wood.

Fish Tissue Collection, Analysis, and Recovery along the Kalamazoo River

Cynthia Draper, PE

Discussion Topics

Kalamazoo River Superfund Site

PCB Uptake and Recovery in Fish Tissue

Fish uptake PCBs in fatty tissue through

- ► Exposure to surface sediment containing PCBs
- Consuming lower trophic species in the food chain

Fish recover (PCBs decrease in fish tissue) through

- Reduction in surface sediment concentrations through natural processes
 - Incoming cleaner sediment
- ► Reduction in sediment concentrations through remediation
- ► Annual winter loss of fat content
- Spawning
- ► Cycle of Life: Passing of older generation and growth of next generation

Recovery limited by upstream or reference area contributions of PCBs

PCB Uptake and Recovery in Fish Tissue

Remedial efforts performed to advance fish recovery

- Area 1 Time Critical Removal Action (TCRA) sediment, bank, and dam removal
- ▶ Portage Creek TCRA sediment removal
- ► Area 3 TCRA sediment and dam removal, bank removal / protection

Remedial efforts to be Initiated in 2020

- Area 1 sediment hot spot removal
- ► Area 2 design for remediation of sediment, floodplain, & anabranches
- ► Area 4 TCRA design for sediment removal, bank protection

Fish Remedial Action Objectives (RAO)

Protect people who consume Kalamazoo River fish

- ► Reduction of PCBs in fish tissue to the Michigan fish advisory level for smallmouth bass
 - ► Two meals per month (0.11 mg/kg total PCB concentration)
- ► Protective of sports fishermen who eat more fish than an average person
 - Assumes a person eats 125 half pound fish meals per year (about 10.5 meals per month)
 - ▶ Non-cancer related goal of 0.072 mg/kg total PCB concentration
 - Cancer related goal of 0.042 mg/kg total PCB concentration

Consideration given to reference area / upstream concentrations

Smallmouth Bass (SMB) Fillet (skin-on)

- ► 10 18 inch fish
- ► Collected every 5 years

Carp Fillet (skin-off)

- ► 13 34 inch fish
- ► Collected 2 times every 5 years

SMB Young of Year Whole Body (YOY WB) composite

- ► 3 5 inch fish
- Collected as needed

Fish Collection Locations

Fish Collection Locations

Fish Collection Locations

Current Fish Tissue PCBs Median Conc. (mg/kg)

2015/16 Smallmouth Bass Fillets

Reference	0.017	
	0.15	
Upstream Location	0.20	
Area 1	0.23	
	0.30	
Area 2	0.28	
Area 3	0.52	
Area 4	0.75	
Area 5	0.53	
Area 6	0.68	
Area 7	0.33	
and have been		

Current Fish Tissue PCBs Median Conc. (mg/kg)

2018 Carp Fillets

Current Fish Tissue PCBs Conc. (mg/kg)

2018 Smallmouth Bass YOY Whole Body

Trends Over Time for SMB Fillets with Skin

Trends Over Time for Carp

Trends Over Time for SMB YOY Whole Body

Fish Tissue PCB Concentration Changes Over Time

Remediation and Fish Tissue Recovery

- Step 1: Calculate current recovery rate with no remediation for each fish
- ► Step 2: Apply a "step down" in concentration based on previous recovery improvements after remediation along the Kalamazoo River
- ► Step 3: Apply an appropriate rate of recovery after remediation is complete
- ► Step 4: Estimate time to reach goal after remediation

Review Example from the Area 1 Feasibility Study

Area 1 Steps 2 - 3: Step Down, Recovery, & Projection

Area 1 Steps 2 - 3: Step Down, Recovery, & Projection

Area 1 Steps 2 - 3: Step Down, Recovery, & Projection

Area 1 Steps 2 - 3: Step Down, Recovery, & Projection

Area 1 Step 4: SMB Fillet Projection

Long Term Monitoring (LTM)

- ► LTM has and will continue throughout the investigative and feasibility study phases of Superfund
- ► A baseline LTM event will occur prior to remediation
- ► LTM will continue post remediation
- ► A report will be prepared every 5 years post remediation to document effectiveness of the remedy and rate of fish recovery

