Beazer

BEAZER EAST, INC. C/O THREE RIVERS MANAGEMENT, INC. MANOR OAK ONE, SUITE 200, 1910 COCHRAN ROAD, PITTSBURGH, PA 15220

February 19, 2013

Ms. Carolyn Bury U.S. Environmental Protection Agency, Region V 77 West Jackson Boulevard Mail Code DE-9J Chicago, IL 60604-3590

Re: Former Koppers Wood-Treating Site – Carbondale, Illinois November 2012 Dioxin Sampling Final/Validated Data Submittal

Dear Ms. Bury:

In accordance with the November 19, 2012 *Work Plan for Additional Soil Sampling and PCDD/PCDF Analysis* (Work Plan), which was approved by the USEPA on November 20, 2012, Beazer conducted sampling in the residential area south of the Former Koppers Wood-Treating Site in Carbondale, Illinois on November 27 and 28, 2012. The purpose of this letter is to transmit the final/validated laboratory analytical data associated with the November 2012 sampling to the USEPA. The following are attached to this letter:

- Attachment 1 Validated Analytical Data Summary Table
- Attachment 2 Sample Location Maps
- Attachment 3 Data Validation Reports (includes validated laboratory analytical data sheets)

As discussed in the Work Plan, a total of 16 samples were collected – eight of the 16 were initially analyzed for PCDDs/PCDFs, and the other eight were held at the laboratory. Based on discussions with USEPA during a December 18, 2012 conference call, four of the initially held samples were released for PCDD/PCDF analysis. The results for all 12 of the analyzed samples are reported herein.

Please feel contact me at 412-208-8867 if you have any questions or comments regarding this submittal.

Sincerely,

Michael Slenska, P.E. Senior Environmental Manager

Enclosure

cc: James Moore, IEPA Jeffrey Holden, ARCADIS Paul Anderson, ARCADIS David Bessingpas, ARCADIS

Attachment 1

Validated Analytical Data Summary Table

TABLE 1 VALIDATED ANALYTICAL DATA SUMARY - NOV. 2012 SAMPLES

FORMER KOPPERS WOOD-TREATING SITE

CARBONDALE, ILLINOIS

Sample ID:		A1-64	A1-65	A1-66	A1-67	A1-68	A1-69	A1-70	A1-71	A1-72	A1-73	A1-74	A1-75
Depth (ft bgs): Sample Date:	Units	0 - 0.5 11/27/12	0 - 0.5 11/27/12	0 - 0.5 11/28/12	0 - 0.5 11/28/12	0 - 0.5 11/27/12	0 - 0.5 11/27/12	0 - 0.5 11/27/12	0 - 0.5 11/27/12	0 - 0.5 11/27/12	0 - 0.5 11/27/12	0 - 0.5 11/27/12	0 - 0.5 11/27/12
PCDDs/PCDFs													
1,2,3,4,6,7,8-HpCDD	pg/g	344	358	1,530	5,010 EJ	296 [317]	205	897	653	269	773 [1,160]	316	817
1,2,3,4,6,7,8-HpCDF	pg/g	25.8	41.3	189 J	468	24.1 [26.5]	19.7	254	82.8	19.4	130 [186]	30.6	62.4
1,2,3,4,7,8,9-HpCDF	pg/g	1.88 J	3.13	13.1	29.3	1.88 J [1.84 J]	1.42 J	26.5	5.77	1.39 J	9.45 [14.6]	2.21 J	4.42
1,2,3,4,7,8-HxCDD	pg/g	2.88	3.52	11.5	31.4	3.31 [3.34]	2.15 J	8.26	7.01	2.77 J	9.72 [12.4]	3.19	9.48
1,2,3,4,7,8-HxCDF	pg/g	1.48 J	1.93 J	7.81	7.87	1.51 J [1.46 J]	1.16 J	11.7	3.85	0.844 J	5.26 [6.94]	1.98 J	2.32 J
1,2,3,6,7,8-HxCDD	pg/g	7.22	10.1	44.5	95.0	8.83 [10.7]	5.83	29.7	17.9	6.08	24.1 [30.8]	7.64	20.8
1,2,3,6,7,8-HxCDF	pg/g	1.09 J	1.42 J	5.86	5.54	1.26 J [1.12 UX]	0.808 UX	7.16	3.19	0.685 UX	5.98 [7.50]	1.65 J	2.12 J
1,2,3,7,8,9-HxCDD	pg/g	6.96	8.17	27.1	79.3	8.04 [9.54]	5.35	21.0	16.4	6.66	23.7 [29.5]	6.97	33.7
1,2,3,7,8,9-HxCDF	pg/g	0.139 J	0.193 J	0.745 J	0.737 J	0.483 U [0.505 U]	0.390 U	1.63 J	0.275 J	0.316 U	0.984 U [1.59 J]	0.375 U	0.277 U
1,2,3,7,8-PeCDD	pg/g	1.64 J	2.04 J	4.85	10.5	2.06 J [2.56 J]	1.53 J	4.04	4.16	1.22 UX	6.58 [6.47]	2.03 J	8.18
1,2,3,7,8-PeCDF	pg/g	0.419 J	0.336 J	2.29 J	0.807 J	0.453 J [0.395 J]	0.429 J	0.721 J	1.03 J	0.235 U	1.14 J [1.11 J]	0.709 J	0.682 J
2,3,4,6,7,8-HxCDF	pg/g	1.76 J	2.32 J	9.08	11.1	2.12 J [2.21 J]	1.24 J	14.3	5.05	1.18 J	8.06 [10.7]	2.17 J	3.58
2,3,4,7,8-PeCDF	pg/g	0.524 J	0.778 J	3.86 J	1.58 J	1.04 J [1.03 J]	0.654 J	0.609 J	2.48 J	0.190 UX	1.38 J [1.54 J]	1.00 J	0.568 J
2,3,7,8-TCDD	pg/g	0.301 J	0.269 UX	0.870	0.782	0.364 J [0.372 J]	0.316 UX	0.329 UX	0.561 J	0.185 UX	0.667 [0.579]	0.259 J	1.25
2,3,7,8-TCDF	pg/g	0.652	0.408 J	1.65	0.479 J	0.331 J [0.287 J]	0.555 J	0.336 J	1.22	0.157 J	0.627 [0.769]	0.821	0.760
OCDD	pg/g	17,700 EJ	12,700 EJ	30,900 EJ	170,000 DEJ	10,900 EJ [11,200 EJ]	9,870 EJ	19,900 EJ	24,000 EJ	20,000 EJ	21,500 EJ [26,800 EJ]	12,400 EJ	21,000 EJ
OCDF	pg/g	112	169	718	3,970 J	82.3 [88.8]	60.9	576	319	78.7	450 [871]	107	340
Total HpCDD	pg/g	759	832	2,610	8,240	583 [656]	439	1,450	1,570	588	1,480 [2,150]	709	1,730
Total HpCDF	pg/g	88.7	138	639	2,250	82.7 [80.6]	58.5	849	273	62.4	397 [633]	97.7	227
Total HxCDD	pg/g	75.2	89.8	257	601	73.5 [84.3]	61.3	157	162	57.5	208 [274]	81.9	204
Total HxCDF	pg/g	31.5	47.4	170	327	38.1 [37.9]	19.3	281	91.3	20.4	139 [205]	36.4	64.4
Total PeCDD	pg/g	18.4	17.9	36.3	52.5	13.6 [16.5]	15.9	21.9	34.2	9.91	36.2 [47.1]	16.4	37.4
Total PeCDF	pg/g	13.3	14.8	52.9	34.4	22.3 [19.6]	9.72	25.7	38.2	4.96	40.7 [58.5]	19.7	40.6
Total TCDD	pg/g	9.13	5.82	7.00	4.51	2.11 [2.33]	3.73	1.46	12.2	1.25	7.27 [9.10]	1.87	7.82
Total TCDF	pg/g	9.56	8.38	30.5	9.56	9.05 [6.87]	7.12	2.86	27.0	1.78	16.9 [20.7]	16.1	16.3
2,3,7,8-TCDD TEQ	pg/g	13.4	13.0	44.6	142	11.8 [12.8]	8.61	31.6	25.7	10.7	31.1 [39.5]	12.3	32.1

Notes:

1. All 12 samples were composites of five discrete soil sample locations.

Definitions:

PCDDs/PCDFs = polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans

pg/g = picograms per gram, or parts per trillion (ppt)

ft bgs = feet below ground surface

TEQ = Toxicity Equivalent, calculated using 2005 World Health Organization (WHO) Toxicity Equivalent Factors (TEFs)

[] = analytical result for duplicate sample

Data Qualifiers:

D = result based on analysis of diluted sample

E = the amount detected is above the High Calibration Limit

J = the amount detected is below the Low Calibration Limit; or estimated value based on data validation

U = compound not detected; reported value is the sample specific estimated detection limit

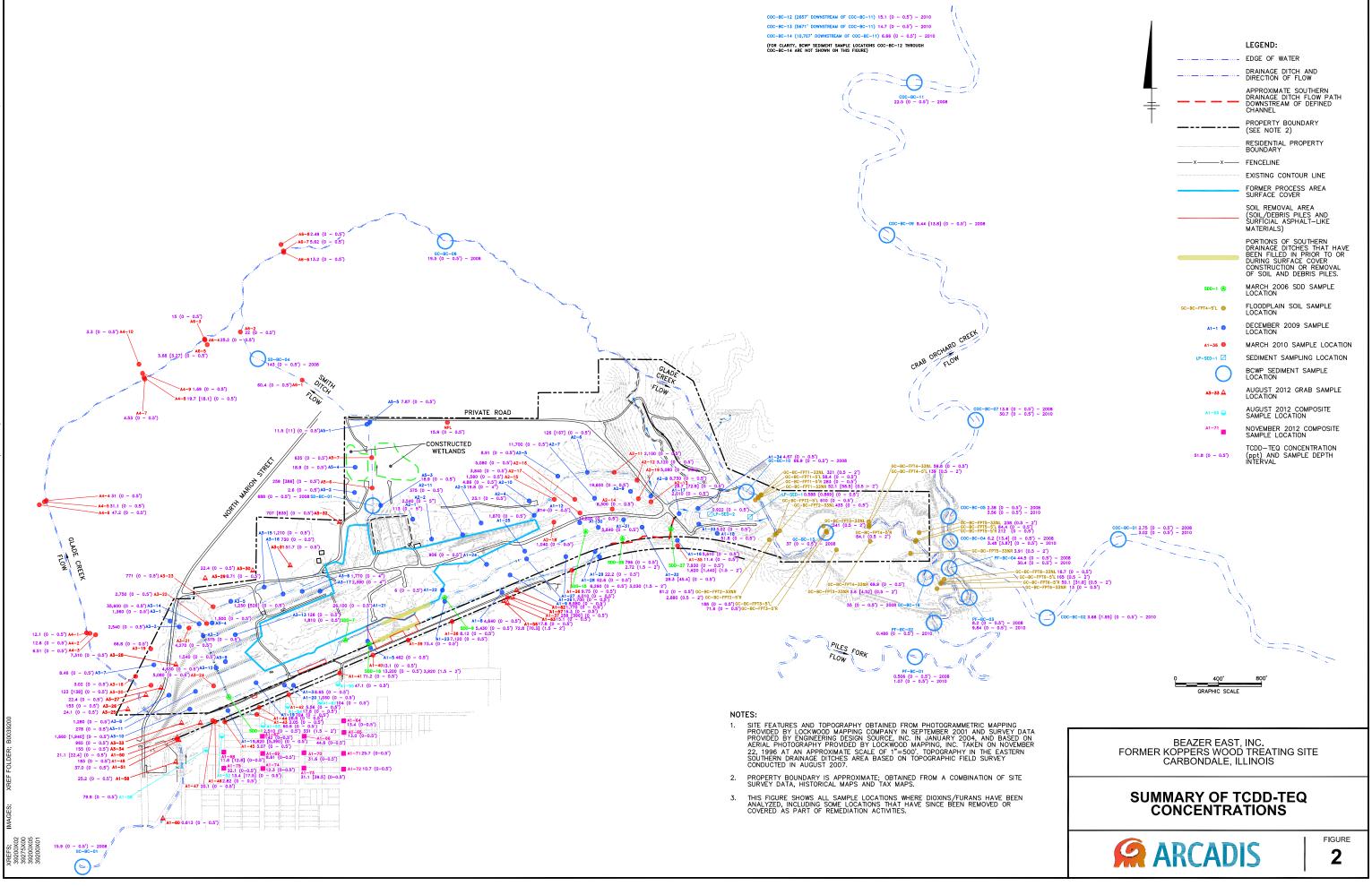
UX = non-detect; reported value is the estimated maximum possible concentration

Attachment 2

Sample Location Maps

SMALL) G. STOWELL L. FORAKER LD: PIC. R. ANDERSON PM. J. HOLDEN TM. D. BESSNGPAS LYR. ON- OFF 9275601.DWG LAYOUT: 1 SAVED: 11/8/20131245.FM ACADVER: 13.15 (LMS TECH) PAGESETUP: CLD28 PDF a

REFS: IMAGES: XREF 9200X01 39200X02.jpg


	LEGEND:
	EDGE OF WATER
	DRAINAGE DITCH AND DIRECTION OF FLOW
	PROPERTY BOUNDARY (SEE NOTE 2)
	PARCEL BOUNDARY
x	FENCELINE
	EXISTING CONTOUR LINE
	FORMER PROCESS AREA SURFACE COVER
	SOIL REMOVAL AREA (SOIL/DEBRIS PILES AND SURFICIAL ASPHALT-LIKE MATERIALS)
_	PORTIONS OF SOUTHERN DRAINAGE DITCHES THAT HAVE BEEN FILLED IN PRIOR TO OR DURING SURFACE COVER CONSTRUCTION OR REMOVAL OF SOIL AND DEBRIS PILES.
S1 💿	2005 RESIDENTIAL SAMPLE LOCATIONS (USEPA)
SB-102 👄	2005-2010 SAMPLE LOCATIONS (BEAZER)
B	2006 RESIDENTIAL SAMPLE LOCATIONS (CITY OF CARBONDALE)
A1-57 👁	AUGUST 2012 GRAB SAMPLE LOCATION
A1-55 🕘	AUGUST 2012 COMPOSITE SAMPLE LOCATION
A1-66 🔛	NOVEMBER 2012 COMPOSITE SAMPLE LOCATION
15.1 (0 -0.5')	TCDD-TEQ CONCENTRATION (ppt) AND SAMPLE DEPTH INTERVAL
NA	NOT ANALYZED

NOTES:

1.	SITE FEATURES AND TOPOGRAPHY OBTAINED FROM
	PHOTOGRAMMETRIC MAPPING PROVIDED BY LOCKWOOD MAPPING
	COMPANY IN SEPTEMBER 2001 AND SURVEY DATA PROVIDED
	BY ENGINEERING DESIGN SOURCE, INC. IN JANUARY 2004, AND
	BASED ON AERIAL PHOTOGRAPHY PROVIDED BY LOCKWOOD
	MAPPING, INC. TAKEN ON NOVEMBER 22, 1996 AT AN
	APPROXIMATE SCALE OF 1"=500', TOPOGRAPHY IN THE
	EASTERN SOUTHERN DRAINAGE DITCHES AREA BASED ON
	TOPOGRAPHIC FIELD SURVEY CONDUCTED IN AUGUST 2007.

- PROPERTY BOUNDARY IS APPROXIMATE; OBTAINED FROM A COMBINATION OF SITE SURVEY DATA, HISTORICAL MAPS AND TAX MAPS.
- 3. THE 2006 RESIDENTIAL SAMPLE LOCATIONS ARE APPROXIMATE.
- AERIAL IMAGE OBTAINED FROM GOOGLE EARTH AND DATED APRIL 2, 2012.

GRAPHIC SCALE	
BEAZER EAST, INC. FORMER KOPPERS WOOD TREATING SI CARBONDALE, ILLINOIS	TE
AUGUST/NOVEMBER 2012 SA LOCATIONS AND TCDD-TE CONCENTRATIONS	
ARCADIS	FIGURE

TM. PM J HOLDEN 1.14 AM ACADVE RSON PIC: R. J ë Ë

Attachment 3

Data Validation Reports (includes validated laboratory data sheets)

Imagine the result

Beazer East Inc.

Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans (PCDDs/PCDFs) Analyses

SDG #: 2110011

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #: 18268R Review Level: Tier III Project: B0039275.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 2110011 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample				Analysis		
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PCDDs/ PCDFs	MET	MISC
A1-68 (0-0.5')	2110011-01	Soil	11/27/2012				Х		
DUP-1	2110011-02	Soil	11/27/2012	A1-68 (0-0.5')			Х		
A1-75 (0-0.5')	2110011-03	Soil	11/27/2012				Х		
A1-69 (0-0.5')	2110011-04	Soil	11/27/2012				Х		
A1-74 (0-0.5')	2110011-05	Soil	11/27/2012				Х		
A1-70 (0-0.5')	2110011-06	Soil	11/27/2012				Х		
A1-73 (0-0.5')	2110011-07	Soil	11/27/2012				Х		
A1-71 (0-0.5')	2110011-08	Soil	11/27/2012				Х		
A1-72 (0-0.5')	2110011-09	Soil	11/27/2012				Х		
EB 112712	2110011-10	Water	11/27/2012				Х		

Note: Soil sample results were reported on a dry weight basis.

Sample location A1-73 (0-0.5') is the parent sample of field duplicate sample DUP 2 which is included in SDG 2110012 (data validation report 19269R); the field duplicate sample results were evaluated within this data validation report.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance otable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290 as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOP associated with USEPA SW-846 Method 8290 Validating Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans by High Resolution GC/MS (SOP HW-19 Revision 1, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and

provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

POLYCHLORINATED DIBENZODIOXINS AND POLYCHLORINATED DIBENZOFURANS (PCDD/PCDF) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8290	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C
300-040 0290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were not detected above the MDL in the associated laboratory method blank; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance including instrument sensitivity and mass resolution were acceptable.

Overall system performance and gas chromatographic column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

All compounds associated with the initial calibration standards must exhibit signal-to-noise ratios (S/N) of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent relative standard deviations (%RSDs) of the relative response factors (RRFs) less than 20% for the labeled standards and less than 30% for the target compounds.

4.2 Continuing Calibration

Instrument performance must be verified at 12 hour periods after successful tune verifications. All compounds associated with the continuing calibration standard must exhibit S/N of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent differences (%D) of the RRFs less than 30% for the labeled standards and less than 20% for the target compounds..

All initial and continuing calibration criteria were within the control limits.

5. Injection Internal Standard Performance

Injection internal standards are added to all extracts prior to instrumental analysis. The injection internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the injection internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within ± fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each injection internal standard exhibit a ratio of the two identifying masses (m/z) within the method specified limits.

All injection internal standard S/N, RT, and m/z ratios were within established limits.

6. Surrogate Internal Standard Compounds

All field samples, blanks, LCS, and MS/MSD are spiked with surrogate internal standard compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The acceptance criteria require that the surrogate internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within ± fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each surrogate internal standard exhibit a calculated recovery and a ratio of the two identifying masses (m/z) within the method specified limits.

All samples exhibited surrogate internal standard acceptance criteria within the control limits.

7. Clean-up Recovery Surrogate Performance

All field samples, blanks, LCS, and MS/MSD are spiked with recovery surrogates prior to extract clean-up. Recovery surrogate acceptance criteria require that their calculated recoveries, S/N, m/z ratios, and relative retention times (RRTs) be within the method-specified acceptance limits.

All recovery surrogate recoveries S/N, m/z ratios, and RRTs were within the control limits.

8. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the (optional) MS/MSD analysis should exhibit recoveries within the method-specified acceptance limits of 80-120%. The relative percent difference (RPD) between the MS and MSD results should be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample location A1-69(0-0.5') was used for the MS/MSD analysis. All compounds associated with the MS/MSD analyses exhibited acceptable recoveries and RPDs between the MS and MSD results.

9. Ongoing Precision and Recovery (OPR) Sample Analysis

The OPR analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the OPR analysis must exhibit a percent recovery within the method-specified acceptance limits.

All compounds associated with the OPR analysis exhibited recoveries within the control limits.

10. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	2,3,7,8-TCDD	0.364 J	0.372 J	2.2 %
	1,2,3,7,8-PeCDD	2.06 J	2.56 J	21.6 %
	1,2,3,4,7,8-HxCDD	3.31	3.34	0.9 %
	1,2,3,6,7,8-HxCDD	8.83	10.7	19.2 %
	1,2,3,7,8,9-HxCDD	8.04	9.54	17.1 %
	1,2,3,4,6,7,8-HpCDD	296	317	6.9 %
	OCDD	10900 E	11200 E	2.7 %
	2,3,7,8-TCDF	0.331 J	0.287 J	14.2 %
	1,2,3,7,8-PeCDF	0.453 J	0.395 J	13.7 %
	2,3,4,7,8-PeCDF	1.04 J	1.03 J	1.0 %
A1-68 (0-0.5') / DUP-1	1,2,3,4,7,8-HxCDF	1.51 J	1.46 J	3.4 %
	1,2,3,6,7,8-HxCDF	1.26 J	1.12 U	AC
	2,3,4,6,7,8-HxCDF	2.12 J	2.21 J	4.2 %
	1,2,3,4,6,7,8-HpCDF	24.1	26.5	9.5 %
	1,2,3,4,7,8,9-HpCDF	1.88 J	1.84 J	2.2 %
	OCDF	82.3	88.8	7.6 %
	Total TCDD	2.11	2.33	9.9 %
	Total PeCDD	13.6	16.5	19.3 %
	Total HxCDD	73.5	84.3	13.7 %
	Total HpCDD	583	656	11.8 %
	Total TCDF	9.05	6.87	27.4 %

Results (in pg/g) for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Total PeCDF	22.3	19.6	12.9 %
	Total HxCDF	38.1	37.9	0.5 %
A1-68 (0-0.5') / DUP-1	Total HpCDF	82.7	80.6	2.6 %
	TEQ	11.8	12.8	8.1 %
	2,3,7,8-TCDD	0.667	0.579	14.1 %
	1,2,3,7,8-PeCDD	6.58	6.47	1.7 %
	1,2,3,4,7,8-HxCDD	9.72	12.4	24.2 %
	1,2,3,6,7,8-HxCDD	24.1	30.8	24.4 %
	1,2,3,7,8,9-HxCDD	23.7	29.5	21.8 %
	1,2,3,4,6,7,8-HpCDD	773	1160	40.0 %
	OCDD	21500 E	26800 E	21.9 %
	2,3,7,8-TCDF	0.627	0.769	20.3 %
	1,2,3,7,8-PeCDF	1.14 J	1.11 J	2.7 %
	2,3,4,7,8-PeCDF	1.38 J	1.54 J	11.0 %
	1,2,3,4,7,8-HxCDF	5.26	6.94	27.5 %
	1,2,3,6,7,8-HxCDF	5.98	7.50	22.6 %
	2,3,4,6,7,8-HxCDF	8.06	10.7	28.1 %
A1-73 (0-0.5') / DUP 2	1,2,3,7,8,9-HxCDF	0.984 U	1.59 J	AC
	1,2,3,4,6,7,8-HpCDF	130	186	35.4 %
	1,2,3,4,7,8,9-HpCDF	9.45	14.6	42.8 %
	OCDF	450	871	63.7 %
	Total TCDD	7.27	9.10	22.4 %
	Total PeCDD	36.2	47.1	26.2 %
	Total HxCDD	208	274	27.4 %
	Total HpCDD	1480	2150	36.9 %
	Total TCDF	16.9	20.7	20.2 %
	Total PeCDF	40.7	58.5	35.9 %
	Total HxCDF	139	205	38.4 %
	Total HpCDF	397	633	45.8 %
	TEQ	31.1	39.5	23.8 %

AC Acceptable

J Estimated (result is < RL) U Not detected

The field duplicate sample results are acceptable.

11. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise

values, and relative retention times.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in pg/g) to indicate the elevated detection limit as EMPC.

Sample ID	Sample ID Compound		Reported Result
DUP-1	1,2,3,6,7,8-HxCDF	1.12 EMPC	1.12 UX
	2,3,7,8-TCDD	0.316 EMPC	0.316 UX
A1-69 (0-0.5')	1,2,3,6,7,8-HxCDF	0.808 EMPC	0.808 UX
A1-70 (0-0.5')	2,3,7,8-TCDD	0.329 EMPC	0.329 UX
	2,3,7,8-TCDD	0.185 EMPC	0.185 UX
	1,2,3,7,8-PeCDD	1.22 EMPC	1.22 UX
A1-72 (0-0.5')	2,3,4,7,8-PeCDF	0.190 EMPC	0.190 UX
	1,2,3,6,7,8-HxCDF	0.685 EMPC	0.685 UX

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
A1-68 (0-0.5')	OCDD	10900 E		10900 EJ
DUP-1	OCDD	11200 E		11200 EJ
A1-75 (0-0.5')	OCDD	21000 E		21000 EJ
A1-69 (0-0.5')	OCDD	9870 E		9870 EJ
A1-74 (0-0.5')	OCDD	12400 E		12400 EJ
A1-70 (0-0.5')	OCDD	19900 E		19900 EJ
A1-73 (0-0.5')	OCDD	21500 E		21500 EJ
A1-71 (0-0.5')	OCDD	24000 E		24000 EJ
A1-72 (0-0.5')	OCDD	20000 E		20000 EJ

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentration greater than the linear range qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within the calibration range	D
Diluted sample result < the calibration range	DJ
Diluted sample result > the calibration range	EDJ
Original sample result > the calibration range	EJ

The analyzing laboratory noted that the compounds in the following table exhibited interference by a coeluting furan isomer and may have concentrations that are biased high. Therefore, the following results were qualified as estimated.

Sample Location	Analyte
A1-68 (0-0.5') DUP-1 A1-75 (0-0.5') A1-69 (0-0.5') A1-74 (0-0.5') A1-73 (0-0.5')	2,3,4,7,8-PeCDF
A1-70 (0-0.5') A1-71 (0-0.5')	2,3,4,7,8-PeCDF 1,2,3,7,8,9-HxCDF

12. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PCDD/PCDF

PCDDs/PCDFs; SW-846 8290	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Ongoing Precision and Accuracy (OPR) Accuracy (%R)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Internal Standard Spike %R		Х		Х	
Recovery Surrogate Standard Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation		•			
System performance and column resolution		Х		Х	
Initial calibration %RSD		Х		Х	
Continuing calibration %D		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Signal-to-noise ratio		Х		Х	
Injection Internal Standard performance		Х		Х	
Recovery standard performance		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	
F. Compound quantification		Х	Х		

RSD – relative standard deviation

%R - percent recovery

RPD - relative percent difference

%D – difference

SAMPLE COMPLIANCE REPORT

Sample Delivery						C			
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	PCDDs/ PCDFs	MISC	Noncompliance
	11/27/2012	SW846	A1-68 (0-0.5')	Soil			No	 	Calibration range exceedance
	11/27/2012	SW846	DUP-1	Soil			No	 	Calibration range exceedance; EMPC
	11/27/2012	SW846	A1-75 (0-0.5')	Soil			No	 	Calibration range exceedance
	11/27/2012	SW846	A1-69 (0-0.5')	Soil			No	 	Calibration range exceedance; EMPC
2110011	11/27/2012	SW846	A1-74 (0-0.5')	Soil			No	 	Calibration range exceedance
2110011	11/27/2012	SW846	A1-70 (0-0.5')	Soil			No	 	Calibration range exceedance; EMPC
	11/27/2012	SW846	A1-73 (0-0.5')	Soil			No	 	Calibration range exceedance
	11/27/2012	SW846	A1-71 (0-0.5')	Soil			No	 	Calibration range exceedance
	11/27/2012	SW846	A1-72 (0-0.5')	Soil			No	 	Calibration range exceedance; EMPC
	11/27/2012	SW846	EB 112712	Water			Yes	 	

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

Validation Performed By:	Dennis Dyke
Signature:	Deven
Date:	January 18, 2013
Peer Review:	Dennis Capria
Date:	January 24, 2013

CHAIN OF CUSTODY / LABORATORY QUALIFIERS / CORRECTED SAMPLE ANALYSIS DATA SHEETS

Vista	ij	СНА	IN OF C		STO				FOR LAN Laborator Storage D				011	Storage Secured Yes No D Femp 0.8 ~
Project I.D.:			P.O.# <u></u> P.O.#	15.a	xxx. rxx	02_Sa	mpler:	i. STEV R. STE	VART VENS (Name	ion i)		Standa Rush (◯14	surcharg days 〇	`21 Days ge may apply): 7 days Specify:
Invoice to: Name DAVID BESSINGPA Relinquished by Gignener and Printed No	Compar S	ARCADI	S GGC	dress	EXCELS	NOR K	D.	BAXTE	R I	State	Zip 56425	Ph# Zi	8- 829	Fax# - 4607
Relinquished by (signature and Printed Na Relinquished by: (Signature and Printed Na	TSTEVET	NSON	Date: //28/12 Date:	_	Time: 744 Time:	5 \$	Received	by: (Signatu by: (Signatu	re and Printed	Name)	Benedi	Date:	11/29	1/2 Time: 103°
		See (Sample Log-in	Che			1010 (010 Landau					Duic.		Time.
SHIP TO: Vista Analytical Lab 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Fax	95762		ethod of Shipment: acking No.:	(d Analysis(131	APPENDING STATES	ST SA	13	5 5 15 B	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Sal III	
Sample ID	Date T	ime Locatio	on/Sample Description	1/0	10 00 ×	17 23 25 C		EA 20 20	10 10 10 10 10 10 10 10 10 10 10 10 10 1	500 50 50 50	23/23/2 25/25/2	\$ ×		
A1-68 (0-0.5')	11/27/12 01	855		1	G 50	TÍ	Í	X	ŤŤ	Í	1	f f	ſſ	(
DUP-1	11/27/12 -	-		1	GSO			X						
A1-75 (0-0.5')	11/27/12 0'	940		1	GSO			X						
A1-69 (0-0.5') .	11/27/12/10	010		1	GSO			X						
41-69 (0-0.5') MS	11/20/12/10	010		1	G 50			X						
A1-69 (0.0.5') MSD.	1/27/12 11	010		1	G 50			\times						
41-74(0-0,5)	11/27/12 11	00		1	GSO			X						
	11/27/12 11	35		11	GSO			X						
A1-73 (0-0.5')	11/27/12 1.	210		1	GSO			X						
DUP-2 ·	11/27/12 -	-		1	G 50			X						*HOLD *
Special Instructions/Comments:	<u>in</u> to	Work()	*Bottle Preserv 0 = Other			DOCUN AND RI			Comp Addre City:_ Phone Email Matrix 1	any: <u>An</u> ss: <u>665</u> <u>BAXT</u> : <u>218-8</u> : <u>DAVID</u> Types: [<u>829-46</u> BESSIN W = Drink	State State GPAS ing Water,	<u>E Ro</u> <u>MN</u> Fax:_ EF = Efflu	Zip: <u>56425</u> DIS - US. COM ent, PP = Pulp/Paper, Nastewater, B = Blood

Vista	CH	IAIN OF C		5TO			and the second second	Project ID: WR-2	e only 21/00/1	Storage Secured Yes No D Temp O • O _ °°C
Project I.D.:						ler: <u>R.S</u>	(Name)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Rush (surch	☆21 Days harge may apply): ○7 days Specify:
Invoice to: Name DAVID BESSINGPAS	Company ARCA		tress	ELSIDE	RD.	BAXTE	R M	ste Zip	Ph# 218-8	Fax# 29-4607
Relinquished by (signat are and Finted Na			7	Time: 144	5 Dec	erved by: (Sign	And Printed Nat	it BBei	redict 11/2	29/12 Time: 1040
Relinquished by: (Signature and Printed Na	me)	Date:		Time:	Rec	eived by: sign	ature and Printed Nan	ne)	Date:	Time:
	1	See "Sample Log-in (Chec	klist" fo	r additio	nal sample	informat	ion		
SHIP TO: Vista Analytical Labo 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Fax	95762	Method of Shipment: Tracking No.:	С	ontainer(s	- /	Carlos Andrews	1.11	1328-938 1328-938	12/2	111
Sample ID		Location/Sample Description	V /		A 20 20 20 20					
A1-71 (0-0,5')	11/27/12/330			GSO		X			+++	
A1-72 (c-0.5')	11/27/12 1400			G 50						
A1-65 (0-0.5')	11/27/12 1430			GSO		X			+++	* HOLD *
A1-64 (0-0.5)	11/27/12 1500			GSO					+++	* HOLD *
EB 112712 .	11/27/12 1540			AAQ						
A1-79 (0-0.5')	11/28/12 0900			GSO						* HOLD *
A1-78 (0-0.5')	11/28/12 0925			G 50						* HOLD *
A1-77(0.0.5)	11/28/12 0950			GSU						* HOLD *
	11/28/12 1020			G 50						* HOLD *
	11/28/12/115		/	GSO						* HOLD *
Special Instructions/Comments: Samples logged in	to Work!	Order 2110017				ND NTATION ULTS TO:	Compan Address City:	y: <u>ARCA</u> 6602 1 BAXTER	State: M	RD. V Zip: 56425
Container Types: A = 1 Liter Amber, G = P = PUF, T = MM5 Train, O= Other	= Glass Jar	*Bottle Preserv O = Other		/pe: T=Th	iosulfate,		Email: <u>)</u> Matrix Typ	es: DW = Dri	nking Water, EF =	x: <u>BARCADIS</u> ~US.LCA Effluent, PP = Pulp/Paper, V = Wastewater, B = Blood/Ser

Vista	11000								CUSTODY					Laboratory Project ID: 2 Storage ID				Storage Secured Yes No D Temp 0.8 °C
Project I.D.:	_		P.O.# <u>B00392</u>					Sampl	er:	1. Sn R. St		HRT Name)	-:- >~		S F	tanda lush (s	surchar	ne): ∥21 Days ge may apply): ⊃7 days Specify:
Invoice to: Name DAVID BESSINGPA Relinquished by: Bignature and Printed N Relinquished by: (Signature and Printed N	W STE	pany ARCA VENC	DIS 6602 5 Son Date: 11/28/12 Date:	dress CE	Tir	or ne: 144 ne:	Ro.	Réc	BAX eived t	City TER IV: (Signa	fure and]	St Mr Printed Nar Printed Nar	ate me) me)	Zip 564 B.B.C	ened	h# Date: CF Date:	18-8	Fax# 29-4607 1/12 Time: 1040 Time:
and the state of the	and a state of the		See "Sample Log-in	Che	ckl	ist"	for ad			_								
SHIP TO: Vista Analytical Lak 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Fa	95762	3-0106	Method of Shipment: Tracking No.:		Con	tainer	(s) Re	1	1	Repair States	1/8/	ALL COLORIS	-	13 3 S	1	12 - 22 - 22 - 22 - 22 - 22 - 22 - 22 -	The second	
Sample ID	Date	Time	Location/Sample Description	1	Charles Charles	5%/=	171 20 20 100 100 100 100 100 100 100 100	200 2	22/22/20	120/2		120	2 ×	\$ 23 E	5/3	20	2	
A1-66 (0-0,5')	11/28/12			1	-	So				X								* HOLD *
EB 1/2812	11/28/12	1400		2	A	Aq						-			-	+		
										_		+	+		+			
																+		
Special Instructions/Comments: * Sample logg	d in-	to li	brKOrder 21100,	2				SEN UMEN RESU	TAT		C A C	ity: E	1y: :60	ARC	EX	S State:	SIGR	Zip: 56425
Container Types: A = 1 Liter Amber, G P = PUF, T = MM5 Train, O= Other	= Glass Jar		*Bottle Preser O = Othe		туре	: T=	Thiosulf	ite,			E M	mail:_] atrix Typ	DAMi bes:	DW = I	SSA	GP/13 Water,	SØM EF = Eff	RCADIS-US. (cm luent, PP = Pulp/Paper,

DATA QUALIFIERS & ABBREVIATIONS

B	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	Recovery was outside laboratory acceptance limits.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Sample ID: A1-68 (0-0.5')					EPA M	ethod 829
Client DataName:ARCAProject:CarboDate Collected:27-No		Sample DataMatrix:SoilSample Size:10.5 g% Solids:77.3		Laboratory DataLab Sample:2110011-01QC Batch:B2L0001Date Analyzed :06-Dec-12 18:1		: 29-Nov-2012 l: 03-Dec-2012 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.364		J	IS 13C-2,3,7,8-TCDD	90.4	40 - 135	
1,2,3,7,8-PeCDD	2.06		J	13C-1,2,3,7,8-PeCDD	66.1	40 - 135	
1,2,3,4,7,8-HxCDD	3.31			13C-1,2,3,4,7,8-HxCDD	82.3	40 - 135	
1,2,3,6,7,8-HxCDD	8.83			13C-1,2,3,6,7,8-HxCDD	77.5	40 - 135	
1,2,3,7,8,9-HxCDD	8.04			13C-1,2,3,7,8,9-HxCDD	80.6	40 - 135	
1,2,3,4,6,7,8-HpCDD	296			13C-1,2,3,4,6,7,8-HpCDD	77.9	40 - 135	
OCDD	10900		ЕJ	13C-OCDD	96.5	40 - 135	
2,3,7,8-TCDF	0.331		J	13C-2,3,7,8-TCDF	83.2	40 - 135	
1,2,3,7,8-PeCDF	0.453		J	13C-1,2,3,7,8-PeCDF	77.1	40 - 135	
2,3,4,7,8-PeCDF	1.04		J	13C-2,3,4,7,8-PeCDF	81.2	40 - 135	
1,2,3,4,7,8-HxCDF	1.51		J	13C-1,2,3,4,7,8-HxCDF	80.9	40 - 135	
1,2,3,6,7,8-HxCDF	1.26		J	13C-1,2,3,6,7,8-HxCDF	78.2	40 - 135	
2,3,4,6,7,8-HxCDF	2.12		J	13C-2,3,4,6,7,8-HxCDF	75.5	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.483		13C-1,2,3,7,8,9-HxCDF	77.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	24.1			13C-1,2,3,4,6,7,8-HpCDF	81.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.88		J	13C-1,2,3,4,7,8,9-HpCDF	78.9	40 - 135	
OCDF	82.3			13C-OCDF	83.8	40 - 135	
				CRS 37C1-2,3,7,8-TCDD	87.1	40 - 135	
				Toxic Equivalent Quotient (TE	Q) Data		
				TEQMinWHO2005Dioxin	11.8		
TOTALS							
Total TCDD	2.11	3.15					
Total PeCDD	13.6	14.3					
Total HxCDD	73.5						
Total HpCDD	583						
Total TCDF	9.05	9.16					
Total PeCDF	22.3						
Total HxCDF	38.1						
Total HpCDF DL - Sample specifc esti	82.7			LCL-UCL- Lower control li			

Sample ID: DUP-1				EPA Method 8
Client DataName:ARCAProject:CarboDate Collected:27-No		Sample DataMatrix:SoilSample Size:10.3 g% Solids:78.3		Laboratory DataLab Sample:2110011-02Date Received:29-Nov-201210:23QC Batch:B2L0001Date Extracted:03-Dec-20128:36Date Analyzed :06-Dec-1218:59Column:ZB-5Analyst:MAS
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers	Labeled Standard %R LCL-UCL Qualifi
2,3,7,8-TCDD	0.372		J	IS 13C-2,3,7,8-TCDD 86.4 40 - 135
1,2,3,7,8-PeCDD	2.56		J	13C-1,2,3,7,8-PeCDD 74.4 40 - 135
1,2,3,4,7,8-HxCDD	3.34			13C-1,2,3,4,7,8-HxCDD 85.4 40 - 135
1,2,3,6,7,8-HxCDD	10.7			13C-1,2,3,6,7,8-HxCDD 79.2 40 - 135
1,2,3,7,8,9-HxCDD	9.54			13C-1,2,3,7,8,9-HxCDD 84.4 40 - 135
1,2,3,4,6,7,8-HpCDD	317			13С-1,2,3,4,6,7,8-НрСDD 78.6 40 - 135
OCDD	11200		ΕJ	13C-OCDD 99.1 40 - 135
2,3,7,8-TCDF	0.287		J	13C-2,3,7,8-TCDF 65.4 40 - 135
1,2,3,7,8-PeCDF	0.395		J	13C-1,2,3,7,8-PeCDF 78.2 40 - 135
2,3,4,7,8-PeCDF	1.03		J	13C-2,3,4,7,8-PeCDF 78.7 40 - 135
1,2,3,4,7,8-HxCDF	1.46		J	13C-1,2,3,4,7,8-HxCDF 84.4 40 - 135
1,2,3,6,7,8-HxCDF	ND	1.12	UX	13C-1,2,3,6,7,8-HxCDF 79.5 40 - 135
2,3,4,6,7,8-HxCDF	2.21		J	13C-2,3,4,6,7,8-HxCDF 78.0 40 - 135
1,2,3,7,8,9-HxCDF	ND	0.505		13C-1,2,3,7,8,9-HxCDF 85.6 40 - 135
1,2,3,4,6,7,8-HpCDF	26.5			13C-1,2,3,4,6,7,8-HpCDF 82.4 40 - 135
1,2,3,4,7,8,9-HpCDF	1.84		J	13C-1,2,3,4,7,8,9-HpCDF 89.6 40 - 135
OCDF	88.8			13C-OCDF 86.9 40 - 135
				CRS 37Cl-2,3,7,8-TCDD 82.5 40 - 135
				Toxic Equivalent Quotient (TEQ) Data
				TEQMinWHO2005Dioxin 12.8
TOTALS				
Total TCDD	2.33	2.83		
Total PeCDD	16.5	17.4		
Total HxCDD	84.3			
Total HpCDD	656			
Total TCDF	6.87	8.15		
Total PeCDF	19.6	19.7		
Total HxCDF	37.9	39.0		
Total HpCDF DL - Sample specifc esti	80.6	81.4		LCL-UCL- Lower control limit - upper control limit

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Sample ID: A1-75 (0-0.5)			1				thod 829
Client Data		Sample Data		Lab	oratory Data			
Name: ARC	ADIS	Matrix: Soil		Lab	Sample: 2110011-03	Date Receiv	ed: 29-Nov-2012	10:23
Project: Carbo		Sample Size: 10.7 g		-	Batch: B2L0001		ted: 03-Dec-2012	8:36
Date Collected: 27-No	ov-2012 9:40	% Solids: 74.9		Date	e Analyzed : 06-Dec-12 19:4		2	
							225 Analyst: MAS	
	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	1.25			IS	13C-2,3,7,8-TCDD	96.1	40 - 135	
1,2,3,7,8-PeCDD	8.18				13C-1,2,3,7,8-PeCDD	77.3	40 - 135	
1,2,3,4,7,8-HxCDD	9.48				13C-1,2,3,4,7,8-HxCDD	84.4	40 - 135	
1,2,3,6,7,8-HxCDD	20.8				13C-1,2,3,6,7,8-HxCDD	78.3	40 - 135	
1,2,3,7,8,9-HxCDD	33.7				13C-1,2,3,7,8,9-HxCDD	80.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	817				13C-1,2,3,4,6,7,8-HpCDD	78.1	40 - 135	
OCDD	21000		E J		13C-OCDD	116	40 - 135	
2,3,7,8-TCDF	0.760				13C-2,3,7,8-TCDF	83.0	40 - 135	
1,2,3,7,8-PeCDF	0.682		J		13C-1,2,3,7,8-PeCDF	87.7	40 - 135	
2,3,4,7,8-PeCDF	0.568		J		13C-2,3,4,7,8-PeCDF	88.4	40 - 135	
1,2,3,4,7,8-HxCDF	2.32		J		13C-1,2,3,4,7,8-HxCDF	83.0	40 - 135	
1,2,3,6,7,8-HxCDF	2.12		J		13C-1,2,3,6,7,8-HxCDF	79.2	40 - 135	
2,3,4,6,7,8-HxCDF	3.58				13C-2,3,4,6,7,8-HxCDF	81.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.277			13C-1,2,3,7,8,9-HxCDF	83.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	62.4				13C-1,2,3,4,6,7,8-HpCDF	83.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	4.42				13C-1,2,3,4,7,8,9-HpCDF	89.7	40 - 135	
OCDF	340				13C-OCDF	94.1	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	91.7	40 - 135	
					Toxic Equivalent Quotient (TE	Q) Data		
					TEQMinWHO2005Dioxin	32.1		
TOTALS								
Total TCDD	7.82	8.06						
Total PeCDD	37.4							
Total HxCDD	204							
Total HpCDD	1730							
Total TCDF	16.3	17.7						
Total PeCDF	40.6							
Total HxCDF	64.4							
Total HpCDF DL - Sample specifc est	227							

Sample ID: A1-69 (0-0	0.5')								EPA M	ethod 829
Client DataName:ARCADProject:CarbondDate Collected:27-Nov-2		Sample Data Matrix: Sample Size: % Solids:	Soil 10.1 g 79.5		Lab QC	ooratory Data Sample: Batch: e Analyzed :		Date Received: Date Extracted: 5 Column: ZB-5 Au 9 Column: DB-225	04-Dec-2012 nalyst: MAS	
Analyte Conc	. (pg/g)	DL EM	PC	Qualifiers		Labeled Stan		%R	LCL-UCL	Qualifier
2,3,7,8-TCDD	ND	0.3	16	UX	IS	13C-2,3,7,8-T	CDD	97.0	40 - 135	
1,2,3,7,8-PeCDD	1.53			J		13C-1,2,3,7,8-	PeCDD	83.2	40 - 135	
1,2,3,4,7,8-HxCDD	2.15			J		13C-1,2,3,4,7,	8-HxCDD	84.5	40 - 135	
1,2,3,6,7,8-HxCDD	5.83					13C-1,2,3,6,7,	8-HxCDD	78.3	40 - 135	
1,2,3,7,8,9-HxCDD	5.35					13C-1,2,3,7,8,	9-HxCDD	80.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	205					13C-1,2,3,4,6,	7,8-HpCDD	79.3	40 - 135	
OCDD	9870			ΕJ		13C-OCDD		108	40 - 135	
2,3,7,8-TCDF	0.555			J		13C-2,3,7,8-T	CDF	90.1	40 - 135	
1,2,3,7,8-PeCDF	0.429			J		13C-1,2,3,7,8-	PeCDF	86.2	40 - 135	
2,3,4,7,8-PeCDF	0.654			J		13C-2,3,4,7,8-	PeCDF	94.3	40 - 135	
1,2,3,4,7,8-HxCDF	1.16			J		13C-1,2,3,4,7,	8-HxCDF	80.8	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.8	08	UX		13C-1,2,3,6,7,	8-HxCDF	76.0	40 - 135	
2,3,4,6,7,8-HxCDF	1.24			J		13C-2,3,4,6,7,	8-HxCDF	75.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.390				13C-1,2,3,7,8,	9-HxCDF	83.4	40 - 135	
1,2,3,4,6,7,8-HpCDF	19.7					13C-1,2,3,4,6,	7,8-HpCDF	79.3	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.42			J		13C-1,2,3,4,7,	8,9-HpCDF	89.1	40 - 135	
OCDF	60.9					13C-OCDF		92.0	40 - 135	
					CRS	37Cl-2,3,7,8-7	CDD	91.7	40 - 135	
						Toxic Equiva	lent Quotient (TE	Q) Data		
						TEQMinWHC	2005Dioxin	8.61		
TOTALS										
	3.73	5.1	11							
	15.9									
	61.3									
1	439									
	7.12	9.1	14							
	9.72									
	19.3	20	.1							
Total HpCDF DL - Sample specifc estimat	58.5							imit - upper control limit		

Sample ID: A1-74 (0-0.5')				EPA Method 829
Client DataName:ARCAProject:CarboDate Collected:27-No		Sample DataMatrix:SoilSample Size:10.5 g% Solids:77.2		Laboratory DataLab Sample:2110011-05Date ReceivQC Batch:B2L0001Date ExtractDate Analyzed :06-Dec-12 20:35Column: ZB- 07-Dec-12 12:22O7-Dec-12 12:22Column: DB-	ted: 03-Dec-2012 8:36 5 Analyst: MAS
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers	Labeled Standard %R	LCL-UCL Qualifier
2,3,7,8-TCDD	0.259		J	IS 13C-2,3,7,8-TCDD 86.7	40 - 135
1,2,3,7,8-PeCDD	2.03		J	13C-1,2,3,7,8-PeCDD 76.1	40 - 135
1,2,3,4,7,8-HxCDD	3.19			13C-1,2,3,4,7,8-HxCDD 76.2	40 - 135
1,2,3,6,7,8-HxCDD	7.64			13C-1,2,3,6,7,8-HxCDD 72.9	40 - 135
1,2,3,7,8,9-HxCDD	6.97			13C-1,2,3,7,8,9-HxCDD 73.8	40 - 135
1,2,3,4,6,7,8-HpCDD	316			13C-1,2,3,4,6,7,8-HpCDD 74.4	40 - 135
OCDD	12400		Е <mark>Ј</mark>	13C-OCDD 97.0	40 - 135
2,3,7,8-TCDF	0.821			13C-2,3,7,8-TCDF 78.1	40 - 135
1,2,3,7,8-PeCDF	0.709		J	13C-1,2,3,7,8-PeCDF 81.4	40 - 135
2,3,4,7,8-PeCDF	1.00		J	13C-2,3,4,7,8-PeCDF 85.2	40 - 135
1,2,3,4,7,8-HxCDF	1.98		J	13C-1,2,3,4,7,8-HxCDF 76.4	40 - 135
1,2,3,6,7,8-HxCDF	1.65		J	13C-1,2,3,6,7,8-HxCDF 71.5	40 - 135
2,3,4,6,7,8-HxCDF	2.17		J	13C-2,3,4,6,7,8-HxCDF 72.3	40 - 135
1,2,3,7,8,9-HxCDF	ND	0.375		13C-1,2,3,7,8,9-HxCDF 76.3	40 - 135
1,2,3,4,6,7,8-HpCDF	30.6			13C-1,2,3,4,6,7,8-HpCDF 74.5	40 - 135
1,2,3,4,7,8,9-HpCDF	2.21		J	13C-1,2,3,4,7,8,9-HpCDF 82.8	40 - 135
OCDF	107			13C-OCDF 86.0	40 - 135
				CRS 37Cl-2,3,7,8-TCDD 83.7	40 - 135
				Toxic Equivalent Quotient (TEQ) Data	
				TEQMinWHO2005Dioxin 12.3	
TOTALS					
Total TCDD	1.87	5.43			
Total PeCDD	16.4	18.2			
Total HxCDD	81.9	84.0			
Total HpCDD	709				
Total TCDF	16.1	17.1			
Total PeCDF	19.7				
Total HxCDF	36.4				
Total HpCDF DL - Sample specifc esti	97.7	98.6		LCL-UCL- Lower control limit - upper control	

Sample ID: A1-70 (0-0.5')			EPA Method 8
Client DataName:ARCAProject:CarboDate Collected:27-No		Sample DataMatrix:SoilSample Size:10.4 g% Solids:77.4		Laboratory DataLab Sample:2110011-06Date Received:29-Nov-2012QC Batch:B2L0001Date Extracted:03-Dec-20128:36Date Analyzed:06-Dec-1221:23Column:ZB-5Analyst:MAS
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers	Labeled Standard %R LCL-UCL Qualif
2,3,7,8-TCDD	ND	0.329	UX	IS 13C-2,3,7,8-TCDD 78.5 40 - 135
1,2,3,7,8-PeCDD	4.04			13C-1,2,3,7,8-PeCDD 68.6 40 - 135
1,2,3,4,7,8-HxCDD	8.26			13C-1,2,3,4,7,8-HxCDD 75.7 40 - 135
1,2,3,6,7,8-HxCDD	29.7			13C-1,2,3,6,7,8-HxCDD 72.6 40 - 135
1,2,3,7,8,9-HxCDD	21.0			13C-1,2,3,7,8,9-HxCDD 74.1 40 - 135
1,2,3,4,6,7,8-HpCDD	897			13C-1,2,3,4,6,7,8-HpCDD 77.9 40 - 135
OCDD	19900		ΕJ	13C-OCDD 108 40 - 135
2,3,7,8-TCDF	0.336		J	13C-2,3,7,8-TCDF 71.5 40 - 135
1,2,3,7,8-PeCDF	0.721		J	13C-1,2,3,7,8-PeCDF 73.8 40 - 135
2,3,4,7,8-PeCDF	0.609		J	13C-2,3,4,7,8-PeCDF 82.3 40 - 135
1,2,3,4,7,8-HxCDF	11.7			13C-1,2,3,4,7,8-HxCDF 75.3 40 - 135
1,2,3,6,7,8-HxCDF	7.16			13C-1,2,3,6,7,8-HxCDF 73.2 40 - 135
2,3,4,6,7,8-HxCDF	14.3			13C-2,3,4,6,7,8-HxCDF 73.8 40 - 135
1,2,3,7,8,9-HxCDF	1.63		J	13C-1,2,3,7,8,9-HxCDF 77.3 40 - 135
1,2,3,4,6,7,8-HpCDF	254			13C-1,2,3,4,6,7,8-HpCDF 79.6 40 - 135
1,2,3,4,7,8,9-HpCDF	26.5			13C-1,2,3,4,7,8,9-HpCDF 85.8 40 - 135
OCDF	576			13C-OCDF 92.2 40 - 135
				CRS 37Cl-2,3,7,8-TCDD 79.1 40 - 135
				Toxic Equivalent Quotient (TEQ) Data
				TEQMinWHO2005Dioxin 31.6
TOTALS				
Total TCDD	1.46	3.03		
Total PeCDD	21.9	22.6		
Total HxCDD	157			
Total HpCDD	1450			
Total TCDF	2.86	5.74		
Total PeCDF	25.7	201		
Total HxCDF	281 849	281		
Total HpCDF DL - Sample specifc est				LCL-UCL- Lower control limit - upper control limit

Sample ID: A1-73 (0-0.5')						EPA Method 82
Client DataName:ARCAProject:CarboDate Collected:27-No	ndale	Sample DataMatrix:SoilSample Size:10.2 g% Solids:78.6		Lab QC	-	1 Column: ZB	ived: 29-Nov-2012 10:23 acted: 03-Dec-2012 8:36 8-5 Analyst: MAS 8-225 Analyst: MAS
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL Qualifie
2,3,7,8-TCDD	0.667			IS	13C-2,3,7,8-TCDD	70.5	40 - 135
1,2,3,7,8-PeCDD	6.58				13C-1,2,3,7,8-PeCDD	62.7	40 - 135
1,2,3,4,7,8-HxCDD	9.72				13C-1,2,3,4,7,8-HxCDD	63.1	40 - 135
1,2,3,6,7,8-HxCDD	24.1				13C-1,2,3,6,7,8-HxCDD	61.3	40 - 135
1,2,3,7,8,9-HxCDD	23.7				13C-1,2,3,7,8,9-HxCDD	61.2	40 - 135
1,2,3,4,6,7,8-HpCDD	773				13C-1,2,3,4,6,7,8-HpCDD	68.0	40 - 135
OCDD	21500		E <mark>J</mark>		13C-OCDD	84.9	40 - 135
2,3,7,8-TCDF	0.627				13C-2,3,7,8-TCDF	66.3	40 - 135
1,2,3,7,8-PeCDF	1.14		J		13C-1,2,3,7,8-PeCDF	66.4	40 - 135
2,3,4,7,8-PeCDF	1.38		J		13C-2,3,4,7,8-PeCDF	71.6	40 - 135
1,2,3,4,7,8-HxCDF	5.26				13C-1,2,3,4,7,8-HxCDF	61.4	40 - 135
1,2,3,6,7,8-HxCDF	5.98				13C-1,2,3,6,7,8-HxCDF	58.9	40 - 135
2,3,4,6,7,8-HxCDF	8.06				13C-2,3,4,6,7,8-HxCDF	60.1	40 - 135
1,2,3,7,8,9-HxCDF	ND	0.984			13C-1,2,3,7,8,9-HxCDF	65.5	40 - 135
1,2,3,4,6,7,8-HpCDF	130				13C-1,2,3,4,6,7,8-HpCDF	64.2	40 - 135
1,2,3,4,7,8,9-HpCDF	9.45				13C-1,2,3,4,7,8,9-HpCDF	73.7	40 - 135
OCDF	450				13C-OCDF	69.7	40 - 135
				CRS	37Cl-2,3,7,8-TCDD	70.1	40 - 135
					Toxic Equivalent Quotient (TE	Q) Data	
					TEQMinWHO2005Dioxin	31.1	
TOTALS							
Total TCDD	7.27	8.45					
Total PeCDD	36.2	39.7					
Total HxCDD	208						
Total HpCDD	1480						
Total TCDF	16.9	17.8					
Total PeCDF	40.7	42.2					
Total HxCDF	139	140					
Total HpCDF DL - Sample specifc esti	397				LCL-UCL- Lower control li		

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

Sample ID: A1-71 (0-	0.5')								EPA M	ethod 829
Client DataName:ARCAEProject:CarbondDate Collected:27-Nov-		Sample Data Matrix: Sample Size: % Solids:	Soil 10.3 g 77.5		Lat QC	boratory Data o Sample: ² Batch: te Analyzed :		Date Received: Date Extracted: O Column: ZB-5 Au Column: DB-225	03-Dec-2012 nalyst: MAS	
Analyte Cond	c. (pg/g)	DL EMP	C	Qualifiers		Labeled Stand		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.561			J	IS	13C-2,3,7,8-T	CDD	87.1	40 - 135	
1,2,3,7,8-PeCDD	4.16					13C-1,2,3,7,8-	PeCDD	77.4	40 - 135	
1,2,3,4,7,8-HxCDD	7.01					13C-1,2,3,4,7,		81.8	40 - 135	
1,2,3,6,7,8-HxCDD	17.9					13C-1,2,3,6,7,		79.0	40 - 135	
1,2,3,7,8,9-HxCDD	16.4					13C-1,2,3,7,8,	9-HxCDD	78.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	653					13C-1,2,3,4,6,		86.1	40 - 135	
OCDD	24000			ЕJ		13C-OCDD		116	40 - 135	
2,3,7,8-TCDF	1.22					13C-2,3,7,8-T	CDF	81.0	40 - 135	
1,2,3,7,8-PeCDF	1.03			J		13C-1,2,3,7,8-	PeCDF	83.7	40 - 135	
2,3,4,7,8-PeCDF	2.48			J		13C-2,3,4,7,8-	PeCDF	91.1	40 - 135	
1,2,3,4,7,8-HxCDF	3.85					13C-1,2,3,4,7,	8-HxCDF	80.4	40 - 135	
1,2,3,6,7,8-HxCDF	3.19					13C-1,2,3,6,7,	8-HxCDF	78.4	40 - 135	
2,3,4,6,7,8-HxCDF	5.05					13C-2,3,4,6,7,	8-HxCDF	77.3	40 - 135	
1,2,3,7,8,9-HxCDF	0.275			J		13C-1,2,3,7,8,	9-HxCDF	82.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	82.8					13C-1,2,3,4,6,	7,8-HpCDF	86.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	5.77					13C-1,2,3,4,7,	8,9-HpCDF	94.6	40 - 135	
OCDF	319					13C-OCDF		94.8	40 - 135	
					CRS	37Cl-2,3,7,8-1	CDD	84.2	40 - 135	
						Toxic Equival	lent Quotient (TEC	Q) Data		
						TEQMinWHO	2005Dioxin	25.7		
TOTALS										
Total TCDD	12.2	13.	3							
Total PeCDD	34.2									
Total HxCDD	162									
Total HpCDD	1570									
Total TCDF	27.0	27.	5							
Total PeCDF	38.2									
Total HxCDF	91.3	91.	9							
Total HpCDF DL - Sample specifc estimation	273							nit - upper control limit		

Sample ID: A1-72 (0-0.5')						EPA M	ethod 8290
Client DataName:ARCAProject:CarboDate Collected:27-No		Sample Data Matrix: Sample Size: % Solids:	Soil 10.4 g 77.7	Lab S QC B		Date Received: Date Extracted: 7 Column: ZB-5 A	03-Dec-2012	
Analyte Co	onc. (pg/g)	DL EMPO	C Qualifiers	1	Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.18	5 UX	IS	13C-2,3,7,8-TCDD	90.6	40 - 135	
1,2,3,7,8-PeCDD	ND	1.22	UX		13C-1,2,3,7,8-PeCDD	77.5	40 - 135	
1,2,3,4,7,8-HxCDD	2.77		J		13C-1,2,3,4,7,8-HxCDD	79.0	40 - 135	
1,2,3,6,7,8-HxCDD	6.08				13C-1,2,3,6,7,8-HxCDD	74.7	40 - 135	
1,2,3,7,8,9-HxCDD	6.66				13C-1,2,3,7,8,9-HxCDD	75.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	269				13C-1,2,3,4,6,7,8-HpCDD	84.0	40 - 135	
OCDD	20000		E J		13C-OCDD	108	40 - 135	
2,3,7,8-TCDF	0.157		J		13C-2,3,7,8-TCDF	83.4	40 - 135	
1,2,3,7,8-PeCDF	ND	0.235			13C-1,2,3,7,8-PeCDF	87.7	40 - 135	
2,3,4,7,8-PeCDF	ND	0.19) UX		13C-2,3,4,7,8-PeCDF	88.3	40 - 135	
1,2,3,4,7,8-HxCDF	0.844		J		13C-1,2,3,4,7,8-HxCDF	77.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.68	5 UX		13C-1,2,3,6,7,8-HxCDF	73.3	40 - 135	
2,3,4,6,7,8-HxCDF	1.18		J		13C-2,3,4,6,7,8-HxCDF	73.2	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.316			13C-1,2,3,7,8,9-HxCDF	78.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	19.4				13C-1,2,3,4,6,7,8-HpCDF	83.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.39		J		13C-1,2,3,4,7,8,9-HpCDF	93.0	40 - 135	
OCDF	78.7				13C-OCDF	84.0	40 - 135	
				CRS 3	37Cl-2,3,7,8-TCDD	87.9	40 - 135	
					Foxic Equivalent Quotient (TEC	Q) Data		
]	FEQMinWHO2005Dioxin	10.7		
TOTALS								
Total TCDD	1.25	2.11						
Total PeCDD	9.91	11.7						
Total HxCDD	57.5							
Total HpCDD	588							
Total TCDF	1.78	2.49						
Total PeCDF	4.96	5.35						
Total HxCDF	20.4	21.1						
Total HpCDF DL - Sample specifc esti	62.4				LCL-UCL- Lower control lin			

EMPC - Estimated maximum possible concentration

Sample ID: EB 112'	712						EPA M	ethod 8290
Client DataName:ARCAProject:CarboDate Collected:27-No	ndale	Sample Data Matrix: Aqueous Sample Size: 1.01 L		Lab QC	boratory Data Sample: 2110011-10 Batch: B2L0033 Se Analyzed : 13-Dec-12 20:39	Date Extracted	l: 29-Nov-2012 d: 12-Dec-2012 Analyst: MAS	
Analyte Co	onc. (pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.755		IS	13C-2,3,7,8-TCDD	81.5	40 - 135	
1,2,3,7,8-PeCDD	ND	1.01			13C-1,2,3,7,8-PeCDD	67.4	40 - 135	
1,2,3,4,7,8-HxCDD	ND	1.15			13C-1,2,3,4,7,8-HxCDD	67.1	40 - 135	
1,2,3,6,7,8-HxCDD	ND	1.35			13C-1,2,3,6,7,8-HxCDD	71.7	40 - 135	
1,2,3,7,8,9-HxCDD	ND	1.56			13C-1,2,3,7,8,9-HxCDD	63.4	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	1.97			13C-1,2,3,4,6,7,8-HpCDD	60.0	40 - 135	
OCDD	ND	1.78			13C-OCDD	53.0	40 - 135	
2,3,7,8-TCDF	ND	0.858			13C-2,3,7,8-TCDF	85.3	40 - 135	
1,2,3,7,8-PeCDF	ND	0.728			13C-1,2,3,7,8-PeCDF	62.9	40 - 135	
2,3,4,7,8-PeCDF	ND	0.684			13C-2,3,4,7,8-PeCDF	73.8	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.537			13C-1,2,3,4,7,8-HxCDF	69.0	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.532			13C-1,2,3,6,7,8-HxCDF	71.2	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.559			13C-2,3,4,6,7,8-HxCDF	74.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.817			13C-1,2,3,7,8,9-HxCDF	66.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	0.639			13C-1,2,3,4,6,7,8-HpCDF	61.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.929			13C-1,2,3,4,7,8,9-HpCDF	59.4	40 - 135	
OCDF	ND	2.34			13C-OCDF	55.4	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	96.6	40 - 135	
					Toxic Equivalent Quotient (TEQ	2) Data		
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	0.755						
Total PeCDD	ND	1.01						
Total HxCDD	ND	1.56						
Total HpCDD	ND	1.97						
Total TCDF	ND	0.858						
Total PeCDF	ND	0.728						
Total HxCDF	ND	0.817						
Total HpCDF	ND	0.929						

DL - Sample specifc estimated detection limit

LCL-UCL- Lower control limit - upper control limit

EMPC - Estimated maximum possible concentration

Imagine the result

Beazer East Inc.

Former Koppers Wood-Treating Site

Data Review

CARBONDALE, ILLINOIS

Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans (PCDDs/PCDFs) Analyses

SDG #: 2110012

Analyses Performed By: Vista Analytical Laboratory El Dorado Hills, California

Report #: 18269R Review Level: Tier III Project: B0039275.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 2110012 for samples collected in association with the Beazer East Inc. Former Koppers Wood-Treating site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample				Analysis		
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	PCDDs/ PCDFs	МЕТ	MISC
DUP 2	2110012-01	Soil	11/27/2012	A1-73 (0-0.5')			Х		
A1-65 (0-0.5)	2110012-02	Soil	11/27/2012				Х		
A1-64 (0-0.5)	2110012-03	Soil	11/27/2012				Х		
A1-67 (0-0.5)	2110012-08	Soil	11/28/2012				Х		
A1-66 (0-0.5)	2110012-09	Soil	11/28/2012				Х		
EB 112812	2110012-10	Water	11/28/2012				Х		

Note: Soil sample results were reported on a dry weight basis.

The parent sample of field duplicate sample DUP 2 (sample location A1-73 (0-0.5')) is from SDG 2110011; the field duplicate sample results were evaluated with SDG 2110011 in data validation report 18268R.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Reported		Performance Acceptable		Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		Х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290 as referenced in NYSDEC-ASP. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999 and USEPA Region II SOP associated with USEPA SW-846 Method 8290 Validating Polychlorinated Dibenzo-Dioxins and Polychlorinated Dibenzo-Furans by High Resolution GC/MS (SOP HW-19 Revision 1, October 2006).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The compound may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and

provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

POLYCHLORINATED DIBENZODIOXINS AND POLYCHLORINATED DIBENZOFURANS (PCDD/PCDF) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8290	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C
300-040 0290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cool to 4±2 °C

All samples were extracted and analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Target compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BA. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. Mass Spectrometer Tuning

Mass spectrometer performance including instrument sensitivity and mass resolution were acceptable.

Overall system performance and gas chromatographic column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

All compounds associated with the initial calibration standards must exhibit signal-to-noise ratios (S/N) of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent relative

standard deviations (%RSDs) of the relative response factors (RRFs) less than 20% for the labeled standards and less than 30% for the target compounds.

4.2 Continuing Calibration

Instrument performance must be verified at 12 hour periods after successful tune verifications. All compounds associated with the continuing calibration standard must exhibit S/N of at least 2.5, isotopic ratios within the limits listed in table eight of the method, and percent differences (%D) of the RRFs less than 30% for the labeled standards and less than 20% for the target compounds..

All initial and continuing calibration criteria were within the control limits.

5. Injection Internal Standard Performance

Injection internal standards are added to all extracts prior to instrumental analysis. The injection internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the injection internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within ± fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each injection internal standard exhibit a ratio of the two identifying masses (m/z) within the method specified limits.

All injection internal standard S/N, RT, and m/z ratios were within established limits.

6. Surrogate Internal Standard Compounds

All field samples, blanks, LCS, and MS/MSD are spiked with surrogate internal standard compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The acceptance criteria require that the surrogate internal standard compounds exhibit a signal-to-noise (S/N) ratio of at least 10 and elute within ± fifteen seconds of the retention times (RTs) established during calibration. The acceptance criteria also specify that each surrogate internal standard exhibit a calculated recovery and a ratio of the two identifying masses (m/z) within the method specified limits.

Sample locations associated with surrogate internal standard compounds exhibiting recoveries outside of the control limits presented in the following table.

Sample Location	Surrogate	Recovery
DUP 2 A1-65 (0-0.5) A1-64 (0-0.5) A1-66 (0-0.5)	13C-OCDD	> UL
A1-67 (0-0.5)	13C-OCDD 13C-OCDF	> UL

UL Upper control limit

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of any surrogate internal standard compound deviations, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> 0L	Detect	J
< LL but > 10%	Non-detect	UJ
< LL DUI > 10%	Detect	J
< 10%	Non-detect	R
< 1070	Detect	J

7. Clean-up Recovery Surrogate Performance

All field samples, blanks, LCS, and MS/MSD are spiked with recovery surrogates prior to extract clean-up. Recovery surrogate acceptance criteria require that their calculated recoveries, S/N, m/z ratios, and relative retention times (RRTs) be within the method-specified acceptance limits.

All recovery surrogate recoveries S/N, m/z ratios, and RRTs were within the control limits.

8. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the (optional) MS/MSD analysis should exhibit recoveries within the method-specified acceptance limits of 80-120%. The relative percent difference (RPD) between the MS and MSD results should be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. Sample results associated with MS/MSD exceedances where the parent samples are not site-specific are not qualified.

Sample location A1-67(0-0.5) was used for the MS/MSD analysis. All compounds associated with the MS/MSD analyses exhibited acceptable recoveries and RPDs between the MS and MSD results.

9. Ongoing Precision and Recovery (OPR) Sample Analysis

The OPR analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the OPR analysis must exhibit a percent recovery within the method-specified acceptance limits.

All compounds associated with the OPR analysis exhibited recoveries within the control limits.

10. Field Duplicate Sample Analysis

Field duplicate sample analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices and 100% for soil matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to five times the RL, a control limit of two times the RL is applied for water matrices or three times the RL is applied for soil matrices.

The field duplicate sample results were evaluated with SDG 2110011 in Data Validation Report 18268R.

11. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise values, and relative retention times.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in pg/g) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result
A1-65 (0-0.5)	2,3,7,8-TCDD	0.269 EMPC	0.269 UX

Sample results associated with compound that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
DUP 2	OCDD	26800 E		26800 EJ
A1-65 (0-0.5)	OCDD	12700 E		12700 EJ
A1-64 (0-0.5)	OCDD	17700 E		17700 EJ
A1-67 (0-0.5)	1,2,3,4,6,7,8-HpCDD	5010 E		5010 EJ
AT-07 (0-0.5)	OCDD	170000 DE		170000 DEJ
A1-66 (0-0.5)	OCDD	30900 E		30900 EJ

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than and/or less than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

Sample results associated with compounds exhibiting concentration greater than the linear range qualified as documented in the table below when reported as the final reported sample result.

Reported Sample Results	Qualification
Diluted sample result within the calibration range	D
Diluted sample result < the calibration range	DJ
Diluted sample result > the calibration range	EDJ
Original sample result > the calibration range	EJ

The analyzing laboratory noted that the compounds in the following table exhibited interference by a coeluting furan isomer and may have concentrations that are biased high. Therefore, the following results were qualified as estimated.

Sample Location	Analyte
DUP 2 A1-65 (0-0.5)	2,3,4,7,8-PeCDF
A1-64 (0-0.5) A1-67 (0-0.5) A1-66 (0-0.5)	2,3,4,7,8-PeCDF 1,2,3,7,8,9-HxCDF

12. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PCDD/PCDF

PCDDs/PCDFs; SW-846 8290	Rep	orted	Performance Acceptable		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (G	C/MS)				
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Ongoing Precision and Accuracy (OPR) Accuracy (%R)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate (MSD) %R		Х		Х	
MS/MSD RPD		Х		Х	
Field/Laboratory Duplicate Sample RPD		Х		Х	
Surrogate Internal Standard Spike %R		Х	Х		
Recovery Surrogate Standard Spike %R		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSD		Х		Х	
Continuing calibration %D		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Signal-to-noise ratio		Х		Х	
Injection Internal Standard performance		Х		Х	
Recovery standard performance		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted for sample dilutions		Х		Х	
F. Compound quantification		Х	Х		

RSD – relative standard deviation

%R - percent recovery

RPD - relative percent difference

%D – difference

SAMPLE COMPLIANCE REPORT

Sample Delivery						Compliancy ¹				
Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc		PCDDs/ PCDFs		MISC	Noncompliance
	11/27/2012	SW846	DUP 2	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance
	11/27/2012	SW846	A1-65 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance; EMPC
	11/27/2012	SW846	A1-64 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance
2110012	11/28/2012	SW846	A1-67 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance
	11/28/2012	SW846	A1-66 (0-0.5)	Soil			No			Surrogate Internal Standard %R; Calibration range exceedance; Analyte interference
	11/28/2012	SW846	EB 112812	Water			Yes			

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable

Validation Performed By:	Dennis Dyke
Signature:	Deven
Date:	January 18, 2013
Peer Review:	Dennis Capria
Date:	January 24, 2013

CHAIN OF CUSTODY / LABORATORY QUALIFIERS / CORRECTED SAMPLE ANALYSIS DATA SHEETS

Vista		CI	HAIN	OF C			OI				L	OR LA	ry Pro	ject II):	2110	012			
Project I.D.:			P	.0, <u># 800397</u>	75.0	2000.		<u> 2.</u> S	ample	1. 51 r: <u>R</u>	EW.	(Name	son	1		Star Rus	ndard h (su	rcharg	21 Day e may a	
Invoice to: Name Relinquished by: (Signature and Printed Na Relinquished by: (Signature and Printed Na	STEVE	any <u>HRC</u> NSO	ADIS	Ad (46) Date: 1/2.8/12. Date:	ldres:	Tim	1445		Wanter	City BA ived by: (s	ignature a	and Printed	1 1	tingle	ip 0425 medi	it Da	218-	829	Fax# - 460 12 12 T	7 7 ime: 1039 ime:
			See "Sam	ple Log-in	Che	cklis	t" fo	r add	ition	al samp	ole in	form	atio	a						
SHIP TO: Vista Analytical Labo 1104 Windfield Way El Dorado Hills, CA (916) 673-1520 • Fax	95762	-0106	Method Trackin	of Shipment:		Conta	iiner(s)	7 /	1	13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	1	100 55 55 55 55 55 55 55 55 55 55 55 55 5	1	13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	27 (32 (32) (32) (32) (32) (32) (32) (32)	The set of	THE STATES	Son 1 and 1 and 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	»/ 7
Sample ID	Date '	Time	Location/Sar	nple Description	1	Current C	or the	22 22	* 2	-5ª -5ª		20 25	* / E		8/	\$	\sim		//	
A1-68 (0-0.5')	11/27/12	2855			1	6	So				<		Í	Í	Í			Í		
DUP-1	11/27/12				1	G	50)	×									
A1-75 (0-0.5')	1/22/12 4	940			1	6	So				<									
- A1-69 (0-0.5')	ulenter	010			1	6	50													
A1-69 (0-0.5') MS	1/20/12 .	1010			1	G	50			>	$\langle _$									
-A1-69 (0-0.5') MSD.	1 1	1010			1	G	Se			>	<									
A1-74(0-0.5)	1 1	1100			1	-	50				<									
AI-70 (0-0.5')	8 1	1135			1	- and	So				$\langle $			_						
A1-73 (0-0.5')	8 8	1210			1		50				<u>×</u>	+		_						á
DUP-2 Special Instructions/Comments:	11/27/12	-			1	G	Se				X	Name	: DA	NID	BES	Start	SIDA-	<	*H	10LD *
Container Types: A = 1 Liter Amber, G = P = PUF, T = MM5 Train, O = Other_		Wor	Korder	2110011 *Bottle Preser ○ = Othe		e Type:	_ A	AND F	ESU	D TATION LTS TO		Comp Addre City:_ Phone Email	any: ss: <u>/</u> Ba : 211	AR (4002 × 11- 8-82 110.8	Exc Exc 19.40	5 St 	ate: <u>N</u>	RD 1NJ Fax:	mis-i	US. COM = Pulp/Paper,
		E - ORI	GINAL			W - AR	CHIVE	8		PINK	- COP	AQ = A							Vastewat	er, B = Blood/Se

Vista	CHAIN	OF CUSTO		Labo	LABORATOR	2110	212	Storage Secured Yes No no concernent Storage
Project I.D.:	P.O. /	<u># Bazzaz 75, 0000.</u>	CCC2 Sampler:_		ART : NSCRJ Name)	Star		and the second se
Invoice to: Name Co AVID BESSIALCERS Co Relinquished by: (Signature and Printed Name) KA Relinquished by: (Signature and Printed Name) KA	MRCADIS ARCADIS Y STEVE2 SON	Address <u>GLO2 EXCENSIO</u> Date: Time: <u>HZ8/12</u> Time: Date: Time:	4 Received	City I by: (Signature and I by: (Signature and I	rinted Name)	Benedica	18-829 ate: 11/29/1 ate:	Fax# 4667 12 Time: 1046 Time:
	See "Sampl	e Log-in Checklist"	for additional	sample info	rmation			
SHIP TO: Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 (916) 673-1520 • Fax (916) ATTN:	673-0106 Tracking N	Io.: Containe	r(s) (\$	1/3/	ELECTION CONTRACTION OF THE CONTRACT OF THE CONTRACT.		1000 100 100 100 100 100 100 100 100 10	20/20/ 20/20/ 20/20/ 20/20/
Sample ID Date	Time Location/Sample	Description		\$ \$ \$ \$ \$ \$ \$		1818		/
A1-71 (0-0.5') 11/27/1	12 1330	1650		X				
A1-72 (0-0.5') 10/27/1		1650		X				
A1-65 (0-0.5') 1/27		1650		X				* HOLD *
A1-64 (0-0.5') 11/27/12		1 9 50						* HOLD *
AI-79 (0-0.5') 11/23/1		ZAAQ						* HOLD *
A1-78 (0-0.5') 1/28/		1650		X				* HOLD *
A1-77 (0-0.5) 128/1		1650		X				* HOLD *
A1-76(0-0.5) 1/28/1.		1650		X				* HOLD *
	12/115	1 550		X				* HOLD *
Special Instructions/Comments: X Sample logged in to b Container Types: A = 1 Liter Amber, G = Glass J P = PUF, T = MMS Train, O= Other	Work Order 21100			ATION A 'S TO: C Pi E	none: <u>2/8-8</u> mail: <u>DAVID</u> atrix Types: DW	2 CADIS 2 CATE 29-460 8ESSING 1 = Drinking Wa	ate: <u>MA</u> 7Fax: <u>0A<@_</u> M ter, EF = Efflue	*
w	HITE - ORIGINAL	YELLOW - ARCHI	VE		Q = Aqueous, O =			

Vista	C	HAIN	OF C 3 0			DY			Labo	ratory I	RATOR Project I	0.21	1001	ð	Stor Sect Yes [Temp	
Project I.D.:		P.O.	# <u>B003925</u>	5.00	20. cob	<u>02</u> Sa	mpler:_	1. S R. S		Mame)	:.J	_	Stand Rush	(surcha	21 Day	
Invoice to: Name DAVID BESSINGPOS Relinquished by: (Signature and Printed Nam Relinquished by: (Signature and Printed Nam	"STEVEN	and the second	<u>6602</u> Add Date: <u>11/28/12</u> Date:	Ti	ime: 1445	the	Réceive	City ed by: (Sig	Nº ME	LALT	et R.	lip 425 Benc		18-1 11/2	829-0 M/12 T	
	- March March - Constant - Consta	See "Samp	le Log-in (Check	list" fo	r addi	tional	sampl	e info	rmati	on					
SHIP TO: Vista Analytical Labo 1104 Windfield Way El Dorado Hills, CA 9 (916) 673-1520 • Fax	5762	Method of Tracking I	Shipment:	Cor	nalysis(e		18	100 100 100 100 100 100 100 100 100 100		Start Start	100 100 100 100 100 100 100 100 100 100	Strand St	10 100 100 100 100 100 100 100 100 100	1000 100 100 100 100 100 100 100 100 10	Solution of the second	
Sample ID	Date Time	Location/Sampl	e Description	1 Cito	2.50 x0	5 ×	~~~/~~~/~	\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 3	1.5	2/2/	$\left \frac{\partial}{\partial r} \right _{s}$	<u>\$/`/</u>			
	11/28/12 11.50 11/28/12 1400			1 E 2 A	7 So + Aq										*	HOLD*
Special Instructions/Comments: <u>X</u> Sample logged <u>11/30/12 Moved EB1125</u> Container Types: A = 1 Liter Amber, G = P = PUF, T = MM5 Train, O= Other	Glass Jar	lockOrder 0012 as	2(100)]] Der Bill *Bottle Preserv O = Other		#	OOCUN AND R		ATION TS TO:	C A C Pl E Ma	ompan ddress: ity: <u>B</u> none: <u>2</u> mail: <u>1</u> atrix Typ	es: DV	2 EN 2 EN 29. 4 36351 V = Drinki	IS CCEL State GO7 AGDA ing Water	SIOR E: MA Fax 501	Zip: 5	5-US (0M = Pulp/Paper, er, B = Blood/Seru
	WHITE - OR	IGINAL	YE	LOW - A	ARCHIVE			PINK -	AC		ous, O =	-				

DATA QUALIFIERS & ABBREVIATIONS

B	This compound was also detected in the method blank.
D	Dilution
Ε	The amount detected is above the High Calibration Limit.
Р	The amount reported is the maximum possible concentration due to possible chlorinated diphenylether interference.
Н	Recovery was outside laboratory acceptance limits.
Ι	Chemical Interference
J	The amount detected is below the Low Calibration Limit.
*	See Cover Letter
Conc.	Concentration
DL	Sample-specific estimated detection limit
MDL	The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero in the matrix tested.
EMPC	Estimated Maximum Possible Concentration
NA	Not applicable
RL	Reporting Limit – concentrations that correspond to low calibration point
ND	Not Detected
TEQ	Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Sample ID: DUP 2							EPA N	Iethod 829
5	ADIS ondale ov-2012 0:00	Sample DataMatrix:SoilSample Size:13.3 g% Solids:76.6		La QC	2	57 Column: DB-225	l: 19-Dec-2012 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers	-	29-Dec-12 17: Labeled Standard	26 Column: ZB-5 / %R	Analyst: MAS	Qualifiers
2,3,7,8-TCDD	0.579			IS	13C-2,3,7,8-TCDD	82.3	40 - 135	C
1,2,3,7,8-PeCDD	6.47				13C-1,2,3,7,8-PeCDD	81.7	40 - 135	
1,2,3,4,7,8-HxCDD	12.4				13C-1,2,3,4,7,8-HxCDD	80.3	40 - 135	
1,2,3,6,7,8-HxCDD	30.8				13C-1,2,3,6,7,8-HxCDD	79.9	40 - 135	
1,2,3,7,8,9-HxCDD	29.5				13C-1,2,3,7,8,9-HxCDD	79.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	1160				13C-1,2,3,4,6,7,8-HpCDD	84.3	40 - 135	
OCDD	26800		₽ , E J		13C-OCDD	209	40 - 135	Н
2,3,7,8-TCDF	0.769				13C-2,3,7,8-TCDF	79.2	40 - 135	
1,2,3,7,8-PeCDF	1.11		J		13C-1,2,3,7,8-PeCDF	79.0	40 - 135	
2,3,4,7,8-PeCDF	1.54		J		13C-2,3,4,7,8-PeCDF	85.0	40 - 135	
1,2,3,4,7,8-HxCDF	6.94				13C-1,2,3,4,7,8-HxCDF	89.1	40 - 135	
1,2,3,6,7,8-HxCDF	7.50				13C-1,2,3,6,7,8-HxCDF	82.3	40 - 135	
2,3,4,6,7,8-HxCDF	10.7				13C-2,3,4,6,7,8-HxCDF	78.6	40 - 135	
1,2,3,7,8,9-HxCDF	1.59		J		13C-1,2,3,7,8,9-HxCDF	80.3	40 - 135	
1,2,3,4,6,7,8-HpCDF	186				13C-1,2,3,4,6,7,8-HpCDF	81.9	40 - 135	
1,2,3,4,7,8,9-HpCDF	14.6				13C-1,2,3,4,7,8,9-HpCDF	92.4	40 - 135	
OCDF	871				13C-OCDF	107	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	72.3	40 - 135	
					Toxic Equivalent Quotient (T	EQ) Data		
					TEQMinWHO2005Dioxin	39.5		
TOTALS								
Total TCDD	9.10	10.2						
Total PeCDD	47.1							
Total HxCDD	274							
Total HpCDD	2150							
Total TCDF	20.7	23.7						
Total PeCDF	58.5							
Total HxCDF	205							
Total HpCDF DL - Sample specifc est	633				LCL-UCL- Lower control			

EMPC - Estimated maximum possible concentration

Sample ID: A1-65 ((0-0.5)						EPA N	Iethod 829
Client DataName:ARCAProject:CarboDate Collected:27-No		Sample DataMatrix:SoilSample Size:12.9 g% Solids:78.4		Lal QC	boratory Data o Sample: 2110012-02 Batch: B2L0072 te Analyzed : 29-Dec-12 18:1	Date Extra	ived: 29-Nov-2012 cted: 19-Dec-2012 -5 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.269	UX	IS	13C-2,3,7,8-TCDD	86.8	40 - 135	
1,2,3,7,8-PeCDD	2.04		J		13C-1,2,3,7,8-PeCDD	85.9	40 - 135	
1,2,3,4,7,8-HxCDD	3.52				13C-1,2,3,4,7,8-HxCDD	79.2	40 - 135	
1,2,3,6,7,8-HxCDD	10.1				13C-1,2,3,6,7,8-HxCDD	73.6	40 - 135	
1,2,3,7,8,9-HxCDD	8.17				13C-1,2,3,7,8,9-HxCDD	74.5	40 - 135	
1,2,3,4,6,7,8-HpCDD	358				13C-1,2,3,4,6,7,8-HpCDD	77.2	40 - 135	
OCDD	12700		-B,- E J		13C-OCDD	176	40 - 135	Н
2,3,7,8-TCDF	0.408		J		13C-2,3,7,8-TCDF	79.1	40 - 135	
1,2,3,7,8-PeCDF	0.336		J		13C-1,2,3,7,8-PeCDF	80.4	40 - 135	
2,3,4,7,8-PeCDF	0.778		J		13C-2,3,4,7,8-PeCDF	82.9	40 - 135	
1,2,3,4,7,8-HxCDF	1.93		J		13C-1,2,3,4,7,8-HxCDF	88.1	40 - 135	
1,2,3,6,7,8-HxCDF	1.42		J		13C-1,2,3,6,7,8-HxCDF	81.7	40 - 135	
2,3,4,6,7,8-HxCDF	2.32		J		13C-2,3,4,6,7,8-HxCDF	79.8	40 - 135	
1,2,3,7,8,9-HxCDF	0.193		J		13C-1,2,3,7,8,9-HxCDF	83.2	40 - 135	
1,2,3,4,6,7,8-HpCDF	41.3				13C-1,2,3,4,6,7,8-HpCDF	83.7	40 - 135	
1,2,3,4,7,8,9-HpCDF	3.13				13C-1,2,3,4,7,8,9-HpCDF	90.5	40 - 135	
OCDF	169				13C-OCDF	97.7	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	85.0	40 - 135	
					Toxic Equivalent Quotient (TE	Q) Data		
					TEQMinWHO2005Dioxin	13.0		
TOTALS								
Total TCDD	5.82	6.85						
Total PeCDD	17.9							
Total HxCDD	89.8							
Total HpCDD	832							
Total TCDF	8.38	9.37						
Total PeCDF	14.8							
Total HxCDF	47.4							
Total HpCDF DL - Sample specifc est:	138				LCL-UCL- Lower control li			

EMPC - Estimated maximum possible concentration

Sample ID: A1-64 (0-	-0.5)								EPA M	lethod 829(
Client DataName:ARCAIProject:CarboneDate Collected:27-Nov		Sample Data Matrix: Sample Size: % Solids:	Soil 12.7 g 79.4		Lab QC	o Sample: Batch: Batch:		Date Received: Date Extracted Column: DB-225 3 Column: ZB-5 A	19-Dec-2012 Analyst: MAS	
Analyte Con	c. (pg/g)	DL EMP	С	Qualifiers		Labeled Stand		%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.301			J	IS	13C-2,3,7,8-TC	CDD	79.5	40 - 135	
1,2,3,7,8-PeCDD	1.64			J		13C-1,2,3,7,8-	PeCDD	83.1	40 - 135	
1,2,3,4,7,8-HxCDD	2.88					13C-1,2,3,4,7,8		87.0	40 - 135	
1,2,3,6,7,8-HxCDD	7.22					13C-1,2,3,6,7,8		80.9	40 - 135	
1,2,3,7,8,9-HxCDD	6.96					13C-1,2,3,7,8,9	9-HxCDD	80.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	344					13C-1,2,3,4,6,7	7,8-HpCDD	81.6	40 - 135	
OCDD	17700			₽ ; E J		13C-OCDD		201	40 - 135	Н
2,3,7,8-TCDF	0.652					13C-2,3,7,8-T0	CDF	75.6	40 - 135	
1,2,3,7,8-PeCDF	0.419			J		13C-1,2,3,7,8-	PeCDF	81.6	40 - 135	
2,3,4,7,8-PeCDF	0.524			J		13C-2,3,4,7,8-	PeCDF	86.5	40 - 135	
1,2,3,4,7,8-HxCDF	1.48			J		13C-1,2,3,4,7,8		90.7	40 - 135	
1,2,3,6,7,8-HxCDF	1.09			J		13C-1,2,3,6,7,8	8-HxCDF	80.5	40 - 135	
2,3,4,6,7,8-HxCDF	1.76			J		13C-2,3,4,6,7,8	8-HxCDF	79.9	40 - 135	
1,2,3,7,8,9-HxCDF	0.139			J		13C-1,2,3,7,8,9	9-HxCDF	82.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	25.8					13C-1,2,3,4,6,7	7,8-HpCDF	84.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	1.88			J		13C-1,2,3,4,7,8	8,9-HpCDF	96.4	40 - 135	
OCDF	112					13C-OCDF		105	40 - 135	
					CRS	37Cl-2,3,7,8-T	CDD	69.4	40 - 135	
						Toxic Equival	ent Quotient (TE	Q) Data		
						TEQMinWHO	2005Dioxin	13.4		
TOTALS										
Total TCDD	9.13	10.5	5							
Total PeCDD	18.4									
Total HxCDD	75.2									
Total HpCDD	759									
Total TCDF	9.56	11.8	3							
Total PeCDF	13.3									
Total HxCDF	31.5									
Total HpCDF DL - Sample specifc estim	88.7							imit - upper control limit		

EMPC - Estimated maximum possible concentration

Sample ID: A1-67 (0-0.5)						EPA M	ethod 8290
Client DataName:ARCAProject:CarboDate Collected:28-No		Sample DataMatrix:SoilSample Size:12.3 g% Solids:81.7		Lat QC	-	9 Column: ZB	ved: 29-Nov-2012 cted: 19-Dec-2012 -5 Analyst: MAS -5 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.782		-	IS	13C-2,3,7,8-TCDD	85.5	40 - 135	-
1,2,3,7,8-PeCDD	10.5				13C-1,2,3,7,8-PeCDD	93.8	40 - 135	
1,2,3,4,7,8-HxCDD	31.4				13C-1,2,3,4,7,8-HxCDD	84.2	40 - 135	
1,2,3,6,7,8-HxCDD	95.0				13C-1,2,3,6,7,8-HxCDD	80.3	40 - 135	
1,2,3,7,8,9-HxCDD	79.3				13C-1,2,3,7,8,9-HxCDD	81.7	40 - 135	
1,2,3,4,6,7,8-HpCDD	5010		ΕJ		13C-1,2,3,4,6,7,8-HpCDD	123	40 - 135	
OCDD	170000		D, B , E J		13C-OCDD	302	40 - 135	D, H
2,3,7,8-TCDF	0.479		J		13C-2,3,7,8-TCDF	72.4	40 - 135	,
1,2,3,7,8-PeCDF	0.807		J		13C-1,2,3,7,8-PeCDF	84.4	40 - 135	
2,3,4,7,8-PeCDF	1.58		J		13C-2,3,4,7,8-PeCDF	83.9	40 - 135	
1,2,3,4,7,8-HxCDF	7.87				13C-1,2,3,4,7,8-HxCDF	98.5	40 - 135	
1,2,3,6,7,8-HxCDF	5.54				13C-1,2,3,6,7,8-HxCDF	89.1	40 - 135	
2,3,4,6,7,8-HxCDF	11.1				13C-2,3,4,6,7,8-HxCDF	87.3	40 - 135	
1,2,3,7,8,9-HxCDF	0.737		J		13C-1,2,3,7,8,9-HxCDF	90.9	40 - 135	
1,2,3,4,6,7,8-HpCDF	468				13C-1,2,3,4,6,7,8-HpCDF	93.6	40 - 135	
1,2,3,4,7,8,9-HpCDF	29.3				13C-1,2,3,4,7,8,9-HpCDF	98.6	40 - 135	
OCDF	3970		J		13C-OCDF	170	40 - 135	Н
				CRS	37Cl-2,3,7,8-TCDD	79.1	40 - 135	
					Toxic Equivalent Quotient (TE	Q) Data		
					TEQMinWHO2005Dioxin	142		
TOTALS								
Total TCDD	4.51	5.46						
Total PeCDD	52.5							
Total HxCDD	601							
Total HpCDD	8240							
Total TCDF	9.56	10.2						
Total PeCDF	34.4	38.6						
Total HxCDF	327							
Total HpCDF DL - Sample specifc est	2250				LCL-UCL- Lower control li			

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

Sample ID: A1-66 (0-0.5)						EPA M	ethod 829(
Client DataName:ARCAProject:CarboDate Collected:28-No		Sample DataMatrix:SoilSample Size:13.1 g% Solids:77.5		La QC	-	1 Column: DB-	ved: 29-Nov-2012 cted: 19-Dec-2012 225 Analyst: MAS -5 Analyst: MAS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	% R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	0.870			IS	13C-2,3,7,8-TCDD	75.2	40 - 135	
1,2,3,7,8-PeCDD	4.85				13C-1,2,3,7,8-PeCDD	85.6	40 - 135	
1,2,3,4,7,8-HxCDD	11.5				13C-1,2,3,4,7,8-HxCDD	67.6	40 - 135	
1,2,3,6,7,8-HxCDD	44.5				13C-1,2,3,6,7,8-HxCDD	64.3	40 - 135	
1,2,3,7,8,9-HxCDD	27.1				13C-1,2,3,7,8,9-HxCDD	64.8	40 - 135	
1,2,3,4,6,7,8-HpCDD	1530				13C-1,2,3,4,6,7,8-HpCDD	72.8	40 - 135	
OCDD	30900		₽ , E J		13C-OCDD	198	40 - 135	Н
2,3,7,8-TCDF	1.65				13C-2,3,7,8-TCDF	66.3	40 - 135	
1,2,3,7,8-PeCDF	2.29		J		13C-1,2,3,7,8-PeCDF	76.8	40 - 135	
2,3,4,7,8-PeCDF	3.86		J		13C-2,3,4,7,8-PeCDF	79.7	40 - 135	
1,2,3,4,7,8-HxCDF	7.81				13C-1,2,3,4,7,8-HxCDF	82.5	40 - 135	
1,2,3,6,7,8-HxCDF	5.86				13C-1,2,3,6,7,8-HxCDF	74.1	40 - 135	
2,3,4,6,7,8-HxCDF	9.08				13C-2,3,4,6,7,8-HxCDF	71.6	40 - 135	
1,2,3,7,8,9-HxCDF	0.745		J		13C-1,2,3,7,8,9-HxCDF	74.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	189		J		13C-1,2,3,4,6,7,8-HpCDF	75.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	13.1				13C-1,2,3,4,7,8,9-HpCDF	80.0	40 - 135	
OCDF	718				13C-OCDF	95.0	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	76.1	40 - 135	
					Toxic Equivalent Quotient (TE	EQ) Data		
					TEQMinWHO2005Dioxin	44.6		
TOTALS								
Total TCDD	7.00	7.30						
Total PeCDD	36.3							
Total HxCDD	257							
Total HpCDD	2610							
Total TCDF	30.5							
Total PeCDF	52.9							
Total HxCDF	170							
Total HpCDF DL - Sample specifc est:	639				LCL-UCL- Lower control			

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

Sample ID: EB 112	812						EPA Me	ethod 8290
Client DataName:ARCAProject:CarboDate Collected:28-No		Sample Data Matrix: Aqueous Sample Size: 0.996 L		Lab QC	boratory Data Sample: 2110012-10 Batch: B2L0077 ie Analyzed : 27-Dec-12 14:05		ted: 20-Dec-2012	
Analyte Co	onc. (pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.70		IS	13C-2,3,7,8-TCDD	88.2	40 - 135	
1,2,3,7,8-PeCDD	ND	1.41			13C-1,2,3,7,8-PeCDD	105	40 - 135	
1,2,3,4,7,8-HxCDD	ND	2.03			13C-1,2,3,4,7,8-HxCDD	81.5	40 - 135	
1,2,3,6,7,8-HxCDD	ND	2.39			13C-1,2,3,6,7,8-HxCDD	81.4	40 - 135	
1,2,3,7,8,9-HxCDD	ND	2.37			13C-1,2,3,7,8,9-HxCDD	80.6	32 - 141	
1,2,3,4,6,7,8-HpCDD	ND	2.18			13C-1,2,3,4,6,7,8-HpCDD	80.0	40 - 135	
OCDD	ND	3.11			13C-OCDD	99.5	40 - 135	
2,3,7,8-TCDF	ND	0.616			13C-2,3,7,8-TCDF	86.2	40 - 135	
1,2,3,7,8-PeCDF	ND	1.41			13C-1,2,3,7,8-PeCDF	86.0	40 - 135	
2,3,4,7,8-PeCDF	ND	1.39			13C-2,3,4,7,8-PeCDF	86.6	40 - 135	
1,2,3,4,7,8-HxCDF	ND	1.20			13C-1,2,3,4,7,8-HxCDF	87.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	1.33			13C-1,2,3,6,7,8-HxCDF	82.4	40 - 135	
2,3,4,6,7,8-HxCDF	ND	1.52			13C-2,3,4,6,7,8-HxCDF	84.2	40 - 135	
1,2,3,7,8,9-HxCDF	ND	1.83			13C-1,2,3,7,8,9-HxCDF	89.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	ND	1.26			13C-1,2,3,4,6,7,8-HpCDF	77.5	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	1.47			13C-1,2,3,4,7,8,9-HpCDF	90.5	40 - 135	
OCDF	ND	2.89			13C-OCDF	92.7	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	86.3	40 - 135	
					Toxic Equivalent Quotient (TE	Q) Data		
					TEQMinWHO2005Dioxin	0.00		
TOTALS								
Total TCDD	ND	3.01						
Total PeCDD	ND	1.41						
Total HxCDD	ND	3.23						
Total HpCDD	ND	2.18						
Total TCDF	ND	0.616						
Total PeCDF	ND	1.77						
Total HxCDF	ND	2.60						
Total HpCDF	ND imated detection limit	1.12						

DL - Sample specifc estimated detection limit

LCL-UCL- Lower control limit - upper control limit

EMPC - Estimated maximum possible concentration