, even at historically maximum levels, concentrations of uranium in site water from Mill Well 1 would not pose a significant risk to site workers or remediation observers as result of its use for dust suppression.

References

MWH, 2010. Interim Removal Action Status Survey Report, Northeast Church Rock Mine Site.

MWH, 2007. Final Removal Site Evaluation Report, Northeast Church Rock Mine Site.

- U.S. Environmental Protection Agency, 2010a. Online Preliminary Remediation Goals Calculator for Chemicals. http://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search (2010).
- USEPA, 2010b. Integrated Risk Information System (IRIS) Database. U.S. Environmental Protection Agency. http://www.epa.gov/iris/
- USEPA, 2000. Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM), EPA 402-R-97-016, Rev. 1.

- USEPA, 1991a. Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part B Development of Risk-based Preliminary Remediation Goals), EPA/540/R-92/003. December.
- USEPA, 1991b. Risk Assessment Guidance for Superfund: Volume I: Human Health Evaluation Manual (Supplemental Guidance: Standard Default Exposure Factors) Interim Final. OSWER Directive: 9285.6-03. March.
- USEPA, 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, (Part A), Interim Final, EPA/540/1-89/002. December.

Attachments: Table 1- Historical Water Analytical Results from Mill Well 1

Table 2 - Summary of Mill Well 1 Water Analytical Results, September 2010
Table 3 - Summary of Human Health Risk Estimates, Groundwater Use for Dust

Suppression Laboratory Analytical Report

cc: Lance Hauer – GE Larry Bush – UNC Jed Thompson – MWH

	Table 1 al Water Analytical Result ited Nuclear Corp. Mining	
Date	Uranium (mg/L)	Ra-226 + Ra-228 (pCi/L)
September 2010 ¹	0.003	2.6
February 2006 ²	0.0081	2.4
June 2002 ³	0.07	3.4
2 nd Qtr 1999 ⁴	0.033	<0.2
1 st Qtr 1999 ⁴	0.048	<0.2
4 th Qtr 1998 ⁴	0.001	<0.2
3 rd Qtr 1998 ⁴	0,065	<0.2
July 1993 ⁵	0.002	3

Notes:

- ¹ Laboratory analytical report, United Nuclear Corporation (Energy Labs, Inc., 2010).
- ² Table 1 from the *In-Situ Alkalinity Stabilization Pilot Study Report* (2006).
- ³ Laboratory Analysis Report, UNC Mining and Milling (Energy Labs, 2002). Uranium
- ⁴ UNC Domestic Waterwell Analysis Summary. Footnote to the table states: "On 1/11/96 NMED determined that this water system is no longer classified under 'Non-Transient.' 'Non-Community' or defined as a Public Water System and therefore sampling is not required."
- ⁵ Water Analysis Report, UNC Mining and Milling (Energy Labs, 1993).
- ⁶ All results represent the dissolved fraction.

		Table 2	A I I D -		
Analyte	Result	Units	Analytical Re Precision	RL	NMAC 20.6.2 Standard
	MA	JOR ION	S		
Bicarbonate as HCO3	246	mg/L		1	n/a
Calcium	13	mg/L		2	n/a
Magnesium	3	mg/L		1	n/a
Nitrogen, Ammonia as N	0.49	mg/L		0.05	n/a
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1	n/a
Potassium	3	mg/L		1	n/a
Sodium	806	mg/L		1	n/a
Sulfate	1270	mg/L		8	600
	PHYSICA		ERTIES		
pH	8.8	s.u.			6 - 9
TDS @ 180 C	2240	mg/L			1000
	N	METALS			
Aluminum	ND	mg/L		0.1	5
Arsenic	ND	mg/L		0.001	0.1
Beryllium	ND	mg/L		0.01	n/a
Cadmium	ND	mg/L		0.005	0.01
Cobalt	ND	mg/L		0.01	0.05
Lead	ND	mg/L		0.05	0.05
Manganese	0.07	mg/L		0.01	0.2
Molybdenum	ND	mg/L		0.1	1
Nickel	ND	mg/L		0.05	0.2
Selenium	ND	mg/L		0.001	0.05
Uranium	0.003	mg/L		0.0003	0.03
Vanadium	ND	mg/L		0.1	n/a
	RADI	ONUCLIE	DES		
Gross Alpha (- Rn & U)	1.7	pCi/L	(±) 0.5		n/a
Lead 210	2.7	pCi/L	(±) 1.2		n/a
Radium 226	0.92	pCi/L	(±) 0.25		30
Radium 228	1.7	pCi/L	(±) 0.58		30
Thorium 230	0.06	pCi/L	(±) 0.07		n/a

Notes:

Sample collected September 22, 2010. RL = reporting limit. n/a = not applicable

	Summary of Huma Groundwater Use for Dr	Table 3 in Health Risk Es ust Suppression -	timates Site Work	er								
Groundwater Concentration Groundwater Concentration Pathway-Specific Cancer Risk and Noncancer Have Estimates 1 Ingestion of Groundwater												
Constituent	EPC ²	Cancer-based PRG ³	ILCR 3	Noncancer- based PRG ³	HQ ³							
Uranium	0.07	NA	NA	3.1E-01	0.23							
	Cumulative ILCR/HQ ⁴ :		0E+00		0.2							

Notes:

HQ - Hazard quotient.

ILCR - Incremental lifetime cancer risk.

NA - Not applicable

PRG - Preliminary remediation goal

¹ Based on the Soil Screening Guidance for Chemicals, and the Online PRG Calculator for chemicals (USEPA, 2010). Risk and hazard estimates are for site worker exposure to groundwater used for dust suppression at the Site.

² The exposure point concentration (EPC) is the most recent groundwater monitoring concentration as of September 2010.

³ Calculated using tap water equations within USEPA's online PRG calculator for chemicals (USEPA, 2010) adjusting for site-specific exposure parameters for the site worker. Primary exposure pathway for the site worker is inhalation of water vapor, yet no model exists to evaluate this pathway for metals. Therefore it was assumed that the exposure would be through ingestion of groundwater for the purposes of these risk estimates.

⁴The ILCR and HQ are calculated as a ratio of the EPC divided by the cancer-based or the noncancer-based PRGs, respectively.

ANALYTICAL SUMMARY REPORT

October 11, 2010

United Nuclear Corporation 21 Miles NE Of Gallup Gallup, NM 87305

Workorder No.: C10090864

Quote ID: C129 - Quarterly Long List

Project Name: Not Indicated

Energy Laboratories, Inc. received the following 1 sample for United Nuclear Corporation on 9/22/2010 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C10090864-001	Domestic Water Well	. 09/20/10 13	58 09/22/10	Aqueous	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Total Alkalinity QA Calculations Arsenic Speciation Selenium-IV, Total CVAA Selenium Prep E300.0 Anions Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite pH Metals Preparation by EPA 200.2 Gross Alpha minus Rn222 and Uranium Lead 210, Total Radium 226, Total Radium 228, Total Thorium, Isotopic Solids, Total Dissolved E624 Purgeable Organics

This report was prepared by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601. Any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

The results as reported relate only to the item(s) submitted for testing.

If you have any questions regarding these test results, please call.

Report Approved By:

Helena, MT 877-472-0711 © Billings, MT 80D-735-4489 © Casper, WY 888-235-0515 Gillette, WY 866-686-7175 © Rapid City, SD 888-672-1225 © College Station, TX 888-690-2218

CLIENT:

United Nuclear Corporation

Project:

Not Indicated

Sample Delivery Group: C10090864

Report Date: 10/11/10

CASE NARRATIVE

BRANCH LABORATORY SUBCONTRACT ANALYSIS

Tests associated with analyst identified as ELI-H were subcontracted to Energy Laboratories, 3161 E.Lyndale Ave., Helena, MT, EPA Number MT00945.

Tests associated with analyst identified as ELI-CS were subcontracted to Energy Laboratories, 415 Graham Rd., College Station, TX, EPA Number TX01520.

LABORATORY ANALYTICAL REPORT

Client:

United Nuclear Corporation

Project:

Not Indicated

Lab ID:

C10090864-001

Client Sample ID: Domestic Water Well

Report Date: 10/11/10

Collection Date: 09/20/10 13:58

DateReceived: 09/22/10 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Bicarbonate as HCO3	246	mg/L		5		A2320 B	09/22/10 17:21 / ja
Calcium	13	mg/L		1		E200.7	09/23/10 15:06 / cp
Chloride	151	mg/L	Ð	2		E300.0	09/22/10 19:49 / ljl
Magnesium	3	mg/L		1		E200.7	09/23/10 15:06 / cp
Nitrogen, Ammonia as N	0.49	mg/L		0.05		A4500-NH3 G	09/22/10 21:11 / ljl
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.1		E353.2	09/22/10 15:19 / ljl
Potassium	3	mg/L		1		E200.7	09/23/10 15:06 / cp
Sodium	806	mg/L		1		E200.7	09/23/10 15:06 / cp
Sulfate	1270	mg/L	D	8		E300.0	09/22/10 19:49 / ljl
PHYSICAL PROPERTIES							
pH	8.80	s.u.		0.01		A4500-H B	09/22/10 15:12 / lr
Solids, Total Dissolved TDS @ 180 C	2240	mg/L		10		A2540 C	09/23/10 10:55 / lr
METALS - TOTAL							
Aluminum	ND	mg/L		0.1		E200.7	09/28/10 23:07 / cp
Beryllium	ND	mg/L		0.01		E200.8	09/28/10 02:45 / sml
Cadmium	ND	mg/L		0.005		E200.8	09/24/10 18:39 / sml
Cobalt	ND	mg/L		0.01		E200.8	09/24/10 18:39 / sml
Lead	ND	mg/L		0.05		E200.8	09/24/10 18:39 / sml
Manganese	0.07	mg/L		0.01		E200.8	09/24/10 18:39 / sml
Molybdenum	ND	mg/L		0.1		E200.8	09/24/10 18:39 / sml
Nickel	ND	mg/L		0.05		E200.8	09/28/10 02:45 / sml
Uranium	0.0030	mg/L		0.0003		E200.8	09/24/10 18:39 / sml
Vanadium	ND	mg/L		0.1		E200.8	09/24/10 18:39 / sml
METALS - SPECIATED							
Arsenic-III	ND	mg/L		0.001		E1632AM	09/24/10 15:36 / eli-h
Selenium-IV	ND	mg/L		0.001		A3114 B	09/28/10 09:56 / rdw
RADIONUCLIDES - TOTAL							
Gross Alpha minus Rn & U	1.7	pCi/L				E900.1	09/27/10 15:46 / ep
Gross Alpha minus Rn & U Precision (±)	0.5	pCi/L				E900.1	09/27/10 15:46 / ep
Gross Alpha minus Rn & U MDC	0.5	pCì/L				E900.1	09/27/10 15:46 / ep
Lead 210	2.7	pCi/L				E909.0M	10/05/10 12:13 / eli-cs
Lead 210 precision (±)	1.2	pCi/L				E909.0M	10/05/10 12:13 / eli-cs
Lead 210 MDC	1.9	pCi/L				E909.0M	10/05/10 12:13 / eli-cs
Radium 226	0.92	pCi/L				E903.0	10/04/10 12:38 / dmf
Radium 226 precision (±)	0.25	pCi/L				E903.0	10/04/10 12:38 / dmf
Radium 226 MDC	0.21	pCi/L				E903.0	10/04/10 12:38 / dmf
Radium 228	1.7	pCi/L				RA-05	09/28/10 09:18 / plj
Radium 228 precision (±)	0.58	pCi/L				RA-05	09/28/10 09:18 / plj
Radium 228 MDC	0.84	pCi/L				RA-05	09/28/10 09:18 / plj

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix.

LABORATORY ANALYTICAL REPORT

Client:

United Nuclear Corporation

Project:

Not Indicated

Lab ID:

C10090864-001

Client Sample ID: Domestic Water Well

Report Date: 10/11/10

Collection Date: 09/20/10 13:58 DateReceived: 09/22/10

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	MCI BL QCI	•	Analysis Date / By
Analyses	nesuit	Units	Quantiers	nt do	. wemou	Analysis bate / by
RADIONUCLIDES - TOTAL						
Thorium 230	0.06	pCi/L	U		E907.0	09/27/10 13:31 / dmf
Thorium 230 precision (±)	0.07	pCi/L			E907.0	09/27/10 13:31 / dmf
Thorium 230 MDC	0.1	pCi/L			E907.0	09/27/10 13:31 / dmf
DATA QUALITY						
A/C Balance (± 5)	1.49	%			Calculation	09/30/10 12:39 / kbh
Anions	35.0	meq/L			Calculation	09/30/10 12:39 / kbh
Cations	36.1	meq/L			Calculation	09/30/10 12:39 / kbh
Solids, Total Dissolved Calculated	2390	mg/L			Calculation	09/30/10 12:39 / kbh
TDS Balance (0.80 - 1.20)	0.940				Calculation	09/30/10 12:39 / kbh
VOLATILE ORGANIC COMPOUNDS						
Bromodichloromethane	ND	ug/L		1.0	E624	09/29/10 06:12 / jlr
Bromoform	ND	ug/L		1.0	E624	09/29/10 06:12 / jlr
Chlorodibromomethane	ND	ug/L		1.0	E624	09/29/10 06:12 / jlr
Chloroform	ND	ug/L		1.0	E624	09/29/10 06:12 / jlr
Trihalomethanes, Total	ND	ug/L		1.0	E624	09/29/10 06:12 / jlr
Surr: 1,2-Dichlorobenzene-d4	98.0	%REC	{	30-120	E624	09/29/10 06:12 / jlr
Surr: Dibromofluoromethane	98.0	%REC	8	30-120	E624	09/29/10 06:12 / jlr
Surr: p-Bromofluorobenzene	98.0	%REC	8	30-120	E624	09/29/10 06:12 / jlr
Surr: Toluene-d8	96.0	%REC	8	30-120	E624	09/29/10 06:12 / jlr

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B									Batch:	R13757
Sample ID: MBLK	2 Me	thod Blank				Run: MANT	ECH_100922B		09/22	/10 16:56
Alkalinity, Total as CaCO3		ND	mg/L	1						
Bicarbonate as HCO3		1	mg/L	1						
Sample ID: LCS1	Lal	boratory Cor	ntrol Sample			Run: MAN1	TECH_100922B		09/22	/10 17:12
Alkalinity, Total as CaCO3		210	mg/L	5.0	105	90	110			
Sample ID: C10090851-003ADUF	Sa	mple Duplic	ate			Run: MANT	TECH_100922B		09/22	/10 17:44
Alkalinity, Total as CaCO3		69.0	mg/L	5.0				0.7	10	
Sample ID: C10090859-001AMS	Sa	mple Matrix	Spike			Run: MAN	TECH_100922B		09/22	/10 19:38
Alkalinity, Total as CaCO3		1680	mg/L	5.0	106	80	120			

Client: United Nuclear Corporation

Report Date: 10/11/10

Project: Not Indicated

Analyte C	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C								Batch: 10	0923_1_SLD	S-TDS-W
Sample ID: MBLK1_100923	М	ethod Blank				Run: BAL-1	_100923A		09/23/	/10 10:48
Solids, Total Dissolved TDS @ 180	С	ND '	mg/L	10						
Sample ID: LCS1_100923	La	aboratory Cor	trol Sample			Run: BAL-1	_100923A		09/23/	/10 10:48
Solids, Total Dissolved TDS @ 180	С	995	mg/L	10	99	90	110			
Sample ID: C10090804-002AMS	S	ample Matrix	Spike			Run: BAL-1	_100923A		09/23/	/10 10:51
Solids, Total Dissolved TDS @ 180	С	4080	mg/L	10	103	90	110			
Sample ID: C10090804-002AMSD	s	ample Matrix	Spike Duplicate			Run: BAL-1	_100923A		09/23	/10 10:51
Solids, Total Dissolved TDS @ 180	С	4030	mg/L	10	102	90	110	1.4	10	

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A3114 B									Bat	ch: 27612
Sample ID: MB-27612	Me	thod Blank				Run: CVAA	-C202_100928D		09/28/	10 14:57
Selenium		ND	mg/L	0.0003						
Sample ID: LCS-27612	Lat	oratory Cor	ntrol Sample			Run: CVAA	-C202_100928D		09/28/	1 0 14:59
Selenium		0.0547	mg/L	0.0010	109	90	110			
Sample ID: C10090864-001BMS	Sa	mple Matrix	Spike			Run: CVAA	-C202_100928D		09/28/	10 15:03
Selenium		0.0558	mg/L	0.0010	112	85	115			
Sample ID: C10090864-001BMSI) Sa	mple Matrix	Spike Duplica	te		Run: CVAA	-C202_100928D		09/28/	10 15:06
Selenium		0.0562	mg/L	0.0010	112	85	115	0.7	15	

Client: United Nuclear Corporation

Report Date: 10/11/10

Project: Not Indicated

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-H B							Analytica	ıl Run: OF	RION555A-2	_100922B
Sample ID: ICV1_100922_2	Initi	ial Calibratio	n Verification	Standard					09/22	/10 14:22
рН		6.85	s.u.	0.010	100	98	102			
Method: A4500-H B		· · · · · · · · · · · · · · · · · · ·					В	atch: 100	922_2_PH-V	V_555A-2
Sample ID: C10090851-005ADUF	Sar	mple Duplica	ate			Run: ORIO	N555A-2_1009	22B	09/22	/10 14:57
pН		7.64	s.u.	0.010				0.4	10	

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte	Count	Result	Units	RL	%REC	Low Limit	High L	.imit	RPD	RPDLimit	Qual
Method: A4500-NH3 G										Batch:	R137582
Sample ID: MBLK-1	Me	thod Blank				Run: TECH	INICON_	_100922E	3	09/22/	10 21:03
Nitrogen, Ammonia as N		ND	mg/L	0.02							
Sample ID: LCS-2	Lal	ooratory Co	ntrol Sample			Run: TECH	INICON_	_100922E	3	09/22/	/10 21:05
Nitrogen, Ammonia as N		19.2	mg/L	0.50	96	80		120			
Sample ID: C10090831-002EMS	Sa	mple Matrix	Spike			Run: TECH	INICON_	_100922E	3	09/22/	/10 21:17
Nitrogen, Ammonia as N		2.22	mg/L	0.050	105	80		120			
Sample ID: C10090831-002EMSI) Sa	mple Matrix	Spike Duplicat	e		Run: TECH	INICON_	_100922E	3	09/22/	/10 21:19
Nitrogen, Ammonia as N		2.18	mg/L	0.050	103	80		120	1.8	20	

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Quai
Method: E1632AM									Batch: F	_R65633
Sample ID: AS100924-LFB	Lab	oratory Cor	ntrol Sample			Run: SUB-H	165633		09/24/	10 15:29
Arsenic-III		45.4	ug/L	5.0	91	90	110			
Sample ID: C10090864-001E	San	nple Matrix	Spike			Run: SUB-H	H65633		09/24/	10 15:42
Arsenic-III		52.0	ug/L	5.0	104	55	146			
Sample ID: C10090864-001E	San	nple Matrix	Spike Duplicate			Run: SUB-l	165633		09/24/	10 15:48
Arsenic-III		45.5	ug/L	5.0	91	55	146	. 13	20	
Sample ID: ICB_13r	Met	hod Blank				Run: SUB-H	H65633		09/24/	10 14:55
Arsenic-III		ND	ug/L	0.3						

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7									Batch:	R137628
Sample ID:	MB-100923A	4 Me	thod Blank				Run: ICP2-0	C_100923A		09/23	/10 11:00
Calcium			ND	mg/L	0.2						
Magnesium			ND	mg/L	0.05						
Potassium			ND	mg/L	0.02						
Sodium			ND	mg/L	0.3						
Sample ID:	LFB-100923A	4 La	boratory Fort	tified Blank			Run: ICP2-	C_100923A		09/23/	/10 11:04
Calcium			49.3	mg/L	0.50	99	85	115			
Magnesium			49.5	mg/L	0.50	99	85	115			
Potassium			44.3	mg/L	0.50	89	85	115			
Sodium			49.0	mg/L	0.50	98	85	115			
Sample ID:	C10090529-001BMS	2 4 Sa	mple Matrix	Spike			Run: JCP2-	C_100923A		09/23	/10 15:50
Calcium			131	mg/L	1.0	96	70	130			
Magnesium			104	mg/L	1.0	94	70	130			
Potassium			97.9	mg/L	1.0	92	70	130			
Sodium			311	mg/L	1.0	98	70	130			
Sample ID:	C10090529-001BMS	D 4 Sa	mple Matrix	Spike Duplicate			Run: ICP2-	C_100923A		09/23	/10 15:54
Calcium			130	mg/L	1.0	95	70	130	1.1	20	
Magnesium			106	mg/L	1.0	96	70	130	1.9	20	
Potassium			97.1	mg/L	1.0	91	70	130	8.0	20	
Sodium			315	mg/L	1.0	101	70	130	1.2	20	
Method:	E200.7									Bat	ch: 27551
Sample ID:	MB-27551	Me	thod Blank				Run: ICP2-	C_100928A		09/28	/10 22:51
Aluminum			ND	mg/L	0.01						
Sample ID:	LCS3-27551	Lai	boratory Cor	ntrol Sample			Run: ICP2-	C_100928A		09/28	/10 22:55
Aluminum			2.60	mg/L	0.10	104	85	115			
Sample ID:	C10090864-001CMS	3 Sa	mple Matrix	Spike			Run: ICP2-	C_100928A		09/28	/10 23:11
Aluminum			2.78	mg/L	0.10	107	70	130			
Sample ID:	C10090864-001CMS	D Sa	mple Matrix	Spike Duplicate			Run: ICP2-	C_100928A		09/28	/10 23:16
Aluminum			2.60	mg/L	0.10	100	70	130	6.9	20	

Client: United Nuclear Corporation

Report Date: 10/11/10

Project: Not Indicated

Work Order: C10090864

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Quai
Method: E200.8									Bat	ch: 27551
Sample ID: MB-27551	7 Me	thod Blank				Run: ICPMS	S4-C_100924A		09/24/	10 17:33
Cadmium		4E-05	mg/L	4E-05						
Cobalt		ND	mg/L	4E-05						
Lead .		5 E- 05	mg/L	5E-05						
Manganese		0.0001	mg/L	2E-05						
Molybdenum		0.0010	mg/L	0.00010						
Uranium		ND	mg/L	4E-05						
Vanadium		0.004	mg/L	4E-05						
Sample ID: LCS3-27551	7 Lat	oratory Cor	ntrol Sample	;		Run: ICPMS	64-C_100924A		09/24/	10 18:07
Cadmium		0.268	mg/L	0.010	107	85	115			
Cobalt		0.499	mg/L	0.010	100	85	115			
Lead		0.521	mg/L	0.050	104	85	115			
Manganese		2.39	mg/L	0.010	96	85	115			
Molybdenum		0.519	mg/L	0.10	104	85	115			
Uranium		0.557	mg/L	0.00030	111	85	115			
Vanadium		0.477	mg/L	0.10	95	85	115			
Sample ID: C10090864-001CMS3	3 7 Sar	nple Matrix	Spike			Run: ICPMS	64-C_100924A		09/24/	10 18:46
Cadmium		0.242	mg/L	0.010	97	70	130			
Cobalt		0.514	mg/L	0.010	103	70	130			
Lead		0.542	mg/L	0.050	108	70	130			
Manganese		2.56	mg/L	0.010	100	70	130			
Molybdenum		0.549	mg/L	0.10	109	70	130			
Uranium		0.609	mg/L	0.00030	121	70	130			
Vanadium		0.527	mg/L	0.10	102	70	130			
Sample ID: C10090864-001CMSE	7 Sar	nple Matrix	Spike Dupli	cate		Run: ICPMS	64-C_100924A		09/24/	10 18:53
Cadmium		0.240	mg/L	0.010	96	70	130	8.0	20	
Cobalt		0.518	mg/L	0.010	104	70	130	0.9	20	
Lead		0.545	mg/L	0.050	109	70	130	0.4	20	
Manganese		2.59	mg/L	0.010	101	70	130	1.1	20	
Molybdenum		0.546	mg/L	0.10	109	70	130	0.4	20	
Uranium		0.612	mg/L	0.00030	122	70	130	0.4	20	
Vanadium		0.523	mg/L	0.10	101	70	130	0.9	20	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Client: United Nuclear Corporation

Report Date: 10/11/10

Project: Not Indicated

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8									Bat	ch: 27551
Sample ID: MB-27551	2 Me	thod Blank				Run: ICPM	S4-C_100927A		09/28/	10 02:18
Beryllium		ND	mg/L	3E-05						
Nickel		9 E- 05	mg/L	4E-05						
Sample ID: LCS3-27551	2 La	boratory Cor	ntrol Sample			Run: ICPM	S4-C_100927A		09/28/	/10 02:24
Beryllium		0.263	mg/L	0.010	105	85	115			
Nickel		0.554	mg/L	0.050	111	85	115			
Sample ID: C10090864-001CMS3	3 2 Sa	mple Matrix	Spike			Run: ICPM	S4-C_100927A		09/28/	10 02:52
Beryllium		0.227	mg/L	0.010	91	70	130			
Nickel		0.528	mg/L	0.050	105	70	130			
Sample ID: C10090864-001CMSI	0 2 Sa	mple Matrix	Spike Duplicate			Run: ICPM:	S4-C_100927A		09/28	/10 03:26
Beryllium		0.233	mg/L	0.010	93	70	130	2.8	20	
Nickel		0.528	mg/L	0.050	105	70	130	0	20	

INCO 1932

QA/QC Summary Report

Project: Not Indicated

Client: United Nuclear Corporation

Report Date: 10/11/10 **Work Order:** C10090864

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0									Batch:	R13757
Sample ID: LCS	2 La	boratory Cor	ntrol Sample			Run: IC2-C	_100922A		09/22	/10 11:53
Chloride		9.40	mg/L	1.0	94	90	110			
Sulfate		37.4	mg/L	1.0	93	90	110			
Sample ID: MBLK	2 Me	thod Blank				Run: IC2-C	_100922A		09/22	/10 12:07
Chloride		ND	mg/L	0.06						
Sulfate		ND	mg/L	0.2						
Sample ID: C10090812-001AMS	2 Sa	mple Matrix	Spike			Run: IC2-C	_100922A		09/22	/10 12:51
Chloride		989	mg/L	2.0		80	120			Α
Sulfate		445	mg/L	8.0	97	80	120			
Sample ID: C10090812-001AMSI) 2 Sa	mple Matrix	Spike Duplicate			Run: IC2-C	_100922A		09/22	/10 13:05
Chloride		986	mg/L	2.0		80	120	0.3	20	Α
Sulfate		445	mg/L	8.0	97	80	120	0	20	

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated.

MDC - Minimum detectable concentration

Helena, MT 877-472-0711 © Billings, MT 800-735-4489 © Casper, WY 888-235-0515 Gillette, WY 866-686-7175 © Rapid City, SD 888-672-1225 © College Station, TX 888-690-2218

QA/QC Summary Report

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2									Batch:	R137559
Sample ID: MBLK-1	Me	thod Blank				Run: TECH	NICON_100922A	\	09/22	/10 12:19
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.04						
Sample ID: LCS-2	Lat	oratory Co	ntrol Sample			Run: TECH	NICON_100922A	4	09/22	/10 12:22
Nitrogen, Nitrate+Nitrite as N		2.43	mg/L	0.10	97	90	110			
Sample ID: C10090689-007DMS	Sai	mple Matrix	Spike			Run: TECH	NICON_100922A	λ.	09/22	/10 12:37
Nitrogen, Nitrate+Nitrite as N		2.66	mg/L	0.10	99	90	110			
Sample ID: C10090689-007DMS	D Sai	mple Matrix	Spike Duplicate			Run: TECH	NICON_100922A	λ.	09/22	/10 12:39
Nitrogen, Nitrate+Nitrite as N		2.68	mg/L	0.10	101	. 90	110	0.7	10	

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Work Order: C10090864

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E624									Batch:	R137927
Sample ID: 092810_LCS_4	9 Lai	oratory Cor	itrol Sample			Run: SATU	RNCA_100928C		09/28/	10 13:43
Bromodichloromethane		9.20	ug/L	1.0	92	70	130			
Bromoform		10.3	ug/L	1.0	103	70	130			
Chlorodibromomethane		10.6	ug/ L .	1.0	106	70	130			
Chloroform		9.44	ug/L	1.0	94	70	130			
Trihalomethanes, Total		39.6	ug/L	1.0	99	70	130			
Surr: 1,2-Dichlorobenzene-d4				1.0	101	80	120			
Surr: Dibromofluoromethane				1.0	100	80	120			
Surr: p-Bromofluorobenzene				1.0	98	80	120			
Surr: Toluene-d8				1.0	93	80	120			
Sample ID: 092810_MBLK_6	9 Me	thod Blank				Run: SATU	RNCA_100928C		09/28	/10 14:56
Bromodichloromethane		ND	ug/L	1.0						
Bromoform		ND	ug/L	1.0						
Chlorodibromomethane		ND	ug/L	1.0						
Chloroform		ND	ug/L	1.0						
Trihalomethanes, Total		ND	ug/L	1.0						
Surr: 1,2-Dichlorobenzene-d4				1.0	97	80	120			
Surr: Dibromofluoromethane				1.0	97	80	120			
Surr: p-Bromofluorobenzene				1.0	92	80	120			
Surr: Toluene-d8		•		1.0	90	80	120			
Sample ID: C10090864-001HMS	9 Sa	mple Matrix	Spike			Run: SATU	IRNCA_100928C		09/29	/10 08:04
Bromodichloromethane		106	ug/L	10	106	70	130			
Bromoform		86.8	ug/L	10	87	70	130			
Chlorodibromomethane		114	ug/L	10	114	70	130			
Chloroform		103	ug/L	10	103	70	130			
Trihalomethanes, Total		410	ug/L	10	102	70	130			
Surr: 1,2-Dichlorobenzene-d4				1.0	99	80	120			
Surr: Dibromofluoromethane				1.0	96	80	120			
Surr: p-Bromofluorobenzene				1.0	100	80	120			
Surr: Toluene-d8				1.0	98	80	120			
Sample ID: C10090864-001HMS	D 9 Sa	mple Matrix	Spike Duplicate			Run: SATU	JRNCA_100928C		09/29	/10 08:40
Bromodichloromethane		103	ug/L	10	103	70	130	3.1	20	
Bromoform		104	ug/L	10	104	70	130	18	20	
Chlorodibromomethane		109	ug/L	10	109	70	130	4.3	20	
Chloroform		102	ug/L	10	102	70	130	1,2	20	
Trihalomethanes, Total		418	ug/L	10	104	70	130	1.9	20	
Surr: 1,2-Dichlorobenzene-d4				1.0	99	80	120			
Surr: Dibromofluoromethane				1.0	97	80	120			
Surr: p-Bromofluorobenzene				1.0	103	80	120			
Surr: Toluene-d8				1.0	98	80	120			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

Client: United Nuclear Corporation

Report Date: 10/11/10

Project: Not Indicated

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E900.1							······································		Batch:	GA-0360
Sample ID: MB-GA-0360	3 Me	thod Blank				Run: G5000	W_100924A		09/27/	10 14:12
Gross Alpha minus Rn & U		0.1	pCi/L							U
Gross Alpha minus Rn & U Precis	ion (±)	0.3	pCi/L							
Gross Alpha minus Rn & U MDC		0.5	pCi/L							
Sample ID: LCS-GA-0360	Lat	oratory Cor	ntrol Sample			Run: G5000	W_100924A		09/27/	10 14:12
Gross Alpha minus Rn & U		8.43	pCi/L		32	70	130			S
- LCS response is outside of the accep	otance rang	e for this anal	ysis. Since the MB,	MS, and MS	SD are ac	ceptable the b	atch is approved.			
Sample ID: C10090851-007FMS	Sai	mple Matrix	Spike			Run: G5000)W_100924A		09/27/	10 15:46
Gross Alpha minus Rn & U		28.4	pCi/L		103	70	130			
Sample ID: C10090851-007FMSD) Sai	mple Matrix	Spike Duplicate			Run: G5000	W_100924A		09/27/	10 15:46
Gross Alpha minus Rn & U		28.2	pCi/L		103	70	130	0.7	23.6	

S - Spike recovery outside of advisory limits.

Halena, MT 877-472-0711 © Billings, MT 800-735-4489 © Casper, WY 888-235-0515 Gillette, WY 866-686-7175 © Rapid City, SD 888-672-1225 © College Station, TX 888-690-2218

QA/QC Summary Report

Client: United Nuclear Corporation

Report Date: 10/11/10

Project: Not Indicated

Count	Result	Units	RL	%REC	Low Limit	High Limi	t RPD	RPDLimit	Qual
						 		Batch: RA	1226-4829
Sa	mple Matrix	Spike		,		THOLD 770-2	2_100924A	10/04	/10 12:38
	21	pCi/L		124	70	130			
) Sa	mple Matrix	Spike Duplica	te		Run: BER	THOLD 770-2	2_100924A	10/04	/10 12:38
	20	pCi/L		118	70	130	3.8	24.5	
3 Me	thod Blank				Run: BER	THOLD 770-2	2_100924A	10/04	/10 14:10
	-0.1	pCi/L							U
	0.09	pCi/L							
	0.2	pCi/L							
La	boratory Co	ntrol Sample			Run: BER	THOLD 770-2	2_100924A	10/04	/10 14:10
	11	pCi/L		141	70	130			S
	Sa Sa 3 Me	Sample Matrix 21 Sample Matrix 20 3 Method Blank -0.1 0.09 0.2 Laboratory Co	Sample Matrix Spike 21 pCi/L Sample Matrix Spike Duplicat 20 pCi/L Method Blank -0.1 pCi/L 0.09 pCi/L 0.2 pCi/L Laboratory Control Sample	Sample Matrix Spike 21 pCi/L Sample Matrix Spike Duplicate 20 pCi/L Method Blank -0.1 pCi/L 0.09 pCi/L 0.2 pCi/L Laboratory Control Sample	Sample Matrix Spike 21 pCi/L 124 Sample Matrix Spike Duplicate 20 pCi/L 118 Method Blank -0.1 pCi/L 0.09 pCi/L 0.2 pCi/L Laboratory Control Sample	Sample Matrix Spike 21 pCi/L 124 70 Sample Matrix Spike Duplicate 20 pCi/L 118 70 3 Method Blank -0.1 pCi/L 0.09 pCi/L 0.2 pCi/L Laboratory Control Sample Run: BER Run: BER Run: BER Run: BER Run: BER	Sample Matrix Spike Run: BERTHOLD 770-2 21 pCi/L 124 70 130 Sample Matrix Spike Duplicate Run: BERTHOLD 770-2 20 pCi/L 118 70 130 3 Method Blank Run: BERTHOLD 770-2 -0.1 pCi/L 0.09 pCi/L 0.2 pCi/L Laboratory Control Sample Run: BERTHOLD 770-2	Sample Matrix Spike Run: BERTHOLD 770-2_100924A 21 pCi/L 124 70 130 Sample Matrix Spike Duplicate Run: BERTHOLD 770-2_100924A 20 pCi/L 118 70 130 3.8 Method Blank Run: BERTHOLD 770-2_100924A -0.1 pCi/L 0.09 pCi/L 0.2 pCi/L Laboratory Control Sample Run: BERTHOLD 770-2_100924A	Batch: RA Sample Matrix Spike Run: BERTHOLD 770-2_100924A 10/04 21 pCi/L 124 70 130 Sample Matrix Spike Duplicate Run: BERTHOLD 770-2_100924A 10/04 20 pCi/L 118 70 130 3.8 24.5 Method Blank Run: BERTHOLD 770-2_100924A 10/04 -0.1 pCi/L 0.09 pCi/L 0.2 pCi/L Laboratory Control Sample Run: BERTHOLD 770-2_100924A 10/04

⁻ LCS response is outside of the acceptance range for this analysis. Since the MB, MS, and MSD are acceptable the batch is approved.

Helena, MT 877-472-0711 © Billings, MT 800-735-4489 © Casper, WY 888-235-0515 Gillette, WY 866-686-7175 © Rapid City, SD 888-672-1225 © College Station, TX 888-690-2218

QA/QC Summary Report

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E907.0								В	atch: RA-TH-	ISO-1250
Sample ID: LCS-RA-TH-ISO-1250) La	boratory Cor	ntrol Sample			Run: EGG-	ORTEC_100923A		09/27	10 13:31
Thorium 230		5.8	pCi/L		110	70	130			
Sample ID: C10090852-001DMS	Sa	mple Matrix	Spike			Run: EGG-	ORTEC_100923A	ı	09/27	10 13:31
Thorium 230		13	pCi/L		104	70	130			
Sample ID: C10090852-001DMSI) Sa	mple Matrix	Spike Duplicate			Run: EGG-	ORTEC_100923A		09/27	10 13:31
Thorium 230		12	pCi/L		91	70	130	13	40.6	
Sample ID: MB-RA-TH-ISO-1250	3 Me	thod Blank				Run: EGG-	ORTEC_100923A		09/27	10 13:31
Thorium 230		0.008	pCi/L							U
Thorium 230 precision (±)		0.06	pCi/L							
Thorium 230 MDC		0.1	pCi/L							

Client: United Nuclear Corporation

Report Date: 10/11/10

Project: Not Indicated Work Order: C10090864

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Lir	mit RF	PD RPDLimit	Qual
Method: E909.0M				-					Batch: T_P	B-210-0019
Sample ID: MB-PB-210-0019	3 Me	thod Blank				Run: SUB-1	Γ37150		10/0	4/10 23:05
Lead 210		ND	pCi/L							U
Lead 210 precision (±)		1	pCi/L							
Lead 210 MDC		2	pCi/L							
Sample ID: LCS-PB-210-0019	Lal	boratory Cor	ntrol Sample			Run: SUB-1	Г37150		10/0	5/10 03:28
Lead 210		59	pCi/L		107	70	1	30		
Sample ID: TAP WATER-MS	Sa	mple Matrix	Spike			Run: SUB-1	ľ37150		10/0	5/10 07:51
Lead 210		130	pCi/L		119	70	1	30		
Sample ID: TAP WATER-MSD	Sa	mple Matrix	Spike Duplicate			Run: SUB-7	Г37150		10/0	5/10 10:02
Lead 210		140	pCi/L		124	70	1	30 4	.1 15.7	

Helena, MT 877-472-0711 • Billings, MT 800-735-4489 • Casper, WY 898-235-0515 Gillette, WY 866-686-7175 • Rapid City, SD 888-672-1225 • College Station, TX 888-690-2218

QA/QC Summary Report

Client: United Nuclear Corporation

Project: Not Indicated

Report Date: 10/11/10

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: RA-05									Batch: RA	228-3398
Sample ID: LCS-228-RA226-4829	Lat	oratory Cor	ntrol Sample			Run: TENN	IELEC-3_100924	Α	09/28	/10 09:18
Radium 228		7.43	pCi/L		94	70	130			
Sample ID: MB-RA226-4829	3 Me	thod Blank				Run: TENN	ELEC-3_100924	Α	09/28	/10 09:18
Radium 228		0.5	pCi/L							U
Radium 228 precision (±)		0.6	pCi/L							
Radium 228 MDC		0.9	pCi/L							
Sample ID: C10090793-001GMS	Sa	mple Matrix	Spike			Run: TENN	IELEC-3_100924	A	09/28	/10 09:18
Radium 228		14.7	pCi/L		95	70	130			
Sample ID: C10090793-001GMSI) Sa	mple Matrix	Spike Duplicate			Run: TENN	IELEC-3_100924	A	09/28	/10 09:18
Radium 228		13.6	pCi/L		88	70	130	7.8	30.5	

No VOA vials submitted

Not Applicable

Workorder Receipt Checklist

United Nuclear Corporation

C1	0090864	

Login completed by: Corinne Wagner Date Received: 9/22/2010 Received by: ha Reviewed by: BL2000\tedwards Reviewed Date: 9/22/2010 Carrier name: FedEx Not Present Shipping container/cooler in good condition? Yes 🗸 No 🗌 Custody seals intact on shipping container/cooler? Yes

√ No 🖂 Not Present No 🗀 Not Present ✓ Custody seals intact on sample bottles? Yes 🗀 Chain of custody present? Yes ✓ No 🗌 Yes 🗸 No 🔲 Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Yes 🗸 No 🗌 Yes 🗸 No 🗌 Samples in proper container/bottle? Sample containers intact? Yes 🗸 No 🗌 No 🗌 Sufficient sample volume for indicated test? Yes 🗸 All samples received within holding time? Yes 🗸 No 🗌

5°C On Ice

Yes 🗸

Yes 🗸

No 🔲

No 🔲

Contact and Corrective Action Comments:

Container/Temp Blank temperature: Water - VOA vials have zero headspace?

Water - pH acceptable upon receipt?

None

UNITED NUCLEAR CORPORATION (State Road 566 - 21 Hiles NE of Gallup) P.O. Box 3077 Gallup, NH 87305-3077 505-905-8651

CHAIN OF CUSTODY

Energy Laborato Laboratory	ories, Inc	•								
2393 N. Salt C. Address	cek Highw	ay		•	All analysi procedures	s will be pe and/or 15th	rformed in acc Edition of Sta	ordance wi	th EPA approved	d
Casper City	WY State		82601 21p	ļ.	UNC Submitt	al No. TE-	7-9-2010			
307-235-0515 Phone No.	· · · · · · · · · · · · · · · · · · ·								***************************************	
Sample Description	Date	Time	Filter 0.45u		SERVATION HNO ₃	H ₂ S0 ₄	Na ₂ S ₂ O ₃	HCI	Preserved By	Analysis Required (For all samples listed)
DomESTIC	9-20-10	1358	Vz	v r	væ	v re	v me	VAZ	m. Chischilly	As, Be, Ca, Cd, C1, HCO,
WATER WELL	<u> </u>	<u> </u>				<u> </u>				K, Mg, Mn, Na, NH ₄ , NI,
	-					<u> </u>		ļ	<u> </u>	NO ₂ , Pb, Pb-210, pH, Se,
	<u> </u>	 	·		 	<u> </u>				50,, TDS, Th-230, U, V,
		ļ			 	- 		<u> </u>		Chloroform, Gross
	 		<u> </u>		ļ	<u> </u>				Alpha (-) U & Rn,
	<u> </u>							<u> </u>		Combined Ra-226 & Ra-228, Al,
			-		 		<u> </u>	 		Co, Ho & Total Trihalomethanes (TTHMs
						·			_	
						<u> </u>				Note: Please report result
		ļ			<u> </u>			<u> </u>	<u> </u>	as soon as possible
						 			<u> </u>	(Rush Priority).
			<u> </u>		 	-	<u> </u>			
Sampled by: 70 Dispatched by: Carrier: Fedd	Dut		9-21-1	or Konall	B. San 12!10 Time	- Date	CX QMMOS	400 Ime	authorized	phalysis to be performed is
	Cooler	,	<u></u>			Date	celpt Signatur ALMO (99.00 Time	Signazire 9-1 Date	1-2010
							ELDIE	(S)		•

Page 23 of 23

Mine Well

Mill Well 02 ... 6/18/02 194 194 193

To:

Roy Blickwedel

Larry Bush

From:

Jed Thompson

Date:

August 3, 2004

1146436 5, 200

Job No: 1010139.011802

Subject: Groundwater Quality in the Westwater Canyon Member at the Northeast

Church Rock Mine

This memorandum was prepared in response to comments to the Northeast Church Rock (NECR) Mine Closeout Plan received from the State of New Mexico, Mining and Minerals Division (MMD) in their memo dated June 23, 2004. This memorandum presents available information about:

- Regional groundwater quality within the Westwater Canyon Member, Dakota Sandstone and Gallup Formation near the NECR Mine site (the Site),
- Historic groundwater quality analyses of NECR mine water; and,
- Comparisons of regional and historic water quality data to the groundwater sample collected at the Site on May 17, 2004.

HISTORIC AND REGIONAL DATA

Historic and regional groundwater quality data sources used in this report are listed below.

- Water Quality Impacts of Uranium Mining and Milling Activities in the Grants Mineral Belt, New Mexico. (EPA, 1975)
- Water Quality Data for Discharges from New Mexico Uranium Mines and Mills. (NMEID, 1980)
- Hydrogeology and Water Resources of San Juan Basin, New Mexico. Hydrologic Report 6. (Stone, 1983)
- Reclamation Engineering Services, Geobydrologic Report. (Canonie, 1987)
- Five-year Review Report, United Nuclear Corporation Ground Water Operable Unit McKinley County, New Mexico. (USEPA, 1998)
- Discharge Permit (DP) 63 sampling results

The primary aquifers in the Church Rock region are the Dakota Sandstone and Westwater Canyon Member. Higher geologic units, including the Gallup Formation and the alluvium are not historic aquifers (Canonie, 1987).

The alluvium and Gallup Formation at the Northeast Church Rock mine and mill were unsaturated. Occurrences of groundwater in both units are derived from mine dewatering seepage from multiple mines (USEPA, 1998), and are hydraulically separated from the Dakota Sandstone and Westwater Canyon Member by the Upper D-Cross Tongue Member of the Mancos Shale which is a very

effective aquiclude (Canonie, 1987). Minewater that seeped into the alluvium and Gallup Formation is being regulated and addressed under the Church Rock Mill Superfund site under NRC Source Materials License SUA-1475. Minewater was discharged to Pipeline Arroyo in accordance with the Federal Clean Water Act under NPDES Permit Number NM0020401.

Groundwater flows downdip in bedrock (Canonie, 1987). The local dip and groundwater flow direction in the Gallup Formation, Dakota Sandstone and Westwater Canyon Member is to the north (Stone, 1983).

Available analytical data for Site minewater are summarized in Table 1 and listed in Attachment 1. All data are reported results from DP-63 for minewater before comingling with decant from sand backfill. These data represent the ambient groundwater quality in the Westwater Canyon Member at the Site.

	**************************************		BLE 1	····	•	., .
	NECR MI Data Points	NEWATER QUA	ALITY DATA S Max	Min Min	St Dev	NMED Std.
MAJOR IONS				1		
Alkalinity (CaCO3)	2	179.5	232	127		1
Bicarbonate	1 1	155	155	155		-
Calcium	2	20.55	31	10.1		1
Chloride	13	7.6	14.9	5	3.0	250
Fluoride	11	0.50	0.55	0,42	0.03	1.6
Magnesium	2	2.6	4.2	1	-	
Nitrogen, Nitrate (as N)	11	1.7	13	0.1	3.7	10
Potassium	2	2.1	2.2	1.9	•-	+
Sodium	5	282.9	1009.1	10	410.5	1
Sulfate	13	93	272	70	55	600
PHYSICAL PROPERTIES						
TDS	13	426.9	552	370.5	61.3	1000
pH ⁴	13	7.88	8.45	6.70	0.52	6 to 9
Conductivity ⁵	5	683	950	485	171	· ·
METAL - DISSOLVED						
Aluminum	13	0.5	2.8	0.1	0.7	5.0
Arsenic	10	0.0102	0.0118	0.0100	0.0006	0.1
Barlum	13	0.20	0.70	0.01	0.18	1.0
Boron	10	0.20	0.30	0.01	0.09	0.75
Cadmium	11	0.003	0.010	0.001	0.004	0.01
Chromium	11	0.011	0.041	0.001	0.015	0.05
Cobalt	11	0.0146	0.0500	0.0001	0.0137	0.05
Copper	11	0.0066	0.0235	0.001	0.0075	1.0
lron	13	0.85	4.9	0.01	1.46	1.0
Lead	11	0.01	0.05	0.001	0.020	0.05
Manganese	13	0.112	1.3	0.002	0.357	0.2
Mercury	11	0.0005	0.001	0.0004	0.0002	0.002
Molybdenum	11	0.012	0.04	0.001	0.017	1.0
Nickel	11	0.0250	0.1349	0.01	0.0376	0.2
Selenium	12	0.031	0.05	0.004	0.013	0.05
Silver	10	0.0095	0.01	0.0054	0.0015	0.05
Uranium	13	2.082	3.71	0.725	0.936	5.0
Vanadium	3	0.1	0.1	0.1	0	
Zinc	13	0.0117	0.02	0.0022	0.0052	10.0
RADIONUCLIDES - DISSO	OLVED			<u> </u>	-	
Radium-226	13	97.6	490	0.6	125.1	30"
Radium-228	12	2.1	5.2	1	1.8	306

Notes:

- 1. Summary of selected parameters from Attachment 1.
- 2. All values in mg/L except as otherwise noted
- 3. Standards for arsenic, cadmium, barium, chromium, fluoride, mercury, nitrate, lead, selenium, silver, and uranium are human health standards

Standards for chloride, copper, sulfate, TDS, pH, Iron, and zinc are secondary domestic water supply standards Standards for aluminum, boron, cobalt, manganese, molybdenum, and nickel are for irrigation water

- 4. pH in standard units
- 5. Conductivity in uS/cm
- 6. Combined Radium 226 and 228 cannot exceed 30 pCi/L

There is no groundwater quality data for the Dakota Sandstone near the Site.

Average historic minewater data exceeded standards for radium 226 in the Westwater Canyon Member.

Four wells are located within a one mile radius of the Site. The locations of the wells are shown in Figure 1. The Church Rock Mill Well and NECR-1 Well are completed in the Westwater Canyon Member. The Friendship Well is completed in the Gallup Formation. NR-1 is completed in the alluvium. The Church Rock Mill Well is used as a non-potable water supply for the mine office and to supplement the water in the tailings impoundment evaporation ponds to prevent the pond liner from drying out. NECR-1, NR-1 and the Friendship wells are not currently used. Completion data for these wells are provided in Table 2. The Pipeline Canyon Well mentioned in the Closeout Plan is located approximately 1.5 miles to the northeast of the Permit Boundary.

	, , , , , , , , , , , , , , , , , , ,	TABL WELL COMPLE			
Well Name	Completion Date	Total Depth (ft bgs)	Top of Screen (ft bgs)	Screened Interval (ft)	Completion Unit
Church Rock Mill	6/6/76 ·	1,600	Unk	100	Westwater Canyon
NECR Well	Unk	1,228	Unk	Unk	Westwater Canyon
Friendship	Unk	718	Unk	40	Gallup
NR-1	5/28/91	105	74.6	30.4	Alluvium

CURRENT SITE CONDITIONS

A groundwater sample was collected at the Site on May 17, 2004. The sample was collected from the well located approximately 200 feet south of shaft NECR-1 on the north end of the Site. The sample was collected in accordance with the SOP presented in the Section 27 Closeout Plan.

The sample was collected from approximately the center of the water column in the well. The depth to water was 524.68 feet below the top of casing. The total depth of the vent is 1,230 feet below the top of casing. The sample was collected at approximately 900 feet below the top of casing. The sample was collected using multiple trips with a PVC double ball bailer. The double ball bailer works the same as a single ball bailer, with the balls floating as the bailer is lowered, allowing water to enter and flow through the device freely. When the designated depth is reached, the bailer is hoisted and the balls at the top and bottom of the bailer are seated preventing the water from leaving the bottom of the bailer and preventing water above the bailer from mixing with the water in the bailer.

Sufficient trips were made with the bailer to provide the quantity of water required for NMED and UNC to analyze for the analytes included in the Closeout Plan. Results of the analytical analyses of UNC's samples are provided in Table 3 along with the average minewater quality from Table 1 and the water quality from the Church Rock Mill Well which is also completed in the Westwater Canyon Member. The laboratory report is included in Attachment 2.

Water bailed from the NECR well was black in color and smelled of hydrogen sulfide. The field pH of the sample was 10.2 standard units, and the conductivity was 1800 umhos/cm at 18.0 degrees Celsius.

As shown in Table 3, the pH and concentrations of alkalinity, sulfate, sodium, TDS, and boron are elevated above average mine water concentrations from the DP-63 monitoring. Several constituents, particularly radium and uranium, are less concentrated currently than when mining was active. pH and alkalinity values in the recent NECR sample are also greater than those seen in the Church Rock Mill Well, while sulfate and sodium concentrations (which make up the bulk of TDS) are less

concentrated. Concentrations of boron and TDS, and the pH exceed NMED standards in the NECR sample.

	SECTION		ILE 3 R ANALYTICAL RI	ECINTO	•
Constituent	Units	Mill Well 6/18/02 ¹	Average Mine Water ²	NECR Well 5/17/04 ²	NMED Std.
MAJOR IONS	· · · · · ·				
Alkalinity, Total as CaCOs	mg/L	•••	179.5	365	
Bicarbonate	mg/L	225	155		1
Calcium	mg/L	16.0	20.55	3.38	T
Chioride	mg/L	160	7.6	21.8	250
Fluoride	mg/L	-	• 0.50	0.7	1.6
Magnesium	mg/L	4,2	2.6	0.58	
Nitrate + Nitrite as N	mg/L ·	<0.10	1.75	<0.10	10.0
Potassium	mg/L	3.5	2.1	5.57	1
Sodium	mg/L	644	282.9	388	1
Sulfate	mg/L	1100	93	450	600
PHYSICAL PROPERT					
TSS	mg/L	••		243	1
TDS	mg/L	2090	426.9	1150	1000
pН	s.u.	8.34	7.88	9.90	6 to 9
Conductivity	umhos/cm		683	1840	
METALS - DISSOLV	ED				
Aluminum	mg/L	<0.10	0.5	<0.10	5,0
Arsenic	mg/L	< 0.001	0.0102	0.001	0.1
Barium	mg/L	,	0.20	0.014	1.0
Beryllium	mg/L	< 0.01	44	< 0.01	
Boron	mg/L		0.20	4.47	0.75
Cadmium	mg/L	< 0.005	0.003	< 0.01	0.01
Cobalt	mg/L	<0.01	0.0146	< 0.01	1
Iron	mg/L		0.85	0.140	1.0
Lead	mg/L	< 0.05	0.01	< 0.001	0.05
Manganese	mg/L	0.05	0.112	0.003	T
Molybdenum	mg/L	<0.10	0.012	0.056	1.0
Nickel	mg/L	< 0.05	0.025	< 0.05	1
Selenium	mg/L	< 0.001	0.031	0.002	0.05
Uranium	mg/L	0.0700	2.082	0.134	5.0
Vanadium	mg/L	<0.10	0.1	< 0.005	1
RADIONUCLIDES - E					
Gross Alpha	pCi/l	·_ <1	- 1	93 ± 3.6	T
Radium-226	pCi/l	0.7	97.6	2.4 ± 0.5	30⁵
Radium-228	pCi/l	2.7	2.1	<1.0	30°

Notes:

- 1. Samples collected from Church Rock Mill Well as reported in Closeout Plan
- 2. Average mine water quality as reported in Table 1
- 3. Sample collected from well located near shaft NECR-1
- Standards for fluoride, nitrate, arsenic, barium, cadmium, lead, selenium, uranium, and radium are human health standards.
 - Standards for chloride, sulfate, TDS, pH, and Iron are secondary domestic water supply standards.
- Standards for aluminum, boron and molybdenum are for irrigation water.
- 5. Value represents nitrate as N
- 6. Combined Radium 226 and 228 cannot exceed 30 pCi/L

Figures 2 through 6 show the concentration trends for alkalinity, sulfate, TDS, pH and boron. The figures plot the trends over time by data source. All available data is plotted in the graphs.

Elevated values for pH and alkalinity in the recent NECR sample are likely due to the presence of sulfate reducing bacteria (SRB) in the well water, adding alkalinity to the water as they reduce sulfate to sulfide. The presence of SRB's would explain the black coloring and hydrogen sulfide smell of the water bailed from the well. This might also explain why uranium and iron concentrations are lower

today than during active mining. Uranium is less mobile in reducing environments and iron will react with the sulfide and precipitate as iron sulfide.

The likely role of sulfate-reducing conditions in the current NECR sample chemistry is further supported by the following differences between the NECR sample and the Mill Well:

- Sulfate is about a factor of two less in the NECR sample compared to the Mill Well indicating sulfate reduction,
- Bicarbonate is concentrated in the NECR sample in stoichiometric proportion to sulfate reduction according to the reaction:

$$2 CH_2O + SO_4^2 = H_2S + 2 HCO_3^2$$

There is currently no explanation for the elevated concentration of boron in the recent NECR sample. There are no data for boron from the Mill Well.

CONCLUSIONS

Groundwater quality at the Site is within NMED standards with the exception of pH, TDS and boron. Sulfate and TDS concentrations and radium activity at the site have dropped since the peak concentration recorded in 1993 possibly because of sulfate reduction. A sulfate reducing environment would explain the increase in pH and alkalinity seen in the recent NECR sample.

The source of boron in the water is unknown.

Water quality has improved since mining ceased. This is especially true for constituents of greatest concern, radium and uranium. In addition, metals concentrations meet water quality standards. While dissolved solids are greater today than during mining, they are comprised of common ions that do not pose a health risk.

While the pH of the NECR is higher than historic results, it is not recommended that it be considered for abatement. Treatment to reduce pH could produce adverse environmental consequences. Metals and radionuclides are geochemically fixed under current and anticipated conditions; to alter this equilibrium would be to run the risk of mobilizing them.

FIGURE 2 **ALKALINITY CONCENTRATION IN GROUNDWATER NEAR NECR MINE**

FIGURE 3
SULFATE CONCENTRATION IN GROUNDWATER NEAR NECR MINE

FIGURE 4 TDS CONCENTRATION IN GROUNDWATER NEAR NECR MINE

FIGURE 5
pH OF GROUNDWATER NEAR NECR MINE

FIGURE 6
BORON CONCENTRATION OF GROUNDWATER NEAR NECR MINE

Client: United Nuclear Corporation

Project: UNC Closcout Plan

Lab ID: C04050789-001 Client Sample ID: NECR-Well 1 Report Date: 06/24/04

Collection Date: 05/17/04 09:40

Date Received: 05/20/04
Matrix: Aqueous

	MCL									
Analyses	Result	Units	Qual	RL Q	CL Method	Analysis Date / By				
MAJOR IONS	•									
Alkalinity, Total as CaCO3	365	mg/L		1.0	A2320 B	05/21/04 10:36 / nlm				
Calcium	3,38	mg/L		0.20	E200.7	05/24/04 15:27 / Is				
Chloride	21.8	mg/L		1.0	A4500-CI B	05/21/04 09:34 / II				
Fluoride	0.7	mg/L		0.1	A4600-F C	05/24/04 09:42 / slb				
Magnesium	0.58	mg/L·		0.20	E200.7	05/24/04 15:27 / ts				
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.10	E353.2	05/24/04 12:10 / jal				
Potassium	. 5.57	mg/L		0.30	E200.7	05/24/04 15:27 / Is				
Sodium	388	mg/L		0.30	E200.7	05/24/04 15:27 / ts				
Sulfate	450	mg/L	D	9.8	A4500-SO4 E	06/01/04 12:47 / dd				
PHYSICAL PROPERTIES		•				•				
Conductivity	1840	umhos/cm		1.0	A2510 B	05/21/04 09:55 / dd				
pH	9.90	s.u.		0.01	A4500-H B	05/21/04 11:02 / js				
Solids, Total Dissolved TDS @ 180 C	1150	mg/L		10	A2540 C	05/21/04 15.46 / Js				
Solids, Total Suspended TSS @ 105 C	243 -	mg/L		1.0	E160.2	05/21/04 09:07 / js				
METALS - DISSOLVED										
Aluminum	ND	mg/L		0.1	E200.8	05/25/04 16:31 / eli-b				
Arsenic	0.001	mg/L		0.001	E200.8	05/25/04 16:31 / eli-b				
Barium	0.014	mg/L		0.003	E200.8	06/18/04 01:48 / bws				
Beryllium	ND	mg/L		0.01	E200.8	05/25/04 16:31 / eli-b				
Boron	4.47	mg/L		0.0010	E200.7	05/24/04 15:27 / ts				
Cadmium	ND	mg/L		0.01	E200.8	05/25/04 16:31 / eli-b				
Cobalt	ND	mg/L		0.01	E200.8	05/25/04 16:31 / eli-b				
Iron	0.140	mg/L		0.010	E200.7	05/24/04 15:27 / ts				
Lead	ND	mg/L		0.001	E200.8	06/18/04 01:48 / bws				
Manganese	0.003	mg/L		0.001	E200.0	00/18/04 01:48 / bws				
Molybdenum	0.056	mg/L		0.001	E200.8	06/18/04 01:48 / bws				
Nickel	ND	mg/L		0.05	E200.8	05/25/04 16:31 / ell-b				
Selenium	0.002	mg/L		D.001	E200,8	05/25/04 16:31 / ell-b				
Uranium	0.134	mg/L		0.0001	E200.8	06/18/04 01:48 / bws				
Vanadium	ND	mg/L		0.005	E200.8	06/18/04 01:48 / bws				
RADIONUCLIDES - DISSOLVED	•									
Gross Alpha	93.0	pCI/L		1.0	E900.0	05/24/04 09:00 / rs				
Gross Alpha precision (±)	3.6	PCI/L			E900.0	05/24/04 09:00 / rs				
Radium 226	2.4	pCI/L		0.2	E903.0	05/25/04 12:50 / df				
Radium 226 precision (±)	0.5	pCI/L			E903.0	05/25/04 12:50 / df				
Radium 228		pCI/L		1.0	E904.0	05/28/04 09:24 / pj				

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

D - RL Increased due to sample matrix interference.

MCL - Maximum contaminant level.

United Nuclear Corporation

Project: UNC Closcout Plan Lab ID: C04050789-001

Client Sample ID: NECR-Well 1

Report Date: 06/24/04

Collection Date: 05/17/04 09:40

Date Received: 05/20/04

Matrix: Aqueous

Analyses	Result	Units	Qual	MCL/ RL QCL	Method	Analysis Date / By
DATA QUALITY						
A/C Balance (± 5)	-0.170	%			Calculation	06/11/04 14:47 / tae
Anions	17.3	meq/L			Calculation	06/11/04 14:47 / tae
Cations	17.3	meq/L			Calculation	06/11/04 14:47 / lae
Solids, Total Dissolved Calculated	1090	mg/L			Calculation	00/11/04 14,47 / tau
TDS Balance (0.80 - 1.20)	1.06	dec. %			Calculation	05/11/04 14:47 / lae

Report Definitions:

RL - Analyte reporting limit. QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client: United Nuclear Corporation

Project: UNC Closeout Plan Lab ID: C04050789-002

Client Sample ID: SECT27-Vent 3

Report Date: 06/24/04

Collection Date: 05/17/04 14:30

Date Received: 05/20/04

Matrix: Aqueous

			_		CIN	
Analyses	Result	Units	Qual	RL Q	CL Method	Analysis Date / B
MAJOR IONS						هم
Alkalinity, Total as CaCO3	308	mg/L		1.0	A2320 B	05/21/04 10:47 / nim
Calcium	339	mg/L	D	0.57	E200.7	05/24/04 15:35 / Is
Chloride	23.2	mg/L		1.0	A4500-CI B	05/21/04 09:35 / II
Fluoride	0.4	mg/L		0.1	A4500-F C	05/24/04 00:44 / elb
Magnesium	41.8	mg/L		0.20	E200.7	05/24/04 15:30 / ls
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.10	E353.2	05/24/04 12:20 / Jal
Potassium	13.4	mg/L		0.30	E200.7	05/24/04 15:30 / ts
Sodium	492	mg/L		0.30	E200.7	05/24/04 15:30 / ts
Sulfate	1780	mg/L	٥	30	A4500-SO4 E	06/01/04 12:50 / dd
PHYSICAL PROPERTIES						
Conductivity	3520	umhos/cm		1.0	A2510 B	05/21/04 09:55 / dd
pH	7.10	s.u.		0.01	A4500-H B	05/21/04 11:03 / Js
Solids, Total Dissolved TDS @ 180 C	2810	mg/L		10	A2540 C	05/21/04 15:46 / js
Solids, Total Suspended TSS @ 105 C	100	mg/L		1.0	E160.2	05/21/04 09:07 / s
METALS - DISSOLVED						
Muminum	ND	mg/L		0.1	E200.8	05/25/04 16:43 / eli-b
Arsenic	0.011	mg/L		0.001	E200.8	05/25/04 16:43 / eli-t
3arium	0.017	mg/L		0.003	E200.8	06/18/04 01:41 / bws
Beryllium	ND	mg/L		0.01	E200.8	05/25/04 16:43 / eli-b
Boron	0.379	mg/L		0.0010	E200.7	05/24/04 15:30 / ts
admlum	ND	mg/L		0.01	E200.8	05/25/04 16:43 / ell-b
Cobalt	ND	mg/L		0.01	E200.8	05/25/04 16:43 / ell-b
ron	18.8	mg/L		0.010	E200.7	05/24/04 15:30 / ls
ead	ND	mg/L		0.001	E200.8	06/18/04 01:41 / bws
langanese	2.6	mg/L		0.01	E200.8	05/27/04 23:26 / 68-6
lolybdenum	0.7	mg/L		0.1	E200.8	05/27/04 23:26 / ell-b
ickei	ND .	mg/L		0.05	E200.8	05/25/04 16:43 / ell-b
elenium	0.003	mg/L		0.001	E200,8	05/25/04 16:43 / ell-b
ranium	7.84	mg/L		0.0001	E200.8	06/18/04 01:41 / bws
anadium	ND	mg/L		0.005	E200.8	06/18/04 01:41 / bws
ADIONUCLIDES - DISSOLVED						
ross Alpha	5660	pCi/L		1.0	E900.0	05/24/04 09:00 / rs
ross Aipha precision (±)	27.8	pCI/L			E900.0	05/24/04 09:00 / rs
adium 226 .	24.2	рСИL		0.2	E903.0	05/25/04 12:50 / df
adium 226 precision (±)	1.5	pC/L			E903.0	05/25/04 12:50 / df
adium 228	ND	pCI/L		1.0	E904.0	05/28/04 09:24 / pj

Report

RL - Analyte reporting limit.

Definitions: QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Lab ID: C04050789-002

Client Sample ID: SECT27-Vent 3

Report Date: 06/24/04

Collection Date: 05/17/04 14:30

Date Received: 05/20/04

Matrix: Aqueous

Analyses	Result	Units	Oual	M RL Q	ICL/	Method	Analysis Date / By
Analyses	100011	· Oans	, Quai	ILD Q		Memor	Anatysis Date / Dy
DATA QUALITY .							
A/C Balance (± 5)	-0.944	%				Calculation	06/11/04 14:48 / lae
Anions	43.8	meq/L				Calculation	06/11/04 14:48 / tae
Cations	43.0	meq/L				Calculation	05/11/04 14:48 / (ae
Solids, Total Dissolved Galculated	2090	mg/L				Calculation	06/11/04 14:48 / (ae
TDS Balance (0.80 - 1.20)	0.970	dec. %				Calculation	06/11/04 14:48 / tan

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

UNC Mining and Milling	ChurchRoo	k Operations
GroundWater Monitoring	Summary:	
Collection Date:		NECR-Weil 1
Receive Date:		5/17/2004 9:40
		5/20/2004 10:00
Report Date:		6/18/2004 14:30
WAR WAT TO WAT TO THE		81 25 90 40 50 7 8 9 00 10 4
Alkalinity, Total as CaCO3	mg/L	: 365
Calcium	mg/L	3.38
Chloride	mg/L	21.8
Fluoride	mg/L	. 0.7
Magnesium	mg/L	0.58
Nitrogen, Nitrate+Nitrite as N	· mg/L	ND(0.10)
Potassium	mg/L	5.57
Sodium	mg/L	388
Sulfate	mg/L	450
Conductivity	umhos/cm	1840
pH	s.u.	9,90
Solids, Total Dissolved TDS @ 180 C	mg/L	1150
Solids, Total Suspended TSS @ 105 C	mg/L	243
Aluminum	mg/L	ND(0.1)
rsenic	mg/L	0.001
Janum	mg/L	0.014
Beryllium	mg/L	ND(0,01)
loron	mg/L	4.47
admium	mg/L	ND(0.01)
obalt	mg/L	ND(0.01)
on	mg/L	0.140
ead	mg/L	ND(0.001)
langanese	mg/L	0.003
lolybdenum	mg/L	0.056
icket	mg/L	ND(0.05)
eknium	mg/L	0.002
ranium	mg/L	0.134
anadlum	mg/L	ND(0.005)
ross Alpha	pCi/L	93.0
ross Alpha precision (±)	pCVL	3.6
idium 226	pCi/L	2.4
idium 226 precision (±)	рСИ.	0.5
idium 228	рСИL	ND(1.0)
idlum 228 precision (±)	pCi/L	110(110)
C Balance (± 5)	P	-0.170
ions	 	17.3
tions	 	17.3
ids, Total Dissolved Calculated		1090
S Balance (0.80 - 1.20)		
de: The data presented on this form is		1.06

**Note: The data presented on this form is intended for summary purposes only. Laboratory approved data is contained within the quarterly reports.

tae; n\clients2004\time_mining\unc_yallop-2nd2004_final.ids

UNC Mining and Milling		
GroundWater Monitoring	Summary: C	
Well ID:		SECT27-Vent 3
Collection Date:		5/17/2004 14:30
Receive Date:		5/20/2004 10:00
Report Date:		6/18/2004 14:30
STATE OF THE STATE		
Alkalinity, Total as CaCO3	mg/L ·	308
Calcium ·	mg/L	339
Chloride .	mg/L	23.2
Fluoride	mg/L	0.4
Magnesium	mg/L	41.8
Nitrogen, Nitrate+Nitrite as N	mg/L	ND(0.10)
Polassium	mg/L	13.4
Sodium	mg/L	492
Sulfate	mg/L	1780
Conductivity	umhos/cm	3520
pH	s.u.	7.10
Solids, Total Dissolved TDS @ 180 C	mg/L	2810
Colida, Total Supponded TSS @ 105 C	mg/L	100 .
Aluminum :	mg/L	ND(0.1)
Arsenic	mg/L	0.011
Rarium.	mg/L	0.017
3eryllium	mg/L	ND(0.01)
Boron	mg/L	0.017
Cadmium	mg/L	IND(0.01)
Cobalt	mg/L	ND(0.01)
ron	mg/L	18.8
ead	mg/L	ND(0.001)
Manganese .	mg/L	2.6
Aolybdenum	mg/L	0.7
lickel	mg/L	ND(0.5)
elenium	mg/L	0.003
Iranium	mg/L	7.84
anadium	mg/L	ND(0.005)
ross Alpha	pCi/L	5660
ross Alpha precision (±)	pCI/L	27.8
adium 226	pCi/L	24.2
adium 226 precision (±)	pCI/L	1.5
adium 228	pCVL	ND(1.0)
adium 228 precision (±)	pCVL.	
C Balance (± 5)	· · · · · · ·	-0.944
nions	 	43.8
ations		43.0
olids, Total Dissolved Calculated		2890
OS Balance (0.80 - 1.20)		0.970
Note: The data presented on this form i		

^{**}Note: The data presented on this form is intended for summary purposes only. Laboratory approved data is contained within the quarterly reports.

tae: c/clients2004/unc_mining/unc_gallop-2nd2004_final.xis

Client: United Nuclear Corporation

Report Date: 06/18/04 Work Order: C04050789

Project: UNC Closeout Plan

Analyte	Result	Units	RL	%REC	Low Umit	High Limit	RPD	RPDLimit Qual
Method: A2320 B						,	Analytical F	Run: ORION_04052
Sample ID: CCV1_040521_1	Continuing Ca	libration Ver	ification Standa	nd				05/21/04 09:
Alkalinity, Total as CaCO3	4820	mg/L	1.0	96.3	90	110 -		· · · · · · · · · · · · · · · · · · ·
Method: A2320 B							Bat	ch: 040521_1_ALK
Sample ID: MBLK1_040521_1	Method Blank							05/21/04 07:
Alkalinity, Total as CaCO3	מא	mg/L	1.0					**************************************
Sample ID: C04050718-004DMS	Matrix Spike							05/21/04 08:
Alkalinity, Total as CaCO3	349	mg/L	1,0	95.7	90	110		- ,
Sample ID: C04050718-004DMSD	Matrix Spike D	uplicate	•	•				05/21/04 08:
Alkalinity, Total as CaCO3	349	mg/L	1.0	96	90	110	0.1	10
Sample ID: C04050790-002BMS	Matrix Spike						•	05/21/04 11:1
Alkalinity, Total as CaCO3	266	mg/L	. 1.0	94.2	90	110		
Sample ID: C04050790-0028MSD	Matrix Spike Dr	uplicate				•		05/21/04 11:5
Alkalinity, Total as CaCO3	265	mg/L	1.0	93.6	90	110	0.3	10
Sample ID: LCS1_040521_1	Laboratory Con	itrof Spike						05/21/04 11:4
Alkalinļiy, Total as CaCO3	4900	mg/L	1.0	98.1	90	110		
Method: A2510 B						Bat	ch: 040521	A-COND-PROBE-
Sample ID; LCS1_040521A	Laboratory Con	•		•	•			05/21/04 09:5
Conductivity	1450 ur	mhos/cm	1.0	103	90	110		•
Sample ID: MBLK1_040521A	Method Blank							05/21/04 09:5
Conductivity .	ND un	nhos/cm	1.0	•				
Sample ID: C04050789-002BDUP	Sample Duplica	le						05/21/04 09:5
Conductivity	3510 un	nhos/cm	1.0		•		0.3	10
iample ID: LCS2_040521A	Laboratory Cont	rol Spike			•			05/21/04 09:5
Conductivity	1460 un	nhos/cm	1.0	103	90	110		

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation
Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

							•		
Analyte ·	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit	Qual
Method: A2540 C							Batch: 0-	10521A-SLD	S-TDS-W
Sample ID: LCS1_040521A	Laboratory Co	ntrol Spike						05/21.	/ 04 15:46
Solids, Total Dissolved TDS @ 180 C	996	mg/L	10	99.6	80	110			
Sample ID: MBLK1_040521A	Method Blank							05/21	10 4 15:46
Solids, Total Dissolved TDS @ 180 C	ND	mg/L	10			•			
Sample ID: C04050814-003BMS	Matrix Spike						:	05/21/	7 04 15:48
Solids, Total Dissolved TDS @ 180 C	3280	mg/L	10	99	90	110			
Sample ID: C04050814-003BMSD	Matrix Spike D	uplicate				•		05/21/	04 15:48
Solids, Total Dissolved TDS @ 180 C	3270	mg/L	10	98.3	90	110	0.5	10	
Sample ID: C04050814-004BMS	Matrix Spike							05/21/	04 15:49
Solids, Total Dissolved TDS @ 180 C	3080	mg/L	10	99.6	00	110			
Sample ID: C04050814-004BMSD	Matrix Spike D	uplicate	:					05/21/	04 15:49
Solids, Total Dissolved TDS @ 180 C	3660	mg/L	10	98.5	90	110	0.7	10	
Sample ID: LCS2_040521A	Laboratory Cor	ntroi Spike			·			05/21/	04 15:50
Solids, Total Dissolved TDS @ 180 C	1000	mg/L	10	100	90	110			
Mothod: A4500-CI B					•		Batch:	040521A-CL	-TTR-W
Sample ID: MBLK9-040521A	Method Blank							05/21/	04 09:20
Chloride	ND	mg/L	1.0					•	
Sample ID: C04050756-001BMS	Matrix Spike						,	05/21/	04 09:38
Chloride	5700	mg/L	1.0	100	90	110			
Sample ID: C04050756-001BMSD	Matrix Spike Du	uplicate						05/21/0	04 09:39
Chloride	5680	mg/L	1.0	99.6	90	110	0.2	10	
Sample ID: LCS35-040521A	Laboratory Con	trol Spike			-			05/21/0	04 09:41
Chloride .	3510	mg/L	1.0	99.1	90	110			
Method: A4500-F C							Batch	040524_1_1	-ISE-W
Sample ID: MBLK1_040524_1	Method Blank							05/24/0	34 09:14
Fluoride	ND	mg/L	0.10			•			
Sample ID: C04050714-001IMS	Matrix Spike							05/24/0	14 09:21
Fluoride	1.80	mg/L	0.10	90	90	110			
Sample ID: C04050714-001IMSD	Matrix Spike Du	plicate						05/24/0)4 09:24
Fluoride	1.80	mg/L	0.10	90	80	110	0	10	

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation

Report Date: 06/18/04

Project: UNC Closeout Plan

Work Order: C04050789

Analyta		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-H B				•	- :	<u> </u>	lytical Run:	ORION-PH	
Sample ID:	(CCV)=ph7	Continuing C	alibration Ve	ification Standa	erd			•		/O4 10:50
pН	(cos) più	6.97	B.U.	0.010	89.6	90	110		00:21	10,50
Method:	A4500-H B		· · · · · · · · · · · · · · · · · · ·	-				Ba	atch: pH05-2	1-041108
Sample ID:	C04050775-001A(DUP)	Sample Dupli	cale						05/21	/04 11:04
pH		8.15	s.u.	0.010				0,5	nt ,	•
Method:	A4500-SO4 E					·		Batch: 040	501_1_SO4-	TURB-W
Sample ID:	MBLK-1_040601	Melhod Blank							06/01	/04 12:26
Sulfate		, ND	mg/L	1.0		•				
Sample ID:	C04050789-001BMS	Matrix Spike							06/01	/04 13:09
Sulfate		1410	mg/L	30	100	90	110			
Sample ID:	C04050789-001BMSD	Matrix Spike D	uplicate						06/01	/04 13:10
Sulfate		1400	mg/L	30	99.1	90	110	0.7	10	10.10
Sample ID:	C04050874-005DMS	Matrix Spike					•		06/01/	104 13:25
Sulfate		110	mg/L	1.5	96.8	90	110			- 1 12120
Sample ID:	C04050874-005DMSD	Matrix Spike D	uplicate						06/01/	04 13:26
Sulfate		111	mg/L	1.5	97.7	90	110	0.4	10	
Sample ID:	LCS-1_040601	Laboratory Cor	ntrol Spike						06/01/	04 13:27
Sulfate	_	41.7	mg/L	1.0	104	90	110			- ' ' '
Method: E	160.2						·	Batch: 04	0521A-SLDS	S-TSS-W
Sample ID:	MBLK1_040521A	Method Blank							05/21/	04 09:07
Solids, Total S	Suspended TSS @ 105 C	ND	mg/L	1,0						
ample ID: (04050789-002BDUP	Sample Duplica	ate					,	05/21/	04 09:08
iolids, Total S	uspended TSS @ 105 C	122	mg/L	1,0				20	25	
lethod: E	200.7		······································			·-	Α	nalytical Ru	in: ICP1-C_0	040524A
ample ID: 0	ONT 120103-96	Continuing Cali	bration Verifi	cation Standard					05/24/	04 14:23
oron		1.01	mg/L	0.10	101	89.5	110.5			
on .		1.05	mg/L	0.030	105	89.5	110.5			
alcium		53.2	mg/L	1.0	106	89.5	110.5			
lagnesium		53.1	mg/L	1.0	106	89.5	110.5			
otassium		51.5	mg/L	1,0	103	89.5	110.5			
odium		53.2	mg/L	1.0	106	89.5	110.5			

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

Analyte	•	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit	Qual
Method:	E200.8						Analy	tical Run	:ICPMS1-C_	0406178
Sample ID:	CCV	Continuing Ca	libration Veri	fication Standa	rd				06/18	/04 01:06
Barlum		0.0638	mg/L	0.0010	106	90	110			
Lead .		0.0619	mg/L	0.0010	103	90	110			
Uranlum	1	0.0615	mg/L	0.0010	102	90	110		•	
Vanadium		0.0619	mg/L	0.0010	103	90	110			
Method:	E200.8								Balch	: R36342
Sample (D:	C04050789-001DMS	Matrix Spike							06/18/	1 04 01:55
Barlum		0.0632	mg/L	0.0010	97.3	70	130			
Lead		0.0502	mg/L	0.0010	100	70	130			
Uranium		0.185	mg/L	0.0010	105	70	130			
Vanadium	•	0.0494	mg/L	0.0010	97.5	70	130			
Sample ID:	C04050789-001DMSD	Matrix Spike D	uplicate						06/18/	04 02:02
Barium		0.0632	mg/L	0.0010	97.5	70	130	0.1	20	
ಎಂದ		. 0.0500	mg/L	0.0010	99.6	70	130 `	0.5	20	
Jranium		0.180	mg/L	0,0010	92.2	70	130	3.4	20	
/anadium		0.0489	mg/L	0.0010	96.4	70	130	1.1	20	

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation
Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

Analyte .	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit	Qual
Method: E353.2						Analyti	cal Rùn: T	ECHNICON	D40524/
Sample ID: CCV-16	Continuing C	alibration Ve	rification Standa	rd				05/24	/04 11:55
Nitrogen, Nitrate+Nitrite as N	0.930	mg/L	0.10	93	90	110		042,	.04 11,35
Sample ID: CCV-25	Continuing Ca	alibration Ver	ification Standa	rd			•	05/24	/04 12:18
Nitrogen, Nitrale+Nitrite as N	1.07	mg/L	0.10	107	90	110			
Method: E353.2							Batch: A20	04-05 24_1	_NO3_01
Sample ID: MBLK-1	Melhod Blank							05/24	' 04 09:43
Nitrogen, Nitrate+Nitrite as N	ND	mg/L	0.10					,	07 03,43
Sample ID: C04050727-001BMS	Matrix Spike	•	4		•	٠		05/24/	04 10:01
Nitrogen, Nitrate+Nitrite as N	2.00	mg/L	0.10	100	90	110 -			- 1 10101
Sample ID: C04050727-001BMSD	Matrix Spike D	Duplicate						05/24/	0 4 10:03
Nitrogen, Nitrate+Nitrite as N	2.01	mg/L	0.10	101	80	110	0.5	10	
Sample ID: MBLK-17	Method Dlank		•	•				05/24/	04 11:58
Nitrogen, Nitrate+Nitrite as N	ND	mg/L	0.10					V D L u	V-1 11,58
Sample ID: C04050789-001CMS	Matrix Spike				•			05/24/	04 12:13
Nitrogen, Nitrate+Nitrite as N	2.02	mg/L	0.10	101	90	110			
Sample ID: C04050789-001CMSD	Matrix Spike D	uplicate		•			٠	05/24/	04 12:15
Nitrogen, Nitrate+Nitrite as N	2.04	mg/L	0.10	102	90	110	1.0	10	
Sample ID: MBLK-32	Method Blank							05/24/	04 12:35
litrogen, Nitrate+Nitrite as N	ND	mg/L	0.10						
ample ID: C04050845-005CMS	Matrix Spike							. 05/24/0	04 12:53
litrogen, Nitrate+Nitrite as N	2.29	mg/L	0.10	95.5	90	110			
ample ID: C04050845-005CMSD	Matrix Spike Di	uplicate						05/24/0	¥ 12:58
litrogen, Nitrate+Nitrite as N	2.31	mg/L	0.10	96.5	90	110	0.9	10	
ample ID: MBLK-48	Method Blank							05/24/0	14 13:18
Itrogen, Nitrate+Nitrite as N	ND	mg/L	0.10				:		
ample ID: C04050845-014CMS	Matrix Spike		*					05/24/0	4 13:57
itrogen, Nitrate+Nitrite as N	14.5	mg/L	0.15	90.9	90	110			
ample ID: C04050845-014CMSD	Matrix Spike Du	•						05/24/0	4 13:59
itrogen, Nitrate+Nitrite as N	14.5	mg/L	0.15	90.9	90	110	0	10	

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPOLImit	Qual
Method: E900.0								Batch	: R3558
Sample ID: C04050732-001A	Matrix Spike							05/24/	/04 09:0
Gross Alpha	543	pCi/L	1.0	106	70	130	,		- 1 0010
Sample ID: C04050732-001A	Matrix Spike I	Duplicate				•		05/24/	04 09:0
Gross Alpha	562	PCVL	1.0	110	70	130	3.3	30	
Sample ID: MB-R05500	* Mathod Blank							05/24/	04 09:0
Gross Alpha	ND	PCVL	1.0						
Sample ID: LCS-R35580	Laboratory Co	ntrol Spike .	*					05/24/1	D4 09:0
Gross Alpha	507	· bCNT	1.0	99,5	70	130			
Sample ID: C04050910-001A	Sample Duplic	ate					٠	05/24/0	04 09:0
Gross Alpha	ND	pCI/L	1.0		70	130	0	30	
Sample ID: C04040049-001B	Sample Duplic	ate						05/24/0	04 09:00
Gross Alpha	ND	₽ÇI/L	1.0				0	30	
Method: E903,0								Batch: RA2	26-0589
Sample ID: C04050806-001AMS	Matrix Spike							05/25/0	14 12:50
Radium 226	. 24.8	PCVL	0.20	92.7	70	130	•		•
Sample ID: C04050805-001AMSD	Matrix Spike D	uplicate						05/25/0	4 12:50
Radium 226	25.4	PCIAL	0.20	94.8	70	130	2.1	30	
Sample ID: M8-RA226-0589	Method Blank							05/25/0	4 12:50
Radium 226	ND	pCi/L	. 0.20						
iample ID: LCS-RA226-0589	Laboratory Con	trol Spike						05/25/0	4 12:50
Radium 226	14.9	PCVL	0.20	98.1	70	130		•	,_,,
lethod: E904.0				······································				Batch: 0422	8-602A
ample ID: C04050891-001A	Matrix Spike	,				,	•	05/28/0	4 09:24
adium 228	25	pCi/L	1.0	107	70	130			
ample ID: C04050891-001A	Matrix Spike Du	plicate						05/28/0	4 09:24
adlum 228	22	pCI/L	1.0	96.8	70	130	9.8	30	

Qualifiers:

RL - Analyte reporting limit.

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602
Toll Free 888 235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com. • have energylab.com

ENERGY LABOUATORIES

ENERGY LABORATORIES, INC. - 2393 Sali Creek Highway (82601) • P.O. Box 3253 • Casper, WY 5260. Toli Free 888.235.0515 • 307.235.0515 • Fax S07.234.1639 • casper@eneigyfab.com • rww.eneigyfab.com

Energy Laboratories Inc.

2393 Sah Creek Highway FO Box 3258

Casper, WY \$2602-

Company:

Address:

Phone:

Quotation Date: 29-Apr-04

Submitted By: Tracy DeWitt

TEL: (307) 235-0515 FAX: (307) 234-1639

Quotation for Analytical Services # C1212

Montgomery Watson Harza Quote ID: C 1212

Jed Drampson Project: Groundwater Sampling
1475 Pine Grove Road TAT: 15 Working Days
Ste 109
PO Box 774015

Stembook Springs, CO 86477 QC Level: STD (970) 879-6260 Fax: (970) 879-9048 Expires: 21-Apr-05

rnone.	(5.0) 5.5-5255		salmes stadings			
Matrix	Test Namo	Test	Remarks	# Samp	Unit Price	Test Total
Aqueous	Alkalinity ·	A2320 B		1	\$10,00	\$10.00
Aqueous	Chloride.	A4500-CLB		1	\$10.09	\$10,00
Aqueous .	Conductivity	A2519 B		i	00.012	\$10.00
Aqueous	Fktoride	A4500-F C		1	\$10.00	\$10.00
Aqueous	Gross Alpha	E900.0		1	\$50.00	\$50.00
Афиевик	Metals by ICP, Dissolved	E200.7	Ca,Fe,Mg,K,Na	1	\$50.041	\$20,00
Vdneson	Metale by KIP/KIPMS, Total:	£200.7_8	Boron only (analyzed in ELI- Billings)	l.	\$19.00	\$10,00
Aqueous	Metals by ICP-MS, Dissolved-	E200.8	Ba.V.Unat.Pb	1	\$40.00	\$40.60
Aqueous	Nitrogen, Nimate + Nimite	. £153.2	•	t	\$15.00	\$15.00
Aquevos	ptl.	A4500-H D		1	\$10.00	\$19.00
Aquenus	Radium 226, Dissolved	E903.0		1	\$75.00	\$75.00
Aquenus	Radium 228. Diszolved	E904.0		ı	\$75.00	\$75,00
Aguenus	Solids, Total Dissolved	A2540 C	•	1	\$10.00	\$10.00
Agueous	Solids, Total Suspended	E160.2		t	\$10.00	\$10.00
Λησεουχ	Sulfate -	A4500-SO4 E		1	\$10.00	\$10.00

To assure that the quoted analysis and pricing specifications are provided, please include the Quote ID number referenced above on the Chain of Custody or sample submittal documents.

Subcommenting of sample analyses to an outside laboratory may be required. If so, Energy Laboratories will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

January 2004

Appendix B . Groundwater Sampling SOP . Page 3

the Project Manager and the laboratory's project manager, will decide whether or not to analyze the samples.

3.4 FIELD DOCUMENTATION

All aspects of sample collection and handling as well as visual observations will be documented in the field logbooks. Field logbooks will note the following information:

- Site location
- Sampler name(s)
- · Date and time of sample collection
- Sample identification number(s)
- Field water quality measurements (pH, conductivity, temperature)
- Sample handling (including preservation, as appropriate)
- How sample collected (e.g. grab, composite, bailer)
- Number and type of any QA/QC or split samples collected
- Field observations, including any unusual conditions or activities in the area

4.0 WATER QUALITY PARAMETERS

Water quality parameters to be analyzed for the collected sample are presented in Table 4.1 below.

	WATER QUALIT	TABLE 4.1 Y MONITORING PARAM	ETERS	Same Sail
Parameter	Fraction	Method	Detection	UNITS
•	<u> </u>		Limit	
	GENERAL C	HEMISTRY AND ANION	S	
pH		EPA 150.1	0.1	mg/l
Electrical Conductivity		EPA 120.1	1	umhos/cm
Total Dissolved Solids .]	EPA 160.1	10	· ' mg/l
Total Suspended Solids		EPA 160.2	5	mg/l
Alkalinity		EPA 310.1	2.0	mg/l (as
				CaCO ₃ }
Chloride	<u> </u>	EPA 325.2	1.0	mg/l
Fluoride	<u> </u>	EPA 340.2	0.1	mg/l
Nitrate (NO3+NO2 as N)	<u> </u>	EPA 353.2	0.02	mg/l
Sulfate .	<u> </u>	EPA 375.3	10.0	mg/l
	CATIONS	AND TRACE METALS		
Barium	Dissolved	EPA 200.7, ICP	0.00367	mg/l
Boron	Dissolved	EPA 200.7, ICP	۰۵.001 ۴ ^۸	mg/l
Calcium	Dissolved	EPA 200.7, ICP	0.27	mg/l
Iron	Dissolved	EPA 200.7, ICP	٧.610.0	mg/l
Lead	Dissolved	EPA 200.7, ICP	0.04 p.\	mg/l
Magnesium	Dissolved	EPA 200.7, ICP	0.2 🗸	mg/l
Potassium	Dissolved	EPA 200.7, ICP	0.30 🗸	mg/l
Sodium	Dissolved	EPA 200.7, ICP	0.307	mg/l
Uranium	Dissolved	EPA 200.8, ICP-MS	0.0001	mg/l
Vanadium	Dissolved	EPA 200.7, ICP	0.005A)	mg/l
	R/	ADIONUCLIDES		
Radium 226	Dissolved	EPA 903.0	1	pCi/l
Radium 228	Dissolved	EPA 904.0	1	pCi/l
Gross Alpha	Dissolved	EPA 900.0	. 1	pCi/i

Printe	
ed wit	
hFin	
ePrin:	
nd - 1	
Printed with FinePrint - purchase at www.fineprint.com	
e at v	
vww.f	
inepri	
int.co	
3	

mpany Name:		[F	roject Name, i	PIYS	#, Pe	mì #,	Etc.;							-			
UNE		1	UNC	در	ose	سبرين	PLI	2									
port Mall Address; MWH	•		Contact Name				-mail:						S	amç	ler Name If other than Cor	ntact	
THU JED THOUPEN TO BOX F74018 475 PENEGROUS NO STE 107		1	JED TH												SAMO		
STEAMBOAT SPEENAS, CO BU	477		JAMES. THOMPSON DMWHGLOBAL.COM							•							
roice Address: リム								urc	hase Order#:	ELI Quot	o#;						
0 601 3077		1	905 PEP (505)77									•	1				
ALLUP, NM 87305-3077													ı		•	1 21	2/2
- M = 10 4 10 4 4 4 4 4 1 1 1 1 1 1 1 1	P DW D		Number of Containers Sample Type: A W S V B O St Water Solis/Solids Vegetation of Water Solis/Solids Vegetation	A	NA	LY	318	FE	ξQI	UE	ङ्ग	E	D	T	Notify ELI prior to I	RUSH	0
Other			ners / 8 / geta		- [١	1	ı			1			\$	sample submittal for a	dditional	Receipt-Temp
pecial Report Formals - ELI must be	notified prior to	,	Y S Y			ļ	- [Ţ		-	ام	Į	charges and sche	ung	Cooler :D(s)
imple submittal for the following:	IIV 🗆		Solld by D			1		1	1	١	-		밃	3 5	oninents:		Client
•	(IV CI		Type Type Solls/	1		1	1	1	1	١	Ì	1	ACH	Tumeround (TAT)	-		Custody Sea(Y)N
ther			the second							1	1	1	El	Ē			Intact Y.N
DD/EDT Format		:	2 8 3 3			.		-			- 1	-					Signature (Y.N
SAMPLE IDENTIFICATION	Collection		٩				- 1	-	-		- 1	- 1	出	Norman	L CONTRACTOR OF THE CONTRACTOR		Match
(Name, Location, Interval, etc.)	Date	Time	MATRIX			1		_	-	-		_	S	Ž	<u> </u>		Lab ID
NECR-WELL	17 HAYOY	0940	4-W				\bot				·		X				100018
SECT 27 - VENT 3	17HAJØY	143Ø	4-W					· '	1	.	•		X				20
								7	\neg								
		 			-		-		┰	ᅥ		-		+			M M
<u></u>		 		 				}					-	4	- 		5
·				<u> </u>	<u> </u>			\bot						Ц	<u> </u>		<u></u>
_		<u> </u>		l		1		- 1	-	ļ				1			10
									\neg					П			A
			 	+-	╁		H	ᆛ	-		Н			Н			
		<u> </u>		<u> </u>	<u> </u>	ŀ		_	_					Ц			8
						<u> </u>		1									m
		İ												П			15
Custody Relinquished by:	272		Date/ /B MAY	Ilme:	1	ائے	Shipp	ed by	مردا	نـــ بر	لــــــــــــــــــــــــــــــــــــ		<u> </u>		Received by:		Pate/Time:
Record Relinquished by:			Date/	Time:	אבני	7	Shipp	ed by	<u> </u>	. (7	حويه	<i>,</i> 7		-	Received by:	* . [•	Date/Time:
MUST be															I ABORA	TOPVIII	SE ONLY
Signed Sample Disposal:															· LABURO	MUNICIPAL CO.	JE ~!VL !

In certain circumstances, samples submitted to Erergy Laboratories, inc. may be subcontracted to other certified faboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your analytical report.

Visit our web site at www.erergylab.com for additional information, downloadable fee schedule, forms, & links.

Energy Laboratories Inc.

Sample Receipt Checklist

t ·										
Client Name: United Nuclear Corporation				Date	and Time	Received:	5/20	V2004	10:00:00	
Work Order Number C04050789	$\overline{}$			Recel	ved by:	sp				
0:	, i	م ساجع	.1.	. ,						
Checklist completed by: V	Lecure	5/20	<u> 110</u>	Revie	wed by _	irvitals			Cate	
			_	•		•				
•	Carrier na	ame: <u>UP</u>	à .		ı					
Shipping container/cooler in good condition?		Yes	\square	No 🗆	ļ ,	Not Present				
Custody seals intact on shipping container/coo	oler?	Yes	\mathbf{Z}	No 🗆	ا	Not Present				
Custody seals intact on sample bottles?		Yes		No 🗆	_:1	Vot Present	\mathbf{V}			
Chain of custody present?		Yes	$\mathbf{\nabla}$	No 🗆					٠	
Chain of custody signed when relinquished an	d received?	Yes	abla	No 🗆						
Chain of custody agrees with sample labels?		Yes	\mathbf{Z}	№ 🗆					·	
Samples in proper container/bottle?		Yes	V	№ 🗆						
Sample containers Intact?		Yes	\mathbf{Z}	No 🗆						
Sufficient sample volume for indicated test?		Yes	\mathbf{Z}	No □		•				
All samples received within holding time?		Yes	\square	No 🗆						
Container/Temp Blank temperature in compliar	nce?	Yes		No 🗹	18*	C				
Water - VOA vials have zero headspace?		Yes		№ 🗆	No VO	A vials subm	nitted	\square		
Water - pH acceptable upon receipt?		Yes	V	No 🗆	Not	Applicable				
	Adjusted?			Checked by			_			
		,								••
Any No and/or NA (not applicable) response me	ust be detailed in th	ne commer	its sec	tion below.						
			* **** ==							~ ~~ ~~ <u>~</u>
Client contacted:.	Date contacted:		·····	<u> </u>	Person	contacted				
Contacted by:	Regarding:					<u></u>				·
Comments:										
Split and preserved for total metals.										
·							_			
				•						
Corrective Action										
OUTGUITE AVIOT				•						
										
		-								

ANALYTICAL SUMMARY REPORT

Juno 24, 2004

Max Chischilly
United Nuclear Corporation
1475 Pine Grove Road
Ste 109
PO Box 774018
Gallup, NM 87305

Workorder No.: C04050789

Quote ID: C1247 - Groundwater Sampling

Energy Laboratories Inc. received the following 2 samples from United Nuclear Corporation on 5/20/2004 for analysis.

Sample ID	Client Sample 1D	Collect Date	Receive Date	Matrix	Test
C04050789-001	NECR-Well I	0 5 /1 7/ 04 9:40	05/20/04	Aqueous	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Total Alkalinity
		,	:		QA Calculations Chloride Conductivity Fluoride Metals by ICP, Dissolved Metals by ICP-MS, Dissolved
		•	•		Nitrogen, Nitrate + Nitrite pH Gross Alpha Radium 226, Dissolved Radium 228, Dissolved
		:			Solids, Total Dissolved Solids, Total Suspended Sulfate
04050789-002	SECT27-Vent 3	05/17/04 14:30	05/20/04	Aqueous	Same As Above

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative or Report.

If you have any questions regarding these tests results, please call.

Report Approved By:

Date: 24-Jun-04

CLIENT:

United Nuclear Corporation

Project:

UNC Closeout Plan

Sample Delivery Group: C04050789

CASE NARRATIVE

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

COMMENTS

Additional metals added per client's request 6/23/04.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT

eli-cs - Energy Laboratories, Inc. - College Station, TX

eli-g - Energy Laboratories, Inc. - Gillette, WY

eli-h - Energy Laboratories, Inc. - Helena, MT

eli-r - Energy Laboratories, Inc. - Rapid City, SD

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package. A copy of the submittal(s) has been included and tracked in the data package.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by NELAC. Some client specific reporting requirements may not require NELAC reporting protocol. NELAC Certification Number E87641.

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

The total number of pages of this report are indicated by the page number located in the lower right corner.

Date	Sample ID	Location	Analyte	Units	Value	Qualifier
8/12/1976		Mill Well	Alkalinity (CaCO3)	mg/L	100	1
8/12/1976		Mill Well	Arsenic	mg/L	. 0.001	
8/12/1976		Mill Well	Bicarbonate	mg/L	121.7	
8/12/1976		Mill Well	Cadmium	mg/L	0.01	
8/12/1976		. Mill Well	Calcium	' mg/L	5.5	
8/12/1976		Mill Well	Chloride	mg/L	17	
8/12/1976	·	Mill Well	Magnesium	mg/L	0.8	
8/12/1976		: Mill Well	Manganese	mg/L	0.08	
8/12/1976		Mill Well	Nitrate + Nitrate as N	mg/L	5.3	
8/12/1976		Mill Well	На	s.u.	7.98	
8/12/1976	·	Mill Well	Potassium	mg/L	6.6	
8/12/1976		: Mill Well	Selenium :	mg/L	0.01	<u> </u>
8/12/1976		Mill Well	Sodium :	mg/L	.60	
8/12/1976		Mill Well	Sulfate	: mg/L	32	
8/12/1976		Mill Well	TDS	mg/L	335	
2/13/1979	TS-24A	· Minewater	Aluminum	· mg/l	0.2	
2/13/1979	TS-24A	Minewater	Arsenic		0.01	·
2/13/1979	TS-24A	Minewater	Barium	mg/l	}	
2/13/1979	TS-24A	Minewater	Boron	mg/l	0.1	
2/13/1979	TS-24A	Minewater	Cadmium	mg/l	0.2	
2/13/1979	TS-24A	Minewater	Chloride	'mg/l	0.001	
2/13/1979	TS-24A	Minewater	Chromium	mg/l	5.8	
2/13/1979	TS-24A	Minewater	Cobalt	mg/l	0.001	
2/13/1979	TS-24A	Minewater		mg/l	0.01	<u> </u>
2/13/1979	TS-24A	Minewater	Copper .	mg/l	0.001	
2/13/1979	TS-24A	Minewater	Cyanide	`mg/l	0.1	<
2/13/1979	TS-24A	Minewater	Fluoride .	<u>'mg/l</u>	0.5	
2/13/1979	TS-24A	Minewater	Iron	- mg/l	0.05	
2/13/1979	TS-24A	Minewater	Lead	mg/l	0.001	<
2/13/1979	TS-24A	Minewater	Manganese -	mg/l	0.006	
2/13/1979	TS-24A	' Minewater	Mercury	· mg/l	0.0004	<
2/13/1979	TS-24A	Minewater	Molybdenum	mg/i	0.003	
2/13/1979	TS-24A	Minewater	Nickel	mg/i	0.01	<
2/13/1979	TS-24A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.7	
2/13/1979	TS-24A	Minewater	pH, lab	SU	8.4	
2/13/1979	TS-24A	Minewater	Phenols	mg/l	0.003	
2/13/1979	TS-24A	Minewater	Radium-226	pCi/l		± 2.8
2/13/1979	TS-24A		Radium-228	pCi/l		±1
2/13/1979	TS-24A	Minewater	Selenium	mg/l	0.04	
2/13/1979		Minewater	Silica	mg/l	0.01	<
2/13/1979	TS-24A	Minewater	Sulfate	mg/l	77	
2/13/1979	TS-24A	Minewater	TDS	mg/l	552	
	TS-24A	Minewater	Uranium	mg/l	1.25	
2/13/1979	TS-24A	Minewater	Zinc	mg/l	0.02	
2/14/1979	TS-28A	Minewater	Aluminum .	mg/l	0.3	
2/14/1979	TS-28A	Minewater	Arsenic	mg/l	0.01	
2/14/1979	TS-28A	Minewater	Barium	mg/l	0.1	<
2/14/1979	TS-28A	Minewater	Boron	mg/l	0.2	
2/14/1979	TS-28A	Minewater	Cadmium	mg/l	0.001	<
2/14/1979	TS-28A	Minewater	Chloride	mg/l	6.1	
2/14/1979	TS-28A	Minewater	Chromium	mg/i	0.001	<
/14/1979	TS-28A	Minewater	Cobalt	mg/l		<
/14/1979	TS-28A	Minewater	Copper	mg/l	0.002	

Date	Sample ID	Location	Analyte	Units :	Value	Qualifier
2/14/1979	T\$-28A	Minewater	Cyanide .:	mg/l	0.1	<
2/14/1979	TS-28A	Minewater	Fluoride	mg/l	0.5	
2/14/1979	TS-28A	Minewater	Iron ;	mg/l	0.01	
2/14/1979	TS-28A	Minewater	Lead	mg/l	0.001	< ·
2/14/1979	TS-28A	Minewater	Manganese :	mg/l	0.002	
2/14/1979	TS-28A	Minewater	Mercury !	mg/l	0.0004	<
2/14/1979	TS-28A	Minewater	Molybdenum	mg/l	0.001	
2/14/1979	TS-28A	Minewater	Nickel	mg/l	0.01	
2/14/1979	TS-28A	Minewater	Nitrogen, Nitrate (as N)	mg/l	1.2	I
2/14/1979	TS-28A	Minewater	pH, lab	รับ	8.4	
2/14/1979	TS-28A	Minewater	Phenols	mg/l	0.003	
2/14/1979	TS-28A	Minewater	Radium-226	pCl/l	103	± 3
2/14/1979	TS-28A	Minewater	Radium-228	pCi/l		±2
2/14/1979	TS-28A	. Minewater	Selenium :	mg/l	0.04	
2/14/1979	TS-28A	Minewater	Silver	mg/l	0.01	<
2/14/1979	TS-28A	Minewater	Sulfate	mg/l	79	
2/14/1979	TS-28A	Minewater	TDS	mg/l	421	
2/14/1979	TS-28A	Minewater	Uranium	mg/l	0.725	
2/14/1979	TS-28A	Minewater	Zinc	mg/l	0.01	·
2/16/1979	TS-33A	Minewater	Aluminum	mg/l	1.2	
2/16/1979	TS-33A	Minewater	Arsenic	mg/l	0.01	
2/16/1979	TS-33A	Minewater	Barium	mg/l	0.3	
	TS-33A	Minewater	Boron	mg/l	0.2	
2/16/1979			Cadmium	mg/l	0.001	
2/16/1979	TS-33A	Minewater	Chloride	mg/l	7.7	
2/16/1979	TS-33A	Minewater	<u> </u>		0.002	
2/16/1979	TS-33A	Minewater	Chromium	mg/l mg/l	0.002	
2/16/1979	TS-33A	Minewater	Cobalt	mg/l	0.004	-
2/16/1979	TS-33A	Minewater	Copper		0.004	<u> </u>
2/16/1979	TS-33A	Minewater	Cyanide	mg/l	0.48	
2/16/1979	TS-33A	Minewater	Fluoride	<u>mg/l</u>	4.9	
2/16/1979	TS-33A	Minewater	Iron	mg/l	0.001	
2/16/1979	TS-33A	Minewater	Lead	mg/i	0.001	
2/16/1979	TS-33A	Minewater	Manganese	mg/l	0.0004	
2/16/1979	TS-33A	Minewater	Mercury	mg/l		<u> </u>
2/16/1979	TS-33A	Minewater	Molybdenum	mg/l	0.003	
2/16/1979	TS-33A	Minewater	Nickel	mg/l	0.01	۷
2/16/1979	TS-33A	Minewater	Nitrogen, Nitrate (as N)	mg/l		ļ -
2/16/1979	TS-33A	Minewater	· • · · · · · · · · · · · · · · · · · ·	SU.	7.98	
2/16/1979	TS-33A	Minewater	Phenois	mg/l	0.004	{
2/16/1979	TS-33A	Minewater	Radium-226	pCi/I		± 0.4
2/16/1979	TS-33A	Minewater	Radium-228	pCi/I		±2
2/16/1979	TS-33A	Minewater	Selenium	mg/i	0.04	
2/16/1979	TS-33A	Minewater	Silver	mg/l	0.01	
2/16/1979		Minewater	Sulfate	mg/l	81	
2/16/1979		Minewater	TDS	mg/l	415	
2/16/1979		Minewater	Uranium	mg/l	2.07	
2/16/1979	TS-33A	Minewater	Zinc	mg/l	0.01	
2/17/1979	TS-38A	Minewater	Aluminum	mg/l	0.3	
2/17/1979	TS-38A	Minewater	Arsenic	mg/l	0.01	
2/17/1979	TS-38A	Minewater	Barium	mg/l	0.7	
2/17/1979	TS-38A	Minewater	Boron	mg/l	0.2	
2/17/1979	TS-38A	Minewater	Cadmium	mg/l	0.001	<u> <</u>

Date	Sample ID	Location	Analyte	Units	Value	Qualifier
2/17/1979		Minewater	Chloride	mg/l	6.2	
2/17/1979		Minewater	Chromium	mg/l	0.001	
2/17/1979	TS-38A	Minewater	Cobalt	mg/l		
2/17/1979	TS-38A	Minewater	Copper		0.01	
2/17/1979	TS-38A	Minewater	Cyanide	mg/l	: 0.1	
2/17/1979	TS-38A	Minewater	Fluoride	mg/l		
2/17/1979	TS-38A	Minewater	Iron	mg/l	0.48	
2/17/1979	TS-38A	Minewater	Lead	mg/l		
2/17/1979	TS-38A	Minewater	Manganese ·	mg/l	0.001	
2/17/1979	TS-38A	Minewater	Mercury	mg/l	0.003	
2/17/1979	TS-38A	Minewater	Molybdenum	mg/l	0.0004	
2/17/1979	TS-38A	Minewater	Nickel	mg/l	0.002	
2/17/1979	TS-38A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.01	
2/17/1979	TS-38A	Minewater	pH, lab	mg/l	0.5	
2/17/1979	TS-38A	Minewater	Phenols :	SU	8.2	
2/17/1979	TS-38A	:Minewater		mg/l	0.005	
2/17/1979	TS-38A	Minewater	Radium-226	pCi/I		± 2.1
2/17/1979	TS-38A		Radium-228	pCi/l		<
2/17/1979	TS-38A	Minewater	Selenium	mg/l	0.03	
2/17/1979	TS-38A	Minewater	Silver	mg/l	0.01	
2/17/1979	TS-38A	Minewater	Sulfate	.mg/l	76	
2/17/1979	TS-38A	Minewater	TDS	.mg/l	483	
2/17/1979		!Minewater	Uranium	mg/l	2.1	
	TS-38A	Minewater	Zinc ! .	mg/l	0.01	
2/21/1979	TS-43A	Minewater	Aluminum	mg/l	0.3	
2/21/1979	TS-43A	Minewater	Arsenic	mg/l	0.01	<
2/21/1979	TS-43A	iMinewater	Barlum	mg/l	0.4	
2/21/1979	TS-43A	. Minewater	Boron	mg/l	0.3	
2/21/1979	:TS-43A	Minewater	Cadmium	mg/I	0.001	·
2/21/1979	TS-43A	Minewater	Chloride	mg/l	. 7	
2/21/1979	TS-43A	Minewater	Chromium	mg/l	0.001	v
2/21/1979 2/21/1979	TS-43A	Minewater	Cobalt	mg/l	0.01	<
	TS-43A	Minewater	Copper	mg/l	0.003	
2/21/1979		Minewater	Cyanide	mg/l	0.1	<
2/21/1979	TS-43A	Minewater	Fluoride	mg/l	0.46	
2/21/1979	TS-43A	Minewater	Iron '	mg/I	0.07	
2/21/1979		Minewater	Lead	mg/l	0.001	<
2/21/1979	TS-43A	Minewater	Manganese	mg/l	0.01	
2/21/1979	TS-43A	Minewater	Mercury	mg/l	0.0004	<
2/21/1979	TS-43A	. : Minewater	Molybdenum	mg/l	0.002	-
2/21/1979	TS-43A	Minewater	Nickel	mg/l	0.01	<
2/21/1979	TS-43A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.4	
2/21/1979		Minewater	pH, lab	mg/i	8.19	
2/21/1979		Minewater	Phenois :	mg/l	0.003	
2/21/1979	TS-43A	Minewater	Radium-226	pCi/l	82	± 1.7
/21/1979	TS-43A	Minewater	Radium-228	pCi/l	1	
/21/1979	TS-43A	Minewater	Selenium	mg/l	0.03	·
/21/1979	TS-43A	Minewater	Silver	mg/l	0.01	<
/21/1979	TS-43A	Minewater	Sulfate ·	mg/l	73	*****
/21/1979	TS-43A	Minewater	TDS	mg/l	386	
/21/1979	TS-43A	Minewater	Uranium	mg/l	0.96	
/21/1979		Minewater	Zinc	mg/l	0.01	<
/27/1979	TS-47A		Aluminum	mg/l	0.3	

Date	Sample ID	Location	Analyte .	Units	Value Qualifier
2/27/1979	TS-47A	Minewater	Arsenic	mg/l₁	0.01 <
2/27/1979	TS-47A	Minewater	Barium	. ∙mg/l	0.1
2/27/1979	TS-47A	Minewater	Boron	mg/l	0.3
2/27/1979	1 TS-47A	Minewater	Cadmium	mg/i	0.001 <
2/27/1979	TS-47A	Minewater	Chloride	mg/l	7 .
2/27/1979	TS-47A	Minewater	Chromium	mg/l	0.001 <
2/27/1979	TS-47A	Minewater	Cobalt	mg/l	0.01 <
2/27/1979	TS-47A	Minewater	Copper	mg/l	0.001 <
2/27/1979	TS-47A	Minewater	Cyanide	mg/l	0.2
2/27/1979	TS-47A	Minewater	Fluoride	mg/l	0.48
2/27/1979	TS-47A	Minewater	Iron	mg/l	0.61
2/27/1979	TS-47A	Minewater	Lead	mg/l	0.001 <
2/27/1979	TS-47A	Minewater	Manganese	mg/l	0.02
2/27/1979	TS-47A	Minewater	Mercury	mg/l	0.0004
2/27/1979	TS-47A	Minewater	Molybdenum	mg/l	0.001 <
2/27/1979	. TS-47A	Minewater	Nickel	mg/l	0.01 <
2/27/1979	TS-47A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5
2/27/1979	TS-47A	Minewater	pH, lab	mg/l	7.42
2/27/1979	TS-47A	Minewater	Phenois	mg/l	0.002
2/27/1979	TS-47A	Minewater	Radium-226	рСі/І	155 ± 3
2/27/1979	TS-47A	Minewater	Radium-228	pCi/l	1 <
2/27/1979	TS-47A	Minewater	Selenium	· mg/l	0.04
2/27/1979	TS-47A	Minewater	Silver	mg/l	0.01 <
2/27/1979	TS-47A	Minewater	Sulfate	mg/l	70
2/27/1979	TS-47A	Minewater	TDS	mg/l	383
2/27/1979	TS-47A	Minewater	Uranium	mg/l	3.71
2/27/1979	TS-47A	Minewater	Zinc	mg/l	0.01 <
3/14/1979	TS-52A	Minewater	Aluminum	mg/l	0.3
3/14/1979	TS-52A	Minewater	Arsenic	mg/l	0.01 <
3/14/1979	TS-52A	Minewater	Barium	mg/l	0.2
3/14/1979	TS-52A	Minewater	Boron	mg/l	0.3
3/14/1979	TS-52A	Minewater	Cadmium	mg/l	0.001 <
3/14/1979	TS-52A	Minewater	Chloride	mg/l	6.5
3/14/1979	TS-52A	Minewater	Chromium	mg/l	0.041
3/14/1979	TS-52A	Minewater	Cobalt	mg/l	0.01 <
3/14/1979	TS-52A	Minewater	Copper	mg/l	0.016
3/14/1979	TS-52A	Minewater	Cyanide	mg/l	0.1
3/14/1979	TS-52A	Minewater	Fluoride	mg/l	0.52
3/14/1979	TS-52A	Minewater	Iron ·	mg/l	0.62
3/14/1979	TS-52A	Minewater	Lead	mg/l	0.001 <
3/14/1979	TS-52A	Minewater	Manganese	mg/l	0.081
3/14/1979	TS-52A	Minewater	Mercury	mg/l	0.0004 <
3/14/1979	TS-52A	Minewater	Molybdenum	mg/l	0.003
3/14/1979	TS-52A	Minewater	Nickel	mġ/l	0.01 <
3/14/1979	TS-52A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5
3/14/1979	TS-52A	Minewater	pH, lab	mg/i	7.2
3/14/1979	TS-52A	Minewater	Phenois	mg/l	0.006
3/14/1979	TS-52A	Minewater	Radium-226	pCl/l	67 ± 2.7
3/14/1979	TS-52A	Minewater	Radium-228	pCi/l	1 <
3/14/1979	TS-52A	Minewater	Selenium	mg/l	0.03
3/14/1979	TS-52A	Minewater	Silver	mg/l	0.01 <
3/14/1979	TS-52A	Minewater	Sulfate	mg/l	70

Date	Sample ID	Location	Analyte ii .:	Units	Value Qualifier
3/14/1979	TS-52A	Minewater	ITDS	mg/l	386
3/14/1979	TS-52A	Minewater	Uranium	mg/l	1.57
3/14/1979	TS-52A	Minewater	Zinc	' 'mg/l	0.02
3/27/1979	!TS-56A	Minewater	Aluminum	mg/l	
3/27/1979	TS-56A	Minewater	Arsenic	mg/l	0.1 <
3/27/1979		Minewater	Barium	mg/l	0.01
3/27/1979	TS-56A	Minewater	Boron	.mg/l	0.2
3/27/1979	: TS-56A	Minewater	Cadmium	mg/l	0.001 <
3/27/1979		Minewater	Chloride	mg/l	7
3/27/1979		Minewater	Chromium	mg/l	
3/27/1979		Minewater	Cobalt		0.002
3/27/1979		Minewater	Copper	mg/l	0.01 <
3/27/1979		Minewater	Cyanide	mg/l	0.001
3/27/1979	TS-56A	Minewater	Fluoride	mg/l	0.1 <
3/27/1979	TS-56A	Minewater	Iron	<u>mg/l</u>	0.48
3/27/1979	TS-56A	Minewater	Lead	mg/l	0.02
3/27/1979	:TS-56A	Minewater		mg/l	0.001 <
3/27/1979	TS-56A	Minewater	Manganese Mercury	mg/i	0.002
3/27/1979	TS-56A	Minewater		mg/l	0.0004 <
3/27/1979	TS-56A	Minewater	Molybdenum Nickel	mg/i	0.001
3/27/1979	TS-56A	Minewater	<u></u>	mg/i	0.01 <
3/27/1979		Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5
3/27/1979			pH, lab	mg/l	8
3/27/1979		Minewater	Phenois	mg/l	0.001 <
3/27/1979	TS-56A	Minewater	Radium-226	pCi/l	89.8 ± 2.3
3/27/1979	TS-56A	Minewater	Radium-228	pCi/l	2 ± 1
3/27/1979		Minewater	Selenium	mg/l	0.03
3/27/1979		Minewater	Silver	mg/i	0.01 <
3/27/1979	TS-56A	: :Minewater	Sulfate	mg/l	76
3/27/1979		: Minewater : Minewater	TDS	mg/l	404
/27/1979			Uranium	mg/l	1.53
/11/1979		: Minewater : Minewater	Zinc	mg/l	0.01 < .
/11/1979	TS-63	. Minewater	Aluminum	mg/l	; 0.2 <
/11/1979	TS-63		Arsenic	mg/l	0.01 <
/11/1979	TS-63	Minewater	Barium	mg/l	0.2
/11/1979	TS-63	Minewater	Boron	mg/l	0.1 <
/11/1979	TS-63	Minewater	Cadmium	mg/l	0.01 < 5 .
/11/1979	TS-63	Minewater	Chloride	mg/l	
/11/1979		Minewater	Chromium	mg/l	0.02 <
/11/1979	TS-63	Minewater	Cobalt	mg/l	0.03 <
	:TS-63	Minewater	Copper	mg/l	0.01 <
/11/1979	TS-63	Minewater	Cyanide	mg/l	0.1 <
/11/1979	TS-63	Minewater	Fluoride	mg/l	0.51
/11/1979	TS-63	Minewater	iron	mg/l	0.05 <
/11/1979	TS-63	Minewater	Lead	mg/i	0.05 <
/11/1979	TS-63	Minewater	Manganese	mg/l	0.01 <
/11/1979	:TS-63	Minewater	Mercury	mg/i	0.0004 <
/11/1979	:TS-63	Minewater	Molybdenum	mg/l	0.04 <
/11/1979	:TS-63	Minewater	Nickel	mg/l	0.02
11/1979	·TS-63	Minewater	Nitrogen, Nitrate (as N)	mg/l	13
11/1979	TS-63	Minewater	pH, lab	mg/l	7.59
11/1979	:TS-63		Phenois	mg/l	0.001 <
	TS-63	Minewater	Radium-226	рСіЛ	22

Date	Sample ID	Location	Analyte	Units	Value	Qualifier
4/11/1979	TS-63	Minewater	Radium-228	pÇi/l	· 5	•
4/11/1979	TS-63	Minewater	Sc : i	umhos/cm	600	•
4/11/1979	TS-63	Minewater	Selenium	mg/l	0.02	•
4/11/1979	TS-63	Minewater	Silver	mg/l	0.01	<
4/11/1979	TS-63	Minewater	Sodium	mg/l	85.3	
4/11/1979	TS-63	Minewater	Sulfate	mg/l	75.8	
4/11/1979	TS-63	Minewater	TDS	mg/l	380.5	
4/11/1979	TS-63	Minewater	Thorium-230	pCi/I	0.6	v
4/11/1979	TS-63	Minewater	Uranium	mg/i	2.29	
4/11/1979	TS-63	Minewater	Vanadium	mg/l	0.1	<
4/11/1979	TS-63	Minewater	Zinc	mg/l	0.01	
5/2/1979	TS-69	Minewater	Aluminum	mg/l	0.2	<
5/2/1979	TS-69	Minewater	Barium	mg/l		< .
5/2/1979	TS-69	Minewater	Cadmium	mg/l	0.01	
5/2/1979	TS-69	Minewater	Chloride	mg/l	5	
5/2/1979	TS-69	Minewater	Chromium	mg/l	0.02	<
5/2/1979	TS-69	Minewater	Cobalt	mg/l	0.05	
5/2/1979	TS-69	Minewater	Copper	mg/l	0.01	
5/2/1979	TS-69	Minewater	Fluoride	mg/l	0.42	
5/2/1979	TS-69	Minewater	Iron	mg/l -	0.04	
5/2/1979	TS-69	Minewater	Lead	mg/l	0.05	
5/2/1979	TS-69	Minewater	Manganese	mg/i	0.01	4
5/2/1979	TS-69	Minewater	Mercury	mg/l	0.0004	
5/2/1979	TS-69	Minewater	Molybdenum	mg/l	0.04	
5/2/1979	TS-69	Minewater	Nickel	mg/l	0.04	
5/2/1979	TS-69	Minewater	Nitrogen, Nitrate (as N)	mg/l	• 1	
5/2/1979	TS-69	Minewater	pH, lab	mg/l	8.45	
5/2/1979	TS-69	Minewater	Phenois	mg/l	0.001	
5/2/1979	TS-69	Minewater	Radium-226	pCi/l	11.2	
5/2/1979	TS-69	Minewater	Sc	umhos/cm	485	
5/2/1979	TS-69	Minewater	Silver	mg/l	0.01	·
5/2/1979	TS-69	Minewater	Sodium	mg/l	1009.1	
5/2/1979	TS-69	Minewater	Sulfate	mg/l	73.3	
5/2/1979	TS-69	Minewater	TDS	mg/l	370.5	
5/2/1979	TS-69	Minewater	Thorium-230	pCi/I	5.8	
5/2/1979	TS-69	Minewater	Uranium	mg/l	1.7	
5/2/1979	TS-69	Minewater	Vanadium	mg/l	0.1	
5/2/1979	TS-69	Minewater	Zinc	ma/l	0.01	
6/11/1979	10-03	Minewater	Aluminum	mg/l	0.339	
6/11/1979		Minewater	Arsenic	mg/l	0.0118	
6/11/1979		Minewater	Barium	mg/l	0.043	
6/11/1979	<u> </u>	Minewater	Boron	mg/l	0.043	
6/11/1979		Minewater	Cadmium	mg/i	0.0038	
6/11/1979		Minewater	Chloride	mg/i	13.4	-
6/11/1979		Minewater	Chromium	mg/l	0.0356	
6/11/1979	-	Minewater	Cobalt	mg/l	0.0001	
6/11/1979	<u> </u>	Minewater		mg/l	0.0001	
	<u> </u>		Copper Fluoride		0.0235	
6/11/1979 6/11/1979		Minewater	<u> </u>	mg/l	0.059	
	ļ	Minewater	Iron	mg/l	0.038	
6/11/1979		Minewater	Lead	mg/l	0.0136	
6/11/1979	<u> </u>	Minewater	Manganese	mg/l		
6/11/1979	l	Minewater	Mercury	mg/l	0.001	<u> </u>

Date	Sample ID	Location	Analyte	Units	Value	Qualifier
6/11/1979		Міпеwater	Molybdenum	· mg/l	0.0373	
6/11/1979		Minewater	Nickel	mg/l	0.1349	
6/11/1979	:	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.1	
6/11/1979	h	Minewater	pH, lab	SU	7.94	
6/11/1979	<u>:</u>	Minewater	Radium-226	pCi/l	36.1	
6/11/1979	•	Minewater	Radium-228	pCi/l	5.2	
6/11/1979		Minewater	Sc	umhos/cm	690	
6/11/1979	•	Minewater	Selenium	mg/l	0.0149	
6/11/1979		Minewater	Silver	mg/l	0.0054	
6/11/1979	•	Minewater	Sodium	mg/l	10	
6/11/1979		Minewater	Sulfate	mg/l	111.5	
6/11/1979		Minewater	TDS	mg/l	449.6	
6/11/1979		Minewater	Thorium-230	pCi/I	120.5	
6/11/1979		Minewater	Uranium	mg/l	3,62	
6/11/1979		Minewater	Vanadium	mg/l	0.1	·
6/11/1979		Minewater	Zinc	mg/l	0.0022	
4/30/1980		Minewater	Alkalinity (CaCO3)	mg/l	232	
4/30/1980		Minewater	Aluminum	mg/l	2.8	
4/30/1980		Minewater	Barium	mg/l	0.1	l
4/30/1980	· · · · · · · · · · · · · · · · · · ·	Minewater	Calcium	mg/i	10.1	<u> </u>
4/30/1980		Minewater	Chloride	mg/l	6.5	<u> </u>
1/30/1980		Minewater	Iron	mg/l	1.99	
1/30/1980	······································	Minewater	Lead-210	pCi/l		± 7.0
1/30/1980		Minewater	Magnesium	mg/l		<
1/30/1980		Minewater	Manganese	mg/l	0.003	
1/30/1980		Minewater	pH, lab	SU.	8	
//30/1980		Minewater	Potassium	mg/l	2.2	
1/30/1980	···	Minewater	Radium-226	pCi/i		± 12
/30/1980		Minewater	Radium-228	pCi/l		<
//30/1980		Minewater	Sc	umhos/cm	691	
/30/1980		Minewater	Selenium	mg/l	0.004	
/30/1980		Minewater	Silica	mg/l	21	
/30/1980		Minewater	Sodium	mg/l	170	
/30/1980		Minewater	Sulfate	mg/l	71	
/30/1980		Minewater	TDS	mg/l	381	
/30/1980		Minewater	Thorium-230	pCi/l	0.6	
/30/1980		Minewater	Uranium	mg/l	2.84	
/30/1980		Minewater	Zinc	mg/i	0.02	
/16/1980		Minewater	Alkalinity (CaCO3)	mg/l	127	<u> </u>
/16/1980		Minewater	Aluminum	mg/l	0.1	
/16/1980		Minewater	Barium	mg/i	0.01	
/16/1980		Minewater	Bicarbonate	mg/l	155	
/16/1980		Minewater	Calcium	mg/i	31	
/16/1980		Minewater	Carbonate			
/16/1980		Minewater	Chloride	mg/l	0.1 14.9	<
/16/1980		Minewater	Iron	mg/l		
/16/1980		Minewater	Lead-210	mg/l pCi/l	0.1	
/16/1980			Magnesium			± 3.42
/16/1980		Minewater	Manganese	mg/l	4.2	
/16/1980		Minewater	pH, lab	mg/l SU	1.3	
16/1980		Minewater	Potassium		6.7	
			Hadium-226	mg/l	1.9	_

Date	Sample ID	Location	Analyte	Units	Value	Qualifier
7/16/1980		Minewater	Radium-228	pCl/l	1.3	± 5.0
7/16/1980		Minewater	Sc	umhos/cm	950	
7/16/1980		Minewater	Selenium .	mg/l	0.05	
7/16/1980		Minewater	Silicon	mg/l	6.9	
7/16/1980		Minewater	Sodium	mg/l	140	
7/16/1980		Minewater	Sulfate	mg/l	272	
7/16/1980		Minewater	TDS	mg/l	538	
7/16/1980		Minewater	Thorium-230	pCi/i		± 2.6
7/16/1980		Minewater	Uranium	mg/l	2.7	2 2.0
7/16/1980		Minewater	Zinc ·	mg/l	0.01	
10/9/1984		Mill Well	Alkalinity (CaCO3)	mg/L	197	
10/9/1984		Mill Well	Aluminum	mg/L	0.05	
10/9/1984		- Mill Well	Ammonium as N	mg/L	0.05	
10/9/1984		Mili Weil	Arsenic	mg/L	0.001	
10/9/1984		Mill Well	Bicarbonate	mg/L	239.7	
10/9/1984		Mill Well	Cadmium	mg/L	0.01	
10/9/1984		Mill Well	Calcium	mg/L	4.7	
10/9/1984		Mill Well	Chloride	mg/L	4.1	
10/9/1984		Mill Well	Cobalt	mg/L	0.05	
10/9/1984		Mill Well	Gross Alpha	pCi/L	43	
10/9/1984		Mill Well	Lead		0.05	
10/9/1984		Mill Well	Lead 210	mg/L		
10/9/1984		Mill Well	Magnesium	pCi/L	9.3	·
10/9/1984		Mill Well	Manganese	mg/L	3.24	
10/9/1984		Mill Well	Molybdenum	mg/L	0.01	
10/9/1984		Mill Well	Nickel	mg/L	0.01	
10/9/1984		Mill Well	pH	mg/L	0.05	
10/9/1984		Mill Well	Potassium	S.U.	8.49	
10/9/1984		Mill Weil		mg/L	1.6	
10/9/1984	·		Radium 226	pCi/L	1.8	
10/9/1984		Mill Well	Selenium	mg/L	0.001	
10/9/1984		Mill Well	Sodium	mg/L.	103.2	
10/9/1984		Mill Well	Sulfate	mg/L	17.7	
		Mill Well	TDS	mg/L	228	
10/9/1984 10/9/1984		Mill Well	Thorium 230	pCl/L	61.3	
10/9/1984		Mill Well	Uranium	mg/L	0.065	
		Mill Well	Vanadium	mg/L	0.01	
4/23/1992 4/23/1992		Mill Well	Alkalinity (CaCO3)	mg/L	201	
		Mill Well	Aluminum	mg/L	0.1	
4/23/1992		Mill Well	Ammonium as N	mg/L	0.1	
4/23/1992		Mill Well	Arsenic	mg/L	0.004	
4/23/1992	<u>·</u>	Mill Well	Beryllium	mg/L	0.1	
4/23/1992		Mill Well	Bicarbonate	mg/L	245	
4/23/1992		Mill Well	Cadmium	mg/L	0.01	
1/23/1992		Mill Well	Calcium	mg/L	3.2	
1/23/1992		Mill Well	Chioride	mg/L	6.3	
1/23/1992		Mill Well	Cobalt	mg/L	0.01	
1/23/1992		Mill Well	Gross Alpha	pCi/L	2.3	
1/23/1992		Mill Well	Lead	mg/L	0.05	
1/23/1992		Mill Well	Lead 210	pCi/L	1	
//23/1992		Mill Well	Magnesium	mg/L	0.4	
1/23/1992		Mill Well	Manganese	mg/L	0.01	
1/23/1992		Mill Well	Molybdenum	mg/L	0.1	

Date	Sample ID	Location	Analyte	: Units	Value	Qualifier	
4/23/1992		: Mill Well	Branch and the contract of the	mg/L	0.05		
4/23/1992		: Mill Well	Nitrate + Nitrate as N	mg/L	0.1	: :	
4/23/1992		Mill Well	Hq	່ ຣ.ນ.	8.83		
4/23/1992		1 :Mill Well	Potassium	mg/L	1		
4/23/1992		Mill Well	Radium 226	pCi/L	0.4		
4/23/1992		Mill Well	Radium 228	pCi/L	2.1		
4/23/1992		:Mill Well	Selenium	mg/L	0.218		
4/23/1992		i Mill Well	Sodium	mg/L	123		
4/23/1992		Mill Well	Sulfate	mg/L	33.3		
4/23/1992		Mill Well	TDS	mg/L	292		
4/23/1992		Mill Well	Thorium 230	pCi/L	0.2	:	
4/23/1992		Mill Well	Uranium	mg/L	0.576		
4/23/1992		Mill Well	Vanadium	mg/L	0.570		
7/28/1993		Mill Well	Alkalinity (CaCO3)	mg/L	188		
7/28/1993		Mill Well	Aluminum	mg/L	0.16		
7/28/1993		Mill Well	Ammonium as N	mg/L	0.05		
7/28/1993		Mill Well	Arsenic	mg/L	0.001		
7/28/1993		:Mill Well	Beryllium	mg/L	0.005		
7/28/1993		Mill Well	Bicarbonate	mg/L	229		
7/28/1993		Mill Well	Cadmium		0.01		
7/28/1993		Mill Well	Calcium	mg/L mg/L	15		
7/28/1993	i	: Mill Well	Chloride		182		
7/28/1993		:Mill Well	Cobalt	mg/L	0.01		
7/28/1993	·	Mill Well	Gross Alpha	mg/L	1.8		
7/28/1993		:Mill Well	Lead	pCi/L	0.05		
7/28/1993	·	:Mill Well	Magnesium	mg/L	4.9		
7/28/1993		Mill Well	Manganese	mg/L mg/L	0.24		
7/28/1993		Mill Well	Molybdenum	mg/L	0.1		
7/28/1993		·Mill Well	Nickel	mg/L	0.05		
7/28/1993		Mill Well	Nitrate + Nitrate as N	mg/L	0.03		
7/28/1993		Mill Well	pH	· s.u.	8.49		
7/28/1993		Mill Well	Potassium	mg/L	3		
7/28/1993	·	Mill Well	Radium 226	pCi/L	1.6	f	
7/28/1993	· 	Mill Well	Radium 228	pCi/L	1.4		
7/28/1993		Mill Well	Selenium	mg/L	0.003		
7/28/1993		Mill Well	Sodium	mg/L	708	 	
7/28/1993		Mill Well	Sulfate	mg/L	1260	 	
7/28/1993		Mill Well	TDS	mg/L	2258		
7/28/1993		Mill Well	Thorium 230	pCl/L	0.2		
7/28/1993		Mill Well	Uranium	mg/L	0.002		
7/28/1993		Mill Well	Vanadium	mg/L	0.002		
6/18/2002		Mill Well	Alkalinity (CaCO3)	mg/L	185		
6/18/2002		Mill Well	Aluminum	mg/L	0.1		
6/18/2002		· Mill Well	Ammonium as N	mg/L	0.1		
6/18/2002	 _	Mill Well	Arsenic	mg/L	0.001		
6/18/2002		Mill Well	Beryllium	mg/L	0.001		
6/18/2002		Mill Well	Bicarbonate	mg/L	225		
6/18/2002		Mill Well	Cadmium	mg/L	0.005		
6/18/2002		Mill Well	Calcium	mg/L	16		
6/18/2002		Mill Well	Chloride		160		
6/18/2002		Mill Well	Cobalt	mg/L	0.01		
				mg/L		 	
6/18/2002		Mill Well	Gross Alpha	pCi/L] 1	<u> </u>	

Date	Sample ID	Location `	Analyte	Units	Value	Qualifier
6/18/2002		Mill Well	Lead	mg/L	0.05	
6/18/2002	·	Mili Well	Lead 210	pCi/L	1	
6/18/2002		Mill Well	Magnesium	mg/L	4.2	1
6/18/2002		Mill Well	Manganese	mg/L	0.05	
6/18/2002		Mill Well	Molybdenum	mg/L	0.1	1
6/18/2002		Mill Well	Nickel	mg/L	0.05	
6/18/2002		Mill Well	Nitrate + Nitrate as N	mg/L	0.1	
6/18/2002		Mill Well	pH .	S.U.	8.34	1
6/18/2002		Mill Well	Potassium	mg/L	3.5	
6/18/2002		Mill Well	Radium 226	pCi/L	0.7	
6/18/2002		Mill Well	Radium 228	pCi/L	2.7	***************************************
6/18/2002		Mill Well	Selenium .	mg/L	0.001	
6/18/2002		Mill Well	Sodium	mg/L	644	1
6/18/2002	•	Mill Well	Sulfate	mg/L	1100	
6/18/2002		Mill Well	TDS	mg/L	2090	
6/18/2002		Mill Well	Thorium 230	pCi/L	0.02	***************************************
6/18/2002		Mill Well	Uranium	mg/L	0.07	
6/18/2002		Mill Well	Vanadium	mg/L	0.1	

Notes:
Qualifier of < signifies that concentration was less than detection limit shown
Qualifier of ± represents precision of radionuclides analysis

Part Don it

STATION NAME: Church Rock Mine - Backfilling 6/02/81

LOCATION: Gallup N.M

Parameter/Date-Ti	ne decant	mine H20	Comingles	1. mine HzO	Commessee H20	Symp	Slurry/ HzQ	IX H2O
Water Level from	CR-1	CR-2	CR-3	CR-4 M-NE 478	CR-5	CR-6 SUMPHTO	M14 CR-7 SLR+H70	CR-9
Water Level Elevation F±						-		
Staff Gage Ft								
рН -	5.2	8.2	8.6	8. 3	8.3	6.8	. 8./	7.9
Temp ^O C	2.3	23	18205	21.5	21.7	20.5	21.1	21.2
Uncorrected Field Cond. wmh	05 5900	490	1820	408	670.	1800	780	710
G. Alpha pCill								
Ra-226 Ci/	1						~ =	
Ra-228 pCi/	1			i				
Pb-210 pCi/	1							
As right	0.059	20.005	10.005	20.005	CO.005	40.005	20.005	40.00
Ba right	(0.1	20.1	(0.1	<0.1	20.1	(0.01	20.1	10.1
Cd Mg/d	0.011	46.01	KO.001	<0.001	(0.001	0.001	60.001	<0.00
Pb Mg/gl	0.028	<0.005	20.005	<0.005	<0.005	K0.005	10.005	<0.00
Mo 19/6	10.01	<0.01	20.01	10.01	20.01	<0.1	0.014	0.015
Se Mal	0.048	0.058	0.020	0.043	(0.61	0.011	0.061	0.050
U-nat. Mg/	97.46	1.90	1.0	0.56	0.670	3.88	5.83	1.50
v 19/	1 0.061	0.017	20.005	0.009	20.005	KO.005	0.015	0.01
Zn /5/-	1//	0.036	0.966	10.03	<0.03	1.585	0.041	10.0
NO2+NO3 mg/								
NH ₂ mg/	1							
con	4							
Ca mg/	530.0	6.0	69.4	56	10.6	161.0	21.4	25.9
K mg/.	163.8	1.17	1.95	1.56	1.95	2.34	1.95	2.34
Na mg/		112.7	130.0	110.4	158.7	161.0	158.7	161.0
HCO ₃ mg/		253.7	51.1	247.1	307.3	.0	232,8	201.
c1 mg/	96.3	6.14	11.54	5.8	7.6	17.5	9.5	13.9
301	1 6439	47.3	576	30.9	104.4	1187	207.2	241.0
TFR mg/	1 9140	325	708	310	552	1608	523	557
Lab Cond25°C 210	ho	1					-	
Mg mg/l		0.5	9.5	0	0	17.2	3.3	1.65

ug/mil *

CHEMICAL GROUND-WATER ANALYSES OF TRIBAL WELLS AND SPRINGS OPERATED BY... THE GROUND-WATER DEVELOPMENT AND SHALLOW WELL AND SPRING DEVELOPMENT DEPARTMENTS (continued)

	Quad.	Miles from NE-Corner West South	Field # or Name	Date Si Col- lect	0 ₂ C		~		со ₃ со мі]	3 ⁸⁰⁴ 1 i o 1	Cl		NO3		Dis- solved Solids	Conduc- tance	рН	Geological Formation
1									Distr	ict 16	(con	tinued	1)					
	106	0.55 x 16.15 5.35 x 14.70 7.60 x 12.10 5.45 x 10.80 12.92 x 10.30	16B-40A 16K-336 16K-340	6/54	5.8	86 23 80 1	.6 L9 2	24 27 64	247 0 220 0 776 0 890 0 458 53	596 385 91 314	5 20 26 24 10	1.4	3	779 592 278 528	1010 1125 832 1250	1350 1500 1330 1810 1080	8.1	Glorieta Glorieta Alluvium Alluvium Crevasse Canyon
		4.65 x 12.80		8/49			à-		153 0		8					268		Westwater Canyon
	107	4.60 x 10.00		8/53	5.1	20	11 2	262	498 1	1 210	12	.0	1.9	95	778	1280		Menefee
		8.55 x 16.70 4.75 x 7.20	16-18 16T-339	8/54 + 11/53	14	48,	13	157	364 0 310 6 548 5	138 7 5	13 8 9	.5	.2	174 14 50	613	937 842 1260	8.8	Gallup Menefee Menefee+ Crevasse
	108 119 120	10.50 x 10.00 12.05 x 5.55	16-2-8 16T-52: 16B-39 16-5-9	12/48	10	19	1.5	204	590 0 416 0 244 1 114 0	124 6 54		2.0	.7	54 5 373	581 353	4320 912 576 13400	7.9	Canyon Landslide Entrada Sonsela Petrified Forest, & Upper
		7.75 x 4.50	San Antone	11/48		2.0	3.3	219	436 (77	33	1.2	8.6	18	559	881		Wingate (Rock Point)
	121	0.50 x 4.55 0.35 x 3.40	Spr. 16T-52 16K-32 16-4-2	1 5/51	7.1	L 10 58	2.4	147 287	236 (587 (.8 1.6		35 231	419 1010	687 1560	8.2	

MINE Well

180

To:

Roy Blickwedel Larry Bush

Jed Thompson From:

Date:

August 3, 2004

Job No: 1010139.011802

Subject: Groundwater Quality in the Westwater Canyon Member at the Northeast

Church Rock Mine

This memorandum was prepared in response to comments to the Northeast Church Rock (NECR) Mine Closeout Plan received from the State of New Mexico, Mining and Minerals Division (MMD) in their memo dated June 23, 2004. This memorandum presents available information about:

- Regional groundwater quality within the Westwater Canyon Member, Dakota Sandstone and Gallup Formation near the NECR Mine site (the Site),
- Historic groundwater quality analyses of NECR mine water; and,
- Comparisons of regional and historic water quality data to the groundwater sample collected at the Site on May 17, 2004.

HISTORIC AND REGIONAL DATA

Historic and regional groundwater quality data sources used in this report are listed below.

- Water Quality Impacts of Uranium Mining and Milling Activities in the Grants Mineral Belt, New Mexico. (EPA, 1975)
- Water Quality Data for Discharges from New Mexico Uranium Mines and Mills. (NMEID, 1980)
- Hydrogeology and Water Resources of San Juan Basin, New Mexico. Hydrologic Report 6. (Stone, 1983)
- Reclamation Engineering Services, Geolydrologic Report. (Canonie, 1987)
- Five-year Review Report, United Nuclear Corporation Ground Water Operable Unit McKinley County, New Mexico. (USEPA, 1998)
- Discharge Permit (DP) 63 sampling results

The primary aquifers in the Church Rock region are the Dakota Sandstone and Westwater Canyon Member. Higher geologic units, including the Gallup Formation and the alluvium are not historic aquifers (Canonie, 1987).

The alluvium and Gallup Formation at the Northeast Church Rock mine and mill were unsaturated. Occurrences of groundwater in both units are derived from mine dewatering seepage from multiple mines (USEPA, 1998), and are hydraulically separated from the Dakota Sandstone and Westwater Canyon Member by the Upper D-Cross Tongue Member of the Mancos Shale which is a very

effective aquiclude (Canonie, 1987). Minewater that seeped into the alluvium and Gallup Formation is being regulated and addressed under the Church Rock Mill Superfund site under NRC Source Materials License SUA-1475. Minewater was discharged to Pipeline Arroyo in accordance with the Federal Clean Water Act under NPDES Permit Number NM0020401.

Groundwater flows downdip in bedrock (Canonie, 1987). The local dip and groundwater flow direction in the Gallup Formation, Dakota Sandstone and Westwater Canyon Member is to the north (Stone, 1983).

Available analytical data for Site minewater are summarized in Table 1 and listed in Attachment 1. All data are reported results from DP-63 for minewater before comingling with decant from sand backfill. These data represent the ambient groundwater quality in the Westwater Canyon Member at the Site.

	NEOD SA	TA! INEWATER QU	BLE 1	TILLARA DVI		
	Data Points	Average ²	Max Max	Min Min	St Dev	NMED Std.3
MAJOR IONS	1. 2 1					1 (1:::== -:=:
Alkalinity (CaCO3)	2	179.5	232	127		1
Bicarbonate	1	155	155	155		-
Calcium	2	20.55	31	10.1		
Chloride	13	7.6	14.9	5	3.0	250
Fluoride	11	0.50	0.55	0.42	0.03	1.6
Magnesium	2	2.6	4.2	1		
Nitrogen, Nitrate (as N)	11	1.7	13	0.1	3.7	10
Potassium	2	2.1	2.2	1.9	••	
Sodlum	5	282,9	1009.1	10	410.5	1
Sulfate	13	93	272	70	55	600
PHYSICAL PROPERTIES	•		· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u></u>
TDS	13	426.9	552	370.5	61.3	1000
pH⁴	13	7.88	8.45	6.70	0.52.	6 to 9
Conductivity ⁵	5	683	950	485	171	· ·
METAL - DISSOLVED	· · · · · · · · · · · · · · · · · · ·	i				
Aluminum	13	0.5	2.8	0.1	0.7	5.0
Arsenic	10	0.0102	0.0118	0.0100	0.0006	0.1
Barlum	13	0.20	0.70	0.01	0.18	1.0
Boron	10	0,20	0.30	0.01	0.09	0.75
Cadmium	11	0.003	0.010	0.001	0.004	0.01
Chromium	11	0.011	0.041	0.001	0.015	0.05
Cobalt	11	0,0146	0.0500	0.0001	0.0137	0.05
Copper	11	0.0066	0.0235	0.001	0.0075	1.0
Iron	13	0.85	4.9	0.01	1.46	1.0
Lead	11	0.01	0.05	0.001	0.020	0.05
Manganese	13	0.112	1.3	0.002	0.357	0.2
Mercury	11	0.0005	0.001	0.0004	0.0002	0.002
Molybdenum	11	0.012	0.04	0.001	0.017	1.0
Nickel	11	0.0250	0.1349	0.01	0.0376	0.2
Selenium	12	0.031	0.05	0.004	0.013	0.05
Silver	10	0.0095	0.01	0.0054	0.0015	0.05
Uranium	13	2,082	3.71	0.725	0.936	5.0
Vanadium	3	0.1	0.1	0.1	0	
Zinc	13	0.0117	0.02	0.0022	0.0052	10.0
RADIONUCLIDES - DISSO	OLVED .					
Radium-226	13	97.6	490	0.6	125.1	30,
Radium-228 Notes:	12	2.1	5.2	1	1.8	304

Notes

- 1. Summary of selected parameters from Attachment 1.
- 2. All values in mg/i. except as otherwise noted
- Standards for arsenic, cadmium, barium, chromium, fluoride, mercury, nitrate, lead, selenium, silver, and uranium are human health standards
 - Standards for chloride, copper, sulfate, TDS, pH, iron, and zinc are secondary domestic water supply standards Standards for aluminum, boron, cobalt, manganese, molybdenum, and nickel are for irrigation water
- 4. pH in standard units
- 5. Conductivity in uS/cm
- 6. Combined Radium 226 and 228 cannot exceed 30 pCI/L

There is no groundwater quality data for the Dakota Sandstone near the Site.

Average historic minewater data exceeded standards for radium 226 in the Westwater Canyon Member.

Four wells are located within a one mile radius of the Site. The locations of the wells are shown in Figure 1. The Church Rock Mill Well and NECR-1 Well are completed in the Westwater Canyon Member. The Friendship Well is completed in the Gallup Formation. NR-1 is completed in the alluvium. The Church Rock Mill Well is used as a non-potable water supply for the mine office and to supplement the water in the tailings impoundment evaporation ponds to prevent the pond liner from drying out. NECR-1, NR-1 and the Friendship wells are not currently used. Completion data for these wells are provided in Table 2. The Pipeline Canyon Well mentioned in the Closeout Plan is located approximately 1.5 miles to the northeast of the Permit Boundary.

		TABL WELL COMPLE			• •
Well Name	Completion Date	Total Depth (ft bgs)	Top of Screen (ft bgs)	Screened Interval (ft)	Completion Unit
Church Rock Mill	6/6/76 ·	1,600	Unk	100	Westwater Canyon
NECR Well	Unk	1,228	Unk	Unk	Westwater Canyon
Friendship	Unk	718	Unk	40	Gallup
NR-1	5/28/91	105	74.6	30.4	Alluvium

CURRENT SITE CONDITIONS

A groundwater sample was collected at the Site on May 17, 2004. The sample was collected from the well located approximately 200 feet south of shaft NECR-1 on the north end of the Site. The sample was collected in accordance with the SOP presented in the Section 27 Closeout Plan.

The sample was collected from approximately the center of the water column in the well. The depth to water was 524.68 feet below the top of casing. The total depth of the vent is 1,230 feet below the top of casing. The sample was collected at approximately 900 feet below the top of casing. The sample was collected using multiple trips with a PVC double ball bailer. The double ball bailer works the same as a single ball bailer, with the balls floating as the bailer is lowered, allowing water to enter and flow through the device freely. When the designated depth is reached, the bailer is hoisted and the balls at the top and bottom of the bailer are seated preventing the water from leaving the bottom of the bailer and preventing water above the bailer from mixing with the water in the bailer.

Sufficient trips were made with the bailer to provide the quantity of water required for NMED and UNC to analyze for the analytes included in the Closeout Plan. Results of the analytical analyses of UNC's samples are provided in Table 3 along with the average minewater quality from Table 1 and the water quality from the Church Rock Mill Well which is also completed in the Westwater Canyon Member. The laboratory report is included in Attachment 2.

Water bailed from the NECR well was black in color and smelled of hydrogen sulfide. The field pH of the sample was 10.2 standard units, and the conductivity was 1800 umhos/cm at 18.0 degrees Celsius.

As shown in Table 3, the pH and concentrations of alkalinity, sulfate, sodium, TDS, and boron are elevated above average mine water concentrations from the DP-63 monitoring. Several constituents, particularly radium and uranium, are less concentrated currently than when mining was active. pH and alkalinity values in the recent NECR sample are also greater than those seen in the Church Rock Mill Well, while sulfate and sodium concentrations (which make up the bulk of TDS) are less

concentrated. Concentrations of boron and TDS, and the pH exceed NMED standards in the NECR sample.

	SECTION 2	TAB 7 MINE WATE	LE 3 R ANALYTICAL R	ESILITS	
Constituent	-Units	Mill Well 6/18/02 ³	Average Mine Water ²	NECR Well 5/17/04 ³	NMED Std.4
MAJOR IONS	· · · · · · · · · · · · · · · · · · ·		· · · · ·		,
Alkalinity, Total as CaCO ₃	mg/L		179.5	365	
Bicarbonate	mg/L	225	155		
Calcium	mg/L	16.0	20.55	3.38	
Chloride	mg/L	160	7.6	21.8	250
Fluoride	mg/L		· 0.50	0.7	1.6
Magnesium	mg/L	4.2	2.6	0.58	
Nitrate + Nitrite as N	mg/L ·	<0.10	1.75	<0.10	10.0
Potassium	mg/L	3.5	2.1	5.57	ĺ
Sodium	mg/L	644	282.9	388	
Sulfate	mg/L	1100	93	450	600
PHYSICAL PROPERT	TES		***************************************		
TSS	mg/L			243	
TDS	mg/L	2090	426,9	1150	1000
рН	s.u.	8.34	7.88	9.90	6 to 9
Conductivity	umhos/cm	-	683	1840	1
METALS - DISSOLV	ED				
Aluminum	mg/L	<0.10	0.5	< 0.10	5.0
Arsenic	mg/L	< 0,001	0.0102	0.001	0.1
Barium	mg/L	. ••	0.20	0.014	1.0
Beryllium	mg/L	< 0.01	••	< 0.01	
Boron	mg/L		0.20	4.47	0.75
Cadmium	mg/L	< 0.005	0.003	< 0.01	0.01
Cobalt	mg/L	< 0.01	0.0146	< 0.01	
Iron	mg/L	**	0.85	0.140	1.0
Lead	mg/L	< 0.05	0.01	< 0.001	0.05
Manganese	mg/L	0.05	0.112	0.003	
Molybdenum	mg/L	<0.10	0.012	0.056	1.0
Nickel	mg/L	-<0.05	0.025	< 0.05	
Selenium	mg/L	<0.001	0.031	0.002	0.05
Uranium	mg/L	0.0700	2.082	0.134	5.0
Vanadium	mg/L	<0.10	0.1	<0.005	
RADIONUCLIDES -	DISSOLVED				
Gross Alpha	pCI/I	<1		93 ± 3.6	
Radium-226	pCl/I	0.7	97.6	2.4 ± 0.5	30°
Radium-228	pCi/l	2.7	2.1	<1.0	30 ⁶

Notes:

- 1. Samples collected from Church Rock Mill Well as reported in Closeout Plan
- 2. Average mine water quality as reported in Table 1
- 3. Sample collected from well located near shaft NECR-1
- Standards for fluoride, nitrate, arsenic, barium, cadmium, lead, selenium, uranium, and radium are human health standards.
 - Standards for chloride, sulfate, TDS, pH, and Iron are secondary domestic water supply standards.
- Standards for aluminum, boron and molybdenum are for Irrigation water.
- 5. Value represents nitrate as N
- 6. Combined Radium 226 and 228 cannot exceed 30 pCI/L

Figures 2 through 6 show the concentration trends for alkalinity, sulfate, TDS, pH and boron. The figures plot the trends over time by data source. All available data is plotted in the graphs.

Elevated values for pH and alkalinity in the recent NECR sample are likely due to the presence of sulfate reducing bacteria (SRB) in the well water, adding alkalinity to the water as they reduce sulfate to sulfide. The presence of SRB's would explain the black coloring and hydrogen sulfide smell of the water bailed from the well. This might also explain why uranium and iron concentrations are lower

today than during active mining. Uranium is less mobile in reducing environments and iron will react with the sulfide and precipitate as iron sulfide.

The likely role of sulfate-reducing conditions in the current NECR sample chemistry is further supported by the following differences between the NECR sample and the Mill Well:

- Sulfate is about a factor of two less in the NECR sample compared to the Mill Well indicating sulfate reduction,
- Bicarbonate is concentrated in the NECR sample in stoichiometric proportion to sulfate reduction according to the reaction:

$$2 CH_2O + SO_4^2 = H_2S + 2 HCO_5$$
.

There is currently no explanation for the elevated concentration of boron in the recent NECR sample. There are no data for boron from the Mill Well.

CONCLUSIONS

Groundwater quality at the Site is within NMED standards with the exception of pH, TDS and boron. Sulfate and TDS concentrations and radium activity at the site have dropped since the peak concentration recorded in 1993 possibly because of sulfate reduction. A sulfate reducing environment would explain the increase in pH and alkalinity seen in the recent NECR sample.

The source of boron in the water is unknown.

Water quality has improved since mining ceased. This is especially true for constituents of greatest concern, radium and uranium. In addition, metals concentrations meet water quality standards. While dissolved solids are greater today than during mining, they are comprised of common ions that do not pose a health risk.

While the pH of the NECR is higher than historic results, it is not recommended that it be considered for abatement. Treatment to reduce pH could produce adverse environmental consequences. Metals and radionuclides are geochemically fixed under current and anticipated conditions; to alter this equilibrium would be to run the risk of mobilizing them.

FIGURE 2
ALKALINITY CONCENTRATION IN GROUNDWATER NEAR NECR MINE

FIGURE 3
SULFATE CONCENTRATION IN GROUNDWATER NEAR NECR MINE

FIGURE 4
TDS CONCENTRATION IN GROUNDWATER NEAR NECR MINE

FIGURE 5
pH OF GROUNDWATER NEAR NECR MINE

FIGURE 6
BORON CONCENTRATION OF GROUNDWATER NEAR NECR MINE

Client: United Nuclear Corporation

Project: UNC Closcout Plan Lab ID: C04050789-001

Client Sample ID: NECR-Well I

Report Date: 06/24/04 Collection Date: 05/17/04 09:40

Date Received: 05/20/04

Matrix: Aqueous

	_	mb .c	_	M		
Analyses	Result	Units	Qual	RL Q	CL Method	Analysis Date / B
MAJOR IONS	•					•
Alkalinity, Total 25 CaCO3	365	mg/L		1.0	A2320 B	05/21/04 10:36 / nin
Calcium	3.38	mg/L		0.20	E200.7	05/24/04 15:27 / ts
Chloride	21.8	mg/L		1,0	A4500-CI B	05/21/04 09:34 / jl
Fluorida	0.7	mg/L		0,1	A4500-F C	05/24/04 09:42 / stb
Magneslum	0.58	mg/L·		0.20	E200.7	05/24/04 15:27 / ts
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.10	E353,2	05/24/04 12:10 / Jal
Polassium	. 5.57	mg/L		0.30	E200.7	05/24/04 15:27 / ts
Sodium	388	mg/L		0.30	E200.7	05/24/04 15:27 / ts
Sulfate	450	mg/L	D	9.8	A4500-SO4 E	06/01/04 12:47 / dd
PHYSICAL PROPERTIES						
Conductivity	1840	umhos/cm		1.0	A2510 B	05/21/04 09:55 / dd
pH	9.90	s.u.		0.01	A4500-H B	05/21/04 11:02 / Js
Solids, Total Dissolved TDS @ 180 C	1150	mg/L		10	A2540 C	05/21/04 15.40 / Js
Solids, Total Suspended TSS @ 105 C	243 .	mg/L		1.0	E160.2	05/21/04 09:07 / js
METALS - DISSOLVED		•			- 4·	
Aluminum	ND	mg/L		0,1	E200.8	05/25/04 16:31 / eli-t
Arsenic	0.001	mg/L		0.001	E200,8	05/25/04 16:31 / eli-b
munafi	0.014	mg/L		0.003	E200.8	06/18/04 01:48 / bws
Beryllium	ND	mg/L		0.01	E200.8	05/25/04 16:31 / ell-b
Boron	4.47	mg/L		0.0010	E200,7	05/24/04 15:27 / ts
Dadmium	ND	mg/L		0.01	E200.8	05/25/04 16:31 / eli-b
Cobalt	ND	mg/L		0.01	E200,8	05/25/04 15:31 / eli-b
ron ·	0.140	mg/L		0.010	E200.7	05/24/04 15:27 / ts
.ead	ND	mg/L		0.001	E200.8	06/18/04 01:48 / bws
Manganese	0.003	mg/L		0.001	E200.B	00/10/04 01:40 / bws
Molybdenum	0.056	mg/L		0.001	E200.8	06/18/04 01:48 / bws
lickel	ND	mg/L		0.05	E200.B	05/25/04 16:31 / ell-b
Gelenium	0.002	mg/L		0.001	E200.8	05/25/04 16:31 / eli-b
Jranlum	0.134	mg/L		0.0001	E200.8	06/18/04 01:48 / bws
anadium	ND	mg/L		0.005	E200.8	06/18/04 01:48 / bws
ADIONUCLIDES - DISSOLVED	•					_
iross Alpha	93.0	pCI/L		1.0	E900.0	05/24/04 09:00 / rs
ross Alpha precision (±)	3.6 ·	рСИL			E900.0	05/24/04 09:00 / rs
adlum 226	2.4	рСИL		0.2	E903.0	05/25/04 12:50 / df
adlum 226 precision (±)	0.5	pCVL			E903.0	05/25/04 12:50 / df
adium 228		pCl/L		1.0	E904.0	05/28/04 09:24 / pj

Report

RL - Analyte reporting limit.

Definitions:

QCL - Quality control limit.

D - RL increased due to sample matrix interference.

MCL - Maximum contaminant level.

Client: United Nuclear Corporation

Project: UNC Closeout Plan Lab ID: C04050789-001

Client Sample ID: NECR-Well 1

Report Date: 06/24/04

Collection Date: 05/17/04 09:40

Date Received: 05/20/04

Matrix: Aqueous

	MCL									
Analyses	Result	Units	Qual	RL QCL	Method	Analysis Date / By				
DATA QUALITY										
A/C Balance (± 5)	-0.170	%			Calculation	08/11/04 14:47 / tae				
Anions	17.3	meq/L			Calculation	06/11/04 14:47 / lae				
Cations	17.3	meq/L			Calculation	06/11/04 14:47 / lae				
Solids, Total Dissolved Calculated	1090	mg/L			Calculation	06/11/04 14.47 / lau				
TOS Balance (0.80 - 1.20)	1.06	dec. %			Calculation	06/11/04 14:47 / tae				

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

MCL - Maximum contaminant level.
ND - Not detected at the reporting limit.

Client: United Nuclear Corporation

Project: UNC Closeout Plan Lab ID: C04050789-002

Client Sample ID: SECT27-Vent 3

Report Date: 06/24/04 Collection Date: 05/17/04 14:30

Matrix: Aqueous

Date Received: 05/20/04

				MC	עי	
Analyses	Result	Units	Qual	RL QC	L Method	Analysis Date / By
MAJOR IONS						
Alkalinity, Total as CaCO3	308	mg/L		1.0	A2320 B	05/21/04 10:47 / nlm
Calcium	339	mg/L	D	0.57	E200.7	05/24/04 15:35 / Is
Chloride	23,2	mg/L		1.0	A4500-CI B	05/21/04 09:35 / ji
Fluoride	0.4	mg/L		0.1	A4500-F C	06/24/04 00:44 / 6/6
Magnesium	41.B	mg/L		0.20	E200.7	05/24/04 15:30 / ts
Nitrogen, Nitrate+Nitrite as N	ND	mg/L		0.10	E353.2	05/24/04 12:20 / Jal
Potassium	13.4	mg/L		0.30	E200.7	05/24/04 15:30 / ts
Sodium	492	mg/L		0.30	E200.7	05/24/04 15:30 / ts
Sulfate	1780	mg/L	٥	30	A4500-SO4 E	06/01/04 12:50 / dd
PHYSICAL PROPERTIES				,		
Conductivity	3520	umnos/cm		1.0	A2510 B	05/21/04 09:55 / dd
oH .	7.10	5.U.	_	0.01	A4500-H B	05/21/04 11:03 / Js
Solids, Total Dissolved TDS @ 180 C	2810	mg/L		10	A2540 C	05/21/04 15:46 / Js
Solids, Total Süspended TSS @ 105 C	100	mg/L		1.0	E160.2	05/21/04 09:07 / Js
METALS - DISSOLVED		·				
Numinum	ND	mg/L		0.1	E200.8	05/25/04 16:43 / eli-b
krsenic	0.011	mg/L		0.001	E200.8	05/25/04 16:43 / oli-b
Parium	0.017	mg/L		0.003	E200.8	06/18/04 01:41 / bws
Beryllium	ND	mg/L		0.01	E200.8	05/25/04 16:43 / ell-b
laron	0.379	mg/L		0.0010	E200,7	05/24/04 15:30 / ts
admlum	ND	mg/L		0.01	E200.8	05/25/04 16:43 / ell-b
obalt .	ND	mg/L		0.01	E200.8	05/25/04 16:43 / ell-b
on	18.8	mg/L		0.010	E200.7	05/24/04 15:30 / ts
ead	ND	mg/L		0.001	E200.8	08/18/04 01:41 / bws
langanese	2.6	mg/L		0.01	E200.8	05/27/04 23:20 / ell-b
olybdenum	0.7	mg/L		0.1	E200.8	05/27/04 23:26 / ell-b
ickel	, DN	mg/L		0.05	E200.8	05/25/04 16:43 / ell-b
elenium	0.003	mg/L		0.001	E200.8	05/25/04 16:43 / ell-b
ranium	7.84	mg/L		0.0001	E200.8	06/18/04 01:41 / bws
anadium	ND	mg/L		0.005	E200.8	06/18/04 01:41 / bws
ADIONUCLIDES - DISSOLVED						
ross Alpha	5660	pCi/L		1.0	E900.0	05/24/04 09:00 / rs
ross Aipha precision (±)	27.8	рСИL			E900.0	05/24/04 09:00 / rs
adium 226 .	24.2	PCIA		0.2	E903.0	05/25/04 12:50 / df
dium 226 precision (±)	1.5	pCVL			E903.0	05/25/04 12:50 / df
idium 228		рСИ.		1.0	E904.0	05/28/04 09:24 / pj

Report

RL - Analyte reporting limit.

Definitions:

QCL - Quality control limit.

D - RL Increased due to sample matrix interference.

MCL - Maximum contaminant level,

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Lab ID: C04050789-002

Client Sample ID: SECT27-Vent 3

Report Date: 06/24/04

Collection Date: 05/17/04 14:30

Date Received: 05/20/04

Matrix: Aqueous

	MCL/								
Analyses	Result	Units	, Qual	RL QCL	Method	Analysis Date / By			
DATA QUALITY									
A/C Balance (± 5)	-0.944	%			Calculation	06/11/04 14:48 / lae			
Anions	43.8	meq/L			Calculation	06/11/04 14:48 / fae			
Cations	43.0	meq/L			Calculation	06/11/04 14:48 / tae			
Solids, Total Dissolved Calculated	2090	mg/L			Calculation	06/11/04 14:48 / tae			
TDS Balance (0.80 - 1.20)	0.970	dec. %			Calculation	06/11/04 14:48 / tae			

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MCL - Maximum contaminant level.

Well ID:		NECR-Well 1	7
Collection Date:		5/17/2004 9:40	1
Receive Date:		5/20/2004 10:00	1
Report Date:		6/18/2004 14:30	1
988年李州的1882年1898年1898年	U MUHIST	1 Marco 4050789-00 138	
Alkalinity, Total as CaCO3	mg/L	; 365	1
Calcium	mg/L	: 3.38	1
Chloride	mg/L	21.8	j · · ·
Fluoride	mg/L	. 0.7	
Magnesium	mg/L	0.58	
Nitrogen, Nitrate+Nitrite as N	mg/L	ND(0.10)	
Polassium	my/L	. 5.57	
Sodium	mg/L	, 388	
Sulfate	mg/L	450	
Conductivity	umhos/cm	- (
pH	5.u.	9,90	
Solids, Total Dissolved TDS @ 180 C	mg/L	1150	
Solids, Total Suspended TSS @ 105 C	mg/L	243	•
Aluminum	mg/L	ND(0,1)	•
Arsenic	mg/L	0.001	
Barlum	mg/L	0.014	
Beryllium	mg/L	ND(0.01)	
Boron	mg/L	4.47	
Cadmium	mg/L	ND(0.01)	•
Cobalt	mg/L	ND(0,01)	
ron	mg/L	0.140	
.ead	mg/L	ND(0.001)	
Aanganese Aalybdenum	mg/L	0.003	
lickel	mg/L	0.058	
elenium	mg/L	ND(0,05)	
	mg/L	0.002	
Iranium Yanadium	mg/L	0.134	
ranadium Pross Alpha	mg/L	ND(0.005)	
iross Alpha precision (±)	pCi/L	93.0	
adium 226	pCVL pCi/L	3.6	
		2.4	
	pCI/L	0.5	
	pCI/L pCI/L	ND(1.0)	-
C Balance (± 5)	אטמר	0.170	
o balance (ES)		-0.170 17.3	
nlions		17.3	
lids, Total Dissolved Calculated		1090	_
OS Balance (0.80 - 1.20)		1.06	·
Note: The data presented on this form is : r\clients2004\unc_mining\unc_yellup-2nd200	within th	e quarterly reports.	Laboratory approved data is conta

UNC Mining and Milling		
GroundWater Monitoring	Summary: C	
Well ID:	-,,	SECT27-Vent 3
Collection Date:		5/17/2004 14:30
Receive Date:		5/20/2004 10:00
Report Date:		6/18/2004 14:30
A STATE OF THE ATTACK OF THE SECOND STATE OF T		
Alkalinity, Total as CaCO3	mg/L '	308
Caldum -	mg/L	339
Chloride .	mg/L	23.2
Fluoride	mg/L	0.4
Magneslum	mg/L	41.8
Nilrogen, Nitrale+Nitrite as N	mg/L	ND(0.10)
Polassium	mg/L	13.4
Sodium	mg/L	492
Sulfate	mg/L	1780
Conductivity	umhos/cm	3520
oH	s.u.	7.10
Solids, Total Dissolved TDS @ 180 C	mg/L	2810
Collda, Tetal Supponded TSS 🚳 105 C	mg/L	100
Aluminum	mg/L	ND(0,1)
Arsenic	mg/L	0.011
arium	mg/L	0.017
Beryllium	mg/L	ND(0.01)
Boron	mg/L	0.017
Padmium Padmium	mg/L	(ND(0.01)
Cobalt	mg/L	ND(0.01)
on	mg/L	18.8
ead	mg/L	ND(0.001)
fanganese	mg/L	2,6
lolybdenum	mg/L	0.7
ickel	mg/L	ND(0.5)
elenium	mg/L	0.003
ranium	mg/L	7.84
anadlum	mg/L	ND(0.005)
ross Alpha	pCVL	5660
ross Alpha precision (±)	pCi/L	27.8
adium 226	pCi/L	24.2
adium 226 precision (±)	IpCVL	1,5
adium 228	pCI/L	
adium 228 precision (±)	pCVL	ND(1.0)
	Post	0.044
C Balance (± 5)	 	-0.944
		43.8
alions	 	43.0
olids, Total Dissolved Calculated		2890
OS Balance (0.80 - 1.20)	L	0.970

^{**}Note: The data presented on this form is intended for summary purposes only. Laboratory approved data is contained within the quarterly reports.

tae: r\cilents2004\unc_mming\unc_gallop-2nd2004_finatous

Client: United Nuclear Corporation

Report Date: 06/18/04

Project: UNC Closeout Plan

Work Order: C04050789

Analyte	Result	Units	RL	%REC	Low Umit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B						F	nalytical F	Run: ORION_0	D40521A
Sample ID: CCV1_040521_1	Continuing Ca	dibration Ve	rification Standa	ard				05/21/	04 09:32
Alkalinity, Total as CaCO3	4820	mg/L	1.0	96.3	90	1,10 -			_
Method: A2320 B		-				•	Bal	ch: 040521_1	_ALK-W
Sample ID: MBLK1_040521_1	Melhod Blank							05/21/0	34 07:46
Alkalinity, Total as GoCO3	מא	mg/I	1.0						- (5/110
Sample ID: C04050718-004DMS	Matrix Spike							05/21/0	04 08:21
Alkalinity, Total as CaCO3	349	mg/L	1.0	95.7	90	110			
Sample ID: C04050718-004DMSD	Mairlx Spike D	uplicate	,	,				05/21/0	04 08:31
Alkalinity, Total as CaCO3	349	mg/L	1.0	96	90	110	0.1	10	
Sample ID: C04050790-002BMS	Matrix Spike						•	05/21/0	04 11:18
Alkalinity, Total as CaCO3	266	mg/L	. 1.0	94.2	90	110			
Sample ID: C04050790-002BMSD	Matrix Spike D	uplicate				•		06/21/0	4 11:20
Alkalinity, Total as CaCO3	265	mg/L	1.0	93.6	80	110	0.3	10	
Sample ID: LCS1_040521_1	Laboratory Cor	ntrol Spike						05/21/0	4 11:47
Alkalinity, Total as CaCO3	4900	mg/L	1.0	98.1	90	110			
Method: A2510 B					_	Bat	ch: 04052	IA-COND-PR	OBE-W
Sample ID: LCS1_040521A	Laboratory Cor	itrol Spike		•	,			05/21/0	4 09:55
Conductivity	1450 u	mnos/cm	1.0	103	90	110		`	
Sample ID: MBLK1_040521A	Method Blank							05/21/0	4 09:55
Conductivity .	ND u	mhos/cm	1.0						
ample ID; C04050789-002BDUP	Sample Duplica	ite						05/21/0	4 09:55
Conductivity	3510 u	mhos/cm	1.0		•		0.3	10	
iample ID: LCS2_040521A	Laboratory Con	troi Spike			•			05/21/0	4 09:55
Conductivity	1460 ui	nhos/cm	1.0	103	90	110			

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation

Report Date: 06/18/04 Work Order: C04050789

Project: UNC Closeout Plan

Analyte .	Resuit	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit	Qual
Method: A2540 C	'						Batch: 04	10521A-SLD	S-TDS-W
Sample ID: LCS1_040521A	Laboratory Co	ntrol Spike						05/21/	04 15:46
Solids, Total Dissolved TDS @ 180 C	996	mg/L	10	99.6	80	110			
Sample ID: MBLK1_040521A	Method Blank							05/21/	04 15:46
Solids, Total Dissolved TDS @ 180 C	ND	mg/L	10						
Sample ID: C04050814-003BMS	Matrix Spike						:	06/21/	04 15:48
Solids, Total Dissolved TDS @ 180 C	3280	mg/L	10	99	90	110			
Sample ID: C04050814-003BMSD	Matrix Spike D	uplicate				•		05/21/	04 15:48
Solids, Total Dissolved TDS @ 180 C	3270	mg/L	10	98,3	90	110	0,5	10	
Sample ID: C04050814-004BMS	Matrix Spike							05/21/	04 15:49
Solids, Total Dissolved TDS @ 150 C	3080	mg/L	10	99.6	00	110			
Sample ID: C04050814-004BMSD	Matrix Spike D	uplicate :						05/21/	04 15:49
Solids, Total Dissolved TDS @ 180 C	3660	mg/L	10	98,5	90	110	0.7	10	
Sample ID: LCS2_040521A	Laboratory Cor	•						05/21/	04 15:50
Solids, Total Dissolved TDS @ 180 C	1000	mg/L	10	100	90	110			
Mothod: A4500-Cl B					•		Batch:	040521A-CL	-TTR-W
Sample ID: MBLK9-040521A	Method Blank							05/21/0	04 09:20
Chlonde .	ND	mg/L	1.0					·	
Sample ID: C04050756-0018MS	Matrix Spike						•	05/21/0	04 09:38
Chloride	5700	mg/L	1,0	100	90	110			
Sample ID: C04050756-001BMSD	Matrix Spike Di	plicate				9		05/21/0	4 09:39
Chloride	5680	mg/L	1.0	99.6	90	110	0.2	10	
sample ID: LCS35-040521A	Laboratory Con	troi Spike						05/21/0	14 09:41
Chloride .	3510	mg/L	1.0	99.1	90	110			
fethod: A4500-F C							Batch:	040524_1_F	-ise-w
iample ID: MBLK1_040524_1	Method Blank							05/24/0	4 09:14
luoide	ND	mg/L	0.10			•			
ample ID: C04050714-001IMS	Matrix Spike							05/24/0	4 09:21
luoride	1.80	mg/L	0.10	90	90	110			
ample ID: C04050714-001IMSD	Matrix Spike Du	plicate						05/24/0	4 09:24
luaride	1.80	mg/L	0.10	90	90	110	0	10	

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

							` 		
Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method:	A4600-H B						An	alytical Run:	ORION-PH_040521/
Sample ID:	(CCV)≠ph7	Continuing C	alibration Ve	orlfication Standa	rd				05/21/0-4 10:56
pН		6.97	s.u.	0.010	99.6	90	110		
Method:	A4500-H B	····		•				В	atch: pH05-21-041108
Sample ID:	C04050775-001A(DUP)	Sample Dupli	cate						05/21/04 11:04
pH		0.15	a.u.	0.010				0.5	10
Method:	A4500-SO4 E						· · · · · · · ·	Batch: 040	601_1_SO4-TURB-W
Sample ID:	MBLK-1_040601	Method Blank							08/01/04 12:26
Sulfate		. ND	mg/L	1.0		•			
Sample ID:	C04050789-001BMS	Matrix Spike							06/01/04 13:09
Sulfate		1410	mg/L	30	100	80	110		15.09
Sample ID:	C04050789-001BMSD	Matrix Spike D	Duoticate						06/01/04 42:42
Sulfate		1400	mg/L	30	99.1	90	110	0.7	06/01/04 13:10 10
Sample ID:	C04050874-005DMS	Matrix Spike					,		06/01/04 13:25
Sulfate		110	rng/L	1.5	96.8	90	110		00101104 15,25
Sample ID:	C04050874-005DMSD	Matrix Spike D	uplicate						06/01/04 13:26
Sulfate		111	mg/L	1.5	97.7	90	110	0.4	10
Sample ID:	LCS-1_040601	Laboratory Co	ntrol Spike						06/01/04 13:27
Sulfate		41.7	mg/L	1.0	104	90	110		
Mathod: E	160,2							Batch: 04	0521A-SLDS-TSS-W
Sample ID:	MBLK1_040521A	Method Blank							05/21/04 09:07
solids, Total S	Suspended TSS @ 105 C	ND	mg/L	1.0					0.01
Sample ID: (C04050789-002BDUP	Sample Duplica	ate						05/21/04 09:08
Solids, Total S	Suspended TSS @ 105 C	122	mg/L	1.0				20	25
Mathod: E	200.7					* -	A	nalylical Ru	in: ICP1-C_040524A
iample (D: C	CONT 120103-96	Continuing Cali	bration Ve rii	ication Standard					05/24/04 14:23
loron		1.01	mg/L	0.10	101	89.5	110,5		
on .		1.05	mg/L	0.030	105	89.5	110.5		
alclum		53.2	mg/L	1.0	106	89.5	110.5		
lagnesium		53.1	mg/L	1.0	106	89.5	110.5		•
otassium odium		51.5 53.2	mg/L	1.0	103	89.5	110.5		
Outuiti		53.2	mg/L	1.0	106	89.5	110.5		

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Report Date: 06/18/04

Work	Order:	C04050789

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit	Qual
Method:	E200.8		-				Analy	tical Run	ICPMS1-C_	0406178
Sample ID:	CCV	Continuing Ca	libration Veri	fication Standa	ırd				06/18	/04 01:00
Barlum		0,0638	mg/L	0.0010	106	90	110			
Lead .		0.0619	mg/L	0.0010	103	90	110			
Uranium	•	0.0615	mg/L	0.0010	102	90	110			
Vanadium		0.0619	mg/L	0.0010	103	90	110			
Method:	E200.8			·					Batch	: R36342
Sample ID:	C04050789-001DMS	Matrix Spike							06/18/	/04 01:55
Barlum		0.0632	mg/L	0.0010	97.3	70	130			
Lead		0.0502	mg/L	0.0010	100	70	130			,
Uranlum		0.185	mg/L	0.0010	105	70	130			
Vanadium	•	0.0494	mg/L	0.0010	97,5	70	130			
Sample IO:	C04050789-001DMSD	Malrix Spike D	uplicate						06/18/	04 02:02
Barium		0.0632	mg/L `	0.0010	97.5	70	130	0.1	20	
Load		, 0.0500	mg/L	0.0010	99.6	70	130	0.5	20	
Jranium		0.180	mg/L .	0.0010	92.2	70	130	3.4	20	
Vanadium		0.0489	mg/L	0.0010	96,4	70	130	1.1	20	

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation
Project: UNC Closeout Plan

Report Date: 06/18/04
Work Order: C04050789

Analyte .	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2				*****	- <u>i</u>	Analyti	cal Run: Ti	ECHNICON_	D40524/
Sample ID: CCV-16	Continuing Ca	alibration Ver	ification Standa	rď				05/24	/04 11:5:
Nitrogen, Nitrate+Nitrite as N	0.930	mg/L	0.10	93	90	110			
Sample ID: CCV-25	Continuing Co	alibration Ver	ification Standa	rd				05/24	/O4 12:18
Nitrogen, Nitrate+Nitrite as N	1.07	mg/L	0.10	107	90	110			
Method: E353.2				· -			Batoh: A20	04-06 24_1	_NO3_01
Sample ID: MBLK-1	Method Blank							05/24	- /04 09:43
Nitrogen, Nitrate+Nitrite as N	ND	mg/L	0.10		÷			,	
Sample ID: C04050727-001BMS	Matrix Spike	•				•		05/24/	/04 10:01
Nitrogen, Nitrate+Nitrite as N	2.00	mg/L	, 0.10	100	90	110 -			94 10,01
Sample ID: C04050727-001BMSD	Matrix Spike D	uplicate						05/24/	/04 10:03
Nitrogen, Nitrale+Nitrite as N	2.01	mg/L	0.10	101	80	110	0.5	10	
Sample ID: MBLK-17	Method Dlank		•	•				05/24/	1 04 11:58
Vitrogen, Nitrate+Nitrite as N	ND	mg/L	0.10					03/11/	VI 11;38
Sample ID: C04050789-001CMS	Matrix Spike	•						05/24/	04 12:13
litrogen, Nitrate+Nitrite as N	2.02	mg/L	0.10	101	90	110	•		V 1 12/10
Sample ID: C04050789-001CMSD	Matrix Spike D	uplicate		•				05/24/	04 12:15
litrogen, Nitrate+Nitrite as N	2.04	mg/L	0.10	102	90	110	1.0	10	
ample ID: MBLK-32	Method Blank							05/24/	04 12:35
litrogen, Nitrate+Nitrite as N	ND	mg/L	0.10						
ample ID: C04050845-005CMS	Matrix Spike							. 05/24/1	04 12:53
itrogen, Nitrate+Nitrite as N	2,29	mg/L	0.10	95.5	90	110			-, 12.00
ample ID: C04050845-005CMSD	Matrix Spike Do	plicate						05/24/	04 12:58
itrogen, Nitrate+Nitrite as N	2.31	mg/L	0.10	96.5	. 90	110	. 0.9	10	
ample ID: MBLK-48	Method Blank					~		05/24/0	04 13:18
itrogen, Nitrate+Nitrite as N	ND	mg/L	0.10				:		- / 10,10
ample ID: C04050845-014CMS	Matrix Spike		•					05/24/0	04 13:57
trogen, Nitrate+Nitrite as N	14.5	mg/L	0.15	90.9	90	110		20,247	- , 10.01
ample ID: C04050845-014CMSD	Matrix Spike Du	plicate						05/24/0	04 13:59
trogen, Nitrate+Nitrite as N	14.5	mg/L	0.15	90.9	90	110	0	10	10.03

Qualifiers:

RL - Analyte reporting limit.

Client: United Nuclear Corporation

Project: UNC Closeout Plan

Report Date: 06/18/04 Work Order: C04050789

						····		
Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLImit Qual
Method: E900.0	, , , , , , , , , , , , , , , , , , , 							Batch: R3558
Sample ID: C04050732-001A	Matrix Spike							05/24/04 09:0
Gross Alpha	543	pCi/L	1.0	106	70	130		
Sample ID: C04050732-001A	Matrix Spike I	Duplicate						05/24/04 09:0
Gross Alpha	562	pCi/L	1.0	110	70	130	3.3	30
Sample ID: MB-R05500	Mathad Blank	:						05/24/04 00:00
Gross Alpha	ND	pCVL	1.0					10.200 4 00.00
Sample ID: LCS-R35580	Laboratory Co	ntrol Spike						05/24/04 09:00
Gross Alpha	507	pCl/L	1.0	99.5	70	130		03,2404 08,00
Sample ID: C04050910-001A	Sample Duplic	cate						05/24/0-4 09:00
Gross Alpha	ND	pCi/L	1.0		70	-130	0	30
Sample ID: C04040049-001B	Sample Duplic	ate						05/24/04 09:00
Gross Alpha	ND	pCVL.	1.0				0	30
Method: E903,0					·			Batch: RA226-0589
Sample ID: C04050805-001AMS	Matrix Spike							05/25/04 12:50
Radium 226	24.8	pCI/L	0.20	92.7	70	130	•	
Sample ID: C04050805-001AMSD	Matrix Spike D	uplicate						05/25/04 12:50
Radium 226	25.4	PCVL	0.20	94.8	70	130	2.1	30
Sample (D: MB-RA226-0589	Method Blank							05/25/04 12:50
Radium 226	ND	pCI/L	0.20				•	2012007 72,00
Sample ID: LCS-RA226-0589	Laboratory Con	trol Spike						05/25/04 12:50
Radium 226	14.9	PCVL	0.20	98.1	70	130		
Method: E904.0	·						·····	Batch: 04228-602A
Sample ID: C04050891-001A	Matrix Spike	•				,	•	05/28/04 09:24
Radium 228	25	pCVL	1.0	107	70	130		30,20,000 03,24
Sample ID: C04050891-001A	Matrix Spike Du	plicate						05/28/04 09:24
Radium 228	22	pCVL.	1.0	96.8	70	130	9.8	30

Qualifiers:

RL - Analyte reporting limit.

ENERGY LABORATORIES, INC. - 2893 Sali Creek Highway (82601) · P.O. Box 3253 · Casper, WY 52603 Toll Fire 888.235.0515 · 307.235.0515 · Fax S07.234.1639 · casper@energylab.com · rnvv.energylab.com

Energy Laboratories Inc.

2393 Salt Creek Highway PO Box 3258

Casper, WY \$2602-

Quotation Date: 29-Apr-04

Submitted By: Tracy DeWitt

TEL: (307) 235-0515 FAX: (307) 234-1639

Quotation for Analytical Services # C1212

Montgomery Watern Harza

Course.

Jed Thompson

Address:

1475 Pine Grove Road

Ste 109

PO Box 774015

Summings Springs CO 80472

Quote ID: C 1212

Project:

Groundwater Sumpling

TAT:

15 Working Days

OC Level:

	Stourgost Shuuks' Co	J 8047.		Or reveit	SID			
Mione:	(970) 879-6260	Fax:	(970) 879-9048	Expires:	21-Apr-4)5	•		
Matrix	Test Namo		Test	Remarks		# Samp	Unit Price	TestTotal
Aqueous	Alkalinity		A2320 B			1	00.012	\$10.00
Aquenus	Chloride.		A4500-C1B			I	\$10.00	\$10.00
Aquequs .	Conductivity		A2510 B			l	510.00	\$10.00
Loucous	Fkioride		A4500-F C			1	\$10.09	\$10.00
Vdaconz	Gross Alpha		E900.0			1	\$50,00	\$50,00
Aguenus	Metals by ICY, Dis	solved •	E200.7	Ca,Fe,Mg,K,Na		1	\$50.04	66,622
Vdneons	Metalehy ICPACP	MS. Total	E200.7_8	Boron only (analyze Billings)	d in EU-	1 1	\$10,00	\$10,00
Aqueous	Metals by ICP-MS.	Dissolved.	E200.8	Ba.V.Unat.Pb		1	540.00	\$40.00
Aquéous	Nitrogen, Nitrate +	Nitrito	. F353.2			i	\$15.00	\$15.00
Aqueous	pit.		A4500-11 B			1	\$10.00	\$10.00
Adnesia	Radium 226, Disso	lved	E903.0			1	\$75,00	\$75.00
Aguenus	Radium 228, Disso	lved	E904.0			•	\$75.00	575.00
Agucous	Solids, Tom! Olusol	ved	A2540 C			i	\$10.00	\$10,00
Agueous	Solids, Total Suspe	nded	E160.2			Į	\$10.00	\$10.00
Aguruus	Sulfate •		A4500-SO4 E			1	60.012	0.0.012

To assure that the quoted analysis and pricing specifications are provided, please include the Quote 1D number referenced above on the Chain of Custody or sample submittal documents.

Subcontracting of sample analyses to an outside laboratory may be required. If so, Energy Laboratories will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

January 2004

Appendix B . Groundwater Sampling SOP . Page 3

the Project Manager and the laboratory's project manager, will decide whether or not to analyze the samples.

3.4 FIELD DOCUMENTATION

All aspects of sample collection and handling as well as visual observations will be documented in the field logbooks. Field logbooks will note the following information:

- Site location
- Sampler name(s)
- Date and time of sample collection
- Sample identification number(s)
- Field water quality measurements (pH, conductivity, temperature)
- Sample handling (including preservation, as appropriate)
- How sample collected (e.g. grah, composite, hailer)
- Number and type of any QA/QC or split samples collected
- · Field observations, including any unusual conditions or activities in the area

4.0 WATER QUALITY PARAMETERS

Water quality parameters to be analyzed for the collected sample are presented in Table 4.1 below.

	VATER QUALITY	TABLE 4:1 MONITORING PARAM	ETERS.	Andrew Co								
Parameter	Fraction	Method	Detection	UNITS								
			Limit									
	GENERAL C	HEMISTRY AND ANION	IS									
pH		EPA 150.1	0.1	mg/l								
Electrical Conductivity	•	EPA 120.1	1	umhos/cm								
Total Dissolved Solids		EPA 160.1	10	- mg/l								
Total Suspended Solids		EPA 160.2	5	mg/l								
Alkalinity		EPA 310.1	2.0	mg/l (as								
L				CaCO ₃)								
Chloride	<u> </u>	EPA 325.2	1.0	mg/l								
Fluoride		EPA 340.2	0.1	mg/l								
Nitrate (NO3+NO2 as N)	ļ <u></u>	EPA 353.2	0.02	mg/l								
Sulfate		EPA 375.3	10.0	mg/l								
	CATIONS AND TRACE METALS											
Barium	Dissolved	EPA 200.7, ICP	0.0036	mg/l								
Boron	Dissolved	· EPA 200.7, ICP	40.001 ev	mg/l								
Calcium	Dissolved	EPA 200.7, ICP	0.27	mg/l								
fron	Dissolved	EPA 200.7, ICP	۱.م10.0	mg/l								
Lead	Dissolved	EPA 200.7, ICP	0.04 0.1	mg/l								
Magnesium	Dissolved	EPA 200.7, ICP	0.2 ✓	mg/l								
Potassium	Dissolved	EPA 200.7, ICP	0,30 ₹	mg/l								
Sodium	Dissolved	EPA 200.7, ICP	0.30 /	mg/l								
Uranium ·	Dissolved	EPA 200.8, ICP-MS	0.0001	mg/i								
Vanadium	Dissolved	EPA 200.7, ICP	0.00541	mg/l								
	RA	DIONUCLIDES										
Radium 226	Dissolved	EPA 903.0	1	_pCl/l								
Radium 228	Dissolved	EPA 904.0	1	pCi/l								
Gross Alpha.	Dissolved	EPA 900.0	. 7	pCi/l								

eport Mail / ATTU! JE PO 30x 1475 PI STEAMS: Molce Addr 1.0 0 GC x PALL VP eport Re
pecial Reample su
DD/EDT
SAM (Nar
NECR
SECT 2

Sample Disposal:

Return to client: __

mpany Name:		. 1	Project Name, i	PIVS	#, Pe	ant i	, Etc	:: -				·			`		`
UNE		1	UNC	C (Lose	CU	- pe	LAN	•								
port Mail Address: MWH ATTWI JED THOMPSON PO BOX F74018 H75 PENEGROVE RD, STR 109 STEAMBOAT SPEENAS, CO BUY	77		Contact Name, Phone, Fax E-mail: Sampler Name II other than Contact JED THOMPSON (970) 871-626P JAMES. THOMPSON & MUHGLOBAL. COM								tact						
voice Address: JO BOX 3077 PALLUP, NM 87305-3077									urci	chase Order #: ELI Quote #:							
eport Required For: POTW/WWTP COTHER COUNTY OTHER COUNTY OF THE POTW/WWTP COUN	otified prior to	o	Number of Containers Sample Type: AWSV BO AK Water Solle/Sollds Yegelation Boassoy Other	A	NA	LY	SI	3 F	Ε¢	ξŪ	ĒS			Tumeround (TAT)	•	USH dditional	Receipt-Temp Cooler D(s) Custody Sea(Y) Intact Signature Match
(Name, Location, Interval, etc.)	Date	Time	MATRIX	<u> </u>	_	-							S	Norma Correct			Lab ID
NECR-WELLI	17 HAYOY	9940	4-W	L									XI		<u> </u>		13 C 1050 18
SECT 27 - VENT 3	ITMATOY	143Ø	Ϋ-Ψ									-	X	-			JSE ON
			·										, ,				ORY.
				-								_					DRAT
ı				+	-	 	-	-			_	-					LAB
Custody Relinquished by:	11/	!	Date/I	ime	114	اسي	Ship	ped b	y VP<	. /	ں م	<u>-</u>	<u> </u>	7	Received by:		Pate/Time:

In certain circumstances, samples submitted to Energy Laboratories, Inc. may be subcontracted to other certified laboratories in order to complete the analysis requested.

This serves as notice of this possibility. All sub-contract data will be clearly notated on your ensignical report.

Sample Type:

of fractions

Visit our web site at www.erergylab.com for additional information, downloadable fee schedule, forms, & links.

Lab Disposal: _

Energy Laboratories Inc.

Sample Receipt Checklist

Cilent Name: United Nuclear Corporation			Date a	nd Time Received:	5/20/2004	10:00:00	
Work Order Number C04050789			Receiv	ed by: sp		٠	
Checklist completed by: Signature	Carrier name:	DO OC	√ Review	red by travals		Date	·
Shipping container/cooler in good condition?		Yes 🗹	No 🗀	Not Present	П		
Custody seals intact on shipping container/cooler?	·	Yes 🗹	No 🗆	Not Present			•
Custody seals intact on sample bottles?	•	Yes 🔲	No 🗆	Not Present			
Chain of custody present?		Yes 🗹	No 🗀				
Chain of custody signed when relinquished and rece	lved?	Yes 🗹	No 🗆				
Chain of custody agrees with sample labels?		Yes 🗹	№ 🗆			,	
Samples in proper container/bottle?		Yes 🗹	No 🗆				•
Sample containers intact?		Yes 🗹	No 🗆				
Sufficient sample volume for indicated test?		Yoo 🗹	No 🗀	•			
All samples received within holding time?		Yes 🗹	№ □				
Container/Temp Blank temperature in compliance?		Yes 🔲	No 🗹	18 °C			
Water - VOA vials have zero headspace?		Yes 🔲	No 🗆	No VOA vials subm	itted 🗹		
Water - pH acceptable upon receipt?	•	Yes ⊠	No 🗆	Not Applicable			
. Adju	rsted?		Checked by				
Any No and/or NA (not applicable) response must be	detailed in the cor	mments sec	ion below.		·		
Client contacted: Date	contacted:			Person contacted			·
Contacted by: Reg	arding:						
Comments: Split and preserved for total metals.							•
Corrective Action							

ANALYTICAL SUMMARY REPORT

June 24, 2004

Max Chischilly
United Nuclear Corporation
1475 Pine Grove Road
Ste 109
PO Box 774018
Gallup, NM 87305

Workorder No.: C04050789

Quote ID: C1247 - Groundwater Sampling

Energy Laboratories Inc. received the following 2 samples from United Nuclear Corporation on 5/20/2004 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Dute	Mutrix	Test
C04050789-001	NECR-Well 1	05/17/04 9:40	05/20/04	Aqueous	Metals by ICP/ICPMS, Dissolved
-					Metals by ICP/ICPMS, Total
,					Alkalinity
					QA Calculations :
•	·		:		Chloride
					Conductivity
		•			Fluoride
					Metals by ICP, Dissolved
	•			•	Metals by ICP-MS, Dissolved
		•	•		Nitrogen, Nitrate + Nitrite
•					pH '
					Gross Alpha
					Radium 226, Dissolved
		,			Radium 228, Dissalved
	•	,			Solids, Total Dissolved
					Solids, Total Suspended
					Sulfate
04050789-002	SECT27-Vent 3	05/17/04 14:30	05/20/04	Aqueous	Same As Above

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative or Report.

If you have any questions regarding these tests results, please call.

Report Approved By:

Date: 24-Jun-04

CLIENT:

United Nuclear Corporation

Project:

UNC Closeout Plan

Sample Delivery Group: C04050789

CASE NARRATIVE

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

COMMENTS

Additional metals added per client's request 6/23/04.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT

eli-cs - Energy Laboratories, Inc. - College Station, TX

eli-g - Energy Laboratories, Inc. - Gillette, WY

eli-h - Energy Laboratories, Inc. - Helena, MT

eli-r - Energy Laboratories, Inc. - Rapid City, SD

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package. A copy of the submittal(s) has been included and tracked in the data package.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by NELAC. Some client specific reporting requirements may not require NELAC reporting protocol. NELAC Certification Number E87641.

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

The total number of pages of this report are indicated by the page number located in the lower right corner.

8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976	Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1	Well Well Well Well Well	Analyte Alkalinity (CaCO3) Arsenic Bicarbonate Cadmium Calcium Chloride	Mnits mg/L mg/L mg/L mg/L mg/L	100 - 0.001 - 121.7	
8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976	Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1 Mill 1	Well Well Well Well Well	Arsenic Bicarbonate Cadmium Calcium	mg/L mg/L	. 0.001	
8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976	Mill Mill Mill Mill Mill Mill Mill Mill	Well Well Well Well	Bicarbonate Cadmium Calcium	mg/L		
8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976	Mill \ Mill \ Mill \ Mill \	Well Well Well	Cadmium :		12.1.1	•
8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976	Mill \ Mill \ Mill \	Well Well	Calcium	ing/L	0.01	
8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976	Mill \	Well		' mg/L	5.5	· · · · · · · · · · · · · · · · · · ·
8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976 8/12/1976	Mill \		LUDOTICE :	mg/L	17	·
8/12/1976 8/12/1976 8/12/1976 8/12/1976			Magnesium	mg/L	0.8	
8/12/1976 8/12/1976 8/12/1976			Manganese	: mg/L	0.08	
8/12/1976 8/12/1976 8/12/1976	Mill \		Nitrate + Nitrate as N	mg/L	5.3	
8/12/1976	Mill \		рН	s.u.	7.98	
	Mill \		Potassium	mg/L	6.6	<u>'</u>
9/12/1076	: Mill \		Selenium :	mg/L	0.01	
10/12/18/01	· Mill \		Sodium :	mg/L	.60	
8/12/1976	Mill V		Sulfate	: mg/L	32	
8/12/1976	Mill V		TDS			
2/13/1979 TS-2	4A Minev		Aluminum	mg/L	335	,
2/13/1979 TS-2	24A Minev		Arsenic	· 'mg/l	0.2 0.01	
2/13/1979 TS-2			Barium	mg/l		
2/13/1979 TS-2			Boron	mg/l		<
2/13/1979 TS-2	4A Minev		O-d-1	mg/l	0.2	
2/13/1979 TS-2			Chloride	mg/l	0.001	<
2/13/1979 TS-2			Chromlum	mg/l	5.8	-
2/13/1979 TS-2		vator	Cobalt	mg/l	0.001	
2/13/1979 TS-2		vator		mg/l	0.01	<
2/13/1979 TS-2		valor	Copper Cyanide	mg/l	0.001	
2/13/1979 TS-2	4A Miney	valer	Fluoride	mg/l	0.1	<
2/13/1979 TS-2	4A Minev		Iron	'mg/l	0.5	
2/13/1979 TS-2	4A Minew	rator	Lead	<u>mg/l</u>	0.05	
2/13/1979 TS-2		rator	Manganese	mg/l	0.001	<
2/13/1979 TS-2			Mercury	mg/l	0.006	
2/13/1979 TS-2		ater	Molybdenum	· mg/l	0.0004	<
2/13/1979 TS-2			Nickel	mg/l	0.003	
2/13/1979 TS-2	4A Minew	ater	Nitrogen, Nitrate (as N)	mg/l	0.01	<
2/13/1979 TS-2		ater	pH, lab	mg/l SU	0.7	
2/13/1979 TS-2		ater	Phenois		8.4	
2/13/1979 TS-2			Radium-226	mg/l pCi/l	0.003	± 2.8
2/13/1979 TS-2			Radium-228	pCi/I		± 2.0 ± 1
2/13/1979 TS-2	4A Minew	ater	Selenium	mg/l		
2/13/1979 TS-2		ater	Silica	mg/l	0.04	
2/13/1979 TS-2			Sulfate	mg/l	77	
2/13/1979 TS-2			TDS ·	mg/l	552	,
2/13/1979 TS-2			Uranlum	mg/l	1.25	
2/13/1979 TS-2			Zinc	mg/l	0.02	
2/14/1979 TS-2			Aluminum .	mg/l		
2/14/1979 TS-2			Arsenic		0.3	
2/14/1979 TS-28			Barium	mg/l		< <
2/14/1979 TS-28			Boron	mg/l	0.1	`
2/14/1979 TS-28			Cadmium	mg/l	0.001	
2/14/1979 TS-28			Chloride	mg/l	6.1	`
2/14/1979 TS-28			Chromium	mg/l		
2/14/1979 TS-28			Cobalt	mg/l	0.001	<u> </u>
2/14/1979 TS-28			Copper	mg/l	0.002	

Date	Sample ID	Location	. Analyte .	Units :	Value Qualifier
2/14/1979	T\$-28A	Minewater	Cyanide :	mg/l	0.1 <
2/14/1979	TS-28A	Minewater	Fluoride	mg/l	0.5
2/14/1979	· TS-28A	Minewater	Iron i	mg/l	0.01
2/14/1979	TS-28A	Minewater	Lead	mg/l	0.001 <
2/14/1979	TS-28A	Minewater	Manganese	mg/l	0.002
2/14/1979	TS-28A	Minewater	Mercury 1	mg/l	0.0004 <
2/14/1979	TS-28A	Minewater	Molybdenum	mg/l	0.001
2/14/1979	TS-28A	Minewater	Nickel ·	mg/l	0.01
2/14/1979	TS-28A	Minewater	Nitrogen, Nitrate (as N)	mg/l	1.2
2/14/1979	TS-28A	Minewater	pH, lab	SU	8.4
2/14/1979	TS-28A	Minewater	Phenols	mg/i	0.003
2/14/1979	TS-28A	Minewater	Radium-226	pCl/l	103 ± 3
2/14/1979	TS-28A	Minewater	Radium-228	pCi/l	1 ± 2
2/14/1979	TS-28A	Minewater	Selenium :	mg/l	0.04
2/14/1979	TS-28A	Minewater	Silver	mg/l	0.01 <
2/14/1979	TS-28A	Minewater	Sulfate	mg/l	79
2/14/1979	TS-28A	Minewater	TDS	mg/l	421
2/14/1979	TS-28A	Minewater	Uranium	mg/l	0.725
2/14/1979	TS-28A	Minewater	Zinc	mg/l	0.01
2/14/19/9	TS-33A	Minewater	Aluminum	mg/l	1.2
		Minewater	Arsenic	mg/l	0.01 <
2/16/1979	TS-33A	Minewater	Barium	mg/l	0.3
2/16/1979	TS-33A	Minewater	Boron :	mg/l	0.2
2/16/1979	TS-33A		Cadmium	mg/l	0.001 <
2/16/1979	TS-33A	Minewater	Chloride	mg/l	7.7
2/16/1979	TS-33A	Minewater	Chromium	mg/l	0.002
2/16/1979	TS-33A	Minewater		mg/l	0.002
2/16/1979	TS-33A	Minewater	Cobalt	mg/l	0.004
2/16/1979	TS-33A	Minewater	Copper	mg/l	0.1 <
2/16/1979	TS-33A	Minewater	Cyanide	mg/l	0.48
2/16/1979	TS-33A	Minewater	Fluoride		4.9
2/16/1979	TS-33A	Minewater	Iron	mg/l	0.001 <
2/16/1979	TS-33A	Minewater	Lead	mg/l	0.001 2
2/16/1979	TS-33A	Мілеwater	Manganese	mg/l	0.0004 <
2/16/1979	TS-33A	Minewater	Mercury	mg/l	0.003
2/16/1979	TS-33A	Minewater	Molybdenum	mg/l	
2/16/1979		Minewater	Nickel	mg/l	0.01 <
2/16/1979	TS-33A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.7
2/16/1979		Minewater		SU_	7.98
2/16/1979		Minewater	Phenols	mg/l	0.004
2/16/1979	TS-33A	Minewater	Radium-226	рСИ	0.6 ± 0.4
2/16/1979	TS-33A	Minewater	Radium-228	pCi/l	5 ± 2
2/16/1979	TS-33A	Minewater	Selenium	mg/l	0.04
2/16/1979	TS-33A	Minewater	Silver	mg/l	0.01 <
2/16/1979	TS-33A	Minewater	Sulfate	mg/l	81
2/16/1979		Minewater	TDS	mg/l	415
2/16/1979		Minewater	Uranium	mg/l	2.07
2/16/1979		Minewater	Zinc	mg/l	0.01 <
2/17/1979		Minewater	Aluminum	mg/l	0.3
2/17/1979		Minewater	Arsenic	mg/l	0.01 <
2/17/1979		Minewater	Barium	mg/l	0.7
2/17/1979		Minewater		mg/l	0.2
2/17/1979		Minewater		mg/l	0.001 <

Date	.Sample ID		Analyte	Units	Value	Qualifier
2/17/1979		Minewater	Chloride	mg/l	6.2	The state of the s
2/17/1979		Minewater	Chromium	mg/l	0.001	
2/17/1979		Minewater	Cobalt	mg/l	0.01	
2/17/1979		.Minewater	Copper	. mg/l	0.001	
2/17/1979		Minewater	Cyanide	mg/l	: 0.1	
2/17/1979	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Minewater	Fluoride	mg/l	0.48	
2/17/1979		Minewater	Iron !	mg/l	2.5	
2/17/1979		. Minewater		mg/l	0.001	
2/17/1979		:Minewater	Manganese	mg/l	0.003	
2/17/1979		:Minewater	Mercury	mg/l	0.0004	
2/17/1979	TS-38A	Minewater	Molybdenum	mg/l	0.002	
2/17/1979	TS-38A	·Minewater	Nickei	mg/l	0.002	
2/17/1979		Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5	
2/17/1979	TS-38A	Minewater	pH, lab	SU	8.2	
2/17/1979	TS-38A	:Minewater	Phenois : .	mg/l	0.005	
2/17/1979	TS-38A	:Minewater	Radium-226	pCl/l		± 2.1
2/17/1979	TS-38A	Minewater	Radium-228:	pCi/l		<
2/17/1979	TS-38A	iMinewater	Selenium	mg/l	0.03	
2/17/1979	TS-38A	Minewater	Silver	mg/l	0.03	
2/17/1979	TS-38A	:Minewater	Sulfate	.mg/l	76	
2/17/1979	TS-38A	Minewater	TDS	.mg/l		
2/17/1979	TS-38A	Minewater	Uranium	mg/l	483	
2/17/1979	TS-38A	iMinewater	Zinc	mg/l	2.1	
2/21/1979	TS-43A	iMinewater	Aluminum		1 0.01	<u> </u>
2/21/1979	TS-43A	Minewater	Arsenic	mg/l	0.3	· · · · · · · · · · · · · · · · · · ·
/21/1979	TS-43A	iMinewater	Barlum	mg/l mg/l	0.01	<
/21/1979	TS-43A	Minewater	Boron	- mg/l	0.4	
/21/1979	:TS-43A	·iMinewater	Cadmium	mg/l	0.001	
/21/1979	.TS-43A	Minewater	Chloride	mg/l	7	<
/21/1979	.TS-43A	·iMinewater	Chromium	mg/i	0.001	
/21/1979	:TS-43A	Minewater	Cobalt	mg/l	0.001	
/21/1979	TS-43A	.!Minewater	Copper !	mg/l	0.003	<
/21/1979	TS-43A	. Minewater	Cyanide	mg/l	0.003	
/21/1979	TS-43A	Minewater	Fluoride	mg/l	0.46	<
/21/1979	TS-43A	Minewater	Iron	mg/l	0.46	· · · · · · · · · · · · · · · · · · ·
/21/1979	TS-43A	Minewater	Lead	mg/i	0.001	
/21/1979	TS-43A	Minewater	Manganese	mg/l	0.001	
/21/1979	TS-43A	Minewater	Mercury	mg/l	0.0004	
/21/1979	TS-43A	Minewater	Molybdenum	mg/l	0.0004	
21/1979	TS-43A	Minewater	Nickel	mg/l	0.002	
21/1979	TS-43A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.01	<u>`</u>
21/1979		Minewater	pH, lab	mg/l	8.19	
21/1979	TS-43A .	Minewater	Phenois	mg/l	0.003	
21/1979	TS-43A	Minewater	Radium-226	pCi/l		± 1.7
21/1979	TS-43A	Minewater	Radium-228	pCi/l	1 .	
21/1979	TS-43A	Minewater	Selenium	mg/l	0.03	<u> </u>
21/1979	TS-43A	Minewater	Silver	mg/l	0.03	
21/1979	TS-43A	.Minewater	Sulfate .	mg/l	73	<u>` </u>
21/1979	TS-43A	Minewater	TDS	mg/l	386	
21/1979	TS-43A	Minewater	Uranium ·	mg/l	0.96	 -
21/1979	TS-43A	Minewater	Zinc	mg/l	0.01	
27/1979	TS-47A	Minewater	Aluminum	mg/l	0.01	·

Date	Sample ID	Location	. Analyte .	Units	Value	Qualifier
2/27/1979	TS-47A	Minewater	Arsenic	mg/l₁	0.01	
2/27/1979	TS-47A	Minewater	Barium	· · mg/l.	0.1	
2/27/1979	TS-47A	Minewater	Boron :	mg/l	0.3	
2/27/1979	TS-47A	Minewater	Cadmium	mg/l	0.001	<
2/27/1979	TS-47A	Minewater	Chioride .	mg/l	7	-
2/27/1979	TS-47A	Minewater	Chromlum	mg/l	0.001	<
2/27/1979	TS-47A	Minewater	Cobalt	mg/l	0.01	<
2/27/1979	TS-47A	Minewater	Copper	mg/l	0.001	<
2/27/1979	TS-47A	Minewater	Cyanide	mg/l	0.2	
2/27/1979		Minewater	Fluoride	mg/l	0.48	
2/27/1979	TS-47A	Minewater	Iron	mg/l	0.61	
2/27/1979		Minewater	Lead	mg/l	0.001	<
2/27/1979	TS-47A	Minewater	Manganese	mg/l	0.02	
2/27/1979	TS-47A	Minewater	Mercury	mg/i	0.0004	
2/27/1979	TS-47A	Minewater	Molybdenum	mg/l		<
2/27/1979	TS-47A	Minewater	Nickel	mg/l	0.001 0.01	<
2/27/1979	TS-47A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5	
2/27/1979	TS-47A	Minewater	pH, lab	mg/l	7.42	
2/27/1979	TS-47A	Minewater	Phenols	mg/l	0.002	
2/27/1979	TS-47A	Minewater	Radium-226	pCi/l	155	±3
2/27/1979	TS-47A	Minewater	Radium-228	pCi/l		<
2/27/1979	TS-47A	Minewater	Selenium	· mg/l	0.04	
2/27/1979	TS-47A	Minewater	Silver	mg/l	0.01	-
2/27/1979	TS-47A	Minewater	Sulfate	mg/l	70	
2/27/1979	TS-47A	Minewater	TDS	mg/l	383	
2/27/1979	TS-47A	Minewater	Uranium	mg/l	3.71	
2/27/1979	TS-47A	Minewater	Zinc	mg/l	0.01	
3/14/1979	TS-52A	Minewater	Aluminum	mg/l	0.3	-
3/14/1979	TS-52A	Minewater	Arsenic	mg/l	0.01	
3/14/1979	TS-52A	Minewater	Barium	mg/l	0.2	
3/14/1979	TS-52A	Minewater	Boron	mg/l	0.3	
3/14/1979	TS-52A	Minewater	Cadmium	mg/l	0.001	
3/14/1979	TS-52A	Minewater	Chloride	mg/l	6.5	
3/14/1979	TS-52A	Minewater	Chromium	mg/l	0.041	
3/14/1979	TS-52A	Minewater	Cobalt	mg/l	0.01	
3/14/1979	TS-52A	Minewater	Copper	mg/l	0.016	
3/14/1979	TS-52A	Minewater	Cyanide	mg/l	0.010	ļ ————————————————————————————————————
3/14/1979	TS-52A	Minewater	Fluoride	mg/l	0.52	
	TS-52A			mg/l	0.52	
3/14/1979		Minewater	Iron ·		0.02	· · · · · · · · · · · · · · · · · · ·
3/14/1979	TS-52A	Minewater	Lead	mg/l	0.081	
3/14/1979	TS-52A	Minewater	Manganese	mg/l	0.0004	
3/14/1979	TS-52A	Minewater	Mercury	mg/l	0.0004	
3/14/1979	TS-52A	Minewater	Molybdenum .	, mg/l		
3/14/1979	TS-52A	Minewater	Nickel	mġ/l	0.01	4
3/14/1979	TS-52A	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.5 7.2	
3/14/1979	TS-52A	Minewater	pH, lab	mg/l		
3/14/1979	TS-52A	Minewater	Phenois	mg/l	0.006	± 2.7
3/14/1979	TS-52A	Minewater	Radium-226	pCl/l		
3/14/1979	TS-52A	Minewater	Radium-228	pCi/l	1 - 1	
3/14/1979	TS-52A	Minewater	Selenium	mg/l	0.03	
3/14/1979	TS-52A	Minewater	Silver	mg/l	0.01	
3/14/1979	TS-52A	Minewater	Sulfate	mg/l	70	<u> </u>

Date	Sample ID	Location	Analyte ::	Units	Value Qualifler
3/14/1979	TS-52A	Minewater	TDS	mg/l	
3/14/1979		Minewater	Uranium	mg/l	1.57
3/14/1979	TS-52A	Minewater	Zinc		
3/27/1979	.!TS-56A	. Minewater	Aluminum	' 'mg/l	0.02
3/27/1979	TS-56A	Minewater	Arsenic	mg/l	0.1 <
3/27/1979	TS-56A	.:Minewater	Barlum	mg/l	0.01 < '
3/27/1979	TS-56A	Minewater	Boron	'mg/l	0.2
3/27/1979	:TS-56A	Minewater	Cadmium	mg/l	.0.2
3/27/1979	TS-56A	Minewater	Chloride	mg/l	0.001 <
3/27/1979	TS-56A	Minewater	Chromium	mg/l	7
3/27/1979	:TS-56A	Minewater	Cobalt	mg/l	0.002
3/27/1979	1TS-56A	Minewater			0.01 <
3/27/1979	TS-56A	:Minewater	Copper	mg/l	0.001
3/27/1979	TS-56A	Minewater	Cyanide	mg/l	0.1 <
3/27/1979	TS-56A	Minewater	Fluoride	mg/l	0.48
3/27/1979	! TS-56A		Iron	mg/l	0.02
3/27/1979	: TS-56A	Minewater	Lead	mg/l	0.001 <
3/27/1979	!TS-56A	Minewater Minewater	Manganese	mg/l	0.002
3/27/1979	TS-56A		Mercury	mg/l	0.0004 <
3/27/1979	: TS-56A	Minewater	Molybdenum	mg/l	0.001
3/27/1979	TS-56A	Minewater	Nickel	mg/l	0.01 <
3/27/1979	TS:56A	Minewater	Nitrogen, Nitrate (as N)		0.5
3/27/1979	TS-56A	Minewater	pH, lab	mg/i	. 8
3/27/1979		Minewater	Phenols	mg/l	0.001 <
	: TS:56A	Minewater	Radium-226	pCi/l	89.8 ± 2.3
3/27/1979 3/27/1979	iTS-56A	Minewater	Radium-228	pCi/l	2 ± 1
3/27/1979	TS-56A	Minewater	Selenium	mg/l	0.03
3/27/1979	TS-56A	Minewater	Sliver	mg/l	0.01 <
3/27/1979	TS-56A	:Minewater	Sulfate	mg/l	76
3/27/1979	TS-56A TS-56A	Minewater	TDS	mg/l	404
3/27/1979		Minewater	Uranium	mg/l	1.53
4/11/1979		Minewater	Zinc	mg/l	0.01 < .
	TS-63	Minewater	Aluminum	mg/l	0.2 <
4/11/1979	TS-63	. Minewater	Arsenic	mg/l	0.01 <
4/11/1979	.TS-63	Minewater	Barium	mg/l	0.2
	TS-63	Minewater	Boron	mg/l	∶0.1 <
	TS-63	Minewater	Cadmium	mg/l	0.01 <
4/11/1979	··TS-63	:Minewater	Chloride	mg/l	5 .
4/11/1979	TS-63	Minewater	Chromium	mg/l	0.02 <
1/11/1979	:TS-63	Minewater	Cobalt	mg/l	0.03 <
1/11/1979	TS-63	Minewater	Copper	mg/l	0.01 <
1/11/1979	TS-63	Minewater	Cyanide	mg/l	. 0.1 <
1/11/1979	.TS-63	Minewater	Fluoride	mg/l	0.51
1/11/1979	TS-63	Minewater	Iron	mg/l	0.05 <
/11/1979	:TS-63	Minewater	Lead	mg/l	0.05 <
/11/1979	:TS-63	Minewater	Manganese	mg/l	0.01 <
/11/1979	:TS-63	Minewater	Mercury	mg/l	0.0004 <
/11/1979	:TS-63		Molybdenum	mg/l	0.04 <
/11/1979	·TS-63		Nickel	mg/l	0.02
/11/1979			Nitrogen, Nitrate (as N)	mg/l	13
/11/1979	TS-63		pH, lab	mg/l	7.59
	:TS-63		Phenois	mg/l	0.001 <
/11/1979	TS-63	Minewater	Radium-226	рСіЛ	22

Date	Sample ID	Location	Analyte .	Units	and the second second	Qualifier
4/11/1979	TS-63	Minewater	Radium-228	рÇИ	5	
4/11/1979	TS-63	Minewater	Sc : I	umhos/cm	600	
4/11/1979	TS-63	Minewater	Selenium : (mg/l	0.02	-
4/11/1979	TS-63	Minewater	Silver	mg/l	0.01	<
4/11/1979	TS-63	Minewater	Sodium	mg/l	85.3	
4/11/1979	TS-63	Minewater	Sulfate	mg/l	75.8	
4/11/1979	TS-63	Minewater	TDS	mg/l	380.5	
4/11/1979	TS-63	Minewater	Thorium-230	pCi/ĭ	. 0.6	<
4/11/1979	TS-63	Minewater	Uranium	mg/l	2.29	
4/11/1979	TS-63	Minewater	Vanadium	mg/l	0.1	٧
4/11/1979	TS-63	Minewater	Zinc	mg/l	0.01	<
5/2/1979	TS-69	Minewater	Aluminum	mg/l	0.2	٧
5/2/1979	· TS-69	Minewater	Barium	mg/l	0.1	<
5/2/1979	TS-69	Minewater	Cadmium	mg/l	0.01	<
5/2/1979	TS-69	Minewater	Chloride	mg/l	5	
5/2/1979	TS-69	Minewater	Chromium	mg/l	0.02	<
5/2/1979	TS-69	Minewater	Cobalt	mg/l	0.05	
5/2/1979	TS-69	Minewater	Copper	mg/l	0.01	
5/2/1979	TS-69	Minewater	Fluoride	mg/l	0.42	
5/2/1979	TS-69	Minewater	Iron	mg/l	0.04	
5/2/1979	TS-69	Minewater	Lead	mg/l	0.05	1
5/2/1979	TS-69	Minewater	Manganese	mg/l	0.01	
5/2/1979	TS-69	Minewater	Mercury	mg/l	0.0004	
5/2/1979	TS-69	Minewater	Molybdenum	mg/l	0.04	
5/2/1979	TS-69	Minewater	Nickel	mg/l	0.04	4
5/2/1979	TS-69	Minewater	Nitrogen, Nitrate (as N)	mg/l	0.0	
5/2/1979	TS-69	Minewater	pH, lab	mg/l	8.45	l
5/2/1979	TS-69	Minewater	Phenois	mg/l	0.001	
5/2/1979	TS-69	Minewater	Radium-226	pCi/l	11.2	
5/2/1979	TS-69	Minewater	Sc Sc	umhos/cm	485	
5/2/1979	TS-69	Minewater	Silver	mg/l	0.01	
5/2/1979 5/2/1979	TS-69	Minewater	Sodium	mg/l	1009.1	
5/2/1979	TS-69	Minewater	Sulfate	mg/l	73.3	
5/2/1979	TS-69	Minewater	TDS		370.5	
5/2/1979 5/2/1979	TS-69		Thorium-230	mg/l pCi/l	5.8	
	TS-69	Minewater	Uranium		1.7	
5/2/1979	TS-69	Minewater	Vanadium	mg/l mg/l	0.1	-
5/2/1979		Minewater	Zinc		0.01	
5/2/1979	TS-69	Minewater		mg/l		
6/11/1979		Minewater	Aluminum	mg/i	0.339	
6/11/1979		Minewater	Arsenic	mg/l	0.0118	
6/11/1979	<u> </u>	Minewater	Barium	mg/l	0.043	
6/11/1979		Minewater	Boron	mg/l	0.01	
6/11/1979		Minewater	Cadmium	mg/l	0.0038	
6/11/1979	<u> </u>	Minewater	Chloride	mg/l	13.4	
6/11/1979	<u> </u>	Minewater	Chromium	mg/l	0.0356	
6/11/1979		Minewater	Cobalt	mg/l	0.0001	
6/11/1979		Minewater	Copper	mg/l	0.023	
6/11/1979		Minewater	Fluoride	mg/l	0.5	
6/11/1979		Minewater	Iron · ·	. mg/l	0.059	
6/11/1979		Minewater	Lead	mg/l	0.0138	
6/11/1979		Minewater	Manganese	mg/l	0.002	-
6/11/1979		Minewater	Mercury	mg/l	0.00	1]

Date	Sample ID	Location	: Analyte	Units	Value	Qualifier
6/11/1979		Minewater	Molybdenum	· mg/l	0.0373	
6/11/1979		Minewater		mg/l	0.1349	1
6/11/1979	:	Minewater		mg/l	0.1	
6/11/1979		Minewater	pH, lab	SU	7.94	·
6/11/1979	:	Minewater	Radium-226	pCi/l	36.1	
6/11/1979	•	Minewater	Radium-228	.pCi/l	5.2	
6/11/1979		Minewater	Sc	umhos/cm	690	
6/11/1979		Minewater	Selenium	mg/l	0.0149	
6/11/1979		Minewater	Silver	mg/l	0.0054	
6/11/1979		Minewater	Sodium	mg/l	10	
6/11/1979		Minewater	Sulfate	mg/l	111.5	
6/11/1979		Minewater	TDS .	mg/l	449.6	
6/11/1979		Minewater	Thorium-230	pCi/l	120.5	
6/11/1979		Minewater	Uranium .	mg/l	3.62	
6/11/1979		Minewater	Vanadium	-mg/l	0.02	ļ
6/11/1979		Minewater	Zinc	mg/l	0.0022	ļ <u></u>
4/30/1980		Minewater	Alkalinity (CaCO3)	-mg/l	232	
4/30/1980		Minewater	Aluminum	mg/l	2.8	
4/30/1980		Minewater	Barium	mg/l	0.1	ļ
4/30/1980		Minewater	Calcium	-mg/l	10.1	
4/30/1980		Minewater	Chloride	mg/l	6.5	<u> </u>
4/30/1980		Minewater	Iron	mg/l	1.99	
1/30/1980		Minewater	Lead-210	pCi/l		± 7.0
1/30/1980		Minewater	Magnesium	mg/l		
1/30/1980		Minewater	Manganese	mg/l	0.003	<
1/30/1980		Minewater	pH, lab	SU	8	
/30/1980		Minewater	Potassium	mg/l	2.2	
//30/1980		Minewater	Radium-226	pCi/I		± 12
/30/1980		Minewater	Radium-228	pCi/l		¥ 14
/30/1980		Minewater	Sc	umhos/cm	691	<u> </u>
/30/1980		Minewater	Selenium	mg/l	0.004	
/30/1980		Minewater	Silica	mg/l	21	
/30/1980		Minewater	Sodium	mg/l	170	
/30/1980		Minewater	Sulfate	mg/l	71	·
/30/1980		Minewater	TDS	mg/I	381	<u>·</u>
/30/1980		Minewater	Thorium-230	pCi/l		
/30/1980		Minewater	Uranium	mg/l	2.84	<
/30/1980		Minewater	Zinc	mg/l	0.02	<u> </u>
/16/1980		Minewater	Alkalinity (CaCO3)	mg/l	127	
/16/1980		Minewater	Aluminum	mg/l	0.1	
/16/1980		Minewater	Barium	mg/l	0.01	
/16/1980		Minewater	Bicarbonate	mg/l	155	
/16/1980		Minewater	Calcium	mg/l	31	
/16/1980		Minewater	Carbonate	mg/l	•	
/16/1980		Minewater	Chloride :	mg/l	0.1 14.9	<u> </u>
/16/1980		Minewater	Iron	mg/l	0.1	
/16/1980		Minewater	Lead-210	pCi/l		<u><</u> ± 3.42
16/1980		Minewater	Magnesium	mg/l		I 3.44
16/1980		Minewater	Manganese	mg/l	4.2 1.3	
16/1980		Minewater	pH, lab	SU	6.7	
16/1980			Potassium	mg/l	1.9	
16/1980			Radium-226	pCi/l		± 1.7

Date	Sample ID		Analyte	Units	Value	Qualifier
7/16/1980	, ,	Minewater	Radium-228	pCi/l	1.3	± 5.0
7/16/1980		Minewater	Sc	umhos/cm	950	
7/16/1980		Minewater	Selenium	mg/l	0.05	<u> </u>
7/16/1980	-	Minewater	Silicon	mg/l	6.9	
7/16/1980		Minewater	Sodium	mg/l	140	
7/16/1980		Minewater	Sulfate	mg/l	272	
7/16/1980		Minewater	TDS	mg/l	538	
7/16/1980		Minewater	Thorium-230	pCi/l		± 2.6
7/16/1980		Minewater	Uranium	mg/l	2.7	
7/16/1980		Minewater	Zinc .	mg/l	0.01	
10/9/1984		Mill Well	Alkalinity (CaCO3)	mg/L	197	
10/9/1984		Mill Well	Aluminum	mg/L	0.05	
10/9/1984		- Mill Well	Ammonium as N	mg/L	0.05	
10/9/1984		Mill Well	Arsenic	mg/L	0.001	
10/9/1984		Mill Well	Bicarbonate	mg/L	239.7	
10/9/1984		Mill Well	Cadmium	mg/L	0.01	
10/9/1984		Mill Well	Calcium	mg/L	4.7	
10/9/1984		Mill Well	Chloride	mg/L	4.1	
10/9/1984		Mill Well	Cobalt			
10/9/1984		. Mill Well	Gross Alpha	mg/L pCi/L	0.05 43	
10/9/1984	······	Mill Well	Lead			
10/9/1984		Mill Well	Lead 210	mg/L pCi/L	0.05	
10/9/1984		Mill Well	Magnesium		9.3	
10/9/1984		Mill Well	Manganese	mg/L	3.24	
10/9/1984		Mill Well	Molybdenum	mg/L	0.01	
10/9/1984		Mill Well	Nickel	mg/L	0.01	
10/9/1984		· Mill Well	pH	mg/L	0.05	
10/9/1984		Mill Well	Potassium	<u>s.u.</u>	8.49	
10/9/1984		Mill Well	Radium 226	mg/L	1.6	
10/9/1984		Mill Well		pCi/L	1.8	·
10/9/1984		Mill Well	Selenium	mg/L	0.001	···· · · · ·
10/9/1984			Sodium	mg/L	103.2	·
10/9/1984		Mill Well	Sulfate TDS	mg/L	17.7	
10/9/1984		Mill Well		mg/L	228	
0/9/1984		Mill Well	Thorium 230	pCI/L	61.3	
0/9/1984		Mill Well	Uranlum	mg/L	0.065	
1/23/1992		Mill Well	Vanadium	mg/L	0.01	
1/23/1992		Mill Well	Alkalinity (CaCO3)	mg/L ·	201	
1/23/1992		Mill Well	Aluminum	mg/L	0.1	
		Mill Well	Ammonium as N	mg/L	0.1	
1/23/1992		Mill Well	Arsenic	mg/L	0.004	
1/23/1992	· · · · · · · · · · · · · · · · · · ·	Mill Well	Beryllium	mg/L	0.1	
1/23/1992		Mill Well	Blcarbonate	mg/L	245	
/23/1992		Mill Well	Cadmium	mg/L	0.01	
/23/1992		Mill Well	Calcium	mg/L	3.2	
/23/1992		Mill Well	Chloride	mg/L	6.3	
/23/1992		Mill Well	Cobalt	mg/L	0.01	
/23/1992		Mill Well	Gross Alpha	pCl/L	2.3	
/23/1992		Mill Well	Lead	mg/L	0.05	
/23/1992		Mill Well	Lead 210	pCl/L	1	
/23/1992		Mill Well	Magnesium	mg/L	0.4	
/23/1992		Mill Well	Manganese	mg/L	0.01	
/23/1992		Mill Well	Molybdenum	mg/L	0.01	

Date	Sample ID	Location		Units	Value	Qualifier
4/23/1992		:Mill Well	Nickel	: mg/L :	0.05	
4/23/1992		:Mill Well	Nitrate + Nitrate as N	mg/L	0.1	:
4/23/1992		Mill Well	На	s.u.	8.83	
4/23/1992		: Mill Well	Potassium	mg/L	1	
4/23/1992		Mill Well	Radium 226	pCi/L	0.4	· · ·
4/23/1992		Mill Well	Radium 228	pCi/L	2.1	
4/23/1992		i Mill Well	Selenium	mg/L	0.218	
4/23/1992		Mill Well	Sodium	mg/L	123	
4/23/1992		Mill Well	Sulfate	mg/L	33.3	
4/23/1992		Mill Well	TDS	mg/L	292	
4/23/1992		Mill Well	Thorium 230	pCi/L	0.2	:
4/23/1992		Mill Well	Uranium	mg/L	0.576	
4/23/1992		Mill Well .	Vanadium	mg/L	0.1	
7/28/1993	•	Mill Well	Alkalinity (CaCO3)	mg/L	188	
7/28/1993		Mill Well	Aluminum	mg/L	0.16	
7/28/1993		Mill Well	Ammonium as N	mg/L	0.05	
7/28/1993	·	Mill Well	Arsenic	mg/L	0.001	
7/28/1993		:Mill Well	Beryllium	mg/L	0.005	
7/28/1993		Mill Well	Bicarbonate	mg/L	229	
7/28/1993		Mill Well	Cadmium	mg/L	0.01	
7/28/1993	· · · · · · · · · · · · · · · · · · ·	Mill Well	Calcium		15	
7/28/1993	· · · · · · · · · · · · · · · · · · ·	:Mill Well	Chloride	mg/L mg/L	182	II
7/28/1993		Mill Well	Cobalt		0.01	
7/28/1993	· 	Mill Well		mg/L	1.8	l
7/28/1993		: Mill Well	Gross Alpha Lead	pCl/L	0.05	
7/28/1993	·	:Mill Well	Magnesium	mg/L mg/L	4.9	
7/28/1993		Mill Well	Manganese	mg/L	0.24	
7/28/1993		Mill Well	Molybdenum	mg/L	0.24	
7/28/1993	· · · · · · · · · · · · · · · · · · ·	Mill Well	Nickel	mg/L	0.05	
7/28/1993		Mill Well	Nitrate + Nitrate as N	mg/L	0.03	
7/28/1993		Mill Well	pH	. s.u.	8.49	
7/28/1993		Mill Well	Potassium	mg/L	3	
7/28/1993		Mill Well	Radium 226	pCi/L	1.6	<u> </u>
7/28/1993		Mill Well	Radium 228	pCi/L	1.4	
7/28/1993		Mill Well	Selenium	mg/L	0.003	
7/28/1993		Mill Well	Sodium	mg/L	708	
7/28/1993		Mill Well	Sulfate	mg/L	1260	
7/28/1993		Mill Well	TDS	mg/L	2258	
7/28/1993	· 	Mill Well	Thorium 230	pCi/L	0.2	
7/28/1993		Mill Well	Uranium	mg/L	0.002	
7/28/1993		Mill Well	Vanadium	mg/L	0.002	
6/18/2002		Mill Well	Alkalinity (CaCO3)	mg/L	185	
6/18/2002		Mill Well	Aluminum	mg/L	0.1	
6/18/2002		· Mill Well	Ammonlum as N	mg/L	0.5	·
6/18/2002		Mill Well	Arsenic	mg/L	0.001	
6/18/2002		Mill Well	Beryllium	mg/L	0.01	
6/18/2002		Mill Well	Bicarbonate	mg/L	225	
6/18/2002		Mill Well	Cadmium	mg/L	0.005	
6/18/2002		Mill Well	Calcium	mg/L	16	
6/18/2002		Mill Well	Chloride	mg/L	160	
6/18/2002		Mill Well	Cobalt	mg/L	0.01	
6/18/2002		Mill Well	Gross Alpha	pCi/L	1	

T T		Analyte	Units	1 40100	Qualifier
	Mill Well	Lead	mg/L	0.05	
	Mill Well	Lead 210	pCi/L	1	-
	Mill Well	Magnesium	mg/L	4.2	ı
	Mill Well	Manganese	mg/L	0.05	
	Mill Well	Molybdenum	mg/L	0.1	Ţ
	_ Mill Well	Nickel	mg/L	0.05	:
	Mill Well	Nitrate + Nitrate as N	mg/L	0.1	•
	Mill Well	pH .	s.u.	8.34	•
	Mill Well	Potassium	mg/L	3.5	
	Mill Well	Radium 226	pCi/L	0.7	
	Mill Well	Radium 228	pCi/L	2.7	
	Mill Well	Selenium .	mg/L	0.001	
	Mill Well	Sodium	mg/L·	644	ı
1	Mill Well	Sulfate	mg/L	1100	
	Mill Well	TDS	mg/L	2090	
	Mill Well	Thorium 230	pCi/L	0.02	
	Mill Well	Uranium	mg/L	0.07	
	Mill Well	Vanadium	mg/L	0.1	
		Mill Well Mill Well	Mill Well Magnesium Mill Well Manganese Mill Well Molybdenum Mill Well Nickel Mill Well Nitrate + Nitrate as N Mill Well Potassium Mill Well Potassium Mill Well Radium 226 Mill Well Radium 228 Mill Well Selenlum Mill Well Sodium Mill Well Sulfate Mill Well TDS Mill Well Thorium 230 Mill Well Uranium	Mill Well Lead 210 pCi/L Mill Well Magnesium mg/L Mill Well Manganese mg/L Mill Well Molybdenum mg/L Mill Well Nickel mg/L Mill Well Nitrate + Nitrate as N mg/L Mill Well pH s.u. Mill Well Potassium mg/L Mill Well Radium 226 pCi/L Mill Well Radium 228 pCi/L Mill Well Selenlum mg/L Mill Well Sodium mg/L Mill Well Sulfate mg/L Mill Well TDS mg/L Mill Well Thorium 230 pCi/L Mill Well Uranium mg/L	Mill Well Lead 210 pCi/L 1 Mill Well Magnesium mg/L 4.2 Mill Well Manganese mg/L 0.05 Mill Well Molybdenum mg/L 0.1 Mill Well Nickel mg/L 0.05 Mill Well Nitrate + Nitrate as N mg/L 0.1 Mill Well pH s.u. 8.34 Mill Well Potassium mg/L 3.5 Mill Well Radium 226 pCi/L 0.7 Mill Well Radium 228 pCi/L 2.7 Mill Well Selenium mg/L 0.001 Mill Well Sodium mg/L 644 Mill Well Sulfate mg/L 1100 Mill Well TDS mg/L 2090 Mill Well Thorium 230 pCi/L 0.02 Mill Well Uranium mg/L 0.07

Notes:
Qualifier of < signifies that concentration was less than detection limit shown
Qualifier of ± represents precision of radionuclides analysis

Will also wanted as 15K-303

ecology and environment, inc.

International Specialists in the Environment 1940 Webster Street, Suite 100

Oakland, California 94612 Tel: (510) 893-6700, Fax: (510) 550-2760

January 24, 2011

U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105

TDD No: T02-09-10-08-0005 Project No: 002693.2103.01RA

Attention:

Harry Allen, USEPA On-Scene Coordinator

Andrew Bain, USEPA

15T-305

Subject:

NECR Water Well Sampling

Church Rock Chapter

Navajo Nation

164-336 164-340

INTRODUCTION

In October 2010 the U.S. Environmental Protection Agency (USEPA) tasked the Ecology and Environment Inc. Superfund Technical Assessment and Response Team (START) with technical assistance relating to residential water well sampling in the vicinity of the former Northeast Church Rock Mine located in the Church Rock Chapter of the Navajo Nation. (Figure 1, Attachment A).

The purpose of this sampling event was to generate additional data to measure the impact of the former Northeast Church Rock Mine uranium mine on wells within the adjacent areas.

SAMPLING ACTIVITIES

Well sampling was conducted on October 19, 2010. A total of five wells were sampled. Four of the wells were residential wells and one (Mill Well) well was part of the former United Nuclear Corporation (UNC) facility in the area. Every effort was made to collect water samples in a manner consistent with resident collection and use (i.e. taps, pumps or bucket collect).

A Time Critical Quality Assurance and Sampling (QASP) Plan (Appendix D) was developed prior to sampling and followed with the following exceptions:

- Well NR#1 is no longer in use and was not sampled as the casing has been filled with concrete.
- The Mine Well is no longer in use and was not sampled as the casing has been filled with concrete.

Water quality parameters were measured in the field using a Horiba, Ltd. multi-parameter water quality meter. The meter was calibrated daily using a buffer solution. Samples were collected and analyzed for metals, radionuclides and anions by GEL Laboratories Inc. (Charleston, SC). Samples were collected and analyzed for oxygen and hydrogen isotopic ratio by Isotech Laboratories, Inc (Champaign, II). The QASP (Appendix D) contains all methods and volumes used in sample analysis.

WELL DESCRIPTIONS

Well 15T-303

Well 15T-303 is a windmill powered well that feeds into an approximately 40,000 gallon uncovered metal tank. The well is currently in use and there is a trough and locked tap in the vicinity of the tank that are used to water livestock. Samples were collected from the top of the tank using a bucket.

14T-586

14T-586 is a diesel engine powered well that feeds into an approximately 10,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

Mill Well

The Mill Well is located on the former UNC facility property. The well is electric powered well, housed in a wooden pump house, north of the former UNC offices and equipment yard. There is no storage tank affiliated with the well and the well is not currently in use. Samples were collected from a tap inside the pump house with pump turned on.

Mine Well

The mine well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

NR#1

The NR#1 well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

16K-340

Well 16K-340 is a windmill powered well that feeds into an approximately 40,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

RESULTS

Table 1 (Appendix B) gives a well specific summary of all applicable data. All laboratory data was validated by a START chemist using the Region 9 Draft Superfund Data Evaluation/Validation Guidance. Data validation indicated the laboratory data was acceptable with qualification as definitive data. A separate data validation report was generated under this project and is included in the project file.

This letter summarizes all activities conducted on the Tuba City Removal project. If you have any questions regarding START's activities associated with this project, please do not hesitate to contact me.

Respectfully,

Mike Folan

START Member

Attachments: A – Homesite Location Map

B –Data Tables

C - Photographic Documentation

D- QASP

cc: file

ATTACHMENT A: Well Location Map

ATTACHMENT B: Data Tables

Table 1: NECR Water Well Sampling Data

PAN:002693.2104.01RA

	2.09-10-06-0005 14T-58	36		14T-586100 (c	lunlicate\		15T-3		2104.01F
		Result	Units	171.000100 (0	Result	Units	101.0	Result	Units
	PΗ	7.1	Office	pΗ	7.1	OHILS	рН	6.8	Office
	Conductivity	0.26	S/m	Conductivity	0.26	S/m	Conductivity	0.35	S/m
	Turbidity	10.1	NTU	Turbidity	10.1	NTU	•	· · · ·	NTU
Water Quality	Dissolved Oxygen	6.30		Dissolved Oxygen		—	Turbidity	10.1	
ter	Temperature		mg/L		6.30	mg/L	Dissolved Oxygen	7.99	mg/L
5		7.6	°C	Temperature	7.6	°C	Temperature	12.1	°C
ality	Salinity	0.1	%	Salinity	0.1	%	Salinity	0.2	%
	Total Dissolved Solids Oxidation Reduction	1.7	g/L	Total Dissolved Solids Oxidation Reduction	1.7	g/L	Total Dissolved Solids Oxidation Reduction	2.2	g/L
	Potential	100	mV	Potential	100	mV	Potential	129	m∨
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Aluminum	220	ug/L	Aluminum	82	ug/L	Aluminum	68.0	ug/L
	Antimony	3.00	ug/L	Antimony	7.34	ug/L	Antimony	6.83	ug/L
	Arsenic	5.00	ug/L	Arsenic	5.00	ug/L	Arsenic	7.54	ug/L
	Barium	13.1	ug/L	Barium	13.4	ug/L	Barium	8.24	ug/L
	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L
	Bromide	0.200	ug/L	Bromide	0.200	ug/L	Bromide	0.200	ug/L
	Cadmium	1.00	ug/L	Cadmium	1.00		Cadmium	1.17	ug/L
	Calcium	270000	ug/L	Calcium	281000	ug/L	Calcium	373000	ug/L ug/L
	Chromium	13.9	ug/L	Chromium	1.00	ug/L	Chromium	1.16	ug/L ug/L
	Cobalt	1.13	ug/L ug/L	Cobalt	1.00	ug/L	Cobalt		
	Copper	3.00			 	ug/L		1.00	ug/L
Metals	Iron	482	ug/L	Copper	3.00	ug/L	Copper	3.00	ug/L
als	Lead	3.30	ug/L ug/L	Iron Lead	468 3.30	ug/L	Iron	685 3.30	ug/L
	Magnesium	119000				ug/L	Lead		ug/L
1 1	Manganese	320	ug/L	Magnesium	122000 319	ug/L	Magnesium	144000 162	ug/L
i 1	Mercury		ug/L	Manganese		ug/L	Manganese		ug/L
	····	0.066	ug/L	Mercury	0.066	ug/L	Mercury	0.066	ug/L
1 H	Nickel	71.3	ug/L	Nickel	1.51	ug/L	Nickel	1.50	ug/L
l l	Potassium	7430	ug/L	Potassium	7690	ug/L	Potassium	5650	ug/L
	Selenium	7.7	ug/L	Selenium	37.7	ug/L	Selenium	43.8	ug/L
I F	Silver	1.00	ug/L	Silver	1.00	ug/L	Silver	1.00	ug/L
I F	Sodium	135000	ug/L "	Sodium	140000	ug/L	Sodium	188000	ug/L
l ŀ	Thallium	5.00	ug/L 	Thallium	5.00	ug/L	Thallium	8.9	ug/L
l ŀ	Vanadium	1.00	ug/L	Vanadium 	1.00	ug/L	Vanadium	1.00	ug/L
	Zinc	338	ug/L	Zinc	355	ug/L	Zinc	839	ug/L
		Result	· ·	Analyte	Result		Analyte	 	Units
1 š	ALPHA	2.62	pCi/L	ALPHA	5.80	pCi/L	ALPHA	-0.526	pCi/L
		6.58	pCi/L	BETA	6.02	pCi/L	BETA	2.62	pCi/L
2		0.00	percent	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent
⇒ •		0.880	pCi/L	Radium-226	0.540	pCi/L	Radium-226	1.18	pCi/L
ng .		3.41	pCi/L	Radium-228	3.71	pCi/L	Radium-228	3.34	pCi/L
뜶	Thorium-228		pCi/L	Thorium-228	0.155	pCi/L	Thorium-228	-0.139	pCi/L
	Thorium-230	-0.185	pCi/L	Thorium-230	0.818	pCi/L	Thorium-230	-0.158	pCi/L
	Thorium-232	-0.133	pCi/L	Thorium-232	-0.0195	pCi/L	Thorium-232	-0.0195	pCi/L
	Uranium-233/234	1.16	pCi/L	Uranium-233/234	1.73	pCi/L	Uranium-233/234	0.317	pCi/L
	Uranium-235/236	0.114	pCi/L	Uranium-235/236	0.0569	pCi/L	Uranium-235/236	0.219	pCi/L
/ [i	Uranium-238	1.20	pCi/L	Uranium-238	0.790	pCi/L	Uranium-238	0.442	pCi/L

Table 1: NECR Water Well Sampling Data

PAN:002693.2104.01RA

	147	Γ-586		14T-58610	0 (duplicate)		15	T-303	
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Chloride	14.0	mg/L	Chloride	14.1	mg/L	Chloride	10.5	mg/L
Anions	Nitrate	0.267	mg/L	Nitrate	0.266	mg/L	Nitrate	0.100	mg/L
	Nitrite 0.100		mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L
Ø	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	2.00	mg/L
	Sulfate	1380	mg/L	Sulfate	1310	mg/L	Sulfate	2000	mg/L
	Fluoride	1.19	mg/L	Fluoride	1.24	mg/L	Fluoride	1.52	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H₂O	-80.8	%	δD H₂O	-81.2	%	δD H₂O	-73.1	%
	δ ¹⁸ O H₂O	-10.44	%	δ ¹⁸ O H ₂ O	-10.53	%	δ ¹⁸ O H₂O	-8.56	%

Table 1: NECR Water Well Sampling Data

PAN:002693.2104.01 RA

1DD:09-10-08-0005 PAN:002693 16K-336 16K-340 MILLWELL							<u> </u>		104.015
	1017-0	Result	Units	101.40	7	l late	WILLYY		Ulpito
			Units		Result	Units		Result	Units
	pH Conductivity	7.4	0.1	pH	7.6		pΗ	7.4	
	Conductivity	0.15	S/m	Conductivity	0.19	S/m	Conductivity	0.36	S/m
≶	Turbidity	29.9	NTU	Turbidity	5.5	NTU	Turbidity	14.7	NTU
atei	Dissolved Oxygen	3.05	mg/L	Dissolved Oxygen	5.26	mg/L	Dissolved Oxygen	6.39	mg/L
ွှဲ	Temperature	15.5	°C	Temperature	16.8	°C	Temperature	15.2	°C
Water Quality	Salinity	0.1	%	Salinity	0.1	%	Salinity	0.2	%
Ÿ	Total Dissolved Solids	1	g/L	Total Dissolved Solids	1.2	g/L	Total Dissolved Solids	2.3	g/L
	Oxidation Reduction Potential	86	mV	Oxidation Reduction Potential	76 .	m∨	Oxidation Reduction Potential	-127	mV
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Aluminum	229	ug/L	Aluminum	126	ug/L	Aluminum	68.0	ug/L
	Antimony	3.00	ug/L	Antimony	3.00	ug/L	Antimony	3.00	ug/L
	Arsenic	11	ug/L	Arsenic	8.53	ug/L	Arsenic	5.00	ug/L
	Barium	450	ug/L	Barium	140	ug/L	Barium	1.64	ug/L
	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L
	Bromide	0.234	ug/L	Bromide	0.295	ug/L	Bromide	0.361	ug/L
	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L
	Calcium	76800	ug/L	Calcium	99800	ug/L	Calcium	2420	ug/L
	Chromium	1.00	ug/L	Chromium	1.03	ug/L	Chromium	1.43	ug/L
	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L
~	Copper	29.7	ug/L	Copper	3.00	ug/L	Copper	20.4	ug/L
Metals	Iron	2720	ug/L	Iron	181	ug/L	Iron	9870	ug/L
ls	Lead	3.58	ug/L	Lead	3.30	ug/L	Lead	3.74	ug/L
	Magnesium	20600	ug/L	Magnesium	43500	ug/L	Magnesium	470	ug/L
	Manganese	95.9	ug/L	Manganese	122	ug/L	Manganese	51	ug/L
	Mercury	0.066	ug/L	Mercury	0.066	ug/L	Mercury	0.066	ug/L
	Nickel	1.50	ug/L	Nickel	1.50	ug/L	Nickel	2.38	ug/L
	Potassium	2540	ug/L	Potassium	3940	ug/L	Potassium	3200	ug/L
	Selenium	10.2	ug/L	Selenium	5.00	ug/L	Selenium	26.7	ug/L
	Silver	1.00	ug/L	Silver	1.00	ug/L	Silver	1.00	ug/L
	Sodium	202000	ug/L	Sodium	233000	ug/L	Sodium	694000	ug/L
	Thallium	5.00	ug/L	Thallium	5.00	ug/L	Thallium	6.45	ug/L
Ì	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L
	Zinc	153	ug/L	Zinc	148	ug/L	Zinc	659	ug/L
	Analyte	Result		Analyte	Result	Units	Analyte	Result	Units
•	ALPHA		pCi/L	ALPHA	5.46	pCi/L	ALPHA	9.79	pCi/L
ł	BETA	4.99	pCi/L	BETA	2.37	pCi/L	ВЕТА	2.72	pCi/L
·	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent
꼾	Radium-226	1.20	pCi/L	Radium-226	0.464	pCi/L	Radium-226	0.639	pCi/L
ᅘ	Radium-228	4.58	pCi/L	Radium-228	0.747	pCi/L	Radium-228	1.77	pCi/L
<u>ŭ</u>	Thorium-228	0.298	pCi/L	Thorium-228	-0.0682	pCi/L	Thorium-228	0.139	pCi/L
Radionuclide's	Thorium-230	-0.524	pCi/L	Thorium-230	0.0264	pCi/L	Thorium-230	0.480	pCi/L
	Thorium-232		pCi/L	Thorium-232	-0.0722	1		-0.0195	1
·	Uranium-233/234		pCi/L		! 	pCi/L	Thorium-232	+	pCi/L
ŀ	Uranium-235/236			Uranium-233/234	0.297	pCi/L	Uranium-233/234	2.61	pCi/L
- 1		0.181	pCi/L	Uranium-235/236	0.115	pCi/L	Uranium-235/236	0.174	pCi/L
	Uranium-238	0.392	pCi/L	Uranium-238	1.40	pCi/L	Uranium-238	2.82	pCi/L

Table 1: NECR Water Well Sampling Data

PAN:002693.2104.01RA

	161	(-336		161	<-340		MILL	WELL	
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
l	Chloride	18.8	mg/L	Chloride	22.1	mg/L	Chloride	154	mg/L
≥	Nitrate	2.89	mg/L	Nitrate	5.97	mg/L	Nitrate	0.100	mg/L_
Anions	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L
Ś	Ortho-phosphate	0.291	mg/L	Ortho-phosphate	0.163	mg/L	Ortho-phosphate	2.00	mg/L
	Sulfate	118	mg/L	Sulfate	368	mg/L	Sulfate	1460	mg/L
	Fluoride	0.861	mg/L	Fluoride	0.483	mg/L	Fluoride	1.73	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H₂O	-91.4	%	δD H₂O	-82.6	%	δD H₂O	-107.3	%
L	δ ¹⁸ O H₂O	-12.04	%	δ ¹⁸ O H₂O	-11.01	%	δ ¹⁸ O H ₂ O	-14.14	%

ATTACHMENT C: Photographic Documentation

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 15T-303

Date: 10/19/10

Description:

Well 15T-303

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 14T-586

Date: 10/19/10

Description:

Well 14T-586

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Mill Well

Date: 10/19/10

Description:

Mill Well

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description: Mine Well

Date: 10/19/10

Description:

Well NR#1

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-340

Date: 10/19/10

Description:

16K-340

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-336

Date: 10/19/10

Description:

16K-336

Table J

Reporting Limits, Action Levels, and Quality Control Limits

Analysis	Analyte	Action Level	Quantitation	Duplicate	Matrix	Matrix Spike
The control of the co		(mg/L)	Limit (µg/L)	RPD	Spike	RPD
Anions by 300.0	Fluoride	4	0.10	25	75-125	20
Anions by 300.0	Chloride	250	1.0	25	75-125	20
Anions by 300.0	Nitrite as N	1	0.10	25	75-125	20
Anions by 300.0	Nitrate as N	10	0.10	25	75-125	20
Anions by 300.0	o-Phosphate, as P	Not Available	1.0	25	75-125	20
Anions by 300.0	Sulfate	250 (s)	0.50	25	75-125	20
Metals by 6010B	Aluminum	0.1	100	25	75-125	20
Metals by 6010B	Antimony	0.1	100	25	75-125	20
Metals by 6010B	Arsenic	0.01	10	25	75-125	20
Metals by 6010B	Barium	2	20	25	75-125	20
Metals by 6010B	Beryllium	0.005	5	25	75-125	20
Metals by 6010B	Cadmium	0.01	10	25	75-125	20
Metals by 6010B	Calcium	Not Available	1000	25	75-125	20
Metals by 6010B	Chromium	0.10	10	25	75-125	20
Metals by 6010B	Cobalt	Not Available	20	25	75-125	20
Metals by 6010B	Copper	1.3 (s)	20	25	75-125	20
Metals by 6010B	Iron	Not Available	50	25	75-125	20
Metals by 6010B	Lead	0.015	5	25	75-125	20
Metals by 6010B	Magnesium	Not Available	600	25	75-125	20
Metals by 6010B	Manganese	0.05 (s)	15	25	75-125	20
Metals by 6010B	Mercury	0.002	0.5	25	75-125	20
Metals by 6010B	Nickel	Not Available	20	25	75-125	20
Metals by 6010B	Potassium	Not Available	5000	25	75-125	20
Metals by 6010B	Selenium	0.05	10	25	75-125	20
Metals by 6010B	Silver	0.10 (s)	10	25	75-125	20
Metals by 6010B	Thallium	0.002	10	25	75-125	20
Metals by 6010B	Vanadium	Not Available	20	25	75-125	20
Metals by 6010B	Zinc	5 (s)	10	25	75-125	20
Gross alpha by 900.0	alpha	See table A-1	1.0 piC/L	25	75-125	20
Gross beta by 900.0	beta	See table A-1	1.0 piC/L	25	75-125	20
903.1	Ra-226	See table A-1	1.0 piC/L	25	75-125	20
904.0	Ra-228	See table A-1	1.0 piC/L	25	75-125	20
Isotopic Th by HASL 300 Th-01-RCmod	Th-238, 230, 232	See table A-1	1.0 piC/L	25	75-125	20
Isotopic U by HASL 300 U-02-RC mod	U-233/234, U- 235/236, U-238	See table A-1	1.0 piC/L	25	75-125	20

Key: RPD = relative percent difference; mg/L = milligrams per liter; $\mu/L = micrograms$ per Liter NA = Not Applicable

(s) = National Secondary Drinking Water Regulation not enforceable and not an action limit for this assessment

14T-586 Friendship-1 PWSID NN3500323

18 of mill

EPA sample 0.970 Arsenic MCL 10 ug/L 1.500 Uranium MCL 30 ug/L 1.190 Ra226 pCi/L 2.250 Ra228 pCi/L 3.440 RaTotal MCL 5 pCi/L 7.850 Gross Alpha pCi/L 8.845 Gr. Alpha (excluding U) MCL 15 pCi/L 4.450 Beta 7.80 pH Secondary MCL 6.5 - 8.5 6.98 Field pH 2250.00 Conductivity umhos/cm 14.900 Turbidity MCL 1ntu 0.37 Corrosivity 3.78 Collection temperature celsius 325.0 T. Alkalinity (CaCO3) mg/L 830.0 Total Hardness NTUA desired maximum-500 mg/L 150.4 Calcium NTUA desired range 75-200 mg/L 376.0 Calcium (CaCO3) NTUA desired range 75-200 mg/L 110.40 Magnesium mg/L 454.0 Magnesium (CaCO3) mg/L 1810.0 Dissolved Solids Secondary MCL 500 mg/L 16.40 Chloride Secondary MCL 250 mg/L 0.388 Fluoride Primary MCL 4.0; Secondary MCL 2.0 mg/L <0.3 Phosphate mg/L Sulfate Secondary MCL 250 mg/L <0.3 Nitrate Primary MCL 10 < 0.3 Nitrite Primary MCL 1 mg/L ND Mercury Primary MCL .002 ug/L 100 Boron ug/L 240000 Calcium ug/L 2.100 Iron Secondary MCL .3 mg/L 120000 Magnesium ug/L 8000 Potassium ug/L 160000 Sodium ug/L 1100.0 Hardness as CaCO3 (calculated) mg/L ND AluminumSecondary MCL .05-.2 mg/L ND Antimony Primary MCL .006 mg/L 0.0200 Barium Primary MCL 2 mg/L ND Beryllium Primary MCL .004 mg/L ND Cadmium Primary MCL .005 mg/L ND ChromiumPrimary MCL .1mg/L 1.30 Cobalt ug/L 0.0029 Copper Primary MCL action level 1.3 mg/L ND Lead Primary MCL action level .015 mg/L 2.0000 Manganese Secondary MCL .05 mg/L 13.00 Molybdenum ug/L 13.000 NickelB ug/L 0.00110 SeleniumPrimary MCL .05 mg/L ND Silver Secondary MCL .10 mg/L ND ThalliumPrimary MCL .002 mg/L ND Vanadiumug/L

15K-303 Pipeline Canyon Well

EPA sample 0.710 Arsenic MCL 10 ug/L 0.380 Uranium MCL 30 ug/L 1.190 Ra220 pCi/L 3.730 Ra228 pCi/L 4.920 RaTotal MCL 5 pCi/L 0.895 Gross Alpha pCi/L 0.640 Gr. Alpha (excluding U) MCL 15 pCi/L 13.800 Beta

2.0000 Zinc Secondary MCL 5 mg/L

6.54 pH Secondary MCL 6.5 - 8.5 7.20 Field pH

d/g of Mine

1890.00 Conductivity umhos/cm 11,200 Turbidity MCL 1ntu 0.45 Corrosivity 1.70 Collection temperature celsius
195.0 T. Alkalinity (CaCO3) mg/L
1040.0 Total Hardness NTUA desired maximum 500 mg/L
129.6 Calcium NTUA desired range 75-200 mg/L 24.0 Calcium (CaCO3) NTUA desired range 75-200 mg/L 174.10 Magnesium mg/L 116.0 Magnesium (CaCO3) mg/L 2528.0 Dissolved Solids Secondary MCL 500 mg/L 10.50 Chloride Secondary MCL 250 mg/L 1.738 Fluoride Primary MCL 4.0; Secondary MCL 2.0 mg/L O.3 Phosphate mg/L Sulfate Secondary MCL 250 mg/L 0.3 Nitrate Primary MCL 10 <0.3 Nitrite Primary MCL 1 mg/L</p> I/D Mercury Primary MCL .002 ug/L 110 Boron ug/L \$70000 Calcium ug/L 1.000 Iron Secondary MCL .3 mg/L 140000 Magnesium ug/L 5300 Potassium ug/L 140000 Sodium ug/L 1500.0 Hardness as CaCO3 (calculated) mg/L HD AluminumSecondary MCL .05-.2 mg/L ND Antimony Primary MCL .006 mg/L 0.0067 Barium Primary MCL 2 mg/L ND Beryllium Primary MCL .004 mg/L ND Cadmium Primary MCL .005 mg/L ND ChromiumPrimary MCL .1mg/L 0.77 Cobalt ug/L 0.0024 Copper Primary MCL action level 1.3 mg/L ND Lead Primary MCL action level .015 mg/L 0.3100 Manganese Secondary MCL .05 mg/L 0.84 Molybdenum ug/L 16.000 NickelB ug/L 0.00083 SeleniumPrimary MCL .05 mg/L ND Silver Secondary MCL .10 mg/L ND ThalliumPrimary MCL .002 mg/L ND Vanadiumug/L 0.0400 Zinc Secondary MCL 5 mg/L

Annie Grey HP

EPA sample 2.400 Arsenic MCL 10 ug/L 5.200 Uranium MCL 30 ug/L 0.948 Ra226 pCi/L 0.566 Ra228 pCi/L 1.514 RaTotal MCL 5 pCi/L 12.200 Gross Alpha pCi/L 8.716 Gr. Alpha (excluding U) MCL 15 pCi/L 35,400 Beta 8.57 pH Secondary MCL 6.5 - 8.5 6.90 Field pH 332.00 Conductivity umhos/cm 22.400 Turbidity MCL 1ntu -1.54 Corrosivity 6.82 Collection temperature celsius 143.0 T. Alkalinity (CaCO3) mg/L 55.2 Total Hardness NTUA desired maximum 500 mg/L 17.6 Calcium NTUA desired range 75-200 mg/L 44.0 Calcium (CaCO3) NTUA desired range 75-200 mg/L

Water Sources in Church Rock Area Sampled in 2003 by CRUMP Water Assessment Team

Well#	Well Name	Chapter	Latitude	Longitude	TRS Coordinates	Formation	Well Type	TD (ft)	Use(s)
Grey	Annie Grey	Pinedale	35,37 457	108.30 670	16 16 14 1111	Qal	dug, HP	8	LS, DOM
Solar	Solar St	Church Rock	35.32 158	108.35 753	15 17 13 1	Qal?	drilled, HP	unk	LS
14K-313	Brown Bull	Coyote Cyn	35,39 982	108,34 113	17 16 32 or 29	Kg	drilled, WM	622	LS, DOM
N14K-586	Friendship I	Coyote Cyn	35,39 432	108,30 557	17 16 35	Kmv or Kg	drilled, PWS	750	abd-CWS
A15K-303	Pipeline Cyn	Standing Rk	35,40 277	108,28 698	17 15 29 421	Kg	drilled, WM	614	LS
16-4-10	Lime Ridge	Church Rock		108,34 633	16 16 31 33	Jmw?	dug, HP	<1	LS, DOM
16K-336	Puerco No Fork	Church Rock	35,34 362	108,38 202	16 17 33 4223	Qal	drilled, WM	122	LS
≥16K-340	Windmill Cluster	Church Rock	35,35 582	108,35 890	16 17 25 1132	Qal	drilled, WM	141	LS
16T-348	Lobo Valley	Pinedale	35,37 178	108,27 195	16 15 17 1431	Kd	drilled, WM	410	LS
16T-534	Superman Cyn	Church Rock	35,35 818	108,38 675	16 17 21 344	Jmw	drilled, WM	410	DOM, LS
16T-559	Coal Mine/	Church Rock	35,27 560	108,39 207	15 17 33 43	unk	drilled, WM	unk	LS
	Henry's	property of the section of the secti	and the statement of the second	a prime a more than to provide a many than any more than the second base of	and the manufacture of the substitution of the	فالموافدة والمدورات والمتاهدة والموافدة والمدود الماد	and the state of t	denies in the second property and a second	
16T-606	King Ranch	Church Rock	35,36 998	108,33 237	16 16 17 411	Kd	drilled, WM	417	LS
16T-608	Yazzie Family	Church Rock	35,31 123	108,38 332	15 17 21 4	unk	drilled, WM	unk	DOM, LS

Following Pages

Summary of General Chemistry
Summary of Heavy Metals
Summary of Radionuclides
Complete field chemistry reported by NMED
Complete radionuclide analyses reported by NMED
Complete uranium analyses reported by USEPA

Abbreviations and Symbols

TRS = Township, Range, Section

TD = Total Depth of well, in feet, unk = unknown depth

Uses abd-CWS = abandoned community water system, DOM = domestic, LS = livestock,

Type HP = hand pump, WM = windmill

Formation Qal = alluvium, Kd = Dakota SS, Kg = Gallup SS, Kmv = Mesa

Verde, Jmw = Morrison/Westwater

NNEPA = Navajo Nation Environmental Protection Agency

USEPA = US Environmental Protection Agency

Summary of General Chemistry

Well #	Sampling Date	Dissolved Solids (mg/L)	Calcium (CaCO ₃) (mg/L)	Magnesium (mg/L)	Potassium (mg/l)	Sodium (mg/L)	Total Hardness (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	pH (Units)
USEPA or l	NNEPA MCL	500 NTUA	75-200 NTUA	none NTUA	none NTUA	none NTUA	500 NTUA	250 NTUA	250 NTUA	6 5-8 5 field
Grey	10/28/2003	553 5	376 0	(???) -36	6 69	24 1	240 0	45	305 0	7 72
Solar	10/29/2003	561 8	38 0	1200	4 00	27 9	148 0	4 64	352 0	8 61
14K-313	10/29/2003	1,095 0	640 0	440 0	4 36	105 0	1,080 0	107	1,070 0	8 31
14K-586	8/5/2003	2,136 0	251 8		7 10	143 1	1,143 9	19 1	1,097 2	8 07
15K-303	10/28/2003	3,043 0	980 0	(???) -940	5 97	191.0	40 0	12 1	1,940 0	8 13
16-4-10	10/29/2003	237 5	152 0	32 0	1 61	8 37	184 0	143	27 1	7 45
16K-336	10/29/2003	887 6	200 0	88 0	2 84	207 0	288 0	20 9	122 0	8 05
16K-340	10/29/2003	1,469 0	420 0	180 0	3 65	256 0	600 0	25 5	419 0	8 16
16T-348	10/29/2003	660 9	40	80	0 86	222 0	120	3 48	155 0	9 63
16T-534	10/29/2003	811 8	132 0	760	3 00	179 0	208 0	80	3140	8 67
16T-559	10/28/2003	498 4	12.0	15.0	1.71	162.0	27.0	4 59	148.0	8 87
16T-606	10/28/2003	3,500 0	196 0	1,740 0	6 91	245 0	1,940 0	23 3	1,130 0	7 45
16T-608	10/28/2003	1,015-0	1 To 10 To 1	36 0	0 86	390 0	60 0	251-0-	134.0	8.82

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level, mg/L = milligrams per liter, NMSLD = New Mexico Scientific Laboratory Division, NTUA = Navajo Tribal Utility Authority, ??? = data are questionable

Summary of Heavy Metals and Aesthetic Parameters

Well #	Sampling Date	Arsenic (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Nickel (mg/L)	Selenium (mg/L)	Fluoride (mg/L)	fron (mg/L)
USEPA or I	NNEPA MCL	0 010	0 005	0 05	13	0 02	01	0 05	16 (WQCC)	03
Lab		NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	field*	field*
Grey	10/28/2003	<0 005	<0 0002	<0 001	<0.02	0 001	<0 04	<0 005	0 92	0 01
Solar	10/29/2003	< 0 005	< 0 0002	< 0 001	0 062	<0 001	< 0 04	<0 005	0 32	4 10
14K 313	10/29/2003	< 0 005	< 0 0002	< 0 001	<0 02	< 0 001	< 0 04	< 0 005	1 34	0 54
14K 586	8/5/2003	0 008**	<0 001**	<0 001**	<0 1**	<0 001**	<0 1**	<0 005**	not tested	5 10**
15K 303	10/28/2003	< 0 005	< 0 0002	< 0 001	0 026	< 0 001	< 0 04	< 0 005	1 60	0 68
16 4 10	10/29/2003	< 0 005	< 0 0002	< 0 001	<0 02	< 0 001	< 0 04	0 043	0 58	0 10
16K 336	10/29/2003	0 006	< 0 0002	< 0 001	<0 02	< 0 001	< 0 04	< 0 005	1 03	2 00
16K 340	10/29/2003	< 0 005	< 0 0002	< 0 001	< 0 02	< 0 001	< 0 04	< 0 005	0 71	0 40
16T 348	10/29/2003	< 0 005	< 0 0002	< 0 001	<0 02	< 0 001	< 0 04	< 0 005	0 47	0 02
16T 534	10/29/2003	< 0 005	< 0 0002	< 0 001	<0 02	< 0 001	< 0 04	< 0 005	0 44	0 49
16T 559	10/28/2003	< 0 005	< 0 0002	< 0 001	<0 02	< 0 001	< 0 04	< 0 005	0 64	0 07
16T 606	10/28/2003	< 0 005	<0 0002	< 0 001	<0 02	< 0 001	< 0 04	< 0 005	1 16	3 28
16T 608	10/28/2003	< 0 005	< 0 0002	< 0 001	<0 02	< 0 001	< 0 04	0 006	1 96	0 12

^{*}field tests by New Mexico Environment Department

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level mg/L = milligrams per liter NMSLD = New Mexico Scientific Laboratory Division NTUA = Navajo Tribal Utility Authority WQCC = N M Water Quality Control Commission groundwater standard ??? = data are questionable

^{**}lab results reported by NMSLD

Summary of Selected Radionuclides*

Well#	Sampling Date	Gr Alpha (U Nat Ref) (pCi/L)	Gr Beta (Sr/Y 90 Ref) (pCı/L)	Radium 226 (pCi/L)	Radium 228 (pCi/L)	Total Uranium (pCi/L)	Uranium mass (ug/L)
USEPA or	NNEPA MCL	15	none	combi	ned 5 0	none	30
Grey	10/28/2003	7 20	9 40	0 10	0 40	9 94	14 84
Solar	10/29/2003	nd	4 40	0 08	0 20		0 24
14K 313	10/29/2003	nd	4 40	0 04	0 50		0 05
14K 586	8/5/2003	10 80	14 90	2 60	not tested	not tested	3 00
15K 303	10/28/2003	4 00	9 00	0 47	1 50		0 69
16 4 10	10/29/2003	44 10	26 00	0 33	0 70		69 37
16K 336	10/29/2003	5 90	4 40	0 83	0 30		0.57
16K 340	10/29/2003	nd	4 90	0 40	0 40		2 92
16T 348	10/29/2003	nd	1 60	nd	0 60		0 29
16T 534	10/29/2003	nd	2 70	0 20	0 50	0 10	0 15
16T 559	10/28/2003	nd	1 50	0 05	nd	0 06	0 09
16T 606	10/28/2003	40 00	20 40	8 34	0 80	4 68	6 99
16T 608	10/28/2003	5 40	nd -	0 04	1 40	3 86	5 76

^{*}All samples except for 14T 586 analyzed at USEPA lab in Las Vegas NV 14T 586 analysis at N M State Laboratory Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level pCi/L = picoCuries per liter

PROJ.	NO.	PROJEC	TN	AME				OHAI	NOT CUS	116	V. P.	ECUI	7	1 44	1 1 1	F	Dalles, Texas 75270 in 4
5AS 310				******		. 1	2		NO.	1	15	/	//	1	///	/ :	
SAMPLE	RS: (Sien	Secure)	rd.		•				OF CON-		1118 18 18			3/	///		REMARKS .
STA. NO.		TIME	COMP.	GRAB		STAT	TION LOCA	TION	TAINERS	/	303	500	2017	//	//		
04	1/21/81	1.21		-			15K-3		:3	X		1		100	3297 FO4	k	-001370 10 6-00937
				1	Additi	und Ve	sluce for	DA/IXC	3	500	1			iX.	BATTFOY	6-1	009373 to 6-009375
-						_			3	-		X		30	3247FOL		6-019378 IS 6-019378
05	1/21/57	10.12		V	Herell	IUT.	3460	Grey	+-	X		-	-		2202505		
	1			.,"			0,0		1		1	-	1		3297F05		6-009384
					-				1.,			X			3247 FOS		6-009386
															3.547107	1	U-0043% I
				-													- 1
		-	-	-					1			1	-				
	-		-	-					-			-	-				
		-	1	+						-	$\overline{}$	H	+				
11	1			1							-	H	+	+			
telinquishe	with			3/3/1		/Time	AB#	d by: (Signature)	3662	Relin	quish	ed by	/: (Signa	eture)	Date	/Time	Received by: (Signature)
lelinquishe	d by: (Si	ignature)			Date	Time	Received	d by: (Signature)		Relin	quish	ed by:	: (Signa	ture)	Date /	/ Time	Received by: (Signature)
elinquishe	Inquished by: (Signature) Date / Time Received for Laborator (Signature)		y by:		Date	/Time	<u>a</u>	Remark	ks		1						

6-13292

15T-303

PROJ.	NO I	PROJEC	T NA	ME		-, 14	CHA	N OF CU			ECO	RD	1-12	6 1 1 4	Dallas, Texas 752	270 de 12
SAS 3	177F			14	···		1.4	NO.	143	- 1	/	/		////		,
		1	1/1	11/1	with			OF CON-		1	3	3 /			REMARKS	14
STA, NO.	DATÉ	TIME	COMP.	GRAB		STAT	ION LOCATION	TAINERS	/	100	3/		//	//		
01	7/24/8)	1010		V	Well	16 T	=348_ Cirle Wesh	1	X		-			3297F01	6-009298	
								1	1	X				3297 FOI	6-009299	
		43.			1.0			(X		10	3297F01	6.009300	
U.E.	1/24/47	1130		×	Well	167	513		X			•		3297F02	1-009349	
				4				1.		X				3297 FO>	6-009350.	
		12.56		4				1			X			3247 FOZ	6-009351	(4)
03	121/47	1254		X	Woll	16 F.	- 606	-1	X	-				3217 FO3	6-009357	
		-		-	- m			1		1				3297103	: 10-007358	
as		-		-	-			1			1	1		3297 FO3	10-009351	in apring
m-				-	-											. ini
		-		+	_		75.50		-		+	-	-			
CIFOC.					-			-	Tit.		-	-				
														-		
																-
Relinquished	XANT			1/2	4/57	/Time	Received by: (Signature, Farlant Frynts ABH 311 7053		Relir	quish	ed by	: (Sign	neture)	Date /Ti	me Received by: (Signature	,
Relinquishe	ed by: (S	ignatura)			Date	Time	Received by: (Signature)		Relin	quish	ed by	(Sign	nature)	Date / Tis	me Received by: (Signature	-1
lelinguishe	d by: (si	gnature)			Date	Time	Received for Laborator (Signature)	y by:		Date	/Tim	10	Remar	ks		

	Office	of Enfor	Cema	rt.		بالم المراتب		OF.CUST	: FOD	Y RE	COI	łD-	:**	4%	10 1		st International Bidg., (20) eim St. har - Dallas) Texas 75270 (4 444):
PROJ.	NO.	PROJEC	TNÁ	ME				:	ąγ.	· 1		7.	7	7		•	
5/1532	(9)F	Uni	† _{rd}	Λ	lu cl+cr	٠,	. ,	,NO.		;	/	Į,	y/	/			. 1
SAMPLE	RS; Ksign 1	eture)	iln	m	H	•	•	OF CON-	***		/0			u:/	// #		REMARKS
STÀ. NO.	DATE	TIME	ايرا	GRAB		TAINERS				Ŷ		<u> </u>					
ÒΙ	7/24/87	10.29		K			348-Ac	5	1	2_	ľ	1			6-009243	to	6-009297
					Cir	de W	nh.		<u> </u>	<u> </u>		_	<u> </u>				
12	1/21/57	11 5 1		X	Well	16 T	513	5	ł	1	١.	1	-		6-177344	ta	6-009348 F.
03h1	<u> </u>		-						-	┢		┢一		,		_	· · · · · · · · · · · · · · · · · · ·
	 		,	4													` .
المعالمة المساك	-																
01	124/67	1673		X	Writ-1	v F -3	the De Cour	5	7.	2	1	 	-		6-009379	ŧ,	6-019383
		3.27			Ġ		1K Dr Colly										
<u> </u>			_			<u> </u>			_			<u> </u>	-				
	ļ	ļ										H	-				
,	 								<u></u> .	 							
	 								Π	1					,	_	
Relinquis	ed by:	Signature (A)	;	7/		Time SW	Received by: (Signature Foliation From S. ABH 31 70:	; 53 67/	Reli	nquid	red b	y: (S/	gratur	(e)	Data / Ti		Received by: (Signature)
Relinquish	ned by: (Signatura	,		Date	/Time	Received by: (Signature,		Reli	nquish	ed b	y: (Si	pnatuří	e)	Date / Ti	me	Received by: (Signature)
Relinquish	ed by: /	Signature	ţ		Date	/Time	Received for Laborator (Signature)	ry by:		Date	/TI	me	R	lemari	(\$		
		Dist	ributio	n: Or	iginal Acco	mpanies :	ihipment; Copy to Coordina	tor Field File	,		'-		٦.				

First mornismum may, 1201 con Sc. 1501 Dallas, Texas 75270 Scranke CHAIN OF CUSTODY RECORD 5153297F United Muclear NO. OF REMARKS CON-COMP. GRAB DATE TIME STATION LOCATION STA. NO. Wall 96 F- 606 03 1/24/3 to 6-009356 Received by: (Signature)
Fry Teye (Fig. 705367)
ABA 311 705367) Date / Time Received by: (Signature) 4/21/27 1500 Date / Time Received by: (Signature) Relinquished by: (Signature) Received by: (Signature) Received for Laboratory by: (Signature) Relinquished by: (Signature) Date / Time Remarks Distribution: Original Accompanias Shipment; Copy to Coordinator Field Files

6-13294

	0.	PROJEC				. 4	UHAII	N OF CUS	TOD	Y, RI	EÇQ	RD.	45.	ېي.	بم د دور التها	First International t Dallasi Ter مستنزلانی	ai 75270	
							i. k	or the part	NO.		i k Lift			77	//	<i>]][]</i>	First International (1
1Win	S: (Signi	(ure)	i	26	Jan.	•	; 	; 	OF CON-	1 / / /							REMARKS	
STA, NO.	DATE	ŢTIME.	COMP.	GRAB		STATI	ON LOC	ATION	TAINERS	/		3/1						1 12
) H V	134/47	1221 1232			ואישו	1 15%	(-303		15 .	3	8	3 ,	6		·		hra 6-009368	
					<u>Addi</u>	tion u	یاں و	Tor anjac	-	_	-				<u> </u>	6-009395 1	1hm 6-009399	<u> </u>
							`					:	-					
					•				_			<u> </u>		_				
				-				•	ļ .		-			_		1	•	 :
													·	٠.			:	. ;4;
																	•	1 4 2
				_								_						
				-							_					<u> </u>		· · · · · · · · · · · · · · · · · · ·
			-			-									_			
ennavished	H cit	ا بدسو مهنوم		7-3	24-57	/Time	3	yed by: Isignature I cul 1: 1 pc 43 11 7053 671			nquisi					Date / Tir		٠ .
elinguished	i by: /s	lignature)			Date	/Time	Heceiv	red by: (Signature)	Relinquished by: [Sig				OSTU/	<i>y</i>	Date / Tir	ne Received by: #	Signature)	
linguished	d by: (S	ignature)			Date	/Time	Receiv (Signat	red for Laborator ure)	ory by: Date /Time				Re	ernar)				

6-13296

	[:] F	A CASA SE PROGRAMENTO DE LA COMPANSIONE DE LA CO	E
75027	EXTRADES. (A) The state of the	4 25	
FREE TAINS	Company of the property extensions and the property of the pro	A TOUR THE STATE OF THE STATE O	THE STATE OF STATE AND A STATE OF STATE
MA CHAIN	Company Lines	A	
MULTIPLE PACKAGE ITTOHS? CALL 600-239-5355 TOLL FREE. MULTIPLE PACKAGE MULTIPLE PA	De Front Harres (My Egenera gelt haven plat i en (E) grag gelt haven plat i en (E) grag frant gelt na i en en en en en en en en en stat kent de netter e	Transist to read of the section with the section of	
Set monst call	A COMPA		7
MULTIPLE PACK	4.0.2 y 8.3 D E UT	40.7463021.b	1630E
A THE TENENT OF THE PERSON OF	Constitution of the second	Or L	рот вы теме тим 100 година 100 година

INORGANIC ANALYSIS SUMMARY FOR WATER

SITE NAME AND NUMBER: UNITED NUCLEAR, CHURCHROCK CASE NUMBER: SAS 3297F PAGE 1 OF 1 CONCENTRATIONS IN PARTS PER BILLION (PPB)

1.

TRAFFIC REPORT NUMBER AND STATION LOCATION.

							440
	;	DRINKING	3297F02	. 3297F03	3297F04	3297F05	3297F01
	1	WATER	-1111			: STA, 05 :	STA. 01
		P - PRIMARY	WELL 167 513	WELL 16F 606 	WELL 15K 303	The state of the s	CIRCLE WASH WELL DUPLICATE OF
	- 1	S - SECONDARY	le es	l 1	l I		STA. 05
	! MATRIX .		HATER	! WATER	HATER	MATER	WATER
	: * MOISTURE:		. 0	: 0	1 0	; 0	. 0
	CAS NO.			L		1	•
ALUMINUM	: 7429-90-5 :		ONA	1 1000	1000	1000	1000
ANTIMONY	1 7440-36-0 1		CHA	1 600	500	. 60U	60U
ARSENIC	1 7440-38-2 1			50	1 50	1 5U	5U
BARIUM	1 7440-39-3 1	1000P	ONA	247	100	: 26	25
BERYLLIUM	1 7440-41-7 1		ONA	. 50	5U	: 5U	5U
CADHIUM	1 7440-43-9 1	10P	ONA	1 50	5U	1 50	5U
CALCIUM	1 7440-70-2 1		ONA	1 184839	3428390	1 134839	129839
CHRONIUM	1 7440-47-3 1	50P	ONA	100	100	1 100	100
COBALT	1 7440-48-4 1		ONA	1 500	1 200	; 50U	50N
COPPER	: 7440-50-8 :	10005	ONA	1 200	200	200	500
IRON	: 7439-89-6 :	3006	ONA	: 6875	1570	: 29	250
LEAD	1 7439-92-1 1	50P	ONA	300	: 30U ·	÷ 300 -	30U
MAGNESIUM	1 7439-95-4 1		ONA	70600	132000	: 28750	27800
MANGANESE	: 7439-96-5 :	509	ONA	1 105	476	; 5U	
MERCURY	1 7439-97-6 1	50	ONA	1 0.2000	0.2000	! 0.200U	
NICKEL.	1 7440-02-0 1		ONA	1 200	1 500	1 200	500
POTASSIUM	1 7440-09-7 1		ONA	1 5700	4471		2700
SELENIUM	1 7782-49-2 1	10P	OMA	1 100	1 100		100
SILVER	1 7440-22-4 1	50P	ONA	1 10U	100	1 100	
SODIUM	: 7440-23-5 :		ONA	1 18708	1 134808		80885
THALLIUM	1 7440-28-0 1		ONA	1 5U	; 5U	; 50U	
TIN	: 7440-31-5 :		ONA	1 40U	1 400		40U
VANADIUM	1 7440-62-2 1		ONA	30U	1 30U	1 300	
ZINC	1 7440-66-6 1	50009	ONA	1 480	1 74	: 242	
CYANIDE	1 1					: ONR	
HARDNESS	4 4		CMA	I ONA		1 ONR	ONA
ALKALINITY	1 1					! ONG	

- R DATA IS UNUSABLE DUE TO DA/DC DUT OF CONTROL LIMITS.
- J REPORTED CONCENTRATIONS ARE ESTIMATES DUE TO GA/OC DUT OF CONTROL LIMITS.
- B CONCENTRATION IN SAMPLE ATTRIBUTABLE TO BLANK CONTAMINATION.
- U NOT DETECTED; VALUE REPORTED IS THE DETECTION LIMIT.
 NA NOT ANALYZED FOR

URITED NUCLEAR, CHURCHROCK CASE NUMBER: 3297F PAGE 1 OF 1

		1	DRINKING WATER	1	3297F02	3297F03	-	3297F04 :	3297F05	329,7F01
			CRITERIA		STA. 02 NELL 16T 513	STA. 03 WELL 16F 606		STA. 04 :		STA. 01 CIRCLE WASH WELL DUPLICATE OF STA. 05
	IMATRIX	-;-		!	WATER	WATER		WATER :	WATER	WATER
		٠.		١.						
	! UNITS	1		•			1			
TOTA: BECCOUNTS ON 105	, W. 11	-;-	PAA	1			1			
ITOTAL DISSOLVED SOLIDS	1 MG/L	1	500	•	671.00			2593.00	639.00	
CHLORICE		-	10 250		0.11					
FLUDRICE	I MB/L			•	42.00					* D-63
SULFATE	1 M6/L	,	1.4-2.4	•	2.23					10000
IDH (LAB)	1 HO/L		250 6.5-8.5		408.00					
OH (FIELS)		,	0.3-0.3	•	7.35					
CONDUCTIVITY (FIELD)	: wMHDS	,			7.56				A A Land	
TEMPERATURE (FIELD)	! C			,	16.00					
GROSS ALPMA	1.124		15	:	-1.6 ± 1.6			0.000	10.1	
IGROSS BETA			millires/year			0.3 + 1.9				** ** ** ** *** *** *** *** *** *** **
RADIUM 226	i plist		54		0.3 ± 1.9					
RADIUM 229	: pCi/L		51	i	0 + 1					
1	1				V . 1	921	,	4711	0 7 1	0 ± 1

^{*} COMBINET RAPIUM 226 AND 228

E.T. 1773

ECOLOGY AND ENVIRONMENT, INC. 100 -9 5412: 30

DALLAS, TEXAS

SUPERFURE LEASIER

HEHORANDUM

To: Dave Wineman, Region VI, RPO

Thru: K. H. Malone, Jr., FITOM Am

From: David Anderson, FIT Chemist 90.

Date: December 4, 1987

Subj: Results of Well Sampling in the Vicinity of UNC, Churchrock Site, McKinley County, New Mexico (NMD030443303)
TDD F06-8708-17

FIT members David Anderson, Rick Horne, Lyle Winnette and Lee Wilkening collected samples from four domestic water wells within three miles of the UNC-Churchrock site on September 24, 1987. The wells sampled were selected by Bureau of Indian Affairs and EPA personnel present during the sampling. Wells sampled were well 16T 513, well 16F 606, well 15K 303, and the Grey (Circle Wash) well (see attached photos). A duplicate sample was collected from the Grey Well. The samples were analyzed for metals, total dissolved solids (TDS), nitrates, chlorides, fluorides, sulfates, gross alpha, gross beta, radium 226 and radium 228. Analytical results for the samples are attached.

QA/QC SUMMARY:

The duplicate samples (station 01 3297F01 and station 05 3297F05) were in close agreement with differences in the analytical results, generally less than 10%. Matrix spike recoveries and laboratory duplicate analysis for the radiological analysis were also within the control limits specified. The radiological analysis is corrected for the counter background, which results in negative activities for three of the alpha analyses. All data generated is acceptable for use. Metals data was not available from well 16T 513, due to breakage of the sample container in shipment.

DATA EVALUATION:

Complete summaries of the analytical results are shown on the attached tables.

Primary drinking water standards were not exceeded in any of the samples. Well 15K 303 and the Gray Well were the only samples containing radiological activity above 1 pico curie per liter (pCi/L), with 15K 303 containing 12.0 \pm 2.7 pCi/L beta and 1.6 \pm 0.1 pCi/L radium 226, and the Gray well containing 2.5 \pm 3.0 pCi/L alpha and \pm 5.6 \pm 3.6 pCi/L beta. These activities are below the drinking water standards.

Secondary drinking water standards for TDS(500 mg/L) and sulfate (250 mg/L) were exceeded in the samples for all four wells. Iron (0.3 mg/L) and manganese (0.05 mg/L) secondary standards were exceeded in wells 16T 513 and 16F 606.

Data suble

Mul to the Mul A

Navajo Nation Water Management Branch Well Log and Drilling Report

PO Box 678 Fort Defiance, Arizona * PH: 928.729.4004 * FAX: 928.729.4126

WELL NO: 15T-303			PWSID:
WELL NAME/OTHER NO: NR105	5 1286X0547		
WELL TYPE: WW	WELL STATUS: AC	T WELL	USE: LIV
LOCATION: QUADNAME IS OAK SE	PRINGS NM 123 NW		
UTM: X(EAST) 728291 Y((NORTH) 3950171	ZONE: 12	OPERATOR: TRIBE O&M
WATERSHED CODE: 14080106000	STATE: NM	COUNTY: MK	CHAPTER CODE: NAHO
GRAZING DISTRICT: 15	LOCATION DATA SO	URCE: M.S. JOHNSON	
WELLNO: 15T-303	STARTED:	co	MPLETED: 1/11/1952
ELEVATION: 7038 FT	. DEPTH:	614 FT. DEP7	TH MEASURED:
DIAMETER: 0 IN.	. DEPI	THIS: R	Measured, Estimated, Reported
CASING_DIAMETER: 7 IN	N. FROM:	0 FT. TO: 537	FT. MATL:
CASING_DIAMETER: 0 IN	N. FROM:	0 FT. TO: 0	FT. MATL:
CASING_DIAMETER: 0 IN	N. FROM:	0 FT. 70: 0	FT. MATL:
	N. FROM:	0 FT. 70: 0	FT. MATL:
CASING PERFORATED FROM:	537 FT.	TO: 614 FT.	OPENING TYPE: X
CASING PERFORATED FROM:	0 FT.	TO: 0 FT.	OPENING TYPE:
CASING PERFORATED FROM:	o FT.	TO: 0 FT.	OPENING TYPE:
CASING PERFORATED FROM:	o FT.	TO: 0 FT.	OPENING TYPE:
CASING PERFORATED FROM:	0 FT.	TO: 0 FT.	OPENING TYPE:
DATE WELL TURNED OVER TO TRIBE:	:		
FUNDED BY:		CONTRACTOR:	FOSTER-WEST
SITE IMPROVEMENTS: WM TA		TYPE OF LIFT: PS	ENERGY: WM
HORSEPOWER RATING OF PUMP: 0)	ON SITE STORAGE CAPACI	TY: 0 GAL.
STRUCTURE DATA SOURCE:	M.S. JOHNSON 2/94		
WELLNO: 15T-303		USGS PRINCIPLE AQUIFER	CODE: 211GLLP
THICKNESS: 0 FT. NOM	IINAL YIELD: 0	GPM DATE	YEILD MEASURED:
BAILER/PUMP TEST: BT RA	A <i>TE</i> : 23 GPM	TEST PERIOD: 1 I	IR. TEST DATE: 1/11/1952
DRAWDOWN: 50 FT.	OBSERVATION W	ELL DATA AVAILABLE: N	
HORIZONTAL CONDUCTIVITY:	0 FT/DAY	SPECIFIC CAPACITY:	0.46 GAL./MIN./FT.
VERTICAL CONDUCTIVITY:	0 FT/DAY	STORAGE COEFFICIE	NT: 0
COEFFICIENT OF TRANSMISSIVITY:	0 FT2/DAY		
AVAILABITY OF TEST DATA:	NNNN	DRILLERS/ELECTRIC	LOGS: DL
HYDROLOGY DATA SOURCE:	WELL FILE		

WELL NO: 15T-303

STATIC WATER LEVEL(S):

327.4	FT.	8/14/1985
	FT.	5/9/1985
328.6	FT.	8/17/1984
328.7	FT.	11/9/1983
331.6	FT.	3/29/1983
328.4	FT.	8/4/1982
337.6	FT.	7/21/1982
328.5	FT.	1/13/1982
329.3	FT.	9/23/1981
326.6	FT.	1/16/1981
324	FT.	2/13/1979
313.6	FT.	2/24/1978
312.5	FT.	6/23/1977
311	FT.	2/14/1957
302.4	FT.	1/11/1952

GEOLOGIC INTERVAL(S):

<u>TOP</u>	<u>BOTTOM</u>	<u>UNIT</u>	<u>LITHOLOGY</u>	
135	480	211MVRD	SLSN	3TLY SLSN SOME SHLE CO.
480	0	211GLLP	SNDS	SILTY SNDS MDSN COAL

COMMENT(S):

15K-303 PAINTED ON TANK < USGS COMMENT
WELL CONFIRMED-UPDATED PER * O&M SURVEY OF FALL 91 *
WATER QUALITY DATA AVAILABLE IN WELL FILE. GEOHYDROLOGIC
UNITS FROM USGS LITHOLOGIC LOG IN WELL FILE.

M.S. JOHNSON 02/1994

TRIBAL	WELL NO ITISIKI- ISIOE	11111 (Vidute)	PWSID WM35340611
WELL N	AME/OTHER NO CIRIOWI	UPPO/WH POWERH	OVSE WELL
W E L	ONLY ONE)	WELL STATUS (MARK ONLY ONE)	WELL USE (MARK ONLY ONE)
Ww ⊠	WATER WELL	ACT ACTIVE	DOM DOMESTIC
MA	ARTESIAN WELL	INA INACTIVE	AGR AGRICULTURE
☐ ws	SPRING	ABA ABANDONED	LIV LIVESTOCK
П же	NATURAL SPRING	UNK UNKNOWN	IND INDUSTRIAL HINING
OM	OBSERVATION WELL		REC RECREATION
GS GS	gas well		MUN HUNICIPAL
OP	OIL PRODUCTION		OTH OTHER
) MH	MINERAL WELL		UNK UNKNOWE
☐ xx	UNKHOWN		
ne se	O SISIGITO SE SW (NW) / HE SE SE ACRE 40 ACR	HILES WEST	MILES SOUTH // R/12.044 SECT. TOWNSHIP RANGE
APPROX	CIMATE LOCATION //WS	IDE POWERHOUS	E BRIDGNEACHLIMGMT
LATITU		LONGITUDE	
		57699 Y(NOR:	PH) 3951606 SONE 12
OPERA?	FOR BIANT	USGS WATERS	
STATE	. AZ ARIZONA	MH NEW HEXICO	UT UTAH CO COLORADO
COUNT	K: AP APACHE	MK HCKINLEY	SJ SAN JUAN MT MONTEZUKA
	OLAVAN AN	VL VALENCIA	KA KANE LP LA PLATA
	Со сосоилио	BL BERNALLILLO	
	•	SD SANDOVAL	
		SO SOCORRO	GRAZING DISTRICT
		RA RIO ARRIBA	
		SA SAN JUAN	
CHAPT	ER NAME: CROWN	POINT	CHAPTER CODE CROW
LOCAT	ion data source: FIIE	LID KHEKKED HI	1111/95111
	ION FILE COMPLETED BY:	L. NOTAH /M.S.	
FIELD revised	O7 April 93	16111 17 17 17 19 1	DATE /

TRIBAL '	WELL NO 15K-3	ाउँ	STARTED 7/		PLETED 61 1/93
ELEVATI	ON [6985	FT DEPTH 2	141916 uplate	DEPTH HE	ASURED 6 1 1/93
DEPTH I	s KEASURED	ESTIMATED	REPORTED	WELL	DIA IN
1 CASI	NG DIA 8 .62	FROM - 9	⊘	2496	T HATL STYL
2 CASI	NG DIA	FRON	_ r ro [T HATL
3 CASI	NG DIA	PRON] rr _ 70 [<u> ППП</u> ,	T MATL
4 CASI CASING	HG DIA	PROM PROMPTO P	PT TO evd=everdur l sst=stainles	irn=iron	T MATL III
1 CASI	ING PERFORATED FROM	rr	70	I FT	OPENING TYPE
2 CASI	NG PERFORATED FROM	6 <u> </u>	70		OPENING TYPE
3 CASI	(NG PERFORATED FRO)	(TO []	FT	opening type
4 CAS	ING PERFORATED FROM	rr	TO] PT	OPENING TYPE
5 CASI	ING PERFORATED PROP CODES: f=fracture	red rock l=louve	TO TO	I FT screen	OPENING TYPE
		sted/porous/slotted/ type unknown to		re-wound scr =walled/shor	een ed x=open hole
DATE WI	ELL TURNED OVER TO	TRIBE://	t de mais sous de mais de la compansión de la compansión de la compansión de la compansión de la compansión de		
FUNDED	BY: 8/A		CONTRACTOR	. WM WE	LLS
SITE I	HPROVEHEN TS	TYPE O	LIFT	<u>en</u>	ERGY SOURCE
☐ wx	WINDHILL	AL AIR	LIFT	X EH	ELECTRIC HOTOR
☐ WP	WATERING POINT	Ps PIS	гон	DE	DIESEL ENGINE
TA.	TANK	TU TUR	BINE	□ EA	HAND
X WL	WATER LINE	NT HUL	TIPLE TURBINE	Gs	GAS ENGINE
TR	TROUGE	CM CEN	TRIFUGAL		LP GAS ENGINE
☐ cs	CISTERN	5	TIPLE CENTRIFUGAL		
	HAND PUHP	BU BUC		$\overline{\Box}$	WINDHILL
	NONE	C)	TERSIBLE	$\overline{\Box}$	
L_J RO	KO112	(A) 90 30B	CROIDING	[_] 80	SOLAR
PUMP H	2 25	ON SITE STORAGE CA	PACITY 30000	D GAL	
STRUCT	URE DATA SOURCE:	INA WELL F	MUEL IIII		
STRUCT	URE FILE COMPLETED	BY: L. NOTE	14/m.S. John	40-	DATE (@ 22 96 Dase/veils/doc/str-form.vp

HYDROLOGY FILE

TRIBAL WELL NO USKI-BIGI	USGS AQUIFER CODE 22/MRSM
THICKNESS FT NOMINAL YIELD DESERVED BAILER PUMP TEST & GPM DRANDOWN FT OBSERVED	FOR HOURS DATE / /
HORIZ CONDUCTIVITY FT/DAY VERT. CONDUCTIVITY FT/DAY COEF OF TRANSMISSIVITY FT2/DAY	STORAGE COEF
INDICATE ADDITIONAL PUMPING TEST DATA AVAILABI	
YES NO HULTIPLE RATE DRAWDOWN PUMPING	
YES X NO SINGLE RATE DRANDOWN PUMPING	
YES W NO HULTIPLE RATE DRAWDOWN/RECOVER	RY TEST
TES NO RECOVERY TEST	
LOG AVAILABLE: DL DRILLER'S	EL ELECTRIC LOG
HYDROLOGY DATA SOURCE: BILA FILE	
HYDROLOGY FILE COMPLETED BY: 1. NOTAH M	1 S. Johnson DATE 100 122 196
	Office and American
STATIC WATER	LEVEL PILE
DEPTE TO SWLPT DATE//	DEPTH TO SWL
DEPTH TO SMLFT DATE/	DEPTH TO SWLFT DATE/
DEPTH TO SWL	DEPTH TO SWLPT DATE//
DEPTH TO SWLPT DATE/	DEPTH TO SWLPT DATE/_/
DEPTH TO SWLFT DATE/	DEPTH TO SWL
DEPTH TO SWLFT DATE/	DEPTH TO SWL//
DEPTH TO SWLFT DATE/	DEPTH TO SWLFT DATE/
DEPTH TO SWLFT DATE/	DEPTH TO SWL
DEPTH TO SWLFT DATE//	DEPTH TO SWLFT DATE//
DEPTH TO SWLFT DATE/	DEPTH TO SWLFT DATE/
DEPTH TO SHLFT DATE/	DEPTH TO SWL

TRIBAL WELL RECORD

TRIBAL WELL NO 151/-1303 PERTINENT COMMENTS: . (0-2300FT casin with submersible Rung ed and 10" caring remov PORIGINAL FERFORATIONS: 1635 PT TO 1670 PT 1678 PT TO 1212 PT 1780 8 10 1795 8 1760FT TO 1770FT 1955 FT TO 1965 FT 1972 FT TO 2029 F9 2050 FT TO 2115 FT 2148 FT TO 2158 FT 2169 FT TO 2175 FT COMPLETION DETAILS UNKNOWN SO AQUIFER | LOCATION COORDINATES MEASURED WITH GPS DEVICE G SATELLITES VISIBLE LOCATION COORDINATES PICKED OFF TOPO HAP -SCALE= ELEVATION PRINTED ON TOPO MAP -SCALE= ELEVATION HEASURED WITH GPS UNIT -4 SATELLITES VISIBLE K ELEVATION INTERPOLATED FROM 1:24000 TOPO THE IMPROVEHENTS AT THIS SITE ARE: X NEED SOME MAINTENANCE IN GOOD CONDITION K IN FAIR CONDITION NEED MAJOR HAINTENANCE IN POOR CONDITION STORAGE TANK IS X COVERED UNCOVERED DATE 10 127196 COMMENTS BY: revised 07 April 93

1

TRIBAL WELL NO >15K-303

>WW

PWSID > *******

STATE NUMBER

WELL NAME/OTHER NO >17N.12W.30.4442

"DDD WARD, OTHER H

WELL TYPE

WELL STATUS -UNK

WELL USE HUN

QUAD NO >556/ MILES WEST > 0.00 MILES SOUTH > 0.00

10 ACRE >SW 40 ACRE >SW 160 ACRE >SW SECT >30 TWNSHP >T17.0N RANGE >R12.0W

APPROXIMATE LOCATION >QUADNAME IS CROWNPOINT, NM 124NW

UTM COORD: X(EAST) > 757565 Y(NORTH) > 345166 ZONE > 12 OPERATOR > US BIA

WATERSHED CODE >14080106000 STATE >NM COUNTY >MK CHAPTER CODE >CROW

GRAZING DISTRICT >15

LOCATION DATA SOURCE >USGS ALB 04/08/86

FIELD CHECKED BY >S. WEST-1956

L. NOTAH 4.11-95

WELLNO 15K-303

7-?-/931 STARTED **/**/***

COMPLETED 6/ 1/1932

6785.0
ELEVATION 6,992-0 FT DEPTH 2,496.0 FT DEPTH MEASURED 6 / 1/1932

DEPTH IS &M

WELL DIA 0.00 IN

1 CASING DIA 8.25 IN FROM -0.9 FT TO 2,300.0 FT MATL STL

2 CASING DIA 0.00 IN FROM 0.0 FT TO 0.0 FT MATL

3 CASING DIA 0.00 IN FROM 0.0 FT TO 0.0 FT MATL

4 CASING DIA. 0.00 IN FROM 0.0 FT TO 0.0 FT MATL

WELL NO= 15K-303

1 CASING PERFORATED FROM 1,635.0 FT TO 1,670.0 FT OPENING TYPE P

2 CASING PERFORATED FROM 1,678.0 FT TO 1,712.0 FT OPENING TYPE P

3 CASING PERFORATED FROM 1,720.0 FT TO 1,755.0 FT OPENING TYPE P

4 CASING PERFORATED FROM 1,760.0 FT TO 1,770.0 FT OPENING TYPE P

5 CASING PERFORATED FROM 1,875.0 FT TO 1,896.0 FT OPENING TYPE P

DATE WELL TURNED OVER TO TRIBE / /

```
SITE IMPROVEMENTS WL
```

> RECOVERY TEST

```
TYPE OF LIFT SU
```

ENERGY SOURCE EM

```
PUMP HP 25-0 ON SITE STORAGE CAPACITY 300000
STRUCTURE DATA SOURCE USGS ALB 04/08/86
```

```
TRIBAL WELL NO >15K-303
                              <
                                  USGS AQUIFER CODE >221MRSN <
THICKNESS > 0.0< NOMINAL YIELD > 86000 DATE YIELD MEASURED > 2/1/1995
                      GPM > 100.0 < HOURS > 0.0 <
                                                    TEST DATE > 6/ 1/1932
ENTER BT OR PT > <
DRAWDOWN > 0.0 < OBSERVATION WELL DATA AVAILABLE (ENTER Y OR N) >
HORIZONTAL CONDUCTIVITY > 0.000 < SPECIFIC CAPACITY >0.00 <
VERTICAL CONDUCTIVITY > 0.000< STORAGE COEFFICIENT >.0000000
COEFFICIENT OF TRANSMISSIVITY >
                                   0.0<
                                     * LOGS AVAILABLE * (ENTER DL OR EL)
* AVAILABILITY OF TEST DATA *
>N/ MULTIPLE RATE DRAWDOWN TEST
                                     >DL< DRILLERS LOG > < ELECTRIC LOG
>V< SINGLE RATE DRAWDOWN TEST
>V< MULTIPLE RATE/RECOVERY TEST
```

DATA SOURCE >

```
$RECNO
        WELLNO
                         SWL DATE
 15080
        15K-303
                        530.0 6/26/1985
 15081
        15K-303
                        465.0 4/19/1979
                        410.0 1/1/1974
 15082
       15K-303
 15083
       15K-303
                        260.0 4/13/1949
 15084
        15K-303
                        318.0 12/ 5/1947
                        225.0 6/ 1/1932
 15085
        15K-303
           5698
              =15K-303
WELLNO
GEOHYDRO-SEQ-NO = 1
GEOHYDRO-TOP
                     0.00
GEOHYDRO-BOTTOM =
                     0.00
GEOHYDRO-UNIT
               =211DKOT
LITHOLOGY
               =SNDS
LITH-MODIFIER
GEOHYDRO-C-UNIT =S
           5699
WELLNO
               =15K-303
GEOHYDRO-SEO-NO = 2
GEOHYDRO-TOP
                     0.00
                     0.00
GEOHYDRO-BOTTOM =
GEOHYDRO-UNIT =221MRSN
LITHOLOGY
LITH-MODIFIER
GEOHYDRO-C-UNIT =P
                     FWQ-SAMPLE-DATE FWQ-GEO-UNIT FWQ-MEASUREMENT FWQ-PARAM-DE
$RECNO
        WELLNO
                                                                  specific con
        15K-303
                     10/13/64
                                     221MRSN
                                                     586.0
  3136
                                          << USGS COMMENT
MONTHLY WATER QUALITY BY USPHS
                                          << USGS COMMENT
6/85 WL TAKEN AFTER 9HRS PUMP STOP
DELETE FROM D. BASE
```

WELL CONFIRMED-UPDATED PER * O&M SURVEY OF FALL 91 *

International Specialists in the Environment 1940 Webster Street, Suite 100 Oakland, California 94612 Tel: (510) 893-6700, Fax: (510) 550-2760

January 24, 2011

U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105

Attention:

Harry Allen, USEPA On-Scene Coordinator

Andrew Bain, USEPA

Subject:

NECR Water Well Sampling

Church Rock Chapter

Navajo Nation

TDD No: T02-09-10-08-0005 Project No: 002693.2103.01RA

144-586

161e-336

164-340 mill well

INTRODUCTION

In October 2010 the U.S. Environmental Protection Agency (USEPA) tasked the Ecology and Environment Inc. Superfund Technical Assessment and Response Team (START) with technical assistance relating to residential water well sampling in the vicinity of the former Northeast Church Rock Mine located in the Church Rock Chapter of the Navajo Nation. (Figure 1, Attachment A).

The purpose of this sampling event was to generate additional data to measure the impact of the former Northeast Church Rock Mine uranium mine on wells within the adjacent areas.

SAMPLING ACTIVITIES

Well sampling was conducted on October 19, 2010. A total of five wells were sampled. Four of the wells were residential wells and one (Mill Well) well was part of the former United Nuclear Corporation (UNC) facility in the area. Every effort was made to collect water samples in a manner consistent with resident collection and use (i.e. taps, pumps or bucket collect).

A Time Critical Quality Assurance and Sampling (QASP) Plan (Appendix D) was developed prior to sampling and followed with the following exceptions:

- Well NR#1 is no longer in use and was not sampled as the casing has been filled with concrete.
- The Mine Well is no longer in use and was not sampled as the casing has been filled with concrete.

Water quality parameters were measured in the field using a Horiba, Ltd. multi-parameter water quality meter. The meter was calibrated daily using a buffer solution. Samples were collected and analyzed for metals, radionuclides and anions by GEL Laboratories Inc. (Charleston, SC). Samples were collected and analyzed for oxygen and hydrogen isotopic ratio by Isotech Laboratories, Inc (Champaign, II). The QASP (Appendix D) contains all methods and volumes used in sample analysis.

WELL DESCRIPTIONS

Well 15T-303

Well 15T-303 is a windmill powered well that feeds into an approximately 40,000 gallon uncovered metal tank. The well is currently in use and there is a trough and locked tap in the vicinity of the tank that are used to water livestock. Samples were collected from the top of the tank using a bucket.

14T-586

14T-586 is a diesel engine powered well that feeds into an approximately 10,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

Mill Well

The Mill Well is located on the former UNC facility property. The well is electric powered well, housed in a wooden pump house, north of the former UNC offices and equipment yard. There is no storage tank affiliated with the well and the well is not currently in use. Samples were collected from a tap inside the pump house with pump turned on.

Mine Well

The mine well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

NR#1

The NR#1 well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

16K-340

Well 16K-340 is a windmill powered well that feeds into an approximately 40,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

RESULTS

Table 1 (Appendix B) gives a well specific summary of all applicable data. All laboratory data was validated by a START chemist using the *Region 9 Draft Superfund Data Evaluation/Validation Guidance*. Data validation indicated the laboratory data was acceptable with qualification as definitive data. A separate data validation report was generated under this project and is included in the project file.

This letter summarizes all activities conducted on the Tuba City Removal project. If you have any questions regarding START's activities associated with this project, please do not hesitate to contact me.

Respectfully,

Mike Folan

START Member

Attachments: A – Homesite Location Map

B –Data Tables

C – Photographic Documentation D- QASP

cc: file

ATTACHMENT A: Well Location Map

ATTACHMENT B: Data Tables

Uranium-235/236

Uranium-238

0.114

1.20

pCi/L

pCi/L

Uranium-235/236

Uranium-238

TDD:09-10-08-0005 PAN:002693.2104.01RA 14T-586 14T-586100 (duplicate) 15T-303 Result Units Units Result Units Result рΗ 7.1 рΗ 7.1 6.8 рΗ Conductivity 0.26 0.35 S/m Conductivity 0.26 S/m Conductivity S/m 10.1 Turbidity NTU 10.1 NTU 10.1 NTU Turbidity Turbidity Dissolved Oxygen 6.30 Dissolved Oxygen Dissolved Oxygen 7.99 mg/L 6.30 mg/L mg/L Temperature 7.6 °C 12.1 °C C Temperature 7.6 **Temperature** Quality Salinity 0.1 % 0.2 % Salinity 0.1 % Salinity Total Dissolved Solids 1.7 Total Dissolved Solids Total Dissolved Solids 2.2 g/L g/L 1.7 g/L Oxidation Reduction Oxidation Reduction Oxidation Reduction Potential Potential Potential 100 m۷ 100 mV 129 m۷ Analyte Result Units Analyte Result Units Result Units Analyte Aluminum 220 ug/L Aluminum 68.0 ug/L Aluminum 82 ug/L Antimony 3.00 ug/L Antimony 7.34 ug/L Antimony 6.83 ug/L Arsenic 5.00 ug/L Arsenic 5.00 ug/L Arsenic 7.54 ug/L Barium 13.1 ug/L Barium 13.4 Barium 8.24 ug/L ug/L Beryllium 1.00 ug/L Beryllium 1.00 1.00 ug/L ug/L Beryllium 0.200 Bromide ug/L 0.200 Bromide 0.200 ug/L Bromide ug/L Cadmium ug/L 1.00 ug/L Cadmium 1.00 Cadmium 1.17 ug/L Calcium 270000 373000 ug/L Calcium 281000 ug/L Calcium ug/L Chromium 13.9 ug/L Chromium 1.00 ug/L Chromium 1.16 ug/L Cobalt 1.13 ug/L Cobalt 1.00 ug/L Cobalt 1.00 ug/L Copper 3.00 ug/L Copper 3.00 ug/L Copper 3.00 ug/L Iron 482 ug/L Iron 468 685 ug/L Iron ug/L _ead 3.30 3.30 ug/L Lead 3.30 ug/L _ead ug/L Magnesium 119000 144000 ug/L 122000 Magnesium ug/L Magnesium ug/L Manganese 320 319 162 ug/L Manganese ua/L Manganese ug/L Mercury 0.066 0.066 ug/L Mercury 0.066 ug/L Mercury ug/L Nickel 71.3 ug/L Nickel 1.51 ug/L Nickel 1.50 ug/L Potassium 7430 ug/L Potassium 7690 Potassium 5650 ug/L ug/L Selenium 7.7 ug/L Selenium 37.7 Selenium 43.8 ug/L ug/L Silver 1.00 ug/L Silver 1.00 1.00 ug/L Silver ug/L Sodium 135000 ug/L Sodium 140000 ug/L Sodium 188000 ug/L Thallium 5.00 ug/L Thallium ug/L Thallium 5.00 8.9 ug/L 1.00 Vanadium ug/L Vanadium 1.00 ug/L Vanadium 1.00 ug/L Zinc. 338 ug/L Zinc 355 ug/L Zinc 839 ug/L Analyte Result Units Analyte Result Units Analyte Result Units ALPHA pCi/L 2.62 ALPHA ALPHA -0.526 pCi/L 5.80 pCi/L BETA 6.58 pCi/L BETA 6.02 pCi/L BETA 2.62 pCi/L Pct Uranium-235 0.00 Pct Uranium-235 Pct Uranium-235 0.00 percent 0.00 percent percent Radium-226 0.880 pCi/L Radium-226 0.540 pCi/L Radium-226 1.18 pCi/L Radium-228 3.41 pCi/L Radium-228 3.34 pCi/L 3.71 pCi/L Radium-228 Thorium-228 -0.0147 pCi/L pCi/L Thorium-228 0.155 Thorium-228 -0.139 pCi/L Thorium-230 -0.185 pCi/L -0.158 Thorium-230 0.818 pCi/L Thorium-230 pCi/L Thorium-232 -0.133 pCi/L Thorium-232 -0.0195 pCi/L Thorium-232 -0.0195 pCi/L Uranium-233/234 1.16 pCi/L Uranium-233/234 Uranium-233/234 0.317 pCi/L 1.73 pCi/L

0.0569

0.790

pCi/L

pCi/L

Uranium-235/236

Uranium-238

pCi/L

pCi/L

0.219

0.442

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005

PAN:002693.2104.01RA

	141	-586		14T-58610	0 (duplicate)		15	15T-303			
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units		
	Chloride	14.0	mg/L	Chloride	14.1	mg/L	Chloride	10.5	mg/L		
₽	Nitrate	0.267	mg/L	Nitrate	0.266	mg/L	Nitrate	0.100	mg/L		
Anions	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L		
S	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	2.00	mg/L		
	Sulfate	1380	mg/L	Sulfate	1310	mg/L	Sulfate	2000	mg/L		
	Fluoride	1,19	mg/L	Fluoride	1.24	mg/L	Fluoride	1.52	mg/L		
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units		
	δD H ₂ O	-80.8	%	δD H₂O	-81.2	%	δD H₂O	-73.1	%		
	δ ¹⁸ O H ₂ O	-10.44	%	δ ¹⁸ O H₂O	-10.53	%	δ ¹⁸ O H₂O	-8.56	%		

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005 PAN:002693.2104.01RA 16K-336 16K-340 MILLWELL Result Units Units Units Result Result 7.4 7.6 pН 7.4 рΗ Conductivity 0.15 S/m Conductivity 0.36 S/m 0.19 S/m Conductivity Turbidity 29.9 NTU Turbidity 5.5 NTU Turbidity 14.7 NTU Water Quality Dissolved Oxygen 3.05 Dissolved Oxygen 5.26 Dissolved Oxygen 6.39 mg/L mg/L mg/L Temperature 15.5 °C 16.8 °C 15.2 °C Temperature Temperature Salinity 0.1 % % % Salinity 0.1 Salinity 0.2 Total Dissolved Solids g/L Total Dissolved Solids 1.2 g/L Total Dissolved Solids 2.3 g/L Oxidation Reduction Oxidation Reduction Oxidation Reduction Potential Potential Potential 86 m۷ 76 mV 127 mV Anaiyte Result Units Analyte Result Units Analyte Result Units Aluminum 229 ug/L Aluminum 126 ug/L Aluminum 68.0 ug/L Antimony 3.00 ug/L Antimony 3.00 ug/L Antimony 3.00 ug/L Arsenic 11 ug/L Arsenic 8.53 ug/L Arsenic 5.00 ug/L 450 Barium ug/L Barium 140 ug/L Barium 1.64 ug/L Beryllium 1.00 ug/L Beryllium 1.00 ug/L Beryllium 1.00 ug/L Bromide 0.234 ug/L 0.295 0.361 Bromide ug/L Bromide ug/L Cadmium 1.00 ug/L Cadmium 1.00 ug/L Cadmium 1.00 ug/L Calcium 76800 ug/L Calcium 99800 Calcium 2420 ug/L ug/L Chromium 1.00 ug/L Chromium 1.03 ug/L Chromium 1.43 ug/L Cobalt 1.00 ug/L Cobalt 1.00 ug/L Cobalt 1.00 ug/L Copper 29.7 ug/L Copper 3.00 ug/L Copper 20.4 ug/L lron 2720 181 9870 ug/L Iron Iron ug/L ug/L .ead 3.58 Lead 3.30 ug/L ug/L Lead 3.74 ug/L Magnesium 20600 ug/L 43500 470 Magnesium ug/L Magnesium ug/L 95.9 Manganese ug/L Manganese 122 51 ug/L Manganese ua/L Mercury 0.066 ug/L 0.066 Mercury ug/L Mercury 0.066 ug/L 1.50 Nickel ug/L Nickel 1.50 ug/L Nickel 2.38 ug/L Potassium 2540 ug/L Potassium 3940 ug/L Potassium 3200 ug/L Selenium 10.2 Selenium 5.00 ug/L ug/L Selenium 26.7 ug/L Silver 1.00 ug/L Silver 1.00 ug/L Silver 1.00 ug/L Sodium 202000 Sodium 233000 ug/L ug/L Sodium 694000 ug/L Thallium 5.00 ug/L Thallium 5.00 ug/L Thallium 6.45 ug/L Vanadium 1.00 ug/L Vanadium 1.00 ug/L Vanadium 1.00 ug/L Zinc 153 ug/L Zinc 148 ug/L Zinc 659 ug/L Analyte Result Units Analyte Result Units Analyte Result Units ALPHA 0.129 pCi/L ALPHA 5.46 ALPHA pCi/L pCi/L 9.79 BETA 4.99 pCi/L BETA 2.37 BETA pCi/L 2.72 pCi/L Pct Uranium-235 0.00 Pct Uranium-235 0.00 Pct Uranium-235 0.00 percent percent percent Radionuclide's Radium-226 1.20 Radium-226 Radium-226 pCi/L 0.464 pCi/L 0.639 pCi/L Radium-228 4.58 pCi/L Radium-228 0.747 pCi/L Radium-228 1.77 pCi/L Thorium-228 0.298 pCi/L -0.0682 pCi/L Thorium-228 Thorium-228 0.139 pCi/L Thorium-230 -0.524 pCi/L Thorium-230 0.0264 pCi/L Thorium-230 0.480 pCi/L Thorium-232 -0.0195 pCi/L Thorium-232 -0.0722pCi/L Thorium-232 -0.0195 pCi/L Uranium-233/234 -0.171 pCi/L Uranium-233/234 0.297 pCi/L Uranium-233/234 2.61 pCi/L Uranium-235/236 0.181 pCi/L Uranium-235/236 Uranium-235/236 0.115 pCi/L 0.174 pCi/L Uranium-238 0.392 pCi/L 1.40

pCi/L

Uranium-238

2.82

pCi/L

Uranium-238

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005

PAN:002693.2104.01RA

	16	<-336		161	C-340		MILL	MILLWELL		
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units	
	Chloride	18.8	mg/L	Chloride	22.1	mg/L	Chloride	154	mg/L	
≱	Nitrate	2.89	mg/L	Nitrate	5.97	mg/L	Nitrate	0.100	mg/L	
Anions	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	
Ö	Ortho-phosphate	0.291	mg/L	Ortho-phosphate	0.163	mg/L	Ortho-phosphate	2.00	mg/L	
	Sulfate	118	mg/L	Sulfate	368	mg/L	Sulfate	1460	mg/L	
	Fluoride	0.861	mg/L	Fluoride	0.483	mg/L	Fluoride	1.73	mg/L	
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units	
	δD H₂O	-91.4	%	δD H₂O	-82.6	%	δD H₂O	-107.3	%	
	δ ¹⁸ O H₂O	-12.04	%	δ ¹⁸ O H₂O	-11.01	%	δ ¹⁸ O H₂O	-14.14	%	

ATTACHMENT C: Photographic Documentation

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 15T-303

Date: 10/19/10

Description:

Well 15T-303

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 14T-586

Date: 10/19/10

Description:

Well 14T-586

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Mill Well

Date: 10/19/10

Description:

Mill Well

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Description: Mine Well

Date: 10/19/10

Description:

Well NR#1

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-340

Date: 10/19/10

Description:

16K-340

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-336

Date: 10/19/10

Description:

16K-336

Table J
Reporting Limits, Action Levels, and Quality Control Limits

Analysis	Analyte	Action Level	Quantitation	Duplicate	Matrix	Matrix Spike
		(mg/L)	Limit (µg/L)	RPD	Spike	RPD
Anions by 300.0	Fluoride	4	0.10	25	75-125	20
Anions by 300.0	Chloride	250	1.0	25	75-125	20
Anions by 300.0	Nitrite as N	1	0.10	25	75-125	20
Anions by 300.0	Nitrate as N	10	0.10	25	75-125	20
Anions by 300.0	o-Phosphate, as P	Not Available	1.0	25	75-125	20
Anions by 300.0	Sulfate	250 (s)	0.50	25	75-125	20
Metals by 6010B	Aluminum	0.1	100	25	75-125	20
Metals by 6010B	Antimony	0.1	100	25	75-125	20
Metals by 6010B	Arsenic	0.01	10	25	75-125	20
Metals by 6010B	Barium	2	20	25	75-125	20
Metals by 6010B	Beryllium	0.005	5	25	75-125	20
Metals by 6010B	Cadmium	0.01	10	25	75-125	20
Metals by 6010B	Calcium	Not Available	1000	25 .	75-125	20
Metals by 6010B	Chromium	0.10	10	25	75-125	20
Metals by 6010B	Cobalt	Not Available	20	25	75-125	20
Metals by 6010B	Copper	1.3 (s)	20	25	75-125	20
Metals by 6010B	Iron	Not Available	50	25	75-125	20
Metals by 6010B	Lead	0.015	5	25	75-125	20
Metals by 6010B	Magnesium	Not Available	600	25	75-125	20
Metals by 6010B	Manganese	0.05 (s)	15	25	75-125	20
Metals by 6010B	Mercury	0.002	0.5	25	75-125	20
Metals by 6010B	Nickel	Not Available	20	25	75-125	20
Metals by 6010B	Potassium	Not Available	5000	25	75-125	20
Metals by 6010B	Selenium	0.05	10	25	75-125	20
Metals by 6010B	Silver	0.10 (s)	10	25	75-125	20
Metals by 6010B	Thallium	0.002	10	25	75-125	20
Metals by 6010B	Vanadium	Not Available	20	25	75-125	20
Metals by 6010B	Zinc	5 (s)	10	25	75-125	20
Gross alpha by 900.0	alpha	See table A-1	1.0 piC/L	25	75-125	20
Gross beta by 900.0	beta	See table A-1	1.0 piC/L	25	75-125	20
903.1	Ra-226	See table A-1	1.0 piC/L	25	75-125	· 20
904.0	Ra-228	See table A-1	1.0 piC/L	25	75-125	20
Isotopic Th by HASL 300 Th-01-RCmod	Th-238, 230, 232	See table A-1	1.0 piC/L	25	75-125	20
Isotopic U by HASL 300 U-02-RC mod	U-233/234, U- 235/236, U-238	See table A-1	1.0 piC/L	25	75-125	20

Key: RPD = relative percent difference; mg/L = milligrams per liter; $\mu/L = micrograms$ per Liter NA = Not Applicable

(s) = National Secondary Drinking Water Regulation not enforceable and not an action limit for this assessment

Water Sources in Church Rock Area Sampled in 2003 by CRUMP Water Assessment Team

Well #	Well Name	Chapter	Latitude	Longitude	TRS Coordinates	Formation	Well Type	TD (ft)	Use(s)
Grey	Annie Grey	Pinedale	35,37 457	108,30 670	16 16 14 1111	Qal	dug, HP	8	LS, DOM
Solar	Solar St	Church Rock	35,32 158	108,35 753	15 17 13 1	Qal?	drilled, HP	unk	LS
14K-313	Brown Bull	Coyote Cyn	35,39 982	108,34 113	17 16 32 or 29	Kg	drilled, WM	622	LS, DOM
14K-586	Friendship I	Coyote Cyn	35,39 432	108,30 557	17 16 35	Kmv or Kg	drilled, PWS	750	abd-CWS
15K-303	Pipeline Cyn	Standing Rk	35,40 277	108,28 698	17 15 29 421	Kg	drilled, WM	614	LS
16-4-10	Lime Ridge	Church Rock	35,34 315	108,34 633	16 16 31 33	Jmw?	dug, HP	<1	LS, DOM
16K-336	Puerco No Fork	Church Rock	the second second second	108,38 202	16 17 33 4223	Qal	drilled, WM	122	LS
16K-340	Windmill Cluster	Church Rock	35,35 582	108,35 890	16 17 25 1132	Qal	drilled, WM	141	LS
16T-348	-Lobo Valley	Pinedale	35,37 178	108,27 195	16 15 17 1431	Kd	drilled, WM	410	LS
16T-534	Superman Cyn	Church Rock	35,35 818	108,38 675	16 17 21 344	Jmw	drilled, WM	410	DOM, LS
16T-559	Coal Mine/ Henry's	Church Rock	35,27 560	108,39 207	15 17 33 43	unk	drilled, WM	unk	LS
16T-606	King Ranch	Church Rock	35,36 998	108,33 237	16 16 17 411	Kd	drilled, WM	417	LS
16T-608	Yazzie Family	Church Rock	35,31 123	108,38 332	15 17 21 4	unk	drilled, WM	unk	DOM, LS

Following Pages

Summary of General Chemistry
Summary of Heavy Metals
Summary of Radionuclides
Complete field chemistry reported by NMED
Complete radionuclide analyses reported by NMED
Complete uranium analyses reported by USEPA

Abbreviations and Symbols

TRS = Township, Range, Section

TD = Total Depth of well, in feet, unk = unknown depth

Uses abd-CWS = abandoned community water system, DOM = domestic, LS = livestock,

Type HP = hand pump, WM = windmill

Formation Qal = alluvium, Kd = Dakota SS, Kg = Gallup SS, Kmv = Mesa

Verde, Jmw = Morrison/Westwater

NNEPA = Navajo Nation Environmental Protection Agency

USEPA = US Environmental Protection Agency

L

Summary of General Chemistry

Well#	Sampling Date	Dissolved	Calcium	Magnesium	Potassium	Sodium	Total	Chloride	Sulfate	pH (Units)
		Solids (mg/L)	(CaCO ₃)	(mg/L)	_(mg/l)	(mg/L)	Hardness	(mg/L)	(mg/L)	
		, ,	(mg/L)		•		(mg/L)			
USEPA or	NNEPA MCL	500	75-200	none	none	none	500	250	250	6 5-8 5
Lab		NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	_NTUA	freld
Grey	10/28/2003	553 5	376 0	(???) -36	6 69	24 1	240 0	4.5	305 0	7 72
Solar	10/29/2003	561 8	38 0	1200	4 00	27 9	148 0	4 64	352 0	8 61
14K-313	10/29/2003	1,095 0	640 0	440 0	4 36	105 0	1,080 0	107	1,070 0	8 31
14K-586	8/5/2003	2,136 0	251 8	125 1	7 10	143 1	1,143 9	19 1	1,097 2	8 07
15K-303	10/28/2003	3,043 0	980 0	(???) -940	5.97	191 0	40 0	121	1,940 0	8 13
16-4-10	10/29/2003	237 5	152 0	32 0	1 61	8 37	184 0	143	27 1	7 45
16K-336	10/29/2003	887 6	200 0	88 0	2 84	207 0	288 0	20 9	122 0	8 05
16K-340	10/29/2003	1,469 0	420 0	180 0	3 65	256 0	600 0	25 5	419 0	8 16
16T-348	10/29/2003	660 9	40	80	0 86	222 0	120	3 48	155 0	9 63
16T-534	10/29/2003	811 8	132 0	76 0	3 00	179 0	208 0	80	314 0	8 6 7
16T-559	10/28/2003	498 4	120	15 0	1 71	162 0	27 0	4 59	148 0	8 87
16T-606	10/28/2003	3,500 0	196 0	1,740 0	6 91	245 0	1,940 0	23 3	1,130 0	7 45
16T-608	10/28/2003	1,015 0	24 0	36 0	0 86	390 0	60 0	251 0	134 0	8 82

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level, mg/L = milligrams per liter, NMSLD = New Mexico Scientific Laboratory Division, NTUA = Navajo Tribal Utility Authority, ??? = data are questionable

A aca

Summary of Heavy Metals and Aesthetic Parameters

Well#	Sampling Date	Arsenic (mg/L)	Cadmium (mg/L)	Chromium (mg/L)	Copper (mg/L)	Lead (mg/L)	Nickel (mg/L)	Selenium (mg/L)	Fluoride (mg/L)	Iron (mg/L)
USEPA or	NNEPA MCL	0 010	0 005	0 05	13	0 02	01	0 05	1 6 (WQCC)	03
Lab		NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	field*	field*
Grey	. 10/28/2003	<0 005	<0 0002	<0 001	<0 02	0 001	<0 04	<0 005	0 92	0 01
Solar	10/29/2003	<0 005	<0 0002	<0 001	0 062	< 0 001	< 0 04	<0 005	0 32	4 10
14K 313	10/29/2003	<0 005	<0 0002	< 0 001	<0 02	< 0 001	<0 04	<0 005	1 34	0 54
14K 586	8/5/2003	0 008**	<0 001**	<0 001**	<0 1**	<0 001**	<0 1**	<0 005**	not tested	5 10**
15K 303	10/28/2003	<0 005	<0 0002	< 0 001	0 026	<0 001	<0.04	<0.005	1 60	0 68
16 4 10	10/29/2003	<0 005	<0 0002	< 0 001	<0 02	<0 001	<0 04	0 043	0 58	0 10
16K 336	10/29/2003	0 006	<0 0002	<0 001	<0 02	<0.001	<0 04	<0 005	1 03	2 00
16K 340	10/29/2003	<0 005	<0 0002	<0 001	<0.02	<0 001	<0 04	<0 005	0 71	0 40
16T 348	10/29/2003	<0 005	<0 0002	<0 001	<0 02	< 0 001	<0 04	<0 005	0 47	0 02
16T 534	10/29/2003	<0 005	<0 0002	< 0 001	<0 02	<0 001	<0 04	<0 005	0 44	0 49
16T 559	10/28/2003	<0 005	<0 0002	< 0 001	<0 02	<0 001	<0 04	<0 005	0 64	0 07
16T 606	10/28/2003	<0 005	<0 0002	<0 001	<0 02	<0 001	<0 04	<0 005	1 16	3 28
16T 608	10/28/2003	<0 005	<0 0002	<0 001	<0.02	<0 001	≺0 04	0 006	1 96	0 12

^{*}field tests by New Mexico Environment Department

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level mg/L = milligrams per liter NMSLD = New Mexico Scientific Laboratory Division NTUA = Navajo Tribal Utility Authority WQCC = N M Water Quality Control Commission groundwater standard ??? = data are questionable

^{**}lab results reported by NMSLD

Summary of Selected Radionuclides*

Well#	Sampling Date	Gr Alpha (U	Gr Beta	Radium 226	Radium 228	Total	Uranıum
		Nat Ref)	(Sr/Y 90	(pCI/L)	(pCi/L)	Uranium	mass (ug/L)
		(pCt/L)	Ref)			(pĆi/L)	•
			(pCi/L)		-		
USEPA or N	NNEPA MCL	15	none	combi	ned 5 0	none '	30
Cast	10/00/000	7.00	0 40	0.10	0.40	0.04	4404
Grey	10/28/2003	7 20	9 40	0 10	0 40		14 84
Solar	10/29/2003	nd	4 40	0 08	0 20	0 16	0 24
14K 313	10/29/2003	nd	4 40	0 04	0 50	0 04	0 05
14K 586	8/5/2003	10 80	14 901/	2 60	not tested	not tested	3 00
15K 303	10/28/2003	4 00	9 00	0 47	1 50	0 46	0 69
16 4 10	10/29/2003	44 10	26 00	0 33	0 70	46 48	69 37
16K 336	10/29/2003	5 90	4 40	0 83	0 30	0 38	0 57
16K 340	10/29/2003	nd .	4 90	0 40	0 40	1 96	2 92
16T 348	10/29/2003	nd	1 60	nd	0 60	0 20	0 29
16T 534	10/29/2003	nd	2 70	0 20	0 50	0 10	0 15
16T 559	10/28/2003	nd	1 50	0 05	nd	0 06	0 09
16T 606	10/28/2003	40 00	20 40	8 34	0 80	4 68	6 99
16T 608	10/28/2003	5 40	nd	0 04	1 40	3 86	5 76

^{*}All samples except for 14T 586 analyzed at USEPA lab in Las Vegas NV 14T 586 analysis at N M State Laboratory Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level pCi/L = picoCuries per liter

UNITED STATES GOVERNMENT

DATE: January 30, 1981

ATTNOF: Gallup Service Unit Sanitarian

surgect. Potential Contamination of Aquifers in UNC vicinity

To: Gorden Denipah, Chief EHSB

Pits, File in well Foldure

Mike Brown, NMEID, called on January 16, 1981 to enlist our help in obtaining information concerning drilled wells in the area. Mark Mattson looked at our well location map here in the Office and pulled out the following information.

0-1 mile radius of UNC 16K-319

1-5 mile radius of UNC 14T-584 15T-303 16T-348 16T-514 16T-532 16T-535

6-10 mile radius of UNC

o marc re	GTU2 OT OW?	
14A-81		14T-579
14T-321		15T-535
14T-524		16B-12
14T-538		16B-40
14T-540		16B-40A
14T-545		161-500
14T-546		161-537
14T-549		16K-318
, 14T-550		16K-330
14T-551		16K-336
14T-552	· · · · · · · · · · · · · · · · · · ·	16K-340
14T-553	•	16T-351
14T-554	•	16T-509
14T-564		16T-510
14T-565		16T-520
14T-566		16T-554
14T-571		16T-555
14T-572	,	16T-560
14T-573		16T-581

FEB 09 1981

I gave the above information to Mike, along with a set of well location maps. The State will assume responsibility for collecting water samples for chemical analysis. I have agreed to have Bobbie or Smiley help them locate the wells.

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

OPTIONAL FORM NO. 10 (REV. 7-76) GSA FPMB (41 CFR) 101-11.6 5010-112

THE NAVAJO TRIBE WATER & SANITATION DEPARTMENT

OGT 17 1978

POST OFFICE BOX 678 FORT DEFIANCE, NAVAJO NATION (ARIZONA) 86504 (602) 729-2390.2391.2394

16 OCTOBER 1978

PETER MAC DONALD CHAIRMAN, NAVAJO TRIBAL COUNCIL WILSON C. SKEET VICE CHAIRMAN, NAVAJO TRIBAL COUNCIL

MEMORANDUM

Akhtar Zaman, Director

Technical Services Branch

THRU: Calvin Arnold, Supervisor

Operations Branch

FROM: Billie Holtso, Field Foreman

Fort Defiance Agency

SUBJECT: Well #16K-336

TOURNING ENFORMATION.

*1- STATIC WATER LEVEL
AT YUE TIME OF BALLING

2. DRANDOWN AT THE END OF BAILING

TOTAL DEPTHOF WELL
AT THE END OF BALLING

RHAN

Well #16K-336 is going dry. It is located $2\frac{1}{2}$ miles northeast of El Paso Station and 4 miles north of Rehoboth, New Mexico. The list below is what information we could gather on this well.

- 1. The well was built in October, 1953.
- 2. Depth of well 122 feet.
- 3. Static water level 35 feet.
- 4. Draw down 30 feet.
- 5. Torch cut perferation 82120 feet
- 6. Gravel Packed 35-123 feet.

We used a 4 inch bailer to get the water out, it took about 30 minutes to pump the well dry.

Your concern and neccessary action to this matter will be appreciated.

Allen M. Packer for Billie Holtso

CONCURRED BY:

Calvin Arnold, Supervisor Operations Branch/WSD

ce to Calvin travally

Poll. Wris. & Naterials Stating Leb ratory P. O. hox 1060, Callup, New Mexico 87301

ib. No. 74-PR-433 Field No	Analyzed By A
ite Received by Lab. 3-26-74	Transcribed By a le man 2.
ate Collected 3-26-74	Checked By and many
ocation Church Rock	Date Analysis Completed 5-11-77
ource of Water Well No. 16K 336	Reported By
ollector's Name William Weis	Date Reported
uthorized By William Weis	
DDRESS: Department: USPHS	SEND REPORT TO: William Weis

Department: USPHS SEND REPORT TO: William Wells
Agency: Gallup
Branch: OEH SEND REPORT TO: William Wells
PHS Environmental Health
P.O. Box 1337
Gallup, New Mexico 87301

Branch: ORH			Gallup, New Mexico 87301							
X) Test Requested			Meq/1	Mg/1	Recommended Standards					
(P)			9	0.67	1.0					
oron (B) ron (Fe)			Zione	Zioce						
alcium (Ca)		7	3,10	62.12						
agnesium (Mg)			1.90		50 - 150					
odium (Na)			11.12	255.65	115 **					
otassium (K)			0.03	1.17	1000 to 2000					
0.00	CATIONS		16.15							
hosphorus (P)				0.03	50.0 **					
icarbonate (HCO3)			10.54	643.15	150					
arbonate (CO3)			0.62	18.61						
ulfate (SO,)			2.84		250					
hloride (C1)			1.25	44.33						
'luoride (F)					50°to 58.3° 1.8					
			0.08		70.7°to90.5°1.2					
litrate (NO3)			0.21	13.02	45					
	ANIONS		15.54							
'otal Solids	Mg/1			892	500 .					
	Mg/1			888						
issolved Solids	Tons Per Acre Foot	1,21								
	Calcium, Magnesium_			250	500					
lardness as Mg/1	Non-Combonate		1	_	500					
Ca CO3	Non Carbonate		-							
	Phenolphthalein			31	N. A.					
lkalinity as Mg/1 Ca CO3	Total Alkalinity (Methyl Orange)			527						
toluble Sodium Per	centage (SSP)	69								
lodium Absorption l	Ratio (SAR)	7.03	W							
Inecific Conductant	ce (Micromhos at 25°C)	1380	I Land	1						
Pesidual Sodium Car	rbonate (RSC)	7	5.54	-						
Ή	Sende Mer.	8.2		(4 to 10					
lass for Irrigation	on Water	C352								
					T-FV-					
rsenic (As)					0.01 *					
Barium (Ba)				0.20	1.0 *					
Ladmium (Cd)				Zina						
Copper (Cu)		No. of the last of		time	1.0					
lyanide (Cn)				7	0.2					
hromium (Cr.)			-	7-	0.05 *					
ead (Pb)			-		0.05 *					
langanese (Mn)				0:076	0.05					
lercury (Hg)			-	7-e	0.005 **					
elenium (Se)				2	0.01 *					
ilica (SiO2)				9.63	0.05					
ilver (Ag)				2020						
inc (Zn)			1	0.030	5.0					
1kyl Benzene Sulfo	onates (ABS)			trans	0.5					
henols				Zan	0.001					

ause for Rejection of the Supply nofficial Standards 704a1 Iron - 1.76 PPM

16K-336

WELL_NO = 16K-336 WELL_NAME = Puerco No. Fork CHAPTER = Church Rock $LAT_DM = 35,34.362$ LONG_DM = 108,38.202 LATITUDE = 35.5727 LONGITUDE = -108.637TRS_COORD = 16.17.33.4223 FORMATION = Qal WELL_TYPE = drilled; WM TD_FT = 122 USES = LS SAMP_DATE = 20031029 GROSSALPHA = 5.9 GA_UNITS = U-Nat Ref., pCi/L GROSSBETA = 4.4 GB_UNITS = Sr/Y-90 Ref., pCi/L $RADIUM_226 = 0.83$ RA226_UNIT = pCi/L RADIUM_228 = 0.3 RA228_UNIT = pCi/L T_URANIUM = 0.38 TU_UNITS = pCi/L M_URANIUM = 0.57 $MU_UNITS = ug/L$

16K-340 (?)

Mr. Johnnie Willeto Mechanicai Supervisor Water Works Department 18 February 1972 Fred E. Zschach

Earth Tanks

552-741

5552

The following earth tanks are filled with dirt and need to be made bigger where possible:

14A-33	14N-79	14N-16 & 14M-1
14K-318	14T-501	14T-807
14K-316	14A-10	14A-33 & 14T-531
_16K-336	I6T-544	16T-570
1K-224	1K-204	3K-324

9Y-25 needs blow sand pushed away from well; 9T-220 needs sand pushed away from well and diversion made.

I request this cat work be put on your schedule. I can have a representative from each district to accompany your cat skinner and show him the locations and work which need to be done.

Fred E. Zechach

Maintenance Coordinator Water Works Department

CONCURRED:

acic Martin

Acting Superintendent

Water Works Department

cc: Mr. Arthur Hubbard, Jr., Superintendent Mr. Jack Martin, Assistant Superintendent

Mr. George Soce, Administrative Assistant

File: Wells and Windmills

Well Folder -

Chrono

FEZ/rb

TABLE 2.6-2

SELECTED CHEMICAL ANALYSES OF GROUND WATER IN THE VICINITY OF PROPOSED MILL SITE (constituents in parts per million unless otherwise noted)

3						mniss	14 T. 586 French L. P								
Location number and name	BIA Number	(o) Aquifer	Date Sampled	Silica	Calcium	Magnesium Mg	Sodium plus pota Na + K	Bicarbonate HCO3	Carbonate CO3	Sulfate	Chloride Cl	Fluoride	Nitrate NO3	Total dissolved solids	Conductance
16.15.20.		Qal	8-1949	12	72	14	13 8	258	0	43	4	0.6	2.2	288	480
20.		Qal	5-1950	15	42	13	В	160	0	40	2	0.2	0.1	199	331
20.234 Pinedale TP		Km7	8-1949	12	170	55	161	359		590	50	0.4	24.0	1240	1710
16.16. 1.112	16K-319	Kd	6-1955	14	1.6		262	518	39	74	В	1.4	1.5	658	1060
16.16. 6.112	14N- 70	Kcd	5-1955	1.0	57	50	0.9	130	0	102 .	9	0.4	0.0	271	436
16.17.25.113	16X-340	Qal .	6-1954	12	139	44	264	890	0	314	24	0.6	13.0	1250	1810
16.17.33.422 or 14×303	16K-336	Qal .	9-1953	5.8	80	19	227	776	0	91	26	1.4	0.3	832	1330
19415:30:341	-)69-303 	Manual Million Marie Age -	647 955	Pr. 1500	7 2 C	1897	~ 72 · ~	271		2520		-240		2450	31204
	,14K-313	Kg	5-1955						21	**B33**					1760°
17.16.35. Kerr HcGee Mine		Jinw	11-1973	. 17	11		131.6	237	0	110	3.0	0.3		412	663
17.17. 7.233	144- 79	Ked	6-19-19	-	3	0.	105	409	0	38	32	0.2	0.5	268	455
17.17.16	141- 14	Qal	5-1955	~~					U	-	34	1.2	0.3	530	3370
				•	T.										
Applicant's Mine	1	Jmw	11-1973	. 17	2.2	0.	3 121.4	215	31	45	5.2	0.2		329 .	550

14K303 should be 15T 503

⁽a)
Aquifers: Qal, alluvium; Kcc, Crevasse Canyon Formation; Kcd, Dalton Sandstone Mbr., Crevasse Canyon Formation; Kmf, Menefee Formation; Kpl, Point Lookout Sandstone; Kg, Gallup Sandstone; Km, Mancos Shale; Kd, Dakota Sandstone; Jmw, Westwater Canyon Sandstone Mbr. of Morrison Formation; Jes, Cow Springs Sandstone

WELL RECORD

WELL NO 16K-336

Water W	Tell D	evelopm	ient
Navajo T	ribe		
Window	Rock.	Arizona	a

	Develobmen	14		WELDE INO.
Navajo Trib				
Window Ro	•			
	100	(Susul	7 2	Miles south 12, 25
Quad, No	700	Miles we	st	Miles south / 2, 23
22 mile	s NE El Pa	so Station -	uniles N of Re	hobeth
Location				
Began well.	Co	tober 1953	Finished well	Ochober 1953
Diameter of	f well 12	rit .	Depth of well	122'
Static water	level	35 ' D	rawdown 30t	Recovery
Quantity of	water on t	est run: bailer: pump	g.P.M.	Tested for hours
Kind of casi	ing: 6 5/8"	od - 8 thd - 19 1b	nd length	
Screen kind!	Torch cut	perferations gth	821-3201 I	Mesh
Contractor _	Р. н	. Dunning	Address	
	Grav	el packed 35' - 12		
DE	PTH		LOG	
From	То	Formation	Acquifer	Remarks
0	48	Soil		
48	95	Oulok sand - st	resks of clay	
95	155	Gravel - sand		
				-
	<u> </u>			
	ļ	·		
	-			
·	<u> </u>			
	<u> </u>			
	 			
	ĺ			
		· ;·	f	

Remarks:

J.P.								
Teta	Calcium	Magnesium	Sodium	Chlorides	Sulfates	Carbonates	P.H.	CO
Salts	Ca.	Mg.	Na.	Cl.	SO,	HCO		3
I		1	·	<u> </u>	! ' +	5	1	<u> </u>
i							}	
į.		1		t	}	•	Į.	i

Excellent

Good

Fair

 ${\bf Poor}$

Doubtful

Not suitable for domestic, livestock use

Cylinder size:___ Tubing, cylinder and suction pipe length in feet: / O O Kind of pump rod: Size of box and pin: Liner, if any:_ Total Depth Windmill: (make) B' Gon mater Size: _ Storage: (kind) Capacity: _ Troughs: (kind) No.____ Comments:

Memorandum

September 28, 1953

To:

John J. Schwarz, Window Rock, Arizona

From:

Joseph T. Callahan, Holbrook, Arizona

Subject:

Preliminary bail test, well 16K-336

A preliminary bail test was conducted on September 24, 1953, at the time of development of this well.

The well was bailed at the rate of 8.5 gallons per minute for 2:01. The water level drew down 19 feet from a level of 34.5 feet. Although this is sufficient water to meet the pumping requirements of a windmill, much more water will be available when the influx of sand to the well is stopped.

The driller reported that the bottom 40 feet of casing had been perforated. With the bottom of the casing set in gravel at an approximate depth of 112 feet, the perforated zone of casing extended up into the quick-sand, which lies between 48 and 95 feet. Thus, the loose sand flowed into the well as it was bailed, and cut off the water in the gravel which lies below 100 feet. The well was being bailed off bottom, from a depth of between 96 and 101 feet, depending on the amount of sand in the well.

A more successful well could be developed if only that part of the casing adjacent to the gravel were perforated.

> s/ Joseph T. Callahan Joseph T. Callahan Geologist

JTC/cj

cc: Howard Gorman

Memorandum

October 1, 1953

Tot

John J. Schwarz, Window Rock, Arizona

From:

J. T. Callahan, Holbrook, Arizona

Subject: Completion and bail test of well 16K-336; located about 2½ miles north of El Paso Wingate Fumping Station, in the S.W. ‡, sec. 33, T 16 N, R 17W.

This well was completed and bail tested on September 30, 1953. The following information was obtained from the bail test:

Total depth
Static Water level
Bailing rate
Bailing time
Drawdown
Recovery
Aquifer

118 feet
34 feet
14.6 gallons per minute
62 minutes

27.5 feet
29 feet in h0 minutes
Quarternary gravel from 100
feet to 118 feet

The static water level was higher following bail testing than it was prior to testing.

The Quality of Water Laboratory in Albuquerque reported that this water is satisfactory for domestic use.

s/ Joseph T. Callahan Joseph T. Callahan Geologist

JTC/cj

164-340

International Specialists in the Environment

1940 Webster Street, Suite 100 Oakland, California 94612 Tel: (510) 893-6700, Fax: (510) 550-2760

January 24, 2011

U.S. Environmental Protection Agency 75 Hawthorne Street San Francisco, CA 94105

TDD No: T02-09-10-08-0005 Project No: 002693.2103.01RA

Attention:

Harry Allen, USEPA On-Scene Coordinator

Andrew Bain, USEPA

Subject:

NECR Water Well Sampling

Church Rock Chapter Navajo Nation

161-336

INTRODUCTION

In October 2010 the U.S. Environmental Protection Agency (USEPA) tasked the Ecology and Environment Inc. Superfund Technical Assessment and Response Team (START) with technical assistance relating to residential water well sampling in the vicinity of the former Northeast Church Rock Mine located in the Church Rock Chapter of the Navajo Nation. (Figure 1, Attachment A).

The purpose of this sampling event was to generate additional data to measure the impact of the former Northeast Church Rock Mine uranium mine on wells within the adjacent areas.

SAMPLING ACTIVITIES

Well sampling was conducted on October 19, 2010. A total of five wells were sampled. Four of the wells were residential wells and one (Mill Well) well was part of the former United Nuclear Corporation (UNC) facility in the area. Every effort was made to collect water samples in a manner consistent with resident collection and use (i.e. taps, pumps or bucket collect).

A Time Critical Quality Assurance and Sampling (QASP) Plan (Appendix D) was developed prior to sampling and followed with the following exceptions:

- Well NR#1 is no longer in use and was not sampled as the casing has been filled with concrete.
- The Mine Well is no longer in use and was not sampled as the casing has been filled with concrete.

Water quality parameters were measured in the field using a Horiba, Ltd. multi-parameter water quality meter. The meter was calibrated daily using a buffer solution. Samples were collected and analyzed for metals, radionuclides and anions by GEL Laboratories Inc. (Charleston, SC). Samples were collected and analyzed for oxygen and hydrogen isotopic ratio by Isotech Laboratories, Inc (Champaign, II). The QASP (Appendix D) contains all methods and volumes used in sample analysis.

WELL DESCRIPTIONS

Well 15T-303

Well 15T-303 is a windmill powered well that feeds into an approximately 40,000 gallon uncovered metal tank. The well is currently in use and there is a trough and locked tap in the vicinity of the tank that are used to water livestock. Samples were collected from the top of the tank using a bucket.

14T-586

14T-586 is a diesel engine powered well that feeds into an approximately 10,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

Mill Well

The Mill Well is located on the former UNC facility property. The well is electric powered well, housed in a wooden pump house, north of the former UNC offices and equipment yard. There is no storage tank affiliated with the well and the well is not currently in use. Samples were collected from a tap inside the pump house with pump turned on.

Mine Well

The mine well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

NR#1

The NR#1 well is located within the boundary of the former Northeast Church Mine. The well is currently not in use and has been non-operational for at least 15 years. The well opening is currently plugged with concrete.

16K-340

Well 16K-340 is a windmill powered well that feeds into an approximately 40,000 gallon covered metal tank. The well is currently in use and there is a trough and tap in the vicinity of the tank that are used to water livestock. Samples were collected from the tap in manner consistent with residential use.

RESULTS

Table 1 (Appendix B) gives a well specific summary of all applicable data. All laboratory data was validated by a START chemist using the *Region 9 Draft Superfund Data Evaluation/Validation Guidance*. Data validation indicated the laboratory data was acceptable with qualification as definitive data. A separate data validation report was generated under this project and is included in the project file.

This letter summarizes all activities conducted on the Tuba City Removal project. If you have any questions regarding START's activities associated with this project, please do not hesitate to contact me.

Respectfully,

Mike Folan

START Member

Attachments: A – Homesite Location Map

B –Data Tables

C – Photographic Documentation

D- QASP

cc: file

ATTACHMENT A: Well Location Map

ATTACHMENT B: Data Tables

Table 1: NECR Water Well Sampling Data

ΓD	D:09-10-08-0005						PAN:0	02693.	2104.01F
	14T-5	86		14T-586100 (duplicate)		15T-3	03	
		Result	Units		Result	Units		Result	Units
	pН	7.1		pН	7.1		рН	6.8	
	Conductivity	0.26	S/m	Conductivity	0.26	S/m	Conductivity	0.35	S/m
_	Turbidity	10.1	NTU	Turbidity	10.1	NTU	Turbidity	10.1	NTU
Water Quality	Dissolved Oxygen	6.30	mg/L	Dissolved Oxygen	6.30	mg/L	Dissolved Oxygen	7.99	mg/L
2	Temperature	7.6	°C	Temperature	7.6	°C	Temperature	12.1	°C
<u></u>	Salinity	0.1	%	Salinity	0.1	%	Salinity	0.2	%
₹									
	Total Dissolved Solids	1.7	g/L	Total Dissolved Solids	1.7	g/L	Total Dissolved Solids	2.2	g/L
	Oxidation Reduction Potential	100	mV	Oxidation Reduction Potential	100	mV	Oxidation Reduction Potential	129	mV
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Aluminum	220	ug/L	Aluminum	82	ug/L	Aluminum	68.0	ug/L
	Antimony	3.00	ug/L	Antimony	7.34	ug/L	Antimony	6.83	ug/L
	Arsenic	5.00	ug/L	Arsenic	5.00	ug/L	Arsenic	7.54	ug/L
	Barium	13.1	ug/L	Barium	13.4	ug/L	Barium	8.24	ug/L
	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L	Beryllium	1.00	ug/L
	Bromide	0.200	ug/L	Bromide	0.200	ug/L	Bromide	0.200	ug/L
	Cadmium	1.00	ug/L	Cadmium	1.00	ug/L	Cadmium	1.17	ug/L
	Calcium	270000	ug/L	Calcium	281000	ug/L	Calcium	373000	ug/L
	Chromium	13.9	ug/L	Chromium	1.00	ug/L	Chromium	1.16	ug/L
	Cobalt	1.13	ug/L	Cobalt	1.00	ug/L	Cobalt	1.00	ug/L
	Copper	3.00	ug/L	Соррег	3.00	ug/L	Соррег	3.00	ug/L
	Iron	482	ug/L	Iron	468	ug/L	Iron	685	ug/L
Ī	Lead	3.30	ug/L	Lead	3.30	ug/L	Lead	3.30	ug/L
	Magnesium	119000	ug/L	Magnesium	122000	ug/L	Magnesium	144000	ug/L
	Manganese	320	ug/L	Manganese	319	ug/L	Manganese	162	ug/L_
	Mercury	0.066	ug/L	Mercury	0.066	ug/L	Mercury	0.066	ug/L
	Nickel	71.3	ug/L	Nickel	1.51	ug/L	Nickel	1.50	ug/L
	Potassium	7430	ug/L	Potassium	7690	ug/L	Potassium	5650	ug/L
	Selenium	7.7	ug/L	Selenium	37.7	ug/L	Selenium	43.8	ug/L
	Silver	1.00	ug/L	Silver	1.00	ug/L	Silver	1.00	ug/L
1	Sodium	135000	ug/L	Sodium	140000	ug/L	Sodium	188000	ug/L
	Thallium	5.00	ug/L	Thallium	5.00	ug/L	Thallium	8.9	ug/L
	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L	Vanadium	1.00	ug/L
	Zinc	338	ug/L	Zinc	355	ug/L	Zinc	839	ug/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	ALPHA	2.62	pCi/L	ALPHA	5.80	pCi/L	ALPHA	-0.526	pCi/L
	BETA	6.58	pCi/L	BETA	6.02	pCi/L	BETA	2.62	pÇi/L
.	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent	Pct Uranium-235	0.00	percent
	Radium-226	0.880	pCi/L	Radium-226	0.540	pCi/L	Radium-226	1.18	pCi/L
١	Radium-228	3.41	pCi/L	Radium-228	3.71	pCi/L	Radium-228	3.34	pCi/L
,	Thorium-228	-0.0147	pCi/L	Thorium-228	0.155	pCi/L	Thorium-228	-0.139	pCi/L
:	Thorium-230	-0.185	pCi/L	Thorium-230	0.818	pCi/L	Thorium-230	-0.158	pCi/L
	Thorium-232	-0.133	pCi/L	Thorium-232	_	pCi/L	Thorium-232	-0.0195	pCi/L
	Uranium-233/234	1.16	pCi/L	Uranium-233/234	1.73	pCi/L	Uranium-233/234	0.317	pCi/L
	Uranium-235/236	0.114	pCi/L	Uranium-235/236	+	pCi/L	Uranium-235/236	0.219	pCi/L
	Uranium-238	1.20	pCi/L	Uranium-238	0.790	pCi/L	Uranium-238	0.442	pCi/L

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005

PAN:002693.2104.01RA

	147	-586		14T-58610	0 (duplicate)		15	T-303	
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Chloride	14.0	mg/L	Chloride	14.1	mg/L	Chloride	10.5	mg/L
₽	Nitrate	0.267	mg/L	Nitrate	0.266	mg/L	Nitrate	0.100	mg/L
Anions	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L
S	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	0.200	mg/L	Ortho-phosphate	2.00	mg/L
	Sulfate	1380	mg/L	Sulfate	1310	mg/L	Sulfate	2000	mg/L
	Fluoride	1.19	mg/L	Fluoride	1.24	mg/L	Fluoride	1.52	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H₂O	-80.8	%	δD H₂O	-81.2	%	δD H₂O	-73.1	%
	δ ¹⁸ O H₂O .	-10.44	%	δ ¹⁸ Ο Η₂Ο	-10.53	%	δ ¹⁸ O H₂O	-8.56	%

Table 1: NECR Water Well Sampling Data

Radium-228

Thorium-228

Thorium-230

Thorium-232

Uranium-238

Jranium-233/234

Uranium-235/236

4.58

0.298

-0.524

-0.0195

-0.171

0.181

0.392

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

Radium-228

Thorium-228

Thorium-230

Thorium-232

Uranium-238

Uranium-233/234

Uranium-235/236

TDD:09-10-08-0005 PAN:002693.2104.01RA 16K-336 16K-340 MILLWELL Result Units Result Units Units Result рΗ 7.4 7.6 7.4 pН рН Conductivity 0.15 S/m Conductivity 0.19 S/m Conductivity 0.36 S/m 29.9 NTU Turbidity Turbidity 5.5 NTU Turbidity 14.7 NTU Water Quality Dissolved Oxygen 3.05 Dissolved Oxygen Dissolved Oxygen mg/L 5.26 6.39 mg/L mg/L Temperature 15.5 °C Temperature 16.8 °C Temperature 15.2 °C Salinity 0.1 % Salinity 0.1 % Salinity 0.2 % Total Dissolved Solids Total Dissolved Solids Total Dissolved Solids g/L 1.2 g/L 2.3 a/L Oxidation Reduction Oxidation Reduction Oxidation Reduction Potential 86 mV Potential 76 m٧ Potential -127 m٧ Units Analyte Result Analyte Result Units Analyte Result Units 229 Aluminum ug/L Aluminum 126 ug/L Aluminum 68.0 ug/L Antimony 3.00 ug/L Antimony 3.00 ug/L Antimony 3.00 ug/L Arsenic 11 Arsenic 8.53 5.00 ug/L ug/L Arsenic ug/L Barium 450 ug/L Barium 140 ug/L Barium 1.64 ug/L Beryllium 1.00 1.00 1.00 ug/L Beryllium ug/L Beryllium ug/L Bromide 0.234 0.295 0.361 ug/L Bromide ug/L Bromide ug/L 1.00 Cadmium Cadmium 1.00 Cadmium 1.00 ug/L ug/L ug/L Calcium 76800 ug/L Calcium 99800 ug/L Calcium 2420 ug/L Chromium 1.00 ug/L Chromium 1.03 Chromium 1.43 ug/L ug/L Cobalt 1.00 ug/L Cobalt Cobalt 1.00 1.00 ug/L ug/L Copper 29.7 ug/L Copper 3.00 Copper 20.4 ug/L ug/L 2720 ug/L Iron 181 9870 ug/L Iron ug/L _ead 3.58 ug/L 3.74 Lead 3.30 ug/L Lead ug/L 20600 Magnesium ug/L Magnesium 43500 ug/L Magnesium 470 ug/L Manganese 95.9 ug/L Manganese 122 ug/L Manganese 51 ug/L Mercury 0.066 ug/L Mercury 0.066 ug/L Mercury 0.066 ug/L Nickel 1.50 ug/L Nickel 1.50 Nickel 2.38 ug/L ug/L 2540 Potassium ug/L Potassium 3940 3200 ug/L Potassium ug/L Selenium 10:2 ug/L Selenium 5.00 ug/L Selenium 26.7 ug/L 1.00 Silver Silver 1.00 ug/L ug/L Silver 1.00 ug/L 202000 233000 Sodium ug/L Sodium ug/L Sodium 694000 ug/L Thallium 5.00 ug/L Thallium 5.00 Thallium 6.45 ug/L ug/L Vanadium 1.00 ug/L Vanadium 1.00 ug/L Vanadium 1.00 ug/L Zinc 153 ug/L Zinc 148 Zinc 659 ug/L ug/L Result Analyte Analyte Units Analyte Result Units Result Units ALPHA 0.129 pCi/L ALPHA 5.46 pCi/L ALPHA 9.79 pCi/L BETA 4.99 pCi/L BETA 2.37 BETA pCi/L 2.72 pCi/L Pct Uranium-235 0.00 percent Pct Uranium-235 0.00 percent Pct Uranium-235 0.00 percent Radium-226 1.20 pCi/L pCi/L Radium-226 0.639 Radium-226 0.464 pCi/L

0.747

-0.0682

0.0264

-0.0722

0.297

0.115

1.40

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

Radium-228

Thorium-228

Thorium-230

Thorium-232

Uranium-238

Uranium-233/234

Uranium-235/236

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

pCi/L

1.77

0.139

0.480

2.61

0.174

2.82

-0.0195

Table 1: NECR Water Well Sampling Data

TDD:09-10-08-0005

PAN:002693.2104.01RA

	161	(-336		168	(-340		MILL	WELL	
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	Chloride	18.8	mg/L	Chloride	22.1	mg/L	Chloride	154	mg/L
≥	Nitrate	2.89	mg/L	Nitrate	5.97	mg/L	Nitrate	0.100	mg/L
Anions	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L	Nitrite	0.100	mg/L
Ø	Ortho-phosphate	0.291	mg/L	Ortho-phosphate	0.163	mg/L	Ortho-phosphate	2.00	mg/L
l	Sulfate	118	mg/L	Sulfate	368	mg/L	Sulfate	1460	mg/L
	Fluoride	0.861	mg/L	Fluoride	0.483	mg/L	Fluoride	1.73	mg/L
	Analyte	Result	Units	Analyte	Result	Units	Analyte	Result	Units
	δD H₂O	-91.4	%	δD H₂O	· -82.6	%	δD H₂O	-107.3	%
	δ ¹⁸ O H₂O	-12.04	%	δ ¹⁸ O H₂O	-11.01	%	δ ¹⁸ O H ₂ O	-14.14	%

ATTACHMENT C: Photographic Documentation

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 15T-303

Date: 10/19/10

Description:

Well 15T-303

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Well 14T-586

Date: 10/19/10

Description:

Well 14T-586

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

Mill Well

Date: 10/19/10

Description:

Mill Well

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description: Mine Well

Date: 10/19/10

Description:

Well NR#1

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-340

Date: 10/19/10

Description:

16K-340

NECR Water Well Sampling Navajo Nation Reservation

002693.2103.01RA

T02-09-10-08-0005

Date: 10/19/10

Description:

16K-336

Date: 10/19/10

Description:

16K-336

Table J
Reporting Limits, Action Levels, and Quality Control Limits

Analysis	Analyte	Action Level	Quantitation	Duplicate :	Matrix	Matrix Spike
Allarysis	Analyte	(mg/L)	Limit (µg/L)	RPD	Spike	RPD
Anions by 300.0	Fluoride	4	0.10	25	75-125	20
Anions by 300.0	Chloride	250	1.0	25	75-125	20
Anions by 300.0	Nitrite as N	1	0.10	25	75-125	20
Anions by 300.0	Nitrate as N	10	0.10	25	75-125	20
Anions by 300.0	o-Phosphate, as P	Not Available	1.0	25	75-125	20
Anions by 300.0	Sulfate	250 (s)	0.50	25	75-125	20
Metals by 6010B	Aluminum	0.1	100	25	75-125	20
Metals by 6010B	Antimony	0.1	100	25	75-125	20
Metals by 6010B	Arsenic	0.01	10	25	75-125	20
Metals by 6010B	Barium	2	20	25	75-125	20
Metals by 6010B	Beryllium	0.005	5	25	75-125	20
Metals by 6010B	Cadmium	0.01	10	25	75-125	20
Metals by 6010B	Calcium	Not Available	1000	25	75-125	20
Metals by 6010B	Chromium	0.10	10	25	75-125	20
Metals by 6010B	Cobalt	Not Available	20	25	75-125	20
Metals by 6010B	Copper	1.3 (s)	20	25	75-125	20
Metals by 6010B	Iron	Not Available	50	25	75-125	20
Metals by 6010B	Lead	0.015	5	25	75-125	20
Metals by 6010B	Magnesium	Not Available	600	25	75-125	20
Metals by 6010B	Manganese	0.05 (s)	15	25	75-125	20
Metals by 6010B	Mercury	0.002	0.5	25	75-125	20
Metals by 6010B	Nickel	Not Available	20	25	75-125	20
Metals by 6010B	Potassium	Not Available	5000	25	75-125	20
Metals by 6010B	Selenium	0.05	10	25	75-125	20
Metals by 6010B	Silver	0.10 (s)	10	25	75-125	20
Metals by 6010B	Thallium	0.002	10	25	75-125	20
Metals by 6010B	Vanadium	Not Available	20	25	75-125	20
Metals by 6010B	Zinc	5 (s)	10	25	75-125	20
Gross alpha by 900.0	alpha	See table A-1	1.0 piC/L	25	75-125	20
Gross beta by 900.0	beta	See table A-1	1.0 piC/L	25	75-125	20
903.1	Ra-226	See table A-1	1.0 piC/L	25	75-125	20
904.0	Ra-228	See table A-1	1.0 piC/L	25	75-125	20
Isotopic Th by HASL 300 Th-01-RCmod	Th-238, 230, 232	See table A-1	1.0 piC/L	25	75-125	20
Isotopic U by HASL 300 U-02-RC mod	U-233/234, U- 235/236, U-238	See table A-1	1.0 piC/L	25	75-125	20

Key: RPD = relative percent difference; mg/L = milligrams per liter; $\mu/L = micrograms$ per Liter NA = Not Applicable

⁽s) = National Secondary Drinking Water Regulation not enforceable and not an action limit for this assessment

Engineering/Remediation Resources Group, Inc.

EXPENSE REPORT

Employee Name:	Traves Young	Week Ending:	January 11, 2011	
Vendor No.:		l ocation:	Martinez	Ξ

Signamore: 11000	1/11/2011
(Finglegier)	(Date)
(Species of h)	(Date)

	ļ ·,	Project Name		Billable?	l	Auto-6	SET WILL		history with	L'matterrable							ERRG	
Date	Project	Phase	Task	(V)(N)	Air Fare	Miles	Amoust	Ground Transpostation	Leelying, Maste & incatemate	Leighten Meale A Insidentals	Business Meals	Ref.	Enterfolomental & Unafficientides	Other	Rejet D	cseffglinn	Credit Card Charges	TOTAL
							50/4mi,		Athing #3.tz) Nicolanda American	Dist	DIKT 19	Correction	1	TOTAL
		Project Namile				2410.3	, <u>201</u> 2484,	1 _ 1		1 astionship							ERRG	
		T		Billable?	Air		r	Ground	Longing, Mean	Leoging, Meals	Business		Evitetydanium		,		Credit Card	
Date	Project	Phase	Task	(X) (N)	Fare	Miles	Amount	Transportation	& Incidentals	& Incidentals	Meals	Re£	& Unalleraldis	Other	Brief th	escription	Charges	TOTAL
12/13/2010	2010-034	02	02	N		 		ļ				a			Lube			4,91
11/30/2010	2010-034	02	02	N		<u> </u>						b		·····	H & S Water			31,14
12:1/2010	2010-034	- 02	02	N	<u> </u>							a			Rope			9.56
12/6/2010	2010-034	02	02	N						i.		b			Sampling Sup	plies		13.03
12/8/2010	2010-034	02	02	N								a			Hilti Chisi bit			59.59
12/9/2010	2010-034	0.2	02	N								a	*		Const. Supple			31.63
12/22/2010	2010-034	02	02	N								a			Const. Supple			39.24
12/16/2010	2010-034	02	02	N				 										
12/8/2010	2010-034	02		·		 				1		a			Const. Supple	(56.51
*****			02	N	 	 		 	**************************************			11			TrucksStraps			30.50
1/4/2011	2010-034	02	02	N								f_		ļ	(2) Toll			10,00
12/6/2010	2010-034	02	02	N	ļ	<u> </u>				ļ		d			Fuel	L		75.00
12/1/2010	2010-034	02	02	N				ļ				a			Tri-Wall Pall	ets		60.09
12/21/2010	2010-033	03	04	N								e			Formwork W	aste Dissposaf		39.25
12/21/2010	29-209	02	04	Y								e			CMP Disspos	al		30.00
otáls ·															Sub(nyals			490.45
	Ph-1-(-)							_	1									
	Date(5)	and/or Tust	3(3)		Kerevence	Business Purpo	w. Cases, Crant	VESY, etc.	······································			1	LESS: COMPAN	Y PAID EXPL	NSE (Credit Can	d Cligs)		
12/13/2010	1	1	1	1						_			·					
12/13/2010	1	02	02	N	a			or excessing soil	- Hillory			-	LESS: ADVANCE	E or OTHER C	DFFSET(S)			
12/6/2010	2010-034 2010-034	02 02	02	N N	<u>b</u>	Health and Sale	HATELEN AND CONTRACTOR OF THE PARTY OF THE P					-						too 45
12/8/2010	2010-034	02	02	N N	С	Sampling Supp	20.7888520205200AS					-	AMOUNT DUE A	ASSOCIATE				490.45
12/9/2010	2010-034	02	02	N N	а		2012/02/2008/2008/2009	or excavating soil				1						
12/22/2010	2010-034	02	02	N N	2			recording soil				-	1					
12/16/2010	2010-034	02	02	N	a		4/2004000000000000000000000000000000000	or excavating soil										
12/8/2010	2010-034	02	02	N	a		egeunggestanger i Azarbahan Paris beri	M excataling soil	*****			1						
1/4/2011	2010-034	02	02	N	f	Tell Fee	MANUAL PROPERTY OF	,				1	Į.				1	
12/6/2010	2010-034	02	02	N	d	Fuel for ERRG	Pielen					1	Í					
12/1/2010	2010-034	02	02	N	a			or excavating soil		· · · · · · · · · · · · · · · · · · ·		1						
	2010-033	0.3	04	N N	e	Recycling Cont	272.02004.030074.00006					1 .	ļ					
12/21/2010			04	Y	e	Recycling Cent	A CONTRACTOR OF THE PARTY OF TH			······································		1						
12/21/2010	29-209	02					CONT					1	AMOUNT DUE	TOMPANY				
	29-209	02																
	29-209								······································			1	A-MOUNT BULL		1		i i	
	29-209	U2											11-100NT BODY					
	29-209	UZ	La		G, MEALS/A	PER DIEM AND	INCIDENTALS	DAILY ACTIVITY					11/10/11 100		ALLOWARIE 1 54	COMPUTATION		
		ect Charge Nu	_		G, MEALS/I		INCIDENTALS I	DAILY ACTIVITY			Total			UN.	ALLOWABLE LM	1	Allew	Unallow
			_		G, MEALS/			ı	Daily Per Dies	Sucidentala	Total		Total	UN.	Adj.	FTR	Allow.	
12/21/2010 Date	Proj Project	eel Charge Nu	maher			Ments	er Partial Per Die	m Detail	Daily					UN.	Adj.	1	Allow.	Unallow.
12/21/2010	Proj Project	eel Charge Nu	Task Task	u - 1 ODGIN		Ments	er Partial Per Die	m Detail	Daily	facidostala			Total	UN.	Adj.	FTR	1 1	
12/21/2010	Proj Project	eet Charge Ni	Task Task	u - 1 ODGIN		Ments	er Partial Per Die	m Detail	Daily	[ecidestals			Total	UN.	Adj.	FTR Dally Limit	1 1	

Water Sources in Church Rock Area Sampled in 2003 by CRUMP Water Assessment Team

Well #	Well Name	Chapter	Latitude	Longitude	TRS Coordinates	Formation	Well Type	TD (ft)	Use(s)
Grey	Annie Grey	Pinedale	35,37 457	108,30 670	16 16 14 1111	Qal	dug, HP	8	LS, DOM
Solar	Solar St	Church Rock	35,32 158	108,35 753	15 17 13 1	Qal?	drilled, HP	unk	LS
14K-313	Brown Bull	Coyote Cyn	35,39 982	108,34 113	17 16 32 or 29	Kg	drilled, WM	622	LS, DOM
14K-586	Friendship I	Coyote Cyn	35,39 432	108,30 557	17 16 35	Kmv or Kg	drilled, PWS	750	abd-CWS
15K 202	Pipeline Cyn	Standing Rk	35,40 277	108,28 698	17 15 29 421	Kg	drilled, WM	614	LS
16-4-10	Lime Ridge	Church Rock	35,34 315	108,34 633	16 16 31 33	Jmw?	dug, HP	<1	LS, DOM
16K-336	Puerco No Fork	Church Rock	35,34 362	108,38 202	16 17 33 4223	Qal	drilled, WM	122	LS
16K-340	Windmill Cluster	Church Rock	35,35 582	108,35 890	16 17 25 1132	Qal	drilled, WM	141	LS
16T-348	-Lobo Valley	Pinedale	35,37 178	108,27 195	16 15 17 1431	Kd	drilled, WM	410	LS
16T-534	Superman Cyn	Church Rock	35,35 818	108,38 675	16 17 21 344	Jmw	drilled, WM	410	DOM, LS
16T-559	Coal Mine/ Henry's	Church Rock	35,27 560	108,39 207	15 17 33 43	unk	drilled, WM	unk	LS
16T-606	King Ranch	Church Rock	35,36 998	108,33 237	16 16 17 411	Kd	drilled, WM	417	LS
16T-608	Yazzie Family	Church Rock	35,31 123	108,38 332	15 17 21 4	unk	drilled, WM	unk.	DOM, LS

Following Pages

Summary of General Chemistry
Summary of Heavy Metals
Summary of Radionuclides
Complete field chemistry reported by NMED
Complete radionuclide analyses reported by NMED
Complete uranium analyses reported by USEPA

Abbreviations and Symbols

TRS = Township, Range, Section

TD = Total Depth of well, in feet, unk = unknown depth

Uses abd-CWS = abandoned community water system, DOM = domestic, LS = livestock,

Type HP = hand pump, WM = windmill

Formation Qal = alluvium, Kd = Dakota SS, Kg = Gallup SS, Kmv = Mesa

Verde, Jmw = Morrison/Westwater

NNEPA = Navajo Nation Environmental Protection Agency

USEPA = US Environmental Protection Agency

Summary of General Chemistry

Well#	Sampling Date	Dissolved Solids (mg/L)	Calcium (CaCO ₃)	Magnesium (mg/L)	Potassium (mg/l)	Sodium (mg/L)	Total Hardness	Chloride (mg/L)	Sulfate (mg/L)	pH (Units)
		Solids (mg/L)	(CaCO ₃) (mg/L)	(mg/L)	(mg/i)	(mg/c/	(mg/L)	(111g/ <i>L</i> /	(mg/L)	
USEPA or I	NNEPA MCL	500	75-200	none	none	none	500	250	250	6 5-8 5
Lab		NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	field
Grey	10/28/2003	553 5	376 0	(???) -36	6 69	24 1	240 0	4 5	305 0	7 72
Solar	10/29/2003	561 8	38 0	1200	4 00	27 9	148 0	4 64	352 0	8 61
14K-313	10/29/2003	1,095 0	640 0	440 0	4 36	105 0	1,080 0	107	1,070 0	8 31
14K-586	8/5/2003	2,136 0	251 8	125 1	7 10	143 1	1,143 9	19 1	1,097 2	8 07
15K-303	10/28/2003	3,043 0	980 0	(222) -940	5.97	191 0	40 0	12 1	1,940 0	8 13
16-4-10	10/29/2003	237 5	152 0	32 0	1 61	8 37	184 0	143	27 1	7 45
16K-336	10/29/2003	887 6	200 0	88 0	2 84	207 0	288 0	20 9	122 0	8 05
16K-340	10/29/2003	1,469 0	420 0	180 0	3 65	256 0	600 0	25 5	419 0	8 16
16T-348	10/29/2003	660 9	40	80	0 86	222 0	120	3 48	155 0	9 63
16T-534	10/29/2003	811 8	132 0	76 0	3 00	179 0	208 0	80	314 0	8 67
16T-559	10/28/2003	498 4	120	15 0	1 71	162 0	27 0	4 59	148 0	8 87
16T-606	10/28/2003	3,500 0	196 0	1,740 0	6 91	245 0	1,940 0	23 3	1,130 0	7 45
16T-608	10/28/2003	1,015 0	24 0	36 0	0 86	390 0	60 0	251 0	134 0	8 82

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level, mg/L = milligrams per liter, NMSLD = New Mexico Scientific Laboratory Division, NTUA = Navajo Tribal Utility Authority, ??? = data are questionable

Summary of Heavy Metals and Aesthetic Parameters

Well#	Sampling Date	Arsenic	Cadmium	Chromium	Copper (mg/L)	Lead (mg/L)	Nickel	Selenium	Fluoride	Iron (m = f) \
	· [g	(mg/L)	(mg/L)	(mg/L)	Coppor (mg/L)	Lodd (Mg/L)	(mg/L)	(mg/L)	(mg/L)	Iron (mg/L)
USEPA or	NNEPA MCL	0 010	0 005	0 05	13	0 02	01	0 05	1 6 (WQCC)	0.3
Lab		NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	NTUA	field*	freld*
_	`				, ,					•
Grey	. 10/28/2003	<0 005	<0 0002	<0 001	<0 02	0 001	<0 04	<0 005	0 92	0 01
Solar	10/29/2003	<0 005	<0 0002	<0 001	0 062	<0 001	<0 04	<0 005	0 32	4 10
14K 313	10/29/2003	<0 005	<0 0002	< 0 001	<0 02	<0 001	<0.04	<0 005	1 34	0 54
14K 586	8/5/2003	0 008**	<0 001**	<0 001**	<0 1**	<0 001**	<0 1**	<0 005**	not tested	5 10**
15K 303	10/28/2003	<0 005	<0 0002	< 0 001	0 026	< 0 001	<0.04	<0.005	1 60	0 68
16 4 10	10/29/2003	<0 005	<0 0002	< 0 001	<0 02	<0 001	<0.04	0 043	0 58	0 10
16K 336	10/29/2003	0 006	<0 0002	<0.001	<0 02	<0 001	<0 04	<0 005	1 03	2 00
16K 340	10/29/2003	<0 005	<0 0002	<0 001	<0 02	< 0 001	<0 04	<0 005	0.71	0 40
16T 348	10/29/2003	<0 005	<0 0002	<0 001	<0 02	< 0 001	<0 04	<0 005	0 47	0 02
16T 534	10/29/2003	<0 005	<0 0002	<0 001	<0 02	<0 001	<0 04	<0 005	0 44	0 49
16T 559	10/28/2003	<0 005	<0 0002	<0 001	<0.02	<0 001	< 0 04	<0 005	0 64	0 07
16T 606	10/28/2003	<0 005	<0 0002	< 0 001	<0 02	<0 001	<0.04	<0 005	1 16	3 28
16T 608	10/28/2003	<0 005	<0 0002	<0 001	<0 02	<0 001	<0 04	0 006	1 96	0 12

^{*}field tests by New Mexico Environment Department

Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level mg/L = milligrams per liter NMSLD = New Mexico Scientific Laboratory Division NTUA = Navajo Tribal Utility Authority WQCC = N M Water Quality Control Commission groundwater standard ??? = data are questionable

^{**}lab results reported by NMSLD

Summary of Selected Radionuclides*

Well#	Sampling Date	Gr Alpha (U	Gr Beta	Radium 226	Radium 228	Total	Uranıum
		Nat Ref)	(Sr/Y 90	(pCi/L)	(pCi/L)	Uranium	mass (ug/L)
		(pCt/L)	Ref)			(pCi/L)	
			(pCı/L)				
USEPA or	NNEPA MCL	15	none	combi	ned 5 0	none '	30
	10/00/000	→ ^	2.5				
Grey	10/28/2003	7 20	9 40	0 10	0 40		14 84
Solar	10/29/2003	nd	4 40	0 08	0 20	0 16	0 24
14K 313	10/29/2003	nd	4 40	0 04	0 50	0 04	0 05
14K 586	8/5/2003	10 80	14 90 ^v	2 60	not tested	not tested	3 00
15K 303	10/28/2003	4 00	9 00	0 47	1 50	0 46	0 69
16 4 10	10/29/2003	44 10	26 0Ò	0 33	0 70	46 48	69 37
16K 336	10/29/2003	5 90	4 40	0 83	0 30	0 38	0 57
16K 340	10/29/2003	nd .	4 90	0 40	0 40	1 96	2 92
16T 348	10/29/2003	nd	1 60	nd	0 60	0 20	0 29
16T 534	10/29/2003	nd	2 70	0 20	0 50	0 10	0 15
16T 559	10/28/2003	nd	1 50	0 05	nd	0 06	0 09
16T 606	10/28/2003	40 00	20 40	8 34	0 80	4 68	6 99
167 608	10/28/2003	5 40	nd	0 04	1 40	3 86	5 76

^{*}All samples except for 14T 586 analyzed at USEPA lab in Las Vegas NV 14T 586 analysis at N M State Laboratory Boldface numbers indicate values exceeding standards

Abbreviations MCL = maximum contaminant level pCi/L = picoCuries per liter

CHEMICAL GROUND-WATER ANALYSES OF TRIBAL WELLS AND SPRINGS OPERATED BY:
THE GROUND-WATER DEVELOPMENT AND SHALLOW WELL AND SPRING DEVELOPMENT DEPARTMENTS (continued)

Quad.	NE-Corner	# or Co	ate SiO ₂ ol- ect	Ca Par	Mg ts F		1CO ₃ CO ₃		Cl.	F NO3	Hard- ness ppm	Dis- solved Solids	Conduc-p tance		Geological Formation
*							Distri	ct 16	(conti	nued)					
106	0.55 x 16.15 1 5.35 x 14.70 1 7.60 x 12.10 1 5.45 x 10.80 3 12.92 x 10.30	L6B-40A L6K-336 L6K-340	5/50 11 2/64 9/53 5 6/54 12	356 8 80	236 19	24 ¹ . 227 264	247 0 220 0 776 0 890 0 458 52	596 385 91 314	5 20 26 24 10	.23 1.4 .3 .6 13	779 592 278 528	1010 1125 832 1250	1330 1810	3.1	Glorieta Glorieta Alluvium Alluvium Crevasse Canyon
	4.65 x 12.80		8/49		1		153 0	L)	8				268		Westwater Canyon
107	4.60 x 10.00		8/53 5	5.1 20	11	262	498 11	210	12	.0 1.9	95	778	1580		Menefee
	8.55 x 16.70 4.75 x 7.20 0.25 x 8.55	16-18 16T-339 16T-524	8/54 1 ¹ 11/53 12/53	4 48	3 13	157	364 0 310 67 548 55	138	13 8 9	.5 .2	174 14 50	613		8.8 8.4	Gallup Menefee Menefee+ Crevasse Canyon
108 119 120	10.50 x 10.00 12.05 x 5.55	16-2-8 16T-521 16B-39 16-5-9	3/50 11/63 1 12/48 3/53		9 1.5	5 204 5 141	590 0 416 0 244 16 114 0	2430 124 54	15 19 1650	2.0 .7	7 54 5 5 373	581 353	4320 912 576 13400	7.9	Iandslide Entrada Sonsela Petrified Forest, & Upper
	7.75 x 4.50	San . Antone	11/48	<i>A</i> -	2.0 3.3	3 219	436 0	77	33	1.2 8.	5 18	559	881		Wingate (Rock Point)
121 123	0.50 x 4.55 0.35 x 3.40	Spr. 16T-529 16K-321 16-4-20	3/64 5/51]	7.1 1 LO 5	0 2.1	4 147 287		92 314	44 30	.8 · 1.6 ·	0 35 8 231		687 1560	8.2	Glorieta Gallup

			marine,	LUCA	TOM SITS		sul!		
TRIBAL	WELL NO	116KI-134	ol III			Nt	PWSI	, CIIII	
WELL N	Næ/other	но ППП)	
WEL:	L TYP	E	WELL (MA	S T	A T U S		W E L I	USE ONLY ONE)	
MM X	WATER WE	LL	风 🗚	T ACTI	JE .		Mod [DOMESTIC	
☐ WA	ARTESIAN	WELL	, 🔲 IN	A INAC	rive		AGR	AGRICULTUR	£
☐ ws	SPRING		AB	A ABANI	DONED		🗵 LIV	LIVESTOCK	
ая [NATURAL	Spring	UN	K unkn	нис		IND	INDUSTRIAL	MINING
☐ ow	OBSERVAT	ION MELL					REC	RECREATION	
☐ cs	GAS WELL	•					MON	HUNICIPAL	
□ OP	OIL PROD	UCTION					HTO [other	
MM []	HINERAL	WELL					UNK	UNKNOW	
☐ xx	UNKHOWN				•				
QUAD E	10 526E	3	HILES W	est 🔲	Т.П		HILES	SOUTH TT	TII
ne si			SW NW /	NE SE 160	SW NW	SECT.	TOWNS	HIP W	RANGE
	CIMATE LO	CATION 2 M	WW 6		III CL	550n			
LATIT				ONGITUD		Irlslahi TTTT	<u>I Kalvle</u>	<u> </u>	1 1 1 1
	OORDINATES		<u>.</u> 2141716161		Y (NOR	TE 39	411251	1	ব্য
OPERA:		be low			I (NOX GS WATERS			10002 00060000	
STATE		ARIZONA		EW MEXI	i	\Box		П	-
COUNT		APACHE	ল	CKINLEY		<u> </u>	TAB	Co coro	
COORE		NAVAJO	$\overline{\Box}$	ALENCIA	!	$\overline{\Box}$	AN JUAN	MT KONTI	
		COCONINO	$\overline{\Box}$	ERNALLI	FTA	∐ KA K	ANE	LIP IA PI	LATA
		COCONZEO	$\overline{\Box}$	ANDOVAL					
				OCORRO				[717)
				IO ARRI			CKV211	G DISTRICT	<i>[</i>]6]
			S	AN JUAN	~~				
	_	CHURCH		4 -				R CODE Chi	vr
LOCAT	TION DATA	SOURCE: We	U/1 15/1.	KKVIFI ,	CIDI 1014	1111111	13/19/5		
		COMPLETED BY:		<u> 1/m.</u>	1. Johns	12 L	D	TE <u>41/8</u>	1 95
FIELE	CHECKED 1	BY: GRAM	sle[/]	ohns	<u>oln</u>			TE 03 / 30	

TRIBAL WELL NO 16/11/3/10	STARTED 6/	1954 COMPLETED 6 1 23/1954					
ELEVATION 66812	FT DEPTH / 14/	DEPTH MEASURED//_					
DEPTH IS MEASURED	ESTIMATED EPORTED	WELL DIA. [10].000 IN					
1 CASING DIA 181.1612	FROM -0, 125 FT TO	1/4/ FT NATL SITE					
2 CASING DIA	FROM TO	FT NATL					
3 CASING DIA	FROM TO	FT HATL					
4 CASING DIA		irn=iron mon=monel					
1 CASING PERFORATED FROM	1/0/ PT TO 1/5	FT OPENING TYPE P					
2 CASING PERFORATED FROM	70 TT	T PT OPENING TYPE					
3 CASING PERFORATED FROM	PT TO T	T PT OPENING TYPE					
4 CASING PERFORATED FROM	FT TO	T PT OPENING TYPE					
S CASING PERFORATED FROM FT TO FT OPENING TYPE OPENING CODES: f=fractured rock l=louvered/shutter-type screen m=mesh screen p=perforated/porous/slotted casing r=wire-wound screen s=screen/type unknown t=sand point w=walled/shored x=open hole							
z=other DATE WELL TURNED OVER TO TRI	np. / /						
FUNDED BY:	CONTRACTOR	: Pl. H. Dunning					
SITE IMPROVEHENTS	TYPE OF LIFT	Energy Source					
X MM MINDHILL	AL AIRLIFT	EN ELECTRIC HOTOR					
W WATERING POINT	PS PISTON	DE DIESEL ENGINE					
X TA TANK	TU TURBINE	HA HAND					
WL WATER LINE	MT MULTIPLE TURBINE	GS GAS ENGINE					
TR TROUGE	CN CENTRIFUGAL	LP LP GAS ENGINE					
cs cistern	MC MULTIPLE CENTRIFUGA	L					
HP HAND PUMP	D BU BUCKET	WH WINDHILL					
NO NONE	SU SUBHERSIBLE	SO SOLAR					
PUMP EP ON S	PUMP HP TTT ON SITE STORAGE CAPACITY 27, 1900 GAL						
STRUCTURE DATA SOURCE: WE							
STRUCTURE FILE COMPLETED BY: revised 08 April 93	GKinsel/M.J. Johnson	DATE 4/18/195 /dbase/vells/200/5:1-2021.v7					

TRIBAL WELL NO 1618-3140	USGS AQUIFER CODE HHOHWAB						
THICKNESS FT NOMINAL YIELD TO BAILER PUMP TEST & 33.3 GPM FO	GPM YIELD HEASURED//						
HORIZ CONDUCTIVITY FT/DAY VERT. CONDUCTIVITY FT/DAY COEF OF TRANSHISSIVITY FT2/DAY							
INDICATE ADDITIONAL PUMPING TEST DATA AVAILABLE AS HARD COPY: TES NO HULTIPLE RATE DRAWDOWN PUMPING TEST TES NO HULTIPLE RATE DRAWDOWN/RECOVERY TEST TES NO RECOVERY TEST							
LOG AVAILABLE: DL DRILLER'S EL HYDROLOGY DATA SOURCE: WELL FILE MUS BYDROLOGY FILE COMPLETED BY: GKinsel M.J. STATIC WATER	65 4174 606 DATE 418195						
DEPTH TO SWL 30.5 FT DATE 6/6/1754 DEPTH TO SWL 37.5 FT DATE 6/23/1954							
DEPTH TO SWLFT DATE/	DEPTH TO SWL						
	DEPTH TO SWL FT DATE/						
DEPTH TO SWL/	DEPTH TO SWLFT DATE//						
DEPTH TO SWLFT DATE/	DEPTH TO SWLFT DATE/						
DEPTH TO SWLFT DATE/							

GEOHYDROLOGIC UNITS

TRIBAL WELL NO 16K-		************	
SEQ-NO OOF DEPTH TO TOP	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITH. Slawd
CONTRIBUTING UNIT CODE		R ISPRIT	
SEQ-NO TOP	DEPTH TO BOTTOM	GEOHYDRO-UNIT	LITE.
CONTRIBUTING UNIT CODE	: []	***********	美家软件食品 医环络 经延迟 经销售 电电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电子电
SEQ-NO DEPTH TO TOP LITEOI CONTRIBUTING UNIT CODI	DEPTH TO BOTTOM COGIC HODIFIER	GEOHYDRO-UNIT	LITE.
CONTRIBUTING UNIT COD	DEPTH TO BOTTOM LOGIC MODIFIER		LITH.
CONTRIBUTING UNIT COD	DEPTH TO BOTTOM LOGIC MODIFIER E	GEOHYDRO-UNIT	LITE.
INTERVAL FILE COMPLETED revised on April 93	BY: M. J. Johnson	DATE /dbase/w	18 195 118/60c/1nt-rors.vp

TRIBAL WELL NO 1/16/11-13/4/10	
PERTINENT COMMENTS: <u>available</u> Drillers/08	WATER QUALITY Data short hoped
USGS <u>Lithologie lag + laspet</u> Reported <u>Perforations: "2 botton</u> jou	tion Roport, ALL IN WELL FIRE., (ASSUMED 20 FT JOHTS).
Reported Perforations: "2 hotton jou	115 the 6911 20 or 27,3
	unberg Under Ground waterline
	WP. Concrete Pad for Troughs,
But Trough Removed, WP ~	75 North of well
Another Concrete Trough 1	Pad Located immediately South
of well, takenown ste	Arie Log Georytheologie anis
From Duller's LOG.	
·	
N LOCATION COORDINATES MEASURED WIT	TH GPS DEVICE SATELLITES VISIBLE
LOCATION COORDINATES PICKED OFF	
ELEVATION PRINTED ON TOPO HAP -Se	CALE 1/24,000
ELEVATION HEASURED WITE GPS UNIT	-4 SATELLITES VISIBLE
ELEVATION INTERPOLATED FROM 1:24	000 TOPO
THE IMPROVEMENTS AT THIS SITE ARE:	
IN GOOD CONDITION	NEED SOME HAINTENANCE
IN FAIR CONDITION	NEED MAJOR HAINTENANCE
IN POOR CONDITION	
STORAGE TANK IS OVERED	UNCOVERED
COMMENTS BY: GK, WSO /MS. Jo.	hnson DATE 418195 /dase/vells/doc/con-tocs.sp

PUMP HP

	RIBA	L WELL REC	<u>o .</u>	
TRIBAL WELL NO 16	K-340 17-131401111	FIELD REPORT	PWSID	
WELL NAME/OTHER NO				
WELL TYPE (MARK ONLY ONE)	WELL (MAR)	STATUS (ONLY ONE)	WELL (MARK (USE ONLY ONE)
Www water well	X ACT	ACTIVE	Д ром	DOMESTIC
WA ARTESIAN WEI	LL INA	INACTIVE	AGR	AGRICULTURE
WS SPRING	ABA	ABANDONED		LIVESTOCK
 NS NATURAL SPR	ing unk	UNKNOWN	OMI 🗍	INDUSTRIAL MINING
OW OBSERVATION	WELL		REC	RECREATION
GS GAS WELL			MUN .	MUNICIPAL
OP OIL PRODUCT:	ION		□ отн	OTHER
MW MINERAL WELL) j		UNK	UNKNOWN
XX UNKNOWN	;			
APPROXIMATE LOCATIO				(2) 2 (20, 1070)
QUAD NO 151216121	QUAD NAME(Huree)	H ROCK, NIM	QU	AD YEAR <u>1963 (PR-19</u> 79)
UTM COORDINATES: 2	K(EAST) 717664	Y (NORTH) 3	1941251	ZONE 12
OPERATOR: X TRIBE	O&M NTUA	BIA HOPI OTHER		UNKNOWN
FIELD CHECKED BY:	GIKI NISEL/10	MMS10 M	DA	MTE <u>03 / 30 / 95</u>
ELEVATION 6672	FT DEPTH		DEPTH MEASU	RED/
DEPTH IS MEASU	red <u>E</u> stimated	<u>R</u> EPORTED	Casing Well Di	18 . 8 . 8 I IN
SITE IMPROVEMENTS	TY	PE OF LIFT	ENE	RGY SOURCE -0.25 FT
WM WINDMILL	AL	AIRLIFT	EM I	ELECTRIC MOTOR
WP WATERING PO	int 💹 ps	PISTON	DE I	DIESEL ENGINE
WM WINDMILL WP WATERING PO	or o	TURBINE	<u></u> на г	HAND
WL WATER LINE	☐ mt	MULTIPLE TURBINE	GS C	gas engine
TR TROUGH	☐ CN	CENTRIFUGAL	∏ LP 1	LP GAS ENGINE
cs cistern	□ мс	MULTIPLE CENTRIFUGAL	. Ing 1	NATURAL GAS ENGINE
HP HAND PUMP	☐ Bū	BUCKET	MM X	WINDMILL
NO NONE	∏ sʊ	SUBMERSIBLE	so :	SOLAR

ON SITE STORAGE CAPACITY 27900 GAL

100

alan Var

(OVER)

•		
24	•	•

NOMINAL YIELD GPM	CLD MEASURED//
BAILER DUMP TEST 6	GPM FOR HOURS DATE//
	OBSERVATION WELL DATA AVAILABLE YES NO
DEPTH TO SWLFT DATE	_// DEPTH TO SWLFT DATE//
PERTINENT COMMENTS:	
11815 16 16 C. Warret	DN CONCRETE BASE. TANK LABELLED WITH WELL NUMBER
WP ~ 75' NORTH OF WELL	
ANOTHER CONCRETE TREASH PRO	LOCATED IMMEDIATELY SONTH OF WELL.
<u>~</u>	O WITH GPS DEVICE SATELLITES VISIBLE DFF TOPO MAP -SCALE=
ELEVATION PRINTED ON TOPO MAI	? -SCALE= /: 24,000
ELEVATION MEASURED WITH GPS (UNIT -4 SATELLITES VISIBLE
ELEVATION INTERPOLATED FROM	L:24000 TOPO
THE IMPROVEMENTS AT THIS SITE AF	RE:
IN GOOD CONDITION	NEED SOME MAINTENANCE
in fair condition	NEED MAJOR MAINTENANCE
IN POOR CONDITION	
STORAGE TANK IS OVERED	UNCOVERED
	PHOTO
	K E T
*POSSIBLE COMMENTS: HOW WAS YIELD, SWL, STORAGE CAPACITY DETERMINE? ACTUAL DIMENSIONS OF STORAGE	H O R C
DEVICE(S)? /dbase/wells/doc/Field-Form.wp revised 07 April 93	M M E N T

1.6-1-5-

WELL RECORD

Water Well Development Navajo Tribe Window Rock, Arizona

WELL NO. 16K-340

Quad. No	106	Mil	les west	5.45	Mil	es south	10.80	
Sprin	stead !	Trailer S	chool -	2 miles	NW of K	it Carson	Cave	
Location								
				Finish	ed well	June 6,	1954	" .' .1
Diameter o				Depth				······································
Static wate	r level	30.5'	D	rawdown	681	Recover	у	
		test run: bai						
Kind of cas	sing: 8-5/	8" x 145	izes and len	gth				
To Screen kind	orch Cu	t Perfor	ations 2	bottom	joints 1	Mesh		
		Dunning						
Di	EPTH			LOG				
From	To	F	omation		Acquifer		Remarks	
0	15	Surfac	ce soil				**************************************	······································
15	41		andy so	il				
41	55	Buff o	clay					
55	70	Blue c	lay					
70	85			ay Allu				
85	140			s of cla	y – wate	r		
140	141	Blue o	lay					
	<u> </u>							
		. 1						
								
····	,							***************************************
								*
					<u> </u>			
								· · · · · · · · · · · · · · · · · · ·
	<u> </u>							
Remarks:	Drawdov	vn 68' f	rom W.L	. 37.5			-	
S.P.								·
Tera Salts	Calcium Ca.	Magnesium Mg.	Sodium Na.	Chlorides CL	Sulfates SO 4	Carbonates HCO 3	P.H.	CO 3
Excellent	Good	Fair	Poss	Darke				
	~~~	- an	Poor	Doubtful	inot an	itable for dor	nestic, lives	tock use

NTRD - 61

### WELL RECORD

WELL NO. 16K-3140

Water Well Development Navajo Tribe Window Rock, Arizona

								il mir	
Quad. No	106 (	4 5E	Mile	s west	5,5	N	Iiles south	11.05	
	steed Trail	er Sch	ol - 2 r	niles W	Kit Car	ion Coa			
Location									
Began wel	ll			<del></del>	Finished v	rell	6 + 6 + 54	<u> </u>	
Diameter	of well		}t1		Depth of	well	141		
Static water	er level	······································		_ Drawdo	wii		Recovery at 100*		
Quantity o	of water on to	est run:	bailer: p	ump:	<u> 20</u> G	Э.Р.М. Т	ested for		hours
Kind of ca	sing: <u>8 <b>5/</b>8</u>	" × 141	Siz	es and le	ngth				
Screen kind	Torch cut	<u>perfor</u> :	<u>viiФю</u> ngth	2 bott	on joint	M	lesh		
Contractor	P. H. Du	nning		A	idress			······································	
				LOC	<u>.</u>				
a	EPTH			1,00	•				
From	То	. J	Formation		Acquifer		Ren	narks	
0	15		ce soil						
15	43.	Sort	sandy s	211					
ų	55	Built	Clay				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,
55	70	Prive	oral				***************************************		
70	85	Blue	sandy c	ley					
85	140			es of cl	ey - vata	X			
140	341	Elue	clay						
AND PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	d distributed by the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t								
									harman and a second
		-							
					· · · · · · · · · · · · · · · · · · ·				
Remarks:		-					4-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
S.P.				things to the fermion of feet and explorations on the second	**************************************				
	Calcium Ma Ca.	gnesium Mg.	Sodium Na.	Chlorid Cl.	es Sult	ates	Carbonates IICO 3	P.H.	CO 3
							3		
Excellent	Good	Fair	Poor	Doubtfu	l Not	suitable	for domestic	, livesto	ock use



TABLE 2.6-2

SELECTED CHEMICAL ANALYSES OF GROUND WATER IN THE VICINITY OF PROPOSED MILL SITE

(constituents in parts per million unless otherwise noted)

Friends L.P

•	Location number and name	Number BIY	(a) Aquifer	Date Sampled	Silica	Calcium	Kagnesium Kg	Sodium plus potassium Na + K	Bicarbonate HCO ₃	Carbonate CO3	Sulfate SO4	Chloride Cl	Fluoride	Nitrate . NO3	Total dissolved solids	Conductance
	16 15 20		Qal	8-1949	12	72	14	13	258	0	43	4	0.6	2.2	288	480
	16.15.20.		Qal	5-1950	15	12	13	8	160	0	40	2	0.2	0.1	199	331
	20.234 Pinedale TP		Km7	8-1949	12	170	55	161	359	0	590	50	0.4	24.0	1240	1710
	16.16. 1.112	16K-319	Kd	6-1955	14	1,6			518	39	74	8	1.4	1.5	658	1050
	16.16. 6.112	14N- 70	Kcd	5-1955	1.8	57	20	0.9	130	0	102 .	9	0.4	0.0	271	436
	16.17.25.113	16K-340	Qal .	6-1954	12	139	44	264	890	0	314	24	0.6	13.0	1250	1810
	16.17.33.422 01 14K303	16K-336	Qa1	9-1953	5.8	80	19	227	776	0	91	26	1.4	0.3	832	1330
	19415730.391		man lidinamento.	WF671955		157	W8 977	3504 MA	297		95207	700	244	C20056	2450	31.20"
	17.16.32.112 · Brown B. 11	,14K-313	Kg	5-1955	17 .	218 5	99	-i-72 · -	Z/1					نـ0 ، 0 محد	in 1390	1760°
/	17.16.35. Kerr HoGee Min		Jinw	111973	. 17	11	8.	4 131.6	220	21	110	3.6	0.3	***	412	663
	17.17. 7.233	14A- 79	Kcd	6-19-19	-	3	0.	9 105	409	0	38	4	0.2	0.5	268	455
	17.17.16	141- 14	Qal	5-1955	~~				407	0		32	1.2	0.3	530	3370
	3//3/19/26		20							•						
	Applicant's Mine		Jmw	11-1973	. 17	2.2	0.	3 121.4	215	31	45	5.2	0.2	-	329 .	550

14K303 Should be 15T:503

⁽c)
Aquifers: Qal, alluvium; Kcc, Crevasse Canyon Formation; Kcd, Dalton Sandstone Mbr., Crevasse Canyon Formation; Kmf, Menefee Formation; Kpl, Point Lookout Sandstone; Kg, Gallup Sandstone; Km, Mancos Shale; Kd, Dakota Saqotone; Jmw, Westwater Canyon Sandstone Mbr. of Morrison Formation; Jcs, Cow Springs Sandstone

## BUREAU OF INDIAN AIRS SOILS LABORAT. GALLUP, NEW MEXICO LABORATORY DATA SHEET FOR WATER SAMPLES

COLLECTOR	TRANSCRIBED BY BELLEVIEW									
LOCATION North of Ch		CHECKED BY Chicket Please Q.								
DATE RECEIVED BY LAB DATE ANALYSIS COMPLE	ORATORY 5-2-72	REPORTED BY	Duco	obl						
DATE COLLECTED	1EU 7-3-72	AUTHORIZED BY SOURCE OF WAT	G. 50C	=						
DEPARTMENT Water Dev	elopmentAGENCY Ft. Defi	ance BRANCH	lindow Roc	k						
				Meg/1	Mg/1					
0.	******			Tieg/I	Ing/I					
remperature (F)			-	-						
Silica (SiO ₂ )										
Boron (B)					0.08					
Iron (Fe)		•		0,001	0.01					
Calcium (Ca)	4/			8.80	176.35					
				4.60	55.94					
				12.45	286,23					
					2.35					
		Cations		25.91						
Phosphorus (P)					0.11					
				11.56	705.39					
				1.76	52.82					
			- 26	10.21	490.39					
				0.70	24.82					
luoride (F)				0.03	0.52					
Nitrate (NO3)				0.33	20.46					
	•	Anions		24.59						
Total Solids	Mg/1				1423					
	Mg/1		17.		1420					
Dissolved Solids	Tons Per Acre Foot		1.93	1						
	Calcium, Magnesium				670					
Mardness as Mg/1	Non Carbonate				92					
Ca CO3	<del>-</del>	7.6			QQ.					
lkalinity as Mg/l	Phenolphthalein Total Alkalinity (Me	thyl Orange)	4		578					
Ca CO3	<del></del>		110							
	ntage (SSP)		1601							
Sodium Absorption Ra	tio (SAR)	. Joseph Park	14.81		ACC					
Specific Conductance	(Micromhos at 25°C)		2190	-	RECEIVE					
esidual Sodium Carb	onate (RSC)				JUL 0 7 197					
DYI			83		WATER DEVELOPING					

Remarks:

Class for Irrigation Water_



## Navajo Nation Water Management Branch Well Log and Drilling Report

PO Box 678 Fort Defiance, Arizona * PH: 928.729.4004 * FAX: 928.729.4126

WELL NO: 16K-340	and delivery of the large of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	.,						PWSID:		
WELL NAME/OTHER NO:										
WELL TYPE: WW		WE	LL STATUS:	ACT			WELL	USE:	LIV	
	OF KIT CAI									
UTM: X(EAST) 7176	64	Y (NO	RTH) 3941:	251		ZONE: 12		OF	PERATOR:	TRIBE O&M
, ,	020006000	•	STATE: N	M	С	OUNTY:	MK		CHAPTE	R CODE: CHUR
GRAZING DISTRICT: 10	5	L	OCATION DAT	A SOUR	CE: V	VELL FILE/i	LD CH	KD 3/95		
WELLNO: 16K	-340		STARTE	D:		5/31/1954	co	MPLETE	D:	6/23/1954
ELEVATION: 668	2	FT.	DEPTH:			141 FT.	DEPT	TH MEAS	SURED:	
DIAMETER: 10		IN.		DEPTH	IS:		R	Me	asured, Esti	mated, Reported
CASING_DIAMETER:	8.62	IN.	FROM:	-0.3	FT.	TO:	141	FT.	MATL:	STL
CASING_DIAMETER:	0	IN.	FROM:	0	FT.	TO:	0	FT.	MATL:	
CASING_DIAMETER:	0	IN.	FROM:	0	FT.	TO:	0	FT.	MATL:	
CASING_DIAMETER:	0	IN.	FROM:	0	FT.	TO:	0	FT.	MATL:	
CASING PERFORAT	ED FROM:		101 FT.	, TC	):	141	FT.	OPENIN	IG TYPE:	Р
CASING PERFORAT	ED FROM:		0 FT.	TO	:	c	FT.	OPENII	NG TYPE:	
CASING PERFORAT	ED FROM:		0 FT.	TO	):	O	FT.	OPENII	VG TYPE:	
CASING PERFORAT	ED FROM:		0 FT.	TC	) <u>:</u>	C	FT.	OPENII	VG TYPE:	
CASING PERFORAT	ED FROM:		0 FT.	TC	):	C	FT.	OPENII	VG TYPE:	
DATE WELL TURNED OV	ER TO TRI	BE:						,		
FUNDED BY:					C	ONTRACTO	R:	P.H.	DUNNING	
SITE IMPROVEMENTS:	WM-WP-T	A-WL			TY	PE OF LIFT:	PS		ENEI	RGY: WM
HORSEPOWER RATING	OF PUMP:	0		Ol	N SITE	STORAGE	CAPAC	ITY:	27900	GAL.
STRUCTURE DATA SOU	RCE:	,	WELL FLE/FLI	CHKD	03/95					
WELLNO: 16K-340				. US	SGS P	RINCIPLE A	QUIFER	R CODE:	110ALV	M
	T. N	OMINA	AL YIELD:	0	GPM		DATE	YEILD N	1EASURED	:
BAILER/PUMP TEST:	вт	RATE	: <b>23,3</b> 6	SPM .	TEST	r PERIOD:	0	HR. 7	EST DATE	: 6/23/1954
DRAWDOWN: 6			OBSERVATI	ON WEL	L DAT	TA AVAILAB	LE: N			~
HORIZONTAL CONDUC	ΓΙVΙΤΥ:		0 FT.	/DAY	SP	ECIFIC CAF	PACITY:		0	GAL./MIN./FT.
VERTICAL CONDUCTIVE	TY:		0 FT.	/DAY	ST	ORAGE CO	EFFICIE	NT:	0	
COEFFICIENT OF TRAN	SMISSIVIT	Y:	0 FT.	2/DAY						
AVAILABITY OF TEST D	ATA:				D	RILLERS/EL	ECTRIC	C LOGS:		DL
HYDROLOGY DATA SOL	JRCE:		WELL FILE/U	ISGS LIT	rH. LC	)G				

WELL NO: 16K-340

STATIC WATER LEVEL(S):

37.5 FT.

6/23/1954

30.5 FT.

6/6/1954

GEOLOGIC INTERVAL(S):

<u>ТОР</u> О <u>ВОТТОМ</u> 0 <u>UNIT</u> 110ALVM <u>LITHOLOGY</u> SAND

-BRN/LT GRY/VF-C GR/PR S

#### COMMENT(\$):

AVAILABLE - DRILLER'S LOG/WATER QUALITY DATA/USGS LITHOLOGIC LOG/INSPECTION REPORT - ALL IN WELL FILE. REPORTED PERFORATIONS: "2 BOTTOM JOINTS" (ASSUMED 20 FT JOINTS). 27900 GALLON COVERED TANK ON CONCRETE BASE. TANK LABELED WITH WELL NUMBER (16T-340) UNDERGROUND WATERLINE FROM TANK TO HAND VALVE WP. CONCRETE PAD FOR TROUGHS BUT TROUGHS REMOVED. WP~75' NORTH OF WELL. ANOTHER CONCRETE TROUGH PAD LOCATED IMMEDIATELY SOUTH OF WELL. GEOHYDROLOGIC UNITS FROM DRILLER'S LOG. LOCATION COORDINATES MEASURED WITH GPS DEVICE 8 SATELLITES VISIBLE. ELEVATION PRINTED ON TOPO MAP ~SCALE= 1:24000. THE IMPROVEMENTS AT THIS SITE ARE IN FAIR CONDITION. STORAGE TANK IS COVERED. G. KINSEL/M.S. JOHNSON 04/18/1995

# ATTACHMENT D:

## Summer 2022 Data

Wells:

16K-336

16K-340

14K-586

15T-303

Mill Well I



### **Sample Analysis Report**

Tetra Tech Company:

8/11/2022 Date Reported 1999 Harrison St Suite 500 Report ID: S2206451001

Oakland, CA 94612

RAES-TO003-Quivira ProjectName: WorkOrder: S2206451

CollectionDate: 6/21/2022 2:26:00 PM Lab ID: S2206451-001

ClientSample ID: 16K-336-GWQ1-01 DateReceived: 6/24/2022 COC:

RAES3-001 FieldSampler:

PWS ID: Matrix: Water

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Aniana/Cationa							
Anions/Cations  Alkalinity, Total (As CaCO3)	644	mg/L		5	SM 2320B	06/30/2022 2246	KA ⁻
Chloride	19	mg/L		1	EPA 300.0	06/24/2022 1751	AB
Nitrogen, Nitrate+Nitrite (as N)	1.0	mg/L		0.1	EPA 353.2	07/18/2022 1731	AM
Sulfate	122	mg/L		1	EPA 300.0	06/24/2022 1751	AB
Calcium	79			1	EPA 300.0 EPA 200.7	06/29/2022 1791	DG
	79 20	mg/L		1	EPA 200.7 EPA 200.7	06/29/2022 1506	DG
Magnesium Potassium	3	mg/L		1	EPA 200.7 EPA 200.7	06/29/2022 1506	DG
	3.6	mg/L mg/L		0.1	EPA 200.7 EPA 350.1	07/08/2022 1305	AMI
Nitrogen, Ammonia (As N)		_	- 11				
Phosphorus, Orthophosphate as P	0.247	mg/L	Н	0.1	EPA 300.0	06/24/2022 1751	AB
General Parameters							
Hardness, Calcium/Magnesium (As CaCO3)	280	mg/L		1	SM 2340B	08/08/2022 1528	W١
Nitrogen, Total Kjeldahl (TKN)	4	mg/L		1	EPA 351.2	06/28/2022 1127	AMI
Γotal Dissolved Solids (180)	970	mg/L		10	SM 2540	06/24/2022 1125	JMS
Гotal Organic Carbon	6	mg/L		1	SM 5310B	07/06/2022 1802	AB
Гotal Suspended Solids	4	mg/L	J	5	SM 2540	06/27/2022 1327	KA
Metals - Dissolved							
Aluminum	ND	mg/L	U	0.1	6010C	06/29/2022 1506	DG
Antimony	0.000135	mg/L	J	0.005	6020A	06/27/2022 1632	MS
Arsenic	0.00407	mg/L	J	0.005	6020A	06/27/2022 1632	MS
Barium	0.4	mg/L		0.1	6020A	06/27/2022 1632	MS
Beryllium	ND	mg/L	U	0.001	6010C	06/29/2022 1506	DG
Cadmium	ND	mg/L	U	0.002	6020A	06/27/2022 1632	MS
Chromium	ND	mg/L	U	0.01	6010C	06/29/2022 1506	DG
Cobalt	ND	mg/L	U	0.01	6010C	06/29/2022 1506	DG
Copper	0.00227	mg/L	J	0.01	6020A	06/27/2022 1632	MS
ron	ND	mg/L	U	0.05	6010C	06/29/2022 1506	DG
∟ead	ND	mg/L	U	0.001	6020A	06/27/2022 1632	MS
Manganese	0.10	mg/L		0.01	6010C	06/29/2022 1506	DG
Molybdenum	ND	mg/L	U	0.02	6020A	06/27/2022 1632	MS
Nickel	ND	mg/L	U	0.01	6010C	06/29/2022 1506	DG
Selenium	ND	mg/L	U	0.005	6020A	06/27/2022 1632	MS
Silver	ND	mg/L	U	0.003	6020A	06/27/2022 1632	MS
гhallium	ND	mg/L	U	0.001	6020A	06/27/2022 1632	MS
Γhorium	ND	mg/L	U	0.1	6010C	06/29/2022 1506	DO
Jranium 	0.000422	mg/L	J	0.001	6020A	06/27/2022 1632	MS
/anadium	ND	mg/L	U	0.02	6020A	06/27/2022 1632	MS
Zinc	0.0169	mg/L	J	0.05	6010C	06/29/2022 1506	DG



### ANALYTICAL SUMMARY REPORT

August 17, 2022

United Nuclear Corporation PO Box 1088 Gallup, NM 87305-1088

Work Order: C22070748 Quote ID: C6117

Project Name: UNC-MILL

Energy Laboratories, Inc. Casper WY received the following 1 sample for United Nuclear Corporation on 7/20/2022 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C22070748-001	Domestic Water Well	07/19/22 9:54	07/20/22	Aqueous	Metals by ICP/ICPMS, Dissolved Metals by ICP/ICPMS, Total Alkalinity to pH 4.5 Anion - Cation Balance Mercury, Total Anions by Ion Chromatography Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite pH Metals Preparation by EPA 200.2 Digestion, Mercury by CVAA Gross Alpha, Gross Beta, Total Gross Alpha minus Radon and Uranium, Total Lead 210, Total Radium 226 + Radium 228, Total Radium 226, Total Radium 228, Total Radium 228, Total Thorium, Isotopic, Total Solids, Total Dissolved Solids, Total Dissolved - Calculate TRACKER SHEET 624-Purgeable Organics 624-Purgeable Organics

The analyses presented in this report were performed by Energy Laboratories, Inc., 2393 Salt Creek Hwy., Casper, WY 82601, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager .

Report Approved By:

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711** 

Report Date: 08/17/22

**CLIENT:** United Nuclear Corporation

Project: UNC-MILL

Work Order: C22070748 CASE NARRATIVE

Tests associated with analyst identified as ELI-B were subcontracted to Energy Laboratories, 1120 S. 27th St., Billings, MT, EPA Number MT00005.

Billings, MT **800.735.4489** • Casper, WY **888.235.0515**Gillette, WY **866.686.7175** • Helena, MT **877.472.0711** 

## **Work Order Sample Summary**

**CLIENT:** United Nuclear Corporation

Project: UNC-MILL

**Work Order:** C22070748 **Report Date:** 08/17/22

Lab IDClient Sample IDCollection DateDate ReceivedC22070748-001Domestic Water Well7/19/2022 9:54:00 AM7/20/2022

Page 3 of 25

#### LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client: United Nuclear Corporation

Project: UNC-MILL
Lab ID: C22070748-001
Client Sample ID: Domestic Water Well

**Report Date:** 08/17/22 **Collection Date:** 07/19/22 09:54 **DateReceived:** 07/20/22

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL Method	Analysis Date / By
MAJOR IONS						
Bicarbonate as HCO3	258	mg/L		6	A2320 B	07/23/22 01:27 / dmb
Chloride	47	mg/L		1	E300.0	07/23/22 05:17 / dmb
Sulfate		mg/L	D	2	E300.0	07/23/22 05:17 / dmb
Calcium	8	mg/L		1	E200.7	07/25/22 19:08 / eli-b
Magnesium	5	mg/L		1	E200.7	07/25/22 19:08 / eli-b
Potassium	2	mg/L		1	E200.7	07/25/22 19:08 / eli-b
Sodium	333	mg/L		1	E200.7	07/25/22 19:08 / eli-b
PHYSICAL PROPERTIES						
рН	8.3	s.u.	Н	0.1	A4500-H B	07/21/22 12:24 / mnm
pH Measurement Temp	17.6	°C			A4500-H B	07/21/22 12:24 / mnm
Solids, Total Dissolved TDS @ 180 C	1020	mg/L		20	A2540 C	07/21/22 12:25 / mnm
NUTRIENTS						
Nitrogen, Nitrate+Nitrite as N	0.17	mg/L		0.05	E353.2	07/21/22 16:01 / erc
Nitrogen, Ammonia as N	0.16	mg/L		0.05	E350.1	07/21/22 12:24 / dmb
METALS, TOTAL						
Aluminum	ND	mg/L		0.03	E200.8	07/29/22 01:24 / eli-b
Arsenic	0.002	mg/L		0.001	E200.8	07/29/22 01:24 / eli-b
Beryllium	ND	mg/L		0.001	E200.8	07/30/22 07:01 / eli-b
Cadmium	ND	mg/L		0.001	E200.8	07/29/22 01:24 / eli-b
Cobalt	ND	mg/L		0.005	E200.8	07/29/22 01:24 / eli-b
Lead	ND	mg/L		0.001	E200.8	07/29/22 01:24 / eli-b
Manganese	0.044	mg/L		0.001	E200.8	07/29/22 01:24 / eli-b
Mercury	ND	mg/L		0.0001	E245.1	08/02/22 17:48 / eli-b
Molybdenum	0.006	-		0.001	E200.8	07/29/22 01:24 / eli-b
Nickel		mg/L		0.005	E200.8	07/29/22 01:24 / eli-b
Selenium	0.070	J		0.001	E200.8	07/29/22 01:24 / eli-b
Uranium	0.300	mg/L		0.0003	E200.8	07/29/22 01:24 / eli-b
Vanadium	ND	mg/L		0.01	E200.8	07/29/22 01:24 / eli-b
DATA QUALITY						
Solids, Total Dissolved - Calculated		mg/L		1.00	A1030 E	08/06/22 10:22 / tlf
A/C Balance	-0.36	%			A1030 E	08/06/22 10:22 / tlf
Anions		meq/L			A1030 E	08/06/22 10:22 / tlf
Cations		meq/L			A1030 E	08/06/22 10:22 / tlf
TDS Ratio	1.03	unitless			A1030 E	08/06/22 10:22 / tlf
RADIONUCLIDES, TOTAL						
Gross Alpha minus Rn & U		pCi/L	U		E900.1	08/01/22 15:01 / trs
Gross Alpha minus Rn & U Precision (±)		pCi/L			E900.1	08/01/22 15:01 / trs
Gross Alpha minus Rn & U MDC		pCi/L			E900.1	08/01/22 15:01 / trs
Gross Beta	61.6	pCi/L			E900.0	08/09/22 09:37 / hat

Report Definitions:

RL - Analyte Reporting Limit

nitions: QCL - Quality Control Limit

 $\ensuremath{\mathsf{D}}$  - Reporting Limit (RL) increased due to sample matrix

U - Not detected at Minimum Detectable Concentration

(MDC)

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

H - Analysis performed past the method holding time

#### LABORATORY ANALYTICAL REPORT

Prepared by Casper, WY Branch

Client: **United Nuclear Corporation** 

Project: **UNC-MILL** Lab ID: C22070748-001 Client Sample ID: Domestic Water Well

**Report Date:** 08/17/22 Collection Date: 07/19/22 09:54 DateReceived: 07/20/22

Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES, TOTAL							
Gross Beta precision (±)	6.8	pCi/L				E900.0	08/09/22 09:37 / hat
Gross Beta MDC	4.8	pCi/L				E900.0	08/09/22 09:37 / hat
Lead 210	3.7	pCi/L				E909.0	08/04/22 15:53 / hat
Lead 210 precision (±)	1.3	pCi/L				E909.0	08/04/22 15:53 / hat
Lead 210 MDC	1.3	pCi/L				E909.0	08/04/22 15:53 / hat
Radium 226	0.4	pCi/L				E903.0	08/09/22 15:08 / trs
Radium 226 precision (±)	0.2	pCi/L				E903.0	08/09/22 15:08 / trs
Radium 226 MDC	0.2	pCi/L				E903.0	08/09/22 15:08 / trs
Radium 228	-0.2	pCi/L	U			RA-05	08/03/22 16:31 / trs
Radium 228 precision (±)	0.8	pCi/L				RA-05	08/03/22 16:31 / trs
Radium 228 MDC	1.3	pCi/L				RA-05	08/03/22 16:31 / trs
Radium 226 + Radium 228	0.2	pCi/L	U			A7500-RA	08/10/22 12:00 / dmf
Radium 226 + Radium 228 precision (±)	0.8	pCi/L				A7500-RA	08/10/22 12:00 / dmf
Radium 226 + Radium 228 MDC	1.3	pCi/L				A7500-RA	08/10/22 12:00 / dmf
Thorium 230	0.1	pCi/L				A7500-U C	08/02/22 14:41 / sec
Thorium 230 precision (±)	0.05	pCi/L				A7500-U C	08/02/22 14:41 / sec
Thorium 230 MDC	0.06	pCi/L				A7500-U C	08/02/22 14:41 / sec
VOLATILE ORGANIC COMPOUNDS							
Bromodichloromethane	ND	ug/L		0.50		E624.1	07/28/22 07:49 / eli-b
Bromoform	ND	ug/L		0.50		E624.1	07/28/22 07:49 / eli-b
Chlorodibromomethane	ND	ug/L		0.50		E624.1	07/28/22 07:49 / eli-b
Chloroform	ND	ug/L		0.50		E624.1	07/28/22 07:49 / eli-b
Trihalomethanes, Total	ND	ug/L		0.50		E624.1	08/10/22 13:28 / jlw
Surr: 1,2-Dichloroethane-d4	103	%REC		71-139		E624.1	07/28/22 07:49 / eli-b
Surr: p-Bromofluorobenzene	92.0	%REC		80-127		E624.1	07/28/22 07:49 / eli-b
Surr: Toluene-d8	105	%REC		80-123		E624.1	07/28/22 07:49 / eli-b

Report RL - Analyte Reporting Limit **Definitions:** 

QCL - Quality Control Limit

U - Not detected at Minimum Detectable Concentration (MDC)

MCL - Maximum Contaminant Level



Mall ID.	Guideilne 8	: Sweetwater	Domontio Materialia	Demonstic Weben W. II
Well ID:		Domestic Water Well	Domestic Water Well	Domestic Water Well
Collection Date:		7/19/2022	9/20/2010	6/18/2002
Receive Date:		7/20/2022	9/22/2010	6/24/2002
Report Date:		8/17/2022	10/11/2010	7/16/2002
Analyte	Units	C22070748-001	C10090864-001	C02060775-001
Bicarbonate as HCO3	mg/L	258	246	225
Calcium	mg/L	8	13	16.0
Chloride	mg/L	47	151	
Magnesium	mg/L	5	3	4.2
Potassium	mg/L	2	3	3.5
Sodium	mg/L	333	806	644
Sulfate	mg/L	469	1270	
рН	s.u.	8.3	8.80	8.34
pH Measurement Temp	°C	17.6	0	
Solids, Total Dissolved TDS @ 180 C	mg/L	1020	2240	2090
Solids, Total Dissolved - Calculated	mg/L	994		
Nitrogen, Ammonia as N	mg/L	0.16	0.49	0.50
Nitrogen, Nitrate+Nitrite as N	mg/L	0.17	ND(0.1)	ND(0.10)
Aluminum	mg/L	ND(0.03)	ND(0.1)	ND(0.1)
Arsenic	mg/L	0.002		<u> </u>
Beryllium	mg/L	ND(0.001)	ND(0.01)	ND(0.01)
Cadmium	mg/L	ND(0.001)	ND(0.005)	ND(0.005)
Cobalt	mg/L	ND(0.005)	ND(0.01)	ND(0.01)
Lead	mg/L	ND(0.001)	ND(0.05)	ND(0.05)
Manganese	mg/L	0.044	0.07	0.05
Molybdenum	mg/L	0.006	ND(0.1)	ND(0.1)
Nickel	mg/L	ND(0.005)	ND(0.05)	ND(0.05)
Selenium	mg/L	0.070	()	()
Uranium	mg/L	0.300	0.0030	0.0700
Vanadium	mg/L	ND(0.01)	ND(0.1)	ND(0.1)
A/C Balance	%	-0.36	- ()	0
Anions	meq/L	15.4	35.0	0
Cations	meq/L	15.3	36.1	0
TDS Ratio	unitless	1.03	33.1	-
Gross Alpha minus Rn & U	pCi/L	0.5	1.7	0(1.0)
Gross Alpha minus Rn & U MDC	PCI/ L	1.1	0.5	0(1.0)
Gross Alpha minus Rn & U Precision (±)		0.7	0.5	0
Lead 210	pCi/L	3.7	2.7	0(1.0)
Lead 210 MDC	PCI/ L	1.3	1.9	0(1.0)
Lead 210 mbC Lead 210 precision (±)		1.3	1.2	0
	pC:/l			0.7
Radium 226	pCi/L	0.4	0.92	0.7
Radium 226 MDC		0.2	0.21	1
Radium 226 precision (±) Radium 228	±	0.2	0.25	0.2
	pCi/L	-0.2		2.7
Radium 228 MDC		1.3	0.84	0
Radium 228 precision (±)	±	0.8	0.58	1.3
Thorium 230	pCi/L	0.1	0.06	0(0.2)
Thorium 230 precision (±)	21.11	0.05	0.07	0
Thorium 230 MDC	pCi/L	0.06	0.1	
Bromodichloromethane	ug/L	ND(0.50)	ND(1.0)	
Bromoform	ug/L	ND(0.50)	ND(1.0)	
Chlorodibromomethane	ug/L	ND(0.50)	ND(1.0)	
Chloroform	ug/L	ND(0.50)	ND(1.0)	ND(1.0)
Trihalomethanes, Total	ug/L	ND(0.50)		

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711



Prepared by Casper, WY Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A2320 B							Analyt	ical Run	: MANTECH_	_220722A
Lab ID:	ICV	Initia	al Calibratio	n Verifica	ation Standard					07/22/	/22 14:57
pН			8.03	s.u.	0.010	100	98	102			
Method:	A2320 B									Batch:	R285108
Lab ID:	MBLK	Met	hod Blank				Run: MANT	ECH_220722A		07/23/	/22 01:11
Alkalinity,	Total as CaCO3		ND	mg/L	2						
Lab ID:	C22070748-001ADUF	<b>P</b> San	nple Duplica	ate			Run: MANT	ECH_220722A		07/23/	/22 01:35
Alkalinity,	Total as CaCO3		218	mg/L	5.0				0.1	10	



Prepared by Casper, WY Branch

Analyte C	ount Resu	ılt Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2540 C								Batch: TDS	S220721A
Lab ID: MB-25_220721A	Method Bla	ank			Run: BAL-1	11_220721A		07/21/	/22 12:23
Solids, Total Dissolved TDS @ 180	C N	ID mg/L	10						
Lab ID: LCS-26_220721A	Laboratory	Control Sample	)	1	Run: BAL-1	11_220721A		07/21/	/22 12:23
Solids, Total Dissolved TDS @ 180	C 102	20 mg/L	20	102	90	110			
Lab ID: C22070746-013A DUP	Sample Du	ıplicate			Run: BAL-1	11_220721A		07/21/	/22 12:24
Solids, Total Dissolved TDS @ 180	C 50	50 mg/L	38				0.1	5	



Prepared by Casper, WY Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-H B							Analytica	al Run: P	HSC_101-C_	_220721A
Lab ID:	8.0	2 Initi	ial Calibratio	n Verification	Standard					07/21/	22 09:33
рН			8.0	s.u.	0.1	100	98	102			
pH Measu	rement Temp		21.3	°C			0	0			
Lab ID:	CCV - pH 7	2 Coi	ntinuing Cali	bration Verifi	cation Standar	rd				07/21/	22 11:59
рН			7.0	s.u.	0.1	100	98	102			
pH Measu	rement Temp		20.4	°C			0	0			
Method:	A4500-H B									Batch:	R285015
Lab ID:	C22070746-015ADUF	2 Sar	mple Duplica	ate			Run: PHSC	_101-C_220721	IA	07/21/	22 12:12
рН			7.1	s.u.	0.1				0.0	1.5	
pH Measu	rement Temp		17.7	°C							



Prepared by Casper, WY Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E300.0								Analytica	Run: IC3-C	_220722A
Lab ID:	ICV	2 Ini	tial Calibratio	on Verification Sta	andard					07/22	/22 12:02
Chloride			9.64	mg/L	1.0	96	90	110			
Sulfate			39.2	mg/L	1.0	98	90	110			
Lab ID:	CCV	2 Co	ontinuing Cali	ibration Verification	on Standaı	·d				07/23	/22 02:25
Chloride			19.9	mg/L	1.0	100	90	110			
Sulfate			81.1	mg/L	1.0	101	90	110			
Method:	E300.0									Batch:	R285124
Lab ID:	ICB	2 Me	ethod Blank				Run: IC3-C	_220722A		07/22	/22 12:22
Chloride			ND	mg/L	0.01						
Sulfate			ND	mg/L	0.2						
Lab ID:	LFB	2 La	boratory For	tified Blank			Run: IC3-C	_220722A		07/22	/22 12:41
Chloride			9.36	mg/L	1.0	97	90	110			
Sulfate			38.4	mg/L	1.0	100	90	110			
Lab ID:	C22070746-012AMS	2 Sa	ımple Matrix	Spike			Run: IC3-C	_220722A		07/23	/22 03:03
Chloride			283	mg/L	2.1	95	80	120			
Sulfate			3860	mg/L	8.3	88	80	120			
Lab ID:	C22070746-012AMSI	<b>)</b> 2 Sa	ımple Matrix	Spike Duplicate			Run: IC3-C	_220722A		07/23	/22 03:22
Chloride			281	mg/L	2.1	94	80	120	0.8	20	
Sulfate			3790	mg/L	8.3	79	80	120	1.9	20	S

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711** 

## **QA/QC Summary Report**

Prepared by Casper, WY Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E350.1							Ana	lytical Ru	n: FIA201-C	_220721A
Lab ID:	ICV	Initi	al Calibration	on Verification S	tandard					07/21/	/22 11:34
Nitrogen, A	Ammonia as N		1.00	mg/L	0.050	100	90	110			
Lab ID:	ccv	Cor	ntinuing Cal	ibration Verifica	tion Standa	rd				07/21/	/22 12:09
Nitrogen, A	Ammonia as N		0.947	mg/L	0.050	95	90	110			
Method:	E350.1									Batch:	R285062
Lab ID:	MBLK	Met	thod Blank				Run: FIA20	1-C_220721A		07/21/	/22 11:33
Nitrogen, A	Ammonia as N		ND	mg/L	0.03						
Lab ID:	LFB	Lab	oratory For	tified Blank			Run: FIA20	1-C_220721A		07/21	/22 11:35
Nitrogen, A	Ammonia as N		0.965	mg/L	0.050	97	90	110			
Lab ID:	C22070746-009DMS	Sar	mple Matrix	Spike			Run: FIA20	1-C_220721A		07/21	/22 12:13
Nitrogen, A	Ammonia as N		0.507	mg/L	0.050	51	90	110			S
Lab ID:	C22070746-009DMS	<b>D</b> Sar	mple Matrix	Spike Duplicate	•		Run: FIA20	1-C_220721A		07/21	/22 12:14
Nitrogen, A	Ammonia as N		0.544	mg/L	0.050	54	90	110	7.1	10	S



Prepared by Casper, WY Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 07/29/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2							Ana	lytical Ru	n: FIA201-C_	_220721B
Lab ID: ICV	Init	ial Calibration	on Verification S	tandard					07/21/	/22 14:57
Nitrogen, Nitrate+Nitrite as N		1.02	mg/L	0.050	102	90	110			
Lab ID: CCV	Co	ntinuing Cal	ibration Verificat	ion Standa	rd				07/21/	/22 15:48
Nitrogen, Nitrate+Nitrite as N		0.938	mg/L	0.050	94	90	110			
Method: E353.2									Batch:	R285051
Lab ID: MBLK	Me	thod Blank				Run: FIA20	1-C_220721B		07/21/	/22 14:58
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.01						
Lab ID: LFB	Lat	oratory For	tified Blank			Run: FIA20	1-C_220721B		07/21/	/22 14:59
Nitrogen, Nitrate+Nitrite as N		1.01	mg/L	0.050	102	90	110			
Lab ID: C22070746-011DMS	Sa ₁	mple Matrix	Spike			Run: FIA20	1-C_220721B		07/21/	/22 15:52
Nitrogen, Nitrate+Nitrite as N		1.12	mg/L	0.050	93	90	110			
Lab ID: C22070746-011DMS	SD Sai	mple Matrix	Spike Duplicate			Run: FIA20	1-C_220721B		07/21/	/22 15:53
Nitrogen, Nitrate+Nitrite as N		1.14	mg/L	0.050	95	90	110	1.8	10	

RL - Analyte Reporting Limit



Prepared by Billings, MT Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/04/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.7							Anal	ytical Ru	n: ICP203-B	_220725 <i>A</i>
Lab ID:	ICV	4 Co	ntinuing Cal	ibration Verifi	cation Standa	rd				07/25	/22 15:00
Calcium			25.5	mg/L	1.0	102	95	105			
Magnesium	n		25.7	mg/L	1.0	103	95	105			
Potassium			25.5	mg/L	1.0	102	95	105			
Sodium			25.2	mg/L	1.0	101	95	105			
Lab ID:	ccv	4 Coi	ntinuing Cal	ibration Verifi	cation Standa	rd				07/25	/22 18:33
Calcium			25.4	mg/L	1.0	102	90	110			
Magnesium	n		25.9	mg/L	1.0	103	90	110			
Potassium			25.6	mg/L	1.0	102	90	110			
Sodium			25.2	mg/L	1.0	101	90	110			
Method:	E200.7									Batch:	R385207
Lab ID:	MB-7500DIS220725A	4 Me	thod Blank				Run: ICP20	3-B_220725A		07/25	/22 15:09
Calcium			ND	mg/L	0.1			_			
Magnesium	n		ND	mg/L	0.02						
Potassium			ND	mg/L	0.1						
Sodium			ND	mg/L	0.2						
Lab ID:	LFB-7500DIS220725	A 4 Lat	oratory For	tified Blank			Run: ICP20	3-B_220725A		07/25	/22 15:18
Calcium			50.8	mg/L	1.0	102	85	115			
Magnesium	n		50.8	mg/L	1.0	102	85	115			
Potassium			50.7	mg/L	1.0	101	85	115			
Sodium			50.7	mg/L	1.0	101	85	115			
Lab ID:	B22071852-005BMS	<b>2</b> 4 Sar	mple Matrix	Spike			Run: ICP20	3-B_220725A		07/25	/22 18:29
Calcium			268	mg/L	1.5	102	70	130			
Magnesium	n		278	mg/L	2.6	104	70	130			
Potassium			288	mg/L	2.6	105	70	130			
Sodium			801	mg/L	2.6	103	70	130			
Lab ID:	B22071852-005BMSI	D 4 Sar	mple Matrix	Spike Duplica	ate		Run: ICP20	3-B_220725A		07/25	/22 18:42
Calcium			268	mg/L	1.5	102	70	130	0.2	20	
Magnesium	n		276	mg/L	2.6	103	70	130	0.5	20	
Potassium			284	mg/L	2.6	103	70	130	1.2	20	
Sodium			794	mg/L	2.6	100	70	130	0.9	20	

Qualifiers:

RL - Analyte Reporting Limit

Prepared by Billings, MT Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/04/22

Analyte		Count Result	Units	RL	%REC	Low Limit	High Limit	RPD RPDLimit	Qual
Method:	E200.8						Analytica	al Run: ICPMS206-B	_220728A
Lab ID:	QCS	11 Initial Calibrati	on Verifica	ation Standard				07/28	/22 19:47
Aluminum		0.261	mg/L	0.10	104	90	110		
Arsenic		0.0522	mg/L	0.0050	104	90	110		
Cadmium		0.0256	mg/L	0.0010	102	90	110		
Cobalt		0.0508	mg/L	0.010	102	90	110		
Lead		0.0520	mg/L	0.010	104	90	110		
Manganese	Э	0.251	mg/L	0.010	100	90	110		
Molybdenu	m	0.0504	mg/L	0.0050	101	90	110		
Nickel		0.0524	mg/L	0.010	105	90	110		
Selenium		0.0497	mg/L	0.0050	99	90	110		
Uranium		0.0519	mg/L	0.00030	104	90	110		
Vanadium		0.0498	mg/L	0.10	100	90	110		
Lab ID:	ccv	11 Continuing Ca	libration V	erification Standa	rd			07/29	/22 01:02
Aluminum		0.0527	mg/L	0.10	105	90	110		
Arsenic		0.0496	mg/L	0.0050	99	90	110		
Cadmium		0.0529	mg/L	0.0010	106	90	110		
Cobalt		0.0513	mg/L	0.010	103	90	110		
Lead		0.0519	mg/L	0.010	104	90	110		
Manganese	Э	0.0509	mg/L	0.010	102	90	110		
Molybdenu	m	0.0498	mg/L	0.0050	100	90	110		
Nickel		0.0510	mg/L	0.010	102	90	110		
Selenium		0.0516	mg/L	0.0050	103	90	110		
Uranium		0.0526	mg/L	0.00030	105	90	110		
Vanadium		0.0504	mg/L	0.10	101	90	110		
Method:	E200.8							Bato	h: 168747
Lab ID:	MB-168747	12 Method Blank				Run: ICPM	S206-B_220728	A 07/29	/22 00:34
Aluminum		ND	mg/L	0.001			_		
Arsenic		ND	mg/L	0.0001					
Beryllium		ND	mg/L	0.0001					
Cadmium		ND	mg/L	0.00003					
Cobalt		ND	mg/L	0.00004					
Lead		ND	mg/L	0.00008					
Manganese	Э	ND	mg/L	0.0001					
Molybdenu		0.0001	mg/L	0.00006					
Nickel		ND	mg/L	0.0008					
Selenium		ND	mg/L	0.0002					
Uranium		ND	mg/L	0.00005					
Vanadium		ND	mg/L	0.0006					
Lab ID:	LCS4-168747	12 Laboratory Co	ntrol Samı	ole		Run: ICPM	S206-B_220728	A 07/29	/22 00:39
Aluminum		0.546	mg/L	0.030	109	85	115		
Arsenic		0.105	mg/L	0.0010	105	85	115		
Beryllium		0.0494	mg/L	0.0010	99	85	115		
Cadmium		0.0542	mg/L	0.0010	108	85	115		
Cobalt		0.106	mg/L	0.0050	106	85	115		
			<i>3</i> -						

Qualifiers:

RL - Analyte Reporting Limit



Prepared by Billings, MT Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/04/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8		-			·				Batc	h: 16874
Lab ID:	LCS4-168747	12 Labo	oratory Cor	ntrol Sample			Run: ICPM	S206-B_220728A		07/29/	/22 00:39
Lead			0.108	mg/L	0.0010	108	85	115			
Manganese	e		0.513	mg/L	0.0010	103	85	115			
Molybdenu	m		0.102	mg/L	0.0010	102	85	115			
Nickel			0.106	mg/L	0.020	106	85	115			
Selenium			0.106	mg/L	0.0010	106	85	115			
Uranium			0.107	mg/L	0.00030	107	85	115			
Vanadium			0.101	mg/L	0.010	101	85	115			
Lab ID:	B22071866-001CMS4	1 12 Sam	ple Matrix	Spike			Run: ICPM	S206-B_220728A		07/29/	/22 00:56
Aluminum			1.98	mg/L	0.030	91	70	130			
Arsenic			0.105	mg/L	0.0010	105	70	130			
Beryllium			0.0478	mg/L	0.0010	95	70	130			
Cadmium			0.0549	mg/L	0.0010	110	70	130			
Cobalt			0.105	mg/L	0.0050	105	70	130			
Lead			0.106	mg/L	0.0010	106	70	130			
Manganese	e		0.516	mg/L	0.0010	102	70	130			
Molybdenu			0.102	mg/L	0.0010	101	70	130			
Nickel			0.104	mg/L	0.020	104	70	130			
Selenium			0.105	mg/L	0.0010	105	70	130			
Uranium			0.106	mg/L	0.00030	106	70	130			
Vanadium			0.102	mg/L	0.010	101	70	130			
Lab ID:	B22071866-001CMSE	<b>)</b> 12 Sam	ple Matrix	Spike Duplica	ate		Run: ICPMS	S206-B_220728A		07/29/	/22 01:13
Aluminum			2.04	mg/L	0.030	104	70	130	3.2	20	
Arsenic			0.107	mg/L	0.0010	107	70	130	1.5	20	
Beryllium			0.0485	mg/L	0.0010	97	70	130	1.5	20	
Cadmium			0.0536	mg/L	0.0010	107	70	130	2.5	20	
Cobalt			0.108	mg/L	0.0050	108	70	130	3.4	20	
Lead			0.108	mg/L	0.0010	108	70	130	2.1	20	
Manganese	e		0.526	mg/L	0.0010	104	70	130	1.8	20	
Molybdenu			0.102	mg/L	0.0010	101	70	130	0.3	20	
Nickel			0.106	mg/L	0.020	106	70	130	1.7	20	
Selenium			0.107	mg/L	0.0010	107	70	130	1.7	20	
Uranium			0.110	mg/L	0.00030	110	70	130	3.3	20	
Vanadium			0.103	mg/L	0.010	103	70	130	1.9	20	
Method:	E200.8							Analytical	Run: I	CPMS206-B	220729
Lab ID:	QCS	Initia	l Calibratio	on Verification	Standard			,	·		/22 06:16
Beryllium	400	milia	0.0241	mg/L	0.0010	96	90	110		01750	22 00.10
Lab ID:	ccv	Cont	inuina Cal	ihration Verifi	cation Standa	rd				07/30	/22 06:38
Beryllium		00110	0.0462	mg/L	0.0010	92	90	110		01700	22 00.00
Method:	E200.8									Batc	h: 16874
Lab ID:	MB-168747	Math	nod Blank				Pun-ICDM	S206_B 220720A			/22 06:49
	IIID-100/4/	wetr	iou Didlik				Null. ICPIVIS	S206-B_220729A		07/30/	ZZ U0.48

Qualifiers:

RL - Analyte Reporting Limit





Prepared by Billings, MT Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E245.1							Analytic	al Run:	HGCV202-B	_220802A
Lab ID:	ICV-168816	Init	ial Calibratio	on Verifica	tion Standard					08/02/	/22 15:16
Mercury			0.00196	mg/L	0.00010	98	90	110			
Lab ID:	ICV-168816	Init	ial Calibration	on Verifica	tion Standard					08/03/	/22 09:23
Mercury			0.00188	mg/L	0.00010	94	90	110			
Method:	E245.1									Batc	h: 168817
Lab ID:	MB-168817	Me	thod Blank				Run: HGCV	′202-B_220802 <i>F</i>	A	08/02	/22 15:31
Mercury			ND	mg/L	0.00005						
Lab ID:	LCS-168817	Lat	ooratory Cor	ntrol Samp	ole		Run: HGCV	/202-B_220802 <i>F</i>	4	08/02	/22 15:33
Mercury			0.00215	mg/L	0.00010	107	85	115			
Lab ID:	B22071851-002CMS	Sa	mple Matrix	Spike			Run: HGCV	/202-B_220802 <i>F</i>	4	08/02	/22 17:41
Mercury			0.00161	mg/L	0.00010	81	70	130			
Lab ID:	B22071851-002CMSI	D Sa	mple Matrix	Spike Dup	olicate		Run: HGCV	/202-B_220802 <i>F</i>	Α	08/02	/22 17:43
Mercury			0.00168	mg/L	0.00010	84	70	130	4.1	30	



Prepared by Casper, WY Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A7500-U C								Ва	atch: RA-TH-	ISO-3459
Lab ID:	MB-RA-TH-ISO-3459	3 Met	thod Blank				Run: EGG-	ORTEC_ALL_	220725C	08/02/	22 14:41
Thorium 23	0		0.1	pCi/L							
Thorium 23	0 precision (±)		0.04	pCi/L							
Thorium 23	0 MDC		0.05	pCi/L							
Lab ID:	LCS-RA-TH-ISO-3459	9 3 Lab	oratory Con	trol Sample			Run: EGG-	ORTEC_ALL_	220725C	08/02/	/22 14:41
Thorium 23	0		11	pCi/L		89	70	130			
Thorium 23	0 precision (±)		2.1	pCi/L							
Thorium 23	0 MDC		0.055	pCi/L							
Lab ID:	C22070746-012EDUF	<b>9</b> 3 Sar	nple Duplica	ate			Run: EGG-	ORTEC_ALL_	220725C	08/02/	22 14:41
Thorium 23	0		0.20	pCi/L					2.8	30	
Thorium 23	0 precision (±)		0.099	pCi/L							
Thorium 23	0 MDC result is 0.04.		0.13	pCi/L							

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711

### **QA/QC Summary Report**

Prepared by Casper, WY Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/12/22

	•										
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E900.0									Batch: G	GrAB-3070
Lab ID:	Sr90-GrAB-3070	3 Lal	boratory Co	ntrol Sample			Run: G5000	OW_220802A		08/06	/22 09:33
Gross Beta	a		430	pCi/L		117	70	130			
Gross Beta	a precision (±)		44	pCi/L							
Gross Beta	a MDC		2.9	pCi/L							
Lab ID:	MB-GrAB-3070	3 Me	thod Blank				Run: G5000	0W_220802A		08/06	/22 09:33
Gross Beta	a		-0.9	pCi/L							U
Gross Beta	a precision (±)		2	pCi/L							
Gross Beta	a MDC		3	pCi/L							
Lab ID:	C22070907-003GMS	1 3 Sa	mple Matrix	Spike			Run: G5000	OW_220802A		08/06	/22 09:33
Gross Beta	a		490	pCi/L		132	70	130			S
Gross Beta	a precision (±)		50	pCi/L							
Gross Beta	a MDC		3.0	pCi/L							
Lab ID:	C22070907-003GMS	D 3 Sa	mple Matrix	Spike Duplicate			Run: G5000	0W_220802A		08/06	/22 09:33
Gross Beta	a		470	pCi/L		129	70	130	2.8	30	
Gross Beta	a precision (±)		48	pCi/L							
Gross Beta	a MDC result is 0.20.		2.8	pCi/L							

#### Qualifiers:



Prepared by Casper, WY Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/12/22

	•										
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E900.1									Batch:	: GA-1374
Lab ID:	LCS-GA-1374	3 Lab	oratory Cor	ntrol Sample			Run: G542	M-2_220728A		08/01	/22 15:01
Gross Alp	oha minus Rn & U		34	pCi/L		99	70	130			
Gross Alp	oha minus Rn & U Precis	sion (±)	6.8	pCi/L							
Gross Alp	oha minus Rn & U MDC		1.1	pCi/L							
Lab ID:	MB-GA-1374	3 Met	hod Blank				Run: G542	M-2_220728A		08/01	/22 15:01
Gross Alp	oha minus Rn & U		-0.6	pCi/L							U
Gross Alp	oha minus Rn & U Precis	sion (±)	0.6	pCi/L							
Gross Alp	oha minus Rn & U MDC		1	pCi/L							
Lab ID:	C22070759-001DDUI	3 Sam	nple Duplica	ate			Run: G542	M-2_220728A		08/01	/22 16:49
Gross Alp	oha minus Rn & U		1.3	pCi/L					58	30	R
Gross Alp	oha minus Rn & U Precis	sion (±)	0.83	pCi/L							
Gross Alp	oha minus Rn & U MDC		1.1	pCi/L							

⁻ Duplicate RPD is outside of the acceptance range for this analysis. However, the RER is less than the limit of 3, the RER result is 0.54.

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

ND - Not detected at the Reporting Limit (RL)

U - Not detected at Minimum Detectable Concentration (MDC)

Billings, MT 800.735.4489 • Casper, WY 888.235.0515 Gillette, WY 866.686.7175 • Helena, MT 877.472.0711



### **QA/QC Summary Report**

Prepared by Casper, WY Branch

Analyte		Count	Result	Units	RL	%REC	Low Limit	High L	_imit	RPD	RPDLimit	Qual
Method:	E903.0										Batch: RA22	6-10561R
Lab ID:	LCS-RA226-10561	3 Lal	ooratory Cor	ntrol Sample			Run: G5000	OW_220	727A		08/09	/22 12:58
Radium 22	26		12	pCi/L		116	70		130			
Radium 22	26 precision (±)		2.3	pCi/L								
Radium 22	26 MDC		0.20	pCi/L								
Lab ID:	MB-RA226-10561	3 Me	thod Blank				Run: G5000	0W_220	727A		08/09	/22 12:58
Radium 22	26		0.04	pCi/L								U
Radium 22	26 precision (±)		0.1	pCi/L								
Radium 22	26 MDC		0.2	pCi/L								
Lab ID:	C22070746-002EDUF	3 Sa	mple Duplica	ate			Run: G5000	DW_220	727A		08/09	/22 12:58
Radium 22	26		0.13	pCi/L						17	30	U
Radium 22	26 precision (±)		0.14	pCi/L								
Radium 22	26 MDC		0.18	pCi/L								
- The RER	R result is 0.13.											



Prepared by Casper, WY Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/12/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E909.0									Batch: PB-	
wethou.	E909.0									Dalcii. PD	-210-1423
Lab ID:	LCS-PB-210-1423	3 Lat	oratory Cor	ntrol Sampl	le		Run: HIDE	K 300SL_220802	A	08/04	/22 15:53
Lead 210			18	pCi/L		109	70	130			
Lead 210	precision (±)		5.5	pCi/L							
Lead 210	MDC		1.4	pCi/L							
Lab ID:	MB-PB-210-1423	3 Me	thod Blank				Run: HIDE	K 300SL_220802	A	08/04	/22 15:53
Lead 210			-1	pCi/L							U
Lead 210	precision (±)		0.7	pCi/L							
Lead 210	MDC		1	pCi/L							
Lab ID:	C22070827-001GDU	<b>9</b> 3 Sai	mple Duplic	ate			Run: HIDE	K 300SL_220802	A	08/04	/22 15:53
Lead 210			0.043	pCi/L					250	30	UR
Lead 210	precision (±)		0.76	pCi/L							
Lead 210	MDC		1.3	pCi/L							

⁻ Duplicate RPD is outside of the acceptance range for this analysis. However, the RER is less than the limit of 3, the RER result is 0.42.

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

ND - Not detected at the Reporting Limit (RL)

U - Not detected at Minimum Detectable Concentration (MDC)

Billings, MT **800.735.4489** • Casper, WY **888.235.0515** Gillette, WY **866.686.7175** • Helena, MT **877.472.0711** 

### **QA/QC Summary Report**

Prepared by Casper, WY Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/12/22

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: RA-05									Batch: RA	228-6874
Lab ID: LCS-228-RA226-105	<b>61</b> 3 La	boratory Cor	ntrol Sample			Run: TENN	ELEC-4_220727	C	08/03	/22 14:45
Radium 228		6.5	pCi/L		85	70	130			
Radium 228 precision (±)		1.5	pCi/L							
Radium 228 MDC		1.2	pCi/L							
Lab ID: MB-RA226-10561	3 Me	ethod Blank				Run: TENN	ELEC-4_220727	C	08/03	/22 14:45
Radium 228		-0.8	pCi/L							U
Radium 228 precision (±)		0.6	pCi/L							
Radium 228 MDC		1	pCi/L							
Lab ID: C22070746-002EDU	<b>P</b> 3 Sa	mple Duplic	ate			Run: TENN	ELEC-4_220727	C	08/03	/22 14:45
Radium 228		0.10	pCi/L					370	30	UR
Radium 228 precision (±)		0.59	pCi/L							
Radium 228 MDC		0.98	pCi/L							

⁻ Duplicate RPD is outside of the acceptance range for this analysis. However, the RER is less than the limit of 3, the RER result is 0.56.

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

ND - Not detected at the Reporting Limit (RL)

U - Not detected at Minimum Detectable Concentration (MDC)



Prepared by Billings, MT Branch

Client: United Nuclear Corporation Work Order: C22070748 Report Date: 08/06/22

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E624.1									Batch:	R385804
Lab ID:	LCS072722a	7 Lab	oratory Cor	ntrol Sample			Run: VOA5	975C.I_220727C		07/28	/22 01:51
Bromodic	chloromethane		5.28	ug/L	0.50	106	74	128			
Bromofor	m		5.42	ug/L	0.50	108	70	130			
Chlorodib	romomethane		5.68	ug/L	0.50	114	74	125			
Chlorofor	m		4.77	ug/L	0.50	95	70	135			
Surr: 1	,2-Dichloroethane-d4				0.50	91	71	139			
Surr: p	-Bromofluorobenzene				0.50	90	80	127			
Surr: T	oluene-d8				0.50	113	80	123			
Lab ID:	MBLK072722a	7 Me	thod Blank				Run: VOA5	975C.I_220727C		07/28	/22 03:14
Bromodic	chloromethane		ND	ug/L	0.50						
Bromofor	m		ND	ug/L	0.50						
Chlorodib	romomethane		ND	ug/L	0.50						
Chlorofor	m		ND	ug/L	0.50						
Surr: 1	,2-Dichloroethane-d4				0.50	97	71	139			
Surr: p	-Bromofluorobenzene				0.50	91	80	127			
Surr: T	oluene-d8				0.50	104	80	123			
Lab ID:	B22071983-001AMS	7 Sar	mple Matrix	Spike			Run: VOA5	975C.I_220727C		07/28	/22 11:40
Bromodic	chloromethane		99.4	ug/L	10	99	74	128			
Bromofor	m		111	ug/L	10	111	66	128			
Chlorodib	romomethane		117	ug/L	10	117	74	125			
Chlorofor	m		92.7	ug/L	10	87	68	124			
Surr: 1	,2-Dichloroethane-d4				10	94	71	139			
Surr: p	-Bromofluorobenzene				10	87	80	127			
Surr: T	oluene-d8				10	107	80	123			
Lab ID:	B22071983-001AMSI	D 7 Sar	mple Matrix	Spike Duplic	ate		Run: VOA5	975C.I_220727C		07/28	/22 12:07
Bromodic	chloromethane		105	ug/L	10	105	74	128	5.5	20	
Bromofor	m		121	ug/L	10	121	66	128	8.9	20	
Chlorodib	oromomethane		123	ug/L	10	123	74	125	4.7	20	
Chlorofor	m		99.5	ug/L	10	94	68	124	7.1	20	
Surr: 1	,2-Dichloroethane-d4				10	95	71	139			
Surr: p	-Bromofluorobenzene				10	88	80	127			
Surr: T	oluene-d8				10	108	80	123			

Qualifiers:

RL - Analyte Reporting Limit

## **Work Order Receipt Checklist**

### **United Nuclear Corporation**

#### C22070748

Login completed by:	Ciara M. Leis		Date F	Received: 7/20/2022
Reviewed by:	Chantel S. Johnson		Rec	eived by: pml
Reviewed Date:	7/22/2022		Carr	ier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes 🗹	No 🗌	Not Present
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	sample labels?	Yes ✓	No 🗌	
Samples in proper container/	/bottle?	Yes ✓	No 🗌	
Sample containers intact?		Yes ✓	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within h (Exclude analyses that are or such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌	
Temp Blank received in all sl	nipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable
Container/Temp Blank tempe	erature:	°C On Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes 🔽	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes ✓	No 🗌	Not Applicable

### **Standard Reporting Procedures:**

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as -dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

#### **Contact and Corrective Action Comments:**

Cooler 1- 2.4 ° C

Cooler 2- 2.3 ° C

Cooler 3 - 2.6 ° C

Cooler 4 - 2.3 ° C

Cooler 5- 2.4 ° C

Cooler 6- 3.4 ° C

Shared trip blank C22070746-023A

No before shipping pictures assosiated with WO 7/21/2022 CL



# Chain of Custody & Analytical Request Record

(2207074.

www.energylab.com

Page	of	
aye		-

ccount iiii		<b>on</b> (Billing info	rmation)			Repo	ort Info	rmatioi	1 (if diffe	rent tha	an Account	Informat	ion)		Com					李 宝 医 李维欧洲
mpany/Name			madony			-	any/Name								Wood PLC					
	Dorina \					Contac	ct	Max Ch	ischilly	JR.					Acct. No. is C16610 United Nuclear Corporation is no longer					
	505-905		3			Phone		505-90	5-6651					- 1	mining and milling.					
iling Address						Mailing	g Address	P.O. Bo	x 1088	3										
		NM 87305					State, Zip								These water samples were not considered Radioactive under US DOT-HMR gudelines for shipping on recent/previous quarterly					
			dala aam			Email		<u> </u>			odplc.co	m								
		oung@woo		at Cilland Conv	©Email		ve Report								for s	shippi	ng on	rece	ent/pr	evious quarterry
irchase Order 01400055		opy ■Email  F Quote 6117		ort □Hard Copy  Bottle Order ≥ 70581 6	100000000000000000000000000000000000000	Specia	Report/For	mats:		-	ntact laborato	ry) □ Oth	ner		sam	pling				
					12.3		Matrix (	Codes				Analy	sis Re	quest	ed					All turnaround times are
roject Info							A - Ai	2.2				Ī			∞		(16		st	andard unless marked as
oject Name, PV						_		/ater			9	Mo		RH,	226 8		(Total)			RUSH.
mpler Name Ma	ax Chisch	nilly JR.	Sampler Pl	hone 505-905-	-6651			oils/ olids			CI, HC03 Na	A Prince of the last	>	⊃ ⊗	ď		O		M	Energy Laboratories IUST be contacted prior to
ample Origin State NM EPA/State Compliance   Yes		Yes D	lo l		egetation			2, a	3, Pl	J,	(-)	D H		Tota) Bet	pa	l R	USH sample submittal for			
Unprocessed Ore	Ore e (Ground	or Refined) **C	ALL BEFORE		ocation)		0 - C	ioassay Dil Drinking Water	(Total)	Se (Total)	Be, Ca, Cd, Cl K. Ma. Mn. Na	NH4, NI, NO3, Pb Pb-210. pH. S04	TDS, Th-230, U, Chloroform	Gross Alpha (-) L Al	Combined 228.	TTHM'S	9, CTO	Attached		charges and scheduling – See Instructions Page
		Identification			collection		Number of	Matrix	E	L) e	Be, C	H4, b-2	TDS, Chlor	aros	Co, (	E	I	See	RUSH	ELI LAB ID Laboratory Use Only
		ation, Interval, etc		Date	Tim	ne	Containers	(See Codes Above)	As	Š	田文	11.15	-0		1	~	~		IAI	
DOMEST	TIC W	ATER W	IELL	7-19-	22 09	54	10	W	V	V	V	V	V	~	V	-		-		100
															20					
5.00																				
		0.000			是连进															
200			The second second		7 2 3		2.00								12		3			
and the second		Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro																	1	
			75.0										11479							
			30%																	
	North A												27	d place	o attack	VOUL	preserv	 ative	inform	nation with this COC.
ELI	l is REQ	UIRED to pro	ovide prese	ervative traces	ability. If t	he pre	eservative	es supplie	ed with t	he bo	Received b	were No	UI used	ı, pieas	Da	ate/Time	/		Sig	nation with this COC.
Custody Record	Relinquish	ed by (print)		7 -19 - 2 2/		Sign	ature	ichely	7.		Franch	esca	Gille	eath	7	-19-2 ate/Time	4/110	0		nature
MUST	Relinquish	ed by (print)		Date/Time 7-19-22/	4000		nature	The ,	1	5	Received Pa +	by Labora	tory (prin	25		1/20	55/0	1-3	X	Jugan C
be signed Shipped By		ooler ID(s)	Custody Se			eipt Te	mp   Ter	LABC np Blank	On Y	Ice			ment Ty			Amou \$	unt	F	Receipt	Number (cash/check only)



### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

Oakland, CA 94612

RAES3-001

ProjectName: RAES-TO003-Quivira

**Lab ID:** S2206451-001 **CollectionDate:** 6/21/2022 2:26:00 PM

ClientSample ID: 16K-336-GWQ1-01 DateReceived: 6/24/2022

FieldSampler:

WorkOrder:

S2206451

PWS ID: Matrix: Water

Comments

COC:

Commonto							
Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Radionuclides - Dissolved							
Radium 226	0.6	pCi/L		0.2	SM 7500 Ra-B	08/01/2022 1345	WN
Radium 226 Precision (±)	0.1	pCi/L			SM 7500 Ra-B	08/01/2022 1345	WN
Radium 228	0.4	pCi/L	U	1	Ga-Tech	08/06/2022 258	WN
Radium 228 Precision (±)	3.7	pCi/L	U		Ga-Tech	08/06/2022 258	WN

### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

Oakland, CA 94612

**ProjectName:** RAES-TO003-Quivira **WorkOrder:** S2206451

**Lab ID:** S2206451-002 **CollectionDate:** 6/22/2022 11:48:00 AM

ClientSample ID: 16K-340-GWQ1-01 DateReceived: 6/24/2022 COC: RAES3-001 FieldSampler:

COC: RAES3-001 FieldSampler: Water Water

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init		
Anions/Cations				_				
Alkalinity, Total (As CaCO3)	564	mg/L		5	SM 2320B	06/30/2022 2256	KAT	
Chloride	23	mg/L		1	EPA 300.0	06/24/2022 1801	AB	
Nitrogen, Nitrate+Nitrite (as N)	6.7	mg/L		0.1	EPA 353.2	07/18/2022 1627	AMB	
Sulfate	334	mg/L		1	EPA 300.0	06/27/2022 1409	AB	
Calcium	82	mg/L		1	EPA 200.7	06/29/2022 1508	DG	
Magnesium	46	mg/L		1	EPA 200.7	06/29/2022 1508	DG	
Potassium	5	mg/L		1	EPA 200.7	06/29/2022 1508	DG	
Nitrogen, Ammonia (As N)	ND	mg/L	U	0.1	EPA 350.1	07/08/2022 1309	AMB	
Phosphorus, Orthophosphate as P	0.106	mg/L	Н	0.1	EPA 300.0	06/24/2022 1801	AB	
General Parameters								
Hardness, Calcium/Magnesium (As CaCO3)	394	mg/L		1	SM 2340B	08/08/2022 1528	WN	
Nitrogen, Total Kjeldahl (TKN)	0.382	mg/L	J	1	EPA 351.2	06/28/2022 1134	AMB	
Total Dissolved Solids (180)	1170	mg/L		10	SM 2540	06/24/2022 1126	JMS	
Total Organic Carbon	5	mg/L		1	SM 5310B	07/06/2022 1938	AB	
Total Suspended Solids	ND	mg/L	U	5	SM 2540	06/27/2022 1328	KAT	
Metals - Dissolved								
Aluminum	ND	mg/L	U	0.1	6010C	06/29/2022 1508	DG	
Antimony	ND	mg/L	U	0.005	6020A	06/27/2022 1644	MS	
Arsenic	ND	mg/L	U	0.005	6020A	06/27/2022 1644	MS	
Barium	0.1	mg/L		0.1	6020A	06/27/2022 1644	MS	
Beryllium	ND	mg/L	U	0.001	6010C	06/29/2022 1508	DG	
Cadmium	ND	mg/L	U	0.002	6020A	06/27/2022 1644	MS	
Chromium	ND	mg/L	U	0.01	6010C	06/29/2022 1508	DG	
Cobalt	ND	mg/L	U	0.01	6010C	06/29/2022 1508	DG	
Copper	0.00419	mg/L	J	0.01	6020A	06/27/2022 1644	MS	
Iron	ND	mg/L	U	0.05	6010C	06/29/2022 1508	DG	
Lead	ND	mg/L	U	0.001	6020A	06/27/2022 1644	MS	
Manganese	0.02	mg/L		0.01	6010C	06/29/2022 1508	DG	
Molybdenum	ND	mg/L	U	0.02	6020A	06/27/2022 1644	MS	
Nickel	ND	mg/L	U	0.01	6010C	06/29/2022 1508	DG	
Selenium	ND	mg/L	U	0.005	6020A	06/27/2022 1644	MS	
Silver	ND	mg/L	U	0.003	6020A	06/27/2022 1644	MS	
Thallium	ND	mg/L	U	0.001	6020A	06/27/2022 1644	MS	
Thorium	ND	mg/L	U	0.1	6010C	06/29/2022 1508	DG	
Uranium	0.002	mg/L	-	0.001	6020A	06/27/2022 1644	MS	
Vanadium	ND	mg/L	U	0.02	6020A	06/27/2022 1644	MS	
Zinc	0.0254	mg/L	J	0.05	6010C	06/29/2022 1508	DG	



### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

WorkOrder:

S2206451

Oakland, CA 94612

ProjectName: RAES-TO003-Quivira

**Lab ID:** S2206451-002 **CollectionDate:** 6/22/2022 11:48:00 AM

ClientSample ID: 16K-340-GWQ1-01 DateReceived: 6/24/2022

RAES3-001 FieldSampler:

PWS ID: Matrix: Water

Comments

COC:

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Radionuclides - Dissolved							
Radium 226	0.3	pCi/L		0.2	SM 7500 Ra-B	08/01/2022 1345	WN
Radium 226 Precision (±)	0.1	pCi/L			SM 7500 Ra-B	08/01/2022 1345	WN
Radium 228	0.2	pCi/L	U	1	Ga-Tech	08/06/2022 601	WN
Radium 228 Precision (±)	3.3	pCi/L	U		Ga-Tech	08/06/2022 601	WN

### **Sample Analysis Report**

Tetra Tech Company:

8/11/2022 Date Reported 1999 Harrison St Suite 500 Report ID: S2206451001

Oakland, CA 94612

RAES-TO003-Quivira ProjectName: WorkOrder: S2206451

CollectionDate: 6/21/2022 3:50:00 PM Lab ID: S2206451-003

ClientSample ID: 15T-303-GWQ1-01 DateReceived: 6/24/2022 COC:

RAES3-001 FieldSampler:

PWS ID: Matrix: Water

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/	Init
Anions/Cations							
Alkalinity, Total (As CaCO3)	230	mg/L		5	SM 2320B	06/30/2022 2305	KAT
Chloride	9	mg/L		1	EPA 300.0	06/24/2022 1810	AB
Nitrogen, Nitrate+Nitrite (as N)	ND	mg/L	U	0.1	EPA 353.2	07/18/2022 1222	AME
Sulfate	1490	mg/L	D	2.55	EPA 300.0	06/27/2022 1421	AB
Calcium	390	mg/L		1	EPA 200.7	06/29/2022 1512	DG
Magnesium	141	mg/L		1	EPA 200.7	06/29/2022 1512	DG
Potassium	7	mg/L		1	EPA 200.7	06/29/2022 1512	DG
Nitrogen, Ammonia (As N)	0.2	mg/L		0.1	EPA 350.1	07/08/2022 1313	AME
Phosphorus, Orthophosphate as P	0.464	mg/L	DH	0.216	EPA 300.0	06/24/2022 1810	AB
General Parameters							
Hardness, Calcium/Magnesium (As CaCO3)	1550	mg/L		1	SM 2340B	08/08/2022 1528	WN
Nitrogen, Total Kjeldahl (TKN)	0.157	mg/L	J	1	EPA 351.2	06/28/2022 1128	AME
Total Dissolved Solids (180)	2490	mg/L		10	SM 2540	06/24/2022 1127	JMS
Total Organic Carbon	2	mg/L		1	SM 5310B	07/06/2022 1822	AB
Total Suspended Solids	17	mg/L		5	SM 2540	06/27/2022 1329	KAT
Metals - Dissolved							
Aluminum	ND	mg/L	U	0.1	6010C	06/29/2022 1512	DG
Antimony	ND	mg/L	U	0.005	6020A	06/27/2022 1650	MS
Arsenic	0.00102	mg/L	J	0.005	6020A	06/27/2022 1650	MS
Barium	0.00782	mg/L	J	0.1	6020A	06/27/2022 1650	MS
Beryllium	ND	mg/L	U	0.001	6010C	06/29/2022 1512	DG
Cadmium	ND	mg/L	U	0.002	6020A	06/27/2022 1650	MS
Chromium	ND	mg/L	U	0.01	6010C	06/29/2022 1512	DG
Cobalt	ND	mg/L	U	0.01	6010C	06/29/2022 1512	DG
Copper	0.00902	mg/L	J	0.01	6020A	06/27/2022 1650	MS
Iron	6.75	mg/L		0.05	6010C	06/29/2022 1512	DG
Lead	ND	mg/L	U	0.001	6020A	06/27/2022 1650	MS
Manganese	0.51	mg/L		0.01	6010C	06/29/2022 1512	DG
Molybdenum	0.02	mg/L		0.02	6020A	06/27/2022 1650	MS
Nickel	0.00273	mg/L	J	0.01	6010C	06/29/2022 1512	DG
Selenium	ND	mg/L	U	0.005	6020A	06/27/2022 1650	MS
Silver	ND	mg/L	U	0.003	6020A	06/27/2022 1650	MS
Thallium	ND	mg/L	U	0.001	6020A	06/27/2022 1650	MS
Thorium	ND	mg/L	U	0.1	6010C	06/29/2022 1512	DG
Uranium	0.000374	mg/L	J	0.001	6020A	06/27/2022 1650	MS
- Vanadium	ND	mg/L	U	0.02	6020A	06/27/2022 1650	MS
Zinc	0.49	mg/L	-	0.05	6010C	06/29/2022 1512	DG



### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

Oakland, CA 94612

ProjectName: RAES-TO003-Quivira

 Lab ID:
 S2206451-003

 ClientSample ID:
 15T-303-GWQ1-01

COC: RAES3-001

PWS ID:

Comments

**Report ID:** 322004310

WorkOrder: S2206451

**CollectionDate:** 6/21/2022 3:50:00 PM **DateReceived:** 6/24/2022

DateReceived: FieldSampler:

Matrix: Water

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/I	nit
Dadianualidas Discaluad							
Radionuclides - Dissolved							
Radium 226	2.5	pCi/L		0.2	SM 7500 Ra-B	08/01/2022 1345	WN
Radium 226 Precision (±)	0.2	pCi/L			SM 7500 Ra-B	08/01/2022 1345	WN
Radium 228	0.9	pCi/L	J	1	Ga-Tech	08/06/2022 905	WN
Radium 228 Precision (±)	3.4	pCi/L	J		Ga-Tech	08/06/2022 905	WN

### **Sample Analysis Report**

Tetra Tech Company:

8/11/2022 Date Reported 1999 Harrison St Suite 500 Report ID: S2206451001

Matrix:

Water

Oakland, CA 94612

RAES-TO003-Quivira ProjectName: WorkOrder: S2206451

S2206451-004 CollectionDate: 6/22/2022 2:05:00 PM Lab ID:

ClientSample ID: 14T-586-GWQ1-01 DateReceived: 6/24/2022 COC:

RAES3-001 FieldSampler:

PWS ID: Comments

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init		
Anions/Cations	000			-	014 00000	00/00/0000 000	17	
Alkalinity, Total (As CaCO3)	388	mg/L		5	SM 2320B	06/30/2022 2324	KAT	
Chloride	12	mg/L		1	EPA 300.0	06/24/2022 1849	AB	
Nitrogen, Nitrate+Nitrite (as N)	0.3	mg/L		0.1	EPA 353.2	07/18/2022 1239	AMB	
Sulfate	955	mg/L	D	2.55	EPA 300.0	06/27/2022 1508	AB	
Calcium	290	mg/L		1	EPA 200.7	06/29/2022 1519	DG	
Magnesium	113	mg/L		1	EPA 200.7	06/29/2022 1519	DG	
Potassium	9	mg/L		1	EPA 200.7	06/29/2022 1519	DG	
Nitrogen, Ammonia (As N)	0.0520	mg/L	J	0.1	EPA 350.1	07/08/2022 1312	AMB	
Phosphorus, Orthophosphate as P	0.090	mg/L	JH	0.1	EPA 300.0	06/24/2022 1849	AB	
General Parameters								
Hardness, Calcium/Magnesium (As CaCO3)	1190	mg/L		1	SM 2340B	08/08/2022 1528	WN	
Nitrogen, Total Kjeldahl (TKN)	0.0896	mg/L	J	1	EPA 351.2	06/28/2022 1135	AMB	
Total Dissolved Solids (180)	2100	mg/L		10	SM 2540	06/24/2022 1129	JMS	
Total Organic Carbon	2	mg/L		1	SM 5310B	07/06/2022 1958	AB	
Total Suspended Solids	7	mg/L		5	SM 2540	06/27/2022 1331	KAT	
Metals - Dissolved								
Aluminum	ND	mg/L	U	0.1	6010C	06/29/2022 1519	DG	
Antimony	0.000192	mg/L	J	0.005	6020A	06/27/2022 1724	MS	
Arsenic	ND	mg/L	U	0.005	6020A	06/27/2022 1724	MS	
Barium	0.0143	mg/L	J	0.1	6020A	06/27/2022 1724	MS	
Beryllium	ND	mg/L	U	0.001	6010C	06/29/2022 1519	DG	
Cadmium	ND	mg/L	U	0.002	6020A	06/27/2022 1724	MS	
Chromium	ND	mg/L	U	0.01	6010C	06/29/2022 1519	DG	
Cobalt	ND	mg/L	U	0.01	6010C	06/29/2022 1519	DG	
Copper	ND	mg/L	U	0.01	6020A	06/27/2022 1724	MS	
Iron	ND	mg/L	U	0.05	6010C	06/29/2022 1519	DG	
Lead	ND	mg/L	U	0.001	6020A	06/27/2022 1724	MS	
Manganese	1.17	mg/L		0.01	6010C	06/29/2022 1519	DG	
Molybdenum	0.03	mg/L		0.02	6020A	06/27/2022 1724	MS	
Nickel	0.00143	mg/L	J	0.01	6010C	06/29/2022 1519	DG	
Selenium	ND	mg/L	U	0.005	6020A	06/27/2022 1724	MS	
Silver	ND	mg/L	U	0.003	6020A	06/27/2022 1724	MS	
Thallium	ND	mg/L	U	0.001	6020A	06/27/2022 1724	MS	
Thorium	ND	mg/L	U	0.001	6010C	06/29/2022 1519	DG	
Uranium	0.002	mg/L	J	0.001	6020A	06/27/2022 1724	MS	
Vanadium	ND	mg/L	U	0.001	6020A	06/27/2022 1724	MS	
zanadium Zinc	0.34	mg/L	J	0.02	6010C	06/29/2022 1724	DG	



### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

Oakland, CA 94612

ProjectName: RAES-TO003-Quivira WorkOrder:

 Lab ID:
 S2206451-004
 CollectionDate:
 6/22/2022 2:05:00 PM

ClientSample ID: 14T-586-GWQ1-01 DateReceived: 6/24/2022

RAES3-001 FieldSampler:

PWS ID: Matrix: Water

Comments

COC:

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Radionuclides - Dissolved							
Radium 226	1.5	pCi/L		0.2	SM 7500 Ra-B	08/01/2022 1345	WN
Radium 226 Precision (±)	0.1	pCi/L			SM 7500 Ra-B	08/01/2022 1345	WN
Radium 228	-2.1	pCi/L	U	1	Ga-Tech	08/06/2022 1815	WN
Radium 228 Precision (±)	2.7	pCi/L	U		Ga-Tech	08/06/2022 1815	WN

S2206451



### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

Oakland, CA 94612

**ProjectName:** RAES-TO003-Quivira **WorkOrder:** S2206451

 Lab ID:
 \$2206451-005

 CollectionDate:
 6/22/2022 2:05:00 PM

ClientSample ID: 14T-586-GWQ1-02 DateReceived: 6/24/2022

COC: RAES3-001 FieldSampler:

PWS ID: Matrix: Water

Analyses	Result Units		Qual	RL	Method	Date Analyzed/Init	
Metals - Dissolved							
Aluminum	ND	mg/L	U	0.1	6010C	06/29/2022 1521	DG
Antimony	ND	mg/L	U	0.005	6020A	06/27/2022 1730	MS
Arsenic	ND	mg/L	U	0.005	6020A	06/27/2022 1730	MS
Barium	0.0145	mg/L	J	0.1	6020A	06/27/2022 1730	MS
Beryllium	ND	mg/L	U	0.001	6010C	06/29/2022 1521	DG
Cadmium	ND	mg/L	U	0.002	6020A	06/27/2022 1730	MS
Calcium	291	mg/L		0.5	6010C	06/29/2022 1521	DG
Chromium	ND	mg/L	U	0.01	6010C	06/29/2022 1521	DG
Cobalt	ND	mg/L	U	0.01	6010C	06/29/2022 1521	DG
Copper	0.00588	mg/L	J	0.01	6020A	06/27/2022 1730	MS
Iron	ND	mg/L	U	0.05	6010C	06/29/2022 1521	DG
Lead	ND	mg/L	U	0.001	6020A	06/27/2022 1730	MS
Magnesium	113	mg/L		0.5	6010C	06/29/2022 1521	DG
Manganese	1.16	mg/L		0.01	6010C	06/29/2022 1521	DG
Molybdenum	0.03	mg/L		0.02	6020A	06/27/2022 1730	MS
Nickel	0.00191	mg/L	J	0.01	6010C	06/29/2022 1521	DG
Selenium	ND	mg/L	U	0.005	6020A	06/27/2022 1730	MS
Silver	ND	mg/L	U	0.003	6020A	06/27/2022 1730	MS
Sodium	140	mg/L		1	6010C	06/29/2022 1521	DG
Thallium	ND	mg/L	U	0.001	6020A	06/27/2022 1730	MS
Thorium	ND	mg/L	U	0.1	6010C	06/29/2022 1521	DG
Uranium	0.002	mg/L		0.001	6020A	06/27/2022 1730	MS
Vanadium	ND	mg/L	U	0.02	6020A	06/27/2022 1730	MS
Zinc	0.34	mg/L		0.05	6010C	06/29/2022 1521	DG
Radionuclides - Dissolved							
Radium 226	1.5	pCi/L		0.2	SM 7500 Ra-B	08/01/2022 1345	WN
Radium 226 Precision (±)	0.1	pCi/L			SM 7500 Ra-B	08/01/2022 1345	WN
Radium 228	1.4	pCi/L		1	Ga-Tech	08/06/2022 2118	WN
Radium 228 Precision (±)	3.3	pCi/L			Ga-Tech	08/06/2022 2118	WN



### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

Oakland, CA 94612

**ProjectName:** RAES-TO003-Quivira **WorkOrder:** S2206451

 Lab ID:
 \$2206451-006
 CollectionDate:
 6/22/2022 6:50:00 PM

 ClientSample ID:
 QV-FB-01-6/22/22

 COC:
 RAES3-001

 DateReceived:
 6/24/2022

 FieldSampler:

COC: RAES3-001 FieldSampler: Water

PWS ID: Matrix: Water

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Dissolved							
Aluminum	ND	mg/L	U	0.1	6010C	06/29/2022 1523	DG
Antimony	ND	mg/L	U	0.005	6020A	06/27/2022 1736	MS
Arsenic	ND	mg/L	U	0.005	6020A	06/27/2022 1736	MS
Barium	ND	mg/L	U	0.1	6020A	06/27/2022 1736	MS
Beryllium	ND	mg/L	U	0.001	6010C	06/29/2022 1523	DG
Cadmium	ND	mg/L	U	0.002	6020A	06/27/2022 1736	MS
Calcium	ND	mg/L	U	0.5	6010C	06/29/2022 1523	DG
Chromium	ND	mg/L	U	0.01	6010C	06/29/2022 1523	DG
Cobalt	ND	mg/L	U	0.01	6010C	06/29/2022 1523	DG
Copper	ND	mg/L	U	0.01	6020A	06/27/2022 1736	MS
Iron	ND	mg/L	U	0.05	6010C	06/29/2022 1523	DG
Lead	ND	mg/L	U	0.001	6020A	06/27/2022 1736	MS
Magnesium	ND	mg/L	U	0.5	6010C	06/29/2022 1523	DG
Manganese	ND	mg/L	U	0.01	6010C	06/29/2022 1523	DG
Molybdenum	ND	mg/L	U	0.02	6020A	06/27/2022 1736	MS
Nickel	ND	mg/L	U	0.01	6010C	06/29/2022 1523	DG
Selenium	ND	mg/L	U	0.005	6020A	06/27/2022 1736	MS
Silver	ND	mg/L	U	0.003	6020A	06/27/2022 1736	MS
Sodium	ND	mg/L	U	1	6010C	06/29/2022 1523	DG
Thallium	ND	mg/L	U	0.001	6020A	06/27/2022 1736	MS
Thorium	ND	mg/L	U	0.1	6010C	06/29/2022 1523	DG
Uranium	ND	mg/L	U	0.001	6020A	06/27/2022 1736	MS
Vanadium	ND	mg/L	U	0.02	6020A	06/27/2022 1736	MS
Zinc	ND	mg/L	U	0.05	6010C	06/29/2022 1523	DG
Radionuclides - Dissolved							
Radium 226	0.09	pCi/L	U	0.2	SM 7500 Ra-B	08/01/2022 1345	WN
Radium 226 Precision (±)	0.04	pCi/L	U		SM 7500 Ra-B	08/01/2022 1345	WN
Radium 228	-2.3	pCi/L	U	1	Ga-Tech	08/07/2022 022	WN
Radium 228 Precision (±)	4.8	pCi/L	U		Ga-Tech	08/07/2022 022	WN



### **Sample Analysis Report**

Company: Tetra Tech

 Tetra Tech
 Date Reported
 8/11/2022

 1999 Harrison St. Suite 500
 Report ID:
 \$2206451001

Oakland, CA 94612

ProjectName: RAES-TO003-Quivira WorkOrder: S2206451

 Lab ID:
 \$2206451-007
 CollectionDate:
 6/22/2022 7:06:00 PM

 ClientSample ID:
 QV-EB-01-6/22/22

 COC:
 RAES3-001

 DateReceived:
 6/24/2022

 FieldSampler:

COC: RAES3-001 FieldSampler: Water Water

Analyses	Result	Units	Qual	RL	Method	Date Analyzed/Init	
Metals - Dissolved							
Aluminum	ND	mg/L	U	0.1	6010C	06/29/2022 1530	DG
Antimony	ND	mg/L	U	0.005	6020A	06/27/2022 1742	MS
Arsenic	ND	mg/L	U	0.005	6020A	06/27/2022 1742	MS
Barium	ND	mg/L	U	0.1	6020A	06/27/2022 1742	MS
Beryllium	ND	mg/L	U	0.001	6010C	06/29/2022 1530	DG
Cadmium	ND	mg/L	U	0.002	6020A	06/27/2022 1742	MS
Calcium	ND	mg/L	U	0.5	6010C	06/29/2022 1530	DG
Chromium	ND	mg/L	U	0.01	6010C	06/29/2022 1530	DG
Cobalt	ND	mg/L	U	0.01	6010C	06/29/2022 1530	DG
Copper	ND	mg/L	U	0.01	6020A	06/27/2022 1742	MS
Iron	ND	mg/L	U	0.05	6010C	06/29/2022 1530	DG
Lead	ND	mg/L	U	0.001	6020A	06/27/2022 1742	MS
Magnesium	ND	mg/L	U	0.5	6010C	06/29/2022 1530	DG
Manganese	ND	mg/L	U	0.01	6010C	06/29/2022 1530	DG
Molybdenum	ND	mg/L	U	0.02	6020A	06/27/2022 1742	MS
Nickel	ND	mg/L	U	0.01	6010C	06/29/2022 1530	DG
Selenium	ND	mg/L	U	0.005	6020A	06/27/2022 1742	MS
Silver	ND	mg/L	U	0.003	6020A	06/27/2022 1742	MS
Sodium	ND	mg/L	U	1	6010C	06/29/2022 1530	DG
Thallium	ND	mg/L	U	0.001	6020A	06/27/2022 1742	MS
Thorium	ND	mg/L	U	0.1	6010C	06/29/2022 1530	DG
Uranium	ND	mg/L	U	0.001	6020A	06/27/2022 1742	MS
Vanadium	ND	mg/L	U	0.02	6020A	06/27/2022 1742	MS
Zinc	ND	mg/L	U	0.05	6010C	06/29/2022 1530	DG
Radionuclides - Dissolved		-					
Radium 226	0.02	pCi/L	U	0.2	SM 7500 Ra-B	08/01/2022 1345	WN
Radium 226 Precision (±)	0.04	pCi/L	U		SM 7500 Ra-B	08/01/2022 1345	WN
Radium 228	-1.4	pCi/L	U	1	Ga-Tech	08/07/2022 326	WN
Radium 228 Precision (±)	3.0	pCi/L	U		Ga-Tech	08/07/2022 326	WN